xref: /openbmc/linux/fs/btrfs/extent_io.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				       unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (tree->ops)
172 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 						 mirror_num, bio_flags);
174 	else
175 		btrfsic_submit_bio(bio);
176 
177 	return blk_status_to_errno(ret);
178 }
179 
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183 	if (epd->bio) {
184 		epd->bio->bi_status = errno_to_blk_status(ret);
185 		bio_endio(epd->bio);
186 		epd->bio = NULL;
187 	}
188 }
189 
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198 	int ret = 0;
199 
200 	if (epd->bio) {
201 		ret = submit_one_bio(epd->bio, 0, 0);
202 		/*
203 		 * Clean up of epd->bio is handled by its endio function.
204 		 * And endio is either triggered by successful bio execution
205 		 * or the error handler of submit bio hook.
206 		 * So at this point, no matter what happened, we don't need
207 		 * to clean up epd->bio.
208 		 */
209 		epd->bio = NULL;
210 	}
211 	return ret;
212 }
213 
214 int __init extent_state_cache_init(void)
215 {
216 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 			sizeof(struct extent_state), 0,
218 			SLAB_MEM_SPREAD, NULL);
219 	if (!extent_state_cache)
220 		return -ENOMEM;
221 	return 0;
222 }
223 
224 int __init extent_io_init(void)
225 {
226 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 			sizeof(struct extent_buffer), 0,
228 			SLAB_MEM_SPREAD, NULL);
229 	if (!extent_buffer_cache)
230 		return -ENOMEM;
231 
232 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 			offsetof(struct btrfs_io_bio, bio),
234 			BIOSET_NEED_BVECS))
235 		goto free_buffer_cache;
236 
237 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 		goto free_bioset;
239 
240 	return 0;
241 
242 free_bioset:
243 	bioset_exit(&btrfs_bioset);
244 
245 free_buffer_cache:
246 	kmem_cache_destroy(extent_buffer_cache);
247 	extent_buffer_cache = NULL;
248 	return -ENOMEM;
249 }
250 
251 void __cold extent_state_cache_exit(void)
252 {
253 	btrfs_extent_state_leak_debug_check();
254 	kmem_cache_destroy(extent_state_cache);
255 }
256 
257 void __cold extent_io_exit(void)
258 {
259 	/*
260 	 * Make sure all delayed rcu free are flushed before we
261 	 * destroy caches.
262 	 */
263 	rcu_barrier();
264 	kmem_cache_destroy(extent_buffer_cache);
265 	bioset_exit(&btrfs_bioset);
266 }
267 
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276 
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 			 struct extent_io_tree *tree, unsigned int owner,
279 			 void *private_data)
280 {
281 	tree->fs_info = fs_info;
282 	tree->state = RB_ROOT;
283 	tree->ops = NULL;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, unsigned *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			unsigned *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    unsigned *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	struct inode *inode = tree->private_data;
680 
681 	btrfs_panic(btrfs_sb(inode->i_sb), err,
682 	"locking error: extent tree was modified by another thread while locked");
683 }
684 
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 			      unsigned bits, int wake, int delete,
699 			      struct extent_state **cached_state,
700 			      gfp_t mask, struct extent_changeset *changeset)
701 {
702 	struct extent_state *state;
703 	struct extent_state *cached;
704 	struct extent_state *prealloc = NULL;
705 	struct rb_node *node;
706 	u64 last_end;
707 	int err;
708 	int clear = 0;
709 
710 	btrfs_debug_check_extent_io_range(tree, start, end);
711 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712 
713 	if (bits & EXTENT_DELALLOC)
714 		bits |= EXTENT_NORESERVE;
715 
716 	if (delete)
717 		bits |= ~EXTENT_CTLBITS;
718 
719 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 		clear = 1;
721 again:
722 	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 		/*
724 		 * Don't care for allocation failure here because we might end
725 		 * up not needing the pre-allocated extent state at all, which
726 		 * is the case if we only have in the tree extent states that
727 		 * cover our input range and don't cover too any other range.
728 		 * If we end up needing a new extent state we allocate it later.
729 		 */
730 		prealloc = alloc_extent_state(mask);
731 	}
732 
733 	spin_lock(&tree->lock);
734 	if (cached_state) {
735 		cached = *cached_state;
736 
737 		if (clear) {
738 			*cached_state = NULL;
739 			cached_state = NULL;
740 		}
741 
742 		if (cached && extent_state_in_tree(cached) &&
743 		    cached->start <= start && cached->end > start) {
744 			if (clear)
745 				refcount_dec(&cached->refs);
746 			state = cached;
747 			goto hit_next;
748 		}
749 		if (clear)
750 			free_extent_state(cached);
751 	}
752 	/*
753 	 * this search will find the extents that end after
754 	 * our range starts
755 	 */
756 	node = tree_search(tree, start);
757 	if (!node)
758 		goto out;
759 	state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 	if (state->start > end)
762 		goto out;
763 	WARN_ON(state->end < start);
764 	last_end = state->end;
765 
766 	/* the state doesn't have the wanted bits, go ahead */
767 	if (!(state->state & bits)) {
768 		state = next_state(state);
769 		goto next;
770 	}
771 
772 	/*
773 	 *     | ---- desired range ---- |
774 	 *  | state | or
775 	 *  | ------------- state -------------- |
776 	 *
777 	 * We need to split the extent we found, and may flip
778 	 * bits on second half.
779 	 *
780 	 * If the extent we found extends past our range, we
781 	 * just split and search again.  It'll get split again
782 	 * the next time though.
783 	 *
784 	 * If the extent we found is inside our range, we clear
785 	 * the desired bit on it.
786 	 */
787 
788 	if (state->start < start) {
789 		prealloc = alloc_extent_state_atomic(prealloc);
790 		BUG_ON(!prealloc);
791 		err = split_state(tree, state, prealloc, start);
792 		if (err)
793 			extent_io_tree_panic(tree, err);
794 
795 		prealloc = NULL;
796 		if (err)
797 			goto out;
798 		if (state->end <= end) {
799 			state = clear_state_bit(tree, state, &bits, wake,
800 						changeset);
801 			goto next;
802 		}
803 		goto search_again;
804 	}
805 	/*
806 	 * | ---- desired range ---- |
807 	 *                        | state |
808 	 * We need to split the extent, and clear the bit
809 	 * on the first half
810 	 */
811 	if (state->start <= end && state->end > end) {
812 		prealloc = alloc_extent_state_atomic(prealloc);
813 		BUG_ON(!prealloc);
814 		err = split_state(tree, state, prealloc, end + 1);
815 		if (err)
816 			extent_io_tree_panic(tree, err);
817 
818 		if (wake)
819 			wake_up(&state->wq);
820 
821 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
822 
823 		prealloc = NULL;
824 		goto out;
825 	}
826 
827 	state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 	if (last_end == (u64)-1)
830 		goto out;
831 	start = last_end + 1;
832 	if (start <= end && state && !need_resched())
833 		goto hit_next;
834 
835 search_again:
836 	if (start > end)
837 		goto out;
838 	spin_unlock(&tree->lock);
839 	if (gfpflags_allow_blocking(mask))
840 		cond_resched();
841 	goto again;
842 
843 out:
844 	spin_unlock(&tree->lock);
845 	if (prealloc)
846 		free_extent_state(prealloc);
847 
848 	return 0;
849 
850 }
851 
852 static void wait_on_state(struct extent_io_tree *tree,
853 			  struct extent_state *state)
854 		__releases(tree->lock)
855 		__acquires(tree->lock)
856 {
857 	DEFINE_WAIT(wait);
858 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 	spin_unlock(&tree->lock);
860 	schedule();
861 	spin_lock(&tree->lock);
862 	finish_wait(&state->wq, &wait);
863 }
864 
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 			    unsigned long bits)
872 {
873 	struct extent_state *state;
874 	struct rb_node *node;
875 
876 	btrfs_debug_check_extent_io_range(tree, start, end);
877 
878 	spin_lock(&tree->lock);
879 again:
880 	while (1) {
881 		/*
882 		 * this search will find all the extents that end after
883 		 * our range starts
884 		 */
885 		node = tree_search(tree, start);
886 process_node:
887 		if (!node)
888 			break;
889 
890 		state = rb_entry(node, struct extent_state, rb_node);
891 
892 		if (state->start > end)
893 			goto out;
894 
895 		if (state->state & bits) {
896 			start = state->start;
897 			refcount_inc(&state->refs);
898 			wait_on_state(tree, state);
899 			free_extent_state(state);
900 			goto again;
901 		}
902 		start = state->end + 1;
903 
904 		if (start > end)
905 			break;
906 
907 		if (!cond_resched_lock(&tree->lock)) {
908 			node = rb_next(node);
909 			goto process_node;
910 		}
911 	}
912 out:
913 	spin_unlock(&tree->lock);
914 }
915 
916 static void set_state_bits(struct extent_io_tree *tree,
917 			   struct extent_state *state,
918 			   unsigned *bits, struct extent_changeset *changeset)
919 {
920 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 	int ret;
922 
923 	if (tree->private_data && is_data_inode(tree->private_data))
924 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
925 
926 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 		u64 range = state->end - state->start + 1;
928 		tree->dirty_bytes += range;
929 	}
930 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 	BUG_ON(ret < 0);
932 	state->state |= bits_to_set;
933 }
934 
935 static void cache_state_if_flags(struct extent_state *state,
936 				 struct extent_state **cached_ptr,
937 				 unsigned flags)
938 {
939 	if (cached_ptr && !(*cached_ptr)) {
940 		if (!flags || (state->state & flags)) {
941 			*cached_ptr = state;
942 			refcount_inc(&state->refs);
943 		}
944 	}
945 }
946 
947 static void cache_state(struct extent_state *state,
948 			struct extent_state **cached_ptr)
949 {
950 	return cache_state_if_flags(state, cached_ptr,
951 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953 
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964 
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 		 unsigned bits, unsigned exclusive_bits,
968 		 u64 *failed_start, struct extent_state **cached_state,
969 		 gfp_t mask, struct extent_changeset *changeset)
970 {
971 	struct extent_state *state;
972 	struct extent_state *prealloc = NULL;
973 	struct rb_node *node;
974 	struct rb_node **p;
975 	struct rb_node *parent;
976 	int err = 0;
977 	u64 last_start;
978 	u64 last_end;
979 
980 	btrfs_debug_check_extent_io_range(tree, start, end);
981 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982 
983 again:
984 	if (!prealloc && gfpflags_allow_blocking(mask)) {
985 		/*
986 		 * Don't care for allocation failure here because we might end
987 		 * up not needing the pre-allocated extent state at all, which
988 		 * is the case if we only have in the tree extent states that
989 		 * cover our input range and don't cover too any other range.
990 		 * If we end up needing a new extent state we allocate it later.
991 		 */
992 		prealloc = alloc_extent_state(mask);
993 	}
994 
995 	spin_lock(&tree->lock);
996 	if (cached_state && *cached_state) {
997 		state = *cached_state;
998 		if (state->start <= start && state->end > start &&
999 		    extent_state_in_tree(state)) {
1000 			node = &state->rb_node;
1001 			goto hit_next;
1002 		}
1003 	}
1004 	/*
1005 	 * this search will find all the extents that end after
1006 	 * our range starts.
1007 	 */
1008 	node = tree_search_for_insert(tree, start, &p, &parent);
1009 	if (!node) {
1010 		prealloc = alloc_extent_state_atomic(prealloc);
1011 		BUG_ON(!prealloc);
1012 		err = insert_state(tree, prealloc, start, end,
1013 				   &p, &parent, &bits, changeset);
1014 		if (err)
1015 			extent_io_tree_panic(tree, err);
1016 
1017 		cache_state(prealloc, cached_state);
1018 		prealloc = NULL;
1019 		goto out;
1020 	}
1021 	state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 	last_start = state->start;
1024 	last_end = state->end;
1025 
1026 	/*
1027 	 * | ---- desired range ---- |
1028 	 * | state |
1029 	 *
1030 	 * Just lock what we found and keep going
1031 	 */
1032 	if (state->start == start && state->end <= end) {
1033 		if (state->state & exclusive_bits) {
1034 			*failed_start = state->start;
1035 			err = -EEXIST;
1036 			goto out;
1037 		}
1038 
1039 		set_state_bits(tree, state, &bits, changeset);
1040 		cache_state(state, cached_state);
1041 		merge_state(tree, state);
1042 		if (last_end == (u64)-1)
1043 			goto out;
1044 		start = last_end + 1;
1045 		state = next_state(state);
1046 		if (start < end && state && state->start == start &&
1047 		    !need_resched())
1048 			goto hit_next;
1049 		goto search_again;
1050 	}
1051 
1052 	/*
1053 	 *     | ---- desired range ---- |
1054 	 * | state |
1055 	 *   or
1056 	 * | ------------- state -------------- |
1057 	 *
1058 	 * We need to split the extent we found, and may flip bits on
1059 	 * second half.
1060 	 *
1061 	 * If the extent we found extends past our
1062 	 * range, we just split and search again.  It'll get split
1063 	 * again the next time though.
1064 	 *
1065 	 * If the extent we found is inside our range, we set the
1066 	 * desired bit on it.
1067 	 */
1068 	if (state->start < start) {
1069 		if (state->state & exclusive_bits) {
1070 			*failed_start = start;
1071 			err = -EEXIST;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * If this extent already has all the bits we want set, then
1077 		 * skip it, not necessary to split it or do anything with it.
1078 		 */
1079 		if ((state->state & bits) == bits) {
1080 			start = state->end + 1;
1081 			cache_state(state, cached_state);
1082 			goto search_again;
1083 		}
1084 
1085 		prealloc = alloc_extent_state_atomic(prealloc);
1086 		BUG_ON(!prealloc);
1087 		err = split_state(tree, state, prealloc, start);
1088 		if (err)
1089 			extent_io_tree_panic(tree, err);
1090 
1091 		prealloc = NULL;
1092 		if (err)
1093 			goto out;
1094 		if (state->end <= end) {
1095 			set_state_bits(tree, state, &bits, changeset);
1096 			cache_state(state, cached_state);
1097 			merge_state(tree, state);
1098 			if (last_end == (u64)-1)
1099 				goto out;
1100 			start = last_end + 1;
1101 			state = next_state(state);
1102 			if (start < end && state && state->start == start &&
1103 			    !need_resched())
1104 				goto hit_next;
1105 		}
1106 		goto search_again;
1107 	}
1108 	/*
1109 	 * | ---- desired range ---- |
1110 	 *     | state | or               | state |
1111 	 *
1112 	 * There's a hole, we need to insert something in it and
1113 	 * ignore the extent we found.
1114 	 */
1115 	if (state->start > start) {
1116 		u64 this_end;
1117 		if (end < last_start)
1118 			this_end = end;
1119 		else
1120 			this_end = last_start - 1;
1121 
1122 		prealloc = alloc_extent_state_atomic(prealloc);
1123 		BUG_ON(!prealloc);
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   NULL, NULL, &bits, changeset);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 
1134 		cache_state(prealloc, cached_state);
1135 		prealloc = NULL;
1136 		start = this_end + 1;
1137 		goto search_again;
1138 	}
1139 	/*
1140 	 * | ---- desired range ---- |
1141 	 *                        | state |
1142 	 * We need to split the extent, and set the bit
1143 	 * on the first half
1144 	 */
1145 	if (state->start <= end && state->end > end) {
1146 		if (state->state & exclusive_bits) {
1147 			*failed_start = start;
1148 			err = -EEXIST;
1149 			goto out;
1150 		}
1151 
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		BUG_ON(!prealloc);
1154 		err = split_state(tree, state, prealloc, end + 1);
1155 		if (err)
1156 			extent_io_tree_panic(tree, err);
1157 
1158 		set_state_bits(tree, prealloc, &bits, changeset);
1159 		cache_state(prealloc, cached_state);
1160 		merge_state(tree, prealloc);
1161 		prealloc = NULL;
1162 		goto out;
1163 	}
1164 
1165 search_again:
1166 	if (start > end)
1167 		goto out;
1168 	spin_unlock(&tree->lock);
1169 	if (gfpflags_allow_blocking(mask))
1170 		cond_resched();
1171 	goto again;
1172 
1173 out:
1174 	spin_unlock(&tree->lock);
1175 	if (prealloc)
1176 		free_extent_state(prealloc);
1177 
1178 	return err;
1179 
1180 }
1181 
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 		   unsigned bits, u64 * failed_start,
1184 		   struct extent_state **cached_state, gfp_t mask)
1185 {
1186 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 				cached_state, mask, NULL);
1188 }
1189 
1190 
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  * 			another
1194  * @tree:	the io tree to search
1195  * @start:	the start offset in bytes
1196  * @end:	the end offset in bytes (inclusive)
1197  * @bits:	the bits to set in this range
1198  * @clear_bits:	the bits to clear in this range
1199  * @cached_state:	state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 		       unsigned bits, unsigned clear_bits,
1211 		       struct extent_state **cached_state)
1212 {
1213 	struct extent_state *state;
1214 	struct extent_state *prealloc = NULL;
1215 	struct rb_node *node;
1216 	struct rb_node **p;
1217 	struct rb_node *parent;
1218 	int err = 0;
1219 	u64 last_start;
1220 	u64 last_end;
1221 	bool first_iteration = true;
1222 
1223 	btrfs_debug_check_extent_io_range(tree, start, end);
1224 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 				       clear_bits);
1226 
1227 again:
1228 	if (!prealloc) {
1229 		/*
1230 		 * Best effort, don't worry if extent state allocation fails
1231 		 * here for the first iteration. We might have a cached state
1232 		 * that matches exactly the target range, in which case no
1233 		 * extent state allocations are needed. We'll only know this
1234 		 * after locking the tree.
1235 		 */
1236 		prealloc = alloc_extent_state(GFP_NOFS);
1237 		if (!prealloc && !first_iteration)
1238 			return -ENOMEM;
1239 	}
1240 
1241 	spin_lock(&tree->lock);
1242 	if (cached_state && *cached_state) {
1243 		state = *cached_state;
1244 		if (state->start <= start && state->end > start &&
1245 		    extent_state_in_tree(state)) {
1246 			node = &state->rb_node;
1247 			goto hit_next;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * this search will find all the extents that end after
1253 	 * our range starts.
1254 	 */
1255 	node = tree_search_for_insert(tree, start, &p, &parent);
1256 	if (!node) {
1257 		prealloc = alloc_extent_state_atomic(prealloc);
1258 		if (!prealloc) {
1259 			err = -ENOMEM;
1260 			goto out;
1261 		}
1262 		err = insert_state(tree, prealloc, start, end,
1263 				   &p, &parent, &bits, NULL);
1264 		if (err)
1265 			extent_io_tree_panic(tree, err);
1266 		cache_state(prealloc, cached_state);
1267 		prealloc = NULL;
1268 		goto out;
1269 	}
1270 	state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272 	last_start = state->start;
1273 	last_end = state->end;
1274 
1275 	/*
1276 	 * | ---- desired range ---- |
1277 	 * | state |
1278 	 *
1279 	 * Just lock what we found and keep going
1280 	 */
1281 	if (state->start == start && state->end <= end) {
1282 		set_state_bits(tree, state, &bits, NULL);
1283 		cache_state(state, cached_state);
1284 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 		if (last_end == (u64)-1)
1286 			goto out;
1287 		start = last_end + 1;
1288 		if (start < end && state && state->start == start &&
1289 		    !need_resched())
1290 			goto hit_next;
1291 		goto search_again;
1292 	}
1293 
1294 	/*
1295 	 *     | ---- desired range ---- |
1296 	 * | state |
1297 	 *   or
1298 	 * | ------------- state -------------- |
1299 	 *
1300 	 * We need to split the extent we found, and may flip bits on
1301 	 * second half.
1302 	 *
1303 	 * If the extent we found extends past our
1304 	 * range, we just split and search again.  It'll get split
1305 	 * again the next time though.
1306 	 *
1307 	 * If the extent we found is inside our range, we set the
1308 	 * desired bit on it.
1309 	 */
1310 	if (state->start < start) {
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 		err = split_state(tree, state, prealloc, start);
1317 		if (err)
1318 			extent_io_tree_panic(tree, err);
1319 		prealloc = NULL;
1320 		if (err)
1321 			goto out;
1322 		if (state->end <= end) {
1323 			set_state_bits(tree, state, &bits, NULL);
1324 			cache_state(state, cached_state);
1325 			state = clear_state_bit(tree, state, &clear_bits, 0,
1326 						NULL);
1327 			if (last_end == (u64)-1)
1328 				goto out;
1329 			start = last_end + 1;
1330 			if (start < end && state && state->start == start &&
1331 			    !need_resched())
1332 				goto hit_next;
1333 		}
1334 		goto search_again;
1335 	}
1336 	/*
1337 	 * | ---- desired range ---- |
1338 	 *     | state | or               | state |
1339 	 *
1340 	 * There's a hole, we need to insert something in it and
1341 	 * ignore the extent we found.
