xref: /openbmc/linux/fs/btrfs/extent_io.c (revision a8fe58ce)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	if (extent_state_cache)
210 		kmem_cache_destroy(extent_state_cache);
211 	if (extent_buffer_cache)
212 		kmem_cache_destroy(extent_buffer_cache);
213 	if (btrfs_bioset)
214 		bioset_free(btrfs_bioset);
215 }
216 
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 			 struct address_space *mapping)
219 {
220 	tree->state = RB_ROOT;
221 	tree->ops = NULL;
222 	tree->dirty_bytes = 0;
223 	spin_lock_init(&tree->lock);
224 	tree->mapping = mapping;
225 }
226 
227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 	struct extent_state *state;
230 
231 	state = kmem_cache_alloc(extent_state_cache, mask);
232 	if (!state)
233 		return state;
234 	state->state = 0;
235 	state->private = 0;
236 	RB_CLEAR_NODE(&state->rb_node);
237 	btrfs_leak_debug_add(&state->leak_list, &states);
238 	atomic_set(&state->refs, 1);
239 	init_waitqueue_head(&state->wq);
240 	trace_alloc_extent_state(state, mask, _RET_IP_);
241 	return state;
242 }
243 
244 void free_extent_state(struct extent_state *state)
245 {
246 	if (!state)
247 		return;
248 	if (atomic_dec_and_test(&state->refs)) {
249 		WARN_ON(extent_state_in_tree(state));
250 		btrfs_leak_debug_del(&state->leak_list);
251 		trace_free_extent_state(state, _RET_IP_);
252 		kmem_cache_free(extent_state_cache, state);
253 	}
254 }
255 
256 static struct rb_node *tree_insert(struct rb_root *root,
257 				   struct rb_node *search_start,
258 				   u64 offset,
259 				   struct rb_node *node,
260 				   struct rb_node ***p_in,
261 				   struct rb_node **parent_in)
262 {
263 	struct rb_node **p;
264 	struct rb_node *parent = NULL;
265 	struct tree_entry *entry;
266 
267 	if (p_in && parent_in) {
268 		p = *p_in;
269 		parent = *parent_in;
270 		goto do_insert;
271 	}
272 
273 	p = search_start ? &search_start : &root->rb_node;
274 	while (*p) {
275 		parent = *p;
276 		entry = rb_entry(parent, struct tree_entry, rb_node);
277 
278 		if (offset < entry->start)
279 			p = &(*p)->rb_left;
280 		else if (offset > entry->end)
281 			p = &(*p)->rb_right;
282 		else
283 			return parent;
284 	}
285 
286 do_insert:
287 	rb_link_node(node, parent, p);
288 	rb_insert_color(node, root);
289 	return NULL;
290 }
291 
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 				      struct rb_node **prev_ret,
294 				      struct rb_node **next_ret,
295 				      struct rb_node ***p_ret,
296 				      struct rb_node **parent_ret)
297 {
298 	struct rb_root *root = &tree->state;
299 	struct rb_node **n = &root->rb_node;
300 	struct rb_node *prev = NULL;
301 	struct rb_node *orig_prev = NULL;
302 	struct tree_entry *entry;
303 	struct tree_entry *prev_entry = NULL;
304 
305 	while (*n) {
306 		prev = *n;
307 		entry = rb_entry(prev, struct tree_entry, rb_node);
308 		prev_entry = entry;
309 
310 		if (offset < entry->start)
311 			n = &(*n)->rb_left;
312 		else if (offset > entry->end)
313 			n = &(*n)->rb_right;
314 		else
315 			return *n;
316 	}
317 
318 	if (p_ret)
319 		*p_ret = n;
320 	if (parent_ret)
321 		*parent_ret = prev;
322 
323 	if (prev_ret) {
324 		orig_prev = prev;
325 		while (prev && offset > prev_entry->end) {
326 			prev = rb_next(prev);
327 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 		}
329 		*prev_ret = prev;
330 		prev = orig_prev;
331 	}
332 
333 	if (next_ret) {
334 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 		while (prev && offset < prev_entry->start) {
336 			prev = rb_prev(prev);
337 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 		}
339 		*next_ret = prev;
340 	}
341 	return NULL;
342 }
343 
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 		       u64 offset,
347 		       struct rb_node ***p_ret,
348 		       struct rb_node **parent_ret)
349 {
350 	struct rb_node *prev = NULL;
351 	struct rb_node *ret;
352 
353 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 	if (!ret)
355 		return prev;
356 	return ret;
357 }
358 
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 					  u64 offset)
361 {
362 	return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364 
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 		     struct extent_state *other)
367 {
368 	if (tree->ops && tree->ops->merge_extent_hook)
369 		tree->ops->merge_extent_hook(tree->mapping->host, new,
370 					     other);
371 }
372 
373 /*
374  * utility function to look for merge candidates inside a given range.
375  * Any extents with matching state are merged together into a single
376  * extent in the tree.  Extents with EXTENT_IO in their state field
377  * are not merged because the end_io handlers need to be able to do
378  * operations on them without sleeping (or doing allocations/splits).
379  *
380  * This should be called with the tree lock held.
381  */
382 static void merge_state(struct extent_io_tree *tree,
383 		        struct extent_state *state)
384 {
385 	struct extent_state *other;
386 	struct rb_node *other_node;
387 
388 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 		return;
390 
391 	other_node = rb_prev(&state->rb_node);
392 	if (other_node) {
393 		other = rb_entry(other_node, struct extent_state, rb_node);
394 		if (other->end == state->start - 1 &&
395 		    other->state == state->state) {
396 			merge_cb(tree, state, other);
397 			state->start = other->start;
398 			rb_erase(&other->rb_node, &tree->state);
399 			RB_CLEAR_NODE(&other->rb_node);
400 			free_extent_state(other);
401 		}
402 	}
403 	other_node = rb_next(&state->rb_node);
404 	if (other_node) {
405 		other = rb_entry(other_node, struct extent_state, rb_node);
406 		if (other->start == state->end + 1 &&
407 		    other->state == state->state) {
408 			merge_cb(tree, state, other);
409 			state->end = other->end;
410 			rb_erase(&other->rb_node, &tree->state);
411 			RB_CLEAR_NODE(&other->rb_node);
412 			free_extent_state(other);
413 		}
414 	}
415 }
416 
417 static void set_state_cb(struct extent_io_tree *tree,
418 			 struct extent_state *state, unsigned *bits)
419 {
420 	if (tree->ops && tree->ops->set_bit_hook)
421 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423 
424 static void clear_state_cb(struct extent_io_tree *tree,
425 			   struct extent_state *state, unsigned *bits)
426 {
427 	if (tree->ops && tree->ops->clear_bit_hook)
428 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430 
431 static void set_state_bits(struct extent_io_tree *tree,
432 			   struct extent_state *state, unsigned *bits,
433 			   struct extent_changeset *changeset);
434 
435 /*
436  * insert an extent_state struct into the tree.  'bits' are set on the
437  * struct before it is inserted.
438  *
439  * This may return -EEXIST if the extent is already there, in which case the
440  * state struct is freed.
441  *
442  * The tree lock is not taken internally.  This is a utility function and
443  * probably isn't what you want to call (see set/clear_extent_bit).
444  */
445 static int insert_state(struct extent_io_tree *tree,
446 			struct extent_state *state, u64 start, u64 end,
447 			struct rb_node ***p,
448 			struct rb_node **parent,
449 			unsigned *bits, struct extent_changeset *changeset)
450 {
451 	struct rb_node *node;
452 
453 	if (end < start)
454 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 		       end, start);
456 	state->start = start;
457 	state->end = end;
458 
459 	set_state_bits(tree, state, bits, changeset);
460 
461 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 	if (node) {
463 		struct extent_state *found;
464 		found = rb_entry(node, struct extent_state, rb_node);
465 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 		       "%llu %llu\n",
467 		       found->start, found->end, start, end);
468 		return -EEXIST;
469 	}
470 	merge_state(tree, state);
471 	return 0;
472 }
473 
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 		     u64 split)
476 {
477 	if (tree->ops && tree->ops->split_extent_hook)
478 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480 
481 /*
482  * split a given extent state struct in two, inserting the preallocated
483  * struct 'prealloc' as the newly created second half.  'split' indicates an
484  * offset inside 'orig' where it should be split.
485  *
486  * Before calling,
487  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
488  * are two extent state structs in the tree:
489  * prealloc: [orig->start, split - 1]
490  * orig: [ split, orig->end ]
491  *
492  * The tree locks are not taken by this function. They need to be held
493  * by the caller.
494  */
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 		       struct extent_state *prealloc, u64 split)
497 {
498 	struct rb_node *node;
499 
500 	split_cb(tree, orig, split);
501 
502 	prealloc->start = orig->start;
503 	prealloc->end = split - 1;
504 	prealloc->state = orig->state;
505 	orig->start = split;
506 
507 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 			   &prealloc->rb_node, NULL, NULL);
509 	if (node) {
510 		free_extent_state(prealloc);
511 		return -EEXIST;
512 	}
513 	return 0;
514 }
515 
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 	struct rb_node *next = rb_next(&state->rb_node);
519 	if (next)
520 		return rb_entry(next, struct extent_state, rb_node);
521 	else
522 		return NULL;
523 }
524 
525 /*
526  * utility function to clear some bits in an extent state struct.
527  * it will optionally wake up any one waiting on this state (wake == 1).
528  *
529  * If no bits are set on the state struct after clearing things, the
530  * struct is freed and removed from the tree
531  */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 					    struct extent_state *state,
534 					    unsigned *bits, int wake,
535 					    struct extent_changeset *changeset)
536 {
537 	struct extent_state *next;
538 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539 
540 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 		u64 range = state->end - state->start + 1;
542 		WARN_ON(range > tree->dirty_bytes);
543 		tree->dirty_bytes -= range;
544 	}
545 	clear_state_cb(tree, state, bits);
546 	add_extent_changeset(state, bits_to_clear, changeset, 0);
547 	state->state &= ~bits_to_clear;
548 	if (wake)
549 		wake_up(&state->wq);
550 	if (state->state == 0) {
551 		next = next_state(state);
552 		if (extent_state_in_tree(state)) {
553 			rb_erase(&state->rb_node, &tree->state);
554 			RB_CLEAR_NODE(&state->rb_node);
555 			free_extent_state(state);
556 		} else {
557 			WARN_ON(1);
558 		}
559 	} else {
560 		merge_state(tree, state);
561 		next = next_state(state);
562 	}
563 	return next;
564 }
565 
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 	if (!prealloc)
570 		prealloc = alloc_extent_state(GFP_ATOMIC);
571 
572 	return prealloc;
573 }
574 
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 		    "Extent tree was modified by another "
579 		    "thread while locked.");
580 }
581 
582 /*
583  * clear some bits on a range in the tree.  This may require splitting
584  * or inserting elements in the tree, so the gfp mask is used to
585  * indicate which allocations or sleeping are allowed.
586  *
587  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588  * the given range from the tree regardless of state (ie for truncate).
589  *
590  * the range [start, end] is inclusive.
591  *
592  * This takes the tree lock, and returns 0 on success and < 0 on error.
593  */
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 			      unsigned bits, int wake, int delete,
596 			      struct extent_state **cached_state,
597 			      gfp_t mask, struct extent_changeset *changeset)
598 {
599 	struct extent_state *state;
600 	struct extent_state *cached;
601 	struct extent_state *prealloc = NULL;
602 	struct rb_node *node;
603 	u64 last_end;
604 	int err;
605 	int clear = 0;
606 
607 	btrfs_debug_check_extent_io_range(tree, start, end);
608 
609 	if (bits & EXTENT_DELALLOC)
610 		bits |= EXTENT_NORESERVE;
611 
612 	if (delete)
613 		bits |= ~EXTENT_CTLBITS;
614 	bits |= EXTENT_FIRST_DELALLOC;
615 
616 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 		clear = 1;
618 again:
619 	if (!prealloc && gfpflags_allow_blocking(mask)) {
620 		/*
621 		 * Don't care for allocation failure here because we might end
622 		 * up not needing the pre-allocated extent state at all, which
623 		 * is the case if we only have in the tree extent states that
624 		 * cover our input range and don't cover too any other range.
625 		 * If we end up needing a new extent state we allocate it later.
626 		 */
627 		prealloc = alloc_extent_state(mask);
628 	}
629 
630 	spin_lock(&tree->lock);
631 	if (cached_state) {
632 		cached = *cached_state;
633 
634 		if (clear) {
635 			*cached_state = NULL;
636 			cached_state = NULL;
637 		}
638 
639 		if (cached && extent_state_in_tree(cached) &&
640 		    cached->start <= start && cached->end > start) {
641 			if (clear)
642 				atomic_dec(&cached->refs);
643 			state = cached;
644 			goto hit_next;
645 		}
646 		if (clear)
647 			free_extent_state(cached);
648 	}
649 	/*
650 	 * this search will find the extents that end after
651 	 * our range starts
652 	 */
653 	node = tree_search(tree, start);
654 	if (!node)
655 		goto out;
656 	state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 	if (state->start > end)
659 		goto out;
660 	WARN_ON(state->end < start);
661 	last_end = state->end;
662 
663 	/* the state doesn't have the wanted bits, go ahead */
664 	if (!(state->state & bits)) {
665 		state = next_state(state);
666 		goto next;
667 	}
668 
669 	/*
670 	 *     | ---- desired range ---- |
671 	 *  | state | or
672 	 *  | ------------- state -------------- |
673 	 *
674 	 * We need to split the extent we found, and may flip
675 	 * bits on second half.
676 	 *
677 	 * If the extent we found extends past our range, we
678 	 * just split and search again.  It'll get split again
679 	 * the next time though.
680 	 *
681 	 * If the extent we found is inside our range, we clear
682 	 * the desired bit on it.
683 	 */
684 
685 	if (state->start < start) {
686 		prealloc = alloc_extent_state_atomic(prealloc);
687 		BUG_ON(!prealloc);
688 		err = split_state(tree, state, prealloc, start);
689 		if (err)
690 			extent_io_tree_panic(tree, err);
691 
692 		prealloc = NULL;
693 		if (err)
694 			goto out;
695 		if (state->end <= end) {
696 			state = clear_state_bit(tree, state, &bits, wake,
697 						changeset);
698 			goto next;
699 		}
700 		goto search_again;
701 	}
702 	/*
703 	 * | ---- desired range ---- |
704 	 *                        | state |
705 	 * We need to split the extent, and clear the bit
706 	 * on the first half
707 	 */
708 	if (state->start <= end && state->end > end) {
709 		prealloc = alloc_extent_state_atomic(prealloc);
710 		BUG_ON(!prealloc);
711 		err = split_state(tree, state, prealloc, end + 1);
712 		if (err)
713 			extent_io_tree_panic(tree, err);
714 
715 		if (wake)
716 			wake_up(&state->wq);
717 
718 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
719 
720 		prealloc = NULL;
721 		goto out;
722 	}
723 
724 	state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 	if (last_end == (u64)-1)
727 		goto out;
728 	start = last_end + 1;
729 	if (start <= end && state && !need_resched())
730 		goto hit_next;
731 	goto search_again;
732 
733 out:
734 	spin_unlock(&tree->lock);
735 	if (prealloc)
736 		free_extent_state(prealloc);
737 
738 	return 0;
739 
740 search_again:
741 	if (start > end)
742 		goto out;
743 	spin_unlock(&tree->lock);
744 	if (gfpflags_allow_blocking(mask))
745 		cond_resched();
746 	goto again;
747 }
748 
749 static void wait_on_state(struct extent_io_tree *tree,
750 			  struct extent_state *state)
751 		__releases(tree->lock)
752 		__acquires(tree->lock)
753 {
754 	DEFINE_WAIT(wait);
755 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 	spin_unlock(&tree->lock);
757 	schedule();
758 	spin_lock(&tree->lock);
759 	finish_wait(&state->wq, &wait);
760 }
761 
762 /*
763  * waits for one or more bits to clear on a range in the state tree.
764  * The range [start, end] is inclusive.
765  * The tree lock is taken by this function
766  */
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 			    unsigned long bits)
769 {
770 	struct extent_state *state;
771 	struct rb_node *node;
772 
773 	btrfs_debug_check_extent_io_range(tree, start, end);
774 
775 	spin_lock(&tree->lock);
776 again:
777 	while (1) {
778 		/*
779 		 * this search will find all the extents that end after
780 		 * our range starts
781 		 */
782 		node = tree_search(tree, start);
783 process_node:
784 		if (!node)
785 			break;
786 
787 		state = rb_entry(node, struct extent_state, rb_node);
788 
789 		if (state->start > end)
790 			goto out;
791 
792 		if (state->state & bits) {
793 			start = state->start;
794 			atomic_inc(&state->refs);
795 			wait_on_state(tree, state);
796 			free_extent_state(state);
797 			goto again;
798 		}
799 		start = state->end + 1;
800 
801 		if (start > end)
802 			break;
803 
804 		if (!cond_resched_lock(&tree->lock)) {
805 			node = rb_next(node);
806 			goto process_node;
807 		}
808 	}
809 out:
810 	spin_unlock(&tree->lock);
811 }
812 
813 static void set_state_bits(struct extent_io_tree *tree,
814 			   struct extent_state *state,
815 			   unsigned *bits, struct extent_changeset *changeset)
816 {
817 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818 
819 	set_state_cb(tree, state, bits);
820 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 		u64 range = state->end - state->start + 1;
822 		tree->dirty_bytes += range;
823 	}
824 	add_extent_changeset(state, bits_to_set, changeset, 1);
825 	state->state |= bits_to_set;
826 }
827 
828 static void cache_state_if_flags(struct extent_state *state,
829 				 struct extent_state **cached_ptr,
830 				 unsigned flags)
831 {
832 	if (cached_ptr && !(*cached_ptr)) {
833 		if (!flags || (state->state & flags)) {
834 			*cached_ptr = state;
835 			atomic_inc(&state->refs);
836 		}
837 	}
838 }
839 
840 static void cache_state(struct extent_state *state,
841 			struct extent_state **cached_ptr)
842 {
843 	return cache_state_if_flags(state, cached_ptr,
844 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846 
847 /*
848  * set some bits on a range in the tree.  This may require allocations or
849  * sleeping, so the gfp mask is used to indicate what is allowed.
850  *
851  * If any of the exclusive bits are set, this will fail with -EEXIST if some
852  * part of the range already has the desired bits set.  The start of the
853  * existing range is returned in failed_start in this case.
854  *
855  * [start, end] is inclusive This takes the tree lock.
856  */
857 
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 		 unsigned bits, unsigned exclusive_bits,
861 		 u64 *failed_start, struct extent_state **cached_state,
862 		 gfp_t mask, struct extent_changeset *changeset)
863 {
864 	struct extent_state *state;
865 	struct extent_state *prealloc = NULL;
866 	struct rb_node *node;
867 	struct rb_node **p;
868 	struct rb_node *parent;
869 	int err = 0;
870 	u64 last_start;
871 	u64 last_end;
872 
873 	btrfs_debug_check_extent_io_range(tree, start, end);
874 
875 	bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 	if (!prealloc && gfpflags_allow_blocking(mask)) {
878 		prealloc = alloc_extent_state(mask);
879 		BUG_ON(!prealloc);
880 	}
881 
882 	spin_lock(&tree->lock);
883 	if (cached_state && *cached_state) {
884 		state = *cached_state;
885 		if (state->start <= start && state->end > start &&
886 		    extent_state_in_tree(state)) {
887 			node = &state->rb_node;
888 			goto hit_next;
889 		}
890 	}
891 	/*
892 	 * this search will find all the extents that end after
893 	 * our range starts.
894 	 */
895 	node = tree_search_for_insert(tree, start, &p, &parent);
896 	if (!node) {
897 		prealloc = alloc_extent_state_atomic(prealloc);
898 		BUG_ON(!prealloc);
899 		err = insert_state(tree, prealloc, start, end,
900 				   &p, &parent, &bits, changeset);
901 		if (err)
902 			extent_io_tree_panic(tree, err);
903 
904 		cache_state(prealloc, cached_state);
905 		prealloc = NULL;
906 		goto out;
907 	}
908 	state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 	last_start = state->start;
911 	last_end = state->end;
912 
913 	/*
914 	 * | ---- desired range ---- |
915 	 * | state |
916 	 *
917 	 * Just lock what we found and keep going
918 	 */
919 	if (state->start == start && state->end <= end) {
920 		if (state->state & exclusive_bits) {
921 			*failed_start = state->start;
922 			err = -EEXIST;
923 			goto out;
924 		}
925 
926 		set_state_bits(tree, state, &bits, changeset);
927 		cache_state(state, cached_state);
928 		merge_state(tree, state);
929 		if (last_end == (u64)-1)
930 			goto out;
931 		start = last_end + 1;
932 		state = next_state(state);
933 		if (start < end && state && state->start == start &&
934 		    !need_resched())
935 			goto hit_next;
936 		goto search_again;
937 	}
938 
939 	/*
940 	 *     | ---- desired range ---- |
941 	 * | state |
942 	 *   or
943 	 * | ------------- state -------------- |
944 	 *
945 	 * We need to split the extent we found, and may flip bits on
946 	 * second half.
947 	 *
948 	 * If the extent we found extends past our
949 	 * range, we just split and search again.  It'll get split
950 	 * again the next time though.
951 	 *
952 	 * If the extent we found is inside our range, we set the
953 	 * desired bit on it.
