1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 kmem_cache_destroy(extent_state_cache); 210 kmem_cache_destroy(extent_buffer_cache); 211 if (btrfs_bioset) 212 bioset_free(btrfs_bioset); 213 } 214 215 void extent_io_tree_init(struct extent_io_tree *tree, 216 struct address_space *mapping) 217 { 218 tree->state = RB_ROOT; 219 tree->ops = NULL; 220 tree->dirty_bytes = 0; 221 spin_lock_init(&tree->lock); 222 tree->mapping = mapping; 223 } 224 225 static struct extent_state *alloc_extent_state(gfp_t mask) 226 { 227 struct extent_state *state; 228 229 state = kmem_cache_alloc(extent_state_cache, mask); 230 if (!state) 231 return state; 232 state->state = 0; 233 state->failrec = NULL; 234 RB_CLEAR_NODE(&state->rb_node); 235 btrfs_leak_debug_add(&state->leak_list, &states); 236 atomic_set(&state->refs, 1); 237 init_waitqueue_head(&state->wq); 238 trace_alloc_extent_state(state, mask, _RET_IP_); 239 return state; 240 } 241 242 void free_extent_state(struct extent_state *state) 243 { 244 if (!state) 245 return; 246 if (atomic_dec_and_test(&state->refs)) { 247 WARN_ON(extent_state_in_tree(state)); 248 btrfs_leak_debug_del(&state->leak_list); 249 trace_free_extent_state(state, _RET_IP_); 250 kmem_cache_free(extent_state_cache, state); 251 } 252 } 253 254 static struct rb_node *tree_insert(struct rb_root *root, 255 struct rb_node *search_start, 256 u64 offset, 257 struct rb_node *node, 258 struct rb_node ***p_in, 259 struct rb_node **parent_in) 260 { 261 struct rb_node **p; 262 struct rb_node *parent = NULL; 263 struct tree_entry *entry; 264 265 if (p_in && parent_in) { 266 p = *p_in; 267 parent = *parent_in; 268 goto do_insert; 269 } 270 271 p = search_start ? &search_start : &root->rb_node; 272 while (*p) { 273 parent = *p; 274 entry = rb_entry(parent, struct tree_entry, rb_node); 275 276 if (offset < entry->start) 277 p = &(*p)->rb_left; 278 else if (offset > entry->end) 279 p = &(*p)->rb_right; 280 else 281 return parent; 282 } 283 284 do_insert: 285 rb_link_node(node, parent, p); 286 rb_insert_color(node, root); 287 return NULL; 288 } 289 290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 291 struct rb_node **prev_ret, 292 struct rb_node **next_ret, 293 struct rb_node ***p_ret, 294 struct rb_node **parent_ret) 295 { 296 struct rb_root *root = &tree->state; 297 struct rb_node **n = &root->rb_node; 298 struct rb_node *prev = NULL; 299 struct rb_node *orig_prev = NULL; 300 struct tree_entry *entry; 301 struct tree_entry *prev_entry = NULL; 302 303 while (*n) { 304 prev = *n; 305 entry = rb_entry(prev, struct tree_entry, rb_node); 306 prev_entry = entry; 307 308 if (offset < entry->start) 309 n = &(*n)->rb_left; 310 else if (offset > entry->end) 311 n = &(*n)->rb_right; 312 else 313 return *n; 314 } 315 316 if (p_ret) 317 *p_ret = n; 318 if (parent_ret) 319 *parent_ret = prev; 320 321 if (prev_ret) { 322 orig_prev = prev; 323 while (prev && offset > prev_entry->end) { 324 prev = rb_next(prev); 325 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 326 } 327 *prev_ret = prev; 328 prev = orig_prev; 329 } 330 331 if (next_ret) { 332 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 333 while (prev && offset < prev_entry->start) { 334 prev = rb_prev(prev); 335 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 336 } 337 *next_ret = prev; 338 } 339 return NULL; 340 } 341 342 static inline struct rb_node * 343 tree_search_for_insert(struct extent_io_tree *tree, 344 u64 offset, 345 struct rb_node ***p_ret, 346 struct rb_node **parent_ret) 347 { 348 struct rb_node *prev = NULL; 349 struct rb_node *ret; 350 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 352 if (!ret) 353 return prev; 354 return ret; 355 } 356 357 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 358 u64 offset) 359 { 360 return tree_search_for_insert(tree, offset, NULL, NULL); 361 } 362 363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 364 struct extent_state *other) 365 { 366 if (tree->ops && tree->ops->merge_extent_hook) 367 tree->ops->merge_extent_hook(tree->mapping->host, new, 368 other); 369 } 370 371 /* 372 * utility function to look for merge candidates inside a given range. 373 * Any extents with matching state are merged together into a single 374 * extent in the tree. Extents with EXTENT_IO in their state field 375 * are not merged because the end_io handlers need to be able to do 376 * operations on them without sleeping (or doing allocations/splits). 377 * 378 * This should be called with the tree lock held. 379 */ 380 static void merge_state(struct extent_io_tree *tree, 381 struct extent_state *state) 382 { 383 struct extent_state *other; 384 struct rb_node *other_node; 385 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 387 return; 388 389 other_node = rb_prev(&state->rb_node); 390 if (other_node) { 391 other = rb_entry(other_node, struct extent_state, rb_node); 392 if (other->end == state->start - 1 && 393 other->state == state->state) { 394 merge_cb(tree, state, other); 395 state->start = other->start; 396 rb_erase(&other->rb_node, &tree->state); 397 RB_CLEAR_NODE(&other->rb_node); 398 free_extent_state(other); 399 } 400 } 401 other_node = rb_next(&state->rb_node); 402 if (other_node) { 403 other = rb_entry(other_node, struct extent_state, rb_node); 404 if (other->start == state->end + 1 && 405 other->state == state->state) { 406 merge_cb(tree, state, other); 407 state->end = other->end; 408 rb_erase(&other->rb_node, &tree->state); 409 RB_CLEAR_NODE(&other->rb_node); 410 free_extent_state(other); 411 } 412 } 413 } 414 415 static void set_state_cb(struct extent_io_tree *tree, 416 struct extent_state *state, unsigned *bits) 417 { 418 if (tree->ops && tree->ops->set_bit_hook) 419 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 420 } 421 422 static void clear_state_cb(struct extent_io_tree *tree, 423 struct extent_state *state, unsigned *bits) 424 { 425 if (tree->ops && tree->ops->clear_bit_hook) 426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 427 } 428 429 static void set_state_bits(struct extent_io_tree *tree, 430 struct extent_state *state, unsigned *bits, 431 struct extent_changeset *changeset); 432 433 /* 434 * insert an extent_state struct into the tree. 'bits' are set on the 435 * struct before it is inserted. 436 * 437 * This may return -EEXIST if the extent is already there, in which case the 438 * state struct is freed. 439 * 440 * The tree lock is not taken internally. This is a utility function and 441 * probably isn't what you want to call (see set/clear_extent_bit). 442 */ 443 static int insert_state(struct extent_io_tree *tree, 444 struct extent_state *state, u64 start, u64 end, 445 struct rb_node ***p, 446 struct rb_node **parent, 447 unsigned *bits, struct extent_changeset *changeset) 448 { 449 struct rb_node *node; 450 451 if (end < start) 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 453 end, start); 454 state->start = start; 455 state->end = end; 456 457 set_state_bits(tree, state, bits, changeset); 458 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 460 if (node) { 461 struct extent_state *found; 462 found = rb_entry(node, struct extent_state, rb_node); 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 464 "%llu %llu\n", 465 found->start, found->end, start, end); 466 return -EEXIST; 467 } 468 merge_state(tree, state); 469 return 0; 470 } 471 472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 473 u64 split) 474 { 475 if (tree->ops && tree->ops->split_extent_hook) 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 477 } 478 479 /* 480 * split a given extent state struct in two, inserting the preallocated 481 * struct 'prealloc' as the newly created second half. 'split' indicates an 482 * offset inside 'orig' where it should be split. 483 * 484 * Before calling, 485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 486 * are two extent state structs in the tree: 487 * prealloc: [orig->start, split - 1] 488 * orig: [ split, orig->end ] 489 * 490 * The tree locks are not taken by this function. They need to be held 491 * by the caller. 492 */ 493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 494 struct extent_state *prealloc, u64 split) 495 { 496 struct rb_node *node; 497 498 split_cb(tree, orig, split); 499 500 prealloc->start = orig->start; 501 prealloc->end = split - 1; 502 prealloc->state = orig->state; 503 orig->start = split; 504 505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 506 &prealloc->rb_node, NULL, NULL); 507 if (node) { 508 free_extent_state(prealloc); 509 return -EEXIST; 510 } 511 return 0; 512 } 513 514 static struct extent_state *next_state(struct extent_state *state) 515 { 516 struct rb_node *next = rb_next(&state->rb_node); 517 if (next) 518 return rb_entry(next, struct extent_state, rb_node); 519 else 520 return NULL; 521 } 522 523 /* 524 * utility function to clear some bits in an extent state struct. 525 * it will optionally wake up any one waiting on this state (wake == 1). 526 * 527 * If no bits are set on the state struct after clearing things, the 528 * struct is freed and removed from the tree 529 */ 530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 531 struct extent_state *state, 532 unsigned *bits, int wake, 533 struct extent_changeset *changeset) 534 { 535 struct extent_state *next; 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 537 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 539 u64 range = state->end - state->start + 1; 540 WARN_ON(range > tree->dirty_bytes); 541 tree->dirty_bytes -= range; 542 } 543 clear_state_cb(tree, state, bits); 544 add_extent_changeset(state, bits_to_clear, changeset, 0); 545 state->state &= ~bits_to_clear; 546 if (wake) 547 wake_up(&state->wq); 548 if (state->state == 0) { 549 next = next_state(state); 550 if (extent_state_in_tree(state)) { 551 rb_erase(&state->rb_node, &tree->state); 552 RB_CLEAR_NODE(&state->rb_node); 553 free_extent_state(state); 554 } else { 555 WARN_ON(1); 556 } 557 } else { 558 merge_state(tree, state); 559 next = next_state(state); 560 } 561 return next; 562 } 563 564 static struct extent_state * 565 alloc_extent_state_atomic(struct extent_state *prealloc) 566 { 567 if (!prealloc) 568 prealloc = alloc_extent_state(GFP_ATOMIC); 569 570 return prealloc; 571 } 572 573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 574 { 575 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 576 "Extent tree was modified by another " 577 "thread while locked."); 578 } 579 580 /* 581 * clear some bits on a range in the tree. This may require splitting 582 * or inserting elements in the tree, so the gfp mask is used to 583 * indicate which allocations or sleeping are allowed. 584 * 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 586 * the given range from the tree regardless of state (ie for truncate). 587 * 588 * the range [start, end] is inclusive. 589 * 590 * This takes the tree lock, and returns 0 on success and < 0 on error. 591 */ 592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 593 unsigned bits, int wake, int delete, 594 struct extent_state **cached_state, 595 gfp_t mask, struct extent_changeset *changeset) 596 { 597 struct extent_state *state; 598 struct extent_state *cached; 599 struct extent_state *prealloc = NULL; 600 struct rb_node *node; 601 u64 last_end; 602 int err; 603 int clear = 0; 604 605 btrfs_debug_check_extent_io_range(tree, start, end); 606 607 if (bits & EXTENT_DELALLOC) 608 bits |= EXTENT_NORESERVE; 609 610 if (delete) 611 bits |= ~EXTENT_CTLBITS; 612 bits |= EXTENT_FIRST_DELALLOC; 613 614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 615 clear = 1; 616 again: 617 if (!prealloc && gfpflags_allow_blocking(mask)) { 618 /* 619 * Don't care for allocation failure here because we might end 620 * up not needing the pre-allocated extent state at all, which 621 * is the case if we only have in the tree extent states that 622 * cover our input range and don't cover too any other range. 623 * If we end up needing a new extent state we allocate it later. 624 */ 625 prealloc = alloc_extent_state(mask); 626 } 627 628 spin_lock(&tree->lock); 629 if (cached_state) { 630 cached = *cached_state; 631 632 if (clear) { 633 *cached_state = NULL; 634 cached_state = NULL; 635 } 636 637 if (cached && extent_state_in_tree(cached) && 638 cached->start <= start && cached->end > start) { 639 if (clear) 640 atomic_dec(&cached->refs); 641 state = cached; 642 goto hit_next; 643 } 644 if (clear) 645 free_extent_state(cached); 646 } 647 /* 648 * this search will find the extents that end after 649 * our range starts 650 */ 651 node = tree_search(tree, start); 652 if (!node) 653 goto out; 654 state = rb_entry(node, struct extent_state, rb_node); 655 hit_next: 656 if (state->start > end) 657 goto out; 658 WARN_ON(state->end < start); 659 last_end = state->end; 660 661 /* the state doesn't have the wanted bits, go ahead */ 662 if (!(state->state & bits)) { 663 state = next_state(state); 664 goto next; 665 } 666 667 /* 668 * | ---- desired range ---- | 669 * | state | or 670 * | ------------- state -------------- | 671 * 672 * We need to split the extent we found, and may flip 673 * bits on second half. 674 * 675 * If the extent we found extends past our range, we 676 * just split and search again. It'll get split again 677 * the next time though. 678 * 679 * If the extent we found is inside our range, we clear 680 * the desired bit on it. 681 */ 682 683 if (state->start < start) { 684 prealloc = alloc_extent_state_atomic(prealloc); 685 BUG_ON(!prealloc); 686 err = split_state(tree, state, prealloc, start); 687 if (err) 688 extent_io_tree_panic(tree, err); 689 690 prealloc = NULL; 691 if (err) 692 goto out; 693 if (state->end <= end) { 694 state = clear_state_bit(tree, state, &bits, wake, 695 changeset); 696 goto next; 697 } 698 goto search_again; 699 } 700 /* 701 * | ---- desired range ---- | 702 * | state | 703 * We need to split the extent, and clear the bit 704 * on the first half 705 */ 706 if (state->start <= end && state->end > end) { 707 prealloc = alloc_extent_state_atomic(prealloc); 708 BUG_ON(!prealloc); 709 err = split_state(tree, state, prealloc, end + 1); 710 if (err) 711 extent_io_tree_panic(tree, err); 712 713 if (wake) 714 wake_up(&state->wq); 715 716 clear_state_bit(tree, prealloc, &bits, wake, changeset); 717 718 prealloc = NULL; 719 goto out; 720 } 721 722 state = clear_state_bit(tree, state, &bits, wake, changeset); 723 next: 724 if (last_end == (u64)-1) 725 goto out; 726 start = last_end + 1; 727 if (start <= end && state && !need_resched()) 728 goto hit_next; 729 730 search_again: 731 if (start > end) 732 goto out; 733 spin_unlock(&tree->lock); 734 if (gfpflags_allow_blocking(mask)) 735 cond_resched(); 736 goto again; 737 738 out: 739 spin_unlock(&tree->lock); 740 if (prealloc) 741 free_extent_state(prealloc); 742 743 return 0; 744 745 } 746 747 static void wait_on_state(struct extent_io_tree *tree, 748 struct extent_state *state) 749 __releases(tree->lock) 750 __acquires(tree->lock) 751 { 752 DEFINE_WAIT(wait); 753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 754 spin_unlock(&tree->lock); 755 schedule(); 756 spin_lock(&tree->lock); 757 finish_wait(&state->wq, &wait); 758 } 759 760 /* 761 * waits for one or more bits to clear on a range in the state tree. 762 * The range [start, end] is inclusive. 763 * The tree lock is taken by this function 764 */ 765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 766 unsigned long bits) 767 { 768 struct extent_state *state; 769 struct rb_node *node; 770 771 btrfs_debug_check_extent_io_range(tree, start, end); 772 773 spin_lock(&tree->lock); 774 again: 775 while (1) { 776 /* 777 * this search will find all the extents that end after 778 * our range starts 779 */ 780 node = tree_search(tree, start); 781 process_node: 782 if (!node) 783 break; 784 785 state = rb_entry(node, struct extent_state, rb_node); 786 787 if (state->start > end) 788 goto out; 789 790 if (state->state & bits) { 791 start = state->start; 792 atomic_inc(&state->refs); 793 wait_on_state(tree, state); 794 free_extent_state(state); 795 goto again; 796 } 797 start = state->end + 1; 798 799 if (start > end) 800 break; 801 802 if (!cond_resched_lock(&tree->lock)) { 803 node = rb_next(node); 804 goto process_node; 805 } 806 } 807 out: 808 spin_unlock(&tree->lock); 809 } 810 811 static void set_state_bits(struct extent_io_tree *tree, 812 struct extent_state *state, 813 unsigned *bits, struct extent_changeset *changeset) 814 { 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 816 817 set_state_cb(tree, state, bits); 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 819 u64 range = state->end - state->start + 1; 820 tree->dirty_bytes += range; 821 } 822 add_extent_changeset(state, bits_to_set, changeset, 1); 823 state->state |= bits_to_set; 824 } 825 826 static void cache_state_if_flags(struct extent_state *state, 827 struct extent_state **cached_ptr, 828 unsigned flags) 829 { 830 if (cached_ptr && !(*cached_ptr)) { 831 if (!flags || (state->state & flags)) { 832 *cached_ptr = state; 833 atomic_inc(&state->refs); 834 } 835 } 836 } 837 838 static void cache_state(struct extent_state *state, 839 struct extent_state **cached_ptr) 840 { 841 return cache_state_if_flags(state, cached_ptr, 842 EXTENT_IOBITS | EXTENT_BOUNDARY); 843 } 844 845 /* 846 * set some bits on a range in the tree. This may require allocations or 847 * sleeping, so the gfp mask is used to indicate what is allowed. 848 * 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some 850 * part of the range already has the desired bits set. The start of the 851 * existing range is returned in failed_start in this case. 852 * 853 * [start, end] is inclusive This takes the tree lock. 854 */ 855 856 static int __must_check 857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 858 unsigned bits, unsigned exclusive_bits, 859 u64 *failed_start, struct extent_state **cached_state, 860 gfp_t mask, struct extent_changeset *changeset) 861 { 862 struct extent_state *state; 863 struct extent_state *prealloc = NULL; 864 struct rb_node *node; 865 struct rb_node **p; 866 struct rb_node *parent; 867 int err = 0; 868 u64 last_start; 869 u64 last_end; 870 871 btrfs_debug_check_extent_io_range(tree, start, end); 872 873 bits |= EXTENT_FIRST_DELALLOC; 874 again: 875 if (!prealloc && gfpflags_allow_blocking(mask)) { 876 /* 877 * Don't care for allocation failure here because we might end 878 * up not needing the pre-allocated extent state at all, which 879 * is the case if we only have in the tree extent states that 880 * cover our input range and don't cover too any other range. 881 * If we end up needing a new extent state we allocate it later. 882 */ 883 prealloc = alloc_extent_state(mask); 884 } 885 886 spin_lock(&tree->lock); 887 if (cached_state && *cached_state) { 888 state = *cached_state; 889 if (state->start <= start && state->end > start && 890 extent_state_in_tree(state)) { 891 node = &state->rb_node; 892 goto hit_next; 893 } 894 } 895 /* 896 * this search will find all the extents that end after 897 * our range starts. 