1342 	 */
1343 	if (state->start > start) {
1344 		u64 this_end;
1345 		if (end < last_start)
1346 			this_end = end;
1347 		else
1348 			this_end = last_start - 1;
1349 
1350 		prealloc = alloc_extent_state_atomic(prealloc);
1351 		if (!prealloc) {
1352 			err = -ENOMEM;
1353 			goto out;
1354 		}
1355 
1356 		/*
1357 		 * Avoid to free 'prealloc' if it can be merged with
1358 		 * the later extent.
1359 		 */
1360 		err = insert_state(tree, prealloc, start, this_end,
1361 				   NULL, NULL, &bits, NULL);
1362 		if (err)
1363 			extent_io_tree_panic(tree, err);
1364 		cache_state(prealloc, cached_state);
1365 		prealloc = NULL;
1366 		start = this_end + 1;
1367 		goto search_again;
1368 	}
1369 	/*
1370 	 * | ---- desired range ---- |
1371 	 *                        | state |
1372 	 * We need to split the extent, and set the bit
1373 	 * on the first half
1374 	 */
1375 	if (state->start <= end && state->end > end) {
1376 		prealloc = alloc_extent_state_atomic(prealloc);
1377 		if (!prealloc) {
1378 			err = -ENOMEM;
1379 			goto out;
1380 		}
1381 
1382 		err = split_state(tree, state, prealloc, end + 1);
1383 		if (err)
1384 			extent_io_tree_panic(tree, err);
1385 
1386 		set_state_bits(tree, prealloc, &bits, NULL);
1387 		cache_state(prealloc, cached_state);
1388 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 		prealloc = NULL;
1390 		goto out;
1391 	}
1392 
1393 search_again:
1394 	if (start > end)
1395 		goto out;
1396 	spin_unlock(&tree->lock);
1397 	cond_resched();
1398 	first_iteration = false;
1399 	goto again;
1400 
1401 out:
1402 	spin_unlock(&tree->lock);
1403 	if (prealloc)
1404 		free_extent_state(prealloc);
1405 
1406 	return err;
1407 }
1408 
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 			   unsigned bits, struct extent_changeset *changeset)
1412 {
1413 	/*
1414 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 	 * either fail with -EEXIST or changeset will record the whole
1417 	 * range.
1418 	 */
1419 	BUG_ON(bits & EXTENT_LOCKED);
1420 
1421 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 				changeset);
1423 }
1424 
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 			   unsigned bits)
1427 {
1428 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 				GFP_NOWAIT, NULL);
1430 }
1431 
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 		     unsigned bits, int wake, int delete,
1434 		     struct extent_state **cached)
1435 {
1436 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 				  cached, GFP_NOFS, NULL);
1438 }
1439 
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 		unsigned bits, struct extent_changeset *changeset)
1442 {
1443 	/*
1444 	 * Don't support EXTENT_LOCKED case, same reason as
1445 	 * set_record_extent_bits().
1446 	 */
1447 	BUG_ON(bits & EXTENT_LOCKED);
1448 
1449 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 				  changeset);
1451 }
1452 
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 		     struct extent_state **cached_state)
1459 {
1460 	int err;
1461 	u64 failed_start;
1462 
1463 	while (1) {
1464 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 				       EXTENT_LOCKED, &failed_start,
1466 				       cached_state, GFP_NOFS, NULL);
1467 		if (err == -EEXIST) {
1468 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 			start = failed_start;
1470 		} else
1471 			break;
1472 		WARN_ON(start > end);
1473 	}
1474 	return err;
1475 }
1476 
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 	int err;
1480 	u64 failed_start;
1481 
1482 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 			       &failed_start, NULL, GFP_NOFS, NULL);
1484 	if (err == -EEXIST) {
1485 		if (failed_start > start)
1486 			clear_extent_bit(tree, start, failed_start - 1,
1487 					 EXTENT_LOCKED, 1, 0, NULL);
1488 		return 0;
1489 	}
1490 	return 1;
1491 }
1492 
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495 	unsigned long index = start >> PAGE_SHIFT;
1496 	unsigned long end_index = end >> PAGE_SHIFT;
1497 	struct page *page;
1498 
1499 	while (index <= end_index) {
1500 		page = find_get_page(inode->i_mapping, index);
1501 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 		clear_page_dirty_for_io(page);
1503 		put_page(page);
1504 		index++;
1505 	}
1506 }
1507 
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 	unsigned long index = start >> PAGE_SHIFT;
1511 	unsigned long end_index = end >> PAGE_SHIFT;
1512 	struct page *page;
1513 
1514 	while (index <= end_index) {
1515 		page = find_get_page(inode->i_mapping, index);
1516 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 		__set_page_dirty_nobuffers(page);
1518 		account_page_redirty(page);
1519 		put_page(page);
1520 		index++;
1521 	}
1522 }
1523 
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530 			    u64 start, unsigned bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1565 			  struct extent_state **cached_state)
1566 {
1567 	struct extent_state *state;
1568 	int ret = 1;
1569 
1570 	spin_lock(&tree->lock);
1571 	if (cached_state && *cached_state) {
1572 		state = *cached_state;
1573 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 			while ((state = next_state(state)) != NULL) {
1575 				if (state->state & bits)
1576 					goto got_it;
1577 			}
1578 			free_extent_state(*cached_state);
1579 			*cached_state = NULL;
1580 			goto out;
1581 		}
1582 		free_extent_state(*cached_state);
1583 		*cached_state = NULL;
1584 	}
1585 
1586 	state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588 	if (state) {
1589 		cache_state_if_flags(state, cached_state, 0);
1590 		*start_ret = state->start;
1591 		*end_ret = state->end;
1592 		ret = 0;
1593 	}
1594 out:
1595 	spin_unlock(&tree->lock);
1596 	return ret;
1597 }
1598 
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 			       u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617 	struct extent_state *state;
1618 	int ret = 1;
1619 
1620 	spin_lock(&tree->lock);
1621 	state = find_first_extent_bit_state(tree, start, bits);
1622 	if (state) {
1623 		*start_ret = state->start;
1624 		*end_ret = state->end;
1625 		while ((state = next_state(state)) != NULL) {
1626 			if (state->start > (*end_ret + 1))
1627 				break;
1628 			*end_ret = state->end;
1629 		}
1630 		ret = 0;
1631 	}
1632 	spin_unlock(&tree->lock);
1633 	return ret;
1634 }
1635 
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654 	struct extent_state *state;
1655 	struct rb_node *node, *prev = NULL, *next;
1656 
1657 	spin_lock(&tree->lock);
1658 
1659 	/* Find first extent with bits cleared */
1660 	while (1) {
1661 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 		if (!node && !next && !prev) {
1663 			/*
1664 			 * Tree is completely empty, send full range and let
1665 			 * caller deal with it
1666 			 */
1667 			*start_ret = 0;
1668 			*end_ret = -1;
1669 			goto out;
1670 		} else if (!node && !next) {
1671 			/*
1672 			 * We are past the last allocated chunk, set start at
1673 			 * the end of the last extent.
1674 			 */
1675 			state = rb_entry(prev, struct extent_state, rb_node);
1676 			*start_ret = state->end + 1;
1677 			*end_ret = -1;
1678 			goto out;
1679 		} else if (!node) {
1680 			node = next;
1681 		}
1682 		/*
1683 		 * At this point 'node' either contains 'start' or start is
1684 		 * before 'node'
1685 		 */
1686 		state = rb_entry(node, struct extent_state, rb_node);
1687 
1688 		if (in_range(start, state->start, state->end - state->start + 1)) {
1689 			if (state->state & bits) {
1690 				/*
1691 				 * |--range with bits sets--|
1692 				 *    |
1693 				 *    start
1694 				 */
1695 				start = state->end + 1;
1696 			} else {
1697 				/*
1698 				 * 'start' falls within a range that doesn't
1699 				 * have the bits set, so take its start as
1700 				 * the beginning of the desired range
1701 				 *
1702 				 * |--range with bits cleared----|
1703 				 *      |
1704 				 *      start
1705 				 */
1706 				*start_ret = state->start;
1707 				break;
1708 			}
1709 		} else {
1710 			/*
1711 			 * |---prev range---|---hole/unset---|---node range---|
1712 			 *                          |
1713 			 *                        start
1714 			 *
1715 			 *                        or
1716 			 *
1717 			 * |---hole/unset--||--first node--|
1718 			 * 0   |
1719 			 *    start
1720 			 */
1721 			if (prev) {
1722 				state = rb_entry(prev, struct extent_state,
1723 						 rb_node);
1724 				*start_ret = state->end + 1;
1725 			} else {
1726 				*start_ret = 0;
1727 			}
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Find the longest stretch from start until an entry which has the
1734 	 * bits set
1735 	 */
1736 	while (1) {
1737 		state = rb_entry(node, struct extent_state, rb_node);
1738 		if (state->end >= start && !(state->state & bits)) {
1739 			*end_ret = state->end;
1740 		} else {
1741 			*end_ret = state->start - 1;
1742 			break;
1743 		}
1744 
1745 		node = rb_next(node);
1746 		if (!node)
1747 			break;
1748 	}
1749 out:
1750 	spin_unlock(&tree->lock);
1751 }
1752 
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 			       u64 *end, u64 max_bytes,
1761 			       struct extent_state **cached_state)
1762 {
1763 	struct rb_node *node;
1764 	struct extent_state *state;
1765 	u64 cur_start = *start;
1766 	bool found = false;
1767 	u64 total_bytes = 0;
1768 
1769 	spin_lock(&tree->lock);
1770 
1771 	/*
1772 	 * this search will find all the extents that end after
1773 	 * our range starts.
1774 	 */
1775 	node = tree_search(tree, cur_start);
1776 	if (!node) {
1777 		*end = (u64)-1;
1778 		goto out;
1779 	}
1780 
1781 	while (1) {
1782 		state = rb_entry(node, struct extent_state, rb_node);
1783 		if (found && (state->start != cur_start ||
1784 			      (state->state & EXTENT_BOUNDARY))) {
1785 			goto out;
1786 		}
1787 		if (!(state->state & EXTENT_DELALLOC)) {
1788 			if (!found)
1789 				*end = state->end;
1790 			goto out;
1791 		}
1792 		if (!found) {
1793 			*start = state->start;
1794 			*cached_state = state;
1795 			refcount_inc(&state->refs);
1796 		}
1797 		found = true;
1798 		*end = state->end;
1799 		cur_start = state->end + 1;
1800 		node = rb_next(node);
1801 		total_bytes += state->end - state->start + 1;
1802 		if (total_bytes >= max_bytes)
1803 			break;
1804 		if (!node)
1805 			break;
1806 	}
1807 out:
1808 	spin_unlock(&tree->lock);
1809 	return found;
1810 }
1811 
1812 static int __process_pages_contig(struct address_space *mapping,
1813 				  struct page *locked_page,
1814 				  pgoff_t start_index, pgoff_t end_index,
1815 				  unsigned long page_ops, pgoff_t *index_ret);
1816 
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818 					   struct page *locked_page,
1819 					   u64 start, u64 end)
1820 {
1821 	unsigned long index = start >> PAGE_SHIFT;
1822 	unsigned long end_index = end >> PAGE_SHIFT;
1823 
1824 	ASSERT(locked_page);
1825 	if (index == locked_page->index && end_index == index)
1826 		return;
1827 
1828 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 			       PAGE_UNLOCK, NULL);
1830 }
1831 
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833 					struct page *locked_page,
1834 					u64 delalloc_start,
1835 					u64 delalloc_end)
1836 {
1837 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 	unsigned long index_ret = index;
1839 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 	int ret;
1841 
1842 	ASSERT(locked_page);
1843 	if (index == locked_page->index && index == end_index)
1844 		return 0;
1845 
1846 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 				     end_index, PAGE_LOCK, &index_ret);
1848 	if (ret == -EAGAIN)
1849 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 				      (u64)index_ret << PAGE_SHIFT);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 				    struct page *locked_page, u64 *start,
1864 				    u64 *end)
1865 {
1866 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 	u64 delalloc_start;
1869 	u64 delalloc_end;
1870 	bool found;
1871 	struct extent_state *cached_state = NULL;
1872 	int ret;
1873 	int loops = 0;
1874 
1875 again:
1876 	/* step one, find a bunch of delalloc bytes starting at start */
1877 	delalloc_start = *start;
1878 	delalloc_end = 0;
1879 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 					  max_bytes, &cached_state);
1881 	if (!found || delalloc_end <= *start) {
1882 		*start = delalloc_start;
1883 		*end = delalloc_end;
1884 		free_extent_state(cached_state);
1885 		return false;
1886 	}
1887 
1888 	/*
1889 	 * start comes from the offset of locked_page.  We have to lock
1890 	 * pages in order, so we can't process delalloc bytes before
1891 	 * locked_page
1892 	 */
1893 	if (delalloc_start < *start)
1894 		delalloc_start = *start;
1895 
1896 	/*
1897 	 * make sure to limit the number of pages we try to lock down
1898 	 */
1899 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 		delalloc_end = delalloc_start + max_bytes - 1;
1901 
1902 	/* step two, lock all the pages after the page that has start */
1903 	ret = lock_delalloc_pages(inode, locked_page,
1904 				  delalloc_start, delalloc_end);
1905 	ASSERT(!ret || ret == -EAGAIN);
1906 	if (ret == -EAGAIN) {
1907 		/* some of the pages are gone, lets avoid looping by
1908 		 * shortening the size of the delalloc range we're searching
1909 		 */
1910 		free_extent_state(cached_state);
1911 		cached_state = NULL;
1912 		if (!loops) {
1913 			max_bytes = PAGE_SIZE;
1914 			loops = 1;
1915 			goto again;
1916 		} else {
1917 			found = false;
1918 			goto out_failed;
1919 		}
1920 	}
1921 
1922 	/* step three, lock the state bits for the whole range */
1923 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924 
1925 	/* then test to make sure it is all still delalloc */
1926 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 			     EXTENT_DELALLOC, 1, cached_state);
1928 	if (!ret) {
1929 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 				     &cached_state);
1931 		__unlock_for_delalloc(inode, locked_page,
1932 			      delalloc_start, delalloc_end);
1933 		cond_resched();
1934 		goto again;
1935 	}
1936 	free_extent_state(cached_state);
1937 	*start = delalloc_start;
1938 	*end = delalloc_end;
1939 out_failed:
1940 	return found;
1941 }
1942 
1943 static int __process_pages_contig(struct address_space *mapping,
1944 				  struct page *locked_page,
1945 				  pgoff_t start_index, pgoff_t end_index,
1946 				  unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948 	unsigned long nr_pages = end_index - start_index + 1;
1949 	unsigned long pages_locked = 0;
1950 	pgoff_t index = start_index;
1951 	struct page *pages[16];
1952 	unsigned ret;
1953 	int err = 0;
1954 	int i;
1955 
1956 	if (page_ops & PAGE_LOCK) {
1957 		ASSERT(page_ops == PAGE_LOCK);
1958 		ASSERT(index_ret && *index_ret == start_index);
1959 	}
1960 
1961 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 		mapping_set_error(mapping, -EIO);
1963 
1964 	while (nr_pages > 0) {
1965 		ret = find_get_pages_contig(mapping, index,
1966 				     min_t(unsigned long,
1967 				     nr_pages, ARRAY_SIZE(pages)), pages);
1968 		if (ret == 0) {
1969 			/*
1970 			 * Only if we're going to lock these pages,
1971 			 * can we find nothing at @index.
1972 			 */
1973 			ASSERT(page_ops & PAGE_LOCK);
1974 			err = -EAGAIN;
1975 			goto out;
1976 		}
1977 
1978 		for (i = 0; i < ret; i++) {
1979 			if (page_ops & PAGE_SET_PRIVATE2)
1980 				SetPagePrivate2(pages[i]);
1981 
1982 			if (locked_page && pages[i] == locked_page) {
1983 				put_page(pages[i]);
1984 				pages_locked++;
1985 				continue;
1986 			}
1987 			if (page_ops & PAGE_CLEAR_DIRTY)
1988 				clear_page_dirty_for_io(pages[i]);
1989 			if (page_ops & PAGE_SET_WRITEBACK)
1990 				set_page_writeback(pages[i]);
1991 			if (page_ops & PAGE_SET_ERROR)
1992 				SetPageError(pages[i]);
1993 			if (page_ops & PAGE_END_WRITEBACK)
1994 				end_page_writeback(pages[i]);
1995 			if (page_ops & PAGE_UNLOCK)
1996 				unlock_page(pages[i]);
1997 			if (page_ops & PAGE_LOCK) {
1998 				lock_page(pages[i]);
1999 				if (!PageDirty(pages[i]) ||
2000 				    pages[i]->mapping != mapping) {
2001 					unlock_page(pages[i]);
2002 					for (; i < ret; i++)
2003 						put_page(pages[i]);
2004 					err = -EAGAIN;
2005 					goto out;
2006 				}
2007 			}
2008 			put_page(pages[i]);
2009 			pages_locked++;
2010 		}
2011 		nr_pages -= ret;
2012 		index += ret;
2013 		cond_resched();
2014 	}
2015 out:
2016 	if (err && index_ret)
2017 		*index_ret = start_index + pages_locked - 1;
2018 	return err;
2019 }
2020 
2021 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2022 				  struct page *locked_page,
2023 				  unsigned clear_bits,
2024 				  unsigned long page_ops)
2025 {
2026 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2027 			 NULL);
2028 
2029 	__process_pages_contig(inode->i_mapping, locked_page,
2030 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2031 			       page_ops, NULL);
2032 }
2033 
2034 /*
2035  * count the number of bytes in the tree that have a given bit(s)
2036  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2037  * cached.  The total number found is returned.
2038  */
2039 u64 count_range_bits(struct extent_io_tree *tree,
2040 		     u64 *start, u64 search_end, u64 max_bytes,
2041 		     unsigned bits, int contig)
2042 {
2043 	struct rb_node *node;
2044 	struct extent_state *state;
2045 	u64 cur_start = *start;
2046 	u64 total_bytes = 0;
2047 	u64 last = 0;
2048 	int found = 0;
2049 
2050 	if (WARN_ON(search_end <= cur_start))
2051 		return 0;
2052 
2053 	spin_lock(&tree->lock);
2054 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2055 		total_bytes = tree->dirty_bytes;
2056 		goto out;
2057 	}
2058 	/*
2059 	 * this search will find all the extents that end after
2060 	 * our range starts.
2061 	 */
2062 	node = tree_search(tree, cur_start);
2063 	if (!node)
2064 		goto out;
2065 
2066 	while (1) {
2067 		state = rb_entry(node, struct extent_state, rb_node);
2068 		if (state->start > search_end)
2069 			break;
2070 		if (contig && found && state->start > last + 1)
2071 			break;
2072 		if (state->end >= cur_start && (state->state & bits) == bits) {
2073 			total_bytes += min(search_end, state->end) + 1 -
2074 				       max(cur_start, state->start);
2075 			if (total_bytes >= max_bytes)
2076 				break;
2077 			if (!found) {
2078 				*start = max(cur_start, state->start);
2079 				found = 1;
2080 			}
2081 			last = state->end;
2082 		} else if (contig && found) {
2083 			break;
2084 		}
2085 		node = rb_next(node);
2086 		if (!node)
2087 			break;
2088 	}
2089 out:
2090 	spin_unlock(&tree->lock);
2091 	return total_bytes;
2092 }
2093 
2094 /*
2095  * set the private field for a given byte offset in the tree.  If there isn't
2096  * an extent_state there already, this does nothing.
2097  */
2098 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2099 		      struct io_failure_record *failrec)
2100 {
2101 	struct rb_node *node;
2102 	struct extent_state *state;
2103 	int ret = 0;
2104 
2105 	spin_lock(&tree->lock);
2106 	/*
2107 	 * this search will find all the extents that end after
2108 	 * our range starts.
2109 	 */
2110 	node = tree_search(tree, start);
2111 	if (!node) {
2112 		ret = -ENOENT;
2113 		goto out;
2114 	}
2115 	state = rb_entry(node, struct extent_state, rb_node);
2116 	if (state->start != start) {
2117 		ret = -ENOENT;
2118 		goto out;
2119 	}
2120 	state->failrec = failrec;
2121 out:
2122 	spin_unlock(&tree->lock);
2123 	return ret;
2124 }
2125 
2126 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2127 		      struct io_failure_record **failrec)
2128 {
2129 	struct rb_node *node;
2130 	struct extent_state *state;
2131 	int ret = 0;
2132 
2133 	spin_lock(&tree->lock);
2134 	/*
2135 	 * this search will find all the extents that end after
2136 	 * our range starts.
2137 	 */
2138 	node = tree_search(tree, start);
2139 	if (!node) {
2140 		ret = -ENOENT;
2141 		goto out;
2142 	}
2143 	state = rb_entry(node, struct extent_state, rb_node);
2144 	if (state->start != start) {
2145 		ret = -ENOENT;
2146 		goto out;
2147 	}
2148 	*failrec = state->failrec;
2149 out:
2150 	spin_unlock(&tree->lock);
2151 	return ret;
2152 }
2153 
2154 /*
2155  * searches a range in the state tree for a given mask.
