1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct extent_io_tree *tree, u64 start, u64 end) 84 { 85 struct inode *inode; 86 u64 isize; 87 88 if (!tree->mapping) 89 return; 90 91 inode = tree->mapping->host; 92 isize = i_size_read(inode); 93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 94 printk_ratelimited(KERN_DEBUG 95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 96 caller, btrfs_ino(inode), isize, start, end); 97 } 98 } 99 #else 100 #define btrfs_leak_debug_add(new, head) do {} while (0) 101 #define btrfs_leak_debug_del(entry) do {} while (0) 102 #define btrfs_leak_debug_check() do {} while (0) 103 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 104 #endif 105 106 #define BUFFER_LRU_MAX 64 107 108 struct tree_entry { 109 u64 start; 110 u64 end; 111 struct rb_node rb_node; 112 }; 113 114 struct extent_page_data { 115 struct bio *bio; 116 struct extent_io_tree *tree; 117 get_extent_t *get_extent; 118 unsigned long bio_flags; 119 120 /* tells writepage not to lock the state bits for this range 121 * it still does the unlocking 122 */ 123 unsigned int extent_locked:1; 124 125 /* tells the submit_bio code to use a WRITE_SYNC */ 126 unsigned int sync_io:1; 127 }; 128 129 static noinline void flush_write_bio(void *data); 130 static inline struct btrfs_fs_info * 131 tree_fs_info(struct extent_io_tree *tree) 132 { 133 if (!tree->mapping) 134 return NULL; 135 return btrfs_sb(tree->mapping->host->i_sb); 136 } 137 138 int __init extent_io_init(void) 139 { 140 extent_state_cache = kmem_cache_create("btrfs_extent_state", 141 sizeof(struct extent_state), 0, 142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 143 if (!extent_state_cache) 144 return -ENOMEM; 145 146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 147 sizeof(struct extent_buffer), 0, 148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 149 if (!extent_buffer_cache) 150 goto free_state_cache; 151 152 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 153 offsetof(struct btrfs_io_bio, bio)); 154 if (!btrfs_bioset) 155 goto free_buffer_cache; 156 157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 158 goto free_bioset; 159 160 return 0; 161 162 free_bioset: 163 bioset_free(btrfs_bioset); 164 btrfs_bioset = NULL; 165 166 free_buffer_cache: 167 kmem_cache_destroy(extent_buffer_cache); 168 extent_buffer_cache = NULL; 169 170 free_state_cache: 171 kmem_cache_destroy(extent_state_cache); 172 extent_state_cache = NULL; 173 return -ENOMEM; 174 } 175 176 void extent_io_exit(void) 177 { 178 btrfs_leak_debug_check(); 179 180 /* 181 * Make sure all delayed rcu free are flushed before we 182 * destroy caches. 183 */ 184 rcu_barrier(); 185 if (extent_state_cache) 186 kmem_cache_destroy(extent_state_cache); 187 if (extent_buffer_cache) 188 kmem_cache_destroy(extent_buffer_cache); 189 if (btrfs_bioset) 190 bioset_free(btrfs_bioset); 191 } 192 193 void extent_io_tree_init(struct extent_io_tree *tree, 194 struct address_space *mapping) 195 { 196 tree->state = RB_ROOT; 197 tree->ops = NULL; 198 tree->dirty_bytes = 0; 199 spin_lock_init(&tree->lock); 200 tree->mapping = mapping; 201 } 202 203 static struct extent_state *alloc_extent_state(gfp_t mask) 204 { 205 struct extent_state *state; 206 207 state = kmem_cache_alloc(extent_state_cache, mask); 208 if (!state) 209 return state; 210 state->state = 0; 211 state->private = 0; 212 state->tree = NULL; 213 btrfs_leak_debug_add(&state->leak_list, &states); 214 atomic_set(&state->refs, 1); 215 init_waitqueue_head(&state->wq); 216 trace_alloc_extent_state(state, mask, _RET_IP_); 217 return state; 218 } 219 220 void free_extent_state(struct extent_state *state) 221 { 222 if (!state) 223 return; 224 if (atomic_dec_and_test(&state->refs)) { 225 WARN_ON(state->tree); 226 btrfs_leak_debug_del(&state->leak_list); 227 trace_free_extent_state(state, _RET_IP_); 228 kmem_cache_free(extent_state_cache, state); 229 } 230 } 231 232 static struct rb_node *tree_insert(struct rb_root *root, 233 struct rb_node *search_start, 234 u64 offset, 235 struct rb_node *node, 236 struct rb_node ***p_in, 237 struct rb_node **parent_in) 238 { 239 struct rb_node **p; 240 struct rb_node *parent = NULL; 241 struct tree_entry *entry; 242 243 if (p_in && parent_in) { 244 p = *p_in; 245 parent = *parent_in; 246 goto do_insert; 247 } 248 249 p = search_start ? &search_start : &root->rb_node; 250 while (*p) { 251 parent = *p; 252 entry = rb_entry(parent, struct tree_entry, rb_node); 253 254 if (offset < entry->start) 255 p = &(*p)->rb_left; 256 else if (offset > entry->end) 257 p = &(*p)->rb_right; 258 else 259 return parent; 260 } 261 262 do_insert: 263 rb_link_node(node, parent, p); 264 rb_insert_color(node, root); 265 return NULL; 266 } 267 268 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 269 struct rb_node **prev_ret, 270 struct rb_node **next_ret, 271 struct rb_node ***p_ret, 272 struct rb_node **parent_ret) 273 { 274 struct rb_root *root = &tree->state; 275 struct rb_node **n = &root->rb_node; 276 struct rb_node *prev = NULL; 277 struct rb_node *orig_prev = NULL; 278 struct tree_entry *entry; 279 struct tree_entry *prev_entry = NULL; 280 281 while (*n) { 282 prev = *n; 283 entry = rb_entry(prev, struct tree_entry, rb_node); 284 prev_entry = entry; 285 286 if (offset < entry->start) 287 n = &(*n)->rb_left; 288 else if (offset > entry->end) 289 n = &(*n)->rb_right; 290 else 291 return *n; 292 } 293 294 if (p_ret) 295 *p_ret = n; 296 if (parent_ret) 297 *parent_ret = prev; 298 299 if (prev_ret) { 300 orig_prev = prev; 301 while (prev && offset > prev_entry->end) { 302 prev = rb_next(prev); 303 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 304 } 305 *prev_ret = prev; 306 prev = orig_prev; 307 } 308 309 if (next_ret) { 310 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 311 while (prev && offset < prev_entry->start) { 312 prev = rb_prev(prev); 313 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 314 } 315 *next_ret = prev; 316 } 317 return NULL; 318 } 319 320 static inline struct rb_node * 321 tree_search_for_insert(struct extent_io_tree *tree, 322 u64 offset, 323 struct rb_node ***p_ret, 324 struct rb_node **parent_ret) 325 { 326 struct rb_node *prev = NULL; 327 struct rb_node *ret; 328 329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 330 if (!ret) 331 return prev; 332 return ret; 333 } 334 335 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 336 u64 offset) 337 { 338 return tree_search_for_insert(tree, offset, NULL, NULL); 339 } 340 341 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 342 struct extent_state *other) 343 { 344 if (tree->ops && tree->ops->merge_extent_hook) 345 tree->ops->merge_extent_hook(tree->mapping->host, new, 346 other); 347 } 348 349 /* 350 * utility function to look for merge candidates inside a given range. 351 * Any extents with matching state are merged together into a single 352 * extent in the tree. Extents with EXTENT_IO in their state field 353 * are not merged because the end_io handlers need to be able to do 354 * operations on them without sleeping (or doing allocations/splits). 355 * 356 * This should be called with the tree lock held. 357 */ 358 static void merge_state(struct extent_io_tree *tree, 359 struct extent_state *state) 360 { 361 struct extent_state *other; 362 struct rb_node *other_node; 363 364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 365 return; 366 367 other_node = rb_prev(&state->rb_node); 368 if (other_node) { 369 other = rb_entry(other_node, struct extent_state, rb_node); 370 if (other->end == state->start - 1 && 371 other->state == state->state) { 372 merge_cb(tree, state, other); 373 state->start = other->start; 374 other->tree = NULL; 375 rb_erase(&other->rb_node, &tree->state); 376 free_extent_state(other); 377 } 378 } 379 other_node = rb_next(&state->rb_node); 380 if (other_node) { 381 other = rb_entry(other_node, struct extent_state, rb_node); 382 if (other->start == state->end + 1 && 383 other->state == state->state) { 384 merge_cb(tree, state, other); 385 state->end = other->end; 386 other->tree = NULL; 387 rb_erase(&other->rb_node, &tree->state); 388 free_extent_state(other); 389 } 390 } 391 } 392 393 static void set_state_cb(struct extent_io_tree *tree, 394 struct extent_state *state, unsigned long *bits) 395 { 396 if (tree->ops && tree->ops->set_bit_hook) 397 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 398 } 399 400 static void clear_state_cb(struct extent_io_tree *tree, 401 struct extent_state *state, unsigned long *bits) 402 { 403 if (tree->ops && tree->ops->clear_bit_hook) 404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 405 } 406 407 static void set_state_bits(struct extent_io_tree *tree, 408 struct extent_state *state, unsigned long *bits); 409 410 /* 411 * insert an extent_state struct into the tree. 'bits' are set on the 412 * struct before it is inserted. 413 * 414 * This may return -EEXIST if the extent is already there, in which case the 415 * state struct is freed. 416 * 417 * The tree lock is not taken internally. This is a utility function and 418 * probably isn't what you want to call (see set/clear_extent_bit). 419 */ 420 static int insert_state(struct extent_io_tree *tree, 421 struct extent_state *state, u64 start, u64 end, 422 struct rb_node ***p, 423 struct rb_node **parent, 424 unsigned long *bits) 425 { 426 struct rb_node *node; 427 428 if (end < start) 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 430 end, start); 431 state->start = start; 432 state->end = end; 433 434 set_state_bits(tree, state, bits); 435 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 437 if (node) { 438 struct extent_state *found; 439 found = rb_entry(node, struct extent_state, rb_node); 440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 441 "%llu %llu\n", 442 found->start, found->end, start, end); 443 return -EEXIST; 444 } 445 state->tree = tree; 446 merge_state(tree, state); 447 return 0; 448 } 449 450 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 451 u64 split) 452 { 453 if (tree->ops && tree->ops->split_extent_hook) 454 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 455 } 456 457 /* 458 * split a given extent state struct in two, inserting the preallocated 459 * struct 'prealloc' as the newly created second half. 'split' indicates an 460 * offset inside 'orig' where it should be split. 461 * 462 * Before calling, 463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 464 * are two extent state structs in the tree: 465 * prealloc: [orig->start, split - 1] 466 * orig: [ split, orig->end ] 467 * 468 * The tree locks are not taken by this function. They need to be held 469 * by the caller. 470 */ 471 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 472 struct extent_state *prealloc, u64 split) 473 { 474 struct rb_node *node; 475 476 split_cb(tree, orig, split); 477 478 prealloc->start = orig->start; 479 prealloc->end = split - 1; 480 prealloc->state = orig->state; 481 orig->start = split; 482 483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 484 &prealloc->rb_node, NULL, NULL); 485 if (node) { 486 free_extent_state(prealloc); 487 return -EEXIST; 488 } 489 prealloc->tree = tree; 490 return 0; 491 } 492 493 static struct extent_state *next_state(struct extent_state *state) 494 { 495 struct rb_node *next = rb_next(&state->rb_node); 496 if (next) 497 return rb_entry(next, struct extent_state, rb_node); 498 else 499 return NULL; 500 } 501 502 /* 503 * utility function to clear some bits in an extent state struct. 504 * it will optionally wake up any one waiting on this state (wake == 1). 505 * 506 * If no bits are set on the state struct after clearing things, the 507 * struct is freed and removed from the tree 508 */ 509 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 510 struct extent_state *state, 511 unsigned long *bits, int wake) 512 { 513 struct extent_state *next; 514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 515 516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 517 u64 range = state->end - state->start + 1; 518 WARN_ON(range > tree->dirty_bytes); 519 tree->dirty_bytes -= range; 520 } 521 clear_state_cb(tree, state, bits); 522 state->state &= ~bits_to_clear; 523 if (wake) 524 wake_up(&state->wq); 525 if (state->state == 0) { 526 next = next_state(state); 527 if (state->tree) { 528 rb_erase(&state->rb_node, &tree->state); 529 state->tree = NULL; 530 free_extent_state(state); 531 } else { 532 WARN_ON(1); 533 } 534 } else { 535 merge_state(tree, state); 536 next = next_state(state); 537 } 538 return next; 539 } 540 541 static struct extent_state * 542 alloc_extent_state_atomic(struct extent_state *prealloc) 543 { 544 if (!prealloc) 545 prealloc = alloc_extent_state(GFP_ATOMIC); 546 547 return prealloc; 548 } 549 550 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 551 { 552 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 553 "Extent tree was modified by another " 554 "thread while locked."); 555 } 556 557 /* 558 * clear some bits on a range in the tree. This may require splitting 559 * or inserting elements in the tree, so the gfp mask is used to 560 * indicate which allocations or sleeping are allowed. 561 * 562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 563 * the given range from the tree regardless of state (ie for truncate). 564 * 565 * the range [start, end] is inclusive. 566 * 567 * This takes the tree lock, and returns 0 on success and < 0 on error. 568 */ 569 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 570 unsigned long bits, int wake, int delete, 571 struct extent_state **cached_state, 572 gfp_t mask) 573 { 574 struct extent_state *state; 575 struct extent_state *cached; 576 struct extent_state *prealloc = NULL; 577 struct rb_node *node; 578 u64 last_end; 579 int err; 580 int clear = 0; 581 582 btrfs_debug_check_extent_io_range(tree, start, end); 583 584 if (bits & EXTENT_DELALLOC) 585 bits |= EXTENT_NORESERVE; 586 587 if (delete) 588 bits |= ~EXTENT_CTLBITS; 589 bits |= EXTENT_FIRST_DELALLOC; 590 591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 592 clear = 1; 593 again: 594 if (!prealloc && (mask & __GFP_WAIT)) { 595 prealloc = alloc_extent_state(mask); 596 if (!prealloc) 597 return -ENOMEM; 598 } 599 600 spin_lock(&tree->lock); 601 if (cached_state) { 602 cached = *cached_state; 603 604 if (clear) { 605 *cached_state = NULL; 606 cached_state = NULL; 607 } 608 609 if (cached && cached->tree && cached->start <= start && 610 cached->end > start) { 611 if (clear) 612 atomic_dec(&cached->refs); 613 state = cached; 614 goto hit_next; 615 } 616 if (clear) 617 free_extent_state(cached); 618 } 619 /* 620 * this search will find the extents that end after 621 * our range starts 622 */ 623 node = tree_search(tree, start); 624 if (!node) 625 goto out; 626 state = rb_entry(node, struct extent_state, rb_node); 627 hit_next: 628 if (state->start > end) 629 goto out; 630 WARN_ON(state->end < start); 631 last_end = state->end; 632 633 /* the state doesn't have the wanted bits, go ahead */ 634 if (!(state->state & bits)) { 635 state = next_state(state); 636 goto next; 637 } 638 639 /* 640 * | ---- desired range ---- | 641 * | state | or 642 * | ------------- state -------------- | 643 * 644 * We need to split the extent we found, and may flip 645 * bits on second half. 646 * 647 * If the extent we found extends past our range, we 648 * just split and search again. It'll get split again 649 * the next time though. 650 * 651 * If the extent we found is inside our range, we clear 652 * the desired bit on it. 653 */ 654 655 if (state->start < start) { 656 prealloc = alloc_extent_state_atomic(prealloc); 657 BUG_ON(!prealloc); 658 err = split_state(tree, state, prealloc, start); 659 if (err) 660 extent_io_tree_panic(tree, err); 661 662 prealloc = NULL; 663 if (err) 664 goto out; 665 if (state->end <= end) { 666 state = clear_state_bit(tree, state, &bits, wake); 667 goto next; 668 } 669 goto search_again; 670 } 671 /* 672 * | ---- desired range ---- | 673 * | state | 674 * We need to split the extent, and clear the bit 675 * on the first half 676 */ 677 if (state->start <= end && state->end > end) { 678 prealloc = alloc_extent_state_atomic(prealloc); 679 BUG_ON(!prealloc); 680 err = split_state(tree, state, prealloc, end + 1); 681 if (err) 682 extent_io_tree_panic(tree, err); 683 684 if (wake) 685 wake_up(&state->wq); 686 687 clear_state_bit(tree, prealloc, &bits, wake); 688 689 prealloc = NULL; 690 goto out; 691 } 692 693 state = clear_state_bit(tree, state, &bits, wake); 694 next: 695 if (last_end == (u64)-1) 696 goto out; 697 start = last_end + 1; 698 if (start <= end && state && !need_resched()) 699 goto hit_next; 700 goto search_again; 701 702 out: 703 spin_unlock(&tree->lock); 704 if (prealloc) 705 free_extent_state(prealloc); 706 707 return 0; 708 709 search_again: 710 if (start > end) 711 goto out; 712 spin_unlock(&tree->lock); 713 if (mask & __GFP_WAIT) 714 cond_resched(); 715 goto again; 716 } 717 718 static void wait_on_state(struct extent_io_tree *tree, 719 struct extent_state *state) 720 __releases(tree->lock) 721 __acquires(tree->lock) 722 { 723 DEFINE_WAIT(wait); 724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 725 spin_unlock(&tree->lock); 726 schedule(); 727 spin_lock(&tree->lock); 728 finish_wait(&state->wq, &wait); 729 } 730 731 /* 732 * waits for one or more bits to clear on a range in the state tree. 733 * The range [start, end] is inclusive. 