1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 if (tree->ops && tree->ops->check_extent_io_range) 93 tree->ops->check_extent_io_range(tree->private_data, caller, 94 start, end); 95 } 96 #else 97 #define btrfs_leak_debug_add(new, head) do {} while (0) 98 #define btrfs_leak_debug_del(entry) do {} while (0) 99 #define btrfs_leak_debug_check() do {} while (0) 100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 101 #endif 102 103 #define BUFFER_LRU_MAX 64 104 105 struct tree_entry { 106 u64 start; 107 u64 end; 108 struct rb_node rb_node; 109 }; 110 111 struct extent_page_data { 112 struct bio *bio; 113 struct extent_io_tree *tree; 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use REQ_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static int add_extent_changeset(struct extent_state *state, unsigned bits, 124 struct extent_changeset *changeset, 125 int set) 126 { 127 int ret; 128 129 if (!changeset) 130 return 0; 131 if (set && (state->state & bits) == bits) 132 return 0; 133 if (!set && (state->state & bits) == 0) 134 return 0; 135 changeset->bytes_changed += state->end - state->start + 1; 136 ret = ulist_add(&changeset->range_changed, state->start, state->end, 137 GFP_ATOMIC); 138 return ret; 139 } 140 141 static void flush_write_bio(struct extent_page_data *epd); 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio), 159 BIOSET_NEED_BVECS)) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_exit(&btrfs_bioset); 169 170 free_buffer_cache: 171 kmem_cache_destroy(extent_buffer_cache); 172 extent_buffer_cache = NULL; 173 174 free_state_cache: 175 kmem_cache_destroy(extent_state_cache); 176 extent_state_cache = NULL; 177 return -ENOMEM; 178 } 179 180 void __cold extent_io_exit(void) 181 { 182 btrfs_leak_debug_check(); 183 184 /* 185 * Make sure all delayed rcu free are flushed before we 186 * destroy caches. 187 */ 188 rcu_barrier(); 189 kmem_cache_destroy(extent_state_cache); 190 kmem_cache_destroy(extent_buffer_cache); 191 bioset_exit(&btrfs_bioset); 192 } 193 194 void extent_io_tree_init(struct extent_io_tree *tree, 195 void *private_data) 196 { 197 tree->state = RB_ROOT; 198 tree->ops = NULL; 199 tree->dirty_bytes = 0; 200 spin_lock_init(&tree->lock); 201 tree->private_data = private_data; 202 } 203 204 static struct extent_state *alloc_extent_state(gfp_t mask) 205 { 206 struct extent_state *state; 207 208 /* 209 * The given mask might be not appropriate for the slab allocator, 210 * drop the unsupported bits 211 */ 212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 213 state = kmem_cache_alloc(extent_state_cache, mask); 214 if (!state) 215 return state; 216 state->state = 0; 217 state->failrec = NULL; 218 RB_CLEAR_NODE(&state->rb_node); 219 btrfs_leak_debug_add(&state->leak_list, &states); 220 refcount_set(&state->refs, 1); 221 init_waitqueue_head(&state->wq); 222 trace_alloc_extent_state(state, mask, _RET_IP_); 223 return state; 224 } 225 226 void free_extent_state(struct extent_state *state) 227 { 228 if (!state) 229 return; 230 if (refcount_dec_and_test(&state->refs)) { 231 WARN_ON(extent_state_in_tree(state)); 232 btrfs_leak_debug_del(&state->leak_list); 233 trace_free_extent_state(state, _RET_IP_); 234 kmem_cache_free(extent_state_cache, state); 235 } 236 } 237 238 static struct rb_node *tree_insert(struct rb_root *root, 239 struct rb_node *search_start, 240 u64 offset, 241 struct rb_node *node, 242 struct rb_node ***p_in, 243 struct rb_node **parent_in) 244 { 245 struct rb_node **p; 246 struct rb_node *parent = NULL; 247 struct tree_entry *entry; 248 249 if (p_in && parent_in) { 250 p = *p_in; 251 parent = *parent_in; 252 goto do_insert; 253 } 254 255 p = search_start ? &search_start : &root->rb_node; 256 while (*p) { 257 parent = *p; 258 entry = rb_entry(parent, struct tree_entry, rb_node); 259 260 if (offset < entry->start) 261 p = &(*p)->rb_left; 262 else if (offset > entry->end) 263 p = &(*p)->rb_right; 264 else 265 return parent; 266 } 267 268 do_insert: 269 rb_link_node(node, parent, p); 270 rb_insert_color(node, root); 271 return NULL; 272 } 273 274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 275 struct rb_node **prev_ret, 276 struct rb_node **next_ret, 277 struct rb_node ***p_ret, 278 struct rb_node **parent_ret) 279 { 280 struct rb_root *root = &tree->state; 281 struct rb_node **n = &root->rb_node; 282 struct rb_node *prev = NULL; 283 struct rb_node *orig_prev = NULL; 284 struct tree_entry *entry; 285 struct tree_entry *prev_entry = NULL; 286 287 while (*n) { 288 prev = *n; 289 entry = rb_entry(prev, struct tree_entry, rb_node); 290 prev_entry = entry; 291 292 if (offset < entry->start) 293 n = &(*n)->rb_left; 294 else if (offset > entry->end) 295 n = &(*n)->rb_right; 296 else 297 return *n; 298 } 299 300 if (p_ret) 301 *p_ret = n; 302 if (parent_ret) 303 *parent_ret = prev; 304 305 if (prev_ret) { 306 orig_prev = prev; 307 while (prev && offset > prev_entry->end) { 308 prev = rb_next(prev); 309 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 310 } 311 *prev_ret = prev; 312 prev = orig_prev; 313 } 314 315 if (next_ret) { 316 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 317 while (prev && offset < prev_entry->start) { 318 prev = rb_prev(prev); 319 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 320 } 321 *next_ret = prev; 322 } 323 return NULL; 324 } 325 326 static inline struct rb_node * 327 tree_search_for_insert(struct extent_io_tree *tree, 328 u64 offset, 329 struct rb_node ***p_ret, 330 struct rb_node **parent_ret) 331 { 332 struct rb_node *prev = NULL; 333 struct rb_node *ret; 334 335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 336 if (!ret) 337 return prev; 338 return ret; 339 } 340 341 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 342 u64 offset) 343 { 344 return tree_search_for_insert(tree, offset, NULL, NULL); 345 } 346 347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 348 struct extent_state *other) 349 { 350 if (tree->ops && tree->ops->merge_extent_hook) 351 tree->ops->merge_extent_hook(tree->private_data, new, other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->private_data, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->private_data, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits, 414 struct extent_changeset *changeset); 415 416 /* 417 * insert an extent_state struct into the tree. 'bits' are set on the 418 * struct before it is inserted. 419 * 420 * This may return -EEXIST if the extent is already there, in which case the 421 * state struct is freed. 422 * 423 * The tree lock is not taken internally. This is a utility function and 424 * probably isn't what you want to call (see set/clear_extent_bit). 425 */ 426 static int insert_state(struct extent_io_tree *tree, 427 struct extent_state *state, u64 start, u64 end, 428 struct rb_node ***p, 429 struct rb_node **parent, 430 unsigned *bits, struct extent_changeset *changeset) 431 { 432 struct rb_node *node; 433 434 if (end < start) 435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 436 end, start); 437 state->start = start; 438 state->end = end; 439 440 set_state_bits(tree, state, bits, changeset); 441 442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 443 if (node) { 444 struct extent_state *found; 445 found = rb_entry(node, struct extent_state, rb_node); 446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->private_data, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake, 515 struct extent_changeset *changeset) 516 { 517 struct extent_state *next; 518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 519 int ret; 520 521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 522 u64 range = state->end - state->start + 1; 523 WARN_ON(range > tree->dirty_bytes); 524 tree->dirty_bytes -= range; 525 } 526 clear_state_cb(tree, state, bits); 527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 528 BUG_ON(ret < 0); 529 state->state &= ~bits_to_clear; 530 if (wake) 531 wake_up(&state->wq); 532 if (state->state == 0) { 533 next = next_state(state); 534 if (extent_state_in_tree(state)) { 535 rb_erase(&state->rb_node, &tree->state); 536 RB_CLEAR_NODE(&state->rb_node); 537 free_extent_state(state); 538 } else { 539 WARN_ON(1); 540 } 541 } else { 542 merge_state(tree, state); 543 next = next_state(state); 544 } 545 return next; 546 } 547 548 static struct extent_state * 549 alloc_extent_state_atomic(struct extent_state *prealloc) 550 { 551 if (!prealloc) 552 prealloc = alloc_extent_state(GFP_ATOMIC); 553 554 return prealloc; 555 } 556 557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 558 { 559 struct inode *inode = tree->private_data; 560 561 btrfs_panic(btrfs_sb(inode->i_sb), err, 562 "locking error: extent tree was modified by another thread while locked"); 563 } 564 565 /* 566 * clear some bits on a range in the tree. This may require splitting 567 * or inserting elements in the tree, so the gfp mask is used to 568 * indicate which allocations or sleeping are allowed. 569 * 570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 571 * the given range from the tree regardless of state (ie for truncate). 572 * 573 * the range [start, end] is inclusive. 574 * 575 * This takes the tree lock, and returns 0 on success and < 0 on error. 576 */ 577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 578 unsigned bits, int wake, int delete, 579 struct extent_state **cached_state, 580 gfp_t mask, struct extent_changeset *changeset) 581 { 582 struct extent_state *state; 583 struct extent_state *cached; 584 struct extent_state *prealloc = NULL; 585 struct rb_node *node; 586 u64 last_end; 587 int err; 588 int clear = 0; 589 590 btrfs_debug_check_extent_io_range(tree, start, end); 591 592 if (bits & EXTENT_DELALLOC) 593 bits |= EXTENT_NORESERVE; 594 595 if (delete) 596 bits |= ~EXTENT_CTLBITS; 597 bits |= EXTENT_FIRST_DELALLOC; 598 599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 600 clear = 1; 601 again: 602 if (!prealloc && gfpflags_allow_blocking(mask)) { 603 /* 604 * Don't care for allocation failure here because we might end 605 * up not needing the pre-allocated extent state at all, which 606 * is the case if we only have in the tree extent states that 607 * cover our input range and don't cover too any other range. 608 * If we end up needing a new extent state we allocate it later. 609 */ 610 prealloc = alloc_extent_state(mask); 611 } 612 613 spin_lock(&tree->lock); 614 if (cached_state) { 615 cached = *cached_state; 616 617 if (clear) { 618 *cached_state = NULL; 619 cached_state = NULL; 620 } 621 622 if (cached && extent_state_in_tree(cached) && 623 cached->start <= start && cached->end > start) { 624 if (clear) 625 refcount_dec(&cached->refs); 626 state = cached; 627 goto hit_next; 628 } 629 if (clear) 630 free_extent_state(cached); 631 } 632 /* 633 * this search will find the extents that end after 634 * our range starts 635 */ 636 node = tree_search(tree, start); 637 if (!node) 638 goto out; 639 state = rb_entry(node, struct extent_state, rb_node); 640 hit_next: 641 if (state->start > end) 642 goto out; 643 WARN_ON(state->end < start); 644 last_end = state->end; 645 646 /* the state doesn't have the wanted bits, go ahead */ 647 if (!(state->state & bits)) { 648 state = next_state(state); 649 goto next; 650 } 651 652 /* 653 * | ---- desired range ---- | 654 * | state | or 655 * | ------------- state -------------- | 656 * 657 * We need to split the extent we found, and may flip 658 * bits on second half. 659 * 660 * If the extent we found extends past our range, we 661 * just split and search again. It'll get split again 662 * the next time though. 663 * 664 * If the extent we found is inside our range, we clear 665 * the desired bit on it. 666 */ 667 668 if (state->start < start) { 669 prealloc = alloc_extent_state_atomic(prealloc); 670 BUG_ON(!prealloc); 671 err = split_state(tree, state, prealloc, start); 672 if (err) 673 extent_io_tree_panic(tree, err); 674 675 prealloc = NULL; 676 if (err) 677 goto out; 678 if (state->end <= end) { 679 state = clear_state_bit(tree, state, &bits, wake, 680 changeset); 681 goto next; 682 } 683 goto search_again; 684 } 685 /* 686 * | ---- desired range ---- | 687 * | state | 688 * We need to split the extent, and clear the bit 689 * on the first half 690 */ 691 if (state->start <= end && state->end > end) { 692 prealloc = alloc_extent_state_atomic(prealloc); 693 BUG_ON(!prealloc); 694 err = split_state(tree, state, prealloc, end + 1); 695 if (err) 696 extent_io_tree_panic(tree, err); 697 698 if (wake) 699 wake_up(&state->wq); 700 701 clear_state_bit(tree, prealloc, &bits, wake, changeset); 702 703 prealloc = NULL; 704 goto out; 705 } 706 707 state = clear_state_bit(tree, state, &bits, wake, changeset); 708 next: 709 if (last_end == (u64)-1) 710 goto out; 711 start = last_end + 1; 712 if (start <= end && state && !need_resched()) 713 goto hit_next; 714 715 search_again: 716 if (start > end) 717 goto out; 718 spin_unlock(&tree->lock); 719 if (gfpflags_allow_blocking(mask)) 720 cond_resched(); 721 goto again; 722 723 out: 724 spin_unlock(&tree->lock); 725 if (prealloc) 726 free_extent_state(prealloc); 727 728 return 0; 729 730 } 731 732 static void wait_on_state(struct extent_io_tree *tree, 733 struct extent_state *state) 734 __releases(tree->lock) 735 __acquires(tree->lock) 736 { 737 DEFINE_WAIT(wait); 738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 739 spin_unlock(&tree->lock); 740 schedule(); 741 spin_lock(&tree->lock); 742 finish_wait(&state->wq, &wait); 743 } 744 745 /* 746 * waits for one or more bits to clear on a range in the state tree. 747 * The range [start, end] is inclusive. 748 * The tree lock is taken by this function 749 */ 750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 751 unsigned long bits) 752 { 753 struct extent_state *state; 754 struct rb_node *node; 755 756 btrfs_debug_check_extent_io_range(tree, start, end); 757 758 spin_lock(&tree->lock); 759 again: 760 while (1) { 761 /* 762 * this search will find all the extents that end after 763 * our range starts 764 */ 765 node = tree_search(tree, start); 766 process_node: 767 if (!node) 768 break; 769 770 state = rb_entry(node, struct extent_state, rb_node); 771 772 if (state->start > end) 773 goto out; 774 775 if (state->state & bits) { 776 start = state->start; 777 refcount_inc(&state->refs); 778 wait_on_state(tree, state); 779 free_extent_state(state); 780 goto again; 781 } 782 start = state->end + 1; 783 784 if (start > end) 785 break; 786 787 if (!cond_resched_lock(&tree->lock)) { 788 node = rb_next(node); 789 goto process_node; 790 } 791 } 792 out: 793 spin_unlock(&tree->lock); 794 } 795 796 static void set_state_bits(struct extent_io_tree *tree, 797 struct extent_state *state, 798 unsigned *bits, struct extent_changeset *changeset) 799 { 800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 801 int ret; 802 803 set_state_cb(tree, state, bits); 804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 805 u64 range = state->end - state->start + 1; 806 tree->dirty_bytes += range; 807 } 808 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 809 BUG_ON(ret < 0); 810 state->state |= bits_to_set; 811 } 812 813 static void cache_state_if_flags(struct extent_state *state, 814 struct extent_state **cached_ptr, 815 unsigned flags) 816 { 817 if (cached_ptr && !(*cached_ptr)) { 818 if (!flags || (state->state & flags)) { 819 *cached_ptr = state; 820 refcount_inc(&state->refs); 821 } 822 } 823 } 824 825 static void cache_state(struct extent_state *state, 826 struct extent_state **cached_ptr) 827 { 828 return cache_state_if_flags(state, cached_ptr, 829 EXTENT_IOBITS | EXTENT_BOUNDARY); 830 } 831 832 /* 833 * set some bits on a range in the tree. This may require allocations or 834 * sleeping, so the gfp mask is used to indicate what is allowed. 835 * 836 * If any of the exclusive bits are set, this will fail with -EEXIST if some 837 * part of the range already has the desired bits set. The start of the 838 * existing range is returned in failed_start in this case. 839 * 840 * [start, end] is inclusive This takes the tree lock. 841 */ 842 843 static int __must_check 844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 845 unsigned bits, unsigned exclusive_bits, 846 u64 *failed_start, struct extent_state **cached_state, 847 gfp_t mask, struct extent_changeset *changeset) 848 { 849 struct extent_state *state; 850 struct extent_state *prealloc = NULL; 851 struct rb_node *node; 852 struct rb_node **p; 853 struct rb_node *parent; 854 int err = 0; 855 u64 last_start; 856 u64 last_end; 857 858 btrfs_debug_check_extent_io_range(tree, start, end); 859 860 bits |= EXTENT_FIRST_DELALLOC; 861 again: 862 if (!prealloc && gfpflags_allow_blocking(mask)) { 863 /* 864 * Don't care for allocation failure here because we might end 865 * up not needing the pre-allocated extent state at all, which 866 * is the case if we only have in the tree extent states that 867 * cover our input range and don't cover too any other range. 868 * If we end up needing a new extent state we allocate it later. 869 */ 870 prealloc = alloc_extent_state(mask); 871 } 872 873 spin_lock(&tree->lock); 874 if (cached_state && *cached_state) { 875 state = *cached_state; 876 if (state->start <= start && state->end > start && 877 extent_state_in_tree(state)) { 878 node = &state->rb_node; 879 goto hit_next; 880 } 881 } 882 /* 883 * this search will find all the extents that end after 884 * our range starts. 885 */ 886 node = tree_search_for_insert(tree, start, &p, &parent); 887 if (!node) { 888 prealloc = alloc_extent_state_atomic(prealloc); 889 BUG_ON(!prealloc); 890 err = insert_state(tree, prealloc, start, end, 891 &p, &parent, &bits, changeset); 892 if (err) 893 extent_io_tree_panic(tree, err); 894 895 cache_state(prealloc, cached_state); 896 prealloc = NULL; 897 goto out; 898 } 899 state = rb_entry(node, struct extent_state, rb_node); 900 hit_next: 901 last_start = state->start; 902 last_end = state->end; 903 904 /* 905 * | ---- desired range ---- | 906 * | state | 907 * 908 * Just lock what we found and keep going 909 */ 910 if (state->start == start && state->end <= end) { 911 if (state->state & exclusive_bits) { 912 *failed_start = state->start; 913 err = -EEXIST; 914 goto out; 915 } 916 917 set_state_bits(tree, state, &bits, changeset); 918 cache_state(state, cached_state); 919 merge_state(tree, state); 920 if (last_end == (u64)-1) 921 goto out; 922 start = last_end + 1; 923 state = next_state(state); 924 if (start < end && state && state->start == start && 925 !need_resched()) 926 goto hit_next; 927 goto search_again; 928 } 929 930 /* 931 * | ---- desired range ---- | 932 * | state | 933 * or 934 * | ------------- state -------------- | 935 * 936 * We need to split the extent we found, and may flip bits on 937 * second half. 938 * 939 * If the extent we found extends past our 940 * range, we just split and search again. It'll get split 941 * again the next time though. 942 * 943 * If the extent we found is inside our range, we set the 944 * desired bit on it. 945 */ 946 if (state->start < start) { 947 if (state->state & exclusive_bits) { 948 *failed_start = start; 949 err = -EEXIST; 950 goto out; 951 } 952 953 prealloc = alloc_extent_state_atomic(prealloc); 954 BUG_ON(!prealloc); 955 err = split_state(tree, state, prealloc, start); 956 if (err) 957 extent_io_tree_panic(tree, err); 958 959 prealloc = NULL; 960 if (err) 961 goto out; 962 if (state->end <= end) { 963 set_state_bits(tree, state, &bits, changeset); 964 cache_state(state, cached_state); 965 merge_state(tree, state); 966 if (last_end == (u64)-1) 967 goto out; 968 start = last_end + 1; 969 state = next_state(state); 970 if (start < end && state && state->start == start && 971 !need_resched()) 972 goto hit_next; 973 } 974 goto search_again; 975 } 976 /* 977 * | ---- desired range ---- | 978 * | state | or | state | 979 * 980 * There's a hole, we need to insert something in it and 981 * ignore the extent we found. 