1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 33 static struct kmem_cache *extent_state_cache; 34 static struct kmem_cache *extent_buffer_cache; 35 static struct bio_set btrfs_bioset; 36 37 static inline bool extent_state_in_tree(const struct extent_state *state) 38 { 39 return !RB_EMPTY_NODE(&state->rb_node); 40 } 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static LIST_HEAD(states); 44 static DEFINE_SPINLOCK(leak_lock); 45 46 static inline void btrfs_leak_debug_add(spinlock_t *lock, 47 struct list_head *new, 48 struct list_head *head) 49 { 50 unsigned long flags; 51 52 spin_lock_irqsave(lock, flags); 53 list_add(new, head); 54 spin_unlock_irqrestore(lock, flags); 55 } 56 57 static inline void btrfs_leak_debug_del(spinlock_t *lock, 58 struct list_head *entry) 59 { 60 unsigned long flags; 61 62 spin_lock_irqsave(lock, flags); 63 list_del(entry); 64 spin_unlock_irqrestore(lock, flags); 65 } 66 67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 68 { 69 struct extent_buffer *eb; 70 unsigned long flags; 71 72 /* 73 * If we didn't get into open_ctree our allocated_ebs will not be 74 * initialized, so just skip this. 75 */ 76 if (!fs_info->allocated_ebs.next) 77 return; 78 79 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 80 while (!list_empty(&fs_info->allocated_ebs)) { 81 eb = list_first_entry(&fs_info->allocated_ebs, 82 struct extent_buffer, leak_list); 83 pr_err( 84 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 85 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 86 btrfs_header_owner(eb)); 87 list_del(&eb->leak_list); 88 kmem_cache_free(extent_buffer_cache, eb); 89 } 90 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 91 } 92 93 static inline void btrfs_extent_state_leak_debug_check(void) 94 { 95 struct extent_state *state; 96 97 while (!list_empty(&states)) { 98 state = list_entry(states.next, struct extent_state, leak_list); 99 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 100 state->start, state->end, state->state, 101 extent_state_in_tree(state), 102 refcount_read(&state->refs)); 103 list_del(&state->leak_list); 104 kmem_cache_free(extent_state_cache, state); 105 } 106 } 107 108 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 109 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 110 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 111 struct extent_io_tree *tree, u64 start, u64 end) 112 { 113 struct inode *inode = tree->private_data; 114 u64 isize; 115 116 if (!inode || !is_data_inode(inode)) 117 return; 118 119 isize = i_size_read(inode); 120 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 121 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 122 "%s: ino %llu isize %llu odd range [%llu,%llu]", 123 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 124 } 125 } 126 #else 127 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 128 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 129 #define btrfs_extent_state_leak_debug_check() do {} while (0) 130 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 131 #endif 132 133 struct tree_entry { 134 u64 start; 135 u64 end; 136 struct rb_node rb_node; 137 }; 138 139 struct extent_page_data { 140 struct btrfs_bio_ctrl bio_ctrl; 141 /* tells writepage not to lock the state bits for this range 142 * it still does the unlocking 143 */ 144 unsigned int extent_locked:1; 145 146 /* tells the submit_bio code to use REQ_SYNC */ 147 unsigned int sync_io:1; 148 }; 149 150 static int add_extent_changeset(struct extent_state *state, u32 bits, 151 struct extent_changeset *changeset, 152 int set) 153 { 154 int ret; 155 156 if (!changeset) 157 return 0; 158 if (set && (state->state & bits) == bits) 159 return 0; 160 if (!set && (state->state & bits) == 0) 161 return 0; 162 changeset->bytes_changed += state->end - state->start + 1; 163 ret = ulist_add(&changeset->range_changed, state->start, state->end, 164 GFP_ATOMIC); 165 return ret; 166 } 167 168 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 169 unsigned long bio_flags) 170 { 171 blk_status_t ret = 0; 172 struct extent_io_tree *tree = bio->bi_private; 173 174 bio->bi_private = NULL; 175 176 /* Caller should ensure the bio has at least some range added */ 177 ASSERT(bio->bi_iter.bi_size); 178 if (is_data_inode(tree->private_data)) 179 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 180 bio_flags); 181 else 182 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 183 mirror_num, bio_flags); 184 185 return blk_status_to_errno(ret); 186 } 187 188 /* Cleanup unsubmitted bios */ 189 static void end_write_bio(struct extent_page_data *epd, int ret) 190 { 191 struct bio *bio = epd->bio_ctrl.bio; 192 193 if (bio) { 194 bio->bi_status = errno_to_blk_status(ret); 195 bio_endio(bio); 196 epd->bio_ctrl.bio = NULL; 197 } 198 } 199 200 /* 201 * Submit bio from extent page data via submit_one_bio 202 * 203 * Return 0 if everything is OK. 204 * Return <0 for error. 205 */ 206 static int __must_check flush_write_bio(struct extent_page_data *epd) 207 { 208 int ret = 0; 209 struct bio *bio = epd->bio_ctrl.bio; 210 211 if (bio) { 212 ret = submit_one_bio(bio, 0, 0); 213 /* 214 * Clean up of epd->bio is handled by its endio function. 215 * And endio is either triggered by successful bio execution 216 * or the error handler of submit bio hook. 217 * So at this point, no matter what happened, we don't need 218 * to clean up epd->bio. 219 */ 220 epd->bio_ctrl.bio = NULL; 221 } 222 return ret; 223 } 224 225 int __init extent_state_cache_init(void) 226 { 227 extent_state_cache = kmem_cache_create("btrfs_extent_state", 228 sizeof(struct extent_state), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_state_cache) 231 return -ENOMEM; 232 return 0; 233 } 234 235 int __init extent_io_init(void) 236 { 237 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 238 sizeof(struct extent_buffer), 0, 239 SLAB_MEM_SPREAD, NULL); 240 if (!extent_buffer_cache) 241 return -ENOMEM; 242 243 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 244 offsetof(struct btrfs_io_bio, bio), 245 BIOSET_NEED_BVECS)) 246 goto free_buffer_cache; 247 248 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 249 goto free_bioset; 250 251 return 0; 252 253 free_bioset: 254 bioset_exit(&btrfs_bioset); 255 256 free_buffer_cache: 257 kmem_cache_destroy(extent_buffer_cache); 258 extent_buffer_cache = NULL; 259 return -ENOMEM; 260 } 261 262 void __cold extent_state_cache_exit(void) 263 { 264 btrfs_extent_state_leak_debug_check(); 265 kmem_cache_destroy(extent_state_cache); 266 } 267 268 void __cold extent_io_exit(void) 269 { 270 /* 271 * Make sure all delayed rcu free are flushed before we 272 * destroy caches. 273 */ 274 rcu_barrier(); 275 kmem_cache_destroy(extent_buffer_cache); 276 bioset_exit(&btrfs_bioset); 277 } 278 279 /* 280 * For the file_extent_tree, we want to hold the inode lock when we lookup and 281 * update the disk_i_size, but lockdep will complain because our io_tree we hold 282 * the tree lock and get the inode lock when setting delalloc. These two things 283 * are unrelated, so make a class for the file_extent_tree so we don't get the 284 * two locking patterns mixed up. 285 */ 286 static struct lock_class_key file_extent_tree_class; 287 288 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 289 struct extent_io_tree *tree, unsigned int owner, 290 void *private_data) 291 { 292 tree->fs_info = fs_info; 293 tree->state = RB_ROOT; 294 tree->dirty_bytes = 0; 295 spin_lock_init(&tree->lock); 296 tree->private_data = private_data; 297 tree->owner = owner; 298 if (owner == IO_TREE_INODE_FILE_EXTENT) 299 lockdep_set_class(&tree->lock, &file_extent_tree_class); 300 } 301 302 void extent_io_tree_release(struct extent_io_tree *tree) 303 { 304 spin_lock(&tree->lock); 305 /* 306 * Do a single barrier for the waitqueue_active check here, the state 307 * of the waitqueue should not change once extent_io_tree_release is 308 * called. 309 */ 310 smp_mb(); 311 while (!RB_EMPTY_ROOT(&tree->state)) { 312 struct rb_node *node; 313 struct extent_state *state; 314 315 node = rb_first(&tree->state); 316 state = rb_entry(node, struct extent_state, rb_node); 317 rb_erase(&state->rb_node, &tree->state); 318 RB_CLEAR_NODE(&state->rb_node); 319 /* 320 * btree io trees aren't supposed to have tasks waiting for 321 * changes in the flags of extent states ever. 322 */ 323 ASSERT(!waitqueue_active(&state->wq)); 324 free_extent_state(state); 325 326 cond_resched_lock(&tree->lock); 327 } 328 spin_unlock(&tree->lock); 329 } 330 331 static struct extent_state *alloc_extent_state(gfp_t mask) 332 { 333 struct extent_state *state; 334 335 /* 336 * The given mask might be not appropriate for the slab allocator, 337 * drop the unsupported bits 338 */ 339 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 340 state = kmem_cache_alloc(extent_state_cache, mask); 341 if (!state) 342 return state; 343 state->state = 0; 344 state->failrec = NULL; 345 RB_CLEAR_NODE(&state->rb_node); 346 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 347 refcount_set(&state->refs, 1); 348 init_waitqueue_head(&state->wq); 349 trace_alloc_extent_state(state, mask, _RET_IP_); 350 return state; 351 } 352 353 void free_extent_state(struct extent_state *state) 354 { 355 if (!state) 356 return; 357 if (refcount_dec_and_test(&state->refs)) { 358 WARN_ON(extent_state_in_tree(state)); 359 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 360 trace_free_extent_state(state, _RET_IP_); 361 kmem_cache_free(extent_state_cache, state); 362 } 363 } 364 365 static struct rb_node *tree_insert(struct rb_root *root, 366 struct rb_node *search_start, 367 u64 offset, 368 struct rb_node *node, 369 struct rb_node ***p_in, 370 struct rb_node **parent_in) 371 { 372 struct rb_node **p; 373 struct rb_node *parent = NULL; 374 struct tree_entry *entry; 375 376 if (p_in && parent_in) { 377 p = *p_in; 378 parent = *parent_in; 379 goto do_insert; 380 } 381 382 p = search_start ? &search_start : &root->rb_node; 383 while (*p) { 384 parent = *p; 385 entry = rb_entry(parent, struct tree_entry, rb_node); 386 387 if (offset < entry->start) 388 p = &(*p)->rb_left; 389 else if (offset > entry->end) 390 p = &(*p)->rb_right; 391 else 392 return parent; 393 } 394 395 do_insert: 396 rb_link_node(node, parent, p); 397 rb_insert_color(node, root); 398 return NULL; 399 } 400 401 /** 402 * Search @tree for an entry that contains @offset. Such entry would have 403 * entry->start <= offset && entry->end >= offset. 404 * 405 * @tree: the tree to search 406 * @offset: offset that should fall within an entry in @tree 407 * @next_ret: pointer to the first entry whose range ends after @offset 408 * @prev_ret: pointer to the first entry whose range begins before @offset 409 * @p_ret: pointer where new node should be anchored (used when inserting an 410 * entry in the tree) 411 * @parent_ret: points to entry which would have been the parent of the entry, 412 * containing @offset 413 * 414 * This function returns a pointer to the entry that contains @offset byte 415 * address. If no such entry exists, then NULL is returned and the other 416 * pointer arguments to the function are filled, otherwise the found entry is 417 * returned and other pointers are left untouched. 418 */ 419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 420 struct rb_node **next_ret, 421 struct rb_node **prev_ret, 422 struct rb_node ***p_ret, 423 struct rb_node **parent_ret) 424 { 425 struct rb_root *root = &tree->state; 426 struct rb_node **n = &root->rb_node; 427 struct rb_node *prev = NULL; 428 struct rb_node *orig_prev = NULL; 429 struct tree_entry *entry; 430 struct tree_entry *prev_entry = NULL; 431 432 while (*n) { 433 prev = *n; 434 entry = rb_entry(prev, struct tree_entry, rb_node); 435 prev_entry = entry; 436 437 if (offset < entry->start) 438 n = &(*n)->rb_left; 439 else if (offset > entry->end) 440 n = &(*n)->rb_right; 441 else 442 return *n; 443 } 444 445 if (p_ret) 446 *p_ret = n; 447 if (parent_ret) 448 *parent_ret = prev; 449 450 if (next_ret) { 451 orig_prev = prev; 452 while (prev && offset > prev_entry->end) { 453 prev = rb_next(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *next_ret = prev; 457 prev = orig_prev; 458 } 459 460 if (prev_ret) { 461 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 462 while (prev && offset < prev_entry->start) { 463 prev = rb_prev(prev); 464 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 465 } 466 *prev_ret = prev; 467 } 468 return NULL; 469 } 470 471 static inline struct rb_node * 472 tree_search_for_insert(struct extent_io_tree *tree, 473 u64 offset, 474 struct rb_node ***p_ret, 475 struct rb_node **parent_ret) 476 { 477 struct rb_node *next= NULL; 478 struct rb_node *ret; 479 480 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 481 if (!ret) 482 return next; 483 return ret; 484 } 485 486 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 487 u64 offset) 488 { 489 return tree_search_for_insert(tree, offset, NULL, NULL); 490 } 491 492 /* 493 * utility function to look for merge candidates inside a given range. 494 * Any extents with matching state are merged together into a single 495 * extent in the tree. Extents with EXTENT_IO in their state field 496 * are not merged because the end_io handlers need to be able to do 497 * operations on them without sleeping (or doing allocations/splits). 498 * 499 * This should be called with the tree lock held. 500 */ 501 static void merge_state(struct extent_io_tree *tree, 502 struct extent_state *state) 503 { 504 struct extent_state *other; 505 struct rb_node *other_node; 506 507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 508 return; 509 510 other_node = rb_prev(&state->rb_node); 511 if (other_node) { 512 other = rb_entry(other_node, struct extent_state, rb_node); 513 if (other->end == state->start - 1 && 514 other->state == state->state) { 515 if (tree->private_data && 516 is_data_inode(tree->private_data)) 517 btrfs_merge_delalloc_extent(tree->private_data, 518 state, other); 519 state->start = other->start; 520 rb_erase(&other->rb_node, &tree->state); 521 RB_CLEAR_NODE(&other->rb_node); 522 free_extent_state(other); 523 } 524 } 525 other_node = rb_next(&state->rb_node); 526 if (other_node) { 527 other = rb_entry(other_node, struct extent_state, rb_node); 528 if (other->start == state->end + 1 && 529 other->state == state->state) { 530 if (tree->private_data && 531 is_data_inode(tree->private_data)) 532 btrfs_merge_delalloc_extent(tree->private_data, 533 state, other); 534 state->end = other->end; 535 rb_erase(&other->rb_node, &tree->state); 536 RB_CLEAR_NODE(&other->rb_node); 537 free_extent_state(other); 538 } 539 } 540 } 541 542 static void set_state_bits(struct extent_io_tree *tree, 543 struct extent_state *state, u32 *bits, 544 struct extent_changeset *changeset); 545 546 /* 547 * insert an extent_state struct into the tree. 'bits' are set on the 548 * struct before it is inserted. 549 * 550 * This may return -EEXIST if the extent is already there, in which case the 551 * state struct is freed. 552 * 553 * The tree lock is not taken internally. This is a utility function and 554 * probably isn't what you want to call (see set/clear_extent_bit). 555 */ 556 static int insert_state(struct extent_io_tree *tree, 557 struct extent_state *state, u64 start, u64 end, 558 struct rb_node ***p, 559 struct rb_node **parent, 560 u32 *bits, struct extent_changeset *changeset) 561 { 562 struct rb_node *node; 563 564 if (end < start) { 565 btrfs_err(tree->fs_info, 566 "insert state: end < start %llu %llu", end, start); 567 WARN_ON(1); 568 } 569 state->start = start; 570 state->end = end; 571 572 set_state_bits(tree, state, bits, changeset); 573 574 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 575 if (node) { 576 struct extent_state *found; 577 found = rb_entry(node, struct extent_state, rb_node); 578 btrfs_err(tree->fs_info, 579 "found node %llu %llu on insert of %llu %llu", 580 found->start, found->end, start, end); 581 return -EEXIST; 582 } 583 merge_state(tree, state); 584 return 0; 585 } 586 587 /* 588 * split a given extent state struct in two, inserting the preallocated 589 * struct 'prealloc' as the newly created second half. 'split' indicates an 590 * offset inside 'orig' where it should be split. 591 * 592 * Before calling, 593 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 594 * are two extent state structs in the tree: 595 * prealloc: [orig->start, split - 1] 596 * orig: [ split, orig->end ] 597 * 598 * The tree locks are not taken by this function. They need to be held 599 * by the caller. 600 */ 601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 602 struct extent_state *prealloc, u64 split) 603 { 604 struct rb_node *node; 605 606 if (tree->private_data && is_data_inode(tree->private_data)) 607 btrfs_split_delalloc_extent(tree->private_data, orig, split); 608 609 prealloc->start = orig->start; 610 prealloc->end = split - 1; 611 prealloc->state = orig->state; 612 orig->start = split; 613 614 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 615 &prealloc->rb_node, NULL, NULL); 616 if (node) { 617 free_extent_state(prealloc); 618 return -EEXIST; 619 } 620 return 0; 621 } 622 623 static struct extent_state *next_state(struct extent_state *state) 624 { 625 struct rb_node *next = rb_next(&state->rb_node); 626 if (next) 627 return rb_entry(next, struct extent_state, rb_node); 628 else 629 return NULL; 630 } 631 632 /* 633 * utility function to clear some bits in an extent state struct. 634 * it will optionally wake up anyone waiting on this state (wake == 1). 635 * 636 * If no bits are set on the state struct after clearing things, the 637 * struct is freed and removed from the tree 638 */ 639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 640 struct extent_state *state, 641 u32 *bits, int wake, 642 struct extent_changeset *changeset) 643 { 644 struct extent_state *next; 645 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 646 int ret; 647 648 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 649 u64 range = state->end - state->start + 1; 650 WARN_ON(range > tree->dirty_bytes); 651 tree->dirty_bytes -= range; 652 } 653 654 if (tree->private_data && is_data_inode(tree->private_data)) 655 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 656 657 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 658 BUG_ON(ret < 0); 659 state->state &= ~bits_to_clear; 660 if (wake) 661 wake_up(&state->wq); 662 if (state->state == 0) { 663 next = next_state(state); 664 if (extent_state_in_tree(state)) { 665 rb_erase(&state->rb_node, &tree->state); 666 RB_CLEAR_NODE(&state->rb_node); 667 free_extent_state(state); 668 } else { 669 WARN_ON(1); 670 } 671 } else { 672 merge_state(tree, state); 673 next = next_state(state); 674 } 675 return next; 676 } 677 678 static struct extent_state * 679 alloc_extent_state_atomic(struct extent_state *prealloc) 680 { 681 if (!prealloc) 682 prealloc = alloc_extent_state(GFP_ATOMIC); 683 684 return prealloc; 685 } 686 687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 688 { 689 btrfs_panic(tree->fs_info, err, 690 "locking error: extent tree was modified by another thread while locked"); 691 } 692 693 /* 694 * clear some bits on a range in the tree. This may require splitting 695 * or inserting elements in the tree, so the gfp mask is used to 696 * indicate which allocations or sleeping are allowed. 697 * 698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 699 * the given range from the tree regardless of state (ie for truncate). 700 * 701 * the range [start, end] is inclusive. 702 * 703 * This takes the tree lock, and returns 0 on success and < 0 on error. 704 */ 705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 706 u32 bits, int wake, int delete, 707 struct extent_state **cached_state, 708 gfp_t mask, struct extent_changeset *changeset) 709 { 710 struct extent_state *state; 711 struct extent_state *cached; 712 struct extent_state *prealloc = NULL; 713 struct rb_node *node; 714 u64 last_end; 715 int err; 716 int clear = 0; 717 718 btrfs_debug_check_extent_io_range(tree, start, end); 719 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 720 721 if (bits & EXTENT_DELALLOC) 722 bits |= EXTENT_NORESERVE; 723 724 if (delete) 725 bits |= ~EXTENT_CTLBITS; 726 727 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 728 clear = 1; 729 again: 730 if (!prealloc && gfpflags_allow_blocking(mask)) { 731 /* 732 * Don't care for allocation failure here because we might end 733 * up not needing the pre-allocated extent state at all, which 734 * is the case if we only have in the tree extent states that 735 * cover our input range and don't cover too any other range. 736 * If we end up needing a new extent state we allocate it later. 737 */ 738 prealloc = alloc_extent_state(mask); 739 } 740 741 spin_lock(&tree->lock); 742 if (cached_state) { 743 cached = *cached_state; 744 745 if (clear) { 746 *cached_state = NULL; 747 cached_state = NULL; 748 } 749 750 if (cached && extent_state_in_tree(cached) && 751 cached->start <= start && cached->end > start) { 752 if (clear) 753 refcount_dec(&cached->refs); 754 state = cached; 755 goto hit_next; 756 } 757 if (clear) 758 free_extent_state(cached); 759 } 760 /* 761 * this search will find the extents that end after 762 * our range starts 763 */ 764 node = tree_search(tree, start); 765 if (!node) 766 goto out; 767 state = rb_entry(node, struct extent_state, rb_node); 768 hit_next: 769 if (state->start > end) 770 goto out; 771 WARN_ON(state->end < start); 772 last_end = state->end; 773 774 /* the state doesn't have the wanted bits, go ahead */ 775 if (!(state->state & bits)) { 776 state = next_state(state); 777 goto next; 778 } 779 780 /* 781 * | ---- desired range ---- | 782 * | state | or 783 * | ------------- state -------------- | 784 * 785 * We need to split the extent we found, and may flip 786 * bits on second half. 787 * 788 * If the extent we found extends past our range, we 789 * just split and search again. It'll get split again 790 * the next time though. 791 * 792 * If the extent we found is inside our range, we clear 793 * the desired bit on it. 794 */ 795 796 if (state->start < start) { 797 prealloc = alloc_extent_state_atomic(prealloc); 798 BUG_ON(!prealloc); 799 err = split_state(tree, state, prealloc, start); 800 if (err) 801 extent_io_tree_panic(tree, err); 802 803 prealloc = NULL; 804 if (err) 805 goto out; 806 if (state->end <= end) { 807 state = clear_state_bit(tree, state, &bits, wake, 808 changeset); 809 goto next; 810 } 811 goto search_again; 812 } 813 /* 814 * | ---- desired range ---- | 815 * | state | 816 * We need to split the extent, and clear the bit 817 * on the first half 818 */ 819 if (state->start <= end && state->end > end) { 820 prealloc = alloc_extent_state_atomic(prealloc); 821 BUG_ON(!prealloc); 822 err = split_state(tree, state, prealloc, end + 1); 823 if (err) 824 extent_io_tree_panic(tree, err); 825 826 if (wake) 827 wake_up(&state->wq); 828 829 clear_state_bit(tree, prealloc, &bits, wake, changeset); 830 831 prealloc = NULL; 832 goto out; 833 } 834 835 state = clear_state_bit(tree, state, &bits, wake, changeset); 836 next: 837 if (last_end == (u64)-1) 838 goto out; 839 start = last_end + 1; 840 if (start <= end && state && !need_resched()) 841 goto hit_next; 842 843 search_again: 844 if (start > end) 845 goto out; 846 spin_unlock(&tree->lock); 847 if (gfpflags_allow_blocking(mask)) 848 cond_resched(); 849 goto again; 850 851 out: 852 spin_unlock(&tree->lock); 853 if (prealloc) 854 free_extent_state(prealloc); 855 856 return 0; 857 858 } 859 860 static void wait_on_state(struct extent_io_tree *tree, 861 struct extent_state *state) 862 __releases(tree->lock) 863 __acquires(tree->lock) 864 { 865 DEFINE_WAIT(wait); 866 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 867 spin_unlock(&tree->lock); 868 schedule(); 869 spin_lock(&tree->lock); 870 finish_wait(&state->wq, &wait); 871 } 872 873 /* 874 * waits for one or more bits to clear on a range in the state tree. 875 * The range [start, end] is inclusive. 876 * The tree lock is taken by this function 877 */ 878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 879 u32 bits) 880 { 881 struct extent_state *state; 882 struct rb_node *node; 883 884 btrfs_debug_check_extent_io_range(tree, start, end); 885 886 spin_lock(&tree->lock); 887 again: 888 while (1) { 889 /* 890 * this search will find all the extents that end after 891 * our range starts 892 */ 893 node = tree_search(tree, start); 894 process_node: 895 if (!node) 896 break; 897 898 state = rb_entry(node, struct extent_state, rb_node); 899 900 if (state->start > end) 901 goto out; 902 903 if (state->state & bits) { 904 start = state->start; 905 refcount_inc(&state->refs); 906 wait_on_state(tree, state); 907 free_extent_state(state); 908 goto again; 909 } 910 start = state->end + 1; 911 912 if (start > end) 913 break; 914 915 if (!cond_resched_lock(&tree->lock)) { 916 node = rb_next(node); 917 goto process_node; 918 } 919 } 920 out: 921 spin_unlock(&tree->lock); 922 } 923 924 static void set_state_bits(struct extent_io_tree *tree, 925 struct extent_state *state, 926 u32 *bits, struct extent_changeset *changeset) 927 { 928 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 929 int ret; 930 931 if (tree->private_data && is_data_inode(tree->private_data)) 932 btrfs_set_delalloc_extent(tree->private_data, state, bits); 933 934 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 935 u64 range = state->end - state->start + 1; 936 tree->dirty_bytes += range; 937 } 938 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 939 BUG_ON(ret < 0); 940 state->state |= bits_to_set; 941 } 942 943 static void cache_state_if_flags(struct extent_state *state, 944 struct extent_state **cached_ptr, 945 unsigned flags) 946 { 947 if (cached_ptr && !(*cached_ptr)) { 948 if (!flags || (state->state & flags)) { 949 *cached_ptr = state; 950 refcount_inc(&state->refs); 951 } 952 } 953 } 954 955 static void cache_state(struct extent_state *state, 956 struct extent_state **cached_ptr) 957 { 958 return cache_state_if_flags(state, cached_ptr, 959 EXTENT_LOCKED | EXTENT_BOUNDARY); 960 } 961 962 /* 963 * set some bits on a range in the tree. This may require allocations or 964 * sleeping, so the gfp mask is used to indicate what is allowed. 