734 * The tree lock is taken by this function 735 */ 736 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 737 unsigned long bits) 738 { 739 struct extent_state *state; 740 struct rb_node *node; 741 742 btrfs_debug_check_extent_io_range(tree, start, end); 743 744 spin_lock(&tree->lock); 745 again: 746 while (1) { 747 /* 748 * this search will find all the extents that end after 749 * our range starts 750 */ 751 node = tree_search(tree, start); 752 process_node: 753 if (!node) 754 break; 755 756 state = rb_entry(node, struct extent_state, rb_node); 757 758 if (state->start > end) 759 goto out; 760 761 if (state->state & bits) { 762 start = state->start; 763 atomic_inc(&state->refs); 764 wait_on_state(tree, state); 765 free_extent_state(state); 766 goto again; 767 } 768 start = state->end + 1; 769 770 if (start > end) 771 break; 772 773 if (!cond_resched_lock(&tree->lock)) { 774 node = rb_next(node); 775 goto process_node; 776 } 777 } 778 out: 779 spin_unlock(&tree->lock); 780 } 781 782 static void set_state_bits(struct extent_io_tree *tree, 783 struct extent_state *state, 784 unsigned long *bits) 785 { 786 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 787 788 set_state_cb(tree, state, bits); 789 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 790 u64 range = state->end - state->start + 1; 791 tree->dirty_bytes += range; 792 } 793 state->state |= bits_to_set; 794 } 795 796 static void cache_state(struct extent_state *state, 797 struct extent_state **cached_ptr) 798 { 799 if (cached_ptr && !(*cached_ptr)) { 800 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 801 *cached_ptr = state; 802 atomic_inc(&state->refs); 803 } 804 } 805 } 806 807 /* 808 * set some bits on a range in the tree. This may require allocations or 809 * sleeping, so the gfp mask is used to indicate what is allowed. 810 * 811 * If any of the exclusive bits are set, this will fail with -EEXIST if some 812 * part of the range already has the desired bits set. The start of the 813 * existing range is returned in failed_start in this case. 814 * 815 * [start, end] is inclusive This takes the tree lock. 816 */ 817 818 static int __must_check 819 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 820 unsigned long bits, unsigned long exclusive_bits, 821 u64 *failed_start, struct extent_state **cached_state, 822 gfp_t mask) 823 { 824 struct extent_state *state; 825 struct extent_state *prealloc = NULL; 826 struct rb_node *node; 827 struct rb_node **p; 828 struct rb_node *parent; 829 int err = 0; 830 u64 last_start; 831 u64 last_end; 832 833 btrfs_debug_check_extent_io_range(tree, start, end); 834 835 bits |= EXTENT_FIRST_DELALLOC; 836 again: 837 if (!prealloc && (mask & __GFP_WAIT)) { 838 prealloc = alloc_extent_state(mask); 839 BUG_ON(!prealloc); 840 } 841 842 spin_lock(&tree->lock); 843 if (cached_state && *cached_state) { 844 state = *cached_state; 845 if (state->start <= start && state->end > start && 846 state->tree) { 847 node = &state->rb_node; 848 goto hit_next; 849 } 850 } 851 /* 852 * this search will find all the extents that end after 853 * our range starts. 854 */ 855 node = tree_search_for_insert(tree, start, &p, &parent); 856 if (!node) { 857 prealloc = alloc_extent_state_atomic(prealloc); 858 BUG_ON(!prealloc); 859 err = insert_state(tree, prealloc, start, end, 860 &p, &parent, &bits); 861 if (err) 862 extent_io_tree_panic(tree, err); 863 864 cache_state(prealloc, cached_state); 865 prealloc = NULL; 866 goto out; 867 } 868 state = rb_entry(node, struct extent_state, rb_node); 869 hit_next: 870 last_start = state->start; 871 last_end = state->end; 872 873 /* 874 * | ---- desired range ---- | 875 * | state | 876 * 877 * Just lock what we found and keep going 878 */ 879 if (state->start == start && state->end <= end) { 880 if (state->state & exclusive_bits) { 881 *failed_start = state->start; 882 err = -EEXIST; 883 goto out; 884 } 885 886 set_state_bits(tree, state, &bits); 887 cache_state(state, cached_state); 888 merge_state(tree, state); 889 if (last_end == (u64)-1) 890 goto out; 891 start = last_end + 1; 892 state = next_state(state); 893 if (start < end && state && state->start == start && 894 !need_resched()) 895 goto hit_next; 896 goto search_again; 897 } 898 899 /* 900 * | ---- desired range ---- | 901 * | state | 902 * or 903 * | ------------- state -------------- | 904 * 905 * We need to split the extent we found, and may flip bits on 906 * second half. 907 * 908 * If the extent we found extends past our 909 * range, we just split and search again. It'll get split 910 * again the next time though. 911 * 912 * If the extent we found is inside our range, we set the 913 * desired bit on it. 914 */ 915 if (state->start < start) { 916 if (state->state & exclusive_bits) { 917 *failed_start = start; 918 err = -EEXIST; 919 goto out; 920 } 921 922 prealloc = alloc_extent_state_atomic(prealloc); 923 BUG_ON(!prealloc); 924 err = split_state(tree, state, prealloc, start); 925 if (err) 926 extent_io_tree_panic(tree, err); 927 928 prealloc = NULL; 929 if (err) 930 goto out; 931 if (state->end <= end) { 932 set_state_bits(tree, state, &bits); 933 cache_state(state, cached_state); 934 merge_state(tree, state); 935 if (last_end == (u64)-1) 936 goto out; 937 start = last_end + 1; 938 state = next_state(state); 939 if (start < end && state && state->start == start && 940 !need_resched()) 941 goto hit_next; 942 } 943 goto search_again; 944 } 945 /* 946 * | ---- desired range ---- | 947 * | state | or | state | 948 * 949 * There's a hole, we need to insert something in it and 950 * ignore the extent we found. 951 */ 952 if (state->start > start) { 953 u64 this_end; 954 if (end < last_start) 955 this_end = end; 956 else 957 this_end = last_start - 1; 958 959 prealloc = alloc_extent_state_atomic(prealloc); 960 BUG_ON(!prealloc); 961 962 /* 963 * Avoid to free 'prealloc' if it can be merged with 964 * the later extent. 965 */ 966 err = insert_state(tree, prealloc, start, this_end, 967 NULL, NULL, &bits); 968 if (err) 969 extent_io_tree_panic(tree, err); 970 971 cache_state(prealloc, cached_state); 972 prealloc = NULL; 973 start = this_end + 1; 974 goto search_again; 975 } 976 /* 977 * | ---- desired range ---- | 978 * | state | 979 * We need to split the extent, and set the bit 980 * on the first half 981 */ 982 if (state->start <= end && state->end > end) { 983 if (state->state & exclusive_bits) { 984 *failed_start = start; 985 err = -EEXIST; 986 goto out; 987 } 988 989 prealloc = alloc_extent_state_atomic(prealloc); 990 BUG_ON(!prealloc); 991 err = split_state(tree, state, prealloc, end + 1); 992 if (err) 993 extent_io_tree_panic(tree, err); 994 995 set_state_bits(tree, prealloc, &bits); 996 cache_state(prealloc, cached_state); 997 merge_state(tree, prealloc); 998 prealloc = NULL; 999 goto out; 1000 } 1001 1002 goto search_again; 1003 1004 out: 1005 spin_unlock(&tree->lock); 1006 if (prealloc) 1007 free_extent_state(prealloc); 1008 1009 return err; 1010 1011 search_again: 1012 if (start > end) 1013 goto out; 1014 spin_unlock(&tree->lock); 1015 if (mask & __GFP_WAIT) 1016 cond_resched(); 1017 goto again; 1018 } 1019 1020 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1021 unsigned long bits, u64 * failed_start, 1022 struct extent_state **cached_state, gfp_t mask) 1023 { 1024 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1025 cached_state, mask); 1026 } 1027 1028 1029 /** 1030 * convert_extent_bit - convert all bits in a given range from one bit to 1031 * another 1032 * @tree: the io tree to search 1033 * @start: the start offset in bytes 1034 * @end: the end offset in bytes (inclusive) 1035 * @bits: the bits to set in this range 1036 * @clear_bits: the bits to clear in this range 1037 * @cached_state: state that we're going to cache 1038 * @mask: the allocation mask 1039 * 1040 * This will go through and set bits for the given range. If any states exist 1041 * already in this range they are set with the given bit and cleared of the 1042 * clear_bits. This is only meant to be used by things that are mergeable, ie 1043 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1044 * boundary bits like LOCK. 1045 */ 1046 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1047 unsigned long bits, unsigned long clear_bits, 1048 struct extent_state **cached_state, gfp_t mask) 1049 { 1050 struct extent_state *state; 1051 struct extent_state *prealloc = NULL; 1052 struct rb_node *node; 1053 struct rb_node **p; 1054 struct rb_node *parent; 1055 int err = 0; 1056 u64 last_start; 1057 u64 last_end; 1058 1059 btrfs_debug_check_extent_io_range(tree, start, end); 1060 1061 again: 1062 if (!prealloc && (mask & __GFP_WAIT)) { 1063 prealloc = alloc_extent_state(mask); 1064 if (!prealloc) 1065 return -ENOMEM; 1066 } 1067 1068 spin_lock(&tree->lock); 1069 if (cached_state && *cached_state) { 1070 state = *cached_state; 1071 if (state->start <= start && state->end > start && 1072 state->tree) { 1073 node = &state->rb_node; 1074 goto hit_next; 1075 } 1076 } 1077 1078 /* 1079 * this search will find all the extents that end after 1080 * our range starts. 1081 */ 1082 node = tree_search_for_insert(tree, start, &p, &parent); 1083 if (!node) { 1084 prealloc = alloc_extent_state_atomic(prealloc); 1085 if (!prealloc) { 1086 err = -ENOMEM; 1087 goto out; 1088 } 1089 err = insert_state(tree, prealloc, start, end, 1090 &p, &parent, &bits); 1091 if (err) 1092 extent_io_tree_panic(tree, err); 1093 cache_state(prealloc, cached_state); 1094 prealloc = NULL; 1095 goto out; 1096 } 1097 state = rb_entry(node, struct extent_state, rb_node); 1098 hit_next: 1099 last_start = state->start; 1100 last_end = state->end; 1101 1102 /* 1103 * | ---- desired range ---- | 1104 * | state | 1105 * 1106 * Just lock what we found and keep going 1107 */ 1108 if (state->start == start && state->end <= end) { 1109 set_state_bits(tree, state, &bits); 1110 cache_state(state, cached_state); 1111 state = clear_state_bit(tree, state, &clear_bits, 0); 1112 if (last_end == (u64)-1) 1113 goto out; 1114 start = last_end + 1; 1115 if (start < end && state && state->start == start && 1116 !need_resched()) 1117 goto hit_next; 1118 goto search_again; 1119 } 1120 1121 /* 1122 * | ---- desired range ---- | 1123 * | state | 1124 * or 1125 * | ------------- state -------------- | 1126 * 1127 * We need to split the extent we found, and may flip bits on 1128 * second half. 1129 * 1130 * If the extent we found extends past our 1131 * range, we just split and search again. It'll get split 1132 * again the next time though. 1133 * 1134 * If the extent we found is inside our range, we set the 1135 * desired bit on it. 1136 */ 1137 if (state->start < start) { 1138 prealloc = alloc_extent_state_atomic(prealloc); 1139 if (!prealloc) { 1140 err = -ENOMEM; 1141 goto out; 1142 } 1143 err = split_state(tree, state, prealloc, start); 1144 if (err) 1145 extent_io_tree_panic(tree, err); 1146 prealloc = NULL; 1147 if (err) 1148 goto out; 1149 if (state->end <= end) { 1150 set_state_bits(tree, state, &bits); 1151 cache_state(state, cached_state); 1152 state = clear_state_bit(tree, state, &clear_bits, 0); 1153 if (last_end == (u64)-1) 1154 goto out; 1155 start = last_end + 1; 1156 if (start < end && state && state->start == start && 1157 !need_resched()) 1158 goto hit_next; 1159 } 1160 goto search_again; 1161 } 1162 /* 1163 * | ---- desired range ---- | 1164 * | state | or | state | 1165 * 1166 * There's a hole, we need to insert something in it and 1167 * ignore the extent we found. 1168 */ 1169 if (state->start > start) { 1170 u64 this_end; 1171 if (end < last_start) 1172 this_end = end; 1173 else 1174 this_end = last_start - 1; 1175 1176 prealloc = alloc_extent_state_atomic(prealloc); 1177 if (!prealloc) { 1178 err = -ENOMEM; 1179 goto out; 1180 } 1181 1182 /* 1183 * Avoid to free 'prealloc' if it can be merged with 1184 * the later extent. 1185 */ 1186 err = insert_state(tree, prealloc, start, this_end, 1187 NULL, NULL, &bits); 1188 if (err) 1189 extent_io_tree_panic(tree, err); 1190 cache_state(prealloc, cached_state); 1191 prealloc = NULL; 1192 start = this_end + 1; 1193 goto search_again; 1194 } 1195 /* 1196 * | ---- desired range ---- | 1197 * | state | 1198 * We need to split the extent, and set the bit 1199 * on the first half 1200 */ 1201 if (state->start <= end && state->end > end) { 1202 prealloc = alloc_extent_state_atomic(prealloc); 1203 if (!prealloc) { 1204 err = -ENOMEM; 1205 goto out; 1206 } 1207 1208 err = split_state(tree, state, prealloc, end + 1); 1209 if (err) 1210 extent_io_tree_panic(tree, err); 1211 1212 set_state_bits(tree, prealloc, &bits); 1213 cache_state(prealloc, cached_state); 1214 clear_state_bit(tree, prealloc, &clear_bits, 0); 1215 prealloc = NULL; 1216 goto out; 1217 } 1218 1219 goto search_again; 1220 1221 out: 1222 spin_unlock(&tree->lock); 1223 if (prealloc) 1224 free_extent_state(prealloc); 1225 1226 return err; 1227 1228 search_again: 1229 if (start > end) 1230 goto out; 1231 spin_unlock(&tree->lock); 1232 if (mask & __GFP_WAIT) 1233 cond_resched(); 1234 goto again; 1235 } 1236 1237 /* wrappers around set/clear extent bit */ 1238 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1239 gfp_t mask) 1240 { 1241 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1242 NULL, mask); 1243 } 1244 1245 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1246 unsigned long bits, gfp_t mask) 1247 { 1248 return set_extent_bit(tree, start, end, bits, NULL, 1249 NULL, mask); 1250 } 1251 1252 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1253 unsigned long bits, gfp_t mask) 1254 { 1255 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1256 } 1257 1258 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1259 struct extent_state **cached_state, gfp_t mask) 1260 { 1261 return set_extent_bit(tree, start, end, 1262 EXTENT_DELALLOC | EXTENT_UPTODATE, 1263 NULL, cached_state, mask); 1264 } 1265 1266 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1267 struct extent_state **cached_state, gfp_t mask) 1268 { 1269 return set_extent_bit(tree, start, end, 1270 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1271 NULL, cached_state, mask); 1272 } 1273 1274 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1275 gfp_t mask) 1276 { 1277 return clear_extent_bit(tree, start, end, 1278 EXTENT_DIRTY | EXTENT_DELALLOC | 1279 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1280 } 1281 1282 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1283 gfp_t mask) 1284 { 1285 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1286 NULL, mask); 1287 } 1288 1289 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1290 struct extent_state **cached_state, gfp_t mask) 1291 { 1292 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1293 cached_state, mask); 1294 } 1295 1296 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1297 struct extent_state **cached_state, gfp_t mask) 1298 { 1299 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1300 cached_state, mask); 1301 } 1302 1303 /* 1304 * either insert or lock state struct between start and end use mask to tell 1305 * us if waiting is desired. 1306 */ 1307 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1308 unsigned long bits, struct extent_state **cached_state) 1309 { 1310 int err; 1311 u64 failed_start; 1312 while (1) { 1313 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1314 EXTENT_LOCKED, &failed_start, 1315 cached_state, GFP_NOFS); 1316 if (err == -EEXIST) { 1317 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1318 start = failed_start; 1319 } else 1320 break; 1321 WARN_ON(start > end); 1322 } 1323 return err; 1324 } 1325 1326 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1327 { 1328 return lock_extent_bits(tree, start, end, 0, NULL); 1329 } 1330 1331 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1332 { 1333 int err; 1334 u64 failed_start; 1335 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1337 &failed_start, NULL, GFP_NOFS); 1338 if (err == -EEXIST) { 1339 if (failed_start > start) 1340 clear_extent_bit(tree, start, failed_start - 1, 1341 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1342 return 0; 1343 } 1344 return 1; 1345 } 1346 1347 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1348 struct extent_state **cached, gfp_t mask) 1349 { 1350 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1351 mask); 1352 } 1353 1354 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1355 { 1356 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1357 GFP_NOFS); 1358 } 1359 1360 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1361 { 1362 unsigned long index = start >> PAGE_CACHE_SHIFT; 1363 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1364 struct page *page; 1365 1366 while (index <= end_index) { 1367 page = find_get_page(inode->i_mapping, index); 1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1369 clear_page_dirty_for_io(page); 1370 page_cache_release(page); 1371 index++; 1372 } 1373 return 0; 1374 } 1375 1376 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1377 { 1378 unsigned long index = start >> PAGE_CACHE_SHIFT; 1379 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1380 struct page *page; 1381 1382 while (index <= end_index) { 1383 page = find_get_page(inode->i_mapping, index); 1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1385 account_page_redirty(page); 1386 __set_page_dirty_nobuffers(page); 1387 page_cache_release(page); 1388 index++; 1389 } 1390 return 0; 1391 } 1392 1393 /* 1394 * helper function to set both pages and extents in the tree writeback 1395 */ 1396 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1397 { 1398 unsigned long index = start >> PAGE_CACHE_SHIFT; 1399 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1400 struct page *page; 1401 1402 while (index <= end_index) { 1403 page = find_get_page(tree->mapping, index); 1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1405 set_page_writeback(page); 1406 page_cache_release(page); 1407 index++; 1408 } 1409 return 0; 1410 } 1411 1412 /* find the first state struct with 'bits' set after 'start', and 1413 * return it. tree->lock must be held. NULL will returned if 1414 * nothing was found after 'start' 1415 */ 1416 static struct extent_state * 1417 find_first_extent_bit_state(struct extent_io_tree *tree, 1418 u64 start, unsigned long bits) 1419 { 1420 struct rb_node *node; 1421 struct extent_state *state; 1422 1423 /* 1424 * this search will find all the extents that end after 1425 * our range starts. 