2156  * If 'filled' == 1, this returns 1 only if every extent in the tree
2157  * has the bits set.  Otherwise, 1 is returned if any bit in the
2158  * range is found set.
2159  */
2160 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2161 		   unsigned bits, int filled, struct extent_state *cached)
2162 {
2163 	struct extent_state *state = NULL;
2164 	struct rb_node *node;
2165 	int bitset = 0;
2166 
2167 	spin_lock(&tree->lock);
2168 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2169 	    cached->end > start)
2170 		node = &cached->rb_node;
2171 	else
2172 		node = tree_search(tree, start);
2173 	while (node && start <= end) {
2174 		state = rb_entry(node, struct extent_state, rb_node);
2175 
2176 		if (filled && state->start > start) {
2177 			bitset = 0;
2178 			break;
2179 		}
2180 
2181 		if (state->start > end)
2182 			break;
2183 
2184 		if (state->state & bits) {
2185 			bitset = 1;
2186 			if (!filled)
2187 				break;
2188 		} else if (filled) {
2189 			bitset = 0;
2190 			break;
2191 		}
2192 
2193 		if (state->end == (u64)-1)
2194 			break;
2195 
2196 		start = state->end + 1;
2197 		if (start > end)
2198 			break;
2199 		node = rb_next(node);
2200 		if (!node) {
2201 			if (filled)
2202 				bitset = 0;
2203 			break;
2204 		}
2205 	}
2206 	spin_unlock(&tree->lock);
2207 	return bitset;
2208 }
2209 
2210 /*
2211  * helper function to set a given page up to date if all the
2212  * extents in the tree for that page are up to date
2213  */
2214 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2215 {
2216 	u64 start = page_offset(page);
2217 	u64 end = start + PAGE_SIZE - 1;
2218 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2219 		SetPageUptodate(page);
2220 }
2221 
2222 int free_io_failure(struct extent_io_tree *failure_tree,
2223 		    struct extent_io_tree *io_tree,
2224 		    struct io_failure_record *rec)
2225 {
2226 	int ret;
2227 	int err = 0;
2228 
2229 	set_state_failrec(failure_tree, rec->start, NULL);
2230 	ret = clear_extent_bits(failure_tree, rec->start,
2231 				rec->start + rec->len - 1,
2232 				EXTENT_LOCKED | EXTENT_DIRTY);
2233 	if (ret)
2234 		err = ret;
2235 
2236 	ret = clear_extent_bits(io_tree, rec->start,
2237 				rec->start + rec->len - 1,
2238 				EXTENT_DAMAGED);
2239 	if (ret && !err)
2240 		err = ret;
2241 
2242 	kfree(rec);
2243 	return err;
2244 }
2245 
2246 /*
2247  * this bypasses the standard btrfs submit functions deliberately, as
2248  * the standard behavior is to write all copies in a raid setup. here we only
2249  * want to write the one bad copy. so we do the mapping for ourselves and issue
2250  * submit_bio directly.
2251  * to avoid any synchronization issues, wait for the data after writing, which
2252  * actually prevents the read that triggered the error from finishing.
2253  * currently, there can be no more than two copies of every data bit. thus,
2254  * exactly one rewrite is required.
2255  */
2256 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2257 		      u64 length, u64 logical, struct page *page,
2258 		      unsigned int pg_offset, int mirror_num)
2259 {
2260 	struct bio *bio;
2261 	struct btrfs_device *dev;
2262 	u64 map_length = 0;
2263 	u64 sector;
2264 	struct btrfs_bio *bbio = NULL;
2265 	int ret;
2266 
2267 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2268 	BUG_ON(!mirror_num);
2269 
2270 	bio = btrfs_io_bio_alloc(1);
2271 	bio->bi_iter.bi_size = 0;
2272 	map_length = length;
2273 
2274 	/*
2275 	 * Avoid races with device replace and make sure our bbio has devices
2276 	 * associated to its stripes that don't go away while we are doing the
2277 	 * read repair operation.
2278 	 */
2279 	btrfs_bio_counter_inc_blocked(fs_info);
2280 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2281 		/*
2282 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2283 		 * to update all raid stripes, but here we just want to correct
2284 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2285 		 * stripe's dev and sector.
2286 		 */
2287 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2288 				      &map_length, &bbio, 0);
2289 		if (ret) {
2290 			btrfs_bio_counter_dec(fs_info);
2291 			bio_put(bio);
2292 			return -EIO;
2293 		}
2294 		ASSERT(bbio->mirror_num == 1);
2295 	} else {
2296 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2297 				      &map_length, &bbio, mirror_num);
2298 		if (ret) {
2299 			btrfs_bio_counter_dec(fs_info);
2300 			bio_put(bio);
2301 			return -EIO;
2302 		}
2303 		BUG_ON(mirror_num != bbio->mirror_num);
2304 	}
2305 
2306 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2307 	bio->bi_iter.bi_sector = sector;
2308 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2309 	btrfs_put_bbio(bbio);
2310 	if (!dev || !dev->bdev ||
2311 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2312 		btrfs_bio_counter_dec(fs_info);
2313 		bio_put(bio);
2314 		return -EIO;
2315 	}
2316 	bio_set_dev(bio, dev->bdev);
2317 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2318 	bio_add_page(bio, page, length, pg_offset);
2319 
2320 	if (btrfsic_submit_bio_wait(bio)) {
2321 		/* try to remap that extent elsewhere? */
2322 		btrfs_bio_counter_dec(fs_info);
2323 		bio_put(bio);
2324 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2325 		return -EIO;
2326 	}
2327 
2328 	btrfs_info_rl_in_rcu(fs_info,
2329 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2330 				  ino, start,
2331 				  rcu_str_deref(dev->name), sector);
2332 	btrfs_bio_counter_dec(fs_info);
2333 	bio_put(bio);
2334 	return 0;
2335 }
2336 
2337 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2338 {
2339 	struct btrfs_fs_info *fs_info = eb->fs_info;
2340 	u64 start = eb->start;
2341 	int i, num_pages = num_extent_pages(eb);
2342 	int ret = 0;
2343 
2344 	if (sb_rdonly(fs_info->sb))
2345 		return -EROFS;
2346 
2347 	for (i = 0; i < num_pages; i++) {
2348 		struct page *p = eb->pages[i];
2349 
2350 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2351 					start - page_offset(p), mirror_num);
2352 		if (ret)
2353 			break;
2354 		start += PAGE_SIZE;
2355 	}
2356 
2357 	return ret;
2358 }
2359 
2360 /*
2361  * each time an IO finishes, we do a fast check in the IO failure tree
2362  * to see if we need to process or clean up an io_failure_record
2363  */
2364 int clean_io_failure(struct btrfs_fs_info *fs_info,
2365 		     struct extent_io_tree *failure_tree,
2366 		     struct extent_io_tree *io_tree, u64 start,
2367 		     struct page *page, u64 ino, unsigned int pg_offset)
2368 {
2369 	u64 private;
2370 	struct io_failure_record *failrec;
2371 	struct extent_state *state;
2372 	int num_copies;
2373 	int ret;
2374 
2375 	private = 0;
2376 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2377 			       EXTENT_DIRTY, 0);
2378 	if (!ret)
2379 		return 0;
2380 
2381 	ret = get_state_failrec(failure_tree, start, &failrec);
2382 	if (ret)
2383 		return 0;
2384 
2385 	BUG_ON(!failrec->this_mirror);
2386 
2387 	if (failrec->in_validation) {
2388 		/* there was no real error, just free the record */
2389 		btrfs_debug(fs_info,
2390 			"clean_io_failure: freeing dummy error at %llu",
2391 			failrec->start);
2392 		goto out;
2393 	}
2394 	if (sb_rdonly(fs_info->sb))
2395 		goto out;
2396 
2397 	spin_lock(&io_tree->lock);
2398 	state = find_first_extent_bit_state(io_tree,
2399 					    failrec->start,
2400 					    EXTENT_LOCKED);
2401 	spin_unlock(&io_tree->lock);
2402 
2403 	if (state && state->start <= failrec->start &&
2404 	    state->end >= failrec->start + failrec->len - 1) {
2405 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2406 					      failrec->len);
2407 		if (num_copies > 1)  {
2408 			repair_io_failure(fs_info, ino, start, failrec->len,
2409 					  failrec->logical, page, pg_offset,
2410 					  failrec->failed_mirror);
2411 		}
2412 	}
2413 
2414 out:
2415 	free_io_failure(failure_tree, io_tree, failrec);
2416 
2417 	return 0;
2418 }
2419 
2420 /*
2421  * Can be called when
2422  * - hold extent lock
2423  * - under ordered extent
2424  * - the inode is freeing
2425  */
2426 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2427 {
2428 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2429 	struct io_failure_record *failrec;
2430 	struct extent_state *state, *next;
2431 
2432 	if (RB_EMPTY_ROOT(&failure_tree->state))
2433 		return;
2434 
2435 	spin_lock(&failure_tree->lock);
2436 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2437 	while (state) {
2438 		if (state->start > end)
2439 			break;
2440 
2441 		ASSERT(state->end <= end);
2442 
2443 		next = next_state(state);
2444 
2445 		failrec = state->failrec;
2446 		free_extent_state(state);
2447 		kfree(failrec);
2448 
2449 		state = next;
2450 	}
2451 	spin_unlock(&failure_tree->lock);
2452 }
2453 
2454 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2455 		struct io_failure_record **failrec_ret)
2456 {
2457 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2458 	struct io_failure_record *failrec;
2459 	struct extent_map *em;
2460 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2461 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2462 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2463 	int ret;
2464 	u64 logical;
2465 
2466 	ret = get_state_failrec(failure_tree, start, &failrec);
2467 	if (ret) {
2468 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2469 		if (!failrec)
2470 			return -ENOMEM;
2471 
2472 		failrec->start = start;
2473 		failrec->len = end - start + 1;
2474 		failrec->this_mirror = 0;
2475 		failrec->bio_flags = 0;
2476 		failrec->in_validation = 0;
2477 
2478 		read_lock(&em_tree->lock);
2479 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2480 		if (!em) {
2481 			read_unlock(&em_tree->lock);
2482 			kfree(failrec);
2483 			return -EIO;
2484 		}
2485 
2486 		if (em->start > start || em->start + em->len <= start) {
2487 			free_extent_map(em);
2488 			em = NULL;
2489 		}
2490 		read_unlock(&em_tree->lock);
2491 		if (!em) {
2492 			kfree(failrec);
2493 			return -EIO;
2494 		}
2495 
2496 		logical = start - em->start;
2497 		logical = em->block_start + logical;
2498 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2499 			logical = em->block_start;
2500 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2501 			extent_set_compress_type(&failrec->bio_flags,
2502 						 em->compress_type);
2503 		}
2504 
2505 		btrfs_debug(fs_info,
2506 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2507 			logical, start, failrec->len);
2508 
2509 		failrec->logical = logical;
2510 		free_extent_map(em);
2511 
2512 		/* set the bits in the private failure tree */
2513 		ret = set_extent_bits(failure_tree, start, end,
2514 					EXTENT_LOCKED | EXTENT_DIRTY);
2515 		if (ret >= 0)
2516 			ret = set_state_failrec(failure_tree, start, failrec);
2517 		/* set the bits in the inode's tree */
2518 		if (ret >= 0)
2519 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2520 		if (ret < 0) {
2521 			kfree(failrec);
2522 			return ret;
2523 		}
2524 	} else {
2525 		btrfs_debug(fs_info,
2526 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2527 			failrec->logical, failrec->start, failrec->len,
2528 			failrec->in_validation);
2529 		/*
2530 		 * when data can be on disk more than twice, add to failrec here
2531 		 * (e.g. with a list for failed_mirror) to make
2532 		 * clean_io_failure() clean all those errors at once.
2533 		 */
2534 	}
2535 
2536 	*failrec_ret = failrec;
2537 
2538 	return 0;
2539 }
2540 
2541 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2542 				   struct io_failure_record *failrec,
2543 				   int failed_mirror)
2544 {
2545 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2546 	int num_copies;
2547 
2548 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2549 	if (num_copies == 1) {
2550 		/*
2551 		 * we only have a single copy of the data, so don't bother with
2552 		 * all the retry and error correction code that follows. no
2553 		 * matter what the error is, it is very likely to persist.
2554 		 */
2555 		btrfs_debug(fs_info,
2556 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2557 			num_copies, failrec->this_mirror, failed_mirror);
2558 		return false;
2559 	}
2560 
2561 	/*
2562 	 * there are two premises:
2563 	 *	a) deliver good data to the caller
2564 	 *	b) correct the bad sectors on disk
2565 	 */
2566 	if (needs_validation) {
2567 		/*
2568 		 * to fulfill b), we need to know the exact failing sectors, as
2569 		 * we don't want to rewrite any more than the failed ones. thus,
2570 		 * we need separate read requests for the failed bio
2571 		 *
2572 		 * if the following BUG_ON triggers, our validation request got
2573 		 * merged. we need separate requests for our algorithm to work.
2574 		 */
2575 		BUG_ON(failrec->in_validation);
2576 		failrec->in_validation = 1;
2577 		failrec->this_mirror = failed_mirror;
2578 	} else {
2579 		/*
2580 		 * we're ready to fulfill a) and b) alongside. get a good copy
2581 		 * of the failed sector and if we succeed, we have setup
2582 		 * everything for repair_io_failure to do the rest for us.
2583 		 */
2584 		if (failrec->in_validation) {
2585 			BUG_ON(failrec->this_mirror != failed_mirror);
2586 			failrec->in_validation = 0;
2587 			failrec->this_mirror = 0;
2588 		}
2589 		failrec->failed_mirror = failed_mirror;
2590 		failrec->this_mirror++;
2591 		if (failrec->this_mirror == failed_mirror)
2592 			failrec->this_mirror++;
2593 	}
2594 
2595 	if (failrec->this_mirror > num_copies) {
2596 		btrfs_debug(fs_info,
2597 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2598 			num_copies, failrec->this_mirror, failed_mirror);
2599 		return false;
2600 	}
2601 
2602 	return true;
2603 }
2604 
2605 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2606 {
2607 	u64 len = 0;
2608 	const u32 blocksize = inode->i_sb->s_blocksize;
2609 
2610 	/*
2611 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2612 	 * I/O error. In this case, we already know exactly which sector was
2613 	 * bad, so we don't need to validate.
2614 	 */
2615 	if (bio->bi_status == BLK_STS_OK)
2616 		return false;
2617 
2618 	/*
2619 	 * We need to validate each sector individually if the failed I/O was
2620 	 * for multiple sectors.
2621 	 *
2622 	 * There are a few possible bios that can end up here:
2623 	 * 1. A buffered read bio, which is not cloned.
2624 	 * 2. A direct I/O read bio, which is cloned.
2625 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2626 	 *
2627 	 * For cloned bios (case 2), we can get the size from
2628 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2629 	 * it from the bvecs.
2630 	 */
2631 	if (bio_flagged(bio, BIO_CLONED)) {
2632 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2633 			return true;
2634 	} else {
2635 		struct bio_vec *bvec;
2636 		int i;
2637 
2638 		bio_for_each_bvec_all(bvec, bio, i) {
2639 			len += bvec->bv_len;
2640 			if (len > blocksize)
2641 				return true;
2642 		}
2643 	}
2644 	return false;
2645 }
2646 
2647 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2648 				      struct bio *failed_bio, u64 phy_offset,
2649 				      struct page *page, unsigned int pgoff,
2650 				      u64 start, u64 end, int failed_mirror,
2651 				      submit_bio_hook_t *submit_bio_hook)
2652 {
2653 	struct io_failure_record *failrec;
2654 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2655 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2656 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2657 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2658 	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2659 	bool need_validation;
2660 	struct bio *repair_bio;
2661 	struct btrfs_io_bio *repair_io_bio;
2662 	blk_status_t status;
2663 	int ret;
2664 
2665 	btrfs_debug(fs_info,
2666 		   "repair read error: read error at %llu", start);
2667 
2668 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2669 
2670 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2671 	if (ret)
2672 		return errno_to_blk_status(ret);
2673 
2674 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2675 
2676 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2677 				    failed_mirror)) {
2678 		free_io_failure(failure_tree, tree, failrec);
2679 		return BLK_STS_IOERR;
2680 	}
2681 
2682 	repair_bio = btrfs_io_bio_alloc(1);
2683 	repair_io_bio = btrfs_io_bio(repair_bio);
2684 	repair_bio->bi_opf = REQ_OP_READ;
2685 	if (need_validation)
2686 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2687 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2688 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2689 	repair_bio->bi_private = failed_bio->bi_private;
2690 
2691 	if (failed_io_bio->csum) {
2692 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2693 
2694 		repair_io_bio->csum = repair_io_bio->csum_inline;
2695 		memcpy(repair_io_bio->csum,
2696 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2697 	}
2698 
2699 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2700 	repair_io_bio->logical = failrec->start;
2701 	repair_io_bio->iter = repair_bio->bi_iter;
2702 
2703 	btrfs_debug(btrfs_sb(inode->i_sb),
2704 "repair read error: submitting new read to mirror %d, in_validation=%d",
2705 		    failrec->this_mirror, failrec->in_validation);
2706 
2707 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2708 				 failrec->bio_flags);
2709 	if (status) {
2710 		free_io_failure(failure_tree, tree, failrec);
2711 		bio_put(repair_bio);
2712 	}
2713 	return status;
2714 }
2715 
2716 /* lots and lots of room for performance fixes in the end_bio funcs */
2717 
2718 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2719 {
2720 	int uptodate = (err == 0);
2721 	int ret = 0;
2722 
2723 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2724 
2725 	if (!uptodate) {
2726 		ClearPageUptodate(page);
2727 		SetPageError(page);
2728 		ret = err < 0 ? err : -EIO;
2729 		mapping_set_error(page->mapping, ret);
2730 	}
2731 }
2732 
2733 /*
2734  * after a writepage IO is done, we need to:
2735  * clear the uptodate bits on error
2736  * clear the writeback bits in the extent tree for this IO
2737  * end_page_writeback if the page has no more pending IO
2738  *
2739  * Scheduling is not allowed, so the extent state tree is expected
2740  * to have one and only one object corresponding to this IO.
2741  */
2742 static void end_bio_extent_writepage(struct bio *bio)
2743 {
2744 	int error = blk_status_to_errno(bio->bi_status);
2745 	struct bio_vec *bvec;
2746 	u64 start;
2747 	u64 end;
2748 	struct bvec_iter_all iter_all;
2749 
2750 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2751 	bio_for_each_segment_all(bvec, bio, iter_all) {
2752 		struct page *page = bvec->bv_page;
2753 		struct inode *inode = page->mapping->host;
2754 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2755 
2756 		/* We always issue full-page reads, but if some block
2757 		 * in a page fails to read, blk_update_request() will
2758 		 * advance bv_offset and adjust bv_len to compensate.
2759 		 * Print a warning for nonzero offsets, and an error
2760 		 * if they don't add up to a full page.  */
2761 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2762 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2763 				btrfs_err(fs_info,
2764 				   "partial page write in btrfs with offset %u and length %u",
2765 					bvec->bv_offset, bvec->bv_len);
2766 			else
2767 				btrfs_info(fs_info,
2768 				   "incomplete page write in btrfs with offset %u and length %u",
2769 					bvec->bv_offset, bvec->bv_len);
2770 		}
2771 
2772 		start = page_offset(page);
2773 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2774 
2775 		end_extent_writepage(page, error, start, end);
2776 		end_page_writeback(page);
2777 	}
2778 
2779 	bio_put(bio);
2780 }
2781 
2782 static void
2783 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2784 			      int uptodate)
2785 {
2786 	struct extent_state *cached = NULL;
2787 	u64 end = start + len - 1;
2788 
2789 	if (uptodate && tree->track_uptodate)
2790 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2791 	unlock_extent_cached_atomic(tree, start, end, &cached);
2792 }
2793 
2794 /*
2795  * after a readpage IO is done, we need to:
2796  * clear the uptodate bits on error
2797  * set the uptodate bits if things worked
2798  * set the page up to date if all extents in the tree are uptodate
2799  * clear the lock bit in the extent tree
2800  * unlock the page if there are no other extents locked for it
2801  *
2802  * Scheduling is not allowed, so the extent state tree is expected
2803  * to have one and only one object corresponding to this IO.
