1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 if (extent_state_cache) 210 kmem_cache_destroy(extent_state_cache); 211 if (extent_buffer_cache) 212 kmem_cache_destroy(extent_buffer_cache); 213 if (btrfs_bioset) 214 bioset_free(btrfs_bioset); 215 } 216 217 void extent_io_tree_init(struct extent_io_tree *tree, 218 struct address_space *mapping) 219 { 220 tree->state = RB_ROOT; 221 tree->ops = NULL; 222 tree->dirty_bytes = 0; 223 spin_lock_init(&tree->lock); 224 tree->mapping = mapping; 225 } 226 227 static struct extent_state *alloc_extent_state(gfp_t mask) 228 { 229 struct extent_state *state; 230 231 state = kmem_cache_alloc(extent_state_cache, mask); 232 if (!state) 233 return state; 234 state->state = 0; 235 state->private = 0; 236 RB_CLEAR_NODE(&state->rb_node); 237 btrfs_leak_debug_add(&state->leak_list, &states); 238 atomic_set(&state->refs, 1); 239 init_waitqueue_head(&state->wq); 240 trace_alloc_extent_state(state, mask, _RET_IP_); 241 return state; 242 } 243 244 void free_extent_state(struct extent_state *state) 245 { 246 if (!state) 247 return; 248 if (atomic_dec_and_test(&state->refs)) { 249 WARN_ON(extent_state_in_tree(state)); 250 btrfs_leak_debug_del(&state->leak_list); 251 trace_free_extent_state(state, _RET_IP_); 252 kmem_cache_free(extent_state_cache, state); 253 } 254 } 255 256 static struct rb_node *tree_insert(struct rb_root *root, 257 struct rb_node *search_start, 258 u64 offset, 259 struct rb_node *node, 260 struct rb_node ***p_in, 261 struct rb_node **parent_in) 262 { 263 struct rb_node **p; 264 struct rb_node *parent = NULL; 265 struct tree_entry *entry; 266 267 if (p_in && parent_in) { 268 p = *p_in; 269 parent = *parent_in; 270 goto do_insert; 271 } 272 273 p = search_start ? &search_start : &root->rb_node; 274 while (*p) { 275 parent = *p; 276 entry = rb_entry(parent, struct tree_entry, rb_node); 277 278 if (offset < entry->start) 279 p = &(*p)->rb_left; 280 else if (offset > entry->end) 281 p = &(*p)->rb_right; 282 else 283 return parent; 284 } 285 286 do_insert: 287 rb_link_node(node, parent, p); 288 rb_insert_color(node, root); 289 return NULL; 290 } 291 292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 293 struct rb_node **prev_ret, 294 struct rb_node **next_ret, 295 struct rb_node ***p_ret, 296 struct rb_node **parent_ret) 297 { 298 struct rb_root *root = &tree->state; 299 struct rb_node **n = &root->rb_node; 300 struct rb_node *prev = NULL; 301 struct rb_node *orig_prev = NULL; 302 struct tree_entry *entry; 303 struct tree_entry *prev_entry = NULL; 304 305 while (*n) { 306 prev = *n; 307 entry = rb_entry(prev, struct tree_entry, rb_node); 308 prev_entry = entry; 309 310 if (offset < entry->start) 311 n = &(*n)->rb_left; 312 else if (offset > entry->end) 313 n = &(*n)->rb_right; 314 else 315 return *n; 316 } 317 318 if (p_ret) 319 *p_ret = n; 320 if (parent_ret) 321 *parent_ret = prev; 322 323 if (prev_ret) { 324 orig_prev = prev; 325 while (prev && offset > prev_entry->end) { 326 prev = rb_next(prev); 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 } 329 *prev_ret = prev; 330 prev = orig_prev; 331 } 332 333 if (next_ret) { 334 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 335 while (prev && offset < prev_entry->start) { 336 prev = rb_prev(prev); 337 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 338 } 339 *next_ret = prev; 340 } 341 return NULL; 342 } 343 344 static inline struct rb_node * 345 tree_search_for_insert(struct extent_io_tree *tree, 346 u64 offset, 347 struct rb_node ***p_ret, 348 struct rb_node **parent_ret) 349 { 350 struct rb_node *prev = NULL; 351 struct rb_node *ret; 352 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 354 if (!ret) 355 return prev; 356 return ret; 357 } 358 359 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 360 u64 offset) 361 { 362 return tree_search_for_insert(tree, offset, NULL, NULL); 363 } 364 365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 366 struct extent_state *other) 367 { 368 if (tree->ops && tree->ops->merge_extent_hook) 369 tree->ops->merge_extent_hook(tree->mapping->host, new, 370 other); 371 } 372 373 /* 374 * utility function to look for merge candidates inside a given range. 375 * Any extents with matching state are merged together into a single 376 * extent in the tree. Extents with EXTENT_IO in their state field 377 * are not merged because the end_io handlers need to be able to do 378 * operations on them without sleeping (or doing allocations/splits). 379 * 380 * This should be called with the tree lock held. 381 */ 382 static void merge_state(struct extent_io_tree *tree, 383 struct extent_state *state) 384 { 385 struct extent_state *other; 386 struct rb_node *other_node; 387 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 389 return; 390 391 other_node = rb_prev(&state->rb_node); 392 if (other_node) { 393 other = rb_entry(other_node, struct extent_state, rb_node); 394 if (other->end == state->start - 1 && 395 other->state == state->state) { 396 merge_cb(tree, state, other); 397 state->start = other->start; 398 rb_erase(&other->rb_node, &tree->state); 399 RB_CLEAR_NODE(&other->rb_node); 400 free_extent_state(other); 401 } 402 } 403 other_node = rb_next(&state->rb_node); 404 if (other_node) { 405 other = rb_entry(other_node, struct extent_state, rb_node); 406 if (other->start == state->end + 1 && 407 other->state == state->state) { 408 merge_cb(tree, state, other); 409 state->end = other->end; 410 rb_erase(&other->rb_node, &tree->state); 411 RB_CLEAR_NODE(&other->rb_node); 412 free_extent_state(other); 413 } 414 } 415 } 416 417 static void set_state_cb(struct extent_io_tree *tree, 418 struct extent_state *state, unsigned *bits) 419 { 420 if (tree->ops && tree->ops->set_bit_hook) 421 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 422 } 423 424 static void clear_state_cb(struct extent_io_tree *tree, 425 struct extent_state *state, unsigned *bits) 426 { 427 if (tree->ops && tree->ops->clear_bit_hook) 428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 429 } 430 431 static void set_state_bits(struct extent_io_tree *tree, 432 struct extent_state *state, unsigned *bits, 433 struct extent_changeset *changeset); 434 435 /* 436 * insert an extent_state struct into the tree. 'bits' are set on the 437 * struct before it is inserted. 438 * 439 * This may return -EEXIST if the extent is already there, in which case the 440 * state struct is freed. 441 * 442 * The tree lock is not taken internally. This is a utility function and 443 * probably isn't what you want to call (see set/clear_extent_bit). 444 */ 445 static int insert_state(struct extent_io_tree *tree, 446 struct extent_state *state, u64 start, u64 end, 447 struct rb_node ***p, 448 struct rb_node **parent, 449 unsigned *bits, struct extent_changeset *changeset) 450 { 451 struct rb_node *node; 452 453 if (end < start) 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 455 end, start); 456 state->start = start; 457 state->end = end; 458 459 set_state_bits(tree, state, bits, changeset); 460 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 462 if (node) { 463 struct extent_state *found; 464 found = rb_entry(node, struct extent_state, rb_node); 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 466 "%llu %llu\n", 467 found->start, found->end, start, end); 468 return -EEXIST; 469 } 470 merge_state(tree, state); 471 return 0; 472 } 473 474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 475 u64 split) 476 { 477 if (tree->ops && tree->ops->split_extent_hook) 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 479 } 480 481 /* 482 * split a given extent state struct in two, inserting the preallocated 483 * struct 'prealloc' as the newly created second half. 'split' indicates an 484 * offset inside 'orig' where it should be split. 485 * 486 * Before calling, 487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 488 * are two extent state structs in the tree: 489 * prealloc: [orig->start, split - 1] 490 * orig: [ split, orig->end ] 491 * 492 * The tree locks are not taken by this function. They need to be held 493 * by the caller. 494 */ 495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 496 struct extent_state *prealloc, u64 split) 497 { 498 struct rb_node *node; 499 500 split_cb(tree, orig, split); 501 502 prealloc->start = orig->start; 503 prealloc->end = split - 1; 504 prealloc->state = orig->state; 505 orig->start = split; 506 507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 508 &prealloc->rb_node, NULL, NULL); 509 if (node) { 510 free_extent_state(prealloc); 511 return -EEXIST; 512 } 513 return 0; 514 } 515 516 static struct extent_state *next_state(struct extent_state *state) 517 { 518 struct rb_node *next = rb_next(&state->rb_node); 519 if (next) 520 return rb_entry(next, struct extent_state, rb_node); 521 else 522 return NULL; 523 } 524 525 /* 526 * utility function to clear some bits in an extent state struct. 527 * it will optionally wake up any one waiting on this state (wake == 1). 528 * 529 * If no bits are set on the state struct after clearing things, the 530 * struct is freed and removed from the tree 531 */ 532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 533 struct extent_state *state, 534 unsigned *bits, int wake, 535 struct extent_changeset *changeset) 536 { 537 struct extent_state *next; 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 539 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 541 u64 range = state->end - state->start + 1; 542 WARN_ON(range > tree->dirty_bytes); 543 tree->dirty_bytes -= range; 544 } 545 clear_state_cb(tree, state, bits); 546 add_extent_changeset(state, bits_to_clear, changeset, 0); 547 state->state &= ~bits_to_clear; 548 if (wake) 549 wake_up(&state->wq); 550 if (state->state == 0) { 551 next = next_state(state); 552 if (extent_state_in_tree(state)) { 553 rb_erase(&state->rb_node, &tree->state); 554 RB_CLEAR_NODE(&state->rb_node); 555 free_extent_state(state); 556 } else { 557 WARN_ON(1); 558 } 559 } else { 560 merge_state(tree, state); 561 next = next_state(state); 562 } 563 return next; 564 } 565 566 static struct extent_state * 567 alloc_extent_state_atomic(struct extent_state *prealloc) 568 { 569 if (!prealloc) 570 prealloc = alloc_extent_state(GFP_ATOMIC); 571 572 return prealloc; 573 } 574 575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 576 { 577 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 578 "Extent tree was modified by another " 579 "thread while locked."); 580 } 581 582 /* 583 * clear some bits on a range in the tree. This may require splitting 584 * or inserting elements in the tree, so the gfp mask is used to 585 * indicate which allocations or sleeping are allowed. 586 * 587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 588 * the given range from the tree regardless of state (ie for truncate). 589 * 590 * the range [start, end] is inclusive. 591 * 592 * This takes the tree lock, and returns 0 on success and < 0 on error. 593 */ 594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 595 unsigned bits, int wake, int delete, 596 struct extent_state **cached_state, 597 gfp_t mask, struct extent_changeset *changeset) 598 { 599 struct extent_state *state; 600 struct extent_state *cached; 601 struct extent_state *prealloc = NULL; 602 struct rb_node *node; 603 u64 last_end; 604 int err; 605 int clear = 0; 606 607 btrfs_debug_check_extent_io_range(tree, start, end); 608 609 if (bits & EXTENT_DELALLOC) 610 bits |= EXTENT_NORESERVE; 611 612 if (delete) 613 bits |= ~EXTENT_CTLBITS; 614 bits |= EXTENT_FIRST_DELALLOC; 615 616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 617 clear = 1; 618 again: 619 if (!prealloc && gfpflags_allow_blocking(mask)) { 620 /* 621 * Don't care for allocation failure here because we might end 622 * up not needing the pre-allocated extent state at all, which 623 * is the case if we only have in the tree extent states that 624 * cover our input range and don't cover too any other range. 625 * If we end up needing a new extent state we allocate it later. 626 */ 627 prealloc = alloc_extent_state(mask); 628 } 629 630 spin_lock(&tree->lock); 631 if (cached_state) { 632 cached = *cached_state; 633 634 if (clear) { 635 *cached_state = NULL; 636 cached_state = NULL; 637 } 638 639 if (cached && extent_state_in_tree(cached) && 640 cached->start <= start && cached->end > start) { 641 if (clear) 642 atomic_dec(&cached->refs); 643 state = cached; 644 goto hit_next; 645 } 646 if (clear) 647 free_extent_state(cached); 648 } 649 /* 650 * this search will find the extents that end after 651 * our range starts 652 */ 653 node = tree_search(tree, start); 654 if (!node) 655 goto out; 656 state = rb_entry(node, struct extent_state, rb_node); 657 hit_next: 658 if (state->start > end) 659 goto out; 660 WARN_ON(state->end < start); 661 last_end = state->end; 662 663 /* the state doesn't have the wanted bits, go ahead */ 664 if (!(state->state & bits)) { 665 state = next_state(state); 666 goto next; 667 } 668 669 /* 670 * | ---- desired range ---- | 671 * | state | or 672 * | ------------- state -------------- | 673 * 674 * We need to split the extent we found, and may flip 675 * bits on second half. 676 * 677 * If the extent we found extends past our range, we 678 * just split and search again. It'll get split again 679 * the next time though. 680 * 681 * If the extent we found is inside our range, we clear 682 * the desired bit on it. 683 */ 684 685 if (state->start < start) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, start); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 prealloc = NULL; 693 if (err) 694 goto out; 695 if (state->end <= end) { 696 state = clear_state_bit(tree, state, &bits, wake, 697 changeset); 698 goto next; 699 } 700 goto search_again; 701 } 702 /* 703 * | ---- desired range ---- | 704 * | state | 705 * We need to split the extent, and clear the bit 706 * on the first half 707 */ 708 if (state->start <= end && state->end > end) { 709 prealloc = alloc_extent_state_atomic(prealloc); 710 BUG_ON(!prealloc); 711 err = split_state(tree, state, prealloc, end + 1); 712 if (err) 713 extent_io_tree_panic(tree, err); 714 715 if (wake) 716 wake_up(&state->wq); 717 718 clear_state_bit(tree, prealloc, &bits, wake, changeset); 719 720 prealloc = NULL; 721 goto out; 722 } 723 724 state = clear_state_bit(tree, state, &bits, wake, changeset); 725 next: 726 if (last_end == (u64)-1) 727 goto out; 728 start = last_end + 1; 729 if (start <= end && state && !need_resched()) 730 goto hit_next; 731 goto search_again; 732 733 out: 734 spin_unlock(&tree->lock); 735 if (prealloc) 736 free_extent_state(prealloc); 737 738 return 0; 739 740 search_again: 741 if (start > end) 742 goto out; 743 spin_unlock(&tree->lock); 744 if (gfpflags_allow_blocking(mask)) 745 cond_resched(); 746 goto again; 747 } 748 749 static void wait_on_state(struct extent_io_tree *tree, 750 struct extent_state *state) 751 __releases(tree->lock) 752 __acquires(tree->lock) 753 { 754 DEFINE_WAIT(wait); 755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 756 spin_unlock(&tree->lock); 757 schedule(); 758 spin_lock(&tree->lock); 759 finish_wait(&state->wq, &wait); 760 } 761 762 /* 763 * waits for one or more bits to clear on a range in the state tree. 764 * The range [start, end] is inclusive. 765 * The tree lock is taken by this function 766 */ 767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 768 unsigned long bits) 769 { 770 struct extent_state *state; 771 struct rb_node *node; 772 773 btrfs_debug_check_extent_io_range(tree, start, end); 774 775 spin_lock(&tree->lock); 776 again: 777 while (1) { 778 /* 779 * this search will find all the extents that end after 780 * our range starts 781 */ 782 node = tree_search(tree, start); 783 process_node: 784 if (!node) 785 break; 786 787 state = rb_entry(node, struct extent_state, rb_node); 788 789 if (state->start > end) 790 goto out; 791 792 if (state->state & bits) { 793 start = state->start; 794 atomic_inc(&state->refs); 795 wait_on_state(tree, state); 796 free_extent_state(state); 797 goto again; 798 } 799 start = state->end + 1; 800 801 if (start > end) 802 break; 803 804 if (!cond_resched_lock(&tree->lock)) { 805 node = rb_next(node); 806 goto process_node; 807 } 808 } 809 out: 810 spin_unlock(&tree->lock); 811 } 812 813 static void set_state_bits(struct extent_io_tree *tree, 814 struct extent_state *state, 815 unsigned *bits, struct extent_changeset *changeset) 816 { 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 818 819 set_state_cb(tree, state, bits); 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 821 u64 range = state->end - state->start + 1; 822 tree->dirty_bytes += range; 823 } 824 add_extent_changeset(state, bits_to_set, changeset, 1); 825 state->state |= bits_to_set; 826 } 827 828 static void cache_state_if_flags(struct extent_state *state, 829 struct extent_state **cached_ptr, 830 unsigned flags) 831 { 832 if (cached_ptr && !(*cached_ptr)) { 833 if (!flags || (state->state & flags)) { 834 *cached_ptr = state; 835 atomic_inc(&state->refs); 836 } 837 } 838 } 839 840 static void cache_state(struct extent_state *state, 841 struct extent_state **cached_ptr) 842 { 843 return cache_state_if_flags(state, cached_ptr, 844 EXTENT_IOBITS | EXTENT_BOUNDARY); 845 } 846 847 /* 848 * set some bits on a range in the tree. This may require allocations or 849 * sleeping, so the gfp mask is used to indicate what is allowed. 850 * 851 * If any of the exclusive bits are set, this will fail with -EEXIST if some 852 * part of the range already has the desired bits set. The start of the 853 * existing range is returned in failed_start in this case. 854 * 855 * [start, end] is inclusive This takes the tree lock. 856 */ 857 858 static int __must_check 859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 860 unsigned bits, unsigned exclusive_bits, 861 u64 *failed_start, struct extent_state **cached_state, 862 gfp_t mask, struct extent_changeset *changeset) 863 { 864 struct extent_state *state; 865 struct extent_state *prealloc = NULL; 866 struct rb_node *node; 867 struct rb_node **p; 868 struct rb_node *parent; 869 int err = 0; 870 u64 last_start; 871 u64 last_end; 872 873 btrfs_debug_check_extent_io_range(tree, start, end); 874 875 bits |= EXTENT_FIRST_DELALLOC; 876 again: 877 if (!prealloc && gfpflags_allow_blocking(mask)) { 878 prealloc = alloc_extent_state(mask); 879 BUG_ON(!prealloc); 880 } 881 882 spin_lock(&tree->lock); 883 if (cached_state && *cached_state) { 884 state = *cached_state; 885 if (state->start <= start && state->end > start && 886 extent_state_in_tree(state)) { 887 node = &state->rb_node; 888 goto hit_next; 889 } 890 } 891 /* 892 * this search will find all the extents that end after 893 * our range starts. 