1426 */ 1427 node = tree_search(tree, start); 1428 if (!node) 1429 goto out; 1430 1431 while (1) { 1432 state = rb_entry(node, struct extent_state, rb_node); 1433 if (state->end >= start && (state->state & bits)) 1434 return state; 1435 1436 node = rb_next(node); 1437 if (!node) 1438 break; 1439 } 1440 out: 1441 return NULL; 1442 } 1443 1444 /* 1445 * find the first offset in the io tree with 'bits' set. zero is 1446 * returned if we find something, and *start_ret and *end_ret are 1447 * set to reflect the state struct that was found. 1448 * 1449 * If nothing was found, 1 is returned. If found something, return 0. 1450 */ 1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1452 u64 *start_ret, u64 *end_ret, unsigned long bits, 1453 struct extent_state **cached_state) 1454 { 1455 struct extent_state *state; 1456 struct rb_node *n; 1457 int ret = 1; 1458 1459 spin_lock(&tree->lock); 1460 if (cached_state && *cached_state) { 1461 state = *cached_state; 1462 if (state->end == start - 1 && state->tree) { 1463 n = rb_next(&state->rb_node); 1464 while (n) { 1465 state = rb_entry(n, struct extent_state, 1466 rb_node); 1467 if (state->state & bits) 1468 goto got_it; 1469 n = rb_next(n); 1470 } 1471 free_extent_state(*cached_state); 1472 *cached_state = NULL; 1473 goto out; 1474 } 1475 free_extent_state(*cached_state); 1476 *cached_state = NULL; 1477 } 1478 1479 state = find_first_extent_bit_state(tree, start, bits); 1480 got_it: 1481 if (state) { 1482 cache_state(state, cached_state); 1483 *start_ret = state->start; 1484 *end_ret = state->end; 1485 ret = 0; 1486 } 1487 out: 1488 spin_unlock(&tree->lock); 1489 return ret; 1490 } 1491 1492 /* 1493 * find a contiguous range of bytes in the file marked as delalloc, not 1494 * more than 'max_bytes'. start and end are used to return the range, 1495 * 1496 * 1 is returned if we find something, 0 if nothing was in the tree 1497 */ 1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1499 u64 *start, u64 *end, u64 max_bytes, 1500 struct extent_state **cached_state) 1501 { 1502 struct rb_node *node; 1503 struct extent_state *state; 1504 u64 cur_start = *start; 1505 u64 found = 0; 1506 u64 total_bytes = 0; 1507 1508 spin_lock(&tree->lock); 1509 1510 /* 1511 * this search will find all the extents that end after 1512 * our range starts. 1513 */ 1514 node = tree_search(tree, cur_start); 1515 if (!node) { 1516 if (!found) 1517 *end = (u64)-1; 1518 goto out; 1519 } 1520 1521 while (1) { 1522 state = rb_entry(node, struct extent_state, rb_node); 1523 if (found && (state->start != cur_start || 1524 (state->state & EXTENT_BOUNDARY))) { 1525 goto out; 1526 } 1527 if (!(state->state & EXTENT_DELALLOC)) { 1528 if (!found) 1529 *end = state->end; 1530 goto out; 1531 } 1532 if (!found) { 1533 *start = state->start; 1534 *cached_state = state; 1535 atomic_inc(&state->refs); 1536 } 1537 found++; 1538 *end = state->end; 1539 cur_start = state->end + 1; 1540 node = rb_next(node); 1541 total_bytes += state->end - state->start + 1; 1542 if (total_bytes >= max_bytes) 1543 break; 1544 if (!node) 1545 break; 1546 } 1547 out: 1548 spin_unlock(&tree->lock); 1549 return found; 1550 } 1551 1552 static noinline void __unlock_for_delalloc(struct inode *inode, 1553 struct page *locked_page, 1554 u64 start, u64 end) 1555 { 1556 int ret; 1557 struct page *pages[16]; 1558 unsigned long index = start >> PAGE_CACHE_SHIFT; 1559 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1560 unsigned long nr_pages = end_index - index + 1; 1561 int i; 1562 1563 if (index == locked_page->index && end_index == index) 1564 return; 1565 1566 while (nr_pages > 0) { 1567 ret = find_get_pages_contig(inode->i_mapping, index, 1568 min_t(unsigned long, nr_pages, 1569 ARRAY_SIZE(pages)), pages); 1570 for (i = 0; i < ret; i++) { 1571 if (pages[i] != locked_page) 1572 unlock_page(pages[i]); 1573 page_cache_release(pages[i]); 1574 } 1575 nr_pages -= ret; 1576 index += ret; 1577 cond_resched(); 1578 } 1579 } 1580 1581 static noinline int lock_delalloc_pages(struct inode *inode, 1582 struct page *locked_page, 1583 u64 delalloc_start, 1584 u64 delalloc_end) 1585 { 1586 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1587 unsigned long start_index = index; 1588 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1589 unsigned long pages_locked = 0; 1590 struct page *pages[16]; 1591 unsigned long nrpages; 1592 int ret; 1593 int i; 1594 1595 /* the caller is responsible for locking the start index */ 1596 if (index == locked_page->index && index == end_index) 1597 return 0; 1598 1599 /* skip the page at the start index */ 1600 nrpages = end_index - index + 1; 1601 while (nrpages > 0) { 1602 ret = find_get_pages_contig(inode->i_mapping, index, 1603 min_t(unsigned long, 1604 nrpages, ARRAY_SIZE(pages)), pages); 1605 if (ret == 0) { 1606 ret = -EAGAIN; 1607 goto done; 1608 } 1609 /* now we have an array of pages, lock them all */ 1610 for (i = 0; i < ret; i++) { 1611 /* 1612 * the caller is taking responsibility for 1613 * locked_page 1614 */ 1615 if (pages[i] != locked_page) { 1616 lock_page(pages[i]); 1617 if (!PageDirty(pages[i]) || 1618 pages[i]->mapping != inode->i_mapping) { 1619 ret = -EAGAIN; 1620 unlock_page(pages[i]); 1621 page_cache_release(pages[i]); 1622 goto done; 1623 } 1624 } 1625 page_cache_release(pages[i]); 1626 pages_locked++; 1627 } 1628 nrpages -= ret; 1629 index += ret; 1630 cond_resched(); 1631 } 1632 ret = 0; 1633 done: 1634 if (ret && pages_locked) { 1635 __unlock_for_delalloc(inode, locked_page, 1636 delalloc_start, 1637 ((u64)(start_index + pages_locked - 1)) << 1638 PAGE_CACHE_SHIFT); 1639 } 1640 return ret; 1641 } 1642 1643 /* 1644 * find a contiguous range of bytes in the file marked as delalloc, not 1645 * more than 'max_bytes'. start and end are used to return the range, 1646 * 1647 * 1 is returned if we find something, 0 if nothing was in the tree 1648 */ 1649 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1650 struct extent_io_tree *tree, 1651 struct page *locked_page, u64 *start, 1652 u64 *end, u64 max_bytes) 1653 { 1654 u64 delalloc_start; 1655 u64 delalloc_end; 1656 u64 found; 1657 struct extent_state *cached_state = NULL; 1658 int ret; 1659 int loops = 0; 1660 1661 again: 1662 /* step one, find a bunch of delalloc bytes starting at start */ 1663 delalloc_start = *start; 1664 delalloc_end = 0; 1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1666 max_bytes, &cached_state); 1667 if (!found || delalloc_end <= *start) { 1668 *start = delalloc_start; 1669 *end = delalloc_end; 1670 free_extent_state(cached_state); 1671 return 0; 1672 } 1673 1674 /* 1675 * start comes from the offset of locked_page. We have to lock 1676 * pages in order, so we can't process delalloc bytes before 1677 * locked_page 1678 */ 1679 if (delalloc_start < *start) 1680 delalloc_start = *start; 1681 1682 /* 1683 * make sure to limit the number of pages we try to lock down 1684 */ 1685 if (delalloc_end + 1 - delalloc_start > max_bytes) 1686 delalloc_end = delalloc_start + max_bytes - 1; 1687 1688 /* step two, lock all the pages after the page that has start */ 1689 ret = lock_delalloc_pages(inode, locked_page, 1690 delalloc_start, delalloc_end); 1691 if (ret == -EAGAIN) { 1692 /* some of the pages are gone, lets avoid looping by 1693 * shortening the size of the delalloc range we're searching 1694 */ 1695 free_extent_state(cached_state); 1696 if (!loops) { 1697 max_bytes = PAGE_CACHE_SIZE; 1698 loops = 1; 1699 goto again; 1700 } else { 1701 found = 0; 1702 goto out_failed; 1703 } 1704 } 1705 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1706 1707 /* step three, lock the state bits for the whole range */ 1708 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1709 1710 /* then test to make sure it is all still delalloc */ 1711 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1712 EXTENT_DELALLOC, 1, cached_state); 1713 if (!ret) { 1714 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1715 &cached_state, GFP_NOFS); 1716 __unlock_for_delalloc(inode, locked_page, 1717 delalloc_start, delalloc_end); 1718 cond_resched(); 1719 goto again; 1720 } 1721 free_extent_state(cached_state); 1722 *start = delalloc_start; 1723 *end = delalloc_end; 1724 out_failed: 1725 return found; 1726 } 1727 1728 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1729 struct page *locked_page, 1730 unsigned long clear_bits, 1731 unsigned long page_ops) 1732 { 1733 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1734 int ret; 1735 struct page *pages[16]; 1736 unsigned long index = start >> PAGE_CACHE_SHIFT; 1737 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1738 unsigned long nr_pages = end_index - index + 1; 1739 int i; 1740 1741 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1742 if (page_ops == 0) 1743 return 0; 1744 1745 while (nr_pages > 0) { 1746 ret = find_get_pages_contig(inode->i_mapping, index, 1747 min_t(unsigned long, 1748 nr_pages, ARRAY_SIZE(pages)), pages); 1749 for (i = 0; i < ret; i++) { 1750 1751 if (page_ops & PAGE_SET_PRIVATE2) 1752 SetPagePrivate2(pages[i]); 1753 1754 if (pages[i] == locked_page) { 1755 page_cache_release(pages[i]); 1756 continue; 1757 } 1758 if (page_ops & PAGE_CLEAR_DIRTY) 1759 clear_page_dirty_for_io(pages[i]); 1760 if (page_ops & PAGE_SET_WRITEBACK) 1761 set_page_writeback(pages[i]); 1762 if (page_ops & PAGE_END_WRITEBACK) 1763 end_page_writeback(pages[i]); 1764 if (page_ops & PAGE_UNLOCK) 1765 unlock_page(pages[i]); 1766 page_cache_release(pages[i]); 1767 } 1768 nr_pages -= ret; 1769 index += ret; 1770 cond_resched(); 1771 } 1772 return 0; 1773 } 1774 1775 /* 1776 * count the number of bytes in the tree that have a given bit(s) 1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1778 * cached. The total number found is returned. 1779 */ 1780 u64 count_range_bits(struct extent_io_tree *tree, 1781 u64 *start, u64 search_end, u64 max_bytes, 1782 unsigned long bits, int contig) 1783 { 1784 struct rb_node *node; 1785 struct extent_state *state; 1786 u64 cur_start = *start; 1787 u64 total_bytes = 0; 1788 u64 last = 0; 1789 int found = 0; 1790 1791 if (WARN_ON(search_end <= cur_start)) 1792 return 0; 1793 1794 spin_lock(&tree->lock); 1795 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1796 total_bytes = tree->dirty_bytes; 1797 goto out; 1798 } 1799 /* 1800 * this search will find all the extents that end after 1801 * our range starts. 1802 */ 1803 node = tree_search(tree, cur_start); 1804 if (!node) 1805 goto out; 1806 1807 while (1) { 1808 state = rb_entry(node, struct extent_state, rb_node); 1809 if (state->start > search_end) 1810 break; 1811 if (contig && found && state->start > last + 1) 1812 break; 1813 if (state->end >= cur_start && (state->state & bits) == bits) { 1814 total_bytes += min(search_end, state->end) + 1 - 1815 max(cur_start, state->start); 1816 if (total_bytes >= max_bytes) 1817 break; 1818 if (!found) { 1819 *start = max(cur_start, state->start); 1820 found = 1; 1821 } 1822 last = state->end; 1823 } else if (contig && found) { 1824 break; 1825 } 1826 node = rb_next(node); 1827 if (!node) 1828 break; 1829 } 1830 out: 1831 spin_unlock(&tree->lock); 1832 return total_bytes; 1833 } 1834 1835 /* 1836 * set the private field for a given byte offset in the tree. If there isn't 1837 * an extent_state there already, this does nothing. 1838 */ 1839 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1840 { 1841 struct rb_node *node; 1842 struct extent_state *state; 1843 int ret = 0; 1844 1845 spin_lock(&tree->lock); 1846 /* 1847 * this search will find all the extents that end after 1848 * our range starts. 1849 */ 1850 node = tree_search(tree, start); 1851 if (!node) { 1852 ret = -ENOENT; 1853 goto out; 1854 } 1855 state = rb_entry(node, struct extent_state, rb_node); 1856 if (state->start != start) { 1857 ret = -ENOENT; 1858 goto out; 1859 } 1860 state->private = private; 1861 out: 1862 spin_unlock(&tree->lock); 1863 return ret; 1864 } 1865 1866 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1867 { 1868 struct rb_node *node; 1869 struct extent_state *state; 1870 int ret = 0; 1871 1872 spin_lock(&tree->lock); 1873 /* 1874 * this search will find all the extents that end after 1875 * our range starts. 1876 */ 1877 node = tree_search(tree, start); 1878 if (!node) { 1879 ret = -ENOENT; 1880 goto out; 1881 } 1882 state = rb_entry(node, struct extent_state, rb_node); 1883 if (state->start != start) { 1884 ret = -ENOENT; 1885 goto out; 1886 } 1887 *private = state->private; 1888 out: 1889 spin_unlock(&tree->lock); 1890 return ret; 1891 } 1892 1893 /* 1894 * searches a range in the state tree for a given mask. 1895 * If 'filled' == 1, this returns 1 only if every extent in the tree 1896 * has the bits set. Otherwise, 1 is returned if any bit in the 1897 * range is found set. 1898 */ 1899 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1900 unsigned long bits, int filled, struct extent_state *cached) 1901 { 1902 struct extent_state *state = NULL; 1903 struct rb_node *node; 1904 int bitset = 0; 1905 1906 spin_lock(&tree->lock); 1907 if (cached && cached->tree && cached->start <= start && 1908 cached->end > start) 1909 node = &cached->rb_node; 1910 else 1911 node = tree_search(tree, start); 1912 while (node && start <= end) { 1913 state = rb_entry(node, struct extent_state, rb_node); 1914 1915 if (filled && state->start > start) { 1916 bitset = 0; 1917 break; 1918 } 1919 1920 if (state->start > end) 1921 break; 1922 1923 if (state->state & bits) { 1924 bitset = 1; 1925 if (!filled) 1926 break; 1927 } else if (filled) { 1928 bitset = 0; 1929 break; 1930 } 1931 1932 if (state->end == (u64)-1) 1933 break; 1934 1935 start = state->end + 1; 1936 if (start > end) 1937 break; 1938 node = rb_next(node); 1939 if (!node) { 1940 if (filled) 1941 bitset = 0; 1942 break; 1943 } 1944 } 1945 spin_unlock(&tree->lock); 1946 return bitset; 1947 } 1948 1949 /* 1950 * helper function to set a given page up to date if all the 1951 * extents in the tree for that page are up to date 1952 */ 1953 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1954 { 1955 u64 start = page_offset(page); 1956 u64 end = start + PAGE_CACHE_SIZE - 1; 1957 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1958 SetPageUptodate(page); 1959 } 1960 1961 /* 1962 * When IO fails, either with EIO or csum verification fails, we 1963 * try other mirrors that might have a good copy of the data. This 1964 * io_failure_record is used to record state as we go through all the 1965 * mirrors. If another mirror has good data, the page is set up to date 1966 * and things continue. If a good mirror can't be found, the original 1967 * bio end_io callback is called to indicate things have failed. 1968 */ 1969 struct io_failure_record { 1970 struct page *page; 1971 u64 start; 1972 u64 len; 1973 u64 logical; 1974 unsigned long bio_flags; 1975 int this_mirror; 1976 int failed_mirror; 1977 int in_validation; 1978 }; 1979 1980 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1981 int did_repair) 1982 { 1983 int ret; 1984 int err = 0; 1985 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1986 1987 set_state_private(failure_tree, rec->start, 0); 1988 ret = clear_extent_bits(failure_tree, rec->start, 1989 rec->start + rec->len - 1, 1990 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1991 if (ret) 1992 err = ret; 1993 1994 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1995 rec->start + rec->len - 1, 1996 EXTENT_DAMAGED, GFP_NOFS); 1997 if (ret && !err) 1998 err = ret; 1999 2000 kfree(rec); 2001 return err; 2002 } 2003 2004 /* 2005 * this bypasses the standard btrfs submit functions deliberately, as 2006 * the standard behavior is to write all copies in a raid setup. here we only 2007 * want to write the one bad copy. so we do the mapping for ourselves and issue 2008 * submit_bio directly. 2009 * to avoid any synchronization issues, wait for the data after writing, which 2010 * actually prevents the read that triggered the error from finishing. 2011 * currently, there can be no more than two copies of every data bit. thus, 2012 * exactly one rewrite is required. 