xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 8730046c)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       atomic_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use REQ_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	state = kmem_cache_alloc(extent_state_cache, mask);
230 	if (!state)
231 		return state;
232 	state->state = 0;
233 	state->failrec = NULL;
234 	RB_CLEAR_NODE(&state->rb_node);
235 	btrfs_leak_debug_add(&state->leak_list, &states);
236 	atomic_set(&state->refs, 1);
237 	init_waitqueue_head(&state->wq);
238 	trace_alloc_extent_state(state, mask, _RET_IP_);
239 	return state;
240 }
241 
242 void free_extent_state(struct extent_state *state)
243 {
244 	if (!state)
245 		return;
246 	if (atomic_dec_and_test(&state->refs)) {
247 		WARN_ON(extent_state_in_tree(state));
248 		btrfs_leak_debug_del(&state->leak_list);
249 		trace_free_extent_state(state, _RET_IP_);
250 		kmem_cache_free(extent_state_cache, state);
251 	}
252 }
253 
254 static struct rb_node *tree_insert(struct rb_root *root,
255 				   struct rb_node *search_start,
256 				   u64 offset,
257 				   struct rb_node *node,
258 				   struct rb_node ***p_in,
259 				   struct rb_node **parent_in)
260 {
261 	struct rb_node **p;
262 	struct rb_node *parent = NULL;
263 	struct tree_entry *entry;
264 
265 	if (p_in && parent_in) {
266 		p = *p_in;
267 		parent = *parent_in;
268 		goto do_insert;
269 	}
270 
271 	p = search_start ? &search_start : &root->rb_node;
272 	while (*p) {
273 		parent = *p;
274 		entry = rb_entry(parent, struct tree_entry, rb_node);
275 
276 		if (offset < entry->start)
277 			p = &(*p)->rb_left;
278 		else if (offset > entry->end)
279 			p = &(*p)->rb_right;
280 		else
281 			return parent;
282 	}
283 
284 do_insert:
285 	rb_link_node(node, parent, p);
286 	rb_insert_color(node, root);
287 	return NULL;
288 }
289 
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 				      struct rb_node **prev_ret,
292 				      struct rb_node **next_ret,
293 				      struct rb_node ***p_ret,
294 				      struct rb_node **parent_ret)
295 {
296 	struct rb_root *root = &tree->state;
297 	struct rb_node **n = &root->rb_node;
298 	struct rb_node *prev = NULL;
299 	struct rb_node *orig_prev = NULL;
300 	struct tree_entry *entry;
301 	struct tree_entry *prev_entry = NULL;
302 
303 	while (*n) {
304 		prev = *n;
305 		entry = rb_entry(prev, struct tree_entry, rb_node);
306 		prev_entry = entry;
307 
308 		if (offset < entry->start)
309 			n = &(*n)->rb_left;
310 		else if (offset > entry->end)
311 			n = &(*n)->rb_right;
312 		else
313 			return *n;
314 	}
315 
316 	if (p_ret)
317 		*p_ret = n;
318 	if (parent_ret)
319 		*parent_ret = prev;
320 
321 	if (prev_ret) {
322 		orig_prev = prev;
323 		while (prev && offset > prev_entry->end) {
324 			prev = rb_next(prev);
325 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 		}
327 		*prev_ret = prev;
328 		prev = orig_prev;
329 	}
330 
331 	if (next_ret) {
332 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 		while (prev && offset < prev_entry->start) {
334 			prev = rb_prev(prev);
335 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 		}
337 		*next_ret = prev;
338 	}
339 	return NULL;
340 }
341 
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 		       u64 offset,
345 		       struct rb_node ***p_ret,
346 		       struct rb_node **parent_ret)
347 {
348 	struct rb_node *prev = NULL;
349 	struct rb_node *ret;
350 
351 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 	if (!ret)
353 		return prev;
354 	return ret;
355 }
356 
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 					  u64 offset)
359 {
360 	return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362 
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 		     struct extent_state *other)
365 {
366 	if (tree->ops && tree->ops->merge_extent_hook)
367 		tree->ops->merge_extent_hook(tree->mapping->host, new,
368 					     other);
369 }
370 
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381 		        struct extent_state *state)
382 {
383 	struct extent_state *other;
384 	struct rb_node *other_node;
385 
386 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 		return;
388 
389 	other_node = rb_prev(&state->rb_node);
390 	if (other_node) {
391 		other = rb_entry(other_node, struct extent_state, rb_node);
392 		if (other->end == state->start - 1 &&
393 		    other->state == state->state) {
394 			merge_cb(tree, state, other);
395 			state->start = other->start;
396 			rb_erase(&other->rb_node, &tree->state);
397 			RB_CLEAR_NODE(&other->rb_node);
398 			free_extent_state(other);
399 		}
400 	}
401 	other_node = rb_next(&state->rb_node);
402 	if (other_node) {
403 		other = rb_entry(other_node, struct extent_state, rb_node);
404 		if (other->start == state->end + 1 &&
405 		    other->state == state->state) {
406 			merge_cb(tree, state, other);
407 			state->end = other->end;
408 			rb_erase(&other->rb_node, &tree->state);
409 			RB_CLEAR_NODE(&other->rb_node);
410 			free_extent_state(other);
411 		}
412 	}
413 }
414 
415 static void set_state_cb(struct extent_io_tree *tree,
416 			 struct extent_state *state, unsigned *bits)
417 {
418 	if (tree->ops && tree->ops->set_bit_hook)
419 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421 
422 static void clear_state_cb(struct extent_io_tree *tree,
423 			   struct extent_state *state, unsigned *bits)
424 {
425 	if (tree->ops && tree->ops->clear_bit_hook)
426 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428 
429 static void set_state_bits(struct extent_io_tree *tree,
430 			   struct extent_state *state, unsigned *bits,
431 			   struct extent_changeset *changeset);
432 
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444 			struct extent_state *state, u64 start, u64 end,
445 			struct rb_node ***p,
446 			struct rb_node **parent,
447 			unsigned *bits, struct extent_changeset *changeset)
448 {
449 	struct rb_node *node;
450 
451 	if (end < start)
452 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 		       end, start);
454 	state->start = start;
455 	state->end = end;
456 
457 	set_state_bits(tree, state, bits, changeset);
458 
459 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 		       found->start, found->end, start, end);
465 		return -EEXIST;
466 	}
467 	merge_state(tree, state);
468 	return 0;
469 }
470 
471 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472 		     u64 split)
473 {
474 	if (tree->ops && tree->ops->split_extent_hook)
475 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476 }
477 
478 /*
479  * split a given extent state struct in two, inserting the preallocated
480  * struct 'prealloc' as the newly created second half.  'split' indicates an
481  * offset inside 'orig' where it should be split.
482  *
483  * Before calling,
484  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
485  * are two extent state structs in the tree:
486  * prealloc: [orig->start, split - 1]
487  * orig: [ split, orig->end ]
488  *
489  * The tree locks are not taken by this function. They need to be held
490  * by the caller.
491  */
492 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493 		       struct extent_state *prealloc, u64 split)
494 {
495 	struct rb_node *node;
496 
497 	split_cb(tree, orig, split);
498 
499 	prealloc->start = orig->start;
500 	prealloc->end = split - 1;
501 	prealloc->state = orig->state;
502 	orig->start = split;
503 
504 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505 			   &prealloc->rb_node, NULL, NULL);
506 	if (node) {
507 		free_extent_state(prealloc);
508 		return -EEXIST;
509 	}
510 	return 0;
511 }
512 
513 static struct extent_state *next_state(struct extent_state *state)
514 {
515 	struct rb_node *next = rb_next(&state->rb_node);
516 	if (next)
517 		return rb_entry(next, struct extent_state, rb_node);
518 	else
519 		return NULL;
520 }
521 
522 /*
523  * utility function to clear some bits in an extent state struct.
524  * it will optionally wake up any one waiting on this state (wake == 1).
525  *
526  * If no bits are set on the state struct after clearing things, the
527  * struct is freed and removed from the tree
528  */
529 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530 					    struct extent_state *state,
531 					    unsigned *bits, int wake,
532 					    struct extent_changeset *changeset)
533 {
534 	struct extent_state *next;
535 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536 
537 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538 		u64 range = state->end - state->start + 1;
539 		WARN_ON(range > tree->dirty_bytes);
540 		tree->dirty_bytes -= range;
541 	}
542 	clear_state_cb(tree, state, bits);
543 	add_extent_changeset(state, bits_to_clear, changeset, 0);
544 	state->state &= ~bits_to_clear;
545 	if (wake)
546 		wake_up(&state->wq);
547 	if (state->state == 0) {
548 		next = next_state(state);
549 		if (extent_state_in_tree(state)) {
550 			rb_erase(&state->rb_node, &tree->state);
551 			RB_CLEAR_NODE(&state->rb_node);
552 			free_extent_state(state);
553 		} else {
554 			WARN_ON(1);
555 		}
556 	} else {
557 		merge_state(tree, state);
558 		next = next_state(state);
559 	}
560 	return next;
561 }
562 
563 static struct extent_state *
564 alloc_extent_state_atomic(struct extent_state *prealloc)
565 {
566 	if (!prealloc)
567 		prealloc = alloc_extent_state(GFP_ATOMIC);
568 
569 	return prealloc;
570 }
571 
572 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573 {
574 	btrfs_panic(tree_fs_info(tree), err,
575 		    "Locking error: Extent tree was modified by another thread while locked.");
576 }
577 
578 /*
579  * clear some bits on a range in the tree.  This may require splitting
580  * or inserting elements in the tree, so the gfp mask is used to
581  * indicate which allocations or sleeping are allowed.
582  *
583  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584  * the given range from the tree regardless of state (ie for truncate).
585  *
586  * the range [start, end] is inclusive.
587  *
588  * This takes the tree lock, and returns 0 on success and < 0 on error.
589  */
590 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591 			      unsigned bits, int wake, int delete,
592 			      struct extent_state **cached_state,
593 			      gfp_t mask, struct extent_changeset *changeset)
594 {
595 	struct extent_state *state;
596 	struct extent_state *cached;
597 	struct extent_state *prealloc = NULL;
598 	struct rb_node *node;
599 	u64 last_end;
600 	int err;
601 	int clear = 0;
602 
603 	btrfs_debug_check_extent_io_range(tree, start, end);
604 
605 	if (bits & EXTENT_DELALLOC)
606 		bits |= EXTENT_NORESERVE;
607 
608 	if (delete)
609 		bits |= ~EXTENT_CTLBITS;
610 	bits |= EXTENT_FIRST_DELALLOC;
611 
612 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613 		clear = 1;
614 again:
615 	if (!prealloc && gfpflags_allow_blocking(mask)) {
616 		/*
617 		 * Don't care for allocation failure here because we might end
618 		 * up not needing the pre-allocated extent state at all, which
619 		 * is the case if we only have in the tree extent states that
620 		 * cover our input range and don't cover too any other range.
621 		 * If we end up needing a new extent state we allocate it later.
622 		 */
623 		prealloc = alloc_extent_state(mask);
624 	}
625 
626 	spin_lock(&tree->lock);
627 	if (cached_state) {
628 		cached = *cached_state;
629 
630 		if (clear) {
631 			*cached_state = NULL;
632 			cached_state = NULL;
633 		}
634 
635 		if (cached && extent_state_in_tree(cached) &&
636 		    cached->start <= start && cached->end > start) {
637 			if (clear)
638 				atomic_dec(&cached->refs);
639 			state = cached;
640 			goto hit_next;
641 		}
642 		if (clear)
643 			free_extent_state(cached);
644 	}
645 	/*
646 	 * this search will find the extents that end after
647 	 * our range starts
648 	 */
649 	node = tree_search(tree, start);
650 	if (!node)
651 		goto out;
652 	state = rb_entry(node, struct extent_state, rb_node);
653 hit_next:
654 	if (state->start > end)
655 		goto out;
656 	WARN_ON(state->end < start);
657 	last_end = state->end;
658 
659 	/* the state doesn't have the wanted bits, go ahead */
660 	if (!(state->state & bits)) {
661 		state = next_state(state);
662 		goto next;
663 	}
664 
665 	/*
666 	 *     | ---- desired range ---- |
667 	 *  | state | or
668 	 *  | ------------- state -------------- |
669 	 *
670 	 * We need to split the extent we found, and may flip
671 	 * bits on second half.
672 	 *
673 	 * If the extent we found extends past our range, we
674 	 * just split and search again.  It'll get split again
675 	 * the next time though.
676 	 *
677 	 * If the extent we found is inside our range, we clear
678 	 * the desired bit on it.
679 	 */
680 
681 	if (state->start < start) {
682 		prealloc = alloc_extent_state_atomic(prealloc);
683 		BUG_ON(!prealloc);
684 		err = split_state(tree, state, prealloc, start);
685 		if (err)
686 			extent_io_tree_panic(tree, err);
687 
688 		prealloc = NULL;
689 		if (err)
690 			goto out;
691 		if (state->end <= end) {
692 			state = clear_state_bit(tree, state, &bits, wake,
693 						changeset);
694 			goto next;
695 		}
696 		goto search_again;
697 	}
698 	/*
699 	 * | ---- desired range ---- |
700 	 *                        | state |
701 	 * We need to split the extent, and clear the bit
702 	 * on the first half
703 	 */
704 	if (state->start <= end && state->end > end) {
705 		prealloc = alloc_extent_state_atomic(prealloc);
706 		BUG_ON(!prealloc);
707 		err = split_state(tree, state, prealloc, end + 1);
708 		if (err)
709 			extent_io_tree_panic(tree, err);
710 
711 		if (wake)
712 			wake_up(&state->wq);
713 
714 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
715 
716 		prealloc = NULL;
717 		goto out;
718 	}
719 
720 	state = clear_state_bit(tree, state, &bits, wake, changeset);
721 next:
722 	if (last_end == (u64)-1)
723 		goto out;
724 	start = last_end + 1;
725 	if (start <= end && state && !need_resched())
726 		goto hit_next;
727 
728 search_again:
729 	if (start > end)
730 		goto out;
731 	spin_unlock(&tree->lock);
732 	if (gfpflags_allow_blocking(mask))
733 		cond_resched();
734 	goto again;
735 
736 out:
737 	spin_unlock(&tree->lock);
738 	if (prealloc)
739 		free_extent_state(prealloc);
740 
741 	return 0;
742 
743 }
744 
745 static void wait_on_state(struct extent_io_tree *tree,
746 			  struct extent_state *state)
747 		__releases(tree->lock)
748 		__acquires(tree->lock)
749 {
750 	DEFINE_WAIT(wait);
751 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752 	spin_unlock(&tree->lock);
753 	schedule();
754 	spin_lock(&tree->lock);
755 	finish_wait(&state->wq, &wait);
756 }
757 
758 /*
759  * waits for one or more bits to clear on a range in the state tree.
760  * The range [start, end] is inclusive.
761  * The tree lock is taken by this function
762  */
763 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764 			    unsigned long bits)
765 {
766 	struct extent_state *state;
767 	struct rb_node *node;
768 
769 	btrfs_debug_check_extent_io_range(tree, start, end);
770 
771 	spin_lock(&tree->lock);
772 again:
773 	while (1) {
774 		/*
775 		 * this search will find all the extents that end after
776 		 * our range starts
777 		 */
778 		node = tree_search(tree, start);
779 process_node:
780 		if (!node)
781 			break;
782 
783 		state = rb_entry(node, struct extent_state, rb_node);
784 
785 		if (state->start > end)
786 			goto out;
787 
788 		if (state->state & bits) {
789 			start = state->start;
790 			atomic_inc(&state->refs);
791 			wait_on_state(tree, state);
792 			free_extent_state(state);
793 			goto again;
794 		}
795 		start = state->end + 1;
796 
797 		if (start > end)
798 			break;
799 
800 		if (!cond_resched_lock(&tree->lock)) {
801 			node = rb_next(node);
802 			goto process_node;
803 		}
804 	}
805 out:
806 	spin_unlock(&tree->lock);
807 }
808 
809 static void set_state_bits(struct extent_io_tree *tree,
810 			   struct extent_state *state,
811 			   unsigned *bits, struct extent_changeset *changeset)
812 {
813 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814 
815 	set_state_cb(tree, state, bits);
816 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817 		u64 range = state->end - state->start + 1;
818 		tree->dirty_bytes += range;
819 	}
820 	add_extent_changeset(state, bits_to_set, changeset, 1);
821 	state->state |= bits_to_set;
822 }
823 
824 static void cache_state_if_flags(struct extent_state *state,
825 				 struct extent_state **cached_ptr,
826 				 unsigned flags)
827 {
828 	if (cached_ptr && !(*cached_ptr)) {
829 		if (!flags || (state->state & flags)) {
830 			*cached_ptr = state;
831 			atomic_inc(&state->refs);
832 		}
833 	}
834 }
835 
836 static void cache_state(struct extent_state *state,
837 			struct extent_state **cached_ptr)
838 {
839 	return cache_state_if_flags(state, cached_ptr,
840 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
841 }
842 
843 /*
844  * set some bits on a range in the tree.  This may require allocations or
845  * sleeping, so the gfp mask is used to indicate what is allowed.
846  *
847  * If any of the exclusive bits are set, this will fail with -EEXIST if some
848  * part of the range already has the desired bits set.  The start of the
849  * existing range is returned in failed_start in this case.
850  *
851  * [start, end] is inclusive This takes the tree lock.
852  */
853 
854 static int __must_check
855 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856 		 unsigned bits, unsigned exclusive_bits,
857 		 u64 *failed_start, struct extent_state **cached_state,
858 		 gfp_t mask, struct extent_changeset *changeset)
859 {
860 	struct extent_state *state;
861 	struct extent_state *prealloc = NULL;
862 	struct rb_node *node;
863 	struct rb_node **p;
864 	struct rb_node *parent;
865 	int err = 0;
866 	u64 last_start;
867 	u64 last_end;
868 
869 	btrfs_debug_check_extent_io_range(tree, start, end);
870 
871 	bits |= EXTENT_FIRST_DELALLOC;
872 again:
873 	if (!prealloc && gfpflags_allow_blocking(mask)) {
874 		/*
875 		 * Don't care for allocation failure here because we might end
876 		 * up not needing the pre-allocated extent state at all, which
877 		 * is the case if we only have in the tree extent states that
878 		 * cover our input range and don't cover too any other range.
879 		 * If we end up needing a new extent state we allocate it later.
880 		 */
881 		prealloc = alloc_extent_state(mask);
882 	}
883 
884 	spin_lock(&tree->lock);
885 	if (cached_state && *cached_state) {
886 		state = *cached_state;
887 		if (state->start <= start && state->end > start &&
888 		    extent_state_in_tree(state)) {
889 			node = &state->rb_node;
890 			goto hit_next;
891 		}
892 	}
893 	/*
894 	 * this search will find all the extents that end after
895 	 * our range starts.
896 	 */
897 	node = tree_search_for_insert(tree, start, &p, &parent);
898 	if (!node) {
899 		prealloc = alloc_extent_state_atomic(prealloc);
900 		BUG_ON(!prealloc);
901 		err = insert_state(tree, prealloc, start, end,
902 				   &p, &parent, &bits, changeset);
903 		if (err)
904 			extent_io_tree_panic(tree, err);
905 
906 		cache_state(prealloc, cached_state);
907 		prealloc = NULL;
908 		goto out;
909 	}
910 	state = rb_entry(node, struct extent_state, rb_node);
911 hit_next:
912 	last_start = state->start;
913 	last_end = state->end;
914 
915 	/*
916 	 * | ---- desired range ---- |
917 	 * | state |
918 	 *
919 	 * Just lock what we found and keep going
920 	 */
921 	if (state->start == start && state->end <= end) {
922 		if (state->state & exclusive_bits) {
923 			*failed_start = state->start;
924 			err = -EEXIST;
925 			goto out;
926 		}
927 
928 		set_state_bits(tree, state, &bits, changeset);
929 		cache_state(state, cached_state);
930 		merge_state(tree, state);
931 		if (last_end == (u64)-1)
932 			goto out;
933 		start = last_end + 1;
934 		state = next_state(state);
935 		if (start < end && state && state->start == start &&
936 		    !need_resched())
937 			goto hit_next;
938 		goto search_again;
939 	}
940 
941 	/*
942 	 *     | ---- desired range ---- |
943 	 * | state |
944 	 *   or
945 	 * | ------------- state -------------- |
946 	 *
947 	 * We need to split the extent we found, and may flip bits on
948 	 * second half.
949 	 *
950 	 * If the extent we found extends past our
951 	 * range, we just split and search again.  It'll get split
952 	 * again the next time though.
953 	 *
954 	 * If the extent we found is inside our range, we set the
955 	 * desired bit on it.
956 	 */
957 	if (state->start < start) {
958 		if (state->state & exclusive_bits) {
959 			*failed_start = start;
960 			err = -EEXIST;
961 			goto out;
962 		}
963 
964 		prealloc = alloc_extent_state_atomic(prealloc);
965 		BUG_ON(!prealloc);
966 		err = split_state(tree, state, prealloc, start);
967 		if (err)
968 			extent_io_tree_panic(tree, err);
969 
970 		prealloc = NULL;
971 		if (err)
972 			goto out;
973 		if (state->end <= end) {
974 			set_state_bits(tree, state, &bits, changeset);
975 			cache_state(state, cached_state);
976 			merge_state(tree, state);
977 			if (last_end == (u64)-1)
978 				goto out;
979 			start = last_end + 1;
980 			state = next_state(state);
981 			if (start < end && state && state->start == start &&
982 			    !need_resched())
983 				goto hit_next;
984 		}
985 		goto search_again;
986 	}
987 	/*
988 	 * | ---- desired range ---- |
989 	 *     | state | or               | state |
990 	 *
991 	 * There's a hole, we need to insert something in it and
992 	 * ignore the extent we found.