894 */ 895 node = tree_search_for_insert(tree, start, &p, &parent); 896 if (!node) { 897 prealloc = alloc_extent_state_atomic(prealloc); 898 BUG_ON(!prealloc); 899 err = insert_state(tree, prealloc, start, end, 900 &p, &parent, &bits, changeset); 901 if (err) 902 extent_io_tree_panic(tree, err); 903 904 cache_state(prealloc, cached_state); 905 prealloc = NULL; 906 goto out; 907 } 908 state = rb_entry(node, struct extent_state, rb_node); 909 hit_next: 910 last_start = state->start; 911 last_end = state->end; 912 913 /* 914 * | ---- desired range ---- | 915 * | state | 916 * 917 * Just lock what we found and keep going 918 */ 919 if (state->start == start && state->end <= end) { 920 if (state->state & exclusive_bits) { 921 *failed_start = state->start; 922 err = -EEXIST; 923 goto out; 924 } 925 926 set_state_bits(tree, state, &bits, changeset); 927 cache_state(state, cached_state); 928 merge_state(tree, state); 929 if (last_end == (u64)-1) 930 goto out; 931 start = last_end + 1; 932 state = next_state(state); 933 if (start < end && state && state->start == start && 934 !need_resched()) 935 goto hit_next; 936 goto search_again; 937 } 938 939 /* 940 * | ---- desired range ---- | 941 * | state | 942 * or 943 * | ------------- state -------------- | 944 * 945 * We need to split the extent we found, and may flip bits on 946 * second half. 947 * 948 * If the extent we found extends past our 949 * range, we just split and search again. It'll get split 950 * again the next time though. 951 * 952 * If the extent we found is inside our range, we set the 953 * desired bit on it. 954 */ 955 if (state->start < start) { 956 if (state->state & exclusive_bits) { 957 *failed_start = start; 958 err = -EEXIST; 959 goto out; 960 } 961 962 prealloc = alloc_extent_state_atomic(prealloc); 963 BUG_ON(!prealloc); 964 err = split_state(tree, state, prealloc, start); 965 if (err) 966 extent_io_tree_panic(tree, err); 967 968 prealloc = NULL; 969 if (err) 970 goto out; 971 if (state->end <= end) { 972 set_state_bits(tree, state, &bits, changeset); 973 cache_state(state, cached_state); 974 merge_state(tree, state); 975 if (last_end == (u64)-1) 976 goto out; 977 start = last_end + 1; 978 state = next_state(state); 979 if (start < end && state && state->start == start && 980 !need_resched()) 981 goto hit_next; 982 } 983 goto search_again; 984 } 985 /* 986 * | ---- desired range ---- | 987 * | state | or | state | 988 * 989 * There's a hole, we need to insert something in it and 990 * ignore the extent we found. 991 */ 992 if (state->start > start) { 993 u64 this_end; 994 if (end < last_start) 995 this_end = end; 996 else 997 this_end = last_start - 1; 998 999 prealloc = alloc_extent_state_atomic(prealloc); 1000 BUG_ON(!prealloc); 1001 1002 /* 1003 * Avoid to free 'prealloc' if it can be merged with 1004 * the later extent. 1005 */ 1006 err = insert_state(tree, prealloc, start, this_end, 1007 NULL, NULL, &bits, changeset); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 cache_state(prealloc, cached_state); 1012 prealloc = NULL; 1013 start = this_end + 1; 1014 goto search_again; 1015 } 1016 /* 1017 * | ---- desired range ---- | 1018 * | state | 1019 * We need to split the extent, and set the bit 1020 * on the first half 1021 */ 1022 if (state->start <= end && state->end > end) { 1023 if (state->state & exclusive_bits) { 1024 *failed_start = start; 1025 err = -EEXIST; 1026 goto out; 1027 } 1028 1029 prealloc = alloc_extent_state_atomic(prealloc); 1030 BUG_ON(!prealloc); 1031 err = split_state(tree, state, prealloc, end + 1); 1032 if (err) 1033 extent_io_tree_panic(tree, err); 1034 1035 set_state_bits(tree, prealloc, &bits, changeset); 1036 cache_state(prealloc, cached_state); 1037 merge_state(tree, prealloc); 1038 prealloc = NULL; 1039 goto out; 1040 } 1041 1042 goto search_again; 1043 1044 out: 1045 spin_unlock(&tree->lock); 1046 if (prealloc) 1047 free_extent_state(prealloc); 1048 1049 return err; 1050 1051 search_again: 1052 if (start > end) 1053 goto out; 1054 spin_unlock(&tree->lock); 1055 if (gfpflags_allow_blocking(mask)) 1056 cond_resched(); 1057 goto again; 1058 } 1059 1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1061 unsigned bits, u64 * failed_start, 1062 struct extent_state **cached_state, gfp_t mask) 1063 { 1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1065 cached_state, mask, NULL); 1066 } 1067 1068 1069 /** 1070 * convert_extent_bit - convert all bits in a given range from one bit to 1071 * another 1072 * @tree: the io tree to search 1073 * @start: the start offset in bytes 1074 * @end: the end offset in bytes (inclusive) 1075 * @bits: the bits to set in this range 1076 * @clear_bits: the bits to clear in this range 1077 * @cached_state: state that we're going to cache 1078 * @mask: the allocation mask 1079 * 1080 * This will go through and set bits for the given range. If any states exist 1081 * already in this range they are set with the given bit and cleared of the 1082 * clear_bits. This is only meant to be used by things that are mergeable, ie 1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1084 * boundary bits like LOCK. 1085 */ 1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1087 unsigned bits, unsigned clear_bits, 1088 struct extent_state **cached_state, gfp_t mask) 1089 { 1090 struct extent_state *state; 1091 struct extent_state *prealloc = NULL; 1092 struct rb_node *node; 1093 struct rb_node **p; 1094 struct rb_node *parent; 1095 int err = 0; 1096 u64 last_start; 1097 u64 last_end; 1098 bool first_iteration = true; 1099 1100 btrfs_debug_check_extent_io_range(tree, start, end); 1101 1102 again: 1103 if (!prealloc && gfpflags_allow_blocking(mask)) { 1104 /* 1105 * Best effort, don't worry if extent state allocation fails 1106 * here for the first iteration. We might have a cached state 1107 * that matches exactly the target range, in which case no 1108 * extent state allocations are needed. We'll only know this 1109 * after locking the tree. 1110 */ 1111 prealloc = alloc_extent_state(mask); 1112 if (!prealloc && !first_iteration) 1113 return -ENOMEM; 1114 } 1115 1116 spin_lock(&tree->lock); 1117 if (cached_state && *cached_state) { 1118 state = *cached_state; 1119 if (state->start <= start && state->end > start && 1120 extent_state_in_tree(state)) { 1121 node = &state->rb_node; 1122 goto hit_next; 1123 } 1124 } 1125 1126 /* 1127 * this search will find all the extents that end after 1128 * our range starts. 1129 */ 1130 node = tree_search_for_insert(tree, start, &p, &parent); 1131 if (!node) { 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 if (!prealloc) { 1134 err = -ENOMEM; 1135 goto out; 1136 } 1137 err = insert_state(tree, prealloc, start, end, 1138 &p, &parent, &bits, NULL); 1139 if (err) 1140 extent_io_tree_panic(tree, err); 1141 cache_state(prealloc, cached_state); 1142 prealloc = NULL; 1143 goto out; 1144 } 1145 state = rb_entry(node, struct extent_state, rb_node); 1146 hit_next: 1147 last_start = state->start; 1148 last_end = state->end; 1149 1150 /* 1151 * | ---- desired range ---- | 1152 * | state | 1153 * 1154 * Just lock what we found and keep going 1155 */ 1156 if (state->start == start && state->end <= end) { 1157 set_state_bits(tree, state, &bits, NULL); 1158 cache_state(state, cached_state); 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1160 if (last_end == (u64)-1) 1161 goto out; 1162 start = last_end + 1; 1163 if (start < end && state && state->start == start && 1164 !need_resched()) 1165 goto hit_next; 1166 goto search_again; 1167 } 1168 1169 /* 1170 * | ---- desired range ---- | 1171 * | state | 1172 * or 1173 * | ------------- state -------------- | 1174 * 1175 * We need to split the extent we found, and may flip bits on 1176 * second half. 1177 * 1178 * If the extent we found extends past our 1179 * range, we just split and search again. It'll get split 1180 * again the next time though. 1181 * 1182 * If the extent we found is inside our range, we set the 1183 * desired bit on it. 1184 */ 1185 if (state->start < start) { 1186 prealloc = alloc_extent_state_atomic(prealloc); 1187 if (!prealloc) { 1188 err = -ENOMEM; 1189 goto out; 1190 } 1191 err = split_state(tree, state, prealloc, start); 1192 if (err) 1193 extent_io_tree_panic(tree, err); 1194 prealloc = NULL; 1195 if (err) 1196 goto out; 1197 if (state->end <= end) { 1198 set_state_bits(tree, state, &bits, NULL); 1199 cache_state(state, cached_state); 1200 state = clear_state_bit(tree, state, &clear_bits, 0, 1201 NULL); 1202 if (last_end == (u64)-1) 1203 goto out; 1204 start = last_end + 1; 1205 if (start < end && state && state->start == start && 1206 !need_resched()) 1207 goto hit_next; 1208 } 1209 goto search_again; 1210 } 1211 /* 1212 * | ---- desired range ---- | 1213 * | state | or | state | 1214 * 1215 * There's a hole, we need to insert something in it and 1216 * ignore the extent we found. 1217 */ 1218 if (state->start > start) { 1219 u64 this_end; 1220 if (end < last_start) 1221 this_end = end; 1222 else 1223 this_end = last_start - 1; 1224 1225 prealloc = alloc_extent_state_atomic(prealloc); 1226 if (!prealloc) { 1227 err = -ENOMEM; 1228 goto out; 1229 } 1230 1231 /* 1232 * Avoid to free 'prealloc' if it can be merged with 1233 * the later extent. 1234 */ 1235 err = insert_state(tree, prealloc, start, this_end, 1236 NULL, NULL, &bits, NULL); 1237 if (err) 1238 extent_io_tree_panic(tree, err); 1239 cache_state(prealloc, cached_state); 1240 prealloc = NULL; 1241 start = this_end + 1; 1242 goto search_again; 1243 } 1244 /* 1245 * | ---- desired range ---- | 1246 * | state | 1247 * We need to split the extent, and set the bit 1248 * on the first half 1249 */ 1250 if (state->start <= end && state->end > end) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 1257 err = split_state(tree, state, prealloc, end + 1); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 1261 set_state_bits(tree, prealloc, &bits, NULL); 1262 cache_state(prealloc, cached_state); 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1264 prealloc = NULL; 1265 goto out; 1266 } 1267 1268 goto search_again; 1269 1270 out: 1271 spin_unlock(&tree->lock); 1272 if (prealloc) 1273 free_extent_state(prealloc); 1274 1275 return err; 1276 1277 search_again: 1278 if (start > end) 1279 goto out; 1280 spin_unlock(&tree->lock); 1281 if (gfpflags_allow_blocking(mask)) 1282 cond_resched(); 1283 first_iteration = false; 1284 goto again; 1285 } 1286 1287 /* wrappers around set/clear extent bit */ 1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1289 gfp_t mask) 1290 { 1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1292 NULL, mask); 1293 } 1294 1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1296 unsigned bits, gfp_t mask) 1297 { 1298 return set_extent_bit(tree, start, end, bits, NULL, 1299 NULL, mask); 1300 } 1301 1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1303 unsigned bits, gfp_t mask, 1304 struct extent_changeset *changeset) 1305 { 1306 /* 1307 * We don't support EXTENT_LOCKED yet, as current changeset will 1308 * record any bits changed, so for EXTENT_LOCKED case, it will 1309 * either fail with -EEXIST or changeset will record the whole 1310 * range. 1311 */ 1312 BUG_ON(bits & EXTENT_LOCKED); 1313 1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask, 1315 changeset); 1316 } 1317 1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1319 unsigned bits, int wake, int delete, 1320 struct extent_state **cached, gfp_t mask) 1321 { 1322 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1323 cached, mask, NULL); 1324 } 1325 1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1327 unsigned bits, gfp_t mask) 1328 { 1329 int wake = 0; 1330 1331 if (bits & EXTENT_LOCKED) 1332 wake = 1; 1333 1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask); 1335 } 1336 1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1338 unsigned bits, gfp_t mask, 1339 struct extent_changeset *changeset) 1340 { 1341 /* 1342 * Don't support EXTENT_LOCKED case, same reason as 1343 * set_record_extent_bits(). 1344 */ 1345 BUG_ON(bits & EXTENT_LOCKED); 1346 1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask, 1348 changeset); 1349 } 1350 1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1352 struct extent_state **cached_state, gfp_t mask) 1353 { 1354 return set_extent_bit(tree, start, end, 1355 EXTENT_DELALLOC | EXTENT_UPTODATE, 1356 NULL, cached_state, mask); 1357 } 1358 1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1360 struct extent_state **cached_state, gfp_t mask) 1361 { 1362 return set_extent_bit(tree, start, end, 1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1364 NULL, cached_state, mask); 1365 } 1366 1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1368 gfp_t mask) 1369 { 1370 return clear_extent_bit(tree, start, end, 1371 EXTENT_DIRTY | EXTENT_DELALLOC | 1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1373 } 1374 1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1376 gfp_t mask) 1377 { 1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1379 NULL, mask); 1380 } 1381 1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1383 struct extent_state **cached_state, gfp_t mask) 1384 { 1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1386 cached_state, mask); 1387 } 1388 1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1390 struct extent_state **cached_state, gfp_t mask) 1391 { 1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1393 cached_state, mask); 1394 } 1395 1396 /* 1397 * either insert or lock state struct between start and end use mask to tell 1398 * us if waiting is desired. 1399 */ 1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1401 unsigned bits, struct extent_state **cached_state) 1402 { 1403 int err; 1404 u64 failed_start; 1405 1406 while (1) { 1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1408 EXTENT_LOCKED, &failed_start, 1409 cached_state, GFP_NOFS, NULL); 1410 if (err == -EEXIST) { 1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1412 start = failed_start; 1413 } else 1414 break; 1415 WARN_ON(start > end); 1416 } 1417 return err; 1418 } 1419 1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1421 { 1422 return lock_extent_bits(tree, start, end, 0, NULL); 1423 } 1424 1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1426 { 1427 int err; 1428 u64 failed_start; 1429 1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1431 &failed_start, NULL, GFP_NOFS, NULL); 1432 if (err == -EEXIST) { 1433 if (failed_start > start) 1434 clear_extent_bit(tree, start, failed_start - 1, 1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1436 return 0; 1437 } 1438 return 1; 1439 } 1440 1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1442 struct extent_state **cached, gfp_t mask) 1443 { 1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1445 mask); 1446 } 1447 1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1449 { 1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1451 GFP_NOFS); 1452 } 1453 1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1455 { 1456 unsigned long index = start >> PAGE_CACHE_SHIFT; 1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1458 struct page *page; 1459 1460 while (index <= end_index) { 1461 page = find_get_page(inode->i_mapping, index); 1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1463 clear_page_dirty_for_io(page); 1464 page_cache_release(page); 1465 index++; 1466 } 1467 return 0; 1468 } 1469 1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1471 { 1472 unsigned long index = start >> PAGE_CACHE_SHIFT; 1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1474 struct page *page; 1475 1476 while (index <= end_index) { 1477 page = find_get_page(inode->i_mapping, index); 1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1479 __set_page_dirty_nobuffers(page); 1480 account_page_redirty(page); 1481 page_cache_release(page); 1482 index++; 1483 } 1484 return 0; 1485 } 1486 1487 /* 1488 * helper function to set both pages and extents in the tree writeback 1489 */ 1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1491 { 1492 unsigned long index = start >> PAGE_CACHE_SHIFT; 1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1494 struct page *page; 1495 1496 while (index <= end_index) { 1497 page = find_get_page(tree->mapping, index); 1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1499 set_page_writeback(page); 1500 page_cache_release(page); 1501 index++; 1502 } 1503 return 0; 1504 } 1505 1506 /* find the first state struct with 'bits' set after 'start', and 1507 * return it. tree->lock must be held. NULL will returned if 1508 * nothing was found after 'start' 1509 */ 1510 static struct extent_state * 1511 find_first_extent_bit_state(struct extent_io_tree *tree, 1512 u64 start, unsigned bits) 1513 { 1514 struct rb_node *node; 1515 struct extent_state *state; 1516 1517 /* 1518 * this search will find all the extents that end after 1519 * our range starts. 1520 */ 1521 node = tree_search(tree, start); 1522 if (!node) 1523 goto out; 1524 1525 while (1) { 1526 state = rb_entry(node, struct extent_state, rb_node); 1527 if (state->end >= start && (state->state & bits)) 1528 return state; 1529 1530 node = rb_next(node); 1531 if (!node) 1532 break; 1533 } 1534 out: 1535 return NULL; 1536 } 1537 1538 /* 1539 * find the first offset in the io tree with 'bits' set. zero is 1540 * returned if we find something, and *start_ret and *end_ret are 1541 * set to reflect the state struct that was found. 1542 * 1543 * If nothing was found, 1 is returned. If found something, return 0. 1544 */ 1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1546 u64 *start_ret, u64 *end_ret, unsigned bits, 1547 struct extent_state **cached_state) 1548 { 1549 struct extent_state *state; 1550 struct rb_node *n; 1551 int ret = 1; 1552 1553 spin_lock(&tree->lock); 1554 if (cached_state && *cached_state) { 1555 state = *cached_state; 1556 if (state->end == start - 1 && extent_state_in_tree(state)) { 1557 n = rb_next(&state->rb_node); 1558 while (n) { 1559 state = rb_entry(n, struct extent_state, 1560 rb_node); 1561 if (state->state & bits) 1562 goto got_it; 1563 n = rb_next(n); 1564 } 1565 free_extent_state(*cached_state); 1566 *cached_state = NULL; 1567 goto out; 1568 } 1569 free_extent_state(*cached_state); 1570 *cached_state = NULL; 1571 } 1572 1573 state = find_first_extent_bit_state(tree, start, bits); 1574 got_it: 1575 if (state) { 1576 cache_state_if_flags(state, cached_state, 0); 1577 *start_ret = state->start; 1578 *end_ret = state->end; 1579 ret = 0; 1580 } 1581 out: 1582 spin_unlock(&tree->lock); 1583 return ret; 1584 } 1585 1586 /* 1587 * find a contiguous range of bytes in the file marked as delalloc, not 1588 * more than 'max_bytes'. start and end are used to return the range, 1589 * 1590 * 1 is returned if we find something, 0 if nothing was in the tree 1591 */ 1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1593 u64 *start, u64 *end, u64 max_bytes, 1594 struct extent_state **cached_state) 1595 { 1596 struct rb_node *node; 1597 struct extent_state *state; 1598 u64 cur_start = *start; 1599 u64 found = 0; 1600 u64 total_bytes = 0; 1601 1602 spin_lock(&tree->lock); 1603 1604 /* 1605 * this search will find all the extents that end after 1606 * our range starts. 1607 */ 1608 node = tree_search(tree, cur_start); 1609 if (!node) { 1610 if (!found) 1611 *end = (u64)-1; 1612 goto out; 1613 } 1614 1615 while (1) { 1616 state = rb_entry(node, struct extent_state, rb_node); 1617 if (found && (state->start != cur_start || 1618 (state->state & EXTENT_BOUNDARY))) { 1619 goto out; 1620 } 1621 if (!