1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 refcount_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n", 78 eb->start, eb->len, atomic_read(&eb->refs)); 79 list_del(&eb->leak_list); 80 kmem_cache_free(extent_buffer_cache, eb); 81 } 82 } 83 84 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 85 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 86 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 87 struct extent_io_tree *tree, u64 start, u64 end) 88 { 89 if (tree->ops && tree->ops->check_extent_io_range) 90 tree->ops->check_extent_io_range(tree->private_data, caller, 91 start, end); 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use REQ_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static void add_extent_changeset(struct extent_state *state, unsigned bits, 124 struct extent_changeset *changeset, 125 int set) 126 { 127 int ret; 128 129 if (!changeset) 130 return; 131 if (set && (state->state & bits) == bits) 132 return; 133 if (!set && (state->state & bits) == 0) 134 return; 135 changeset->bytes_changed += state->end - state->start + 1; 136 ret = ulist_add(&changeset->range_changed, state->start, state->end, 137 GFP_ATOMIC); 138 /* ENOMEM */ 139 BUG_ON(ret < 0); 140 } 141 142 static noinline void flush_write_bio(void *data); 143 static inline struct btrfs_fs_info * 144 tree_fs_info(struct extent_io_tree *tree) 145 { 146 if (tree->ops) 147 return tree->ops->tree_fs_info(tree->private_data); 148 return NULL; 149 } 150 151 int __init extent_io_init(void) 152 { 153 extent_state_cache = kmem_cache_create("btrfs_extent_state", 154 sizeof(struct extent_state), 0, 155 SLAB_MEM_SPREAD, NULL); 156 if (!extent_state_cache) 157 return -ENOMEM; 158 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 160 sizeof(struct extent_buffer), 0, 161 SLAB_MEM_SPREAD, NULL); 162 if (!extent_buffer_cache) 163 goto free_state_cache; 164 165 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 166 offsetof(struct btrfs_io_bio, bio), 167 BIOSET_NEED_BVECS); 168 if (!btrfs_bioset) 169 goto free_buffer_cache; 170 171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 172 goto free_bioset; 173 174 return 0; 175 176 free_bioset: 177 bioset_free(btrfs_bioset); 178 btrfs_bioset = NULL; 179 180 free_buffer_cache: 181 kmem_cache_destroy(extent_buffer_cache); 182 extent_buffer_cache = NULL; 183 184 free_state_cache: 185 kmem_cache_destroy(extent_state_cache); 186 extent_state_cache = NULL; 187 return -ENOMEM; 188 } 189 190 void extent_io_exit(void) 191 { 192 btrfs_leak_debug_check(); 193 194 /* 195 * Make sure all delayed rcu free are flushed before we 196 * destroy caches. 197 */ 198 rcu_barrier(); 199 kmem_cache_destroy(extent_state_cache); 200 kmem_cache_destroy(extent_buffer_cache); 201 if (btrfs_bioset) 202 bioset_free(btrfs_bioset); 203 } 204 205 void extent_io_tree_init(struct extent_io_tree *tree, 206 void *private_data) 207 { 208 tree->state = RB_ROOT; 209 tree->ops = NULL; 210 tree->dirty_bytes = 0; 211 spin_lock_init(&tree->lock); 212 tree->private_data = private_data; 213 } 214 215 static struct extent_state *alloc_extent_state(gfp_t mask) 216 { 217 struct extent_state *state; 218 219 /* 220 * The given mask might be not appropriate for the slab allocator, 221 * drop the unsupported bits 222 */ 223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 224 state = kmem_cache_alloc(extent_state_cache, mask); 225 if (!state) 226 return state; 227 state->state = 0; 228 state->failrec = NULL; 229 RB_CLEAR_NODE(&state->rb_node); 230 btrfs_leak_debug_add(&state->leak_list, &states); 231 refcount_set(&state->refs, 1); 232 init_waitqueue_head(&state->wq); 233 trace_alloc_extent_state(state, mask, _RET_IP_); 234 return state; 235 } 236 237 void free_extent_state(struct extent_state *state) 238 { 239 if (!state) 240 return; 241 if (refcount_dec_and_test(&state->refs)) { 242 WARN_ON(extent_state_in_tree(state)); 243 btrfs_leak_debug_del(&state->leak_list); 244 trace_free_extent_state(state, _RET_IP_); 245 kmem_cache_free(extent_state_cache, state); 246 } 247 } 248 249 static struct rb_node *tree_insert(struct rb_root *root, 250 struct rb_node *search_start, 251 u64 offset, 252 struct rb_node *node, 253 struct rb_node ***p_in, 254 struct rb_node **parent_in) 255 { 256 struct rb_node **p; 257 struct rb_node *parent = NULL; 258 struct tree_entry *entry; 259 260 if (p_in && parent_in) { 261 p = *p_in; 262 parent = *parent_in; 263 goto do_insert; 264 } 265 266 p = search_start ? &search_start : &root->rb_node; 267 while (*p) { 268 parent = *p; 269 entry = rb_entry(parent, struct tree_entry, rb_node); 270 271 if (offset < entry->start) 272 p = &(*p)->rb_left; 273 else if (offset > entry->end) 274 p = &(*p)->rb_right; 275 else 276 return parent; 277 } 278 279 do_insert: 280 rb_link_node(node, parent, p); 281 rb_insert_color(node, root); 282 return NULL; 283 } 284 285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 286 struct rb_node **prev_ret, 287 struct rb_node **next_ret, 288 struct rb_node ***p_ret, 289 struct rb_node **parent_ret) 290 { 291 struct rb_root *root = &tree->state; 292 struct rb_node **n = &root->rb_node; 293 struct rb_node *prev = NULL; 294 struct rb_node *orig_prev = NULL; 295 struct tree_entry *entry; 296 struct tree_entry *prev_entry = NULL; 297 298 while (*n) { 299 prev = *n; 300 entry = rb_entry(prev, struct tree_entry, rb_node); 301 prev_entry = entry; 302 303 if (offset < entry->start) 304 n = &(*n)->rb_left; 305 else if (offset > entry->end) 306 n = &(*n)->rb_right; 307 else 308 return *n; 309 } 310 311 if (p_ret) 312 *p_ret = n; 313 if (parent_ret) 314 *parent_ret = prev; 315 316 if (prev_ret) { 317 orig_prev = prev; 318 while (prev && offset > prev_entry->end) { 319 prev = rb_next(prev); 320 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 321 } 322 *prev_ret = prev; 323 prev = orig_prev; 324 } 325 326 if (next_ret) { 327 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 328 while (prev && offset < prev_entry->start) { 329 prev = rb_prev(prev); 330 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 331 } 332 *next_ret = prev; 333 } 334 return NULL; 335 } 336 337 static inline struct rb_node * 338 tree_search_for_insert(struct extent_io_tree *tree, 339 u64 offset, 340 struct rb_node ***p_ret, 341 struct rb_node **parent_ret) 342 { 343 struct rb_node *prev = NULL; 344 struct rb_node *ret; 345 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 347 if (!ret) 348 return prev; 349 return ret; 350 } 351 352 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 353 u64 offset) 354 { 355 return tree_search_for_insert(tree, offset, NULL, NULL); 356 } 357 358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 359 struct extent_state *other) 360 { 361 if (tree->ops && tree->ops->merge_extent_hook) 362 tree->ops->merge_extent_hook(tree->private_data, new, other); 363 } 364 365 /* 366 * utility function to look for merge candidates inside a given range. 367 * Any extents with matching state are merged together into a single 368 * extent in the tree. Extents with EXTENT_IO in their state field 369 * are not merged because the end_io handlers need to be able to do 370 * operations on them without sleeping (or doing allocations/splits). 371 * 372 * This should be called with the tree lock held. 373 */ 374 static void merge_state(struct extent_io_tree *tree, 375 struct extent_state *state) 376 { 377 struct extent_state *other; 378 struct rb_node *other_node; 379 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 381 return; 382 383 other_node = rb_prev(&state->rb_node); 384 if (other_node) { 385 other = rb_entry(other_node, struct extent_state, rb_node); 386 if (other->end == state->start - 1 && 387 other->state == state->state) { 388 merge_cb(tree, state, other); 389 state->start = other->start; 390 rb_erase(&other->rb_node, &tree->state); 391 RB_CLEAR_NODE(&other->rb_node); 392 free_extent_state(other); 393 } 394 } 395 other_node = rb_next(&state->rb_node); 396 if (other_node) { 397 other = rb_entry(other_node, struct extent_state, rb_node); 398 if (other->start == state->end + 1 && 399 other->state == state->state) { 400 merge_cb(tree, state, other); 401 state->end = other->end; 402 rb_erase(&other->rb_node, &tree->state); 403 RB_CLEAR_NODE(&other->rb_node); 404 free_extent_state(other); 405 } 406 } 407 } 408 409 static void set_state_cb(struct extent_io_tree *tree, 410 struct extent_state *state, unsigned *bits) 411 { 412 if (tree->ops && tree->ops->set_bit_hook) 413 tree->ops->set_bit_hook(tree->private_data, state, bits); 414 } 415 416 static void clear_state_cb(struct extent_io_tree *tree, 417 struct extent_state *state, unsigned *bits) 418 { 419 if (tree->ops && tree->ops->clear_bit_hook) 420 tree->ops->clear_bit_hook(tree->private_data, state, bits); 421 } 422 423 static void set_state_bits(struct extent_io_tree *tree, 424 struct extent_state *state, unsigned *bits, 425 struct extent_changeset *changeset); 426 427 /* 428 * insert an extent_state struct into the tree. 'bits' are set on the 429 * struct before it is inserted. 430 * 431 * This may return -EEXIST if the extent is already there, in which case the 432 * state struct is freed. 433 * 434 * The tree lock is not taken internally. This is a utility function and 435 * probably isn't what you want to call (see set/clear_extent_bit). 436 */ 437 static int insert_state(struct extent_io_tree *tree, 438 struct extent_state *state, u64 start, u64 end, 439 struct rb_node ***p, 440 struct rb_node **parent, 441 unsigned *bits, struct extent_changeset *changeset) 442 { 443 struct rb_node *node; 444 445 if (end < start) 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 447 end, start); 448 state->start = start; 449 state->end = end; 450 451 set_state_bits(tree, state, bits, changeset); 452 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 454 if (node) { 455 struct extent_state *found; 456 found = rb_entry(node, struct extent_state, rb_node); 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 458 found->start, found->end, start, end); 459 return -EEXIST; 460 } 461 merge_state(tree, state); 462 return 0; 463 } 464 465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 466 u64 split) 467 { 468 if (tree->ops && tree->ops->split_extent_hook) 469 tree->ops->split_extent_hook(tree->private_data, orig, split); 470 } 471 472 /* 473 * split a given extent state struct in two, inserting the preallocated 474 * struct 'prealloc' as the newly created second half. 'split' indicates an 475 * offset inside 'orig' where it should be split. 476 * 477 * Before calling, 478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 479 * are two extent state structs in the tree: 480 * prealloc: [orig->start, split - 1] 481 * orig: [ split, orig->end ] 482 * 483 * The tree locks are not taken by this function. They need to be held 484 * by the caller. 485 */ 486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 487 struct extent_state *prealloc, u64 split) 488 { 489 struct rb_node *node; 490 491 split_cb(tree, orig, split); 492 493 prealloc->start = orig->start; 494 prealloc->end = split - 1; 495 prealloc->state = orig->state; 496 orig->start = split; 497 498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 499 &prealloc->rb_node, NULL, NULL); 500 if (node) { 501 free_extent_state(prealloc); 502 return -EEXIST; 503 } 504 return 0; 505 } 506 507 static struct extent_state *next_state(struct extent_state *state) 508 { 509 struct rb_node *next = rb_next(&state->rb_node); 510 if (next) 511 return rb_entry(next, struct extent_state, rb_node); 512 else 513 return NULL; 514 } 515 516 /* 517 * utility function to clear some bits in an extent state struct. 518 * it will optionally wake up any one waiting on this state (wake == 1). 519 * 520 * If no bits are set on the state struct after clearing things, the 521 * struct is freed and removed from the tree 522 */ 523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 524 struct extent_state *state, 525 unsigned *bits, int wake, 526 struct extent_changeset *changeset) 527 { 528 struct extent_state *next; 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 530 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 532 u64 range = state->end - state->start + 1; 533 WARN_ON(range > tree->dirty_bytes); 534 tree->dirty_bytes -= range; 535 } 536 clear_state_cb(tree, state, bits); 537 add_extent_changeset(state, bits_to_clear, changeset, 0); 538 state->state &= ~bits_to_clear; 539 if (wake) 540 wake_up(&state->wq); 541 if (state->state == 0) { 542 next = next_state(state); 543 if (extent_state_in_tree(state)) { 544 rb_erase(&state->rb_node, &tree->state); 545 RB_CLEAR_NODE(&state->rb_node); 546 free_extent_state(state); 547 } else { 548 WARN_ON(1); 549 } 550 } else { 551 merge_state(tree, state); 552 next = next_state(state); 553 } 554 return next; 555 } 556 557 static struct extent_state * 558 alloc_extent_state_atomic(struct extent_state *prealloc) 559 { 560 if (!prealloc) 561 prealloc = alloc_extent_state(GFP_ATOMIC); 562 563 return prealloc; 564 } 565 566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 567 { 568 btrfs_panic(tree_fs_info(tree), err, 569 "Locking error: Extent tree was modified by another thread while locked."); 570 } 571 572 /* 573 * clear some bits on a range in the tree. This may require splitting 574 * or inserting elements in the tree, so the gfp mask is used to 575 * indicate which allocations or sleeping are allowed. 576 * 577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 578 * the given range from the tree regardless of state (ie for truncate). 579 * 580 * the range [start, end] is inclusive. 581 * 582 * This takes the tree lock, and returns 0 on success and < 0 on error. 583 */ 584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 585 unsigned bits, int wake, int delete, 586 struct extent_state **cached_state, 587 gfp_t mask, struct extent_changeset *changeset) 588 { 589 struct extent_state *state; 590 struct extent_state *cached; 591 struct extent_state *prealloc = NULL; 592 struct rb_node *node; 593 u64 last_end; 594 int err; 595 int clear = 0; 596 597 btrfs_debug_check_extent_io_range(tree, start, end); 598 599 if (bits & EXTENT_DELALLOC) 600 bits |= EXTENT_NORESERVE; 601 602 if (delete) 603 bits |= ~EXTENT_CTLBITS; 604 bits |= EXTENT_FIRST_DELALLOC; 605 606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 607 clear = 1; 608 again: 609 if (!prealloc && gfpflags_allow_blocking(mask)) { 610 /* 611 * Don't care for allocation failure here because we might end 612 * up not needing the pre-allocated extent state at all, which 613 * is the case if we only have in the tree extent states that 614 * cover our input range and don't cover too any other range. 615 * If we end up needing a new extent state we allocate it later. 616 */ 617 prealloc = alloc_extent_state(mask); 618 } 619 620 spin_lock(&tree->lock); 621 if (cached_state) { 622 cached = *cached_state; 623 624 if (clear) { 625 *cached_state = NULL; 626 cached_state = NULL; 627 } 628 629 if (cached && extent_state_in_tree(cached) && 630 cached->start <= start && cached->end > start) { 631 if (clear) 632 refcount_dec(&cached->refs); 633 state = cached; 634 goto hit_next; 635 } 636 if (clear) 637 free_extent_state(cached); 638 } 639 /* 640 * this search will find the extents that end after 641 * our range starts 642 */ 643 node = tree_search(tree, start); 644 if (!node) 645 goto out; 646 state = rb_entry(node, struct extent_state, rb_node); 647 hit_next: 648 if (state->start > end) 649 goto out; 650 WARN_ON(state->end < start); 651 last_end = state->end; 652 653 /* the state doesn't have the wanted bits, go ahead */ 654 if (!(state->state & bits)) { 655 state = next_state(state); 656 goto next; 657 } 658 659 /* 660 * | ---- desired range ---- | 661 * | state | or 662 * | ------------- state -------------- | 663 * 664 * We need to split the extent we found, and may flip 665 * bits on second half. 666 * 667 * If the extent we found extends past our range, we 668 * just split and search again. It'll get split again 669 * the next time though. 670 * 671 * If the extent we found is inside our range, we clear 672 * the desired bit on it. 673 */ 674 675 if (state->start < start) { 676 prealloc = alloc_extent_state_atomic(prealloc); 677 BUG_ON(!prealloc); 678 err = split_state(tree, state, prealloc, start); 679 if (err) 680 extent_io_tree_panic(tree, err); 681 682 prealloc = NULL; 683 if (err) 684 goto out; 685 if (state->end <= end) { 686 state = clear_state_bit(tree, state, &bits, wake, 687 changeset); 688 goto next; 689 } 690 goto search_again; 691 } 692 /* 693 * | ---- desired range ---- | 694 * | state | 695 * We need to split the extent, and clear the bit 696 * on the first half 697 */ 698 if (state->start <= end && state->end > end) { 699 prealloc = alloc_extent_state_atomic(prealloc); 700 BUG_ON(!prealloc); 701 err = split_state(tree, state, prealloc, end + 1); 702 if (err) 703 extent_io_tree_panic(tree, err); 704 705 if (wake) 706 wake_up(&state->wq); 707 708 clear_state_bit(tree, prealloc, &bits, wake, changeset); 709 710 prealloc = NULL; 711 goto out; 712 } 713 714 state = clear_state_bit(tree, state, &bits, wake, changeset); 715 next: 716 if (last_end == (u64)-1) 717 goto out; 718 start = last_end + 1; 719 if (start <= end && state && !need_resched()) 720 goto hit_next; 721 722 search_again: 723 if (start > end) 724 goto out; 725 spin_unlock(&tree->lock); 726 if (gfpflags_allow_blocking(mask)) 727 cond_resched(); 728 goto again; 729 730 out: 731 spin_unlock(&tree->lock); 732 if (prealloc) 733 free_extent_state(prealloc); 734 735 return 0; 736 737 } 738 739 static void wait_on_state(struct extent_io_tree *tree, 740 struct extent_state *state) 741 __releases(tree->lock) 742 __acquires(tree->lock) 743 { 744 DEFINE_WAIT(wait); 745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 746 spin_unlock(&tree->lock); 747 schedule(); 748 spin_lock(&tree->lock); 749 finish_wait(&state->wq, &wait); 750 } 751 752 /* 753 * waits for one or more bits to clear on a range in the state tree. 754 * The range [start, end] is inclusive. 755 * The tree lock is taken by this function 756 */ 757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 758 unsigned long bits) 759 { 760 struct extent_state *state; 761 struct rb_node *node; 762 763 btrfs_debug_check_extent_io_range(tree, start, end); 764 765 spin_lock(&tree->lock); 766 again: 767 while (1) { 768 /* 769 * this search will find all the extents that end after 770 * our range starts 771 */ 772 node = tree_search(tree, start); 773 process_node: 774 if (!node) 775 break; 776 777 state = rb_entry(node, struct extent_state, rb_node); 778 779 if (state->start > end) 780 goto out; 781 782 if (state->state & bits) { 783 start = state->start; 784 refcount_inc(&state->refs); 785 wait_on_state(tree, state); 786 free_extent_state(state); 787 goto again; 788 } 789 start = state->end + 1; 790 791 if (start > end) 792 break; 793 794 if (!cond_resched_lock(&tree->lock)) { 795 node = rb_next(node); 796 goto process_node; 797 } 798 } 799 out: 800 spin_unlock(&tree->lock); 801 } 802 803 static void set_state_bits(struct extent_io_tree *tree, 804 struct extent_state *state, 805 unsigned *bits, struct extent_changeset *changeset) 806 { 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 808 809 set_state_cb(tree, state, bits); 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 811 u64 range = state->end - state->start + 1; 812 tree->dirty_bytes += range; 813 } 814 add_extent_changeset(state, bits_to_set, changeset, 1); 815 state->state |= bits_to_set; 816 } 817 818 static void cache_state_if_flags(struct extent_state *state, 819 struct extent_state **cached_ptr, 820 unsigned flags) 821 { 822 if (cached_ptr && !(*cached_ptr)) { 823 if (!flags || (state->state & flags)) { 824 *cached_ptr = state; 825 refcount_inc(&state->refs); 826 } 827 } 828 } 829 830 static void cache_state(struct extent_state *state, 831 struct extent_state **cached_ptr) 832 { 833 return cache_state_if_flags(state, cached_ptr, 834 EXTENT_IOBITS | EXTENT_BOUNDARY); 835 } 836 837 /* 838 * set some bits on a range in the tree. This may require allocations or 839 * sleeping, so the gfp mask is used to indicate what is allowed. 