xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				       unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (tree->ops)
172 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 						 mirror_num, bio_flags);
174 	else
175 		btrfsic_submit_bio(bio);
176 
177 	return blk_status_to_errno(ret);
178 }
179 
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183 	if (epd->bio) {
184 		epd->bio->bi_status = errno_to_blk_status(ret);
185 		bio_endio(epd->bio);
186 		epd->bio = NULL;
187 	}
188 }
189 
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198 	int ret = 0;
199 
200 	if (epd->bio) {
201 		ret = submit_one_bio(epd->bio, 0, 0);
202 		/*
203 		 * Clean up of epd->bio is handled by its endio function.
204 		 * And endio is either triggered by successful bio execution
205 		 * or the error handler of submit bio hook.
206 		 * So at this point, no matter what happened, we don't need
207 		 * to clean up epd->bio.
208 		 */
209 		epd->bio = NULL;
210 	}
211 	return ret;
212 }
213 
214 int __init extent_state_cache_init(void)
215 {
216 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 			sizeof(struct extent_state), 0,
218 			SLAB_MEM_SPREAD, NULL);
219 	if (!extent_state_cache)
220 		return -ENOMEM;
221 	return 0;
222 }
223 
224 int __init extent_io_init(void)
225 {
226 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 			sizeof(struct extent_buffer), 0,
228 			SLAB_MEM_SPREAD, NULL);
229 	if (!extent_buffer_cache)
230 		return -ENOMEM;
231 
232 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 			offsetof(struct btrfs_io_bio, bio),
234 			BIOSET_NEED_BVECS))
235 		goto free_buffer_cache;
236 
237 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 		goto free_bioset;
239 
240 	return 0;
241 
242 free_bioset:
243 	bioset_exit(&btrfs_bioset);
244 
245 free_buffer_cache:
246 	kmem_cache_destroy(extent_buffer_cache);
247 	extent_buffer_cache = NULL;
248 	return -ENOMEM;
249 }
250 
251 void __cold extent_state_cache_exit(void)
252 {
253 	btrfs_extent_state_leak_debug_check();
254 	kmem_cache_destroy(extent_state_cache);
255 }
256 
257 void __cold extent_io_exit(void)
258 {
259 	/*
260 	 * Make sure all delayed rcu free are flushed before we
261 	 * destroy caches.
262 	 */
263 	rcu_barrier();
264 	kmem_cache_destroy(extent_buffer_cache);
265 	bioset_exit(&btrfs_bioset);
266 }
267 
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276 
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 			 struct extent_io_tree *tree, unsigned int owner,
279 			 void *private_data)
280 {
281 	tree->fs_info = fs_info;
282 	tree->state = RB_ROOT;
283 	tree->ops = NULL;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, unsigned *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			unsigned *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    unsigned *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	struct inode *inode = tree->private_data;
680 
681 	btrfs_panic(btrfs_sb(inode->i_sb), err,
682 	"locking error: extent tree was modified by another thread while locked");
683 }
684 
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 			      unsigned bits, int wake, int delete,
699 			      struct extent_state **cached_state,
700 			      gfp_t mask, struct extent_changeset *changeset)
701 {
702 	struct extent_state *state;
703 	struct extent_state *cached;
704 	struct extent_state *prealloc = NULL;
705 	struct rb_node *node;
706 	u64 last_end;
707 	int err;
708 	int clear = 0;
709 
710 	btrfs_debug_check_extent_io_range(tree, start, end);
711 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712 
713 	if (bits & EXTENT_DELALLOC)
714 		bits |= EXTENT_NORESERVE;
715 
716 	if (delete)
717 		bits |= ~EXTENT_CTLBITS;
718 
719 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 		clear = 1;
721 again:
722 	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 		/*
724 		 * Don't care for allocation failure here because we might end
725 		 * up not needing the pre-allocated extent state at all, which
726 		 * is the case if we only have in the tree extent states that
727 		 * cover our input range and don't cover too any other range.
728 		 * If we end up needing a new extent state we allocate it later.
729 		 */
730 		prealloc = alloc_extent_state(mask);
731 	}
732 
733 	spin_lock(&tree->lock);
734 	if (cached_state) {
735 		cached = *cached_state;
736 
737 		if (clear) {
738 			*cached_state = NULL;
739 			cached_state = NULL;
740 		}
741 
742 		if (cached && extent_state_in_tree(cached) &&
743 		    cached->start <= start && cached->end > start) {
744 			if (clear)
745 				refcount_dec(&cached->refs);
746 			state = cached;
747 			goto hit_next;
748 		}
749 		if (clear)
750 			free_extent_state(cached);
751 	}
752 	/*
753 	 * this search will find the extents that end after
754 	 * our range starts
755 	 */
756 	node = tree_search(tree, start);
757 	if (!node)
758 		goto out;
759 	state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 	if (state->start > end)
762 		goto out;
763 	WARN_ON(state->end < start);
764 	last_end = state->end;
765 
766 	/* the state doesn't have the wanted bits, go ahead */
767 	if (!(state->state & bits)) {
768 		state = next_state(state);
769 		goto next;
770 	}
771 
772 	/*
773 	 *     | ---- desired range ---- |
774 	 *  | state | or
775 	 *  | ------------- state -------------- |
776 	 *
777 	 * We need to split the extent we found, and may flip
778 	 * bits on second half.
779 	 *
780 	 * If the extent we found extends past our range, we
781 	 * just split and search again.  It'll get split again
782 	 * the next time though.
783 	 *
784 	 * If the extent we found is inside our range, we clear
785 	 * the desired bit on it.
786 	 */
787 
788 	if (state->start < start) {
789 		prealloc = alloc_extent_state_atomic(prealloc);
790 		BUG_ON(!prealloc);
791 		err = split_state(tree, state, prealloc, start);
792 		if (err)
793 			extent_io_tree_panic(tree, err);
794 
795 		prealloc = NULL;
796 		if (err)
797 			goto out;
798 		if (state->end <= end) {
799 			state = clear_state_bit(tree, state, &bits, wake,
800 						changeset);
801 			goto next;
802 		}
803 		goto search_again;
804 	}
805 	/*
806 	 * | ---- desired range ---- |
807 	 *                        | state |
808 	 * We need to split the extent, and clear the bit
809 	 * on the first half
810 	 */
811 	if (state->start <= end && state->end > end) {
812 		prealloc = alloc_extent_state_atomic(prealloc);
813 		BUG_ON(!prealloc);
814 		err = split_state(tree, state, prealloc, end + 1);
815 		if (err)
816 			extent_io_tree_panic(tree, err);
817 
818 		if (wake)
819 			wake_up(&state->wq);
820 
821 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
822 
823 		prealloc = NULL;
824 		goto out;
825 	}
826 
827 	state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 	if (last_end == (u64)-1)
830 		goto out;
831 	start = last_end + 1;
832 	if (start <= end && state && !need_resched())
833 		goto hit_next;
834 
835 search_again:
836 	if (start > end)
837 		goto out;
838 	spin_unlock(&tree->lock);
839 	if (gfpflags_allow_blocking(mask))
840 		cond_resched();
841 	goto again;
842 
843 out:
844 	spin_unlock(&tree->lock);
845 	if (prealloc)
846 		free_extent_state(prealloc);
847 
848 	return 0;
849 
850 }
851 
852 static void wait_on_state(struct extent_io_tree *tree,
853 			  struct extent_state *state)
854 		__releases(tree->lock)
855 		__acquires(tree->lock)
856 {
857 	DEFINE_WAIT(wait);
858 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 	spin_unlock(&tree->lock);
860 	schedule();
861 	spin_lock(&tree->lock);
862 	finish_wait(&state->wq, &wait);
863 }
864 
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 			    unsigned long bits)
872 {
873 	struct extent_state *state;
874 	struct rb_node *node;
875 
876 	btrfs_debug_check_extent_io_range(tree, start, end);
877 
878 	spin_lock(&tree->lock);
879 again:
880 	while (1) {
881 		/*
882 		 * this search will find all the extents that end after
883 		 * our range starts
884 		 */
885 		node = tree_search(tree, start);
886 process_node:
887 		if (!node)
888 			break;
889 
890 		state = rb_entry(node, struct extent_state, rb_node);
891 
892 		if (state->start > end)
893 			goto out;
894 
895 		if (state->state & bits) {
896 			start = state->start;
897 			refcount_inc(&state->refs);
898 			wait_on_state(tree, state);
899 			free_extent_state(state);
900 			goto again;
901 		}
902 		start = state->end + 1;
903 
904 		if (start > end)
905 			break;
906 
907 		if (!cond_resched_lock(&tree->lock)) {
908 			node = rb_next(node);
909 			goto process_node;
910 		}
911 	}
912 out:
913 	spin_unlock(&tree->lock);
914 }
915 
916 static void set_state_bits(struct extent_io_tree *tree,
917 			   struct extent_state *state,
918 			   unsigned *bits, struct extent_changeset *changeset)
919 {
920 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 	int ret;
922 
923 	if (tree->private_data && is_data_inode(tree->private_data))
924 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
925 
926 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 		u64 range = state->end - state->start + 1;
928 		tree->dirty_bytes += range;
929 	}
930 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 	BUG_ON(ret < 0);
932 	state->state |= bits_to_set;
933 }
934 
935 static void cache_state_if_flags(struct extent_state *state,
936 				 struct extent_state **cached_ptr,
937 				 unsigned flags)
938 {
939 	if (cached_ptr && !(*cached_ptr)) {
940 		if (!flags || (state->state & flags)) {
941 			*cached_ptr = state;
942 			refcount_inc(&state->refs);
943 		}
944 	}
945 }
946 
947 static void cache_state(struct extent_state *state,
948 			struct extent_state **cached_ptr)
949 {
950 	return cache_state_if_flags(state, cached_ptr,
951 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953 
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964 
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 		 unsigned bits, unsigned exclusive_bits,
968 		 u64 *failed_start, struct extent_state **cached_state,
969 		 gfp_t mask, struct extent_changeset *changeset)
970 {
971 	struct extent_state *state;
972 	struct extent_state *prealloc = NULL;
973 	struct rb_node *node;
974 	struct rb_node **p;
975 	struct rb_node *parent;
976 	int err = 0;
977 	u64 last_start;
978 	u64 last_end;
979 
980 	btrfs_debug_check_extent_io_range(tree, start, end);
981 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982 
983 again:
984 	if (!prealloc && gfpflags_allow_blocking(mask)) {
985 		/*
986 		 * Don't care for allocation failure here because we might end
987 		 * up not needing the pre-allocated extent state at all, which
988 		 * is the case if we only have in the tree extent states that
989 		 * cover our input range and don't cover too any other range.
990 		 * If we end up needing a new extent state we allocate it later.
991 		 */
992 		prealloc = alloc_extent_state(mask);
993 	}
994 
995 	spin_lock(&tree->lock);
996 	if (cached_state && *cached_state) {
997 		state = *cached_state;
998 		if (state->start <= start && state->end > start &&
999 		    extent_state_in_tree(state)) {
1000 			node = &state->rb_node;
1001 			goto hit_next;
1002 		}
1003 	}
1004 	/*
1005 	 * this search will find all the extents that end after
1006 	 * our range starts.
1007 	 */
1008 	node = tree_search_for_insert(tree, start, &p, &parent);
1009 	if (!node) {
1010 		prealloc = alloc_extent_state_atomic(prealloc);
1011 		BUG_ON(!prealloc);
1012 		err = insert_state(tree, prealloc, start, end,
1013 				   &p, &parent, &bits, changeset);
1014 		if (err)
1015 			extent_io_tree_panic(tree, err);
1016 
1017 		cache_state(prealloc, cached_state);
1018 		prealloc = NULL;
1019 		goto out;
1020 	}
1021 	state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 	last_start = state->start;
1024 	last_end = state->end;
1025 
1026 	/*
1027 	 * | ---- desired range ---- |
1028 	 * | state |
1029 	 *
1030 	 * Just lock what we found and keep going
1031 	 */
1032 	if (state->start == start && state->end <= end) {
1033 		if (state->state & exclusive_bits) {
1034 			*failed_start = state->start;
1035 			err = -EEXIST;
1036 			goto out;
1037 		}
1038 
1039 		set_state_bits(tree, state, &bits, changeset);
1040 		cache_state(state, cached_state);
1041 		merge_state(tree, state);
1042 		if (last_end == (u64)-1)
1043 			goto out;
1044 		start = last_end + 1;
1045 		state = next_state(state);
1046 		if (start < end && state && state->start == start &&
1047 		    !need_resched())
1048 			goto hit_next;
1049 		goto search_again;
1050 	}
1051 
1052 	/*
1053 	 *     | ---- desired range ---- |
1054 	 * | state |
1055 	 *   or
1056 	 * | ------------- state -------------- |
1057 	 *
1058 	 * We need to split the extent we found, and may flip bits on
1059 	 * second half.
1060 	 *
1061 	 * If the extent we found extends past our
1062 	 * range, we just split and search again.  It'll get split
1063 	 * again the next time though.
1064 	 *
1065 	 * If the extent we found is inside our range, we set the
1066 	 * desired bit on it.
1067 	 */
1068 	if (state->start < start) {
1069 		if (state->state & exclusive_bits) {
1070 			*failed_start = start;
1071 			err = -EEXIST;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * If this extent already has all the bits we want set, then
1077 		 * skip it, not necessary to split it or do anything with it.
1078 		 */
1079 		if ((state->state & bits) == bits) {
1080 			start = state->end + 1;
1081 			cache_state(state, cached_state);
1082 			goto search_again;
1083 		}
1084 
1085 		prealloc = alloc_extent_state_atomic(prealloc);
1086 		BUG_ON(!prealloc);
1087 		err = split_state(tree, state, prealloc, start);
1088 		if (err)
1089 			extent_io_tree_panic(tree, err);
1090 
1091 		prealloc = NULL;
1092 		if (err)
1093 			goto out;
1094 		if (state->end <= end) {
1095 			set_state_bits(tree, state, &bits, changeset);
1096 			cache_state(state, cached_state);
1097 			merge_state(tree, state);
1098 			if (last_end == (u64)-1)
1099 				goto out;
1100 			start = last_end + 1;
1101 			state = next_state(state);
1102 			if (start < end && state && state->start == start &&
1103 			    !need_resched())
1104 				goto hit_next;
1105 		}
1106 		goto search_again;
1107 	}
1108 	/*
1109 	 * | ---- desired range ---- |
1110 	 *     | state | or               | state |
1111 	 *
1112 	 * There's a hole, we need to insert something in it and
1113 	 * ignore the extent we found.
1114 	 */
1115 	if (state->start > start) {
1116 		u64 this_end;
1117 		if (end < last_start)
1118 			this_end = end;
1119 		else
1120 			this_end = last_start - 1;
1121 
1122 		prealloc = alloc_extent_state_atomic(prealloc);
1123 		BUG_ON(!prealloc);
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   NULL, NULL, &bits, changeset);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 
1134 		cache_state(prealloc, cached_state);
1135 		prealloc = NULL;
1136 		start = this_end + 1;
1137 		goto search_again;
1138 	}
1139 	/*
1140 	 * | ---- desired range ---- |
1141 	 *                        | state |
1142 	 * We need to split the extent, and set the bit
1143 	 * on the first half
1144 	 */
1145 	if (state->start <= end && state->end > end) {
1146 		if (state->state & exclusive_bits) {
1147 			*failed_start = start;
1148 			err = -EEXIST;
1149 			goto out;
1150 		}
1151 
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		BUG_ON(!prealloc);
1154 		err = split_state(tree, state, prealloc, end + 1);
1155 		if (err)
1156 			extent_io_tree_panic(tree, err);
1157 
1158 		set_state_bits(tree, prealloc, &bits, changeset);
1159 		cache_state(prealloc, cached_state);
1160 		merge_state(tree, prealloc);
1161 		prealloc = NULL;
1162 		goto out;
1163 	}
1164 
1165 search_again:
1166 	if (start > end)
1167 		goto out;
1168 	spin_unlock(&tree->lock);
1169 	if (gfpflags_allow_blocking(mask))
1170 		cond_resched();
1171 	goto again;
1172 
1173 out:
1174 	spin_unlock(&tree->lock);
1175 	if (prealloc)
1176 		free_extent_state(prealloc);
1177 
1178 	return err;
1179 
1180 }
1181 
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 		   unsigned bits, u64 * failed_start,
1184 		   struct extent_state **cached_state, gfp_t mask)
1185 {
1186 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 				cached_state, mask, NULL);
1188 }
1189 
1190 
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  * 			another
1194  * @tree:	the io tree to search
1195  * @start:	the start offset in bytes
1196  * @end:	the end offset in bytes (inclusive)
1197  * @bits:	the bits to set in this range
1198  * @clear_bits:	the bits to clear in this range
1199  * @cached_state:	state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 		       unsigned bits, unsigned clear_bits,
1211 		       struct extent_state **cached_state)
1212 {
1213 	struct extent_state *state;
1214 	struct extent_state *prealloc = NULL;
1215 	struct rb_node *node;
1216 	struct rb_node **p;
1217 	struct rb_node *parent;
1218 	int err = 0;
1219 	u64 last_start;
1220 	u64 last_end;
1221 	bool first_iteration = true;
1222 
1223 	btrfs_debug_check_extent_io_range(tree, start, end);
1224 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 				       clear_bits);
1226 
1227 again:
1228 	if (!prealloc) {
1229 		/*
1230 		 * Best effort, don't worry if extent state allocation fails
1231 		 * here for the first iteration. We might have a cached state
1232 		 * that matches exactly the target range, in which case no
1233 		 * extent state allocations are needed. We'll only know this
1234 		 * after locking the tree.
1235 		 */
1236 		prealloc = alloc_extent_state(GFP_NOFS);
1237 		if (!prealloc && !first_iteration)
1238 			return -ENOMEM;
1239 	}
1240 
1241 	spin_lock(&tree->lock);
1242 	if (cached_state && *cached_state) {
1243 		state = *cached_state;
1244 		if (state->start <= start && state->end > start &&
1245 		    extent_state_in_tree(state)) {
1246 			node = &state->rb_node;
1247 			goto hit_next;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * this search will find all the extents that end after
1253 	 * our range starts.
1254 	 */
1255 	node = tree_search_for_insert(tree, start, &p, &parent);
1256 	if (!node) {
1257 		prealloc = alloc_extent_state_atomic(prealloc);
1258 		if (!prealloc) {
1259 			err = -ENOMEM;
1260 			goto out;
1261 		}
1262 		err = insert_state(tree, prealloc, start, end,
1263 				   &p, &parent, &bits, NULL);
1264 		if (err)
1265 			extent_io_tree_panic(tree, err);
1266 		cache_state(prealloc, cached_state);
1267 		prealloc = NULL;
1268 		goto out;
1269 	}
1270 	state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272 	last_start = state->start;
1273 	last_end = state->end;
1274 
1275 	/*
1276 	 * | ---- desired range ---- |
1277 	 * | state |
1278 	 *
1279 	 * Just lock what we found and keep going
1280 	 */
1281 	if (state->start == start && state->end <= end) {
1282 		set_state_bits(tree, state, &bits, NULL);
1283 		cache_state(state, cached_state);
1284 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 		if (last_end == (u64)-1)
1286 			goto out;
1287 		start = last_end + 1;
1288 		if (start < end && state && state->start == start &&
1289 		    !need_resched())
1290 			goto hit_next;
1291 		goto search_again;
1292 	}
1293 
1294 	/*
1295 	 *     | ---- desired range ---- |
1296 	 * | state |
1297 	 *   or
1298 	 * | ------------- state -------------- |
1299 	 *
1300 	 * We need to split the extent we found, and may flip bits on
1301 	 * second half.
1302 	 *
1303 	 * If the extent we found extends past our
1304 	 * range, we just split and search again.  It'll get split
1305 	 * again the next time though.
1306 	 *
1307 	 * If the extent we found is inside our range, we set the
1308 	 * desired bit on it.
1309 	 */
1310 	if (state->start < start) {
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 		err = split_state(tree, state, prealloc, start);
1317 		if (err)
1318 			extent_io_tree_panic(tree, err);
1319 		prealloc = NULL;
1320 		if (err)
1321 			goto out;
1322 		if (state->end <= end) {
1323 			set_state_bits(tree, state, &bits, NULL);
1324 			cache_state(state, cached_state);
1325 			state = clear_state_bit(tree, state, &clear_bits, 0,
1326 						NULL);
1327 			if (last_end == (u64)-1)
1328 				goto out;
1329 			start = last_end + 1;
1330 			if (start < end && state && state->start == start &&
1331 			    !need_resched())
1332 				goto hit_next;
1333 		}
1334 		goto search_again;
1335 	}
1336 	/*
1337 	 * | ---- desired range ---- |
1338 	 *     | state | or               | state |
1339 	 *
1340 	 * There's a hole, we need to insert something in it and
1341 	 * ignore the extent we found.