(state->state & EXTENT_DELALLOC)) { 1622 if (!found) 1623 *end = state->end; 1624 goto out; 1625 } 1626 if (!found) { 1627 *start = state->start; 1628 *cached_state = state; 1629 atomic_inc(&state->refs); 1630 } 1631 found++; 1632 *end = state->end; 1633 cur_start = state->end + 1; 1634 node = rb_next(node); 1635 total_bytes += state->end - state->start + 1; 1636 if (total_bytes >= max_bytes) 1637 break; 1638 if (!node) 1639 break; 1640 } 1641 out: 1642 spin_unlock(&tree->lock); 1643 return found; 1644 } 1645 1646 static noinline void __unlock_for_delalloc(struct inode *inode, 1647 struct page *locked_page, 1648 u64 start, u64 end) 1649 { 1650 int ret; 1651 struct page *pages[16]; 1652 unsigned long index = start >> PAGE_CACHE_SHIFT; 1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1654 unsigned long nr_pages = end_index - index + 1; 1655 int i; 1656 1657 if (index == locked_page->index && end_index == index) 1658 return; 1659 1660 while (nr_pages > 0) { 1661 ret = find_get_pages_contig(inode->i_mapping, index, 1662 min_t(unsigned long, nr_pages, 1663 ARRAY_SIZE(pages)), pages); 1664 for (i = 0; i < ret; i++) { 1665 if (pages[i] != locked_page) 1666 unlock_page(pages[i]); 1667 page_cache_release(pages[i]); 1668 } 1669 nr_pages -= ret; 1670 index += ret; 1671 cond_resched(); 1672 } 1673 } 1674 1675 static noinline int lock_delalloc_pages(struct inode *inode, 1676 struct page *locked_page, 1677 u64 delalloc_start, 1678 u64 delalloc_end) 1679 { 1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1681 unsigned long start_index = index; 1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1683 unsigned long pages_locked = 0; 1684 struct page *pages[16]; 1685 unsigned long nrpages; 1686 int ret; 1687 int i; 1688 1689 /* the caller is responsible for locking the start index */ 1690 if (index == locked_page->index && index == end_index) 1691 return 0; 1692 1693 /* skip the page at the start index */ 1694 nrpages = end_index - index + 1; 1695 while (nrpages > 0) { 1696 ret = find_get_pages_contig(inode->i_mapping, index, 1697 min_t(unsigned long, 1698 nrpages, ARRAY_SIZE(pages)), pages); 1699 if (ret == 0) { 1700 ret = -EAGAIN; 1701 goto done; 1702 } 1703 /* now we have an array of pages, lock them all */ 1704 for (i = 0; i < ret; i++) { 1705 /* 1706 * the caller is taking responsibility for 1707 * locked_page 1708 */ 1709 if (pages[i] != locked_page) { 1710 lock_page(pages[i]); 1711 if (!PageDirty(pages[i]) || 1712 pages[i]->mapping != inode->i_mapping) { 1713 ret = -EAGAIN; 1714 unlock_page(pages[i]); 1715 page_cache_release(pages[i]); 1716 goto done; 1717 } 1718 } 1719 page_cache_release(pages[i]); 1720 pages_locked++; 1721 } 1722 nrpages -= ret; 1723 index += ret; 1724 cond_resched(); 1725 } 1726 ret = 0; 1727 done: 1728 if (ret && pages_locked) { 1729 __unlock_for_delalloc(inode, locked_page, 1730 delalloc_start, 1731 ((u64)(start_index + pages_locked - 1)) << 1732 PAGE_CACHE_SHIFT); 1733 } 1734 return ret; 1735 } 1736 1737 /* 1738 * find a contiguous range of bytes in the file marked as delalloc, not 1739 * more than 'max_bytes'. start and end are used to return the range, 1740 * 1741 * 1 is returned if we find something, 0 if nothing was in the tree 1742 */ 1743 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1744 struct extent_io_tree *tree, 1745 struct page *locked_page, u64 *start, 1746 u64 *end, u64 max_bytes) 1747 { 1748 u64 delalloc_start; 1749 u64 delalloc_end; 1750 u64 found; 1751 struct extent_state *cached_state = NULL; 1752 int ret; 1753 int loops = 0; 1754 1755 again: 1756 /* step one, find a bunch of delalloc bytes starting at start */ 1757 delalloc_start = *start; 1758 delalloc_end = 0; 1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1760 max_bytes, &cached_state); 1761 if (!found || delalloc_end <= *start) { 1762 *start = delalloc_start; 1763 *end = delalloc_end; 1764 free_extent_state(cached_state); 1765 return 0; 1766 } 1767 1768 /* 1769 * start comes from the offset of locked_page. We have to lock 1770 * pages in order, so we can't process delalloc bytes before 1771 * locked_page 1772 */ 1773 if (delalloc_start < *start) 1774 delalloc_start = *start; 1775 1776 /* 1777 * make sure to limit the number of pages we try to lock down 1778 */ 1779 if (delalloc_end + 1 - delalloc_start > max_bytes) 1780 delalloc_end = delalloc_start + max_bytes - 1; 1781 1782 /* step two, lock all the pages after the page that has start */ 1783 ret = lock_delalloc_pages(inode, locked_page, 1784 delalloc_start, delalloc_end); 1785 if (ret == -EAGAIN) { 1786 /* some of the pages are gone, lets avoid looping by 1787 * shortening the size of the delalloc range we're searching 1788 */ 1789 free_extent_state(cached_state); 1790 cached_state = NULL; 1791 if (!loops) { 1792 max_bytes = PAGE_CACHE_SIZE; 1793 loops = 1; 1794 goto again; 1795 } else { 1796 found = 0; 1797 goto out_failed; 1798 } 1799 } 1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1801 1802 /* step three, lock the state bits for the whole range */ 1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1804 1805 /* then test to make sure it is all still delalloc */ 1806 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1807 EXTENT_DELALLOC, 1, cached_state); 1808 if (!ret) { 1809 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1810 &cached_state, GFP_NOFS); 1811 __unlock_for_delalloc(inode, locked_page, 1812 delalloc_start, delalloc_end); 1813 cond_resched(); 1814 goto again; 1815 } 1816 free_extent_state(cached_state); 1817 *start = delalloc_start; 1818 *end = delalloc_end; 1819 out_failed: 1820 return found; 1821 } 1822 1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1824 struct page *locked_page, 1825 unsigned clear_bits, 1826 unsigned long page_ops) 1827 { 1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1829 int ret; 1830 struct page *pages[16]; 1831 unsigned long index = start >> PAGE_CACHE_SHIFT; 1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1833 unsigned long nr_pages = end_index - index + 1; 1834 int i; 1835 1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1837 if (page_ops == 0) 1838 return 0; 1839 1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1841 mapping_set_error(inode->i_mapping, -EIO); 1842 1843 while (nr_pages > 0) { 1844 ret = find_get_pages_contig(inode->i_mapping, index, 1845 min_t(unsigned long, 1846 nr_pages, ARRAY_SIZE(pages)), pages); 1847 for (i = 0; i < ret; i++) { 1848 1849 if (page_ops & PAGE_SET_PRIVATE2) 1850 SetPagePrivate2(pages[i]); 1851 1852 if (pages[i] == locked_page) { 1853 page_cache_release(pages[i]); 1854 continue; 1855 } 1856 if (page_ops & PAGE_CLEAR_DIRTY) 1857 clear_page_dirty_for_io(pages[i]); 1858 if (page_ops & PAGE_SET_WRITEBACK) 1859 set_page_writeback(pages[i]); 1860 if (page_ops & PAGE_SET_ERROR) 1861 SetPageError(pages[i]); 1862 if (page_ops & PAGE_END_WRITEBACK) 1863 end_page_writeback(pages[i]); 1864 if (page_ops & PAGE_UNLOCK) 1865 unlock_page(pages[i]); 1866 page_cache_release(pages[i]); 1867 } 1868 nr_pages -= ret; 1869 index += ret; 1870 cond_resched(); 1871 } 1872 return 0; 1873 } 1874 1875 /* 1876 * count the number of bytes in the tree that have a given bit(s) 1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1878 * cached. The total number found is returned. 1879 */ 1880 u64 count_range_bits(struct extent_io_tree *tree, 1881 u64 *start, u64 search_end, u64 max_bytes, 1882 unsigned bits, int contig) 1883 { 1884 struct rb_node *node; 1885 struct extent_state *state; 1886 u64 cur_start = *start; 1887 u64 total_bytes = 0; 1888 u64 last = 0; 1889 int found = 0; 1890 1891 if (WARN_ON(search_end <= cur_start)) 1892 return 0; 1893 1894 spin_lock(&tree->lock); 1895 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1896 total_bytes = tree->dirty_bytes; 1897 goto out; 1898 } 1899 /* 1900 * this search will find all the extents that end after 1901 * our range starts. 1902 */ 1903 node = tree_search(tree, cur_start); 1904 if (!node) 1905 goto out; 1906 1907 while (1) { 1908 state = rb_entry(node, struct extent_state, rb_node); 1909 if (state->start > search_end) 1910 break; 1911 if (contig && found && state->start > last + 1) 1912 break; 1913 if (state->end >= cur_start && (state->state & bits) == bits) { 1914 total_bytes += min(search_end, state->end) + 1 - 1915 max(cur_start, state->start); 1916 if (total_bytes >= max_bytes) 1917 break; 1918 if (!found) { 1919 *start = max(cur_start, state->start); 1920 found = 1; 1921 } 1922 last = state->end; 1923 } else if (contig && found) { 1924 break; 1925 } 1926 node = rb_next(node); 1927 if (!node) 1928 break; 1929 } 1930 out: 1931 spin_unlock(&tree->lock); 1932 return total_bytes; 1933 } 1934 1935 /* 1936 * set the private field for a given byte offset in the tree. If there isn't 1937 * an extent_state there already, this does nothing. 1938 */ 1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1940 { 1941 struct rb_node *node; 1942 struct extent_state *state; 1943 int ret = 0; 1944 1945 spin_lock(&tree->lock); 1946 /* 1947 * this search will find all the extents that end after 1948 * our range starts. 1949 */ 1950 node = tree_search(tree, start); 1951 if (!node) { 1952 ret = -ENOENT; 1953 goto out; 1954 } 1955 state = rb_entry(node, struct extent_state, rb_node); 1956 if (state->start != start) { 1957 ret = -ENOENT; 1958 goto out; 1959 } 1960 state->private = private; 1961 out: 1962 spin_unlock(&tree->lock); 1963 return ret; 1964 } 1965 1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1967 { 1968 struct rb_node *node; 1969 struct extent_state *state; 1970 int ret = 0; 1971 1972 spin_lock(&tree->lock); 1973 /* 1974 * this search will find all the extents that end after 1975 * our range starts. 1976 */ 1977 node = tree_search(tree, start); 1978 if (!node) { 1979 ret = -ENOENT; 1980 goto out; 1981 } 1982 state = rb_entry(node, struct extent_state, rb_node); 1983 if (state->start != start) { 1984 ret = -ENOENT; 1985 goto out; 1986 } 1987 *private = state->private; 1988 out: 1989 spin_unlock(&tree->lock); 1990 return ret; 1991 } 1992 1993 /* 1994 * searches a range in the state tree for a given mask. 1995 * If 'filled' == 1, this returns 1 only if every extent in the tree 1996 * has the bits set. Otherwise, 1 is returned if any bit in the 1997 * range is found set. 1998 */ 1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2000 unsigned bits, int filled, struct extent_state *cached) 2001 { 2002 struct extent_state *state = NULL; 2003 struct rb_node *node; 2004 int bitset = 0; 2005 2006 spin_lock(&tree->lock); 2007 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2008 cached->end > start) 2009 node = &cached->rb_node; 2010 else 2011 node = tree_search(tree, start); 2012 while (node && start <= end) { 2013 state = rb_entry(node, struct extent_state, rb_node); 2014 2015 if (filled && state->start > start) { 2016 bitset = 0; 2017 break; 2018 } 2019 2020 if (state->start > end) 2021 break; 2022 2023 if (state->state & bits) { 2024 bitset = 1; 2025 if (!filled) 2026 break; 2027 } else if (filled) { 2028 bitset = 0; 2029 break; 2030 } 2031 2032 if (state->end == (u64)-1) 2033 break; 2034 2035 start = state->end + 1; 2036 if (start > end) 2037 break; 2038 node = rb_next(node); 2039 if (!node) { 2040 if (filled) 2041 bitset = 0; 2042 break; 2043 } 2044 } 2045 spin_unlock(&tree->lock); 2046 return bitset; 2047 } 2048 2049 /* 2050 * helper function to set a given page up to date if all the 2051 * extents in the tree for that page are up to date 2052 */ 2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2054 { 2055 u64 start = page_offset(page); 2056 u64 end = start + PAGE_CACHE_SIZE - 1; 2057 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2058 SetPageUptodate(page); 2059 } 2060 2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 2062 { 2063 int ret; 2064 int err = 0; 2065 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2066 2067 set_state_private(failure_tree, rec->start, 0); 2068 ret = clear_extent_bits(failure_tree, rec->start, 2069 rec->start + rec->len - 1, 2070 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2071 if (ret) 2072 err = ret; 2073 2074 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2075 rec->start + rec->len - 1, 2076 EXTENT_DAMAGED, GFP_NOFS); 2077 if (ret && !err) 2078 err = ret; 2079 2080 kfree(rec); 2081 return err; 2082 } 2083 2084 /* 2085 * this bypasses the standard btrfs submit functions deliberately, as 2086 * the standard behavior is to write all copies in a raid setup. here we only 2087 * want to write the one bad copy. so we do the mapping for ourselves and issue 2088 * submit_bio directly. 2089 * to avoid any synchronization issues, wait for the data after writing, which 2090 * actually prevents the read that triggered the error from finishing. 2091 * currently, there can be no more than two copies of every data bit. thus, 2092 * exactly one rewrite is required. 2093 */ 2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2095 struct page *page, unsigned int pg_offset, int mirror_num) 2096 { 2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2098 struct bio *bio; 2099 struct btrfs_device *dev; 2100 u64 map_length = 0; 2101 u64 sector; 2102 struct btrfs_bio *bbio = NULL; 2103 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2104 int ret; 2105 2106 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2107 BUG_ON(!mirror_num); 2108 2109 /* we can't repair anything in raid56 yet */ 2110 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2111 return 0; 2112 2113 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2114 if (!bio) 2115 return -EIO; 2116 bio->bi_iter.bi_size = 0; 2117 map_length = length; 2118 2119 ret = btrfs_map_block(fs_info, WRITE, logical, 2120 &map_length, &bbio, mirror_num); 2121 if (ret) { 2122 bio_put(bio); 2123 return -EIO; 2124 } 2125 BUG_ON(mirror_num != bbio->mirror_num); 2126 sector = bbio->stripes[mirror_num-1].physical >> 9; 2127 bio->bi_iter.bi_sector = sector; 2128 dev = bbio->stripes[mirror_num-1].dev; 2129 btrfs_put_bbio(bbio); 2130 if (!dev || !dev->bdev || !dev->writeable) { 2131 bio_put(bio); 2132 return -EIO; 2133 } 2134 bio->bi_bdev = dev->bdev; 2135 bio_add_page(bio, page, length, pg_offset); 2136 2137 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2138 /* try to remap that extent elsewhere? */ 2139 bio_put(bio); 2140 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2141 return -EIO; 2142 } 2143 2144 btrfs_info_rl_in_rcu(fs_info, 2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2146 btrfs_ino(inode), start, 2147 rcu_str_deref(dev->name), sector); 2148 bio_put(bio); 2149 return 0; 2150 } 2151 2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2153 int mirror_num) 2154 { 2155 u64 start = eb->start; 2156 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2157 int ret = 0; 2158 2159 if (root->fs_info->sb->s_flags & MS_RDONLY) 2160 return -EROFS; 2161 2162 for (i = 0; i < num_pages; i++) { 2163 struct page *p = eb->pages[i]; 2164 2165 ret = repair_io_failure(root->fs_info->btree_inode, start, 2166 PAGE_CACHE_SIZE, start, p, 2167 start - page_offset(p), mirror_num); 2168 if (ret) 2169 break; 2170 start += PAGE_CACHE_SIZE; 2171 } 2172 2173 return ret; 2174 } 2175 2176 /* 2177 * each time an IO finishes, we do a fast check in the IO failure tree 2178 * to see if we need to process or clean up an io_failure_record 2179 */ 2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2181 unsigned int pg_offset) 2182 { 2183 u64 private; 2184 u64 private_failure; 2185 struct io_failure_record *failrec; 2186 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2187 struct extent_state *state; 2188 int num_copies; 2189 int ret; 2190 2191 private = 0; 2192 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2193 (u64)-1, 1, EXTENT_DIRTY, 0); 2194 if (!ret) 2195 return 0; 2196 2197 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2198 &private_failure); 2199 if (ret) 2200 return 0; 2201 2202 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2203 BUG_ON(!failrec->this_mirror); 2204 2205 if (failrec->in_validation) { 2206 /* there was no real error, just free the record */ 2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2208 failrec->start); 2209 goto out; 2210 } 2211 if (fs_info->sb->s_flags & MS_RDONLY) 2212 goto out; 2213 2214 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2215 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2216 failrec->start, 2217 EXTENT_LOCKED); 2218 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2219 2220 if (state && state->start <= failrec->start && 2221 state->end >= failrec->start + failrec->len - 1) { 2222 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2223 failrec->len); 2224 if (num_copies > 1) { 2225 repair_io_failure(inode, start, failrec->len, 2226 failrec->logical, page, 2227 pg_offset, failrec->failed_mirror); 2228 } 2229 } 2230 2231 out: 2232 free_io_failure(inode, failrec); 2233 2234 return 0; 2235 } 2236 2237 /* 2238 * Can be called when 2239 * - hold extent lock 2240 * - under ordered extent 2241 * - the inode is freeing 2242 */ 2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2244 { 2245 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2246 struct io_failure_record *failrec; 2247 struct extent_state *state, *next; 2248 2249 if (RB_EMPTY_ROOT(&failure_tree->state)) 2250 return; 2251 2252 spin_lock(&failure_tree->lock); 2253 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2254 while (state) { 2255 if (state->start > end) 2256 break; 2257 2258 ASSERT(state->end <= end); 2259 2260 next = next_state(state); 2261 2262 failrec = (struct io_failure_record *)(unsigned long)state->private; 2263 free_extent_state(state); 2264 kfree(failrec); 2265 2266 state = next; 2267 } 2268 spin_unlock(&failure_tree->lock); 2269 } 2270 2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2272 struct io_failure_record **failrec_ret) 2273 { 2274 struct io_failure_record *failrec; 2275 u64 private; 2276 struct extent_map *em; 2277 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2278 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2279 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2280 int ret; 2281 u64 logical; 2282 2283 ret = get_state_private(failure_tree, start, &private); 2284 if (ret) { 2285 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2286 if (!failrec) 2287 return -ENOMEM; 2288 2289 failrec->start = start; 2290 failrec->len = end - start + 1; 2291 failrec->this_mirror = 0; 2292 failrec->bio_flags = 0; 2293 failrec->in_validation = 0; 2294 2295 read_lock(&em_tree->lock); 2296 em = lookup_extent_mapping(em_tree, start, failrec->len); 2297 if (!em) { 2298 read_unlock(&em_tree->lock); 2299 kfree(failrec); 2300 return -EIO; 2301 } 2302 2303 if (em->start > start || em->start + em->len <= start) { 2304 free_extent_map(em); 2305 em = NULL; 2306 } 2307 read_unlock(&em_tree->lock); 2308 if (!em) { 2309 kfree(failrec); 2310 return -EIO; 2311 } 2312 2313 logical = start - em->start; 2314 logical = em->block_start + logical; 2315 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2316 logical = em->block_start; 2317 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2318 extent_set_compress_type(&failrec->bio_flags, 2319 em->compress_type); 2320 } 2321 2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2323 logical, start, failrec->len); 2324 2325 failrec->logical = logical; 2326 free_extent_map(em); 2327 2328 /* set the bits in the private failure tree */ 2329 ret = set_extent_bits(failure_tree, start, end, 2330 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2331 if (ret >= 0) 2332 ret = set_state_private(failure_tree, start, 2333 (u64)(unsigned long)failrec); 2334 /* set the bits in the inode's tree */ 2335 if (ret >= 0) 2336 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2337 GFP_NOFS); 2338 if (ret < 0) { 2339 kfree(failrec); 2340 return ret; 2341 } 2342 } else { 2343 failrec = (struct io_failure_record *)(unsigned long)private; 2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2345 failrec->logical, failrec->start, failrec->len, 2346 failrec->in_validation); 2347 /* 2348 * when data can be on disk more than twice, add to failrec here 2349 * (e.g. with a list for failed_mirror) to make 2350 * clean_io_failure() clean all those errors at once. 2351 */ 2352 } 2353 2354 *failrec_ret = failrec; 2355 2356 return 0; 2357 } 2358 2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2360 struct io_failure_record *failrec, int failed_mirror) 2361 { 2362 int num_copies; 2363 2364 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2365 failrec->logical, failrec->len); 2366 if (num_copies == 1) { 2367 /* 2368 * we only have a single copy of the data, so don't bother with 2369 * all the retry and error correction code that follows. no 2370 * matter what the error is, it is very likely to persist. 