840 * 841 * If any of the exclusive bits are set, this will fail with -EEXIST if some 842 * part of the range already has the desired bits set. The start of the 843 * existing range is returned in failed_start in this case. 844 * 845 * [start, end] is inclusive This takes the tree lock. 846 */ 847 848 static int __must_check 849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 850 unsigned bits, unsigned exclusive_bits, 851 u64 *failed_start, struct extent_state **cached_state, 852 gfp_t mask, struct extent_changeset *changeset) 853 { 854 struct extent_state *state; 855 struct extent_state *prealloc = NULL; 856 struct rb_node *node; 857 struct rb_node **p; 858 struct rb_node *parent; 859 int err = 0; 860 u64 last_start; 861 u64 last_end; 862 863 btrfs_debug_check_extent_io_range(tree, start, end); 864 865 bits |= EXTENT_FIRST_DELALLOC; 866 again: 867 if (!prealloc && gfpflags_allow_blocking(mask)) { 868 /* 869 * Don't care for allocation failure here because we might end 870 * up not needing the pre-allocated extent state at all, which 871 * is the case if we only have in the tree extent states that 872 * cover our input range and don't cover too any other range. 873 * If we end up needing a new extent state we allocate it later. 874 */ 875 prealloc = alloc_extent_state(mask); 876 } 877 878 spin_lock(&tree->lock); 879 if (cached_state && *cached_state) { 880 state = *cached_state; 881 if (state->start <= start && state->end > start && 882 extent_state_in_tree(state)) { 883 node = &state->rb_node; 884 goto hit_next; 885 } 886 } 887 /* 888 * this search will find all the extents that end after 889 * our range starts. 890 */ 891 node = tree_search_for_insert(tree, start, &p, &parent); 892 if (!node) { 893 prealloc = alloc_extent_state_atomic(prealloc); 894 BUG_ON(!prealloc); 895 err = insert_state(tree, prealloc, start, end, 896 &p, &parent, &bits, changeset); 897 if (err) 898 extent_io_tree_panic(tree, err); 899 900 cache_state(prealloc, cached_state); 901 prealloc = NULL; 902 goto out; 903 } 904 state = rb_entry(node, struct extent_state, rb_node); 905 hit_next: 906 last_start = state->start; 907 last_end = state->end; 908 909 /* 910 * | ---- desired range ---- | 911 * | state | 912 * 913 * Just lock what we found and keep going 914 */ 915 if (state->start == start && state->end <= end) { 916 if (state->state & exclusive_bits) { 917 *failed_start = state->start; 918 err = -EEXIST; 919 goto out; 920 } 921 922 set_state_bits(tree, state, &bits, changeset); 923 cache_state(state, cached_state); 924 merge_state(tree, state); 925 if (last_end == (u64)-1) 926 goto out; 927 start = last_end + 1; 928 state = next_state(state); 929 if (start < end && state && state->start == start && 930 !need_resched()) 931 goto hit_next; 932 goto search_again; 933 } 934 935 /* 936 * | ---- desired range ---- | 937 * | state | 938 * or 939 * | ------------- state -------------- | 940 * 941 * We need to split the extent we found, and may flip bits on 942 * second half. 943 * 944 * If the extent we found extends past our 945 * range, we just split and search again. It'll get split 946 * again the next time though. 947 * 948 * If the extent we found is inside our range, we set the 949 * desired bit on it. 950 */ 951 if (state->start < start) { 952 if (state->state & exclusive_bits) { 953 *failed_start = start; 954 err = -EEXIST; 955 goto out; 956 } 957 958 prealloc = alloc_extent_state_atomic(prealloc); 959 BUG_ON(!prealloc); 960 err = split_state(tree, state, prealloc, start); 961 if (err) 962 extent_io_tree_panic(tree, err); 963 964 prealloc = NULL; 965 if (err) 966 goto out; 967 if (state->end <= end) { 968 set_state_bits(tree, state, &bits, changeset); 969 cache_state(state, cached_state); 970 merge_state(tree, state); 971 if (last_end == (u64)-1) 972 goto out; 973 start = last_end + 1; 974 state = next_state(state); 975 if (start < end && state && state->start == start && 976 !need_resched()) 977 goto hit_next; 978 } 979 goto search_again; 980 } 981 /* 982 * | ---- desired range ---- | 983 * | state | or | state | 984 * 985 * There's a hole, we need to insert something in it and 986 * ignore the extent we found. 987 */ 988 if (state->start > start) { 989 u64 this_end; 990 if (end < last_start) 991 this_end = end; 992 else 993 this_end = last_start - 1; 994 995 prealloc = alloc_extent_state_atomic(prealloc); 996 BUG_ON(!prealloc); 997 998 /* 999 * Avoid to free 'prealloc' if it can be merged with 1000 * the later extent. 1001 */ 1002 err = insert_state(tree, prealloc, start, this_end, 1003 NULL, NULL, &bits, changeset); 1004 if (err) 1005 extent_io_tree_panic(tree, err); 1006 1007 cache_state(prealloc, cached_state); 1008 prealloc = NULL; 1009 start = this_end + 1; 1010 goto search_again; 1011 } 1012 /* 1013 * | ---- desired range ---- | 1014 * | state | 1015 * We need to split the extent, and set the bit 1016 * on the first half 1017 */ 1018 if (state->start <= end && state->end > end) { 1019 if (state->state & exclusive_bits) { 1020 *failed_start = start; 1021 err = -EEXIST; 1022 goto out; 1023 } 1024 1025 prealloc = alloc_extent_state_atomic(prealloc); 1026 BUG_ON(!prealloc); 1027 err = split_state(tree, state, prealloc, end + 1); 1028 if (err) 1029 extent_io_tree_panic(tree, err); 1030 1031 set_state_bits(tree, prealloc, &bits, changeset); 1032 cache_state(prealloc, cached_state); 1033 merge_state(tree, prealloc); 1034 prealloc = NULL; 1035 goto out; 1036 } 1037 1038 search_again: 1039 if (start > end) 1040 goto out; 1041 spin_unlock(&tree->lock); 1042 if (gfpflags_allow_blocking(mask)) 1043 cond_resched(); 1044 goto again; 1045 1046 out: 1047 spin_unlock(&tree->lock); 1048 if (prealloc) 1049 free_extent_state(prealloc); 1050 1051 return err; 1052 1053 } 1054 1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1056 unsigned bits, u64 * failed_start, 1057 struct extent_state **cached_state, gfp_t mask) 1058 { 1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1060 cached_state, mask, NULL); 1061 } 1062 1063 1064 /** 1065 * convert_extent_bit - convert all bits in a given range from one bit to 1066 * another 1067 * @tree: the io tree to search 1068 * @start: the start offset in bytes 1069 * @end: the end offset in bytes (inclusive) 1070 * @bits: the bits to set in this range 1071 * @clear_bits: the bits to clear in this range 1072 * @cached_state: state that we're going to cache 1073 * 1074 * This will go through and set bits for the given range. If any states exist 1075 * already in this range they are set with the given bit and cleared of the 1076 * clear_bits. This is only meant to be used by things that are mergeable, ie 1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1078 * boundary bits like LOCK. 1079 * 1080 * All allocations are done with GFP_NOFS. 1081 */ 1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1083 unsigned bits, unsigned clear_bits, 1084 struct extent_state **cached_state) 1085 { 1086 struct extent_state *state; 1087 struct extent_state *prealloc = NULL; 1088 struct rb_node *node; 1089 struct rb_node **p; 1090 struct rb_node *parent; 1091 int err = 0; 1092 u64 last_start; 1093 u64 last_end; 1094 bool first_iteration = true; 1095 1096 btrfs_debug_check_extent_io_range(tree, start, end); 1097 1098 again: 1099 if (!prealloc) { 1100 /* 1101 * Best effort, don't worry if extent state allocation fails 1102 * here for the first iteration. We might have a cached state 1103 * that matches exactly the target range, in which case no 1104 * extent state allocations are needed. We'll only know this 1105 * after locking the tree. 1106 */ 1107 prealloc = alloc_extent_state(GFP_NOFS); 1108 if (!prealloc && !first_iteration) 1109 return -ENOMEM; 1110 } 1111 1112 spin_lock(&tree->lock); 1113 if (cached_state && *cached_state) { 1114 state = *cached_state; 1115 if (state->start <= start && state->end > start && 1116 extent_state_in_tree(state)) { 1117 node = &state->rb_node; 1118 goto hit_next; 1119 } 1120 } 1121 1122 /* 1123 * this search will find all the extents that end after 1124 * our range starts. 1125 */ 1126 node = tree_search_for_insert(tree, start, &p, &parent); 1127 if (!node) { 1128 prealloc = alloc_extent_state_atomic(prealloc); 1129 if (!prealloc) { 1130 err = -ENOMEM; 1131 goto out; 1132 } 1133 err = insert_state(tree, prealloc, start, end, 1134 &p, &parent, &bits, NULL); 1135 if (err) 1136 extent_io_tree_panic(tree, err); 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 goto out; 1140 } 1141 state = rb_entry(node, struct extent_state, rb_node); 1142 hit_next: 1143 last_start = state->start; 1144 last_end = state->end; 1145 1146 /* 1147 * | ---- desired range ---- | 1148 * | state | 1149 * 1150 * Just lock what we found and keep going 1151 */ 1152 if (state->start == start && state->end <= end) { 1153 set_state_bits(tree, state, &bits, NULL); 1154 cache_state(state, cached_state); 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1156 if (last_end == (u64)-1) 1157 goto out; 1158 start = last_end + 1; 1159 if (start < end && state && state->start == start && 1160 !need_resched()) 1161 goto hit_next; 1162 goto search_again; 1163 } 1164 1165 /* 1166 * | ---- desired range ---- | 1167 * | state | 1168 * or 1169 * | ------------- state -------------- | 1170 * 1171 * We need to split the extent we found, and may flip bits on 1172 * second half. 1173 * 1174 * If the extent we found extends past our 1175 * range, we just split and search again. It'll get split 1176 * again the next time though. 1177 * 1178 * If the extent we found is inside our range, we set the 1179 * desired bit on it. 1180 */ 1181 if (state->start < start) { 1182 prealloc = alloc_extent_state_atomic(prealloc); 1183 if (!prealloc) { 1184 err = -ENOMEM; 1185 goto out; 1186 } 1187 err = split_state(tree, state, prealloc, start); 1188 if (err) 1189 extent_io_tree_panic(tree, err); 1190 prealloc = NULL; 1191 if (err) 1192 goto out; 1193 if (state->end <= end) { 1194 set_state_bits(tree, state, &bits, NULL); 1195 cache_state(state, cached_state); 1196 state = clear_state_bit(tree, state, &clear_bits, 0, 1197 NULL); 1198 if (last_end == (u64)-1) 1199 goto out; 1200 start = last_end + 1; 1201 if (start < end && state && state->start == start && 1202 !need_resched()) 1203 goto hit_next; 1204 } 1205 goto search_again; 1206 } 1207 /* 1208 * | ---- desired range ---- | 1209 * | state | or | state | 1210 * 1211 * There's a hole, we need to insert something in it and 1212 * ignore the extent we found. 1213 */ 1214 if (state->start > start) { 1215 u64 this_end; 1216 if (end < last_start) 1217 this_end = end; 1218 else 1219 this_end = last_start - 1; 1220 1221 prealloc = alloc_extent_state_atomic(prealloc); 1222 if (!prealloc) { 1223 err = -ENOMEM; 1224 goto out; 1225 } 1226 1227 /* 1228 * Avoid to free 'prealloc' if it can be merged with 1229 * the later extent. 1230 */ 1231 err = insert_state(tree, prealloc, start, this_end, 1232 NULL, NULL, &bits, NULL); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 cache_state(prealloc, cached_state); 1236 prealloc = NULL; 1237 start = this_end + 1; 1238 goto search_again; 1239 } 1240 /* 1241 * | ---- desired range ---- | 1242 * | state | 1243 * We need to split the extent, and set the bit 1244 * on the first half 1245 */ 1246 if (state->start <= end && state->end > end) { 1247 prealloc = alloc_extent_state_atomic(prealloc); 1248 if (!prealloc) { 1249 err = -ENOMEM; 1250 goto out; 1251 } 1252 1253 err = split_state(tree, state, prealloc, end + 1); 1254 if (err) 1255 extent_io_tree_panic(tree, err); 1256 1257 set_state_bits(tree, prealloc, &bits, NULL); 1258 cache_state(prealloc, cached_state); 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1260 prealloc = NULL; 1261 goto out; 1262 } 1263 1264 search_again: 1265 if (start > end) 1266 goto out; 1267 spin_unlock(&tree->lock); 1268 cond_resched(); 1269 first_iteration = false; 1270 goto again; 1271 1272 out: 1273 spin_unlock(&tree->lock); 1274 if (prealloc) 1275 free_extent_state(prealloc); 1276 1277 return err; 1278 } 1279 1280 /* wrappers around set/clear extent bit */ 1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1282 unsigned bits, struct extent_changeset *changeset) 1283 { 1284 /* 1285 * We don't support EXTENT_LOCKED yet, as current changeset will 1286 * record any bits changed, so for EXTENT_LOCKED case, it will 1287 * either fail with -EEXIST or changeset will record the whole 1288 * range. 1289 */ 1290 BUG_ON(bits & EXTENT_LOCKED); 1291 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1293 changeset); 1294 } 1295 1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1297 unsigned bits, int wake, int delete, 1298 struct extent_state **cached, gfp_t mask) 1299 { 1300 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1301 cached, mask, NULL); 1302 } 1303 1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, struct extent_changeset *changeset) 1306 { 1307 /* 1308 * Don't support EXTENT_LOCKED case, same reason as 1309 * set_record_extent_bits(). 1310 */ 1311 BUG_ON(bits & EXTENT_LOCKED); 1312 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1314 changeset); 1315 } 1316 1317 /* 1318 * either insert or lock state struct between start and end use mask to tell 1319 * us if waiting is desired. 1320 */ 1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state) 1323 { 1324 int err; 1325 u64 failed_start; 1326 1327 while (1) { 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1329 EXTENT_LOCKED, &failed_start, 1330 cached_state, GFP_NOFS, NULL); 1331 if (err == -EEXIST) { 1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1333 start = failed_start; 1334 } else 1335 break; 1336 WARN_ON(start > end); 1337 } 1338 return err; 1339 } 1340 1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1342 { 1343 int err; 1344 u64 failed_start; 1345 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1347 &failed_start, NULL, GFP_NOFS, NULL); 1348 if (err == -EEXIST) { 1349 if (failed_start > start) 1350 clear_extent_bit(tree, start, failed_start - 1, 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1352 return 0; 1353 } 1354 return 1; 1355 } 1356 1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1358 { 1359 unsigned long index = start >> PAGE_SHIFT; 1360 unsigned long end_index = end >> PAGE_SHIFT; 1361 struct page *page; 1362 1363 while (index <= end_index) { 1364 page = find_get_page(inode->i_mapping, index); 1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1366 clear_page_dirty_for_io(page); 1367 put_page(page); 1368 index++; 1369 } 1370 } 1371 1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1373 { 1374 unsigned long index = start >> PAGE_SHIFT; 1375 unsigned long end_index = end >> PAGE_SHIFT; 1376 struct page *page; 1377 1378 while (index <= end_index) { 1379 page = find_get_page(inode->i_mapping, index); 1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1381 __set_page_dirty_nobuffers(page); 1382 account_page_redirty(page); 1383 put_page(page); 1384 index++; 1385 } 1386 } 1387 1388 /* 1389 * helper function to set both pages and extents in the tree writeback 1390 */ 1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1392 { 1393 tree->ops->set_range_writeback(tree->private_data, start, end); 1394 } 1395 1396 /* find the first state struct with 'bits' set after 'start', and 1397 * return it. tree->lock must be held. NULL will returned if 1398 * nothing was found after 'start' 1399 */ 1400 static struct extent_state * 1401 find_first_extent_bit_state(struct extent_io_tree *tree, 1402 u64 start, unsigned bits) 1403 { 1404 struct rb_node *node; 1405 struct extent_state *state; 1406 1407 /* 1408 * this search will find all the extents that end after 1409 * our range starts. 1410 */ 1411 node = tree_search(tree, start); 1412 if (!node) 1413 goto out; 1414 1415 while (1) { 1416 state = rb_entry(node, struct extent_state, rb_node); 1417 if (state->end >= start && (state->state & bits)) 1418 return state; 1419 1420 node = rb_next(node); 1421 if (!node) 1422 break; 1423 } 1424 out: 1425 return NULL; 1426 } 1427 1428 /* 1429 * find the first offset in the io tree with 'bits' set. zero is 1430 * returned if we find something, and *start_ret and *end_ret are 1431 * set to reflect the state struct that was found. 1432 * 1433 * If nothing was found, 1 is returned. If found something, return 0. 1434 */ 1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1436 u64 *start_ret, u64 *end_ret, unsigned bits, 1437 struct extent_state **cached_state) 1438 { 1439 struct extent_state *state; 1440 struct rb_node *n; 1441 int ret = 1; 1442 1443 spin_lock(&tree->lock); 1444 if (cached_state && *cached_state) { 1445 state = *cached_state; 1446 if (state->end == start - 1 && extent_state_in_tree(state)) { 1447 n = rb_next(&state->rb_node); 1448 while (n) { 1449 state = rb_entry(n, struct extent_state, 1450 rb_node); 1451 if (state->state & bits) 1452 goto got_it; 1453 n = rb_next(n); 1454 } 1455 free_extent_state(*cached_state); 1456 *cached_state = NULL; 1457 goto out; 1458 } 1459 free_extent_state(*cached_state); 1460 *cached_state = NULL; 1461 } 1462 1463 state = find_first_extent_bit_state(tree, start, bits); 1464 got_it: 1465 if (state) { 1466 cache_state_if_flags(state, cached_state, 0); 1467 *start_ret = state->start; 1468 *end_ret = state->end; 1469 ret = 0; 1470 } 1471 out: 1472 spin_unlock(&tree->lock); 1473 return ret; 1474 } 1475 1476 /* 1477 * find a contiguous range of bytes in the file marked as delalloc, not 1478 * more than 'max_bytes'. start and end are used to return the range, 1479 * 1480 * 1 is returned if we find something, 0 if nothing was in the tree 1481 */ 1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1483 u64 *start, u64 *end, u64 max_bytes, 1484 struct extent_state **cached_state) 1485 { 1486 struct rb_node *node; 1487 struct extent_state *state; 1488 u64 cur_start = *start; 1489 u64 found = 0; 1490 u64 total_bytes = 0; 1491 1492 spin_lock(&tree->lock); 1493 1494 /* 1495 * this search will find all the extents that end after 1496 * our range starts. 1497 */ 1498 node = tree_search(tree, cur_start); 1499 if (!node) { 1500 if (!found) 1501 *end = (u64)-1; 1502 goto out; 1503 } 1504 1505 while (1) { 1506 state = rb_entry(node, struct extent_state, rb_node); 1507 if (found && (state->start != cur_start || 1508 (state->state & EXTENT_BOUNDARY))) { 1509 goto out; 1510 } 1511 if (!(state->state & EXTENT_DELALLOC)) { 1512 if (!found) 1513 *end = state->end; 1514 goto out; 1515 } 1516 if (!found) { 1517 *start = state->start; 1518 *cached_state = state; 1519 refcount_inc(&state->refs); 1520 } 1521 found++; 1522 *end = state->end; 1523 cur_start = state->end + 1; 1524 node = rb_next(node); 1525 total_bytes += state->end - state->start + 1; 1526 if (total_bytes >= max_bytes) 1527 break; 1528 if (!node) 1529 break; 1530 } 1531 out: 1532 spin_unlock(&tree->lock); 1533 return found; 1534 } 1535 1536 static int __process_pages_contig(struct address_space *mapping, 1537 struct page *locked_page, 1538 pgoff_t start_index, pgoff_t end_index, 1539 unsigned long page_ops, pgoff_t *index_ret); 1540 1541 static noinline void __unlock_for_delalloc(struct inode *inode, 1542 struct page *locked_page, 1543 u64 start, u64 end) 1544 { 1545 unsigned long index = start >> PAGE_SHIFT; 1546 unsigned long end_index = end >> PAGE_SHIFT; 1547 1548 ASSERT(locked_page); 1549 if (index == locked_page->index && end_index == index) 1550 return; 1551 1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1553 PAGE_UNLOCK, NULL); 1554 } 1555 1556 static noinline int lock_delalloc_pages(struct inode *inode, 1557 struct page *locked_page, 1558 u64 delalloc_start, 1559 u64 delalloc_end) 1560 { 1561 unsigned long index = delalloc_start >> PAGE_SHIFT; 1562 unsigned long index_ret = index; 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1564 int ret; 1565 1566 ASSERT(locked_page); 1567 if (index == locked_page->index && index == end_index) 1568 return 0; 1569 1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1571 end_index, PAGE_LOCK, &index_ret); 1572 if (ret == -EAGAIN) 1573 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1574 (u64)index_ret << PAGE_SHIFT); 1575 return ret; 1576 } 1577 1578 /* 1579 * find a contiguous range of bytes in the file marked as delalloc, not 1580 * more than 'max_bytes'. start and end are used to return the range, 1581 * 1582 * 1 is returned if we find something, 0 if nothing was in the tree 1583 */ 1584 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1585 struct extent_io_tree *tree, 1586 struct page *locked_page, u64 *start, 1587 u64 *end, u64 max_bytes) 1588 { 1589 u64 delalloc_start; 1590 u64 delalloc_end; 1591 u64 found; 1592 struct extent_state *cached_state = NULL; 1593 int ret; 1594 int loops = 0; 1595 1596 again: 1597 /* step one, find a bunch of delalloc bytes starting at start */ 1598 delalloc_start = *start; 1599 delalloc_end = 0; 1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1601 max_bytes, &cached_state); 1602 if (!found || delalloc_end <= *start) { 1603 *start = delalloc_start; 1604 *end = delalloc_end; 1605 free_extent_state(cached_state); 1606 return 0; 1607 } 1608 1609 /* 1610 * start comes from the offset of locked_page. We have to lock 1611 * pages in order, so we can't process delalloc bytes before 1612 * locked_page 1613 */ 1614 if (delalloc_start < *start) 1615 delalloc_start = *start; 1616 1617 /* 1618 * make sure to limit the number of pages we try to lock down 1619 */ 1620 if (delalloc_end + 1 - delalloc_start > max_bytes) 1621 delalloc_end = delalloc_start + max_bytes - 1; 1622 1623 /* step two, lock all the pages after the page that has start */ 1624 ret = lock_delalloc_pages(inode, locked_page, 1625 delalloc_start, delalloc_end); 1626 if (ret == -EAGAIN) { 1627 /* some of the pages are gone, lets avoid looping by 1628 * shortening the size of the delalloc range we're searching 1629 */ 1630 free_extent_state(cached_state); 1631 cached_state = NULL; 1632 if (!loops) { 1633 max_bytes = PAGE_SIZE; 1634 loops = 1; 1635 goto again; 1636 } else { 1637 found = 0; 1638 goto out_failed; 1639 } 1640 } 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1642 1643 /* step three, lock the state bits for the whole range */ 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1645 1646 /* then test to make sure it is all still delalloc */ 1647 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1648 EXTENT_DELALLOC, 1, cached_state); 1649 if (!ret) { 1650 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1651 &cached_state, GFP_NOFS); 1652 __unlock_for_delalloc(inode, locked_page, 1653 delalloc_start, delalloc_end); 1654 cond_resched(); 1655 goto again; 1656 } 1657 free_extent_state(cached_state); 1658 *start = delalloc_start; 1659 *end = delalloc_end; 1660 out_failed: 1661 return found; 1662 } 1663 1664 static int __process_pages_contig(struct address_space *mapping, 1665 struct page *locked_page, 1666 pgoff_t start_index, pgoff_t end_index, 1667 unsigned long page_ops, pgoff_t *index_ret) 1668 { 1669 unsigned long nr_pages = end_index - start_index + 1; 1670 unsigned long pages_locked = 0; 1671 pgoff_t index = start_index; 1672 struct page *pages[16]; 1673 unsigned ret; 1674 int err = 0; 1675 int i; 1676 1677 if (page_ops & PAGE_LOCK) { 1678 ASSERT(page_ops == PAGE_LOCK); 1679 ASSERT(index_ret && *index_ret == start_index); 1680 } 1681 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1683 mapping_set_error(mapping, -EIO); 1684 1685 while (nr_pages > 0) { 1686 ret = find_get_pages_contig(mapping, index, 1687 min_t(unsigned long, 1688 nr_pages, ARRAY_SIZE(pages)), pages); 1689 if (ret == 0) { 1690 /* 1691 * Only if we're going to lock these pages, 1692 * can we find nothing at @index. 