1342 	 */
1343 	if (state->start > start) {
1344 		u64 this_end;
1345 		if (end < last_start)
1346 			this_end = end;
1347 		else
1348 			this_end = last_start - 1;
1349 
1350 		prealloc = alloc_extent_state_atomic(prealloc);
1351 		if (!prealloc) {
1352 			err = -ENOMEM;
1353 			goto out;
1354 		}
1355 
1356 		/*
1357 		 * Avoid to free 'prealloc' if it can be merged with
1358 		 * the later extent.
1359 		 */
1360 		err = insert_state(tree, prealloc, start, this_end,
1361 				   NULL, NULL, &bits, NULL);
1362 		if (err)
1363 			extent_io_tree_panic(tree, err);
1364 		cache_state(prealloc, cached_state);
1365 		prealloc = NULL;
1366 		start = this_end + 1;
1367 		goto search_again;
1368 	}
1369 	/*
1370 	 * | ---- desired range ---- |
1371 	 *                        | state |
1372 	 * We need to split the extent, and set the bit
1373 	 * on the first half
1374 	 */
1375 	if (state->start <= end && state->end > end) {
1376 		prealloc = alloc_extent_state_atomic(prealloc);
1377 		if (!prealloc) {
1378 			err = -ENOMEM;
1379 			goto out;
1380 		}
1381 
1382 		err = split_state(tree, state, prealloc, end + 1);
1383 		if (err)
1384 			extent_io_tree_panic(tree, err);
1385 
1386 		set_state_bits(tree, prealloc, &bits, NULL);
1387 		cache_state(prealloc, cached_state);
1388 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 		prealloc = NULL;
1390 		goto out;
1391 	}
1392 
1393 search_again:
1394 	if (start > end)
1395 		goto out;
1396 	spin_unlock(&tree->lock);
1397 	cond_resched();
1398 	first_iteration = false;
1399 	goto again;
1400 
1401 out:
1402 	spin_unlock(&tree->lock);
1403 	if (prealloc)
1404 		free_extent_state(prealloc);
1405 
1406 	return err;
1407 }
1408 
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 			   unsigned bits, struct extent_changeset *changeset)
1412 {
1413 	/*
1414 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 	 * either fail with -EEXIST or changeset will record the whole
1417 	 * range.
1418 	 */
1419 	BUG_ON(bits & EXTENT_LOCKED);
1420 
1421 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 				changeset);
1423 }
1424 
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 			   unsigned bits)
1427 {
1428 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 				GFP_NOWAIT, NULL);
1430 }
1431 
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 		     unsigned bits, int wake, int delete,
1434 		     struct extent_state **cached)
1435 {
1436 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 				  cached, GFP_NOFS, NULL);
1438 }
1439 
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 		unsigned bits, struct extent_changeset *changeset)
1442 {
1443 	/*
1444 	 * Don't support EXTENT_LOCKED case, same reason as
1445 	 * set_record_extent_bits().
1446 	 */
1447 	BUG_ON(bits & EXTENT_LOCKED);
1448 
1449 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 				  changeset);
1451 }
1452 
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 		     struct extent_state **cached_state)
1459 {
1460 	int err;
1461 	u64 failed_start;
1462 
1463 	while (1) {
1464 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 				       EXTENT_LOCKED, &failed_start,
1466 				       cached_state, GFP_NOFS, NULL);
1467 		if (err == -EEXIST) {
1468 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 			start = failed_start;
1470 		} else
1471 			break;
1472 		WARN_ON(start > end);
1473 	}
1474 	return err;
1475 }
1476 
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 	int err;
1480 	u64 failed_start;
1481 
1482 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 			       &failed_start, NULL, GFP_NOFS, NULL);
1484 	if (err == -EEXIST) {
1485 		if (failed_start > start)
1486 			clear_extent_bit(tree, start, failed_start - 1,
1487 					 EXTENT_LOCKED, 1, 0, NULL);
1488 		return 0;
1489 	}
1490 	return 1;
1491 }
1492 
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495 	unsigned long index = start >> PAGE_SHIFT;
1496 	unsigned long end_index = end >> PAGE_SHIFT;
1497 	struct page *page;
1498 
1499 	while (index <= end_index) {
1500 		page = find_get_page(inode->i_mapping, index);
1501 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 		clear_page_dirty_for_io(page);
1503 		put_page(page);
1504 		index++;
1505 	}
1506 }
1507 
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 	unsigned long index = start >> PAGE_SHIFT;
1511 	unsigned long end_index = end >> PAGE_SHIFT;
1512 	struct page *page;
1513 
1514 	while (index <= end_index) {
1515 		page = find_get_page(inode->i_mapping, index);
1516 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 		__set_page_dirty_nobuffers(page);
1518 		account_page_redirty(page);
1519 		put_page(page);
1520 		index++;
1521 	}
1522 }
1523 
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530 			    u64 start, unsigned bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1565 			  struct extent_state **cached_state)
1566 {
1567 	struct extent_state *state;
1568 	int ret = 1;
1569 
1570 	spin_lock(&tree->lock);
1571 	if (cached_state && *cached_state) {
1572 		state = *cached_state;
1573 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 			while ((state = next_state(state)) != NULL) {
1575 				if (state->state & bits)
1576 					goto got_it;
1577 			}
1578 			free_extent_state(*cached_state);
1579 			*cached_state = NULL;
1580 			goto out;
1581 		}
1582 		free_extent_state(*cached_state);
1583 		*cached_state = NULL;
1584 	}
1585 
1586 	state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588 	if (state) {
1589 		cache_state_if_flags(state, cached_state, 0);
1590 		*start_ret = state->start;
1591 		*end_ret = state->end;
1592 		ret = 0;
1593 	}
1594 out:
1595 	spin_unlock(&tree->lock);
1596 	return ret;
1597 }
1598 
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 			       u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617 	struct extent_state *state;
1618 	int ret = 1;
1619 
1620 	spin_lock(&tree->lock);
1621 	state = find_first_extent_bit_state(tree, start, bits);
1622 	if (state) {
1623 		*start_ret = state->start;
1624 		*end_ret = state->end;
1625 		while ((state = next_state(state)) != NULL) {
1626 			if (state->start > (*end_ret + 1))
1627 				break;
1628 			*end_ret = state->end;
1629 		}
1630 		ret = 0;
1631 	}
1632 	spin_unlock(&tree->lock);
1633 	return ret;
1634 }
1635 
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654 	struct extent_state *state;
1655 	struct rb_node *node, *prev = NULL, *next;
1656 
1657 	spin_lock(&tree->lock);
1658 
1659 	/* Find first extent with bits cleared */
1660 	while (1) {
1661 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 		if (!node && !next && !prev) {
1663 			/*
1664 			 * Tree is completely empty, send full range and let
1665 			 * caller deal with it
1666 			 */
1667 			*start_ret = 0;
1668 			*end_ret = -1;
1669 			goto out;
1670 		} else if (!node && !next) {
1671 			/*
1672 			 * We are past the last allocated chunk, set start at
1673 			 * the end of the last extent.
1674 			 */
1675 			state = rb_entry(prev, struct extent_state, rb_node);
1676 			*start_ret = state->end + 1;
1677 			*end_ret = -1;
1678 			goto out;
1679 		} else if (!node) {
1680 			node = next;
1681 		}
1682 		/*
1683 		 * At this point 'node' either contains 'start' or start is
1684 		 * before 'node'
1685 		 */
1686 		state = rb_entry(node, struct extent_state, rb_node);
1687 
1688 		if (in_range(start, state->start, state->end - state->start + 1)) {
1689 			if (state->state & bits) {
1690 				/*
1691 				 * |--range with bits sets--|
1692 				 *    |
1693 				 *    start
1694 				 */
1695 				start = state->end + 1;
1696 			} else {
1697 				/*
1698 				 * 'start' falls within a range that doesn't
1699 				 * have the bits set, so take its start as
1700 				 * the beginning of the desired range
1701 				 *
1702 				 * |--range with bits cleared----|
1703 				 *      |
1704 				 *      start
1705 				 */
1706 				*start_ret = state->start;
1707 				break;
1708 			}
1709 		} else {
1710 			/*
1711 			 * |---prev range---|---hole/unset---|---node range---|
1712 			 *                          |
1713 			 *                        start
1714 			 *
1715 			 *                        or
1716 			 *
1717 			 * |---hole/unset--||--first node--|
1718 			 * 0   |
1719 			 *    start
1720 			 */
1721 			if (prev) {
1722 				state = rb_entry(prev, struct extent_state,
1723 						 rb_node);
1724 				*start_ret = state->end + 1;
1725 			} else {
1726 				*start_ret = 0;
1727 			}
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Find the longest stretch from start until an entry which has the
1734 	 * bits set
1735 	 */
1736 	while (1) {
1737 		state = rb_entry(node, struct extent_state, rb_node);
1738 		if (state->end >= start && !(state->state & bits)) {
1739 			*end_ret = state->end;
1740 		} else {
1741 			*end_ret = state->start - 1;
1742 			break;
1743 		}
1744 
1745 		node = rb_next(node);
1746 		if (!node)
1747 			break;
1748 	}
1749 out:
1750 	spin_unlock(&tree->lock);
1751 }
1752 
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 			       u64 *end, u64 max_bytes,
1761 			       struct extent_state **cached_state)
1762 {
1763 	struct rb_node *node;
1764 	struct extent_state *state;
1765 	u64 cur_start = *start;
1766 	bool found = false;
1767 	u64 total_bytes = 0;
1768 
1769 	spin_lock(&tree->lock);
1770 
1771 	/*
1772 	 * this search will find all the extents that end after
1773 	 * our range starts.
1774 	 */
1775 	node = tree_search(tree, cur_start);
1776 	if (!node) {
1777 		*end = (u64)-1;
1778 		goto out;
1779 	}
1780 
1781 	while (1) {
1782 		state = rb_entry(node, struct extent_state, rb_node);
1783 		if (found && (state->start != cur_start ||
1784 			      (state->state & EXTENT_BOUNDARY))) {
1785 			goto out;
1786 		}
1787 		if (!(state->state & EXTENT_DELALLOC)) {
1788 			if (!found)
1789 				*end = state->end;
1790 			goto out;
1791 		}
1792 		if (!found) {
1793 			*start = state->start;
1794 			*cached_state = state;
1795 			refcount_inc(&state->refs);
1796 		}
1797 		found = true;
1798 		*end = state->end;
1799 		cur_start = state->end + 1;
1800 		node = rb_next(node);
1801 		total_bytes += state->end - state->start + 1;
1802 		if (total_bytes >= max_bytes)
1803 			break;
1804 		if (!node)
1805 			break;
1806 	}
1807 out:
1808 	spin_unlock(&tree->lock);
1809 	return found;
1810 }
1811 
1812 static int __process_pages_contig(struct address_space *mapping,
1813 				  struct page *locked_page,
1814 				  pgoff_t start_index, pgoff_t end_index,
1815 				  unsigned long page_ops, pgoff_t *index_ret);
1816 
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818 					   struct page *locked_page,
1819 					   u64 start, u64 end)
1820 {
1821 	unsigned long index = start >> PAGE_SHIFT;
1822 	unsigned long end_index = end >> PAGE_SHIFT;
1823 
1824 	ASSERT(locked_page);
1825 	if (index == locked_page->index && end_index == index)
1826 		return;
1827 
1828 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 			       PAGE_UNLOCK, NULL);
1830 }
1831 
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833 					struct page *locked_page,
1834 					u64 delalloc_start,
1835 					u64 delalloc_end)
1836 {
1837 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 	unsigned long index_ret = index;
1839 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 	int ret;
1841 
1842 	ASSERT(locked_page);
1843 	if (index == locked_page->index && index == end_index)
1844 		return 0;
1845 
1846 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 				     end_index, PAGE_LOCK, &index_ret);
1848 	if (ret == -EAGAIN)
1849 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 				      (u64)index_ret << PAGE_SHIFT);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 				    struct page *locked_page, u64 *start,
1864 				    u64 *end)
1865 {
1866 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 	u64 delalloc_start;
1869 	u64 delalloc_end;
1870 	bool found;
1871 	struct extent_state *cached_state = NULL;
1872 	int ret;
1873 	int loops = 0;
1874 
1875 again:
1876 	/* step one, find a bunch of delalloc bytes starting at start */
1877 	delalloc_start = *start;
1878 	delalloc_end = 0;
1879 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 					  max_bytes, &cached_state);
1881 	if (!found || delalloc_end <= *start) {
1882 		*start = delalloc_start;
1883 		*end = delalloc_end;
1884 		free_extent_state(cached_state);
1885 		return false;
1886 	}
1887 
1888 	/*
1889 	 * start comes from the offset of locked_page.  We have to lock
1890 	 * pages in order, so we can't process delalloc bytes before
1891 	 * locked_page
1892 	 */
1893 	if (delalloc_start < *start)
1894 		delalloc_start = *start;
1895 
1896 	/*
1897 	 * make sure to limit the number of pages we try to lock down
1898 	 */
1899 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 		delalloc_end = delalloc_start + max_bytes - 1;
1901 
1902 	/* step two, lock all the pages after the page that has start */
1903 	ret = lock_delalloc_pages(inode, locked_page,
1904 				  delalloc_start, delalloc_end);
1905 	ASSERT(!ret || ret == -EAGAIN);
1906 	if (ret == -EAGAIN) {
1907 		/* some of the pages are gone, lets avoid looping by
1908 		 * shortening the size of the delalloc range we're searching
1909 		 */
1910 		free_extent_state(cached_state);
1911 		cached_state = NULL;
1912 		if (!loops) {
1913 			max_bytes = PAGE_SIZE;
1914 			loops = 1;
1915 			goto again;
1916 		} else {
1917 			found = false;
1918 			goto out_failed;
1919 		}
1920 	}
1921 
1922 	/* step three, lock the state bits for the whole range */
1923 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924 
1925 	/* then test to make sure it is all still delalloc */
1926 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 			     EXTENT_DELALLOC, 1, cached_state);
1928 	if (!ret) {
1929 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 				     &cached_state);
1931 		__unlock_for_delalloc(inode, locked_page,
1932 			      delalloc_start, delalloc_end);
1933 		cond_resched();
1934 		goto again;
1935 	}
1936 	free_extent_state(cached_state);
1937 	*start = delalloc_start;
1938 	*end = delalloc_end;
1939 out_failed:
1940 	return found;
1941 }
1942 
1943 static int __process_pages_contig(struct address_space *mapping,
1944 				  struct page *locked_page,
1945 				  pgoff_t start_index, pgoff_t end_index,
1946 				  unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948 	unsigned long nr_pages = end_index - start_index + 1;
1949 	unsigned long pages_locked = 0;
1950 	pgoff_t index = start_index;
1951 	struct page *pages[16];
1952 	unsigned ret;
1953 	int err = 0;
1954 	int i;
1955 
1956 	if (page_ops & PAGE_LOCK) {
1957 		ASSERT(page_ops == PAGE_LOCK);
1958 		ASSERT(index_ret && *index_ret == start_index);
1959 	}
1960 
1961 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 		mapping_set_error(mapping, -EIO);
1963 
1964 	while (nr_pages > 0) {
1965 		ret = find_get_pages_contig(mapping, index,
1966 				     min_t(unsigned long,
1967 				     nr_pages, ARRAY_SIZE(pages)), pages);
1968 		if (ret == 0) {
1969 			/*
1970 			 * Only if we're going to lock these pages,
1971 			 * can we find nothing at @index.
1972 			 */
1973 			ASSERT(page_ops & PAGE_LOCK);
1974 			err = -EAGAIN;
1975 			goto out;
1976 		}
1977 
1978 		for (i = 0; i < ret; i++) {
1979 			if (page_ops & PAGE_SET_PRIVATE2)
1980 				SetPagePrivate2(pages[i]);
1981 
1982 			if (locked_page && pages[i] == locked_page) {
1983 				put_page(pages[i]);
1984 				pages_locked++;
1985 				continue;
1986 			}
1987 			if (page_ops & PAGE_CLEAR_DIRTY)
1988 				clear_page_dirty_for_io(pages[i]);
1989 			if (page_ops & PAGE_SET_WRITEBACK)
1990 				set_page_writeback(pages[i]);
1991 			if (page_ops & PAGE_SET_ERROR)
1992 				SetPageError(pages[i]);
1993 			if (page_ops & PAGE_END_WRITEBACK)
1994 				end_page_writeback(pages[i]);
1995 			if (page_ops & PAGE_UNLOCK)
1996 				unlock_page(pages[i]);
1997 			if (page_ops & PAGE_LOCK) {
1998 				lock_page(pages[i]);
1999 				if (!PageDirty(pages[i]) ||
2000 				    pages[i]->mapping != mapping) {
2001 					unlock_page(pages[i]);
2002 					put_page(pages[i]);
2003 					err = -EAGAIN;
2004 					goto out;
2005 				}
2006 			}
2007 			put_page(pages[i]);
2008 			pages_locked++;
2009 		}
2010 		nr_pages -= ret;
2011 		index += ret;
2012 		cond_resched();
2013 	}
2014 out:
2015 	if (err && index_ret)
2016 		*index_ret = start_index + pages_locked - 1;
2017 	return err;
2018 }
2019 
2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2021 				  struct page *locked_page,
2022 				  unsigned clear_bits,
2023 				  unsigned long page_ops)
2024 {
2025 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2026 			 NULL);
2027 
2028 	__process_pages_contig(inode->i_mapping, locked_page,
2029 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 			       page_ops, NULL);
2031 }
2032 
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039 		     u64 *start, u64 search_end, u64 max_bytes,
2040 		     unsigned bits, int contig)
2041 {
2042 	struct rb_node *node;
2043 	struct extent_state *state;
2044 	u64 cur_start = *start;
2045 	u64 total_bytes = 0;
2046 	u64 last = 0;
2047 	int found = 0;
2048 
2049 	if (WARN_ON(search_end <= cur_start))
2050 		return 0;
2051 
2052 	spin_lock(&tree->lock);
2053 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 		total_bytes = tree->dirty_bytes;
2055 		goto out;
2056 	}
2057 	/*
2058 	 * this search will find all the extents that end after
2059 	 * our range starts.
2060 	 */
2061 	node = tree_search(tree, cur_start);
2062 	if (!node)
2063 		goto out;
2064 
2065 	while (1) {
2066 		state = rb_entry(node, struct extent_state, rb_node);
2067 		if (state->start > search_end)
2068 			break;
2069 		if (contig && found && state->start > last + 1)
2070 			break;
2071 		if (state->end >= cur_start && (state->state & bits) == bits) {
2072 			total_bytes += min(search_end, state->end) + 1 -
2073 				       max(cur_start, state->start);
2074 			if (total_bytes >= max_bytes)
2075 				break;
2076 			if (!found) {
2077 				*start = max(cur_start, state->start);
2078 				found = 1;
2079 			}
2080 			last = state->end;
2081 		} else if (contig && found) {
2082 			break;
2083 		}
2084 		node = rb_next(node);
2085 		if (!node)
2086 			break;
2087 	}
2088 out:
2089 	spin_unlock(&tree->lock);
2090 	return total_bytes;
2091 }
2092 
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 		      struct io_failure_record *failrec)
2099 {
2100 	struct rb_node *node;
2101 	struct extent_state *state;
2102 	int ret = 0;
2103 
2104 	spin_lock(&tree->lock);
2105 	/*
2106 	 * this search will find all the extents that end after
2107 	 * our range starts.
2108 	 */
2109 	node = tree_search(tree, start);
2110 	if (!node) {
2111 		ret = -ENOENT;
2112 		goto out;
2113 	}
2114 	state = rb_entry(node, struct extent_state, rb_node);
2115 	if (state->start != start) {
2116 		ret = -ENOENT;
2117 		goto out;
2118 	}
2119 	state->failrec = failrec;
2120 out:
2121 	spin_unlock(&tree->lock);
2122 	return ret;
2123 }
2124 
2125 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126 		      struct io_failure_record **failrec)
2127 {
2128 	struct rb_node *node;
2129 	struct extent_state *state;
2130 	int ret = 0;
2131 
2132 	spin_lock(&tree->lock);
2133 	/*
2134 	 * this search will find all the extents that end after
2135 	 * our range starts.
