xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 78700c0a)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	state = kmem_cache_alloc(extent_state_cache, mask);
230 	if (!state)
231 		return state;
232 	state->state = 0;
233 	state->failrec = NULL;
234 	RB_CLEAR_NODE(&state->rb_node);
235 	btrfs_leak_debug_add(&state->leak_list, &states);
236 	atomic_set(&state->refs, 1);
237 	init_waitqueue_head(&state->wq);
238 	trace_alloc_extent_state(state, mask, _RET_IP_);
239 	return state;
240 }
241 
242 void free_extent_state(struct extent_state *state)
243 {
244 	if (!state)
245 		return;
246 	if (atomic_dec_and_test(&state->refs)) {
247 		WARN_ON(extent_state_in_tree(state));
248 		btrfs_leak_debug_del(&state->leak_list);
249 		trace_free_extent_state(state, _RET_IP_);
250 		kmem_cache_free(extent_state_cache, state);
251 	}
252 }
253 
254 static struct rb_node *tree_insert(struct rb_root *root,
255 				   struct rb_node *search_start,
256 				   u64 offset,
257 				   struct rb_node *node,
258 				   struct rb_node ***p_in,
259 				   struct rb_node **parent_in)
260 {
261 	struct rb_node **p;
262 	struct rb_node *parent = NULL;
263 	struct tree_entry *entry;
264 
265 	if (p_in && parent_in) {
266 		p = *p_in;
267 		parent = *parent_in;
268 		goto do_insert;
269 	}
270 
271 	p = search_start ? &search_start : &root->rb_node;
272 	while (*p) {
273 		parent = *p;
274 		entry = rb_entry(parent, struct tree_entry, rb_node);
275 
276 		if (offset < entry->start)
277 			p = &(*p)->rb_left;
278 		else if (offset > entry->end)
279 			p = &(*p)->rb_right;
280 		else
281 			return parent;
282 	}
283 
284 do_insert:
285 	rb_link_node(node, parent, p);
286 	rb_insert_color(node, root);
287 	return NULL;
288 }
289 
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 				      struct rb_node **prev_ret,
292 				      struct rb_node **next_ret,
293 				      struct rb_node ***p_ret,
294 				      struct rb_node **parent_ret)
295 {
296 	struct rb_root *root = &tree->state;
297 	struct rb_node **n = &root->rb_node;
298 	struct rb_node *prev = NULL;
299 	struct rb_node *orig_prev = NULL;
300 	struct tree_entry *entry;
301 	struct tree_entry *prev_entry = NULL;
302 
303 	while (*n) {
304 		prev = *n;
305 		entry = rb_entry(prev, struct tree_entry, rb_node);
306 		prev_entry = entry;
307 
308 		if (offset < entry->start)
309 			n = &(*n)->rb_left;
310 		else if (offset > entry->end)
311 			n = &(*n)->rb_right;
312 		else
313 			return *n;
314 	}
315 
316 	if (p_ret)
317 		*p_ret = n;
318 	if (parent_ret)
319 		*parent_ret = prev;
320 
321 	if (prev_ret) {
322 		orig_prev = prev;
323 		while (prev && offset > prev_entry->end) {
324 			prev = rb_next(prev);
325 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 		}
327 		*prev_ret = prev;
328 		prev = orig_prev;
329 	}
330 
331 	if (next_ret) {
332 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 		while (prev && offset < prev_entry->start) {
334 			prev = rb_prev(prev);
335 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 		}
337 		*next_ret = prev;
338 	}
339 	return NULL;
340 }
341 
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 		       u64 offset,
345 		       struct rb_node ***p_ret,
346 		       struct rb_node **parent_ret)
347 {
348 	struct rb_node *prev = NULL;
349 	struct rb_node *ret;
350 
351 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 	if (!ret)
353 		return prev;
354 	return ret;
355 }
356 
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 					  u64 offset)
359 {
360 	return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362 
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 		     struct extent_state *other)
365 {
366 	if (tree->ops && tree->ops->merge_extent_hook)
367 		tree->ops->merge_extent_hook(tree->mapping->host, new,
368 					     other);
369 }
370 
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381 		        struct extent_state *state)
382 {
383 	struct extent_state *other;
384 	struct rb_node *other_node;
385 
386 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 		return;
388 
389 	other_node = rb_prev(&state->rb_node);
390 	if (other_node) {
391 		other = rb_entry(other_node, struct extent_state, rb_node);
392 		if (other->end == state->start - 1 &&
393 		    other->state == state->state) {
394 			merge_cb(tree, state, other);
395 			state->start = other->start;
396 			rb_erase(&other->rb_node, &tree->state);
397 			RB_CLEAR_NODE(&other->rb_node);
398 			free_extent_state(other);
399 		}
400 	}
401 	other_node = rb_next(&state->rb_node);
402 	if (other_node) {
403 		other = rb_entry(other_node, struct extent_state, rb_node);
404 		if (other->start == state->end + 1 &&
405 		    other->state == state->state) {
406 			merge_cb(tree, state, other);
407 			state->end = other->end;
408 			rb_erase(&other->rb_node, &tree->state);
409 			RB_CLEAR_NODE(&other->rb_node);
410 			free_extent_state(other);
411 		}
412 	}
413 }
414 
415 static void set_state_cb(struct extent_io_tree *tree,
416 			 struct extent_state *state, unsigned *bits)
417 {
418 	if (tree->ops && tree->ops->set_bit_hook)
419 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421 
422 static void clear_state_cb(struct extent_io_tree *tree,
423 			   struct extent_state *state, unsigned *bits)
424 {
425 	if (tree->ops && tree->ops->clear_bit_hook)
426 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428 
429 static void set_state_bits(struct extent_io_tree *tree,
430 			   struct extent_state *state, unsigned *bits,
431 			   struct extent_changeset *changeset);
432 
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444 			struct extent_state *state, u64 start, u64 end,
445 			struct rb_node ***p,
446 			struct rb_node **parent,
447 			unsigned *bits, struct extent_changeset *changeset)
448 {
449 	struct rb_node *node;
450 
451 	if (end < start)
452 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 		       end, start);
454 	state->start = start;
455 	state->end = end;
456 
457 	set_state_bits(tree, state, bits, changeset);
458 
459 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 		       "%llu %llu\n",
465 		       found->start, found->end, start, end);
466 		return -EEXIST;
467 	}
468 	merge_state(tree, state);
469 	return 0;
470 }
471 
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 		     u64 split)
474 {
475 	if (tree->ops && tree->ops->split_extent_hook)
476 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478 
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 		       struct extent_state *prealloc, u64 split)
495 {
496 	struct rb_node *node;
497 
498 	split_cb(tree, orig, split);
499 
500 	prealloc->start = orig->start;
501 	prealloc->end = split - 1;
502 	prealloc->state = orig->state;
503 	orig->start = split;
504 
505 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 			   &prealloc->rb_node, NULL, NULL);
507 	if (node) {
508 		free_extent_state(prealloc);
509 		return -EEXIST;
510 	}
511 	return 0;
512 }
513 
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 	struct rb_node *next = rb_next(&state->rb_node);
517 	if (next)
518 		return rb_entry(next, struct extent_state, rb_node);
519 	else
520 		return NULL;
521 }
522 
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 					    struct extent_state *state,
532 					    unsigned *bits, int wake,
533 					    struct extent_changeset *changeset)
534 {
535 	struct extent_state *next;
536 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537 
538 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 		u64 range = state->end - state->start + 1;
540 		WARN_ON(range > tree->dirty_bytes);
541 		tree->dirty_bytes -= range;
542 	}
543 	clear_state_cb(tree, state, bits);
544 	add_extent_changeset(state, bits_to_clear, changeset, 0);
545 	state->state &= ~bits_to_clear;
546 	if (wake)
547 		wake_up(&state->wq);
548 	if (state->state == 0) {
549 		next = next_state(state);
550 		if (extent_state_in_tree(state)) {
551 			rb_erase(&state->rb_node, &tree->state);
552 			RB_CLEAR_NODE(&state->rb_node);
553 			free_extent_state(state);
554 		} else {
555 			WARN_ON(1);
556 		}
557 	} else {
558 		merge_state(tree, state);
559 		next = next_state(state);
560 	}
561 	return next;
562 }
563 
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 	if (!prealloc)
568 		prealloc = alloc_extent_state(GFP_ATOMIC);
569 
570 	return prealloc;
571 }
572 
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 		    "Extent tree was modified by another "
577 		    "thread while locked.");
578 }
579 
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 			      unsigned bits, int wake, int delete,
594 			      struct extent_state **cached_state,
595 			      gfp_t mask, struct extent_changeset *changeset)
596 {
597 	struct extent_state *state;
598 	struct extent_state *cached;
599 	struct extent_state *prealloc = NULL;
600 	struct rb_node *node;
601 	u64 last_end;
602 	int err;
603 	int clear = 0;
604 
605 	btrfs_debug_check_extent_io_range(tree, start, end);
606 
607 	if (bits & EXTENT_DELALLOC)
608 		bits |= EXTENT_NORESERVE;
609 
610 	if (delete)
611 		bits |= ~EXTENT_CTLBITS;
612 	bits |= EXTENT_FIRST_DELALLOC;
613 
614 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 		clear = 1;
616 again:
617 	if (!prealloc && gfpflags_allow_blocking(mask)) {
618 		/*
619 		 * Don't care for allocation failure here because we might end
620 		 * up not needing the pre-allocated extent state at all, which
621 		 * is the case if we only have in the tree extent states that
622 		 * cover our input range and don't cover too any other range.
623 		 * If we end up needing a new extent state we allocate it later.
624 		 */
625 		prealloc = alloc_extent_state(mask);
626 	}
627 
628 	spin_lock(&tree->lock);
629 	if (cached_state) {
630 		cached = *cached_state;
631 
632 		if (clear) {
633 			*cached_state = NULL;
634 			cached_state = NULL;
635 		}
636 
637 		if (cached && extent_state_in_tree(cached) &&
638 		    cached->start <= start && cached->end > start) {
639 			if (clear)
640 				atomic_dec(&cached->refs);
641 			state = cached;
642 			goto hit_next;
643 		}
644 		if (clear)
645 			free_extent_state(cached);
646 	}
647 	/*
648 	 * this search will find the extents that end after
649 	 * our range starts
650 	 */
651 	node = tree_search(tree, start);
652 	if (!node)
653 		goto out;
654 	state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 	if (state->start > end)
657 		goto out;
658 	WARN_ON(state->end < start);
659 	last_end = state->end;
660 
661 	/* the state doesn't have the wanted bits, go ahead */
662 	if (!(state->state & bits)) {
663 		state = next_state(state);
664 		goto next;
665 	}
666 
667 	/*
668 	 *     | ---- desired range ---- |
669 	 *  | state | or
670 	 *  | ------------- state -------------- |
671 	 *
672 	 * We need to split the extent we found, and may flip
673 	 * bits on second half.
674 	 *
675 	 * If the extent we found extends past our range, we
676 	 * just split and search again.  It'll get split again
677 	 * the next time though.
678 	 *
679 	 * If the extent we found is inside our range, we clear
680 	 * the desired bit on it.
681 	 */
682 
683 	if (state->start < start) {
684 		prealloc = alloc_extent_state_atomic(prealloc);
685 		BUG_ON(!prealloc);
686 		err = split_state(tree, state, prealloc, start);
687 		if (err)
688 			extent_io_tree_panic(tree, err);
689 
690 		prealloc = NULL;
691 		if (err)
692 			goto out;
693 		if (state->end <= end) {
694 			state = clear_state_bit(tree, state, &bits, wake,
695 						changeset);
696 			goto next;
697 		}
698 		goto search_again;
699 	}
700 	/*
701 	 * | ---- desired range ---- |
702 	 *                        | state |
703 	 * We need to split the extent, and clear the bit
704 	 * on the first half
705 	 */
706 	if (state->start <= end && state->end > end) {
707 		prealloc = alloc_extent_state_atomic(prealloc);
708 		BUG_ON(!prealloc);
709 		err = split_state(tree, state, prealloc, end + 1);
710 		if (err)
711 			extent_io_tree_panic(tree, err);
712 
713 		if (wake)
714 			wake_up(&state->wq);
715 
716 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
717 
718 		prealloc = NULL;
719 		goto out;
720 	}
721 
722 	state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 	if (last_end == (u64)-1)
725 		goto out;
726 	start = last_end + 1;
727 	if (start <= end && state && !need_resched())
728 		goto hit_next;
729 
730 search_again:
731 	if (start > end)
732 		goto out;
733 	spin_unlock(&tree->lock);
734 	if (gfpflags_allow_blocking(mask))
735 		cond_resched();
736 	goto again;
737 
738 out:
739 	spin_unlock(&tree->lock);
740 	if (prealloc)
741 		free_extent_state(prealloc);
742 
743 	return 0;
744 
745 }
746 
747 static void wait_on_state(struct extent_io_tree *tree,
748 			  struct extent_state *state)
749 		__releases(tree->lock)
750 		__acquires(tree->lock)
751 {
752 	DEFINE_WAIT(wait);
753 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 	spin_unlock(&tree->lock);
755 	schedule();
756 	spin_lock(&tree->lock);
757 	finish_wait(&state->wq, &wait);
758 }
759 
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 			    unsigned long bits)
767 {
768 	struct extent_state *state;
769 	struct rb_node *node;
770 
771 	btrfs_debug_check_extent_io_range(tree, start, end);
772 
773 	spin_lock(&tree->lock);
774 again:
775 	while (1) {
776 		/*
777 		 * this search will find all the extents that end after
778 		 * our range starts
779 		 */
780 		node = tree_search(tree, start);
781 process_node:
782 		if (!node)
783 			break;
784 
785 		state = rb_entry(node, struct extent_state, rb_node);
786 
787 		if (state->start > end)
788 			goto out;
789 
790 		if (state->state & bits) {
791 			start = state->start;
792 			atomic_inc(&state->refs);
793 			wait_on_state(tree, state);
794 			free_extent_state(state);
795 			goto again;
796 		}
797 		start = state->end + 1;
798 
799 		if (start > end)
800 			break;
801 
802 		if (!cond_resched_lock(&tree->lock)) {
803 			node = rb_next(node);
804 			goto process_node;
805 		}
806 	}
807 out:
808 	spin_unlock(&tree->lock);
809 }
810 
811 static void set_state_bits(struct extent_io_tree *tree,
812 			   struct extent_state *state,
813 			   unsigned *bits, struct extent_changeset *changeset)
814 {
815 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816 
817 	set_state_cb(tree, state, bits);
818 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 		u64 range = state->end - state->start + 1;
820 		tree->dirty_bytes += range;
821 	}
822 	add_extent_changeset(state, bits_to_set, changeset, 1);
823 	state->state |= bits_to_set;
824 }
825 
826 static void cache_state_if_flags(struct extent_state *state,
827 				 struct extent_state **cached_ptr,
828 				 unsigned flags)
829 {
830 	if (cached_ptr && !(*cached_ptr)) {
831 		if (!flags || (state->state & flags)) {
832 			*cached_ptr = state;
833 			atomic_inc(&state->refs);
834 		}
835 	}
836 }
837 
838 static void cache_state(struct extent_state *state,
839 			struct extent_state **cached_ptr)
840 {
841 	return cache_state_if_flags(state, cached_ptr,
842 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844 
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855 
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 		 unsigned bits, unsigned exclusive_bits,
859 		 u64 *failed_start, struct extent_state **cached_state,
860 		 gfp_t mask, struct extent_changeset *changeset)
861 {
862 	struct extent_state *state;
863 	struct extent_state *prealloc = NULL;
864 	struct rb_node *node;
865 	struct rb_node **p;
866 	struct rb_node *parent;
867 	int err = 0;
868 	u64 last_start;
869 	u64 last_end;
870 
871 	btrfs_debug_check_extent_io_range(tree, start, end);
872 
873 	bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 	if (!prealloc && gfpflags_allow_blocking(mask)) {
876 		/*
877 		 * Don't care for allocation failure here because we might end
878 		 * up not needing the pre-allocated extent state at all, which
879 		 * is the case if we only have in the tree extent states that
880 		 * cover our input range and don't cover too any other range.
881 		 * If we end up needing a new extent state we allocate it later.
882 		 */
883 		prealloc = alloc_extent_state(mask);
884 	}
885 
886 	spin_lock(&tree->lock);
887 	if (cached_state && *cached_state) {
888 		state = *cached_state;
889 		if (state->start <= start && state->end > start &&
890 		    extent_state_in_tree(state)) {
891 			node = &state->rb_node;
892 			goto hit_next;
893 		}
894 	}
895 	/*
896 	 * this search will find all the extents that end after
897 	 * our range starts.
898 	 */
899 	node = tree_search_for_insert(tree, start, &p, &parent);
900 	if (!node) {
901 		prealloc = alloc_extent_state_atomic(prealloc);
902 		BUG_ON(!prealloc);
903 		err = insert_state(tree, prealloc, start, end,
904 				   &p, &parent, &bits, changeset);
905 		if (err)
906 			extent_io_tree_panic(tree, err);
907 
908 		cache_state(prealloc, cached_state);
909 		prealloc = NULL;
910 		goto out;
911 	}
912 	state = rb_entry(node, struct extent_state, rb_node);
913 hit_next:
914 	last_start = state->start;
915 	last_end = state->end;
916 
917 	/*
918 	 * | ---- desired range ---- |
919 	 * | state |
920 	 *
921 	 * Just lock what we found and keep going
922 	 */
923 	if (state->start == start && state->end <= end) {
924 		if (state->state & exclusive_bits) {
925 			*failed_start = state->start;
926 			err = -EEXIST;
927 			goto out;
928 		}
929 
930 		set_state_bits(tree, state, &bits, changeset);
931 		cache_state(state, cached_state);
932 		merge_state(tree, state);
933 		if (last_end == (u64)-1)
934 			goto out;
935 		start = last_end + 1;
936 		state = next_state(state);
937 		if (start < end && state && state->start == start &&
938 		    !need_resched())
939 			goto hit_next;
940 		goto search_again;
941 	}
942 
943 	/*
944 	 *     | ---- desired range ---- |
945 	 * | state |
946 	 *   or
947 	 * | ------------- state -------------- |
948 	 *
949 	 * We need to split the extent we found, and may flip bits on
950 	 * second half.
951 	 *
952 	 * If the extent we found extends past our
953 	 * range, we just split and search again.  It'll get split
954 	 * again the next time though.
955 	 *
956 	 * If the extent we found is inside our range, we set the
957 	 * desired bit on it.
958 	 */
959 	if (state->start < start) {
960 		if (state->state & exclusive_bits) {
961 			*failed_start = start;
962 			err = -EEXIST;
963 			goto out;
964 		}
965 
966 		prealloc = alloc_extent_state_atomic(prealloc);
967 		BUG_ON(!prealloc);
968 		err = split_state(tree, state, prealloc, start);
969 		if (err)
970 			extent_io_tree_panic(tree, err);
971 
972 		prealloc = NULL;
973 		if (err)
974 			goto out;
975 		if (state->end <= end) {
976 			set_state_bits(tree, state, &bits, changeset);
977 			cache_state(state, cached_state);
978 			merge_state(tree, state);
979 			if (last_end == (u64)-1)
980 				goto out;
981 			start = last_end + 1;
982 			state = next_state(state);
983 			if (start < end && state && state->start == start &&
984 			    !need_resched())
985 				goto hit_next;
986 		}
987 		goto search_again;
988 	}
989 	/*
990 	 * | ---- desired range ---- |
991 	 *     | state | or               | state |
992 	 *
993 	 * There's a hole, we need to insert something in it and
994 	 * ignore the extent we found.
995 	 */
996 	if (state->start > start) {
997 		u64 this_end;
998 		if (end < last_start)
999 			this_end = end;
1000 		else
1001 			this_end = last_start - 1;
1002 
1003 		prealloc = alloc_extent_state_atomic(prealloc);
1004 		BUG_ON(!prealloc);
1005 
1006 		/*
1007 		 * Avoid to free 'prealloc' if it can be merged with
1008 		 * the later extent.