982 */ 983 if (state->start > start) { 984 u64 this_end; 985 if (end < last_start) 986 this_end = end; 987 else 988 this_end = last_start - 1; 989 990 prealloc = alloc_extent_state_atomic(prealloc); 991 BUG_ON(!prealloc); 992 993 /* 994 * Avoid to free 'prealloc' if it can be merged with 995 * the later extent. 996 */ 997 err = insert_state(tree, prealloc, start, this_end, 998 NULL, NULL, &bits, changeset); 999 if (err) 1000 extent_io_tree_panic(tree, err); 1001 1002 cache_state(prealloc, cached_state); 1003 prealloc = NULL; 1004 start = this_end + 1; 1005 goto search_again; 1006 } 1007 /* 1008 * | ---- desired range ---- | 1009 * | state | 1010 * We need to split the extent, and set the bit 1011 * on the first half 1012 */ 1013 if (state->start <= end && state->end > end) { 1014 if (state->state & exclusive_bits) { 1015 *failed_start = start; 1016 err = -EEXIST; 1017 goto out; 1018 } 1019 1020 prealloc = alloc_extent_state_atomic(prealloc); 1021 BUG_ON(!prealloc); 1022 err = split_state(tree, state, prealloc, end + 1); 1023 if (err) 1024 extent_io_tree_panic(tree, err); 1025 1026 set_state_bits(tree, prealloc, &bits, changeset); 1027 cache_state(prealloc, cached_state); 1028 merge_state(tree, prealloc); 1029 prealloc = NULL; 1030 goto out; 1031 } 1032 1033 search_again: 1034 if (start > end) 1035 goto out; 1036 spin_unlock(&tree->lock); 1037 if (gfpflags_allow_blocking(mask)) 1038 cond_resched(); 1039 goto again; 1040 1041 out: 1042 spin_unlock(&tree->lock); 1043 if (prealloc) 1044 free_extent_state(prealloc); 1045 1046 return err; 1047 1048 } 1049 1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1051 unsigned bits, u64 * failed_start, 1052 struct extent_state **cached_state, gfp_t mask) 1053 { 1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1055 cached_state, mask, NULL); 1056 } 1057 1058 1059 /** 1060 * convert_extent_bit - convert all bits in a given range from one bit to 1061 * another 1062 * @tree: the io tree to search 1063 * @start: the start offset in bytes 1064 * @end: the end offset in bytes (inclusive) 1065 * @bits: the bits to set in this range 1066 * @clear_bits: the bits to clear in this range 1067 * @cached_state: state that we're going to cache 1068 * 1069 * This will go through and set bits for the given range. If any states exist 1070 * already in this range they are set with the given bit and cleared of the 1071 * clear_bits. This is only meant to be used by things that are mergeable, ie 1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1073 * boundary bits like LOCK. 1074 * 1075 * All allocations are done with GFP_NOFS. 1076 */ 1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1078 unsigned bits, unsigned clear_bits, 1079 struct extent_state **cached_state) 1080 { 1081 struct extent_state *state; 1082 struct extent_state *prealloc = NULL; 1083 struct rb_node *node; 1084 struct rb_node **p; 1085 struct rb_node *parent; 1086 int err = 0; 1087 u64 last_start; 1088 u64 last_end; 1089 bool first_iteration = true; 1090 1091 btrfs_debug_check_extent_io_range(tree, start, end); 1092 1093 again: 1094 if (!prealloc) { 1095 /* 1096 * Best effort, don't worry if extent state allocation fails 1097 * here for the first iteration. We might have a cached state 1098 * that matches exactly the target range, in which case no 1099 * extent state allocations are needed. We'll only know this 1100 * after locking the tree. 1101 */ 1102 prealloc = alloc_extent_state(GFP_NOFS); 1103 if (!prealloc && !first_iteration) 1104 return -ENOMEM; 1105 } 1106 1107 spin_lock(&tree->lock); 1108 if (cached_state && *cached_state) { 1109 state = *cached_state; 1110 if (state->start <= start && state->end > start && 1111 extent_state_in_tree(state)) { 1112 node = &state->rb_node; 1113 goto hit_next; 1114 } 1115 } 1116 1117 /* 1118 * this search will find all the extents that end after 1119 * our range starts. 1120 */ 1121 node = tree_search_for_insert(tree, start, &p, &parent); 1122 if (!node) { 1123 prealloc = alloc_extent_state_atomic(prealloc); 1124 if (!prealloc) { 1125 err = -ENOMEM; 1126 goto out; 1127 } 1128 err = insert_state(tree, prealloc, start, end, 1129 &p, &parent, &bits, NULL); 1130 if (err) 1131 extent_io_tree_panic(tree, err); 1132 cache_state(prealloc, cached_state); 1133 prealloc = NULL; 1134 goto out; 1135 } 1136 state = rb_entry(node, struct extent_state, rb_node); 1137 hit_next: 1138 last_start = state->start; 1139 last_end = state->end; 1140 1141 /* 1142 * | ---- desired range ---- | 1143 * | state | 1144 * 1145 * Just lock what we found and keep going 1146 */ 1147 if (state->start == start && state->end <= end) { 1148 set_state_bits(tree, state, &bits, NULL); 1149 cache_state(state, cached_state); 1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1151 if (last_end == (u64)-1) 1152 goto out; 1153 start = last_end + 1; 1154 if (start < end && state && state->start == start && 1155 !need_resched()) 1156 goto hit_next; 1157 goto search_again; 1158 } 1159 1160 /* 1161 * | ---- desired range ---- | 1162 * | state | 1163 * or 1164 * | ------------- state -------------- | 1165 * 1166 * We need to split the extent we found, and may flip bits on 1167 * second half. 1168 * 1169 * If the extent we found extends past our 1170 * range, we just split and search again. It'll get split 1171 * again the next time though. 1172 * 1173 * If the extent we found is inside our range, we set the 1174 * desired bit on it. 1175 */ 1176 if (state->start < start) { 1177 prealloc = alloc_extent_state_atomic(prealloc); 1178 if (!prealloc) { 1179 err = -ENOMEM; 1180 goto out; 1181 } 1182 err = split_state(tree, state, prealloc, start); 1183 if (err) 1184 extent_io_tree_panic(tree, err); 1185 prealloc = NULL; 1186 if (err) 1187 goto out; 1188 if (state->end <= end) { 1189 set_state_bits(tree, state, &bits, NULL); 1190 cache_state(state, cached_state); 1191 state = clear_state_bit(tree, state, &clear_bits, 0, 1192 NULL); 1193 if (last_end == (u64)-1) 1194 goto out; 1195 start = last_end + 1; 1196 if (start < end && state && state->start == start && 1197 !need_resched()) 1198 goto hit_next; 1199 } 1200 goto search_again; 1201 } 1202 /* 1203 * | ---- desired range ---- | 1204 * | state | or | state | 1205 * 1206 * There's a hole, we need to insert something in it and 1207 * ignore the extent we found. 1208 */ 1209 if (state->start > start) { 1210 u64 this_end; 1211 if (end < last_start) 1212 this_end = end; 1213 else 1214 this_end = last_start - 1; 1215 1216 prealloc = alloc_extent_state_atomic(prealloc); 1217 if (!prealloc) { 1218 err = -ENOMEM; 1219 goto out; 1220 } 1221 1222 /* 1223 * Avoid to free 'prealloc' if it can be merged with 1224 * the later extent. 1225 */ 1226 err = insert_state(tree, prealloc, start, this_end, 1227 NULL, NULL, &bits, NULL); 1228 if (err) 1229 extent_io_tree_panic(tree, err); 1230 cache_state(prealloc, cached_state); 1231 prealloc = NULL; 1232 start = this_end + 1; 1233 goto search_again; 1234 } 1235 /* 1236 * | ---- desired range ---- | 1237 * | state | 1238 * We need to split the extent, and set the bit 1239 * on the first half 1240 */ 1241 if (state->start <= end && state->end > end) { 1242 prealloc = alloc_extent_state_atomic(prealloc); 1243 if (!prealloc) { 1244 err = -ENOMEM; 1245 goto out; 1246 } 1247 1248 err = split_state(tree, state, prealloc, end + 1); 1249 if (err) 1250 extent_io_tree_panic(tree, err); 1251 1252 set_state_bits(tree, prealloc, &bits, NULL); 1253 cache_state(prealloc, cached_state); 1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1255 prealloc = NULL; 1256 goto out; 1257 } 1258 1259 search_again: 1260 if (start > end) 1261 goto out; 1262 spin_unlock(&tree->lock); 1263 cond_resched(); 1264 first_iteration = false; 1265 goto again; 1266 1267 out: 1268 spin_unlock(&tree->lock); 1269 if (prealloc) 1270 free_extent_state(prealloc); 1271 1272 return err; 1273 } 1274 1275 /* wrappers around set/clear extent bit */ 1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1277 unsigned bits, struct extent_changeset *changeset) 1278 { 1279 /* 1280 * We don't support EXTENT_LOCKED yet, as current changeset will 1281 * record any bits changed, so for EXTENT_LOCKED case, it will 1282 * either fail with -EEXIST or changeset will record the whole 1283 * range. 1284 */ 1285 BUG_ON(bits & EXTENT_LOCKED); 1286 1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1288 changeset); 1289 } 1290 1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1292 unsigned bits, int wake, int delete, 1293 struct extent_state **cached) 1294 { 1295 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1296 cached, GFP_NOFS, NULL); 1297 } 1298 1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1300 unsigned bits, struct extent_changeset *changeset) 1301 { 1302 /* 1303 * Don't support EXTENT_LOCKED case, same reason as 1304 * set_record_extent_bits(). 1305 */ 1306 BUG_ON(bits & EXTENT_LOCKED); 1307 1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1309 changeset); 1310 } 1311 1312 /* 1313 * either insert or lock state struct between start and end use mask to tell 1314 * us if waiting is desired. 1315 */ 1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1317 struct extent_state **cached_state) 1318 { 1319 int err; 1320 u64 failed_start; 1321 1322 while (1) { 1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1324 EXTENT_LOCKED, &failed_start, 1325 cached_state, GFP_NOFS, NULL); 1326 if (err == -EEXIST) { 1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1328 start = failed_start; 1329 } else 1330 break; 1331 WARN_ON(start > end); 1332 } 1333 return err; 1334 } 1335 1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1337 { 1338 int err; 1339 u64 failed_start; 1340 1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1342 &failed_start, NULL, GFP_NOFS, NULL); 1343 if (err == -EEXIST) { 1344 if (failed_start > start) 1345 clear_extent_bit(tree, start, failed_start - 1, 1346 EXTENT_LOCKED, 1, 0, NULL); 1347 return 0; 1348 } 1349 return 1; 1350 } 1351 1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1353 { 1354 unsigned long index = start >> PAGE_SHIFT; 1355 unsigned long end_index = end >> PAGE_SHIFT; 1356 struct page *page; 1357 1358 while (index <= end_index) { 1359 page = find_get_page(inode->i_mapping, index); 1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1361 clear_page_dirty_for_io(page); 1362 put_page(page); 1363 index++; 1364 } 1365 } 1366 1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1368 { 1369 unsigned long index = start >> PAGE_SHIFT; 1370 unsigned long end_index = end >> PAGE_SHIFT; 1371 struct page *page; 1372 1373 while (index <= end_index) { 1374 page = find_get_page(inode->i_mapping, index); 1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1376 __set_page_dirty_nobuffers(page); 1377 account_page_redirty(page); 1378 put_page(page); 1379 index++; 1380 } 1381 } 1382 1383 /* find the first state struct with 'bits' set after 'start', and 1384 * return it. tree->lock must be held. NULL will returned if 1385 * nothing was found after 'start' 1386 */ 1387 static struct extent_state * 1388 find_first_extent_bit_state(struct extent_io_tree *tree, 1389 u64 start, unsigned bits) 1390 { 1391 struct rb_node *node; 1392 struct extent_state *state; 1393 1394 /* 1395 * this search will find all the extents that end after 1396 * our range starts. 1397 */ 1398 node = tree_search(tree, start); 1399 if (!node) 1400 goto out; 1401 1402 while (1) { 1403 state = rb_entry(node, struct extent_state, rb_node); 1404 if (state->end >= start && (state->state & bits)) 1405 return state; 1406 1407 node = rb_next(node); 1408 if (!node) 1409 break; 1410 } 1411 out: 1412 return NULL; 1413 } 1414 1415 /* 1416 * find the first offset in the io tree with 'bits' set. zero is 1417 * returned if we find something, and *start_ret and *end_ret are 1418 * set to reflect the state struct that was found. 1419 * 1420 * If nothing was found, 1 is returned. If found something, return 0. 1421 */ 1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1423 u64 *start_ret, u64 *end_ret, unsigned bits, 1424 struct extent_state **cached_state) 1425 { 1426 struct extent_state *state; 1427 struct rb_node *n; 1428 int ret = 1; 1429 1430 spin_lock(&tree->lock); 1431 if (cached_state && *cached_state) { 1432 state = *cached_state; 1433 if (state->end == start - 1 && extent_state_in_tree(state)) { 1434 n = rb_next(&state->rb_node); 1435 while (n) { 1436 state = rb_entry(n, struct extent_state, 1437 rb_node); 1438 if (state->state & bits) 1439 goto got_it; 1440 n = rb_next(n); 1441 } 1442 free_extent_state(*cached_state); 1443 *cached_state = NULL; 1444 goto out; 1445 } 1446 free_extent_state(*cached_state); 1447 *cached_state = NULL; 1448 } 1449 1450 state = find_first_extent_bit_state(tree, start, bits); 1451 got_it: 1452 if (state) { 1453 cache_state_if_flags(state, cached_state, 0); 1454 *start_ret = state->start; 1455 *end_ret = state->end; 1456 ret = 0; 1457 } 1458 out: 1459 spin_unlock(&tree->lock); 1460 return ret; 1461 } 1462 1463 /* 1464 * find a contiguous range of bytes in the file marked as delalloc, not 1465 * more than 'max_bytes'. start and end are used to return the range, 1466 * 1467 * 1 is returned if we find something, 0 if nothing was in the tree 1468 */ 1469 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1470 u64 *start, u64 *end, u64 max_bytes, 1471 struct extent_state **cached_state) 1472 { 1473 struct rb_node *node; 1474 struct extent_state *state; 1475 u64 cur_start = *start; 1476 u64 found = 0; 1477 u64 total_bytes = 0; 1478 1479 spin_lock(&tree->lock); 1480 1481 /* 1482 * this search will find all the extents that end after 1483 * our range starts. 1484 */ 1485 node = tree_search(tree, cur_start); 1486 if (!node) { 1487 if (!found) 1488 *end = (u64)-1; 1489 goto out; 1490 } 1491 1492 while (1) { 1493 state = rb_entry(node, struct extent_state, rb_node); 1494 if (found && (state->start != cur_start || 1495 (state->state & EXTENT_BOUNDARY))) { 1496 goto out; 1497 } 1498 if (!(state->state & EXTENT_DELALLOC)) { 1499 if (!found) 1500 *end = state->end; 1501 goto out; 1502 } 1503 if (!found) { 1504 *start = state->start; 1505 *cached_state = state; 1506 refcount_inc(&state->refs); 1507 } 1508 found++; 1509 *end = state->end; 1510 cur_start = state->end + 1; 1511 node = rb_next(node); 1512 total_bytes += state->end - state->start + 1; 1513 if (total_bytes >= max_bytes) 1514 break; 1515 if (!node) 1516 break; 1517 } 1518 out: 1519 spin_unlock(&tree->lock); 1520 return found; 1521 } 1522 1523 static int __process_pages_contig(struct address_space *mapping, 1524 struct page *locked_page, 1525 pgoff_t start_index, pgoff_t end_index, 1526 unsigned long page_ops, pgoff_t *index_ret); 1527 1528 static noinline void __unlock_for_delalloc(struct inode *inode, 1529 struct page *locked_page, 1530 u64 start, u64 end) 1531 { 1532 unsigned long index = start >> PAGE_SHIFT; 1533 unsigned long end_index = end >> PAGE_SHIFT; 1534 1535 ASSERT(locked_page); 1536 if (index == locked_page->index && end_index == index) 1537 return; 1538 1539 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1540 PAGE_UNLOCK, NULL); 1541 } 1542 1543 static noinline int lock_delalloc_pages(struct inode *inode, 1544 struct page *locked_page, 1545 u64 delalloc_start, 1546 u64 delalloc_end) 1547 { 1548 unsigned long index = delalloc_start >> PAGE_SHIFT; 1549 unsigned long index_ret = index; 1550 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1551 int ret; 1552 1553 ASSERT(locked_page); 1554 if (index == locked_page->index && index == end_index) 1555 return 0; 1556 1557 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1558 end_index, PAGE_LOCK, &index_ret); 1559 if (ret == -EAGAIN) 1560 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1561 (u64)index_ret << PAGE_SHIFT); 1562 return ret; 1563 } 1564 1565 /* 1566 * find a contiguous range of bytes in the file marked as delalloc, not 1567 * more than 'max_bytes'. start and end are used to return the range, 1568 * 1569 * 1 is returned if we find something, 0 if nothing was in the tree 1570 */ 1571 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1572 struct extent_io_tree *tree, 1573 struct page *locked_page, u64 *start, 1574 u64 *end, u64 max_bytes) 1575 { 1576 u64 delalloc_start; 1577 u64 delalloc_end; 1578 u64 found; 1579 struct extent_state *cached_state = NULL; 1580 int ret; 1581 int loops = 0; 1582 1583 again: 1584 /* step one, find a bunch of delalloc bytes starting at start */ 1585 delalloc_start = *start; 1586 delalloc_end = 0; 1587 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1588 max_bytes, &cached_state); 1589 if (!found || delalloc_end <= *start) { 1590 *start = delalloc_start; 1591 *end = delalloc_end; 1592 free_extent_state(cached_state); 1593 return 0; 1594 } 1595 1596 /* 1597 * start comes from the offset of locked_page. We have to lock 1598 * pages in order, so we can't process delalloc bytes before 1599 * locked_page 1600 */ 1601 if (delalloc_start < *start) 1602 delalloc_start = *start; 1603 1604 /* 1605 * make sure to limit the number of pages we try to lock down 1606 */ 1607 if (delalloc_end + 1 - delalloc_start > max_bytes) 1608 delalloc_end = delalloc_start + max_bytes - 1; 1609 1610 /* step two, lock all the pages after the page that has start */ 1611 ret = lock_delalloc_pages(inode, locked_page, 1612 delalloc_start, delalloc_end); 1613 if (ret == -EAGAIN) { 1614 /* some of the pages are gone, lets avoid looping by 1615 * shortening the size of the delalloc range we're searching 1616 */ 1617 free_extent_state(cached_state); 1618 cached_state = NULL; 1619 if (!loops) { 1620 max_bytes = PAGE_SIZE; 1621 loops = 1; 1622 goto again; 1623 } else { 1624 found = 0; 1625 goto out_failed; 1626 } 1627 } 1628 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1629 1630 /* step three, lock the state bits for the whole range */ 1631 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1632 1633 /* then test to make sure it is all still delalloc */ 1634 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1635 EXTENT_DELALLOC, 1, cached_state); 1636 if (!ret) { 1637 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1638 &cached_state); 1639 __unlock_for_delalloc(inode, locked_page, 1640 delalloc_start, delalloc_end); 1641 cond_resched(); 1642 goto again; 1643 } 1644 free_extent_state(cached_state); 1645 *start = delalloc_start; 1646 *end = delalloc_end; 1647 out_failed: 1648 return found; 1649 } 1650 1651 static int __process_pages_contig(struct address_space *mapping, 1652 struct page *locked_page, 1653 pgoff_t start_index, pgoff_t end_index, 1654 unsigned long page_ops, pgoff_t *index_ret) 1655 { 1656 unsigned long nr_pages = end_index - start_index + 1; 1657 unsigned long pages_locked = 0; 1658 pgoff_t index = start_index; 1659 struct page *pages[16]; 1660 unsigned ret; 1661 int err = 0; 1662 int i; 1663 1664 if (page_ops & PAGE_LOCK) { 1665 ASSERT(page_ops == PAGE_LOCK); 1666 ASSERT(index_ret && *index_ret == start_index); 1667 } 1668 1669 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1670 mapping_set_error(mapping, -EIO); 1671 1672 while (nr_pages > 0) { 1673 ret = find_get_pages_contig(mapping, index, 1674 min_t(unsigned long, 1675 nr_pages, ARRAY_SIZE(pages)), pages); 1676 if (ret == 0) { 1677 /* 1678 * Only if we're going to lock these pages, 1679 * can we find nothing at @index. 