2136 	 */
2137 	node = tree_search(tree, start);
2138 	if (!node) {
2139 		ret = -ENOENT;
2140 		goto out;
2141 	}
2142 	state = rb_entry(node, struct extent_state, rb_node);
2143 	if (state->start != start) {
2144 		ret = -ENOENT;
2145 		goto out;
2146 	}
2147 	*failrec = state->failrec;
2148 out:
2149 	spin_unlock(&tree->lock);
2150 	return ret;
2151 }
2152 
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 		   unsigned bits, int filled, struct extent_state *cached)
2161 {
2162 	struct extent_state *state = NULL;
2163 	struct rb_node *node;
2164 	int bitset = 0;
2165 
2166 	spin_lock(&tree->lock);
2167 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 	    cached->end > start)
2169 		node = &cached->rb_node;
2170 	else
2171 		node = tree_search(tree, start);
2172 	while (node && start <= end) {
2173 		state = rb_entry(node, struct extent_state, rb_node);
2174 
2175 		if (filled && state->start > start) {
2176 			bitset = 0;
2177 			break;
2178 		}
2179 
2180 		if (state->start > end)
2181 			break;
2182 
2183 		if (state->state & bits) {
2184 			bitset = 1;
2185 			if (!filled)
2186 				break;
2187 		} else if (filled) {
2188 			bitset = 0;
2189 			break;
2190 		}
2191 
2192 		if (state->end == (u64)-1)
2193 			break;
2194 
2195 		start = state->end + 1;
2196 		if (start > end)
2197 			break;
2198 		node = rb_next(node);
2199 		if (!node) {
2200 			if (filled)
2201 				bitset = 0;
2202 			break;
2203 		}
2204 	}
2205 	spin_unlock(&tree->lock);
2206 	return bitset;
2207 }
2208 
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215 	u64 start = page_offset(page);
2216 	u64 end = start + PAGE_SIZE - 1;
2217 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 		SetPageUptodate(page);
2219 }
2220 
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222 		    struct extent_io_tree *io_tree,
2223 		    struct io_failure_record *rec)
2224 {
2225 	int ret;
2226 	int err = 0;
2227 
2228 	set_state_failrec(failure_tree, rec->start, NULL);
2229 	ret = clear_extent_bits(failure_tree, rec->start,
2230 				rec->start + rec->len - 1,
2231 				EXTENT_LOCKED | EXTENT_DIRTY);
2232 	if (ret)
2233 		err = ret;
2234 
2235 	ret = clear_extent_bits(io_tree, rec->start,
2236 				rec->start + rec->len - 1,
2237 				EXTENT_DAMAGED);
2238 	if (ret && !err)
2239 		err = ret;
2240 
2241 	kfree(rec);
2242 	return err;
2243 }
2244 
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 		      u64 length, u64 logical, struct page *page,
2257 		      unsigned int pg_offset, int mirror_num)
2258 {
2259 	struct bio *bio;
2260 	struct btrfs_device *dev;
2261 	u64 map_length = 0;
2262 	u64 sector;
2263 	struct btrfs_bio *bbio = NULL;
2264 	int ret;
2265 
2266 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 	BUG_ON(!mirror_num);
2268 
2269 	bio = btrfs_io_bio_alloc(1);
2270 	bio->bi_iter.bi_size = 0;
2271 	map_length = length;
2272 
2273 	/*
2274 	 * Avoid races with device replace and make sure our bbio has devices
2275 	 * associated to its stripes that don't go away while we are doing the
2276 	 * read repair operation.
2277 	 */
2278 	btrfs_bio_counter_inc_blocked(fs_info);
2279 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 		/*
2281 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 		 * to update all raid stripes, but here we just want to correct
2283 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 		 * stripe's dev and sector.
2285 		 */
2286 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 				      &map_length, &bbio, 0);
2288 		if (ret) {
2289 			btrfs_bio_counter_dec(fs_info);
2290 			bio_put(bio);
2291 			return -EIO;
2292 		}
2293 		ASSERT(bbio->mirror_num == 1);
2294 	} else {
2295 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 				      &map_length, &bbio, mirror_num);
2297 		if (ret) {
2298 			btrfs_bio_counter_dec(fs_info);
2299 			bio_put(bio);
2300 			return -EIO;
2301 		}
2302 		BUG_ON(mirror_num != bbio->mirror_num);
2303 	}
2304 
2305 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 	bio->bi_iter.bi_sector = sector;
2307 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 	btrfs_put_bbio(bbio);
2309 	if (!dev || !dev->bdev ||
2310 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 		btrfs_bio_counter_dec(fs_info);
2312 		bio_put(bio);
2313 		return -EIO;
2314 	}
2315 	bio_set_dev(bio, dev->bdev);
2316 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 	bio_add_page(bio, page, length, pg_offset);
2318 
2319 	if (btrfsic_submit_bio_wait(bio)) {
2320 		/* try to remap that extent elsewhere? */
2321 		btrfs_bio_counter_dec(fs_info);
2322 		bio_put(bio);
2323 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 		return -EIO;
2325 	}
2326 
2327 	btrfs_info_rl_in_rcu(fs_info,
2328 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 				  ino, start,
2330 				  rcu_str_deref(dev->name), sector);
2331 	btrfs_bio_counter_dec(fs_info);
2332 	bio_put(bio);
2333 	return 0;
2334 }
2335 
2336 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2337 {
2338 	struct btrfs_fs_info *fs_info = eb->fs_info;
2339 	u64 start = eb->start;
2340 	int i, num_pages = num_extent_pages(eb);
2341 	int ret = 0;
2342 
2343 	if (sb_rdonly(fs_info->sb))
2344 		return -EROFS;
2345 
2346 	for (i = 0; i < num_pages; i++) {
2347 		struct page *p = eb->pages[i];
2348 
2349 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 					start - page_offset(p), mirror_num);
2351 		if (ret)
2352 			break;
2353 		start += PAGE_SIZE;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 		     struct extent_io_tree *failure_tree,
2365 		     struct extent_io_tree *io_tree, u64 start,
2366 		     struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368 	u64 private;
2369 	struct io_failure_record *failrec;
2370 	struct extent_state *state;
2371 	int num_copies;
2372 	int ret;
2373 
2374 	private = 0;
2375 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 			       EXTENT_DIRTY, 0);
2377 	if (!ret)
2378 		return 0;
2379 
2380 	ret = get_state_failrec(failure_tree, start, &failrec);
2381 	if (ret)
2382 		return 0;
2383 
2384 	BUG_ON(!failrec->this_mirror);
2385 
2386 	if (failrec->in_validation) {
2387 		/* there was no real error, just free the record */
2388 		btrfs_debug(fs_info,
2389 			"clean_io_failure: freeing dummy error at %llu",
2390 			failrec->start);
2391 		goto out;
2392 	}
2393 	if (sb_rdonly(fs_info->sb))
2394 		goto out;
2395 
2396 	spin_lock(&io_tree->lock);
2397 	state = find_first_extent_bit_state(io_tree,
2398 					    failrec->start,
2399 					    EXTENT_LOCKED);
2400 	spin_unlock(&io_tree->lock);
2401 
2402 	if (state && state->start <= failrec->start &&
2403 	    state->end >= failrec->start + failrec->len - 1) {
2404 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 					      failrec->len);
2406 		if (num_copies > 1)  {
2407 			repair_io_failure(fs_info, ino, start, failrec->len,
2408 					  failrec->logical, page, pg_offset,
2409 					  failrec->failed_mirror);
2410 		}
2411 	}
2412 
2413 out:
2414 	free_io_failure(failure_tree, io_tree, failrec);
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 	struct io_failure_record *failrec;
2429 	struct extent_state *state, *next;
2430 
2431 	if (RB_EMPTY_ROOT(&failure_tree->state))
2432 		return;
2433 
2434 	spin_lock(&failure_tree->lock);
2435 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 	while (state) {
2437 		if (state->start > end)
2438 			break;
2439 
2440 		ASSERT(state->end <= end);
2441 
2442 		next = next_state(state);
2443 
2444 		failrec = state->failrec;
2445 		free_extent_state(state);
2446 		kfree(failrec);
2447 
2448 		state = next;
2449 	}
2450 	spin_unlock(&failure_tree->lock);
2451 }
2452 
2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2454 		struct io_failure_record **failrec_ret)
2455 {
2456 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 	struct io_failure_record *failrec;
2458 	struct extent_map *em;
2459 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 	int ret;
2463 	u64 logical;
2464 
2465 	ret = get_state_failrec(failure_tree, start, &failrec);
2466 	if (ret) {
2467 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468 		if (!failrec)
2469 			return -ENOMEM;
2470 
2471 		failrec->start = start;
2472 		failrec->len = end - start + 1;
2473 		failrec->this_mirror = 0;
2474 		failrec->bio_flags = 0;
2475 		failrec->in_validation = 0;
2476 
2477 		read_lock(&em_tree->lock);
2478 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2479 		if (!em) {
2480 			read_unlock(&em_tree->lock);
2481 			kfree(failrec);
2482 			return -EIO;
2483 		}
2484 
2485 		if (em->start > start || em->start + em->len <= start) {
2486 			free_extent_map(em);
2487 			em = NULL;
2488 		}
2489 		read_unlock(&em_tree->lock);
2490 		if (!em) {
2491 			kfree(failrec);
2492 			return -EIO;
2493 		}
2494 
2495 		logical = start - em->start;
2496 		logical = em->block_start + logical;
2497 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498 			logical = em->block_start;
2499 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500 			extent_set_compress_type(&failrec->bio_flags,
2501 						 em->compress_type);
2502 		}
2503 
2504 		btrfs_debug(fs_info,
2505 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 			logical, start, failrec->len);
2507 
2508 		failrec->logical = logical;
2509 		free_extent_map(em);
2510 
2511 		/* set the bits in the private failure tree */
2512 		ret = set_extent_bits(failure_tree, start, end,
2513 					EXTENT_LOCKED | EXTENT_DIRTY);
2514 		if (ret >= 0)
2515 			ret = set_state_failrec(failure_tree, start, failrec);
2516 		/* set the bits in the inode's tree */
2517 		if (ret >= 0)
2518 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2519 		if (ret < 0) {
2520 			kfree(failrec);
2521 			return ret;
2522 		}
2523 	} else {
2524 		btrfs_debug(fs_info,
2525 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 			failrec->logical, failrec->start, failrec->len,
2527 			failrec->in_validation);
2528 		/*
2529 		 * when data can be on disk more than twice, add to failrec here
2530 		 * (e.g. with a list for failed_mirror) to make
2531 		 * clean_io_failure() clean all those errors at once.
2532 		 */
2533 	}
2534 
2535 	*failrec_ret = failrec;
2536 
2537 	return 0;
2538 }
2539 
2540 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2541 			   struct io_failure_record *failrec, int failed_mirror)
2542 {
2543 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2544 	int num_copies;
2545 
2546 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2547 	if (num_copies == 1) {
2548 		/*
2549 		 * we only have a single copy of the data, so don't bother with
2550 		 * all the retry and error correction code that follows. no
2551 		 * matter what the error is, it is very likely to persist.
2552 		 */
2553 		btrfs_debug(fs_info,
2554 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2555 			num_copies, failrec->this_mirror, failed_mirror);
2556 		return false;
2557 	}
2558 
2559 	/*
2560 	 * there are two premises:
2561 	 *	a) deliver good data to the caller
2562 	 *	b) correct the bad sectors on disk
2563 	 */
2564 	if (failed_bio_pages > 1) {
2565 		/*
2566 		 * to fulfill b), we need to know the exact failing sectors, as
2567 		 * we don't want to rewrite any more than the failed ones. thus,
2568 		 * we need separate read requests for the failed bio
2569 		 *
2570 		 * if the following BUG_ON triggers, our validation request got
2571 		 * merged. we need separate requests for our algorithm to work.
2572 		 */
2573 		BUG_ON(failrec->in_validation);
2574 		failrec->in_validation = 1;
2575 		failrec->this_mirror = failed_mirror;
2576 	} else {
2577 		/*
2578 		 * we're ready to fulfill a) and b) alongside. get a good copy
2579 		 * of the failed sector and if we succeed, we have setup
2580 		 * everything for repair_io_failure to do the rest for us.
2581 		 */
2582 		if (failrec->in_validation) {
2583 			BUG_ON(failrec->this_mirror != failed_mirror);
2584 			failrec->in_validation = 0;
2585 			failrec->this_mirror = 0;
2586 		}
2587 		failrec->failed_mirror = failed_mirror;
2588 		failrec->this_mirror++;
2589 		if (failrec->this_mirror == failed_mirror)
2590 			failrec->this_mirror++;
2591 	}
2592 
2593 	if (failrec->this_mirror > num_copies) {
2594 		btrfs_debug(fs_info,
2595 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2596 			num_copies, failrec->this_mirror, failed_mirror);
2597 		return false;
2598 	}
2599 
2600 	return true;
2601 }
2602 
2603 
2604 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2605 				    struct io_failure_record *failrec,
2606 				    struct page *page, int pg_offset, int icsum,
2607 				    bio_end_io_t *endio_func, void *data)
2608 {
2609 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2610 	struct bio *bio;
2611 	struct btrfs_io_bio *btrfs_failed_bio;
2612 	struct btrfs_io_bio *btrfs_bio;
2613 
2614 	bio = btrfs_io_bio_alloc(1);
2615 	bio->bi_end_io = endio_func;
2616 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2617 	bio->bi_iter.bi_size = 0;
2618 	bio->bi_private = data;
2619 
2620 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2621 	if (btrfs_failed_bio->csum) {
2622 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2623 
2624 		btrfs_bio = btrfs_io_bio(bio);
2625 		btrfs_bio->csum = btrfs_bio->csum_inline;
2626 		icsum *= csum_size;
2627 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2628 		       csum_size);
2629 	}
2630 
2631 	bio_add_page(bio, page, failrec->len, pg_offset);
2632 
2633 	return bio;
2634 }
2635 
2636 /*
2637  * This is a generic handler for readpage errors. If other copies exist, read
2638  * those and write back good data to the failed position. Does not investigate
2639  * in remapping the failed extent elsewhere, hoping the device will be smart
2640  * enough to do this as needed
2641  */
2642 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2643 			      struct page *page, u64 start, u64 end,
2644 			      int failed_mirror)
2645 {
2646 	struct io_failure_record *failrec;
2647 	struct inode *inode = page->mapping->host;
2648 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2649 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2650 	struct bio *bio;
2651 	int read_mode = 0;
2652 	blk_status_t status;
2653 	int ret;
2654 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2655 
2656 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2657 
2658 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2659 	if (ret)
2660 		return ret;
2661 
2662 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2663 				    failed_mirror)) {
2664 		free_io_failure(failure_tree, tree, failrec);
2665 		return -EIO;
2666 	}
2667 
2668 	if (failed_bio_pages > 1)
2669 		read_mode |= REQ_FAILFAST_DEV;
2670 
2671 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2672 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2673 				      start - page_offset(page),
2674 				      (int)phy_offset, failed_bio->bi_end_io,
2675 				      NULL);
2676 	bio->bi_opf = REQ_OP_READ | read_mode;
2677 
2678 	btrfs_debug(btrfs_sb(inode->i_sb),
2679 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2680 		read_mode, failrec->this_mirror, failrec->in_validation);
2681 
2682 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2683 					 failrec->bio_flags);
2684 	if (status) {
2685 		free_io_failure(failure_tree, tree, failrec);
2686 		bio_put(bio);
2687 		ret = blk_status_to_errno(status);
2688 	}
2689 
2690 	return ret;
2691 }
2692 
2693 /* lots and lots of room for performance fixes in the end_bio funcs */
2694 
2695 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2696 {
2697 	int uptodate = (err == 0);
2698 	int ret = 0;
2699 
2700 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2701 
2702 	if (!uptodate) {
2703 		ClearPageUptodate(page);
2704 		SetPageError(page);
2705 		ret = err < 0 ? err : -EIO;
2706 		mapping_set_error(page->mapping, ret);
2707 	}
2708 }
2709 
2710 /*
2711  * after a writepage IO is done, we need to:
2712  * clear the uptodate bits on error
2713  * clear the writeback bits in the extent tree for this IO
2714  * end_page_writeback if the page has no more pending IO
2715  *
2716  * Scheduling is not allowed, so the extent state tree is expected
2717  * to have one and only one object corresponding to this IO.
2718  */
2719 static void end_bio_extent_writepage(struct bio *bio)
2720 {
2721 	int error = blk_status_to_errno(bio->bi_status);
2722 	struct bio_vec *bvec;
2723 	u64 start;
2724 	u64 end;
2725 	struct bvec_iter_all iter_all;
2726 
2727 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2728 	bio_for_each_segment_all(bvec, bio, iter_all) {
2729 		struct page *page = bvec->bv_page;
2730 		struct inode *inode = page->mapping->host;
2731 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2732 
2733 		/* We always issue full-page reads, but if some block
2734 		 * in a page fails to read, blk_update_request() will
2735 		 * advance bv_offset and adjust bv_len to compensate.
2736 		 * Print a warning for nonzero offsets, and an error
2737 		 * if they don't add up to a full page.  */
2738 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2739 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2740 				btrfs_err(fs_info,
2741 				   "partial page write in btrfs with offset %u and length %u",
2742 					bvec->bv_offset, bvec->bv_len);
2743 			else
2744 				btrfs_info(fs_info,
2745 				   "incomplete page write in btrfs with offset %u and length %u",
2746 					bvec->bv_offset, bvec->bv_len);
2747 		}
2748 
2749 		start = page_offset(page);
2750 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2751 
2752 		end_extent_writepage(page, error, start, end);
2753 		end_page_writeback(page);
2754 	}
2755 
2756 	bio_put(bio);
2757 }
2758 
2759 static void
2760 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2761 			      int uptodate)
2762 {
2763 	struct extent_state *cached = NULL;
2764 	u64 end = start + len - 1;
2765 
2766 	if (uptodate && tree->track_uptodate)
2767 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2768 	unlock_extent_cached_atomic(tree, start, end, &cached);
2769 }
2770 
2771 /*
2772  * after a readpage IO is done, we need to:
2773  * clear the uptodate bits on error
2774  * set the uptodate bits if things worked
2775  * set the page up to date if all extents in the tree are uptodate
2776  * clear the lock bit in the extent tree
2777  * unlock the page if there are no other extents locked for it
2778  *
2779  * Scheduling is not allowed, so the extent state tree is expected
2780  * to have one and only one object corresponding to this IO.
2781  */
2782 static void end_bio_extent_readpage(struct bio *bio)
2783 {
2784 	struct bio_vec *bvec;
2785 	int uptodate = !bio->bi_status;
2786 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2787 	struct extent_io_tree *tree, *failure_tree;
2788 	u64 offset = 0;
2789 	u64 start;
2790 	u64 end;
2791 	u64 len;
2792 	u64 extent_start = 0;
2793 	u64 extent_len = 0;
2794 	int mirror;
2795 	int ret;
2796 	struct bvec_iter_all iter_all;
2797 
2798 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2799 	bio_for_each_segment_all(bvec, bio, iter_all) {
2800 		struct page *page = bvec->bv_page;
2801 		struct inode *inode = page->mapping->host;
2802 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2803 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2804 			!= BTRFS_BTREE_INODE_OBJECTID;
2805 
2806 		btrfs_debug(fs_info,
2807 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2808 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2809 			io_bio->mirror_num);
2810 		tree = &BTRFS_I(inode)->io_tree;
2811 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2812 
2813 		/* We always issue full-page reads, but if some block
2814 		 * in a page fails to read, blk_update_request() will
2815 		 * advance bv_offset and adjust bv_len to compensate.
2816 		 * Print a warning for nonzero offsets, and an error
2817 		 * if they don't add up to a full page.  */
2818 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2819 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2820 				btrfs_err(fs_info,
2821 					"partial page read in btrfs with offset %u and length %u",
2822 					bvec->bv_offset, bvec->bv_len);
2823 			else
2824 				btrfs_info(fs_info,
2825 					"incomplete page read in btrfs with offset %u and length %u",
2826 					bvec->bv_offset, bvec->bv_len);
2827 		}
2828 
2829 		start = page_offset(page);
2830 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2831 		len = bvec->bv_len;
2832 
2833 		mirror = io_bio->mirror_num;
2834 		if (likely(uptodate)) {
2835 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2836 							      page, start, end,
2837 							      mirror);
2838 			if (ret)
2839 				uptodate = 0;
2840 			else
2841 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2842 						 failure_tree, tree, start,
2843 						 page,
2844 						 btrfs_ino(BTRFS_I(inode)), 0);
2845 		}
2846 
2847 		if (likely(uptodate))
2848 			goto readpage_ok;
2849 
2850 		if (data_inode) {
2851 
2852 			/*
2853 			 * The generic bio_readpage_error handles errors the
2854 			 * following way: If possible, new read requests are
2855 			 * created and submitted and will end up in
2856 			 * end_bio_extent_readpage as well (if we're lucky,
2857 			 * not in the !uptodate case). In that case it returns
2858 			 * 0 and we just go on with the next page in our bio.
