1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 kmem_cache_destroy(extent_state_cache); 210 kmem_cache_destroy(extent_buffer_cache); 211 if (btrfs_bioset) 212 bioset_free(btrfs_bioset); 213 } 214 215 void extent_io_tree_init(struct extent_io_tree *tree, 216 struct address_space *mapping) 217 { 218 tree->state = RB_ROOT; 219 tree->ops = NULL; 220 tree->dirty_bytes = 0; 221 spin_lock_init(&tree->lock); 222 tree->mapping = mapping; 223 } 224 225 static struct extent_state *alloc_extent_state(gfp_t mask) 226 { 227 struct extent_state *state; 228 229 state = kmem_cache_alloc(extent_state_cache, mask); 230 if (!state) 231 return state; 232 state->state = 0; 233 state->failrec = NULL; 234 RB_CLEAR_NODE(&state->rb_node); 235 btrfs_leak_debug_add(&state->leak_list, &states); 236 atomic_set(&state->refs, 1); 237 init_waitqueue_head(&state->wq); 238 trace_alloc_extent_state(state, mask, _RET_IP_); 239 return state; 240 } 241 242 void free_extent_state(struct extent_state *state) 243 { 244 if (!state) 245 return; 246 if (atomic_dec_and_test(&state->refs)) { 247 WARN_ON(extent_state_in_tree(state)); 248 btrfs_leak_debug_del(&state->leak_list); 249 trace_free_extent_state(state, _RET_IP_); 250 kmem_cache_free(extent_state_cache, state); 251 } 252 } 253 254 static struct rb_node *tree_insert(struct rb_root *root, 255 struct rb_node *search_start, 256 u64 offset, 257 struct rb_node *node, 258 struct rb_node ***p_in, 259 struct rb_node **parent_in) 260 { 261 struct rb_node **p; 262 struct rb_node *parent = NULL; 263 struct tree_entry *entry; 264 265 if (p_in && parent_in) { 266 p = *p_in; 267 parent = *parent_in; 268 goto do_insert; 269 } 270 271 p = search_start ? &search_start : &root->rb_node; 272 while (*p) { 273 parent = *p; 274 entry = rb_entry(parent, struct tree_entry, rb_node); 275 276 if (offset < entry->start) 277 p = &(*p)->rb_left; 278 else if (offset > entry->end) 279 p = &(*p)->rb_right; 280 else 281 return parent; 282 } 283 284 do_insert: 285 rb_link_node(node, parent, p); 286 rb_insert_color(node, root); 287 return NULL; 288 } 289 290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 291 struct rb_node **prev_ret, 292 struct rb_node **next_ret, 293 struct rb_node ***p_ret, 294 struct rb_node **parent_ret) 295 { 296 struct rb_root *root = &tree->state; 297 struct rb_node **n = &root->rb_node; 298 struct rb_node *prev = NULL; 299 struct rb_node *orig_prev = NULL; 300 struct tree_entry *entry; 301 struct tree_entry *prev_entry = NULL; 302 303 while (*n) { 304 prev = *n; 305 entry = rb_entry(prev, struct tree_entry, rb_node); 306 prev_entry = entry; 307 308 if (offset < entry->start) 309 n = &(*n)->rb_left; 310 else if (offset > entry->end) 311 n = &(*n)->rb_right; 312 else 313 return *n; 314 } 315 316 if (p_ret) 317 *p_ret = n; 318 if (parent_ret) 319 *parent_ret = prev; 320 321 if (prev_ret) { 322 orig_prev = prev; 323 while (prev && offset > prev_entry->end) { 324 prev = rb_next(prev); 325 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 326 } 327 *prev_ret = prev; 328 prev = orig_prev; 329 } 330 331 if (next_ret) { 332 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 333 while (prev && offset < prev_entry->start) { 334 prev = rb_prev(prev); 335 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 336 } 337 *next_ret = prev; 338 } 339 return NULL; 340 } 341 342 static inline struct rb_node * 343 tree_search_for_insert(struct extent_io_tree *tree, 344 u64 offset, 345 struct rb_node ***p_ret, 346 struct rb_node **parent_ret) 347 { 348 struct rb_node *prev = NULL; 349 struct rb_node *ret; 350 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 352 if (!ret) 353 return prev; 354 return ret; 355 } 356 357 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 358 u64 offset) 359 { 360 return tree_search_for_insert(tree, offset, NULL, NULL); 361 } 362 363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 364 struct extent_state *other) 365 { 366 if (tree->ops && tree->ops->merge_extent_hook) 367 tree->ops->merge_extent_hook(tree->mapping->host, new, 368 other); 369 } 370 371 /* 372 * utility function to look for merge candidates inside a given range. 373 * Any extents with matching state are merged together into a single 374 * extent in the tree. Extents with EXTENT_IO in their state field 375 * are not merged because the end_io handlers need to be able to do 376 * operations on them without sleeping (or doing allocations/splits). 377 * 378 * This should be called with the tree lock held. 379 */ 380 static void merge_state(struct extent_io_tree *tree, 381 struct extent_state *state) 382 { 383 struct extent_state *other; 384 struct rb_node *other_node; 385 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 387 return; 388 389 other_node = rb_prev(&state->rb_node); 390 if (other_node) { 391 other = rb_entry(other_node, struct extent_state, rb_node); 392 if (other->end == state->start - 1 && 393 other->state == state->state) { 394 merge_cb(tree, state, other); 395 state->start = other->start; 396 rb_erase(&other->rb_node, &tree->state); 397 RB_CLEAR_NODE(&other->rb_node); 398 free_extent_state(other); 399 } 400 } 401 other_node = rb_next(&state->rb_node); 402 if (other_node) { 403 other = rb_entry(other_node, struct extent_state, rb_node); 404 if (other->start == state->end + 1 && 405 other->state == state->state) { 406 merge_cb(tree, state, other); 407 state->end = other->end; 408 rb_erase(&other->rb_node, &tree->state); 409 RB_CLEAR_NODE(&other->rb_node); 410 free_extent_state(other); 411 } 412 } 413 } 414 415 static void set_state_cb(struct extent_io_tree *tree, 416 struct extent_state *state, unsigned *bits) 417 { 418 if (tree->ops && tree->ops->set_bit_hook) 419 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 420 } 421 422 static void clear_state_cb(struct extent_io_tree *tree, 423 struct extent_state *state, unsigned *bits) 424 { 425 if (tree->ops && tree->ops->clear_bit_hook) 426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 427 } 428 429 static void set_state_bits(struct extent_io_tree *tree, 430 struct extent_state *state, unsigned *bits, 431 struct extent_changeset *changeset); 432 433 /* 434 * insert an extent_state struct into the tree. 'bits' are set on the 435 * struct before it is inserted. 436 * 437 * This may return -EEXIST if the extent is already there, in which case the 438 * state struct is freed. 439 * 440 * The tree lock is not taken internally. This is a utility function and 441 * probably isn't what you want to call (see set/clear_extent_bit). 442 */ 443 static int insert_state(struct extent_io_tree *tree, 444 struct extent_state *state, u64 start, u64 end, 445 struct rb_node ***p, 446 struct rb_node **parent, 447 unsigned *bits, struct extent_changeset *changeset) 448 { 449 struct rb_node *node; 450 451 if (end < start) 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 453 end, start); 454 state->start = start; 455 state->end = end; 456 457 set_state_bits(tree, state, bits, changeset); 458 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 460 if (node) { 461 struct extent_state *found; 462 found = rb_entry(node, struct extent_state, rb_node); 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 464 "%llu %llu\n", 465 found->start, found->end, start, end); 466 return -EEXIST; 467 } 468 merge_state(tree, state); 469 return 0; 470 } 471 472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 473 u64 split) 474 { 475 if (tree->ops && tree->ops->split_extent_hook) 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 477 } 478 479 /* 480 * split a given extent state struct in two, inserting the preallocated 481 * struct 'prealloc' as the newly created second half. 'split' indicates an 482 * offset inside 'orig' where it should be split. 483 * 484 * Before calling, 485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 486 * are two extent state structs in the tree: 487 * prealloc: [orig->start, split - 1] 488 * orig: [ split, orig->end ] 489 * 490 * The tree locks are not taken by this function. They need to be held 491 * by the caller. 492 */ 493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 494 struct extent_state *prealloc, u64 split) 495 { 496 struct rb_node *node; 497 498 split_cb(tree, orig, split); 499 500 prealloc->start = orig->start; 501 prealloc->end = split - 1; 502 prealloc->state = orig->state; 503 orig->start = split; 504 505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 506 &prealloc->rb_node, NULL, NULL); 507 if (node) { 508 free_extent_state(prealloc); 509 return -EEXIST; 510 } 511 return 0; 512 } 513 514 static struct extent_state *next_state(struct extent_state *state) 515 { 516 struct rb_node *next = rb_next(&state->rb_node); 517 if (next) 518 return rb_entry(next, struct extent_state, rb_node); 519 else 520 return NULL; 521 } 522 523 /* 524 * utility function to clear some bits in an extent state struct. 525 * it will optionally wake up any one waiting on this state (wake == 1). 526 * 527 * If no bits are set on the state struct after clearing things, the 528 * struct is freed and removed from the tree 529 */ 530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 531 struct extent_state *state, 532 unsigned *bits, int wake, 533 struct extent_changeset *changeset) 534 { 535 struct extent_state *next; 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 537 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 539 u64 range = state->end - state->start + 1; 540 WARN_ON(range > tree->dirty_bytes); 541 tree->dirty_bytes -= range; 542 } 543 clear_state_cb(tree, state, bits); 544 add_extent_changeset(state, bits_to_clear, changeset, 0); 545 state->state &= ~bits_to_clear; 546 if (wake) 547 wake_up(&state->wq); 548 if (state->state == 0) { 549 next = next_state(state); 550 if (extent_state_in_tree(state)) { 551 rb_erase(&state->rb_node, &tree->state); 552 RB_CLEAR_NODE(&state->rb_node); 553 free_extent_state(state); 554 } else { 555 WARN_ON(1); 556 } 557 } else { 558 merge_state(tree, state); 559 next = next_state(state); 560 } 561 return next; 562 } 563 564 static struct extent_state * 565 alloc_extent_state_atomic(struct extent_state *prealloc) 566 { 567 if (!prealloc) 568 prealloc = alloc_extent_state(GFP_ATOMIC); 569 570 return prealloc; 571 } 572 573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 574 { 575 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 576 "Extent tree was modified by another " 577 "thread while locked."); 578 } 579 580 /* 581 * clear some bits on a range in the tree. This may require splitting 582 * or inserting elements in the tree, so the gfp mask is used to 583 * indicate which allocations or sleeping are allowed. 584 * 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 586 * the given range from the tree regardless of state (ie for truncate). 587 * 588 * the range [start, end] is inclusive. 589 * 590 * This takes the tree lock, and returns 0 on success and < 0 on error. 591 */ 592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 593 unsigned bits, int wake, int delete, 594 struct extent_state **cached_state, 595 gfp_t mask, struct extent_changeset *changeset) 596 { 597 struct extent_state *state; 598 struct extent_state *cached; 599 struct extent_state *prealloc = NULL; 600 struct rb_node *node; 601 u64 last_end; 602 int err; 603 int clear = 0; 604 605 btrfs_debug_check_extent_io_range(tree, start, end); 606 607 if (bits & EXTENT_DELALLOC) 608 bits |= EXTENT_NORESERVE; 609 610 if (delete) 611 bits |= ~EXTENT_CTLBITS; 612 bits |= EXTENT_FIRST_DELALLOC; 613 614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 615 clear = 1; 616 again: 617 if (!prealloc && gfpflags_allow_blocking(mask)) { 618 /* 619 * Don't care for allocation failure here because we might end 620 * up not needing the pre-allocated extent state at all, which 621 * is the case if we only have in the tree extent states that 622 * cover our input range and don't cover too any other range. 623 * If we end up needing a new extent state we allocate it later. 624 */ 625 prealloc = alloc_extent_state(mask); 626 } 627 628 spin_lock(&tree->lock); 629 if (cached_state) { 630 cached = *cached_state; 631 632 if (clear) { 633 *cached_state = NULL; 634 cached_state = NULL; 635 } 636 637 if (cached && extent_state_in_tree(cached) && 638 cached->start <= start && cached->end > start) { 639 if (clear) 640 atomic_dec(&cached->refs); 641 state = cached; 642 goto hit_next; 643 } 644 if (clear) 645 free_extent_state(cached); 646 } 647 /* 648 * this search will find the extents that end after 649 * our range starts 650 */ 651 node = tree_search(tree, start); 652 if (!node) 653 goto out; 654 state = rb_entry(node, struct extent_state, rb_node); 655 hit_next: 656 if (state->start > end) 657 goto out; 658 WARN_ON(state->end < start); 659 last_end = state->end; 660 661 /* the state doesn't have the wanted bits, go ahead */ 662 if (!(state->state & bits)) { 663 state = next_state(state); 664 goto next; 665 } 666 667 /* 668 * | ---- desired range ---- | 669 * | state | or 670 * | ------------- state -------------- | 671 * 672 * We need to split the extent we found, and may flip 673 * bits on second half. 674 * 675 * If the extent we found extends past our range, we 676 * just split and search again. It'll get split again 677 * the next time though. 678 * 679 * If the extent we found is inside our range, we clear 680 * the desired bit on it. 681 */ 682 683 if (state->start < start) { 684 prealloc = alloc_extent_state_atomic(prealloc); 685 BUG_ON(!prealloc); 686 err = split_state(tree, state, prealloc, start); 687 if (err) 688 extent_io_tree_panic(tree, err); 689 690 prealloc = NULL; 691 if (err) 692 goto out; 693 if (state->end <= end) { 694 state = clear_state_bit(tree, state, &bits, wake, 695 changeset); 696 goto next; 697 } 698 goto search_again; 699 } 700 /* 701 * | ---- desired range ---- | 702 * | state | 703 * We need to split the extent, and clear the bit 704 * on the first half 705 */ 706 if (state->start <= end && state->end > end) { 707 prealloc = alloc_extent_state_atomic(prealloc); 708 BUG_ON(!prealloc); 709 err = split_state(tree, state, prealloc, end + 1); 710 if (err) 711 extent_io_tree_panic(tree, err); 712 713 if (wake) 714 wake_up(&state->wq); 715 716 clear_state_bit(tree, prealloc, &bits, wake, changeset); 717 718 prealloc = NULL; 719 goto out; 720 } 721 722 state = clear_state_bit(tree, state, &bits, wake, changeset); 723 next: 724 if (last_end == (u64)-1) 725 goto out; 726 start = last_end + 1; 727 if (start <= end && state && !need_resched()) 728 goto hit_next; 729 730 search_again: 731 if (start > end) 732 goto out; 733 spin_unlock(&tree->lock); 734 if (gfpflags_allow_blocking(mask)) 735 cond_resched(); 736 goto again; 737 738 out: 739 spin_unlock(&tree->lock); 740 if (prealloc) 741 free_extent_state(prealloc); 742 743 return 0; 744 745 } 746 747 static void wait_on_state(struct extent_io_tree *tree, 748 struct extent_state *state) 749 __releases(tree->lock) 750 __acquires(tree->lock) 751 { 752 DEFINE_WAIT(wait); 753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 754 spin_unlock(&tree->lock); 755 schedule(); 756 spin_lock(&tree->lock); 757 finish_wait(&state->wq, &wait); 758 } 759 760 /* 761 * waits for one or more bits to clear on a range in the state tree. 762 * The range [start, end] is inclusive. 763 * The tree lock is taken by this function 764 */ 765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 766 unsigned long bits) 767 { 768 struct extent_state *state; 769 struct rb_node *node; 770 771 btrfs_debug_check_extent_io_range(tree, start, end); 772 773 spin_lock(&tree->lock); 774 again: 775 while (1) { 776 /* 777 * this search will find all the extents that end after 778 * our range starts 779 */ 780 node = tree_search(tree, start); 781 process_node: 782 if (!node) 783 break; 784 785 state = rb_entry(node, struct extent_state, rb_node); 786 787 if (state->start > end) 788 goto out; 789 790 if (state->state & bits) { 791 start = state->start; 792 atomic_inc(&state->refs); 793 wait_on_state(tree, state); 794 free_extent_state(state); 795 goto again; 796 } 797 start = state->end + 1; 798 799 if (start > end) 800 break; 801 802 if (!cond_resched_lock(&tree->lock)) { 803 node = rb_next(node); 804 goto process_node; 805 } 806 } 807 out: 808 spin_unlock(&tree->lock); 809 } 810 811 static void set_state_bits(struct extent_io_tree *tree, 812 struct extent_state *state, 813 unsigned *bits, struct extent_changeset *changeset) 814 { 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 816 817 set_state_cb(tree, state, bits); 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 819 u64 range = state->end - state->start + 1; 820 tree->dirty_bytes += range; 821 } 822 add_extent_changeset(state, bits_to_set, changeset, 1); 823 state->state |= bits_to_set; 824 } 825 826 static void cache_state_if_flags(struct extent_state *state, 827 struct extent_state **cached_ptr, 828 unsigned flags) 829 { 830 if (cached_ptr && !(*cached_ptr)) { 831 if (!flags || (state->state & flags)) { 832 *cached_ptr = state; 833 atomic_inc(&state->refs); 834 } 835 } 836 } 837 838 static void cache_state(struct extent_state *state, 839 struct extent_state **cached_ptr) 840 { 841 return cache_state_if_flags(state, cached_ptr, 842 EXTENT_IOBITS | EXTENT_BOUNDARY); 843 } 844 845 /* 846 * set some bits on a range in the tree. This may require allocations or 847 * sleeping, so the gfp mask is used to indicate what is allowed. 848 * 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some 850 * part of the range already has the desired bits set. The start of the 851 * existing range is returned in failed_start in this case. 852 * 853 * [start, end] is inclusive This takes the tree lock. 854 */ 855 856 static int __must_check 857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 858 unsigned bits, unsigned exclusive_bits, 859 u64 *failed_start, struct extent_state **cached_state, 860 gfp_t mask, struct extent_changeset *changeset) 861 { 862 struct extent_state *state; 863 struct extent_state *prealloc = NULL; 864 struct rb_node *node; 865 struct rb_node **p; 866 struct rb_node *parent; 867 int err = 0; 868 u64 last_start; 869 u64 last_end; 870 871 btrfs_debug_check_extent_io_range(tree, start, end); 872 873 bits |= EXTENT_FIRST_DELALLOC; 874 again: 875 if (!prealloc && gfpflags_allow_blocking(mask)) { 876 /* 877 * Don't care for allocation failure here because we might end 878 * up not needing the pre-allocated extent state at all, which 879 * is the case if we only have in the tree extent states that 880 * cover our input range and don't cover too any other range. 881 * If we end up needing a new extent state we allocate it later. 882 */ 883 prealloc = alloc_extent_state(mask); 884 } 885 886 spin_lock(&tree->lock); 887 if (cached_state && *cached_state) { 888 state = *cached_state; 889 if (state->start <= start && state->end > start && 890 extent_state_in_tree(state)) { 891 node = &state->rb_node; 892 goto hit_next; 893 } 894 } 895 /* 896 * this search will find all the extents that end after 897 * our range starts. 