1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 34 static struct kmem_cache *extent_buffer_cache; 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 38 { 39 struct btrfs_fs_info *fs_info = eb->fs_info; 40 unsigned long flags; 41 42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 43 list_add(&eb->leak_list, &fs_info->allocated_ebs); 44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 45 } 46 47 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 48 { 49 struct btrfs_fs_info *fs_info = eb->fs_info; 50 unsigned long flags; 51 52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 53 list_del(&eb->leak_list); 54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 55 } 56 57 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 58 { 59 struct extent_buffer *eb; 60 unsigned long flags; 61 62 /* 63 * If we didn't get into open_ctree our allocated_ebs will not be 64 * initialized, so just skip this. 65 */ 66 if (!fs_info->allocated_ebs.next) 67 return; 68 69 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 71 while (!list_empty(&fs_info->allocated_ebs)) { 72 eb = list_first_entry(&fs_info->allocated_ebs, 73 struct extent_buffer, leak_list); 74 pr_err( 75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 77 btrfs_header_owner(eb)); 78 list_del(&eb->leak_list); 79 kmem_cache_free(extent_buffer_cache, eb); 80 } 81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 82 } 83 #else 84 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 85 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 86 #endif 87 88 /* 89 * Structure to record info about the bio being assembled, and other info like 90 * how many bytes are there before stripe/ordered extent boundary. 91 */ 92 struct btrfs_bio_ctrl { 93 struct bio *bio; 94 int mirror_num; 95 enum btrfs_compression_type compress_type; 96 u32 len_to_stripe_boundary; 97 u32 len_to_oe_boundary; 98 btrfs_bio_end_io_t end_io_func; 99 }; 100 101 struct extent_page_data { 102 struct btrfs_bio_ctrl bio_ctrl; 103 /* tells writepage not to lock the state bits for this range 104 * it still does the unlocking 105 */ 106 unsigned int extent_locked:1; 107 108 /* tells the submit_bio code to use REQ_SYNC */ 109 unsigned int sync_io:1; 110 }; 111 112 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 113 { 114 struct bio *bio; 115 struct bio_vec *bv; 116 struct inode *inode; 117 int mirror_num; 118 119 if (!bio_ctrl->bio) 120 return; 121 122 bio = bio_ctrl->bio; 123 bv = bio_first_bvec_all(bio); 124 inode = bv->bv_page->mapping->host; 125 mirror_num = bio_ctrl->mirror_num; 126 127 /* Caller should ensure the bio has at least some range added */ 128 ASSERT(bio->bi_iter.bi_size); 129 130 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset; 131 132 if (!is_data_inode(inode)) 133 btrfs_submit_metadata_bio(inode, bio, mirror_num); 134 else if (btrfs_op(bio) == BTRFS_MAP_WRITE) 135 btrfs_submit_data_write_bio(inode, bio, mirror_num); 136 else 137 btrfs_submit_data_read_bio(inode, bio, mirror_num, 138 bio_ctrl->compress_type); 139 140 /* The bio is owned by the end_io handler now */ 141 bio_ctrl->bio = NULL; 142 } 143 144 /* 145 * Submit or fail the current bio in an extent_page_data structure. 146 */ 147 static void submit_write_bio(struct extent_page_data *epd, int ret) 148 { 149 struct bio *bio = epd->bio_ctrl.bio; 150 151 if (!bio) 152 return; 153 154 if (ret) { 155 ASSERT(ret < 0); 156 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 157 /* The bio is owned by the end_io handler now */ 158 epd->bio_ctrl.bio = NULL; 159 } else { 160 submit_one_bio(&epd->bio_ctrl); 161 } 162 } 163 164 int __init extent_buffer_init_cachep(void) 165 { 166 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 167 sizeof(struct extent_buffer), 0, 168 SLAB_MEM_SPREAD, NULL); 169 if (!extent_buffer_cache) 170 return -ENOMEM; 171 172 return 0; 173 } 174 175 void __cold extent_buffer_free_cachep(void) 176 { 177 /* 178 * Make sure all delayed rcu free are flushed before we 179 * destroy caches. 180 */ 181 rcu_barrier(); 182 kmem_cache_destroy(extent_buffer_cache); 183 } 184 185 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 186 { 187 unsigned long index = start >> PAGE_SHIFT; 188 unsigned long end_index = end >> PAGE_SHIFT; 189 struct page *page; 190 191 while (index <= end_index) { 192 page = find_get_page(inode->i_mapping, index); 193 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 194 clear_page_dirty_for_io(page); 195 put_page(page); 196 index++; 197 } 198 } 199 200 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 201 { 202 struct address_space *mapping = inode->i_mapping; 203 unsigned long index = start >> PAGE_SHIFT; 204 unsigned long end_index = end >> PAGE_SHIFT; 205 struct folio *folio; 206 207 while (index <= end_index) { 208 folio = filemap_get_folio(mapping, index); 209 filemap_dirty_folio(mapping, folio); 210 folio_account_redirty(folio); 211 index += folio_nr_pages(folio); 212 folio_put(folio); 213 } 214 } 215 216 /* 217 * Process one page for __process_pages_contig(). 218 * 219 * Return >0 if we hit @page == @locked_page. 220 * Return 0 if we updated the page status. 221 * Return -EGAIN if the we need to try again. 222 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 223 */ 224 static int process_one_page(struct btrfs_fs_info *fs_info, 225 struct address_space *mapping, 226 struct page *page, struct page *locked_page, 227 unsigned long page_ops, u64 start, u64 end) 228 { 229 u32 len; 230 231 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 232 len = end + 1 - start; 233 234 if (page_ops & PAGE_SET_ORDERED) 235 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 236 if (page_ops & PAGE_SET_ERROR) 237 btrfs_page_clamp_set_error(fs_info, page, start, len); 238 if (page_ops & PAGE_START_WRITEBACK) { 239 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 240 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 241 } 242 if (page_ops & PAGE_END_WRITEBACK) 243 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 244 245 if (page == locked_page) 246 return 1; 247 248 if (page_ops & PAGE_LOCK) { 249 int ret; 250 251 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 252 if (ret) 253 return ret; 254 if (!PageDirty(page) || page->mapping != mapping) { 255 btrfs_page_end_writer_lock(fs_info, page, start, len); 256 return -EAGAIN; 257 } 258 } 259 if (page_ops & PAGE_UNLOCK) 260 btrfs_page_end_writer_lock(fs_info, page, start, len); 261 return 0; 262 } 263 264 static int __process_pages_contig(struct address_space *mapping, 265 struct page *locked_page, 266 u64 start, u64 end, unsigned long page_ops, 267 u64 *processed_end) 268 { 269 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 270 pgoff_t start_index = start >> PAGE_SHIFT; 271 pgoff_t end_index = end >> PAGE_SHIFT; 272 pgoff_t index = start_index; 273 unsigned long pages_processed = 0; 274 struct folio_batch fbatch; 275 int err = 0; 276 int i; 277 278 if (page_ops & PAGE_LOCK) { 279 ASSERT(page_ops == PAGE_LOCK); 280 ASSERT(processed_end && *processed_end == start); 281 } 282 283 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 284 mapping_set_error(mapping, -EIO); 285 286 folio_batch_init(&fbatch); 287 while (index <= end_index) { 288 int found_folios; 289 290 found_folios = filemap_get_folios_contig(mapping, &index, 291 end_index, &fbatch); 292 293 if (found_folios == 0) { 294 /* 295 * Only if we're going to lock these pages, we can find 296 * nothing at @index. 297 */ 298 ASSERT(page_ops & PAGE_LOCK); 299 err = -EAGAIN; 300 goto out; 301 } 302 303 for (i = 0; i < found_folios; i++) { 304 int process_ret; 305 struct folio *folio = fbatch.folios[i]; 306 process_ret = process_one_page(fs_info, mapping, 307 &folio->page, locked_page, page_ops, 308 start, end); 309 if (process_ret < 0) { 310 err = -EAGAIN; 311 folio_batch_release(&fbatch); 312 goto out; 313 } 314 pages_processed += folio_nr_pages(folio); 315 } 316 folio_batch_release(&fbatch); 317 cond_resched(); 318 } 319 out: 320 if (err && processed_end) { 321 /* 322 * Update @processed_end. I know this is awful since it has 323 * two different return value patterns (inclusive vs exclusive). 324 * 325 * But the exclusive pattern is necessary if @start is 0, or we 326 * underflow and check against processed_end won't work as 327 * expected. 328 */ 329 if (pages_processed) 330 *processed_end = min(end, 331 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 332 else 333 *processed_end = start; 334 } 335 return err; 336 } 337 338 static noinline void __unlock_for_delalloc(struct inode *inode, 339 struct page *locked_page, 340 u64 start, u64 end) 341 { 342 unsigned long index = start >> PAGE_SHIFT; 343 unsigned long end_index = end >> PAGE_SHIFT; 344 345 ASSERT(locked_page); 346 if (index == locked_page->index && end_index == index) 347 return; 348 349 __process_pages_contig(inode->i_mapping, locked_page, start, end, 350 PAGE_UNLOCK, NULL); 351 } 352 353 static noinline int lock_delalloc_pages(struct inode *inode, 354 struct page *locked_page, 355 u64 delalloc_start, 356 u64 delalloc_end) 357 { 358 unsigned long index = delalloc_start >> PAGE_SHIFT; 359 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 360 u64 processed_end = delalloc_start; 361 int ret; 362 363 ASSERT(locked_page); 364 if (index == locked_page->index && index == end_index) 365 return 0; 366 367 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 368 delalloc_end, PAGE_LOCK, &processed_end); 369 if (ret == -EAGAIN && processed_end > delalloc_start) 370 __unlock_for_delalloc(inode, locked_page, delalloc_start, 371 processed_end); 372 return ret; 373 } 374 375 /* 376 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 377 * more than @max_bytes. 378 * 379 * @start: The original start bytenr to search. 380 * Will store the extent range start bytenr. 381 * @end: The original end bytenr of the search range 382 * Will store the extent range end bytenr. 383 * 384 * Return true if we find a delalloc range which starts inside the original 385 * range, and @start/@end will store the delalloc range start/end. 386 * 387 * Return false if we can't find any delalloc range which starts inside the 388 * original range, and @start/@end will be the non-delalloc range start/end. 389 */ 390 EXPORT_FOR_TESTS 391 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 392 struct page *locked_page, u64 *start, 393 u64 *end) 394 { 395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 396 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 397 const u64 orig_start = *start; 398 const u64 orig_end = *end; 399 /* The sanity tests may not set a valid fs_info. */ 400 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 401 u64 delalloc_start; 402 u64 delalloc_end; 403 bool found; 404 struct extent_state *cached_state = NULL; 405 int ret; 406 int loops = 0; 407 408 /* Caller should pass a valid @end to indicate the search range end */ 409 ASSERT(orig_end > orig_start); 410 411 /* The range should at least cover part of the page */ 412 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 413 orig_end <= page_offset(locked_page))); 414 again: 415 /* step one, find a bunch of delalloc bytes starting at start */ 416 delalloc_start = *start; 417 delalloc_end = 0; 418 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 419 max_bytes, &cached_state); 420 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 421 *start = delalloc_start; 422 423 /* @delalloc_end can be -1, never go beyond @orig_end */ 424 *end = min(delalloc_end, orig_end); 425 free_extent_state(cached_state); 426 return false; 427 } 428 429 /* 430 * start comes from the offset of locked_page. We have to lock 431 * pages in order, so we can't process delalloc bytes before 432 * locked_page 433 */ 434 if (delalloc_start < *start) 435 delalloc_start = *start; 436 437 /* 438 * make sure to limit the number of pages we try to lock down 439 */ 440 if (delalloc_end + 1 - delalloc_start > max_bytes) 441 delalloc_end = delalloc_start + max_bytes - 1; 442 443 /* step two, lock all the pages after the page that has start */ 444 ret = lock_delalloc_pages(inode, locked_page, 445 delalloc_start, delalloc_end); 446 ASSERT(!ret || ret == -EAGAIN); 447 if (ret == -EAGAIN) { 448 /* some of the pages are gone, lets avoid looping by 449 * shortening the size of the delalloc range we're searching 450 */ 451 free_extent_state(cached_state); 452 cached_state = NULL; 453 if (!loops) { 454 max_bytes = PAGE_SIZE; 455 loops = 1; 456 goto again; 457 } else { 458 found = false; 459 goto out_failed; 460 } 461 } 462 463 /* step three, lock the state bits for the whole range */ 464 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 465 466 /* then test to make sure it is all still delalloc */ 467 ret = test_range_bit(tree, delalloc_start, delalloc_end, 468 EXTENT_DELALLOC, 1, cached_state); 469 if (!ret) { 470 unlock_extent(tree, delalloc_start, delalloc_end, 471 &cached_state); 472 __unlock_for_delalloc(inode, locked_page, 473 delalloc_start, delalloc_end); 474 cond_resched(); 475 goto again; 476 } 477 free_extent_state(cached_state); 478 *start = delalloc_start; 479 *end = delalloc_end; 480 out_failed: 481 return found; 482 } 483 484 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 485 struct page *locked_page, 486 u32 clear_bits, unsigned long page_ops) 487 { 488 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 489 490 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 491 start, end, page_ops, NULL); 492 } 493 494 static int insert_failrec(struct btrfs_inode *inode, 495 struct io_failure_record *failrec) 496 { 497 struct rb_node *exist; 498 499 spin_lock(&inode->io_failure_lock); 500 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr, 501 &failrec->rb_node); 502 spin_unlock(&inode->io_failure_lock); 503 504 return (exist == NULL) ? 0 : -EEXIST; 505 } 506 507 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start) 508 { 509 struct rb_node *node; 510 struct io_failure_record *failrec = ERR_PTR(-ENOENT); 511 512 spin_lock(&inode->io_failure_lock); 513 node = rb_simple_search(&inode->io_failure_tree, start); 514 if (node) 515 failrec = rb_entry(node, struct io_failure_record, rb_node); 516 spin_unlock(&inode->io_failure_lock); 517 return failrec; 518 } 519 520 static void free_io_failure(struct btrfs_inode *inode, 521 struct io_failure_record *rec) 522 { 523 spin_lock(&inode->io_failure_lock); 524 rb_erase(&rec->rb_node, &inode->io_failure_tree); 525 spin_unlock(&inode->io_failure_lock); 526 527 kfree(rec); 528 } 529 530 /* 531 * this bypasses the standard btrfs submit functions deliberately, as 532 * the standard behavior is to write all copies in a raid setup. here we only 533 * want to write the one bad copy. so we do the mapping for ourselves and issue 534 * submit_bio directly. 535 * to avoid any synchronization issues, wait for the data after writing, which 536 * actually prevents the read that triggered the error from finishing. 537 * currently, there can be no more than two copies of every data bit. thus, 538 * exactly one rewrite is required. 539 */ 540 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 541 u64 length, u64 logical, struct page *page, 542 unsigned int pg_offset, int mirror_num) 543 { 544 struct btrfs_device *dev; 545 struct bio_vec bvec; 546 struct bio bio; 547 u64 map_length = 0; 548 u64 sector; 549 struct btrfs_io_context *bioc = NULL; 550 int ret = 0; 551 552 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 553 BUG_ON(!mirror_num); 554 555 if (btrfs_repair_one_zone(fs_info, logical)) 556 return 0; 557 558 map_length = length; 559 560 /* 561 * Avoid races with device replace and make sure our bioc has devices 562 * associated to its stripes that don't go away while we are doing the 563 * read repair operation. 564 */ 565 btrfs_bio_counter_inc_blocked(fs_info); 566 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 567 /* 568 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 569 * to update all raid stripes, but here we just want to correct 570 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 571 * stripe's dev and sector. 572 */ 573 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 574 &map_length, &bioc, 0); 575 if (ret) 576 goto out_counter_dec; 577 ASSERT(bioc->mirror_num == 1); 578 } else { 579 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 580 &map_length, &bioc, mirror_num); 581 if (ret) 582 goto out_counter_dec; 583 BUG_ON(mirror_num != bioc->mirror_num); 584 } 585 586 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 587 dev = bioc->stripes[bioc->mirror_num - 1].dev; 588 btrfs_put_bioc(bioc); 589 590 if (!dev || !dev->bdev || 591 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 592 ret = -EIO; 593 goto out_counter_dec; 594 } 595 596 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 597 bio.bi_iter.bi_sector = sector; 598 __bio_add_page(&bio, page, length, pg_offset); 599 600 btrfsic_check_bio(&bio); 601 ret = submit_bio_wait(&bio); 602 if (ret) { 603 /* try to remap that extent elsewhere? */ 604 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 605 goto out_bio_uninit; 606 } 607 608 btrfs_info_rl_in_rcu(fs_info, 609 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 610 ino, start, 611 rcu_str_deref(dev->name), sector); 612 ret = 0; 613 614 out_bio_uninit: 615 bio_uninit(&bio); 616 out_counter_dec: 617 btrfs_bio_counter_dec(fs_info); 618 return ret; 619 } 620 621 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 622 { 623 struct btrfs_fs_info *fs_info = eb->fs_info; 624 u64 start = eb->start; 625 int i, num_pages = num_extent_pages(eb); 626 int ret = 0; 627 628 if (sb_rdonly(fs_info->sb)) 629 return -EROFS; 630 631 for (i = 0; i < num_pages; i++) { 632 struct page *p = eb->pages[i]; 633 634 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 635 start - page_offset(p), mirror_num); 636 if (ret) 637 break; 638 start += PAGE_SIZE; 639 } 640 641 return ret; 642 } 643 644 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror) 645 { 646 if (cur_mirror == failrec->num_copies) 647 return cur_mirror + 1 - failrec->num_copies; 648 return cur_mirror + 1; 649 } 650 651 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror) 652 { 653 if (cur_mirror == 1) 654 return failrec->num_copies; 655 return cur_mirror - 1; 656 } 657 658 /* 659 * each time an IO finishes, we do a fast check in the IO failure tree 660 * to see if we need to process or clean up an io_failure_record 661 */ 662 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start, 663 struct page *page, unsigned int pg_offset) 664 { 665 struct btrfs_fs_info *fs_info = inode->root->fs_info; 666 struct extent_io_tree *io_tree = &inode->io_tree; 667 u64 ino = btrfs_ino(inode); 668 u64 locked_start, locked_end; 669 struct io_failure_record *failrec; 670 int mirror; 671 int ret; 672 673 failrec = get_failrec(inode, start); 674 if (IS_ERR(failrec)) 675 return 0; 676 677 BUG_ON(!failrec->this_mirror); 678 679 if (sb_rdonly(fs_info->sb)) 680 goto out; 681 682 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start, 683 &locked_end, EXTENT_LOCKED, NULL); 684 if (ret || locked_start > failrec->bytenr || 685 locked_end < failrec->bytenr + failrec->len - 1) 686 goto out; 687 688 mirror = failrec->this_mirror; 689 do { 690 mirror = prev_mirror(failrec, mirror); 691 repair_io_failure(fs_info, ino, start, failrec->len, 692 failrec->logical, page, pg_offset, mirror); 693 } while (mirror != failrec->failed_mirror); 694 695 out: 696 free_io_failure(inode, failrec); 697 return 0; 698 } 699 700 /* 701 * Can be called when 702 * - hold extent lock 703 * - under ordered extent 704 * - the inode is freeing 705 */ 706 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 707 { 708 struct io_failure_record *failrec; 709 struct rb_node *node, *next; 710 711 if (RB_EMPTY_ROOT(&inode->io_failure_tree)) 712 return; 713 714 spin_lock(&inode->io_failure_lock); 715 node = rb_simple_search_first(&inode->io_failure_tree, start); 716 while (node) { 717 failrec = rb_entry(node, struct io_failure_record, rb_node); 718 if (failrec->bytenr > end) 719 break; 720 721 next = rb_next(node); 722 rb_erase(&failrec->rb_node, &inode->io_failure_tree); 723 kfree(failrec); 724 725 node = next; 726 } 727 spin_unlock(&inode->io_failure_lock); 728 } 729 730 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 731 struct btrfs_bio *bbio, 732 unsigned int bio_offset) 733 { 734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 735 u64 start = bbio->file_offset + bio_offset; 736 struct io_failure_record *failrec; 737 const u32 sectorsize = fs_info->sectorsize; 738 int ret; 739 740 failrec = get_failrec(BTRFS_I(inode), start); 741 if (!IS_ERR(failrec)) { 742 btrfs_debug(fs_info, 743 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 744 failrec->logical, failrec->bytenr, failrec->len); 745 /* 746 * when data can be on disk more than twice, add to failrec here 747 * (e.g. with a list for failed_mirror) to make 748 * clean_io_failure() clean all those errors at once. 749 */ 750 ASSERT(failrec->this_mirror == bbio->mirror_num); 751 ASSERT(failrec->len == fs_info->sectorsize); 752 return failrec; 753 } 754 755 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 756 if (!failrec) 757 return ERR_PTR(-ENOMEM); 758 759 RB_CLEAR_NODE(&failrec->rb_node); 760 failrec->bytenr = start; 761 failrec->len = sectorsize; 762 failrec->failed_mirror = bbio->mirror_num; 763 failrec->this_mirror = bbio->mirror_num; 764 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset; 765 766 btrfs_debug(fs_info, 767 "new io failure record logical %llu start %llu", 768 failrec->logical, start); 769 770 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize); 771 if (failrec->num_copies == 1) { 772 /* 773 * We only have a single copy of the data, so don't bother with 774 * all the retry and error correction code that follows. No 775 * matter what the error is, it is very likely to persist. 