1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 kmem_cache_destroy(extent_state_cache); 210 kmem_cache_destroy(extent_buffer_cache); 211 if (btrfs_bioset) 212 bioset_free(btrfs_bioset); 213 } 214 215 void extent_io_tree_init(struct extent_io_tree *tree, 216 struct address_space *mapping) 217 { 218 tree->state = RB_ROOT; 219 tree->ops = NULL; 220 tree->dirty_bytes = 0; 221 spin_lock_init(&tree->lock); 222 tree->mapping = mapping; 223 } 224 225 static struct extent_state *alloc_extent_state(gfp_t mask) 226 { 227 struct extent_state *state; 228 229 state = kmem_cache_alloc(extent_state_cache, mask); 230 if (!state) 231 return state; 232 state->state = 0; 233 state->failrec = NULL; 234 RB_CLEAR_NODE(&state->rb_node); 235 btrfs_leak_debug_add(&state->leak_list, &states); 236 atomic_set(&state->refs, 1); 237 init_waitqueue_head(&state->wq); 238 trace_alloc_extent_state(state, mask, _RET_IP_); 239 return state; 240 } 241 242 void free_extent_state(struct extent_state *state) 243 { 244 if (!state) 245 return; 246 if (atomic_dec_and_test(&state->refs)) { 247 WARN_ON(extent_state_in_tree(state)); 248 btrfs_leak_debug_del(&state->leak_list); 249 trace_free_extent_state(state, _RET_IP_); 250 kmem_cache_free(extent_state_cache, state); 251 } 252 } 253 254 static struct rb_node *tree_insert(struct rb_root *root, 255 struct rb_node *search_start, 256 u64 offset, 257 struct rb_node *node, 258 struct rb_node ***p_in, 259 struct rb_node **parent_in) 260 { 261 struct rb_node **p; 262 struct rb_node *parent = NULL; 263 struct tree_entry *entry; 264 265 if (p_in && parent_in) { 266 p = *p_in; 267 parent = *parent_in; 268 goto do_insert; 269 } 270 271 p = search_start ? &search_start : &root->rb_node; 272 while (*p) { 273 parent = *p; 274 entry = rb_entry(parent, struct tree_entry, rb_node); 275 276 if (offset < entry->start) 277 p = &(*p)->rb_left; 278 else if (offset > entry->end) 279 p = &(*p)->rb_right; 280 else 281 return parent; 282 } 283 284 do_insert: 285 rb_link_node(node, parent, p); 286 rb_insert_color(node, root); 287 return NULL; 288 } 289 290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 291 struct rb_node **prev_ret, 292 struct rb_node **next_ret, 293 struct rb_node ***p_ret, 294 struct rb_node **parent_ret) 295 { 296 struct rb_root *root = &tree->state; 297 struct rb_node **n = &root->rb_node; 298 struct rb_node *prev = NULL; 299 struct rb_node *orig_prev = NULL; 300 struct tree_entry *entry; 301 struct tree_entry *prev_entry = NULL; 302 303 while (*n) { 304 prev = *n; 305 entry = rb_entry(prev, struct tree_entry, rb_node); 306 prev_entry = entry; 307 308 if (offset < entry->start) 309 n = &(*n)->rb_left; 310 else if (offset > entry->end) 311 n = &(*n)->rb_right; 312 else 313 return *n; 314 } 315 316 if (p_ret) 317 *p_ret = n; 318 if (parent_ret) 319 *parent_ret = prev; 320 321 if (prev_ret) { 322 orig_prev = prev; 323 while (prev && offset > prev_entry->end) { 324 prev = rb_next(prev); 325 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 326 } 327 *prev_ret = prev; 328 prev = orig_prev; 329 } 330 331 if (next_ret) { 332 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 333 while (prev && offset < prev_entry->start) { 334 prev = rb_prev(prev); 335 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 336 } 337 *next_ret = prev; 338 } 339 return NULL; 340 } 341 342 static inline struct rb_node * 343 tree_search_for_insert(struct extent_io_tree *tree, 344 u64 offset, 345 struct rb_node ***p_ret, 346 struct rb_node **parent_ret) 347 { 348 struct rb_node *prev = NULL; 349 struct rb_node *ret; 350 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 352 if (!ret) 353 return prev; 354 return ret; 355 } 356 357 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 358 u64 offset) 359 { 360 return tree_search_for_insert(tree, offset, NULL, NULL); 361 } 362 363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 364 struct extent_state *other) 365 { 366 if (tree->ops && tree->ops->merge_extent_hook) 367 tree->ops->merge_extent_hook(tree->mapping->host, new, 368 other); 369 } 370 371 /* 372 * utility function to look for merge candidates inside a given range. 373 * Any extents with matching state are merged together into a single 374 * extent in the tree. Extents with EXTENT_IO in their state field 375 * are not merged because the end_io handlers need to be able to do 376 * operations on them without sleeping (or doing allocations/splits). 377 * 378 * This should be called with the tree lock held. 379 */ 380 static void merge_state(struct extent_io_tree *tree, 381 struct extent_state *state) 382 { 383 struct extent_state *other; 384 struct rb_node *other_node; 385 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 387 return; 388 389 other_node = rb_prev(&state->rb_node); 390 if (other_node) { 391 other = rb_entry(other_node, struct extent_state, rb_node); 392 if (other->end == state->start - 1 && 393 other->state == state->state) { 394 merge_cb(tree, state, other); 395 state->start = other->start; 396 rb_erase(&other->rb_node, &tree->state); 397 RB_CLEAR_NODE(&other->rb_node); 398 free_extent_state(other); 399 } 400 } 401 other_node = rb_next(&state->rb_node); 402 if (other_node) { 403 other = rb_entry(other_node, struct extent_state, rb_node); 404 if (other->start == state->end + 1 && 405 other->state == state->state) { 406 merge_cb(tree, state, other); 407 state->end = other->end; 408 rb_erase(&other->rb_node, &tree->state); 409 RB_CLEAR_NODE(&other->rb_node); 410 free_extent_state(other); 411 } 412 } 413 } 414 415 static void set_state_cb(struct extent_io_tree *tree, 416 struct extent_state *state, unsigned *bits) 417 { 418 if (tree->ops && tree->ops->set_bit_hook) 419 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 420 } 421 422 static void clear_state_cb(struct extent_io_tree *tree, 423 struct extent_state *state, unsigned *bits) 424 { 425 if (tree->ops && tree->ops->clear_bit_hook) 426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 427 } 428 429 static void set_state_bits(struct extent_io_tree *tree, 430 struct extent_state *state, unsigned *bits, 431 struct extent_changeset *changeset); 432 433 /* 434 * insert an extent_state struct into the tree. 'bits' are set on the 435 * struct before it is inserted. 436 * 437 * This may return -EEXIST if the extent is already there, in which case the 438 * state struct is freed. 439 * 440 * The tree lock is not taken internally. This is a utility function and 441 * probably isn't what you want to call (see set/clear_extent_bit). 442 */ 443 static int insert_state(struct extent_io_tree *tree, 444 struct extent_state *state, u64 start, u64 end, 445 struct rb_node ***p, 446 struct rb_node **parent, 447 unsigned *bits, struct extent_changeset *changeset) 448 { 449 struct rb_node *node; 450 451 if (end < start) 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 453 end, start); 454 state->start = start; 455 state->end = end; 456 457 set_state_bits(tree, state, bits, changeset); 458 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 460 if (node) { 461 struct extent_state *found; 462 found = rb_entry(node, struct extent_state, rb_node); 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 464 "%llu %llu\n", 465 found->start, found->end, start, end); 466 return -EEXIST; 467 } 468 merge_state(tree, state); 469 return 0; 470 } 471 472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 473 u64 split) 474 { 475 if (tree->ops && tree->ops->split_extent_hook) 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 477 } 478 479 /* 480 * split a given extent state struct in two, inserting the preallocated 481 * struct 'prealloc' as the newly created second half. 'split' indicates an 482 * offset inside 'orig' where it should be split. 483 * 484 * Before calling, 485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 486 * are two extent state structs in the tree: 487 * prealloc: [orig->start, split - 1] 488 * orig: [ split, orig->end ] 489 * 490 * The tree locks are not taken by this function. They need to be held 491 * by the caller. 492 */ 493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 494 struct extent_state *prealloc, u64 split) 495 { 496 struct rb_node *node; 497 498 split_cb(tree, orig, split); 499 500 prealloc->start = orig->start; 501 prealloc->end = split - 1; 502 prealloc->state = orig->state; 503 orig->start = split; 504 505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 506 &prealloc->rb_node, NULL, NULL); 507 if (node) { 508 free_extent_state(prealloc); 509 return -EEXIST; 510 } 511 return 0; 512 } 513 514 static struct extent_state *next_state(struct extent_state *state) 515 { 516 struct rb_node *next = rb_next(&state->rb_node); 517 if (next) 518 return rb_entry(next, struct extent_state, rb_node); 519 else 520 return NULL; 521 } 522 523 /* 524 * utility function to clear some bits in an extent state struct. 525 * it will optionally wake up any one waiting on this state (wake == 1). 526 * 527 * If no bits are set on the state struct after clearing things, the 528 * struct is freed and removed from the tree 529 */ 530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 531 struct extent_state *state, 532 unsigned *bits, int wake, 533 struct extent_changeset *changeset) 534 { 535 struct extent_state *next; 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 537 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 539 u64 range = state->end - state->start + 1; 540 WARN_ON(range > tree->dirty_bytes); 541 tree->dirty_bytes -= range; 542 } 543 clear_state_cb(tree, state, bits); 544 add_extent_changeset(state, bits_to_clear, changeset, 0); 545 state->state &= ~bits_to_clear; 546 if (wake) 547 wake_up(&state->wq); 548 if (state->state == 0) { 549 next = next_state(state); 550 if (extent_state_in_tree(state)) { 551 rb_erase(&state->rb_node, &tree->state); 552 RB_CLEAR_NODE(&state->rb_node); 553 free_extent_state(state); 554 } else { 555 WARN_ON(1); 556 } 557 } else { 558 merge_state(tree, state); 559 next = next_state(state); 560 } 561 return next; 562 } 563 564 static struct extent_state * 565 alloc_extent_state_atomic(struct extent_state *prealloc) 566 { 567 if (!prealloc) 568 prealloc = alloc_extent_state(GFP_ATOMIC); 569 570 return prealloc; 571 } 572 573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 574 { 575 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 576 "Extent tree was modified by another " 577 "thread while locked."); 578 } 579 580 /* 581 * clear some bits on a range in the tree. This may require splitting 582 * or inserting elements in the tree, so the gfp mask is used to 583 * indicate which allocations or sleeping are allowed. 584 * 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 586 * the given range from the tree regardless of state (ie for truncate). 587 * 588 * the range [start, end] is inclusive. 589 * 590 * This takes the tree lock, and returns 0 on success and < 0 on error. 591 */ 592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 593 unsigned bits, int wake, int delete, 594 struct extent_state **cached_state, 595 gfp_t mask, struct extent_changeset *changeset) 596 { 597 struct extent_state *state; 598 struct extent_state *cached; 599 struct extent_state *prealloc = NULL; 600 struct rb_node *node; 601 u64 last_end; 602 int err; 603 int clear = 0; 604 605 btrfs_debug_check_extent_io_range(tree, start, end); 606 607 if (bits & EXTENT_DELALLOC) 608 bits |= EXTENT_NORESERVE; 609 610 if (delete) 611 bits |= ~EXTENT_CTLBITS; 612 bits |= EXTENT_FIRST_DELALLOC; 613 614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 615 clear = 1; 616 again: 617 if (!prealloc && gfpflags_allow_blocking(mask)) { 618 /* 619 * Don't care for allocation failure here because we might end 620 * up not needing the pre-allocated extent state at all, which 621 * is the case if we only have in the tree extent states that 622 * cover our input range and don't cover too any other range. 623 * If we end up needing a new extent state we allocate it later. 624 */ 625 prealloc = alloc_extent_state(mask); 626 } 627 628 spin_lock(&tree->lock); 629 if (cached_state) { 630 cached = *cached_state; 631 632 if (clear) { 633 *cached_state = NULL; 634 cached_state = NULL; 635 } 636 637 if (cached && extent_state_in_tree(cached) && 638 cached->start <= start && cached->end > start) { 639 if (clear) 640 atomic_dec(&cached->refs); 641 state = cached; 642 goto hit_next; 643 } 644 if (clear) 645 free_extent_state(cached); 646 } 647 /* 648 * this search will find the extents that end after 649 * our range starts 650 */ 651 node = tree_search(tree, start); 652 if (!node) 653 goto out; 654 state = rb_entry(node, struct extent_state, rb_node); 655 hit_next: 656 if (state->start > end) 657 goto out; 658 WARN_ON(state->end < start); 659 last_end = state->end; 660 661 /* the state doesn't have the wanted bits, go ahead */ 662 if (!(state->state & bits)) { 663 state = next_state(state); 664 goto next; 665 } 666 667 /* 668 * | ---- desired range ---- | 669 * | state | or 670 * | ------------- state -------------- | 671 * 672 * We need to split the extent we found, and may flip 673 * bits on second half. 674 * 675 * If the extent we found extends past our range, we 676 * just split and search again. It'll get split again 677 * the next time though. 678 * 679 * If the extent we found is inside our range, we clear 680 * the desired bit on it. 681 */ 682 683 if (state->start < start) { 684 prealloc = alloc_extent_state_atomic(prealloc); 685 BUG_ON(!prealloc); 686 err = split_state(tree, state, prealloc, start); 687 if (err) 688 extent_io_tree_panic(tree, err); 689 690 prealloc = NULL; 691 if (err) 692 goto out; 693 if (state->end <= end) { 694 state = clear_state_bit(tree, state, &bits, wake, 695 changeset); 696 goto next; 697 } 698 goto search_again; 699 } 700 /* 701 * | ---- desired range ---- | 702 * | state | 703 * We need to split the extent, and clear the bit 704 * on the first half 705 */ 706 if (state->start <= end && state->end > end) { 707 prealloc = alloc_extent_state_atomic(prealloc); 708 BUG_ON(!prealloc); 709 err = split_state(tree, state, prealloc, end + 1); 710 if (err) 711 extent_io_tree_panic(tree, err); 712 713 if (wake) 714 wake_up(&state->wq); 715 716 clear_state_bit(tree, prealloc, &bits, wake, changeset); 717 718 prealloc = NULL; 719 goto out; 720 } 721 722 state = clear_state_bit(tree, state, &bits, wake, changeset); 723 next: 724 if (last_end == (u64)-1) 725 goto out; 726 start = last_end + 1; 727 if (start <= end && state && !need_resched()) 728 goto hit_next; 729 730 search_again: 731 if (start > end) 732 goto out; 733 spin_unlock(&tree->lock); 734 if (gfpflags_allow_blocking(mask)) 735 cond_resched(); 736 goto again; 737 738 out: 739 spin_unlock(&tree->lock); 740 if (prealloc) 741 free_extent_state(prealloc); 742 743 return 0; 744 745 } 746 747 static void wait_on_state(struct extent_io_tree *tree, 748 struct extent_state *state) 749 __releases(tree->lock) 750 __acquires(tree->lock) 751 { 752 DEFINE_WAIT(wait); 753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 754 spin_unlock(&tree->lock); 755 schedule(); 756 spin_lock(&tree->lock); 757 finish_wait(&state->wq, &wait); 758 } 759 760 /* 761 * waits for one or more bits to clear on a range in the state tree. 762 * The range [start, end] is inclusive. 763 * The tree lock is taken by this function 764 */ 765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 766 unsigned long bits) 767 { 768 struct extent_state *state; 769 struct rb_node *node; 770 771 btrfs_debug_check_extent_io_range(tree, start, end); 772 773 spin_lock(&tree->lock); 774 again: 775 while (1) { 776 /* 777 * this search will find all the extents that end after 778 * our range starts 779 */ 780 node = tree_search(tree, start); 781 process_node: 782 if (!node) 783 break; 784 785 state = rb_entry(node, struct extent_state, rb_node); 786 787 if (state->start > end) 788 goto out; 789 790 if (state->state & bits) { 791 start = state->start; 792 atomic_inc(&state->refs); 793 wait_on_state(tree, state); 794 free_extent_state(state); 795 goto again; 796 } 797 start = state->end + 1; 798 799 if (start > end) 800 break; 801 802 if (!cond_resched_lock(&tree->lock)) { 803 node = rb_next(node); 804 goto process_node; 805 } 806 } 807 out: 808 spin_unlock(&tree->lock); 809 } 810 811 static void set_state_bits(struct extent_io_tree *tree, 812 struct extent_state *state, 813 unsigned *bits, struct extent_changeset *changeset) 814 { 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 816 817 set_state_cb(tree, state, bits); 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 819 u64 range = state->end - state->start + 1; 820 tree->dirty_bytes += range; 821 } 822 add_extent_changeset(state, bits_to_set, changeset, 1); 823 state->state |= bits_to_set; 824 } 825 826 static void cache_state_if_flags(struct extent_state *state, 827 struct extent_state **cached_ptr, 828 unsigned flags) 829 { 830 if (cached_ptr && !