954 	 */
955 	if (state->start < start) {
956 		if (state->state & exclusive_bits) {
957 			*failed_start = start;
958 			err = -EEXIST;
959 			goto out;
960 		}
961 
962 		prealloc = alloc_extent_state_atomic(prealloc);
963 		BUG_ON(!prealloc);
964 		err = split_state(tree, state, prealloc, start);
965 		if (err)
966 			extent_io_tree_panic(tree, err);
967 
968 		prealloc = NULL;
969 		if (err)
970 			goto out;
971 		if (state->end <= end) {
972 			set_state_bits(tree, state, &bits, changeset);
973 			cache_state(state, cached_state);
974 			merge_state(tree, state);
975 			if (last_end == (u64)-1)
976 				goto out;
977 			start = last_end + 1;
978 			state = next_state(state);
979 			if (start < end && state && state->start == start &&
980 			    !need_resched())
981 				goto hit_next;
982 		}
983 		goto search_again;
984 	}
985 	/*
986 	 * | ---- desired range ---- |
987 	 *     | state | or               | state |
988 	 *
989 	 * There's a hole, we need to insert something in it and
990 	 * ignore the extent we found.
991 	 */
992 	if (state->start > start) {
993 		u64 this_end;
994 		if (end < last_start)
995 			this_end = end;
996 		else
997 			this_end = last_start - 1;
998 
999 		prealloc = alloc_extent_state_atomic(prealloc);
1000 		BUG_ON(!prealloc);
1001 
1002 		/*
1003 		 * Avoid to free 'prealloc' if it can be merged with
1004 		 * the later extent.
1005 		 */
1006 		err = insert_state(tree, prealloc, start, this_end,
1007 				   NULL, NULL, &bits, changeset);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		cache_state(prealloc, cached_state);
1012 		prealloc = NULL;
1013 		start = this_end + 1;
1014 		goto search_again;
1015 	}
1016 	/*
1017 	 * | ---- desired range ---- |
1018 	 *                        | state |
1019 	 * We need to split the extent, and set the bit
1020 	 * on the first half
1021 	 */
1022 	if (state->start <= end && state->end > end) {
1023 		if (state->state & exclusive_bits) {
1024 			*failed_start = start;
1025 			err = -EEXIST;
1026 			goto out;
1027 		}
1028 
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		BUG_ON(!prealloc);
1031 		err = split_state(tree, state, prealloc, end + 1);
1032 		if (err)
1033 			extent_io_tree_panic(tree, err);
1034 
1035 		set_state_bits(tree, prealloc, &bits, changeset);
1036 		cache_state(prealloc, cached_state);
1037 		merge_state(tree, prealloc);
1038 		prealloc = NULL;
1039 		goto out;
1040 	}
1041 
1042 	goto search_again;
1043 
1044 out:
1045 	spin_unlock(&tree->lock);
1046 	if (prealloc)
1047 		free_extent_state(prealloc);
1048 
1049 	return err;
1050 
1051 search_again:
1052 	if (start > end)
1053 		goto out;
1054 	spin_unlock(&tree->lock);
1055 	if (gfpflags_allow_blocking(mask))
1056 		cond_resched();
1057 	goto again;
1058 }
1059 
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 		   unsigned bits, u64 * failed_start,
1062 		   struct extent_state **cached_state, gfp_t mask)
1063 {
1064 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 				cached_state, mask, NULL);
1066 }
1067 
1068 
1069 /**
1070  * convert_extent_bit - convert all bits in a given range from one bit to
1071  * 			another
1072  * @tree:	the io tree to search
1073  * @start:	the start offset in bytes
1074  * @end:	the end offset in bytes (inclusive)
1075  * @bits:	the bits to set in this range
1076  * @clear_bits:	the bits to clear in this range
1077  * @cached_state:	state that we're going to cache
1078  * @mask:	the allocation mask
1079  *
1080  * This will go through and set bits for the given range.  If any states exist
1081  * already in this range they are set with the given bit and cleared of the
1082  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084  * boundary bits like LOCK.
1085  */
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 		       unsigned bits, unsigned clear_bits,
1088 		       struct extent_state **cached_state, gfp_t mask)
1089 {
1090 	struct extent_state *state;
1091 	struct extent_state *prealloc = NULL;
1092 	struct rb_node *node;
1093 	struct rb_node **p;
1094 	struct rb_node *parent;
1095 	int err = 0;
1096 	u64 last_start;
1097 	u64 last_end;
1098 	bool first_iteration = true;
1099 
1100 	btrfs_debug_check_extent_io_range(tree, start, end);
1101 
1102 again:
1103 	if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 		/*
1105 		 * Best effort, don't worry if extent state allocation fails
1106 		 * here for the first iteration. We might have a cached state
1107 		 * that matches exactly the target range, in which case no
1108 		 * extent state allocations are needed. We'll only know this
1109 		 * after locking the tree.
1110 		 */
1111 		prealloc = alloc_extent_state(mask);
1112 		if (!prealloc && !first_iteration)
1113 			return -ENOMEM;
1114 	}
1115 
1116 	spin_lock(&tree->lock);
1117 	if (cached_state && *cached_state) {
1118 		state = *cached_state;
1119 		if (state->start <= start && state->end > start &&
1120 		    extent_state_in_tree(state)) {
1121 			node = &state->rb_node;
1122 			goto hit_next;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * this search will find all the extents that end after
1128 	 * our range starts.
1129 	 */
1130 	node = tree_search_for_insert(tree, start, &p, &parent);
1131 	if (!node) {
1132 		prealloc = alloc_extent_state_atomic(prealloc);
1133 		if (!prealloc) {
1134 			err = -ENOMEM;
1135 			goto out;
1136 		}
1137 		err = insert_state(tree, prealloc, start, end,
1138 				   &p, &parent, &bits, NULL);
1139 		if (err)
1140 			extent_io_tree_panic(tree, err);
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		goto out;
1144 	}
1145 	state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 	last_start = state->start;
1148 	last_end = state->end;
1149 
1150 	/*
1151 	 * | ---- desired range ---- |
1152 	 * | state |
1153 	 *
1154 	 * Just lock what we found and keep going
1155 	 */
1156 	if (state->start == start && state->end <= end) {
1157 		set_state_bits(tree, state, &bits, NULL);
1158 		cache_state(state, cached_state);
1159 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 		if (last_end == (u64)-1)
1161 			goto out;
1162 		start = last_end + 1;
1163 		if (start < end && state && state->start == start &&
1164 		    !need_resched())
1165 			goto hit_next;
1166 		goto search_again;
1167 	}
1168 
1169 	/*
1170 	 *     | ---- desired range ---- |
1171 	 * | state |
1172 	 *   or
1173 	 * | ------------- state -------------- |
1174 	 *
1175 	 * We need to split the extent we found, and may flip bits on
1176 	 * second half.
1177 	 *
1178 	 * If the extent we found extends past our
1179 	 * range, we just split and search again.  It'll get split
1180 	 * again the next time though.
1181 	 *
1182 	 * If the extent we found is inside our range, we set the
1183 	 * desired bit on it.
1184 	 */
1185 	if (state->start < start) {
1186 		prealloc = alloc_extent_state_atomic(prealloc);
1187 		if (!prealloc) {
1188 			err = -ENOMEM;
1189 			goto out;
1190 		}
1191 		err = split_state(tree, state, prealloc, start);
1192 		if (err)
1193 			extent_io_tree_panic(tree, err);
1194 		prealloc = NULL;
1195 		if (err)
1196 			goto out;
1197 		if (state->end <= end) {
1198 			set_state_bits(tree, state, &bits, NULL);
1199 			cache_state(state, cached_state);
1200 			state = clear_state_bit(tree, state, &clear_bits, 0,
1201 						NULL);
1202 			if (last_end == (u64)-1)
1203 				goto out;
1204 			start = last_end + 1;
1205 			if (start < end && state && state->start == start &&
1206 			    !need_resched())
1207 				goto hit_next;
1208 		}
1209 		goto search_again;
1210 	}
1211 	/*
1212 	 * | ---- desired range ---- |
1213 	 *     | state | or               | state |
1214 	 *
1215 	 * There's a hole, we need to insert something in it and
1216 	 * ignore the extent we found.
1217 	 */
1218 	if (state->start > start) {
1219 		u64 this_end;
1220 		if (end < last_start)
1221 			this_end = end;
1222 		else
1223 			this_end = last_start - 1;
1224 
1225 		prealloc = alloc_extent_state_atomic(prealloc);
1226 		if (!prealloc) {
1227 			err = -ENOMEM;
1228 			goto out;
1229 		}
1230 
1231 		/*
1232 		 * Avoid to free 'prealloc' if it can be merged with
1233 		 * the later extent.
1234 		 */
1235 		err = insert_state(tree, prealloc, start, this_end,
1236 				   NULL, NULL, &bits, NULL);
1237 		if (err)
1238 			extent_io_tree_panic(tree, err);
1239 		cache_state(prealloc, cached_state);
1240 		prealloc = NULL;
1241 		start = this_end + 1;
1242 		goto search_again;
1243 	}
1244 	/*
1245 	 * | ---- desired range ---- |
1246 	 *                        | state |
1247 	 * We need to split the extent, and set the bit
1248 	 * on the first half
1249 	 */
1250 	if (state->start <= end && state->end > end) {
1251 		prealloc = alloc_extent_state_atomic(prealloc);
1252 		if (!prealloc) {
1253 			err = -ENOMEM;
1254 			goto out;
1255 		}
1256 
1257 		err = split_state(tree, state, prealloc, end + 1);
1258 		if (err)
1259 			extent_io_tree_panic(tree, err);
1260 
1261 		set_state_bits(tree, prealloc, &bits, NULL);
1262 		cache_state(prealloc, cached_state);
1263 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 		prealloc = NULL;
1265 		goto out;
1266 	}
1267 
1268 	goto search_again;
1269 
1270 out:
1271 	spin_unlock(&tree->lock);
1272 	if (prealloc)
1273 		free_extent_state(prealloc);
1274 
1275 	return err;
1276 
1277 search_again:
1278 	if (start > end)
1279 		goto out;
1280 	spin_unlock(&tree->lock);
1281 	if (gfpflags_allow_blocking(mask))
1282 		cond_resched();
1283 	first_iteration = false;
1284 	goto again;
1285 }
1286 
1287 /* wrappers around set/clear extent bit */
1288 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289 			   unsigned bits, gfp_t mask,
1290 			   struct extent_changeset *changeset)
1291 {
1292 	/*
1293 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 	 * either fail with -EEXIST or changeset will record the whole
1296 	 * range.
1297 	 */
1298 	BUG_ON(bits & EXTENT_LOCKED);
1299 
1300 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301 				changeset);
1302 }
1303 
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 		     unsigned bits, int wake, int delete,
1306 		     struct extent_state **cached, gfp_t mask)
1307 {
1308 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 				  cached, mask, NULL);
1310 }
1311 
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 			     unsigned bits, gfp_t mask,
1314 			     struct extent_changeset *changeset)
1315 {
1316 	/*
1317 	 * Don't support EXTENT_LOCKED case, same reason as
1318 	 * set_record_extent_bits().
1319 	 */
1320 	BUG_ON(bits & EXTENT_LOCKED);
1321 
1322 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323 				  changeset);
1324 }
1325 
1326 /*
1327  * either insert or lock state struct between start and end use mask to tell
1328  * us if waiting is desired.
1329  */
1330 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331 		     struct extent_state **cached_state)
1332 {
1333 	int err;
1334 	u64 failed_start;
1335 
1336 	while (1) {
1337 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1338 				       EXTENT_LOCKED, &failed_start,
1339 				       cached_state, GFP_NOFS, NULL);
1340 		if (err == -EEXIST) {
1341 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 			start = failed_start;
1343 		} else
1344 			break;
1345 		WARN_ON(start > end);
1346 	}
1347 	return err;
1348 }
1349 
1350 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1351 {
1352 	int err;
1353 	u64 failed_start;
1354 
1355 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1356 			       &failed_start, NULL, GFP_NOFS, NULL);
1357 	if (err == -EEXIST) {
1358 		if (failed_start > start)
1359 			clear_extent_bit(tree, start, failed_start - 1,
1360 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1361 		return 0;
1362 	}
1363 	return 1;
1364 }
1365 
1366 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1367 {
1368 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1369 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1370 	struct page *page;
1371 
1372 	while (index <= end_index) {
1373 		page = find_get_page(inode->i_mapping, index);
1374 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1375 		clear_page_dirty_for_io(page);
1376 		page_cache_release(page);
1377 		index++;
1378 	}
1379 }
1380 
1381 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1382 {
1383 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1384 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1385 	struct page *page;
1386 
1387 	while (index <= end_index) {
1388 		page = find_get_page(inode->i_mapping, index);
1389 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1390 		__set_page_dirty_nobuffers(page);
1391 		account_page_redirty(page);
1392 		page_cache_release(page);
1393 		index++;
1394 	}
1395 }
1396 
1397 /*
1398  * helper function to set both pages and extents in the tree writeback
1399  */
1400 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1401 {
1402 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1403 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1404 	struct page *page;
1405 
1406 	while (index <= end_index) {
1407 		page = find_get_page(tree->mapping, index);
1408 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1409 		set_page_writeback(page);
1410 		page_cache_release(page);
1411 		index++;
1412 	}
1413 }
1414 
1415 /* find the first state struct with 'bits' set after 'start', and
1416  * return it.  tree->lock must be held.  NULL will returned if
1417  * nothing was found after 'start'
1418  */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 			    u64 start, unsigned bits)
1422 {
1423 	struct rb_node *node;
1424 	struct extent_state *state;
1425 
1426 	/*
1427 	 * this search will find all the extents that end after
1428 	 * our range starts.
1429 	 */
1430 	node = tree_search(tree, start);
1431 	if (!node)
1432 		goto out;
1433 
1434 	while (1) {
1435 		state = rb_entry(node, struct extent_state, rb_node);
1436 		if (state->end >= start && (state->state & bits))
1437 			return state;
1438 
1439 		node = rb_next(node);
1440 		if (!node)
1441 			break;
1442 	}
1443 out:
1444 	return NULL;
1445 }
1446 
1447 /*
1448  * find the first offset in the io tree with 'bits' set. zero is
1449  * returned if we find something, and *start_ret and *end_ret are
1450  * set to reflect the state struct that was found.
1451  *
1452  * If nothing was found, 1 is returned. If found something, return 0.
1453  */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1456 			  struct extent_state **cached_state)
1457 {
1458 	struct extent_state *state;
1459 	struct rb_node *n;
1460 	int ret = 1;
1461 
1462 	spin_lock(&tree->lock);
1463 	if (cached_state && *cached_state) {
1464 		state = *cached_state;
1465 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 			n = rb_next(&state->rb_node);
1467 			while (n) {
1468 				state = rb_entry(n, struct extent_state,
1469 						 rb_node);
1470 				if (state->state & bits)
1471 					goto got_it;
1472 				n = rb_next(n);
1473 			}
1474 			free_extent_state(*cached_state);
1475 			*cached_state = NULL;
1476 			goto out;
1477 		}
1478 		free_extent_state(*cached_state);
1479 		*cached_state = NULL;
1480 	}
1481 
1482 	state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 	if (state) {
1485 		cache_state_if_flags(state, cached_state, 0);
1486 		*start_ret = state->start;
1487 		*end_ret = state->end;
1488 		ret = 0;
1489 	}
1490 out:
1491 	spin_unlock(&tree->lock);
1492 	return ret;
1493 }
1494 
1495 /*
1496  * find a contiguous range of bytes in the file marked as delalloc, not
1497  * more than 'max_bytes'.  start and end are used to return the range,
1498  *
1499  * 1 is returned if we find something, 0 if nothing was in the tree
1500  */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 					u64 *start, u64 *end, u64 max_bytes,
1503 					struct extent_state **cached_state)
1504 {
1505 	struct rb_node *node;
1506 	struct extent_state *state;
1507 	u64 cur_start = *start;
1508 	u64 found = 0;
1509 	u64 total_bytes = 0;
1510 
1511 	spin_lock(&tree->lock);
1512 
1513 	/*
1514 	 * this search will find all the extents that end after
1515 	 * our range starts.
1516 	 */
1517 	node = tree_search(tree, cur_start);
1518 	if (!node) {
1519 		if (!found)
1520 			*end = (u64)-1;
1521 		goto out;
1522 	}
1523 
1524 	while (1) {
1525 		state = rb_entry(node, struct extent_state, rb_node);
1526 		if (found && (state->start != cur_start ||
1527 			      (state->state & EXTENT_BOUNDARY))) {
1528 			goto out;
1529 		}
1530 		if (!(state->state & EXTENT_DELALLOC)) {
1531 			if (!found)
1532 				*end = state->end;
1533 			goto out;
1534 		}
1535 		if (!found) {
1536 			*start = state->start;
1537 			*cached_state = state;
1538 			atomic_inc(&state->refs);
1539 		}
1540 		found++;
1541 		*end = state->end;
1542 		cur_start = state->end + 1;
1543 		node = rb_next(node);
1544 		total_bytes += state->end - state->start + 1;
1545 		if (total_bytes >= max_bytes)
1546 			break;
1547 		if (!node)
1548 			break;
1549 	}
1550 out:
1551 	spin_unlock(&tree->lock);
1552 	return found;
1553 }
1554 
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 					   struct page *locked_page,
1557 					   u64 start, u64 end)
1558 {
1559 	int ret;
1560 	struct page *pages[16];
1561 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 	unsigned long nr_pages = end_index - index + 1;
1564 	int i;
1565 
1566 	if (index == locked_page->index && end_index == index)
1567 		return;
1568 
1569 	while (nr_pages > 0) {
1570 		ret = find_get_pages_contig(inode->i_mapping, index,
1571 				     min_t(unsigned long, nr_pages,
1572 				     ARRAY_SIZE(pages)), pages);
1573 		for (i = 0; i < ret; i++) {
1574 			if (pages[i] != locked_page)
1575 				unlock_page(pages[i]);
1576 			page_cache_release(pages[i]);
1577 		}
1578 		nr_pages -= ret;
1579 		index += ret;
1580 		cond_resched();
1581 	}
1582 }
1583 
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 					struct page *locked_page,
1586 					u64 delalloc_start,
1587 					u64 delalloc_end)
1588 {
1589 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 	unsigned long start_index = index;
1591 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 	unsigned long pages_locked = 0;
1593 	struct page *pages[16];
1594 	unsigned long nrpages;
1595 	int ret;
1596 	int i;
1597 
1598 	/* the caller is responsible for locking the start index */
1599 	if (index == locked_page->index && index == end_index)
1600 		return 0;
1601 
1602 	/* skip the page at the start index */
1603 	nrpages = end_index - index + 1;
1604 	while (nrpages > 0) {
1605 		ret = find_get_pages_contig(inode->i_mapping, index,
1606 				     min_t(unsigned long,
1607 				     nrpages, ARRAY_SIZE(pages)), pages);
1608 		if (ret == 0) {
1609 			ret = -EAGAIN;
1610 			goto done;
1611 		}
1612 		/* now we have an array of pages, lock them all */
1613 		for (i = 0; i < ret; i++) {
1614 			/*
1615 			 * the caller is taking responsibility for
1616 			 * locked_page
1617 			 */
1618 			if (pages[i] != locked_page) {
1619 				lock_page(pages[i]);
1620 				if (!PageDirty(pages[i]) ||
1621 				    pages[i]->mapping != inode->i_mapping) {
1622 					ret = -EAGAIN;
1623 					unlock_page(pages[i]);
1624 					page_cache_release(pages[i]);
1625 					goto done;
1626 				}
1627 			}
1628 			page_cache_release(pages[i]);
1629 			pages_locked++;
1630 		}
1631 		nrpages -= ret;
1632 		index += ret;
1633 		cond_resched();
1634 	}
1635 	ret = 0;
1636 done:
1637 	if (ret && pages_locked) {
1638 		__unlock_for_delalloc(inode, locked_page,
1639 			      delalloc_start,
1640 			      ((u64)(start_index + pages_locked - 1)) <<
1641 			      PAGE_CACHE_SHIFT);
1642 	}
1643 	return ret;
1644 }
1645 
1646 /*
1647  * find a contiguous range of bytes in the file marked as delalloc, not
1648  * more than 'max_bytes'.  start and end are used to return the range,
1649  *
1650  * 1 is returned if we find something, 0 if nothing was in the tree
1651  */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 				    struct extent_io_tree *tree,
1654 				    struct page *locked_page, u64 *start,
1655 				    u64 *end, u64 max_bytes)
1656 {
1657 	u64 delalloc_start;
1658 	u64 delalloc_end;
1659 	u64 found;
1660 	struct extent_state *cached_state = NULL;
1661 	int ret;
1662 	int loops = 0;
1663 
1664 again:
1665 	/* step one, find a bunch of delalloc bytes starting at start */
1666 	delalloc_start = *start;
1667 	delalloc_end = 0;
1668 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 				    max_bytes, &cached_state);
1670 	if (!found || delalloc_end <= *start) {
1671 		*start = delalloc_start;
1672 		*end = delalloc_end;
1673 		free_extent_state(cached_state);
1674 		return 0;
1675 	}
1676 
1677 	/*
1678 	 * start comes from the offset of locked_page.  We have to lock
1679 	 * pages in order, so we can't process delalloc bytes before
1680 	 * locked_page
1681 	 */
1682 	if (delalloc_start < *start)
1683 		delalloc_start = *start;
1684 
1685 	/*
1686 	 * make sure to limit the number of pages we try to lock down
1687 	 */
1688 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 		delalloc_end = delalloc_start + max_bytes - 1;
1690 
1691 	/* step two, lock all the pages after the page that has start */
1692 	ret = lock_delalloc_pages(inode, locked_page,
1693 				  delalloc_start, delalloc_end);
1694 	if (ret == -EAGAIN) {
1695 		/* some of the pages are gone, lets avoid looping by
1696 		 * shortening the size of the delalloc range we're searching
1697 		 */
1698 		free_extent_state(cached_state);
1699 		cached_state = NULL;
1700 		if (!loops) {
1701 			max_bytes = PAGE_CACHE_SIZE;
1702 			loops = 1;
1703 			goto again;
1704 		} else {
1705 			found = 0;
1706 			goto out_failed;
1707 		}
1708 	}
1709 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710 
1711 	/* step three, lock the state bits for the whole range */
1712 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1713 
1714 	/* then test to make sure it is all still delalloc */
1715 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 			     EXTENT_DELALLOC, 1, cached_state);
1717 	if (!ret) {
1718 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 				     &cached_state, GFP_NOFS);
1720 		__unlock_for_delalloc(inode, locked_page,
1721 			      delalloc_start, delalloc_end);
1722 		cond_resched();
1723 		goto again;
1724 	}
1725 	free_extent_state(cached_state);
1726 	*start = delalloc_start;
1727 	*end = delalloc_end;
1728 out_failed:
1729 	return found;
1730 }
1731 
1732 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 				 struct page *locked_page,
1734 				 unsigned clear_bits,
1735 				 unsigned long page_ops)
1736 {
1737 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 	int ret;
1739 	struct page *pages[16];
1740 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 	unsigned long nr_pages = end_index - index + 1;
1743 	int i;
1744 
1745 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 	if (page_ops == 0)
1747 		return;
1748 
1749 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1750 		mapping_set_error(inode->i_mapping, -EIO);
1751 
1752 	while (nr_pages > 0) {
1753 		ret = find_get_pages_contig(inode->i_mapping, index,
1754 				     min_t(unsigned long,
1755 				     nr_pages, ARRAY_SIZE(pages)), pages);
1756 		for (i = 0; i < ret; i++) {
1757 
1758 			if (page_ops & PAGE_SET_PRIVATE2)
1759 				SetPagePrivate2(pages[i]);
1760 
1761 			if (pages[i] == locked_page) {
1762 				page_cache_release(pages[i]);
1763 				continue;
1764 			}
1765 			if (page_ops & PAGE_CLEAR_DIRTY)
1766 				clear_page_dirty_for_io(pages[i]);
1767 			if (page_ops & PAGE_SET_WRITEBACK)
1768 				set_page_writeback(pages[i]);
1769 			if (page_ops & PAGE_SET_ERROR)
1770 				SetPageError(pages[i]);
1771 			if (page_ops & PAGE_END_WRITEBACK)
1772 				end_page_writeback(pages[i]);
1773 			if (page_ops & PAGE_UNLOCK)
1774 				unlock_page(pages[i]);
1775 			page_cache_release(pages[i]);
1776 		}
1777 		nr_pages -= ret;
1778 		index += ret;
1779 		cond_resched();
1780 	}
1781 }
1782 
1783 /*
1784  * count the number of bytes in the tree that have a given bit(s)
1785  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1786  * cached.  The total number found is returned.