1009 		 */
1010 		err = insert_state(tree, prealloc, start, this_end,
1011 				   NULL, NULL, &bits, changeset);
1012 		if (err)
1013 			extent_io_tree_panic(tree, err);
1014 
1015 		cache_state(prealloc, cached_state);
1016 		prealloc = NULL;
1017 		start = this_end + 1;
1018 		goto search_again;
1019 	}
1020 	/*
1021 	 * | ---- desired range ---- |
1022 	 *                        | state |
1023 	 * We need to split the extent, and set the bit
1024 	 * on the first half
1025 	 */
1026 	if (state->start <= end && state->end > end) {
1027 		if (state->state & exclusive_bits) {
1028 			*failed_start = start;
1029 			err = -EEXIST;
1030 			goto out;
1031 		}
1032 
1033 		prealloc = alloc_extent_state_atomic(prealloc);
1034 		BUG_ON(!prealloc);
1035 		err = split_state(tree, state, prealloc, end + 1);
1036 		if (err)
1037 			extent_io_tree_panic(tree, err);
1038 
1039 		set_state_bits(tree, prealloc, &bits, changeset);
1040 		cache_state(prealloc, cached_state);
1041 		merge_state(tree, prealloc);
1042 		prealloc = NULL;
1043 		goto out;
1044 	}
1045 
1046 search_again:
1047 	if (start > end)
1048 		goto out;
1049 	spin_unlock(&tree->lock);
1050 	if (gfpflags_allow_blocking(mask))
1051 		cond_resched();
1052 	goto again;
1053 
1054 out:
1055 	spin_unlock(&tree->lock);
1056 	if (prealloc)
1057 		free_extent_state(prealloc);
1058 
1059 	return err;
1060 
1061 }
1062 
1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064 		   unsigned bits, u64 * failed_start,
1065 		   struct extent_state **cached_state, gfp_t mask)
1066 {
1067 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068 				cached_state, mask, NULL);
1069 }
1070 
1071 
1072 /**
1073  * convert_extent_bit - convert all bits in a given range from one bit to
1074  * 			another
1075  * @tree:	the io tree to search
1076  * @start:	the start offset in bytes
1077  * @end:	the end offset in bytes (inclusive)
1078  * @bits:	the bits to set in this range
1079  * @clear_bits:	the bits to clear in this range
1080  * @cached_state:	state that we're going to cache
1081  *
1082  * This will go through and set bits for the given range.  If any states exist
1083  * already in this range they are set with the given bit and cleared of the
1084  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1085  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1086  * boundary bits like LOCK.
1087  *
1088  * All allocations are done with GFP_NOFS.
1089  */
1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091 		       unsigned bits, unsigned clear_bits,
1092 		       struct extent_state **cached_state)
1093 {
1094 	struct extent_state *state;
1095 	struct extent_state *prealloc = NULL;
1096 	struct rb_node *node;
1097 	struct rb_node **p;
1098 	struct rb_node *parent;
1099 	int err = 0;
1100 	u64 last_start;
1101 	u64 last_end;
1102 	bool first_iteration = true;
1103 
1104 	btrfs_debug_check_extent_io_range(tree, start, end);
1105 
1106 again:
1107 	if (!prealloc) {
1108 		/*
1109 		 * Best effort, don't worry if extent state allocation fails
1110 		 * here for the first iteration. We might have a cached state
1111 		 * that matches exactly the target range, in which case no
1112 		 * extent state allocations are needed. We'll only know this
1113 		 * after locking the tree.
1114 		 */
1115 		prealloc = alloc_extent_state(GFP_NOFS);
1116 		if (!prealloc && !first_iteration)
1117 			return -ENOMEM;
1118 	}
1119 
1120 	spin_lock(&tree->lock);
1121 	if (cached_state && *cached_state) {
1122 		state = *cached_state;
1123 		if (state->start <= start && state->end > start &&
1124 		    extent_state_in_tree(state)) {
1125 			node = &state->rb_node;
1126 			goto hit_next;
1127 		}
1128 	}
1129 
1130 	/*
1131 	 * this search will find all the extents that end after
1132 	 * our range starts.
1133 	 */
1134 	node = tree_search_for_insert(tree, start, &p, &parent);
1135 	if (!node) {
1136 		prealloc = alloc_extent_state_atomic(prealloc);
1137 		if (!prealloc) {
1138 			err = -ENOMEM;
1139 			goto out;
1140 		}
1141 		err = insert_state(tree, prealloc, start, end,
1142 				   &p, &parent, &bits, NULL);
1143 		if (err)
1144 			extent_io_tree_panic(tree, err);
1145 		cache_state(prealloc, cached_state);
1146 		prealloc = NULL;
1147 		goto out;
1148 	}
1149 	state = rb_entry(node, struct extent_state, rb_node);
1150 hit_next:
1151 	last_start = state->start;
1152 	last_end = state->end;
1153 
1154 	/*
1155 	 * | ---- desired range ---- |
1156 	 * | state |
1157 	 *
1158 	 * Just lock what we found and keep going
1159 	 */
1160 	if (state->start == start && state->end <= end) {
1161 		set_state_bits(tree, state, &bits, NULL);
1162 		cache_state(state, cached_state);
1163 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164 		if (last_end == (u64)-1)
1165 			goto out;
1166 		start = last_end + 1;
1167 		if (start < end && state && state->start == start &&
1168 		    !need_resched())
1169 			goto hit_next;
1170 		goto search_again;
1171 	}
1172 
1173 	/*
1174 	 *     | ---- desired range ---- |
1175 	 * | state |
1176 	 *   or
1177 	 * | ------------- state -------------- |
1178 	 *
1179 	 * We need to split the extent we found, and may flip bits on
1180 	 * second half.
1181 	 *
1182 	 * If the extent we found extends past our
1183 	 * range, we just split and search again.  It'll get split
1184 	 * again the next time though.
1185 	 *
1186 	 * If the extent we found is inside our range, we set the
1187 	 * desired bit on it.
1188 	 */
1189 	if (state->start < start) {
1190 		prealloc = alloc_extent_state_atomic(prealloc);
1191 		if (!prealloc) {
1192 			err = -ENOMEM;
1193 			goto out;
1194 		}
1195 		err = split_state(tree, state, prealloc, start);
1196 		if (err)
1197 			extent_io_tree_panic(tree, err);
1198 		prealloc = NULL;
1199 		if (err)
1200 			goto out;
1201 		if (state->end <= end) {
1202 			set_state_bits(tree, state, &bits, NULL);
1203 			cache_state(state, cached_state);
1204 			state = clear_state_bit(tree, state, &clear_bits, 0,
1205 						NULL);
1206 			if (last_end == (u64)-1)
1207 				goto out;
1208 			start = last_end + 1;
1209 			if (start < end && state && state->start == start &&
1210 			    !need_resched())
1211 				goto hit_next;
1212 		}
1213 		goto search_again;
1214 	}
1215 	/*
1216 	 * | ---- desired range ---- |
1217 	 *     | state | or               | state |
1218 	 *
1219 	 * There's a hole, we need to insert something in it and
1220 	 * ignore the extent we found.
1221 	 */
1222 	if (state->start > start) {
1223 		u64 this_end;
1224 		if (end < last_start)
1225 			this_end = end;
1226 		else
1227 			this_end = last_start - 1;
1228 
1229 		prealloc = alloc_extent_state_atomic(prealloc);
1230 		if (!prealloc) {
1231 			err = -ENOMEM;
1232 			goto out;
1233 		}
1234 
1235 		/*
1236 		 * Avoid to free 'prealloc' if it can be merged with
1237 		 * the later extent.
1238 		 */
1239 		err = insert_state(tree, prealloc, start, this_end,
1240 				   NULL, NULL, &bits, NULL);
1241 		if (err)
1242 			extent_io_tree_panic(tree, err);
1243 		cache_state(prealloc, cached_state);
1244 		prealloc = NULL;
1245 		start = this_end + 1;
1246 		goto search_again;
1247 	}
1248 	/*
1249 	 * | ---- desired range ---- |
1250 	 *                        | state |
1251 	 * We need to split the extent, and set the bit
1252 	 * on the first half
1253 	 */
1254 	if (state->start <= end && state->end > end) {
1255 		prealloc = alloc_extent_state_atomic(prealloc);
1256 		if (!prealloc) {
1257 			err = -ENOMEM;
1258 			goto out;
1259 		}
1260 
1261 		err = split_state(tree, state, prealloc, end + 1);
1262 		if (err)
1263 			extent_io_tree_panic(tree, err);
1264 
1265 		set_state_bits(tree, prealloc, &bits, NULL);
1266 		cache_state(prealloc, cached_state);
1267 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268 		prealloc = NULL;
1269 		goto out;
1270 	}
1271 
1272 search_again:
1273 	if (start > end)
1274 		goto out;
1275 	spin_unlock(&tree->lock);
1276 	cond_resched();
1277 	first_iteration = false;
1278 	goto again;
1279 
1280 out:
1281 	spin_unlock(&tree->lock);
1282 	if (prealloc)
1283 		free_extent_state(prealloc);
1284 
1285 	return err;
1286 }
1287 
1288 /* wrappers around set/clear extent bit */
1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290 			   unsigned bits, struct extent_changeset *changeset)
1291 {
1292 	/*
1293 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 	 * either fail with -EEXIST or changeset will record the whole
1296 	 * range.
1297 	 */
1298 	BUG_ON(bits & EXTENT_LOCKED);
1299 
1300 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301 				changeset);
1302 }
1303 
1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 		     unsigned bits, int wake, int delete,
1306 		     struct extent_state **cached, gfp_t mask)
1307 {
1308 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 				  cached, mask, NULL);
1310 }
1311 
1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 		unsigned bits, struct extent_changeset *changeset)
1314 {
1315 	/*
1316 	 * Don't support EXTENT_LOCKED case, same reason as
1317 	 * set_record_extent_bits().
1318 	 */
1319 	BUG_ON(bits & EXTENT_LOCKED);
1320 
1321 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322 				  changeset);
1323 }
1324 
1325 /*
1326  * either insert or lock state struct between start and end use mask to tell
1327  * us if waiting is desired.
1328  */
1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330 		     struct extent_state **cached_state)
1331 {
1332 	int err;
1333 	u64 failed_start;
1334 
1335 	while (1) {
1336 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337 				       EXTENT_LOCKED, &failed_start,
1338 				       cached_state, GFP_NOFS, NULL);
1339 		if (err == -EEXIST) {
1340 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 			start = failed_start;
1342 		} else
1343 			break;
1344 		WARN_ON(start > end);
1345 	}
1346 	return err;
1347 }
1348 
1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350 {
1351 	int err;
1352 	u64 failed_start;
1353 
1354 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355 			       &failed_start, NULL, GFP_NOFS, NULL);
1356 	if (err == -EEXIST) {
1357 		if (failed_start > start)
1358 			clear_extent_bit(tree, start, failed_start - 1,
1359 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360 		return 0;
1361 	}
1362 	return 1;
1363 }
1364 
1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366 {
1367 	unsigned long index = start >> PAGE_SHIFT;
1368 	unsigned long end_index = end >> PAGE_SHIFT;
1369 	struct page *page;
1370 
1371 	while (index <= end_index) {
1372 		page = find_get_page(inode->i_mapping, index);
1373 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 		clear_page_dirty_for_io(page);
1375 		put_page(page);
1376 		index++;
1377 	}
1378 }
1379 
1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381 {
1382 	unsigned long index = start >> PAGE_SHIFT;
1383 	unsigned long end_index = end >> PAGE_SHIFT;
1384 	struct page *page;
1385 
1386 	while (index <= end_index) {
1387 		page = find_get_page(inode->i_mapping, index);
1388 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389 		__set_page_dirty_nobuffers(page);
1390 		account_page_redirty(page);
1391 		put_page(page);
1392 		index++;
1393 	}
1394 }
1395 
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 	unsigned long index = start >> PAGE_SHIFT;
1402 	unsigned long end_index = end >> PAGE_SHIFT;
1403 	struct page *page;
1404 
1405 	while (index <= end_index) {
1406 		page = find_get_page(tree->mapping, index);
1407 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 		set_page_writeback(page);
1409 		put_page(page);
1410 		index++;
1411 	}
1412 }
1413 
1414 /* find the first state struct with 'bits' set after 'start', and
1415  * return it.  tree->lock must be held.  NULL will returned if
1416  * nothing was found after 'start'
1417  */
1418 static struct extent_state *
1419 find_first_extent_bit_state(struct extent_io_tree *tree,
1420 			    u64 start, unsigned bits)
1421 {
1422 	struct rb_node *node;
1423 	struct extent_state *state;
1424 
1425 	/*
1426 	 * this search will find all the extents that end after
1427 	 * our range starts.
1428 	 */
1429 	node = tree_search(tree, start);
1430 	if (!node)
1431 		goto out;
1432 
1433 	while (1) {
1434 		state = rb_entry(node, struct extent_state, rb_node);
1435 		if (state->end >= start && (state->state & bits))
1436 			return state;
1437 
1438 		node = rb_next(node);
1439 		if (!node)
1440 			break;
1441 	}
1442 out:
1443 	return NULL;
1444 }
1445 
1446 /*
1447  * find the first offset in the io tree with 'bits' set. zero is
1448  * returned if we find something, and *start_ret and *end_ret are
1449  * set to reflect the state struct that was found.
1450  *
1451  * If nothing was found, 1 is returned. If found something, return 0.
1452  */
1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1455 			  struct extent_state **cached_state)
1456 {
1457 	struct extent_state *state;
1458 	struct rb_node *n;
1459 	int ret = 1;
1460 
1461 	spin_lock(&tree->lock);
1462 	if (cached_state && *cached_state) {
1463 		state = *cached_state;
1464 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1465 			n = rb_next(&state->rb_node);
1466 			while (n) {
1467 				state = rb_entry(n, struct extent_state,
1468 						 rb_node);
1469 				if (state->state & bits)
1470 					goto got_it;
1471 				n = rb_next(n);
1472 			}
1473 			free_extent_state(*cached_state);
1474 			*cached_state = NULL;
1475 			goto out;
1476 		}
1477 		free_extent_state(*cached_state);
1478 		*cached_state = NULL;
1479 	}
1480 
1481 	state = find_first_extent_bit_state(tree, start, bits);
1482 got_it:
1483 	if (state) {
1484 		cache_state_if_flags(state, cached_state, 0);
1485 		*start_ret = state->start;
1486 		*end_ret = state->end;
1487 		ret = 0;
1488 	}
1489 out:
1490 	spin_unlock(&tree->lock);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * find a contiguous range of bytes in the file marked as delalloc, not
1496  * more than 'max_bytes'.  start and end are used to return the range,
1497  *
1498  * 1 is returned if we find something, 0 if nothing was in the tree
1499  */
1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501 					u64 *start, u64 *end, u64 max_bytes,
1502 					struct extent_state **cached_state)
1503 {
1504 	struct rb_node *node;
1505 	struct extent_state *state;
1506 	u64 cur_start = *start;
1507 	u64 found = 0;
1508 	u64 total_bytes = 0;
1509 
1510 	spin_lock(&tree->lock);
1511 
1512 	/*
1513 	 * this search will find all the extents that end after
1514 	 * our range starts.
1515 	 */
1516 	node = tree_search(tree, cur_start);
1517 	if (!node) {
1518 		if (!found)
1519 			*end = (u64)-1;
1520 		goto out;
1521 	}
1522 
1523 	while (1) {
1524 		state = rb_entry(node, struct extent_state, rb_node);
1525 		if (found && (state->start != cur_start ||
1526 			      (state->state & EXTENT_BOUNDARY))) {
1527 			goto out;
1528 		}
1529 		if (!(state->state & EXTENT_DELALLOC)) {
1530 			if (!found)
1531 				*end = state->end;
1532 			goto out;
1533 		}
1534 		if (!found) {
1535 			*start = state->start;
1536 			*cached_state = state;
1537 			atomic_inc(&state->refs);
1538 		}
1539 		found++;
1540 		*end = state->end;
1541 		cur_start = state->end + 1;
1542 		node = rb_next(node);
1543 		total_bytes += state->end - state->start + 1;
1544 		if (total_bytes >= max_bytes)
1545 			break;
1546 		if (!node)
1547 			break;
1548 	}
1549 out:
1550 	spin_unlock(&tree->lock);
1551 	return found;
1552 }
1553 
1554 static noinline void __unlock_for_delalloc(struct inode *inode,
1555 					   struct page *locked_page,
1556 					   u64 start, u64 end)
1557 {
1558 	int ret;
1559 	struct page *pages[16];
1560 	unsigned long index = start >> PAGE_SHIFT;
1561 	unsigned long end_index = end >> PAGE_SHIFT;
1562 	unsigned long nr_pages = end_index - index + 1;
1563 	int i;
1564 
1565 	if (index == locked_page->index && end_index == index)
1566 		return;
1567 
1568 	while (nr_pages > 0) {
1569 		ret = find_get_pages_contig(inode->i_mapping, index,
1570 				     min_t(unsigned long, nr_pages,
1571 				     ARRAY_SIZE(pages)), pages);
1572 		for (i = 0; i < ret; i++) {
1573 			if (pages[i] != locked_page)
1574 				unlock_page(pages[i]);
1575 			put_page(pages[i]);
1576 		}
1577 		nr_pages -= ret;
1578 		index += ret;
1579 		cond_resched();
1580 	}
1581 }
1582 
1583 static noinline int lock_delalloc_pages(struct inode *inode,
1584 					struct page *locked_page,
1585 					u64 delalloc_start,
1586 					u64 delalloc_end)
1587 {
1588 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1589 	unsigned long start_index = index;
1590 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591 	unsigned long pages_locked = 0;
1592 	struct page *pages[16];
1593 	unsigned long nrpages;
1594 	int ret;
1595 	int i;
1596 
1597 	/* the caller is responsible for locking the start index */
1598 	if (index == locked_page->index && index == end_index)
1599 		return 0;
1600 
1601 	/* skip the page at the start index */
1602 	nrpages = end_index - index + 1;
1603 	while (nrpages > 0) {
1604 		ret = find_get_pages_contig(inode->i_mapping, index,
1605 				     min_t(unsigned long,
1606 				     nrpages, ARRAY_SIZE(pages)), pages);
1607 		if (ret == 0) {
1608 			ret = -EAGAIN;
1609 			goto done;
1610 		}
1611 		/* now we have an array of pages, lock them all */
1612 		for (i = 0; i < ret; i++) {
1613 			/*
1614 			 * the caller is taking responsibility for
1615 			 * locked_page
1616 			 */
1617 			if (pages[i] != locked_page) {
1618 				lock_page(pages[i]);
1619 				if (!PageDirty(pages[i]) ||
1620 				    pages[i]->mapping != inode->i_mapping) {
1621 					ret = -EAGAIN;
1622 					unlock_page(pages[i]);
1623 					put_page(pages[i]);
1624 					goto done;
1625 				}
1626 			}
1627 			put_page(pages[i]);
1628 			pages_locked++;
1629 		}
1630 		nrpages -= ret;
1631 		index += ret;
1632 		cond_resched();
1633 	}
1634 	ret = 0;
1635 done:
1636 	if (ret && pages_locked) {
1637 		__unlock_for_delalloc(inode, locked_page,
1638 			      delalloc_start,
1639 			      ((u64)(start_index + pages_locked - 1)) <<
1640 			      PAGE_SHIFT);
1641 	}
1642 	return ret;
1643 }
1644 
1645 /*
1646  * find a contiguous range of bytes in the file marked as delalloc, not
1647  * more than 'max_bytes'.  start and end are used to return the range,
1648  *
1649  * 1 is returned if we find something, 0 if nothing was in the tree
1650  */
1651 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 				    struct extent_io_tree *tree,
1653 				    struct page *locked_page, u64 *start,
1654 				    u64 *end, u64 max_bytes)
1655 {
1656 	u64 delalloc_start;
1657 	u64 delalloc_end;
1658 	u64 found;
1659 	struct extent_state *cached_state = NULL;
1660 	int ret;
1661 	int loops = 0;
1662 
1663 again:
1664 	/* step one, find a bunch of delalloc bytes starting at start */
1665 	delalloc_start = *start;
1666 	delalloc_end = 0;
1667 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668 				    max_bytes, &cached_state);
1669 	if (!found || delalloc_end <= *start) {
1670 		*start = delalloc_start;
1671 		*end = delalloc_end;
1672 		free_extent_state(cached_state);
1673 		return 0;
1674 	}
1675 
1676 	/*
1677 	 * start comes from the offset of locked_page.  We have to lock
1678 	 * pages in order, so we can't process delalloc bytes before
1679 	 * locked_page
1680 	 */
1681 	if (delalloc_start < *start)
1682 		delalloc_start = *start;
1683 
1684 	/*
1685 	 * make sure to limit the number of pages we try to lock down
1686 	 */
1687 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 		delalloc_end = delalloc_start + max_bytes - 1;
1689 
1690 	/* step two, lock all the pages after the page that has start */
1691 	ret = lock_delalloc_pages(inode, locked_page,
1692 				  delalloc_start, delalloc_end);
1693 	if (ret == -EAGAIN) {
1694 		/* some of the pages are gone, lets avoid looping by
1695 		 * shortening the size of the delalloc range we're searching
1696 		 */
1697 		free_extent_state(cached_state);
1698 		cached_state = NULL;
1699 		if (!loops) {
1700 			max_bytes = PAGE_SIZE;
1701 			loops = 1;
1702 			goto again;
1703 		} else {
1704 			found = 0;
1705 			goto out_failed;
1706 		}
1707 	}
1708 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709 
1710 	/* step three, lock the state bits for the whole range */
1711 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712 
1713 	/* then test to make sure it is all still delalloc */
1714 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715 			     EXTENT_DELALLOC, 1, cached_state);
1716 	if (!ret) {
1717 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 				     &cached_state, GFP_NOFS);
1719 		__unlock_for_delalloc(inode, locked_page,
1720 			      delalloc_start, delalloc_end);
1721 		cond_resched();
1722 		goto again;
1723 	}
1724 	free_extent_state(cached_state);
1725 	*start = delalloc_start;
1726 	*end = delalloc_end;
1727 out_failed:
1728 	return found;
1729 }
1730 
1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732 				 struct page *locked_page,
1733 				 unsigned clear_bits,
1734 				 unsigned long page_ops)
1735 {
1736 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737 	int ret;
1738 	struct page *pages[16];
1739 	unsigned long index = start >> PAGE_SHIFT;
1740 	unsigned long end_index = end >> PAGE_SHIFT;
1741 	unsigned long nr_pages = end_index - index + 1;
1742 	int i;
1743 
1744 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745 	if (page_ops == 0)
1746 		return;
1747 
1748 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 		mapping_set_error(inode->i_mapping, -EIO);
1750 
1751 	while (nr_pages > 0) {
1752 		ret = find_get_pages_contig(inode->i_mapping, index,
1753 				     min_t(unsigned long,
1754 				     nr_pages, ARRAY_SIZE(pages)), pages);
1755 		for (i = 0; i < ret; i++) {
1756 
1757 			if (page_ops & PAGE_SET_PRIVATE2)
1758 				SetPagePrivate2(pages[i]);
1759 
1760 			if (pages[i] == locked_page) {
1761 				put_page(pages[i]);
1762 				continue;
1763 			}
1764 			if (page_ops & PAGE_CLEAR_DIRTY)
1765 				clear_page_dirty_for_io(pages[i]);
1766 			if (page_ops & PAGE_SET_WRITEBACK)
1767 				set_page_writeback(pages[i]);
1768 			if (page_ops & PAGE_SET_ERROR)
1769 				SetPageError(pages[i]);
1770 			if (page_ops & PAGE_END_WRITEBACK)
1771 				end_page_writeback(pages[i]);
1772 			if (page_ops & PAGE_UNLOCK)
1773 				unlock_page(pages[i]);
1774 			put_page(pages[i]);
1775 		}
1776 		nr_pages -= ret;
1777 		index += ret;
1778 		cond_resched();
1779 	}
1780 }
1781 
1782 /*
1783  * count the number of bytes in the tree that have a given bit(s)
1784  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1785  * cached.  The total number found is returned.