965 * 966 * If any of the exclusive bits are set, this will fail with -EEXIST if some 967 * part of the range already has the desired bits set. The start of the 968 * existing range is returned in failed_start in this case. 969 * 970 * [start, end] is inclusive This takes the tree lock. 971 */ 972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 973 u32 exclusive_bits, u64 *failed_start, 974 struct extent_state **cached_state, gfp_t mask, 975 struct extent_changeset *changeset) 976 { 977 struct extent_state *state; 978 struct extent_state *prealloc = NULL; 979 struct rb_node *node; 980 struct rb_node **p; 981 struct rb_node *parent; 982 int err = 0; 983 u64 last_start; 984 u64 last_end; 985 986 btrfs_debug_check_extent_io_range(tree, start, end); 987 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 988 989 if (exclusive_bits) 990 ASSERT(failed_start); 991 else 992 ASSERT(failed_start == NULL); 993 again: 994 if (!prealloc && gfpflags_allow_blocking(mask)) { 995 /* 996 * Don't care for allocation failure here because we might end 997 * up not needing the pre-allocated extent state at all, which 998 * is the case if we only have in the tree extent states that 999 * cover our input range and don't cover too any other range. 1000 * If we end up needing a new extent state we allocate it later. 1001 */ 1002 prealloc = alloc_extent_state(mask); 1003 } 1004 1005 spin_lock(&tree->lock); 1006 if (cached_state && *cached_state) { 1007 state = *cached_state; 1008 if (state->start <= start && state->end > start && 1009 extent_state_in_tree(state)) { 1010 node = &state->rb_node; 1011 goto hit_next; 1012 } 1013 } 1014 /* 1015 * this search will find all the extents that end after 1016 * our range starts. 1017 */ 1018 node = tree_search_for_insert(tree, start, &p, &parent); 1019 if (!node) { 1020 prealloc = alloc_extent_state_atomic(prealloc); 1021 BUG_ON(!prealloc); 1022 err = insert_state(tree, prealloc, start, end, 1023 &p, &parent, &bits, changeset); 1024 if (err) 1025 extent_io_tree_panic(tree, err); 1026 1027 cache_state(prealloc, cached_state); 1028 prealloc = NULL; 1029 goto out; 1030 } 1031 state = rb_entry(node, struct extent_state, rb_node); 1032 hit_next: 1033 last_start = state->start; 1034 last_end = state->end; 1035 1036 /* 1037 * | ---- desired range ---- | 1038 * | state | 1039 * 1040 * Just lock what we found and keep going 1041 */ 1042 if (state->start == start && state->end <= end) { 1043 if (state->state & exclusive_bits) { 1044 *failed_start = state->start; 1045 err = -EEXIST; 1046 goto out; 1047 } 1048 1049 set_state_bits(tree, state, &bits, changeset); 1050 cache_state(state, cached_state); 1051 merge_state(tree, state); 1052 if (last_end == (u64)-1) 1053 goto out; 1054 start = last_end + 1; 1055 state = next_state(state); 1056 if (start < end && state && state->start == start && 1057 !need_resched()) 1058 goto hit_next; 1059 goto search_again; 1060 } 1061 1062 /* 1063 * | ---- desired range ---- | 1064 * | state | 1065 * or 1066 * | ------------- state -------------- | 1067 * 1068 * We need to split the extent we found, and may flip bits on 1069 * second half. 1070 * 1071 * If the extent we found extends past our 1072 * range, we just split and search again. It'll get split 1073 * again the next time though. 1074 * 1075 * If the extent we found is inside our range, we set the 1076 * desired bit on it. 1077 */ 1078 if (state->start < start) { 1079 if (state->state & exclusive_bits) { 1080 *failed_start = start; 1081 err = -EEXIST; 1082 goto out; 1083 } 1084 1085 /* 1086 * If this extent already has all the bits we want set, then 1087 * skip it, not necessary to split it or do anything with it. 1088 */ 1089 if ((state->state & bits) == bits) { 1090 start = state->end + 1; 1091 cache_state(state, cached_state); 1092 goto search_again; 1093 } 1094 1095 prealloc = alloc_extent_state_atomic(prealloc); 1096 BUG_ON(!prealloc); 1097 err = split_state(tree, state, prealloc, start); 1098 if (err) 1099 extent_io_tree_panic(tree, err); 1100 1101 prealloc = NULL; 1102 if (err) 1103 goto out; 1104 if (state->end <= end) { 1105 set_state_bits(tree, state, &bits, changeset); 1106 cache_state(state, cached_state); 1107 merge_state(tree, state); 1108 if (last_end == (u64)-1) 1109 goto out; 1110 start = last_end + 1; 1111 state = next_state(state); 1112 if (start < end && state && state->start == start && 1113 !need_resched()) 1114 goto hit_next; 1115 } 1116 goto search_again; 1117 } 1118 /* 1119 * | ---- desired range ---- | 1120 * | state | or | state | 1121 * 1122 * There's a hole, we need to insert something in it and 1123 * ignore the extent we found. 1124 */ 1125 if (state->start > start) { 1126 u64 this_end; 1127 if (end < last_start) 1128 this_end = end; 1129 else 1130 this_end = last_start - 1; 1131 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 BUG_ON(!prealloc); 1134 1135 /* 1136 * Avoid to free 'prealloc' if it can be merged with 1137 * the later extent. 1138 */ 1139 err = insert_state(tree, prealloc, start, this_end, 1140 NULL, NULL, &bits, changeset); 1141 if (err) 1142 extent_io_tree_panic(tree, err); 1143 1144 cache_state(prealloc, cached_state); 1145 prealloc = NULL; 1146 start = this_end + 1; 1147 goto search_again; 1148 } 1149 /* 1150 * | ---- desired range ---- | 1151 * | state | 1152 * We need to split the extent, and set the bit 1153 * on the first half 1154 */ 1155 if (state->start <= end && state->end > end) { 1156 if (state->state & exclusive_bits) { 1157 *failed_start = start; 1158 err = -EEXIST; 1159 goto out; 1160 } 1161 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 BUG_ON(!prealloc); 1164 err = split_state(tree, state, prealloc, end + 1); 1165 if (err) 1166 extent_io_tree_panic(tree, err); 1167 1168 set_state_bits(tree, prealloc, &bits, changeset); 1169 cache_state(prealloc, cached_state); 1170 merge_state(tree, prealloc); 1171 prealloc = NULL; 1172 goto out; 1173 } 1174 1175 search_again: 1176 if (start > end) 1177 goto out; 1178 spin_unlock(&tree->lock); 1179 if (gfpflags_allow_blocking(mask)) 1180 cond_resched(); 1181 goto again; 1182 1183 out: 1184 spin_unlock(&tree->lock); 1185 if (prealloc) 1186 free_extent_state(prealloc); 1187 1188 return err; 1189 1190 } 1191 1192 /** 1193 * convert_extent_bit - convert all bits in a given range from one bit to 1194 * another 1195 * @tree: the io tree to search 1196 * @start: the start offset in bytes 1197 * @end: the end offset in bytes (inclusive) 1198 * @bits: the bits to set in this range 1199 * @clear_bits: the bits to clear in this range 1200 * @cached_state: state that we're going to cache 1201 * 1202 * This will go through and set bits for the given range. If any states exist 1203 * already in this range they are set with the given bit and cleared of the 1204 * clear_bits. This is only meant to be used by things that are mergeable, ie 1205 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1206 * boundary bits like LOCK. 1207 * 1208 * All allocations are done with GFP_NOFS. 1209 */ 1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1211 u32 bits, u32 clear_bits, 1212 struct extent_state **cached_state) 1213 { 1214 struct extent_state *state; 1215 struct extent_state *prealloc = NULL; 1216 struct rb_node *node; 1217 struct rb_node **p; 1218 struct rb_node *parent; 1219 int err = 0; 1220 u64 last_start; 1221 u64 last_end; 1222 bool first_iteration = true; 1223 1224 btrfs_debug_check_extent_io_range(tree, start, end); 1225 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1226 clear_bits); 1227 1228 again: 1229 if (!prealloc) { 1230 /* 1231 * Best effort, don't worry if extent state allocation fails 1232 * here for the first iteration. We might have a cached state 1233 * that matches exactly the target range, in which case no 1234 * extent state allocations are needed. We'll only know this 1235 * after locking the tree. 1236 */ 1237 prealloc = alloc_extent_state(GFP_NOFS); 1238 if (!prealloc && !first_iteration) 1239 return -ENOMEM; 1240 } 1241 1242 spin_lock(&tree->lock); 1243 if (cached_state && *cached_state) { 1244 state = *cached_state; 1245 if (state->start <= start && state->end > start && 1246 extent_state_in_tree(state)) { 1247 node = &state->rb_node; 1248 goto hit_next; 1249 } 1250 } 1251 1252 /* 1253 * this search will find all the extents that end after 1254 * our range starts. 1255 */ 1256 node = tree_search_for_insert(tree, start, &p, &parent); 1257 if (!node) { 1258 prealloc = alloc_extent_state_atomic(prealloc); 1259 if (!prealloc) { 1260 err = -ENOMEM; 1261 goto out; 1262 } 1263 err = insert_state(tree, prealloc, start, end, 1264 &p, &parent, &bits, NULL); 1265 if (err) 1266 extent_io_tree_panic(tree, err); 1267 cache_state(prealloc, cached_state); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 state = rb_entry(node, struct extent_state, rb_node); 1272 hit_next: 1273 last_start = state->start; 1274 last_end = state->end; 1275 1276 /* 1277 * | ---- desired range ---- | 1278 * | state | 1279 * 1280 * Just lock what we found and keep going 1281 */ 1282 if (state->start == start && state->end <= end) { 1283 set_state_bits(tree, state, &bits, NULL); 1284 cache_state(state, cached_state); 1285 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1286 if (last_end == (u64)-1) 1287 goto out; 1288 start = last_end + 1; 1289 if (start < end && state && state->start == start && 1290 !need_resched()) 1291 goto hit_next; 1292 goto search_again; 1293 } 1294 1295 /* 1296 * | ---- desired range ---- | 1297 * | state | 1298 * or 1299 * | ------------- state -------------- | 1300 * 1301 * We need to split the extent we found, and may flip bits on 1302 * second half. 1303 * 1304 * If the extent we found extends past our 1305 * range, we just split and search again. It'll get split 1306 * again the next time though. 1307 * 1308 * If the extent we found is inside our range, we set the 1309 * desired bit on it. 1310 */ 1311 if (state->start < start) { 1312 prealloc = alloc_extent_state_atomic(prealloc); 1313 if (!prealloc) { 1314 err = -ENOMEM; 1315 goto out; 1316 } 1317 err = split_state(tree, state, prealloc, start); 1318 if (err) 1319 extent_io_tree_panic(tree, err); 1320 prealloc = NULL; 1321 if (err) 1322 goto out; 1323 if (state->end <= end) { 1324 set_state_bits(tree, state, &bits, NULL); 1325 cache_state(state, cached_state); 1326 state = clear_state_bit(tree, state, &clear_bits, 0, 1327 NULL); 1328 if (last_end == (u64)-1) 1329 goto out; 1330 start = last_end + 1; 1331 if (start < end && state && state->start == start && 1332 !need_resched()) 1333 goto hit_next; 1334 } 1335 goto search_again; 1336 } 1337 /* 1338 * | ---- desired range ---- | 1339 * | state | or | state | 1340 * 1341 * There's a hole, we need to insert something in it and 1342 * ignore the extent we found. 1343 */ 1344 if (state->start > start) { 1345 u64 this_end; 1346 if (end < last_start) 1347 this_end = end; 1348 else 1349 this_end = last_start - 1; 1350 1351 prealloc = alloc_extent_state_atomic(prealloc); 1352 if (!prealloc) { 1353 err = -ENOMEM; 1354 goto out; 1355 } 1356 1357 /* 1358 * Avoid to free 'prealloc' if it can be merged with 1359 * the later extent. 1360 */ 1361 err = insert_state(tree, prealloc, start, this_end, 1362 NULL, NULL, &bits, NULL); 1363 if (err) 1364 extent_io_tree_panic(tree, err); 1365 cache_state(prealloc, cached_state); 1366 prealloc = NULL; 1367 start = this_end + 1; 1368 goto search_again; 1369 } 1370 /* 1371 * | ---- desired range ---- | 1372 * | state | 1373 * We need to split the extent, and set the bit 1374 * on the first half 1375 */ 1376 if (state->start <= end && state->end > end) { 1377 prealloc = alloc_extent_state_atomic(prealloc); 1378 if (!prealloc) { 1379 err = -ENOMEM; 1380 goto out; 1381 } 1382 1383 err = split_state(tree, state, prealloc, end + 1); 1384 if (err) 1385 extent_io_tree_panic(tree, err); 1386 1387 set_state_bits(tree, prealloc, &bits, NULL); 1388 cache_state(prealloc, cached_state); 1389 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1390 prealloc = NULL; 1391 goto out; 1392 } 1393 1394 search_again: 1395 if (start > end) 1396 goto out; 1397 spin_unlock(&tree->lock); 1398 cond_resched(); 1399 first_iteration = false; 1400 goto again; 1401 1402 out: 1403 spin_unlock(&tree->lock); 1404 if (prealloc) 1405 free_extent_state(prealloc); 1406 1407 return err; 1408 } 1409 1410 /* wrappers around set/clear extent bit */ 1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1412 u32 bits, struct extent_changeset *changeset) 1413 { 1414 /* 1415 * We don't support EXTENT_LOCKED yet, as current changeset will 1416 * record any bits changed, so for EXTENT_LOCKED case, it will 1417 * either fail with -EEXIST or changeset will record the whole 1418 * range. 1419 */ 1420 BUG_ON(bits & EXTENT_LOCKED); 1421 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1423 changeset); 1424 } 1425 1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits) 1428 { 1429 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1430 GFP_NOWAIT, NULL); 1431 } 1432 1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1434 u32 bits, int wake, int delete, 1435 struct extent_state **cached) 1436 { 1437 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1438 cached, GFP_NOFS, NULL); 1439 } 1440 1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1442 u32 bits, struct extent_changeset *changeset) 1443 { 1444 /* 1445 * Don't support EXTENT_LOCKED case, same reason as 1446 * set_record_extent_bits(). 1447 */ 1448 BUG_ON(bits & EXTENT_LOCKED); 1449 1450 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1451 changeset); 1452 } 1453 1454 /* 1455 * either insert or lock state struct between start and end use mask to tell 1456 * us if waiting is desired. 1457 */ 1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1459 struct extent_state **cached_state) 1460 { 1461 int err; 1462 u64 failed_start; 1463 1464 while (1) { 1465 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1466 EXTENT_LOCKED, &failed_start, 1467 cached_state, GFP_NOFS, NULL); 1468 if (err == -EEXIST) { 1469 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1470 start = failed_start; 1471 } else 1472 break; 1473 WARN_ON(start > end); 1474 } 1475 return err; 1476 } 1477 1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1479 { 1480 int err; 1481 u64 failed_start; 1482 1483 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1484 &failed_start, NULL, GFP_NOFS, NULL); 1485 if (err == -EEXIST) { 1486 if (failed_start > start) 1487 clear_extent_bit(tree, start, failed_start - 1, 1488 EXTENT_LOCKED, 1, 0, NULL); 1489 return 0; 1490 } 1491 return 1; 1492 } 1493 1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1495 { 1496 unsigned long index = start >> PAGE_SHIFT; 1497 unsigned long end_index = end >> PAGE_SHIFT; 1498 struct page *page; 1499 1500 while (index <= end_index) { 1501 page = find_get_page(inode->i_mapping, index); 1502 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1503 clear_page_dirty_for_io(page); 1504 put_page(page); 1505 index++; 1506 } 1507 } 1508 1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1510 { 1511 unsigned long index = start >> PAGE_SHIFT; 1512 unsigned long end_index = end >> PAGE_SHIFT; 1513 struct page *page; 1514 1515 while (index <= end_index) { 1516 page = find_get_page(inode->i_mapping, index); 1517 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1518 __set_page_dirty_nobuffers(page); 1519 account_page_redirty(page); 1520 put_page(page); 1521 index++; 1522 } 1523 } 1524 1525 /* find the first state struct with 'bits' set after 'start', and 1526 * return it. tree->lock must be held. NULL will returned if 1527 * nothing was found after 'start' 1528 */ 1529 static struct extent_state * 1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * Find the first offset in the io tree with one or more @bits set. 1558 * 1559 * Note: If there are multiple bits set in @bits, any of them will match. 1560 * 1561 * Return 0 if we find something, and update @start_ret and @end_ret. 1562 * Return 1 if we found nothing. 1563 */ 1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1565 u64 *start_ret, u64 *end_ret, u32 bits, 1566 struct extent_state **cached_state) 1567 { 1568 struct extent_state *state; 1569 int ret = 1; 1570 1571 spin_lock(&tree->lock); 1572 if (cached_state && *cached_state) { 1573 state = *cached_state; 1574 if (state->end == start - 1 && extent_state_in_tree(state)) { 1575 while ((state = next_state(state)) != NULL) { 1576 if (state->state & bits) 1577 goto got_it; 1578 } 1579 free_extent_state(*cached_state); 1580 *cached_state = NULL; 1581 goto out; 1582 } 1583 free_extent_state(*cached_state); 1584 *cached_state = NULL; 1585 } 1586 1587 state = find_first_extent_bit_state(tree, start, bits); 1588 got_it: 1589 if (state) { 1590 cache_state_if_flags(state, cached_state, 0); 1591 *start_ret = state->start; 1592 *end_ret = state->end; 1593 ret = 0; 1594 } 1595 out: 1596 spin_unlock(&tree->lock); 1597 return ret; 1598 } 1599 1600 /** 1601 * Find a contiguous area of bits 1602 * 1603 * @tree: io tree to check 1604 * @start: offset to start the search from 1605 * @start_ret: the first offset we found with the bits set 1606 * @end_ret: the final contiguous range of the bits that were set 1607 * @bits: bits to look for 1608 * 1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1610 * to set bits appropriately, and then merge them again. During this time it 1611 * will drop the tree->lock, so use this helper if you want to find the actual 1612 * contiguous area for given bits. We will search to the first bit we find, and 1613 * then walk down the tree until we find a non-contiguous area. The area 1614 * returned will be the full contiguous area with the bits set. 1615 */ 1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1617 u64 *start_ret, u64 *end_ret, u32 bits) 1618 { 1619 struct extent_state *state; 1620 int ret = 1; 1621 1622 spin_lock(&tree->lock); 1623 state = find_first_extent_bit_state(tree, start, bits); 1624 if (state) { 1625 *start_ret = state->start; 1626 *end_ret = state->end; 1627 while ((state = next_state(state)) != NULL) { 1628 if (state->start > (*end_ret + 1)) 1629 break; 1630 *end_ret = state->end; 1631 } 1632 ret = 0; 1633 } 1634 spin_unlock(&tree->lock); 1635 return ret; 1636 } 1637 1638 /** 1639 * Find the first range that has @bits not set. This range could start before 1640 * @start. 1641 * 1642 * @tree: the tree to search 1643 * @start: offset at/after which the found extent should start 1644 * @start_ret: records the beginning of the range 1645 * @end_ret: records the end of the range (inclusive) 1646 * @bits: the set of bits which must be unset 1647 * 1648 * Since unallocated range is also considered one which doesn't have the bits 1649 * set it's possible that @end_ret contains -1, this happens in case the range 1650 * spans (last_range_end, end of device]. In this case it's up to the caller to 1651 * trim @end_ret to the appropriate size. 1652 */ 1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1654 u64 *start_ret, u64 *end_ret, u32 bits) 1655 { 1656 struct extent_state *state; 1657 struct rb_node *node, *prev = NULL, *next; 1658 1659 spin_lock(&tree->lock); 1660 1661 /* Find first extent with bits cleared */ 1662 while (1) { 1663 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1664 if (!node && !next && !prev) { 1665 /* 1666 * Tree is completely empty, send full range and let 1667 * caller deal with it 1668 */ 1669 *start_ret = 0; 1670 *end_ret = -1; 1671 goto out; 1672 } else if (!node && !next) { 1673 /* 1674 * We are past the last allocated chunk, set start at 1675 * the end of the last extent. 1676 */ 1677 state = rb_entry(prev, struct extent_state, rb_node); 1678 *start_ret = state->end + 1; 1679 *end_ret = -1; 1680 goto out; 1681 } else if (!node) { 1682 node = next; 1683 } 1684 /* 1685 * At this point 'node' either contains 'start' or start is 1686 * before 'node' 1687 */ 1688 state = rb_entry(node, struct extent_state, rb_node); 1689 1690 if (in_range(start, state->start, state->end - state->start + 1)) { 1691 if (state->state & bits) { 1692 /* 1693 * |--range with bits sets--| 1694 * | 1695 * start 1696 */ 1697 start = state->end + 1; 1698 } else { 1699 /* 1700 * 'start' falls within a range that doesn't 1701 * have the bits set, so take its start as 1702 * the beginning of the desired range 1703 * 1704 * |--range with bits cleared----| 1705 * | 1706 * start 1707 */ 1708 *start_ret = state->start; 1709 break; 1710 } 1711 } else { 1712 /* 1713 * |---prev range---|---hole/unset---|---node range---| 1714 * | 1715 * start 1716 * 1717 * or 1718 * 1719 * |---hole/unset--||--first node--| 1720 * 0 | 1721 * start 1722 */ 1723 if (prev) { 1724 state = rb_entry(prev, struct extent_state, 1725 rb_node); 1726 *start_ret = state->end + 1; 1727 } else { 1728 *start_ret = 0; 1729 } 1730 break; 1731 } 1732 } 1733 1734 /* 1735 * Find the longest stretch from start until an entry which has the 1736 * bits set 1737 */ 1738 while (1) { 1739 state = rb_entry(node, struct extent_state, rb_node); 1740 if (state->end >= start && !(state->state & bits)) { 1741 *end_ret = state->end; 1742 } else { 1743 *end_ret = state->start - 1; 1744 break; 1745 } 1746 1747 node = rb_next(node); 1748 if (!node) 1749 break; 1750 } 1751 out: 1752 spin_unlock(&tree->lock); 1753 } 1754 1755 /* 1756 * find a contiguous range of bytes in the file marked as delalloc, not 1757 * more than 'max_bytes'. start and end are used to return the range, 1758 * 1759 * true is returned if we find something, false if nothing was in the tree 1760 */ 1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1762 u64 *end, u64 max_bytes, 1763 struct extent_state **cached_state) 1764 { 1765 struct rb_node *node; 1766 struct extent_state *state; 1767 u64 cur_start = *start; 1768 bool found = false; 1769 u64 total_bytes = 0; 1770 1771 spin_lock(&tree->lock); 1772 1773 /* 1774 * this search will find all the extents that end after 1775 * our range starts. 1776 */ 1777 node = tree_search(tree, cur_start); 1778 if (!node) { 1779 *end = (u64)-1; 1780 goto out; 1781 } 1782 1783 while (1) { 1784 state = rb_entry(node, struct extent_state, rb_node); 1785 if (found && (state->start != cur_start || 1786 (state->state & EXTENT_BOUNDARY))) { 1787 goto out; 1788 } 1789 if (!(state->state & EXTENT_DELALLOC)) { 1790 if (!found) 1791 *end = state->end; 1792 goto out; 1793 } 1794 if (!found) { 1795 *start = state->start; 1796 *cached_state = state; 1797 refcount_inc(&state->refs); 1798 } 1799 found = true; 1800 *end = state->end; 1801 cur_start = state->end + 1; 1802 node = rb_next(node); 1803 total_bytes += state->end - state->start + 1; 1804 if (total_bytes >= max_bytes) 1805 break; 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return found; 1812 } 1813 1814 /* 1815 * Process one page for __process_pages_contig(). 1816 * 1817 * Return >0 if we hit @page == @locked_page. 1818 * Return 0 if we updated the page status. 1819 * Return -EGAIN if the we need to try again. 1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1821 */ 1822 static int process_one_page(struct btrfs_fs_info *fs_info, 1823 struct address_space *mapping, 1824 struct page *page, struct page *locked_page, 1825 unsigned long page_ops, u64 start, u64 end) 1826 { 1827 u32 len; 1828 1829 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1830 len = end + 1 - start; 1831 1832 if (page_ops & PAGE_SET_ORDERED) 1833 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1834 if (page_ops & PAGE_SET_ERROR) 1835 btrfs_page_clamp_set_error(fs_info, page, start, len); 1836 if (page_ops & PAGE_START_WRITEBACK) { 1837 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1838 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1839 } 1840 if (page_ops & PAGE_END_WRITEBACK) 1841 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1842 1843 if (page == locked_page) 1844 return 1; 1845 1846 if (page_ops & PAGE_LOCK) { 1847 int ret; 1848 1849 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1850 if (ret) 1851 return ret; 1852 if (!PageDirty(page) || page->mapping != mapping) { 1853 btrfs_page_end_writer_lock(fs_info, page, start, len); 1854 return -EAGAIN; 1855 } 1856 } 1857 if (page_ops & PAGE_UNLOCK) 1858 btrfs_page_end_writer_lock(fs_info, page, start, len); 1859 return 0; 1860 } 1861 1862 static int __process_pages_contig(struct address_space *mapping, 1863 struct page *locked_page, 1864 u64 start, u64 end, unsigned long page_ops, 1865 u64 *processed_end) 1866 { 1867 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1868 pgoff_t start_index = start >> PAGE_SHIFT; 1869 pgoff_t end_index = end >> PAGE_SHIFT; 1870 pgoff_t index = start_index; 1871 unsigned long nr_pages = end_index - start_index + 1; 1872 unsigned long pages_processed = 0; 1873 struct page *pages[16]; 1874 int err = 0; 1875 int i; 1876 1877 if (page_ops & PAGE_LOCK) { 1878 ASSERT(page_ops == PAGE_LOCK); 1879 ASSERT(processed_end && *processed_end == start); 1880 } 1881 1882 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1883 mapping_set_error(mapping, -EIO); 1884 1885 while (nr_pages > 0) { 1886 int found_pages; 1887 1888 found_pages = find_get_pages_contig(mapping, index, 1889 min_t(unsigned long, 1890 nr_pages, ARRAY_SIZE(pages)), pages); 1891 if (found_pages == 0) { 1892 /* 1893 * Only if we're going to lock these pages, we can find 1894 * nothing at @index. 1895 */ 1896 ASSERT(page_ops & PAGE_LOCK); 1897 err = -EAGAIN; 1898 goto out; 1899 } 1900 1901 for (i = 0; i < found_pages; i++) { 1902 int process_ret; 1903 1904 process_ret = process_one_page(fs_info, mapping, 1905 pages[i], locked_page, page_ops, 1906 start, end); 1907 if (process_ret < 0) { 1908 for (; i < found_pages; i++) 1909 put_page(pages[i]); 1910 err = -EAGAIN; 1911 goto out; 1912 } 1913 put_page(pages[i]); 1914 pages_processed++; 1915 } 1916 nr_pages -= found_pages; 1917 index += found_pages; 1918 cond_resched(); 1919 } 1920 out: 1921 if (err && processed_end) { 1922 /* 1923 * Update @processed_end. I know this is awful since it has 1924 * two different return value patterns (inclusive vs exclusive). 1925 * 1926 * But the exclusive pattern is necessary if @start is 0, or we 1927 * underflow and check against processed_end won't work as 1928 * expected. 