1680 */ 1681 ASSERT(page_ops & PAGE_LOCK); 1682 err = -EAGAIN; 1683 goto out; 1684 } 1685 1686 for (i = 0; i < ret; i++) { 1687 if (page_ops & PAGE_SET_PRIVATE2) 1688 SetPagePrivate2(pages[i]); 1689 1690 if (pages[i] == locked_page) { 1691 put_page(pages[i]); 1692 pages_locked++; 1693 continue; 1694 } 1695 if (page_ops & PAGE_CLEAR_DIRTY) 1696 clear_page_dirty_for_io(pages[i]); 1697 if (page_ops & PAGE_SET_WRITEBACK) 1698 set_page_writeback(pages[i]); 1699 if (page_ops & PAGE_SET_ERROR) 1700 SetPageError(pages[i]); 1701 if (page_ops & PAGE_END_WRITEBACK) 1702 end_page_writeback(pages[i]); 1703 if (page_ops & PAGE_UNLOCK) 1704 unlock_page(pages[i]); 1705 if (page_ops & PAGE_LOCK) { 1706 lock_page(pages[i]); 1707 if (!PageDirty(pages[i]) || 1708 pages[i]->mapping != mapping) { 1709 unlock_page(pages[i]); 1710 put_page(pages[i]); 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 } 1715 put_page(pages[i]); 1716 pages_locked++; 1717 } 1718 nr_pages -= ret; 1719 index += ret; 1720 cond_resched(); 1721 } 1722 out: 1723 if (err && index_ret) 1724 *index_ret = start_index + pages_locked - 1; 1725 return err; 1726 } 1727 1728 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1729 u64 delalloc_end, struct page *locked_page, 1730 unsigned clear_bits, 1731 unsigned long page_ops) 1732 { 1733 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1734 NULL); 1735 1736 __process_pages_contig(inode->i_mapping, locked_page, 1737 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1738 page_ops, NULL); 1739 } 1740 1741 /* 1742 * count the number of bytes in the tree that have a given bit(s) 1743 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1744 * cached. The total number found is returned. 1745 */ 1746 u64 count_range_bits(struct extent_io_tree *tree, 1747 u64 *start, u64 search_end, u64 max_bytes, 1748 unsigned bits, int contig) 1749 { 1750 struct rb_node *node; 1751 struct extent_state *state; 1752 u64 cur_start = *start; 1753 u64 total_bytes = 0; 1754 u64 last = 0; 1755 int found = 0; 1756 1757 if (WARN_ON(search_end <= cur_start)) 1758 return 0; 1759 1760 spin_lock(&tree->lock); 1761 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1762 total_bytes = tree->dirty_bytes; 1763 goto out; 1764 } 1765 /* 1766 * this search will find all the extents that end after 1767 * our range starts. 1768 */ 1769 node = tree_search(tree, cur_start); 1770 if (!node) 1771 goto out; 1772 1773 while (1) { 1774 state = rb_entry(node, struct extent_state, rb_node); 1775 if (state->start > search_end) 1776 break; 1777 if (contig && found && state->start > last + 1) 1778 break; 1779 if (state->end >= cur_start && (state->state & bits) == bits) { 1780 total_bytes += min(search_end, state->end) + 1 - 1781 max(cur_start, state->start); 1782 if (total_bytes >= max_bytes) 1783 break; 1784 if (!found) { 1785 *start = max(cur_start, state->start); 1786 found = 1; 1787 } 1788 last = state->end; 1789 } else if (contig && found) { 1790 break; 1791 } 1792 node = rb_next(node); 1793 if (!node) 1794 break; 1795 } 1796 out: 1797 spin_unlock(&tree->lock); 1798 return total_bytes; 1799 } 1800 1801 /* 1802 * set the private field for a given byte offset in the tree. If there isn't 1803 * an extent_state there already, this does nothing. 1804 */ 1805 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1806 struct io_failure_record *failrec) 1807 { 1808 struct rb_node *node; 1809 struct extent_state *state; 1810 int ret = 0; 1811 1812 spin_lock(&tree->lock); 1813 /* 1814 * this search will find all the extents that end after 1815 * our range starts. 1816 */ 1817 node = tree_search(tree, start); 1818 if (!node) { 1819 ret = -ENOENT; 1820 goto out; 1821 } 1822 state = rb_entry(node, struct extent_state, rb_node); 1823 if (state->start != start) { 1824 ret = -ENOENT; 1825 goto out; 1826 } 1827 state->failrec = failrec; 1828 out: 1829 spin_unlock(&tree->lock); 1830 return ret; 1831 } 1832 1833 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1834 struct io_failure_record **failrec) 1835 { 1836 struct rb_node *node; 1837 struct extent_state *state; 1838 int ret = 0; 1839 1840 spin_lock(&tree->lock); 1841 /* 1842 * this search will find all the extents that end after 1843 * our range starts. 1844 */ 1845 node = tree_search(tree, start); 1846 if (!node) { 1847 ret = -ENOENT; 1848 goto out; 1849 } 1850 state = rb_entry(node, struct extent_state, rb_node); 1851 if (state->start != start) { 1852 ret = -ENOENT; 1853 goto out; 1854 } 1855 *failrec = state->failrec; 1856 out: 1857 spin_unlock(&tree->lock); 1858 return ret; 1859 } 1860 1861 /* 1862 * searches a range in the state tree for a given mask. 1863 * If 'filled' == 1, this returns 1 only if every extent in the tree 1864 * has the bits set. Otherwise, 1 is returned if any bit in the 1865 * range is found set. 1866 */ 1867 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1868 unsigned bits, int filled, struct extent_state *cached) 1869 { 1870 struct extent_state *state = NULL; 1871 struct rb_node *node; 1872 int bitset = 0; 1873 1874 spin_lock(&tree->lock); 1875 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1876 cached->end > start) 1877 node = &cached->rb_node; 1878 else 1879 node = tree_search(tree, start); 1880 while (node && start <= end) { 1881 state = rb_entry(node, struct extent_state, rb_node); 1882 1883 if (filled && state->start > start) { 1884 bitset = 0; 1885 break; 1886 } 1887 1888 if (state->start > end) 1889 break; 1890 1891 if (state->state & bits) { 1892 bitset = 1; 1893 if (!filled) 1894 break; 1895 } else if (filled) { 1896 bitset = 0; 1897 break; 1898 } 1899 1900 if (state->end == (u64)-1) 1901 break; 1902 1903 start = state->end + 1; 1904 if (start > end) 1905 break; 1906 node = rb_next(node); 1907 if (!node) { 1908 if (filled) 1909 bitset = 0; 1910 break; 1911 } 1912 } 1913 spin_unlock(&tree->lock); 1914 return bitset; 1915 } 1916 1917 /* 1918 * helper function to set a given page up to date if all the 1919 * extents in the tree for that page are up to date 1920 */ 1921 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1922 { 1923 u64 start = page_offset(page); 1924 u64 end = start + PAGE_SIZE - 1; 1925 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1926 SetPageUptodate(page); 1927 } 1928 1929 int free_io_failure(struct extent_io_tree *failure_tree, 1930 struct extent_io_tree *io_tree, 1931 struct io_failure_record *rec) 1932 { 1933 int ret; 1934 int err = 0; 1935 1936 set_state_failrec(failure_tree, rec->start, NULL); 1937 ret = clear_extent_bits(failure_tree, rec->start, 1938 rec->start + rec->len - 1, 1939 EXTENT_LOCKED | EXTENT_DIRTY); 1940 if (ret) 1941 err = ret; 1942 1943 ret = clear_extent_bits(io_tree, rec->start, 1944 rec->start + rec->len - 1, 1945 EXTENT_DAMAGED); 1946 if (ret && !err) 1947 err = ret; 1948 1949 kfree(rec); 1950 return err; 1951 } 1952 1953 /* 1954 * this bypasses the standard btrfs submit functions deliberately, as 1955 * the standard behavior is to write all copies in a raid setup. here we only 1956 * want to write the one bad copy. so we do the mapping for ourselves and issue 1957 * submit_bio directly. 1958 * to avoid any synchronization issues, wait for the data after writing, which 1959 * actually prevents the read that triggered the error from finishing. 1960 * currently, there can be no more than two copies of every data bit. thus, 1961 * exactly one rewrite is required. 1962 */ 1963 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1964 u64 length, u64 logical, struct page *page, 1965 unsigned int pg_offset, int mirror_num) 1966 { 1967 struct bio *bio; 1968 struct btrfs_device *dev; 1969 u64 map_length = 0; 1970 u64 sector; 1971 struct btrfs_bio *bbio = NULL; 1972 int ret; 1973 1974 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1975 BUG_ON(!mirror_num); 1976 1977 bio = btrfs_io_bio_alloc(1); 1978 bio->bi_iter.bi_size = 0; 1979 map_length = length; 1980 1981 /* 1982 * Avoid races with device replace and make sure our bbio has devices 1983 * associated to its stripes that don't go away while we are doing the 1984 * read repair operation. 1985 */ 1986 btrfs_bio_counter_inc_blocked(fs_info); 1987 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 1988 /* 1989 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 1990 * to update all raid stripes, but here we just want to correct 1991 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 1992 * stripe's dev and sector. 1993 */ 1994 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1995 &map_length, &bbio, 0); 1996 if (ret) { 1997 btrfs_bio_counter_dec(fs_info); 1998 bio_put(bio); 1999 return -EIO; 2000 } 2001 ASSERT(bbio->mirror_num == 1); 2002 } else { 2003 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2004 &map_length, &bbio, mirror_num); 2005 if (ret) { 2006 btrfs_bio_counter_dec(fs_info); 2007 bio_put(bio); 2008 return -EIO; 2009 } 2010 BUG_ON(mirror_num != bbio->mirror_num); 2011 } 2012 2013 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2014 bio->bi_iter.bi_sector = sector; 2015 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2016 btrfs_put_bbio(bbio); 2017 if (!dev || !dev->bdev || 2018 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2019 btrfs_bio_counter_dec(fs_info); 2020 bio_put(bio); 2021 return -EIO; 2022 } 2023 bio_set_dev(bio, dev->bdev); 2024 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2025 bio_add_page(bio, page, length, pg_offset); 2026 2027 if (btrfsic_submit_bio_wait(bio)) { 2028 /* try to remap that extent elsewhere? */ 2029 btrfs_bio_counter_dec(fs_info); 2030 bio_put(bio); 2031 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2032 return -EIO; 2033 } 2034 2035 btrfs_info_rl_in_rcu(fs_info, 2036 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2037 ino, start, 2038 rcu_str_deref(dev->name), sector); 2039 btrfs_bio_counter_dec(fs_info); 2040 bio_put(bio); 2041 return 0; 2042 } 2043 2044 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2045 struct extent_buffer *eb, int mirror_num) 2046 { 2047 u64 start = eb->start; 2048 int i, num_pages = num_extent_pages(eb); 2049 int ret = 0; 2050 2051 if (sb_rdonly(fs_info->sb)) 2052 return -EROFS; 2053 2054 for (i = 0; i < num_pages; i++) { 2055 struct page *p = eb->pages[i]; 2056 2057 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2058 start - page_offset(p), mirror_num); 2059 if (ret) 2060 break; 2061 start += PAGE_SIZE; 2062 } 2063 2064 return ret; 2065 } 2066 2067 /* 2068 * each time an IO finishes, we do a fast check in the IO failure tree 2069 * to see if we need to process or clean up an io_failure_record 2070 */ 2071 int clean_io_failure(struct btrfs_fs_info *fs_info, 2072 struct extent_io_tree *failure_tree, 2073 struct extent_io_tree *io_tree, u64 start, 2074 struct page *page, u64 ino, unsigned int pg_offset) 2075 { 2076 u64 private; 2077 struct io_failure_record *failrec; 2078 struct extent_state *state; 2079 int num_copies; 2080 int ret; 2081 2082 private = 0; 2083 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2084 EXTENT_DIRTY, 0); 2085 if (!ret) 2086 return 0; 2087 2088 ret = get_state_failrec(failure_tree, start, &failrec); 2089 if (ret) 2090 return 0; 2091 2092 BUG_ON(!failrec->this_mirror); 2093 2094 if (failrec->in_validation) { 2095 /* there was no real error, just free the record */ 2096 btrfs_debug(fs_info, 2097 "clean_io_failure: freeing dummy error at %llu", 2098 failrec->start); 2099 goto out; 2100 } 2101 if (sb_rdonly(fs_info->sb)) 2102 goto out; 2103 2104 spin_lock(&io_tree->lock); 2105 state = find_first_extent_bit_state(io_tree, 2106 failrec->start, 2107 EXTENT_LOCKED); 2108 spin_unlock(&io_tree->lock); 2109 2110 if (state && state->start <= failrec->start && 2111 state->end >= failrec->start + failrec->len - 1) { 2112 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2113 failrec->len); 2114 if (num_copies > 1) { 2115 repair_io_failure(fs_info, ino, start, failrec->len, 2116 failrec->logical, page, pg_offset, 2117 failrec->failed_mirror); 2118 } 2119 } 2120 2121 out: 2122 free_io_failure(failure_tree, io_tree, failrec); 2123 2124 return 0; 2125 } 2126 2127 /* 2128 * Can be called when 2129 * - hold extent lock 2130 * - under ordered extent 2131 * - the inode is freeing 2132 */ 2133 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2134 { 2135 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2136 struct io_failure_record *failrec; 2137 struct extent_state *state, *next; 2138 2139 if (RB_EMPTY_ROOT(&failure_tree->state)) 2140 return; 2141 2142 spin_lock(&failure_tree->lock); 2143 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2144 while (state) { 2145 if (state->start > end) 2146 break; 2147 2148 ASSERT(state->end <= end); 2149 2150 next = next_state(state); 2151 2152 failrec = state->failrec; 2153 free_extent_state(state); 2154 kfree(failrec); 2155 2156 state = next; 2157 } 2158 spin_unlock(&failure_tree->lock); 2159 } 2160 2161 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2162 struct io_failure_record **failrec_ret) 2163 { 2164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2165 struct io_failure_record *failrec; 2166 struct extent_map *em; 2167 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2168 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2169 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2170 int ret; 2171 u64 logical; 2172 2173 ret = get_state_failrec(failure_tree, start, &failrec); 2174 if (ret) { 2175 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2176 if (!failrec) 2177 return -ENOMEM; 2178 2179 failrec->start = start; 2180 failrec->len = end - start + 1; 2181 failrec->this_mirror = 0; 2182 failrec->bio_flags = 0; 2183 failrec->in_validation = 0; 2184 2185 read_lock(&em_tree->lock); 2186 em = lookup_extent_mapping(em_tree, start, failrec->len); 2187 if (!em) { 2188 read_unlock(&em_tree->lock); 2189 kfree(failrec); 2190 return -EIO; 2191 } 2192 2193 if (em->start > start || em->start + em->len <= start) { 2194 free_extent_map(em); 2195 em = NULL; 2196 } 2197 read_unlock(&em_tree->lock); 2198 if (!em) { 2199 kfree(failrec); 2200 return -EIO; 2201 } 2202 2203 logical = start - em->start; 2204 logical = em->block_start + logical; 2205 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2206 logical = em->block_start; 2207 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2208 extent_set_compress_type(&failrec->bio_flags, 2209 em->compress_type); 2210 } 2211 2212 btrfs_debug(fs_info, 2213 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2214 logical, start, failrec->len); 2215 2216 failrec->logical = logical; 2217 free_extent_map(em); 2218 2219 /* set the bits in the private failure tree */ 2220 ret = set_extent_bits(failure_tree, start, end, 2221 EXTENT_LOCKED | EXTENT_DIRTY); 2222 if (ret >= 0) 2223 ret = set_state_failrec(failure_tree, start, failrec); 2224 /* set the bits in the inode's tree */ 2225 if (ret >= 0) 2226 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2227 if (ret < 0) { 2228 kfree(failrec); 2229 return ret; 2230 } 2231 } else { 2232 btrfs_debug(fs_info, 2233 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2234 failrec->logical, failrec->start, failrec->len, 2235 failrec->in_validation); 2236 /* 2237 * when data can be on disk more than twice, add to failrec here 2238 * (e.g. with a list for failed_mirror) to make 2239 * clean_io_failure() clean all those errors at once. 2240 */ 2241 } 2242 2243 *failrec_ret = failrec; 2244 2245 return 0; 2246 } 2247 2248 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2249 struct io_failure_record *failrec, int failed_mirror) 2250 { 2251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2252 int num_copies; 2253 2254 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2255 if (num_copies == 1) { 2256 /* 2257 * we only have a single copy of the data, so don't bother with 2258 * all the retry and error correction code that follows. no 2259 * matter what the error is, it is very likely to persist. 2260 */ 2261 btrfs_debug(fs_info, 2262 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2263 num_copies, failrec->this_mirror, failed_mirror); 2264 return false; 2265 } 2266 2267 /* 2268 * there are two premises: 2269 * a) deliver good data to the caller 2270 * b) correct the bad sectors on disk 2271 */ 2272 if (failed_bio_pages > 1) { 2273 /* 2274 * to fulfill b), we need to know the exact failing sectors, as 2275 * we don't want to rewrite any more than the failed ones. thus, 2276 * we need separate read requests for the failed bio 2277 * 2278 * if the following BUG_ON triggers, our validation request got 2279 * merged. we need separate requests for our algorithm to work. 2280 */ 2281 BUG_ON(failrec->in_validation); 2282 failrec->in_validation = 1; 2283 failrec->this_mirror = failed_mirror; 2284 } else { 2285 /* 2286 * we're ready to fulfill a) and b) alongside. get a good copy 2287 * of the failed sector and if we succeed, we have setup 2288 * everything for repair_io_failure to do the rest for us. 2289 */ 2290 if (failrec->in_validation) { 2291 BUG_ON(failrec->this_mirror != failed_mirror); 2292 failrec->in_validation = 0; 2293 failrec->this_mirror = 0; 2294 } 2295 failrec->failed_mirror = failed_mirror; 2296 failrec->this_mirror++; 2297 if (failrec->this_mirror == failed_mirror) 2298 failrec->this_mirror++; 2299 } 2300 2301 if (failrec->this_mirror > num_copies) { 2302 btrfs_debug(fs_info, 2303 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2304 num_copies, failrec->this_mirror, failed_mirror); 2305 return false; 2306 } 2307 2308 return true; 2309 } 2310 2311 2312 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2313 struct io_failure_record *failrec, 2314 struct page *page, int pg_offset, int icsum, 2315 bio_end_io_t *endio_func, void *data) 2316 { 2317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2318 struct bio *bio; 2319 struct btrfs_io_bio *btrfs_failed_bio; 2320 struct btrfs_io_bio *btrfs_bio; 2321 2322 bio = btrfs_io_bio_alloc(1); 2323 bio->bi_end_io = endio_func; 2324 bio->bi_iter.bi_sector = failrec->logical >> 9; 2325 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2326 bio->bi_iter.bi_size = 0; 2327 bio->bi_private = data; 2328 2329 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2330 if (btrfs_failed_bio->csum) { 2331 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2332 2333 btrfs_bio = btrfs_io_bio(bio); 2334 btrfs_bio->csum = btrfs_bio->csum_inline; 2335 icsum *= csum_size; 2336 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2337 csum_size); 2338 } 2339 2340 bio_add_page(bio, page, failrec->len, pg_offset); 2341 2342 return bio; 2343 } 2344 2345 /* 2346 * this is a generic handler for readpage errors (default 2347 * readpage_io_failed_hook). if other copies exist, read those and write back 2348 * good data to the failed position. does not investigate in remapping the 2349 * failed extent elsewhere, hoping the device will be smart enough to do this as 2350 * needed 2351 */ 2352 2353 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2354 struct page *page, u64 start, u64 end, 2355 int failed_mirror) 2356 { 2357 struct io_failure_record *failrec; 2358 struct inode *inode = page->mapping->host; 2359 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2360 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2361 struct bio *bio; 2362 int read_mode = 0; 2363 blk_status_t status; 2364 int ret; 2365 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2366 2367 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2368 2369 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2370 if (ret) 2371 return ret; 2372 2373 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2374 failed_mirror)) { 2375 free_io_failure(failure_tree, tree, failrec); 2376 return -EIO; 2377 } 2378 2379 if (failed_bio_pages > 1) 2380 read_mode |= REQ_FAILFAST_DEV; 2381 2382 phy_offset >>= inode->i_sb->s_blocksize_bits; 2383 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2384 start - page_offset(page), 2385 (int)phy_offset, failed_bio->bi_end_io, 2386 NULL); 2387 bio->bi_opf = REQ_OP_READ | read_mode; 2388 2389 btrfs_debug(btrfs_sb(inode->i_sb), 2390 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2391 read_mode, failrec->this_mirror, failrec->in_validation); 2392 2393 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2394 failrec->bio_flags, 0); 2395 if (status) { 2396 free_io_failure(failure_tree, tree, failrec); 2397 bio_put(bio); 2398 ret = blk_status_to_errno(status); 2399 } 2400 2401 return ret; 2402 } 2403 2404 /* lots and lots of room for performance fixes in the end_bio funcs */ 2405 2406 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2407 { 2408 int uptodate = (err == 0); 2409 struct extent_io_tree *tree; 2410 int ret = 0; 2411 2412 tree = &BTRFS_I(page->mapping->host)->io_tree; 2413 2414 if (tree->ops && tree->ops->writepage_end_io_hook) 2415 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2416 uptodate); 2417 2418 if (!uptodate) { 2419 ClearPageUptodate(page); 2420 SetPageError(page); 2421 ret = err < 0 ? err : -EIO; 2422 mapping_set_error(page->mapping, ret); 2423 } 2424 } 2425 2426 /* 2427 * after a writepage IO is done, we need to: 2428 * clear the uptodate bits on error 2429 * clear the writeback bits in the extent tree for this IO 2430 * end_page_writeback if the page has no more pending IO 2431 * 2432 * Scheduling is not allowed, so the extent state tree is expected 2433 * to have one and only one object corresponding to this IO. 2434 */ 2435 static void end_bio_extent_writepage(struct bio *bio) 2436 { 2437 int error = blk_status_to_errno(bio->bi_status); 2438 struct bio_vec *bvec; 2439 u64 start; 2440 u64 end; 2441 int i; 2442 2443 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2444 bio_for_each_segment_all(bvec, bio, i) { 2445 struct page *page = bvec->bv_page; 2446 struct inode *inode = page->mapping->host; 2447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2448 2449 /* We always issue full-page reads, but if some block 2450 * in a page fails to read, blk_update_request() will 2451 * advance bv_offset and adjust bv_len to compensate. 