1693 */ 1694 ASSERT(page_ops & PAGE_LOCK); 1695 err = -EAGAIN; 1696 goto out; 1697 } 1698 1699 for (i = 0; i < ret; i++) { 1700 if (page_ops & PAGE_SET_PRIVATE2) 1701 SetPagePrivate2(pages[i]); 1702 1703 if (pages[i] == locked_page) { 1704 put_page(pages[i]); 1705 pages_locked++; 1706 continue; 1707 } 1708 if (page_ops & PAGE_CLEAR_DIRTY) 1709 clear_page_dirty_for_io(pages[i]); 1710 if (page_ops & PAGE_SET_WRITEBACK) 1711 set_page_writeback(pages[i]); 1712 if (page_ops & PAGE_SET_ERROR) 1713 SetPageError(pages[i]); 1714 if (page_ops & PAGE_END_WRITEBACK) 1715 end_page_writeback(pages[i]); 1716 if (page_ops & PAGE_UNLOCK) 1717 unlock_page(pages[i]); 1718 if (page_ops & PAGE_LOCK) { 1719 lock_page(pages[i]); 1720 if (!PageDirty(pages[i]) || 1721 pages[i]->mapping != mapping) { 1722 unlock_page(pages[i]); 1723 put_page(pages[i]); 1724 err = -EAGAIN; 1725 goto out; 1726 } 1727 } 1728 put_page(pages[i]); 1729 pages_locked++; 1730 } 1731 nr_pages -= ret; 1732 index += ret; 1733 cond_resched(); 1734 } 1735 out: 1736 if (err && index_ret) 1737 *index_ret = start_index + pages_locked - 1; 1738 return err; 1739 } 1740 1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1742 u64 delalloc_end, struct page *locked_page, 1743 unsigned clear_bits, 1744 unsigned long page_ops) 1745 { 1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1747 NULL, GFP_NOFS); 1748 1749 __process_pages_contig(inode->i_mapping, locked_page, 1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1751 page_ops, NULL); 1752 } 1753 1754 /* 1755 * count the number of bytes in the tree that have a given bit(s) 1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1757 * cached. The total number found is returned. 1758 */ 1759 u64 count_range_bits(struct extent_io_tree *tree, 1760 u64 *start, u64 search_end, u64 max_bytes, 1761 unsigned bits, int contig) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 u64 total_bytes = 0; 1767 u64 last = 0; 1768 int found = 0; 1769 1770 if (WARN_ON(search_end <= cur_start)) 1771 return 0; 1772 1773 spin_lock(&tree->lock); 1774 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1775 total_bytes = tree->dirty_bytes; 1776 goto out; 1777 } 1778 /* 1779 * this search will find all the extents that end after 1780 * our range starts. 1781 */ 1782 node = tree_search(tree, cur_start); 1783 if (!node) 1784 goto out; 1785 1786 while (1) { 1787 state = rb_entry(node, struct extent_state, rb_node); 1788 if (state->start > search_end) 1789 break; 1790 if (contig && found && state->start > last + 1) 1791 break; 1792 if (state->end >= cur_start && (state->state & bits) == bits) { 1793 total_bytes += min(search_end, state->end) + 1 - 1794 max(cur_start, state->start); 1795 if (total_bytes >= max_bytes) 1796 break; 1797 if (!found) { 1798 *start = max(cur_start, state->start); 1799 found = 1; 1800 } 1801 last = state->end; 1802 } else if (contig && found) { 1803 break; 1804 } 1805 node = rb_next(node); 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return total_bytes; 1812 } 1813 1814 /* 1815 * set the private field for a given byte offset in the tree. If there isn't 1816 * an extent_state there already, this does nothing. 1817 */ 1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1819 struct io_failure_record *failrec) 1820 { 1821 struct rb_node *node; 1822 struct extent_state *state; 1823 int ret = 0; 1824 1825 spin_lock(&tree->lock); 1826 /* 1827 * this search will find all the extents that end after 1828 * our range starts. 1829 */ 1830 node = tree_search(tree, start); 1831 if (!node) { 1832 ret = -ENOENT; 1833 goto out; 1834 } 1835 state = rb_entry(node, struct extent_state, rb_node); 1836 if (state->start != start) { 1837 ret = -ENOENT; 1838 goto out; 1839 } 1840 state->failrec = failrec; 1841 out: 1842 spin_unlock(&tree->lock); 1843 return ret; 1844 } 1845 1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record **failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 *failrec = state->failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 /* 1875 * searches a range in the state tree for a given mask. 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree 1877 * has the bits set. Otherwise, 1 is returned if any bit in the 1878 * range is found set. 1879 */ 1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1881 unsigned bits, int filled, struct extent_state *cached) 1882 { 1883 struct extent_state *state = NULL; 1884 struct rb_node *node; 1885 int bitset = 0; 1886 1887 spin_lock(&tree->lock); 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1889 cached->end > start) 1890 node = &cached->rb_node; 1891 else 1892 node = tree_search(tree, start); 1893 while (node && start <= end) { 1894 state = rb_entry(node, struct extent_state, rb_node); 1895 1896 if (filled && state->start > start) { 1897 bitset = 0; 1898 break; 1899 } 1900 1901 if (state->start > end) 1902 break; 1903 1904 if (state->state & bits) { 1905 bitset = 1; 1906 if (!filled) 1907 break; 1908 } else if (filled) { 1909 bitset = 0; 1910 break; 1911 } 1912 1913 if (state->end == (u64)-1) 1914 break; 1915 1916 start = state->end + 1; 1917 if (start > end) 1918 break; 1919 node = rb_next(node); 1920 if (!node) { 1921 if (filled) 1922 bitset = 0; 1923 break; 1924 } 1925 } 1926 spin_unlock(&tree->lock); 1927 return bitset; 1928 } 1929 1930 /* 1931 * helper function to set a given page up to date if all the 1932 * extents in the tree for that page are up to date 1933 */ 1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1935 { 1936 u64 start = page_offset(page); 1937 u64 end = start + PAGE_SIZE - 1; 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1939 SetPageUptodate(page); 1940 } 1941 1942 int free_io_failure(struct extent_io_tree *failure_tree, 1943 struct extent_io_tree *io_tree, 1944 struct io_failure_record *rec) 1945 { 1946 int ret; 1947 int err = 0; 1948 1949 set_state_failrec(failure_tree, rec->start, NULL); 1950 ret = clear_extent_bits(failure_tree, rec->start, 1951 rec->start + rec->len - 1, 1952 EXTENT_LOCKED | EXTENT_DIRTY); 1953 if (ret) 1954 err = ret; 1955 1956 ret = clear_extent_bits(io_tree, rec->start, 1957 rec->start + rec->len - 1, 1958 EXTENT_DAMAGED); 1959 if (ret && !err) 1960 err = ret; 1961 1962 kfree(rec); 1963 return err; 1964 } 1965 1966 /* 1967 * this bypasses the standard btrfs submit functions deliberately, as 1968 * the standard behavior is to write all copies in a raid setup. here we only 1969 * want to write the one bad copy. so we do the mapping for ourselves and issue 1970 * submit_bio directly. 1971 * to avoid any synchronization issues, wait for the data after writing, which 1972 * actually prevents the read that triggered the error from finishing. 1973 * currently, there can be no more than two copies of every data bit. thus, 1974 * exactly one rewrite is required. 1975 */ 1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1977 u64 length, u64 logical, struct page *page, 1978 unsigned int pg_offset, int mirror_num) 1979 { 1980 struct bio *bio; 1981 struct btrfs_device *dev; 1982 u64 map_length = 0; 1983 u64 sector; 1984 struct btrfs_bio *bbio = NULL; 1985 int ret; 1986 1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 1988 BUG_ON(!mirror_num); 1989 1990 bio = btrfs_io_bio_alloc(1); 1991 bio->bi_iter.bi_size = 0; 1992 map_length = length; 1993 1994 /* 1995 * Avoid races with device replace and make sure our bbio has devices 1996 * associated to its stripes that don't go away while we are doing the 1997 * read repair operation. 1998 */ 1999 btrfs_bio_counter_inc_blocked(fs_info); 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2001 /* 2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2003 * to update all raid stripes, but here we just want to correct 2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2005 * stripe's dev and sector. 2006 */ 2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2008 &map_length, &bbio, 0); 2009 if (ret) { 2010 btrfs_bio_counter_dec(fs_info); 2011 bio_put(bio); 2012 return -EIO; 2013 } 2014 ASSERT(bbio->mirror_num == 1); 2015 } else { 2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2017 &map_length, &bbio, mirror_num); 2018 if (ret) { 2019 btrfs_bio_counter_dec(fs_info); 2020 bio_put(bio); 2021 return -EIO; 2022 } 2023 BUG_ON(mirror_num != bbio->mirror_num); 2024 } 2025 2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2027 bio->bi_iter.bi_sector = sector; 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2029 btrfs_put_bbio(bbio); 2030 if (!dev || !dev->bdev || !dev->writeable) { 2031 btrfs_bio_counter_dec(fs_info); 2032 bio_put(bio); 2033 return -EIO; 2034 } 2035 bio_set_dev(bio, dev->bdev); 2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2037 bio_add_page(bio, page, length, pg_offset); 2038 2039 if (btrfsic_submit_bio_wait(bio)) { 2040 /* try to remap that extent elsewhere? */ 2041 btrfs_bio_counter_dec(fs_info); 2042 bio_put(bio); 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2044 return -EIO; 2045 } 2046 2047 btrfs_info_rl_in_rcu(fs_info, 2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2049 ino, start, 2050 rcu_str_deref(dev->name), sector); 2051 btrfs_bio_counter_dec(fs_info); 2052 bio_put(bio); 2053 return 0; 2054 } 2055 2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2057 struct extent_buffer *eb, int mirror_num) 2058 { 2059 u64 start = eb->start; 2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2061 int ret = 0; 2062 2063 if (sb_rdonly(fs_info->sb)) 2064 return -EROFS; 2065 2066 for (i = 0; i < num_pages; i++) { 2067 struct page *p = eb->pages[i]; 2068 2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2070 start - page_offset(p), mirror_num); 2071 if (ret) 2072 break; 2073 start += PAGE_SIZE; 2074 } 2075 2076 return ret; 2077 } 2078 2079 /* 2080 * each time an IO finishes, we do a fast check in the IO failure tree 2081 * to see if we need to process or clean up an io_failure_record 2082 */ 2083 int clean_io_failure(struct btrfs_fs_info *fs_info, 2084 struct extent_io_tree *failure_tree, 2085 struct extent_io_tree *io_tree, u64 start, 2086 struct page *page, u64 ino, unsigned int pg_offset) 2087 { 2088 u64 private; 2089 struct io_failure_record *failrec; 2090 struct extent_state *state; 2091 int num_copies; 2092 int ret; 2093 2094 private = 0; 2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2096 EXTENT_DIRTY, 0); 2097 if (!ret) 2098 return 0; 2099 2100 ret = get_state_failrec(failure_tree, start, &failrec); 2101 if (ret) 2102 return 0; 2103 2104 BUG_ON(!failrec->this_mirror); 2105 2106 if (failrec->in_validation) { 2107 /* there was no real error, just free the record */ 2108 btrfs_debug(fs_info, 2109 "clean_io_failure: freeing dummy error at %llu", 2110 failrec->start); 2111 goto out; 2112 } 2113 if (sb_rdonly(fs_info->sb)) 2114 goto out; 2115 2116 spin_lock(&io_tree->lock); 2117 state = find_first_extent_bit_state(io_tree, 2118 failrec->start, 2119 EXTENT_LOCKED); 2120 spin_unlock(&io_tree->lock); 2121 2122 if (state && state->start <= failrec->start && 2123 state->end >= failrec->start + failrec->len - 1) { 2124 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2125 failrec->len); 2126 if (num_copies > 1) { 2127 repair_io_failure(fs_info, ino, start, failrec->len, 2128 failrec->logical, page, pg_offset, 2129 failrec->failed_mirror); 2130 } 2131 } 2132 2133 out: 2134 free_io_failure(failure_tree, io_tree, failrec); 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * Can be called when 2141 * - hold extent lock 2142 * - under ordered extent 2143 * - the inode is freeing 2144 */ 2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2146 { 2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2148 struct io_failure_record *failrec; 2149 struct extent_state *state, *next; 2150 2151 if (RB_EMPTY_ROOT(&failure_tree->state)) 2152 return; 2153 2154 spin_lock(&failure_tree->lock); 2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2156 while (state) { 2157 if (state->start > end) 2158 break; 2159 2160 ASSERT(state->end <= end); 2161 2162 next = next_state(state); 2163 2164 failrec = state->failrec; 2165 free_extent_state(state); 2166 kfree(failrec); 2167 2168 state = next; 2169 } 2170 spin_unlock(&failure_tree->lock); 2171 } 2172 2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2174 struct io_failure_record **failrec_ret) 2175 { 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2177 struct io_failure_record *failrec; 2178 struct extent_map *em; 2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2182 int ret; 2183 u64 logical; 2184 2185 ret = get_state_failrec(failure_tree, start, &failrec); 2186 if (ret) { 2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2188 if (!failrec) 2189 return -ENOMEM; 2190 2191 failrec->start = start; 2192 failrec->len = end - start + 1; 2193 failrec->this_mirror = 0; 2194 failrec->bio_flags = 0; 2195 failrec->in_validation = 0; 2196 2197 read_lock(&em_tree->lock); 2198 em = lookup_extent_mapping(em_tree, start, failrec->len); 2199 if (!em) { 2200 read_unlock(&em_tree->lock); 2201 kfree(failrec); 2202 return -EIO; 2203 } 2204 2205 if (em->start > start || em->start + em->len <= start) { 2206 free_extent_map(em); 2207 em = NULL; 2208 } 2209 read_unlock(&em_tree->lock); 2210 if (!em) { 2211 kfree(failrec); 2212 return -EIO; 2213 } 2214 2215 logical = start - em->start; 2216 logical = em->block_start + logical; 2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2218 logical = em->block_start; 2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2220 extent_set_compress_type(&failrec->bio_flags, 2221 em->compress_type); 2222 } 2223 2224 btrfs_debug(fs_info, 2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2226 logical, start, failrec->len); 2227 2228 failrec->logical = logical; 2229 free_extent_map(em); 2230 2231 /* set the bits in the private failure tree */ 2232 ret = set_extent_bits(failure_tree, start, end, 2233 EXTENT_LOCKED | EXTENT_DIRTY); 2234 if (ret >= 0) 2235 ret = set_state_failrec(failure_tree, start, failrec); 2236 /* set the bits in the inode's tree */ 2237 if (ret >= 0) 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2239 if (ret < 0) { 2240 kfree(failrec); 2241 return ret; 2242 } 2243 } else { 2244 btrfs_debug(fs_info, 2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2246 failrec->logical, failrec->start, failrec->len, 2247 failrec->in_validation); 2248 /* 2249 * when data can be on disk more than twice, add to failrec here 2250 * (e.g. with a list for failed_mirror) to make 2251 * clean_io_failure() clean all those errors at once. 2252 */ 2253 } 2254 2255 *failrec_ret = failrec; 2256 2257 return 0; 2258 } 2259 2260 bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2261 struct io_failure_record *failrec, int failed_mirror) 2262 { 2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2264 int num_copies; 2265 2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2267 if (num_copies == 1) { 2268 /* 2269 * we only have a single copy of the data, so don't bother with 2270 * all the retry and error correction code that follows. no 2271 * matter what the error is, it is very likely to persist. 