1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 28 static struct kmem_cache *extent_state_cache; 29 static struct kmem_cache *extent_buffer_cache; 30 static struct bio_set btrfs_bioset; 31 32 static inline bool extent_state_in_tree(const struct extent_state *state) 33 { 34 return !RB_EMPTY_NODE(&state->rb_node); 35 } 36 37 #ifdef CONFIG_BTRFS_DEBUG 38 static LIST_HEAD(states); 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50 } 51 52 static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60 } 61 62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63 { 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86 } 87 88 static inline void btrfs_extent_state_leak_debug_check(void) 89 { 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101 } 102 103 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107 { 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120 } 121 #else 122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 124 #define btrfs_extent_state_leak_debug_check() do {} while (0) 125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126 #endif 127 128 struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132 }; 133 134 struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143 }; 144 145 static int add_extent_changeset(struct extent_state *state, unsigned bits, 146 struct extent_changeset *changeset, 147 int set) 148 { 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161 } 162 163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165 { 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (tree->ops) 172 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 173 mirror_num, bio_flags); 174 else 175 btrfsic_submit_bio(bio); 176 177 return blk_status_to_errno(ret); 178 } 179 180 /* Cleanup unsubmitted bios */ 181 static void end_write_bio(struct extent_page_data *epd, int ret) 182 { 183 if (epd->bio) { 184 epd->bio->bi_status = errno_to_blk_status(ret); 185 bio_endio(epd->bio); 186 epd->bio = NULL; 187 } 188 } 189 190 /* 191 * Submit bio from extent page data via submit_one_bio 192 * 193 * Return 0 if everything is OK. 194 * Return <0 for error. 195 */ 196 static int __must_check flush_write_bio(struct extent_page_data *epd) 197 { 198 int ret = 0; 199 200 if (epd->bio) { 201 ret = submit_one_bio(epd->bio, 0, 0); 202 /* 203 * Clean up of epd->bio is handled by its endio function. 204 * And endio is either triggered by successful bio execution 205 * or the error handler of submit bio hook. 206 * So at this point, no matter what happened, we don't need 207 * to clean up epd->bio. 208 */ 209 epd->bio = NULL; 210 } 211 return ret; 212 } 213 214 int __init extent_state_cache_init(void) 215 { 216 extent_state_cache = kmem_cache_create("btrfs_extent_state", 217 sizeof(struct extent_state), 0, 218 SLAB_MEM_SPREAD, NULL); 219 if (!extent_state_cache) 220 return -ENOMEM; 221 return 0; 222 } 223 224 int __init extent_io_init(void) 225 { 226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 227 sizeof(struct extent_buffer), 0, 228 SLAB_MEM_SPREAD, NULL); 229 if (!extent_buffer_cache) 230 return -ENOMEM; 231 232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 233 offsetof(struct btrfs_io_bio, bio), 234 BIOSET_NEED_BVECS)) 235 goto free_buffer_cache; 236 237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 238 goto free_bioset; 239 240 return 0; 241 242 free_bioset: 243 bioset_exit(&btrfs_bioset); 244 245 free_buffer_cache: 246 kmem_cache_destroy(extent_buffer_cache); 247 extent_buffer_cache = NULL; 248 return -ENOMEM; 249 } 250 251 void __cold extent_state_cache_exit(void) 252 { 253 btrfs_extent_state_leak_debug_check(); 254 kmem_cache_destroy(extent_state_cache); 255 } 256 257 void __cold extent_io_exit(void) 258 { 259 /* 260 * Make sure all delayed rcu free are flushed before we 261 * destroy caches. 262 */ 263 rcu_barrier(); 264 kmem_cache_destroy(extent_buffer_cache); 265 bioset_exit(&btrfs_bioset); 266 } 267 268 /* 269 * For the file_extent_tree, we want to hold the inode lock when we lookup and 270 * update the disk_i_size, but lockdep will complain because our io_tree we hold 271 * the tree lock and get the inode lock when setting delalloc. These two things 272 * are unrelated, so make a class for the file_extent_tree so we don't get the 273 * two locking patterns mixed up. 274 */ 275 static struct lock_class_key file_extent_tree_class; 276 277 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 278 struct extent_io_tree *tree, unsigned int owner, 279 void *private_data) 280 { 281 tree->fs_info = fs_info; 282 tree->state = RB_ROOT; 283 tree->ops = NULL; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290 } 291 292 void extent_io_tree_release(struct extent_io_tree *tree) 293 { 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319 } 320 321 static struct extent_state *alloc_extent_state(gfp_t mask) 322 { 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341 } 342 343 void free_extent_state(struct extent_state *state) 344 { 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353 } 354 355 static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361 { 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385 do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389 } 390 391 /** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414 { 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459 } 460 461 static inline struct rb_node * 462 tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466 { 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474 } 475 476 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478 { 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480 } 481 482 /* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491 static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493 { 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530 } 531 532 static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, unsigned *bits, 534 struct extent_changeset *changeset); 535 536 /* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546 static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 unsigned *bits, struct extent_changeset *changeset) 551 { 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575 } 576 577 /* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593 { 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611 } 612 613 static struct extent_state *next_state(struct extent_state *state) 614 { 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620 } 621 622 /* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 unsigned *bits, int wake, 632 struct extent_changeset *changeset) 633 { 634 struct extent_state *next; 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666 } 667 668 static struct extent_state * 669 alloc_extent_state_atomic(struct extent_state *prealloc) 670 { 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675 } 676 677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678 { 679 struct inode *inode = tree->private_data; 680 681 btrfs_panic(btrfs_sb(inode->i_sb), err, 682 "locking error: extent tree was modified by another thread while locked"); 683 } 684 685 /* 686 * clear some bits on a range in the tree. This may require splitting 687 * or inserting elements in the tree, so the gfp mask is used to 688 * indicate which allocations or sleeping are allowed. 689 * 690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 691 * the given range from the tree regardless of state (ie for truncate). 692 * 693 * the range [start, end] is inclusive. 694 * 695 * This takes the tree lock, and returns 0 on success and < 0 on error. 696 */ 697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 698 unsigned bits, int wake, int delete, 699 struct extent_state **cached_state, 700 gfp_t mask, struct extent_changeset *changeset) 701 { 702 struct extent_state *state; 703 struct extent_state *cached; 704 struct extent_state *prealloc = NULL; 705 struct rb_node *node; 706 u64 last_end; 707 int err; 708 int clear = 0; 709 710 btrfs_debug_check_extent_io_range(tree, start, end); 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 712 713 if (bits & EXTENT_DELALLOC) 714 bits |= EXTENT_NORESERVE; 715 716 if (delete) 717 bits |= ~EXTENT_CTLBITS; 718 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 720 clear = 1; 721 again: 722 if (!prealloc && gfpflags_allow_blocking(mask)) { 723 /* 724 * Don't care for allocation failure here because we might end 725 * up not needing the pre-allocated extent state at all, which 726 * is the case if we only have in the tree extent states that 727 * cover our input range and don't cover too any other range. 728 * If we end up needing a new extent state we allocate it later. 729 */ 730 prealloc = alloc_extent_state(mask); 731 } 732 733 spin_lock(&tree->lock); 734 if (cached_state) { 735 cached = *cached_state; 736 737 if (clear) { 738 *cached_state = NULL; 739 cached_state = NULL; 740 } 741 742 if (cached && extent_state_in_tree(cached) && 743 cached->start <= start && cached->end > start) { 744 if (clear) 745 refcount_dec(&cached->refs); 746 state = cached; 747 goto hit_next; 748 } 749 if (clear) 750 free_extent_state(cached); 751 } 752 /* 753 * this search will find the extents that end after 754 * our range starts 755 */ 756 node = tree_search(tree, start); 757 if (!node) 758 goto out; 759 state = rb_entry(node, struct extent_state, rb_node); 760 hit_next: 761 if (state->start > end) 762 goto out; 763 WARN_ON(state->end < start); 764 last_end = state->end; 765 766 /* the state doesn't have the wanted bits, go ahead */ 767 if (!(state->state & bits)) { 768 state = next_state(state); 769 goto next; 770 } 771 772 /* 773 * | ---- desired range ---- | 774 * | state | or 775 * | ------------- state -------------- | 776 * 777 * We need to split the extent we found, and may flip 778 * bits on second half. 779 * 780 * If the extent we found extends past our range, we 781 * just split and search again. It'll get split again 782 * the next time though. 783 * 784 * If the extent we found is inside our range, we clear 785 * the desired bit on it. 786 */ 787 788 if (state->start < start) { 789 prealloc = alloc_extent_state_atomic(prealloc); 790 BUG_ON(!prealloc); 791 err = split_state(tree, state, prealloc, start); 792 if (err) 793 extent_io_tree_panic(tree, err); 794 795 prealloc = NULL; 796 if (err) 797 goto out; 798 if (state->end <= end) { 799 state = clear_state_bit(tree, state, &bits, wake, 800 changeset); 801 goto next; 802 } 803 goto search_again; 804 } 805 /* 806 * | ---- desired range ---- | 807 * | state | 808 * We need to split the extent, and clear the bit 809 * on the first half 810 */ 811 if (state->start <= end && state->end > end) { 812 prealloc = alloc_extent_state_atomic(prealloc); 813 BUG_ON(!prealloc); 814 err = split_state(tree, state, prealloc, end + 1); 815 if (err) 816 extent_io_tree_panic(tree, err); 817 818 if (wake) 819 wake_up(&state->wq); 820 821 clear_state_bit(tree, prealloc, &bits, wake, changeset); 822 823 prealloc = NULL; 824 goto out; 825 } 826 827 state = clear_state_bit(tree, state, &bits, wake, changeset); 828 next: 829 if (last_end == (u64)-1) 830 goto out; 831 start = last_end + 1; 832 if (start <= end && state && !need_resched()) 833 goto hit_next; 834 835 search_again: 836 if (start > end) 837 goto out; 838 spin_unlock(&tree->lock); 839 if (gfpflags_allow_blocking(mask)) 840 cond_resched(); 841 goto again; 842 843 out: 844 spin_unlock(&tree->lock); 845 if (prealloc) 846 free_extent_state(prealloc); 847 848 return 0; 849 850 } 851 852 static void wait_on_state(struct extent_io_tree *tree, 853 struct extent_state *state) 854 __releases(tree->lock) 855 __acquires(tree->lock) 856 { 857 DEFINE_WAIT(wait); 858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 859 spin_unlock(&tree->lock); 860 schedule(); 861 spin_lock(&tree->lock); 862 finish_wait(&state->wq, &wait); 863 } 864 865 /* 866 * waits for one or more bits to clear on a range in the state tree. 867 * The range [start, end] is inclusive. 868 * The tree lock is taken by this function 869 */ 870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 871 unsigned long bits) 872 { 873 struct extent_state *state; 874 struct rb_node *node; 875 876 btrfs_debug_check_extent_io_range(tree, start, end); 877 878 spin_lock(&tree->lock); 879 again: 880 while (1) { 881 /* 882 * this search will find all the extents that end after 883 * our range starts 884 */ 885 node = tree_search(tree, start); 886 process_node: 887 if (!node) 888 break; 889 890 state = rb_entry(node, struct extent_state, rb_node); 891 892 if (state->start > end) 893 goto out; 894 895 if (state->state & bits) { 896 start = state->start; 897 refcount_inc(&state->refs); 898 wait_on_state(tree, state); 899 free_extent_state(state); 900 goto again; 901 } 902 start = state->end + 1; 903 904 if (start > end) 905 break; 906 907 if (!cond_resched_lock(&tree->lock)) { 908 node = rb_next(node); 909 goto process_node; 910 } 911 } 912 out: 913 spin_unlock(&tree->lock); 914 } 915 916 static void set_state_bits(struct extent_io_tree *tree, 917 struct extent_state *state, 918 unsigned *bits, struct extent_changeset *changeset) 919 { 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 921 int ret; 922 923 if (tree->private_data && is_data_inode(tree->private_data)) 924 btrfs_set_delalloc_extent(tree->private_data, state, bits); 925 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 927 u64 range = state->end - state->start + 1; 928 tree->dirty_bytes += range; 929 } 930 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 931 BUG_ON(ret < 0); 932 state->state |= bits_to_set; 933 } 934 935 static void cache_state_if_flags(struct extent_state *state, 936 struct extent_state **cached_ptr, 937 unsigned flags) 938 { 939 if (cached_ptr && !(*cached_ptr)) { 940 if (!flags || (state->state & flags)) { 941 *cached_ptr = state; 942 refcount_inc(&state->refs); 943 } 944 } 945 } 946 947 static void cache_state(struct extent_state *state, 948 struct extent_state **cached_ptr) 949 { 950 return cache_state_if_flags(state, cached_ptr, 951 EXTENT_LOCKED | EXTENT_BOUNDARY); 952 } 953 954 /* 955 * set some bits on a range in the tree. This may require allocations or 956 * sleeping, so the gfp mask is used to indicate what is allowed. 957 * 958 * If any of the exclusive bits are set, this will fail with -EEXIST if some 959 * part of the range already has the desired bits set. The start of the 960 * existing range is returned in failed_start in this case. 961 * 962 * [start, end] is inclusive This takes the tree lock. 963 */ 964 965 static int __must_check 966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 967 unsigned bits, unsigned exclusive_bits, 968 u64 *failed_start, struct extent_state **cached_state, 969 gfp_t mask, struct extent_changeset *changeset) 970 { 971 struct extent_state *state; 972 struct extent_state *prealloc = NULL; 973 struct rb_node *node; 974 struct rb_node **p; 975 struct rb_node *parent; 976 int err = 0; 977 u64 last_start; 978 u64 last_end; 979 980 btrfs_debug_check_extent_io_range(tree, start, end); 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 982 983 again: 984 if (!prealloc && gfpflags_allow_blocking(mask)) { 985 /* 986 * Don't care for allocation failure here because we might end 987 * up not needing the pre-allocated extent state at all, which 988 * is the case if we only have in the tree extent states that 989 * cover our input range and don't cover too any other range. 990 * If we end up needing a new extent state we allocate it later. 991 */ 992 prealloc = alloc_extent_state(mask); 993 } 994 995 spin_lock(&tree->lock); 996 if (cached_state && *cached_state) { 997 state = *cached_state; 998 if (state->start <= start && state->end > start && 999 extent_state_in_tree(state)) { 1000 node = &state->rb_node; 1001 goto hit_next; 1002 } 1003 } 1004 /* 1005 * this search will find all the extents that end after 1006 * our range starts. 1007 */ 1008 node = tree_search_for_insert(tree, start, &p, &parent); 1009 if (!node) { 1010 prealloc = alloc_extent_state_atomic(prealloc); 1011 BUG_ON(!prealloc); 1012 err = insert_state(tree, prealloc, start, end, 1013 &p, &parent, &bits, changeset); 1014 if (err) 1015 extent_io_tree_panic(tree, err); 1016 1017 cache_state(prealloc, cached_state); 1018 prealloc = NULL; 1019 goto out; 1020 } 1021 state = rb_entry(node, struct extent_state, rb_node); 1022 hit_next: 1023 last_start = state->start; 1024 last_end = state->end; 1025 1026 /* 1027 * | ---- desired range ---- | 1028 * | state | 1029 * 1030 * Just lock what we found and keep going 1031 */ 1032 if (state->start == start && state->end <= end) { 1033 if (state->state & exclusive_bits) { 1034 *failed_start = state->start; 1035 err = -EEXIST; 1036 goto out; 1037 } 1038 1039 set_state_bits(tree, state, &bits, changeset); 1040 cache_state(state, cached_state); 1041 merge_state(tree, state); 1042 if (last_end == (u64)-1) 1043 goto out; 1044 start = last_end + 1; 1045 state = next_state(state); 1046 if (start < end && state && state->start == start && 1047 !need_resched()) 1048 goto hit_next; 1049 goto search_again; 1050 } 1051 1052 /* 1053 * | ---- desired range ---- | 1054 * | state | 1055 * or 1056 * | ------------- state -------------- | 1057 * 1058 * We need to split the extent we found, and may flip bits on 1059 * second half. 1060 * 1061 * If the extent we found extends past our 1062 * range, we just split and search again. It'll get split 1063 * again the next time though. 1064 * 1065 * If the extent we found is inside our range, we set the 1066 * desired bit on it. 1067 */ 1068 if (state->start < start) { 1069 if (state->state & exclusive_bits) { 1070 *failed_start = start; 1071 err = -EEXIST; 1072 goto out; 1073 } 1074 1075 /* 1076 * If this extent already has all the bits we want set, then 1077 * skip it, not necessary to split it or do anything with it. 1078 */ 1079 if ((state->state & bits) == bits) { 1080 start = state->end + 1; 1081 cache_state(state, cached_state); 1082 goto search_again; 1083 } 1084 1085 prealloc = alloc_extent_state_atomic(prealloc); 1086 BUG_ON(!prealloc); 1087 err = split_state(tree, state, prealloc, start); 1088 if (err) 1089 extent_io_tree_panic(tree, err); 1090 1091 prealloc = NULL; 1092 if (err) 1093 goto out; 1094 if (state->end <= end) { 1095 set_state_bits(tree, state, &bits, changeset); 1096 cache_state(state, cached_state); 1097 merge_state(tree, state); 1098 if (last_end == (u64)-1) 1099 goto out; 1100 start = last_end + 1; 1101 state = next_state(state); 1102 if (start < end && state && state->start == start && 1103 !need_resched()) 1104 goto hit_next; 1105 } 1106 goto search_again; 1107 } 1108 /* 1109 * | ---- desired range ---- | 1110 * | state | or | state | 1111 * 1112 * There's a hole, we need to insert something in it and 1113 * ignore the extent we found. 