776 */ 777 btrfs_debug(fs_info, 778 "cannot repair logical %llu num_copies %d", 779 failrec->logical, failrec->num_copies); 780 kfree(failrec); 781 return ERR_PTR(-EIO); 782 } 783 784 /* Set the bits in the private failure tree */ 785 ret = insert_failrec(BTRFS_I(inode), failrec); 786 if (ret) { 787 kfree(failrec); 788 return ERR_PTR(ret); 789 } 790 791 return failrec; 792 } 793 794 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio, 795 u32 bio_offset, struct page *page, unsigned int pgoff, 796 submit_bio_hook_t *submit_bio_hook) 797 { 798 u64 start = failed_bbio->file_offset + bio_offset; 799 struct io_failure_record *failrec; 800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 801 struct bio *failed_bio = &failed_bbio->bio; 802 const int icsum = bio_offset >> fs_info->sectorsize_bits; 803 struct bio *repair_bio; 804 struct btrfs_bio *repair_bbio; 805 806 btrfs_debug(fs_info, 807 "repair read error: read error at %llu", start); 808 809 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 810 811 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset); 812 if (IS_ERR(failrec)) 813 return PTR_ERR(failrec); 814 815 /* 816 * There are two premises: 817 * a) deliver good data to the caller 818 * b) correct the bad sectors on disk 819 * 820 * Since we're only doing repair for one sector, we only need to get 821 * a good copy of the failed sector and if we succeed, we have setup 822 * everything for repair_io_failure to do the rest for us. 823 */ 824 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror); 825 if (failrec->this_mirror == failrec->failed_mirror) { 826 btrfs_debug(fs_info, 827 "failed to repair num_copies %d this_mirror %d failed_mirror %d", 828 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror); 829 free_io_failure(BTRFS_I(inode), failrec); 830 return -EIO; 831 } 832 833 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io, 834 failed_bbio->private); 835 repair_bbio = btrfs_bio(repair_bio); 836 repair_bbio->file_offset = start; 837 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 838 839 if (failed_bbio->csum) { 840 const u32 csum_size = fs_info->csum_size; 841 842 repair_bbio->csum = repair_bbio->csum_inline; 843 memcpy(repair_bbio->csum, 844 failed_bbio->csum + csum_size * icsum, csum_size); 845 } 846 847 bio_add_page(repair_bio, page, failrec->len, pgoff); 848 repair_bbio->iter = repair_bio->bi_iter; 849 850 btrfs_debug(btrfs_sb(inode->i_sb), 851 "repair read error: submitting new read to mirror %d", 852 failrec->this_mirror); 853 854 /* 855 * At this point we have a bio, so any errors from submit_bio_hook() 856 * will be handled by the endio on the repair_bio, so we can't return an 857 * error here. 858 */ 859 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0); 860 return BLK_STS_OK; 861 } 862 863 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 864 { 865 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 866 867 ASSERT(page_offset(page) <= start && 868 start + len <= page_offset(page) + PAGE_SIZE); 869 870 if (uptodate) { 871 if (fsverity_active(page->mapping->host) && 872 !PageError(page) && 873 !PageUptodate(page) && 874 start < i_size_read(page->mapping->host) && 875 !fsverity_verify_page(page)) { 876 btrfs_page_set_error(fs_info, page, start, len); 877 } else { 878 btrfs_page_set_uptodate(fs_info, page, start, len); 879 } 880 } else { 881 btrfs_page_clear_uptodate(fs_info, page, start, len); 882 btrfs_page_set_error(fs_info, page, start, len); 883 } 884 885 if (!btrfs_is_subpage(fs_info, page)) 886 unlock_page(page); 887 else 888 btrfs_subpage_end_reader(fs_info, page, start, len); 889 } 890 891 static void end_sector_io(struct page *page, u64 offset, bool uptodate) 892 { 893 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 894 const u32 sectorsize = inode->root->fs_info->sectorsize; 895 struct extent_state *cached = NULL; 896 897 end_page_read(page, uptodate, offset, sectorsize); 898 if (uptodate) 899 set_extent_uptodate(&inode->io_tree, offset, 900 offset + sectorsize - 1, &cached, GFP_ATOMIC); 901 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1, 902 &cached); 903 } 904 905 static void submit_data_read_repair(struct inode *inode, 906 struct btrfs_bio *failed_bbio, 907 u32 bio_offset, const struct bio_vec *bvec, 908 unsigned int error_bitmap) 909 { 910 const unsigned int pgoff = bvec->bv_offset; 911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 912 struct page *page = bvec->bv_page; 913 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset; 914 const u64 end = start + bvec->bv_len - 1; 915 const u32 sectorsize = fs_info->sectorsize; 916 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 917 int i; 918 919 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE); 920 921 /* This repair is only for data */ 922 ASSERT(is_data_inode(inode)); 923 924 /* We're here because we had some read errors or csum mismatch */ 925 ASSERT(error_bitmap); 926 927 /* 928 * We only get called on buffered IO, thus page must be mapped and bio 929 * must not be cloned. 930 */ 931 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED)); 932 933 /* Iterate through all the sectors in the range */ 934 for (i = 0; i < nr_bits; i++) { 935 const unsigned int offset = i * sectorsize; 936 bool uptodate = false; 937 int ret; 938 939 if (!(error_bitmap & (1U << i))) { 940 /* 941 * This sector has no error, just end the page read 942 * and unlock the range. 943 */ 944 uptodate = true; 945 goto next; 946 } 947 948 ret = btrfs_repair_one_sector(inode, failed_bbio, 949 bio_offset + offset, page, pgoff + offset, 950 btrfs_submit_data_read_bio); 951 if (!ret) { 952 /* 953 * We have submitted the read repair, the page release 954 * will be handled by the endio function of the 955 * submitted repair bio. 956 * Thus we don't need to do any thing here. 957 */ 958 continue; 959 } 960 /* 961 * Continue on failed repair, otherwise the remaining sectors 962 * will not be properly unlocked. 963 */ 964 next: 965 end_sector_io(page, start + offset, uptodate); 966 } 967 } 968 969 /* lots and lots of room for performance fixes in the end_bio funcs */ 970 971 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 972 { 973 struct btrfs_inode *inode; 974 const bool uptodate = (err == 0); 975 int ret = 0; 976 977 ASSERT(page && page->mapping); 978 inode = BTRFS_I(page->mapping->host); 979 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 980 981 if (!uptodate) { 982 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 983 u32 len; 984 985 ASSERT(end + 1 - start <= U32_MAX); 986 len = end + 1 - start; 987 988 btrfs_page_clear_uptodate(fs_info, page, start, len); 989 btrfs_page_set_error(fs_info, page, start, len); 990 ret = err < 0 ? err : -EIO; 991 mapping_set_error(page->mapping, ret); 992 } 993 } 994 995 /* 996 * after a writepage IO is done, we need to: 997 * clear the uptodate bits on error 998 * clear the writeback bits in the extent tree for this IO 999 * end_page_writeback if the page has no more pending IO 1000 * 1001 * Scheduling is not allowed, so the extent state tree is expected 1002 * to have one and only one object corresponding to this IO. 1003 */ 1004 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 1005 { 1006 struct bio *bio = &bbio->bio; 1007 int error = blk_status_to_errno(bio->bi_status); 1008 struct bio_vec *bvec; 1009 u64 start; 1010 u64 end; 1011 struct bvec_iter_all iter_all; 1012 bool first_bvec = true; 1013 1014 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1015 bio_for_each_segment_all(bvec, bio, iter_all) { 1016 struct page *page = bvec->bv_page; 1017 struct inode *inode = page->mapping->host; 1018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1019 const u32 sectorsize = fs_info->sectorsize; 1020 1021 /* Our read/write should always be sector aligned. */ 1022 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1023 btrfs_err(fs_info, 1024 "partial page write in btrfs with offset %u and length %u", 1025 bvec->bv_offset, bvec->bv_len); 1026 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 1027 btrfs_info(fs_info, 1028 "incomplete page write with offset %u and length %u", 1029 bvec->bv_offset, bvec->bv_len); 1030 1031 start = page_offset(page) + bvec->bv_offset; 1032 end = start + bvec->bv_len - 1; 1033 1034 if (first_bvec) { 1035 btrfs_record_physical_zoned(inode, start, bio); 1036 first_bvec = false; 1037 } 1038 1039 end_extent_writepage(page, error, start, end); 1040 1041 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 1042 } 1043 1044 bio_put(bio); 1045 } 1046 1047 /* 1048 * Record previously processed extent range 1049 * 1050 * For endio_readpage_release_extent() to handle a full extent range, reducing 1051 * the extent io operations. 1052 */ 1053 struct processed_extent { 1054 struct btrfs_inode *inode; 1055 /* Start of the range in @inode */ 1056 u64 start; 1057 /* End of the range in @inode */ 1058 u64 end; 1059 bool uptodate; 1060 }; 1061 1062 /* 1063 * Try to release processed extent range 1064 * 1065 * May not release the extent range right now if the current range is 1066 * contiguous to processed extent. 1067 * 1068 * Will release processed extent when any of @inode, @uptodate, the range is 1069 * no longer contiguous to the processed range. 1070 * 1071 * Passing @inode == NULL will force processed extent to be released. 1072 */ 1073 static void endio_readpage_release_extent(struct processed_extent *processed, 1074 struct btrfs_inode *inode, u64 start, u64 end, 1075 bool uptodate) 1076 { 1077 struct extent_state *cached = NULL; 1078 struct extent_io_tree *tree; 1079 1080 /* The first extent, initialize @processed */ 1081 if (!processed->inode) 1082 goto update; 1083 1084 /* 1085 * Contiguous to processed extent, just uptodate the end. 1086 * 1087 * Several things to notice: 1088 * 1089 * - bio can be merged as long as on-disk bytenr is contiguous 1090 * This means we can have page belonging to other inodes, thus need to 1091 * check if the inode still matches. 1092 * - bvec can contain range beyond current page for multi-page bvec 1093 * Thus we need to do processed->end + 1 >= start check 1094 */ 1095 if (processed->inode == inode && processed->uptodate == uptodate && 1096 processed->end + 1 >= start && end >= processed->end) { 1097 processed->end = end; 1098 return; 1099 } 1100 1101 tree = &processed->inode->io_tree; 1102 /* 1103 * Now we don't have range contiguous to the processed range, release 1104 * the processed range now. 1105 */ 1106 unlock_extent_atomic(tree, processed->start, processed->end, &cached); 1107 1108 update: 1109 /* Update processed to current range */ 1110 processed->inode = inode; 1111 processed->start = start; 1112 processed->end = end; 1113 processed->uptodate = uptodate; 1114 } 1115 1116 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 1117 { 1118 ASSERT(PageLocked(page)); 1119 if (!btrfs_is_subpage(fs_info, page)) 1120 return; 1121 1122 ASSERT(PagePrivate(page)); 1123 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 1124 } 1125 1126 /* 1127 * Find extent buffer for a givne bytenr. 1128 * 1129 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 1130 * in endio context. 1131 */ 1132 static struct extent_buffer *find_extent_buffer_readpage( 1133 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 1134 { 1135 struct extent_buffer *eb; 1136 1137 /* 1138 * For regular sectorsize, we can use page->private to grab extent 1139 * buffer 1140 */ 1141 if (fs_info->nodesize >= PAGE_SIZE) { 1142 ASSERT(PagePrivate(page) && page->private); 1143 return (struct extent_buffer *)page->private; 1144 } 1145 1146 /* For subpage case, we need to lookup buffer radix tree */ 1147 rcu_read_lock(); 1148 eb = radix_tree_lookup(&fs_info->buffer_radix, 1149 bytenr >> fs_info->sectorsize_bits); 1150 rcu_read_unlock(); 1151 ASSERT(eb); 1152 return eb; 1153 } 1154 1155 /* 1156 * after a readpage IO is done, we need to: 1157 * clear the uptodate bits on error 1158 * set the uptodate bits if things worked 1159 * set the page up to date if all extents in the tree are uptodate 1160 * clear the lock bit in the extent tree 1161 * unlock the page if there are no other extents locked for it 1162 * 1163 * Scheduling is not allowed, so the extent state tree is expected 1164 * to have one and only one object corresponding to this IO. 1165 */ 1166 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 1167 { 1168 struct bio *bio = &bbio->bio; 1169 struct bio_vec *bvec; 1170 struct processed_extent processed = { 0 }; 1171 /* 1172 * The offset to the beginning of a bio, since one bio can never be 1173 * larger than UINT_MAX, u32 here is enough. 1174 */ 1175 u32 bio_offset = 0; 1176 int mirror; 1177 struct bvec_iter_all iter_all; 1178 1179 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1180 bio_for_each_segment_all(bvec, bio, iter_all) { 1181 bool uptodate = !bio->bi_status; 1182 struct page *page = bvec->bv_page; 1183 struct inode *inode = page->mapping->host; 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1185 const u32 sectorsize = fs_info->sectorsize; 1186 unsigned int error_bitmap = (unsigned int)-1; 1187 bool repair = false; 1188 u64 start; 1189 u64 end; 1190 u32 len; 1191 1192 btrfs_debug(fs_info, 1193 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 1194 bio->bi_iter.bi_sector, bio->bi_status, 1195 bbio->mirror_num); 1196 1197 /* 1198 * We always issue full-sector reads, but if some block in a 1199 * page fails to read, blk_update_request() will advance 1200 * bv_offset and adjust bv_len to compensate. Print a warning 1201 * for unaligned offsets, and an error if they don't add up to 1202 * a full sector. 1203 */ 1204 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 1205 btrfs_err(fs_info, 1206 "partial page read in btrfs with offset %u and length %u", 1207 bvec->bv_offset, bvec->bv_len); 1208 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 1209 sectorsize)) 1210 btrfs_info(fs_info, 1211 "incomplete page read with offset %u and length %u", 1212 bvec->bv_offset, bvec->bv_len); 1213 1214 start = page_offset(page) + bvec->bv_offset; 1215 end = start + bvec->bv_len - 1; 1216 len = bvec->bv_len; 1217 1218 mirror = bbio->mirror_num; 1219 if (likely(uptodate)) { 1220 if (is_data_inode(inode)) { 1221 error_bitmap = btrfs_verify_data_csum(bbio, 1222 bio_offset, page, start, end); 1223 if (error_bitmap) 1224 uptodate = false; 1225 } else { 1226 if (btrfs_validate_metadata_buffer(bbio, 1227 page, start, end, mirror)) 1228 uptodate = false; 1229 } 1230 } 1231 1232 if (likely(uptodate)) { 1233 loff_t i_size = i_size_read(inode); 1234 pgoff_t end_index = i_size >> PAGE_SHIFT; 1235 1236 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0); 1237 1238 /* 1239 * Zero out the remaining part if this range straddles 1240 * i_size. 1241 * 1242 * Here we should only zero the range inside the bvec, 1243 * not touch anything else. 1244 * 1245 * NOTE: i_size is exclusive while end is inclusive. 1246 */ 1247 if (page->index == end_index && i_size <= end) { 1248 u32 zero_start = max(offset_in_page(i_size), 1249 offset_in_page(start)); 1250 1251 zero_user_segment(page, zero_start, 1252 offset_in_page(end) + 1); 1253 } 1254 } else if (is_data_inode(inode)) { 1255 /* 1256 * Only try to repair bios that actually made it to a 1257 * device. If the bio failed to be submitted mirror 1258 * is 0 and we need to fail it without retrying. 1259 * 1260 * This also includes the high level bios for compressed 1261 * extents - these never make it to a device and repair 1262 * is already handled on the lower compressed bio. 1263 */ 1264 if (mirror > 0) 1265 repair = true; 1266 } else { 1267 struct extent_buffer *eb; 1268 1269 eb = find_extent_buffer_readpage(fs_info, page, start); 1270 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 1271 eb->read_mirror = mirror; 1272 atomic_dec(&eb->io_pages); 1273 } 1274 1275 if (repair) { 1276 /* 1277 * submit_data_read_repair() will handle all the good 1278 * and bad sectors, we just continue to the next bvec. 1279 */ 1280 submit_data_read_repair(inode, bbio, bio_offset, bvec, 1281 error_bitmap); 1282 } else { 1283 /* Update page status and unlock */ 1284 end_page_read(page, uptodate, start, len); 1285 endio_readpage_release_extent(&processed, BTRFS_I(inode), 1286 start, end, PageUptodate(page)); 1287 } 1288 1289 ASSERT(bio_offset + len > bio_offset); 1290 bio_offset += len; 1291 1292 } 1293 /* Release the last extent */ 1294 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 1295 btrfs_bio_free_csum(bbio); 1296 bio_put(bio); 1297 } 1298 1299 /** 1300 * Populate every free slot in a provided array with pages. 1301 * 1302 * @nr_pages: number of pages to allocate 1303 * @page_array: the array to fill with pages; any existing non-null entries in 1304 * the array will be skipped 1305 * 1306 * Return: 0 if all pages were able to be allocated; 1307 * -ENOMEM otherwise, and the caller is responsible for freeing all 1308 * non-null page pointers in the array. 1309 */ 1310 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 1311 { 1312 unsigned int allocated; 1313 1314 for (allocated = 0; allocated < nr_pages;) { 1315 unsigned int last = allocated; 1316 1317 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 1318 1319 if (allocated == nr_pages) 1320 return 0; 1321 1322 /* 1323 * During this iteration, no page could be allocated, even 1324 * though alloc_pages_bulk_array() falls back to alloc_page() 1325 * if it could not bulk-allocate. So we must be out of memory. 1326 */ 1327 if (allocated == last) 1328 return -ENOMEM; 1329 1330 memalloc_retry_wait(GFP_NOFS); 1331 } 1332 return 0; 1333 } 1334 1335 /** 1336 * Attempt to add a page to bio 1337 * 1338 * @bio_ctrl: record both the bio, and its bio_flags 1339 * @page: page to add to the bio 1340 * @disk_bytenr: offset of the new bio or to check whether we are adding 1341 * a contiguous page to the previous one 1342 * @size: portion of page that we want to write 1343 * @pg_offset: starting offset in the page 1344 * @compress_type: compression type of the current bio to see if we can merge them 1345 * 1346 * Attempt to add a page to bio considering stripe alignment etc. 1347 * 1348 * Return >= 0 for the number of bytes added to the bio. 1349 * Can return 0 if the current bio is already at stripe/zone boundary. 1350 * Return <0 for error. 1351 */ 1352 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 1353 struct page *page, 1354 u64 disk_bytenr, unsigned int size, 1355 unsigned int pg_offset, 1356 enum btrfs_compression_type compress_type) 1357 { 1358 struct bio *bio = bio_ctrl->bio; 1359 u32 bio_size = bio->bi_iter.bi_size; 1360 u32 real_size; 1361 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 1362 bool contig = false; 1363 int ret; 1364 1365 ASSERT(bio); 1366 /* The limit should be calculated when bio_ctrl->bio is allocated */ 1367 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 1368 if (bio_ctrl->compress_type != compress_type) 1369 return 0; 1370 1371 1372 if (bio->bi_iter.bi_size == 0) { 1373 /* We can always add a page into an empty bio. */ 1374 contig = true; 1375 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 1376 struct bio_vec *bvec = bio_last_bvec_all(bio); 1377 1378 /* 1379 * The contig check requires the following conditions to be met: 1380 * 1) The pages are belonging to the same inode 1381 * This is implied by the call chain. 1382 * 1383 * 2) The range has adjacent logical bytenr 1384 * 1385 * 3) The range has adjacent file offset 1386 * This is required for the usage of btrfs_bio->file_offset. 1387 */ 1388 if (bio_end_sector(bio) == sector && 1389 page_offset(bvec->bv_page) + bvec->bv_offset + 1390 bvec->bv_len == page_offset(page) + pg_offset) 1391 contig = true; 1392 } else { 1393 /* 1394 * For compression, all IO should have its logical bytenr 1395 * set to the starting bytenr of the compressed extent. 1396 */ 1397 contig = bio->bi_iter.bi_sector == sector; 1398 } 1399 1400 if (!contig) 1401 return 0; 1402 1403 real_size = min(bio_ctrl->len_to_oe_boundary, 1404 bio_ctrl->len_to_stripe_boundary) - bio_size; 1405 real_size = min(real_size, size); 1406 1407 /* 1408 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 1409 * bio will still execute its endio function on the page! 1410 */ 1411 if (real_size == 0) 1412 return 0; 1413 1414 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 1415 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 1416 else 1417 ret = bio_add_page(bio, page, real_size, pg_offset); 1418 1419 return ret; 1420 } 1421 1422 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 1423 struct btrfs_inode *inode, u64 file_offset) 1424 { 1425 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1426 struct btrfs_io_geometry geom; 1427 struct btrfs_ordered_extent *ordered; 1428 struct extent_map *em; 1429 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 1430 int ret; 1431 1432 /* 1433 * Pages for compressed extent are never submitted to disk directly, 1434 * thus it has no real boundary, just set them to U32_MAX. 1435 * 1436 * The split happens for real compressed bio, which happens in 1437 * btrfs_submit_compressed_read/write(). 