1786  */
1787 u64 count_range_bits(struct extent_io_tree *tree,
1788 		     u64 *start, u64 search_end, u64 max_bytes,
1789 		     unsigned bits, int contig)
1790 {
1791 	struct rb_node *node;
1792 	struct extent_state *state;
1793 	u64 cur_start = *start;
1794 	u64 total_bytes = 0;
1795 	u64 last = 0;
1796 	int found = 0;
1797 
1798 	if (WARN_ON(search_end <= cur_start))
1799 		return 0;
1800 
1801 	spin_lock(&tree->lock);
1802 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 		total_bytes = tree->dirty_bytes;
1804 		goto out;
1805 	}
1806 	/*
1807 	 * this search will find all the extents that end after
1808 	 * our range starts.
1809 	 */
1810 	node = tree_search(tree, cur_start);
1811 	if (!node)
1812 		goto out;
1813 
1814 	while (1) {
1815 		state = rb_entry(node, struct extent_state, rb_node);
1816 		if (state->start > search_end)
1817 			break;
1818 		if (contig && found && state->start > last + 1)
1819 			break;
1820 		if (state->end >= cur_start && (state->state & bits) == bits) {
1821 			total_bytes += min(search_end, state->end) + 1 -
1822 				       max(cur_start, state->start);
1823 			if (total_bytes >= max_bytes)
1824 				break;
1825 			if (!found) {
1826 				*start = max(cur_start, state->start);
1827 				found = 1;
1828 			}
1829 			last = state->end;
1830 		} else if (contig && found) {
1831 			break;
1832 		}
1833 		node = rb_next(node);
1834 		if (!node)
1835 			break;
1836 	}
1837 out:
1838 	spin_unlock(&tree->lock);
1839 	return total_bytes;
1840 }
1841 
1842 /*
1843  * set the private field for a given byte offset in the tree.  If there isn't
1844  * an extent_state there already, this does nothing.
1845  */
1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847 		struct io_failure_record *failrec)
1848 {
1849 	struct rb_node *node;
1850 	struct extent_state *state;
1851 	int ret = 0;
1852 
1853 	spin_lock(&tree->lock);
1854 	/*
1855 	 * this search will find all the extents that end after
1856 	 * our range starts.
1857 	 */
1858 	node = tree_search(tree, start);
1859 	if (!node) {
1860 		ret = -ENOENT;
1861 		goto out;
1862 	}
1863 	state = rb_entry(node, struct extent_state, rb_node);
1864 	if (state->start != start) {
1865 		ret = -ENOENT;
1866 		goto out;
1867 	}
1868 	state->failrec = failrec;
1869 out:
1870 	spin_unlock(&tree->lock);
1871 	return ret;
1872 }
1873 
1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875 		struct io_failure_record **failrec)
1876 {
1877 	struct rb_node *node;
1878 	struct extent_state *state;
1879 	int ret = 0;
1880 
1881 	spin_lock(&tree->lock);
1882 	/*
1883 	 * this search will find all the extents that end after
1884 	 * our range starts.
1885 	 */
1886 	node = tree_search(tree, start);
1887 	if (!node) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	state = rb_entry(node, struct extent_state, rb_node);
1892 	if (state->start != start) {
1893 		ret = -ENOENT;
1894 		goto out;
1895 	}
1896 	*failrec = state->failrec;
1897 out:
1898 	spin_unlock(&tree->lock);
1899 	return ret;
1900 }
1901 
1902 /*
1903  * searches a range in the state tree for a given mask.
1904  * If 'filled' == 1, this returns 1 only if every extent in the tree
1905  * has the bits set.  Otherwise, 1 is returned if any bit in the
1906  * range is found set.
1907  */
1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909 		   unsigned bits, int filled, struct extent_state *cached)
1910 {
1911 	struct extent_state *state = NULL;
1912 	struct rb_node *node;
1913 	int bitset = 0;
1914 
1915 	spin_lock(&tree->lock);
1916 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917 	    cached->end > start)
1918 		node = &cached->rb_node;
1919 	else
1920 		node = tree_search(tree, start);
1921 	while (node && start <= end) {
1922 		state = rb_entry(node, struct extent_state, rb_node);
1923 
1924 		if (filled && state->start > start) {
1925 			bitset = 0;
1926 			break;
1927 		}
1928 
1929 		if (state->start > end)
1930 			break;
1931 
1932 		if (state->state & bits) {
1933 			bitset = 1;
1934 			if (!filled)
1935 				break;
1936 		} else if (filled) {
1937 			bitset = 0;
1938 			break;
1939 		}
1940 
1941 		if (state->end == (u64)-1)
1942 			break;
1943 
1944 		start = state->end + 1;
1945 		if (start > end)
1946 			break;
1947 		node = rb_next(node);
1948 		if (!node) {
1949 			if (filled)
1950 				bitset = 0;
1951 			break;
1952 		}
1953 	}
1954 	spin_unlock(&tree->lock);
1955 	return bitset;
1956 }
1957 
1958 /*
1959  * helper function to set a given page up to date if all the
1960  * extents in the tree for that page are up to date
1961  */
1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963 {
1964 	u64 start = page_offset(page);
1965 	u64 end = start + PAGE_SIZE - 1;
1966 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967 		SetPageUptodate(page);
1968 }
1969 
1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971 {
1972 	int ret;
1973 	int err = 0;
1974 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975 
1976 	set_state_failrec(failure_tree, rec->start, NULL);
1977 	ret = clear_extent_bits(failure_tree, rec->start,
1978 				rec->start + rec->len - 1,
1979 				EXTENT_LOCKED | EXTENT_DIRTY);
1980 	if (ret)
1981 		err = ret;
1982 
1983 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 				rec->start + rec->len - 1,
1985 				EXTENT_DAMAGED);
1986 	if (ret && !err)
1987 		err = ret;
1988 
1989 	kfree(rec);
1990 	return err;
1991 }
1992 
1993 /*
1994  * this bypasses the standard btrfs submit functions deliberately, as
1995  * the standard behavior is to write all copies in a raid setup. here we only
1996  * want to write the one bad copy. so we do the mapping for ourselves and issue
1997  * submit_bio directly.
1998  * to avoid any synchronization issues, wait for the data after writing, which
1999  * actually prevents the read that triggered the error from finishing.
2000  * currently, there can be no more than two copies of every data bit. thus,
2001  * exactly one rewrite is required.
2002  */
2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 		      struct page *page, unsigned int pg_offset, int mirror_num)
2005 {
2006 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 	struct bio *bio;
2008 	struct btrfs_device *dev;
2009 	u64 map_length = 0;
2010 	u64 sector;
2011 	struct btrfs_bio *bbio = NULL;
2012 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013 	int ret;
2014 
2015 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016 	BUG_ON(!mirror_num);
2017 
2018 	/* we can't repair anything in raid56 yet */
2019 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 		return 0;
2021 
2022 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023 	if (!bio)
2024 		return -EIO;
2025 	bio->bi_iter.bi_size = 0;
2026 	map_length = length;
2027 
2028 	ret = btrfs_map_block(fs_info, WRITE, logical,
2029 			      &map_length, &bbio, mirror_num);
2030 	if (ret) {
2031 		bio_put(bio);
2032 		return -EIO;
2033 	}
2034 	BUG_ON(mirror_num != bbio->mirror_num);
2035 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2036 	bio->bi_iter.bi_sector = sector;
2037 	dev = bbio->stripes[mirror_num-1].dev;
2038 	btrfs_put_bbio(bbio);
2039 	if (!dev || !dev->bdev || !dev->writeable) {
2040 		bio_put(bio);
2041 		return -EIO;
2042 	}
2043 	bio->bi_bdev = dev->bdev;
2044 	bio_add_page(bio, page, length, pg_offset);
2045 
2046 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2047 		/* try to remap that extent elsewhere? */
2048 		bio_put(bio);
2049 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2050 		return -EIO;
2051 	}
2052 
2053 	btrfs_info_rl_in_rcu(fs_info,
2054 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2055 				  btrfs_ino(inode), start,
2056 				  rcu_str_deref(dev->name), sector);
2057 	bio_put(bio);
2058 	return 0;
2059 }
2060 
2061 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2062 			 int mirror_num)
2063 {
2064 	u64 start = eb->start;
2065 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 	int ret = 0;
2067 
2068 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2069 		return -EROFS;
2070 
2071 	for (i = 0; i < num_pages; i++) {
2072 		struct page *p = eb->pages[i];
2073 
2074 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2075 					PAGE_SIZE, start, p,
2076 					start - page_offset(p), mirror_num);
2077 		if (ret)
2078 			break;
2079 		start += PAGE_SIZE;
2080 	}
2081 
2082 	return ret;
2083 }
2084 
2085 /*
2086  * each time an IO finishes, we do a fast check in the IO failure tree
2087  * to see if we need to process or clean up an io_failure_record
2088  */
2089 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2090 		     unsigned int pg_offset)
2091 {
2092 	u64 private;
2093 	struct io_failure_record *failrec;
2094 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 	struct extent_state *state;
2096 	int num_copies;
2097 	int ret;
2098 
2099 	private = 0;
2100 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 				(u64)-1, 1, EXTENT_DIRTY, 0);
2102 	if (!ret)
2103 		return 0;
2104 
2105 	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2106 			&failrec);
2107 	if (ret)
2108 		return 0;
2109 
2110 	BUG_ON(!failrec->this_mirror);
2111 
2112 	if (failrec->in_validation) {
2113 		/* there was no real error, just free the record */
2114 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2115 			 failrec->start);
2116 		goto out;
2117 	}
2118 	if (fs_info->sb->s_flags & MS_RDONLY)
2119 		goto out;
2120 
2121 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2122 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2123 					    failrec->start,
2124 					    EXTENT_LOCKED);
2125 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2126 
2127 	if (state && state->start <= failrec->start &&
2128 	    state->end >= failrec->start + failrec->len - 1) {
2129 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 					      failrec->len);
2131 		if (num_copies > 1)  {
2132 			repair_io_failure(inode, start, failrec->len,
2133 					  failrec->logical, page,
2134 					  pg_offset, failrec->failed_mirror);
2135 		}
2136 	}
2137 
2138 out:
2139 	free_io_failure(inode, failrec);
2140 
2141 	return 0;
2142 }
2143 
2144 /*
2145  * Can be called when
2146  * - hold extent lock
2147  * - under ordered extent
2148  * - the inode is freeing
2149  */
2150 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2151 {
2152 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2153 	struct io_failure_record *failrec;
2154 	struct extent_state *state, *next;
2155 
2156 	if (RB_EMPTY_ROOT(&failure_tree->state))
2157 		return;
2158 
2159 	spin_lock(&failure_tree->lock);
2160 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 	while (state) {
2162 		if (state->start > end)
2163 			break;
2164 
2165 		ASSERT(state->end <= end);
2166 
2167 		next = next_state(state);
2168 
2169 		failrec = state->failrec;
2170 		free_extent_state(state);
2171 		kfree(failrec);
2172 
2173 		state = next;
2174 	}
2175 	spin_unlock(&failure_tree->lock);
2176 }
2177 
2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 		struct io_failure_record **failrec_ret)
2180 {
2181 	struct io_failure_record *failrec;
2182 	struct extent_map *em;
2183 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2184 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2185 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2186 	int ret;
2187 	u64 logical;
2188 
2189 	ret = get_state_failrec(failure_tree, start, &failrec);
2190 	if (ret) {
2191 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2192 		if (!failrec)
2193 			return -ENOMEM;
2194 
2195 		failrec->start = start;
2196 		failrec->len = end - start + 1;
2197 		failrec->this_mirror = 0;
2198 		failrec->bio_flags = 0;
2199 		failrec->in_validation = 0;
2200 
2201 		read_lock(&em_tree->lock);
2202 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2203 		if (!em) {
2204 			read_unlock(&em_tree->lock);
2205 			kfree(failrec);
2206 			return -EIO;
2207 		}
2208 
2209 		if (em->start > start || em->start + em->len <= start) {
2210 			free_extent_map(em);
2211 			em = NULL;
2212 		}
2213 		read_unlock(&em_tree->lock);
2214 		if (!em) {
2215 			kfree(failrec);
2216 			return -EIO;
2217 		}
2218 
2219 		logical = start - em->start;
2220 		logical = em->block_start + logical;
2221 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222 			logical = em->block_start;
2223 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224 			extent_set_compress_type(&failrec->bio_flags,
2225 						 em->compress_type);
2226 		}
2227 
2228 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2229 			 logical, start, failrec->len);
2230 
2231 		failrec->logical = logical;
2232 		free_extent_map(em);
2233 
2234 		/* set the bits in the private failure tree */
2235 		ret = set_extent_bits(failure_tree, start, end,
2236 					EXTENT_LOCKED | EXTENT_DIRTY);
2237 		if (ret >= 0)
2238 			ret = set_state_failrec(failure_tree, start, failrec);
2239 		/* set the bits in the inode's tree */
2240 		if (ret >= 0)
2241 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2242 		if (ret < 0) {
2243 			kfree(failrec);
2244 			return ret;
2245 		}
2246 	} else {
2247 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248 			 failrec->logical, failrec->start, failrec->len,
2249 			 failrec->in_validation);
2250 		/*
2251 		 * when data can be on disk more than twice, add to failrec here
2252 		 * (e.g. with a list for failed_mirror) to make
2253 		 * clean_io_failure() clean all those errors at once.
2254 		 */
2255 	}
2256 
2257 	*failrec_ret = failrec;
2258 
2259 	return 0;
2260 }
2261 
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 			   struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 	int num_copies;
2266 
2267 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 				      failrec->logical, failrec->len);
2269 	if (num_copies == 1) {
2270 		/*
2271 		 * we only have a single copy of the data, so don't bother with
2272 		 * all the retry and error correction code that follows. no
2273 		 * matter what the error is, it is very likely to persist.
2274 		 */
2275 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276 			 num_copies, failrec->this_mirror, failed_mirror);
2277 		return 0;
2278 	}
2279 
2280 	/*
2281 	 * there are two premises:
2282 	 *	a) deliver good data to the caller
2283 	 *	b) correct the bad sectors on disk
2284 	 */
2285 	if (failed_bio->bi_vcnt > 1) {
2286 		/*
2287 		 * to fulfill b), we need to know the exact failing sectors, as
2288 		 * we don't want to rewrite any more than the failed ones. thus,
2289 		 * we need separate read requests for the failed bio
2290 		 *
2291 		 * if the following BUG_ON triggers, our validation request got
2292 		 * merged. we need separate requests for our algorithm to work.
2293 		 */
2294 		BUG_ON(failrec->in_validation);
2295 		failrec->in_validation = 1;
2296 		failrec->this_mirror = failed_mirror;
2297 	} else {
2298 		/*
2299 		 * we're ready to fulfill a) and b) alongside. get a good copy
2300 		 * of the failed sector and if we succeed, we have setup
2301 		 * everything for repair_io_failure to do the rest for us.
2302 		 */
2303 		if (failrec->in_validation) {
2304 			BUG_ON(failrec->this_mirror != failed_mirror);
2305 			failrec->in_validation = 0;
2306 			failrec->this_mirror = 0;
2307 		}
2308 		failrec->failed_mirror = failed_mirror;
2309 		failrec->this_mirror++;
2310 		if (failrec->this_mirror == failed_mirror)
2311 			failrec->this_mirror++;
2312 	}
2313 
2314 	if (failrec->this_mirror > num_copies) {
2315 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316 			 num_copies, failrec->this_mirror, failed_mirror);
2317 		return 0;
2318 	}
2319 
2320 	return 1;
2321 }
2322 
2323 
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 				    struct io_failure_record *failrec,
2326 				    struct page *page, int pg_offset, int icsum,
2327 				    bio_end_io_t *endio_func, void *data)
2328 {
2329 	struct bio *bio;
2330 	struct btrfs_io_bio *btrfs_failed_bio;
2331 	struct btrfs_io_bio *btrfs_bio;
2332 
2333 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334 	if (!bio)
2335 		return NULL;
2336 
2337 	bio->bi_end_io = endio_func;
2338 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340 	bio->bi_iter.bi_size = 0;
2341 	bio->bi_private = data;
2342 
2343 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 	if (btrfs_failed_bio->csum) {
2345 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347 
2348 		btrfs_bio = btrfs_io_bio(bio);
2349 		btrfs_bio->csum = btrfs_bio->csum_inline;
2350 		icsum *= csum_size;
2351 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 		       csum_size);
2353 	}
2354 
2355 	bio_add_page(bio, page, failrec->len, pg_offset);
2356 
2357 	return bio;
2358 }
2359 
2360 /*
2361  * this is a generic handler for readpage errors (default
2362  * readpage_io_failed_hook). if other copies exist, read those and write back
2363  * good data to the failed position. does not investigate in remapping the
2364  * failed extent elsewhere, hoping the device will be smart enough to do this as
2365  * needed
2366  */
2367 
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 			      struct page *page, u64 start, u64 end,
2370 			      int failed_mirror)
2371 {
2372 	struct io_failure_record *failrec;
2373 	struct inode *inode = page->mapping->host;
2374 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 	struct bio *bio;
2376 	int read_mode;
2377 	int ret;
2378 
2379 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380 
2381 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 	if (!ret) {
2387 		free_io_failure(inode, failrec);
2388 		return -EIO;
2389 	}
2390 
2391 	if (failed_bio->bi_vcnt > 1)
2392 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 	else
2394 		read_mode = READ_SYNC;
2395 
2396 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 				      start - page_offset(page),
2399 				      (int)phy_offset, failed_bio->bi_end_io,
2400 				      NULL);
2401 	if (!bio) {
2402 		free_io_failure(inode, failrec);
2403 		return -EIO;
2404 	}
2405 
2406 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 		 read_mode, failrec->this_mirror, failrec->in_validation);
2408 
2409 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 					 failrec->this_mirror,
2411 					 failrec->bio_flags, 0);
2412 	if (ret) {
2413 		free_io_failure(inode, failrec);
2414 		bio_put(bio);
2415 	}
2416 
2417 	return ret;
2418 }
2419 
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421 
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424 	int uptodate = (err == 0);
2425 	struct extent_io_tree *tree;
2426 	int ret = 0;
2427 
2428 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2429 
2430 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 		ret = tree->ops->writepage_end_io_hook(page, start,
2432 					       end, NULL, uptodate);
2433 		if (ret)
2434 			uptodate = 0;
2435 	}
2436 
2437 	if (!uptodate) {
2438 		ClearPageUptodate(page);
2439 		SetPageError(page);
2440 		ret = ret < 0 ? ret : -EIO;
2441 		mapping_set_error(page->mapping, ret);
2442 	}
2443 }
2444 
2445 /*
2446  * after a writepage IO is done, we need to:
2447  * clear the uptodate bits on error
2448  * clear the writeback bits in the extent tree for this IO
2449  * end_page_writeback if the page has no more pending IO
2450  *
2451  * Scheduling is not allowed, so the extent state tree is expected
2452  * to have one and only one object corresponding to this IO.