898 */ 899 node = tree_search_for_insert(tree, start, &p, &parent); 900 if (!node) { 901 prealloc = alloc_extent_state_atomic(prealloc); 902 BUG_ON(!prealloc); 903 err = insert_state(tree, prealloc, start, end, 904 &p, &parent, &bits, changeset); 905 if (err) 906 extent_io_tree_panic(tree, err); 907 908 cache_state(prealloc, cached_state); 909 prealloc = NULL; 910 goto out; 911 } 912 state = rb_entry(node, struct extent_state, rb_node); 913 hit_next: 914 last_start = state->start; 915 last_end = state->end; 916 917 /* 918 * | ---- desired range ---- | 919 * | state | 920 * 921 * Just lock what we found and keep going 922 */ 923 if (state->start == start && state->end <= end) { 924 if (state->state & exclusive_bits) { 925 *failed_start = state->start; 926 err = -EEXIST; 927 goto out; 928 } 929 930 set_state_bits(tree, state, &bits, changeset); 931 cache_state(state, cached_state); 932 merge_state(tree, state); 933 if (last_end == (u64)-1) 934 goto out; 935 start = last_end + 1; 936 state = next_state(state); 937 if (start < end && state && state->start == start && 938 !need_resched()) 939 goto hit_next; 940 goto search_again; 941 } 942 943 /* 944 * | ---- desired range ---- | 945 * | state | 946 * or 947 * | ------------- state -------------- | 948 * 949 * We need to split the extent we found, and may flip bits on 950 * second half. 951 * 952 * If the extent we found extends past our 953 * range, we just split and search again. It'll get split 954 * again the next time though. 955 * 956 * If the extent we found is inside our range, we set the 957 * desired bit on it. 958 */ 959 if (state->start < start) { 960 if (state->state & exclusive_bits) { 961 *failed_start = start; 962 err = -EEXIST; 963 goto out; 964 } 965 966 prealloc = alloc_extent_state_atomic(prealloc); 967 BUG_ON(!prealloc); 968 err = split_state(tree, state, prealloc, start); 969 if (err) 970 extent_io_tree_panic(tree, err); 971 972 prealloc = NULL; 973 if (err) 974 goto out; 975 if (state->end <= end) { 976 set_state_bits(tree, state, &bits, changeset); 977 cache_state(state, cached_state); 978 merge_state(tree, state); 979 if (last_end == (u64)-1) 980 goto out; 981 start = last_end + 1; 982 state = next_state(state); 983 if (start < end && state && state->start == start && 984 !need_resched()) 985 goto hit_next; 986 } 987 goto search_again; 988 } 989 /* 990 * | ---- desired range ---- | 991 * | state | or | state | 992 * 993 * There's a hole, we need to insert something in it and 994 * ignore the extent we found. 995 */ 996 if (state->start > start) { 997 u64 this_end; 998 if (end < last_start) 999 this_end = end; 1000 else 1001 this_end = last_start - 1; 1002 1003 prealloc = alloc_extent_state_atomic(prealloc); 1004 BUG_ON(!prealloc); 1005 1006 /* 1007 * Avoid to free 'prealloc' if it can be merged with 1008 * the later extent. 1009 */ 1010 err = insert_state(tree, prealloc, start, this_end, 1011 NULL, NULL, &bits, changeset); 1012 if (err) 1013 extent_io_tree_panic(tree, err); 1014 1015 cache_state(prealloc, cached_state); 1016 prealloc = NULL; 1017 start = this_end + 1; 1018 goto search_again; 1019 } 1020 /* 1021 * | ---- desired range ---- | 1022 * | state | 1023 * We need to split the extent, and set the bit 1024 * on the first half 1025 */ 1026 if (state->start <= end && state->end > end) { 1027 if (state->state & exclusive_bits) { 1028 *failed_start = start; 1029 err = -EEXIST; 1030 goto out; 1031 } 1032 1033 prealloc = alloc_extent_state_atomic(prealloc); 1034 BUG_ON(!prealloc); 1035 err = split_state(tree, state, prealloc, end + 1); 1036 if (err) 1037 extent_io_tree_panic(tree, err); 1038 1039 set_state_bits(tree, prealloc, &bits, changeset); 1040 cache_state(prealloc, cached_state); 1041 merge_state(tree, prealloc); 1042 prealloc = NULL; 1043 goto out; 1044 } 1045 1046 search_again: 1047 if (start > end) 1048 goto out; 1049 spin_unlock(&tree->lock); 1050 if (gfpflags_allow_blocking(mask)) 1051 cond_resched(); 1052 goto again; 1053 1054 out: 1055 spin_unlock(&tree->lock); 1056 if (prealloc) 1057 free_extent_state(prealloc); 1058 1059 return err; 1060 1061 } 1062 1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1064 unsigned bits, u64 * failed_start, 1065 struct extent_state **cached_state, gfp_t mask) 1066 { 1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1068 cached_state, mask, NULL); 1069 } 1070 1071 1072 /** 1073 * convert_extent_bit - convert all bits in a given range from one bit to 1074 * another 1075 * @tree: the io tree to search 1076 * @start: the start offset in bytes 1077 * @end: the end offset in bytes (inclusive) 1078 * @bits: the bits to set in this range 1079 * @clear_bits: the bits to clear in this range 1080 * @cached_state: state that we're going to cache 1081 * 1082 * This will go through and set bits for the given range. If any states exist 1083 * already in this range they are set with the given bit and cleared of the 1084 * clear_bits. This is only meant to be used by things that are mergeable, ie 1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1086 * boundary bits like LOCK. 1087 * 1088 * All allocations are done with GFP_NOFS. 1089 */ 1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1091 unsigned bits, unsigned clear_bits, 1092 struct extent_state **cached_state) 1093 { 1094 struct extent_state *state; 1095 struct extent_state *prealloc = NULL; 1096 struct rb_node *node; 1097 struct rb_node **p; 1098 struct rb_node *parent; 1099 int err = 0; 1100 u64 last_start; 1101 u64 last_end; 1102 bool first_iteration = true; 1103 1104 btrfs_debug_check_extent_io_range(tree, start, end); 1105 1106 again: 1107 if (!prealloc) { 1108 /* 1109 * Best effort, don't worry if extent state allocation fails 1110 * here for the first iteration. We might have a cached state 1111 * that matches exactly the target range, in which case no 1112 * extent state allocations are needed. We'll only know this 1113 * after locking the tree. 1114 */ 1115 prealloc = alloc_extent_state(GFP_NOFS); 1116 if (!prealloc && !first_iteration) 1117 return -ENOMEM; 1118 } 1119 1120 spin_lock(&tree->lock); 1121 if (cached_state && *cached_state) { 1122 state = *cached_state; 1123 if (state->start <= start && state->end > start && 1124 extent_state_in_tree(state)) { 1125 node = &state->rb_node; 1126 goto hit_next; 1127 } 1128 } 1129 1130 /* 1131 * this search will find all the extents that end after 1132 * our range starts. 1133 */ 1134 node = tree_search_for_insert(tree, start, &p, &parent); 1135 if (!node) { 1136 prealloc = alloc_extent_state_atomic(prealloc); 1137 if (!prealloc) { 1138 err = -ENOMEM; 1139 goto out; 1140 } 1141 err = insert_state(tree, prealloc, start, end, 1142 &p, &parent, &bits, NULL); 1143 if (err) 1144 extent_io_tree_panic(tree, err); 1145 cache_state(prealloc, cached_state); 1146 prealloc = NULL; 1147 goto out; 1148 } 1149 state = rb_entry(node, struct extent_state, rb_node); 1150 hit_next: 1151 last_start = state->start; 1152 last_end = state->end; 1153 1154 /* 1155 * | ---- desired range ---- | 1156 * | state | 1157 * 1158 * Just lock what we found and keep going 1159 */ 1160 if (state->start == start && state->end <= end) { 1161 set_state_bits(tree, state, &bits, NULL); 1162 cache_state(state, cached_state); 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1164 if (last_end == (u64)-1) 1165 goto out; 1166 start = last_end + 1; 1167 if (start < end && state && state->start == start && 1168 !need_resched()) 1169 goto hit_next; 1170 goto search_again; 1171 } 1172 1173 /* 1174 * | ---- desired range ---- | 1175 * | state | 1176 * or 1177 * | ------------- state -------------- | 1178 * 1179 * We need to split the extent we found, and may flip bits on 1180 * second half. 1181 * 1182 * If the extent we found extends past our 1183 * range, we just split and search again. It'll get split 1184 * again the next time though. 1185 * 1186 * If the extent we found is inside our range, we set the 1187 * desired bit on it. 1188 */ 1189 if (state->start < start) { 1190 prealloc = alloc_extent_state_atomic(prealloc); 1191 if (!prealloc) { 1192 err = -ENOMEM; 1193 goto out; 1194 } 1195 err = split_state(tree, state, prealloc, start); 1196 if (err) 1197 extent_io_tree_panic(tree, err); 1198 prealloc = NULL; 1199 if (err) 1200 goto out; 1201 if (state->end <= end) { 1202 set_state_bits(tree, state, &bits, NULL); 1203 cache_state(state, cached_state); 1204 state = clear_state_bit(tree, state, &clear_bits, 0, 1205 NULL); 1206 if (last_end == (u64)-1) 1207 goto out; 1208 start = last_end + 1; 1209 if (start < end && state && state->start == start && 1210 !need_resched()) 1211 goto hit_next; 1212 } 1213 goto search_again; 1214 } 1215 /* 1216 * | ---- desired range ---- | 1217 * | state | or | state | 1218 * 1219 * There's a hole, we need to insert something in it and 1220 * ignore the extent we found. 1221 */ 1222 if (state->start > start) { 1223 u64 this_end; 1224 if (end < last_start) 1225 this_end = end; 1226 else 1227 this_end = last_start - 1; 1228 1229 prealloc = alloc_extent_state_atomic(prealloc); 1230 if (!prealloc) { 1231 err = -ENOMEM; 1232 goto out; 1233 } 1234 1235 /* 1236 * Avoid to free 'prealloc' if it can be merged with 1237 * the later extent. 1238 */ 1239 err = insert_state(tree, prealloc, start, this_end, 1240 NULL, NULL, &bits, NULL); 1241 if (err) 1242 extent_io_tree_panic(tree, err); 1243 cache_state(prealloc, cached_state); 1244 prealloc = NULL; 1245 start = this_end + 1; 1246 goto search_again; 1247 } 1248 /* 1249 * | ---- desired range ---- | 1250 * | state | 1251 * We need to split the extent, and set the bit 1252 * on the first half 1253 */ 1254 if (state->start <= end && state->end > end) { 1255 prealloc = alloc_extent_state_atomic(prealloc); 1256 if (!prealloc) { 1257 err = -ENOMEM; 1258 goto out; 1259 } 1260 1261 err = split_state(tree, state, prealloc, end + 1); 1262 if (err) 1263 extent_io_tree_panic(tree, err); 1264 1265 set_state_bits(tree, prealloc, &bits, NULL); 1266 cache_state(prealloc, cached_state); 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 1272 search_again: 1273 if (start > end) 1274 goto out; 1275 spin_unlock(&tree->lock); 1276 cond_resched(); 1277 first_iteration = false; 1278 goto again; 1279 1280 out: 1281 spin_unlock(&tree->lock); 1282 if (prealloc) 1283 free_extent_state(prealloc); 1284 1285 return err; 1286 } 1287 1288 /* wrappers around set/clear extent bit */ 1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1290 unsigned bits, struct extent_changeset *changeset) 1291 { 1292 /* 1293 * We don't support EXTENT_LOCKED yet, as current changeset will 1294 * record any bits changed, so for EXTENT_LOCKED case, it will 1295 * either fail with -EEXIST or changeset will record the whole 1296 * range. 1297 */ 1298 BUG_ON(bits & EXTENT_LOCKED); 1299 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1301 changeset); 1302 } 1303 1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, int wake, int delete, 1306 struct extent_state **cached, gfp_t mask) 1307 { 1308 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1309 cached, mask, NULL); 1310 } 1311 1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1313 unsigned bits, struct extent_changeset *changeset) 1314 { 1315 /* 1316 * Don't support EXTENT_LOCKED case, same reason as 1317 * set_record_extent_bits(). 1318 */ 1319 BUG_ON(bits & EXTENT_LOCKED); 1320 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1322 changeset); 1323 } 1324 1325 /* 1326 * either insert or lock state struct between start and end use mask to tell 1327 * us if waiting is desired. 1328 */ 1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1330 struct extent_state **cached_state) 1331 { 1332 int err; 1333 u64 failed_start; 1334 1335 while (1) { 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1337 EXTENT_LOCKED, &failed_start, 1338 cached_state, GFP_NOFS, NULL); 1339 if (err == -EEXIST) { 1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1341 start = failed_start; 1342 } else 1343 break; 1344 WARN_ON(start > end); 1345 } 1346 return err; 1347 } 1348 1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1350 { 1351 int err; 1352 u64 failed_start; 1353 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1355 &failed_start, NULL, GFP_NOFS, NULL); 1356 if (err == -EEXIST) { 1357 if (failed_start > start) 1358 clear_extent_bit(tree, start, failed_start - 1, 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1360 return 0; 1361 } 1362 return 1; 1363 } 1364 1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1366 { 1367 unsigned long index = start >> PAGE_SHIFT; 1368 unsigned long end_index = end >> PAGE_SHIFT; 1369 struct page *page; 1370 1371 while (index <= end_index) { 1372 page = find_get_page(inode->i_mapping, index); 1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1374 clear_page_dirty_for_io(page); 1375 put_page(page); 1376 index++; 1377 } 1378 } 1379 1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1381 { 1382 unsigned long index = start >> PAGE_SHIFT; 1383 unsigned long end_index = end >> PAGE_SHIFT; 1384 struct page *page; 1385 1386 while (index <= end_index) { 1387 page = find_get_page(inode->i_mapping, index); 1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1389 __set_page_dirty_nobuffers(page); 1390 account_page_redirty(page); 1391 put_page(page); 1392 index++; 1393 } 1394 } 1395 1396 /* 1397 * helper function to set both pages and extents in the tree writeback 1398 */ 1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1400 { 1401 unsigned long index = start >> PAGE_SHIFT; 1402 unsigned long end_index = end >> PAGE_SHIFT; 1403 struct page *page; 1404 1405 while (index <= end_index) { 1406 page = find_get_page(tree->mapping, index); 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1408 set_page_writeback(page); 1409 put_page(page); 1410 index++; 1411 } 1412 } 1413 1414 /* find the first state struct with 'bits' set after 'start', and 1415 * return it. tree->lock must be held. NULL will returned if 1416 * nothing was found after 'start' 1417 */ 1418 static struct extent_state * 1419 find_first_extent_bit_state(struct extent_io_tree *tree, 1420 u64 start, unsigned bits) 1421 { 1422 struct rb_node *node; 1423 struct extent_state *state; 1424 1425 /* 1426 * this search will find all the extents that end after 1427 * our range starts. 1428 */ 1429 node = tree_search(tree, start); 1430 if (!node) 1431 goto out; 1432 1433 while (1) { 1434 state = rb_entry(node, struct extent_state, rb_node); 1435 if (state->end >= start && (state->state & bits)) 1436 return state; 1437 1438 node = rb_next(node); 1439 if (!node) 1440 break; 1441 } 1442 out: 1443 return NULL; 1444 } 1445 1446 /* 1447 * find the first offset in the io tree with 'bits' set. zero is 1448 * returned if we find something, and *start_ret and *end_ret are 1449 * set to reflect the state struct that was found. 1450 * 1451 * If nothing was found, 1 is returned. If found something, return 0. 1452 */ 1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1454 u64 *start_ret, u64 *end_ret, unsigned bits, 1455 struct extent_state **cached_state) 1456 { 1457 struct extent_state *state; 1458 struct rb_node *n; 1459 int ret = 1; 1460 1461 spin_lock(&tree->lock); 1462 if (cached_state && *cached_state) { 1463 state = *cached_state; 1464 if (state->end == start - 1 && extent_state_in_tree(state)) { 1465 n = rb_next(&state->rb_node); 1466 while (n) { 1467 state = rb_entry(n, struct extent_state, 1468 rb_node); 1469 if (state->state & bits) 1470 goto got_it; 1471 n = rb_next(n); 1472 } 1473 free_extent_state(*cached_state); 1474 *cached_state = NULL; 1475 goto out; 1476 } 1477 free_extent_state(*cached_state); 1478 *cached_state = NULL; 1479 } 1480 1481 state = find_first_extent_bit_state(tree, start, bits); 1482 got_it: 1483 if (state) { 1484 cache_state_if_flags(state, cached_state, 0); 1485 *start_ret = state->start; 1486 *end_ret = state->end; 1487 ret = 0; 1488 } 1489 out: 1490 spin_unlock(&tree->lock); 1491 return ret; 1492 } 1493 1494 /* 1495 * find a contiguous range of bytes in the file marked as delalloc, not 1496 * more than 'max_bytes'. start and end are used to return the range, 1497 * 1498 * 1 is returned if we find something, 0 if nothing was in the tree 1499 */ 1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1501 u64 *start, u64 *end, u64 max_bytes, 1502 struct extent_state **cached_state) 1503 { 1504 struct rb_node *node; 1505 struct extent_state *state; 1506 u64 cur_start = *start; 1507 u64 found = 0; 1508 u64 total_bytes = 0; 1509 1510 spin_lock(&tree->lock); 1511 1512 /* 1513 * this search will find all the extents that end after 1514 * our range starts. 1515 */ 1516 node = tree_search(tree, cur_start); 1517 if (!node) { 1518 if (!found) 1519 *end = (u64)-1; 1520 goto out; 1521 } 1522 1523 while (1) { 1524 state = rb_entry(node, struct extent_state, rb_node); 1525 if (found && (state->start != cur_start || 1526 (state->state & EXTENT_BOUNDARY))) { 1527 goto out; 1528 } 1529 if (!(state->state & EXTENT_DELALLOC)) { 1530 if (!found) 1531 *end = state->end; 1532 goto out; 1533 } 1534 if (!found) { 1535 *start = state->start; 1536 *cached_state = state; 1537 atomic_inc(&state->refs); 1538 } 1539 found++; 1540 *end = state->end; 1541 cur_start = state->end + 1; 1542 node = rb_next(node); 1543 total_bytes += state->end - state->start + 1; 1544 if (total_bytes >= max_bytes) 1545 break; 1546 if (!node) 1547 break; 1548 } 1549 out: 1550 spin_unlock(&tree->lock); 1551 return found; 1552 } 1553 1554 static noinline void __unlock_for_delalloc(struct inode *inode, 1555 struct page *locked_page, 1556 u64 start, u64 end) 1557 { 1558 int ret; 1559 struct page *pages[16]; 1560 unsigned long index = start >> PAGE_SHIFT; 1561 unsigned long end_index = end >> PAGE_SHIFT; 1562 unsigned long nr_pages = end_index - index + 1; 1563 int i; 1564 1565 if (index == locked_page->index && end_index == index) 1566 return; 1567 1568 while (nr_pages > 0) { 1569 ret = find_get_pages_contig(inode->i_mapping, index, 1570 min_t(unsigned long, nr_pages, 1571 ARRAY_SIZE(pages)), pages); 1572 for (i = 0; i < ret; i++) { 1573 if (pages[i] != locked_page) 1574 unlock_page(pages[i]); 1575 put_page(pages[i]); 1576 } 1577 nr_pages -= ret; 1578 index += ret; 1579 cond_resched(); 1580 } 1581 } 1582 1583 static noinline int lock_delalloc_pages(struct inode *inode, 1584 struct page *locked_page, 1585 u64 delalloc_start, 1586 u64 delalloc_end) 1587 { 1588 unsigned long index = delalloc_start >> PAGE_SHIFT; 1589 unsigned long start_index = index; 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1591 unsigned long pages_locked = 0; 1592 struct page *pages[16]; 1593 unsigned long nrpages; 1594 int ret; 1595 int i; 1596 1597 /* the caller is responsible for locking the start index */ 1598 if (index == locked_page->index && index == end_index) 1599 return 0; 1600 1601 /* skip the page at the start index */ 1602 nrpages = end_index - index + 1; 1603 while (nrpages > 0) { 1604 ret = find_get_pages_contig(inode->i_mapping, index, 1605 min_t(unsigned long, 1606 nrpages, ARRAY_SIZE(pages)), pages); 1607 if (ret == 0) { 1608 ret = -EAGAIN; 1609 goto done; 1610 } 1611 /* now we have an array of pages, lock them all */ 1612 for (i = 0; i < ret; i++) { 1613 /* 1614 * the caller is taking responsibility for 1615 * locked_page 1616 */ 1617 if (pages[i] != locked_page) { 1618 lock_page(pages[i]); 1619 if (!PageDirty(pages[i]) || 1620 pages[i]->mapping != inode->i_mapping) { 1621 ret = -EAGAIN; 1622 unlock_page(pages[i]); 1623 put_page(pages[i]); 1624 goto done; 1625 } 1626 } 1627 put_page(pages[i]); 1628 pages_locked++; 1629 } 1630 nrpages -= ret; 1631 index += ret; 1632 cond_resched(); 1633 } 1634 ret = 0; 1635 done: 1636 if (ret && pages_locked) { 1637 __unlock_for_delalloc(inode, locked_page, 1638 delalloc_start, 1639 ((u64)(start_index + pages_locked - 1)) << 1640 PAGE_SHIFT); 1641 } 1642 return ret; 1643 } 1644 1645 /* 1646 * find a contiguous range of bytes in the file marked as