2013 */ 2014 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 2015 u64 length, u64 logical, struct page *page, 2016 int mirror_num) 2017 { 2018 struct bio *bio; 2019 struct btrfs_device *dev; 2020 u64 map_length = 0; 2021 u64 sector; 2022 struct btrfs_bio *bbio = NULL; 2023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2024 int ret; 2025 2026 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2027 BUG_ON(!mirror_num); 2028 2029 /* we can't repair anything in raid56 yet */ 2030 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2031 return 0; 2032 2033 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2034 if (!bio) 2035 return -EIO; 2036 bio->bi_iter.bi_size = 0; 2037 map_length = length; 2038 2039 ret = btrfs_map_block(fs_info, WRITE, logical, 2040 &map_length, &bbio, mirror_num); 2041 if (ret) { 2042 bio_put(bio); 2043 return -EIO; 2044 } 2045 BUG_ON(mirror_num != bbio->mirror_num); 2046 sector = bbio->stripes[mirror_num-1].physical >> 9; 2047 bio->bi_iter.bi_sector = sector; 2048 dev = bbio->stripes[mirror_num-1].dev; 2049 kfree(bbio); 2050 if (!dev || !dev->bdev || !dev->writeable) { 2051 bio_put(bio); 2052 return -EIO; 2053 } 2054 bio->bi_bdev = dev->bdev; 2055 bio_add_page(bio, page, length, start - page_offset(page)); 2056 2057 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2058 /* try to remap that extent elsewhere? */ 2059 bio_put(bio); 2060 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2061 return -EIO; 2062 } 2063 2064 printk_ratelimited_in_rcu(KERN_INFO 2065 "BTRFS: read error corrected: ino %lu off %llu " 2066 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2067 start, rcu_str_deref(dev->name), sector); 2068 2069 bio_put(bio); 2070 return 0; 2071 } 2072 2073 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2074 int mirror_num) 2075 { 2076 u64 start = eb->start; 2077 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2078 int ret = 0; 2079 2080 if (root->fs_info->sb->s_flags & MS_RDONLY) 2081 return -EROFS; 2082 2083 for (i = 0; i < num_pages; i++) { 2084 struct page *p = extent_buffer_page(eb, i); 2085 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2086 start, p, mirror_num); 2087 if (ret) 2088 break; 2089 start += PAGE_CACHE_SIZE; 2090 } 2091 2092 return ret; 2093 } 2094 2095 /* 2096 * each time an IO finishes, we do a fast check in the IO failure tree 2097 * to see if we need to process or clean up an io_failure_record 2098 */ 2099 static int clean_io_failure(u64 start, struct page *page) 2100 { 2101 u64 private; 2102 u64 private_failure; 2103 struct io_failure_record *failrec; 2104 struct inode *inode = page->mapping->host; 2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2106 struct extent_state *state; 2107 int num_copies; 2108 int did_repair = 0; 2109 int ret; 2110 2111 private = 0; 2112 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2113 (u64)-1, 1, EXTENT_DIRTY, 0); 2114 if (!ret) 2115 return 0; 2116 2117 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2118 &private_failure); 2119 if (ret) 2120 return 0; 2121 2122 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2123 BUG_ON(!failrec->this_mirror); 2124 2125 if (failrec->in_validation) { 2126 /* there was no real error, just free the record */ 2127 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2128 failrec->start); 2129 did_repair = 1; 2130 goto out; 2131 } 2132 if (fs_info->sb->s_flags & MS_RDONLY) 2133 goto out; 2134 2135 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2136 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2137 failrec->start, 2138 EXTENT_LOCKED); 2139 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2140 2141 if (state && state->start <= failrec->start && 2142 state->end >= failrec->start + failrec->len - 1) { 2143 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2144 failrec->len); 2145 if (num_copies > 1) { 2146 ret = repair_io_failure(fs_info, start, failrec->len, 2147 failrec->logical, page, 2148 failrec->failed_mirror); 2149 did_repair = !ret; 2150 } 2151 ret = 0; 2152 } 2153 2154 out: 2155 if (!ret) 2156 ret = free_io_failure(inode, failrec, did_repair); 2157 2158 return ret; 2159 } 2160 2161 /* 2162 * this is a generic handler for readpage errors (default 2163 * readpage_io_failed_hook). if other copies exist, read those and write back 2164 * good data to the failed position. does not investigate in remapping the 2165 * failed extent elsewhere, hoping the device will be smart enough to do this as 2166 * needed 2167 */ 2168 2169 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2170 struct page *page, u64 start, u64 end, 2171 int failed_mirror) 2172 { 2173 struct io_failure_record *failrec = NULL; 2174 u64 private; 2175 struct extent_map *em; 2176 struct inode *inode = page->mapping->host; 2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2178 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2180 struct bio *bio; 2181 struct btrfs_io_bio *btrfs_failed_bio; 2182 struct btrfs_io_bio *btrfs_bio; 2183 int num_copies; 2184 int ret; 2185 int read_mode; 2186 u64 logical; 2187 2188 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2189 2190 ret = get_state_private(failure_tree, start, &private); 2191 if (ret) { 2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2193 if (!failrec) 2194 return -ENOMEM; 2195 failrec->start = start; 2196 failrec->len = end - start + 1; 2197 failrec->this_mirror = 0; 2198 failrec->bio_flags = 0; 2199 failrec->in_validation = 0; 2200 2201 read_lock(&em_tree->lock); 2202 em = lookup_extent_mapping(em_tree, start, failrec->len); 2203 if (!em) { 2204 read_unlock(&em_tree->lock); 2205 kfree(failrec); 2206 return -EIO; 2207 } 2208 2209 if (em->start > start || em->start + em->len <= start) { 2210 free_extent_map(em); 2211 em = NULL; 2212 } 2213 read_unlock(&em_tree->lock); 2214 2215 if (!em) { 2216 kfree(failrec); 2217 return -EIO; 2218 } 2219 logical = start - em->start; 2220 logical = em->block_start + logical; 2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2222 logical = em->block_start; 2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2224 extent_set_compress_type(&failrec->bio_flags, 2225 em->compress_type); 2226 } 2227 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2228 "len=%llu\n", logical, start, failrec->len); 2229 failrec->logical = logical; 2230 free_extent_map(em); 2231 2232 /* set the bits in the private failure tree */ 2233 ret = set_extent_bits(failure_tree, start, end, 2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2235 if (ret >= 0) 2236 ret = set_state_private(failure_tree, start, 2237 (u64)(unsigned long)failrec); 2238 /* set the bits in the inode's tree */ 2239 if (ret >= 0) 2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2241 GFP_NOFS); 2242 if (ret < 0) { 2243 kfree(failrec); 2244 return ret; 2245 } 2246 } else { 2247 failrec = (struct io_failure_record *)(unsigned long)private; 2248 pr_debug("bio_readpage_error: (found) logical=%llu, " 2249 "start=%llu, len=%llu, validation=%d\n", 2250 failrec->logical, failrec->start, failrec->len, 2251 failrec->in_validation); 2252 /* 2253 * when data can be on disk more than twice, add to failrec here 2254 * (e.g. with a list for failed_mirror) to make 2255 * clean_io_failure() clean all those errors at once. 2256 */ 2257 } 2258 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2259 failrec->logical, failrec->len); 2260 if (num_copies == 1) { 2261 /* 2262 * we only have a single copy of the data, so don't bother with 2263 * all the retry and error correction code that follows. no 2264 * matter what the error is, it is very likely to persist. 2265 */ 2266 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2267 num_copies, failrec->this_mirror, failed_mirror); 2268 free_io_failure(inode, failrec, 0); 2269 return -EIO; 2270 } 2271 2272 /* 2273 * there are two premises: 2274 * a) deliver good data to the caller 2275 * b) correct the bad sectors on disk 2276 */ 2277 if (failed_bio->bi_vcnt > 1) { 2278 /* 2279 * to fulfill b), we need to know the exact failing sectors, as 2280 * we don't want to rewrite any more than the failed ones. thus, 2281 * we need separate read requests for the failed bio 2282 * 2283 * if the following BUG_ON triggers, our validation request got 2284 * merged. we need separate requests for our algorithm to work. 2285 */ 2286 BUG_ON(failrec->in_validation); 2287 failrec->in_validation = 1; 2288 failrec->this_mirror = failed_mirror; 2289 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2290 } else { 2291 /* 2292 * we're ready to fulfill a) and b) alongside. get a good copy 2293 * of the failed sector and if we succeed, we have setup 2294 * everything for repair_io_failure to do the rest for us. 2295 */ 2296 if (failrec->in_validation) { 2297 BUG_ON(failrec->this_mirror != failed_mirror); 2298 failrec->in_validation = 0; 2299 failrec->this_mirror = 0; 2300 } 2301 failrec->failed_mirror = failed_mirror; 2302 failrec->this_mirror++; 2303 if (failrec->this_mirror == failed_mirror) 2304 failrec->this_mirror++; 2305 read_mode = READ_SYNC; 2306 } 2307 2308 if (failrec->this_mirror > num_copies) { 2309 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2310 num_copies, failrec->this_mirror, failed_mirror); 2311 free_io_failure(inode, failrec, 0); 2312 return -EIO; 2313 } 2314 2315 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2316 if (!bio) { 2317 free_io_failure(inode, failrec, 0); 2318 return -EIO; 2319 } 2320 bio->bi_end_io = failed_bio->bi_end_io; 2321 bio->bi_iter.bi_sector = failrec->logical >> 9; 2322 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2323 bio->bi_iter.bi_size = 0; 2324 2325 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2326 if (btrfs_failed_bio->csum) { 2327 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2328 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2329 2330 btrfs_bio = btrfs_io_bio(bio); 2331 btrfs_bio->csum = btrfs_bio->csum_inline; 2332 phy_offset >>= inode->i_sb->s_blocksize_bits; 2333 phy_offset *= csum_size; 2334 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2335 csum_size); 2336 } 2337 2338 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2339 2340 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2341 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2342 failrec->this_mirror, num_copies, failrec->in_validation); 2343 2344 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2345 failrec->this_mirror, 2346 failrec->bio_flags, 0); 2347 return ret; 2348 } 2349 2350 /* lots and lots of room for performance fixes in the end_bio funcs */ 2351 2352 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2353 { 2354 int uptodate = (err == 0); 2355 struct extent_io_tree *tree; 2356 int ret; 2357 2358 tree = &BTRFS_I(page->mapping->host)->io_tree; 2359 2360 if (tree->ops && tree->ops->writepage_end_io_hook) { 2361 ret = tree->ops->writepage_end_io_hook(page, start, 2362 end, NULL, uptodate); 2363 if (ret) 2364 uptodate = 0; 2365 } 2366 2367 if (!uptodate) { 2368 ClearPageUptodate(page); 2369 SetPageError(page); 2370 } 2371 return 0; 2372 } 2373 2374 /* 2375 * after a writepage IO is done, we need to: 2376 * clear the uptodate bits on error 2377 * clear the writeback bits in the extent tree for this IO 2378 * end_page_writeback if the page has no more pending IO 2379 * 2380 * Scheduling is not allowed, so the extent state tree is expected 2381 * to have one and only one object corresponding to this IO. 2382 */ 2383 static void end_bio_extent_writepage(struct bio *bio, int err) 2384 { 2385 struct bio_vec *bvec; 2386 u64 start; 2387 u64 end; 2388 int i; 2389 2390 bio_for_each_segment_all(bvec, bio, i) { 2391 struct page *page = bvec->bv_page; 2392 2393 /* We always issue full-page reads, but if some block 2394 * in a page fails to read, blk_update_request() will 2395 * advance bv_offset and adjust bv_len to compensate. 2396 * Print a warning for nonzero offsets, and an error 2397 * if they don't add up to a full page. */ 2398 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2399 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2400 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2401 "partial page write in btrfs with offset %u and length %u", 2402 bvec->bv_offset, bvec->bv_len); 2403 else 2404 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2405 "incomplete page write in btrfs with offset %u and " 2406 "length %u", 2407 bvec->bv_offset, bvec->bv_len); 2408 } 2409 2410 start = page_offset(page); 2411 end = start + bvec->bv_offset + bvec->bv_len - 1; 2412 2413 if (end_extent_writepage(page, err, start, end)) 2414 continue; 2415 2416 end_page_writeback(page); 2417 } 2418 2419 bio_put(bio); 2420 } 2421 2422 static void 2423 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2424 int uptodate) 2425 { 2426 struct extent_state *cached = NULL; 2427 u64 end = start + len - 1; 2428 2429 if (uptodate && tree->track_uptodate) 2430 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2431 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2432 } 2433 2434 /* 2435 * after a readpage IO is done, we need to: 2436 * clear the uptodate bits on error 2437 * set the uptodate bits if things worked 2438 * set the page up to date if all extents in the tree are uptodate 2439 * clear the lock bit in the extent tree 2440 * unlock the page if there are no other extents locked for it 2441 * 2442 * Scheduling is not allowed, so the extent state tree is expected 2443 * to have one and only one object corresponding to this IO. 2444 */ 2445 static void end_bio_extent_readpage(struct bio *bio, int err) 2446 { 2447 struct bio_vec *bvec; 2448 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2449 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2450 struct extent_io_tree *tree; 2451 u64 offset = 0; 2452 u64 start; 2453 u64 end; 2454 u64 len; 2455 u64 extent_start = 0; 2456 u64 extent_len = 0; 2457 int mirror; 2458 int ret; 2459 int i; 2460 2461 if (err) 2462 uptodate = 0; 2463 2464 bio_for_each_segment_all(bvec, bio, i) { 2465 struct page *page = bvec->bv_page; 2466 struct inode *inode = page->mapping->host; 2467 2468 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2469 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err, 2470 io_bio->mirror_num); 2471 tree = &BTRFS_I(inode)->io_tree; 2472 2473 /* We always issue full-page reads, but if some block 2474 * in a page fails to read, blk_update_request() will 2475 * advance bv_offset and adjust bv_len to compensate. 2476 * Print a warning for nonzero offsets, and an error 2477 * if they don't add up to a full page. */ 2478 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2479 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2480 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2481 "partial page read in btrfs with offset %u and length %u", 2482 bvec->bv_offset, bvec->bv_len); 2483 else 2484 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2485 "incomplete page read in btrfs with offset %u and " 2486 "length %u", 2487 bvec->bv_offset, bvec->bv_len); 2488 } 2489 2490 start = page_offset(page); 2491 end = start + bvec->bv_offset + bvec->bv_len - 1; 2492 len = bvec->bv_len; 2493 2494 mirror = io_bio->mirror_num; 2495 if (likely(uptodate && tree->ops && 2496 tree->ops->readpage_end_io_hook)) { 2497 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2498 page, start, end, 2499 mirror); 2500 if (ret) 2501 uptodate = 0; 2502 else 2503 clean_io_failure(start, page); 2504 } 2505 2506 if (likely(uptodate)) 2507 goto readpage_ok; 2508 2509 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2510 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2511 if (!ret && !err && 2512 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2513 uptodate = 1; 2514 } else { 2515 /* 2516 * The generic bio_readpage_error handles errors the 2517 * following way: If possible, new read requests are 2518 * created and submitted and will end up in 2519 * end_bio_extent_readpage as well (if we're lucky, not 2520 * in the !uptodate case). In that case it returns 0 and 2521 * we just go on with the next page in our bio. If it 2522 * can't handle the error it will return -EIO and we 2523 * remain responsible for that page. 2524 */ 2525 ret = bio_readpage_error(bio, offset, page, start, end, 2526 mirror); 2527 if (ret == 0) { 2528 uptodate = 2529 test_bit(BIO_UPTODATE, &bio->bi_flags); 2530 if (err) 2531 uptodate = 0; 2532 continue; 2533 } 2534 } 2535 readpage_ok: 2536 if (likely(uptodate)) { 2537 loff_t i_size = i_size_read(inode); 2538 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2539 unsigned offset; 2540 2541 /* Zero out the end if this page straddles i_size */ 2542 offset = i_size & (PAGE_CACHE_SIZE-1); 2543 if (page->index == end_index && offset) 2544 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2545 SetPageUptodate(page); 2546 } else { 2547 ClearPageUptodate(page); 2548 SetPageError(page); 2549 } 2550 unlock_page(page); 2551 offset += len; 2552 2553 if (unlikely(!uptodate)) { 2554 if (extent_len) { 2555 endio_readpage_release_extent(tree, 2556 extent_start, 2557 extent_len, 1); 2558 extent_start = 0; 2559 extent_len = 0; 2560 } 2561 endio_readpage_release_extent(tree, start, 2562 end - start + 1, 0); 2563 } else if (!extent_len) { 2564 extent_start = start; 2565 extent_len = end + 1 - start; 2566 } else if (extent_start + extent_len == start) { 2567 extent_len += end + 1 - start; 2568 } else { 2569 endio_readpage_release_extent(tree, extent_start, 2570 extent_len, uptodate); 2571 extent_start = start; 2572 extent_len = end + 1 - start; 2573 } 2574 } 2575 2576 if (extent_len) 2577 endio_readpage_release_extent(tree, extent_start, extent_len, 2578 uptodate); 2579 if (io_bio->end_io) 2580 io_bio->end_io(io_bio, err); 2581 bio_put(bio); 2582 } 2583 2584 /* 2585 * this allocates from the btrfs_bioset. We're returning a bio right now 2586 * but you can call btrfs_io_bio for the appropriate container_of magic 2587 */ 2588 struct bio * 2589 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2590 gfp_t gfp_flags) 2591 { 2592 struct btrfs_io_bio *btrfs_bio; 2593 struct bio *bio; 2594 2595 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2596 2597 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2598 while (!bio && (nr_vecs /= 2)) { 2599 bio = bio_alloc_bioset(gfp_flags, 2600 nr_vecs, btrfs_bioset); 2601 } 2602 } 2603 2604 if (bio) { 2605 bio->bi_bdev = bdev; 2606 bio->bi_iter.bi_sector = first_sector; 2607 btrfs_bio = btrfs_io_bio(bio); 2608 btrfs_bio->csum = NULL; 2609 btrfs_bio->csum_allocated = NULL; 2610 btrfs_bio->end_io = NULL; 2611 } 2612 return bio; 2613 } 2614 2615 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2616 { 2617 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2618 } 2619 2620 2621 /* this also allocates from the btrfs_bioset */ 2622 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2623 { 2624 struct btrfs_io_bio *btrfs_bio; 2625 struct bio *bio; 2626 2627 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2628 if (bio) { 2629 btrfs_bio = btrfs_io_bio(bio); 2630 btrfs_bio->csum = NULL; 2631 btrfs_bio->csum_allocated = NULL; 2632 btrfs_bio->end_io = NULL; 2633 } 2634 return bio; 2635 } 2636 2637 2638 static int __must_check submit_one_bio(int rw, struct bio *bio, 2639 int mirror_num, unsigned long bio_flags) 2640 { 2641 int ret = 0; 2642 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2643 struct page *page = bvec->bv_page; 2644 struct extent_io_tree *tree = bio->bi_private; 2645 u64 start; 2646 2647 start = page_offset(page) + bvec->bv_offset; 2648 2649 bio->bi_private = NULL; 2650 2651 bio_get(bio); 2652 2653 if (tree->ops && tree->ops->submit_bio_hook) 2654 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2655 mirror_num, bio_flags, start); 2656 else 2657 btrfsic_submit_bio(rw, bio); 2658 2659 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2660 ret = -EOPNOTSUPP; 2661 bio_put(bio); 2662 return ret; 2663 } 2664 2665 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2666 unsigned long offset, size_t size, struct bio *bio, 2667 unsigned long bio_flags) 2668 { 2669 int ret = 0; 