2453  */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456 	struct bio_vec *bvec;
2457 	u64 start;
2458 	u64 end;
2459 	int i;
2460 
2461 	bio_for_each_segment_all(bvec, bio, i) {
2462 		struct page *page = bvec->bv_page;
2463 
2464 		/* We always issue full-page reads, but if some block
2465 		 * in a page fails to read, blk_update_request() will
2466 		 * advance bv_offset and adjust bv_len to compensate.
2467 		 * Print a warning for nonzero offsets, and an error
2468 		 * if they don't add up to a full page.  */
2469 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 				   "partial page write in btrfs with offset %u and length %u",
2473 					bvec->bv_offset, bvec->bv_len);
2474 			else
2475 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 				   "incomplete page write in btrfs with offset %u and "
2477 				   "length %u",
2478 					bvec->bv_offset, bvec->bv_len);
2479 		}
2480 
2481 		start = page_offset(page);
2482 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2483 
2484 		end_extent_writepage(page, bio->bi_error, start, end);
2485 		end_page_writeback(page);
2486 	}
2487 
2488 	bio_put(bio);
2489 }
2490 
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 			      int uptodate)
2494 {
2495 	struct extent_state *cached = NULL;
2496 	u64 end = start + len - 1;
2497 
2498 	if (uptodate && tree->track_uptodate)
2499 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502 
2503 /*
2504  * after a readpage IO is done, we need to:
2505  * clear the uptodate bits on error
2506  * set the uptodate bits if things worked
2507  * set the page up to date if all extents in the tree are uptodate
2508  * clear the lock bit in the extent tree
2509  * unlock the page if there are no other extents locked for it
2510  *
2511  * Scheduling is not allowed, so the extent state tree is expected
2512  * to have one and only one object corresponding to this IO.
2513  */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516 	struct bio_vec *bvec;
2517 	int uptodate = !bio->bi_error;
2518 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519 	struct extent_io_tree *tree;
2520 	u64 offset = 0;
2521 	u64 start;
2522 	u64 end;
2523 	u64 len;
2524 	u64 extent_start = 0;
2525 	u64 extent_len = 0;
2526 	int mirror;
2527 	int ret;
2528 	int i;
2529 
2530 	bio_for_each_segment_all(bvec, bio, i) {
2531 		struct page *page = bvec->bv_page;
2532 		struct inode *inode = page->mapping->host;
2533 
2534 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 			 bio->bi_error, io_bio->mirror_num);
2537 		tree = &BTRFS_I(inode)->io_tree;
2538 
2539 		/* We always issue full-page reads, but if some block
2540 		 * in a page fails to read, blk_update_request() will
2541 		 * advance bv_offset and adjust bv_len to compensate.
2542 		 * Print a warning for nonzero offsets, and an error
2543 		 * if they don't add up to a full page.  */
2544 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 				   "partial page read in btrfs with offset %u and length %u",
2548 					bvec->bv_offset, bvec->bv_len);
2549 			else
2550 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 				   "incomplete page read in btrfs with offset %u and "
2552 				   "length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 		}
2555 
2556 		start = page_offset(page);
2557 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 		len = bvec->bv_len;
2559 
2560 		mirror = io_bio->mirror_num;
2561 		if (likely(uptodate && tree->ops &&
2562 			   tree->ops->readpage_end_io_hook)) {
2563 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 							      page, start, end,
2565 							      mirror);
2566 			if (ret)
2567 				uptodate = 0;
2568 			else
2569 				clean_io_failure(inode, start, page, 0);
2570 		}
2571 
2572 		if (likely(uptodate))
2573 			goto readpage_ok;
2574 
2575 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 			if (!ret && !bio->bi_error)
2578 				uptodate = 1;
2579 		} else {
2580 			/*
2581 			 * The generic bio_readpage_error handles errors the
2582 			 * following way: If possible, new read requests are
2583 			 * created and submitted and will end up in
2584 			 * end_bio_extent_readpage as well (if we're lucky, not
2585 			 * in the !uptodate case). In that case it returns 0 and
2586 			 * we just go on with the next page in our bio. If it
2587 			 * can't handle the error it will return -EIO and we
2588 			 * remain responsible for that page.
2589 			 */
2590 			ret = bio_readpage_error(bio, offset, page, start, end,
2591 						 mirror);
2592 			if (ret == 0) {
2593 				uptodate = !bio->bi_error;
2594 				offset += len;
2595 				continue;
2596 			}
2597 		}
2598 readpage_ok:
2599 		if (likely(uptodate)) {
2600 			loff_t i_size = i_size_read(inode);
2601 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 			unsigned off;
2603 
2604 			/* Zero out the end if this page straddles i_size */
2605 			off = i_size & (PAGE_SIZE-1);
2606 			if (page->index == end_index && off)
2607 				zero_user_segment(page, off, PAGE_SIZE);
2608 			SetPageUptodate(page);
2609 		} else {
2610 			ClearPageUptodate(page);
2611 			SetPageError(page);
2612 		}
2613 		unlock_page(page);
2614 		offset += len;
2615 
2616 		if (unlikely(!uptodate)) {
2617 			if (extent_len) {
2618 				endio_readpage_release_extent(tree,
2619 							      extent_start,
2620 							      extent_len, 1);
2621 				extent_start = 0;
2622 				extent_len = 0;
2623 			}
2624 			endio_readpage_release_extent(tree, start,
2625 						      end - start + 1, 0);
2626 		} else if (!extent_len) {
2627 			extent_start = start;
2628 			extent_len = end + 1 - start;
2629 		} else if (extent_start + extent_len == start) {
2630 			extent_len += end + 1 - start;
2631 		} else {
2632 			endio_readpage_release_extent(tree, extent_start,
2633 						      extent_len, uptodate);
2634 			extent_start = start;
2635 			extent_len = end + 1 - start;
2636 		}
2637 	}
2638 
2639 	if (extent_len)
2640 		endio_readpage_release_extent(tree, extent_start, extent_len,
2641 					      uptodate);
2642 	if (io_bio->end_io)
2643 		io_bio->end_io(io_bio, bio->bi_error);
2644 	bio_put(bio);
2645 }
2646 
2647 /*
2648  * this allocates from the btrfs_bioset.  We're returning a bio right now
2649  * but you can call btrfs_io_bio for the appropriate container_of magic
2650  */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 		gfp_t gfp_flags)
2654 {
2655 	struct btrfs_io_bio *btrfs_bio;
2656 	struct bio *bio;
2657 
2658 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659 
2660 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661 		while (!bio && (nr_vecs /= 2)) {
2662 			bio = bio_alloc_bioset(gfp_flags,
2663 					       nr_vecs, btrfs_bioset);
2664 		}
2665 	}
2666 
2667 	if (bio) {
2668 		bio->bi_bdev = bdev;
2669 		bio->bi_iter.bi_sector = first_sector;
2670 		btrfs_bio = btrfs_io_bio(bio);
2671 		btrfs_bio->csum = NULL;
2672 		btrfs_bio->csum_allocated = NULL;
2673 		btrfs_bio->end_io = NULL;
2674 	}
2675 	return bio;
2676 }
2677 
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680 	struct btrfs_io_bio *btrfs_bio;
2681 	struct bio *new;
2682 
2683 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 	if (new) {
2685 		btrfs_bio = btrfs_io_bio(new);
2686 		btrfs_bio->csum = NULL;
2687 		btrfs_bio->csum_allocated = NULL;
2688 		btrfs_bio->end_io = NULL;
2689 
2690 #ifdef CONFIG_BLK_CGROUP
2691 		/* FIXME, put this into bio_clone_bioset */
2692 		if (bio->bi_css)
2693 			bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695 	}
2696 	return new;
2697 }
2698 
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702 	struct btrfs_io_bio *btrfs_bio;
2703 	struct bio *bio;
2704 
2705 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 	if (bio) {
2707 		btrfs_bio = btrfs_io_bio(bio);
2708 		btrfs_bio->csum = NULL;
2709 		btrfs_bio->csum_allocated = NULL;
2710 		btrfs_bio->end_io = NULL;
2711 	}
2712 	return bio;
2713 }
2714 
2715 
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 				       int mirror_num, unsigned long bio_flags)
2718 {
2719 	int ret = 0;
2720 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 	struct page *page = bvec->bv_page;
2722 	struct extent_io_tree *tree = bio->bi_private;
2723 	u64 start;
2724 
2725 	start = page_offset(page) + bvec->bv_offset;
2726 
2727 	bio->bi_private = NULL;
2728 
2729 	bio_get(bio);
2730 
2731 	if (tree->ops && tree->ops->submit_bio_hook)
2732 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733 					   mirror_num, bio_flags, start);
2734 	else
2735 		btrfsic_submit_bio(rw, bio);
2736 
2737 	bio_put(bio);
2738 	return ret;
2739 }
2740 
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742 		     unsigned long offset, size_t size, struct bio *bio,
2743 		     unsigned long bio_flags)
2744 {
2745 	int ret = 0;
2746 	if (tree->ops && tree->ops->merge_bio_hook)
2747 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748 						bio_flags);
2749 	BUG_ON(ret < 0);
2750 	return ret;
2751 
2752 }
2753 
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755 			      struct writeback_control *wbc,
2756 			      struct page *page, sector_t sector,
2757 			      size_t size, unsigned long offset,
2758 			      struct block_device *bdev,
2759 			      struct bio **bio_ret,
2760 			      unsigned long max_pages,
2761 			      bio_end_io_t end_io_func,
2762 			      int mirror_num,
2763 			      unsigned long prev_bio_flags,
2764 			      unsigned long bio_flags,
2765 			      bool force_bio_submit)
2766 {
2767 	int ret = 0;
2768 	struct bio *bio;
2769 	int contig = 0;
2770 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772 
2773 	if (bio_ret && *bio_ret) {
2774 		bio = *bio_ret;
2775 		if (old_compressed)
2776 			contig = bio->bi_iter.bi_sector == sector;
2777 		else
2778 			contig = bio_end_sector(bio) == sector;
2779 
2780 		if (prev_bio_flags != bio_flags || !contig ||
2781 		    force_bio_submit ||
2782 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2784 			ret = submit_one_bio(rw, bio, mirror_num,
2785 					     prev_bio_flags);
2786 			if (ret < 0) {
2787 				*bio_ret = NULL;
2788 				return ret;
2789 			}
2790 			bio = NULL;
2791 		} else {
2792 			if (wbc)
2793 				wbc_account_io(wbc, page, page_size);
2794 			return 0;
2795 		}
2796 	}
2797 
2798 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 			GFP_NOFS | __GFP_HIGH);
2800 	if (!bio)
2801 		return -ENOMEM;
2802 
2803 	bio_add_page(bio, page, page_size, offset);
2804 	bio->bi_end_io = end_io_func;
2805 	bio->bi_private = tree;
2806 	if (wbc) {
2807 		wbc_init_bio(wbc, bio);
2808 		wbc_account_io(wbc, page, page_size);
2809 	}
2810 
2811 	if (bio_ret)
2812 		*bio_ret = bio;
2813 	else
2814 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815 
2816 	return ret;
2817 }
2818 
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 				      struct page *page)
2821 {
2822 	if (!PagePrivate(page)) {
2823 		SetPagePrivate(page);
2824 		get_page(page);
2825 		set_page_private(page, (unsigned long)eb);
2826 	} else {
2827 		WARN_ON(page->private != (unsigned long)eb);
2828 	}
2829 }
2830 
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 	if (!PagePrivate(page)) {
2834 		SetPagePrivate(page);
2835 		get_page(page);
2836 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 	}
2838 }
2839 
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 		 u64 start, u64 len, get_extent_t *get_extent,
2843 		 struct extent_map **em_cached)
2844 {
2845 	struct extent_map *em;
2846 
2847 	if (em_cached && *em_cached) {
2848 		em = *em_cached;
2849 		if (extent_map_in_tree(em) && start >= em->start &&
2850 		    start < extent_map_end(em)) {
2851 			atomic_inc(&em->refs);
2852 			return em;
2853 		}
2854 
2855 		free_extent_map(em);
2856 		*em_cached = NULL;
2857 	}
2858 
2859 	em = get_extent(inode, page, pg_offset, start, len, 0);
2860 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 		BUG_ON(*em_cached);
2862 		atomic_inc(&em->refs);
2863 		*em_cached = em;
2864 	}
2865 	return em;
2866 }
2867 /*
2868  * basic readpage implementation.  Locked extent state structs are inserted
2869  * into the tree that are removed when the IO is done (by the end_io
2870  * handlers)
2871  * XXX JDM: This needs looking at to ensure proper page locking
2872  */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874 			 struct page *page,
2875 			 get_extent_t *get_extent,
2876 			 struct extent_map **em_cached,
2877 			 struct bio **bio, int mirror_num,
2878 			 unsigned long *bio_flags, int rw,
2879 			 u64 *prev_em_start)
2880 {
2881 	struct inode *inode = page->mapping->host;
2882 	u64 start = page_offset(page);
2883 	u64 page_end = start + PAGE_SIZE - 1;
2884 	u64 end;
2885 	u64 cur = start;
2886 	u64 extent_offset;
2887 	u64 last_byte = i_size_read(inode);
2888 	u64 block_start;
2889 	u64 cur_end;
2890 	sector_t sector;
2891 	struct extent_map *em;
2892 	struct block_device *bdev;
2893 	int ret;
2894 	int nr = 0;
2895 	size_t pg_offset = 0;
2896 	size_t iosize;
2897 	size_t disk_io_size;
2898 	size_t blocksize = inode->i_sb->s_blocksize;
2899 	unsigned long this_bio_flag = 0;
2900 
2901 	set_page_extent_mapped(page);
2902 
2903 	end = page_end;
2904 	if (!PageUptodate(page)) {
2905 		if (cleancache_get_page(page) == 0) {
2906 			BUG_ON(blocksize != PAGE_SIZE);
2907 			unlock_extent(tree, start, end);
2908 			goto out;
2909 		}
2910 	}
2911 
2912 	if (page->index == last_byte >> PAGE_SHIFT) {
2913 		char *userpage;
2914 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915 
2916 		if (zero_offset) {
2917 			iosize = PAGE_SIZE - zero_offset;
2918 			userpage = kmap_atomic(page);
2919 			memset(userpage + zero_offset, 0, iosize);
2920 			flush_dcache_page(page);
2921 			kunmap_atomic(userpage);
2922 		}
2923 	}
2924 	while (cur <= end) {
2925 		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926 		bool force_bio_submit = false;
2927 
2928 		if (cur >= last_byte) {
2929 			char *userpage;
2930 			struct extent_state *cached = NULL;
2931 
2932 			iosize = PAGE_SIZE - pg_offset;
2933 			userpage = kmap_atomic(page);
2934 			memset(userpage + pg_offset, 0, iosize);
2935 			flush_dcache_page(page);
2936 			kunmap_atomic(userpage);
2937 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 					    &cached, GFP_NOFS);
2939 			unlock_extent_cached(tree, cur,
2940 					     cur + iosize - 1,
2941 					     &cached, GFP_NOFS);
2942 			break;
2943 		}
2944 		em = __get_extent_map(inode, page, pg_offset, cur,
2945 				      end - cur + 1, get_extent, em_cached);
2946 		if (IS_ERR_OR_NULL(em)) {
2947 			SetPageError(page);
2948 			unlock_extent(tree, cur, end);
2949 			break;
2950 		}
2951 		extent_offset = cur - em->start;
2952 		BUG_ON(extent_map_end(em) <= cur);
2953 		BUG_ON(end < cur);
2954 
2955 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 			extent_set_compress_type(&this_bio_flag,
2958 						 em->compress_type);
2959 		}
2960 
2961 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 		cur_end = min(extent_map_end(em) - 1, end);
2963 		iosize = ALIGN(iosize, blocksize);
2964 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 			disk_io_size = em->block_len;
2966 			sector = em->block_start >> 9;
2967 		} else {
2968 			sector = (em->block_start + extent_offset) >> 9;
2969 			disk_io_size = iosize;
2970 		}
2971 		bdev = em->bdev;
2972 		block_start = em->block_start;
2973 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 			block_start = EXTENT_MAP_HOLE;
2975 
2976 		/*
2977 		 * If we have a file range that points to a compressed extent
2978 		 * and it's followed by a consecutive file range that points to
2979 		 * to the same compressed extent (possibly with a different
2980 		 * offset and/or length, so it either points to the whole extent
2981 		 * or only part of it), we must make sure we do not submit a
2982 		 * single bio to populate the pages for the 2 ranges because
2983 		 * this makes the compressed extent read zero out the pages
2984 		 * belonging to the 2nd range. Imagine the following scenario:
2985 		 *
2986 		 *  File layout
2987 		 *  [0 - 8K]                     [8K - 24K]
2988 		 *    |                               |
2989 		 *    |                               |
2990 		 * points to extent X,         points to extent X,
2991 		 * offset 4K, length of 8K     offset 0, length 16K
2992 		 *
2993 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 		 *
2995 		 * If the bio to read the compressed extent covers both ranges,
2996 		 * it will decompress extent X into the pages belonging to the
2997 		 * first range and then it will stop, zeroing out the remaining
2998 		 * pages that belong to the other range that points to extent X.
2999 		 * So here we make sure we submit 2 bios, one for the first
3000 		 * range and another one for the third range. Both will target
3001 		 * the same physical extent from disk, but we can't currently
3002 		 * make the compressed bio endio callback populate the pages
3003 		 * for both ranges because each compressed bio is tightly
3004 		 * coupled with a single extent map, and each range can have
3005 		 * an extent map with a different offset value relative to the
3006 		 * uncompressed data of our extent and different lengths. This
3007 		 * is a corner case so we prioritize correctness over
3008 		 * non-optimal behavior (submitting 2 bios for the same extent).