1114 */ 1115 if (state->start > start) { 1116 u64 this_end; 1117 if (end < last_start) 1118 this_end = end; 1119 else 1120 this_end = last_start - 1; 1121 1122 prealloc = alloc_extent_state_atomic(prealloc); 1123 BUG_ON(!prealloc); 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 NULL, NULL, &bits, changeset); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 1134 cache_state(prealloc, cached_state); 1135 prealloc = NULL; 1136 start = this_end + 1; 1137 goto search_again; 1138 } 1139 /* 1140 * | ---- desired range ---- | 1141 * | state | 1142 * We need to split the extent, and set the bit 1143 * on the first half 1144 */ 1145 if (state->start <= end && state->end > end) { 1146 if (state->state & exclusive_bits) { 1147 *failed_start = start; 1148 err = -EEXIST; 1149 goto out; 1150 } 1151 1152 prealloc = alloc_extent_state_atomic(prealloc); 1153 BUG_ON(!prealloc); 1154 err = split_state(tree, state, prealloc, end + 1); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 set_state_bits(tree, prealloc, &bits, changeset); 1159 cache_state(prealloc, cached_state); 1160 merge_state(tree, prealloc); 1161 prealloc = NULL; 1162 goto out; 1163 } 1164 1165 search_again: 1166 if (start > end) 1167 goto out; 1168 spin_unlock(&tree->lock); 1169 if (gfpflags_allow_blocking(mask)) 1170 cond_resched(); 1171 goto again; 1172 1173 out: 1174 spin_unlock(&tree->lock); 1175 if (prealloc) 1176 free_extent_state(prealloc); 1177 1178 return err; 1179 1180 } 1181 1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1183 unsigned bits, u64 * failed_start, 1184 struct extent_state **cached_state, gfp_t mask) 1185 { 1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1187 cached_state, mask, NULL); 1188 } 1189 1190 1191 /** 1192 * convert_extent_bit - convert all bits in a given range from one bit to 1193 * another 1194 * @tree: the io tree to search 1195 * @start: the start offset in bytes 1196 * @end: the end offset in bytes (inclusive) 1197 * @bits: the bits to set in this range 1198 * @clear_bits: the bits to clear in this range 1199 * @cached_state: state that we're going to cache 1200 * 1201 * This will go through and set bits for the given range. If any states exist 1202 * already in this range they are set with the given bit and cleared of the 1203 * clear_bits. This is only meant to be used by things that are mergeable, ie 1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1205 * boundary bits like LOCK. 1206 * 1207 * All allocations are done with GFP_NOFS. 1208 */ 1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1210 unsigned bits, unsigned clear_bits, 1211 struct extent_state **cached_state) 1212 { 1213 struct extent_state *state; 1214 struct extent_state *prealloc = NULL; 1215 struct rb_node *node; 1216 struct rb_node **p; 1217 struct rb_node *parent; 1218 int err = 0; 1219 u64 last_start; 1220 u64 last_end; 1221 bool first_iteration = true; 1222 1223 btrfs_debug_check_extent_io_range(tree, start, end); 1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1225 clear_bits); 1226 1227 again: 1228 if (!prealloc) { 1229 /* 1230 * Best effort, don't worry if extent state allocation fails 1231 * here for the first iteration. We might have a cached state 1232 * that matches exactly the target range, in which case no 1233 * extent state allocations are needed. We'll only know this 1234 * after locking the tree. 1235 */ 1236 prealloc = alloc_extent_state(GFP_NOFS); 1237 if (!prealloc && !first_iteration) 1238 return -ENOMEM; 1239 } 1240 1241 spin_lock(&tree->lock); 1242 if (cached_state && *cached_state) { 1243 state = *cached_state; 1244 if (state->start <= start && state->end > start && 1245 extent_state_in_tree(state)) { 1246 node = &state->rb_node; 1247 goto hit_next; 1248 } 1249 } 1250 1251 /* 1252 * this search will find all the extents that end after 1253 * our range starts. 1254 */ 1255 node = tree_search_for_insert(tree, start, &p, &parent); 1256 if (!node) { 1257 prealloc = alloc_extent_state_atomic(prealloc); 1258 if (!prealloc) { 1259 err = -ENOMEM; 1260 goto out; 1261 } 1262 err = insert_state(tree, prealloc, start, end, 1263 &p, &parent, &bits, NULL); 1264 if (err) 1265 extent_io_tree_panic(tree, err); 1266 cache_state(prealloc, cached_state); 1267 prealloc = NULL; 1268 goto out; 1269 } 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 hit_next: 1272 last_start = state->start; 1273 last_end = state->end; 1274 1275 /* 1276 * | ---- desired range ---- | 1277 * | state | 1278 * 1279 * Just lock what we found and keep going 1280 */ 1281 if (state->start == start && state->end <= end) { 1282 set_state_bits(tree, state, &bits, NULL); 1283 cache_state(state, cached_state); 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1285 if (last_end == (u64)-1) 1286 goto out; 1287 start = last_end + 1; 1288 if (start < end && state && state->start == start && 1289 !need_resched()) 1290 goto hit_next; 1291 goto search_again; 1292 } 1293 1294 /* 1295 * | ---- desired range ---- | 1296 * | state | 1297 * or 1298 * | ------------- state -------------- | 1299 * 1300 * We need to split the extent we found, and may flip bits on 1301 * second half. 1302 * 1303 * If the extent we found extends past our 1304 * range, we just split and search again. It'll get split 1305 * again the next time though. 1306 * 1307 * If the extent we found is inside our range, we set the 1308 * desired bit on it. 1309 */ 1310 if (state->start < start) { 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 err = split_state(tree, state, prealloc, start); 1317 if (err) 1318 extent_io_tree_panic(tree, err); 1319 prealloc = NULL; 1320 if (err) 1321 goto out; 1322 if (state->end <= end) { 1323 set_state_bits(tree, state, &bits, NULL); 1324 cache_state(state, cached_state); 1325 state = clear_state_bit(tree, state, &clear_bits, 0, 1326 NULL); 1327 if (last_end == (u64)-1) 1328 goto out; 1329 start = last_end + 1; 1330 if (start < end && state && state->start == start && 1331 !need_resched()) 1332 goto hit_next; 1333 } 1334 goto search_again; 1335 } 1336 /* 1337 * | ---- desired range ---- | 1338 * | state | or | state | 1339 * 1340 * There's a hole, we need to insert something in it and 1341 * ignore the extent we found. 1342 */ 1343 if (state->start > start) { 1344 u64 this_end; 1345 if (end < last_start) 1346 this_end = end; 1347 else 1348 this_end = last_start - 1; 1349 1350 prealloc = alloc_extent_state_atomic(prealloc); 1351 if (!prealloc) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 /* 1357 * Avoid to free 'prealloc' if it can be merged with 1358 * the later extent. 1359 */ 1360 err = insert_state(tree, prealloc, start, this_end, 1361 NULL, NULL, &bits, NULL); 1362 if (err) 1363 extent_io_tree_panic(tree, err); 1364 cache_state(prealloc, cached_state); 1365 prealloc = NULL; 1366 start = this_end + 1; 1367 goto search_again; 1368 } 1369 /* 1370 * | ---- desired range ---- | 1371 * | state | 1372 * We need to split the extent, and set the bit 1373 * on the first half 1374 */ 1375 if (state->start <= end && state->end > end) { 1376 prealloc = alloc_extent_state_atomic(prealloc); 1377 if (!prealloc) { 1378 err = -ENOMEM; 1379 goto out; 1380 } 1381 1382 err = split_state(tree, state, prealloc, end + 1); 1383 if (err) 1384 extent_io_tree_panic(tree, err); 1385 1386 set_state_bits(tree, prealloc, &bits, NULL); 1387 cache_state(prealloc, cached_state); 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1389 prealloc = NULL; 1390 goto out; 1391 } 1392 1393 search_again: 1394 if (start > end) 1395 goto out; 1396 spin_unlock(&tree->lock); 1397 cond_resched(); 1398 first_iteration = false; 1399 goto again; 1400 1401 out: 1402 spin_unlock(&tree->lock); 1403 if (prealloc) 1404 free_extent_state(prealloc); 1405 1406 return err; 1407 } 1408 1409 /* wrappers around set/clear extent bit */ 1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1411 unsigned bits, struct extent_changeset *changeset) 1412 { 1413 /* 1414 * We don't support EXTENT_LOCKED yet, as current changeset will 1415 * record any bits changed, so for EXTENT_LOCKED case, it will 1416 * either fail with -EEXIST or changeset will record the whole 1417 * range. 1418 */ 1419 BUG_ON(bits & EXTENT_LOCKED); 1420 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1422 changeset); 1423 } 1424 1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1426 unsigned bits) 1427 { 1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1429 GFP_NOWAIT, NULL); 1430 } 1431 1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1433 unsigned bits, int wake, int delete, 1434 struct extent_state **cached) 1435 { 1436 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1437 cached, GFP_NOFS, NULL); 1438 } 1439 1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1441 unsigned bits, struct extent_changeset *changeset) 1442 { 1443 /* 1444 * Don't support EXTENT_LOCKED case, same reason as 1445 * set_record_extent_bits(). 1446 */ 1447 BUG_ON(bits & EXTENT_LOCKED); 1448 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1450 changeset); 1451 } 1452 1453 /* 1454 * either insert or lock state struct between start and end use mask to tell 1455 * us if waiting is desired. 1456 */ 1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1458 struct extent_state **cached_state) 1459 { 1460 int err; 1461 u64 failed_start; 1462 1463 while (1) { 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1465 EXTENT_LOCKED, &failed_start, 1466 cached_state, GFP_NOFS, NULL); 1467 if (err == -EEXIST) { 1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1469 start = failed_start; 1470 } else 1471 break; 1472 WARN_ON(start > end); 1473 } 1474 return err; 1475 } 1476 1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1478 { 1479 int err; 1480 u64 failed_start; 1481 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1483 &failed_start, NULL, GFP_NOFS, NULL); 1484 if (err == -EEXIST) { 1485 if (failed_start > start) 1486 clear_extent_bit(tree, start, failed_start - 1, 1487 EXTENT_LOCKED, 1, 0, NULL); 1488 return 0; 1489 } 1490 return 1; 1491 } 1492 1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1494 { 1495 unsigned long index = start >> PAGE_SHIFT; 1496 unsigned long end_index = end >> PAGE_SHIFT; 1497 struct page *page; 1498 1499 while (index <= end_index) { 1500 page = find_get_page(inode->i_mapping, index); 1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1502 clear_page_dirty_for_io(page); 1503 put_page(page); 1504 index++; 1505 } 1506 } 1507 1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 __set_page_dirty_nobuffers(page); 1518 account_page_redirty(page); 1519 put_page(page); 1520 index++; 1521 } 1522 } 1523 1524 /* find the first state struct with 'bits' set after 'start', and 1525 * return it. tree->lock must be held. NULL will returned if 1526 * nothing was found after 'start' 1527 */ 1528 static struct extent_state * 1529 find_first_extent_bit_state(struct extent_io_tree *tree, 1530 u64 start, unsigned bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * find the first offset in the io tree with 'bits' set. zero is 1558 * returned if we find something, and *start_ret and *end_ret are 1559 * set to reflect the state struct that was found. 1560 * 1561 * If nothing was found, 1 is returned. If found something, return 0. 1562 */ 1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1564 u64 *start_ret, u64 *end_ret, unsigned bits, 1565 struct extent_state **cached_state) 1566 { 1567 struct extent_state *state; 1568 int ret = 1; 1569 1570 spin_lock(&tree->lock); 1571 if (cached_state && *cached_state) { 1572 state = *cached_state; 1573 if (state->end == start - 1 && extent_state_in_tree(state)) { 1574 while ((state = next_state(state)) != NULL) { 1575 if (state->state & bits) 1576 goto got_it; 1577 } 1578 free_extent_state(*cached_state); 1579 *cached_state = NULL; 1580 goto out; 1581 } 1582 free_extent_state(*cached_state); 1583 *cached_state = NULL; 1584 } 1585 1586 state = find_first_extent_bit_state(tree, start, bits); 1587 got_it: 1588 if (state) { 1589 cache_state_if_flags(state, cached_state, 0); 1590 *start_ret = state->start; 1591 *end_ret = state->end; 1592 ret = 0; 1593 } 1594 out: 1595 spin_unlock(&tree->lock); 1596 return ret; 1597 } 1598 1599 /** 1600 * find_contiguous_extent_bit: find a contiguous area of bits 1601 * @tree - io tree to check 1602 * @start - offset to start the search from 1603 * @start_ret - the first offset we found with the bits set 1604 * @end_ret - the final contiguous range of the bits that were set 1605 * @bits - bits to look for 1606 * 1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1608 * to set bits appropriately, and then merge them again. During this time it 1609 * will drop the tree->lock, so use this helper if you want to find the actual 1610 * contiguous area for given bits. We will search to the first bit we find, and 1611 * then walk down the tree until we find a non-contiguous area. The area 1612 * returned will be the full contiguous area with the bits set. 1613 */ 1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1615 u64 *start_ret, u64 *end_ret, unsigned bits) 1616 { 1617 struct extent_state *state; 1618 int ret = 1; 1619 1620 spin_lock(&tree->lock); 1621 state = find_first_extent_bit_state(tree, start, bits); 1622 if (state) { 1623 *start_ret = state->start; 1624 *end_ret = state->end; 1625 while ((state = next_state(state)) != NULL) { 1626 if (state->start > (*end_ret + 1)) 1627 break; 1628 *end_ret = state->end; 1629 } 1630 ret = 0; 1631 } 1632 spin_unlock(&tree->lock); 1633 return ret; 1634 } 1635 1636 /** 1637 * find_first_clear_extent_bit - find the first range that has @bits not set. 1638 * This range could start before @start. 1639 * 1640 * @tree - the tree to search 1641 * @start - the offset at/after which the found extent should start 1642 * @start_ret - records the beginning of the range 1643 * @end_ret - records the end of the range (inclusive) 1644 * @bits - the set of bits which must be unset 1645 * 1646 * Since unallocated range is also considered one which doesn't have the bits 1647 * set it's possible that @end_ret contains -1, this happens in case the range 1648 * spans (last_range_end, end of device]. In this case it's up to the caller to 1649 * trim @end_ret to the appropriate size. 1650 */ 1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1652 u64 *start_ret, u64 *end_ret, unsigned bits) 1653 { 1654 struct extent_state *state; 1655 struct rb_node *node, *prev = NULL, *next; 1656 1657 spin_lock(&tree->lock); 1658 1659 /* Find first extent with bits cleared */ 1660 while (1) { 1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1662 if (!node && !next && !prev) { 1663 /* 1664 * Tree is completely empty, send full range and let 1665 * caller deal with it 1666 */ 1667 *start_ret = 0; 1668 *end_ret = -1; 1669 goto out; 1670 } else if (!node && !next) { 1671 /* 1672 * We are past the last allocated chunk, set start at 1673 * the end of the last extent. 1674 */ 1675 state = rb_entry(prev, struct extent_state, rb_node); 1676 *start_ret = state->end + 1; 1677 *end_ret = -1; 1678 goto out; 1679 } else if (!node) { 1680 node = next; 1681 } 1682 /* 1683 * At this point 'node' either contains 'start' or start is 1684 * before 'node' 1685 */ 1686 state = rb_entry(node, struct extent_state, rb_node); 1687 1688 if (in_range(start, state->start, state->end - state->start + 1)) { 1689 if (state->state & bits) { 1690 /* 1691 * |--range with bits sets--| 1692 * | 1693 * start 1694 */ 1695 start = state->end + 1; 1696 } else { 1697 /* 1698 * 'start' falls within a range that doesn't 1699 * have the bits set, so take its start as 1700 * the beginning of the desired range 1701 * 1702 * |--range with bits cleared----| 1703 * | 1704 * start 1705 */ 1706 *start_ret = state->start; 1707 break; 1708 } 1709 } else { 1710 /* 1711 * |---prev range---|---hole/unset---|---node range---| 1712 * | 1713 * start 1714 * 1715 * or 1716 * 1717 * |---hole/unset--||--first node--| 1718 * 0 | 1719 * start 1720 */ 1721 if (prev) { 1722 state = rb_entry(prev, struct extent_state, 1723 rb_node); 1724 *start_ret = state->end + 1; 1725 } else { 1726 *start_ret = 0; 1727 } 1728 break; 1729 } 1730 } 1731 1732 /* 1733 * Find the longest stretch from start until an entry which has the 1734 * bits set 1735 */ 1736 while (1) { 1737 state = rb_entry(node, struct extent_state, rb_node); 1738 if (state->end >= start && !(state->state & bits)) { 1739 *end_ret = state->end; 1740 } else { 1741 *end_ret = state->start - 1; 1742 break; 1743 } 1744 1745 node = rb_next(node); 1746 if (!node) 1747 break; 1748 } 1749 out: 1750 spin_unlock(&tree->lock); 1751 } 1752 1753 /* 1754 * find a contiguous range of bytes in the file marked as delalloc, not 1755 * more than 'max_bytes'. start and end are used to return the range, 1756 * 1757 * true is returned if we find something, false if nothing was in the tree 1758 */ 1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1760 u64 *end, u64 max_bytes, 1761 struct extent_state **cached_state) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 bool found = false; 1767 u64 total_bytes = 0; 1768 1769 spin_lock(&tree->lock); 1770 1771 /* 1772 * this search will find all the extents that end after 1773 * our range starts. 1774 */ 1775 node = tree_search(tree, cur_start); 1776 if (!node) { 1777 *end = (u64)-1; 1778 goto out; 1779 } 1780 1781 while (1) { 1782 state = rb_entry(node, struct extent_state, rb_node); 1783 if (found && (state->start != cur_start || 1784 (state->state & EXTENT_BOUNDARY))) { 1785 goto out; 1786 } 1787 if (!(state->state & EXTENT_DELALLOC)) { 1788 if (!found) 1789 *end = state->end; 1790 goto out; 1791 } 1792 if (!found) { 1793 *start = state->start; 1794 *cached_state = state; 1795 refcount_inc(&state->refs); 1796 } 1797 found = true; 1798 *end = state->end; 1799 cur_start = state->end + 1; 1800 node = rb_next(node); 1801 total_bytes += state->end - state->start + 1; 1802 if (total_bytes >= max_bytes) 1803 break; 1804 if (!node) 1805 break; 1806 } 1807 out: 1808 spin_unlock(&tree->lock); 1809 return found; 1810 } 1811 1812 static int __process_pages_contig(struct address_space *mapping, 1813 struct page *locked_page, 1814 pgoff_t start_index, pgoff_t end_index, 1815 unsigned long page_ops, pgoff_t *index_ret); 1816 1817 static noinline void __unlock_for_delalloc(struct inode *inode, 1818 struct page *locked_page, 1819 u64 start, u64 end) 1820 { 1821 unsigned long index = start >> PAGE_SHIFT; 1822 unsigned long end_index = end >> PAGE_SHIFT; 1823 1824 ASSERT(locked_page); 1825 if (index == locked_page->index && end_index == index) 1826 return; 1827 1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1829 PAGE_UNLOCK, NULL); 1830 } 1831 1832 static noinline int lock_delalloc_pages(struct inode *inode, 1833 struct page *locked_page, 1834 u64 delalloc_start, 1835 u64 delalloc_end) 1836 { 1837 unsigned long index = delalloc_start >> PAGE_SHIFT; 1838 unsigned long index_ret = index; 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1840 int ret; 1841 1842 ASSERT(locked_page); 1843 if (index == locked_page->index && index == end_index) 1844 return 0; 1845 1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1847 end_index, PAGE_LOCK, &index_ret); 1848 if (ret == -EAGAIN) 1849 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1850 (u64)index_ret << PAGE_SHIFT); 1851 return ret; 1852 } 1853 1854 /* 1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1856 * more than @max_bytes. @Start and @end are used to return the range, 1857 * 1858 * Return: true if we find something 1859 * false if nothing was in the tree 1860 */ 1861 EXPORT_FOR_TESTS 1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1863 struct page *locked_page, u64 *start, 1864 u64 *end) 1865 { 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1868 u64 delalloc_start; 1869 u64 delalloc_end; 1870 bool found; 1871 struct extent_state *cached_state = NULL; 1872 int ret; 1873 int loops = 0; 1874 1875 again: 1876 /* step one, find a bunch of delalloc bytes starting at start */ 1877 delalloc_start = *start; 1878 delalloc_end = 0; 1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1880 max_bytes, &cached_state); 1881 if (!found || delalloc_end <= *start) { 1882 *start = delalloc_start; 1883 *end = delalloc_end; 1884 free_extent_state(cached_state); 1885 return false; 1886 } 1887 1888 /* 1889 * start comes from the offset of locked_page. We have to lock 1890 * pages in order, so we can't process delalloc bytes before 1891 * locked_page 1892 */ 1893 if (delalloc_start < *start) 1894 delalloc_start = *start; 1895 1896 /* 1897 * make sure to limit the number of pages we try to lock down 1898 */ 1899 if (delalloc_end + 1 - delalloc_start > max_bytes) 1900 delalloc_end = delalloc_start + max_bytes - 1; 1901 1902 /* step two, lock all the pages after the page that has start */ 1903 ret = lock_delalloc_pages(inode, locked_page, 1904 delalloc_start, delalloc_end); 1905 ASSERT(!ret || ret == -EAGAIN); 1906 if (ret == -EAGAIN) { 1907 /* some of the pages are gone, lets avoid looping by 1908 * shortening the size of the delalloc range we're searching 1909 */ 1910 free_extent_state(cached_state); 1911 cached_state = NULL; 1912 if (!loops) { 1913 max_bytes = PAGE_SIZE; 1914 loops = 1; 1915 goto again; 1916 } else { 1917 found = false; 1918 goto out_failed; 1919 } 1920 } 1921 1922 /* step three, lock the state bits for the whole range */ 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1924 1925 /* then test to make sure it is all still delalloc */ 1926 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1927 EXTENT_DELALLOC, 1, cached_state); 1928 if (!ret) { 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1930 &cached_state); 1931 __unlock_for_delalloc(inode, locked_page, 1932 delalloc_start, delalloc_end); 1933 cond_resched(); 1934 goto again; 1935 } 1936 free_extent_state(cached_state); 1937 *start = delalloc_start; 1938 *end = delalloc_end; 1939 out_failed: 1940 return found; 1941 } 1942 1943 static int __process_pages_contig(struct address_space *mapping, 1944 struct page *locked_page, 1945 pgoff_t start_index, pgoff_t end_index, 1946 unsigned long page_ops, pgoff_t *index_ret) 1947 { 1948 unsigned long nr_pages = end_index - start_index + 1; 1949 unsigned long pages_locked = 0; 1950 pgoff_t index = start_index; 1951 struct page *pages[16]; 1952 unsigned ret; 1953 int err = 0; 1954 int i; 1955 1956 if (page_ops & PAGE_LOCK) { 1957 ASSERT(page_ops == PAGE_LOCK); 1958 ASSERT(index_ret && *index_ret == start_index); 1959 } 1960 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1962 mapping_set_error(mapping, -EIO); 1963 1964 while (nr_pages > 0) { 1965 ret = find_get_pages_contig(mapping, index, 1966 min_t(unsigned long, 1967 nr_pages, ARRAY_SIZE(pages)), pages); 1968 if (ret == 0) { 1969 /* 1970 * Only if we're going to lock these pages, 1971 * can we find nothing at @index. 