2272 */ 2273 btrfs_debug(fs_info, 2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2275 num_copies, failrec->this_mirror, failed_mirror); 2276 return false; 2277 } 2278 2279 /* 2280 * there are two premises: 2281 * a) deliver good data to the caller 2282 * b) correct the bad sectors on disk 2283 */ 2284 if (failed_bio->bi_vcnt > 1) { 2285 /* 2286 * to fulfill b), we need to know the exact failing sectors, as 2287 * we don't want to rewrite any more than the failed ones. thus, 2288 * we need separate read requests for the failed bio 2289 * 2290 * if the following BUG_ON triggers, our validation request got 2291 * merged. we need separate requests for our algorithm to work. 2292 */ 2293 BUG_ON(failrec->in_validation); 2294 failrec->in_validation = 1; 2295 failrec->this_mirror = failed_mirror; 2296 } else { 2297 /* 2298 * we're ready to fulfill a) and b) alongside. get a good copy 2299 * of the failed sector and if we succeed, we have setup 2300 * everything for repair_io_failure to do the rest for us. 2301 */ 2302 if (failrec->in_validation) { 2303 BUG_ON(failrec->this_mirror != failed_mirror); 2304 failrec->in_validation = 0; 2305 failrec->this_mirror = 0; 2306 } 2307 failrec->failed_mirror = failed_mirror; 2308 failrec->this_mirror++; 2309 if (failrec->this_mirror == failed_mirror) 2310 failrec->this_mirror++; 2311 } 2312 2313 if (failrec->this_mirror > num_copies) { 2314 btrfs_debug(fs_info, 2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2316 num_copies, failrec->this_mirror, failed_mirror); 2317 return false; 2318 } 2319 2320 return true; 2321 } 2322 2323 2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2325 struct io_failure_record *failrec, 2326 struct page *page, int pg_offset, int icsum, 2327 bio_end_io_t *endio_func, void *data) 2328 { 2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2330 struct bio *bio; 2331 struct btrfs_io_bio *btrfs_failed_bio; 2332 struct btrfs_io_bio *btrfs_bio; 2333 2334 bio = btrfs_io_bio_alloc(1); 2335 bio->bi_end_io = endio_func; 2336 bio->bi_iter.bi_sector = failrec->logical >> 9; 2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2338 bio->bi_iter.bi_size = 0; 2339 bio->bi_private = data; 2340 2341 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2342 if (btrfs_failed_bio->csum) { 2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2344 2345 btrfs_bio = btrfs_io_bio(bio); 2346 btrfs_bio->csum = btrfs_bio->csum_inline; 2347 icsum *= csum_size; 2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2349 csum_size); 2350 } 2351 2352 bio_add_page(bio, page, failrec->len, pg_offset); 2353 2354 return bio; 2355 } 2356 2357 /* 2358 * this is a generic handler for readpage errors (default 2359 * readpage_io_failed_hook). if other copies exist, read those and write back 2360 * good data to the failed position. does not investigate in remapping the 2361 * failed extent elsewhere, hoping the device will be smart enough to do this as 2362 * needed 2363 */ 2364 2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2366 struct page *page, u64 start, u64 end, 2367 int failed_mirror) 2368 { 2369 struct io_failure_record *failrec; 2370 struct inode *inode = page->mapping->host; 2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2373 struct bio *bio; 2374 int read_mode = 0; 2375 blk_status_t status; 2376 int ret; 2377 2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2379 2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2381 if (ret) 2382 return ret; 2383 2384 if (!btrfs_check_repairable(inode, failed_bio, failrec, 2385 failed_mirror)) { 2386 free_io_failure(failure_tree, tree, failrec); 2387 return -EIO; 2388 } 2389 2390 if (failed_bio->bi_vcnt > 1) 2391 read_mode |= REQ_FAILFAST_DEV; 2392 2393 phy_offset >>= inode->i_sb->s_blocksize_bits; 2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2395 start - page_offset(page), 2396 (int)phy_offset, failed_bio->bi_end_io, 2397 NULL); 2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2399 2400 btrfs_debug(btrfs_sb(inode->i_sb), 2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2402 read_mode, failrec->this_mirror, failrec->in_validation); 2403 2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2405 failrec->bio_flags, 0); 2406 if (status) { 2407 free_io_failure(failure_tree, tree, failrec); 2408 bio_put(bio); 2409 ret = blk_status_to_errno(status); 2410 } 2411 2412 return ret; 2413 } 2414 2415 /* lots and lots of room for performance fixes in the end_bio funcs */ 2416 2417 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2418 { 2419 int uptodate = (err == 0); 2420 struct extent_io_tree *tree; 2421 int ret = 0; 2422 2423 tree = &BTRFS_I(page->mapping->host)->io_tree; 2424 2425 if (tree->ops && tree->ops->writepage_end_io_hook) 2426 tree->ops->writepage_end_io_hook(page, start, end, NULL, 2427 uptodate); 2428 2429 if (!uptodate) { 2430 ClearPageUptodate(page); 2431 SetPageError(page); 2432 ret = err < 0 ? err : -EIO; 2433 mapping_set_error(page->mapping, ret); 2434 } 2435 } 2436 2437 /* 2438 * after a writepage IO is done, we need to: 2439 * clear the uptodate bits on error 2440 * clear the writeback bits in the extent tree for this IO 2441 * end_page_writeback if the page has no more pending IO 2442 * 2443 * Scheduling is not allowed, so the extent state tree is expected 2444 * to have one and only one object corresponding to this IO. 2445 */ 2446 static void end_bio_extent_writepage(struct bio *bio) 2447 { 2448 int error = blk_status_to_errno(bio->bi_status); 2449 struct bio_vec *bvec; 2450 u64 start; 2451 u64 end; 2452 int i; 2453 2454 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2455 bio_for_each_segment_all(bvec, bio, i) { 2456 struct page *page = bvec->bv_page; 2457 struct inode *inode = page->mapping->host; 2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2459 2460 /* We always issue full-page reads, but if some block 2461 * in a page fails to read, blk_update_request() will 2462 * advance bv_offset and adjust bv_len to compensate. 2463 * Print a warning for nonzero offsets, and an error 2464 * if they don't add up to a full page. */ 2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2467 btrfs_err(fs_info, 2468 "partial page write in btrfs with offset %u and length %u", 2469 bvec->bv_offset, bvec->bv_len); 2470 else 2471 btrfs_info(fs_info, 2472 "incomplete page write in btrfs with offset %u and length %u", 2473 bvec->bv_offset, bvec->bv_len); 2474 } 2475 2476 start = page_offset(page); 2477 end = start + bvec->bv_offset + bvec->bv_len - 1; 2478 2479 end_extent_writepage(page, error, start, end); 2480 end_page_writeback(page); 2481 } 2482 2483 bio_put(bio); 2484 } 2485 2486 static void 2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2488 int uptodate) 2489 { 2490 struct extent_state *cached = NULL; 2491 u64 end = start + len - 1; 2492 2493 if (uptodate && tree->track_uptodate) 2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2496 } 2497 2498 /* 2499 * after a readpage IO is done, we need to: 2500 * clear the uptodate bits on error 2501 * set the uptodate bits if things worked 2502 * set the page up to date if all extents in the tree are uptodate 2503 * clear the lock bit in the extent tree 2504 * unlock the page if there are no other extents locked for it 2505 * 2506 * Scheduling is not allowed, so the extent state tree is expected 2507 * to have one and only one object corresponding to this IO. 2508 */ 2509 static void end_bio_extent_readpage(struct bio *bio) 2510 { 2511 struct bio_vec *bvec; 2512 int uptodate = !bio->bi_status; 2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2514 struct extent_io_tree *tree, *failure_tree; 2515 u64 offset = 0; 2516 u64 start; 2517 u64 end; 2518 u64 len; 2519 u64 extent_start = 0; 2520 u64 extent_len = 0; 2521 int mirror; 2522 int ret; 2523 int i; 2524 2525 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2526 bio_for_each_segment_all(bvec, bio, i) { 2527 struct page *page = bvec->bv_page; 2528 struct inode *inode = page->mapping->host; 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2530 2531 btrfs_debug(fs_info, 2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2533 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2534 io_bio->mirror_num); 2535 tree = &BTRFS_I(inode)->io_tree; 2536 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2537 2538 /* We always issue full-page reads, but if some block 2539 * in a page fails to read, blk_update_request() will 2540 * advance bv_offset and adjust bv_len to compensate. 2541 * Print a warning for nonzero offsets, and an error 2542 * if they don't add up to a full page. */ 2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2545 btrfs_err(fs_info, 2546 "partial page read in btrfs with offset %u and length %u", 2547 bvec->bv_offset, bvec->bv_len); 2548 else 2549 btrfs_info(fs_info, 2550 "incomplete page read in btrfs with offset %u and length %u", 2551 bvec->bv_offset, bvec->bv_len); 2552 } 2553 2554 start = page_offset(page); 2555 end = start + bvec->bv_offset + bvec->bv_len - 1; 2556 len = bvec->bv_len; 2557 2558 mirror = io_bio->mirror_num; 2559 if (likely(uptodate && tree->ops)) { 2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2561 page, start, end, 2562 mirror); 2563 if (ret) 2564 uptodate = 0; 2565 else 2566 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2567 failure_tree, tree, start, 2568 page, 2569 btrfs_ino(BTRFS_I(inode)), 0); 2570 } 2571 2572 if (likely(uptodate)) 2573 goto readpage_ok; 2574 2575 if (tree->ops) { 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2577 if (ret == -EAGAIN) { 2578 /* 2579 * Data inode's readpage_io_failed_hook() always 2580 * returns -EAGAIN. 2581 * 2582 * The generic bio_readpage_error handles errors 2583 * the following way: If possible, new read 2584 * requests are created and submitted and will 2585 * end up in end_bio_extent_readpage as well (if 2586 * we're lucky, not in the !uptodate case). In 2587 * that case it returns 0 and we just go on with 2588 * the next page in our bio. If it can't handle 2589 * the error it will return -EIO and we remain 2590 * responsible for that page. 2591 */ 2592 ret = bio_readpage_error(bio, offset, page, 2593 start, end, mirror); 2594 if (ret == 0) { 2595 uptodate = !bio->bi_status; 2596 offset += len; 2597 continue; 2598 } 2599 } 2600 2601 /* 2602 * metadata's readpage_io_failed_hook() always returns 2603 * -EIO and fixes nothing. -EIO is also returned if 2604 * data inode error could not be fixed. 2605 */ 2606 ASSERT(ret == -EIO); 2607 } 2608 readpage_ok: 2609 if (likely(uptodate)) { 2610 loff_t i_size = i_size_read(inode); 2611 pgoff_t end_index = i_size >> PAGE_SHIFT; 2612 unsigned off; 2613 2614 /* Zero out the end if this page straddles i_size */ 2615 off = i_size & (PAGE_SIZE-1); 2616 if (page->index == end_index && off) 2617 zero_user_segment(page, off, PAGE_SIZE); 2618 SetPageUptodate(page); 2619 } else { 2620 ClearPageUptodate(page); 2621 SetPageError(page); 2622 } 2623 unlock_page(page); 2624 offset += len; 2625 2626 if (unlikely(!uptodate)) { 2627 if (extent_len) { 2628 endio_readpage_release_extent(tree, 2629 extent_start, 2630 extent_len, 1); 2631 extent_start = 0; 2632 extent_len = 0; 2633 } 2634 endio_readpage_release_extent(tree, start, 2635 end - start + 1, 0); 2636 } else if (!extent_len) { 2637 extent_start = start; 2638 extent_len = end + 1 - start; 2639 } else if (extent_start + extent_len == start) { 2640 extent_len += end + 1 - start; 2641 } else { 2642 endio_readpage_release_extent(tree, extent_start, 2643 extent_len, uptodate); 2644 extent_start = start; 2645 extent_len = end + 1 - start; 2646 } 2647 } 2648 2649 if (extent_len) 2650 endio_readpage_release_extent(tree, extent_start, extent_len, 2651 uptodate); 2652 if (io_bio->end_io) 2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status)); 2654 bio_put(bio); 2655 } 2656 2657 /* 2658 * Initialize the members up to but not including 'bio'. Use after allocating a 2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2660 * 'bio' because use of __GFP_ZERO is not supported. 2661 */ 2662 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2663 { 2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2665 } 2666 2667 /* 2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2670 * for the appropriate container_of magic 2671 */ 2672 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2673 { 2674 struct bio *bio; 2675 2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset); 2677 bio_set_dev(bio, bdev); 2678 bio->bi_iter.bi_sector = first_byte >> 9; 2679 btrfs_io_bio_init(btrfs_io_bio(bio)); 2680 return bio; 2681 } 2682 2683 struct bio *btrfs_bio_clone(struct bio *bio) 2684 { 2685 struct btrfs_io_bio *btrfs_bio; 2686 struct bio *new; 2687 2688 /* Bio allocation backed by a bioset does not fail */ 2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset); 2690 btrfs_bio = btrfs_io_bio(new); 2691 btrfs_io_bio_init(btrfs_bio); 2692 btrfs_bio->iter = bio->bi_iter; 2693 return new; 2694 } 2695 2696 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2697 { 2698 struct bio *bio; 2699 2700 /* Bio allocation backed by a bioset does not fail */ 2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset); 2702 btrfs_io_bio_init(btrfs_io_bio(bio)); 2703 return bio; 2704 } 2705 2706 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2707 { 2708 struct bio *bio; 2709 struct btrfs_io_bio *btrfs_bio; 2710 2711 /* this will never fail when it's backed by a bioset */ 2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset); 2713 ASSERT(bio); 2714 2715 btrfs_bio = btrfs_io_bio(bio); 2716 btrfs_io_bio_init(btrfs_bio); 2717 2718 bio_trim(bio, offset >> 9, size >> 9); 2719 btrfs_bio->iter = bio->bi_iter; 2720 return bio; 2721 } 2722 2723 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2724 unsigned long bio_flags) 2725 { 2726 blk_status_t ret = 0; 2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2728 struct page *page = bvec->bv_page; 2729 struct extent_io_tree *tree = bio->bi_private; 2730 u64 start; 2731 2732 start = page_offset(page) + bvec->bv_offset; 2733 2734 bio->bi_private = NULL; 2735 bio_get(bio); 2736 2737 if (tree->ops) 2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2739 mirror_num, bio_flags, start); 2740 else 2741 btrfsic_submit_bio(bio); 2742 2743 bio_put(bio); 2744 return blk_status_to_errno(ret); 2745 } 2746 2747 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2748 unsigned long offset, size_t size, struct bio *bio, 2749 unsigned long bio_flags) 2750 { 2751 int ret = 0; 2752 if (tree->ops) 2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2754 bio_flags); 2755 return ret; 2756 2757 } 2758 2759 /* 2760 * @opf: bio REQ_OP_* and REQ_* flags as one value 2761 */ 2762 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2763 struct writeback_control *wbc, 2764 struct page *page, sector_t sector, 2765 size_t size, unsigned long offset, 2766 struct block_device *bdev, 2767 struct bio **bio_ret, 2768 bio_end_io_t end_io_func, 2769 int mirror_num, 2770 unsigned long prev_bio_flags, 2771 unsigned long bio_flags, 2772 bool force_bio_submit) 2773 { 2774 int ret = 0; 2775 struct bio *bio; 2776 int contig = 0; 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2779 2780 if (bio_ret && *bio_ret) { 2781 bio = *bio_ret; 2782 if (old_compressed) 2783 contig = bio->bi_iter.bi_sector == sector; 2784 else 2785 contig = bio_end_sector(bio) == sector; 2786 2787 if (prev_bio_flags != bio_flags || !contig || 2788 force_bio_submit || 2789 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2790 bio_add_page(bio, page, page_size, offset) < page_size) { 2791 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2792 if (ret < 0) { 2793 *bio_ret = NULL; 2794 return ret; 2795 } 2796 bio = NULL; 2797 } else { 2798 if (wbc) 2799 wbc_account_io(wbc, page, page_size); 2800 return 0; 2801 } 2802 } 2803 2804 bio = btrfs_bio_alloc(bdev, sector << 9); 2805 bio_add_page(bio, page, page_size, offset); 2806 bio->bi_end_io = end_io_func; 2807 bio->bi_private = tree; 2808 bio->bi_write_hint = page->mapping->host->i_write_hint; 2809 bio->bi_opf = opf; 2810 if (wbc) { 2811 wbc_init_bio(wbc, bio); 2812 wbc_account_io(wbc, page, page_size); 2813 } 2814 2815 if (bio_ret) 2816 *bio_ret = bio; 2817 else 2818 ret = submit_one_bio(bio, mirror_num, bio_flags); 2819 2820 return ret; 2821 } 2822 2823 static void attach_extent_buffer_page(struct extent_buffer *eb, 2824 struct page *page) 2825 { 2826 if (!PagePrivate(page)) { 2827 SetPagePrivate(page); 2828 get_page(page); 2829 set_page_private(page, (unsigned long)eb); 2830 } else { 2831 WARN_ON(page->private != (unsigned long)eb); 2832 } 2833 } 2834 2835 void set_page_extent_mapped(struct page *page) 2836 { 2837 if (!PagePrivate(page)) { 2838 SetPagePrivate(page); 2839 get_page(page); 2840 set_page_private(page, EXTENT_PAGE_PRIVATE); 2841 } 2842 } 2843 2844 static struct extent_map * 2845 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2846 u64 start, u64 len, get_extent_t *get_extent, 2847 struct extent_map **em_cached) 2848 { 2849 struct extent_map *em; 2850 2851 if (em_cached && *em_cached) { 2852 em = *em_cached; 2853 if (extent_map_in_tree(em) && start >= em->start && 2854 start < extent_map_end(em)) { 2855 refcount_inc(&em->refs); 2856 return em; 2857 } 2858 2859 free_extent_map(em); 2860 *em_cached = NULL; 2861 } 2862 2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2864 if (em_cached && !IS_ERR_OR_NULL(em)) { 2865 BUG_ON(*em_cached); 2866 refcount_inc(&em->refs); 2867 *em_cached = em; 2868 } 2869 return em; 2870 } 2871 /* 2872 * basic readpage implementation. Locked extent state structs are inserted 2873 * into the tree that are removed when the IO is done (by the end_io 2874 * handlers) 2875 * XXX JDM: This needs looking at to ensure proper page locking 2876 * return 0 on success, otherwise return error 2877 */ 2878 static int __do_readpage(struct extent_io_tree *tree, 2879 struct page *page, 2880 get_extent_t *get_extent, 2881 struct extent_map **em_cached, 2882 struct bio **bio, int mirror_num, 2883 unsigned long *bio_flags, unsigned int read_flags, 2884 u64 *prev_em_start) 2885 { 2886 struct inode *inode = page->mapping->host; 2887 u64 start = page_offset(page); 2888 u64 page_end = start + PAGE_SIZE - 1; 2889 u64 end; 2890 u64 cur = start; 2891 u64 extent_offset; 2892 u64 last_byte = i_size_read(inode); 2893 u64 block_start; 2894 u64 cur_end; 2895 sector_t sector; 2896 struct extent_map *em; 2897 struct block_device *bdev; 2898 int ret = 0; 2899 int nr = 0; 2900 size_t pg_offset = 0; 2901 size_t iosize; 2902 size_t disk_io_size; 2903 size_t blocksize = inode->i_sb->s_blocksize; 2904 unsigned long this_bio_flag = 0; 2905 2906 set_page_extent_mapped(page); 2907 2908 end = page_end; 2909 if (!PageUptodate(page)) { 2910 if (cleancache_get_page(page) == 0) { 2911 BUG_ON(blocksize != PAGE_SIZE); 2912 unlock_extent(tree, start, end); 2913 goto out; 2914 } 2915 } 2916 2917 if (page->index == last_byte >> PAGE_SHIFT) { 2918 char *userpage; 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2920 2921 if (zero_offset) { 2922 iosize = PAGE_SIZE - zero_offset; 2923 userpage = kmap_atomic(page); 2924 memset(userpage + zero_offset, 0, iosize); 2925 flush_dcache_page(page); 2926 kunmap_atomic(userpage); 2927 } 2928 } 2929 while (cur <= end) { 2930 bool force_bio_submit = false; 2931 2932 if (cur >= last_byte) { 2933 char *userpage; 2934 struct extent_state *cached = NULL; 2935 2936 iosize = PAGE_SIZE - pg_offset; 2937 userpage = kmap_atomic(page); 2938 memset(userpage + pg_offset, 0, iosize); 2939 flush_dcache_page(page); 2940 kunmap_atomic(userpage); 2941 set_extent_uptodate(tree, cur, cur + iosize - 1, 2942 &cached, GFP_NOFS); 2943 unlock_extent_cached(tree, cur, 2944 cur + iosize - 1, 2945 &cached, GFP_NOFS); 2946 break; 2947 } 2948 em = __get_extent_map(inode, page, pg_offset, cur, 2949 end - cur + 1, get_extent, em_cached); 2950 if (IS_ERR_OR_NULL(em)) { 2951 SetPageError(page); 2952 unlock_extent(tree, cur, end); 2953 break; 2954 } 2955 extent_offset = cur - em->start; 2956 BUG_ON(extent_map_end(em) <= cur); 2957 BUG_ON(end < cur); 2958 2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2960 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2961 extent_set_compress_type(&this_bio_flag, 2962 em->compress_type); 2963 } 2964 2965 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2966 cur_end = min(extent_map_end(em) - 1, end); 2967 iosize = ALIGN(iosize, blocksize); 2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2969 disk_io_size = em->block_len; 2970 sector = em->block_start >> 9; 2971 } else { 2972 sector = (em->block_start + extent_offset) >> 9; 2973 disk_io_size = iosize; 2974 } 2975 bdev = em->bdev; 2976 block_start = em->block_start; 2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2978 block_start = EXTENT_MAP_HOLE; 2979 2980 /* 2981 * If we have a file range that points to a compressed extent 2982 * and it's followed by a consecutive file range that points to 2983 * to the same compressed extent (possibly with a different 2984 * offset and/or length, so it either points to the whole extent 2985 * or only part of it), we must make sure we do not submit a 2986 * single bio to populate the pages for the 2 ranges because 2987 * this makes the compressed extent read zero out the pages 2988 * belonging to the 2nd range. Imagine the following scenario: 2989 * 2990 * File layout 2991 * [0 - 8K] [8K - 24K] 2992 * | | 2993 * | | 2994 * points to extent X, points to extent X, 2995 * offset 4K, length of 8K offset 0, length 16K 2996 * 2997 * [extent X, compressed length = 4K uncompressed length = 16K] 2998 * 2999 * If the bio to read the compressed extent covers both ranges, 3000 * it will decompress extent X into the pages belonging to the 3001 * first range and then it will stop, zeroing out the remaining 3002 * pages that belong to the other range that points to extent X. 3003 * So here we make sure we submit 2 bios, one for the first 3004 * range and another one for the third range. Both will target 3005 * the same physical extent from disk, but we can't currently 3006 * make the compressed bio endio callback populate the pages 3007 * for both ranges because each compressed bio is tightly 3008 * coupled with a single extent map, and each range can have 3009 * an extent map with a different offset value relative to the 3010 * uncompressed data of our extent and different lengths. This 3011 * is a corner case so we prioritize correctness over 3012 * non-optimal behavior (submitting 2 bios for the same extent). 