2859 			 * If it can't handle the error it will return -EIO and
2860 			 * we remain responsible for that page.
2861 			 */
2862 			ret = bio_readpage_error(bio, offset, page, start, end,
2863 						 mirror);
2864 			if (ret == 0) {
2865 				uptodate = !bio->bi_status;
2866 				offset += len;
2867 				continue;
2868 			}
2869 		} else {
2870 			struct extent_buffer *eb;
2871 
2872 			eb = (struct extent_buffer *)page->private;
2873 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2874 			eb->read_mirror = mirror;
2875 			atomic_dec(&eb->io_pages);
2876 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2877 					       &eb->bflags))
2878 				btree_readahead_hook(eb, -EIO);
2879 		}
2880 readpage_ok:
2881 		if (likely(uptodate)) {
2882 			loff_t i_size = i_size_read(inode);
2883 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2884 			unsigned off;
2885 
2886 			/* Zero out the end if this page straddles i_size */
2887 			off = offset_in_page(i_size);
2888 			if (page->index == end_index && off)
2889 				zero_user_segment(page, off, PAGE_SIZE);
2890 			SetPageUptodate(page);
2891 		} else {
2892 			ClearPageUptodate(page);
2893 			SetPageError(page);
2894 		}
2895 		unlock_page(page);
2896 		offset += len;
2897 
2898 		if (unlikely(!uptodate)) {
2899 			if (extent_len) {
2900 				endio_readpage_release_extent(tree,
2901 							      extent_start,
2902 							      extent_len, 1);
2903 				extent_start = 0;
2904 				extent_len = 0;
2905 			}
2906 			endio_readpage_release_extent(tree, start,
2907 						      end - start + 1, 0);
2908 		} else if (!extent_len) {
2909 			extent_start = start;
2910 			extent_len = end + 1 - start;
2911 		} else if (extent_start + extent_len == start) {
2912 			extent_len += end + 1 - start;
2913 		} else {
2914 			endio_readpage_release_extent(tree, extent_start,
2915 						      extent_len, uptodate);
2916 			extent_start = start;
2917 			extent_len = end + 1 - start;
2918 		}
2919 	}
2920 
2921 	if (extent_len)
2922 		endio_readpage_release_extent(tree, extent_start, extent_len,
2923 					      uptodate);
2924 	btrfs_io_bio_free_csum(io_bio);
2925 	bio_put(bio);
2926 }
2927 
2928 /*
2929  * Initialize the members up to but not including 'bio'. Use after allocating a
2930  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2931  * 'bio' because use of __GFP_ZERO is not supported.
2932  */
2933 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2934 {
2935 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2936 }
2937 
2938 /*
2939  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2940  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2941  * for the appropriate container_of magic
2942  */
2943 struct bio *btrfs_bio_alloc(u64 first_byte)
2944 {
2945 	struct bio *bio;
2946 
2947 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2948 	bio->bi_iter.bi_sector = first_byte >> 9;
2949 	btrfs_io_bio_init(btrfs_io_bio(bio));
2950 	return bio;
2951 }
2952 
2953 struct bio *btrfs_bio_clone(struct bio *bio)
2954 {
2955 	struct btrfs_io_bio *btrfs_bio;
2956 	struct bio *new;
2957 
2958 	/* Bio allocation backed by a bioset does not fail */
2959 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2960 	btrfs_bio = btrfs_io_bio(new);
2961 	btrfs_io_bio_init(btrfs_bio);
2962 	btrfs_bio->iter = bio->bi_iter;
2963 	return new;
2964 }
2965 
2966 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2967 {
2968 	struct bio *bio;
2969 
2970 	/* Bio allocation backed by a bioset does not fail */
2971 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2972 	btrfs_io_bio_init(btrfs_io_bio(bio));
2973 	return bio;
2974 }
2975 
2976 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2977 {
2978 	struct bio *bio;
2979 	struct btrfs_io_bio *btrfs_bio;
2980 
2981 	/* this will never fail when it's backed by a bioset */
2982 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2983 	ASSERT(bio);
2984 
2985 	btrfs_bio = btrfs_io_bio(bio);
2986 	btrfs_io_bio_init(btrfs_bio);
2987 
2988 	bio_trim(bio, offset >> 9, size >> 9);
2989 	btrfs_bio->iter = bio->bi_iter;
2990 	return bio;
2991 }
2992 
2993 /*
2994  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2995  * @wbc:	optional writeback control for io accounting
2996  * @page:	page to add to the bio
2997  * @pg_offset:	offset of the new bio or to check whether we are adding
2998  *              a contiguous page to the previous one
2999  * @size:	portion of page that we want to write
3000  * @offset:	starting offset in the page
3001  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3002  * @end_io_func:     end_io callback for new bio
3003  * @mirror_num:	     desired mirror to read/write
3004  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3005  * @bio_flags:	flags of the current bio to see if we can merge them
3006  */
3007 static int submit_extent_page(unsigned int opf,
3008 			      struct writeback_control *wbc,
3009 			      struct page *page, u64 offset,
3010 			      size_t size, unsigned long pg_offset,
3011 			      struct bio **bio_ret,
3012 			      bio_end_io_t end_io_func,
3013 			      int mirror_num,
3014 			      unsigned long prev_bio_flags,
3015 			      unsigned long bio_flags,
3016 			      bool force_bio_submit)
3017 {
3018 	int ret = 0;
3019 	struct bio *bio;
3020 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3021 	sector_t sector = offset >> 9;
3022 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3023 
3024 	ASSERT(bio_ret);
3025 
3026 	if (*bio_ret) {
3027 		bool contig;
3028 		bool can_merge = true;
3029 
3030 		bio = *bio_ret;
3031 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3032 			contig = bio->bi_iter.bi_sector == sector;
3033 		else
3034 			contig = bio_end_sector(bio) == sector;
3035 
3036 		ASSERT(tree->ops);
3037 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3038 			can_merge = false;
3039 
3040 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3041 		    force_bio_submit ||
3042 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3043 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3044 			if (ret < 0) {
3045 				*bio_ret = NULL;
3046 				return ret;
3047 			}
3048 			bio = NULL;
3049 		} else {
3050 			if (wbc)
3051 				wbc_account_cgroup_owner(wbc, page, page_size);
3052 			return 0;
3053 		}
3054 	}
3055 
3056 	bio = btrfs_bio_alloc(offset);
3057 	bio_add_page(bio, page, page_size, pg_offset);
3058 	bio->bi_end_io = end_io_func;
3059 	bio->bi_private = tree;
3060 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3061 	bio->bi_opf = opf;
3062 	if (wbc) {
3063 		struct block_device *bdev;
3064 
3065 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3066 		bio_set_dev(bio, bdev);
3067 		wbc_init_bio(wbc, bio);
3068 		wbc_account_cgroup_owner(wbc, page, page_size);
3069 	}
3070 
3071 	*bio_ret = bio;
3072 
3073 	return ret;
3074 }
3075 
3076 static void attach_extent_buffer_page(struct extent_buffer *eb,
3077 				      struct page *page)
3078 {
3079 	if (!PagePrivate(page))
3080 		attach_page_private(page, eb);
3081 	else
3082 		WARN_ON(page->private != (unsigned long)eb);
3083 }
3084 
3085 void set_page_extent_mapped(struct page *page)
3086 {
3087 	if (!PagePrivate(page))
3088 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3089 }
3090 
3091 static struct extent_map *
3092 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3093 		 u64 start, u64 len, get_extent_t *get_extent,
3094 		 struct extent_map **em_cached)
3095 {
3096 	struct extent_map *em;
3097 
3098 	if (em_cached && *em_cached) {
3099 		em = *em_cached;
3100 		if (extent_map_in_tree(em) && start >= em->start &&
3101 		    start < extent_map_end(em)) {
3102 			refcount_inc(&em->refs);
3103 			return em;
3104 		}
3105 
3106 		free_extent_map(em);
3107 		*em_cached = NULL;
3108 	}
3109 
3110 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3111 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3112 		BUG_ON(*em_cached);
3113 		refcount_inc(&em->refs);
3114 		*em_cached = em;
3115 	}
3116 	return em;
3117 }
3118 /*
3119  * basic readpage implementation.  Locked extent state structs are inserted
3120  * into the tree that are removed when the IO is done (by the end_io
3121  * handlers)
3122  * XXX JDM: This needs looking at to ensure proper page locking
3123  * return 0 on success, otherwise return error
3124  */
3125 static int __do_readpage(struct page *page,
3126 			 get_extent_t *get_extent,
3127 			 struct extent_map **em_cached,
3128 			 struct bio **bio, int mirror_num,
3129 			 unsigned long *bio_flags, unsigned int read_flags,
3130 			 u64 *prev_em_start)
3131 {
3132 	struct inode *inode = page->mapping->host;
3133 	u64 start = page_offset(page);
3134 	const u64 end = start + PAGE_SIZE - 1;
3135 	u64 cur = start;
3136 	u64 extent_offset;
3137 	u64 last_byte = i_size_read(inode);
3138 	u64 block_start;
3139 	u64 cur_end;
3140 	struct extent_map *em;
3141 	int ret = 0;
3142 	int nr = 0;
3143 	size_t pg_offset = 0;
3144 	size_t iosize;
3145 	size_t disk_io_size;
3146 	size_t blocksize = inode->i_sb->s_blocksize;
3147 	unsigned long this_bio_flag = 0;
3148 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3149 
3150 	set_page_extent_mapped(page);
3151 
3152 	if (!PageUptodate(page)) {
3153 		if (cleancache_get_page(page) == 0) {
3154 			BUG_ON(blocksize != PAGE_SIZE);
3155 			unlock_extent(tree, start, end);
3156 			goto out;
3157 		}
3158 	}
3159 
3160 	if (page->index == last_byte >> PAGE_SHIFT) {
3161 		char *userpage;
3162 		size_t zero_offset = offset_in_page(last_byte);
3163 
3164 		if (zero_offset) {
3165 			iosize = PAGE_SIZE - zero_offset;
3166 			userpage = kmap_atomic(page);
3167 			memset(userpage + zero_offset, 0, iosize);
3168 			flush_dcache_page(page);
3169 			kunmap_atomic(userpage);
3170 		}
3171 	}
3172 	while (cur <= end) {
3173 		bool force_bio_submit = false;
3174 		u64 offset;
3175 
3176 		if (cur >= last_byte) {
3177 			char *userpage;
3178 			struct extent_state *cached = NULL;
3179 
3180 			iosize = PAGE_SIZE - pg_offset;
3181 			userpage = kmap_atomic(page);
3182 			memset(userpage + pg_offset, 0, iosize);
3183 			flush_dcache_page(page);
3184 			kunmap_atomic(userpage);
3185 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3186 					    &cached, GFP_NOFS);
3187 			unlock_extent_cached(tree, cur,
3188 					     cur + iosize - 1, &cached);
3189 			break;
3190 		}
3191 		em = __get_extent_map(inode, page, pg_offset, cur,
3192 				      end - cur + 1, get_extent, em_cached);
3193 		if (IS_ERR_OR_NULL(em)) {
3194 			SetPageError(page);
3195 			unlock_extent(tree, cur, end);
3196 			break;
3197 		}
3198 		extent_offset = cur - em->start;
3199 		BUG_ON(extent_map_end(em) <= cur);
3200 		BUG_ON(end < cur);
3201 
3202 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3203 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3204 			extent_set_compress_type(&this_bio_flag,
3205 						 em->compress_type);
3206 		}
3207 
3208 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3209 		cur_end = min(extent_map_end(em) - 1, end);
3210 		iosize = ALIGN(iosize, blocksize);
3211 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3212 			disk_io_size = em->block_len;
3213 			offset = em->block_start;
3214 		} else {
3215 			offset = em->block_start + extent_offset;
3216 			disk_io_size = iosize;
3217 		}
3218 		block_start = em->block_start;
3219 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3220 			block_start = EXTENT_MAP_HOLE;
3221 
3222 		/*
3223 		 * If we have a file range that points to a compressed extent
3224 		 * and it's followed by a consecutive file range that points to
3225 		 * to the same compressed extent (possibly with a different
3226 		 * offset and/or length, so it either points to the whole extent
3227 		 * or only part of it), we must make sure we do not submit a
3228 		 * single bio to populate the pages for the 2 ranges because
3229 		 * this makes the compressed extent read zero out the pages
3230 		 * belonging to the 2nd range. Imagine the following scenario:
3231 		 *
3232 		 *  File layout
3233 		 *  [0 - 8K]                     [8K - 24K]
3234 		 *    |                               |
3235 		 *    |                               |
3236 		 * points to extent X,         points to extent X,
3237 		 * offset 4K, length of 8K     offset 0, length 16K
3238 		 *
3239 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3240 		 *
3241 		 * If the bio to read the compressed extent covers both ranges,
3242 		 * it will decompress extent X into the pages belonging to the
3243 		 * first range and then it will stop, zeroing out the remaining
3244 		 * pages that belong to the other range that points to extent X.
3245 		 * So here we make sure we submit 2 bios, one for the first
3246 		 * range and another one for the third range. Both will target
3247 		 * the same physical extent from disk, but we can't currently
3248 		 * make the compressed bio endio callback populate the pages
3249 		 * for both ranges because each compressed bio is tightly
3250 		 * coupled with a single extent map, and each range can have
3251 		 * an extent map with a different offset value relative to the
3252 		 * uncompressed data of our extent and different lengths. This
3253 		 * is a corner case so we prioritize correctness over
3254 		 * non-optimal behavior (submitting 2 bios for the same extent).
3255 		 */
3256 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3257 		    prev_em_start && *prev_em_start != (u64)-1 &&
3258 		    *prev_em_start != em->start)
3259 			force_bio_submit = true;
3260 
3261 		if (prev_em_start)
3262 			*prev_em_start = em->start;
3263 
3264 		free_extent_map(em);
3265 		em = NULL;
3266 
3267 		/* we've found a hole, just zero and go on */
3268 		if (block_start == EXTENT_MAP_HOLE) {
3269 			char *userpage;
3270 			struct extent_state *cached = NULL;
3271 
3272 			userpage = kmap_atomic(page);
3273 			memset(userpage + pg_offset, 0, iosize);
3274 			flush_dcache_page(page);
3275 			kunmap_atomic(userpage);
3276 
3277 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3278 					    &cached, GFP_NOFS);
3279 			unlock_extent_cached(tree, cur,
3280 					     cur + iosize - 1, &cached);
3281 			cur = cur + iosize;
3282 			pg_offset += iosize;
3283 			continue;
3284 		}
3285 		/* the get_extent function already copied into the page */
3286 		if (test_range_bit(tree, cur, cur_end,
3287 				   EXTENT_UPTODATE, 1, NULL)) {
3288 			check_page_uptodate(tree, page);
3289 			unlock_extent(tree, cur, cur + iosize - 1);
3290 			cur = cur + iosize;
3291 			pg_offset += iosize;
3292 			continue;
3293 		}
3294 		/* we have an inline extent but it didn't get marked up
3295 		 * to date.  Error out
3296 		 */
3297 		if (block_start == EXTENT_MAP_INLINE) {
3298 			SetPageError(page);
3299 			unlock_extent(tree, cur, cur + iosize - 1);
3300 			cur = cur + iosize;
3301 			pg_offset += iosize;
3302 			continue;
3303 		}
3304 
3305 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3306 					 page, offset, disk_io_size,
3307 					 pg_offset, bio,
3308 					 end_bio_extent_readpage, mirror_num,
3309 					 *bio_flags,
3310 					 this_bio_flag,
3311 					 force_bio_submit);
3312 		if (!ret) {
3313 			nr++;
3314 			*bio_flags = this_bio_flag;
3315 		} else {
3316 			SetPageError(page);
3317 			unlock_extent(tree, cur, cur + iosize - 1);
3318 			goto out;
3319 		}
3320 		cur = cur + iosize;
3321 		pg_offset += iosize;
3322 	}
3323 out:
3324 	if (!nr) {
3325 		if (!PageError(page))
3326 			SetPageUptodate(page);
3327 		unlock_page(page);
3328 	}
3329 	return ret;
3330 }
3331 
3332 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3333 					     u64 start, u64 end,
3334 					     struct extent_map **em_cached,
3335 					     struct bio **bio,
3336 					     unsigned long *bio_flags,
3337 					     u64 *prev_em_start)
3338 {
3339 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3340 	int index;
3341 
3342 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3343 
3344 	for (index = 0; index < nr_pages; index++) {
3345 		__do_readpage(pages[index], btrfs_get_extent, em_cached,
3346 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3347 		put_page(pages[index]);
3348 	}
3349 }
3350 
3351 static int __extent_read_full_page(struct page *page,
3352 				   get_extent_t *get_extent,
3353 				   struct bio **bio, int mirror_num,
3354 				   unsigned long *bio_flags,
3355 				   unsigned int read_flags)
3356 {
3357 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3358 	u64 start = page_offset(page);
3359 	u64 end = start + PAGE_SIZE - 1;
3360 	int ret;
3361 
3362 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363 
3364 	ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3365 			    bio_flags, read_flags, NULL);
3366 	return ret;
3367 }
3368 
3369 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3370 			  int mirror_num)
3371 {
3372 	struct bio *bio = NULL;
3373 	unsigned long bio_flags = 0;
3374 	int ret;
3375 
3376 	ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3377 				      &bio_flags, 0);
3378 	if (bio)
3379 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3380 	return ret;
3381 }
3382 
3383 static void update_nr_written(struct writeback_control *wbc,
3384 			      unsigned long nr_written)
3385 {
3386 	wbc->nr_to_write -= nr_written;
3387 }
3388 
3389 /*
3390  * helper for __extent_writepage, doing all of the delayed allocation setup.
3391  *
3392  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3393  * to write the page (copy into inline extent).  In this case the IO has
3394  * been started and the page is already unlocked.
3395  *
3396  * This returns 0 if all went well (page still locked)
3397  * This returns < 0 if there were errors (page still locked)
3398  */
3399 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3400 		struct page *page, struct writeback_control *wbc,
3401 		u64 delalloc_start, unsigned long *nr_written)
3402 {
3403 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3404 	bool found;
3405 	u64 delalloc_to_write = 0;
3406 	u64 delalloc_end = 0;
3407 	int ret;
3408 	int page_started = 0;
3409 
3410 
3411 	while (delalloc_end < page_end) {
3412 		found = find_lock_delalloc_range(inode, page,
3413 					       &delalloc_start,
3414 					       &delalloc_end);
3415 		if (!found) {
3416 			delalloc_start = delalloc_end + 1;
3417 			continue;
3418 		}
3419 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3420 				delalloc_end, &page_started, nr_written, wbc);
3421 		if (ret) {
3422 			SetPageError(page);
3423 			/*
3424 			 * btrfs_run_delalloc_range should return < 0 for error
3425 			 * but just in case, we use > 0 here meaning the IO is
3426 			 * started, so we don't want to return > 0 unless
3427 			 * things are going well.
3428 			 */
3429 			ret = ret < 0 ? ret : -EIO;
3430 			goto done;
3431 		}
3432 		/*
3433 		 * delalloc_end is already one less than the total length, so
3434 		 * we don't subtract one from PAGE_SIZE
3435 		 */
3436 		delalloc_to_write += (delalloc_end - delalloc_start +
3437 				      PAGE_SIZE) >> PAGE_SHIFT;
3438 		delalloc_start = delalloc_end + 1;
3439 	}
3440 	if (wbc->nr_to_write < delalloc_to_write) {
3441 		int thresh = 8192;
3442 
3443 		if (delalloc_to_write < thresh * 2)
3444 			thresh = delalloc_to_write;
3445 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3446 					 thresh);
3447 	}
3448 
3449 	/* did the fill delalloc function already unlock and start
3450 	 * the IO?
3451 	 */
3452 	if (page_started) {
3453 		/*
3454 		 * we've unlocked the page, so we can't update
3455 		 * the mapping's writeback index, just update
3456 		 * nr_to_write.
3457 		 */
3458 		wbc->nr_to_write -= *nr_written;
3459 		return 1;
3460 	}
3461 
3462 	ret = 0;
3463 
3464 done:
3465 	return ret;
3466 }
3467 
3468 /*
3469  * helper for __extent_writepage.  This calls the writepage start hooks,
3470  * and does the loop to map the page into extents and bios.