1972 */ 1973 ASSERT(page_ops & PAGE_LOCK); 1974 err = -EAGAIN; 1975 goto out; 1976 } 1977 1978 for (i = 0; i < ret; i++) { 1979 if (page_ops & PAGE_SET_PRIVATE2) 1980 SetPagePrivate2(pages[i]); 1981 1982 if (locked_page && pages[i] == locked_page) { 1983 put_page(pages[i]); 1984 pages_locked++; 1985 continue; 1986 } 1987 if (page_ops & PAGE_CLEAR_DIRTY) 1988 clear_page_dirty_for_io(pages[i]); 1989 if (page_ops & PAGE_SET_WRITEBACK) 1990 set_page_writeback(pages[i]); 1991 if (page_ops & PAGE_SET_ERROR) 1992 SetPageError(pages[i]); 1993 if (page_ops & PAGE_END_WRITEBACK) 1994 end_page_writeback(pages[i]); 1995 if (page_ops & PAGE_UNLOCK) 1996 unlock_page(pages[i]); 1997 if (page_ops & PAGE_LOCK) { 1998 lock_page(pages[i]); 1999 if (!PageDirty(pages[i]) || 2000 pages[i]->mapping != mapping) { 2001 unlock_page(pages[i]); 2002 put_page(pages[i]); 2003 err = -EAGAIN; 2004 goto out; 2005 } 2006 } 2007 put_page(pages[i]); 2008 pages_locked++; 2009 } 2010 nr_pages -= ret; 2011 index += ret; 2012 cond_resched(); 2013 } 2014 out: 2015 if (err && index_ret) 2016 *index_ret = start_index + pages_locked - 1; 2017 return err; 2018 } 2019 2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 2021 struct page *locked_page, 2022 unsigned clear_bits, 2023 unsigned long page_ops) 2024 { 2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 2026 NULL); 2027 2028 __process_pages_contig(inode->i_mapping, locked_page, 2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2030 page_ops, NULL); 2031 } 2032 2033 /* 2034 * count the number of bytes in the tree that have a given bit(s) 2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2036 * cached. The total number found is returned. 2037 */ 2038 u64 count_range_bits(struct extent_io_tree *tree, 2039 u64 *start, u64 search_end, u64 max_bytes, 2040 unsigned bits, int contig) 2041 { 2042 struct rb_node *node; 2043 struct extent_state *state; 2044 u64 cur_start = *start; 2045 u64 total_bytes = 0; 2046 u64 last = 0; 2047 int found = 0; 2048 2049 if (WARN_ON(search_end <= cur_start)) 2050 return 0; 2051 2052 spin_lock(&tree->lock); 2053 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2054 total_bytes = tree->dirty_bytes; 2055 goto out; 2056 } 2057 /* 2058 * this search will find all the extents that end after 2059 * our range starts. 2060 */ 2061 node = tree_search(tree, cur_start); 2062 if (!node) 2063 goto out; 2064 2065 while (1) { 2066 state = rb_entry(node, struct extent_state, rb_node); 2067 if (state->start > search_end) 2068 break; 2069 if (contig && found && state->start > last + 1) 2070 break; 2071 if (state->end >= cur_start && (state->state & bits) == bits) { 2072 total_bytes += min(search_end, state->end) + 1 - 2073 max(cur_start, state->start); 2074 if (total_bytes >= max_bytes) 2075 break; 2076 if (!found) { 2077 *start = max(cur_start, state->start); 2078 found = 1; 2079 } 2080 last = state->end; 2081 } else if (contig && found) { 2082 break; 2083 } 2084 node = rb_next(node); 2085 if (!node) 2086 break; 2087 } 2088 out: 2089 spin_unlock(&tree->lock); 2090 return total_bytes; 2091 } 2092 2093 /* 2094 * set the private field for a given byte offset in the tree. If there isn't 2095 * an extent_state there already, this does nothing. 2096 */ 2097 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2098 struct io_failure_record *failrec) 2099 { 2100 struct rb_node *node; 2101 struct extent_state *state; 2102 int ret = 0; 2103 2104 spin_lock(&tree->lock); 2105 /* 2106 * this search will find all the extents that end after 2107 * our range starts. 2108 */ 2109 node = tree_search(tree, start); 2110 if (!node) { 2111 ret = -ENOENT; 2112 goto out; 2113 } 2114 state = rb_entry(node, struct extent_state, rb_node); 2115 if (state->start != start) { 2116 ret = -ENOENT; 2117 goto out; 2118 } 2119 state->failrec = failrec; 2120 out: 2121 spin_unlock(&tree->lock); 2122 return ret; 2123 } 2124 2125 int get_state_failrec(struct extent_io_tree *tree, u64 start, 2126 struct io_failure_record **failrec) 2127 { 2128 struct rb_node *node; 2129 struct extent_state *state; 2130 int ret = 0; 2131 2132 spin_lock(&tree->lock); 2133 /* 2134 * this search will find all the extents that end after 2135 * our range starts. 2136 */ 2137 node = tree_search(tree, start); 2138 if (!node) { 2139 ret = -ENOENT; 2140 goto out; 2141 } 2142 state = rb_entry(node, struct extent_state, rb_node); 2143 if (state->start != start) { 2144 ret = -ENOENT; 2145 goto out; 2146 } 2147 *failrec = state->failrec; 2148 out: 2149 spin_unlock(&tree->lock); 2150 return ret; 2151 } 2152 2153 /* 2154 * searches a range in the state tree for a given mask. 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree 2156 * has the bits set. Otherwise, 1 is returned if any bit in the 2157 * range is found set. 2158 */ 2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2160 unsigned bits, int filled, struct extent_state *cached) 2161 { 2162 struct extent_state *state = NULL; 2163 struct rb_node *node; 2164 int bitset = 0; 2165 2166 spin_lock(&tree->lock); 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2168 cached->end > start) 2169 node = &cached->rb_node; 2170 else 2171 node = tree_search(tree, start); 2172 while (node && start <= end) { 2173 state = rb_entry(node, struct extent_state, rb_node); 2174 2175 if (filled && state->start > start) { 2176 bitset = 0; 2177 break; 2178 } 2179 2180 if (state->start > end) 2181 break; 2182 2183 if (state->state & bits) { 2184 bitset = 1; 2185 if (!filled) 2186 break; 2187 } else if (filled) { 2188 bitset = 0; 2189 break; 2190 } 2191 2192 if (state->end == (u64)-1) 2193 break; 2194 2195 start = state->end + 1; 2196 if (start > end) 2197 break; 2198 node = rb_next(node); 2199 if (!node) { 2200 if (filled) 2201 bitset = 0; 2202 break; 2203 } 2204 } 2205 spin_unlock(&tree->lock); 2206 return bitset; 2207 } 2208 2209 /* 2210 * helper function to set a given page up to date if all the 2211 * extents in the tree for that page are up to date 2212 */ 2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2214 { 2215 u64 start = page_offset(page); 2216 u64 end = start + PAGE_SIZE - 1; 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2218 SetPageUptodate(page); 2219 } 2220 2221 int free_io_failure(struct extent_io_tree *failure_tree, 2222 struct extent_io_tree *io_tree, 2223 struct io_failure_record *rec) 2224 { 2225 int ret; 2226 int err = 0; 2227 2228 set_state_failrec(failure_tree, rec->start, NULL); 2229 ret = clear_extent_bits(failure_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_LOCKED | EXTENT_DIRTY); 2232 if (ret) 2233 err = ret; 2234 2235 ret = clear_extent_bits(io_tree, rec->start, 2236 rec->start + rec->len - 1, 2237 EXTENT_DAMAGED); 2238 if (ret && !err) 2239 err = ret; 2240 2241 kfree(rec); 2242 return err; 2243 } 2244 2245 /* 2246 * this bypasses the standard btrfs submit functions deliberately, as 2247 * the standard behavior is to write all copies in a raid setup. here we only 2248 * want to write the one bad copy. so we do the mapping for ourselves and issue 2249 * submit_bio directly. 2250 * to avoid any synchronization issues, wait for the data after writing, which 2251 * actually prevents the read that triggered the error from finishing. 2252 * currently, there can be no more than two copies of every data bit. thus, 2253 * exactly one rewrite is required. 2254 */ 2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2256 u64 length, u64 logical, struct page *page, 2257 unsigned int pg_offset, int mirror_num) 2258 { 2259 struct bio *bio; 2260 struct btrfs_device *dev; 2261 u64 map_length = 0; 2262 u64 sector; 2263 struct btrfs_bio *bbio = NULL; 2264 int ret; 2265 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2267 BUG_ON(!mirror_num); 2268 2269 bio = btrfs_io_bio_alloc(1); 2270 bio->bi_iter.bi_size = 0; 2271 map_length = length; 2272 2273 /* 2274 * Avoid races with device replace and make sure our bbio has devices 2275 * associated to its stripes that don't go away while we are doing the 2276 * read repair operation. 2277 */ 2278 btrfs_bio_counter_inc_blocked(fs_info); 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2280 /* 2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2282 * to update all raid stripes, but here we just want to correct 2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2284 * stripe's dev and sector. 2285 */ 2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2287 &map_length, &bbio, 0); 2288 if (ret) { 2289 btrfs_bio_counter_dec(fs_info); 2290 bio_put(bio); 2291 return -EIO; 2292 } 2293 ASSERT(bbio->mirror_num == 1); 2294 } else { 2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2296 &map_length, &bbio, mirror_num); 2297 if (ret) { 2298 btrfs_bio_counter_dec(fs_info); 2299 bio_put(bio); 2300 return -EIO; 2301 } 2302 BUG_ON(mirror_num != bbio->mirror_num); 2303 } 2304 2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2306 bio->bi_iter.bi_sector = sector; 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2308 btrfs_put_bbio(bbio); 2309 if (!dev || !dev->bdev || 2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2311 btrfs_bio_counter_dec(fs_info); 2312 bio_put(bio); 2313 return -EIO; 2314 } 2315 bio_set_dev(bio, dev->bdev); 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2317 bio_add_page(bio, page, length, pg_offset); 2318 2319 if (btrfsic_submit_bio_wait(bio)) { 2320 /* try to remap that extent elsewhere? */ 2321 btrfs_bio_counter_dec(fs_info); 2322 bio_put(bio); 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2324 return -EIO; 2325 } 2326 2327 btrfs_info_rl_in_rcu(fs_info, 2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2329 ino, start, 2330 rcu_str_deref(dev->name), sector); 2331 btrfs_bio_counter_dec(fs_info); 2332 bio_put(bio); 2333 return 0; 2334 } 2335 2336 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num) 2337 { 2338 struct btrfs_fs_info *fs_info = eb->fs_info; 2339 u64 start = eb->start; 2340 int i, num_pages = num_extent_pages(eb); 2341 int ret = 0; 2342 2343 if (sb_rdonly(fs_info->sb)) 2344 return -EROFS; 2345 2346 for (i = 0; i < num_pages; i++) { 2347 struct page *p = eb->pages[i]; 2348 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2350 start - page_offset(p), mirror_num); 2351 if (ret) 2352 break; 2353 start += PAGE_SIZE; 2354 } 2355 2356 return ret; 2357 } 2358 2359 /* 2360 * each time an IO finishes, we do a fast check in the IO failure tree 2361 * to see if we need to process or clean up an io_failure_record 2362 */ 2363 int clean_io_failure(struct btrfs_fs_info *fs_info, 2364 struct extent_io_tree *failure_tree, 2365 struct extent_io_tree *io_tree, u64 start, 2366 struct page *page, u64 ino, unsigned int pg_offset) 2367 { 2368 u64 private; 2369 struct io_failure_record *failrec; 2370 struct extent_state *state; 2371 int num_copies; 2372 int ret; 2373 2374 private = 0; 2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2376 EXTENT_DIRTY, 0); 2377 if (!ret) 2378 return 0; 2379 2380 ret = get_state_failrec(failure_tree, start, &failrec); 2381 if (ret) 2382 return 0; 2383 2384 BUG_ON(!failrec->this_mirror); 2385 2386 if (failrec->in_validation) { 2387 /* there was no real error, just free the record */ 2388 btrfs_debug(fs_info, 2389 "clean_io_failure: freeing dummy error at %llu", 2390 failrec->start); 2391 goto out; 2392 } 2393 if (sb_rdonly(fs_info->sb)) 2394 goto out; 2395 2396 spin_lock(&io_tree->lock); 2397 state = find_first_extent_bit_state(io_tree, 2398 failrec->start, 2399 EXTENT_LOCKED); 2400 spin_unlock(&io_tree->lock); 2401 2402 if (state && state->start <= failrec->start && 2403 state->end >= failrec->start + failrec->len - 1) { 2404 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2405 failrec->len); 2406 if (num_copies > 1) { 2407 repair_io_failure(fs_info, ino, start, failrec->len, 2408 failrec->logical, page, pg_offset, 2409 failrec->failed_mirror); 2410 } 2411 } 2412 2413 out: 2414 free_io_failure(failure_tree, io_tree, failrec); 2415 2416 return 0; 2417 } 2418 2419 /* 2420 * Can be called when 2421 * - hold extent lock 2422 * - under ordered extent 2423 * - the inode is freeing 2424 */ 2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2426 { 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2428 struct io_failure_record *failrec; 2429 struct extent_state *state, *next; 2430 2431 if (RB_EMPTY_ROOT(&failure_tree->state)) 2432 return; 2433 2434 spin_lock(&failure_tree->lock); 2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2436 while (state) { 2437 if (state->start > end) 2438 break; 2439 2440 ASSERT(state->end <= end); 2441 2442 next = next_state(state); 2443 2444 failrec = state->failrec; 2445 free_extent_state(state); 2446 kfree(failrec); 2447 2448 state = next; 2449 } 2450 spin_unlock(&failure_tree->lock); 2451 } 2452 2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2454 struct io_failure_record **failrec_ret) 2455 { 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2457 struct io_failure_record *failrec; 2458 struct extent_map *em; 2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2462 int ret; 2463 u64 logical; 2464 2465 ret = get_state_failrec(failure_tree, start, &failrec); 2466 if (ret) { 2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2468 if (!failrec) 2469 return -ENOMEM; 2470 2471 failrec->start = start; 2472 failrec->len = end - start + 1; 2473 failrec->this_mirror = 0; 2474 failrec->bio_flags = 0; 2475 failrec->in_validation = 0; 2476 2477 read_lock(&em_tree->lock); 2478 em = lookup_extent_mapping(em_tree, start, failrec->len); 2479 if (!em) { 2480 read_unlock(&em_tree->lock); 2481 kfree(failrec); 2482 return -EIO; 2483 } 2484 2485 if (em->start > start || em->start + em->len <= start) { 2486 free_extent_map(em); 2487 em = NULL; 2488 } 2489 read_unlock(&em_tree->lock); 2490 if (!em) { 2491 kfree(failrec); 2492 return -EIO; 2493 } 2494 2495 logical = start - em->start; 2496 logical = em->block_start + logical; 2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2498 logical = em->block_start; 2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2500 extent_set_compress_type(&failrec->bio_flags, 2501 em->compress_type); 2502 } 2503 2504 btrfs_debug(fs_info, 2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2506 logical, start, failrec->len); 2507 2508 failrec->logical = logical; 2509 free_extent_map(em); 2510 2511 /* set the bits in the private failure tree */ 2512 ret = set_extent_bits(failure_tree, start, end, 2513 EXTENT_LOCKED | EXTENT_DIRTY); 2514 if (ret >= 0) 2515 ret = set_state_failrec(failure_tree, start, failrec); 2516 /* set the bits in the inode's tree */ 2517 if (ret >= 0) 2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2519 if (ret < 0) { 2520 kfree(failrec); 2521 return ret; 2522 } 2523 } else { 2524 btrfs_debug(fs_info, 2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2526 failrec->logical, failrec->start, failrec->len, 2527 failrec->in_validation); 2528 /* 2529 * when data can be on disk more than twice, add to failrec here 2530 * (e.g. with a list for failed_mirror) to make 2531 * clean_io_failure() clean all those errors at once. 2532 */ 2533 } 2534 2535 *failrec_ret = failrec; 2536 2537 return 0; 2538 } 2539 2540 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2541 struct io_failure_record *failrec, int failed_mirror) 2542 { 2543 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2544 int num_copies; 2545 2546 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2547 if (num_copies == 1) { 2548 /* 2549 * we only have a single copy of the data, so don't bother with 2550 * all the retry and error correction code that follows. no 2551 * matter what the error is, it is very likely to persist. 