(*cached_ptr)) { 831 if (!flags || (state->state & flags)) { 832 *cached_ptr = state; 833 atomic_inc(&state->refs); 834 } 835 } 836 } 837 838 static void cache_state(struct extent_state *state, 839 struct extent_state **cached_ptr) 840 { 841 return cache_state_if_flags(state, cached_ptr, 842 EXTENT_IOBITS | EXTENT_BOUNDARY); 843 } 844 845 /* 846 * set some bits on a range in the tree. This may require allocations or 847 * sleeping, so the gfp mask is used to indicate what is allowed. 848 * 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some 850 * part of the range already has the desired bits set. The start of the 851 * existing range is returned in failed_start in this case. 852 * 853 * [start, end] is inclusive This takes the tree lock. 854 */ 855 856 static int __must_check 857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 858 unsigned bits, unsigned exclusive_bits, 859 u64 *failed_start, struct extent_state **cached_state, 860 gfp_t mask, struct extent_changeset *changeset) 861 { 862 struct extent_state *state; 863 struct extent_state *prealloc = NULL; 864 struct rb_node *node; 865 struct rb_node **p; 866 struct rb_node *parent; 867 int err = 0; 868 u64 last_start; 869 u64 last_end; 870 871 btrfs_debug_check_extent_io_range(tree, start, end); 872 873 bits |= EXTENT_FIRST_DELALLOC; 874 again: 875 if (!prealloc && gfpflags_allow_blocking(mask)) { 876 /* 877 * Don't care for allocation failure here because we might end 878 * up not needing the pre-allocated extent state at all, which 879 * is the case if we only have in the tree extent states that 880 * cover our input range and don't cover too any other range. 881 * If we end up needing a new extent state we allocate it later. 882 */ 883 prealloc = alloc_extent_state(mask); 884 } 885 886 spin_lock(&tree->lock); 887 if (cached_state && *cached_state) { 888 state = *cached_state; 889 if (state->start <= start && state->end > start && 890 extent_state_in_tree(state)) { 891 node = &state->rb_node; 892 goto hit_next; 893 } 894 } 895 /* 896 * this search will find all the extents that end after 897 * our range starts. 898 */ 899 node = tree_search_for_insert(tree, start, &p, &parent); 900 if (!node) { 901 prealloc = alloc_extent_state_atomic(prealloc); 902 BUG_ON(!prealloc); 903 err = insert_state(tree, prealloc, start, end, 904 &p, &parent, &bits, changeset); 905 if (err) 906 extent_io_tree_panic(tree, err); 907 908 cache_state(prealloc, cached_state); 909 prealloc = NULL; 910 goto out; 911 } 912 state = rb_entry(node, struct extent_state, rb_node); 913 hit_next: 914 last_start = state->start; 915 last_end = state->end; 916 917 /* 918 * | ---- desired range ---- | 919 * | state | 920 * 921 * Just lock what we found and keep going 922 */ 923 if (state->start == start && state->end <= end) { 924 if (state->state & exclusive_bits) { 925 *failed_start = state->start; 926 err = -EEXIST; 927 goto out; 928 } 929 930 set_state_bits(tree, state, &bits, changeset); 931 cache_state(state, cached_state); 932 merge_state(tree, state); 933 if (last_end == (u64)-1) 934 goto out; 935 start = last_end + 1; 936 state = next_state(state); 937 if (start < end && state && state->start == start && 938 !need_resched()) 939 goto hit_next; 940 goto search_again; 941 } 942 943 /* 944 * | ---- desired range ---- | 945 * | state | 946 * or 947 * | ------------- state -------------- | 948 * 949 * We need to split the extent we found, and may flip bits on 950 * second half. 951 * 952 * If the extent we found extends past our 953 * range, we just split and search again. It'll get split 954 * again the next time though. 955 * 956 * If the extent we found is inside our range, we set the 957 * desired bit on it. 958 */ 959 if (state->start < start) { 960 if (state->state & exclusive_bits) { 961 *failed_start = start; 962 err = -EEXIST; 963 goto out; 964 } 965 966 prealloc = alloc_extent_state_atomic(prealloc); 967 BUG_ON(!prealloc); 968 err = split_state(tree, state, prealloc, start); 969 if (err) 970 extent_io_tree_panic(tree, err); 971 972 prealloc = NULL; 973 if (err) 974 goto out; 975 if (state->end <= end) { 976 set_state_bits(tree, state, &bits, changeset); 977 cache_state(state, cached_state); 978 merge_state(tree, state); 979 if (last_end == (u64)-1) 980 goto out; 981 start = last_end + 1; 982 state = next_state(state); 983 if (start < end && state && state->start == start && 984 !need_resched()) 985 goto hit_next; 986 } 987 goto search_again; 988 } 989 /* 990 * | ---- desired range ---- | 991 * | state | or | state | 992 * 993 * There's a hole, we need to insert something in it and 994 * ignore the extent we found. 995 */ 996 if (state->start > start) { 997 u64 this_end; 998 if (end < last_start) 999 this_end = end; 1000 else 1001 this_end = last_start - 1; 1002 1003 prealloc = alloc_extent_state_atomic(prealloc); 1004 BUG_ON(!prealloc); 1005 1006 /* 1007 * Avoid to free 'prealloc' if it can be merged with 1008 * the later extent. 1009 */ 1010 err = insert_state(tree, prealloc, start, this_end, 1011 NULL, NULL, &bits, changeset); 1012 if (err) 1013 extent_io_tree_panic(tree, err); 1014 1015 cache_state(prealloc, cached_state); 1016 prealloc = NULL; 1017 start = this_end + 1; 1018 goto search_again; 1019 } 1020 /* 1021 * | ---- desired range ---- | 1022 * | state | 1023 * We need to split the extent, and set the bit 1024 * on the first half 1025 */ 1026 if (state->start <= end && state->end > end) { 1027 if (state->state & exclusive_bits) { 1028 *failed_start = start; 1029 err = -EEXIST; 1030 goto out; 1031 } 1032 1033 prealloc = alloc_extent_state_atomic(prealloc); 1034 BUG_ON(!prealloc); 1035 err = split_state(tree, state, prealloc, end + 1); 1036 if (err) 1037 extent_io_tree_panic(tree, err); 1038 1039 set_state_bits(tree, prealloc, &bits, changeset); 1040 cache_state(prealloc, cached_state); 1041 merge_state(tree, prealloc); 1042 prealloc = NULL; 1043 goto out; 1044 } 1045 1046 search_again: 1047 if (start > end) 1048 goto out; 1049 spin_unlock(&tree->lock); 1050 if (gfpflags_allow_blocking(mask)) 1051 cond_resched(); 1052 goto again; 1053 1054 out: 1055 spin_unlock(&tree->lock); 1056 if (prealloc) 1057 free_extent_state(prealloc); 1058 1059 return err; 1060 1061 } 1062 1063 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1064 unsigned bits, u64 * failed_start, 1065 struct extent_state **cached_state, gfp_t mask) 1066 { 1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1068 cached_state, mask, NULL); 1069 } 1070 1071 1072 /** 1073 * convert_extent_bit - convert all bits in a given range from one bit to 1074 * another 1075 * @tree: the io tree to search 1076 * @start: the start offset in bytes 1077 * @end: the end offset in bytes (inclusive) 1078 * @bits: the bits to set in this range 1079 * @clear_bits: the bits to clear in this range 1080 * @cached_state: state that we're going to cache 1081 * 1082 * This will go through and set bits for the given range. If any states exist 1083 * already in this range they are set with the given bit and cleared of the 1084 * clear_bits. This is only meant to be used by things that are mergeable, ie 1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1086 * boundary bits like LOCK. 1087 * 1088 * All allocations are done with GFP_NOFS. 1089 */ 1090 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1091 unsigned bits, unsigned clear_bits, 1092 struct extent_state **cached_state) 1093 { 1094 struct extent_state *state; 1095 struct extent_state *prealloc = NULL; 1096 struct rb_node *node; 1097 struct rb_node **p; 1098 struct rb_node *parent; 1099 int err = 0; 1100 u64 last_start; 1101 u64 last_end; 1102 bool first_iteration = true; 1103 1104 btrfs_debug_check_extent_io_range(tree, start, end); 1105 1106 again: 1107 if (!prealloc) { 1108 /* 1109 * Best effort, don't worry if extent state allocation fails 1110 * here for the first iteration. We might have a cached state 1111 * that matches exactly the target range, in which case no 1112 * extent state allocations are needed. We'll only know this 1113 * after locking the tree. 1114 */ 1115 prealloc = alloc_extent_state(GFP_NOFS); 1116 if (!prealloc && !first_iteration) 1117 return -ENOMEM; 1118 } 1119 1120 spin_lock(&tree->lock); 1121 if (cached_state && *cached_state) { 1122 state = *cached_state; 1123 if (state->start <= start && state->end > start && 1124 extent_state_in_tree(state)) { 1125 node = &state->rb_node; 1126 goto hit_next; 1127 } 1128 } 1129 1130 /* 1131 * this search will find all the extents that end after 1132 * our range starts. 1133 */ 1134 node = tree_search_for_insert(tree, start, &p, &parent); 1135 if (!node) { 1136 prealloc = alloc_extent_state_atomic(prealloc); 1137 if (!prealloc) { 1138 err = -ENOMEM; 1139 goto out; 1140 } 1141 err = insert_state(tree, prealloc, start, end, 1142 &p, &parent, &bits, NULL); 1143 if (err) 1144 extent_io_tree_panic(tree, err); 1145 cache_state(prealloc, cached_state); 1146 prealloc = NULL; 1147 goto out; 1148 } 1149 state = rb_entry(node, struct extent_state, rb_node); 1150 hit_next: 1151 last_start = state->start; 1152 last_end = state->end; 1153 1154 /* 1155 * | ---- desired range ---- | 1156 * | state | 1157 * 1158 * Just lock what we found and keep going 1159 */ 1160 if (state->start == start && state->end <= end) { 1161 set_state_bits(tree, state, &bits, NULL); 1162 cache_state(state, cached_state); 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1164 if (last_end == (u64)-1) 1165 goto out; 1166 start = last_end + 1; 1167 if (start < end && state && state->start == start && 1168 !need_resched()) 1169 goto hit_next; 1170 goto search_again; 1171 } 1172 1173 /* 1174 * | ---- desired range ---- | 1175 * | state | 1176 * or 1177 * | ------------- state -------------- | 1178 * 1179 * We need to split the extent we found, and may flip bits on 1180 * second half. 1181 * 1182 * If the extent we found extends past our 1183 * range, we just split and search again. It'll get split 1184 * again the next time though. 1185 * 1186 * If the extent we found is inside our range, we set the 1187 * desired bit on it. 1188 */ 1189 if (state->start < start) { 1190 prealloc = alloc_extent_state_atomic(prealloc); 1191 if (!prealloc) { 1192 err = -ENOMEM; 1193 goto out; 1194 } 1195 err = split_state(tree, state, prealloc, start); 1196 if (err) 1197 extent_io_tree_panic(tree, err); 1198 prealloc = NULL; 1199 if (err) 1200 goto out; 1201 if (state->end <= end) { 1202 set_state_bits(tree, state, &bits, NULL); 1203 cache_state(state, cached_state); 1204 state = clear_state_bit(tree, state, &clear_bits, 0, 1205 NULL); 1206 if (last_end == (u64)-1) 1207 goto out; 1208 start = last_end + 1; 1209 if (start < end && state && state->start == start && 1210 !need_resched()) 1211 goto hit_next; 1212 } 1213 goto search_again; 1214 } 1215 /* 1216 * | ---- desired range ---- | 1217 * | state | or | state | 1218 * 1219 * There's a hole, we need to insert something in it and 1220 * ignore the extent we found. 1221 */ 1222 if (state->start > start) { 1223 u64 this_end; 1224 if (end < last_start) 1225 this_end = end; 1226 else 1227 this_end = last_start - 1; 1228 1229 prealloc = alloc_extent_state_atomic(prealloc); 1230 if (!prealloc) { 1231 err = -ENOMEM; 1232 goto out; 1233 } 1234 1235 /* 1236 * Avoid to free 'prealloc' if it can be merged with 1237 * the later extent. 1238 */ 1239 err = insert_state(tree, prealloc, start, this_end, 1240 NULL, NULL, &bits, NULL); 1241 if (err) 1242 extent_io_tree_panic(tree, err); 1243 cache_state(prealloc, cached_state); 1244 prealloc = NULL; 1245 start = this_end + 1; 1246 goto search_again; 1247 } 1248 /* 1249 * | ---- desired range ---- | 1250 * | state | 1251 * We need to split the extent, and set the bit 1252 * on the first half 1253 */ 1254 if (state->start <= end && state->end > end) { 1255 prealloc = alloc_extent_state_atomic(prealloc); 1256 if (!prealloc) { 1257 err = -ENOMEM; 1258 goto out; 1259 } 1260 1261 err = split_state(tree, state, prealloc, end + 1); 1262 if (err) 1263 extent_io_tree_panic(tree, err); 1264 1265 set_state_bits(tree, prealloc, &bits, NULL); 1266 cache_state(prealloc, cached_state); 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 1272 search_again: 1273 if (start > end) 1274 goto out; 1275 spin_unlock(&tree->lock); 1276 cond_resched(); 1277 first_iteration = false; 1278 goto again; 1279 1280 out: 1281 spin_unlock(&tree->lock); 1282 if (prealloc) 1283 free_extent_state(prealloc); 1284 1285 return err; 1286 } 1287 1288 /* wrappers around set/clear extent bit */ 1289 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1290 unsigned bits, struct extent_changeset *changeset) 1291 { 1292 /* 1293 * We don't support EXTENT_LOCKED yet, as current changeset will 1294 * record any bits changed, so for EXTENT_LOCKED case, it will 1295 * either fail with -EEXIST or changeset will record the whole 1296 * range. 1297 */ 1298 BUG_ON(bits & EXTENT_LOCKED); 1299 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1301 changeset); 1302 } 1303 1304 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1305 unsigned bits, int wake, int delete, 1306 struct extent_state **cached, gfp_t mask) 1307 { 1308 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1309 cached, mask, NULL); 1310 } 1311 1312 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1313 unsigned bits, struct extent_changeset *changeset) 1314 { 1315 /* 1316 * Don't support EXTENT_LOCKED case, same reason as 1317 * set_record_extent_bits(). 1318 */ 1319 BUG_ON(bits & EXTENT_LOCKED); 1320 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1322 changeset); 1323 } 1324 1325 /* 1326 * either insert or lock state struct between start and end use mask to tell 1327 * us if waiting is desired. 1328 */ 1329 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1330 struct extent_state **cached_state) 1331 { 1332 int err; 1333 u64 failed_start; 1334 1335 while (1) { 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1337 EXTENT_LOCKED, &failed_start, 1338 cached_state, GFP_NOFS, NULL); 1339 if (err == -EEXIST) { 1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1341 start = failed_start; 1342 } else 1343 break; 1344 WARN_ON(start > end); 1345 } 1346 return err; 1347 } 1348 1349 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1350 { 1351 int err; 1352 u64 failed_start; 1353 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1355 &failed_start, NULL, GFP_NOFS, NULL); 1356 if (err == -EEXIST) { 1357 if (failed_start > start) 1358 clear_extent_bit(tree, start, failed_start - 1, 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1360 return 0; 1361 } 1362 return 1; 1363 } 1364 1365 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1366 { 1367 unsigned long index = start >> PAGE_SHIFT; 1368 unsigned long end_index = end >> PAGE_SHIFT; 1369 struct page *page; 1370 1371 while (index <= end_index) { 1372 page = find_get_page(inode->i_mapping, index); 1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1374 clear_page_dirty_for_io(page); 1375 put_page(page); 1376 index++; 1377 } 1378 } 1379 1380 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1381 { 1382 unsigned long index = start >> PAGE_SHIFT; 1383 unsigned long end_index = end >> PAGE_SHIFT; 1384 struct page *page; 1385 1386 while (index <= end_index) { 1387 page = find_get_page(inode->i_mapping, index); 1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1389 __set_page_dirty_nobuffers(page); 1390 account_page_redirty(page); 1391 put_page(page); 1392 index++; 1393 } 1394 } 1395 1396 /* 1397 * helper function to set both pages and extents in the tree writeback 1398 */ 1399 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1400 { 1401 unsigned long index = start >> PAGE_SHIFT; 1402 unsigned long end_index = end >> PAGE_SHIFT; 1403 struct page *page; 1404 1405 while (index <= end_index) { 1406 page = find_get_page(tree->mapping, index); 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1408 set_page_writeback(page); 1409 put_page(page); 1410 index++; 1411 } 1412 } 1413 1414 /* find the first state struct with 'bits' set after 'start', and 1415 * return it. tree->lock must be held. NULL will returned if 1416 * nothing was found after 'start' 1417 */ 1418 static struct extent_state * 1419 find_first_extent_bit_state(struct extent_io_tree *tree, 1420 u64 start, unsigned bits) 1421 { 1422 struct rb_node *node; 1423 struct extent_state *state; 1424 1425 /* 1426 * this search will find all the extents that end after 1427 * our range starts. 