1929 */ 1930 if (pages_processed) 1931 *processed_end = min(end, 1932 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1933 else 1934 *processed_end = start; 1935 } 1936 return err; 1937 } 1938 1939 static noinline void __unlock_for_delalloc(struct inode *inode, 1940 struct page *locked_page, 1941 u64 start, u64 end) 1942 { 1943 unsigned long index = start >> PAGE_SHIFT; 1944 unsigned long end_index = end >> PAGE_SHIFT; 1945 1946 ASSERT(locked_page); 1947 if (index == locked_page->index && end_index == index) 1948 return; 1949 1950 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1951 PAGE_UNLOCK, NULL); 1952 } 1953 1954 static noinline int lock_delalloc_pages(struct inode *inode, 1955 struct page *locked_page, 1956 u64 delalloc_start, 1957 u64 delalloc_end) 1958 { 1959 unsigned long index = delalloc_start >> PAGE_SHIFT; 1960 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1961 u64 processed_end = delalloc_start; 1962 int ret; 1963 1964 ASSERT(locked_page); 1965 if (index == locked_page->index && index == end_index) 1966 return 0; 1967 1968 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1969 delalloc_end, PAGE_LOCK, &processed_end); 1970 if (ret == -EAGAIN && processed_end > delalloc_start) 1971 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1972 processed_end); 1973 return ret; 1974 } 1975 1976 /* 1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1978 * more than @max_bytes. @Start and @end are used to return the range, 1979 * 1980 * Return: true if we find something 1981 * false if nothing was in the tree 1982 */ 1983 EXPORT_FOR_TESTS 1984 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1985 struct page *locked_page, u64 *start, 1986 u64 *end) 1987 { 1988 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1989 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1990 u64 delalloc_start; 1991 u64 delalloc_end; 1992 bool found; 1993 struct extent_state *cached_state = NULL; 1994 int ret; 1995 int loops = 0; 1996 1997 again: 1998 /* step one, find a bunch of delalloc bytes starting at start */ 1999 delalloc_start = *start; 2000 delalloc_end = 0; 2001 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2002 max_bytes, &cached_state); 2003 if (!found || delalloc_end <= *start) { 2004 *start = delalloc_start; 2005 *end = delalloc_end; 2006 free_extent_state(cached_state); 2007 return false; 2008 } 2009 2010 /* 2011 * start comes from the offset of locked_page. We have to lock 2012 * pages in order, so we can't process delalloc bytes before 2013 * locked_page 2014 */ 2015 if (delalloc_start < *start) 2016 delalloc_start = *start; 2017 2018 /* 2019 * make sure to limit the number of pages we try to lock down 2020 */ 2021 if (delalloc_end + 1 - delalloc_start > max_bytes) 2022 delalloc_end = delalloc_start + max_bytes - 1; 2023 2024 /* step two, lock all the pages after the page that has start */ 2025 ret = lock_delalloc_pages(inode, locked_page, 2026 delalloc_start, delalloc_end); 2027 ASSERT(!ret || ret == -EAGAIN); 2028 if (ret == -EAGAIN) { 2029 /* some of the pages are gone, lets avoid looping by 2030 * shortening the size of the delalloc range we're searching 2031 */ 2032 free_extent_state(cached_state); 2033 cached_state = NULL; 2034 if (!loops) { 2035 max_bytes = PAGE_SIZE; 2036 loops = 1; 2037 goto again; 2038 } else { 2039 found = false; 2040 goto out_failed; 2041 } 2042 } 2043 2044 /* step three, lock the state bits for the whole range */ 2045 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2046 2047 /* then test to make sure it is all still delalloc */ 2048 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2049 EXTENT_DELALLOC, 1, cached_state); 2050 if (!ret) { 2051 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2052 &cached_state); 2053 __unlock_for_delalloc(inode, locked_page, 2054 delalloc_start, delalloc_end); 2055 cond_resched(); 2056 goto again; 2057 } 2058 free_extent_state(cached_state); 2059 *start = delalloc_start; 2060 *end = delalloc_end; 2061 out_failed: 2062 return found; 2063 } 2064 2065 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2066 struct page *locked_page, 2067 u32 clear_bits, unsigned long page_ops) 2068 { 2069 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2070 2071 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2072 start, end, page_ops, NULL); 2073 } 2074 2075 /* 2076 * count the number of bytes in the tree that have a given bit(s) 2077 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2078 * cached. The total number found is returned. 2079 */ 2080 u64 count_range_bits(struct extent_io_tree *tree, 2081 u64 *start, u64 search_end, u64 max_bytes, 2082 u32 bits, int contig) 2083 { 2084 struct rb_node *node; 2085 struct extent_state *state; 2086 u64 cur_start = *start; 2087 u64 total_bytes = 0; 2088 u64 last = 0; 2089 int found = 0; 2090 2091 if (WARN_ON(search_end <= cur_start)) 2092 return 0; 2093 2094 spin_lock(&tree->lock); 2095 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2096 total_bytes = tree->dirty_bytes; 2097 goto out; 2098 } 2099 /* 2100 * this search will find all the extents that end after 2101 * our range starts. 2102 */ 2103 node = tree_search(tree, cur_start); 2104 if (!node) 2105 goto out; 2106 2107 while (1) { 2108 state = rb_entry(node, struct extent_state, rb_node); 2109 if (state->start > search_end) 2110 break; 2111 if (contig && found && state->start > last + 1) 2112 break; 2113 if (state->end >= cur_start && (state->state & bits) == bits) { 2114 total_bytes += min(search_end, state->end) + 1 - 2115 max(cur_start, state->start); 2116 if (total_bytes >= max_bytes) 2117 break; 2118 if (!found) { 2119 *start = max(cur_start, state->start); 2120 found = 1; 2121 } 2122 last = state->end; 2123 } else if (contig && found) { 2124 break; 2125 } 2126 node = rb_next(node); 2127 if (!node) 2128 break; 2129 } 2130 out: 2131 spin_unlock(&tree->lock); 2132 return total_bytes; 2133 } 2134 2135 /* 2136 * set the private field for a given byte offset in the tree. If there isn't 2137 * an extent_state there already, this does nothing. 2138 */ 2139 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2140 struct io_failure_record *failrec) 2141 { 2142 struct rb_node *node; 2143 struct extent_state *state; 2144 int ret = 0; 2145 2146 spin_lock(&tree->lock); 2147 /* 2148 * this search will find all the extents that end after 2149 * our range starts. 2150 */ 2151 node = tree_search(tree, start); 2152 if (!node) { 2153 ret = -ENOENT; 2154 goto out; 2155 } 2156 state = rb_entry(node, struct extent_state, rb_node); 2157 if (state->start != start) { 2158 ret = -ENOENT; 2159 goto out; 2160 } 2161 state->failrec = failrec; 2162 out: 2163 spin_unlock(&tree->lock); 2164 return ret; 2165 } 2166 2167 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2168 { 2169 struct rb_node *node; 2170 struct extent_state *state; 2171 struct io_failure_record *failrec; 2172 2173 spin_lock(&tree->lock); 2174 /* 2175 * this search will find all the extents that end after 2176 * our range starts. 2177 */ 2178 node = tree_search(tree, start); 2179 if (!node) { 2180 failrec = ERR_PTR(-ENOENT); 2181 goto out; 2182 } 2183 state = rb_entry(node, struct extent_state, rb_node); 2184 if (state->start != start) { 2185 failrec = ERR_PTR(-ENOENT); 2186 goto out; 2187 } 2188 2189 failrec = state->failrec; 2190 out: 2191 spin_unlock(&tree->lock); 2192 return failrec; 2193 } 2194 2195 /* 2196 * searches a range in the state tree for a given mask. 2197 * If 'filled' == 1, this returns 1 only if every extent in the tree 2198 * has the bits set. Otherwise, 1 is returned if any bit in the 2199 * range is found set. 2200 */ 2201 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2202 u32 bits, int filled, struct extent_state *cached) 2203 { 2204 struct extent_state *state = NULL; 2205 struct rb_node *node; 2206 int bitset = 0; 2207 2208 spin_lock(&tree->lock); 2209 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2210 cached->end > start) 2211 node = &cached->rb_node; 2212 else 2213 node = tree_search(tree, start); 2214 while (node && start <= end) { 2215 state = rb_entry(node, struct extent_state, rb_node); 2216 2217 if (filled && state->start > start) { 2218 bitset = 0; 2219 break; 2220 } 2221 2222 if (state->start > end) 2223 break; 2224 2225 if (state->state & bits) { 2226 bitset = 1; 2227 if (!filled) 2228 break; 2229 } else if (filled) { 2230 bitset = 0; 2231 break; 2232 } 2233 2234 if (state->end == (u64)-1) 2235 break; 2236 2237 start = state->end + 1; 2238 if (start > end) 2239 break; 2240 node = rb_next(node); 2241 if (!node) { 2242 if (filled) 2243 bitset = 0; 2244 break; 2245 } 2246 } 2247 spin_unlock(&tree->lock); 2248 return bitset; 2249 } 2250 2251 int free_io_failure(struct extent_io_tree *failure_tree, 2252 struct extent_io_tree *io_tree, 2253 struct io_failure_record *rec) 2254 { 2255 int ret; 2256 int err = 0; 2257 2258 set_state_failrec(failure_tree, rec->start, NULL); 2259 ret = clear_extent_bits(failure_tree, rec->start, 2260 rec->start + rec->len - 1, 2261 EXTENT_LOCKED | EXTENT_DIRTY); 2262 if (ret) 2263 err = ret; 2264 2265 ret = clear_extent_bits(io_tree, rec->start, 2266 rec->start + rec->len - 1, 2267 EXTENT_DAMAGED); 2268 if (ret && !err) 2269 err = ret; 2270 2271 kfree(rec); 2272 return err; 2273 } 2274 2275 /* 2276 * this bypasses the standard btrfs submit functions deliberately, as 2277 * the standard behavior is to write all copies in a raid setup. here we only 2278 * want to write the one bad copy. so we do the mapping for ourselves and issue 2279 * submit_bio directly. 2280 * to avoid any synchronization issues, wait for the data after writing, which 2281 * actually prevents the read that triggered the error from finishing. 2282 * currently, there can be no more than two copies of every data bit. thus, 2283 * exactly one rewrite is required. 2284 */ 2285 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2286 u64 length, u64 logical, struct page *page, 2287 unsigned int pg_offset, int mirror_num) 2288 { 2289 struct bio *bio; 2290 struct btrfs_device *dev; 2291 u64 map_length = 0; 2292 u64 sector; 2293 struct btrfs_bio *bbio = NULL; 2294 int ret; 2295 2296 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2297 BUG_ON(!mirror_num); 2298 2299 if (btrfs_is_zoned(fs_info)) 2300 return btrfs_repair_one_zone(fs_info, logical); 2301 2302 bio = btrfs_io_bio_alloc(1); 2303 bio->bi_iter.bi_size = 0; 2304 map_length = length; 2305 2306 /* 2307 * Avoid races with device replace and make sure our bbio has devices 2308 * associated to its stripes that don't go away while we are doing the 2309 * read repair operation. 2310 */ 2311 btrfs_bio_counter_inc_blocked(fs_info); 2312 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2313 /* 2314 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2315 * to update all raid stripes, but here we just want to correct 2316 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2317 * stripe's dev and sector. 2318 */ 2319 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2320 &map_length, &bbio, 0); 2321 if (ret) { 2322 btrfs_bio_counter_dec(fs_info); 2323 bio_put(bio); 2324 return -EIO; 2325 } 2326 ASSERT(bbio->mirror_num == 1); 2327 } else { 2328 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2329 &map_length, &bbio, mirror_num); 2330 if (ret) { 2331 btrfs_bio_counter_dec(fs_info); 2332 bio_put(bio); 2333 return -EIO; 2334 } 2335 BUG_ON(mirror_num != bbio->mirror_num); 2336 } 2337 2338 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2339 bio->bi_iter.bi_sector = sector; 2340 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2341 btrfs_put_bbio(bbio); 2342 if (!dev || !dev->bdev || 2343 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2344 btrfs_bio_counter_dec(fs_info); 2345 bio_put(bio); 2346 return -EIO; 2347 } 2348 bio_set_dev(bio, dev->bdev); 2349 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2350 bio_add_page(bio, page, length, pg_offset); 2351 2352 if (btrfsic_submit_bio_wait(bio)) { 2353 /* try to remap that extent elsewhere? */ 2354 btrfs_bio_counter_dec(fs_info); 2355 bio_put(bio); 2356 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2357 return -EIO; 2358 } 2359 2360 btrfs_info_rl_in_rcu(fs_info, 2361 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2362 ino, start, 2363 rcu_str_deref(dev->name), sector); 2364 btrfs_bio_counter_dec(fs_info); 2365 bio_put(bio); 2366 return 0; 2367 } 2368 2369 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2370 { 2371 struct btrfs_fs_info *fs_info = eb->fs_info; 2372 u64 start = eb->start; 2373 int i, num_pages = num_extent_pages(eb); 2374 int ret = 0; 2375 2376 if (sb_rdonly(fs_info->sb)) 2377 return -EROFS; 2378 2379 for (i = 0; i < num_pages; i++) { 2380 struct page *p = eb->pages[i]; 2381 2382 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2383 start - page_offset(p), mirror_num); 2384 if (ret) 2385 break; 2386 start += PAGE_SIZE; 2387 } 2388 2389 return ret; 2390 } 2391 2392 /* 2393 * each time an IO finishes, we do a fast check in the IO failure tree 2394 * to see if we need to process or clean up an io_failure_record 2395 */ 2396 int clean_io_failure(struct btrfs_fs_info *fs_info, 2397 struct extent_io_tree *failure_tree, 2398 struct extent_io_tree *io_tree, u64 start, 2399 struct page *page, u64 ino, unsigned int pg_offset) 2400 { 2401 u64 private; 2402 struct io_failure_record *failrec; 2403 struct extent_state *state; 2404 int num_copies; 2405 int ret; 2406 2407 private = 0; 2408 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2409 EXTENT_DIRTY, 0); 2410 if (!ret) 2411 return 0; 2412 2413 failrec = get_state_failrec(failure_tree, start); 2414 if (IS_ERR(failrec)) 2415 return 0; 2416 2417 BUG_ON(!failrec->this_mirror); 2418 2419 if (sb_rdonly(fs_info->sb)) 2420 goto out; 2421 2422 spin_lock(&io_tree->lock); 2423 state = find_first_extent_bit_state(io_tree, 2424 failrec->start, 2425 EXTENT_LOCKED); 2426 spin_unlock(&io_tree->lock); 2427 2428 if (state && state->start <= failrec->start && 2429 state->end >= failrec->start + failrec->len - 1) { 2430 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2431 failrec->len); 2432 if (num_copies > 1) { 2433 repair_io_failure(fs_info, ino, start, failrec->len, 2434 failrec->logical, page, pg_offset, 2435 failrec->failed_mirror); 2436 } 2437 } 2438 2439 out: 2440 free_io_failure(failure_tree, io_tree, failrec); 2441 2442 return 0; 2443 } 2444 2445 /* 2446 * Can be called when 2447 * - hold extent lock 2448 * - under ordered extent 2449 * - the inode is freeing 2450 */ 2451 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2452 { 2453 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2454 struct io_failure_record *failrec; 2455 struct extent_state *state, *next; 2456 2457 if (RB_EMPTY_ROOT(&failure_tree->state)) 2458 return; 2459 2460 spin_lock(&failure_tree->lock); 2461 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2462 while (state) { 2463 if (state->start > end) 2464 break; 2465 2466 ASSERT(state->end <= end); 2467 2468 next = next_state(state); 2469 2470 failrec = state->failrec; 2471 free_extent_state(state); 2472 kfree(failrec); 2473 2474 state = next; 2475 } 2476 spin_unlock(&failure_tree->lock); 2477 } 2478 2479 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2480 u64 start) 2481 { 2482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2483 struct io_failure_record *failrec; 2484 struct extent_map *em; 2485 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2486 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2487 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2488 const u32 sectorsize = fs_info->sectorsize; 2489 int ret; 2490 u64 logical; 2491 2492 failrec = get_state_failrec(failure_tree, start); 2493 if (!IS_ERR(failrec)) { 2494 btrfs_debug(fs_info, 2495 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2496 failrec->logical, failrec->start, failrec->len); 2497 /* 2498 * when data can be on disk more than twice, add to failrec here 2499 * (e.g. with a list for failed_mirror) to make 2500 * clean_io_failure() clean all those errors at once. 2501 */ 2502 2503 return failrec; 2504 } 2505 2506 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2507 if (!failrec) 2508 return ERR_PTR(-ENOMEM); 2509 2510 failrec->start = start; 2511 failrec->len = sectorsize; 2512 failrec->this_mirror = 0; 2513 failrec->bio_flags = 0; 2514 2515 read_lock(&em_tree->lock); 2516 em = lookup_extent_mapping(em_tree, start, failrec->len); 2517 if (!em) { 2518 read_unlock(&em_tree->lock); 2519 kfree(failrec); 2520 return ERR_PTR(-EIO); 2521 } 2522 2523 if (em->start > start || em->start + em->len <= start) { 2524 free_extent_map(em); 2525 em = NULL; 2526 } 2527 read_unlock(&em_tree->lock); 2528 if (!em) { 2529 kfree(failrec); 2530 return ERR_PTR(-EIO); 2531 } 2532 2533 logical = start - em->start; 2534 logical = em->block_start + logical; 2535 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2536 logical = em->block_start; 2537 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2538 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2539 } 2540 2541 btrfs_debug(fs_info, 2542 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2543 logical, start, failrec->len); 2544 2545 failrec->logical = logical; 2546 free_extent_map(em); 2547 2548 /* Set the bits in the private failure tree */ 2549 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2550 EXTENT_LOCKED | EXTENT_DIRTY); 2551 if (ret >= 0) { 2552 ret = set_state_failrec(failure_tree, start, failrec); 2553 /* Set the bits in the inode's tree */ 2554 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2555 EXTENT_DAMAGED); 2556 } else if (ret < 0) { 2557 kfree(failrec); 2558 return ERR_PTR(ret); 2559 } 2560 2561 return failrec; 2562 } 2563 2564 static bool btrfs_check_repairable(struct inode *inode, 2565 struct io_failure_record *failrec, 2566 int failed_mirror) 2567 { 2568 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2569 int num_copies; 2570 2571 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2572 if (num_copies == 1) { 2573 /* 2574 * we only have a single copy of the data, so don't bother with 2575 * all the retry and error correction code that follows. no 2576 * matter what the error is, it is very likely to persist. 2577 */ 2578 btrfs_debug(fs_info, 2579 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2580 num_copies, failrec->this_mirror, failed_mirror); 2581 return false; 2582 } 2583 2584 /* The failure record should only contain one sector */ 2585 ASSERT(failrec->len == fs_info->sectorsize); 2586 2587 /* 2588 * There are two premises: 2589 * a) deliver good data to the caller 2590 * b) correct the bad sectors on disk 2591 * 2592 * Since we're only doing repair for one sector, we only need to get 2593 * a good copy of the failed sector and if we succeed, we have setup 2594 * everything for repair_io_failure to do the rest for us. 2595 */ 2596 failrec->failed_mirror = failed_mirror; 2597 failrec->this_mirror++; 2598 if (failrec->this_mirror == failed_mirror) 2599 failrec->this_mirror++; 2600 2601 if (failrec->this_mirror > num_copies) { 2602 btrfs_debug(fs_info, 2603 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2604 num_copies, failrec->this_mirror, failed_mirror); 2605 return false; 2606 } 2607 2608 return true; 2609 } 2610 2611 int btrfs_repair_one_sector(struct inode *inode, 2612 struct bio *failed_bio, u32 bio_offset, 2613 struct page *page, unsigned int pgoff, 2614 u64 start, int failed_mirror, 2615 submit_bio_hook_t *submit_bio_hook) 2616 { 2617 struct io_failure_record *failrec; 2618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2619 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2620 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2621 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2622 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2623 struct bio *repair_bio; 2624 struct btrfs_io_bio *repair_io_bio; 2625 blk_status_t status; 2626 2627 btrfs_debug(fs_info, 2628 "repair read error: read error at %llu", start); 2629 2630 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2631 2632 failrec = btrfs_get_io_failure_record(inode, start); 2633 if (IS_ERR(failrec)) 2634 return PTR_ERR(failrec); 2635 2636 2637 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2638 free_io_failure(failure_tree, tree, failrec); 2639 return -EIO; 2640 } 2641 2642 repair_bio = btrfs_io_bio_alloc(1); 2643 repair_io_bio = btrfs_io_bio(repair_bio); 2644 repair_bio->bi_opf = REQ_OP_READ; 2645 repair_bio->bi_end_io = failed_bio->bi_end_io; 2646 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2647 repair_bio->bi_private = failed_bio->bi_private; 2648 2649 if (failed_io_bio->csum) { 2650 const u32 csum_size = fs_info->csum_size; 2651 2652 repair_io_bio->csum = repair_io_bio->csum_inline; 2653 memcpy(repair_io_bio->csum, 2654 failed_io_bio->csum + csum_size * icsum, csum_size); 2655 } 2656 2657 bio_add_page(repair_bio, page, failrec->len, pgoff); 2658 repair_io_bio->logical = failrec->start; 2659 repair_io_bio->iter = repair_bio->bi_iter; 2660 2661 btrfs_debug(btrfs_sb(inode->i_sb), 2662 "repair read error: submitting new read to mirror %d", 2663 failrec->this_mirror); 2664 2665 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2666 failrec->bio_flags); 2667 if (status) { 2668 free_io_failure(failure_tree, tree, failrec); 2669 bio_put(repair_bio); 2670 } 2671 return blk_status_to_errno(status); 2672 } 2673 2674 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2675 { 2676 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2677 2678 ASSERT(page_offset(page) <= start && 2679 start + len <= page_offset(page) + PAGE_SIZE); 2680 2681 if (uptodate) { 2682 if (fsverity_active(page->mapping->host) && 2683 !PageError(page) && 2684 !PageUptodate(page) && 2685 start < i_size_read(page->mapping->host) && 2686 !fsverity_verify_page(page)) { 2687 btrfs_page_set_error(fs_info, page, start, len); 2688 } else { 2689 btrfs_page_set_uptodate(fs_info, page, start, len); 2690 } 2691 } else { 2692 btrfs_page_clear_uptodate(fs_info, page, start, len); 2693 btrfs_page_set_error(fs_info, page, start, len); 2694 } 2695 2696 if (fs_info->sectorsize == PAGE_SIZE) 2697 unlock_page(page); 2698 else 2699 btrfs_subpage_end_reader(fs_info, page, start, len); 2700 } 2701 2702 static blk_status_t submit_read_repair(struct inode *inode, 2703 struct bio *failed_bio, u32 bio_offset, 2704 struct page *page, unsigned int pgoff, 2705 u64 start, u64 end, int failed_mirror, 2706 unsigned int error_bitmap, 2707 submit_bio_hook_t *submit_bio_hook) 2708 { 2709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2710 const u32 sectorsize = fs_info->sectorsize; 2711 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2712 int error = 0; 2713 int i; 2714 2715 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2716 2717 /* We're here because we had some read errors or csum mismatch */ 2718 ASSERT(error_bitmap); 2719 2720 /* 2721 * We only get called on buffered IO, thus page must be mapped and bio 2722 * must not be cloned. 2723 */ 2724 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2725 2726 /* Iterate through all the sectors in the range */ 2727 for (i = 0; i < nr_bits; i++) { 2728 const unsigned int offset = i * sectorsize; 2729 struct extent_state *cached = NULL; 2730 bool uptodate = false; 2731 int ret; 2732 2733 if (!(error_bitmap & (1U << i))) { 2734 /* 2735 * This sector has no error, just end the page read 2736 * and unlock the range. 2737 */ 2738 uptodate = true; 2739 goto next; 2740 } 2741 2742 ret = btrfs_repair_one_sector(inode, failed_bio, 2743 bio_offset + offset, 2744 page, pgoff + offset, start + offset, 2745 failed_mirror, submit_bio_hook); 2746 if (!ret) { 2747 /* 2748 * We have submitted the read repair, the page release 2749 * will be handled by the endio function of the 2750 * submitted repair bio. 2751 * Thus we don't need to do any thing here. 2752 */ 2753 continue; 2754 } 2755 /* 2756 * Repair failed, just record the error but still continue. 2757 * Or the remaining sectors will not be properly unlocked. 2758 */ 2759 if (!error) 2760 error = ret; 2761 next: 2762 end_page_read(page, uptodate, start + offset, sectorsize); 2763 if (uptodate) 2764 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2765 start + offset, 2766 start + offset + sectorsize - 1, 2767 &cached, GFP_ATOMIC); 2768 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2769 start + offset, 2770 start + offset + sectorsize - 1, 2771 &cached); 2772 } 2773 return errno_to_blk_status(error); 2774 } 2775 2776 /* lots and lots of room for performance fixes in the end_bio funcs */ 2777 2778 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2779 { 2780 struct btrfs_inode *inode; 2781 const bool uptodate = (err == 0); 2782 int ret = 0; 2783 2784 ASSERT(page && page->mapping); 2785 inode = BTRFS_I(page->mapping->host); 2786 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2787 2788 if (!uptodate) { 2789 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2790 u32 len; 2791 2792 ASSERT(end + 1 - start <= U32_MAX); 2793 len = end + 1 - start; 2794 2795 btrfs_page_clear_uptodate(fs_info, page, start, len); 2796 btrfs_page_set_error(fs_info, page, start, len); 2797 ret = err < 0 ? err : -EIO; 2798 mapping_set_error(page->mapping, ret); 2799 } 2800 } 2801 2802 /* 2803 * after a writepage IO is done, we need to: 2804 * clear the uptodate bits on error 2805 * clear the writeback bits in the extent tree for this IO 2806 * end_page_writeback if the page has no more pending IO 2807 * 2808 * Scheduling is not allowed, so the extent state tree is expected 2809 * to have one and only one object corresponding to this IO. 2810 */ 2811 static void end_bio_extent_writepage(struct bio *bio) 2812 { 2813 int error = blk_status_to_errno(bio->bi_status); 2814 struct bio_vec *bvec; 2815 u64 start; 2816 u64 end; 2817 struct bvec_iter_all iter_all; 2818 bool first_bvec = true; 2819 2820 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2821 bio_for_each_segment_all(bvec, bio, iter_all) { 2822 struct page *page = bvec->bv_page; 2823 struct inode *inode = page->mapping->host; 2824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2825 const u32 sectorsize = fs_info->sectorsize; 2826 2827 /* Our read/write should always be sector aligned. */ 2828 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2829 btrfs_err(fs_info, 2830 "partial page write in btrfs with offset %u and length %u", 2831 bvec->bv_offset, bvec->bv_len); 2832 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2833 btrfs_info(fs_info, 2834 "incomplete page write with offset %u and length %u", 2835 bvec->bv_offset, bvec->bv_len); 2836 2837 start = page_offset(page) + bvec->bv_offset; 2838 end = start + bvec->bv_len - 1; 2839 2840 if (first_bvec) { 2841 btrfs_record_physical_zoned(inode, start, bio); 2842 first_bvec = false; 2843 } 2844 2845 end_extent_writepage(page, error, start, end); 2846 2847 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2848 } 2849 2850 bio_put(bio); 2851 } 2852 2853 /* 2854 * Record previously processed extent range 2855 * 2856 * For endio_readpage_release_extent() to handle a full extent range, reducing 2857 * the extent io operations. 2858 */ 2859 struct processed_extent { 2860 struct btrfs_inode *inode; 2861 /* Start of the range in @inode */ 2862 u64 start; 2863 /* End of the range in @inode */ 2864 u64 end; 2865 bool uptodate; 2866 }; 2867 2868 /* 2869 * Try to release processed extent range 2870 * 2871 * May not release the extent range right now if the current range is 2872 * contiguous to processed extent. 