2452 * Print a warning for nonzero offsets, and an error 2453 * if they don't add up to a full page. */ 2454 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2455 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2456 btrfs_err(fs_info, 2457 "partial page write in btrfs with offset %u and length %u", 2458 bvec->bv_offset, bvec->bv_len); 2459 else 2460 btrfs_info(fs_info, 2461 "incomplete page write in btrfs with offset %u and length %u", 2462 bvec->bv_offset, bvec->bv_len); 2463 } 2464 2465 start = page_offset(page); 2466 end = start + bvec->bv_offset + bvec->bv_len - 1; 2467 2468 end_extent_writepage(page, error, start, end); 2469 end_page_writeback(page); 2470 } 2471 2472 bio_put(bio); 2473 } 2474 2475 static void 2476 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2477 int uptodate) 2478 { 2479 struct extent_state *cached = NULL; 2480 u64 end = start + len - 1; 2481 2482 if (uptodate && tree->track_uptodate) 2483 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2484 unlock_extent_cached_atomic(tree, start, end, &cached); 2485 } 2486 2487 /* 2488 * after a readpage IO is done, we need to: 2489 * clear the uptodate bits on error 2490 * set the uptodate bits if things worked 2491 * set the page up to date if all extents in the tree are uptodate 2492 * clear the lock bit in the extent tree 2493 * unlock the page if there are no other extents locked for it 2494 * 2495 * Scheduling is not allowed, so the extent state tree is expected 2496 * to have one and only one object corresponding to this IO. 2497 */ 2498 static void end_bio_extent_readpage(struct bio *bio) 2499 { 2500 struct bio_vec *bvec; 2501 int uptodate = !bio->bi_status; 2502 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2503 struct extent_io_tree *tree, *failure_tree; 2504 u64 offset = 0; 2505 u64 start; 2506 u64 end; 2507 u64 len; 2508 u64 extent_start = 0; 2509 u64 extent_len = 0; 2510 int mirror; 2511 int ret; 2512 int i; 2513 2514 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2515 bio_for_each_segment_all(bvec, bio, i) { 2516 struct page *page = bvec->bv_page; 2517 struct inode *inode = page->mapping->host; 2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2519 2520 btrfs_debug(fs_info, 2521 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2522 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2523 io_bio->mirror_num); 2524 tree = &BTRFS_I(inode)->io_tree; 2525 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2526 2527 /* We always issue full-page reads, but if some block 2528 * in a page fails to read, blk_update_request() will 2529 * advance bv_offset and adjust bv_len to compensate. 2530 * Print a warning for nonzero offsets, and an error 2531 * if they don't add up to a full page. */ 2532 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2533 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2534 btrfs_err(fs_info, 2535 "partial page read in btrfs with offset %u and length %u", 2536 bvec->bv_offset, bvec->bv_len); 2537 else 2538 btrfs_info(fs_info, 2539 "incomplete page read in btrfs with offset %u and length %u", 2540 bvec->bv_offset, bvec->bv_len); 2541 } 2542 2543 start = page_offset(page); 2544 end = start + bvec->bv_offset + bvec->bv_len - 1; 2545 len = bvec->bv_len; 2546 2547 mirror = io_bio->mirror_num; 2548 if (likely(uptodate && tree->ops)) { 2549 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2550 page, start, end, 2551 mirror); 2552 if (ret) 2553 uptodate = 0; 2554 else 2555 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2556 failure_tree, tree, start, 2557 page, 2558 btrfs_ino(BTRFS_I(inode)), 0); 2559 } 2560 2561 if (likely(uptodate)) 2562 goto readpage_ok; 2563 2564 if (tree->ops) { 2565 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2566 if (ret == -EAGAIN) { 2567 /* 2568 * Data inode's readpage_io_failed_hook() always 2569 * returns -EAGAIN. 2570 * 2571 * The generic bio_readpage_error handles errors 2572 * the following way: If possible, new read 2573 * requests are created and submitted and will 2574 * end up in end_bio_extent_readpage as well (if 2575 * we're lucky, not in the !uptodate case). In 2576 * that case it returns 0 and we just go on with 2577 * the next page in our bio. If it can't handle 2578 * the error it will return -EIO and we remain 2579 * responsible for that page. 2580 */ 2581 ret = bio_readpage_error(bio, offset, page, 2582 start, end, mirror); 2583 if (ret == 0) { 2584 uptodate = !bio->bi_status; 2585 offset += len; 2586 continue; 2587 } 2588 } 2589 2590 /* 2591 * metadata's readpage_io_failed_hook() always returns 2592 * -EIO and fixes nothing. -EIO is also returned if 2593 * data inode error could not be fixed. 2594 */ 2595 ASSERT(ret == -EIO); 2596 } 2597 readpage_ok: 2598 if (likely(uptodate)) { 2599 loff_t i_size = i_size_read(inode); 2600 pgoff_t end_index = i_size >> PAGE_SHIFT; 2601 unsigned off; 2602 2603 /* Zero out the end if this page straddles i_size */ 2604 off = i_size & (PAGE_SIZE-1); 2605 if (page->index == end_index && off) 2606 zero_user_segment(page, off, PAGE_SIZE); 2607 SetPageUptodate(page); 2608 } else { 2609 ClearPageUptodate(page); 2610 SetPageError(page); 2611 } 2612 unlock_page(page); 2613 offset += len; 2614 2615 if (unlikely(!uptodate)) { 2616 if (extent_len) { 2617 endio_readpage_release_extent(tree, 2618 extent_start, 2619 extent_len, 1); 2620 extent_start = 0; 2621 extent_len = 0; 2622 } 2623 endio_readpage_release_extent(tree, start, 2624 end - start + 1, 0); 2625 } else if (!extent_len) { 2626 extent_start = start; 2627 extent_len = end + 1 - start; 2628 } else if (extent_start + extent_len == start) { 2629 extent_len += end + 1 - start; 2630 } else { 2631 endio_readpage_release_extent(tree, extent_start, 2632 extent_len, uptodate); 2633 extent_start = start; 2634 extent_len = end + 1 - start; 2635 } 2636 } 2637 2638 if (extent_len) 2639 endio_readpage_release_extent(tree, extent_start, extent_len, 2640 uptodate); 2641 if (io_bio->end_io) 2642 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2643 bio_put(bio); 2644 } 2645 2646 /* 2647 * Initialize the members up to but not including 'bio'. Use after allocating a 2648 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2649 * 'bio' because use of __GFP_ZERO is not supported. 2650 */ 2651 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2652 { 2653 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2654 } 2655 2656 /* 2657 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2658 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2659 * for the appropriate container_of magic 2660 */ 2661 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2662 { 2663 struct bio *bio; 2664 2665 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2666 bio_set_dev(bio, bdev); 2667 bio->bi_iter.bi_sector = first_byte >> 9; 2668 btrfs_io_bio_init(btrfs_io_bio(bio)); 2669 return bio; 2670 } 2671 2672 struct bio *btrfs_bio_clone(struct bio *bio) 2673 { 2674 struct btrfs_io_bio *btrfs_bio; 2675 struct bio *new; 2676 2677 /* Bio allocation backed by a bioset does not fail */ 2678 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2679 btrfs_bio = btrfs_io_bio(new); 2680 btrfs_io_bio_init(btrfs_bio); 2681 btrfs_bio->iter = bio->bi_iter; 2682 return new; 2683 } 2684 2685 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2686 { 2687 struct bio *bio; 2688 2689 /* Bio allocation backed by a bioset does not fail */ 2690 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2691 btrfs_io_bio_init(btrfs_io_bio(bio)); 2692 return bio; 2693 } 2694 2695 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2696 { 2697 struct bio *bio; 2698 struct btrfs_io_bio *btrfs_bio; 2699 2700 /* this will never fail when it's backed by a bioset */ 2701 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2702 ASSERT(bio); 2703 2704 btrfs_bio = btrfs_io_bio(bio); 2705 btrfs_io_bio_init(btrfs_bio); 2706 2707 bio_trim(bio, offset >> 9, size >> 9); 2708 btrfs_bio->iter = bio->bi_iter; 2709 return bio; 2710 } 2711 2712 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2713 unsigned long bio_flags) 2714 { 2715 blk_status_t ret = 0; 2716 struct bio_vec *bvec = bio_last_bvec_all(bio); 2717 struct page *page = bvec->bv_page; 2718 struct extent_io_tree *tree = bio->bi_private; 2719 u64 start; 2720 2721 start = page_offset(page) + bvec->bv_offset; 2722 2723 bio->bi_private = NULL; 2724 2725 if (tree->ops) 2726 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2727 mirror_num, bio_flags, start); 2728 else 2729 btrfsic_submit_bio(bio); 2730 2731 return blk_status_to_errno(ret); 2732 } 2733 2734 /* 2735 * @opf: bio REQ_OP_* and REQ_* flags as one value 2736 * @tree: tree so we can call our merge_bio hook 2737 * @wbc: optional writeback control for io accounting 2738 * @page: page to add to the bio 2739 * @pg_offset: offset of the new bio or to check whether we are adding 2740 * a contiguous page to the previous one 2741 * @size: portion of page that we want to write 2742 * @offset: starting offset in the page 2743 * @bdev: attach newly created bios to this bdev 2744 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2745 * @end_io_func: end_io callback for new bio 2746 * @mirror_num: desired mirror to read/write 2747 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2748 * @bio_flags: flags of the current bio to see if we can merge them 2749 */ 2750 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2751 struct writeback_control *wbc, 2752 struct page *page, u64 offset, 2753 size_t size, unsigned long pg_offset, 2754 struct block_device *bdev, 2755 struct bio **bio_ret, 2756 bio_end_io_t end_io_func, 2757 int mirror_num, 2758 unsigned long prev_bio_flags, 2759 unsigned long bio_flags, 2760 bool force_bio_submit) 2761 { 2762 int ret = 0; 2763 struct bio *bio; 2764 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2765 sector_t sector = offset >> 9; 2766 2767 ASSERT(bio_ret); 2768 2769 if (*bio_ret) { 2770 bool contig; 2771 bool can_merge = true; 2772 2773 bio = *bio_ret; 2774 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2775 contig = bio->bi_iter.bi_sector == sector; 2776 else 2777 contig = bio_end_sector(bio) == sector; 2778 2779 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size, 2780 bio, bio_flags)) 2781 can_merge = false; 2782 2783 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2784 force_bio_submit || 2785 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2786 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2787 if (ret < 0) { 2788 *bio_ret = NULL; 2789 return ret; 2790 } 2791 bio = NULL; 2792 } else { 2793 if (wbc) 2794 wbc_account_io(wbc, page, page_size); 2795 return 0; 2796 } 2797 } 2798 2799 bio = btrfs_bio_alloc(bdev, offset); 2800 bio_add_page(bio, page, page_size, pg_offset); 2801 bio->bi_end_io = end_io_func; 2802 bio->bi_private = tree; 2803 bio->bi_write_hint = page->mapping->host->i_write_hint; 2804 bio->bi_opf = opf; 2805 if (wbc) { 2806 wbc_init_bio(wbc, bio); 2807 wbc_account_io(wbc, page, page_size); 2808 } 2809 2810 *bio_ret = bio; 2811 2812 return ret; 2813 } 2814 2815 static void attach_extent_buffer_page(struct extent_buffer *eb, 2816 struct page *page) 2817 { 2818 if (!PagePrivate(page)) { 2819 SetPagePrivate(page); 2820 get_page(page); 2821 set_page_private(page, (unsigned long)eb); 2822 } else { 2823 WARN_ON(page->private != (unsigned long)eb); 2824 } 2825 } 2826 2827 void set_page_extent_mapped(struct page *page) 2828 { 2829 if (!PagePrivate(page)) { 2830 SetPagePrivate(page); 2831 get_page(page); 2832 set_page_private(page, EXTENT_PAGE_PRIVATE); 2833 } 2834 } 2835 2836 static struct extent_map * 2837 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2838 u64 start, u64 len, get_extent_t *get_extent, 2839 struct extent_map **em_cached) 2840 { 2841 struct extent_map *em; 2842 2843 if (em_cached && *em_cached) { 2844 em = *em_cached; 2845 if (extent_map_in_tree(em) && start >= em->start && 2846 start < extent_map_end(em)) { 2847 refcount_inc(&em->refs); 2848 return em; 2849 } 2850 2851 free_extent_map(em); 2852 *em_cached = NULL; 2853 } 2854 2855 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2856 if (em_cached && !IS_ERR_OR_NULL(em)) { 2857 BUG_ON(*em_cached); 2858 refcount_inc(&em->refs); 2859 *em_cached = em; 2860 } 2861 return em; 2862 } 2863 /* 2864 * basic readpage implementation. Locked extent state structs are inserted 2865 * into the tree that are removed when the IO is done (by the end_io 2866 * handlers) 2867 * XXX JDM: This needs looking at to ensure proper page locking 2868 * return 0 on success, otherwise return error 2869 */ 2870 static int __do_readpage(struct extent_io_tree *tree, 2871 struct page *page, 2872 get_extent_t *get_extent, 2873 struct extent_map **em_cached, 2874 struct bio **bio, int mirror_num, 2875 unsigned long *bio_flags, unsigned int read_flags, 2876 u64 *prev_em_start) 2877 { 2878 struct inode *inode = page->mapping->host; 2879 u64 start = page_offset(page); 2880 const u64 end = start + PAGE_SIZE - 1; 2881 u64 cur = start; 2882 u64 extent_offset; 2883 u64 last_byte = i_size_read(inode); 2884 u64 block_start; 2885 u64 cur_end; 2886 struct extent_map *em; 2887 struct block_device *bdev; 2888 int ret = 0; 2889 int nr = 0; 2890 size_t pg_offset = 0; 2891 size_t iosize; 2892 size_t disk_io_size; 2893 size_t blocksize = inode->i_sb->s_blocksize; 2894 unsigned long this_bio_flag = 0; 2895 2896 set_page_extent_mapped(page); 2897 2898 if (!PageUptodate(page)) { 2899 if (cleancache_get_page(page) == 0) { 2900 BUG_ON(blocksize != PAGE_SIZE); 2901 unlock_extent(tree, start, end); 2902 goto out; 2903 } 2904 } 2905 2906 if (page->index == last_byte >> PAGE_SHIFT) { 2907 char *userpage; 2908 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2909 2910 if (zero_offset) { 2911 iosize = PAGE_SIZE - zero_offset; 2912 userpage = kmap_atomic(page); 2913 memset(userpage + zero_offset, 0, iosize); 2914 flush_dcache_page(page); 2915 kunmap_atomic(userpage); 2916 } 2917 } 2918 while (cur <= end) { 2919 bool force_bio_submit = false; 2920 u64 offset; 2921 2922 if (cur >= last_byte) { 2923 char *userpage; 2924 struct extent_state *cached = NULL; 2925 2926 iosize = PAGE_SIZE - pg_offset; 2927 userpage = kmap_atomic(page); 2928 memset(userpage + pg_offset, 0, iosize); 2929 flush_dcache_page(page); 2930 kunmap_atomic(userpage); 2931 set_extent_uptodate(tree, cur, cur + iosize - 1, 2932 &cached, GFP_NOFS); 2933 unlock_extent_cached(tree, cur, 2934 cur + iosize - 1, &cached); 2935 break; 2936 } 2937 em = __get_extent_map(inode, page, pg_offset, cur, 2938 end - cur + 1, get_extent, em_cached); 2939 if (IS_ERR_OR_NULL(em)) { 2940 SetPageError(page); 2941 unlock_extent(tree, cur, end); 2942 break; 2943 } 2944 extent_offset = cur - em->start; 2945 BUG_ON(extent_map_end(em) <= cur); 2946 BUG_ON(end < cur); 2947 2948 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2949 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2950 extent_set_compress_type(&this_bio_flag, 2951 em->compress_type); 2952 } 2953 2954 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2955 cur_end = min(extent_map_end(em) - 1, end); 2956 iosize = ALIGN(iosize, blocksize); 2957 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2958 disk_io_size = em->block_len; 2959 offset = em->block_start; 2960 } else { 2961 offset = em->block_start + extent_offset; 2962 disk_io_size = iosize; 2963 } 2964 bdev = em->bdev; 2965 block_start = em->block_start; 2966 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2967 block_start = EXTENT_MAP_HOLE; 2968 2969 /* 2970 * If we have a file range that points to a compressed extent 2971 * and it's followed by a consecutive file range that points to 2972 * to the same compressed extent (possibly with a different 2973 * offset and/or length, so it either points to the whole extent 2974 * or only part of it), we must make sure we do not submit a 2975 * single bio to populate the pages for the 2 ranges because 2976 * this makes the compressed extent read zero out the pages 2977 * belonging to the 2nd range. Imagine the following scenario: 2978 * 2979 * File layout 2980 * [0 - 8K] [8K - 24K] 2981 * | | 2982 * | | 2983 * points to extent X, points to extent X, 2984 * offset 4K, length of 8K offset 0, length 16K 2985 * 2986 * [extent X, compressed length = 4K uncompressed length = 16K] 2987 * 2988 * If the bio to read the compressed extent covers both ranges, 2989 * it will decompress extent X into the pages belonging to the 2990 * first range and then it will stop, zeroing out the remaining 2991 * pages that belong to the other range that points to extent X. 2992 * So here we make sure we submit 2 bios, one for the first 2993 * range and another one for the third range. Both will target 2994 * the same physical extent from disk, but we can't currently 2995 * make the compressed bio endio callback populate the pages 2996 * for both ranges because each compressed bio is tightly 2997 * coupled with a single extent map, and each range can have 2998 * an extent map with a different offset value relative to the 2999 * uncompressed data of our extent and different lengths. This 3000 * is a corner case so we prioritize correctness over 3001 * non-optimal behavior (submitting 2 bios for the same extent). 