1438 */ 1439 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 1440 bio_ctrl->len_to_oe_boundary = U32_MAX; 1441 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1442 return 0; 1443 } 1444 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 1445 if (IS_ERR(em)) 1446 return PTR_ERR(em); 1447 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 1448 logical, &geom); 1449 free_extent_map(em); 1450 if (ret < 0) { 1451 return ret; 1452 } 1453 if (geom.len > U32_MAX) 1454 bio_ctrl->len_to_stripe_boundary = U32_MAX; 1455 else 1456 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 1457 1458 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 1459 bio_ctrl->len_to_oe_boundary = U32_MAX; 1460 return 0; 1461 } 1462 1463 /* Ordered extent not yet created, so we're good */ 1464 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 1465 if (!ordered) { 1466 bio_ctrl->len_to_oe_boundary = U32_MAX; 1467 return 0; 1468 } 1469 1470 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 1471 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 1472 btrfs_put_ordered_extent(ordered); 1473 return 0; 1474 } 1475 1476 static int alloc_new_bio(struct btrfs_inode *inode, 1477 struct btrfs_bio_ctrl *bio_ctrl, 1478 struct writeback_control *wbc, 1479 blk_opf_t opf, 1480 u64 disk_bytenr, u32 offset, u64 file_offset, 1481 enum btrfs_compression_type compress_type) 1482 { 1483 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1484 struct bio *bio; 1485 int ret; 1486 1487 ASSERT(bio_ctrl->end_io_func); 1488 1489 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL); 1490 /* 1491 * For compressed page range, its disk_bytenr is always @disk_bytenr 1492 * passed in, no matter if we have added any range into previous bio. 1493 */ 1494 if (compress_type != BTRFS_COMPRESS_NONE) 1495 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 1496 else 1497 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 1498 bio_ctrl->bio = bio; 1499 bio_ctrl->compress_type = compress_type; 1500 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 1501 if (ret < 0) 1502 goto error; 1503 1504 if (wbc) { 1505 /* 1506 * For Zone append we need the correct block_device that we are 1507 * going to write to set in the bio to be able to respect the 1508 * hardware limitation. Look it up here: 1509 */ 1510 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 1511 struct btrfs_device *dev; 1512 1513 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 1514 fs_info->sectorsize); 1515 if (IS_ERR(dev)) { 1516 ret = PTR_ERR(dev); 1517 goto error; 1518 } 1519 1520 bio_set_dev(bio, dev->bdev); 1521 } else { 1522 /* 1523 * Otherwise pick the last added device to support 1524 * cgroup writeback. For multi-device file systems this 1525 * means blk-cgroup policies have to always be set on the 1526 * last added/replaced device. This is a bit odd but has 1527 * been like that for a long time. 1528 */ 1529 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1530 } 1531 wbc_init_bio(wbc, bio); 1532 } else { 1533 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 1534 } 1535 return 0; 1536 error: 1537 bio_ctrl->bio = NULL; 1538 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 1539 return ret; 1540 } 1541 1542 /* 1543 * @opf: bio REQ_OP_* and REQ_* flags as one value 1544 * @wbc: optional writeback control for io accounting 1545 * @disk_bytenr: logical bytenr where the write will be 1546 * @page: page to add to the bio 1547 * @size: portion of page that we want to write to 1548 * @pg_offset: offset of the new bio or to check whether we are adding 1549 * a contiguous page to the previous one 1550 * @compress_type: compress type for current bio 1551 * 1552 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1553 * new one in @bio_ctrl->bio. 1554 * The mirror number for this IO should already be initizlied in 1555 * @bio_ctrl->mirror_num. 1556 */ 1557 static int submit_extent_page(blk_opf_t opf, 1558 struct writeback_control *wbc, 1559 struct btrfs_bio_ctrl *bio_ctrl, 1560 u64 disk_bytenr, struct page *page, 1561 size_t size, unsigned long pg_offset, 1562 enum btrfs_compression_type compress_type, 1563 bool force_bio_submit) 1564 { 1565 int ret = 0; 1566 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1567 unsigned int cur = pg_offset; 1568 1569 ASSERT(bio_ctrl); 1570 1571 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1572 pg_offset + size <= PAGE_SIZE); 1573 1574 ASSERT(bio_ctrl->end_io_func); 1575 1576 if (force_bio_submit) 1577 submit_one_bio(bio_ctrl); 1578 1579 while (cur < pg_offset + size) { 1580 u32 offset = cur - pg_offset; 1581 int added; 1582 1583 /* Allocate new bio if needed */ 1584 if (!bio_ctrl->bio) { 1585 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 1586 disk_bytenr, offset, 1587 page_offset(page) + cur, 1588 compress_type); 1589 if (ret < 0) 1590 return ret; 1591 } 1592 /* 1593 * We must go through btrfs_bio_add_page() to ensure each 1594 * page range won't cross various boundaries. 1595 */ 1596 if (compress_type != BTRFS_COMPRESS_NONE) 1597 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1598 size - offset, pg_offset + offset, 1599 compress_type); 1600 else 1601 added = btrfs_bio_add_page(bio_ctrl, page, 1602 disk_bytenr + offset, size - offset, 1603 pg_offset + offset, compress_type); 1604 1605 /* Metadata page range should never be split */ 1606 if (!is_data_inode(&inode->vfs_inode)) 1607 ASSERT(added == 0 || added == size - offset); 1608 1609 /* At least we added some page, update the account */ 1610 if (wbc && added) 1611 wbc_account_cgroup_owner(wbc, page, added); 1612 1613 /* We have reached boundary, submit right now */ 1614 if (added < size - offset) { 1615 /* The bio should contain some page(s) */ 1616 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1617 submit_one_bio(bio_ctrl); 1618 } 1619 cur += added; 1620 } 1621 return 0; 1622 } 1623 1624 static int attach_extent_buffer_page(struct extent_buffer *eb, 1625 struct page *page, 1626 struct btrfs_subpage *prealloc) 1627 { 1628 struct btrfs_fs_info *fs_info = eb->fs_info; 1629 int ret = 0; 1630 1631 /* 1632 * If the page is mapped to btree inode, we should hold the private 1633 * lock to prevent race. 1634 * For cloned or dummy extent buffers, their pages are not mapped and 1635 * will not race with any other ebs. 1636 */ 1637 if (page->mapping) 1638 lockdep_assert_held(&page->mapping->private_lock); 1639 1640 if (fs_info->nodesize >= PAGE_SIZE) { 1641 if (!PagePrivate(page)) 1642 attach_page_private(page, eb); 1643 else 1644 WARN_ON(page->private != (unsigned long)eb); 1645 return 0; 1646 } 1647 1648 /* Already mapped, just free prealloc */ 1649 if (PagePrivate(page)) { 1650 btrfs_free_subpage(prealloc); 1651 return 0; 1652 } 1653 1654 if (prealloc) 1655 /* Has preallocated memory for subpage */ 1656 attach_page_private(page, prealloc); 1657 else 1658 /* Do new allocation to attach subpage */ 1659 ret = btrfs_attach_subpage(fs_info, page, 1660 BTRFS_SUBPAGE_METADATA); 1661 return ret; 1662 } 1663 1664 int set_page_extent_mapped(struct page *page) 1665 { 1666 struct btrfs_fs_info *fs_info; 1667 1668 ASSERT(page->mapping); 1669 1670 if (PagePrivate(page)) 1671 return 0; 1672 1673 fs_info = btrfs_sb(page->mapping->host->i_sb); 1674 1675 if (btrfs_is_subpage(fs_info, page)) 1676 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1677 1678 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1679 return 0; 1680 } 1681 1682 void clear_page_extent_mapped(struct page *page) 1683 { 1684 struct btrfs_fs_info *fs_info; 1685 1686 ASSERT(page->mapping); 1687 1688 if (!PagePrivate(page)) 1689 return; 1690 1691 fs_info = btrfs_sb(page->mapping->host->i_sb); 1692 if (btrfs_is_subpage(fs_info, page)) 1693 return btrfs_detach_subpage(fs_info, page); 1694 1695 detach_page_private(page); 1696 } 1697 1698 static struct extent_map * 1699 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1700 u64 start, u64 len, struct extent_map **em_cached) 1701 { 1702 struct extent_map *em; 1703 1704 if (em_cached && *em_cached) { 1705 em = *em_cached; 1706 if (extent_map_in_tree(em) && start >= em->start && 1707 start < extent_map_end(em)) { 1708 refcount_inc(&em->refs); 1709 return em; 1710 } 1711 1712 free_extent_map(em); 1713 *em_cached = NULL; 1714 } 1715 1716 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1717 if (em_cached && !IS_ERR(em)) { 1718 BUG_ON(*em_cached); 1719 refcount_inc(&em->refs); 1720 *em_cached = em; 1721 } 1722 return em; 1723 } 1724 /* 1725 * basic readpage implementation. Locked extent state structs are inserted 1726 * into the tree that are removed when the IO is done (by the end_io 1727 * handlers) 1728 * XXX JDM: This needs looking at to ensure proper page locking 1729 * return 0 on success, otherwise return error 1730 */ 1731 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1732 struct btrfs_bio_ctrl *bio_ctrl, 1733 blk_opf_t read_flags, u64 *prev_em_start) 1734 { 1735 struct inode *inode = page->mapping->host; 1736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1737 u64 start = page_offset(page); 1738 const u64 end = start + PAGE_SIZE - 1; 1739 u64 cur = start; 1740 u64 extent_offset; 1741 u64 last_byte = i_size_read(inode); 1742 u64 block_start; 1743 struct extent_map *em; 1744 int ret = 0; 1745 size_t pg_offset = 0; 1746 size_t iosize; 1747 size_t blocksize = inode->i_sb->s_blocksize; 1748 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1749 1750 ret = set_page_extent_mapped(page); 1751 if (ret < 0) { 1752 unlock_extent(tree, start, end, NULL); 1753 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1754 unlock_page(page); 1755 goto out; 1756 } 1757 1758 if (page->index == last_byte >> PAGE_SHIFT) { 1759 size_t zero_offset = offset_in_page(last_byte); 1760 1761 if (zero_offset) { 1762 iosize = PAGE_SIZE - zero_offset; 1763 memzero_page(page, zero_offset, iosize); 1764 } 1765 } 1766 bio_ctrl->end_io_func = end_bio_extent_readpage; 1767 begin_page_read(fs_info, page); 1768 while (cur <= end) { 1769 unsigned long this_bio_flag = 0; 1770 bool force_bio_submit = false; 1771 u64 disk_bytenr; 1772 1773 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1774 if (cur >= last_byte) { 1775 struct extent_state *cached = NULL; 1776 1777 iosize = PAGE_SIZE - pg_offset; 1778 memzero_page(page, pg_offset, iosize); 1779 set_extent_uptodate(tree, cur, cur + iosize - 1, 1780 &cached, GFP_NOFS); 1781 unlock_extent(tree, cur, cur + iosize - 1, &cached); 1782 end_page_read(page, true, cur, iosize); 1783 break; 1784 } 1785 em = __get_extent_map(inode, page, pg_offset, cur, 1786 end - cur + 1, em_cached); 1787 if (IS_ERR(em)) { 1788 unlock_extent(tree, cur, end, NULL); 1789 end_page_read(page, false, cur, end + 1 - cur); 1790 ret = PTR_ERR(em); 1791 break; 1792 } 1793 extent_offset = cur - em->start; 1794 BUG_ON(extent_map_end(em) <= cur); 1795 BUG_ON(end < cur); 1796 1797 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1798 this_bio_flag = em->compress_type; 1799 1800 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1801 iosize = ALIGN(iosize, blocksize); 1802 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1803 disk_bytenr = em->block_start; 1804 else 1805 disk_bytenr = em->block_start + extent_offset; 1806 block_start = em->block_start; 1807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1808 block_start = EXTENT_MAP_HOLE; 1809 1810 /* 1811 * If we have a file range that points to a compressed extent 1812 * and it's followed by a consecutive file range that points 1813 * to the same compressed extent (possibly with a different 1814 * offset and/or length, so it either points to the whole extent 1815 * or only part of it), we must make sure we do not submit a 1816 * single bio to populate the pages for the 2 ranges because 1817 * this makes the compressed extent read zero out the pages 1818 * belonging to the 2nd range. Imagine the following scenario: 1819 * 1820 * File layout 1821 * [0 - 8K] [8K - 24K] 1822 * | | 1823 * | | 1824 * points to extent X, points to extent X, 1825 * offset 4K, length of 8K offset 0, length 16K 1826 * 1827 * [extent X, compressed length = 4K uncompressed length = 16K] 1828 * 1829 * If the bio to read the compressed extent covers both ranges, 1830 * it will decompress extent X into the pages belonging to the 1831 * first range and then it will stop, zeroing out the remaining 1832 * pages that belong to the other range that points to extent X. 1833 * So here we make sure we submit 2 bios, one for the first 1834 * range and another one for the third range. Both will target 1835 * the same physical extent from disk, but we can't currently 1836 * make the compressed bio endio callback populate the pages 1837 * for both ranges because each compressed bio is tightly 1838 * coupled with a single extent map, and each range can have 1839 * an extent map with a different offset value relative to the 1840 * uncompressed data of our extent and different lengths. This 1841 * is a corner case so we prioritize correctness over 1842 * non-optimal behavior (submitting 2 bios for the same extent). 1843 */ 1844 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1845 prev_em_start && *prev_em_start != (u64)-1 && 1846 *prev_em_start != em->start) 1847 force_bio_submit = true; 1848 1849 if (prev_em_start) 1850 *prev_em_start = em->start; 1851 1852 free_extent_map(em); 1853 em = NULL; 1854 1855 /* we've found a hole, just zero and go on */ 1856 if (block_start == EXTENT_MAP_HOLE) { 1857 struct extent_state *cached = NULL; 1858 1859 memzero_page(page, pg_offset, iosize); 1860 1861 set_extent_uptodate(tree, cur, cur + iosize - 1, 1862 &cached, GFP_NOFS); 1863 unlock_extent(tree, cur, cur + iosize - 1, &cached); 1864 end_page_read(page, true, cur, iosize); 1865 cur = cur + iosize; 1866 pg_offset += iosize; 1867 continue; 1868 } 1869 /* the get_extent function already copied into the page */ 1870 if (block_start == EXTENT_MAP_INLINE) { 1871 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1872 end_page_read(page, true, cur, iosize); 1873 cur = cur + iosize; 1874 pg_offset += iosize; 1875 continue; 1876 } 1877 1878 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1879 bio_ctrl, disk_bytenr, page, iosize, 1880 pg_offset, this_bio_flag, 1881 force_bio_submit); 1882 if (ret) { 1883 /* 1884 * We have to unlock the remaining range, or the page 1885 * will never be unlocked. 1886 */ 1887 unlock_extent(tree, cur, end, NULL); 1888 end_page_read(page, false, cur, end + 1 - cur); 1889 goto out; 1890 } 1891 cur = cur + iosize; 1892 pg_offset += iosize; 1893 } 1894 out: 1895 return ret; 1896 } 1897 1898 int btrfs_read_folio(struct file *file, struct folio *folio) 1899 { 1900 struct page *page = &folio->page; 1901 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1902 u64 start = page_offset(page); 1903 u64 end = start + PAGE_SIZE - 1; 1904 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1905 int ret; 1906 1907 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1908 1909 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1910 /* 1911 * If btrfs_do_readpage() failed we will want to submit the assembled 1912 * bio to do the cleanup. 1913 */ 1914 submit_one_bio(&bio_ctrl); 1915 return ret; 1916 } 1917 1918 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1919 u64 start, u64 end, 1920 struct extent_map **em_cached, 1921 struct btrfs_bio_ctrl *bio_ctrl, 1922 u64 *prev_em_start) 1923 { 1924 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1925 int index; 1926 1927 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1928 1929 for (index = 0; index < nr_pages; index++) { 1930 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1931 REQ_RAHEAD, prev_em_start); 1932 put_page(pages[index]); 1933 } 1934 } 1935 1936 /* 1937 * helper for __extent_writepage, doing all of the delayed allocation setup. 1938 * 1939 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1940 * to write the page (copy into inline extent). In this case the IO has 1941 * been started and the page is already unlocked. 1942 * 1943 * This returns 0 if all went well (page still locked) 1944 * This returns < 0 if there were errors (page still locked) 1945 */ 1946 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1947 struct page *page, struct writeback_control *wbc) 1948 { 1949 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1950 u64 delalloc_start = page_offset(page); 1951 u64 delalloc_to_write = 0; 1952 /* How many pages are started by btrfs_run_delalloc_range() */ 1953 unsigned long nr_written = 0; 1954 int ret; 1955 int page_started = 0; 1956 1957 while (delalloc_start < page_end) { 1958 u64 delalloc_end = page_end; 1959 bool found; 1960 1961 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1962 &delalloc_start, 1963 &delalloc_end); 1964 if (!found) { 1965 delalloc_start = delalloc_end + 1; 1966 continue; 1967 } 1968 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1969 delalloc_end, &page_started, &nr_written, wbc); 1970 if (ret) { 1971 btrfs_page_set_error(inode->root->fs_info, page, 1972 page_offset(page), PAGE_SIZE); 1973 return ret; 1974 } 1975 /* 1976 * delalloc_end is already one less than the total length, so 1977 * we don't subtract one from PAGE_SIZE 1978 */ 1979 delalloc_to_write += (delalloc_end - delalloc_start + 1980 PAGE_SIZE) >> PAGE_SHIFT; 1981 delalloc_start = delalloc_end + 1; 1982 } 1983 if (wbc->nr_to_write < delalloc_to_write) { 1984 int thresh = 8192; 1985 1986 if (delalloc_to_write < thresh * 2) 1987 thresh = delalloc_to_write; 1988 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1989 thresh); 1990 } 1991 1992 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1993 if (page_started) { 1994 /* 1995 * We've unlocked the page, so we can't update the mapping's 1996 * writeback index, just update nr_to_write. 1997 */ 1998 wbc->nr_to_write -= nr_written; 1999 return 1; 2000 } 2001 2002 return 0; 2003 } 2004 2005 /* 2006 * Find the first byte we need to write. 2007 * 2008 * For subpage, one page can contain several sectors, and 2009 * __extent_writepage_io() will just grab all extent maps in the page 2010 * range and try to submit all non-inline/non-compressed extents. 2011 * 2012 * This is a big problem for subpage, we shouldn't re-submit already written 2013 * data at all. 2014 * This function will lookup subpage dirty bit to find which range we really 2015 * need to submit. 2016 * 2017 * Return the next dirty range in [@start, @end). 2018 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 2019 */ 2020 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 2021 struct page *page, u64 *start, u64 *end) 2022 { 2023 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2024 struct btrfs_subpage_info *spi = fs_info->subpage_info; 2025 u64 orig_start = *start; 2026 /* Declare as unsigned long so we can use bitmap ops */ 2027 unsigned long flags; 2028 int range_start_bit; 2029 int range_end_bit; 2030 2031 /* 2032 * For regular sector size == page size case, since one page only 2033 * contains one sector, we return the page offset directly. 2034 */ 2035 if (!btrfs_is_subpage(fs_info, page)) { 2036 *start = page_offset(page); 2037 *end = page_offset(page) + PAGE_SIZE; 2038 return; 2039 } 2040 2041 range_start_bit = spi->dirty_offset + 2042 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 2043 2044 /* We should have the page locked, but just in case */ 2045 spin_lock_irqsave(&subpage->lock, flags); 2046 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 2047 spi->dirty_offset + spi->bitmap_nr_bits); 2048 spin_unlock_irqrestore(&subpage->lock, flags); 2049 2050 range_start_bit -= spi->dirty_offset; 2051 range_end_bit -= spi->dirty_offset; 2052 2053 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 2054 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 2055 } 2056 2057 /* 2058 * helper for __extent_writepage. This calls the writepage start hooks, 2059 * and does the loop to map the page into extents and bios. 2060 * 2061 * We return 1 if the IO is started and the page is unlocked, 2062 * 0 if all went well (page still locked) 2063 * < 0 if there were errors (page still locked) 2064 */ 2065 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 2066 struct page *page, 2067 struct writeback_control *wbc, 2068 struct extent_page_data *epd, 2069 loff_t i_size, 2070 int *nr_ret) 2071 { 2072 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2073 u64 cur = page_offset(page); 2074 u64 end = cur + PAGE_SIZE - 1; 2075 u64 extent_offset; 2076 u64 block_start; 2077 struct extent_map *em; 2078 int saved_ret = 0; 2079 int ret = 0; 2080 int nr = 0; 2081 enum req_op op = REQ_OP_WRITE; 2082 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 2083 bool has_error = false; 2084 bool compressed; 2085 2086 ret = btrfs_writepage_cow_fixup(page); 2087 if (ret) { 2088 /* Fixup worker will requeue */ 2089 redirty_page_for_writepage(wbc, page); 2090 unlock_page(page); 2091 return 1; 2092 } 2093 2094 /* 2095 * we don't want to touch the inode after unlocking the page, 2096 * so we update the mapping writeback index now 2097 */ 2098 wbc->nr_to_write--; 2099 2100 epd->bio_ctrl.end_io_func = end_bio_extent_writepage; 2101 while (cur <= end) { 2102 u64 disk_bytenr; 2103 u64 em_end; 2104 u64 dirty_range_start = cur; 2105 u64 dirty_range_end; 2106 u32 iosize; 2107 2108 if (cur >= i_size) { 2109 btrfs_writepage_endio_finish_ordered(inode, page, cur, 2110 end, true); 2111 /* 2112 * This range is beyond i_size, thus we don't need to 2113 * bother writing back. 2114 * But we still need to clear the dirty subpage bit, or 2115 * the next time the page gets dirtied, we will try to 2116 * writeback the sectors with subpage dirty bits, 2117 * causing writeback without ordered extent. 2118 */ 2119 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 2120 break; 2121 } 2122 2123 find_next_dirty_byte(fs_info, page, &dirty_range_start, 2124 &dirty_range_end); 2125 if (cur < dirty_range_start) { 2126 cur = dirty_range_start; 2127 continue; 2128 } 2129 2130 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 2131 if (IS_ERR(em)) { 2132 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 2133 ret = PTR_ERR_OR_ZERO(em); 2134 has_error = true; 2135 if (!saved_ret) 2136 saved_ret = ret; 2137 break; 2138 } 2139 2140 extent_offset = cur - em->start; 2141 em_end = extent_map_end(em); 2142 ASSERT(cur <= em_end); 2143 ASSERT(cur < end); 2144 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 2145 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 2146 block_start = em->block_start; 2147 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2148 disk_bytenr = em->block_start + extent_offset; 2149 2150 /* 2151 * Note that em_end from extent_map_end() and dirty_range_end from 2152 * find_next_dirty_byte() are all exclusive 2153 */ 2154 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 2155 2156 if (btrfs_use_zone_append(inode, em->block_start)) 2157 op = REQ_OP_ZONE_APPEND; 2158 2159 free_extent_map(em); 2160 em = NULL; 2161 2162 /* 2163 * compressed and inline extents are written through other 2164 * paths in the FS 2165 */ 2166 if (compressed || block_start == EXTENT_MAP_HOLE || 2167 block_start == EXTENT_MAP_INLINE) { 2168 if (compressed) 2169 nr++; 2170 else 2171 btrfs_writepage_endio_finish_ordered(inode, 2172 page, cur, cur + iosize - 1, true); 2173 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2174 cur += iosize; 2175 continue; 2176 } 2177 2178 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 2179 if (!PageWriteback(page)) { 2180 btrfs_err(inode->root->fs_info, 2181 "page %lu not writeback, cur %llu end %llu", 2182 page->index, cur, end); 2183 } 2184 2185 /* 2186 * Although the PageDirty bit is cleared before entering this 2187 * function, subpage dirty bit is not cleared. 