2804  */
2805 static void end_bio_extent_readpage(struct bio *bio)
2806 {
2807 	struct bio_vec *bvec;
2808 	int uptodate = !bio->bi_status;
2809 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2810 	struct extent_io_tree *tree, *failure_tree;
2811 	u64 offset = 0;
2812 	u64 start;
2813 	u64 end;
2814 	u64 len;
2815 	u64 extent_start = 0;
2816 	u64 extent_len = 0;
2817 	int mirror;
2818 	int ret;
2819 	struct bvec_iter_all iter_all;
2820 
2821 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2822 	bio_for_each_segment_all(bvec, bio, iter_all) {
2823 		struct page *page = bvec->bv_page;
2824 		struct inode *inode = page->mapping->host;
2825 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2826 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2827 			!= BTRFS_BTREE_INODE_OBJECTID;
2828 
2829 		btrfs_debug(fs_info,
2830 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2831 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2832 			io_bio->mirror_num);
2833 		tree = &BTRFS_I(inode)->io_tree;
2834 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2835 
2836 		/* We always issue full-page reads, but if some block
2837 		 * in a page fails to read, blk_update_request() will
2838 		 * advance bv_offset and adjust bv_len to compensate.
2839 		 * Print a warning for nonzero offsets, and an error
2840 		 * if they don't add up to a full page.  */
2841 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2842 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2843 				btrfs_err(fs_info,
2844 					"partial page read in btrfs with offset %u and length %u",
2845 					bvec->bv_offset, bvec->bv_len);
2846 			else
2847 				btrfs_info(fs_info,
2848 					"incomplete page read in btrfs with offset %u and length %u",
2849 					bvec->bv_offset, bvec->bv_len);
2850 		}
2851 
2852 		start = page_offset(page);
2853 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2854 		len = bvec->bv_len;
2855 
2856 		mirror = io_bio->mirror_num;
2857 		if (likely(uptodate)) {
2858 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2859 							      page, start, end,
2860 							      mirror);
2861 			if (ret)
2862 				uptodate = 0;
2863 			else
2864 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2865 						 failure_tree, tree, start,
2866 						 page,
2867 						 btrfs_ino(BTRFS_I(inode)), 0);
2868 		}
2869 
2870 		if (likely(uptodate))
2871 			goto readpage_ok;
2872 
2873 		if (data_inode) {
2874 
2875 			/*
2876 			 * The generic bio_readpage_error handles errors the
2877 			 * following way: If possible, new read requests are
2878 			 * created and submitted and will end up in
2879 			 * end_bio_extent_readpage as well (if we're lucky,
2880 			 * not in the !uptodate case). In that case it returns
2881 			 * 0 and we just go on with the next page in our bio.
2882 			 * If it can't handle the error it will return -EIO and
2883 			 * we remain responsible for that page.
2884 			 */
2885 			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2886 						start - page_offset(page),
2887 						start, end, mirror,
2888 						tree->ops->submit_bio_hook)) {
2889 				uptodate = !bio->bi_status;
2890 				offset += len;
2891 				continue;
2892 			}
2893 		} else {
2894 			struct extent_buffer *eb;
2895 
2896 			eb = (struct extent_buffer *)page->private;
2897 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2898 			eb->read_mirror = mirror;
2899 			atomic_dec(&eb->io_pages);
2900 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2901 					       &eb->bflags))
2902 				btree_readahead_hook(eb, -EIO);
2903 		}
2904 readpage_ok:
2905 		if (likely(uptodate)) {
2906 			loff_t i_size = i_size_read(inode);
2907 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2908 			unsigned off;
2909 
2910 			/* Zero out the end if this page straddles i_size */
2911 			off = offset_in_page(i_size);
2912 			if (page->index == end_index && off)
2913 				zero_user_segment(page, off, PAGE_SIZE);
2914 			SetPageUptodate(page);
2915 		} else {
2916 			ClearPageUptodate(page);
2917 			SetPageError(page);
2918 		}
2919 		unlock_page(page);
2920 		offset += len;
2921 
2922 		if (unlikely(!uptodate)) {
2923 			if (extent_len) {
2924 				endio_readpage_release_extent(tree,
2925 							      extent_start,
2926 							      extent_len, 1);
2927 				extent_start = 0;
2928 				extent_len = 0;
2929 			}
2930 			endio_readpage_release_extent(tree, start,
2931 						      end - start + 1, 0);
2932 		} else if (!extent_len) {
2933 			extent_start = start;
2934 			extent_len = end + 1 - start;
2935 		} else if (extent_start + extent_len == start) {
2936 			extent_len += end + 1 - start;
2937 		} else {
2938 			endio_readpage_release_extent(tree, extent_start,
2939 						      extent_len, uptodate);
2940 			extent_start = start;
2941 			extent_len = end + 1 - start;
2942 		}
2943 	}
2944 
2945 	if (extent_len)
2946 		endio_readpage_release_extent(tree, extent_start, extent_len,
2947 					      uptodate);
2948 	btrfs_io_bio_free_csum(io_bio);
2949 	bio_put(bio);
2950 }
2951 
2952 /*
2953  * Initialize the members up to but not including 'bio'. Use after allocating a
2954  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2955  * 'bio' because use of __GFP_ZERO is not supported.
2956  */
2957 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2958 {
2959 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2960 }
2961 
2962 /*
2963  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2964  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2965  * for the appropriate container_of magic
2966  */
2967 struct bio *btrfs_bio_alloc(u64 first_byte)
2968 {
2969 	struct bio *bio;
2970 
2971 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2972 	bio->bi_iter.bi_sector = first_byte >> 9;
2973 	btrfs_io_bio_init(btrfs_io_bio(bio));
2974 	return bio;
2975 }
2976 
2977 struct bio *btrfs_bio_clone(struct bio *bio)
2978 {
2979 	struct btrfs_io_bio *btrfs_bio;
2980 	struct bio *new;
2981 
2982 	/* Bio allocation backed by a bioset does not fail */
2983 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2984 	btrfs_bio = btrfs_io_bio(new);
2985 	btrfs_io_bio_init(btrfs_bio);
2986 	btrfs_bio->iter = bio->bi_iter;
2987 	return new;
2988 }
2989 
2990 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2991 {
2992 	struct bio *bio;
2993 
2994 	/* Bio allocation backed by a bioset does not fail */
2995 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2996 	btrfs_io_bio_init(btrfs_io_bio(bio));
2997 	return bio;
2998 }
2999 
3000 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3001 {
3002 	struct bio *bio;
3003 	struct btrfs_io_bio *btrfs_bio;
3004 
3005 	/* this will never fail when it's backed by a bioset */
3006 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3007 	ASSERT(bio);
3008 
3009 	btrfs_bio = btrfs_io_bio(bio);
3010 	btrfs_io_bio_init(btrfs_bio);
3011 
3012 	bio_trim(bio, offset >> 9, size >> 9);
3013 	btrfs_bio->iter = bio->bi_iter;
3014 	return bio;
3015 }
3016 
3017 /*
3018  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3019  * @wbc:	optional writeback control for io accounting
3020  * @page:	page to add to the bio
3021  * @pg_offset:	offset of the new bio or to check whether we are adding
3022  *              a contiguous page to the previous one
3023  * @size:	portion of page that we want to write
3024  * @offset:	starting offset in the page
3025  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3026  * @end_io_func:     end_io callback for new bio
3027  * @mirror_num:	     desired mirror to read/write
3028  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3029  * @bio_flags:	flags of the current bio to see if we can merge them
3030  */
3031 static int submit_extent_page(unsigned int opf,
3032 			      struct writeback_control *wbc,
3033 			      struct page *page, u64 offset,
3034 			      size_t size, unsigned long pg_offset,
3035 			      struct bio **bio_ret,
3036 			      bio_end_io_t end_io_func,
3037 			      int mirror_num,
3038 			      unsigned long prev_bio_flags,
3039 			      unsigned long bio_flags,
3040 			      bool force_bio_submit)
3041 {
3042 	int ret = 0;
3043 	struct bio *bio;
3044 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3045 	sector_t sector = offset >> 9;
3046 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3047 
3048 	ASSERT(bio_ret);
3049 
3050 	if (*bio_ret) {
3051 		bool contig;
3052 		bool can_merge = true;
3053 
3054 		bio = *bio_ret;
3055 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3056 			contig = bio->bi_iter.bi_sector == sector;
3057 		else
3058 			contig = bio_end_sector(bio) == sector;
3059 
3060 		ASSERT(tree->ops);
3061 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3062 			can_merge = false;
3063 
3064 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3065 		    force_bio_submit ||
3066 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3067 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3068 			if (ret < 0) {
3069 				*bio_ret = NULL;
3070 				return ret;
3071 			}
3072 			bio = NULL;
3073 		} else {
3074 			if (wbc)
3075 				wbc_account_cgroup_owner(wbc, page, page_size);
3076 			return 0;
3077 		}
3078 	}
3079 
3080 	bio = btrfs_bio_alloc(offset);
3081 	bio_add_page(bio, page, page_size, pg_offset);
3082 	bio->bi_end_io = end_io_func;
3083 	bio->bi_private = tree;
3084 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3085 	bio->bi_opf = opf;
3086 	if (wbc) {
3087 		struct block_device *bdev;
3088 
3089 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3090 		bio_set_dev(bio, bdev);
3091 		wbc_init_bio(wbc, bio);
3092 		wbc_account_cgroup_owner(wbc, page, page_size);
3093 	}
3094 
3095 	*bio_ret = bio;
3096 
3097 	return ret;
3098 }
3099 
3100 static void attach_extent_buffer_page(struct extent_buffer *eb,
3101 				      struct page *page)
3102 {
3103 	if (!PagePrivate(page))
3104 		attach_page_private(page, eb);
3105 	else
3106 		WARN_ON(page->private != (unsigned long)eb);
3107 }
3108 
3109 void set_page_extent_mapped(struct page *page)
3110 {
3111 	if (!PagePrivate(page))
3112 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3113 }
3114 
3115 static struct extent_map *
3116 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3117 		 u64 start, u64 len, get_extent_t *get_extent,
3118 		 struct extent_map **em_cached)
3119 {
3120 	struct extent_map *em;
3121 
3122 	if (em_cached && *em_cached) {
3123 		em = *em_cached;
3124 		if (extent_map_in_tree(em) && start >= em->start &&
3125 		    start < extent_map_end(em)) {
3126 			refcount_inc(&em->refs);
3127 			return em;
3128 		}
3129 
3130 		free_extent_map(em);
3131 		*em_cached = NULL;
3132 	}
3133 
3134 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3135 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3136 		BUG_ON(*em_cached);
3137 		refcount_inc(&em->refs);
3138 		*em_cached = em;
3139 	}
3140 	return em;
3141 }
3142 /*
3143  * basic readpage implementation.  Locked extent state structs are inserted
3144  * into the tree that are removed when the IO is done (by the end_io
3145  * handlers)
3146  * XXX JDM: This needs looking at to ensure proper page locking
3147  * return 0 on success, otherwise return error
3148  */
3149 static int __do_readpage(struct page *page,
3150 			 get_extent_t *get_extent,
3151 			 struct extent_map **em_cached,
3152 			 struct bio **bio, int mirror_num,
3153 			 unsigned long *bio_flags, unsigned int read_flags,
3154 			 u64 *prev_em_start)
3155 {
3156 	struct inode *inode = page->mapping->host;
3157 	u64 start = page_offset(page);
3158 	const u64 end = start + PAGE_SIZE - 1;
3159 	u64 cur = start;
3160 	u64 extent_offset;
3161 	u64 last_byte = i_size_read(inode);
3162 	u64 block_start;
3163 	u64 cur_end;
3164 	struct extent_map *em;
3165 	int ret = 0;
3166 	int nr = 0;
3167 	size_t pg_offset = 0;
3168 	size_t iosize;
3169 	size_t disk_io_size;
3170 	size_t blocksize = inode->i_sb->s_blocksize;
3171 	unsigned long this_bio_flag = 0;
3172 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3173 
3174 	set_page_extent_mapped(page);
3175 
3176 	if (!PageUptodate(page)) {
3177 		if (cleancache_get_page(page) == 0) {
3178 			BUG_ON(blocksize != PAGE_SIZE);
3179 			unlock_extent(tree, start, end);
3180 			goto out;
3181 		}
3182 	}
3183 
3184 	if (page->index == last_byte >> PAGE_SHIFT) {
3185 		char *userpage;
3186 		size_t zero_offset = offset_in_page(last_byte);
3187 
3188 		if (zero_offset) {
3189 			iosize = PAGE_SIZE - zero_offset;
3190 			userpage = kmap_atomic(page);
3191 			memset(userpage + zero_offset, 0, iosize);
3192 			flush_dcache_page(page);
3193 			kunmap_atomic(userpage);
3194 		}
3195 	}
3196 	while (cur <= end) {
3197 		bool force_bio_submit = false;
3198 		u64 offset;
3199 
3200 		if (cur >= last_byte) {
3201 			char *userpage;
3202 			struct extent_state *cached = NULL;
3203 
3204 			iosize = PAGE_SIZE - pg_offset;
3205 			userpage = kmap_atomic(page);
3206 			memset(userpage + pg_offset, 0, iosize);
3207 			flush_dcache_page(page);
3208 			kunmap_atomic(userpage);
3209 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3210 					    &cached, GFP_NOFS);
3211 			unlock_extent_cached(tree, cur,
3212 					     cur + iosize - 1, &cached);
3213 			break;
3214 		}
3215 		em = __get_extent_map(inode, page, pg_offset, cur,
3216 				      end - cur + 1, get_extent, em_cached);
3217 		if (IS_ERR_OR_NULL(em)) {
3218 			SetPageError(page);
3219 			unlock_extent(tree, cur, end);
3220 			break;
3221 		}
3222 		extent_offset = cur - em->start;
3223 		BUG_ON(extent_map_end(em) <= cur);
3224 		BUG_ON(end < cur);
3225 
3226 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3227 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3228 			extent_set_compress_type(&this_bio_flag,
3229 						 em->compress_type);
3230 		}
3231 
3232 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3233 		cur_end = min(extent_map_end(em) - 1, end);
3234 		iosize = ALIGN(iosize, blocksize);
3235 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3236 			disk_io_size = em->block_len;
3237 			offset = em->block_start;
3238 		} else {
3239 			offset = em->block_start + extent_offset;
3240 			disk_io_size = iosize;
3241 		}
3242 		block_start = em->block_start;
3243 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3244 			block_start = EXTENT_MAP_HOLE;
3245 
3246 		/*
3247 		 * If we have a file range that points to a compressed extent
3248 		 * and it's followed by a consecutive file range that points to
3249 		 * to the same compressed extent (possibly with a different
3250 		 * offset and/or length, so it either points to the whole extent
3251 		 * or only part of it), we must make sure we do not submit a
3252 		 * single bio to populate the pages for the 2 ranges because
3253 		 * this makes the compressed extent read zero out the pages
3254 		 * belonging to the 2nd range. Imagine the following scenario:
3255 		 *
3256 		 *  File layout
3257 		 *  [0 - 8K]                     [8K - 24K]
3258 		 *    |                               |
3259 		 *    |                               |
3260 		 * points to extent X,         points to extent X,
3261 		 * offset 4K, length of 8K     offset 0, length 16K
3262 		 *
3263 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3264 		 *
3265 		 * If the bio to read the compressed extent covers both ranges,
3266 		 * it will decompress extent X into the pages belonging to the
3267 		 * first range and then it will stop, zeroing out the remaining
3268 		 * pages that belong to the other range that points to extent X.
3269 		 * So here we make sure we submit 2 bios, one for the first
3270 		 * range and another one for the third range. Both will target
3271 		 * the same physical extent from disk, but we can't currently
3272 		 * make the compressed bio endio callback populate the pages
3273 		 * for both ranges because each compressed bio is tightly
3274 		 * coupled with a single extent map, and each range can have
3275 		 * an extent map with a different offset value relative to the
3276 		 * uncompressed data of our extent and different lengths. This
3277 		 * is a corner case so we prioritize correctness over
3278 		 * non-optimal behavior (submitting 2 bios for the same extent).
3279 		 */
3280 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3281 		    prev_em_start && *prev_em_start != (u64)-1 &&
3282 		    *prev_em_start != em->start)
3283 			force_bio_submit = true;
3284 
3285 		if (prev_em_start)
3286 			*prev_em_start = em->start;
3287 
3288 		free_extent_map(em);
3289 		em = NULL;
3290 
3291 		/* we've found a hole, just zero and go on */
3292 		if (block_start == EXTENT_MAP_HOLE) {
3293 			char *userpage;
3294 			struct extent_state *cached = NULL;
3295 
3296 			userpage = kmap_atomic(page);
3297 			memset(userpage + pg_offset, 0, iosize);
3298 			flush_dcache_page(page);
3299 			kunmap_atomic(userpage);
3300 
3301 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3302 					    &cached, GFP_NOFS);
3303 			unlock_extent_cached(tree, cur,
3304 					     cur + iosize - 1, &cached);
3305 			cur = cur + iosize;
3306 			pg_offset += iosize;
3307 			continue;
3308 		}
3309 		/* the get_extent function already copied into the page */
3310 		if (test_range_bit(tree, cur, cur_end,
3311 				   EXTENT_UPTODATE, 1, NULL)) {
3312 			check_page_uptodate(tree, page);
3313 			unlock_extent(tree, cur, cur + iosize - 1);
3314 			cur = cur + iosize;
3315 			pg_offset += iosize;
3316 			continue;
3317 		}
3318 		/* we have an inline extent but it didn't get marked up
3319 		 * to date.  Error out
3320 		 */
3321 		if (block_start == EXTENT_MAP_INLINE) {
3322 			SetPageError(page);
3323 			unlock_extent(tree, cur, cur + iosize - 1);
3324 			cur = cur + iosize;
3325 			pg_offset += iosize;
3326 			continue;
3327 		}
3328 
3329 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3330 					 page, offset, disk_io_size,
3331 					 pg_offset, bio,
3332 					 end_bio_extent_readpage, mirror_num,
3333 					 *bio_flags,
3334 					 this_bio_flag,
3335 					 force_bio_submit);
3336 		if (!ret) {
3337 			nr++;
3338 			*bio_flags = this_bio_flag;
3339 		} else {
3340 			SetPageError(page);
3341 			unlock_extent(tree, cur, cur + iosize - 1);
3342 			goto out;
3343 		}
3344 		cur = cur + iosize;
3345 		pg_offset += iosize;
3346 	}
3347 out:
3348 	if (!nr) {
3349 		if (!PageError(page))
3350 			SetPageUptodate(page);
3351 		unlock_page(page);
3352 	}
3353 	return ret;
3354 }
3355 
3356 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3357 					     u64 start, u64 end,
3358 					     struct extent_map **em_cached,
3359 					     struct bio **bio,
3360 					     unsigned long *bio_flags,
3361 					     u64 *prev_em_start)
3362 {
3363 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3364 	int index;
3365 
3366 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3367 
3368 	for (index = 0; index < nr_pages; index++) {
3369 		__do_readpage(pages[index], btrfs_get_extent, em_cached,
3370 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3371 		put_page(pages[index]);
3372 	}
3373 }
3374 
3375 static int __extent_read_full_page(struct page *page,
3376 				   get_extent_t *get_extent,
3377 				   struct bio **bio, int mirror_num,
3378 				   unsigned long *bio_flags,
3379 				   unsigned int read_flags)
3380 {
3381 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3382 	u64 start = page_offset(page);
3383 	u64 end = start + PAGE_SIZE - 1;
3384 	int ret;
3385 
3386 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3387 
3388 	ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3389 			    bio_flags, read_flags, NULL);
3390 	return ret;
3391 }
3392 
3393 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3394 			  int mirror_num)
3395 {
3396 	struct bio *bio = NULL;
3397 	unsigned long bio_flags = 0;
3398 	int ret;
3399 
3400 	ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3401 				      &bio_flags, 0);
3402 	if (bio)
3403 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3404 	return ret;
3405 }
3406 
3407 static void update_nr_written(struct writeback_control *wbc,
3408 			      unsigned long nr_written)
3409 {
3410 	wbc->nr_to_write -= nr_written;
3411 }
3412 
3413 /*
3414  * helper for __extent_writepage, doing all of the delayed allocation setup.
3415  *
3416  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3417  * to write the page (copy into inline extent).  In this case the IO has
3418  * been started and the page is already unlocked.
3419  *
3420  * This returns 0 if all went well (page still locked)
3421  * This returns < 0 if there were errors (page still locked)
3422  */
3423 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3424 		struct page *page, struct writeback_control *wbc,
3425 		u64 delalloc_start, unsigned long *nr_written)
3426 {
3427 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3428 	bool found;
3429 	u64 delalloc_to_write = 0;
3430 	u64 delalloc_end = 0;
3431 	int ret;
3432 	int page_started = 0;
3433 
3434 
3435 	while (delalloc_end < page_end) {
3436 		found = find_lock_delalloc_range(inode, page,
3437 					       &delalloc_start,
3438 					       &delalloc_end);
3439 		if (!found) {
3440 			delalloc_start = delalloc_end + 1;
3441 			continue;
3442 		}
3443 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3444 				delalloc_end, &page_started, nr_written, wbc);
3445 		if (ret) {
3446 			SetPageError(page);
3447 			/*
3448 			 * btrfs_run_delalloc_range should return < 0 for error
3449 			 * but just in case, we use > 0 here meaning the IO is
3450 			 * started, so we don't want to return > 0 unless
3451 			 * things are going well.