2670 if (tree->ops && tree->ops->merge_bio_hook) 2671 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2672 bio_flags); 2673 BUG_ON(ret < 0); 2674 return ret; 2675 2676 } 2677 2678 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2679 struct page *page, sector_t sector, 2680 size_t size, unsigned long offset, 2681 struct block_device *bdev, 2682 struct bio **bio_ret, 2683 unsigned long max_pages, 2684 bio_end_io_t end_io_func, 2685 int mirror_num, 2686 unsigned long prev_bio_flags, 2687 unsigned long bio_flags) 2688 { 2689 int ret = 0; 2690 struct bio *bio; 2691 int nr; 2692 int contig = 0; 2693 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2694 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2695 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2696 2697 if (bio_ret && *bio_ret) { 2698 bio = *bio_ret; 2699 if (old_compressed) 2700 contig = bio->bi_iter.bi_sector == sector; 2701 else 2702 contig = bio_end_sector(bio) == sector; 2703 2704 if (prev_bio_flags != bio_flags || !contig || 2705 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2706 bio_add_page(bio, page, page_size, offset) < page_size) { 2707 ret = submit_one_bio(rw, bio, mirror_num, 2708 prev_bio_flags); 2709 if (ret < 0) 2710 return ret; 2711 bio = NULL; 2712 } else { 2713 return 0; 2714 } 2715 } 2716 if (this_compressed) 2717 nr = BIO_MAX_PAGES; 2718 else 2719 nr = bio_get_nr_vecs(bdev); 2720 2721 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2722 if (!bio) 2723 return -ENOMEM; 2724 2725 bio_add_page(bio, page, page_size, offset); 2726 bio->bi_end_io = end_io_func; 2727 bio->bi_private = tree; 2728 2729 if (bio_ret) 2730 *bio_ret = bio; 2731 else 2732 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2733 2734 return ret; 2735 } 2736 2737 static void attach_extent_buffer_page(struct extent_buffer *eb, 2738 struct page *page) 2739 { 2740 if (!PagePrivate(page)) { 2741 SetPagePrivate(page); 2742 page_cache_get(page); 2743 set_page_private(page, (unsigned long)eb); 2744 } else { 2745 WARN_ON(page->private != (unsigned long)eb); 2746 } 2747 } 2748 2749 void set_page_extent_mapped(struct page *page) 2750 { 2751 if (!PagePrivate(page)) { 2752 SetPagePrivate(page); 2753 page_cache_get(page); 2754 set_page_private(page, EXTENT_PAGE_PRIVATE); 2755 } 2756 } 2757 2758 static struct extent_map * 2759 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2760 u64 start, u64 len, get_extent_t *get_extent, 2761 struct extent_map **em_cached) 2762 { 2763 struct extent_map *em; 2764 2765 if (em_cached && *em_cached) { 2766 em = *em_cached; 2767 if (extent_map_in_tree(em) && start >= em->start && 2768 start < extent_map_end(em)) { 2769 atomic_inc(&em->refs); 2770 return em; 2771 } 2772 2773 free_extent_map(em); 2774 *em_cached = NULL; 2775 } 2776 2777 em = get_extent(inode, page, pg_offset, start, len, 0); 2778 if (em_cached && !IS_ERR_OR_NULL(em)) { 2779 BUG_ON(*em_cached); 2780 atomic_inc(&em->refs); 2781 *em_cached = em; 2782 } 2783 return em; 2784 } 2785 /* 2786 * basic readpage implementation. Locked extent state structs are inserted 2787 * into the tree that are removed when the IO is done (by the end_io 2788 * handlers) 2789 * XXX JDM: This needs looking at to ensure proper page locking 2790 */ 2791 static int __do_readpage(struct extent_io_tree *tree, 2792 struct page *page, 2793 get_extent_t *get_extent, 2794 struct extent_map **em_cached, 2795 struct bio **bio, int mirror_num, 2796 unsigned long *bio_flags, int rw) 2797 { 2798 struct inode *inode = page->mapping->host; 2799 u64 start = page_offset(page); 2800 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2801 u64 end; 2802 u64 cur = start; 2803 u64 extent_offset; 2804 u64 last_byte = i_size_read(inode); 2805 u64 block_start; 2806 u64 cur_end; 2807 sector_t sector; 2808 struct extent_map *em; 2809 struct block_device *bdev; 2810 int ret; 2811 int nr = 0; 2812 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2813 size_t pg_offset = 0; 2814 size_t iosize; 2815 size_t disk_io_size; 2816 size_t blocksize = inode->i_sb->s_blocksize; 2817 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2818 2819 set_page_extent_mapped(page); 2820 2821 end = page_end; 2822 if (!PageUptodate(page)) { 2823 if (cleancache_get_page(page) == 0) { 2824 BUG_ON(blocksize != PAGE_SIZE); 2825 unlock_extent(tree, start, end); 2826 goto out; 2827 } 2828 } 2829 2830 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2831 char *userpage; 2832 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2833 2834 if (zero_offset) { 2835 iosize = PAGE_CACHE_SIZE - zero_offset; 2836 userpage = kmap_atomic(page); 2837 memset(userpage + zero_offset, 0, iosize); 2838 flush_dcache_page(page); 2839 kunmap_atomic(userpage); 2840 } 2841 } 2842 while (cur <= end) { 2843 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2844 2845 if (cur >= last_byte) { 2846 char *userpage; 2847 struct extent_state *cached = NULL; 2848 2849 iosize = PAGE_CACHE_SIZE - pg_offset; 2850 userpage = kmap_atomic(page); 2851 memset(userpage + pg_offset, 0, iosize); 2852 flush_dcache_page(page); 2853 kunmap_atomic(userpage); 2854 set_extent_uptodate(tree, cur, cur + iosize - 1, 2855 &cached, GFP_NOFS); 2856 if (!parent_locked) 2857 unlock_extent_cached(tree, cur, 2858 cur + iosize - 1, 2859 &cached, GFP_NOFS); 2860 break; 2861 } 2862 em = __get_extent_map(inode, page, pg_offset, cur, 2863 end - cur + 1, get_extent, em_cached); 2864 if (IS_ERR_OR_NULL(em)) { 2865 SetPageError(page); 2866 if (!parent_locked) 2867 unlock_extent(tree, cur, end); 2868 break; 2869 } 2870 extent_offset = cur - em->start; 2871 BUG_ON(extent_map_end(em) <= cur); 2872 BUG_ON(end < cur); 2873 2874 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2875 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2876 extent_set_compress_type(&this_bio_flag, 2877 em->compress_type); 2878 } 2879 2880 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2881 cur_end = min(extent_map_end(em) - 1, end); 2882 iosize = ALIGN(iosize, blocksize); 2883 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2884 disk_io_size = em->block_len; 2885 sector = em->block_start >> 9; 2886 } else { 2887 sector = (em->block_start + extent_offset) >> 9; 2888 disk_io_size = iosize; 2889 } 2890 bdev = em->bdev; 2891 block_start = em->block_start; 2892 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2893 block_start = EXTENT_MAP_HOLE; 2894 free_extent_map(em); 2895 em = NULL; 2896 2897 /* we've found a hole, just zero and go on */ 2898 if (block_start == EXTENT_MAP_HOLE) { 2899 char *userpage; 2900 struct extent_state *cached = NULL; 2901 2902 userpage = kmap_atomic(page); 2903 memset(userpage + pg_offset, 0, iosize); 2904 flush_dcache_page(page); 2905 kunmap_atomic(userpage); 2906 2907 set_extent_uptodate(tree, cur, cur + iosize - 1, 2908 &cached, GFP_NOFS); 2909 unlock_extent_cached(tree, cur, cur + iosize - 1, 2910 &cached, GFP_NOFS); 2911 cur = cur + iosize; 2912 pg_offset += iosize; 2913 continue; 2914 } 2915 /* the get_extent function already copied into the page */ 2916 if (test_range_bit(tree, cur, cur_end, 2917 EXTENT_UPTODATE, 1, NULL)) { 2918 check_page_uptodate(tree, page); 2919 if (!parent_locked) 2920 unlock_extent(tree, cur, cur + iosize - 1); 2921 cur = cur + iosize; 2922 pg_offset += iosize; 2923 continue; 2924 } 2925 /* we have an inline extent but it didn't get marked up 2926 * to date. Error out 2927 */ 2928 if (block_start == EXTENT_MAP_INLINE) { 2929 SetPageError(page); 2930 if (!parent_locked) 2931 unlock_extent(tree, cur, cur + iosize - 1); 2932 cur = cur + iosize; 2933 pg_offset += iosize; 2934 continue; 2935 } 2936 2937 pnr -= page->index; 2938 ret = submit_extent_page(rw, tree, page, 2939 sector, disk_io_size, pg_offset, 2940 bdev, bio, pnr, 2941 end_bio_extent_readpage, mirror_num, 2942 *bio_flags, 2943 this_bio_flag); 2944 if (!ret) { 2945 nr++; 2946 *bio_flags = this_bio_flag; 2947 } else { 2948 SetPageError(page); 2949 if (!parent_locked) 2950 unlock_extent(tree, cur, cur + iosize - 1); 2951 } 2952 cur = cur + iosize; 2953 pg_offset += iosize; 2954 } 2955 out: 2956 if (!nr) { 2957 if (!PageError(page)) 2958 SetPageUptodate(page); 2959 unlock_page(page); 2960 } 2961 return 0; 2962 } 2963 2964 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2965 struct page *pages[], int nr_pages, 2966 u64 start, u64 end, 2967 get_extent_t *get_extent, 2968 struct extent_map **em_cached, 2969 struct bio **bio, int mirror_num, 2970 unsigned long *bio_flags, int rw) 2971 { 2972 struct inode *inode; 2973 struct btrfs_ordered_extent *ordered; 2974 int index; 2975 2976 inode = pages[0]->mapping->host; 2977 while (1) { 2978 lock_extent(tree, start, end); 2979 ordered = btrfs_lookup_ordered_range(inode, start, 2980 end - start + 1); 2981 if (!ordered) 2982 break; 2983 unlock_extent(tree, start, end); 2984 btrfs_start_ordered_extent(inode, ordered, 1); 2985 btrfs_put_ordered_extent(ordered); 2986 } 2987 2988 for (index = 0; index < nr_pages; index++) { 2989 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2990 mirror_num, bio_flags, rw); 2991 page_cache_release(pages[index]); 2992 } 2993 } 2994 2995 static void __extent_readpages(struct extent_io_tree *tree, 2996 struct page *pages[], 2997 int nr_pages, get_extent_t *get_extent, 2998 struct extent_map **em_cached, 2999 struct bio **bio, int mirror_num, 3000 unsigned long *bio_flags, int rw) 3001 { 3002 u64 start = 0; 3003 u64 end = 0; 3004 u64 page_start; 3005 int index; 3006 int first_index = 0; 3007 3008 for (index = 0; index < nr_pages; index++) { 3009 page_start = page_offset(pages[index]); 3010 if (!end) { 3011 start = page_start; 3012 end = start + PAGE_CACHE_SIZE - 1; 3013 first_index = index; 3014 } else if (end + 1 == page_start) { 3015 end += PAGE_CACHE_SIZE; 3016 } else { 3017 __do_contiguous_readpages(tree, &pages[first_index], 3018 index - first_index, start, 3019 end, get_extent, em_cached, 3020 bio, mirror_num, bio_flags, 3021 rw); 3022 start = page_start; 3023 end = start + PAGE_CACHE_SIZE - 1; 3024 first_index = index; 3025 } 3026 } 3027 3028 if (end) 3029 __do_contiguous_readpages(tree, &pages[first_index], 3030 index - first_index, start, 3031 end, get_extent, em_cached, bio, 3032 mirror_num, bio_flags, rw); 3033 } 3034 3035 static int __extent_read_full_page(struct extent_io_tree *tree, 3036 struct page *page, 3037 get_extent_t *get_extent, 3038 struct bio **bio, int mirror_num, 3039 unsigned long *bio_flags, int rw) 3040 { 3041 struct inode *inode = page->mapping->host; 3042 struct btrfs_ordered_extent *ordered; 3043 u64 start = page_offset(page); 3044 u64 end = start + PAGE_CACHE_SIZE - 1; 3045 int ret; 3046 3047 while (1) { 3048 lock_extent(tree, start, end); 3049 ordered = btrfs_lookup_ordered_extent(inode, start); 3050 if (!ordered) 3051 break; 3052 unlock_extent(tree, start, end); 3053 btrfs_start_ordered_extent(inode, ordered, 1); 3054 btrfs_put_ordered_extent(ordered); 3055 } 3056 3057 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3058 bio_flags, rw); 3059 return ret; 3060 } 3061 3062 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3063 get_extent_t *get_extent, int mirror_num) 3064 { 3065 struct bio *bio = NULL; 3066 unsigned long bio_flags = 0; 3067 int ret; 3068 3069 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3070 &bio_flags, READ); 3071 if (bio) 3072 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3073 return ret; 3074 } 3075 3076 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3077 get_extent_t *get_extent, int mirror_num) 3078 { 3079 struct bio *bio = NULL; 3080 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3081 int ret; 3082 3083 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3084 &bio_flags, READ); 3085 if (bio) 3086 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3087 return ret; 3088 } 3089 3090 static noinline void update_nr_written(struct page *page, 3091 struct writeback_control *wbc, 3092 unsigned long nr_written) 3093 { 3094 wbc->nr_to_write -= nr_written; 3095 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3096 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3097 page->mapping->writeback_index = page->index + nr_written; 3098 } 3099 3100 /* 3101 * the writepage semantics are similar to regular writepage. extent 3102 * records are inserted to lock ranges in the tree, and as dirty areas 3103 * are found, they are marked writeback. Then the lock bits are removed 3104 * and the end_io handler clears the writeback ranges 3105 */ 3106 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3107 void *data) 3108 { 3109 struct inode *inode = page->mapping->host; 3110 struct extent_page_data *epd = data; 3111 struct extent_io_tree *tree = epd->tree; 3112 u64 start = page_offset(page); 3113 u64 delalloc_start; 3114 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3115 u64 end; 3116 u64 cur = start; 3117 u64 extent_offset; 3118 u64 last_byte = i_size_read(inode); 3119 u64 block_start; 3120 u64 iosize; 3121 sector_t sector; 3122 struct extent_state *cached_state = NULL; 3123 struct extent_map *em; 3124 struct block_device *bdev; 3125 int ret; 3126 int nr = 0; 3127 size_t pg_offset = 0; 3128 size_t blocksize; 3129 loff_t i_size = i_size_read(inode); 3130 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3131 u64 nr_delalloc; 3132 u64 delalloc_end; 3133 int page_started; 3134 int compressed; 3135 int write_flags; 3136 unsigned long nr_written = 0; 3137 bool fill_delalloc = true; 3138 3139 if (wbc->sync_mode == WB_SYNC_ALL) 3140 write_flags = WRITE_SYNC; 3141 else 3142 write_flags = WRITE; 3143 3144 trace___extent_writepage(page, inode, wbc); 3145 3146 WARN_ON(!PageLocked(page)); 3147 3148 ClearPageError(page); 3149 3150 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3151 if (page->index > end_index || 3152 (page->index == end_index && !pg_offset)) { 3153 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3154 unlock_page(page); 3155 return 0; 3156 } 3157 3158 if (page->index == end_index) { 3159 char *userpage; 3160 3161 userpage = kmap_atomic(page); 3162 memset(userpage + pg_offset, 0, 3163 PAGE_CACHE_SIZE - pg_offset); 3164 kunmap_atomic(userpage); 3165 flush_dcache_page(page); 3166 } 3167 pg_offset = 0; 3168 3169 set_page_extent_mapped(page); 3170 3171 if (!tree->ops || !tree->ops->fill_delalloc) 3172 fill_delalloc = false; 3173 3174 delalloc_start = start; 3175 delalloc_end = 0; 3176 page_started = 0; 3177 if (!epd->extent_locked && fill_delalloc) { 3178 u64 delalloc_to_write = 0; 3179 /* 3180 * make sure the wbc mapping index is at least updated 3181 * to this page. 3182 */ 3183 update_nr_written(page, wbc, 0); 3184 3185 while (delalloc_end < page_end) { 3186 nr_delalloc = find_lock_delalloc_range(inode, tree, 3187 page, 3188 &delalloc_start, 3189 &delalloc_end, 3190 128 * 1024 * 1024); 3191 if (nr_delalloc == 0) { 3192 delalloc_start = delalloc_end + 1; 3193 continue; 3194 } 3195 ret = tree->ops->fill_delalloc(inode, page, 3196 delalloc_start, 3197 delalloc_end, 3198 &page_started, 3199 &nr_written); 3200 /* File system has been set read-only */ 3201 if (ret) { 3202 SetPageError(page); 3203 goto done; 3204 } 3205 /* 3206 * delalloc_end is already one less than the total 3207 * length, so we don't subtract one from 3208 * PAGE_CACHE_SIZE 3209 */ 3210 delalloc_to_write += (delalloc_end - delalloc_start + 3211 PAGE_CACHE_SIZE) >> 3212 PAGE_CACHE_SHIFT; 3213 delalloc_start = delalloc_end + 1; 3214 } 3215 if (wbc->nr_to_write < delalloc_to_write) { 3216 int thresh = 8192; 3217 3218 if (delalloc_to_write < thresh * 2) 3219 thresh = delalloc_to_write; 3220 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3221 thresh); 3222 } 3223 3224 /* did the fill delalloc function already unlock and start 3225 * the IO? 3226 */ 3227 if (page_started) { 3228 ret = 0; 3229 /* 3230 * we've unlocked the page, so we can't update 3231 * the mapping's writeback index, just update 3232 * nr_to_write. 