3002 */ 3003 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3004 prev_em_start && *prev_em_start != (u64)-1 && 3005 *prev_em_start != em->orig_start) 3006 force_bio_submit = true; 3007 3008 if (prev_em_start) 3009 *prev_em_start = em->orig_start; 3010 3011 free_extent_map(em); 3012 em = NULL; 3013 3014 /* we've found a hole, just zero and go on */ 3015 if (block_start == EXTENT_MAP_HOLE) { 3016 char *userpage; 3017 struct extent_state *cached = NULL; 3018 3019 userpage = kmap_atomic(page); 3020 memset(userpage + pg_offset, 0, iosize); 3021 flush_dcache_page(page); 3022 kunmap_atomic(userpage); 3023 3024 set_extent_uptodate(tree, cur, cur + iosize - 1, 3025 &cached, GFP_NOFS); 3026 unlock_extent_cached(tree, cur, 3027 cur + iosize - 1, &cached); 3028 cur = cur + iosize; 3029 pg_offset += iosize; 3030 continue; 3031 } 3032 /* the get_extent function already copied into the page */ 3033 if (test_range_bit(tree, cur, cur_end, 3034 EXTENT_UPTODATE, 1, NULL)) { 3035 check_page_uptodate(tree, page); 3036 unlock_extent(tree, cur, cur + iosize - 1); 3037 cur = cur + iosize; 3038 pg_offset += iosize; 3039 continue; 3040 } 3041 /* we have an inline extent but it didn't get marked up 3042 * to date. Error out 3043 */ 3044 if (block_start == EXTENT_MAP_INLINE) { 3045 SetPageError(page); 3046 unlock_extent(tree, cur, cur + iosize - 1); 3047 cur = cur + iosize; 3048 pg_offset += iosize; 3049 continue; 3050 } 3051 3052 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3053 page, offset, disk_io_size, 3054 pg_offset, bdev, bio, 3055 end_bio_extent_readpage, mirror_num, 3056 *bio_flags, 3057 this_bio_flag, 3058 force_bio_submit); 3059 if (!ret) { 3060 nr++; 3061 *bio_flags = this_bio_flag; 3062 } else { 3063 SetPageError(page); 3064 unlock_extent(tree, cur, cur + iosize - 1); 3065 goto out; 3066 } 3067 cur = cur + iosize; 3068 pg_offset += iosize; 3069 } 3070 out: 3071 if (!nr) { 3072 if (!PageError(page)) 3073 SetPageUptodate(page); 3074 unlock_page(page); 3075 } 3076 return ret; 3077 } 3078 3079 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3080 struct page *pages[], int nr_pages, 3081 u64 start, u64 end, 3082 struct extent_map **em_cached, 3083 struct bio **bio, 3084 unsigned long *bio_flags, 3085 u64 *prev_em_start) 3086 { 3087 struct inode *inode; 3088 struct btrfs_ordered_extent *ordered; 3089 int index; 3090 3091 inode = pages[0]->mapping->host; 3092 while (1) { 3093 lock_extent(tree, start, end); 3094 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3095 end - start + 1); 3096 if (!ordered) 3097 break; 3098 unlock_extent(tree, start, end); 3099 btrfs_start_ordered_extent(inode, ordered, 1); 3100 btrfs_put_ordered_extent(ordered); 3101 } 3102 3103 for (index = 0; index < nr_pages; index++) { 3104 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3105 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3106 put_page(pages[index]); 3107 } 3108 } 3109 3110 static void __extent_readpages(struct extent_io_tree *tree, 3111 struct page *pages[], 3112 int nr_pages, 3113 struct extent_map **em_cached, 3114 struct bio **bio, unsigned long *bio_flags, 3115 u64 *prev_em_start) 3116 { 3117 u64 start = 0; 3118 u64 end = 0; 3119 u64 page_start; 3120 int index; 3121 int first_index = 0; 3122 3123 for (index = 0; index < nr_pages; index++) { 3124 page_start = page_offset(pages[index]); 3125 if (!end) { 3126 start = page_start; 3127 end = start + PAGE_SIZE - 1; 3128 first_index = index; 3129 } else if (end + 1 == page_start) { 3130 end += PAGE_SIZE; 3131 } else { 3132 __do_contiguous_readpages(tree, &pages[first_index], 3133 index - first_index, start, 3134 end, em_cached, 3135 bio, bio_flags, 3136 prev_em_start); 3137 start = page_start; 3138 end = start + PAGE_SIZE - 1; 3139 first_index = index; 3140 } 3141 } 3142 3143 if (end) 3144 __do_contiguous_readpages(tree, &pages[first_index], 3145 index - first_index, start, 3146 end, em_cached, bio, 3147 bio_flags, prev_em_start); 3148 } 3149 3150 static int __extent_read_full_page(struct extent_io_tree *tree, 3151 struct page *page, 3152 get_extent_t *get_extent, 3153 struct bio **bio, int mirror_num, 3154 unsigned long *bio_flags, 3155 unsigned int read_flags) 3156 { 3157 struct inode *inode = page->mapping->host; 3158 struct btrfs_ordered_extent *ordered; 3159 u64 start = page_offset(page); 3160 u64 end = start + PAGE_SIZE - 1; 3161 int ret; 3162 3163 while (1) { 3164 lock_extent(tree, start, end); 3165 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3166 PAGE_SIZE); 3167 if (!ordered) 3168 break; 3169 unlock_extent(tree, start, end); 3170 btrfs_start_ordered_extent(inode, ordered, 1); 3171 btrfs_put_ordered_extent(ordered); 3172 } 3173 3174 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3175 bio_flags, read_flags, NULL); 3176 return ret; 3177 } 3178 3179 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3180 get_extent_t *get_extent, int mirror_num) 3181 { 3182 struct bio *bio = NULL; 3183 unsigned long bio_flags = 0; 3184 int ret; 3185 3186 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3187 &bio_flags, 0); 3188 if (bio) 3189 ret = submit_one_bio(bio, mirror_num, bio_flags); 3190 return ret; 3191 } 3192 3193 static void update_nr_written(struct writeback_control *wbc, 3194 unsigned long nr_written) 3195 { 3196 wbc->nr_to_write -= nr_written; 3197 } 3198 3199 /* 3200 * helper for __extent_writepage, doing all of the delayed allocation setup. 3201 * 3202 * This returns 1 if our fill_delalloc function did all the work required 3203 * to write the page (copy into inline extent). In this case the IO has 3204 * been started and the page is already unlocked. 3205 * 3206 * This returns 0 if all went well (page still locked) 3207 * This returns < 0 if there were errors (page still locked) 3208 */ 3209 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3210 struct page *page, struct writeback_control *wbc, 3211 struct extent_page_data *epd, 3212 u64 delalloc_start, 3213 unsigned long *nr_written) 3214 { 3215 struct extent_io_tree *tree = epd->tree; 3216 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3217 u64 nr_delalloc; 3218 u64 delalloc_to_write = 0; 3219 u64 delalloc_end = 0; 3220 int ret; 3221 int page_started = 0; 3222 3223 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3224 return 0; 3225 3226 while (delalloc_end < page_end) { 3227 nr_delalloc = find_lock_delalloc_range(inode, tree, 3228 page, 3229 &delalloc_start, 3230 &delalloc_end, 3231 BTRFS_MAX_EXTENT_SIZE); 3232 if (nr_delalloc == 0) { 3233 delalloc_start = delalloc_end + 1; 3234 continue; 3235 } 3236 ret = tree->ops->fill_delalloc(inode, page, 3237 delalloc_start, 3238 delalloc_end, 3239 &page_started, 3240 nr_written, wbc); 3241 /* File system has been set read-only */ 3242 if (ret) { 3243 SetPageError(page); 3244 /* fill_delalloc should be return < 0 for error 3245 * but just in case, we use > 0 here meaning the 3246 * IO is started, so we don't want to return > 0 3247 * unless things are going well. 3248 */ 3249 ret = ret < 0 ? ret : -EIO; 3250 goto done; 3251 } 3252 /* 3253 * delalloc_end is already one less than the total length, so 3254 * we don't subtract one from PAGE_SIZE 3255 */ 3256 delalloc_to_write += (delalloc_end - delalloc_start + 3257 PAGE_SIZE) >> PAGE_SHIFT; 3258 delalloc_start = delalloc_end + 1; 3259 } 3260 if (wbc->nr_to_write < delalloc_to_write) { 3261 int thresh = 8192; 3262 3263 if (delalloc_to_write < thresh * 2) 3264 thresh = delalloc_to_write; 3265 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3266 thresh); 3267 } 3268 3269 /* did the fill delalloc function already unlock and start 3270 * the IO? 3271 */ 3272 if (page_started) { 3273 /* 3274 * we've unlocked the page, so we can't update 3275 * the mapping's writeback index, just update 3276 * nr_to_write. 3277 */ 3278 wbc->nr_to_write -= *nr_written; 3279 return 1; 3280 } 3281 3282 ret = 0; 3283 3284 done: 3285 return ret; 3286 } 3287 3288 /* 3289 * helper for __extent_writepage. This calls the writepage start hooks, 3290 * and does the loop to map the page into extents and bios. 3291 * 3292 * We return 1 if the IO is started and the page is unlocked, 3293 * 0 if all went well (page still locked) 3294 * < 0 if there were errors (page still locked) 3295 */ 3296 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3297 struct page *page, 3298 struct writeback_control *wbc, 3299 struct extent_page_data *epd, 3300 loff_t i_size, 3301 unsigned long nr_written, 3302 unsigned int write_flags, int *nr_ret) 3303 { 3304 struct extent_io_tree *tree = epd->tree; 3305 u64 start = page_offset(page); 3306 u64 page_end = start + PAGE_SIZE - 1; 3307 u64 end; 3308 u64 cur = start; 3309 u64 extent_offset; 3310 u64 block_start; 3311 u64 iosize; 3312 struct extent_map *em; 3313 struct block_device *bdev; 3314 size_t pg_offset = 0; 3315 size_t blocksize; 3316 int ret = 0; 3317 int nr = 0; 3318 bool compressed; 3319 3320 if (tree->ops && tree->ops->writepage_start_hook) { 3321 ret = tree->ops->writepage_start_hook(page, start, 3322 page_end); 3323 if (ret) { 3324 /* Fixup worker will requeue */ 3325 if (ret == -EBUSY) 3326 wbc->pages_skipped++; 3327 else 3328 redirty_page_for_writepage(wbc, page); 3329 3330 update_nr_written(wbc, nr_written); 3331 unlock_page(page); 3332 return 1; 3333 } 3334 } 3335 3336 /* 3337 * we don't want to touch the inode after unlocking the page, 3338 * so we update the mapping writeback index now 3339 */ 3340 update_nr_written(wbc, nr_written + 1); 3341 3342 end = page_end; 3343 if (i_size <= start) { 3344 if (tree->ops && tree->ops->writepage_end_io_hook) 3345 tree->ops->writepage_end_io_hook(page, start, 3346 page_end, NULL, 1); 3347 goto done; 3348 } 3349 3350 blocksize = inode->i_sb->s_blocksize; 3351 3352 while (cur <= end) { 3353 u64 em_end; 3354 u64 offset; 3355 3356 if (cur >= i_size) { 3357 if (tree->ops && tree->ops->writepage_end_io_hook) 3358 tree->ops->writepage_end_io_hook(page, cur, 3359 page_end, NULL, 1); 3360 break; 3361 } 3362 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3363 end - cur + 1, 1); 3364 if (IS_ERR_OR_NULL(em)) { 3365 SetPageError(page); 3366 ret = PTR_ERR_OR_ZERO(em); 3367 break; 3368 } 3369 3370 extent_offset = cur - em->start; 3371 em_end = extent_map_end(em); 3372 BUG_ON(em_end <= cur); 3373 BUG_ON(end < cur); 3374 iosize = min(em_end - cur, end - cur + 1); 3375 iosize = ALIGN(iosize, blocksize); 3376 offset = em->block_start + extent_offset; 3377 bdev = em->bdev; 3378 block_start = em->block_start; 3379 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3380 free_extent_map(em); 3381 em = NULL; 3382 3383 /* 3384 * compressed and inline extents are written through other 3385 * paths in the FS 3386 */ 3387 if (compressed || block_start == EXTENT_MAP_HOLE || 3388 block_start == EXTENT_MAP_INLINE) { 3389 /* 3390 * end_io notification does not happen here for 3391 * compressed extents 3392 */ 3393 if (!compressed && tree->ops && 3394 tree->ops->writepage_end_io_hook) 3395 tree->ops->writepage_end_io_hook(page, cur, 3396 cur + iosize - 1, 3397 NULL, 1); 3398 else if (compressed) { 3399 /* we don't want to end_page_writeback on 3400 * a compressed extent. this happens 3401 * elsewhere 3402 */ 3403 nr++; 3404 } 3405 3406 cur += iosize; 3407 pg_offset += iosize; 3408 continue; 3409 } 3410 3411 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3412 if (!PageWriteback(page)) { 3413 btrfs_err(BTRFS_I(inode)->root->fs_info, 3414 "page %lu not writeback, cur %llu end %llu", 3415 page->index, cur, end); 3416 } 3417 3418 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3419 page, offset, iosize, pg_offset, 3420 bdev, &epd->bio, 3421 end_bio_extent_writepage, 3422 0, 0, 0, false); 3423 if (ret) { 3424 SetPageError(page); 3425 if (PageWriteback(page)) 3426 end_page_writeback(page); 3427 } 3428 3429 cur = cur + iosize; 3430 pg_offset += iosize; 3431 nr++; 3432 } 3433 done: 3434 *nr_ret = nr; 3435 return ret; 3436 } 3437 3438 /* 3439 * the writepage semantics are similar to regular writepage. extent 3440 * records are inserted to lock ranges in the tree, and as dirty areas 3441 * are found, they are marked writeback. Then the lock bits are removed 3442 * and the end_io handler clears the writeback ranges 3443 */ 3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3445 struct extent_page_data *epd) 3446 { 3447 struct inode *inode = page->mapping->host; 3448 u64 start = page_offset(page); 3449 u64 page_end = start + PAGE_SIZE - 1; 3450 int ret; 3451 int nr = 0; 3452 size_t pg_offset = 0; 3453 loff_t i_size = i_size_read(inode); 3454 unsigned long end_index = i_size >> PAGE_SHIFT; 3455 unsigned int write_flags = 0; 3456 unsigned long nr_written = 0; 3457 3458 write_flags = wbc_to_write_flags(wbc); 3459 3460 trace___extent_writepage(page, inode, wbc); 3461 3462 WARN_ON(!PageLocked(page)); 3463 3464 ClearPageError(page); 3465 3466 pg_offset = i_size & (PAGE_SIZE - 1); 3467 if (page->index > end_index || 3468 (page->index == end_index && !pg_offset)) { 3469 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3470 unlock_page(page); 3471 return 0; 3472 } 3473 3474 if (page->index == end_index) { 3475 char *userpage; 3476 3477 userpage = kmap_atomic(page); 3478 memset(userpage + pg_offset, 0, 3479 PAGE_SIZE - pg_offset); 3480 kunmap_atomic(userpage); 3481 flush_dcache_page(page); 3482 } 3483 3484 pg_offset = 0; 3485 3486 set_page_extent_mapped(page); 3487 3488 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3489 if (ret == 1) 3490 goto done_unlocked; 3491 if (ret) 3492 goto done; 3493 3494 ret = __extent_writepage_io(inode, page, wbc, epd, 3495 i_size, nr_written, write_flags, &nr); 3496 if (ret == 1) 3497 goto done_unlocked; 3498 3499 done: 3500 if (nr == 0) { 3501 /* make sure the mapping tag for page dirty gets cleared */ 3502 set_page_writeback(page); 3503 end_page_writeback(page); 3504 } 3505 if (PageError(page)) { 3506 ret = ret < 0 ? ret : -EIO; 3507 end_extent_writepage(page, ret, start, page_end); 3508 } 3509 unlock_page(page); 3510 return ret; 3511 3512 done_unlocked: 3513 return 0; 3514 } 3515 3516 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3517 { 3518 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3519 TASK_UNINTERRUPTIBLE); 3520 } 3521 3522 static noinline_for_stack int 3523 lock_extent_buffer_for_io(struct extent_buffer *eb, 3524 struct btrfs_fs_info *fs_info, 3525 struct extent_page_data *epd) 3526 { 3527 int i, num_pages; 3528 int flush = 0; 3529 int ret = 0; 3530 3531 if (!btrfs_try_tree_write_lock(eb)) { 3532 flush = 1; 3533 flush_write_bio(epd); 3534 btrfs_tree_lock(eb); 3535 } 3536 3537 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3538 btrfs_tree_unlock(eb); 3539 if (!epd->sync_io) 3540 return 0; 3541 if (!flush) { 3542 flush_write_bio(epd); 3543 flush = 1; 3544 } 3545 while (1) { 3546 wait_on_extent_buffer_writeback(eb); 3547 btrfs_tree_lock(eb); 3548 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3549 break; 3550 btrfs_tree_unlock(eb); 3551 } 3552 } 3553 3554 /* 3555 * We need to do this to prevent races in people who check if the eb is 3556 * under IO since we can end up having no IO bits set for a short period 3557 * of time. 3558 */ 3559 spin_lock(&eb->refs_lock); 3560 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3561 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3562 spin_unlock(&eb->refs_lock); 3563 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3564 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3565 -eb->len, 3566 fs_info->dirty_metadata_batch); 3567 ret = 1; 3568 } else { 3569 spin_unlock(&eb->refs_lock); 3570 } 3571 3572 btrfs_tree_unlock(eb); 3573 3574 if (!ret) 3575 return ret; 3576 3577 num_pages = num_extent_pages(eb); 3578 for (i = 0; i < num_pages; i++) { 3579 struct page *p = eb->pages[i]; 3580 3581 if (!trylock_page(p)) { 3582 if (!flush) { 3583 flush_write_bio(epd); 3584 flush = 1; 3585 } 3586 lock_page(p); 3587 } 3588 } 3589 3590 return ret; 3591 } 3592 3593 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3594 { 3595 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3596 smp_mb__after_atomic(); 3597 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3598 } 3599 3600 static void set_btree_ioerr(struct page *page) 3601 { 3602 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3603 3604 SetPageError(page); 3605 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3606 return; 3607 3608 /* 3609 * If writeback for a btree extent that doesn't belong to a log tree 3610 * failed, increment the counter transaction->eb_write_errors. 3611 * We do this because while the transaction is running and before it's 3612 * committing (when we call filemap_fdata[write|wait]_range against 3613 * the btree inode), we might have 3614 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3615 * returns an error or an error happens during writeback, when we're 3616 * committing the transaction we wouldn't know about it, since the pages 3617 * can be no longer dirty nor marked anymore for writeback (if a 3618 * subsequent modification to the extent buffer didn't happen before the 3619 * transaction commit), which makes filemap_fdata[write|wait]_range not 3620 * able to find the pages tagged with SetPageError at transaction 3621 * commit time. So if this happens we must abort the transaction, 3622 * otherwise we commit a super block with btree roots that point to 3623 * btree nodes/leafs whose content on disk is invalid - either garbage 3624 * or the content of some node/leaf from a past generation that got 3625 * cowed or deleted and is no longer valid. 3626 * 3627 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3628 * not be enough - we need to distinguish between log tree extents vs 3629 * non-log tree extents, and the next filemap_fdatawait_range() call 3630 * will catch and clear such errors in the mapping - and that call might 3631 * be from a log sync and not from a transaction commit. Also, checking 3632 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3633 * not done and would not be reliable - the eb might have been released 3634 * from memory and reading it back again means that flag would not be 3635 * set (since it's a runtime flag, not persisted on disk). 3636 * 3637 * Using the flags below in the btree inode also makes us achieve the 3638 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3639 * writeback for all dirty pages and before filemap_fdatawait_range() 3640 * is called, the writeback for all dirty pages had already finished 3641 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3642 * filemap_fdatawait_range() would return success, as it could not know 3643 * that writeback errors happened (the pages were no longer tagged for 3644 * writeback). 