3013 */ 3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3015 prev_em_start && *prev_em_start != (u64)-1 && 3016 *prev_em_start != em->orig_start) 3017 force_bio_submit = true; 3018 3019 if (prev_em_start) 3020 *prev_em_start = em->orig_start; 3021 3022 free_extent_map(em); 3023 em = NULL; 3024 3025 /* we've found a hole, just zero and go on */ 3026 if (block_start == EXTENT_MAP_HOLE) { 3027 char *userpage; 3028 struct extent_state *cached = NULL; 3029 3030 userpage = kmap_atomic(page); 3031 memset(userpage + pg_offset, 0, iosize); 3032 flush_dcache_page(page); 3033 kunmap_atomic(userpage); 3034 3035 set_extent_uptodate(tree, cur, cur + iosize - 1, 3036 &cached, GFP_NOFS); 3037 unlock_extent_cached(tree, cur, 3038 cur + iosize - 1, 3039 &cached, GFP_NOFS); 3040 cur = cur + iosize; 3041 pg_offset += iosize; 3042 continue; 3043 } 3044 /* the get_extent function already copied into the page */ 3045 if (test_range_bit(tree, cur, cur_end, 3046 EXTENT_UPTODATE, 1, NULL)) { 3047 check_page_uptodate(tree, page); 3048 unlock_extent(tree, cur, cur + iosize - 1); 3049 cur = cur + iosize; 3050 pg_offset += iosize; 3051 continue; 3052 } 3053 /* we have an inline extent but it didn't get marked up 3054 * to date. Error out 3055 */ 3056 if (block_start == EXTENT_MAP_INLINE) { 3057 SetPageError(page); 3058 unlock_extent(tree, cur, cur + iosize - 1); 3059 cur = cur + iosize; 3060 pg_offset += iosize; 3061 continue; 3062 } 3063 3064 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3065 page, sector, disk_io_size, pg_offset, 3066 bdev, bio, 3067 end_bio_extent_readpage, mirror_num, 3068 *bio_flags, 3069 this_bio_flag, 3070 force_bio_submit); 3071 if (!ret) { 3072 nr++; 3073 *bio_flags = this_bio_flag; 3074 } else { 3075 SetPageError(page); 3076 unlock_extent(tree, cur, cur + iosize - 1); 3077 goto out; 3078 } 3079 cur = cur + iosize; 3080 pg_offset += iosize; 3081 } 3082 out: 3083 if (!nr) { 3084 if (!PageError(page)) 3085 SetPageUptodate(page); 3086 unlock_page(page); 3087 } 3088 return ret; 3089 } 3090 3091 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3092 struct page *pages[], int nr_pages, 3093 u64 start, u64 end, 3094 get_extent_t *get_extent, 3095 struct extent_map **em_cached, 3096 struct bio **bio, int mirror_num, 3097 unsigned long *bio_flags, 3098 u64 *prev_em_start) 3099 { 3100 struct inode *inode; 3101 struct btrfs_ordered_extent *ordered; 3102 int index; 3103 3104 inode = pages[0]->mapping->host; 3105 while (1) { 3106 lock_extent(tree, start, end); 3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3108 end - start + 1); 3109 if (!ordered) 3110 break; 3111 unlock_extent(tree, start, end); 3112 btrfs_start_ordered_extent(inode, ordered, 1); 3113 btrfs_put_ordered_extent(ordered); 3114 } 3115 3116 for (index = 0; index < nr_pages; index++) { 3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3118 mirror_num, bio_flags, 0, prev_em_start); 3119 put_page(pages[index]); 3120 } 3121 } 3122 3123 static void __extent_readpages(struct extent_io_tree *tree, 3124 struct page *pages[], 3125 int nr_pages, get_extent_t *get_extent, 3126 struct extent_map **em_cached, 3127 struct bio **bio, int mirror_num, 3128 unsigned long *bio_flags, 3129 u64 *prev_em_start) 3130 { 3131 u64 start = 0; 3132 u64 end = 0; 3133 u64 page_start; 3134 int index; 3135 int first_index = 0; 3136 3137 for (index = 0; index < nr_pages; index++) { 3138 page_start = page_offset(pages[index]); 3139 if (!end) { 3140 start = page_start; 3141 end = start + PAGE_SIZE - 1; 3142 first_index = index; 3143 } else if (end + 1 == page_start) { 3144 end += PAGE_SIZE; 3145 } else { 3146 __do_contiguous_readpages(tree, &pages[first_index], 3147 index - first_index, start, 3148 end, get_extent, em_cached, 3149 bio, mirror_num, bio_flags, 3150 prev_em_start); 3151 start = page_start; 3152 end = start + PAGE_SIZE - 1; 3153 first_index = index; 3154 } 3155 } 3156 3157 if (end) 3158 __do_contiguous_readpages(tree, &pages[first_index], 3159 index - first_index, start, 3160 end, get_extent, em_cached, bio, 3161 mirror_num, bio_flags, 3162 prev_em_start); 3163 } 3164 3165 static int __extent_read_full_page(struct extent_io_tree *tree, 3166 struct page *page, 3167 get_extent_t *get_extent, 3168 struct bio **bio, int mirror_num, 3169 unsigned long *bio_flags, 3170 unsigned int read_flags) 3171 { 3172 struct inode *inode = page->mapping->host; 3173 struct btrfs_ordered_extent *ordered; 3174 u64 start = page_offset(page); 3175 u64 end = start + PAGE_SIZE - 1; 3176 int ret; 3177 3178 while (1) { 3179 lock_extent(tree, start, end); 3180 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3181 PAGE_SIZE); 3182 if (!ordered) 3183 break; 3184 unlock_extent(tree, start, end); 3185 btrfs_start_ordered_extent(inode, ordered, 1); 3186 btrfs_put_ordered_extent(ordered); 3187 } 3188 3189 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3190 bio_flags, read_flags, NULL); 3191 return ret; 3192 } 3193 3194 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3195 get_extent_t *get_extent, int mirror_num) 3196 { 3197 struct bio *bio = NULL; 3198 unsigned long bio_flags = 0; 3199 int ret; 3200 3201 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3202 &bio_flags, 0); 3203 if (bio) 3204 ret = submit_one_bio(bio, mirror_num, bio_flags); 3205 return ret; 3206 } 3207 3208 static void update_nr_written(struct writeback_control *wbc, 3209 unsigned long nr_written) 3210 { 3211 wbc->nr_to_write -= nr_written; 3212 } 3213 3214 /* 3215 * helper for __extent_writepage, doing all of the delayed allocation setup. 3216 * 3217 * This returns 1 if our fill_delalloc function did all the work required 3218 * to write the page (copy into inline extent). In this case the IO has 3219 * been started and the page is already unlocked. 3220 * 3221 * This returns 0 if all went well (page still locked) 3222 * This returns < 0 if there were errors (page still locked) 3223 */ 3224 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3225 struct page *page, struct writeback_control *wbc, 3226 struct extent_page_data *epd, 3227 u64 delalloc_start, 3228 unsigned long *nr_written) 3229 { 3230 struct extent_io_tree *tree = epd->tree; 3231 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3232 u64 nr_delalloc; 3233 u64 delalloc_to_write = 0; 3234 u64 delalloc_end = 0; 3235 int ret; 3236 int page_started = 0; 3237 3238 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3239 return 0; 3240 3241 while (delalloc_end < page_end) { 3242 nr_delalloc = find_lock_delalloc_range(inode, tree, 3243 page, 3244 &delalloc_start, 3245 &delalloc_end, 3246 BTRFS_MAX_EXTENT_SIZE); 3247 if (nr_delalloc == 0) { 3248 delalloc_start = delalloc_end + 1; 3249 continue; 3250 } 3251 ret = tree->ops->fill_delalloc(inode, page, 3252 delalloc_start, 3253 delalloc_end, 3254 &page_started, 3255 nr_written); 3256 /* File system has been set read-only */ 3257 if (ret) { 3258 SetPageError(page); 3259 /* fill_delalloc should be return < 0 for error 3260 * but just in case, we use > 0 here meaning the 3261 * IO is started, so we don't want to return > 0 3262 * unless things are going well. 3263 */ 3264 ret = ret < 0 ? ret : -EIO; 3265 goto done; 3266 } 3267 /* 3268 * delalloc_end is already one less than the total length, so 3269 * we don't subtract one from PAGE_SIZE 3270 */ 3271 delalloc_to_write += (delalloc_end - delalloc_start + 3272 PAGE_SIZE) >> PAGE_SHIFT; 3273 delalloc_start = delalloc_end + 1; 3274 } 3275 if (wbc->nr_to_write < delalloc_to_write) { 3276 int thresh = 8192; 3277 3278 if (delalloc_to_write < thresh * 2) 3279 thresh = delalloc_to_write; 3280 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3281 thresh); 3282 } 3283 3284 /* did the fill delalloc function already unlock and start 3285 * the IO? 3286 */ 3287 if (page_started) { 3288 /* 3289 * we've unlocked the page, so we can't update 3290 * the mapping's writeback index, just update 3291 * nr_to_write. 3292 */ 3293 wbc->nr_to_write -= *nr_written; 3294 return 1; 3295 } 3296 3297 ret = 0; 3298 3299 done: 3300 return ret; 3301 } 3302 3303 /* 3304 * helper for __extent_writepage. This calls the writepage start hooks, 3305 * and does the loop to map the page into extents and bios. 3306 * 3307 * We return 1 if the IO is started and the page is unlocked, 3308 * 0 if all went well (page still locked) 3309 * < 0 if there were errors (page still locked) 3310 */ 3311 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3312 struct page *page, 3313 struct writeback_control *wbc, 3314 struct extent_page_data *epd, 3315 loff_t i_size, 3316 unsigned long nr_written, 3317 unsigned int write_flags, int *nr_ret) 3318 { 3319 struct extent_io_tree *tree = epd->tree; 3320 u64 start = page_offset(page); 3321 u64 page_end = start + PAGE_SIZE - 1; 3322 u64 end; 3323 u64 cur = start; 3324 u64 extent_offset; 3325 u64 block_start; 3326 u64 iosize; 3327 sector_t sector; 3328 struct extent_map *em; 3329 struct block_device *bdev; 3330 size_t pg_offset = 0; 3331 size_t blocksize; 3332 int ret = 0; 3333 int nr = 0; 3334 bool compressed; 3335 3336 if (tree->ops && tree->ops->writepage_start_hook) { 3337 ret = tree->ops->writepage_start_hook(page, start, 3338 page_end); 3339 if (ret) { 3340 /* Fixup worker will requeue */ 3341 if (ret == -EBUSY) 3342 wbc->pages_skipped++; 3343 else 3344 redirty_page_for_writepage(wbc, page); 3345 3346 update_nr_written(wbc, nr_written); 3347 unlock_page(page); 3348 return 1; 3349 } 3350 } 3351 3352 /* 3353 * we don't want to touch the inode after unlocking the page, 3354 * so we update the mapping writeback index now 3355 */ 3356 update_nr_written(wbc, nr_written + 1); 3357 3358 end = page_end; 3359 if (i_size <= start) { 3360 if (tree->ops && tree->ops->writepage_end_io_hook) 3361 tree->ops->writepage_end_io_hook(page, start, 3362 page_end, NULL, 1); 3363 goto done; 3364 } 3365 3366 blocksize = inode->i_sb->s_blocksize; 3367 3368 while (cur <= end) { 3369 u64 em_end; 3370 3371 if (cur >= i_size) { 3372 if (tree->ops && tree->ops->writepage_end_io_hook) 3373 tree->ops->writepage_end_io_hook(page, cur, 3374 page_end, NULL, 1); 3375 break; 3376 } 3377 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur, 3378 end - cur + 1, 1); 3379 if (IS_ERR_OR_NULL(em)) { 3380 SetPageError(page); 3381 ret = PTR_ERR_OR_ZERO(em); 3382 break; 3383 } 3384 3385 extent_offset = cur - em->start; 3386 em_end = extent_map_end(em); 3387 BUG_ON(em_end <= cur); 3388 BUG_ON(end < cur); 3389 iosize = min(em_end - cur, end - cur + 1); 3390 iosize = ALIGN(iosize, blocksize); 3391 sector = (em->block_start + extent_offset) >> 9; 3392 bdev = em->bdev; 3393 block_start = em->block_start; 3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3395 free_extent_map(em); 3396 em = NULL; 3397 3398 /* 3399 * compressed and inline extents are written through other 3400 * paths in the FS 3401 */ 3402 if (compressed || block_start == EXTENT_MAP_HOLE || 3403 block_start == EXTENT_MAP_INLINE) { 3404 /* 3405 * end_io notification does not happen here for 3406 * compressed extents 3407 */ 3408 if (!compressed && tree->ops && 3409 tree->ops->writepage_end_io_hook) 3410 tree->ops->writepage_end_io_hook(page, cur, 3411 cur + iosize - 1, 3412 NULL, 1); 3413 else if (compressed) { 3414 /* we don't want to end_page_writeback on 3415 * a compressed extent. this happens 3416 * elsewhere 3417 */ 3418 nr++; 3419 } 3420 3421 cur += iosize; 3422 pg_offset += iosize; 3423 continue; 3424 } 3425 3426 set_range_writeback(tree, cur, cur + iosize - 1); 3427 if (!PageWriteback(page)) { 3428 btrfs_err(BTRFS_I(inode)->root->fs_info, 3429 "page %lu not writeback, cur %llu end %llu", 3430 page->index, cur, end); 3431 } 3432 3433 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3434 page, sector, iosize, pg_offset, 3435 bdev, &epd->bio, 3436 end_bio_extent_writepage, 3437 0, 0, 0, false); 3438 if (ret) { 3439 SetPageError(page); 3440 if (PageWriteback(page)) 3441 end_page_writeback(page); 3442 } 3443 3444 cur = cur + iosize; 3445 pg_offset += iosize; 3446 nr++; 3447 } 3448 done: 3449 *nr_ret = nr; 3450 return ret; 3451 } 3452 3453 /* 3454 * the writepage semantics are similar to regular writepage. extent 3455 * records are inserted to lock ranges in the tree, and as dirty areas 3456 * are found, they are marked writeback. Then the lock bits are removed 3457 * and the end_io handler clears the writeback ranges 3458 */ 3459 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3460 void *data) 3461 { 3462 struct inode *inode = page->mapping->host; 3463 struct extent_page_data *epd = data; 3464 u64 start = page_offset(page); 3465 u64 page_end = start + PAGE_SIZE - 1; 3466 int ret; 3467 int nr = 0; 3468 size_t pg_offset = 0; 3469 loff_t i_size = i_size_read(inode); 3470 unsigned long end_index = i_size >> PAGE_SHIFT; 3471 unsigned int write_flags = 0; 3472 unsigned long nr_written = 0; 3473 3474 write_flags = wbc_to_write_flags(wbc); 3475 3476 trace___extent_writepage(page, inode, wbc); 3477 3478 WARN_ON(!PageLocked(page)); 3479 3480 ClearPageError(page); 3481 3482 pg_offset = i_size & (PAGE_SIZE - 1); 3483 if (page->index > end_index || 3484 (page->index == end_index && !pg_offset)) { 3485 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3486 unlock_page(page); 3487 return 0; 3488 } 3489 3490 if (page->index == end_index) { 3491 char *userpage; 3492 3493 userpage = kmap_atomic(page); 3494 memset(userpage + pg_offset, 0, 3495 PAGE_SIZE - pg_offset); 3496 kunmap_atomic(userpage); 3497 flush_dcache_page(page); 3498 } 3499 3500 pg_offset = 0; 3501 3502 set_page_extent_mapped(page); 3503 3504 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3505 if (ret == 1) 3506 goto done_unlocked; 3507 if (ret) 3508 goto done; 3509 3510 ret = __extent_writepage_io(inode, page, wbc, epd, 3511 i_size, nr_written, write_flags, &nr); 3512 if (ret == 1) 3513 goto done_unlocked; 3514 3515 done: 3516 if (nr == 0) { 3517 /* make sure the mapping tag for page dirty gets cleared */ 3518 set_page_writeback(page); 3519 end_page_writeback(page); 3520 } 3521 if (PageError(page)) { 3522 ret = ret < 0 ? ret : -EIO; 3523 end_extent_writepage(page, ret, start, page_end); 3524 } 3525 unlock_page(page); 3526 return ret; 3527 3528 done_unlocked: 3529 return 0; 3530 } 3531 3532 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3533 { 3534 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3535 TASK_UNINTERRUPTIBLE); 3536 } 3537 3538 static noinline_for_stack int 3539 lock_extent_buffer_for_io(struct extent_buffer *eb, 3540 struct btrfs_fs_info *fs_info, 3541 struct extent_page_data *epd) 3542 { 3543 unsigned long i, num_pages; 3544 int flush = 0; 3545 int ret = 0; 3546 3547 if (!btrfs_try_tree_write_lock(eb)) { 3548 flush = 1; 3549 flush_write_bio(epd); 3550 btrfs_tree_lock(eb); 3551 } 3552 3553 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3554 btrfs_tree_unlock(eb); 3555 if (!epd->sync_io) 3556 return 0; 3557 if (!flush) { 3558 flush_write_bio(epd); 3559 flush = 1; 3560 } 3561 while (1) { 3562 wait_on_extent_buffer_writeback(eb); 3563 btrfs_tree_lock(eb); 3564 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3565 break; 3566 btrfs_tree_unlock(eb); 3567 } 3568 } 3569 3570 /* 3571 * We need to do this to prevent races in people who check if the eb is 3572 * under IO since we can end up having no IO bits set for a short period 3573 * of time. 3574 */ 3575 spin_lock(&eb->refs_lock); 3576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3577 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3578 spin_unlock(&eb->refs_lock); 3579 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3580 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3581 -eb->len, 3582 fs_info->dirty_metadata_batch); 3583 ret = 1; 3584 } else { 3585 spin_unlock(&eb->refs_lock); 3586 } 3587 3588 btrfs_tree_unlock(eb); 3589 3590 if (!ret) 3591 return ret; 3592 3593 num_pages = num_extent_pages(eb->start, eb->len); 3594 for (i = 0; i < num_pages; i++) { 3595 struct page *p = eb->pages[i]; 3596 3597 if (!trylock_page(p)) { 3598 if (!flush) { 3599 flush_write_bio(epd); 3600 flush = 1; 3601 } 3602 lock_page(p); 3603 } 3604 } 3605 3606 return ret; 3607 } 3608 3609 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3610 { 3611 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3612 smp_mb__after_atomic(); 3613 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3614 } 3615 3616 static void set_btree_ioerr(struct page *page) 3617 { 3618 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3619 3620 SetPageError(page); 3621 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3622 return; 3623 3624 /* 3625 * If writeback for a btree extent that doesn't belong to a log tree 3626 * failed, increment the counter transaction->eb_write_errors. 3627 * We do this because while the transaction is running and before it's 3628 * committing (when we call filemap_fdata[write|wait]_range against 3629 * the btree inode), we might have 3630 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3631 * returns an error or an error happens during writeback, when we're 3632 * committing the transaction we wouldn't know about it, since the pages 3633 * can be no longer dirty nor marked anymore for writeback (if a 3634 * subsequent modification to the extent buffer didn't happen before the 3635 * transaction commit), which makes filemap_fdata[write|wait]_range not 3636 * able to find the pages tagged with SetPageError at transaction 3637 * commit time. So if this happens we must abort the transaction, 3638 * otherwise we commit a super block with btree roots that point to 3639 * btree nodes/leafs whose content on disk is invalid - either garbage 3640 * or the content of some node/leaf from a past generation that got 3641 * cowed or deleted and is no longer valid. 3642 * 3643 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3644 * not be enough - we need to distinguish between log tree extents vs 3645 * non-log tree extents, and the next filemap_fdatawait_range() call 3646 * will catch and clear such errors in the mapping - and that call might 3647 * be from a log sync and not from a transaction commit. Also, checking 3648 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3649 * not done and would not be reliable - the eb might have been released 3650 * from memory and reading it back again means that flag would not be 3651 * set (since it's a runtime flag, not persisted on disk). 3652 * 3653 * Using the flags below in the btree inode also makes us achieve the 3654 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3655 * writeback for all dirty pages and before filemap_fdatawait_range() 3656 * is called, the writeback for all dirty pages had already finished 3657 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3658 * filemap_fdatawait_range() would return success, as it could not know 3659 * that writeback errors happened (the pages were no longer tagged for 3660 * writeback). 3661 */ 3662 switch (eb->log_index) { 3663 case -1: 3664 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3665 break; 3666 case 0: 3667 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3668 break; 3669 case 1: 3670 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3671 break; 3672 default: 3673 BUG(); /* unexpected, logic error */ 3674 } 3675 } 3676 3677 static void end_bio_extent_buffer_writepage(struct bio *bio) 3678 { 3679 struct bio_vec *bvec; 3680 struct extent_buffer *eb; 3681 int i, done; 3682 3683 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3684 bio_for_each_segment_all(bvec, bio, i) { 3685 struct page *page = bvec->bv_page; 3686 3687 eb = (struct extent_buffer *)page->private; 3688 BUG_ON(!eb); 3689 done = atomic_dec_and_test(&eb->io_pages); 3690 3691 if (bio->bi_status || 3692 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3693 ClearPageUptodate(page); 3694 set_btree_ioerr(page); 3695 } 3696 3697 end_page_writeback(page); 3698 3699 if (!done) 3700 continue; 3701 3702 end_extent_buffer_writeback(eb); 3703 } 3704 3705 bio_put(bio); 3706 } 3707 3708 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3709 struct btrfs_fs_info *fs_info, 3710 struct writeback_control *wbc, 3711 struct extent_page_data *epd) 3712 { 3713 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3714 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3715 u64 offset = eb->start; 3716 u32 nritems; 3717 unsigned long i, num_pages; 3718 unsigned long bio_flags = 0; 3719 unsigned long start, end; 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3721 int ret = 0; 3722 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3724 num_pages = num_extent_pages(eb->start, eb->len); 3725 atomic_set(&eb->io_pages, num_pages); 3726 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3727 bio_flags = EXTENT_BIO_TREE_LOG; 3728 3729 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3730 nritems = btrfs_header_nritems(eb); 3731 if (btrfs_header_level(eb) > 0) { 3732 end = btrfs_node_key_ptr_offset(nritems); 3733 3734 memzero_extent_buffer(eb, end, eb->len - end); 3735 } else { 3736 /* 3737 * leaf: 3738 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3739 */ 3740 start = btrfs_item_nr_offset(nritems); 3741 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3742 memzero_extent_buffer(eb, start, end - start); 3743 } 3744 3745 for (i = 0; i < num_pages; i++) { 3746 struct page *p = eb->pages[i]; 3747 3748 clear_page_dirty_for_io(p); 3749 set_page_writeback(p); 3750 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3751 p, offset >> 9, PAGE_SIZE, 0, bdev, 3752 &epd->bio, 3753 end_bio_extent_buffer_writepage, 3754 0, epd->bio_flags, bio_flags, false); 3755 epd->bio_flags = bio_flags; 3756 if (ret) { 3757 set_btree_ioerr(p); 3758 if (PageWriteback(p)) 3759 end_page_writeback(p); 3760 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3761 end_extent_buffer_writeback(eb); 3762 ret = -EIO; 3763 break; 3764 } 3765 offset += PAGE_SIZE; 3766 update_nr_written(wbc, 1); 3767 unlock_page(p); 3768 } 3769 3770 if (unlikely(ret)) { 3771 for (; i < num_pages; i++) { 3772 struct page *p = eb->pages[i]; 3773 clear_page_dirty_for_io(p); 3774 unlock_page(p); 3775 } 3776 } 3777 3778 return ret; 3779 } 3780 3781 int btree_write_cache_pages(struct address_space *mapping, 3782 struct writeback_control *wbc) 3783 { 3784 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3785 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3786 struct extent_buffer *eb, *prev_eb = NULL; 3787 struct extent_page_data epd = { 3788 .bio = NULL, 3789 .tree = tree, 3790 .extent_locked = 0, 3791 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3792 .bio_flags = 0, 3793 }; 3794 int ret = 0; 3795 int done = 0; 3796 int nr_to_write_done = 0; 3797 struct pagevec pvec; 3798 int nr_pages; 3799 pgoff_t index; 3800 pgoff_t end; /* Inclusive */ 3801 int scanned = 0; 3802 int tag; 3803 3804 pagevec_init(&pvec, 0); 3805 if (wbc->range_cyclic) { 3806 index = mapping->writeback_index; /* Start from prev offset */ 3807 end = -1; 3808 } else { 3809 index = wbc->range_start >> PAGE_SHIFT; 3810 end = wbc->range_end >> PAGE_SHIFT; 3811 scanned = 1; 3812 } 3813 if (wbc->sync_mode == WB_SYNC_ALL) 3814 tag = PAGECACHE_TAG_TOWRITE; 3815 else 3816 tag = PAGECACHE_TAG_DIRTY; 3817 retry: 3818 if (wbc->sync_mode == WB_SYNC_ALL) 3819 tag_pages_for_writeback(mapping, index, end); 3820 while (!done && !nr_to_write_done && (index <= end) && 3821 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3823 unsigned i; 3824 3825 scanned = 1; 3826 for (i = 0; i < nr_pages; i++) { 3827 struct page *page = pvec.pages[i]; 3828 3829 if (!PagePrivate(page)) 3830 continue; 3831 3832 if (!wbc->range_cyclic && page->index > end) { 3833 done = 1; 3834 break; 3835 } 3836 3837 spin_lock(&mapping->private_lock); 3838 if (!PagePrivate(page)) { 3839 spin_unlock(&mapping->private_lock); 3840 continue; 3841 } 3842 3843 eb = (struct extent_buffer *)page->private; 3844 3845 /* 3846 * Shouldn't happen and normally this would be a BUG_ON 3847 * but no sense in crashing the users box for something 3848 * we can survive anyway. 