2371 */ 2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2373 num_copies, failrec->this_mirror, failed_mirror); 2374 return 0; 2375 } 2376 2377 /* 2378 * there are two premises: 2379 * a) deliver good data to the caller 2380 * b) correct the bad sectors on disk 2381 */ 2382 if (failed_bio->bi_vcnt > 1) { 2383 /* 2384 * to fulfill b), we need to know the exact failing sectors, as 2385 * we don't want to rewrite any more than the failed ones. thus, 2386 * we need separate read requests for the failed bio 2387 * 2388 * if the following BUG_ON triggers, our validation request got 2389 * merged. we need separate requests for our algorithm to work. 2390 */ 2391 BUG_ON(failrec->in_validation); 2392 failrec->in_validation = 1; 2393 failrec->this_mirror = failed_mirror; 2394 } else { 2395 /* 2396 * we're ready to fulfill a) and b) alongside. get a good copy 2397 * of the failed sector and if we succeed, we have setup 2398 * everything for repair_io_failure to do the rest for us. 2399 */ 2400 if (failrec->in_validation) { 2401 BUG_ON(failrec->this_mirror != failed_mirror); 2402 failrec->in_validation = 0; 2403 failrec->this_mirror = 0; 2404 } 2405 failrec->failed_mirror = failed_mirror; 2406 failrec->this_mirror++; 2407 if (failrec->this_mirror == failed_mirror) 2408 failrec->this_mirror++; 2409 } 2410 2411 if (failrec->this_mirror > num_copies) { 2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2413 num_copies, failrec->this_mirror, failed_mirror); 2414 return 0; 2415 } 2416 2417 return 1; 2418 } 2419 2420 2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2422 struct io_failure_record *failrec, 2423 struct page *page, int pg_offset, int icsum, 2424 bio_end_io_t *endio_func, void *data) 2425 { 2426 struct bio *bio; 2427 struct btrfs_io_bio *btrfs_failed_bio; 2428 struct btrfs_io_bio *btrfs_bio; 2429 2430 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2431 if (!bio) 2432 return NULL; 2433 2434 bio->bi_end_io = endio_func; 2435 bio->bi_iter.bi_sector = failrec->logical >> 9; 2436 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2437 bio->bi_iter.bi_size = 0; 2438 bio->bi_private = data; 2439 2440 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2441 if (btrfs_failed_bio->csum) { 2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2443 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2444 2445 btrfs_bio = btrfs_io_bio(bio); 2446 btrfs_bio->csum = btrfs_bio->csum_inline; 2447 icsum *= csum_size; 2448 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2449 csum_size); 2450 } 2451 2452 bio_add_page(bio, page, failrec->len, pg_offset); 2453 2454 return bio; 2455 } 2456 2457 /* 2458 * this is a generic handler for readpage errors (default 2459 * readpage_io_failed_hook). if other copies exist, read those and write back 2460 * good data to the failed position. does not investigate in remapping the 2461 * failed extent elsewhere, hoping the device will be smart enough to do this as 2462 * needed 2463 */ 2464 2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2466 struct page *page, u64 start, u64 end, 2467 int failed_mirror) 2468 { 2469 struct io_failure_record *failrec; 2470 struct inode *inode = page->mapping->host; 2471 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2472 struct bio *bio; 2473 int read_mode; 2474 int ret; 2475 2476 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2477 2478 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2479 if (ret) 2480 return ret; 2481 2482 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2483 if (!ret) { 2484 free_io_failure(inode, failrec); 2485 return -EIO; 2486 } 2487 2488 if (failed_bio->bi_vcnt > 1) 2489 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2490 else 2491 read_mode = READ_SYNC; 2492 2493 phy_offset >>= inode->i_sb->s_blocksize_bits; 2494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2495 start - page_offset(page), 2496 (int)phy_offset, failed_bio->bi_end_io, 2497 NULL); 2498 if (!bio) { 2499 free_io_failure(inode, failrec); 2500 return -EIO; 2501 } 2502 2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2504 read_mode, failrec->this_mirror, failrec->in_validation); 2505 2506 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2507 failrec->this_mirror, 2508 failrec->bio_flags, 0); 2509 if (ret) { 2510 free_io_failure(inode, failrec); 2511 bio_put(bio); 2512 } 2513 2514 return ret; 2515 } 2516 2517 /* lots and lots of room for performance fixes in the end_bio funcs */ 2518 2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2520 { 2521 int uptodate = (err == 0); 2522 struct extent_io_tree *tree; 2523 int ret = 0; 2524 2525 tree = &BTRFS_I(page->mapping->host)->io_tree; 2526 2527 if (tree->ops && tree->ops->writepage_end_io_hook) { 2528 ret = tree->ops->writepage_end_io_hook(page, start, 2529 end, NULL, uptodate); 2530 if (ret) 2531 uptodate = 0; 2532 } 2533 2534 if (!uptodate) { 2535 ClearPageUptodate(page); 2536 SetPageError(page); 2537 ret = ret < 0 ? ret : -EIO; 2538 mapping_set_error(page->mapping, ret); 2539 } 2540 return 0; 2541 } 2542 2543 /* 2544 * after a writepage IO is done, we need to: 2545 * clear the uptodate bits on error 2546 * clear the writeback bits in the extent tree for this IO 2547 * end_page_writeback if the page has no more pending IO 2548 * 2549 * Scheduling is not allowed, so the extent state tree is expected 2550 * to have one and only one object corresponding to this IO. 2551 */ 2552 static void end_bio_extent_writepage(struct bio *bio) 2553 { 2554 struct bio_vec *bvec; 2555 u64 start; 2556 u64 end; 2557 int i; 2558 2559 bio_for_each_segment_all(bvec, bio, i) { 2560 struct page *page = bvec->bv_page; 2561 2562 /* We always issue full-page reads, but if some block 2563 * in a page fails to read, blk_update_request() will 2564 * advance bv_offset and adjust bv_len to compensate. 2565 * Print a warning for nonzero offsets, and an error 2566 * if they don't add up to a full page. */ 2567 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2568 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2569 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2570 "partial page write in btrfs with offset %u and length %u", 2571 bvec->bv_offset, bvec->bv_len); 2572 else 2573 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2574 "incomplete page write in btrfs with offset %u and " 2575 "length %u", 2576 bvec->bv_offset, bvec->bv_len); 2577 } 2578 2579 start = page_offset(page); 2580 end = start + bvec->bv_offset + bvec->bv_len - 1; 2581 2582 if (end_extent_writepage(page, bio->bi_error, start, end)) 2583 continue; 2584 2585 end_page_writeback(page); 2586 } 2587 2588 bio_put(bio); 2589 } 2590 2591 static void 2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2593 int uptodate) 2594 { 2595 struct extent_state *cached = NULL; 2596 u64 end = start + len - 1; 2597 2598 if (uptodate && tree->track_uptodate) 2599 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2600 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2601 } 2602 2603 /* 2604 * after a readpage IO is done, we need to: 2605 * clear the uptodate bits on error 2606 * set the uptodate bits if things worked 2607 * set the page up to date if all extents in the tree are uptodate 2608 * clear the lock bit in the extent tree 2609 * unlock the page if there are no other extents locked for it 2610 * 2611 * Scheduling is not allowed, so the extent state tree is expected 2612 * to have one and only one object corresponding to this IO. 2613 */ 2614 static void end_bio_extent_readpage(struct bio *bio) 2615 { 2616 struct bio_vec *bvec; 2617 int uptodate = !bio->bi_error; 2618 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2619 struct extent_io_tree *tree; 2620 u64 offset = 0; 2621 u64 start; 2622 u64 end; 2623 u64 len; 2624 u64 extent_start = 0; 2625 u64 extent_len = 0; 2626 int mirror; 2627 int ret; 2628 int i; 2629 2630 bio_for_each_segment_all(bvec, bio, i) { 2631 struct page *page = bvec->bv_page; 2632 struct inode *inode = page->mapping->host; 2633 2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2635 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2636 bio->bi_error, io_bio->mirror_num); 2637 tree = &BTRFS_I(inode)->io_tree; 2638 2639 /* We always issue full-page reads, but if some block 2640 * in a page fails to read, blk_update_request() will 2641 * advance bv_offset and adjust bv_len to compensate. 2642 * Print a warning for nonzero offsets, and an error 2643 * if they don't add up to a full page. */ 2644 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2645 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2646 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2647 "partial page read in btrfs with offset %u and length %u", 2648 bvec->bv_offset, bvec->bv_len); 2649 else 2650 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2651 "incomplete page read in btrfs with offset %u and " 2652 "length %u", 2653 bvec->bv_offset, bvec->bv_len); 2654 } 2655 2656 start = page_offset(page); 2657 end = start + bvec->bv_offset + bvec->bv_len - 1; 2658 len = bvec->bv_len; 2659 2660 mirror = io_bio->mirror_num; 2661 if (likely(uptodate && tree->ops && 2662 tree->ops->readpage_end_io_hook)) { 2663 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2664 page, start, end, 2665 mirror); 2666 if (ret) 2667 uptodate = 0; 2668 else 2669 clean_io_failure(inode, start, page, 0); 2670 } 2671 2672 if (likely(uptodate)) 2673 goto readpage_ok; 2674 2675 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2676 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2677 if (!ret && !bio->bi_error) 2678 uptodate = 1; 2679 } else { 2680 /* 2681 * The generic bio_readpage_error handles errors the 2682 * following way: If possible, new read requests are 2683 * created and submitted and will end up in 2684 * end_bio_extent_readpage as well (if we're lucky, not 2685 * in the !uptodate case). In that case it returns 0 and 2686 * we just go on with the next page in our bio. If it 2687 * can't handle the error it will return -EIO and we 2688 * remain responsible for that page. 2689 */ 2690 ret = bio_readpage_error(bio, offset, page, start, end, 2691 mirror); 2692 if (ret == 0) { 2693 uptodate = !bio->bi_error; 2694 offset += len; 2695 continue; 2696 } 2697 } 2698 readpage_ok: 2699 if (likely(uptodate)) { 2700 loff_t i_size = i_size_read(inode); 2701 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2702 unsigned off; 2703 2704 /* Zero out the end if this page straddles i_size */ 2705 off = i_size & (PAGE_CACHE_SIZE-1); 2706 if (page->index == end_index && off) 2707 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2708 SetPageUptodate(page); 2709 } else { 2710 ClearPageUptodate(page); 2711 SetPageError(page); 2712 } 2713 unlock_page(page); 2714 offset += len; 2715 2716 if (unlikely(!uptodate)) { 2717 if (extent_len) { 2718 endio_readpage_release_extent(tree, 2719 extent_start, 2720 extent_len, 1); 2721 extent_start = 0; 2722 extent_len = 0; 2723 } 2724 endio_readpage_release_extent(tree, start, 2725 end - start + 1, 0); 2726 } else if (!extent_len) { 2727 extent_start = start; 2728 extent_len = end + 1 - start; 2729 } else if (extent_start + extent_len == start) { 2730 extent_len += end + 1 - start; 2731 } else { 2732 endio_readpage_release_extent(tree, extent_start, 2733 extent_len, uptodate); 2734 extent_start = start; 2735 extent_len = end + 1 - start; 2736 } 2737 } 2738 2739 if (extent_len) 2740 endio_readpage_release_extent(tree, extent_start, extent_len, 2741 uptodate); 2742 if (io_bio->end_io) 2743 io_bio->end_io(io_bio, bio->bi_error); 2744 bio_put(bio); 2745 } 2746 2747 /* 2748 * this allocates from the btrfs_bioset. We're returning a bio right now 2749 * but you can call btrfs_io_bio for the appropriate container_of magic 2750 */ 2751 struct bio * 2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2753 gfp_t gfp_flags) 2754 { 2755 struct btrfs_io_bio *btrfs_bio; 2756 struct bio *bio; 2757 2758 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2759 2760 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2761 while (!bio && (nr_vecs /= 2)) { 2762 bio = bio_alloc_bioset(gfp_flags, 2763 nr_vecs, btrfs_bioset); 2764 } 2765 } 2766 2767 if (bio) { 2768 bio->bi_bdev = bdev; 2769 bio->bi_iter.bi_sector = first_sector; 2770 btrfs_bio = btrfs_io_bio(bio); 2771 btrfs_bio->csum = NULL; 2772 btrfs_bio->csum_allocated = NULL; 2773 btrfs_bio->end_io = NULL; 2774 } 2775 return bio; 2776 } 2777 2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2779 { 2780 struct btrfs_io_bio *btrfs_bio; 2781 struct bio *new; 2782 2783 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2784 if (new) { 2785 btrfs_bio = btrfs_io_bio(new); 2786 btrfs_bio->csum = NULL; 2787 btrfs_bio->csum_allocated = NULL; 2788 btrfs_bio->end_io = NULL; 2789 2790 #ifdef CONFIG_BLK_CGROUP 2791 /* FIXME, put this into bio_clone_bioset */ 2792 if (bio->bi_css) 2793 bio_associate_blkcg(new, bio->bi_css); 2794 #endif 2795 } 2796 return new; 2797 } 2798 2799 /* this also allocates from the btrfs_bioset */ 2800 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2801 { 2802 struct btrfs_io_bio *btrfs_bio; 2803 struct bio *bio; 2804 2805 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2806 if (bio) { 2807 btrfs_bio = btrfs_io_bio(bio); 2808 btrfs_bio->csum = NULL; 2809 btrfs_bio->csum_allocated = NULL; 2810 btrfs_bio->end_io = NULL; 2811 } 2812 return bio; 2813 } 2814 2815 2816 static int __must_check submit_one_bio(int rw, struct bio *bio, 2817 int mirror_num, unsigned long bio_flags) 2818 { 2819 int ret = 0; 2820 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2821 struct page *page = bvec->bv_page; 2822 struct extent_io_tree *tree = bio->bi_private; 2823 u64 start; 2824 2825 start = page_offset(page) + bvec->bv_offset; 2826 2827 bio->bi_private = NULL; 2828 2829 bio_get(bio); 2830 2831 if (tree->ops && tree->ops->submit_bio_hook) 2832 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2833 mirror_num, bio_flags, start); 2834 else 2835 btrfsic_submit_bio(rw, bio); 2836 2837 bio_put(bio); 2838 return ret; 2839 } 2840 2841 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2842 unsigned long offset, size_t size, struct bio *bio, 2843 unsigned long bio_flags) 2844 { 2845 int ret = 0; 2846 if (tree->ops && tree->ops->merge_bio_hook) 2847 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2848 bio_flags); 2849 BUG_ON(ret < 0); 2850 return ret; 2851 2852 } 2853 2854 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2855 struct writeback_control *wbc, 2856 struct page *page, sector_t sector, 2857 size_t size, unsigned long offset, 2858 struct block_device *bdev, 2859 struct bio **bio_ret, 2860 unsigned long max_pages, 2861 bio_end_io_t end_io_func, 2862 int mirror_num, 2863 unsigned long prev_bio_flags, 2864 unsigned long bio_flags, 2865 bool force_bio_submit) 2866 { 2867 int ret = 0; 2868 struct bio *bio; 2869 int contig = 0; 2870 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2871 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2872 2873 if (bio_ret && *bio_ret) { 2874 bio = *bio_ret; 2875 if (old_compressed) 2876 contig = bio->bi_iter.bi_sector == sector; 2877 else 2878 contig = bio_end_sector(bio) == sector; 2879 2880 if (prev_bio_flags != bio_flags || !contig || 2881 force_bio_submit || 2882 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2883 bio_add_page(bio, page, page_size, offset) < page_size) { 2884 ret = submit_one_bio(rw, bio, mirror_num, 2885 prev_bio_flags); 2886 if (ret < 0) { 2887 *bio_ret = NULL; 2888 return ret; 2889 } 2890 bio = NULL; 2891 } else { 2892 if (wbc) 2893 wbc_account_io(wbc, page, page_size); 2894 return 0; 2895 } 2896 } 2897 2898 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2899 GFP_NOFS | __GFP_HIGH); 2900 if (!bio) 2901 return -ENOMEM; 2902 2903 bio_add_page(bio, page, page_size, offset); 2904 bio->bi_end_io = end_io_func; 2905 bio->bi_private = tree; 2906 if (wbc) { 2907 wbc_init_bio(wbc, bio); 2908 wbc_account_io(wbc, page, page_size); 2909 } 2910 2911 if (bio_ret) 2912 *bio_ret = bio; 2913 else 2914 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2915 2916 return ret; 2917 } 2918 2919 static void attach_extent_buffer_page(struct extent_buffer *eb, 2920 struct page *page) 2921 { 2922 if (!PagePrivate(page)) { 2923 SetPagePrivate(page); 2924 page_cache_get(page); 2925 set_page_private(page, (unsigned long)eb); 2926 } else { 2927 WARN_ON(page->private != (unsigned long)eb); 2928 } 2929 } 2930 2931 void set_page_extent_mapped(struct page *page) 2932 { 2933 if (!PagePrivate(page)) { 2934 SetPagePrivate(page); 2935 page_cache_get(page); 2936 set_page_private(page, EXTENT_PAGE_PRIVATE); 2937 } 2938 } 2939 2940 static struct extent_map * 2941 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2942 u64 start, u64 len, get_extent_t *get_extent, 2943 struct extent_map **em_cached) 2944 { 2945 struct extent_map *em; 2946 2947 if (em_cached && *em_cached) { 2948 em = *em_cached; 2949 if (extent_map_in_tree(em) && start >= em->start && 2950 start < extent_map_end(em)) { 2951 atomic_inc(&em->refs); 2952 return em; 2953 } 2954 2955 free_extent_map(em); 2956 *em_cached = NULL; 2957 } 2958 2959 em = get_extent(inode, page, pg_offset, start, len, 0); 2960 if (em_cached && !IS_ERR_OR_NULL(em)) { 2961 BUG_ON(*em_cached); 2962 atomic_inc(&em->refs); 2963 *em_cached = em; 2964 } 2965 return em; 2966 } 2967 /* 2968 * basic readpage implementation. Locked extent state structs are inserted 2969 * into the tree that are removed when the IO is done (by the end_io 2970 * handlers) 2971 * XXX JDM: This needs looking at to ensure proper page locking 2972 */ 2973 static int __do_readpage(struct extent_io_tree *tree, 2974 struct page *page, 2975 get_extent_t *get_extent, 2976 struct extent_map **em_cached, 2977 struct bio **bio, int mirror_num, 2978 unsigned long *bio_flags, int rw, 2979 u64 *prev_em_start) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 u64 start = page_offset(page); 2983 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2984 u64 end; 2985 u64 cur = start; 2986 u64 extent_offset; 2987 u64 last_byte = i_size_read(inode); 2988 u64 block_start; 2989 u64 cur_end; 2990 sector_t sector; 2991 struct extent_map *em; 2992 struct block_device *bdev; 2993 int ret; 2994 int nr = 0; 2995 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2996 size_t pg_offset = 0; 2997 size_t iosize; 2998 size_t disk_io_size; 2999 size_t blocksize = inode->i_sb->s_blocksize; 3000 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 3001 3002 set_page_extent_mapped(page); 3003 3004 end = page_end; 3005 if (!PageUptodate(page)) { 3006 if (cleancache_get_page(page) == 0) { 3007 BUG_ON(blocksize != PAGE_SIZE); 3008 unlock_extent(tree, start, end); 3009 goto out; 3010 } 3011 } 3012 3013 