2552 */ 2553 btrfs_debug(fs_info, 2554 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2555 num_copies, failrec->this_mirror, failed_mirror); 2556 return false; 2557 } 2558 2559 /* 2560 * there are two premises: 2561 * a) deliver good data to the caller 2562 * b) correct the bad sectors on disk 2563 */ 2564 if (failed_bio_pages > 1) { 2565 /* 2566 * to fulfill b), we need to know the exact failing sectors, as 2567 * we don't want to rewrite any more than the failed ones. thus, 2568 * we need separate read requests for the failed bio 2569 * 2570 * if the following BUG_ON triggers, our validation request got 2571 * merged. we need separate requests for our algorithm to work. 2572 */ 2573 BUG_ON(failrec->in_validation); 2574 failrec->in_validation = 1; 2575 failrec->this_mirror = failed_mirror; 2576 } else { 2577 /* 2578 * we're ready to fulfill a) and b) alongside. get a good copy 2579 * of the failed sector and if we succeed, we have setup 2580 * everything for repair_io_failure to do the rest for us. 2581 */ 2582 if (failrec->in_validation) { 2583 BUG_ON(failrec->this_mirror != failed_mirror); 2584 failrec->in_validation = 0; 2585 failrec->this_mirror = 0; 2586 } 2587 failrec->failed_mirror = failed_mirror; 2588 failrec->this_mirror++; 2589 if (failrec->this_mirror == failed_mirror) 2590 failrec->this_mirror++; 2591 } 2592 2593 if (failrec->this_mirror > num_copies) { 2594 btrfs_debug(fs_info, 2595 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2596 num_copies, failrec->this_mirror, failed_mirror); 2597 return false; 2598 } 2599 2600 return true; 2601 } 2602 2603 2604 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2605 struct io_failure_record *failrec, 2606 struct page *page, int pg_offset, int icsum, 2607 bio_end_io_t *endio_func, void *data) 2608 { 2609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2610 struct bio *bio; 2611 struct btrfs_io_bio *btrfs_failed_bio; 2612 struct btrfs_io_bio *btrfs_bio; 2613 2614 bio = btrfs_io_bio_alloc(1); 2615 bio->bi_end_io = endio_func; 2616 bio->bi_iter.bi_sector = failrec->logical >> 9; 2617 bio->bi_iter.bi_size = 0; 2618 bio->bi_private = data; 2619 2620 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2621 if (btrfs_failed_bio->csum) { 2622 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2623 2624 btrfs_bio = btrfs_io_bio(bio); 2625 btrfs_bio->csum = btrfs_bio->csum_inline; 2626 icsum *= csum_size; 2627 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2628 csum_size); 2629 } 2630 2631 bio_add_page(bio, page, failrec->len, pg_offset); 2632 2633 return bio; 2634 } 2635 2636 /* 2637 * This is a generic handler for readpage errors. If other copies exist, read 2638 * those and write back good data to the failed position. Does not investigate 2639 * in remapping the failed extent elsewhere, hoping the device will be smart 2640 * enough to do this as needed 2641 */ 2642 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2643 struct page *page, u64 start, u64 end, 2644 int failed_mirror) 2645 { 2646 struct io_failure_record *failrec; 2647 struct inode *inode = page->mapping->host; 2648 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2649 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2650 struct bio *bio; 2651 int read_mode = 0; 2652 blk_status_t status; 2653 int ret; 2654 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; 2655 2656 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2657 2658 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2659 if (ret) 2660 return ret; 2661 2662 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2663 failed_mirror)) { 2664 free_io_failure(failure_tree, tree, failrec); 2665 return -EIO; 2666 } 2667 2668 if (failed_bio_pages > 1) 2669 read_mode |= REQ_FAILFAST_DEV; 2670 2671 phy_offset >>= inode->i_sb->s_blocksize_bits; 2672 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2673 start - page_offset(page), 2674 (int)phy_offset, failed_bio->bi_end_io, 2675 NULL); 2676 bio->bi_opf = REQ_OP_READ | read_mode; 2677 2678 btrfs_debug(btrfs_sb(inode->i_sb), 2679 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2680 read_mode, failrec->this_mirror, failrec->in_validation); 2681 2682 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2683 failrec->bio_flags); 2684 if (status) { 2685 free_io_failure(failure_tree, tree, failrec); 2686 bio_put(bio); 2687 ret = blk_status_to_errno(status); 2688 } 2689 2690 return ret; 2691 } 2692 2693 /* lots and lots of room for performance fixes in the end_bio funcs */ 2694 2695 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2696 { 2697 int uptodate = (err == 0); 2698 int ret = 0; 2699 2700 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2701 2702 if (!uptodate) { 2703 ClearPageUptodate(page); 2704 SetPageError(page); 2705 ret = err < 0 ? err : -EIO; 2706 mapping_set_error(page->mapping, ret); 2707 } 2708 } 2709 2710 /* 2711 * after a writepage IO is done, we need to: 2712 * clear the uptodate bits on error 2713 * clear the writeback bits in the extent tree for this IO 2714 * end_page_writeback if the page has no more pending IO 2715 * 2716 * Scheduling is not allowed, so the extent state tree is expected 2717 * to have one and only one object corresponding to this IO. 2718 */ 2719 static void end_bio_extent_writepage(struct bio *bio) 2720 { 2721 int error = blk_status_to_errno(bio->bi_status); 2722 struct bio_vec *bvec; 2723 u64 start; 2724 u64 end; 2725 struct bvec_iter_all iter_all; 2726 2727 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2728 bio_for_each_segment_all(bvec, bio, iter_all) { 2729 struct page *page = bvec->bv_page; 2730 struct inode *inode = page->mapping->host; 2731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2732 2733 /* We always issue full-page reads, but if some block 2734 * in a page fails to read, blk_update_request() will 2735 * advance bv_offset and adjust bv_len to compensate. 2736 * Print a warning for nonzero offsets, and an error 2737 * if they don't add up to a full page. */ 2738 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2739 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2740 btrfs_err(fs_info, 2741 "partial page write in btrfs with offset %u and length %u", 2742 bvec->bv_offset, bvec->bv_len); 2743 else 2744 btrfs_info(fs_info, 2745 "incomplete page write in btrfs with offset %u and length %u", 2746 bvec->bv_offset, bvec->bv_len); 2747 } 2748 2749 start = page_offset(page); 2750 end = start + bvec->bv_offset + bvec->bv_len - 1; 2751 2752 end_extent_writepage(page, error, start, end); 2753 end_page_writeback(page); 2754 } 2755 2756 bio_put(bio); 2757 } 2758 2759 static void 2760 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2761 int uptodate) 2762 { 2763 struct extent_state *cached = NULL; 2764 u64 end = start + len - 1; 2765 2766 if (uptodate && tree->track_uptodate) 2767 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2768 unlock_extent_cached_atomic(tree, start, end, &cached); 2769 } 2770 2771 /* 2772 * after a readpage IO is done, we need to: 2773 * clear the uptodate bits on error 2774 * set the uptodate bits if things worked 2775 * set the page up to date if all extents in the tree are uptodate 2776 * clear the lock bit in the extent tree 2777 * unlock the page if there are no other extents locked for it 2778 * 2779 * Scheduling is not allowed, so the extent state tree is expected 2780 * to have one and only one object corresponding to this IO. 2781 */ 2782 static void end_bio_extent_readpage(struct bio *bio) 2783 { 2784 struct bio_vec *bvec; 2785 int uptodate = !bio->bi_status; 2786 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2787 struct extent_io_tree *tree, *failure_tree; 2788 u64 offset = 0; 2789 u64 start; 2790 u64 end; 2791 u64 len; 2792 u64 extent_start = 0; 2793 u64 extent_len = 0; 2794 int mirror; 2795 int ret; 2796 struct bvec_iter_all iter_all; 2797 2798 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2799 bio_for_each_segment_all(bvec, bio, iter_all) { 2800 struct page *page = bvec->bv_page; 2801 struct inode *inode = page->mapping->host; 2802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2803 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2804 != BTRFS_BTREE_INODE_OBJECTID; 2805 2806 btrfs_debug(fs_info, 2807 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2808 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2809 io_bio->mirror_num); 2810 tree = &BTRFS_I(inode)->io_tree; 2811 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2812 2813 /* We always issue full-page reads, but if some block 2814 * in a page fails to read, blk_update_request() will 2815 * advance bv_offset and adjust bv_len to compensate. 2816 * Print a warning for nonzero offsets, and an error 2817 * if they don't add up to a full page. */ 2818 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2819 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2820 btrfs_err(fs_info, 2821 "partial page read in btrfs with offset %u and length %u", 2822 bvec->bv_offset, bvec->bv_len); 2823 else 2824 btrfs_info(fs_info, 2825 "incomplete page read in btrfs with offset %u and length %u", 2826 bvec->bv_offset, bvec->bv_len); 2827 } 2828 2829 start = page_offset(page); 2830 end = start + bvec->bv_offset + bvec->bv_len - 1; 2831 len = bvec->bv_len; 2832 2833 mirror = io_bio->mirror_num; 2834 if (likely(uptodate)) { 2835 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2836 page, start, end, 2837 mirror); 2838 if (ret) 2839 uptodate = 0; 2840 else 2841 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2842 failure_tree, tree, start, 2843 page, 2844 btrfs_ino(BTRFS_I(inode)), 0); 2845 } 2846 2847 if (likely(uptodate)) 2848 goto readpage_ok; 2849 2850 if (data_inode) { 2851 2852 /* 2853 * The generic bio_readpage_error handles errors the 2854 * following way: If possible, new read requests are 2855 * created and submitted and will end up in 2856 * end_bio_extent_readpage as well (if we're lucky, 2857 * not in the !uptodate case). In that case it returns 2858 * 0 and we just go on with the next page in our bio. 2859 * If it can't handle the error it will return -EIO and 2860 * we remain responsible for that page. 2861 */ 2862 ret = bio_readpage_error(bio, offset, page, start, end, 2863 mirror); 2864 if (ret == 0) { 2865 uptodate = !bio->bi_status; 2866 offset += len; 2867 continue; 2868 } 2869 } else { 2870 struct extent_buffer *eb; 2871 2872 eb = (struct extent_buffer *)page->private; 2873 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2874 eb->read_mirror = mirror; 2875 atomic_dec(&eb->io_pages); 2876 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2877 &eb->bflags)) 2878 btree_readahead_hook(eb, -EIO); 2879 } 2880 readpage_ok: 2881 if (likely(uptodate)) { 2882 loff_t i_size = i_size_read(inode); 2883 pgoff_t end_index = i_size >> PAGE_SHIFT; 2884 unsigned off; 2885 2886 /* Zero out the end if this page straddles i_size */ 2887 off = offset_in_page(i_size); 2888 if (page->index == end_index && off) 2889 zero_user_segment(page, off, PAGE_SIZE); 2890 SetPageUptodate(page); 2891 } else { 2892 ClearPageUptodate(page); 2893 SetPageError(page); 2894 } 2895 unlock_page(page); 2896 offset += len; 2897 2898 if (unlikely(!uptodate)) { 2899 if (extent_len) { 2900 endio_readpage_release_extent(tree, 2901 extent_start, 2902 extent_len, 1); 2903 extent_start = 0; 2904 extent_len = 0; 2905 } 2906 endio_readpage_release_extent(tree, start, 2907 end - start + 1, 0); 2908 } else if (!extent_len) { 2909 extent_start = start; 2910 extent_len = end + 1 - start; 2911 } else if (extent_start + extent_len == start) { 2912 extent_len += end + 1 - start; 2913 } else { 2914 endio_readpage_release_extent(tree, extent_start, 2915 extent_len, uptodate); 2916 extent_start = start; 2917 extent_len = end + 1 - start; 2918 } 2919 } 2920 2921 if (extent_len) 2922 endio_readpage_release_extent(tree, extent_start, extent_len, 2923 uptodate); 2924 btrfs_io_bio_free_csum(io_bio); 2925 bio_put(bio); 2926 } 2927 2928 /* 2929 * Initialize the members up to but not including 'bio'. Use after allocating a 2930 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2931 * 'bio' because use of __GFP_ZERO is not supported. 2932 */ 2933 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2934 { 2935 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2936 } 2937 2938 /* 2939 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2940 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2941 * for the appropriate container_of magic 2942 */ 2943 struct bio *btrfs_bio_alloc(u64 first_byte) 2944 { 2945 struct bio *bio; 2946 2947 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2948 bio->bi_iter.bi_sector = first_byte >> 9; 2949 btrfs_io_bio_init(btrfs_io_bio(bio)); 2950 return bio; 2951 } 2952 2953 struct bio *btrfs_bio_clone(struct bio *bio) 2954 { 2955 struct btrfs_io_bio *btrfs_bio; 2956 struct bio *new; 2957 2958 /* Bio allocation backed by a bioset does not fail */ 2959 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2960 btrfs_bio = btrfs_io_bio(new); 2961 btrfs_io_bio_init(btrfs_bio); 2962 btrfs_bio->iter = bio->bi_iter; 2963 return new; 2964 } 2965 2966 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2967 { 2968 struct bio *bio; 2969 2970 /* Bio allocation backed by a bioset does not fail */ 2971 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2972 btrfs_io_bio_init(btrfs_io_bio(bio)); 2973 return bio; 2974 } 2975 2976 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2977 { 2978 struct bio *bio; 2979 struct btrfs_io_bio *btrfs_bio; 2980 2981 /* this will never fail when it's backed by a bioset */ 2982 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2983 ASSERT(bio); 2984 2985 btrfs_bio = btrfs_io_bio(bio); 2986 btrfs_io_bio_init(btrfs_bio); 2987 2988 bio_trim(bio, offset >> 9, size >> 9); 2989 btrfs_bio->iter = bio->bi_iter; 2990 return bio; 2991 } 2992 2993 /* 2994 * @opf: bio REQ_OP_* and REQ_* flags as one value 2995 * @wbc: optional writeback control for io accounting 2996 * @page: page to add to the bio 2997 * @pg_offset: offset of the new bio or to check whether we are adding 2998 * a contiguous page to the previous one 2999 * @size: portion of page that we want to write 3000 * @offset: starting offset in the page 3001 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3002 * @end_io_func: end_io callback for new bio 3003 * @mirror_num: desired mirror to read/write 3004 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3005 * @bio_flags: flags of the current bio to see if we can merge them 3006 */ 3007 static int submit_extent_page(unsigned int opf, 3008 struct writeback_control *wbc, 3009 struct page *page, u64 offset, 3010 size_t size, unsigned long pg_offset, 3011 struct bio **bio_ret, 3012 bio_end_io_t end_io_func, 3013 int mirror_num, 3014 unsigned long prev_bio_flags, 3015 unsigned long bio_flags, 3016 bool force_bio_submit) 3017 { 3018 int ret = 0; 3019 struct bio *bio; 3020 size_t page_size = min_t(size_t, size, PAGE_SIZE); 3021 sector_t sector = offset >> 9; 3022 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3023 3024 ASSERT(bio_ret); 3025 3026 if (*bio_ret) { 3027 bool contig; 3028 bool can_merge = true; 3029 3030 bio = *bio_ret; 3031 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3032 contig = bio->bi_iter.bi_sector == sector; 3033 else 3034 contig = bio_end_sector(bio) == sector; 3035 3036 ASSERT(tree->ops); 3037 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 3038 can_merge = false; 3039 3040 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3041 force_bio_submit || 3042 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 3043 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3044 if (ret < 0) { 3045 *bio_ret = NULL; 3046 return ret; 3047 } 3048 bio = NULL; 3049 } else { 3050 if (wbc) 3051 wbc_account_cgroup_owner(wbc, page, page_size); 3052 return 0; 3053 } 3054 } 3055 3056 bio = btrfs_bio_alloc(offset); 3057 bio_add_page(bio, page, page_size, pg_offset); 3058 bio->bi_end_io = end_io_func; 3059 bio->bi_private = tree; 3060 bio->bi_write_hint = page->mapping->host->i_write_hint; 3061 bio->bi_opf = opf; 3062 if (wbc) { 3063 struct block_device *bdev; 3064 3065 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3066 bio_set_dev(bio, bdev); 3067 wbc_init_bio(wbc, bio); 3068 wbc_account_cgroup_owner(wbc, page, page_size); 3069 } 3070 3071 *bio_ret = bio; 3072 3073 return ret; 3074 } 3075 3076 static void attach_extent_buffer_page(struct extent_buffer *eb, 3077 struct page *page) 3078 { 3079 if (!PagePrivate(page)) 3080 attach_page_private(page, eb); 3081 else 3082 WARN_ON(page->private != (unsigned long)eb); 3083 } 3084 3085 void set_page_extent_mapped(struct page *page) 3086 { 3087 if (!PagePrivate(page)) 3088 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3089 } 3090 3091 static struct extent_map * 3092 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3093 u64 start, u64 len, get_extent_t *get_extent, 3094 struct extent_map **em_cached) 3095 { 3096 struct extent_map *em; 3097 3098 if (em_cached && *em_cached) { 3099 em = *em_cached; 3100 if (extent_map_in_tree(em) && start >= em->start && 3101 start < extent_map_end(em)) { 3102 refcount_inc(&em->refs); 3103 return em; 3104 } 3105 3106 free_extent_map(em); 3107 *em_cached = NULL; 3108 } 3109 3110 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3111 if (em_cached && !IS_ERR_OR_NULL(em)) { 3112 BUG_ON(*em_cached); 3113 refcount_inc(&em->refs); 3114 *em_cached = em; 3115 } 3116 return em; 3117 } 3118 /* 3119 * basic readpage implementation. Locked extent state structs are inserted 3120 * into the tree that are removed when the IO is done (by the end_io 3121 * handlers) 3122 * XXX JDM: This needs looking at to ensure proper page locking 3123 * return 0 on success, otherwise return error 3124 */ 3125 static int __do_readpage(struct page *page, 3126 get_extent_t *get_extent, 3127 struct extent_map **em_cached, 3128 struct bio **bio, int mirror_num, 3129 unsigned long *bio_flags, unsigned int read_flags, 3130 u64 *prev_em_start) 3131 { 3132 struct inode *inode = page->mapping->host; 3133 u64 start = page_offset(page); 3134 const u64 end = start + PAGE_SIZE - 1; 3135 u64 cur = start; 3136 u64 extent_offset; 3137 u64 last_byte = i_size_read(inode); 3138 u64 block_start; 3139 u64 cur_end; 3140 struct extent_map *em; 3141 int ret = 0; 3142 int nr = 0; 3143 size_t pg_offset = 0; 3144 size_t iosize; 3145 size_t disk_io_size; 3146 size_t blocksize = inode->i_sb->s_blocksize; 3147 unsigned long this_bio_flag = 0; 3148 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3149 3150 set_page_extent_mapped(page); 3151 3152 if (!PageUptodate(page)) { 3153 if (cleancache_get_page(page) == 0) { 3154 BUG_ON(blocksize != PAGE_SIZE); 3155 unlock_extent(tree, start, end); 3156 goto out; 3157 } 3158 } 3159 3160 if (page->index == last_byte >> PAGE_SHIFT) { 3161 char *userpage; 3162 size_t zero_offset = offset_in_page(last_byte); 3163 3164 if (zero_offset) { 3165 iosize = PAGE_SIZE - zero_offset; 3166 userpage = kmap_atomic(page); 3167 memset(userpage + zero_offset, 0, iosize); 3168 flush_dcache_page(page); 3169 kunmap_atomic(userpage); 3170 } 3171 } 3172 while (cur <= end) { 3173 bool force_bio_submit = false; 3174 u64 offset; 3175 3176 if (cur >= last_byte) { 3177 char *userpage; 3178 struct extent_state *cached = NULL; 3179 3180 iosize = PAGE_SIZE - pg_offset; 3181 userpage = kmap_atomic(page); 3182 memset(userpage + pg_offset, 0, iosize); 3183 flush_dcache_page(page); 3184 kunmap_atomic(userpage); 3185 set_extent_uptodate(tree, cur, cur + iosize - 1, 3186 &cached, GFP_NOFS); 3187 unlock_extent_cached(tree, cur, 3188 cur + iosize - 1, &cached); 3189 break; 3190 } 3191 em = __get_extent_map(inode, page, pg_offset, cur, 3192 end - cur + 1, get_extent, em_cached); 3193 if (IS_ERR_OR_NULL(em)) { 3194 SetPageError(page); 3195 unlock_extent(tree, cur, end); 3196 break; 3197 } 3198 extent_offset = cur - em->start; 3199 BUG_ON(extent_map_end(em) <= cur); 3200 BUG_ON(end < cur); 3201 3202 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3203 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3204 extent_set_compress_type(&this_bio_flag, 3205 em->compress_type); 3206 } 3207 3208 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3209 cur_end = min(extent_map_end(em) - 1, end); 3210 iosize = ALIGN(iosize, blocksize); 3211 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3212 disk_io_size = em->block_len; 3213 offset = em->block_start; 3214 } else { 3215 offset = em->block_start + extent_offset; 3216 disk_io_size = iosize; 3217 } 3218 block_start = em->block_start; 3219 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3220 block_start = EXTENT_MAP_HOLE; 3221 3222 /* 3223 * If we have a file range that points to a compressed extent 3224 * and it's followed by a consecutive file range that points to 3225 * to the same compressed extent (possibly with a different 3226 * offset and/or length, so it either points to the whole extent 3227 * or only part of it), we must make sure we do not submit a 3228 * single bio to populate the pages for the 2 ranges because 3229 * this makes the compressed extent read zero out the pages 3230 * belonging to the 2nd range. Imagine the following scenario: 3231 * 3232 * File layout 3233 * [0 - 8K] [8K - 24K] 3234 * | | 3235 * | | 3236 * points to extent X, points to extent X, 3237 * offset 4K, length of 8K offset 0, length 16K 3238 * 3239 * [extent X, compressed length = 4K uncompressed length = 16K] 3240 * 3241 * If the bio to read the compressed extent covers both ranges, 3242 * it will decompress extent X into the pages belonging to the 3243 * first range and then it will stop, zeroing out the remaining 3244 * pages that belong to the other range that points to extent X. 3245 * So here we make sure we submit 2 bios, one for the first 3246 * range and another one for the third range. Both will target 3247 * the same physical extent from disk, but we can't currently 3248 * make the compressed bio endio callback populate the pages 3249 * for both ranges because each compressed bio is tightly 3250 * coupled with a single extent map, and each range can have 3251 * an extent map with a different offset value relative to the 3252 * uncompressed data of our extent and different lengths. This 3253 * is a corner case so we prioritize correctness over 3254 * non-optimal behavior (submitting 2 bios for the same extent). 