3849 */ 3850 if (WARN_ON(!eb)) { 3851 spin_unlock(&mapping->private_lock); 3852 continue; 3853 } 3854 3855 if (eb == prev_eb) { 3856 spin_unlock(&mapping->private_lock); 3857 continue; 3858 } 3859 3860 ret = atomic_inc_not_zero(&eb->refs); 3861 spin_unlock(&mapping->private_lock); 3862 if (!ret) 3863 continue; 3864 3865 prev_eb = eb; 3866 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3867 if (!ret) { 3868 free_extent_buffer(eb); 3869 continue; 3870 } 3871 3872 ret = write_one_eb(eb, fs_info, wbc, &epd); 3873 if (ret) { 3874 done = 1; 3875 free_extent_buffer(eb); 3876 break; 3877 } 3878 free_extent_buffer(eb); 3879 3880 /* 3881 * the filesystem may choose to bump up nr_to_write. 3882 * We have to make sure to honor the new nr_to_write 3883 * at any time 3884 */ 3885 nr_to_write_done = wbc->nr_to_write <= 0; 3886 } 3887 pagevec_release(&pvec); 3888 cond_resched(); 3889 } 3890 if (!scanned && !done) { 3891 /* 3892 * We hit the last page and there is more work to be done: wrap 3893 * back to the start of the file 3894 */ 3895 scanned = 1; 3896 index = 0; 3897 goto retry; 3898 } 3899 flush_write_bio(&epd); 3900 return ret; 3901 } 3902 3903 /** 3904 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3905 * @mapping: address space structure to write 3906 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3907 * @writepage: function called for each page 3908 * @data: data passed to writepage function 3909 * 3910 * If a page is already under I/O, write_cache_pages() skips it, even 3911 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3912 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3913 * and msync() need to guarantee that all the data which was dirty at the time 3914 * the call was made get new I/O started against them. If wbc->sync_mode is 3915 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3916 * existing IO to complete. 3917 */ 3918 static int extent_write_cache_pages(struct address_space *mapping, 3919 struct writeback_control *wbc, 3920 writepage_t writepage, void *data, 3921 void (*flush_fn)(void *)) 3922 { 3923 struct inode *inode = mapping->host; 3924 int ret = 0; 3925 int done = 0; 3926 int nr_to_write_done = 0; 3927 struct pagevec pvec; 3928 int nr_pages; 3929 pgoff_t index; 3930 pgoff_t end; /* Inclusive */ 3931 pgoff_t done_index; 3932 int range_whole = 0; 3933 int scanned = 0; 3934 int tag; 3935 3936 /* 3937 * We have to hold onto the inode so that ordered extents can do their 3938 * work when the IO finishes. The alternative to this is failing to add 3939 * an ordered extent if the igrab() fails there and that is a huge pain 3940 * to deal with, so instead just hold onto the inode throughout the 3941 * writepages operation. If it fails here we are freeing up the inode 3942 * anyway and we'd rather not waste our time writing out stuff that is 3943 * going to be truncated anyway. 3944 */ 3945 if (!igrab(inode)) 3946 return 0; 3947 3948 pagevec_init(&pvec, 0); 3949 if (wbc->range_cyclic) { 3950 index = mapping->writeback_index; /* Start from prev offset */ 3951 end = -1; 3952 } else { 3953 index = wbc->range_start >> PAGE_SHIFT; 3954 end = wbc->range_end >> PAGE_SHIFT; 3955 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3956 range_whole = 1; 3957 scanned = 1; 3958 } 3959 if (wbc->sync_mode == WB_SYNC_ALL) 3960 tag = PAGECACHE_TAG_TOWRITE; 3961 else 3962 tag = PAGECACHE_TAG_DIRTY; 3963 retry: 3964 if (wbc->sync_mode == WB_SYNC_ALL) 3965 tag_pages_for_writeback(mapping, index, end); 3966 done_index = index; 3967 while (!done && !nr_to_write_done && (index <= end) && 3968 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3969 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3970 unsigned i; 3971 3972 scanned = 1; 3973 for (i = 0; i < nr_pages; i++) { 3974 struct page *page = pvec.pages[i]; 3975 3976 done_index = page->index; 3977 /* 3978 * At this point we hold neither mapping->tree_lock nor 3979 * lock on the page itself: the page may be truncated or 3980 * invalidated (changing page->mapping to NULL), or even 3981 * swizzled back from swapper_space to tmpfs file 3982 * mapping 3983 */ 3984 if (!trylock_page(page)) { 3985 flush_fn(data); 3986 lock_page(page); 3987 } 3988 3989 if (unlikely(page->mapping != mapping)) { 3990 unlock_page(page); 3991 continue; 3992 } 3993 3994 if (!wbc->range_cyclic && page->index > end) { 3995 done = 1; 3996 unlock_page(page); 3997 continue; 3998 } 3999 4000 if (wbc->sync_mode != WB_SYNC_NONE) { 4001 if (PageWriteback(page)) 4002 flush_fn(data); 4003 wait_on_page_writeback(page); 4004 } 4005 4006 if (PageWriteback(page) || 4007 !clear_page_dirty_for_io(page)) { 4008 unlock_page(page); 4009 continue; 4010 } 4011 4012 ret = (*writepage)(page, wbc, data); 4013 4014 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4015 unlock_page(page); 4016 ret = 0; 4017 } 4018 if (ret < 0) { 4019 /* 4020 * done_index is set past this page, 4021 * so media errors will not choke 4022 * background writeout for the entire 4023 * file. This has consequences for 4024 * range_cyclic semantics (ie. it may 4025 * not be suitable for data integrity 4026 * writeout). 4027 */ 4028 done_index = page->index + 1; 4029 done = 1; 4030 break; 4031 } 4032 4033 /* 4034 * the filesystem may choose to bump up nr_to_write. 4035 * We have to make sure to honor the new nr_to_write 4036 * at any time 4037 */ 4038 nr_to_write_done = wbc->nr_to_write <= 0; 4039 } 4040 pagevec_release(&pvec); 4041 cond_resched(); 4042 } 4043 if (!scanned && !done) { 4044 /* 4045 * We hit the last page and there is more work to be done: wrap 4046 * back to the start of the file 4047 */ 4048 scanned = 1; 4049 index = 0; 4050 goto retry; 4051 } 4052 4053 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4054 mapping->writeback_index = done_index; 4055 4056 btrfs_add_delayed_iput(inode); 4057 return ret; 4058 } 4059 4060 static void flush_epd_write_bio(struct extent_page_data *epd) 4061 { 4062 if (epd->bio) { 4063 int ret; 4064 4065 ret = submit_one_bio(epd->bio, 0, epd->bio_flags); 4066 BUG_ON(ret < 0); /* -ENOMEM */ 4067 epd->bio = NULL; 4068 } 4069 } 4070 4071 static noinline void flush_write_bio(void *data) 4072 { 4073 struct extent_page_data *epd = data; 4074 flush_epd_write_bio(epd); 4075 } 4076 4077 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4078 get_extent_t *get_extent, 4079 struct writeback_control *wbc) 4080 { 4081 int ret; 4082 struct extent_page_data epd = { 4083 .bio = NULL, 4084 .tree = tree, 4085 .get_extent = get_extent, 4086 .extent_locked = 0, 4087 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4088 .bio_flags = 0, 4089 }; 4090 4091 ret = __extent_writepage(page, wbc, &epd); 4092 4093 flush_epd_write_bio(&epd); 4094 return ret; 4095 } 4096 4097 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4098 u64 start, u64 end, get_extent_t *get_extent, 4099 int mode) 4100 { 4101 int ret = 0; 4102 struct address_space *mapping = inode->i_mapping; 4103 struct page *page; 4104 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4105 PAGE_SHIFT; 4106 4107 struct extent_page_data epd = { 4108 .bio = NULL, 4109 .tree = tree, 4110 .get_extent = get_extent, 4111 .extent_locked = 1, 4112 .sync_io = mode == WB_SYNC_ALL, 4113 .bio_flags = 0, 4114 }; 4115 struct writeback_control wbc_writepages = { 4116 .sync_mode = mode, 4117 .nr_to_write = nr_pages * 2, 4118 .range_start = start, 4119 .range_end = end + 1, 4120 }; 4121 4122 while (start <= end) { 4123 page = find_get_page(mapping, start >> PAGE_SHIFT); 4124 if (clear_page_dirty_for_io(page)) 4125 ret = __extent_writepage(page, &wbc_writepages, &epd); 4126 else { 4127 if (tree->ops && tree->ops->writepage_end_io_hook) 4128 tree->ops->writepage_end_io_hook(page, start, 4129 start + PAGE_SIZE - 1, 4130 NULL, 1); 4131 unlock_page(page); 4132 } 4133 put_page(page); 4134 start += PAGE_SIZE; 4135 } 4136 4137 flush_epd_write_bio(&epd); 4138 return ret; 4139 } 4140 4141 int extent_writepages(struct extent_io_tree *tree, 4142 struct address_space *mapping, 4143 get_extent_t *get_extent, 4144 struct writeback_control *wbc) 4145 { 4146 int ret = 0; 4147 struct extent_page_data epd = { 4148 .bio = NULL, 4149 .tree = tree, 4150 .get_extent = get_extent, 4151 .extent_locked = 0, 4152 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4153 .bio_flags = 0, 4154 }; 4155 4156 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd, 4157 flush_write_bio); 4158 flush_epd_write_bio(&epd); 4159 return ret; 4160 } 4161 4162 int extent_readpages(struct extent_io_tree *tree, 4163 struct address_space *mapping, 4164 struct list_head *pages, unsigned nr_pages, 4165 get_extent_t get_extent) 4166 { 4167 struct bio *bio = NULL; 4168 unsigned page_idx; 4169 unsigned long bio_flags = 0; 4170 struct page *pagepool[16]; 4171 struct page *page; 4172 struct extent_map *em_cached = NULL; 4173 int nr = 0; 4174 u64 prev_em_start = (u64)-1; 4175 4176 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4177 page = list_entry(pages->prev, struct page, lru); 4178 4179 prefetchw(&page->flags); 4180 list_del(&page->lru); 4181 if (add_to_page_cache_lru(page, mapping, 4182 page->index, 4183 readahead_gfp_mask(mapping))) { 4184 put_page(page); 4185 continue; 4186 } 4187 4188 pagepool[nr++] = page; 4189 if (nr < ARRAY_SIZE(pagepool)) 4190 continue; 4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4192 &bio, 0, &bio_flags, &prev_em_start); 4193 nr = 0; 4194 } 4195 if (nr) 4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4197 &bio, 0, &bio_flags, &prev_em_start); 4198 4199 if (em_cached) 4200 free_extent_map(em_cached); 4201 4202 BUG_ON(!list_empty(pages)); 4203 if (bio) 4204 return submit_one_bio(bio, 0, bio_flags); 4205 return 0; 4206 } 4207 4208 /* 4209 * basic invalidatepage code, this waits on any locked or writeback 4210 * ranges corresponding to the page, and then deletes any extent state 4211 * records from the tree 4212 */ 4213 int extent_invalidatepage(struct extent_io_tree *tree, 4214 struct page *page, unsigned long offset) 4215 { 4216 struct extent_state *cached_state = NULL; 4217 u64 start = page_offset(page); 4218 u64 end = start + PAGE_SIZE - 1; 4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4220 4221 start += ALIGN(offset, blocksize); 4222 if (start > end) 4223 return 0; 4224 4225 lock_extent_bits(tree, start, end, &cached_state); 4226 wait_on_page_writeback(page); 4227 clear_extent_bit(tree, start, end, 4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4229 EXTENT_DO_ACCOUNTING, 4230 1, 1, &cached_state, GFP_NOFS); 4231 return 0; 4232 } 4233 4234 /* 4235 * a helper for releasepage, this tests for areas of the page that 4236 * are locked or under IO and drops the related state bits if it is safe 4237 * to drop the page. 4238 */ 4239 static int try_release_extent_state(struct extent_map_tree *map, 4240 struct extent_io_tree *tree, 4241 struct page *page, gfp_t mask) 4242 { 4243 u64 start = page_offset(page); 4244 u64 end = start + PAGE_SIZE - 1; 4245 int ret = 1; 4246 4247 if (test_range_bit(tree, start, end, 4248 EXTENT_IOBITS, 0, NULL)) 4249 ret = 0; 4250 else { 4251 /* 4252 * at this point we can safely clear everything except the 4253 * locked bit and the nodatasum bit 4254 */ 4255 ret = clear_extent_bit(tree, start, end, 4256 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4257 0, 0, NULL, mask); 4258 4259 /* if clear_extent_bit failed for enomem reasons, 4260 * we can't allow the release to continue. 4261 */ 4262 if (ret < 0) 4263 ret = 0; 4264 else 4265 ret = 1; 4266 } 4267 return ret; 4268 } 4269 4270 /* 4271 * a helper for releasepage. As long as there are no locked extents 4272 * in the range corresponding to the page, both state records and extent 4273 * map records are removed 4274 */ 4275 int try_release_extent_mapping(struct extent_map_tree *map, 4276 struct extent_io_tree *tree, struct page *page, 4277 gfp_t mask) 4278 { 4279 struct extent_map *em; 4280 u64 start = page_offset(page); 4281 u64 end = start + PAGE_SIZE - 1; 4282 4283 if (gfpflags_allow_blocking(mask) && 4284 page->mapping->host->i_size > SZ_16M) { 4285 u64 len; 4286 while (start <= end) { 4287 len = end - start + 1; 4288 write_lock(&map->lock); 4289 em = lookup_extent_mapping(map, start, len); 4290 if (!em) { 4291 write_unlock(&map->lock); 4292 break; 4293 } 4294 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4295 em->start != start) { 4296 write_unlock(&map->lock); 4297 free_extent_map(em); 4298 break; 4299 } 4300 if (!test_range_bit(tree, em->start, 4301 extent_map_end(em) - 1, 4302 EXTENT_LOCKED | EXTENT_WRITEBACK, 4303 0, NULL)) { 4304 remove_extent_mapping(map, em); 4305 /* once for the rb tree */ 4306 free_extent_map(em); 4307 } 4308 start = extent_map_end(em); 4309 write_unlock(&map->lock); 4310 4311 /* once for us */ 4312 free_extent_map(em); 4313 } 4314 } 4315 return try_release_extent_state(map, tree, page, mask); 4316 } 4317 4318 /* 4319 * helper function for fiemap, which doesn't want to see any holes. 4320 * This maps until we find something past 'last' 4321 */ 4322 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4323 u64 offset, 4324 u64 last, 4325 get_extent_t *get_extent) 4326 { 4327 u64 sectorsize = btrfs_inode_sectorsize(inode); 4328 struct extent_map *em; 4329 u64 len; 4330 4331 if (offset >= last) 4332 return NULL; 4333 4334 while (1) { 4335 len = last - offset; 4336 if (len == 0) 4337 break; 4338 len = ALIGN(len, sectorsize); 4339 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0); 4340 if (IS_ERR_OR_NULL(em)) 4341 return em; 4342 4343 /* if this isn't a hole return it */ 4344 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4345 em->block_start != EXTENT_MAP_HOLE) { 4346 return em; 4347 } 4348 4349 /* this is a hole, advance to the next extent */ 4350 offset = extent_map_end(em); 4351 free_extent_map(em); 4352 if (offset >= last) 4353 break; 4354 } 4355 return NULL; 4356 } 4357 4358 /* 4359 * To cache previous fiemap extent 4360 * 4361 * Will be used for merging fiemap extent 4362 */ 4363 struct fiemap_cache { 4364 u64 offset; 4365 u64 phys; 4366 u64 len; 4367 u32 flags; 4368 bool cached; 4369 }; 4370 4371 /* 4372 * Helper to submit fiemap extent. 4373 * 4374 * Will try to merge current fiemap extent specified by @offset, @phys, 4375 * @len and @flags with cached one. 4376 * And only when we fails to merge, cached one will be submitted as 4377 * fiemap extent. 4378 * 4379 * Return value is the same as fiemap_fill_next_extent(). 4380 */ 4381 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4382 struct fiemap_cache *cache, 4383 u64 offset, u64 phys, u64 len, u32 flags) 4384 { 4385 int ret = 0; 4386 4387 if (!cache->cached) 4388 goto assign; 4389 4390 /* 4391 * Sanity check, extent_fiemap() should have ensured that new 4392 * fiemap extent won't overlap with cahced one. 4393 * Not recoverable. 4394 * 4395 * NOTE: Physical address can overlap, due to compression 4396 */ 4397 if (cache->offset + cache->len > offset) { 4398 WARN_ON(1); 4399 return -EINVAL; 4400 } 4401 4402 /* 4403 * Only merges fiemap extents if 4404 * 1) Their logical addresses are continuous 4405 * 4406 * 2) Their physical addresses are continuous 4407 * So truly compressed (physical size smaller than logical size) 4408 * extents won't get merged with each other 4409 * 4410 * 3) Share same flags except FIEMAP_EXTENT_LAST 4411 * So regular extent won't get merged with prealloc extent 4412 */ 4413 if (cache->offset + cache->len == offset && 4414 cache->phys + cache->len == phys && 4415 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4416 (flags & ~FIEMAP_EXTENT_LAST)) { 4417 cache->len += len; 4418 cache->flags |= flags; 4419 goto try_submit_last; 4420 } 4421 4422 /* Not mergeable, need to submit cached one */ 4423 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4424 cache->len, cache->flags); 4425 cache->cached = false; 4426 if (ret) 4427 return ret; 4428 assign: 4429 cache->cached = true; 4430 cache->offset = offset; 4431 cache->phys = phys; 4432 cache->len = len; 4433 cache->flags = flags; 4434 try_submit_last: 4435 if (cache->flags & FIEMAP_EXTENT_LAST) { 4436 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4437 cache->phys, cache->len, cache->flags); 4438 cache->cached = false; 4439 } 4440 return ret; 4441 } 4442 4443 /* 4444 * Emit last fiemap cache 4445 * 4446 * The last fiemap cache may still be cached in the following case: 4447 * 0 4k 8k 4448 * |<- Fiemap range ->| 4449 * |<------------ First extent ----------->| 4450 * 4451 * In this case, the first extent range will be cached but not emitted. 4452 * So we must emit it before ending extent_fiemap(). 