2188 * So clear subpage dirty bit here so next time we won't submit 2189 * page for range already written to disk. 2190 */ 2191 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 2192 2193 ret = submit_extent_page(op | write_flags, wbc, 2194 &epd->bio_ctrl, disk_bytenr, 2195 page, iosize, 2196 cur - page_offset(page), 2197 0, false); 2198 if (ret) { 2199 has_error = true; 2200 if (!saved_ret) 2201 saved_ret = ret; 2202 2203 btrfs_page_set_error(fs_info, page, cur, iosize); 2204 if (PageWriteback(page)) 2205 btrfs_page_clear_writeback(fs_info, page, cur, 2206 iosize); 2207 } 2208 2209 cur += iosize; 2210 nr++; 2211 } 2212 /* 2213 * If we finish without problem, we should not only clear page dirty, 2214 * but also empty subpage dirty bits 2215 */ 2216 if (!has_error) 2217 btrfs_page_assert_not_dirty(fs_info, page); 2218 else 2219 ret = saved_ret; 2220 *nr_ret = nr; 2221 return ret; 2222 } 2223 2224 /* 2225 * the writepage semantics are similar to regular writepage. extent 2226 * records are inserted to lock ranges in the tree, and as dirty areas 2227 * are found, they are marked writeback. Then the lock bits are removed 2228 * and the end_io handler clears the writeback ranges 2229 * 2230 * Return 0 if everything goes well. 2231 * Return <0 for error. 2232 */ 2233 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2234 struct extent_page_data *epd) 2235 { 2236 struct folio *folio = page_folio(page); 2237 struct inode *inode = page->mapping->host; 2238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2239 const u64 page_start = page_offset(page); 2240 const u64 page_end = page_start + PAGE_SIZE - 1; 2241 int ret; 2242 int nr = 0; 2243 size_t pg_offset; 2244 loff_t i_size = i_size_read(inode); 2245 unsigned long end_index = i_size >> PAGE_SHIFT; 2246 2247 trace___extent_writepage(page, inode, wbc); 2248 2249 WARN_ON(!PageLocked(page)); 2250 2251 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 2252 page_offset(page), PAGE_SIZE); 2253 2254 pg_offset = offset_in_page(i_size); 2255 if (page->index > end_index || 2256 (page->index == end_index && !pg_offset)) { 2257 folio_invalidate(folio, 0, folio_size(folio)); 2258 folio_unlock(folio); 2259 return 0; 2260 } 2261 2262 if (page->index == end_index) 2263 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 2264 2265 ret = set_page_extent_mapped(page); 2266 if (ret < 0) { 2267 SetPageError(page); 2268 goto done; 2269 } 2270 2271 if (!epd->extent_locked) { 2272 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 2273 if (ret == 1) 2274 return 0; 2275 if (ret) 2276 goto done; 2277 } 2278 2279 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 2280 &nr); 2281 if (ret == 1) 2282 return 0; 2283 2284 done: 2285 if (nr == 0) { 2286 /* make sure the mapping tag for page dirty gets cleared */ 2287 set_page_writeback(page); 2288 end_page_writeback(page); 2289 } 2290 /* 2291 * Here we used to have a check for PageError() and then set @ret and 2292 * call end_extent_writepage(). 2293 * 2294 * But in fact setting @ret here will cause different error paths 2295 * between subpage and regular sectorsize. 2296 * 2297 * For regular page size, we never submit current page, but only add 2298 * current page to current bio. 2299 * The bio submission can only happen in next page. 2300 * Thus if we hit the PageError() branch, @ret is already set to 2301 * non-zero value and will not get updated for regular sectorsize. 2302 * 2303 * But for subpage case, it's possible we submit part of current page, 2304 * thus can get PageError() set by submitted bio of the same page, 2305 * while our @ret is still 0. 2306 * 2307 * So here we unify the behavior and don't set @ret. 2308 * Error can still be properly passed to higher layer as page will 2309 * be set error, here we just don't handle the IO failure. 2310 * 2311 * NOTE: This is just a hotfix for subpage. 2312 * The root fix will be properly ending ordered extent when we hit 2313 * an error during writeback. 2314 * 2315 * But that needs a bigger refactoring, as we not only need to grab the 2316 * submitted OE, but also need to know exactly at which bytenr we hit 2317 * the error. 2318 * Currently the full page based __extent_writepage_io() is not 2319 * capable of that. 2320 */ 2321 if (PageError(page)) 2322 end_extent_writepage(page, ret, page_start, page_end); 2323 if (epd->extent_locked) { 2324 /* 2325 * If epd->extent_locked, it's from extent_write_locked_range(), 2326 * the page can either be locked by lock_page() or 2327 * process_one_page(). 2328 * Let btrfs_page_unlock_writer() handle both cases. 2329 */ 2330 ASSERT(wbc); 2331 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 2332 wbc->range_end + 1 - wbc->range_start); 2333 } else { 2334 unlock_page(page); 2335 } 2336 ASSERT(ret <= 0); 2337 return ret; 2338 } 2339 2340 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 2341 { 2342 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 2343 TASK_UNINTERRUPTIBLE); 2344 } 2345 2346 static void end_extent_buffer_writeback(struct extent_buffer *eb) 2347 { 2348 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2349 smp_mb__after_atomic(); 2350 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 2351 } 2352 2353 /* 2354 * Lock extent buffer status and pages for writeback. 2355 * 2356 * May try to flush write bio if we can't get the lock. 2357 * 2358 * Return 0 if the extent buffer doesn't need to be submitted. 2359 * (E.g. the extent buffer is not dirty) 2360 * Return >0 is the extent buffer is submitted to bio. 2361 * Return <0 if something went wrong, no page is locked. 2362 */ 2363 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 2364 struct extent_page_data *epd) 2365 { 2366 struct btrfs_fs_info *fs_info = eb->fs_info; 2367 int i, num_pages; 2368 int flush = 0; 2369 int ret = 0; 2370 2371 if (!btrfs_try_tree_write_lock(eb)) { 2372 submit_write_bio(epd, 0); 2373 flush = 1; 2374 btrfs_tree_lock(eb); 2375 } 2376 2377 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 2378 btrfs_tree_unlock(eb); 2379 if (!epd->sync_io) 2380 return 0; 2381 if (!flush) { 2382 submit_write_bio(epd, 0); 2383 flush = 1; 2384 } 2385 while (1) { 2386 wait_on_extent_buffer_writeback(eb); 2387 btrfs_tree_lock(eb); 2388 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 2389 break; 2390 btrfs_tree_unlock(eb); 2391 } 2392 } 2393 2394 /* 2395 * We need to do this to prevent races in people who check if the eb is 2396 * under IO since we can end up having no IO bits set for a short period 2397 * of time. 2398 */ 2399 spin_lock(&eb->refs_lock); 2400 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2401 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 2402 spin_unlock(&eb->refs_lock); 2403 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2404 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2405 -eb->len, 2406 fs_info->dirty_metadata_batch); 2407 ret = 1; 2408 } else { 2409 spin_unlock(&eb->refs_lock); 2410 } 2411 2412 btrfs_tree_unlock(eb); 2413 2414 /* 2415 * Either we don't need to submit any tree block, or we're submitting 2416 * subpage eb. 2417 * Subpage metadata doesn't use page locking at all, so we can skip 2418 * the page locking. 2419 */ 2420 if (!ret || fs_info->nodesize < PAGE_SIZE) 2421 return ret; 2422 2423 num_pages = num_extent_pages(eb); 2424 for (i = 0; i < num_pages; i++) { 2425 struct page *p = eb->pages[i]; 2426 2427 if (!trylock_page(p)) { 2428 if (!flush) { 2429 submit_write_bio(epd, 0); 2430 flush = 1; 2431 } 2432 lock_page(p); 2433 } 2434 } 2435 2436 return ret; 2437 } 2438 2439 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 2440 { 2441 struct btrfs_fs_info *fs_info = eb->fs_info; 2442 2443 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 2444 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 2445 return; 2446 2447 /* 2448 * A read may stumble upon this buffer later, make sure that it gets an 2449 * error and knows there was an error. 2450 */ 2451 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 2452 2453 /* 2454 * We need to set the mapping with the io error as well because a write 2455 * error will flip the file system readonly, and then syncfs() will 2456 * return a 0 because we are readonly if we don't modify the err seq for 2457 * the superblock. 2458 */ 2459 mapping_set_error(page->mapping, -EIO); 2460 2461 /* 2462 * If we error out, we should add back the dirty_metadata_bytes 2463 * to make it consistent. 2464 */ 2465 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 2466 eb->len, fs_info->dirty_metadata_batch); 2467 2468 /* 2469 * If writeback for a btree extent that doesn't belong to a log tree 2470 * failed, increment the counter transaction->eb_write_errors. 2471 * We do this because while the transaction is running and before it's 2472 * committing (when we call filemap_fdata[write|wait]_range against 2473 * the btree inode), we might have 2474 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 2475 * returns an error or an error happens during writeback, when we're 2476 * committing the transaction we wouldn't know about it, since the pages 2477 * can be no longer dirty nor marked anymore for writeback (if a 2478 * subsequent modification to the extent buffer didn't happen before the 2479 * transaction commit), which makes filemap_fdata[write|wait]_range not 2480 * able to find the pages tagged with SetPageError at transaction 2481 * commit time. So if this happens we must abort the transaction, 2482 * otherwise we commit a super block with btree roots that point to 2483 * btree nodes/leafs whose content on disk is invalid - either garbage 2484 * or the content of some node/leaf from a past generation that got 2485 * cowed or deleted and is no longer valid. 2486 * 2487 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 2488 * not be enough - we need to distinguish between log tree extents vs 2489 * non-log tree extents, and the next filemap_fdatawait_range() call 2490 * will catch and clear such errors in the mapping - and that call might 2491 * be from a log sync and not from a transaction commit. Also, checking 2492 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 2493 * not done and would not be reliable - the eb might have been released 2494 * from memory and reading it back again means that flag would not be 2495 * set (since it's a runtime flag, not persisted on disk). 2496 * 2497 * Using the flags below in the btree inode also makes us achieve the 2498 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 2499 * writeback for all dirty pages and before filemap_fdatawait_range() 2500 * is called, the writeback for all dirty pages had already finished 2501 * with errors - because we were not using AS_EIO/AS_ENOSPC, 2502 * filemap_fdatawait_range() would return success, as it could not know 2503 * that writeback errors happened (the pages were no longer tagged for 2504 * writeback). 2505 */ 2506 switch (eb->log_index) { 2507 case -1: 2508 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 2509 break; 2510 case 0: 2511 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2512 break; 2513 case 1: 2514 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2515 break; 2516 default: 2517 BUG(); /* unexpected, logic error */ 2518 } 2519 } 2520 2521 /* 2522 * The endio specific version which won't touch any unsafe spinlock in endio 2523 * context. 2524 */ 2525 static struct extent_buffer *find_extent_buffer_nolock( 2526 struct btrfs_fs_info *fs_info, u64 start) 2527 { 2528 struct extent_buffer *eb; 2529 2530 rcu_read_lock(); 2531 eb = radix_tree_lookup(&fs_info->buffer_radix, 2532 start >> fs_info->sectorsize_bits); 2533 if (eb && atomic_inc_not_zero(&eb->refs)) { 2534 rcu_read_unlock(); 2535 return eb; 2536 } 2537 rcu_read_unlock(); 2538 return NULL; 2539 } 2540 2541 /* 2542 * The endio function for subpage extent buffer write. 2543 * 2544 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 2545 * after all extent buffers in the page has finished their writeback. 2546 */ 2547 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 2548 { 2549 struct bio *bio = &bbio->bio; 2550 struct btrfs_fs_info *fs_info; 2551 struct bio_vec *bvec; 2552 struct bvec_iter_all iter_all; 2553 2554 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2555 ASSERT(fs_info->nodesize < PAGE_SIZE); 2556 2557 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2558 bio_for_each_segment_all(bvec, bio, iter_all) { 2559 struct page *page = bvec->bv_page; 2560 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2561 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2562 u64 cur_bytenr = bvec_start; 2563 2564 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2565 2566 /* Iterate through all extent buffers in the range */ 2567 while (cur_bytenr <= bvec_end) { 2568 struct extent_buffer *eb; 2569 int done; 2570 2571 /* 2572 * Here we can't use find_extent_buffer(), as it may 2573 * try to lock eb->refs_lock, which is not safe in endio 2574 * context. 2575 */ 2576 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2577 ASSERT(eb); 2578 2579 cur_bytenr = eb->start + eb->len; 2580 2581 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2582 done = atomic_dec_and_test(&eb->io_pages); 2583 ASSERT(done); 2584 2585 if (bio->bi_status || 2586 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2587 ClearPageUptodate(page); 2588 set_btree_ioerr(page, eb); 2589 } 2590 2591 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2592 eb->len); 2593 end_extent_buffer_writeback(eb); 2594 /* 2595 * free_extent_buffer() will grab spinlock which is not 2596 * safe in endio context. Thus here we manually dec 2597 * the ref. 2598 */ 2599 atomic_dec(&eb->refs); 2600 } 2601 } 2602 bio_put(bio); 2603 } 2604 2605 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2606 { 2607 struct bio *bio = &bbio->bio; 2608 struct bio_vec *bvec; 2609 struct extent_buffer *eb; 2610 int done; 2611 struct bvec_iter_all iter_all; 2612 2613 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2614 bio_for_each_segment_all(bvec, bio, iter_all) { 2615 struct page *page = bvec->bv_page; 2616 2617 eb = (struct extent_buffer *)page->private; 2618 BUG_ON(!eb); 2619 done = atomic_dec_and_test(&eb->io_pages); 2620 2621 if (bio->bi_status || 2622 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2623 ClearPageUptodate(page); 2624 set_btree_ioerr(page, eb); 2625 } 2626 2627 end_page_writeback(page); 2628 2629 if (!done) 2630 continue; 2631 2632 end_extent_buffer_writeback(eb); 2633 } 2634 2635 bio_put(bio); 2636 } 2637 2638 static void prepare_eb_write(struct extent_buffer *eb) 2639 { 2640 u32 nritems; 2641 unsigned long start; 2642 unsigned long end; 2643 2644 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2645 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2646 2647 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2648 nritems = btrfs_header_nritems(eb); 2649 if (btrfs_header_level(eb) > 0) { 2650 end = btrfs_node_key_ptr_offset(nritems); 2651 memzero_extent_buffer(eb, end, eb->len - end); 2652 } else { 2653 /* 2654 * Leaf: 2655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2656 */ 2657 start = btrfs_item_nr_offset(nritems); 2658 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 2659 memzero_extent_buffer(eb, start, end - start); 2660 } 2661 } 2662 2663 /* 2664 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2665 * Page locking is only utilized at minimum to keep the VMM code happy. 2666 */ 2667 static int write_one_subpage_eb(struct extent_buffer *eb, 2668 struct writeback_control *wbc, 2669 struct extent_page_data *epd) 2670 { 2671 struct btrfs_fs_info *fs_info = eb->fs_info; 2672 struct page *page = eb->pages[0]; 2673 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2674 bool no_dirty_ebs = false; 2675 int ret; 2676 2677 prepare_eb_write(eb); 2678 2679 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2680 lock_page(page); 2681 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2682 2683 /* Check if this is the last dirty bit to update nr_written */ 2684 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2685 eb->start, eb->len); 2686 if (no_dirty_ebs) 2687 clear_page_dirty_for_io(page); 2688 2689 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage; 2690 2691 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2692 &epd->bio_ctrl, eb->start, page, eb->len, 2693 eb->start - page_offset(page), 0, false); 2694 if (ret) { 2695 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2696 set_btree_ioerr(page, eb); 2697 unlock_page(page); 2698 2699 if (atomic_dec_and_test(&eb->io_pages)) 2700 end_extent_buffer_writeback(eb); 2701 return -EIO; 2702 } 2703 unlock_page(page); 2704 /* 2705 * Submission finished without problem, if no range of the page is 2706 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2707 */ 2708 if (no_dirty_ebs) 2709 wbc->nr_to_write--; 2710 return ret; 2711 } 2712 2713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2714 struct writeback_control *wbc, 2715 struct extent_page_data *epd) 2716 { 2717 u64 disk_bytenr = eb->start; 2718 int i, num_pages; 2719 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2720 int ret = 0; 2721 2722 prepare_eb_write(eb); 2723 2724 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage; 2725 2726 num_pages = num_extent_pages(eb); 2727 for (i = 0; i < num_pages; i++) { 2728 struct page *p = eb->pages[i]; 2729 2730 clear_page_dirty_for_io(p); 2731 set_page_writeback(p); 2732 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2733 &epd->bio_ctrl, disk_bytenr, p, 2734 PAGE_SIZE, 0, 0, false); 2735 if (ret) { 2736 set_btree_ioerr(p, eb); 2737 if (PageWriteback(p)) 2738 end_page_writeback(p); 2739 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2740 end_extent_buffer_writeback(eb); 2741 ret = -EIO; 2742 break; 2743 } 2744 disk_bytenr += PAGE_SIZE; 2745 wbc->nr_to_write--; 2746 unlock_page(p); 2747 } 2748 2749 if (unlikely(ret)) { 2750 for (; i < num_pages; i++) { 2751 struct page *p = eb->pages[i]; 2752 clear_page_dirty_for_io(p); 2753 unlock_page(p); 2754 } 2755 } 2756 2757 return ret; 2758 } 2759 2760 /* 2761 * Submit one subpage btree page. 2762 * 2763 * The main difference to submit_eb_page() is: 2764 * - Page locking 2765 * For subpage, we don't rely on page locking at all. 2766 * 2767 * - Flush write bio 2768 * We only flush bio if we may be unable to fit current extent buffers into 2769 * current bio. 2770 * 2771 * Return >=0 for the number of submitted extent buffers. 2772 * Return <0 for fatal error. 2773 */ 2774 static int submit_eb_subpage(struct page *page, 2775 struct writeback_control *wbc, 2776 struct extent_page_data *epd) 2777 { 2778 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2779 int submitted = 0; 2780 u64 page_start = page_offset(page); 2781 int bit_start = 0; 2782 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2783 int ret; 2784 2785 /* Lock and write each dirty extent buffers in the range */ 2786 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2787 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2788 struct extent_buffer *eb; 2789 unsigned long flags; 2790 u64 start; 2791 2792 /* 2793 * Take private lock to ensure the subpage won't be detached 2794 * in the meantime. 2795 */ 2796 spin_lock(&page->mapping->private_lock); 2797 if (!PagePrivate(page)) { 2798 spin_unlock(&page->mapping->private_lock); 2799 break; 2800 } 2801 spin_lock_irqsave(&subpage->lock, flags); 2802 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2803 subpage->bitmaps)) { 2804 spin_unlock_irqrestore(&subpage->lock, flags); 2805 spin_unlock(&page->mapping->private_lock); 2806 bit_start++; 2807 continue; 2808 } 2809 2810 start = page_start + bit_start * fs_info->sectorsize; 2811 bit_start += sectors_per_node; 2812 2813 /* 2814 * Here we just want to grab the eb without touching extra 2815 * spin locks, so call find_extent_buffer_nolock(). 2816 */ 2817 eb = find_extent_buffer_nolock(fs_info, start); 2818 spin_unlock_irqrestore(&subpage->lock, flags); 2819 spin_unlock(&page->mapping->private_lock); 2820 2821 /* 2822 * The eb has already reached 0 refs thus find_extent_buffer() 2823 * doesn't return it. We don't need to write back such eb 2824 * anyway. 2825 */ 2826 if (!eb) 2827 continue; 2828 2829 ret = lock_extent_buffer_for_io(eb, epd); 2830 if (ret == 0) { 2831 free_extent_buffer(eb); 2832 continue; 2833 } 2834 if (ret < 0) { 2835 free_extent_buffer(eb); 2836 goto cleanup; 2837 } 2838 ret = write_one_subpage_eb(eb, wbc, epd); 2839 free_extent_buffer(eb); 2840 if (ret < 0) 2841 goto cleanup; 2842 submitted++; 2843 } 2844 return submitted; 2845 2846 cleanup: 2847 /* We hit error, end bio for the submitted extent buffers */ 2848 submit_write_bio(epd, ret); 2849 return ret; 2850 } 2851 2852 /* 2853 * Submit all page(s) of one extent buffer. 2854 * 2855 * @page: the page of one extent buffer 2856 * @eb_context: to determine if we need to submit this page, if current page 2857 * belongs to this eb, we don't need to submit 2858 * 2859 * The caller should pass each page in their bytenr order, and here we use 2860 * @eb_context to determine if we have submitted pages of one extent buffer. 2861 * 2862 * If we have, we just skip until we hit a new page that doesn't belong to 2863 * current @eb_context. 2864 * 2865 * If not, we submit all the page(s) of the extent buffer. 