993 	 */
994 	if (state->start > start) {
995 		u64 this_end;
996 		if (end < last_start)
997 			this_end = end;
998 		else
999 			this_end = last_start - 1;
1000 
1001 		prealloc = alloc_extent_state_atomic(prealloc);
1002 		BUG_ON(!prealloc);
1003 
1004 		/*
1005 		 * Avoid to free 'prealloc' if it can be merged with
1006 		 * the later extent.
1007 		 */
1008 		err = insert_state(tree, prealloc, start, this_end,
1009 				   NULL, NULL, &bits, changeset);
1010 		if (err)
1011 			extent_io_tree_panic(tree, err);
1012 
1013 		cache_state(prealloc, cached_state);
1014 		prealloc = NULL;
1015 		start = this_end + 1;
1016 		goto search_again;
1017 	}
1018 	/*
1019 	 * | ---- desired range ---- |
1020 	 *                        | state |
1021 	 * We need to split the extent, and set the bit
1022 	 * on the first half
1023 	 */
1024 	if (state->start <= end && state->end > end) {
1025 		if (state->state & exclusive_bits) {
1026 			*failed_start = start;
1027 			err = -EEXIST;
1028 			goto out;
1029 		}
1030 
1031 		prealloc = alloc_extent_state_atomic(prealloc);
1032 		BUG_ON(!prealloc);
1033 		err = split_state(tree, state, prealloc, end + 1);
1034 		if (err)
1035 			extent_io_tree_panic(tree, err);
1036 
1037 		set_state_bits(tree, prealloc, &bits, changeset);
1038 		cache_state(prealloc, cached_state);
1039 		merge_state(tree, prealloc);
1040 		prealloc = NULL;
1041 		goto out;
1042 	}
1043 
1044 search_again:
1045 	if (start > end)
1046 		goto out;
1047 	spin_unlock(&tree->lock);
1048 	if (gfpflags_allow_blocking(mask))
1049 		cond_resched();
1050 	goto again;
1051 
1052 out:
1053 	spin_unlock(&tree->lock);
1054 	if (prealloc)
1055 		free_extent_state(prealloc);
1056 
1057 	return err;
1058 
1059 }
1060 
1061 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062 		   unsigned bits, u64 * failed_start,
1063 		   struct extent_state **cached_state, gfp_t mask)
1064 {
1065 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066 				cached_state, mask, NULL);
1067 }
1068 
1069 
1070 /**
1071  * convert_extent_bit - convert all bits in a given range from one bit to
1072  * 			another
1073  * @tree:	the io tree to search
1074  * @start:	the start offset in bytes
1075  * @end:	the end offset in bytes (inclusive)
1076  * @bits:	the bits to set in this range
1077  * @clear_bits:	the bits to clear in this range
1078  * @cached_state:	state that we're going to cache
1079  *
1080  * This will go through and set bits for the given range.  If any states exist
1081  * already in this range they are set with the given bit and cleared of the
1082  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084  * boundary bits like LOCK.
1085  *
1086  * All allocations are done with GFP_NOFS.
1087  */
1088 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089 		       unsigned bits, unsigned clear_bits,
1090 		       struct extent_state **cached_state)
1091 {
1092 	struct extent_state *state;
1093 	struct extent_state *prealloc = NULL;
1094 	struct rb_node *node;
1095 	struct rb_node **p;
1096 	struct rb_node *parent;
1097 	int err = 0;
1098 	u64 last_start;
1099 	u64 last_end;
1100 	bool first_iteration = true;
1101 
1102 	btrfs_debug_check_extent_io_range(tree, start, end);
1103 
1104 again:
1105 	if (!prealloc) {
1106 		/*
1107 		 * Best effort, don't worry if extent state allocation fails
1108 		 * here for the first iteration. We might have a cached state
1109 		 * that matches exactly the target range, in which case no
1110 		 * extent state allocations are needed. We'll only know this
1111 		 * after locking the tree.
1112 		 */
1113 		prealloc = alloc_extent_state(GFP_NOFS);
1114 		if (!prealloc && !first_iteration)
1115 			return -ENOMEM;
1116 	}
1117 
1118 	spin_lock(&tree->lock);
1119 	if (cached_state && *cached_state) {
1120 		state = *cached_state;
1121 		if (state->start <= start && state->end > start &&
1122 		    extent_state_in_tree(state)) {
1123 			node = &state->rb_node;
1124 			goto hit_next;
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * this search will find all the extents that end after
1130 	 * our range starts.
1131 	 */
1132 	node = tree_search_for_insert(tree, start, &p, &parent);
1133 	if (!node) {
1134 		prealloc = alloc_extent_state_atomic(prealloc);
1135 		if (!prealloc) {
1136 			err = -ENOMEM;
1137 			goto out;
1138 		}
1139 		err = insert_state(tree, prealloc, start, end,
1140 				   &p, &parent, &bits, NULL);
1141 		if (err)
1142 			extent_io_tree_panic(tree, err);
1143 		cache_state(prealloc, cached_state);
1144 		prealloc = NULL;
1145 		goto out;
1146 	}
1147 	state = rb_entry(node, struct extent_state, rb_node);
1148 hit_next:
1149 	last_start = state->start;
1150 	last_end = state->end;
1151 
1152 	/*
1153 	 * | ---- desired range ---- |
1154 	 * | state |
1155 	 *
1156 	 * Just lock what we found and keep going
1157 	 */
1158 	if (state->start == start && state->end <= end) {
1159 		set_state_bits(tree, state, &bits, NULL);
1160 		cache_state(state, cached_state);
1161 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162 		if (last_end == (u64)-1)
1163 			goto out;
1164 		start = last_end + 1;
1165 		if (start < end && state && state->start == start &&
1166 		    !need_resched())
1167 			goto hit_next;
1168 		goto search_again;
1169 	}
1170 
1171 	/*
1172 	 *     | ---- desired range ---- |
1173 	 * | state |
1174 	 *   or
1175 	 * | ------------- state -------------- |
1176 	 *
1177 	 * We need to split the extent we found, and may flip bits on
1178 	 * second half.
1179 	 *
1180 	 * If the extent we found extends past our
1181 	 * range, we just split and search again.  It'll get split
1182 	 * again the next time though.
1183 	 *
1184 	 * If the extent we found is inside our range, we set the
1185 	 * desired bit on it.
1186 	 */
1187 	if (state->start < start) {
1188 		prealloc = alloc_extent_state_atomic(prealloc);
1189 		if (!prealloc) {
1190 			err = -ENOMEM;
1191 			goto out;
1192 		}
1193 		err = split_state(tree, state, prealloc, start);
1194 		if (err)
1195 			extent_io_tree_panic(tree, err);
1196 		prealloc = NULL;
1197 		if (err)
1198 			goto out;
1199 		if (state->end <= end) {
1200 			set_state_bits(tree, state, &bits, NULL);
1201 			cache_state(state, cached_state);
1202 			state = clear_state_bit(tree, state, &clear_bits, 0,
1203 						NULL);
1204 			if (last_end == (u64)-1)
1205 				goto out;
1206 			start = last_end + 1;
1207 			if (start < end && state && state->start == start &&
1208 			    !need_resched())
1209 				goto hit_next;
1210 		}
1211 		goto search_again;
1212 	}
1213 	/*
1214 	 * | ---- desired range ---- |
1215 	 *     | state | or               | state |
1216 	 *
1217 	 * There's a hole, we need to insert something in it and
1218 	 * ignore the extent we found.
1219 	 */
1220 	if (state->start > start) {
1221 		u64 this_end;
1222 		if (end < last_start)
1223 			this_end = end;
1224 		else
1225 			this_end = last_start - 1;
1226 
1227 		prealloc = alloc_extent_state_atomic(prealloc);
1228 		if (!prealloc) {
1229 			err = -ENOMEM;
1230 			goto out;
1231 		}
1232 
1233 		/*
1234 		 * Avoid to free 'prealloc' if it can be merged with
1235 		 * the later extent.
1236 		 */
1237 		err = insert_state(tree, prealloc, start, this_end,
1238 				   NULL, NULL, &bits, NULL);
1239 		if (err)
1240 			extent_io_tree_panic(tree, err);
1241 		cache_state(prealloc, cached_state);
1242 		prealloc = NULL;
1243 		start = this_end + 1;
1244 		goto search_again;
1245 	}
1246 	/*
1247 	 * | ---- desired range ---- |
1248 	 *                        | state |
1249 	 * We need to split the extent, and set the bit
1250 	 * on the first half
1251 	 */
1252 	if (state->start <= end && state->end > end) {
1253 		prealloc = alloc_extent_state_atomic(prealloc);
1254 		if (!prealloc) {
1255 			err = -ENOMEM;
1256 			goto out;
1257 		}
1258 
1259 		err = split_state(tree, state, prealloc, end + 1);
1260 		if (err)
1261 			extent_io_tree_panic(tree, err);
1262 
1263 		set_state_bits(tree, prealloc, &bits, NULL);
1264 		cache_state(prealloc, cached_state);
1265 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266 		prealloc = NULL;
1267 		goto out;
1268 	}
1269 
1270 search_again:
1271 	if (start > end)
1272 		goto out;
1273 	spin_unlock(&tree->lock);
1274 	cond_resched();
1275 	first_iteration = false;
1276 	goto again;
1277 
1278 out:
1279 	spin_unlock(&tree->lock);
1280 	if (prealloc)
1281 		free_extent_state(prealloc);
1282 
1283 	return err;
1284 }
1285 
1286 /* wrappers around set/clear extent bit */
1287 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288 			   unsigned bits, struct extent_changeset *changeset)
1289 {
1290 	/*
1291 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 	 * either fail with -EEXIST or changeset will record the whole
1294 	 * range.
1295 	 */
1296 	BUG_ON(bits & EXTENT_LOCKED);
1297 
1298 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299 				changeset);
1300 }
1301 
1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 		     unsigned bits, int wake, int delete,
1304 		     struct extent_state **cached, gfp_t mask)
1305 {
1306 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 				  cached, mask, NULL);
1308 }
1309 
1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 		unsigned bits, struct extent_changeset *changeset)
1312 {
1313 	/*
1314 	 * Don't support EXTENT_LOCKED case, same reason as
1315 	 * set_record_extent_bits().
1316 	 */
1317 	BUG_ON(bits & EXTENT_LOCKED);
1318 
1319 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320 				  changeset);
1321 }
1322 
1323 /*
1324  * either insert or lock state struct between start and end use mask to tell
1325  * us if waiting is desired.
1326  */
1327 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 		     struct extent_state **cached_state)
1329 {
1330 	int err;
1331 	u64 failed_start;
1332 
1333 	while (1) {
1334 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335 				       EXTENT_LOCKED, &failed_start,
1336 				       cached_state, GFP_NOFS, NULL);
1337 		if (err == -EEXIST) {
1338 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 			start = failed_start;
1340 		} else
1341 			break;
1342 		WARN_ON(start > end);
1343 	}
1344 	return err;
1345 }
1346 
1347 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 	int err;
1350 	u64 failed_start;
1351 
1352 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353 			       &failed_start, NULL, GFP_NOFS, NULL);
1354 	if (err == -EEXIST) {
1355 		if (failed_start > start)
1356 			clear_extent_bit(tree, start, failed_start - 1,
1357 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358 		return 0;
1359 	}
1360 	return 1;
1361 }
1362 
1363 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365 	unsigned long index = start >> PAGE_SHIFT;
1366 	unsigned long end_index = end >> PAGE_SHIFT;
1367 	struct page *page;
1368 
1369 	while (index <= end_index) {
1370 		page = find_get_page(inode->i_mapping, index);
1371 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 		clear_page_dirty_for_io(page);
1373 		put_page(page);
1374 		index++;
1375 	}
1376 }
1377 
1378 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379 {
1380 	unsigned long index = start >> PAGE_SHIFT;
1381 	unsigned long end_index = end >> PAGE_SHIFT;
1382 	struct page *page;
1383 
1384 	while (index <= end_index) {
1385 		page = find_get_page(inode->i_mapping, index);
1386 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387 		__set_page_dirty_nobuffers(page);
1388 		account_page_redirty(page);
1389 		put_page(page);
1390 		index++;
1391 	}
1392 }
1393 
1394 /*
1395  * helper function to set both pages and extents in the tree writeback
1396  */
1397 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398 {
1399 	unsigned long index = start >> PAGE_SHIFT;
1400 	unsigned long end_index = end >> PAGE_SHIFT;
1401 	struct page *page;
1402 
1403 	while (index <= end_index) {
1404 		page = find_get_page(tree->mapping, index);
1405 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406 		set_page_writeback(page);
1407 		put_page(page);
1408 		index++;
1409 	}
1410 }
1411 
1412 /* find the first state struct with 'bits' set after 'start', and
1413  * return it.  tree->lock must be held.  NULL will returned if
1414  * nothing was found after 'start'
1415  */
1416 static struct extent_state *
1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 			    u64 start, unsigned bits)
1419 {
1420 	struct rb_node *node;
1421 	struct extent_state *state;
1422 
1423 	/*
1424 	 * this search will find all the extents that end after
1425 	 * our range starts.
1426 	 */
1427 	node = tree_search(tree, start);
1428 	if (!node)
1429 		goto out;
1430 
1431 	while (1) {
1432 		state = rb_entry(node, struct extent_state, rb_node);
1433 		if (state->end >= start && (state->state & bits))
1434 			return state;
1435 
1436 		node = rb_next(node);
1437 		if (!node)
1438 			break;
1439 	}
1440 out:
1441 	return NULL;
1442 }
1443 
1444 /*
1445  * find the first offset in the io tree with 'bits' set. zero is
1446  * returned if we find something, and *start_ret and *end_ret are
1447  * set to reflect the state struct that was found.
1448  *
1449  * If nothing was found, 1 is returned. If found something, return 0.
1450  */
1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1453 			  struct extent_state **cached_state)
1454 {
1455 	struct extent_state *state;
1456 	struct rb_node *n;
1457 	int ret = 1;
1458 
1459 	spin_lock(&tree->lock);
1460 	if (cached_state && *cached_state) {
1461 		state = *cached_state;
1462 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1463 			n = rb_next(&state->rb_node);
1464 			while (n) {
1465 				state = rb_entry(n, struct extent_state,
1466 						 rb_node);
1467 				if (state->state & bits)
1468 					goto got_it;
1469 				n = rb_next(n);
1470 			}
1471 			free_extent_state(*cached_state);
1472 			*cached_state = NULL;
1473 			goto out;
1474 		}
1475 		free_extent_state(*cached_state);
1476 		*cached_state = NULL;
1477 	}
1478 
1479 	state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 	if (state) {
1482 		cache_state_if_flags(state, cached_state, 0);
1483 		*start_ret = state->start;
1484 		*end_ret = state->end;
1485 		ret = 0;
1486 	}
1487 out:
1488 	spin_unlock(&tree->lock);
1489 	return ret;
1490 }
1491 
1492 /*
1493  * find a contiguous range of bytes in the file marked as delalloc, not
1494  * more than 'max_bytes'.  start and end are used to return the range,
1495  *
1496  * 1 is returned if we find something, 0 if nothing was in the tree
1497  */
1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 					u64 *start, u64 *end, u64 max_bytes,
1500 					struct extent_state **cached_state)
1501 {
1502 	struct rb_node *node;
1503 	struct extent_state *state;
1504 	u64 cur_start = *start;
1505 	u64 found = 0;
1506 	u64 total_bytes = 0;
1507 
1508 	spin_lock(&tree->lock);
1509 
1510 	/*
1511 	 * this search will find all the extents that end after
1512 	 * our range starts.
1513 	 */
1514 	node = tree_search(tree, cur_start);
1515 	if (!node) {
1516 		if (!found)
1517 			*end = (u64)-1;
1518 		goto out;
1519 	}
1520 
1521 	while (1) {
1522 		state = rb_entry(node, struct extent_state, rb_node);
1523 		if (found && (state->start != cur_start ||
1524 			      (state->state & EXTENT_BOUNDARY))) {
1525 			goto out;
1526 		}
1527 		if (!(state->state & EXTENT_DELALLOC)) {
1528 			if (!found)
1529 				*end = state->end;
1530 			goto out;
1531 		}
1532 		if (!found) {
1533 			*start = state->start;
1534 			*cached_state = state;
1535 			atomic_inc(&state->refs);
1536 		}
1537 		found++;
1538 		*end = state->end;
1539 		cur_start = state->end + 1;
1540 		node = rb_next(node);
1541 		total_bytes += state->end - state->start + 1;
1542 		if (total_bytes >= max_bytes)
1543 			break;
1544 		if (!node)
1545 			break;
1546 	}
1547 out:
1548 	spin_unlock(&tree->lock);
1549 	return found;
1550 }
1551 
1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 					   struct page *locked_page,
1554 					   u64 start, u64 end)
1555 {
1556 	int ret;
1557 	struct page *pages[16];
1558 	unsigned long index = start >> PAGE_SHIFT;
1559 	unsigned long end_index = end >> PAGE_SHIFT;
1560 	unsigned long nr_pages = end_index - index + 1;
1561 	int i;
1562 
1563 	if (index == locked_page->index && end_index == index)
1564 		return;
1565 
1566 	while (nr_pages > 0) {
1567 		ret = find_get_pages_contig(inode->i_mapping, index,
1568 				     min_t(unsigned long, nr_pages,
1569 				     ARRAY_SIZE(pages)), pages);
1570 		for (i = 0; i < ret; i++) {
1571 			if (pages[i] != locked_page)
1572 				unlock_page(pages[i]);
1573 			put_page(pages[i]);
1574 		}
1575 		nr_pages -= ret;
1576 		index += ret;
1577 		cond_resched();
1578 	}
1579 }
1580 
1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 					struct page *locked_page,
1583 					u64 delalloc_start,
1584 					u64 delalloc_end)
1585 {
1586 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1587 	unsigned long start_index = index;
1588 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589 	unsigned long pages_locked = 0;
1590 	struct page *pages[16];
1591 	unsigned long nrpages;
1592 	int ret;
1593 	int i;
1594 
1595 	/* the caller is responsible for locking the start index */
1596 	if (index == locked_page->index && index == end_index)
1597 		return 0;
1598 
1599 	/* skip the page at the start index */
1600 	nrpages = end_index - index + 1;
1601 	while (nrpages > 0) {
1602 		ret = find_get_pages_contig(inode->i_mapping, index,
1603 				     min_t(unsigned long,
1604 				     nrpages, ARRAY_SIZE(pages)), pages);
1605 		if (ret == 0) {
1606 			ret = -EAGAIN;
1607 			goto done;
1608 		}
1609 		/* now we have an array of pages, lock them all */
1610 		for (i = 0; i < ret; i++) {
1611 			/*
1612 			 * the caller is taking responsibility for
1613 			 * locked_page
1614 			 */
1615 			if (pages[i] != locked_page) {
1616 				lock_page(pages[i]);
1617 				if (!PageDirty(pages[i]) ||
1618 				    pages[i]->mapping != inode->i_mapping) {
1619 					ret = -EAGAIN;
1620 					unlock_page(pages[i]);
1621 					put_page(pages[i]);
1622 					goto done;
1623 				}
1624 			}
1625 			put_page(pages[i]);
1626 			pages_locked++;
1627 		}
1628 		nrpages -= ret;
1629 		index += ret;
1630 		cond_resched();
1631 	}
1632 	ret = 0;
1633 done:
1634 	if (ret && pages_locked) {
1635 		__unlock_for_delalloc(inode, locked_page,
1636 			      delalloc_start,
1637 			      ((u64)(start_index + pages_locked - 1)) <<
1638 			      PAGE_SHIFT);
1639 	}
1640 	return ret;
1641 }
1642 
1643 /*
1644  * find a contiguous range of bytes in the file marked as delalloc, not
1645  * more than 'max_bytes'.  start and end are used to return the range,
1646  *
1647  * 1 is returned if we find something, 0 if nothing was in the tree
1648  */
1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 				    struct extent_io_tree *tree,
1651 				    struct page *locked_page, u64 *start,
1652 				    u64 *end, u64 max_bytes)
1653 {
1654 	u64 delalloc_start;
1655 	u64 delalloc_end;
1656 	u64 found;
1657 	struct extent_state *cached_state = NULL;
1658 	int ret;
1659 	int loops = 0;
1660 
1661 again:
1662 	/* step one, find a bunch of delalloc bytes starting at start */
1663 	delalloc_start = *start;
1664 	delalloc_end = 0;
1665 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 				    max_bytes, &cached_state);
1667 	if (!found || delalloc_end <= *start) {
1668 		*start = delalloc_start;
1669 		*end = delalloc_end;
1670 		free_extent_state(cached_state);
1671 		return 0;
1672 	}
1673 
1674 	/*
1675 	 * start comes from the offset of locked_page.  We have to lock
1676 	 * pages in order, so we can't process delalloc bytes before
1677 	 * locked_page
1678 	 */
1679 	if (delalloc_start < *start)
1680 		delalloc_start = *start;
1681 
1682 	/*
1683 	 * make sure to limit the number of pages we try to lock down
1684 	 */
1685 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 		delalloc_end = delalloc_start + max_bytes - 1;
1687 
1688 	/* step two, lock all the pages after the page that has start */
1689 	ret = lock_delalloc_pages(inode, locked_page,
1690 				  delalloc_start, delalloc_end);
1691 	if (ret == -EAGAIN) {
1692 		/* some of the pages are gone, lets avoid looping by
1693 		 * shortening the size of the delalloc range we're searching
1694 		 */
1695 		free_extent_state(cached_state);
1696 		cached_state = NULL;
1697 		if (!loops) {
1698 			max_bytes = PAGE_SIZE;
1699 			loops = 1;
1700 			goto again;
1701 		} else {
1702 			found = 0;
1703 			goto out_failed;
1704 		}
1705 	}
1706 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707 
1708 	/* step three, lock the state bits for the whole range */
1709 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710 
1711 	/* then test to make sure it is all still delalloc */
1712 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 			     EXTENT_DELALLOC, 1, cached_state);
1714 	if (!ret) {
1715 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 				     &cached_state, GFP_NOFS);
1717 		__unlock_for_delalloc(inode, locked_page,
1718 			      delalloc_start, delalloc_end);
1719 		cond_resched();
1720 		goto again;
1721 	}
1722 	free_extent_state(cached_state);
1723 	*start = delalloc_start;
1724 	*end = delalloc_end;
1725 out_failed:
1726 	return found;
1727 }
1728 
1729 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 				 u64 delalloc_end, struct page *locked_page,
1731 				 unsigned clear_bits,
1732 				 unsigned long page_ops)
1733 {
1734 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 	int ret;
1736 	struct page *pages[16];
1737 	unsigned long index = start >> PAGE_SHIFT;
1738 	unsigned long end_index = end >> PAGE_SHIFT;
1739 	unsigned long nr_pages = end_index - index + 1;
1740 	int i;
1741 
1742 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 	if (page_ops == 0)
1744 		return;
1745 
1746 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 		mapping_set_error(inode->i_mapping, -EIO);
1748 
1749 	while (nr_pages > 0) {
1750 		ret = find_get_pages_contig(inode->i_mapping, index,
1751 				     min_t(unsigned long,
1752 				     nr_pages, ARRAY_SIZE(pages)), pages);
1753 		for (i = 0; i < ret; i++) {
1754 
1755 			if (page_ops & PAGE_SET_PRIVATE2)
1756 				SetPagePrivate2(pages[i]);
1757 
1758 			if (pages[i] == locked_page) {
1759 				put_page(pages[i]);
1760 				continue;
1761 			}
1762 			if (page_ops & PAGE_CLEAR_DIRTY)
1763 				clear_page_dirty_for_io(pages[i]);
1764 			if (page_ops & PAGE_SET_WRITEBACK)
1765 				set_page_writeback(pages[i]);
1766 			if (page_ops & PAGE_SET_ERROR)
1767 				SetPageError(pages[i]);
1768 			if (page_ops & PAGE_END_WRITEBACK)
1769 				end_page_writeback(pages[i]);
1770 			if (page_ops & PAGE_UNLOCK)
1771 				unlock_page(pages[i]);
1772 			put_page(pages[i]);
1773 		}
1774 		nr_pages -= ret;
1775 		index += ret;
1776 		cond_resched();
1777 	}
1778 }
1779 
1780 /*
1781  * count the number of bytes in the tree that have a given bit(s)
1782  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1783  * cached.  The total number found is returned.