3255 */ 3256 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3257 prev_em_start && *prev_em_start != (u64)-1 && 3258 *prev_em_start != em->start) 3259 force_bio_submit = true; 3260 3261 if (prev_em_start) 3262 *prev_em_start = em->start; 3263 3264 free_extent_map(em); 3265 em = NULL; 3266 3267 /* we've found a hole, just zero and go on */ 3268 if (block_start == EXTENT_MAP_HOLE) { 3269 char *userpage; 3270 struct extent_state *cached = NULL; 3271 3272 userpage = kmap_atomic(page); 3273 memset(userpage + pg_offset, 0, iosize); 3274 flush_dcache_page(page); 3275 kunmap_atomic(userpage); 3276 3277 set_extent_uptodate(tree, cur, cur + iosize - 1, 3278 &cached, GFP_NOFS); 3279 unlock_extent_cached(tree, cur, 3280 cur + iosize - 1, &cached); 3281 cur = cur + iosize; 3282 pg_offset += iosize; 3283 continue; 3284 } 3285 /* the get_extent function already copied into the page */ 3286 if (test_range_bit(tree, cur, cur_end, 3287 EXTENT_UPTODATE, 1, NULL)) { 3288 check_page_uptodate(tree, page); 3289 unlock_extent(tree, cur, cur + iosize - 1); 3290 cur = cur + iosize; 3291 pg_offset += iosize; 3292 continue; 3293 } 3294 /* we have an inline extent but it didn't get marked up 3295 * to date. Error out 3296 */ 3297 if (block_start == EXTENT_MAP_INLINE) { 3298 SetPageError(page); 3299 unlock_extent(tree, cur, cur + iosize - 1); 3300 cur = cur + iosize; 3301 pg_offset += iosize; 3302 continue; 3303 } 3304 3305 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3306 page, offset, disk_io_size, 3307 pg_offset, bio, 3308 end_bio_extent_readpage, mirror_num, 3309 *bio_flags, 3310 this_bio_flag, 3311 force_bio_submit); 3312 if (!ret) { 3313 nr++; 3314 *bio_flags = this_bio_flag; 3315 } else { 3316 SetPageError(page); 3317 unlock_extent(tree, cur, cur + iosize - 1); 3318 goto out; 3319 } 3320 cur = cur + iosize; 3321 pg_offset += iosize; 3322 } 3323 out: 3324 if (!nr) { 3325 if (!PageError(page)) 3326 SetPageUptodate(page); 3327 unlock_page(page); 3328 } 3329 return ret; 3330 } 3331 3332 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3333 u64 start, u64 end, 3334 struct extent_map **em_cached, 3335 struct bio **bio, 3336 unsigned long *bio_flags, 3337 u64 *prev_em_start) 3338 { 3339 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3340 int index; 3341 3342 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3343 3344 for (index = 0; index < nr_pages; index++) { 3345 __do_readpage(pages[index], btrfs_get_extent, em_cached, 3346 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3347 put_page(pages[index]); 3348 } 3349 } 3350 3351 static int __extent_read_full_page(struct page *page, 3352 get_extent_t *get_extent, 3353 struct bio **bio, int mirror_num, 3354 unsigned long *bio_flags, 3355 unsigned int read_flags) 3356 { 3357 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3358 u64 start = page_offset(page); 3359 u64 end = start + PAGE_SIZE - 1; 3360 int ret; 3361 3362 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3363 3364 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num, 3365 bio_flags, read_flags, NULL); 3366 return ret; 3367 } 3368 3369 int extent_read_full_page(struct page *page, get_extent_t *get_extent, 3370 int mirror_num) 3371 { 3372 struct bio *bio = NULL; 3373 unsigned long bio_flags = 0; 3374 int ret; 3375 3376 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num, 3377 &bio_flags, 0); 3378 if (bio) 3379 ret = submit_one_bio(bio, mirror_num, bio_flags); 3380 return ret; 3381 } 3382 3383 static void update_nr_written(struct writeback_control *wbc, 3384 unsigned long nr_written) 3385 { 3386 wbc->nr_to_write -= nr_written; 3387 } 3388 3389 /* 3390 * helper for __extent_writepage, doing all of the delayed allocation setup. 3391 * 3392 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3393 * to write the page (copy into inline extent). In this case the IO has 3394 * been started and the page is already unlocked. 3395 * 3396 * This returns 0 if all went well (page still locked) 3397 * This returns < 0 if there were errors (page still locked) 3398 */ 3399 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3400 struct page *page, struct writeback_control *wbc, 3401 u64 delalloc_start, unsigned long *nr_written) 3402 { 3403 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3404 bool found; 3405 u64 delalloc_to_write = 0; 3406 u64 delalloc_end = 0; 3407 int ret; 3408 int page_started = 0; 3409 3410 3411 while (delalloc_end < page_end) { 3412 found = find_lock_delalloc_range(inode, page, 3413 &delalloc_start, 3414 &delalloc_end); 3415 if (!found) { 3416 delalloc_start = delalloc_end + 1; 3417 continue; 3418 } 3419 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3420 delalloc_end, &page_started, nr_written, wbc); 3421 if (ret) { 3422 SetPageError(page); 3423 /* 3424 * btrfs_run_delalloc_range should return < 0 for error 3425 * but just in case, we use > 0 here meaning the IO is 3426 * started, so we don't want to return > 0 unless 3427 * things are going well. 3428 */ 3429 ret = ret < 0 ? ret : -EIO; 3430 goto done; 3431 } 3432 /* 3433 * delalloc_end is already one less than the total length, so 3434 * we don't subtract one from PAGE_SIZE 3435 */ 3436 delalloc_to_write += (delalloc_end - delalloc_start + 3437 PAGE_SIZE) >> PAGE_SHIFT; 3438 delalloc_start = delalloc_end + 1; 3439 } 3440 if (wbc->nr_to_write < delalloc_to_write) { 3441 int thresh = 8192; 3442 3443 if (delalloc_to_write < thresh * 2) 3444 thresh = delalloc_to_write; 3445 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3446 thresh); 3447 } 3448 3449 /* did the fill delalloc function already unlock and start 3450 * the IO? 3451 */ 3452 if (page_started) { 3453 /* 3454 * we've unlocked the page, so we can't update 3455 * the mapping's writeback index, just update 3456 * nr_to_write. 3457 */ 3458 wbc->nr_to_write -= *nr_written; 3459 return 1; 3460 } 3461 3462 ret = 0; 3463 3464 done: 3465 return ret; 3466 } 3467 3468 /* 3469 * helper for __extent_writepage. This calls the writepage start hooks, 3470 * and does the loop to map the page into extents and bios. 3471 * 3472 * We return 1 if the IO is started and the page is unlocked, 3473 * 0 if all went well (page still locked) 3474 * < 0 if there were errors (page still locked) 3475 */ 3476 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3477 struct page *page, 3478 struct writeback_control *wbc, 3479 struct extent_page_data *epd, 3480 loff_t i_size, 3481 unsigned long nr_written, 3482 int *nr_ret) 3483 { 3484 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3485 u64 start = page_offset(page); 3486 u64 page_end = start + PAGE_SIZE - 1; 3487 u64 end; 3488 u64 cur = start; 3489 u64 extent_offset; 3490 u64 block_start; 3491 u64 iosize; 3492 struct extent_map *em; 3493 size_t pg_offset = 0; 3494 size_t blocksize; 3495 int ret = 0; 3496 int nr = 0; 3497 const unsigned int write_flags = wbc_to_write_flags(wbc); 3498 bool compressed; 3499 3500 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3501 if (ret) { 3502 /* Fixup worker will requeue */ 3503 redirty_page_for_writepage(wbc, page); 3504 update_nr_written(wbc, nr_written); 3505 unlock_page(page); 3506 return 1; 3507 } 3508 3509 /* 3510 * we don't want to touch the inode after unlocking the page, 3511 * so we update the mapping writeback index now 3512 */ 3513 update_nr_written(wbc, nr_written + 1); 3514 3515 end = page_end; 3516 blocksize = inode->i_sb->s_blocksize; 3517 3518 while (cur <= end) { 3519 u64 em_end; 3520 u64 offset; 3521 3522 if (cur >= i_size) { 3523 btrfs_writepage_endio_finish_ordered(page, cur, 3524 page_end, 1); 3525 break; 3526 } 3527 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur, 3528 end - cur + 1); 3529 if (IS_ERR_OR_NULL(em)) { 3530 SetPageError(page); 3531 ret = PTR_ERR_OR_ZERO(em); 3532 break; 3533 } 3534 3535 extent_offset = cur - em->start; 3536 em_end = extent_map_end(em); 3537 BUG_ON(em_end <= cur); 3538 BUG_ON(end < cur); 3539 iosize = min(em_end - cur, end - cur + 1); 3540 iosize = ALIGN(iosize, blocksize); 3541 offset = em->block_start + extent_offset; 3542 block_start = em->block_start; 3543 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3544 free_extent_map(em); 3545 em = NULL; 3546 3547 /* 3548 * compressed and inline extents are written through other 3549 * paths in the FS 3550 */ 3551 if (compressed || block_start == EXTENT_MAP_HOLE || 3552 block_start == EXTENT_MAP_INLINE) { 3553 if (compressed) 3554 nr++; 3555 else 3556 btrfs_writepage_endio_finish_ordered(page, cur, 3557 cur + iosize - 1, 1); 3558 cur += iosize; 3559 pg_offset += iosize; 3560 continue; 3561 } 3562 3563 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3564 if (!PageWriteback(page)) { 3565 btrfs_err(BTRFS_I(inode)->root->fs_info, 3566 "page %lu not writeback, cur %llu end %llu", 3567 page->index, cur, end); 3568 } 3569 3570 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3571 page, offset, iosize, pg_offset, 3572 &epd->bio, 3573 end_bio_extent_writepage, 3574 0, 0, 0, false); 3575 if (ret) { 3576 SetPageError(page); 3577 if (PageWriteback(page)) 3578 end_page_writeback(page); 3579 } 3580 3581 cur = cur + iosize; 3582 pg_offset += iosize; 3583 nr++; 3584 } 3585 *nr_ret = nr; 3586 return ret; 3587 } 3588 3589 /* 3590 * the writepage semantics are similar to regular writepage. extent 3591 * records are inserted to lock ranges in the tree, and as dirty areas 3592 * are found, they are marked writeback. Then the lock bits are removed 3593 * and the end_io handler clears the writeback ranges 3594 * 3595 * Return 0 if everything goes well. 3596 * Return <0 for error. 3597 */ 3598 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3599 struct extent_page_data *epd) 3600 { 3601 struct inode *inode = page->mapping->host; 3602 u64 start = page_offset(page); 3603 u64 page_end = start + PAGE_SIZE - 1; 3604 int ret; 3605 int nr = 0; 3606 size_t pg_offset; 3607 loff_t i_size = i_size_read(inode); 3608 unsigned long end_index = i_size >> PAGE_SHIFT; 3609 unsigned long nr_written = 0; 3610 3611 trace___extent_writepage(page, inode, wbc); 3612 3613 WARN_ON(!PageLocked(page)); 3614 3615 ClearPageError(page); 3616 3617 pg_offset = offset_in_page(i_size); 3618 if (page->index > end_index || 3619 (page->index == end_index && !pg_offset)) { 3620 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3621 unlock_page(page); 3622 return 0; 3623 } 3624 3625 if (page->index == end_index) { 3626 char *userpage; 3627 3628 userpage = kmap_atomic(page); 3629 memset(userpage + pg_offset, 0, 3630 PAGE_SIZE - pg_offset); 3631 kunmap_atomic(userpage); 3632 flush_dcache_page(page); 3633 } 3634 3635 set_page_extent_mapped(page); 3636 3637 if (!epd->extent_locked) { 3638 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3639 if (ret == 1) 3640 return 0; 3641 if (ret) 3642 goto done; 3643 } 3644 3645 ret = __extent_writepage_io(inode, page, wbc, epd, 3646 i_size, nr_written, &nr); 3647 if (ret == 1) 3648 return 0; 3649 3650 done: 3651 if (nr == 0) { 3652 /* make sure the mapping tag for page dirty gets cleared */ 3653 set_page_writeback(page); 3654 end_page_writeback(page); 3655 } 3656 if (PageError(page)) { 3657 ret = ret < 0 ? ret : -EIO; 3658 end_extent_writepage(page, ret, start, page_end); 3659 } 3660 unlock_page(page); 3661 ASSERT(ret <= 0); 3662 return ret; 3663 } 3664 3665 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3666 { 3667 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3668 TASK_UNINTERRUPTIBLE); 3669 } 3670 3671 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3672 { 3673 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3674 smp_mb__after_atomic(); 3675 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3676 } 3677 3678 /* 3679 * Lock eb pages and flush the bio if we can't the locks 3680 * 3681 * Return 0 if nothing went wrong 3682 * Return >0 is same as 0, except bio is not submitted 3683 * Return <0 if something went wrong, no page is locked 3684 */ 3685 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3686 struct extent_page_data *epd) 3687 { 3688 struct btrfs_fs_info *fs_info = eb->fs_info; 3689 int i, num_pages, failed_page_nr; 3690 int flush = 0; 3691 int ret = 0; 3692 3693 if (!btrfs_try_tree_write_lock(eb)) { 3694 ret = flush_write_bio(epd); 3695 if (ret < 0) 3696 return ret; 3697 flush = 1; 3698 btrfs_tree_lock(eb); 3699 } 3700 3701 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3702 btrfs_tree_unlock(eb); 3703 if (!epd->sync_io) 3704 return 0; 3705 if (!flush) { 3706 ret = flush_write_bio(epd); 3707 if (ret < 0) 3708 return ret; 3709 flush = 1; 3710 } 3711 while (1) { 3712 wait_on_extent_buffer_writeback(eb); 3713 btrfs_tree_lock(eb); 3714 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3715 break; 3716 btrfs_tree_unlock(eb); 3717 } 3718 } 3719 3720 /* 3721 * We need to do this to prevent races in people who check if the eb is 3722 * under IO since we can end up having no IO bits set for a short period 3723 * of time. 3724 */ 3725 spin_lock(&eb->refs_lock); 3726 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3727 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3728 spin_unlock(&eb->refs_lock); 3729 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3730 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3731 -eb->len, 3732 fs_info->dirty_metadata_batch); 3733 ret = 1; 3734 } else { 3735 spin_unlock(&eb->refs_lock); 3736 } 3737 3738 btrfs_tree_unlock(eb); 3739 3740 if (!ret) 3741 return ret; 3742 3743 num_pages = num_extent_pages(eb); 3744 for (i = 0; i < num_pages; i++) { 3745 struct page *p = eb->pages[i]; 3746 3747 if (!trylock_page(p)) { 3748 if (!flush) { 3749 int err; 3750 3751 err = flush_write_bio(epd); 3752 if (err < 0) { 3753 ret = err; 3754 failed_page_nr = i; 3755 goto err_unlock; 3756 } 3757 flush = 1; 3758 } 3759 lock_page(p); 3760 } 3761 } 3762 3763 return ret; 3764 err_unlock: 3765 /* Unlock already locked pages */ 3766 for (i = 0; i < failed_page_nr; i++) 3767 unlock_page(eb->pages[i]); 3768 /* 3769 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3770 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3771 * be made and undo everything done before. 3772 */ 3773 btrfs_tree_lock(eb); 3774 spin_lock(&eb->refs_lock); 3775 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3776 end_extent_buffer_writeback(eb); 3777 spin_unlock(&eb->refs_lock); 3778 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3779 fs_info->dirty_metadata_batch); 3780 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3781 btrfs_tree_unlock(eb); 3782 return ret; 3783 } 3784 3785 static void set_btree_ioerr(struct page *page) 3786 { 3787 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3788 struct btrfs_fs_info *fs_info; 3789 3790 SetPageError(page); 3791 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3792 return; 3793 3794 /* 3795 * If we error out, we should add back the dirty_metadata_bytes 3796 * to make it consistent. 3797 */ 3798 fs_info = eb->fs_info; 3799 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3800 eb->len, fs_info->dirty_metadata_batch); 3801 3802 /* 3803 * If writeback for a btree extent that doesn't belong to a log tree 3804 * failed, increment the counter transaction->eb_write_errors. 3805 * We do this because while the transaction is running and before it's 3806 * committing (when we call filemap_fdata[write|wait]_range against 3807 * the btree inode), we might have 3808 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3809 * returns an error or an error happens during writeback, when we're 3810 * committing the transaction we wouldn't know about it, since the pages 3811 * can be no longer dirty nor marked anymore for writeback (if a 3812 * subsequent modification to the extent buffer didn't happen before the 3813 * transaction commit), which makes filemap_fdata[write|wait]_range not 3814 * able to find the pages tagged with SetPageError at transaction 3815 * commit time. So if this happens we must abort the transaction, 3816 * otherwise we commit a super block with btree roots that point to 3817 * btree nodes/leafs whose content on disk is invalid - either garbage 3818 * or the content of some node/leaf from a past generation that got 3819 * cowed or deleted and is no longer valid. 3820 * 3821 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3822 * not be enough - we need to distinguish between log tree extents vs 3823 * non-log tree extents, and the next filemap_fdatawait_range() call 3824 * will catch and clear such errors in the mapping - and that call might 3825 * be from a log sync and not from a transaction commit. Also, checking 3826 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3827 * not done and would not be reliable - the eb might have been released 3828 * from memory and reading it back again means that flag would not be 3829 * set (since it's a runtime flag, not persisted on disk). 3830 * 3831 * Using the flags below in the btree inode also makes us achieve the 3832 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3833 * writeback for all dirty pages and before filemap_fdatawait_range() 3834 * is called, the writeback for all dirty pages had already finished 3835 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3836 * filemap_fdatawait_range() would return success, as it could not know 3837 * that writeback errors happened (the pages were no longer tagged for 3838 * writeback). 3839 */ 3840 switch (eb->log_index) { 3841 case -1: 3842 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3843 break; 3844 case 0: 3845 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3846 break; 3847 case 1: 3848 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3849 break; 3850 default: 3851 BUG(); /* unexpected, logic error */ 3852 } 3853 } 3854 3855 static void end_bio_extent_buffer_writepage(struct bio *bio) 3856 { 3857 struct bio_vec *bvec; 3858 struct extent_buffer *eb; 3859 int done; 3860 struct bvec_iter_all iter_all; 3861 3862 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3863 bio_for_each_segment_all(bvec, bio, iter_all) { 3864 struct page *page = bvec->bv_page; 3865 3866 eb = (struct extent_buffer *)page->private; 3867 BUG_ON(!eb); 3868 done = atomic_dec_and_test(&eb->io_pages); 3869 3870 if (bio->bi_status || 3871 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3872 ClearPageUptodate(page); 3873 set_btree_ioerr(page); 3874 } 3875 3876 end_page_writeback(page); 3877 3878 if (!done) 3879 continue; 3880 3881 end_extent_buffer_writeback(eb); 3882 } 3883 3884 bio_put(bio); 3885 } 3886 3887 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3888 struct writeback_control *wbc, 3889 struct extent_page_data *epd) 3890 { 3891 u64 offset = eb->start; 3892 u32 nritems; 3893 int i, num_pages; 3894 unsigned long start, end; 3895 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3896 int ret = 0; 3897 3898 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3899 num_pages = num_extent_pages(eb); 3900 atomic_set(&eb->io_pages, num_pages); 3901 3902 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3903 nritems = btrfs_header_nritems(eb); 3904 if (btrfs_header_level(eb) > 0) { 3905 end = btrfs_node_key_ptr_offset(nritems); 3906 3907 memzero_extent_buffer(eb, end, eb->len - end); 3908 } else { 3909 /* 3910 * leaf: 3911 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3912 */ 3913 start = btrfs_item_nr_offset(nritems); 3914 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3915 memzero_extent_buffer(eb, start, end - start); 3916 } 3917 3918 for (i = 0; i < num_pages; i++) { 3919 struct page *p = eb->pages[i]; 3920 3921 clear_page_dirty_for_io(p); 3922 set_page_writeback(p); 3923 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3924 p, offset, PAGE_SIZE, 0, 3925 &epd->bio, 3926 end_bio_extent_buffer_writepage, 3927 0, 0, 0, false); 3928 if (ret) { 3929 set_btree_ioerr(p); 3930 if (PageWriteback(p)) 3931 end_page_writeback(p); 3932 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3933 end_extent_buffer_writeback(eb); 3934 ret = -EIO; 3935 break; 3936 } 3937 offset += PAGE_SIZE; 3938 update_nr_written(wbc, 1); 3939 unlock_page(p); 3940 } 3941 3942 if (unlikely(ret)) { 3943 for (; i < num_pages; i++) { 3944 struct page *p = eb->pages[i]; 3945 clear_page_dirty_for_io(p); 3946 unlock_page(p); 3947 } 3948 } 3949 3950 return ret; 3951 } 3952 3953 int btree_write_cache_pages(struct address_space *mapping, 3954 struct writeback_control *wbc) 3955 { 3956 struct extent_buffer *eb, *prev_eb = NULL; 3957 struct extent_page_data epd = { 3958 .bio = NULL, 3959 .extent_locked = 0, 3960 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3961 }; 3962 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3963 int ret = 0; 3964 int done = 0; 3965 int nr_to_write_done = 0; 3966 struct pagevec pvec; 3967 int nr_pages; 3968 pgoff_t index; 3969 pgoff_t end; /* Inclusive */ 3970 int scanned = 0; 3971 xa_mark_t tag; 3972 3973 pagevec_init(&pvec); 3974 if (wbc->range_cyclic) { 3975 index = mapping->writeback_index; /* Start from prev offset */ 3976 end = -1; 3977 /* 3978 * Start from the beginning does not need to cycle over the 3979 * range, mark it as scanned. 