1787  */
1788 u64 count_range_bits(struct extent_io_tree *tree,
1789 		     u64 *start, u64 search_end, u64 max_bytes,
1790 		     unsigned bits, int contig)
1791 {
1792 	struct rb_node *node;
1793 	struct extent_state *state;
1794 	u64 cur_start = *start;
1795 	u64 total_bytes = 0;
1796 	u64 last = 0;
1797 	int found = 0;
1798 
1799 	if (WARN_ON(search_end <= cur_start))
1800 		return 0;
1801 
1802 	spin_lock(&tree->lock);
1803 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1804 		total_bytes = tree->dirty_bytes;
1805 		goto out;
1806 	}
1807 	/*
1808 	 * this search will find all the extents that end after
1809 	 * our range starts.
1810 	 */
1811 	node = tree_search(tree, cur_start);
1812 	if (!node)
1813 		goto out;
1814 
1815 	while (1) {
1816 		state = rb_entry(node, struct extent_state, rb_node);
1817 		if (state->start > search_end)
1818 			break;
1819 		if (contig && found && state->start > last + 1)
1820 			break;
1821 		if (state->end >= cur_start && (state->state & bits) == bits) {
1822 			total_bytes += min(search_end, state->end) + 1 -
1823 				       max(cur_start, state->start);
1824 			if (total_bytes >= max_bytes)
1825 				break;
1826 			if (!found) {
1827 				*start = max(cur_start, state->start);
1828 				found = 1;
1829 			}
1830 			last = state->end;
1831 		} else if (contig && found) {
1832 			break;
1833 		}
1834 		node = rb_next(node);
1835 		if (!node)
1836 			break;
1837 	}
1838 out:
1839 	spin_unlock(&tree->lock);
1840 	return total_bytes;
1841 }
1842 
1843 /*
1844  * set the private field for a given byte offset in the tree.  If there isn't
1845  * an extent_state there already, this does nothing.
1846  */
1847 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1848 {
1849 	struct rb_node *node;
1850 	struct extent_state *state;
1851 	int ret = 0;
1852 
1853 	spin_lock(&tree->lock);
1854 	/*
1855 	 * this search will find all the extents that end after
1856 	 * our range starts.
1857 	 */
1858 	node = tree_search(tree, start);
1859 	if (!node) {
1860 		ret = -ENOENT;
1861 		goto out;
1862 	}
1863 	state = rb_entry(node, struct extent_state, rb_node);
1864 	if (state->start != start) {
1865 		ret = -ENOENT;
1866 		goto out;
1867 	}
1868 	state->private = private;
1869 out:
1870 	spin_unlock(&tree->lock);
1871 	return ret;
1872 }
1873 
1874 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1875 {
1876 	struct rb_node *node;
1877 	struct extent_state *state;
1878 	int ret = 0;
1879 
1880 	spin_lock(&tree->lock);
1881 	/*
1882 	 * this search will find all the extents that end after
1883 	 * our range starts.
1884 	 */
1885 	node = tree_search(tree, start);
1886 	if (!node) {
1887 		ret = -ENOENT;
1888 		goto out;
1889 	}
1890 	state = rb_entry(node, struct extent_state, rb_node);
1891 	if (state->start != start) {
1892 		ret = -ENOENT;
1893 		goto out;
1894 	}
1895 	*private = state->private;
1896 out:
1897 	spin_unlock(&tree->lock);
1898 	return ret;
1899 }
1900 
1901 /*
1902  * searches a range in the state tree for a given mask.
1903  * If 'filled' == 1, this returns 1 only if every extent in the tree
1904  * has the bits set.  Otherwise, 1 is returned if any bit in the
1905  * range is found set.
1906  */
1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908 		   unsigned bits, int filled, struct extent_state *cached)
1909 {
1910 	struct extent_state *state = NULL;
1911 	struct rb_node *node;
1912 	int bitset = 0;
1913 
1914 	spin_lock(&tree->lock);
1915 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916 	    cached->end > start)
1917 		node = &cached->rb_node;
1918 	else
1919 		node = tree_search(tree, start);
1920 	while (node && start <= end) {
1921 		state = rb_entry(node, struct extent_state, rb_node);
1922 
1923 		if (filled && state->start > start) {
1924 			bitset = 0;
1925 			break;
1926 		}
1927 
1928 		if (state->start > end)
1929 			break;
1930 
1931 		if (state->state & bits) {
1932 			bitset = 1;
1933 			if (!filled)
1934 				break;
1935 		} else if (filled) {
1936 			bitset = 0;
1937 			break;
1938 		}
1939 
1940 		if (state->end == (u64)-1)
1941 			break;
1942 
1943 		start = state->end + 1;
1944 		if (start > end)
1945 			break;
1946 		node = rb_next(node);
1947 		if (!node) {
1948 			if (filled)
1949 				bitset = 0;
1950 			break;
1951 		}
1952 	}
1953 	spin_unlock(&tree->lock);
1954 	return bitset;
1955 }
1956 
1957 /*
1958  * helper function to set a given page up to date if all the
1959  * extents in the tree for that page are up to date
1960  */
1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962 {
1963 	u64 start = page_offset(page);
1964 	u64 end = start + PAGE_CACHE_SIZE - 1;
1965 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966 		SetPageUptodate(page);
1967 }
1968 
1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970 {
1971 	int ret;
1972 	int err = 0;
1973 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974 
1975 	set_state_private(failure_tree, rec->start, 0);
1976 	ret = clear_extent_bits(failure_tree, rec->start,
1977 				rec->start + rec->len - 1,
1978 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 	if (ret)
1980 		err = ret;
1981 
1982 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 				rec->start + rec->len - 1,
1984 				EXTENT_DAMAGED, GFP_NOFS);
1985 	if (ret && !err)
1986 		err = ret;
1987 
1988 	kfree(rec);
1989 	return err;
1990 }
1991 
1992 /*
1993  * this bypasses the standard btrfs submit functions deliberately, as
1994  * the standard behavior is to write all copies in a raid setup. here we only
1995  * want to write the one bad copy. so we do the mapping for ourselves and issue
1996  * submit_bio directly.
1997  * to avoid any synchronization issues, wait for the data after writing, which
1998  * actually prevents the read that triggered the error from finishing.
1999  * currently, there can be no more than two copies of every data bit. thus,
2000  * exactly one rewrite is required.
2001  */
2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 		      struct page *page, unsigned int pg_offset, int mirror_num)
2004 {
2005 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006 	struct bio *bio;
2007 	struct btrfs_device *dev;
2008 	u64 map_length = 0;
2009 	u64 sector;
2010 	struct btrfs_bio *bbio = NULL;
2011 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012 	int ret;
2013 
2014 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015 	BUG_ON(!mirror_num);
2016 
2017 	/* we can't repair anything in raid56 yet */
2018 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 		return 0;
2020 
2021 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022 	if (!bio)
2023 		return -EIO;
2024 	bio->bi_iter.bi_size = 0;
2025 	map_length = length;
2026 
2027 	ret = btrfs_map_block(fs_info, WRITE, logical,
2028 			      &map_length, &bbio, mirror_num);
2029 	if (ret) {
2030 		bio_put(bio);
2031 		return -EIO;
2032 	}
2033 	BUG_ON(mirror_num != bbio->mirror_num);
2034 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2035 	bio->bi_iter.bi_sector = sector;
2036 	dev = bbio->stripes[mirror_num-1].dev;
2037 	btrfs_put_bbio(bbio);
2038 	if (!dev || !dev->bdev || !dev->writeable) {
2039 		bio_put(bio);
2040 		return -EIO;
2041 	}
2042 	bio->bi_bdev = dev->bdev;
2043 	bio_add_page(bio, page, length, pg_offset);
2044 
2045 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046 		/* try to remap that extent elsewhere? */
2047 		bio_put(bio);
2048 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 		return -EIO;
2050 	}
2051 
2052 	btrfs_info_rl_in_rcu(fs_info,
2053 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 				  btrfs_ino(inode), start,
2055 				  rcu_str_deref(dev->name), sector);
2056 	bio_put(bio);
2057 	return 0;
2058 }
2059 
2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 			 int mirror_num)
2062 {
2063 	u64 start = eb->start;
2064 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065 	int ret = 0;
2066 
2067 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 		return -EROFS;
2069 
2070 	for (i = 0; i < num_pages; i++) {
2071 		struct page *p = eb->pages[i];
2072 
2073 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 					PAGE_CACHE_SIZE, start, p,
2075 					start - page_offset(p), mirror_num);
2076 		if (ret)
2077 			break;
2078 		start += PAGE_CACHE_SIZE;
2079 	}
2080 
2081 	return ret;
2082 }
2083 
2084 /*
2085  * each time an IO finishes, we do a fast check in the IO failure tree
2086  * to see if we need to process or clean up an io_failure_record
2087  */
2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 		     unsigned int pg_offset)
2090 {
2091 	u64 private;
2092 	u64 private_failure;
2093 	struct io_failure_record *failrec;
2094 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 	struct extent_state *state;
2096 	int num_copies;
2097 	int ret;
2098 
2099 	private = 0;
2100 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 				(u64)-1, 1, EXTENT_DIRTY, 0);
2102 	if (!ret)
2103 		return 0;
2104 
2105 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2106 				&private_failure);
2107 	if (ret)
2108 		return 0;
2109 
2110 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2111 	BUG_ON(!failrec->this_mirror);
2112 
2113 	if (failrec->in_validation) {
2114 		/* there was no real error, just free the record */
2115 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2116 			 failrec->start);
2117 		goto out;
2118 	}
2119 	if (fs_info->sb->s_flags & MS_RDONLY)
2120 		goto out;
2121 
2122 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2123 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2124 					    failrec->start,
2125 					    EXTENT_LOCKED);
2126 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2127 
2128 	if (state && state->start <= failrec->start &&
2129 	    state->end >= failrec->start + failrec->len - 1) {
2130 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2131 					      failrec->len);
2132 		if (num_copies > 1)  {
2133 			repair_io_failure(inode, start, failrec->len,
2134 					  failrec->logical, page,
2135 					  pg_offset, failrec->failed_mirror);
2136 		}
2137 	}
2138 
2139 out:
2140 	free_io_failure(inode, failrec);
2141 
2142 	return 0;
2143 }
2144 
2145 /*
2146  * Can be called when
2147  * - hold extent lock
2148  * - under ordered extent
2149  * - the inode is freeing
2150  */
2151 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2152 {
2153 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2154 	struct io_failure_record *failrec;
2155 	struct extent_state *state, *next;
2156 
2157 	if (RB_EMPTY_ROOT(&failure_tree->state))
2158 		return;
2159 
2160 	spin_lock(&failure_tree->lock);
2161 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2162 	while (state) {
2163 		if (state->start > end)
2164 			break;
2165 
2166 		ASSERT(state->end <= end);
2167 
2168 		next = next_state(state);
2169 
2170 		failrec = (struct io_failure_record *)(unsigned long)state->private;
2171 		free_extent_state(state);
2172 		kfree(failrec);
2173 
2174 		state = next;
2175 	}
2176 	spin_unlock(&failure_tree->lock);
2177 }
2178 
2179 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2180 				struct io_failure_record **failrec_ret)
2181 {
2182 	struct io_failure_record *failrec;
2183 	u64 private;
2184 	struct extent_map *em;
2185 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2186 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2187 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2188 	int ret;
2189 	u64 logical;
2190 
2191 	ret = get_state_private(failure_tree, start, &private);
2192 	if (ret) {
2193 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 		if (!failrec)
2195 			return -ENOMEM;
2196 
2197 		failrec->start = start;
2198 		failrec->len = end - start + 1;
2199 		failrec->this_mirror = 0;
2200 		failrec->bio_flags = 0;
2201 		failrec->in_validation = 0;
2202 
2203 		read_lock(&em_tree->lock);
2204 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2205 		if (!em) {
2206 			read_unlock(&em_tree->lock);
2207 			kfree(failrec);
2208 			return -EIO;
2209 		}
2210 
2211 		if (em->start > start || em->start + em->len <= start) {
2212 			free_extent_map(em);
2213 			em = NULL;
2214 		}
2215 		read_unlock(&em_tree->lock);
2216 		if (!em) {
2217 			kfree(failrec);
2218 			return -EIO;
2219 		}
2220 
2221 		logical = start - em->start;
2222 		logical = em->block_start + logical;
2223 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2224 			logical = em->block_start;
2225 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2226 			extent_set_compress_type(&failrec->bio_flags,
2227 						 em->compress_type);
2228 		}
2229 
2230 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2231 			 logical, start, failrec->len);
2232 
2233 		failrec->logical = logical;
2234 		free_extent_map(em);
2235 
2236 		/* set the bits in the private failure tree */
2237 		ret = set_extent_bits(failure_tree, start, end,
2238 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239 		if (ret >= 0)
2240 			ret = set_state_private(failure_tree, start,
2241 						(u64)(unsigned long)failrec);
2242 		/* set the bits in the inode's tree */
2243 		if (ret >= 0)
2244 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245 						GFP_NOFS);
2246 		if (ret < 0) {
2247 			kfree(failrec);
2248 			return ret;
2249 		}
2250 	} else {
2251 		failrec = (struct io_failure_record *)(unsigned long)private;
2252 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2253 			 failrec->logical, failrec->start, failrec->len,
2254 			 failrec->in_validation);
2255 		/*
2256 		 * when data can be on disk more than twice, add to failrec here
2257 		 * (e.g. with a list for failed_mirror) to make
2258 		 * clean_io_failure() clean all those errors at once.
2259 		 */
2260 	}
2261 
2262 	*failrec_ret = failrec;
2263 
2264 	return 0;
2265 }
2266 
2267 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2268 			   struct io_failure_record *failrec, int failed_mirror)
2269 {
2270 	int num_copies;
2271 
2272 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2273 				      failrec->logical, failrec->len);
2274 	if (num_copies == 1) {
2275 		/*
2276 		 * we only have a single copy of the data, so don't bother with
2277 		 * all the retry and error correction code that follows. no
2278 		 * matter what the error is, it is very likely to persist.
2279 		 */
2280 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2281 			 num_copies, failrec->this_mirror, failed_mirror);
2282 		return 0;
2283 	}
2284 
2285 	/*
2286 	 * there are two premises:
2287 	 *	a) deliver good data to the caller
2288 	 *	b) correct the bad sectors on disk
2289 	 */
2290 	if (failed_bio->bi_vcnt > 1) {
2291 		/*
2292 		 * to fulfill b), we need to know the exact failing sectors, as
2293 		 * we don't want to rewrite any more than the failed ones. thus,
2294 		 * we need separate read requests for the failed bio
2295 		 *
2296 		 * if the following BUG_ON triggers, our validation request got
2297 		 * merged. we need separate requests for our algorithm to work.
2298 		 */
2299 		BUG_ON(failrec->in_validation);
2300 		failrec->in_validation = 1;
2301 		failrec->this_mirror = failed_mirror;
2302 	} else {
2303 		/*
2304 		 * we're ready to fulfill a) and b) alongside. get a good copy
2305 		 * of the failed sector and if we succeed, we have setup
2306 		 * everything for repair_io_failure to do the rest for us.
2307 		 */
2308 		if (failrec->in_validation) {
2309 			BUG_ON(failrec->this_mirror != failed_mirror);
2310 			failrec->in_validation = 0;
2311 			failrec->this_mirror = 0;
2312 		}
2313 		failrec->failed_mirror = failed_mirror;
2314 		failrec->this_mirror++;
2315 		if (failrec->this_mirror == failed_mirror)
2316 			failrec->this_mirror++;
2317 	}
2318 
2319 	if (failrec->this_mirror > num_copies) {
2320 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2321 			 num_copies, failrec->this_mirror, failed_mirror);
2322 		return 0;
2323 	}
2324 
2325 	return 1;
2326 }
2327 
2328 
2329 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 				    struct io_failure_record *failrec,
2331 				    struct page *page, int pg_offset, int icsum,
2332 				    bio_end_io_t *endio_func, void *data)
2333 {
2334 	struct bio *bio;
2335 	struct btrfs_io_bio *btrfs_failed_bio;
2336 	struct btrfs_io_bio *btrfs_bio;
2337 
2338 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2339 	if (!bio)
2340 		return NULL;
2341 
2342 	bio->bi_end_io = endio_func;
2343 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2344 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2345 	bio->bi_iter.bi_size = 0;
2346 	bio->bi_private = data;
2347 
2348 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2349 	if (btrfs_failed_bio->csum) {
2350 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2351 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352 
2353 		btrfs_bio = btrfs_io_bio(bio);
2354 		btrfs_bio->csum = btrfs_bio->csum_inline;
2355 		icsum *= csum_size;
2356 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2357 		       csum_size);
2358 	}
2359 
2360 	bio_add_page(bio, page, failrec->len, pg_offset);
2361 
2362 	return bio;
2363 }
2364 
2365 /*
2366  * this is a generic handler for readpage errors (default
2367  * readpage_io_failed_hook). if other copies exist, read those and write back
2368  * good data to the failed position. does not investigate in remapping the
2369  * failed extent elsewhere, hoping the device will be smart enough to do this as
2370  * needed
2371  */
2372 
2373 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2374 			      struct page *page, u64 start, u64 end,
2375 			      int failed_mirror)
2376 {
2377 	struct io_failure_record *failrec;
2378 	struct inode *inode = page->mapping->host;
2379 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2380 	struct bio *bio;
2381 	int read_mode;
2382 	int ret;
2383 
2384 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2385 
2386 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 	if (ret)
2388 		return ret;
2389 
2390 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2391 	if (!ret) {
2392 		free_io_failure(inode, failrec);
2393 		return -EIO;
2394 	}
2395 
2396 	if (failed_bio->bi_vcnt > 1)
2397 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2398 	else
2399 		read_mode = READ_SYNC;
2400 
2401 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2402 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2403 				      start - page_offset(page),
2404 				      (int)phy_offset, failed_bio->bi_end_io,
2405 				      NULL);
2406 	if (!bio) {
2407 		free_io_failure(inode, failrec);
2408 		return -EIO;
2409 	}
2410 
2411 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2412 		 read_mode, failrec->this_mirror, failrec->in_validation);
2413 
2414 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2415 					 failrec->this_mirror,
2416 					 failrec->bio_flags, 0);
2417 	if (ret) {
2418 		free_io_failure(inode, failrec);
2419 		bio_put(bio);
2420 	}
2421 
2422 	return ret;
2423 }
2424 
2425 /* lots and lots of room for performance fixes in the end_bio funcs */
2426 
2427 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2428 {
2429 	int uptodate = (err == 0);
2430 	struct extent_io_tree *tree;
2431 	int ret = 0;
2432 
2433 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2434 
2435 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2436 		ret = tree->ops->writepage_end_io_hook(page, start,
2437 					       end, NULL, uptodate);
2438 		if (ret)
2439 			uptodate = 0;
2440 	}
2441 
2442 	if (!uptodate) {
2443 		ClearPageUptodate(page);
2444 		SetPageError(page);
2445 		ret = ret < 0 ? ret : -EIO;
2446 		mapping_set_error(page->mapping, ret);
2447 	}
2448 }
2449 
2450 /*
2451  * after a writepage IO is done, we need to:
2452  * clear the uptodate bits on error
2453  * clear the writeback bits in the extent tree for this IO
2454  * end_page_writeback if the page has no more pending IO
2455  *
2456  * Scheduling is not allowed, so the extent state tree is expected
2457  * to have one and only one object corresponding to this IO.