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 3014 char *userpage; 3015 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 3016 3017 if (zero_offset) { 3018 iosize = PAGE_CACHE_SIZE - zero_offset; 3019 userpage = kmap_atomic(page); 3020 memset(userpage + zero_offset, 0, iosize); 3021 flush_dcache_page(page); 3022 kunmap_atomic(userpage); 3023 } 3024 } 3025 while (cur <= end) { 3026 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 3027 bool force_bio_submit = false; 3028 3029 if (cur >= last_byte) { 3030 char *userpage; 3031 struct extent_state *cached = NULL; 3032 3033 iosize = PAGE_CACHE_SIZE - pg_offset; 3034 userpage = kmap_atomic(page); 3035 memset(userpage + pg_offset, 0, iosize); 3036 flush_dcache_page(page); 3037 kunmap_atomic(userpage); 3038 set_extent_uptodate(tree, cur, cur + iosize - 1, 3039 &cached, GFP_NOFS); 3040 if (!parent_locked) 3041 unlock_extent_cached(tree, cur, 3042 cur + iosize - 1, 3043 &cached, GFP_NOFS); 3044 break; 3045 } 3046 em = __get_extent_map(inode, page, pg_offset, cur, 3047 end - cur + 1, get_extent, em_cached); 3048 if (IS_ERR_OR_NULL(em)) { 3049 SetPageError(page); 3050 if (!parent_locked) 3051 unlock_extent(tree, cur, end); 3052 break; 3053 } 3054 extent_offset = cur - em->start; 3055 BUG_ON(extent_map_end(em) <= cur); 3056 BUG_ON(end < cur); 3057 3058 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3059 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3060 extent_set_compress_type(&this_bio_flag, 3061 em->compress_type); 3062 } 3063 3064 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3065 cur_end = min(extent_map_end(em) - 1, end); 3066 iosize = ALIGN(iosize, blocksize); 3067 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3068 disk_io_size = em->block_len; 3069 sector = em->block_start >> 9; 3070 } else { 3071 sector = (em->block_start + extent_offset) >> 9; 3072 disk_io_size = iosize; 3073 } 3074 bdev = em->bdev; 3075 block_start = em->block_start; 3076 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3077 block_start = EXTENT_MAP_HOLE; 3078 3079 /* 3080 * If we have a file range that points to a compressed extent 3081 * and it's followed by a consecutive file range that points to 3082 * to the same compressed extent (possibly with a different 3083 * offset and/or length, so it either points to the whole extent 3084 * or only part of it), we must make sure we do not submit a 3085 * single bio to populate the pages for the 2 ranges because 3086 * this makes the compressed extent read zero out the pages 3087 * belonging to the 2nd range. Imagine the following scenario: 3088 * 3089 * File layout 3090 * [0 - 8K] [8K - 24K] 3091 * | | 3092 * | | 3093 * points to extent X, points to extent X, 3094 * offset 4K, length of 8K offset 0, length 16K 3095 * 3096 * [extent X, compressed length = 4K uncompressed length = 16K] 3097 * 3098 * If the bio to read the compressed extent covers both ranges, 3099 * it will decompress extent X into the pages belonging to the 3100 * first range and then it will stop, zeroing out the remaining 3101 * pages that belong to the other range that points to extent X. 3102 * So here we make sure we submit 2 bios, one for the first 3103 * range and another one for the third range. Both will target 3104 * the same physical extent from disk, but we can't currently 3105 * make the compressed bio endio callback populate the pages 3106 * for both ranges because each compressed bio is tightly 3107 * coupled with a single extent map, and each range can have 3108 * an extent map with a different offset value relative to the 3109 * uncompressed data of our extent and different lengths. This 3110 * is a corner case so we prioritize correctness over 3111 * non-optimal behavior (submitting 2 bios for the same extent). 3112 */ 3113 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3114 prev_em_start && *prev_em_start != (u64)-1 && 3115 *prev_em_start != em->orig_start) 3116 force_bio_submit = true; 3117 3118 if (prev_em_start) 3119 *prev_em_start = em->orig_start; 3120 3121 free_extent_map(em); 3122 em = NULL; 3123 3124 /* we've found a hole, just zero and go on */ 3125 if (block_start == EXTENT_MAP_HOLE) { 3126 char *userpage; 3127 struct extent_state *cached = NULL; 3128 3129 userpage = kmap_atomic(page); 3130 memset(userpage + pg_offset, 0, iosize); 3131 flush_dcache_page(page); 3132 kunmap_atomic(userpage); 3133 3134 set_extent_uptodate(tree, cur, cur + iosize - 1, 3135 &cached, GFP_NOFS); 3136 if (parent_locked) 3137 free_extent_state(cached); 3138 else 3139 unlock_extent_cached(tree, cur, 3140 cur + iosize - 1, 3141 &cached, GFP_NOFS); 3142 cur = cur + iosize; 3143 pg_offset += iosize; 3144 continue; 3145 } 3146 /* the get_extent function already copied into the page */ 3147 if (test_range_bit(tree, cur, cur_end, 3148 EXTENT_UPTODATE, 1, NULL)) { 3149 check_page_uptodate(tree, page); 3150 if (!parent_locked) 3151 unlock_extent(tree, cur, cur + iosize - 1); 3152 cur = cur + iosize; 3153 pg_offset += iosize; 3154 continue; 3155 } 3156 /* we have an inline extent but it didn't get marked up 3157 * to date. Error out 3158 */ 3159 if (block_start == EXTENT_MAP_INLINE) { 3160 SetPageError(page); 3161 if (!parent_locked) 3162 unlock_extent(tree, cur, cur + iosize - 1); 3163 cur = cur + iosize; 3164 pg_offset += iosize; 3165 continue; 3166 } 3167 3168 pnr -= page->index; 3169 ret = submit_extent_page(rw, tree, NULL, page, 3170 sector, disk_io_size, pg_offset, 3171 bdev, bio, pnr, 3172 end_bio_extent_readpage, mirror_num, 3173 *bio_flags, 3174 this_bio_flag, 3175 force_bio_submit); 3176 if (!ret) { 3177 nr++; 3178 *bio_flags = this_bio_flag; 3179 } else { 3180 SetPageError(page); 3181 if (!parent_locked) 3182 unlock_extent(tree, cur, cur + iosize - 1); 3183 } 3184 cur = cur + iosize; 3185 pg_offset += iosize; 3186 } 3187 out: 3188 if (!nr) { 3189 if (!PageError(page)) 3190 SetPageUptodate(page); 3191 unlock_page(page); 3192 } 3193 return 0; 3194 } 3195 3196 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3197 struct page *pages[], int nr_pages, 3198 u64 start, u64 end, 3199 get_extent_t *get_extent, 3200 struct extent_map **em_cached, 3201 struct bio **bio, int mirror_num, 3202 unsigned long *bio_flags, int rw, 3203 u64 *prev_em_start) 3204 { 3205 struct inode *inode; 3206 struct btrfs_ordered_extent *ordered; 3207 int index; 3208 3209 inode = pages[0]->mapping->host; 3210 while (1) { 3211 lock_extent(tree, start, end); 3212 ordered = btrfs_lookup_ordered_range(inode, start, 3213 end - start + 1); 3214 if (!ordered) 3215 break; 3216 unlock_extent(tree, start, end); 3217 btrfs_start_ordered_extent(inode, ordered, 1); 3218 btrfs_put_ordered_extent(ordered); 3219 } 3220 3221 for (index = 0; index < nr_pages; index++) { 3222 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3223 mirror_num, bio_flags, rw, prev_em_start); 3224 page_cache_release(pages[index]); 3225 } 3226 } 3227 3228 static void __extent_readpages(struct extent_io_tree *tree, 3229 struct page *pages[], 3230 int nr_pages, get_extent_t *get_extent, 3231 struct extent_map **em_cached, 3232 struct bio **bio, int mirror_num, 3233 unsigned long *bio_flags, int rw, 3234 u64 *prev_em_start) 3235 { 3236 u64 start = 0; 3237 u64 end = 0; 3238 u64 page_start; 3239 int index; 3240 int first_index = 0; 3241 3242 for (index = 0; index < nr_pages; index++) { 3243 page_start = page_offset(pages[index]); 3244 if (!end) { 3245 start = page_start; 3246 end = start + PAGE_CACHE_SIZE - 1; 3247 first_index = index; 3248 } else if (end + 1 == page_start) { 3249 end += PAGE_CACHE_SIZE; 3250 } else { 3251 __do_contiguous_readpages(tree, &pages[first_index], 3252 index - first_index, start, 3253 end, get_extent, em_cached, 3254 bio, mirror_num, bio_flags, 3255 rw, prev_em_start); 3256 start = page_start; 3257 end = start + PAGE_CACHE_SIZE - 1; 3258 first_index = index; 3259 } 3260 } 3261 3262 if (end) 3263 __do_contiguous_readpages(tree, &pages[first_index], 3264 index - first_index, start, 3265 end, get_extent, em_cached, bio, 3266 mirror_num, bio_flags, rw, 3267 prev_em_start); 3268 } 3269 3270 static int __extent_read_full_page(struct extent_io_tree *tree, 3271 struct page *page, 3272 get_extent_t *get_extent, 3273 struct bio **bio, int mirror_num, 3274 unsigned long *bio_flags, int rw) 3275 { 3276 struct inode *inode = page->mapping->host; 3277 struct btrfs_ordered_extent *ordered; 3278 u64 start = page_offset(page); 3279 u64 end = start + PAGE_CACHE_SIZE - 1; 3280 int ret; 3281 3282 while (1) { 3283 lock_extent(tree, start, end); 3284 ordered = btrfs_lookup_ordered_extent(inode, start); 3285 if (!ordered) 3286 break; 3287 unlock_extent(tree, start, end); 3288 btrfs_start_ordered_extent(inode, ordered, 1); 3289 btrfs_put_ordered_extent(ordered); 3290 } 3291 3292 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3293 bio_flags, rw, NULL); 3294 return ret; 3295 } 3296 3297 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3298 get_extent_t *get_extent, int mirror_num) 3299 { 3300 struct bio *bio = NULL; 3301 unsigned long bio_flags = 0; 3302 int ret; 3303 3304 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3305 &bio_flags, READ); 3306 if (bio) 3307 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3308 return ret; 3309 } 3310 3311 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3312 get_extent_t *get_extent, int mirror_num) 3313 { 3314 struct bio *bio = NULL; 3315 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3316 int ret; 3317 3318 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3319 &bio_flags, READ, NULL); 3320 if (bio) 3321 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3322 return ret; 3323 } 3324 3325 static noinline void update_nr_written(struct page *page, 3326 struct writeback_control *wbc, 3327 unsigned long nr_written) 3328 { 3329 wbc->nr_to_write -= nr_written; 3330 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3331 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3332 page->mapping->writeback_index = page->index + nr_written; 3333 } 3334 3335 /* 3336 * helper for __extent_writepage, doing all of the delayed allocation setup. 3337 * 3338 * This returns 1 if our fill_delalloc function did all the work required 3339 * to write the page (copy into inline extent). In this case the IO has 3340 * been started and the page is already unlocked. 3341 * 3342 * This returns 0 if all went well (page still locked) 3343 * This returns < 0 if there were errors (page still locked) 3344 */ 3345 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3346 struct page *page, struct writeback_control *wbc, 3347 struct extent_page_data *epd, 3348 u64 delalloc_start, 3349 unsigned long *nr_written) 3350 { 3351 struct extent_io_tree *tree = epd->tree; 3352 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3353 u64 nr_delalloc; 3354 u64 delalloc_to_write = 0; 3355 u64 delalloc_end = 0; 3356 int ret; 3357 int page_started = 0; 3358 3359 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3360 return 0; 3361 3362 while (delalloc_end < page_end) { 3363 nr_delalloc = find_lock_delalloc_range(inode, tree, 3364 page, 3365 &delalloc_start, 3366 &delalloc_end, 3367 BTRFS_MAX_EXTENT_SIZE); 3368 if (nr_delalloc == 0) { 3369 delalloc_start = delalloc_end + 1; 3370 continue; 3371 } 3372 ret = tree->ops->fill_delalloc(inode, page, 3373 delalloc_start, 3374 delalloc_end, 3375 &page_started, 3376 nr_written); 3377 /* File system has been set read-only */ 3378 if (ret) { 3379 SetPageError(page); 3380 /* fill_delalloc should be return < 0 for error 3381 * but just in case, we use > 0 here meaning the 3382 * IO is started, so we don't want to return > 0 3383 * unless things are going well. 3384 */ 3385 ret = ret < 0 ? ret : -EIO; 3386 goto done; 3387 } 3388 /* 3389 * delalloc_end is already one less than the total 3390 * length, so we don't subtract one from 3391 * PAGE_CACHE_SIZE 3392 */ 3393 delalloc_to_write += (delalloc_end - delalloc_start + 3394 PAGE_CACHE_SIZE) >> 3395 PAGE_CACHE_SHIFT; 3396 delalloc_start = delalloc_end + 1; 3397 } 3398 if (wbc->nr_to_write < delalloc_to_write) { 3399 int thresh = 8192; 3400 3401 if (delalloc_to_write < thresh * 2) 3402 thresh = delalloc_to_write; 3403 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3404 thresh); 3405 } 3406 3407 /* did the fill delalloc function already unlock and start 3408 * the IO? 3409 */ 3410 if (page_started) { 3411 /* 3412 * we've unlocked the page, so we can't update 3413 * the mapping's writeback index, just update 3414 * nr_to_write. 3415 */ 3416 wbc->nr_to_write -= *nr_written; 3417 return 1; 3418 } 3419 3420 ret = 0; 3421 3422 done: 3423 return ret; 3424 } 3425 3426 /* 3427 * helper for __extent_writepage. This calls the writepage start hooks, 3428 * and does the loop to map the page into extents and bios. 3429 * 3430 * We return 1 if the IO is started and the page is unlocked, 3431 * 0 if all went well (page still locked) 3432 * < 0 if there were errors (page still locked) 3433 */ 3434 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3435 struct page *page, 3436 struct writeback_control *wbc, 3437 struct extent_page_data *epd, 3438 loff_t i_size, 3439 unsigned long nr_written, 3440 int write_flags, int *nr_ret) 3441 { 3442 struct extent_io_tree *tree = epd->tree; 3443 u64 start = page_offset(page); 3444 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3445 u64 end; 3446 u64 cur = start; 3447 u64 extent_offset; 3448 u64 block_start; 3449 u64 iosize; 3450 sector_t sector; 3451 struct extent_state *cached_state = NULL; 3452 struct extent_map *em; 3453 struct block_device *bdev; 3454 size_t pg_offset = 0; 3455 size_t blocksize; 3456 int ret = 0; 3457 int nr = 0; 3458 bool compressed; 3459 3460 if (tree->ops && tree->ops->writepage_start_hook) { 3461 ret = tree->ops->writepage_start_hook(page, start, 3462 page_end); 3463 if (ret) { 3464 /* Fixup worker will requeue */ 3465 if (ret == -EBUSY) 3466 wbc->pages_skipped++; 3467 else 3468 redirty_page_for_writepage(wbc, page); 3469 3470 update_nr_written(page, wbc, nr_written); 3471 unlock_page(page); 3472 ret = 1; 3473 goto done_unlocked; 3474 } 3475 } 3476 3477 /* 3478 * we don't want to touch the inode after unlocking the page, 3479 * so we update the mapping writeback index now 3480 */ 3481 update_nr_written(page, wbc, nr_written + 1); 3482 3483 end = page_end; 3484 if (i_size <= start) { 3485 if (tree->ops && tree->ops->writepage_end_io_hook) 3486 tree->ops->writepage_end_io_hook(page, start, 3487 page_end, NULL, 1); 3488 goto done; 3489 } 3490 3491 blocksize = inode->i_sb->s_blocksize; 3492 3493 while (cur <= end) { 3494 u64 em_end; 3495 if (cur >= i_size) { 3496 if (tree->ops && tree->ops->writepage_end_io_hook) 3497 tree->ops->writepage_end_io_hook(page, cur, 3498 page_end, NULL, 1); 3499 break; 3500 } 3501 em = epd->get_extent(inode, page, pg_offset, cur, 3502 end - cur + 1, 1); 3503 if (IS_ERR_OR_NULL(em)) { 3504 SetPageError(page); 3505 ret = PTR_ERR_OR_ZERO(em); 3506 break; 3507 } 3508 3509 extent_offset = cur - em->start; 3510 em_end = extent_map_end(em); 3511 BUG_ON(em_end <= cur); 3512 BUG_ON(end < cur); 3513 iosize = min(em_end - cur, end - cur + 1); 3514 iosize = ALIGN(iosize, blocksize); 3515 sector = (em->block_start + extent_offset) >> 9; 3516 bdev = em->bdev; 3517 block_start = em->block_start; 3518 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3519 free_extent_map(em); 3520 em = NULL; 3521 3522 /* 3523 * compressed and inline extents are written through other 3524 * paths in the FS 3525 */ 3526 if (compressed || block_start == EXTENT_MAP_HOLE || 3527 block_start == EXTENT_MAP_INLINE) { 3528 /* 3529 * end_io notification does not happen here for 3530 * compressed extents 3531 */ 3532 if (!compressed && tree->ops && 3533 tree->ops->writepage_end_io_hook) 3534 tree->ops->writepage_end_io_hook(page, cur, 3535 cur + iosize - 1, 3536 NULL, 1); 3537 else if (compressed) { 3538 /* we don't want to end_page_writeback on 3539 * a compressed extent. this happens 3540 * elsewhere 3541 */ 3542 nr++; 3543 } 3544 3545 cur += iosize; 3546 pg_offset += iosize; 3547 continue; 3548 } 3549 3550 if (tree->ops && tree->ops->writepage_io_hook) { 3551 ret = tree->ops->writepage_io_hook(page, cur, 3552 cur + iosize - 1); 3553 } else { 3554 ret = 0; 3555 } 3556 if (ret) { 3557 SetPageError(page); 3558 } else { 3559 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3560 3561 set_range_writeback(tree, cur, cur + iosize - 1); 3562 if (!PageWriteback(page)) { 3563 btrfs_err(BTRFS_I(inode)->root->fs_info, 3564 "page %lu not writeback, cur %llu end %llu", 3565 page->index, cur, end); 3566 } 3567 3568 ret = submit_extent_page(write_flags, tree, wbc, page, 3569 sector, iosize, pg_offset, 3570 bdev, &epd->bio, max_nr, 3571 end_bio_extent_writepage, 3572 0, 0, 0, false); 3573 if (ret) 3574 SetPageError(page); 3575 } 3576 cur = cur + iosize; 3577 pg_offset += iosize; 3578 nr++; 3579 } 3580 done: 3581 *nr_ret = nr; 3582 3583 done_unlocked: 3584 3585 /* drop our reference on any cached states */ 3586 free_extent_state(cached_state); 3587 return ret; 3588 } 3589 3590 /* 3591 * the writepage semantics are similar to regular writepage. extent 3592 * records are inserted to lock ranges in the tree, and as dirty areas 3593 * are found, they are marked writeback. Then the lock bits are removed 3594 * and the end_io handler clears the writeback ranges 3595 */ 3596 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3597 void *data) 3598 { 3599 struct inode *inode = page->mapping->host; 3600 struct extent_page_data *epd = data; 3601 u64 start = page_offset(page); 3602 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3603 int ret; 3604 int nr = 0; 3605 size_t pg_offset = 0; 3606 loff_t i_size = i_size_read(inode); 3607 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3608 int write_flags; 3609 unsigned long nr_written = 0; 3610 3611 if (wbc->sync_mode == WB_SYNC_ALL) 3612 write_flags = WRITE_SYNC; 3613 else 3614 write_flags = WRITE; 3615 3616 trace___extent_writepage(page, inode, wbc); 3617 3618 WARN_ON(!PageLocked(page)); 3619 3620 ClearPageError(page); 3621 3622 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3623 if (page->index > end_index || 3624 (page->index == end_index && !pg_offset)) { 3625 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3626 unlock_page(page); 3627 return 0; 3628 } 3629 3630 if (page->index == end_index) { 3631 char *userpage; 3632 3633 userpage = kmap_atomic(page); 3634 memset(userpage + pg_offset, 0, 3635 PAGE_CACHE_SIZE - pg_offset); 3636 kunmap_atomic(userpage); 3637 flush_dcache_page(page); 3638 } 3639 3640 pg_offset = 0; 3641 3642 set_page_extent_mapped(page); 3643 3644 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3645 if (ret == 1) 3646 goto done_unlocked; 3647 if (ret) 3648 goto done; 3649 3650 ret = __extent_writepage_io(inode, page, wbc, epd, 3651 i_size, nr_written, write_flags, &nr); 3652 if (ret == 1) 3653 goto done_unlocked; 3654 3655 done: 3656 if (nr == 0) { 3657 /* make sure the mapping tag for page dirty gets cleared */ 3658 set_page_writeback(page); 3659 end_page_writeback(page); 3660 } 3661 if (PageError(page)) { 3662 ret = ret < 0 ? ret : -EIO; 3663 end_extent_writepage(page, ret, start, page_end); 3664 } 3665 unlock_page(page); 3666 return ret; 3667 3668 done_unlocked: 3669 return 0; 3670 } 3671 3672 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3673 { 3674 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3675 TASK_UNINTERRUPTIBLE); 3676 } 3677 3678 static noinline_for_stack int 3679 lock_extent_buffer_for_io(struct extent_buffer *eb, 3680 struct btrfs_fs_info *fs_info, 3681 struct extent_page_data *epd) 3682 { 3683 unsigned long i, num_pages; 3684 int flush = 0; 3685 int ret = 0; 3686 3687 if (!btrfs_try_tree_write_lock(eb)) { 3688 flush = 1; 3689 flush_write_bio(epd); 3690 btrfs_tree_lock(eb); 3691 } 3692 3693 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3694 btrfs_tree_unlock(eb); 3695 if (!epd->sync_io) 3696 return 0; 3697 if (!flush) { 3698 flush_write_bio(epd); 3699 flush = 1; 3700 } 3701 while (1) { 3702 wait_on_extent_buffer_writeback(eb); 3703 btrfs_tree_lock(eb); 3704 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3705 break; 3706 btrfs_tree_unlock(eb); 3707 } 3708 } 3709 3710 /* 3711 * We need to do this to prevent races in people who check if the eb is 3712 * under IO since we can end up having no IO bits set for a short period 3713 * of time. 3714 */ 3715 spin_lock(&eb->refs_lock); 3716 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3717 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3718 spin_unlock(&eb->refs_lock); 3719 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3720 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3721 -eb->len, 3722 fs_info->dirty_metadata_batch); 3723 ret = 1; 3724 } else { 3725 spin_unlock(&eb->refs_lock); 3726 } 3727 3728 btrfs_tree_unlock(eb); 3729 3730 if (!ret) 3731 return ret; 3732 3733 num_pages = num_extent_pages(eb->start, eb->len); 3734 for (i = 0; i < num_pages; i++) { 3735 struct page *p = eb->pages[i]; 3736 3737 if (!trylock_page(p)) { 3738 if (!flush) { 3739 flush_write_bio(epd); 3740 flush = 1; 3741 } 3742 lock_page(p); 3743 } 3744 } 3745 3746 return ret; 3747 } 3748 3749 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3750 { 3751 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3752 smp_mb__after_atomic(); 3753 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3754 } 3755 3756 static void set_btree_ioerr(struct page *page) 3757 { 3758 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3759 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3760 3761 SetPageError(page); 3762 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3763 return; 3764 3765 /* 3766 * If writeback for a btree extent that doesn't belong to a log tree 3767 * failed, increment the counter transaction->eb_write_errors. 