3645 */ 3646 switch (eb->log_index) { 3647 case -1: 3648 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3649 break; 3650 case 0: 3651 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3652 break; 3653 case 1: 3654 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3655 break; 3656 default: 3657 BUG(); /* unexpected, logic error */ 3658 } 3659 } 3660 3661 static void end_bio_extent_buffer_writepage(struct bio *bio) 3662 { 3663 struct bio_vec *bvec; 3664 struct extent_buffer *eb; 3665 int i, done; 3666 3667 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3668 bio_for_each_segment_all(bvec, bio, i) { 3669 struct page *page = bvec->bv_page; 3670 3671 eb = (struct extent_buffer *)page->private; 3672 BUG_ON(!eb); 3673 done = atomic_dec_and_test(&eb->io_pages); 3674 3675 if (bio->bi_status || 3676 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3677 ClearPageUptodate(page); 3678 set_btree_ioerr(page); 3679 } 3680 3681 end_page_writeback(page); 3682 3683 if (!done) 3684 continue; 3685 3686 end_extent_buffer_writeback(eb); 3687 } 3688 3689 bio_put(bio); 3690 } 3691 3692 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3693 struct btrfs_fs_info *fs_info, 3694 struct writeback_control *wbc, 3695 struct extent_page_data *epd) 3696 { 3697 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3698 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3699 u64 offset = eb->start; 3700 u32 nritems; 3701 int i, num_pages; 3702 unsigned long start, end; 3703 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3704 int ret = 0; 3705 3706 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3707 num_pages = num_extent_pages(eb); 3708 atomic_set(&eb->io_pages, num_pages); 3709 3710 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3711 nritems = btrfs_header_nritems(eb); 3712 if (btrfs_header_level(eb) > 0) { 3713 end = btrfs_node_key_ptr_offset(nritems); 3714 3715 memzero_extent_buffer(eb, end, eb->len - end); 3716 } else { 3717 /* 3718 * leaf: 3719 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3720 */ 3721 start = btrfs_item_nr_offset(nritems); 3722 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3723 memzero_extent_buffer(eb, start, end - start); 3724 } 3725 3726 for (i = 0; i < num_pages; i++) { 3727 struct page *p = eb->pages[i]; 3728 3729 clear_page_dirty_for_io(p); 3730 set_page_writeback(p); 3731 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3732 p, offset, PAGE_SIZE, 0, bdev, 3733 &epd->bio, 3734 end_bio_extent_buffer_writepage, 3735 0, 0, 0, false); 3736 if (ret) { 3737 set_btree_ioerr(p); 3738 if (PageWriteback(p)) 3739 end_page_writeback(p); 3740 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3741 end_extent_buffer_writeback(eb); 3742 ret = -EIO; 3743 break; 3744 } 3745 offset += PAGE_SIZE; 3746 update_nr_written(wbc, 1); 3747 unlock_page(p); 3748 } 3749 3750 if (unlikely(ret)) { 3751 for (; i < num_pages; i++) { 3752 struct page *p = eb->pages[i]; 3753 clear_page_dirty_for_io(p); 3754 unlock_page(p); 3755 } 3756 } 3757 3758 return ret; 3759 } 3760 3761 int btree_write_cache_pages(struct address_space *mapping, 3762 struct writeback_control *wbc) 3763 { 3764 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3765 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3766 struct extent_buffer *eb, *prev_eb = NULL; 3767 struct extent_page_data epd = { 3768 .bio = NULL, 3769 .tree = tree, 3770 .extent_locked = 0, 3771 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3772 }; 3773 int ret = 0; 3774 int done = 0; 3775 int nr_to_write_done = 0; 3776 struct pagevec pvec; 3777 int nr_pages; 3778 pgoff_t index; 3779 pgoff_t end; /* Inclusive */ 3780 int scanned = 0; 3781 int tag; 3782 3783 pagevec_init(&pvec); 3784 if (wbc->range_cyclic) { 3785 index = mapping->writeback_index; /* Start from prev offset */ 3786 end = -1; 3787 } else { 3788 index = wbc->range_start >> PAGE_SHIFT; 3789 end = wbc->range_end >> PAGE_SHIFT; 3790 scanned = 1; 3791 } 3792 if (wbc->sync_mode == WB_SYNC_ALL) 3793 tag = PAGECACHE_TAG_TOWRITE; 3794 else 3795 tag = PAGECACHE_TAG_DIRTY; 3796 retry: 3797 if (wbc->sync_mode == WB_SYNC_ALL) 3798 tag_pages_for_writeback(mapping, index, end); 3799 while (!done && !nr_to_write_done && (index <= end) && 3800 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3801 tag))) { 3802 unsigned i; 3803 3804 scanned = 1; 3805 for (i = 0; i < nr_pages; i++) { 3806 struct page *page = pvec.pages[i]; 3807 3808 if (!PagePrivate(page)) 3809 continue; 3810 3811 spin_lock(&mapping->private_lock); 3812 if (!PagePrivate(page)) { 3813 spin_unlock(&mapping->private_lock); 3814 continue; 3815 } 3816 3817 eb = (struct extent_buffer *)page->private; 3818 3819 /* 3820 * Shouldn't happen and normally this would be a BUG_ON 3821 * but no sense in crashing the users box for something 3822 * we can survive anyway. 3823 */ 3824 if (WARN_ON(!eb)) { 3825 spin_unlock(&mapping->private_lock); 3826 continue; 3827 } 3828 3829 if (eb == prev_eb) { 3830 spin_unlock(&mapping->private_lock); 3831 continue; 3832 } 3833 3834 ret = atomic_inc_not_zero(&eb->refs); 3835 spin_unlock(&mapping->private_lock); 3836 if (!ret) 3837 continue; 3838 3839 prev_eb = eb; 3840 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3841 if (!ret) { 3842 free_extent_buffer(eb); 3843 continue; 3844 } 3845 3846 ret = write_one_eb(eb, fs_info, wbc, &epd); 3847 if (ret) { 3848 done = 1; 3849 free_extent_buffer(eb); 3850 break; 3851 } 3852 free_extent_buffer(eb); 3853 3854 /* 3855 * the filesystem may choose to bump up nr_to_write. 3856 * We have to make sure to honor the new nr_to_write 3857 * at any time 3858 */ 3859 nr_to_write_done = wbc->nr_to_write <= 0; 3860 } 3861 pagevec_release(&pvec); 3862 cond_resched(); 3863 } 3864 if (!scanned && !done) { 3865 /* 3866 * We hit the last page and there is more work to be done: wrap 3867 * back to the start of the file 3868 */ 3869 scanned = 1; 3870 index = 0; 3871 goto retry; 3872 } 3873 flush_write_bio(&epd); 3874 return ret; 3875 } 3876 3877 /** 3878 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3879 * @mapping: address space structure to write 3880 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3881 * @data: data passed to __extent_writepage function 3882 * 3883 * If a page is already under I/O, write_cache_pages() skips it, even 3884 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3885 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3886 * and msync() need to guarantee that all the data which was dirty at the time 3887 * the call was made get new I/O started against them. If wbc->sync_mode is 3888 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3889 * existing IO to complete. 3890 */ 3891 static int extent_write_cache_pages(struct address_space *mapping, 3892 struct writeback_control *wbc, 3893 struct extent_page_data *epd) 3894 { 3895 struct inode *inode = mapping->host; 3896 int ret = 0; 3897 int done = 0; 3898 int nr_to_write_done = 0; 3899 struct pagevec pvec; 3900 int nr_pages; 3901 pgoff_t index; 3902 pgoff_t end; /* Inclusive */ 3903 pgoff_t done_index; 3904 int range_whole = 0; 3905 int scanned = 0; 3906 int tag; 3907 3908 /* 3909 * We have to hold onto the inode so that ordered extents can do their 3910 * work when the IO finishes. The alternative to this is failing to add 3911 * an ordered extent if the igrab() fails there and that is a huge pain 3912 * to deal with, so instead just hold onto the inode throughout the 3913 * writepages operation. If it fails here we are freeing up the inode 3914 * anyway and we'd rather not waste our time writing out stuff that is 3915 * going to be truncated anyway. 3916 */ 3917 if (!igrab(inode)) 3918 return 0; 3919 3920 pagevec_init(&pvec); 3921 if (wbc->range_cyclic) { 3922 index = mapping->writeback_index; /* Start from prev offset */ 3923 end = -1; 3924 } else { 3925 index = wbc->range_start >> PAGE_SHIFT; 3926 end = wbc->range_end >> PAGE_SHIFT; 3927 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3928 range_whole = 1; 3929 scanned = 1; 3930 } 3931 if (wbc->sync_mode == WB_SYNC_ALL) 3932 tag = PAGECACHE_TAG_TOWRITE; 3933 else 3934 tag = PAGECACHE_TAG_DIRTY; 3935 retry: 3936 if (wbc->sync_mode == WB_SYNC_ALL) 3937 tag_pages_for_writeback(mapping, index, end); 3938 done_index = index; 3939 while (!done && !nr_to_write_done && (index <= end) && 3940 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3941 &index, end, tag))) { 3942 unsigned i; 3943 3944 scanned = 1; 3945 for (i = 0; i < nr_pages; i++) { 3946 struct page *page = pvec.pages[i]; 3947 3948 done_index = page->index; 3949 /* 3950 * At this point we hold neither the i_pages lock nor 3951 * the page lock: the page may be truncated or 3952 * invalidated (changing page->mapping to NULL), 3953 * or even swizzled back from swapper_space to 3954 * tmpfs file mapping 3955 */ 3956 if (!trylock_page(page)) { 3957 flush_write_bio(epd); 3958 lock_page(page); 3959 } 3960 3961 if (unlikely(page->mapping != mapping)) { 3962 unlock_page(page); 3963 continue; 3964 } 3965 3966 if (wbc->sync_mode != WB_SYNC_NONE) { 3967 if (PageWriteback(page)) 3968 flush_write_bio(epd); 3969 wait_on_page_writeback(page); 3970 } 3971 3972 if (PageWriteback(page) || 3973 !clear_page_dirty_for_io(page)) { 3974 unlock_page(page); 3975 continue; 3976 } 3977 3978 ret = __extent_writepage(page, wbc, epd); 3979 3980 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3981 unlock_page(page); 3982 ret = 0; 3983 } 3984 if (ret < 0) { 3985 /* 3986 * done_index is set past this page, 3987 * so media errors will not choke 3988 * background writeout for the entire 3989 * file. This has consequences for 3990 * range_cyclic semantics (ie. it may 3991 * not be suitable for data integrity 3992 * writeout). 3993 */ 3994 done_index = page->index + 1; 3995 done = 1; 3996 break; 3997 } 3998 3999 /* 4000 * the filesystem may choose to bump up nr_to_write. 4001 * We have to make sure to honor the new nr_to_write 4002 * at any time 4003 */ 4004 nr_to_write_done = wbc->nr_to_write <= 0; 4005 } 4006 pagevec_release(&pvec); 4007 cond_resched(); 4008 } 4009 if (!scanned && !done) { 4010 /* 4011 * We hit the last page and there is more work to be done: wrap 4012 * back to the start of the file 4013 */ 4014 scanned = 1; 4015 index = 0; 4016 goto retry; 4017 } 4018 4019 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4020 mapping->writeback_index = done_index; 4021 4022 btrfs_add_delayed_iput(inode); 4023 return ret; 4024 } 4025 4026 static void flush_write_bio(struct extent_page_data *epd) 4027 { 4028 if (epd->bio) { 4029 int ret; 4030 4031 ret = submit_one_bio(epd->bio, 0, 0); 4032 BUG_ON(ret < 0); /* -ENOMEM */ 4033 epd->bio = NULL; 4034 } 4035 } 4036 4037 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4038 { 4039 int ret; 4040 struct extent_page_data epd = { 4041 .bio = NULL, 4042 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4043 .extent_locked = 0, 4044 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4045 }; 4046 4047 ret = __extent_writepage(page, wbc, &epd); 4048 4049 flush_write_bio(&epd); 4050 return ret; 4051 } 4052 4053 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4054 int mode) 4055 { 4056 int ret = 0; 4057 struct address_space *mapping = inode->i_mapping; 4058 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4059 struct page *page; 4060 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4061 PAGE_SHIFT; 4062 4063 struct extent_page_data epd = { 4064 .bio = NULL, 4065 .tree = tree, 4066 .extent_locked = 1, 4067 .sync_io = mode == WB_SYNC_ALL, 4068 }; 4069 struct writeback_control wbc_writepages = { 4070 .sync_mode = mode, 4071 .nr_to_write = nr_pages * 2, 4072 .range_start = start, 4073 .range_end = end + 1, 4074 }; 4075 4076 while (start <= end) { 4077 page = find_get_page(mapping, start >> PAGE_SHIFT); 4078 if (clear_page_dirty_for_io(page)) 4079 ret = __extent_writepage(page, &wbc_writepages, &epd); 4080 else { 4081 if (tree->ops && tree->ops->writepage_end_io_hook) 4082 tree->ops->writepage_end_io_hook(page, start, 4083 start + PAGE_SIZE - 1, 4084 NULL, 1); 4085 unlock_page(page); 4086 } 4087 put_page(page); 4088 start += PAGE_SIZE; 4089 } 4090 4091 flush_write_bio(&epd); 4092 return ret; 4093 } 4094 4095 int extent_writepages(struct address_space *mapping, 4096 struct writeback_control *wbc) 4097 { 4098 int ret = 0; 4099 struct extent_page_data epd = { 4100 .bio = NULL, 4101 .tree = &BTRFS_I(mapping->host)->io_tree, 4102 .extent_locked = 0, 4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4104 }; 4105 4106 ret = extent_write_cache_pages(mapping, wbc, &epd); 4107 flush_write_bio(&epd); 4108 return ret; 4109 } 4110 4111 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4112 unsigned nr_pages) 4113 { 4114 struct bio *bio = NULL; 4115 unsigned page_idx; 4116 unsigned long bio_flags = 0; 4117 struct page *pagepool[16]; 4118 struct page *page; 4119 struct extent_map *em_cached = NULL; 4120 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4121 int nr = 0; 4122 u64 prev_em_start = (u64)-1; 4123 4124 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4125 page = list_entry(pages->prev, struct page, lru); 4126 4127 prefetchw(&page->flags); 4128 list_del(&page->lru); 4129 if (add_to_page_cache_lru(page, mapping, 4130 page->index, 4131 readahead_gfp_mask(mapping))) { 4132 put_page(page); 4133 continue; 4134 } 4135 4136 pagepool[nr++] = page; 4137 if (nr < ARRAY_SIZE(pagepool)) 4138 continue; 4139 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4140 &bio_flags, &prev_em_start); 4141 nr = 0; 4142 } 4143 if (nr) 4144 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4145 &bio_flags, &prev_em_start); 4146 4147 if (em_cached) 4148 free_extent_map(em_cached); 4149 4150 BUG_ON(!list_empty(pages)); 4151 if (bio) 4152 return submit_one_bio(bio, 0, bio_flags); 4153 return 0; 4154 } 4155 4156 /* 4157 * basic invalidatepage code, this waits on any locked or writeback 4158 * ranges corresponding to the page, and then deletes any extent state 4159 * records from the tree 4160 */ 4161 int extent_invalidatepage(struct extent_io_tree *tree, 4162 struct page *page, unsigned long offset) 4163 { 4164 struct extent_state *cached_state = NULL; 4165 u64 start = page_offset(page); 4166 u64 end = start + PAGE_SIZE - 1; 4167 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4168 4169 start += ALIGN(offset, blocksize); 4170 if (start > end) 4171 return 0; 4172 4173 lock_extent_bits(tree, start, end, &cached_state); 4174 wait_on_page_writeback(page); 4175 clear_extent_bit(tree, start, end, 4176 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4177 EXTENT_DO_ACCOUNTING, 4178 1, 1, &cached_state); 4179 return 0; 4180 } 4181 4182 /* 4183 * a helper for releasepage, this tests for areas of the page that 4184 * are locked or under IO and drops the related state bits if it is safe 4185 * to drop the page. 4186 */ 4187 static int try_release_extent_state(struct extent_io_tree *tree, 4188 struct page *page, gfp_t mask) 4189 { 4190 u64 start = page_offset(page); 4191 u64 end = start + PAGE_SIZE - 1; 4192 int ret = 1; 4193 4194 if (test_range_bit(tree, start, end, 4195 EXTENT_IOBITS, 0, NULL)) 4196 ret = 0; 4197 else { 4198 /* 4199 * at this point we can safely clear everything except the 4200 * locked bit and the nodatasum bit 4201 */ 4202 ret = __clear_extent_bit(tree, start, end, 4203 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4204 0, 0, NULL, mask, NULL); 4205 4206 /* if clear_extent_bit failed for enomem reasons, 4207 * we can't allow the release to continue. 4208 */ 4209 if (ret < 0) 4210 ret = 0; 4211 else 4212 ret = 1; 4213 } 4214 return ret; 4215 } 4216 4217 /* 4218 * a helper for releasepage. As long as there are no locked extents 4219 * in the range corresponding to the page, both state records and extent 4220 * map records are removed 4221 */ 4222 int try_release_extent_mapping(struct page *page, gfp_t mask) 4223 { 4224 struct extent_map *em; 4225 u64 start = page_offset(page); 4226 u64 end = start + PAGE_SIZE - 1; 4227 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4228 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4229 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4230 4231 if (gfpflags_allow_blocking(mask) && 4232 page->mapping->host->i_size > SZ_16M) { 4233 u64 len; 4234 while (start <= end) { 4235 len = end - start + 1; 4236 write_lock(&map->lock); 4237 em = lookup_extent_mapping(map, start, len); 4238 if (!em) { 4239 write_unlock(&map->lock); 4240 break; 4241 } 4242 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4243 em->start != start) { 4244 write_unlock(&map->lock); 4245 free_extent_map(em); 4246 break; 4247 } 4248 if (!test_range_bit(tree, em->start, 4249 extent_map_end(em) - 1, 4250 EXTENT_LOCKED | EXTENT_WRITEBACK, 4251 0, NULL)) { 4252 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4253 &btrfs_inode->runtime_flags); 4254 remove_extent_mapping(map, em); 4255 /* once for the rb tree */ 4256 free_extent_map(em); 4257 } 4258 start = extent_map_end(em); 4259 write_unlock(&map->lock); 4260 4261 /* once for us */ 4262 free_extent_map(em); 4263 } 4264 } 4265 return try_release_extent_state(tree, page, mask); 4266 } 4267 4268 /* 4269 * helper function for fiemap, which doesn't want to see any holes. 4270 * This maps until we find something past 'last' 4271 */ 4272 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4273 u64 offset, u64 last) 4274 { 4275 u64 sectorsize = btrfs_inode_sectorsize(inode); 4276 struct extent_map *em; 4277 u64 len; 4278 4279 if (offset >= last) 4280 return NULL; 4281 4282 while (1) { 4283 len = last - offset; 4284 if (len == 0) 4285 break; 4286 len = ALIGN(len, sectorsize); 4287 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4288 len, 0); 4289 if (IS_ERR_OR_NULL(em)) 4290 return em; 4291 4292 /* if this isn't a hole return it */ 4293 if (em->block_start != EXTENT_MAP_HOLE) 4294 return em; 4295 4296 /* this is a hole, advance to the next extent */ 4297 offset = extent_map_end(em); 4298 free_extent_map(em); 4299 if (offset >= last) 4300 break; 4301 } 4302 return NULL; 4303 } 4304 4305 /* 4306 * To cache previous fiemap extent 4307 * 4308 * Will be used for merging fiemap extent 4309 */ 4310 struct fiemap_cache { 4311 u64 offset; 4312 u64 phys; 4313 u64 len; 4314 u32 flags; 4315 bool cached; 4316 }; 4317 4318 /* 4319 * Helper to submit fiemap extent. 4320 * 4321 * Will try to merge current fiemap extent specified by @offset, @phys, 4322 * @len and @flags with cached one. 4323 * And only when we fails to merge, cached one will be submitted as 4324 * fiemap extent. 4325 * 4326 * Return value is the same as fiemap_fill_next_extent(). 4327 */ 4328 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4329 struct fiemap_cache *cache, 4330 u64 offset, u64 phys, u64 len, u32 flags) 4331 { 4332 int ret = 0; 4333 4334 if (!cache->cached) 4335 goto assign; 4336 4337 /* 4338 * Sanity check, extent_fiemap() should have ensured that new 4339 * fiemap extent won't overlap with cahced one. 4340 * Not recoverable. 4341 * 4342 * NOTE: Physical address can overlap, due to compression 4343 */ 4344 if (cache->offset + cache->len > offset) { 4345 WARN_ON(1); 4346 return -EINVAL; 4347 } 4348 4349 /* 4350 * Only merges fiemap extents if 4351 * 1) Their logical addresses are continuous 4352 * 4353 * 2) Their physical addresses are continuous 4354 * So truly compressed (physical size smaller than logical size) 4355 * extents won't get merged with each other 4356 * 4357 * 3) Share same flags except FIEMAP_EXTENT_LAST 4358 * So regular extent won't get merged with prealloc extent 4359 */ 4360 if (cache->offset + cache->len == offset && 4361 cache->phys + cache->len == phys && 4362 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4363 (flags & ~FIEMAP_EXTENT_LAST)) { 4364 cache->len += len; 4365 cache->flags |= flags; 4366 goto try_submit_last; 4367 } 4368 4369 /* Not mergeable, need to submit cached one */ 4370 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4371 cache->len, cache->flags); 4372 cache->cached = false; 4373 if (ret) 4374 return ret; 4375 assign: 4376 cache->cached = true; 4377 cache->offset = offset; 4378 cache->phys = phys; 4379 cache->len = len; 4380 cache->flags = flags; 4381 try_submit_last: 4382 if (cache->flags & FIEMAP_EXTENT_LAST) { 4383 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4384 cache->phys, cache->len, cache->flags); 4385 cache->cached = false; 4386 } 4387 return ret; 4388 } 4389 4390 /* 4391 * Emit last fiemap cache 4392 * 4393 * The last fiemap cache may still be cached in the following case: 4394 * 0 4k 8k 4395 * |<- Fiemap range ->| 4396 * |<------------ First extent ----------->| 4397 * 4398 * In this case, the first extent range will be cached but not emitted. 4399 * So we must emit it before ending extent_fiemap(). 