2873 * 2874 * Will release processed extent when any of @inode, @uptodate, the range is 2875 * no longer contiguous to the processed range. 2876 * 2877 * Passing @inode == NULL will force processed extent to be released. 2878 */ 2879 static void endio_readpage_release_extent(struct processed_extent *processed, 2880 struct btrfs_inode *inode, u64 start, u64 end, 2881 bool uptodate) 2882 { 2883 struct extent_state *cached = NULL; 2884 struct extent_io_tree *tree; 2885 2886 /* The first extent, initialize @processed */ 2887 if (!processed->inode) 2888 goto update; 2889 2890 /* 2891 * Contiguous to processed extent, just uptodate the end. 2892 * 2893 * Several things to notice: 2894 * 2895 * - bio can be merged as long as on-disk bytenr is contiguous 2896 * This means we can have page belonging to other inodes, thus need to 2897 * check if the inode still matches. 2898 * - bvec can contain range beyond current page for multi-page bvec 2899 * Thus we need to do processed->end + 1 >= start check 2900 */ 2901 if (processed->inode == inode && processed->uptodate == uptodate && 2902 processed->end + 1 >= start && end >= processed->end) { 2903 processed->end = end; 2904 return; 2905 } 2906 2907 tree = &processed->inode->io_tree; 2908 /* 2909 * Now we don't have range contiguous to the processed range, release 2910 * the processed range now. 2911 */ 2912 if (processed->uptodate && tree->track_uptodate) 2913 set_extent_uptodate(tree, processed->start, processed->end, 2914 &cached, GFP_ATOMIC); 2915 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2916 &cached); 2917 2918 update: 2919 /* Update processed to current range */ 2920 processed->inode = inode; 2921 processed->start = start; 2922 processed->end = end; 2923 processed->uptodate = uptodate; 2924 } 2925 2926 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2927 { 2928 ASSERT(PageLocked(page)); 2929 if (fs_info->sectorsize == PAGE_SIZE) 2930 return; 2931 2932 ASSERT(PagePrivate(page)); 2933 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2934 } 2935 2936 /* 2937 * Find extent buffer for a givne bytenr. 2938 * 2939 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2940 * in endio context. 2941 */ 2942 static struct extent_buffer *find_extent_buffer_readpage( 2943 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2944 { 2945 struct extent_buffer *eb; 2946 2947 /* 2948 * For regular sectorsize, we can use page->private to grab extent 2949 * buffer 2950 */ 2951 if (fs_info->sectorsize == PAGE_SIZE) { 2952 ASSERT(PagePrivate(page) && page->private); 2953 return (struct extent_buffer *)page->private; 2954 } 2955 2956 /* For subpage case, we need to lookup buffer radix tree */ 2957 rcu_read_lock(); 2958 eb = radix_tree_lookup(&fs_info->buffer_radix, 2959 bytenr >> fs_info->sectorsize_bits); 2960 rcu_read_unlock(); 2961 ASSERT(eb); 2962 return eb; 2963 } 2964 2965 /* 2966 * after a readpage IO is done, we need to: 2967 * clear the uptodate bits on error 2968 * set the uptodate bits if things worked 2969 * set the page up to date if all extents in the tree are uptodate 2970 * clear the lock bit in the extent tree 2971 * unlock the page if there are no other extents locked for it 2972 * 2973 * Scheduling is not allowed, so the extent state tree is expected 2974 * to have one and only one object corresponding to this IO. 2975 */ 2976 static void end_bio_extent_readpage(struct bio *bio) 2977 { 2978 struct bio_vec *bvec; 2979 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2980 struct extent_io_tree *tree, *failure_tree; 2981 struct processed_extent processed = { 0 }; 2982 /* 2983 * The offset to the beginning of a bio, since one bio can never be 2984 * larger than UINT_MAX, u32 here is enough. 2985 */ 2986 u32 bio_offset = 0; 2987 int mirror; 2988 int ret; 2989 struct bvec_iter_all iter_all; 2990 2991 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2992 bio_for_each_segment_all(bvec, bio, iter_all) { 2993 bool uptodate = !bio->bi_status; 2994 struct page *page = bvec->bv_page; 2995 struct inode *inode = page->mapping->host; 2996 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2997 const u32 sectorsize = fs_info->sectorsize; 2998 unsigned int error_bitmap = (unsigned int)-1; 2999 u64 start; 3000 u64 end; 3001 u32 len; 3002 3003 btrfs_debug(fs_info, 3004 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3005 bio->bi_iter.bi_sector, bio->bi_status, 3006 io_bio->mirror_num); 3007 tree = &BTRFS_I(inode)->io_tree; 3008 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3009 3010 /* 3011 * We always issue full-sector reads, but if some block in a 3012 * page fails to read, blk_update_request() will advance 3013 * bv_offset and adjust bv_len to compensate. Print a warning 3014 * for unaligned offsets, and an error if they don't add up to 3015 * a full sector. 3016 */ 3017 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3018 btrfs_err(fs_info, 3019 "partial page read in btrfs with offset %u and length %u", 3020 bvec->bv_offset, bvec->bv_len); 3021 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3022 sectorsize)) 3023 btrfs_info(fs_info, 3024 "incomplete page read with offset %u and length %u", 3025 bvec->bv_offset, bvec->bv_len); 3026 3027 start = page_offset(page) + bvec->bv_offset; 3028 end = start + bvec->bv_len - 1; 3029 len = bvec->bv_len; 3030 3031 mirror = io_bio->mirror_num; 3032 if (likely(uptodate)) { 3033 if (is_data_inode(inode)) { 3034 error_bitmap = btrfs_verify_data_csum(io_bio, 3035 bio_offset, page, start, end); 3036 ret = error_bitmap; 3037 } else { 3038 ret = btrfs_validate_metadata_buffer(io_bio, 3039 page, start, end, mirror); 3040 } 3041 if (ret) 3042 uptodate = false; 3043 else 3044 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3045 failure_tree, tree, start, 3046 page, 3047 btrfs_ino(BTRFS_I(inode)), 0); 3048 } 3049 3050 if (likely(uptodate)) 3051 goto readpage_ok; 3052 3053 if (is_data_inode(inode)) { 3054 /* 3055 * btrfs_submit_read_repair() will handle all the good 3056 * and bad sectors, we just continue to the next bvec. 3057 */ 3058 submit_read_repair(inode, bio, bio_offset, page, 3059 start - page_offset(page), start, 3060 end, mirror, error_bitmap, 3061 btrfs_submit_data_bio); 3062 3063 ASSERT(bio_offset + len > bio_offset); 3064 bio_offset += len; 3065 continue; 3066 } else { 3067 struct extent_buffer *eb; 3068 3069 eb = find_extent_buffer_readpage(fs_info, page, start); 3070 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3071 eb->read_mirror = mirror; 3072 atomic_dec(&eb->io_pages); 3073 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 3074 &eb->bflags)) 3075 btree_readahead_hook(eb, -EIO); 3076 } 3077 readpage_ok: 3078 if (likely(uptodate)) { 3079 loff_t i_size = i_size_read(inode); 3080 pgoff_t end_index = i_size >> PAGE_SHIFT; 3081 3082 /* 3083 * Zero out the remaining part if this range straddles 3084 * i_size. 3085 * 3086 * Here we should only zero the range inside the bvec, 3087 * not touch anything else. 3088 * 3089 * NOTE: i_size is exclusive while end is inclusive. 3090 */ 3091 if (page->index == end_index && i_size <= end) { 3092 u32 zero_start = max(offset_in_page(i_size), 3093 offset_in_page(start)); 3094 3095 zero_user_segment(page, zero_start, 3096 offset_in_page(end) + 1); 3097 } 3098 } 3099 ASSERT(bio_offset + len > bio_offset); 3100 bio_offset += len; 3101 3102 /* Update page status and unlock */ 3103 end_page_read(page, uptodate, start, len); 3104 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3105 start, end, PageUptodate(page)); 3106 } 3107 /* Release the last extent */ 3108 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3109 btrfs_io_bio_free_csum(io_bio); 3110 bio_put(bio); 3111 } 3112 3113 /* 3114 * Initialize the members up to but not including 'bio'. Use after allocating a 3115 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3116 * 'bio' because use of __GFP_ZERO is not supported. 3117 */ 3118 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3119 { 3120 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3121 } 3122 3123 /* 3124 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3125 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3126 * for the appropriate container_of magic 3127 */ 3128 struct bio *btrfs_bio_alloc(u64 first_byte) 3129 { 3130 struct bio *bio; 3131 3132 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset); 3133 bio->bi_iter.bi_sector = first_byte >> 9; 3134 btrfs_io_bio_init(btrfs_io_bio(bio)); 3135 return bio; 3136 } 3137 3138 struct bio *btrfs_bio_clone(struct bio *bio) 3139 { 3140 struct btrfs_io_bio *btrfs_bio; 3141 struct bio *new; 3142 3143 /* Bio allocation backed by a bioset does not fail */ 3144 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3145 btrfs_bio = btrfs_io_bio(new); 3146 btrfs_io_bio_init(btrfs_bio); 3147 btrfs_bio->iter = bio->bi_iter; 3148 return new; 3149 } 3150 3151 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3152 { 3153 struct bio *bio; 3154 3155 /* Bio allocation backed by a bioset does not fail */ 3156 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3157 btrfs_io_bio_init(btrfs_io_bio(bio)); 3158 return bio; 3159 } 3160 3161 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3162 { 3163 struct bio *bio; 3164 struct btrfs_io_bio *btrfs_bio; 3165 3166 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3167 3168 /* this will never fail when it's backed by a bioset */ 3169 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3170 ASSERT(bio); 3171 3172 btrfs_bio = btrfs_io_bio(bio); 3173 btrfs_io_bio_init(btrfs_bio); 3174 3175 bio_trim(bio, offset >> 9, size >> 9); 3176 btrfs_bio->iter = bio->bi_iter; 3177 return bio; 3178 } 3179 3180 /** 3181 * Attempt to add a page to bio 3182 * 3183 * @bio: destination bio 3184 * @page: page to add to the bio 3185 * @disk_bytenr: offset of the new bio or to check whether we are adding 3186 * a contiguous page to the previous one 3187 * @pg_offset: starting offset in the page 3188 * @size: portion of page that we want to write 3189 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3190 * @bio_flags: flags of the current bio to see if we can merge them 3191 * 3192 * Attempt to add a page to bio considering stripe alignment etc. 3193 * 3194 * Return >= 0 for the number of bytes added to the bio. 3195 * Can return 0 if the current bio is already at stripe/zone boundary. 3196 * Return <0 for error. 3197 */ 3198 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3199 struct page *page, 3200 u64 disk_bytenr, unsigned int size, 3201 unsigned int pg_offset, 3202 unsigned long bio_flags) 3203 { 3204 struct bio *bio = bio_ctrl->bio; 3205 u32 bio_size = bio->bi_iter.bi_size; 3206 u32 real_size; 3207 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3208 bool contig; 3209 int ret; 3210 3211 ASSERT(bio); 3212 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3213 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3214 if (bio_ctrl->bio_flags != bio_flags) 3215 return 0; 3216 3217 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) 3218 contig = bio->bi_iter.bi_sector == sector; 3219 else 3220 contig = bio_end_sector(bio) == sector; 3221 if (!contig) 3222 return 0; 3223 3224 real_size = min(bio_ctrl->len_to_oe_boundary, 3225 bio_ctrl->len_to_stripe_boundary) - bio_size; 3226 real_size = min(real_size, size); 3227 3228 /* 3229 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3230 * bio will still execute its endio function on the page! 3231 */ 3232 if (real_size == 0) 3233 return 0; 3234 3235 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3236 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3237 else 3238 ret = bio_add_page(bio, page, real_size, pg_offset); 3239 3240 return ret; 3241 } 3242 3243 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3244 struct btrfs_inode *inode, u64 file_offset) 3245 { 3246 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3247 struct btrfs_io_geometry geom; 3248 struct btrfs_ordered_extent *ordered; 3249 struct extent_map *em; 3250 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3251 int ret; 3252 3253 /* 3254 * Pages for compressed extent are never submitted to disk directly, 3255 * thus it has no real boundary, just set them to U32_MAX. 3256 * 3257 * The split happens for real compressed bio, which happens in 3258 * btrfs_submit_compressed_read/write(). 3259 */ 3260 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { 3261 bio_ctrl->len_to_oe_boundary = U32_MAX; 3262 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3263 return 0; 3264 } 3265 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3266 if (IS_ERR(em)) 3267 return PTR_ERR(em); 3268 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3269 logical, &geom); 3270 free_extent_map(em); 3271 if (ret < 0) { 3272 return ret; 3273 } 3274 if (geom.len > U32_MAX) 3275 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3276 else 3277 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3278 3279 if (!btrfs_is_zoned(fs_info) || 3280 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3281 bio_ctrl->len_to_oe_boundary = U32_MAX; 3282 return 0; 3283 } 3284 3285 /* Ordered extent not yet created, so we're good */ 3286 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3287 if (!ordered) { 3288 bio_ctrl->len_to_oe_boundary = U32_MAX; 3289 return 0; 3290 } 3291 3292 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3293 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3294 btrfs_put_ordered_extent(ordered); 3295 return 0; 3296 } 3297 3298 static int alloc_new_bio(struct btrfs_inode *inode, 3299 struct btrfs_bio_ctrl *bio_ctrl, 3300 struct writeback_control *wbc, 3301 unsigned int opf, 3302 bio_end_io_t end_io_func, 3303 u64 disk_bytenr, u32 offset, u64 file_offset, 3304 unsigned long bio_flags) 3305 { 3306 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3307 struct bio *bio; 3308 int ret; 3309 3310 /* 3311 * For compressed page range, its disk_bytenr is always @disk_bytenr 3312 * passed in, no matter if we have added any range into previous bio. 3313 */ 3314 if (bio_flags & EXTENT_BIO_COMPRESSED) 3315 bio = btrfs_bio_alloc(disk_bytenr); 3316 else 3317 bio = btrfs_bio_alloc(disk_bytenr + offset); 3318 bio_ctrl->bio = bio; 3319 bio_ctrl->bio_flags = bio_flags; 3320 bio->bi_end_io = end_io_func; 3321 bio->bi_private = &inode->io_tree; 3322 bio->bi_write_hint = inode->vfs_inode.i_write_hint; 3323 bio->bi_opf = opf; 3324 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3325 if (ret < 0) 3326 goto error; 3327 if (wbc) { 3328 struct block_device *bdev; 3329 3330 bdev = fs_info->fs_devices->latest_bdev; 3331 bio_set_dev(bio, bdev); 3332 wbc_init_bio(wbc, bio); 3333 } 3334 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { 3335 struct btrfs_device *device; 3336 3337 device = btrfs_zoned_get_device(fs_info, disk_bytenr, 3338 fs_info->sectorsize); 3339 if (IS_ERR(device)) { 3340 ret = PTR_ERR(device); 3341 goto error; 3342 } 3343 3344 btrfs_io_bio(bio)->device = device; 3345 } 3346 return 0; 3347 error: 3348 bio_ctrl->bio = NULL; 3349 bio->bi_status = errno_to_blk_status(ret); 3350 bio_endio(bio); 3351 return ret; 3352 } 3353 3354 /* 3355 * @opf: bio REQ_OP_* and REQ_* flags as one value 3356 * @wbc: optional writeback control for io accounting 3357 * @page: page to add to the bio 3358 * @disk_bytenr: logical bytenr where the write will be 3359 * @size: portion of page that we want to write to 3360 * @pg_offset: offset of the new bio or to check whether we are adding 3361 * a contiguous page to the previous one 3362 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3363 * @end_io_func: end_io callback for new bio 3364 * @mirror_num: desired mirror to read/write 3365 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3366 * @bio_flags: flags of the current bio to see if we can merge them 3367 */ 3368 static int submit_extent_page(unsigned int opf, 3369 struct writeback_control *wbc, 3370 struct btrfs_bio_ctrl *bio_ctrl, 3371 struct page *page, u64 disk_bytenr, 3372 size_t size, unsigned long pg_offset, 3373 bio_end_io_t end_io_func, 3374 int mirror_num, 3375 unsigned long bio_flags, 3376 bool force_bio_submit) 3377 { 3378 int ret = 0; 3379 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3380 unsigned int cur = pg_offset; 3381 3382 ASSERT(bio_ctrl); 3383 3384 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3385 pg_offset + size <= PAGE_SIZE); 3386 if (force_bio_submit && bio_ctrl->bio) { 3387 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); 3388 bio_ctrl->bio = NULL; 3389 if (ret < 0) 3390 return ret; 3391 } 3392 3393 while (cur < pg_offset + size) { 3394 u32 offset = cur - pg_offset; 3395 int added; 3396 3397 /* Allocate new bio if needed */ 3398 if (!bio_ctrl->bio) { 3399 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3400 end_io_func, disk_bytenr, offset, 3401 page_offset(page) + cur, 3402 bio_flags); 3403 if (ret < 0) 3404 return ret; 3405 } 3406 /* 3407 * We must go through btrfs_bio_add_page() to ensure each 3408 * page range won't cross various boundaries. 3409 */ 3410 if (bio_flags & EXTENT_BIO_COMPRESSED) 3411 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3412 size - offset, pg_offset + offset, 3413 bio_flags); 3414 else 3415 added = btrfs_bio_add_page(bio_ctrl, page, 3416 disk_bytenr + offset, size - offset, 3417 pg_offset + offset, bio_flags); 3418 3419 /* Metadata page range should never be split */ 3420 if (!is_data_inode(&inode->vfs_inode)) 3421 ASSERT(added == 0 || added == size - offset); 3422 3423 /* At least we added some page, update the account */ 3424 if (wbc && added) 3425 wbc_account_cgroup_owner(wbc, page, added); 3426 3427 /* We have reached boundary, submit right now */ 3428 if (added < size - offset) { 3429 /* The bio should contain some page(s) */ 3430 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3431 ret = submit_one_bio(bio_ctrl->bio, mirror_num, 3432 bio_ctrl->bio_flags); 3433 bio_ctrl->bio = NULL; 3434 if (ret < 0) 3435 return ret; 3436 } 3437 cur += added; 3438 } 3439 return 0; 3440 } 3441 3442 static int attach_extent_buffer_page(struct extent_buffer *eb, 3443 struct page *page, 3444 struct btrfs_subpage *prealloc) 3445 { 3446 struct btrfs_fs_info *fs_info = eb->fs_info; 3447 int ret = 0; 3448 3449 /* 3450 * If the page is mapped to btree inode, we should hold the private 3451 * lock to prevent race. 3452 * For cloned or dummy extent buffers, their pages are not mapped and 3453 * will not race with any other ebs. 3454 */ 3455 if (page->mapping) 3456 lockdep_assert_held(&page->mapping->private_lock); 3457 3458 if (fs_info->sectorsize == PAGE_SIZE) { 3459 if (!PagePrivate(page)) 3460 attach_page_private(page, eb); 3461 else 3462 WARN_ON(page->private != (unsigned long)eb); 3463 return 0; 3464 } 3465 3466 /* Already mapped, just free prealloc */ 3467 if (PagePrivate(page)) { 3468 btrfs_free_subpage(prealloc); 3469 return 0; 3470 } 3471 3472 if (prealloc) 3473 /* Has preallocated memory for subpage */ 3474 attach_page_private(page, prealloc); 3475 else 3476 /* Do new allocation to attach subpage */ 3477 ret = btrfs_attach_subpage(fs_info, page, 3478 BTRFS_SUBPAGE_METADATA); 3479 return ret; 3480 } 3481 3482 int set_page_extent_mapped(struct page *page) 3483 { 3484 struct btrfs_fs_info *fs_info; 3485 3486 ASSERT(page->mapping); 3487 3488 if (PagePrivate(page)) 3489 return 0; 3490 3491 fs_info = btrfs_sb(page->mapping->host->i_sb); 3492 3493 if (fs_info->sectorsize < PAGE_SIZE) 3494 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3495 3496 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3497 return 0; 3498 } 3499 3500 void clear_page_extent_mapped(struct page *page) 3501 { 3502 struct btrfs_fs_info *fs_info; 3503 3504 ASSERT(page->mapping); 3505 3506 if (!PagePrivate(page)) 3507 return; 3508 3509 fs_info = btrfs_sb(page->mapping->host->i_sb); 3510 if (fs_info->sectorsize < PAGE_SIZE) 3511 return btrfs_detach_subpage(fs_info, page); 3512 3513 detach_page_private(page); 3514 } 3515 3516 static struct extent_map * 3517 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3518 u64 start, u64 len, struct extent_map **em_cached) 3519 { 3520 struct extent_map *em; 3521 3522 if (em_cached && *em_cached) { 3523 em = *em_cached; 3524 if (extent_map_in_tree(em) && start >= em->start && 3525 start < extent_map_end(em)) { 3526 refcount_inc(&em->refs); 3527 return em; 3528 } 3529 3530 free_extent_map(em); 3531 *em_cached = NULL; 3532 } 3533 3534 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3535 if (em_cached && !IS_ERR_OR_NULL(em)) { 3536 BUG_ON(*em_cached); 3537 refcount_inc(&em->refs); 3538 *em_cached = em; 3539 } 3540 return em; 3541 } 3542 /* 3543 * basic readpage implementation. Locked extent state structs are inserted 3544 * into the tree that are removed when the IO is done (by the end_io 3545 * handlers) 3546 * XXX JDM: This needs looking at to ensure proper page locking 3547 * return 0 on success, otherwise return error 3548 */ 3549 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3550 struct btrfs_bio_ctrl *bio_ctrl, 3551 unsigned int read_flags, u64 *prev_em_start) 3552 { 3553 struct inode *inode = page->mapping->host; 3554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3555 u64 start = page_offset(page); 3556 const u64 end = start + PAGE_SIZE - 1; 3557 u64 cur = start; 3558 u64 extent_offset; 3559 u64 last_byte = i_size_read(inode); 3560 u64 block_start; 3561 u64 cur_end; 3562 struct extent_map *em; 3563 int ret = 0; 3564 int nr = 0; 3565 size_t pg_offset = 0; 3566 size_t iosize; 3567 size_t blocksize = inode->i_sb->s_blocksize; 3568 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3569 3570 ret = set_page_extent_mapped(page); 3571 if (ret < 0) { 3572 unlock_extent(tree, start, end); 3573 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3574 unlock_page(page); 3575 goto out; 3576 } 3577 3578 if (!PageUptodate(page)) { 3579 if (cleancache_get_page(page) == 0) { 3580 BUG_ON(blocksize != PAGE_SIZE); 3581 unlock_extent(tree, start, end); 3582 unlock_page(page); 3583 goto out; 3584 } 3585 } 3586 3587 if (page->index == last_byte >> PAGE_SHIFT) { 3588 size_t zero_offset = offset_in_page(last_byte); 3589 3590 if (zero_offset) { 3591 iosize = PAGE_SIZE - zero_offset; 3592 memzero_page(page, zero_offset, iosize); 3593 flush_dcache_page(page); 3594 } 3595 } 3596 begin_page_read(fs_info, page); 3597 while (cur <= end) { 3598 unsigned long this_bio_flag = 0; 3599 bool force_bio_submit = false; 3600 u64 disk_bytenr; 3601 3602 if (cur >= last_byte) { 3603 struct extent_state *cached = NULL; 3604 3605 iosize = PAGE_SIZE - pg_offset; 3606 memzero_page(page, pg_offset, iosize); 3607 flush_dcache_page(page); 3608 set_extent_uptodate(tree, cur, cur + iosize - 1, 3609 &cached, GFP_NOFS); 3610 unlock_extent_cached(tree, cur, 3611 cur + iosize - 1, &cached); 3612 end_page_read(page, true, cur, iosize); 3613 break; 3614 } 3615 em = __get_extent_map(inode, page, pg_offset, cur, 3616 end - cur + 1, em_cached); 3617 if (IS_ERR_OR_NULL(em)) { 3618 unlock_extent(tree, cur, end); 3619 end_page_read(page, false, cur, end + 1 - cur); 3620 break; 3621 } 3622 extent_offset = cur - em->start; 3623 BUG_ON(extent_map_end(em) <= cur); 3624 BUG_ON(end < cur); 3625 3626 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3627 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3628 extent_set_compress_type(&this_bio_flag, 3629 em->compress_type); 3630 } 3631 3632 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3633 cur_end = min(extent_map_end(em) - 1, end); 3634 iosize = ALIGN(iosize, blocksize); 3635 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3636 disk_bytenr = em->block_start; 3637 else 3638 disk_bytenr = em->block_start + extent_offset; 3639 block_start = em->block_start; 3640 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3641 block_start = EXTENT_MAP_HOLE; 3642 3643 /* 3644 * If we have a file range that points to a compressed extent 3645 * and it's followed by a consecutive file range that points 3646 * to the same compressed extent (possibly with a different 3647 * offset and/or length, so it either points to the whole extent 3648 * or only part of it), we must make sure we do not submit a 3649 * single bio to populate the pages for the 2 ranges because 3650 * this makes the compressed extent read zero out the pages 3651 * belonging to the 2nd range. Imagine the following scenario: 3652 * 3653 * File layout 3654 * [0 - 8K] [8K - 24K] 3655 * | | 3656 * | | 3657 * points to extent X, points to extent X, 3658 * offset 4K, length of 8K offset 0, length 16K 3659 * 3660 * [extent X, compressed length = 4K uncompressed length = 16K] 3661 * 3662 * If the bio to read the compressed extent covers both ranges, 3663 * it will decompress extent X into the pages belonging to the 3664 * first range and then it will stop, zeroing out the remaining 3665 * pages that belong to the other range that points to extent X. 3666 * So here we make sure we submit 2 bios, one for the first 3667 * range and another one for the third range. Both will target 3668 * the same physical extent from disk, but we can't currently 3669 * make the compressed bio endio callback populate the pages 3670 * for both ranges because each compressed bio is tightly 3671 * coupled with a single extent map, and each range can have 3672 * an extent map with a different offset value relative to the 3673 * uncompressed data of our extent and different lengths. This 3674 * is a corner case so we prioritize correctness over 3675 * non-optimal behavior (submitting 2 bios for the same extent). 