1784  */
1785 u64 count_range_bits(struct extent_io_tree *tree,
1786 		     u64 *start, u64 search_end, u64 max_bytes,
1787 		     unsigned bits, int contig)
1788 {
1789 	struct rb_node *node;
1790 	struct extent_state *state;
1791 	u64 cur_start = *start;
1792 	u64 total_bytes = 0;
1793 	u64 last = 0;
1794 	int found = 0;
1795 
1796 	if (WARN_ON(search_end <= cur_start))
1797 		return 0;
1798 
1799 	spin_lock(&tree->lock);
1800 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 		total_bytes = tree->dirty_bytes;
1802 		goto out;
1803 	}
1804 	/*
1805 	 * this search will find all the extents that end after
1806 	 * our range starts.
1807 	 */
1808 	node = tree_search(tree, cur_start);
1809 	if (!node)
1810 		goto out;
1811 
1812 	while (1) {
1813 		state = rb_entry(node, struct extent_state, rb_node);
1814 		if (state->start > search_end)
1815 			break;
1816 		if (contig && found && state->start > last + 1)
1817 			break;
1818 		if (state->end >= cur_start && (state->state & bits) == bits) {
1819 			total_bytes += min(search_end, state->end) + 1 -
1820 				       max(cur_start, state->start);
1821 			if (total_bytes >= max_bytes)
1822 				break;
1823 			if (!found) {
1824 				*start = max(cur_start, state->start);
1825 				found = 1;
1826 			}
1827 			last = state->end;
1828 		} else if (contig && found) {
1829 			break;
1830 		}
1831 		node = rb_next(node);
1832 		if (!node)
1833 			break;
1834 	}
1835 out:
1836 	spin_unlock(&tree->lock);
1837 	return total_bytes;
1838 }
1839 
1840 /*
1841  * set the private field for a given byte offset in the tree.  If there isn't
1842  * an extent_state there already, this does nothing.
1843  */
1844 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845 		struct io_failure_record *failrec)
1846 {
1847 	struct rb_node *node;
1848 	struct extent_state *state;
1849 	int ret = 0;
1850 
1851 	spin_lock(&tree->lock);
1852 	/*
1853 	 * this search will find all the extents that end after
1854 	 * our range starts.
1855 	 */
1856 	node = tree_search(tree, start);
1857 	if (!node) {
1858 		ret = -ENOENT;
1859 		goto out;
1860 	}
1861 	state = rb_entry(node, struct extent_state, rb_node);
1862 	if (state->start != start) {
1863 		ret = -ENOENT;
1864 		goto out;
1865 	}
1866 	state->failrec = failrec;
1867 out:
1868 	spin_unlock(&tree->lock);
1869 	return ret;
1870 }
1871 
1872 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873 		struct io_failure_record **failrec)
1874 {
1875 	struct rb_node *node;
1876 	struct extent_state *state;
1877 	int ret = 0;
1878 
1879 	spin_lock(&tree->lock);
1880 	/*
1881 	 * this search will find all the extents that end after
1882 	 * our range starts.
1883 	 */
1884 	node = tree_search(tree, start);
1885 	if (!node) {
1886 		ret = -ENOENT;
1887 		goto out;
1888 	}
1889 	state = rb_entry(node, struct extent_state, rb_node);
1890 	if (state->start != start) {
1891 		ret = -ENOENT;
1892 		goto out;
1893 	}
1894 	*failrec = state->failrec;
1895 out:
1896 	spin_unlock(&tree->lock);
1897 	return ret;
1898 }
1899 
1900 /*
1901  * searches a range in the state tree for a given mask.
1902  * If 'filled' == 1, this returns 1 only if every extent in the tree
1903  * has the bits set.  Otherwise, 1 is returned if any bit in the
1904  * range is found set.
1905  */
1906 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907 		   unsigned bits, int filled, struct extent_state *cached)
1908 {
1909 	struct extent_state *state = NULL;
1910 	struct rb_node *node;
1911 	int bitset = 0;
1912 
1913 	spin_lock(&tree->lock);
1914 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915 	    cached->end > start)
1916 		node = &cached->rb_node;
1917 	else
1918 		node = tree_search(tree, start);
1919 	while (node && start <= end) {
1920 		state = rb_entry(node, struct extent_state, rb_node);
1921 
1922 		if (filled && state->start > start) {
1923 			bitset = 0;
1924 			break;
1925 		}
1926 
1927 		if (state->start > end)
1928 			break;
1929 
1930 		if (state->state & bits) {
1931 			bitset = 1;
1932 			if (!filled)
1933 				break;
1934 		} else if (filled) {
1935 			bitset = 0;
1936 			break;
1937 		}
1938 
1939 		if (state->end == (u64)-1)
1940 			break;
1941 
1942 		start = state->end + 1;
1943 		if (start > end)
1944 			break;
1945 		node = rb_next(node);
1946 		if (!node) {
1947 			if (filled)
1948 				bitset = 0;
1949 			break;
1950 		}
1951 	}
1952 	spin_unlock(&tree->lock);
1953 	return bitset;
1954 }
1955 
1956 /*
1957  * helper function to set a given page up to date if all the
1958  * extents in the tree for that page are up to date
1959  */
1960 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961 {
1962 	u64 start = page_offset(page);
1963 	u64 end = start + PAGE_SIZE - 1;
1964 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965 		SetPageUptodate(page);
1966 }
1967 
1968 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969 {
1970 	int ret;
1971 	int err = 0;
1972 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973 
1974 	set_state_failrec(failure_tree, rec->start, NULL);
1975 	ret = clear_extent_bits(failure_tree, rec->start,
1976 				rec->start + rec->len - 1,
1977 				EXTENT_LOCKED | EXTENT_DIRTY);
1978 	if (ret)
1979 		err = ret;
1980 
1981 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 				rec->start + rec->len - 1,
1983 				EXTENT_DAMAGED);
1984 	if (ret && !err)
1985 		err = ret;
1986 
1987 	kfree(rec);
1988 	return err;
1989 }
1990 
1991 /*
1992  * this bypasses the standard btrfs submit functions deliberately, as
1993  * the standard behavior is to write all copies in a raid setup. here we only
1994  * want to write the one bad copy. so we do the mapping for ourselves and issue
1995  * submit_bio directly.
1996  * to avoid any synchronization issues, wait for the data after writing, which
1997  * actually prevents the read that triggered the error from finishing.
1998  * currently, there can be no more than two copies of every data bit. thus,
1999  * exactly one rewrite is required.
2000  */
2001 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 		      struct page *page, unsigned int pg_offset, int mirror_num)
2003 {
2004 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005 	struct bio *bio;
2006 	struct btrfs_device *dev;
2007 	u64 map_length = 0;
2008 	u64 sector;
2009 	struct btrfs_bio *bbio = NULL;
2010 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011 	int ret;
2012 
2013 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014 	BUG_ON(!mirror_num);
2015 
2016 	/* we can't repair anything in raid56 yet */
2017 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 		return 0;
2019 
2020 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021 	if (!bio)
2022 		return -EIO;
2023 	bio->bi_iter.bi_size = 0;
2024 	map_length = length;
2025 
2026 	/*
2027 	 * Avoid races with device replace and make sure our bbio has devices
2028 	 * associated to its stripes that don't go away while we are doing the
2029 	 * read repair operation.
2030 	 */
2031 	btrfs_bio_counter_inc_blocked(fs_info);
2032 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2033 			      &map_length, &bbio, mirror_num);
2034 	if (ret) {
2035 		btrfs_bio_counter_dec(fs_info);
2036 		bio_put(bio);
2037 		return -EIO;
2038 	}
2039 	BUG_ON(mirror_num != bbio->mirror_num);
2040 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2041 	bio->bi_iter.bi_sector = sector;
2042 	dev = bbio->stripes[mirror_num-1].dev;
2043 	btrfs_put_bbio(bbio);
2044 	if (!dev || !dev->bdev || !dev->writeable) {
2045 		btrfs_bio_counter_dec(fs_info);
2046 		bio_put(bio);
2047 		return -EIO;
2048 	}
2049 	bio->bi_bdev = dev->bdev;
2050 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051 	bio_add_page(bio, page, length, pg_offset);
2052 
2053 	if (btrfsic_submit_bio_wait(bio)) {
2054 		/* try to remap that extent elsewhere? */
2055 		btrfs_bio_counter_dec(fs_info);
2056 		bio_put(bio);
2057 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 		return -EIO;
2059 	}
2060 
2061 	btrfs_info_rl_in_rcu(fs_info,
2062 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 				  btrfs_ino(inode), start,
2064 				  rcu_str_deref(dev->name), sector);
2065 	btrfs_bio_counter_dec(fs_info);
2066 	bio_put(bio);
2067 	return 0;
2068 }
2069 
2070 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2071 			 struct extent_buffer *eb, int mirror_num)
2072 {
2073 	u64 start = eb->start;
2074 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075 	int ret = 0;
2076 
2077 	if (fs_info->sb->s_flags & MS_RDONLY)
2078 		return -EROFS;
2079 
2080 	for (i = 0; i < num_pages; i++) {
2081 		struct page *p = eb->pages[i];
2082 
2083 		ret = repair_io_failure(fs_info->btree_inode, start,
2084 					PAGE_SIZE, start, p,
2085 					start - page_offset(p), mirror_num);
2086 		if (ret)
2087 			break;
2088 		start += PAGE_SIZE;
2089 	}
2090 
2091 	return ret;
2092 }
2093 
2094 /*
2095  * each time an IO finishes, we do a fast check in the IO failure tree
2096  * to see if we need to process or clean up an io_failure_record
2097  */
2098 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099 		     unsigned int pg_offset)
2100 {
2101 	u64 private;
2102 	struct io_failure_record *failrec;
2103 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 	struct extent_state *state;
2105 	int num_copies;
2106 	int ret;
2107 
2108 	private = 0;
2109 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 				(u64)-1, 1, EXTENT_DIRTY, 0);
2111 	if (!ret)
2112 		return 0;
2113 
2114 	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115 			&failrec);
2116 	if (ret)
2117 		return 0;
2118 
2119 	BUG_ON(!failrec->this_mirror);
2120 
2121 	if (failrec->in_validation) {
2122 		/* there was no real error, just free the record */
2123 		btrfs_debug(fs_info,
2124 			"clean_io_failure: freeing dummy error at %llu",
2125 			failrec->start);
2126 		goto out;
2127 	}
2128 	if (fs_info->sb->s_flags & MS_RDONLY)
2129 		goto out;
2130 
2131 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 					    failrec->start,
2134 					    EXTENT_LOCKED);
2135 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136 
2137 	if (state && state->start <= failrec->start &&
2138 	    state->end >= failrec->start + failrec->len - 1) {
2139 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 					      failrec->len);
2141 		if (num_copies > 1)  {
2142 			repair_io_failure(inode, start, failrec->len,
2143 					  failrec->logical, page,
2144 					  pg_offset, failrec->failed_mirror);
2145 		}
2146 	}
2147 
2148 out:
2149 	free_io_failure(inode, failrec);
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Can be called when
2156  * - hold extent lock
2157  * - under ordered extent
2158  * - the inode is freeing
2159  */
2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161 {
2162 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 	struct io_failure_record *failrec;
2164 	struct extent_state *state, *next;
2165 
2166 	if (RB_EMPTY_ROOT(&failure_tree->state))
2167 		return;
2168 
2169 	spin_lock(&failure_tree->lock);
2170 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 	while (state) {
2172 		if (state->start > end)
2173 			break;
2174 
2175 		ASSERT(state->end <= end);
2176 
2177 		next = next_state(state);
2178 
2179 		failrec = state->failrec;
2180 		free_extent_state(state);
2181 		kfree(failrec);
2182 
2183 		state = next;
2184 	}
2185 	spin_unlock(&failure_tree->lock);
2186 }
2187 
2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 		struct io_failure_record **failrec_ret)
2190 {
2191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 	struct io_failure_record *failrec;
2193 	struct extent_map *em;
2194 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 	int ret;
2198 	u64 logical;
2199 
2200 	ret = get_state_failrec(failure_tree, start, &failrec);
2201 	if (ret) {
2202 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 		if (!failrec)
2204 			return -ENOMEM;
2205 
2206 		failrec->start = start;
2207 		failrec->len = end - start + 1;
2208 		failrec->this_mirror = 0;
2209 		failrec->bio_flags = 0;
2210 		failrec->in_validation = 0;
2211 
2212 		read_lock(&em_tree->lock);
2213 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 		if (!em) {
2215 			read_unlock(&em_tree->lock);
2216 			kfree(failrec);
2217 			return -EIO;
2218 		}
2219 
2220 		if (em->start > start || em->start + em->len <= start) {
2221 			free_extent_map(em);
2222 			em = NULL;
2223 		}
2224 		read_unlock(&em_tree->lock);
2225 		if (!em) {
2226 			kfree(failrec);
2227 			return -EIO;
2228 		}
2229 
2230 		logical = start - em->start;
2231 		logical = em->block_start + logical;
2232 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 			logical = em->block_start;
2234 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 			extent_set_compress_type(&failrec->bio_flags,
2236 						 em->compress_type);
2237 		}
2238 
2239 		btrfs_debug(fs_info,
2240 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 			logical, start, failrec->len);
2242 
2243 		failrec->logical = logical;
2244 		free_extent_map(em);
2245 
2246 		/* set the bits in the private failure tree */
2247 		ret = set_extent_bits(failure_tree, start, end,
2248 					EXTENT_LOCKED | EXTENT_DIRTY);
2249 		if (ret >= 0)
2250 			ret = set_state_failrec(failure_tree, start, failrec);
2251 		/* set the bits in the inode's tree */
2252 		if (ret >= 0)
2253 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 		if (ret < 0) {
2255 			kfree(failrec);
2256 			return ret;
2257 		}
2258 	} else {
2259 		btrfs_debug(fs_info,
2260 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 			failrec->logical, failrec->start, failrec->len,
2262 			failrec->in_validation);
2263 		/*
2264 		 * when data can be on disk more than twice, add to failrec here
2265 		 * (e.g. with a list for failed_mirror) to make
2266 		 * clean_io_failure() clean all those errors at once.
2267 		 */
2268 	}
2269 
2270 	*failrec_ret = failrec;
2271 
2272 	return 0;
2273 }
2274 
2275 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276 			   struct io_failure_record *failrec, int failed_mirror)
2277 {
2278 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279 	int num_copies;
2280 
2281 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282 	if (num_copies == 1) {
2283 		/*
2284 		 * we only have a single copy of the data, so don't bother with
2285 		 * all the retry and error correction code that follows. no
2286 		 * matter what the error is, it is very likely to persist.
2287 		 */
2288 		btrfs_debug(fs_info,
2289 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 			num_copies, failrec->this_mirror, failed_mirror);
2291 		return 0;
2292 	}
2293 
2294 	/*
2295 	 * there are two premises:
2296 	 *	a) deliver good data to the caller
2297 	 *	b) correct the bad sectors on disk
2298 	 */
2299 	if (failed_bio->bi_vcnt > 1) {
2300 		/*
2301 		 * to fulfill b), we need to know the exact failing sectors, as
2302 		 * we don't want to rewrite any more than the failed ones. thus,
2303 		 * we need separate read requests for the failed bio
2304 		 *
2305 		 * if the following BUG_ON triggers, our validation request got
2306 		 * merged. we need separate requests for our algorithm to work.
2307 		 */
2308 		BUG_ON(failrec->in_validation);
2309 		failrec->in_validation = 1;
2310 		failrec->this_mirror = failed_mirror;
2311 	} else {
2312 		/*
2313 		 * we're ready to fulfill a) and b) alongside. get a good copy
2314 		 * of the failed sector and if we succeed, we have setup
2315 		 * everything for repair_io_failure to do the rest for us.
2316 		 */
2317 		if (failrec->in_validation) {
2318 			BUG_ON(failrec->this_mirror != failed_mirror);
2319 			failrec->in_validation = 0;
2320 			failrec->this_mirror = 0;
2321 		}
2322 		failrec->failed_mirror = failed_mirror;
2323 		failrec->this_mirror++;
2324 		if (failrec->this_mirror == failed_mirror)
2325 			failrec->this_mirror++;
2326 	}
2327 
2328 	if (failrec->this_mirror > num_copies) {
2329 		btrfs_debug(fs_info,
2330 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 			num_copies, failrec->this_mirror, failed_mirror);
2332 		return 0;
2333 	}
2334 
2335 	return 1;
2336 }
2337 
2338 
2339 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 				    struct io_failure_record *failrec,
2341 				    struct page *page, int pg_offset, int icsum,
2342 				    bio_end_io_t *endio_func, void *data)
2343 {
2344 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2345 	struct bio *bio;
2346 	struct btrfs_io_bio *btrfs_failed_bio;
2347 	struct btrfs_io_bio *btrfs_bio;
2348 
2349 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2350 	if (!bio)
2351 		return NULL;
2352 
2353 	bio->bi_end_io = endio_func;
2354 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2355 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2356 	bio->bi_iter.bi_size = 0;
2357 	bio->bi_private = data;
2358 
2359 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2360 	if (btrfs_failed_bio->csum) {
2361 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362 
2363 		btrfs_bio = btrfs_io_bio(bio);
2364 		btrfs_bio->csum = btrfs_bio->csum_inline;
2365 		icsum *= csum_size;
2366 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367 		       csum_size);
2368 	}
2369 
2370 	bio_add_page(bio, page, failrec->len, pg_offset);
2371 
2372 	return bio;
2373 }
2374 
2375 /*
2376  * this is a generic handler for readpage errors (default
2377  * readpage_io_failed_hook). if other copies exist, read those and write back
2378  * good data to the failed position. does not investigate in remapping the
2379  * failed extent elsewhere, hoping the device will be smart enough to do this as
2380  * needed
2381  */
2382 
2383 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384 			      struct page *page, u64 start, u64 end,
2385 			      int failed_mirror)
2386 {
2387 	struct io_failure_record *failrec;
2388 	struct inode *inode = page->mapping->host;
2389 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 	struct bio *bio;
2391 	int read_mode = 0;
2392 	int ret;
2393 
2394 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395 
2396 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397 	if (ret)
2398 		return ret;
2399 
2400 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401 	if (!ret) {
2402 		free_io_failure(inode, failrec);
2403 		return -EIO;
2404 	}
2405 
2406 	if (failed_bio->bi_vcnt > 1)
2407 		read_mode |= REQ_FAILFAST_DEV;
2408 
2409 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2410 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411 				      start - page_offset(page),
2412 				      (int)phy_offset, failed_bio->bi_end_io,
2413 				      NULL);
2414 	if (!bio) {
2415 		free_io_failure(inode, failrec);
2416 		return -EIO;
2417 	}
2418 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419 
2420 	btrfs_debug(btrfs_sb(inode->i_sb),
2421 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422 		read_mode, failrec->this_mirror, failrec->in_validation);
2423 
2424 	ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425 					 failrec->bio_flags, 0);
2426 	if (ret) {
2427 		free_io_failure(inode, failrec);
2428 		bio_put(bio);
2429 	}
2430 
2431 	return ret;
2432 }
2433 
2434 /* lots and lots of room for performance fixes in the end_bio funcs */
2435 
2436 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437 {
2438 	int uptodate = (err == 0);
2439 	struct extent_io_tree *tree;
2440 	int ret = 0;
2441 
2442 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2443 
2444 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 		ret = tree->ops->writepage_end_io_hook(page, start,
2446 					       end, NULL, uptodate);
2447 		if (ret)
2448 			uptodate = 0;
2449 	}
2450 
2451 	if (!uptodate) {
2452 		ClearPageUptodate(page);
2453 		SetPageError(page);
2454 		ret = ret < 0 ? ret : -EIO;
2455 		mapping_set_error(page->mapping, ret);
2456 	}
2457 }
2458 
2459 /*
2460  * after a writepage IO is done, we need to:
2461  * clear the uptodate bits on error
2462  * clear the writeback bits in the extent tree for this IO
2463  * end_page_writeback if the page has no more pending IO
2464  *
2465  * Scheduling is not allowed, so the extent state tree is expected
2466  * to have one and only one object corresponding to this IO.