1428 */ 1429 node = tree_search(tree, start); 1430 if (!node) 1431 goto out; 1432 1433 while (1) { 1434 state = rb_entry(node, struct extent_state, rb_node); 1435 if (state->end >= start && (state->state & bits)) 1436 return state; 1437 1438 node = rb_next(node); 1439 if (!node) 1440 break; 1441 } 1442 out: 1443 return NULL; 1444 } 1445 1446 /* 1447 * find the first offset in the io tree with 'bits' set. zero is 1448 * returned if we find something, and *start_ret and *end_ret are 1449 * set to reflect the state struct that was found. 1450 * 1451 * If nothing was found, 1 is returned. If found something, return 0. 1452 */ 1453 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1454 u64 *start_ret, u64 *end_ret, unsigned bits, 1455 struct extent_state **cached_state) 1456 { 1457 struct extent_state *state; 1458 struct rb_node *n; 1459 int ret = 1; 1460 1461 spin_lock(&tree->lock); 1462 if (cached_state && *cached_state) { 1463 state = *cached_state; 1464 if (state->end == start - 1 && extent_state_in_tree(state)) { 1465 n = rb_next(&state->rb_node); 1466 while (n) { 1467 state = rb_entry(n, struct extent_state, 1468 rb_node); 1469 if (state->state & bits) 1470 goto got_it; 1471 n = rb_next(n); 1472 } 1473 free_extent_state(*cached_state); 1474 *cached_state = NULL; 1475 goto out; 1476 } 1477 free_extent_state(*cached_state); 1478 *cached_state = NULL; 1479 } 1480 1481 state = find_first_extent_bit_state(tree, start, bits); 1482 got_it: 1483 if (state) { 1484 cache_state_if_flags(state, cached_state, 0); 1485 *start_ret = state->start; 1486 *end_ret = state->end; 1487 ret = 0; 1488 } 1489 out: 1490 spin_unlock(&tree->lock); 1491 return ret; 1492 } 1493 1494 /* 1495 * find a contiguous range of bytes in the file marked as delalloc, not 1496 * more than 'max_bytes'. start and end are used to return the range, 1497 * 1498 * 1 is returned if we find something, 0 if nothing was in the tree 1499 */ 1500 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1501 u64 *start, u64 *end, u64 max_bytes, 1502 struct extent_state **cached_state) 1503 { 1504 struct rb_node *node; 1505 struct extent_state *state; 1506 u64 cur_start = *start; 1507 u64 found = 0; 1508 u64 total_bytes = 0; 1509 1510 spin_lock(&tree->lock); 1511 1512 /* 1513 * this search will find all the extents that end after 1514 * our range starts. 1515 */ 1516 node = tree_search(tree, cur_start); 1517 if (!node) { 1518 if (!found) 1519 *end = (u64)-1; 1520 goto out; 1521 } 1522 1523 while (1) { 1524 state = rb_entry(node, struct extent_state, rb_node); 1525 if (found && (state->start != cur_start || 1526 (state->state & EXTENT_BOUNDARY))) { 1527 goto out; 1528 } 1529 if (!(state->state & EXTENT_DELALLOC)) { 1530 if (!found) 1531 *end = state->end; 1532 goto out; 1533 } 1534 if (!found) { 1535 *start = state->start; 1536 *cached_state = state; 1537 atomic_inc(&state->refs); 1538 } 1539 found++; 1540 *end = state->end; 1541 cur_start = state->end + 1; 1542 node = rb_next(node); 1543 total_bytes += state->end - state->start + 1; 1544 if (total_bytes >= max_bytes) 1545 break; 1546 if (!node) 1547 break; 1548 } 1549 out: 1550 spin_unlock(&tree->lock); 1551 return found; 1552 } 1553 1554 static noinline void __unlock_for_delalloc(struct inode *inode, 1555 struct page *locked_page, 1556 u64 start, u64 end) 1557 { 1558 int ret; 1559 struct page *pages[16]; 1560 unsigned long index = start >> PAGE_SHIFT; 1561 unsigned long end_index = end >> PAGE_SHIFT; 1562 unsigned long nr_pages = end_index - index + 1; 1563 int i; 1564 1565 if (index == locked_page->index && end_index == index) 1566 return; 1567 1568 while (nr_pages > 0) { 1569 ret = find_get_pages_contig(inode->i_mapping, index, 1570 min_t(unsigned long, nr_pages, 1571 ARRAY_SIZE(pages)), pages); 1572 for (i = 0; i < ret; i++) { 1573 if (pages[i] != locked_page) 1574 unlock_page(pages[i]); 1575 put_page(pages[i]); 1576 } 1577 nr_pages -= ret; 1578 index += ret; 1579 cond_resched(); 1580 } 1581 } 1582 1583 static noinline int lock_delalloc_pages(struct inode *inode, 1584 struct page *locked_page, 1585 u64 delalloc_start, 1586 u64 delalloc_end) 1587 { 1588 unsigned long index = delalloc_start >> PAGE_SHIFT; 1589 unsigned long start_index = index; 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1591 unsigned long pages_locked = 0; 1592 struct page *pages[16]; 1593 unsigned long nrpages; 1594 int ret; 1595 int i; 1596 1597 /* the caller is responsible for locking the start index */ 1598 if (index == locked_page->index && index == end_index) 1599 return 0; 1600 1601 /* skip the page at the start index */ 1602 nrpages = end_index - index + 1; 1603 while (nrpages > 0) { 1604 ret = find_get_pages_contig(inode->i_mapping, index, 1605 min_t(unsigned long, 1606 nrpages, ARRAY_SIZE(pages)), pages); 1607 if (ret == 0) { 1608 ret = -EAGAIN; 1609 goto done; 1610 } 1611 /* now we have an array of pages, lock them all */ 1612 for (i = 0; i < ret; i++) { 1613 /* 1614 * the caller is taking responsibility for 1615 * locked_page 1616 */ 1617 if (pages[i] != locked_page) { 1618 lock_page(pages[i]); 1619 if (!PageDirty(pages[i]) || 1620 pages[i]->mapping != inode->i_mapping) { 1621 ret = -EAGAIN; 1622 unlock_page(pages[i]); 1623 put_page(pages[i]); 1624 goto done; 1625 } 1626 } 1627 put_page(pages[i]); 1628 pages_locked++; 1629 } 1630 nrpages -= ret; 1631 index += ret; 1632 cond_resched(); 1633 } 1634 ret = 0; 1635 done: 1636 if (ret && pages_locked) { 1637 __unlock_for_delalloc(inode, locked_page, 1638 delalloc_start, 1639 ((u64)(start_index + pages_locked - 1)) << 1640 PAGE_SHIFT); 1641 } 1642 return ret; 1643 } 1644 1645 /* 1646 * find a contiguous range of bytes in the file marked as delalloc, not 1647 * more than 'max_bytes'. start and end are used to return the range, 1648 * 1649 * 1 is returned if we find something, 0 if nothing was in the tree 1650 */ 1651 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1652 struct extent_io_tree *tree, 1653 struct page *locked_page, u64 *start, 1654 u64 *end, u64 max_bytes) 1655 { 1656 u64 delalloc_start; 1657 u64 delalloc_end; 1658 u64 found; 1659 struct extent_state *cached_state = NULL; 1660 int ret; 1661 int loops = 0; 1662 1663 again: 1664 /* step one, find a bunch of delalloc bytes starting at start */ 1665 delalloc_start = *start; 1666 delalloc_end = 0; 1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1668 max_bytes, &cached_state); 1669 if (!found || delalloc_end <= *start) { 1670 *start = delalloc_start; 1671 *end = delalloc_end; 1672 free_extent_state(cached_state); 1673 return 0; 1674 } 1675 1676 /* 1677 * start comes from the offset of locked_page. We have to lock 1678 * pages in order, so we can't process delalloc bytes before 1679 * locked_page 1680 */ 1681 if (delalloc_start < *start) 1682 delalloc_start = *start; 1683 1684 /* 1685 * make sure to limit the number of pages we try to lock down 1686 */ 1687 if (delalloc_end + 1 - delalloc_start > max_bytes) 1688 delalloc_end = delalloc_start + max_bytes - 1; 1689 1690 /* step two, lock all the pages after the page that has start */ 1691 ret = lock_delalloc_pages(inode, locked_page, 1692 delalloc_start, delalloc_end); 1693 if (ret == -EAGAIN) { 1694 /* some of the pages are gone, lets avoid looping by 1695 * shortening the size of the delalloc range we're searching 1696 */ 1697 free_extent_state(cached_state); 1698 cached_state = NULL; 1699 if (!loops) { 1700 max_bytes = PAGE_SIZE; 1701 loops = 1; 1702 goto again; 1703 } else { 1704 found = 0; 1705 goto out_failed; 1706 } 1707 } 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1709 1710 /* step three, lock the state bits for the whole range */ 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1712 1713 /* then test to make sure it is all still delalloc */ 1714 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1715 EXTENT_DELALLOC, 1, cached_state); 1716 if (!ret) { 1717 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1718 &cached_state, GFP_NOFS); 1719 __unlock_for_delalloc(inode, locked_page, 1720 delalloc_start, delalloc_end); 1721 cond_resched(); 1722 goto again; 1723 } 1724 free_extent_state(cached_state); 1725 *start = delalloc_start; 1726 *end = delalloc_end; 1727 out_failed: 1728 return found; 1729 } 1730 1731 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1732 struct page *locked_page, 1733 unsigned clear_bits, 1734 unsigned long page_ops) 1735 { 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1737 int ret; 1738 struct page *pages[16]; 1739 unsigned long index = start >> PAGE_SHIFT; 1740 unsigned long end_index = end >> PAGE_SHIFT; 1741 unsigned long nr_pages = end_index - index + 1; 1742 int i; 1743 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1745 if (page_ops == 0) 1746 return; 1747 1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1749 mapping_set_error(inode->i_mapping, -EIO); 1750 1751 while (nr_pages > 0) { 1752 ret = find_get_pages_contig(inode->i_mapping, index, 1753 min_t(unsigned long, 1754 nr_pages, ARRAY_SIZE(pages)), pages); 1755 for (i = 0; i < ret; i++) { 1756 1757 if (page_ops & PAGE_SET_PRIVATE2) 1758 SetPagePrivate2(pages[i]); 1759 1760 if (pages[i] == locked_page) { 1761 put_page(pages[i]); 1762 continue; 1763 } 1764 if (page_ops & PAGE_CLEAR_DIRTY) 1765 clear_page_dirty_for_io(pages[i]); 1766 if (page_ops & PAGE_SET_WRITEBACK) 1767 set_page_writeback(pages[i]); 1768 if (page_ops & PAGE_SET_ERROR) 1769 SetPageError(pages[i]); 1770 if (page_ops & PAGE_END_WRITEBACK) 1771 end_page_writeback(pages[i]); 1772 if (page_ops & PAGE_UNLOCK) 1773 unlock_page(pages[i]); 1774 put_page(pages[i]); 1775 } 1776 nr_pages -= ret; 1777 index += ret; 1778 cond_resched(); 1779 } 1780 } 1781 1782 /* 1783 * count the number of bytes in the tree that have a given bit(s) 1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1785 * cached. The total number found is returned. 1786 */ 1787 u64 count_range_bits(struct extent_io_tree *tree, 1788 u64 *start, u64 search_end, u64 max_bytes, 1789 unsigned bits, int contig) 1790 { 1791 struct rb_node *node; 1792 struct extent_state *state; 1793 u64 cur_start = *start; 1794 u64 total_bytes = 0; 1795 u64 last = 0; 1796 int found = 0; 1797 1798 if (WARN_ON(search_end <= cur_start)) 1799 return 0; 1800 1801 spin_lock(&tree->lock); 1802 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1803 total_bytes = tree->dirty_bytes; 1804 goto out; 1805 } 1806 /* 1807 * this search will find all the extents that end after 1808 * our range starts. 1809 */ 1810 node = tree_search(tree, cur_start); 1811 if (!node) 1812 goto out; 1813 1814 while (1) { 1815 state = rb_entry(node, struct extent_state, rb_node); 1816 if (state->start > search_end) 1817 break; 1818 if (contig && found && state->start > last + 1) 1819 break; 1820 if (state->end >= cur_start && (state->state & bits) == bits) { 1821 total_bytes += min(search_end, state->end) + 1 - 1822 max(cur_start, state->start); 1823 if (total_bytes >= max_bytes) 1824 break; 1825 if (!found) { 1826 *start = max(cur_start, state->start); 1827 found = 1; 1828 } 1829 last = state->end; 1830 } else if (contig && found) { 1831 break; 1832 } 1833 node = rb_next(node); 1834 if (!node) 1835 break; 1836 } 1837 out: 1838 spin_unlock(&tree->lock); 1839 return total_bytes; 1840 } 1841 1842 /* 1843 * set the private field for a given byte offset in the tree. If there isn't 1844 * an extent_state there already, this does nothing. 1845 */ 1846 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1847 struct io_failure_record *failrec) 1848 { 1849 struct rb_node *node; 1850 struct extent_state *state; 1851 int ret = 0; 1852 1853 spin_lock(&tree->lock); 1854 /* 1855 * this search will find all the extents that end after 1856 * our range starts. 1857 */ 1858 node = tree_search(tree, start); 1859 if (!node) { 1860 ret = -ENOENT; 1861 goto out; 1862 } 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 if (state->start != start) { 1865 ret = -ENOENT; 1866 goto out; 1867 } 1868 state->failrec = failrec; 1869 out: 1870 spin_unlock(&tree->lock); 1871 return ret; 1872 } 1873 1874 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1875 struct io_failure_record **failrec) 1876 { 1877 struct rb_node *node; 1878 struct extent_state *state; 1879 int ret = 0; 1880 1881 spin_lock(&tree->lock); 1882 /* 1883 * this search will find all the extents that end after 1884 * our range starts. 1885 */ 1886 node = tree_search(tree, start); 1887 if (!node) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 state = rb_entry(node, struct extent_state, rb_node); 1892 if (state->start != start) { 1893 ret = -ENOENT; 1894 goto out; 1895 } 1896 *failrec = state->failrec; 1897 out: 1898 spin_unlock(&tree->lock); 1899 return ret; 1900 } 1901 1902 /* 1903 * searches a range in the state tree for a given mask. 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree 1905 * has the bits set. Otherwise, 1 is returned if any bit in the 1906 * range is found set. 1907 */ 1908 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1909 unsigned bits, int filled, struct extent_state *cached) 1910 { 1911 struct extent_state *state = NULL; 1912 struct rb_node *node; 1913 int bitset = 0; 1914 1915 spin_lock(&tree->lock); 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1917 cached->end > start) 1918 node = &cached->rb_node; 1919 else 1920 node = tree_search(tree, start); 1921 while (node && start <= end) { 1922 state = rb_entry(node, struct extent_state, rb_node); 1923 1924 if (filled && state->start > start) { 1925 bitset = 0; 1926 break; 1927 } 1928 1929 if (state->start > end) 1930 break; 1931 1932 if (state->state & bits) { 1933 bitset = 1; 1934 if (!filled) 1935 break; 1936 } else if (filled) { 1937 bitset = 0; 1938 break; 1939 } 1940 1941 if (state->end == (u64)-1) 1942 break; 1943 1944 start = state->end + 1; 1945 if (start > end) 1946 break; 1947 node = rb_next(node); 1948 if (!node) { 1949 if (filled) 1950 bitset = 0; 1951 break; 1952 } 1953 } 1954 spin_unlock(&tree->lock); 1955 return bitset; 1956 } 1957 1958 /* 1959 * helper function to set a given page up to date if all the 1960 * extents in the tree for that page are up to date 1961 */ 1962 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1963 { 1964 u64 start = page_offset(page); 1965 u64 end = start + PAGE_SIZE - 1; 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1967 SetPageUptodate(page); 1968 } 1969 1970 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1971 { 1972 int ret; 1973 int err = 0; 1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1975 1976 set_state_failrec(failure_tree, rec->start, NULL); 1977 ret = clear_extent_bits(failure_tree, rec->start, 1978 rec->start + rec->len - 1, 1979 EXTENT_LOCKED | EXTENT_DIRTY); 1980 if (ret) 1981 err = ret; 1982 1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1984 rec->start + rec->len - 1, 1985 EXTENT_DAMAGED); 1986 if (ret && !err) 1987 err = ret; 1988 1989 kfree(rec); 1990 return err; 1991 } 1992 1993 /* 1994 * this bypasses the standard btrfs submit functions deliberately, as 1995 * the standard behavior is to write all copies in a raid setup. here we only 1996 * want to write the one bad copy. so we do the mapping for ourselves and issue 1997 * submit_bio directly. 1998 * to avoid any synchronization issues, wait for the data after writing, which 1999 * actually prevents the read that triggered the error from finishing. 2000 * currently, there can be no more than two copies of every data bit. thus, 2001 * exactly one rewrite is required. 