2458  */
2459 static void end_bio_extent_writepage(struct bio *bio)
2460 {
2461 	struct bio_vec *bvec;
2462 	u64 start;
2463 	u64 end;
2464 	int i;
2465 
2466 	bio_for_each_segment_all(bvec, bio, i) {
2467 		struct page *page = bvec->bv_page;
2468 
2469 		/* We always issue full-page reads, but if some block
2470 		 * in a page fails to read, blk_update_request() will
2471 		 * advance bv_offset and adjust bv_len to compensate.
2472 		 * Print a warning for nonzero offsets, and an error
2473 		 * if they don't add up to a full page.  */
2474 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2475 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2476 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2477 				   "partial page write in btrfs with offset %u and length %u",
2478 					bvec->bv_offset, bvec->bv_len);
2479 			else
2480 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2481 				   "incomplete page write in btrfs with offset %u and "
2482 				   "length %u",
2483 					bvec->bv_offset, bvec->bv_len);
2484 		}
2485 
2486 		start = page_offset(page);
2487 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2488 
2489 		end_extent_writepage(page, bio->bi_error, start, end);
2490 		end_page_writeback(page);
2491 	}
2492 
2493 	bio_put(bio);
2494 }
2495 
2496 static void
2497 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2498 			      int uptodate)
2499 {
2500 	struct extent_state *cached = NULL;
2501 	u64 end = start + len - 1;
2502 
2503 	if (uptodate && tree->track_uptodate)
2504 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2505 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2506 }
2507 
2508 /*
2509  * after a readpage IO is done, we need to:
2510  * clear the uptodate bits on error
2511  * set the uptodate bits if things worked
2512  * set the page up to date if all extents in the tree are uptodate
2513  * clear the lock bit in the extent tree
2514  * unlock the page if there are no other extents locked for it
2515  *
2516  * Scheduling is not allowed, so the extent state tree is expected
2517  * to have one and only one object corresponding to this IO.
2518  */
2519 static void end_bio_extent_readpage(struct bio *bio)
2520 {
2521 	struct bio_vec *bvec;
2522 	int uptodate = !bio->bi_error;
2523 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2524 	struct extent_io_tree *tree;
2525 	u64 offset = 0;
2526 	u64 start;
2527 	u64 end;
2528 	u64 len;
2529 	u64 extent_start = 0;
2530 	u64 extent_len = 0;
2531 	int mirror;
2532 	int ret;
2533 	int i;
2534 
2535 	bio_for_each_segment_all(bvec, bio, i) {
2536 		struct page *page = bvec->bv_page;
2537 		struct inode *inode = page->mapping->host;
2538 
2539 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2540 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2541 			 bio->bi_error, io_bio->mirror_num);
2542 		tree = &BTRFS_I(inode)->io_tree;
2543 
2544 		/* We always issue full-page reads, but if some block
2545 		 * in a page fails to read, blk_update_request() will
2546 		 * advance bv_offset and adjust bv_len to compensate.
2547 		 * Print a warning for nonzero offsets, and an error
2548 		 * if they don't add up to a full page.  */
2549 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2550 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2551 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2552 				   "partial page read in btrfs with offset %u and length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 			else
2555 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2556 				   "incomplete page read in btrfs with offset %u and "
2557 				   "length %u",
2558 					bvec->bv_offset, bvec->bv_len);
2559 		}
2560 
2561 		start = page_offset(page);
2562 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2563 		len = bvec->bv_len;
2564 
2565 		mirror = io_bio->mirror_num;
2566 		if (likely(uptodate && tree->ops &&
2567 			   tree->ops->readpage_end_io_hook)) {
2568 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2569 							      page, start, end,
2570 							      mirror);
2571 			if (ret)
2572 				uptodate = 0;
2573 			else
2574 				clean_io_failure(inode, start, page, 0);
2575 		}
2576 
2577 		if (likely(uptodate))
2578 			goto readpage_ok;
2579 
2580 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2581 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2582 			if (!ret && !bio->bi_error)
2583 				uptodate = 1;
2584 		} else {
2585 			/*
2586 			 * The generic bio_readpage_error handles errors the
2587 			 * following way: If possible, new read requests are
2588 			 * created and submitted and will end up in
2589 			 * end_bio_extent_readpage as well (if we're lucky, not
2590 			 * in the !uptodate case). In that case it returns 0 and
2591 			 * we just go on with the next page in our bio. If it
2592 			 * can't handle the error it will return -EIO and we
2593 			 * remain responsible for that page.
2594 			 */
2595 			ret = bio_readpage_error(bio, offset, page, start, end,
2596 						 mirror);
2597 			if (ret == 0) {
2598 				uptodate = !bio->bi_error;
2599 				offset += len;
2600 				continue;
2601 			}
2602 		}
2603 readpage_ok:
2604 		if (likely(uptodate)) {
2605 			loff_t i_size = i_size_read(inode);
2606 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2607 			unsigned off;
2608 
2609 			/* Zero out the end if this page straddles i_size */
2610 			off = i_size & (PAGE_CACHE_SIZE-1);
2611 			if (page->index == end_index && off)
2612 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2613 			SetPageUptodate(page);
2614 		} else {
2615 			ClearPageUptodate(page);
2616 			SetPageError(page);
2617 		}
2618 		unlock_page(page);
2619 		offset += len;
2620 
2621 		if (unlikely(!uptodate)) {
2622 			if (extent_len) {
2623 				endio_readpage_release_extent(tree,
2624 							      extent_start,
2625 							      extent_len, 1);
2626 				extent_start = 0;
2627 				extent_len = 0;
2628 			}
2629 			endio_readpage_release_extent(tree, start,
2630 						      end - start + 1, 0);
2631 		} else if (!extent_len) {
2632 			extent_start = start;
2633 			extent_len = end + 1 - start;
2634 		} else if (extent_start + extent_len == start) {
2635 			extent_len += end + 1 - start;
2636 		} else {
2637 			endio_readpage_release_extent(tree, extent_start,
2638 						      extent_len, uptodate);
2639 			extent_start = start;
2640 			extent_len = end + 1 - start;
2641 		}
2642 	}
2643 
2644 	if (extent_len)
2645 		endio_readpage_release_extent(tree, extent_start, extent_len,
2646 					      uptodate);
2647 	if (io_bio->end_io)
2648 		io_bio->end_io(io_bio, bio->bi_error);
2649 	bio_put(bio);
2650 }
2651 
2652 /*
2653  * this allocates from the btrfs_bioset.  We're returning a bio right now
2654  * but you can call btrfs_io_bio for the appropriate container_of magic
2655  */
2656 struct bio *
2657 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2658 		gfp_t gfp_flags)
2659 {
2660 	struct btrfs_io_bio *btrfs_bio;
2661 	struct bio *bio;
2662 
2663 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2664 
2665 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2666 		while (!bio && (nr_vecs /= 2)) {
2667 			bio = bio_alloc_bioset(gfp_flags,
2668 					       nr_vecs, btrfs_bioset);
2669 		}
2670 	}
2671 
2672 	if (bio) {
2673 		bio->bi_bdev = bdev;
2674 		bio->bi_iter.bi_sector = first_sector;
2675 		btrfs_bio = btrfs_io_bio(bio);
2676 		btrfs_bio->csum = NULL;
2677 		btrfs_bio->csum_allocated = NULL;
2678 		btrfs_bio->end_io = NULL;
2679 	}
2680 	return bio;
2681 }
2682 
2683 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2684 {
2685 	struct btrfs_io_bio *btrfs_bio;
2686 	struct bio *new;
2687 
2688 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2689 	if (new) {
2690 		btrfs_bio = btrfs_io_bio(new);
2691 		btrfs_bio->csum = NULL;
2692 		btrfs_bio->csum_allocated = NULL;
2693 		btrfs_bio->end_io = NULL;
2694 
2695 #ifdef CONFIG_BLK_CGROUP
2696 		/* FIXME, put this into bio_clone_bioset */
2697 		if (bio->bi_css)
2698 			bio_associate_blkcg(new, bio->bi_css);
2699 #endif
2700 	}
2701 	return new;
2702 }
2703 
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706 {
2707 	struct btrfs_io_bio *btrfs_bio;
2708 	struct bio *bio;
2709 
2710 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 	if (bio) {
2712 		btrfs_bio = btrfs_io_bio(bio);
2713 		btrfs_bio->csum = NULL;
2714 		btrfs_bio->csum_allocated = NULL;
2715 		btrfs_bio->end_io = NULL;
2716 	}
2717 	return bio;
2718 }
2719 
2720 
2721 static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 				       int mirror_num, unsigned long bio_flags)
2723 {
2724 	int ret = 0;
2725 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 	struct page *page = bvec->bv_page;
2727 	struct extent_io_tree *tree = bio->bi_private;
2728 	u64 start;
2729 
2730 	start = page_offset(page) + bvec->bv_offset;
2731 
2732 	bio->bi_private = NULL;
2733 
2734 	bio_get(bio);
2735 
2736 	if (tree->ops && tree->ops->submit_bio_hook)
2737 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2738 					   mirror_num, bio_flags, start);
2739 	else
2740 		btrfsic_submit_bio(rw, bio);
2741 
2742 	bio_put(bio);
2743 	return ret;
2744 }
2745 
2746 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2747 		     unsigned long offset, size_t size, struct bio *bio,
2748 		     unsigned long bio_flags)
2749 {
2750 	int ret = 0;
2751 	if (tree->ops && tree->ops->merge_bio_hook)
2752 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2753 						bio_flags);
2754 	BUG_ON(ret < 0);
2755 	return ret;
2756 
2757 }
2758 
2759 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2760 			      struct writeback_control *wbc,
2761 			      struct page *page, sector_t sector,
2762 			      size_t size, unsigned long offset,
2763 			      struct block_device *bdev,
2764 			      struct bio **bio_ret,
2765 			      unsigned long max_pages,
2766 			      bio_end_io_t end_io_func,
2767 			      int mirror_num,
2768 			      unsigned long prev_bio_flags,
2769 			      unsigned long bio_flags,
2770 			      bool force_bio_submit)
2771 {
2772 	int ret = 0;
2773 	struct bio *bio;
2774 	int contig = 0;
2775 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2776 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2777 
2778 	if (bio_ret && *bio_ret) {
2779 		bio = *bio_ret;
2780 		if (old_compressed)
2781 			contig = bio->bi_iter.bi_sector == sector;
2782 		else
2783 			contig = bio_end_sector(bio) == sector;
2784 
2785 		if (prev_bio_flags != bio_flags || !contig ||
2786 		    force_bio_submit ||
2787 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2788 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2789 			ret = submit_one_bio(rw, bio, mirror_num,
2790 					     prev_bio_flags);
2791 			if (ret < 0) {
2792 				*bio_ret = NULL;
2793 				return ret;
2794 			}
2795 			bio = NULL;
2796 		} else {
2797 			if (wbc)
2798 				wbc_account_io(wbc, page, page_size);
2799 			return 0;
2800 		}
2801 	}
2802 
2803 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2804 			GFP_NOFS | __GFP_HIGH);
2805 	if (!bio)
2806 		return -ENOMEM;
2807 
2808 	bio_add_page(bio, page, page_size, offset);
2809 	bio->bi_end_io = end_io_func;
2810 	bio->bi_private = tree;
2811 	if (wbc) {
2812 		wbc_init_bio(wbc, bio);
2813 		wbc_account_io(wbc, page, page_size);
2814 	}
2815 
2816 	if (bio_ret)
2817 		*bio_ret = bio;
2818 	else
2819 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2820 
2821 	return ret;
2822 }
2823 
2824 static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 				      struct page *page)
2826 {
2827 	if (!PagePrivate(page)) {
2828 		SetPagePrivate(page);
2829 		page_cache_get(page);
2830 		set_page_private(page, (unsigned long)eb);
2831 	} else {
2832 		WARN_ON(page->private != (unsigned long)eb);
2833 	}
2834 }
2835 
2836 void set_page_extent_mapped(struct page *page)
2837 {
2838 	if (!PagePrivate(page)) {
2839 		SetPagePrivate(page);
2840 		page_cache_get(page);
2841 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 	}
2843 }
2844 
2845 static struct extent_map *
2846 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 		 u64 start, u64 len, get_extent_t *get_extent,
2848 		 struct extent_map **em_cached)
2849 {
2850 	struct extent_map *em;
2851 
2852 	if (em_cached && *em_cached) {
2853 		em = *em_cached;
2854 		if (extent_map_in_tree(em) && start >= em->start &&
2855 		    start < extent_map_end(em)) {
2856 			atomic_inc(&em->refs);
2857 			return em;
2858 		}
2859 
2860 		free_extent_map(em);
2861 		*em_cached = NULL;
2862 	}
2863 
2864 	em = get_extent(inode, page, pg_offset, start, len, 0);
2865 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 		BUG_ON(*em_cached);
2867 		atomic_inc(&em->refs);
2868 		*em_cached = em;
2869 	}
2870 	return em;
2871 }
2872 /*
2873  * basic readpage implementation.  Locked extent state structs are inserted
2874  * into the tree that are removed when the IO is done (by the end_io
2875  * handlers)
2876  * XXX JDM: This needs looking at to ensure proper page locking
2877  */
2878 static int __do_readpage(struct extent_io_tree *tree,
2879 			 struct page *page,
2880 			 get_extent_t *get_extent,
2881 			 struct extent_map **em_cached,
2882 			 struct bio **bio, int mirror_num,
2883 			 unsigned long *bio_flags, int rw,
2884 			 u64 *prev_em_start)
2885 {
2886 	struct inode *inode = page->mapping->host;
2887 	u64 start = page_offset(page);
2888 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2889 	u64 end;
2890 	u64 cur = start;
2891 	u64 extent_offset;
2892 	u64 last_byte = i_size_read(inode);
2893 	u64 block_start;
2894 	u64 cur_end;
2895 	sector_t sector;
2896 	struct extent_map *em;
2897 	struct block_device *bdev;
2898 	int ret;
2899 	int nr = 0;
2900 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2901 	size_t pg_offset = 0;
2902 	size_t iosize;
2903 	size_t disk_io_size;
2904 	size_t blocksize = inode->i_sb->s_blocksize;
2905 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2906 
2907 	set_page_extent_mapped(page);
2908 
2909 	end = page_end;
2910 	if (!PageUptodate(page)) {
2911 		if (cleancache_get_page(page) == 0) {
2912 			BUG_ON(blocksize != PAGE_SIZE);
2913 			unlock_extent(tree, start, end);
2914 			goto out;
2915 		}
2916 	}
2917 
2918 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2919 		char *userpage;
2920 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2921 
2922 		if (zero_offset) {
2923 			iosize = PAGE_CACHE_SIZE - zero_offset;
2924 			userpage = kmap_atomic(page);
2925 			memset(userpage + zero_offset, 0, iosize);
2926 			flush_dcache_page(page);
2927 			kunmap_atomic(userpage);
2928 		}
2929 	}
2930 	while (cur <= end) {
2931 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2932 		bool force_bio_submit = false;
2933 
2934 		if (cur >= last_byte) {
2935 			char *userpage;
2936 			struct extent_state *cached = NULL;
2937 
2938 			iosize = PAGE_CACHE_SIZE - pg_offset;
2939 			userpage = kmap_atomic(page);
2940 			memset(userpage + pg_offset, 0, iosize);
2941 			flush_dcache_page(page);
2942 			kunmap_atomic(userpage);
2943 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2944 					    &cached, GFP_NOFS);
2945 			if (!parent_locked)
2946 				unlock_extent_cached(tree, cur,
2947 						     cur + iosize - 1,
2948 						     &cached, GFP_NOFS);
2949 			break;
2950 		}
2951 		em = __get_extent_map(inode, page, pg_offset, cur,
2952 				      end - cur + 1, get_extent, em_cached);
2953 		if (IS_ERR_OR_NULL(em)) {
2954 			SetPageError(page);
2955 			if (!parent_locked)
2956 				unlock_extent(tree, cur, end);
2957 			break;
2958 		}
2959 		extent_offset = cur - em->start;
2960 		BUG_ON(extent_map_end(em) <= cur);
2961 		BUG_ON(end < cur);
2962 
2963 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2964 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2965 			extent_set_compress_type(&this_bio_flag,
2966 						 em->compress_type);
2967 		}
2968 
2969 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2970 		cur_end = min(extent_map_end(em) - 1, end);
2971 		iosize = ALIGN(iosize, blocksize);
2972 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2973 			disk_io_size = em->block_len;
2974 			sector = em->block_start >> 9;
2975 		} else {
2976 			sector = (em->block_start + extent_offset) >> 9;
2977 			disk_io_size = iosize;
2978 		}
2979 		bdev = em->bdev;
2980 		block_start = em->block_start;
2981 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2982 			block_start = EXTENT_MAP_HOLE;
2983 
2984 		/*
2985 		 * If we have a file range that points to a compressed extent
2986 		 * and it's followed by a consecutive file range that points to
2987 		 * to the same compressed extent (possibly with a different
2988 		 * offset and/or length, so it either points to the whole extent
2989 		 * or only part of it), we must make sure we do not submit a
2990 		 * single bio to populate the pages for the 2 ranges because
2991 		 * this makes the compressed extent read zero out the pages
2992 		 * belonging to the 2nd range. Imagine the following scenario:
2993 		 *
2994 		 *  File layout
2995 		 *  [0 - 8K]                     [8K - 24K]
2996 		 *    |                               |
2997 		 *    |                               |
2998 		 * points to extent X,         points to extent X,
2999 		 * offset 4K, length of 8K     offset 0, length 16K
3000 		 *
3001 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3002 		 *
3003 		 * If the bio to read the compressed extent covers both ranges,
3004 		 * it will decompress extent X into the pages belonging to the
3005 		 * first range and then it will stop, zeroing out the remaining
3006 		 * pages that belong to the other range that points to extent X.
3007 		 * So here we make sure we submit 2 bios, one for the first
3008 		 * range and another one for the third range. Both will target
3009 		 * the same physical extent from disk, but we can't currently
3010 		 * make the compressed bio endio callback populate the pages
3011 		 * for both ranges because each compressed bio is tightly
3012 		 * coupled with a single extent map, and each range can have
3013 		 * an extent map with a different offset value relative to the
3014 		 * uncompressed data of our extent and different lengths. This
3015 		 * is a corner case so we prioritize correctness over
3016 		 * non-optimal behavior (submitting 2 bios for the same extent).