2467  */
2468 static void end_bio_extent_writepage(struct bio *bio)
2469 {
2470 	struct bio_vec *bvec;
2471 	u64 start;
2472 	u64 end;
2473 	int i;
2474 
2475 	bio_for_each_segment_all(bvec, bio, i) {
2476 		struct page *page = bvec->bv_page;
2477 		struct inode *inode = page->mapping->host;
2478 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2479 
2480 		/* We always issue full-page reads, but if some block
2481 		 * in a page fails to read, blk_update_request() will
2482 		 * advance bv_offset and adjust bv_len to compensate.
2483 		 * Print a warning for nonzero offsets, and an error
2484 		 * if they don't add up to a full page.  */
2485 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487 				btrfs_err(fs_info,
2488 				   "partial page write in btrfs with offset %u and length %u",
2489 					bvec->bv_offset, bvec->bv_len);
2490 			else
2491 				btrfs_info(fs_info,
2492 				   "incomplete page write in btrfs with offset %u and length %u",
2493 					bvec->bv_offset, bvec->bv_len);
2494 		}
2495 
2496 		start = page_offset(page);
2497 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2498 
2499 		end_extent_writepage(page, bio->bi_error, start, end);
2500 		end_page_writeback(page);
2501 	}
2502 
2503 	bio_put(bio);
2504 }
2505 
2506 static void
2507 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508 			      int uptodate)
2509 {
2510 	struct extent_state *cached = NULL;
2511 	u64 end = start + len - 1;
2512 
2513 	if (uptodate && tree->track_uptodate)
2514 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516 }
2517 
2518 /*
2519  * after a readpage IO is done, we need to:
2520  * clear the uptodate bits on error
2521  * set the uptodate bits if things worked
2522  * set the page up to date if all extents in the tree are uptodate
2523  * clear the lock bit in the extent tree
2524  * unlock the page if there are no other extents locked for it
2525  *
2526  * Scheduling is not allowed, so the extent state tree is expected
2527  * to have one and only one object corresponding to this IO.
2528  */
2529 static void end_bio_extent_readpage(struct bio *bio)
2530 {
2531 	struct bio_vec *bvec;
2532 	int uptodate = !bio->bi_error;
2533 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534 	struct extent_io_tree *tree;
2535 	u64 offset = 0;
2536 	u64 start;
2537 	u64 end;
2538 	u64 len;
2539 	u64 extent_start = 0;
2540 	u64 extent_len = 0;
2541 	int mirror;
2542 	int ret;
2543 	int i;
2544 
2545 	bio_for_each_segment_all(bvec, bio, i) {
2546 		struct page *page = bvec->bv_page;
2547 		struct inode *inode = page->mapping->host;
2548 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549 
2550 		btrfs_debug(fs_info,
2551 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 			(u64)bio->bi_iter.bi_sector, bio->bi_error,
2553 			io_bio->mirror_num);
2554 		tree = &BTRFS_I(inode)->io_tree;
2555 
2556 		/* We always issue full-page reads, but if some block
2557 		 * in a page fails to read, blk_update_request() will
2558 		 * advance bv_offset and adjust bv_len to compensate.
2559 		 * Print a warning for nonzero offsets, and an error
2560 		 * if they don't add up to a full page.  */
2561 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563 				btrfs_err(fs_info,
2564 					"partial page read in btrfs with offset %u and length %u",
2565 					bvec->bv_offset, bvec->bv_len);
2566 			else
2567 				btrfs_info(fs_info,
2568 					"incomplete page read in btrfs with offset %u and length %u",
2569 					bvec->bv_offset, bvec->bv_len);
2570 		}
2571 
2572 		start = page_offset(page);
2573 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2574 		len = bvec->bv_len;
2575 
2576 		mirror = io_bio->mirror_num;
2577 		if (likely(uptodate && tree->ops &&
2578 			   tree->ops->readpage_end_io_hook)) {
2579 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 							      page, start, end,
2581 							      mirror);
2582 			if (ret)
2583 				uptodate = 0;
2584 			else
2585 				clean_io_failure(inode, start, page, 0);
2586 		}
2587 
2588 		if (likely(uptodate))
2589 			goto readpage_ok;
2590 
2591 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593 			if (!ret && !bio->bi_error)
2594 				uptodate = 1;
2595 		} else {
2596 			/*
2597 			 * The generic bio_readpage_error handles errors the
2598 			 * following way: If possible, new read requests are
2599 			 * created and submitted and will end up in
2600 			 * end_bio_extent_readpage as well (if we're lucky, not
2601 			 * in the !uptodate case). In that case it returns 0 and
2602 			 * we just go on with the next page in our bio. If it
2603 			 * can't handle the error it will return -EIO and we
2604 			 * remain responsible for that page.
2605 			 */
2606 			ret = bio_readpage_error(bio, offset, page, start, end,
2607 						 mirror);
2608 			if (ret == 0) {
2609 				uptodate = !bio->bi_error;
2610 				offset += len;
2611 				continue;
2612 			}
2613 		}
2614 readpage_ok:
2615 		if (likely(uptodate)) {
2616 			loff_t i_size = i_size_read(inode);
2617 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 			unsigned off;
2619 
2620 			/* Zero out the end if this page straddles i_size */
2621 			off = i_size & (PAGE_SIZE-1);
2622 			if (page->index == end_index && off)
2623 				zero_user_segment(page, off, PAGE_SIZE);
2624 			SetPageUptodate(page);
2625 		} else {
2626 			ClearPageUptodate(page);
2627 			SetPageError(page);
2628 		}
2629 		unlock_page(page);
2630 		offset += len;
2631 
2632 		if (unlikely(!uptodate)) {
2633 			if (extent_len) {
2634 				endio_readpage_release_extent(tree,
2635 							      extent_start,
2636 							      extent_len, 1);
2637 				extent_start = 0;
2638 				extent_len = 0;
2639 			}
2640 			endio_readpage_release_extent(tree, start,
2641 						      end - start + 1, 0);
2642 		} else if (!extent_len) {
2643 			extent_start = start;
2644 			extent_len = end + 1 - start;
2645 		} else if (extent_start + extent_len == start) {
2646 			extent_len += end + 1 - start;
2647 		} else {
2648 			endio_readpage_release_extent(tree, extent_start,
2649 						      extent_len, uptodate);
2650 			extent_start = start;
2651 			extent_len = end + 1 - start;
2652 		}
2653 	}
2654 
2655 	if (extent_len)
2656 		endio_readpage_release_extent(tree, extent_start, extent_len,
2657 					      uptodate);
2658 	if (io_bio->end_io)
2659 		io_bio->end_io(io_bio, bio->bi_error);
2660 	bio_put(bio);
2661 }
2662 
2663 /*
2664  * this allocates from the btrfs_bioset.  We're returning a bio right now
2665  * but you can call btrfs_io_bio for the appropriate container_of magic
2666  */
2667 struct bio *
2668 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669 		gfp_t gfp_flags)
2670 {
2671 	struct btrfs_io_bio *btrfs_bio;
2672 	struct bio *bio;
2673 
2674 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2675 
2676 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677 		while (!bio && (nr_vecs /= 2)) {
2678 			bio = bio_alloc_bioset(gfp_flags,
2679 					       nr_vecs, btrfs_bioset);
2680 		}
2681 	}
2682 
2683 	if (bio) {
2684 		bio->bi_bdev = bdev;
2685 		bio->bi_iter.bi_sector = first_sector;
2686 		btrfs_bio = btrfs_io_bio(bio);
2687 		btrfs_bio->csum = NULL;
2688 		btrfs_bio->csum_allocated = NULL;
2689 		btrfs_bio->end_io = NULL;
2690 	}
2691 	return bio;
2692 }
2693 
2694 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2695 {
2696 	struct btrfs_io_bio *btrfs_bio;
2697 	struct bio *new;
2698 
2699 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700 	if (new) {
2701 		btrfs_bio = btrfs_io_bio(new);
2702 		btrfs_bio->csum = NULL;
2703 		btrfs_bio->csum_allocated = NULL;
2704 		btrfs_bio->end_io = NULL;
2705 	}
2706 	return new;
2707 }
2708 
2709 /* this also allocates from the btrfs_bioset */
2710 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711 {
2712 	struct btrfs_io_bio *btrfs_bio;
2713 	struct bio *bio;
2714 
2715 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 	if (bio) {
2717 		btrfs_bio = btrfs_io_bio(bio);
2718 		btrfs_bio->csum = NULL;
2719 		btrfs_bio->csum_allocated = NULL;
2720 		btrfs_bio->end_io = NULL;
2721 	}
2722 	return bio;
2723 }
2724 
2725 
2726 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 				       unsigned long bio_flags)
2728 {
2729 	int ret = 0;
2730 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 	struct page *page = bvec->bv_page;
2732 	struct extent_io_tree *tree = bio->bi_private;
2733 	u64 start;
2734 
2735 	start = page_offset(page) + bvec->bv_offset;
2736 
2737 	bio->bi_private = NULL;
2738 	bio_get(bio);
2739 
2740 	if (tree->ops && tree->ops->submit_bio_hook)
2741 		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742 					   mirror_num, bio_flags, start);
2743 	else
2744 		btrfsic_submit_bio(bio);
2745 
2746 	bio_put(bio);
2747 	return ret;
2748 }
2749 
2750 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751 		     unsigned long offset, size_t size, struct bio *bio,
2752 		     unsigned long bio_flags)
2753 {
2754 	int ret = 0;
2755 	if (tree->ops && tree->ops->merge_bio_hook)
2756 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757 						bio_flags);
2758 	return ret;
2759 
2760 }
2761 
2762 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763 			      struct writeback_control *wbc,
2764 			      struct page *page, sector_t sector,
2765 			      size_t size, unsigned long offset,
2766 			      struct block_device *bdev,
2767 			      struct bio **bio_ret,
2768 			      unsigned long max_pages,
2769 			      bio_end_io_t end_io_func,
2770 			      int mirror_num,
2771 			      unsigned long prev_bio_flags,
2772 			      unsigned long bio_flags,
2773 			      bool force_bio_submit)
2774 {
2775 	int ret = 0;
2776 	struct bio *bio;
2777 	int contig = 0;
2778 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780 
2781 	if (bio_ret && *bio_ret) {
2782 		bio = *bio_ret;
2783 		if (old_compressed)
2784 			contig = bio->bi_iter.bi_sector == sector;
2785 		else
2786 			contig = bio_end_sector(bio) == sector;
2787 
2788 		if (prev_bio_flags != bio_flags || !contig ||
2789 		    force_bio_submit ||
2790 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2792 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 			if (ret < 0) {
2794 				*bio_ret = NULL;
2795 				return ret;
2796 			}
2797 			bio = NULL;
2798 		} else {
2799 			if (wbc)
2800 				wbc_account_io(wbc, page, page_size);
2801 			return 0;
2802 		}
2803 	}
2804 
2805 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806 			GFP_NOFS | __GFP_HIGH);
2807 	if (!bio)
2808 		return -ENOMEM;
2809 
2810 	bio_add_page(bio, page, page_size, offset);
2811 	bio->bi_end_io = end_io_func;
2812 	bio->bi_private = tree;
2813 	bio_set_op_attrs(bio, op, op_flags);
2814 	if (wbc) {
2815 		wbc_init_bio(wbc, bio);
2816 		wbc_account_io(wbc, page, page_size);
2817 	}
2818 
2819 	if (bio_ret)
2820 		*bio_ret = bio;
2821 	else
2822 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2823 
2824 	return ret;
2825 }
2826 
2827 static void attach_extent_buffer_page(struct extent_buffer *eb,
2828 				      struct page *page)
2829 {
2830 	if (!PagePrivate(page)) {
2831 		SetPagePrivate(page);
2832 		get_page(page);
2833 		set_page_private(page, (unsigned long)eb);
2834 	} else {
2835 		WARN_ON(page->private != (unsigned long)eb);
2836 	}
2837 }
2838 
2839 void set_page_extent_mapped(struct page *page)
2840 {
2841 	if (!PagePrivate(page)) {
2842 		SetPagePrivate(page);
2843 		get_page(page);
2844 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 	}
2846 }
2847 
2848 static struct extent_map *
2849 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850 		 u64 start, u64 len, get_extent_t *get_extent,
2851 		 struct extent_map **em_cached)
2852 {
2853 	struct extent_map *em;
2854 
2855 	if (em_cached && *em_cached) {
2856 		em = *em_cached;
2857 		if (extent_map_in_tree(em) && start >= em->start &&
2858 		    start < extent_map_end(em)) {
2859 			atomic_inc(&em->refs);
2860 			return em;
2861 		}
2862 
2863 		free_extent_map(em);
2864 		*em_cached = NULL;
2865 	}
2866 
2867 	em = get_extent(inode, page, pg_offset, start, len, 0);
2868 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2869 		BUG_ON(*em_cached);
2870 		atomic_inc(&em->refs);
2871 		*em_cached = em;
2872 	}
2873 	return em;
2874 }
2875 /*
2876  * basic readpage implementation.  Locked extent state structs are inserted
2877  * into the tree that are removed when the IO is done (by the end_io
2878  * handlers)
2879  * XXX JDM: This needs looking at to ensure proper page locking
2880  * return 0 on success, otherwise return error
2881  */
2882 static int __do_readpage(struct extent_io_tree *tree,
2883 			 struct page *page,
2884 			 get_extent_t *get_extent,
2885 			 struct extent_map **em_cached,
2886 			 struct bio **bio, int mirror_num,
2887 			 unsigned long *bio_flags, int read_flags,
2888 			 u64 *prev_em_start)
2889 {
2890 	struct inode *inode = page->mapping->host;
2891 	u64 start = page_offset(page);
2892 	u64 page_end = start + PAGE_SIZE - 1;
2893 	u64 end;
2894 	u64 cur = start;
2895 	u64 extent_offset;
2896 	u64 last_byte = i_size_read(inode);
2897 	u64 block_start;
2898 	u64 cur_end;
2899 	sector_t sector;
2900 	struct extent_map *em;
2901 	struct block_device *bdev;
2902 	int ret = 0;
2903 	int nr = 0;
2904 	size_t pg_offset = 0;
2905 	size_t iosize;
2906 	size_t disk_io_size;
2907 	size_t blocksize = inode->i_sb->s_blocksize;
2908 	unsigned long this_bio_flag = 0;
2909 
2910 	set_page_extent_mapped(page);
2911 
2912 	end = page_end;
2913 	if (!PageUptodate(page)) {
2914 		if (cleancache_get_page(page) == 0) {
2915 			BUG_ON(blocksize != PAGE_SIZE);
2916 			unlock_extent(tree, start, end);
2917 			goto out;
2918 		}
2919 	}
2920 
2921 	if (page->index == last_byte >> PAGE_SHIFT) {
2922 		char *userpage;
2923 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924 
2925 		if (zero_offset) {
2926 			iosize = PAGE_SIZE - zero_offset;
2927 			userpage = kmap_atomic(page);
2928 			memset(userpage + zero_offset, 0, iosize);
2929 			flush_dcache_page(page);
2930 			kunmap_atomic(userpage);
2931 		}
2932 	}
2933 	while (cur <= end) {
2934 		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935 		bool force_bio_submit = false;
2936 
2937 		if (cur >= last_byte) {
2938 			char *userpage;
2939 			struct extent_state *cached = NULL;
2940 
2941 			iosize = PAGE_SIZE - pg_offset;
2942 			userpage = kmap_atomic(page);
2943 			memset(userpage + pg_offset, 0, iosize);
2944 			flush_dcache_page(page);
2945 			kunmap_atomic(userpage);
2946 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2947 					    &cached, GFP_NOFS);
2948 			unlock_extent_cached(tree, cur,
2949 					     cur + iosize - 1,
2950 					     &cached, GFP_NOFS);
2951 			break;
2952 		}
2953 		em = __get_extent_map(inode, page, pg_offset, cur,
2954 				      end - cur + 1, get_extent, em_cached);
2955 		if (IS_ERR_OR_NULL(em)) {
2956 			SetPageError(page);
2957 			unlock_extent(tree, cur, end);
2958 			break;
2959 		}
2960 		extent_offset = cur - em->start;
2961 		BUG_ON(extent_map_end(em) <= cur);
2962 		BUG_ON(end < cur);
2963 
2964 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966 			extent_set_compress_type(&this_bio_flag,
2967 						 em->compress_type);
2968 		}
2969 
2970 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971 		cur_end = min(extent_map_end(em) - 1, end);
2972 		iosize = ALIGN(iosize, blocksize);
2973 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974 			disk_io_size = em->block_len;
2975 			sector = em->block_start >> 9;
2976 		} else {
2977 			sector = (em->block_start + extent_offset) >> 9;
2978 			disk_io_size = iosize;
2979 		}
2980 		bdev = em->bdev;
2981 		block_start = em->block_start;
2982 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983 			block_start = EXTENT_MAP_HOLE;
2984 
2985 		/*
2986 		 * If we have a file range that points to a compressed extent
2987 		 * and it's followed by a consecutive file range that points to
2988 		 * to the same compressed extent (possibly with a different
2989 		 * offset and/or length, so it either points to the whole extent
2990 		 * or only part of it), we must make sure we do not submit a
2991 		 * single bio to populate the pages for the 2 ranges because
2992 		 * this makes the compressed extent read zero out the pages
2993 		 * belonging to the 2nd range. Imagine the following scenario:
2994 		 *
2995 		 *  File layout
2996 		 *  [0 - 8K]                     [8K - 24K]
2997 		 *    |                               |
2998 		 *    |                               |
2999 		 * points to extent X,         points to extent X,
3000 		 * offset 4K, length of 8K     offset 0, length 16K
3001 		 *
3002 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3003 		 *
3004 		 * If the bio to read the compressed extent covers both ranges,
3005 		 * it will decompress extent X into the pages belonging to the
3006 		 * first range and then it will stop, zeroing out the remaining
3007 		 * pages that belong to the other range that points to extent X.
3008 		 * So here we make sure we submit 2 bios, one for the first
3009 		 * range and another one for the third range. Both will target
3010 		 * the same physical extent from disk, but we can't currently
3011 		 * make the compressed bio endio callback populate the pages
3012 		 * for both ranges because each compressed bio is tightly
3013 		 * coupled with a single extent map, and each range can have
3014 		 * an extent map with a different offset value relative to the
3015 		 * uncompressed data of our extent and different lengths. This
3016 		 * is a corner case so we prioritize correctness over
3017 		 * non-optimal behavior (submitting 2 bios for the same extent).