3009 		 */
3010 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 		    prev_em_start && *prev_em_start != (u64)-1 &&
3012 		    *prev_em_start != em->orig_start)
3013 			force_bio_submit = true;
3014 
3015 		if (prev_em_start)
3016 			*prev_em_start = em->orig_start;
3017 
3018 		free_extent_map(em);
3019 		em = NULL;
3020 
3021 		/* we've found a hole, just zero and go on */
3022 		if (block_start == EXTENT_MAP_HOLE) {
3023 			char *userpage;
3024 			struct extent_state *cached = NULL;
3025 
3026 			userpage = kmap_atomic(page);
3027 			memset(userpage + pg_offset, 0, iosize);
3028 			flush_dcache_page(page);
3029 			kunmap_atomic(userpage);
3030 
3031 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 					    &cached, GFP_NOFS);
3033 			unlock_extent_cached(tree, cur,
3034 					     cur + iosize - 1,
3035 					     &cached, GFP_NOFS);
3036 			cur = cur + iosize;
3037 			pg_offset += iosize;
3038 			continue;
3039 		}
3040 		/* the get_extent function already copied into the page */
3041 		if (test_range_bit(tree, cur, cur_end,
3042 				   EXTENT_UPTODATE, 1, NULL)) {
3043 			check_page_uptodate(tree, page);
3044 			unlock_extent(tree, cur, cur + iosize - 1);
3045 			cur = cur + iosize;
3046 			pg_offset += iosize;
3047 			continue;
3048 		}
3049 		/* we have an inline extent but it didn't get marked up
3050 		 * to date.  Error out
3051 		 */
3052 		if (block_start == EXTENT_MAP_INLINE) {
3053 			SetPageError(page);
3054 			unlock_extent(tree, cur, cur + iosize - 1);
3055 			cur = cur + iosize;
3056 			pg_offset += iosize;
3057 			continue;
3058 		}
3059 
3060 		pnr -= page->index;
3061 		ret = submit_extent_page(rw, tree, NULL, page,
3062 					 sector, disk_io_size, pg_offset,
3063 					 bdev, bio, pnr,
3064 					 end_bio_extent_readpage, mirror_num,
3065 					 *bio_flags,
3066 					 this_bio_flag,
3067 					 force_bio_submit);
3068 		if (!ret) {
3069 			nr++;
3070 			*bio_flags = this_bio_flag;
3071 		} else {
3072 			SetPageError(page);
3073 			unlock_extent(tree, cur, cur + iosize - 1);
3074 		}
3075 		cur = cur + iosize;
3076 		pg_offset += iosize;
3077 	}
3078 out:
3079 	if (!nr) {
3080 		if (!PageError(page))
3081 			SetPageUptodate(page);
3082 		unlock_page(page);
3083 	}
3084 	return 0;
3085 }
3086 
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 					     struct page *pages[], int nr_pages,
3089 					     u64 start, u64 end,
3090 					     get_extent_t *get_extent,
3091 					     struct extent_map **em_cached,
3092 					     struct bio **bio, int mirror_num,
3093 					     unsigned long *bio_flags, int rw,
3094 					     u64 *prev_em_start)
3095 {
3096 	struct inode *inode;
3097 	struct btrfs_ordered_extent *ordered;
3098 	int index;
3099 
3100 	inode = pages[0]->mapping->host;
3101 	while (1) {
3102 		lock_extent(tree, start, end);
3103 		ordered = btrfs_lookup_ordered_range(inode, start,
3104 						     end - start + 1);
3105 		if (!ordered)
3106 			break;
3107 		unlock_extent(tree, start, end);
3108 		btrfs_start_ordered_extent(inode, ordered, 1);
3109 		btrfs_put_ordered_extent(ordered);
3110 	}
3111 
3112 	for (index = 0; index < nr_pages; index++) {
3113 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 			      mirror_num, bio_flags, rw, prev_em_start);
3115 		put_page(pages[index]);
3116 	}
3117 }
3118 
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 			       struct page *pages[],
3121 			       int nr_pages, get_extent_t *get_extent,
3122 			       struct extent_map **em_cached,
3123 			       struct bio **bio, int mirror_num,
3124 			       unsigned long *bio_flags, int rw,
3125 			       u64 *prev_em_start)
3126 {
3127 	u64 start = 0;
3128 	u64 end = 0;
3129 	u64 page_start;
3130 	int index;
3131 	int first_index = 0;
3132 
3133 	for (index = 0; index < nr_pages; index++) {
3134 		page_start = page_offset(pages[index]);
3135 		if (!end) {
3136 			start = page_start;
3137 			end = start + PAGE_SIZE - 1;
3138 			first_index = index;
3139 		} else if (end + 1 == page_start) {
3140 			end += PAGE_SIZE;
3141 		} else {
3142 			__do_contiguous_readpages(tree, &pages[first_index],
3143 						  index - first_index, start,
3144 						  end, get_extent, em_cached,
3145 						  bio, mirror_num, bio_flags,
3146 						  rw, prev_em_start);
3147 			start = page_start;
3148 			end = start + PAGE_SIZE - 1;
3149 			first_index = index;
3150 		}
3151 	}
3152 
3153 	if (end)
3154 		__do_contiguous_readpages(tree, &pages[first_index],
3155 					  index - first_index, start,
3156 					  end, get_extent, em_cached, bio,
3157 					  mirror_num, bio_flags, rw,
3158 					  prev_em_start);
3159 }
3160 
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 				   struct page *page,
3163 				   get_extent_t *get_extent,
3164 				   struct bio **bio, int mirror_num,
3165 				   unsigned long *bio_flags, int rw)
3166 {
3167 	struct inode *inode = page->mapping->host;
3168 	struct btrfs_ordered_extent *ordered;
3169 	u64 start = page_offset(page);
3170 	u64 end = start + PAGE_SIZE - 1;
3171 	int ret;
3172 
3173 	while (1) {
3174 		lock_extent(tree, start, end);
3175 		ordered = btrfs_lookup_ordered_range(inode, start,
3176 						PAGE_SIZE);
3177 		if (!ordered)
3178 			break;
3179 		unlock_extent(tree, start, end);
3180 		btrfs_start_ordered_extent(inode, ordered, 1);
3181 		btrfs_put_ordered_extent(ordered);
3182 	}
3183 
3184 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 			    bio_flags, rw, NULL);
3186 	return ret;
3187 }
3188 
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 			    get_extent_t *get_extent, int mirror_num)
3191 {
3192 	struct bio *bio = NULL;
3193 	unsigned long bio_flags = 0;
3194 	int ret;
3195 
3196 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 				      &bio_flags, READ);
3198 	if (bio)
3199 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200 	return ret;
3201 }
3202 
3203 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3204 			      unsigned long nr_written)
3205 {
3206 	wbc->nr_to_write -= nr_written;
3207 }
3208 
3209 /*
3210  * helper for __extent_writepage, doing all of the delayed allocation setup.
3211  *
3212  * This returns 1 if our fill_delalloc function did all the work required
3213  * to write the page (copy into inline extent).  In this case the IO has
3214  * been started and the page is already unlocked.
3215  *
3216  * This returns 0 if all went well (page still locked)
3217  * This returns < 0 if there were errors (page still locked)
3218  */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 			      struct page *page, struct writeback_control *wbc,
3221 			      struct extent_page_data *epd,
3222 			      u64 delalloc_start,
3223 			      unsigned long *nr_written)
3224 {
3225 	struct extent_io_tree *tree = epd->tree;
3226 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227 	u64 nr_delalloc;
3228 	u64 delalloc_to_write = 0;
3229 	u64 delalloc_end = 0;
3230 	int ret;
3231 	int page_started = 0;
3232 
3233 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 		return 0;
3235 
3236 	while (delalloc_end < page_end) {
3237 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 					       page,
3239 					       &delalloc_start,
3240 					       &delalloc_end,
3241 					       BTRFS_MAX_EXTENT_SIZE);
3242 		if (nr_delalloc == 0) {
3243 			delalloc_start = delalloc_end + 1;
3244 			continue;
3245 		}
3246 		ret = tree->ops->fill_delalloc(inode, page,
3247 					       delalloc_start,
3248 					       delalloc_end,
3249 					       &page_started,
3250 					       nr_written);
3251 		/* File system has been set read-only */
3252 		if (ret) {
3253 			SetPageError(page);
3254 			/* fill_delalloc should be return < 0 for error
3255 			 * but just in case, we use > 0 here meaning the
3256 			 * IO is started, so we don't want to return > 0
3257 			 * unless things are going well.
3258 			 */
3259 			ret = ret < 0 ? ret : -EIO;
3260 			goto done;
3261 		}
3262 		/*
3263 		 * delalloc_end is already one less than the total length, so
3264 		 * we don't subtract one from PAGE_SIZE
3265 		 */
3266 		delalloc_to_write += (delalloc_end - delalloc_start +
3267 				      PAGE_SIZE) >> PAGE_SHIFT;
3268 		delalloc_start = delalloc_end + 1;
3269 	}
3270 	if (wbc->nr_to_write < delalloc_to_write) {
3271 		int thresh = 8192;
3272 
3273 		if (delalloc_to_write < thresh * 2)
3274 			thresh = delalloc_to_write;
3275 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 					 thresh);
3277 	}
3278 
3279 	/* did the fill delalloc function already unlock and start
3280 	 * the IO?
3281 	 */
3282 	if (page_started) {
3283 		/*
3284 		 * we've unlocked the page, so we can't update
3285 		 * the mapping's writeback index, just update
3286 		 * nr_to_write.
3287 		 */
3288 		wbc->nr_to_write -= *nr_written;
3289 		return 1;
3290 	}
3291 
3292 	ret = 0;
3293 
3294 done:
3295 	return ret;
3296 }
3297 
3298 /*
3299  * helper for __extent_writepage.  This calls the writepage start hooks,
3300  * and does the loop to map the page into extents and bios.
3301  *
3302  * We return 1 if the IO is started and the page is unlocked,
3303  * 0 if all went well (page still locked)
3304  * < 0 if there were errors (page still locked)
3305  */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 				 struct page *page,
3308 				 struct writeback_control *wbc,
3309 				 struct extent_page_data *epd,
3310 				 loff_t i_size,
3311 				 unsigned long nr_written,
3312 				 int write_flags, int *nr_ret)
3313 {
3314 	struct extent_io_tree *tree = epd->tree;
3315 	u64 start = page_offset(page);
3316 	u64 page_end = start + PAGE_SIZE - 1;
3317 	u64 end;
3318 	u64 cur = start;
3319 	u64 extent_offset;
3320 	u64 block_start;
3321 	u64 iosize;
3322 	sector_t sector;
3323 	struct extent_state *cached_state = NULL;
3324 	struct extent_map *em;
3325 	struct block_device *bdev;
3326 	size_t pg_offset = 0;
3327 	size_t blocksize;
3328 	int ret = 0;
3329 	int nr = 0;
3330 	bool compressed;
3331 
3332 	if (tree->ops && tree->ops->writepage_start_hook) {
3333 		ret = tree->ops->writepage_start_hook(page, start,
3334 						      page_end);
3335 		if (ret) {
3336 			/* Fixup worker will requeue */
3337 			if (ret == -EBUSY)
3338 				wbc->pages_skipped++;
3339 			else
3340 				redirty_page_for_writepage(wbc, page);
3341 
3342 			update_nr_written(page, wbc, nr_written);
3343 			unlock_page(page);
3344 			ret = 1;
3345 			goto done_unlocked;
3346 		}
3347 	}
3348 
3349 	/*
3350 	 * we don't want to touch the inode after unlocking the page,
3351 	 * so we update the mapping writeback index now
3352 	 */
3353 	update_nr_written(page, wbc, nr_written + 1);
3354 
3355 	end = page_end;
3356 	if (i_size <= start) {
3357 		if (tree->ops && tree->ops->writepage_end_io_hook)
3358 			tree->ops->writepage_end_io_hook(page, start,
3359 							 page_end, NULL, 1);
3360 		goto done;
3361 	}
3362 
3363 	blocksize = inode->i_sb->s_blocksize;
3364 
3365 	while (cur <= end) {
3366 		u64 em_end;
3367 		unsigned long max_nr;
3368 
3369 		if (cur >= i_size) {
3370 			if (tree->ops && tree->ops->writepage_end_io_hook)
3371 				tree->ops->writepage_end_io_hook(page, cur,
3372 							 page_end, NULL, 1);
3373 			break;
3374 		}
3375 		em = epd->get_extent(inode, page, pg_offset, cur,
3376 				     end - cur + 1, 1);
3377 		if (IS_ERR_OR_NULL(em)) {
3378 			SetPageError(page);
3379 			ret = PTR_ERR_OR_ZERO(em);
3380 			break;
3381 		}
3382 
3383 		extent_offset = cur - em->start;
3384 		em_end = extent_map_end(em);
3385 		BUG_ON(em_end <= cur);
3386 		BUG_ON(end < cur);
3387 		iosize = min(em_end - cur, end - cur + 1);
3388 		iosize = ALIGN(iosize, blocksize);
3389 		sector = (em->block_start + extent_offset) >> 9;
3390 		bdev = em->bdev;
3391 		block_start = em->block_start;
3392 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3393 		free_extent_map(em);
3394 		em = NULL;
3395 
3396 		/*
3397 		 * compressed and inline extents are written through other
3398 		 * paths in the FS
3399 		 */
3400 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3401 		    block_start == EXTENT_MAP_INLINE) {
3402 			/*
3403 			 * end_io notification does not happen here for
3404 			 * compressed extents
3405 			 */
3406 			if (!compressed && tree->ops &&
3407 			    tree->ops->writepage_end_io_hook)
3408 				tree->ops->writepage_end_io_hook(page, cur,
3409 							 cur + iosize - 1,
3410 							 NULL, 1);
3411 			else if (compressed) {
3412 				/* we don't want to end_page_writeback on
3413 				 * a compressed extent.  this happens
3414 				 * elsewhere
3415 				 */
3416 				nr++;
3417 			}
3418 
3419 			cur += iosize;
3420 			pg_offset += iosize;
3421 			continue;
3422 		}
3423 
3424 		max_nr = (i_size >> PAGE_SHIFT) + 1;
3425 
3426 		set_range_writeback(tree, cur, cur + iosize - 1);
3427 		if (!PageWriteback(page)) {
3428 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3429 				   "page %lu not writeback, cur %llu end %llu",
3430 			       page->index, cur, end);
3431 		}
3432 
3433 		ret = submit_extent_page(write_flags, tree, wbc, page,
3434 					 sector, iosize, pg_offset,
3435 					 bdev, &epd->bio, max_nr,
3436 					 end_bio_extent_writepage,
3437 					 0, 0, 0, false);
3438 		if (ret)
3439 			SetPageError(page);
3440 
3441 		cur = cur + iosize;
3442 		pg_offset += iosize;
3443 		nr++;
3444 	}
3445 done:
3446 	*nr_ret = nr;
3447 
3448 done_unlocked:
3449 
3450 	/* drop our reference on any cached states */
3451 	free_extent_state(cached_state);
3452 	return ret;
3453 }
3454 
3455 /*
3456  * the writepage semantics are similar to regular writepage.  extent
3457  * records are inserted to lock ranges in the tree, and as dirty areas
3458  * are found, they are marked writeback.  Then the lock bits are removed
3459  * and the end_io handler clears the writeback ranges
3460  */
3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 			      void *data)
3463 {
3464 	struct inode *inode = page->mapping->host;
3465 	struct extent_page_data *epd = data;
3466 	u64 start = page_offset(page);
3467 	u64 page_end = start + PAGE_SIZE - 1;
3468 	int ret;
3469 	int nr = 0;
3470 	size_t pg_offset = 0;
3471 	loff_t i_size = i_size_read(inode);
3472 	unsigned long end_index = i_size >> PAGE_SHIFT;
3473 	int write_flags;
3474 	unsigned long nr_written = 0;
3475 
3476 	if (wbc->sync_mode == WB_SYNC_ALL)
3477 		write_flags = WRITE_SYNC;
3478 	else
3479 		write_flags = WRITE;
3480 
3481 	trace___extent_writepage(page, inode, wbc);
3482 
3483 	WARN_ON(!PageLocked(page));
3484 
3485 	ClearPageError(page);
3486 
3487 	pg_offset = i_size & (PAGE_SIZE - 1);
3488 	if (page->index > end_index ||
3489 	   (page->index == end_index && !pg_offset)) {
3490 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3491 		unlock_page(page);
3492 		return 0;
3493 	}
3494 
3495 	if (page->index == end_index) {
3496 		char *userpage;
3497 
3498 		userpage = kmap_atomic(page);
3499 		memset(userpage + pg_offset, 0,
3500 		       PAGE_SIZE - pg_offset);
3501 		kunmap_atomic(userpage);
3502 		flush_dcache_page(page);
3503 	}
3504 
3505 	pg_offset = 0;
3506 
3507 	set_page_extent_mapped(page);
3508 
3509 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3510 	if (ret == 1)
3511 		goto done_unlocked;
3512 	if (ret)
3513 		goto done;
3514 
3515 	ret = __extent_writepage_io(inode, page, wbc, epd,
3516 				    i_size, nr_written, write_flags, &nr);
3517 	if (ret == 1)
3518 		goto done_unlocked;
3519 
3520 done:
3521 	if (nr == 0) {
3522 		/* make sure the mapping tag for page dirty gets cleared */
3523 		set_page_writeback(page);
3524 		end_page_writeback(page);
3525 	}
3526 	if (PageError(page)) {
3527 		ret = ret < 0 ? ret : -EIO;
3528 		end_extent_writepage(page, ret, start, page_end);
3529 	}
3530 	unlock_page(page);
3531 	return ret;
3532 
3533 done_unlocked:
3534 	return 0;
3535 }
3536 
3537 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3538 {
3539 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3540 		       TASK_UNINTERRUPTIBLE);
3541 }
3542 
3543 static noinline_for_stack int
3544 lock_extent_buffer_for_io(struct extent_buffer *eb,
3545 			  struct btrfs_fs_info *fs_info,
3546 			  struct extent_page_data *epd)
3547 {
3548 	unsigned long i, num_pages;
3549 	int flush = 0;
3550 	int ret = 0;
3551 
3552 	if (!btrfs_try_tree_write_lock(eb)) {
3553 		flush = 1;
3554 		flush_write_bio(epd);
3555 		btrfs_tree_lock(eb);
3556 	}
3557 
3558 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3559 		btrfs_tree_unlock(eb);
3560 		if (!epd->sync_io)
3561 			return 0;
3562 		if (!flush) {
3563 			flush_write_bio(epd);
3564 			flush = 1;
3565 		}
3566 		while (1) {
3567 			wait_on_extent_buffer_writeback(eb);
3568 			btrfs_tree_lock(eb);
3569 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3570 				break;
3571 			btrfs_tree_unlock(eb);
3572 		}
3573 	}
3574 
3575 	/*
3576 	 * We need to do this to prevent races in people who check if the eb is
3577 	 * under IO since we can end up having no IO bits set for a short period
3578 	 * of time.
3579 	 */
3580 	spin_lock(&eb->refs_lock);
3581 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3582 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3583 		spin_unlock(&eb->refs_lock);
3584 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3585 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3586 				     -eb->len,
3587 				     fs_info->dirty_metadata_batch);
3588 		ret = 1;
3589 	} else {
3590 		spin_unlock(&eb->refs_lock);
3591 	}
3592 
3593 	btrfs_tree_unlock(eb);
3594 
3595 	if (!ret)
3596 		return ret;
3597 
3598 	num_pages = num_extent_pages(eb->start, eb->len);
3599 	for (i = 0; i < num_pages; i++) {
3600 		struct page *p = eb->pages[i];
3601 
3602 		if (!trylock_page(p)) {
3603 			if (!flush) {
3604 				flush_write_bio(epd);
3605 				flush = 1;
3606 			}
3607 			lock_page(p);
3608 		}
3609 	}
3610 
3611 	return ret;
3612 }
3613 
3614 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615 {
3616 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3617 	smp_mb__after_atomic();
3618 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3619 }
3620 
3621 static void set_btree_ioerr(struct page *page)
3622 {
3623 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3624 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3625 
3626 	SetPageError(page);
3627 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3628 		return;
3629 
3630 	/*
3631 	 * If writeback for a btree extent that doesn't belong to a log tree
3632 	 * failed, increment the counter transaction->eb_write_errors.
3633 	 * We do this because while the transaction is running and before it's
3634 	 * committing (when we call filemap_fdata[write|wait]_range against
3635 	 * the btree inode), we might have
3636 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3637 	 * returns an error or an error happens during writeback, when we're
3638 	 * committing the transaction we wouldn't know about it, since the pages
3639 	 * can be no longer dirty nor marked anymore for writeback (if a
3640 	 * subsequent modification to the extent buffer didn't happen before the
3641 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3642 	 * able to find the pages tagged with SetPageError at transaction
3643 	 * commit time. So if this happens we must abort the transaction,
3644 	 * otherwise we commit a super block with btree roots that point to
3645 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3646 	 * or the content of some node/leaf from a past generation that got
3647 	 * cowed or deleted and is no longer valid.
3648 	 *
3649 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3650 	 * not be enough - we need to distinguish between log tree extents vs
3651 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3652 	 * will catch and clear such errors in the mapping - and that call might
3653 	 * be from a log sync and not from a transaction commit. Also, checking
3654 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3655 	 * not done and would not be reliable - the eb might have been released
3656 	 * from memory and reading it back again means that flag would not be
3657 	 * set (since it's a runtime flag, not persisted on disk).
3658 	 *
3659 	 * Using the flags below in the btree inode also makes us achieve the
3660 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3661 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3662 	 * is called, the writeback for all dirty pages had already finished
3663 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3664 	 * filemap_fdatawait_range() would return success, as it could not know
3665 	 * that writeback errors happened (the pages were no longer tagged for
3666 	 * writeback).