3980 */ 3981 scanned = (index == 0); 3982 } else { 3983 index = wbc->range_start >> PAGE_SHIFT; 3984 end = wbc->range_end >> PAGE_SHIFT; 3985 scanned = 1; 3986 } 3987 if (wbc->sync_mode == WB_SYNC_ALL) 3988 tag = PAGECACHE_TAG_TOWRITE; 3989 else 3990 tag = PAGECACHE_TAG_DIRTY; 3991 retry: 3992 if (wbc->sync_mode == WB_SYNC_ALL) 3993 tag_pages_for_writeback(mapping, index, end); 3994 while (!done && !nr_to_write_done && (index <= end) && 3995 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3996 tag))) { 3997 unsigned i; 3998 3999 for (i = 0; i < nr_pages; i++) { 4000 struct page *page = pvec.pages[i]; 4001 4002 if (!PagePrivate(page)) 4003 continue; 4004 4005 spin_lock(&mapping->private_lock); 4006 if (!PagePrivate(page)) { 4007 spin_unlock(&mapping->private_lock); 4008 continue; 4009 } 4010 4011 eb = (struct extent_buffer *)page->private; 4012 4013 /* 4014 * Shouldn't happen and normally this would be a BUG_ON 4015 * but no sense in crashing the users box for something 4016 * we can survive anyway. 4017 */ 4018 if (WARN_ON(!eb)) { 4019 spin_unlock(&mapping->private_lock); 4020 continue; 4021 } 4022 4023 if (eb == prev_eb) { 4024 spin_unlock(&mapping->private_lock); 4025 continue; 4026 } 4027 4028 ret = atomic_inc_not_zero(&eb->refs); 4029 spin_unlock(&mapping->private_lock); 4030 if (!ret) 4031 continue; 4032 4033 prev_eb = eb; 4034 ret = lock_extent_buffer_for_io(eb, &epd); 4035 if (!ret) { 4036 free_extent_buffer(eb); 4037 continue; 4038 } else if (ret < 0) { 4039 done = 1; 4040 free_extent_buffer(eb); 4041 break; 4042 } 4043 4044 ret = write_one_eb(eb, wbc, &epd); 4045 if (ret) { 4046 done = 1; 4047 free_extent_buffer(eb); 4048 break; 4049 } 4050 free_extent_buffer(eb); 4051 4052 /* 4053 * the filesystem may choose to bump up nr_to_write. 4054 * We have to make sure to honor the new nr_to_write 4055 * at any time 4056 */ 4057 nr_to_write_done = wbc->nr_to_write <= 0; 4058 } 4059 pagevec_release(&pvec); 4060 cond_resched(); 4061 } 4062 if (!scanned && !done) { 4063 /* 4064 * We hit the last page and there is more work to be done: wrap 4065 * back to the start of the file 4066 */ 4067 scanned = 1; 4068 index = 0; 4069 goto retry; 4070 } 4071 ASSERT(ret <= 0); 4072 if (ret < 0) { 4073 end_write_bio(&epd, ret); 4074 return ret; 4075 } 4076 /* 4077 * If something went wrong, don't allow any metadata write bio to be 4078 * submitted. 4079 * 4080 * This would prevent use-after-free if we had dirty pages not 4081 * cleaned up, which can still happen by fuzzed images. 4082 * 4083 * - Bad extent tree 4084 * Allowing existing tree block to be allocated for other trees. 4085 * 4086 * - Log tree operations 4087 * Exiting tree blocks get allocated to log tree, bumps its 4088 * generation, then get cleaned in tree re-balance. 4089 * Such tree block will not be written back, since it's clean, 4090 * thus no WRITTEN flag set. 4091 * And after log writes back, this tree block is not traced by 4092 * any dirty extent_io_tree. 4093 * 4094 * - Offending tree block gets re-dirtied from its original owner 4095 * Since it has bumped generation, no WRITTEN flag, it can be 4096 * reused without COWing. This tree block will not be traced 4097 * by btrfs_transaction::dirty_pages. 4098 * 4099 * Now such dirty tree block will not be cleaned by any dirty 4100 * extent io tree. Thus we don't want to submit such wild eb 4101 * if the fs already has error. 4102 */ 4103 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4104 ret = flush_write_bio(&epd); 4105 } else { 4106 ret = -EUCLEAN; 4107 end_write_bio(&epd, ret); 4108 } 4109 return ret; 4110 } 4111 4112 /** 4113 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4114 * @mapping: address space structure to write 4115 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4116 * @data: data passed to __extent_writepage function 4117 * 4118 * If a page is already under I/O, write_cache_pages() skips it, even 4119 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4120 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4121 * and msync() need to guarantee that all the data which was dirty at the time 4122 * the call was made get new I/O started against them. If wbc->sync_mode is 4123 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4124 * existing IO to complete. 4125 */ 4126 static int extent_write_cache_pages(struct address_space *mapping, 4127 struct writeback_control *wbc, 4128 struct extent_page_data *epd) 4129 { 4130 struct inode *inode = mapping->host; 4131 int ret = 0; 4132 int done = 0; 4133 int nr_to_write_done = 0; 4134 struct pagevec pvec; 4135 int nr_pages; 4136 pgoff_t index; 4137 pgoff_t end; /* Inclusive */ 4138 pgoff_t done_index; 4139 int range_whole = 0; 4140 int scanned = 0; 4141 xa_mark_t tag; 4142 4143 /* 4144 * We have to hold onto the inode so that ordered extents can do their 4145 * work when the IO finishes. The alternative to this is failing to add 4146 * an ordered extent if the igrab() fails there and that is a huge pain 4147 * to deal with, so instead just hold onto the inode throughout the 4148 * writepages operation. If it fails here we are freeing up the inode 4149 * anyway and we'd rather not waste our time writing out stuff that is 4150 * going to be truncated anyway. 4151 */ 4152 if (!igrab(inode)) 4153 return 0; 4154 4155 pagevec_init(&pvec); 4156 if (wbc->range_cyclic) { 4157 index = mapping->writeback_index; /* Start from prev offset */ 4158 end = -1; 4159 /* 4160 * Start from the beginning does not need to cycle over the 4161 * range, mark it as scanned. 4162 */ 4163 scanned = (index == 0); 4164 } else { 4165 index = wbc->range_start >> PAGE_SHIFT; 4166 end = wbc->range_end >> PAGE_SHIFT; 4167 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4168 range_whole = 1; 4169 scanned = 1; 4170 } 4171 4172 /* 4173 * We do the tagged writepage as long as the snapshot flush bit is set 4174 * and we are the first one who do the filemap_flush() on this inode. 4175 * 4176 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4177 * not race in and drop the bit. 4178 */ 4179 if (range_whole && wbc->nr_to_write == LONG_MAX && 4180 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4181 &BTRFS_I(inode)->runtime_flags)) 4182 wbc->tagged_writepages = 1; 4183 4184 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4185 tag = PAGECACHE_TAG_TOWRITE; 4186 else 4187 tag = PAGECACHE_TAG_DIRTY; 4188 retry: 4189 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4190 tag_pages_for_writeback(mapping, index, end); 4191 done_index = index; 4192 while (!done && !nr_to_write_done && (index <= end) && 4193 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4194 &index, end, tag))) { 4195 unsigned i; 4196 4197 for (i = 0; i < nr_pages; i++) { 4198 struct page *page = pvec.pages[i]; 4199 4200 done_index = page->index + 1; 4201 /* 4202 * At this point we hold neither the i_pages lock nor 4203 * the page lock: the page may be truncated or 4204 * invalidated (changing page->mapping to NULL), 4205 * or even swizzled back from swapper_space to 4206 * tmpfs file mapping 4207 */ 4208 if (!trylock_page(page)) { 4209 ret = flush_write_bio(epd); 4210 BUG_ON(ret < 0); 4211 lock_page(page); 4212 } 4213 4214 if (unlikely(page->mapping != mapping)) { 4215 unlock_page(page); 4216 continue; 4217 } 4218 4219 if (wbc->sync_mode != WB_SYNC_NONE) { 4220 if (PageWriteback(page)) { 4221 ret = flush_write_bio(epd); 4222 BUG_ON(ret < 0); 4223 } 4224 wait_on_page_writeback(page); 4225 } 4226 4227 if (PageWriteback(page) || 4228 !clear_page_dirty_for_io(page)) { 4229 unlock_page(page); 4230 continue; 4231 } 4232 4233 ret = __extent_writepage(page, wbc, epd); 4234 if (ret < 0) { 4235 done = 1; 4236 break; 4237 } 4238 4239 /* 4240 * the filesystem may choose to bump up nr_to_write. 4241 * We have to make sure to honor the new nr_to_write 4242 * at any time 4243 */ 4244 nr_to_write_done = wbc->nr_to_write <= 0; 4245 } 4246 pagevec_release(&pvec); 4247 cond_resched(); 4248 } 4249 if (!scanned && !done) { 4250 /* 4251 * We hit the last page and there is more work to be done: wrap 4252 * back to the start of the file 4253 */ 4254 scanned = 1; 4255 index = 0; 4256 4257 /* 4258 * If we're looping we could run into a page that is locked by a 4259 * writer and that writer could be waiting on writeback for a 4260 * page in our current bio, and thus deadlock, so flush the 4261 * write bio here. 4262 */ 4263 ret = flush_write_bio(epd); 4264 if (!ret) 4265 goto retry; 4266 } 4267 4268 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4269 mapping->writeback_index = done_index; 4270 4271 btrfs_add_delayed_iput(inode); 4272 return ret; 4273 } 4274 4275 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4276 { 4277 int ret; 4278 struct extent_page_data epd = { 4279 .bio = NULL, 4280 .extent_locked = 0, 4281 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4282 }; 4283 4284 ret = __extent_writepage(page, wbc, &epd); 4285 ASSERT(ret <= 0); 4286 if (ret < 0) { 4287 end_write_bio(&epd, ret); 4288 return ret; 4289 } 4290 4291 ret = flush_write_bio(&epd); 4292 ASSERT(ret <= 0); 4293 return ret; 4294 } 4295 4296 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4297 int mode) 4298 { 4299 int ret = 0; 4300 struct address_space *mapping = inode->i_mapping; 4301 struct page *page; 4302 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4303 PAGE_SHIFT; 4304 4305 struct extent_page_data epd = { 4306 .bio = NULL, 4307 .extent_locked = 1, 4308 .sync_io = mode == WB_SYNC_ALL, 4309 }; 4310 struct writeback_control wbc_writepages = { 4311 .sync_mode = mode, 4312 .nr_to_write = nr_pages * 2, 4313 .range_start = start, 4314 .range_end = end + 1, 4315 /* We're called from an async helper function */ 4316 .punt_to_cgroup = 1, 4317 .no_cgroup_owner = 1, 4318 }; 4319 4320 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4321 while (start <= end) { 4322 page = find_get_page(mapping, start >> PAGE_SHIFT); 4323 if (clear_page_dirty_for_io(page)) 4324 ret = __extent_writepage(page, &wbc_writepages, &epd); 4325 else { 4326 btrfs_writepage_endio_finish_ordered(page, start, 4327 start + PAGE_SIZE - 1, 1); 4328 unlock_page(page); 4329 } 4330 put_page(page); 4331 start += PAGE_SIZE; 4332 } 4333 4334 ASSERT(ret <= 0); 4335 if (ret == 0) 4336 ret = flush_write_bio(&epd); 4337 else 4338 end_write_bio(&epd, ret); 4339 4340 wbc_detach_inode(&wbc_writepages); 4341 return ret; 4342 } 4343 4344 int extent_writepages(struct address_space *mapping, 4345 struct writeback_control *wbc) 4346 { 4347 int ret = 0; 4348 struct extent_page_data epd = { 4349 .bio = NULL, 4350 .extent_locked = 0, 4351 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4352 }; 4353 4354 ret = extent_write_cache_pages(mapping, wbc, &epd); 4355 ASSERT(ret <= 0); 4356 if (ret < 0) { 4357 end_write_bio(&epd, ret); 4358 return ret; 4359 } 4360 ret = flush_write_bio(&epd); 4361 return ret; 4362 } 4363 4364 void extent_readahead(struct readahead_control *rac) 4365 { 4366 struct bio *bio = NULL; 4367 unsigned long bio_flags = 0; 4368 struct page *pagepool[16]; 4369 struct extent_map *em_cached = NULL; 4370 u64 prev_em_start = (u64)-1; 4371 int nr; 4372 4373 while ((nr = readahead_page_batch(rac, pagepool))) { 4374 u64 contig_start = page_offset(pagepool[0]); 4375 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4376 4377 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4378 4379 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4380 &em_cached, &bio, &bio_flags, &prev_em_start); 4381 } 4382 4383 if (em_cached) 4384 free_extent_map(em_cached); 4385 4386 if (bio) { 4387 if (submit_one_bio(bio, 0, bio_flags)) 4388 return; 4389 } 4390 } 4391 4392 /* 4393 * basic invalidatepage code, this waits on any locked or writeback 4394 * ranges corresponding to the page, and then deletes any extent state 4395 * records from the tree 4396 */ 4397 int extent_invalidatepage(struct extent_io_tree *tree, 4398 struct page *page, unsigned long offset) 4399 { 4400 struct extent_state *cached_state = NULL; 4401 u64 start = page_offset(page); 4402 u64 end = start + PAGE_SIZE - 1; 4403 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4404 4405 start += ALIGN(offset, blocksize); 4406 if (start > end) 4407 return 0; 4408 4409 lock_extent_bits(tree, start, end, &cached_state); 4410 wait_on_page_writeback(page); 4411 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | 4412 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); 4413 return 0; 4414 } 4415 4416 /* 4417 * a helper for releasepage, this tests for areas of the page that 4418 * are locked or under IO and drops the related state bits if it is safe 4419 * to drop the page. 4420 */ 4421 static int try_release_extent_state(struct extent_io_tree *tree, 4422 struct page *page, gfp_t mask) 4423 { 4424 u64 start = page_offset(page); 4425 u64 end = start + PAGE_SIZE - 1; 4426 int ret = 1; 4427 4428 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4429 ret = 0; 4430 } else { 4431 /* 4432 * at this point we can safely clear everything except the 4433 * locked bit and the nodatasum bit 4434 */ 4435 ret = __clear_extent_bit(tree, start, end, 4436 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4437 0, 0, NULL, mask, NULL); 4438 4439 /* if clear_extent_bit failed for enomem reasons, 4440 * we can't allow the release to continue. 4441 */ 4442 if (ret < 0) 4443 ret = 0; 4444 else 4445 ret = 1; 4446 } 4447 return ret; 4448 } 4449 4450 /* 4451 * a helper for releasepage. As long as there are no locked extents 4452 * in the range corresponding to the page, both state records and extent 4453 * map records are removed 4454 */ 4455 int try_release_extent_mapping(struct page *page, gfp_t mask) 4456 { 4457 struct extent_map *em; 4458 u64 start = page_offset(page); 4459 u64 end = start + PAGE_SIZE - 1; 4460 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4461 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4462 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4463 4464 if (gfpflags_allow_blocking(mask) && 4465 page->mapping->host->i_size > SZ_16M) { 4466 u64 len; 4467 while (start <= end) { 4468 len = end - start + 1; 4469 write_lock(&map->lock); 4470 em = lookup_extent_mapping(map, start, len); 4471 if (!em) { 4472 write_unlock(&map->lock); 4473 break; 4474 } 4475 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4476 em->start != start) { 4477 write_unlock(&map->lock); 4478 free_extent_map(em); 4479 break; 4480 } 4481 if (!test_range_bit(tree, em->start, 4482 extent_map_end(em) - 1, 4483 EXTENT_LOCKED, 0, NULL)) { 4484 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4485 &btrfs_inode->runtime_flags); 4486 remove_extent_mapping(map, em); 4487 /* once for the rb tree */ 4488 free_extent_map(em); 4489 } 4490 start = extent_map_end(em); 4491 write_unlock(&map->lock); 4492 4493 /* once for us */ 4494 free_extent_map(em); 4495 } 4496 } 4497 return try_release_extent_state(tree, page, mask); 4498 } 4499 4500 /* 4501 * helper function for fiemap, which doesn't want to see any holes. 4502 * This maps until we find something past 'last' 4503 */ 4504 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4505 u64 offset, u64 last) 4506 { 4507 u64 sectorsize = btrfs_inode_sectorsize(inode); 4508 struct extent_map *em; 4509 u64 len; 4510 4511 if (offset >= last) 4512 return NULL; 4513 4514 while (1) { 4515 len = last - offset; 4516 if (len == 0) 4517 break; 4518 len = ALIGN(len, sectorsize); 4519 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4520 if (IS_ERR_OR_NULL(em)) 4521 return em; 4522 4523 /* if this isn't a hole return it */ 4524 if (em->block_start != EXTENT_MAP_HOLE) 4525 return em; 4526 4527 /* this is a hole, advance to the next extent */ 4528 offset = extent_map_end(em); 4529 free_extent_map(em); 4530 if (offset >= last) 4531 break; 4532 } 4533 return NULL; 4534 } 4535 4536 /* 4537 * To cache previous fiemap extent 4538 * 4539 * Will be used for merging fiemap extent 4540 */ 4541 struct fiemap_cache { 4542 u64 offset; 4543 u64 phys; 4544 u64 len; 4545 u32 flags; 4546 bool cached; 4547 }; 4548 4549 /* 4550 * Helper to submit fiemap extent. 4551 * 4552 * Will try to merge current fiemap extent specified by @offset, @phys, 4553 * @len and @flags with cached one. 4554 * And only when we fails to merge, cached one will be submitted as 4555 * fiemap extent. 4556 * 4557 * Return value is the same as fiemap_fill_next_extent(). 4558 */ 4559 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4560 struct fiemap_cache *cache, 4561 u64 offset, u64 phys, u64 len, u32 flags) 4562 { 4563 int ret = 0; 4564 4565 if (!cache->cached) 4566 goto assign; 4567 4568 /* 4569 * Sanity check, extent_fiemap() should have ensured that new 4570 * fiemap extent won't overlap with cached one. 4571 * Not recoverable. 4572 * 4573 * NOTE: Physical address can overlap, due to compression 4574 */ 4575 if (cache->offset + cache->len > offset) { 4576 WARN_ON(1); 4577 return -EINVAL; 4578 } 4579 4580 /* 4581 * Only merges fiemap extents if 4582 * 1) Their logical addresses are continuous 4583 * 4584 * 2) Their physical addresses are continuous 4585 * So truly compressed (physical size smaller than logical size) 4586 * extents won't get merged with each other 4587 * 4588 * 3) Share same flags except FIEMAP_EXTENT_LAST 4589 * So regular extent won't get merged with prealloc extent 4590 */ 4591 if (cache->offset + cache->len == offset && 4592 cache->phys + cache->len == phys && 4593 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4594 (flags & ~FIEMAP_EXTENT_LAST)) { 4595 cache->len += len; 4596 cache->flags |= flags; 4597 goto try_submit_last; 4598 } 4599 4600 /* Not mergeable, need to submit cached one */ 4601 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4602 cache->len, cache->flags); 4603 cache->cached = false; 4604 if (ret) 4605 return ret; 4606 assign: 4607 cache->cached = true; 4608 cache->offset = offset; 4609 cache->phys = phys; 4610 cache->len = len; 4611 cache->flags = flags; 4612 try_submit_last: 4613 if (cache->flags & FIEMAP_EXTENT_LAST) { 4614 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4615 cache->phys, cache->len, cache->flags); 4616 cache->cached = false; 4617 } 4618 return ret; 4619 } 4620 4621 /* 4622 * Emit last fiemap cache 4623 * 4624 * The last fiemap cache may still be cached in the following case: 4625 * 0 4k 8k 4626 * |<- Fiemap range ->| 4627 * |<------------ First extent ----------->| 4628 * 4629 * In this case, the first extent range will be cached but not emitted. 4630 * So we must emit it before ending extent_fiemap(). 