3018 		 */
3019 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020 		    prev_em_start && *prev_em_start != (u64)-1 &&
3021 		    *prev_em_start != em->orig_start)
3022 			force_bio_submit = true;
3023 
3024 		if (prev_em_start)
3025 			*prev_em_start = em->orig_start;
3026 
3027 		free_extent_map(em);
3028 		em = NULL;
3029 
3030 		/* we've found a hole, just zero and go on */
3031 		if (block_start == EXTENT_MAP_HOLE) {
3032 			char *userpage;
3033 			struct extent_state *cached = NULL;
3034 
3035 			userpage = kmap_atomic(page);
3036 			memset(userpage + pg_offset, 0, iosize);
3037 			flush_dcache_page(page);
3038 			kunmap_atomic(userpage);
3039 
3040 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 					    &cached, GFP_NOFS);
3042 			unlock_extent_cached(tree, cur,
3043 					     cur + iosize - 1,
3044 					     &cached, GFP_NOFS);
3045 			cur = cur + iosize;
3046 			pg_offset += iosize;
3047 			continue;
3048 		}
3049 		/* the get_extent function already copied into the page */
3050 		if (test_range_bit(tree, cur, cur_end,
3051 				   EXTENT_UPTODATE, 1, NULL)) {
3052 			check_page_uptodate(tree, page);
3053 			unlock_extent(tree, cur, cur + iosize - 1);
3054 			cur = cur + iosize;
3055 			pg_offset += iosize;
3056 			continue;
3057 		}
3058 		/* we have an inline extent but it didn't get marked up
3059 		 * to date.  Error out
3060 		 */
3061 		if (block_start == EXTENT_MAP_INLINE) {
3062 			SetPageError(page);
3063 			unlock_extent(tree, cur, cur + iosize - 1);
3064 			cur = cur + iosize;
3065 			pg_offset += iosize;
3066 			continue;
3067 		}
3068 
3069 		pnr -= page->index;
3070 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071 					 page, sector, disk_io_size, pg_offset,
3072 					 bdev, bio, pnr,
3073 					 end_bio_extent_readpage, mirror_num,
3074 					 *bio_flags,
3075 					 this_bio_flag,
3076 					 force_bio_submit);
3077 		if (!ret) {
3078 			nr++;
3079 			*bio_flags = this_bio_flag;
3080 		} else {
3081 			SetPageError(page);
3082 			unlock_extent(tree, cur, cur + iosize - 1);
3083 			goto out;
3084 		}
3085 		cur = cur + iosize;
3086 		pg_offset += iosize;
3087 	}
3088 out:
3089 	if (!nr) {
3090 		if (!PageError(page))
3091 			SetPageUptodate(page);
3092 		unlock_page(page);
3093 	}
3094 	return ret;
3095 }
3096 
3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 					     struct page *pages[], int nr_pages,
3099 					     u64 start, u64 end,
3100 					     get_extent_t *get_extent,
3101 					     struct extent_map **em_cached,
3102 					     struct bio **bio, int mirror_num,
3103 					     unsigned long *bio_flags,
3104 					     u64 *prev_em_start)
3105 {
3106 	struct inode *inode;
3107 	struct btrfs_ordered_extent *ordered;
3108 	int index;
3109 
3110 	inode = pages[0]->mapping->host;
3111 	while (1) {
3112 		lock_extent(tree, start, end);
3113 		ordered = btrfs_lookup_ordered_range(inode, start,
3114 						     end - start + 1);
3115 		if (!ordered)
3116 			break;
3117 		unlock_extent(tree, start, end);
3118 		btrfs_start_ordered_extent(inode, ordered, 1);
3119 		btrfs_put_ordered_extent(ordered);
3120 	}
3121 
3122 	for (index = 0; index < nr_pages; index++) {
3123 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 			      mirror_num, bio_flags, 0, prev_em_start);
3125 		put_page(pages[index]);
3126 	}
3127 }
3128 
3129 static void __extent_readpages(struct extent_io_tree *tree,
3130 			       struct page *pages[],
3131 			       int nr_pages, get_extent_t *get_extent,
3132 			       struct extent_map **em_cached,
3133 			       struct bio **bio, int mirror_num,
3134 			       unsigned long *bio_flags,
3135 			       u64 *prev_em_start)
3136 {
3137 	u64 start = 0;
3138 	u64 end = 0;
3139 	u64 page_start;
3140 	int index;
3141 	int first_index = 0;
3142 
3143 	for (index = 0; index < nr_pages; index++) {
3144 		page_start = page_offset(pages[index]);
3145 		if (!end) {
3146 			start = page_start;
3147 			end = start + PAGE_SIZE - 1;
3148 			first_index = index;
3149 		} else if (end + 1 == page_start) {
3150 			end += PAGE_SIZE;
3151 		} else {
3152 			__do_contiguous_readpages(tree, &pages[first_index],
3153 						  index - first_index, start,
3154 						  end, get_extent, em_cached,
3155 						  bio, mirror_num, bio_flags,
3156 						  prev_em_start);
3157 			start = page_start;
3158 			end = start + PAGE_SIZE - 1;
3159 			first_index = index;
3160 		}
3161 	}
3162 
3163 	if (end)
3164 		__do_contiguous_readpages(tree, &pages[first_index],
3165 					  index - first_index, start,
3166 					  end, get_extent, em_cached, bio,
3167 					  mirror_num, bio_flags,
3168 					  prev_em_start);
3169 }
3170 
3171 static int __extent_read_full_page(struct extent_io_tree *tree,
3172 				   struct page *page,
3173 				   get_extent_t *get_extent,
3174 				   struct bio **bio, int mirror_num,
3175 				   unsigned long *bio_flags, int read_flags)
3176 {
3177 	struct inode *inode = page->mapping->host;
3178 	struct btrfs_ordered_extent *ordered;
3179 	u64 start = page_offset(page);
3180 	u64 end = start + PAGE_SIZE - 1;
3181 	int ret;
3182 
3183 	while (1) {
3184 		lock_extent(tree, start, end);
3185 		ordered = btrfs_lookup_ordered_range(inode, start,
3186 						PAGE_SIZE);
3187 		if (!ordered)
3188 			break;
3189 		unlock_extent(tree, start, end);
3190 		btrfs_start_ordered_extent(inode, ordered, 1);
3191 		btrfs_put_ordered_extent(ordered);
3192 	}
3193 
3194 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 			    bio_flags, read_flags, NULL);
3196 	return ret;
3197 }
3198 
3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 			    get_extent_t *get_extent, int mirror_num)
3201 {
3202 	struct bio *bio = NULL;
3203 	unsigned long bio_flags = 0;
3204 	int ret;
3205 
3206 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 				      &bio_flags, 0);
3208 	if (bio)
3209 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 	return ret;
3211 }
3212 
3213 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 			      unsigned long nr_written)
3215 {
3216 	wbc->nr_to_write -= nr_written;
3217 }
3218 
3219 /*
3220  * helper for __extent_writepage, doing all of the delayed allocation setup.
3221  *
3222  * This returns 1 if our fill_delalloc function did all the work required
3223  * to write the page (copy into inline extent).  In this case the IO has
3224  * been started and the page is already unlocked.
3225  *
3226  * This returns 0 if all went well (page still locked)
3227  * This returns < 0 if there were errors (page still locked)
3228  */
3229 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 			      struct page *page, struct writeback_control *wbc,
3231 			      struct extent_page_data *epd,
3232 			      u64 delalloc_start,
3233 			      unsigned long *nr_written)
3234 {
3235 	struct extent_io_tree *tree = epd->tree;
3236 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 	u64 nr_delalloc;
3238 	u64 delalloc_to_write = 0;
3239 	u64 delalloc_end = 0;
3240 	int ret;
3241 	int page_started = 0;
3242 
3243 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 		return 0;
3245 
3246 	while (delalloc_end < page_end) {
3247 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 					       page,
3249 					       &delalloc_start,
3250 					       &delalloc_end,
3251 					       BTRFS_MAX_EXTENT_SIZE);
3252 		if (nr_delalloc == 0) {
3253 			delalloc_start = delalloc_end + 1;
3254 			continue;
3255 		}
3256 		ret = tree->ops->fill_delalloc(inode, page,
3257 					       delalloc_start,
3258 					       delalloc_end,
3259 					       &page_started,
3260 					       nr_written);
3261 		/* File system has been set read-only */
3262 		if (ret) {
3263 			SetPageError(page);
3264 			/* fill_delalloc should be return < 0 for error
3265 			 * but just in case, we use > 0 here meaning the
3266 			 * IO is started, so we don't want to return > 0
3267 			 * unless things are going well.
3268 			 */
3269 			ret = ret < 0 ? ret : -EIO;
3270 			goto done;
3271 		}
3272 		/*
3273 		 * delalloc_end is already one less than the total length, so
3274 		 * we don't subtract one from PAGE_SIZE
3275 		 */
3276 		delalloc_to_write += (delalloc_end - delalloc_start +
3277 				      PAGE_SIZE) >> PAGE_SHIFT;
3278 		delalloc_start = delalloc_end + 1;
3279 	}
3280 	if (wbc->nr_to_write < delalloc_to_write) {
3281 		int thresh = 8192;
3282 
3283 		if (delalloc_to_write < thresh * 2)
3284 			thresh = delalloc_to_write;
3285 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 					 thresh);
3287 	}
3288 
3289 	/* did the fill delalloc function already unlock and start
3290 	 * the IO?
3291 	 */
3292 	if (page_started) {
3293 		/*
3294 		 * we've unlocked the page, so we can't update
3295 		 * the mapping's writeback index, just update
3296 		 * nr_to_write.
3297 		 */
3298 		wbc->nr_to_write -= *nr_written;
3299 		return 1;
3300 	}
3301 
3302 	ret = 0;
3303 
3304 done:
3305 	return ret;
3306 }
3307 
3308 /*
3309  * helper for __extent_writepage.  This calls the writepage start hooks,
3310  * and does the loop to map the page into extents and bios.
3311  *
3312  * We return 1 if the IO is started and the page is unlocked,
3313  * 0 if all went well (page still locked)
3314  * < 0 if there were errors (page still locked)
3315  */
3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 				 struct page *page,
3318 				 struct writeback_control *wbc,
3319 				 struct extent_page_data *epd,
3320 				 loff_t i_size,
3321 				 unsigned long nr_written,
3322 				 int write_flags, int *nr_ret)
3323 {
3324 	struct extent_io_tree *tree = epd->tree;
3325 	u64 start = page_offset(page);
3326 	u64 page_end = start + PAGE_SIZE - 1;
3327 	u64 end;
3328 	u64 cur = start;
3329 	u64 extent_offset;
3330 	u64 block_start;
3331 	u64 iosize;
3332 	sector_t sector;
3333 	struct extent_state *cached_state = NULL;
3334 	struct extent_map *em;
3335 	struct block_device *bdev;
3336 	size_t pg_offset = 0;
3337 	size_t blocksize;
3338 	int ret = 0;
3339 	int nr = 0;
3340 	bool compressed;
3341 
3342 	if (tree->ops && tree->ops->writepage_start_hook) {
3343 		ret = tree->ops->writepage_start_hook(page, start,
3344 						      page_end);
3345 		if (ret) {
3346 			/* Fixup worker will requeue */
3347 			if (ret == -EBUSY)
3348 				wbc->pages_skipped++;
3349 			else
3350 				redirty_page_for_writepage(wbc, page);
3351 
3352 			update_nr_written(page, wbc, nr_written);
3353 			unlock_page(page);
3354 			ret = 1;
3355 			goto done_unlocked;
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * we don't want to touch the inode after unlocking the page,
3361 	 * so we update the mapping writeback index now
3362 	 */
3363 	update_nr_written(page, wbc, nr_written + 1);
3364 
3365 	end = page_end;
3366 	if (i_size <= start) {
3367 		if (tree->ops && tree->ops->writepage_end_io_hook)
3368 			tree->ops->writepage_end_io_hook(page, start,
3369 							 page_end, NULL, 1);
3370 		goto done;
3371 	}
3372 
3373 	blocksize = inode->i_sb->s_blocksize;
3374 
3375 	while (cur <= end) {
3376 		u64 em_end;
3377 		unsigned long max_nr;
3378 
3379 		if (cur >= i_size) {
3380 			if (tree->ops && tree->ops->writepage_end_io_hook)
3381 				tree->ops->writepage_end_io_hook(page, cur,
3382 							 page_end, NULL, 1);
3383 			break;
3384 		}
3385 		em = epd->get_extent(inode, page, pg_offset, cur,
3386 				     end - cur + 1, 1);
3387 		if (IS_ERR_OR_NULL(em)) {
3388 			SetPageError(page);
3389 			ret = PTR_ERR_OR_ZERO(em);
3390 			break;
3391 		}
3392 
3393 		extent_offset = cur - em->start;
3394 		em_end = extent_map_end(em);
3395 		BUG_ON(em_end <= cur);
3396 		BUG_ON(end < cur);
3397 		iosize = min(em_end - cur, end - cur + 1);
3398 		iosize = ALIGN(iosize, blocksize);
3399 		sector = (em->block_start + extent_offset) >> 9;
3400 		bdev = em->bdev;
3401 		block_start = em->block_start;
3402 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 		free_extent_map(em);
3404 		em = NULL;
3405 
3406 		/*
3407 		 * compressed and inline extents are written through other
3408 		 * paths in the FS
3409 		 */
3410 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 		    block_start == EXTENT_MAP_INLINE) {
3412 			/*
3413 			 * end_io notification does not happen here for
3414 			 * compressed extents
3415 			 */
3416 			if (!compressed && tree->ops &&
3417 			    tree->ops->writepage_end_io_hook)
3418 				tree->ops->writepage_end_io_hook(page, cur,
3419 							 cur + iosize - 1,
3420 							 NULL, 1);
3421 			else if (compressed) {
3422 				/* we don't want to end_page_writeback on
3423 				 * a compressed extent.  this happens
3424 				 * elsewhere
3425 				 */
3426 				nr++;
3427 			}
3428 
3429 			cur += iosize;
3430 			pg_offset += iosize;
3431 			continue;
3432 		}
3433 
3434 		max_nr = (i_size >> PAGE_SHIFT) + 1;
3435 
3436 		set_range_writeback(tree, cur, cur + iosize - 1);
3437 		if (!PageWriteback(page)) {
3438 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 				   "page %lu not writeback, cur %llu end %llu",
3440 			       page->index, cur, end);
3441 		}
3442 
3443 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 					 page, sector, iosize, pg_offset,
3445 					 bdev, &epd->bio, max_nr,
3446 					 end_bio_extent_writepage,
3447 					 0, 0, 0, false);
3448 		if (ret)
3449 			SetPageError(page);
3450 
3451 		cur = cur + iosize;
3452 		pg_offset += iosize;
3453 		nr++;
3454 	}
3455 done:
3456 	*nr_ret = nr;
3457 
3458 done_unlocked:
3459 
3460 	/* drop our reference on any cached states */
3461 	free_extent_state(cached_state);
3462 	return ret;
3463 }
3464 
3465 /*
3466  * the writepage semantics are similar to regular writepage.  extent
3467  * records are inserted to lock ranges in the tree, and as dirty areas
3468  * are found, they are marked writeback.  Then the lock bits are removed
3469  * and the end_io handler clears the writeback ranges
3470  */
3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 			      void *data)
3473 {
3474 	struct inode *inode = page->mapping->host;
3475 	struct extent_page_data *epd = data;
3476 	u64 start = page_offset(page);
3477 	u64 page_end = start + PAGE_SIZE - 1;
3478 	int ret;
3479 	int nr = 0;
3480 	size_t pg_offset = 0;
3481 	loff_t i_size = i_size_read(inode);
3482 	unsigned long end_index = i_size >> PAGE_SHIFT;
3483 	int write_flags = 0;
3484 	unsigned long nr_written = 0;
3485 
3486 	if (wbc->sync_mode == WB_SYNC_ALL)
3487 		write_flags = REQ_SYNC;
3488 
3489 	trace___extent_writepage(page, inode, wbc);
3490 
3491 	WARN_ON(!PageLocked(page));
3492 
3493 	ClearPageError(page);
3494 
3495 	pg_offset = i_size & (PAGE_SIZE - 1);
3496 	if (page->index > end_index ||
3497 	   (page->index == end_index && !pg_offset)) {
3498 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 		unlock_page(page);
3500 		return 0;
3501 	}
3502 
3503 	if (page->index == end_index) {
3504 		char *userpage;
3505 
3506 		userpage = kmap_atomic(page);
3507 		memset(userpage + pg_offset, 0,
3508 		       PAGE_SIZE - pg_offset);
3509 		kunmap_atomic(userpage);
3510 		flush_dcache_page(page);
3511 	}
3512 
3513 	pg_offset = 0;
3514 
3515 	set_page_extent_mapped(page);
3516 
3517 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 	if (ret == 1)
3519 		goto done_unlocked;
3520 	if (ret)
3521 		goto done;
3522 
3523 	ret = __extent_writepage_io(inode, page, wbc, epd,
3524 				    i_size, nr_written, write_flags, &nr);
3525 	if (ret == 1)
3526 		goto done_unlocked;
3527 
3528 done:
3529 	if (nr == 0) {
3530 		/* make sure the mapping tag for page dirty gets cleared */
3531 		set_page_writeback(page);
3532 		end_page_writeback(page);
3533 	}
3534 	if (PageError(page)) {
3535 		ret = ret < 0 ? ret : -EIO;
3536 		end_extent_writepage(page, ret, start, page_end);
3537 	}
3538 	unlock_page(page);
3539 	return ret;
3540 
3541 done_unlocked:
3542 	return 0;
3543 }
3544 
3545 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546 {
3547 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 		       TASK_UNINTERRUPTIBLE);
3549 }
3550 
3551 static noinline_for_stack int
3552 lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 			  struct btrfs_fs_info *fs_info,
3554 			  struct extent_page_data *epd)
3555 {
3556 	unsigned long i, num_pages;
3557 	int flush = 0;
3558 	int ret = 0;
3559 
3560 	if (!btrfs_try_tree_write_lock(eb)) {
3561 		flush = 1;
3562 		flush_write_bio(epd);
3563 		btrfs_tree_lock(eb);
3564 	}
3565 
3566 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 		btrfs_tree_unlock(eb);
3568 		if (!epd->sync_io)
3569 			return 0;
3570 		if (!flush) {
3571 			flush_write_bio(epd);
3572 			flush = 1;
3573 		}
3574 		while (1) {
3575 			wait_on_extent_buffer_writeback(eb);
3576 			btrfs_tree_lock(eb);
3577 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 				break;
3579 			btrfs_tree_unlock(eb);
3580 		}
3581 	}
3582 
3583 	/*
3584 	 * We need to do this to prevent races in people who check if the eb is
3585 	 * under IO since we can end up having no IO bits set for a short period
3586 	 * of time.
3587 	 */
3588 	spin_lock(&eb->refs_lock);
3589 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 		spin_unlock(&eb->refs_lock);
3592 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 				     -eb->len,
3595 				     fs_info->dirty_metadata_batch);
3596 		ret = 1;
3597 	} else {
3598 		spin_unlock(&eb->refs_lock);
3599 	}
3600 
3601 	btrfs_tree_unlock(eb);
3602 
3603 	if (!ret)
3604 		return ret;
3605 
3606 	num_pages = num_extent_pages(eb->start, eb->len);
3607 	for (i = 0; i < num_pages; i++) {
3608 		struct page *p = eb->pages[i];
3609 
3610 		if (!trylock_page(p)) {
3611 			if (!flush) {
3612 				flush_write_bio(epd);
3613 				flush = 1;
3614 			}
3615 			lock_page(p);
3616 		}
3617 	}
3618 
3619 	return ret;
3620 }
3621 
3622 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623 {
3624 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 	smp_mb__after_atomic();
3626 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627 }
3628 
3629 static void set_btree_ioerr(struct page *page)
3630 {
3631 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632 
3633 	SetPageError(page);
3634 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 		return;
3636 
3637 	/*
3638 	 * If writeback for a btree extent that doesn't belong to a log tree
3639 	 * failed, increment the counter transaction->eb_write_errors.
3640 	 * We do this because while the transaction is running and before it's
3641 	 * committing (when we call filemap_fdata[write|wait]_range against
3642 	 * the btree inode), we might have
3643 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 	 * returns an error or an error happens during writeback, when we're
3645 	 * committing the transaction we wouldn't know about it, since the pages
3646 	 * can be no longer dirty nor marked anymore for writeback (if a
3647 	 * subsequent modification to the extent buffer didn't happen before the
3648 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 	 * able to find the pages tagged with SetPageError at transaction
3650 	 * commit time. So if this happens we must abort the transaction,
3651 	 * otherwise we commit a super block with btree roots that point to
3652 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 	 * or the content of some node/leaf from a past generation that got
3654 	 * cowed or deleted and is no longer valid.
3655 	 *
3656 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 	 * not be enough - we need to distinguish between log tree extents vs
3658 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 	 * will catch and clear such errors in the mapping - and that call might
3660 	 * be from a log sync and not from a transaction commit. Also, checking
3661 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 	 * not done and would not be reliable - the eb might have been released
3663 	 * from memory and reading it back again means that flag would not be
3664 	 * set (since it's a runtime flag, not persisted on disk).
3665 	 *
3666 	 * Using the flags below in the btree inode also makes us achieve the
3667 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 	 * is called, the writeback for all dirty pages had already finished
3670 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 	 * filemap_fdatawait_range() would return success, as it could not know
3672 	 * that writeback errors happened (the pages were no longer tagged for
3673 	 * writeback).
3674 	 */
3675 	switch (eb->log_index) {
3676 	case -1:
3677 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678 		break;
3679 	case 0:
3680 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681 		break;
3682 	case 1:
3683 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684 		break;
3685 	default:
3686 		BUG(); /* unexpected, logic error */
3687 	}
3688 }
3689 
3690 static void end_bio_extent_buffer_writepage(struct bio *bio)
3691 {
3692 	struct bio_vec *bvec;
3693 	struct extent_buffer *eb;
3694 	int i, done;
3695 
3696 	bio_for_each_segment_all(bvec, bio, i) {
3697 		struct page *page = bvec->bv_page;
3698 
3699 		eb = (struct extent_buffer *)page->private;
3700 		BUG_ON(!eb);
3701 		done = atomic_dec_and_test(&eb->io_pages);
3702 
3703 		if (bio->bi_error ||
3704 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705 			ClearPageUptodate(page);
3706 			set_btree_ioerr(page);
3707 		}
3708 
3709 		end_page_writeback(page);
3710 
3711 		if (!done)
3712 			continue;
3713 
3714 		end_extent_buffer_writeback(eb);
3715 	}
3716 
3717 	bio_put(bio);
3718 }
3719 
3720 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721 			struct btrfs_fs_info *fs_info,
3722 			struct writeback_control *wbc,
3723 			struct extent_page_data *epd)
3724 {
3725 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727 	u64 offset = eb->start;
3728 	u32 nritems;
3729 	unsigned long i, num_pages;
3730 	unsigned long bio_flags = 0;
3731 	unsigned long start, end;
3732 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3733 	int ret = 0;
3734 
3735 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 	num_pages = num_extent_pages(eb->start, eb->len);
3737 	atomic_set(&eb->io_pages, num_pages);
3738 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 		bio_flags = EXTENT_BIO_TREE_LOG;
3740 
3741 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 	nritems = btrfs_header_nritems(eb);
3743 	if (btrfs_header_level(eb) > 0) {
3744 		end = btrfs_node_key_ptr_offset(nritems);
3745 
3746 		memzero_extent_buffer(eb, end, eb->len - end);
3747 	} else {
3748 		/*
3749 		 * leaf:
3750 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751 		 */
3752 		start = btrfs_item_nr_offset(nritems);
3753 		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3754 		memzero_extent_buffer(eb, start, end - start);
3755 	}
3756 
3757 	for (i = 0; i < num_pages; i++) {
3758 		struct page *p = eb->pages[i];
3759 
3760 		clear_page_dirty_for_io(p);
3761 		set_page_writeback(p);
3762 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3763 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3764 					 &epd->bio, -1,
3765 					 end_bio_extent_buffer_writepage,
3766 					 0, epd->bio_flags, bio_flags, false);
3767 		epd->bio_flags = bio_flags;
3768 		if (ret) {
3769 			set_btree_ioerr(p);
3770 			end_page_writeback(p);
3771 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3772 				end_extent_buffer_writeback(eb);
3773 			ret = -EIO;
3774 			break;
3775 		}
3776 		offset += PAGE_SIZE;
3777 		update_nr_written(p, wbc, 1);
3778 		unlock_page(p);
3779 	}
3780 
3781 	if (unlikely(ret)) {
3782 		for (; i < num_pages; i++) {
3783 			struct page *p = eb->pages[i];
3784 			clear_page_dirty_for_io(p);
3785 			unlock_page(p);
3786 		}
3787 	}
3788 
3789 	return ret;
3790 }
3791 
3792 int btree_write_cache_pages(struct address_space *mapping,
3793 				   struct writeback_control *wbc)
3794 {
3795 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3796 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3797 	struct extent_buffer *eb, *prev_eb = NULL;
3798 	struct extent_page_data epd = {
3799 		.bio = NULL,
3800 		.tree = tree,
3801 		.extent_locked = 0,
3802 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3803 		.bio_flags = 0,
3804 	};
3805 	int ret = 0;
3806 	int done = 0;
3807 	int nr_to_write_done = 0;
3808 	struct pagevec pvec;
3809 	int nr_pages;
3810 	pgoff_t index;
3811 	pgoff_t end;		/* Inclusive */
3812 	int scanned = 0;
3813 	int tag;
3814 
3815 	pagevec_init(&pvec, 0);
3816 	if (wbc->range_cyclic) {
3817 		index = mapping->writeback_index; /* Start from prev offset */
3818 		end = -1;
3819 	} else {
3820 		index = wbc->range_start >> PAGE_SHIFT;
3821 		end = wbc->range_end >> PAGE_SHIFT;
3822 		scanned = 1;
3823 	}
3824 	if (wbc->sync_mode == WB_SYNC_ALL)
3825 		tag = PAGECACHE_TAG_TOWRITE;
3826 	else
3827 		tag = PAGECACHE_TAG_DIRTY;
3828 retry:
3829 	if (wbc->sync_mode == WB_SYNC_ALL)
3830 		tag_pages_for_writeback(mapping, index, end);
3831 	while (!done && !nr_to_write_done && (index <= end) &&
3832 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3833 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3834 		unsigned i;
3835 
3836 		scanned = 1;
3837 		for (i = 0; i < nr_pages; i++) {
3838 			struct page *page = pvec.pages[i];
3839 
3840 			if (!PagePrivate(page))
3841 				continue;
3842 
3843 			if (!wbc->range_cyclic && page->index > end) {
3844 				done = 1;
3845 				break;
3846 			}
3847 
3848 			spin_lock(&mapping->private_lock);
3849 			if (!PagePrivate(page)) {
3850 				spin_unlock(&mapping->private_lock);
3851 				continue;
3852 			}
3853 
3854 			eb = (struct extent_buffer *)page->private;
3855 
3856 			/*
3857 			 * Shouldn't happen and normally this would be a BUG_ON
3858 			 * but no sense in crashing the users box for something
3859 			 * we can survive anyway.