3233 */ 3234 wbc->nr_to_write -= nr_written; 3235 goto done_unlocked; 3236 } 3237 } 3238 if (tree->ops && tree->ops->writepage_start_hook) { 3239 ret = tree->ops->writepage_start_hook(page, start, 3240 page_end); 3241 if (ret) { 3242 /* Fixup worker will requeue */ 3243 if (ret == -EBUSY) 3244 wbc->pages_skipped++; 3245 else 3246 redirty_page_for_writepage(wbc, page); 3247 update_nr_written(page, wbc, nr_written); 3248 unlock_page(page); 3249 ret = 0; 3250 goto done_unlocked; 3251 } 3252 } 3253 3254 /* 3255 * we don't want to touch the inode after unlocking the page, 3256 * so we update the mapping writeback index now 3257 */ 3258 update_nr_written(page, wbc, nr_written + 1); 3259 3260 end = page_end; 3261 if (last_byte <= start) { 3262 if (tree->ops && tree->ops->writepage_end_io_hook) 3263 tree->ops->writepage_end_io_hook(page, start, 3264 page_end, NULL, 1); 3265 goto done; 3266 } 3267 3268 blocksize = inode->i_sb->s_blocksize; 3269 3270 while (cur <= end) { 3271 if (cur >= last_byte) { 3272 if (tree->ops && tree->ops->writepage_end_io_hook) 3273 tree->ops->writepage_end_io_hook(page, cur, 3274 page_end, NULL, 1); 3275 break; 3276 } 3277 em = epd->get_extent(inode, page, pg_offset, cur, 3278 end - cur + 1, 1); 3279 if (IS_ERR_OR_NULL(em)) { 3280 SetPageError(page); 3281 break; 3282 } 3283 3284 extent_offset = cur - em->start; 3285 BUG_ON(extent_map_end(em) <= cur); 3286 BUG_ON(end < cur); 3287 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3288 iosize = ALIGN(iosize, blocksize); 3289 sector = (em->block_start + extent_offset) >> 9; 3290 bdev = em->bdev; 3291 block_start = em->block_start; 3292 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3293 free_extent_map(em); 3294 em = NULL; 3295 3296 /* 3297 * compressed and inline extents are written through other 3298 * paths in the FS 3299 */ 3300 if (compressed || block_start == EXTENT_MAP_HOLE || 3301 block_start == EXTENT_MAP_INLINE) { 3302 /* 3303 * end_io notification does not happen here for 3304 * compressed extents 3305 */ 3306 if (!compressed && tree->ops && 3307 tree->ops->writepage_end_io_hook) 3308 tree->ops->writepage_end_io_hook(page, cur, 3309 cur + iosize - 1, 3310 NULL, 1); 3311 else if (compressed) { 3312 /* we don't want to end_page_writeback on 3313 * a compressed extent. this happens 3314 * elsewhere 3315 */ 3316 nr++; 3317 } 3318 3319 cur += iosize; 3320 pg_offset += iosize; 3321 continue; 3322 } 3323 /* leave this out until we have a page_mkwrite call */ 3324 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3325 EXTENT_DIRTY, 0, NULL)) { 3326 cur = cur + iosize; 3327 pg_offset += iosize; 3328 continue; 3329 } 3330 3331 if (tree->ops && tree->ops->writepage_io_hook) { 3332 ret = tree->ops->writepage_io_hook(page, cur, 3333 cur + iosize - 1); 3334 } else { 3335 ret = 0; 3336 } 3337 if (ret) { 3338 SetPageError(page); 3339 } else { 3340 unsigned long max_nr = end_index + 1; 3341 3342 set_range_writeback(tree, cur, cur + iosize - 1); 3343 if (!PageWriteback(page)) { 3344 btrfs_err(BTRFS_I(inode)->root->fs_info, 3345 "page %lu not writeback, cur %llu end %llu", 3346 page->index, cur, end); 3347 } 3348 3349 ret = submit_extent_page(write_flags, tree, page, 3350 sector, iosize, pg_offset, 3351 bdev, &epd->bio, max_nr, 3352 end_bio_extent_writepage, 3353 0, 0, 0); 3354 if (ret) 3355 SetPageError(page); 3356 } 3357 cur = cur + iosize; 3358 pg_offset += iosize; 3359 nr++; 3360 } 3361 done: 3362 if (nr == 0) { 3363 /* make sure the mapping tag for page dirty gets cleared */ 3364 set_page_writeback(page); 3365 end_page_writeback(page); 3366 } 3367 unlock_page(page); 3368 3369 done_unlocked: 3370 3371 /* drop our reference on any cached states */ 3372 free_extent_state(cached_state); 3373 return 0; 3374 } 3375 3376 static int eb_wait(void *word) 3377 { 3378 io_schedule(); 3379 return 0; 3380 } 3381 3382 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3383 { 3384 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3385 TASK_UNINTERRUPTIBLE); 3386 } 3387 3388 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3389 struct btrfs_fs_info *fs_info, 3390 struct extent_page_data *epd) 3391 { 3392 unsigned long i, num_pages; 3393 int flush = 0; 3394 int ret = 0; 3395 3396 if (!btrfs_try_tree_write_lock(eb)) { 3397 flush = 1; 3398 flush_write_bio(epd); 3399 btrfs_tree_lock(eb); 3400 } 3401 3402 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3403 btrfs_tree_unlock(eb); 3404 if (!epd->sync_io) 3405 return 0; 3406 if (!flush) { 3407 flush_write_bio(epd); 3408 flush = 1; 3409 } 3410 while (1) { 3411 wait_on_extent_buffer_writeback(eb); 3412 btrfs_tree_lock(eb); 3413 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3414 break; 3415 btrfs_tree_unlock(eb); 3416 } 3417 } 3418 3419 /* 3420 * We need to do this to prevent races in people who check if the eb is 3421 * under IO since we can end up having no IO bits set for a short period 3422 * of time. 3423 */ 3424 spin_lock(&eb->refs_lock); 3425 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3426 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3427 spin_unlock(&eb->refs_lock); 3428 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3429 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3430 -eb->len, 3431 fs_info->dirty_metadata_batch); 3432 ret = 1; 3433 } else { 3434 spin_unlock(&eb->refs_lock); 3435 } 3436 3437 btrfs_tree_unlock(eb); 3438 3439 if (!ret) 3440 return ret; 3441 3442 num_pages = num_extent_pages(eb->start, eb->len); 3443 for (i = 0; i < num_pages; i++) { 3444 struct page *p = extent_buffer_page(eb, i); 3445 3446 if (!trylock_page(p)) { 3447 if (!flush) { 3448 flush_write_bio(epd); 3449 flush = 1; 3450 } 3451 lock_page(p); 3452 } 3453 } 3454 3455 return ret; 3456 } 3457 3458 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3459 { 3460 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3461 smp_mb__after_clear_bit(); 3462 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3463 } 3464 3465 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3466 { 3467 struct bio_vec *bvec; 3468 struct extent_buffer *eb; 3469 int i, done; 3470 3471 bio_for_each_segment_all(bvec, bio, i) { 3472 struct page *page = bvec->bv_page; 3473 3474 eb = (struct extent_buffer *)page->private; 3475 BUG_ON(!eb); 3476 done = atomic_dec_and_test(&eb->io_pages); 3477 3478 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3479 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3480 ClearPageUptodate(page); 3481 SetPageError(page); 3482 } 3483 3484 end_page_writeback(page); 3485 3486 if (!done) 3487 continue; 3488 3489 end_extent_buffer_writeback(eb); 3490 } 3491 3492 bio_put(bio); 3493 } 3494 3495 static int write_one_eb(struct extent_buffer *eb, 3496 struct btrfs_fs_info *fs_info, 3497 struct writeback_control *wbc, 3498 struct extent_page_data *epd) 3499 { 3500 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3501 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3502 u64 offset = eb->start; 3503 unsigned long i, num_pages; 3504 unsigned long bio_flags = 0; 3505 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3506 int ret = 0; 3507 3508 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3509 num_pages = num_extent_pages(eb->start, eb->len); 3510 atomic_set(&eb->io_pages, num_pages); 3511 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3512 bio_flags = EXTENT_BIO_TREE_LOG; 3513 3514 for (i = 0; i < num_pages; i++) { 3515 struct page *p = extent_buffer_page(eb, i); 3516 3517 clear_page_dirty_for_io(p); 3518 set_page_writeback(p); 3519 ret = submit_extent_page(rw, tree, p, offset >> 9, 3520 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3521 -1, end_bio_extent_buffer_writepage, 3522 0, epd->bio_flags, bio_flags); 3523 epd->bio_flags = bio_flags; 3524 if (ret) { 3525 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3526 SetPageError(p); 3527 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3528 end_extent_buffer_writeback(eb); 3529 ret = -EIO; 3530 break; 3531 } 3532 offset += PAGE_CACHE_SIZE; 3533 update_nr_written(p, wbc, 1); 3534 unlock_page(p); 3535 } 3536 3537 if (unlikely(ret)) { 3538 for (; i < num_pages; i++) { 3539 struct page *p = extent_buffer_page(eb, i); 3540 unlock_page(p); 3541 } 3542 } 3543 3544 return ret; 3545 } 3546 3547 int btree_write_cache_pages(struct address_space *mapping, 3548 struct writeback_control *wbc) 3549 { 3550 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3551 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3552 struct extent_buffer *eb, *prev_eb = NULL; 3553 struct extent_page_data epd = { 3554 .bio = NULL, 3555 .tree = tree, 3556 .extent_locked = 0, 3557 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3558 .bio_flags = 0, 3559 }; 3560 int ret = 0; 3561 int done = 0; 3562 int nr_to_write_done = 0; 3563 struct pagevec pvec; 3564 int nr_pages; 3565 pgoff_t index; 3566 pgoff_t end; /* Inclusive */ 3567 int scanned = 0; 3568 int tag; 3569 3570 pagevec_init(&pvec, 0); 3571 if (wbc->range_cyclic) { 3572 index = mapping->writeback_index; /* Start from prev offset */ 3573 end = -1; 3574 } else { 3575 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3576 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3577 scanned = 1; 3578 } 3579 if (wbc->sync_mode == WB_SYNC_ALL) 3580 tag = PAGECACHE_TAG_TOWRITE; 3581 else 3582 tag = PAGECACHE_TAG_DIRTY; 3583 retry: 3584 if (wbc->sync_mode == WB_SYNC_ALL) 3585 tag_pages_for_writeback(mapping, index, end); 3586 while (!done && !nr_to_write_done && (index <= end) && 3587 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3588 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3589 unsigned i; 3590 3591 scanned = 1; 3592 for (i = 0; i < nr_pages; i++) { 3593 struct page *page = pvec.pages[i]; 3594 3595 if (!PagePrivate(page)) 3596 continue; 3597 3598 if (!wbc->range_cyclic && page->index > end) { 3599 done = 1; 3600 break; 3601 } 3602 3603 spin_lock(&mapping->private_lock); 3604 if (!PagePrivate(page)) { 3605 spin_unlock(&mapping->private_lock); 3606 continue; 3607 } 3608 3609 eb = (struct extent_buffer *)page->private; 3610 3611 /* 3612 * Shouldn't happen and normally this would be a BUG_ON 3613 * but no sense in crashing the users box for something 3614 * we can survive anyway. 3615 */ 3616 if (WARN_ON(!eb)) { 3617 spin_unlock(&mapping->private_lock); 3618 continue; 3619 } 3620 3621 if (eb == prev_eb) { 3622 spin_unlock(&mapping->private_lock); 3623 continue; 3624 } 3625 3626 ret = atomic_inc_not_zero(&eb->refs); 3627 spin_unlock(&mapping->private_lock); 3628 if (!ret) 3629 continue; 3630 3631 prev_eb = eb; 3632 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3633 if (!ret) { 3634 free_extent_buffer(eb); 3635 continue; 3636 } 3637 3638 ret = write_one_eb(eb, fs_info, wbc, &epd); 3639 if (ret) { 3640 done = 1; 3641 free_extent_buffer(eb); 3642 break; 3643 } 3644 free_extent_buffer(eb); 3645 3646 /* 3647 * the filesystem may choose to bump up nr_to_write. 3648 * We have to make sure to honor the new nr_to_write 3649 * at any time 3650 */ 3651 nr_to_write_done = wbc->nr_to_write <= 0; 3652 } 3653 pagevec_release(&pvec); 3654 cond_resched(); 3655 } 3656 if (!scanned && !done) { 3657 /* 3658 * We hit the last page and there is more work to be done: wrap 3659 * back to the start of the file 3660 */ 3661 scanned = 1; 3662 index = 0; 3663 goto retry; 3664 } 3665 flush_write_bio(&epd); 3666 return ret; 3667 } 3668 3669 /** 3670 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3671 * @mapping: address space structure to write 3672 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3673 * @writepage: function called for each page 3674 * @data: data passed to writepage function 3675 * 3676 * If a page is already under I/O, write_cache_pages() skips it, even 3677 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3678 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3679 * and msync() need to guarantee that all the data which was dirty at the time 3680 * the call was made get new I/O started against them. If wbc->sync_mode is 3681 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3682 * existing IO to complete. 3683 */ 3684 static int extent_write_cache_pages(struct extent_io_tree *tree, 3685 struct address_space *mapping, 3686 struct writeback_control *wbc, 3687 writepage_t writepage, void *data, 3688 void (*flush_fn)(void *)) 3689 { 3690 struct inode *inode = mapping->host; 3691 int ret = 0; 3692 int done = 0; 3693 int nr_to_write_done = 0; 3694 struct pagevec pvec; 3695 int nr_pages; 3696 pgoff_t index; 3697 pgoff_t end; /* Inclusive */ 3698 int scanned = 0; 3699 int tag; 3700 3701 /* 3702 * We have to hold onto the inode so that ordered extents can do their 3703 * work when the IO finishes. The alternative to this is failing to add 3704 * an ordered extent if the igrab() fails there and that is a huge pain 3705 * to deal with, so instead just hold onto the inode throughout the 3706 * writepages operation. If it fails here we are freeing up the inode 3707 * anyway and we'd rather not waste our time writing out stuff that is 3708 * going to be truncated anyway. 3709 */ 3710 if (!igrab(inode)) 3711 return 0; 3712 3713 pagevec_init(&pvec, 0); 3714 if (wbc->range_cyclic) { 3715 index = mapping->writeback_index; /* Start from prev offset */ 3716 end = -1; 3717 } else { 3718 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3719 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3720 scanned = 1; 3721 } 3722 if (wbc->sync_mode == WB_SYNC_ALL) 3723 tag = PAGECACHE_TAG_TOWRITE; 3724 else 3725 tag = PAGECACHE_TAG_DIRTY; 3726 retry: 3727 if (wbc->sync_mode == WB_SYNC_ALL) 3728 tag_pages_for_writeback(mapping, index, end); 3729 while (!done && !nr_to_write_done && (index <= end) && 3730 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3731 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3732 unsigned i; 3733 3734 scanned = 1; 3735 for (i = 0; i < nr_pages; i++) { 3736 struct page *page = pvec.pages[i]; 3737 3738 /* 3739 * At this point we hold neither mapping->tree_lock nor 3740 * lock on the page itself: the page may be truncated or 3741 * invalidated (changing page->mapping to NULL), or even 3742 * swizzled back from swapper_space to tmpfs file 3743 * mapping 3744 */ 3745 if (!trylock_page(page)) { 3746 flush_fn(data); 3747 lock_page(page); 3748 } 3749 3750 if (unlikely(page->mapping != mapping)) { 3751 unlock_page(page); 3752 continue; 3753 } 3754 3755 if (!wbc->range_cyclic && page->index > end) { 3756 done = 1; 3757 unlock_page(page); 3758 continue; 3759 } 3760 3761 if (wbc->sync_mode != WB_SYNC_NONE) { 3762 if (PageWriteback(page)) 3763 flush_fn(data); 3764 wait_on_page_writeback(page); 3765 } 3766 3767 if (PageWriteback(page) || 3768 !clear_page_dirty_for_io(page)) { 3769 unlock_page(page); 3770 continue; 3771 } 3772 3773 ret = (*writepage)(page, wbc, data); 3774 3775 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3776 unlock_page(page); 3777 ret = 0; 3778 } 3779 if (ret) 3780 done = 1; 3781 3782 /* 3783 * the filesystem may choose to bump up nr_to_write. 3784 * We have to make sure to honor the new nr_to_write 3785 * at any time 3786 */ 3787 nr_to_write_done = wbc->nr_to_write <= 0; 3788 } 3789 pagevec_release(&pvec); 3790 cond_resched(); 3791 } 3792 if (!scanned && !done) { 3793 /* 3794 * We hit the last page and there is more work to be done: wrap 3795 * back to the start of the file 3796 */ 3797 scanned = 1; 3798 index = 0; 3799 goto retry; 3800 } 3801 btrfs_add_delayed_iput(inode); 3802 return ret; 3803 } 3804 3805 static void flush_epd_write_bio(struct extent_page_data *epd) 3806 { 3807 if (epd->bio) { 3808 int rw = WRITE; 3809 int ret; 3810 3811 if (epd->sync_io) 3812 rw = WRITE_SYNC; 3813 3814 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3815 BUG_ON(ret < 0); /* -ENOMEM */ 3816 epd->bio = NULL; 3817 } 3818 } 3819 3820 static noinline void flush_write_bio(void *data) 3821 { 3822 struct extent_page_data *epd = data; 3823 flush_epd_write_bio(epd); 3824 } 3825 3826 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3827 get_extent_t *get_extent, 3828 struct writeback_control *wbc) 3829 { 3830 int ret; 3831 struct extent_page_data epd = { 3832 .bio = NULL, 3833 .tree = tree, 3834 .get_extent = get_extent, 3835 .extent_locked = 0, 3836 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3837 .bio_flags = 0, 3838 }; 3839 3840 ret = __extent_writepage(page, wbc, &epd); 3841 3842 flush_epd_write_bio(&epd); 3843 return ret; 3844 } 3845 3846 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3847 u64 start, u64 end, get_extent_t *get_extent, 3848 int mode) 3849 { 3850 int ret = 0; 3851 struct address_space *mapping = inode->i_mapping; 3852 struct page *page; 3853 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3854 PAGE_CACHE_SHIFT; 3855 3856 struct extent_page_data epd = { 3857 .bio = NULL, 3858 .tree = tree, 3859 .get_extent = get_extent, 3860 .extent_locked = 1, 3861 .sync_io = mode == WB_SYNC_ALL, 3862 .bio_flags = 0, 3863 }; 3864 struct writeback_control wbc_writepages = { 3865 .sync_mode = mode, 3866 .nr_to_write = nr_pages * 2, 3867 .range_start = start, 3868 .range_end = end + 1, 3869 }; 3870 3871 while (start <= end) { 3872 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3873 if (clear_page_dirty_for_io(page)) 3874 ret = __extent_writepage(page, &wbc_writepages, &epd); 3875 else { 3876 if (tree->ops && tree->ops->writepage_end_io_hook) 3877 tree->ops->writepage_end_io_hook(page, start, 3878 start + PAGE_CACHE_SIZE - 1, 3879 NULL, 1); 3880 unlock_page(page); 3881 } 3882 page_cache_release(page); 3883 start += PAGE_CACHE_SIZE; 3884 } 3885 3886 flush_epd_write_bio(&epd); 3887 return ret; 3888 } 3889 3890 int extent_writepages(struct extent_io_tree *tree, 3891 struct address_space *mapping, 3892 get_extent_t *get_extent, 3893 struct writeback_control *wbc) 3894 { 3895 int ret = 0; 3896 struct extent_page_data epd = { 3897 .bio = NULL, 3898 .tree = tree, 3899 .get_extent = get_extent, 3900 .extent_locked = 0, 3901 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3902 .bio_flags = 0, 3903 }; 3904 3905 ret = extent_write_cache_pages(tree, mapping, wbc, 3906 __extent_writepage, &epd, 3907 flush_write_bio); 3908 flush_epd_write_bio(&epd); 3909 return ret; 3910 } 3911 3912 int extent_readpages(struct extent_io_tree *tree, 3913 struct address_space *mapping, 3914 struct list_head *pages, unsigned nr_pages, 3915 get_extent_t get_extent) 3916 { 3917 struct bio *bio = NULL; 3918 unsigned page_idx; 3919 unsigned long bio_flags = 0; 3920 struct page *pagepool[16]; 3921 struct page *page; 3922 struct extent_map *em_cached = NULL; 3923 int nr = 0; 3924 3925 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3926 page = list_entry(pages->prev, struct page, lru); 3927 3928 prefetchw(&page->flags); 3929 list_del(&page->lru); 3930 if (add_to_page_cache_lru(page, mapping, 3931 page->index, GFP_NOFS)) { 3932 page_cache_release(page); 3933 continue; 3934 } 3935 3936 pagepool[nr++] = page; 3937 if (nr < ARRAY_SIZE(pagepool)) 3938 continue; 3939 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3940 &bio, 0, &bio_flags, READ); 3941 nr = 0; 3942 } 3943 if (nr) 3944 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3945 &bio, 0, &bio_flags, READ); 3946 3947 if (em_cached) 3948 free_extent_map(em_cached); 3949 3950 BUG_ON(!list_empty(pages)); 3951 if (bio) 3952 return submit_one_bio(READ, bio, 0, bio_flags); 3953 return 0; 3954 } 3955 3956 /* 3957 * basic invalidatepage code, this waits on any locked or writeback 3958 * ranges corresponding to the page, and then deletes any extent state 3959 * records from the tree 3960 */ 3961 int extent_invalidatepage(struct extent_io_tree *tree, 3962 struct page *page, unsigned long offset) 3963 { 3964 struct extent_state *cached_state = NULL; 3965 u64 start = page_offset(page); 3966 u64 end = start + PAGE_CACHE_SIZE - 1; 3967 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3968 3969 start += ALIGN(offset, blocksize); 3970 if (start > end) 3971 return 0; 3972 3973 lock_extent_bits(tree, start, end, 0, &cached_state); 3974 wait_on_page_writeback(page); 3975 clear_extent_bit(tree, start, end, 3976 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3977 EXTENT_DO_ACCOUNTING, 3978 1, 1, &cached_state, GFP_NOFS); 3979 return 0; 3980 } 3981 3982 /* 3983 * a helper for releasepage, this tests for areas of the page that 3984 * are locked or under IO and drops the related state bits if it is safe 3985 * to drop the page. 3986 */ 3987 static int try_release_extent_state(struct extent_map_tree *map, 3988 struct extent_io_tree *tree, 3989 struct page *page, gfp_t mask) 3990 { 3991 u64 start = page_offset(page); 3992 u64 end = start + PAGE_CACHE_SIZE - 1; 3993 int ret = 1; 3994 3995 if (test_range_bit(tree, start, end, 3996 EXTENT_IOBITS, 0, NULL)) 3997 ret = 0; 3998 else { 3999 if ((mask & GFP_NOFS) == GFP_NOFS) 4000 mask = GFP_NOFS; 4001 /* 4002 * at this point we can safely clear everything except the 4003 * locked bit and the nodatasum bit 4004 */ 4005 ret = clear_extent_bit(tree, start, end, 4006 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4007 0, 0, NULL, mask); 4008 4009 /* if clear_extent_bit failed for enomem reasons, 4010 * we can't allow the release to continue. 