3667 	 */
3668 	switch (eb->log_index) {
3669 	case -1:
3670 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3671 		break;
3672 	case 0:
3673 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3674 		break;
3675 	case 1:
3676 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3677 		break;
3678 	default:
3679 		BUG(); /* unexpected, logic error */
3680 	}
3681 }
3682 
3683 static void end_bio_extent_buffer_writepage(struct bio *bio)
3684 {
3685 	struct bio_vec *bvec;
3686 	struct extent_buffer *eb;
3687 	int i, done;
3688 
3689 	bio_for_each_segment_all(bvec, bio, i) {
3690 		struct page *page = bvec->bv_page;
3691 
3692 		eb = (struct extent_buffer *)page->private;
3693 		BUG_ON(!eb);
3694 		done = atomic_dec_and_test(&eb->io_pages);
3695 
3696 		if (bio->bi_error ||
3697 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3698 			ClearPageUptodate(page);
3699 			set_btree_ioerr(page);
3700 		}
3701 
3702 		end_page_writeback(page);
3703 
3704 		if (!done)
3705 			continue;
3706 
3707 		end_extent_buffer_writeback(eb);
3708 	}
3709 
3710 	bio_put(bio);
3711 }
3712 
3713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3714 			struct btrfs_fs_info *fs_info,
3715 			struct writeback_control *wbc,
3716 			struct extent_page_data *epd)
3717 {
3718 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3719 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3720 	u64 offset = eb->start;
3721 	unsigned long i, num_pages;
3722 	unsigned long bio_flags = 0;
3723 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3724 	int ret = 0;
3725 
3726 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3727 	num_pages = num_extent_pages(eb->start, eb->len);
3728 	atomic_set(&eb->io_pages, num_pages);
3729 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3730 		bio_flags = EXTENT_BIO_TREE_LOG;
3731 
3732 	for (i = 0; i < num_pages; i++) {
3733 		struct page *p = eb->pages[i];
3734 
3735 		clear_page_dirty_for_io(p);
3736 		set_page_writeback(p);
3737 		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3738 					 PAGE_SIZE, 0, bdev, &epd->bio,
3739 					 -1, end_bio_extent_buffer_writepage,
3740 					 0, epd->bio_flags, bio_flags, false);
3741 		epd->bio_flags = bio_flags;
3742 		if (ret) {
3743 			set_btree_ioerr(p);
3744 			end_page_writeback(p);
3745 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3746 				end_extent_buffer_writeback(eb);
3747 			ret = -EIO;
3748 			break;
3749 		}
3750 		offset += PAGE_SIZE;
3751 		update_nr_written(p, wbc, 1);
3752 		unlock_page(p);
3753 	}
3754 
3755 	if (unlikely(ret)) {
3756 		for (; i < num_pages; i++) {
3757 			struct page *p = eb->pages[i];
3758 			clear_page_dirty_for_io(p);
3759 			unlock_page(p);
3760 		}
3761 	}
3762 
3763 	return ret;
3764 }
3765 
3766 int btree_write_cache_pages(struct address_space *mapping,
3767 				   struct writeback_control *wbc)
3768 {
3769 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3770 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3771 	struct extent_buffer *eb, *prev_eb = NULL;
3772 	struct extent_page_data epd = {
3773 		.bio = NULL,
3774 		.tree = tree,
3775 		.extent_locked = 0,
3776 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3777 		.bio_flags = 0,
3778 	};
3779 	int ret = 0;
3780 	int done = 0;
3781 	int nr_to_write_done = 0;
3782 	struct pagevec pvec;
3783 	int nr_pages;
3784 	pgoff_t index;
3785 	pgoff_t end;		/* Inclusive */
3786 	int scanned = 0;
3787 	int tag;
3788 
3789 	pagevec_init(&pvec, 0);
3790 	if (wbc->range_cyclic) {
3791 		index = mapping->writeback_index; /* Start from prev offset */
3792 		end = -1;
3793 	} else {
3794 		index = wbc->range_start >> PAGE_SHIFT;
3795 		end = wbc->range_end >> PAGE_SHIFT;
3796 		scanned = 1;
3797 	}
3798 	if (wbc->sync_mode == WB_SYNC_ALL)
3799 		tag = PAGECACHE_TAG_TOWRITE;
3800 	else
3801 		tag = PAGECACHE_TAG_DIRTY;
3802 retry:
3803 	if (wbc->sync_mode == WB_SYNC_ALL)
3804 		tag_pages_for_writeback(mapping, index, end);
3805 	while (!done && !nr_to_write_done && (index <= end) &&
3806 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3807 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3808 		unsigned i;
3809 
3810 		scanned = 1;
3811 		for (i = 0; i < nr_pages; i++) {
3812 			struct page *page = pvec.pages[i];
3813 
3814 			if (!PagePrivate(page))
3815 				continue;
3816 
3817 			if (!wbc->range_cyclic && page->index > end) {
3818 				done = 1;
3819 				break;
3820 			}
3821 
3822 			spin_lock(&mapping->private_lock);
3823 			if (!PagePrivate(page)) {
3824 				spin_unlock(&mapping->private_lock);
3825 				continue;
3826 			}
3827 
3828 			eb = (struct extent_buffer *)page->private;
3829 
3830 			/*
3831 			 * Shouldn't happen and normally this would be a BUG_ON
3832 			 * but no sense in crashing the users box for something
3833 			 * we can survive anyway.
3834 			 */
3835 			if (WARN_ON(!eb)) {
3836 				spin_unlock(&mapping->private_lock);
3837 				continue;
3838 			}
3839 
3840 			if (eb == prev_eb) {
3841 				spin_unlock(&mapping->private_lock);
3842 				continue;
3843 			}
3844 
3845 			ret = atomic_inc_not_zero(&eb->refs);
3846 			spin_unlock(&mapping->private_lock);
3847 			if (!ret)
3848 				continue;
3849 
3850 			prev_eb = eb;
3851 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852 			if (!ret) {
3853 				free_extent_buffer(eb);
3854 				continue;
3855 			}
3856 
3857 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3858 			if (ret) {
3859 				done = 1;
3860 				free_extent_buffer(eb);
3861 				break;
3862 			}
3863 			free_extent_buffer(eb);
3864 
3865 			/*
3866 			 * the filesystem may choose to bump up nr_to_write.
3867 			 * We have to make sure to honor the new nr_to_write
3868 			 * at any time
3869 			 */
3870 			nr_to_write_done = wbc->nr_to_write <= 0;
3871 		}
3872 		pagevec_release(&pvec);
3873 		cond_resched();
3874 	}
3875 	if (!scanned && !done) {
3876 		/*
3877 		 * We hit the last page and there is more work to be done: wrap
3878 		 * back to the start of the file
3879 		 */
3880 		scanned = 1;
3881 		index = 0;
3882 		goto retry;
3883 	}
3884 	flush_write_bio(&epd);
3885 	return ret;
3886 }
3887 
3888 /**
3889  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3890  * @mapping: address space structure to write
3891  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892  * @writepage: function called for each page
3893  * @data: data passed to writepage function
3894  *
3895  * If a page is already under I/O, write_cache_pages() skips it, even
3896  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3897  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3898  * and msync() need to guarantee that all the data which was dirty at the time
3899  * the call was made get new I/O started against them.  If wbc->sync_mode is
3900  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901  * existing IO to complete.
3902  */
3903 static int extent_write_cache_pages(struct extent_io_tree *tree,
3904 			     struct address_space *mapping,
3905 			     struct writeback_control *wbc,
3906 			     writepage_t writepage, void *data,
3907 			     void (*flush_fn)(void *))
3908 {
3909 	struct inode *inode = mapping->host;
3910 	int ret = 0;
3911 	int done = 0;
3912 	int nr_to_write_done = 0;
3913 	struct pagevec pvec;
3914 	int nr_pages;
3915 	pgoff_t index;
3916 	pgoff_t end;		/* Inclusive */
3917 	pgoff_t done_index;
3918 	int range_whole = 0;
3919 	int scanned = 0;
3920 	int tag;
3921 
3922 	/*
3923 	 * We have to hold onto the inode so that ordered extents can do their
3924 	 * work when the IO finishes.  The alternative to this is failing to add
3925 	 * an ordered extent if the igrab() fails there and that is a huge pain
3926 	 * to deal with, so instead just hold onto the inode throughout the
3927 	 * writepages operation.  If it fails here we are freeing up the inode
3928 	 * anyway and we'd rather not waste our time writing out stuff that is
3929 	 * going to be truncated anyway.
3930 	 */
3931 	if (!igrab(inode))
3932 		return 0;
3933 
3934 	pagevec_init(&pvec, 0);
3935 	if (wbc->range_cyclic) {
3936 		index = mapping->writeback_index; /* Start from prev offset */
3937 		end = -1;
3938 	} else {
3939 		index = wbc->range_start >> PAGE_SHIFT;
3940 		end = wbc->range_end >> PAGE_SHIFT;
3941 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942 			range_whole = 1;
3943 		scanned = 1;
3944 	}
3945 	if (wbc->sync_mode == WB_SYNC_ALL)
3946 		tag = PAGECACHE_TAG_TOWRITE;
3947 	else
3948 		tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950 	if (wbc->sync_mode == WB_SYNC_ALL)
3951 		tag_pages_for_writeback(mapping, index, end);
3952 	done_index = index;
3953 	while (!done && !nr_to_write_done && (index <= end) &&
3954 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 		unsigned i;
3957 
3958 		scanned = 1;
3959 		for (i = 0; i < nr_pages; i++) {
3960 			struct page *page = pvec.pages[i];
3961 
3962 			done_index = page->index;
3963 			/*
3964 			 * At this point we hold neither mapping->tree_lock nor
3965 			 * lock on the page itself: the page may be truncated or
3966 			 * invalidated (changing page->mapping to NULL), or even
3967 			 * swizzled back from swapper_space to tmpfs file
3968 			 * mapping
3969 			 */
3970 			if (!trylock_page(page)) {
3971 				flush_fn(data);
3972 				lock_page(page);
3973 			}
3974 
3975 			if (unlikely(page->mapping != mapping)) {
3976 				unlock_page(page);
3977 				continue;
3978 			}
3979 
3980 			if (!wbc->range_cyclic && page->index > end) {
3981 				done = 1;
3982 				unlock_page(page);
3983 				continue;
3984 			}
3985 
3986 			if (wbc->sync_mode != WB_SYNC_NONE) {
3987 				if (PageWriteback(page))
3988 					flush_fn(data);
3989 				wait_on_page_writeback(page);
3990 			}
3991 
3992 			if (PageWriteback(page) ||
3993 			    !clear_page_dirty_for_io(page)) {
3994 				unlock_page(page);
3995 				continue;
3996 			}
3997 
3998 			ret = (*writepage)(page, wbc, data);
3999 
4000 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4001 				unlock_page(page);
4002 				ret = 0;
4003 			}
4004 			if (ret < 0) {
4005 				/*
4006 				 * done_index is set past this page,
4007 				 * so media errors will not choke
4008 				 * background writeout for the entire
4009 				 * file. This has consequences for
4010 				 * range_cyclic semantics (ie. it may
4011 				 * not be suitable for data integrity
4012 				 * writeout).
4013 				 */
4014 				done_index = page->index + 1;
4015 				done = 1;
4016 				break;
4017 			}
4018 
4019 			/*
4020 			 * the filesystem may choose to bump up nr_to_write.
4021 			 * We have to make sure to honor the new nr_to_write
4022 			 * at any time
4023 			 */
4024 			nr_to_write_done = wbc->nr_to_write <= 0;
4025 		}
4026 		pagevec_release(&pvec);
4027 		cond_resched();
4028 	}
4029 	if (!scanned && !done) {
4030 		/*
4031 		 * We hit the last page and there is more work to be done: wrap
4032 		 * back to the start of the file
4033 		 */
4034 		scanned = 1;
4035 		index = 0;
4036 		goto retry;
4037 	}
4038 
4039 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4040 		mapping->writeback_index = done_index;
4041 
4042 	btrfs_add_delayed_iput(inode);
4043 	return ret;
4044 }
4045 
4046 static void flush_epd_write_bio(struct extent_page_data *epd)
4047 {
4048 	if (epd->bio) {
4049 		int rw = WRITE;
4050 		int ret;
4051 
4052 		if (epd->sync_io)
4053 			rw = WRITE_SYNC;
4054 
4055 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4056 		BUG_ON(ret < 0); /* -ENOMEM */
4057 		epd->bio = NULL;
4058 	}
4059 }
4060 
4061 static noinline void flush_write_bio(void *data)
4062 {
4063 	struct extent_page_data *epd = data;
4064 	flush_epd_write_bio(epd);
4065 }
4066 
4067 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4068 			  get_extent_t *get_extent,
4069 			  struct writeback_control *wbc)
4070 {
4071 	int ret;
4072 	struct extent_page_data epd = {
4073 		.bio = NULL,
4074 		.tree = tree,
4075 		.get_extent = get_extent,
4076 		.extent_locked = 0,
4077 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4078 		.bio_flags = 0,
4079 	};
4080 
4081 	ret = __extent_writepage(page, wbc, &epd);
4082 
4083 	flush_epd_write_bio(&epd);
4084 	return ret;
4085 }
4086 
4087 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4088 			      u64 start, u64 end, get_extent_t *get_extent,
4089 			      int mode)
4090 {
4091 	int ret = 0;
4092 	struct address_space *mapping = inode->i_mapping;
4093 	struct page *page;
4094 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4095 		PAGE_SHIFT;
4096 
4097 	struct extent_page_data epd = {
4098 		.bio = NULL,
4099 		.tree = tree,
4100 		.get_extent = get_extent,
4101 		.extent_locked = 1,
4102 		.sync_io = mode == WB_SYNC_ALL,
4103 		.bio_flags = 0,
4104 	};
4105 	struct writeback_control wbc_writepages = {
4106 		.sync_mode	= mode,
4107 		.nr_to_write	= nr_pages * 2,
4108 		.range_start	= start,
4109 		.range_end	= end + 1,
4110 	};
4111 
4112 	while (start <= end) {
4113 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4114 		if (clear_page_dirty_for_io(page))
4115 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4116 		else {
4117 			if (tree->ops && tree->ops->writepage_end_io_hook)
4118 				tree->ops->writepage_end_io_hook(page, start,
4119 						 start + PAGE_SIZE - 1,
4120 						 NULL, 1);
4121 			unlock_page(page);
4122 		}
4123 		put_page(page);
4124 		start += PAGE_SIZE;
4125 	}
4126 
4127 	flush_epd_write_bio(&epd);
4128 	return ret;
4129 }
4130 
4131 int extent_writepages(struct extent_io_tree *tree,
4132 		      struct address_space *mapping,
4133 		      get_extent_t *get_extent,
4134 		      struct writeback_control *wbc)
4135 {
4136 	int ret = 0;
4137 	struct extent_page_data epd = {
4138 		.bio = NULL,
4139 		.tree = tree,
4140 		.get_extent = get_extent,
4141 		.extent_locked = 0,
4142 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4143 		.bio_flags = 0,
4144 	};
4145 
4146 	ret = extent_write_cache_pages(tree, mapping, wbc,
4147 				       __extent_writepage, &epd,
4148 				       flush_write_bio);
4149 	flush_epd_write_bio(&epd);
4150 	return ret;
4151 }
4152 
4153 int extent_readpages(struct extent_io_tree *tree,
4154 		     struct address_space *mapping,
4155 		     struct list_head *pages, unsigned nr_pages,
4156 		     get_extent_t get_extent)
4157 {
4158 	struct bio *bio = NULL;
4159 	unsigned page_idx;
4160 	unsigned long bio_flags = 0;
4161 	struct page *pagepool[16];
4162 	struct page *page;
4163 	struct extent_map *em_cached = NULL;
4164 	int nr = 0;
4165 	u64 prev_em_start = (u64)-1;
4166 
4167 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4168 		page = list_entry(pages->prev, struct page, lru);
4169 
4170 		prefetchw(&page->flags);
4171 		list_del(&page->lru);
4172 		if (add_to_page_cache_lru(page, mapping,
4173 					page->index, GFP_NOFS)) {
4174 			put_page(page);
4175 			continue;
4176 		}
4177 
4178 		pagepool[nr++] = page;
4179 		if (nr < ARRAY_SIZE(pagepool))
4180 			continue;
4181 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4182 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4183 		nr = 0;
4184 	}
4185 	if (nr)
4186 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4187 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4188 
4189 	if (em_cached)
4190 		free_extent_map(em_cached);
4191 
4192 	BUG_ON(!list_empty(pages));
4193 	if (bio)
4194 		return submit_one_bio(READ, bio, 0, bio_flags);
4195 	return 0;
4196 }
4197 
4198 /*
4199  * basic invalidatepage code, this waits on any locked or writeback
4200  * ranges corresponding to the page, and then deletes any extent state
4201  * records from the tree
4202  */
4203 int extent_invalidatepage(struct extent_io_tree *tree,
4204 			  struct page *page, unsigned long offset)
4205 {
4206 	struct extent_state *cached_state = NULL;
4207 	u64 start = page_offset(page);
4208 	u64 end = start + PAGE_SIZE - 1;
4209 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4210 
4211 	start += ALIGN(offset, blocksize);
4212 	if (start > end)
4213 		return 0;
4214 
4215 	lock_extent_bits(tree, start, end, &cached_state);
4216 	wait_on_page_writeback(page);
4217 	clear_extent_bit(tree, start, end,
4218 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219 			 EXTENT_DO_ACCOUNTING,
4220 			 1, 1, &cached_state, GFP_NOFS);
4221 	return 0;
4222 }
4223 
4224 /*
4225  * a helper for releasepage, this tests for areas of the page that
4226  * are locked or under IO and drops the related state bits if it is safe
4227  * to drop the page.
4228  */
4229 static int try_release_extent_state(struct extent_map_tree *map,
4230 				    struct extent_io_tree *tree,
4231 				    struct page *page, gfp_t mask)
4232 {
4233 	u64 start = page_offset(page);
4234 	u64 end = start + PAGE_SIZE - 1;
4235 	int ret = 1;
4236 
4237 	if (test_range_bit(tree, start, end,
4238 			   EXTENT_IOBITS, 0, NULL))
4239 		ret = 0;
4240 	else {
4241 		if ((mask & GFP_NOFS) == GFP_NOFS)
4242 			mask = GFP_NOFS;
4243 		/*
4244 		 * at this point we can safely clear everything except the
4245 		 * locked bit and the nodatasum bit
4246 		 */
4247 		ret = clear_extent_bit(tree, start, end,
4248 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4249 				 0, 0, NULL, mask);
4250 
4251 		/* if clear_extent_bit failed for enomem reasons,
4252 		 * we can't allow the release to continue.
4253 		 */
4254 		if (ret < 0)
4255 			ret = 0;
4256 		else
4257 			ret = 1;
4258 	}
4259 	return ret;
4260 }
4261 
4262 /*
4263  * a helper for releasepage.  As long as there are no locked extents
4264  * in the range corresponding to the page, both state records and extent
4265  * map records are removed
4266  */
4267 int try_release_extent_mapping(struct extent_map_tree *map,
4268 			       struct extent_io_tree *tree, struct page *page,
4269 			       gfp_t mask)
4270 {
4271 	struct extent_map *em;
4272 	u64 start = page_offset(page);
4273 	u64 end = start + PAGE_SIZE - 1;
4274 
4275 	if (gfpflags_allow_blocking(mask) &&
4276 	    page->mapping->host->i_size > SZ_16M) {
4277 		u64 len;
4278 		while (start <= end) {
4279 			len = end - start + 1;
4280 			write_lock(&map->lock);
4281 			em = lookup_extent_mapping(map, start, len);
4282 			if (!em) {
4283 				write_unlock(&map->lock);
4284 				break;
4285 			}
4286 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4287 			    em->start != start) {
4288 				write_unlock(&map->lock);
4289 				free_extent_map(em);
4290 				break;
4291 			}
4292 			if (!test_range_bit(tree, em->start,
4293 					    extent_map_end(em) - 1,
4294 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4295 					    0, NULL)) {
4296 				remove_extent_mapping(map, em);
4297 				/* once for the rb tree */
4298 				free_extent_map(em);
4299 			}
4300 			start = extent_map_end(em);
4301 			write_unlock(&map->lock);
4302 
4303 			/* once for us */
4304 			free_extent_map(em);
4305 		}
4306 	}
4307 	return try_release_extent_state(map, tree, page, mask);
4308 }
4309 
4310 /*
4311  * helper function for fiemap, which doesn't want to see any holes.
4312  * This maps until we find something past 'last'
4313  */
4314 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4315 						u64 offset,
4316 						u64 last,
4317 						get_extent_t *get_extent)
4318 {
4319 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4320 	struct extent_map *em;
4321 	u64 len;
4322 
4323 	if (offset >= last)
4324 		return NULL;
4325 
4326 	while (1) {
4327 		len = last - offset;
4328 		if (len == 0)
4329 			break;
4330 		len = ALIGN(len, sectorsize);
4331 		em = get_extent(inode, NULL, 0, offset, len, 0);
4332 		if (IS_ERR_OR_NULL(em))
4333 			return em;
4334 
4335 		/* if this isn't a hole return it */
4336 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4337 		    em->block_start != EXTENT_MAP_HOLE) {
4338 			return em;
4339 		}
4340 
4341 		/* this is a hole, advance to the next extent */
4342 		offset = extent_map_end(em);
4343 		free_extent_map(em);
4344 		if (offset >= last)
4345 			break;
4346 	}
4347 	return NULL;
4348 }
4349 
4350 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4351 		__u64 start, __u64 len, get_extent_t *get_extent)
4352 {
4353 	int ret = 0;
4354 	u64 off = start;
4355 	u64 max = start + len;
4356 	u32 flags = 0;
4357 	u32 found_type;
4358 	u64 last;
4359 	u64 last_for_get_extent = 0;
4360 	u64 disko = 0;
4361 	u64 isize = i_size_read(inode);
4362 	struct btrfs_key found_key;
4363 	struct extent_map *em = NULL;
4364 	struct extent_state *cached_state = NULL;
4365 	struct btrfs_path *path;
4366 	struct btrfs_root *root = BTRFS_I(inode)->root;
4367 	int end = 0;
4368 	u64 em_start = 0;
4369 	u64 em_len = 0;
4370 	u64 em_end = 0;
4371 
4372 	if (len == 0)
4373 		return -EINVAL;
4374 
4375 	path = btrfs_alloc_path();
4376 	if (!path)
4377 		return -ENOMEM;
4378 	path->leave_spinning = 1;
4379 
4380 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4381 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4382 
4383 	/*
4384 	 * lookup the last file extent.  We're not using i_size here
4385 	 * because there might be preallocation past i_size
4386 	 */
4387 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4388 				       0);
4389 	if (ret < 0) {
4390 		btrfs_free_path(path);
4391 		return ret;
4392 	} else {
4393 		WARN_ON(!ret);
4394 		if (ret == 1)
4395 			ret = 0;
4396 	}
4397 
4398 	path->slots[0]--;
4399 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4400 	found_type = found_key.type;
4401 
4402 	/* No extents, but there might be delalloc bits */
4403 	if (found_key.objectid != btrfs_ino(inode) ||
4404 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4405 		/* have to trust i_size as the end */
4406 		last = (u64)-1;
4407 		last_for_get_extent = isize;
4408 	} else {
4409 		/*
4410 		 * remember the start of the last extent.  There are a
4411 		 * bunch of different factors that go into the length of the
4412 		 * extent, so its much less complex to remember where it started
4413 		 */
4414 		last = found_key.offset;
4415 		last_for_get_extent = last + 1;
4416 	}
4417 	btrfs_release_path(path);
4418 
4419 	/*
4420 	 * we might have some extents allocated but more delalloc past those
4421 	 * extents.  so, we trust isize unless the start of the last extent is
4422 	 * beyond isize
4423 	 */
4424 	if (last < isize) {
4425 		last = (u64)-1;
4426 		last_for_get_extent = isize;
4427 	}
4428 
4429 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4430 			 &cached_state);
4431 
4432 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4433 				   get_extent);
4434 	if (!em)
4435 		goto out;
4436 	if (IS_ERR(em)) {
4437 		ret = PTR_ERR(em);
4438 		goto out;
4439 	}
4440 
4441 	while (!end) {
4442 		u64 offset_in_extent = 0;
4443 
4444 		/* break if the extent we found is outside the range */
4445 		if (em->start >= max || extent_map_end(em) < off)
4446 			break;
4447 
4448 		/*
4449 		 * get_extent may return an extent that starts before our
4450 		 * requested range.  We have to make sure the ranges
4451 		 * we return to fiemap always move forward and don't
4452 		 * overlap, so adjust the offsets here
4453 		 */
4454 		em_start = max(em->start, off);
4455 
4456 		/*
4457 		 * record the offset from the start of the extent
4458 		 * for adjusting the disk offset below.  Only do this if the
4459 		 * extent isn't compressed since our in ram offset may be past
4460 		 * what we have actually allocated on disk.