4631 */ 4632 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4633 struct fiemap_cache *cache) 4634 { 4635 int ret; 4636 4637 if (!cache->cached) 4638 return 0; 4639 4640 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4641 cache->len, cache->flags); 4642 cache->cached = false; 4643 if (ret > 0) 4644 ret = 0; 4645 return ret; 4646 } 4647 4648 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4649 __u64 start, __u64 len) 4650 { 4651 int ret = 0; 4652 u64 off = start; 4653 u64 max = start + len; 4654 u32 flags = 0; 4655 u32 found_type; 4656 u64 last; 4657 u64 last_for_get_extent = 0; 4658 u64 disko = 0; 4659 u64 isize = i_size_read(inode); 4660 struct btrfs_key found_key; 4661 struct extent_map *em = NULL; 4662 struct extent_state *cached_state = NULL; 4663 struct btrfs_path *path; 4664 struct btrfs_root *root = BTRFS_I(inode)->root; 4665 struct fiemap_cache cache = { 0 }; 4666 struct ulist *roots; 4667 struct ulist *tmp_ulist; 4668 int end = 0; 4669 u64 em_start = 0; 4670 u64 em_len = 0; 4671 u64 em_end = 0; 4672 4673 if (len == 0) 4674 return -EINVAL; 4675 4676 path = btrfs_alloc_path(); 4677 if (!path) 4678 return -ENOMEM; 4679 path->leave_spinning = 1; 4680 4681 roots = ulist_alloc(GFP_KERNEL); 4682 tmp_ulist = ulist_alloc(GFP_KERNEL); 4683 if (!roots || !tmp_ulist) { 4684 ret = -ENOMEM; 4685 goto out_free_ulist; 4686 } 4687 4688 start = round_down(start, btrfs_inode_sectorsize(inode)); 4689 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4690 4691 /* 4692 * lookup the last file extent. We're not using i_size here 4693 * because there might be preallocation past i_size 4694 */ 4695 ret = btrfs_lookup_file_extent(NULL, root, path, 4696 btrfs_ino(BTRFS_I(inode)), -1, 0); 4697 if (ret < 0) { 4698 goto out_free_ulist; 4699 } else { 4700 WARN_ON(!ret); 4701 if (ret == 1) 4702 ret = 0; 4703 } 4704 4705 path->slots[0]--; 4706 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4707 found_type = found_key.type; 4708 4709 /* No extents, but there might be delalloc bits */ 4710 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4711 found_type != BTRFS_EXTENT_DATA_KEY) { 4712 /* have to trust i_size as the end */ 4713 last = (u64)-1; 4714 last_for_get_extent = isize; 4715 } else { 4716 /* 4717 * remember the start of the last extent. There are a 4718 * bunch of different factors that go into the length of the 4719 * extent, so its much less complex to remember where it started 4720 */ 4721 last = found_key.offset; 4722 last_for_get_extent = last + 1; 4723 } 4724 btrfs_release_path(path); 4725 4726 /* 4727 * we might have some extents allocated but more delalloc past those 4728 * extents. so, we trust isize unless the start of the last extent is 4729 * beyond isize 4730 */ 4731 if (last < isize) { 4732 last = (u64)-1; 4733 last_for_get_extent = isize; 4734 } 4735 4736 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4737 &cached_state); 4738 4739 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4740 if (!em) 4741 goto out; 4742 if (IS_ERR(em)) { 4743 ret = PTR_ERR(em); 4744 goto out; 4745 } 4746 4747 while (!end) { 4748 u64 offset_in_extent = 0; 4749 4750 /* break if the extent we found is outside the range */ 4751 if (em->start >= max || extent_map_end(em) < off) 4752 break; 4753 4754 /* 4755 * get_extent may return an extent that starts before our 4756 * requested range. We have to make sure the ranges 4757 * we return to fiemap always move forward and don't 4758 * overlap, so adjust the offsets here 4759 */ 4760 em_start = max(em->start, off); 4761 4762 /* 4763 * record the offset from the start of the extent 4764 * for adjusting the disk offset below. Only do this if the 4765 * extent isn't compressed since our in ram offset may be past 4766 * what we have actually allocated on disk. 4767 */ 4768 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4769 offset_in_extent = em_start - em->start; 4770 em_end = extent_map_end(em); 4771 em_len = em_end - em_start; 4772 flags = 0; 4773 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4774 disko = em->block_start + offset_in_extent; 4775 else 4776 disko = 0; 4777 4778 /* 4779 * bump off for our next call to get_extent 4780 */ 4781 off = extent_map_end(em); 4782 if (off >= max) 4783 end = 1; 4784 4785 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4786 end = 1; 4787 flags |= FIEMAP_EXTENT_LAST; 4788 } else if (em->block_start == EXTENT_MAP_INLINE) { 4789 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4790 FIEMAP_EXTENT_NOT_ALIGNED); 4791 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4792 flags |= (FIEMAP_EXTENT_DELALLOC | 4793 FIEMAP_EXTENT_UNKNOWN); 4794 } else if (fieinfo->fi_extents_max) { 4795 u64 bytenr = em->block_start - 4796 (em->start - em->orig_start); 4797 4798 /* 4799 * As btrfs supports shared space, this information 4800 * can be exported to userspace tools via 4801 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4802 * then we're just getting a count and we can skip the 4803 * lookup stuff. 4804 */ 4805 ret = btrfs_check_shared(root, 4806 btrfs_ino(BTRFS_I(inode)), 4807 bytenr, roots, tmp_ulist); 4808 if (ret < 0) 4809 goto out_free; 4810 if (ret) 4811 flags |= FIEMAP_EXTENT_SHARED; 4812 ret = 0; 4813 } 4814 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4815 flags |= FIEMAP_EXTENT_ENCODED; 4816 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4817 flags |= FIEMAP_EXTENT_UNWRITTEN; 4818 4819 free_extent_map(em); 4820 em = NULL; 4821 if ((em_start >= last) || em_len == (u64)-1 || 4822 (last == (u64)-1 && isize <= em_end)) { 4823 flags |= FIEMAP_EXTENT_LAST; 4824 end = 1; 4825 } 4826 4827 /* now scan forward to see if this is really the last extent. */ 4828 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4829 if (IS_ERR(em)) { 4830 ret = PTR_ERR(em); 4831 goto out; 4832 } 4833 if (!em) { 4834 flags |= FIEMAP_EXTENT_LAST; 4835 end = 1; 4836 } 4837 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4838 em_len, flags); 4839 if (ret) { 4840 if (ret == 1) 4841 ret = 0; 4842 goto out_free; 4843 } 4844 } 4845 out_free: 4846 if (!ret) 4847 ret = emit_last_fiemap_cache(fieinfo, &cache); 4848 free_extent_map(em); 4849 out: 4850 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4851 &cached_state); 4852 4853 out_free_ulist: 4854 btrfs_free_path(path); 4855 ulist_free(roots); 4856 ulist_free(tmp_ulist); 4857 return ret; 4858 } 4859 4860 static void __free_extent_buffer(struct extent_buffer *eb) 4861 { 4862 kmem_cache_free(extent_buffer_cache, eb); 4863 } 4864 4865 int extent_buffer_under_io(struct extent_buffer *eb) 4866 { 4867 return (atomic_read(&eb->io_pages) || 4868 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4869 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4870 } 4871 4872 /* 4873 * Release all pages attached to the extent buffer. 4874 */ 4875 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4876 { 4877 int i; 4878 int num_pages; 4879 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4880 4881 BUG_ON(extent_buffer_under_io(eb)); 4882 4883 num_pages = num_extent_pages(eb); 4884 for (i = 0; i < num_pages; i++) { 4885 struct page *page = eb->pages[i]; 4886 4887 if (!page) 4888 continue; 4889 if (mapped) 4890 spin_lock(&page->mapping->private_lock); 4891 /* 4892 * We do this since we'll remove the pages after we've 4893 * removed the eb from the radix tree, so we could race 4894 * and have this page now attached to the new eb. So 4895 * only clear page_private if it's still connected to 4896 * this eb. 4897 */ 4898 if (PagePrivate(page) && 4899 page->private == (unsigned long)eb) { 4900 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4901 BUG_ON(PageDirty(page)); 4902 BUG_ON(PageWriteback(page)); 4903 /* 4904 * We need to make sure we haven't be attached 4905 * to a new eb. 4906 */ 4907 detach_page_private(page); 4908 } 4909 4910 if (mapped) 4911 spin_unlock(&page->mapping->private_lock); 4912 4913 /* One for when we allocated the page */ 4914 put_page(page); 4915 } 4916 } 4917 4918 /* 4919 * Helper for releasing the extent buffer. 4920 */ 4921 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4922 { 4923 btrfs_release_extent_buffer_pages(eb); 4924 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 4925 __free_extent_buffer(eb); 4926 } 4927 4928 static struct extent_buffer * 4929 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4930 unsigned long len) 4931 { 4932 struct extent_buffer *eb = NULL; 4933 4934 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4935 eb->start = start; 4936 eb->len = len; 4937 eb->fs_info = fs_info; 4938 eb->bflags = 0; 4939 rwlock_init(&eb->lock); 4940 atomic_set(&eb->blocking_readers, 0); 4941 eb->blocking_writers = 0; 4942 eb->lock_nested = false; 4943 init_waitqueue_head(&eb->write_lock_wq); 4944 init_waitqueue_head(&eb->read_lock_wq); 4945 4946 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 4947 &fs_info->allocated_ebs); 4948 4949 spin_lock_init(&eb->refs_lock); 4950 atomic_set(&eb->refs, 1); 4951 atomic_set(&eb->io_pages, 0); 4952 4953 /* 4954 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4955 */ 4956 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4957 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4958 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4959 4960 #ifdef CONFIG_BTRFS_DEBUG 4961 eb->spinning_writers = 0; 4962 atomic_set(&eb->spinning_readers, 0); 4963 atomic_set(&eb->read_locks, 0); 4964 eb->write_locks = 0; 4965 #endif 4966 4967 return eb; 4968 } 4969 4970 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4971 { 4972 int i; 4973 struct page *p; 4974 struct extent_buffer *new; 4975 int num_pages = num_extent_pages(src); 4976 4977 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4978 if (new == NULL) 4979 return NULL; 4980 4981 for (i = 0; i < num_pages; i++) { 4982 p = alloc_page(GFP_NOFS); 4983 if (!p) { 4984 btrfs_release_extent_buffer(new); 4985 return NULL; 4986 } 4987 attach_extent_buffer_page(new, p); 4988 WARN_ON(PageDirty(p)); 4989 SetPageUptodate(p); 4990 new->pages[i] = p; 4991 copy_page(page_address(p), page_address(src->pages[i])); 4992 } 4993 4994 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4995 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4996 4997 return new; 4998 } 4999 5000 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5001 u64 start, unsigned long len) 5002 { 5003 struct extent_buffer *eb; 5004 int num_pages; 5005 int i; 5006 5007 eb = __alloc_extent_buffer(fs_info, start, len); 5008 if (!eb) 5009 return NULL; 5010 5011 num_pages = num_extent_pages(eb); 5012 for (i = 0; i < num_pages; i++) { 5013 eb->pages[i] = alloc_page(GFP_NOFS); 5014 if (!eb->pages[i]) 5015 goto err; 5016 } 5017 set_extent_buffer_uptodate(eb); 5018 btrfs_set_header_nritems(eb, 0); 5019 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5020 5021 return eb; 5022 err: 5023 for (; i > 0; i--) 5024 __free_page(eb->pages[i - 1]); 5025 __free_extent_buffer(eb); 5026 return NULL; 5027 } 5028 5029 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5030 u64 start) 5031 { 5032 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5033 } 5034 5035 static void check_buffer_tree_ref(struct extent_buffer *eb) 5036 { 5037 int refs; 5038 /* the ref bit is tricky. We have to make sure it is set 5039 * if we have the buffer dirty. Otherwise the 5040 * code to free a buffer can end up dropping a dirty 5041 * page 5042 * 5043 * Once the ref bit is set, it won't go away while the 5044 * buffer is dirty or in writeback, and it also won't 5045 * go away while we have the reference count on the 5046 * eb bumped. 5047 * 5048 * We can't just set the ref bit without bumping the 5049 * ref on the eb because free_extent_buffer might 5050 * see the ref bit and try to clear it. If this happens 5051 * free_extent_buffer might end up dropping our original 5052 * ref by mistake and freeing the page before we are able 5053 * to add one more ref. 5054 * 5055 * So bump the ref count first, then set the bit. If someone 5056 * beat us to it, drop the ref we added. 5057 */ 5058 refs = atomic_read(&eb->refs); 5059 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5060 return; 5061 5062 spin_lock(&eb->refs_lock); 5063 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5064 atomic_inc(&eb->refs); 5065 spin_unlock(&eb->refs_lock); 5066 } 5067 5068 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5069 struct page *accessed) 5070 { 5071 int num_pages, i; 5072 5073 check_buffer_tree_ref(eb); 5074 5075 num_pages = num_extent_pages(eb); 5076 for (i = 0; i < num_pages; i++) { 5077 struct page *p = eb->pages[i]; 5078 5079 if (p != accessed) 5080 mark_page_accessed(p); 5081 } 5082 } 5083 5084 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5085 u64 start) 5086 { 5087 struct extent_buffer *eb; 5088 5089 rcu_read_lock(); 5090 eb = radix_tree_lookup(&fs_info->buffer_radix, 5091 start >> PAGE_SHIFT); 5092 if (eb && atomic_inc_not_zero(&eb->refs)) { 5093 rcu_read_unlock(); 5094 /* 5095 * Lock our eb's refs_lock to avoid races with 5096 * free_extent_buffer. When we get our eb it might be flagged 5097 * with EXTENT_BUFFER_STALE and another task running 5098 * free_extent_buffer might have seen that flag set, 5099 * eb->refs == 2, that the buffer isn't under IO (dirty and 5100 * writeback flags not set) and it's still in the tree (flag 5101 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5102 * of decrementing the extent buffer's reference count twice. 5103 * So here we could race and increment the eb's reference count, 5104 * clear its stale flag, mark it as dirty and drop our reference 5105 * before the other task finishes executing free_extent_buffer, 5106 * which would later result in an attempt to free an extent 5107 * buffer that is dirty. 5108 */ 5109 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5110 spin_lock(&eb->refs_lock); 5111 spin_unlock(&eb->refs_lock); 5112 } 5113 mark_extent_buffer_accessed(eb, NULL); 5114 return eb; 5115 } 5116 rcu_read_unlock(); 5117 5118 return NULL; 5119 } 5120 5121 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5122 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5123 u64 start) 5124 { 5125 struct extent_buffer *eb, *exists = NULL; 5126 int ret; 5127 5128 eb = find_extent_buffer(fs_info, start); 5129 if (eb) 5130 return eb; 5131 eb = alloc_dummy_extent_buffer(fs_info, start); 5132 if (!eb) 5133 return ERR_PTR(-ENOMEM); 5134 eb->fs_info = fs_info; 5135 again: 5136 ret = radix_tree_preload(GFP_NOFS); 5137 if (ret) { 5138 exists = ERR_PTR(ret); 5139 goto free_eb; 5140 } 5141 spin_lock(&fs_info->buffer_lock); 5142 ret = radix_tree_insert(&fs_info->buffer_radix, 5143 start >> PAGE_SHIFT, eb); 5144 spin_unlock(&fs_info->buffer_lock); 5145 radix_tree_preload_end(); 5146 if (ret == -EEXIST) { 5147 exists = find_extent_buffer(fs_info, start); 5148 if (exists) 5149 goto free_eb; 5150 else 5151 goto again; 5152 } 5153 check_buffer_tree_ref(eb); 5154 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5155 5156 return eb; 5157 free_eb: 5158 btrfs_release_extent_buffer(eb); 5159 return exists; 5160 } 5161 #endif 5162 5163 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5164 u64 start) 5165 { 5166 unsigned long len = fs_info->nodesize; 5167 int num_pages; 5168 int i; 5169 unsigned long index = start >> PAGE_SHIFT; 5170 struct extent_buffer *eb; 5171 struct extent_buffer *exists = NULL; 5172 struct page *p; 5173 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5174 int uptodate = 1; 5175 int ret; 5176 5177 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5178 btrfs_err(fs_info, "bad tree block start %llu", start); 5179 return ERR_PTR(-EINVAL); 5180 } 5181 5182 eb = find_extent_buffer(fs_info, start); 5183 if (eb) 5184 return eb; 5185 5186 eb = __alloc_extent_buffer(fs_info, start, len); 5187 if (!eb) 5188 return ERR_PTR(-ENOMEM); 5189 5190 num_pages = num_extent_pages(eb); 5191 for (i = 0; i < num_pages; i++, index++) { 5192 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5193 if (!p) { 5194 exists = ERR_PTR(-ENOMEM); 5195 goto free_eb; 5196 } 5197 5198 spin_lock(&mapping->private_lock); 5199 if (PagePrivate(p)) { 5200 /* 5201 * We could have already allocated an eb for this page 5202 * and attached one so lets see if we can get a ref on 5203 * the existing eb, and if we can we know it's good and 5204 * we can just return that one, else we know we can just 5205 * overwrite page->private. 5206 */ 5207 exists = (struct extent_buffer *)p->private; 5208 if (atomic_inc_not_zero(&exists->refs)) { 5209 spin_unlock(&mapping->private_lock); 5210 unlock_page(p); 5211 put_page(p); 5212 mark_extent_buffer_accessed(exists, p); 5213 goto free_eb; 5214 } 5215 exists = NULL; 5216 5217 /* 5218 * Do this so attach doesn't complain and we need to 5219 * drop the ref the old guy had. 5220 */ 5221 ClearPagePrivate(p); 5222 WARN_ON(PageDirty(p)); 5223 put_page(p); 5224 } 5225 attach_extent_buffer_page(eb, p); 5226 spin_unlock(&mapping->private_lock); 5227 WARN_ON(PageDirty(p)); 5228 eb->pages[i] = p; 5229 if (!PageUptodate(p)) 5230 uptodate = 0; 5231 5232 /* 5233 * We can't unlock the pages just yet since the extent buffer 5234 * hasn't been properly inserted in the radix tree, this 5235 * opens a race with btree_releasepage which can free a page 5236 * while we are still filling in all pages for the buffer and 5237 * we could crash. 5238 */ 5239 } 5240 if (uptodate) 5241 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5242 again: 5243 ret = radix_tree_preload(GFP_NOFS); 5244 if (ret) { 5245 exists = ERR_PTR(ret); 5246 goto free_eb; 5247 } 5248 5249 spin_lock(&fs_info->buffer_lock); 5250 ret = radix_tree_insert(&fs_info->buffer_radix, 5251 start >> PAGE_SHIFT, eb); 5252 spin_unlock(&fs_info->buffer_lock); 5253 radix_tree_preload_end(); 5254 if (ret == -EEXIST) { 5255 exists = find_extent_buffer(fs_info, start); 5256 if (exists) 5257 goto free_eb; 5258 else 5259 goto again; 5260 } 5261 /* add one reference for the tree */ 5262 check_buffer_tree_ref(eb); 5263 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5264 5265 /* 5266 * Now it's safe to unlock the pages because any calls to 5267 * btree_releasepage will correctly detect that a page belongs to a 5268 * live buffer and won't free them prematurely. 5269 */ 5270 for (i = 0; i < num_pages; i++) 5271 unlock_page(eb->pages[i]); 5272 return eb; 5273 5274 free_eb: 5275 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5276 for (i = 0; i < num_pages; i++) { 5277 if (eb->pages[i]) 5278 unlock_page(eb->pages[i]); 5279 } 5280 5281 btrfs_release_extent_buffer(eb); 5282 return exists; 5283 } 5284 5285 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5286 { 5287 struct extent_buffer *eb = 5288 container_of(head, struct extent_buffer, rcu_head); 5289 5290 __free_extent_buffer(eb); 5291 } 5292 5293 static int release_extent_buffer(struct extent_buffer *eb) 5294 __releases(&eb->refs_lock) 5295 { 5296 lockdep_assert_held(&eb->refs_lock); 5297 5298 WARN_ON(atomic_read(&eb->refs) == 0); 5299 if (atomic_dec_and_test(&eb->refs)) { 5300 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5301 struct btrfs_fs_info *fs_info = eb->fs_info; 5302 5303 spin_unlock(&eb->refs_lock); 5304 5305 spin_lock(&fs_info->buffer_lock); 5306 radix_tree_delete(&fs_info->buffer_radix, 5307 eb->start >> PAGE_SHIFT); 5308 spin_unlock(&fs_info->buffer_lock); 5309 } else { 5310 spin_unlock(&eb->refs_lock); 5311 } 5312 5313 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5314 /* Should be safe to release our pages at this point */ 5315 btrfs_release_extent_buffer_pages(eb); 5316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5317 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5318 __free_extent_buffer(eb); 5319 return 1; 5320 } 5321 #endif 5322 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5323 return 1; 5324 } 5325 spin_unlock(&eb->refs_lock); 5326 5327 return 0; 5328 } 5329 5330 void free_extent_buffer(struct extent_buffer *eb) 5331 { 5332 int refs; 5333 int old; 5334 if (!eb) 5335 return; 5336 5337 while (1) { 5338 refs = atomic_read(&eb->refs); 5339 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5340 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5341 refs == 1)) 5342 break; 5343 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5344 if (old == refs) 5345 return; 5346 } 5347 5348 spin_lock(&eb->refs_lock); 5349 if (atomic_read(&eb->refs) == 2 && 5350 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5351 !extent_buffer_under_io(eb) && 5352 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5353 atomic_dec(&eb->refs); 5354 5355 /* 5356 * I know this is terrible, but it's temporary until we stop tracking 5357 * the uptodate bits and such for the extent buffers. 