3860 			 */
3861 			if (WARN_ON(!eb)) {
3862 				spin_unlock(&mapping->private_lock);
3863 				continue;
3864 			}
3865 
3866 			if (eb == prev_eb) {
3867 				spin_unlock(&mapping->private_lock);
3868 				continue;
3869 			}
3870 
3871 			ret = atomic_inc_not_zero(&eb->refs);
3872 			spin_unlock(&mapping->private_lock);
3873 			if (!ret)
3874 				continue;
3875 
3876 			prev_eb = eb;
3877 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3878 			if (!ret) {
3879 				free_extent_buffer(eb);
3880 				continue;
3881 			}
3882 
3883 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3884 			if (ret) {
3885 				done = 1;
3886 				free_extent_buffer(eb);
3887 				break;
3888 			}
3889 			free_extent_buffer(eb);
3890 
3891 			/*
3892 			 * the filesystem may choose to bump up nr_to_write.
3893 			 * We have to make sure to honor the new nr_to_write
3894 			 * at any time
3895 			 */
3896 			nr_to_write_done = wbc->nr_to_write <= 0;
3897 		}
3898 		pagevec_release(&pvec);
3899 		cond_resched();
3900 	}
3901 	if (!scanned && !done) {
3902 		/*
3903 		 * We hit the last page and there is more work to be done: wrap
3904 		 * back to the start of the file
3905 		 */
3906 		scanned = 1;
3907 		index = 0;
3908 		goto retry;
3909 	}
3910 	flush_write_bio(&epd);
3911 	return ret;
3912 }
3913 
3914 /**
3915  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916  * @mapping: address space structure to write
3917  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918  * @writepage: function called for each page
3919  * @data: data passed to writepage function
3920  *
3921  * If a page is already under I/O, write_cache_pages() skips it, even
3922  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3923  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3924  * and msync() need to guarantee that all the data which was dirty at the time
3925  * the call was made get new I/O started against them.  If wbc->sync_mode is
3926  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927  * existing IO to complete.
3928  */
3929 static int extent_write_cache_pages(struct extent_io_tree *tree,
3930 			     struct address_space *mapping,
3931 			     struct writeback_control *wbc,
3932 			     writepage_t writepage, void *data,
3933 			     void (*flush_fn)(void *))
3934 {
3935 	struct inode *inode = mapping->host;
3936 	int ret = 0;
3937 	int done = 0;
3938 	int nr_to_write_done = 0;
3939 	struct pagevec pvec;
3940 	int nr_pages;
3941 	pgoff_t index;
3942 	pgoff_t end;		/* Inclusive */
3943 	pgoff_t done_index;
3944 	int range_whole = 0;
3945 	int scanned = 0;
3946 	int tag;
3947 
3948 	/*
3949 	 * We have to hold onto the inode so that ordered extents can do their
3950 	 * work when the IO finishes.  The alternative to this is failing to add
3951 	 * an ordered extent if the igrab() fails there and that is a huge pain
3952 	 * to deal with, so instead just hold onto the inode throughout the
3953 	 * writepages operation.  If it fails here we are freeing up the inode
3954 	 * anyway and we'd rather not waste our time writing out stuff that is
3955 	 * going to be truncated anyway.
3956 	 */
3957 	if (!igrab(inode))
3958 		return 0;
3959 
3960 	pagevec_init(&pvec, 0);
3961 	if (wbc->range_cyclic) {
3962 		index = mapping->writeback_index; /* Start from prev offset */
3963 		end = -1;
3964 	} else {
3965 		index = wbc->range_start >> PAGE_SHIFT;
3966 		end = wbc->range_end >> PAGE_SHIFT;
3967 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3968 			range_whole = 1;
3969 		scanned = 1;
3970 	}
3971 	if (wbc->sync_mode == WB_SYNC_ALL)
3972 		tag = PAGECACHE_TAG_TOWRITE;
3973 	else
3974 		tag = PAGECACHE_TAG_DIRTY;
3975 retry:
3976 	if (wbc->sync_mode == WB_SYNC_ALL)
3977 		tag_pages_for_writeback(mapping, index, end);
3978 	done_index = index;
3979 	while (!done && !nr_to_write_done && (index <= end) &&
3980 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3981 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3982 		unsigned i;
3983 
3984 		scanned = 1;
3985 		for (i = 0; i < nr_pages; i++) {
3986 			struct page *page = pvec.pages[i];
3987 
3988 			done_index = page->index;
3989 			/*
3990 			 * At this point we hold neither mapping->tree_lock nor
3991 			 * lock on the page itself: the page may be truncated or
3992 			 * invalidated (changing page->mapping to NULL), or even
3993 			 * swizzled back from swapper_space to tmpfs file
3994 			 * mapping
3995 			 */
3996 			if (!trylock_page(page)) {
3997 				flush_fn(data);
3998 				lock_page(page);
3999 			}
4000 
4001 			if (unlikely(page->mapping != mapping)) {
4002 				unlock_page(page);
4003 				continue;
4004 			}
4005 
4006 			if (!wbc->range_cyclic && page->index > end) {
4007 				done = 1;
4008 				unlock_page(page);
4009 				continue;
4010 			}
4011 
4012 			if (wbc->sync_mode != WB_SYNC_NONE) {
4013 				if (PageWriteback(page))
4014 					flush_fn(data);
4015 				wait_on_page_writeback(page);
4016 			}
4017 
4018 			if (PageWriteback(page) ||
4019 			    !clear_page_dirty_for_io(page)) {
4020 				unlock_page(page);
4021 				continue;
4022 			}
4023 
4024 			ret = (*writepage)(page, wbc, data);
4025 
4026 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4027 				unlock_page(page);
4028 				ret = 0;
4029 			}
4030 			if (ret < 0) {
4031 				/*
4032 				 * done_index is set past this page,
4033 				 * so media errors will not choke
4034 				 * background writeout for the entire
4035 				 * file. This has consequences for
4036 				 * range_cyclic semantics (ie. it may
4037 				 * not be suitable for data integrity
4038 				 * writeout).
4039 				 */
4040 				done_index = page->index + 1;
4041 				done = 1;
4042 				break;
4043 			}
4044 
4045 			/*
4046 			 * the filesystem may choose to bump up nr_to_write.
4047 			 * We have to make sure to honor the new nr_to_write
4048 			 * at any time
4049 			 */
4050 			nr_to_write_done = wbc->nr_to_write <= 0;
4051 		}
4052 		pagevec_release(&pvec);
4053 		cond_resched();
4054 	}
4055 	if (!scanned && !done) {
4056 		/*
4057 		 * We hit the last page and there is more work to be done: wrap
4058 		 * back to the start of the file
4059 		 */
4060 		scanned = 1;
4061 		index = 0;
4062 		goto retry;
4063 	}
4064 
4065 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4066 		mapping->writeback_index = done_index;
4067 
4068 	btrfs_add_delayed_iput(inode);
4069 	return ret;
4070 }
4071 
4072 static void flush_epd_write_bio(struct extent_page_data *epd)
4073 {
4074 	if (epd->bio) {
4075 		int ret;
4076 
4077 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4078 				 epd->sync_io ? REQ_SYNC : 0);
4079 
4080 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4081 		BUG_ON(ret < 0); /* -ENOMEM */
4082 		epd->bio = NULL;
4083 	}
4084 }
4085 
4086 static noinline void flush_write_bio(void *data)
4087 {
4088 	struct extent_page_data *epd = data;
4089 	flush_epd_write_bio(epd);
4090 }
4091 
4092 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4093 			  get_extent_t *get_extent,
4094 			  struct writeback_control *wbc)
4095 {
4096 	int ret;
4097 	struct extent_page_data epd = {
4098 		.bio = NULL,
4099 		.tree = tree,
4100 		.get_extent = get_extent,
4101 		.extent_locked = 0,
4102 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4103 		.bio_flags = 0,
4104 	};
4105 
4106 	ret = __extent_writepage(page, wbc, &epd);
4107 
4108 	flush_epd_write_bio(&epd);
4109 	return ret;
4110 }
4111 
4112 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4113 			      u64 start, u64 end, get_extent_t *get_extent,
4114 			      int mode)
4115 {
4116 	int ret = 0;
4117 	struct address_space *mapping = inode->i_mapping;
4118 	struct page *page;
4119 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4120 		PAGE_SHIFT;
4121 
4122 	struct extent_page_data epd = {
4123 		.bio = NULL,
4124 		.tree = tree,
4125 		.get_extent = get_extent,
4126 		.extent_locked = 1,
4127 		.sync_io = mode == WB_SYNC_ALL,
4128 		.bio_flags = 0,
4129 	};
4130 	struct writeback_control wbc_writepages = {
4131 		.sync_mode	= mode,
4132 		.nr_to_write	= nr_pages * 2,
4133 		.range_start	= start,
4134 		.range_end	= end + 1,
4135 	};
4136 
4137 	while (start <= end) {
4138 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4139 		if (clear_page_dirty_for_io(page))
4140 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4141 		else {
4142 			if (tree->ops && tree->ops->writepage_end_io_hook)
4143 				tree->ops->writepage_end_io_hook(page, start,
4144 						 start + PAGE_SIZE - 1,
4145 						 NULL, 1);
4146 			unlock_page(page);
4147 		}
4148 		put_page(page);
4149 		start += PAGE_SIZE;
4150 	}
4151 
4152 	flush_epd_write_bio(&epd);
4153 	return ret;
4154 }
4155 
4156 int extent_writepages(struct extent_io_tree *tree,
4157 		      struct address_space *mapping,
4158 		      get_extent_t *get_extent,
4159 		      struct writeback_control *wbc)
4160 {
4161 	int ret = 0;
4162 	struct extent_page_data epd = {
4163 		.bio = NULL,
4164 		.tree = tree,
4165 		.get_extent = get_extent,
4166 		.extent_locked = 0,
4167 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4168 		.bio_flags = 0,
4169 	};
4170 
4171 	ret = extent_write_cache_pages(tree, mapping, wbc,
4172 				       __extent_writepage, &epd,
4173 				       flush_write_bio);
4174 	flush_epd_write_bio(&epd);
4175 	return ret;
4176 }
4177 
4178 int extent_readpages(struct extent_io_tree *tree,
4179 		     struct address_space *mapping,
4180 		     struct list_head *pages, unsigned nr_pages,
4181 		     get_extent_t get_extent)
4182 {
4183 	struct bio *bio = NULL;
4184 	unsigned page_idx;
4185 	unsigned long bio_flags = 0;
4186 	struct page *pagepool[16];
4187 	struct page *page;
4188 	struct extent_map *em_cached = NULL;
4189 	int nr = 0;
4190 	u64 prev_em_start = (u64)-1;
4191 
4192 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4193 		page = list_entry(pages->prev, struct page, lru);
4194 
4195 		prefetchw(&page->flags);
4196 		list_del(&page->lru);
4197 		if (add_to_page_cache_lru(page, mapping,
4198 					page->index,
4199 					readahead_gfp_mask(mapping))) {
4200 			put_page(page);
4201 			continue;
4202 		}
4203 
4204 		pagepool[nr++] = page;
4205 		if (nr < ARRAY_SIZE(pagepool))
4206 			continue;
4207 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4208 				   &bio, 0, &bio_flags, &prev_em_start);
4209 		nr = 0;
4210 	}
4211 	if (nr)
4212 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213 				   &bio, 0, &bio_flags, &prev_em_start);
4214 
4215 	if (em_cached)
4216 		free_extent_map(em_cached);
4217 
4218 	BUG_ON(!list_empty(pages));
4219 	if (bio)
4220 		return submit_one_bio(bio, 0, bio_flags);
4221 	return 0;
4222 }
4223 
4224 /*
4225  * basic invalidatepage code, this waits on any locked or writeback
4226  * ranges corresponding to the page, and then deletes any extent state
4227  * records from the tree
4228  */
4229 int extent_invalidatepage(struct extent_io_tree *tree,
4230 			  struct page *page, unsigned long offset)
4231 {
4232 	struct extent_state *cached_state = NULL;
4233 	u64 start = page_offset(page);
4234 	u64 end = start + PAGE_SIZE - 1;
4235 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4236 
4237 	start += ALIGN(offset, blocksize);
4238 	if (start > end)
4239 		return 0;
4240 
4241 	lock_extent_bits(tree, start, end, &cached_state);
4242 	wait_on_page_writeback(page);
4243 	clear_extent_bit(tree, start, end,
4244 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4245 			 EXTENT_DO_ACCOUNTING,
4246 			 1, 1, &cached_state, GFP_NOFS);
4247 	return 0;
4248 }
4249 
4250 /*
4251  * a helper for releasepage, this tests for areas of the page that
4252  * are locked or under IO and drops the related state bits if it is safe
4253  * to drop the page.
4254  */
4255 static int try_release_extent_state(struct extent_map_tree *map,
4256 				    struct extent_io_tree *tree,
4257 				    struct page *page, gfp_t mask)
4258 {
4259 	u64 start = page_offset(page);
4260 	u64 end = start + PAGE_SIZE - 1;
4261 	int ret = 1;
4262 
4263 	if (test_range_bit(tree, start, end,
4264 			   EXTENT_IOBITS, 0, NULL))
4265 		ret = 0;
4266 	else {
4267 		if ((mask & GFP_NOFS) == GFP_NOFS)
4268 			mask = GFP_NOFS;
4269 		/*
4270 		 * at this point we can safely clear everything except the
4271 		 * locked bit and the nodatasum bit
4272 		 */
4273 		ret = clear_extent_bit(tree, start, end,
4274 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4275 				 0, 0, NULL, mask);
4276 
4277 		/* if clear_extent_bit failed for enomem reasons,
4278 		 * we can't allow the release to continue.
4279 		 */
4280 		if (ret < 0)
4281 			ret = 0;
4282 		else
4283 			ret = 1;
4284 	}
4285 	return ret;
4286 }
4287 
4288 /*
4289  * a helper for releasepage.  As long as there are no locked extents
4290  * in the range corresponding to the page, both state records and extent
4291  * map records are removed
4292  */
4293 int try_release_extent_mapping(struct extent_map_tree *map,
4294 			       struct extent_io_tree *tree, struct page *page,
4295 			       gfp_t mask)
4296 {
4297 	struct extent_map *em;
4298 	u64 start = page_offset(page);
4299 	u64 end = start + PAGE_SIZE - 1;
4300 
4301 	if (gfpflags_allow_blocking(mask) &&
4302 	    page->mapping->host->i_size > SZ_16M) {
4303 		u64 len;
4304 		while (start <= end) {
4305 			len = end - start + 1;
4306 			write_lock(&map->lock);
4307 			em = lookup_extent_mapping(map, start, len);
4308 			if (!em) {
4309 				write_unlock(&map->lock);
4310 				break;
4311 			}
4312 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4313 			    em->start != start) {
4314 				write_unlock(&map->lock);
4315 				free_extent_map(em);
4316 				break;
4317 			}
4318 			if (!test_range_bit(tree, em->start,
4319 					    extent_map_end(em) - 1,
4320 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4321 					    0, NULL)) {
4322 				remove_extent_mapping(map, em);
4323 				/* once for the rb tree */
4324 				free_extent_map(em);
4325 			}
4326 			start = extent_map_end(em);
4327 			write_unlock(&map->lock);
4328 
4329 			/* once for us */
4330 			free_extent_map(em);
4331 		}
4332 	}
4333 	return try_release_extent_state(map, tree, page, mask);
4334 }
4335 
4336 /*
4337  * helper function for fiemap, which doesn't want to see any holes.
4338  * This maps until we find something past 'last'
4339  */
4340 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4341 						u64 offset,
4342 						u64 last,
4343 						get_extent_t *get_extent)
4344 {
4345 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4346 	struct extent_map *em;
4347 	u64 len;
4348 
4349 	if (offset >= last)
4350 		return NULL;
4351 
4352 	while (1) {
4353 		len = last - offset;
4354 		if (len == 0)
4355 			break;
4356 		len = ALIGN(len, sectorsize);
4357 		em = get_extent(inode, NULL, 0, offset, len, 0);
4358 		if (IS_ERR_OR_NULL(em))
4359 			return em;
4360 
4361 		/* if this isn't a hole return it */
4362 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4363 		    em->block_start != EXTENT_MAP_HOLE) {
4364 			return em;
4365 		}
4366 
4367 		/* this is a hole, advance to the next extent */
4368 		offset = extent_map_end(em);
4369 		free_extent_map(em);
4370 		if (offset >= last)
4371 			break;
4372 	}
4373 	return NULL;
4374 }
4375 
4376 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4377 		__u64 start, __u64 len, get_extent_t *get_extent)
4378 {
4379 	int ret = 0;
4380 	u64 off = start;
4381 	u64 max = start + len;
4382 	u32 flags = 0;
4383 	u32 found_type;
4384 	u64 last;
4385 	u64 last_for_get_extent = 0;
4386 	u64 disko = 0;
4387 	u64 isize = i_size_read(inode);
4388 	struct btrfs_key found_key;
4389 	struct extent_map *em = NULL;
4390 	struct extent_state *cached_state = NULL;
4391 	struct btrfs_path *path;
4392 	struct btrfs_root *root = BTRFS_I(inode)->root;
4393 	int end = 0;
4394 	u64 em_start = 0;
4395 	u64 em_len = 0;
4396 	u64 em_end = 0;
4397 
4398 	if (len == 0)
4399 		return -EINVAL;
4400 
4401 	path = btrfs_alloc_path();
4402 	if (!path)
4403 		return -ENOMEM;
4404 	path->leave_spinning = 1;
4405 
4406 	start = round_down(start, btrfs_inode_sectorsize(inode));
4407 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4408 
4409 	/*
4410 	 * lookup the last file extent.  We're not using i_size here
4411 	 * because there might be preallocation past i_size
4412 	 */
4413 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4414 				       0);
4415 	if (ret < 0) {
4416 		btrfs_free_path(path);
4417 		return ret;
4418 	} else {
4419 		WARN_ON(!ret);
4420 		if (ret == 1)
4421 			ret = 0;
4422 	}
4423 
4424 	path->slots[0]--;
4425 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4426 	found_type = found_key.type;
4427 
4428 	/* No extents, but there might be delalloc bits */
4429 	if (found_key.objectid != btrfs_ino(inode) ||
4430 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4431 		/* have to trust i_size as the end */
4432 		last = (u64)-1;
4433 		last_for_get_extent = isize;
4434 	} else {
4435 		/*
4436 		 * remember the start of the last extent.  There are a
4437 		 * bunch of different factors that go into the length of the
4438 		 * extent, so its much less complex to remember where it started
4439 		 */
4440 		last = found_key.offset;
4441 		last_for_get_extent = last + 1;
4442 	}
4443 	btrfs_release_path(path);
4444 
4445 	/*
4446 	 * we might have some extents allocated but more delalloc past those
4447 	 * extents.  so, we trust isize unless the start of the last extent is
4448 	 * beyond isize
4449 	 */
4450 	if (last < isize) {
4451 		last = (u64)-1;
4452 		last_for_get_extent = isize;
4453 	}
4454 
4455 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4456 			 &cached_state);
4457 
4458 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4459 				   get_extent);
4460 	if (!em)
4461 		goto out;
4462 	if (IS_ERR(em)) {
4463 		ret = PTR_ERR(em);
4464 		goto out;
4465 	}
4466 
4467 	while (!end) {
4468 		u64 offset_in_extent = 0;
4469 
4470 		/* break if the extent we found is outside the range */
4471 		if (em->start >= max || extent_map_end(em) < off)
4472 			break;
4473 
4474 		/*
4475 		 * get_extent may return an extent that starts before our
4476 		 * requested range.  We have to make sure the ranges
4477 		 * we return to fiemap always move forward and don't
4478 		 * overlap, so adjust the offsets here
4479 		 */
4480 		em_start = max(em->start, off);
4481 
4482 		/*
4483 		 * record the offset from the start of the extent
4484 		 * for adjusting the disk offset below.  Only do this if the
4485 		 * extent isn't compressed since our in ram offset may be past
4486 		 * what we have actually allocated on disk.