4461 		 */
4462 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4463 			offset_in_extent = em_start - em->start;
4464 		em_end = extent_map_end(em);
4465 		em_len = em_end - em_start;
4466 		disko = 0;
4467 		flags = 0;
4468 
4469 		/*
4470 		 * bump off for our next call to get_extent
4471 		 */
4472 		off = extent_map_end(em);
4473 		if (off >= max)
4474 			end = 1;
4475 
4476 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4477 			end = 1;
4478 			flags |= FIEMAP_EXTENT_LAST;
4479 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4480 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4481 				  FIEMAP_EXTENT_NOT_ALIGNED);
4482 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4483 			flags |= (FIEMAP_EXTENT_DELALLOC |
4484 				  FIEMAP_EXTENT_UNKNOWN);
4485 		} else if (fieinfo->fi_extents_max) {
4486 			u64 bytenr = em->block_start -
4487 				(em->start - em->orig_start);
4488 
4489 			disko = em->block_start + offset_in_extent;
4490 
4491 			/*
4492 			 * As btrfs supports shared space, this information
4493 			 * can be exported to userspace tools via
4494 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4495 			 * then we're just getting a count and we can skip the
4496 			 * lookup stuff.
4497 			 */
4498 			ret = btrfs_check_shared(NULL, root->fs_info,
4499 						 root->objectid,
4500 						 btrfs_ino(inode), bytenr);
4501 			if (ret < 0)
4502 				goto out_free;
4503 			if (ret)
4504 				flags |= FIEMAP_EXTENT_SHARED;
4505 			ret = 0;
4506 		}
4507 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4508 			flags |= FIEMAP_EXTENT_ENCODED;
4509 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4510 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4511 
4512 		free_extent_map(em);
4513 		em = NULL;
4514 		if ((em_start >= last) || em_len == (u64)-1 ||
4515 		   (last == (u64)-1 && isize <= em_end)) {
4516 			flags |= FIEMAP_EXTENT_LAST;
4517 			end = 1;
4518 		}
4519 
4520 		/* now scan forward to see if this is really the last extent. */
4521 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4522 					   get_extent);
4523 		if (IS_ERR(em)) {
4524 			ret = PTR_ERR(em);
4525 			goto out;
4526 		}
4527 		if (!em) {
4528 			flags |= FIEMAP_EXTENT_LAST;
4529 			end = 1;
4530 		}
4531 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4532 					      em_len, flags);
4533 		if (ret) {
4534 			if (ret == 1)
4535 				ret = 0;
4536 			goto out_free;
4537 		}
4538 	}
4539 out_free:
4540 	free_extent_map(em);
4541 out:
4542 	btrfs_free_path(path);
4543 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4544 			     &cached_state, GFP_NOFS);
4545 	return ret;
4546 }
4547 
4548 static void __free_extent_buffer(struct extent_buffer *eb)
4549 {
4550 	btrfs_leak_debug_del(&eb->leak_list);
4551 	kmem_cache_free(extent_buffer_cache, eb);
4552 }
4553 
4554 int extent_buffer_under_io(struct extent_buffer *eb)
4555 {
4556 	return (atomic_read(&eb->io_pages) ||
4557 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4558 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4559 }
4560 
4561 /*
4562  * Helper for releasing extent buffer page.
4563  */
4564 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4565 {
4566 	unsigned long index;
4567 	struct page *page;
4568 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4569 
4570 	BUG_ON(extent_buffer_under_io(eb));
4571 
4572 	index = num_extent_pages(eb->start, eb->len);
4573 	if (index == 0)
4574 		return;
4575 
4576 	do {
4577 		index--;
4578 		page = eb->pages[index];
4579 		if (!page)
4580 			continue;
4581 		if (mapped)
4582 			spin_lock(&page->mapping->private_lock);
4583 		/*
4584 		 * We do this since we'll remove the pages after we've
4585 		 * removed the eb from the radix tree, so we could race
4586 		 * and have this page now attached to the new eb.  So
4587 		 * only clear page_private if it's still connected to
4588 		 * this eb.
4589 		 */
4590 		if (PagePrivate(page) &&
4591 		    page->private == (unsigned long)eb) {
4592 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4593 			BUG_ON(PageDirty(page));
4594 			BUG_ON(PageWriteback(page));
4595 			/*
4596 			 * We need to make sure we haven't be attached
4597 			 * to a new eb.
4598 			 */
4599 			ClearPagePrivate(page);
4600 			set_page_private(page, 0);
4601 			/* One for the page private */
4602 			put_page(page);
4603 		}
4604 
4605 		if (mapped)
4606 			spin_unlock(&page->mapping->private_lock);
4607 
4608 		/* One for when we allocated the page */
4609 		put_page(page);
4610 	} while (index != 0);
4611 }
4612 
4613 /*
4614  * Helper for releasing the extent buffer.
4615  */
4616 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4617 {
4618 	btrfs_release_extent_buffer_page(eb);
4619 	__free_extent_buffer(eb);
4620 }
4621 
4622 static struct extent_buffer *
4623 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4624 		      unsigned long len)
4625 {
4626 	struct extent_buffer *eb = NULL;
4627 
4628 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4629 	eb->start = start;
4630 	eb->len = len;
4631 	eb->fs_info = fs_info;
4632 	eb->bflags = 0;
4633 	rwlock_init(&eb->lock);
4634 	atomic_set(&eb->write_locks, 0);
4635 	atomic_set(&eb->read_locks, 0);
4636 	atomic_set(&eb->blocking_readers, 0);
4637 	atomic_set(&eb->blocking_writers, 0);
4638 	atomic_set(&eb->spinning_readers, 0);
4639 	atomic_set(&eb->spinning_writers, 0);
4640 	eb->lock_nested = 0;
4641 	init_waitqueue_head(&eb->write_lock_wq);
4642 	init_waitqueue_head(&eb->read_lock_wq);
4643 
4644 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4645 
4646 	spin_lock_init(&eb->refs_lock);
4647 	atomic_set(&eb->refs, 1);
4648 	atomic_set(&eb->io_pages, 0);
4649 
4650 	/*
4651 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4652 	 */
4653 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4654 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4655 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4656 
4657 	return eb;
4658 }
4659 
4660 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4661 {
4662 	unsigned long i;
4663 	struct page *p;
4664 	struct extent_buffer *new;
4665 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4666 
4667 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4668 	if (new == NULL)
4669 		return NULL;
4670 
4671 	for (i = 0; i < num_pages; i++) {
4672 		p = alloc_page(GFP_NOFS);
4673 		if (!p) {
4674 			btrfs_release_extent_buffer(new);
4675 			return NULL;
4676 		}
4677 		attach_extent_buffer_page(new, p);
4678 		WARN_ON(PageDirty(p));
4679 		SetPageUptodate(p);
4680 		new->pages[i] = p;
4681 	}
4682 
4683 	copy_extent_buffer(new, src, 0, 0, src->len);
4684 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4685 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4686 
4687 	return new;
4688 }
4689 
4690 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4691 						  u64 start, unsigned long len)
4692 {
4693 	struct extent_buffer *eb;
4694 	unsigned long num_pages;
4695 	unsigned long i;
4696 
4697 	num_pages = num_extent_pages(start, len);
4698 
4699 	eb = __alloc_extent_buffer(fs_info, start, len);
4700 	if (!eb)
4701 		return NULL;
4702 
4703 	for (i = 0; i < num_pages; i++) {
4704 		eb->pages[i] = alloc_page(GFP_NOFS);
4705 		if (!eb->pages[i])
4706 			goto err;
4707 	}
4708 	set_extent_buffer_uptodate(eb);
4709 	btrfs_set_header_nritems(eb, 0);
4710 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4711 
4712 	return eb;
4713 err:
4714 	for (; i > 0; i--)
4715 		__free_page(eb->pages[i - 1]);
4716 	__free_extent_buffer(eb);
4717 	return NULL;
4718 }
4719 
4720 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4721 						u64 start)
4722 {
4723 	unsigned long len;
4724 
4725 	if (!fs_info) {
4726 		/*
4727 		 * Called only from tests that don't always have a fs_info
4728 		 * available, but we know that nodesize is 4096
4729 		 */
4730 		len = 4096;
4731 	} else {
4732 		len = fs_info->tree_root->nodesize;
4733 	}
4734 
4735 	return __alloc_dummy_extent_buffer(fs_info, start, len);
4736 }
4737 
4738 static void check_buffer_tree_ref(struct extent_buffer *eb)
4739 {
4740 	int refs;
4741 	/* the ref bit is tricky.  We have to make sure it is set
4742 	 * if we have the buffer dirty.   Otherwise the
4743 	 * code to free a buffer can end up dropping a dirty
4744 	 * page
4745 	 *
4746 	 * Once the ref bit is set, it won't go away while the
4747 	 * buffer is dirty or in writeback, and it also won't
4748 	 * go away while we have the reference count on the
4749 	 * eb bumped.
4750 	 *
4751 	 * We can't just set the ref bit without bumping the
4752 	 * ref on the eb because free_extent_buffer might
4753 	 * see the ref bit and try to clear it.  If this happens
4754 	 * free_extent_buffer might end up dropping our original
4755 	 * ref by mistake and freeing the page before we are able
4756 	 * to add one more ref.
4757 	 *
4758 	 * So bump the ref count first, then set the bit.  If someone
4759 	 * beat us to it, drop the ref we added.
4760 	 */
4761 	refs = atomic_read(&eb->refs);
4762 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4763 		return;
4764 
4765 	spin_lock(&eb->refs_lock);
4766 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4767 		atomic_inc(&eb->refs);
4768 	spin_unlock(&eb->refs_lock);
4769 }
4770 
4771 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4772 		struct page *accessed)
4773 {
4774 	unsigned long num_pages, i;
4775 
4776 	check_buffer_tree_ref(eb);
4777 
4778 	num_pages = num_extent_pages(eb->start, eb->len);
4779 	for (i = 0; i < num_pages; i++) {
4780 		struct page *p = eb->pages[i];
4781 
4782 		if (p != accessed)
4783 			mark_page_accessed(p);
4784 	}
4785 }
4786 
4787 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4788 					 u64 start)
4789 {
4790 	struct extent_buffer *eb;
4791 
4792 	rcu_read_lock();
4793 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4794 			       start >> PAGE_SHIFT);
4795 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4796 		rcu_read_unlock();
4797 		/*
4798 		 * Lock our eb's refs_lock to avoid races with
4799 		 * free_extent_buffer. When we get our eb it might be flagged
4800 		 * with EXTENT_BUFFER_STALE and another task running
4801 		 * free_extent_buffer might have seen that flag set,
4802 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4803 		 * writeback flags not set) and it's still in the tree (flag
4804 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4805 		 * of decrementing the extent buffer's reference count twice.
4806 		 * So here we could race and increment the eb's reference count,
4807 		 * clear its stale flag, mark it as dirty and drop our reference
4808 		 * before the other task finishes executing free_extent_buffer,
4809 		 * which would later result in an attempt to free an extent
4810 		 * buffer that is dirty.
4811 		 */
4812 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4813 			spin_lock(&eb->refs_lock);
4814 			spin_unlock(&eb->refs_lock);
4815 		}
4816 		mark_extent_buffer_accessed(eb, NULL);
4817 		return eb;
4818 	}
4819 	rcu_read_unlock();
4820 
4821 	return NULL;
4822 }
4823 
4824 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4825 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4826 					       u64 start)
4827 {
4828 	struct extent_buffer *eb, *exists = NULL;
4829 	int ret;
4830 
4831 	eb = find_extent_buffer(fs_info, start);
4832 	if (eb)
4833 		return eb;
4834 	eb = alloc_dummy_extent_buffer(fs_info, start);
4835 	if (!eb)
4836 		return NULL;
4837 	eb->fs_info = fs_info;
4838 again:
4839 	ret = radix_tree_preload(GFP_NOFS);
4840 	if (ret)
4841 		goto free_eb;
4842 	spin_lock(&fs_info->buffer_lock);
4843 	ret = radix_tree_insert(&fs_info->buffer_radix,
4844 				start >> PAGE_SHIFT, eb);
4845 	spin_unlock(&fs_info->buffer_lock);
4846 	radix_tree_preload_end();
4847 	if (ret == -EEXIST) {
4848 		exists = find_extent_buffer(fs_info, start);
4849 		if (exists)
4850 			goto free_eb;
4851 		else
4852 			goto again;
4853 	}
4854 	check_buffer_tree_ref(eb);
4855 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4856 
4857 	/*
4858 	 * We will free dummy extent buffer's if they come into
4859 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4860 	 * want the buffers to stay in memory until we're done with them, so
4861 	 * bump the ref count again.
4862 	 */
4863 	atomic_inc(&eb->refs);
4864 	return eb;
4865 free_eb:
4866 	btrfs_release_extent_buffer(eb);
4867 	return exists;
4868 }
4869 #endif
4870 
4871 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4872 					  u64 start)
4873 {
4874 	unsigned long len = fs_info->tree_root->nodesize;
4875 	unsigned long num_pages = num_extent_pages(start, len);
4876 	unsigned long i;
4877 	unsigned long index = start >> PAGE_SHIFT;
4878 	struct extent_buffer *eb;
4879 	struct extent_buffer *exists = NULL;
4880 	struct page *p;
4881 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4882 	int uptodate = 1;
4883 	int ret;
4884 
4885 	eb = find_extent_buffer(fs_info, start);
4886 	if (eb)
4887 		return eb;
4888 
4889 	eb = __alloc_extent_buffer(fs_info, start, len);
4890 	if (!eb)
4891 		return NULL;
4892 
4893 	for (i = 0; i < num_pages; i++, index++) {
4894 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4895 		if (!p)
4896 			goto free_eb;
4897 
4898 		spin_lock(&mapping->private_lock);
4899 		if (PagePrivate(p)) {
4900 			/*
4901 			 * We could have already allocated an eb for this page
4902 			 * and attached one so lets see if we can get a ref on
4903 			 * the existing eb, and if we can we know it's good and
4904 			 * we can just return that one, else we know we can just
4905 			 * overwrite page->private.
4906 			 */
4907 			exists = (struct extent_buffer *)p->private;
4908 			if (atomic_inc_not_zero(&exists->refs)) {
4909 				spin_unlock(&mapping->private_lock);
4910 				unlock_page(p);
4911 				put_page(p);
4912 				mark_extent_buffer_accessed(exists, p);
4913 				goto free_eb;
4914 			}
4915 			exists = NULL;
4916 
4917 			/*
4918 			 * Do this so attach doesn't complain and we need to
4919 			 * drop the ref the old guy had.
4920 			 */
4921 			ClearPagePrivate(p);
4922 			WARN_ON(PageDirty(p));
4923 			put_page(p);
4924 		}
4925 		attach_extent_buffer_page(eb, p);
4926 		spin_unlock(&mapping->private_lock);
4927 		WARN_ON(PageDirty(p));
4928 		eb->pages[i] = p;
4929 		if (!PageUptodate(p))
4930 			uptodate = 0;
4931 
4932 		/*
4933 		 * see below about how we avoid a nasty race with release page
4934 		 * and why we unlock later
4935 		 */
4936 	}
4937 	if (uptodate)
4938 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4939 again:
4940 	ret = radix_tree_preload(GFP_NOFS);
4941 	if (ret)
4942 		goto free_eb;
4943 
4944 	spin_lock(&fs_info->buffer_lock);
4945 	ret = radix_tree_insert(&fs_info->buffer_radix,
4946 				start >> PAGE_SHIFT, eb);
4947 	spin_unlock(&fs_info->buffer_lock);
4948 	radix_tree_preload_end();
4949 	if (ret == -EEXIST) {
4950 		exists = find_extent_buffer(fs_info, start);
4951 		if (exists)
4952 			goto free_eb;
4953 		else
4954 			goto again;
4955 	}
4956 	/* add one reference for the tree */
4957 	check_buffer_tree_ref(eb);
4958 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4959 
4960 	/*
4961 	 * there is a race where release page may have
4962 	 * tried to find this extent buffer in the radix
4963 	 * but failed.  It will tell the VM it is safe to
4964 	 * reclaim the, and it will clear the page private bit.
4965 	 * We must make sure to set the page private bit properly
4966 	 * after the extent buffer is in the radix tree so
4967 	 * it doesn't get lost
4968 	 */
4969 	SetPageChecked(eb->pages[0]);
4970 	for (i = 1; i < num_pages; i++) {
4971 		p = eb->pages[i];
4972 		ClearPageChecked(p);
4973 		unlock_page(p);
4974 	}
4975 	unlock_page(eb->pages[0]);
4976 	return eb;
4977 
4978 free_eb:
4979 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4980 	for (i = 0; i < num_pages; i++) {
4981 		if (eb->pages[i])
4982 			unlock_page(eb->pages[i]);
4983 	}
4984 
4985 	btrfs_release_extent_buffer(eb);
4986 	return exists;
4987 }
4988 
4989 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4990 {
4991 	struct extent_buffer *eb =
4992 			container_of(head, struct extent_buffer, rcu_head);
4993 
4994 	__free_extent_buffer(eb);
4995 }
4996 
4997 /* Expects to have eb->eb_lock already held */
4998 static int release_extent_buffer(struct extent_buffer *eb)
4999 {
5000 	WARN_ON(atomic_read(&eb->refs) == 0);
5001 	if (atomic_dec_and_test(&eb->refs)) {
5002 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5003 			struct btrfs_fs_info *fs_info = eb->fs_info;
5004 
5005 			spin_unlock(&eb->refs_lock);
5006 
5007 			spin_lock(&fs_info->buffer_lock);
5008 			radix_tree_delete(&fs_info->buffer_radix,
5009 					  eb->start >> PAGE_SHIFT);
5010 			spin_unlock(&fs_info->buffer_lock);
5011 		} else {
5012 			spin_unlock(&eb->refs_lock);
5013 		}
5014 
5015 		/* Should be safe to release our pages at this point */
5016 		btrfs_release_extent_buffer_page(eb);
5017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5018 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5019 			__free_extent_buffer(eb);
5020 			return 1;
5021 		}
5022 #endif
5023 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5024 		return 1;
5025 	}
5026 	spin_unlock(&eb->refs_lock);
5027 
5028 	return 0;
5029 }
5030 
5031 void free_extent_buffer(struct extent_buffer *eb)
5032 {
5033 	int refs;
5034 	int old;
5035 	if (!eb)
5036 		return;
5037 
5038 	while (1) {
5039 		refs = atomic_read(&eb->refs);
5040 		if (refs <= 3)
5041 			break;
5042 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5043 		if (old == refs)
5044 			return;
5045 	}
5046 
5047 	spin_lock(&eb->refs_lock);
5048 	if (atomic_read(&eb->refs) == 2 &&
5049 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5050 		atomic_dec(&eb->refs);
5051 
5052 	if (atomic_read(&eb->refs) == 2 &&
5053 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5054 	    !extent_buffer_under_io(eb) &&
5055 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5056 		atomic_dec(&eb->refs);
5057 
5058 	/*
5059 	 * I know this is terrible, but it's temporary until we stop tracking
5060 	 * the uptodate bits and such for the extent buffers.