3452 			 */
3453 			ret = ret < 0 ? ret : -EIO;
3454 			goto done;
3455 		}
3456 		/*
3457 		 * delalloc_end is already one less than the total length, so
3458 		 * we don't subtract one from PAGE_SIZE
3459 		 */
3460 		delalloc_to_write += (delalloc_end - delalloc_start +
3461 				      PAGE_SIZE) >> PAGE_SHIFT;
3462 		delalloc_start = delalloc_end + 1;
3463 	}
3464 	if (wbc->nr_to_write < delalloc_to_write) {
3465 		int thresh = 8192;
3466 
3467 		if (delalloc_to_write < thresh * 2)
3468 			thresh = delalloc_to_write;
3469 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3470 					 thresh);
3471 	}
3472 
3473 	/* did the fill delalloc function already unlock and start
3474 	 * the IO?
3475 	 */
3476 	if (page_started) {
3477 		/*
3478 		 * we've unlocked the page, so we can't update
3479 		 * the mapping's writeback index, just update
3480 		 * nr_to_write.
3481 		 */
3482 		wbc->nr_to_write -= *nr_written;
3483 		return 1;
3484 	}
3485 
3486 	ret = 0;
3487 
3488 done:
3489 	return ret;
3490 }
3491 
3492 /*
3493  * helper for __extent_writepage.  This calls the writepage start hooks,
3494  * and does the loop to map the page into extents and bios.
3495  *
3496  * We return 1 if the IO is started and the page is unlocked,
3497  * 0 if all went well (page still locked)
3498  * < 0 if there were errors (page still locked)
3499  */
3500 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3501 				 struct page *page,
3502 				 struct writeback_control *wbc,
3503 				 struct extent_page_data *epd,
3504 				 loff_t i_size,
3505 				 unsigned long nr_written,
3506 				 int *nr_ret)
3507 {
3508 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3509 	u64 start = page_offset(page);
3510 	u64 page_end = start + PAGE_SIZE - 1;
3511 	u64 end;
3512 	u64 cur = start;
3513 	u64 extent_offset;
3514 	u64 block_start;
3515 	u64 iosize;
3516 	struct extent_map *em;
3517 	size_t pg_offset = 0;
3518 	size_t blocksize;
3519 	int ret = 0;
3520 	int nr = 0;
3521 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3522 	bool compressed;
3523 
3524 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3525 	if (ret) {
3526 		/* Fixup worker will requeue */
3527 		redirty_page_for_writepage(wbc, page);
3528 		update_nr_written(wbc, nr_written);
3529 		unlock_page(page);
3530 		return 1;
3531 	}
3532 
3533 	/*
3534 	 * we don't want to touch the inode after unlocking the page,
3535 	 * so we update the mapping writeback index now
3536 	 */
3537 	update_nr_written(wbc, nr_written + 1);
3538 
3539 	end = page_end;
3540 	blocksize = inode->i_sb->s_blocksize;
3541 
3542 	while (cur <= end) {
3543 		u64 em_end;
3544 		u64 offset;
3545 
3546 		if (cur >= i_size) {
3547 			btrfs_writepage_endio_finish_ordered(page, cur,
3548 							     page_end, 1);
3549 			break;
3550 		}
3551 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3552 				      end - cur + 1);
3553 		if (IS_ERR_OR_NULL(em)) {
3554 			SetPageError(page);
3555 			ret = PTR_ERR_OR_ZERO(em);
3556 			break;
3557 		}
3558 
3559 		extent_offset = cur - em->start;
3560 		em_end = extent_map_end(em);
3561 		BUG_ON(em_end <= cur);
3562 		BUG_ON(end < cur);
3563 		iosize = min(em_end - cur, end - cur + 1);
3564 		iosize = ALIGN(iosize, blocksize);
3565 		offset = em->block_start + extent_offset;
3566 		block_start = em->block_start;
3567 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3568 		free_extent_map(em);
3569 		em = NULL;
3570 
3571 		/*
3572 		 * compressed and inline extents are written through other
3573 		 * paths in the FS
3574 		 */
3575 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3576 		    block_start == EXTENT_MAP_INLINE) {
3577 			if (compressed)
3578 				nr++;
3579 			else
3580 				btrfs_writepage_endio_finish_ordered(page, cur,
3581 							cur + iosize - 1, 1);
3582 			cur += iosize;
3583 			pg_offset += iosize;
3584 			continue;
3585 		}
3586 
3587 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3588 		if (!PageWriteback(page)) {
3589 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3590 				   "page %lu not writeback, cur %llu end %llu",
3591 			       page->index, cur, end);
3592 		}
3593 
3594 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3595 					 page, offset, iosize, pg_offset,
3596 					 &epd->bio,
3597 					 end_bio_extent_writepage,
3598 					 0, 0, 0, false);
3599 		if (ret) {
3600 			SetPageError(page);
3601 			if (PageWriteback(page))
3602 				end_page_writeback(page);
3603 		}
3604 
3605 		cur = cur + iosize;
3606 		pg_offset += iosize;
3607 		nr++;
3608 	}
3609 	*nr_ret = nr;
3610 	return ret;
3611 }
3612 
3613 /*
3614  * the writepage semantics are similar to regular writepage.  extent
3615  * records are inserted to lock ranges in the tree, and as dirty areas
3616  * are found, they are marked writeback.  Then the lock bits are removed
3617  * and the end_io handler clears the writeback ranges
3618  *
3619  * Return 0 if everything goes well.
3620  * Return <0 for error.
3621  */
3622 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3623 			      struct extent_page_data *epd)
3624 {
3625 	struct inode *inode = page->mapping->host;
3626 	u64 start = page_offset(page);
3627 	u64 page_end = start + PAGE_SIZE - 1;
3628 	int ret;
3629 	int nr = 0;
3630 	size_t pg_offset;
3631 	loff_t i_size = i_size_read(inode);
3632 	unsigned long end_index = i_size >> PAGE_SHIFT;
3633 	unsigned long nr_written = 0;
3634 
3635 	trace___extent_writepage(page, inode, wbc);
3636 
3637 	WARN_ON(!PageLocked(page));
3638 
3639 	ClearPageError(page);
3640 
3641 	pg_offset = offset_in_page(i_size);
3642 	if (page->index > end_index ||
3643 	   (page->index == end_index && !pg_offset)) {
3644 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3645 		unlock_page(page);
3646 		return 0;
3647 	}
3648 
3649 	if (page->index == end_index) {
3650 		char *userpage;
3651 
3652 		userpage = kmap_atomic(page);
3653 		memset(userpage + pg_offset, 0,
3654 		       PAGE_SIZE - pg_offset);
3655 		kunmap_atomic(userpage);
3656 		flush_dcache_page(page);
3657 	}
3658 
3659 	set_page_extent_mapped(page);
3660 
3661 	if (!epd->extent_locked) {
3662 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3663 		if (ret == 1)
3664 			return 0;
3665 		if (ret)
3666 			goto done;
3667 	}
3668 
3669 	ret = __extent_writepage_io(inode, page, wbc, epd,
3670 				    i_size, nr_written, &nr);
3671 	if (ret == 1)
3672 		return 0;
3673 
3674 done:
3675 	if (nr == 0) {
3676 		/* make sure the mapping tag for page dirty gets cleared */
3677 		set_page_writeback(page);
3678 		end_page_writeback(page);
3679 	}
3680 	if (PageError(page)) {
3681 		ret = ret < 0 ? ret : -EIO;
3682 		end_extent_writepage(page, ret, start, page_end);
3683 	}
3684 	unlock_page(page);
3685 	ASSERT(ret <= 0);
3686 	return ret;
3687 }
3688 
3689 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3690 {
3691 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3692 		       TASK_UNINTERRUPTIBLE);
3693 }
3694 
3695 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3696 {
3697 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3698 	smp_mb__after_atomic();
3699 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3700 }
3701 
3702 /*
3703  * Lock eb pages and flush the bio if we can't the locks
3704  *
3705  * Return  0 if nothing went wrong
3706  * Return >0 is same as 0, except bio is not submitted
3707  * Return <0 if something went wrong, no page is locked
3708  */
3709 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3710 			  struct extent_page_data *epd)
3711 {
3712 	struct btrfs_fs_info *fs_info = eb->fs_info;
3713 	int i, num_pages, failed_page_nr;
3714 	int flush = 0;
3715 	int ret = 0;
3716 
3717 	if (!btrfs_try_tree_write_lock(eb)) {
3718 		ret = flush_write_bio(epd);
3719 		if (ret < 0)
3720 			return ret;
3721 		flush = 1;
3722 		btrfs_tree_lock(eb);
3723 	}
3724 
3725 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3726 		btrfs_tree_unlock(eb);
3727 		if (!epd->sync_io)
3728 			return 0;
3729 		if (!flush) {
3730 			ret = flush_write_bio(epd);
3731 			if (ret < 0)
3732 				return ret;
3733 			flush = 1;
3734 		}
3735 		while (1) {
3736 			wait_on_extent_buffer_writeback(eb);
3737 			btrfs_tree_lock(eb);
3738 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3739 				break;
3740 			btrfs_tree_unlock(eb);
3741 		}
3742 	}
3743 
3744 	/*
3745 	 * We need to do this to prevent races in people who check if the eb is
3746 	 * under IO since we can end up having no IO bits set for a short period
3747 	 * of time.
3748 	 */
3749 	spin_lock(&eb->refs_lock);
3750 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3751 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3752 		spin_unlock(&eb->refs_lock);
3753 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3754 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3755 					 -eb->len,
3756 					 fs_info->dirty_metadata_batch);
3757 		ret = 1;
3758 	} else {
3759 		spin_unlock(&eb->refs_lock);
3760 	}
3761 
3762 	btrfs_tree_unlock(eb);
3763 
3764 	if (!ret)
3765 		return ret;
3766 
3767 	num_pages = num_extent_pages(eb);
3768 	for (i = 0; i < num_pages; i++) {
3769 		struct page *p = eb->pages[i];
3770 
3771 		if (!trylock_page(p)) {
3772 			if (!flush) {
3773 				int err;
3774 
3775 				err = flush_write_bio(epd);
3776 				if (err < 0) {
3777 					ret = err;
3778 					failed_page_nr = i;
3779 					goto err_unlock;
3780 				}
3781 				flush = 1;
3782 			}
3783 			lock_page(p);
3784 		}
3785 	}
3786 
3787 	return ret;
3788 err_unlock:
3789 	/* Unlock already locked pages */
3790 	for (i = 0; i < failed_page_nr; i++)
3791 		unlock_page(eb->pages[i]);
3792 	/*
3793 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3794 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3795 	 * be made and undo everything done before.
3796 	 */
3797 	btrfs_tree_lock(eb);
3798 	spin_lock(&eb->refs_lock);
3799 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3800 	end_extent_buffer_writeback(eb);
3801 	spin_unlock(&eb->refs_lock);
3802 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3803 				 fs_info->dirty_metadata_batch);
3804 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3805 	btrfs_tree_unlock(eb);
3806 	return ret;
3807 }
3808 
3809 static void set_btree_ioerr(struct page *page)
3810 {
3811 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3812 	struct btrfs_fs_info *fs_info;
3813 
3814 	SetPageError(page);
3815 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3816 		return;
3817 
3818 	/*
3819 	 * If we error out, we should add back the dirty_metadata_bytes
3820 	 * to make it consistent.
3821 	 */
3822 	fs_info = eb->fs_info;
3823 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3824 				 eb->len, fs_info->dirty_metadata_batch);
3825 
3826 	/*
3827 	 * If writeback for a btree extent that doesn't belong to a log tree
3828 	 * failed, increment the counter transaction->eb_write_errors.
3829 	 * We do this because while the transaction is running and before it's
3830 	 * committing (when we call filemap_fdata[write|wait]_range against
3831 	 * the btree inode), we might have
3832 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3833 	 * returns an error or an error happens during writeback, when we're
3834 	 * committing the transaction we wouldn't know about it, since the pages
3835 	 * can be no longer dirty nor marked anymore for writeback (if a
3836 	 * subsequent modification to the extent buffer didn't happen before the
3837 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3838 	 * able to find the pages tagged with SetPageError at transaction
3839 	 * commit time. So if this happens we must abort the transaction,
3840 	 * otherwise we commit a super block with btree roots that point to
3841 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3842 	 * or the content of some node/leaf from a past generation that got
3843 	 * cowed or deleted and is no longer valid.
3844 	 *
3845 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3846 	 * not be enough - we need to distinguish between log tree extents vs
3847 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3848 	 * will catch and clear such errors in the mapping - and that call might
3849 	 * be from a log sync and not from a transaction commit. Also, checking
3850 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3851 	 * not done and would not be reliable - the eb might have been released
3852 	 * from memory and reading it back again means that flag would not be
3853 	 * set (since it's a runtime flag, not persisted on disk).
3854 	 *
3855 	 * Using the flags below in the btree inode also makes us achieve the
3856 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3857 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3858 	 * is called, the writeback for all dirty pages had already finished
3859 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3860 	 * filemap_fdatawait_range() would return success, as it could not know
3861 	 * that writeback errors happened (the pages were no longer tagged for
3862 	 * writeback).
3863 	 */
3864 	switch (eb->log_index) {
3865 	case -1:
3866 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3867 		break;
3868 	case 0:
3869 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3870 		break;
3871 	case 1:
3872 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3873 		break;
3874 	default:
3875 		BUG(); /* unexpected, logic error */
3876 	}
3877 }
3878 
3879 static void end_bio_extent_buffer_writepage(struct bio *bio)
3880 {
3881 	struct bio_vec *bvec;
3882 	struct extent_buffer *eb;
3883 	int done;
3884 	struct bvec_iter_all iter_all;
3885 
3886 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3887 	bio_for_each_segment_all(bvec, bio, iter_all) {
3888 		struct page *page = bvec->bv_page;
3889 
3890 		eb = (struct extent_buffer *)page->private;
3891 		BUG_ON(!eb);
3892 		done = atomic_dec_and_test(&eb->io_pages);
3893 
3894 		if (bio->bi_status ||
3895 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3896 			ClearPageUptodate(page);
3897 			set_btree_ioerr(page);
3898 		}
3899 
3900 		end_page_writeback(page);
3901 
3902 		if (!done)
3903 			continue;
3904 
3905 		end_extent_buffer_writeback(eb);
3906 	}
3907 
3908 	bio_put(bio);
3909 }
3910 
3911 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3912 			struct writeback_control *wbc,
3913 			struct extent_page_data *epd)
3914 {
3915 	u64 offset = eb->start;
3916 	u32 nritems;
3917 	int i, num_pages;
3918 	unsigned long start, end;
3919 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3920 	int ret = 0;
3921 
3922 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3923 	num_pages = num_extent_pages(eb);
3924 	atomic_set(&eb->io_pages, num_pages);
3925 
3926 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3927 	nritems = btrfs_header_nritems(eb);
3928 	if (btrfs_header_level(eb) > 0) {
3929 		end = btrfs_node_key_ptr_offset(nritems);
3930 
3931 		memzero_extent_buffer(eb, end, eb->len - end);
3932 	} else {
3933 		/*
3934 		 * leaf:
3935 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3936 		 */
3937 		start = btrfs_item_nr_offset(nritems);
3938 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3939 		memzero_extent_buffer(eb, start, end - start);
3940 	}
3941 
3942 	for (i = 0; i < num_pages; i++) {
3943 		struct page *p = eb->pages[i];
3944 
3945 		clear_page_dirty_for_io(p);
3946 		set_page_writeback(p);
3947 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3948 					 p, offset, PAGE_SIZE, 0,
3949 					 &epd->bio,
3950 					 end_bio_extent_buffer_writepage,
3951 					 0, 0, 0, false);
3952 		if (ret) {
3953 			set_btree_ioerr(p);
3954 			if (PageWriteback(p))
3955 				end_page_writeback(p);
3956 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3957 				end_extent_buffer_writeback(eb);
3958 			ret = -EIO;
3959 			break;
3960 		}
3961 		offset += PAGE_SIZE;
3962 		update_nr_written(wbc, 1);
3963 		unlock_page(p);
3964 	}
3965 
3966 	if (unlikely(ret)) {
3967 		for (; i < num_pages; i++) {
3968 			struct page *p = eb->pages[i];
3969 			clear_page_dirty_for_io(p);
3970 			unlock_page(p);
3971 		}
3972 	}
3973 
3974 	return ret;
3975 }
3976 
3977 int btree_write_cache_pages(struct address_space *mapping,
3978 				   struct writeback_control *wbc)
3979 {
3980 	struct extent_buffer *eb, *prev_eb = NULL;
3981 	struct extent_page_data epd = {
3982 		.bio = NULL,
3983 		.extent_locked = 0,
3984 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3985 	};
3986 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3987 	int ret = 0;
3988 	int done = 0;
3989 	int nr_to_write_done = 0;
3990 	struct pagevec pvec;
3991 	int nr_pages;
3992 	pgoff_t index;
3993 	pgoff_t end;		/* Inclusive */
3994 	int scanned = 0;
3995 	xa_mark_t tag;
3996 
3997 	pagevec_init(&pvec);
3998 	if (wbc->range_cyclic) {
3999 		index = mapping->writeback_index; /* Start from prev offset */
4000 		end = -1;
4001 		/*
4002 		 * Start from the beginning does not need to cycle over the
4003 		 * range, mark it as scanned.
4004 		 */
4005 		scanned = (index == 0);
4006 	} else {
4007 		index = wbc->range_start >> PAGE_SHIFT;
4008 		end = wbc->range_end >> PAGE_SHIFT;
4009 		scanned = 1;
4010 	}
4011 	if (wbc->sync_mode == WB_SYNC_ALL)
4012 		tag = PAGECACHE_TAG_TOWRITE;
4013 	else
4014 		tag = PAGECACHE_TAG_DIRTY;
4015 retry:
4016 	if (wbc->sync_mode == WB_SYNC_ALL)
4017 		tag_pages_for_writeback(mapping, index, end);
4018 	while (!done && !nr_to_write_done && (index <= end) &&
4019 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4020 			tag))) {
4021 		unsigned i;
4022 
4023 		for (i = 0; i < nr_pages; i++) {
4024 			struct page *page = pvec.pages[i];
4025 
4026 			if (!PagePrivate(page))
4027 				continue;
4028 
4029 			spin_lock(&mapping->private_lock);
4030 			if (!PagePrivate(page)) {
4031 				spin_unlock(&mapping->private_lock);
4032 				continue;
4033 			}
4034 
4035 			eb = (struct extent_buffer *)page->private;
4036 
4037 			/*
4038 			 * Shouldn't happen and normally this would be a BUG_ON
4039 			 * but no sense in crashing the users box for something
4040 			 * we can survive anyway.
4041 			 */
4042 			if (WARN_ON(!eb)) {
4043 				spin_unlock(&mapping->private_lock);
4044 				continue;
4045 			}
4046 
4047 			if (eb == prev_eb) {
4048 				spin_unlock(&mapping->private_lock);
4049 				continue;
4050 			}
4051 
4052 			ret = atomic_inc_not_zero(&eb->refs);
4053 			spin_unlock(&mapping->private_lock);
4054 			if (!ret)
4055 				continue;
4056 
4057 			prev_eb = eb;
4058 			ret = lock_extent_buffer_for_io(eb, &epd);
4059 			if (!ret) {
4060 				free_extent_buffer(eb);
4061 				continue;
4062 			} else if (ret < 0) {
4063 				done = 1;
4064 				free_extent_buffer(eb);
4065 				break;
4066 			}
4067 
4068 			ret = write_one_eb(eb, wbc, &epd);
4069 			if (ret) {
4070 				done = 1;
4071 				free_extent_buffer(eb);
4072 				break;
4073 			}
4074 			free_extent_buffer(eb);
4075 
4076 			/*
4077 			 * the filesystem may choose to bump up nr_to_write.
4078 			 * We have to make sure to honor the new nr_to_write
4079 			 * at any time
4080 			 */
4081 			nr_to_write_done = wbc->nr_to_write <= 0;
4082 		}
4083 		pagevec_release(&pvec);
4084 		cond_resched();
4085 	}
4086 	if (!scanned && !done) {
4087 		/*
4088 		 * We hit the last page and there is more work to be done: wrap
4089 		 * back to the start of the file
4090 		 */
4091 		scanned = 1;
4092 		index = 0;
4093 		goto retry;
4094 	}
4095 	ASSERT(ret <= 0);
4096 	if (ret < 0) {
4097 		end_write_bio(&epd, ret);
4098 		return ret;
4099 	}
4100 	/*
4101 	 * If something went wrong, don't allow any metadata write bio to be
4102 	 * submitted.
4103 	 *
4104 	 * This would prevent use-after-free if we had dirty pages not
4105 	 * cleaned up, which can still happen by fuzzed images.