2002 */ 2003 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2004 struct page *page, unsigned int pg_offset, int mirror_num) 2005 { 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2007 struct bio *bio; 2008 struct btrfs_device *dev; 2009 u64 map_length = 0; 2010 u64 sector; 2011 struct btrfs_bio *bbio = NULL; 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2013 int ret; 2014 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2016 BUG_ON(!mirror_num); 2017 2018 /* we can't repair anything in raid56 yet */ 2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2020 return 0; 2021 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2023 if (!bio) 2024 return -EIO; 2025 bio->bi_iter.bi_size = 0; 2026 map_length = length; 2027 2028 /* 2029 * Avoid races with device replace and make sure our bbio has devices 2030 * associated to its stripes that don't go away while we are doing the 2031 * read repair operation. 2032 */ 2033 btrfs_bio_counter_inc_blocked(fs_info); 2034 ret = btrfs_map_block(fs_info, WRITE, logical, 2035 &map_length, &bbio, mirror_num); 2036 if (ret) { 2037 btrfs_bio_counter_dec(fs_info); 2038 bio_put(bio); 2039 return -EIO; 2040 } 2041 BUG_ON(mirror_num != bbio->mirror_num); 2042 sector = bbio->stripes[mirror_num-1].physical >> 9; 2043 bio->bi_iter.bi_sector = sector; 2044 dev = bbio->stripes[mirror_num-1].dev; 2045 btrfs_put_bbio(bbio); 2046 if (!dev || !dev->bdev || !dev->writeable) { 2047 btrfs_bio_counter_dec(fs_info); 2048 bio_put(bio); 2049 return -EIO; 2050 } 2051 bio->bi_bdev = dev->bdev; 2052 bio_add_page(bio, page, length, pg_offset); 2053 2054 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2055 /* try to remap that extent elsewhere? */ 2056 btrfs_bio_counter_dec(fs_info); 2057 bio_put(bio); 2058 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2059 return -EIO; 2060 } 2061 2062 btrfs_info_rl_in_rcu(fs_info, 2063 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2064 btrfs_ino(inode), start, 2065 rcu_str_deref(dev->name), sector); 2066 btrfs_bio_counter_dec(fs_info); 2067 bio_put(bio); 2068 return 0; 2069 } 2070 2071 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2072 int mirror_num) 2073 { 2074 u64 start = eb->start; 2075 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2076 int ret = 0; 2077 2078 if (root->fs_info->sb->s_flags & MS_RDONLY) 2079 return -EROFS; 2080 2081 for (i = 0; i < num_pages; i++) { 2082 struct page *p = eb->pages[i]; 2083 2084 ret = repair_io_failure(root->fs_info->btree_inode, start, 2085 PAGE_SIZE, start, p, 2086 start - page_offset(p), mirror_num); 2087 if (ret) 2088 break; 2089 start += PAGE_SIZE; 2090 } 2091 2092 return ret; 2093 } 2094 2095 /* 2096 * each time an IO finishes, we do a fast check in the IO failure tree 2097 * to see if we need to process or clean up an io_failure_record 2098 */ 2099 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2100 unsigned int pg_offset) 2101 { 2102 u64 private; 2103 struct io_failure_record *failrec; 2104 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2105 struct extent_state *state; 2106 int num_copies; 2107 int ret; 2108 2109 private = 0; 2110 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2111 (u64)-1, 1, EXTENT_DIRTY, 0); 2112 if (!ret) 2113 return 0; 2114 2115 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start, 2116 &failrec); 2117 if (ret) 2118 return 0; 2119 2120 BUG_ON(!failrec->this_mirror); 2121 2122 if (failrec->in_validation) { 2123 /* there was no real error, just free the record */ 2124 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2125 failrec->start); 2126 goto out; 2127 } 2128 if (fs_info->sb->s_flags & MS_RDONLY) 2129 goto out; 2130 2131 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2133 failrec->start, 2134 EXTENT_LOCKED); 2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2136 2137 if (state && state->start <= failrec->start && 2138 state->end >= failrec->start + failrec->len - 1) { 2139 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2140 failrec->len); 2141 if (num_copies > 1) { 2142 repair_io_failure(inode, start, failrec->len, 2143 failrec->logical, page, 2144 pg_offset, failrec->failed_mirror); 2145 } 2146 } 2147 2148 out: 2149 free_io_failure(inode, failrec); 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * Can be called when 2156 * - hold extent lock 2157 * - under ordered extent 2158 * - the inode is freeing 2159 */ 2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2161 { 2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2163 struct io_failure_record *failrec; 2164 struct extent_state *state, *next; 2165 2166 if (RB_EMPTY_ROOT(&failure_tree->state)) 2167 return; 2168 2169 spin_lock(&failure_tree->lock); 2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2171 while (state) { 2172 if (state->start > end) 2173 break; 2174 2175 ASSERT(state->end <= end); 2176 2177 next = next_state(state); 2178 2179 failrec = state->failrec; 2180 free_extent_state(state); 2181 kfree(failrec); 2182 2183 state = next; 2184 } 2185 spin_unlock(&failure_tree->lock); 2186 } 2187 2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2189 struct io_failure_record **failrec_ret) 2190 { 2191 struct io_failure_record *failrec; 2192 struct extent_map *em; 2193 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2194 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2195 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2196 int ret; 2197 u64 logical; 2198 2199 ret = get_state_failrec(failure_tree, start, &failrec); 2200 if (ret) { 2201 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2202 if (!failrec) 2203 return -ENOMEM; 2204 2205 failrec->start = start; 2206 failrec->len = end - start + 1; 2207 failrec->this_mirror = 0; 2208 failrec->bio_flags = 0; 2209 failrec->in_validation = 0; 2210 2211 read_lock(&em_tree->lock); 2212 em = lookup_extent_mapping(em_tree, start, failrec->len); 2213 if (!em) { 2214 read_unlock(&em_tree->lock); 2215 kfree(failrec); 2216 return -EIO; 2217 } 2218 2219 if (em->start > start || em->start + em->len <= start) { 2220 free_extent_map(em); 2221 em = NULL; 2222 } 2223 read_unlock(&em_tree->lock); 2224 if (!em) { 2225 kfree(failrec); 2226 return -EIO; 2227 } 2228 2229 logical = start - em->start; 2230 logical = em->block_start + logical; 2231 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2232 logical = em->block_start; 2233 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2234 extent_set_compress_type(&failrec->bio_flags, 2235 em->compress_type); 2236 } 2237 2238 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2239 logical, start, failrec->len); 2240 2241 failrec->logical = logical; 2242 free_extent_map(em); 2243 2244 /* set the bits in the private failure tree */ 2245 ret = set_extent_bits(failure_tree, start, end, 2246 EXTENT_LOCKED | EXTENT_DIRTY); 2247 if (ret >= 0) 2248 ret = set_state_failrec(failure_tree, start, failrec); 2249 /* set the bits in the inode's tree */ 2250 if (ret >= 0) 2251 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2252 if (ret < 0) { 2253 kfree(failrec); 2254 return ret; 2255 } 2256 } else { 2257 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2258 failrec->logical, failrec->start, failrec->len, 2259 failrec->in_validation); 2260 /* 2261 * when data can be on disk more than twice, add to failrec here 2262 * (e.g. with a list for failed_mirror) to make 2263 * clean_io_failure() clean all those errors at once. 2264 */ 2265 } 2266 2267 *failrec_ret = failrec; 2268 2269 return 0; 2270 } 2271 2272 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2273 struct io_failure_record *failrec, int failed_mirror) 2274 { 2275 int num_copies; 2276 2277 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2278 failrec->logical, failrec->len); 2279 if (num_copies == 1) { 2280 /* 2281 * we only have a single copy of the data, so don't bother with 2282 * all the retry and error correction code that follows. no 2283 * matter what the error is, it is very likely to persist. 2284 */ 2285 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2286 num_copies, failrec->this_mirror, failed_mirror); 2287 return 0; 2288 } 2289 2290 /* 2291 * there are two premises: 2292 * a) deliver good data to the caller 2293 * b) correct the bad sectors on disk 2294 */ 2295 if (failed_bio->bi_vcnt > 1) { 2296 /* 2297 * to fulfill b), we need to know the exact failing sectors, as 2298 * we don't want to rewrite any more than the failed ones. thus, 2299 * we need separate read requests for the failed bio 2300 * 2301 * if the following BUG_ON triggers, our validation request got 2302 * merged. we need separate requests for our algorithm to work. 2303 */ 2304 BUG_ON(failrec->in_validation); 2305 failrec->in_validation = 1; 2306 failrec->this_mirror = failed_mirror; 2307 } else { 2308 /* 2309 * we're ready to fulfill a) and b) alongside. get a good copy 2310 * of the failed sector and if we succeed, we have setup 2311 * everything for repair_io_failure to do the rest for us. 2312 */ 2313 if (failrec->in_validation) { 2314 BUG_ON(failrec->this_mirror != failed_mirror); 2315 failrec->in_validation = 0; 2316 failrec->this_mirror = 0; 2317 } 2318 failrec->failed_mirror = failed_mirror; 2319 failrec->this_mirror++; 2320 if (failrec->this_mirror == failed_mirror) 2321 failrec->this_mirror++; 2322 } 2323 2324 if (failrec->this_mirror > num_copies) { 2325 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2326 num_copies, failrec->this_mirror, failed_mirror); 2327 return 0; 2328 } 2329 2330 return 1; 2331 } 2332 2333 2334 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2335 struct io_failure_record *failrec, 2336 struct page *page, int pg_offset, int icsum, 2337 bio_end_io_t *endio_func, void *data) 2338 { 2339 struct bio *bio; 2340 struct btrfs_io_bio *btrfs_failed_bio; 2341 struct btrfs_io_bio *btrfs_bio; 2342 2343 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2344 if (!bio) 2345 return NULL; 2346 2347 bio->bi_end_io = endio_func; 2348 bio->bi_iter.bi_sector = failrec->logical >> 9; 2349 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2350 bio->bi_iter.bi_size = 0; 2351 bio->bi_private = data; 2352 2353 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2354 if (btrfs_failed_bio->csum) { 2355 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2356 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2357 2358 btrfs_bio = btrfs_io_bio(bio); 2359 btrfs_bio->csum = btrfs_bio->csum_inline; 2360 icsum *= csum_size; 2361 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2362 csum_size); 2363 } 2364 2365 bio_add_page(bio, page, failrec->len, pg_offset); 2366 2367 return bio; 2368 } 2369 2370 /* 2371 * this is a generic handler for readpage errors (default 2372 * readpage_io_failed_hook). if other copies exist, read those and write back 2373 * good data to the failed position. does not investigate in remapping the 2374 * failed extent elsewhere, hoping the device will be smart enough to do this as 2375 * needed 2376 */ 2377 2378 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2379 struct page *page, u64 start, u64 end, 2380 int failed_mirror) 2381 { 2382 struct io_failure_record *failrec; 2383 struct inode *inode = page->mapping->host; 2384 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2385 struct bio *bio; 2386 int read_mode; 2387 int ret; 2388 2389 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2390 2391 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2392 if (ret) 2393 return ret; 2394 2395 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2396 if (!ret) { 2397 free_io_failure(inode, failrec); 2398 return -EIO; 2399 } 2400 2401 if (failed_bio->bi_vcnt > 1) 2402 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2403 else 2404 read_mode = READ_SYNC; 2405 2406 phy_offset >>= inode->i_sb->s_blocksize_bits; 2407 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2408 start - page_offset(page), 2409 (int)phy_offset, failed_bio->bi_end_io, 2410 NULL); 2411 if (!bio) { 2412 free_io_failure(inode, failrec); 2413 return -EIO; 2414 } 2415 2416 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2417 read_mode, failrec->this_mirror, failrec->in_validation); 2418 2419 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2420 failrec->this_mirror, 2421 failrec->bio_flags, 0); 2422 if (ret) { 2423 free_io_failure(inode, failrec); 2424 bio_put(bio); 2425 } 2426 2427 return ret; 2428 } 2429 2430 /* lots and lots of room for performance fixes in the end_bio funcs */ 2431 2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2433 { 2434 int uptodate = (err == 0); 2435 struct extent_io_tree *tree; 2436 int ret = 0; 2437 2438 tree = &BTRFS_I(page->mapping->host)->io_tree; 2439 2440 if (tree->ops && tree->ops->writepage_end_io_hook) { 2441 ret = tree->ops->writepage_end_io_hook(page, start, 2442 end, NULL, uptodate); 2443 if (ret) 2444 uptodate = 0; 2445 } 2446 2447 if (!uptodate) { 2448 ClearPageUptodate(page); 2449 SetPageError(page); 2450 ret = ret < 0 ? ret : -EIO; 2451 mapping_set_error(page->mapping, ret); 2452 } 2453 } 2454 2455 /* 2456 * after a writepage IO is done, we need to: 2457 * clear the uptodate bits on error 2458 * clear the writeback bits in the extent tree for this IO 2459 * end_page_writeback if the page has no more pending IO 2460 * 2461 * Scheduling is not allowed, so the extent state tree is expected 2462 * to have one and only one object corresponding to this IO. 2463 */ 2464 static void end_bio_extent_writepage(struct bio *bio) 2465 { 2466 struct bio_vec *bvec; 2467 u64 start; 2468 u64 end; 2469 int i; 2470 2471 bio_for_each_segment_all(bvec, bio, i) { 2472 struct page *page = bvec->bv_page; 2473 2474 /* We always issue full-page reads, but if some block 2475 * in a page fails to read, blk_update_request() will 2476 * advance bv_offset and adjust bv_len to compensate. 2477 * Print a warning for nonzero offsets, and an error 2478 * if they don't add up to a full page. */ 2479 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2480 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2481 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2482 "partial page write in btrfs with offset %u and length %u", 2483 bvec->bv_offset, bvec->bv_len); 2484 else 2485 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2486 "incomplete page write in btrfs with offset %u and " 2487 "length %u", 2488 bvec->bv_offset, bvec->bv_len); 2489 } 2490 2491 start = page_offset(page); 2492 end = start + bvec->bv_offset + bvec->bv_len - 1; 2493 2494 end_extent_writepage(page, bio->bi_error, start, end); 2495 end_page_writeback(page); 2496 } 2497 2498 bio_put(bio); 2499 } 2500 2501 static void 2502 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2503 int uptodate) 2504 { 2505 struct extent_state *cached = NULL; 2506 u64 end = start + len - 1; 2507 2508 if (uptodate && tree->track_uptodate) 2509 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2510 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2511 } 2512 2513 /* 2514 * after a readpage IO is done, we need to: 2515 * clear the uptodate bits on error 2516 * set the uptodate bits if things worked 2517 * set the page up to date if all extents in the tree are uptodate 2518 * clear the lock bit in the extent tree 2519 * unlock the page if there are no other extents locked for it 2520 * 2521 * Scheduling is not allowed, so the extent state tree is expected 2522 * to have one and only one object corresponding to this IO. 2523 */ 2524 static void end_bio_extent_readpage(struct bio *bio) 2525 { 2526 struct bio_vec *bvec; 2527 int uptodate = !bio->bi_error; 2528 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2529 struct extent_io_tree *tree; 2530 u64 offset = 0; 2531 u64 start; 2532 u64 end; 2533 u64 len; 2534 u64 extent_start = 0; 2535 u64 extent_len = 0; 2536 int mirror; 2537 int ret; 2538 int i; 2539 2540 bio_for_each_segment_all(bvec, bio, i) { 2541 struct page *page = bvec->bv_page; 2542 struct inode *inode = page->mapping->host; 2543 2544 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2545 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2546 bio->bi_error, io_bio->mirror_num); 2547 tree = &BTRFS_I(inode)->io_tree; 2548 2549 /* We always issue full-page reads, but if some block 2550 * in a page fails to read, blk_update_request() will 2551 * advance bv_offset and adjust bv_len to compensate. 