3768 * We do this because while the transaction is running and before it's 3769 * committing (when we call filemap_fdata[write|wait]_range against 3770 * the btree inode), we might have 3771 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3772 * returns an error or an error happens during writeback, when we're 3773 * committing the transaction we wouldn't know about it, since the pages 3774 * can be no longer dirty nor marked anymore for writeback (if a 3775 * subsequent modification to the extent buffer didn't happen before the 3776 * transaction commit), which makes filemap_fdata[write|wait]_range not 3777 * able to find the pages tagged with SetPageError at transaction 3778 * commit time. So if this happens we must abort the transaction, 3779 * otherwise we commit a super block with btree roots that point to 3780 * btree nodes/leafs whose content on disk is invalid - either garbage 3781 * or the content of some node/leaf from a past generation that got 3782 * cowed or deleted and is no longer valid. 3783 * 3784 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3785 * not be enough - we need to distinguish between log tree extents vs 3786 * non-log tree extents, and the next filemap_fdatawait_range() call 3787 * will catch and clear such errors in the mapping - and that call might 3788 * be from a log sync and not from a transaction commit. Also, checking 3789 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3790 * not done and would not be reliable - the eb might have been released 3791 * from memory and reading it back again means that flag would not be 3792 * set (since it's a runtime flag, not persisted on disk). 3793 * 3794 * Using the flags below in the btree inode also makes us achieve the 3795 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3796 * writeback for all dirty pages and before filemap_fdatawait_range() 3797 * is called, the writeback for all dirty pages had already finished 3798 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3799 * filemap_fdatawait_range() would return success, as it could not know 3800 * that writeback errors happened (the pages were no longer tagged for 3801 * writeback). 3802 */ 3803 switch (eb->log_index) { 3804 case -1: 3805 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3806 break; 3807 case 0: 3808 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3809 break; 3810 case 1: 3811 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3812 break; 3813 default: 3814 BUG(); /* unexpected, logic error */ 3815 } 3816 } 3817 3818 static void end_bio_extent_buffer_writepage(struct bio *bio) 3819 { 3820 struct bio_vec *bvec; 3821 struct extent_buffer *eb; 3822 int i, done; 3823 3824 bio_for_each_segment_all(bvec, bio, i) { 3825 struct page *page = bvec->bv_page; 3826 3827 eb = (struct extent_buffer *)page->private; 3828 BUG_ON(!eb); 3829 done = atomic_dec_and_test(&eb->io_pages); 3830 3831 if (bio->bi_error || 3832 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3833 ClearPageUptodate(page); 3834 set_btree_ioerr(page); 3835 } 3836 3837 end_page_writeback(page); 3838 3839 if (!done) 3840 continue; 3841 3842 end_extent_buffer_writeback(eb); 3843 } 3844 3845 bio_put(bio); 3846 } 3847 3848 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3849 struct btrfs_fs_info *fs_info, 3850 struct writeback_control *wbc, 3851 struct extent_page_data *epd) 3852 { 3853 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3854 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3855 u64 offset = eb->start; 3856 unsigned long i, num_pages; 3857 unsigned long bio_flags = 0; 3858 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3859 int ret = 0; 3860 3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3862 num_pages = num_extent_pages(eb->start, eb->len); 3863 atomic_set(&eb->io_pages, num_pages); 3864 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3865 bio_flags = EXTENT_BIO_TREE_LOG; 3866 3867 for (i = 0; i < num_pages; i++) { 3868 struct page *p = eb->pages[i]; 3869 3870 clear_page_dirty_for_io(p); 3871 set_page_writeback(p); 3872 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3873 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3874 -1, end_bio_extent_buffer_writepage, 3875 0, epd->bio_flags, bio_flags, false); 3876 epd->bio_flags = bio_flags; 3877 if (ret) { 3878 set_btree_ioerr(p); 3879 end_page_writeback(p); 3880 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3881 end_extent_buffer_writeback(eb); 3882 ret = -EIO; 3883 break; 3884 } 3885 offset += PAGE_CACHE_SIZE; 3886 update_nr_written(p, wbc, 1); 3887 unlock_page(p); 3888 } 3889 3890 if (unlikely(ret)) { 3891 for (; i < num_pages; i++) { 3892 struct page *p = eb->pages[i]; 3893 clear_page_dirty_for_io(p); 3894 unlock_page(p); 3895 } 3896 } 3897 3898 return ret; 3899 } 3900 3901 int btree_write_cache_pages(struct address_space *mapping, 3902 struct writeback_control *wbc) 3903 { 3904 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3905 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3906 struct extent_buffer *eb, *prev_eb = NULL; 3907 struct extent_page_data epd = { 3908 .bio = NULL, 3909 .tree = tree, 3910 .extent_locked = 0, 3911 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3912 .bio_flags = 0, 3913 }; 3914 int ret = 0; 3915 int done = 0; 3916 int nr_to_write_done = 0; 3917 struct pagevec pvec; 3918 int nr_pages; 3919 pgoff_t index; 3920 pgoff_t end; /* Inclusive */ 3921 int scanned = 0; 3922 int tag; 3923 3924 pagevec_init(&pvec, 0); 3925 if (wbc->range_cyclic) { 3926 index = mapping->writeback_index; /* Start from prev offset */ 3927 end = -1; 3928 } else { 3929 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3930 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3931 scanned = 1; 3932 } 3933 if (wbc->sync_mode == WB_SYNC_ALL) 3934 tag = PAGECACHE_TAG_TOWRITE; 3935 else 3936 tag = PAGECACHE_TAG_DIRTY; 3937 retry: 3938 if (wbc->sync_mode == WB_SYNC_ALL) 3939 tag_pages_for_writeback(mapping, index, end); 3940 while (!done && !nr_to_write_done && (index <= end) && 3941 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3942 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3943 unsigned i; 3944 3945 scanned = 1; 3946 for (i = 0; i < nr_pages; i++) { 3947 struct page *page = pvec.pages[i]; 3948 3949 if (!PagePrivate(page)) 3950 continue; 3951 3952 if (!wbc->range_cyclic && page->index > end) { 3953 done = 1; 3954 break; 3955 } 3956 3957 spin_lock(&mapping->private_lock); 3958 if (!PagePrivate(page)) { 3959 spin_unlock(&mapping->private_lock); 3960 continue; 3961 } 3962 3963 eb = (struct extent_buffer *)page->private; 3964 3965 /* 3966 * Shouldn't happen and normally this would be a BUG_ON 3967 * but no sense in crashing the users box for something 3968 * we can survive anyway. 3969 */ 3970 if (WARN_ON(!eb)) { 3971 spin_unlock(&mapping->private_lock); 3972 continue; 3973 } 3974 3975 if (eb == prev_eb) { 3976 spin_unlock(&mapping->private_lock); 3977 continue; 3978 } 3979 3980 ret = atomic_inc_not_zero(&eb->refs); 3981 spin_unlock(&mapping->private_lock); 3982 if (!ret) 3983 continue; 3984 3985 prev_eb = eb; 3986 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3987 if (!ret) { 3988 free_extent_buffer(eb); 3989 continue; 3990 } 3991 3992 ret = write_one_eb(eb, fs_info, wbc, &epd); 3993 if (ret) { 3994 done = 1; 3995 free_extent_buffer(eb); 3996 break; 3997 } 3998 free_extent_buffer(eb); 3999 4000 /* 4001 * the filesystem may choose to bump up nr_to_write. 4002 * We have to make sure to honor the new nr_to_write 4003 * at any time 4004 */ 4005 nr_to_write_done = wbc->nr_to_write <= 0; 4006 } 4007 pagevec_release(&pvec); 4008 cond_resched(); 4009 } 4010 if (!scanned && !done) { 4011 /* 4012 * We hit the last page and there is more work to be done: wrap 4013 * back to the start of the file 4014 */ 4015 scanned = 1; 4016 index = 0; 4017 goto retry; 4018 } 4019 flush_write_bio(&epd); 4020 return ret; 4021 } 4022 4023 /** 4024 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4025 * @mapping: address space structure to write 4026 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4027 * @writepage: function called for each page 4028 * @data: data passed to writepage function 4029 * 4030 * If a page is already under I/O, write_cache_pages() skips it, even 4031 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4032 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4033 * and msync() need to guarantee that all the data which was dirty at the time 4034 * the call was made get new I/O started against them. If wbc->sync_mode is 4035 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4036 * existing IO to complete. 4037 */ 4038 static int extent_write_cache_pages(struct extent_io_tree *tree, 4039 struct address_space *mapping, 4040 struct writeback_control *wbc, 4041 writepage_t writepage, void *data, 4042 void (*flush_fn)(void *)) 4043 { 4044 struct inode *inode = mapping->host; 4045 int ret = 0; 4046 int done = 0; 4047 int err = 0; 4048 int nr_to_write_done = 0; 4049 struct pagevec pvec; 4050 int nr_pages; 4051 pgoff_t index; 4052 pgoff_t end; /* Inclusive */ 4053 int scanned = 0; 4054 int tag; 4055 4056 /* 4057 * We have to hold onto the inode so that ordered extents can do their 4058 * work when the IO finishes. The alternative to this is failing to add 4059 * an ordered extent if the igrab() fails there and that is a huge pain 4060 * to deal with, so instead just hold onto the inode throughout the 4061 * writepages operation. If it fails here we are freeing up the inode 4062 * anyway and we'd rather not waste our time writing out stuff that is 4063 * going to be truncated anyway. 4064 */ 4065 if (!igrab(inode)) 4066 return 0; 4067 4068 pagevec_init(&pvec, 0); 4069 if (wbc->range_cyclic) { 4070 index = mapping->writeback_index; /* Start from prev offset */ 4071 end = -1; 4072 } else { 4073 index = wbc->range_start >> PAGE_CACHE_SHIFT; 4074 end = wbc->range_end >> PAGE_CACHE_SHIFT; 4075 scanned = 1; 4076 } 4077 if (wbc->sync_mode == WB_SYNC_ALL) 4078 tag = PAGECACHE_TAG_TOWRITE; 4079 else 4080 tag = PAGECACHE_TAG_DIRTY; 4081 retry: 4082 if (wbc->sync_mode == WB_SYNC_ALL) 4083 tag_pages_for_writeback(mapping, index, end); 4084 while (!done && !nr_to_write_done && (index <= end) && 4085 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 4086 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 4087 unsigned i; 4088 4089 scanned = 1; 4090 for (i = 0; i < nr_pages; i++) { 4091 struct page *page = pvec.pages[i]; 4092 4093 /* 4094 * At this point we hold neither mapping->tree_lock nor 4095 * lock on the page itself: the page may be truncated or 4096 * invalidated (changing page->mapping to NULL), or even 4097 * swizzled back from swapper_space to tmpfs file 4098 * mapping 4099 */ 4100 if (!trylock_page(page)) { 4101 flush_fn(data); 4102 lock_page(page); 4103 } 4104 4105 if (unlikely(page->mapping != mapping)) { 4106 unlock_page(page); 4107 continue; 4108 } 4109 4110 if (!wbc->range_cyclic && page->index > end) { 4111 done = 1; 4112 unlock_page(page); 4113 continue; 4114 } 4115 4116 if (wbc->sync_mode != WB_SYNC_NONE) { 4117 if (PageWriteback(page)) 4118 flush_fn(data); 4119 wait_on_page_writeback(page); 4120 } 4121 4122 if (PageWriteback(page) || 4123 !clear_page_dirty_for_io(page)) { 4124 unlock_page(page); 4125 continue; 4126 } 4127 4128 ret = (*writepage)(page, wbc, data); 4129 4130 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4131 unlock_page(page); 4132 ret = 0; 4133 } 4134 if (!err && ret < 0) 4135 err = ret; 4136 4137 /* 4138 * the filesystem may choose to bump up nr_to_write. 4139 * We have to make sure to honor the new nr_to_write 4140 * at any time 4141 */ 4142 nr_to_write_done = wbc->nr_to_write <= 0; 4143 } 4144 pagevec_release(&pvec); 4145 cond_resched(); 4146 } 4147 if (!scanned && !done && !err) { 4148 /* 4149 * We hit the last page and there is more work to be done: wrap 4150 * back to the start of the file 4151 */ 4152 scanned = 1; 4153 index = 0; 4154 goto retry; 4155 } 4156 btrfs_add_delayed_iput(inode); 4157 return err; 4158 } 4159 4160 static void flush_epd_write_bio(struct extent_page_data *epd) 4161 { 4162 if (epd->bio) { 4163 int rw = WRITE; 4164 int ret; 4165 4166 if (epd->sync_io) 4167 rw = WRITE_SYNC; 4168 4169 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4170 BUG_ON(ret < 0); /* -ENOMEM */ 4171 epd->bio = NULL; 4172 } 4173 } 4174 4175 static noinline void flush_write_bio(void *data) 4176 { 4177 struct extent_page_data *epd = data; 4178 flush_epd_write_bio(epd); 4179 } 4180 4181 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4182 get_extent_t *get_extent, 4183 struct writeback_control *wbc) 4184 { 4185 int ret; 4186 struct extent_page_data epd = { 4187 .bio = NULL, 4188 .tree = tree, 4189 .get_extent = get_extent, 4190 .extent_locked = 0, 4191 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4192 .bio_flags = 0, 4193 }; 4194 4195 ret = __extent_writepage(page, wbc, &epd); 4196 4197 flush_epd_write_bio(&epd); 4198 return ret; 4199 } 4200 4201 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4202 u64 start, u64 end, get_extent_t *get_extent, 4203 int mode) 4204 { 4205 int ret = 0; 4206 struct address_space *mapping = inode->i_mapping; 4207 struct page *page; 4208 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4209 PAGE_CACHE_SHIFT; 4210 4211 struct extent_page_data epd = { 4212 .bio = NULL, 4213 .tree = tree, 4214 .get_extent = get_extent, 4215 .extent_locked = 1, 4216 .sync_io = mode == WB_SYNC_ALL, 4217 .bio_flags = 0, 4218 }; 4219 struct writeback_control wbc_writepages = { 4220 .sync_mode = mode, 4221 .nr_to_write = nr_pages * 2, 4222 .range_start = start, 4223 .range_end = end + 1, 4224 }; 4225 4226 while (start <= end) { 4227 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4228 if (clear_page_dirty_for_io(page)) 4229 ret = __extent_writepage(page, &wbc_writepages, &epd); 4230 else { 4231 if (tree->ops && tree->ops->writepage_end_io_hook) 4232 tree->ops->writepage_end_io_hook(page, start, 4233 start + PAGE_CACHE_SIZE - 1, 4234 NULL, 1); 4235 unlock_page(page); 4236 } 4237 page_cache_release(page); 4238 start += PAGE_CACHE_SIZE; 4239 } 4240 4241 flush_epd_write_bio(&epd); 4242 return ret; 4243 } 4244 4245 int extent_writepages(struct extent_io_tree *tree, 4246 struct address_space *mapping, 4247 get_extent_t *get_extent, 4248 struct writeback_control *wbc) 4249 { 4250 int ret = 0; 4251 struct extent_page_data epd = { 4252 .bio = NULL, 4253 .tree = tree, 4254 .get_extent = get_extent, 4255 .extent_locked = 0, 4256 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4257 .bio_flags = 0, 4258 }; 4259 4260 ret = extent_write_cache_pages(tree, mapping, wbc, 4261 __extent_writepage, &epd, 4262 flush_write_bio); 4263 flush_epd_write_bio(&epd); 4264 return ret; 4265 } 4266 4267 int extent_readpages(struct extent_io_tree *tree, 4268 struct address_space *mapping, 4269 struct list_head *pages, unsigned nr_pages, 4270 get_extent_t get_extent) 4271 { 4272 struct bio *bio = NULL; 4273 unsigned page_idx; 4274 unsigned long bio_flags = 0; 4275 struct page *pagepool[16]; 4276 struct page *page; 4277 struct extent_map *em_cached = NULL; 4278 int nr = 0; 4279 u64 prev_em_start = (u64)-1; 4280 4281 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4282 page = list_entry(pages->prev, struct page, lru); 4283 4284 prefetchw(&page->flags); 4285 list_del(&page->lru); 4286 if (add_to_page_cache_lru(page, mapping, 4287 page->index, GFP_NOFS)) { 4288 page_cache_release(page); 4289 continue; 4290 } 4291 4292 pagepool[nr++] = page; 4293 if (nr < ARRAY_SIZE(pagepool)) 4294 continue; 4295 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4296 &bio, 0, &bio_flags, READ, &prev_em_start); 4297 nr = 0; 4298 } 4299 if (nr) 4300 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4301 &bio, 0, &bio_flags, READ, &prev_em_start); 4302 4303 if (em_cached) 4304 free_extent_map(em_cached); 4305 4306 BUG_ON(!list_empty(pages)); 4307 if (bio) 4308 return submit_one_bio(READ, bio, 0, bio_flags); 4309 return 0; 4310 } 4311 4312 /* 4313 * basic invalidatepage code, this waits on any locked or writeback 4314 * ranges corresponding to the page, and then deletes any extent state 4315 * records from the tree 4316 */ 4317 int extent_invalidatepage(struct extent_io_tree *tree, 4318 struct page *page, unsigned long offset) 4319 { 4320 struct extent_state *cached_state = NULL; 4321 u64 start = page_offset(page); 4322 u64 end = start + PAGE_CACHE_SIZE - 1; 4323 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4324 4325 start += ALIGN(offset, blocksize); 4326 if (start > end) 4327 return 0; 4328 4329 lock_extent_bits(tree, start, end, 0, &cached_state); 4330 wait_on_page_writeback(page); 4331 clear_extent_bit(tree, start, end, 4332 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4333 EXTENT_DO_ACCOUNTING, 4334 1, 1, &cached_state, GFP_NOFS); 4335 return 0; 4336 } 4337 4338 /* 4339 * a helper for releasepage, this tests for areas of the page that 4340 * are locked or under IO and drops the related state bits if it is safe 4341 * to drop the page. 4342 */ 4343 static int try_release_extent_state(struct extent_map_tree *map, 4344 struct extent_io_tree *tree, 4345 struct page *page, gfp_t mask) 4346 { 4347 u64 start = page_offset(page); 4348 u64 end = start + PAGE_CACHE_SIZE - 1; 4349 int ret = 1; 4350 4351 if (test_range_bit(tree, start, end, 4352 EXTENT_IOBITS, 0, NULL)) 4353 ret = 0; 4354 else { 4355 if ((mask & GFP_NOFS) == GFP_NOFS) 4356 mask = GFP_NOFS; 4357 /* 4358 * at this point we can safely clear everything except the 4359 * locked bit and the nodatasum bit 4360 */ 4361 ret = clear_extent_bit(tree, start, end, 4362 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4363 0, 0, NULL, mask); 4364 4365 /* if clear_extent_bit failed for enomem reasons, 4366 * we can't allow the release to continue. 