2866 * 2867 * Return >0 if we have submitted the extent buffer successfully. 2868 * Return 0 if we don't need to submit the page, as it's already submitted by 2869 * previous call. 2870 * Return <0 for fatal error. 2871 */ 2872 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2873 struct extent_page_data *epd, 2874 struct extent_buffer **eb_context) 2875 { 2876 struct address_space *mapping = page->mapping; 2877 struct btrfs_block_group *cache = NULL; 2878 struct extent_buffer *eb; 2879 int ret; 2880 2881 if (!PagePrivate(page)) 2882 return 0; 2883 2884 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2885 return submit_eb_subpage(page, wbc, epd); 2886 2887 spin_lock(&mapping->private_lock); 2888 if (!PagePrivate(page)) { 2889 spin_unlock(&mapping->private_lock); 2890 return 0; 2891 } 2892 2893 eb = (struct extent_buffer *)page->private; 2894 2895 /* 2896 * Shouldn't happen and normally this would be a BUG_ON but no point 2897 * crashing the machine for something we can survive anyway. 2898 */ 2899 if (WARN_ON(!eb)) { 2900 spin_unlock(&mapping->private_lock); 2901 return 0; 2902 } 2903 2904 if (eb == *eb_context) { 2905 spin_unlock(&mapping->private_lock); 2906 return 0; 2907 } 2908 ret = atomic_inc_not_zero(&eb->refs); 2909 spin_unlock(&mapping->private_lock); 2910 if (!ret) 2911 return 0; 2912 2913 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2914 /* 2915 * If for_sync, this hole will be filled with 2916 * trasnsaction commit. 2917 */ 2918 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2919 ret = -EAGAIN; 2920 else 2921 ret = 0; 2922 free_extent_buffer(eb); 2923 return ret; 2924 } 2925 2926 *eb_context = eb; 2927 2928 ret = lock_extent_buffer_for_io(eb, epd); 2929 if (ret <= 0) { 2930 btrfs_revert_meta_write_pointer(cache, eb); 2931 if (cache) 2932 btrfs_put_block_group(cache); 2933 free_extent_buffer(eb); 2934 return ret; 2935 } 2936 if (cache) { 2937 /* 2938 * Implies write in zoned mode. Mark the last eb in a block group. 2939 */ 2940 btrfs_schedule_zone_finish_bg(cache, eb); 2941 btrfs_put_block_group(cache); 2942 } 2943 ret = write_one_eb(eb, wbc, epd); 2944 free_extent_buffer(eb); 2945 if (ret < 0) 2946 return ret; 2947 return 1; 2948 } 2949 2950 int btree_write_cache_pages(struct address_space *mapping, 2951 struct writeback_control *wbc) 2952 { 2953 struct extent_buffer *eb_context = NULL; 2954 struct extent_page_data epd = { 2955 .bio_ctrl = { 0 }, 2956 .extent_locked = 0, 2957 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2958 }; 2959 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2960 int ret = 0; 2961 int done = 0; 2962 int nr_to_write_done = 0; 2963 struct pagevec pvec; 2964 int nr_pages; 2965 pgoff_t index; 2966 pgoff_t end; /* Inclusive */ 2967 int scanned = 0; 2968 xa_mark_t tag; 2969 2970 pagevec_init(&pvec); 2971 if (wbc->range_cyclic) { 2972 index = mapping->writeback_index; /* Start from prev offset */ 2973 end = -1; 2974 /* 2975 * Start from the beginning does not need to cycle over the 2976 * range, mark it as scanned. 2977 */ 2978 scanned = (index == 0); 2979 } else { 2980 index = wbc->range_start >> PAGE_SHIFT; 2981 end = wbc->range_end >> PAGE_SHIFT; 2982 scanned = 1; 2983 } 2984 if (wbc->sync_mode == WB_SYNC_ALL) 2985 tag = PAGECACHE_TAG_TOWRITE; 2986 else 2987 tag = PAGECACHE_TAG_DIRTY; 2988 btrfs_zoned_meta_io_lock(fs_info); 2989 retry: 2990 if (wbc->sync_mode == WB_SYNC_ALL) 2991 tag_pages_for_writeback(mapping, index, end); 2992 while (!done && !nr_to_write_done && (index <= end) && 2993 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2994 tag))) { 2995 unsigned i; 2996 2997 for (i = 0; i < nr_pages; i++) { 2998 struct page *page = pvec.pages[i]; 2999 3000 ret = submit_eb_page(page, wbc, &epd, &eb_context); 3001 if (ret == 0) 3002 continue; 3003 if (ret < 0) { 3004 done = 1; 3005 break; 3006 } 3007 3008 /* 3009 * the filesystem may choose to bump up nr_to_write. 3010 * We have to make sure to honor the new nr_to_write 3011 * at any time 3012 */ 3013 nr_to_write_done = wbc->nr_to_write <= 0; 3014 } 3015 pagevec_release(&pvec); 3016 cond_resched(); 3017 } 3018 if (!scanned && !done) { 3019 /* 3020 * We hit the last page and there is more work to be done: wrap 3021 * back to the start of the file 3022 */ 3023 scanned = 1; 3024 index = 0; 3025 goto retry; 3026 } 3027 /* 3028 * If something went wrong, don't allow any metadata write bio to be 3029 * submitted. 3030 * 3031 * This would prevent use-after-free if we had dirty pages not 3032 * cleaned up, which can still happen by fuzzed images. 3033 * 3034 * - Bad extent tree 3035 * Allowing existing tree block to be allocated for other trees. 3036 * 3037 * - Log tree operations 3038 * Exiting tree blocks get allocated to log tree, bumps its 3039 * generation, then get cleaned in tree re-balance. 3040 * Such tree block will not be written back, since it's clean, 3041 * thus no WRITTEN flag set. 3042 * And after log writes back, this tree block is not traced by 3043 * any dirty extent_io_tree. 3044 * 3045 * - Offending tree block gets re-dirtied from its original owner 3046 * Since it has bumped generation, no WRITTEN flag, it can be 3047 * reused without COWing. This tree block will not be traced 3048 * by btrfs_transaction::dirty_pages. 3049 * 3050 * Now such dirty tree block will not be cleaned by any dirty 3051 * extent io tree. Thus we don't want to submit such wild eb 3052 * if the fs already has error. 3053 * 3054 * We can get ret > 0 from submit_extent_page() indicating how many ebs 3055 * were submitted. Reset it to 0 to avoid false alerts for the caller. 3056 */ 3057 if (ret > 0) 3058 ret = 0; 3059 if (!ret && BTRFS_FS_ERROR(fs_info)) 3060 ret = -EROFS; 3061 submit_write_bio(&epd, ret); 3062 3063 btrfs_zoned_meta_io_unlock(fs_info); 3064 return ret; 3065 } 3066 3067 /** 3068 * Walk the list of dirty pages of the given address space and write all of them. 3069 * 3070 * @mapping: address space structure to write 3071 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3072 * @epd: holds context for the write, namely the bio 3073 * 3074 * If a page is already under I/O, write_cache_pages() skips it, even 3075 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3076 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3077 * and msync() need to guarantee that all the data which was dirty at the time 3078 * the call was made get new I/O started against them. If wbc->sync_mode is 3079 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3080 * existing IO to complete. 3081 */ 3082 static int extent_write_cache_pages(struct address_space *mapping, 3083 struct writeback_control *wbc, 3084 struct extent_page_data *epd) 3085 { 3086 struct inode *inode = mapping->host; 3087 int ret = 0; 3088 int done = 0; 3089 int nr_to_write_done = 0; 3090 struct pagevec pvec; 3091 int nr_pages; 3092 pgoff_t index; 3093 pgoff_t end; /* Inclusive */ 3094 pgoff_t done_index; 3095 int range_whole = 0; 3096 int scanned = 0; 3097 xa_mark_t tag; 3098 3099 /* 3100 * We have to hold onto the inode so that ordered extents can do their 3101 * work when the IO finishes. The alternative to this is failing to add 3102 * an ordered extent if the igrab() fails there and that is a huge pain 3103 * to deal with, so instead just hold onto the inode throughout the 3104 * writepages operation. If it fails here we are freeing up the inode 3105 * anyway and we'd rather not waste our time writing out stuff that is 3106 * going to be truncated anyway. 3107 */ 3108 if (!igrab(inode)) 3109 return 0; 3110 3111 pagevec_init(&pvec); 3112 if (wbc->range_cyclic) { 3113 index = mapping->writeback_index; /* Start from prev offset */ 3114 end = -1; 3115 /* 3116 * Start from the beginning does not need to cycle over the 3117 * range, mark it as scanned. 3118 */ 3119 scanned = (index == 0); 3120 } else { 3121 index = wbc->range_start >> PAGE_SHIFT; 3122 end = wbc->range_end >> PAGE_SHIFT; 3123 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3124 range_whole = 1; 3125 scanned = 1; 3126 } 3127 3128 /* 3129 * We do the tagged writepage as long as the snapshot flush bit is set 3130 * and we are the first one who do the filemap_flush() on this inode. 3131 * 3132 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3133 * not race in and drop the bit. 3134 */ 3135 if (range_whole && wbc->nr_to_write == LONG_MAX && 3136 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3137 &BTRFS_I(inode)->runtime_flags)) 3138 wbc->tagged_writepages = 1; 3139 3140 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3141 tag = PAGECACHE_TAG_TOWRITE; 3142 else 3143 tag = PAGECACHE_TAG_DIRTY; 3144 retry: 3145 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3146 tag_pages_for_writeback(mapping, index, end); 3147 done_index = index; 3148 while (!done && !nr_to_write_done && (index <= end) && 3149 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3150 &index, end, tag))) { 3151 unsigned i; 3152 3153 for (i = 0; i < nr_pages; i++) { 3154 struct page *page = pvec.pages[i]; 3155 3156 done_index = page->index + 1; 3157 /* 3158 * At this point we hold neither the i_pages lock nor 3159 * the page lock: the page may be truncated or 3160 * invalidated (changing page->mapping to NULL), 3161 * or even swizzled back from swapper_space to 3162 * tmpfs file mapping 3163 */ 3164 if (!trylock_page(page)) { 3165 submit_write_bio(epd, 0); 3166 lock_page(page); 3167 } 3168 3169 if (unlikely(page->mapping != mapping)) { 3170 unlock_page(page); 3171 continue; 3172 } 3173 3174 if (wbc->sync_mode != WB_SYNC_NONE) { 3175 if (PageWriteback(page)) 3176 submit_write_bio(epd, 0); 3177 wait_on_page_writeback(page); 3178 } 3179 3180 if (PageWriteback(page) || 3181 !clear_page_dirty_for_io(page)) { 3182 unlock_page(page); 3183 continue; 3184 } 3185 3186 ret = __extent_writepage(page, wbc, epd); 3187 if (ret < 0) { 3188 done = 1; 3189 break; 3190 } 3191 3192 /* 3193 * the filesystem may choose to bump up nr_to_write. 3194 * We have to make sure to honor the new nr_to_write 3195 * at any time 3196 */ 3197 nr_to_write_done = wbc->nr_to_write <= 0; 3198 } 3199 pagevec_release(&pvec); 3200 cond_resched(); 3201 } 3202 if (!scanned && !done) { 3203 /* 3204 * We hit the last page and there is more work to be done: wrap 3205 * back to the start of the file 3206 */ 3207 scanned = 1; 3208 index = 0; 3209 3210 /* 3211 * If we're looping we could run into a page that is locked by a 3212 * writer and that writer could be waiting on writeback for a 3213 * page in our current bio, and thus deadlock, so flush the 3214 * write bio here. 3215 */ 3216 submit_write_bio(epd, 0); 3217 goto retry; 3218 } 3219 3220 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 3221 mapping->writeback_index = done_index; 3222 3223 btrfs_add_delayed_iput(inode); 3224 return ret; 3225 } 3226 3227 /* 3228 * Submit the pages in the range to bio for call sites which delalloc range has 3229 * already been ran (aka, ordered extent inserted) and all pages are still 3230 * locked. 3231 */ 3232 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 3233 { 3234 bool found_error = false; 3235 int first_error = 0; 3236 int ret = 0; 3237 struct address_space *mapping = inode->i_mapping; 3238 struct page *page; 3239 u64 cur = start; 3240 unsigned long nr_pages; 3241 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 3242 struct extent_page_data epd = { 3243 .bio_ctrl = { 0 }, 3244 .extent_locked = 1, 3245 .sync_io = 1, 3246 }; 3247 struct writeback_control wbc_writepages = { 3248 .sync_mode = WB_SYNC_ALL, 3249 .range_start = start, 3250 .range_end = end + 1, 3251 /* We're called from an async helper function */ 3252 .punt_to_cgroup = 1, 3253 .no_cgroup_owner = 1, 3254 }; 3255 3256 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 3257 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 3258 PAGE_SHIFT; 3259 wbc_writepages.nr_to_write = nr_pages * 2; 3260 3261 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 3262 while (cur <= end) { 3263 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 3264 3265 page = find_get_page(mapping, cur >> PAGE_SHIFT); 3266 /* 3267 * All pages in the range are locked since 3268 * btrfs_run_delalloc_range(), thus there is no way to clear 3269 * the page dirty flag. 3270 */ 3271 ASSERT(PageLocked(page)); 3272 ASSERT(PageDirty(page)); 3273 clear_page_dirty_for_io(page); 3274 ret = __extent_writepage(page, &wbc_writepages, &epd); 3275 ASSERT(ret <= 0); 3276 if (ret < 0) { 3277 found_error = true; 3278 first_error = ret; 3279 } 3280 put_page(page); 3281 cur = cur_end + 1; 3282 } 3283 3284 submit_write_bio(&epd, found_error ? ret : 0); 3285 3286 wbc_detach_inode(&wbc_writepages); 3287 if (found_error) 3288 return first_error; 3289 return ret; 3290 } 3291 3292 int extent_writepages(struct address_space *mapping, 3293 struct writeback_control *wbc) 3294 { 3295 struct inode *inode = mapping->host; 3296 int ret = 0; 3297 struct extent_page_data epd = { 3298 .bio_ctrl = { 0 }, 3299 .extent_locked = 0, 3300 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3301 }; 3302 3303 /* 3304 * Allow only a single thread to do the reloc work in zoned mode to 3305 * protect the write pointer updates. 3306 */ 3307 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 3308 ret = extent_write_cache_pages(mapping, wbc, &epd); 3309 submit_write_bio(&epd, ret); 3310 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 3311 return ret; 3312 } 3313 3314 void extent_readahead(struct readahead_control *rac) 3315 { 3316 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3317 struct page *pagepool[16]; 3318 struct extent_map *em_cached = NULL; 3319 u64 prev_em_start = (u64)-1; 3320 int nr; 3321 3322 while ((nr = readahead_page_batch(rac, pagepool))) { 3323 u64 contig_start = readahead_pos(rac); 3324 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 3325 3326 contiguous_readpages(pagepool, nr, contig_start, contig_end, 3327 &em_cached, &bio_ctrl, &prev_em_start); 3328 } 3329 3330 if (em_cached) 3331 free_extent_map(em_cached); 3332 submit_one_bio(&bio_ctrl); 3333 } 3334 3335 /* 3336 * basic invalidate_folio code, this waits on any locked or writeback 3337 * ranges corresponding to the folio, and then deletes any extent state 3338 * records from the tree 3339 */ 3340 int extent_invalidate_folio(struct extent_io_tree *tree, 3341 struct folio *folio, size_t offset) 3342 { 3343 struct extent_state *cached_state = NULL; 3344 u64 start = folio_pos(folio); 3345 u64 end = start + folio_size(folio) - 1; 3346 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 3347 3348 /* This function is only called for the btree inode */ 3349 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 3350 3351 start += ALIGN(offset, blocksize); 3352 if (start > end) 3353 return 0; 3354 3355 lock_extent(tree, start, end, &cached_state); 3356 folio_wait_writeback(folio); 3357 3358 /* 3359 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 3360 * so here we only need to unlock the extent range to free any 3361 * existing extent state. 3362 */ 3363 unlock_extent(tree, start, end, &cached_state); 3364 return 0; 3365 } 3366 3367 /* 3368 * a helper for release_folio, this tests for areas of the page that 3369 * are locked or under IO and drops the related state bits if it is safe 3370 * to drop the page. 3371 */ 3372 static int try_release_extent_state(struct extent_io_tree *tree, 3373 struct page *page, gfp_t mask) 3374 { 3375 u64 start = page_offset(page); 3376 u64 end = start + PAGE_SIZE - 1; 3377 int ret = 1; 3378 3379 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 3380 ret = 0; 3381 } else { 3382 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 3383 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 3384 3385 /* 3386 * At this point we can safely clear everything except the 3387 * locked bit, the nodatasum bit and the delalloc new bit. 3388 * The delalloc new bit will be cleared by ordered extent 3389 * completion. 3390 */ 3391 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 3392 mask, NULL); 3393 3394 /* if clear_extent_bit failed for enomem reasons, 3395 * we can't allow the release to continue. 3396 */ 3397 if (ret < 0) 3398 ret = 0; 3399 else 3400 ret = 1; 3401 } 3402 return ret; 3403 } 3404 3405 /* 3406 * a helper for release_folio. As long as there are no locked extents 3407 * in the range corresponding to the page, both state records and extent 3408 * map records are removed 3409 */ 3410 int try_release_extent_mapping(struct page *page, gfp_t mask) 3411 { 3412 struct extent_map *em; 3413 u64 start = page_offset(page); 3414 u64 end = start + PAGE_SIZE - 1; 3415 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 3416 struct extent_io_tree *tree = &btrfs_inode->io_tree; 3417 struct extent_map_tree *map = &btrfs_inode->extent_tree; 3418 3419 if (gfpflags_allow_blocking(mask) && 3420 page->mapping->host->i_size > SZ_16M) { 3421 u64 len; 3422 while (start <= end) { 3423 struct btrfs_fs_info *fs_info; 3424 u64 cur_gen; 3425 3426 len = end - start + 1; 3427 write_lock(&map->lock); 3428 em = lookup_extent_mapping(map, start, len); 3429 if (!em) { 3430 write_unlock(&map->lock); 3431 break; 3432 } 3433 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3434 em->start != start) { 3435 write_unlock(&map->lock); 3436 free_extent_map(em); 3437 break; 3438 } 3439 if (test_range_bit(tree, em->start, 3440 extent_map_end(em) - 1, 3441 EXTENT_LOCKED, 0, NULL)) 3442 goto next; 3443 /* 3444 * If it's not in the list of modified extents, used 3445 * by a fast fsync, we can remove it. If it's being 3446 * logged we can safely remove it since fsync took an 3447 * extra reference on the em. 3448 */ 3449 if (list_empty(&em->list) || 3450 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 3451 goto remove_em; 3452 /* 3453 * If it's in the list of modified extents, remove it 3454 * only if its generation is older then the current one, 3455 * in which case we don't need it for a fast fsync. 3456 * Otherwise don't remove it, we could be racing with an 3457 * ongoing fast fsync that could miss the new extent. 3458 */ 3459 fs_info = btrfs_inode->root->fs_info; 3460 spin_lock(&fs_info->trans_lock); 3461 cur_gen = fs_info->generation; 3462 spin_unlock(&fs_info->trans_lock); 3463 if (em->generation >= cur_gen) 3464 goto next; 3465 remove_em: 3466 /* 3467 * We only remove extent maps that are not in the list of 3468 * modified extents or that are in the list but with a 3469 * generation lower then the current generation, so there 3470 * is no need to set the full fsync flag on the inode (it 3471 * hurts the fsync performance for workloads with a data 3472 * size that exceeds or is close to the system's memory). 3473 */ 3474 remove_extent_mapping(map, em); 3475 /* once for the rb tree */ 3476 free_extent_map(em); 3477 next: 3478 start = extent_map_end(em); 3479 write_unlock(&map->lock); 3480 3481 /* once for us */ 3482 free_extent_map(em); 3483 3484 cond_resched(); /* Allow large-extent preemption. */ 3485 } 3486 } 3487 return try_release_extent_state(tree, page, mask); 3488 } 3489 3490 /* 3491 * To cache previous fiemap extent 3492 * 3493 * Will be used for merging fiemap extent 3494 */ 3495 struct fiemap_cache { 3496 u64 offset; 3497 u64 phys; 3498 u64 len; 3499 u32 flags; 3500 bool cached; 3501 }; 3502 3503 /* 3504 * Helper to submit fiemap extent. 3505 * 3506 * Will try to merge current fiemap extent specified by @offset, @phys, 3507 * @len and @flags with cached one. 3508 * And only when we fails to merge, cached one will be submitted as 3509 * fiemap extent. 3510 * 3511 * Return value is the same as fiemap_fill_next_extent(). 3512 */ 3513 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 3514 struct fiemap_cache *cache, 3515 u64 offset, u64 phys, u64 len, u32 flags) 3516 { 3517 int ret = 0; 3518 3519 /* Set at the end of extent_fiemap(). */ 3520 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 3521 3522 if (!cache->cached) 3523 goto assign; 3524 3525 /* 3526 * Sanity check, extent_fiemap() should have ensured that new 3527 * fiemap extent won't overlap with cached one. 3528 * Not recoverable. 3529 * 3530 * NOTE: Physical address can overlap, due to compression 3531 */ 3532 if (cache->offset + cache->len > offset) { 3533 WARN_ON(1); 3534 return -EINVAL; 3535 } 3536 3537 /* 3538 * Only merges fiemap extents if 3539 * 1) Their logical addresses are continuous 3540 * 3541 * 2) Their physical addresses are continuous 3542 * So truly compressed (physical size smaller than logical size) 3543 * extents won't get merged with each other 3544 * 3545 * 3) Share same flags 3546 */ 3547 if (cache->offset + cache->len == offset && 3548 cache->phys + cache->len == phys && 3549 cache->flags == flags) { 3550 cache->len += len; 3551 return 0; 3552 } 3553 3554 /* Not mergeable, need to submit cached one */ 3555 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3556 cache->len, cache->flags); 3557 cache->cached = false; 3558 if (ret) 3559 return ret; 3560 assign: 3561 cache->cached = true; 3562 cache->offset = offset; 3563 cache->phys = phys; 3564 cache->len = len; 3565 cache->flags = flags; 3566 3567 return 0; 3568 } 3569 3570 /* 3571 * Emit last fiemap cache 3572 * 3573 * The last fiemap cache may still be cached in the following case: 3574 * 0 4k 8k 3575 * |<- Fiemap range ->| 3576 * |<------------ First extent ----------->| 3577 * 3578 * In this case, the first extent range will be cached but not emitted. 3579 * So we must emit it before ending extent_fiemap(). 3580 */ 3581 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3582 struct fiemap_cache *cache) 3583 { 3584 int ret; 3585 3586 if (!cache->cached) 3587 return 0; 3588 3589 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3590 cache->len, cache->flags); 3591 cache->cached = false; 3592 if (ret > 0) 3593 ret = 0; 3594 return ret; 3595 } 3596 3597 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3598 { 3599 struct extent_buffer *clone; 3600 struct btrfs_key key; 3601 int slot; 3602 int ret; 3603 3604 path->slots[0]++; 3605 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3606 return 0; 3607 3608 ret = btrfs_next_leaf(inode->root, path); 3609 if (ret != 0) 3610 return ret; 3611 3612 /* 3613 * Don't bother with cloning if there are no more file extent items for 3614 * our inode. 