delalloc, not 1647 * more than 'max_bytes'. start and end are used to return the range, 1648 * 1649 * 1 is returned if we find something, 0 if nothing was in the tree 1650 */ 1651 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1652 struct extent_io_tree *tree, 1653 struct page *locked_page, u64 *start, 1654 u64 *end, u64 max_bytes) 1655 { 1656 u64 delalloc_start; 1657 u64 delalloc_end; 1658 u64 found; 1659 struct extent_state *cached_state = NULL; 1660 int ret; 1661 int loops = 0; 1662 1663 again: 1664 /* step one, find a bunch of delalloc bytes starting at start */ 1665 delalloc_start = *start; 1666 delalloc_end = 0; 1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1668 max_bytes, &cached_state); 1669 if (!found || delalloc_end <= *start) { 1670 *start = delalloc_start; 1671 *end = delalloc_end; 1672 free_extent_state(cached_state); 1673 return 0; 1674 } 1675 1676 /* 1677 * start comes from the offset of locked_page. We have to lock 1678 * pages in order, so we can't process delalloc bytes before 1679 * locked_page 1680 */ 1681 if (delalloc_start < *start) 1682 delalloc_start = *start; 1683 1684 /* 1685 * make sure to limit the number of pages we try to lock down 1686 */ 1687 if (delalloc_end + 1 - delalloc_start > max_bytes) 1688 delalloc_end = delalloc_start + max_bytes - 1; 1689 1690 /* step two, lock all the pages after the page that has start */ 1691 ret = lock_delalloc_pages(inode, locked_page, 1692 delalloc_start, delalloc_end); 1693 if (ret == -EAGAIN) { 1694 /* some of the pages are gone, lets avoid looping by 1695 * shortening the size of the delalloc range we're searching 1696 */ 1697 free_extent_state(cached_state); 1698 cached_state = NULL; 1699 if (!loops) { 1700 max_bytes = PAGE_SIZE; 1701 loops = 1; 1702 goto again; 1703 } else { 1704 found = 0; 1705 goto out_failed; 1706 } 1707 } 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1709 1710 /* step three, lock the state bits for the whole range */ 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1712 1713 /* then test to make sure it is all still delalloc */ 1714 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1715 EXTENT_DELALLOC, 1, cached_state); 1716 if (!ret) { 1717 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1718 &cached_state, GFP_NOFS); 1719 __unlock_for_delalloc(inode, locked_page, 1720 delalloc_start, delalloc_end); 1721 cond_resched(); 1722 goto again; 1723 } 1724 free_extent_state(cached_state); 1725 *start = delalloc_start; 1726 *end = delalloc_end; 1727 out_failed: 1728 return found; 1729 } 1730 1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1732 struct page *locked_page, 1733 unsigned clear_bits, 1734 unsigned long page_ops) 1735 { 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1737 int ret; 1738 struct page *pages[16]; 1739 unsigned long index = start >> PAGE_SHIFT; 1740 unsigned long end_index = end >> PAGE_SHIFT; 1741 unsigned long nr_pages = end_index - index + 1; 1742 int i; 1743 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1745 if (page_ops == 0) 1746 return; 1747 1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1749 mapping_set_error(inode->i_mapping, -EIO); 1750 1751 while (nr_pages > 0) { 1752 ret = find_get_pages_contig(inode->i_mapping, index, 1753 min_t(unsigned long, 1754 nr_pages, ARRAY_SIZE(pages)), pages); 1755 for (i = 0; i < ret; i++) { 1756 1757 if (page_ops & PAGE_SET_PRIVATE2) 1758 SetPagePrivate2(pages[i]); 1759 1760 if (pages[i] == locked_page) { 1761 put_page(pages[i]); 1762 continue; 1763 } 1764 if (page_ops & PAGE_CLEAR_DIRTY) 1765 clear_page_dirty_for_io(pages[i]); 1766 if (page_ops & PAGE_SET_WRITEBACK) 1767 set_page_writeback(pages[i]); 1768 if (page_ops & PAGE_SET_ERROR) 1769 SetPageError(pages[i]); 1770 if (page_ops & PAGE_END_WRITEBACK) 1771 end_page_writeback(pages[i]); 1772 if (page_ops & PAGE_UNLOCK) 1773 unlock_page(pages[i]); 1774 put_page(pages[i]); 1775 } 1776 nr_pages -= ret; 1777 index += ret; 1778 cond_resched(); 1779 } 1780 } 1781 1782 /* 1783 * count the number of bytes in the tree that have a given bit(s) 1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1785 * cached. The total number found is returned. 1786 */ 1787 u64 count_range_bits(struct extent_io_tree *tree, 1788 u64 *start, u64 search_end, u64 max_bytes, 1789 unsigned bits, int contig) 1790 { 1791 struct rb_node *node; 1792 struct extent_state *state; 1793 u64 cur_start = *start; 1794 u64 total_bytes = 0; 1795 u64 last = 0; 1796 int found = 0; 1797 1798 if (WARN_ON(search_end <= cur_start)) 1799 return 0; 1800 1801 spin_lock(&tree->lock); 1802 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1803 total_bytes = tree->dirty_bytes; 1804 goto out; 1805 } 1806 /* 1807 * this search will find all the extents that end after 1808 * our range starts. 1809 */ 1810 node = tree_search(tree, cur_start); 1811 if (!node) 1812 goto out; 1813 1814 while (1) { 1815 state = rb_entry(node, struct extent_state, rb_node); 1816 if (state->start > search_end) 1817 break; 1818 if (contig && found && state->start > last + 1) 1819 break; 1820 if (state->end >= cur_start && (state->state & bits) == bits) { 1821 total_bytes += min(search_end, state->end) + 1 - 1822 max(cur_start, state->start); 1823 if (total_bytes >= max_bytes) 1824 break; 1825 if (!found) { 1826 *start = max(cur_start, state->start); 1827 found = 1; 1828 } 1829 last = state->end; 1830 } else if (contig && found) { 1831 break; 1832 } 1833 node = rb_next(node); 1834 if (!node) 1835 break; 1836 } 1837 out: 1838 spin_unlock(&tree->lock); 1839 return total_bytes; 1840 } 1841 1842 /* 1843 * set the private field for a given byte offset in the tree. If there isn't 1844 * an extent_state there already, this does nothing. 1845 */ 1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record *failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 state->failrec = failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1875 struct io_failure_record **failrec) 1876 { 1877 struct rb_node *node; 1878 struct extent_state *state; 1879 int ret = 0; 1880 1881 spin_lock(&tree->lock); 1882 /* 1883 * this search will find all the extents that end after 1884 * our range starts. 1885 */ 1886 node = tree_search(tree, start); 1887 if (!node) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 state = rb_entry(node, struct extent_state, rb_node); 1892 if (state->start != start) { 1893 ret = -ENOENT; 1894 goto out; 1895 } 1896 *failrec = state->failrec; 1897 out: 1898 spin_unlock(&tree->lock); 1899 return ret; 1900 } 1901 1902 /* 1903 * searches a range in the state tree for a given mask. 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree 1905 * has the bits set. Otherwise, 1 is returned if any bit in the 1906 * range is found set. 1907 */ 1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1909 unsigned bits, int filled, struct extent_state *cached) 1910 { 1911 struct extent_state *state = NULL; 1912 struct rb_node *node; 1913 int bitset = 0; 1914 1915 spin_lock(&tree->lock); 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1917 cached->end > start) 1918 node = &cached->rb_node; 1919 else 1920 node = tree_search(tree, start); 1921 while (node && start <= end) { 1922 state = rb_entry(node, struct extent_state, rb_node); 1923 1924 if (filled && state->start > start) { 1925 bitset = 0; 1926 break; 1927 } 1928 1929 if (state->start > end) 1930 break; 1931 1932 if (state->state & bits) { 1933 bitset = 1; 1934 if (!filled) 1935 break; 1936 } else if (filled) { 1937 bitset = 0; 1938 break; 1939 } 1940 1941 if (state->end == (u64)-1) 1942 break; 1943 1944 start = state->end + 1; 1945 if (start > end) 1946 break; 1947 node = rb_next(node); 1948 if (!node) { 1949 if (filled) 1950 bitset = 0; 1951 break; 1952 } 1953 } 1954 spin_unlock(&tree->lock); 1955 return bitset; 1956 } 1957 1958 /* 1959 * helper function to set a given page up to date if all the 1960 * extents in the tree for that page are up to date 1961 */ 1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1963 { 1964 u64 start = page_offset(page); 1965 u64 end = start + PAGE_SIZE - 1; 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1967 SetPageUptodate(page); 1968 } 1969 1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1971 { 1972 int ret; 1973 int err = 0; 1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1975 1976 set_state_failrec(failure_tree, rec->start, NULL); 1977 ret = clear_extent_bits(failure_tree, rec->start, 1978 rec->start + rec->len - 1, 1979 EXTENT_LOCKED | EXTENT_DIRTY); 1980 if (ret) 1981 err = ret; 1982 1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1984 rec->start + rec->len - 1, 1985 EXTENT_DAMAGED); 1986 if (ret && !err) 1987 err = ret; 1988 1989 kfree(rec); 1990 return err; 1991 } 1992 1993 /* 1994 * this bypasses the standard btrfs submit functions deliberately, as 1995 * the standard behavior is to write all copies in a raid setup. here we only 1996 * want to write the one bad copy. so we do the mapping for ourselves and issue 1997 * submit_bio directly. 1998 * to avoid any synchronization issues, wait for the data after writing, which 1999 * actually prevents the read that triggered the error from finishing. 2000 * currently, there can be no more than two copies of every data bit. thus, 2001 * exactly one rewrite is required. 2002 */ 2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2004 struct page *page, unsigned int pg_offset, int mirror_num) 2005 { 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2007 struct bio *bio; 2008 struct btrfs_device *dev; 2009 u64 map_length = 0; 2010 u64 sector; 2011 struct btrfs_bio *bbio = NULL; 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2013 int ret; 2014 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2016 BUG_ON(!mirror_num); 2017 2018 /* we can't repair anything in raid56 yet */ 2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2020 return 0; 2021 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2023 if (!bio) 2024 return -EIO; 2025 bio->bi_iter.bi_size = 0; 2026 map_length = length; 2027 2028 /* 2029 * Avoid races with device replace and make sure our bbio has devices 2030 * associated to its stripes that don't go away while we are doing the 2031 * read repair operation. 2032 */ 2033 btrfs_bio_counter_inc_blocked(fs_info); 2034 ret = btrfs_map_block(fs_info, WRITE, logical, 2035 &map_length, &bbio, mirror_num); 2036 if (ret) { 2037 btrfs_bio_counter_dec(fs_info); 2038 bio_put(bio); 2039 return -EIO; 2040 } 2041 BUG_ON(mirror_num != bbio->mirror_num); 2042 sector = bbio->stripes[mirror_num-1].physical >> 9; 2043 bio->bi_iter.bi_sector = sector; 2044 dev = bbio->stripes[mirror_num-1].dev; 2045 btrfs_put_bbio(bbio); 2046 if (!dev || !dev->bdev || !dev->writeable) { 2047 btrfs_bio_counter_dec(fs_info); 2048 bio_put(bio); 2049 return -EIO; 2050 } 2051 bio->bi_bdev = dev->bdev; 2052 bio->bi_rw = WRITE_SYNC; 2053 bio_add_page(bio, page, length, pg_offset); 2054 2055 if (btrfsic_submit_bio_wait(bio)) { 2056 /* try to remap that extent elsewhere? */ 2057 btrfs_bio_counter_dec(fs_info); 2058 bio_put(bio); 2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2060 return -EIO; 2061 } 2062 2063 btrfs_info_rl_in_rcu(fs_info, 2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2065 btrfs_ino(inode), start, 2066 rcu_str_deref(dev->name), sector); 2067 btrfs_bio_counter_dec(fs_info); 2068 bio_put(bio); 2069 return 0; 2070 } 2071 2072 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2073 int mirror_num) 2074 { 2075 u64 start = eb->start; 2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2077 int ret = 0; 2078 2079 if (root->fs_info->sb->s_flags & MS_RDONLY) 2080 return -EROFS; 2081 2082 for (i = 0; i < num_pages; i++) { 2083 struct page *p = eb->pages[i]; 2084 2085 ret = repair_io_failure(root->fs_info->btree_inode, start, 2086 PAGE_SIZE, start, p, 2087 start - page_offset(p), mirror_num); 2088 if (ret) 2089 break; 2090 start += PAGE_SIZE; 2091 } 2092 2093 return ret; 2094 } 2095 2096 /* 2097 * each time an IO finishes, we do a fast check in the IO failure tree 2098 * to see if we need to process or clean up an io_failure_record 2099 */ 2100 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2101 unsigned int pg_offset) 2102 { 2103 u64 private; 2104 struct io_failure_record *failrec; 2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2106 struct extent_state *state; 2107 int num_copies; 2108 int ret; 2109 2110 private = 0; 2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2112 (u64)-1, 1, EXTENT_DIRTY, 0); 2113 if (!ret) 2114 return 0; 2115 2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start, 2117 &failrec); 2118 if (ret) 2119 return 0; 2120 2121 BUG_ON(!failrec->this_mirror); 2122 2123 if (failrec->in_validation) { 2124 /* there was no real error, just free the record */ 2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2126 failrec->start); 2127 goto out; 2128 } 2129 if (fs_info->sb->s_flags & MS_RDONLY) 2130 goto out; 2131 2132 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2134 failrec->start, 2135 EXTENT_LOCKED); 2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2137 2138 if (state && state->start <= failrec->start && 2139 state->end >= failrec->start + failrec->len - 1) { 2140 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2141 failrec->len); 2142 if (num_copies > 1) { 2143 repair_io_failure(inode, start, failrec->len, 2144 failrec->logical, page, 2145 pg_offset, failrec->failed_mirror); 2146 } 2147 } 2148 2149 out: 2150 free_io_failure(inode, failrec); 2151 2152 return 0; 2153 } 2154 2155 /* 2156 * Can be called when 2157 * - hold extent lock 2158 * - under ordered extent 2159 * - the inode is freeing 2160 */ 2161 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2162 { 2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2164 struct io_failure_record *failrec; 2165 struct extent_state *state, *next; 2166 2167 if (RB_EMPTY_ROOT(&failure_tree->state)) 2168 return; 2169 2170 spin_lock(&failure_tree->lock); 2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2172 while (state) { 2173 if (state->start > end) 2174 break; 2175 2176 ASSERT(state->end <= end); 2177 2178 next = next_state(state); 2179 2180 failrec = state->failrec; 2181 free_extent_state(state); 2182 kfree(failrec); 2183 2184 state = next; 2185 } 2186 spin_unlock(&failure_tree->lock); 2187 } 2188 2189 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2190 struct io_failure_record **failrec_ret) 2191 { 2192 struct io_failure_record *failrec; 2193 struct extent_map *em; 2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2197 int ret; 2198 u64 logical; 2199 2200 ret = get_state_failrec(failure_tree, start, &failrec); 2201 if (ret) { 2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2203 if (!failrec) 2204 return -ENOMEM; 2205 2206 failrec->start = start; 2207 failrec->len = end - start + 1; 2208 failrec->this_mirror = 0; 2209 failrec->bio_flags = 0; 2210 failrec->in_validation = 0; 2211 2212 read_lock(&em_tree->lock); 2213 em = lookup_extent_mapping(em_tree, start, failrec->len); 2214 if (!em) { 2215 read_unlock(&em_tree->lock); 2216 kfree(failrec); 2217 return -EIO; 2218 } 2219 2220 if (em->start > start || em->start + em->len <= start) { 2221 free_extent_map(em); 2222 em = NULL; 2223 } 2224 read_unlock(&em_tree->lock); 2225 if (!em) { 2226 kfree(failrec); 2227 return -EIO; 2228 } 2229 2230 logical = start - em->start; 2231 logical = em->block_start + logical; 2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2233 logical = em->block_start; 2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2235 extent_set_compress_type(&failrec->bio_flags, 2236 em->compress_type); 2237 } 2238 2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2240 logical, start, failrec->len); 2241 2242 failrec->logical = logical; 2243 free_extent_map(em); 2244 2245 /* set the bits in the private failure tree */ 2246 ret = set_extent_bits(failure_tree, start, end, 2247 EXTENT_LOCKED | EXTENT_DIRTY); 2248 if (ret >= 0) 2249 ret = set_state_failrec(failure_tree, start, failrec); 2250 /* set the bits in the inode's tree */ 2251 if (ret >= 0) 2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2253 if (ret < 0) { 2254 kfree(failrec); 2255 return ret; 2256 } 2257 } else { 2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2259 failrec->logical, failrec->start, failrec->len, 2260 failrec->in_validation); 2261 /* 2262 * when data can be on disk more than twice, add to failrec here 2263 * (e.g. with a list for failed_mirror) to make 2264 * clean_io_failure() clean all those errors at once. 2265 */ 2266 } 2267 2268 *failrec_ret = failrec; 2269 2270 return 0; 2271 } 2272 2273 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2274 struct io_failure_record *failrec, int failed_mirror) 2275 { 2276 int num_copies; 2277 2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2279 failrec->logical, failrec->len); 2280 if (num_copies == 1) { 2281 /* 2282 * we only have a single copy of the data, so don't bother with 2283 * all the retry and error correction code that follows. no 2284 * matter what the error is, it is very likely to persist. 