2552 * Print a warning for nonzero offsets, and an error 2553 * if they don't add up to a full page. */ 2554 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2555 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2556 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2557 "partial page read in btrfs with offset %u and length %u", 2558 bvec->bv_offset, bvec->bv_len); 2559 else 2560 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2561 "incomplete page read in btrfs with offset %u and " 2562 "length %u", 2563 bvec->bv_offset, bvec->bv_len); 2564 } 2565 2566 start = page_offset(page); 2567 end = start + bvec->bv_offset + bvec->bv_len - 1; 2568 len = bvec->bv_len; 2569 2570 mirror = io_bio->mirror_num; 2571 if (likely(uptodate && tree->ops && 2572 tree->ops->readpage_end_io_hook)) { 2573 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2574 page, start, end, 2575 mirror); 2576 if (ret) 2577 uptodate = 0; 2578 else 2579 clean_io_failure(inode, start, page, 0); 2580 } 2581 2582 if (likely(uptodate)) 2583 goto readpage_ok; 2584 2585 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2586 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2587 if (!ret && !bio->bi_error) 2588 uptodate = 1; 2589 } else { 2590 /* 2591 * The generic bio_readpage_error handles errors the 2592 * following way: If possible, new read requests are 2593 * created and submitted and will end up in 2594 * end_bio_extent_readpage as well (if we're lucky, not 2595 * in the !uptodate case). In that case it returns 0 and 2596 * we just go on with the next page in our bio. If it 2597 * can't handle the error it will return -EIO and we 2598 * remain responsible for that page. 2599 */ 2600 ret = bio_readpage_error(bio, offset, page, start, end, 2601 mirror); 2602 if (ret == 0) { 2603 uptodate = !bio->bi_error; 2604 offset += len; 2605 continue; 2606 } 2607 } 2608 readpage_ok: 2609 if (likely(uptodate)) { 2610 loff_t i_size = i_size_read(inode); 2611 pgoff_t end_index = i_size >> PAGE_SHIFT; 2612 unsigned off; 2613 2614 /* Zero out the end if this page straddles i_size */ 2615 off = i_size & (PAGE_SIZE-1); 2616 if (page->index == end_index && off) 2617 zero_user_segment(page, off, PAGE_SIZE); 2618 SetPageUptodate(page); 2619 } else { 2620 ClearPageUptodate(page); 2621 SetPageError(page); 2622 } 2623 unlock_page(page); 2624 offset += len; 2625 2626 if (unlikely(!uptodate)) { 2627 if (extent_len) { 2628 endio_readpage_release_extent(tree, 2629 extent_start, 2630 extent_len, 1); 2631 extent_start = 0; 2632 extent_len = 0; 2633 } 2634 endio_readpage_release_extent(tree, start, 2635 end - start + 1, 0); 2636 } else if (!extent_len) { 2637 extent_start = start; 2638 extent_len = end + 1 - start; 2639 } else if (extent_start + extent_len == start) { 2640 extent_len += end + 1 - start; 2641 } else { 2642 endio_readpage_release_extent(tree, extent_start, 2643 extent_len, uptodate); 2644 extent_start = start; 2645 extent_len = end + 1 - start; 2646 } 2647 } 2648 2649 if (extent_len) 2650 endio_readpage_release_extent(tree, extent_start, extent_len, 2651 uptodate); 2652 if (io_bio->end_io) 2653 io_bio->end_io(io_bio, bio->bi_error); 2654 bio_put(bio); 2655 } 2656 2657 /* 2658 * this allocates from the btrfs_bioset. We're returning a bio right now 2659 * but you can call btrfs_io_bio for the appropriate container_of magic 2660 */ 2661 struct bio * 2662 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2663 gfp_t gfp_flags) 2664 { 2665 struct btrfs_io_bio *btrfs_bio; 2666 struct bio *bio; 2667 2668 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2669 2670 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2671 while (!bio && (nr_vecs /= 2)) { 2672 bio = bio_alloc_bioset(gfp_flags, 2673 nr_vecs, btrfs_bioset); 2674 } 2675 } 2676 2677 if (bio) { 2678 bio->bi_bdev = bdev; 2679 bio->bi_iter.bi_sector = first_sector; 2680 btrfs_bio = btrfs_io_bio(bio); 2681 btrfs_bio->csum = NULL; 2682 btrfs_bio->csum_allocated = NULL; 2683 btrfs_bio->end_io = NULL; 2684 } 2685 return bio; 2686 } 2687 2688 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2689 { 2690 struct btrfs_io_bio *btrfs_bio; 2691 struct bio *new; 2692 2693 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2694 if (new) { 2695 btrfs_bio = btrfs_io_bio(new); 2696 btrfs_bio->csum = NULL; 2697 btrfs_bio->csum_allocated = NULL; 2698 btrfs_bio->end_io = NULL; 2699 2700 #ifdef CONFIG_BLK_CGROUP 2701 /* FIXME, put this into bio_clone_bioset */ 2702 if (bio->bi_css) 2703 bio_associate_blkcg(new, bio->bi_css); 2704 #endif 2705 } 2706 return new; 2707 } 2708 2709 /* this also allocates from the btrfs_bioset */ 2710 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2711 { 2712 struct btrfs_io_bio *btrfs_bio; 2713 struct bio *bio; 2714 2715 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2716 if (bio) { 2717 btrfs_bio = btrfs_io_bio(bio); 2718 btrfs_bio->csum = NULL; 2719 btrfs_bio->csum_allocated = NULL; 2720 btrfs_bio->end_io = NULL; 2721 } 2722 return bio; 2723 } 2724 2725 2726 static int __must_check submit_one_bio(int rw, struct bio *bio, 2727 int mirror_num, unsigned long bio_flags) 2728 { 2729 int ret = 0; 2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2731 struct page *page = bvec->bv_page; 2732 struct extent_io_tree *tree = bio->bi_private; 2733 u64 start; 2734 2735 start = page_offset(page) + bvec->bv_offset; 2736 2737 bio->bi_private = NULL; 2738 2739 bio_get(bio); 2740 2741 if (tree->ops && tree->ops->submit_bio_hook) 2742 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2743 mirror_num, bio_flags, start); 2744 else 2745 btrfsic_submit_bio(rw, bio); 2746 2747 bio_put(bio); 2748 return ret; 2749 } 2750 2751 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2752 unsigned long offset, size_t size, struct bio *bio, 2753 unsigned long bio_flags) 2754 { 2755 int ret = 0; 2756 if (tree->ops && tree->ops->merge_bio_hook) 2757 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2758 bio_flags); 2759 BUG_ON(ret < 0); 2760 return ret; 2761 2762 } 2763 2764 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2765 struct writeback_control *wbc, 2766 struct page *page, sector_t sector, 2767 size_t size, unsigned long offset, 2768 struct block_device *bdev, 2769 struct bio **bio_ret, 2770 unsigned long max_pages, 2771 bio_end_io_t end_io_func, 2772 int mirror_num, 2773 unsigned long prev_bio_flags, 2774 unsigned long bio_flags, 2775 bool force_bio_submit) 2776 { 2777 int ret = 0; 2778 struct bio *bio; 2779 int contig = 0; 2780 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2781 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2782 2783 if (bio_ret && *bio_ret) { 2784 bio = *bio_ret; 2785 if (old_compressed) 2786 contig = bio->bi_iter.bi_sector == sector; 2787 else 2788 contig = bio_end_sector(bio) == sector; 2789 2790 if (prev_bio_flags != bio_flags || !contig || 2791 force_bio_submit || 2792 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2793 bio_add_page(bio, page, page_size, offset) < page_size) { 2794 ret = submit_one_bio(rw, bio, mirror_num, 2795 prev_bio_flags); 2796 if (ret < 0) { 2797 *bio_ret = NULL; 2798 return ret; 2799 } 2800 bio = NULL; 2801 } else { 2802 if (wbc) 2803 wbc_account_io(wbc, page, page_size); 2804 return 0; 2805 } 2806 } 2807 2808 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2809 GFP_NOFS | __GFP_HIGH); 2810 if (!bio) 2811 return -ENOMEM; 2812 2813 bio_add_page(bio, page, page_size, offset); 2814 bio->bi_end_io = end_io_func; 2815 bio->bi_private = tree; 2816 if (wbc) { 2817 wbc_init_bio(wbc, bio); 2818 wbc_account_io(wbc, page, page_size); 2819 } 2820 2821 if (bio_ret) 2822 *bio_ret = bio; 2823 else 2824 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2825 2826 return ret; 2827 } 2828 2829 static void attach_extent_buffer_page(struct extent_buffer *eb, 2830 struct page *page) 2831 { 2832 if (!PagePrivate(page)) { 2833 SetPagePrivate(page); 2834 get_page(page); 2835 set_page_private(page, (unsigned long)eb); 2836 } else { 2837 WARN_ON(page->private != (unsigned long)eb); 2838 } 2839 } 2840 2841 void set_page_extent_mapped(struct page *page) 2842 { 2843 if (!PagePrivate(page)) { 2844 SetPagePrivate(page); 2845 get_page(page); 2846 set_page_private(page, EXTENT_PAGE_PRIVATE); 2847 } 2848 } 2849 2850 static struct extent_map * 2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2852 u64 start, u64 len, get_extent_t *get_extent, 2853 struct extent_map **em_cached) 2854 { 2855 struct extent_map *em; 2856 2857 if (em_cached && *em_cached) { 2858 em = *em_cached; 2859 if (extent_map_in_tree(em) && start >= em->start && 2860 start < extent_map_end(em)) { 2861 atomic_inc(&em->refs); 2862 return em; 2863 } 2864 2865 free_extent_map(em); 2866 *em_cached = NULL; 2867 } 2868 2869 em = get_extent(inode, page, pg_offset, start, len, 0); 2870 if (em_cached && !IS_ERR_OR_NULL(em)) { 2871 BUG_ON(*em_cached); 2872 atomic_inc(&em->refs); 2873 *em_cached = em; 2874 } 2875 return em; 2876 } 2877 /* 2878 * basic readpage implementation. Locked extent state structs are inserted 2879 * into the tree that are removed when the IO is done (by the end_io 2880 * handlers) 2881 * XXX JDM: This needs looking at to ensure proper page locking 2882 */ 2883 static int __do_readpage(struct extent_io_tree *tree, 2884 struct page *page, 2885 get_extent_t *get_extent, 2886 struct extent_map **em_cached, 2887 struct bio **bio, int mirror_num, 2888 unsigned long *bio_flags, int rw, 2889 u64 *prev_em_start) 2890 { 2891 struct inode *inode = page->mapping->host; 2892 u64 start = page_offset(page); 2893 u64 page_end = start + PAGE_SIZE - 1; 2894 u64 end; 2895 u64 cur = start; 2896 u64 extent_offset; 2897 u64 last_byte = i_size_read(inode); 2898 u64 block_start; 2899 u64 cur_end; 2900 sector_t sector; 2901 struct extent_map *em; 2902 struct block_device *bdev; 2903 int ret; 2904 int nr = 0; 2905 size_t pg_offset = 0; 2906 size_t iosize; 2907 size_t disk_io_size; 2908 size_t blocksize = inode->i_sb->s_blocksize; 2909 unsigned long this_bio_flag = 0; 2910 2911 set_page_extent_mapped(page); 2912 2913 end = page_end; 2914 if (!PageUptodate(page)) { 2915 if (cleancache_get_page(page) == 0) { 2916 BUG_ON(blocksize != PAGE_SIZE); 2917 unlock_extent(tree, start, end); 2918 goto out; 2919 } 2920 } 2921 2922 if (page->index == last_byte >> PAGE_SHIFT) { 2923 char *userpage; 2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1); 2925 2926 if (zero_offset) { 2927 iosize = PAGE_SIZE - zero_offset; 2928 userpage = kmap_atomic(page); 2929 memset(userpage + zero_offset, 0, iosize); 2930 flush_dcache_page(page); 2931 kunmap_atomic(userpage); 2932 } 2933 } 2934 while (cur <= end) { 2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1; 2936 bool force_bio_submit = false; 2937 2938 if (cur >= last_byte) { 2939 char *userpage; 2940 struct extent_state *cached = NULL; 2941 2942 iosize = PAGE_SIZE - pg_offset; 2943 userpage = kmap_atomic(page); 2944 memset(userpage + pg_offset, 0, iosize); 2945 flush_dcache_page(page); 2946 kunmap_atomic(userpage); 2947 set_extent_uptodate(tree, cur, cur + iosize - 1, 2948 &cached, GFP_NOFS); 2949 unlock_extent_cached(tree, cur, 2950 cur + iosize - 1, 2951 &cached, GFP_NOFS); 2952 break; 2953 } 2954 em = __get_extent_map(inode, page, pg_offset, cur, 2955 end - cur + 1, get_extent, em_cached); 2956 if (IS_ERR_OR_NULL(em)) { 2957 SetPageError(page); 2958 unlock_extent(tree, cur, end); 2959 break; 2960 } 2961 extent_offset = cur - em->start; 2962 BUG_ON(extent_map_end(em) <= cur); 2963 BUG_ON(end < cur); 2964 2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2966 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2967 extent_set_compress_type(&this_bio_flag, 2968 em->compress_type); 2969 } 2970 2971 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2972 cur_end = min(extent_map_end(em) - 1, end); 2973 iosize = ALIGN(iosize, blocksize); 2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2975 disk_io_size = em->block_len; 2976 sector = em->block_start >> 9; 2977 } else { 2978 sector = (em->block_start + extent_offset) >> 9; 2979 disk_io_size = iosize; 2980 } 2981 bdev = em->bdev; 2982 block_start = em->block_start; 2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2984 block_start = EXTENT_MAP_HOLE; 2985 2986 /* 2987 * If we have a file range that points to a compressed extent 2988 * and it's followed by a consecutive file range that points to 2989 * to the same compressed extent (possibly with a different 2990 * offset and/or length, so it either points to the whole extent 2991 * or only part of it), we must make sure we do not submit a 2992 * single bio to populate the pages for the 2 ranges because 2993 * this makes the compressed extent read zero out the pages 2994 * belonging to the 2nd range. Imagine the following scenario: 2995 * 2996 * File layout 2997 * [0 - 8K] [8K - 24K] 2998 * | | 2999 * | | 3000 * points to extent X, points to extent X, 3001 * offset 4K, length of 8K offset 0, length 16K 3002 * 3003 * [extent X, compressed length = 4K uncompressed length = 16K] 3004 * 3005 * If the bio to read the compressed extent covers both ranges, 3006 * it will decompress extent X into the pages belonging to the 3007 * first range and then it will stop, zeroing out the remaining 3008 * pages that belong to the other range that points to extent X. 3009 * So here we make sure we submit 2 bios, one for the first 3010 * range and another one for the third range. Both will target 3011 * the same physical extent from disk, but we can't currently 3012 * make the compressed bio endio callback populate the pages 3013 * for both ranges because each compressed bio is tightly 3014 * coupled with a single extent map, and each range can have 3015 * an extent map with a different offset value relative to the 3016 * uncompressed data of our extent and different lengths. This 3017 * is a corner case so we prioritize correctness over 3018 * non-optimal behavior (submitting 2 bios for the same extent). 3019 */ 3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3021 prev_em_start && *prev_em_start != (u64)-1 && 3022 *prev_em_start != em->orig_start) 3023 force_bio_submit = true; 3024 3025 if (prev_em_start) 3026 *prev_em_start = em->orig_start; 3027 3028 free_extent_map(em); 3029 em = NULL; 3030 3031 /* we've found a hole, just zero and go on */ 3032 if (block_start == EXTENT_MAP_HOLE) { 3033 char *userpage; 3034 struct extent_state *cached = NULL; 3035 3036 userpage = kmap_atomic(page); 3037 memset(userpage + pg_offset, 0, iosize); 3038 flush_dcache_page(page); 3039 kunmap_atomic(userpage); 3040 3041 set_extent_uptodate(tree, cur, cur + iosize - 1, 3042 &cached, GFP_NOFS); 3043 unlock_extent_cached(tree, cur, 3044 cur + iosize - 1, 3045 &cached, GFP_NOFS); 3046 cur = cur + iosize; 3047 pg_offset += iosize; 3048 continue; 3049 } 3050 /* the get_extent function already copied into the page */ 3051 if (test_range_bit(tree, cur, cur_end, 3052 EXTENT_UPTODATE, 1, NULL)) { 3053 check_page_uptodate(tree, page); 3054 unlock_extent(tree, cur, cur + iosize - 1); 3055 cur = cur + iosize; 3056 pg_offset += iosize; 3057 continue; 3058 } 3059 /* we have an inline extent but it didn't get marked up 3060 * to date. Error out 3061 */ 3062 if (block_start == EXTENT_MAP_INLINE) { 3063 SetPageError(page); 3064 unlock_extent(tree, cur, cur + iosize - 1); 3065 cur = cur + iosize; 3066 pg_offset += iosize; 3067 continue; 3068 } 3069 3070 pnr -= page->index; 3071 ret = submit_extent_page(rw, tree, NULL, page, 3072 sector, disk_io_size, pg_offset, 3073 bdev, bio, pnr, 3074 end_bio_extent_readpage, mirror_num, 3075 *bio_flags, 3076 this_bio_flag, 3077 force_bio_submit); 3078 if (!ret) { 3079 nr++; 3080 *bio_flags = this_bio_flag; 3081 } else { 3082 SetPageError(page); 3083 unlock_extent(tree, cur, cur + iosize - 1); 3084 } 3085 cur = cur + iosize; 3086 pg_offset += iosize; 3087 } 3088 out: 3089 if (!nr) { 3090 if (!PageError(page)) 3091 SetPageUptodate(page); 3092 unlock_page(page); 3093 } 3094 return 0; 3095 } 3096 3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3098 struct page *pages[], int nr_pages, 3099 u64 start, u64 end, 3100 get_extent_t *get_extent, 3101 struct extent_map **em_cached, 3102 struct bio **bio, int mirror_num, 3103 unsigned long *bio_flags, int rw, 3104 u64 *prev_em_start) 3105 { 3106 struct inode *inode; 3107 struct btrfs_ordered_extent *ordered; 3108 int index; 3109 3110 inode = pages[0]->mapping->host; 3111 while (1) { 3112 lock_extent(tree, start, end); 3113 ordered = btrfs_lookup_ordered_range(inode, start, 3114 end - start + 1); 3115 if (!ordered) 3116 break; 3117 unlock_extent(tree, start, end); 3118 btrfs_start_ordered_extent(inode, ordered, 1); 3119 btrfs_put_ordered_extent(ordered); 3120 } 3121 3122 for (index = 0; index < nr_pages; index++) { 3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3124 mirror_num, bio_flags, rw, prev_em_start); 3125 put_page(pages[index]); 3126 } 3127 } 3128 3129 static void __extent_readpages(struct extent_io_tree *tree, 3130 