5061 	 */
5062 	release_extent_buffer(eb);
5063 }
5064 
5065 void free_extent_buffer_stale(struct extent_buffer *eb)
5066 {
5067 	if (!eb)
5068 		return;
5069 
5070 	spin_lock(&eb->refs_lock);
5071 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5072 
5073 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5074 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 		atomic_dec(&eb->refs);
5076 	release_extent_buffer(eb);
5077 }
5078 
5079 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5080 {
5081 	unsigned long i;
5082 	unsigned long num_pages;
5083 	struct page *page;
5084 
5085 	num_pages = num_extent_pages(eb->start, eb->len);
5086 
5087 	for (i = 0; i < num_pages; i++) {
5088 		page = eb->pages[i];
5089 		if (!PageDirty(page))
5090 			continue;
5091 
5092 		lock_page(page);
5093 		WARN_ON(!PagePrivate(page));
5094 
5095 		clear_page_dirty_for_io(page);
5096 		spin_lock_irq(&page->mapping->tree_lock);
5097 		if (!PageDirty(page)) {
5098 			radix_tree_tag_clear(&page->mapping->page_tree,
5099 						page_index(page),
5100 						PAGECACHE_TAG_DIRTY);
5101 		}
5102 		spin_unlock_irq(&page->mapping->tree_lock);
5103 		ClearPageError(page);
5104 		unlock_page(page);
5105 	}
5106 	WARN_ON(atomic_read(&eb->refs) == 0);
5107 }
5108 
5109 int set_extent_buffer_dirty(struct extent_buffer *eb)
5110 {
5111 	unsigned long i;
5112 	unsigned long num_pages;
5113 	int was_dirty = 0;
5114 
5115 	check_buffer_tree_ref(eb);
5116 
5117 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5118 
5119 	num_pages = num_extent_pages(eb->start, eb->len);
5120 	WARN_ON(atomic_read(&eb->refs) == 0);
5121 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5122 
5123 	for (i = 0; i < num_pages; i++)
5124 		set_page_dirty(eb->pages[i]);
5125 	return was_dirty;
5126 }
5127 
5128 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5129 {
5130 	unsigned long i;
5131 	struct page *page;
5132 	unsigned long num_pages;
5133 
5134 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5135 	num_pages = num_extent_pages(eb->start, eb->len);
5136 	for (i = 0; i < num_pages; i++) {
5137 		page = eb->pages[i];
5138 		if (page)
5139 			ClearPageUptodate(page);
5140 	}
5141 }
5142 
5143 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5144 {
5145 	unsigned long i;
5146 	struct page *page;
5147 	unsigned long num_pages;
5148 
5149 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5150 	num_pages = num_extent_pages(eb->start, eb->len);
5151 	for (i = 0; i < num_pages; i++) {
5152 		page = eb->pages[i];
5153 		SetPageUptodate(page);
5154 	}
5155 }
5156 
5157 int extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5160 }
5161 
5162 int read_extent_buffer_pages(struct extent_io_tree *tree,
5163 			     struct extent_buffer *eb, u64 start, int wait,
5164 			     get_extent_t *get_extent, int mirror_num)
5165 {
5166 	unsigned long i;
5167 	unsigned long start_i;
5168 	struct page *page;
5169 	int err;
5170 	int ret = 0;
5171 	int locked_pages = 0;
5172 	int all_uptodate = 1;
5173 	unsigned long num_pages;
5174 	unsigned long num_reads = 0;
5175 	struct bio *bio = NULL;
5176 	unsigned long bio_flags = 0;
5177 
5178 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5179 		return 0;
5180 
5181 	if (start) {
5182 		WARN_ON(start < eb->start);
5183 		start_i = (start >> PAGE_SHIFT) -
5184 			(eb->start >> PAGE_SHIFT);
5185 	} else {
5186 		start_i = 0;
5187 	}
5188 
5189 	num_pages = num_extent_pages(eb->start, eb->len);
5190 	for (i = start_i; i < num_pages; i++) {
5191 		page = eb->pages[i];
5192 		if (wait == WAIT_NONE) {
5193 			if (!trylock_page(page))
5194 				goto unlock_exit;
5195 		} else {
5196 			lock_page(page);
5197 		}
5198 		locked_pages++;
5199 		if (!PageUptodate(page)) {
5200 			num_reads++;
5201 			all_uptodate = 0;
5202 		}
5203 	}
5204 	if (all_uptodate) {
5205 		if (start_i == 0)
5206 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5207 		goto unlock_exit;
5208 	}
5209 
5210 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5211 	eb->read_mirror = 0;
5212 	atomic_set(&eb->io_pages, num_reads);
5213 	for (i = start_i; i < num_pages; i++) {
5214 		page = eb->pages[i];
5215 		if (!PageUptodate(page)) {
5216 			ClearPageError(page);
5217 			err = __extent_read_full_page(tree, page,
5218 						      get_extent, &bio,
5219 						      mirror_num, &bio_flags,
5220 						      READ | REQ_META);
5221 			if (err)
5222 				ret = err;
5223 		} else {
5224 			unlock_page(page);
5225 		}
5226 	}
5227 
5228 	if (bio) {
5229 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5230 				     bio_flags);
5231 		if (err)
5232 			return err;
5233 	}
5234 
5235 	if (ret || wait != WAIT_COMPLETE)
5236 		return ret;
5237 
5238 	for (i = start_i; i < num_pages; i++) {
5239 		page = eb->pages[i];
5240 		wait_on_page_locked(page);
5241 		if (!PageUptodate(page))
5242 			ret = -EIO;
5243 	}
5244 
5245 	return ret;
5246 
5247 unlock_exit:
5248 	i = start_i;
5249 	while (locked_pages > 0) {
5250 		page = eb->pages[i];
5251 		i++;
5252 		unlock_page(page);
5253 		locked_pages--;
5254 	}
5255 	return ret;
5256 }
5257 
5258 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5259 			unsigned long start,
5260 			unsigned long len)
5261 {
5262 	size_t cur;
5263 	size_t offset;
5264 	struct page *page;
5265 	char *kaddr;
5266 	char *dst = (char *)dstv;
5267 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5268 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5269 
5270 	WARN_ON(start > eb->len);
5271 	WARN_ON(start + len > eb->start + eb->len);
5272 
5273 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5274 
5275 	while (len > 0) {
5276 		page = eb->pages[i];
5277 
5278 		cur = min(len, (PAGE_SIZE - offset));
5279 		kaddr = page_address(page);
5280 		memcpy(dst, kaddr + offset, cur);
5281 
5282 		dst += cur;
5283 		len -= cur;
5284 		offset = 0;
5285 		i++;
5286 	}
5287 }
5288 
5289 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5290 			unsigned long start,
5291 			unsigned long len)
5292 {
5293 	size_t cur;
5294 	size_t offset;
5295 	struct page *page;
5296 	char *kaddr;
5297 	char __user *dst = (char __user *)dstv;
5298 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5300 	int ret = 0;
5301 
5302 	WARN_ON(start > eb->len);
5303 	WARN_ON(start + len > eb->start + eb->len);
5304 
5305 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5306 
5307 	while (len > 0) {
5308 		page = eb->pages[i];
5309 
5310 		cur = min(len, (PAGE_SIZE - offset));
5311 		kaddr = page_address(page);
5312 		if (copy_to_user(dst, kaddr + offset, cur)) {
5313 			ret = -EFAULT;
5314 			break;
5315 		}
5316 
5317 		dst += cur;
5318 		len -= cur;
5319 		offset = 0;
5320 		i++;
5321 	}
5322 
5323 	return ret;
5324 }
5325 
5326 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5327 			       unsigned long min_len, char **map,
5328 			       unsigned long *map_start,
5329 			       unsigned long *map_len)
5330 {
5331 	size_t offset = start & (PAGE_SIZE - 1);
5332 	char *kaddr;
5333 	struct page *p;
5334 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5335 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5336 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5337 		PAGE_SHIFT;
5338 
5339 	if (i != end_i)
5340 		return -EINVAL;
5341 
5342 	if (i == 0) {
5343 		offset = start_offset;
5344 		*map_start = 0;
5345 	} else {
5346 		offset = 0;
5347 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5348 	}
5349 
5350 	if (start + min_len > eb->len) {
5351 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5352 		       "wanted %lu %lu\n",
5353 		       eb->start, eb->len, start, min_len);
5354 		return -EINVAL;
5355 	}
5356 
5357 	p = eb->pages[i];
5358 	kaddr = page_address(p);
5359 	*map = kaddr + offset;
5360 	*map_len = PAGE_SIZE - offset;
5361 	return 0;
5362 }
5363 
5364 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5365 			  unsigned long start,
5366 			  unsigned long len)
5367 {
5368 	size_t cur;
5369 	size_t offset;
5370 	struct page *page;
5371 	char *kaddr;
5372 	char *ptr = (char *)ptrv;
5373 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5374 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5375 	int ret = 0;
5376 
5377 	WARN_ON(start > eb->len);
5378 	WARN_ON(start + len > eb->start + eb->len);
5379 
5380 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5381 
5382 	while (len > 0) {
5383 		page = eb->pages[i];
5384 
5385 		cur = min(len, (PAGE_SIZE - offset));
5386 
5387 		kaddr = page_address(page);
5388 		ret = memcmp(ptr, kaddr + offset, cur);
5389 		if (ret)
5390 			break;
5391 
5392 		ptr += cur;
5393 		len -= cur;
5394 		offset = 0;
5395 		i++;
5396 	}
5397 	return ret;
5398 }
5399 
5400 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5401 			 unsigned long start, unsigned long len)
5402 {
5403 	size_t cur;
5404 	size_t offset;
5405 	struct page *page;
5406 	char *kaddr;
5407 	char *src = (char *)srcv;
5408 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410 
5411 	WARN_ON(start > eb->len);
5412 	WARN_ON(start + len > eb->start + eb->len);
5413 
5414 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5415 
5416 	while (len > 0) {
5417 		page = eb->pages[i];
5418 		WARN_ON(!PageUptodate(page));
5419 
5420 		cur = min(len, PAGE_SIZE - offset);
5421 		kaddr = page_address(page);
5422 		memcpy(kaddr + offset, src, cur);
5423 
5424 		src += cur;
5425 		len -= cur;
5426 		offset = 0;
5427 		i++;
5428 	}
5429 }
5430 
5431 void memset_extent_buffer(struct extent_buffer *eb, char c,
5432 			  unsigned long start, unsigned long len)
5433 {
5434 	size_t cur;
5435 	size_t offset;
5436 	struct page *page;
5437 	char *kaddr;
5438 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5439 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5440 
5441 	WARN_ON(start > eb->len);
5442 	WARN_ON(start + len > eb->start + eb->len);
5443 
5444 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5445 
5446 	while (len > 0) {
5447 		page = eb->pages[i];
5448 		WARN_ON(!PageUptodate(page));
5449 
5450 		cur = min(len, PAGE_SIZE - offset);
5451 		kaddr = page_address(page);
5452 		memset(kaddr + offset, c, cur);
5453 
5454 		len -= cur;
5455 		offset = 0;
5456 		i++;
5457 	}
5458 }
5459 
5460 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5461 			unsigned long dst_offset, unsigned long src_offset,
5462 			unsigned long len)
5463 {
5464 	u64 dst_len = dst->len;
5465 	size_t cur;
5466 	size_t offset;
5467 	struct page *page;
5468 	char *kaddr;
5469 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5470 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5471 
5472 	WARN_ON(src->len != dst_len);
5473 
5474 	offset = (start_offset + dst_offset) &
5475 		(PAGE_SIZE - 1);
5476 
5477 	while (len > 0) {
5478 		page = dst->pages[i];
5479 		WARN_ON(!PageUptodate(page));
5480 
5481 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5482 
5483 		kaddr = page_address(page);
5484 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5485 
5486 		src_offset += cur;
5487 		len -= cur;
5488 		offset = 0;
5489 		i++;
5490 	}
5491 }
5492 
5493 /*
5494  * The extent buffer bitmap operations are done with byte granularity because
5495  * bitmap items are not guaranteed to be aligned to a word and therefore a
5496  * single word in a bitmap may straddle two pages in the extent buffer.
5497  */
5498 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5499 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5500 #define BITMAP_FIRST_BYTE_MASK(start) \
5501 	((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5502 #define BITMAP_LAST_BYTE_MASK(nbits) \
5503 	(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5504 
5505 /*
5506  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5507  * given bit number
5508  * @eb: the extent buffer
5509  * @start: offset of the bitmap item in the extent buffer
5510  * @nr: bit number
5511  * @page_index: return index of the page in the extent buffer that contains the
5512  * given bit number
5513  * @page_offset: return offset into the page given by page_index
5514  *
5515  * This helper hides the ugliness of finding the byte in an extent buffer which
5516  * contains a given bit.
5517  */
5518 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5519 				    unsigned long start, unsigned long nr,
5520 				    unsigned long *page_index,
5521 				    size_t *page_offset)
5522 {
5523 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524 	size_t byte_offset = BIT_BYTE(nr);
5525 	size_t offset;
5526 
5527 	/*
5528 	 * The byte we want is the offset of the extent buffer + the offset of
5529 	 * the bitmap item in the extent buffer + the offset of the byte in the
5530 	 * bitmap item.
5531 	 */
5532 	offset = start_offset + start + byte_offset;
5533 
5534 	*page_index = offset >> PAGE_SHIFT;
5535 	*page_offset = offset & (PAGE_SIZE - 1);
5536 }
5537 
5538 /**
5539  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5540  * @eb: the extent buffer
5541  * @start: offset of the bitmap item in the extent buffer
5542  * @nr: bit number to test
5543  */
5544 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5545 			   unsigned long nr)
5546 {
5547 	char *kaddr;
5548 	struct page *page;
5549 	unsigned long i;
5550 	size_t offset;
5551 
5552 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5553 	page = eb->pages[i];
5554 	WARN_ON(!PageUptodate(page));
5555 	kaddr = page_address(page);
5556 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5557 }
5558 
5559 /**
5560  * extent_buffer_bitmap_set - set an area of a bitmap
5561  * @eb: the extent buffer
5562  * @start: offset of the bitmap item in the extent buffer
5563  * @pos: bit number of the first bit
5564  * @len: number of bits to set
5565  */
5566 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5567 			      unsigned long pos, unsigned long len)
5568 {
5569 	char *kaddr;
5570 	struct page *page;
5571 	unsigned long i;
5572 	size_t offset;
5573 	const unsigned int size = pos + len;
5574 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5575 	unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5576 
5577 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5578 	page = eb->pages[i];
5579 	WARN_ON(!PageUptodate(page));
5580 	kaddr = page_address(page);
5581 
5582 	while (len >= bits_to_set) {
5583 		kaddr[offset] |= mask_to_set;
5584 		len -= bits_to_set;
5585 		bits_to_set = BITS_PER_BYTE;
5586 		mask_to_set = ~0U;
5587 		if (++offset >= PAGE_SIZE && len > 0) {
5588 			offset = 0;
5589 			page = eb->pages[++i];
5590 			WARN_ON(!PageUptodate(page));
5591 			kaddr = page_address(page);
5592 		}
5593 	}
5594 	if (len) {
5595 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5596 		kaddr[offset] |= mask_to_set;
5597 	}
5598 }
5599 
5600 
5601 /**
5602  * extent_buffer_bitmap_clear - clear an area of a bitmap
5603  * @eb: the extent buffer
5604  * @start: offset of the bitmap item in the extent buffer
5605  * @pos: bit number of the first bit
5606  * @len: number of bits to clear
5607  */
5608 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5609 				unsigned long pos, unsigned long len)
5610 {
5611 	char *kaddr;
5612 	struct page *page;
5613 	unsigned long i;
5614 	size_t offset;
5615 	const unsigned int size = pos + len;
5616 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5617 	unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5618 
5619 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5620 	page = eb->pages[i];
5621 	WARN_ON(!PageUptodate(page));
5622 	kaddr = page_address(page);
5623 
5624 	while (len >= bits_to_clear) {
5625 		kaddr[offset] &= ~mask_to_clear;
5626 		len -= bits_to_clear;
5627 		bits_to_clear = BITS_PER_BYTE;
5628 		mask_to_clear = ~0U;
5629 		if (++offset >= PAGE_SIZE && len > 0) {
5630 			offset = 0;
5631 			page = eb->pages[++i];
5632 			WARN_ON(!PageUptodate(page));
5633 			kaddr = page_address(page);
5634 		}
5635 	}
5636 	if (len) {
5637 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5638 		kaddr[offset] &= ~mask_to_clear;
5639 	}
5640 }
5641 
5642 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5643 {
5644 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5645 	return distance < len;
5646 }
5647 
5648 static void copy_pages(struct page *dst_page, struct page *src_page,
5649 		       unsigned long dst_off, unsigned long src_off,
5650 		       unsigned long len)
5651 {
5652 	char *dst_kaddr = page_address(dst_page);
5653 	char *src_kaddr;
5654 	int must_memmove = 0;
5655 
5656 	if (dst_page != src_page) {
5657 		src_kaddr = page_address(src_page);
5658 	} else {
5659 		src_kaddr = dst_kaddr;
5660 		if (areas_overlap(src_off, dst_off, len))
5661 			must_memmove = 1;
5662 	}
5663 
5664 	if (must_memmove)
5665 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5666 	else
5667 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5668 }
5669 
5670 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5671 			   unsigned long src_offset, unsigned long len)
5672 {
5673 	size_t cur;
5674 	size_t dst_off_in_page;
5675 	size_t src_off_in_page;
5676 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5677 	unsigned long dst_i;
5678 	unsigned long src_i;
5679 
5680 	if (src_offset + len > dst->len) {
5681 		btrfs_err(dst->fs_info,
5682 			"memmove bogus src_offset %lu move "
5683 		       "len %lu dst len %lu", src_offset, len, dst->len);
5684 		BUG_ON(1);
5685 	}
5686 	if (dst_offset + len > dst->len) {
5687 		btrfs_err(dst->fs_info,
5688 			"memmove bogus dst_offset %lu move "
5689 		       "len %lu dst len %lu", dst_offset, len, dst->len);
5690 		BUG_ON(1);
5691 	}
5692 
5693 	while (len > 0) {
5694 		dst_off_in_page = (start_offset + dst_offset) &
5695 			(PAGE_SIZE - 1);
5696 		src_off_in_page = (start_offset + src_offset) &
5697 			(PAGE_SIZE - 1);
5698 
5699 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5700 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5701 
5702 		cur = min(len, (unsigned long)(PAGE_SIZE -
5703 					       src_off_in_page));
5704 		cur = min_t(unsigned long, cur,
5705 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5706 
5707 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5708 			   dst_off_in_page, src_off_in_page, cur);
5709 
5710 		src_offset += cur;
5711 		dst_offset += cur;
5712 		len -= cur;
5713 	}
5714 }
5715 
5716 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5717 			   unsigned long src_offset, unsigned long len)
5718 {
5719 	size_t cur;
5720 	size_t dst_off_in_page;
5721 	size_t src_off_in_page;
5722 	unsigned long dst_end = dst_offset + len - 1;
5723 	unsigned long src_end = src_offset + len - 1;
5724 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5725 	unsigned long dst_i;
5726 	unsigned long src_i;
5727 
5728 	if (src_offset + len > dst->len) {
5729 		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5730 		       "len %lu len %lu", src_offset, len, dst->len);
5731 		BUG_ON(1);
5732 	}
5733 	if (dst_offset + len > dst->len) {
5734 		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5735 		       "len %lu len %lu", dst_offset, len, dst->len);
5736 		BUG_ON(1);
5737 	}
5738 	if (dst_offset < src_offset) {
5739 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5740 		return;
5741 	}
5742 	while (len > 0) {
5743 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5744 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5745 
5746 		dst_off_in_page = (start_offset + dst_end) &
5747 			(PAGE_SIZE - 1);
5748 		src_off_in_page = (start_offset + src_end) &
5749 			(PAGE_SIZE - 1);
5750 
5751 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5752 		cur = min(cur, dst_off_in_page + 1);
5753 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5754 			   dst_off_in_page - cur + 1,
5755 			   src_off_in_page - cur + 1, cur);
5756 
5757 		dst_end -= cur;
5758 		src_end -= cur;
5759 		len -= cur;
5760 	}
5761 }
5762 
5763 int try_release_extent_buffer(struct page *page)
5764 {
5765 	struct extent_buffer *eb;
5766 
5767 	/*
5768 	 * We need to make sure nobody is attaching this page to an eb right
5769 	 * now.
5770 	 */
5771 	spin_lock(&page->mapping->private_lock);
5772 	if (!PagePrivate(page)) {
5773 		spin_unlock(&page->mapping->private_lock);
5774 		return 1;
5775 	}
5776 
5777 	eb = (struct extent_buffer *)page->private;
5778 	BUG_ON(!eb);
5779 
5780 	/*
5781 	 * This is a little awful but should be ok, we need to make sure that
5782 	 * the eb doesn't disappear out from under us while we're looking at
5783 	 * this page.
5784 	 */
5785 	spin_lock(&eb->refs_lock);
5786 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5787 		spin_unlock(&eb->refs_lock);
5788 		spin_unlock(&page->mapping->private_lock);
5789 		return 0;
5790 	}
5791 	spin_unlock(&page->mapping->private_lock);
5792 
5793 	/*
5794 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5795 	 * so just return, this page will likely be freed soon anyway.
5796 	 */
5797 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5798 		spin_unlock(&eb->refs_lock);
5799 		return 0;
5800 	}
5801 
5802 	return release_extent_buffer(eb);
5803 }
5804