4400 */ 4401 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4402 struct fiemap_extent_info *fieinfo, 4403 struct fiemap_cache *cache) 4404 { 4405 int ret; 4406 4407 if (!cache->cached) 4408 return 0; 4409 4410 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4411 cache->len, cache->flags); 4412 cache->cached = false; 4413 if (ret > 0) 4414 ret = 0; 4415 return ret; 4416 } 4417 4418 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4419 __u64 start, __u64 len) 4420 { 4421 int ret = 0; 4422 u64 off = start; 4423 u64 max = start + len; 4424 u32 flags = 0; 4425 u32 found_type; 4426 u64 last; 4427 u64 last_for_get_extent = 0; 4428 u64 disko = 0; 4429 u64 isize = i_size_read(inode); 4430 struct btrfs_key found_key; 4431 struct extent_map *em = NULL; 4432 struct extent_state *cached_state = NULL; 4433 struct btrfs_path *path; 4434 struct btrfs_root *root = BTRFS_I(inode)->root; 4435 struct fiemap_cache cache = { 0 }; 4436 int end = 0; 4437 u64 em_start = 0; 4438 u64 em_len = 0; 4439 u64 em_end = 0; 4440 4441 if (len == 0) 4442 return -EINVAL; 4443 4444 path = btrfs_alloc_path(); 4445 if (!path) 4446 return -ENOMEM; 4447 path->leave_spinning = 1; 4448 4449 start = round_down(start, btrfs_inode_sectorsize(inode)); 4450 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4451 4452 /* 4453 * lookup the last file extent. We're not using i_size here 4454 * because there might be preallocation past i_size 4455 */ 4456 ret = btrfs_lookup_file_extent(NULL, root, path, 4457 btrfs_ino(BTRFS_I(inode)), -1, 0); 4458 if (ret < 0) { 4459 btrfs_free_path(path); 4460 return ret; 4461 } else { 4462 WARN_ON(!ret); 4463 if (ret == 1) 4464 ret = 0; 4465 } 4466 4467 path->slots[0]--; 4468 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4469 found_type = found_key.type; 4470 4471 /* No extents, but there might be delalloc bits */ 4472 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4473 found_type != BTRFS_EXTENT_DATA_KEY) { 4474 /* have to trust i_size as the end */ 4475 last = (u64)-1; 4476 last_for_get_extent = isize; 4477 } else { 4478 /* 4479 * remember the start of the last extent. There are a 4480 * bunch of different factors that go into the length of the 4481 * extent, so its much less complex to remember where it started 4482 */ 4483 last = found_key.offset; 4484 last_for_get_extent = last + 1; 4485 } 4486 btrfs_release_path(path); 4487 4488 /* 4489 * we might have some extents allocated but more delalloc past those 4490 * extents. so, we trust isize unless the start of the last extent is 4491 * beyond isize 4492 */ 4493 if (last < isize) { 4494 last = (u64)-1; 4495 last_for_get_extent = isize; 4496 } 4497 4498 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4499 &cached_state); 4500 4501 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4502 if (!em) 4503 goto out; 4504 if (IS_ERR(em)) { 4505 ret = PTR_ERR(em); 4506 goto out; 4507 } 4508 4509 while (!end) { 4510 u64 offset_in_extent = 0; 4511 4512 /* break if the extent we found is outside the range */ 4513 if (em->start >= max || extent_map_end(em) < off) 4514 break; 4515 4516 /* 4517 * get_extent may return an extent that starts before our 4518 * requested range. We have to make sure the ranges 4519 * we return to fiemap always move forward and don't 4520 * overlap, so adjust the offsets here 4521 */ 4522 em_start = max(em->start, off); 4523 4524 /* 4525 * record the offset from the start of the extent 4526 * for adjusting the disk offset below. Only do this if the 4527 * extent isn't compressed since our in ram offset may be past 4528 * what we have actually allocated on disk. 4529 */ 4530 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4531 offset_in_extent = em_start - em->start; 4532 em_end = extent_map_end(em); 4533 em_len = em_end - em_start; 4534 flags = 0; 4535 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4536 disko = em->block_start + offset_in_extent; 4537 else 4538 disko = 0; 4539 4540 /* 4541 * bump off for our next call to get_extent 4542 */ 4543 off = extent_map_end(em); 4544 if (off >= max) 4545 end = 1; 4546 4547 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4548 end = 1; 4549 flags |= FIEMAP_EXTENT_LAST; 4550 } else if (em->block_start == EXTENT_MAP_INLINE) { 4551 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4552 FIEMAP_EXTENT_NOT_ALIGNED); 4553 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4554 flags |= (FIEMAP_EXTENT_DELALLOC | 4555 FIEMAP_EXTENT_UNKNOWN); 4556 } else if (fieinfo->fi_extents_max) { 4557 u64 bytenr = em->block_start - 4558 (em->start - em->orig_start); 4559 4560 /* 4561 * As btrfs supports shared space, this information 4562 * can be exported to userspace tools via 4563 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4564 * then we're just getting a count and we can skip the 4565 * lookup stuff. 4566 */ 4567 ret = btrfs_check_shared(root, 4568 btrfs_ino(BTRFS_I(inode)), 4569 bytenr); 4570 if (ret < 0) 4571 goto out_free; 4572 if (ret) 4573 flags |= FIEMAP_EXTENT_SHARED; 4574 ret = 0; 4575 } 4576 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4577 flags |= FIEMAP_EXTENT_ENCODED; 4578 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4579 flags |= FIEMAP_EXTENT_UNWRITTEN; 4580 4581 free_extent_map(em); 4582 em = NULL; 4583 if ((em_start >= last) || em_len == (u64)-1 || 4584 (last == (u64)-1 && isize <= em_end)) { 4585 flags |= FIEMAP_EXTENT_LAST; 4586 end = 1; 4587 } 4588 4589 /* now scan forward to see if this is really the last extent. */ 4590 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4591 if (IS_ERR(em)) { 4592 ret = PTR_ERR(em); 4593 goto out; 4594 } 4595 if (!em) { 4596 flags |= FIEMAP_EXTENT_LAST; 4597 end = 1; 4598 } 4599 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4600 em_len, flags); 4601 if (ret) { 4602 if (ret == 1) 4603 ret = 0; 4604 goto out_free; 4605 } 4606 } 4607 out_free: 4608 if (!ret) 4609 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4610 free_extent_map(em); 4611 out: 4612 btrfs_free_path(path); 4613 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4614 &cached_state); 4615 return ret; 4616 } 4617 4618 static void __free_extent_buffer(struct extent_buffer *eb) 4619 { 4620 btrfs_leak_debug_del(&eb->leak_list); 4621 kmem_cache_free(extent_buffer_cache, eb); 4622 } 4623 4624 int extent_buffer_under_io(struct extent_buffer *eb) 4625 { 4626 return (atomic_read(&eb->io_pages) || 4627 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4628 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4629 } 4630 4631 /* 4632 * Release all pages attached to the extent buffer. 4633 */ 4634 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4635 { 4636 int i; 4637 int num_pages; 4638 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4639 4640 BUG_ON(extent_buffer_under_io(eb)); 4641 4642 num_pages = num_extent_pages(eb); 4643 for (i = 0; i < num_pages; i++) { 4644 struct page *page = eb->pages[i]; 4645 4646 if (!page) 4647 continue; 4648 if (mapped) 4649 spin_lock(&page->mapping->private_lock); 4650 /* 4651 * We do this since we'll remove the pages after we've 4652 * removed the eb from the radix tree, so we could race 4653 * and have this page now attached to the new eb. So 4654 * only clear page_private if it's still connected to 4655 * this eb. 4656 */ 4657 if (PagePrivate(page) && 4658 page->private == (unsigned long)eb) { 4659 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4660 BUG_ON(PageDirty(page)); 4661 BUG_ON(PageWriteback(page)); 4662 /* 4663 * We need to make sure we haven't be attached 4664 * to a new eb. 4665 */ 4666 ClearPagePrivate(page); 4667 set_page_private(page, 0); 4668 /* One for the page private */ 4669 put_page(page); 4670 } 4671 4672 if (mapped) 4673 spin_unlock(&page->mapping->private_lock); 4674 4675 /* One for when we allocated the page */ 4676 put_page(page); 4677 } 4678 } 4679 4680 /* 4681 * Helper for releasing the extent buffer. 4682 */ 4683 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4684 { 4685 btrfs_release_extent_buffer_pages(eb); 4686 __free_extent_buffer(eb); 4687 } 4688 4689 static struct extent_buffer * 4690 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4691 unsigned long len) 4692 { 4693 struct extent_buffer *eb = NULL; 4694 4695 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4696 eb->start = start; 4697 eb->len = len; 4698 eb->fs_info = fs_info; 4699 eb->bflags = 0; 4700 rwlock_init(&eb->lock); 4701 atomic_set(&eb->write_locks, 0); 4702 atomic_set(&eb->read_locks, 0); 4703 atomic_set(&eb->blocking_readers, 0); 4704 atomic_set(&eb->blocking_writers, 0); 4705 atomic_set(&eb->spinning_readers, 0); 4706 atomic_set(&eb->spinning_writers, 0); 4707 eb->lock_nested = 0; 4708 init_waitqueue_head(&eb->write_lock_wq); 4709 init_waitqueue_head(&eb->read_lock_wq); 4710 4711 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4712 4713 spin_lock_init(&eb->refs_lock); 4714 atomic_set(&eb->refs, 1); 4715 atomic_set(&eb->io_pages, 0); 4716 4717 /* 4718 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4719 */ 4720 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4721 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4722 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4723 4724 return eb; 4725 } 4726 4727 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4728 { 4729 int i; 4730 struct page *p; 4731 struct extent_buffer *new; 4732 int num_pages = num_extent_pages(src); 4733 4734 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4735 if (new == NULL) 4736 return NULL; 4737 4738 for (i = 0; i < num_pages; i++) { 4739 p = alloc_page(GFP_NOFS); 4740 if (!p) { 4741 btrfs_release_extent_buffer(new); 4742 return NULL; 4743 } 4744 attach_extent_buffer_page(new, p); 4745 WARN_ON(PageDirty(p)); 4746 SetPageUptodate(p); 4747 new->pages[i] = p; 4748 copy_page(page_address(p), page_address(src->pages[i])); 4749 } 4750 4751 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4752 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4753 4754 return new; 4755 } 4756 4757 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4758 u64 start, unsigned long len) 4759 { 4760 struct extent_buffer *eb; 4761 int num_pages; 4762 int i; 4763 4764 eb = __alloc_extent_buffer(fs_info, start, len); 4765 if (!eb) 4766 return NULL; 4767 4768 num_pages = num_extent_pages(eb); 4769 for (i = 0; i < num_pages; i++) { 4770 eb->pages[i] = alloc_page(GFP_NOFS); 4771 if (!eb->pages[i]) 4772 goto err; 4773 } 4774 set_extent_buffer_uptodate(eb); 4775 btrfs_set_header_nritems(eb, 0); 4776 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4777 4778 return eb; 4779 err: 4780 for (; i > 0; i--) 4781 __free_page(eb->pages[i - 1]); 4782 __free_extent_buffer(eb); 4783 return NULL; 4784 } 4785 4786 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4787 u64 start) 4788 { 4789 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4790 } 4791 4792 static void check_buffer_tree_ref(struct extent_buffer *eb) 4793 { 4794 int refs; 4795 /* the ref bit is tricky. We have to make sure it is set 4796 * if we have the buffer dirty. Otherwise the 4797 * code to free a buffer can end up dropping a dirty 4798 * page 4799 * 4800 * Once the ref bit is set, it won't go away while the 4801 * buffer is dirty or in writeback, and it also won't 4802 * go away while we have the reference count on the 4803 * eb bumped. 4804 * 4805 * We can't just set the ref bit without bumping the 4806 * ref on the eb because free_extent_buffer might 4807 * see the ref bit and try to clear it. If this happens 4808 * free_extent_buffer might end up dropping our original 4809 * ref by mistake and freeing the page before we are able 4810 * to add one more ref. 4811 * 4812 * So bump the ref count first, then set the bit. If someone 4813 * beat us to it, drop the ref we added. 4814 */ 4815 refs = atomic_read(&eb->refs); 4816 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4817 return; 4818 4819 spin_lock(&eb->refs_lock); 4820 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4821 atomic_inc(&eb->refs); 4822 spin_unlock(&eb->refs_lock); 4823 } 4824 4825 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4826 struct page *accessed) 4827 { 4828 int num_pages, i; 4829 4830 check_buffer_tree_ref(eb); 4831 4832 num_pages = num_extent_pages(eb); 4833 for (i = 0; i < num_pages; i++) { 4834 struct page *p = eb->pages[i]; 4835 4836 if (p != accessed) 4837 mark_page_accessed(p); 4838 } 4839 } 4840 4841 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4842 u64 start) 4843 { 4844 struct extent_buffer *eb; 4845 4846 rcu_read_lock(); 4847 eb = radix_tree_lookup(&fs_info->buffer_radix, 4848 start >> PAGE_SHIFT); 4849 if (eb && atomic_inc_not_zero(&eb->refs)) { 4850 rcu_read_unlock(); 4851 /* 4852 * Lock our eb's refs_lock to avoid races with 4853 * free_extent_buffer. When we get our eb it might be flagged 4854 * with EXTENT_BUFFER_STALE and another task running 4855 * free_extent_buffer might have seen that flag set, 4856 * eb->refs == 2, that the buffer isn't under IO (dirty and 4857 * writeback flags not set) and it's still in the tree (flag 4858 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4859 * of decrementing the extent buffer's reference count twice. 4860 * So here we could race and increment the eb's reference count, 4861 * clear its stale flag, mark it as dirty and drop our reference 4862 * before the other task finishes executing free_extent_buffer, 4863 * which would later result in an attempt to free an extent 4864 * buffer that is dirty. 4865 */ 4866 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4867 spin_lock(&eb->refs_lock); 4868 spin_unlock(&eb->refs_lock); 4869 } 4870 mark_extent_buffer_accessed(eb, NULL); 4871 return eb; 4872 } 4873 rcu_read_unlock(); 4874 4875 return NULL; 4876 } 4877 4878 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4879 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4880 u64 start) 4881 { 4882 struct extent_buffer *eb, *exists = NULL; 4883 int ret; 4884 4885 eb = find_extent_buffer(fs_info, start); 4886 if (eb) 4887 return eb; 4888 eb = alloc_dummy_extent_buffer(fs_info, start); 4889 if (!eb) 4890 return NULL; 4891 eb->fs_info = fs_info; 4892 again: 4893 ret = radix_tree_preload(GFP_NOFS); 4894 if (ret) 4895 goto free_eb; 4896 spin_lock(&fs_info->buffer_lock); 4897 ret = radix_tree_insert(&fs_info->buffer_radix, 4898 start >> PAGE_SHIFT, eb); 4899 spin_unlock(&fs_info->buffer_lock); 4900 radix_tree_preload_end(); 4901 if (ret == -EEXIST) { 4902 exists = find_extent_buffer(fs_info, start); 4903 if (exists) 4904 goto free_eb; 4905 else 4906 goto again; 4907 } 4908 check_buffer_tree_ref(eb); 4909 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4910 4911 /* 4912 * We will free dummy extent buffer's if they come into 4913 * free_extent_buffer with a ref count of 2, but if we are using this we 4914 * want the buffers to stay in memory until we're done with them, so 4915 * bump the ref count again. 4916 */ 4917 atomic_inc(&eb->refs); 4918 return eb; 4919 free_eb: 4920 btrfs_release_extent_buffer(eb); 4921 return exists; 4922 } 4923 #endif 4924 4925 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4926 u64 start) 4927 { 4928 unsigned long len = fs_info->nodesize; 4929 int num_pages; 4930 int i; 4931 unsigned long index = start >> PAGE_SHIFT; 4932 struct extent_buffer *eb; 4933 struct extent_buffer *exists = NULL; 4934 struct page *p; 4935 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4936 int uptodate = 1; 4937 int ret; 4938 4939 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4940 btrfs_err(fs_info, "bad tree block start %llu", start); 4941 return ERR_PTR(-EINVAL); 4942 } 4943 4944 eb = find_extent_buffer(fs_info, start); 4945 if (eb) 4946 return eb; 4947 4948 eb = __alloc_extent_buffer(fs_info, start, len); 4949 if (!eb) 4950 return ERR_PTR(-ENOMEM); 4951 4952 num_pages = num_extent_pages(eb); 4953 for (i = 0; i < num_pages; i++, index++) { 4954 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4955 if (!p) { 4956 exists = ERR_PTR(-ENOMEM); 4957 goto free_eb; 4958 } 4959 4960 spin_lock(&mapping->private_lock); 4961 if (PagePrivate(p)) { 4962 /* 4963 * We could have already allocated an eb for this page 4964 * and attached one so lets see if we can get a ref on 4965 * the existing eb, and if we can we know it's good and 4966 * we can just return that one, else we know we can just 4967 * overwrite page->private. 4968 */ 4969 exists = (struct extent_buffer *)p->private; 4970 if (atomic_inc_not_zero(&exists->refs)) { 4971 spin_unlock(&mapping->private_lock); 4972 unlock_page(p); 4973 put_page(p); 4974 mark_extent_buffer_accessed(exists, p); 4975 goto free_eb; 4976 } 4977 exists = NULL; 4978 4979 /* 4980 * Do this so attach doesn't complain and we need to 4981 * drop the ref the old guy had. 4982 */ 4983 ClearPagePrivate(p); 4984 WARN_ON(PageDirty(p)); 4985 put_page(p); 4986 } 4987 attach_extent_buffer_page(eb, p); 4988 spin_unlock(&mapping->private_lock); 4989 WARN_ON(PageDirty(p)); 4990 eb->pages[i] = p; 4991 if (!PageUptodate(p)) 4992 uptodate = 0; 4993 4994 /* 4995 * We can't unlock the pages just yet since the extent buffer 4996 * hasn't been properly inserted in the radix tree, this 4997 * opens a race with btree_releasepage which can free a page 4998 * while we are still filling in all pages for the buffer and 4999 * we could crash. 5000 */ 5001 } 5002 if (uptodate) 5003 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5004 again: 5005 ret = radix_tree_preload(GFP_NOFS); 5006 if (ret) { 5007 exists = ERR_PTR(ret); 5008 goto free_eb; 5009 } 5010 5011 spin_lock(&fs_info->buffer_lock); 5012 ret = radix_tree_insert(&fs_info->buffer_radix, 5013 start >> PAGE_SHIFT, eb); 5014 spin_unlock(&fs_info->buffer_lock); 5015 radix_tree_preload_end(); 5016 if (ret == -EEXIST) { 5017 exists = find_extent_buffer(fs_info, start); 5018 if (exists) 5019 goto free_eb; 5020 else 5021 goto again; 5022 } 5023 /* add one reference for the tree */ 5024 check_buffer_tree_ref(eb); 5025 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5026 5027 /* 5028 * Now it's safe to unlock the pages because any calls to 5029 * btree_releasepage will correctly detect that a page belongs to a 5030 * live buffer and won't free them prematurely. 5031 */ 5032 for (i = 0; i < num_pages; i++) 5033 unlock_page(eb->pages[i]); 5034 return eb; 5035 5036 free_eb: 5037 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5038 for (i = 0; i < num_pages; i++) { 5039 if (eb->pages[i]) 5040 unlock_page(eb->pages[i]); 5041 } 5042 5043 btrfs_release_extent_buffer(eb); 5044 return exists; 5045 } 5046 5047 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5048 { 5049 struct extent_buffer *eb = 5050 container_of(head, struct extent_buffer, rcu_head); 5051 5052 __free_extent_buffer(eb); 5053 } 5054 5055 static int release_extent_buffer(struct extent_buffer *eb) 5056 { 5057 lockdep_assert_held(&eb->refs_lock); 5058 5059 WARN_ON(atomic_read(&eb->refs) == 0); 5060 if (atomic_dec_and_test(&eb->refs)) { 5061 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5062 struct btrfs_fs_info *fs_info = eb->fs_info; 5063 5064 spin_unlock(&eb->refs_lock); 5065 5066 spin_lock(&fs_info->buffer_lock); 5067 radix_tree_delete(&fs_info->buffer_radix, 5068 eb->start >> PAGE_SHIFT); 5069 spin_unlock(&fs_info->buffer_lock); 5070 } else { 5071 spin_unlock(&eb->refs_lock); 5072 } 5073 5074 /* Should be safe to release our pages at this point */ 5075 btrfs_release_extent_buffer_pages(eb); 5076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5077 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5078 __free_extent_buffer(eb); 5079 return 1; 5080 } 5081 #endif 5082 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5083 return 1; 5084 } 5085 spin_unlock(&eb->refs_lock); 5086 5087 return 0; 5088 } 5089 5090 void free_extent_buffer(struct extent_buffer *eb) 5091 { 5092 int refs; 5093 int old; 5094 if (!eb) 5095 return; 5096 5097 while (1) { 5098 refs = atomic_read(&eb->refs); 5099 if (refs <= 3) 5100 break; 5101 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5102 if (old == refs) 5103 return; 5104 } 5105 5106 spin_lock(&eb->refs_lock); 5107 if (atomic_read(&eb->refs) == 2 && 5108 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) 5109 atomic_dec(&eb->refs); 5110 5111 if (atomic_read(&eb->refs) == 2 && 5112 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5113 !extent_buffer_under_io(eb) && 5114 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5115 atomic_dec(&eb->refs); 5116 5117 /* 5118 * I know this is terrible, but it's temporary until we stop tracking 5119 * the uptodate bits and such for the extent buffers. 