4487 		 */
4488 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4489 			offset_in_extent = em_start - em->start;
4490 		em_end = extent_map_end(em);
4491 		em_len = em_end - em_start;
4492 		disko = 0;
4493 		flags = 0;
4494 
4495 		/*
4496 		 * bump off for our next call to get_extent
4497 		 */
4498 		off = extent_map_end(em);
4499 		if (off >= max)
4500 			end = 1;
4501 
4502 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4503 			end = 1;
4504 			flags |= FIEMAP_EXTENT_LAST;
4505 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4506 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4507 				  FIEMAP_EXTENT_NOT_ALIGNED);
4508 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4509 			flags |= (FIEMAP_EXTENT_DELALLOC |
4510 				  FIEMAP_EXTENT_UNKNOWN);
4511 		} else if (fieinfo->fi_extents_max) {
4512 			struct btrfs_trans_handle *trans;
4513 
4514 			u64 bytenr = em->block_start -
4515 				(em->start - em->orig_start);
4516 
4517 			disko = em->block_start + offset_in_extent;
4518 
4519 			/*
4520 			 * We need a trans handle to get delayed refs
4521 			 */
4522 			trans = btrfs_join_transaction(root);
4523 			/*
4524 			 * It's OK if we can't start a trans we can still check
4525 			 * from commit_root
4526 			 */
4527 			if (IS_ERR(trans))
4528 				trans = NULL;
4529 
4530 			/*
4531 			 * As btrfs supports shared space, this information
4532 			 * can be exported to userspace tools via
4533 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4534 			 * then we're just getting a count and we can skip the
4535 			 * lookup stuff.
4536 			 */
4537 			ret = btrfs_check_shared(trans, root->fs_info,
4538 						 root->objectid,
4539 						 btrfs_ino(inode), bytenr);
4540 			if (trans)
4541 				btrfs_end_transaction(trans);
4542 			if (ret < 0)
4543 				goto out_free;
4544 			if (ret)
4545 				flags |= FIEMAP_EXTENT_SHARED;
4546 			ret = 0;
4547 		}
4548 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4549 			flags |= FIEMAP_EXTENT_ENCODED;
4550 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4552 
4553 		free_extent_map(em);
4554 		em = NULL;
4555 		if ((em_start >= last) || em_len == (u64)-1 ||
4556 		   (last == (u64)-1 && isize <= em_end)) {
4557 			flags |= FIEMAP_EXTENT_LAST;
4558 			end = 1;
4559 		}
4560 
4561 		/* now scan forward to see if this is really the last extent. */
4562 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4563 					   get_extent);
4564 		if (IS_ERR(em)) {
4565 			ret = PTR_ERR(em);
4566 			goto out;
4567 		}
4568 		if (!em) {
4569 			flags |= FIEMAP_EXTENT_LAST;
4570 			end = 1;
4571 		}
4572 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4573 					      em_len, flags);
4574 		if (ret) {
4575 			if (ret == 1)
4576 				ret = 0;
4577 			goto out_free;
4578 		}
4579 	}
4580 out_free:
4581 	free_extent_map(em);
4582 out:
4583 	btrfs_free_path(path);
4584 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4585 			     &cached_state, GFP_NOFS);
4586 	return ret;
4587 }
4588 
4589 static void __free_extent_buffer(struct extent_buffer *eb)
4590 {
4591 	btrfs_leak_debug_del(&eb->leak_list);
4592 	kmem_cache_free(extent_buffer_cache, eb);
4593 }
4594 
4595 int extent_buffer_under_io(struct extent_buffer *eb)
4596 {
4597 	return (atomic_read(&eb->io_pages) ||
4598 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4599 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4600 }
4601 
4602 /*
4603  * Helper for releasing extent buffer page.
4604  */
4605 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4606 {
4607 	unsigned long index;
4608 	struct page *page;
4609 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4610 
4611 	BUG_ON(extent_buffer_under_io(eb));
4612 
4613 	index = num_extent_pages(eb->start, eb->len);
4614 	if (index == 0)
4615 		return;
4616 
4617 	do {
4618 		index--;
4619 		page = eb->pages[index];
4620 		if (!page)
4621 			continue;
4622 		if (mapped)
4623 			spin_lock(&page->mapping->private_lock);
4624 		/*
4625 		 * We do this since we'll remove the pages after we've
4626 		 * removed the eb from the radix tree, so we could race
4627 		 * and have this page now attached to the new eb.  So
4628 		 * only clear page_private if it's still connected to
4629 		 * this eb.
4630 		 */
4631 		if (PagePrivate(page) &&
4632 		    page->private == (unsigned long)eb) {
4633 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 			BUG_ON(PageDirty(page));
4635 			BUG_ON(PageWriteback(page));
4636 			/*
4637 			 * We need to make sure we haven't be attached
4638 			 * to a new eb.
4639 			 */
4640 			ClearPagePrivate(page);
4641 			set_page_private(page, 0);
4642 			/* One for the page private */
4643 			put_page(page);
4644 		}
4645 
4646 		if (mapped)
4647 			spin_unlock(&page->mapping->private_lock);
4648 
4649 		/* One for when we allocated the page */
4650 		put_page(page);
4651 	} while (index != 0);
4652 }
4653 
4654 /*
4655  * Helper for releasing the extent buffer.
4656  */
4657 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658 {
4659 	btrfs_release_extent_buffer_page(eb);
4660 	__free_extent_buffer(eb);
4661 }
4662 
4663 static struct extent_buffer *
4664 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 		      unsigned long len)
4666 {
4667 	struct extent_buffer *eb = NULL;
4668 
4669 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 	eb->start = start;
4671 	eb->len = len;
4672 	eb->fs_info = fs_info;
4673 	eb->bflags = 0;
4674 	rwlock_init(&eb->lock);
4675 	atomic_set(&eb->write_locks, 0);
4676 	atomic_set(&eb->read_locks, 0);
4677 	atomic_set(&eb->blocking_readers, 0);
4678 	atomic_set(&eb->blocking_writers, 0);
4679 	atomic_set(&eb->spinning_readers, 0);
4680 	atomic_set(&eb->spinning_writers, 0);
4681 	eb->lock_nested = 0;
4682 	init_waitqueue_head(&eb->write_lock_wq);
4683 	init_waitqueue_head(&eb->read_lock_wq);
4684 
4685 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686 
4687 	spin_lock_init(&eb->refs_lock);
4688 	atomic_set(&eb->refs, 1);
4689 	atomic_set(&eb->io_pages, 0);
4690 
4691 	/*
4692 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 	 */
4694 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697 
4698 	return eb;
4699 }
4700 
4701 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702 {
4703 	unsigned long i;
4704 	struct page *p;
4705 	struct extent_buffer *new;
4706 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4707 
4708 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 	if (new == NULL)
4710 		return NULL;
4711 
4712 	for (i = 0; i < num_pages; i++) {
4713 		p = alloc_page(GFP_NOFS);
4714 		if (!p) {
4715 			btrfs_release_extent_buffer(new);
4716 			return NULL;
4717 		}
4718 		attach_extent_buffer_page(new, p);
4719 		WARN_ON(PageDirty(p));
4720 		SetPageUptodate(p);
4721 		new->pages[i] = p;
4722 		copy_page(page_address(p), page_address(src->pages[i]));
4723 	}
4724 
4725 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4727 
4728 	return new;
4729 }
4730 
4731 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 						  u64 start, unsigned long len)
4733 {
4734 	struct extent_buffer *eb;
4735 	unsigned long num_pages;
4736 	unsigned long i;
4737 
4738 	num_pages = num_extent_pages(start, len);
4739 
4740 	eb = __alloc_extent_buffer(fs_info, start, len);
4741 	if (!eb)
4742 		return NULL;
4743 
4744 	for (i = 0; i < num_pages; i++) {
4745 		eb->pages[i] = alloc_page(GFP_NOFS);
4746 		if (!eb->pages[i])
4747 			goto err;
4748 	}
4749 	set_extent_buffer_uptodate(eb);
4750 	btrfs_set_header_nritems(eb, 0);
4751 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4752 
4753 	return eb;
4754 err:
4755 	for (; i > 0; i--)
4756 		__free_page(eb->pages[i - 1]);
4757 	__free_extent_buffer(eb);
4758 	return NULL;
4759 }
4760 
4761 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4762 						u64 start)
4763 {
4764 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4765 }
4766 
4767 static void check_buffer_tree_ref(struct extent_buffer *eb)
4768 {
4769 	int refs;
4770 	/* the ref bit is tricky.  We have to make sure it is set
4771 	 * if we have the buffer dirty.   Otherwise the
4772 	 * code to free a buffer can end up dropping a dirty
4773 	 * page
4774 	 *
4775 	 * Once the ref bit is set, it won't go away while the
4776 	 * buffer is dirty or in writeback, and it also won't
4777 	 * go away while we have the reference count on the
4778 	 * eb bumped.
4779 	 *
4780 	 * We can't just set the ref bit without bumping the
4781 	 * ref on the eb because free_extent_buffer might
4782 	 * see the ref bit and try to clear it.  If this happens
4783 	 * free_extent_buffer might end up dropping our original
4784 	 * ref by mistake and freeing the page before we are able
4785 	 * to add one more ref.
4786 	 *
4787 	 * So bump the ref count first, then set the bit.  If someone
4788 	 * beat us to it, drop the ref we added.
4789 	 */
4790 	refs = atomic_read(&eb->refs);
4791 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4792 		return;
4793 
4794 	spin_lock(&eb->refs_lock);
4795 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796 		atomic_inc(&eb->refs);
4797 	spin_unlock(&eb->refs_lock);
4798 }
4799 
4800 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4801 		struct page *accessed)
4802 {
4803 	unsigned long num_pages, i;
4804 
4805 	check_buffer_tree_ref(eb);
4806 
4807 	num_pages = num_extent_pages(eb->start, eb->len);
4808 	for (i = 0; i < num_pages; i++) {
4809 		struct page *p = eb->pages[i];
4810 
4811 		if (p != accessed)
4812 			mark_page_accessed(p);
4813 	}
4814 }
4815 
4816 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4817 					 u64 start)
4818 {
4819 	struct extent_buffer *eb;
4820 
4821 	rcu_read_lock();
4822 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4823 			       start >> PAGE_SHIFT);
4824 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4825 		rcu_read_unlock();
4826 		/*
4827 		 * Lock our eb's refs_lock to avoid races with
4828 		 * free_extent_buffer. When we get our eb it might be flagged
4829 		 * with EXTENT_BUFFER_STALE and another task running
4830 		 * free_extent_buffer might have seen that flag set,
4831 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832 		 * writeback flags not set) and it's still in the tree (flag
4833 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834 		 * of decrementing the extent buffer's reference count twice.
4835 		 * So here we could race and increment the eb's reference count,
4836 		 * clear its stale flag, mark it as dirty and drop our reference
4837 		 * before the other task finishes executing free_extent_buffer,
4838 		 * which would later result in an attempt to free an extent
4839 		 * buffer that is dirty.
4840 		 */
4841 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4842 			spin_lock(&eb->refs_lock);
4843 			spin_unlock(&eb->refs_lock);
4844 		}
4845 		mark_extent_buffer_accessed(eb, NULL);
4846 		return eb;
4847 	}
4848 	rcu_read_unlock();
4849 
4850 	return NULL;
4851 }
4852 
4853 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4855 					u64 start)
4856 {
4857 	struct extent_buffer *eb, *exists = NULL;
4858 	int ret;
4859 
4860 	eb = find_extent_buffer(fs_info, start);
4861 	if (eb)
4862 		return eb;
4863 	eb = alloc_dummy_extent_buffer(fs_info, start);
4864 	if (!eb)
4865 		return NULL;
4866 	eb->fs_info = fs_info;
4867 again:
4868 	ret = radix_tree_preload(GFP_NOFS);
4869 	if (ret)
4870 		goto free_eb;
4871 	spin_lock(&fs_info->buffer_lock);
4872 	ret = radix_tree_insert(&fs_info->buffer_radix,
4873 				start >> PAGE_SHIFT, eb);
4874 	spin_unlock(&fs_info->buffer_lock);
4875 	radix_tree_preload_end();
4876 	if (ret == -EEXIST) {
4877 		exists = find_extent_buffer(fs_info, start);
4878 		if (exists)
4879 			goto free_eb;
4880 		else
4881 			goto again;
4882 	}
4883 	check_buffer_tree_ref(eb);
4884 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4885 
4886 	/*
4887 	 * We will free dummy extent buffer's if they come into
4888 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4889 	 * want the buffers to stay in memory until we're done with them, so
4890 	 * bump the ref count again.
4891 	 */
4892 	atomic_inc(&eb->refs);
4893 	return eb;
4894 free_eb:
4895 	btrfs_release_extent_buffer(eb);
4896 	return exists;
4897 }
4898 #endif
4899 
4900 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4901 					  u64 start)
4902 {
4903 	unsigned long len = fs_info->nodesize;
4904 	unsigned long num_pages = num_extent_pages(start, len);
4905 	unsigned long i;
4906 	unsigned long index = start >> PAGE_SHIFT;
4907 	struct extent_buffer *eb;
4908 	struct extent_buffer *exists = NULL;
4909 	struct page *p;
4910 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4911 	int uptodate = 1;
4912 	int ret;
4913 
4914 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4915 		btrfs_err(fs_info, "bad tree block start %llu", start);
4916 		return ERR_PTR(-EINVAL);
4917 	}
4918 
4919 	eb = find_extent_buffer(fs_info, start);
4920 	if (eb)
4921 		return eb;
4922 
4923 	eb = __alloc_extent_buffer(fs_info, start, len);
4924 	if (!eb)
4925 		return ERR_PTR(-ENOMEM);
4926 
4927 	for (i = 0; i < num_pages; i++, index++) {
4928 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4929 		if (!p) {
4930 			exists = ERR_PTR(-ENOMEM);
4931 			goto free_eb;
4932 		}
4933 
4934 		spin_lock(&mapping->private_lock);
4935 		if (PagePrivate(p)) {
4936 			/*
4937 			 * We could have already allocated an eb for this page
4938 			 * and attached one so lets see if we can get a ref on
4939 			 * the existing eb, and if we can we know it's good and
4940 			 * we can just return that one, else we know we can just
4941 			 * overwrite page->private.
4942 			 */
4943 			exists = (struct extent_buffer *)p->private;
4944 			if (atomic_inc_not_zero(&exists->refs)) {
4945 				spin_unlock(&mapping->private_lock);
4946 				unlock_page(p);
4947 				put_page(p);
4948 				mark_extent_buffer_accessed(exists, p);
4949 				goto free_eb;
4950 			}
4951 			exists = NULL;
4952 
4953 			/*
4954 			 * Do this so attach doesn't complain and we need to
4955 			 * drop the ref the old guy had.
4956 			 */
4957 			ClearPagePrivate(p);
4958 			WARN_ON(PageDirty(p));
4959 			put_page(p);
4960 		}
4961 		attach_extent_buffer_page(eb, p);
4962 		spin_unlock(&mapping->private_lock);
4963 		WARN_ON(PageDirty(p));
4964 		eb->pages[i] = p;
4965 		if (!PageUptodate(p))
4966 			uptodate = 0;
4967 
4968 		/*
4969 		 * see below about how we avoid a nasty race with release page
4970 		 * and why we unlock later
4971 		 */
4972 	}
4973 	if (uptodate)
4974 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4975 again:
4976 	ret = radix_tree_preload(GFP_NOFS);
4977 	if (ret) {
4978 		exists = ERR_PTR(ret);
4979 		goto free_eb;
4980 	}
4981 
4982 	spin_lock(&fs_info->buffer_lock);
4983 	ret = radix_tree_insert(&fs_info->buffer_radix,
4984 				start >> PAGE_SHIFT, eb);
4985 	spin_unlock(&fs_info->buffer_lock);
4986 	radix_tree_preload_end();
4987 	if (ret == -EEXIST) {
4988 		exists = find_extent_buffer(fs_info, start);
4989 		if (exists)
4990 			goto free_eb;
4991 		else
4992 			goto again;
4993 	}
4994 	/* add one reference for the tree */
4995 	check_buffer_tree_ref(eb);
4996 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4997 
4998 	/*
4999 	 * there is a race where release page may have
5000 	 * tried to find this extent buffer in the radix
5001 	 * but failed.  It will tell the VM it is safe to
5002 	 * reclaim the, and it will clear the page private bit.
5003 	 * We must make sure to set the page private bit properly
5004 	 * after the extent buffer is in the radix tree so
5005 	 * it doesn't get lost
5006 	 */
5007 	SetPageChecked(eb->pages[0]);
5008 	for (i = 1; i < num_pages; i++) {
5009 		p = eb->pages[i];
5010 		ClearPageChecked(p);
5011 		unlock_page(p);
5012 	}
5013 	unlock_page(eb->pages[0]);
5014 	return eb;
5015 
5016 free_eb:
5017 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5018 	for (i = 0; i < num_pages; i++) {
5019 		if (eb->pages[i])
5020 			unlock_page(eb->pages[i]);
5021 	}
5022 
5023 	btrfs_release_extent_buffer(eb);
5024 	return exists;
5025 }
5026 
5027 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5028 {
5029 	struct extent_buffer *eb =
5030 			container_of(head, struct extent_buffer, rcu_head);
5031 
5032 	__free_extent_buffer(eb);
5033 }
5034 
5035 /* Expects to have eb->eb_lock already held */
5036 static int release_extent_buffer(struct extent_buffer *eb)
5037 {
5038 	WARN_ON(atomic_read(&eb->refs) == 0);
5039 	if (atomic_dec_and_test(&eb->refs)) {
5040 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041 			struct btrfs_fs_info *fs_info = eb->fs_info;
5042 
5043 			spin_unlock(&eb->refs_lock);
5044 
5045 			spin_lock(&fs_info->buffer_lock);
5046 			radix_tree_delete(&fs_info->buffer_radix,
5047 					  eb->start >> PAGE_SHIFT);
5048 			spin_unlock(&fs_info->buffer_lock);
5049 		} else {
5050 			spin_unlock(&eb->refs_lock);
5051 		}
5052 
5053 		/* Should be safe to release our pages at this point */
5054 		btrfs_release_extent_buffer_page(eb);
5055 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5057 			__free_extent_buffer(eb);
5058 			return 1;
5059 		}
5060 #endif
5061 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062 		return 1;
5063 	}
5064 	spin_unlock(&eb->refs_lock);
5065 
5066 	return 0;
5067 }
5068 
5069 void free_extent_buffer(struct extent_buffer *eb)
5070 {
5071 	int refs;
5072 	int old;
5073 	if (!eb)
5074 		return;
5075 
5076 	while (1) {
5077 		refs = atomic_read(&eb->refs);
5078 		if (refs <= 3)
5079 			break;
5080 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5081 		if (old == refs)
5082 			return;
5083 	}
5084 
5085 	spin_lock(&eb->refs_lock);
5086 	if (atomic_read(&eb->refs) == 2 &&
5087 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5088 		atomic_dec(&eb->refs);
5089 
5090 	if (atomic_read(&eb->refs) == 2 &&
5091 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5092 	    !extent_buffer_under_io(eb) &&
5093 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 		atomic_dec(&eb->refs);
5095 
5096 	/*
5097 	 * I know this is terrible, but it's temporary until we stop tracking
5098 	 * the uptodate bits and such for the extent buffers.