3676 */ 3677 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3678 prev_em_start && *prev_em_start != (u64)-1 && 3679 *prev_em_start != em->start) 3680 force_bio_submit = true; 3681 3682 if (prev_em_start) 3683 *prev_em_start = em->start; 3684 3685 free_extent_map(em); 3686 em = NULL; 3687 3688 /* we've found a hole, just zero and go on */ 3689 if (block_start == EXTENT_MAP_HOLE) { 3690 struct extent_state *cached = NULL; 3691 3692 memzero_page(page, pg_offset, iosize); 3693 flush_dcache_page(page); 3694 3695 set_extent_uptodate(tree, cur, cur + iosize - 1, 3696 &cached, GFP_NOFS); 3697 unlock_extent_cached(tree, cur, 3698 cur + iosize - 1, &cached); 3699 end_page_read(page, true, cur, iosize); 3700 cur = cur + iosize; 3701 pg_offset += iosize; 3702 continue; 3703 } 3704 /* the get_extent function already copied into the page */ 3705 if (test_range_bit(tree, cur, cur_end, 3706 EXTENT_UPTODATE, 1, NULL)) { 3707 unlock_extent(tree, cur, cur + iosize - 1); 3708 end_page_read(page, true, cur, iosize); 3709 cur = cur + iosize; 3710 pg_offset += iosize; 3711 continue; 3712 } 3713 /* we have an inline extent but it didn't get marked up 3714 * to date. Error out 3715 */ 3716 if (block_start == EXTENT_MAP_INLINE) { 3717 unlock_extent(tree, cur, cur + iosize - 1); 3718 end_page_read(page, false, cur, iosize); 3719 cur = cur + iosize; 3720 pg_offset += iosize; 3721 continue; 3722 } 3723 3724 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3725 bio_ctrl, page, disk_bytenr, iosize, 3726 pg_offset, 3727 end_bio_extent_readpage, 0, 3728 this_bio_flag, 3729 force_bio_submit); 3730 if (!ret) { 3731 nr++; 3732 } else { 3733 unlock_extent(tree, cur, cur + iosize - 1); 3734 end_page_read(page, false, cur, iosize); 3735 goto out; 3736 } 3737 cur = cur + iosize; 3738 pg_offset += iosize; 3739 } 3740 out: 3741 return ret; 3742 } 3743 3744 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3745 u64 start, u64 end, 3746 struct extent_map **em_cached, 3747 struct btrfs_bio_ctrl *bio_ctrl, 3748 u64 *prev_em_start) 3749 { 3750 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3751 int index; 3752 3753 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3754 3755 for (index = 0; index < nr_pages; index++) { 3756 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3757 REQ_RAHEAD, prev_em_start); 3758 put_page(pages[index]); 3759 } 3760 } 3761 3762 static void update_nr_written(struct writeback_control *wbc, 3763 unsigned long nr_written) 3764 { 3765 wbc->nr_to_write -= nr_written; 3766 } 3767 3768 /* 3769 * helper for __extent_writepage, doing all of the delayed allocation setup. 3770 * 3771 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3772 * to write the page (copy into inline extent). In this case the IO has 3773 * been started and the page is already unlocked. 3774 * 3775 * This returns 0 if all went well (page still locked) 3776 * This returns < 0 if there were errors (page still locked) 3777 */ 3778 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3779 struct page *page, struct writeback_control *wbc, 3780 u64 delalloc_start, unsigned long *nr_written) 3781 { 3782 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3783 bool found; 3784 u64 delalloc_to_write = 0; 3785 u64 delalloc_end = 0; 3786 int ret; 3787 int page_started = 0; 3788 3789 3790 while (delalloc_end < page_end) { 3791 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3792 &delalloc_start, 3793 &delalloc_end); 3794 if (!found) { 3795 delalloc_start = delalloc_end + 1; 3796 continue; 3797 } 3798 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3799 delalloc_end, &page_started, nr_written, wbc); 3800 if (ret) { 3801 btrfs_page_set_error(inode->root->fs_info, page, 3802 page_offset(page), PAGE_SIZE); 3803 return ret; 3804 } 3805 /* 3806 * delalloc_end is already one less than the total length, so 3807 * we don't subtract one from PAGE_SIZE 3808 */ 3809 delalloc_to_write += (delalloc_end - delalloc_start + 3810 PAGE_SIZE) >> PAGE_SHIFT; 3811 delalloc_start = delalloc_end + 1; 3812 } 3813 if (wbc->nr_to_write < delalloc_to_write) { 3814 int thresh = 8192; 3815 3816 if (delalloc_to_write < thresh * 2) 3817 thresh = delalloc_to_write; 3818 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3819 thresh); 3820 } 3821 3822 /* did the fill delalloc function already unlock and start 3823 * the IO? 3824 */ 3825 if (page_started) { 3826 /* 3827 * we've unlocked the page, so we can't update 3828 * the mapping's writeback index, just update 3829 * nr_to_write. 3830 */ 3831 wbc->nr_to_write -= *nr_written; 3832 return 1; 3833 } 3834 3835 return 0; 3836 } 3837 3838 /* 3839 * Find the first byte we need to write. 3840 * 3841 * For subpage, one page can contain several sectors, and 3842 * __extent_writepage_io() will just grab all extent maps in the page 3843 * range and try to submit all non-inline/non-compressed extents. 3844 * 3845 * This is a big problem for subpage, we shouldn't re-submit already written 3846 * data at all. 3847 * This function will lookup subpage dirty bit to find which range we really 3848 * need to submit. 3849 * 3850 * Return the next dirty range in [@start, @end). 3851 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3852 */ 3853 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3854 struct page *page, u64 *start, u64 *end) 3855 { 3856 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3857 u64 orig_start = *start; 3858 /* Declare as unsigned long so we can use bitmap ops */ 3859 unsigned long dirty_bitmap; 3860 unsigned long flags; 3861 int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits; 3862 int range_start_bit = nbits; 3863 int range_end_bit; 3864 3865 /* 3866 * For regular sector size == page size case, since one page only 3867 * contains one sector, we return the page offset directly. 3868 */ 3869 if (fs_info->sectorsize == PAGE_SIZE) { 3870 *start = page_offset(page); 3871 *end = page_offset(page) + PAGE_SIZE; 3872 return; 3873 } 3874 3875 /* We should have the page locked, but just in case */ 3876 spin_lock_irqsave(&subpage->lock, flags); 3877 dirty_bitmap = subpage->dirty_bitmap; 3878 spin_unlock_irqrestore(&subpage->lock, flags); 3879 3880 bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit, 3881 BTRFS_SUBPAGE_BITMAP_SIZE); 3882 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3883 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3884 } 3885 3886 /* 3887 * helper for __extent_writepage. This calls the writepage start hooks, 3888 * and does the loop to map the page into extents and bios. 3889 * 3890 * We return 1 if the IO is started and the page is unlocked, 3891 * 0 if all went well (page still locked) 3892 * < 0 if there were errors (page still locked) 3893 */ 3894 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3895 struct page *page, 3896 struct writeback_control *wbc, 3897 struct extent_page_data *epd, 3898 loff_t i_size, 3899 unsigned long nr_written, 3900 int *nr_ret) 3901 { 3902 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3903 u64 cur = page_offset(page); 3904 u64 end = cur + PAGE_SIZE - 1; 3905 u64 extent_offset; 3906 u64 block_start; 3907 struct extent_map *em; 3908 int ret = 0; 3909 int nr = 0; 3910 u32 opf = REQ_OP_WRITE; 3911 const unsigned int write_flags = wbc_to_write_flags(wbc); 3912 bool compressed; 3913 3914 ret = btrfs_writepage_cow_fixup(page); 3915 if (ret) { 3916 /* Fixup worker will requeue */ 3917 redirty_page_for_writepage(wbc, page); 3918 update_nr_written(wbc, nr_written); 3919 unlock_page(page); 3920 return 1; 3921 } 3922 3923 /* 3924 * we don't want to touch the inode after unlocking the page, 3925 * so we update the mapping writeback index now 3926 */ 3927 update_nr_written(wbc, nr_written + 1); 3928 3929 while (cur <= end) { 3930 u64 disk_bytenr; 3931 u64 em_end; 3932 u64 dirty_range_start = cur; 3933 u64 dirty_range_end; 3934 u32 iosize; 3935 3936 if (cur >= i_size) { 3937 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3938 end, true); 3939 /* 3940 * This range is beyond i_size, thus we don't need to 3941 * bother writing back. 3942 * But we still need to clear the dirty subpage bit, or 3943 * the next time the page gets dirtied, we will try to 3944 * writeback the sectors with subpage dirty bits, 3945 * causing writeback without ordered extent. 3946 */ 3947 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 3948 break; 3949 } 3950 3951 find_next_dirty_byte(fs_info, page, &dirty_range_start, 3952 &dirty_range_end); 3953 if (cur < dirty_range_start) { 3954 cur = dirty_range_start; 3955 continue; 3956 } 3957 3958 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3959 if (IS_ERR_OR_NULL(em)) { 3960 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 3961 ret = PTR_ERR_OR_ZERO(em); 3962 break; 3963 } 3964 3965 extent_offset = cur - em->start; 3966 em_end = extent_map_end(em); 3967 ASSERT(cur <= em_end); 3968 ASSERT(cur < end); 3969 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3970 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3971 block_start = em->block_start; 3972 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3973 disk_bytenr = em->block_start + extent_offset; 3974 3975 /* 3976 * Note that em_end from extent_map_end() and dirty_range_end from 3977 * find_next_dirty_byte() are all exclusive 3978 */ 3979 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 3980 3981 if (btrfs_use_zone_append(inode, em->block_start)) 3982 opf = REQ_OP_ZONE_APPEND; 3983 3984 free_extent_map(em); 3985 em = NULL; 3986 3987 /* 3988 * compressed and inline extents are written through other 3989 * paths in the FS 3990 */ 3991 if (compressed || block_start == EXTENT_MAP_HOLE || 3992 block_start == EXTENT_MAP_INLINE) { 3993 if (compressed) 3994 nr++; 3995 else 3996 btrfs_writepage_endio_finish_ordered(inode, 3997 page, cur, cur + iosize - 1, true); 3998 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 3999 cur += iosize; 4000 continue; 4001 } 4002 4003 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4004 if (!PageWriteback(page)) { 4005 btrfs_err(inode->root->fs_info, 4006 "page %lu not writeback, cur %llu end %llu", 4007 page->index, cur, end); 4008 } 4009 4010 /* 4011 * Although the PageDirty bit is cleared before entering this 4012 * function, subpage dirty bit is not cleared. 4013 * So clear subpage dirty bit here so next time we won't submit 4014 * page for range already written to disk. 4015 */ 4016 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4017 4018 ret = submit_extent_page(opf | write_flags, wbc, 4019 &epd->bio_ctrl, page, 4020 disk_bytenr, iosize, 4021 cur - page_offset(page), 4022 end_bio_extent_writepage, 4023 0, 0, false); 4024 if (ret) { 4025 btrfs_page_set_error(fs_info, page, cur, iosize); 4026 if (PageWriteback(page)) 4027 btrfs_page_clear_writeback(fs_info, page, cur, 4028 iosize); 4029 } 4030 4031 cur += iosize; 4032 nr++; 4033 } 4034 /* 4035 * If we finish without problem, we should not only clear page dirty, 4036 * but also empty subpage dirty bits 4037 */ 4038 if (!ret) 4039 btrfs_page_assert_not_dirty(fs_info, page); 4040 *nr_ret = nr; 4041 return ret; 4042 } 4043 4044 /* 4045 * the writepage semantics are similar to regular writepage. extent 4046 * records are inserted to lock ranges in the tree, and as dirty areas 4047 * are found, they are marked writeback. Then the lock bits are removed 4048 * and the end_io handler clears the writeback ranges 4049 * 4050 * Return 0 if everything goes well. 4051 * Return <0 for error. 4052 */ 4053 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4054 struct extent_page_data *epd) 4055 { 4056 struct inode *inode = page->mapping->host; 4057 u64 start = page_offset(page); 4058 u64 page_end = start + PAGE_SIZE - 1; 4059 int ret; 4060 int nr = 0; 4061 size_t pg_offset; 4062 loff_t i_size = i_size_read(inode); 4063 unsigned long end_index = i_size >> PAGE_SHIFT; 4064 unsigned long nr_written = 0; 4065 4066 trace___extent_writepage(page, inode, wbc); 4067 4068 WARN_ON(!PageLocked(page)); 4069 4070 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4071 page_offset(page), PAGE_SIZE); 4072 4073 pg_offset = offset_in_page(i_size); 4074 if (page->index > end_index || 4075 (page->index == end_index && !pg_offset)) { 4076 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 4077 unlock_page(page); 4078 return 0; 4079 } 4080 4081 if (page->index == end_index) { 4082 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4083 flush_dcache_page(page); 4084 } 4085 4086 ret = set_page_extent_mapped(page); 4087 if (ret < 0) { 4088 SetPageError(page); 4089 goto done; 4090 } 4091 4092 if (!epd->extent_locked) { 4093 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 4094 &nr_written); 4095 if (ret == 1) 4096 return 0; 4097 if (ret) 4098 goto done; 4099 } 4100 4101 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4102 nr_written, &nr); 4103 if (ret == 1) 4104 return 0; 4105 4106 done: 4107 if (nr == 0) { 4108 /* make sure the mapping tag for page dirty gets cleared */ 4109 set_page_writeback(page); 4110 end_page_writeback(page); 4111 } 4112 /* 4113 * Here we used to have a check for PageError() and then set @ret and 4114 * call end_extent_writepage(). 4115 * 4116 * But in fact setting @ret here will cause different error paths 4117 * between subpage and regular sectorsize. 4118 * 4119 * For regular page size, we never submit current page, but only add 4120 * current page to current bio. 4121 * The bio submission can only happen in next page. 4122 * Thus if we hit the PageError() branch, @ret is already set to 4123 * non-zero value and will not get updated for regular sectorsize. 4124 * 4125 * But for subpage case, it's possible we submit part of current page, 4126 * thus can get PageError() set by submitted bio of the same page, 4127 * while our @ret is still 0. 4128 * 4129 * So here we unify the behavior and don't set @ret. 4130 * Error can still be properly passed to higher layer as page will 4131 * be set error, here we just don't handle the IO failure. 4132 * 4133 * NOTE: This is just a hotfix for subpage. 4134 * The root fix will be properly ending ordered extent when we hit 4135 * an error during writeback. 4136 * 4137 * But that needs a bigger refactoring, as we not only need to grab the 4138 * submitted OE, but also need to know exactly at which bytenr we hit 4139 * the error. 4140 * Currently the full page based __extent_writepage_io() is not 4141 * capable of that. 4142 */ 4143 if (PageError(page)) 4144 end_extent_writepage(page, ret, start, page_end); 4145 unlock_page(page); 4146 ASSERT(ret <= 0); 4147 return ret; 4148 } 4149 4150 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4151 { 4152 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4153 TASK_UNINTERRUPTIBLE); 4154 } 4155 4156 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4157 { 4158 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4159 smp_mb__after_atomic(); 4160 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4161 } 4162 4163 /* 4164 * Lock extent buffer status and pages for writeback. 4165 * 4166 * May try to flush write bio if we can't get the lock. 4167 * 4168 * Return 0 if the extent buffer doesn't need to be submitted. 4169 * (E.g. the extent buffer is not dirty) 4170 * Return >0 is the extent buffer is submitted to bio. 4171 * Return <0 if something went wrong, no page is locked. 4172 */ 4173 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4174 struct extent_page_data *epd) 4175 { 4176 struct btrfs_fs_info *fs_info = eb->fs_info; 4177 int i, num_pages, failed_page_nr; 4178 int flush = 0; 4179 int ret = 0; 4180 4181 if (!btrfs_try_tree_write_lock(eb)) { 4182 ret = flush_write_bio(epd); 4183 if (ret < 0) 4184 return ret; 4185 flush = 1; 4186 btrfs_tree_lock(eb); 4187 } 4188 4189 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4190 btrfs_tree_unlock(eb); 4191 if (!epd->sync_io) 4192 return 0; 4193 if (!flush) { 4194 ret = flush_write_bio(epd); 4195 if (ret < 0) 4196 return ret; 4197 flush = 1; 4198 } 4199 while (1) { 4200 wait_on_extent_buffer_writeback(eb); 4201 btrfs_tree_lock(eb); 4202 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4203 break; 4204 btrfs_tree_unlock(eb); 4205 } 4206 } 4207 4208 /* 4209 * We need to do this to prevent races in people who check if the eb is 4210 * under IO since we can end up having no IO bits set for a short period 4211 * of time. 4212 */ 4213 spin_lock(&eb->refs_lock); 4214 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4215 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4216 spin_unlock(&eb->refs_lock); 4217 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4218 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4219 -eb->len, 4220 fs_info->dirty_metadata_batch); 4221 ret = 1; 4222 } else { 4223 spin_unlock(&eb->refs_lock); 4224 } 4225 4226 btrfs_tree_unlock(eb); 4227 4228 /* 4229 * Either we don't need to submit any tree block, or we're submitting 4230 * subpage eb. 4231 * Subpage metadata doesn't use page locking at all, so we can skip 4232 * the page locking. 4233 */ 4234 if (!ret || fs_info->sectorsize < PAGE_SIZE) 4235 return ret; 4236 4237 num_pages = num_extent_pages(eb); 4238 for (i = 0; i < num_pages; i++) { 4239 struct page *p = eb->pages[i]; 4240 4241 if (!trylock_page(p)) { 4242 if (!flush) { 4243 int err; 4244 4245 err = flush_write_bio(epd); 4246 if (err < 0) { 4247 ret = err; 4248 failed_page_nr = i; 4249 goto err_unlock; 4250 } 4251 flush = 1; 4252 } 4253 lock_page(p); 4254 } 4255 } 4256 4257 return ret; 4258 err_unlock: 4259 /* Unlock already locked pages */ 4260 for (i = 0; i < failed_page_nr; i++) 4261 unlock_page(eb->pages[i]); 4262 /* 4263 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4264 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4265 * be made and undo everything done before. 4266 */ 4267 btrfs_tree_lock(eb); 4268 spin_lock(&eb->refs_lock); 4269 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4270 end_extent_buffer_writeback(eb); 4271 spin_unlock(&eb->refs_lock); 4272 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4273 fs_info->dirty_metadata_batch); 4274 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4275 btrfs_tree_unlock(eb); 4276 return ret; 4277 } 4278 4279 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4280 { 4281 struct btrfs_fs_info *fs_info = eb->fs_info; 4282 4283 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4284 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4285 return; 4286 4287 /* 4288 * If we error out, we should add back the dirty_metadata_bytes 4289 * to make it consistent. 4290 */ 4291 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4292 eb->len, fs_info->dirty_metadata_batch); 4293 4294 /* 4295 * If writeback for a btree extent that doesn't belong to a log tree 4296 * failed, increment the counter transaction->eb_write_errors. 4297 * We do this because while the transaction is running and before it's 4298 * committing (when we call filemap_fdata[write|wait]_range against 4299 * the btree inode), we might have 4300 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4301 * returns an error or an error happens during writeback, when we're 4302 * committing the transaction we wouldn't know about it, since the pages 4303 * can be no longer dirty nor marked anymore for writeback (if a 4304 * subsequent modification to the extent buffer didn't happen before the 4305 * transaction commit), which makes filemap_fdata[write|wait]_range not 4306 * able to find the pages tagged with SetPageError at transaction 4307 * commit time. So if this happens we must abort the transaction, 4308 * otherwise we commit a super block with btree roots that point to 4309 * btree nodes/leafs whose content on disk is invalid - either garbage 4310 * or the content of some node/leaf from a past generation that got 4311 * cowed or deleted and is no longer valid. 4312 * 4313 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4314 * not be enough - we need to distinguish between log tree extents vs 4315 * non-log tree extents, and the next filemap_fdatawait_range() call 4316 * will catch and clear such errors in the mapping - and that call might 4317 * be from a log sync and not from a transaction commit. Also, checking 4318 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4319 * not done and would not be reliable - the eb might have been released 4320 * from memory and reading it back again means that flag would not be 4321 * set (since it's a runtime flag, not persisted on disk). 4322 * 4323 * Using the flags below in the btree inode also makes us achieve the 4324 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4325 * writeback for all dirty pages and before filemap_fdatawait_range() 4326 * is called, the writeback for all dirty pages had already finished 4327 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4328 * filemap_fdatawait_range() would return success, as it could not know 4329 * that writeback errors happened (the pages were no longer tagged for 4330 * writeback). 4331 */ 4332 switch (eb->log_index) { 4333 case -1: 4334 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4335 break; 4336 case 0: 4337 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4338 break; 4339 case 1: 4340 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4341 break; 4342 default: 4343 BUG(); /* unexpected, logic error */ 4344 } 4345 } 4346 4347 /* 4348 * The endio specific version which won't touch any unsafe spinlock in endio 4349 * context. 4350 */ 4351 static struct extent_buffer *find_extent_buffer_nolock( 4352 struct btrfs_fs_info *fs_info, u64 start) 4353 { 4354 struct extent_buffer *eb; 4355 4356 rcu_read_lock(); 4357 eb = radix_tree_lookup(&fs_info->buffer_radix, 4358 start >> fs_info->sectorsize_bits); 4359 if (eb && atomic_inc_not_zero(&eb->refs)) { 4360 rcu_read_unlock(); 4361 return eb; 4362 } 4363 rcu_read_unlock(); 4364 return NULL; 4365 } 4366 4367 /* 4368 * The endio function for subpage extent buffer write. 4369 * 4370 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4371 * after all extent buffers in the page has finished their writeback. 4372 */ 4373 static void end_bio_subpage_eb_writepage(struct bio *bio) 4374 { 4375 struct btrfs_fs_info *fs_info; 4376 struct bio_vec *bvec; 4377 struct bvec_iter_all iter_all; 4378 4379 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4380 ASSERT(fs_info->sectorsize < PAGE_SIZE); 4381 4382 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4383 bio_for_each_segment_all(bvec, bio, iter_all) { 4384 struct page *page = bvec->bv_page; 4385 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4386 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4387 u64 cur_bytenr = bvec_start; 4388 4389 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4390 4391 /* Iterate through all extent buffers in the range */ 4392 while (cur_bytenr <= bvec_end) { 4393 struct extent_buffer *eb; 4394 int done; 4395 4396 /* 4397 * Here we can't use find_extent_buffer(), as it may 4398 * try to lock eb->refs_lock, which is not safe in endio 4399 * context. 4400 */ 4401 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4402 ASSERT(eb); 4403 4404 cur_bytenr = eb->start + eb->len; 4405 4406 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4407 done = atomic_dec_and_test(&eb->io_pages); 4408 ASSERT(done); 4409 4410 if (bio->bi_status || 4411 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4412 ClearPageUptodate(page); 4413 set_btree_ioerr(page, eb); 4414 } 4415 4416 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4417 eb->len); 4418 end_extent_buffer_writeback(eb); 4419 /* 4420 * free_extent_buffer() will grab spinlock which is not 4421 * safe in endio context. Thus here we manually dec 4422 * the ref. 4423 */ 4424 atomic_dec(&eb->refs); 4425 } 4426 } 4427 bio_put(bio); 4428 } 4429 4430 static void end_bio_extent_buffer_writepage(struct bio *bio) 4431 { 4432 struct bio_vec *bvec; 4433 struct extent_buffer *eb; 4434 int done; 4435 struct bvec_iter_all iter_all; 4436 4437 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4438 bio_for_each_segment_all(bvec, bio, iter_all) { 4439 struct page *page = bvec->bv_page; 4440 4441 eb = (struct extent_buffer *)page->private; 4442 BUG_ON(!eb); 4443 done = atomic_dec_and_test(&eb->io_pages); 4444 4445 if (bio->bi_status || 4446 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4447 ClearPageUptodate(page); 4448 set_btree_ioerr(page, eb); 4449 } 4450 4451 end_page_writeback(page); 4452 4453 if (!done) 4454 continue; 4455 4456 end_extent_buffer_writeback(eb); 4457 } 4458 4459 bio_put(bio); 4460 } 4461 4462 static void prepare_eb_write(struct extent_buffer *eb) 4463 { 4464 u32 nritems; 4465 unsigned long start; 4466 unsigned long end; 4467 4468 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4469 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4470 4471 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4472 nritems = btrfs_header_nritems(eb); 4473 if (btrfs_header_level(eb) > 0) { 4474 end = btrfs_node_key_ptr_offset(nritems); 4475 memzero_extent_buffer(eb, end, eb->len - end); 4476 } else { 4477 /* 4478 * Leaf: 4479 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4480 */ 4481 start = btrfs_item_nr_offset(nritems); 4482 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4483 memzero_extent_buffer(eb, start, end - start); 4484 } 4485 } 4486 4487 /* 4488 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4489 * Page locking is only utilized at minimum to keep the VMM code happy. 4490 */ 4491 static int write_one_subpage_eb(struct extent_buffer *eb, 4492 struct writeback_control *wbc, 4493 struct extent_page_data *epd) 4494 { 4495 struct btrfs_fs_info *fs_info = eb->fs_info; 4496 struct page *page = eb->pages[0]; 4497 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4498 bool no_dirty_ebs = false; 4499 int ret; 4500 4501 prepare_eb_write(eb); 4502 4503 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4504 lock_page(page); 4505 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4506 4507 /* Check if this is the last dirty bit to update nr_written */ 4508 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4509 eb->start, eb->len); 4510 if (no_dirty_ebs) 4511 clear_page_dirty_for_io(page); 4512 4513 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4514 &epd->bio_ctrl, page, eb->start, eb->len, 4515 eb->start - page_offset(page), 4516 end_bio_subpage_eb_writepage, 0, 0, false); 4517 if (ret) { 4518 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4519 set_btree_ioerr(page, eb); 4520 unlock_page(page); 4521 4522 if (atomic_dec_and_test(&eb->io_pages)) 4523 end_extent_buffer_writeback(eb); 4524 return -EIO; 4525 } 4526 unlock_page(page); 4527 /* 4528 * Submission finished without problem, if no range of the page is 4529 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4530 */ 4531 if (no_dirty_ebs) 4532 update_nr_written(wbc, 1); 4533 return ret; 4534 } 4535 4536 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4537 struct writeback_control *wbc, 4538 struct extent_page_data *epd) 4539 { 4540 u64 disk_bytenr = eb->start; 4541 int i, num_pages; 4542 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4543 int ret = 0; 4544 4545 prepare_eb_write(eb); 4546 4547 num_pages = num_extent_pages(eb); 4548 for (i = 0; i < num_pages; i++) { 4549 struct page *p = eb->pages[i]; 4550 4551 clear_page_dirty_for_io(p); 4552 set_page_writeback(p); 4553 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4554 &epd->bio_ctrl, p, disk_bytenr, 4555 PAGE_SIZE, 0, 4556 end_bio_extent_buffer_writepage, 4557 0, 0, false); 4558 if (ret) { 4559 set_btree_ioerr(p, eb); 4560 if (PageWriteback(p)) 4561 end_page_writeback(p); 4562 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4563 end_extent_buffer_writeback(eb); 4564 ret = -EIO; 4565 break; 4566 } 4567 disk_bytenr += PAGE_SIZE; 4568 update_nr_written(wbc, 1); 4569 unlock_page(p); 4570 } 4571 4572 if (unlikely(ret)) { 4573 for (; i < num_pages; i++) { 4574 struct page *p = eb->pages[i]; 4575 clear_page_dirty_for_io(p); 4576 unlock_page(p); 4577 } 4578 } 4579 4580 return ret; 4581 } 4582 4583 /* 4584 * Submit one subpage btree page. 4585 * 4586 * The main difference to submit_eb_page() is: 4587 * - Page locking 4588 * For subpage, we don't rely on page locking at all. 4589 * 4590 * - Flush write bio 4591 * We only flush bio if we may be unable to fit current extent buffers into 4592 * current bio. 4593 * 4594 * Return >=0 for the number of submitted extent buffers. 