5120 */ 5121 release_extent_buffer(eb); 5122 } 5123 5124 void free_extent_buffer_stale(struct extent_buffer *eb) 5125 { 5126 if (!eb) 5127 return; 5128 5129 spin_lock(&eb->refs_lock); 5130 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5131 5132 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5133 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5134 atomic_dec(&eb->refs); 5135 release_extent_buffer(eb); 5136 } 5137 5138 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5139 { 5140 int i; 5141 int num_pages; 5142 struct page *page; 5143 5144 num_pages = num_extent_pages(eb); 5145 5146 for (i = 0; i < num_pages; i++) { 5147 page = eb->pages[i]; 5148 if (!PageDirty(page)) 5149 continue; 5150 5151 lock_page(page); 5152 WARN_ON(!PagePrivate(page)); 5153 5154 clear_page_dirty_for_io(page); 5155 xa_lock_irq(&page->mapping->i_pages); 5156 if (!PageDirty(page)) { 5157 radix_tree_tag_clear(&page->mapping->i_pages, 5158 page_index(page), 5159 PAGECACHE_TAG_DIRTY); 5160 } 5161 xa_unlock_irq(&page->mapping->i_pages); 5162 ClearPageError(page); 5163 unlock_page(page); 5164 } 5165 WARN_ON(atomic_read(&eb->refs) == 0); 5166 } 5167 5168 int set_extent_buffer_dirty(struct extent_buffer *eb) 5169 { 5170 int i; 5171 int num_pages; 5172 int was_dirty = 0; 5173 5174 check_buffer_tree_ref(eb); 5175 5176 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5177 5178 num_pages = num_extent_pages(eb); 5179 WARN_ON(atomic_read(&eb->refs) == 0); 5180 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5181 5182 for (i = 0; i < num_pages; i++) 5183 set_page_dirty(eb->pages[i]); 5184 return was_dirty; 5185 } 5186 5187 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5188 { 5189 int i; 5190 struct page *page; 5191 int num_pages; 5192 5193 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5194 num_pages = num_extent_pages(eb); 5195 for (i = 0; i < num_pages; i++) { 5196 page = eb->pages[i]; 5197 if (page) 5198 ClearPageUptodate(page); 5199 } 5200 } 5201 5202 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5203 { 5204 int i; 5205 struct page *page; 5206 int num_pages; 5207 5208 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5209 num_pages = num_extent_pages(eb); 5210 for (i = 0; i < num_pages; i++) { 5211 page = eb->pages[i]; 5212 SetPageUptodate(page); 5213 } 5214 } 5215 5216 int read_extent_buffer_pages(struct extent_io_tree *tree, 5217 struct extent_buffer *eb, int wait, int mirror_num) 5218 { 5219 int i; 5220 struct page *page; 5221 int err; 5222 int ret = 0; 5223 int locked_pages = 0; 5224 int all_uptodate = 1; 5225 int num_pages; 5226 unsigned long num_reads = 0; 5227 struct bio *bio = NULL; 5228 unsigned long bio_flags = 0; 5229 5230 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5231 return 0; 5232 5233 num_pages = num_extent_pages(eb); 5234 for (i = 0; i < num_pages; i++) { 5235 page = eb->pages[i]; 5236 if (wait == WAIT_NONE) { 5237 if (!trylock_page(page)) 5238 goto unlock_exit; 5239 } else { 5240 lock_page(page); 5241 } 5242 locked_pages++; 5243 } 5244 /* 5245 * We need to firstly lock all pages to make sure that 5246 * the uptodate bit of our pages won't be affected by 5247 * clear_extent_buffer_uptodate(). 5248 */ 5249 for (i = 0; i < num_pages; i++) { 5250 page = eb->pages[i]; 5251 if (!PageUptodate(page)) { 5252 num_reads++; 5253 all_uptodate = 0; 5254 } 5255 } 5256 5257 if (all_uptodate) { 5258 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5259 goto unlock_exit; 5260 } 5261 5262 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5263 eb->read_mirror = 0; 5264 atomic_set(&eb->io_pages, num_reads); 5265 for (i = 0; i < num_pages; i++) { 5266 page = eb->pages[i]; 5267 5268 if (!PageUptodate(page)) { 5269 if (ret) { 5270 atomic_dec(&eb->io_pages); 5271 unlock_page(page); 5272 continue; 5273 } 5274 5275 ClearPageError(page); 5276 err = __extent_read_full_page(tree, page, 5277 btree_get_extent, &bio, 5278 mirror_num, &bio_flags, 5279 REQ_META); 5280 if (err) { 5281 ret = err; 5282 /* 5283 * We use &bio in above __extent_read_full_page, 5284 * so we ensure that if it returns error, the 5285 * current page fails to add itself to bio and 5286 * it's been unlocked. 5287 * 5288 * We must dec io_pages by ourselves. 5289 */ 5290 atomic_dec(&eb->io_pages); 5291 } 5292 } else { 5293 unlock_page(page); 5294 } 5295 } 5296 5297 if (bio) { 5298 err = submit_one_bio(bio, mirror_num, bio_flags); 5299 if (err) 5300 return err; 5301 } 5302 5303 if (ret || wait != WAIT_COMPLETE) 5304 return ret; 5305 5306 for (i = 0; i < num_pages; i++) { 5307 page = eb->pages[i]; 5308 wait_on_page_locked(page); 5309 if (!PageUptodate(page)) 5310 ret = -EIO; 5311 } 5312 5313 return ret; 5314 5315 unlock_exit: 5316 while (locked_pages > 0) { 5317 locked_pages--; 5318 page = eb->pages[locked_pages]; 5319 unlock_page(page); 5320 } 5321 return ret; 5322 } 5323 5324 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5325 unsigned long start, unsigned long len) 5326 { 5327 size_t cur; 5328 size_t offset; 5329 struct page *page; 5330 char *kaddr; 5331 char *dst = (char *)dstv; 5332 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5333 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5334 5335 if (start + len > eb->len) { 5336 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5337 eb->start, eb->len, start, len); 5338 memset(dst, 0, len); 5339 return; 5340 } 5341 5342 offset = (start_offset + start) & (PAGE_SIZE - 1); 5343 5344 while (len > 0) { 5345 page = eb->pages[i]; 5346 5347 cur = min(len, (PAGE_SIZE - offset)); 5348 kaddr = page_address(page); 5349 memcpy(dst, kaddr + offset, cur); 5350 5351 dst += cur; 5352 len -= cur; 5353 offset = 0; 5354 i++; 5355 } 5356 } 5357 5358 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5359 void __user *dstv, 5360 unsigned long start, unsigned long len) 5361 { 5362 size_t cur; 5363 size_t offset; 5364 struct page *page; 5365 char *kaddr; 5366 char __user *dst = (char __user *)dstv; 5367 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5368 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5369 int ret = 0; 5370 5371 WARN_ON(start > eb->len); 5372 WARN_ON(start + len > eb->start + eb->len); 5373 5374 offset = (start_offset + start) & (PAGE_SIZE - 1); 5375 5376 while (len > 0) { 5377 page = eb->pages[i]; 5378 5379 cur = min(len, (PAGE_SIZE - offset)); 5380 kaddr = page_address(page); 5381 if (copy_to_user(dst, kaddr + offset, cur)) { 5382 ret = -EFAULT; 5383 break; 5384 } 5385 5386 dst += cur; 5387 len -= cur; 5388 offset = 0; 5389 i++; 5390 } 5391 5392 return ret; 5393 } 5394 5395 /* 5396 * return 0 if the item is found within a page. 5397 * return 1 if the item spans two pages. 5398 * return -EINVAL otherwise. 5399 */ 5400 int map_private_extent_buffer(const struct extent_buffer *eb, 5401 unsigned long start, unsigned long min_len, 5402 char **map, unsigned long *map_start, 5403 unsigned long *map_len) 5404 { 5405 size_t offset = start & (PAGE_SIZE - 1); 5406 char *kaddr; 5407 struct page *p; 5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5410 unsigned long end_i = (start_offset + start + min_len - 1) >> 5411 PAGE_SHIFT; 5412 5413 if (start + min_len > eb->len) { 5414 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5415 eb->start, eb->len, start, min_len); 5416 return -EINVAL; 5417 } 5418 5419 if (i != end_i) 5420 return 1; 5421 5422 if (i == 0) { 5423 offset = start_offset; 5424 *map_start = 0; 5425 } else { 5426 offset = 0; 5427 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5428 } 5429 5430 p = eb->pages[i]; 5431 kaddr = page_address(p); 5432 *map = kaddr + offset; 5433 *map_len = PAGE_SIZE - offset; 5434 return 0; 5435 } 5436 5437 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5438 unsigned long start, unsigned long len) 5439 { 5440 size_t cur; 5441 size_t offset; 5442 struct page *page; 5443 char *kaddr; 5444 char *ptr = (char *)ptrv; 5445 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5447 int ret = 0; 5448 5449 WARN_ON(start > eb->len); 5450 WARN_ON(start + len > eb->start + eb->len); 5451 5452 offset = (start_offset + start) & (PAGE_SIZE - 1); 5453 5454 while (len > 0) { 5455 page = eb->pages[i]; 5456 5457 cur = min(len, (PAGE_SIZE - offset)); 5458 5459 kaddr = page_address(page); 5460 ret = memcmp(ptr, kaddr + offset, cur); 5461 if (ret) 5462 break; 5463 5464 ptr += cur; 5465 len -= cur; 5466 offset = 0; 5467 i++; 5468 } 5469 return ret; 5470 } 5471 5472 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5473 const void *srcv) 5474 { 5475 char *kaddr; 5476 5477 WARN_ON(!PageUptodate(eb->pages[0])); 5478 kaddr = page_address(eb->pages[0]); 5479 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5480 BTRFS_FSID_SIZE); 5481 } 5482 5483 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5484 { 5485 char *kaddr; 5486 5487 WARN_ON(!PageUptodate(eb->pages[0])); 5488 kaddr = page_address(eb->pages[0]); 5489 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5490 BTRFS_FSID_SIZE); 5491 } 5492 5493 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5494 unsigned long start, unsigned long len) 5495 { 5496 size_t cur; 5497 size_t offset; 5498 struct page *page; 5499 char *kaddr; 5500 char *src = (char *)srcv; 5501 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5503 5504 WARN_ON(start > eb->len); 5505 WARN_ON(start + len > eb->start + eb->len); 5506 5507 offset = (start_offset + start) & (PAGE_SIZE - 1); 5508 5509 while (len > 0) { 5510 page = eb->pages[i]; 5511 WARN_ON(!PageUptodate(page)); 5512 5513 cur = min(len, PAGE_SIZE - offset); 5514 kaddr = page_address(page); 5515 memcpy(kaddr + offset, src, cur); 5516 5517 src += cur; 5518 len -= cur; 5519 offset = 0; 5520 i++; 5521 } 5522 } 5523 5524 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5525 unsigned long len) 5526 { 5527 size_t cur; 5528 size_t offset; 5529 struct page *page; 5530 char *kaddr; 5531 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5532 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5533 5534 WARN_ON(start > eb->len); 5535 WARN_ON(start + len > eb->start + eb->len); 5536 5537 offset = (start_offset + start) & (PAGE_SIZE - 1); 5538 5539 while (len > 0) { 5540 page = eb->pages[i]; 5541 WARN_ON(!PageUptodate(page)); 5542 5543 cur = min(len, PAGE_SIZE - offset); 5544 kaddr = page_address(page); 5545 memset(kaddr + offset, 0, cur); 5546 5547 len -= cur; 5548 offset = 0; 5549 i++; 5550 } 5551 } 5552 5553 void copy_extent_buffer_full(struct extent_buffer *dst, 5554 struct extent_buffer *src) 5555 { 5556 int i; 5557 int num_pages; 5558 5559 ASSERT(dst->len == src->len); 5560 5561 num_pages = num_extent_pages(dst); 5562 for (i = 0; i < num_pages; i++) 5563 copy_page(page_address(dst->pages[i]), 5564 page_address(src->pages[i])); 5565 } 5566 5567 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5568 unsigned long dst_offset, unsigned long src_offset, 5569 unsigned long len) 5570 { 5571 u64 dst_len = dst->len; 5572 size_t cur; 5573 size_t offset; 5574 struct page *page; 5575 char *kaddr; 5576 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5577 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5578 5579 WARN_ON(src->len != dst_len); 5580 5581 offset = (start_offset + dst_offset) & 5582 (PAGE_SIZE - 1); 5583 5584 while (len > 0) { 5585 page = dst->pages[i]; 5586 WARN_ON(!PageUptodate(page)); 5587 5588 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5589 5590 kaddr = page_address(page); 5591 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5592 5593 src_offset += cur; 5594 len -= cur; 5595 offset = 0; 5596 i++; 5597 } 5598 } 5599 5600 /* 5601 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5602 * given bit number 5603 * @eb: the extent buffer 5604 * @start: offset of the bitmap item in the extent buffer 5605 * @nr: bit number 5606 * @page_index: return index of the page in the extent buffer that contains the 5607 * given bit number 5608 * @page_offset: return offset into the page given by page_index 5609 * 5610 * This helper hides the ugliness of finding the byte in an extent buffer which 5611 * contains a given bit. 5612 */ 5613 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5614 unsigned long start, unsigned long nr, 5615 unsigned long *page_index, 5616 size_t *page_offset) 5617 { 5618 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5619 size_t byte_offset = BIT_BYTE(nr); 5620 size_t offset; 5621 5622 /* 5623 * The byte we want is the offset of the extent buffer + the offset of 5624 * the bitmap item in the extent buffer + the offset of the byte in the 5625 * bitmap item. 5626 */ 5627 offset = start_offset + start + byte_offset; 5628 5629 *page_index = offset >> PAGE_SHIFT; 5630 *page_offset = offset & (PAGE_SIZE - 1); 5631 } 5632 5633 /** 5634 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5635 * @eb: the extent buffer 5636 * @start: offset of the bitmap item in the extent buffer 5637 * @nr: bit number to test 5638 */ 5639 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5640 unsigned long nr) 5641 { 5642 u8 *kaddr; 5643 struct page *page; 5644 unsigned long i; 5645 size_t offset; 5646 5647 eb_bitmap_offset(eb, start, nr, &i, &offset); 5648 page = eb->pages[i]; 5649 WARN_ON(!PageUptodate(page)); 5650 kaddr = page_address(page); 5651 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5652 } 5653 5654 /** 5655 * extent_buffer_bitmap_set - set an area of a bitmap 5656 * @eb: the extent buffer 5657 * @start: offset of the bitmap item in the extent buffer 5658 * @pos: bit number of the first bit 5659 * @len: number of bits to set 5660 */ 5661 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5662 unsigned long pos, unsigned long len) 5663 { 5664 u8 *kaddr; 5665 struct page *page; 5666 unsigned long i; 5667 size_t offset; 5668 const unsigned int size = pos + len; 5669 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5670 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5671 5672 eb_bitmap_offset(eb, start, pos, &i, &offset); 5673 page = eb->pages[i]; 5674 WARN_ON(!PageUptodate(page)); 5675 kaddr = page_address(page); 5676 5677 while (len >= bits_to_set) { 5678 kaddr[offset] |= mask_to_set; 5679 len -= bits_to_set; 5680 bits_to_set = BITS_PER_BYTE; 5681 mask_to_set = ~0; 5682 if (++offset >= PAGE_SIZE && len > 0) { 5683 offset = 0; 5684 page = eb->pages[++i]; 5685 WARN_ON(!PageUptodate(page)); 5686 kaddr = page_address(page); 5687 } 5688 } 5689 if (len) { 5690 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5691 kaddr[offset] |= mask_to_set; 5692 } 5693 } 5694 5695 5696 /** 5697 * extent_buffer_bitmap_clear - clear an area of a bitmap 5698 * @eb: the extent buffer 5699 * @start: offset of the bitmap item in the extent buffer 5700 * @pos: bit number of the first bit 5701 * @len: number of bits to clear 5702 */ 5703 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5704 unsigned long pos, unsigned long len) 5705 { 5706 u8 *kaddr; 5707 struct page *page; 5708 unsigned long i; 5709 size_t offset; 5710 const unsigned int size = pos + len; 5711 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5712 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5713 5714 eb_bitmap_offset(eb, start, pos, &i, &offset); 5715 page = eb->pages[i]; 5716 WARN_ON(!PageUptodate(page)); 5717 kaddr = page_address(page); 5718 5719 while (len >= bits_to_clear) { 5720 kaddr[offset] &= ~mask_to_clear; 5721 len -= bits_to_clear; 5722 bits_to_clear = BITS_PER_BYTE; 5723 mask_to_clear = ~0; 5724 if (++offset >= PAGE_SIZE && len > 0) { 5725 offset = 0; 5726 page = eb->pages[++i]; 5727 WARN_ON(!PageUptodate(page)); 5728 kaddr = page_address(page); 5729 } 5730 } 5731 if (len) { 5732 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5733 kaddr[offset] &= ~mask_to_clear; 5734 } 5735 } 5736 5737 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5738 { 5739 unsigned long distance = (src > dst) ? src - dst : dst - src; 5740 return distance < len; 5741 } 5742 5743 static void copy_pages(struct page *dst_page, struct page *src_page, 5744 unsigned long dst_off, unsigned long src_off, 5745 unsigned long len) 5746 { 5747 char *dst_kaddr = page_address(dst_page); 5748 char *src_kaddr; 5749 int must_memmove = 0; 5750 5751 if (dst_page != src_page) { 5752 src_kaddr = page_address(src_page); 5753 } else { 5754 src_kaddr = dst_kaddr; 5755 if (areas_overlap(src_off, dst_off, len)) 5756 must_memmove = 1; 5757 } 5758 5759 if (must_memmove) 5760 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5761 else 5762 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5763 } 5764 5765 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5766 unsigned long src_offset, unsigned long len) 5767 { 5768 struct btrfs_fs_info *fs_info = dst->fs_info; 5769 size_t cur; 5770 size_t dst_off_in_page; 5771 size_t src_off_in_page; 5772 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5773 unsigned long dst_i; 5774 unsigned long src_i; 5775 5776 if (src_offset + len > dst->len) { 5777 btrfs_err(fs_info, 5778 "memmove bogus src_offset %lu move len %lu dst len %lu", 5779 src_offset, len, dst->len); 5780 BUG_ON(1); 5781 } 5782 if (dst_offset + len > dst->len) { 5783 btrfs_err(fs_info, 5784 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5785 dst_offset, len, dst->len); 5786 BUG_ON(1); 5787 } 5788 5789 while (len > 0) { 5790 dst_off_in_page = (start_offset + dst_offset) & 5791 (PAGE_SIZE - 1); 5792 src_off_in_page = (start_offset + src_offset) & 5793 (PAGE_SIZE - 1); 5794 5795 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5796 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5797 5798 cur = min(len, (unsigned long)(PAGE_SIZE - 5799 src_off_in_page)); 5800 cur = min_t(unsigned long, cur, 5801 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5802 5803 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5804 dst_off_in_page, src_off_in_page, cur); 5805 5806 src_offset += cur; 5807 dst_offset += cur; 5808 len -= cur; 5809 } 5810 } 5811 5812 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5813 unsigned long src_offset, unsigned long len) 5814 { 5815 struct btrfs_fs_info *fs_info = dst->fs_info; 5816 size_t cur; 5817 size_t dst_off_in_page; 5818 size_t src_off_in_page; 5819 unsigned long dst_end = dst_offset + len - 1; 5820 unsigned long src_end = src_offset + len - 1; 5821 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5822 unsigned long dst_i; 5823 unsigned long src_i; 5824 5825 if (src_offset + len > dst->len) { 5826 btrfs_err(fs_info, 5827 "memmove bogus src_offset %lu move len %lu len %lu", 5828 src_offset, len, dst->len); 5829 BUG_ON(1); 5830 } 5831 if (dst_offset + len > dst->len) { 5832 btrfs_err(fs_info, 5833 "memmove bogus dst_offset %lu move len %lu len %lu", 5834 dst_offset, len, dst->len); 5835 BUG_ON(1); 5836 } 5837 if (dst_offset < src_offset) { 5838 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5839 return; 5840 } 5841 while (len > 0) { 5842 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5843 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5844 5845 dst_off_in_page = (start_offset + dst_end) & 5846 (PAGE_SIZE - 1); 5847 src_off_in_page = (start_offset + src_end) & 5848 (PAGE_SIZE - 1); 5849 5850 cur = min_t(unsigned long, len, src_off_in_page + 1); 5851 cur = min(cur, dst_off_in_page + 1); 5852 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5853 dst_off_in_page - cur + 1, 5854 src_off_in_page - cur + 1, cur); 5855 5856 dst_end -= cur; 5857 src_end -= cur; 5858 len -= cur; 5859 } 5860 } 5861 5862 int try_release_extent_buffer(struct page *page) 5863 { 5864 struct extent_buffer *eb; 5865 5866 /* 5867 * We need to make sure nobody is attaching this page to an eb right 5868 * now. 5869 */ 5870 spin_lock(&page->mapping->private_lock); 5871 if (!PagePrivate(page)) { 5872 spin_unlock(&page->mapping->private_lock); 5873 return 1; 5874 } 5875 5876 eb = (struct extent_buffer *)page->private; 5877 BUG_ON(!eb); 5878 5879 /* 5880 * This is a little awful but should be ok, we need to make sure that 5881 * the eb doesn't disappear out from under us while we're looking at 5882 * this page. 5883 */ 5884 spin_lock(&eb->refs_lock); 5885 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5886 spin_unlock(&eb->refs_lock); 5887 spin_unlock(&page->mapping->private_lock); 5888 return 0; 5889 } 5890 spin_unlock(&page->mapping->private_lock); 5891 5892 /* 5893 * If tree ref isn't set then we know the ref on this eb is a real ref, 5894 * so just return, this page will likely be freed soon anyway. 5895 */ 5896 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5897 spin_unlock(&eb->refs_lock); 5898 return 0; 5899 } 5900 5901 return release_extent_buffer(eb); 5902 } 5903