3471  *
3472  * We return 1 if the IO is started and the page is unlocked,
3473  * 0 if all went well (page still locked)
3474  * < 0 if there were errors (page still locked)
3475  */
3476 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3477 				 struct page *page,
3478 				 struct writeback_control *wbc,
3479 				 struct extent_page_data *epd,
3480 				 loff_t i_size,
3481 				 unsigned long nr_written,
3482 				 int *nr_ret)
3483 {
3484 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3485 	u64 start = page_offset(page);
3486 	u64 page_end = start + PAGE_SIZE - 1;
3487 	u64 end;
3488 	u64 cur = start;
3489 	u64 extent_offset;
3490 	u64 block_start;
3491 	u64 iosize;
3492 	struct extent_map *em;
3493 	size_t pg_offset = 0;
3494 	size_t blocksize;
3495 	int ret = 0;
3496 	int nr = 0;
3497 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3498 	bool compressed;
3499 
3500 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3501 	if (ret) {
3502 		/* Fixup worker will requeue */
3503 		redirty_page_for_writepage(wbc, page);
3504 		update_nr_written(wbc, nr_written);
3505 		unlock_page(page);
3506 		return 1;
3507 	}
3508 
3509 	/*
3510 	 * we don't want to touch the inode after unlocking the page,
3511 	 * so we update the mapping writeback index now
3512 	 */
3513 	update_nr_written(wbc, nr_written + 1);
3514 
3515 	end = page_end;
3516 	blocksize = inode->i_sb->s_blocksize;
3517 
3518 	while (cur <= end) {
3519 		u64 em_end;
3520 		u64 offset;
3521 
3522 		if (cur >= i_size) {
3523 			btrfs_writepage_endio_finish_ordered(page, cur,
3524 							     page_end, 1);
3525 			break;
3526 		}
3527 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3528 				      end - cur + 1);
3529 		if (IS_ERR_OR_NULL(em)) {
3530 			SetPageError(page);
3531 			ret = PTR_ERR_OR_ZERO(em);
3532 			break;
3533 		}
3534 
3535 		extent_offset = cur - em->start;
3536 		em_end = extent_map_end(em);
3537 		BUG_ON(em_end <= cur);
3538 		BUG_ON(end < cur);
3539 		iosize = min(em_end - cur, end - cur + 1);
3540 		iosize = ALIGN(iosize, blocksize);
3541 		offset = em->block_start + extent_offset;
3542 		block_start = em->block_start;
3543 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3544 		free_extent_map(em);
3545 		em = NULL;
3546 
3547 		/*
3548 		 * compressed and inline extents are written through other
3549 		 * paths in the FS
3550 		 */
3551 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3552 		    block_start == EXTENT_MAP_INLINE) {
3553 			if (compressed)
3554 				nr++;
3555 			else
3556 				btrfs_writepage_endio_finish_ordered(page, cur,
3557 							cur + iosize - 1, 1);
3558 			cur += iosize;
3559 			pg_offset += iosize;
3560 			continue;
3561 		}
3562 
3563 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3564 		if (!PageWriteback(page)) {
3565 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3566 				   "page %lu not writeback, cur %llu end %llu",
3567 			       page->index, cur, end);
3568 		}
3569 
3570 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3571 					 page, offset, iosize, pg_offset,
3572 					 &epd->bio,
3573 					 end_bio_extent_writepage,
3574 					 0, 0, 0, false);
3575 		if (ret) {
3576 			SetPageError(page);
3577 			if (PageWriteback(page))
3578 				end_page_writeback(page);
3579 		}
3580 
3581 		cur = cur + iosize;
3582 		pg_offset += iosize;
3583 		nr++;
3584 	}
3585 	*nr_ret = nr;
3586 	return ret;
3587 }
3588 
3589 /*
3590  * the writepage semantics are similar to regular writepage.  extent
3591  * records are inserted to lock ranges in the tree, and as dirty areas
3592  * are found, they are marked writeback.  Then the lock bits are removed
3593  * and the end_io handler clears the writeback ranges
3594  *
3595  * Return 0 if everything goes well.
3596  * Return <0 for error.
3597  */
3598 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3599 			      struct extent_page_data *epd)
3600 {
3601 	struct inode *inode = page->mapping->host;
3602 	u64 start = page_offset(page);
3603 	u64 page_end = start + PAGE_SIZE - 1;
3604 	int ret;
3605 	int nr = 0;
3606 	size_t pg_offset;
3607 	loff_t i_size = i_size_read(inode);
3608 	unsigned long end_index = i_size >> PAGE_SHIFT;
3609 	unsigned long nr_written = 0;
3610 
3611 	trace___extent_writepage(page, inode, wbc);
3612 
3613 	WARN_ON(!PageLocked(page));
3614 
3615 	ClearPageError(page);
3616 
3617 	pg_offset = offset_in_page(i_size);
3618 	if (page->index > end_index ||
3619 	   (page->index == end_index && !pg_offset)) {
3620 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3621 		unlock_page(page);
3622 		return 0;
3623 	}
3624 
3625 	if (page->index == end_index) {
3626 		char *userpage;
3627 
3628 		userpage = kmap_atomic(page);
3629 		memset(userpage + pg_offset, 0,
3630 		       PAGE_SIZE - pg_offset);
3631 		kunmap_atomic(userpage);
3632 		flush_dcache_page(page);
3633 	}
3634 
3635 	set_page_extent_mapped(page);
3636 
3637 	if (!epd->extent_locked) {
3638 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3639 		if (ret == 1)
3640 			return 0;
3641 		if (ret)
3642 			goto done;
3643 	}
3644 
3645 	ret = __extent_writepage_io(inode, page, wbc, epd,
3646 				    i_size, nr_written, &nr);
3647 	if (ret == 1)
3648 		return 0;
3649 
3650 done:
3651 	if (nr == 0) {
3652 		/* make sure the mapping tag for page dirty gets cleared */
3653 		set_page_writeback(page);
3654 		end_page_writeback(page);
3655 	}
3656 	if (PageError(page)) {
3657 		ret = ret < 0 ? ret : -EIO;
3658 		end_extent_writepage(page, ret, start, page_end);
3659 	}
3660 	unlock_page(page);
3661 	ASSERT(ret <= 0);
3662 	return ret;
3663 }
3664 
3665 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3666 {
3667 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3668 		       TASK_UNINTERRUPTIBLE);
3669 }
3670 
3671 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3672 {
3673 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3674 	smp_mb__after_atomic();
3675 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3676 }
3677 
3678 /*
3679  * Lock eb pages and flush the bio if we can't the locks
3680  *
3681  * Return  0 if nothing went wrong
3682  * Return >0 is same as 0, except bio is not submitted
3683  * Return <0 if something went wrong, no page is locked
3684  */
3685 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3686 			  struct extent_page_data *epd)
3687 {
3688 	struct btrfs_fs_info *fs_info = eb->fs_info;
3689 	int i, num_pages, failed_page_nr;
3690 	int flush = 0;
3691 	int ret = 0;
3692 
3693 	if (!btrfs_try_tree_write_lock(eb)) {
3694 		ret = flush_write_bio(epd);
3695 		if (ret < 0)
3696 			return ret;
3697 		flush = 1;
3698 		btrfs_tree_lock(eb);
3699 	}
3700 
3701 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3702 		btrfs_tree_unlock(eb);
3703 		if (!epd->sync_io)
3704 			return 0;
3705 		if (!flush) {
3706 			ret = flush_write_bio(epd);
3707 			if (ret < 0)
3708 				return ret;
3709 			flush = 1;
3710 		}
3711 		while (1) {
3712 			wait_on_extent_buffer_writeback(eb);
3713 			btrfs_tree_lock(eb);
3714 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3715 				break;
3716 			btrfs_tree_unlock(eb);
3717 		}
3718 	}
3719 
3720 	/*
3721 	 * We need to do this to prevent races in people who check if the eb is
3722 	 * under IO since we can end up having no IO bits set for a short period
3723 	 * of time.
3724 	 */
3725 	spin_lock(&eb->refs_lock);
3726 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3727 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3728 		spin_unlock(&eb->refs_lock);
3729 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3730 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3731 					 -eb->len,
3732 					 fs_info->dirty_metadata_batch);
3733 		ret = 1;
3734 	} else {
3735 		spin_unlock(&eb->refs_lock);
3736 	}
3737 
3738 	btrfs_tree_unlock(eb);
3739 
3740 	if (!ret)
3741 		return ret;
3742 
3743 	num_pages = num_extent_pages(eb);
3744 	for (i = 0; i < num_pages; i++) {
3745 		struct page *p = eb->pages[i];
3746 
3747 		if (!trylock_page(p)) {
3748 			if (!flush) {
3749 				int err;
3750 
3751 				err = flush_write_bio(epd);
3752 				if (err < 0) {
3753 					ret = err;
3754 					failed_page_nr = i;
3755 					goto err_unlock;
3756 				}
3757 				flush = 1;
3758 			}
3759 			lock_page(p);
3760 		}
3761 	}
3762 
3763 	return ret;
3764 err_unlock:
3765 	/* Unlock already locked pages */
3766 	for (i = 0; i < failed_page_nr; i++)
3767 		unlock_page(eb->pages[i]);
3768 	/*
3769 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3770 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3771 	 * be made and undo everything done before.
3772 	 */
3773 	btrfs_tree_lock(eb);
3774 	spin_lock(&eb->refs_lock);
3775 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3776 	end_extent_buffer_writeback(eb);
3777 	spin_unlock(&eb->refs_lock);
3778 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3779 				 fs_info->dirty_metadata_batch);
3780 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3781 	btrfs_tree_unlock(eb);
3782 	return ret;
3783 }
3784 
3785 static void set_btree_ioerr(struct page *page)
3786 {
3787 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3788 	struct btrfs_fs_info *fs_info;
3789 
3790 	SetPageError(page);
3791 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3792 		return;
3793 
3794 	/*
3795 	 * If we error out, we should add back the dirty_metadata_bytes
3796 	 * to make it consistent.
3797 	 */
3798 	fs_info = eb->fs_info;
3799 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3800 				 eb->len, fs_info->dirty_metadata_batch);
3801 
3802 	/*
3803 	 * If writeback for a btree extent that doesn't belong to a log tree
3804 	 * failed, increment the counter transaction->eb_write_errors.
3805 	 * We do this because while the transaction is running and before it's
3806 	 * committing (when we call filemap_fdata[write|wait]_range against
3807 	 * the btree inode), we might have
3808 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3809 	 * returns an error or an error happens during writeback, when we're
3810 	 * committing the transaction we wouldn't know about it, since the pages
3811 	 * can be no longer dirty nor marked anymore for writeback (if a
3812 	 * subsequent modification to the extent buffer didn't happen before the
3813 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3814 	 * able to find the pages tagged with SetPageError at transaction
3815 	 * commit time. So if this happens we must abort the transaction,
3816 	 * otherwise we commit a super block with btree roots that point to
3817 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3818 	 * or the content of some node/leaf from a past generation that got
3819 	 * cowed or deleted and is no longer valid.
3820 	 *
3821 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3822 	 * not be enough - we need to distinguish between log tree extents vs
3823 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3824 	 * will catch and clear such errors in the mapping - and that call might
3825 	 * be from a log sync and not from a transaction commit. Also, checking
3826 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3827 	 * not done and would not be reliable - the eb might have been released
3828 	 * from memory and reading it back again means that flag would not be
3829 	 * set (since it's a runtime flag, not persisted on disk).
3830 	 *
3831 	 * Using the flags below in the btree inode also makes us achieve the
3832 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3833 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3834 	 * is called, the writeback for all dirty pages had already finished
3835 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3836 	 * filemap_fdatawait_range() would return success, as it could not know
3837 	 * that writeback errors happened (the pages were no longer tagged for
3838 	 * writeback).
3839 	 */
3840 	switch (eb->log_index) {
3841 	case -1:
3842 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3843 		break;
3844 	case 0:
3845 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3846 		break;
3847 	case 1:
3848 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3849 		break;
3850 	default:
3851 		BUG(); /* unexpected, logic error */
3852 	}
3853 }
3854 
3855 static void end_bio_extent_buffer_writepage(struct bio *bio)
3856 {
3857 	struct bio_vec *bvec;
3858 	struct extent_buffer *eb;
3859 	int done;
3860 	struct bvec_iter_all iter_all;
3861 
3862 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3863 	bio_for_each_segment_all(bvec, bio, iter_all) {
3864 		struct page *page = bvec->bv_page;
3865 
3866 		eb = (struct extent_buffer *)page->private;
3867 		BUG_ON(!eb);
3868 		done = atomic_dec_and_test(&eb->io_pages);
3869 
3870 		if (bio->bi_status ||
3871 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3872 			ClearPageUptodate(page);
3873 			set_btree_ioerr(page);
3874 		}
3875 
3876 		end_page_writeback(page);
3877 
3878 		if (!done)
3879 			continue;
3880 
3881 		end_extent_buffer_writeback(eb);
3882 	}
3883 
3884 	bio_put(bio);
3885 }
3886 
3887 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3888 			struct writeback_control *wbc,
3889 			struct extent_page_data *epd)
3890 {
3891 	u64 offset = eb->start;
3892 	u32 nritems;
3893 	int i, num_pages;
3894 	unsigned long start, end;
3895 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3896 	int ret = 0;
3897 
3898 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3899 	num_pages = num_extent_pages(eb);
3900 	atomic_set(&eb->io_pages, num_pages);
3901 
3902 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3903 	nritems = btrfs_header_nritems(eb);
3904 	if (btrfs_header_level(eb) > 0) {
3905 		end = btrfs_node_key_ptr_offset(nritems);
3906 
3907 		memzero_extent_buffer(eb, end, eb->len - end);
3908 	} else {
3909 		/*
3910 		 * leaf:
3911 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3912 		 */
3913 		start = btrfs_item_nr_offset(nritems);
3914 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3915 		memzero_extent_buffer(eb, start, end - start);
3916 	}
3917 
3918 	for (i = 0; i < num_pages; i++) {
3919 		struct page *p = eb->pages[i];
3920 
3921 		clear_page_dirty_for_io(p);
3922 		set_page_writeback(p);
3923 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3924 					 p, offset, PAGE_SIZE, 0,
3925 					 &epd->bio,
3926 					 end_bio_extent_buffer_writepage,
3927 					 0, 0, 0, false);
3928 		if (ret) {
3929 			set_btree_ioerr(p);
3930 			if (PageWriteback(p))
3931 				end_page_writeback(p);
3932 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3933 				end_extent_buffer_writeback(eb);
3934 			ret = -EIO;
3935 			break;
3936 		}
3937 		offset += PAGE_SIZE;
3938 		update_nr_written(wbc, 1);
3939 		unlock_page(p);
3940 	}
3941 
3942 	if (unlikely(ret)) {
3943 		for (; i < num_pages; i++) {
3944 			struct page *p = eb->pages[i];
3945 			clear_page_dirty_for_io(p);
3946 			unlock_page(p);
3947 		}
3948 	}
3949 
3950 	return ret;
3951 }
3952 
3953 int btree_write_cache_pages(struct address_space *mapping,
3954 				   struct writeback_control *wbc)
3955 {
3956 	struct extent_buffer *eb, *prev_eb = NULL;
3957 	struct extent_page_data epd = {
3958 		.bio = NULL,
3959 		.extent_locked = 0,
3960 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3961 	};
3962 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3963 	int ret = 0;
3964 	int done = 0;
3965 	int nr_to_write_done = 0;
3966 	struct pagevec pvec;
3967 	int nr_pages;
3968 	pgoff_t index;
3969 	pgoff_t end;		/* Inclusive */
3970 	int scanned = 0;
3971 	xa_mark_t tag;
3972 
3973 	pagevec_init(&pvec);
3974 	if (wbc->range_cyclic) {
3975 		index = mapping->writeback_index; /* Start from prev offset */
3976 		end = -1;
3977 		/*
3978 		 * Start from the beginning does not need to cycle over the
3979 		 * range, mark it as scanned.
3980 		 */
3981 		scanned = (index == 0);
3982 	} else {
3983 		index = wbc->range_start >> PAGE_SHIFT;
3984 		end = wbc->range_end >> PAGE_SHIFT;
3985 		scanned = 1;
3986 	}
3987 	if (wbc->sync_mode == WB_SYNC_ALL)
3988 		tag = PAGECACHE_TAG_TOWRITE;
3989 	else
3990 		tag = PAGECACHE_TAG_DIRTY;
3991 retry:
3992 	if (wbc->sync_mode == WB_SYNC_ALL)
3993 		tag_pages_for_writeback(mapping, index, end);
3994 	while (!done && !nr_to_write_done && (index <= end) &&
3995 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3996 			tag))) {
3997 		unsigned i;
3998 
3999 		for (i = 0; i < nr_pages; i++) {
4000 			struct page *page = pvec.pages[i];
4001 
4002 			if (!PagePrivate(page))
4003 				continue;
4004 
4005 			spin_lock(&mapping->private_lock);
4006 			if (!PagePrivate(page)) {
4007 				spin_unlock(&mapping->private_lock);
4008 				continue;
4009 			}
4010 
4011 			eb = (struct extent_buffer *)page->private;
4012 
4013 			/*
4014 			 * Shouldn't happen and normally this would be a BUG_ON
4015 			 * but no sense in crashing the users box for something
4016 			 * we can survive anyway.
4017 			 */
4018 			if (WARN_ON(!eb)) {
4019 				spin_unlock(&mapping->private_lock);
4020 				continue;
4021 			}
4022 
4023 			if (eb == prev_eb) {
4024 				spin_unlock(&mapping->private_lock);
4025 				continue;
4026 			}
4027 
4028 			ret = atomic_inc_not_zero(&eb->refs);
4029 			spin_unlock(&mapping->private_lock);
4030 			if (!ret)
4031 				continue;
4032 
4033 			prev_eb = eb;
4034 			ret = lock_extent_buffer_for_io(eb, &epd);
4035 			if (!ret) {
4036 				free_extent_buffer(eb);
4037 				continue;
4038 			} else if (ret < 0) {
4039 				done = 1;
4040 				free_extent_buffer(eb);
4041 				break;
4042 			}
4043 
4044 			ret = write_one_eb(eb, wbc, &epd);
4045 			if (ret) {
4046 				done = 1;
4047 				free_extent_buffer(eb);
4048 				break;
4049 			}
4050 			free_extent_buffer(eb);
4051 
4052 			/*
4053 			 * the filesystem may choose to bump up nr_to_write.
4054 			 * We have to make sure to honor the new nr_to_write
4055 			 * at any time
4056 			 */
4057 			nr_to_write_done = wbc->nr_to_write <= 0;
4058 		}
4059 		pagevec_release(&pvec);
4060 		cond_resched();
4061 	}
4062 	if (!scanned && !done) {
4063 		/*
4064 		 * We hit the last page and there is more work to be done: wrap
4065 		 * back to the start of the file
4066 		 */
4067 		scanned = 1;
4068 		index = 0;
4069 		goto retry;
4070 	}
4071 	ASSERT(ret <= 0);
4072 	if (ret < 0) {
4073 		end_write_bio(&epd, ret);
4074 		return ret;
4075 	}
4076 	/*
4077 	 * If something went wrong, don't allow any metadata write bio to be
4078 	 * submitted.
4079 	 *
4080 	 * This would prevent use-after-free if we had dirty pages not
4081 	 * cleaned up, which can still happen by fuzzed images.
4082 	 *
4083 	 * - Bad extent tree
4084 	 *   Allowing existing tree block to be allocated for other trees.
4085 	 *
4086 	 * - Log tree operations
4087 	 *   Exiting tree blocks get allocated to log tree, bumps its
4088 	 *   generation, then get cleaned in tree re-balance.
4089 	 *   Such tree block will not be written back, since it's clean,
4090 	 *   thus no WRITTEN flag set.
4091 	 *   And after log writes back, this tree block is not traced by
4092 	 *   any dirty extent_io_tree.
4093 	 *
4094 	 * - Offending tree block gets re-dirtied from its original owner
4095 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4096 	 *   reused without COWing. This tree block will not be traced
4097 	 *   by btrfs_transaction::dirty_pages.
4098 	 *
4099 	 *   Now such dirty tree block will not be cleaned by any dirty
4100 	 *   extent io tree. Thus we don't want to submit such wild eb
4101 	 *   if the fs already has error.
4102 	 */
4103 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4104 		ret = flush_write_bio(&epd);
4105 	} else {
4106 		ret = -EUCLEAN;
4107 		end_write_bio(&epd, ret);
4108 	}
4109 	return ret;
4110 }
4111 
4112 /**
4113  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4114  * @mapping: address space structure to write
4115  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4116  * @data: data passed to __extent_writepage function
4117  *
4118  * If a page is already under I/O, write_cache_pages() skips it, even
4119  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4120  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4121  * and msync() need to guarantee that all the data which was dirty at the time
4122  * the call was made get new I/O started against them.  If wbc->sync_mode is
4123  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4124  * existing IO to complete.