4106 	 *
4107 	 * - Bad extent tree
4108 	 *   Allowing existing tree block to be allocated for other trees.
4109 	 *
4110 	 * - Log tree operations
4111 	 *   Exiting tree blocks get allocated to log tree, bumps its
4112 	 *   generation, then get cleaned in tree re-balance.
4113 	 *   Such tree block will not be written back, since it's clean,
4114 	 *   thus no WRITTEN flag set.
4115 	 *   And after log writes back, this tree block is not traced by
4116 	 *   any dirty extent_io_tree.
4117 	 *
4118 	 * - Offending tree block gets re-dirtied from its original owner
4119 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4120 	 *   reused without COWing. This tree block will not be traced
4121 	 *   by btrfs_transaction::dirty_pages.
4122 	 *
4123 	 *   Now such dirty tree block will not be cleaned by any dirty
4124 	 *   extent io tree. Thus we don't want to submit such wild eb
4125 	 *   if the fs already has error.
4126 	 */
4127 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4128 		ret = flush_write_bio(&epd);
4129 	} else {
4130 		ret = -EUCLEAN;
4131 		end_write_bio(&epd, ret);
4132 	}
4133 	return ret;
4134 }
4135 
4136 /**
4137  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4138  * @mapping: address space structure to write
4139  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4140  * @data: data passed to __extent_writepage function
4141  *
4142  * If a page is already under I/O, write_cache_pages() skips it, even
4143  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4144  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4145  * and msync() need to guarantee that all the data which was dirty at the time
4146  * the call was made get new I/O started against them.  If wbc->sync_mode is
4147  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4148  * existing IO to complete.
4149  */
4150 static int extent_write_cache_pages(struct address_space *mapping,
4151 			     struct writeback_control *wbc,
4152 			     struct extent_page_data *epd)
4153 {
4154 	struct inode *inode = mapping->host;
4155 	int ret = 0;
4156 	int done = 0;
4157 	int nr_to_write_done = 0;
4158 	struct pagevec pvec;
4159 	int nr_pages;
4160 	pgoff_t index;
4161 	pgoff_t end;		/* Inclusive */
4162 	pgoff_t done_index;
4163 	int range_whole = 0;
4164 	int scanned = 0;
4165 	xa_mark_t tag;
4166 
4167 	/*
4168 	 * We have to hold onto the inode so that ordered extents can do their
4169 	 * work when the IO finishes.  The alternative to this is failing to add
4170 	 * an ordered extent if the igrab() fails there and that is a huge pain
4171 	 * to deal with, so instead just hold onto the inode throughout the
4172 	 * writepages operation.  If it fails here we are freeing up the inode
4173 	 * anyway and we'd rather not waste our time writing out stuff that is
4174 	 * going to be truncated anyway.
4175 	 */
4176 	if (!igrab(inode))
4177 		return 0;
4178 
4179 	pagevec_init(&pvec);
4180 	if (wbc->range_cyclic) {
4181 		index = mapping->writeback_index; /* Start from prev offset */
4182 		end = -1;
4183 		/*
4184 		 * Start from the beginning does not need to cycle over the
4185 		 * range, mark it as scanned.
4186 		 */
4187 		scanned = (index == 0);
4188 	} else {
4189 		index = wbc->range_start >> PAGE_SHIFT;
4190 		end = wbc->range_end >> PAGE_SHIFT;
4191 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4192 			range_whole = 1;
4193 		scanned = 1;
4194 	}
4195 
4196 	/*
4197 	 * We do the tagged writepage as long as the snapshot flush bit is set
4198 	 * and we are the first one who do the filemap_flush() on this inode.
4199 	 *
4200 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4201 	 * not race in and drop the bit.
4202 	 */
4203 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4204 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4205 			       &BTRFS_I(inode)->runtime_flags))
4206 		wbc->tagged_writepages = 1;
4207 
4208 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4209 		tag = PAGECACHE_TAG_TOWRITE;
4210 	else
4211 		tag = PAGECACHE_TAG_DIRTY;
4212 retry:
4213 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4214 		tag_pages_for_writeback(mapping, index, end);
4215 	done_index = index;
4216 	while (!done && !nr_to_write_done && (index <= end) &&
4217 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4218 						&index, end, tag))) {
4219 		unsigned i;
4220 
4221 		for (i = 0; i < nr_pages; i++) {
4222 			struct page *page = pvec.pages[i];
4223 
4224 			done_index = page->index + 1;
4225 			/*
4226 			 * At this point we hold neither the i_pages lock nor
4227 			 * the page lock: the page may be truncated or
4228 			 * invalidated (changing page->mapping to NULL),
4229 			 * or even swizzled back from swapper_space to
4230 			 * tmpfs file mapping
4231 			 */
4232 			if (!trylock_page(page)) {
4233 				ret = flush_write_bio(epd);
4234 				BUG_ON(ret < 0);
4235 				lock_page(page);
4236 			}
4237 
4238 			if (unlikely(page->mapping != mapping)) {
4239 				unlock_page(page);
4240 				continue;
4241 			}
4242 
4243 			if (wbc->sync_mode != WB_SYNC_NONE) {
4244 				if (PageWriteback(page)) {
4245 					ret = flush_write_bio(epd);
4246 					BUG_ON(ret < 0);
4247 				}
4248 				wait_on_page_writeback(page);
4249 			}
4250 
4251 			if (PageWriteback(page) ||
4252 			    !clear_page_dirty_for_io(page)) {
4253 				unlock_page(page);
4254 				continue;
4255 			}
4256 
4257 			ret = __extent_writepage(page, wbc, epd);
4258 			if (ret < 0) {
4259 				done = 1;
4260 				break;
4261 			}
4262 
4263 			/*
4264 			 * the filesystem may choose to bump up nr_to_write.
4265 			 * We have to make sure to honor the new nr_to_write
4266 			 * at any time
4267 			 */
4268 			nr_to_write_done = wbc->nr_to_write <= 0;
4269 		}
4270 		pagevec_release(&pvec);
4271 		cond_resched();
4272 	}
4273 	if (!scanned && !done) {
4274 		/*
4275 		 * We hit the last page and there is more work to be done: wrap
4276 		 * back to the start of the file
4277 		 */
4278 		scanned = 1;
4279 		index = 0;
4280 
4281 		/*
4282 		 * If we're looping we could run into a page that is locked by a
4283 		 * writer and that writer could be waiting on writeback for a
4284 		 * page in our current bio, and thus deadlock, so flush the
4285 		 * write bio here.
4286 		 */
4287 		ret = flush_write_bio(epd);
4288 		if (!ret)
4289 			goto retry;
4290 	}
4291 
4292 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4293 		mapping->writeback_index = done_index;
4294 
4295 	btrfs_add_delayed_iput(inode);
4296 	return ret;
4297 }
4298 
4299 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4300 {
4301 	int ret;
4302 	struct extent_page_data epd = {
4303 		.bio = NULL,
4304 		.extent_locked = 0,
4305 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4306 	};
4307 
4308 	ret = __extent_writepage(page, wbc, &epd);
4309 	ASSERT(ret <= 0);
4310 	if (ret < 0) {
4311 		end_write_bio(&epd, ret);
4312 		return ret;
4313 	}
4314 
4315 	ret = flush_write_bio(&epd);
4316 	ASSERT(ret <= 0);
4317 	return ret;
4318 }
4319 
4320 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4321 			      int mode)
4322 {
4323 	int ret = 0;
4324 	struct address_space *mapping = inode->i_mapping;
4325 	struct page *page;
4326 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4327 		PAGE_SHIFT;
4328 
4329 	struct extent_page_data epd = {
4330 		.bio = NULL,
4331 		.extent_locked = 1,
4332 		.sync_io = mode == WB_SYNC_ALL,
4333 	};
4334 	struct writeback_control wbc_writepages = {
4335 		.sync_mode	= mode,
4336 		.nr_to_write	= nr_pages * 2,
4337 		.range_start	= start,
4338 		.range_end	= end + 1,
4339 		/* We're called from an async helper function */
4340 		.punt_to_cgroup	= 1,
4341 		.no_cgroup_owner = 1,
4342 	};
4343 
4344 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4345 	while (start <= end) {
4346 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4347 		if (clear_page_dirty_for_io(page))
4348 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4349 		else {
4350 			btrfs_writepage_endio_finish_ordered(page, start,
4351 						    start + PAGE_SIZE - 1, 1);
4352 			unlock_page(page);
4353 		}
4354 		put_page(page);
4355 		start += PAGE_SIZE;
4356 	}
4357 
4358 	ASSERT(ret <= 0);
4359 	if (ret == 0)
4360 		ret = flush_write_bio(&epd);
4361 	else
4362 		end_write_bio(&epd, ret);
4363 
4364 	wbc_detach_inode(&wbc_writepages);
4365 	return ret;
4366 }
4367 
4368 int extent_writepages(struct address_space *mapping,
4369 		      struct writeback_control *wbc)
4370 {
4371 	int ret = 0;
4372 	struct extent_page_data epd = {
4373 		.bio = NULL,
4374 		.extent_locked = 0,
4375 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4376 	};
4377 
4378 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4379 	ASSERT(ret <= 0);
4380 	if (ret < 0) {
4381 		end_write_bio(&epd, ret);
4382 		return ret;
4383 	}
4384 	ret = flush_write_bio(&epd);
4385 	return ret;
4386 }
4387 
4388 void extent_readahead(struct readahead_control *rac)
4389 {
4390 	struct bio *bio = NULL;
4391 	unsigned long bio_flags = 0;
4392 	struct page *pagepool[16];
4393 	struct extent_map *em_cached = NULL;
4394 	u64 prev_em_start = (u64)-1;
4395 	int nr;
4396 
4397 	while ((nr = readahead_page_batch(rac, pagepool))) {
4398 		u64 contig_start = page_offset(pagepool[0]);
4399 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4400 
4401 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4402 
4403 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4404 				&em_cached, &bio, &bio_flags, &prev_em_start);
4405 	}
4406 
4407 	if (em_cached)
4408 		free_extent_map(em_cached);
4409 
4410 	if (bio) {
4411 		if (submit_one_bio(bio, 0, bio_flags))
4412 			return;
4413 	}
4414 }
4415 
4416 /*
4417  * basic invalidatepage code, this waits on any locked or writeback
4418  * ranges corresponding to the page, and then deletes any extent state
4419  * records from the tree
4420  */
4421 int extent_invalidatepage(struct extent_io_tree *tree,
4422 			  struct page *page, unsigned long offset)
4423 {
4424 	struct extent_state *cached_state = NULL;
4425 	u64 start = page_offset(page);
4426 	u64 end = start + PAGE_SIZE - 1;
4427 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4428 
4429 	start += ALIGN(offset, blocksize);
4430 	if (start > end)
4431 		return 0;
4432 
4433 	lock_extent_bits(tree, start, end, &cached_state);
4434 	wait_on_page_writeback(page);
4435 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4436 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4437 	return 0;
4438 }
4439 
4440 /*
4441  * a helper for releasepage, this tests for areas of the page that
4442  * are locked or under IO and drops the related state bits if it is safe
4443  * to drop the page.
4444  */
4445 static int try_release_extent_state(struct extent_io_tree *tree,
4446 				    struct page *page, gfp_t mask)
4447 {
4448 	u64 start = page_offset(page);
4449 	u64 end = start + PAGE_SIZE - 1;
4450 	int ret = 1;
4451 
4452 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4453 		ret = 0;
4454 	} else {
4455 		/*
4456 		 * at this point we can safely clear everything except the
4457 		 * locked bit and the nodatasum bit
4458 		 */
4459 		ret = __clear_extent_bit(tree, start, end,
4460 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4461 				 0, 0, NULL, mask, NULL);
4462 
4463 		/* if clear_extent_bit failed for enomem reasons,
4464 		 * we can't allow the release to continue.
4465 		 */
4466 		if (ret < 0)
4467 			ret = 0;
4468 		else
4469 			ret = 1;
4470 	}
4471 	return ret;
4472 }
4473 
4474 /*
4475  * a helper for releasepage.  As long as there are no locked extents
4476  * in the range corresponding to the page, both state records and extent
4477  * map records are removed
4478  */
4479 int try_release_extent_mapping(struct page *page, gfp_t mask)
4480 {
4481 	struct extent_map *em;
4482 	u64 start = page_offset(page);
4483 	u64 end = start + PAGE_SIZE - 1;
4484 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4485 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4486 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4487 
4488 	if (gfpflags_allow_blocking(mask) &&
4489 	    page->mapping->host->i_size > SZ_16M) {
4490 		u64 len;
4491 		while (start <= end) {
4492 			len = end - start + 1;
4493 			write_lock(&map->lock);
4494 			em = lookup_extent_mapping(map, start, len);
4495 			if (!em) {
4496 				write_unlock(&map->lock);
4497 				break;
4498 			}
4499 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4500 			    em->start != start) {
4501 				write_unlock(&map->lock);
4502 				free_extent_map(em);
4503 				break;
4504 			}
4505 			if (!test_range_bit(tree, em->start,
4506 					    extent_map_end(em) - 1,
4507 					    EXTENT_LOCKED, 0, NULL)) {
4508 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4509 					&btrfs_inode->runtime_flags);
4510 				remove_extent_mapping(map, em);
4511 				/* once for the rb tree */
4512 				free_extent_map(em);
4513 			}
4514 			start = extent_map_end(em);
4515 			write_unlock(&map->lock);
4516 
4517 			/* once for us */
4518 			free_extent_map(em);
4519 		}
4520 	}
4521 	return try_release_extent_state(tree, page, mask);
4522 }
4523 
4524 /*
4525  * helper function for fiemap, which doesn't want to see any holes.
4526  * This maps until we find something past 'last'
4527  */
4528 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4529 						u64 offset, u64 last)
4530 {
4531 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4532 	struct extent_map *em;
4533 	u64 len;
4534 
4535 	if (offset >= last)
4536 		return NULL;
4537 
4538 	while (1) {
4539 		len = last - offset;
4540 		if (len == 0)
4541 			break;
4542 		len = ALIGN(len, sectorsize);
4543 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4544 		if (IS_ERR_OR_NULL(em))
4545 			return em;
4546 
4547 		/* if this isn't a hole return it */
4548 		if (em->block_start != EXTENT_MAP_HOLE)
4549 			return em;
4550 
4551 		/* this is a hole, advance to the next extent */
4552 		offset = extent_map_end(em);
4553 		free_extent_map(em);
4554 		if (offset >= last)
4555 			break;
4556 	}
4557 	return NULL;
4558 }
4559 
4560 /*
4561  * To cache previous fiemap extent
4562  *
4563  * Will be used for merging fiemap extent
4564  */
4565 struct fiemap_cache {
4566 	u64 offset;
4567 	u64 phys;
4568 	u64 len;
4569 	u32 flags;
4570 	bool cached;
4571 };
4572 
4573 /*
4574  * Helper to submit fiemap extent.
4575  *
4576  * Will try to merge current fiemap extent specified by @offset, @phys,
4577  * @len and @flags with cached one.
4578  * And only when we fails to merge, cached one will be submitted as
4579  * fiemap extent.
4580  *
4581  * Return value is the same as fiemap_fill_next_extent().
4582  */
4583 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4584 				struct fiemap_cache *cache,
4585 				u64 offset, u64 phys, u64 len, u32 flags)
4586 {
4587 	int ret = 0;
4588 
4589 	if (!cache->cached)
4590 		goto assign;
4591 
4592 	/*
4593 	 * Sanity check, extent_fiemap() should have ensured that new
4594 	 * fiemap extent won't overlap with cached one.
4595 	 * Not recoverable.
4596 	 *
4597 	 * NOTE: Physical address can overlap, due to compression
4598 	 */
4599 	if (cache->offset + cache->len > offset) {
4600 		WARN_ON(1);
4601 		return -EINVAL;
4602 	}
4603 
4604 	/*
4605 	 * Only merges fiemap extents if
4606 	 * 1) Their logical addresses are continuous
4607 	 *
4608 	 * 2) Their physical addresses are continuous
4609 	 *    So truly compressed (physical size smaller than logical size)
4610 	 *    extents won't get merged with each other
4611 	 *
4612 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4613 	 *    So regular extent won't get merged with prealloc extent
4614 	 */
4615 	if (cache->offset + cache->len  == offset &&
4616 	    cache->phys + cache->len == phys  &&
4617 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4618 			(flags & ~FIEMAP_EXTENT_LAST)) {
4619 		cache->len += len;
4620 		cache->flags |= flags;
4621 		goto try_submit_last;
4622 	}
4623 
4624 	/* Not mergeable, need to submit cached one */
4625 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4626 				      cache->len, cache->flags);
4627 	cache->cached = false;
4628 	if (ret)
4629 		return ret;
4630 assign:
4631 	cache->cached = true;
4632 	cache->offset = offset;
4633 	cache->phys = phys;
4634 	cache->len = len;
4635 	cache->flags = flags;
4636 try_submit_last:
4637 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4638 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4639 				cache->phys, cache->len, cache->flags);
4640 		cache->cached = false;
4641 	}
4642 	return ret;
4643 }
4644 
4645 /*
4646  * Emit last fiemap cache
4647  *
4648  * The last fiemap cache may still be cached in the following case:
4649  * 0		      4k		    8k
4650  * |<- Fiemap range ->|
4651  * |<------------  First extent ----------->|
4652  *
4653  * In this case, the first extent range will be cached but not emitted.
4654  * So we must emit it before ending extent_fiemap().
4655  */
4656 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4657 				  struct fiemap_cache *cache)
4658 {
4659 	int ret;
4660 
4661 	if (!cache->cached)
4662 		return 0;
4663 
4664 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4665 				      cache->len, cache->flags);
4666 	cache->cached = false;
4667 	if (ret > 0)
4668 		ret = 0;
4669 	return ret;
4670 }
4671 
4672 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4673 		__u64 start, __u64 len)
4674 {
4675 	int ret = 0;
4676 	u64 off = start;
4677 	u64 max = start + len;
4678 	u32 flags = 0;
4679 	u32 found_type;
4680 	u64 last;
4681 	u64 last_for_get_extent = 0;
4682 	u64 disko = 0;
4683 	u64 isize = i_size_read(inode);
4684 	struct btrfs_key found_key;
4685 	struct extent_map *em = NULL;
4686 	struct extent_state *cached_state = NULL;
4687 	struct btrfs_path *path;
4688 	struct btrfs_root *root = BTRFS_I(inode)->root;
4689 	struct fiemap_cache cache = { 0 };
4690 	struct ulist *roots;
4691 	struct ulist *tmp_ulist;
4692 	int end = 0;
4693 	u64 em_start = 0;
4694 	u64 em_len = 0;
4695 	u64 em_end = 0;
4696 
4697 	if (len == 0)
4698 		return -EINVAL;
4699 
4700 	path = btrfs_alloc_path();
4701 	if (!path)
4702 		return -ENOMEM;
4703 	path->leave_spinning = 1;
4704 
4705 	roots = ulist_alloc(GFP_KERNEL);
4706 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4707 	if (!roots || !tmp_ulist) {
4708 		ret = -ENOMEM;
4709 		goto out_free_ulist;
4710 	}
4711 
4712 	start = round_down(start, btrfs_inode_sectorsize(inode));
4713 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4714 
4715 	/*
4716 	 * lookup the last file extent.  We're not using i_size here
4717 	 * because there might be preallocation past i_size
4718 	 */
4719 	ret = btrfs_lookup_file_extent(NULL, root, path,
4720 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4721 	if (ret < 0) {
4722 		goto out_free_ulist;
4723 	} else {
4724 		WARN_ON(!ret);
4725 		if (ret == 1)
4726 			ret = 0;
4727 	}
4728 
4729 	path->slots[0]--;
4730 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4731 	found_type = found_key.type;
4732 
4733 	/* No extents, but there might be delalloc bits */
4734 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4735 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4736 		/* have to trust i_size as the end */
4737 		last = (u64)-1;
4738 		last_for_get_extent = isize;
4739 	} else {
4740 		/*
4741 		 * remember the start of the last extent.  There are a
4742 		 * bunch of different factors that go into the length of the
4743 		 * extent, so its much less complex to remember where it started
4744 		 */
4745 		last = found_key.offset;
4746 		last_for_get_extent = last + 1;
4747 	}
4748 	btrfs_release_path(path);
4749 
4750 	/*
4751 	 * we might have some extents allocated but more delalloc past those
4752 	 * extents.  so, we trust isize unless the start of the last extent is
4753 	 * beyond isize
4754 	 */
4755 	if (last < isize) {
4756 		last = (u64)-1;
4757 		last_for_get_extent = isize;
4758 	}
4759 
4760 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4761 			 &cached_state);
4762 
4763 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4764 	if (!em)
4765 		goto out;
4766 	if (IS_ERR(em)) {
4767 		ret = PTR_ERR(em);
4768 		goto out;
4769 	}
4770 
4771 	while (!end) {
4772 		u64 offset_in_extent = 0;
4773 
4774 		/* break if the extent we found is outside the range */
4775 		if (em->start >= max || extent_map_end(em) < off)
4776 			break;
4777 
4778 		/*
4779 		 * get_extent may return an extent that starts before our
4780 		 * requested range.  We have to make sure the ranges
4781 		 * we return to fiemap always move forward and don't
4782 		 * overlap, so adjust the offsets here
4783 		 */
4784 		em_start = max(em->start, off);
4785 
4786 		/*
4787 		 * record the offset from the start of the extent
4788 		 * for adjusting the disk offset below.  Only do this if the
4789 		 * extent isn't compressed since our in ram offset may be past
4790 		 * what we have actually allocated on disk.