898 */ 899 node = tree_search_for_insert(tree, start, &p, &parent); 900 if (!node) { 901 prealloc = alloc_extent_state_atomic(prealloc); 902 BUG_ON(!prealloc); 903 err = insert_state(tree, prealloc, start, end, 904 &p, &parent, &bits, changeset); 905 if (err) 906 extent_io_tree_panic(tree, err); 907 908 cache_state(prealloc, cached_state); 909 prealloc = NULL; 910 goto out; 911 } 912 state = rb_entry(node, struct extent_state, rb_node); 913 hit_next: 914 last_start = state->start; 915 last_end = state->end; 916 917 /* 918 * | ---- desired range ---- | 919 * | state | 920 * 921 * Just lock what we found and keep going 922 */ 923 if (state->start == start && state->end <= end) { 924 if (state->state & exclusive_bits) { 925 *failed_start = state->start; 926 err = -EEXIST; 927 goto out; 928 } 929 930 set_state_bits(tree, state, &bits, changeset); 931 cache_state(state, cached_state); 932 merge_state(tree, state); 933 if (last_end == (u64)-1) 934 goto out; 935 start = last_end + 1; 936 state = next_state(state); 937 if (start < end && state && state->start == start && 938 !need_resched()) 939 goto hit_next; 940 goto search_again; 941 } 942 943 /* 944 * | ---- desired range ---- | 945 * | state | 946 * or 947 * | ------------- state -------------- | 948 * 949 * We need to split the extent we found, and may flip bits on 950 * second half. 951 * 952 * If the extent we found extends past our 953 * range, we just split and search again. It'll get split 954 * again the next time though. 955 * 956 * If the extent we found is inside our range, we set the 957 * desired bit on it. 958 */ 959 if (state->start < start) { 960 if (state->state & exclusive_bits) { 961 *failed_start = start; 962 err = -EEXIST; 963 goto out; 964 } 965 966 prealloc = alloc_extent_state_atomic(prealloc); 967 BUG_ON(!prealloc); 968 err = split_state(tree, state, prealloc, start); 969 if (err) 970 extent_io_tree_panic(tree, err); 971 972 prealloc = NULL; 973 if (err) 974 goto out; 975 if (state->end <= end) { 976 set_state_bits(tree, state, &bits, changeset); 977 cache_state(state, cached_state); 978 merge_state(tree, state); 979 if (last_end == (u64)-1) 980 goto out; 981 start = last_end + 1; 982 state = next_state(state); 983 if (start < end && state && state->start == start && 984 !need_resched()) 985 goto hit_next; 986 } 987 goto search_again; 988 } 989 /* 990 * | ---- desired range ---- | 991 * | state | or | state | 992 * 993 * There's a hole, we need to insert something in it and 994 * ignore the extent we found. 995 */ 996 if (state->start > start) { 997 u64 this_end; 998 if (end < last_start) 999 this_end = end; 1000 else 1001 this_end = last_start - 1; 1002 1003 prealloc = alloc_extent_state_atomic(prealloc); 1004 BUG_ON(!prealloc); 1005 1006 /* 1007 * Avoid to free 'prealloc' if it can be merged with 1008 * the later extent. 1009 */ 1010 err = insert_state(tree, prealloc, start, this_end, 1011 NULL, NULL, &bits, changeset); 1012 if (err) 1013 extent_io_tree_panic(tree, err); 1014 1015 cache_state(prealloc, cached_state); 1016 prealloc = NULL; 1017 start = this_end + 1; 1018 goto search_again; 1019 } 1020 /* 1021 * | ---- desired range ---- | 1022 * | state | 1023 * We need to split the extent, and set the bit 1024 * on the first half 1025 */ 1026 if (state->start <= end && state->end > end) { 1027 if (state->state & exclusive_bits) { 1028 *failed_start = start; 1029 err = -EEXIST; 1030 goto out; 1031 } 1032 1033 prealloc = alloc_extent_state_atomic(prealloc); 1034 BUG_ON(!prealloc); 1035 err = split_state(tree, state, prealloc, end + 1); 1036 if (err) 1037 extent_io_tree_panic(tree, err); 1038 1039 set_state_bits(tree, prealloc, &bits, changeset); 1040 cache_state(prealloc, cached_state); 1041 merge_state(tree, prealloc); 1042 prealloc = NULL; 1043 goto out; 1044 } 1045 1046 search_again: 1047 if (start > end) 1048 goto out; 1049 spin_unlock(&tree->lock); 1050 if (gfpflags_allow_blocking(mask)) 1051 cond_resched(); 1052 goto again; 1053 1054 out: 1055 spin_unlock(&tree->lock); 1056 if (prealloc) 1057 free_extent_state(prealloc); 1058 1059 return err; 1060 1061 } 1062 1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1064 unsigned bits, u64 * failed_start, 1065 struct extent_state **cached_state, gfp_t mask) 1066 { 1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1068 cached_state, mask, NULL); 1069 } 1070 1071 1072 /** 1073 * convert_extent_bit - convert all bits in a given range from one bit to 1074 * another 1075 * @tree: the io tree to search 1076 * @start: the start offset in bytes 1077 * @end: the end offset in bytes (inclusive) 1078 * @bits: the bits to set in this range 1079 * @clear_bits: the bits to clear in this range 1080 * @cached_state: state that we're going to cache 1081 * 1082 * This will go through and set bits for the given range. If any states exist 1083 * already in this range they are set with the given bit and cleared of the 1084 * clear_bits. This is only meant to be used by things that are mergeable, ie 1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1086 * boundary bits like LOCK. 1087 * 1088 * All allocations are done with GFP_NOFS. 1089 */ 1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1091 unsigned bits, unsigned clear_bits, 1092 struct extent_state **cached_state) 1093 { 1094 struct extent_state *state; 1095 struct extent_state *prealloc = NULL; 1096 struct rb_node *node; 1097 struct rb_node **p; 1098 struct rb_node *parent; 1099 int err = 0; 1100 u64 last_start; 1101 u64 last_end; 1102 bool first_iteration = true; 1103 1104 btrfs_debug_check_extent_io_range(tree, start, end); 1105 1106 again: 1107 if (!prealloc) { 1108 /* 1109 * Best effort, don't worry if extent state allocation fails 1110 * here for the first iteration. We might have a cached state 1111 * that matches exactly the target range, in which case no 1112 * extent state allocations are needed. We'll only know this 1113 * after locking the tree. 1114 */ 1115 prealloc = alloc_extent_state(GFP_NOFS); 1116 if (!prealloc && !first_iteration) 1117 return -ENOMEM; 1118 } 1119 1120 spin_lock(&tree->lock); 1121 if (cached_state && *cached_state) { 1122 state = *cached_state; 1123 if (state->start <= start && state->end > start && 1124 extent_state_in_tree(state)) { 1125 node = &state->rb_node; 1126 goto hit_next; 1127 } 1128 } 1129 1130 /* 1131 * this search will find all the extents that end after 1132 * our range starts. 1133 */ 1134 node = tree_search_for_insert(tree, start, &p, &parent); 1135 if (!node) { 1136 prealloc = alloc_extent_state_atomic(prealloc); 1137 if (!prealloc) { 1138 err = -ENOMEM; 1139 goto out; 1140 } 1141 err = insert_state(tree, prealloc, start, end, 1142 &p, &parent, &bits, NULL); 1143 if (err) 1144 extent_io_tree_panic(tree, err); 1145 cache_state(prealloc, cached_state); 1146 prealloc = NULL; 1147 goto out; 1148 } 1149 state = rb_entry(node, struct extent_state, rb_node); 1150 hit_next: 1151 last_start = state->start; 1152 last_end = state->end; 1153 1154 /* 1155 * | ---- desired range ---- | 1156 * | state | 1157 * 1158 * Just lock what we found and keep going 1159 */ 1160 if (state->start == start && state->end <= end) { 1161 set_state_bits(tree, state, &bits, NULL); 1162 cache_state(state, cached_state); 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1164 if (last_end == (u64)-1) 1165 goto out; 1166 start = last_end + 1; 1167 if (start < end && state && state->start == start && 1168 !need_resched()) 1169 goto hit_next; 1170 goto search_again; 1171 } 1172 1173 /* 1174 * | ---- desired range ---- | 1175 * | state | 1176 * or 1177 * | ------------- state -------------- | 1178 * 1179 * We need to split the extent we found, and may flip bits on 1180 * second half. 1181 * 1182 * If the extent we found extends past our 1183 * range, we just split and search again. It'll get split 1184 * again the next time though. 1185 * 1186 * If the extent we found is inside our range, we set the 1187 * desired bit on it. 1188 */ 1189 if (state->start < start) { 1190 prealloc = alloc_extent_state_atomic(prealloc); 1191 if (!prealloc) { 1192 err = -ENOMEM; 1193 goto out; 1194 } 1195 err = split_state(tree, state, prealloc, start); 1196 if (err) 1197 extent_io_tree_panic(tree, err); 1198 prealloc = NULL; 1199 if (err) 1200 goto out; 1201 if (state->end <= end) { 1202 set_state_bits(tree, state, &bits, NULL); 1203 cache_state(state, cached_state); 1204 state = clear_state_bit(tree, state, &clear_bits, 0, 1205 NULL); 1206 if (last_end == (u64)-1) 1207 goto out; 1208 start = last_end + 1; 1209 if (start < end && state && state->start == start && 1210 !need_resched()) 1211 goto hit_next; 1212 } 1213 goto search_again; 1214 } 1215 /* 1216 * | ---- desired range ---- | 1217 * | state | or | state | 1218 * 1219 * There's a hole, we need to insert something in it and 1220 * ignore the extent we found. 1221 */ 1222 if (state->start > start) { 1223 u64 this_end; 1224 if (end < last_start) 1225 this_end = end; 1226 else 1227 this_end = last_start - 1; 1228 1229 prealloc = alloc_extent_state_atomic(prealloc); 1230 if (!prealloc) { 1231 err = -ENOMEM; 1232 goto out; 1233 } 1234 1235 /* 1236 * Avoid to free 'prealloc' if it can be merged with 1237 * the later extent. 1238 */ 1239 err = insert_state(tree, prealloc, start, this_end, 1240 NULL, NULL, &bits, NULL); 1241 if (err) 1242 extent_io_tree_panic(tree, err); 1243 cache_state(prealloc, cached_state); 1244 prealloc = NULL; 1245 start = this_end + 1; 1246 goto search_again; 1247 } 1248 /* 1249 * | ---- desired range ---- | 1250 * | state | 1251 * We need to split the extent, and set the bit 1252 * on the first half 1253 */ 1254 if (state->start <= end && state->end > end) { 1255 prealloc = alloc_extent_state_atomic(prealloc); 1256 if (!prealloc) { 1257 err = -ENOMEM; 1258 goto out; 1259 } 1260 1261 err = split_state(tree, state, prealloc, end + 1); 1262 if (err) 1263 extent_io_tree_panic(tree, err); 1264 1265 set_state_bits(tree, prealloc, &bits, NULL); 1266 cache_state(prealloc, cached_state); 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 1272 search_again: 1273 if (start > end) 1274 goto out; 1275 spin_unlock(&tree->lock); 1276 cond_resched(); 1277 first_iteration = false; 1278 goto again; 1279 1280 out: 1281 spin_unlock(&tree->lock); 1282 if (prealloc) 1283 free_extent_state(prealloc); 1284 1285 return err; 1286 } 1287 1288 /* wrappers around set/clear extent bit */ 1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1290 unsigned bits, struct extent_changeset *changeset) 1291 { 1292 /* 1293 * We don't support EXTENT_LOCKED yet, as current changeset will 1294 * record any bits changed, so for EXTENT_LOCKED case, it will 1295 * either fail with -EEXIST or changeset will record the whole 1296 * range. 1297 */ 1298 BUG_ON(bits & EXTENT_LOCKED); 1299 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1301 changeset); 1302 } 1303 1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, int wake, int delete, 1306 struct extent_state **cached, gfp_t mask) 1307 { 1308 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1309 cached, mask, NULL); 1310 } 1311 1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1313 unsigned bits, struct extent_changeset *changeset) 1314 { 1315 /* 1316 * Don't support EXTENT_LOCKED case, same reason as 1317 * set_record_extent_bits(). 1318 */ 1319 BUG_ON(bits & EXTENT_LOCKED); 1320 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1322 changeset); 1323 } 1324 1325 /* 1326 * either insert or lock state struct between start and end use mask to tell 1327 * us if waiting is desired. 1328 */ 1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1330 struct extent_state **cached_state) 1331 { 1332 int err; 1333 u64 failed_start; 1334 1335 while (1) { 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1337 EXTENT_LOCKED, &failed_start, 1338 cached_state, GFP_NOFS, NULL); 1339 if (err == -EEXIST) { 1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1341 start = failed_start; 1342 } else 1343 break; 1344 WARN_ON(start > end); 1345 } 1346 return err; 1347 } 1348 1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1350 { 1351 int err; 1352 u64 failed_start; 1353 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1355 &failed_start, NULL, GFP_NOFS, NULL); 1356 if (err == -EEXIST) { 1357 if (failed_start > start) 1358 clear_extent_bit(tree, start, failed_start - 1, 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1360 return 0; 1361 } 1362 return 1; 1363 } 1364 1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1366 { 1367 unsigned long index = start >> PAGE_SHIFT; 1368 unsigned long end_index = end >> PAGE_SHIFT; 1369 struct page *page; 1370 1371 while (index <= end_index) { 1372 page = find_get_page(inode->i_mapping, index); 1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1374 clear_page_dirty_for_io(page); 1375 put_page(page); 1376 index++; 1377 } 1378 } 1379 1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1381 { 1382 unsigned long index = start >> PAGE_SHIFT; 1383 unsigned long end_index = end >> PAGE_SHIFT; 1384 struct page *page; 1385 1386 while (index <= end_index) { 1387 page = find_get_page(inode->i_mapping, index); 1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1389 __set_page_dirty_nobuffers(page); 1390 account_page_redirty(page); 1391 put_page(page); 1392 index++; 1393 } 1394 } 1395 1396 /* 1397 * helper function to set both pages and extents in the tree writeback 1398 */ 1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1400 { 1401 unsigned long index = start >> PAGE_SHIFT; 1402 unsigned long end_index = end >> PAGE_SHIFT; 1403 struct page *page; 1404 1405 while (index <= end_index) { 1406 page = find_get_page(tree->mapping, index); 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1408 set_page_writeback(page); 1409 put_page(page); 1410 index++; 1411 } 1412 } 1413 1414 /* find the first state struct with 'bits' set after 'start', and 1415 * return it. tree->lock must be held. NULL will returned if 1416 * nothing was found after 'start' 1417 */ 1418 static struct extent_state * 1419 find_first_extent_bit_state(struct extent_io_tree *tree, 1420 u64 start, unsigned bits) 1421 { 1422 struct rb_node *node; 1423 struct extent_state *state; 1424 1425 /* 1426 * this search will find all the extents that end after 1427 * our range starts. 1428 */ 1429 node = tree_search(tree, start); 1430 if (!node) 1431 goto out; 1432 1433 while (1) { 1434 state = rb_entry(node, struct extent_state, rb_node); 1435 if (state->end >= start && (state->state & bits)) 1436 return state; 1437 1438 node = rb_next(node); 1439 if (!node) 1440 break; 1441 } 1442 out: 1443 return NULL; 1444 } 1445 1446 /* 1447 * find the first offset in the io tree with 'bits' set. zero is 1448 * returned if we find something, and *start_ret and *end_ret are 1449 * set to reflect the state struct that was found. 1450 * 1451 * If nothing was found, 1 is returned. If found something, return 0. 1452 */ 1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1454 u64 *start_ret, u64 *end_ret, unsigned bits, 1455 struct extent_state **cached_state) 1456 { 1457 struct extent_state *state; 1458 struct rb_node *n; 1459 int ret = 1; 1460 1461 spin_lock(&tree->lock); 1462 if (cached_state && *cached_state) { 1463 state = *cached_state; 1464 if (state->end == start - 1 && extent_state_in_tree(state)) { 1465 n = rb_next(&state->rb_node); 1466 while (n) { 1467 state = rb_entry(n, struct extent_state, 1468 rb_node); 1469 if (state->state & bits) 1470 goto got_it; 1471 n = rb_next(n); 1472 } 1473 free_extent_state(*cached_state); 1474 *cached_state = NULL; 1475 goto out; 1476 } 1477 free_extent_state(*cached_state); 1478 *cached_state = NULL; 1479 } 1480 1481 state = find_first_extent_bit_state(tree, start, bits); 1482 got_it: 1483 if (state) { 1484 cache_state_if_flags(state, cached_state, 0); 1485 *start_ret = state->start; 1486 *end_ret = state->end; 1487 ret = 0; 1488 } 1489 out: 1490 spin_unlock(&tree->lock); 1491 return ret; 1492 } 1493 1494 /* 1495 * find a contiguous range of bytes in the file marked as delalloc, not 1496 * more than 'max_bytes'. start and end are used to return the range, 1497 * 1498 * 1 is returned if we find something, 0 if nothing was in the tree 1499 */ 1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1501 u64 *start, u64 *end, u64 max_bytes, 1502 struct extent_state **cached_state) 1503 { 1504 struct rb_node *node; 1505 struct extent_state *state; 1506 u64 cur_start = *start; 1507 u64 found = 0; 1508 u64 total_bytes = 0; 1509 1510 spin_lock(&tree->lock); 1511 1512 /* 1513 * this search will find all the extents that end after 1514 * our range starts. 1515 */ 1516 node = tree_search(tree, cur_start); 1517 if (!node) { 1518 if (!found) 1519 *end = (u64)-1; 1520 goto out; 1521 } 1522 1523 while (1) { 1524 state = rb_entry(node, struct extent_state, rb_node); 1525 if (found && (state->start != cur_start || 1526 (state->state & EXTENT_BOUNDARY))) { 1527 goto out; 1528 } 1529 if (!