3615 */ 3616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3617 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3618 return 1; 3619 3620 /* See the comment at fiemap_search_slot() about why we clone. */ 3621 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3622 if (!clone) 3623 return -ENOMEM; 3624 3625 slot = path->slots[0]; 3626 btrfs_release_path(path); 3627 path->nodes[0] = clone; 3628 path->slots[0] = slot; 3629 3630 return 0; 3631 } 3632 3633 /* 3634 * Search for the first file extent item that starts at a given file offset or 3635 * the one that starts immediately before that offset. 3636 * Returns: 0 on success, < 0 on error, 1 if not found. 3637 */ 3638 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3639 u64 file_offset) 3640 { 3641 const u64 ino = btrfs_ino(inode); 3642 struct btrfs_root *root = inode->root; 3643 struct extent_buffer *clone; 3644 struct btrfs_key key; 3645 int slot; 3646 int ret; 3647 3648 key.objectid = ino; 3649 key.type = BTRFS_EXTENT_DATA_KEY; 3650 key.offset = file_offset; 3651 3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3653 if (ret < 0) 3654 return ret; 3655 3656 if (ret > 0 && path->slots[0] > 0) { 3657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3658 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3659 path->slots[0]--; 3660 } 3661 3662 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3663 ret = btrfs_next_leaf(root, path); 3664 if (ret != 0) 3665 return ret; 3666 3667 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3668 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3669 return 1; 3670 } 3671 3672 /* 3673 * We clone the leaf and use it during fiemap. This is because while 3674 * using the leaf we do expensive things like checking if an extent is 3675 * shared, which can take a long time. In order to prevent blocking 3676 * other tasks for too long, we use a clone of the leaf. We have locked 3677 * the file range in the inode's io tree, so we know none of our file 3678 * extent items can change. This way we avoid blocking other tasks that 3679 * want to insert items for other inodes in the same leaf or b+tree 3680 * rebalance operations (triggered for example when someone is trying 3681 * to push items into this leaf when trying to insert an item in a 3682 * neighbour leaf). 3683 * We also need the private clone because holding a read lock on an 3684 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3685 * when we call fiemap_fill_next_extent(), because that may cause a page 3686 * fault when filling the user space buffer with fiemap data. 3687 */ 3688 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3689 if (!clone) 3690 return -ENOMEM; 3691 3692 slot = path->slots[0]; 3693 btrfs_release_path(path); 3694 path->nodes[0] = clone; 3695 path->slots[0] = slot; 3696 3697 return 0; 3698 } 3699 3700 /* 3701 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3702 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3703 * extent. The end offset (@end) is inclusive. 3704 */ 3705 static int fiemap_process_hole(struct btrfs_inode *inode, 3706 struct fiemap_extent_info *fieinfo, 3707 struct fiemap_cache *cache, 3708 struct btrfs_backref_shared_cache *backref_cache, 3709 u64 disk_bytenr, u64 extent_offset, 3710 u64 extent_gen, 3711 struct ulist *roots, struct ulist *tmp_ulist, 3712 u64 start, u64 end) 3713 { 3714 const u64 i_size = i_size_read(&inode->vfs_inode); 3715 const u64 ino = btrfs_ino(inode); 3716 u64 cur_offset = start; 3717 u64 last_delalloc_end = 0; 3718 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3719 bool checked_extent_shared = false; 3720 int ret; 3721 3722 /* 3723 * There can be no delalloc past i_size, so don't waste time looking for 3724 * it beyond i_size. 3725 */ 3726 while (cur_offset < end && cur_offset < i_size) { 3727 u64 delalloc_start; 3728 u64 delalloc_end; 3729 u64 prealloc_start; 3730 u64 prealloc_len = 0; 3731 bool delalloc; 3732 3733 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3734 &delalloc_start, 3735 &delalloc_end); 3736 if (!delalloc) 3737 break; 3738 3739 /* 3740 * If this is a prealloc extent we have to report every section 3741 * of it that has no delalloc. 3742 */ 3743 if (disk_bytenr != 0) { 3744 if (last_delalloc_end == 0) { 3745 prealloc_start = start; 3746 prealloc_len = delalloc_start - start; 3747 } else { 3748 prealloc_start = last_delalloc_end + 1; 3749 prealloc_len = delalloc_start - prealloc_start; 3750 } 3751 } 3752 3753 if (prealloc_len > 0) { 3754 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3755 ret = btrfs_is_data_extent_shared(inode->root, 3756 ino, disk_bytenr, 3757 extent_gen, roots, 3758 tmp_ulist, 3759 backref_cache); 3760 if (ret < 0) 3761 return ret; 3762 else if (ret > 0) 3763 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3764 3765 checked_extent_shared = true; 3766 } 3767 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3768 disk_bytenr + extent_offset, 3769 prealloc_len, prealloc_flags); 3770 if (ret) 3771 return ret; 3772 extent_offset += prealloc_len; 3773 } 3774 3775 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3776 delalloc_end + 1 - delalloc_start, 3777 FIEMAP_EXTENT_DELALLOC | 3778 FIEMAP_EXTENT_UNKNOWN); 3779 if (ret) 3780 return ret; 3781 3782 last_delalloc_end = delalloc_end; 3783 cur_offset = delalloc_end + 1; 3784 extent_offset += cur_offset - delalloc_start; 3785 cond_resched(); 3786 } 3787 3788 /* 3789 * Either we found no delalloc for the whole prealloc extent or we have 3790 * a prealloc extent that spans i_size or starts at or after i_size. 3791 */ 3792 if (disk_bytenr != 0 && last_delalloc_end < end) { 3793 u64 prealloc_start; 3794 u64 prealloc_len; 3795 3796 if (last_delalloc_end == 0) { 3797 prealloc_start = start; 3798 prealloc_len = end + 1 - start; 3799 } else { 3800 prealloc_start = last_delalloc_end + 1; 3801 prealloc_len = end + 1 - prealloc_start; 3802 } 3803 3804 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3805 ret = btrfs_is_data_extent_shared(inode->root, 3806 ino, disk_bytenr, 3807 extent_gen, roots, 3808 tmp_ulist, 3809 backref_cache); 3810 if (ret < 0) 3811 return ret; 3812 else if (ret > 0) 3813 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3814 } 3815 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3816 disk_bytenr + extent_offset, 3817 prealloc_len, prealloc_flags); 3818 if (ret) 3819 return ret; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3826 struct btrfs_path *path, 3827 u64 *last_extent_end_ret) 3828 { 3829 const u64 ino = btrfs_ino(inode); 3830 struct btrfs_root *root = inode->root; 3831 struct extent_buffer *leaf; 3832 struct btrfs_file_extent_item *ei; 3833 struct btrfs_key key; 3834 u64 disk_bytenr; 3835 int ret; 3836 3837 /* 3838 * Lookup the last file extent. We're not using i_size here because 3839 * there might be preallocation past i_size. 3840 */ 3841 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3842 /* There can't be a file extent item at offset (u64)-1 */ 3843 ASSERT(ret != 0); 3844 if (ret < 0) 3845 return ret; 3846 3847 /* 3848 * For a non-existing key, btrfs_search_slot() always leaves us at a 3849 * slot > 0, except if the btree is empty, which is impossible because 3850 * at least it has the inode item for this inode and all the items for 3851 * the root inode 256. 3852 */ 3853 ASSERT(path->slots[0] > 0); 3854 path->slots[0]--; 3855 leaf = path->nodes[0]; 3856 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3857 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3858 /* No file extent items in the subvolume tree. */ 3859 *last_extent_end_ret = 0; 3860 return 0; 3861 } 3862 3863 /* 3864 * For an inline extent, the disk_bytenr is where inline data starts at, 3865 * so first check if we have an inline extent item before checking if we 3866 * have an implicit hole (disk_bytenr == 0). 3867 */ 3868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3869 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3870 *last_extent_end_ret = btrfs_file_extent_end(path); 3871 return 0; 3872 } 3873 3874 /* 3875 * Find the last file extent item that is not a hole (when NO_HOLES is 3876 * not enabled). This should take at most 2 iterations in the worst 3877 * case: we have one hole file extent item at slot 0 of a leaf and 3878 * another hole file extent item as the last item in the previous leaf. 3879 * This is because we merge file extent items that represent holes. 3880 */ 3881 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3882 while (disk_bytenr == 0) { 3883 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3884 if (ret < 0) { 3885 return ret; 3886 } else if (ret > 0) { 3887 /* No file extent items that are not holes. */ 3888 *last_extent_end_ret = 0; 3889 return 0; 3890 } 3891 leaf = path->nodes[0]; 3892 ei = btrfs_item_ptr(leaf, path->slots[0], 3893 struct btrfs_file_extent_item); 3894 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3895 } 3896 3897 *last_extent_end_ret = btrfs_file_extent_end(path); 3898 return 0; 3899 } 3900 3901 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3902 u64 start, u64 len) 3903 { 3904 const u64 ino = btrfs_ino(inode); 3905 struct extent_state *cached_state = NULL; 3906 struct btrfs_path *path; 3907 struct btrfs_root *root = inode->root; 3908 struct fiemap_cache cache = { 0 }; 3909 struct btrfs_backref_shared_cache *backref_cache; 3910 struct ulist *roots; 3911 struct ulist *tmp_ulist; 3912 u64 last_extent_end; 3913 u64 prev_extent_end; 3914 u64 lockstart; 3915 u64 lockend; 3916 bool stopped = false; 3917 int ret; 3918 3919 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL); 3920 path = btrfs_alloc_path(); 3921 roots = ulist_alloc(GFP_KERNEL); 3922 tmp_ulist = ulist_alloc(GFP_KERNEL); 3923 if (!backref_cache || !path || !roots || !tmp_ulist) { 3924 ret = -ENOMEM; 3925 goto out; 3926 } 3927 3928 lockstart = round_down(start, root->fs_info->sectorsize); 3929 lockend = round_up(start + len, root->fs_info->sectorsize); 3930 prev_extent_end = lockstart; 3931 3932 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3933 3934 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3935 if (ret < 0) 3936 goto out_unlock; 3937 btrfs_release_path(path); 3938 3939 path->reada = READA_FORWARD; 3940 ret = fiemap_search_slot(inode, path, lockstart); 3941 if (ret < 0) { 3942 goto out_unlock; 3943 } else if (ret > 0) { 3944 /* 3945 * No file extent item found, but we may have delalloc between 3946 * the current offset and i_size. So check for that. 3947 */ 3948 ret = 0; 3949 goto check_eof_delalloc; 3950 } 3951 3952 while (prev_extent_end < lockend) { 3953 struct extent_buffer *leaf = path->nodes[0]; 3954 struct btrfs_file_extent_item *ei; 3955 struct btrfs_key key; 3956 u64 extent_end; 3957 u64 extent_len; 3958 u64 extent_offset = 0; 3959 u64 extent_gen; 3960 u64 disk_bytenr = 0; 3961 u64 flags = 0; 3962 int extent_type; 3963 u8 compression; 3964 3965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3966 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3967 break; 3968 3969 extent_end = btrfs_file_extent_end(path); 3970 3971 /* 3972 * The first iteration can leave us at an extent item that ends 3973 * before our range's start. Move to the next item. 3974 */ 3975 if (extent_end <= lockstart) 3976 goto next_item; 3977 3978 /* We have in implicit hole (NO_HOLES feature enabled). */ 3979 if (prev_extent_end < key.offset) { 3980 const u64 range_end = min(key.offset, lockend) - 1; 3981 3982 ret = fiemap_process_hole(inode, fieinfo, &cache, 3983 backref_cache, 0, 0, 0, 3984 roots, tmp_ulist, 3985 prev_extent_end, range_end); 3986 if (ret < 0) { 3987 goto out_unlock; 3988 } else if (ret > 0) { 3989 /* fiemap_fill_next_extent() told us to stop. */ 3990 stopped = true; 3991 break; 3992 } 3993 3994 /* We've reached the end of the fiemap range, stop. */ 3995 if (key.offset >= lockend) { 3996 stopped = true; 3997 break; 3998 } 3999 } 4000 4001 extent_len = extent_end - key.offset; 4002 ei = btrfs_item_ptr(leaf, path->slots[0], 4003 struct btrfs_file_extent_item); 4004 compression = btrfs_file_extent_compression(leaf, ei); 4005 extent_type = btrfs_file_extent_type(leaf, ei); 4006 extent_gen = btrfs_file_extent_generation(leaf, ei); 4007 4008 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4009 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 4010 if (compression == BTRFS_COMPRESS_NONE) 4011 extent_offset = btrfs_file_extent_offset(leaf, ei); 4012 } 4013 4014 if (compression != BTRFS_COMPRESS_NONE) 4015 flags |= FIEMAP_EXTENT_ENCODED; 4016 4017 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4018 flags |= FIEMAP_EXTENT_DATA_INLINE; 4019 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 4020 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 4021 extent_len, flags); 4022 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 4023 ret = fiemap_process_hole(inode, fieinfo, &cache, 4024 backref_cache, 4025 disk_bytenr, extent_offset, 4026 extent_gen, roots, tmp_ulist, 4027 key.offset, extent_end - 1); 4028 } else if (disk_bytenr == 0) { 4029 /* We have an explicit hole. */ 4030 ret = fiemap_process_hole(inode, fieinfo, &cache, 4031 backref_cache, 0, 0, 0, 4032 roots, tmp_ulist, 4033 key.offset, extent_end - 1); 4034 } else { 4035 /* We have a regular extent. */ 4036 if (fieinfo->fi_extents_max) { 4037 ret = btrfs_is_data_extent_shared(root, ino, 4038 disk_bytenr, 4039 extent_gen, 4040 roots, 4041 tmp_ulist, 4042 backref_cache); 4043 if (ret < 0) 4044 goto out_unlock; 4045 else if (ret > 0) 4046 flags |= FIEMAP_EXTENT_SHARED; 4047 } 4048 4049 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 4050 disk_bytenr + extent_offset, 4051 extent_len, flags); 4052 } 4053 4054 if (ret < 0) { 4055 goto out_unlock; 4056 } else if (ret > 0) { 4057 /* fiemap_fill_next_extent() told us to stop. */ 4058 stopped = true; 4059 break; 4060 } 4061 4062 prev_extent_end = extent_end; 4063 next_item: 4064 if (fatal_signal_pending(current)) { 4065 ret = -EINTR; 4066 goto out_unlock; 4067 } 4068 4069 ret = fiemap_next_leaf_item(inode, path); 4070 if (ret < 0) { 4071 goto out_unlock; 4072 } else if (ret > 0) { 4073 /* No more file extent items for this inode. */ 4074 break; 4075 } 4076 cond_resched(); 4077 } 4078 4079 check_eof_delalloc: 4080 /* 4081 * Release (and free) the path before emitting any final entries to 4082 * fiemap_fill_next_extent() to keep lockdep happy. This is because 4083 * once we find no more file extent items exist, we may have a 4084 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 4085 * faults when copying data to the user space buffer. 4086 */ 4087 btrfs_free_path(path); 4088 path = NULL; 4089 4090 if (!stopped && prev_extent_end < lockend) { 4091 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache, 4092 0, 0, 0, roots, tmp_ulist, 4093 prev_extent_end, lockend - 1); 4094 if (ret < 0) 4095 goto out_unlock; 4096 prev_extent_end = lockend; 4097 } 4098 4099 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 4100 const u64 i_size = i_size_read(&inode->vfs_inode); 4101 4102 if (prev_extent_end < i_size) { 4103 u64 delalloc_start; 4104 u64 delalloc_end; 4105 bool delalloc; 4106 4107 delalloc = btrfs_find_delalloc_in_range(inode, 4108 prev_extent_end, 4109 i_size - 1, 4110 &delalloc_start, 4111 &delalloc_end); 4112 if (!delalloc) 4113 cache.flags |= FIEMAP_EXTENT_LAST; 4114 } else { 4115 cache.flags |= FIEMAP_EXTENT_LAST; 4116 } 4117 } 4118 4119 ret = emit_last_fiemap_cache(fieinfo, &cache); 4120 4121 out_unlock: 4122 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 4123 out: 4124 kfree(backref_cache); 4125 btrfs_free_path(path); 4126 ulist_free(roots); 4127 ulist_free(tmp_ulist); 4128 return ret; 4129 } 4130 4131 static void __free_extent_buffer(struct extent_buffer *eb) 4132 { 4133 kmem_cache_free(extent_buffer_cache, eb); 4134 } 4135 4136 int extent_buffer_under_io(const struct extent_buffer *eb) 4137 { 4138 return (atomic_read(&eb->io_pages) || 4139 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4140 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4141 } 4142 4143 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 4144 { 4145 struct btrfs_subpage *subpage; 4146 4147 lockdep_assert_held(&page->mapping->private_lock); 4148 4149 if (PagePrivate(page)) { 4150 subpage = (struct btrfs_subpage *)page->private; 4151 if (atomic_read(&subpage->eb_refs)) 4152 return true; 4153 /* 4154 * Even there is no eb refs here, we may still have 4155 * end_page_read() call relying on page::private. 4156 */ 4157 if (atomic_read(&subpage->readers)) 4158 return true; 4159 } 4160 return false; 4161 } 4162 4163 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 4164 { 4165 struct btrfs_fs_info *fs_info = eb->fs_info; 4166 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4167 4168 /* 4169 * For mapped eb, we're going to change the page private, which should 4170 * be done under the private_lock. 4171 */ 4172 if (mapped) 4173 spin_lock(&page->mapping->private_lock); 4174 4175 if (!PagePrivate(page)) { 4176 if (mapped) 4177 spin_unlock(&page->mapping->private_lock); 4178 return; 4179 } 4180 4181 if (fs_info->nodesize >= PAGE_SIZE) { 4182 /* 4183 * We do this since we'll remove the pages after we've 4184 * removed the eb from the radix tree, so we could race 4185 * and have this page now attached to the new eb. So 4186 * only clear page_private if it's still connected to 4187 * this eb. 4188 */ 4189 if (PagePrivate(page) && 4190 page->private == (unsigned long)eb) { 4191 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4192 BUG_ON(PageDirty(page)); 4193 BUG_ON(PageWriteback(page)); 4194 /* 4195 * We need to make sure we haven't be attached 4196 * to a new eb. 4197 */ 4198 detach_page_private(page); 4199 } 4200 if (mapped) 4201 spin_unlock(&page->mapping->private_lock); 4202 return; 4203 } 4204 4205 /* 4206 * For subpage, we can have dummy eb with page private. In this case, 4207 * we can directly detach the private as such page is only attached to 4208 * one dummy eb, no sharing. 4209 */ 4210 if (!mapped) { 4211 btrfs_detach_subpage(fs_info, page); 4212 return; 4213 } 4214 4215 btrfs_page_dec_eb_refs(fs_info, page); 4216 4217 /* 4218 * We can only detach the page private if there are no other ebs in the 4219 * page range and no unfinished IO. 4220 */ 4221 if (!page_range_has_eb(fs_info, page)) 4222 btrfs_detach_subpage(fs_info, page); 4223 4224 spin_unlock(&page->mapping->private_lock); 4225 } 4226 4227 /* Release all pages attached to the extent buffer */ 4228 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4229 { 4230 int i; 4231 int num_pages; 4232 4233 ASSERT(!extent_buffer_under_io(eb)); 4234 4235 num_pages = num_extent_pages(eb); 4236 for (i = 0; i < num_pages; i++) { 4237 struct page *page = eb->pages[i]; 4238 4239 if (!page) 4240 continue; 4241 4242 detach_extent_buffer_page(eb, page); 4243 4244 /* One for when we allocated the page */ 4245 put_page(page); 4246 } 4247 } 4248 4249 /* 4250 * Helper for releasing the extent buffer. 4251 */ 4252 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4253 { 4254 btrfs_release_extent_buffer_pages(eb); 4255 btrfs_leak_debug_del_eb(eb); 4256 __free_extent_buffer(eb); 4257 } 4258 4259 static struct extent_buffer * 4260 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4261 unsigned long len) 4262 { 4263 struct extent_buffer *eb = NULL; 4264 4265 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4266 eb->start = start; 4267 eb->len = len; 4268 eb->fs_info = fs_info; 4269 eb->bflags = 0; 4270 init_rwsem(&eb->lock); 4271 4272 btrfs_leak_debug_add_eb(eb); 4273 INIT_LIST_HEAD(&eb->release_list); 4274 4275 spin_lock_init(&eb->refs_lock); 4276 atomic_set(&eb->refs, 1); 4277 atomic_set(&eb->io_pages, 0); 4278 4279 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 4280 4281 return eb; 4282 } 4283 4284 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4285 { 4286 int i; 4287 struct extent_buffer *new; 4288 int num_pages = num_extent_pages(src); 4289 int ret; 4290 4291 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4292 if (new == NULL) 4293 return NULL; 4294 4295 /* 4296 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 4297 * btrfs_release_extent_buffer() have different behavior for 4298 * UNMAPPED subpage extent buffer. 4299 */ 4300 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4301 4302 memset(new->pages, 0, sizeof(*new->pages) * num_pages); 4303 ret = btrfs_alloc_page_array(num_pages, new->pages); 4304 if (ret) { 4305 btrfs_release_extent_buffer(new); 4306 return NULL; 4307 } 4308 4309 for (i = 0; i < num_pages; i++) { 4310 int ret; 4311 struct page *p = new->pages[i]; 4312 4313 ret = attach_extent_buffer_page(new, p, NULL); 4314 if (ret < 0) { 4315 btrfs_release_extent_buffer(new); 4316 return NULL; 4317 } 4318 WARN_ON(PageDirty(p)); 4319 copy_page(page_address(p), page_address(src->pages[i])); 4320 } 4321 set_extent_buffer_uptodate(new); 4322 4323 return new; 4324 } 4325 4326 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4327 u64 start, unsigned long len) 4328 { 4329 struct extent_buffer *eb; 4330 int num_pages; 4331 int i; 4332 int ret; 4333 4334 eb = __alloc_extent_buffer(fs_info, start, len); 4335 if (!eb) 4336 return NULL; 4337 4338 num_pages = num_extent_pages(eb); 4339 ret = btrfs_alloc_page_array(num_pages, eb->pages); 4340 if (ret) 4341 goto err; 4342 4343 for (i = 0; i < num_pages; i++) { 4344 struct page *p = eb->pages[i]; 4345 4346 ret = attach_extent_buffer_page(eb, p, NULL); 4347 if (ret < 0) 4348 goto err; 4349 } 4350 4351 set_extent_buffer_uptodate(eb); 4352 btrfs_set_header_nritems(eb, 0); 4353 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4354 4355 return eb; 4356 err: 4357 for (i = 0; i < num_pages; i++) { 4358 if (eb->pages[i]) { 4359 detach_extent_buffer_page(eb, eb->pages[i]); 4360 __free_page(eb->pages[i]); 4361 } 4362 } 4363 __free_extent_buffer(eb); 4364 return NULL; 4365 } 4366 4367 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4368 u64 start) 4369 { 4370 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4371 } 4372 4373 static void check_buffer_tree_ref(struct extent_buffer *eb) 4374 { 4375 int refs; 4376 /* 4377 * The TREE_REF bit is first set when the extent_buffer is added 4378 * to the radix tree. It is also reset, if unset, when a new reference 4379 * is created by find_extent_buffer. 