3017 		 */
3018 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3019 		    prev_em_start && *prev_em_start != (u64)-1 &&
3020 		    *prev_em_start != em->orig_start)
3021 			force_bio_submit = true;
3022 
3023 		if (prev_em_start)
3024 			*prev_em_start = em->orig_start;
3025 
3026 		free_extent_map(em);
3027 		em = NULL;
3028 
3029 		/* we've found a hole, just zero and go on */
3030 		if (block_start == EXTENT_MAP_HOLE) {
3031 			char *userpage;
3032 			struct extent_state *cached = NULL;
3033 
3034 			userpage = kmap_atomic(page);
3035 			memset(userpage + pg_offset, 0, iosize);
3036 			flush_dcache_page(page);
3037 			kunmap_atomic(userpage);
3038 
3039 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3040 					    &cached, GFP_NOFS);
3041 			if (parent_locked)
3042 				free_extent_state(cached);
3043 			else
3044 				unlock_extent_cached(tree, cur,
3045 						     cur + iosize - 1,
3046 						     &cached, GFP_NOFS);
3047 			cur = cur + iosize;
3048 			pg_offset += iosize;
3049 			continue;
3050 		}
3051 		/* the get_extent function already copied into the page */
3052 		if (test_range_bit(tree, cur, cur_end,
3053 				   EXTENT_UPTODATE, 1, NULL)) {
3054 			check_page_uptodate(tree, page);
3055 			if (!parent_locked)
3056 				unlock_extent(tree, cur, cur + iosize - 1);
3057 			cur = cur + iosize;
3058 			pg_offset += iosize;
3059 			continue;
3060 		}
3061 		/* we have an inline extent but it didn't get marked up
3062 		 * to date.  Error out
3063 		 */
3064 		if (block_start == EXTENT_MAP_INLINE) {
3065 			SetPageError(page);
3066 			if (!parent_locked)
3067 				unlock_extent(tree, cur, cur + iosize - 1);
3068 			cur = cur + iosize;
3069 			pg_offset += iosize;
3070 			continue;
3071 		}
3072 
3073 		pnr -= page->index;
3074 		ret = submit_extent_page(rw, tree, NULL, page,
3075 					 sector, disk_io_size, pg_offset,
3076 					 bdev, bio, pnr,
3077 					 end_bio_extent_readpage, mirror_num,
3078 					 *bio_flags,
3079 					 this_bio_flag,
3080 					 force_bio_submit);
3081 		if (!ret) {
3082 			nr++;
3083 			*bio_flags = this_bio_flag;
3084 		} else {
3085 			SetPageError(page);
3086 			if (!parent_locked)
3087 				unlock_extent(tree, cur, cur + iosize - 1);
3088 		}
3089 		cur = cur + iosize;
3090 		pg_offset += iosize;
3091 	}
3092 out:
3093 	if (!nr) {
3094 		if (!PageError(page))
3095 			SetPageUptodate(page);
3096 		unlock_page(page);
3097 	}
3098 	return 0;
3099 }
3100 
3101 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3102 					     struct page *pages[], int nr_pages,
3103 					     u64 start, u64 end,
3104 					     get_extent_t *get_extent,
3105 					     struct extent_map **em_cached,
3106 					     struct bio **bio, int mirror_num,
3107 					     unsigned long *bio_flags, int rw,
3108 					     u64 *prev_em_start)
3109 {
3110 	struct inode *inode;
3111 	struct btrfs_ordered_extent *ordered;
3112 	int index;
3113 
3114 	inode = pages[0]->mapping->host;
3115 	while (1) {
3116 		lock_extent(tree, start, end);
3117 		ordered = btrfs_lookup_ordered_range(inode, start,
3118 						     end - start + 1);
3119 		if (!ordered)
3120 			break;
3121 		unlock_extent(tree, start, end);
3122 		btrfs_start_ordered_extent(inode, ordered, 1);
3123 		btrfs_put_ordered_extent(ordered);
3124 	}
3125 
3126 	for (index = 0; index < nr_pages; index++) {
3127 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3128 			      mirror_num, bio_flags, rw, prev_em_start);
3129 		page_cache_release(pages[index]);
3130 	}
3131 }
3132 
3133 static void __extent_readpages(struct extent_io_tree *tree,
3134 			       struct page *pages[],
3135 			       int nr_pages, get_extent_t *get_extent,
3136 			       struct extent_map **em_cached,
3137 			       struct bio **bio, int mirror_num,
3138 			       unsigned long *bio_flags, int rw,
3139 			       u64 *prev_em_start)
3140 {
3141 	u64 start = 0;
3142 	u64 end = 0;
3143 	u64 page_start;
3144 	int index;
3145 	int first_index = 0;
3146 
3147 	for (index = 0; index < nr_pages; index++) {
3148 		page_start = page_offset(pages[index]);
3149 		if (!end) {
3150 			start = page_start;
3151 			end = start + PAGE_CACHE_SIZE - 1;
3152 			first_index = index;
3153 		} else if (end + 1 == page_start) {
3154 			end += PAGE_CACHE_SIZE;
3155 		} else {
3156 			__do_contiguous_readpages(tree, &pages[first_index],
3157 						  index - first_index, start,
3158 						  end, get_extent, em_cached,
3159 						  bio, mirror_num, bio_flags,
3160 						  rw, prev_em_start);
3161 			start = page_start;
3162 			end = start + PAGE_CACHE_SIZE - 1;
3163 			first_index = index;
3164 		}
3165 	}
3166 
3167 	if (end)
3168 		__do_contiguous_readpages(tree, &pages[first_index],
3169 					  index - first_index, start,
3170 					  end, get_extent, em_cached, bio,
3171 					  mirror_num, bio_flags, rw,
3172 					  prev_em_start);
3173 }
3174 
3175 static int __extent_read_full_page(struct extent_io_tree *tree,
3176 				   struct page *page,
3177 				   get_extent_t *get_extent,
3178 				   struct bio **bio, int mirror_num,
3179 				   unsigned long *bio_flags, int rw)
3180 {
3181 	struct inode *inode = page->mapping->host;
3182 	struct btrfs_ordered_extent *ordered;
3183 	u64 start = page_offset(page);
3184 	u64 end = start + PAGE_CACHE_SIZE - 1;
3185 	int ret;
3186 
3187 	while (1) {
3188 		lock_extent(tree, start, end);
3189 		ordered = btrfs_lookup_ordered_extent(inode, start);
3190 		if (!ordered)
3191 			break;
3192 		unlock_extent(tree, start, end);
3193 		btrfs_start_ordered_extent(inode, ordered, 1);
3194 		btrfs_put_ordered_extent(ordered);
3195 	}
3196 
3197 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3198 			    bio_flags, rw, NULL);
3199 	return ret;
3200 }
3201 
3202 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3203 			    get_extent_t *get_extent, int mirror_num)
3204 {
3205 	struct bio *bio = NULL;
3206 	unsigned long bio_flags = 0;
3207 	int ret;
3208 
3209 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3210 				      &bio_flags, READ);
3211 	if (bio)
3212 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3213 	return ret;
3214 }
3215 
3216 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3217 				 get_extent_t *get_extent, int mirror_num)
3218 {
3219 	struct bio *bio = NULL;
3220 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3221 	int ret;
3222 
3223 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3224 			    &bio_flags, READ, NULL);
3225 	if (bio)
3226 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3227 	return ret;
3228 }
3229 
3230 static noinline void update_nr_written(struct page *page,
3231 				      struct writeback_control *wbc,
3232 				      unsigned long nr_written)
3233 {
3234 	wbc->nr_to_write -= nr_written;
3235 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3236 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3237 		page->mapping->writeback_index = page->index + nr_written;
3238 }
3239 
3240 /*
3241  * helper for __extent_writepage, doing all of the delayed allocation setup.
3242  *
3243  * This returns 1 if our fill_delalloc function did all the work required
3244  * to write the page (copy into inline extent).  In this case the IO has
3245  * been started and the page is already unlocked.
3246  *
3247  * This returns 0 if all went well (page still locked)
3248  * This returns < 0 if there were errors (page still locked)
3249  */
3250 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3251 			      struct page *page, struct writeback_control *wbc,
3252 			      struct extent_page_data *epd,
3253 			      u64 delalloc_start,
3254 			      unsigned long *nr_written)
3255 {
3256 	struct extent_io_tree *tree = epd->tree;
3257 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3258 	u64 nr_delalloc;
3259 	u64 delalloc_to_write = 0;
3260 	u64 delalloc_end = 0;
3261 	int ret;
3262 	int page_started = 0;
3263 
3264 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3265 		return 0;
3266 
3267 	while (delalloc_end < page_end) {
3268 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3269 					       page,
3270 					       &delalloc_start,
3271 					       &delalloc_end,
3272 					       BTRFS_MAX_EXTENT_SIZE);
3273 		if (nr_delalloc == 0) {
3274 			delalloc_start = delalloc_end + 1;
3275 			continue;
3276 		}
3277 		ret = tree->ops->fill_delalloc(inode, page,
3278 					       delalloc_start,
3279 					       delalloc_end,
3280 					       &page_started,
3281 					       nr_written);
3282 		/* File system has been set read-only */
3283 		if (ret) {
3284 			SetPageError(page);
3285 			/* fill_delalloc should be return < 0 for error
3286 			 * but just in case, we use > 0 here meaning the
3287 			 * IO is started, so we don't want to return > 0
3288 			 * unless things are going well.
3289 			 */
3290 			ret = ret < 0 ? ret : -EIO;
3291 			goto done;
3292 		}
3293 		/*
3294 		 * delalloc_end is already one less than the total
3295 		 * length, so we don't subtract one from
3296 		 * PAGE_CACHE_SIZE
3297 		 */
3298 		delalloc_to_write += (delalloc_end - delalloc_start +
3299 				      PAGE_CACHE_SIZE) >>
3300 				      PAGE_CACHE_SHIFT;
3301 		delalloc_start = delalloc_end + 1;
3302 	}
3303 	if (wbc->nr_to_write < delalloc_to_write) {
3304 		int thresh = 8192;
3305 
3306 		if (delalloc_to_write < thresh * 2)
3307 			thresh = delalloc_to_write;
3308 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3309 					 thresh);
3310 	}
3311 
3312 	/* did the fill delalloc function already unlock and start
3313 	 * the IO?
3314 	 */
3315 	if (page_started) {
3316 		/*
3317 		 * we've unlocked the page, so we can't update
3318 		 * the mapping's writeback index, just update
3319 		 * nr_to_write.
3320 		 */
3321 		wbc->nr_to_write -= *nr_written;
3322 		return 1;
3323 	}
3324 
3325 	ret = 0;
3326 
3327 done:
3328 	return ret;
3329 }
3330 
3331 /*
3332  * helper for __extent_writepage.  This calls the writepage start hooks,
3333  * and does the loop to map the page into extents and bios.
3334  *
3335  * We return 1 if the IO is started and the page is unlocked,
3336  * 0 if all went well (page still locked)
3337  * < 0 if there were errors (page still locked)
3338  */
3339 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3340 				 struct page *page,
3341 				 struct writeback_control *wbc,
3342 				 struct extent_page_data *epd,
3343 				 loff_t i_size,
3344 				 unsigned long nr_written,
3345 				 int write_flags, int *nr_ret)
3346 {
3347 	struct extent_io_tree *tree = epd->tree;
3348 	u64 start = page_offset(page);
3349 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3350 	u64 end;
3351 	u64 cur = start;
3352 	u64 extent_offset;
3353 	u64 block_start;
3354 	u64 iosize;
3355 	sector_t sector;
3356 	struct extent_state *cached_state = NULL;
3357 	struct extent_map *em;
3358 	struct block_device *bdev;
3359 	size_t pg_offset = 0;
3360 	size_t blocksize;
3361 	int ret = 0;
3362 	int nr = 0;
3363 	bool compressed;
3364 
3365 	if (tree->ops && tree->ops->writepage_start_hook) {
3366 		ret = tree->ops->writepage_start_hook(page, start,
3367 						      page_end);
3368 		if (ret) {
3369 			/* Fixup worker will requeue */
3370 			if (ret == -EBUSY)
3371 				wbc->pages_skipped++;
3372 			else
3373 				redirty_page_for_writepage(wbc, page);
3374 
3375 			update_nr_written(page, wbc, nr_written);
3376 			unlock_page(page);
3377 			ret = 1;
3378 			goto done_unlocked;
3379 		}
3380 	}
3381 
3382 	/*
3383 	 * we don't want to touch the inode after unlocking the page,
3384 	 * so we update the mapping writeback index now
3385 	 */
3386 	update_nr_written(page, wbc, nr_written + 1);
3387 
3388 	end = page_end;
3389 	if (i_size <= start) {
3390 		if (tree->ops && tree->ops->writepage_end_io_hook)
3391 			tree->ops->writepage_end_io_hook(page, start,
3392 							 page_end, NULL, 1);
3393 		goto done;
3394 	}
3395 
3396 	blocksize = inode->i_sb->s_blocksize;
3397 
3398 	while (cur <= end) {
3399 		u64 em_end;
3400 		if (cur >= i_size) {
3401 			if (tree->ops && tree->ops->writepage_end_io_hook)
3402 				tree->ops->writepage_end_io_hook(page, cur,
3403 							 page_end, NULL, 1);
3404 			break;
3405 		}
3406 		em = epd->get_extent(inode, page, pg_offset, cur,
3407 				     end - cur + 1, 1);
3408 		if (IS_ERR_OR_NULL(em)) {
3409 			SetPageError(page);
3410 			ret = PTR_ERR_OR_ZERO(em);
3411 			break;
3412 		}
3413 
3414 		extent_offset = cur - em->start;
3415 		em_end = extent_map_end(em);
3416 		BUG_ON(em_end <= cur);
3417 		BUG_ON(end < cur);
3418 		iosize = min(em_end - cur, end - cur + 1);
3419 		iosize = ALIGN(iosize, blocksize);
3420 		sector = (em->block_start + extent_offset) >> 9;
3421 		bdev = em->bdev;
3422 		block_start = em->block_start;
3423 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3424 		free_extent_map(em);
3425 		em = NULL;
3426 
3427 		/*
3428 		 * compressed and inline extents are written through other
3429 		 * paths in the FS
3430 		 */
3431 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3432 		    block_start == EXTENT_MAP_INLINE) {
3433 			/*
3434 			 * end_io notification does not happen here for
3435 			 * compressed extents
3436 			 */
3437 			if (!compressed && tree->ops &&
3438 			    tree->ops->writepage_end_io_hook)
3439 				tree->ops->writepage_end_io_hook(page, cur,
3440 							 cur + iosize - 1,
3441 							 NULL, 1);
3442 			else if (compressed) {
3443 				/* we don't want to end_page_writeback on
3444 				 * a compressed extent.  this happens
3445 				 * elsewhere
3446 				 */
3447 				nr++;
3448 			}
3449 
3450 			cur += iosize;
3451 			pg_offset += iosize;
3452 			continue;
3453 		}
3454 
3455 		if (tree->ops && tree->ops->writepage_io_hook) {
3456 			ret = tree->ops->writepage_io_hook(page, cur,
3457 						cur + iosize - 1);
3458 		} else {
3459 			ret = 0;
3460 		}
3461 		if (ret) {
3462 			SetPageError(page);
3463 		} else {
3464 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3465 
3466 			set_range_writeback(tree, cur, cur + iosize - 1);
3467 			if (!PageWriteback(page)) {
3468 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3469 					   "page %lu not writeback, cur %llu end %llu",
3470 				       page->index, cur, end);
3471 			}
3472 
3473 			ret = submit_extent_page(write_flags, tree, wbc, page,
3474 						 sector, iosize, pg_offset,
3475 						 bdev, &epd->bio, max_nr,
3476 						 end_bio_extent_writepage,
3477 						 0, 0, 0, false);
3478 			if (ret)
3479 				SetPageError(page);
3480 		}
3481 		cur = cur + iosize;
3482 		pg_offset += iosize;
3483 		nr++;
3484 	}
3485 done:
3486 	*nr_ret = nr;
3487 
3488 done_unlocked:
3489 
3490 	/* drop our reference on any cached states */
3491 	free_extent_state(cached_state);
3492 	return ret;
3493 }
3494 
3495 /*
3496  * the writepage semantics are similar to regular writepage.  extent
3497  * records are inserted to lock ranges in the tree, and as dirty areas
3498  * are found, they are marked writeback.  Then the lock bits are removed
3499  * and the end_io handler clears the writeback ranges
3500  */
3501 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3502 			      void *data)
3503 {
3504 	struct inode *inode = page->mapping->host;
3505 	struct extent_page_data *epd = data;
3506 	u64 start = page_offset(page);
3507 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3508 	int ret;
3509 	int nr = 0;
3510 	size_t pg_offset = 0;
3511 	loff_t i_size = i_size_read(inode);
3512 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3513 	int write_flags;
3514 	unsigned long nr_written = 0;
3515 
3516 	if (wbc->sync_mode == WB_SYNC_ALL)
3517 		write_flags = WRITE_SYNC;
3518 	else
3519 		write_flags = WRITE;
3520 
3521 	trace___extent_writepage(page, inode, wbc);
3522 
3523 	WARN_ON(!PageLocked(page));
3524 
3525 	ClearPageError(page);
3526 
3527 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3528 	if (page->index > end_index ||
3529 	   (page->index == end_index && !pg_offset)) {
3530 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3531 		unlock_page(page);
3532 		return 0;
3533 	}
3534 
3535 	if (page->index == end_index) {
3536 		char *userpage;
3537 
3538 		userpage = kmap_atomic(page);
3539 		memset(userpage + pg_offset, 0,
3540 		       PAGE_CACHE_SIZE - pg_offset);
3541 		kunmap_atomic(userpage);
3542 		flush_dcache_page(page);
3543 	}
3544 
3545 	pg_offset = 0;
3546 
3547 	set_page_extent_mapped(page);
3548 
3549 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3550 	if (ret == 1)
3551 		goto done_unlocked;
3552 	if (ret)
3553 		goto done;
3554 
3555 	ret = __extent_writepage_io(inode, page, wbc, epd,
3556 				    i_size, nr_written, write_flags, &nr);
3557 	if (ret == 1)
3558 		goto done_unlocked;
3559 
3560 done:
3561 	if (nr == 0) {
3562 		/* make sure the mapping tag for page dirty gets cleared */
3563 		set_page_writeback(page);
3564 		end_page_writeback(page);
3565 	}
3566 	if (PageError(page)) {
3567 		ret = ret < 0 ? ret : -EIO;
3568 		end_extent_writepage(page, ret, start, page_end);
3569 	}
3570 	unlock_page(page);
3571 	return ret;
3572 
3573 done_unlocked:
3574 	return 0;
3575 }
3576 
3577 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3578 {
3579 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3580 		       TASK_UNINTERRUPTIBLE);
3581 }
3582 
3583 static noinline_for_stack int
3584 lock_extent_buffer_for_io(struct extent_buffer *eb,
3585 			  struct btrfs_fs_info *fs_info,
3586 			  struct extent_page_data *epd)
3587 {
3588 	unsigned long i, num_pages;
3589 	int flush = 0;
3590 	int ret = 0;
3591 
3592 	if (!btrfs_try_tree_write_lock(eb)) {
3593 		flush = 1;
3594 		flush_write_bio(epd);
3595 		btrfs_tree_lock(eb);
3596 	}
3597 
3598 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3599 		btrfs_tree_unlock(eb);
3600 		if (!epd->sync_io)
3601 			return 0;
3602 		if (!flush) {
3603 			flush_write_bio(epd);
3604 			flush = 1;
3605 		}
3606 		while (1) {
3607 			wait_on_extent_buffer_writeback(eb);
3608 			btrfs_tree_lock(eb);
3609 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3610 				break;
3611 			btrfs_tree_unlock(eb);
3612 		}
3613 	}
3614 
3615 	/*
3616 	 * We need to do this to prevent races in people who check if the eb is
3617 	 * under IO since we can end up having no IO bits set for a short period
3618 	 * of time.
3619 	 */
3620 	spin_lock(&eb->refs_lock);
3621 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3622 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3623 		spin_unlock(&eb->refs_lock);
3624 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3625 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3626 				     -eb->len,
3627 				     fs_info->dirty_metadata_batch);
3628 		ret = 1;
3629 	} else {
3630 		spin_unlock(&eb->refs_lock);
3631 	}
3632 
3633 	btrfs_tree_unlock(eb);
3634 
3635 	if (!ret)
3636 		return ret;
3637 
3638 	num_pages = num_extent_pages(eb->start, eb->len);
3639 	for (i = 0; i < num_pages; i++) {
3640 		struct page *p = eb->pages[i];
3641 
3642 		if (!trylock_page(p)) {
3643 			if (!flush) {
3644 				flush_write_bio(epd);
3645 				flush = 1;
3646 			}
3647 			lock_page(p);
3648 		}
3649 	}
3650 
3651 	return ret;
3652 }
3653 
3654 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3655 {
3656 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3657 	smp_mb__after_atomic();
3658 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3659 }
3660 
3661 static void set_btree_ioerr(struct page *page)
3662 {
3663 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3664 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3665 
3666 	SetPageError(page);
3667 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3668 		return;
3669 
3670 	/*
3671 	 * If writeback for a btree extent that doesn't belong to a log tree
3672 	 * failed, increment the counter transaction->eb_write_errors.
3673 	 * We do this because while the transaction is running and before it's
3674 	 * committing (when we call filemap_fdata[write|wait]_range against
3675 	 * the btree inode), we might have
3676 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3677 	 * returns an error or an error happens during writeback, when we're
3678 	 * committing the transaction we wouldn't know about it, since the pages
3679 	 * can be no longer dirty nor marked anymore for writeback (if a
3680 	 * subsequent modification to the extent buffer didn't happen before the
3681 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3682 	 * able to find the pages tagged with SetPageError at transaction
3683 	 * commit time. So if this happens we must abort the transaction,
3684 	 * otherwise we commit a super block with btree roots that point to
3685 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3686 	 * or the content of some node/leaf from a past generation that got
3687 	 * cowed or deleted and is no longer valid.
3688 	 *
3689 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3690 	 * not be enough - we need to distinguish between log tree extents vs
3691 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3692 	 * will catch and clear such errors in the mapping - and that call might
3693 	 * be from a log sync and not from a transaction commit. Also, checking
3694 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3695 	 * not done and would not be reliable - the eb might have been released
3696 	 * from memory and reading it back again means that flag would not be
3697 	 * set (since it's a runtime flag, not persisted on disk).
3698 	 *
3699 	 * Using the flags below in the btree inode also makes us achieve the
3700 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3701 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3702 	 * is called, the writeback for all dirty pages had already finished
3703 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3704 	 * filemap_fdatawait_range() would return success, as it could not know
3705 	 * that writeback errors happened (the pages were no longer tagged for
3706 	 * writeback).