(state->state & EXTENT_DELALLOC)) { 1530 if (!found) 1531 *end = state->end; 1532 goto out; 1533 } 1534 if (!found) { 1535 *start = state->start; 1536 *cached_state = state; 1537 atomic_inc(&state->refs); 1538 } 1539 found++; 1540 *end = state->end; 1541 cur_start = state->end + 1; 1542 node = rb_next(node); 1543 total_bytes += state->end - state->start + 1; 1544 if (total_bytes >= max_bytes) 1545 break; 1546 if (!node) 1547 break; 1548 } 1549 out: 1550 spin_unlock(&tree->lock); 1551 return found; 1552 } 1553 1554 static noinline void __unlock_for_delalloc(struct inode *inode, 1555 struct page *locked_page, 1556 u64 start, u64 end) 1557 { 1558 int ret; 1559 struct page *pages[16]; 1560 unsigned long index = start >> PAGE_SHIFT; 1561 unsigned long end_index = end >> PAGE_SHIFT; 1562 unsigned long nr_pages = end_index - index + 1; 1563 int i; 1564 1565 if (index == locked_page->index && end_index == index) 1566 return; 1567 1568 while (nr_pages > 0) { 1569 ret = find_get_pages_contig(inode->i_mapping, index, 1570 min_t(unsigned long, nr_pages, 1571 ARRAY_SIZE(pages)), pages); 1572 for (i = 0; i < ret; i++) { 1573 if (pages[i] != locked_page) 1574 unlock_page(pages[i]); 1575 put_page(pages[i]); 1576 } 1577 nr_pages -= ret; 1578 index += ret; 1579 cond_resched(); 1580 } 1581 } 1582 1583 static noinline int lock_delalloc_pages(struct inode *inode, 1584 struct page *locked_page, 1585 u64 delalloc_start, 1586 u64 delalloc_end) 1587 { 1588 unsigned long index = delalloc_start >> PAGE_SHIFT; 1589 unsigned long start_index = index; 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1591 unsigned long pages_locked = 0; 1592 struct page *pages[16]; 1593 unsigned long nrpages; 1594 int ret; 1595 int i; 1596 1597 /* the caller is responsible for locking the start index */ 1598 if (index == locked_page->index && index == end_index) 1599 return 0; 1600 1601 /* skip the page at the start index */ 1602 nrpages = end_index - index + 1; 1603 while (nrpages > 0) { 1604 ret = find_get_pages_contig(inode->i_mapping, index, 1605 min_t(unsigned long, 1606 nrpages, ARRAY_SIZE(pages)), pages); 1607 if (ret == 0) { 1608 ret = -EAGAIN; 1609 goto done; 1610 } 1611 /* now we have an array of pages, lock them all */ 1612 for (i = 0; i < ret; i++) { 1613 /* 1614 * the caller is taking responsibility for 1615 * locked_page 1616 */ 1617 if (pages[i] != locked_page) { 1618 lock_page(pages[i]); 1619 if (!PageDirty(pages[i]) || 1620 pages[i]->mapping != inode->i_mapping) { 1621 ret = -EAGAIN; 1622 unlock_page(pages[i]); 1623 put_page(pages[i]); 1624 goto done; 1625 } 1626 } 1627 put_page(pages[i]); 1628 pages_locked++; 1629 } 1630 nrpages -= ret; 1631 index += ret; 1632 cond_resched(); 1633 } 1634 ret = 0; 1635 done: 1636 if (ret && pages_locked) { 1637 __unlock_for_delalloc(inode, locked_page, 1638 delalloc_start, 1639 ((u64)(start_index + pages_locked - 1)) << 1640 PAGE_SHIFT); 1641 } 1642 return ret; 1643 } 1644 1645 /* 1646 * find a contiguous range of bytes in the file marked as delalloc, not 1647 * more than 'max_bytes'. start and end are used to return the range, 1648 * 1649 * 1 is returned if we find something, 0 if nothing was in the tree 1650 */ 1651 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1652 struct extent_io_tree *tree, 1653 struct page *locked_page, u64 *start, 1654 u64 *end, u64 max_bytes) 1655 { 1656 u64 delalloc_start; 1657 u64 delalloc_end; 1658 u64 found; 1659 struct extent_state *cached_state = NULL; 1660 int ret; 1661 int loops = 0; 1662 1663 again: 1664 /* step one, find a bunch of delalloc bytes starting at start */ 1665 delalloc_start = *start; 1666 delalloc_end = 0; 1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1668 max_bytes, &cached_state); 1669 if (!found || delalloc_end <= *start) { 1670 *start = delalloc_start; 1671 *end = delalloc_end; 1672 free_extent_state(cached_state); 1673 return 0; 1674 } 1675 1676 /* 1677 * start comes from the offset of locked_page. We have to lock 1678 * pages in order, so we can't process delalloc bytes before 1679 * locked_page 1680 */ 1681 if (delalloc_start < *start) 1682 delalloc_start = *start; 1683 1684 /* 1685 * make sure to limit the number of pages we try to lock down 1686 */ 1687 if (delalloc_end + 1 - delalloc_start > max_bytes) 1688 delalloc_end = delalloc_start + max_bytes - 1; 1689 1690 /* step two, lock all the pages after the page that has start */ 1691 ret = lock_delalloc_pages(inode, locked_page, 1692 delalloc_start, delalloc_end); 1693 if (ret == -EAGAIN) { 1694 /* some of the pages are gone, lets avoid looping by 1695 * shortening the size of the delalloc range we're searching 1696 */ 1697 free_extent_state(cached_state); 1698 cached_state = NULL; 1699 if (!loops) { 1700 max_bytes = PAGE_SIZE; 1701 loops = 1; 1702 goto again; 1703 } else { 1704 found = 0; 1705 goto out_failed; 1706 } 1707 } 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1709 1710 /* step three, lock the state bits for the whole range */ 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1712 1713 /* then test to make sure it is all still delalloc */ 1714 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1715 EXTENT_DELALLOC, 1, cached_state); 1716 if (!ret) { 1717 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1718 &cached_state, GFP_NOFS); 1719 __unlock_for_delalloc(inode, locked_page, 1720 delalloc_start, delalloc_end); 1721 cond_resched(); 1722 goto again; 1723 } 1724 free_extent_state(cached_state); 1725 *start = delalloc_start; 1726 *end = delalloc_end; 1727 out_failed: 1728 return found; 1729 } 1730 1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1732 struct page *locked_page, 1733 unsigned clear_bits, 1734 unsigned long page_ops) 1735 { 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1737 int ret; 1738 struct page *pages[16]; 1739 unsigned long index = start >> PAGE_SHIFT; 1740 unsigned long end_index = end >> PAGE_SHIFT; 1741 unsigned long nr_pages = end_index - index + 1; 1742 int i; 1743 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1745 if (page_ops == 0) 1746 return; 1747 1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1749 mapping_set_error(inode->i_mapping, -EIO); 1750 1751 while (nr_pages > 0) { 1752 ret = find_get_pages_contig(inode->i_mapping, index, 1753 min_t(unsigned long, 1754 nr_pages, ARRAY_SIZE(pages)), pages); 1755 for (i = 0; i < ret; i++) { 1756 1757 if (page_ops & PAGE_SET_PRIVATE2) 1758 SetPagePrivate2(pages[i]); 1759 1760 if (pages[i] == locked_page) { 1761 put_page(pages[i]); 1762 continue; 1763 } 1764 if (page_ops & PAGE_CLEAR_DIRTY) 1765 clear_page_dirty_for_io(pages[i]); 1766 if (page_ops & PAGE_SET_WRITEBACK) 1767 set_page_writeback(pages[i]); 1768 if (page_ops & PAGE_SET_ERROR) 1769 SetPageError(pages[i]); 1770 if (page_ops & PAGE_END_WRITEBACK) 1771 end_page_writeback(pages[i]); 1772 if (page_ops & PAGE_UNLOCK) 1773 unlock_page(pages[i]); 1774 put_page(pages[i]); 1775 } 1776 nr_pages -= ret; 1777 index += ret; 1778 cond_resched(); 1779 } 1780 } 1781 1782 /* 1783 * count the number of bytes in the tree that have a given bit(s) 1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1785 * cached. The total number found is returned. 1786 */ 1787 u64 count_range_bits(struct extent_io_tree *tree, 1788 u64 *start, u64 search_end, u64 max_bytes, 1789 unsigned bits, int contig) 1790 { 1791 struct rb_node *node; 1792 struct extent_state *state; 1793 u64 cur_start = *start; 1794 u64 total_bytes = 0; 1795 u64 last = 0; 1796 int found = 0; 1797 1798 if (WARN_ON(search_end <= cur_start)) 1799 return 0; 1800 1801 spin_lock(&tree->lock); 1802 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1803 total_bytes = tree->dirty_bytes; 1804 goto out; 1805 } 1806 /* 1807 * this search will find all the extents that end after 1808 * our range starts. 1809 */ 1810 node = tree_search(tree, cur_start); 1811 if (!node) 1812 goto out; 1813 1814 while (1) { 1815 state = rb_entry(node, struct extent_state, rb_node); 1816 if (state->start > search_end) 1817 break; 1818 if (contig && found && state->start > last + 1) 1819 break; 1820 if (state->end >= cur_start && (state->state & bits) == bits) { 1821 total_bytes += min(search_end, state->end) + 1 - 1822 max(cur_start, state->start); 1823 if (total_bytes >= max_bytes) 1824 break; 1825 if (!found) { 1826 *start = max(cur_start, state->start); 1827 found = 1; 1828 } 1829 last = state->end; 1830 } else if (contig && found) { 1831 break; 1832 } 1833 node = rb_next(node); 1834 if (!node) 1835 break; 1836 } 1837 out: 1838 spin_unlock(&tree->lock); 1839 return total_bytes; 1840 } 1841 1842 /* 1843 * set the private field for a given byte offset in the tree. If there isn't 1844 * an extent_state there already, this does nothing. 1845 */ 1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record *failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 state->failrec = failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1875 struct io_failure_record **failrec) 1876 { 1877 struct rb_node *node; 1878 struct extent_state *state; 1879 int ret = 0; 1880 1881 spin_lock(&tree->lock); 1882 /* 1883 * this search will find all the extents that end after 1884 * our range starts. 1885 */ 1886 node = tree_search(tree, start); 1887 if (!node) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 state = rb_entry(node, struct extent_state, rb_node); 1892 if (state->start != start) { 1893 ret = -ENOENT; 1894 goto out; 1895 } 1896 *failrec = state->failrec; 1897 out: 1898 spin_unlock(&tree->lock); 1899 return ret; 1900 } 1901 1902 /* 1903 * searches a range in the state tree for a given mask. 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree 1905 * has the bits set. Otherwise, 1 is returned if any bit in the 1906 * range is found set. 1907 */ 1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1909 unsigned bits, int filled, struct extent_state *cached) 1910 { 1911 struct extent_state *state = NULL; 1912 struct rb_node *node; 1913 int bitset = 0; 1914 1915 spin_lock(&tree->lock); 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1917 cached->end > start) 1918 node = &cached->rb_node; 1919 else 1920 node = tree_search(tree, start); 1921 while (node && start <= end) { 1922 state = rb_entry(node, struct extent_state, rb_node); 1923 1924 if (filled && state->start > start) { 1925 bitset = 0; 1926 break; 1927 } 1928 1929 if (state->start > end) 1930 break; 1931 1932 if (state->state & bits) { 1933 bitset = 1; 1934 if (!filled) 1935 break; 1936 } else if (filled) { 1937 bitset = 0; 1938 break; 1939 } 1940 1941 if (state->end == (u64)-1) 1942 break; 1943 1944 start = state->end + 1; 1945 if (start > end) 1946 break; 1947 node = rb_next(node); 1948 if (!node) { 1949 if (filled) 1950 bitset = 0; 1951 break; 1952 } 1953 } 1954 spin_unlock(&tree->lock); 1955 return bitset; 1956 } 1957 1958 /* 1959 * helper function to set a given page up to date if all the 1960 * extents in the tree for that page are up to date 1961 */ 1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1963 { 1964 u64 start = page_offset(page); 1965 u64 end = start + PAGE_SIZE - 1; 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1967 SetPageUptodate(page); 1968 } 1969 1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1971 { 1972 int ret; 1973 int err = 0; 1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1975 1976 set_state_failrec(failure_tree, rec->start, NULL); 1977 ret = clear_extent_bits(failure_tree, rec->start, 1978 rec->start + rec->len - 1, 1979 EXTENT_LOCKED | EXTENT_DIRTY); 1980 if (ret) 1981 err = ret; 1982 1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1984 rec->start + rec->len - 1, 1985 EXTENT_DAMAGED); 1986 if (ret && !err) 1987 err = ret; 1988 1989 kfree(rec); 1990 return err; 1991 } 1992 1993 /* 1994 * this bypasses the standard btrfs submit functions deliberately, as 1995 * the standard behavior is to write all copies in a raid setup. here we only 1996 * want to write the one bad copy. so we do the mapping for ourselves and issue 1997 * submit_bio directly. 1998 * to avoid any synchronization issues, wait for the data after writing, which 1999 * actually prevents the read that triggered the error from finishing. 2000 * currently, there can be no more than two copies of every data bit. thus, 2001 * exactly one rewrite is required. 2002 */ 2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2004 struct page *page, unsigned int pg_offset, int mirror_num) 2005 { 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2007 struct bio *bio; 2008 struct btrfs_device *dev; 2009 u64 map_length = 0; 2010 u64 sector; 2011 struct btrfs_bio *bbio = NULL; 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2013 int ret; 2014 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2016 BUG_ON(!mirror_num); 2017 2018 /* we can't repair anything in raid56 yet */ 2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2020 return 0; 2021 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2023 if (!bio) 2024 return -EIO; 2025 bio->bi_iter.bi_size = 0; 2026 map_length = length; 2027 2028 ret = btrfs_map_block(fs_info, WRITE, logical, 2029 &map_length, &bbio, mirror_num); 2030 if (ret) { 2031 bio_put(bio); 2032 return -EIO; 2033 } 2034 BUG_ON(mirror_num != bbio->mirror_num); 2035 sector = bbio->stripes[mirror_num-1].physical >> 9; 2036 bio->bi_iter.bi_sector = sector; 2037 dev = bbio->stripes[mirror_num-1].dev; 2038 btrfs_put_bbio(bbio); 2039 if (!dev || !dev->bdev || !dev->writeable) { 2040 bio_put(bio); 2041 return -EIO; 2042 } 2043 bio->bi_bdev = dev->bdev; 2044 bio_add_page(bio, page, length, pg_offset); 2045 2046 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2047 /* try to remap that extent elsewhere? */ 2048 bio_put(bio); 2049 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2050 return -EIO; 2051 } 2052 2053 btrfs_info_rl_in_rcu(fs_info, 2054 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2055 btrfs_ino(inode), start, 2056 rcu_str_deref(dev->name), sector); 2057 bio_put(bio); 2058 return 0; 2059 } 2060 2061 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2062 int mirror_num) 2063 { 2064 u64 start = eb->start; 2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2066 int ret = 0; 2067 2068 if (root->fs_info->sb->s_flags & MS_RDONLY) 2069 return -EROFS; 2070 2071 for (i = 0; i < num_pages; i++) { 2072 struct page *p = eb->pages[i]; 2073 2074 ret = repair_io_failure(root->fs_info->btree_inode, start, 2075 PAGE_SIZE, start, p, 2076 start - page_offset(p), mirror_num); 2077 if (ret) 2078 break; 2079 start += PAGE_SIZE; 2080 } 2081 2082 return ret; 2083 } 2084 2085 /* 2086 * each time an IO finishes, we do a fast check in the IO failure tree 2087 * to see if we need to process or clean up an io_failure_record 2088 */ 2089 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2090 unsigned int pg_offset) 2091 { 2092 u64 private; 2093 struct io_failure_record *failrec; 2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2095 struct extent_state *state; 2096 int num_copies; 2097 int ret; 2098 2099 private = 0; 2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2101 (u64)-1, 1, EXTENT_DIRTY, 0); 2102 if (!ret) 2103 return 0; 2104 2105 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start, 2106 &failrec); 2107 if (ret) 2108 return 0; 2109 2110 BUG_ON(!failrec->this_mirror); 2111 2112 if (failrec->in_validation) { 2113 /* there was no real error, just free the record */ 2114 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2115 failrec->start); 2116 goto out; 2117 } 2118 if (fs_info->sb->s_flags & MS_RDONLY) 2119 goto out; 2120 2121 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2122 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2123 failrec->start, 2124 EXTENT_LOCKED); 2125 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2126 2127 if (state && state->start <= failrec->start && 2128 state->end >= failrec->start + failrec->len - 1) { 2129 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2130 failrec->len); 2131 if (num_copies > 1) { 2132 repair_io_failure(inode, start, failrec->len, 2133 failrec->logical, page, 2134 pg_offset, failrec->failed_mirror); 2135 } 2136 } 2137 2138 out: 2139 free_io_failure(inode, failrec); 2140 2141 return 0; 2142 } 2143 2144 /* 2145 * Can be called when 2146 * - hold extent lock 2147 * - under ordered extent 2148 * - the inode is freeing 2149 */ 2150 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2151 { 2152 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2153 struct io_failure_record *failrec; 2154 struct extent_state *state, *next; 2155 2156 if (RB_EMPTY_ROOT(&failure_tree->state)) 2157 return; 2158 2159 spin_lock(&failure_tree->lock); 2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2161 while (state) { 2162 if (state->start > end) 2163 break; 2164 2165 ASSERT(state->end <= end); 2166 2167 next = next_state(state); 2168 2169 failrec = state->failrec; 2170 free_extent_state(state); 2171 kfree(failrec); 2172 2173 state = next; 2174 } 2175 spin_unlock(&failure_tree->lock); 2176 } 2177 2178 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2179 struct io_failure_record **failrec_ret) 2180 { 2181 struct io_failure_record *failrec; 2182 struct extent_map *em; 2183 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2184 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2185 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2186 int ret; 2187 u64 logical; 2188 2189 ret = get_state_failrec(failure_tree, start, &failrec); 2190 if (ret) { 2191 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2192 if (!failrec) 2193 return -ENOMEM; 2194 2195 failrec->start = start; 2196 failrec->len = end - start + 1; 2197 failrec->this_mirror = 0; 2198 failrec->bio_flags = 0; 2199 failrec->in_validation = 0; 2200 2201 read_lock(&em_tree->lock); 2202 em = lookup_extent_mapping(em_tree, start, failrec->len); 2203 if (!em) { 2204 read_unlock(&em_tree->lock); 2205 kfree(failrec); 2206 return -EIO; 2207 } 2208 2209 if (em->start > start || em->start + em->len <= start) { 2210 free_extent_map(em); 2211 em = NULL; 2212 } 2213 read_unlock(&em_tree->lock); 2214 if (!em) { 2215 kfree(failrec); 2216 return -EIO; 2217 } 2218 2219 logical = start - em->start; 2220 logical = em->block_start + logical; 2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2222 logical = em->block_start; 2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2224 extent_set_compress_type(&failrec->bio_flags, 2225 em->compress_type); 2226 } 2227 2228 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2229 logical, start, failrec->len); 2230 2231 failrec->logical = logical; 2232 free_extent_map(em); 2233 2234 /* set the bits in the private failure tree */ 2235 ret = set_extent_bits(failure_tree, start, end, 2236 EXTENT_LOCKED | EXTENT_DIRTY); 2237 if (ret >= 0) 2238 ret = set_state_failrec(failure_tree, start, failrec); 2239 /* set the bits in the inode's tree */ 2240 if (ret >= 0) 2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2242 if (ret < 0) { 2243 kfree(failrec); 2244 return ret; 2245 } 2246 } else { 2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2248 failrec->logical, failrec->start, failrec->len, 2249 failrec->in_validation); 2250 /* 2251 * when data can be on disk more than twice, add to failrec here 2252 * (e.g. with a list for failed_mirror) to make 2253 * clean_io_failure() clean all those errors at once. 2254 */ 2255 } 2256 2257 *failrec_ret = failrec; 2258 2259 return 0; 2260 } 2261 2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2263 struct io_failure_record *failrec, int failed_mirror) 2264 { 2265 int num_copies; 2266 2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2268 failrec->logical, failrec->len); 2269 if (num_copies == 1) { 2270 /* 2271 * we only have a single copy of the data, so don't bother with 2272 * all the retry and error correction code that follows. no 2273 * matter what the error is, it is very likely to persist. 