2285 */ 2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2287 num_copies, failrec->this_mirror, failed_mirror); 2288 return 0; 2289 } 2290 2291 /* 2292 * there are two premises: 2293 * a) deliver good data to the caller 2294 * b) correct the bad sectors on disk 2295 */ 2296 if (failed_bio->bi_vcnt > 1) { 2297 /* 2298 * to fulfill b), we need to know the exact failing sectors, as 2299 * we don't want to rewrite any more than the failed ones. thus, 2300 * we need separate read requests for the failed bio 2301 * 2302 * if the following BUG_ON triggers, our validation request got 2303 * merged. we need separate requests for our algorithm to work. 2304 */ 2305 BUG_ON(failrec->in_validation); 2306 failrec->in_validation = 1; 2307 failrec->this_mirror = failed_mirror; 2308 } else { 2309 /* 2310 * we're ready to fulfill a) and b) alongside. get a good copy 2311 * of the failed sector and if we succeed, we have setup 2312 * everything for repair_io_failure to do the rest for us. 2313 */ 2314 if (failrec->in_validation) { 2315 BUG_ON(failrec->this_mirror != failed_mirror); 2316 failrec->in_validation = 0; 2317 failrec->this_mirror = 0; 2318 } 2319 failrec->failed_mirror = failed_mirror; 2320 failrec->this_mirror++; 2321 if (failrec->this_mirror == failed_mirror) 2322 failrec->this_mirror++; 2323 } 2324 2325 if (failrec->this_mirror > num_copies) { 2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2327 num_copies, failrec->this_mirror, failed_mirror); 2328 return 0; 2329 } 2330 2331 return 1; 2332 } 2333 2334 2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2336 struct io_failure_record *failrec, 2337 struct page *page, int pg_offset, int icsum, 2338 bio_end_io_t *endio_func, void *data) 2339 { 2340 struct bio *bio; 2341 struct btrfs_io_bio *btrfs_failed_bio; 2342 struct btrfs_io_bio *btrfs_bio; 2343 2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2345 if (!bio) 2346 return NULL; 2347 2348 bio->bi_end_io = endio_func; 2349 bio->bi_iter.bi_sector = failrec->logical >> 9; 2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2351 bio->bi_iter.bi_size = 0; 2352 bio->bi_private = data; 2353 2354 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2355 if (btrfs_failed_bio->csum) { 2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2358 2359 btrfs_bio = btrfs_io_bio(bio); 2360 btrfs_bio->csum = btrfs_bio->csum_inline; 2361 icsum *= csum_size; 2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2363 csum_size); 2364 } 2365 2366 bio_add_page(bio, page, failrec->len, pg_offset); 2367 2368 return bio; 2369 } 2370 2371 /* 2372 * this is a generic handler for readpage errors (default 2373 * readpage_io_failed_hook). if other copies exist, read those and write back 2374 * good data to the failed position. does not investigate in remapping the 2375 * failed extent elsewhere, hoping the device will be smart enough to do this as 2376 * needed 2377 */ 2378 2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2380 struct page *page, u64 start, u64 end, 2381 int failed_mirror) 2382 { 2383 struct io_failure_record *failrec; 2384 struct inode *inode = page->mapping->host; 2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2386 struct bio *bio; 2387 int read_mode; 2388 int ret; 2389 2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2391 2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2393 if (ret) 2394 return ret; 2395 2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2397 if (!ret) { 2398 free_io_failure(inode, failrec); 2399 return -EIO; 2400 } 2401 2402 if (failed_bio->bi_vcnt > 1) 2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2404 else 2405 read_mode = READ_SYNC; 2406 2407 phy_offset >>= inode->i_sb->s_blocksize_bits; 2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2409 start - page_offset(page), 2410 (int)phy_offset, failed_bio->bi_end_io, 2411 NULL); 2412 if (!bio) { 2413 free_io_failure(inode, failrec); 2414 return -EIO; 2415 } 2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 2417 2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2419 read_mode, failrec->this_mirror, failrec->in_validation); 2420 2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror, 2422 failrec->bio_flags, 0); 2423 if (ret) { 2424 free_io_failure(inode, failrec); 2425 bio_put(bio); 2426 } 2427 2428 return ret; 2429 } 2430 2431 /* lots and lots of room for performance fixes in the end_bio funcs */ 2432 2433 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2434 { 2435 int uptodate = (err == 0); 2436 struct extent_io_tree *tree; 2437 int ret = 0; 2438 2439 tree = &BTRFS_I(page->mapping->host)->io_tree; 2440 2441 if (tree->ops && tree->ops->writepage_end_io_hook) { 2442 ret = tree->ops->writepage_end_io_hook(page, start, 2443 end, NULL, uptodate); 2444 if (ret) 2445 uptodate = 0; 2446 } 2447 2448 if (!uptodate) { 2449 ClearPageUptodate(page); 2450 SetPageError(page); 2451 ret = ret < 0 ? ret : -EIO; 2452 mapping_set_error(page->mapping, ret); 2453 } 2454 } 2455 2456 /* 2457 * after a writepage IO is done, we need to: 2458 * clear the uptodate bits on error 2459 * clear the writeback bits in the extent tree for this IO 2460 * end_page_writeback if the page has no more pending IO 2461 * 2462 * Scheduling is not allowed, so the extent state tree is expected 2463 * to have one and only one object corresponding to this IO. 2464 */ 2465 static void end_bio_extent_writepage(struct bio *bio) 2466 { 2467 struct bio_vec *bvec; 2468 u64 start; 2469 u64 end; 2470 int i; 2471 2472 bio_for_each_segment_all(bvec, bio, i) { 2473 struct page *page = bvec->bv_page; 2474 2475 /* We always issue full-page reads, but if some block 2476 * in a page fails to read, blk_update_request() will 2477 * advance bv_offset and adjust bv_len to compensate. 2478 * Print a warning for nonzero offsets, and an error 2479 * if they don't add up to a full page. */ 2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2483 "partial page write in btrfs with offset %u and length %u", 2484 bvec->bv_offset, bvec->bv_len); 2485 else 2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2487 "incomplete page write in btrfs with offset %u and " 2488 "length %u", 2489 bvec->bv_offset, bvec->bv_len); 2490 } 2491 2492 start = page_offset(page); 2493 end = start + bvec->bv_offset + bvec->bv_len - 1; 2494 2495 end_extent_writepage(page, bio->bi_error, start, end); 2496 end_page_writeback(page); 2497 } 2498 2499 bio_put(bio); 2500 } 2501 2502 static void 2503 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2504 int uptodate) 2505 { 2506 struct extent_state *cached = NULL; 2507 u64 end = start + len - 1; 2508 2509 if (uptodate && tree->track_uptodate) 2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2512 } 2513 2514 /* 2515 * after a readpage IO is done, we need to: 2516 * clear the uptodate bits on error 2517 * set the uptodate bits if things worked 2518 * set the page up to date if all extents in the tree are uptodate 2519 * clear the lock bit in the extent tree 2520 * unlock the page if there are no other extents locked for it 2521 * 2522 * Scheduling is not allowed, so the extent state tree is expected 2523 * to have one and only one object corresponding to this IO. 2524 */ 2525 static void end_bio_extent_readpage(struct bio *bio) 2526 { 2527 struct bio_vec *bvec; 2528 int uptodate = !bio->bi_error; 2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2530 struct extent_io_tree *tree; 2531 u64 offset = 0; 2532 u64 start; 2533 u64 end; 2534 u64 len; 2535 u64 extent_start = 0; 2536 u64 extent_len = 0; 2537 int mirror; 2538 int ret; 2539 int i; 2540 2541 bio_for_each_segment_all(bvec, bio, i) { 2542 struct page *page = bvec->bv_page; 2543 struct inode *inode = page->mapping->host; 2544 2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2547 bio->bi_error, io_bio->mirror_num); 2548 tree = &BTRFS_I(inode)->io_tree; 2549 2550 /* We always issue full-page reads, but if some block 2551 * in a page fails to read, blk_update_request() will 2552 * advance bv_offset and adjust bv_len to compensate. 2553 * Print a warning for nonzero offsets, and an error 2554 * if they don't add up to a full page. */ 2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2558 "partial page read in btrfs with offset %u and length %u", 2559 bvec->bv_offset, bvec->bv_len); 2560 else 2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2562 "incomplete page read in btrfs with offset %u and " 2563 "length %u", 2564 bvec->bv_offset, bvec->bv_len); 2565 } 2566 2567 start = page_offset(page); 2568 end = start + bvec->bv_offset + bvec->bv_len - 1; 2569 len = bvec->bv_len; 2570 2571 mirror = io_bio->mirror_num; 2572 if (likely(uptodate && tree->ops && 2573 tree->ops->readpage_end_io_hook)) { 2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2575 page, start, end, 2576 mirror); 2577 if (ret) 2578 uptodate = 0; 2579 else 2580 clean_io_failure(inode, start, page, 0); 2581 } 2582 2583 if (likely(uptodate)) 2584 goto readpage_ok; 2585 2586 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2587 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2588 if (!ret && !bio->bi_error) 2589 uptodate = 1; 2590 } else { 2591 /* 2592 * The generic bio_readpage_error handles errors the 2593 * following way: If possible, new read requests are 2594 * created and submitted and will end up in 2595 * end_bio_extent_readpage as well (if we're lucky, not 2596 * in the !uptodate case). In that case it returns 0 and 2597 * we just go on with the next page in our bio. If it 2598 * can't handle the error it will return -EIO and we 2599 * remain responsible for that page. 2600 */ 2601 ret = bio_readpage_error(bio, offset, page, start, end, 2602 mirror); 2603 if (ret == 0) { 2604 uptodate = !bio->bi_error; 2605 offset += len; 2606 continue; 2607 } 2608 } 2609 readpage_ok: 2610 if (likely(uptodate)) { 2611 loff_t i_size = i_size_read(inode); 2612 pgoff_t end_index = i_size >> PAGE_SHIFT; 2613 unsigned off; 2614 2615 /* Zero out the end if this page straddles i_size */ 2616 off = i_size & (PAGE_SIZE-1); 2617 if (page->index == end_index && off) 2618 zero_user_segment(page, off, PAGE_SIZE); 2619 SetPageUptodate(page); 2620 } else { 2621 ClearPageUptodate(page); 2622 SetPageError(page); 2623 } 2624 unlock_page(page); 2625 offset += len; 2626 2627 if (unlikely(!uptodate)) { 2628 if (extent_len) { 2629 endio_readpage_release_extent(tree, 2630 extent_start, 2631 extent_len, 1); 2632 extent_start = 0; 2633 extent_len = 0; 2634 } 2635 endio_readpage_release_extent(tree, start, 2636 end - start + 1, 0); 2637 } else if (!extent_len) { 2638 extent_start = start; 2639 extent_len = end + 1 - start; 2640 } else if (extent_start + extent_len == start) { 2641 extent_len += end + 1 - start; 2642 } else { 2643 endio_readpage_release_extent(tree, extent_start, 2644 extent_len, uptodate); 2645 extent_start = start; 2646 extent_len = end + 1 - start; 2647 } 2648 } 2649 2650 if (extent_len) 2651 endio_readpage_release_extent(tree, extent_start, extent_len, 2652 uptodate); 2653 if (io_bio->end_io) 2654 io_bio->end_io(io_bio, bio->bi_error); 2655 bio_put(bio); 2656 } 2657 2658 /* 2659 * this allocates from the btrfs_bioset. We're returning a bio right now 2660 * but you can call btrfs_io_bio for the appropriate container_of magic 2661 */ 2662 struct bio * 2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2664 gfp_t gfp_flags) 2665 { 2666 struct btrfs_io_bio *btrfs_bio; 2667 struct bio *bio; 2668 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2670 2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2672 while (!bio && (nr_vecs /= 2)) { 2673 bio = bio_alloc_bioset(gfp_flags, 2674 nr_vecs, btrfs_bioset); 2675 } 2676 } 2677 2678 if (bio) { 2679 bio->bi_bdev = bdev; 2680 bio->bi_iter.bi_sector = first_sector; 2681 btrfs_bio = btrfs_io_bio(bio); 2682 btrfs_bio->csum = NULL; 2683 btrfs_bio->csum_allocated = NULL; 2684 btrfs_bio->end_io = NULL; 2685 } 2686 return bio; 2687 } 2688 2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2690 { 2691 struct btrfs_io_bio *btrfs_bio; 2692 struct bio *new; 2693 2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2695 if (new) { 2696 btrfs_bio = btrfs_io_bio(new); 2697 btrfs_bio->csum = NULL; 2698 btrfs_bio->csum_allocated = NULL; 2699 btrfs_bio->end_io = NULL; 2700 2701 #ifdef CONFIG_BLK_CGROUP 2702 /* FIXME, put this into bio_clone_bioset */ 2703 if (bio->bi_css) 2704 bio_associate_blkcg(new, bio->bi_css); 2705 #endif 2706 } 2707 return new; 2708 } 2709 2710 /* this also allocates from the btrfs_bioset */ 2711 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2712 { 2713 struct btrfs_io_bio *btrfs_bio; 2714 struct bio *bio; 2715 2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2717 if (bio) { 2718 btrfs_bio = btrfs_io_bio(bio); 2719 btrfs_bio->csum = NULL; 2720 btrfs_bio->csum_allocated = NULL; 2721 btrfs_bio->end_io = NULL; 2722 } 2723 return bio; 2724 } 2725 2726 2727 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2728 unsigned long bio_flags) 2729 { 2730 int ret = 0; 2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2732 struct page *page = bvec->bv_page; 2733 struct extent_io_tree *tree = bio->bi_private; 2734 u64 start; 2735 2736 start = page_offset(page) + bvec->bv_offset; 2737 2738 bio->bi_private = NULL; 2739 bio_get(bio); 2740 2741 if (tree->ops && tree->ops->submit_bio_hook) 2742 ret = tree->ops->submit_bio_hook(page->mapping->host, bio, 2743 mirror_num, bio_flags, start); 2744 else 2745 btrfsic_submit_bio(bio); 2746 2747 bio_put(bio); 2748 return ret; 2749 } 2750 2751 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2752 unsigned long offset, size_t size, struct bio *bio, 2753 unsigned long bio_flags) 2754 { 2755 int ret = 0; 2756 if (tree->ops && tree->ops->merge_bio_hook) 2757 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2758 bio_flags); 2759 BUG_ON(ret < 0); 2760 return ret; 2761 2762 } 2763 2764 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree, 2765 struct writeback_control *wbc, 2766 struct page *page, sector_t sector, 2767 size_t size, unsigned long offset, 2768 struct block_device *bdev, 2769 struct bio **bio_ret, 2770 unsigned long max_pages, 2771 bio_end_io_t end_io_func, 2772 int mirror_num, 2773 unsigned long prev_bio_flags, 2774 unsigned long bio_flags, 2775 bool force_bio_submit) 2776 { 2777 int ret = 0; 2778 struct bio *bio; 2779 int contig = 0; 2780 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2781 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2782 2783 if (bio_ret && *bio_ret) { 2784 bio = *bio_ret; 2785 if (old_compressed) 2786 contig = bio->bi_iter.bi_sector == sector; 2787 else 2788 contig = bio_end_sector(bio) == sector; 2789 2790 if (prev_bio_flags != bio_flags || !contig || 2791 force_bio_submit || 2792 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2793 bio_add_page(bio, page, page_size, offset) < page_size) { 2794 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2795 if (ret < 0) { 2796 *bio_ret = NULL; 2797 return ret; 2798 } 2799 bio = NULL; 2800 } else { 2801 if (wbc) 2802 wbc_account_io(wbc, page, page_size); 2803 return 0; 2804 } 2805 } 2806 2807 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2808 GFP_NOFS | __GFP_HIGH); 2809 if (!bio) 2810 return -ENOMEM; 2811 2812 bio_add_page(bio, page, page_size, offset); 2813 bio->bi_end_io = end_io_func; 2814 bio->bi_private = tree; 2815 bio_set_op_attrs(bio, op, op_flags); 2816 if (wbc) { 2817 wbc_init_bio(wbc, bio); 2818 wbc_account_io(wbc, page, page_size); 2819 } 2820 2821 if (bio_ret) 2822 *bio_ret = bio; 2823 else 2824 ret = submit_one_bio(bio, mirror_num, bio_flags); 2825 2826 return ret; 2827 } 2828 2829 static void attach_extent_buffer_page(struct extent_buffer *eb, 2830 struct page *page) 2831 { 2832 if (!PagePrivate(page)) { 2833 SetPagePrivate(page); 2834 get_page(page); 2835 set_page_private(page, (unsigned long)eb); 2836 } else { 2837 WARN_ON(page->private != (unsigned long)eb); 2838 } 2839 } 2840 2841 void set_page_extent_mapped(struct page *page) 2842 { 2843 if (!PagePrivate(page)) { 2844 SetPagePrivate(page); 2845 get_page(page); 2846 set_page_private(page, EXTENT_PAGE_PRIVATE); 2847 } 2848 } 2849 2850 static struct extent_map * 2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2852 u64 start, u64 len, get_extent_t *get_extent, 2853 struct extent_map **em_cached) 2854 { 2855 struct extent_map *em; 2856 2857 if (em_cached && *em_cached) { 2858 em = *em_cached; 2859 if (extent_map_in_tree(em) && start >= em->start && 2860 start < extent_map_end(em)) { 2861 atomic_inc(&em->refs); 2862 return em; 2863 } 2864 2865 free_extent_map(em); 2866 *em_cached = NULL; 2867 } 2868 2869 em = get_extent(inode, page, pg_offset, start, len, 0); 2870 if (em_cached && !IS_ERR_OR_NULL(em)) { 2871 BUG_ON(*em_cached); 2872 atomic_inc(&em->refs); 2873 *em_cached = em; 2874 } 2875 return em; 2876 } 2877 /* 2878 * basic readpage implementation. Locked extent state structs are inserted 2879 * into the tree that are removed when the IO is done (by the end_io 2880 * handlers) 2881 * XXX JDM: This needs looking at to ensure proper page locking 2882 */ 2883 static int __do_readpage(struct extent_io_tree *tree, 2884 struct page *page, 2885 get_extent_t *get_extent, 2886 struct extent_map **em_cached, 2887 struct bio **bio, int mirror_num, 2888 unsigned long *bio_flags, int read_flags, 2889 u64 *prev_em_start) 2890 { 2891 struct inode *inode = page->mapping->host; 2892 u64 start = page_offset(page); 2893 u64 page_end = start + PAGE_SIZE - 1; 2894 u64 end; 2895 u64 cur = start; 2896 u64 extent_offset; 2897 u64 last_byte = i_size_read(inode); 2898 u64 block_start; 2899 u64 cur_end; 2900 sector_t sector; 2901 struct extent_map *em; 2902 struct block_device *bdev; 2903 int ret; 2904 int nr = 0; 2905 size_t pg_offset = 0; 2906 size_t iosize; 2907 size_t disk_io_size; 2908 size_t blocksize = inode->i_sb->s_blocksize; 2909 unsigned long this_bio_flag = 0; 2910 2911 set_page_extent_mapped(page); 2912 2913 end = page_end; 2914 if (!PageUptodate(page)) { 2915 if (cleancache_get_page(page) == 0) { 2916 BUG_ON(blocksize != PAGE_SIZE); 2917 unlock_extent(tree, start, end); 2918 goto out; 2919 } 2920 } 2921 2922 if (page->index == last_byte >> PAGE_SHIFT) { 2923 char *userpage; 2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2925 2926 if (zero_offset) { 2927 iosize = PAGE_SIZE - zero_offset; 2928 userpage = kmap_atomic(page); 2929 memset(userpage + zero_offset, 0, iosize); 2930 flush_dcache_page(page); 2931 kunmap_atomic(userpage); 2932 } 2933 } 2934 while (cur <= end) { 2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1; 2936 bool force_bio_submit = false; 2937 2938 if (cur >= last_byte) { 2939 char *userpage; 2940 struct extent_state *cached = NULL; 2941 2942 iosize = PAGE_SIZE - pg_offset; 2943 userpage = kmap_atomic(page); 2944 memset(userpage + pg_offset, 0, iosize); 2945 flush_dcache_page(page); 2946 kunmap_atomic(userpage); 2947 set_extent_uptodate(tree, cur, cur + iosize - 1, 2948 &cached, GFP_NOFS); 2949 unlock_extent_cached(tree, cur, 2950 cur + iosize - 1, 2951 &cached, GFP_NOFS); 2952 break; 2953 } 2954 em = __get_extent_map(inode, page, pg_offset, cur, 2955 end - cur + 1, get_extent, em_cached); 2956 if (IS_ERR_OR_NULL(em)) { 2957 SetPageError(page); 2958 unlock_extent(tree, cur, end); 2959 break; 2960 } 2961 extent_offset = cur - em->start; 2962 BUG_ON(extent_map_end(em) <= cur); 2963 BUG_ON(end < cur); 2964 2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2966 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2967 extent_set_compress_type(&this_bio_flag, 2968 em->compress_type); 2969 } 2970 2971 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2972 cur_end = min(extent_map_end(em) - 1, end); 2973 iosize = ALIGN(iosize, blocksize); 2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2975 disk_io_size = em->block_len; 2976 sector = em->block_start >> 9; 2977 } else { 2978 sector = (em->block_start + extent_offset) >> 9; 2979 disk_io_size = iosize; 2980 } 2981 bdev = em->bdev; 2982 block_start = em->block_start; 2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2984 block_start = EXTENT_MAP_HOLE; 2985 2986 /* 2987 * If we have a file range that points to a compressed extent 2988 * and it's followed by a consecutive file range that points to 2989 * to the same compressed extent (possibly with a different 2990 * offset and/or length, so it either points to the whole extent 2991 * or only part of it), we must make sure we do not submit a 2992 * single bio to populate the pages for the 2 ranges because 2993 * this makes the compressed extent read zero out the pages 2994 * belonging to the 2nd range. Imagine the following scenario: 2995 * 2996 * File layout 2997 * [0 - 8K] [8K - 24K] 2998 * | | 2999 * | | 3000 * points to extent X, points to extent X, 3001 * offset 4K, length of 8K offset 0, length 16K 3002 * 3003 * [extent X, compressed length = 4K uncompressed length = 16K] 3004 * 3005 * If the bio to read the compressed extent covers both ranges, 3006 * it will decompress extent X into the pages belonging to the 3007 * first range and then it will stop, zeroing out the remaining 3008 * pages that belong to the other range that points to extent X. 3009 * So here we make sure we submit 2 bios, one for the first 3010 * range and another one for the third range. Both will target 3011 * the same physical extent from disk, but we can't currently 3012 * make the compressed bio endio callback populate the pages 3013 * for both ranges because each compressed bio is tightly 3014 * coupled with a single extent map, and each range can have 3015 * an extent map with a different offset value relative to the 3016 * uncompressed data of our extent and different lengths. This 3017 * is a corner case so we prioritize correctness over 3018 * non-optimal behavior (submitting 2 bios for the same extent). 