3707 	 */
3708 	switch (eb->log_index) {
3709 	case -1:
3710 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3711 		break;
3712 	case 0:
3713 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3714 		break;
3715 	case 1:
3716 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3717 		break;
3718 	default:
3719 		BUG(); /* unexpected, logic error */
3720 	}
3721 }
3722 
3723 static void end_bio_extent_buffer_writepage(struct bio *bio)
3724 {
3725 	struct bio_vec *bvec;
3726 	struct extent_buffer *eb;
3727 	int i, done;
3728 
3729 	bio_for_each_segment_all(bvec, bio, i) {
3730 		struct page *page = bvec->bv_page;
3731 
3732 		eb = (struct extent_buffer *)page->private;
3733 		BUG_ON(!eb);
3734 		done = atomic_dec_and_test(&eb->io_pages);
3735 
3736 		if (bio->bi_error ||
3737 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3738 			ClearPageUptodate(page);
3739 			set_btree_ioerr(page);
3740 		}
3741 
3742 		end_page_writeback(page);
3743 
3744 		if (!done)
3745 			continue;
3746 
3747 		end_extent_buffer_writeback(eb);
3748 	}
3749 
3750 	bio_put(bio);
3751 }
3752 
3753 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3754 			struct btrfs_fs_info *fs_info,
3755 			struct writeback_control *wbc,
3756 			struct extent_page_data *epd)
3757 {
3758 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3759 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3760 	u64 offset = eb->start;
3761 	unsigned long i, num_pages;
3762 	unsigned long bio_flags = 0;
3763 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3764 	int ret = 0;
3765 
3766 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3767 	num_pages = num_extent_pages(eb->start, eb->len);
3768 	atomic_set(&eb->io_pages, num_pages);
3769 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3770 		bio_flags = EXTENT_BIO_TREE_LOG;
3771 
3772 	for (i = 0; i < num_pages; i++) {
3773 		struct page *p = eb->pages[i];
3774 
3775 		clear_page_dirty_for_io(p);
3776 		set_page_writeback(p);
3777 		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3778 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3779 					 -1, end_bio_extent_buffer_writepage,
3780 					 0, epd->bio_flags, bio_flags, false);
3781 		epd->bio_flags = bio_flags;
3782 		if (ret) {
3783 			set_btree_ioerr(p);
3784 			end_page_writeback(p);
3785 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3786 				end_extent_buffer_writeback(eb);
3787 			ret = -EIO;
3788 			break;
3789 		}
3790 		offset += PAGE_CACHE_SIZE;
3791 		update_nr_written(p, wbc, 1);
3792 		unlock_page(p);
3793 	}
3794 
3795 	if (unlikely(ret)) {
3796 		for (; i < num_pages; i++) {
3797 			struct page *p = eb->pages[i];
3798 			clear_page_dirty_for_io(p);
3799 			unlock_page(p);
3800 		}
3801 	}
3802 
3803 	return ret;
3804 }
3805 
3806 int btree_write_cache_pages(struct address_space *mapping,
3807 				   struct writeback_control *wbc)
3808 {
3809 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3810 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3811 	struct extent_buffer *eb, *prev_eb = NULL;
3812 	struct extent_page_data epd = {
3813 		.bio = NULL,
3814 		.tree = tree,
3815 		.extent_locked = 0,
3816 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3817 		.bio_flags = 0,
3818 	};
3819 	int ret = 0;
3820 	int done = 0;
3821 	int nr_to_write_done = 0;
3822 	struct pagevec pvec;
3823 	int nr_pages;
3824 	pgoff_t index;
3825 	pgoff_t end;		/* Inclusive */
3826 	int scanned = 0;
3827 	int tag;
3828 
3829 	pagevec_init(&pvec, 0);
3830 	if (wbc->range_cyclic) {
3831 		index = mapping->writeback_index; /* Start from prev offset */
3832 		end = -1;
3833 	} else {
3834 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3835 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3836 		scanned = 1;
3837 	}
3838 	if (wbc->sync_mode == WB_SYNC_ALL)
3839 		tag = PAGECACHE_TAG_TOWRITE;
3840 	else
3841 		tag = PAGECACHE_TAG_DIRTY;
3842 retry:
3843 	if (wbc->sync_mode == WB_SYNC_ALL)
3844 		tag_pages_for_writeback(mapping, index, end);
3845 	while (!done && !nr_to_write_done && (index <= end) &&
3846 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3847 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3848 		unsigned i;
3849 
3850 		scanned = 1;
3851 		for (i = 0; i < nr_pages; i++) {
3852 			struct page *page = pvec.pages[i];
3853 
3854 			if (!PagePrivate(page))
3855 				continue;
3856 
3857 			if (!wbc->range_cyclic && page->index > end) {
3858 				done = 1;
3859 				break;
3860 			}
3861 
3862 			spin_lock(&mapping->private_lock);
3863 			if (!PagePrivate(page)) {
3864 				spin_unlock(&mapping->private_lock);
3865 				continue;
3866 			}
3867 
3868 			eb = (struct extent_buffer *)page->private;
3869 
3870 			/*
3871 			 * Shouldn't happen and normally this would be a BUG_ON
3872 			 * but no sense in crashing the users box for something
3873 			 * we can survive anyway.
3874 			 */
3875 			if (WARN_ON(!eb)) {
3876 				spin_unlock(&mapping->private_lock);
3877 				continue;
3878 			}
3879 
3880 			if (eb == prev_eb) {
3881 				spin_unlock(&mapping->private_lock);
3882 				continue;
3883 			}
3884 
3885 			ret = atomic_inc_not_zero(&eb->refs);
3886 			spin_unlock(&mapping->private_lock);
3887 			if (!ret)
3888 				continue;
3889 
3890 			prev_eb = eb;
3891 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3892 			if (!ret) {
3893 				free_extent_buffer(eb);
3894 				continue;
3895 			}
3896 
3897 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3898 			if (ret) {
3899 				done = 1;
3900 				free_extent_buffer(eb);
3901 				break;
3902 			}
3903 			free_extent_buffer(eb);
3904 
3905 			/*
3906 			 * the filesystem may choose to bump up nr_to_write.
3907 			 * We have to make sure to honor the new nr_to_write
3908 			 * at any time
3909 			 */
3910 			nr_to_write_done = wbc->nr_to_write <= 0;
3911 		}
3912 		pagevec_release(&pvec);
3913 		cond_resched();
3914 	}
3915 	if (!scanned && !done) {
3916 		/*
3917 		 * We hit the last page and there is more work to be done: wrap
3918 		 * back to the start of the file
3919 		 */
3920 		scanned = 1;
3921 		index = 0;
3922 		goto retry;
3923 	}
3924 	flush_write_bio(&epd);
3925 	return ret;
3926 }
3927 
3928 /**
3929  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3930  * @mapping: address space structure to write
3931  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3932  * @writepage: function called for each page
3933  * @data: data passed to writepage function
3934  *
3935  * If a page is already under I/O, write_cache_pages() skips it, even
3936  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3937  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3938  * and msync() need to guarantee that all the data which was dirty at the time
3939  * the call was made get new I/O started against them.  If wbc->sync_mode is
3940  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3941  * existing IO to complete.
3942  */
3943 static int extent_write_cache_pages(struct extent_io_tree *tree,
3944 			     struct address_space *mapping,
3945 			     struct writeback_control *wbc,
3946 			     writepage_t writepage, void *data,
3947 			     void (*flush_fn)(void *))
3948 {
3949 	struct inode *inode = mapping->host;
3950 	int ret = 0;
3951 	int done = 0;
3952 	int err = 0;
3953 	int nr_to_write_done = 0;
3954 	struct pagevec pvec;
3955 	int nr_pages;
3956 	pgoff_t index;
3957 	pgoff_t end;		/* Inclusive */
3958 	int scanned = 0;
3959 	int tag;
3960 
3961 	/*
3962 	 * We have to hold onto the inode so that ordered extents can do their
3963 	 * work when the IO finishes.  The alternative to this is failing to add
3964 	 * an ordered extent if the igrab() fails there and that is a huge pain
3965 	 * to deal with, so instead just hold onto the inode throughout the
3966 	 * writepages operation.  If it fails here we are freeing up the inode
3967 	 * anyway and we'd rather not waste our time writing out stuff that is
3968 	 * going to be truncated anyway.
3969 	 */
3970 	if (!igrab(inode))
3971 		return 0;
3972 
3973 	pagevec_init(&pvec, 0);
3974 	if (wbc->range_cyclic) {
3975 		index = mapping->writeback_index; /* Start from prev offset */
3976 		end = -1;
3977 	} else {
3978 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3979 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3980 		scanned = 1;
3981 	}
3982 	if (wbc->sync_mode == WB_SYNC_ALL)
3983 		tag = PAGECACHE_TAG_TOWRITE;
3984 	else
3985 		tag = PAGECACHE_TAG_DIRTY;
3986 retry:
3987 	if (wbc->sync_mode == WB_SYNC_ALL)
3988 		tag_pages_for_writeback(mapping, index, end);
3989 	while (!done && !nr_to_write_done && (index <= end) &&
3990 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3991 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3992 		unsigned i;
3993 
3994 		scanned = 1;
3995 		for (i = 0; i < nr_pages; i++) {
3996 			struct page *page = pvec.pages[i];
3997 
3998 			/*
3999 			 * At this point we hold neither mapping->tree_lock nor
4000 			 * lock on the page itself: the page may be truncated or
4001 			 * invalidated (changing page->mapping to NULL), or even
4002 			 * swizzled back from swapper_space to tmpfs file
4003 			 * mapping
4004 			 */
4005 			if (!trylock_page(page)) {
4006 				flush_fn(data);
4007 				lock_page(page);
4008 			}
4009 
4010 			if (unlikely(page->mapping != mapping)) {
4011 				unlock_page(page);
4012 				continue;
4013 			}
4014 
4015 			if (!wbc->range_cyclic && page->index > end) {
4016 				done = 1;
4017 				unlock_page(page);
4018 				continue;
4019 			}
4020 
4021 			if (wbc->sync_mode != WB_SYNC_NONE) {
4022 				if (PageWriteback(page))
4023 					flush_fn(data);
4024 				wait_on_page_writeback(page);
4025 			}
4026 
4027 			if (PageWriteback(page) ||
4028 			    !clear_page_dirty_for_io(page)) {
4029 				unlock_page(page);
4030 				continue;
4031 			}
4032 
4033 			ret = (*writepage)(page, wbc, data);
4034 
4035 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4036 				unlock_page(page);
4037 				ret = 0;
4038 			}
4039 			if (!err && ret < 0)
4040 				err = ret;
4041 
4042 			/*
4043 			 * the filesystem may choose to bump up nr_to_write.
4044 			 * We have to make sure to honor the new nr_to_write
4045 			 * at any time
4046 			 */
4047 			nr_to_write_done = wbc->nr_to_write <= 0;
4048 		}
4049 		pagevec_release(&pvec);
4050 		cond_resched();
4051 	}
4052 	if (!scanned && !done && !err) {
4053 		/*
4054 		 * We hit the last page and there is more work to be done: wrap
4055 		 * back to the start of the file
4056 		 */
4057 		scanned = 1;
4058 		index = 0;
4059 		goto retry;
4060 	}
4061 	btrfs_add_delayed_iput(inode);
4062 	return err;
4063 }
4064 
4065 static void flush_epd_write_bio(struct extent_page_data *epd)
4066 {
4067 	if (epd->bio) {
4068 		int rw = WRITE;
4069 		int ret;
4070 
4071 		if (epd->sync_io)
4072 			rw = WRITE_SYNC;
4073 
4074 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4075 		BUG_ON(ret < 0); /* -ENOMEM */
4076 		epd->bio = NULL;
4077 	}
4078 }
4079 
4080 static noinline void flush_write_bio(void *data)
4081 {
4082 	struct extent_page_data *epd = data;
4083 	flush_epd_write_bio(epd);
4084 }
4085 
4086 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4087 			  get_extent_t *get_extent,
4088 			  struct writeback_control *wbc)
4089 {
4090 	int ret;
4091 	struct extent_page_data epd = {
4092 		.bio = NULL,
4093 		.tree = tree,
4094 		.get_extent = get_extent,
4095 		.extent_locked = 0,
4096 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4097 		.bio_flags = 0,
4098 	};
4099 
4100 	ret = __extent_writepage(page, wbc, &epd);
4101 
4102 	flush_epd_write_bio(&epd);
4103 	return ret;
4104 }
4105 
4106 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4107 			      u64 start, u64 end, get_extent_t *get_extent,
4108 			      int mode)
4109 {
4110 	int ret = 0;
4111 	struct address_space *mapping = inode->i_mapping;
4112 	struct page *page;
4113 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4114 		PAGE_CACHE_SHIFT;
4115 
4116 	struct extent_page_data epd = {
4117 		.bio = NULL,
4118 		.tree = tree,
4119 		.get_extent = get_extent,
4120 		.extent_locked = 1,
4121 		.sync_io = mode == WB_SYNC_ALL,
4122 		.bio_flags = 0,
4123 	};
4124 	struct writeback_control wbc_writepages = {
4125 		.sync_mode	= mode,
4126 		.nr_to_write	= nr_pages * 2,
4127 		.range_start	= start,
4128 		.range_end	= end + 1,
4129 	};
4130 
4131 	while (start <= end) {
4132 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4133 		if (clear_page_dirty_for_io(page))
4134 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4135 		else {
4136 			if (tree->ops && tree->ops->writepage_end_io_hook)
4137 				tree->ops->writepage_end_io_hook(page, start,
4138 						 start + PAGE_CACHE_SIZE - 1,
4139 						 NULL, 1);
4140 			unlock_page(page);
4141 		}
4142 		page_cache_release(page);
4143 		start += PAGE_CACHE_SIZE;
4144 	}
4145 
4146 	flush_epd_write_bio(&epd);
4147 	return ret;
4148 }
4149 
4150 int extent_writepages(struct extent_io_tree *tree,
4151 		      struct address_space *mapping,
4152 		      get_extent_t *get_extent,
4153 		      struct writeback_control *wbc)
4154 {
4155 	int ret = 0;
4156 	struct extent_page_data epd = {
4157 		.bio = NULL,
4158 		.tree = tree,
4159 		.get_extent = get_extent,
4160 		.extent_locked = 0,
4161 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4162 		.bio_flags = 0,
4163 	};
4164 
4165 	ret = extent_write_cache_pages(tree, mapping, wbc,
4166 				       __extent_writepage, &epd,
4167 				       flush_write_bio);
4168 	flush_epd_write_bio(&epd);
4169 	return ret;
4170 }
4171 
4172 int extent_readpages(struct extent_io_tree *tree,
4173 		     struct address_space *mapping,
4174 		     struct list_head *pages, unsigned nr_pages,
4175 		     get_extent_t get_extent)
4176 {
4177 	struct bio *bio = NULL;
4178 	unsigned page_idx;
4179 	unsigned long bio_flags = 0;
4180 	struct page *pagepool[16];
4181 	struct page *page;
4182 	struct extent_map *em_cached = NULL;
4183 	int nr = 0;
4184 	u64 prev_em_start = (u64)-1;
4185 
4186 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4187 		page = list_entry(pages->prev, struct page, lru);
4188 
4189 		prefetchw(&page->flags);
4190 		list_del(&page->lru);
4191 		if (add_to_page_cache_lru(page, mapping,
4192 					page->index, GFP_NOFS)) {
4193 			page_cache_release(page);
4194 			continue;
4195 		}
4196 
4197 		pagepool[nr++] = page;
4198 		if (nr < ARRAY_SIZE(pagepool))
4199 			continue;
4200 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4201 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4202 		nr = 0;
4203 	}
4204 	if (nr)
4205 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4206 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4207 
4208 	if (em_cached)
4209 		free_extent_map(em_cached);
4210 
4211 	BUG_ON(!list_empty(pages));
4212 	if (bio)
4213 		return submit_one_bio(READ, bio, 0, bio_flags);
4214 	return 0;
4215 }
4216 
4217 /*
4218  * basic invalidatepage code, this waits on any locked or writeback
4219  * ranges corresponding to the page, and then deletes any extent state
4220  * records from the tree
4221  */
4222 int extent_invalidatepage(struct extent_io_tree *tree,
4223 			  struct page *page, unsigned long offset)
4224 {
4225 	struct extent_state *cached_state = NULL;
4226 	u64 start = page_offset(page);
4227 	u64 end = start + PAGE_CACHE_SIZE - 1;
4228 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4229 
4230 	start += ALIGN(offset, blocksize);
4231 	if (start > end)
4232 		return 0;
4233 
4234 	lock_extent_bits(tree, start, end, &cached_state);
4235 	wait_on_page_writeback(page);
4236 	clear_extent_bit(tree, start, end,
4237 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4238 			 EXTENT_DO_ACCOUNTING,
4239 			 1, 1, &cached_state, GFP_NOFS);
4240 	return 0;
4241 }
4242 
4243 /*
4244  * a helper for releasepage, this tests for areas of the page that
4245  * are locked or under IO and drops the related state bits if it is safe
4246  * to drop the page.
4247  */
4248 static int try_release_extent_state(struct extent_map_tree *map,
4249 				    struct extent_io_tree *tree,
4250 				    struct page *page, gfp_t mask)
4251 {
4252 	u64 start = page_offset(page);
4253 	u64 end = start + PAGE_CACHE_SIZE - 1;
4254 	int ret = 1;
4255 
4256 	if (test_range_bit(tree, start, end,
4257 			   EXTENT_IOBITS, 0, NULL))
4258 		ret = 0;
4259 	else {
4260 		if ((mask & GFP_NOFS) == GFP_NOFS)
4261 			mask = GFP_NOFS;
4262 		/*
4263 		 * at this point we can safely clear everything except the
4264 		 * locked bit and the nodatasum bit
4265 		 */
4266 		ret = clear_extent_bit(tree, start, end,
4267 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4268 				 0, 0, NULL, mask);
4269 
4270 		/* if clear_extent_bit failed for enomem reasons,
4271 		 * we can't allow the release to continue.
4272 		 */
4273 		if (ret < 0)
4274 			ret = 0;
4275 		else
4276 			ret = 1;
4277 	}
4278 	return ret;
4279 }
4280 
4281 /*
4282  * a helper for releasepage.  As long as there are no locked extents
4283  * in the range corresponding to the page, both state records and extent
4284  * map records are removed
4285  */
4286 int try_release_extent_mapping(struct extent_map_tree *map,
4287 			       struct extent_io_tree *tree, struct page *page,
4288 			       gfp_t mask)
4289 {
4290 	struct extent_map *em;
4291 	u64 start = page_offset(page);
4292 	u64 end = start + PAGE_CACHE_SIZE - 1;
4293 
4294 	if (gfpflags_allow_blocking(mask) &&
4295 	    page->mapping->host->i_size > SZ_16M) {
4296 		u64 len;
4297 		while (start <= end) {
4298 			len = end - start + 1;
4299 			write_lock(&map->lock);
4300 			em = lookup_extent_mapping(map, start, len);
4301 			if (!em) {
4302 				write_unlock(&map->lock);
4303 				break;
4304 			}
4305 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4306 			    em->start != start) {
4307 				write_unlock(&map->lock);
4308 				free_extent_map(em);
4309 				break;
4310 			}
4311 			if (!test_range_bit(tree, em->start,
4312 					    extent_map_end(em) - 1,
4313 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4314 					    0, NULL)) {
4315 				remove_extent_mapping(map, em);
4316 				/* once for the rb tree */
4317 				free_extent_map(em);
4318 			}
4319 			start = extent_map_end(em);
4320 			write_unlock(&map->lock);
4321 
4322 			/* once for us */
4323 			free_extent_map(em);
4324 		}
4325 	}
4326 	return try_release_extent_state(map, tree, page, mask);
4327 }
4328 
4329 /*
4330  * helper function for fiemap, which doesn't want to see any holes.