4125  */
4126 static int extent_write_cache_pages(struct address_space *mapping,
4127 			     struct writeback_control *wbc,
4128 			     struct extent_page_data *epd)
4129 {
4130 	struct inode *inode = mapping->host;
4131 	int ret = 0;
4132 	int done = 0;
4133 	int nr_to_write_done = 0;
4134 	struct pagevec pvec;
4135 	int nr_pages;
4136 	pgoff_t index;
4137 	pgoff_t end;		/* Inclusive */
4138 	pgoff_t done_index;
4139 	int range_whole = 0;
4140 	int scanned = 0;
4141 	xa_mark_t tag;
4142 
4143 	/*
4144 	 * We have to hold onto the inode so that ordered extents can do their
4145 	 * work when the IO finishes.  The alternative to this is failing to add
4146 	 * an ordered extent if the igrab() fails there and that is a huge pain
4147 	 * to deal with, so instead just hold onto the inode throughout the
4148 	 * writepages operation.  If it fails here we are freeing up the inode
4149 	 * anyway and we'd rather not waste our time writing out stuff that is
4150 	 * going to be truncated anyway.
4151 	 */
4152 	if (!igrab(inode))
4153 		return 0;
4154 
4155 	pagevec_init(&pvec);
4156 	if (wbc->range_cyclic) {
4157 		index = mapping->writeback_index; /* Start from prev offset */
4158 		end = -1;
4159 		/*
4160 		 * Start from the beginning does not need to cycle over the
4161 		 * range, mark it as scanned.
4162 		 */
4163 		scanned = (index == 0);
4164 	} else {
4165 		index = wbc->range_start >> PAGE_SHIFT;
4166 		end = wbc->range_end >> PAGE_SHIFT;
4167 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4168 			range_whole = 1;
4169 		scanned = 1;
4170 	}
4171 
4172 	/*
4173 	 * We do the tagged writepage as long as the snapshot flush bit is set
4174 	 * and we are the first one who do the filemap_flush() on this inode.
4175 	 *
4176 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4177 	 * not race in and drop the bit.
4178 	 */
4179 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4180 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4181 			       &BTRFS_I(inode)->runtime_flags))
4182 		wbc->tagged_writepages = 1;
4183 
4184 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4185 		tag = PAGECACHE_TAG_TOWRITE;
4186 	else
4187 		tag = PAGECACHE_TAG_DIRTY;
4188 retry:
4189 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4190 		tag_pages_for_writeback(mapping, index, end);
4191 	done_index = index;
4192 	while (!done && !nr_to_write_done && (index <= end) &&
4193 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4194 						&index, end, tag))) {
4195 		unsigned i;
4196 
4197 		for (i = 0; i < nr_pages; i++) {
4198 			struct page *page = pvec.pages[i];
4199 
4200 			done_index = page->index + 1;
4201 			/*
4202 			 * At this point we hold neither the i_pages lock nor
4203 			 * the page lock: the page may be truncated or
4204 			 * invalidated (changing page->mapping to NULL),
4205 			 * or even swizzled back from swapper_space to
4206 			 * tmpfs file mapping
4207 			 */
4208 			if (!trylock_page(page)) {
4209 				ret = flush_write_bio(epd);
4210 				BUG_ON(ret < 0);
4211 				lock_page(page);
4212 			}
4213 
4214 			if (unlikely(page->mapping != mapping)) {
4215 				unlock_page(page);
4216 				continue;
4217 			}
4218 
4219 			if (wbc->sync_mode != WB_SYNC_NONE) {
4220 				if (PageWriteback(page)) {
4221 					ret = flush_write_bio(epd);
4222 					BUG_ON(ret < 0);
4223 				}
4224 				wait_on_page_writeback(page);
4225 			}
4226 
4227 			if (PageWriteback(page) ||
4228 			    !clear_page_dirty_for_io(page)) {
4229 				unlock_page(page);
4230 				continue;
4231 			}
4232 
4233 			ret = __extent_writepage(page, wbc, epd);
4234 			if (ret < 0) {
4235 				done = 1;
4236 				break;
4237 			}
4238 
4239 			/*
4240 			 * the filesystem may choose to bump up nr_to_write.
4241 			 * We have to make sure to honor the new nr_to_write
4242 			 * at any time
4243 			 */
4244 			nr_to_write_done = wbc->nr_to_write <= 0;
4245 		}
4246 		pagevec_release(&pvec);
4247 		cond_resched();
4248 	}
4249 	if (!scanned && !done) {
4250 		/*
4251 		 * We hit the last page and there is more work to be done: wrap
4252 		 * back to the start of the file
4253 		 */
4254 		scanned = 1;
4255 		index = 0;
4256 
4257 		/*
4258 		 * If we're looping we could run into a page that is locked by a
4259 		 * writer and that writer could be waiting on writeback for a
4260 		 * page in our current bio, and thus deadlock, so flush the
4261 		 * write bio here.
4262 		 */
4263 		ret = flush_write_bio(epd);
4264 		if (!ret)
4265 			goto retry;
4266 	}
4267 
4268 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4269 		mapping->writeback_index = done_index;
4270 
4271 	btrfs_add_delayed_iput(inode);
4272 	return ret;
4273 }
4274 
4275 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4276 {
4277 	int ret;
4278 	struct extent_page_data epd = {
4279 		.bio = NULL,
4280 		.extent_locked = 0,
4281 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4282 	};
4283 
4284 	ret = __extent_writepage(page, wbc, &epd);
4285 	ASSERT(ret <= 0);
4286 	if (ret < 0) {
4287 		end_write_bio(&epd, ret);
4288 		return ret;
4289 	}
4290 
4291 	ret = flush_write_bio(&epd);
4292 	ASSERT(ret <= 0);
4293 	return ret;
4294 }
4295 
4296 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4297 			      int mode)
4298 {
4299 	int ret = 0;
4300 	struct address_space *mapping = inode->i_mapping;
4301 	struct page *page;
4302 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4303 		PAGE_SHIFT;
4304 
4305 	struct extent_page_data epd = {
4306 		.bio = NULL,
4307 		.extent_locked = 1,
4308 		.sync_io = mode == WB_SYNC_ALL,
4309 	};
4310 	struct writeback_control wbc_writepages = {
4311 		.sync_mode	= mode,
4312 		.nr_to_write	= nr_pages * 2,
4313 		.range_start	= start,
4314 		.range_end	= end + 1,
4315 		/* We're called from an async helper function */
4316 		.punt_to_cgroup	= 1,
4317 		.no_cgroup_owner = 1,
4318 	};
4319 
4320 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4321 	while (start <= end) {
4322 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4323 		if (clear_page_dirty_for_io(page))
4324 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4325 		else {
4326 			btrfs_writepage_endio_finish_ordered(page, start,
4327 						    start + PAGE_SIZE - 1, 1);
4328 			unlock_page(page);
4329 		}
4330 		put_page(page);
4331 		start += PAGE_SIZE;
4332 	}
4333 
4334 	ASSERT(ret <= 0);
4335 	if (ret == 0)
4336 		ret = flush_write_bio(&epd);
4337 	else
4338 		end_write_bio(&epd, ret);
4339 
4340 	wbc_detach_inode(&wbc_writepages);
4341 	return ret;
4342 }
4343 
4344 int extent_writepages(struct address_space *mapping,
4345 		      struct writeback_control *wbc)
4346 {
4347 	int ret = 0;
4348 	struct extent_page_data epd = {
4349 		.bio = NULL,
4350 		.extent_locked = 0,
4351 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4352 	};
4353 
4354 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4355 	ASSERT(ret <= 0);
4356 	if (ret < 0) {
4357 		end_write_bio(&epd, ret);
4358 		return ret;
4359 	}
4360 	ret = flush_write_bio(&epd);
4361 	return ret;
4362 }
4363 
4364 void extent_readahead(struct readahead_control *rac)
4365 {
4366 	struct bio *bio = NULL;
4367 	unsigned long bio_flags = 0;
4368 	struct page *pagepool[16];
4369 	struct extent_map *em_cached = NULL;
4370 	u64 prev_em_start = (u64)-1;
4371 	int nr;
4372 
4373 	while ((nr = readahead_page_batch(rac, pagepool))) {
4374 		u64 contig_start = page_offset(pagepool[0]);
4375 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4376 
4377 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4378 
4379 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4380 				&em_cached, &bio, &bio_flags, &prev_em_start);
4381 	}
4382 
4383 	if (em_cached)
4384 		free_extent_map(em_cached);
4385 
4386 	if (bio) {
4387 		if (submit_one_bio(bio, 0, bio_flags))
4388 			return;
4389 	}
4390 }
4391 
4392 /*
4393  * basic invalidatepage code, this waits on any locked or writeback
4394  * ranges corresponding to the page, and then deletes any extent state
4395  * records from the tree
4396  */
4397 int extent_invalidatepage(struct extent_io_tree *tree,
4398 			  struct page *page, unsigned long offset)
4399 {
4400 	struct extent_state *cached_state = NULL;
4401 	u64 start = page_offset(page);
4402 	u64 end = start + PAGE_SIZE - 1;
4403 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4404 
4405 	start += ALIGN(offset, blocksize);
4406 	if (start > end)
4407 		return 0;
4408 
4409 	lock_extent_bits(tree, start, end, &cached_state);
4410 	wait_on_page_writeback(page);
4411 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4412 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4413 	return 0;
4414 }
4415 
4416 /*
4417  * a helper for releasepage, this tests for areas of the page that
4418  * are locked or under IO and drops the related state bits if it is safe
4419  * to drop the page.
4420  */
4421 static int try_release_extent_state(struct extent_io_tree *tree,
4422 				    struct page *page, gfp_t mask)
4423 {
4424 	u64 start = page_offset(page);
4425 	u64 end = start + PAGE_SIZE - 1;
4426 	int ret = 1;
4427 
4428 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4429 		ret = 0;
4430 	} else {
4431 		/*
4432 		 * at this point we can safely clear everything except the
4433 		 * locked bit and the nodatasum bit
4434 		 */
4435 		ret = __clear_extent_bit(tree, start, end,
4436 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4437 				 0, 0, NULL, mask, NULL);
4438 
4439 		/* if clear_extent_bit failed for enomem reasons,
4440 		 * we can't allow the release to continue.
4441 		 */
4442 		if (ret < 0)
4443 			ret = 0;
4444 		else
4445 			ret = 1;
4446 	}
4447 	return ret;
4448 }
4449 
4450 /*
4451  * a helper for releasepage.  As long as there are no locked extents
4452  * in the range corresponding to the page, both state records and extent
4453  * map records are removed
4454  */
4455 int try_release_extent_mapping(struct page *page, gfp_t mask)
4456 {
4457 	struct extent_map *em;
4458 	u64 start = page_offset(page);
4459 	u64 end = start + PAGE_SIZE - 1;
4460 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4461 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4462 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4463 
4464 	if (gfpflags_allow_blocking(mask) &&
4465 	    page->mapping->host->i_size > SZ_16M) {
4466 		u64 len;
4467 		while (start <= end) {
4468 			len = end - start + 1;
4469 			write_lock(&map->lock);
4470 			em = lookup_extent_mapping(map, start, len);
4471 			if (!em) {
4472 				write_unlock(&map->lock);
4473 				break;
4474 			}
4475 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4476 			    em->start != start) {
4477 				write_unlock(&map->lock);
4478 				free_extent_map(em);
4479 				break;
4480 			}
4481 			if (!test_range_bit(tree, em->start,
4482 					    extent_map_end(em) - 1,
4483 					    EXTENT_LOCKED, 0, NULL)) {
4484 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4485 					&btrfs_inode->runtime_flags);
4486 				remove_extent_mapping(map, em);
4487 				/* once for the rb tree */
4488 				free_extent_map(em);
4489 			}
4490 			start = extent_map_end(em);
4491 			write_unlock(&map->lock);
4492 
4493 			/* once for us */
4494 			free_extent_map(em);
4495 		}
4496 	}
4497 	return try_release_extent_state(tree, page, mask);
4498 }
4499 
4500 /*
4501  * helper function for fiemap, which doesn't want to see any holes.
4502  * This maps until we find something past 'last'
4503  */
4504 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4505 						u64 offset, u64 last)
4506 {
4507 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4508 	struct extent_map *em;
4509 	u64 len;
4510 
4511 	if (offset >= last)
4512 		return NULL;
4513 
4514 	while (1) {
4515 		len = last - offset;
4516 		if (len == 0)
4517 			break;
4518 		len = ALIGN(len, sectorsize);
4519 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4520 		if (IS_ERR_OR_NULL(em))
4521 			return em;
4522 
4523 		/* if this isn't a hole return it */
4524 		if (em->block_start != EXTENT_MAP_HOLE)
4525 			return em;
4526 
4527 		/* this is a hole, advance to the next extent */
4528 		offset = extent_map_end(em);
4529 		free_extent_map(em);
4530 		if (offset >= last)
4531 			break;
4532 	}
4533 	return NULL;
4534 }
4535 
4536 /*
4537  * To cache previous fiemap extent
4538  *
4539  * Will be used for merging fiemap extent
4540  */
4541 struct fiemap_cache {
4542 	u64 offset;
4543 	u64 phys;
4544 	u64 len;
4545 	u32 flags;
4546 	bool cached;
4547 };
4548 
4549 /*
4550  * Helper to submit fiemap extent.
4551  *
4552  * Will try to merge current fiemap extent specified by @offset, @phys,
4553  * @len and @flags with cached one.
4554  * And only when we fails to merge, cached one will be submitted as
4555  * fiemap extent.
4556  *
4557  * Return value is the same as fiemap_fill_next_extent().
4558  */
4559 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4560 				struct fiemap_cache *cache,
4561 				u64 offset, u64 phys, u64 len, u32 flags)
4562 {
4563 	int ret = 0;
4564 
4565 	if (!cache->cached)
4566 		goto assign;
4567 
4568 	/*
4569 	 * Sanity check, extent_fiemap() should have ensured that new
4570 	 * fiemap extent won't overlap with cached one.
4571 	 * Not recoverable.
4572 	 *
4573 	 * NOTE: Physical address can overlap, due to compression
4574 	 */
4575 	if (cache->offset + cache->len > offset) {
4576 		WARN_ON(1);
4577 		return -EINVAL;
4578 	}
4579 
4580 	/*
4581 	 * Only merges fiemap extents if
4582 	 * 1) Their logical addresses are continuous
4583 	 *
4584 	 * 2) Their physical addresses are continuous
4585 	 *    So truly compressed (physical size smaller than logical size)
4586 	 *    extents won't get merged with each other
4587 	 *
4588 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4589 	 *    So regular extent won't get merged with prealloc extent
4590 	 */
4591 	if (cache->offset + cache->len  == offset &&
4592 	    cache->phys + cache->len == phys  &&
4593 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4594 			(flags & ~FIEMAP_EXTENT_LAST)) {
4595 		cache->len += len;
4596 		cache->flags |= flags;
4597 		goto try_submit_last;
4598 	}
4599 
4600 	/* Not mergeable, need to submit cached one */
4601 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4602 				      cache->len, cache->flags);
4603 	cache->cached = false;
4604 	if (ret)
4605 		return ret;
4606 assign:
4607 	cache->cached = true;
4608 	cache->offset = offset;
4609 	cache->phys = phys;
4610 	cache->len = len;
4611 	cache->flags = flags;
4612 try_submit_last:
4613 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4614 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4615 				cache->phys, cache->len, cache->flags);
4616 		cache->cached = false;
4617 	}
4618 	return ret;
4619 }
4620 
4621 /*
4622  * Emit last fiemap cache
4623  *
4624  * The last fiemap cache may still be cached in the following case:
4625  * 0		      4k		    8k
4626  * |<- Fiemap range ->|
4627  * |<------------  First extent ----------->|
4628  *
4629  * In this case, the first extent range will be cached but not emitted.
4630  * So we must emit it before ending extent_fiemap().
4631  */
4632 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4633 				  struct fiemap_cache *cache)
4634 {
4635 	int ret;
4636 
4637 	if (!cache->cached)
4638 		return 0;
4639 
4640 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4641 				      cache->len, cache->flags);
4642 	cache->cached = false;
4643 	if (ret > 0)
4644 		ret = 0;
4645 	return ret;
4646 }
4647 
4648 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4649 		__u64 start, __u64 len)
4650 {
4651 	int ret = 0;
4652 	u64 off = start;
4653 	u64 max = start + len;
4654 	u32 flags = 0;
4655 	u32 found_type;
4656 	u64 last;
4657 	u64 last_for_get_extent = 0;
4658 	u64 disko = 0;
4659 	u64 isize = i_size_read(inode);
4660 	struct btrfs_key found_key;
4661 	struct extent_map *em = NULL;
4662 	struct extent_state *cached_state = NULL;
4663 	struct btrfs_path *path;
4664 	struct btrfs_root *root = BTRFS_I(inode)->root;
4665 	struct fiemap_cache cache = { 0 };
4666 	struct ulist *roots;
4667 	struct ulist *tmp_ulist;
4668 	int end = 0;
4669 	u64 em_start = 0;
4670 	u64 em_len = 0;
4671 	u64 em_end = 0;
4672 
4673 	if (len == 0)
4674 		return -EINVAL;
4675 
4676 	path = btrfs_alloc_path();
4677 	if (!path)
4678 		return -ENOMEM;
4679 	path->leave_spinning = 1;
4680 
4681 	roots = ulist_alloc(GFP_KERNEL);
4682 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4683 	if (!roots || !tmp_ulist) {
4684 		ret = -ENOMEM;
4685 		goto out_free_ulist;
4686 	}
4687 
4688 	start = round_down(start, btrfs_inode_sectorsize(inode));
4689 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4690 
4691 	/*
4692 	 * lookup the last file extent.  We're not using i_size here
4693 	 * because there might be preallocation past i_size
4694 	 */
4695 	ret = btrfs_lookup_file_extent(NULL, root, path,
4696 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4697 	if (ret < 0) {
4698 		goto out_free_ulist;
4699 	} else {
4700 		WARN_ON(!ret);
4701 		if (ret == 1)
4702 			ret = 0;
4703 	}
4704 
4705 	path->slots[0]--;
4706 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4707 	found_type = found_key.type;
4708 
4709 	/* No extents, but there might be delalloc bits */
4710 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4711 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4712 		/* have to trust i_size as the end */
4713 		last = (u64)-1;
4714 		last_for_get_extent = isize;
4715 	} else {
4716 		/*
4717 		 * remember the start of the last extent.  There are a
4718 		 * bunch of different factors that go into the length of the
4719 		 * extent, so its much less complex to remember where it started
4720 		 */
4721 		last = found_key.offset;
4722 		last_for_get_extent = last + 1;
4723 	}
4724 	btrfs_release_path(path);
4725 
4726 	/*
4727 	 * we might have some extents allocated but more delalloc past those
4728 	 * extents.  so, we trust isize unless the start of the last extent is
4729 	 * beyond isize
4730 	 */
4731 	if (last < isize) {
4732 		last = (u64)-1;
4733 		last_for_get_extent = isize;
4734 	}
4735 
4736 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4737 			 &cached_state);
4738 
4739 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4740 	if (!em)
4741 		goto out;
4742 	if (IS_ERR(em)) {
4743 		ret = PTR_ERR(em);
4744 		goto out;
4745 	}
4746 
4747 	while (!end) {
4748 		u64 offset_in_extent = 0;
4749 
4750 		/* break if the extent we found is outside the range */
4751 		if (em->start >= max || extent_map_end(em) < off)
4752 			break;
4753 
4754 		/*
4755 		 * get_extent may return an extent that starts before our
4756 		 * requested range.  We have to make sure the ranges
4757 		 * we return to fiemap always move forward and don't
4758 		 * overlap, so adjust the offsets here
4759 		 */
4760 		em_start = max(em->start, off);
4761 
4762 		/*
4763 		 * record the offset from the start of the extent
4764 		 * for adjusting the disk offset below.  Only do this if the
4765 		 * extent isn't compressed since our in ram offset may be past
4766 		 * what we have actually allocated on disk.