3019 */ 3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3021 prev_em_start && *prev_em_start != (u64)-1 && 3022 *prev_em_start != em->orig_start) 3023 force_bio_submit = true; 3024 3025 if (prev_em_start) 3026 *prev_em_start = em->orig_start; 3027 3028 free_extent_map(em); 3029 em = NULL; 3030 3031 /* we've found a hole, just zero and go on */ 3032 if (block_start == EXTENT_MAP_HOLE) { 3033 char *userpage; 3034 struct extent_state *cached = NULL; 3035 3036 userpage = kmap_atomic(page); 3037 memset(userpage + pg_offset, 0, iosize); 3038 flush_dcache_page(page); 3039 kunmap_atomic(userpage); 3040 3041 set_extent_uptodate(tree, cur, cur + iosize - 1, 3042 &cached, GFP_NOFS); 3043 unlock_extent_cached(tree, cur, 3044 cur + iosize - 1, 3045 &cached, GFP_NOFS); 3046 cur = cur + iosize; 3047 pg_offset += iosize; 3048 continue; 3049 } 3050 /* the get_extent function already copied into the page */ 3051 if (test_range_bit(tree, cur, cur_end, 3052 EXTENT_UPTODATE, 1, NULL)) { 3053 check_page_uptodate(tree, page); 3054 unlock_extent(tree, cur, cur + iosize - 1); 3055 cur = cur + iosize; 3056 pg_offset += iosize; 3057 continue; 3058 } 3059 /* we have an inline extent but it didn't get marked up 3060 * to date. Error out 3061 */ 3062 if (block_start == EXTENT_MAP_INLINE) { 3063 SetPageError(page); 3064 unlock_extent(tree, cur, cur + iosize - 1); 3065 cur = cur + iosize; 3066 pg_offset += iosize; 3067 continue; 3068 } 3069 3070 pnr -= page->index; 3071 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL, 3072 page, sector, disk_io_size, pg_offset, 3073 bdev, bio, pnr, 3074 end_bio_extent_readpage, mirror_num, 3075 *bio_flags, 3076 this_bio_flag, 3077 force_bio_submit); 3078 if (!ret) { 3079 nr++; 3080 *bio_flags = this_bio_flag; 3081 } else { 3082 SetPageError(page); 3083 unlock_extent(tree, cur, cur + iosize - 1); 3084 } 3085 cur = cur + iosize; 3086 pg_offset += iosize; 3087 } 3088 out: 3089 if (!nr) { 3090 if (!PageError(page)) 3091 SetPageUptodate(page); 3092 unlock_page(page); 3093 } 3094 return 0; 3095 } 3096 3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3098 struct page *pages[], int nr_pages, 3099 u64 start, u64 end, 3100 get_extent_t *get_extent, 3101 struct extent_map **em_cached, 3102 struct bio **bio, int mirror_num, 3103 unsigned long *bio_flags, 3104 u64 *prev_em_start) 3105 { 3106 struct inode *inode; 3107 struct btrfs_ordered_extent *ordered; 3108 int index; 3109 3110 inode = pages[0]->mapping->host; 3111 while (1) { 3112 lock_extent(tree, start, end); 3113 ordered = btrfs_lookup_ordered_range(inode, start, 3114 end - start + 1); 3115 if (!ordered) 3116 break; 3117 unlock_extent(tree, start, end); 3118 btrfs_start_ordered_extent(inode, ordered, 1); 3119 btrfs_put_ordered_extent(ordered); 3120 } 3121 3122 for (index = 0; index < nr_pages; index++) { 3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3124 mirror_num, bio_flags, 0, prev_em_start); 3125 put_page(pages[index]); 3126 } 3127 } 3128 3129 static void __extent_readpages(struct extent_io_tree *tree, 3130 struct page *pages[], 3131 int nr_pages, get_extent_t *get_extent, 3132 struct extent_map **em_cached, 3133 struct bio **bio, int mirror_num, 3134 unsigned long *bio_flags, 3135 u64 *prev_em_start) 3136 { 3137 u64 start = 0; 3138 u64 end = 0; 3139 u64 page_start; 3140 int index; 3141 int first_index = 0; 3142 3143 for (index = 0; index < nr_pages; index++) { 3144 page_start = page_offset(pages[index]); 3145 if (!end) { 3146 start = page_start; 3147 end = start + PAGE_SIZE - 1; 3148 first_index = index; 3149 } else if (end + 1 == page_start) { 3150 end += PAGE_SIZE; 3151 } else { 3152 __do_contiguous_readpages(tree, &pages[first_index], 3153 index - first_index, start, 3154 end, get_extent, em_cached, 3155 bio, mirror_num, bio_flags, 3156 prev_em_start); 3157 start = page_start; 3158 end = start + PAGE_SIZE - 1; 3159 first_index = index; 3160 } 3161 } 3162 3163 if (end) 3164 __do_contiguous_readpages(tree, &pages[first_index], 3165 index - first_index, start, 3166 end, get_extent, em_cached, bio, 3167 mirror_num, bio_flags, 3168 prev_em_start); 3169 } 3170 3171 static int __extent_read_full_page(struct extent_io_tree *tree, 3172 struct page *page, 3173 get_extent_t *get_extent, 3174 struct bio **bio, int mirror_num, 3175 unsigned long *bio_flags, int read_flags) 3176 { 3177 struct inode *inode = page->mapping->host; 3178 struct btrfs_ordered_extent *ordered; 3179 u64 start = page_offset(page); 3180 u64 end = start + PAGE_SIZE - 1; 3181 int ret; 3182 3183 while (1) { 3184 lock_extent(tree, start, end); 3185 ordered = btrfs_lookup_ordered_range(inode, start, 3186 PAGE_SIZE); 3187 if (!ordered) 3188 break; 3189 unlock_extent(tree, start, end); 3190 btrfs_start_ordered_extent(inode, ordered, 1); 3191 btrfs_put_ordered_extent(ordered); 3192 } 3193 3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3195 bio_flags, read_flags, NULL); 3196 return ret; 3197 } 3198 3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3200 get_extent_t *get_extent, int mirror_num) 3201 { 3202 struct bio *bio = NULL; 3203 unsigned long bio_flags = 0; 3204 int ret; 3205 3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3207 &bio_flags, 0); 3208 if (bio) 3209 ret = submit_one_bio(bio, mirror_num, bio_flags); 3210 return ret; 3211 } 3212 3213 static void update_nr_written(struct page *page, struct writeback_control *wbc, 3214 unsigned long nr_written) 3215 { 3216 wbc->nr_to_write -= nr_written; 3217 } 3218 3219 /* 3220 * helper for __extent_writepage, doing all of the delayed allocation setup. 3221 * 3222 * This returns 1 if our fill_delalloc function did all the work required 3223 * to write the page (copy into inline extent). In this case the IO has 3224 * been started and the page is already unlocked. 3225 * 3226 * This returns 0 if all went well (page still locked) 3227 * This returns < 0 if there were errors (page still locked) 3228 */ 3229 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3230 struct page *page, struct writeback_control *wbc, 3231 struct extent_page_data *epd, 3232 u64 delalloc_start, 3233 unsigned long *nr_written) 3234 { 3235 struct extent_io_tree *tree = epd->tree; 3236 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3237 u64 nr_delalloc; 3238 u64 delalloc_to_write = 0; 3239 u64 delalloc_end = 0; 3240 int ret; 3241 int page_started = 0; 3242 3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3244 return 0; 3245 3246 while (delalloc_end < page_end) { 3247 nr_delalloc = find_lock_delalloc_range(inode, tree, 3248 page, 3249 &delalloc_start, 3250 &delalloc_end, 3251 BTRFS_MAX_EXTENT_SIZE); 3252 if (nr_delalloc == 0) { 3253 delalloc_start = delalloc_end + 1; 3254 continue; 3255 } 3256 ret = tree->ops->fill_delalloc(inode, page, 3257 delalloc_start, 3258 delalloc_end, 3259 &page_started, 3260 nr_written); 3261 /* File system has been set read-only */ 3262 if (ret) { 3263 SetPageError(page); 3264 /* fill_delalloc should be return < 0 for error 3265 * but just in case, we use > 0 here meaning the 3266 * IO is started, so we don't want to return > 0 3267 * unless things are going well. 3268 */ 3269 ret = ret < 0 ? ret : -EIO; 3270 goto done; 3271 } 3272 /* 3273 * delalloc_end is already one less than the total length, so 3274 * we don't subtract one from PAGE_SIZE 3275 */ 3276 delalloc_to_write += (delalloc_end - delalloc_start + 3277 PAGE_SIZE) >> PAGE_SHIFT; 3278 delalloc_start = delalloc_end + 1; 3279 } 3280 if (wbc->nr_to_write < delalloc_to_write) { 3281 int thresh = 8192; 3282 3283 if (delalloc_to_write < thresh * 2) 3284 thresh = delalloc_to_write; 3285 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3286 thresh); 3287 } 3288 3289 /* did the fill delalloc function already unlock and start 3290 * the IO? 3291 */ 3292 if (page_started) { 3293 /* 3294 * we've unlocked the page, so we can't update 3295 * the mapping's writeback index, just update 3296 * nr_to_write. 3297 */ 3298 wbc->nr_to_write -= *nr_written; 3299 return 1; 3300 } 3301 3302 ret = 0; 3303 3304 done: 3305 return ret; 3306 } 3307 3308 /* 3309 * helper for __extent_writepage. This calls the writepage start hooks, 3310 * and does the loop to map the page into extents and bios. 3311 * 3312 * We return 1 if the IO is started and the page is unlocked, 3313 * 0 if all went well (page still locked) 3314 * < 0 if there were errors (page still locked) 3315 */ 3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3317 struct page *page, 3318 struct writeback_control *wbc, 3319 struct extent_page_data *epd, 3320 loff_t i_size, 3321 unsigned long nr_written, 3322 int write_flags, int *nr_ret) 3323 { 3324 struct extent_io_tree *tree = epd->tree; 3325 u64 start = page_offset(page); 3326 u64 page_end = start + PAGE_SIZE - 1; 3327 u64 end; 3328 u64 cur = start; 3329 u64 extent_offset; 3330 u64 block_start; 3331 u64 iosize; 3332 sector_t sector; 3333 struct extent_state *cached_state = NULL; 3334 struct extent_map *em; 3335 struct block_device *bdev; 3336 size_t pg_offset = 0; 3337 size_t blocksize; 3338 int ret = 0; 3339 int nr = 0; 3340 bool compressed; 3341 3342 if (tree->ops && tree->ops->writepage_start_hook) { 3343 ret = tree->ops->writepage_start_hook(page, start, 3344 page_end); 3345 if (ret) { 3346 /* Fixup worker will requeue */ 3347 if (ret == -EBUSY) 3348 wbc->pages_skipped++; 3349 else 3350 redirty_page_for_writepage(wbc, page); 3351 3352 update_nr_written(page, wbc, nr_written); 3353 unlock_page(page); 3354 ret = 1; 3355 goto done_unlocked; 3356 } 3357 } 3358 3359 /* 3360 * we don't want to touch the inode after unlocking the page, 3361 * so we update the mapping writeback index now 3362 */ 3363 update_nr_written(page, wbc, nr_written + 1); 3364 3365 end = page_end; 3366 if (i_size <= start) { 3367 if (tree->ops && tree->ops->writepage_end_io_hook) 3368 tree->ops->writepage_end_io_hook(page, start, 3369 page_end, NULL, 1); 3370 goto done; 3371 } 3372 3373 blocksize = inode->i_sb->s_blocksize; 3374 3375 while (cur <= end) { 3376 u64 em_end; 3377 unsigned long max_nr; 3378 3379 if (cur >= i_size) { 3380 if (tree->ops && tree->ops->writepage_end_io_hook) 3381 tree->ops->writepage_end_io_hook(page, cur, 3382 page_end, NULL, 1); 3383 break; 3384 } 3385 em = epd->get_extent(inode, page, pg_offset, cur, 3386 end - cur + 1, 1); 3387 if (IS_ERR_OR_NULL(em)) { 3388 SetPageError(page); 3389 ret = PTR_ERR_OR_ZERO(em); 3390 break; 3391 } 3392 3393 extent_offset = cur - em->start; 3394 em_end = extent_map_end(em); 3395 BUG_ON(em_end <= cur); 3396 BUG_ON(end < cur); 3397 iosize = min(em_end - cur, end - cur + 1); 3398 iosize = ALIGN(iosize, blocksize); 3399 sector = (em->block_start + extent_offset) >> 9; 3400 bdev = em->bdev; 3401 block_start = em->block_start; 3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3403 free_extent_map(em); 3404 em = NULL; 3405 3406 /* 3407 * compressed and inline extents are written through other 3408 * paths in the FS 3409 */ 3410 if (compressed || block_start == EXTENT_MAP_HOLE || 3411 block_start == EXTENT_MAP_INLINE) { 3412 /* 3413 * end_io notification does not happen here for 3414 * compressed extents 3415 */ 3416 if (!compressed && tree->ops && 3417 tree->ops->writepage_end_io_hook) 3418 tree->ops->writepage_end_io_hook(page, cur, 3419 cur + iosize - 1, 3420 NULL, 1); 3421 else if (compressed) { 3422 /* we don't want to end_page_writeback on 3423 * a compressed extent. this happens 3424 * elsewhere 3425 */ 3426 nr++; 3427 } 3428 3429 cur += iosize; 3430 pg_offset += iosize; 3431 continue; 3432 } 3433 3434 max_nr = (i_size >> PAGE_SHIFT) + 1; 3435 3436 set_range_writeback(tree, cur, cur + iosize - 1); 3437 if (!PageWriteback(page)) { 3438 btrfs_err(BTRFS_I(inode)->root->fs_info, 3439 "page %lu not writeback, cur %llu end %llu", 3440 page->index, cur, end); 3441 } 3442 3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc, 3444 page, sector, iosize, pg_offset, 3445 bdev, &epd->bio, max_nr, 3446 end_bio_extent_writepage, 3447 0, 0, 0, false); 3448 if (ret) 3449 SetPageError(page); 3450 3451 cur = cur + iosize; 3452 pg_offset += iosize; 3453 nr++; 3454 } 3455 done: 3456 *nr_ret = nr; 3457 3458 done_unlocked: 3459 3460 /* drop our reference on any cached states */ 3461 free_extent_state(cached_state); 3462 return ret; 3463 } 3464 3465 /* 3466 * the writepage semantics are similar to regular writepage. extent 3467 * records are inserted to lock ranges in the tree, and as dirty areas 3468 * are found, they are marked writeback. Then the lock bits are removed 3469 * and the end_io handler clears the writeback ranges 3470 */ 3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3472 void *data) 3473 { 3474 struct inode *inode = page->mapping->host; 3475 struct extent_page_data *epd = data; 3476 u64 start = page_offset(page); 3477 u64 page_end = start + PAGE_SIZE - 1; 3478 int ret; 3479 int nr = 0; 3480 size_t pg_offset = 0; 3481 loff_t i_size = i_size_read(inode); 3482 unsigned long end_index = i_size >> PAGE_SHIFT; 3483 int write_flags = 0; 3484 unsigned long nr_written = 0; 3485 3486 if (wbc->sync_mode == WB_SYNC_ALL) 3487 write_flags = WRITE_SYNC; 3488 3489 trace___extent_writepage(page, inode, wbc); 3490 3491 WARN_ON(!PageLocked(page)); 3492 3493 ClearPageError(page); 3494 3495 pg_offset = i_size & (PAGE_SIZE - 1); 3496 if (page->index > end_index || 3497 (page->index == end_index && !pg_offset)) { 3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3499 unlock_page(page); 3500 return 0; 3501 } 3502 3503 if (page->index == end_index) { 3504 char *userpage; 3505 3506 userpage = kmap_atomic(page); 3507 memset(userpage + pg_offset, 0, 3508 PAGE_SIZE - pg_offset); 3509 kunmap_atomic(userpage); 3510 flush_dcache_page(page); 3511 } 3512 3513 pg_offset = 0; 3514 3515 set_page_extent_mapped(page); 3516 3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3518 if (ret == 1) 3519 goto done_unlocked; 3520 if (ret) 3521 goto done; 3522 3523 ret = __extent_writepage_io(inode, page, wbc, epd, 3524 i_size, nr_written, write_flags, &nr); 3525 if (ret == 1) 3526 goto done_unlocked; 3527 3528 done: 3529 if (nr == 0) { 3530 /* make sure the mapping tag for page dirty gets cleared */ 3531 set_page_writeback(page); 3532 end_page_writeback(page); 3533 } 3534 if (PageError(page)) { 3535 ret = ret < 0 ? ret : -EIO; 3536 end_extent_writepage(page, ret, start, page_end); 3537 } 3538 unlock_page(page); 3539 return ret; 3540 3541 done_unlocked: 3542 return 0; 3543 } 3544 3545 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3546 { 3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3548 TASK_UNINTERRUPTIBLE); 3549 } 3550 3551 static noinline_for_stack int 3552 lock_extent_buffer_for_io(struct extent_buffer *eb, 3553 struct btrfs_fs_info *fs_info, 3554 struct extent_page_data *epd) 3555 { 3556 unsigned long i, num_pages; 3557 int flush = 0; 3558 int ret = 0; 3559 3560 if (!btrfs_try_tree_write_lock(eb)) { 3561 flush = 1; 3562 flush_write_bio(epd); 3563 btrfs_tree_lock(eb); 3564 } 3565 3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3567 btrfs_tree_unlock(eb); 3568 if (!epd->sync_io) 3569 return 0; 3570 if (!flush) { 3571 flush_write_bio(epd); 3572 flush = 1; 3573 } 3574 while (1) { 3575 wait_on_extent_buffer_writeback(eb); 3576 btrfs_tree_lock(eb); 3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3578 break; 3579 btrfs_tree_unlock(eb); 3580 } 3581 } 3582 3583 /* 3584 * We need to do this to prevent races in people who check if the eb is 3585 * under IO since we can end up having no IO bits set for a short period 3586 * of time. 3587 */ 3588 spin_lock(&eb->refs_lock); 3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3591 spin_unlock(&eb->refs_lock); 3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3594 -eb->len, 3595 fs_info->dirty_metadata_batch); 3596 ret = 1; 3597 } else { 3598 spin_unlock(&eb->refs_lock); 3599 } 3600 3601 btrfs_tree_unlock(eb); 3602 3603 if (!ret) 3604 return ret; 3605 3606 num_pages = num_extent_pages(eb->start, eb->len); 3607 for (i = 0; i < num_pages; i++) { 3608 struct page *p = eb->pages[i]; 3609 3610 if (!trylock_page(p)) { 3611 if (!flush) { 3612 flush_write_bio(epd); 3613 flush = 1; 3614 } 3615 lock_page(p); 3616 } 3617 } 3618 3619 return ret; 3620 } 3621 3622 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3623 { 3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3625 smp_mb__after_atomic(); 3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3627 } 3628 3629 static void set_btree_ioerr(struct page *page) 3630 { 3631 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3632 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3633 3634 SetPageError(page); 3635 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3636 return; 3637 3638 /* 3639 * If writeback for a btree extent that doesn't belong to a log tree 3640 * failed, increment the counter transaction->eb_write_errors. 3641 * We do this because while the transaction is running and before it's 3642 * committing (when we call filemap_fdata[write|wait]_range against 3643 * the btree inode), we might have 3644 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3645 * returns an error or an error happens during writeback, when we're 3646 * committing the transaction we wouldn't know about it, since the pages 3647 * can be no longer dirty nor marked anymore for writeback (if a 3648 * subsequent modification to the extent buffer didn't happen before the 3649 * transaction commit), which makes filemap_fdata[write|wait]_range not 3650 * able to find the pages tagged with SetPageError at transaction 3651 * commit time. So if this happens we must abort the transaction, 3652 * otherwise we commit a super block with btree roots that point to 3653 * btree nodes/leafs whose content on disk is invalid - either garbage 3654 * or the content of some node/leaf from a past generation that got 3655 * cowed or deleted and is no longer valid. 3656 * 3657 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3658 * not be enough - we need to distinguish between log tree extents vs 3659 * non-log tree extents, and the next filemap_fdatawait_range() call 3660 * will catch and clear such errors in the mapping - and that call might 3661 * be from a log sync and not from a transaction commit. Also, checking 3662 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3663 * not done and would not be reliable - the eb might have been released 3664 * from memory and reading it back again means that flag would not be 3665 * set (since it's a runtime flag, not persisted on disk). 3666 * 3667 * Using the flags below in the btree inode also makes us achieve the 3668 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3669 * writeback for all dirty pages and before filemap_fdatawait_range() 3670 * is called, the writeback for all dirty pages had already finished 3671 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3672 * filemap_fdatawait_range() would return success, as it could not know 3673 * that writeback errors happened (the pages were no longer tagged for 3674 * writeback). 