4331  * This maps until we find something past 'last'
4332  */
4333 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4334 						u64 offset,
4335 						u64 last,
4336 						get_extent_t *get_extent)
4337 {
4338 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4339 	struct extent_map *em;
4340 	u64 len;
4341 
4342 	if (offset >= last)
4343 		return NULL;
4344 
4345 	while (1) {
4346 		len = last - offset;
4347 		if (len == 0)
4348 			break;
4349 		len = ALIGN(len, sectorsize);
4350 		em = get_extent(inode, NULL, 0, offset, len, 0);
4351 		if (IS_ERR_OR_NULL(em))
4352 			return em;
4353 
4354 		/* if this isn't a hole return it */
4355 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4356 		    em->block_start != EXTENT_MAP_HOLE) {
4357 			return em;
4358 		}
4359 
4360 		/* this is a hole, advance to the next extent */
4361 		offset = extent_map_end(em);
4362 		free_extent_map(em);
4363 		if (offset >= last)
4364 			break;
4365 	}
4366 	return NULL;
4367 }
4368 
4369 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4370 		__u64 start, __u64 len, get_extent_t *get_extent)
4371 {
4372 	int ret = 0;
4373 	u64 off = start;
4374 	u64 max = start + len;
4375 	u32 flags = 0;
4376 	u32 found_type;
4377 	u64 last;
4378 	u64 last_for_get_extent = 0;
4379 	u64 disko = 0;
4380 	u64 isize = i_size_read(inode);
4381 	struct btrfs_key found_key;
4382 	struct extent_map *em = NULL;
4383 	struct extent_state *cached_state = NULL;
4384 	struct btrfs_path *path;
4385 	struct btrfs_root *root = BTRFS_I(inode)->root;
4386 	int end = 0;
4387 	u64 em_start = 0;
4388 	u64 em_len = 0;
4389 	u64 em_end = 0;
4390 
4391 	if (len == 0)
4392 		return -EINVAL;
4393 
4394 	path = btrfs_alloc_path();
4395 	if (!path)
4396 		return -ENOMEM;
4397 	path->leave_spinning = 1;
4398 
4399 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4400 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4401 
4402 	/*
4403 	 * lookup the last file extent.  We're not using i_size here
4404 	 * because there might be preallocation past i_size
4405 	 */
4406 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4407 				       0);
4408 	if (ret < 0) {
4409 		btrfs_free_path(path);
4410 		return ret;
4411 	}
4412 	WARN_ON(!ret);
4413 	path->slots[0]--;
4414 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4415 	found_type = found_key.type;
4416 
4417 	/* No extents, but there might be delalloc bits */
4418 	if (found_key.objectid != btrfs_ino(inode) ||
4419 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4420 		/* have to trust i_size as the end */
4421 		last = (u64)-1;
4422 		last_for_get_extent = isize;
4423 	} else {
4424 		/*
4425 		 * remember the start of the last extent.  There are a
4426 		 * bunch of different factors that go into the length of the
4427 		 * extent, so its much less complex to remember where it started
4428 		 */
4429 		last = found_key.offset;
4430 		last_for_get_extent = last + 1;
4431 	}
4432 	btrfs_release_path(path);
4433 
4434 	/*
4435 	 * we might have some extents allocated but more delalloc past those
4436 	 * extents.  so, we trust isize unless the start of the last extent is
4437 	 * beyond isize
4438 	 */
4439 	if (last < isize) {
4440 		last = (u64)-1;
4441 		last_for_get_extent = isize;
4442 	}
4443 
4444 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4445 			 &cached_state);
4446 
4447 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4448 				   get_extent);
4449 	if (!em)
4450 		goto out;
4451 	if (IS_ERR(em)) {
4452 		ret = PTR_ERR(em);
4453 		goto out;
4454 	}
4455 
4456 	while (!end) {
4457 		u64 offset_in_extent = 0;
4458 
4459 		/* break if the extent we found is outside the range */
4460 		if (em->start >= max || extent_map_end(em) < off)
4461 			break;
4462 
4463 		/*
4464 		 * get_extent may return an extent that starts before our
4465 		 * requested range.  We have to make sure the ranges
4466 		 * we return to fiemap always move forward and don't
4467 		 * overlap, so adjust the offsets here
4468 		 */
4469 		em_start = max(em->start, off);
4470 
4471 		/*
4472 		 * record the offset from the start of the extent
4473 		 * for adjusting the disk offset below.  Only do this if the
4474 		 * extent isn't compressed since our in ram offset may be past
4475 		 * what we have actually allocated on disk.
4476 		 */
4477 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4478 			offset_in_extent = em_start - em->start;
4479 		em_end = extent_map_end(em);
4480 		em_len = em_end - em_start;
4481 		disko = 0;
4482 		flags = 0;
4483 
4484 		/*
4485 		 * bump off for our next call to get_extent
4486 		 */
4487 		off = extent_map_end(em);
4488 		if (off >= max)
4489 			end = 1;
4490 
4491 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4492 			end = 1;
4493 			flags |= FIEMAP_EXTENT_LAST;
4494 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4495 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4496 				  FIEMAP_EXTENT_NOT_ALIGNED);
4497 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4498 			flags |= (FIEMAP_EXTENT_DELALLOC |
4499 				  FIEMAP_EXTENT_UNKNOWN);
4500 		} else if (fieinfo->fi_extents_max) {
4501 			u64 bytenr = em->block_start -
4502 				(em->start - em->orig_start);
4503 
4504 			disko = em->block_start + offset_in_extent;
4505 
4506 			/*
4507 			 * As btrfs supports shared space, this information
4508 			 * can be exported to userspace tools via
4509 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4510 			 * then we're just getting a count and we can skip the
4511 			 * lookup stuff.
4512 			 */
4513 			ret = btrfs_check_shared(NULL, root->fs_info,
4514 						 root->objectid,
4515 						 btrfs_ino(inode), bytenr);
4516 			if (ret < 0)
4517 				goto out_free;
4518 			if (ret)
4519 				flags |= FIEMAP_EXTENT_SHARED;
4520 			ret = 0;
4521 		}
4522 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4523 			flags |= FIEMAP_EXTENT_ENCODED;
4524 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4525 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4526 
4527 		free_extent_map(em);
4528 		em = NULL;
4529 		if ((em_start >= last) || em_len == (u64)-1 ||
4530 		   (last == (u64)-1 && isize <= em_end)) {
4531 			flags |= FIEMAP_EXTENT_LAST;
4532 			end = 1;
4533 		}
4534 
4535 		/* now scan forward to see if this is really the last extent. */
4536 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4537 					   get_extent);
4538 		if (IS_ERR(em)) {
4539 			ret = PTR_ERR(em);
4540 			goto out;
4541 		}
4542 		if (!em) {
4543 			flags |= FIEMAP_EXTENT_LAST;
4544 			end = 1;
4545 		}
4546 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4547 					      em_len, flags);
4548 		if (ret) {
4549 			if (ret == 1)
4550 				ret = 0;
4551 			goto out_free;
4552 		}
4553 	}
4554 out_free:
4555 	free_extent_map(em);
4556 out:
4557 	btrfs_free_path(path);
4558 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4559 			     &cached_state, GFP_NOFS);
4560 	return ret;
4561 }
4562 
4563 static void __free_extent_buffer(struct extent_buffer *eb)
4564 {
4565 	btrfs_leak_debug_del(&eb->leak_list);
4566 	kmem_cache_free(extent_buffer_cache, eb);
4567 }
4568 
4569 int extent_buffer_under_io(struct extent_buffer *eb)
4570 {
4571 	return (atomic_read(&eb->io_pages) ||
4572 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4573 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4574 }
4575 
4576 /*
4577  * Helper for releasing extent buffer page.
4578  */
4579 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4580 {
4581 	unsigned long index;
4582 	struct page *page;
4583 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4584 
4585 	BUG_ON(extent_buffer_under_io(eb));
4586 
4587 	index = num_extent_pages(eb->start, eb->len);
4588 	if (index == 0)
4589 		return;
4590 
4591 	do {
4592 		index--;
4593 		page = eb->pages[index];
4594 		if (!page)
4595 			continue;
4596 		if (mapped)
4597 			spin_lock(&page->mapping->private_lock);
4598 		/*
4599 		 * We do this since we'll remove the pages after we've
4600 		 * removed the eb from the radix tree, so we could race
4601 		 * and have this page now attached to the new eb.  So
4602 		 * only clear page_private if it's still connected to
4603 		 * this eb.
4604 		 */
4605 		if (PagePrivate(page) &&
4606 		    page->private == (unsigned long)eb) {
4607 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4608 			BUG_ON(PageDirty(page));
4609 			BUG_ON(PageWriteback(page));
4610 			/*
4611 			 * We need to make sure we haven't be attached
4612 			 * to a new eb.
4613 			 */
4614 			ClearPagePrivate(page);
4615 			set_page_private(page, 0);
4616 			/* One for the page private */
4617 			page_cache_release(page);
4618 		}
4619 
4620 		if (mapped)
4621 			spin_unlock(&page->mapping->private_lock);
4622 
4623 		/* One for when we alloced the page */
4624 		page_cache_release(page);
4625 	} while (index != 0);
4626 }
4627 
4628 /*
4629  * Helper for releasing the extent buffer.
4630  */
4631 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4632 {
4633 	btrfs_release_extent_buffer_page(eb);
4634 	__free_extent_buffer(eb);
4635 }
4636 
4637 static struct extent_buffer *
4638 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4639 		      unsigned long len)
4640 {
4641 	struct extent_buffer *eb = NULL;
4642 
4643 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4644 	eb->start = start;
4645 	eb->len = len;
4646 	eb->fs_info = fs_info;
4647 	eb->bflags = 0;
4648 	rwlock_init(&eb->lock);
4649 	atomic_set(&eb->write_locks, 0);
4650 	atomic_set(&eb->read_locks, 0);
4651 	atomic_set(&eb->blocking_readers, 0);
4652 	atomic_set(&eb->blocking_writers, 0);
4653 	atomic_set(&eb->spinning_readers, 0);
4654 	atomic_set(&eb->spinning_writers, 0);
4655 	eb->lock_nested = 0;
4656 	init_waitqueue_head(&eb->write_lock_wq);
4657 	init_waitqueue_head(&eb->read_lock_wq);
4658 
4659 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4660 
4661 	spin_lock_init(&eb->refs_lock);
4662 	atomic_set(&eb->refs, 1);
4663 	atomic_set(&eb->io_pages, 0);
4664 
4665 	/*
4666 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4667 	 */
4668 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4669 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4670 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4671 
4672 	return eb;
4673 }
4674 
4675 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4676 {
4677 	unsigned long i;
4678 	struct page *p;
4679 	struct extent_buffer *new;
4680 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4681 
4682 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4683 	if (new == NULL)
4684 		return NULL;
4685 
4686 	for (i = 0; i < num_pages; i++) {
4687 		p = alloc_page(GFP_NOFS);
4688 		if (!p) {
4689 			btrfs_release_extent_buffer(new);
4690 			return NULL;
4691 		}
4692 		attach_extent_buffer_page(new, p);
4693 		WARN_ON(PageDirty(p));
4694 		SetPageUptodate(p);
4695 		new->pages[i] = p;
4696 	}
4697 
4698 	copy_extent_buffer(new, src, 0, 0, src->len);
4699 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4700 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4701 
4702 	return new;
4703 }
4704 
4705 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4706 						  u64 start, unsigned long len)
4707 {
4708 	struct extent_buffer *eb;
4709 	unsigned long num_pages;
4710 	unsigned long i;
4711 
4712 	num_pages = num_extent_pages(start, len);
4713 
4714 	eb = __alloc_extent_buffer(fs_info, start, len);
4715 	if (!eb)
4716 		return NULL;
4717 
4718 	for (i = 0; i < num_pages; i++) {
4719 		eb->pages[i] = alloc_page(GFP_NOFS);
4720 		if (!eb->pages[i])
4721 			goto err;
4722 	}
4723 	set_extent_buffer_uptodate(eb);
4724 	btrfs_set_header_nritems(eb, 0);
4725 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4726 
4727 	return eb;
4728 err:
4729 	for (; i > 0; i--)
4730 		__free_page(eb->pages[i - 1]);
4731 	__free_extent_buffer(eb);
4732 	return NULL;
4733 }
4734 
4735 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4736 						u64 start)
4737 {
4738 	unsigned long len;
4739 
4740 	if (!fs_info) {
4741 		/*
4742 		 * Called only from tests that don't always have a fs_info
4743 		 * available, but we know that nodesize is 4096
4744 		 */
4745 		len = 4096;
4746 	} else {
4747 		len = fs_info->tree_root->nodesize;
4748 	}
4749 
4750 	return __alloc_dummy_extent_buffer(fs_info, start, len);
4751 }
4752 
4753 static void check_buffer_tree_ref(struct extent_buffer *eb)
4754 {
4755 	int refs;
4756 	/* the ref bit is tricky.  We have to make sure it is set
4757 	 * if we have the buffer dirty.   Otherwise the
4758 	 * code to free a buffer can end up dropping a dirty
4759 	 * page
4760 	 *
4761 	 * Once the ref bit is set, it won't go away while the
4762 	 * buffer is dirty or in writeback, and it also won't
4763 	 * go away while we have the reference count on the
4764 	 * eb bumped.
4765 	 *
4766 	 * We can't just set the ref bit without bumping the
4767 	 * ref on the eb because free_extent_buffer might
4768 	 * see the ref bit and try to clear it.  If this happens
4769 	 * free_extent_buffer might end up dropping our original
4770 	 * ref by mistake and freeing the page before we are able
4771 	 * to add one more ref.
4772 	 *
4773 	 * So bump the ref count first, then set the bit.  If someone
4774 	 * beat us to it, drop the ref we added.
4775 	 */
4776 	refs = atomic_read(&eb->refs);
4777 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4778 		return;
4779 
4780 	spin_lock(&eb->refs_lock);
4781 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4782 		atomic_inc(&eb->refs);
4783 	spin_unlock(&eb->refs_lock);
4784 }
4785 
4786 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4787 		struct page *accessed)
4788 {
4789 	unsigned long num_pages, i;
4790 
4791 	check_buffer_tree_ref(eb);
4792 
4793 	num_pages = num_extent_pages(eb->start, eb->len);
4794 	for (i = 0; i < num_pages; i++) {
4795 		struct page *p = eb->pages[i];
4796 
4797 		if (p != accessed)
4798 			mark_page_accessed(p);
4799 	}
4800 }
4801 
4802 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4803 					 u64 start)
4804 {
4805 	struct extent_buffer *eb;
4806 
4807 	rcu_read_lock();
4808 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4809 			       start >> PAGE_CACHE_SHIFT);
4810 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4811 		rcu_read_unlock();
4812 		/*
4813 		 * Lock our eb's refs_lock to avoid races with
4814 		 * free_extent_buffer. When we get our eb it might be flagged
4815 		 * with EXTENT_BUFFER_STALE and another task running
4816 		 * free_extent_buffer might have seen that flag set,
4817 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4818 		 * writeback flags not set) and it's still in the tree (flag
4819 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4820 		 * of decrementing the extent buffer's reference count twice.
4821 		 * So here we could race and increment the eb's reference count,
4822 		 * clear its stale flag, mark it as dirty and drop our reference
4823 		 * before the other task finishes executing free_extent_buffer,
4824 		 * which would later result in an attempt to free an extent
4825 		 * buffer that is dirty.
4826 		 */
4827 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4828 			spin_lock(&eb->refs_lock);
4829 			spin_unlock(&eb->refs_lock);
4830 		}
4831 		mark_extent_buffer_accessed(eb, NULL);
4832 		return eb;
4833 	}
4834 	rcu_read_unlock();
4835 
4836 	return NULL;
4837 }
4838 
4839 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4840 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4841 					       u64 start)
4842 {
4843 	struct extent_buffer *eb, *exists = NULL;
4844 	int ret;
4845 
4846 	eb = find_extent_buffer(fs_info, start);
4847 	if (eb)
4848 		return eb;
4849 	eb = alloc_dummy_extent_buffer(fs_info, start);
4850 	if (!eb)
4851 		return NULL;
4852 	eb->fs_info = fs_info;
4853 again:
4854 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4855 	if (ret)
4856 		goto free_eb;
4857 	spin_lock(&fs_info->buffer_lock);
4858 	ret = radix_tree_insert(&fs_info->buffer_radix,
4859 				start >> PAGE_CACHE_SHIFT, eb);
4860 	spin_unlock(&fs_info->buffer_lock);
4861 	radix_tree_preload_end();
4862 	if (ret == -EEXIST) {
4863 		exists = find_extent_buffer(fs_info, start);
4864 		if (exists)
4865 			goto free_eb;
4866 		else
4867 			goto again;
4868 	}
4869 	check_buffer_tree_ref(eb);
4870 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4871 
4872 	/*
4873 	 * We will free dummy extent buffer's if they come into
4874 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4875 	 * want the buffers to stay in memory until we're done with them, so
4876 	 * bump the ref count again.
4877 	 */
4878 	atomic_inc(&eb->refs);
4879 	return eb;
4880 free_eb:
4881 	btrfs_release_extent_buffer(eb);
4882 	return exists;
4883 }
4884 #endif
4885 
4886 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4887 					  u64 start)
4888 {
4889 	unsigned long len = fs_info->tree_root->nodesize;
4890 	unsigned long num_pages = num_extent_pages(start, len);
4891 	unsigned long i;
4892 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4893 	struct extent_buffer *eb;
4894 	struct extent_buffer *exists = NULL;
4895 	struct page *p;
4896 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4897 	int uptodate = 1;
4898 	int ret;
4899 
4900 	eb = find_extent_buffer(fs_info, start);
4901 	if (eb)
4902 		return eb;
4903 
4904 	eb = __alloc_extent_buffer(fs_info, start, len);
4905 	if (!eb)
4906 		return NULL;
4907 
4908 	for (i = 0; i < num_pages; i++, index++) {
4909 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4910 		if (!p)
4911 			goto free_eb;
4912 
4913 		spin_lock(&mapping->private_lock);
4914 		if (PagePrivate(p)) {
4915 			/*
4916 			 * We could have already allocated an eb for this page
4917 			 * and attached one so lets see if we can get a ref on
4918 			 * the existing eb, and if we can we know it's good and
4919 			 * we can just return that one, else we know we can just
4920 			 * overwrite page->private.
4921 			 */
4922 			exists = (struct extent_buffer *)p->private;
4923 			if (atomic_inc_not_zero(&exists->refs)) {
4924 				spin_unlock(&mapping->private_lock);
4925 				unlock_page(p);
4926 				page_cache_release(p);
4927 				mark_extent_buffer_accessed(exists, p);
4928 				goto free_eb;
4929 			}
4930 			exists = NULL;
4931 
4932 			/*
4933 			 * Do this so attach doesn't complain and we need to
4934 			 * drop the ref the old guy had.
4935 			 */
4936 			ClearPagePrivate(p);
4937 			WARN_ON(PageDirty(p));
4938 			page_cache_release(p);
4939 		}
4940 		attach_extent_buffer_page(eb, p);
4941 		spin_unlock(&mapping->private_lock);
4942 		WARN_ON(PageDirty(p));
4943 		eb->pages[i] = p;
4944 		if (!PageUptodate(p))
4945 			uptodate = 0;
4946 
4947 		/*
4948 		 * see below about how we avoid a nasty race with release page
4949 		 * and why we unlock later
4950 		 */
4951 	}
4952 	if (uptodate)
4953 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4954 again:
4955 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4956 	if (ret)
4957 		goto free_eb;
4958 
4959 	spin_lock(&fs_info->buffer_lock);
4960 	ret = radix_tree_insert(&fs_info->buffer_radix,
4961 				start >> PAGE_CACHE_SHIFT, eb);
4962 	spin_unlock(&fs_info->buffer_lock);
4963 	radix_tree_preload_end();
4964 	if (ret == -EEXIST) {
4965 		exists = find_extent_buffer(fs_info, start);
4966 		if (exists)
4967 			goto free_eb;
4968 		else
4969 			goto again;
4970 	}
4971 	/* add one reference for the tree */
4972 	check_buffer_tree_ref(eb);
4973 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4974 
4975 	/*
4976 	 * there is a race where release page may have
4977 	 * tried to find this extent buffer in the radix
4978 	 * but failed.  It will tell the VM it is safe to
4979 	 * reclaim the, and it will clear the page private bit.
4980 	 * We must make sure to set the page private bit properly
4981 	 * after the extent buffer is in the radix tree so
4982 	 * it doesn't get lost
4983 	 */
4984 	SetPageChecked(eb->pages[0]);
4985 	for (i = 1; i < num_pages; i++) {
4986 		p = eb->pages[i];
4987 		ClearPageChecked(p);
4988 		unlock_page(p);
4989 	}
4990 	unlock_page(eb->pages[0]);
4991 	return eb;
4992 
4993 free_eb:
4994 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4995 	for (i = 0; i < num_pages; i++) {
4996 		if (eb->pages[i])
4997 			unlock_page(eb->pages[i]);
4998 	}
4999 
5000 	btrfs_release_extent_buffer(eb);
5001 	return exists;
5002 }
5003 
5004 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5005 {
5006 	struct extent_buffer *eb =
5007 			container_of(head, struct extent_buffer, rcu_head);
5008 
5009 	__free_extent_buffer(eb);
5010 }
5011 
5012 /* Expects to have eb->eb_lock already held */
5013 static int release_extent_buffer(struct extent_buffer *eb)
5014 {
5015 	WARN_ON(atomic_read(&eb->refs) == 0);
5016 	if (atomic_dec_and_test(&eb->refs)) {
5017 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5018 			struct btrfs_fs_info *fs_info = eb->fs_info;
5019 
5020 			spin_unlock(&eb->refs_lock);
5021 
5022 			spin_lock(&fs_info->buffer_lock);
5023 			radix_tree_delete(&fs_info->buffer_radix,
5024 					  eb->start >> PAGE_CACHE_SHIFT);
5025 			spin_unlock(&fs_info->buffer_lock);
5026 		} else {
5027 			spin_unlock(&eb->refs_lock);
5028 		}
5029 
5030 		/* Should be safe to release our pages at this point */
5031 		btrfs_release_extent_buffer_page(eb);
5032 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5033 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5034 			__free_extent_buffer(eb);
5035 			return 1;
5036 		}
5037 #endif
5038 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5039 		return 1;
5040 	}
5041 	spin_unlock(&eb->refs_lock);
5042 
5043 	return 0;
5044 }
5045 
5046 void free_extent_buffer(struct extent_buffer *eb)
5047 {
5048 	int refs;
5049 	int old;
5050 	if (!eb)
5051 		return;
5052 
5053 	while (1) {
5054 		refs = atomic_read(&eb->refs);
5055 		if (refs <= 3)
5056 			break;
5057 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5058 		if (old == refs)
5059 			return;
5060 	}
5061 
5062 	spin_lock(&eb->refs_lock);
5063 	if (atomic_read(&eb->refs) == 2 &&
5064 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5065 		atomic_dec(&eb->refs);
5066 
5067 	if (atomic_read(&eb->refs) == 2 &&
5068 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5069 	    !extent_buffer_under_io(eb) &&
5070 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5071 		atomic_dec(&eb->refs);
5072 
5073 	/*
5074 	 * I know this is terrible, but it's temporary until we stop tracking
5075 	 * the uptodate bits and such for the extent buffers.