4767 		 */
4768 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4769 			offset_in_extent = em_start - em->start;
4770 		em_end = extent_map_end(em);
4771 		em_len = em_end - em_start;
4772 		flags = 0;
4773 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4774 			disko = em->block_start + offset_in_extent;
4775 		else
4776 			disko = 0;
4777 
4778 		/*
4779 		 * bump off for our next call to get_extent
4780 		 */
4781 		off = extent_map_end(em);
4782 		if (off >= max)
4783 			end = 1;
4784 
4785 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4786 			end = 1;
4787 			flags |= FIEMAP_EXTENT_LAST;
4788 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4789 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4790 				  FIEMAP_EXTENT_NOT_ALIGNED);
4791 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4792 			flags |= (FIEMAP_EXTENT_DELALLOC |
4793 				  FIEMAP_EXTENT_UNKNOWN);
4794 		} else if (fieinfo->fi_extents_max) {
4795 			u64 bytenr = em->block_start -
4796 				(em->start - em->orig_start);
4797 
4798 			/*
4799 			 * As btrfs supports shared space, this information
4800 			 * can be exported to userspace tools via
4801 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4802 			 * then we're just getting a count and we can skip the
4803 			 * lookup stuff.
4804 			 */
4805 			ret = btrfs_check_shared(root,
4806 						 btrfs_ino(BTRFS_I(inode)),
4807 						 bytenr, roots, tmp_ulist);
4808 			if (ret < 0)
4809 				goto out_free;
4810 			if (ret)
4811 				flags |= FIEMAP_EXTENT_SHARED;
4812 			ret = 0;
4813 		}
4814 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4815 			flags |= FIEMAP_EXTENT_ENCODED;
4816 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4817 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4818 
4819 		free_extent_map(em);
4820 		em = NULL;
4821 		if ((em_start >= last) || em_len == (u64)-1 ||
4822 		   (last == (u64)-1 && isize <= em_end)) {
4823 			flags |= FIEMAP_EXTENT_LAST;
4824 			end = 1;
4825 		}
4826 
4827 		/* now scan forward to see if this is really the last extent. */
4828 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4829 		if (IS_ERR(em)) {
4830 			ret = PTR_ERR(em);
4831 			goto out;
4832 		}
4833 		if (!em) {
4834 			flags |= FIEMAP_EXTENT_LAST;
4835 			end = 1;
4836 		}
4837 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4838 					   em_len, flags);
4839 		if (ret) {
4840 			if (ret == 1)
4841 				ret = 0;
4842 			goto out_free;
4843 		}
4844 	}
4845 out_free:
4846 	if (!ret)
4847 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4848 	free_extent_map(em);
4849 out:
4850 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4851 			     &cached_state);
4852 
4853 out_free_ulist:
4854 	btrfs_free_path(path);
4855 	ulist_free(roots);
4856 	ulist_free(tmp_ulist);
4857 	return ret;
4858 }
4859 
4860 static void __free_extent_buffer(struct extent_buffer *eb)
4861 {
4862 	kmem_cache_free(extent_buffer_cache, eb);
4863 }
4864 
4865 int extent_buffer_under_io(struct extent_buffer *eb)
4866 {
4867 	return (atomic_read(&eb->io_pages) ||
4868 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4869 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4870 }
4871 
4872 /*
4873  * Release all pages attached to the extent buffer.
4874  */
4875 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4876 {
4877 	int i;
4878 	int num_pages;
4879 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4880 
4881 	BUG_ON(extent_buffer_under_io(eb));
4882 
4883 	num_pages = num_extent_pages(eb);
4884 	for (i = 0; i < num_pages; i++) {
4885 		struct page *page = eb->pages[i];
4886 
4887 		if (!page)
4888 			continue;
4889 		if (mapped)
4890 			spin_lock(&page->mapping->private_lock);
4891 		/*
4892 		 * We do this since we'll remove the pages after we've
4893 		 * removed the eb from the radix tree, so we could race
4894 		 * and have this page now attached to the new eb.  So
4895 		 * only clear page_private if it's still connected to
4896 		 * this eb.
4897 		 */
4898 		if (PagePrivate(page) &&
4899 		    page->private == (unsigned long)eb) {
4900 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4901 			BUG_ON(PageDirty(page));
4902 			BUG_ON(PageWriteback(page));
4903 			/*
4904 			 * We need to make sure we haven't be attached
4905 			 * to a new eb.
4906 			 */
4907 			detach_page_private(page);
4908 		}
4909 
4910 		if (mapped)
4911 			spin_unlock(&page->mapping->private_lock);
4912 
4913 		/* One for when we allocated the page */
4914 		put_page(page);
4915 	}
4916 }
4917 
4918 /*
4919  * Helper for releasing the extent buffer.
4920  */
4921 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4922 {
4923 	btrfs_release_extent_buffer_pages(eb);
4924 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4925 	__free_extent_buffer(eb);
4926 }
4927 
4928 static struct extent_buffer *
4929 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4930 		      unsigned long len)
4931 {
4932 	struct extent_buffer *eb = NULL;
4933 
4934 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4935 	eb->start = start;
4936 	eb->len = len;
4937 	eb->fs_info = fs_info;
4938 	eb->bflags = 0;
4939 	rwlock_init(&eb->lock);
4940 	atomic_set(&eb->blocking_readers, 0);
4941 	eb->blocking_writers = 0;
4942 	eb->lock_nested = false;
4943 	init_waitqueue_head(&eb->write_lock_wq);
4944 	init_waitqueue_head(&eb->read_lock_wq);
4945 
4946 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4947 			     &fs_info->allocated_ebs);
4948 
4949 	spin_lock_init(&eb->refs_lock);
4950 	atomic_set(&eb->refs, 1);
4951 	atomic_set(&eb->io_pages, 0);
4952 
4953 	/*
4954 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4955 	 */
4956 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4957 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4958 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4959 
4960 #ifdef CONFIG_BTRFS_DEBUG
4961 	eb->spinning_writers = 0;
4962 	atomic_set(&eb->spinning_readers, 0);
4963 	atomic_set(&eb->read_locks, 0);
4964 	eb->write_locks = 0;
4965 #endif
4966 
4967 	return eb;
4968 }
4969 
4970 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4971 {
4972 	int i;
4973 	struct page *p;
4974 	struct extent_buffer *new;
4975 	int num_pages = num_extent_pages(src);
4976 
4977 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4978 	if (new == NULL)
4979 		return NULL;
4980 
4981 	for (i = 0; i < num_pages; i++) {
4982 		p = alloc_page(GFP_NOFS);
4983 		if (!p) {
4984 			btrfs_release_extent_buffer(new);
4985 			return NULL;
4986 		}
4987 		attach_extent_buffer_page(new, p);
4988 		WARN_ON(PageDirty(p));
4989 		SetPageUptodate(p);
4990 		new->pages[i] = p;
4991 		copy_page(page_address(p), page_address(src->pages[i]));
4992 	}
4993 
4994 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4995 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4996 
4997 	return new;
4998 }
4999 
5000 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5001 						  u64 start, unsigned long len)
5002 {
5003 	struct extent_buffer *eb;
5004 	int num_pages;
5005 	int i;
5006 
5007 	eb = __alloc_extent_buffer(fs_info, start, len);
5008 	if (!eb)
5009 		return NULL;
5010 
5011 	num_pages = num_extent_pages(eb);
5012 	for (i = 0; i < num_pages; i++) {
5013 		eb->pages[i] = alloc_page(GFP_NOFS);
5014 		if (!eb->pages[i])
5015 			goto err;
5016 	}
5017 	set_extent_buffer_uptodate(eb);
5018 	btrfs_set_header_nritems(eb, 0);
5019 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5020 
5021 	return eb;
5022 err:
5023 	for (; i > 0; i--)
5024 		__free_page(eb->pages[i - 1]);
5025 	__free_extent_buffer(eb);
5026 	return NULL;
5027 }
5028 
5029 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5030 						u64 start)
5031 {
5032 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5033 }
5034 
5035 static void check_buffer_tree_ref(struct extent_buffer *eb)
5036 {
5037 	int refs;
5038 	/* the ref bit is tricky.  We have to make sure it is set
5039 	 * if we have the buffer dirty.   Otherwise the
5040 	 * code to free a buffer can end up dropping a dirty
5041 	 * page
5042 	 *
5043 	 * Once the ref bit is set, it won't go away while the
5044 	 * buffer is dirty or in writeback, and it also won't
5045 	 * go away while we have the reference count on the
5046 	 * eb bumped.
5047 	 *
5048 	 * We can't just set the ref bit without bumping the
5049 	 * ref on the eb because free_extent_buffer might
5050 	 * see the ref bit and try to clear it.  If this happens
5051 	 * free_extent_buffer might end up dropping our original
5052 	 * ref by mistake and freeing the page before we are able
5053 	 * to add one more ref.
5054 	 *
5055 	 * So bump the ref count first, then set the bit.  If someone
5056 	 * beat us to it, drop the ref we added.
5057 	 */
5058 	refs = atomic_read(&eb->refs);
5059 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5060 		return;
5061 
5062 	spin_lock(&eb->refs_lock);
5063 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5064 		atomic_inc(&eb->refs);
5065 	spin_unlock(&eb->refs_lock);
5066 }
5067 
5068 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5069 		struct page *accessed)
5070 {
5071 	int num_pages, i;
5072 
5073 	check_buffer_tree_ref(eb);
5074 
5075 	num_pages = num_extent_pages(eb);
5076 	for (i = 0; i < num_pages; i++) {
5077 		struct page *p = eb->pages[i];
5078 
5079 		if (p != accessed)
5080 			mark_page_accessed(p);
5081 	}
5082 }
5083 
5084 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5085 					 u64 start)
5086 {
5087 	struct extent_buffer *eb;
5088 
5089 	rcu_read_lock();
5090 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5091 			       start >> PAGE_SHIFT);
5092 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5093 		rcu_read_unlock();
5094 		/*
5095 		 * Lock our eb's refs_lock to avoid races with
5096 		 * free_extent_buffer. When we get our eb it might be flagged
5097 		 * with EXTENT_BUFFER_STALE and another task running
5098 		 * free_extent_buffer might have seen that flag set,
5099 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5100 		 * writeback flags not set) and it's still in the tree (flag
5101 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5102 		 * of decrementing the extent buffer's reference count twice.
5103 		 * So here we could race and increment the eb's reference count,
5104 		 * clear its stale flag, mark it as dirty and drop our reference
5105 		 * before the other task finishes executing free_extent_buffer,
5106 		 * which would later result in an attempt to free an extent
5107 		 * buffer that is dirty.
5108 		 */
5109 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5110 			spin_lock(&eb->refs_lock);
5111 			spin_unlock(&eb->refs_lock);
5112 		}
5113 		mark_extent_buffer_accessed(eb, NULL);
5114 		return eb;
5115 	}
5116 	rcu_read_unlock();
5117 
5118 	return NULL;
5119 }
5120 
5121 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5122 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5123 					u64 start)
5124 {
5125 	struct extent_buffer *eb, *exists = NULL;
5126 	int ret;
5127 
5128 	eb = find_extent_buffer(fs_info, start);
5129 	if (eb)
5130 		return eb;
5131 	eb = alloc_dummy_extent_buffer(fs_info, start);
5132 	if (!eb)
5133 		return ERR_PTR(-ENOMEM);
5134 	eb->fs_info = fs_info;
5135 again:
5136 	ret = radix_tree_preload(GFP_NOFS);
5137 	if (ret) {
5138 		exists = ERR_PTR(ret);
5139 		goto free_eb;
5140 	}
5141 	spin_lock(&fs_info->buffer_lock);
5142 	ret = radix_tree_insert(&fs_info->buffer_radix,
5143 				start >> PAGE_SHIFT, eb);
5144 	spin_unlock(&fs_info->buffer_lock);
5145 	radix_tree_preload_end();
5146 	if (ret == -EEXIST) {
5147 		exists = find_extent_buffer(fs_info, start);
5148 		if (exists)
5149 			goto free_eb;
5150 		else
5151 			goto again;
5152 	}
5153 	check_buffer_tree_ref(eb);
5154 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5155 
5156 	return eb;
5157 free_eb:
5158 	btrfs_release_extent_buffer(eb);
5159 	return exists;
5160 }
5161 #endif
5162 
5163 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5164 					  u64 start)
5165 {
5166 	unsigned long len = fs_info->nodesize;
5167 	int num_pages;
5168 	int i;
5169 	unsigned long index = start >> PAGE_SHIFT;
5170 	struct extent_buffer *eb;
5171 	struct extent_buffer *exists = NULL;
5172 	struct page *p;
5173 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5174 	int uptodate = 1;
5175 	int ret;
5176 
5177 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5178 		btrfs_err(fs_info, "bad tree block start %llu", start);
5179 		return ERR_PTR(-EINVAL);
5180 	}
5181 
5182 	eb = find_extent_buffer(fs_info, start);
5183 	if (eb)
5184 		return eb;
5185 
5186 	eb = __alloc_extent_buffer(fs_info, start, len);
5187 	if (!eb)
5188 		return ERR_PTR(-ENOMEM);
5189 
5190 	num_pages = num_extent_pages(eb);
5191 	for (i = 0; i < num_pages; i++, index++) {
5192 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5193 		if (!p) {
5194 			exists = ERR_PTR(-ENOMEM);
5195 			goto free_eb;
5196 		}
5197 
5198 		spin_lock(&mapping->private_lock);
5199 		if (PagePrivate(p)) {
5200 			/*
5201 			 * We could have already allocated an eb for this page
5202 			 * and attached one so lets see if we can get a ref on
5203 			 * the existing eb, and if we can we know it's good and
5204 			 * we can just return that one, else we know we can just
5205 			 * overwrite page->private.
5206 			 */
5207 			exists = (struct extent_buffer *)p->private;
5208 			if (atomic_inc_not_zero(&exists->refs)) {
5209 				spin_unlock(&mapping->private_lock);
5210 				unlock_page(p);
5211 				put_page(p);
5212 				mark_extent_buffer_accessed(exists, p);
5213 				goto free_eb;
5214 			}
5215 			exists = NULL;
5216 
5217 			/*
5218 			 * Do this so attach doesn't complain and we need to
5219 			 * drop the ref the old guy had.
5220 			 */
5221 			ClearPagePrivate(p);
5222 			WARN_ON(PageDirty(p));
5223 			put_page(p);
5224 		}
5225 		attach_extent_buffer_page(eb, p);
5226 		spin_unlock(&mapping->private_lock);
5227 		WARN_ON(PageDirty(p));
5228 		eb->pages[i] = p;
5229 		if (!PageUptodate(p))
5230 			uptodate = 0;
5231 
5232 		/*
5233 		 * We can't unlock the pages just yet since the extent buffer
5234 		 * hasn't been properly inserted in the radix tree, this
5235 		 * opens a race with btree_releasepage which can free a page
5236 		 * while we are still filling in all pages for the buffer and
5237 		 * we could crash.
5238 		 */
5239 	}
5240 	if (uptodate)
5241 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5242 again:
5243 	ret = radix_tree_preload(GFP_NOFS);
5244 	if (ret) {
5245 		exists = ERR_PTR(ret);
5246 		goto free_eb;
5247 	}
5248 
5249 	spin_lock(&fs_info->buffer_lock);
5250 	ret = radix_tree_insert(&fs_info->buffer_radix,
5251 				start >> PAGE_SHIFT, eb);
5252 	spin_unlock(&fs_info->buffer_lock);
5253 	radix_tree_preload_end();
5254 	if (ret == -EEXIST) {
5255 		exists = find_extent_buffer(fs_info, start);
5256 		if (exists)
5257 			goto free_eb;
5258 		else
5259 			goto again;
5260 	}
5261 	/* add one reference for the tree */
5262 	check_buffer_tree_ref(eb);
5263 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5264 
5265 	/*
5266 	 * Now it's safe to unlock the pages because any calls to
5267 	 * btree_releasepage will correctly detect that a page belongs to a
5268 	 * live buffer and won't free them prematurely.
5269 	 */
5270 	for (i = 0; i < num_pages; i++)
5271 		unlock_page(eb->pages[i]);
5272 	return eb;
5273 
5274 free_eb:
5275 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5276 	for (i = 0; i < num_pages; i++) {
5277 		if (eb->pages[i])
5278 			unlock_page(eb->pages[i]);
5279 	}
5280 
5281 	btrfs_release_extent_buffer(eb);
5282 	return exists;
5283 }
5284 
5285 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5286 {
5287 	struct extent_buffer *eb =
5288 			container_of(head, struct extent_buffer, rcu_head);
5289 
5290 	__free_extent_buffer(eb);
5291 }
5292 
5293 static int release_extent_buffer(struct extent_buffer *eb)
5294 	__releases(&eb->refs_lock)
5295 {
5296 	lockdep_assert_held(&eb->refs_lock);
5297 
5298 	WARN_ON(atomic_read(&eb->refs) == 0);
5299 	if (atomic_dec_and_test(&eb->refs)) {
5300 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5301 			struct btrfs_fs_info *fs_info = eb->fs_info;
5302 
5303 			spin_unlock(&eb->refs_lock);
5304 
5305 			spin_lock(&fs_info->buffer_lock);
5306 			radix_tree_delete(&fs_info->buffer_radix,
5307 					  eb->start >> PAGE_SHIFT);
5308 			spin_unlock(&fs_info->buffer_lock);
5309 		} else {
5310 			spin_unlock(&eb->refs_lock);
5311 		}
5312 
5313 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5314 		/* Should be safe to release our pages at this point */
5315 		btrfs_release_extent_buffer_pages(eb);
5316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5317 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5318 			__free_extent_buffer(eb);
5319 			return 1;
5320 		}
5321 #endif
5322 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5323 		return 1;
5324 	}
5325 	spin_unlock(&eb->refs_lock);
5326 
5327 	return 0;
5328 }
5329 
5330 void free_extent_buffer(struct extent_buffer *eb)
5331 {
5332 	int refs;
5333 	int old;
5334 	if (!eb)
5335 		return;
5336 
5337 	while (1) {
5338 		refs = atomic_read(&eb->refs);
5339 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5340 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5341 			refs == 1))
5342 			break;
5343 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5344 		if (old == refs)
5345 			return;
5346 	}
5347 
5348 	spin_lock(&eb->refs_lock);
5349 	if (atomic_read(&eb->refs) == 2 &&
5350 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5351 	    !extent_buffer_under_io(eb) &&
5352 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5353 		atomic_dec(&eb->refs);
5354 
5355 	/*
5356 	 * I know this is terrible, but it's temporary until we stop tracking
5357 	 * the uptodate bits and such for the extent buffers.
5358 	 */
5359 	release_extent_buffer(eb);
5360 }
5361 
5362 void free_extent_buffer_stale(struct extent_buffer *eb)
5363 {
5364 	if (!eb)
5365 		return;
5366 
5367 	spin_lock(&eb->refs_lock);
5368 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5369 
5370 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5371 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5372 		atomic_dec(&eb->refs);
5373 	release_extent_buffer(eb);
5374 }
5375 
5376 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5377 {
5378 	int i;
5379 	int num_pages;
5380 	struct page *page;
5381 
5382 	num_pages = num_extent_pages(eb);
5383 
5384 	for (i = 0; i < num_pages; i++) {
5385 		page = eb->pages[i];
5386 		if (!PageDirty(page))
5387 			continue;
5388 
5389 		lock_page(page);
5390 		WARN_ON(!PagePrivate(page));
5391 
5392 		clear_page_dirty_for_io(page);
5393 		xa_lock_irq(&page->mapping->i_pages);
5394 		if (!PageDirty(page))
5395 			__xa_clear_mark(&page->mapping->i_pages,
5396 					page_index(page), PAGECACHE_TAG_DIRTY);
5397 		xa_unlock_irq(&page->mapping->i_pages);
5398 		ClearPageError(page);
5399 		unlock_page(page);
5400 	}
5401 	WARN_ON(atomic_read(&eb->refs) == 0);
5402 }
5403 
5404 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5405 {
5406 	int i;
5407 	int num_pages;
5408 	bool was_dirty;
5409 
5410 	check_buffer_tree_ref(eb);
5411 
5412 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5413 
5414 	num_pages = num_extent_pages(eb);
5415 	WARN_ON(atomic_read(&eb->refs) == 0);
5416 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5417 
5418 	if (!was_dirty)
5419 		for (i = 0; i < num_pages; i++)
5420 			set_page_dirty(eb->pages[i]);
5421 
5422 #ifdef CONFIG_BTRFS_DEBUG
5423 	for (i = 0; i < num_pages; i++)
5424 		ASSERT(PageDirty(eb->pages[i]));
5425 #endif
5426 
5427 	return was_dirty;
5428 }
5429 
5430 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5431 {
5432 	int i;
5433 	struct page *page;
5434 	int num_pages;
5435 
5436 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5437 	num_pages = num_extent_pages(eb);
5438 	for (i = 0; i < num_pages; i++) {
5439 		page = eb->pages[i];
5440 		if (page)
5441 			ClearPageUptodate(page);
5442 	}
5443 }
5444 
5445 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5446 {
5447 	int i;
5448 	struct page *page;
5449 	int num_pages;
5450 
5451 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5452 	num_pages = num_extent_pages(eb);
5453 	for (i = 0; i < num_pages; i++) {
5454 		page = eb->pages[i];
5455 		SetPageUptodate(page);
5456 	}
5457 }
5458 
5459 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5460 {
5461 	int i;
5462 	struct page *page;
5463 	int err;
5464 	int ret = 0;
5465 	int locked_pages = 0;
5466 	int all_uptodate = 1;
5467 	int num_pages;
5468 	unsigned long num_reads = 0;
5469 	struct bio *bio = NULL;
5470 	unsigned long bio_flags = 0;
5471 
5472 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5473 		return 0;
5474 
5475 	num_pages = num_extent_pages(eb);
5476 	for (i = 0; i < num_pages; i++) {
5477 		page = eb->pages[i];
5478 		if (wait == WAIT_NONE) {
5479 			if (!trylock_page(page))
5480 				goto unlock_exit;
5481 		} else {
5482 			lock_page(page);
5483 		}
5484 		locked_pages++;
5485 	}
5486 	/*
5487 	 * We need to firstly lock all pages to make sure that
5488 	 * the uptodate bit of our pages won't be affected by
5489 	 * clear_extent_buffer_uptodate().