4595 * Return <0 for fatal error. 4596 */ 4597 static int submit_eb_subpage(struct page *page, 4598 struct writeback_control *wbc, 4599 struct extent_page_data *epd) 4600 { 4601 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4602 int submitted = 0; 4603 u64 page_start = page_offset(page); 4604 int bit_start = 0; 4605 const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE; 4606 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4607 int ret; 4608 4609 /* Lock and write each dirty extent buffers in the range */ 4610 while (bit_start < nbits) { 4611 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4612 struct extent_buffer *eb; 4613 unsigned long flags; 4614 u64 start; 4615 4616 /* 4617 * Take private lock to ensure the subpage won't be detached 4618 * in the meantime. 4619 */ 4620 spin_lock(&page->mapping->private_lock); 4621 if (!PagePrivate(page)) { 4622 spin_unlock(&page->mapping->private_lock); 4623 break; 4624 } 4625 spin_lock_irqsave(&subpage->lock, flags); 4626 if (!((1 << bit_start) & subpage->dirty_bitmap)) { 4627 spin_unlock_irqrestore(&subpage->lock, flags); 4628 spin_unlock(&page->mapping->private_lock); 4629 bit_start++; 4630 continue; 4631 } 4632 4633 start = page_start + bit_start * fs_info->sectorsize; 4634 bit_start += sectors_per_node; 4635 4636 /* 4637 * Here we just want to grab the eb without touching extra 4638 * spin locks, so call find_extent_buffer_nolock(). 4639 */ 4640 eb = find_extent_buffer_nolock(fs_info, start); 4641 spin_unlock_irqrestore(&subpage->lock, flags); 4642 spin_unlock(&page->mapping->private_lock); 4643 4644 /* 4645 * The eb has already reached 0 refs thus find_extent_buffer() 4646 * doesn't return it. We don't need to write back such eb 4647 * anyway. 4648 */ 4649 if (!eb) 4650 continue; 4651 4652 ret = lock_extent_buffer_for_io(eb, epd); 4653 if (ret == 0) { 4654 free_extent_buffer(eb); 4655 continue; 4656 } 4657 if (ret < 0) { 4658 free_extent_buffer(eb); 4659 goto cleanup; 4660 } 4661 ret = write_one_subpage_eb(eb, wbc, epd); 4662 free_extent_buffer(eb); 4663 if (ret < 0) 4664 goto cleanup; 4665 submitted++; 4666 } 4667 return submitted; 4668 4669 cleanup: 4670 /* We hit error, end bio for the submitted extent buffers */ 4671 end_write_bio(epd, ret); 4672 return ret; 4673 } 4674 4675 /* 4676 * Submit all page(s) of one extent buffer. 4677 * 4678 * @page: the page of one extent buffer 4679 * @eb_context: to determine if we need to submit this page, if current page 4680 * belongs to this eb, we don't need to submit 4681 * 4682 * The caller should pass each page in their bytenr order, and here we use 4683 * @eb_context to determine if we have submitted pages of one extent buffer. 4684 * 4685 * If we have, we just skip until we hit a new page that doesn't belong to 4686 * current @eb_context. 4687 * 4688 * If not, we submit all the page(s) of the extent buffer. 4689 * 4690 * Return >0 if we have submitted the extent buffer successfully. 4691 * Return 0 if we don't need to submit the page, as it's already submitted by 4692 * previous call. 4693 * Return <0 for fatal error. 4694 */ 4695 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4696 struct extent_page_data *epd, 4697 struct extent_buffer **eb_context) 4698 { 4699 struct address_space *mapping = page->mapping; 4700 struct btrfs_block_group *cache = NULL; 4701 struct extent_buffer *eb; 4702 int ret; 4703 4704 if (!PagePrivate(page)) 4705 return 0; 4706 4707 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 4708 return submit_eb_subpage(page, wbc, epd); 4709 4710 spin_lock(&mapping->private_lock); 4711 if (!PagePrivate(page)) { 4712 spin_unlock(&mapping->private_lock); 4713 return 0; 4714 } 4715 4716 eb = (struct extent_buffer *)page->private; 4717 4718 /* 4719 * Shouldn't happen and normally this would be a BUG_ON but no point 4720 * crashing the machine for something we can survive anyway. 4721 */ 4722 if (WARN_ON(!eb)) { 4723 spin_unlock(&mapping->private_lock); 4724 return 0; 4725 } 4726 4727 if (eb == *eb_context) { 4728 spin_unlock(&mapping->private_lock); 4729 return 0; 4730 } 4731 ret = atomic_inc_not_zero(&eb->refs); 4732 spin_unlock(&mapping->private_lock); 4733 if (!ret) 4734 return 0; 4735 4736 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4737 /* 4738 * If for_sync, this hole will be filled with 4739 * trasnsaction commit. 4740 */ 4741 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4742 ret = -EAGAIN; 4743 else 4744 ret = 0; 4745 free_extent_buffer(eb); 4746 return ret; 4747 } 4748 4749 *eb_context = eb; 4750 4751 ret = lock_extent_buffer_for_io(eb, epd); 4752 if (ret <= 0) { 4753 btrfs_revert_meta_write_pointer(cache, eb); 4754 if (cache) 4755 btrfs_put_block_group(cache); 4756 free_extent_buffer(eb); 4757 return ret; 4758 } 4759 if (cache) 4760 btrfs_put_block_group(cache); 4761 ret = write_one_eb(eb, wbc, epd); 4762 free_extent_buffer(eb); 4763 if (ret < 0) 4764 return ret; 4765 return 1; 4766 } 4767 4768 int btree_write_cache_pages(struct address_space *mapping, 4769 struct writeback_control *wbc) 4770 { 4771 struct extent_buffer *eb_context = NULL; 4772 struct extent_page_data epd = { 4773 .bio_ctrl = { 0 }, 4774 .extent_locked = 0, 4775 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4776 }; 4777 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4778 int ret = 0; 4779 int done = 0; 4780 int nr_to_write_done = 0; 4781 struct pagevec pvec; 4782 int nr_pages; 4783 pgoff_t index; 4784 pgoff_t end; /* Inclusive */ 4785 int scanned = 0; 4786 xa_mark_t tag; 4787 4788 pagevec_init(&pvec); 4789 if (wbc->range_cyclic) { 4790 index = mapping->writeback_index; /* Start from prev offset */ 4791 end = -1; 4792 /* 4793 * Start from the beginning does not need to cycle over the 4794 * range, mark it as scanned. 4795 */ 4796 scanned = (index == 0); 4797 } else { 4798 index = wbc->range_start >> PAGE_SHIFT; 4799 end = wbc->range_end >> PAGE_SHIFT; 4800 scanned = 1; 4801 } 4802 if (wbc->sync_mode == WB_SYNC_ALL) 4803 tag = PAGECACHE_TAG_TOWRITE; 4804 else 4805 tag = PAGECACHE_TAG_DIRTY; 4806 btrfs_zoned_meta_io_lock(fs_info); 4807 retry: 4808 if (wbc->sync_mode == WB_SYNC_ALL) 4809 tag_pages_for_writeback(mapping, index, end); 4810 while (!done && !nr_to_write_done && (index <= end) && 4811 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4812 tag))) { 4813 unsigned i; 4814 4815 for (i = 0; i < nr_pages; i++) { 4816 struct page *page = pvec.pages[i]; 4817 4818 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4819 if (ret == 0) 4820 continue; 4821 if (ret < 0) { 4822 done = 1; 4823 break; 4824 } 4825 4826 /* 4827 * the filesystem may choose to bump up nr_to_write. 4828 * We have to make sure to honor the new nr_to_write 4829 * at any time 4830 */ 4831 nr_to_write_done = wbc->nr_to_write <= 0; 4832 } 4833 pagevec_release(&pvec); 4834 cond_resched(); 4835 } 4836 if (!scanned && !done) { 4837 /* 4838 * We hit the last page and there is more work to be done: wrap 4839 * back to the start of the file 4840 */ 4841 scanned = 1; 4842 index = 0; 4843 goto retry; 4844 } 4845 if (ret < 0) { 4846 end_write_bio(&epd, ret); 4847 goto out; 4848 } 4849 /* 4850 * If something went wrong, don't allow any metadata write bio to be 4851 * submitted. 4852 * 4853 * This would prevent use-after-free if we had dirty pages not 4854 * cleaned up, which can still happen by fuzzed images. 4855 * 4856 * - Bad extent tree 4857 * Allowing existing tree block to be allocated for other trees. 4858 * 4859 * - Log tree operations 4860 * Exiting tree blocks get allocated to log tree, bumps its 4861 * generation, then get cleaned in tree re-balance. 4862 * Such tree block will not be written back, since it's clean, 4863 * thus no WRITTEN flag set. 4864 * And after log writes back, this tree block is not traced by 4865 * any dirty extent_io_tree. 4866 * 4867 * - Offending tree block gets re-dirtied from its original owner 4868 * Since it has bumped generation, no WRITTEN flag, it can be 4869 * reused without COWing. This tree block will not be traced 4870 * by btrfs_transaction::dirty_pages. 4871 * 4872 * Now such dirty tree block will not be cleaned by any dirty 4873 * extent io tree. Thus we don't want to submit such wild eb 4874 * if the fs already has error. 4875 */ 4876 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4877 ret = flush_write_bio(&epd); 4878 } else { 4879 ret = -EROFS; 4880 end_write_bio(&epd, ret); 4881 } 4882 out: 4883 btrfs_zoned_meta_io_unlock(fs_info); 4884 return ret; 4885 } 4886 4887 /** 4888 * Walk the list of dirty pages of the given address space and write all of them. 4889 * 4890 * @mapping: address space structure to write 4891 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4892 * @epd: holds context for the write, namely the bio 4893 * 4894 * If a page is already under I/O, write_cache_pages() skips it, even 4895 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4896 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4897 * and msync() need to guarantee that all the data which was dirty at the time 4898 * the call was made get new I/O started against them. If wbc->sync_mode is 4899 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4900 * existing IO to complete. 4901 */ 4902 static int extent_write_cache_pages(struct address_space *mapping, 4903 struct writeback_control *wbc, 4904 struct extent_page_data *epd) 4905 { 4906 struct inode *inode = mapping->host; 4907 int ret = 0; 4908 int done = 0; 4909 int nr_to_write_done = 0; 4910 struct pagevec pvec; 4911 int nr_pages; 4912 pgoff_t index; 4913 pgoff_t end; /* Inclusive */ 4914 pgoff_t done_index; 4915 int range_whole = 0; 4916 int scanned = 0; 4917 xa_mark_t tag; 4918 4919 /* 4920 * We have to hold onto the inode so that ordered extents can do their 4921 * work when the IO finishes. The alternative to this is failing to add 4922 * an ordered extent if the igrab() fails there and that is a huge pain 4923 * to deal with, so instead just hold onto the inode throughout the 4924 * writepages operation. If it fails here we are freeing up the inode 4925 * anyway and we'd rather not waste our time writing out stuff that is 4926 * going to be truncated anyway. 4927 */ 4928 if (!igrab(inode)) 4929 return 0; 4930 4931 pagevec_init(&pvec); 4932 if (wbc->range_cyclic) { 4933 index = mapping->writeback_index; /* Start from prev offset */ 4934 end = -1; 4935 /* 4936 * Start from the beginning does not need to cycle over the 4937 * range, mark it as scanned. 4938 */ 4939 scanned = (index == 0); 4940 } else { 4941 index = wbc->range_start >> PAGE_SHIFT; 4942 end = wbc->range_end >> PAGE_SHIFT; 4943 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4944 range_whole = 1; 4945 scanned = 1; 4946 } 4947 4948 /* 4949 * We do the tagged writepage as long as the snapshot flush bit is set 4950 * and we are the first one who do the filemap_flush() on this inode. 4951 * 4952 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4953 * not race in and drop the bit. 4954 */ 4955 if (range_whole && wbc->nr_to_write == LONG_MAX && 4956 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4957 &BTRFS_I(inode)->runtime_flags)) 4958 wbc->tagged_writepages = 1; 4959 4960 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4961 tag = PAGECACHE_TAG_TOWRITE; 4962 else 4963 tag = PAGECACHE_TAG_DIRTY; 4964 retry: 4965 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4966 tag_pages_for_writeback(mapping, index, end); 4967 done_index = index; 4968 while (!done && !nr_to_write_done && (index <= end) && 4969 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4970 &index, end, tag))) { 4971 unsigned i; 4972 4973 for (i = 0; i < nr_pages; i++) { 4974 struct page *page = pvec.pages[i]; 4975 4976 done_index = page->index + 1; 4977 /* 4978 * At this point we hold neither the i_pages lock nor 4979 * the page lock: the page may be truncated or 4980 * invalidated (changing page->mapping to NULL), 4981 * or even swizzled back from swapper_space to 4982 * tmpfs file mapping 4983 */ 4984 if (!trylock_page(page)) { 4985 ret = flush_write_bio(epd); 4986 BUG_ON(ret < 0); 4987 lock_page(page); 4988 } 4989 4990 if (unlikely(page->mapping != mapping)) { 4991 unlock_page(page); 4992 continue; 4993 } 4994 4995 if (wbc->sync_mode != WB_SYNC_NONE) { 4996 if (PageWriteback(page)) { 4997 ret = flush_write_bio(epd); 4998 BUG_ON(ret < 0); 4999 } 5000 wait_on_page_writeback(page); 5001 } 5002 5003 if (PageWriteback(page) || 5004 !clear_page_dirty_for_io(page)) { 5005 unlock_page(page); 5006 continue; 5007 } 5008 5009 ret = __extent_writepage(page, wbc, epd); 5010 if (ret < 0) { 5011 done = 1; 5012 break; 5013 } 5014 5015 /* 5016 * the filesystem may choose to bump up nr_to_write. 5017 * We have to make sure to honor the new nr_to_write 5018 * at any time 5019 */ 5020 nr_to_write_done = wbc->nr_to_write <= 0; 5021 } 5022 pagevec_release(&pvec); 5023 cond_resched(); 5024 } 5025 if (!scanned && !done) { 5026 /* 5027 * We hit the last page and there is more work to be done: wrap 5028 * back to the start of the file 5029 */ 5030 scanned = 1; 5031 index = 0; 5032 5033 /* 5034 * If we're looping we could run into a page that is locked by a 5035 * writer and that writer could be waiting on writeback for a 5036 * page in our current bio, and thus deadlock, so flush the 5037 * write bio here. 5038 */ 5039 ret = flush_write_bio(epd); 5040 if (!ret) 5041 goto retry; 5042 } 5043 5044 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5045 mapping->writeback_index = done_index; 5046 5047 btrfs_add_delayed_iput(inode); 5048 return ret; 5049 } 5050 5051 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5052 { 5053 int ret; 5054 struct extent_page_data epd = { 5055 .bio_ctrl = { 0 }, 5056 .extent_locked = 0, 5057 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5058 }; 5059 5060 ret = __extent_writepage(page, wbc, &epd); 5061 ASSERT(ret <= 0); 5062 if (ret < 0) { 5063 end_write_bio(&epd, ret); 5064 return ret; 5065 } 5066 5067 ret = flush_write_bio(&epd); 5068 ASSERT(ret <= 0); 5069 return ret; 5070 } 5071 5072 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 5073 int mode) 5074 { 5075 int ret = 0; 5076 struct address_space *mapping = inode->i_mapping; 5077 struct page *page; 5078 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 5079 PAGE_SHIFT; 5080 5081 struct extent_page_data epd = { 5082 .bio_ctrl = { 0 }, 5083 .extent_locked = 1, 5084 .sync_io = mode == WB_SYNC_ALL, 5085 }; 5086 struct writeback_control wbc_writepages = { 5087 .sync_mode = mode, 5088 .nr_to_write = nr_pages * 2, 5089 .range_start = start, 5090 .range_end = end + 1, 5091 /* We're called from an async helper function */ 5092 .punt_to_cgroup = 1, 5093 .no_cgroup_owner = 1, 5094 }; 5095 5096 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5097 while (start <= end) { 5098 page = find_get_page(mapping, start >> PAGE_SHIFT); 5099 if (clear_page_dirty_for_io(page)) 5100 ret = __extent_writepage(page, &wbc_writepages, &epd); 5101 else { 5102 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), 5103 page, start, start + PAGE_SIZE - 1, true); 5104 unlock_page(page); 5105 } 5106 put_page(page); 5107 start += PAGE_SIZE; 5108 } 5109 5110 ASSERT(ret <= 0); 5111 if (ret == 0) 5112 ret = flush_write_bio(&epd); 5113 else 5114 end_write_bio(&epd, ret); 5115 5116 wbc_detach_inode(&wbc_writepages); 5117 return ret; 5118 } 5119 5120 int extent_writepages(struct address_space *mapping, 5121 struct writeback_control *wbc) 5122 { 5123 int ret = 0; 5124 struct extent_page_data epd = { 5125 .bio_ctrl = { 0 }, 5126 .extent_locked = 0, 5127 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5128 }; 5129 5130 ret = extent_write_cache_pages(mapping, wbc, &epd); 5131 ASSERT(ret <= 0); 5132 if (ret < 0) { 5133 end_write_bio(&epd, ret); 5134 return ret; 5135 } 5136 ret = flush_write_bio(&epd); 5137 return ret; 5138 } 5139 5140 void extent_readahead(struct readahead_control *rac) 5141 { 5142 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5143 struct page *pagepool[16]; 5144 struct extent_map *em_cached = NULL; 5145 u64 prev_em_start = (u64)-1; 5146 int nr; 5147 5148 while ((nr = readahead_page_batch(rac, pagepool))) { 5149 u64 contig_start = readahead_pos(rac); 5150 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5151 5152 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5153 &em_cached, &bio_ctrl, &prev_em_start); 5154 } 5155 5156 if (em_cached) 5157 free_extent_map(em_cached); 5158 5159 if (bio_ctrl.bio) { 5160 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) 5161 return; 5162 } 5163 } 5164 5165 /* 5166 * basic invalidatepage code, this waits on any locked or writeback 5167 * ranges corresponding to the page, and then deletes any extent state 5168 * records from the tree 5169 */ 5170 int extent_invalidatepage(struct extent_io_tree *tree, 5171 struct page *page, unsigned long offset) 5172 { 5173 struct extent_state *cached_state = NULL; 5174 u64 start = page_offset(page); 5175 u64 end = start + PAGE_SIZE - 1; 5176 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 5177 5178 /* This function is only called for the btree inode */ 5179 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5180 5181 start += ALIGN(offset, blocksize); 5182 if (start > end) 5183 return 0; 5184 5185 lock_extent_bits(tree, start, end, &cached_state); 5186 wait_on_page_writeback(page); 5187 5188 /* 5189 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5190 * so here we only need to unlock the extent range to free any 5191 * existing extent state. 5192 */ 5193 unlock_extent_cached(tree, start, end, &cached_state); 5194 return 0; 5195 } 5196 5197 /* 5198 * a helper for releasepage, this tests for areas of the page that 5199 * are locked or under IO and drops the related state bits if it is safe 5200 * to drop the page. 5201 */ 5202 static int try_release_extent_state(struct extent_io_tree *tree, 5203 struct page *page, gfp_t mask) 5204 { 5205 u64 start = page_offset(page); 5206 u64 end = start + PAGE_SIZE - 1; 5207 int ret = 1; 5208 5209 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5210 ret = 0; 5211 } else { 5212 /* 5213 * At this point we can safely clear everything except the 5214 * locked bit, the nodatasum bit and the delalloc new bit. 5215 * The delalloc new bit will be cleared by ordered extent 5216 * completion. 5217 */ 5218 ret = __clear_extent_bit(tree, start, end, 5219 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5220 0, 0, NULL, mask, NULL); 5221 5222 /* if clear_extent_bit failed for enomem reasons, 5223 * we can't allow the release to continue. 5224 */ 5225 if (ret < 0) 5226 ret = 0; 5227 else 5228 ret = 1; 5229 } 5230 return ret; 5231 } 5232 5233 /* 5234 * a helper for releasepage. As long as there are no locked extents 5235 * in the range corresponding to the page, both state records and extent 5236 * map records are removed 5237 */ 5238 int try_release_extent_mapping(struct page *page, gfp_t mask) 5239 { 5240 struct extent_map *em; 5241 u64 start = page_offset(page); 5242 u64 end = start + PAGE_SIZE - 1; 5243 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5244 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5245 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5246 5247 if (gfpflags_allow_blocking(mask) && 5248 page->mapping->host->i_size > SZ_16M) { 5249 u64 len; 5250 while (start <= end) { 5251 struct btrfs_fs_info *fs_info; 5252 u64 cur_gen; 5253 5254 len = end - start + 1; 5255 write_lock(&map->lock); 5256 em = lookup_extent_mapping(map, start, len); 5257 if (!em) { 5258 write_unlock(&map->lock); 5259 break; 5260 } 5261 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5262 em->start != start) { 5263 write_unlock(&map->lock); 5264 free_extent_map(em); 5265 break; 5266 } 5267 if (test_range_bit(tree, em->start, 5268 extent_map_end(em) - 1, 5269 EXTENT_LOCKED, 0, NULL)) 5270 goto next; 5271 /* 5272 * If it's not in the list of modified extents, used 5273 * by a fast fsync, we can remove it. If it's being 5274 * logged we can safely remove it since fsync took an 5275 * extra reference on the em. 5276 */ 5277 if (list_empty(&em->list) || 5278 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5279 goto remove_em; 5280 /* 5281 * If it's in the list of modified extents, remove it 5282 * only if its generation is older then the current one, 5283 * in which case we don't need it for a fast fsync. 5284 * Otherwise don't remove it, we could be racing with an 5285 * ongoing fast fsync that could miss the new extent. 5286 */ 5287 fs_info = btrfs_inode->root->fs_info; 5288 spin_lock(&fs_info->trans_lock); 5289 cur_gen = fs_info->generation; 5290 spin_unlock(&fs_info->trans_lock); 5291 if (em->generation >= cur_gen) 5292 goto next; 5293 remove_em: 5294 /* 5295 * We only remove extent maps that are not in the list of 5296 * modified extents or that are in the list but with a 5297 * generation lower then the current generation, so there 5298 * is no need to set the full fsync flag on the inode (it 5299 * hurts the fsync performance for workloads with a data 5300 * size that exceeds or is close to the system's memory). 5301 */ 5302 remove_extent_mapping(map, em); 5303 /* once for the rb tree */ 5304 free_extent_map(em); 5305 next: 5306 start = extent_map_end(em); 5307 write_unlock(&map->lock); 5308 5309 /* once for us */ 5310 free_extent_map(em); 5311 5312 cond_resched(); /* Allow large-extent preemption. */ 5313 } 5314 } 5315 return try_release_extent_state(tree, page, mask); 5316 } 5317 5318 /* 5319 * helper function for fiemap, which doesn't want to see any holes. 5320 * This maps until we find something past 'last' 5321 */ 5322 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5323 u64 offset, u64 last) 5324 { 5325 u64 sectorsize = btrfs_inode_sectorsize(inode); 5326 struct extent_map *em; 5327 u64 len; 5328 5329 if (offset >= last) 5330 return NULL; 5331 5332 while (1) { 5333 len = last - offset; 5334 if (len == 0) 5335 break; 5336 len = ALIGN(len, sectorsize); 5337 em = btrfs_get_extent_fiemap(inode, offset, len); 5338 if (IS_ERR_OR_NULL(em)) 5339 return em; 5340 5341 /* if this isn't a hole return it */ 5342 if (em->block_start != EXTENT_MAP_HOLE) 5343 return em; 5344 5345 /* this is a hole, advance to the next extent */ 5346 offset = extent_map_end(em); 5347 free_extent_map(em); 5348 if (offset >= last) 5349 break; 5350 } 5351 return NULL; 5352 } 5353 5354 /* 5355 * To cache previous fiemap extent 5356 * 5357 * Will be used for merging fiemap extent 5358 */ 5359 struct fiemap_cache { 5360 u64 offset; 5361 u64 phys; 5362 u64 len; 5363 u32 flags; 5364 bool cached; 5365 }; 5366 5367 /* 5368 * Helper to submit fiemap extent. 5369 * 5370 * Will try to merge current fiemap extent specified by @offset, @phys, 5371 * @len and @flags with cached one. 5372 * And only when we fails to merge, cached one will be submitted as 5373 * fiemap extent. 5374 * 5375 * Return value is the same as fiemap_fill_next_extent(). 5376 */ 5377 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5378 struct fiemap_cache *cache, 5379 u64 offset, u64 phys, u64 len, u32 flags) 5380 { 5381 int ret = 0; 5382 5383 if (!cache->cached) 5384 goto assign; 5385 5386 /* 5387 * Sanity check, extent_fiemap() should have ensured that new 5388 * fiemap extent won't overlap with cached one. 5389 * Not recoverable. 5390 * 5391 * NOTE: Physical address can overlap, due to compression 5392 */ 5393 if (cache->offset + cache->len > offset) { 5394 WARN_ON(1); 5395 return -EINVAL; 5396 } 5397 5398 /* 5399 * Only merges fiemap extents if 5400 * 1) Their logical addresses are continuous 5401 * 5402 * 2) Their physical addresses are continuous 5403 * So truly compressed (physical size smaller than logical size) 5404 * extents won't get merged with each other 5405 * 5406 * 3) Share same flags except FIEMAP_EXTENT_LAST 5407 * So regular extent won't get merged with prealloc extent 5408 */ 5409 if (cache->offset + cache->len == offset && 5410 cache->phys + cache->len == phys && 5411 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5412 (flags & ~FIEMAP_EXTENT_LAST)) { 5413 cache->len += len; 5414 cache->flags |= flags; 5415 goto try_submit_last; 5416 } 5417 5418 /* Not mergeable, need to submit cached one */ 5419 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5420 cache->len, cache->flags); 5421 cache->cached = false; 5422 if (ret) 5423 return ret; 5424 assign: 5425 cache->cached = true; 5426 cache->offset = offset; 5427 cache->phys = phys; 5428 cache->len = len; 5429 cache->flags = flags; 5430 try_submit_last: 5431 if (cache->flags & FIEMAP_EXTENT_LAST) { 5432 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5433 cache->phys, cache->len, cache->flags); 5434 cache->cached = false; 5435 } 5436 return ret; 5437 } 5438 5439 /* 5440 * Emit last fiemap cache 5441 * 5442 * The last fiemap cache may still be cached in the following case: 5443 * 0 4k 8k 5444 * |<- Fiemap range ->| 5445 * |<------------ First extent ----------->| 5446 * 5447 * In this case, the first extent range will be cached but not emitted. 5448 * So we must emit it before ending extent_fiemap(). 