5358 */ 5359 release_extent_buffer(eb); 5360 } 5361 5362 void free_extent_buffer_stale(struct extent_buffer *eb) 5363 { 5364 if (!eb) 5365 return; 5366 5367 spin_lock(&eb->refs_lock); 5368 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5369 5370 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5371 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5372 atomic_dec(&eb->refs); 5373 release_extent_buffer(eb); 5374 } 5375 5376 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5377 { 5378 int i; 5379 int num_pages; 5380 struct page *page; 5381 5382 num_pages = num_extent_pages(eb); 5383 5384 for (i = 0; i < num_pages; i++) { 5385 page = eb->pages[i]; 5386 if (!PageDirty(page)) 5387 continue; 5388 5389 lock_page(page); 5390 WARN_ON(!PagePrivate(page)); 5391 5392 clear_page_dirty_for_io(page); 5393 xa_lock_irq(&page->mapping->i_pages); 5394 if (!PageDirty(page)) 5395 __xa_clear_mark(&page->mapping->i_pages, 5396 page_index(page), PAGECACHE_TAG_DIRTY); 5397 xa_unlock_irq(&page->mapping->i_pages); 5398 ClearPageError(page); 5399 unlock_page(page); 5400 } 5401 WARN_ON(atomic_read(&eb->refs) == 0); 5402 } 5403 5404 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5405 { 5406 int i; 5407 int num_pages; 5408 bool was_dirty; 5409 5410 check_buffer_tree_ref(eb); 5411 5412 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5413 5414 num_pages = num_extent_pages(eb); 5415 WARN_ON(atomic_read(&eb->refs) == 0); 5416 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5417 5418 if (!was_dirty) 5419 for (i = 0; i < num_pages; i++) 5420 set_page_dirty(eb->pages[i]); 5421 5422 #ifdef CONFIG_BTRFS_DEBUG 5423 for (i = 0; i < num_pages; i++) 5424 ASSERT(PageDirty(eb->pages[i])); 5425 #endif 5426 5427 return was_dirty; 5428 } 5429 5430 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5431 { 5432 int i; 5433 struct page *page; 5434 int num_pages; 5435 5436 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5437 num_pages = num_extent_pages(eb); 5438 for (i = 0; i < num_pages; i++) { 5439 page = eb->pages[i]; 5440 if (page) 5441 ClearPageUptodate(page); 5442 } 5443 } 5444 5445 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5446 { 5447 int i; 5448 struct page *page; 5449 int num_pages; 5450 5451 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5452 num_pages = num_extent_pages(eb); 5453 for (i = 0; i < num_pages; i++) { 5454 page = eb->pages[i]; 5455 SetPageUptodate(page); 5456 } 5457 } 5458 5459 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5460 { 5461 int i; 5462 struct page *page; 5463 int err; 5464 int ret = 0; 5465 int locked_pages = 0; 5466 int all_uptodate = 1; 5467 int num_pages; 5468 unsigned long num_reads = 0; 5469 struct bio *bio = NULL; 5470 unsigned long bio_flags = 0; 5471 5472 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5473 return 0; 5474 5475 num_pages = num_extent_pages(eb); 5476 for (i = 0; i < num_pages; i++) { 5477 page = eb->pages[i]; 5478 if (wait == WAIT_NONE) { 5479 if (!trylock_page(page)) 5480 goto unlock_exit; 5481 } else { 5482 lock_page(page); 5483 } 5484 locked_pages++; 5485 } 5486 /* 5487 * We need to firstly lock all pages to make sure that 5488 * the uptodate bit of our pages won't be affected by 5489 * clear_extent_buffer_uptodate(). 5490 */ 5491 for (i = 0; i < num_pages; i++) { 5492 page = eb->pages[i]; 5493 if (!PageUptodate(page)) { 5494 num_reads++; 5495 all_uptodate = 0; 5496 } 5497 } 5498 5499 if (all_uptodate) { 5500 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5501 goto unlock_exit; 5502 } 5503 5504 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5505 eb->read_mirror = 0; 5506 atomic_set(&eb->io_pages, num_reads); 5507 for (i = 0; i < num_pages; i++) { 5508 page = eb->pages[i]; 5509 5510 if (!PageUptodate(page)) { 5511 if (ret) { 5512 atomic_dec(&eb->io_pages); 5513 unlock_page(page); 5514 continue; 5515 } 5516 5517 ClearPageError(page); 5518 err = __extent_read_full_page(page, 5519 btree_get_extent, &bio, 5520 mirror_num, &bio_flags, 5521 REQ_META); 5522 if (err) { 5523 ret = err; 5524 /* 5525 * We use &bio in above __extent_read_full_page, 5526 * so we ensure that if it returns error, the 5527 * current page fails to add itself to bio and 5528 * it's been unlocked. 5529 * 5530 * We must dec io_pages by ourselves. 5531 */ 5532 atomic_dec(&eb->io_pages); 5533 } 5534 } else { 5535 unlock_page(page); 5536 } 5537 } 5538 5539 if (bio) { 5540 err = submit_one_bio(bio, mirror_num, bio_flags); 5541 if (err) 5542 return err; 5543 } 5544 5545 if (ret || wait != WAIT_COMPLETE) 5546 return ret; 5547 5548 for (i = 0; i < num_pages; i++) { 5549 page = eb->pages[i]; 5550 wait_on_page_locked(page); 5551 if (!PageUptodate(page)) 5552 ret = -EIO; 5553 } 5554 5555 return ret; 5556 5557 unlock_exit: 5558 while (locked_pages > 0) { 5559 locked_pages--; 5560 page = eb->pages[locked_pages]; 5561 unlock_page(page); 5562 } 5563 return ret; 5564 } 5565 5566 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5567 unsigned long start, unsigned long len) 5568 { 5569 size_t cur; 5570 size_t offset; 5571 struct page *page; 5572 char *kaddr; 5573 char *dst = (char *)dstv; 5574 size_t start_offset = offset_in_page(eb->start); 5575 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5576 5577 if (start + len > eb->len) { 5578 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5579 eb->start, eb->len, start, len); 5580 memset(dst, 0, len); 5581 return; 5582 } 5583 5584 offset = offset_in_page(start_offset + start); 5585 5586 while (len > 0) { 5587 page = eb->pages[i]; 5588 5589 cur = min(len, (PAGE_SIZE - offset)); 5590 kaddr = page_address(page); 5591 memcpy(dst, kaddr + offset, cur); 5592 5593 dst += cur; 5594 len -= cur; 5595 offset = 0; 5596 i++; 5597 } 5598 } 5599 5600 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5601 void __user *dstv, 5602 unsigned long start, unsigned long len) 5603 { 5604 size_t cur; 5605 size_t offset; 5606 struct page *page; 5607 char *kaddr; 5608 char __user *dst = (char __user *)dstv; 5609 size_t start_offset = offset_in_page(eb->start); 5610 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5611 int ret = 0; 5612 5613 WARN_ON(start > eb->len); 5614 WARN_ON(start + len > eb->start + eb->len); 5615 5616 offset = offset_in_page(start_offset + start); 5617 5618 while (len > 0) { 5619 page = eb->pages[i]; 5620 5621 cur = min(len, (PAGE_SIZE - offset)); 5622 kaddr = page_address(page); 5623 if (copy_to_user(dst, kaddr + offset, cur)) { 5624 ret = -EFAULT; 5625 break; 5626 } 5627 5628 dst += cur; 5629 len -= cur; 5630 offset = 0; 5631 i++; 5632 } 5633 5634 return ret; 5635 } 5636 5637 /* 5638 * return 0 if the item is found within a page. 5639 * return 1 if the item spans two pages. 5640 * return -EINVAL otherwise. 5641 */ 5642 int map_private_extent_buffer(const struct extent_buffer *eb, 5643 unsigned long start, unsigned long min_len, 5644 char **map, unsigned long *map_start, 5645 unsigned long *map_len) 5646 { 5647 size_t offset; 5648 char *kaddr; 5649 struct page *p; 5650 size_t start_offset = offset_in_page(eb->start); 5651 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5652 unsigned long end_i = (start_offset + start + min_len - 1) >> 5653 PAGE_SHIFT; 5654 5655 if (start + min_len > eb->len) { 5656 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5657 eb->start, eb->len, start, min_len); 5658 return -EINVAL; 5659 } 5660 5661 if (i != end_i) 5662 return 1; 5663 5664 if (i == 0) { 5665 offset = start_offset; 5666 *map_start = 0; 5667 } else { 5668 offset = 0; 5669 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5670 } 5671 5672 p = eb->pages[i]; 5673 kaddr = page_address(p); 5674 *map = kaddr + offset; 5675 *map_len = PAGE_SIZE - offset; 5676 return 0; 5677 } 5678 5679 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5680 unsigned long start, unsigned long len) 5681 { 5682 size_t cur; 5683 size_t offset; 5684 struct page *page; 5685 char *kaddr; 5686 char *ptr = (char *)ptrv; 5687 size_t start_offset = offset_in_page(eb->start); 5688 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5689 int ret = 0; 5690 5691 WARN_ON(start > eb->len); 5692 WARN_ON(start + len > eb->start + eb->len); 5693 5694 offset = offset_in_page(start_offset + start); 5695 5696 while (len > 0) { 5697 page = eb->pages[i]; 5698 5699 cur = min(len, (PAGE_SIZE - offset)); 5700 5701 kaddr = page_address(page); 5702 ret = memcmp(ptr, kaddr + offset, cur); 5703 if (ret) 5704 break; 5705 5706 ptr += cur; 5707 len -= cur; 5708 offset = 0; 5709 i++; 5710 } 5711 return ret; 5712 } 5713 5714 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5715 const void *srcv) 5716 { 5717 char *kaddr; 5718 5719 WARN_ON(!PageUptodate(eb->pages[0])); 5720 kaddr = page_address(eb->pages[0]); 5721 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5722 BTRFS_FSID_SIZE); 5723 } 5724 5725 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5726 { 5727 char *kaddr; 5728 5729 WARN_ON(!PageUptodate(eb->pages[0])); 5730 kaddr = page_address(eb->pages[0]); 5731 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5732 BTRFS_FSID_SIZE); 5733 } 5734 5735 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5736 unsigned long start, unsigned long len) 5737 { 5738 size_t cur; 5739 size_t offset; 5740 struct page *page; 5741 char *kaddr; 5742 char *src = (char *)srcv; 5743 size_t start_offset = offset_in_page(eb->start); 5744 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5745 5746 WARN_ON(start > eb->len); 5747 WARN_ON(start + len > eb->start + eb->len); 5748 5749 offset = offset_in_page(start_offset + start); 5750 5751 while (len > 0) { 5752 page = eb->pages[i]; 5753 WARN_ON(!PageUptodate(page)); 5754 5755 cur = min(len, PAGE_SIZE - offset); 5756 kaddr = page_address(page); 5757 memcpy(kaddr + offset, src, cur); 5758 5759 src += cur; 5760 len -= cur; 5761 offset = 0; 5762 i++; 5763 } 5764 } 5765 5766 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5767 unsigned long len) 5768 { 5769 size_t cur; 5770 size_t offset; 5771 struct page *page; 5772 char *kaddr; 5773 size_t start_offset = offset_in_page(eb->start); 5774 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5775 5776 WARN_ON(start > eb->len); 5777 WARN_ON(start + len > eb->start + eb->len); 5778 5779 offset = offset_in_page(start_offset + start); 5780 5781 while (len > 0) { 5782 page = eb->pages[i]; 5783 WARN_ON(!PageUptodate(page)); 5784 5785 cur = min(len, PAGE_SIZE - offset); 5786 kaddr = page_address(page); 5787 memset(kaddr + offset, 0, cur); 5788 5789 len -= cur; 5790 offset = 0; 5791 i++; 5792 } 5793 } 5794 5795 void copy_extent_buffer_full(struct extent_buffer *dst, 5796 struct extent_buffer *src) 5797 { 5798 int i; 5799 int num_pages; 5800 5801 ASSERT(dst->len == src->len); 5802 5803 num_pages = num_extent_pages(dst); 5804 for (i = 0; i < num_pages; i++) 5805 copy_page(page_address(dst->pages[i]), 5806 page_address(src->pages[i])); 5807 } 5808 5809 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5810 unsigned long dst_offset, unsigned long src_offset, 5811 unsigned long len) 5812 { 5813 u64 dst_len = dst->len; 5814 size_t cur; 5815 size_t offset; 5816 struct page *page; 5817 char *kaddr; 5818 size_t start_offset = offset_in_page(dst->start); 5819 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5820 5821 WARN_ON(src->len != dst_len); 5822 5823 offset = offset_in_page(start_offset + dst_offset); 5824 5825 while (len > 0) { 5826 page = dst->pages[i]; 5827 WARN_ON(!PageUptodate(page)); 5828 5829 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5830 5831 kaddr = page_address(page); 5832 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5833 5834 src_offset += cur; 5835 len -= cur; 5836 offset = 0; 5837 i++; 5838 } 5839 } 5840 5841 /* 5842 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5843 * given bit number 5844 * @eb: the extent buffer 5845 * @start: offset of the bitmap item in the extent buffer 5846 * @nr: bit number 5847 * @page_index: return index of the page in the extent buffer that contains the 5848 * given bit number 5849 * @page_offset: return offset into the page given by page_index 5850 * 5851 * This helper hides the ugliness of finding the byte in an extent buffer which 5852 * contains a given bit. 5853 */ 5854 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5855 unsigned long start, unsigned long nr, 5856 unsigned long *page_index, 5857 size_t *page_offset) 5858 { 5859 size_t start_offset = offset_in_page(eb->start); 5860 size_t byte_offset = BIT_BYTE(nr); 5861 size_t offset; 5862 5863 /* 5864 * The byte we want is the offset of the extent buffer + the offset of 5865 * the bitmap item in the extent buffer + the offset of the byte in the 5866 * bitmap item. 5867 */ 5868 offset = start_offset + start + byte_offset; 5869 5870 *page_index = offset >> PAGE_SHIFT; 5871 *page_offset = offset_in_page(offset); 5872 } 5873 5874 /** 5875 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5876 * @eb: the extent buffer 5877 * @start: offset of the bitmap item in the extent buffer 5878 * @nr: bit number to test 5879 */ 5880 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5881 unsigned long nr) 5882 { 5883 u8 *kaddr; 5884 struct page *page; 5885 unsigned long i; 5886 size_t offset; 5887 5888 eb_bitmap_offset(eb, start, nr, &i, &offset); 5889 page = eb->pages[i]; 5890 WARN_ON(!PageUptodate(page)); 5891 kaddr = page_address(page); 5892 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5893 } 5894 5895 /** 5896 * extent_buffer_bitmap_set - set an area of a bitmap 5897 * @eb: the extent buffer 5898 * @start: offset of the bitmap item in the extent buffer 5899 * @pos: bit number of the first bit 5900 * @len: number of bits to set 5901 */ 5902 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5903 unsigned long pos, unsigned long len) 5904 { 5905 u8 *kaddr; 5906 struct page *page; 5907 unsigned long i; 5908 size_t offset; 5909 const unsigned int size = pos + len; 5910 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5911 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5912 5913 eb_bitmap_offset(eb, start, pos, &i, &offset); 5914 page = eb->pages[i]; 5915 WARN_ON(!PageUptodate(page)); 5916 kaddr = page_address(page); 5917 5918 while (len >= bits_to_set) { 5919 kaddr[offset] |= mask_to_set; 5920 len -= bits_to_set; 5921 bits_to_set = BITS_PER_BYTE; 5922 mask_to_set = ~0; 5923 if (++offset >= PAGE_SIZE && len > 0) { 5924 offset = 0; 5925 page = eb->pages[++i]; 5926 WARN_ON(!PageUptodate(page)); 5927 kaddr = page_address(page); 5928 } 5929 } 5930 if (len) { 5931 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5932 kaddr[offset] |= mask_to_set; 5933 } 5934 } 5935 5936 5937 /** 5938 * extent_buffer_bitmap_clear - clear an area of a bitmap 5939 * @eb: the extent buffer 5940 * @start: offset of the bitmap item in the extent buffer 5941 * @pos: bit number of the first bit 5942 * @len: number of bits to clear 5943 */ 5944 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5945 unsigned long pos, unsigned long len) 5946 { 5947 u8 *kaddr; 5948 struct page *page; 5949 unsigned long i; 5950 size_t offset; 5951 const unsigned int size = pos + len; 5952 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5953 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5954 5955 eb_bitmap_offset(eb, start, pos, &i, &offset); 5956 page = eb->pages[i]; 5957 WARN_ON(!PageUptodate(page)); 5958 kaddr = page_address(page); 5959 5960 while (len >= bits_to_clear) { 5961 kaddr[offset] &= ~mask_to_clear; 5962 len -= bits_to_clear; 5963 bits_to_clear = BITS_PER_BYTE; 5964 mask_to_clear = ~0; 5965 if (++offset >= PAGE_SIZE && len > 0) { 5966 offset = 0; 5967 page = eb->pages[++i]; 5968 WARN_ON(!PageUptodate(page)); 5969 kaddr = page_address(page); 5970 } 5971 } 5972 if (len) { 5973 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5974 kaddr[offset] &= ~mask_to_clear; 5975 } 5976 } 5977 5978 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5979 { 5980 unsigned long distance = (src > dst) ? src - dst : dst - src; 5981 return distance < len; 5982 } 5983 5984 static void copy_pages(struct page *dst_page, struct page *src_page, 5985 unsigned long dst_off, unsigned long src_off, 5986 unsigned long len) 5987 { 5988 char *dst_kaddr = page_address(dst_page); 5989 char *src_kaddr; 5990 int must_memmove = 0; 5991 5992 if (dst_page != src_page) { 5993 src_kaddr = page_address(src_page); 5994 } else { 5995 src_kaddr = dst_kaddr; 5996 if (areas_overlap(src_off, dst_off, len)) 5997 must_memmove = 1; 5998 } 5999 6000 if (must_memmove) 6001 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6002 else 6003 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6004 } 6005 6006 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 6007 unsigned long src_offset, unsigned long len) 6008 { 6009 struct btrfs_fs_info *fs_info = dst->fs_info; 6010 size_t cur; 6011 size_t dst_off_in_page; 6012 size_t src_off_in_page; 6013 size_t start_offset = offset_in_page(dst->start); 6014 unsigned long dst_i; 6015 unsigned long src_i; 6016 6017 if (src_offset + len > dst->len) { 6018 btrfs_err(fs_info, 6019 "memmove bogus src_offset %lu move len %lu dst len %lu", 6020 src_offset, len, dst->len); 6021 BUG(); 6022 } 6023 if (dst_offset + len > dst->len) { 6024 btrfs_err(fs_info, 6025 "memmove bogus dst_offset %lu move len %lu dst len %lu", 6026 dst_offset, len, dst->len); 6027 BUG(); 6028 } 6029 6030 while (len > 0) { 6031 dst_off_in_page = offset_in_page(start_offset + dst_offset); 6032 src_off_in_page = offset_in_page(start_offset + src_offset); 6033 6034 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 6035 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 6036 6037 cur = min(len, (unsigned long)(PAGE_SIZE - 6038 src_off_in_page)); 6039 cur = min_t(unsigned long, cur, 6040 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6041 6042 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6043 dst_off_in_page, src_off_in_page, cur); 6044 6045 src_offset += cur; 6046 dst_offset += cur; 6047 len -= cur; 6048 } 6049 } 6050 6051 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 6052 unsigned long src_offset, unsigned long len) 6053 { 6054 struct btrfs_fs_info *fs_info = dst->fs_info; 6055 size_t cur; 6056 size_t dst_off_in_page; 6057 size_t src_off_in_page; 6058 unsigned long dst_end = dst_offset + len - 1; 6059 unsigned long src_end = src_offset + len - 1; 6060 size_t start_offset = offset_in_page(dst->start); 6061 unsigned long dst_i; 6062 unsigned long src_i; 6063 6064 if (src_offset + len > dst->len) { 6065 btrfs_err(fs_info, 6066 "memmove bogus src_offset %lu move len %lu len %lu", 6067 src_offset, len, dst->len); 6068 BUG(); 6069 } 6070 if (dst_offset + len > dst->len) { 6071 btrfs_err(fs_info, 6072 "memmove bogus dst_offset %lu move len %lu len %lu", 6073 dst_offset, len, dst->len); 6074 BUG(); 6075 } 6076 if (dst_offset < src_offset) { 6077 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6078 return; 6079 } 6080 while (len > 0) { 6081 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 6082 src_i = (start_offset + src_end) >> PAGE_SHIFT; 6083 6084 dst_off_in_page = offset_in_page(start_offset + dst_end); 6085 src_off_in_page = offset_in_page(start_offset + src_end); 6086 6087 cur = min_t(unsigned long, len, src_off_in_page + 1); 6088 cur = min(cur, dst_off_in_page + 1); 6089 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6090 dst_off_in_page - cur + 1, 6091 src_off_in_page - cur + 1, cur); 6092 6093 dst_end -= cur; 6094 src_end -= cur; 6095 len -= cur; 6096 } 6097 } 6098 6099 int try_release_extent_buffer(struct page *page) 6100 { 6101 struct extent_buffer *eb; 6102 6103 /* 6104 * We need to make sure nobody is attaching this page to an eb right 6105 * now. 6106 */ 6107 spin_lock(&page->mapping->private_lock); 6108 if (!PagePrivate(page)) { 6109 spin_unlock(&page->mapping->private_lock); 6110 return 1; 6111 } 6112 6113 eb = (struct extent_buffer *)page->private; 6114 BUG_ON(!eb); 6115 6116 /* 6117 * This is a little awful but should be ok, we need to make sure that 6118 * the eb doesn't disappear out from under us while we're looking at 6119 * this page. 6120 */ 6121 spin_lock(&eb->refs_lock); 6122 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6123 spin_unlock(&eb->refs_lock); 6124 spin_unlock(&page->mapping->private_lock); 6125 return 0; 6126 } 6127 spin_unlock(&page->mapping->private_lock); 6128 6129 /* 6130 * If tree ref isn't set then we know the ref on this eb is a real ref, 6131 * so just return, this page will likely be freed soon anyway. 6132 */ 6133 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6134 spin_unlock(&eb->refs_lock); 6135 return 0; 6136 } 6137 6138 return release_extent_buffer(eb); 6139 } 6140