2274 */ 2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2276 num_copies, failrec->this_mirror, failed_mirror); 2277 return 0; 2278 } 2279 2280 /* 2281 * there are two premises: 2282 * a) deliver good data to the caller 2283 * b) correct the bad sectors on disk 2284 */ 2285 if (failed_bio->bi_vcnt > 1) { 2286 /* 2287 * to fulfill b), we need to know the exact failing sectors, as 2288 * we don't want to rewrite any more than the failed ones. thus, 2289 * we need separate read requests for the failed bio 2290 * 2291 * if the following BUG_ON triggers, our validation request got 2292 * merged. we need separate requests for our algorithm to work. 2293 */ 2294 BUG_ON(failrec->in_validation); 2295 failrec->in_validation = 1; 2296 failrec->this_mirror = failed_mirror; 2297 } else { 2298 /* 2299 * we're ready to fulfill a) and b) alongside. get a good copy 2300 * of the failed sector and if we succeed, we have setup 2301 * everything for repair_io_failure to do the rest for us. 2302 */ 2303 if (failrec->in_validation) { 2304 BUG_ON(failrec->this_mirror != failed_mirror); 2305 failrec->in_validation = 0; 2306 failrec->this_mirror = 0; 2307 } 2308 failrec->failed_mirror = failed_mirror; 2309 failrec->this_mirror++; 2310 if (failrec->this_mirror == failed_mirror) 2311 failrec->this_mirror++; 2312 } 2313 2314 if (failrec->this_mirror > num_copies) { 2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2316 num_copies, failrec->this_mirror, failed_mirror); 2317 return 0; 2318 } 2319 2320 return 1; 2321 } 2322 2323 2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2325 struct io_failure_record *failrec, 2326 struct page *page, int pg_offset, int icsum, 2327 bio_end_io_t *endio_func, void *data) 2328 { 2329 struct bio *bio; 2330 struct btrfs_io_bio *btrfs_failed_bio; 2331 struct btrfs_io_bio *btrfs_bio; 2332 2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2334 if (!bio) 2335 return NULL; 2336 2337 bio->bi_end_io = endio_func; 2338 bio->bi_iter.bi_sector = failrec->logical >> 9; 2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2340 bio->bi_iter.bi_size = 0; 2341 bio->bi_private = data; 2342 2343 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2344 if (btrfs_failed_bio->csum) { 2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2347 2348 btrfs_bio = btrfs_io_bio(bio); 2349 btrfs_bio->csum = btrfs_bio->csum_inline; 2350 icsum *= csum_size; 2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2352 csum_size); 2353 } 2354 2355 bio_add_page(bio, page, failrec->len, pg_offset); 2356 2357 return bio; 2358 } 2359 2360 /* 2361 * this is a generic handler for readpage errors (default 2362 * readpage_io_failed_hook). if other copies exist, read those and write back 2363 * good data to the failed position. does not investigate in remapping the 2364 * failed extent elsewhere, hoping the device will be smart enough to do this as 2365 * needed 2366 */ 2367 2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2369 struct page *page, u64 start, u64 end, 2370 int failed_mirror) 2371 { 2372 struct io_failure_record *failrec; 2373 struct inode *inode = page->mapping->host; 2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2375 struct bio *bio; 2376 int read_mode; 2377 int ret; 2378 2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2380 2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2382 if (ret) 2383 return ret; 2384 2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2386 if (!ret) { 2387 free_io_failure(inode, failrec); 2388 return -EIO; 2389 } 2390 2391 if (failed_bio->bi_vcnt > 1) 2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2393 else 2394 read_mode = READ_SYNC; 2395 2396 phy_offset >>= inode->i_sb->s_blocksize_bits; 2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2398 start - page_offset(page), 2399 (int)phy_offset, failed_bio->bi_end_io, 2400 NULL); 2401 if (!bio) { 2402 free_io_failure(inode, failrec); 2403 return -EIO; 2404 } 2405 2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2407 read_mode, failrec->this_mirror, failrec->in_validation); 2408 2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2410 failrec->this_mirror, 2411 failrec->bio_flags, 0); 2412 if (ret) { 2413 free_io_failure(inode, failrec); 2414 bio_put(bio); 2415 } 2416 2417 return ret; 2418 } 2419 2420 /* lots and lots of room for performance fixes in the end_bio funcs */ 2421 2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2423 { 2424 int uptodate = (err == 0); 2425 struct extent_io_tree *tree; 2426 int ret = 0; 2427 2428 tree = &BTRFS_I(page->mapping->host)->io_tree; 2429 2430 if (tree->ops && tree->ops->writepage_end_io_hook) { 2431 ret = tree->ops->writepage_end_io_hook(page, start, 2432 end, NULL, uptodate); 2433 if (ret) 2434 uptodate = 0; 2435 } 2436 2437 if (!uptodate) { 2438 ClearPageUptodate(page); 2439 SetPageError(page); 2440 ret = ret < 0 ? ret : -EIO; 2441 mapping_set_error(page->mapping, ret); 2442 } 2443 } 2444 2445 /* 2446 * after a writepage IO is done, we need to: 2447 * clear the uptodate bits on error 2448 * clear the writeback bits in the extent tree for this IO 2449 * end_page_writeback if the page has no more pending IO 2450 * 2451 * Scheduling is not allowed, so the extent state tree is expected 2452 * to have one and only one object corresponding to this IO. 2453 */ 2454 static void end_bio_extent_writepage(struct bio *bio) 2455 { 2456 struct bio_vec *bvec; 2457 u64 start; 2458 u64 end; 2459 int i; 2460 2461 bio_for_each_segment_all(bvec, bio, i) { 2462 struct page *page = bvec->bv_page; 2463 2464 /* We always issue full-page reads, but if some block 2465 * in a page fails to read, blk_update_request() will 2466 * advance bv_offset and adjust bv_len to compensate. 2467 * Print a warning for nonzero offsets, and an error 2468 * if they don't add up to a full page. */ 2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2472 "partial page write in btrfs with offset %u and length %u", 2473 bvec->bv_offset, bvec->bv_len); 2474 else 2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2476 "incomplete page write in btrfs with offset %u and " 2477 "length %u", 2478 bvec->bv_offset, bvec->bv_len); 2479 } 2480 2481 start = page_offset(page); 2482 end = start + bvec->bv_offset + bvec->bv_len - 1; 2483 2484 end_extent_writepage(page, bio->bi_error, start, end); 2485 end_page_writeback(page); 2486 } 2487 2488 bio_put(bio); 2489 } 2490 2491 static void 2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2493 int uptodate) 2494 { 2495 struct extent_state *cached = NULL; 2496 u64 end = start + len - 1; 2497 2498 if (uptodate && tree->track_uptodate) 2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2501 } 2502 2503 /* 2504 * after a readpage IO is done, we need to: 2505 * clear the uptodate bits on error 2506 * set the uptodate bits if things worked 2507 * set the page up to date if all extents in the tree are uptodate 2508 * clear the lock bit in the extent tree 2509 * unlock the page if there are no other extents locked for it 2510 * 2511 * Scheduling is not allowed, so the extent state tree is expected 2512 * to have one and only one object corresponding to this IO. 2513 */ 2514 static void end_bio_extent_readpage(struct bio *bio) 2515 { 2516 struct bio_vec *bvec; 2517 int uptodate = !bio->bi_error; 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2519 struct extent_io_tree *tree; 2520 u64 offset = 0; 2521 u64 start; 2522 u64 end; 2523 u64 len; 2524 u64 extent_start = 0; 2525 u64 extent_len = 0; 2526 int mirror; 2527 int ret; 2528 int i; 2529 2530 bio_for_each_segment_all(bvec, bio, i) { 2531 struct page *page = bvec->bv_page; 2532 struct inode *inode = page->mapping->host; 2533 2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2536 bio->bi_error, io_bio->mirror_num); 2537 tree = &BTRFS_I(inode)->io_tree; 2538 2539 /* We always issue full-page reads, but if some block 2540 * in a page fails to read, blk_update_request() will 2541 * advance bv_offset and adjust bv_len to compensate. 2542 * Print a warning for nonzero offsets, and an error 2543 * if they don't add up to a full page. */ 2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2547 "partial page read in btrfs with offset %u and length %u", 2548 bvec->bv_offset, bvec->bv_len); 2549 else 2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2551 "incomplete page read in btrfs with offset %u and " 2552 "length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 } 2555 2556 start = page_offset(page); 2557 end = start + bvec->bv_offset + bvec->bv_len - 1; 2558 len = bvec->bv_len; 2559 2560 mirror = io_bio->mirror_num; 2561 if (likely(uptodate && tree->ops && 2562 tree->ops->readpage_end_io_hook)) { 2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2564 page, start, end, 2565 mirror); 2566 if (ret) 2567 uptodate = 0; 2568 else 2569 clean_io_failure(inode, start, page, 0); 2570 } 2571 2572 if (likely(uptodate)) 2573 goto readpage_ok; 2574 2575 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2577 if (!ret && !bio->bi_error) 2578 uptodate = 1; 2579 } else { 2580 /* 2581 * The generic bio_readpage_error handles errors the 2582 * following way: If possible, new read requests are 2583 * created and submitted and will end up in 2584 * end_bio_extent_readpage as well (if we're lucky, not 2585 * in the !uptodate case). In that case it returns 0 and 2586 * we just go on with the next page in our bio. If it 2587 * can't handle the error it will return -EIO and we 2588 * remain responsible for that page. 2589 */ 2590 ret = bio_readpage_error(bio, offset, page, start, end, 2591 mirror); 2592 if (ret == 0) { 2593 uptodate = !bio->bi_error; 2594 offset += len; 2595 continue; 2596 } 2597 } 2598 readpage_ok: 2599 if (likely(uptodate)) { 2600 loff_t i_size = i_size_read(inode); 2601 pgoff_t end_index = i_size >> PAGE_SHIFT; 2602 unsigned off; 2603 2604 /* Zero out the end if this page straddles i_size */ 2605 off = i_size & (PAGE_SIZE-1); 2606 if (page->index == end_index && off) 2607 zero_user_segment(page, off, PAGE_SIZE); 2608 SetPageUptodate(page); 2609 } else { 2610 ClearPageUptodate(page); 2611 SetPageError(page); 2612 } 2613 unlock_page(page); 2614 offset += len; 2615 2616 if (unlikely(!uptodate)) { 2617 if (extent_len) { 2618 endio_readpage_release_extent(tree, 2619 extent_start, 2620 extent_len, 1); 2621 extent_start = 0; 2622 extent_len = 0; 2623 } 2624 endio_readpage_release_extent(tree, start, 2625 end - start + 1, 0); 2626 } else if (!extent_len) { 2627 extent_start = start; 2628 extent_len = end + 1 - start; 2629 } else if (extent_start + extent_len == start) { 2630 extent_len += end + 1 - start; 2631 } else { 2632 endio_readpage_release_extent(tree, extent_start, 2633 extent_len, uptodate); 2634 extent_start = start; 2635 extent_len = end + 1 - start; 2636 } 2637 } 2638 2639 if (extent_len) 2640 endio_readpage_release_extent(tree, extent_start, extent_len, 2641 uptodate); 2642 if (io_bio->end_io) 2643 io_bio->end_io(io_bio, bio->bi_error); 2644 bio_put(bio); 2645 } 2646 2647 /* 2648 * this allocates from the btrfs_bioset. We're returning a bio right now 2649 * but you can call btrfs_io_bio for the appropriate container_of magic 2650 */ 2651 struct bio * 2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2653 gfp_t gfp_flags) 2654 { 2655 struct btrfs_io_bio *btrfs_bio; 2656 struct bio *bio; 2657 2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2659 2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2661 while (!bio && (nr_vecs /= 2)) { 2662 bio = bio_alloc_bioset(gfp_flags, 2663 nr_vecs, btrfs_bioset); 2664 } 2665 } 2666 2667 if (bio) { 2668 bio->bi_bdev = bdev; 2669 bio->bi_iter.bi_sector = first_sector; 2670 btrfs_bio = btrfs_io_bio(bio); 2671 btrfs_bio->csum = NULL; 2672 btrfs_bio->csum_allocated = NULL; 2673 btrfs_bio->end_io = NULL; 2674 } 2675 return bio; 2676 } 2677 2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2679 { 2680 struct btrfs_io_bio *btrfs_bio; 2681 struct bio *new; 2682 2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2684 if (new) { 2685 btrfs_bio = btrfs_io_bio(new); 2686 btrfs_bio->csum = NULL; 2687 btrfs_bio->csum_allocated = NULL; 2688 btrfs_bio->end_io = NULL; 2689 2690 #ifdef CONFIG_BLK_CGROUP 2691 /* FIXME, put this into bio_clone_bioset */ 2692 if (bio->bi_css) 2693 bio_associate_blkcg(new, bio->bi_css); 2694 #endif 2695 } 2696 return new; 2697 } 2698 2699 /* this also allocates from the btrfs_bioset */ 2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2701 { 2702 struct btrfs_io_bio *btrfs_bio; 2703 struct bio *bio; 2704 2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2706 if (bio) { 2707 btrfs_bio = btrfs_io_bio(bio); 2708 btrfs_bio->csum = NULL; 2709 btrfs_bio->csum_allocated = NULL; 2710 btrfs_bio->end_io = NULL; 2711 } 2712 return bio; 2713 } 2714 2715 2716 static int __must_check submit_one_bio(int rw, struct bio *bio, 2717 int mirror_num, unsigned long bio_flags) 2718 { 2719 int ret = 0; 2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2721 struct page *page = bvec->bv_page; 2722 struct extent_io_tree *tree = bio->bi_private; 2723 u64 start; 2724 2725 start = page_offset(page) + bvec->bv_offset; 2726 2727 bio->bi_private = NULL; 2728 2729 bio_get(bio); 2730 2731 if (tree->ops && tree->ops->submit_bio_hook) 2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2733 mirror_num, bio_flags, start); 2734 else 2735 btrfsic_submit_bio(rw, bio); 2736 2737 bio_put(bio); 2738 return ret; 2739 } 2740 2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2742 unsigned long offset, size_t size, struct bio *bio, 2743 unsigned long bio_flags) 2744 { 2745 int ret = 0; 2746 if (tree->ops && tree->ops->merge_bio_hook) 2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2748 bio_flags); 2749 BUG_ON(ret < 0); 2750 return ret; 2751 2752 } 2753 2754 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2755 struct writeback_control *wbc, 2756 struct page *page, sector_t sector, 2757 size_t size, unsigned long offset, 2758 struct block_device *bdev, 2759 struct bio **bio_ret, 2760 unsigned long max_pages, 2761 bio_end_io_t end_io_func, 2762 int mirror_num, 2763 unsigned long prev_bio_flags, 2764 unsigned long bio_flags, 2765 bool force_bio_submit) 2766 { 2767 int ret = 0; 2768 struct bio *bio; 2769 int contig = 0; 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2771 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2772 2773 if (bio_ret && *bio_ret) { 2774 bio = *bio_ret; 2775 if (old_compressed) 2776 contig = bio->bi_iter.bi_sector == sector; 2777 else 2778 contig = bio_end_sector(bio) == sector; 2779 2780 if (prev_bio_flags != bio_flags || !contig || 2781 force_bio_submit || 2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2783 bio_add_page(bio, page, page_size, offset) < page_size) { 2784 ret = submit_one_bio(rw, bio, mirror_num, 2785 prev_bio_flags); 2786 if (ret < 0) { 2787 *bio_ret = NULL; 2788 return ret; 2789 } 2790 bio = NULL; 2791 } else { 2792 if (wbc) 2793 wbc_account_io(wbc, page, page_size); 2794 return 0; 2795 } 2796 } 2797 2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2799 GFP_NOFS | __GFP_HIGH); 2800 if (!bio) 2801 return -ENOMEM; 2802 2803 bio_add_page(bio, page, page_size, offset); 2804 bio->bi_end_io = end_io_func; 2805 bio->bi_private = tree; 2806 if (wbc) { 2807 wbc_init_bio(wbc, bio); 2808 wbc_account_io(wbc, page, page_size); 2809 } 2810 2811 if (bio_ret) 2812 *bio_ret = bio; 2813 else 2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2815 2816 return ret; 2817 } 2818 2819 static void attach_extent_buffer_page(struct extent_buffer *eb, 2820 struct page *page) 2821 { 2822 if (!PagePrivate(page)) { 2823 SetPagePrivate(page); 2824 get_page(page); 2825 set_page_private(page, (unsigned long)eb); 2826 } else { 2827 WARN_ON(page->private != (unsigned long)eb); 2828 } 2829 } 2830 2831 void set_page_extent_mapped(struct page *page) 2832 { 2833 if (!PagePrivate(page)) { 2834 SetPagePrivate(page); 2835 get_page(page); 2836 set_page_private(page, EXTENT_PAGE_PRIVATE); 2837 } 2838 } 2839 2840 static struct extent_map * 2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2842 u64 start, u64 len, get_extent_t *get_extent, 2843 struct extent_map **em_cached) 2844 { 2845 struct extent_map *em; 2846 2847 if (em_cached && *em_cached) { 2848 em = *em_cached; 2849 if (extent_map_in_tree(em) && start >= em->start && 2850 start < extent_map_end(em)) { 2851 atomic_inc(&em->refs); 2852 return em; 2853 } 2854 2855 free_extent_map(em); 2856 *em_cached = NULL; 2857 } 2858 2859 em = get_extent(inode, page, pg_offset, start, len, 0); 2860 if (em_cached && !IS_ERR_OR_NULL(em)) { 2861 BUG_ON(*em_cached); 2862 atomic_inc(&em->refs); 2863 *em_cached = em; 2864 } 2865 return em; 2866 } 2867 /* 2868 * basic readpage implementation. Locked extent state structs are inserted 2869 * into the tree that are removed when the IO is done (by the end_io 2870 * handlers) 2871 * XXX JDM: This needs looking at to ensure proper page locking 2872 */ 2873 static int __do_readpage(struct extent_io_tree *tree, 2874 struct page *page, 2875 get_extent_t *get_extent, 2876 struct extent_map **em_cached, 2877 struct bio **bio, int mirror_num, 2878 unsigned long *bio_flags, int rw, 2879 u64 *prev_em_start) 2880 { 2881 struct inode *inode = page->mapping->host; 2882 u64 start = page_offset(page); 2883 u64 page_end = start + PAGE_SIZE - 1; 2884 u64 end; 2885 u64 cur = start; 2886 u64 extent_offset; 2887 u64 last_byte = i_size_read(inode); 2888 u64 block_start; 2889 u64 cur_end; 2890 sector_t sector; 2891 struct extent_map *em; 2892 struct block_device *bdev; 2893 int ret; 2894 int nr = 0; 2895 size_t pg_offset = 0; 2896 size_t iosize; 2897 size_t disk_io_size; 2898 size_t blocksize = inode->i_sb->s_blocksize; 2899 unsigned long this_bio_flag = 0; 2900 2901 set_page_extent_mapped(page); 2902 2903 end = page_end; 2904 if (!PageUptodate(page)) { 2905 if (cleancache_get_page(page) == 0) { 2906 BUG_ON(blocksize != PAGE_SIZE); 2907 unlock_extent(tree, start, end); 2908 goto out; 2909 } 2910 } 2911 2912 if (page->index == last_byte >> PAGE_SHIFT) { 2913 char *userpage; 2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2915 2916 if (zero_offset) { 2917 iosize = PAGE_SIZE - zero_offset; 2918 userpage = kmap_atomic(page); 2919 memset(userpage + zero_offset, 0, iosize); 2920 flush_dcache_page(page); 2921 kunmap_atomic(userpage); 2922 } 2923 } 2924 while (cur <= end) { 2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1; 2926 bool force_bio_submit = false; 2927 2928 if (cur >= last_byte) { 2929 char *userpage; 2930 struct extent_state *cached = NULL; 2931 2932 iosize = PAGE_SIZE - pg_offset; 2933 userpage = kmap_atomic(page); 2934 memset(userpage + pg_offset, 0, iosize); 2935 flush_dcache_page(page); 2936 kunmap_atomic(userpage); 2937 set_extent_uptodate(tree, cur, cur + iosize - 1, 2938 &cached, GFP_NOFS); 2939 unlock_extent_cached(tree, cur, 2940 cur + iosize - 1, 2941 &cached, GFP_NOFS); 2942 break; 2943 } 2944 em = __get_extent_map(inode, page, pg_offset, cur, 2945 end - cur + 1, get_extent, em_cached); 2946 if (IS_ERR_OR_NULL(em)) { 2947 SetPageError(page); 2948 unlock_extent(tree, cur, end); 2949 break; 2950 } 2951 extent_offset = cur - em->start; 2952 BUG_ON(extent_map_end(em) <= cur); 2953 BUG_ON(end < cur); 2954 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2957 extent_set_compress_type(&this_bio_flag, 2958 em->compress_type); 2959 } 2960 2961 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2962 cur_end = min(extent_map_end(em) - 1, end); 2963 iosize = ALIGN(iosize, blocksize); 2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2965 disk_io_size = em->block_len; 2966 sector = em->block_start >> 9; 2967 } else { 2968 sector = (em->block_start + extent_offset) >> 9; 2969 disk_io_size = iosize; 2970 } 2971 bdev = em->bdev; 2972 block_start = em->block_start; 2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2974 block_start = EXTENT_MAP_HOLE; 2975 2976 /* 2977 * If we have a file range that points to a compressed extent 2978 * and it's followed by a consecutive file range that points to 2979 * to the same compressed extent (possibly with a different 2980 * offset and/or length, so it either points to the whole extent 2981 * or only part of it), we must make sure we do not submit a 2982 * single bio to populate the pages for the 2 ranges because 2983 * this makes the compressed extent read zero out the pages 2984 * belonging to the 2nd range. Imagine the following scenario: 2985 * 2986 * File layout 2987 * [0 - 8K] [8K - 24K] 2988 * | | 2989 * | | 2990 * points to extent X, points to extent X, 2991 * offset 4K, length of 8K offset 0, length 16K 2992 * 2993 * [extent X, compressed length = 4K uncompressed length = 16K] 2994 * 2995 * If the bio to read the compressed extent covers both ranges, 2996 * it will decompress extent X into the pages belonging to the 2997 * first range and then it will stop, zeroing out the remaining 2998 * pages that belong to the other range that points to extent X. 2999 * So here we make sure we submit 2 bios, one for the first 3000 * range and another one for the third range. Both will target 3001 * the same physical extent from disk, but we can't currently 3002 * make the compressed bio endio callback populate the pages 3003 * for both ranges because each compressed bio is tightly 3004 * coupled with a single extent map, and each range can have 3005 * an extent map with a different offset value relative to the 3006 * uncompressed data of our extent and different lengths. This 3007 * is a corner case so we prioritize correctness over 3008 * non-optimal behavior (submitting 2 bios for the same extent). 