4453 */ 4454 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4455 struct fiemap_extent_info *fieinfo, 4456 struct fiemap_cache *cache) 4457 { 4458 int ret; 4459 4460 if (!cache->cached) 4461 return 0; 4462 4463 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4464 cache->len, cache->flags); 4465 cache->cached = false; 4466 if (ret > 0) 4467 ret = 0; 4468 return ret; 4469 } 4470 4471 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4472 __u64 start, __u64 len, get_extent_t *get_extent) 4473 { 4474 int ret = 0; 4475 u64 off = start; 4476 u64 max = start + len; 4477 u32 flags = 0; 4478 u32 found_type; 4479 u64 last; 4480 u64 last_for_get_extent = 0; 4481 u64 disko = 0; 4482 u64 isize = i_size_read(inode); 4483 struct btrfs_key found_key; 4484 struct extent_map *em = NULL; 4485 struct extent_state *cached_state = NULL; 4486 struct btrfs_path *path; 4487 struct btrfs_root *root = BTRFS_I(inode)->root; 4488 struct fiemap_cache cache = { 0 }; 4489 int end = 0; 4490 u64 em_start = 0; 4491 u64 em_len = 0; 4492 u64 em_end = 0; 4493 4494 if (len == 0) 4495 return -EINVAL; 4496 4497 path = btrfs_alloc_path(); 4498 if (!path) 4499 return -ENOMEM; 4500 path->leave_spinning = 1; 4501 4502 start = round_down(start, btrfs_inode_sectorsize(inode)); 4503 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4504 4505 /* 4506 * lookup the last file extent. We're not using i_size here 4507 * because there might be preallocation past i_size 4508 */ 4509 ret = btrfs_lookup_file_extent(NULL, root, path, 4510 btrfs_ino(BTRFS_I(inode)), -1, 0); 4511 if (ret < 0) { 4512 btrfs_free_path(path); 4513 return ret; 4514 } else { 4515 WARN_ON(!ret); 4516 if (ret == 1) 4517 ret = 0; 4518 } 4519 4520 path->slots[0]--; 4521 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4522 found_type = found_key.type; 4523 4524 /* No extents, but there might be delalloc bits */ 4525 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4526 found_type != BTRFS_EXTENT_DATA_KEY) { 4527 /* have to trust i_size as the end */ 4528 last = (u64)-1; 4529 last_for_get_extent = isize; 4530 } else { 4531 /* 4532 * remember the start of the last extent. There are a 4533 * bunch of different factors that go into the length of the 4534 * extent, so its much less complex to remember where it started 4535 */ 4536 last = found_key.offset; 4537 last_for_get_extent = last + 1; 4538 } 4539 btrfs_release_path(path); 4540 4541 /* 4542 * we might have some extents allocated but more delalloc past those 4543 * extents. so, we trust isize unless the start of the last extent is 4544 * beyond isize 4545 */ 4546 if (last < isize) { 4547 last = (u64)-1; 4548 last_for_get_extent = isize; 4549 } 4550 4551 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4552 &cached_state); 4553 4554 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4555 get_extent); 4556 if (!em) 4557 goto out; 4558 if (IS_ERR(em)) { 4559 ret = PTR_ERR(em); 4560 goto out; 4561 } 4562 4563 while (!end) { 4564 u64 offset_in_extent = 0; 4565 4566 /* break if the extent we found is outside the range */ 4567 if (em->start >= max || extent_map_end(em) < off) 4568 break; 4569 4570 /* 4571 * get_extent may return an extent that starts before our 4572 * requested range. We have to make sure the ranges 4573 * we return to fiemap always move forward and don't 4574 * overlap, so adjust the offsets here 4575 */ 4576 em_start = max(em->start, off); 4577 4578 /* 4579 * record the offset from the start of the extent 4580 * for adjusting the disk offset below. Only do this if the 4581 * extent isn't compressed since our in ram offset may be past 4582 * what we have actually allocated on disk. 4583 */ 4584 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4585 offset_in_extent = em_start - em->start; 4586 em_end = extent_map_end(em); 4587 em_len = em_end - em_start; 4588 disko = 0; 4589 flags = 0; 4590 4591 /* 4592 * bump off for our next call to get_extent 4593 */ 4594 off = extent_map_end(em); 4595 if (off >= max) 4596 end = 1; 4597 4598 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4599 end = 1; 4600 flags |= FIEMAP_EXTENT_LAST; 4601 } else if (em->block_start == EXTENT_MAP_INLINE) { 4602 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4603 FIEMAP_EXTENT_NOT_ALIGNED); 4604 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4605 flags |= (FIEMAP_EXTENT_DELALLOC | 4606 FIEMAP_EXTENT_UNKNOWN); 4607 } else if (fieinfo->fi_extents_max) { 4608 u64 bytenr = em->block_start - 4609 (em->start - em->orig_start); 4610 4611 disko = em->block_start + offset_in_extent; 4612 4613 /* 4614 * As btrfs supports shared space, this information 4615 * can be exported to userspace tools via 4616 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4617 * then we're just getting a count and we can skip the 4618 * lookup stuff. 4619 */ 4620 ret = btrfs_check_shared(root, 4621 btrfs_ino(BTRFS_I(inode)), 4622 bytenr); 4623 if (ret < 0) 4624 goto out_free; 4625 if (ret) 4626 flags |= FIEMAP_EXTENT_SHARED; 4627 ret = 0; 4628 } 4629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4630 flags |= FIEMAP_EXTENT_ENCODED; 4631 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4632 flags |= FIEMAP_EXTENT_UNWRITTEN; 4633 4634 free_extent_map(em); 4635 em = NULL; 4636 if ((em_start >= last) || em_len == (u64)-1 || 4637 (last == (u64)-1 && isize <= em_end)) { 4638 flags |= FIEMAP_EXTENT_LAST; 4639 end = 1; 4640 } 4641 4642 /* now scan forward to see if this is really the last extent. */ 4643 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4644 get_extent); 4645 if (IS_ERR(em)) { 4646 ret = PTR_ERR(em); 4647 goto out; 4648 } 4649 if (!em) { 4650 flags |= FIEMAP_EXTENT_LAST; 4651 end = 1; 4652 } 4653 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4654 em_len, flags); 4655 if (ret) { 4656 if (ret == 1) 4657 ret = 0; 4658 goto out_free; 4659 } 4660 } 4661 out_free: 4662 if (!ret) 4663 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4664 free_extent_map(em); 4665 out: 4666 btrfs_free_path(path); 4667 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4668 &cached_state, GFP_NOFS); 4669 return ret; 4670 } 4671 4672 static void __free_extent_buffer(struct extent_buffer *eb) 4673 { 4674 btrfs_leak_debug_del(&eb->leak_list); 4675 kmem_cache_free(extent_buffer_cache, eb); 4676 } 4677 4678 int extent_buffer_under_io(struct extent_buffer *eb) 4679 { 4680 return (atomic_read(&eb->io_pages) || 4681 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4682 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4683 } 4684 4685 /* 4686 * Helper for releasing extent buffer page. 4687 */ 4688 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4689 { 4690 unsigned long index; 4691 struct page *page; 4692 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4693 4694 BUG_ON(extent_buffer_under_io(eb)); 4695 4696 index = num_extent_pages(eb->start, eb->len); 4697 if (index == 0) 4698 return; 4699 4700 do { 4701 index--; 4702 page = eb->pages[index]; 4703 if (!page) 4704 continue; 4705 if (mapped) 4706 spin_lock(&page->mapping->private_lock); 4707 /* 4708 * We do this since we'll remove the pages after we've 4709 * removed the eb from the radix tree, so we could race 4710 * and have this page now attached to the new eb. So 4711 * only clear page_private if it's still connected to 4712 * this eb. 4713 */ 4714 if (PagePrivate(page) && 4715 page->private == (unsigned long)eb) { 4716 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4717 BUG_ON(PageDirty(page)); 4718 BUG_ON(PageWriteback(page)); 4719 /* 4720 * We need to make sure we haven't be attached 4721 * to a new eb. 4722 */ 4723 ClearPagePrivate(page); 4724 set_page_private(page, 0); 4725 /* One for the page private */ 4726 put_page(page); 4727 } 4728 4729 if (mapped) 4730 spin_unlock(&page->mapping->private_lock); 4731 4732 /* One for when we allocated the page */ 4733 put_page(page); 4734 } while (index != 0); 4735 } 4736 4737 /* 4738 * Helper for releasing the extent buffer. 4739 */ 4740 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4741 { 4742 btrfs_release_extent_buffer_page(eb); 4743 __free_extent_buffer(eb); 4744 } 4745 4746 static struct extent_buffer * 4747 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4748 unsigned long len) 4749 { 4750 struct extent_buffer *eb = NULL; 4751 4752 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4753 eb->start = start; 4754 eb->len = len; 4755 eb->fs_info = fs_info; 4756 eb->bflags = 0; 4757 rwlock_init(&eb->lock); 4758 atomic_set(&eb->write_locks, 0); 4759 atomic_set(&eb->read_locks, 0); 4760 atomic_set(&eb->blocking_readers, 0); 4761 atomic_set(&eb->blocking_writers, 0); 4762 atomic_set(&eb->spinning_readers, 0); 4763 atomic_set(&eb->spinning_writers, 0); 4764 eb->lock_nested = 0; 4765 init_waitqueue_head(&eb->write_lock_wq); 4766 init_waitqueue_head(&eb->read_lock_wq); 4767 4768 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4769 4770 spin_lock_init(&eb->refs_lock); 4771 atomic_set(&eb->refs, 1); 4772 atomic_set(&eb->io_pages, 0); 4773 4774 /* 4775 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4776 */ 4777 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4778 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4779 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4780 4781 return eb; 4782 } 4783 4784 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4785 { 4786 unsigned long i; 4787 struct page *p; 4788 struct extent_buffer *new; 4789 unsigned long num_pages = num_extent_pages(src->start, src->len); 4790 4791 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4792 if (new == NULL) 4793 return NULL; 4794 4795 for (i = 0; i < num_pages; i++) { 4796 p = alloc_page(GFP_NOFS); 4797 if (!p) { 4798 btrfs_release_extent_buffer(new); 4799 return NULL; 4800 } 4801 attach_extent_buffer_page(new, p); 4802 WARN_ON(PageDirty(p)); 4803 SetPageUptodate(p); 4804 new->pages[i] = p; 4805 copy_page(page_address(p), page_address(src->pages[i])); 4806 } 4807 4808 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4809 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4810 4811 return new; 4812 } 4813 4814 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4815 u64 start, unsigned long len) 4816 { 4817 struct extent_buffer *eb; 4818 unsigned long num_pages; 4819 unsigned long i; 4820 4821 num_pages = num_extent_pages(start, len); 4822 4823 eb = __alloc_extent_buffer(fs_info, start, len); 4824 if (!eb) 4825 return NULL; 4826 4827 for (i = 0; i < num_pages; i++) { 4828 eb->pages[i] = alloc_page(GFP_NOFS); 4829 if (!eb->pages[i]) 4830 goto err; 4831 } 4832 set_extent_buffer_uptodate(eb); 4833 btrfs_set_header_nritems(eb, 0); 4834 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4835 4836 return eb; 4837 err: 4838 for (; i > 0; i--) 4839 __free_page(eb->pages[i - 1]); 4840 __free_extent_buffer(eb); 4841 return NULL; 4842 } 4843 4844 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4845 u64 start) 4846 { 4847 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4848 } 4849 4850 static void check_buffer_tree_ref(struct extent_buffer *eb) 4851 { 4852 int refs; 4853 /* the ref bit is tricky. We have to make sure it is set 4854 * if we have the buffer dirty. Otherwise the 4855 * code to free a buffer can end up dropping a dirty 4856 * page 4857 * 4858 * Once the ref bit is set, it won't go away while the 4859 * buffer is dirty or in writeback, and it also won't 4860 * go away while we have the reference count on the 4861 * eb bumped. 4862 * 4863 * We can't just set the ref bit without bumping the 4864 * ref on the eb because free_extent_buffer might 4865 * see the ref bit and try to clear it. If this happens 4866 * free_extent_buffer might end up dropping our original 4867 * ref by mistake and freeing the page before we are able 4868 * to add one more ref. 4869 * 4870 * So bump the ref count first, then set the bit. If someone 4871 * beat us to it, drop the ref we added. 4872 */ 4873 refs = atomic_read(&eb->refs); 4874 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4875 return; 4876 4877 spin_lock(&eb->refs_lock); 4878 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4879 atomic_inc(&eb->refs); 4880 spin_unlock(&eb->refs_lock); 4881 } 4882 4883 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4884 struct page *accessed) 4885 { 4886 unsigned long num_pages, i; 4887 4888 check_buffer_tree_ref(eb); 4889 4890 num_pages = num_extent_pages(eb->start, eb->len); 4891 for (i = 0; i < num_pages; i++) { 4892 struct page *p = eb->pages[i]; 4893 4894 if (p != accessed) 4895 mark_page_accessed(p); 4896 } 4897 } 4898 4899 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4900 u64 start) 4901 { 4902 struct extent_buffer *eb; 4903 4904 rcu_read_lock(); 4905 eb = radix_tree_lookup(&fs_info->buffer_radix, 4906 start >> PAGE_SHIFT); 4907 if (eb && atomic_inc_not_zero(&eb->refs)) { 4908 rcu_read_unlock(); 4909 /* 4910 * Lock our eb's refs_lock to avoid races with 4911 * free_extent_buffer. When we get our eb it might be flagged 4912 * with EXTENT_BUFFER_STALE and another task running 4913 * free_extent_buffer might have seen that flag set, 4914 * eb->refs == 2, that the buffer isn't under IO (dirty and 4915 * writeback flags not set) and it's still in the tree (flag 4916 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4917 * of decrementing the extent buffer's reference count twice. 4918 * So here we could race and increment the eb's reference count, 4919 * clear its stale flag, mark it as dirty and drop our reference 4920 * before the other task finishes executing free_extent_buffer, 4921 * which would later result in an attempt to free an extent 4922 * buffer that is dirty. 4923 */ 4924 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4925 spin_lock(&eb->refs_lock); 4926 spin_unlock(&eb->refs_lock); 4927 } 4928 mark_extent_buffer_accessed(eb, NULL); 4929 return eb; 4930 } 4931 rcu_read_unlock(); 4932 4933 return NULL; 4934 } 4935 4936 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4937 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4938 u64 start) 4939 { 4940 struct extent_buffer *eb, *exists = NULL; 4941 int ret; 4942 4943 eb = find_extent_buffer(fs_info, start); 4944 if (eb) 4945 return eb; 4946 eb = alloc_dummy_extent_buffer(fs_info, start); 4947 if (!eb) 4948 return NULL; 4949 eb->fs_info = fs_info; 4950 again: 4951 ret = radix_tree_preload(GFP_NOFS); 4952 if (ret) 4953 goto free_eb; 4954 spin_lock(&fs_info->buffer_lock); 4955 ret = radix_tree_insert(&fs_info->buffer_radix, 4956 start >> PAGE_SHIFT, eb); 4957 spin_unlock(&fs_info->buffer_lock); 4958 radix_tree_preload_end(); 4959 if (ret == -EEXIST) { 4960 exists = find_extent_buffer(fs_info, start); 4961 if (exists) 4962 goto free_eb; 4963 else 4964 goto again; 4965 } 4966 check_buffer_tree_ref(eb); 4967 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4968 4969 /* 4970 * We will free dummy extent buffer's if they come into 4971 * free_extent_buffer with a ref count of 2, but if we are using this we 4972 * want the buffers to stay in memory until we're done with them, so 4973 * bump the ref count again. 4974 */ 4975 atomic_inc(&eb->refs); 4976 return eb; 4977 free_eb: 4978 btrfs_release_extent_buffer(eb); 4979 return exists; 4980 } 4981 #endif 4982 4983 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4984 u64 start) 4985 { 4986 unsigned long len = fs_info->nodesize; 4987 unsigned long num_pages = num_extent_pages(start, len); 4988 unsigned long i; 4989 unsigned long index = start >> PAGE_SHIFT; 4990 struct extent_buffer *eb; 4991 struct extent_buffer *exists = NULL; 4992 struct page *p; 4993 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4994 int uptodate = 1; 4995 int ret; 4996 4997 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4998 btrfs_err(fs_info, "bad tree block start %llu", start); 4999 return ERR_PTR(-EINVAL); 5000 } 5001 5002 eb = find_extent_buffer(fs_info, start); 5003 if (eb) 5004 return eb; 5005 5006 eb = __alloc_extent_buffer(fs_info, start, len); 5007 if (!eb) 5008 return ERR_PTR(-ENOMEM); 5009 5010 for (i = 0; i < num_pages; i++, index++) { 5011 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5012 if (!p) { 5013 exists = ERR_PTR(-ENOMEM); 5014 goto free_eb; 5015 } 5016 5017 spin_lock(&mapping->private_lock); 5018 if (PagePrivate(p)) { 5019 /* 5020 * We could have already allocated an eb for this page 5021 * and attached one so lets see if we can get a ref on 5022 * the existing eb, and if we can we know it's good and 5023 * we can just return that one, else we know we can just 5024 * overwrite page->private. 5025 */ 5026 exists = (struct extent_buffer *)p->private; 5027 if (atomic_inc_not_zero(&exists->refs)) { 5028 spin_unlock(&mapping->private_lock); 5029 unlock_page(p); 5030 put_page(p); 5031 mark_extent_buffer_accessed(exists, p); 5032 goto free_eb; 5033 } 5034 exists = NULL; 5035 5036 /* 5037 * Do this so attach doesn't complain and we need to 5038 * drop the ref the old guy had. 5039 */ 5040 ClearPagePrivate(p); 5041 WARN_ON(PageDirty(p)); 5042 put_page(p); 5043 } 5044 attach_extent_buffer_page(eb, p); 5045 spin_unlock(&mapping->private_lock); 5046 WARN_ON(PageDirty(p)); 5047 eb->pages[i] = p; 5048 if (!PageUptodate(p)) 5049 uptodate = 0; 5050 5051 /* 5052 * see below about how we avoid a nasty race with release page 5053 * and why we unlock later 5054 */ 5055 } 5056 if (uptodate) 5057 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5058 again: 5059 ret = radix_tree_preload(GFP_NOFS); 5060 if (ret) { 5061 exists = ERR_PTR(ret); 5062 goto free_eb; 5063 } 5064 5065 spin_lock(&fs_info->buffer_lock); 5066 ret = radix_tree_insert(&fs_info->buffer_radix, 5067 start >> PAGE_SHIFT, eb); 5068 spin_unlock(&fs_info->buffer_lock); 5069 radix_tree_preload_end(); 5070 if (ret == -EEXIST) { 5071 exists = find_extent_buffer(fs_info, start); 5072 if (exists) 5073 goto free_eb; 5074 else 5075 goto again; 5076 } 5077 /* add one reference for the tree */ 5078 check_buffer_tree_ref(eb); 5079 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5080 5081 /* 5082 * there is a race where release page may have 5083 * tried to find this extent buffer in the radix 5084 * but failed. It will tell the VM it is safe to 5085 * reclaim the, and it will clear the page private bit. 5086 * We must make sure to set the page private bit properly 5087 * after the extent buffer is in the radix tree so 5088 * it doesn't get lost 5089 */ 5090 SetPageChecked(eb->pages[0]); 5091 for (i = 1; i < num_pages; i++) { 5092 p = eb->pages[i]; 5093 ClearPageChecked(p); 5094 unlock_page(p); 5095 } 5096 unlock_page(eb->pages[0]); 5097 return eb; 5098 5099 free_eb: 5100 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5101 for (i = 0; i < num_pages; i++) { 5102 if (eb->pages[i]) 5103 unlock_page(eb->pages[i]); 5104 } 5105 5106 btrfs_release_extent_buffer(eb); 5107 return exists; 5108 } 5109 5110 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5111 { 5112 struct extent_buffer *eb = 5113 container_of(head, struct extent_buffer, rcu_head); 5114 5115 __free_extent_buffer(eb); 5116 } 5117 5118 /* Expects to have eb->eb_lock already held */ 5119 static int release_extent_buffer(struct extent_buffer *eb) 5120 { 5121 WARN_ON(atomic_read(&eb->refs) == 0); 5122 if (atomic_dec_and_test(&eb->refs)) { 5123 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5124 struct btrfs_fs_info *fs_info = eb->fs_info; 5125 5126 spin_unlock(&eb->refs_lock); 5127 5128 spin_lock(&fs_info->buffer_lock); 5129 radix_tree_delete(&fs_info->buffer_radix, 5130 eb->start >> PAGE_SHIFT); 5131 spin_unlock(&fs_info->buffer_lock); 5132 } else { 5133 spin_unlock(&eb->refs_lock); 5134 } 5135 5136 /* Should be safe to release our pages at this point */ 5137 btrfs_release_extent_buffer_page(eb); 5138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5139 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5140 __free_extent_buffer(eb); 5141 return 1; 5142 } 5143 #endif 5144 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5145 return 1; 5146 } 5147 spin_unlock(&eb->refs_lock); 5148 5149 return 0; 5150 } 5151 5152 void free_extent_buffer(struct extent_buffer *eb) 5153 { 5154 int refs; 5155 int old; 5156 if (!eb) 5157 return; 5158 5159 while (1) { 5160 refs = atomic_read(&eb->refs); 5161 if (refs <= 3) 5162 break; 5163 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5164 if (old == refs) 5165 return; 5166 } 5167 5168 spin_lock(&eb->refs_lock); 5169 if (atomic_read(&eb->refs) == 2 && 5170 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5171 atomic_dec(&eb->refs); 5172 5173 if (atomic_read(&eb->refs) == 2 && 5174 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5175 !extent_buffer_under_io(eb) && 5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5177 atomic_dec(&eb->refs); 5178 5179 /* 5180 * I know this is terrible, but it's temporary until we stop tracking 5181 * the uptodate bits and such for the extent buffers. 