4011 */ 4012 if (ret < 0) 4013 ret = 0; 4014 else 4015 ret = 1; 4016 } 4017 return ret; 4018 } 4019 4020 /* 4021 * a helper for releasepage. As long as there are no locked extents 4022 * in the range corresponding to the page, both state records and extent 4023 * map records are removed 4024 */ 4025 int try_release_extent_mapping(struct extent_map_tree *map, 4026 struct extent_io_tree *tree, struct page *page, 4027 gfp_t mask) 4028 { 4029 struct extent_map *em; 4030 u64 start = page_offset(page); 4031 u64 end = start + PAGE_CACHE_SIZE - 1; 4032 4033 if ((mask & __GFP_WAIT) && 4034 page->mapping->host->i_size > 16 * 1024 * 1024) { 4035 u64 len; 4036 while (start <= end) { 4037 len = end - start + 1; 4038 write_lock(&map->lock); 4039 em = lookup_extent_mapping(map, start, len); 4040 if (!em) { 4041 write_unlock(&map->lock); 4042 break; 4043 } 4044 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4045 em->start != start) { 4046 write_unlock(&map->lock); 4047 free_extent_map(em); 4048 break; 4049 } 4050 if (!test_range_bit(tree, em->start, 4051 extent_map_end(em) - 1, 4052 EXTENT_LOCKED | EXTENT_WRITEBACK, 4053 0, NULL)) { 4054 remove_extent_mapping(map, em); 4055 /* once for the rb tree */ 4056 free_extent_map(em); 4057 } 4058 start = extent_map_end(em); 4059 write_unlock(&map->lock); 4060 4061 /* once for us */ 4062 free_extent_map(em); 4063 } 4064 } 4065 return try_release_extent_state(map, tree, page, mask); 4066 } 4067 4068 /* 4069 * helper function for fiemap, which doesn't want to see any holes. 4070 * This maps until we find something past 'last' 4071 */ 4072 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4073 u64 offset, 4074 u64 last, 4075 get_extent_t *get_extent) 4076 { 4077 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4078 struct extent_map *em; 4079 u64 len; 4080 4081 if (offset >= last) 4082 return NULL; 4083 4084 while (1) { 4085 len = last - offset; 4086 if (len == 0) 4087 break; 4088 len = ALIGN(len, sectorsize); 4089 em = get_extent(inode, NULL, 0, offset, len, 0); 4090 if (IS_ERR_OR_NULL(em)) 4091 return em; 4092 4093 /* if this isn't a hole return it */ 4094 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4095 em->block_start != EXTENT_MAP_HOLE) { 4096 return em; 4097 } 4098 4099 /* this is a hole, advance to the next extent */ 4100 offset = extent_map_end(em); 4101 free_extent_map(em); 4102 if (offset >= last) 4103 break; 4104 } 4105 return NULL; 4106 } 4107 4108 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx) 4109 { 4110 unsigned long cnt = *((unsigned long *)ctx); 4111 4112 cnt++; 4113 *((unsigned long *)ctx) = cnt; 4114 4115 /* Now we're sure that the extent is shared. */ 4116 if (cnt > 1) 4117 return 1; 4118 return 0; 4119 } 4120 4121 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4122 __u64 start, __u64 len, get_extent_t *get_extent) 4123 { 4124 int ret = 0; 4125 u64 off = start; 4126 u64 max = start + len; 4127 u32 flags = 0; 4128 u32 found_type; 4129 u64 last; 4130 u64 last_for_get_extent = 0; 4131 u64 disko = 0; 4132 u64 isize = i_size_read(inode); 4133 struct btrfs_key found_key; 4134 struct extent_map *em = NULL; 4135 struct extent_state *cached_state = NULL; 4136 struct btrfs_path *path; 4137 int end = 0; 4138 u64 em_start = 0; 4139 u64 em_len = 0; 4140 u64 em_end = 0; 4141 4142 if (len == 0) 4143 return -EINVAL; 4144 4145 path = btrfs_alloc_path(); 4146 if (!path) 4147 return -ENOMEM; 4148 path->leave_spinning = 1; 4149 4150 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4151 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4152 4153 /* 4154 * lookup the last file extent. We're not using i_size here 4155 * because there might be preallocation past i_size 4156 */ 4157 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4158 path, btrfs_ino(inode), -1, 0); 4159 if (ret < 0) { 4160 btrfs_free_path(path); 4161 return ret; 4162 } 4163 WARN_ON(!ret); 4164 path->slots[0]--; 4165 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4166 found_type = btrfs_key_type(&found_key); 4167 4168 /* No extents, but there might be delalloc bits */ 4169 if (found_key.objectid != btrfs_ino(inode) || 4170 found_type != BTRFS_EXTENT_DATA_KEY) { 4171 /* have to trust i_size as the end */ 4172 last = (u64)-1; 4173 last_for_get_extent = isize; 4174 } else { 4175 /* 4176 * remember the start of the last extent. There are a 4177 * bunch of different factors that go into the length of the 4178 * extent, so its much less complex to remember where it started 4179 */ 4180 last = found_key.offset; 4181 last_for_get_extent = last + 1; 4182 } 4183 btrfs_release_path(path); 4184 4185 /* 4186 * we might have some extents allocated but more delalloc past those 4187 * extents. so, we trust isize unless the start of the last extent is 4188 * beyond isize 4189 */ 4190 if (last < isize) { 4191 last = (u64)-1; 4192 last_for_get_extent = isize; 4193 } 4194 4195 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4196 &cached_state); 4197 4198 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4199 get_extent); 4200 if (!em) 4201 goto out; 4202 if (IS_ERR(em)) { 4203 ret = PTR_ERR(em); 4204 goto out; 4205 } 4206 4207 while (!end) { 4208 u64 offset_in_extent = 0; 4209 4210 /* break if the extent we found is outside the range */ 4211 if (em->start >= max || extent_map_end(em) < off) 4212 break; 4213 4214 /* 4215 * get_extent may return an extent that starts before our 4216 * requested range. We have to make sure the ranges 4217 * we return to fiemap always move forward and don't 4218 * overlap, so adjust the offsets here 4219 */ 4220 em_start = max(em->start, off); 4221 4222 /* 4223 * record the offset from the start of the extent 4224 * for adjusting the disk offset below. Only do this if the 4225 * extent isn't compressed since our in ram offset may be past 4226 * what we have actually allocated on disk. 4227 */ 4228 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4229 offset_in_extent = em_start - em->start; 4230 em_end = extent_map_end(em); 4231 em_len = em_end - em_start; 4232 disko = 0; 4233 flags = 0; 4234 4235 /* 4236 * bump off for our next call to get_extent 4237 */ 4238 off = extent_map_end(em); 4239 if (off >= max) 4240 end = 1; 4241 4242 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4243 end = 1; 4244 flags |= FIEMAP_EXTENT_LAST; 4245 } else if (em->block_start == EXTENT_MAP_INLINE) { 4246 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4247 FIEMAP_EXTENT_NOT_ALIGNED); 4248 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4249 flags |= (FIEMAP_EXTENT_DELALLOC | 4250 FIEMAP_EXTENT_UNKNOWN); 4251 } else { 4252 unsigned long ref_cnt = 0; 4253 4254 disko = em->block_start + offset_in_extent; 4255 4256 /* 4257 * As btrfs supports shared space, this information 4258 * can be exported to userspace tools via 4259 * flag FIEMAP_EXTENT_SHARED. 4260 */ 4261 ret = iterate_inodes_from_logical( 4262 em->block_start, 4263 BTRFS_I(inode)->root->fs_info, 4264 path, count_ext_ref, &ref_cnt); 4265 if (ret < 0 && ret != -ENOENT) 4266 goto out_free; 4267 4268 if (ref_cnt > 1) 4269 flags |= FIEMAP_EXTENT_SHARED; 4270 } 4271 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4272 flags |= FIEMAP_EXTENT_ENCODED; 4273 4274 free_extent_map(em); 4275 em = NULL; 4276 if ((em_start >= last) || em_len == (u64)-1 || 4277 (last == (u64)-1 && isize <= em_end)) { 4278 flags |= FIEMAP_EXTENT_LAST; 4279 end = 1; 4280 } 4281 4282 /* now scan forward to see if this is really the last extent. */ 4283 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4284 get_extent); 4285 if (IS_ERR(em)) { 4286 ret = PTR_ERR(em); 4287 goto out; 4288 } 4289 if (!em) { 4290 flags |= FIEMAP_EXTENT_LAST; 4291 end = 1; 4292 } 4293 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4294 em_len, flags); 4295 if (ret) 4296 goto out_free; 4297 } 4298 out_free: 4299 free_extent_map(em); 4300 out: 4301 btrfs_free_path(path); 4302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4303 &cached_state, GFP_NOFS); 4304 return ret; 4305 } 4306 4307 static void __free_extent_buffer(struct extent_buffer *eb) 4308 { 4309 btrfs_leak_debug_del(&eb->leak_list); 4310 kmem_cache_free(extent_buffer_cache, eb); 4311 } 4312 4313 int extent_buffer_under_io(struct extent_buffer *eb) 4314 { 4315 return (atomic_read(&eb->io_pages) || 4316 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4317 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4318 } 4319 4320 /* 4321 * Helper for releasing extent buffer page. 4322 */ 4323 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4324 unsigned long start_idx) 4325 { 4326 unsigned long index; 4327 unsigned long num_pages; 4328 struct page *page; 4329 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4330 4331 BUG_ON(extent_buffer_under_io(eb)); 4332 4333 num_pages = num_extent_pages(eb->start, eb->len); 4334 index = start_idx + num_pages; 4335 if (start_idx >= index) 4336 return; 4337 4338 do { 4339 index--; 4340 page = extent_buffer_page(eb, index); 4341 if (page && mapped) { 4342 spin_lock(&page->mapping->private_lock); 4343 /* 4344 * We do this since we'll remove the pages after we've 4345 * removed the eb from the radix tree, so we could race 4346 * and have this page now attached to the new eb. So 4347 * only clear page_private if it's still connected to 4348 * this eb. 4349 */ 4350 if (PagePrivate(page) && 4351 page->private == (unsigned long)eb) { 4352 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4353 BUG_ON(PageDirty(page)); 4354 BUG_ON(PageWriteback(page)); 4355 /* 4356 * We need to make sure we haven't be attached 4357 * to a new eb. 4358 */ 4359 ClearPagePrivate(page); 4360 set_page_private(page, 0); 4361 /* One for the page private */ 4362 page_cache_release(page); 4363 } 4364 spin_unlock(&page->mapping->private_lock); 4365 4366 } 4367 if (page) { 4368 /* One for when we alloced the page */ 4369 page_cache_release(page); 4370 } 4371 } while (index != start_idx); 4372 } 4373 4374 /* 4375 * Helper for releasing the extent buffer. 4376 */ 4377 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4378 { 4379 btrfs_release_extent_buffer_page(eb, 0); 4380 __free_extent_buffer(eb); 4381 } 4382 4383 static struct extent_buffer * 4384 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4385 unsigned long len, gfp_t mask) 4386 { 4387 struct extent_buffer *eb = NULL; 4388 4389 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4390 if (eb == NULL) 4391 return NULL; 4392 eb->start = start; 4393 eb->len = len; 4394 eb->fs_info = fs_info; 4395 eb->bflags = 0; 4396 rwlock_init(&eb->lock); 4397 atomic_set(&eb->write_locks, 0); 4398 atomic_set(&eb->read_locks, 0); 4399 atomic_set(&eb->blocking_readers, 0); 4400 atomic_set(&eb->blocking_writers, 0); 4401 atomic_set(&eb->spinning_readers, 0); 4402 atomic_set(&eb->spinning_writers, 0); 4403 eb->lock_nested = 0; 4404 init_waitqueue_head(&eb->write_lock_wq); 4405 init_waitqueue_head(&eb->read_lock_wq); 4406 4407 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4408 4409 spin_lock_init(&eb->refs_lock); 4410 atomic_set(&eb->refs, 1); 4411 atomic_set(&eb->io_pages, 0); 4412 4413 /* 4414 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4415 */ 4416 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4417 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4418 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4419 4420 return eb; 4421 } 4422 4423 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4424 { 4425 unsigned long i; 4426 struct page *p; 4427 struct extent_buffer *new; 4428 unsigned long num_pages = num_extent_pages(src->start, src->len); 4429 4430 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4431 if (new == NULL) 4432 return NULL; 4433 4434 for (i = 0; i < num_pages; i++) { 4435 p = alloc_page(GFP_NOFS); 4436 if (!p) { 4437 btrfs_release_extent_buffer(new); 4438 return NULL; 4439 } 4440 attach_extent_buffer_page(new, p); 4441 WARN_ON(PageDirty(p)); 4442 SetPageUptodate(p); 4443 new->pages[i] = p; 4444 } 4445 4446 copy_extent_buffer(new, src, 0, 0, src->len); 4447 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4448 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4449 4450 return new; 4451 } 4452 4453 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4454 { 4455 struct extent_buffer *eb; 4456 unsigned long num_pages = num_extent_pages(0, len); 4457 unsigned long i; 4458 4459 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4460 if (!eb) 4461 return NULL; 4462 4463 for (i = 0; i < num_pages; i++) { 4464 eb->pages[i] = alloc_page(GFP_NOFS); 4465 if (!eb->pages[i]) 4466 goto err; 4467 } 4468 set_extent_buffer_uptodate(eb); 4469 btrfs_set_header_nritems(eb, 0); 4470 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4471 4472 return eb; 4473 err: 4474 for (; i > 0; i--) 4475 __free_page(eb->pages[i - 1]); 4476 __free_extent_buffer(eb); 4477 return NULL; 4478 } 4479 4480 static void check_buffer_tree_ref(struct extent_buffer *eb) 4481 { 4482 int refs; 4483 /* the ref bit is tricky. We have to make sure it is set 4484 * if we have the buffer dirty. Otherwise the 4485 * code to free a buffer can end up dropping a dirty 4486 * page 4487 * 4488 * Once the ref bit is set, it won't go away while the 4489 * buffer is dirty or in writeback, and it also won't 4490 * go away while we have the reference count on the 4491 * eb bumped. 4492 * 4493 * We can't just set the ref bit without bumping the 4494 * ref on the eb because free_extent_buffer might 4495 * see the ref bit and try to clear it. If this happens 4496 * free_extent_buffer might end up dropping our original 4497 * ref by mistake and freeing the page before we are able 4498 * to add one more ref. 4499 * 4500 * So bump the ref count first, then set the bit. If someone 4501 * beat us to it, drop the ref we added. 4502 */ 4503 refs = atomic_read(&eb->refs); 4504 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4505 return; 4506 4507 spin_lock(&eb->refs_lock); 4508 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4509 atomic_inc(&eb->refs); 4510 spin_unlock(&eb->refs_lock); 4511 } 4512 4513 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4514 { 4515 unsigned long num_pages, i; 4516 4517 check_buffer_tree_ref(eb); 4518 4519 num_pages = num_extent_pages(eb->start, eb->len); 4520 for (i = 0; i < num_pages; i++) { 4521 struct page *p = extent_buffer_page(eb, i); 4522 mark_page_accessed(p); 4523 } 4524 } 4525 4526 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4527 u64 start) 4528 { 4529 struct extent_buffer *eb; 4530 4531 rcu_read_lock(); 4532 eb = radix_tree_lookup(&fs_info->buffer_radix, 4533 start >> PAGE_CACHE_SHIFT); 4534 if (eb && atomic_inc_not_zero(&eb->refs)) { 4535 rcu_read_unlock(); 4536 mark_extent_buffer_accessed(eb); 4537 return eb; 4538 } 4539 rcu_read_unlock(); 4540 4541 return NULL; 4542 } 4543 4544 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4545 u64 start, unsigned long len) 4546 { 4547 unsigned long num_pages = num_extent_pages(start, len); 4548 unsigned long i; 4549 unsigned long index = start >> PAGE_CACHE_SHIFT; 4550 struct extent_buffer *eb; 4551 struct extent_buffer *exists = NULL; 4552 struct page *p; 4553 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4554 int uptodate = 1; 4555 int ret; 4556 4557 eb = find_extent_buffer(fs_info, start); 4558 if (eb) 4559 return eb; 4560 4561 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS); 4562 if (!eb) 4563 return NULL; 4564 4565 for (i = 0; i < num_pages; i++, index++) { 4566 p = find_or_create_page(mapping, index, GFP_NOFS); 4567 if (!p) 4568 goto free_eb; 4569 4570 spin_lock(&mapping->private_lock); 4571 if (PagePrivate(p)) { 4572 /* 4573 * We could have already allocated an eb for this page 4574 * and attached one so lets see if we can get a ref on 4575 * the existing eb, and if we can we know it's good and 4576 * we can just return that one, else we know we can just 4577 * overwrite page->private. 