3009 */ 3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3011 prev_em_start && *prev_em_start != (u64)-1 && 3012 *prev_em_start != em->orig_start) 3013 force_bio_submit = true; 3014 3015 if (prev_em_start) 3016 *prev_em_start = em->orig_start; 3017 3018 free_extent_map(em); 3019 em = NULL; 3020 3021 /* we've found a hole, just zero and go on */ 3022 if (block_start == EXTENT_MAP_HOLE) { 3023 char *userpage; 3024 struct extent_state *cached = NULL; 3025 3026 userpage = kmap_atomic(page); 3027 memset(userpage + pg_offset, 0, iosize); 3028 flush_dcache_page(page); 3029 kunmap_atomic(userpage); 3030 3031 set_extent_uptodate(tree, cur, cur + iosize - 1, 3032 &cached, GFP_NOFS); 3033 unlock_extent_cached(tree, cur, 3034 cur + iosize - 1, 3035 &cached, GFP_NOFS); 3036 cur = cur + iosize; 3037 pg_offset += iosize; 3038 continue; 3039 } 3040 /* the get_extent function already copied into the page */ 3041 if (test_range_bit(tree, cur, cur_end, 3042 EXTENT_UPTODATE, 1, NULL)) { 3043 check_page_uptodate(tree, page); 3044 unlock_extent(tree, cur, cur + iosize - 1); 3045 cur = cur + iosize; 3046 pg_offset += iosize; 3047 continue; 3048 } 3049 /* we have an inline extent but it didn't get marked up 3050 * to date. Error out 3051 */ 3052 if (block_start == EXTENT_MAP_INLINE) { 3053 SetPageError(page); 3054 unlock_extent(tree, cur, cur + iosize - 1); 3055 cur = cur + iosize; 3056 pg_offset += iosize; 3057 continue; 3058 } 3059 3060 pnr -= page->index; 3061 ret = submit_extent_page(rw, tree, NULL, page, 3062 sector, disk_io_size, pg_offset, 3063 bdev, bio, pnr, 3064 end_bio_extent_readpage, mirror_num, 3065 *bio_flags, 3066 this_bio_flag, 3067 force_bio_submit); 3068 if (!ret) { 3069 nr++; 3070 *bio_flags = this_bio_flag; 3071 } else { 3072 SetPageError(page); 3073 unlock_extent(tree, cur, cur + iosize - 1); 3074 } 3075 cur = cur + iosize; 3076 pg_offset += iosize; 3077 } 3078 out: 3079 if (!nr) { 3080 if (!PageError(page)) 3081 SetPageUptodate(page); 3082 unlock_page(page); 3083 } 3084 return 0; 3085 } 3086 3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3088 struct page *pages[], int nr_pages, 3089 u64 start, u64 end, 3090 get_extent_t *get_extent, 3091 struct extent_map **em_cached, 3092 struct bio **bio, int mirror_num, 3093 unsigned long *bio_flags, int rw, 3094 u64 *prev_em_start) 3095 { 3096 struct inode *inode; 3097 struct btrfs_ordered_extent *ordered; 3098 int index; 3099 3100 inode = pages[0]->mapping->host; 3101 while (1) { 3102 lock_extent(tree, start, end); 3103 ordered = btrfs_lookup_ordered_range(inode, start, 3104 end - start + 1); 3105 if (!ordered) 3106 break; 3107 unlock_extent(tree, start, end); 3108 btrfs_start_ordered_extent(inode, ordered, 1); 3109 btrfs_put_ordered_extent(ordered); 3110 } 3111 3112 for (index = 0; index < nr_pages; index++) { 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3114 mirror_num, bio_flags, rw, prev_em_start); 3115 put_page(pages[index]); 3116 } 3117 } 3118 3119 static void __extent_readpages(struct extent_io_tree *tree, 3120 struct page *pages[], 3121 int nr_pages, get_extent_t *get_extent, 3122 struct extent_map **em_cached, 3123 struct bio **bio, int mirror_num, 3124 unsigned long *bio_flags, int rw, 3125 u64 *prev_em_start) 3126 { 3127 u64 start = 0; 3128 u64 end = 0; 3129 u64 page_start; 3130 int index; 3131 int first_index = 0; 3132 3133 for (index = 0; index < nr_pages; index++) { 3134 page_start = page_offset(pages[index]); 3135 if (!end) { 3136 start = page_start; 3137 end = start + PAGE_SIZE - 1; 3138 first_index = index; 3139 } else if (end + 1 == page_start) { 3140 end += PAGE_SIZE; 3141 } else { 3142 __do_contiguous_readpages(tree, &pages[first_index], 3143 index - first_index, start, 3144 end, get_extent, em_cached, 3145 bio, mirror_num, bio_flags, 3146 rw, prev_em_start); 3147 start = page_start; 3148 end = start + PAGE_SIZE - 1; 3149 first_index = index; 3150 } 3151 } 3152 3153 if (end) 3154 __do_contiguous_readpages(tree, &pages[first_index], 3155 index - first_index, start, 3156 end, get_extent, em_cached, bio, 3157 mirror_num, bio_flags, rw, 3158 prev_em_start); 3159 } 3160 3161 static int __extent_read_full_page(struct extent_io_tree *tree, 3162 struct page *page, 3163 get_extent_t *get_extent, 3164 struct bio **bio, int mirror_num, 3165 unsigned long *bio_flags, int rw) 3166 { 3167 struct inode *inode = page->mapping->host; 3168 struct btrfs_ordered_extent *ordered; 3169 u64 start = page_offset(page); 3170 u64 end = start + PAGE_SIZE - 1; 3171 int ret; 3172 3173 while (1) { 3174 lock_extent(tree, start, end); 3175 ordered = btrfs_lookup_ordered_range(inode, start, 3176 PAGE_SIZE); 3177 if (!ordered) 3178 break; 3179 unlock_extent(tree, start, end); 3180 btrfs_start_ordered_extent(inode, ordered, 1); 3181 btrfs_put_ordered_extent(ordered); 3182 } 3183 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3185 bio_flags, rw, NULL); 3186 return ret; 3187 } 3188 3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3190 get_extent_t *get_extent, int mirror_num) 3191 { 3192 struct bio *bio = NULL; 3193 unsigned long bio_flags = 0; 3194 int ret; 3195 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3197 &bio_flags, READ); 3198 if (bio) 3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3200 return ret; 3201 } 3202 3203 static void update_nr_written(struct page *page, struct writeback_control *wbc, 3204 unsigned long nr_written) 3205 { 3206 wbc->nr_to_write -= nr_written; 3207 } 3208 3209 /* 3210 * helper for __extent_writepage, doing all of the delayed allocation setup. 3211 * 3212 * This returns 1 if our fill_delalloc function did all the work required 3213 * to write the page (copy into inline extent). In this case the IO has 3214 * been started and the page is already unlocked. 3215 * 3216 * This returns 0 if all went well (page still locked) 3217 * This returns < 0 if there were errors (page still locked) 3218 */ 3219 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3220 struct page *page, struct writeback_control *wbc, 3221 struct extent_page_data *epd, 3222 u64 delalloc_start, 3223 unsigned long *nr_written) 3224 { 3225 struct extent_io_tree *tree = epd->tree; 3226 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3227 u64 nr_delalloc; 3228 u64 delalloc_to_write = 0; 3229 u64 delalloc_end = 0; 3230 int ret; 3231 int page_started = 0; 3232 3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3234 return 0; 3235 3236 while (delalloc_end < page_end) { 3237 nr_delalloc = find_lock_delalloc_range(inode, tree, 3238 page, 3239 &delalloc_start, 3240 &delalloc_end, 3241 BTRFS_MAX_EXTENT_SIZE); 3242 if (nr_delalloc == 0) { 3243 delalloc_start = delalloc_end + 1; 3244 continue; 3245 } 3246 ret = tree->ops->fill_delalloc(inode, page, 3247 delalloc_start, 3248 delalloc_end, 3249 &page_started, 3250 nr_written); 3251 /* File system has been set read-only */ 3252 if (ret) { 3253 SetPageError(page); 3254 /* fill_delalloc should be return < 0 for error 3255 * but just in case, we use > 0 here meaning the 3256 * IO is started, so we don't want to return > 0 3257 * unless things are going well. 3258 */ 3259 ret = ret < 0 ? ret : -EIO; 3260 goto done; 3261 } 3262 /* 3263 * delalloc_end is already one less than the total length, so 3264 * we don't subtract one from PAGE_SIZE 3265 */ 3266 delalloc_to_write += (delalloc_end - delalloc_start + 3267 PAGE_SIZE) >> PAGE_SHIFT; 3268 delalloc_start = delalloc_end + 1; 3269 } 3270 if (wbc->nr_to_write < delalloc_to_write) { 3271 int thresh = 8192; 3272 3273 if (delalloc_to_write < thresh * 2) 3274 thresh = delalloc_to_write; 3275 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3276 thresh); 3277 } 3278 3279 /* did the fill delalloc function already unlock and start 3280 * the IO? 3281 */ 3282 if (page_started) { 3283 /* 3284 * we've unlocked the page, so we can't update 3285 * the mapping's writeback index, just update 3286 * nr_to_write. 3287 */ 3288 wbc->nr_to_write -= *nr_written; 3289 return 1; 3290 } 3291 3292 ret = 0; 3293 3294 done: 3295 return ret; 3296 } 3297 3298 /* 3299 * helper for __extent_writepage. This calls the writepage start hooks, 3300 * and does the loop to map the page into extents and bios. 3301 * 3302 * We return 1 if the IO is started and the page is unlocked, 3303 * 0 if all went well (page still locked) 3304 * < 0 if there were errors (page still locked) 3305 */ 3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3307 struct page *page, 3308 struct writeback_control *wbc, 3309 struct extent_page_data *epd, 3310 loff_t i_size, 3311 unsigned long nr_written, 3312 int write_flags, int *nr_ret) 3313 { 3314 struct extent_io_tree *tree = epd->tree; 3315 u64 start = page_offset(page); 3316 u64 page_end = start + PAGE_SIZE - 1; 3317 u64 end; 3318 u64 cur = start; 3319 u64 extent_offset; 3320 u64 block_start; 3321 u64 iosize; 3322 sector_t sector; 3323 struct extent_state *cached_state = NULL; 3324 struct extent_map *em; 3325 struct block_device *bdev; 3326 size_t pg_offset = 0; 3327 size_t blocksize; 3328 int ret = 0; 3329 int nr = 0; 3330 bool compressed; 3331 3332 if (tree->ops && tree->ops->writepage_start_hook) { 3333 ret = tree->ops->writepage_start_hook(page, start, 3334 page_end); 3335 if (ret) { 3336 /* Fixup worker will requeue */ 3337 if (ret == -EBUSY) 3338 wbc->pages_skipped++; 3339 else 3340 redirty_page_for_writepage(wbc, page); 3341 3342 update_nr_written(page, wbc, nr_written); 3343 unlock_page(page); 3344 ret = 1; 3345 goto done_unlocked; 3346 } 3347 } 3348 3349 /* 3350 * we don't want to touch the inode after unlocking the page, 3351 * so we update the mapping writeback index now 3352 */ 3353 update_nr_written(page, wbc, nr_written + 1); 3354 3355 end = page_end; 3356 if (i_size <= start) { 3357 if (tree->ops && tree->ops->writepage_end_io_hook) 3358 tree->ops->writepage_end_io_hook(page, start, 3359 page_end, NULL, 1); 3360 goto done; 3361 } 3362 3363 blocksize = inode->i_sb->s_blocksize; 3364 3365 while (cur <= end) { 3366 u64 em_end; 3367 unsigned long max_nr; 3368 3369 if (cur >= i_size) { 3370 if (tree->ops && tree->ops->writepage_end_io_hook) 3371 tree->ops->writepage_end_io_hook(page, cur, 3372 page_end, NULL, 1); 3373 break; 3374 } 3375 em = epd->get_extent(inode, page, pg_offset, cur, 3376 end - cur + 1, 1); 3377 if (IS_ERR_OR_NULL(em)) { 3378 SetPageError(page); 3379 ret = PTR_ERR_OR_ZERO(em); 3380 break; 3381 } 3382 3383 extent_offset = cur - em->start; 3384 em_end = extent_map_end(em); 3385 BUG_ON(em_end <= cur); 3386 BUG_ON(end < cur); 3387 iosize = min(em_end - cur, end - cur + 1); 3388 iosize = ALIGN(iosize, blocksize); 3389 sector = (em->block_start + extent_offset) >> 9; 3390 bdev = em->bdev; 3391 block_start = em->block_start; 3392 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3393 free_extent_map(em); 3394 em = NULL; 3395 3396 /* 3397 * compressed and inline extents are written through other 3398 * paths in the FS 3399 */ 3400 if (compressed || block_start == EXTENT_MAP_HOLE || 3401 block_start == EXTENT_MAP_INLINE) { 3402 /* 3403 * end_io notification does not happen here for 3404 * compressed extents 3405 */ 3406 if (!compressed && tree->ops && 3407 tree->ops->writepage_end_io_hook) 3408 tree->ops->writepage_end_io_hook(page, cur, 3409 cur + iosize - 1, 3410 NULL, 1); 3411 else if (compressed) { 3412 /* we don't want to end_page_writeback on 3413 * a compressed extent. this happens 3414 * elsewhere 3415 */ 3416 nr++; 3417 } 3418 3419 cur += iosize; 3420 pg_offset += iosize; 3421 continue; 3422 } 3423 3424 max_nr = (i_size >> PAGE_SHIFT) + 1; 3425 3426 set_range_writeback(tree, cur, cur + iosize - 1); 3427 if (!PageWriteback(page)) { 3428 btrfs_err(BTRFS_I(inode)->root->fs_info, 3429 "page %lu not writeback, cur %llu end %llu", 3430 page->index, cur, end); 3431 } 3432 3433 ret = submit_extent_page(write_flags, tree, wbc, page, 3434 sector, iosize, pg_offset, 3435 bdev, &epd->bio, max_nr, 3436 end_bio_extent_writepage, 3437 0, 0, 0, false); 3438 if (ret) 3439 SetPageError(page); 3440 3441 cur = cur + iosize; 3442 pg_offset += iosize; 3443 nr++; 3444 } 3445 done: 3446 *nr_ret = nr; 3447 3448 done_unlocked: 3449 3450 /* drop our reference on any cached states */ 3451 free_extent_state(cached_state); 3452 return ret; 3453 } 3454 3455 /* 3456 * the writepage semantics are similar to regular writepage. extent 3457 * records are inserted to lock ranges in the tree, and as dirty areas 3458 * are found, they are marked writeback. Then the lock bits are removed 3459 * and the end_io handler clears the writeback ranges 3460 */ 3461 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3462 void *data) 3463 { 3464 struct inode *inode = page->mapping->host; 3465 struct extent_page_data *epd = data; 3466 u64 start = page_offset(page); 3467 u64 page_end = start + PAGE_SIZE - 1; 3468 int ret; 3469 int nr = 0; 3470 size_t pg_offset = 0; 3471 loff_t i_size = i_size_read(inode); 3472 unsigned long end_index = i_size >> PAGE_SHIFT; 3473 int write_flags; 3474 unsigned long nr_written = 0; 3475 3476 if (wbc->sync_mode == WB_SYNC_ALL) 3477 write_flags = WRITE_SYNC; 3478 else 3479 write_flags = WRITE; 3480 3481 trace___extent_writepage(page, inode, wbc); 3482 3483 WARN_ON(!PageLocked(page)); 3484 3485 ClearPageError(page); 3486 3487 pg_offset = i_size & (PAGE_SIZE - 1); 3488 if (page->index > end_index || 3489 (page->index == end_index && !pg_offset)) { 3490 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3491 unlock_page(page); 3492 return 0; 3493 } 3494 3495 if (page->index == end_index) { 3496 char *userpage; 3497 3498 userpage = kmap_atomic(page); 3499 memset(userpage + pg_offset, 0, 3500 PAGE_SIZE - pg_offset); 3501 kunmap_atomic(userpage); 3502 flush_dcache_page(page); 3503 } 3504 3505 pg_offset = 0; 3506 3507 set_page_extent_mapped(page); 3508 3509 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3510 if (ret == 1) 3511 goto done_unlocked; 3512 if (ret) 3513 goto done; 3514 3515 ret = __extent_writepage_io(inode, page, wbc, epd, 3516 i_size, nr_written, write_flags, &nr); 3517 if (ret == 1) 3518 goto done_unlocked; 3519 3520 done: 3521 if (nr == 0) { 3522 /* make sure the mapping tag for page dirty gets cleared */ 3523 set_page_writeback(page); 3524 end_page_writeback(page); 3525 } 3526 if (PageError(page)) { 3527 ret = ret < 0 ? ret : -EIO; 3528 end_extent_writepage(page, ret, start, page_end); 3529 } 3530 unlock_page(page); 3531 return ret; 3532 3533 done_unlocked: 3534 return 0; 3535 } 3536 3537 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3538 { 3539 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3540 TASK_UNINTERRUPTIBLE); 3541 } 3542 3543 static noinline_for_stack int 3544 lock_extent_buffer_for_io(struct extent_buffer *eb, 3545 struct btrfs_fs_info *fs_info, 3546 struct extent_page_data *epd) 3547 { 3548 unsigned long i, num_pages; 3549 int flush = 0; 3550 int ret = 0; 3551 3552 if (!btrfs_try_tree_write_lock(eb)) { 3553 flush = 1; 3554 flush_write_bio(epd); 3555 btrfs_tree_lock(eb); 3556 } 3557 3558 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3559 btrfs_tree_unlock(eb); 3560 if (!epd->sync_io) 3561 return 0; 3562 if (!flush) { 3563 flush_write_bio(epd); 3564 flush = 1; 3565 } 3566 while (1) { 3567 wait_on_extent_buffer_writeback(eb); 3568 btrfs_tree_lock(eb); 3569 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3570 break; 3571 btrfs_tree_unlock(eb); 3572 } 3573 } 3574 3575 /* 3576 * We need to do this to prevent races in people who check if the eb is 3577 * under IO since we can end up having no IO bits set for a short period 3578 * of time. 3579 */ 3580 spin_lock(&eb->refs_lock); 3581 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3582 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3583 spin_unlock(&eb->refs_lock); 3584 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3585 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3586 -eb->len, 3587 fs_info->dirty_metadata_batch); 3588 ret = 1; 3589 } else { 3590 spin_unlock(&eb->refs_lock); 3591 } 3592 3593 btrfs_tree_unlock(eb); 3594 3595 if (!ret) 3596 return ret; 3597 3598 num_pages = num_extent_pages(eb->start, eb->len); 3599 for (i = 0; i < num_pages; i++) { 3600 struct page *p = eb->pages[i]; 3601 3602 if (!trylock_page(p)) { 3603 if (!flush) { 3604 flush_write_bio(epd); 3605 flush = 1; 3606 } 3607 lock_page(p); 3608 } 3609 } 3610 3611 return ret; 3612 } 3613 3614 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3615 { 3616 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3617 smp_mb__after_atomic(); 3618 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3619 } 3620 3621 static void set_btree_ioerr(struct page *page) 3622 { 3623 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3624 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3625 3626 SetPageError(page); 3627 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3628 return; 3629 3630 /* 3631 * If writeback for a btree extent that doesn't belong to a log tree 3632 * failed, increment the counter transaction->eb_write_errors. 3633 * We do this because while the transaction is running and before it's 3634 * committing (when we call filemap_fdata[write|wait]_range against 3635 * the btree inode), we might have 3636 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3637 * returns an error or an error happens during writeback, when we're 3638 * committing the transaction we wouldn't know about it, since the pages 3639 * can be no longer dirty nor marked anymore for writeback (if a 3640 * subsequent modification to the extent buffer didn't happen before the 3641 * transaction commit), which makes filemap_fdata[write|wait]_range not 3642 * able to find the pages tagged with SetPageError at transaction 3643 * commit time. So if this happens we must abort the transaction, 3644 * otherwise we commit a super block with btree roots that point to 3645 * btree nodes/leafs whose content on disk is invalid - either garbage 3646 * or the content of some node/leaf from a past generation that got 3647 * cowed or deleted and is no longer valid. 3648 * 3649 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3650 * not be enough - we need to distinguish between log tree extents vs 3651 * non-log tree extents, and the next filemap_fdatawait_range() call 3652 * will catch and clear such errors in the mapping - and that call might 3653 * be from a log sync and not from a transaction commit. Also, checking 3654 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3655 * not done and would not be reliable - the eb might have been released 3656 * from memory and reading it back again means that flag would not be 3657 * set (since it's a runtime flag, not persisted on disk). 3658 * 3659 * Using the flags below in the btree inode also makes us achieve the 3660 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3661 * writeback for all dirty pages and before filemap_fdatawait_range() 3662 * is called, the writeback for all dirty pages had already finished 3663 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3664 * filemap_fdatawait_range() would return success, as it could not know 3665 * that writeback errors happened (the pages were no longer tagged for 3666 * writeback). 