4791 		 */
4792 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4793 			offset_in_extent = em_start - em->start;
4794 		em_end = extent_map_end(em);
4795 		em_len = em_end - em_start;
4796 		flags = 0;
4797 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4798 			disko = em->block_start + offset_in_extent;
4799 		else
4800 			disko = 0;
4801 
4802 		/*
4803 		 * bump off for our next call to get_extent
4804 		 */
4805 		off = extent_map_end(em);
4806 		if (off >= max)
4807 			end = 1;
4808 
4809 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4810 			end = 1;
4811 			flags |= FIEMAP_EXTENT_LAST;
4812 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4813 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4814 				  FIEMAP_EXTENT_NOT_ALIGNED);
4815 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4816 			flags |= (FIEMAP_EXTENT_DELALLOC |
4817 				  FIEMAP_EXTENT_UNKNOWN);
4818 		} else if (fieinfo->fi_extents_max) {
4819 			u64 bytenr = em->block_start -
4820 				(em->start - em->orig_start);
4821 
4822 			/*
4823 			 * As btrfs supports shared space, this information
4824 			 * can be exported to userspace tools via
4825 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4826 			 * then we're just getting a count and we can skip the
4827 			 * lookup stuff.
4828 			 */
4829 			ret = btrfs_check_shared(root,
4830 						 btrfs_ino(BTRFS_I(inode)),
4831 						 bytenr, roots, tmp_ulist);
4832 			if (ret < 0)
4833 				goto out_free;
4834 			if (ret)
4835 				flags |= FIEMAP_EXTENT_SHARED;
4836 			ret = 0;
4837 		}
4838 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4839 			flags |= FIEMAP_EXTENT_ENCODED;
4840 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4841 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4842 
4843 		free_extent_map(em);
4844 		em = NULL;
4845 		if ((em_start >= last) || em_len == (u64)-1 ||
4846 		   (last == (u64)-1 && isize <= em_end)) {
4847 			flags |= FIEMAP_EXTENT_LAST;
4848 			end = 1;
4849 		}
4850 
4851 		/* now scan forward to see if this is really the last extent. */
4852 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4853 		if (IS_ERR(em)) {
4854 			ret = PTR_ERR(em);
4855 			goto out;
4856 		}
4857 		if (!em) {
4858 			flags |= FIEMAP_EXTENT_LAST;
4859 			end = 1;
4860 		}
4861 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4862 					   em_len, flags);
4863 		if (ret) {
4864 			if (ret == 1)
4865 				ret = 0;
4866 			goto out_free;
4867 		}
4868 	}
4869 out_free:
4870 	if (!ret)
4871 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4872 	free_extent_map(em);
4873 out:
4874 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4875 			     &cached_state);
4876 
4877 out_free_ulist:
4878 	btrfs_free_path(path);
4879 	ulist_free(roots);
4880 	ulist_free(tmp_ulist);
4881 	return ret;
4882 }
4883 
4884 static void __free_extent_buffer(struct extent_buffer *eb)
4885 {
4886 	kmem_cache_free(extent_buffer_cache, eb);
4887 }
4888 
4889 int extent_buffer_under_io(const struct extent_buffer *eb)
4890 {
4891 	return (atomic_read(&eb->io_pages) ||
4892 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4893 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4894 }
4895 
4896 /*
4897  * Release all pages attached to the extent buffer.
4898  */
4899 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4900 {
4901 	int i;
4902 	int num_pages;
4903 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4904 
4905 	BUG_ON(extent_buffer_under_io(eb));
4906 
4907 	num_pages = num_extent_pages(eb);
4908 	for (i = 0; i < num_pages; i++) {
4909 		struct page *page = eb->pages[i];
4910 
4911 		if (!page)
4912 			continue;
4913 		if (mapped)
4914 			spin_lock(&page->mapping->private_lock);
4915 		/*
4916 		 * We do this since we'll remove the pages after we've
4917 		 * removed the eb from the radix tree, so we could race
4918 		 * and have this page now attached to the new eb.  So
4919 		 * only clear page_private if it's still connected to
4920 		 * this eb.
4921 		 */
4922 		if (PagePrivate(page) &&
4923 		    page->private == (unsigned long)eb) {
4924 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4925 			BUG_ON(PageDirty(page));
4926 			BUG_ON(PageWriteback(page));
4927 			/*
4928 			 * We need to make sure we haven't be attached
4929 			 * to a new eb.
4930 			 */
4931 			detach_page_private(page);
4932 		}
4933 
4934 		if (mapped)
4935 			spin_unlock(&page->mapping->private_lock);
4936 
4937 		/* One for when we allocated the page */
4938 		put_page(page);
4939 	}
4940 }
4941 
4942 /*
4943  * Helper for releasing the extent buffer.
4944  */
4945 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4946 {
4947 	btrfs_release_extent_buffer_pages(eb);
4948 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4949 	__free_extent_buffer(eb);
4950 }
4951 
4952 static struct extent_buffer *
4953 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4954 		      unsigned long len)
4955 {
4956 	struct extent_buffer *eb = NULL;
4957 
4958 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4959 	eb->start = start;
4960 	eb->len = len;
4961 	eb->fs_info = fs_info;
4962 	eb->bflags = 0;
4963 	rwlock_init(&eb->lock);
4964 	atomic_set(&eb->blocking_readers, 0);
4965 	eb->blocking_writers = 0;
4966 	eb->lock_nested = false;
4967 	init_waitqueue_head(&eb->write_lock_wq);
4968 	init_waitqueue_head(&eb->read_lock_wq);
4969 
4970 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4971 			     &fs_info->allocated_ebs);
4972 
4973 	spin_lock_init(&eb->refs_lock);
4974 	atomic_set(&eb->refs, 1);
4975 	atomic_set(&eb->io_pages, 0);
4976 
4977 	/*
4978 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4979 	 */
4980 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4981 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4982 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4983 
4984 #ifdef CONFIG_BTRFS_DEBUG
4985 	eb->spinning_writers = 0;
4986 	atomic_set(&eb->spinning_readers, 0);
4987 	atomic_set(&eb->read_locks, 0);
4988 	eb->write_locks = 0;
4989 #endif
4990 
4991 	return eb;
4992 }
4993 
4994 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4995 {
4996 	int i;
4997 	struct page *p;
4998 	struct extent_buffer *new;
4999 	int num_pages = num_extent_pages(src);
5000 
5001 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5002 	if (new == NULL)
5003 		return NULL;
5004 
5005 	for (i = 0; i < num_pages; i++) {
5006 		p = alloc_page(GFP_NOFS);
5007 		if (!p) {
5008 			btrfs_release_extent_buffer(new);
5009 			return NULL;
5010 		}
5011 		attach_extent_buffer_page(new, p);
5012 		WARN_ON(PageDirty(p));
5013 		SetPageUptodate(p);
5014 		new->pages[i] = p;
5015 		copy_page(page_address(p), page_address(src->pages[i]));
5016 	}
5017 
5018 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5019 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5020 
5021 	return new;
5022 }
5023 
5024 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5025 						  u64 start, unsigned long len)
5026 {
5027 	struct extent_buffer *eb;
5028 	int num_pages;
5029 	int i;
5030 
5031 	eb = __alloc_extent_buffer(fs_info, start, len);
5032 	if (!eb)
5033 		return NULL;
5034 
5035 	num_pages = num_extent_pages(eb);
5036 	for (i = 0; i < num_pages; i++) {
5037 		eb->pages[i] = alloc_page(GFP_NOFS);
5038 		if (!eb->pages[i])
5039 			goto err;
5040 	}
5041 	set_extent_buffer_uptodate(eb);
5042 	btrfs_set_header_nritems(eb, 0);
5043 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5044 
5045 	return eb;
5046 err:
5047 	for (; i > 0; i--)
5048 		__free_page(eb->pages[i - 1]);
5049 	__free_extent_buffer(eb);
5050 	return NULL;
5051 }
5052 
5053 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5054 						u64 start)
5055 {
5056 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5057 }
5058 
5059 static void check_buffer_tree_ref(struct extent_buffer *eb)
5060 {
5061 	int refs;
5062 	/*
5063 	 * The TREE_REF bit is first set when the extent_buffer is added
5064 	 * to the radix tree. It is also reset, if unset, when a new reference
5065 	 * is created by find_extent_buffer.
5066 	 *
5067 	 * It is only cleared in two cases: freeing the last non-tree
5068 	 * reference to the extent_buffer when its STALE bit is set or
5069 	 * calling releasepage when the tree reference is the only reference.
5070 	 *
5071 	 * In both cases, care is taken to ensure that the extent_buffer's
5072 	 * pages are not under io. However, releasepage can be concurrently
5073 	 * called with creating new references, which is prone to race
5074 	 * conditions between the calls to check_buffer_tree_ref in those
5075 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5076 	 *
5077 	 * The actual lifetime of the extent_buffer in the radix tree is
5078 	 * adequately protected by the refcount, but the TREE_REF bit and
5079 	 * its corresponding reference are not. To protect against this
5080 	 * class of races, we call check_buffer_tree_ref from the codepaths
5081 	 * which trigger io after they set eb->io_pages. Note that once io is
5082 	 * initiated, TREE_REF can no longer be cleared, so that is the
5083 	 * moment at which any such race is best fixed.
5084 	 */
5085 	refs = atomic_read(&eb->refs);
5086 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5087 		return;
5088 
5089 	spin_lock(&eb->refs_lock);
5090 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091 		atomic_inc(&eb->refs);
5092 	spin_unlock(&eb->refs_lock);
5093 }
5094 
5095 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5096 		struct page *accessed)
5097 {
5098 	int num_pages, i;
5099 
5100 	check_buffer_tree_ref(eb);
5101 
5102 	num_pages = num_extent_pages(eb);
5103 	for (i = 0; i < num_pages; i++) {
5104 		struct page *p = eb->pages[i];
5105 
5106 		if (p != accessed)
5107 			mark_page_accessed(p);
5108 	}
5109 }
5110 
5111 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5112 					 u64 start)
5113 {
5114 	struct extent_buffer *eb;
5115 
5116 	rcu_read_lock();
5117 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5118 			       start >> PAGE_SHIFT);
5119 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5120 		rcu_read_unlock();
5121 		/*
5122 		 * Lock our eb's refs_lock to avoid races with
5123 		 * free_extent_buffer. When we get our eb it might be flagged
5124 		 * with EXTENT_BUFFER_STALE and another task running
5125 		 * free_extent_buffer might have seen that flag set,
5126 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5127 		 * writeback flags not set) and it's still in the tree (flag
5128 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5129 		 * of decrementing the extent buffer's reference count twice.
5130 		 * So here we could race and increment the eb's reference count,
5131 		 * clear its stale flag, mark it as dirty and drop our reference
5132 		 * before the other task finishes executing free_extent_buffer,
5133 		 * which would later result in an attempt to free an extent
5134 		 * buffer that is dirty.
5135 		 */
5136 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5137 			spin_lock(&eb->refs_lock);
5138 			spin_unlock(&eb->refs_lock);
5139 		}
5140 		mark_extent_buffer_accessed(eb, NULL);
5141 		return eb;
5142 	}
5143 	rcu_read_unlock();
5144 
5145 	return NULL;
5146 }
5147 
5148 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5149 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5150 					u64 start)
5151 {
5152 	struct extent_buffer *eb, *exists = NULL;
5153 	int ret;
5154 
5155 	eb = find_extent_buffer(fs_info, start);
5156 	if (eb)
5157 		return eb;
5158 	eb = alloc_dummy_extent_buffer(fs_info, start);
5159 	if (!eb)
5160 		return ERR_PTR(-ENOMEM);
5161 	eb->fs_info = fs_info;
5162 again:
5163 	ret = radix_tree_preload(GFP_NOFS);
5164 	if (ret) {
5165 		exists = ERR_PTR(ret);
5166 		goto free_eb;
5167 	}
5168 	spin_lock(&fs_info->buffer_lock);
5169 	ret = radix_tree_insert(&fs_info->buffer_radix,
5170 				start >> PAGE_SHIFT, eb);
5171 	spin_unlock(&fs_info->buffer_lock);
5172 	radix_tree_preload_end();
5173 	if (ret == -EEXIST) {
5174 		exists = find_extent_buffer(fs_info, start);
5175 		if (exists)
5176 			goto free_eb;
5177 		else
5178 			goto again;
5179 	}
5180 	check_buffer_tree_ref(eb);
5181 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5182 
5183 	return eb;
5184 free_eb:
5185 	btrfs_release_extent_buffer(eb);
5186 	return exists;
5187 }
5188 #endif
5189 
5190 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5191 					  u64 start)
5192 {
5193 	unsigned long len = fs_info->nodesize;
5194 	int num_pages;
5195 	int i;
5196 	unsigned long index = start >> PAGE_SHIFT;
5197 	struct extent_buffer *eb;
5198 	struct extent_buffer *exists = NULL;
5199 	struct page *p;
5200 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5201 	int uptodate = 1;
5202 	int ret;
5203 
5204 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5205 		btrfs_err(fs_info, "bad tree block start %llu", start);
5206 		return ERR_PTR(-EINVAL);
5207 	}
5208 
5209 	eb = find_extent_buffer(fs_info, start);
5210 	if (eb)
5211 		return eb;
5212 
5213 	eb = __alloc_extent_buffer(fs_info, start, len);
5214 	if (!eb)
5215 		return ERR_PTR(-ENOMEM);
5216 
5217 	num_pages = num_extent_pages(eb);
5218 	for (i = 0; i < num_pages; i++, index++) {
5219 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5220 		if (!p) {
5221 			exists = ERR_PTR(-ENOMEM);
5222 			goto free_eb;
5223 		}
5224 
5225 		spin_lock(&mapping->private_lock);
5226 		if (PagePrivate(p)) {
5227 			/*
5228 			 * We could have already allocated an eb for this page
5229 			 * and attached one so lets see if we can get a ref on
5230 			 * the existing eb, and if we can we know it's good and
5231 			 * we can just return that one, else we know we can just
5232 			 * overwrite page->private.
5233 			 */
5234 			exists = (struct extent_buffer *)p->private;
5235 			if (atomic_inc_not_zero(&exists->refs)) {
5236 				spin_unlock(&mapping->private_lock);
5237 				unlock_page(p);
5238 				put_page(p);
5239 				mark_extent_buffer_accessed(exists, p);
5240 				goto free_eb;
5241 			}
5242 			exists = NULL;
5243 
5244 			/*
5245 			 * Do this so attach doesn't complain and we need to
5246 			 * drop the ref the old guy had.
5247 			 */
5248 			ClearPagePrivate(p);
5249 			WARN_ON(PageDirty(p));
5250 			put_page(p);
5251 		}
5252 		attach_extent_buffer_page(eb, p);
5253 		spin_unlock(&mapping->private_lock);
5254 		WARN_ON(PageDirty(p));
5255 		eb->pages[i] = p;
5256 		if (!PageUptodate(p))
5257 			uptodate = 0;
5258 
5259 		/*
5260 		 * We can't unlock the pages just yet since the extent buffer
5261 		 * hasn't been properly inserted in the radix tree, this
5262 		 * opens a race with btree_releasepage which can free a page
5263 		 * while we are still filling in all pages for the buffer and
5264 		 * we could crash.
5265 		 */
5266 	}
5267 	if (uptodate)
5268 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269 again:
5270 	ret = radix_tree_preload(GFP_NOFS);
5271 	if (ret) {
5272 		exists = ERR_PTR(ret);
5273 		goto free_eb;
5274 	}
5275 
5276 	spin_lock(&fs_info->buffer_lock);
5277 	ret = radix_tree_insert(&fs_info->buffer_radix,
5278 				start >> PAGE_SHIFT, eb);
5279 	spin_unlock(&fs_info->buffer_lock);
5280 	radix_tree_preload_end();
5281 	if (ret == -EEXIST) {
5282 		exists = find_extent_buffer(fs_info, start);
5283 		if (exists)
5284 			goto free_eb;
5285 		else
5286 			goto again;
5287 	}
5288 	/* add one reference for the tree */
5289 	check_buffer_tree_ref(eb);
5290 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5291 
5292 	/*
5293 	 * Now it's safe to unlock the pages because any calls to
5294 	 * btree_releasepage will correctly detect that a page belongs to a
5295 	 * live buffer and won't free them prematurely.
5296 	 */
5297 	for (i = 0; i < num_pages; i++)
5298 		unlock_page(eb->pages[i]);
5299 	return eb;
5300 
5301 free_eb:
5302 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5303 	for (i = 0; i < num_pages; i++) {
5304 		if (eb->pages[i])
5305 			unlock_page(eb->pages[i]);
5306 	}
5307 
5308 	btrfs_release_extent_buffer(eb);
5309 	return exists;
5310 }
5311 
5312 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5313 {
5314 	struct extent_buffer *eb =
5315 			container_of(head, struct extent_buffer, rcu_head);
5316 
5317 	__free_extent_buffer(eb);
5318 }
5319 
5320 static int release_extent_buffer(struct extent_buffer *eb)
5321 	__releases(&eb->refs_lock)
5322 {
5323 	lockdep_assert_held(&eb->refs_lock);
5324 
5325 	WARN_ON(atomic_read(&eb->refs) == 0);
5326 	if (atomic_dec_and_test(&eb->refs)) {
5327 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5328 			struct btrfs_fs_info *fs_info = eb->fs_info;
5329 
5330 			spin_unlock(&eb->refs_lock);
5331 
5332 			spin_lock(&fs_info->buffer_lock);
5333 			radix_tree_delete(&fs_info->buffer_radix,
5334 					  eb->start >> PAGE_SHIFT);
5335 			spin_unlock(&fs_info->buffer_lock);
5336 		} else {
5337 			spin_unlock(&eb->refs_lock);
5338 		}
5339 
5340 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5341 		/* Should be safe to release our pages at this point */
5342 		btrfs_release_extent_buffer_pages(eb);
5343 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5344 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5345 			__free_extent_buffer(eb);
5346 			return 1;
5347 		}
5348 #endif
5349 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5350 		return 1;
5351 	}
5352 	spin_unlock(&eb->refs_lock);
5353 
5354 	return 0;
5355 }
5356 
5357 void free_extent_buffer(struct extent_buffer *eb)
5358 {
5359 	int refs;
5360 	int old;
5361 	if (!eb)
5362 		return;
5363 
5364 	while (1) {
5365 		refs = atomic_read(&eb->refs);
5366 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5367 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5368 			refs == 1))
5369 			break;
5370 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5371 		if (old == refs)
5372 			return;
5373 	}
5374 
5375 	spin_lock(&eb->refs_lock);
5376 	if (atomic_read(&eb->refs) == 2 &&
5377 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5378 	    !extent_buffer_under_io(eb) &&
5379 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5380 		atomic_dec(&eb->refs);
5381 
5382 	/*
5383 	 * I know this is terrible, but it's temporary until we stop tracking
5384 	 * the uptodate bits and such for the extent buffers.