4380 * 4381 * It is only cleared in two cases: freeing the last non-tree 4382 * reference to the extent_buffer when its STALE bit is set or 4383 * calling release_folio when the tree reference is the only reference. 4384 * 4385 * In both cases, care is taken to ensure that the extent_buffer's 4386 * pages are not under io. However, release_folio can be concurrently 4387 * called with creating new references, which is prone to race 4388 * conditions between the calls to check_buffer_tree_ref in those 4389 * codepaths and clearing TREE_REF in try_release_extent_buffer. 4390 * 4391 * The actual lifetime of the extent_buffer in the radix tree is 4392 * adequately protected by the refcount, but the TREE_REF bit and 4393 * its corresponding reference are not. To protect against this 4394 * class of races, we call check_buffer_tree_ref from the codepaths 4395 * which trigger io after they set eb->io_pages. Note that once io is 4396 * initiated, TREE_REF can no longer be cleared, so that is the 4397 * moment at which any such race is best fixed. 4398 */ 4399 refs = atomic_read(&eb->refs); 4400 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4401 return; 4402 4403 spin_lock(&eb->refs_lock); 4404 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4405 atomic_inc(&eb->refs); 4406 spin_unlock(&eb->refs_lock); 4407 } 4408 4409 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4410 struct page *accessed) 4411 { 4412 int num_pages, i; 4413 4414 check_buffer_tree_ref(eb); 4415 4416 num_pages = num_extent_pages(eb); 4417 for (i = 0; i < num_pages; i++) { 4418 struct page *p = eb->pages[i]; 4419 4420 if (p != accessed) 4421 mark_page_accessed(p); 4422 } 4423 } 4424 4425 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4426 u64 start) 4427 { 4428 struct extent_buffer *eb; 4429 4430 eb = find_extent_buffer_nolock(fs_info, start); 4431 if (!eb) 4432 return NULL; 4433 /* 4434 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 4435 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 4436 * another task running free_extent_buffer() might have seen that flag 4437 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 4438 * writeback flags not set) and it's still in the tree (flag 4439 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 4440 * decrementing the extent buffer's reference count twice. So here we 4441 * could race and increment the eb's reference count, clear its stale 4442 * flag, mark it as dirty and drop our reference before the other task 4443 * finishes executing free_extent_buffer, which would later result in 4444 * an attempt to free an extent buffer that is dirty. 4445 */ 4446 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4447 spin_lock(&eb->refs_lock); 4448 spin_unlock(&eb->refs_lock); 4449 } 4450 mark_extent_buffer_accessed(eb, NULL); 4451 return eb; 4452 } 4453 4454 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4455 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4456 u64 start) 4457 { 4458 struct extent_buffer *eb, *exists = NULL; 4459 int ret; 4460 4461 eb = find_extent_buffer(fs_info, start); 4462 if (eb) 4463 return eb; 4464 eb = alloc_dummy_extent_buffer(fs_info, start); 4465 if (!eb) 4466 return ERR_PTR(-ENOMEM); 4467 eb->fs_info = fs_info; 4468 again: 4469 ret = radix_tree_preload(GFP_NOFS); 4470 if (ret) { 4471 exists = ERR_PTR(ret); 4472 goto free_eb; 4473 } 4474 spin_lock(&fs_info->buffer_lock); 4475 ret = radix_tree_insert(&fs_info->buffer_radix, 4476 start >> fs_info->sectorsize_bits, eb); 4477 spin_unlock(&fs_info->buffer_lock); 4478 radix_tree_preload_end(); 4479 if (ret == -EEXIST) { 4480 exists = find_extent_buffer(fs_info, start); 4481 if (exists) 4482 goto free_eb; 4483 else 4484 goto again; 4485 } 4486 check_buffer_tree_ref(eb); 4487 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4488 4489 return eb; 4490 free_eb: 4491 btrfs_release_extent_buffer(eb); 4492 return exists; 4493 } 4494 #endif 4495 4496 static struct extent_buffer *grab_extent_buffer( 4497 struct btrfs_fs_info *fs_info, struct page *page) 4498 { 4499 struct extent_buffer *exists; 4500 4501 /* 4502 * For subpage case, we completely rely on radix tree to ensure we 4503 * don't try to insert two ebs for the same bytenr. So here we always 4504 * return NULL and just continue. 4505 */ 4506 if (fs_info->nodesize < PAGE_SIZE) 4507 return NULL; 4508 4509 /* Page not yet attached to an extent buffer */ 4510 if (!PagePrivate(page)) 4511 return NULL; 4512 4513 /* 4514 * We could have already allocated an eb for this page and attached one 4515 * so lets see if we can get a ref on the existing eb, and if we can we 4516 * know it's good and we can just return that one, else we know we can 4517 * just overwrite page->private. 4518 */ 4519 exists = (struct extent_buffer *)page->private; 4520 if (atomic_inc_not_zero(&exists->refs)) 4521 return exists; 4522 4523 WARN_ON(PageDirty(page)); 4524 detach_page_private(page); 4525 return NULL; 4526 } 4527 4528 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 4529 { 4530 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4531 btrfs_err(fs_info, "bad tree block start %llu", start); 4532 return -EINVAL; 4533 } 4534 4535 if (fs_info->nodesize < PAGE_SIZE && 4536 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 4537 btrfs_err(fs_info, 4538 "tree block crosses page boundary, start %llu nodesize %u", 4539 start, fs_info->nodesize); 4540 return -EINVAL; 4541 } 4542 if (fs_info->nodesize >= PAGE_SIZE && 4543 !PAGE_ALIGNED(start)) { 4544 btrfs_err(fs_info, 4545 "tree block is not page aligned, start %llu nodesize %u", 4546 start, fs_info->nodesize); 4547 return -EINVAL; 4548 } 4549 return 0; 4550 } 4551 4552 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4553 u64 start, u64 owner_root, int level) 4554 { 4555 unsigned long len = fs_info->nodesize; 4556 int num_pages; 4557 int i; 4558 unsigned long index = start >> PAGE_SHIFT; 4559 struct extent_buffer *eb; 4560 struct extent_buffer *exists = NULL; 4561 struct page *p; 4562 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4563 u64 lockdep_owner = owner_root; 4564 int uptodate = 1; 4565 int ret; 4566 4567 if (check_eb_alignment(fs_info, start)) 4568 return ERR_PTR(-EINVAL); 4569 4570 #if BITS_PER_LONG == 32 4571 if (start >= MAX_LFS_FILESIZE) { 4572 btrfs_err_rl(fs_info, 4573 "extent buffer %llu is beyond 32bit page cache limit", start); 4574 btrfs_err_32bit_limit(fs_info); 4575 return ERR_PTR(-EOVERFLOW); 4576 } 4577 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4578 btrfs_warn_32bit_limit(fs_info); 4579 #endif 4580 4581 eb = find_extent_buffer(fs_info, start); 4582 if (eb) 4583 return eb; 4584 4585 eb = __alloc_extent_buffer(fs_info, start, len); 4586 if (!eb) 4587 return ERR_PTR(-ENOMEM); 4588 4589 /* 4590 * The reloc trees are just snapshots, so we need them to appear to be 4591 * just like any other fs tree WRT lockdep. 4592 */ 4593 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4594 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4595 4596 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4597 4598 num_pages = num_extent_pages(eb); 4599 for (i = 0; i < num_pages; i++, index++) { 4600 struct btrfs_subpage *prealloc = NULL; 4601 4602 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4603 if (!p) { 4604 exists = ERR_PTR(-ENOMEM); 4605 goto free_eb; 4606 } 4607 4608 /* 4609 * Preallocate page->private for subpage case, so that we won't 4610 * allocate memory with private_lock hold. The memory will be 4611 * freed by attach_extent_buffer_page() or freed manually if 4612 * we exit earlier. 4613 * 4614 * Although we have ensured one subpage eb can only have one 4615 * page, but it may change in the future for 16K page size 4616 * support, so we still preallocate the memory in the loop. 4617 */ 4618 if (fs_info->nodesize < PAGE_SIZE) { 4619 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4620 if (IS_ERR(prealloc)) { 4621 ret = PTR_ERR(prealloc); 4622 unlock_page(p); 4623 put_page(p); 4624 exists = ERR_PTR(ret); 4625 goto free_eb; 4626 } 4627 } 4628 4629 spin_lock(&mapping->private_lock); 4630 exists = grab_extent_buffer(fs_info, p); 4631 if (exists) { 4632 spin_unlock(&mapping->private_lock); 4633 unlock_page(p); 4634 put_page(p); 4635 mark_extent_buffer_accessed(exists, p); 4636 btrfs_free_subpage(prealloc); 4637 goto free_eb; 4638 } 4639 /* Should not fail, as we have preallocated the memory */ 4640 ret = attach_extent_buffer_page(eb, p, prealloc); 4641 ASSERT(!ret); 4642 /* 4643 * To inform we have extra eb under allocation, so that 4644 * detach_extent_buffer_page() won't release the page private 4645 * when the eb hasn't yet been inserted into radix tree. 4646 * 4647 * The ref will be decreased when the eb released the page, in 4648 * detach_extent_buffer_page(). 4649 * Thus needs no special handling in error path. 4650 */ 4651 btrfs_page_inc_eb_refs(fs_info, p); 4652 spin_unlock(&mapping->private_lock); 4653 4654 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4655 eb->pages[i] = p; 4656 if (!PageUptodate(p)) 4657 uptodate = 0; 4658 4659 /* 4660 * We can't unlock the pages just yet since the extent buffer 4661 * hasn't been properly inserted in the radix tree, this 4662 * opens a race with btree_release_folio which can free a page 4663 * while we are still filling in all pages for the buffer and 4664 * we could crash. 4665 */ 4666 } 4667 if (uptodate) 4668 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4669 again: 4670 ret = radix_tree_preload(GFP_NOFS); 4671 if (ret) { 4672 exists = ERR_PTR(ret); 4673 goto free_eb; 4674 } 4675 4676 spin_lock(&fs_info->buffer_lock); 4677 ret = radix_tree_insert(&fs_info->buffer_radix, 4678 start >> fs_info->sectorsize_bits, eb); 4679 spin_unlock(&fs_info->buffer_lock); 4680 radix_tree_preload_end(); 4681 if (ret == -EEXIST) { 4682 exists = find_extent_buffer(fs_info, start); 4683 if (exists) 4684 goto free_eb; 4685 else 4686 goto again; 4687 } 4688 /* add one reference for the tree */ 4689 check_buffer_tree_ref(eb); 4690 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4691 4692 /* 4693 * Now it's safe to unlock the pages because any calls to 4694 * btree_release_folio will correctly detect that a page belongs to a 4695 * live buffer and won't free them prematurely. 4696 */ 4697 for (i = 0; i < num_pages; i++) 4698 unlock_page(eb->pages[i]); 4699 return eb; 4700 4701 free_eb: 4702 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4703 for (i = 0; i < num_pages; i++) { 4704 if (eb->pages[i]) 4705 unlock_page(eb->pages[i]); 4706 } 4707 4708 btrfs_release_extent_buffer(eb); 4709 return exists; 4710 } 4711 4712 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4713 { 4714 struct extent_buffer *eb = 4715 container_of(head, struct extent_buffer, rcu_head); 4716 4717 __free_extent_buffer(eb); 4718 } 4719 4720 static int release_extent_buffer(struct extent_buffer *eb) 4721 __releases(&eb->refs_lock) 4722 { 4723 lockdep_assert_held(&eb->refs_lock); 4724 4725 WARN_ON(atomic_read(&eb->refs) == 0); 4726 if (atomic_dec_and_test(&eb->refs)) { 4727 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4728 struct btrfs_fs_info *fs_info = eb->fs_info; 4729 4730 spin_unlock(&eb->refs_lock); 4731 4732 spin_lock(&fs_info->buffer_lock); 4733 radix_tree_delete(&fs_info->buffer_radix, 4734 eb->start >> fs_info->sectorsize_bits); 4735 spin_unlock(&fs_info->buffer_lock); 4736 } else { 4737 spin_unlock(&eb->refs_lock); 4738 } 4739 4740 btrfs_leak_debug_del_eb(eb); 4741 /* Should be safe to release our pages at this point */ 4742 btrfs_release_extent_buffer_pages(eb); 4743 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4744 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4745 __free_extent_buffer(eb); 4746 return 1; 4747 } 4748 #endif 4749 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4750 return 1; 4751 } 4752 spin_unlock(&eb->refs_lock); 4753 4754 return 0; 4755 } 4756 4757 void free_extent_buffer(struct extent_buffer *eb) 4758 { 4759 int refs; 4760 if (!eb) 4761 return; 4762 4763 refs = atomic_read(&eb->refs); 4764 while (1) { 4765 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4766 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4767 refs == 1)) 4768 break; 4769 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4770 return; 4771 } 4772 4773 spin_lock(&eb->refs_lock); 4774 if (atomic_read(&eb->refs) == 2 && 4775 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4776 !extent_buffer_under_io(eb) && 4777 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4778 atomic_dec(&eb->refs); 4779 4780 /* 4781 * I know this is terrible, but it's temporary until we stop tracking 4782 * the uptodate bits and such for the extent buffers. 4783 */ 4784 release_extent_buffer(eb); 4785 } 4786 4787 void free_extent_buffer_stale(struct extent_buffer *eb) 4788 { 4789 if (!eb) 4790 return; 4791 4792 spin_lock(&eb->refs_lock); 4793 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4794 4795 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4796 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4797 atomic_dec(&eb->refs); 4798 release_extent_buffer(eb); 4799 } 4800 4801 static void btree_clear_page_dirty(struct page *page) 4802 { 4803 ASSERT(PageDirty(page)); 4804 ASSERT(PageLocked(page)); 4805 clear_page_dirty_for_io(page); 4806 xa_lock_irq(&page->mapping->i_pages); 4807 if (!PageDirty(page)) 4808 __xa_clear_mark(&page->mapping->i_pages, 4809 page_index(page), PAGECACHE_TAG_DIRTY); 4810 xa_unlock_irq(&page->mapping->i_pages); 4811 } 4812 4813 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4814 { 4815 struct btrfs_fs_info *fs_info = eb->fs_info; 4816 struct page *page = eb->pages[0]; 4817 bool last; 4818 4819 /* btree_clear_page_dirty() needs page locked */ 4820 lock_page(page); 4821 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4822 eb->len); 4823 if (last) 4824 btree_clear_page_dirty(page); 4825 unlock_page(page); 4826 WARN_ON(atomic_read(&eb->refs) == 0); 4827 } 4828 4829 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 4830 { 4831 int i; 4832 int num_pages; 4833 struct page *page; 4834 4835 if (eb->fs_info->nodesize < PAGE_SIZE) 4836 return clear_subpage_extent_buffer_dirty(eb); 4837 4838 num_pages = num_extent_pages(eb); 4839 4840 for (i = 0; i < num_pages; i++) { 4841 page = eb->pages[i]; 4842 if (!PageDirty(page)) 4843 continue; 4844 lock_page(page); 4845 btree_clear_page_dirty(page); 4846 ClearPageError(page); 4847 unlock_page(page); 4848 } 4849 WARN_ON(atomic_read(&eb->refs) == 0); 4850 } 4851 4852 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4853 { 4854 int i; 4855 int num_pages; 4856 bool was_dirty; 4857 4858 check_buffer_tree_ref(eb); 4859 4860 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4861 4862 num_pages = num_extent_pages(eb); 4863 WARN_ON(atomic_read(&eb->refs) == 0); 4864 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4865 4866 if (!was_dirty) { 4867 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4868 4869 /* 4870 * For subpage case, we can have other extent buffers in the 4871 * same page, and in clear_subpage_extent_buffer_dirty() we 4872 * have to clear page dirty without subpage lock held. 4873 * This can cause race where our page gets dirty cleared after 4874 * we just set it. 4875 * 4876 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4877 * its page for other reasons, we can use page lock to prevent 4878 * the above race. 4879 */ 4880 if (subpage) 4881 lock_page(eb->pages[0]); 4882 for (i = 0; i < num_pages; i++) 4883 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4884 eb->start, eb->len); 4885 if (subpage) 4886 unlock_page(eb->pages[0]); 4887 } 4888 #ifdef CONFIG_BTRFS_DEBUG 4889 for (i = 0; i < num_pages; i++) 4890 ASSERT(PageDirty(eb->pages[i])); 4891 #endif 4892 4893 return was_dirty; 4894 } 4895 4896 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4897 { 4898 struct btrfs_fs_info *fs_info = eb->fs_info; 4899 struct page *page; 4900 int num_pages; 4901 int i; 4902 4903 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4904 num_pages = num_extent_pages(eb); 4905 for (i = 0; i < num_pages; i++) { 4906 page = eb->pages[i]; 4907 if (!page) 4908 continue; 4909 4910 /* 4911 * This is special handling for metadata subpage, as regular 4912 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4913 */ 4914 if (fs_info->nodesize >= PAGE_SIZE) 4915 ClearPageUptodate(page); 4916 else 4917 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4918 eb->len); 4919 } 4920 } 4921 4922 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4923 { 4924 struct btrfs_fs_info *fs_info = eb->fs_info; 4925 struct page *page; 4926 int num_pages; 4927 int i; 4928 4929 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4930 num_pages = num_extent_pages(eb); 4931 for (i = 0; i < num_pages; i++) { 4932 page = eb->pages[i]; 4933 4934 /* 4935 * This is special handling for metadata subpage, as regular 4936 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4937 */ 4938 if (fs_info->nodesize >= PAGE_SIZE) 4939 SetPageUptodate(page); 4940 else 4941 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4942 eb->len); 4943 } 4944 } 4945 4946 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4947 int mirror_num) 4948 { 4949 struct btrfs_fs_info *fs_info = eb->fs_info; 4950 struct extent_io_tree *io_tree; 4951 struct page *page = eb->pages[0]; 4952 struct btrfs_bio_ctrl bio_ctrl = { 4953 .mirror_num = mirror_num, 4954 }; 4955 int ret = 0; 4956 4957 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4958 ASSERT(PagePrivate(page)); 4959 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4960 4961 if (wait == WAIT_NONE) { 4962 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 4963 return -EAGAIN; 4964 } else { 4965 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); 4966 if (ret < 0) 4967 return ret; 4968 } 4969 4970 ret = 0; 4971 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4972 PageUptodate(page) || 4973 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4974 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4975 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL); 4976 return ret; 4977 } 4978 4979 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4980 eb->read_mirror = 0; 4981 atomic_set(&eb->io_pages, 1); 4982 check_buffer_tree_ref(eb); 4983 bio_ctrl.end_io_func = end_bio_extent_readpage; 4984 4985 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4986 4987 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4988 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4989 eb->start, page, eb->len, 4990 eb->start - page_offset(page), 0, true); 4991 if (ret) { 4992 /* 4993 * In the endio function, if we hit something wrong we will 4994 * increase the io_pages, so here we need to decrease it for 4995 * error path. 4996 */ 4997 atomic_dec(&eb->io_pages); 4998 } 4999 submit_one_bio(&bio_ctrl); 5000 if (ret || wait != WAIT_COMPLETE) 5001 return ret; 5002 5003 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 5004 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5005 ret = -EIO; 5006 return ret; 5007 } 5008 5009 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5010 { 5011 int i; 5012 struct page *page; 5013 int err; 5014 int ret = 0; 5015 int locked_pages = 0; 5016 int all_uptodate = 1; 5017 int num_pages; 5018 unsigned long num_reads = 0; 5019 struct btrfs_bio_ctrl bio_ctrl = { 5020 .mirror_num = mirror_num, 5021 }; 5022 5023 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5024 return 0; 5025 5026 /* 5027 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 5028 * operation, which could potentially still be in flight. In this case 5029 * we simply want to return an error. 5030 */ 5031 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 5032 return -EIO; 5033 5034 if (eb->fs_info->nodesize < PAGE_SIZE) 5035 return read_extent_buffer_subpage(eb, wait, mirror_num); 5036 5037 num_pages = num_extent_pages(eb); 5038 for (i = 0; i < num_pages; i++) { 5039 page = eb->pages[i]; 5040 if (wait == WAIT_NONE) { 5041 /* 5042 * WAIT_NONE is only utilized by readahead. If we can't 5043 * acquire the lock atomically it means either the eb 5044 * is being read out or under modification. 5045 * Either way the eb will be or has been cached, 5046 * readahead can exit safely. 5047 */ 5048 if (!trylock_page(page)) 5049 goto unlock_exit; 5050 } else { 5051 lock_page(page); 5052 } 5053 locked_pages++; 5054 } 5055 /* 5056 * We need to firstly lock all pages to make sure that 5057 * the uptodate bit of our pages won't be affected by 5058 * clear_extent_buffer_uptodate(). 