5449 */ 5450 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5451 struct fiemap_cache *cache) 5452 { 5453 int ret; 5454 5455 if (!cache->cached) 5456 return 0; 5457 5458 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5459 cache->len, cache->flags); 5460 cache->cached = false; 5461 if (ret > 0) 5462 ret = 0; 5463 return ret; 5464 } 5465 5466 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5467 u64 start, u64 len) 5468 { 5469 int ret = 0; 5470 u64 off; 5471 u64 max = start + len; 5472 u32 flags = 0; 5473 u32 found_type; 5474 u64 last; 5475 u64 last_for_get_extent = 0; 5476 u64 disko = 0; 5477 u64 isize = i_size_read(&inode->vfs_inode); 5478 struct btrfs_key found_key; 5479 struct extent_map *em = NULL; 5480 struct extent_state *cached_state = NULL; 5481 struct btrfs_path *path; 5482 struct btrfs_root *root = inode->root; 5483 struct fiemap_cache cache = { 0 }; 5484 struct ulist *roots; 5485 struct ulist *tmp_ulist; 5486 int end = 0; 5487 u64 em_start = 0; 5488 u64 em_len = 0; 5489 u64 em_end = 0; 5490 5491 if (len == 0) 5492 return -EINVAL; 5493 5494 path = btrfs_alloc_path(); 5495 if (!path) 5496 return -ENOMEM; 5497 5498 roots = ulist_alloc(GFP_KERNEL); 5499 tmp_ulist = ulist_alloc(GFP_KERNEL); 5500 if (!roots || !tmp_ulist) { 5501 ret = -ENOMEM; 5502 goto out_free_ulist; 5503 } 5504 5505 /* 5506 * We can't initialize that to 'start' as this could miss extents due 5507 * to extent item merging 5508 */ 5509 off = 0; 5510 start = round_down(start, btrfs_inode_sectorsize(inode)); 5511 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5512 5513 /* 5514 * lookup the last file extent. We're not using i_size here 5515 * because there might be preallocation past i_size 5516 */ 5517 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5518 0); 5519 if (ret < 0) { 5520 goto out_free_ulist; 5521 } else { 5522 WARN_ON(!ret); 5523 if (ret == 1) 5524 ret = 0; 5525 } 5526 5527 path->slots[0]--; 5528 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5529 found_type = found_key.type; 5530 5531 /* No extents, but there might be delalloc bits */ 5532 if (found_key.objectid != btrfs_ino(inode) || 5533 found_type != BTRFS_EXTENT_DATA_KEY) { 5534 /* have to trust i_size as the end */ 5535 last = (u64)-1; 5536 last_for_get_extent = isize; 5537 } else { 5538 /* 5539 * remember the start of the last extent. There are a 5540 * bunch of different factors that go into the length of the 5541 * extent, so its much less complex to remember where it started 5542 */ 5543 last = found_key.offset; 5544 last_for_get_extent = last + 1; 5545 } 5546 btrfs_release_path(path); 5547 5548 /* 5549 * we might have some extents allocated but more delalloc past those 5550 * extents. so, we trust isize unless the start of the last extent is 5551 * beyond isize 5552 */ 5553 if (last < isize) { 5554 last = (u64)-1; 5555 last_for_get_extent = isize; 5556 } 5557 5558 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5559 &cached_state); 5560 5561 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5562 if (!em) 5563 goto out; 5564 if (IS_ERR(em)) { 5565 ret = PTR_ERR(em); 5566 goto out; 5567 } 5568 5569 while (!end) { 5570 u64 offset_in_extent = 0; 5571 5572 /* break if the extent we found is outside the range */ 5573 if (em->start >= max || extent_map_end(em) < off) 5574 break; 5575 5576 /* 5577 * get_extent may return an extent that starts before our 5578 * requested range. We have to make sure the ranges 5579 * we return to fiemap always move forward and don't 5580 * overlap, so adjust the offsets here 5581 */ 5582 em_start = max(em->start, off); 5583 5584 /* 5585 * record the offset from the start of the extent 5586 * for adjusting the disk offset below. Only do this if the 5587 * extent isn't compressed since our in ram offset may be past 5588 * what we have actually allocated on disk. 5589 */ 5590 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5591 offset_in_extent = em_start - em->start; 5592 em_end = extent_map_end(em); 5593 em_len = em_end - em_start; 5594 flags = 0; 5595 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5596 disko = em->block_start + offset_in_extent; 5597 else 5598 disko = 0; 5599 5600 /* 5601 * bump off for our next call to get_extent 5602 */ 5603 off = extent_map_end(em); 5604 if (off >= max) 5605 end = 1; 5606 5607 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5608 end = 1; 5609 flags |= FIEMAP_EXTENT_LAST; 5610 } else if (em->block_start == EXTENT_MAP_INLINE) { 5611 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5612 FIEMAP_EXTENT_NOT_ALIGNED); 5613 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5614 flags |= (FIEMAP_EXTENT_DELALLOC | 5615 FIEMAP_EXTENT_UNKNOWN); 5616 } else if (fieinfo->fi_extents_max) { 5617 u64 bytenr = em->block_start - 5618 (em->start - em->orig_start); 5619 5620 /* 5621 * As btrfs supports shared space, this information 5622 * can be exported to userspace tools via 5623 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5624 * then we're just getting a count and we can skip the 5625 * lookup stuff. 5626 */ 5627 ret = btrfs_check_shared(root, btrfs_ino(inode), 5628 bytenr, roots, tmp_ulist); 5629 if (ret < 0) 5630 goto out_free; 5631 if (ret) 5632 flags |= FIEMAP_EXTENT_SHARED; 5633 ret = 0; 5634 } 5635 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5636 flags |= FIEMAP_EXTENT_ENCODED; 5637 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5638 flags |= FIEMAP_EXTENT_UNWRITTEN; 5639 5640 free_extent_map(em); 5641 em = NULL; 5642 if ((em_start >= last) || em_len == (u64)-1 || 5643 (last == (u64)-1 && isize <= em_end)) { 5644 flags |= FIEMAP_EXTENT_LAST; 5645 end = 1; 5646 } 5647 5648 /* now scan forward to see if this is really the last extent. */ 5649 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5650 if (IS_ERR(em)) { 5651 ret = PTR_ERR(em); 5652 goto out; 5653 } 5654 if (!em) { 5655 flags |= FIEMAP_EXTENT_LAST; 5656 end = 1; 5657 } 5658 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5659 em_len, flags); 5660 if (ret) { 5661 if (ret == 1) 5662 ret = 0; 5663 goto out_free; 5664 } 5665 } 5666 out_free: 5667 if (!ret) 5668 ret = emit_last_fiemap_cache(fieinfo, &cache); 5669 free_extent_map(em); 5670 out: 5671 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5672 &cached_state); 5673 5674 out_free_ulist: 5675 btrfs_free_path(path); 5676 ulist_free(roots); 5677 ulist_free(tmp_ulist); 5678 return ret; 5679 } 5680 5681 static void __free_extent_buffer(struct extent_buffer *eb) 5682 { 5683 kmem_cache_free(extent_buffer_cache, eb); 5684 } 5685 5686 int extent_buffer_under_io(const struct extent_buffer *eb) 5687 { 5688 return (atomic_read(&eb->io_pages) || 5689 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5690 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5691 } 5692 5693 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5694 { 5695 struct btrfs_subpage *subpage; 5696 5697 lockdep_assert_held(&page->mapping->private_lock); 5698 5699 if (PagePrivate(page)) { 5700 subpage = (struct btrfs_subpage *)page->private; 5701 if (atomic_read(&subpage->eb_refs)) 5702 return true; 5703 /* 5704 * Even there is no eb refs here, we may still have 5705 * end_page_read() call relying on page::private. 5706 */ 5707 if (atomic_read(&subpage->readers)) 5708 return true; 5709 } 5710 return false; 5711 } 5712 5713 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5714 { 5715 struct btrfs_fs_info *fs_info = eb->fs_info; 5716 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5717 5718 /* 5719 * For mapped eb, we're going to change the page private, which should 5720 * be done under the private_lock. 5721 */ 5722 if (mapped) 5723 spin_lock(&page->mapping->private_lock); 5724 5725 if (!PagePrivate(page)) { 5726 if (mapped) 5727 spin_unlock(&page->mapping->private_lock); 5728 return; 5729 } 5730 5731 if (fs_info->sectorsize == PAGE_SIZE) { 5732 /* 5733 * We do this since we'll remove the pages after we've 5734 * removed the eb from the radix tree, so we could race 5735 * and have this page now attached to the new eb. So 5736 * only clear page_private if it's still connected to 5737 * this eb. 5738 */ 5739 if (PagePrivate(page) && 5740 page->private == (unsigned long)eb) { 5741 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5742 BUG_ON(PageDirty(page)); 5743 BUG_ON(PageWriteback(page)); 5744 /* 5745 * We need to make sure we haven't be attached 5746 * to a new eb. 5747 */ 5748 detach_page_private(page); 5749 } 5750 if (mapped) 5751 spin_unlock(&page->mapping->private_lock); 5752 return; 5753 } 5754 5755 /* 5756 * For subpage, we can have dummy eb with page private. In this case, 5757 * we can directly detach the private as such page is only attached to 5758 * one dummy eb, no sharing. 5759 */ 5760 if (!mapped) { 5761 btrfs_detach_subpage(fs_info, page); 5762 return; 5763 } 5764 5765 btrfs_page_dec_eb_refs(fs_info, page); 5766 5767 /* 5768 * We can only detach the page private if there are no other ebs in the 5769 * page range and no unfinished IO. 5770 */ 5771 if (!page_range_has_eb(fs_info, page)) 5772 btrfs_detach_subpage(fs_info, page); 5773 5774 spin_unlock(&page->mapping->private_lock); 5775 } 5776 5777 /* Release all pages attached to the extent buffer */ 5778 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5779 { 5780 int i; 5781 int num_pages; 5782 5783 ASSERT(!extent_buffer_under_io(eb)); 5784 5785 num_pages = num_extent_pages(eb); 5786 for (i = 0; i < num_pages; i++) { 5787 struct page *page = eb->pages[i]; 5788 5789 if (!page) 5790 continue; 5791 5792 detach_extent_buffer_page(eb, page); 5793 5794 /* One for when we allocated the page */ 5795 put_page(page); 5796 } 5797 } 5798 5799 /* 5800 * Helper for releasing the extent buffer. 5801 */ 5802 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5803 { 5804 btrfs_release_extent_buffer_pages(eb); 5805 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5806 __free_extent_buffer(eb); 5807 } 5808 5809 static struct extent_buffer * 5810 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5811 unsigned long len) 5812 { 5813 struct extent_buffer *eb = NULL; 5814 5815 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5816 eb->start = start; 5817 eb->len = len; 5818 eb->fs_info = fs_info; 5819 eb->bflags = 0; 5820 init_rwsem(&eb->lock); 5821 5822 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5823 &fs_info->allocated_ebs); 5824 INIT_LIST_HEAD(&eb->release_list); 5825 5826 spin_lock_init(&eb->refs_lock); 5827 atomic_set(&eb->refs, 1); 5828 atomic_set(&eb->io_pages, 0); 5829 5830 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5831 5832 return eb; 5833 } 5834 5835 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5836 { 5837 int i; 5838 struct page *p; 5839 struct extent_buffer *new; 5840 int num_pages = num_extent_pages(src); 5841 5842 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5843 if (new == NULL) 5844 return NULL; 5845 5846 /* 5847 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5848 * btrfs_release_extent_buffer() have different behavior for 5849 * UNMAPPED subpage extent buffer. 5850 */ 5851 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5852 5853 for (i = 0; i < num_pages; i++) { 5854 int ret; 5855 5856 p = alloc_page(GFP_NOFS); 5857 if (!p) { 5858 btrfs_release_extent_buffer(new); 5859 return NULL; 5860 } 5861 ret = attach_extent_buffer_page(new, p, NULL); 5862 if (ret < 0) { 5863 put_page(p); 5864 btrfs_release_extent_buffer(new); 5865 return NULL; 5866 } 5867 WARN_ON(PageDirty(p)); 5868 new->pages[i] = p; 5869 copy_page(page_address(p), page_address(src->pages[i])); 5870 } 5871 set_extent_buffer_uptodate(new); 5872 5873 return new; 5874 } 5875 5876 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5877 u64 start, unsigned long len) 5878 { 5879 struct extent_buffer *eb; 5880 int num_pages; 5881 int i; 5882 5883 eb = __alloc_extent_buffer(fs_info, start, len); 5884 if (!eb) 5885 return NULL; 5886 5887 num_pages = num_extent_pages(eb); 5888 for (i = 0; i < num_pages; i++) { 5889 int ret; 5890 5891 eb->pages[i] = alloc_page(GFP_NOFS); 5892 if (!eb->pages[i]) 5893 goto err; 5894 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5895 if (ret < 0) 5896 goto err; 5897 } 5898 set_extent_buffer_uptodate(eb); 5899 btrfs_set_header_nritems(eb, 0); 5900 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5901 5902 return eb; 5903 err: 5904 for (; i > 0; i--) { 5905 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5906 __free_page(eb->pages[i - 1]); 5907 } 5908 __free_extent_buffer(eb); 5909 return NULL; 5910 } 5911 5912 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5913 u64 start) 5914 { 5915 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5916 } 5917 5918 static void check_buffer_tree_ref(struct extent_buffer *eb) 5919 { 5920 int refs; 5921 /* 5922 * The TREE_REF bit is first set when the extent_buffer is added 5923 * to the radix tree. It is also reset, if unset, when a new reference 5924 * is created by find_extent_buffer. 5925 * 5926 * It is only cleared in two cases: freeing the last non-tree 5927 * reference to the extent_buffer when its STALE bit is set or 5928 * calling releasepage when the tree reference is the only reference. 5929 * 5930 * In both cases, care is taken to ensure that the extent_buffer's 5931 * pages are not under io. However, releasepage can be concurrently 5932 * called with creating new references, which is prone to race 5933 * conditions between the calls to check_buffer_tree_ref in those 5934 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5935 * 5936 * The actual lifetime of the extent_buffer in the radix tree is 5937 * adequately protected by the refcount, but the TREE_REF bit and 5938 * its corresponding reference are not. To protect against this 5939 * class of races, we call check_buffer_tree_ref from the codepaths 5940 * which trigger io after they set eb->io_pages. Note that once io is 5941 * initiated, TREE_REF can no longer be cleared, so that is the 5942 * moment at which any such race is best fixed. 5943 */ 5944 refs = atomic_read(&eb->refs); 5945 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5946 return; 5947 5948 spin_lock(&eb->refs_lock); 5949 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5950 atomic_inc(&eb->refs); 5951 spin_unlock(&eb->refs_lock); 5952 } 5953 5954 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5955 struct page *accessed) 5956 { 5957 int num_pages, i; 5958 5959 check_buffer_tree_ref(eb); 5960 5961 num_pages = num_extent_pages(eb); 5962 for (i = 0; i < num_pages; i++) { 5963 struct page *p = eb->pages[i]; 5964 5965 if (p != accessed) 5966 mark_page_accessed(p); 5967 } 5968 } 5969 5970 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5971 u64 start) 5972 { 5973 struct extent_buffer *eb; 5974 5975 eb = find_extent_buffer_nolock(fs_info, start); 5976 if (!eb) 5977 return NULL; 5978 /* 5979 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 5980 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 5981 * another task running free_extent_buffer() might have seen that flag 5982 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 5983 * writeback flags not set) and it's still in the tree (flag 5984 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 5985 * decrementing the extent buffer's reference count twice. So here we 5986 * could race and increment the eb's reference count, clear its stale 5987 * flag, mark it as dirty and drop our reference before the other task 5988 * finishes executing free_extent_buffer, which would later result in 5989 * an attempt to free an extent buffer that is dirty. 5990 */ 5991 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5992 spin_lock(&eb->refs_lock); 5993 spin_unlock(&eb->refs_lock); 5994 } 5995 mark_extent_buffer_accessed(eb, NULL); 5996 return eb; 5997 } 5998 5999 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6000 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6001 u64 start) 6002 { 6003 struct extent_buffer *eb, *exists = NULL; 6004 int ret; 6005 6006 eb = find_extent_buffer(fs_info, start); 6007 if (eb) 6008 return eb; 6009 eb = alloc_dummy_extent_buffer(fs_info, start); 6010 if (!eb) 6011 return ERR_PTR(-ENOMEM); 6012 eb->fs_info = fs_info; 6013 again: 6014 ret = radix_tree_preload(GFP_NOFS); 6015 if (ret) { 6016 exists = ERR_PTR(ret); 6017 goto free_eb; 6018 } 6019 spin_lock(&fs_info->buffer_lock); 6020 ret = radix_tree_insert(&fs_info->buffer_radix, 6021 start >> fs_info->sectorsize_bits, eb); 6022 spin_unlock(&fs_info->buffer_lock); 6023 radix_tree_preload_end(); 6024 if (ret == -EEXIST) { 6025 exists = find_extent_buffer(fs_info, start); 6026 if (exists) 6027 goto free_eb; 6028 else 6029 goto again; 6030 } 6031 check_buffer_tree_ref(eb); 6032 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6033 6034 return eb; 6035 free_eb: 6036 btrfs_release_extent_buffer(eb); 6037 return exists; 6038 } 6039 #endif 6040 6041 static struct extent_buffer *grab_extent_buffer( 6042 struct btrfs_fs_info *fs_info, struct page *page) 6043 { 6044 struct extent_buffer *exists; 6045 6046 /* 6047 * For subpage case, we completely rely on radix tree to ensure we 6048 * don't try to insert two ebs for the same bytenr. So here we always 6049 * return NULL and just continue. 6050 */ 6051 if (fs_info->sectorsize < PAGE_SIZE) 6052 return NULL; 6053 6054 /* Page not yet attached to an extent buffer */ 6055 if (!PagePrivate(page)) 6056 return NULL; 6057 6058 /* 6059 * We could have already allocated an eb for this page and attached one 6060 * so lets see if we can get a ref on the existing eb, and if we can we 6061 * know it's good and we can just return that one, else we know we can 6062 * just overwrite page->private. 6063 */ 6064 exists = (struct extent_buffer *)page->private; 6065 if (atomic_inc_not_zero(&exists->refs)) 6066 return exists; 6067 6068 WARN_ON(PageDirty(page)); 6069 detach_page_private(page); 6070 return NULL; 6071 } 6072 6073 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6074 u64 start, u64 owner_root, int level) 6075 { 6076 unsigned long len = fs_info->nodesize; 6077 int num_pages; 6078 int i; 6079 unsigned long index = start >> PAGE_SHIFT; 6080 struct extent_buffer *eb; 6081 struct extent_buffer *exists = NULL; 6082 struct page *p; 6083 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6084 int uptodate = 1; 6085 int ret; 6086 6087 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6088 btrfs_err(fs_info, "bad tree block start %llu", start); 6089 return ERR_PTR(-EINVAL); 6090 } 6091 6092 #if BITS_PER_LONG == 32 6093 if (start >= MAX_LFS_FILESIZE) { 6094 btrfs_err_rl(fs_info, 6095 "extent buffer %llu is beyond 32bit page cache limit", start); 6096 btrfs_err_32bit_limit(fs_info); 6097 return ERR_PTR(-EOVERFLOW); 6098 } 6099 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6100 btrfs_warn_32bit_limit(fs_info); 6101 #endif 6102 6103 if (fs_info->sectorsize < PAGE_SIZE && 6104 offset_in_page(start) + len > PAGE_SIZE) { 6105 btrfs_err(fs_info, 6106 "tree block crosses page boundary, start %llu nodesize %lu", 6107 start, len); 6108 return ERR_PTR(-EINVAL); 6109 } 6110 6111 eb = find_extent_buffer(fs_info, start); 6112 if (eb) 6113 return eb; 6114 6115 eb = __alloc_extent_buffer(fs_info, start, len); 6116 if (!eb) 6117 return ERR_PTR(-ENOMEM); 6118 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6119 6120 num_pages = num_extent_pages(eb); 6121 for (i = 0; i < num_pages; i++, index++) { 6122 struct btrfs_subpage *prealloc = NULL; 6123 6124 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6125 if (!p) { 6126 exists = ERR_PTR(-ENOMEM); 6127 goto free_eb; 6128 } 6129 6130 /* 6131 * Preallocate page->private for subpage case, so that we won't 6132 * allocate memory with private_lock hold. The memory will be 6133 * freed by attach_extent_buffer_page() or freed manually if 6134 * we exit earlier. 6135 * 6136 * Although we have ensured one subpage eb can only have one 6137 * page, but it may change in the future for 16K page size 6138 * support, so we still preallocate the memory in the loop. 6139 */ 6140 ret = btrfs_alloc_subpage(fs_info, &prealloc, 6141 BTRFS_SUBPAGE_METADATA); 6142 if (ret < 0) { 6143 unlock_page(p); 6144 put_page(p); 6145 exists = ERR_PTR(ret); 6146 goto free_eb; 6147 } 6148 6149 spin_lock(&mapping->private_lock); 6150 exists = grab_extent_buffer(fs_info, p); 6151 if (exists) { 6152 spin_unlock(&mapping->private_lock); 6153 unlock_page(p); 6154 put_page(p); 6155 mark_extent_buffer_accessed(exists, p); 6156 btrfs_free_subpage(prealloc); 6157 goto free_eb; 6158 } 6159 /* Should not fail, as we have preallocated the memory */ 6160 ret = attach_extent_buffer_page(eb, p, prealloc); 6161 ASSERT(!ret); 6162 /* 6163 * To inform we have extra eb under allocation, so that 6164 * detach_extent_buffer_page() won't release the page private 6165 * when the eb hasn't yet been inserted into radix tree. 6166 * 6167 * The ref will be decreased when the eb released the page, in 6168 * detach_extent_buffer_page(). 6169 * Thus needs no special handling in error path. 6170 */ 6171 btrfs_page_inc_eb_refs(fs_info, p); 6172 spin_unlock(&mapping->private_lock); 6173 6174 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6175 eb->pages[i] = p; 6176 if (!PageUptodate(p)) 6177 uptodate = 0; 6178 6179 /* 6180 * We can't unlock the pages just yet since the extent buffer 6181 * hasn't been properly inserted in the radix tree, this 6182 * opens a race with btree_releasepage which can free a page 6183 * while we are still filling in all pages for the buffer and 6184 * we could crash. 6185 */ 6186 } 6187 if (uptodate) 6188 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6189 again: 6190 ret = radix_tree_preload(GFP_NOFS); 6191 if (ret) { 6192 exists = ERR_PTR(ret); 6193 goto free_eb; 6194 } 6195 6196 spin_lock(&fs_info->buffer_lock); 6197 ret = radix_tree_insert(&fs_info->buffer_radix, 6198 start >> fs_info->sectorsize_bits, eb); 6199 spin_unlock(&fs_info->buffer_lock); 6200 radix_tree_preload_end(); 6201 if (ret == -EEXIST) { 6202 exists = find_extent_buffer(fs_info, start); 6203 if (exists) 6204 goto free_eb; 6205 else 6206 goto again; 6207 } 6208 /* add one reference for the tree */ 6209 check_buffer_tree_ref(eb); 6210 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6211 6212 /* 6213 * Now it's safe to unlock the pages because any calls to 6214 * btree_releasepage will correctly detect that a page belongs to a 6215 * live buffer and won't free them prematurely. 6216 */ 6217 for (i = 0; i < num_pages; i++) 6218 unlock_page(eb->pages[i]); 6219 return eb; 6220 6221 free_eb: 6222 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6223 for (i = 0; i < num_pages; i++) { 6224 if (eb->pages[i]) 6225 unlock_page(eb->pages[i]); 6226 } 6227 6228 btrfs_release_extent_buffer(eb); 6229 return exists; 6230 } 6231 6232 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6233 { 6234 struct extent_buffer *eb = 6235 container_of(head, struct extent_buffer, rcu_head); 6236 6237 __free_extent_buffer(eb); 6238 } 6239 6240 static int release_extent_buffer(struct extent_buffer *eb) 6241 __releases(&eb->refs_lock) 6242 { 6243 lockdep_assert_held(&eb->refs_lock); 6244 6245 WARN_ON(atomic_read(&eb->refs) == 0); 6246 if (atomic_dec_and_test(&eb->refs)) { 6247 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6248 struct btrfs_fs_info *fs_info = eb->fs_info; 6249 6250 spin_unlock(&eb->refs_lock); 6251 6252 spin_lock(&fs_info->buffer_lock); 6253 radix_tree_delete(&fs_info->buffer_radix, 6254 eb->start >> fs_info->sectorsize_bits); 6255 spin_unlock(&fs_info->buffer_lock); 6256 } else { 6257 spin_unlock(&eb->refs_lock); 6258 } 6259 6260 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6261 /* Should be safe to release our pages at this point */ 6262 btrfs_release_extent_buffer_pages(eb); 6263 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6264 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6265 __free_extent_buffer(eb); 6266 return 1; 6267 } 6268 #endif 6269 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6270 return 1; 6271 } 6272 spin_unlock(&eb->refs_lock); 6273 6274 return 0; 6275 } 6276 6277 void free_extent_buffer(struct extent_buffer *eb) 6278 { 6279 int refs; 6280 int old; 6281 if (!eb) 6282 return; 6283 6284 while (1) { 6285 refs = atomic_read(&eb->refs); 6286 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6287 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6288 refs == 1)) 6289 break; 6290 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6291 if (old == refs) 6292 return; 6293 } 6294 6295 spin_lock(&eb->refs_lock); 6296 if (atomic_read(&eb->refs) == 2 && 6297 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6298 !extent_buffer_under_io(eb) && 6299 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6300 atomic_dec(&eb->refs); 6301 6302 /* 6303 * I know this is terrible, but it's temporary until we stop tracking 6304 * the uptodate bits and such for the extent buffers. 