4367 */ 4368 if (ret < 0) 4369 ret = 0; 4370 else 4371 ret = 1; 4372 } 4373 return ret; 4374 } 4375 4376 /* 4377 * a helper for releasepage. As long as there are no locked extents 4378 * in the range corresponding to the page, both state records and extent 4379 * map records are removed 4380 */ 4381 int try_release_extent_mapping(struct extent_map_tree *map, 4382 struct extent_io_tree *tree, struct page *page, 4383 gfp_t mask) 4384 { 4385 struct extent_map *em; 4386 u64 start = page_offset(page); 4387 u64 end = start + PAGE_CACHE_SIZE - 1; 4388 4389 if (gfpflags_allow_blocking(mask) && 4390 page->mapping->host->i_size > 16 * 1024 * 1024) { 4391 u64 len; 4392 while (start <= end) { 4393 len = end - start + 1; 4394 write_lock(&map->lock); 4395 em = lookup_extent_mapping(map, start, len); 4396 if (!em) { 4397 write_unlock(&map->lock); 4398 break; 4399 } 4400 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4401 em->start != start) { 4402 write_unlock(&map->lock); 4403 free_extent_map(em); 4404 break; 4405 } 4406 if (!test_range_bit(tree, em->start, 4407 extent_map_end(em) - 1, 4408 EXTENT_LOCKED | EXTENT_WRITEBACK, 4409 0, NULL)) { 4410 remove_extent_mapping(map, em); 4411 /* once for the rb tree */ 4412 free_extent_map(em); 4413 } 4414 start = extent_map_end(em); 4415 write_unlock(&map->lock); 4416 4417 /* once for us */ 4418 free_extent_map(em); 4419 } 4420 } 4421 return try_release_extent_state(map, tree, page, mask); 4422 } 4423 4424 /* 4425 * helper function for fiemap, which doesn't want to see any holes. 4426 * This maps until we find something past 'last' 4427 */ 4428 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4429 u64 offset, 4430 u64 last, 4431 get_extent_t *get_extent) 4432 { 4433 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4434 struct extent_map *em; 4435 u64 len; 4436 4437 if (offset >= last) 4438 return NULL; 4439 4440 while (1) { 4441 len = last - offset; 4442 if (len == 0) 4443 break; 4444 len = ALIGN(len, sectorsize); 4445 em = get_extent(inode, NULL, 0, offset, len, 0); 4446 if (IS_ERR_OR_NULL(em)) 4447 return em; 4448 4449 /* if this isn't a hole return it */ 4450 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4451 em->block_start != EXTENT_MAP_HOLE) { 4452 return em; 4453 } 4454 4455 /* this is a hole, advance to the next extent */ 4456 offset = extent_map_end(em); 4457 free_extent_map(em); 4458 if (offset >= last) 4459 break; 4460 } 4461 return NULL; 4462 } 4463 4464 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4465 __u64 start, __u64 len, get_extent_t *get_extent) 4466 { 4467 int ret = 0; 4468 u64 off = start; 4469 u64 max = start + len; 4470 u32 flags = 0; 4471 u32 found_type; 4472 u64 last; 4473 u64 last_for_get_extent = 0; 4474 u64 disko = 0; 4475 u64 isize = i_size_read(inode); 4476 struct btrfs_key found_key; 4477 struct extent_map *em = NULL; 4478 struct extent_state *cached_state = NULL; 4479 struct btrfs_path *path; 4480 struct btrfs_root *root = BTRFS_I(inode)->root; 4481 int end = 0; 4482 u64 em_start = 0; 4483 u64 em_len = 0; 4484 u64 em_end = 0; 4485 4486 if (len == 0) 4487 return -EINVAL; 4488 4489 path = btrfs_alloc_path(); 4490 if (!path) 4491 return -ENOMEM; 4492 path->leave_spinning = 1; 4493 4494 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4495 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4496 4497 /* 4498 * lookup the last file extent. We're not using i_size here 4499 * because there might be preallocation past i_size 4500 */ 4501 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4502 0); 4503 if (ret < 0) { 4504 btrfs_free_path(path); 4505 return ret; 4506 } 4507 WARN_ON(!ret); 4508 path->slots[0]--; 4509 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4510 found_type = found_key.type; 4511 4512 /* No extents, but there might be delalloc bits */ 4513 if (found_key.objectid != btrfs_ino(inode) || 4514 found_type != BTRFS_EXTENT_DATA_KEY) { 4515 /* have to trust i_size as the end */ 4516 last = (u64)-1; 4517 last_for_get_extent = isize; 4518 } else { 4519 /* 4520 * remember the start of the last extent. There are a 4521 * bunch of different factors that go into the length of the 4522 * extent, so its much less complex to remember where it started 4523 */ 4524 last = found_key.offset; 4525 last_for_get_extent = last + 1; 4526 } 4527 btrfs_release_path(path); 4528 4529 /* 4530 * we might have some extents allocated but more delalloc past those 4531 * extents. so, we trust isize unless the start of the last extent is 4532 * beyond isize 4533 */ 4534 if (last < isize) { 4535 last = (u64)-1; 4536 last_for_get_extent = isize; 4537 } 4538 4539 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4540 &cached_state); 4541 4542 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4543 get_extent); 4544 if (!em) 4545 goto out; 4546 if (IS_ERR(em)) { 4547 ret = PTR_ERR(em); 4548 goto out; 4549 } 4550 4551 while (!end) { 4552 u64 offset_in_extent = 0; 4553 4554 /* break if the extent we found is outside the range */ 4555 if (em->start >= max || extent_map_end(em) < off) 4556 break; 4557 4558 /* 4559 * get_extent may return an extent that starts before our 4560 * requested range. We have to make sure the ranges 4561 * we return to fiemap always move forward and don't 4562 * overlap, so adjust the offsets here 4563 */ 4564 em_start = max(em->start, off); 4565 4566 /* 4567 * record the offset from the start of the extent 4568 * for adjusting the disk offset below. Only do this if the 4569 * extent isn't compressed since our in ram offset may be past 4570 * what we have actually allocated on disk. 4571 */ 4572 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4573 offset_in_extent = em_start - em->start; 4574 em_end = extent_map_end(em); 4575 em_len = em_end - em_start; 4576 disko = 0; 4577 flags = 0; 4578 4579 /* 4580 * bump off for our next call to get_extent 4581 */ 4582 off = extent_map_end(em); 4583 if (off >= max) 4584 end = 1; 4585 4586 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4587 end = 1; 4588 flags |= FIEMAP_EXTENT_LAST; 4589 } else if (em->block_start == EXTENT_MAP_INLINE) { 4590 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4591 FIEMAP_EXTENT_NOT_ALIGNED); 4592 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4593 flags |= (FIEMAP_EXTENT_DELALLOC | 4594 FIEMAP_EXTENT_UNKNOWN); 4595 } else if (fieinfo->fi_extents_max) { 4596 u64 bytenr = em->block_start - 4597 (em->start - em->orig_start); 4598 4599 disko = em->block_start + offset_in_extent; 4600 4601 /* 4602 * As btrfs supports shared space, this information 4603 * can be exported to userspace tools via 4604 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4605 * then we're just getting a count and we can skip the 4606 * lookup stuff. 4607 */ 4608 ret = btrfs_check_shared(NULL, root->fs_info, 4609 root->objectid, 4610 btrfs_ino(inode), bytenr); 4611 if (ret < 0) 4612 goto out_free; 4613 if (ret) 4614 flags |= FIEMAP_EXTENT_SHARED; 4615 ret = 0; 4616 } 4617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4618 flags |= FIEMAP_EXTENT_ENCODED; 4619 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4620 flags |= FIEMAP_EXTENT_UNWRITTEN; 4621 4622 free_extent_map(em); 4623 em = NULL; 4624 if ((em_start >= last) || em_len == (u64)-1 || 4625 (last == (u64)-1 && isize <= em_end)) { 4626 flags |= FIEMAP_EXTENT_LAST; 4627 end = 1; 4628 } 4629 4630 /* now scan forward to see if this is really the last extent. */ 4631 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4632 get_extent); 4633 if (IS_ERR(em)) { 4634 ret = PTR_ERR(em); 4635 goto out; 4636 } 4637 if (!em) { 4638 flags |= FIEMAP_EXTENT_LAST; 4639 end = 1; 4640 } 4641 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4642 em_len, flags); 4643 if (ret) { 4644 if (ret == 1) 4645 ret = 0; 4646 goto out_free; 4647 } 4648 } 4649 out_free: 4650 free_extent_map(em); 4651 out: 4652 btrfs_free_path(path); 4653 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4654 &cached_state, GFP_NOFS); 4655 return ret; 4656 } 4657 4658 static void __free_extent_buffer(struct extent_buffer *eb) 4659 { 4660 btrfs_leak_debug_del(&eb->leak_list); 4661 kmem_cache_free(extent_buffer_cache, eb); 4662 } 4663 4664 int extent_buffer_under_io(struct extent_buffer *eb) 4665 { 4666 return (atomic_read(&eb->io_pages) || 4667 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4668 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4669 } 4670 4671 /* 4672 * Helper for releasing extent buffer page. 4673 */ 4674 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4675 { 4676 unsigned long index; 4677 struct page *page; 4678 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4679 4680 BUG_ON(extent_buffer_under_io(eb)); 4681 4682 index = num_extent_pages(eb->start, eb->len); 4683 if (index == 0) 4684 return; 4685 4686 do { 4687 index--; 4688 page = eb->pages[index]; 4689 if (!page) 4690 continue; 4691 if (mapped) 4692 spin_lock(&page->mapping->private_lock); 4693 /* 4694 * We do this since we'll remove the pages after we've 4695 * removed the eb from the radix tree, so we could race 4696 * and have this page now attached to the new eb. So 4697 * only clear page_private if it's still connected to 4698 * this eb. 4699 */ 4700 if (PagePrivate(page) && 4701 page->private == (unsigned long)eb) { 4702 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4703 BUG_ON(PageDirty(page)); 4704 BUG_ON(PageWriteback(page)); 4705 /* 4706 * We need to make sure we haven't be attached 4707 * to a new eb. 4708 */ 4709 ClearPagePrivate(page); 4710 set_page_private(page, 0); 4711 /* One for the page private */ 4712 page_cache_release(page); 4713 } 4714 4715 if (mapped) 4716 spin_unlock(&page->mapping->private_lock); 4717 4718 /* One for when we alloced the page */ 4719 page_cache_release(page); 4720 } while (index != 0); 4721 } 4722 4723 /* 4724 * Helper for releasing the extent buffer. 4725 */ 4726 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4727 { 4728 btrfs_release_extent_buffer_page(eb); 4729 __free_extent_buffer(eb); 4730 } 4731 4732 static struct extent_buffer * 4733 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4734 unsigned long len) 4735 { 4736 struct extent_buffer *eb = NULL; 4737 4738 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4739 eb->start = start; 4740 eb->len = len; 4741 eb->fs_info = fs_info; 4742 eb->bflags = 0; 4743 rwlock_init(&eb->lock); 4744 atomic_set(&eb->write_locks, 0); 4745 atomic_set(&eb->read_locks, 0); 4746 atomic_set(&eb->blocking_readers, 0); 4747 atomic_set(&eb->blocking_writers, 0); 4748 atomic_set(&eb->spinning_readers, 0); 4749 atomic_set(&eb->spinning_writers, 0); 4750 eb->lock_nested = 0; 4751 init_waitqueue_head(&eb->write_lock_wq); 4752 init_waitqueue_head(&eb->read_lock_wq); 4753 4754 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4755 4756 spin_lock_init(&eb->refs_lock); 4757 atomic_set(&eb->refs, 1); 4758 atomic_set(&eb->io_pages, 0); 4759 4760 /* 4761 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4762 */ 4763 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4764 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4765 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4766 4767 return eb; 4768 } 4769 4770 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4771 { 4772 unsigned long i; 4773 struct page *p; 4774 struct extent_buffer *new; 4775 unsigned long num_pages = num_extent_pages(src->start, src->len); 4776 4777 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4778 if (new == NULL) 4779 return NULL; 4780 4781 for (i = 0; i < num_pages; i++) { 4782 p = alloc_page(GFP_NOFS); 4783 if (!p) { 4784 btrfs_release_extent_buffer(new); 4785 return NULL; 4786 } 4787 attach_extent_buffer_page(new, p); 4788 WARN_ON(PageDirty(p)); 4789 SetPageUptodate(p); 4790 new->pages[i] = p; 4791 } 4792 4793 copy_extent_buffer(new, src, 0, 0, src->len); 4794 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4795 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4796 4797 return new; 4798 } 4799 4800 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4801 u64 start) 4802 { 4803 struct extent_buffer *eb; 4804 unsigned long len; 4805 unsigned long num_pages; 4806 unsigned long i; 4807 4808 if (!fs_info) { 4809 /* 4810 * Called only from tests that don't always have a fs_info 4811 * available, but we know that nodesize is 4096 4812 */ 4813 len = 4096; 4814 } else { 4815 len = fs_info->tree_root->nodesize; 4816 } 4817 num_pages = num_extent_pages(0, len); 4818 4819 eb = __alloc_extent_buffer(fs_info, start, len); 4820 if (!eb) 4821 return NULL; 4822 4823 for (i = 0; i < num_pages; i++) { 4824 eb->pages[i] = alloc_page(GFP_NOFS); 4825 if (!eb->pages[i]) 4826 goto err; 4827 } 4828 set_extent_buffer_uptodate(eb); 4829 btrfs_set_header_nritems(eb, 0); 4830 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4831 4832 return eb; 4833 err: 4834 for (; i > 0; i--) 4835 __free_page(eb->pages[i - 1]); 4836 __free_extent_buffer(eb); 4837 return NULL; 4838 } 4839 4840 static void check_buffer_tree_ref(struct extent_buffer *eb) 4841 { 4842 int refs; 4843 /* the ref bit is tricky. We have to make sure it is set 4844 * if we have the buffer dirty. Otherwise the 4845 * code to free a buffer can end up dropping a dirty 4846 * page 4847 * 4848 * Once the ref bit is set, it won't go away while the 4849 * buffer is dirty or in writeback, and it also won't 4850 * go away while we have the reference count on the 4851 * eb bumped. 4852 * 4853 * We can't just set the ref bit without bumping the 4854 * ref on the eb because free_extent_buffer might 4855 * see the ref bit and try to clear it. If this happens 4856 * free_extent_buffer might end up dropping our original 4857 * ref by mistake and freeing the page before we are able 4858 * to add one more ref. 4859 * 4860 * So bump the ref count first, then set the bit. If someone 4861 * beat us to it, drop the ref we added. 4862 */ 4863 refs = atomic_read(&eb->refs); 4864 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4865 return; 4866 4867 spin_lock(&eb->refs_lock); 4868 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4869 atomic_inc(&eb->refs); 4870 spin_unlock(&eb->refs_lock); 4871 } 4872 4873 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4874 struct page *accessed) 4875 { 4876 unsigned long num_pages, i; 4877 4878 check_buffer_tree_ref(eb); 4879 4880 num_pages = num_extent_pages(eb->start, eb->len); 4881 for (i = 0; i < num_pages; i++) { 4882 struct page *p = eb->pages[i]; 4883 4884 if (p != accessed) 4885 mark_page_accessed(p); 4886 } 4887 } 4888 4889 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4890 u64 start) 4891 { 4892 struct extent_buffer *eb; 4893 4894 rcu_read_lock(); 4895 eb = radix_tree_lookup(&fs_info->buffer_radix, 4896 start >> PAGE_CACHE_SHIFT); 4897 if (eb && atomic_inc_not_zero(&eb->refs)) { 4898 rcu_read_unlock(); 4899 /* 4900 * Lock our eb's refs_lock to avoid races with 4901 * free_extent_buffer. When we get our eb it might be flagged 4902 * with EXTENT_BUFFER_STALE and another task running 4903 * free_extent_buffer might have seen that flag set, 4904 * eb->refs == 2, that the buffer isn't under IO (dirty and 4905 * writeback flags not set) and it's still in the tree (flag 4906 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4907 * of decrementing the extent buffer's reference count twice. 4908 * So here we could race and increment the eb's reference count, 4909 * clear its stale flag, mark it as dirty and drop our reference 4910 * before the other task finishes executing free_extent_buffer, 4911 * which would later result in an attempt to free an extent 4912 * buffer that is dirty. 4913 */ 4914 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4915 spin_lock(&eb->refs_lock); 4916 spin_unlock(&eb->refs_lock); 4917 } 4918 mark_extent_buffer_accessed(eb, NULL); 4919 return eb; 4920 } 4921 rcu_read_unlock(); 4922 4923 return NULL; 4924 } 4925 4926 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4927 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4928 u64 start) 4929 { 4930 struct extent_buffer *eb, *exists = NULL; 4931 int ret; 4932 4933 eb = find_extent_buffer(fs_info, start); 4934 if (eb) 4935 return eb; 4936 eb = alloc_dummy_extent_buffer(fs_info, start); 4937 if (!eb) 4938 return NULL; 4939 eb->fs_info = fs_info; 4940 again: 4941 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4942 if (ret) 4943 goto free_eb; 4944 spin_lock(&fs_info->buffer_lock); 4945 ret = radix_tree_insert(&fs_info->buffer_radix, 4946 start >> PAGE_CACHE_SHIFT, eb); 4947 spin_unlock(&fs_info->buffer_lock); 4948 radix_tree_preload_end(); 4949 if (ret == -EEXIST) { 4950 exists = find_extent_buffer(fs_info, start); 4951 if (exists) 4952 goto free_eb; 4953 else 4954 goto again; 4955 } 4956 check_buffer_tree_ref(eb); 4957 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4958 4959 /* 4960 * We will free dummy extent buffer's if they come into 4961 * free_extent_buffer with a ref count of 2, but if we are using this we 4962 * want the buffers to stay in memory until we're done with them, so 4963 * bump the ref count again. 4964 */ 4965 atomic_inc(&eb->refs); 4966 return eb; 4967 free_eb: 4968 btrfs_release_extent_buffer(eb); 4969 return exists; 4970 } 4971 #endif 4972 4973 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4974 u64 start) 4975 { 4976 unsigned long len = fs_info->tree_root->nodesize; 4977 unsigned long num_pages = num_extent_pages(start, len); 4978 unsigned long i; 4979 unsigned long index = start >> PAGE_CACHE_SHIFT; 4980 struct extent_buffer *eb; 4981 struct extent_buffer *exists = NULL; 4982 struct page *p; 4983 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4984 int uptodate = 1; 4985 int ret; 4986 4987 eb = find_extent_buffer(fs_info, start); 4988 if (eb) 4989 return eb; 4990 4991 eb = __alloc_extent_buffer(fs_info, start, len); 4992 if (!eb) 4993 return NULL; 4994 4995 for (i = 0; i < num_pages; i++, index++) { 4996 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4997 if (!p) 4998 goto free_eb; 4999 5000 spin_lock(&mapping->private_lock); 5001 if (PagePrivate(p)) { 5002 /* 5003 * We could have already allocated an eb for this page 5004 * and attached one so lets see if we can get a ref on 5005 * the existing eb, and if we can we know it's good and 5006 * we can just return that one, else we know we can just 5007 * overwrite page->private. 