4578 */ 4579 exists = (struct extent_buffer *)p->private; 4580 if (atomic_inc_not_zero(&exists->refs)) { 4581 spin_unlock(&mapping->private_lock); 4582 unlock_page(p); 4583 page_cache_release(p); 4584 mark_extent_buffer_accessed(exists); 4585 goto free_eb; 4586 } 4587 4588 /* 4589 * Do this so attach doesn't complain and we need to 4590 * drop the ref the old guy had. 4591 */ 4592 ClearPagePrivate(p); 4593 WARN_ON(PageDirty(p)); 4594 page_cache_release(p); 4595 } 4596 attach_extent_buffer_page(eb, p); 4597 spin_unlock(&mapping->private_lock); 4598 WARN_ON(PageDirty(p)); 4599 mark_page_accessed(p); 4600 eb->pages[i] = p; 4601 if (!PageUptodate(p)) 4602 uptodate = 0; 4603 4604 /* 4605 * see below about how we avoid a nasty race with release page 4606 * and why we unlock later 4607 */ 4608 } 4609 if (uptodate) 4610 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4611 again: 4612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4613 if (ret) 4614 goto free_eb; 4615 4616 spin_lock(&fs_info->buffer_lock); 4617 ret = radix_tree_insert(&fs_info->buffer_radix, 4618 start >> PAGE_CACHE_SHIFT, eb); 4619 spin_unlock(&fs_info->buffer_lock); 4620 radix_tree_preload_end(); 4621 if (ret == -EEXIST) { 4622 exists = find_extent_buffer(fs_info, start); 4623 if (exists) 4624 goto free_eb; 4625 else 4626 goto again; 4627 } 4628 /* add one reference for the tree */ 4629 check_buffer_tree_ref(eb); 4630 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4631 4632 /* 4633 * there is a race where release page may have 4634 * tried to find this extent buffer in the radix 4635 * but failed. It will tell the VM it is safe to 4636 * reclaim the, and it will clear the page private bit. 4637 * We must make sure to set the page private bit properly 4638 * after the extent buffer is in the radix tree so 4639 * it doesn't get lost 4640 */ 4641 SetPageChecked(eb->pages[0]); 4642 for (i = 1; i < num_pages; i++) { 4643 p = extent_buffer_page(eb, i); 4644 ClearPageChecked(p); 4645 unlock_page(p); 4646 } 4647 unlock_page(eb->pages[0]); 4648 return eb; 4649 4650 free_eb: 4651 for (i = 0; i < num_pages; i++) { 4652 if (eb->pages[i]) 4653 unlock_page(eb->pages[i]); 4654 } 4655 4656 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4657 btrfs_release_extent_buffer(eb); 4658 return exists; 4659 } 4660 4661 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4662 { 4663 struct extent_buffer *eb = 4664 container_of(head, struct extent_buffer, rcu_head); 4665 4666 __free_extent_buffer(eb); 4667 } 4668 4669 /* Expects to have eb->eb_lock already held */ 4670 static int release_extent_buffer(struct extent_buffer *eb) 4671 { 4672 WARN_ON(atomic_read(&eb->refs) == 0); 4673 if (atomic_dec_and_test(&eb->refs)) { 4674 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4675 struct btrfs_fs_info *fs_info = eb->fs_info; 4676 4677 spin_unlock(&eb->refs_lock); 4678 4679 spin_lock(&fs_info->buffer_lock); 4680 radix_tree_delete(&fs_info->buffer_radix, 4681 eb->start >> PAGE_CACHE_SHIFT); 4682 spin_unlock(&fs_info->buffer_lock); 4683 } else { 4684 spin_unlock(&eb->refs_lock); 4685 } 4686 4687 /* Should be safe to release our pages at this point */ 4688 btrfs_release_extent_buffer_page(eb, 0); 4689 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4690 return 1; 4691 } 4692 spin_unlock(&eb->refs_lock); 4693 4694 return 0; 4695 } 4696 4697 void free_extent_buffer(struct extent_buffer *eb) 4698 { 4699 int refs; 4700 int old; 4701 if (!eb) 4702 return; 4703 4704 while (1) { 4705 refs = atomic_read(&eb->refs); 4706 if (refs <= 3) 4707 break; 4708 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4709 if (old == refs) 4710 return; 4711 } 4712 4713 spin_lock(&eb->refs_lock); 4714 if (atomic_read(&eb->refs) == 2 && 4715 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4716 atomic_dec(&eb->refs); 4717 4718 if (atomic_read(&eb->refs) == 2 && 4719 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4720 !extent_buffer_under_io(eb) && 4721 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4722 atomic_dec(&eb->refs); 4723 4724 /* 4725 * I know this is terrible, but it's temporary until we stop tracking 4726 * the uptodate bits and such for the extent buffers. 4727 */ 4728 release_extent_buffer(eb); 4729 } 4730 4731 void free_extent_buffer_stale(struct extent_buffer *eb) 4732 { 4733 if (!eb) 4734 return; 4735 4736 spin_lock(&eb->refs_lock); 4737 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4738 4739 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4740 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4741 atomic_dec(&eb->refs); 4742 release_extent_buffer(eb); 4743 } 4744 4745 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4746 { 4747 unsigned long i; 4748 unsigned long num_pages; 4749 struct page *page; 4750 4751 num_pages = num_extent_pages(eb->start, eb->len); 4752 4753 for (i = 0; i < num_pages; i++) { 4754 page = extent_buffer_page(eb, i); 4755 if (!PageDirty(page)) 4756 continue; 4757 4758 lock_page(page); 4759 WARN_ON(!PagePrivate(page)); 4760 4761 clear_page_dirty_for_io(page); 4762 spin_lock_irq(&page->mapping->tree_lock); 4763 if (!PageDirty(page)) { 4764 radix_tree_tag_clear(&page->mapping->page_tree, 4765 page_index(page), 4766 PAGECACHE_TAG_DIRTY); 4767 } 4768 spin_unlock_irq(&page->mapping->tree_lock); 4769 ClearPageError(page); 4770 unlock_page(page); 4771 } 4772 WARN_ON(atomic_read(&eb->refs) == 0); 4773 } 4774 4775 int set_extent_buffer_dirty(struct extent_buffer *eb) 4776 { 4777 unsigned long i; 4778 unsigned long num_pages; 4779 int was_dirty = 0; 4780 4781 check_buffer_tree_ref(eb); 4782 4783 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4784 4785 num_pages = num_extent_pages(eb->start, eb->len); 4786 WARN_ON(atomic_read(&eb->refs) == 0); 4787 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4788 4789 for (i = 0; i < num_pages; i++) 4790 set_page_dirty(extent_buffer_page(eb, i)); 4791 return was_dirty; 4792 } 4793 4794 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4795 { 4796 unsigned long i; 4797 struct page *page; 4798 unsigned long num_pages; 4799 4800 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4801 num_pages = num_extent_pages(eb->start, eb->len); 4802 for (i = 0; i < num_pages; i++) { 4803 page = extent_buffer_page(eb, i); 4804 if (page) 4805 ClearPageUptodate(page); 4806 } 4807 return 0; 4808 } 4809 4810 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4811 { 4812 unsigned long i; 4813 struct page *page; 4814 unsigned long num_pages; 4815 4816 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4817 num_pages = num_extent_pages(eb->start, eb->len); 4818 for (i = 0; i < num_pages; i++) { 4819 page = extent_buffer_page(eb, i); 4820 SetPageUptodate(page); 4821 } 4822 return 0; 4823 } 4824 4825 int extent_buffer_uptodate(struct extent_buffer *eb) 4826 { 4827 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4828 } 4829 4830 int read_extent_buffer_pages(struct extent_io_tree *tree, 4831 struct extent_buffer *eb, u64 start, int wait, 4832 get_extent_t *get_extent, int mirror_num) 4833 { 4834 unsigned long i; 4835 unsigned long start_i; 4836 struct page *page; 4837 int err; 4838 int ret = 0; 4839 int locked_pages = 0; 4840 int all_uptodate = 1; 4841 unsigned long num_pages; 4842 unsigned long num_reads = 0; 4843 struct bio *bio = NULL; 4844 unsigned long bio_flags = 0; 4845 4846 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4847 return 0; 4848 4849 if (start) { 4850 WARN_ON(start < eb->start); 4851 start_i = (start >> PAGE_CACHE_SHIFT) - 4852 (eb->start >> PAGE_CACHE_SHIFT); 4853 } else { 4854 start_i = 0; 4855 } 4856 4857 num_pages = num_extent_pages(eb->start, eb->len); 4858 for (i = start_i; i < num_pages; i++) { 4859 page = extent_buffer_page(eb, i); 4860 if (wait == WAIT_NONE) { 4861 if (!trylock_page(page)) 4862 goto unlock_exit; 4863 } else { 4864 lock_page(page); 4865 } 4866 locked_pages++; 4867 if (!PageUptodate(page)) { 4868 num_reads++; 4869 all_uptodate = 0; 4870 } 4871 } 4872 if (all_uptodate) { 4873 if (start_i == 0) 4874 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4875 goto unlock_exit; 4876 } 4877 4878 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4879 eb->read_mirror = 0; 4880 atomic_set(&eb->io_pages, num_reads); 4881 for (i = start_i; i < num_pages; i++) { 4882 page = extent_buffer_page(eb, i); 4883 if (!PageUptodate(page)) { 4884 ClearPageError(page); 4885 err = __extent_read_full_page(tree, page, 4886 get_extent, &bio, 4887 mirror_num, &bio_flags, 4888 READ | REQ_META); 4889 if (err) 4890 ret = err; 4891 } else { 4892 unlock_page(page); 4893 } 4894 } 4895 4896 if (bio) { 4897 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4898 bio_flags); 4899 if (err) 4900 return err; 4901 } 4902 4903 if (ret || wait != WAIT_COMPLETE) 4904 return ret; 4905 4906 for (i = start_i; i < num_pages; i++) { 4907 page = extent_buffer_page(eb, i); 4908 wait_on_page_locked(page); 4909 if (!PageUptodate(page)) 4910 ret = -EIO; 4911 } 4912 4913 return ret; 4914 4915 unlock_exit: 4916 i = start_i; 4917 while (locked_pages > 0) { 4918 page = extent_buffer_page(eb, i); 4919 i++; 4920 unlock_page(page); 4921 locked_pages--; 4922 } 4923 return ret; 4924 } 4925 4926 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4927 unsigned long start, 4928 unsigned long len) 4929 { 4930 size_t cur; 4931 size_t offset; 4932 struct page *page; 4933 char *kaddr; 4934 char *dst = (char *)dstv; 4935 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4936 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4937 4938 WARN_ON(start > eb->len); 4939 WARN_ON(start + len > eb->start + eb->len); 4940 4941 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4942 4943 while (len > 0) { 4944 page = extent_buffer_page(eb, i); 4945 4946 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4947 kaddr = page_address(page); 4948 memcpy(dst, kaddr + offset, cur); 4949 4950 dst += cur; 4951 len -= cur; 4952 offset = 0; 4953 i++; 4954 } 4955 } 4956 4957 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4958 unsigned long min_len, char **map, 4959 unsigned long *map_start, 4960 unsigned long *map_len) 4961 { 4962 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4963 char *kaddr; 4964 struct page *p; 4965 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4966 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4967 unsigned long end_i = (start_offset + start + min_len - 1) >> 4968 PAGE_CACHE_SHIFT; 4969 4970 if (i != end_i) 4971 return -EINVAL; 4972 4973 if (i == 0) { 4974 offset = start_offset; 4975 *map_start = 0; 4976 } else { 4977 offset = 0; 4978 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4979 } 4980 4981 if (start + min_len > eb->len) { 4982 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4983 "wanted %lu %lu\n", 4984 eb->start, eb->len, start, min_len); 4985 return -EINVAL; 4986 } 4987 4988 p = extent_buffer_page(eb, i); 4989 kaddr = page_address(p); 4990 *map = kaddr + offset; 4991 *map_len = PAGE_CACHE_SIZE - offset; 4992 return 0; 4993 } 4994 4995 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4996 unsigned long start, 4997 unsigned long len) 4998 { 4999 size_t cur; 5000 size_t offset; 5001 struct page *page; 5002 char *kaddr; 5003 char *ptr = (char *)ptrv; 5004 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5005 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5006 int ret = 0; 5007 5008 WARN_ON(start > eb->len); 5009 WARN_ON(start + len > eb->start + eb->len); 5010 5011 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5012 5013 while (len > 0) { 5014 page = extent_buffer_page(eb, i); 5015 5016 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5017 5018 kaddr = page_address(page); 5019 ret = memcmp(ptr, kaddr + offset, cur); 5020 if (ret) 5021 break; 5022 5023 ptr += cur; 5024 len -= cur; 5025 offset = 0; 5026 i++; 5027 } 5028 return ret; 5029 } 5030 5031 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5032 unsigned long start, unsigned long len) 5033 { 5034 size_t cur; 5035 size_t offset; 5036 struct page *page; 5037 char *kaddr; 5038 char *src = (char *)srcv; 5039 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5040 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5041 5042 WARN_ON(start > eb->len); 5043 WARN_ON(start + len > eb->start + eb->len); 5044 5045 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5046 5047 while (len > 0) { 5048 page = extent_buffer_page(eb, i); 5049 WARN_ON(!PageUptodate(page)); 5050 5051 cur = min(len, PAGE_CACHE_SIZE - offset); 5052 kaddr = page_address(page); 5053 memcpy(kaddr + offset, src, cur); 5054 5055 src += cur; 5056 len -= cur; 5057 offset = 0; 5058 i++; 5059 } 5060 } 5061 5062 void memset_extent_buffer(struct extent_buffer *eb, char c, 5063 unsigned long start, unsigned long len) 5064 { 5065 size_t cur; 5066 size_t offset; 5067 struct page *page; 5068 char *kaddr; 5069 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5070 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5071 5072 WARN_ON(start > eb->len); 5073 WARN_ON(start + len > eb->start + eb->len); 5074 5075 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5076 5077 while (len > 0) { 5078 page = extent_buffer_page(eb, i); 5079 WARN_ON(!PageUptodate(page)); 5080 5081 cur = min(len, PAGE_CACHE_SIZE - offset); 5082 kaddr = page_address(page); 5083 memset(kaddr + offset, c, cur); 5084 5085 len -= cur; 5086 offset = 0; 5087 i++; 5088 } 5089 } 5090 5091 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5092 unsigned long dst_offset, unsigned long src_offset, 5093 unsigned long len) 5094 { 5095 u64 dst_len = dst->len; 5096 size_t cur; 5097 size_t offset; 5098 struct page *page; 5099 char *kaddr; 5100 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5101 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5102 5103 WARN_ON(src->len != dst_len); 5104 5105 offset = (start_offset + dst_offset) & 5106 (PAGE_CACHE_SIZE - 1); 5107 5108 while (len > 0) { 5109 page = extent_buffer_page(dst, i); 5110 WARN_ON(!PageUptodate(page)); 5111 5112 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5113 5114 kaddr = page_address(page); 5115 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5116 5117 src_offset += cur; 5118 len -= cur; 5119 offset = 0; 5120 i++; 5121 } 5122 } 5123 5124 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5125 { 5126 unsigned long distance = (src > dst) ? src - dst : dst - src; 5127 return distance < len; 5128 } 5129 5130 static void copy_pages(struct page *dst_page, struct page *src_page, 5131 unsigned long dst_off, unsigned long src_off, 5132 unsigned long len) 5133 { 5134 char *dst_kaddr = page_address(dst_page); 5135 char *src_kaddr; 5136 int must_memmove = 0; 5137 5138 if (dst_page != src_page) { 5139 src_kaddr = page_address(src_page); 5140 } else { 5141 src_kaddr = dst_kaddr; 5142 if (areas_overlap(src_off, dst_off, len)) 5143 must_memmove = 1; 5144 } 5145 5146 if (must_memmove) 5147 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5148 else 5149 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5150 } 5151 5152 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5153 unsigned long src_offset, unsigned long len) 5154 { 5155 size_t cur; 5156 size_t dst_off_in_page; 5157 size_t src_off_in_page; 5158 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5159 unsigned long dst_i; 5160 unsigned long src_i; 5161 5162 if (src_offset + len > dst->len) { 5163 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5164 "len %lu dst len %lu\n", src_offset, len, dst->len); 5165 BUG_ON(1); 5166 } 5167 if (dst_offset + len > dst->len) { 5168 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5169 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5170 BUG_ON(1); 5171 } 5172 5173 while (len > 0) { 5174 dst_off_in_page = (start_offset + dst_offset) & 5175 (PAGE_CACHE_SIZE - 1); 5176 src_off_in_page = (start_offset + src_offset) & 5177 (PAGE_CACHE_SIZE - 1); 5178 5179 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5180 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5181 5182 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5183 src_off_in_page)); 5184 cur = min_t(unsigned long, cur, 5185 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5186 5187 copy_pages(extent_buffer_page(dst, dst_i), 5188 extent_buffer_page(dst, src_i), 5189 dst_off_in_page, src_off_in_page, cur); 5190 5191 src_offset += cur; 5192 dst_offset += cur; 5193 len -= cur; 5194 } 5195 } 5196 5197 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5198 unsigned long src_offset, unsigned long len) 5199 { 5200 size_t cur; 5201 size_t dst_off_in_page; 5202 size_t src_off_in_page; 5203 unsigned long dst_end = dst_offset + len - 1; 5204 unsigned long src_end = src_offset + len - 1; 5205 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5206 unsigned long dst_i; 5207 unsigned long src_i; 5208 5209 if (src_offset + len > dst->len) { 5210 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5211 "len %lu len %lu\n", src_offset, len, dst->len); 5212 BUG_ON(1); 5213 } 5214 if (dst_offset + len > dst->len) { 5215 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5216 "len %lu len %lu\n", dst_offset, len, dst->len); 5217 BUG_ON(1); 5218 } 5219 if (dst_offset < src_offset) { 5220 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5221 return; 5222 } 5223 while (len > 0) { 5224 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5225 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5226 5227 dst_off_in_page = (start_offset + dst_end) & 5228 (PAGE_CACHE_SIZE - 1); 5229 src_off_in_page = (start_offset + src_end) & 5230 (PAGE_CACHE_SIZE - 1); 5231 5232 cur = min_t(unsigned long, len, src_off_in_page + 1); 5233 cur = min(cur, dst_off_in_page + 1); 5234 copy_pages(extent_buffer_page(dst, dst_i), 5235 extent_buffer_page(dst, src_i), 5236 dst_off_in_page - cur + 1, 5237 src_off_in_page - cur + 1, cur); 5238 5239 dst_end -= cur; 5240 src_end -= cur; 5241 len -= cur; 5242 } 5243 } 5244 5245 int try_release_extent_buffer(struct page *page) 5246 { 5247 struct extent_buffer *eb; 5248 5249 /* 5250 * We need to make sure noboody is attaching this page to an eb right 5251 * now. 5252 */ 5253 spin_lock(&page->mapping->private_lock); 5254 if (!PagePrivate(page)) { 5255 spin_unlock(&page->mapping->private_lock); 5256 return 1; 5257 } 5258 5259 eb = (struct extent_buffer *)page->private; 5260 BUG_ON(!eb); 5261 5262 /* 5263 * This is a little awful but should be ok, we need to make sure that 5264 * the eb doesn't disappear out from under us while we're looking at 5265 * this page. 5266 */ 5267 spin_lock(&eb->refs_lock); 5268 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5269 spin_unlock(&eb->refs_lock); 5270 spin_unlock(&page->mapping->private_lock); 5271 return 0; 5272 } 5273 spin_unlock(&page->mapping->private_lock); 5274 5275 /* 5276 * If tree ref isn't set then we know the ref on this eb is a real ref, 5277 * so just return, this page will likely be freed soon anyway. 5278 */ 5279 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5280 spin_unlock(&eb->refs_lock); 5281 return 0; 5282 } 5283 5284 return release_extent_buffer(eb); 5285 } 5286