3667 */ 3668 switch (eb->log_index) { 3669 case -1: 3670 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3671 break; 3672 case 0: 3673 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3674 break; 3675 case 1: 3676 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3677 break; 3678 default: 3679 BUG(); /* unexpected, logic error */ 3680 } 3681 } 3682 3683 static void end_bio_extent_buffer_writepage(struct bio *bio) 3684 { 3685 struct bio_vec *bvec; 3686 struct extent_buffer *eb; 3687 int i, done; 3688 3689 bio_for_each_segment_all(bvec, bio, i) { 3690 struct page *page = bvec->bv_page; 3691 3692 eb = (struct extent_buffer *)page->private; 3693 BUG_ON(!eb); 3694 done = atomic_dec_and_test(&eb->io_pages); 3695 3696 if (bio->bi_error || 3697 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3698 ClearPageUptodate(page); 3699 set_btree_ioerr(page); 3700 } 3701 3702 end_page_writeback(page); 3703 3704 if (!done) 3705 continue; 3706 3707 end_extent_buffer_writeback(eb); 3708 } 3709 3710 bio_put(bio); 3711 } 3712 3713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3714 struct btrfs_fs_info *fs_info, 3715 struct writeback_control *wbc, 3716 struct extent_page_data *epd) 3717 { 3718 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3719 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3720 u64 offset = eb->start; 3721 unsigned long i, num_pages; 3722 unsigned long bio_flags = 0; 3723 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3724 int ret = 0; 3725 3726 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3727 num_pages = num_extent_pages(eb->start, eb->len); 3728 atomic_set(&eb->io_pages, num_pages); 3729 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3730 bio_flags = EXTENT_BIO_TREE_LOG; 3731 3732 for (i = 0; i < num_pages; i++) { 3733 struct page *p = eb->pages[i]; 3734 3735 clear_page_dirty_for_io(p); 3736 set_page_writeback(p); 3737 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3738 PAGE_SIZE, 0, bdev, &epd->bio, 3739 -1, end_bio_extent_buffer_writepage, 3740 0, epd->bio_flags, bio_flags, false); 3741 epd->bio_flags = bio_flags; 3742 if (ret) { 3743 set_btree_ioerr(p); 3744 end_page_writeback(p); 3745 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3746 end_extent_buffer_writeback(eb); 3747 ret = -EIO; 3748 break; 3749 } 3750 offset += PAGE_SIZE; 3751 update_nr_written(p, wbc, 1); 3752 unlock_page(p); 3753 } 3754 3755 if (unlikely(ret)) { 3756 for (; i < num_pages; i++) { 3757 struct page *p = eb->pages[i]; 3758 clear_page_dirty_for_io(p); 3759 unlock_page(p); 3760 } 3761 } 3762 3763 return ret; 3764 } 3765 3766 int btree_write_cache_pages(struct address_space *mapping, 3767 struct writeback_control *wbc) 3768 { 3769 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3770 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3771 struct extent_buffer *eb, *prev_eb = NULL; 3772 struct extent_page_data epd = { 3773 .bio = NULL, 3774 .tree = tree, 3775 .extent_locked = 0, 3776 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3777 .bio_flags = 0, 3778 }; 3779 int ret = 0; 3780 int done = 0; 3781 int nr_to_write_done = 0; 3782 struct pagevec pvec; 3783 int nr_pages; 3784 pgoff_t index; 3785 pgoff_t end; /* Inclusive */ 3786 int scanned = 0; 3787 int tag; 3788 3789 pagevec_init(&pvec, 0); 3790 if (wbc->range_cyclic) { 3791 index = mapping->writeback_index; /* Start from prev offset */ 3792 end = -1; 3793 } else { 3794 index = wbc->range_start >> PAGE_SHIFT; 3795 end = wbc->range_end >> PAGE_SHIFT; 3796 scanned = 1; 3797 } 3798 if (wbc->sync_mode == WB_SYNC_ALL) 3799 tag = PAGECACHE_TAG_TOWRITE; 3800 else 3801 tag = PAGECACHE_TAG_DIRTY; 3802 retry: 3803 if (wbc->sync_mode == WB_SYNC_ALL) 3804 tag_pages_for_writeback(mapping, index, end); 3805 while (!done && !nr_to_write_done && (index <= end) && 3806 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3807 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3808 unsigned i; 3809 3810 scanned = 1; 3811 for (i = 0; i < nr_pages; i++) { 3812 struct page *page = pvec.pages[i]; 3813 3814 if (!PagePrivate(page)) 3815 continue; 3816 3817 if (!wbc->range_cyclic && page->index > end) { 3818 done = 1; 3819 break; 3820 } 3821 3822 spin_lock(&mapping->private_lock); 3823 if (!PagePrivate(page)) { 3824 spin_unlock(&mapping->private_lock); 3825 continue; 3826 } 3827 3828 eb = (struct extent_buffer *)page->private; 3829 3830 /* 3831 * Shouldn't happen and normally this would be a BUG_ON 3832 * but no sense in crashing the users box for something 3833 * we can survive anyway. 3834 */ 3835 if (WARN_ON(!eb)) { 3836 spin_unlock(&mapping->private_lock); 3837 continue; 3838 } 3839 3840 if (eb == prev_eb) { 3841 spin_unlock(&mapping->private_lock); 3842 continue; 3843 } 3844 3845 ret = atomic_inc_not_zero(&eb->refs); 3846 spin_unlock(&mapping->private_lock); 3847 if (!ret) 3848 continue; 3849 3850 prev_eb = eb; 3851 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3852 if (!ret) { 3853 free_extent_buffer(eb); 3854 continue; 3855 } 3856 3857 ret = write_one_eb(eb, fs_info, wbc, &epd); 3858 if (ret) { 3859 done = 1; 3860 free_extent_buffer(eb); 3861 break; 3862 } 3863 free_extent_buffer(eb); 3864 3865 /* 3866 * the filesystem may choose to bump up nr_to_write. 3867 * We have to make sure to honor the new nr_to_write 3868 * at any time 3869 */ 3870 nr_to_write_done = wbc->nr_to_write <= 0; 3871 } 3872 pagevec_release(&pvec); 3873 cond_resched(); 3874 } 3875 if (!scanned && !done) { 3876 /* 3877 * We hit the last page and there is more work to be done: wrap 3878 * back to the start of the file 3879 */ 3880 scanned = 1; 3881 index = 0; 3882 goto retry; 3883 } 3884 flush_write_bio(&epd); 3885 return ret; 3886 } 3887 3888 /** 3889 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3890 * @mapping: address space structure to write 3891 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3892 * @writepage: function called for each page 3893 * @data: data passed to writepage function 3894 * 3895 * If a page is already under I/O, write_cache_pages() skips it, even 3896 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3897 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3898 * and msync() need to guarantee that all the data which was dirty at the time 3899 * the call was made get new I/O started against them. If wbc->sync_mode is 3900 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3901 * existing IO to complete. 3902 */ 3903 static int extent_write_cache_pages(struct extent_io_tree *tree, 3904 struct address_space *mapping, 3905 struct writeback_control *wbc, 3906 writepage_t writepage, void *data, 3907 void (*flush_fn)(void *)) 3908 { 3909 struct inode *inode = mapping->host; 3910 int ret = 0; 3911 int done = 0; 3912 int nr_to_write_done = 0; 3913 struct pagevec pvec; 3914 int nr_pages; 3915 pgoff_t index; 3916 pgoff_t end; /* Inclusive */ 3917 pgoff_t done_index; 3918 int range_whole = 0; 3919 int scanned = 0; 3920 int tag; 3921 3922 /* 3923 * We have to hold onto the inode so that ordered extents can do their 3924 * work when the IO finishes. The alternative to this is failing to add 3925 * an ordered extent if the igrab() fails there and that is a huge pain 3926 * to deal with, so instead just hold onto the inode throughout the 3927 * writepages operation. If it fails here we are freeing up the inode 3928 * anyway and we'd rather not waste our time writing out stuff that is 3929 * going to be truncated anyway. 3930 */ 3931 if (!igrab(inode)) 3932 return 0; 3933 3934 pagevec_init(&pvec, 0); 3935 if (wbc->range_cyclic) { 3936 index = mapping->writeback_index; /* Start from prev offset */ 3937 end = -1; 3938 } else { 3939 index = wbc->range_start >> PAGE_SHIFT; 3940 end = wbc->range_end >> PAGE_SHIFT; 3941 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3942 range_whole = 1; 3943 scanned = 1; 3944 } 3945 if (wbc->sync_mode == WB_SYNC_ALL) 3946 tag = PAGECACHE_TAG_TOWRITE; 3947 else 3948 tag = PAGECACHE_TAG_DIRTY; 3949 retry: 3950 if (wbc->sync_mode == WB_SYNC_ALL) 3951 tag_pages_for_writeback(mapping, index, end); 3952 done_index = index; 3953 while (!done && !nr_to_write_done && (index <= end) && 3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3956 unsigned i; 3957 3958 scanned = 1; 3959 for (i = 0; i < nr_pages; i++) { 3960 struct page *page = pvec.pages[i]; 3961 3962 done_index = page->index; 3963 /* 3964 * At this point we hold neither mapping->tree_lock nor 3965 * lock on the page itself: the page may be truncated or 3966 * invalidated (changing page->mapping to NULL), or even 3967 * swizzled back from swapper_space to tmpfs file 3968 * mapping 3969 */ 3970 if (!trylock_page(page)) { 3971 flush_fn(data); 3972 lock_page(page); 3973 } 3974 3975 if (unlikely(page->mapping != mapping)) { 3976 unlock_page(page); 3977 continue; 3978 } 3979 3980 if (!wbc->range_cyclic && page->index > end) { 3981 done = 1; 3982 unlock_page(page); 3983 continue; 3984 } 3985 3986 if (wbc->sync_mode != WB_SYNC_NONE) { 3987 if (PageWriteback(page)) 3988 flush_fn(data); 3989 wait_on_page_writeback(page); 3990 } 3991 3992 if (PageWriteback(page) || 3993 !clear_page_dirty_for_io(page)) { 3994 unlock_page(page); 3995 continue; 3996 } 3997 3998 ret = (*writepage)(page, wbc, data); 3999 4000 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4001 unlock_page(page); 4002 ret = 0; 4003 } 4004 if (ret < 0) { 4005 /* 4006 * done_index is set past this page, 4007 * so media errors will not choke 4008 * background writeout for the entire 4009 * file. This has consequences for 4010 * range_cyclic semantics (ie. it may 4011 * not be suitable for data integrity 4012 * writeout). 4013 */ 4014 done_index = page->index + 1; 4015 done = 1; 4016 break; 4017 } 4018 4019 /* 4020 * the filesystem may choose to bump up nr_to_write. 4021 * We have to make sure to honor the new nr_to_write 4022 * at any time 4023 */ 4024 nr_to_write_done = wbc->nr_to_write <= 0; 4025 } 4026 pagevec_release(&pvec); 4027 cond_resched(); 4028 } 4029 if (!scanned && !done) { 4030 /* 4031 * We hit the last page and there is more work to be done: wrap 4032 * back to the start of the file 4033 */ 4034 scanned = 1; 4035 index = 0; 4036 goto retry; 4037 } 4038 4039 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4040 mapping->writeback_index = done_index; 4041 4042 btrfs_add_delayed_iput(inode); 4043 return ret; 4044 } 4045 4046 static void flush_epd_write_bio(struct extent_page_data *epd) 4047 { 4048 if (epd->bio) { 4049 int rw = WRITE; 4050 int ret; 4051 4052 if (epd->sync_io) 4053 rw = WRITE_SYNC; 4054 4055 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4056 BUG_ON(ret < 0); /* -ENOMEM */ 4057 epd->bio = NULL; 4058 } 4059 } 4060 4061 static noinline void flush_write_bio(void *data) 4062 { 4063 struct extent_page_data *epd = data; 4064 flush_epd_write_bio(epd); 4065 } 4066 4067 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4068 get_extent_t *get_extent, 4069 struct writeback_control *wbc) 4070 { 4071 int ret; 4072 struct extent_page_data epd = { 4073 .bio = NULL, 4074 .tree = tree, 4075 .get_extent = get_extent, 4076 .extent_locked = 0, 4077 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4078 .bio_flags = 0, 4079 }; 4080 4081 ret = __extent_writepage(page, wbc, &epd); 4082 4083 flush_epd_write_bio(&epd); 4084 return ret; 4085 } 4086 4087 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4088 u64 start, u64 end, get_extent_t *get_extent, 4089 int mode) 4090 { 4091 int ret = 0; 4092 struct address_space *mapping = inode->i_mapping; 4093 struct page *page; 4094 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4095 PAGE_SHIFT; 4096 4097 struct extent_page_data epd = { 4098 .bio = NULL, 4099 .tree = tree, 4100 .get_extent = get_extent, 4101 .extent_locked = 1, 4102 .sync_io = mode == WB_SYNC_ALL, 4103 .bio_flags = 0, 4104 }; 4105 struct writeback_control wbc_writepages = { 4106 .sync_mode = mode, 4107 .nr_to_write = nr_pages * 2, 4108 .range_start = start, 4109 .range_end = end + 1, 4110 }; 4111 4112 while (start <= end) { 4113 page = find_get_page(mapping, start >> PAGE_SHIFT); 4114 if (clear_page_dirty_for_io(page)) 4115 ret = __extent_writepage(page, &wbc_writepages, &epd); 4116 else { 4117 if (tree->ops && tree->ops->writepage_end_io_hook) 4118 tree->ops->writepage_end_io_hook(page, start, 4119 start + PAGE_SIZE - 1, 4120 NULL, 1); 4121 unlock_page(page); 4122 } 4123 put_page(page); 4124 start += PAGE_SIZE; 4125 } 4126 4127 flush_epd_write_bio(&epd); 4128 return ret; 4129 } 4130 4131 int extent_writepages(struct extent_io_tree *tree, 4132 struct address_space *mapping, 4133 get_extent_t *get_extent, 4134 struct writeback_control *wbc) 4135 { 4136 int ret = 0; 4137 struct extent_page_data epd = { 4138 .bio = NULL, 4139 .tree = tree, 4140 .get_extent = get_extent, 4141 .extent_locked = 0, 4142 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4143 .bio_flags = 0, 4144 }; 4145 4146 ret = extent_write_cache_pages(tree, mapping, wbc, 4147 __extent_writepage, &epd, 4148 flush_write_bio); 4149 flush_epd_write_bio(&epd); 4150 return ret; 4151 } 4152 4153 int extent_readpages(struct extent_io_tree *tree, 4154 struct address_space *mapping, 4155 struct list_head *pages, unsigned nr_pages, 4156 get_extent_t get_extent) 4157 { 4158 struct bio *bio = NULL; 4159 unsigned page_idx; 4160 unsigned long bio_flags = 0; 4161 struct page *pagepool[16]; 4162 struct page *page; 4163 struct extent_map *em_cached = NULL; 4164 int nr = 0; 4165 u64 prev_em_start = (u64)-1; 4166 4167 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4168 page = list_entry(pages->prev, struct page, lru); 4169 4170 prefetchw(&page->flags); 4171 list_del(&page->lru); 4172 if (add_to_page_cache_lru(page, mapping, 4173 page->index, GFP_NOFS)) { 4174 put_page(page); 4175 continue; 4176 } 4177 4178 pagepool[nr++] = page; 4179 if (nr < ARRAY_SIZE(pagepool)) 4180 continue; 4181 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4182 &bio, 0, &bio_flags, READ, &prev_em_start); 4183 nr = 0; 4184 } 4185 if (nr) 4186 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4187 &bio, 0, &bio_flags, READ, &prev_em_start); 4188 4189 if (em_cached) 4190 free_extent_map(em_cached); 4191 4192 BUG_ON(!list_empty(pages)); 4193 if (bio) 4194 return submit_one_bio(READ, bio, 0, bio_flags); 4195 return 0; 4196 } 4197 4198 /* 4199 * basic invalidatepage code, this waits on any locked or writeback 4200 * ranges corresponding to the page, and then deletes any extent state 4201 * records from the tree 4202 */ 4203 int extent_invalidatepage(struct extent_io_tree *tree, 4204 struct page *page, unsigned long offset) 4205 { 4206 struct extent_state *cached_state = NULL; 4207 u64 start = page_offset(page); 4208 u64 end = start + PAGE_SIZE - 1; 4209 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4210 4211 start += ALIGN(offset, blocksize); 4212 if (start > end) 4213 return 0; 4214 4215 lock_extent_bits(tree, start, end, &cached_state); 4216 wait_on_page_writeback(page); 4217 clear_extent_bit(tree, start, end, 4218 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4219 EXTENT_DO_ACCOUNTING, 4220 1, 1, &cached_state, GFP_NOFS); 4221 return 0; 4222 } 4223 4224 /* 4225 * a helper for releasepage, this tests for areas of the page that 4226 * are locked or under IO and drops the related state bits if it is safe 4227 * to drop the page. 4228 */ 4229 static int try_release_extent_state(struct extent_map_tree *map, 4230 struct extent_io_tree *tree, 4231 struct page *page, gfp_t mask) 4232 { 4233 u64 start = page_offset(page); 4234 u64 end = start + PAGE_SIZE - 1; 4235 int ret = 1; 4236 4237 if (test_range_bit(tree, start, end, 4238 EXTENT_IOBITS, 0, NULL)) 4239 ret = 0; 4240 else { 4241 if ((mask & GFP_NOFS) == GFP_NOFS) 4242 mask = GFP_NOFS; 4243 /* 4244 * at this point we can safely clear everything except the 4245 * locked bit and the nodatasum bit 4246 */ 4247 ret = clear_extent_bit(tree, start, end, 4248 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4249 0, 0, NULL, mask); 4250 4251 /* if clear_extent_bit failed for enomem reasons, 4252 * we can't allow the release to continue. 4253 */ 4254 if (ret < 0) 4255 ret = 0; 4256 else 4257 ret = 1; 4258 } 4259 return ret; 4260 } 4261 4262 /* 4263 * a helper for releasepage. As long as there are no locked extents 4264 * in the range corresponding to the page, both state records and extent 4265 * map records are removed 4266 */ 4267 int try_release_extent_mapping(struct extent_map_tree *map, 4268 struct extent_io_tree *tree, struct page *page, 4269 gfp_t mask) 4270 { 4271 struct extent_map *em; 4272 u64 start = page_offset(page); 4273 u64 end = start + PAGE_SIZE - 1; 4274 4275 if (gfpflags_allow_blocking(mask) && 4276 page->mapping->host->i_size > SZ_16M) { 4277 u64 len; 4278 while (start <= end) { 4279 len = end - start + 1; 4280 write_lock(&map->lock); 4281 em = lookup_extent_mapping(map, start, len); 4282 if (!em) { 4283 write_unlock(&map->lock); 4284 break; 4285 } 4286 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4287 em->start != start) { 4288 write_unlock(&map->lock); 4289 free_extent_map(em); 4290 break; 4291 } 4292 if (!test_range_bit(tree, em->start, 4293 extent_map_end(em) - 1, 4294 EXTENT_LOCKED | EXTENT_WRITEBACK, 4295 0, NULL)) { 4296 remove_extent_mapping(map, em); 4297 /* once for the rb tree */ 4298 free_extent_map(em); 4299 } 4300 start = extent_map_end(em); 4301 write_unlock(&map->lock); 4302 4303 /* once for us */ 4304 free_extent_map(em); 4305 } 4306 } 4307 return try_release_extent_state(map, tree, page, mask); 4308 } 4309 4310 /* 4311 * helper function for fiemap, which doesn't want to see any holes. 