6305 */ 6306 release_extent_buffer(eb); 6307 } 6308 6309 void free_extent_buffer_stale(struct extent_buffer *eb) 6310 { 6311 if (!eb) 6312 return; 6313 6314 spin_lock(&eb->refs_lock); 6315 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6316 6317 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6318 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6319 atomic_dec(&eb->refs); 6320 release_extent_buffer(eb); 6321 } 6322 6323 static void btree_clear_page_dirty(struct page *page) 6324 { 6325 ASSERT(PageDirty(page)); 6326 ASSERT(PageLocked(page)); 6327 clear_page_dirty_for_io(page); 6328 xa_lock_irq(&page->mapping->i_pages); 6329 if (!PageDirty(page)) 6330 __xa_clear_mark(&page->mapping->i_pages, 6331 page_index(page), PAGECACHE_TAG_DIRTY); 6332 xa_unlock_irq(&page->mapping->i_pages); 6333 } 6334 6335 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6336 { 6337 struct btrfs_fs_info *fs_info = eb->fs_info; 6338 struct page *page = eb->pages[0]; 6339 bool last; 6340 6341 /* btree_clear_page_dirty() needs page locked */ 6342 lock_page(page); 6343 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6344 eb->len); 6345 if (last) 6346 btree_clear_page_dirty(page); 6347 unlock_page(page); 6348 WARN_ON(atomic_read(&eb->refs) == 0); 6349 } 6350 6351 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6352 { 6353 int i; 6354 int num_pages; 6355 struct page *page; 6356 6357 if (eb->fs_info->sectorsize < PAGE_SIZE) 6358 return clear_subpage_extent_buffer_dirty(eb); 6359 6360 num_pages = num_extent_pages(eb); 6361 6362 for (i = 0; i < num_pages; i++) { 6363 page = eb->pages[i]; 6364 if (!PageDirty(page)) 6365 continue; 6366 lock_page(page); 6367 btree_clear_page_dirty(page); 6368 ClearPageError(page); 6369 unlock_page(page); 6370 } 6371 WARN_ON(atomic_read(&eb->refs) == 0); 6372 } 6373 6374 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6375 { 6376 int i; 6377 int num_pages; 6378 bool was_dirty; 6379 6380 check_buffer_tree_ref(eb); 6381 6382 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6383 6384 num_pages = num_extent_pages(eb); 6385 WARN_ON(atomic_read(&eb->refs) == 0); 6386 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6387 6388 if (!was_dirty) { 6389 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; 6390 6391 /* 6392 * For subpage case, we can have other extent buffers in the 6393 * same page, and in clear_subpage_extent_buffer_dirty() we 6394 * have to clear page dirty without subpage lock held. 6395 * This can cause race where our page gets dirty cleared after 6396 * we just set it. 6397 * 6398 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6399 * its page for other reasons, we can use page lock to prevent 6400 * the above race. 6401 */ 6402 if (subpage) 6403 lock_page(eb->pages[0]); 6404 for (i = 0; i < num_pages; i++) 6405 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6406 eb->start, eb->len); 6407 if (subpage) 6408 unlock_page(eb->pages[0]); 6409 } 6410 #ifdef CONFIG_BTRFS_DEBUG 6411 for (i = 0; i < num_pages; i++) 6412 ASSERT(PageDirty(eb->pages[i])); 6413 #endif 6414 6415 return was_dirty; 6416 } 6417 6418 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6419 { 6420 struct btrfs_fs_info *fs_info = eb->fs_info; 6421 struct page *page; 6422 int num_pages; 6423 int i; 6424 6425 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6426 num_pages = num_extent_pages(eb); 6427 for (i = 0; i < num_pages; i++) { 6428 page = eb->pages[i]; 6429 if (page) 6430 btrfs_page_clear_uptodate(fs_info, page, 6431 eb->start, eb->len); 6432 } 6433 } 6434 6435 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6436 { 6437 struct btrfs_fs_info *fs_info = eb->fs_info; 6438 struct page *page; 6439 int num_pages; 6440 int i; 6441 6442 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6443 num_pages = num_extent_pages(eb); 6444 for (i = 0; i < num_pages; i++) { 6445 page = eb->pages[i]; 6446 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 6447 } 6448 } 6449 6450 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6451 int mirror_num) 6452 { 6453 struct btrfs_fs_info *fs_info = eb->fs_info; 6454 struct extent_io_tree *io_tree; 6455 struct page *page = eb->pages[0]; 6456 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6457 int ret = 0; 6458 6459 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6460 ASSERT(PagePrivate(page)); 6461 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6462 6463 if (wait == WAIT_NONE) { 6464 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6465 return -EAGAIN; 6466 } else { 6467 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6468 if (ret < 0) 6469 return ret; 6470 } 6471 6472 ret = 0; 6473 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6474 PageUptodate(page) || 6475 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6476 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6477 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6478 return ret; 6479 } 6480 6481 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6482 eb->read_mirror = 0; 6483 atomic_set(&eb->io_pages, 1); 6484 check_buffer_tree_ref(eb); 6485 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6486 6487 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6488 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6489 page, eb->start, eb->len, 6490 eb->start - page_offset(page), 6491 end_bio_extent_readpage, mirror_num, 0, 6492 true); 6493 if (ret) { 6494 /* 6495 * In the endio function, if we hit something wrong we will 6496 * increase the io_pages, so here we need to decrease it for 6497 * error path. 6498 */ 6499 atomic_dec(&eb->io_pages); 6500 } 6501 if (bio_ctrl.bio) { 6502 int tmp; 6503 6504 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6505 bio_ctrl.bio = NULL; 6506 if (tmp < 0) 6507 return tmp; 6508 } 6509 if (ret || wait != WAIT_COMPLETE) 6510 return ret; 6511 6512 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6513 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6514 ret = -EIO; 6515 return ret; 6516 } 6517 6518 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6519 { 6520 int i; 6521 struct page *page; 6522 int err; 6523 int ret = 0; 6524 int locked_pages = 0; 6525 int all_uptodate = 1; 6526 int num_pages; 6527 unsigned long num_reads = 0; 6528 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6529 6530 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6531 return 0; 6532 6533 if (eb->fs_info->sectorsize < PAGE_SIZE) 6534 return read_extent_buffer_subpage(eb, wait, mirror_num); 6535 6536 num_pages = num_extent_pages(eb); 6537 for (i = 0; i < num_pages; i++) { 6538 page = eb->pages[i]; 6539 if (wait == WAIT_NONE) { 6540 /* 6541 * WAIT_NONE is only utilized by readahead. If we can't 6542 * acquire the lock atomically it means either the eb 6543 * is being read out or under modification. 6544 * Either way the eb will be or has been cached, 6545 * readahead can exit safely. 6546 */ 6547 if (!trylock_page(page)) 6548 goto unlock_exit; 6549 } else { 6550 lock_page(page); 6551 } 6552 locked_pages++; 6553 } 6554 /* 6555 * We need to firstly lock all pages to make sure that 6556 * the uptodate bit of our pages won't be affected by 6557 * clear_extent_buffer_uptodate(). 6558 */ 6559 for (i = 0; i < num_pages; i++) { 6560 page = eb->pages[i]; 6561 if (!PageUptodate(page)) { 6562 num_reads++; 6563 all_uptodate = 0; 6564 } 6565 } 6566 6567 if (all_uptodate) { 6568 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6569 goto unlock_exit; 6570 } 6571 6572 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6573 eb->read_mirror = 0; 6574 atomic_set(&eb->io_pages, num_reads); 6575 /* 6576 * It is possible for releasepage to clear the TREE_REF bit before we 6577 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6578 */ 6579 check_buffer_tree_ref(eb); 6580 for (i = 0; i < num_pages; i++) { 6581 page = eb->pages[i]; 6582 6583 if (!PageUptodate(page)) { 6584 if (ret) { 6585 atomic_dec(&eb->io_pages); 6586 unlock_page(page); 6587 continue; 6588 } 6589 6590 ClearPageError(page); 6591 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6592 &bio_ctrl, page, page_offset(page), 6593 PAGE_SIZE, 0, end_bio_extent_readpage, 6594 mirror_num, 0, false); 6595 if (err) { 6596 /* 6597 * We failed to submit the bio so it's the 6598 * caller's responsibility to perform cleanup 6599 * i.e unlock page/set error bit. 6600 */ 6601 ret = err; 6602 SetPageError(page); 6603 unlock_page(page); 6604 atomic_dec(&eb->io_pages); 6605 } 6606 } else { 6607 unlock_page(page); 6608 } 6609 } 6610 6611 if (bio_ctrl.bio) { 6612 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); 6613 bio_ctrl.bio = NULL; 6614 if (err) 6615 return err; 6616 } 6617 6618 if (ret || wait != WAIT_COMPLETE) 6619 return ret; 6620 6621 for (i = 0; i < num_pages; i++) { 6622 page = eb->pages[i]; 6623 wait_on_page_locked(page); 6624 if (!PageUptodate(page)) 6625 ret = -EIO; 6626 } 6627 6628 return ret; 6629 6630 unlock_exit: 6631 while (locked_pages > 0) { 6632 locked_pages--; 6633 page = eb->pages[locked_pages]; 6634 unlock_page(page); 6635 } 6636 return ret; 6637 } 6638 6639 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6640 unsigned long len) 6641 { 6642 btrfs_warn(eb->fs_info, 6643 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6644 eb->start, eb->len, start, len); 6645 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6646 6647 return true; 6648 } 6649 6650 /* 6651 * Check if the [start, start + len) range is valid before reading/writing 6652 * the eb. 6653 * NOTE: @start and @len are offset inside the eb, not logical address. 6654 * 6655 * Caller should not touch the dst/src memory if this function returns error. 6656 */ 6657 static inline int check_eb_range(const struct extent_buffer *eb, 6658 unsigned long start, unsigned long len) 6659 { 6660 unsigned long offset; 6661 6662 /* start, start + len should not go beyond eb->len nor overflow */ 6663 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6664 return report_eb_range(eb, start, len); 6665 6666 return false; 6667 } 6668 6669 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6670 unsigned long start, unsigned long len) 6671 { 6672 size_t cur; 6673 size_t offset; 6674 struct page *page; 6675 char *kaddr; 6676 char *dst = (char *)dstv; 6677 unsigned long i = get_eb_page_index(start); 6678 6679 if (check_eb_range(eb, start, len)) 6680 return; 6681 6682 offset = get_eb_offset_in_page(eb, start); 6683 6684 while (len > 0) { 6685 page = eb->pages[i]; 6686 6687 cur = min(len, (PAGE_SIZE - offset)); 6688 kaddr = page_address(page); 6689 memcpy(dst, kaddr + offset, cur); 6690 6691 dst += cur; 6692 len -= cur; 6693 offset = 0; 6694 i++; 6695 } 6696 } 6697 6698 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6699 void __user *dstv, 6700 unsigned long start, unsigned long len) 6701 { 6702 size_t cur; 6703 size_t offset; 6704 struct page *page; 6705 char *kaddr; 6706 char __user *dst = (char __user *)dstv; 6707 unsigned long i = get_eb_page_index(start); 6708 int ret = 0; 6709 6710 WARN_ON(start > eb->len); 6711 WARN_ON(start + len > eb->start + eb->len); 6712 6713 offset = get_eb_offset_in_page(eb, start); 6714 6715 while (len > 0) { 6716 page = eb->pages[i]; 6717 6718 cur = min(len, (PAGE_SIZE - offset)); 6719 kaddr = page_address(page); 6720 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6721 ret = -EFAULT; 6722 break; 6723 } 6724 6725 dst += cur; 6726 len -= cur; 6727 offset = 0; 6728 i++; 6729 } 6730 6731 return ret; 6732 } 6733 6734 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6735 unsigned long start, unsigned long len) 6736 { 6737 size_t cur; 6738 size_t offset; 6739 struct page *page; 6740 char *kaddr; 6741 char *ptr = (char *)ptrv; 6742 unsigned long i = get_eb_page_index(start); 6743 int ret = 0; 6744 6745 if (check_eb_range(eb, start, len)) 6746 return -EINVAL; 6747 6748 offset = get_eb_offset_in_page(eb, start); 6749 6750 while (len > 0) { 6751 page = eb->pages[i]; 6752 6753 cur = min(len, (PAGE_SIZE - offset)); 6754 6755 kaddr = page_address(page); 6756 ret = memcmp(ptr, kaddr + offset, cur); 6757 if (ret) 6758 break; 6759 6760 ptr += cur; 6761 len -= cur; 6762 offset = 0; 6763 i++; 6764 } 6765 return ret; 6766 } 6767 6768 /* 6769 * Check that the extent buffer is uptodate. 6770 * 6771 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6772 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6773 */ 6774 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6775 struct page *page) 6776 { 6777 struct btrfs_fs_info *fs_info = eb->fs_info; 6778 6779 if (fs_info->sectorsize < PAGE_SIZE) { 6780 bool uptodate; 6781 6782 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6783 eb->start, eb->len); 6784 WARN_ON(!uptodate); 6785 } else { 6786 WARN_ON(!PageUptodate(page)); 6787 } 6788 } 6789 6790 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6791 const void *srcv) 6792 { 6793 char *kaddr; 6794 6795 assert_eb_page_uptodate(eb, eb->pages[0]); 6796 kaddr = page_address(eb->pages[0]) + 6797 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6798 chunk_tree_uuid)); 6799 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6800 } 6801 6802 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6803 { 6804 char *kaddr; 6805 6806 assert_eb_page_uptodate(eb, eb->pages[0]); 6807 kaddr = page_address(eb->pages[0]) + 6808 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6809 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6810 } 6811 6812 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6813 unsigned long start, unsigned long len) 6814 { 6815 size_t cur; 6816 size_t offset; 6817 struct page *page; 6818 char *kaddr; 6819 char *src = (char *)srcv; 6820 unsigned long i = get_eb_page_index(start); 6821 6822 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6823 6824 if (check_eb_range(eb, start, len)) 6825 return; 6826 6827 offset = get_eb_offset_in_page(eb, start); 6828 6829 while (len > 0) { 6830 page = eb->pages[i]; 6831 assert_eb_page_uptodate(eb, page); 6832 6833 cur = min(len, PAGE_SIZE - offset); 6834 kaddr = page_address(page); 6835 memcpy(kaddr + offset, src, cur); 6836 6837 src += cur; 6838 len -= cur; 6839 offset = 0; 6840 i++; 6841 } 6842 } 6843 6844 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6845 unsigned long len) 6846 { 6847 size_t cur; 6848 size_t offset; 6849 struct page *page; 6850 char *kaddr; 6851 unsigned long i = get_eb_page_index(start); 6852 6853 if (check_eb_range(eb, start, len)) 6854 return; 6855 6856 offset = get_eb_offset_in_page(eb, start); 6857 6858 while (len > 0) { 6859 page = eb->pages[i]; 6860 assert_eb_page_uptodate(eb, page); 6861 6862 cur = min(len, PAGE_SIZE - offset); 6863 kaddr = page_address(page); 6864 memset(kaddr + offset, 0, cur); 6865 6866 len -= cur; 6867 offset = 0; 6868 i++; 6869 } 6870 } 6871 6872 void copy_extent_buffer_full(const struct extent_buffer *dst, 6873 const struct extent_buffer *src) 6874 { 6875 int i; 6876 int num_pages; 6877 6878 ASSERT(dst->len == src->len); 6879 6880 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6881 num_pages = num_extent_pages(dst); 6882 for (i = 0; i < num_pages; i++) 6883 copy_page(page_address(dst->pages[i]), 6884 page_address(src->pages[i])); 6885 } else { 6886 size_t src_offset = get_eb_offset_in_page(src, 0); 6887 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6888 6889 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6890 memcpy(page_address(dst->pages[0]) + dst_offset, 6891 page_address(src->pages[0]) + src_offset, 6892 src->len); 6893 } 6894 } 6895 6896 void copy_extent_buffer(const struct extent_buffer *dst, 6897 const struct extent_buffer *src, 6898 unsigned long dst_offset, unsigned long src_offset, 6899 unsigned long len) 6900 { 6901 u64 dst_len = dst->len; 6902 size_t cur; 6903 size_t offset; 6904 struct page *page; 6905 char *kaddr; 6906 unsigned long i = get_eb_page_index(dst_offset); 6907 6908 if (check_eb_range(dst, dst_offset, len) || 6909 check_eb_range(src, src_offset, len)) 6910 return; 6911 6912 WARN_ON(src->len != dst_len); 6913 6914 offset = get_eb_offset_in_page(dst, dst_offset); 6915 6916 while (len > 0) { 6917 page = dst->pages[i]; 6918 assert_eb_page_uptodate(dst, page); 6919 6920 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6921 6922 kaddr = page_address(page); 6923 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6924 6925 src_offset += cur; 6926 len -= cur; 6927 offset = 0; 6928 i++; 6929 } 6930 } 6931 6932 /* 6933 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 6934 * given bit number 6935 * @eb: the extent buffer 6936 * @start: offset of the bitmap item in the extent buffer 6937 * @nr: bit number 6938 * @page_index: return index of the page in the extent buffer that contains the 6939 * given bit number 6940 * @page_offset: return offset into the page given by page_index 6941 * 6942 * This helper hides the ugliness of finding the byte in an extent buffer which 6943 * contains a given bit. 6944 */ 6945 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 6946 unsigned long start, unsigned long nr, 6947 unsigned long *page_index, 6948 size_t *page_offset) 6949 { 6950 size_t byte_offset = BIT_BYTE(nr); 6951 size_t offset; 6952 6953 /* 6954 * The byte we want is the offset of the extent buffer + the offset of 6955 * the bitmap item in the extent buffer + the offset of the byte in the 6956 * bitmap item. 6957 */ 6958 offset = start + offset_in_page(eb->start) + byte_offset; 6959 6960 *page_index = offset >> PAGE_SHIFT; 6961 *page_offset = offset_in_page(offset); 6962 } 6963 6964 /** 6965 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 6966 * @eb: the extent buffer 6967 * @start: offset of the bitmap item in the extent buffer 6968 * @nr: bit number to test 6969 */ 6970 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 6971 unsigned long nr) 6972 { 6973 u8 *kaddr; 6974 struct page *page; 6975 unsigned long i; 6976 size_t offset; 6977 6978 eb_bitmap_offset(eb, start, nr, &i, &offset); 6979 page = eb->pages[i]; 6980 assert_eb_page_uptodate(eb, page); 6981 kaddr = page_address(page); 6982 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 6983 } 6984 6985 /** 6986 * extent_buffer_bitmap_set - set an area of a bitmap 6987 * @eb: the extent buffer 6988 * @start: offset of the bitmap item in the extent buffer 6989 * @pos: bit number of the first bit 6990 * @len: number of bits to set 6991 */ 6992 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 6993 unsigned long pos, unsigned long len) 6994 { 6995 u8 *kaddr; 6996 struct page *page; 6997 unsigned long i; 6998 size_t offset; 6999 const unsigned int size = pos + len; 7000 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7001 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7002 7003 eb_bitmap_offset(eb, start, pos, &i, &offset); 7004 page = eb->pages[i]; 7005 assert_eb_page_uptodate(eb, page); 7006 kaddr = page_address(page); 7007 7008 while (len >= bits_to_set) { 7009 kaddr[offset] |= mask_to_set; 7010 len -= bits_to_set; 7011 bits_to_set = BITS_PER_BYTE; 7012 mask_to_set = ~0; 7013 if (++offset >= PAGE_SIZE && len > 0) { 7014 offset = 0; 7015 page = eb->pages[++i]; 7016 assert_eb_page_uptodate(eb, page); 7017 kaddr = page_address(page); 7018 } 7019 } 7020 if (len) { 7021 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7022 kaddr[offset] |= mask_to_set; 7023 } 7024 } 7025 7026 7027 /** 7028 * extent_buffer_bitmap_clear - clear an area of a bitmap 7029 * @eb: the extent buffer 7030 * @start: offset of the bitmap item in the extent buffer 7031 * @pos: bit number of the first bit 7032 * @len: number of bits to clear 7033 */ 7034 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7035 unsigned long start, unsigned long pos, 7036 unsigned long len) 7037 { 7038 u8 *kaddr; 7039 struct page *page; 7040 unsigned long i; 7041 size_t offset; 7042 const unsigned int size = pos + len; 7043 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7044 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7045 7046 eb_bitmap_offset(eb, start, pos, &i, &offset); 7047 page = eb->pages[i]; 7048 assert_eb_page_uptodate(eb, page); 7049 kaddr = page_address(page); 7050 7051 while (len >= bits_to_clear) { 7052 kaddr[offset] &= ~mask_to_clear; 7053 len -= bits_to_clear; 7054 bits_to_clear = BITS_PER_BYTE; 7055 mask_to_clear = ~0; 7056 if (++offset >= PAGE_SIZE && len > 0) { 7057 offset = 0; 7058 page = eb->pages[++i]; 7059 assert_eb_page_uptodate(eb, page); 7060 kaddr = page_address(page); 7061 } 7062 } 7063 if (len) { 7064 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7065 kaddr[offset] &= ~mask_to_clear; 7066 } 7067 } 7068 7069 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7070 { 7071 unsigned long distance = (src > dst) ? src - dst : dst - src; 7072 return distance < len; 7073 } 7074 7075 static void copy_pages(struct page *dst_page, struct page *src_page, 7076 unsigned long dst_off, unsigned long src_off, 7077 unsigned long len) 7078 { 7079 char *dst_kaddr = page_address(dst_page); 7080 char *src_kaddr; 7081 int must_memmove = 0; 7082 7083 if (dst_page != src_page) { 7084 src_kaddr = page_address(src_page); 7085 } else { 7086 src_kaddr = dst_kaddr; 7087 if (areas_overlap(src_off, dst_off, len)) 7088 must_memmove = 1; 7089 } 7090 7091 if (must_memmove) 7092 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7093 else 7094 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7095 } 7096 7097 void memcpy_extent_buffer(const struct extent_buffer *dst, 7098 unsigned long dst_offset, unsigned long src_offset, 7099 unsigned long len) 7100 { 7101 size_t cur; 7102 size_t dst_off_in_page; 7103 size_t src_off_in_page; 7104 unsigned long dst_i; 7105 unsigned long src_i; 7106 7107 if (check_eb_range(dst, dst_offset, len) || 7108 check_eb_range(dst, src_offset, len)) 7109 return; 7110 7111 while (len > 0) { 7112 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7113 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7114 7115 dst_i = get_eb_page_index(dst_offset); 7116 src_i = get_eb_page_index(src_offset); 7117 7118 cur = min(len, (unsigned long)(PAGE_SIZE - 7119 src_off_in_page)); 7120 cur = min_t(unsigned long, cur, 7121 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7122 7123 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7124 dst_off_in_page, src_off_in_page, cur); 7125 7126 src_offset += cur; 7127 dst_offset += cur; 7128 len -= cur; 7129 } 7130 } 7131 7132 void memmove_extent_buffer(const struct extent_buffer *dst, 7133 unsigned long dst_offset, unsigned long src_offset, 7134 unsigned long len) 7135 { 7136 size_t cur; 7137 size_t dst_off_in_page; 7138 size_t src_off_in_page; 7139 unsigned long dst_end = dst_offset + len - 1; 7140 unsigned long src_end = src_offset + len - 1; 7141 unsigned long dst_i; 7142 unsigned long src_i; 7143 7144 if (check_eb_range(dst, dst_offset, len) || 7145 check_eb_range(dst, src_offset, len)) 7146 return; 7147 if (dst_offset < src_offset) { 7148 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7149 return; 7150 } 7151 while (len > 0) { 7152 dst_i = get_eb_page_index(dst_end); 7153 src_i = get_eb_page_index(src_end); 7154 7155 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7156 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7157 7158 cur = min_t(unsigned long, len, src_off_in_page + 1); 7159 cur = min(cur, dst_off_in_page + 1); 7160 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7161 dst_off_in_page - cur + 1, 7162 src_off_in_page - cur + 1, cur); 7163 7164 dst_end -= cur; 7165 src_end -= cur; 7166 len -= cur; 7167 } 7168 } 7169 7170 static struct extent_buffer *get_next_extent_buffer( 7171 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7172 { 7173 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE]; 7174 struct extent_buffer *found = NULL; 7175 u64 page_start = page_offset(page); 7176 int ret; 7177 int i; 7178 7179 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7180 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE); 7181 lockdep_assert_held(&fs_info->buffer_lock); 7182 7183 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang, 7184 bytenr >> fs_info->sectorsize_bits, 7185 PAGE_SIZE / fs_info->nodesize); 7186 for (i = 0; i < ret; i++) { 7187 /* Already beyond page end */ 7188 if (gang[i]->start >= page_start + PAGE_SIZE) 7189 break; 7190 /* Found one */ 7191 if (gang[i]->start >= bytenr) { 7192 found = gang[i]; 7193 break; 7194 } 7195 } 7196 return found; 7197 } 7198 7199 static int try_release_subpage_extent_buffer(struct page *page) 7200 { 7201 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7202 u64 cur = page_offset(page); 7203 const u64 end = page_offset(page) + PAGE_SIZE; 7204 int ret; 7205 7206 while (cur < end) { 7207 struct extent_buffer *eb = NULL; 7208 7209 /* 7210 * Unlike try_release_extent_buffer() which uses page->private 7211 * to grab buffer, for subpage case we rely on radix tree, thus 7212 * we need to ensure radix tree consistency. 7213 * 7214 * We also want an atomic snapshot of the radix tree, thus go 7215 * with spinlock rather than RCU. 7216 */ 7217 spin_lock(&fs_info->buffer_lock); 7218 eb = get_next_extent_buffer(fs_info, page, cur); 7219 if (!eb) { 7220 /* No more eb in the page range after or at cur */ 7221 spin_unlock(&fs_info->buffer_lock); 7222 break; 7223 } 7224 cur = eb->start + eb->len; 7225 7226 /* 7227 * The same as try_release_extent_buffer(), to ensure the eb 7228 * won't disappear out from under us. 7229 */ 7230 spin_lock(&eb->refs_lock); 7231 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7232 spin_unlock(&eb->refs_lock); 7233 spin_unlock(&fs_info->buffer_lock); 7234 break; 7235 } 7236 spin_unlock(&fs_info->buffer_lock); 7237 7238 /* 7239 * If tree ref isn't set then we know the ref on this eb is a 7240 * real ref, so just return, this eb will likely be freed soon 7241 * anyway. 7242 */ 7243 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7244 spin_unlock(&eb->refs_lock); 7245 break; 7246 } 7247 7248 /* 7249 * Here we don't care about the return value, we will always 7250 * check the page private at the end. And 7251 * release_extent_buffer() will release the refs_lock. 7252 */ 7253 release_extent_buffer(eb); 7254 } 7255 /* 7256 * Finally to check if we have cleared page private, as if we have 7257 * released all ebs in the page, the page private should be cleared now. 7258 */ 7259 spin_lock(&page->mapping->private_lock); 7260 if (!PagePrivate(page)) 7261 ret = 1; 7262 else 7263 ret = 0; 7264 spin_unlock(&page->mapping->private_lock); 7265 return ret; 7266 7267 } 7268 7269 int try_release_extent_buffer(struct page *page) 7270 { 7271 struct extent_buffer *eb; 7272 7273 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 7274 return try_release_subpage_extent_buffer(page); 7275 7276 /* 7277 * We need to make sure nobody is changing page->private, as we rely on 7278 * page->private as the pointer to extent buffer. 7279 */ 7280 spin_lock(&page->mapping->private_lock); 7281 if (!PagePrivate(page)) { 7282 spin_unlock(&page->mapping->private_lock); 7283 return 1; 7284 } 7285 7286 eb = (struct extent_buffer *)page->private; 7287 BUG_ON(!eb); 7288 7289 /* 7290 * This is a little awful but should be ok, we need to make sure that 7291 * the eb doesn't disappear out from under us while we're looking at 7292 * this page. 7293 */ 7294 spin_lock(&eb->refs_lock); 7295 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7296 spin_unlock(&eb->refs_lock); 7297 spin_unlock(&page->mapping->private_lock); 7298 return 0; 7299 } 7300 spin_unlock(&page->mapping->private_lock); 7301 7302 /* 7303 * If tree ref isn't set then we know the ref on this eb is a real ref, 7304 * so just return, this page will likely be freed soon anyway. 7305 */ 7306 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7307 spin_unlock(&eb->refs_lock); 7308 return 0; 7309 } 7310 7311 return release_extent_buffer(eb); 7312 } 7313 7314 /* 7315 * btrfs_readahead_tree_block - attempt to readahead a child block 7316 * @fs_info: the fs_info 7317 * @bytenr: bytenr to read 7318 * @owner_root: objectid of the root that owns this eb 7319 * @gen: generation for the uptodate check, can be 0 7320 * @level: level for the eb 7321 * 7322 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7323 * normal uptodate check of the eb, without checking the generation. If we have 7324 * to read the block we will not block on anything. 7325 */ 7326 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7327 u64 bytenr, u64 owner_root, u64 gen, int level) 7328 { 7329 struct extent_buffer *eb; 7330 int ret; 7331 7332 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7333 if (IS_ERR(eb)) 7334 return; 7335 7336 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7337 free_extent_buffer(eb); 7338 return; 7339 } 7340 7341 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7342 if (ret < 0) 7343 free_extent_buffer_stale(eb); 7344 else 7345 free_extent_buffer(eb); 7346 } 7347 7348 /* 7349 * btrfs_readahead_node_child - readahead a node's child block 7350 * @node: parent node we're reading from 7351 * @slot: slot in the parent node for the child we want to read 7352 * 7353 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7354 * the slot in the node provided. 7355 */ 7356 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7357 { 7358 btrfs_readahead_tree_block(node->fs_info, 7359 btrfs_node_blockptr(node, slot), 7360 btrfs_header_owner(node), 7361 btrfs_node_ptr_generation(node, slot), 7362 btrfs_header_level(node) - 1); 7363 } 7364