5490 	 */
5491 	for (i = 0; i < num_pages; i++) {
5492 		page = eb->pages[i];
5493 		if (!PageUptodate(page)) {
5494 			num_reads++;
5495 			all_uptodate = 0;
5496 		}
5497 	}
5498 
5499 	if (all_uptodate) {
5500 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5501 		goto unlock_exit;
5502 	}
5503 
5504 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5505 	eb->read_mirror = 0;
5506 	atomic_set(&eb->io_pages, num_reads);
5507 	for (i = 0; i < num_pages; i++) {
5508 		page = eb->pages[i];
5509 
5510 		if (!PageUptodate(page)) {
5511 			if (ret) {
5512 				atomic_dec(&eb->io_pages);
5513 				unlock_page(page);
5514 				continue;
5515 			}
5516 
5517 			ClearPageError(page);
5518 			err = __extent_read_full_page(page,
5519 						      btree_get_extent, &bio,
5520 						      mirror_num, &bio_flags,
5521 						      REQ_META);
5522 			if (err) {
5523 				ret = err;
5524 				/*
5525 				 * We use &bio in above __extent_read_full_page,
5526 				 * so we ensure that if it returns error, the
5527 				 * current page fails to add itself to bio and
5528 				 * it's been unlocked.
5529 				 *
5530 				 * We must dec io_pages by ourselves.
5531 				 */
5532 				atomic_dec(&eb->io_pages);
5533 			}
5534 		} else {
5535 			unlock_page(page);
5536 		}
5537 	}
5538 
5539 	if (bio) {
5540 		err = submit_one_bio(bio, mirror_num, bio_flags);
5541 		if (err)
5542 			return err;
5543 	}
5544 
5545 	if (ret || wait != WAIT_COMPLETE)
5546 		return ret;
5547 
5548 	for (i = 0; i < num_pages; i++) {
5549 		page = eb->pages[i];
5550 		wait_on_page_locked(page);
5551 		if (!PageUptodate(page))
5552 			ret = -EIO;
5553 	}
5554 
5555 	return ret;
5556 
5557 unlock_exit:
5558 	while (locked_pages > 0) {
5559 		locked_pages--;
5560 		page = eb->pages[locked_pages];
5561 		unlock_page(page);
5562 	}
5563 	return ret;
5564 }
5565 
5566 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5567 			unsigned long start, unsigned long len)
5568 {
5569 	size_t cur;
5570 	size_t offset;
5571 	struct page *page;
5572 	char *kaddr;
5573 	char *dst = (char *)dstv;
5574 	size_t start_offset = offset_in_page(eb->start);
5575 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5576 
5577 	if (start + len > eb->len) {
5578 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5579 		     eb->start, eb->len, start, len);
5580 		memset(dst, 0, len);
5581 		return;
5582 	}
5583 
5584 	offset = offset_in_page(start_offset + start);
5585 
5586 	while (len > 0) {
5587 		page = eb->pages[i];
5588 
5589 		cur = min(len, (PAGE_SIZE - offset));
5590 		kaddr = page_address(page);
5591 		memcpy(dst, kaddr + offset, cur);
5592 
5593 		dst += cur;
5594 		len -= cur;
5595 		offset = 0;
5596 		i++;
5597 	}
5598 }
5599 
5600 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5601 			       void __user *dstv,
5602 			       unsigned long start, unsigned long len)
5603 {
5604 	size_t cur;
5605 	size_t offset;
5606 	struct page *page;
5607 	char *kaddr;
5608 	char __user *dst = (char __user *)dstv;
5609 	size_t start_offset = offset_in_page(eb->start);
5610 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5611 	int ret = 0;
5612 
5613 	WARN_ON(start > eb->len);
5614 	WARN_ON(start + len > eb->start + eb->len);
5615 
5616 	offset = offset_in_page(start_offset + start);
5617 
5618 	while (len > 0) {
5619 		page = eb->pages[i];
5620 
5621 		cur = min(len, (PAGE_SIZE - offset));
5622 		kaddr = page_address(page);
5623 		if (copy_to_user(dst, kaddr + offset, cur)) {
5624 			ret = -EFAULT;
5625 			break;
5626 		}
5627 
5628 		dst += cur;
5629 		len -= cur;
5630 		offset = 0;
5631 		i++;
5632 	}
5633 
5634 	return ret;
5635 }
5636 
5637 /*
5638  * return 0 if the item is found within a page.
5639  * return 1 if the item spans two pages.
5640  * return -EINVAL otherwise.
5641  */
5642 int map_private_extent_buffer(const struct extent_buffer *eb,
5643 			      unsigned long start, unsigned long min_len,
5644 			      char **map, unsigned long *map_start,
5645 			      unsigned long *map_len)
5646 {
5647 	size_t offset;
5648 	char *kaddr;
5649 	struct page *p;
5650 	size_t start_offset = offset_in_page(eb->start);
5651 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5652 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5653 		PAGE_SHIFT;
5654 
5655 	if (start + min_len > eb->len) {
5656 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5657 		       eb->start, eb->len, start, min_len);
5658 		return -EINVAL;
5659 	}
5660 
5661 	if (i != end_i)
5662 		return 1;
5663 
5664 	if (i == 0) {
5665 		offset = start_offset;
5666 		*map_start = 0;
5667 	} else {
5668 		offset = 0;
5669 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5670 	}
5671 
5672 	p = eb->pages[i];
5673 	kaddr = page_address(p);
5674 	*map = kaddr + offset;
5675 	*map_len = PAGE_SIZE - offset;
5676 	return 0;
5677 }
5678 
5679 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5680 			 unsigned long start, unsigned long len)
5681 {
5682 	size_t cur;
5683 	size_t offset;
5684 	struct page *page;
5685 	char *kaddr;
5686 	char *ptr = (char *)ptrv;
5687 	size_t start_offset = offset_in_page(eb->start);
5688 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5689 	int ret = 0;
5690 
5691 	WARN_ON(start > eb->len);
5692 	WARN_ON(start + len > eb->start + eb->len);
5693 
5694 	offset = offset_in_page(start_offset + start);
5695 
5696 	while (len > 0) {
5697 		page = eb->pages[i];
5698 
5699 		cur = min(len, (PAGE_SIZE - offset));
5700 
5701 		kaddr = page_address(page);
5702 		ret = memcmp(ptr, kaddr + offset, cur);
5703 		if (ret)
5704 			break;
5705 
5706 		ptr += cur;
5707 		len -= cur;
5708 		offset = 0;
5709 		i++;
5710 	}
5711 	return ret;
5712 }
5713 
5714 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5715 		const void *srcv)
5716 {
5717 	char *kaddr;
5718 
5719 	WARN_ON(!PageUptodate(eb->pages[0]));
5720 	kaddr = page_address(eb->pages[0]);
5721 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5722 			BTRFS_FSID_SIZE);
5723 }
5724 
5725 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5726 {
5727 	char *kaddr;
5728 
5729 	WARN_ON(!PageUptodate(eb->pages[0]));
5730 	kaddr = page_address(eb->pages[0]);
5731 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5732 			BTRFS_FSID_SIZE);
5733 }
5734 
5735 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5736 			 unsigned long start, unsigned long len)
5737 {
5738 	size_t cur;
5739 	size_t offset;
5740 	struct page *page;
5741 	char *kaddr;
5742 	char *src = (char *)srcv;
5743 	size_t start_offset = offset_in_page(eb->start);
5744 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5745 
5746 	WARN_ON(start > eb->len);
5747 	WARN_ON(start + len > eb->start + eb->len);
5748 
5749 	offset = offset_in_page(start_offset + start);
5750 
5751 	while (len > 0) {
5752 		page = eb->pages[i];
5753 		WARN_ON(!PageUptodate(page));
5754 
5755 		cur = min(len, PAGE_SIZE - offset);
5756 		kaddr = page_address(page);
5757 		memcpy(kaddr + offset, src, cur);
5758 
5759 		src += cur;
5760 		len -= cur;
5761 		offset = 0;
5762 		i++;
5763 	}
5764 }
5765 
5766 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5767 		unsigned long len)
5768 {
5769 	size_t cur;
5770 	size_t offset;
5771 	struct page *page;
5772 	char *kaddr;
5773 	size_t start_offset = offset_in_page(eb->start);
5774 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5775 
5776 	WARN_ON(start > eb->len);
5777 	WARN_ON(start + len > eb->start + eb->len);
5778 
5779 	offset = offset_in_page(start_offset + start);
5780 
5781 	while (len > 0) {
5782 		page = eb->pages[i];
5783 		WARN_ON(!PageUptodate(page));
5784 
5785 		cur = min(len, PAGE_SIZE - offset);
5786 		kaddr = page_address(page);
5787 		memset(kaddr + offset, 0, cur);
5788 
5789 		len -= cur;
5790 		offset = 0;
5791 		i++;
5792 	}
5793 }
5794 
5795 void copy_extent_buffer_full(struct extent_buffer *dst,
5796 			     struct extent_buffer *src)
5797 {
5798 	int i;
5799 	int num_pages;
5800 
5801 	ASSERT(dst->len == src->len);
5802 
5803 	num_pages = num_extent_pages(dst);
5804 	for (i = 0; i < num_pages; i++)
5805 		copy_page(page_address(dst->pages[i]),
5806 				page_address(src->pages[i]));
5807 }
5808 
5809 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5810 			unsigned long dst_offset, unsigned long src_offset,
5811 			unsigned long len)
5812 {
5813 	u64 dst_len = dst->len;
5814 	size_t cur;
5815 	size_t offset;
5816 	struct page *page;
5817 	char *kaddr;
5818 	size_t start_offset = offset_in_page(dst->start);
5819 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5820 
5821 	WARN_ON(src->len != dst_len);
5822 
5823 	offset = offset_in_page(start_offset + dst_offset);
5824 
5825 	while (len > 0) {
5826 		page = dst->pages[i];
5827 		WARN_ON(!PageUptodate(page));
5828 
5829 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5830 
5831 		kaddr = page_address(page);
5832 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5833 
5834 		src_offset += cur;
5835 		len -= cur;
5836 		offset = 0;
5837 		i++;
5838 	}
5839 }
5840 
5841 /*
5842  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5843  * given bit number
5844  * @eb: the extent buffer
5845  * @start: offset of the bitmap item in the extent buffer
5846  * @nr: bit number
5847  * @page_index: return index of the page in the extent buffer that contains the
5848  * given bit number
5849  * @page_offset: return offset into the page given by page_index
5850  *
5851  * This helper hides the ugliness of finding the byte in an extent buffer which
5852  * contains a given bit.
5853  */
5854 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5855 				    unsigned long start, unsigned long nr,
5856 				    unsigned long *page_index,
5857 				    size_t *page_offset)
5858 {
5859 	size_t start_offset = offset_in_page(eb->start);
5860 	size_t byte_offset = BIT_BYTE(nr);
5861 	size_t offset;
5862 
5863 	/*
5864 	 * The byte we want is the offset of the extent buffer + the offset of
5865 	 * the bitmap item in the extent buffer + the offset of the byte in the
5866 	 * bitmap item.
5867 	 */
5868 	offset = start_offset + start + byte_offset;
5869 
5870 	*page_index = offset >> PAGE_SHIFT;
5871 	*page_offset = offset_in_page(offset);
5872 }
5873 
5874 /**
5875  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5876  * @eb: the extent buffer
5877  * @start: offset of the bitmap item in the extent buffer
5878  * @nr: bit number to test
5879  */
5880 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5881 			   unsigned long nr)
5882 {
5883 	u8 *kaddr;
5884 	struct page *page;
5885 	unsigned long i;
5886 	size_t offset;
5887 
5888 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5889 	page = eb->pages[i];
5890 	WARN_ON(!PageUptodate(page));
5891 	kaddr = page_address(page);
5892 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5893 }
5894 
5895 /**
5896  * extent_buffer_bitmap_set - set an area of a bitmap
5897  * @eb: the extent buffer
5898  * @start: offset of the bitmap item in the extent buffer
5899  * @pos: bit number of the first bit
5900  * @len: number of bits to set
5901  */
5902 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5903 			      unsigned long pos, unsigned long len)
5904 {
5905 	u8 *kaddr;
5906 	struct page *page;
5907 	unsigned long i;
5908 	size_t offset;
5909 	const unsigned int size = pos + len;
5910 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5911 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5912 
5913 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5914 	page = eb->pages[i];
5915 	WARN_ON(!PageUptodate(page));
5916 	kaddr = page_address(page);
5917 
5918 	while (len >= bits_to_set) {
5919 		kaddr[offset] |= mask_to_set;
5920 		len -= bits_to_set;
5921 		bits_to_set = BITS_PER_BYTE;
5922 		mask_to_set = ~0;
5923 		if (++offset >= PAGE_SIZE && len > 0) {
5924 			offset = 0;
5925 			page = eb->pages[++i];
5926 			WARN_ON(!PageUptodate(page));
5927 			kaddr = page_address(page);
5928 		}
5929 	}
5930 	if (len) {
5931 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5932 		kaddr[offset] |= mask_to_set;
5933 	}
5934 }
5935 
5936 
5937 /**
5938  * extent_buffer_bitmap_clear - clear an area of a bitmap
5939  * @eb: the extent buffer
5940  * @start: offset of the bitmap item in the extent buffer
5941  * @pos: bit number of the first bit
5942  * @len: number of bits to clear
5943  */
5944 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5945 				unsigned long pos, unsigned long len)
5946 {
5947 	u8 *kaddr;
5948 	struct page *page;
5949 	unsigned long i;
5950 	size_t offset;
5951 	const unsigned int size = pos + len;
5952 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5953 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5954 
5955 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5956 	page = eb->pages[i];
5957 	WARN_ON(!PageUptodate(page));
5958 	kaddr = page_address(page);
5959 
5960 	while (len >= bits_to_clear) {
5961 		kaddr[offset] &= ~mask_to_clear;
5962 		len -= bits_to_clear;
5963 		bits_to_clear = BITS_PER_BYTE;
5964 		mask_to_clear = ~0;
5965 		if (++offset >= PAGE_SIZE && len > 0) {
5966 			offset = 0;
5967 			page = eb->pages[++i];
5968 			WARN_ON(!PageUptodate(page));
5969 			kaddr = page_address(page);
5970 		}
5971 	}
5972 	if (len) {
5973 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5974 		kaddr[offset] &= ~mask_to_clear;
5975 	}
5976 }
5977 
5978 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5979 {
5980 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5981 	return distance < len;
5982 }
5983 
5984 static void copy_pages(struct page *dst_page, struct page *src_page,
5985 		       unsigned long dst_off, unsigned long src_off,
5986 		       unsigned long len)
5987 {
5988 	char *dst_kaddr = page_address(dst_page);
5989 	char *src_kaddr;
5990 	int must_memmove = 0;
5991 
5992 	if (dst_page != src_page) {
5993 		src_kaddr = page_address(src_page);
5994 	} else {
5995 		src_kaddr = dst_kaddr;
5996 		if (areas_overlap(src_off, dst_off, len))
5997 			must_memmove = 1;
5998 	}
5999 
6000 	if (must_memmove)
6001 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6002 	else
6003 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6004 }
6005 
6006 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6007 			   unsigned long src_offset, unsigned long len)
6008 {
6009 	struct btrfs_fs_info *fs_info = dst->fs_info;
6010 	size_t cur;
6011 	size_t dst_off_in_page;
6012 	size_t src_off_in_page;
6013 	size_t start_offset = offset_in_page(dst->start);
6014 	unsigned long dst_i;
6015 	unsigned long src_i;
6016 
6017 	if (src_offset + len > dst->len) {
6018 		btrfs_err(fs_info,
6019 			"memmove bogus src_offset %lu move len %lu dst len %lu",
6020 			 src_offset, len, dst->len);
6021 		BUG();
6022 	}
6023 	if (dst_offset + len > dst->len) {
6024 		btrfs_err(fs_info,
6025 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
6026 			 dst_offset, len, dst->len);
6027 		BUG();
6028 	}
6029 
6030 	while (len > 0) {
6031 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
6032 		src_off_in_page = offset_in_page(start_offset + src_offset);
6033 
6034 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6035 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
6036 
6037 		cur = min(len, (unsigned long)(PAGE_SIZE -
6038 					       src_off_in_page));
6039 		cur = min_t(unsigned long, cur,
6040 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6041 
6042 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6043 			   dst_off_in_page, src_off_in_page, cur);
6044 
6045 		src_offset += cur;
6046 		dst_offset += cur;
6047 		len -= cur;
6048 	}
6049 }
6050 
6051 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6052 			   unsigned long src_offset, unsigned long len)
6053 {
6054 	struct btrfs_fs_info *fs_info = dst->fs_info;
6055 	size_t cur;
6056 	size_t dst_off_in_page;
6057 	size_t src_off_in_page;
6058 	unsigned long dst_end = dst_offset + len - 1;
6059 	unsigned long src_end = src_offset + len - 1;
6060 	size_t start_offset = offset_in_page(dst->start);
6061 	unsigned long dst_i;
6062 	unsigned long src_i;
6063 
6064 	if (src_offset + len > dst->len) {
6065 		btrfs_err(fs_info,
6066 			  "memmove bogus src_offset %lu move len %lu len %lu",
6067 			  src_offset, len, dst->len);
6068 		BUG();
6069 	}
6070 	if (dst_offset + len > dst->len) {
6071 		btrfs_err(fs_info,
6072 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6073 			  dst_offset, len, dst->len);
6074 		BUG();
6075 	}
6076 	if (dst_offset < src_offset) {
6077 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6078 		return;
6079 	}
6080 	while (len > 0) {
6081 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6082 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6083 
6084 		dst_off_in_page = offset_in_page(start_offset + dst_end);
6085 		src_off_in_page = offset_in_page(start_offset + src_end);
6086 
6087 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6088 		cur = min(cur, dst_off_in_page + 1);
6089 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6090 			   dst_off_in_page - cur + 1,
6091 			   src_off_in_page - cur + 1, cur);
6092 
6093 		dst_end -= cur;
6094 		src_end -= cur;
6095 		len -= cur;
6096 	}
6097 }
6098 
6099 int try_release_extent_buffer(struct page *page)
6100 {
6101 	struct extent_buffer *eb;
6102 
6103 	/*
6104 	 * We need to make sure nobody is attaching this page to an eb right
6105 	 * now.
6106 	 */
6107 	spin_lock(&page->mapping->private_lock);
6108 	if (!PagePrivate(page)) {
6109 		spin_unlock(&page->mapping->private_lock);
6110 		return 1;
6111 	}
6112 
6113 	eb = (struct extent_buffer *)page->private;
6114 	BUG_ON(!eb);
6115 
6116 	/*
6117 	 * This is a little awful but should be ok, we need to make sure that
6118 	 * the eb doesn't disappear out from under us while we're looking at
6119 	 * this page.
6120 	 */
6121 	spin_lock(&eb->refs_lock);
6122 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6123 		spin_unlock(&eb->refs_lock);
6124 		spin_unlock(&page->mapping->private_lock);
6125 		return 0;
6126 	}
6127 	spin_unlock(&page->mapping->private_lock);
6128 
6129 	/*
6130 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6131 	 * so just return, this page will likely be freed soon anyway.
6132 	 */
6133 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6134 		spin_unlock(&eb->refs_lock);
6135 		return 0;
6136 	}
6137 
6138 	return release_extent_buffer(eb);
6139 }
6140