4312 * This maps until we find something past 'last' 4313 */ 4314 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4315 u64 offset, 4316 u64 last, 4317 get_extent_t *get_extent) 4318 { 4319 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4320 struct extent_map *em; 4321 u64 len; 4322 4323 if (offset >= last) 4324 return NULL; 4325 4326 while (1) { 4327 len = last - offset; 4328 if (len == 0) 4329 break; 4330 len = ALIGN(len, sectorsize); 4331 em = get_extent(inode, NULL, 0, offset, len, 0); 4332 if (IS_ERR_OR_NULL(em)) 4333 return em; 4334 4335 /* if this isn't a hole return it */ 4336 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4337 em->block_start != EXTENT_MAP_HOLE) { 4338 return em; 4339 } 4340 4341 /* this is a hole, advance to the next extent */ 4342 offset = extent_map_end(em); 4343 free_extent_map(em); 4344 if (offset >= last) 4345 break; 4346 } 4347 return NULL; 4348 } 4349 4350 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4351 __u64 start, __u64 len, get_extent_t *get_extent) 4352 { 4353 int ret = 0; 4354 u64 off = start; 4355 u64 max = start + len; 4356 u32 flags = 0; 4357 u32 found_type; 4358 u64 last; 4359 u64 last_for_get_extent = 0; 4360 u64 disko = 0; 4361 u64 isize = i_size_read(inode); 4362 struct btrfs_key found_key; 4363 struct extent_map *em = NULL; 4364 struct extent_state *cached_state = NULL; 4365 struct btrfs_path *path; 4366 struct btrfs_root *root = BTRFS_I(inode)->root; 4367 int end = 0; 4368 u64 em_start = 0; 4369 u64 em_len = 0; 4370 u64 em_end = 0; 4371 4372 if (len == 0) 4373 return -EINVAL; 4374 4375 path = btrfs_alloc_path(); 4376 if (!path) 4377 return -ENOMEM; 4378 path->leave_spinning = 1; 4379 4380 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4381 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4382 4383 /* 4384 * lookup the last file extent. We're not using i_size here 4385 * because there might be preallocation past i_size 4386 */ 4387 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4388 0); 4389 if (ret < 0) { 4390 btrfs_free_path(path); 4391 return ret; 4392 } else { 4393 WARN_ON(!ret); 4394 if (ret == 1) 4395 ret = 0; 4396 } 4397 4398 path->slots[0]--; 4399 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4400 found_type = found_key.type; 4401 4402 /* No extents, but there might be delalloc bits */ 4403 if (found_key.objectid != btrfs_ino(inode) || 4404 found_type != BTRFS_EXTENT_DATA_KEY) { 4405 /* have to trust i_size as the end */ 4406 last = (u64)-1; 4407 last_for_get_extent = isize; 4408 } else { 4409 /* 4410 * remember the start of the last extent. There are a 4411 * bunch of different factors that go into the length of the 4412 * extent, so its much less complex to remember where it started 4413 */ 4414 last = found_key.offset; 4415 last_for_get_extent = last + 1; 4416 } 4417 btrfs_release_path(path); 4418 4419 /* 4420 * we might have some extents allocated but more delalloc past those 4421 * extents. so, we trust isize unless the start of the last extent is 4422 * beyond isize 4423 */ 4424 if (last < isize) { 4425 last = (u64)-1; 4426 last_for_get_extent = isize; 4427 } 4428 4429 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4430 &cached_state); 4431 4432 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4433 get_extent); 4434 if (!em) 4435 goto out; 4436 if (IS_ERR(em)) { 4437 ret = PTR_ERR(em); 4438 goto out; 4439 } 4440 4441 while (!end) { 4442 u64 offset_in_extent = 0; 4443 4444 /* break if the extent we found is outside the range */ 4445 if (em->start >= max || extent_map_end(em) < off) 4446 break; 4447 4448 /* 4449 * get_extent may return an extent that starts before our 4450 * requested range. We have to make sure the ranges 4451 * we return to fiemap always move forward and don't 4452 * overlap, so adjust the offsets here 4453 */ 4454 em_start = max(em->start, off); 4455 4456 /* 4457 * record the offset from the start of the extent 4458 * for adjusting the disk offset below. Only do this if the 4459 * extent isn't compressed since our in ram offset may be past 4460 * what we have actually allocated on disk. 4461 */ 4462 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4463 offset_in_extent = em_start - em->start; 4464 em_end = extent_map_end(em); 4465 em_len = em_end - em_start; 4466 disko = 0; 4467 flags = 0; 4468 4469 /* 4470 * bump off for our next call to get_extent 4471 */ 4472 off = extent_map_end(em); 4473 if (off >= max) 4474 end = 1; 4475 4476 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4477 end = 1; 4478 flags |= FIEMAP_EXTENT_LAST; 4479 } else if (em->block_start == EXTENT_MAP_INLINE) { 4480 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4481 FIEMAP_EXTENT_NOT_ALIGNED); 4482 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4483 flags |= (FIEMAP_EXTENT_DELALLOC | 4484 FIEMAP_EXTENT_UNKNOWN); 4485 } else if (fieinfo->fi_extents_max) { 4486 u64 bytenr = em->block_start - 4487 (em->start - em->orig_start); 4488 4489 disko = em->block_start + offset_in_extent; 4490 4491 /* 4492 * As btrfs supports shared space, this information 4493 * can be exported to userspace tools via 4494 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4495 * then we're just getting a count and we can skip the 4496 * lookup stuff. 4497 */ 4498 ret = btrfs_check_shared(NULL, root->fs_info, 4499 root->objectid, 4500 btrfs_ino(inode), bytenr); 4501 if (ret < 0) 4502 goto out_free; 4503 if (ret) 4504 flags |= FIEMAP_EXTENT_SHARED; 4505 ret = 0; 4506 } 4507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4508 flags |= FIEMAP_EXTENT_ENCODED; 4509 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4510 flags |= FIEMAP_EXTENT_UNWRITTEN; 4511 4512 free_extent_map(em); 4513 em = NULL; 4514 if ((em_start >= last) || em_len == (u64)-1 || 4515 (last == (u64)-1 && isize <= em_end)) { 4516 flags |= FIEMAP_EXTENT_LAST; 4517 end = 1; 4518 } 4519 4520 /* now scan forward to see if this is really the last extent. */ 4521 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4522 get_extent); 4523 if (IS_ERR(em)) { 4524 ret = PTR_ERR(em); 4525 goto out; 4526 } 4527 if (!em) { 4528 flags |= FIEMAP_EXTENT_LAST; 4529 end = 1; 4530 } 4531 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4532 em_len, flags); 4533 if (ret) { 4534 if (ret == 1) 4535 ret = 0; 4536 goto out_free; 4537 } 4538 } 4539 out_free: 4540 free_extent_map(em); 4541 out: 4542 btrfs_free_path(path); 4543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4544 &cached_state, GFP_NOFS); 4545 return ret; 4546 } 4547 4548 static void __free_extent_buffer(struct extent_buffer *eb) 4549 { 4550 btrfs_leak_debug_del(&eb->leak_list); 4551 kmem_cache_free(extent_buffer_cache, eb); 4552 } 4553 4554 int extent_buffer_under_io(struct extent_buffer *eb) 4555 { 4556 return (atomic_read(&eb->io_pages) || 4557 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4558 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4559 } 4560 4561 /* 4562 * Helper for releasing extent buffer page. 4563 */ 4564 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4565 { 4566 unsigned long index; 4567 struct page *page; 4568 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4569 4570 BUG_ON(extent_buffer_under_io(eb)); 4571 4572 index = num_extent_pages(eb->start, eb->len); 4573 if (index == 0) 4574 return; 4575 4576 do { 4577 index--; 4578 page = eb->pages[index]; 4579 if (!page) 4580 continue; 4581 if (mapped) 4582 spin_lock(&page->mapping->private_lock); 4583 /* 4584 * We do this since we'll remove the pages after we've 4585 * removed the eb from the radix tree, so we could race 4586 * and have this page now attached to the new eb. So 4587 * only clear page_private if it's still connected to 4588 * this eb. 4589 */ 4590 if (PagePrivate(page) && 4591 page->private == (unsigned long)eb) { 4592 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4593 BUG_ON(PageDirty(page)); 4594 BUG_ON(PageWriteback(page)); 4595 /* 4596 * We need to make sure we haven't be attached 4597 * to a new eb. 4598 */ 4599 ClearPagePrivate(page); 4600 set_page_private(page, 0); 4601 /* One for the page private */ 4602 put_page(page); 4603 } 4604 4605 if (mapped) 4606 spin_unlock(&page->mapping->private_lock); 4607 4608 /* One for when we allocated the page */ 4609 put_page(page); 4610 } while (index != 0); 4611 } 4612 4613 /* 4614 * Helper for releasing the extent buffer. 4615 */ 4616 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4617 { 4618 btrfs_release_extent_buffer_page(eb); 4619 __free_extent_buffer(eb); 4620 } 4621 4622 static struct extent_buffer * 4623 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4624 unsigned long len) 4625 { 4626 struct extent_buffer *eb = NULL; 4627 4628 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4629 eb->start = start; 4630 eb->len = len; 4631 eb->fs_info = fs_info; 4632 eb->bflags = 0; 4633 rwlock_init(&eb->lock); 4634 atomic_set(&eb->write_locks, 0); 4635 atomic_set(&eb->read_locks, 0); 4636 atomic_set(&eb->blocking_readers, 0); 4637 atomic_set(&eb->blocking_writers, 0); 4638 atomic_set(&eb->spinning_readers, 0); 4639 atomic_set(&eb->spinning_writers, 0); 4640 eb->lock_nested = 0; 4641 init_waitqueue_head(&eb->write_lock_wq); 4642 init_waitqueue_head(&eb->read_lock_wq); 4643 4644 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4645 4646 spin_lock_init(&eb->refs_lock); 4647 atomic_set(&eb->refs, 1); 4648 atomic_set(&eb->io_pages, 0); 4649 4650 /* 4651 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4652 */ 4653 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4654 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4655 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4656 4657 return eb; 4658 } 4659 4660 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4661 { 4662 unsigned long i; 4663 struct page *p; 4664 struct extent_buffer *new; 4665 unsigned long num_pages = num_extent_pages(src->start, src->len); 4666 4667 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4668 if (new == NULL) 4669 return NULL; 4670 4671 for (i = 0; i < num_pages; i++) { 4672 p = alloc_page(GFP_NOFS); 4673 if (!p) { 4674 btrfs_release_extent_buffer(new); 4675 return NULL; 4676 } 4677 attach_extent_buffer_page(new, p); 4678 WARN_ON(PageDirty(p)); 4679 SetPageUptodate(p); 4680 new->pages[i] = p; 4681 } 4682 4683 copy_extent_buffer(new, src, 0, 0, src->len); 4684 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4685 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4686 4687 return new; 4688 } 4689 4690 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4691 u64 start, unsigned long len) 4692 { 4693 struct extent_buffer *eb; 4694 unsigned long num_pages; 4695 unsigned long i; 4696 4697 num_pages = num_extent_pages(start, len); 4698 4699 eb = __alloc_extent_buffer(fs_info, start, len); 4700 if (!eb) 4701 return NULL; 4702 4703 for (i = 0; i < num_pages; i++) { 4704 eb->pages[i] = alloc_page(GFP_NOFS); 4705 if (!eb->pages[i]) 4706 goto err; 4707 } 4708 set_extent_buffer_uptodate(eb); 4709 btrfs_set_header_nritems(eb, 0); 4710 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4711 4712 return eb; 4713 err: 4714 for (; i > 0; i--) 4715 __free_page(eb->pages[i - 1]); 4716 __free_extent_buffer(eb); 4717 return NULL; 4718 } 4719 4720 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4721 u64 start) 4722 { 4723 unsigned long len; 4724 4725 if (!fs_info) { 4726 /* 4727 * Called only from tests that don't always have a fs_info 4728 * available, but we know that nodesize is 4096 4729 */ 4730 len = 4096; 4731 } else { 4732 len = fs_info->tree_root->nodesize; 4733 } 4734 4735 return __alloc_dummy_extent_buffer(fs_info, start, len); 4736 } 4737 4738 static void check_buffer_tree_ref(struct extent_buffer *eb) 4739 { 4740 int refs; 4741 /* the ref bit is tricky. We have to make sure it is set 4742 * if we have the buffer dirty. Otherwise the 4743 * code to free a buffer can end up dropping a dirty 4744 * page 4745 * 4746 * Once the ref bit is set, it won't go away while the 4747 * buffer is dirty or in writeback, and it also won't 4748 * go away while we have the reference count on the 4749 * eb bumped. 4750 * 4751 * We can't just set the ref bit without bumping the 4752 * ref on the eb because free_extent_buffer might 4753 * see the ref bit and try to clear it. If this happens 4754 * free_extent_buffer might end up dropping our original 4755 * ref by mistake and freeing the page before we are able 4756 * to add one more ref. 4757 * 4758 * So bump the ref count first, then set the bit. If someone 4759 * beat us to it, drop the ref we added. 4760 */ 4761 refs = atomic_read(&eb->refs); 4762 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4763 return; 4764 4765 spin_lock(&eb->refs_lock); 4766 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4767 atomic_inc(&eb->refs); 4768 spin_unlock(&eb->refs_lock); 4769 } 4770 4771 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4772 struct page *accessed) 4773 { 4774 unsigned long num_pages, i; 4775 4776 check_buffer_tree_ref(eb); 4777 4778 num_pages = num_extent_pages(eb->start, eb->len); 4779 for (i = 0; i < num_pages; i++) { 4780 struct page *p = eb->pages[i]; 4781 4782 if (p != accessed) 4783 mark_page_accessed(p); 4784 } 4785 } 4786 4787 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4788 u64 start) 4789 { 4790 struct extent_buffer *eb; 4791 4792 rcu_read_lock(); 4793 eb = radix_tree_lookup(&fs_info->buffer_radix, 4794 start >> PAGE_SHIFT); 4795 if (eb && atomic_inc_not_zero(&eb->refs)) { 4796 rcu_read_unlock(); 4797 /* 4798 * Lock our eb's refs_lock to avoid races with 4799 * free_extent_buffer. When we get our eb it might be flagged 4800 * with EXTENT_BUFFER_STALE and another task running 4801 * free_extent_buffer might have seen that flag set, 4802 * eb->refs == 2, that the buffer isn't under IO (dirty and 4803 * writeback flags not set) and it's still in the tree (flag 4804 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4805 * of decrementing the extent buffer's reference count twice. 4806 * So here we could race and increment the eb's reference count, 4807 * clear its stale flag, mark it as dirty and drop our reference 4808 * before the other task finishes executing free_extent_buffer, 4809 * which would later result in an attempt to free an extent 4810 * buffer that is dirty. 4811 */ 4812 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4813 spin_lock(&eb->refs_lock); 4814 spin_unlock(&eb->refs_lock); 4815 } 4816 mark_extent_buffer_accessed(eb, NULL); 4817 return eb; 4818 } 4819 rcu_read_unlock(); 4820 4821 return NULL; 4822 } 4823 4824 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4825 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4826 u64 start) 4827 { 4828 struct extent_buffer *eb, *exists = NULL; 4829 int ret; 4830 4831 eb = find_extent_buffer(fs_info, start); 4832 if (eb) 4833 return eb; 4834 eb = alloc_dummy_extent_buffer(fs_info, start); 4835 if (!eb) 4836 return NULL; 4837 eb->fs_info = fs_info; 4838 again: 4839 ret = radix_tree_preload(GFP_NOFS); 4840 if (ret) 4841 goto free_eb; 4842 spin_lock(&fs_info->buffer_lock); 4843 ret = radix_tree_insert(&fs_info->buffer_radix, 4844 start >> PAGE_SHIFT, eb); 4845 spin_unlock(&fs_info->buffer_lock); 4846 radix_tree_preload_end(); 4847 if (ret == -EEXIST) { 4848 exists = find_extent_buffer(fs_info, start); 4849 if (exists) 4850 goto free_eb; 4851 else 4852 goto again; 4853 } 4854 check_buffer_tree_ref(eb); 4855 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4856 4857 /* 4858 * We will free dummy extent buffer's if they come into 4859 * free_extent_buffer with a ref count of 2, but if we are using this we 4860 * want the buffers to stay in memory until we're done with them, so 4861 * bump the ref count again. 4862 */ 4863 atomic_inc(&eb->refs); 4864 return eb; 4865 free_eb: 4866 btrfs_release_extent_buffer(eb); 4867 return exists; 4868 } 4869 #endif 4870 4871 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4872 u64 start) 4873 { 4874 unsigned long len = fs_info->tree_root->nodesize; 4875 unsigned long num_pages = num_extent_pages(start, len); 4876 unsigned long i; 4877 unsigned long index = start >> PAGE_SHIFT; 4878 struct extent_buffer *eb; 4879 struct extent_buffer *exists = NULL; 4880 struct page *p; 4881 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4882 int uptodate = 1; 4883 int ret; 4884 4885 eb = find_extent_buffer(fs_info, start); 4886 if (eb) 4887 return eb; 4888 4889 eb = __alloc_extent_buffer(fs_info, start, len); 4890 if (!eb) 4891 return NULL; 4892 4893 for (i = 0; i < num_pages; i++, index++) { 4894 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4895 if (!p) 4896 goto free_eb; 4897 4898 spin_lock(&mapping->private_lock); 4899 if (PagePrivate(p)) { 4900 /* 4901 * We could have already allocated an eb for this page 4902 * and attached one so lets see if we can get a ref on 4903 * the existing eb, and if we can we know it's good and 4904 * we can just return that one, else we know we can just 4905 * overwrite page->private. 4906 */ 4907 exists = (struct extent_buffer *)p->private; 4908 if (atomic_inc_not_zero(&exists->refs)) { 4909 spin_unlock(&mapping->private_lock); 4910 unlock_page(p); 4911 put_page(p); 4912 mark_extent_buffer_accessed(exists, p); 4913 goto free_eb; 4914 } 4915 exists = NULL; 4916 4917 /* 4918 * Do this so attach doesn't complain and we need to 4919 * drop the ref the old guy had. 4920 */ 4921 ClearPagePrivate(p); 4922 WARN_ON(PageDirty(p)); 4923 put_page(p); 4924 } 4925 attach_extent_buffer_page(eb, p); 4926 spin_unlock(&mapping->private_lock); 4927 WARN_ON(PageDirty(p)); 4928 eb->pages[i] = p; 4929 if (!PageUptodate(p)) 4930 uptodate = 0; 4931 4932 /* 4933 * see below about how we avoid a nasty race with release page 4934 * and why we unlock later 4935 */ 4936 } 4937 if (uptodate) 4938 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4939 again: 4940 ret = radix_tree_preload(GFP_NOFS); 4941 if (ret) 4942 goto free_eb; 4943 4944 spin_lock(&fs_info->buffer_lock); 4945 ret = radix_tree_insert(&fs_info->buffer_radix, 4946 start >> PAGE_SHIFT, eb); 4947 spin_unlock(&fs_info->buffer_lock); 4948 radix_tree_preload_end(); 4949 if (ret == -EEXIST) { 4950 exists = find_extent_buffer(fs_info, start); 4951 if (exists) 4952 goto free_eb; 4953 else 4954 goto again; 4955 } 4956 /* add one reference for the tree */ 4957 check_buffer_tree_ref(eb); 4958 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4959 4960 /* 4961 * there is a race where release page may have 4962 * tried to find this extent buffer in the radix 4963 * but failed. It will tell the VM it is safe to 4964 * reclaim the, and it will clear the page private bit. 4965 * We must make sure to set the page private bit properly 4966 * after the extent buffer is in the radix tree so 4967 * it doesn't get lost 4968 */ 4969 SetPageChecked(eb->pages[0]); 4970 for (i = 1; i < num_pages; i++) { 4971 p = eb->pages[i]; 4972 ClearPageChecked(p); 4973 unlock_page(p); 4974 } 4975 unlock_page(eb->pages[0]); 4976 return eb; 4977 4978 free_eb: 4979 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4980 for (i = 0; i < num_pages; i++) { 4981 if (eb->pages[i]) 4982 unlock_page(eb->pages[i]); 4983 } 4984 4985 btrfs_release_extent_buffer(eb); 4986 return exists; 4987 } 4988 4989 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4990 { 4991 struct extent_buffer *eb = 4992 container_of(head, struct extent_buffer, rcu_head); 4993 4994 __free_extent_buffer(eb); 4995 } 4996 4997 /* Expects to have eb->eb_lock already held */ 4998 static int release_extent_buffer(struct extent_buffer *eb) 4999 { 5000 WARN_ON(atomic_read(&eb->refs) == 0); 5001 if (atomic_dec_and_test(&eb->refs)) { 5002 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5003 struct btrfs_fs_info *fs_info = eb->fs_info; 5004 5005 spin_unlock(&eb->refs_lock); 5006 5007 spin_lock(&fs_info->buffer_lock); 5008 radix_tree_delete(&fs_info->buffer_radix, 5009 eb->start >> PAGE_SHIFT); 5010 spin_unlock(&fs_info->buffer_lock); 5011 } else { 5012 spin_unlock(&eb->refs_lock); 5013 } 5014 5015 /* Should be safe to release our pages at this point */ 5016 btrfs_release_extent_buffer_page(eb); 5017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5018 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5019 __free_extent_buffer(eb); 5020 return 1; 5021 } 5022 #endif 5023 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5024 return 1; 5025 } 5026 spin_unlock(&eb->refs_lock); 5027 5028 return 0; 5029 } 5030 5031 void free_extent_buffer(struct extent_buffer *eb) 5032 { 5033 int refs; 5034 int old; 5035 if (!eb) 5036 return; 5037 5038 while (1) { 5039 refs = atomic_read(&eb->refs); 5040 if (refs <= 3) 5041 break; 5042 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5043 if (old == refs) 5044 return; 5045 } 5046 5047 spin_lock(&eb->refs_lock); 5048 if (atomic_read(&eb->refs) == 2 && 5049 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5050 atomic_dec(&eb->refs); 5051 5052 if (atomic_read(&eb->refs) == 2 && 5053 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5054 !extent_buffer_under_io(eb) && 5055 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5056 atomic_dec(&eb->refs); 5057 5058 /* 5059 * I know this is terrible, but it's temporary until we stop tracking 5060 * the uptodate bits and such for the extent buffers. 