3675 */ 3676 switch (eb->log_index) { 3677 case -1: 3678 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3679 break; 3680 case 0: 3681 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3682 break; 3683 case 1: 3684 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3685 break; 3686 default: 3687 BUG(); /* unexpected, logic error */ 3688 } 3689 } 3690 3691 static void end_bio_extent_buffer_writepage(struct bio *bio) 3692 { 3693 struct bio_vec *bvec; 3694 struct extent_buffer *eb; 3695 int i, done; 3696 3697 bio_for_each_segment_all(bvec, bio, i) { 3698 struct page *page = bvec->bv_page; 3699 3700 eb = (struct extent_buffer *)page->private; 3701 BUG_ON(!eb); 3702 done = atomic_dec_and_test(&eb->io_pages); 3703 3704 if (bio->bi_error || 3705 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3706 ClearPageUptodate(page); 3707 set_btree_ioerr(page); 3708 } 3709 3710 end_page_writeback(page); 3711 3712 if (!done) 3713 continue; 3714 3715 end_extent_buffer_writeback(eb); 3716 } 3717 3718 bio_put(bio); 3719 } 3720 3721 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3722 struct btrfs_fs_info *fs_info, 3723 struct writeback_control *wbc, 3724 struct extent_page_data *epd) 3725 { 3726 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3727 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3728 u64 offset = eb->start; 3729 unsigned long i, num_pages; 3730 unsigned long bio_flags = 0; 3731 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META; 3732 int ret = 0; 3733 3734 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3735 num_pages = num_extent_pages(eb->start, eb->len); 3736 atomic_set(&eb->io_pages, num_pages); 3737 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3738 bio_flags = EXTENT_BIO_TREE_LOG; 3739 3740 for (i = 0; i < num_pages; i++) { 3741 struct page *p = eb->pages[i]; 3742 3743 clear_page_dirty_for_io(p); 3744 set_page_writeback(p); 3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc, 3746 p, offset >> 9, PAGE_SIZE, 0, bdev, 3747 &epd->bio, -1, 3748 end_bio_extent_buffer_writepage, 3749 0, epd->bio_flags, bio_flags, false); 3750 epd->bio_flags = bio_flags; 3751 if (ret) { 3752 set_btree_ioerr(p); 3753 end_page_writeback(p); 3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3755 end_extent_buffer_writeback(eb); 3756 ret = -EIO; 3757 break; 3758 } 3759 offset += PAGE_SIZE; 3760 update_nr_written(p, wbc, 1); 3761 unlock_page(p); 3762 } 3763 3764 if (unlikely(ret)) { 3765 for (; i < num_pages; i++) { 3766 struct page *p = eb->pages[i]; 3767 clear_page_dirty_for_io(p); 3768 unlock_page(p); 3769 } 3770 } 3771 3772 return ret; 3773 } 3774 3775 int btree_write_cache_pages(struct address_space *mapping, 3776 struct writeback_control *wbc) 3777 { 3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3780 struct extent_buffer *eb, *prev_eb = NULL; 3781 struct extent_page_data epd = { 3782 .bio = NULL, 3783 .tree = tree, 3784 .extent_locked = 0, 3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3786 .bio_flags = 0, 3787 }; 3788 int ret = 0; 3789 int done = 0; 3790 int nr_to_write_done = 0; 3791 struct pagevec pvec; 3792 int nr_pages; 3793 pgoff_t index; 3794 pgoff_t end; /* Inclusive */ 3795 int scanned = 0; 3796 int tag; 3797 3798 pagevec_init(&pvec, 0); 3799 if (wbc->range_cyclic) { 3800 index = mapping->writeback_index; /* Start from prev offset */ 3801 end = -1; 3802 } else { 3803 index = wbc->range_start >> PAGE_SHIFT; 3804 end = wbc->range_end >> PAGE_SHIFT; 3805 scanned = 1; 3806 } 3807 if (wbc->sync_mode == WB_SYNC_ALL) 3808 tag = PAGECACHE_TAG_TOWRITE; 3809 else 3810 tag = PAGECACHE_TAG_DIRTY; 3811 retry: 3812 if (wbc->sync_mode == WB_SYNC_ALL) 3813 tag_pages_for_writeback(mapping, index, end); 3814 while (!done && !nr_to_write_done && (index <= end) && 3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3817 unsigned i; 3818 3819 scanned = 1; 3820 for (i = 0; i < nr_pages; i++) { 3821 struct page *page = pvec.pages[i]; 3822 3823 if (!PagePrivate(page)) 3824 continue; 3825 3826 if (!wbc->range_cyclic && page->index > end) { 3827 done = 1; 3828 break; 3829 } 3830 3831 spin_lock(&mapping->private_lock); 3832 if (!PagePrivate(page)) { 3833 spin_unlock(&mapping->private_lock); 3834 continue; 3835 } 3836 3837 eb = (struct extent_buffer *)page->private; 3838 3839 /* 3840 * Shouldn't happen and normally this would be a BUG_ON 3841 * but no sense in crashing the users box for something 3842 * we can survive anyway. 3843 */ 3844 if (WARN_ON(!eb)) { 3845 spin_unlock(&mapping->private_lock); 3846 continue; 3847 } 3848 3849 if (eb == prev_eb) { 3850 spin_unlock(&mapping->private_lock); 3851 continue; 3852 } 3853 3854 ret = atomic_inc_not_zero(&eb->refs); 3855 spin_unlock(&mapping->private_lock); 3856 if (!ret) 3857 continue; 3858 3859 prev_eb = eb; 3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3861 if (!ret) { 3862 free_extent_buffer(eb); 3863 continue; 3864 } 3865 3866 ret = write_one_eb(eb, fs_info, wbc, &epd); 3867 if (ret) { 3868 done = 1; 3869 free_extent_buffer(eb); 3870 break; 3871 } 3872 free_extent_buffer(eb); 3873 3874 /* 3875 * the filesystem may choose to bump up nr_to_write. 3876 * We have to make sure to honor the new nr_to_write 3877 * at any time 3878 */ 3879 nr_to_write_done = wbc->nr_to_write <= 0; 3880 } 3881 pagevec_release(&pvec); 3882 cond_resched(); 3883 } 3884 if (!scanned && !done) { 3885 /* 3886 * We hit the last page and there is more work to be done: wrap 3887 * back to the start of the file 3888 */ 3889 scanned = 1; 3890 index = 0; 3891 goto retry; 3892 } 3893 flush_write_bio(&epd); 3894 return ret; 3895 } 3896 3897 /** 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3899 * @mapping: address space structure to write 3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3901 * @writepage: function called for each page 3902 * @data: data passed to writepage function 3903 * 3904 * If a page is already under I/O, write_cache_pages() skips it, even 3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3907 * and msync() need to guarantee that all the data which was dirty at the time 3908 * the call was made get new I/O started against them. If wbc->sync_mode is 3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3910 * existing IO to complete. 3911 */ 3912 static int extent_write_cache_pages(struct extent_io_tree *tree, 3913 struct address_space *mapping, 3914 struct writeback_control *wbc, 3915 writepage_t writepage, void *data, 3916 void (*flush_fn)(void *)) 3917 { 3918 struct inode *inode = mapping->host; 3919 int ret = 0; 3920 int done = 0; 3921 int nr_to_write_done = 0; 3922 struct pagevec pvec; 3923 int nr_pages; 3924 pgoff_t index; 3925 pgoff_t end; /* Inclusive */ 3926 pgoff_t done_index; 3927 int range_whole = 0; 3928 int scanned = 0; 3929 int tag; 3930 3931 /* 3932 * We have to hold onto the inode so that ordered extents can do their 3933 * work when the IO finishes. The alternative to this is failing to add 3934 * an ordered extent if the igrab() fails there and that is a huge pain 3935 * to deal with, so instead just hold onto the inode throughout the 3936 * writepages operation. If it fails here we are freeing up the inode 3937 * anyway and we'd rather not waste our time writing out stuff that is 3938 * going to be truncated anyway. 3939 */ 3940 if (!igrab(inode)) 3941 return 0; 3942 3943 pagevec_init(&pvec, 0); 3944 if (wbc->range_cyclic) { 3945 index = mapping->writeback_index; /* Start from prev offset */ 3946 end = -1; 3947 } else { 3948 index = wbc->range_start >> PAGE_SHIFT; 3949 end = wbc->range_end >> PAGE_SHIFT; 3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3951 range_whole = 1; 3952 scanned = 1; 3953 } 3954 if (wbc->sync_mode == WB_SYNC_ALL) 3955 tag = PAGECACHE_TAG_TOWRITE; 3956 else 3957 tag = PAGECACHE_TAG_DIRTY; 3958 retry: 3959 if (wbc->sync_mode == WB_SYNC_ALL) 3960 tag_pages_for_writeback(mapping, index, end); 3961 done_index = index; 3962 while (!done && !nr_to_write_done && (index <= end) && 3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3965 unsigned i; 3966 3967 scanned = 1; 3968 for (i = 0; i < nr_pages; i++) { 3969 struct page *page = pvec.pages[i]; 3970 3971 done_index = page->index; 3972 /* 3973 * At this point we hold neither mapping->tree_lock nor 3974 * lock on the page itself: the page may be truncated or 3975 * invalidated (changing page->mapping to NULL), or even 3976 * swizzled back from swapper_space to tmpfs file 3977 * mapping 3978 */ 3979 if (!trylock_page(page)) { 3980 flush_fn(data); 3981 lock_page(page); 3982 } 3983 3984 if (unlikely(page->mapping != mapping)) { 3985 unlock_page(page); 3986 continue; 3987 } 3988 3989 if (!wbc->range_cyclic && page->index > end) { 3990 done = 1; 3991 unlock_page(page); 3992 continue; 3993 } 3994 3995 if (wbc->sync_mode != WB_SYNC_NONE) { 3996 if (PageWriteback(page)) 3997 flush_fn(data); 3998 wait_on_page_writeback(page); 3999 } 4000 4001 if (PageWriteback(page) || 4002 !clear_page_dirty_for_io(page)) { 4003 unlock_page(page); 4004 continue; 4005 } 4006 4007 ret = (*writepage)(page, wbc, data); 4008 4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4010 unlock_page(page); 4011 ret = 0; 4012 } 4013 if (ret < 0) { 4014 /* 4015 * done_index is set past this page, 4016 * so media errors will not choke 4017 * background writeout for the entire 4018 * file. This has consequences for 4019 * range_cyclic semantics (ie. it may 4020 * not be suitable for data integrity 4021 * writeout). 4022 */ 4023 done_index = page->index + 1; 4024 done = 1; 4025 break; 4026 } 4027 4028 /* 4029 * the filesystem may choose to bump up nr_to_write. 4030 * We have to make sure to honor the new nr_to_write 4031 * at any time 4032 */ 4033 nr_to_write_done = wbc->nr_to_write <= 0; 4034 } 4035 pagevec_release(&pvec); 4036 cond_resched(); 4037 } 4038 if (!scanned && !done) { 4039 /* 4040 * We hit the last page and there is more work to be done: wrap 4041 * back to the start of the file 4042 */ 4043 scanned = 1; 4044 index = 0; 4045 goto retry; 4046 } 4047 4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4049 mapping->writeback_index = done_index; 4050 4051 btrfs_add_delayed_iput(inode); 4052 return ret; 4053 } 4054 4055 static void flush_epd_write_bio(struct extent_page_data *epd) 4056 { 4057 if (epd->bio) { 4058 int ret; 4059 4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE, 4061 epd->sync_io ? WRITE_SYNC : 0); 4062 4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags); 4064 BUG_ON(ret < 0); /* -ENOMEM */ 4065 epd->bio = NULL; 4066 } 4067 } 4068 4069 static noinline void flush_write_bio(void *data) 4070 { 4071 struct extent_page_data *epd = data; 4072 flush_epd_write_bio(epd); 4073 } 4074 4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4076 get_extent_t *get_extent, 4077 struct writeback_control *wbc) 4078 { 4079 int ret; 4080 struct extent_page_data epd = { 4081 .bio = NULL, 4082 .tree = tree, 4083 .get_extent = get_extent, 4084 .extent_locked = 0, 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4086 .bio_flags = 0, 4087 }; 4088 4089 ret = __extent_writepage(page, wbc, &epd); 4090 4091 flush_epd_write_bio(&epd); 4092 return ret; 4093 } 4094 4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4096 u64 start, u64 end, get_extent_t *get_extent, 4097 int mode) 4098 { 4099 int ret = 0; 4100 struct address_space *mapping = inode->i_mapping; 4101 struct page *page; 4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4103 PAGE_SHIFT; 4104 4105 struct extent_page_data epd = { 4106 .bio = NULL, 4107 .tree = tree, 4108 .get_extent = get_extent, 4109 .extent_locked = 1, 4110 .sync_io = mode == WB_SYNC_ALL, 4111 .bio_flags = 0, 4112 }; 4113 struct writeback_control wbc_writepages = { 4114 .sync_mode = mode, 4115 .nr_to_write = nr_pages * 2, 4116 .range_start = start, 4117 .range_end = end + 1, 4118 }; 4119 4120 while (start <= end) { 4121 page = find_get_page(mapping, start >> PAGE_SHIFT); 4122 if (clear_page_dirty_for_io(page)) 4123 ret = __extent_writepage(page, &wbc_writepages, &epd); 4124 else { 4125 if (tree->ops && tree->ops->writepage_end_io_hook) 4126 tree->ops->writepage_end_io_hook(page, start, 4127 start + PAGE_SIZE - 1, 4128 NULL, 1); 4129 unlock_page(page); 4130 } 4131 put_page(page); 4132 start += PAGE_SIZE; 4133 } 4134 4135 flush_epd_write_bio(&epd); 4136 return ret; 4137 } 4138 4139 int extent_writepages(struct extent_io_tree *tree, 4140 struct address_space *mapping, 4141 get_extent_t *get_extent, 4142 struct writeback_control *wbc) 4143 { 4144 int ret = 0; 4145 struct extent_page_data epd = { 4146 .bio = NULL, 4147 .tree = tree, 4148 .get_extent = get_extent, 4149 .extent_locked = 0, 4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4151 .bio_flags = 0, 4152 }; 4153 4154 ret = extent_write_cache_pages(tree, mapping, wbc, 4155 __extent_writepage, &epd, 4156 flush_write_bio); 4157 flush_epd_write_bio(&epd); 4158 return ret; 4159 } 4160 4161 int extent_readpages(struct extent_io_tree *tree, 4162 struct address_space *mapping, 4163 struct list_head *pages, unsigned nr_pages, 4164 get_extent_t get_extent) 4165 { 4166 struct bio *bio = NULL; 4167 unsigned page_idx; 4168 unsigned long bio_flags = 0; 4169 struct page *pagepool[16]; 4170 struct page *page; 4171 struct extent_map *em_cached = NULL; 4172 int nr = 0; 4173 u64 prev_em_start = (u64)-1; 4174 4175 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4176 page = list_entry(pages->prev, struct page, lru); 4177 4178 prefetchw(&page->flags); 4179 list_del(&page->lru); 4180 if (add_to_page_cache_lru(page, mapping, 4181 page->index, 4182 readahead_gfp_mask(mapping))) { 4183 put_page(page); 4184 continue; 4185 } 4186 4187 pagepool[nr++] = page; 4188 if (nr < ARRAY_SIZE(pagepool)) 4189 continue; 4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4191 &bio, 0, &bio_flags, &prev_em_start); 4192 nr = 0; 4193 } 4194 if (nr) 4195 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4196 &bio, 0, &bio_flags, &prev_em_start); 4197 4198 if (em_cached) 4199 free_extent_map(em_cached); 4200 4201 BUG_ON(!list_empty(pages)); 4202 if (bio) 4203 return submit_one_bio(bio, 0, bio_flags); 4204 return 0; 4205 } 4206 4207 /* 4208 * basic invalidatepage code, this waits on any locked or writeback 4209 * ranges corresponding to the page, and then deletes any extent state 4210 * records from the tree 4211 */ 4212 int extent_invalidatepage(struct extent_io_tree *tree, 4213 struct page *page, unsigned long offset) 4214 { 4215 struct extent_state *cached_state = NULL; 4216 u64 start = page_offset(page); 4217 u64 end = start + PAGE_SIZE - 1; 4218 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4219 4220 start += ALIGN(offset, blocksize); 4221 if (start > end) 4222 return 0; 4223 4224 lock_extent_bits(tree, start, end, &cached_state); 4225 wait_on_page_writeback(page); 4226 clear_extent_bit(tree, start, end, 4227 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4228 EXTENT_DO_ACCOUNTING, 4229 1, 1, &cached_state, GFP_NOFS); 4230 return 0; 4231 } 4232 4233 /* 4234 * a helper for releasepage, this tests for areas of the page that 4235 * are locked or under IO and drops the related state bits if it is safe 4236 * to drop the page. 4237 */ 4238 static int try_release_extent_state(struct extent_map_tree *map, 4239 struct extent_io_tree *tree, 4240 struct page *page, gfp_t mask) 4241 { 4242 u64 start = page_offset(page); 4243 u64 end = start + PAGE_SIZE - 1; 4244 int ret = 1; 4245 4246 if (test_range_bit(tree, start, end, 4247 EXTENT_IOBITS, 0, NULL)) 4248 ret = 0; 4249 else { 4250 if ((mask & GFP_NOFS) == GFP_NOFS) 4251 mask = GFP_NOFS; 4252 /* 4253 * at this point we can safely clear everything except the 4254 * locked bit and the nodatasum bit 4255 */ 4256 ret = clear_extent_bit(tree, start, end, 4257 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4258 0, 0, NULL, mask); 4259 4260 /* if clear_extent_bit failed for enomem reasons, 4261 * we can't allow the release to continue. 4262 */ 4263 if (ret < 0) 4264 ret = 0; 4265 else 4266 ret = 1; 4267 } 4268 return ret; 4269 } 4270 4271 /* 4272 * a helper for releasepage. As long as there are no locked extents 4273 * in the range corresponding to the page, both state records and extent 4274 * map records are removed 4275 */ 4276 int try_release_extent_mapping(struct extent_map_tree *map, 4277 struct extent_io_tree *tree, struct page *page, 4278 gfp_t mask) 4279 { 4280 struct extent_map *em; 4281 u64 start = page_offset(page); 4282 u64 end = start + PAGE_SIZE - 1; 4283 4284 if (gfpflags_allow_blocking(mask) && 4285 page->mapping->host->i_size > SZ_16M) { 4286 u64 len; 4287 while (start <= end) { 4288 len = end - start + 1; 4289 write_lock(&map->lock); 4290 em = lookup_extent_mapping(map, start, len); 4291 if (!em) { 4292 write_unlock(&map->lock); 4293 break; 4294 } 4295 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4296 em->start != start) { 4297 write_unlock(&map->lock); 4298 free_extent_map(em); 4299 break; 4300 } 4301 if (!test_range_bit(tree, em->start, 4302 extent_map_end(em) - 1, 4303 EXTENT_LOCKED | EXTENT_WRITEBACK, 4304 0, NULL)) { 4305 remove_extent_mapping(map, em); 4306 /* once for the rb tree */ 4307 free_extent_map(em); 4308 } 4309 start = extent_map_end(em); 4310 write_unlock(&map->lock); 4311 4312 /* once for us */ 4313 free_extent_map(em); 4314 } 4315 } 4316 return try_release_extent_state(map, tree, page, mask); 4317 } 4318 4319 /* 4320 * helper function for fiemap, which doesn't want to see any holes. 4321 * This maps until we find something past 'last' 4322 */ 4323 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4324 u64 offset, 4325 u64 last, 4326 get_extent_t *get_extent) 4327 { 4328 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4329 struct extent_map *em; 4330 u64 len; 4331 4332 if (offset >= last) 4333 return NULL; 4334 4335 while (1) { 4336 len = last - offset; 4337 if (len == 0) 4338 break; 4339 len = ALIGN(len, sectorsize); 4340 em = get_extent(inode, NULL, 0, offset, len, 0); 4341 if (IS_ERR_OR_NULL(em)) 4342 return em; 4343 4344 /* if this isn't a hole return it */ 4345 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4346 em->block_start != EXTENT_MAP_HOLE) { 4347 return em; 4348 } 4349 4350 /* this is a hole, advance to the next extent */ 4351 offset = extent_map_end(em); 4352 free_extent_map(em); 4353 if (offset >= last) 4354 break; 4355 } 4356 return NULL; 4357 } 4358 4359 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4360 __u64 start, __u64 len, get_extent_t *get_extent) 4361 { 4362 int ret = 0; 4363 u64 off = start; 4364 u64 max = start + len; 4365 u32 flags = 0; 4366 u32 found_type; 4367 u64 last; 4368 u64 last_for_get_extent = 0; 4369 u64 disko = 0; 4370 u64 isize = i_size_read(inode); 4371 struct btrfs_key found_key; 4372 struct extent_map *em = NULL; 4373 struct extent_state *cached_state = NULL; 4374 struct btrfs_path *path; 4375 struct btrfs_root *root = BTRFS_I(inode)->root; 4376 int end = 0; 4377 u64 em_start = 0; 4378 u64 em_len = 0; 4379 u64 em_end = 0; 4380 4381 if (len == 0) 4382 return -EINVAL; 4383 4384 path = btrfs_alloc_path(); 4385 if (!path) 4386 return -ENOMEM; 4387 path->leave_spinning = 1; 4388 4389 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4390 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4391 4392 /* 4393 * lookup the last file extent. We're not using i_size here 4394 * because there might be preallocation past i_size 4395 */ 4396 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4397 0); 4398 if (ret < 0) { 4399 btrfs_free_path(path); 4400 return ret; 4401 } else { 4402 WARN_ON(!ret); 4403 if (ret == 1) 4404 ret = 0; 4405 } 4406 4407 path->slots[0]--; 4408 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4409 found_type = found_key.type; 4410 4411 /* No extents, but there might be delalloc bits */ 4412 if (found_key.objectid != btrfs_ino(inode) || 4413 found_type != BTRFS_EXTENT_DATA_KEY) { 4414 /* have to trust i_size as the end */ 4415 last = (u64)-1; 4416 last_for_get_extent = isize; 4417 } else { 4418 /* 4419 * remember the start of the last extent. There are a 4420 * bunch of different factors that go into the length of the 4421 * extent, so its much less complex to remember where it started 4422 */ 4423 last = found_key.offset; 4424 last_for_get_extent = last + 1; 4425 } 4426 btrfs_release_path(path); 4427 4428 /* 4429 * we might have some extents allocated but more delalloc past those 4430 * extents. so, we trust isize unless the start of the last extent is 4431 * beyond isize 4432 */ 4433 if (last < isize) { 4434 last = (u64)-1; 4435 last_for_get_extent = isize; 4436 } 4437 4438 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4439 &cached_state); 4440 4441 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4442 get_extent); 4443 if (!em) 4444 goto out; 4445 if (IS_ERR(em)) { 4446 ret = PTR_ERR(em); 4447 goto out; 4448 } 4449 4450 while (!end) { 4451 u64 offset_in_extent = 0; 4452 4453 /* break if the extent we found is outside the range */ 4454 if (em->start >= max || extent_map_end(em) < off) 4455 break; 4456 4457 /* 4458 * get_extent may return an extent that starts before our 4459 * requested range. We have to make sure the ranges 4460 * we return to fiemap always move forward and don't 4461 * overlap, so adjust the offsets here 4462 */ 4463 em_start = max(em->start, off); 4464 4465 /* 4466 * record the offset from the start of the extent 4467 * for adjusting the disk offset below. Only do this if the 4468 * extent isn't compressed since our in ram offset may be past 4469 * what we have actually allocated on disk. 4470 */ 4471 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4472 offset_in_extent = em_start - em->start; 4473 em_end = extent_map_end(em); 4474 em_len = em_end - em_start; 4475 disko = 0; 4476 flags = 0; 4477 4478 /* 4479 * bump off for our next call to get_extent 4480 */ 4481 off = extent_map_end(em); 4482 if (off >= max) 4483 end = 1; 4484 4485 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4486 end = 1; 4487 flags |= FIEMAP_EXTENT_LAST; 4488 } else if (em->block_start == EXTENT_MAP_INLINE) { 4489 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4490 FIEMAP_EXTENT_NOT_ALIGNED); 4491 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4492 flags |= (FIEMAP_EXTENT_DELALLOC | 4493 FIEMAP_EXTENT_UNKNOWN); 4494 } else if (fieinfo->fi_extents_max) { 4495 u64 bytenr = em->block_start - 4496 (em->start - em->orig_start); 4497 4498 disko = em->block_start + offset_in_extent; 4499 4500 /* 4501 * As btrfs supports shared space, this information 4502 * can be exported to userspace tools via 4503 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4504 * then we're just getting a count and we can skip the 4505 * lookup stuff. 