5099 	 */
5100 	release_extent_buffer(eb);
5101 }
5102 
5103 void free_extent_buffer_stale(struct extent_buffer *eb)
5104 {
5105 	if (!eb)
5106 		return;
5107 
5108 	spin_lock(&eb->refs_lock);
5109 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5110 
5111 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5112 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5113 		atomic_dec(&eb->refs);
5114 	release_extent_buffer(eb);
5115 }
5116 
5117 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5118 {
5119 	unsigned long i;
5120 	unsigned long num_pages;
5121 	struct page *page;
5122 
5123 	num_pages = num_extent_pages(eb->start, eb->len);
5124 
5125 	for (i = 0; i < num_pages; i++) {
5126 		page = eb->pages[i];
5127 		if (!PageDirty(page))
5128 			continue;
5129 
5130 		lock_page(page);
5131 		WARN_ON(!PagePrivate(page));
5132 
5133 		clear_page_dirty_for_io(page);
5134 		spin_lock_irq(&page->mapping->tree_lock);
5135 		if (!PageDirty(page)) {
5136 			radix_tree_tag_clear(&page->mapping->page_tree,
5137 						page_index(page),
5138 						PAGECACHE_TAG_DIRTY);
5139 		}
5140 		spin_unlock_irq(&page->mapping->tree_lock);
5141 		ClearPageError(page);
5142 		unlock_page(page);
5143 	}
5144 	WARN_ON(atomic_read(&eb->refs) == 0);
5145 }
5146 
5147 int set_extent_buffer_dirty(struct extent_buffer *eb)
5148 {
5149 	unsigned long i;
5150 	unsigned long num_pages;
5151 	int was_dirty = 0;
5152 
5153 	check_buffer_tree_ref(eb);
5154 
5155 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5156 
5157 	num_pages = num_extent_pages(eb->start, eb->len);
5158 	WARN_ON(atomic_read(&eb->refs) == 0);
5159 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5160 
5161 	for (i = 0; i < num_pages; i++)
5162 		set_page_dirty(eb->pages[i]);
5163 	return was_dirty;
5164 }
5165 
5166 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5167 {
5168 	unsigned long i;
5169 	struct page *page;
5170 	unsigned long num_pages;
5171 
5172 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173 	num_pages = num_extent_pages(eb->start, eb->len);
5174 	for (i = 0; i < num_pages; i++) {
5175 		page = eb->pages[i];
5176 		if (page)
5177 			ClearPageUptodate(page);
5178 	}
5179 }
5180 
5181 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5182 {
5183 	unsigned long i;
5184 	struct page *page;
5185 	unsigned long num_pages;
5186 
5187 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188 	num_pages = num_extent_pages(eb->start, eb->len);
5189 	for (i = 0; i < num_pages; i++) {
5190 		page = eb->pages[i];
5191 		SetPageUptodate(page);
5192 	}
5193 }
5194 
5195 int extent_buffer_uptodate(struct extent_buffer *eb)
5196 {
5197 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5198 }
5199 
5200 int read_extent_buffer_pages(struct extent_io_tree *tree,
5201 			     struct extent_buffer *eb, int wait,
5202 			     get_extent_t *get_extent, int mirror_num)
5203 {
5204 	unsigned long i;
5205 	struct page *page;
5206 	int err;
5207 	int ret = 0;
5208 	int locked_pages = 0;
5209 	int all_uptodate = 1;
5210 	unsigned long num_pages;
5211 	unsigned long num_reads = 0;
5212 	struct bio *bio = NULL;
5213 	unsigned long bio_flags = 0;
5214 
5215 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216 		return 0;
5217 
5218 	num_pages = num_extent_pages(eb->start, eb->len);
5219 	for (i = 0; i < num_pages; i++) {
5220 		page = eb->pages[i];
5221 		if (wait == WAIT_NONE) {
5222 			if (!trylock_page(page))
5223 				goto unlock_exit;
5224 		} else {
5225 			lock_page(page);
5226 		}
5227 		locked_pages++;
5228 	}
5229 	/*
5230 	 * We need to firstly lock all pages to make sure that
5231 	 * the uptodate bit of our pages won't be affected by
5232 	 * clear_extent_buffer_uptodate().
5233 	 */
5234 	for (i = 0; i < num_pages; i++) {
5235 		page = eb->pages[i];
5236 		if (!PageUptodate(page)) {
5237 			num_reads++;
5238 			all_uptodate = 0;
5239 		}
5240 	}
5241 
5242 	if (all_uptodate) {
5243 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244 		goto unlock_exit;
5245 	}
5246 
5247 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248 	eb->read_mirror = 0;
5249 	atomic_set(&eb->io_pages, num_reads);
5250 	for (i = 0; i < num_pages; i++) {
5251 		page = eb->pages[i];
5252 
5253 		if (!PageUptodate(page)) {
5254 			if (ret) {
5255 				atomic_dec(&eb->io_pages);
5256 				unlock_page(page);
5257 				continue;
5258 			}
5259 
5260 			ClearPageError(page);
5261 			err = __extent_read_full_page(tree, page,
5262 						      get_extent, &bio,
5263 						      mirror_num, &bio_flags,
5264 						      REQ_META);
5265 			if (err) {
5266 				ret = err;
5267 				/*
5268 				 * We use &bio in above __extent_read_full_page,
5269 				 * so we ensure that if it returns error, the
5270 				 * current page fails to add itself to bio and
5271 				 * it's been unlocked.
5272 				 *
5273 				 * We must dec io_pages by ourselves.
5274 				 */
5275 				atomic_dec(&eb->io_pages);
5276 			}
5277 		} else {
5278 			unlock_page(page);
5279 		}
5280 	}
5281 
5282 	if (bio) {
5283 		err = submit_one_bio(bio, mirror_num, bio_flags);
5284 		if (err)
5285 			return err;
5286 	}
5287 
5288 	if (ret || wait != WAIT_COMPLETE)
5289 		return ret;
5290 
5291 	for (i = 0; i < num_pages; i++) {
5292 		page = eb->pages[i];
5293 		wait_on_page_locked(page);
5294 		if (!PageUptodate(page))
5295 			ret = -EIO;
5296 	}
5297 
5298 	return ret;
5299 
5300 unlock_exit:
5301 	while (locked_pages > 0) {
5302 		locked_pages--;
5303 		page = eb->pages[locked_pages];
5304 		unlock_page(page);
5305 	}
5306 	return ret;
5307 }
5308 
5309 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5310 			unsigned long start,
5311 			unsigned long len)
5312 {
5313 	size_t cur;
5314 	size_t offset;
5315 	struct page *page;
5316 	char *kaddr;
5317 	char *dst = (char *)dstv;
5318 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5320 
5321 	WARN_ON(start > eb->len);
5322 	WARN_ON(start + len > eb->start + eb->len);
5323 
5324 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5325 
5326 	while (len > 0) {
5327 		page = eb->pages[i];
5328 
5329 		cur = min(len, (PAGE_SIZE - offset));
5330 		kaddr = page_address(page);
5331 		memcpy(dst, kaddr + offset, cur);
5332 
5333 		dst += cur;
5334 		len -= cur;
5335 		offset = 0;
5336 		i++;
5337 	}
5338 }
5339 
5340 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5341 			unsigned long start,
5342 			unsigned long len)
5343 {
5344 	size_t cur;
5345 	size_t offset;
5346 	struct page *page;
5347 	char *kaddr;
5348 	char __user *dst = (char __user *)dstv;
5349 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351 	int ret = 0;
5352 
5353 	WARN_ON(start > eb->len);
5354 	WARN_ON(start + len > eb->start + eb->len);
5355 
5356 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5357 
5358 	while (len > 0) {
5359 		page = eb->pages[i];
5360 
5361 		cur = min(len, (PAGE_SIZE - offset));
5362 		kaddr = page_address(page);
5363 		if (copy_to_user(dst, kaddr + offset, cur)) {
5364 			ret = -EFAULT;
5365 			break;
5366 		}
5367 
5368 		dst += cur;
5369 		len -= cur;
5370 		offset = 0;
5371 		i++;
5372 	}
5373 
5374 	return ret;
5375 }
5376 
5377 /*
5378  * return 0 if the item is found within a page.
5379  * return 1 if the item spans two pages.
5380  * return -EINVAL otherwise.
5381  */
5382 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5383 			       unsigned long min_len, char **map,
5384 			       unsigned long *map_start,
5385 			       unsigned long *map_len)
5386 {
5387 	size_t offset = start & (PAGE_SIZE - 1);
5388 	char *kaddr;
5389 	struct page *p;
5390 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5393 		PAGE_SHIFT;
5394 
5395 	if (i != end_i)
5396 		return 1;
5397 
5398 	if (i == 0) {
5399 		offset = start_offset;
5400 		*map_start = 0;
5401 	} else {
5402 		offset = 0;
5403 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5404 	}
5405 
5406 	if (start + min_len > eb->len) {
5407 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408 		       eb->start, eb->len, start, min_len);
5409 		return -EINVAL;
5410 	}
5411 
5412 	p = eb->pages[i];
5413 	kaddr = page_address(p);
5414 	*map = kaddr + offset;
5415 	*map_len = PAGE_SIZE - offset;
5416 	return 0;
5417 }
5418 
5419 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5420 			  unsigned long start,
5421 			  unsigned long len)
5422 {
5423 	size_t cur;
5424 	size_t offset;
5425 	struct page *page;
5426 	char *kaddr;
5427 	char *ptr = (char *)ptrv;
5428 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5429 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5430 	int ret = 0;
5431 
5432 	WARN_ON(start > eb->len);
5433 	WARN_ON(start + len > eb->start + eb->len);
5434 
5435 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5436 
5437 	while (len > 0) {
5438 		page = eb->pages[i];
5439 
5440 		cur = min(len, (PAGE_SIZE - offset));
5441 
5442 		kaddr = page_address(page);
5443 		ret = memcmp(ptr, kaddr + offset, cur);
5444 		if (ret)
5445 			break;
5446 
5447 		ptr += cur;
5448 		len -= cur;
5449 		offset = 0;
5450 		i++;
5451 	}
5452 	return ret;
5453 }
5454 
5455 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5456 		const void *srcv)
5457 {
5458 	char *kaddr;
5459 
5460 	WARN_ON(!PageUptodate(eb->pages[0]));
5461 	kaddr = page_address(eb->pages[0]);
5462 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5463 			BTRFS_FSID_SIZE);
5464 }
5465 
5466 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5467 {
5468 	char *kaddr;
5469 
5470 	WARN_ON(!PageUptodate(eb->pages[0]));
5471 	kaddr = page_address(eb->pages[0]);
5472 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5473 			BTRFS_FSID_SIZE);
5474 }
5475 
5476 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5477 			 unsigned long start, unsigned long len)
5478 {
5479 	size_t cur;
5480 	size_t offset;
5481 	struct page *page;
5482 	char *kaddr;
5483 	char *src = (char *)srcv;
5484 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5486 
5487 	WARN_ON(start > eb->len);
5488 	WARN_ON(start + len > eb->start + eb->len);
5489 
5490 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5491 
5492 	while (len > 0) {
5493 		page = eb->pages[i];
5494 		WARN_ON(!PageUptodate(page));
5495 
5496 		cur = min(len, PAGE_SIZE - offset);
5497 		kaddr = page_address(page);
5498 		memcpy(kaddr + offset, src, cur);
5499 
5500 		src += cur;
5501 		len -= cur;
5502 		offset = 0;
5503 		i++;
5504 	}
5505 }
5506 
5507 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5508 		unsigned long len)
5509 {
5510 	size_t cur;
5511 	size_t offset;
5512 	struct page *page;
5513 	char *kaddr;
5514 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516 
5517 	WARN_ON(start > eb->len);
5518 	WARN_ON(start + len > eb->start + eb->len);
5519 
5520 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5521 
5522 	while (len > 0) {
5523 		page = eb->pages[i];
5524 		WARN_ON(!PageUptodate(page));
5525 
5526 		cur = min(len, PAGE_SIZE - offset);
5527 		kaddr = page_address(page);
5528 		memset(kaddr + offset, 0, cur);
5529 
5530 		len -= cur;
5531 		offset = 0;
5532 		i++;
5533 	}
5534 }
5535 
5536 void copy_extent_buffer_full(struct extent_buffer *dst,
5537 			     struct extent_buffer *src)
5538 {
5539 	int i;
5540 	unsigned num_pages;
5541 
5542 	ASSERT(dst->len == src->len);
5543 
5544 	num_pages = num_extent_pages(dst->start, dst->len);
5545 	for (i = 0; i < num_pages; i++)
5546 		copy_page(page_address(dst->pages[i]),
5547 				page_address(src->pages[i]));
5548 }
5549 
5550 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5551 			unsigned long dst_offset, unsigned long src_offset,
5552 			unsigned long len)
5553 {
5554 	u64 dst_len = dst->len;
5555 	size_t cur;
5556 	size_t offset;
5557 	struct page *page;
5558 	char *kaddr;
5559 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5560 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5561 
5562 	WARN_ON(src->len != dst_len);
5563 
5564 	offset = (start_offset + dst_offset) &
5565 		(PAGE_SIZE - 1);
5566 
5567 	while (len > 0) {
5568 		page = dst->pages[i];
5569 		WARN_ON(!PageUptodate(page));
5570 
5571 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5572 
5573 		kaddr = page_address(page);
5574 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5575 
5576 		src_offset += cur;
5577 		len -= cur;
5578 		offset = 0;
5579 		i++;
5580 	}
5581 }
5582 
5583 void le_bitmap_set(u8 *map, unsigned int start, int len)
5584 {
5585 	u8 *p = map + BIT_BYTE(start);
5586 	const unsigned int size = start + len;
5587 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5589 
5590 	while (len - bits_to_set >= 0) {
5591 		*p |= mask_to_set;
5592 		len -= bits_to_set;
5593 		bits_to_set = BITS_PER_BYTE;
5594 		mask_to_set = ~0;
5595 		p++;
5596 	}
5597 	if (len) {
5598 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5599 		*p |= mask_to_set;
5600 	}
5601 }
5602 
5603 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5604 {
5605 	u8 *p = map + BIT_BYTE(start);
5606 	const unsigned int size = start + len;
5607 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5608 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5609 
5610 	while (len - bits_to_clear >= 0) {
5611 		*p &= ~mask_to_clear;
5612 		len -= bits_to_clear;
5613 		bits_to_clear = BITS_PER_BYTE;
5614 		mask_to_clear = ~0;
5615 		p++;
5616 	}
5617 	if (len) {
5618 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5619 		*p &= ~mask_to_clear;
5620 	}
5621 }
5622 
5623 /*
5624  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625  * given bit number
5626  * @eb: the extent buffer
5627  * @start: offset of the bitmap item in the extent buffer
5628  * @nr: bit number
5629  * @page_index: return index of the page in the extent buffer that contains the
5630  * given bit number
5631  * @page_offset: return offset into the page given by page_index
5632  *
5633  * This helper hides the ugliness of finding the byte in an extent buffer which
5634  * contains a given bit.
5635  */
5636 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5637 				    unsigned long start, unsigned long nr,
5638 				    unsigned long *page_index,
5639 				    size_t *page_offset)
5640 {
5641 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 	size_t byte_offset = BIT_BYTE(nr);
5643 	size_t offset;
5644 
5645 	/*
5646 	 * The byte we want is the offset of the extent buffer + the offset of
5647 	 * the bitmap item in the extent buffer + the offset of the byte in the
5648 	 * bitmap item.
5649 	 */
5650 	offset = start_offset + start + byte_offset;
5651 
5652 	*page_index = offset >> PAGE_SHIFT;
5653 	*page_offset = offset & (PAGE_SIZE - 1);
5654 }
5655 
5656 /**
5657  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658  * @eb: the extent buffer
5659  * @start: offset of the bitmap item in the extent buffer
5660  * @nr: bit number to test
5661  */
5662 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5663 			   unsigned long nr)
5664 {
5665 	u8 *kaddr;
5666 	struct page *page;
5667 	unsigned long i;
5668 	size_t offset;
5669 
5670 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5671 	page = eb->pages[i];
5672 	WARN_ON(!PageUptodate(page));
5673 	kaddr = page_address(page);
5674 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5675 }
5676 
5677 /**
5678  * extent_buffer_bitmap_set - set an area of a bitmap
5679  * @eb: the extent buffer
5680  * @start: offset of the bitmap item in the extent buffer
5681  * @pos: bit number of the first bit
5682  * @len: number of bits to set
5683  */
5684 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5685 			      unsigned long pos, unsigned long len)
5686 {
5687 	u8 *kaddr;
5688 	struct page *page;
5689 	unsigned long i;
5690 	size_t offset;
5691 	const unsigned int size = pos + len;
5692 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5693 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5694 
5695 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5696 	page = eb->pages[i];
5697 	WARN_ON(!PageUptodate(page));
5698 	kaddr = page_address(page);
5699 
5700 	while (len >= bits_to_set) {
5701 		kaddr[offset] |= mask_to_set;
5702 		len -= bits_to_set;
5703 		bits_to_set = BITS_PER_BYTE;
5704 		mask_to_set = ~0;
5705 		if (++offset >= PAGE_SIZE && len > 0) {
5706 			offset = 0;
5707 			page = eb->pages[++i];
5708 			WARN_ON(!PageUptodate(page));
5709 			kaddr = page_address(page);
5710 		}
5711 	}
5712 	if (len) {
5713 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5714 		kaddr[offset] |= mask_to_set;
5715 	}
5716 }
5717 
5718 
5719 /**
5720  * extent_buffer_bitmap_clear - clear an area of a bitmap
5721  * @eb: the extent buffer
5722  * @start: offset of the bitmap item in the extent buffer
5723  * @pos: bit number of the first bit
5724  * @len: number of bits to clear
5725  */
5726 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5727 				unsigned long pos, unsigned long len)
5728 {
5729 	u8 *kaddr;
5730 	struct page *page;
5731 	unsigned long i;
5732 	size_t offset;
5733 	const unsigned int size = pos + len;
5734 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5735 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5736 
5737 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5738 	page = eb->pages[i];
5739 	WARN_ON(!PageUptodate(page));
5740 	kaddr = page_address(page);
5741 
5742 	while (len >= bits_to_clear) {
5743 		kaddr[offset] &= ~mask_to_clear;
5744 		len -= bits_to_clear;
5745 		bits_to_clear = BITS_PER_BYTE;
5746 		mask_to_clear = ~0;
5747 		if (++offset >= PAGE_SIZE && len > 0) {
5748 			offset = 0;
5749 			page = eb->pages[++i];
5750 			WARN_ON(!PageUptodate(page));
5751 			kaddr = page_address(page);
5752 		}
5753 	}
5754 	if (len) {
5755 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5756 		kaddr[offset] &= ~mask_to_clear;
5757 	}
5758 }
5759 
5760 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5761 {
5762 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5763 	return distance < len;
5764 }
5765 
5766 static void copy_pages(struct page *dst_page, struct page *src_page,
5767 		       unsigned long dst_off, unsigned long src_off,
5768 		       unsigned long len)
5769 {
5770 	char *dst_kaddr = page_address(dst_page);
5771 	char *src_kaddr;
5772 	int must_memmove = 0;
5773 
5774 	if (dst_page != src_page) {
5775 		src_kaddr = page_address(src_page);
5776 	} else {
5777 		src_kaddr = dst_kaddr;
5778 		if (areas_overlap(src_off, dst_off, len))
5779 			must_memmove = 1;
5780 	}
5781 
5782 	if (must_memmove)
5783 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5784 	else
5785 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5786 }
5787 
5788 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5789 			   unsigned long src_offset, unsigned long len)
5790 {
5791 	struct btrfs_fs_info *fs_info = dst->fs_info;
5792 	size_t cur;
5793 	size_t dst_off_in_page;
5794 	size_t src_off_in_page;
5795 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5796 	unsigned long dst_i;
5797 	unsigned long src_i;
5798 
5799 	if (src_offset + len > dst->len) {
5800 		btrfs_err(fs_info,
5801 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5802 			 src_offset, len, dst->len);
5803 		BUG_ON(1);
5804 	}
5805 	if (dst_offset + len > dst->len) {
5806 		btrfs_err(fs_info,
5807 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5808 			 dst_offset, len, dst->len);
5809 		BUG_ON(1);
5810 	}
5811 
5812 	while (len > 0) {
5813 		dst_off_in_page = (start_offset + dst_offset) &
5814 			(PAGE_SIZE - 1);
5815 		src_off_in_page = (start_offset + src_offset) &
5816 			(PAGE_SIZE - 1);
5817 
5818 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5819 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5820 
5821 		cur = min(len, (unsigned long)(PAGE_SIZE -
5822 					       src_off_in_page));
5823 		cur = min_t(unsigned long, cur,
5824 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5825 
5826 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5827 			   dst_off_in_page, src_off_in_page, cur);
5828 
5829 		src_offset += cur;
5830 		dst_offset += cur;
5831 		len -= cur;
5832 	}
5833 }
5834 
5835 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5836 			   unsigned long src_offset, unsigned long len)
5837 {
5838 	struct btrfs_fs_info *fs_info = dst->fs_info;
5839 	size_t cur;
5840 	size_t dst_off_in_page;
5841 	size_t src_off_in_page;
5842 	unsigned long dst_end = dst_offset + len - 1;
5843 	unsigned long src_end = src_offset + len - 1;
5844 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5845 	unsigned long dst_i;
5846 	unsigned long src_i;
5847 
5848 	if (src_offset + len > dst->len) {
5849 		btrfs_err(fs_info,
5850 			  "memmove bogus src_offset %lu move len %lu len %lu",
5851 			  src_offset, len, dst->len);
5852 		BUG_ON(1);
5853 	}
5854 	if (dst_offset + len > dst->len) {
5855 		btrfs_err(fs_info,
5856 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5857 			  dst_offset, len, dst->len);
5858 		BUG_ON(1);
5859 	}
5860 	if (dst_offset < src_offset) {
5861 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5862 		return;
5863 	}
5864 	while (len > 0) {
5865 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5866 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5867 
5868 		dst_off_in_page = (start_offset + dst_end) &
5869 			(PAGE_SIZE - 1);
5870 		src_off_in_page = (start_offset + src_end) &
5871 			(PAGE_SIZE - 1);
5872 
5873 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5874 		cur = min(cur, dst_off_in_page + 1);
5875 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5876 			   dst_off_in_page - cur + 1,
5877 			   src_off_in_page - cur + 1, cur);
5878 
5879 		dst_end -= cur;
5880 		src_end -= cur;
5881 		len -= cur;
5882 	}
5883 }
5884 
5885 int try_release_extent_buffer(struct page *page)
5886 {
5887 	struct extent_buffer *eb;
5888 
5889 	/*
5890 	 * We need to make sure nobody is attaching this page to an eb right
5891 	 * now.
5892 	 */
5893 	spin_lock(&page->mapping->private_lock);
5894 	if (!PagePrivate(page)) {
5895 		spin_unlock(&page->mapping->private_lock);
5896 		return 1;
5897 	}
5898 
5899 	eb = (struct extent_buffer *)page->private;
5900 	BUG_ON(!eb);
5901 
5902 	/*
5903 	 * This is a little awful but should be ok, we need to make sure that
5904 	 * the eb doesn't disappear out from under us while we're looking at
5905 	 * this page.
5906 	 */
5907 	spin_lock(&eb->refs_lock);
5908 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5909 		spin_unlock(&eb->refs_lock);
5910 		spin_unlock(&page->mapping->private_lock);
5911 		return 0;
5912 	}
5913 	spin_unlock(&page->mapping->private_lock);
5914 
5915 	/*
5916 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917 	 * so just return, this page will likely be freed soon anyway.
5918 	 */
5919 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5920 		spin_unlock(&eb->refs_lock);
5921 		return 0;
5922 	}
5923 
5924 	return release_extent_buffer(eb);
5925 }
5926