struct page *pages[], 3131 int nr_pages, get_extent_t *get_extent, 3132 struct extent_map **em_cached, 3133 struct bio **bio, int mirror_num, 3134 unsigned long *bio_flags, int rw, 3135 u64 *prev_em_start) 3136 { 3137 u64 start = 0; 3138 u64 end = 0; 3139 u64 page_start; 3140 int index; 3141 int first_index = 0; 3142 3143 for (index = 0; index < nr_pages; index++) { 3144 page_start = page_offset(pages[index]); 3145 if (!end) { 3146 start = page_start; 3147 end = start + PAGE_SIZE - 1; 3148 first_index = index; 3149 } else if (end + 1 == page_start) { 3150 end += PAGE_SIZE; 3151 } else { 3152 __do_contiguous_readpages(tree, &pages[first_index], 3153 index - first_index, start, 3154 end, get_extent, em_cached, 3155 bio, mirror_num, bio_flags, 3156 rw, prev_em_start); 3157 start = page_start; 3158 end = start + PAGE_SIZE - 1; 3159 first_index = index; 3160 } 3161 } 3162 3163 if (end) 3164 __do_contiguous_readpages(tree, &pages[first_index], 3165 index - first_index, start, 3166 end, get_extent, em_cached, bio, 3167 mirror_num, bio_flags, rw, 3168 prev_em_start); 3169 } 3170 3171 static int __extent_read_full_page(struct extent_io_tree *tree, 3172 struct page *page, 3173 get_extent_t *get_extent, 3174 struct bio **bio, int mirror_num, 3175 unsigned long *bio_flags, int rw) 3176 { 3177 struct inode *inode = page->mapping->host; 3178 struct btrfs_ordered_extent *ordered; 3179 u64 start = page_offset(page); 3180 u64 end = start + PAGE_SIZE - 1; 3181 int ret; 3182 3183 while (1) { 3184 lock_extent(tree, start, end); 3185 ordered = btrfs_lookup_ordered_range(inode, start, 3186 PAGE_SIZE); 3187 if (!ordered) 3188 break; 3189 unlock_extent(tree, start, end); 3190 btrfs_start_ordered_extent(inode, ordered, 1); 3191 btrfs_put_ordered_extent(ordered); 3192 } 3193 3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3195 bio_flags, rw, NULL); 3196 return ret; 3197 } 3198 3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3200 get_extent_t *get_extent, int mirror_num) 3201 { 3202 struct bio *bio = NULL; 3203 unsigned long bio_flags = 0; 3204 int ret; 3205 3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3207 &bio_flags, READ); 3208 if (bio) 3209 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3210 return ret; 3211 } 3212 3213 static void update_nr_written(struct page *page, struct writeback_control *wbc, 3214 unsigned long nr_written) 3215 { 3216 wbc->nr_to_write -= nr_written; 3217 } 3218 3219 /* 3220 * helper for __extent_writepage, doing all of the delayed allocation setup. 3221 * 3222 * This returns 1 if our fill_delalloc function did all the work required 3223 * to write the page (copy into inline extent). In this case the IO has 3224 * been started and the page is already unlocked. 3225 * 3226 * This returns 0 if all went well (page still locked) 3227 * This returns < 0 if there were errors (page still locked) 3228 */ 3229 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3230 struct page *page, struct writeback_control *wbc, 3231 struct extent_page_data *epd, 3232 u64 delalloc_start, 3233 unsigned long *nr_written) 3234 { 3235 struct extent_io_tree *tree = epd->tree; 3236 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3237 u64 nr_delalloc; 3238 u64 delalloc_to_write = 0; 3239 u64 delalloc_end = 0; 3240 int ret; 3241 int page_started = 0; 3242 3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3244 return 0; 3245 3246 while (delalloc_end < page_end) { 3247 nr_delalloc = find_lock_delalloc_range(inode, tree, 3248 page, 3249 &delalloc_start, 3250 &delalloc_end, 3251 BTRFS_MAX_EXTENT_SIZE); 3252 if (nr_delalloc == 0) { 3253 delalloc_start = delalloc_end + 1; 3254 continue; 3255 } 3256 ret = tree->ops->fill_delalloc(inode, page, 3257 delalloc_start, 3258 delalloc_end, 3259 &page_started, 3260 nr_written); 3261 /* File system has been set read-only */ 3262 if (ret) { 3263 SetPageError(page); 3264 /* fill_delalloc should be return < 0 for error 3265 * but just in case, we use > 0 here meaning the 3266 * IO is started, so we don't want to return > 0 3267 * unless things are going well. 3268 */ 3269 ret = ret < 0 ? ret : -EIO; 3270 goto done; 3271 } 3272 /* 3273 * delalloc_end is already one less than the total length, so 3274 * we don't subtract one from PAGE_SIZE 3275 */ 3276 delalloc_to_write += (delalloc_end - delalloc_start + 3277 PAGE_SIZE) >> PAGE_SHIFT; 3278 delalloc_start = delalloc_end + 1; 3279 } 3280 if (wbc->nr_to_write < delalloc_to_write) { 3281 int thresh = 8192; 3282 3283 if (delalloc_to_write < thresh * 2) 3284 thresh = delalloc_to_write; 3285 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3286 thresh); 3287 } 3288 3289 /* did the fill delalloc function already unlock and start 3290 * the IO? 3291 */ 3292 if (page_started) { 3293 /* 3294 * we've unlocked the page, so we can't update 3295 * the mapping's writeback index, just update 3296 * nr_to_write. 3297 */ 3298 wbc->nr_to_write -= *nr_written; 3299 return 1; 3300 } 3301 3302 ret = 0; 3303 3304 done: 3305 return ret; 3306 } 3307 3308 /* 3309 * helper for __extent_writepage. This calls the writepage start hooks, 3310 * and does the loop to map the page into extents and bios. 3311 * 3312 * We return 1 if the IO is started and the page is unlocked, 3313 * 0 if all went well (page still locked) 3314 * < 0 if there were errors (page still locked) 3315 */ 3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3317 struct page *page, 3318 struct writeback_control *wbc, 3319 struct extent_page_data *epd, 3320 loff_t i_size, 3321 unsigned long nr_written, 3322 int write_flags, int *nr_ret) 3323 { 3324 struct extent_io_tree *tree = epd->tree; 3325 u64 start = page_offset(page); 3326 u64 page_end = start + PAGE_SIZE - 1; 3327 u64 end; 3328 u64 cur = start; 3329 u64 extent_offset; 3330 u64 block_start; 3331 u64 iosize; 3332 sector_t sector; 3333 struct extent_state *cached_state = NULL; 3334 struct extent_map *em; 3335 struct block_device *bdev; 3336 size_t pg_offset = 0; 3337 size_t blocksize; 3338 int ret = 0; 3339 int nr = 0; 3340 bool compressed; 3341 3342 if (tree->ops && tree->ops->writepage_start_hook) { 3343 ret = tree->ops->writepage_start_hook(page, start, 3344 page_end); 3345 if (ret) { 3346 /* Fixup worker will requeue */ 3347 if (ret == -EBUSY) 3348 wbc->pages_skipped++; 3349 else 3350 redirty_page_for_writepage(wbc, page); 3351 3352 update_nr_written(page, wbc, nr_written); 3353 unlock_page(page); 3354 ret = 1; 3355 goto done_unlocked; 3356 } 3357 } 3358 3359 /* 3360 * we don't want to touch the inode after unlocking the page, 3361 * so we update the mapping writeback index now 3362 */ 3363 update_nr_written(page, wbc, nr_written + 1); 3364 3365 end = page_end; 3366 if (i_size <= start) { 3367 if (tree->ops && tree->ops->writepage_end_io_hook) 3368 tree->ops->writepage_end_io_hook(page, start, 3369 page_end, NULL, 1); 3370 goto done; 3371 } 3372 3373 blocksize = inode->i_sb->s_blocksize; 3374 3375 while (cur <= end) { 3376 u64 em_end; 3377 unsigned long max_nr; 3378 3379 if (cur >= i_size) { 3380 if (tree->ops && tree->ops->writepage_end_io_hook) 3381 tree->ops->writepage_end_io_hook(page, cur, 3382 page_end, NULL, 1); 3383 break; 3384 } 3385 em = epd->get_extent(inode, page, pg_offset, cur, 3386 end - cur + 1, 1); 3387 if (IS_ERR_OR_NULL(em)) { 3388 SetPageError(page); 3389 ret = PTR_ERR_OR_ZERO(em); 3390 break; 3391 } 3392 3393 extent_offset = cur - em->start; 3394 em_end = extent_map_end(em); 3395 BUG_ON(em_end <= cur); 3396 BUG_ON(end < cur); 3397 iosize = min(em_end - cur, end - cur + 1); 3398 iosize = ALIGN(iosize, blocksize); 3399 sector = (em->block_start + extent_offset) >> 9; 3400 bdev = em->bdev; 3401 block_start = em->block_start; 3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3403 free_extent_map(em); 3404 em = NULL; 3405 3406 /* 3407 * compressed and inline extents are written through other 3408 * paths in the FS 3409 */ 3410 if (compressed || block_start == EXTENT_MAP_HOLE || 3411 block_start == EXTENT_MAP_INLINE) { 3412 /* 3413 * end_io notification does not happen here for 3414 * compressed extents 3415 */ 3416 if (!compressed && tree->ops && 3417 tree->ops->writepage_end_io_hook) 3418 tree->ops->writepage_end_io_hook(page, cur, 3419 cur + iosize - 1, 3420 NULL, 1); 3421 else if (compressed) { 3422 /* we don't want to end_page_writeback on 3423 * a compressed extent. this happens 3424 * elsewhere 3425 */ 3426 nr++; 3427 } 3428 3429 cur += iosize; 3430 pg_offset += iosize; 3431 continue; 3432 } 3433 3434 max_nr = (i_size >> PAGE_SHIFT) + 1; 3435 3436 set_range_writeback(tree, cur, cur + iosize - 1); 3437 if (!PageWriteback(page)) { 3438 btrfs_err(BTRFS_I(inode)->root->fs_info, 3439 "page %lu not writeback, cur %llu end %llu", 3440 page->index, cur, end); 3441 } 3442 3443 ret = submit_extent_page(write_flags, tree, wbc, page, 3444 sector, iosize, pg_offset, 3445 bdev, &epd->bio, max_nr, 3446 end_bio_extent_writepage, 3447 0, 0, 0, false); 3448 if (ret) 3449 SetPageError(page); 3450 3451 cur = cur + iosize; 3452 pg_offset += iosize; 3453 nr++; 3454 } 3455 done: 3456 *nr_ret = nr; 3457 3458 done_unlocked: 3459 3460 /* drop our reference on any cached states */ 3461 free_extent_state(cached_state); 3462 return ret; 3463 } 3464 3465 /* 3466 * the writepage semantics are similar to regular writepage. extent 3467 * records are inserted to lock ranges in the tree, and as dirty areas 3468 * are found, they are marked writeback. Then the lock bits are removed 3469 * and the end_io handler clears the writeback ranges 3470 */ 3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3472 void *data) 3473 { 3474 struct inode *inode = page->mapping->host; 3475 struct extent_page_data *epd = data; 3476 u64 start = page_offset(page); 3477 u64 page_end = start + PAGE_SIZE - 1; 3478 int ret; 3479 int nr = 0; 3480 size_t pg_offset = 0; 3481 loff_t i_size = i_size_read(inode); 3482 unsigned long end_index = i_size >> PAGE_SHIFT; 3483 int write_flags; 3484 unsigned long nr_written = 0; 3485 3486 if (wbc->sync_mode == WB_SYNC_ALL) 3487 write_flags = WRITE_SYNC; 3488 else 3489 write_flags = WRITE; 3490 3491 trace___extent_writepage(page, inode, wbc); 3492 3493 WARN_ON(!PageLocked(page)); 3494 3495 ClearPageError(page); 3496 3497 pg_offset = i_size & (PAGE_SIZE - 1); 3498 if (page->index > end_index || 3499 (page->index == end_index && !pg_offset)) { 3500 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3501 unlock_page(page); 3502 return 0; 3503 } 3504 3505 if (page->index == end_index) { 3506 char *userpage; 3507 3508 userpage = kmap_atomic(page); 3509 memset(userpage + pg_offset, 0, 3510 PAGE_SIZE - pg_offset); 3511 kunmap_atomic(userpage); 3512 flush_dcache_page(page); 3513 } 3514 3515 pg_offset = 0; 3516 3517 set_page_extent_mapped(page); 3518 3519 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3520 if (ret == 1) 3521 goto done_unlocked; 3522 if (ret) 3523 goto done; 3524 3525 ret = __extent_writepage_io(inode, page, wbc, epd, 3526 i_size, nr_written, write_flags, &nr); 3527 if (ret == 1) 3528 goto done_unlocked; 3529 3530 done: 3531 if (nr == 0) { 3532 /* make sure the mapping tag for page dirty gets cleared */ 3533 set_page_writeback(page); 3534 end_page_writeback(page); 3535 } 3536 if (PageError(page)) { 3537 ret = ret < 0 ? ret : -EIO; 3538 end_extent_writepage(page, ret, start, page_end); 3539 } 3540 unlock_page(page); 3541 return ret; 3542 3543 done_unlocked: 3544 return 0; 3545 } 3546 3547 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3548 { 3549 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3550 TASK_UNINTERRUPTIBLE); 3551 } 3552 3553 static noinline_for_stack int 3554 lock_extent_buffer_for_io(struct extent_buffer *eb, 3555 struct btrfs_fs_info *fs_info, 3556 struct extent_page_data *epd) 3557 { 3558 unsigned long i, num_pages; 3559 int flush = 0; 3560 int ret = 0; 3561 3562 if (!btrfs_try_tree_write_lock(eb)) { 3563 flush = 1; 3564 flush_write_bio(epd); 3565 btrfs_tree_lock(eb); 3566 } 3567 3568 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3569 btrfs_tree_unlock(eb); 3570 if (!epd->sync_io) 3571 return 0; 3572 if (!flush) { 3573 flush_write_bio(epd); 3574 flush = 1; 3575 } 3576 while (1) { 3577 wait_on_extent_buffer_writeback(eb); 3578 btrfs_tree_lock(eb); 3579 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3580 break; 3581 btrfs_tree_unlock(eb); 3582 } 3583 } 3584 3585 /* 3586 * We need to do this to prevent races in people who check if the eb is 3587 * under IO since we can end up having no IO bits set for a short period 3588 * of time. 3589 */ 3590 spin_lock(&eb->refs_lock); 3591 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3592 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3593 spin_unlock(&eb->refs_lock); 3594 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3595 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3596 -eb->len, 3597 fs_info->dirty_metadata_batch); 3598 ret = 1; 3599 } else { 3600 spin_unlock(&eb->refs_lock); 3601 } 3602 3603 btrfs_tree_unlock(eb); 3604 3605 if (!ret) 3606 return ret; 3607 3608 num_pages = num_extent_pages(eb->start, eb->len); 3609 for (i = 0; i < num_pages; i++) { 3610 struct page *p = eb->pages[i]; 3611 3612 if (!trylock_page(p)) { 3613 if (!flush) { 3614 flush_write_bio(epd); 3615 flush = 1; 3616 } 3617 lock_page(p); 3618 } 3619 } 3620 3621 return ret; 3622 } 3623 3624 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3625 { 3626 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3627 smp_mb__after_atomic(); 3628 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3629 } 3630 3631 static void set_btree_ioerr(struct page *page) 3632 { 3633 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3634 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3635 3636 SetPageError(page); 3637 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3638 return; 3639 3640 /* 3641 * If writeback for a btree extent that doesn't belong to a log tree 3642 * failed, increment the counter transaction->eb_write_errors. 3643 * We do this because while the transaction is running and before it's 3644 * committing (when we call filemap_fdata[write|wait]_range against 3645 * the btree inode), we might have 3646 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3647 * returns an error or an error happens during writeback, when we're 3648 * committing the transaction we wouldn't know about it, since the pages 3649 * can be no longer dirty nor marked anymore for writeback (if a 3650 * subsequent modification to the extent buffer didn't happen before the 3651 * transaction commit), which makes filemap_fdata[write|wait]_range not 3652 * able to find the pages tagged with SetPageError at transaction 3653 * commit time. So if this happens we must abort the transaction, 3654 * otherwise we commit a super block with btree roots that point to 3655 * btree nodes/leafs whose content on disk is invalid - either garbage 3656 * or the content of some node/leaf from a past generation that got 3657 * cowed or deleted and is no longer valid. 3658 * 3659 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3660 * not be enough - we need to distinguish between log tree extents vs 3661 * non-log tree extents, and the next filemap_fdatawait_range() call 3662 * will catch and clear such errors in the mapping - and that call might 3663 * be from a log sync and not from a transaction commit. Also, checking 3664 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3665 * not done and would not be reliable - the eb might have been released 3666 * from memory and reading it back again means that flag would not be 3667 * set (since it's a runtime flag, not persisted on disk). 3668 * 3669 * Using the flags below in the btree inode also makes us achieve the 3670 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3671 * writeback for all dirty pages and before filemap_fdatawait_range() 3672 * is called, the writeback for all dirty pages had already finished 3673 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3674 * filemap_fdatawait_range() would return success, as it could not know 3675 * that writeback errors happened (the pages were no longer tagged for 3676 * writeback). 