5385 	 */
5386 	release_extent_buffer(eb);
5387 }
5388 
5389 void free_extent_buffer_stale(struct extent_buffer *eb)
5390 {
5391 	if (!eb)
5392 		return;
5393 
5394 	spin_lock(&eb->refs_lock);
5395 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5396 
5397 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5398 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5399 		atomic_dec(&eb->refs);
5400 	release_extent_buffer(eb);
5401 }
5402 
5403 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5404 {
5405 	int i;
5406 	int num_pages;
5407 	struct page *page;
5408 
5409 	num_pages = num_extent_pages(eb);
5410 
5411 	for (i = 0; i < num_pages; i++) {
5412 		page = eb->pages[i];
5413 		if (!PageDirty(page))
5414 			continue;
5415 
5416 		lock_page(page);
5417 		WARN_ON(!PagePrivate(page));
5418 
5419 		clear_page_dirty_for_io(page);
5420 		xa_lock_irq(&page->mapping->i_pages);
5421 		if (!PageDirty(page))
5422 			__xa_clear_mark(&page->mapping->i_pages,
5423 					page_index(page), PAGECACHE_TAG_DIRTY);
5424 		xa_unlock_irq(&page->mapping->i_pages);
5425 		ClearPageError(page);
5426 		unlock_page(page);
5427 	}
5428 	WARN_ON(atomic_read(&eb->refs) == 0);
5429 }
5430 
5431 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5432 {
5433 	int i;
5434 	int num_pages;
5435 	bool was_dirty;
5436 
5437 	check_buffer_tree_ref(eb);
5438 
5439 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5440 
5441 	num_pages = num_extent_pages(eb);
5442 	WARN_ON(atomic_read(&eb->refs) == 0);
5443 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5444 
5445 	if (!was_dirty)
5446 		for (i = 0; i < num_pages; i++)
5447 			set_page_dirty(eb->pages[i]);
5448 
5449 #ifdef CONFIG_BTRFS_DEBUG
5450 	for (i = 0; i < num_pages; i++)
5451 		ASSERT(PageDirty(eb->pages[i]));
5452 #endif
5453 
5454 	return was_dirty;
5455 }
5456 
5457 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5458 {
5459 	int i;
5460 	struct page *page;
5461 	int num_pages;
5462 
5463 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5464 	num_pages = num_extent_pages(eb);
5465 	for (i = 0; i < num_pages; i++) {
5466 		page = eb->pages[i];
5467 		if (page)
5468 			ClearPageUptodate(page);
5469 	}
5470 }
5471 
5472 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5473 {
5474 	int i;
5475 	struct page *page;
5476 	int num_pages;
5477 
5478 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5479 	num_pages = num_extent_pages(eb);
5480 	for (i = 0; i < num_pages; i++) {
5481 		page = eb->pages[i];
5482 		SetPageUptodate(page);
5483 	}
5484 }
5485 
5486 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5487 {
5488 	int i;
5489 	struct page *page;
5490 	int err;
5491 	int ret = 0;
5492 	int locked_pages = 0;
5493 	int all_uptodate = 1;
5494 	int num_pages;
5495 	unsigned long num_reads = 0;
5496 	struct bio *bio = NULL;
5497 	unsigned long bio_flags = 0;
5498 
5499 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5500 		return 0;
5501 
5502 	num_pages = num_extent_pages(eb);
5503 	for (i = 0; i < num_pages; i++) {
5504 		page = eb->pages[i];
5505 		if (wait == WAIT_NONE) {
5506 			if (!trylock_page(page))
5507 				goto unlock_exit;
5508 		} else {
5509 			lock_page(page);
5510 		}
5511 		locked_pages++;
5512 	}
5513 	/*
5514 	 * We need to firstly lock all pages to make sure that
5515 	 * the uptodate bit of our pages won't be affected by
5516 	 * clear_extent_buffer_uptodate().
5517 	 */
5518 	for (i = 0; i < num_pages; i++) {
5519 		page = eb->pages[i];
5520 		if (!PageUptodate(page)) {
5521 			num_reads++;
5522 			all_uptodate = 0;
5523 		}
5524 	}
5525 
5526 	if (all_uptodate) {
5527 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5528 		goto unlock_exit;
5529 	}
5530 
5531 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5532 	eb->read_mirror = 0;
5533 	atomic_set(&eb->io_pages, num_reads);
5534 	/*
5535 	 * It is possible for releasepage to clear the TREE_REF bit before we
5536 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5537 	 */
5538 	check_buffer_tree_ref(eb);
5539 	for (i = 0; i < num_pages; i++) {
5540 		page = eb->pages[i];
5541 
5542 		if (!PageUptodate(page)) {
5543 			if (ret) {
5544 				atomic_dec(&eb->io_pages);
5545 				unlock_page(page);
5546 				continue;
5547 			}
5548 
5549 			ClearPageError(page);
5550 			err = __extent_read_full_page(page,
5551 						      btree_get_extent, &bio,
5552 						      mirror_num, &bio_flags,
5553 						      REQ_META);
5554 			if (err) {
5555 				ret = err;
5556 				/*
5557 				 * We use &bio in above __extent_read_full_page,
5558 				 * so we ensure that if it returns error, the
5559 				 * current page fails to add itself to bio and
5560 				 * it's been unlocked.
5561 				 *
5562 				 * We must dec io_pages by ourselves.
5563 				 */
5564 				atomic_dec(&eb->io_pages);
5565 			}
5566 		} else {
5567 			unlock_page(page);
5568 		}
5569 	}
5570 
5571 	if (bio) {
5572 		err = submit_one_bio(bio, mirror_num, bio_flags);
5573 		if (err)
5574 			return err;
5575 	}
5576 
5577 	if (ret || wait != WAIT_COMPLETE)
5578 		return ret;
5579 
5580 	for (i = 0; i < num_pages; i++) {
5581 		page = eb->pages[i];
5582 		wait_on_page_locked(page);
5583 		if (!PageUptodate(page))
5584 			ret = -EIO;
5585 	}
5586 
5587 	return ret;
5588 
5589 unlock_exit:
5590 	while (locked_pages > 0) {
5591 		locked_pages--;
5592 		page = eb->pages[locked_pages];
5593 		unlock_page(page);
5594 	}
5595 	return ret;
5596 }
5597 
5598 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5599 			unsigned long start, unsigned long len)
5600 {
5601 	size_t cur;
5602 	size_t offset;
5603 	struct page *page;
5604 	char *kaddr;
5605 	char *dst = (char *)dstv;
5606 	unsigned long i = start >> PAGE_SHIFT;
5607 
5608 	if (start + len > eb->len) {
5609 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5610 		     eb->start, eb->len, start, len);
5611 		memset(dst, 0, len);
5612 		return;
5613 	}
5614 
5615 	offset = offset_in_page(start);
5616 
5617 	while (len > 0) {
5618 		page = eb->pages[i];
5619 
5620 		cur = min(len, (PAGE_SIZE - offset));
5621 		kaddr = page_address(page);
5622 		memcpy(dst, kaddr + offset, cur);
5623 
5624 		dst += cur;
5625 		len -= cur;
5626 		offset = 0;
5627 		i++;
5628 	}
5629 }
5630 
5631 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5632 			       void __user *dstv,
5633 			       unsigned long start, unsigned long len)
5634 {
5635 	size_t cur;
5636 	size_t offset;
5637 	struct page *page;
5638 	char *kaddr;
5639 	char __user *dst = (char __user *)dstv;
5640 	unsigned long i = start >> PAGE_SHIFT;
5641 	int ret = 0;
5642 
5643 	WARN_ON(start > eb->len);
5644 	WARN_ON(start + len > eb->start + eb->len);
5645 
5646 	offset = offset_in_page(start);
5647 
5648 	while (len > 0) {
5649 		page = eb->pages[i];
5650 
5651 		cur = min(len, (PAGE_SIZE - offset));
5652 		kaddr = page_address(page);
5653 		if (copy_to_user(dst, kaddr + offset, cur)) {
5654 			ret = -EFAULT;
5655 			break;
5656 		}
5657 
5658 		dst += cur;
5659 		len -= cur;
5660 		offset = 0;
5661 		i++;
5662 	}
5663 
5664 	return ret;
5665 }
5666 
5667 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5668 			 unsigned long start, unsigned long len)
5669 {
5670 	size_t cur;
5671 	size_t offset;
5672 	struct page *page;
5673 	char *kaddr;
5674 	char *ptr = (char *)ptrv;
5675 	unsigned long i = start >> PAGE_SHIFT;
5676 	int ret = 0;
5677 
5678 	WARN_ON(start > eb->len);
5679 	WARN_ON(start + len > eb->start + eb->len);
5680 
5681 	offset = offset_in_page(start);
5682 
5683 	while (len > 0) {
5684 		page = eb->pages[i];
5685 
5686 		cur = min(len, (PAGE_SIZE - offset));
5687 
5688 		kaddr = page_address(page);
5689 		ret = memcmp(ptr, kaddr + offset, cur);
5690 		if (ret)
5691 			break;
5692 
5693 		ptr += cur;
5694 		len -= cur;
5695 		offset = 0;
5696 		i++;
5697 	}
5698 	return ret;
5699 }
5700 
5701 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5702 		const void *srcv)
5703 {
5704 	char *kaddr;
5705 
5706 	WARN_ON(!PageUptodate(eb->pages[0]));
5707 	kaddr = page_address(eb->pages[0]);
5708 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5709 			BTRFS_FSID_SIZE);
5710 }
5711 
5712 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5713 {
5714 	char *kaddr;
5715 
5716 	WARN_ON(!PageUptodate(eb->pages[0]));
5717 	kaddr = page_address(eb->pages[0]);
5718 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5719 			BTRFS_FSID_SIZE);
5720 }
5721 
5722 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5723 			 unsigned long start, unsigned long len)
5724 {
5725 	size_t cur;
5726 	size_t offset;
5727 	struct page *page;
5728 	char *kaddr;
5729 	char *src = (char *)srcv;
5730 	unsigned long i = start >> PAGE_SHIFT;
5731 
5732 	WARN_ON(start > eb->len);
5733 	WARN_ON(start + len > eb->start + eb->len);
5734 
5735 	offset = offset_in_page(start);
5736 
5737 	while (len > 0) {
5738 		page = eb->pages[i];
5739 		WARN_ON(!PageUptodate(page));
5740 
5741 		cur = min(len, PAGE_SIZE - offset);
5742 		kaddr = page_address(page);
5743 		memcpy(kaddr + offset, src, cur);
5744 
5745 		src += cur;
5746 		len -= cur;
5747 		offset = 0;
5748 		i++;
5749 	}
5750 }
5751 
5752 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5753 		unsigned long len)
5754 {
5755 	size_t cur;
5756 	size_t offset;
5757 	struct page *page;
5758 	char *kaddr;
5759 	unsigned long i = start >> PAGE_SHIFT;
5760 
5761 	WARN_ON(start > eb->len);
5762 	WARN_ON(start + len > eb->start + eb->len);
5763 
5764 	offset = offset_in_page(start);
5765 
5766 	while (len > 0) {
5767 		page = eb->pages[i];
5768 		WARN_ON(!PageUptodate(page));
5769 
5770 		cur = min(len, PAGE_SIZE - offset);
5771 		kaddr = page_address(page);
5772 		memset(kaddr + offset, 0, cur);
5773 
5774 		len -= cur;
5775 		offset = 0;
5776 		i++;
5777 	}
5778 }
5779 
5780 void copy_extent_buffer_full(const struct extent_buffer *dst,
5781 			     const struct extent_buffer *src)
5782 {
5783 	int i;
5784 	int num_pages;
5785 
5786 	ASSERT(dst->len == src->len);
5787 
5788 	num_pages = num_extent_pages(dst);
5789 	for (i = 0; i < num_pages; i++)
5790 		copy_page(page_address(dst->pages[i]),
5791 				page_address(src->pages[i]));
5792 }
5793 
5794 void copy_extent_buffer(const struct extent_buffer *dst,
5795 			const struct extent_buffer *src,
5796 			unsigned long dst_offset, unsigned long src_offset,
5797 			unsigned long len)
5798 {
5799 	u64 dst_len = dst->len;
5800 	size_t cur;
5801 	size_t offset;
5802 	struct page *page;
5803 	char *kaddr;
5804 	unsigned long i = dst_offset >> PAGE_SHIFT;
5805 
5806 	WARN_ON(src->len != dst_len);
5807 
5808 	offset = offset_in_page(dst_offset);
5809 
5810 	while (len > 0) {
5811 		page = dst->pages[i];
5812 		WARN_ON(!PageUptodate(page));
5813 
5814 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5815 
5816 		kaddr = page_address(page);
5817 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5818 
5819 		src_offset += cur;
5820 		len -= cur;
5821 		offset = 0;
5822 		i++;
5823 	}
5824 }
5825 
5826 /*
5827  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5828  * given bit number
5829  * @eb: the extent buffer
5830  * @start: offset of the bitmap item in the extent buffer
5831  * @nr: bit number
5832  * @page_index: return index of the page in the extent buffer that contains the
5833  * given bit number
5834  * @page_offset: return offset into the page given by page_index
5835  *
5836  * This helper hides the ugliness of finding the byte in an extent buffer which
5837  * contains a given bit.
5838  */
5839 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5840 				    unsigned long start, unsigned long nr,
5841 				    unsigned long *page_index,
5842 				    size_t *page_offset)
5843 {
5844 	size_t byte_offset = BIT_BYTE(nr);
5845 	size_t offset;
5846 
5847 	/*
5848 	 * The byte we want is the offset of the extent buffer + the offset of
5849 	 * the bitmap item in the extent buffer + the offset of the byte in the
5850 	 * bitmap item.
5851 	 */
5852 	offset = start + byte_offset;
5853 
5854 	*page_index = offset >> PAGE_SHIFT;
5855 	*page_offset = offset_in_page(offset);
5856 }
5857 
5858 /**
5859  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5860  * @eb: the extent buffer
5861  * @start: offset of the bitmap item in the extent buffer
5862  * @nr: bit number to test
5863  */
5864 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5865 			   unsigned long nr)
5866 {
5867 	u8 *kaddr;
5868 	struct page *page;
5869 	unsigned long i;
5870 	size_t offset;
5871 
5872 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5873 	page = eb->pages[i];
5874 	WARN_ON(!PageUptodate(page));
5875 	kaddr = page_address(page);
5876 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5877 }
5878 
5879 /**
5880  * extent_buffer_bitmap_set - set an area of a bitmap
5881  * @eb: the extent buffer
5882  * @start: offset of the bitmap item in the extent buffer
5883  * @pos: bit number of the first bit
5884  * @len: number of bits to set
5885  */
5886 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5887 			      unsigned long pos, unsigned long len)
5888 {
5889 	u8 *kaddr;
5890 	struct page *page;
5891 	unsigned long i;
5892 	size_t offset;
5893 	const unsigned int size = pos + len;
5894 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5895 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5896 
5897 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5898 	page = eb->pages[i];
5899 	WARN_ON(!PageUptodate(page));
5900 	kaddr = page_address(page);
5901 
5902 	while (len >= bits_to_set) {
5903 		kaddr[offset] |= mask_to_set;
5904 		len -= bits_to_set;
5905 		bits_to_set = BITS_PER_BYTE;
5906 		mask_to_set = ~0;
5907 		if (++offset >= PAGE_SIZE && len > 0) {
5908 			offset = 0;
5909 			page = eb->pages[++i];
5910 			WARN_ON(!PageUptodate(page));
5911 			kaddr = page_address(page);
5912 		}
5913 	}
5914 	if (len) {
5915 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5916 		kaddr[offset] |= mask_to_set;
5917 	}
5918 }
5919 
5920 
5921 /**
5922  * extent_buffer_bitmap_clear - clear an area of a bitmap
5923  * @eb: the extent buffer
5924  * @start: offset of the bitmap item in the extent buffer
5925  * @pos: bit number of the first bit
5926  * @len: number of bits to clear
5927  */
5928 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5929 				unsigned long start, unsigned long pos,
5930 				unsigned long len)
5931 {
5932 	u8 *kaddr;
5933 	struct page *page;
5934 	unsigned long i;
5935 	size_t offset;
5936 	const unsigned int size = pos + len;
5937 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5938 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5939 
5940 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5941 	page = eb->pages[i];
5942 	WARN_ON(!PageUptodate(page));
5943 	kaddr = page_address(page);
5944 
5945 	while (len >= bits_to_clear) {
5946 		kaddr[offset] &= ~mask_to_clear;
5947 		len -= bits_to_clear;
5948 		bits_to_clear = BITS_PER_BYTE;
5949 		mask_to_clear = ~0;
5950 		if (++offset >= PAGE_SIZE && len > 0) {
5951 			offset = 0;
5952 			page = eb->pages[++i];
5953 			WARN_ON(!PageUptodate(page));
5954 			kaddr = page_address(page);
5955 		}
5956 	}
5957 	if (len) {
5958 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5959 		kaddr[offset] &= ~mask_to_clear;
5960 	}
5961 }
5962 
5963 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5964 {
5965 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5966 	return distance < len;
5967 }
5968 
5969 static void copy_pages(struct page *dst_page, struct page *src_page,
5970 		       unsigned long dst_off, unsigned long src_off,
5971 		       unsigned long len)
5972 {
5973 	char *dst_kaddr = page_address(dst_page);
5974 	char *src_kaddr;
5975 	int must_memmove = 0;
5976 
5977 	if (dst_page != src_page) {
5978 		src_kaddr = page_address(src_page);
5979 	} else {
5980 		src_kaddr = dst_kaddr;
5981 		if (areas_overlap(src_off, dst_off, len))
5982 			must_memmove = 1;
5983 	}
5984 
5985 	if (must_memmove)
5986 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5987 	else
5988 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5989 }
5990 
5991 void memcpy_extent_buffer(const struct extent_buffer *dst,
5992 			  unsigned long dst_offset, unsigned long src_offset,
5993 			  unsigned long len)
5994 {
5995 	struct btrfs_fs_info *fs_info = dst->fs_info;
5996 	size_t cur;
5997 	size_t dst_off_in_page;
5998 	size_t src_off_in_page;
5999 	unsigned long dst_i;
6000 	unsigned long src_i;
6001 
6002 	if (src_offset + len > dst->len) {
6003 		btrfs_err(fs_info,
6004 			"memmove bogus src_offset %lu move len %lu dst len %lu",
6005 			 src_offset, len, dst->len);
6006 		BUG();
6007 	}
6008 	if (dst_offset + len > dst->len) {
6009 		btrfs_err(fs_info,
6010 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
6011 			 dst_offset, len, dst->len);
6012 		BUG();
6013 	}
6014 
6015 	while (len > 0) {
6016 		dst_off_in_page = offset_in_page(dst_offset);
6017 		src_off_in_page = offset_in_page(src_offset);
6018 
6019 		dst_i = dst_offset >> PAGE_SHIFT;
6020 		src_i = src_offset >> PAGE_SHIFT;
6021 
6022 		cur = min(len, (unsigned long)(PAGE_SIZE -
6023 					       src_off_in_page));
6024 		cur = min_t(unsigned long, cur,
6025 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6026 
6027 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6028 			   dst_off_in_page, src_off_in_page, cur);
6029 
6030 		src_offset += cur;
6031 		dst_offset += cur;
6032 		len -= cur;
6033 	}
6034 }
6035 
6036 void memmove_extent_buffer(const struct extent_buffer *dst,
6037 			   unsigned long dst_offset, unsigned long src_offset,
6038 			   unsigned long len)
6039 {
6040 	struct btrfs_fs_info *fs_info = dst->fs_info;
6041 	size_t cur;
6042 	size_t dst_off_in_page;
6043 	size_t src_off_in_page;
6044 	unsigned long dst_end = dst_offset + len - 1;
6045 	unsigned long src_end = src_offset + len - 1;
6046 	unsigned long dst_i;
6047 	unsigned long src_i;
6048 
6049 	if (src_offset + len > dst->len) {
6050 		btrfs_err(fs_info,
6051 			  "memmove bogus src_offset %lu move len %lu len %lu",
6052 			  src_offset, len, dst->len);
6053 		BUG();
6054 	}
6055 	if (dst_offset + len > dst->len) {
6056 		btrfs_err(fs_info,
6057 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6058 			  dst_offset, len, dst->len);
6059 		BUG();
6060 	}
6061 	if (dst_offset < src_offset) {
6062 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6063 		return;
6064 	}
6065 	while (len > 0) {
6066 		dst_i = dst_end >> PAGE_SHIFT;
6067 		src_i = src_end >> PAGE_SHIFT;
6068 
6069 		dst_off_in_page = offset_in_page(dst_end);
6070 		src_off_in_page = offset_in_page(src_end);
6071 
6072 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6073 		cur = min(cur, dst_off_in_page + 1);
6074 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6075 			   dst_off_in_page - cur + 1,
6076 			   src_off_in_page - cur + 1, cur);
6077 
6078 		dst_end -= cur;
6079 		src_end -= cur;
6080 		len -= cur;
6081 	}
6082 }
6083 
6084 int try_release_extent_buffer(struct page *page)
6085 {
6086 	struct extent_buffer *eb;
6087 
6088 	/*
6089 	 * We need to make sure nobody is attaching this page to an eb right
6090 	 * now.
6091 	 */
6092 	spin_lock(&page->mapping->private_lock);
6093 	if (!PagePrivate(page)) {
6094 		spin_unlock(&page->mapping->private_lock);
6095 		return 1;
6096 	}
6097 
6098 	eb = (struct extent_buffer *)page->private;
6099 	BUG_ON(!eb);
6100 
6101 	/*
6102 	 * This is a little awful but should be ok, we need to make sure that
6103 	 * the eb doesn't disappear out from under us while we're looking at
6104 	 * this page.
6105 	 */
6106 	spin_lock(&eb->refs_lock);
6107 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6108 		spin_unlock(&eb->refs_lock);
6109 		spin_unlock(&page->mapping->private_lock);
6110 		return 0;
6111 	}
6112 	spin_unlock(&page->mapping->private_lock);
6113 
6114 	/*
6115 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6116 	 * so just return, this page will likely be freed soon anyway.
6117 	 */
6118 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6119 		spin_unlock(&eb->refs_lock);
6120 		return 0;
6121 	}
6122 
6123 	return release_extent_buffer(eb);
6124 }
6125