5182 */ 5183 release_extent_buffer(eb); 5184 } 5185 5186 void free_extent_buffer_stale(struct extent_buffer *eb) 5187 { 5188 if (!eb) 5189 return; 5190 5191 spin_lock(&eb->refs_lock); 5192 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5193 5194 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5195 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5196 atomic_dec(&eb->refs); 5197 release_extent_buffer(eb); 5198 } 5199 5200 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5201 { 5202 unsigned long i; 5203 unsigned long num_pages; 5204 struct page *page; 5205 5206 num_pages = num_extent_pages(eb->start, eb->len); 5207 5208 for (i = 0; i < num_pages; i++) { 5209 page = eb->pages[i]; 5210 if (!PageDirty(page)) 5211 continue; 5212 5213 lock_page(page); 5214 WARN_ON(!PagePrivate(page)); 5215 5216 clear_page_dirty_for_io(page); 5217 spin_lock_irq(&page->mapping->tree_lock); 5218 if (!PageDirty(page)) { 5219 radix_tree_tag_clear(&page->mapping->page_tree, 5220 page_index(page), 5221 PAGECACHE_TAG_DIRTY); 5222 } 5223 spin_unlock_irq(&page->mapping->tree_lock); 5224 ClearPageError(page); 5225 unlock_page(page); 5226 } 5227 WARN_ON(atomic_read(&eb->refs) == 0); 5228 } 5229 5230 int set_extent_buffer_dirty(struct extent_buffer *eb) 5231 { 5232 unsigned long i; 5233 unsigned long num_pages; 5234 int was_dirty = 0; 5235 5236 check_buffer_tree_ref(eb); 5237 5238 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5239 5240 num_pages = num_extent_pages(eb->start, eb->len); 5241 WARN_ON(atomic_read(&eb->refs) == 0); 5242 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5243 5244 for (i = 0; i < num_pages; i++) 5245 set_page_dirty(eb->pages[i]); 5246 return was_dirty; 5247 } 5248 5249 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5250 { 5251 unsigned long i; 5252 struct page *page; 5253 unsigned long num_pages; 5254 5255 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5256 num_pages = num_extent_pages(eb->start, eb->len); 5257 for (i = 0; i < num_pages; i++) { 5258 page = eb->pages[i]; 5259 if (page) 5260 ClearPageUptodate(page); 5261 } 5262 } 5263 5264 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5265 { 5266 unsigned long i; 5267 struct page *page; 5268 unsigned long num_pages; 5269 5270 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5271 num_pages = num_extent_pages(eb->start, eb->len); 5272 for (i = 0; i < num_pages; i++) { 5273 page = eb->pages[i]; 5274 SetPageUptodate(page); 5275 } 5276 } 5277 5278 int extent_buffer_uptodate(struct extent_buffer *eb) 5279 { 5280 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5281 } 5282 5283 int read_extent_buffer_pages(struct extent_io_tree *tree, 5284 struct extent_buffer *eb, int wait, 5285 get_extent_t *get_extent, int mirror_num) 5286 { 5287 unsigned long i; 5288 struct page *page; 5289 int err; 5290 int ret = 0; 5291 int locked_pages = 0; 5292 int all_uptodate = 1; 5293 unsigned long num_pages; 5294 unsigned long num_reads = 0; 5295 struct bio *bio = NULL; 5296 unsigned long bio_flags = 0; 5297 5298 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5299 return 0; 5300 5301 num_pages = num_extent_pages(eb->start, eb->len); 5302 for (i = 0; i < num_pages; i++) { 5303 page = eb->pages[i]; 5304 if (wait == WAIT_NONE) { 5305 if (!trylock_page(page)) 5306 goto unlock_exit; 5307 } else { 5308 lock_page(page); 5309 } 5310 locked_pages++; 5311 } 5312 /* 5313 * We need to firstly lock all pages to make sure that 5314 * the uptodate bit of our pages won't be affected by 5315 * clear_extent_buffer_uptodate(). 5316 */ 5317 for (i = 0; i < num_pages; i++) { 5318 page = eb->pages[i]; 5319 if (!PageUptodate(page)) { 5320 num_reads++; 5321 all_uptodate = 0; 5322 } 5323 } 5324 5325 if (all_uptodate) { 5326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5327 goto unlock_exit; 5328 } 5329 5330 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5331 eb->read_mirror = 0; 5332 atomic_set(&eb->io_pages, num_reads); 5333 for (i = 0; i < num_pages; i++) { 5334 page = eb->pages[i]; 5335 5336 if (!PageUptodate(page)) { 5337 if (ret) { 5338 atomic_dec(&eb->io_pages); 5339 unlock_page(page); 5340 continue; 5341 } 5342 5343 ClearPageError(page); 5344 err = __extent_read_full_page(tree, page, 5345 get_extent, &bio, 5346 mirror_num, &bio_flags, 5347 REQ_META); 5348 if (err) { 5349 ret = err; 5350 /* 5351 * We use &bio in above __extent_read_full_page, 5352 * so we ensure that if it returns error, the 5353 * current page fails to add itself to bio and 5354 * it's been unlocked. 5355 * 5356 * We must dec io_pages by ourselves. 5357 */ 5358 atomic_dec(&eb->io_pages); 5359 } 5360 } else { 5361 unlock_page(page); 5362 } 5363 } 5364 5365 if (bio) { 5366 err = submit_one_bio(bio, mirror_num, bio_flags); 5367 if (err) 5368 return err; 5369 } 5370 5371 if (ret || wait != WAIT_COMPLETE) 5372 return ret; 5373 5374 for (i = 0; i < num_pages; i++) { 5375 page = eb->pages[i]; 5376 wait_on_page_locked(page); 5377 if (!PageUptodate(page)) 5378 ret = -EIO; 5379 } 5380 5381 return ret; 5382 5383 unlock_exit: 5384 while (locked_pages > 0) { 5385 locked_pages--; 5386 page = eb->pages[locked_pages]; 5387 unlock_page(page); 5388 } 5389 return ret; 5390 } 5391 5392 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5393 unsigned long start, unsigned long len) 5394 { 5395 size_t cur; 5396 size_t offset; 5397 struct page *page; 5398 char *kaddr; 5399 char *dst = (char *)dstv; 5400 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5401 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5402 5403 if (start + len > eb->len) { 5404 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5405 eb->start, eb->len, start, len); 5406 memset(dst, 0, len); 5407 return; 5408 } 5409 5410 offset = (start_offset + start) & (PAGE_SIZE - 1); 5411 5412 while (len > 0) { 5413 page = eb->pages[i]; 5414 5415 cur = min(len, (PAGE_SIZE - offset)); 5416 kaddr = page_address(page); 5417 memcpy(dst, kaddr + offset, cur); 5418 5419 dst += cur; 5420 len -= cur; 5421 offset = 0; 5422 i++; 5423 } 5424 } 5425 5426 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5427 void __user *dstv, 5428 unsigned long start, unsigned long len) 5429 { 5430 size_t cur; 5431 size_t offset; 5432 struct page *page; 5433 char *kaddr; 5434 char __user *dst = (char __user *)dstv; 5435 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5436 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5437 int ret = 0; 5438 5439 WARN_ON(start > eb->len); 5440 WARN_ON(start + len > eb->start + eb->len); 5441 5442 offset = (start_offset + start) & (PAGE_SIZE - 1); 5443 5444 while (len > 0) { 5445 page = eb->pages[i]; 5446 5447 cur = min(len, (PAGE_SIZE - offset)); 5448 kaddr = page_address(page); 5449 if (copy_to_user(dst, kaddr + offset, cur)) { 5450 ret = -EFAULT; 5451 break; 5452 } 5453 5454 dst += cur; 5455 len -= cur; 5456 offset = 0; 5457 i++; 5458 } 5459 5460 return ret; 5461 } 5462 5463 /* 5464 * return 0 if the item is found within a page. 5465 * return 1 if the item spans two pages. 5466 * return -EINVAL otherwise. 5467 */ 5468 int map_private_extent_buffer(const struct extent_buffer *eb, 5469 unsigned long start, unsigned long min_len, 5470 char **map, unsigned long *map_start, 5471 unsigned long *map_len) 5472 { 5473 size_t offset = start & (PAGE_SIZE - 1); 5474 char *kaddr; 5475 struct page *p; 5476 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5477 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5478 unsigned long end_i = (start_offset + start + min_len - 1) >> 5479 PAGE_SHIFT; 5480 5481 if (start + min_len > eb->len) { 5482 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5483 eb->start, eb->len, start, min_len); 5484 return -EINVAL; 5485 } 5486 5487 if (i != end_i) 5488 return 1; 5489 5490 if (i == 0) { 5491 offset = start_offset; 5492 *map_start = 0; 5493 } else { 5494 offset = 0; 5495 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5496 } 5497 5498 p = eb->pages[i]; 5499 kaddr = page_address(p); 5500 *map = kaddr + offset; 5501 *map_len = PAGE_SIZE - offset; 5502 return 0; 5503 } 5504 5505 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5506 unsigned long start, unsigned long len) 5507 { 5508 size_t cur; 5509 size_t offset; 5510 struct page *page; 5511 char *kaddr; 5512 char *ptr = (char *)ptrv; 5513 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5514 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5515 int ret = 0; 5516 5517 WARN_ON(start > eb->len); 5518 WARN_ON(start + len > eb->start + eb->len); 5519 5520 offset = (start_offset + start) & (PAGE_SIZE - 1); 5521 5522 while (len > 0) { 5523 page = eb->pages[i]; 5524 5525 cur = min(len, (PAGE_SIZE - offset)); 5526 5527 kaddr = page_address(page); 5528 ret = memcmp(ptr, kaddr + offset, cur); 5529 if (ret) 5530 break; 5531 5532 ptr += cur; 5533 len -= cur; 5534 offset = 0; 5535 i++; 5536 } 5537 return ret; 5538 } 5539 5540 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5541 const void *srcv) 5542 { 5543 char *kaddr; 5544 5545 WARN_ON(!PageUptodate(eb->pages[0])); 5546 kaddr = page_address(eb->pages[0]); 5547 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5548 BTRFS_FSID_SIZE); 5549 } 5550 5551 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5552 { 5553 char *kaddr; 5554 5555 WARN_ON(!PageUptodate(eb->pages[0])); 5556 kaddr = page_address(eb->pages[0]); 5557 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5558 BTRFS_FSID_SIZE); 5559 } 5560 5561 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5562 unsigned long start, unsigned long len) 5563 { 5564 size_t cur; 5565 size_t offset; 5566 struct page *page; 5567 char *kaddr; 5568 char *src = (char *)srcv; 5569 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5570 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5571 5572 WARN_ON(start > eb->len); 5573 WARN_ON(start + len > eb->start + eb->len); 5574 5575 offset = (start_offset + start) & (PAGE_SIZE - 1); 5576 5577 while (len > 0) { 5578 page = eb->pages[i]; 5579 WARN_ON(!PageUptodate(page)); 5580 5581 cur = min(len, PAGE_SIZE - offset); 5582 kaddr = page_address(page); 5583 memcpy(kaddr + offset, src, cur); 5584 5585 src += cur; 5586 len -= cur; 5587 offset = 0; 5588 i++; 5589 } 5590 } 5591 5592 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5593 unsigned long len) 5594 { 5595 size_t cur; 5596 size_t offset; 5597 struct page *page; 5598 char *kaddr; 5599 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5600 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5601 5602 WARN_ON(start > eb->len); 5603 WARN_ON(start + len > eb->start + eb->len); 5604 5605 offset = (start_offset + start) & (PAGE_SIZE - 1); 5606 5607 while (len > 0) { 5608 page = eb->pages[i]; 5609 WARN_ON(!PageUptodate(page)); 5610 5611 cur = min(len, PAGE_SIZE - offset); 5612 kaddr = page_address(page); 5613 memset(kaddr + offset, 0, cur); 5614 5615 len -= cur; 5616 offset = 0; 5617 i++; 5618 } 5619 } 5620 5621 void copy_extent_buffer_full(struct extent_buffer *dst, 5622 struct extent_buffer *src) 5623 { 5624 int i; 5625 unsigned num_pages; 5626 5627 ASSERT(dst->len == src->len); 5628 5629 num_pages = num_extent_pages(dst->start, dst->len); 5630 for (i = 0; i < num_pages; i++) 5631 copy_page(page_address(dst->pages[i]), 5632 page_address(src->pages[i])); 5633 } 5634 5635 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5636 unsigned long dst_offset, unsigned long src_offset, 5637 unsigned long len) 5638 { 5639 u64 dst_len = dst->len; 5640 size_t cur; 5641 size_t offset; 5642 struct page *page; 5643 char *kaddr; 5644 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5645 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5646 5647 WARN_ON(src->len != dst_len); 5648 5649 offset = (start_offset + dst_offset) & 5650 (PAGE_SIZE - 1); 5651 5652 while (len > 0) { 5653 page = dst->pages[i]; 5654 WARN_ON(!PageUptodate(page)); 5655 5656 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5657 5658 kaddr = page_address(page); 5659 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5660 5661 src_offset += cur; 5662 len -= cur; 5663 offset = 0; 5664 i++; 5665 } 5666 } 5667 5668 void le_bitmap_set(u8 *map, unsigned int start, int len) 5669 { 5670 u8 *p = map + BIT_BYTE(start); 5671 const unsigned int size = start + len; 5672 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5673 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start); 5674 5675 while (len - bits_to_set >= 0) { 5676 *p |= mask_to_set; 5677 len -= bits_to_set; 5678 bits_to_set = BITS_PER_BYTE; 5679 mask_to_set = ~0; 5680 p++; 5681 } 5682 if (len) { 5683 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5684 *p |= mask_to_set; 5685 } 5686 } 5687 5688 void le_bitmap_clear(u8 *map, unsigned int start, int len) 5689 { 5690 u8 *p = map + BIT_BYTE(start); 5691 const unsigned int size = start + len; 5692 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE); 5693 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start); 5694 5695 while (len - bits_to_clear >= 0) { 5696 *p &= ~mask_to_clear; 5697 len -= bits_to_clear; 5698 bits_to_clear = BITS_PER_BYTE; 5699 mask_to_clear = ~0; 5700 p++; 5701 } 5702 if (len) { 5703 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5704 *p &= ~mask_to_clear; 5705 } 5706 } 5707 5708 /* 5709 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5710 * given bit number 5711 * @eb: the extent buffer 5712 * @start: offset of the bitmap item in the extent buffer 5713 * @nr: bit number 5714 * @page_index: return index of the page in the extent buffer that contains the 5715 * given bit number 5716 * @page_offset: return offset into the page given by page_index 5717 * 5718 * This helper hides the ugliness of finding the byte in an extent buffer which 5719 * contains a given bit. 5720 */ 5721 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5722 unsigned long start, unsigned long nr, 5723 unsigned long *page_index, 5724 size_t *page_offset) 5725 { 5726 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5727 size_t byte_offset = BIT_BYTE(nr); 5728 size_t offset; 5729 5730 /* 5731 * The byte we want is the offset of the extent buffer + the offset of 5732 * the bitmap item in the extent buffer + the offset of the byte in the 5733 * bitmap item. 5734 */ 5735 offset = start_offset + start + byte_offset; 5736 5737 *page_index = offset >> PAGE_SHIFT; 5738 *page_offset = offset & (PAGE_SIZE - 1); 5739 } 5740 5741 /** 5742 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5743 * @eb: the extent buffer 5744 * @start: offset of the bitmap item in the extent buffer 5745 * @nr: bit number to test 5746 */ 5747 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5748 unsigned long nr) 5749 { 5750 u8 *kaddr; 5751 struct page *page; 5752 unsigned long i; 5753 size_t offset; 5754 5755 eb_bitmap_offset(eb, start, nr, &i, &offset); 5756 page = eb->pages[i]; 5757 WARN_ON(!PageUptodate(page)); 5758 kaddr = page_address(page); 5759 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5760 } 5761 5762 /** 5763 * extent_buffer_bitmap_set - set an area of a bitmap 5764 * @eb: the extent buffer 5765 * @start: offset of the bitmap item in the extent buffer 5766 * @pos: bit number of the first bit 5767 * @len: number of bits to set 5768 */ 5769 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5770 unsigned long pos, unsigned long len) 5771 { 5772 u8 *kaddr; 5773 struct page *page; 5774 unsigned long i; 5775 size_t offset; 5776 const unsigned int size = pos + len; 5777 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5778 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5779 5780 eb_bitmap_offset(eb, start, pos, &i, &offset); 5781 page = eb->pages[i]; 5782 WARN_ON(!PageUptodate(page)); 5783 kaddr = page_address(page); 5784 5785 while (len >= bits_to_set) { 5786 kaddr[offset] |= mask_to_set; 5787 len -= bits_to_set; 5788 bits_to_set = BITS_PER_BYTE; 5789 mask_to_set = ~0; 5790 if (++offset >= PAGE_SIZE && len > 0) { 5791 offset = 0; 5792 page = eb->pages[++i]; 5793 WARN_ON(!PageUptodate(page)); 5794 kaddr = page_address(page); 5795 } 5796 } 5797 if (len) { 5798 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5799 kaddr[offset] |= mask_to_set; 5800 } 5801 } 5802 5803 5804 /** 5805 * extent_buffer_bitmap_clear - clear an area of a bitmap 5806 * @eb: the extent buffer 5807 * @start: offset of the bitmap item in the extent buffer 5808 * @pos: bit number of the first bit 5809 * @len: number of bits to clear 5810 */ 5811 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5812 unsigned long pos, unsigned long len) 5813 { 5814 u8 *kaddr; 5815 struct page *page; 5816 unsigned long i; 5817 size_t offset; 5818 const unsigned int size = pos + len; 5819 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5820 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5821 5822 eb_bitmap_offset(eb, start, pos, &i, &offset); 5823 page = eb->pages[i]; 5824 WARN_ON(!PageUptodate(page)); 5825 kaddr = page_address(page); 5826 5827 while (len >= bits_to_clear) { 5828 kaddr[offset] &= ~mask_to_clear; 5829 len -= bits_to_clear; 5830 bits_to_clear = BITS_PER_BYTE; 5831 mask_to_clear = ~0; 5832 if (++offset >= PAGE_SIZE && len > 0) { 5833 offset = 0; 5834 page = eb->pages[++i]; 5835 WARN_ON(!PageUptodate(page)); 5836 kaddr = page_address(page); 5837 } 5838 } 5839 if (len) { 5840 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5841 kaddr[offset] &= ~mask_to_clear; 5842 } 5843 } 5844 5845 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5846 { 5847 unsigned long distance = (src > dst) ? src - dst : dst - src; 5848 return distance < len; 5849 } 5850 5851 static void copy_pages(struct page *dst_page, struct page *src_page, 5852 unsigned long dst_off, unsigned long src_off, 5853 unsigned long len) 5854 { 5855 char *dst_kaddr = page_address(dst_page); 5856 char *src_kaddr; 5857 int must_memmove = 0; 5858 5859 if (dst_page != src_page) { 5860 src_kaddr = page_address(src_page); 5861 } else { 5862 src_kaddr = dst_kaddr; 5863 if (areas_overlap(src_off, dst_off, len)) 5864 must_memmove = 1; 5865 } 5866 5867 if (must_memmove) 5868 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5869 else 5870 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5871 } 5872 5873 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5874 unsigned long src_offset, unsigned long len) 5875 { 5876 struct btrfs_fs_info *fs_info = dst->fs_info; 5877 size_t cur; 5878 size_t dst_off_in_page; 5879 size_t src_off_in_page; 5880 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5881 unsigned long dst_i; 5882 unsigned long src_i; 5883 5884 if (src_offset + len > dst->len) { 5885 btrfs_err(fs_info, 5886 "memmove bogus src_offset %lu move len %lu dst len %lu", 5887 src_offset, len, dst->len); 5888 BUG_ON(1); 5889 } 5890 if (dst_offset + len > dst->len) { 5891 btrfs_err(fs_info, 5892 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5893 dst_offset, len, dst->len); 5894 BUG_ON(1); 5895 } 5896 5897 while (len > 0) { 5898 dst_off_in_page = (start_offset + dst_offset) & 5899 (PAGE_SIZE - 1); 5900 src_off_in_page = (start_offset + src_offset) & 5901 (PAGE_SIZE - 1); 5902 5903 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5904 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5905 5906 cur = min(len, (unsigned long)(PAGE_SIZE - 5907 src_off_in_page)); 5908 cur = min_t(unsigned long, cur, 5909 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5910 5911 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5912 dst_off_in_page, src_off_in_page, cur); 5913 5914 src_offset += cur; 5915 dst_offset += cur; 5916 len -= cur; 5917 } 5918 } 5919 5920 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5921 unsigned long src_offset, unsigned long len) 5922 { 5923 struct btrfs_fs_info *fs_info = dst->fs_info; 5924 size_t cur; 5925 size_t dst_off_in_page; 5926 size_t src_off_in_page; 5927 unsigned long dst_end = dst_offset + len - 1; 5928 unsigned long src_end = src_offset + len - 1; 5929 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5930 unsigned long dst_i; 5931 unsigned long src_i; 5932 5933 if (src_offset + len > dst->len) { 5934 btrfs_err(fs_info, 5935 "memmove bogus src_offset %lu move len %lu len %lu", 5936 src_offset, len, dst->len); 5937 BUG_ON(1); 5938 } 5939 if (dst_offset + len > dst->len) { 5940 btrfs_err(fs_info, 5941 "memmove bogus dst_offset %lu move len %lu len %lu", 5942 dst_offset, len, dst->len); 5943 BUG_ON(1); 5944 } 5945 if (dst_offset < src_offset) { 5946 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5947 return; 5948 } 5949 while (len > 0) { 5950 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5951 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5952 5953 dst_off_in_page = (start_offset + dst_end) & 5954 (PAGE_SIZE - 1); 5955 src_off_in_page = (start_offset + src_end) & 5956 (PAGE_SIZE - 1); 5957 5958 cur = min_t(unsigned long, len, src_off_in_page + 1); 5959 cur = min(cur, dst_off_in_page + 1); 5960 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5961 dst_off_in_page - cur + 1, 5962 src_off_in_page - cur + 1, cur); 5963 5964 dst_end -= cur; 5965 src_end -= cur; 5966 len -= cur; 5967 } 5968 } 5969 5970 int try_release_extent_buffer(struct page *page) 5971 { 5972 struct extent_buffer *eb; 5973 5974 /* 5975 * We need to make sure nobody is attaching this page to an eb right 5976 * now. 5977 */ 5978 spin_lock(&page->mapping->private_lock); 5979 if (!PagePrivate(page)) { 5980 spin_unlock(&page->mapping->private_lock); 5981 return 1; 5982 } 5983 5984 eb = (struct extent_buffer *)page->private; 5985 BUG_ON(!eb); 5986 5987 /* 5988 * This is a little awful but should be ok, we need to make sure that 5989 * the eb doesn't disappear out from under us while we're looking at 5990 * this page. 5991 */ 5992 spin_lock(&eb->refs_lock); 5993 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5994 spin_unlock(&eb->refs_lock); 5995 spin_unlock(&page->mapping->private_lock); 5996 return 0; 5997 } 5998 spin_unlock(&page->mapping->private_lock); 5999 6000 /* 6001 * If tree ref isn't set then we know the ref on this eb is a real ref, 6002 * so just return, this page will likely be freed soon anyway. 6003 */ 6004 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6005 spin_unlock(&eb->refs_lock); 6006 return 0; 6007 } 6008 6009 return release_extent_buffer(eb); 6010 } 6011