5061 */ 5062 release_extent_buffer(eb); 5063 } 5064 5065 void free_extent_buffer_stale(struct extent_buffer *eb) 5066 { 5067 if (!eb) 5068 return; 5069 5070 spin_lock(&eb->refs_lock); 5071 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5072 5073 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5075 atomic_dec(&eb->refs); 5076 release_extent_buffer(eb); 5077 } 5078 5079 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5080 { 5081 unsigned long i; 5082 unsigned long num_pages; 5083 struct page *page; 5084 5085 num_pages = num_extent_pages(eb->start, eb->len); 5086 5087 for (i = 0; i < num_pages; i++) { 5088 page = eb->pages[i]; 5089 if (!PageDirty(page)) 5090 continue; 5091 5092 lock_page(page); 5093 WARN_ON(!PagePrivate(page)); 5094 5095 clear_page_dirty_for_io(page); 5096 spin_lock_irq(&page->mapping->tree_lock); 5097 if (!PageDirty(page)) { 5098 radix_tree_tag_clear(&page->mapping->page_tree, 5099 page_index(page), 5100 PAGECACHE_TAG_DIRTY); 5101 } 5102 spin_unlock_irq(&page->mapping->tree_lock); 5103 ClearPageError(page); 5104 unlock_page(page); 5105 } 5106 WARN_ON(atomic_read(&eb->refs) == 0); 5107 } 5108 5109 int set_extent_buffer_dirty(struct extent_buffer *eb) 5110 { 5111 unsigned long i; 5112 unsigned long num_pages; 5113 int was_dirty = 0; 5114 5115 check_buffer_tree_ref(eb); 5116 5117 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5118 5119 num_pages = num_extent_pages(eb->start, eb->len); 5120 WARN_ON(atomic_read(&eb->refs) == 0); 5121 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5122 5123 for (i = 0; i < num_pages; i++) 5124 set_page_dirty(eb->pages[i]); 5125 return was_dirty; 5126 } 5127 5128 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5129 { 5130 unsigned long i; 5131 struct page *page; 5132 unsigned long num_pages; 5133 5134 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5135 num_pages = num_extent_pages(eb->start, eb->len); 5136 for (i = 0; i < num_pages; i++) { 5137 page = eb->pages[i]; 5138 if (page) 5139 ClearPageUptodate(page); 5140 } 5141 } 5142 5143 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5144 { 5145 unsigned long i; 5146 struct page *page; 5147 unsigned long num_pages; 5148 5149 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5150 num_pages = num_extent_pages(eb->start, eb->len); 5151 for (i = 0; i < num_pages; i++) { 5152 page = eb->pages[i]; 5153 SetPageUptodate(page); 5154 } 5155 } 5156 5157 int extent_buffer_uptodate(struct extent_buffer *eb) 5158 { 5159 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5160 } 5161 5162 int read_extent_buffer_pages(struct extent_io_tree *tree, 5163 struct extent_buffer *eb, u64 start, int wait, 5164 get_extent_t *get_extent, int mirror_num) 5165 { 5166 unsigned long i; 5167 unsigned long start_i; 5168 struct page *page; 5169 int err; 5170 int ret = 0; 5171 int locked_pages = 0; 5172 int all_uptodate = 1; 5173 unsigned long num_pages; 5174 unsigned long num_reads = 0; 5175 struct bio *bio = NULL; 5176 unsigned long bio_flags = 0; 5177 5178 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5179 return 0; 5180 5181 if (start) { 5182 WARN_ON(start < eb->start); 5183 start_i = (start >> PAGE_SHIFT) - 5184 (eb->start >> PAGE_SHIFT); 5185 } else { 5186 start_i = 0; 5187 } 5188 5189 num_pages = num_extent_pages(eb->start, eb->len); 5190 for (i = start_i; i < num_pages; i++) { 5191 page = eb->pages[i]; 5192 if (wait == WAIT_NONE) { 5193 if (!trylock_page(page)) 5194 goto unlock_exit; 5195 } else { 5196 lock_page(page); 5197 } 5198 locked_pages++; 5199 if (!PageUptodate(page)) { 5200 num_reads++; 5201 all_uptodate = 0; 5202 } 5203 } 5204 if (all_uptodate) { 5205 if (start_i == 0) 5206 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5207 goto unlock_exit; 5208 } 5209 5210 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5211 eb->read_mirror = 0; 5212 atomic_set(&eb->io_pages, num_reads); 5213 for (i = start_i; i < num_pages; i++) { 5214 page = eb->pages[i]; 5215 if (!PageUptodate(page)) { 5216 ClearPageError(page); 5217 err = __extent_read_full_page(tree, page, 5218 get_extent, &bio, 5219 mirror_num, &bio_flags, 5220 READ | REQ_META); 5221 if (err) 5222 ret = err; 5223 } else { 5224 unlock_page(page); 5225 } 5226 } 5227 5228 if (bio) { 5229 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5230 bio_flags); 5231 if (err) 5232 return err; 5233 } 5234 5235 if (ret || wait != WAIT_COMPLETE) 5236 return ret; 5237 5238 for (i = start_i; i < num_pages; i++) { 5239 page = eb->pages[i]; 5240 wait_on_page_locked(page); 5241 if (!PageUptodate(page)) 5242 ret = -EIO; 5243 } 5244 5245 return ret; 5246 5247 unlock_exit: 5248 i = start_i; 5249 while (locked_pages > 0) { 5250 page = eb->pages[i]; 5251 i++; 5252 unlock_page(page); 5253 locked_pages--; 5254 } 5255 return ret; 5256 } 5257 5258 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5259 unsigned long start, 5260 unsigned long len) 5261 { 5262 size_t cur; 5263 size_t offset; 5264 struct page *page; 5265 char *kaddr; 5266 char *dst = (char *)dstv; 5267 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5268 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5269 5270 WARN_ON(start > eb->len); 5271 WARN_ON(start + len > eb->start + eb->len); 5272 5273 offset = (start_offset + start) & (PAGE_SIZE - 1); 5274 5275 while (len > 0) { 5276 page = eb->pages[i]; 5277 5278 cur = min(len, (PAGE_SIZE - offset)); 5279 kaddr = page_address(page); 5280 memcpy(dst, kaddr + offset, cur); 5281 5282 dst += cur; 5283 len -= cur; 5284 offset = 0; 5285 i++; 5286 } 5287 } 5288 5289 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5290 unsigned long start, 5291 unsigned long len) 5292 { 5293 size_t cur; 5294 size_t offset; 5295 struct page *page; 5296 char *kaddr; 5297 char __user *dst = (char __user *)dstv; 5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5300 int ret = 0; 5301 5302 WARN_ON(start > eb->len); 5303 WARN_ON(start + len > eb->start + eb->len); 5304 5305 offset = (start_offset + start) & (PAGE_SIZE - 1); 5306 5307 while (len > 0) { 5308 page = eb->pages[i]; 5309 5310 cur = min(len, (PAGE_SIZE - offset)); 5311 kaddr = page_address(page); 5312 if (copy_to_user(dst, kaddr + offset, cur)) { 5313 ret = -EFAULT; 5314 break; 5315 } 5316 5317 dst += cur; 5318 len -= cur; 5319 offset = 0; 5320 i++; 5321 } 5322 5323 return ret; 5324 } 5325 5326 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5327 unsigned long min_len, char **map, 5328 unsigned long *map_start, 5329 unsigned long *map_len) 5330 { 5331 size_t offset = start & (PAGE_SIZE - 1); 5332 char *kaddr; 5333 struct page *p; 5334 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5335 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5336 unsigned long end_i = (start_offset + start + min_len - 1) >> 5337 PAGE_SHIFT; 5338 5339 if (i != end_i) 5340 return -EINVAL; 5341 5342 if (i == 0) { 5343 offset = start_offset; 5344 *map_start = 0; 5345 } else { 5346 offset = 0; 5347 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5348 } 5349 5350 if (start + min_len > eb->len) { 5351 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5352 "wanted %lu %lu\n", 5353 eb->start, eb->len, start, min_len); 5354 return -EINVAL; 5355 } 5356 5357 p = eb->pages[i]; 5358 kaddr = page_address(p); 5359 *map = kaddr + offset; 5360 *map_len = PAGE_SIZE - offset; 5361 return 0; 5362 } 5363 5364 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5365 unsigned long start, 5366 unsigned long len) 5367 { 5368 size_t cur; 5369 size_t offset; 5370 struct page *page; 5371 char *kaddr; 5372 char *ptr = (char *)ptrv; 5373 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5374 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5375 int ret = 0; 5376 5377 WARN_ON(start > eb->len); 5378 WARN_ON(start + len > eb->start + eb->len); 5379 5380 offset = (start_offset + start) & (PAGE_SIZE - 1); 5381 5382 while (len > 0) { 5383 page = eb->pages[i]; 5384 5385 cur = min(len, (PAGE_SIZE - offset)); 5386 5387 kaddr = page_address(page); 5388 ret = memcmp(ptr, kaddr + offset, cur); 5389 if (ret) 5390 break; 5391 5392 ptr += cur; 5393 len -= cur; 5394 offset = 0; 5395 i++; 5396 } 5397 return ret; 5398 } 5399 5400 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5401 unsigned long start, unsigned long len) 5402 { 5403 size_t cur; 5404 size_t offset; 5405 struct page *page; 5406 char *kaddr; 5407 char *src = (char *)srcv; 5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5410 5411 WARN_ON(start > eb->len); 5412 WARN_ON(start + len > eb->start + eb->len); 5413 5414 offset = (start_offset + start) & (PAGE_SIZE - 1); 5415 5416 while (len > 0) { 5417 page = eb->pages[i]; 5418 WARN_ON(!PageUptodate(page)); 5419 5420 cur = min(len, PAGE_SIZE - offset); 5421 kaddr = page_address(page); 5422 memcpy(kaddr + offset, src, cur); 5423 5424 src += cur; 5425 len -= cur; 5426 offset = 0; 5427 i++; 5428 } 5429 } 5430 5431 void memset_extent_buffer(struct extent_buffer *eb, char c, 5432 unsigned long start, unsigned long len) 5433 { 5434 size_t cur; 5435 size_t offset; 5436 struct page *page; 5437 char *kaddr; 5438 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5439 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5440 5441 WARN_ON(start > eb->len); 5442 WARN_ON(start + len > eb->start + eb->len); 5443 5444 offset = (start_offset + start) & (PAGE_SIZE - 1); 5445 5446 while (len > 0) { 5447 page = eb->pages[i]; 5448 WARN_ON(!PageUptodate(page)); 5449 5450 cur = min(len, PAGE_SIZE - offset); 5451 kaddr = page_address(page); 5452 memset(kaddr + offset, c, cur); 5453 5454 len -= cur; 5455 offset = 0; 5456 i++; 5457 } 5458 } 5459 5460 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5461 unsigned long dst_offset, unsigned long src_offset, 5462 unsigned long len) 5463 { 5464 u64 dst_len = dst->len; 5465 size_t cur; 5466 size_t offset; 5467 struct page *page; 5468 char *kaddr; 5469 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5470 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5471 5472 WARN_ON(src->len != dst_len); 5473 5474 offset = (start_offset + dst_offset) & 5475 (PAGE_SIZE - 1); 5476 5477 while (len > 0) { 5478 page = dst->pages[i]; 5479 WARN_ON(!PageUptodate(page)); 5480 5481 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5482 5483 kaddr = page_address(page); 5484 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5485 5486 src_offset += cur; 5487 len -= cur; 5488 offset = 0; 5489 i++; 5490 } 5491 } 5492 5493 /* 5494 * The extent buffer bitmap operations are done with byte granularity because 5495 * bitmap items are not guaranteed to be aligned to a word and therefore a 5496 * single word in a bitmap may straddle two pages in the extent buffer. 5497 */ 5498 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE) 5499 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1) 5500 #define BITMAP_FIRST_BYTE_MASK(start) \ 5501 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK) 5502 #define BITMAP_LAST_BYTE_MASK(nbits) \ 5503 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1))) 5504 5505 /* 5506 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5507 * given bit number 5508 * @eb: the extent buffer 5509 * @start: offset of the bitmap item in the extent buffer 5510 * @nr: bit number 5511 * @page_index: return index of the page in the extent buffer that contains the 5512 * given bit number 5513 * @page_offset: return offset into the page given by page_index 5514 * 5515 * This helper hides the ugliness of finding the byte in an extent buffer which 5516 * contains a given bit. 5517 */ 5518 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5519 unsigned long start, unsigned long nr, 5520 unsigned long *page_index, 5521 size_t *page_offset) 5522 { 5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5524 size_t byte_offset = BIT_BYTE(nr); 5525 size_t offset; 5526 5527 /* 5528 * The byte we want is the offset of the extent buffer + the offset of 5529 * the bitmap item in the extent buffer + the offset of the byte in the 5530 * bitmap item. 5531 */ 5532 offset = start_offset + start + byte_offset; 5533 5534 *page_index = offset >> PAGE_SHIFT; 5535 *page_offset = offset & (PAGE_SIZE - 1); 5536 } 5537 5538 /** 5539 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5540 * @eb: the extent buffer 5541 * @start: offset of the bitmap item in the extent buffer 5542 * @nr: bit number to test 5543 */ 5544 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5545 unsigned long nr) 5546 { 5547 char *kaddr; 5548 struct page *page; 5549 unsigned long i; 5550 size_t offset; 5551 5552 eb_bitmap_offset(eb, start, nr, &i, &offset); 5553 page = eb->pages[i]; 5554 WARN_ON(!PageUptodate(page)); 5555 kaddr = page_address(page); 5556 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5557 } 5558 5559 /** 5560 * extent_buffer_bitmap_set - set an area of a bitmap 5561 * @eb: the extent buffer 5562 * @start: offset of the bitmap item in the extent buffer 5563 * @pos: bit number of the first bit 5564 * @len: number of bits to set 5565 */ 5566 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5567 unsigned long pos, unsigned long len) 5568 { 5569 char *kaddr; 5570 struct page *page; 5571 unsigned long i; 5572 size_t offset; 5573 const unsigned int size = pos + len; 5574 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5575 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5576 5577 eb_bitmap_offset(eb, start, pos, &i, &offset); 5578 page = eb->pages[i]; 5579 WARN_ON(!PageUptodate(page)); 5580 kaddr = page_address(page); 5581 5582 while (len >= bits_to_set) { 5583 kaddr[offset] |= mask_to_set; 5584 len -= bits_to_set; 5585 bits_to_set = BITS_PER_BYTE; 5586 mask_to_set = ~0U; 5587 if (++offset >= PAGE_SIZE && len > 0) { 5588 offset = 0; 5589 page = eb->pages[++i]; 5590 WARN_ON(!PageUptodate(page)); 5591 kaddr = page_address(page); 5592 } 5593 } 5594 if (len) { 5595 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5596 kaddr[offset] |= mask_to_set; 5597 } 5598 } 5599 5600 5601 /** 5602 * extent_buffer_bitmap_clear - clear an area of a bitmap 5603 * @eb: the extent buffer 5604 * @start: offset of the bitmap item in the extent buffer 5605 * @pos: bit number of the first bit 5606 * @len: number of bits to clear 5607 */ 5608 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5609 unsigned long pos, unsigned long len) 5610 { 5611 char *kaddr; 5612 struct page *page; 5613 unsigned long i; 5614 size_t offset; 5615 const unsigned int size = pos + len; 5616 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5617 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5618 5619 eb_bitmap_offset(eb, start, pos, &i, &offset); 5620 page = eb->pages[i]; 5621 WARN_ON(!PageUptodate(page)); 5622 kaddr = page_address(page); 5623 5624 while (len >= bits_to_clear) { 5625 kaddr[offset] &= ~mask_to_clear; 5626 len -= bits_to_clear; 5627 bits_to_clear = BITS_PER_BYTE; 5628 mask_to_clear = ~0U; 5629 if (++offset >= PAGE_SIZE && len > 0) { 5630 offset = 0; 5631 page = eb->pages[++i]; 5632 WARN_ON(!PageUptodate(page)); 5633 kaddr = page_address(page); 5634 } 5635 } 5636 if (len) { 5637 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5638 kaddr[offset] &= ~mask_to_clear; 5639 } 5640 } 5641 5642 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5643 { 5644 unsigned long distance = (src > dst) ? src - dst : dst - src; 5645 return distance < len; 5646 } 5647 5648 static void copy_pages(struct page *dst_page, struct page *src_page, 5649 unsigned long dst_off, unsigned long src_off, 5650 unsigned long len) 5651 { 5652 char *dst_kaddr = page_address(dst_page); 5653 char *src_kaddr; 5654 int must_memmove = 0; 5655 5656 if (dst_page != src_page) { 5657 src_kaddr = page_address(src_page); 5658 } else { 5659 src_kaddr = dst_kaddr; 5660 if (areas_overlap(src_off, dst_off, len)) 5661 must_memmove = 1; 5662 } 5663 5664 if (must_memmove) 5665 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5666 else 5667 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5668 } 5669 5670 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5671 unsigned long src_offset, unsigned long len) 5672 { 5673 size_t cur; 5674 size_t dst_off_in_page; 5675 size_t src_off_in_page; 5676 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5677 unsigned long dst_i; 5678 unsigned long src_i; 5679 5680 if (src_offset + len > dst->len) { 5681 btrfs_err(dst->fs_info, 5682 "memmove bogus src_offset %lu move " 5683 "len %lu dst len %lu", src_offset, len, dst->len); 5684 BUG_ON(1); 5685 } 5686 if (dst_offset + len > dst->len) { 5687 btrfs_err(dst->fs_info, 5688 "memmove bogus dst_offset %lu move " 5689 "len %lu dst len %lu", dst_offset, len, dst->len); 5690 BUG_ON(1); 5691 } 5692 5693 while (len > 0) { 5694 dst_off_in_page = (start_offset + dst_offset) & 5695 (PAGE_SIZE - 1); 5696 src_off_in_page = (start_offset + src_offset) & 5697 (PAGE_SIZE - 1); 5698 5699 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5700 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5701 5702 cur = min(len, (unsigned long)(PAGE_SIZE - 5703 src_off_in_page)); 5704 cur = min_t(unsigned long, cur, 5705 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5706 5707 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5708 dst_off_in_page, src_off_in_page, cur); 5709 5710 src_offset += cur; 5711 dst_offset += cur; 5712 len -= cur; 5713 } 5714 } 5715 5716 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5717 unsigned long src_offset, unsigned long len) 5718 { 5719 size_t cur; 5720 size_t dst_off_in_page; 5721 size_t src_off_in_page; 5722 unsigned long dst_end = dst_offset + len - 1; 5723 unsigned long src_end = src_offset + len - 1; 5724 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5725 unsigned long dst_i; 5726 unsigned long src_i; 5727 5728 if (src_offset + len > dst->len) { 5729 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5730 "len %lu len %lu", src_offset, len, dst->len); 5731 BUG_ON(1); 5732 } 5733 if (dst_offset + len > dst->len) { 5734 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5735 "len %lu len %lu", dst_offset, len, dst->len); 5736 BUG_ON(1); 5737 } 5738 if (dst_offset < src_offset) { 5739 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5740 return; 5741 } 5742 while (len > 0) { 5743 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5744 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5745 5746 dst_off_in_page = (start_offset + dst_end) & 5747 (PAGE_SIZE - 1); 5748 src_off_in_page = (start_offset + src_end) & 5749 (PAGE_SIZE - 1); 5750 5751 cur = min_t(unsigned long, len, src_off_in_page + 1); 5752 cur = min(cur, dst_off_in_page + 1); 5753 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5754 dst_off_in_page - cur + 1, 5755 src_off_in_page - cur + 1, cur); 5756 5757 dst_end -= cur; 5758 src_end -= cur; 5759 len -= cur; 5760 } 5761 } 5762 5763 int try_release_extent_buffer(struct page *page) 5764 { 5765 struct extent_buffer *eb; 5766 5767 /* 5768 * We need to make sure nobody is attaching this page to an eb right 5769 * now. 5770 */ 5771 spin_lock(&page->mapping->private_lock); 5772 if (!PagePrivate(page)) { 5773 spin_unlock(&page->mapping->private_lock); 5774 return 1; 5775 } 5776 5777 eb = (struct extent_buffer *)page->private; 5778 BUG_ON(!eb); 5779 5780 /* 5781 * This is a little awful but should be ok, we need to make sure that 5782 * the eb doesn't disappear out from under us while we're looking at 5783 * this page. 5784 */ 5785 spin_lock(&eb->refs_lock); 5786 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5787 spin_unlock(&eb->refs_lock); 5788 spin_unlock(&page->mapping->private_lock); 5789 return 0; 5790 } 5791 spin_unlock(&page->mapping->private_lock); 5792 5793 /* 5794 * If tree ref isn't set then we know the ref on this eb is a real ref, 5795 * so just return, this page will likely be freed soon anyway. 5796 */ 5797 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5798 spin_unlock(&eb->refs_lock); 5799 return 0; 5800 } 5801 5802 return release_extent_buffer(eb); 5803 } 5804