4506 */ 4507 ret = btrfs_check_shared(NULL, root->fs_info, 4508 root->objectid, 4509 btrfs_ino(inode), bytenr); 4510 if (ret < 0) 4511 goto out_free; 4512 if (ret) 4513 flags |= FIEMAP_EXTENT_SHARED; 4514 ret = 0; 4515 } 4516 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4517 flags |= FIEMAP_EXTENT_ENCODED; 4518 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4519 flags |= FIEMAP_EXTENT_UNWRITTEN; 4520 4521 free_extent_map(em); 4522 em = NULL; 4523 if ((em_start >= last) || em_len == (u64)-1 || 4524 (last == (u64)-1 && isize <= em_end)) { 4525 flags |= FIEMAP_EXTENT_LAST; 4526 end = 1; 4527 } 4528 4529 /* now scan forward to see if this is really the last extent. */ 4530 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4531 get_extent); 4532 if (IS_ERR(em)) { 4533 ret = PTR_ERR(em); 4534 goto out; 4535 } 4536 if (!em) { 4537 flags |= FIEMAP_EXTENT_LAST; 4538 end = 1; 4539 } 4540 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4541 em_len, flags); 4542 if (ret) { 4543 if (ret == 1) 4544 ret = 0; 4545 goto out_free; 4546 } 4547 } 4548 out_free: 4549 free_extent_map(em); 4550 out: 4551 btrfs_free_path(path); 4552 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4553 &cached_state, GFP_NOFS); 4554 return ret; 4555 } 4556 4557 static void __free_extent_buffer(struct extent_buffer *eb) 4558 { 4559 btrfs_leak_debug_del(&eb->leak_list); 4560 kmem_cache_free(extent_buffer_cache, eb); 4561 } 4562 4563 int extent_buffer_under_io(struct extent_buffer *eb) 4564 { 4565 return (atomic_read(&eb->io_pages) || 4566 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4567 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4568 } 4569 4570 /* 4571 * Helper for releasing extent buffer page. 4572 */ 4573 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4574 { 4575 unsigned long index; 4576 struct page *page; 4577 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4578 4579 BUG_ON(extent_buffer_under_io(eb)); 4580 4581 index = num_extent_pages(eb->start, eb->len); 4582 if (index == 0) 4583 return; 4584 4585 do { 4586 index--; 4587 page = eb->pages[index]; 4588 if (!page) 4589 continue; 4590 if (mapped) 4591 spin_lock(&page->mapping->private_lock); 4592 /* 4593 * We do this since we'll remove the pages after we've 4594 * removed the eb from the radix tree, so we could race 4595 * and have this page now attached to the new eb. So 4596 * only clear page_private if it's still connected to 4597 * this eb. 4598 */ 4599 if (PagePrivate(page) && 4600 page->private == (unsigned long)eb) { 4601 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4602 BUG_ON(PageDirty(page)); 4603 BUG_ON(PageWriteback(page)); 4604 /* 4605 * We need to make sure we haven't be attached 4606 * to a new eb. 4607 */ 4608 ClearPagePrivate(page); 4609 set_page_private(page, 0); 4610 /* One for the page private */ 4611 put_page(page); 4612 } 4613 4614 if (mapped) 4615 spin_unlock(&page->mapping->private_lock); 4616 4617 /* One for when we allocated the page */ 4618 put_page(page); 4619 } while (index != 0); 4620 } 4621 4622 /* 4623 * Helper for releasing the extent buffer. 4624 */ 4625 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4626 { 4627 btrfs_release_extent_buffer_page(eb); 4628 __free_extent_buffer(eb); 4629 } 4630 4631 static struct extent_buffer * 4632 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4633 unsigned long len) 4634 { 4635 struct extent_buffer *eb = NULL; 4636 4637 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4638 eb->start = start; 4639 eb->len = len; 4640 eb->fs_info = fs_info; 4641 eb->bflags = 0; 4642 rwlock_init(&eb->lock); 4643 atomic_set(&eb->write_locks, 0); 4644 atomic_set(&eb->read_locks, 0); 4645 atomic_set(&eb->blocking_readers, 0); 4646 atomic_set(&eb->blocking_writers, 0); 4647 atomic_set(&eb->spinning_readers, 0); 4648 atomic_set(&eb->spinning_writers, 0); 4649 eb->lock_nested = 0; 4650 init_waitqueue_head(&eb->write_lock_wq); 4651 init_waitqueue_head(&eb->read_lock_wq); 4652 4653 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4654 4655 spin_lock_init(&eb->refs_lock); 4656 atomic_set(&eb->refs, 1); 4657 atomic_set(&eb->io_pages, 0); 4658 4659 /* 4660 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4661 */ 4662 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4663 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4664 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4665 4666 return eb; 4667 } 4668 4669 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4670 { 4671 unsigned long i; 4672 struct page *p; 4673 struct extent_buffer *new; 4674 unsigned long num_pages = num_extent_pages(src->start, src->len); 4675 4676 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4677 if (new == NULL) 4678 return NULL; 4679 4680 for (i = 0; i < num_pages; i++) { 4681 p = alloc_page(GFP_NOFS); 4682 if (!p) { 4683 btrfs_release_extent_buffer(new); 4684 return NULL; 4685 } 4686 attach_extent_buffer_page(new, p); 4687 WARN_ON(PageDirty(p)); 4688 SetPageUptodate(p); 4689 new->pages[i] = p; 4690 } 4691 4692 copy_extent_buffer(new, src, 0, 0, src->len); 4693 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4694 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4695 4696 return new; 4697 } 4698 4699 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4700 u64 start, unsigned long len) 4701 { 4702 struct extent_buffer *eb; 4703 unsigned long num_pages; 4704 unsigned long i; 4705 4706 num_pages = num_extent_pages(start, len); 4707 4708 eb = __alloc_extent_buffer(fs_info, start, len); 4709 if (!eb) 4710 return NULL; 4711 4712 for (i = 0; i < num_pages; i++) { 4713 eb->pages[i] = alloc_page(GFP_NOFS); 4714 if (!eb->pages[i]) 4715 goto err; 4716 } 4717 set_extent_buffer_uptodate(eb); 4718 btrfs_set_header_nritems(eb, 0); 4719 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4720 4721 return eb; 4722 err: 4723 for (; i > 0; i--) 4724 __free_page(eb->pages[i - 1]); 4725 __free_extent_buffer(eb); 4726 return NULL; 4727 } 4728 4729 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4730 u64 start, u32 nodesize) 4731 { 4732 unsigned long len; 4733 4734 if (!fs_info) { 4735 /* 4736 * Called only from tests that don't always have a fs_info 4737 * available 4738 */ 4739 len = nodesize; 4740 } else { 4741 len = fs_info->tree_root->nodesize; 4742 } 4743 4744 return __alloc_dummy_extent_buffer(fs_info, start, len); 4745 } 4746 4747 static void check_buffer_tree_ref(struct extent_buffer *eb) 4748 { 4749 int refs; 4750 /* the ref bit is tricky. We have to make sure it is set 4751 * if we have the buffer dirty. Otherwise the 4752 * code to free a buffer can end up dropping a dirty 4753 * page 4754 * 4755 * Once the ref bit is set, it won't go away while the 4756 * buffer is dirty or in writeback, and it also won't 4757 * go away while we have the reference count on the 4758 * eb bumped. 4759 * 4760 * We can't just set the ref bit without bumping the 4761 * ref on the eb because free_extent_buffer might 4762 * see the ref bit and try to clear it. If this happens 4763 * free_extent_buffer might end up dropping our original 4764 * ref by mistake and freeing the page before we are able 4765 * to add one more ref. 4766 * 4767 * So bump the ref count first, then set the bit. If someone 4768 * beat us to it, drop the ref we added. 4769 */ 4770 refs = atomic_read(&eb->refs); 4771 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4772 return; 4773 4774 spin_lock(&eb->refs_lock); 4775 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4776 atomic_inc(&eb->refs); 4777 spin_unlock(&eb->refs_lock); 4778 } 4779 4780 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4781 struct page *accessed) 4782 { 4783 unsigned long num_pages, i; 4784 4785 check_buffer_tree_ref(eb); 4786 4787 num_pages = num_extent_pages(eb->start, eb->len); 4788 for (i = 0; i < num_pages; i++) { 4789 struct page *p = eb->pages[i]; 4790 4791 if (p != accessed) 4792 mark_page_accessed(p); 4793 } 4794 } 4795 4796 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4797 u64 start) 4798 { 4799 struct extent_buffer *eb; 4800 4801 rcu_read_lock(); 4802 eb = radix_tree_lookup(&fs_info->buffer_radix, 4803 start >> PAGE_SHIFT); 4804 if (eb && atomic_inc_not_zero(&eb->refs)) { 4805 rcu_read_unlock(); 4806 /* 4807 * Lock our eb's refs_lock to avoid races with 4808 * free_extent_buffer. When we get our eb it might be flagged 4809 * with EXTENT_BUFFER_STALE and another task running 4810 * free_extent_buffer might have seen that flag set, 4811 * eb->refs == 2, that the buffer isn't under IO (dirty and 4812 * writeback flags not set) and it's still in the tree (flag 4813 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4814 * of decrementing the extent buffer's reference count twice. 4815 * So here we could race and increment the eb's reference count, 4816 * clear its stale flag, mark it as dirty and drop our reference 4817 * before the other task finishes executing free_extent_buffer, 4818 * which would later result in an attempt to free an extent 4819 * buffer that is dirty. 4820 */ 4821 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4822 spin_lock(&eb->refs_lock); 4823 spin_unlock(&eb->refs_lock); 4824 } 4825 mark_extent_buffer_accessed(eb, NULL); 4826 return eb; 4827 } 4828 rcu_read_unlock(); 4829 4830 return NULL; 4831 } 4832 4833 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4834 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4835 u64 start, u32 nodesize) 4836 { 4837 struct extent_buffer *eb, *exists = NULL; 4838 int ret; 4839 4840 eb = find_extent_buffer(fs_info, start); 4841 if (eb) 4842 return eb; 4843 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize); 4844 if (!eb) 4845 return NULL; 4846 eb->fs_info = fs_info; 4847 again: 4848 ret = radix_tree_preload(GFP_NOFS); 4849 if (ret) 4850 goto free_eb; 4851 spin_lock(&fs_info->buffer_lock); 4852 ret = radix_tree_insert(&fs_info->buffer_radix, 4853 start >> PAGE_SHIFT, eb); 4854 spin_unlock(&fs_info->buffer_lock); 4855 radix_tree_preload_end(); 4856 if (ret == -EEXIST) { 4857 exists = find_extent_buffer(fs_info, start); 4858 if (exists) 4859 goto free_eb; 4860 else 4861 goto again; 4862 } 4863 check_buffer_tree_ref(eb); 4864 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4865 4866 /* 4867 * We will free dummy extent buffer's if they come into 4868 * free_extent_buffer with a ref count of 2, but if we are using this we 4869 * want the buffers to stay in memory until we're done with them, so 4870 * bump the ref count again. 4871 */ 4872 atomic_inc(&eb->refs); 4873 return eb; 4874 free_eb: 4875 btrfs_release_extent_buffer(eb); 4876 return exists; 4877 } 4878 #endif 4879 4880 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4881 u64 start) 4882 { 4883 unsigned long len = fs_info->tree_root->nodesize; 4884 unsigned long num_pages = num_extent_pages(start, len); 4885 unsigned long i; 4886 unsigned long index = start >> PAGE_SHIFT; 4887 struct extent_buffer *eb; 4888 struct extent_buffer *exists = NULL; 4889 struct page *p; 4890 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4891 int uptodate = 1; 4892 int ret; 4893 4894 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) { 4895 btrfs_err(fs_info, "bad tree block start %llu", start); 4896 return ERR_PTR(-EINVAL); 4897 } 4898 4899 eb = find_extent_buffer(fs_info, start); 4900 if (eb) 4901 return eb; 4902 4903 eb = __alloc_extent_buffer(fs_info, start, len); 4904 if (!eb) 4905 return ERR_PTR(-ENOMEM); 4906 4907 for (i = 0; i < num_pages; i++, index++) { 4908 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4909 if (!p) { 4910 exists = ERR_PTR(-ENOMEM); 4911 goto free_eb; 4912 } 4913 4914 spin_lock(&mapping->private_lock); 4915 if (PagePrivate(p)) { 4916 /* 4917 * We could have already allocated an eb for this page 4918 * and attached one so lets see if we can get a ref on 4919 * the existing eb, and if we can we know it's good and 4920 * we can just return that one, else we know we can just 4921 * overwrite page->private. 4922 */ 4923 exists = (struct extent_buffer *)p->private; 4924 if (atomic_inc_not_zero(&exists->refs)) { 4925 spin_unlock(&mapping->private_lock); 4926 unlock_page(p); 4927 put_page(p); 4928 mark_extent_buffer_accessed(exists, p); 4929 goto free_eb; 4930 } 4931 exists = NULL; 4932 4933 /* 4934 * Do this so attach doesn't complain and we need to 4935 * drop the ref the old guy had. 4936 */ 4937 ClearPagePrivate(p); 4938 WARN_ON(PageDirty(p)); 4939 put_page(p); 4940 } 4941 attach_extent_buffer_page(eb, p); 4942 spin_unlock(&mapping->private_lock); 4943 WARN_ON(PageDirty(p)); 4944 eb->pages[i] = p; 4945 if (!PageUptodate(p)) 4946 uptodate = 0; 4947 4948 /* 4949 * see below about how we avoid a nasty race with release page 4950 * and why we unlock later 4951 */ 4952 } 4953 if (uptodate) 4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4955 again: 4956 ret = radix_tree_preload(GFP_NOFS); 4957 if (ret) { 4958 exists = ERR_PTR(ret); 4959 goto free_eb; 4960 } 4961 4962 spin_lock(&fs_info->buffer_lock); 4963 ret = radix_tree_insert(&fs_info->buffer_radix, 4964 start >> PAGE_SHIFT, eb); 4965 spin_unlock(&fs_info->buffer_lock); 4966 radix_tree_preload_end(); 4967 if (ret == -EEXIST) { 4968 exists = find_extent_buffer(fs_info, start); 4969 if (exists) 4970 goto free_eb; 4971 else 4972 goto again; 4973 } 4974 /* add one reference for the tree */ 4975 check_buffer_tree_ref(eb); 4976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4977 4978 /* 4979 * there is a race where release page may have 4980 * tried to find this extent buffer in the radix 4981 * but failed. It will tell the VM it is safe to 4982 * reclaim the, and it will clear the page private bit. 4983 * We must make sure to set the page private bit properly 4984 * after the extent buffer is in the radix tree so 4985 * it doesn't get lost 4986 */ 4987 SetPageChecked(eb->pages[0]); 4988 for (i = 1; i < num_pages; i++) { 4989 p = eb->pages[i]; 4990 ClearPageChecked(p); 4991 unlock_page(p); 4992 } 4993 unlock_page(eb->pages[0]); 4994 return eb; 4995 4996 free_eb: 4997 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4998 for (i = 0; i < num_pages; i++) { 4999 if (eb->pages[i]) 5000 unlock_page(eb->pages[i]); 5001 } 5002 5003 btrfs_release_extent_buffer(eb); 5004 return exists; 5005 } 5006 5007 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5008 { 5009 struct extent_buffer *eb = 5010 container_of(head, struct extent_buffer, rcu_head); 5011 5012 __free_extent_buffer(eb); 5013 } 5014 5015 /* Expects to have eb->eb_lock already held */ 5016 static int release_extent_buffer(struct extent_buffer *eb) 5017 { 5018 WARN_ON(atomic_read(&eb->refs) == 0); 5019 if (atomic_dec_and_test(&eb->refs)) { 5020 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5021 struct btrfs_fs_info *fs_info = eb->fs_info; 5022 5023 spin_unlock(&eb->refs_lock); 5024 5025 spin_lock(&fs_info->buffer_lock); 5026 radix_tree_delete(&fs_info->buffer_radix, 5027 eb->start >> PAGE_SHIFT); 5028 spin_unlock(&fs_info->buffer_lock); 5029 } else { 5030 spin_unlock(&eb->refs_lock); 5031 } 5032 5033 /* Should be safe to release our pages at this point */ 5034 btrfs_release_extent_buffer_page(eb); 5035 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5036 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5037 __free_extent_buffer(eb); 5038 return 1; 5039 } 5040 #endif 5041 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5042 return 1; 5043 } 5044 spin_unlock(&eb->refs_lock); 5045 5046 return 0; 5047 } 5048 5049 void free_extent_buffer(struct extent_buffer *eb) 5050 { 5051 int refs; 5052 int old; 5053 if (!eb) 5054 return; 5055 5056 while (1) { 5057 refs = atomic_read(&eb->refs); 5058 if (refs <= 3) 5059 break; 5060 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5061 if (old == refs) 5062 return; 5063 } 5064 5065 spin_lock(&eb->refs_lock); 5066 if (atomic_read(&eb->refs) == 2 && 5067 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5068 atomic_dec(&eb->refs); 5069 5070 if (atomic_read(&eb->refs) == 2 && 5071 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5072 !extent_buffer_under_io(eb) && 5073 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5074 atomic_dec(&eb->refs); 5075 5076 /* 5077 * I know this is terrible, but it's temporary until we stop tracking 5078 * the uptodate bits and such for the extent buffers. 