3677 */ 3678 switch (eb->log_index) { 3679 case -1: 3680 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3681 break; 3682 case 0: 3683 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3684 break; 3685 case 1: 3686 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3687 break; 3688 default: 3689 BUG(); /* unexpected, logic error */ 3690 } 3691 } 3692 3693 static void end_bio_extent_buffer_writepage(struct bio *bio) 3694 { 3695 struct bio_vec *bvec; 3696 struct extent_buffer *eb; 3697 int i, done; 3698 3699 bio_for_each_segment_all(bvec, bio, i) { 3700 struct page *page = bvec->bv_page; 3701 3702 eb = (struct extent_buffer *)page->private; 3703 BUG_ON(!eb); 3704 done = atomic_dec_and_test(&eb->io_pages); 3705 3706 if (bio->bi_error || 3707 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3708 ClearPageUptodate(page); 3709 set_btree_ioerr(page); 3710 } 3711 3712 end_page_writeback(page); 3713 3714 if (!done) 3715 continue; 3716 3717 end_extent_buffer_writeback(eb); 3718 } 3719 3720 bio_put(bio); 3721 } 3722 3723 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3724 struct btrfs_fs_info *fs_info, 3725 struct writeback_control *wbc, 3726 struct extent_page_data *epd) 3727 { 3728 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3729 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3730 u64 offset = eb->start; 3731 unsigned long i, num_pages; 3732 unsigned long bio_flags = 0; 3733 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3734 int ret = 0; 3735 3736 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3737 num_pages = num_extent_pages(eb->start, eb->len); 3738 atomic_set(&eb->io_pages, num_pages); 3739 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3740 bio_flags = EXTENT_BIO_TREE_LOG; 3741 3742 for (i = 0; i < num_pages; i++) { 3743 struct page *p = eb->pages[i]; 3744 3745 clear_page_dirty_for_io(p); 3746 set_page_writeback(p); 3747 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3748 PAGE_SIZE, 0, bdev, &epd->bio, 3749 -1, end_bio_extent_buffer_writepage, 3750 0, epd->bio_flags, bio_flags, false); 3751 epd->bio_flags = bio_flags; 3752 if (ret) { 3753 set_btree_ioerr(p); 3754 end_page_writeback(p); 3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3756 end_extent_buffer_writeback(eb); 3757 ret = -EIO; 3758 break; 3759 } 3760 offset += PAGE_SIZE; 3761 update_nr_written(p, wbc, 1); 3762 unlock_page(p); 3763 } 3764 3765 if (unlikely(ret)) { 3766 for (; i < num_pages; i++) { 3767 struct page *p = eb->pages[i]; 3768 clear_page_dirty_for_io(p); 3769 unlock_page(p); 3770 } 3771 } 3772 3773 return ret; 3774 } 3775 3776 int btree_write_cache_pages(struct address_space *mapping, 3777 struct writeback_control *wbc) 3778 { 3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3781 struct extent_buffer *eb, *prev_eb = NULL; 3782 struct extent_page_data epd = { 3783 .bio = NULL, 3784 .tree = tree, 3785 .extent_locked = 0, 3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3787 .bio_flags = 0, 3788 }; 3789 int ret = 0; 3790 int done = 0; 3791 int nr_to_write_done = 0; 3792 struct pagevec pvec; 3793 int nr_pages; 3794 pgoff_t index; 3795 pgoff_t end; /* Inclusive */ 3796 int scanned = 0; 3797 int tag; 3798 3799 pagevec_init(&pvec, 0); 3800 if (wbc->range_cyclic) { 3801 index = mapping->writeback_index; /* Start from prev offset */ 3802 end = -1; 3803 } else { 3804 index = wbc->range_start >> PAGE_SHIFT; 3805 end = wbc->range_end >> PAGE_SHIFT; 3806 scanned = 1; 3807 } 3808 if (wbc->sync_mode == WB_SYNC_ALL) 3809 tag = PAGECACHE_TAG_TOWRITE; 3810 else 3811 tag = PAGECACHE_TAG_DIRTY; 3812 retry: 3813 if (wbc->sync_mode == WB_SYNC_ALL) 3814 tag_pages_for_writeback(mapping, index, end); 3815 while (!done && !nr_to_write_done && (index <= end) && 3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3818 unsigned i; 3819 3820 scanned = 1; 3821 for (i = 0; i < nr_pages; i++) { 3822 struct page *page = pvec.pages[i]; 3823 3824 if (!PagePrivate(page)) 3825 continue; 3826 3827 if (!wbc->range_cyclic && page->index > end) { 3828 done = 1; 3829 break; 3830 } 3831 3832 spin_lock(&mapping->private_lock); 3833 if (!PagePrivate(page)) { 3834 spin_unlock(&mapping->private_lock); 3835 continue; 3836 } 3837 3838 eb = (struct extent_buffer *)page->private; 3839 3840 /* 3841 * Shouldn't happen and normally this would be a BUG_ON 3842 * but no sense in crashing the users box for something 3843 * we can survive anyway. 3844 */ 3845 if (WARN_ON(!eb)) { 3846 spin_unlock(&mapping->private_lock); 3847 continue; 3848 } 3849 3850 if (eb == prev_eb) { 3851 spin_unlock(&mapping->private_lock); 3852 continue; 3853 } 3854 3855 ret = atomic_inc_not_zero(&eb->refs); 3856 spin_unlock(&mapping->private_lock); 3857 if (!ret) 3858 continue; 3859 3860 prev_eb = eb; 3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3862 if (!ret) { 3863 free_extent_buffer(eb); 3864 continue; 3865 } 3866 3867 ret = write_one_eb(eb, fs_info, wbc, &epd); 3868 if (ret) { 3869 done = 1; 3870 free_extent_buffer(eb); 3871 break; 3872 } 3873 free_extent_buffer(eb); 3874 3875 /* 3876 * the filesystem may choose to bump up nr_to_write. 3877 * We have to make sure to honor the new nr_to_write 3878 * at any time 3879 */ 3880 nr_to_write_done = wbc->nr_to_write <= 0; 3881 } 3882 pagevec_release(&pvec); 3883 cond_resched(); 3884 } 3885 if (!scanned && !done) { 3886 /* 3887 * We hit the last page and there is more work to be done: wrap 3888 * back to the start of the file 3889 */ 3890 scanned = 1; 3891 index = 0; 3892 goto retry; 3893 } 3894 flush_write_bio(&epd); 3895 return ret; 3896 } 3897 3898 /** 3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3900 * @mapping: address space structure to write 3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3902 * @writepage: function called for each page 3903 * @data: data passed to writepage function 3904 * 3905 * If a page is already under I/O, write_cache_pages() skips it, even 3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3908 * and msync() need to guarantee that all the data which was dirty at the time 3909 * the call was made get new I/O started against them. If wbc->sync_mode is 3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3911 * existing IO to complete. 3912 */ 3913 static int extent_write_cache_pages(struct extent_io_tree *tree, 3914 struct address_space *mapping, 3915 struct writeback_control *wbc, 3916 writepage_t writepage, void *data, 3917 void (*flush_fn)(void *)) 3918 { 3919 struct inode *inode = mapping->host; 3920 int ret = 0; 3921 int done = 0; 3922 int nr_to_write_done = 0; 3923 struct pagevec pvec; 3924 int nr_pages; 3925 pgoff_t index; 3926 pgoff_t end; /* Inclusive */ 3927 pgoff_t done_index; 3928 int range_whole = 0; 3929 int scanned = 0; 3930 int tag; 3931 3932 /* 3933 * We have to hold onto the inode so that ordered extents can do their 3934 * work when the IO finishes. The alternative to this is failing to add 3935 * an ordered extent if the igrab() fails there and that is a huge pain 3936 * to deal with, so instead just hold onto the inode throughout the 3937 * writepages operation. If it fails here we are freeing up the inode 3938 * anyway and we'd rather not waste our time writing out stuff that is 3939 * going to be truncated anyway. 3940 */ 3941 if (!igrab(inode)) 3942 return 0; 3943 3944 pagevec_init(&pvec, 0); 3945 if (wbc->range_cyclic) { 3946 index = mapping->writeback_index; /* Start from prev offset */ 3947 end = -1; 3948 } else { 3949 index = wbc->range_start >> PAGE_SHIFT; 3950 end = wbc->range_end >> PAGE_SHIFT; 3951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3952 range_whole = 1; 3953 scanned = 1; 3954 } 3955 if (wbc->sync_mode == WB_SYNC_ALL) 3956 tag = PAGECACHE_TAG_TOWRITE; 3957 else 3958 tag = PAGECACHE_TAG_DIRTY; 3959 retry: 3960 if (wbc->sync_mode == WB_SYNC_ALL) 3961 tag_pages_for_writeback(mapping, index, end); 3962 done_index = index; 3963 while (!done && !nr_to_write_done && (index <= end) && 3964 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3965 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3966 unsigned i; 3967 3968 scanned = 1; 3969 for (i = 0; i < nr_pages; i++) { 3970 struct page *page = pvec.pages[i]; 3971 3972 done_index = page->index; 3973 /* 3974 * At this point we hold neither mapping->tree_lock nor 3975 * lock on the page itself: the page may be truncated or 3976 * invalidated (changing page->mapping to NULL), or even 3977 * swizzled back from swapper_space to tmpfs file 3978 * mapping 3979 */ 3980 if (!trylock_page(page)) { 3981 flush_fn(data); 3982 lock_page(page); 3983 } 3984 3985 if (unlikely(page->mapping != mapping)) { 3986 unlock_page(page); 3987 continue; 3988 } 3989 3990 if (!wbc->range_cyclic && page->index > end) { 3991 done = 1; 3992 unlock_page(page); 3993 continue; 3994 } 3995 3996 if (wbc->sync_mode != WB_SYNC_NONE) { 3997 if (PageWriteback(page)) 3998 flush_fn(data); 3999 wait_on_page_writeback(page); 4000 } 4001 4002 if (PageWriteback(page) || 4003 !clear_page_dirty_for_io(page)) { 4004 unlock_page(page); 4005 continue; 4006 } 4007 4008 ret = (*writepage)(page, wbc, data); 4009 4010 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4011 unlock_page(page); 4012 ret = 0; 4013 } 4014 if (ret < 0) { 4015 /* 4016 * done_index is set past this page, 4017 * so media errors will not choke 4018 * background writeout for the entire 4019 * file. This has consequences for 4020 * range_cyclic semantics (ie. it may 4021 * not be suitable for data integrity 4022 * writeout). 4023 */ 4024 done_index = page->index + 1; 4025 done = 1; 4026 break; 4027 } 4028 4029 /* 4030 * the filesystem may choose to bump up nr_to_write. 4031 * We have to make sure to honor the new nr_to_write 4032 * at any time 4033 */ 4034 nr_to_write_done = wbc->nr_to_write <= 0; 4035 } 4036 pagevec_release(&pvec); 4037 cond_resched(); 4038 } 4039 if (!scanned && !done) { 4040 /* 4041 * We hit the last page and there is more work to be done: wrap 4042 * back to the start of the file 4043 */ 4044 scanned = 1; 4045 index = 0; 4046 goto retry; 4047 } 4048 4049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4050 mapping->writeback_index = done_index; 4051 4052 btrfs_add_delayed_iput(inode); 4053 return ret; 4054 } 4055 4056 static void flush_epd_write_bio(struct extent_page_data *epd) 4057 { 4058 if (epd->bio) { 4059 int rw = WRITE; 4060 int ret; 4061 4062 if (epd->sync_io) 4063 rw = WRITE_SYNC; 4064 4065 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4066 BUG_ON(ret < 0); /* -ENOMEM */ 4067 epd->bio = NULL; 4068 } 4069 } 4070 4071 static noinline void flush_write_bio(void *data) 4072 { 4073 struct extent_page_data *epd = data; 4074 flush_epd_write_bio(epd); 4075 } 4076 4077 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4078 get_extent_t *get_extent, 4079 struct writeback_control *wbc) 4080 { 4081 int ret; 4082 struct extent_page_data epd = { 4083 .bio = NULL, 4084 .tree = tree, 4085 .get_extent = get_extent, 4086 .extent_locked = 0, 4087 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4088 .bio_flags = 0, 4089 }; 4090 4091 ret = __extent_writepage(page, wbc, &epd); 4092 4093 flush_epd_write_bio(&epd); 4094 return ret; 4095 } 4096 4097 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4098 u64 start, u64 end, get_extent_t *get_extent, 4099 int mode) 4100 { 4101 int ret = 0; 4102 struct address_space *mapping = inode->i_mapping; 4103 struct page *page; 4104 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4105 PAGE_SHIFT; 4106 4107 struct extent_page_data epd = { 4108 .bio = NULL, 4109 .tree = tree, 4110 .get_extent = get_extent, 4111 .extent_locked = 1, 4112 .sync_io = mode == WB_SYNC_ALL, 4113 .bio_flags = 0, 4114 }; 4115 struct writeback_control wbc_writepages = { 4116 .sync_mode = mode, 4117 .nr_to_write = nr_pages * 2, 4118 .range_start = start, 4119 .range_end = end + 1, 4120 }; 4121 4122 while (start <= end) { 4123 page = find_get_page(mapping, start >> PAGE_SHIFT); 4124 if (clear_page_dirty_for_io(page)) 4125 ret = __extent_writepage(page, &wbc_writepages, &epd); 4126 else { 4127 if (tree->ops && tree->ops->writepage_end_io_hook) 4128 tree->ops->writepage_end_io_hook(page, start, 4129 start + PAGE_SIZE - 1, 4130 NULL, 1); 4131 unlock_page(page); 4132 } 4133 put_page(page); 4134 start += PAGE_SIZE; 4135 } 4136 4137 flush_epd_write_bio(&epd); 4138 return ret; 4139 } 4140 4141 int extent_writepages(struct extent_io_tree *tree, 4142 struct address_space *mapping, 4143 get_extent_t *get_extent, 4144 struct writeback_control *wbc) 4145 { 4146 int ret = 0; 4147 struct extent_page_data epd = { 4148 .bio = NULL, 4149 .tree = tree, 4150 .get_extent = get_extent, 4151 .extent_locked = 0, 4152 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4153 .bio_flags = 0, 4154 }; 4155 4156 ret = extent_write_cache_pages(tree, mapping, wbc, 4157 __extent_writepage, &epd, 4158 flush_write_bio); 4159 flush_epd_write_bio(&epd); 4160 return ret; 4161 } 4162 4163 int extent_readpages(struct extent_io_tree *tree, 4164 struct address_space *mapping, 4165 struct list_head *pages, unsigned nr_pages, 4166 get_extent_t get_extent) 4167 { 4168 struct bio *bio = NULL; 4169 unsigned page_idx; 4170 unsigned long bio_flags = 0; 4171 struct page *pagepool[16]; 4172 struct page *page; 4173 struct extent_map *em_cached = NULL; 4174 int nr = 0; 4175 u64 prev_em_start = (u64)-1; 4176 4177 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4178 page = list_entry(pages->prev, struct page, lru); 4179 4180 prefetchw(&page->flags); 4181 list_del(&page->lru); 4182 if (add_to_page_cache_lru(page, mapping, 4183 page->index, GFP_NOFS)) { 4184 put_page(page); 4185 continue; 4186 } 4187 4188 pagepool[nr++] = page; 4189 if (nr < ARRAY_SIZE(pagepool)) 4190 continue; 4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4192 &bio, 0, &bio_flags, READ, &prev_em_start); 4193 nr = 0; 4194 } 4195 if (nr) 4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4197 &bio, 0, &bio_flags, READ, &prev_em_start); 4198 4199 if (em_cached) 4200 free_extent_map(em_cached); 4201 4202 BUG_ON(!list_empty(pages)); 4203 if (bio) 4204 return submit_one_bio(READ, bio, 0, bio_flags); 4205 return 0; 4206 } 4207 4208 /* 4209 * basic invalidatepage code, this waits on any locked or writeback 4210 * ranges corresponding to the page, and then deletes any extent state 4211 * records from the tree 4212 */ 4213 int extent_invalidatepage(struct extent_io_tree *tree, 4214 struct page *page, unsigned long offset) 4215 { 4216 struct extent_state *cached_state = NULL; 4217 u64 start = page_offset(page); 4218 u64 end = start + PAGE_SIZE - 1; 4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4220 4221 start += ALIGN(offset, blocksize); 4222 if (start > end) 4223 return 0; 4224 4225 lock_extent_bits(tree, start, end, &cached_state); 4226 wait_on_page_writeback(page); 4227 clear_extent_bit(tree, start, end, 4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4229 EXTENT_DO_ACCOUNTING, 4230 1, 1, &cached_state, GFP_NOFS); 4231 return 0; 4232 } 4233 4234 /* 4235 * a helper for releasepage, this tests for areas of the page that 4236 * are locked or under IO and drops the related state bits if it is safe 4237 * to drop the page. 4238 */ 4239 static int try_release_extent_state(struct extent_map_tree *map, 4240 struct extent_io_tree *tree, 4241 struct page *page, gfp_t mask) 4242 { 4243 u64 start = page_offset(page); 4244 u64 end = start + PAGE_SIZE - 1; 4245 int ret = 1; 4246 4247 if (test_range_bit(tree, start, end, 4248 EXTENT_IOBITS, 0, NULL)) 4249 ret = 0; 4250 else { 4251 if ((mask & GFP_NOFS) == GFP_NOFS) 4252 mask = GFP_NOFS; 4253 /* 4254 * at this point we can safely clear everything except the 4255 * locked bit and the nodatasum bit 4256 */ 4257 ret = clear_extent_bit(tree, start, end, 4258 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4259 0, 0, NULL, mask); 4260 4261 /* if clear_extent_bit failed for enomem reasons, 4262 * we can't allow the release to continue. 4263 */ 4264 if (ret < 0) 4265 ret = 0; 4266 else 4267 ret = 1; 4268 } 4269 return ret; 4270 } 4271 4272 /* 4273 * a helper for releasepage. As long as there are no locked extents 4274 * in the range corresponding to the page, both state records and extent 4275 * map records are removed 4276 */ 4277 int try_release_extent_mapping(struct extent_map_tree *map, 4278 struct extent_io_tree *tree, struct page *page, 4279 gfp_t mask) 4280 { 4281 struct extent_map *em; 4282 u64 start = page_offset(page); 4283 u64 end = start + PAGE_SIZE - 1; 4284 4285 if (gfpflags_allow_blocking(mask) && 4286 page->mapping->host->i_size > SZ_16M) { 4287 u64 len; 4288 while (start <= end) { 4289 len = end - start + 1; 4290 write_lock(&map->lock); 4291 em = lookup_extent_mapping(map, start, len); 4292 if (!em) { 4293 write_unlock(&map->lock); 4294 break; 4295 } 4296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4297 em->start != start) { 4298 write_unlock(&map->lock); 4299 free_extent_map(em); 4300 break; 4301 } 4302 if (!test_range_bit(tree, em->start, 4303 extent_map_end(em) - 1, 4304 EXTENT_LOCKED | EXTENT_WRITEBACK, 4305 0, NULL)) { 4306 remove_extent_mapping(map, em); 4307 /* once for the rb tree */ 4308 free_extent_map(em); 4309 } 4310 start = extent_map_end(em); 4311 write_unlock(&map->lock); 4312 4313 /* once for us */ 4314 free_extent_map(em); 4315 } 4316 } 4317 return try_release_extent_state(map, tree, page, mask); 4318 } 4319 4320 /* 4321 * helper function for fiemap, which doesn't want to see any holes. 