5059 */ 5060 for (i = 0; i < num_pages; i++) { 5061 page = eb->pages[i]; 5062 if (!PageUptodate(page)) { 5063 num_reads++; 5064 all_uptodate = 0; 5065 } 5066 } 5067 5068 if (all_uptodate) { 5069 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5070 goto unlock_exit; 5071 } 5072 5073 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5074 eb->read_mirror = 0; 5075 atomic_set(&eb->io_pages, num_reads); 5076 /* 5077 * It is possible for release_folio to clear the TREE_REF bit before we 5078 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5079 */ 5080 check_buffer_tree_ref(eb); 5081 bio_ctrl.end_io_func = end_bio_extent_readpage; 5082 for (i = 0; i < num_pages; i++) { 5083 page = eb->pages[i]; 5084 5085 if (!PageUptodate(page)) { 5086 if (ret) { 5087 atomic_dec(&eb->io_pages); 5088 unlock_page(page); 5089 continue; 5090 } 5091 5092 ClearPageError(page); 5093 err = submit_extent_page(REQ_OP_READ, NULL, 5094 &bio_ctrl, page_offset(page), page, 5095 PAGE_SIZE, 0, 0, false); 5096 if (err) { 5097 /* 5098 * We failed to submit the bio so it's the 5099 * caller's responsibility to perform cleanup 5100 * i.e unlock page/set error bit. 5101 */ 5102 ret = err; 5103 SetPageError(page); 5104 unlock_page(page); 5105 atomic_dec(&eb->io_pages); 5106 } 5107 } else { 5108 unlock_page(page); 5109 } 5110 } 5111 5112 submit_one_bio(&bio_ctrl); 5113 5114 if (ret || wait != WAIT_COMPLETE) 5115 return ret; 5116 5117 for (i = 0; i < num_pages; i++) { 5118 page = eb->pages[i]; 5119 wait_on_page_locked(page); 5120 if (!PageUptodate(page)) 5121 ret = -EIO; 5122 } 5123 5124 return ret; 5125 5126 unlock_exit: 5127 while (locked_pages > 0) { 5128 locked_pages--; 5129 page = eb->pages[locked_pages]; 5130 unlock_page(page); 5131 } 5132 return ret; 5133 } 5134 5135 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5136 unsigned long len) 5137 { 5138 btrfs_warn(eb->fs_info, 5139 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5140 eb->start, eb->len, start, len); 5141 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5142 5143 return true; 5144 } 5145 5146 /* 5147 * Check if the [start, start + len) range is valid before reading/writing 5148 * the eb. 5149 * NOTE: @start and @len are offset inside the eb, not logical address. 5150 * 5151 * Caller should not touch the dst/src memory if this function returns error. 5152 */ 5153 static inline int check_eb_range(const struct extent_buffer *eb, 5154 unsigned long start, unsigned long len) 5155 { 5156 unsigned long offset; 5157 5158 /* start, start + len should not go beyond eb->len nor overflow */ 5159 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5160 return report_eb_range(eb, start, len); 5161 5162 return false; 5163 } 5164 5165 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5166 unsigned long start, unsigned long len) 5167 { 5168 size_t cur; 5169 size_t offset; 5170 struct page *page; 5171 char *kaddr; 5172 char *dst = (char *)dstv; 5173 unsigned long i = get_eb_page_index(start); 5174 5175 if (check_eb_range(eb, start, len)) 5176 return; 5177 5178 offset = get_eb_offset_in_page(eb, start); 5179 5180 while (len > 0) { 5181 page = eb->pages[i]; 5182 5183 cur = min(len, (PAGE_SIZE - offset)); 5184 kaddr = page_address(page); 5185 memcpy(dst, kaddr + offset, cur); 5186 5187 dst += cur; 5188 len -= cur; 5189 offset = 0; 5190 i++; 5191 } 5192 } 5193 5194 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5195 void __user *dstv, 5196 unsigned long start, unsigned long len) 5197 { 5198 size_t cur; 5199 size_t offset; 5200 struct page *page; 5201 char *kaddr; 5202 char __user *dst = (char __user *)dstv; 5203 unsigned long i = get_eb_page_index(start); 5204 int ret = 0; 5205 5206 WARN_ON(start > eb->len); 5207 WARN_ON(start + len > eb->start + eb->len); 5208 5209 offset = get_eb_offset_in_page(eb, start); 5210 5211 while (len > 0) { 5212 page = eb->pages[i]; 5213 5214 cur = min(len, (PAGE_SIZE - offset)); 5215 kaddr = page_address(page); 5216 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5217 ret = -EFAULT; 5218 break; 5219 } 5220 5221 dst += cur; 5222 len -= cur; 5223 offset = 0; 5224 i++; 5225 } 5226 5227 return ret; 5228 } 5229 5230 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5231 unsigned long start, unsigned long len) 5232 { 5233 size_t cur; 5234 size_t offset; 5235 struct page *page; 5236 char *kaddr; 5237 char *ptr = (char *)ptrv; 5238 unsigned long i = get_eb_page_index(start); 5239 int ret = 0; 5240 5241 if (check_eb_range(eb, start, len)) 5242 return -EINVAL; 5243 5244 offset = get_eb_offset_in_page(eb, start); 5245 5246 while (len > 0) { 5247 page = eb->pages[i]; 5248 5249 cur = min(len, (PAGE_SIZE - offset)); 5250 5251 kaddr = page_address(page); 5252 ret = memcmp(ptr, kaddr + offset, cur); 5253 if (ret) 5254 break; 5255 5256 ptr += cur; 5257 len -= cur; 5258 offset = 0; 5259 i++; 5260 } 5261 return ret; 5262 } 5263 5264 /* 5265 * Check that the extent buffer is uptodate. 5266 * 5267 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 5268 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 5269 */ 5270 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 5271 struct page *page) 5272 { 5273 struct btrfs_fs_info *fs_info = eb->fs_info; 5274 5275 /* 5276 * If we are using the commit root we could potentially clear a page 5277 * Uptodate while we're using the extent buffer that we've previously 5278 * looked up. We don't want to complain in this case, as the page was 5279 * valid before, we just didn't write it out. Instead we want to catch 5280 * the case where we didn't actually read the block properly, which 5281 * would have !PageUptodate && !PageError, as we clear PageError before 5282 * reading. 5283 */ 5284 if (fs_info->nodesize < PAGE_SIZE) { 5285 bool uptodate, error; 5286 5287 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 5288 eb->start, eb->len); 5289 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 5290 WARN_ON(!uptodate && !error); 5291 } else { 5292 WARN_ON(!PageUptodate(page) && !PageError(page)); 5293 } 5294 } 5295 5296 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5297 const void *srcv) 5298 { 5299 char *kaddr; 5300 5301 assert_eb_page_uptodate(eb, eb->pages[0]); 5302 kaddr = page_address(eb->pages[0]) + 5303 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 5304 chunk_tree_uuid)); 5305 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5306 } 5307 5308 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5309 { 5310 char *kaddr; 5311 5312 assert_eb_page_uptodate(eb, eb->pages[0]); 5313 kaddr = page_address(eb->pages[0]) + 5314 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 5315 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 5316 } 5317 5318 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5319 unsigned long start, unsigned long len) 5320 { 5321 size_t cur; 5322 size_t offset; 5323 struct page *page; 5324 char *kaddr; 5325 char *src = (char *)srcv; 5326 unsigned long i = get_eb_page_index(start); 5327 5328 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 5329 5330 if (check_eb_range(eb, start, len)) 5331 return; 5332 5333 offset = get_eb_offset_in_page(eb, start); 5334 5335 while (len > 0) { 5336 page = eb->pages[i]; 5337 assert_eb_page_uptodate(eb, page); 5338 5339 cur = min(len, PAGE_SIZE - offset); 5340 kaddr = page_address(page); 5341 memcpy(kaddr + offset, src, cur); 5342 5343 src += cur; 5344 len -= cur; 5345 offset = 0; 5346 i++; 5347 } 5348 } 5349 5350 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5351 unsigned long len) 5352 { 5353 size_t cur; 5354 size_t offset; 5355 struct page *page; 5356 char *kaddr; 5357 unsigned long i = get_eb_page_index(start); 5358 5359 if (check_eb_range(eb, start, len)) 5360 return; 5361 5362 offset = get_eb_offset_in_page(eb, start); 5363 5364 while (len > 0) { 5365 page = eb->pages[i]; 5366 assert_eb_page_uptodate(eb, page); 5367 5368 cur = min(len, PAGE_SIZE - offset); 5369 kaddr = page_address(page); 5370 memset(kaddr + offset, 0, cur); 5371 5372 len -= cur; 5373 offset = 0; 5374 i++; 5375 } 5376 } 5377 5378 void copy_extent_buffer_full(const struct extent_buffer *dst, 5379 const struct extent_buffer *src) 5380 { 5381 int i; 5382 int num_pages; 5383 5384 ASSERT(dst->len == src->len); 5385 5386 if (dst->fs_info->nodesize >= PAGE_SIZE) { 5387 num_pages = num_extent_pages(dst); 5388 for (i = 0; i < num_pages; i++) 5389 copy_page(page_address(dst->pages[i]), 5390 page_address(src->pages[i])); 5391 } else { 5392 size_t src_offset = get_eb_offset_in_page(src, 0); 5393 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5394 5395 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 5396 memcpy(page_address(dst->pages[0]) + dst_offset, 5397 page_address(src->pages[0]) + src_offset, 5398 src->len); 5399 } 5400 } 5401 5402 void copy_extent_buffer(const struct extent_buffer *dst, 5403 const struct extent_buffer *src, 5404 unsigned long dst_offset, unsigned long src_offset, 5405 unsigned long len) 5406 { 5407 u64 dst_len = dst->len; 5408 size_t cur; 5409 size_t offset; 5410 struct page *page; 5411 char *kaddr; 5412 unsigned long i = get_eb_page_index(dst_offset); 5413 5414 if (check_eb_range(dst, dst_offset, len) || 5415 check_eb_range(src, src_offset, len)) 5416 return; 5417 5418 WARN_ON(src->len != dst_len); 5419 5420 offset = get_eb_offset_in_page(dst, dst_offset); 5421 5422 while (len > 0) { 5423 page = dst->pages[i]; 5424 assert_eb_page_uptodate(dst, page); 5425 5426 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5427 5428 kaddr = page_address(page); 5429 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5430 5431 src_offset += cur; 5432 len -= cur; 5433 offset = 0; 5434 i++; 5435 } 5436 } 5437 5438 /* 5439 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5440 * given bit number 5441 * @eb: the extent buffer 5442 * @start: offset of the bitmap item in the extent buffer 5443 * @nr: bit number 5444 * @page_index: return index of the page in the extent buffer that contains the 5445 * given bit number 5446 * @page_offset: return offset into the page given by page_index 5447 * 5448 * This helper hides the ugliness of finding the byte in an extent buffer which 5449 * contains a given bit. 5450 */ 5451 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5452 unsigned long start, unsigned long nr, 5453 unsigned long *page_index, 5454 size_t *page_offset) 5455 { 5456 size_t byte_offset = BIT_BYTE(nr); 5457 size_t offset; 5458 5459 /* 5460 * The byte we want is the offset of the extent buffer + the offset of 5461 * the bitmap item in the extent buffer + the offset of the byte in the 5462 * bitmap item. 5463 */ 5464 offset = start + offset_in_page(eb->start) + byte_offset; 5465 5466 *page_index = offset >> PAGE_SHIFT; 5467 *page_offset = offset_in_page(offset); 5468 } 5469 5470 /** 5471 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5472 * @eb: the extent buffer 5473 * @start: offset of the bitmap item in the extent buffer 5474 * @nr: bit number to test 5475 */ 5476 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5477 unsigned long nr) 5478 { 5479 u8 *kaddr; 5480 struct page *page; 5481 unsigned long i; 5482 size_t offset; 5483 5484 eb_bitmap_offset(eb, start, nr, &i, &offset); 5485 page = eb->pages[i]; 5486 assert_eb_page_uptodate(eb, page); 5487 kaddr = page_address(page); 5488 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5489 } 5490 5491 /** 5492 * extent_buffer_bitmap_set - set an area of a bitmap 5493 * @eb: the extent buffer 5494 * @start: offset of the bitmap item in the extent buffer 5495 * @pos: bit number of the first bit 5496 * @len: number of bits to set 5497 */ 5498 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5499 unsigned long pos, unsigned long len) 5500 { 5501 u8 *kaddr; 5502 struct page *page; 5503 unsigned long i; 5504 size_t offset; 5505 const unsigned int size = pos + len; 5506 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5507 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5508 5509 eb_bitmap_offset(eb, start, pos, &i, &offset); 5510 page = eb->pages[i]; 5511 assert_eb_page_uptodate(eb, page); 5512 kaddr = page_address(page); 5513 5514 while (len >= bits_to_set) { 5515 kaddr[offset] |= mask_to_set; 5516 len -= bits_to_set; 5517 bits_to_set = BITS_PER_BYTE; 5518 mask_to_set = ~0; 5519 if (++offset >= PAGE_SIZE && len > 0) { 5520 offset = 0; 5521 page = eb->pages[++i]; 5522 assert_eb_page_uptodate(eb, page); 5523 kaddr = page_address(page); 5524 } 5525 } 5526 if (len) { 5527 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5528 kaddr[offset] |= mask_to_set; 5529 } 5530 } 5531 5532 5533 /** 5534 * extent_buffer_bitmap_clear - clear an area of a bitmap 5535 * @eb: the extent buffer 5536 * @start: offset of the bitmap item in the extent buffer 5537 * @pos: bit number of the first bit 5538 * @len: number of bits to clear 5539 */ 5540 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5541 unsigned long start, unsigned long pos, 5542 unsigned long len) 5543 { 5544 u8 *kaddr; 5545 struct page *page; 5546 unsigned long i; 5547 size_t offset; 5548 const unsigned int size = pos + len; 5549 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5550 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5551 5552 eb_bitmap_offset(eb, start, pos, &i, &offset); 5553 page = eb->pages[i]; 5554 assert_eb_page_uptodate(eb, page); 5555 kaddr = page_address(page); 5556 5557 while (len >= bits_to_clear) { 5558 kaddr[offset] &= ~mask_to_clear; 5559 len -= bits_to_clear; 5560 bits_to_clear = BITS_PER_BYTE; 5561 mask_to_clear = ~0; 5562 if (++offset >= PAGE_SIZE && len > 0) { 5563 offset = 0; 5564 page = eb->pages[++i]; 5565 assert_eb_page_uptodate(eb, page); 5566 kaddr = page_address(page); 5567 } 5568 } 5569 if (len) { 5570 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5571 kaddr[offset] &= ~mask_to_clear; 5572 } 5573 } 5574 5575 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5576 { 5577 unsigned long distance = (src > dst) ? src - dst : dst - src; 5578 return distance < len; 5579 } 5580 5581 static void copy_pages(struct page *dst_page, struct page *src_page, 5582 unsigned long dst_off, unsigned long src_off, 5583 unsigned long len) 5584 { 5585 char *dst_kaddr = page_address(dst_page); 5586 char *src_kaddr; 5587 int must_memmove = 0; 5588 5589 if (dst_page != src_page) { 5590 src_kaddr = page_address(src_page); 5591 } else { 5592 src_kaddr = dst_kaddr; 5593 if (areas_overlap(src_off, dst_off, len)) 5594 must_memmove = 1; 5595 } 5596 5597 if (must_memmove) 5598 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5599 else 5600 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5601 } 5602 5603 void memcpy_extent_buffer(const struct extent_buffer *dst, 5604 unsigned long dst_offset, unsigned long src_offset, 5605 unsigned long len) 5606 { 5607 size_t cur; 5608 size_t dst_off_in_page; 5609 size_t src_off_in_page; 5610 unsigned long dst_i; 5611 unsigned long src_i; 5612 5613 if (check_eb_range(dst, dst_offset, len) || 5614 check_eb_range(dst, src_offset, len)) 5615 return; 5616 5617 while (len > 0) { 5618 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5619 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5620 5621 dst_i = get_eb_page_index(dst_offset); 5622 src_i = get_eb_page_index(src_offset); 5623 5624 cur = min(len, (unsigned long)(PAGE_SIZE - 5625 src_off_in_page)); 5626 cur = min_t(unsigned long, cur, 5627 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5628 5629 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5630 dst_off_in_page, src_off_in_page, cur); 5631 5632 src_offset += cur; 5633 dst_offset += cur; 5634 len -= cur; 5635 } 5636 } 5637 5638 void memmove_extent_buffer(const struct extent_buffer *dst, 5639 unsigned long dst_offset, unsigned long src_offset, 5640 unsigned long len) 5641 { 5642 size_t cur; 5643 size_t dst_off_in_page; 5644 size_t src_off_in_page; 5645 unsigned long dst_end = dst_offset + len - 1; 5646 unsigned long src_end = src_offset + len - 1; 5647 unsigned long dst_i; 5648 unsigned long src_i; 5649 5650 if (check_eb_range(dst, dst_offset, len) || 5651 check_eb_range(dst, src_offset, len)) 5652 return; 5653 if (dst_offset < src_offset) { 5654 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5655 return; 5656 } 5657 while (len > 0) { 5658 dst_i = get_eb_page_index(dst_end); 5659 src_i = get_eb_page_index(src_end); 5660 5661 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5662 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5663 5664 cur = min_t(unsigned long, len, src_off_in_page + 1); 5665 cur = min(cur, dst_off_in_page + 1); 5666 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5667 dst_off_in_page - cur + 1, 5668 src_off_in_page - cur + 1, cur); 5669 5670 dst_end -= cur; 5671 src_end -= cur; 5672 len -= cur; 5673 } 5674 } 5675 5676 #define GANG_LOOKUP_SIZE 16 5677 static struct extent_buffer *get_next_extent_buffer( 5678 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5679 { 5680 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5681 struct extent_buffer *found = NULL; 5682 u64 page_start = page_offset(page); 5683 u64 cur = page_start; 5684 5685 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5686 lockdep_assert_held(&fs_info->buffer_lock); 5687 5688 while (cur < page_start + PAGE_SIZE) { 5689 int ret; 5690 int i; 5691 5692 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5693 (void **)gang, cur >> fs_info->sectorsize_bits, 5694 min_t(unsigned int, GANG_LOOKUP_SIZE, 5695 PAGE_SIZE / fs_info->nodesize)); 5696 if (ret == 0) 5697 goto out; 5698 for (i = 0; i < ret; i++) { 5699 /* Already beyond page end */ 5700 if (gang[i]->start >= page_start + PAGE_SIZE) 5701 goto out; 5702 /* Found one */ 5703 if (gang[i]->start >= bytenr) { 5704 found = gang[i]; 5705 goto out; 5706 } 5707 } 5708 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5709 } 5710 out: 5711 return found; 5712 } 5713 5714 static int try_release_subpage_extent_buffer(struct page *page) 5715 { 5716 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5717 u64 cur = page_offset(page); 5718 const u64 end = page_offset(page) + PAGE_SIZE; 5719 int ret; 5720 5721 while (cur < end) { 5722 struct extent_buffer *eb = NULL; 5723 5724 /* 5725 * Unlike try_release_extent_buffer() which uses page->private 5726 * to grab buffer, for subpage case we rely on radix tree, thus 5727 * we need to ensure radix tree consistency. 5728 * 5729 * We also want an atomic snapshot of the radix tree, thus go 5730 * with spinlock rather than RCU. 5731 */ 5732 spin_lock(&fs_info->buffer_lock); 5733 eb = get_next_extent_buffer(fs_info, page, cur); 5734 if (!eb) { 5735 /* No more eb in the page range after or at cur */ 5736 spin_unlock(&fs_info->buffer_lock); 5737 break; 5738 } 5739 cur = eb->start + eb->len; 5740 5741 /* 5742 * The same as try_release_extent_buffer(), to ensure the eb 5743 * won't disappear out from under us. 5744 */ 5745 spin_lock(&eb->refs_lock); 5746 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5747 spin_unlock(&eb->refs_lock); 5748 spin_unlock(&fs_info->buffer_lock); 5749 break; 5750 } 5751 spin_unlock(&fs_info->buffer_lock); 5752 5753 /* 5754 * If tree ref isn't set then we know the ref on this eb is a 5755 * real ref, so just return, this eb will likely be freed soon 5756 * anyway. 5757 */ 5758 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5759 spin_unlock(&eb->refs_lock); 5760 break; 5761 } 5762 5763 /* 5764 * Here we don't care about the return value, we will always 5765 * check the page private at the end. And 5766 * release_extent_buffer() will release the refs_lock. 5767 */ 5768 release_extent_buffer(eb); 5769 } 5770 /* 5771 * Finally to check if we have cleared page private, as if we have 5772 * released all ebs in the page, the page private should be cleared now. 5773 */ 5774 spin_lock(&page->mapping->private_lock); 5775 if (!PagePrivate(page)) 5776 ret = 1; 5777 else 5778 ret = 0; 5779 spin_unlock(&page->mapping->private_lock); 5780 return ret; 5781 5782 } 5783 5784 int try_release_extent_buffer(struct page *page) 5785 { 5786 struct extent_buffer *eb; 5787 5788 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5789 return try_release_subpage_extent_buffer(page); 5790 5791 /* 5792 * We need to make sure nobody is changing page->private, as we rely on 5793 * page->private as the pointer to extent buffer. 5794 */ 5795 spin_lock(&page->mapping->private_lock); 5796 if (!PagePrivate(page)) { 5797 spin_unlock(&page->mapping->private_lock); 5798 return 1; 5799 } 5800 5801 eb = (struct extent_buffer *)page->private; 5802 BUG_ON(!eb); 5803 5804 /* 5805 * This is a little awful but should be ok, we need to make sure that 5806 * the eb doesn't disappear out from under us while we're looking at 5807 * this page. 5808 */ 5809 spin_lock(&eb->refs_lock); 5810 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5811 spin_unlock(&eb->refs_lock); 5812 spin_unlock(&page->mapping->private_lock); 5813 return 0; 5814 } 5815 spin_unlock(&page->mapping->private_lock); 5816 5817 /* 5818 * If tree ref isn't set then we know the ref on this eb is a real ref, 5819 * so just return, this page will likely be freed soon anyway. 5820 */ 5821 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5822 spin_unlock(&eb->refs_lock); 5823 return 0; 5824 } 5825 5826 return release_extent_buffer(eb); 5827 } 5828 5829 /* 5830 * btrfs_readahead_tree_block - attempt to readahead a child block 5831 * @fs_info: the fs_info 5832 * @bytenr: bytenr to read 5833 * @owner_root: objectid of the root that owns this eb 5834 * @gen: generation for the uptodate check, can be 0 5835 * @level: level for the eb 5836 * 5837 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5838 * normal uptodate check of the eb, without checking the generation. If we have 5839 * to read the block we will not block on anything. 5840 */ 5841 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5842 u64 bytenr, u64 owner_root, u64 gen, int level) 5843 { 5844 struct extent_buffer *eb; 5845 int ret; 5846 5847 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5848 if (IS_ERR(eb)) 5849 return; 5850 5851 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5852 free_extent_buffer(eb); 5853 return; 5854 } 5855 5856 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 5857 if (ret < 0) 5858 free_extent_buffer_stale(eb); 5859 else 5860 free_extent_buffer(eb); 5861 } 5862 5863 /* 5864 * btrfs_readahead_node_child - readahead a node's child block 5865 * @node: parent node we're reading from 5866 * @slot: slot in the parent node for the child we want to read 5867 * 5868 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5869 * the slot in the node provided. 5870 */ 5871 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5872 { 5873 btrfs_readahead_tree_block(node->fs_info, 5874 btrfs_node_blockptr(node, slot), 5875 btrfs_header_owner(node), 5876 btrfs_node_ptr_generation(node, slot), 5877 btrfs_header_level(node) - 1); 5878 } 5879