5079 */ 5080 release_extent_buffer(eb); 5081 } 5082 5083 void free_extent_buffer_stale(struct extent_buffer *eb) 5084 { 5085 if (!eb) 5086 return; 5087 5088 spin_lock(&eb->refs_lock); 5089 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5090 5091 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5092 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5093 atomic_dec(&eb->refs); 5094 release_extent_buffer(eb); 5095 } 5096 5097 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5098 { 5099 unsigned long i; 5100 unsigned long num_pages; 5101 struct page *page; 5102 5103 num_pages = num_extent_pages(eb->start, eb->len); 5104 5105 for (i = 0; i < num_pages; i++) { 5106 page = eb->pages[i]; 5107 if (!PageDirty(page)) 5108 continue; 5109 5110 lock_page(page); 5111 WARN_ON(!PagePrivate(page)); 5112 5113 clear_page_dirty_for_io(page); 5114 spin_lock_irq(&page->mapping->tree_lock); 5115 if (!PageDirty(page)) { 5116 radix_tree_tag_clear(&page->mapping->page_tree, 5117 page_index(page), 5118 PAGECACHE_TAG_DIRTY); 5119 } 5120 spin_unlock_irq(&page->mapping->tree_lock); 5121 ClearPageError(page); 5122 unlock_page(page); 5123 } 5124 WARN_ON(atomic_read(&eb->refs) == 0); 5125 } 5126 5127 int set_extent_buffer_dirty(struct extent_buffer *eb) 5128 { 5129 unsigned long i; 5130 unsigned long num_pages; 5131 int was_dirty = 0; 5132 5133 check_buffer_tree_ref(eb); 5134 5135 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5136 5137 num_pages = num_extent_pages(eb->start, eb->len); 5138 WARN_ON(atomic_read(&eb->refs) == 0); 5139 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5140 5141 for (i = 0; i < num_pages; i++) 5142 set_page_dirty(eb->pages[i]); 5143 return was_dirty; 5144 } 5145 5146 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5147 { 5148 unsigned long i; 5149 struct page *page; 5150 unsigned long num_pages; 5151 5152 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5153 num_pages = num_extent_pages(eb->start, eb->len); 5154 for (i = 0; i < num_pages; i++) { 5155 page = eb->pages[i]; 5156 if (page) 5157 ClearPageUptodate(page); 5158 } 5159 } 5160 5161 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5162 { 5163 unsigned long i; 5164 struct page *page; 5165 unsigned long num_pages; 5166 5167 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5168 num_pages = num_extent_pages(eb->start, eb->len); 5169 for (i = 0; i < num_pages; i++) { 5170 page = eb->pages[i]; 5171 SetPageUptodate(page); 5172 } 5173 } 5174 5175 int extent_buffer_uptodate(struct extent_buffer *eb) 5176 { 5177 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5178 } 5179 5180 int read_extent_buffer_pages(struct extent_io_tree *tree, 5181 struct extent_buffer *eb, u64 start, int wait, 5182 get_extent_t *get_extent, int mirror_num) 5183 { 5184 unsigned long i; 5185 unsigned long start_i; 5186 struct page *page; 5187 int err; 5188 int ret = 0; 5189 int locked_pages = 0; 5190 int all_uptodate = 1; 5191 unsigned long num_pages; 5192 unsigned long num_reads = 0; 5193 struct bio *bio = NULL; 5194 unsigned long bio_flags = 0; 5195 5196 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5197 return 0; 5198 5199 if (start) { 5200 WARN_ON(start < eb->start); 5201 start_i = (start >> PAGE_SHIFT) - 5202 (eb->start >> PAGE_SHIFT); 5203 } else { 5204 start_i = 0; 5205 } 5206 5207 num_pages = num_extent_pages(eb->start, eb->len); 5208 for (i = start_i; i < num_pages; i++) { 5209 page = eb->pages[i]; 5210 if (wait == WAIT_NONE) { 5211 if (!trylock_page(page)) 5212 goto unlock_exit; 5213 } else { 5214 lock_page(page); 5215 } 5216 locked_pages++; 5217 if (!PageUptodate(page)) { 5218 num_reads++; 5219 all_uptodate = 0; 5220 } 5221 } 5222 if (all_uptodate) { 5223 if (start_i == 0) 5224 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5225 goto unlock_exit; 5226 } 5227 5228 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5229 eb->read_mirror = 0; 5230 atomic_set(&eb->io_pages, num_reads); 5231 for (i = start_i; i < num_pages; i++) { 5232 page = eb->pages[i]; 5233 if (!PageUptodate(page)) { 5234 ClearPageError(page); 5235 err = __extent_read_full_page(tree, page, 5236 get_extent, &bio, 5237 mirror_num, &bio_flags, 5238 REQ_META); 5239 if (err) 5240 ret = err; 5241 } else { 5242 unlock_page(page); 5243 } 5244 } 5245 5246 if (bio) { 5247 err = submit_one_bio(bio, mirror_num, bio_flags); 5248 if (err) 5249 return err; 5250 } 5251 5252 if (ret || wait != WAIT_COMPLETE) 5253 return ret; 5254 5255 for (i = start_i; i < num_pages; i++) { 5256 page = eb->pages[i]; 5257 wait_on_page_locked(page); 5258 if (!PageUptodate(page)) 5259 ret = -EIO; 5260 } 5261 5262 return ret; 5263 5264 unlock_exit: 5265 i = start_i; 5266 while (locked_pages > 0) { 5267 page = eb->pages[i]; 5268 i++; 5269 unlock_page(page); 5270 locked_pages--; 5271 } 5272 return ret; 5273 } 5274 5275 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5276 unsigned long start, 5277 unsigned long len) 5278 { 5279 size_t cur; 5280 size_t offset; 5281 struct page *page; 5282 char *kaddr; 5283 char *dst = (char *)dstv; 5284 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5285 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5286 5287 WARN_ON(start > eb->len); 5288 WARN_ON(start + len > eb->start + eb->len); 5289 5290 offset = (start_offset + start) & (PAGE_SIZE - 1); 5291 5292 while (len > 0) { 5293 page = eb->pages[i]; 5294 5295 cur = min(len, (PAGE_SIZE - offset)); 5296 kaddr = page_address(page); 5297 memcpy(dst, kaddr + offset, cur); 5298 5299 dst += cur; 5300 len -= cur; 5301 offset = 0; 5302 i++; 5303 } 5304 } 5305 5306 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5307 unsigned long start, 5308 unsigned long len) 5309 { 5310 size_t cur; 5311 size_t offset; 5312 struct page *page; 5313 char *kaddr; 5314 char __user *dst = (char __user *)dstv; 5315 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5316 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5317 int ret = 0; 5318 5319 WARN_ON(start > eb->len); 5320 WARN_ON(start + len > eb->start + eb->len); 5321 5322 offset = (start_offset + start) & (PAGE_SIZE - 1); 5323 5324 while (len > 0) { 5325 page = eb->pages[i]; 5326 5327 cur = min(len, (PAGE_SIZE - offset)); 5328 kaddr = page_address(page); 5329 if (copy_to_user(dst, kaddr + offset, cur)) { 5330 ret = -EFAULT; 5331 break; 5332 } 5333 5334 dst += cur; 5335 len -= cur; 5336 offset = 0; 5337 i++; 5338 } 5339 5340 return ret; 5341 } 5342 5343 /* 5344 * return 0 if the item is found within a page. 5345 * return 1 if the item spans two pages. 5346 * return -EINVAL otherwise. 5347 */ 5348 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5349 unsigned long min_len, char **map, 5350 unsigned long *map_start, 5351 unsigned long *map_len) 5352 { 5353 size_t offset = start & (PAGE_SIZE - 1); 5354 char *kaddr; 5355 struct page *p; 5356 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5357 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5358 unsigned long end_i = (start_offset + start + min_len - 1) >> 5359 PAGE_SHIFT; 5360 5361 if (i != end_i) 5362 return 1; 5363 5364 if (i == 0) { 5365 offset = start_offset; 5366 *map_start = 0; 5367 } else { 5368 offset = 0; 5369 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5370 } 5371 5372 if (start + min_len > eb->len) { 5373 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5374 "wanted %lu %lu\n", 5375 eb->start, eb->len, start, min_len); 5376 return -EINVAL; 5377 } 5378 5379 p = eb->pages[i]; 5380 kaddr = page_address(p); 5381 *map = kaddr + offset; 5382 *map_len = PAGE_SIZE - offset; 5383 return 0; 5384 } 5385 5386 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5387 unsigned long start, 5388 unsigned long len) 5389 { 5390 size_t cur; 5391 size_t offset; 5392 struct page *page; 5393 char *kaddr; 5394 char *ptr = (char *)ptrv; 5395 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5396 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5397 int ret = 0; 5398 5399 WARN_ON(start > eb->len); 5400 WARN_ON(start + len > eb->start + eb->len); 5401 5402 offset = (start_offset + start) & (PAGE_SIZE - 1); 5403 5404 while (len > 0) { 5405 page = eb->pages[i]; 5406 5407 cur = min(len, (PAGE_SIZE - offset)); 5408 5409 kaddr = page_address(page); 5410 ret = memcmp(ptr, kaddr + offset, cur); 5411 if (ret) 5412 break; 5413 5414 ptr += cur; 5415 len -= cur; 5416 offset = 0; 5417 i++; 5418 } 5419 return ret; 5420 } 5421 5422 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5423 unsigned long start, unsigned long len) 5424 { 5425 size_t cur; 5426 size_t offset; 5427 struct page *page; 5428 char *kaddr; 5429 char *src = (char *)srcv; 5430 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5431 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5432 5433 WARN_ON(start > eb->len); 5434 WARN_ON(start + len > eb->start + eb->len); 5435 5436 offset = (start_offset + start) & (PAGE_SIZE - 1); 5437 5438 while (len > 0) { 5439 page = eb->pages[i]; 5440 WARN_ON(!PageUptodate(page)); 5441 5442 cur = min(len, PAGE_SIZE - offset); 5443 kaddr = page_address(page); 5444 memcpy(kaddr + offset, src, cur); 5445 5446 src += cur; 5447 len -= cur; 5448 offset = 0; 5449 i++; 5450 } 5451 } 5452 5453 void memset_extent_buffer(struct extent_buffer *eb, char c, 5454 unsigned long start, unsigned long len) 5455 { 5456 size_t cur; 5457 size_t offset; 5458 struct page *page; 5459 char *kaddr; 5460 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5461 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5462 5463 WARN_ON(start > eb->len); 5464 WARN_ON(start + len > eb->start + eb->len); 5465 5466 offset = (start_offset + start) & (PAGE_SIZE - 1); 5467 5468 while (len > 0) { 5469 page = eb->pages[i]; 5470 WARN_ON(!PageUptodate(page)); 5471 5472 cur = min(len, PAGE_SIZE - offset); 5473 kaddr = page_address(page); 5474 memset(kaddr + offset, c, cur); 5475 5476 len -= cur; 5477 offset = 0; 5478 i++; 5479 } 5480 } 5481 5482 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5483 unsigned long dst_offset, unsigned long src_offset, 5484 unsigned long len) 5485 { 5486 u64 dst_len = dst->len; 5487 size_t cur; 5488 size_t offset; 5489 struct page *page; 5490 char *kaddr; 5491 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5492 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5493 5494 WARN_ON(src->len != dst_len); 5495 5496 offset = (start_offset + dst_offset) & 5497 (PAGE_SIZE - 1); 5498 5499 while (len > 0) { 5500 page = dst->pages[i]; 5501 WARN_ON(!PageUptodate(page)); 5502 5503 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5504 5505 kaddr = page_address(page); 5506 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5507 5508 src_offset += cur; 5509 len -= cur; 5510 offset = 0; 5511 i++; 5512 } 5513 } 5514 5515 /* 5516 * The extent buffer bitmap operations are done with byte granularity because 5517 * bitmap items are not guaranteed to be aligned to a word and therefore a 5518 * single word in a bitmap may straddle two pages in the extent buffer. 5519 */ 5520 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE) 5521 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1) 5522 #define BITMAP_FIRST_BYTE_MASK(start) \ 5523 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK) 5524 #define BITMAP_LAST_BYTE_MASK(nbits) \ 5525 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1))) 5526 5527 /* 5528 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5529 * given bit number 5530 * @eb: the extent buffer 5531 * @start: offset of the bitmap item in the extent buffer 5532 * @nr: bit number 5533 * @page_index: return index of the page in the extent buffer that contains the 5534 * given bit number 5535 * @page_offset: return offset into the page given by page_index 5536 * 5537 * This helper hides the ugliness of finding the byte in an extent buffer which 5538 * contains a given bit. 5539 */ 5540 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5541 unsigned long start, unsigned long nr, 5542 unsigned long *page_index, 5543 size_t *page_offset) 5544 { 5545 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5546 size_t byte_offset = BIT_BYTE(nr); 5547 size_t offset; 5548 5549 /* 5550 * The byte we want is the offset of the extent buffer + the offset of 5551 * the bitmap item in the extent buffer + the offset of the byte in the 5552 * bitmap item. 5553 */ 5554 offset = start_offset + start + byte_offset; 5555 5556 *page_index = offset >> PAGE_SHIFT; 5557 *page_offset = offset & (PAGE_SIZE - 1); 5558 } 5559 5560 /** 5561 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5562 * @eb: the extent buffer 5563 * @start: offset of the bitmap item in the extent buffer 5564 * @nr: bit number to test 5565 */ 5566 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5567 unsigned long nr) 5568 { 5569 char *kaddr; 5570 struct page *page; 5571 unsigned long i; 5572 size_t offset; 5573 5574 eb_bitmap_offset(eb, start, nr, &i, &offset); 5575 page = eb->pages[i]; 5576 WARN_ON(!PageUptodate(page)); 5577 kaddr = page_address(page); 5578 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5579 } 5580 5581 /** 5582 * extent_buffer_bitmap_set - set an area of a bitmap 5583 * @eb: the extent buffer 5584 * @start: offset of the bitmap item in the extent buffer 5585 * @pos: bit number of the first bit 5586 * @len: number of bits to set 5587 */ 5588 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5589 unsigned long pos, unsigned long len) 5590 { 5591 char *kaddr; 5592 struct page *page; 5593 unsigned long i; 5594 size_t offset; 5595 const unsigned int size = pos + len; 5596 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5597 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5598 5599 eb_bitmap_offset(eb, start, pos, &i, &offset); 5600 page = eb->pages[i]; 5601 WARN_ON(!PageUptodate(page)); 5602 kaddr = page_address(page); 5603 5604 while (len >= bits_to_set) { 5605 kaddr[offset] |= mask_to_set; 5606 len -= bits_to_set; 5607 bits_to_set = BITS_PER_BYTE; 5608 mask_to_set = ~0U; 5609 if (++offset >= PAGE_SIZE && len > 0) { 5610 offset = 0; 5611 page = eb->pages[++i]; 5612 WARN_ON(!PageUptodate(page)); 5613 kaddr = page_address(page); 5614 } 5615 } 5616 if (len) { 5617 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5618 kaddr[offset] |= mask_to_set; 5619 } 5620 } 5621 5622 5623 /** 5624 * extent_buffer_bitmap_clear - clear an area of a bitmap 5625 * @eb: the extent buffer 5626 * @start: offset of the bitmap item in the extent buffer 5627 * @pos: bit number of the first bit 5628 * @len: number of bits to clear 5629 */ 5630 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5631 unsigned long pos, unsigned long len) 5632 { 5633 char *kaddr; 5634 struct page *page; 5635 unsigned long i; 5636 size_t offset; 5637 const unsigned int size = pos + len; 5638 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5639 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5640 5641 eb_bitmap_offset(eb, start, pos, &i, &offset); 5642 page = eb->pages[i]; 5643 WARN_ON(!PageUptodate(page)); 5644 kaddr = page_address(page); 5645 5646 while (len >= bits_to_clear) { 5647 kaddr[offset] &= ~mask_to_clear; 5648 len -= bits_to_clear; 5649 bits_to_clear = BITS_PER_BYTE; 5650 mask_to_clear = ~0U; 5651 if (++offset >= PAGE_SIZE && len > 0) { 5652 offset = 0; 5653 page = eb->pages[++i]; 5654 WARN_ON(!PageUptodate(page)); 5655 kaddr = page_address(page); 5656 } 5657 } 5658 if (len) { 5659 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5660 kaddr[offset] &= ~mask_to_clear; 5661 } 5662 } 5663 5664 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5665 { 5666 unsigned long distance = (src > dst) ? src - dst : dst - src; 5667 return distance < len; 5668 } 5669 5670 static void copy_pages(struct page *dst_page, struct page *src_page, 5671 unsigned long dst_off, unsigned long src_off, 5672 unsigned long len) 5673 { 5674 char *dst_kaddr = page_address(dst_page); 5675 char *src_kaddr; 5676 int must_memmove = 0; 5677 5678 if (dst_page != src_page) { 5679 src_kaddr = page_address(src_page); 5680 } else { 5681 src_kaddr = dst_kaddr; 5682 if (areas_overlap(src_off, dst_off, len)) 5683 must_memmove = 1; 5684 } 5685 5686 if (must_memmove) 5687 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5688 else 5689 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5690 } 5691 5692 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5693 unsigned long src_offset, unsigned long len) 5694 { 5695 size_t cur; 5696 size_t dst_off_in_page; 5697 size_t src_off_in_page; 5698 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5699 unsigned long dst_i; 5700 unsigned long src_i; 5701 5702 if (src_offset + len > dst->len) { 5703 btrfs_err(dst->fs_info, 5704 "memmove bogus src_offset %lu move " 5705 "len %lu dst len %lu", src_offset, len, dst->len); 5706 BUG_ON(1); 5707 } 5708 if (dst_offset + len > dst->len) { 5709 btrfs_err(dst->fs_info, 5710 "memmove bogus dst_offset %lu move " 5711 "len %lu dst len %lu", dst_offset, len, dst->len); 5712 BUG_ON(1); 5713 } 5714 5715 while (len > 0) { 5716 dst_off_in_page = (start_offset + dst_offset) & 5717 (PAGE_SIZE - 1); 5718 src_off_in_page = (start_offset + src_offset) & 5719 (PAGE_SIZE - 1); 5720 5721 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5722 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5723 5724 cur = min(len, (unsigned long)(PAGE_SIZE - 5725 src_off_in_page)); 5726 cur = min_t(unsigned long, cur, 5727 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5728 5729 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5730 dst_off_in_page, src_off_in_page, cur); 5731 5732 src_offset += cur; 5733 dst_offset += cur; 5734 len -= cur; 5735 } 5736 } 5737 5738 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5739 unsigned long src_offset, unsigned long len) 5740 { 5741 size_t cur; 5742 size_t dst_off_in_page; 5743 size_t src_off_in_page; 5744 unsigned long dst_end = dst_offset + len - 1; 5745 unsigned long src_end = src_offset + len - 1; 5746 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5747 unsigned long dst_i; 5748 unsigned long src_i; 5749 5750 if (src_offset + len > dst->len) { 5751 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5752 "len %lu len %lu", src_offset, len, dst->len); 5753 BUG_ON(1); 5754 } 5755 if (dst_offset + len > dst->len) { 5756 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5757 "len %lu len %lu", dst_offset, len, dst->len); 5758 BUG_ON(1); 5759 } 5760 if (dst_offset < src_offset) { 5761 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5762 return; 5763 } 5764 while (len > 0) { 5765 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5766 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5767 5768 dst_off_in_page = (start_offset + dst_end) & 5769 (PAGE_SIZE - 1); 5770 src_off_in_page = (start_offset + src_end) & 5771 (PAGE_SIZE - 1); 5772 5773 cur = min_t(unsigned long, len, src_off_in_page + 1); 5774 cur = min(cur, dst_off_in_page + 1); 5775 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5776 dst_off_in_page - cur + 1, 5777 src_off_in_page - cur + 1, cur); 5778 5779 dst_end -= cur; 5780 src_end -= cur; 5781 len -= cur; 5782 } 5783 } 5784 5785 int try_release_extent_buffer(struct page *page) 5786 { 5787 struct extent_buffer *eb; 5788 5789 /* 5790 * We need to make sure nobody is attaching this page to an eb right 5791 * now. 5792 */ 5793 spin_lock(&page->mapping->private_lock); 5794 if (!PagePrivate(page)) { 5795 spin_unlock(&page->mapping->private_lock); 5796 return 1; 5797 } 5798 5799 eb = (struct extent_buffer *)page->private; 5800 BUG_ON(!eb); 5801 5802 /* 5803 * This is a little awful but should be ok, we need to make sure that 5804 * the eb doesn't disappear out from under us while we're looking at 5805 * this page. 5806 */ 5807 spin_lock(&eb->refs_lock); 5808 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5809 spin_unlock(&eb->refs_lock); 5810 spin_unlock(&page->mapping->private_lock); 5811 return 0; 5812 } 5813 spin_unlock(&page->mapping->private_lock); 5814 5815 /* 5816 * If tree ref isn't set then we know the ref on this eb is a real ref, 5817 * so just return, this page will likely be freed soon anyway. 5818 */ 5819 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5820 spin_unlock(&eb->refs_lock); 5821 return 0; 5822 } 5823 5824 return release_extent_buffer(eb); 5825 } 5826