5076 	 */
5077 	release_extent_buffer(eb);
5078 }
5079 
5080 void free_extent_buffer_stale(struct extent_buffer *eb)
5081 {
5082 	if (!eb)
5083 		return;
5084 
5085 	spin_lock(&eb->refs_lock);
5086 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5087 
5088 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5089 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5090 		atomic_dec(&eb->refs);
5091 	release_extent_buffer(eb);
5092 }
5093 
5094 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5095 {
5096 	unsigned long i;
5097 	unsigned long num_pages;
5098 	struct page *page;
5099 
5100 	num_pages = num_extent_pages(eb->start, eb->len);
5101 
5102 	for (i = 0; i < num_pages; i++) {
5103 		page = eb->pages[i];
5104 		if (!PageDirty(page))
5105 			continue;
5106 
5107 		lock_page(page);
5108 		WARN_ON(!PagePrivate(page));
5109 
5110 		clear_page_dirty_for_io(page);
5111 		spin_lock_irq(&page->mapping->tree_lock);
5112 		if (!PageDirty(page)) {
5113 			radix_tree_tag_clear(&page->mapping->page_tree,
5114 						page_index(page),
5115 						PAGECACHE_TAG_DIRTY);
5116 		}
5117 		spin_unlock_irq(&page->mapping->tree_lock);
5118 		ClearPageError(page);
5119 		unlock_page(page);
5120 	}
5121 	WARN_ON(atomic_read(&eb->refs) == 0);
5122 }
5123 
5124 int set_extent_buffer_dirty(struct extent_buffer *eb)
5125 {
5126 	unsigned long i;
5127 	unsigned long num_pages;
5128 	int was_dirty = 0;
5129 
5130 	check_buffer_tree_ref(eb);
5131 
5132 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5133 
5134 	num_pages = num_extent_pages(eb->start, eb->len);
5135 	WARN_ON(atomic_read(&eb->refs) == 0);
5136 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5137 
5138 	for (i = 0; i < num_pages; i++)
5139 		set_page_dirty(eb->pages[i]);
5140 	return was_dirty;
5141 }
5142 
5143 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5144 {
5145 	unsigned long i;
5146 	struct page *page;
5147 	unsigned long num_pages;
5148 
5149 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5150 	num_pages = num_extent_pages(eb->start, eb->len);
5151 	for (i = 0; i < num_pages; i++) {
5152 		page = eb->pages[i];
5153 		if (page)
5154 			ClearPageUptodate(page);
5155 	}
5156 }
5157 
5158 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5159 {
5160 	unsigned long i;
5161 	struct page *page;
5162 	unsigned long num_pages;
5163 
5164 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5165 	num_pages = num_extent_pages(eb->start, eb->len);
5166 	for (i = 0; i < num_pages; i++) {
5167 		page = eb->pages[i];
5168 		SetPageUptodate(page);
5169 	}
5170 }
5171 
5172 int extent_buffer_uptodate(struct extent_buffer *eb)
5173 {
5174 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5175 }
5176 
5177 int read_extent_buffer_pages(struct extent_io_tree *tree,
5178 			     struct extent_buffer *eb, u64 start, int wait,
5179 			     get_extent_t *get_extent, int mirror_num)
5180 {
5181 	unsigned long i;
5182 	unsigned long start_i;
5183 	struct page *page;
5184 	int err;
5185 	int ret = 0;
5186 	int locked_pages = 0;
5187 	int all_uptodate = 1;
5188 	unsigned long num_pages;
5189 	unsigned long num_reads = 0;
5190 	struct bio *bio = NULL;
5191 	unsigned long bio_flags = 0;
5192 
5193 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5194 		return 0;
5195 
5196 	if (start) {
5197 		WARN_ON(start < eb->start);
5198 		start_i = (start >> PAGE_CACHE_SHIFT) -
5199 			(eb->start >> PAGE_CACHE_SHIFT);
5200 	} else {
5201 		start_i = 0;
5202 	}
5203 
5204 	num_pages = num_extent_pages(eb->start, eb->len);
5205 	for (i = start_i; i < num_pages; i++) {
5206 		page = eb->pages[i];
5207 		if (wait == WAIT_NONE) {
5208 			if (!trylock_page(page))
5209 				goto unlock_exit;
5210 		} else {
5211 			lock_page(page);
5212 		}
5213 		locked_pages++;
5214 		if (!PageUptodate(page)) {
5215 			num_reads++;
5216 			all_uptodate = 0;
5217 		}
5218 	}
5219 	if (all_uptodate) {
5220 		if (start_i == 0)
5221 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5222 		goto unlock_exit;
5223 	}
5224 
5225 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5226 	eb->read_mirror = 0;
5227 	atomic_set(&eb->io_pages, num_reads);
5228 	for (i = start_i; i < num_pages; i++) {
5229 		page = eb->pages[i];
5230 		if (!PageUptodate(page)) {
5231 			ClearPageError(page);
5232 			err = __extent_read_full_page(tree, page,
5233 						      get_extent, &bio,
5234 						      mirror_num, &bio_flags,
5235 						      READ | REQ_META);
5236 			if (err)
5237 				ret = err;
5238 		} else {
5239 			unlock_page(page);
5240 		}
5241 	}
5242 
5243 	if (bio) {
5244 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5245 				     bio_flags);
5246 		if (err)
5247 			return err;
5248 	}
5249 
5250 	if (ret || wait != WAIT_COMPLETE)
5251 		return ret;
5252 
5253 	for (i = start_i; i < num_pages; i++) {
5254 		page = eb->pages[i];
5255 		wait_on_page_locked(page);
5256 		if (!PageUptodate(page))
5257 			ret = -EIO;
5258 	}
5259 
5260 	return ret;
5261 
5262 unlock_exit:
5263 	i = start_i;
5264 	while (locked_pages > 0) {
5265 		page = eb->pages[i];
5266 		i++;
5267 		unlock_page(page);
5268 		locked_pages--;
5269 	}
5270 	return ret;
5271 }
5272 
5273 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5274 			unsigned long start,
5275 			unsigned long len)
5276 {
5277 	size_t cur;
5278 	size_t offset;
5279 	struct page *page;
5280 	char *kaddr;
5281 	char *dst = (char *)dstv;
5282 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5283 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5284 
5285 	WARN_ON(start > eb->len);
5286 	WARN_ON(start + len > eb->start + eb->len);
5287 
5288 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5289 
5290 	while (len > 0) {
5291 		page = eb->pages[i];
5292 
5293 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5294 		kaddr = page_address(page);
5295 		memcpy(dst, kaddr + offset, cur);
5296 
5297 		dst += cur;
5298 		len -= cur;
5299 		offset = 0;
5300 		i++;
5301 	}
5302 }
5303 
5304 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5305 			unsigned long start,
5306 			unsigned long len)
5307 {
5308 	size_t cur;
5309 	size_t offset;
5310 	struct page *page;
5311 	char *kaddr;
5312 	char __user *dst = (char __user *)dstv;
5313 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5314 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5315 	int ret = 0;
5316 
5317 	WARN_ON(start > eb->len);
5318 	WARN_ON(start + len > eb->start + eb->len);
5319 
5320 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5321 
5322 	while (len > 0) {
5323 		page = eb->pages[i];
5324 
5325 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5326 		kaddr = page_address(page);
5327 		if (copy_to_user(dst, kaddr + offset, cur)) {
5328 			ret = -EFAULT;
5329 			break;
5330 		}
5331 
5332 		dst += cur;
5333 		len -= cur;
5334 		offset = 0;
5335 		i++;
5336 	}
5337 
5338 	return ret;
5339 }
5340 
5341 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5342 			       unsigned long min_len, char **map,
5343 			       unsigned long *map_start,
5344 			       unsigned long *map_len)
5345 {
5346 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5347 	char *kaddr;
5348 	struct page *p;
5349 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5350 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5351 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5352 		PAGE_CACHE_SHIFT;
5353 
5354 	if (i != end_i)
5355 		return -EINVAL;
5356 
5357 	if (i == 0) {
5358 		offset = start_offset;
5359 		*map_start = 0;
5360 	} else {
5361 		offset = 0;
5362 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5363 	}
5364 
5365 	if (start + min_len > eb->len) {
5366 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5367 		       "wanted %lu %lu\n",
5368 		       eb->start, eb->len, start, min_len);
5369 		return -EINVAL;
5370 	}
5371 
5372 	p = eb->pages[i];
5373 	kaddr = page_address(p);
5374 	*map = kaddr + offset;
5375 	*map_len = PAGE_CACHE_SIZE - offset;
5376 	return 0;
5377 }
5378 
5379 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5380 			  unsigned long start,
5381 			  unsigned long len)
5382 {
5383 	size_t cur;
5384 	size_t offset;
5385 	struct page *page;
5386 	char *kaddr;
5387 	char *ptr = (char *)ptrv;
5388 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5389 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5390 	int ret = 0;
5391 
5392 	WARN_ON(start > eb->len);
5393 	WARN_ON(start + len > eb->start + eb->len);
5394 
5395 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5396 
5397 	while (len > 0) {
5398 		page = eb->pages[i];
5399 
5400 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5401 
5402 		kaddr = page_address(page);
5403 		ret = memcmp(ptr, kaddr + offset, cur);
5404 		if (ret)
5405 			break;
5406 
5407 		ptr += cur;
5408 		len -= cur;
5409 		offset = 0;
5410 		i++;
5411 	}
5412 	return ret;
5413 }
5414 
5415 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5416 			 unsigned long start, unsigned long len)
5417 {
5418 	size_t cur;
5419 	size_t offset;
5420 	struct page *page;
5421 	char *kaddr;
5422 	char *src = (char *)srcv;
5423 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5424 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5425 
5426 	WARN_ON(start > eb->len);
5427 	WARN_ON(start + len > eb->start + eb->len);
5428 
5429 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5430 
5431 	while (len > 0) {
5432 		page = eb->pages[i];
5433 		WARN_ON(!PageUptodate(page));
5434 
5435 		cur = min(len, PAGE_CACHE_SIZE - offset);
5436 		kaddr = page_address(page);
5437 		memcpy(kaddr + offset, src, cur);
5438 
5439 		src += cur;
5440 		len -= cur;
5441 		offset = 0;
5442 		i++;
5443 	}
5444 }
5445 
5446 void memset_extent_buffer(struct extent_buffer *eb, char c,
5447 			  unsigned long start, unsigned long len)
5448 {
5449 	size_t cur;
5450 	size_t offset;
5451 	struct page *page;
5452 	char *kaddr;
5453 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5454 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5455 
5456 	WARN_ON(start > eb->len);
5457 	WARN_ON(start + len > eb->start + eb->len);
5458 
5459 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5460 
5461 	while (len > 0) {
5462 		page = eb->pages[i];
5463 		WARN_ON(!PageUptodate(page));
5464 
5465 		cur = min(len, PAGE_CACHE_SIZE - offset);
5466 		kaddr = page_address(page);
5467 		memset(kaddr + offset, c, cur);
5468 
5469 		len -= cur;
5470 		offset = 0;
5471 		i++;
5472 	}
5473 }
5474 
5475 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5476 			unsigned long dst_offset, unsigned long src_offset,
5477 			unsigned long len)
5478 {
5479 	u64 dst_len = dst->len;
5480 	size_t cur;
5481 	size_t offset;
5482 	struct page *page;
5483 	char *kaddr;
5484 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5485 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5486 
5487 	WARN_ON(src->len != dst_len);
5488 
5489 	offset = (start_offset + dst_offset) &
5490 		(PAGE_CACHE_SIZE - 1);
5491 
5492 	while (len > 0) {
5493 		page = dst->pages[i];
5494 		WARN_ON(!PageUptodate(page));
5495 
5496 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5497 
5498 		kaddr = page_address(page);
5499 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5500 
5501 		src_offset += cur;
5502 		len -= cur;
5503 		offset = 0;
5504 		i++;
5505 	}
5506 }
5507 
5508 /*
5509  * The extent buffer bitmap operations are done with byte granularity because
5510  * bitmap items are not guaranteed to be aligned to a word and therefore a
5511  * single word in a bitmap may straddle two pages in the extent buffer.
5512  */
5513 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5514 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5515 #define BITMAP_FIRST_BYTE_MASK(start) \
5516 	((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5517 #define BITMAP_LAST_BYTE_MASK(nbits) \
5518 	(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5519 
5520 /*
5521  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5522  * given bit number
5523  * @eb: the extent buffer
5524  * @start: offset of the bitmap item in the extent buffer
5525  * @nr: bit number
5526  * @page_index: return index of the page in the extent buffer that contains the
5527  * given bit number
5528  * @page_offset: return offset into the page given by page_index
5529  *
5530  * This helper hides the ugliness of finding the byte in an extent buffer which
5531  * contains a given bit.
5532  */
5533 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5534 				    unsigned long start, unsigned long nr,
5535 				    unsigned long *page_index,
5536 				    size_t *page_offset)
5537 {
5538 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5539 	size_t byte_offset = BIT_BYTE(nr);
5540 	size_t offset;
5541 
5542 	/*
5543 	 * The byte we want is the offset of the extent buffer + the offset of
5544 	 * the bitmap item in the extent buffer + the offset of the byte in the
5545 	 * bitmap item.
5546 	 */
5547 	offset = start_offset + start + byte_offset;
5548 
5549 	*page_index = offset >> PAGE_CACHE_SHIFT;
5550 	*page_offset = offset & (PAGE_CACHE_SIZE - 1);
5551 }
5552 
5553 /**
5554  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5555  * @eb: the extent buffer
5556  * @start: offset of the bitmap item in the extent buffer
5557  * @nr: bit number to test
5558  */
5559 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5560 			   unsigned long nr)
5561 {
5562 	char *kaddr;
5563 	struct page *page;
5564 	unsigned long i;
5565 	size_t offset;
5566 
5567 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5568 	page = eb->pages[i];
5569 	WARN_ON(!PageUptodate(page));
5570 	kaddr = page_address(page);
5571 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5572 }
5573 
5574 /**
5575  * extent_buffer_bitmap_set - set an area of a bitmap
5576  * @eb: the extent buffer
5577  * @start: offset of the bitmap item in the extent buffer
5578  * @pos: bit number of the first bit
5579  * @len: number of bits to set
5580  */
5581 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5582 			      unsigned long pos, unsigned long len)
5583 {
5584 	char *kaddr;
5585 	struct page *page;
5586 	unsigned long i;
5587 	size_t offset;
5588 	const unsigned int size = pos + len;
5589 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5590 	unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5591 
5592 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5593 	page = eb->pages[i];
5594 	WARN_ON(!PageUptodate(page));
5595 	kaddr = page_address(page);
5596 
5597 	while (len >= bits_to_set) {
5598 		kaddr[offset] |= mask_to_set;
5599 		len -= bits_to_set;
5600 		bits_to_set = BITS_PER_BYTE;
5601 		mask_to_set = ~0U;
5602 		if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5603 			offset = 0;
5604 			page = eb->pages[++i];
5605 			WARN_ON(!PageUptodate(page));
5606 			kaddr = page_address(page);
5607 		}
5608 	}
5609 	if (len) {
5610 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5611 		kaddr[offset] |= mask_to_set;
5612 	}
5613 }
5614 
5615 
5616 /**
5617  * extent_buffer_bitmap_clear - clear an area of a bitmap
5618  * @eb: the extent buffer
5619  * @start: offset of the bitmap item in the extent buffer
5620  * @pos: bit number of the first bit
5621  * @len: number of bits to clear
5622  */
5623 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5624 				unsigned long pos, unsigned long len)
5625 {
5626 	char *kaddr;
5627 	struct page *page;
5628 	unsigned long i;
5629 	size_t offset;
5630 	const unsigned int size = pos + len;
5631 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5632 	unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5633 
5634 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5635 	page = eb->pages[i];
5636 	WARN_ON(!PageUptodate(page));
5637 	kaddr = page_address(page);
5638 
5639 	while (len >= bits_to_clear) {
5640 		kaddr[offset] &= ~mask_to_clear;
5641 		len -= bits_to_clear;
5642 		bits_to_clear = BITS_PER_BYTE;
5643 		mask_to_clear = ~0U;
5644 		if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5645 			offset = 0;
5646 			page = eb->pages[++i];
5647 			WARN_ON(!PageUptodate(page));
5648 			kaddr = page_address(page);
5649 		}
5650 	}
5651 	if (len) {
5652 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5653 		kaddr[offset] &= ~mask_to_clear;
5654 	}
5655 }
5656 
5657 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5658 {
5659 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5660 	return distance < len;
5661 }
5662 
5663 static void copy_pages(struct page *dst_page, struct page *src_page,
5664 		       unsigned long dst_off, unsigned long src_off,
5665 		       unsigned long len)
5666 {
5667 	char *dst_kaddr = page_address(dst_page);
5668 	char *src_kaddr;
5669 	int must_memmove = 0;
5670 
5671 	if (dst_page != src_page) {
5672 		src_kaddr = page_address(src_page);
5673 	} else {
5674 		src_kaddr = dst_kaddr;
5675 		if (areas_overlap(src_off, dst_off, len))
5676 			must_memmove = 1;
5677 	}
5678 
5679 	if (must_memmove)
5680 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5681 	else
5682 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5683 }
5684 
5685 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5686 			   unsigned long src_offset, unsigned long len)
5687 {
5688 	size_t cur;
5689 	size_t dst_off_in_page;
5690 	size_t src_off_in_page;
5691 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5692 	unsigned long dst_i;
5693 	unsigned long src_i;
5694 
5695 	if (src_offset + len > dst->len) {
5696 		btrfs_err(dst->fs_info,
5697 			"memmove bogus src_offset %lu move "
5698 		       "len %lu dst len %lu", src_offset, len, dst->len);
5699 		BUG_ON(1);
5700 	}
5701 	if (dst_offset + len > dst->len) {
5702 		btrfs_err(dst->fs_info,
5703 			"memmove bogus dst_offset %lu move "
5704 		       "len %lu dst len %lu", dst_offset, len, dst->len);
5705 		BUG_ON(1);
5706 	}
5707 
5708 	while (len > 0) {
5709 		dst_off_in_page = (start_offset + dst_offset) &
5710 			(PAGE_CACHE_SIZE - 1);
5711 		src_off_in_page = (start_offset + src_offset) &
5712 			(PAGE_CACHE_SIZE - 1);
5713 
5714 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5715 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5716 
5717 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5718 					       src_off_in_page));
5719 		cur = min_t(unsigned long, cur,
5720 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5721 
5722 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5723 			   dst_off_in_page, src_off_in_page, cur);
5724 
5725 		src_offset += cur;
5726 		dst_offset += cur;
5727 		len -= cur;
5728 	}
5729 }
5730 
5731 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5732 			   unsigned long src_offset, unsigned long len)
5733 {
5734 	size_t cur;
5735 	size_t dst_off_in_page;
5736 	size_t src_off_in_page;
5737 	unsigned long dst_end = dst_offset + len - 1;
5738 	unsigned long src_end = src_offset + len - 1;
5739 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5740 	unsigned long dst_i;
5741 	unsigned long src_i;
5742 
5743 	if (src_offset + len > dst->len) {
5744 		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5745 		       "len %lu len %lu", src_offset, len, dst->len);
5746 		BUG_ON(1);
5747 	}
5748 	if (dst_offset + len > dst->len) {
5749 		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5750 		       "len %lu len %lu", dst_offset, len, dst->len);
5751 		BUG_ON(1);
5752 	}
5753 	if (dst_offset < src_offset) {
5754 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5755 		return;
5756 	}
5757 	while (len > 0) {
5758 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5759 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5760 
5761 		dst_off_in_page = (start_offset + dst_end) &
5762 			(PAGE_CACHE_SIZE - 1);
5763 		src_off_in_page = (start_offset + src_end) &
5764 			(PAGE_CACHE_SIZE - 1);
5765 
5766 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5767 		cur = min(cur, dst_off_in_page + 1);
5768 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5769 			   dst_off_in_page - cur + 1,
5770 			   src_off_in_page - cur + 1, cur);
5771 
5772 		dst_end -= cur;
5773 		src_end -= cur;
5774 		len -= cur;
5775 	}
5776 }
5777 
5778 int try_release_extent_buffer(struct page *page)
5779 {
5780 	struct extent_buffer *eb;
5781 
5782 	/*
5783 	 * We need to make sure noboody is attaching this page to an eb right
5784 	 * now.
5785 	 */
5786 	spin_lock(&page->mapping->private_lock);
5787 	if (!PagePrivate(page)) {
5788 		spin_unlock(&page->mapping->private_lock);
5789 		return 1;
5790 	}
5791 
5792 	eb = (struct extent_buffer *)page->private;
5793 	BUG_ON(!eb);
5794 
5795 	/*
5796 	 * This is a little awful but should be ok, we need to make sure that
5797 	 * the eb doesn't disappear out from under us while we're looking at
5798 	 * this page.
5799 	 */
5800 	spin_lock(&eb->refs_lock);
5801 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5802 		spin_unlock(&eb->refs_lock);
5803 		spin_unlock(&page->mapping->private_lock);
5804 		return 0;
5805 	}
5806 	spin_unlock(&page->mapping->private_lock);
5807 
5808 	/*
5809 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5810 	 * so just return, this page will likely be freed soon anyway.
5811 	 */
5812 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5813 		spin_unlock(&eb->refs_lock);
5814 		return 0;
5815 	}
5816 
5817 	return release_extent_buffer(eb);
5818 }
5819