5008 */ 5009 exists = (struct extent_buffer *)p->private; 5010 if (atomic_inc_not_zero(&exists->refs)) { 5011 spin_unlock(&mapping->private_lock); 5012 unlock_page(p); 5013 page_cache_release(p); 5014 mark_extent_buffer_accessed(exists, p); 5015 goto free_eb; 5016 } 5017 exists = NULL; 5018 5019 /* 5020 * Do this so attach doesn't complain and we need to 5021 * drop the ref the old guy had. 5022 */ 5023 ClearPagePrivate(p); 5024 WARN_ON(PageDirty(p)); 5025 page_cache_release(p); 5026 } 5027 attach_extent_buffer_page(eb, p); 5028 spin_unlock(&mapping->private_lock); 5029 WARN_ON(PageDirty(p)); 5030 eb->pages[i] = p; 5031 if (!PageUptodate(p)) 5032 uptodate = 0; 5033 5034 /* 5035 * see below about how we avoid a nasty race with release page 5036 * and why we unlock later 5037 */ 5038 } 5039 if (uptodate) 5040 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5041 again: 5042 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 5043 if (ret) 5044 goto free_eb; 5045 5046 spin_lock(&fs_info->buffer_lock); 5047 ret = radix_tree_insert(&fs_info->buffer_radix, 5048 start >> PAGE_CACHE_SHIFT, eb); 5049 spin_unlock(&fs_info->buffer_lock); 5050 radix_tree_preload_end(); 5051 if (ret == -EEXIST) { 5052 exists = find_extent_buffer(fs_info, start); 5053 if (exists) 5054 goto free_eb; 5055 else 5056 goto again; 5057 } 5058 /* add one reference for the tree */ 5059 check_buffer_tree_ref(eb); 5060 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5061 5062 /* 5063 * there is a race where release page may have 5064 * tried to find this extent buffer in the radix 5065 * but failed. It will tell the VM it is safe to 5066 * reclaim the, and it will clear the page private bit. 5067 * We must make sure to set the page private bit properly 5068 * after the extent buffer is in the radix tree so 5069 * it doesn't get lost 5070 */ 5071 SetPageChecked(eb->pages[0]); 5072 for (i = 1; i < num_pages; i++) { 5073 p = eb->pages[i]; 5074 ClearPageChecked(p); 5075 unlock_page(p); 5076 } 5077 unlock_page(eb->pages[0]); 5078 return eb; 5079 5080 free_eb: 5081 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5082 for (i = 0; i < num_pages; i++) { 5083 if (eb->pages[i]) 5084 unlock_page(eb->pages[i]); 5085 } 5086 5087 btrfs_release_extent_buffer(eb); 5088 return exists; 5089 } 5090 5091 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5092 { 5093 struct extent_buffer *eb = 5094 container_of(head, struct extent_buffer, rcu_head); 5095 5096 __free_extent_buffer(eb); 5097 } 5098 5099 /* Expects to have eb->eb_lock already held */ 5100 static int release_extent_buffer(struct extent_buffer *eb) 5101 { 5102 WARN_ON(atomic_read(&eb->refs) == 0); 5103 if (atomic_dec_and_test(&eb->refs)) { 5104 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5105 struct btrfs_fs_info *fs_info = eb->fs_info; 5106 5107 spin_unlock(&eb->refs_lock); 5108 5109 spin_lock(&fs_info->buffer_lock); 5110 radix_tree_delete(&fs_info->buffer_radix, 5111 eb->start >> PAGE_CACHE_SHIFT); 5112 spin_unlock(&fs_info->buffer_lock); 5113 } else { 5114 spin_unlock(&eb->refs_lock); 5115 } 5116 5117 /* Should be safe to release our pages at this point */ 5118 btrfs_release_extent_buffer_page(eb); 5119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5120 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5121 __free_extent_buffer(eb); 5122 return 1; 5123 } 5124 #endif 5125 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5126 return 1; 5127 } 5128 spin_unlock(&eb->refs_lock); 5129 5130 return 0; 5131 } 5132 5133 void free_extent_buffer(struct extent_buffer *eb) 5134 { 5135 int refs; 5136 int old; 5137 if (!eb) 5138 return; 5139 5140 while (1) { 5141 refs = atomic_read(&eb->refs); 5142 if (refs <= 3) 5143 break; 5144 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5145 if (old == refs) 5146 return; 5147 } 5148 5149 spin_lock(&eb->refs_lock); 5150 if (atomic_read(&eb->refs) == 2 && 5151 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5152 atomic_dec(&eb->refs); 5153 5154 if (atomic_read(&eb->refs) == 2 && 5155 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5156 !extent_buffer_under_io(eb) && 5157 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5158 atomic_dec(&eb->refs); 5159 5160 /* 5161 * I know this is terrible, but it's temporary until we stop tracking 5162 * the uptodate bits and such for the extent buffers. 5163 */ 5164 release_extent_buffer(eb); 5165 } 5166 5167 void free_extent_buffer_stale(struct extent_buffer *eb) 5168 { 5169 if (!eb) 5170 return; 5171 5172 spin_lock(&eb->refs_lock); 5173 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5174 5175 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5177 atomic_dec(&eb->refs); 5178 release_extent_buffer(eb); 5179 } 5180 5181 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5182 { 5183 unsigned long i; 5184 unsigned long num_pages; 5185 struct page *page; 5186 5187 num_pages = num_extent_pages(eb->start, eb->len); 5188 5189 for (i = 0; i < num_pages; i++) { 5190 page = eb->pages[i]; 5191 if (!PageDirty(page)) 5192 continue; 5193 5194 lock_page(page); 5195 WARN_ON(!PagePrivate(page)); 5196 5197 clear_page_dirty_for_io(page); 5198 spin_lock_irq(&page->mapping->tree_lock); 5199 if (!PageDirty(page)) { 5200 radix_tree_tag_clear(&page->mapping->page_tree, 5201 page_index(page), 5202 PAGECACHE_TAG_DIRTY); 5203 } 5204 spin_unlock_irq(&page->mapping->tree_lock); 5205 ClearPageError(page); 5206 unlock_page(page); 5207 } 5208 WARN_ON(atomic_read(&eb->refs) == 0); 5209 } 5210 5211 int set_extent_buffer_dirty(struct extent_buffer *eb) 5212 { 5213 unsigned long i; 5214 unsigned long num_pages; 5215 int was_dirty = 0; 5216 5217 check_buffer_tree_ref(eb); 5218 5219 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5220 5221 num_pages = num_extent_pages(eb->start, eb->len); 5222 WARN_ON(atomic_read(&eb->refs) == 0); 5223 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5224 5225 for (i = 0; i < num_pages; i++) 5226 set_page_dirty(eb->pages[i]); 5227 return was_dirty; 5228 } 5229 5230 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5231 { 5232 unsigned long i; 5233 struct page *page; 5234 unsigned long num_pages; 5235 5236 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5237 num_pages = num_extent_pages(eb->start, eb->len); 5238 for (i = 0; i < num_pages; i++) { 5239 page = eb->pages[i]; 5240 if (page) 5241 ClearPageUptodate(page); 5242 } 5243 return 0; 5244 } 5245 5246 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5247 { 5248 unsigned long i; 5249 struct page *page; 5250 unsigned long num_pages; 5251 5252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5253 num_pages = num_extent_pages(eb->start, eb->len); 5254 for (i = 0; i < num_pages; i++) { 5255 page = eb->pages[i]; 5256 SetPageUptodate(page); 5257 } 5258 return 0; 5259 } 5260 5261 int extent_buffer_uptodate(struct extent_buffer *eb) 5262 { 5263 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5264 } 5265 5266 int read_extent_buffer_pages(struct extent_io_tree *tree, 5267 struct extent_buffer *eb, u64 start, int wait, 5268 get_extent_t *get_extent, int mirror_num) 5269 { 5270 unsigned long i; 5271 unsigned long start_i; 5272 struct page *page; 5273 int err; 5274 int ret = 0; 5275 int locked_pages = 0; 5276 int all_uptodate = 1; 5277 unsigned long num_pages; 5278 unsigned long num_reads = 0; 5279 struct bio *bio = NULL; 5280 unsigned long bio_flags = 0; 5281 5282 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5283 return 0; 5284 5285 if (start) { 5286 WARN_ON(start < eb->start); 5287 start_i = (start >> PAGE_CACHE_SHIFT) - 5288 (eb->start >> PAGE_CACHE_SHIFT); 5289 } else { 5290 start_i = 0; 5291 } 5292 5293 num_pages = num_extent_pages(eb->start, eb->len); 5294 for (i = start_i; i < num_pages; i++) { 5295 page = eb->pages[i]; 5296 if (wait == WAIT_NONE) { 5297 if (!trylock_page(page)) 5298 goto unlock_exit; 5299 } else { 5300 lock_page(page); 5301 } 5302 locked_pages++; 5303 if (!PageUptodate(page)) { 5304 num_reads++; 5305 all_uptodate = 0; 5306 } 5307 } 5308 if (all_uptodate) { 5309 if (start_i == 0) 5310 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5311 goto unlock_exit; 5312 } 5313 5314 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5315 eb->read_mirror = 0; 5316 atomic_set(&eb->io_pages, num_reads); 5317 for (i = start_i; i < num_pages; i++) { 5318 page = eb->pages[i]; 5319 if (!PageUptodate(page)) { 5320 ClearPageError(page); 5321 err = __extent_read_full_page(tree, page, 5322 get_extent, &bio, 5323 mirror_num, &bio_flags, 5324 READ | REQ_META); 5325 if (err) 5326 ret = err; 5327 } else { 5328 unlock_page(page); 5329 } 5330 } 5331 5332 if (bio) { 5333 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5334 bio_flags); 5335 if (err) 5336 return err; 5337 } 5338 5339 if (ret || wait != WAIT_COMPLETE) 5340 return ret; 5341 5342 for (i = start_i; i < num_pages; i++) { 5343 page = eb->pages[i]; 5344 wait_on_page_locked(page); 5345 if (!PageUptodate(page)) 5346 ret = -EIO; 5347 } 5348 5349 return ret; 5350 5351 unlock_exit: 5352 i = start_i; 5353 while (locked_pages > 0) { 5354 page = eb->pages[i]; 5355 i++; 5356 unlock_page(page); 5357 locked_pages--; 5358 } 5359 return ret; 5360 } 5361 5362 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5363 unsigned long start, 5364 unsigned long len) 5365 { 5366 size_t cur; 5367 size_t offset; 5368 struct page *page; 5369 char *kaddr; 5370 char *dst = (char *)dstv; 5371 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5372 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5373 5374 WARN_ON(start > eb->len); 5375 WARN_ON(start + len > eb->start + eb->len); 5376 5377 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5378 5379 while (len > 0) { 5380 page = eb->pages[i]; 5381 5382 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5383 kaddr = page_address(page); 5384 memcpy(dst, kaddr + offset, cur); 5385 5386 dst += cur; 5387 len -= cur; 5388 offset = 0; 5389 i++; 5390 } 5391 } 5392 5393 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5394 unsigned long start, 5395 unsigned long len) 5396 { 5397 size_t cur; 5398 size_t offset; 5399 struct page *page; 5400 char *kaddr; 5401 char __user *dst = (char __user *)dstv; 5402 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5403 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5404 int ret = 0; 5405 5406 WARN_ON(start > eb->len); 5407 WARN_ON(start + len > eb->start + eb->len); 5408 5409 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5410 5411 while (len > 0) { 5412 page = eb->pages[i]; 5413 5414 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5415 kaddr = page_address(page); 5416 if (copy_to_user(dst, kaddr + offset, cur)) { 5417 ret = -EFAULT; 5418 break; 5419 } 5420 5421 dst += cur; 5422 len -= cur; 5423 offset = 0; 5424 i++; 5425 } 5426 5427 return ret; 5428 } 5429 5430 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5431 unsigned long min_len, char **map, 5432 unsigned long *map_start, 5433 unsigned long *map_len) 5434 { 5435 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5436 char *kaddr; 5437 struct page *p; 5438 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5439 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5440 unsigned long end_i = (start_offset + start + min_len - 1) >> 5441 PAGE_CACHE_SHIFT; 5442 5443 if (i != end_i) 5444 return -EINVAL; 5445 5446 if (i == 0) { 5447 offset = start_offset; 5448 *map_start = 0; 5449 } else { 5450 offset = 0; 5451 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5452 } 5453 5454 if (start + min_len > eb->len) { 5455 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5456 "wanted %lu %lu\n", 5457 eb->start, eb->len, start, min_len); 5458 return -EINVAL; 5459 } 5460 5461 p = eb->pages[i]; 5462 kaddr = page_address(p); 5463 *map = kaddr + offset; 5464 *map_len = PAGE_CACHE_SIZE - offset; 5465 return 0; 5466 } 5467 5468 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5469 unsigned long start, 5470 unsigned long len) 5471 { 5472 size_t cur; 5473 size_t offset; 5474 struct page *page; 5475 char *kaddr; 5476 char *ptr = (char *)ptrv; 5477 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5478 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5479 int ret = 0; 5480 5481 WARN_ON(start > eb->len); 5482 WARN_ON(start + len > eb->start + eb->len); 5483 5484 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5485 5486 while (len > 0) { 5487 page = eb->pages[i]; 5488 5489 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5490 5491 kaddr = page_address(page); 5492 ret = memcmp(ptr, kaddr + offset, cur); 5493 if (ret) 5494 break; 5495 5496 ptr += cur; 5497 len -= cur; 5498 offset = 0; 5499 i++; 5500 } 5501 return ret; 5502 } 5503 5504 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5505 unsigned long start, unsigned long len) 5506 { 5507 size_t cur; 5508 size_t offset; 5509 struct page *page; 5510 char *kaddr; 5511 char *src = (char *)srcv; 5512 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5513 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5514 5515 WARN_ON(start > eb->len); 5516 WARN_ON(start + len > eb->start + eb->len); 5517 5518 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5519 5520 while (len > 0) { 5521 page = eb->pages[i]; 5522 WARN_ON(!PageUptodate(page)); 5523 5524 cur = min(len, PAGE_CACHE_SIZE - offset); 5525 kaddr = page_address(page); 5526 memcpy(kaddr + offset, src, cur); 5527 5528 src += cur; 5529 len -= cur; 5530 offset = 0; 5531 i++; 5532 } 5533 } 5534 5535 void memset_extent_buffer(struct extent_buffer *eb, char c, 5536 unsigned long start, unsigned long len) 5537 { 5538 size_t cur; 5539 size_t offset; 5540 struct page *page; 5541 char *kaddr; 5542 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5543 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5544 5545 WARN_ON(start > eb->len); 5546 WARN_ON(start + len > eb->start + eb->len); 5547 5548 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5549 5550 while (len > 0) { 5551 page = eb->pages[i]; 5552 WARN_ON(!PageUptodate(page)); 5553 5554 cur = min(len, PAGE_CACHE_SIZE - offset); 5555 kaddr = page_address(page); 5556 memset(kaddr + offset, c, cur); 5557 5558 len -= cur; 5559 offset = 0; 5560 i++; 5561 } 5562 } 5563 5564 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5565 unsigned long dst_offset, unsigned long src_offset, 5566 unsigned long len) 5567 { 5568 u64 dst_len = dst->len; 5569 size_t cur; 5570 size_t offset; 5571 struct page *page; 5572 char *kaddr; 5573 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5574 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5575 5576 WARN_ON(src->len != dst_len); 5577 5578 offset = (start_offset + dst_offset) & 5579 (PAGE_CACHE_SIZE - 1); 5580 5581 while (len > 0) { 5582 page = dst->pages[i]; 5583 WARN_ON(!PageUptodate(page)); 5584 5585 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5586 5587 kaddr = page_address(page); 5588 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5589 5590 src_offset += cur; 5591 len -= cur; 5592 offset = 0; 5593 i++; 5594 } 5595 } 5596 5597 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5598 { 5599 unsigned long distance = (src > dst) ? src - dst : dst - src; 5600 return distance < len; 5601 } 5602 5603 static void copy_pages(struct page *dst_page, struct page *src_page, 5604 unsigned long dst_off, unsigned long src_off, 5605 unsigned long len) 5606 { 5607 char *dst_kaddr = page_address(dst_page); 5608 char *src_kaddr; 5609 int must_memmove = 0; 5610 5611 if (dst_page != src_page) { 5612 src_kaddr = page_address(src_page); 5613 } else { 5614 src_kaddr = dst_kaddr; 5615 if (areas_overlap(src_off, dst_off, len)) 5616 must_memmove = 1; 5617 } 5618 5619 if (must_memmove) 5620 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5621 else 5622 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5623 } 5624 5625 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5626 unsigned long src_offset, unsigned long len) 5627 { 5628 size_t cur; 5629 size_t dst_off_in_page; 5630 size_t src_off_in_page; 5631 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5632 unsigned long dst_i; 5633 unsigned long src_i; 5634 5635 if (src_offset + len > dst->len) { 5636 btrfs_err(dst->fs_info, 5637 "memmove bogus src_offset %lu move " 5638 "len %lu dst len %lu", src_offset, len, dst->len); 5639 BUG_ON(1); 5640 } 5641 if (dst_offset + len > dst->len) { 5642 btrfs_err(dst->fs_info, 5643 "memmove bogus dst_offset %lu move " 5644 "len %lu dst len %lu", dst_offset, len, dst->len); 5645 BUG_ON(1); 5646 } 5647 5648 while (len > 0) { 5649 dst_off_in_page = (start_offset + dst_offset) & 5650 (PAGE_CACHE_SIZE - 1); 5651 src_off_in_page = (start_offset + src_offset) & 5652 (PAGE_CACHE_SIZE - 1); 5653 5654 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5655 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5656 5657 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5658 src_off_in_page)); 5659 cur = min_t(unsigned long, cur, 5660 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5661 5662 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5663 dst_off_in_page, src_off_in_page, cur); 5664 5665 src_offset += cur; 5666 dst_offset += cur; 5667 len -= cur; 5668 } 5669 } 5670 5671 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5672 unsigned long src_offset, unsigned long len) 5673 { 5674 size_t cur; 5675 size_t dst_off_in_page; 5676 size_t src_off_in_page; 5677 unsigned long dst_end = dst_offset + len - 1; 5678 unsigned long src_end = src_offset + len - 1; 5679 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5680 unsigned long dst_i; 5681 unsigned long src_i; 5682 5683 if (src_offset + len > dst->len) { 5684 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5685 "len %lu len %lu", src_offset, len, dst->len); 5686 BUG_ON(1); 5687 } 5688 if (dst_offset + len > dst->len) { 5689 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5690 "len %lu len %lu", dst_offset, len, dst->len); 5691 BUG_ON(1); 5692 } 5693 if (dst_offset < src_offset) { 5694 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5695 return; 5696 } 5697 while (len > 0) { 5698 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5699 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5700 5701 dst_off_in_page = (start_offset + dst_end) & 5702 (PAGE_CACHE_SIZE - 1); 5703 src_off_in_page = (start_offset + src_end) & 5704 (PAGE_CACHE_SIZE - 1); 5705 5706 cur = min_t(unsigned long, len, src_off_in_page + 1); 5707 cur = min(cur, dst_off_in_page + 1); 5708 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5709 dst_off_in_page - cur + 1, 5710 src_off_in_page - cur + 1, cur); 5711 5712 dst_end -= cur; 5713 src_end -= cur; 5714 len -= cur; 5715 } 5716 } 5717 5718 int try_release_extent_buffer(struct page *page) 5719 { 5720 struct extent_buffer *eb; 5721 5722 /* 5723 * We need to make sure noboody is attaching this page to an eb right 5724 * now. 5725 */ 5726 spin_lock(&page->mapping->private_lock); 5727 if (!PagePrivate(page)) { 5728 spin_unlock(&page->mapping->private_lock); 5729 return 1; 5730 } 5731 5732 eb = (struct extent_buffer *)page->private; 5733 BUG_ON(!eb); 5734 5735 /* 5736 * This is a little awful but should be ok, we need to make sure that 5737 * the eb doesn't disappear out from under us while we're looking at 5738 * this page. 5739 */ 5740 spin_lock(&eb->refs_lock); 5741 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5742 spin_unlock(&eb->refs_lock); 5743 spin_unlock(&page->mapping->private_lock); 5744 return 0; 5745 } 5746 spin_unlock(&page->mapping->private_lock); 5747 5748 /* 5749 * If tree ref isn't set then we know the ref on this eb is a real ref, 5750 * so just return, this page will likely be freed soon anyway. 5751 */ 5752 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5753 spin_unlock(&eb->refs_lock); 5754 return 0; 5755 } 5756 5757 return release_extent_buffer(eb); 5758 } 5759