4322 * This maps until we find something past 'last' 4323 */ 4324 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4325 u64 offset, 4326 u64 last, 4327 get_extent_t *get_extent) 4328 { 4329 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4330 struct extent_map *em; 4331 u64 len; 4332 4333 if (offset >= last) 4334 return NULL; 4335 4336 while (1) { 4337 len = last - offset; 4338 if (len == 0) 4339 break; 4340 len = ALIGN(len, sectorsize); 4341 em = get_extent(inode, NULL, 0, offset, len, 0); 4342 if (IS_ERR_OR_NULL(em)) 4343 return em; 4344 4345 /* if this isn't a hole return it */ 4346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4347 em->block_start != EXTENT_MAP_HOLE) { 4348 return em; 4349 } 4350 4351 /* this is a hole, advance to the next extent */ 4352 offset = extent_map_end(em); 4353 free_extent_map(em); 4354 if (offset >= last) 4355 break; 4356 } 4357 return NULL; 4358 } 4359 4360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4361 __u64 start, __u64 len, get_extent_t *get_extent) 4362 { 4363 int ret = 0; 4364 u64 off = start; 4365 u64 max = start + len; 4366 u32 flags = 0; 4367 u32 found_type; 4368 u64 last; 4369 u64 last_for_get_extent = 0; 4370 u64 disko = 0; 4371 u64 isize = i_size_read(inode); 4372 struct btrfs_key found_key; 4373 struct extent_map *em = NULL; 4374 struct extent_state *cached_state = NULL; 4375 struct btrfs_path *path; 4376 struct btrfs_root *root = BTRFS_I(inode)->root; 4377 int end = 0; 4378 u64 em_start = 0; 4379 u64 em_len = 0; 4380 u64 em_end = 0; 4381 4382 if (len == 0) 4383 return -EINVAL; 4384 4385 path = btrfs_alloc_path(); 4386 if (!path) 4387 return -ENOMEM; 4388 path->leave_spinning = 1; 4389 4390 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4391 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4392 4393 /* 4394 * lookup the last file extent. We're not using i_size here 4395 * because there might be preallocation past i_size 4396 */ 4397 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4398 0); 4399 if (ret < 0) { 4400 btrfs_free_path(path); 4401 return ret; 4402 } else { 4403 WARN_ON(!ret); 4404 if (ret == 1) 4405 ret = 0; 4406 } 4407 4408 path->slots[0]--; 4409 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4410 found_type = found_key.type; 4411 4412 /* No extents, but there might be delalloc bits */ 4413 if (found_key.objectid != btrfs_ino(inode) || 4414 found_type != BTRFS_EXTENT_DATA_KEY) { 4415 /* have to trust i_size as the end */ 4416 last = (u64)-1; 4417 last_for_get_extent = isize; 4418 } else { 4419 /* 4420 * remember the start of the last extent. There are a 4421 * bunch of different factors that go into the length of the 4422 * extent, so its much less complex to remember where it started 4423 */ 4424 last = found_key.offset; 4425 last_for_get_extent = last + 1; 4426 } 4427 btrfs_release_path(path); 4428 4429 /* 4430 * we might have some extents allocated but more delalloc past those 4431 * extents. so, we trust isize unless the start of the last extent is 4432 * beyond isize 4433 */ 4434 if (last < isize) { 4435 last = (u64)-1; 4436 last_for_get_extent = isize; 4437 } 4438 4439 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4440 &cached_state); 4441 4442 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4443 get_extent); 4444 if (!em) 4445 goto out; 4446 if (IS_ERR(em)) { 4447 ret = PTR_ERR(em); 4448 goto out; 4449 } 4450 4451 while (!end) { 4452 u64 offset_in_extent = 0; 4453 4454 /* break if the extent we found is outside the range */ 4455 if (em->start >= max || extent_map_end(em) < off) 4456 break; 4457 4458 /* 4459 * get_extent may return an extent that starts before our 4460 * requested range. We have to make sure the ranges 4461 * we return to fiemap always move forward and don't 4462 * overlap, so adjust the offsets here 4463 */ 4464 em_start = max(em->start, off); 4465 4466 /* 4467 * record the offset from the start of the extent 4468 * for adjusting the disk offset below. Only do this if the 4469 * extent isn't compressed since our in ram offset may be past 4470 * what we have actually allocated on disk. 4471 */ 4472 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4473 offset_in_extent = em_start - em->start; 4474 em_end = extent_map_end(em); 4475 em_len = em_end - em_start; 4476 disko = 0; 4477 flags = 0; 4478 4479 /* 4480 * bump off for our next call to get_extent 4481 */ 4482 off = extent_map_end(em); 4483 if (off >= max) 4484 end = 1; 4485 4486 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4487 end = 1; 4488 flags |= FIEMAP_EXTENT_LAST; 4489 } else if (em->block_start == EXTENT_MAP_INLINE) { 4490 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4491 FIEMAP_EXTENT_NOT_ALIGNED); 4492 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4493 flags |= (FIEMAP_EXTENT_DELALLOC | 4494 FIEMAP_EXTENT_UNKNOWN); 4495 } else if (fieinfo->fi_extents_max) { 4496 u64 bytenr = em->block_start - 4497 (em->start - em->orig_start); 4498 4499 disko = em->block_start + offset_in_extent; 4500 4501 /* 4502 * As btrfs supports shared space, this information 4503 * can be exported to userspace tools via 4504 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4505 * then we're just getting a count and we can skip the 4506 * lookup stuff. 4507 */ 4508 ret = btrfs_check_shared(NULL, root->fs_info, 4509 root->objectid, 4510 btrfs_ino(inode), bytenr); 4511 if (ret < 0) 4512 goto out_free; 4513 if (ret) 4514 flags |= FIEMAP_EXTENT_SHARED; 4515 ret = 0; 4516 } 4517 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4518 flags |= FIEMAP_EXTENT_ENCODED; 4519 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4520 flags |= FIEMAP_EXTENT_UNWRITTEN; 4521 4522 free_extent_map(em); 4523 em = NULL; 4524 if ((em_start >= last) || em_len == (u64)-1 || 4525 (last == (u64)-1 && isize <= em_end)) { 4526 flags |= FIEMAP_EXTENT_LAST; 4527 end = 1; 4528 } 4529 4530 /* now scan forward to see if this is really the last extent. */ 4531 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4532 get_extent); 4533 if (IS_ERR(em)) { 4534 ret = PTR_ERR(em); 4535 goto out; 4536 } 4537 if (!em) { 4538 flags |= FIEMAP_EXTENT_LAST; 4539 end = 1; 4540 } 4541 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4542 em_len, flags); 4543 if (ret) { 4544 if (ret == 1) 4545 ret = 0; 4546 goto out_free; 4547 } 4548 } 4549 out_free: 4550 free_extent_map(em); 4551 out: 4552 btrfs_free_path(path); 4553 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4554 &cached_state, GFP_NOFS); 4555 return ret; 4556 } 4557 4558 static void __free_extent_buffer(struct extent_buffer *eb) 4559 { 4560 btrfs_leak_debug_del(&eb->leak_list); 4561 kmem_cache_free(extent_buffer_cache, eb); 4562 } 4563 4564 int extent_buffer_under_io(struct extent_buffer *eb) 4565 { 4566 return (atomic_read(&eb->io_pages) || 4567 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4568 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4569 } 4570 4571 /* 4572 * Helper for releasing extent buffer page. 4573 */ 4574 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4575 { 4576 unsigned long index; 4577 struct page *page; 4578 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4579 4580 BUG_ON(extent_buffer_under_io(eb)); 4581 4582 index = num_extent_pages(eb->start, eb->len); 4583 if (index == 0) 4584 return; 4585 4586 do { 4587 index--; 4588 page = eb->pages[index]; 4589 if (!page) 4590 continue; 4591 if (mapped) 4592 spin_lock(&page->mapping->private_lock); 4593 /* 4594 * We do this since we'll remove the pages after we've 4595 * removed the eb from the radix tree, so we could race 4596 * and have this page now attached to the new eb. So 4597 * only clear page_private if it's still connected to 4598 * this eb. 4599 */ 4600 if (PagePrivate(page) && 4601 page->private == (unsigned long)eb) { 4602 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4603 BUG_ON(PageDirty(page)); 4604 BUG_ON(PageWriteback(page)); 4605 /* 4606 * We need to make sure we haven't be attached 4607 * to a new eb. 4608 */ 4609 ClearPagePrivate(page); 4610 set_page_private(page, 0); 4611 /* One for the page private */ 4612 put_page(page); 4613 } 4614 4615 if (mapped) 4616 spin_unlock(&page->mapping->private_lock); 4617 4618 /* One for when we allocated the page */ 4619 put_page(page); 4620 } while (index != 0); 4621 } 4622 4623 /* 4624 * Helper for releasing the extent buffer. 4625 */ 4626 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4627 { 4628 btrfs_release_extent_buffer_page(eb); 4629 __free_extent_buffer(eb); 4630 } 4631 4632 static struct extent_buffer * 4633 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4634 unsigned long len) 4635 { 4636 struct extent_buffer *eb = NULL; 4637 4638 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4639 eb->start = start; 4640 eb->len = len; 4641 eb->fs_info = fs_info; 4642 eb->bflags = 0; 4643 rwlock_init(&eb->lock); 4644 atomic_set(&eb->write_locks, 0); 4645 atomic_set(&eb->read_locks, 0); 4646 atomic_set(&eb->blocking_readers, 0); 4647 atomic_set(&eb->blocking_writers, 0); 4648 atomic_set(&eb->spinning_readers, 0); 4649 atomic_set(&eb->spinning_writers, 0); 4650 eb->lock_nested = 0; 4651 init_waitqueue_head(&eb->write_lock_wq); 4652 init_waitqueue_head(&eb->read_lock_wq); 4653 4654 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4655 4656 spin_lock_init(&eb->refs_lock); 4657 atomic_set(&eb->refs, 1); 4658 atomic_set(&eb->io_pages, 0); 4659 4660 /* 4661 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4662 */ 4663 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4664 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4665 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4666 4667 return eb; 4668 } 4669 4670 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4671 { 4672 unsigned long i; 4673 struct page *p; 4674 struct extent_buffer *new; 4675 unsigned long num_pages = num_extent_pages(src->start, src->len); 4676 4677 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4678 if (new == NULL) 4679 return NULL; 4680 4681 for (i = 0; i < num_pages; i++) { 4682 p = alloc_page(GFP_NOFS); 4683 if (!p) { 4684 btrfs_release_extent_buffer(new); 4685 return NULL; 4686 } 4687 attach_extent_buffer_page(new, p); 4688 WARN_ON(PageDirty(p)); 4689 SetPageUptodate(p); 4690 new->pages[i] = p; 4691 } 4692 4693 copy_extent_buffer(new, src, 0, 0, src->len); 4694 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4695 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4696 4697 return new; 4698 } 4699 4700 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4701 u64 start, unsigned long len) 4702 { 4703 struct extent_buffer *eb; 4704 unsigned long num_pages; 4705 unsigned long i; 4706 4707 num_pages = num_extent_pages(start, len); 4708 4709 eb = __alloc_extent_buffer(fs_info, start, len); 4710 if (!eb) 4711 return NULL; 4712 4713 for (i = 0; i < num_pages; i++) { 4714 eb->pages[i] = alloc_page(GFP_NOFS); 4715 if (!eb->pages[i]) 4716 goto err; 4717 } 4718 set_extent_buffer_uptodate(eb); 4719 btrfs_set_header_nritems(eb, 0); 4720 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4721 4722 return eb; 4723 err: 4724 for (; i > 0; i--) 4725 __free_page(eb->pages[i - 1]); 4726 __free_extent_buffer(eb); 4727 return NULL; 4728 } 4729 4730 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4731 u64 start, u32 nodesize) 4732 { 4733 unsigned long len; 4734 4735 if (!fs_info) { 4736 /* 4737 * Called only from tests that don't always have a fs_info 4738 * available 4739 */ 4740 len = nodesize; 4741 } else { 4742 len = fs_info->tree_root->nodesize; 4743 } 4744 4745 return __alloc_dummy_extent_buffer(fs_info, start, len); 4746 } 4747 4748 static void check_buffer_tree_ref(struct extent_buffer *eb) 4749 { 4750 int refs; 4751 /* the ref bit is tricky. We have to make sure it is set 4752 * if we have the buffer dirty. Otherwise the 4753 * code to free a buffer can end up dropping a dirty 4754 * page 4755 * 4756 * Once the ref bit is set, it won't go away while the 4757 * buffer is dirty or in writeback, and it also won't 4758 * go away while we have the reference count on the 4759 * eb bumped. 4760 * 4761 * We can't just set the ref bit without bumping the 4762 * ref on the eb because free_extent_buffer might 4763 * see the ref bit and try to clear it. If this happens 4764 * free_extent_buffer might end up dropping our original 4765 * ref by mistake and freeing the page before we are able 4766 * to add one more ref. 4767 * 4768 * So bump the ref count first, then set the bit. If someone 4769 * beat us to it, drop the ref we added. 4770 */ 4771 refs = atomic_read(&eb->refs); 4772 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4773 return; 4774 4775 spin_lock(&eb->refs_lock); 4776 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4777 atomic_inc(&eb->refs); 4778 spin_unlock(&eb->refs_lock); 4779 } 4780 4781 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4782 struct page *accessed) 4783 { 4784 unsigned long num_pages, i; 4785 4786 check_buffer_tree_ref(eb); 4787 4788 num_pages = num_extent_pages(eb->start, eb->len); 4789 for (i = 0; i < num_pages; i++) { 4790 struct page *p = eb->pages[i]; 4791 4792 if (p != accessed) 4793 mark_page_accessed(p); 4794 } 4795 } 4796 4797 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4798 u64 start) 4799 { 4800 struct extent_buffer *eb; 4801 4802 rcu_read_lock(); 4803 eb = radix_tree_lookup(&fs_info->buffer_radix, 4804 start >> PAGE_SHIFT); 4805 if (eb && atomic_inc_not_zero(&eb->refs)) { 4806 rcu_read_unlock(); 4807 /* 4808 * Lock our eb's refs_lock to avoid races with 4809 * free_extent_buffer. When we get our eb it might be flagged 4810 * with EXTENT_BUFFER_STALE and another task running 4811 * free_extent_buffer might have seen that flag set, 4812 * eb->refs == 2, that the buffer isn't under IO (dirty and 4813 * writeback flags not set) and it's still in the tree (flag 4814 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4815 * of decrementing the extent buffer's reference count twice. 4816 * So here we could race and increment the eb's reference count, 4817 * clear its stale flag, mark it as dirty and drop our reference 4818 * before the other task finishes executing free_extent_buffer, 4819 * which would later result in an attempt to free an extent 4820 * buffer that is dirty. 4821 */ 4822 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4823 spin_lock(&eb->refs_lock); 4824 spin_unlock(&eb->refs_lock); 4825 } 4826 mark_extent_buffer_accessed(eb, NULL); 4827 return eb; 4828 } 4829 rcu_read_unlock(); 4830 4831 return NULL; 4832 } 4833 4834 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4835 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4836 u64 start, u32 nodesize) 4837 { 4838 struct extent_buffer *eb, *exists = NULL; 4839 int ret; 4840 4841 eb = find_extent_buffer(fs_info, start); 4842 if (eb) 4843 return eb; 4844 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize); 4845 if (!eb) 4846 return NULL; 4847 eb->fs_info = fs_info; 4848 again: 4849 ret = radix_tree_preload(GFP_NOFS); 4850 if (ret) 4851 goto free_eb; 4852 spin_lock(&fs_info->buffer_lock); 4853 ret = radix_tree_insert(&fs_info->buffer_radix, 4854 start >> PAGE_SHIFT, eb); 4855 spin_unlock(&fs_info->buffer_lock); 4856 radix_tree_preload_end(); 4857 if (ret == -EEXIST) { 4858 exists = find_extent_buffer(fs_info, start); 4859 if (exists) 4860 goto free_eb; 4861 else 4862 goto again; 4863 } 4864 check_buffer_tree_ref(eb); 4865 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4866 4867 /* 4868 * We will free dummy extent buffer's if they come into 4869 * free_extent_buffer with a ref count of 2, but if we are using this we 4870 * want the buffers to stay in memory until we're done with them, so 4871 * bump the ref count again. 4872 */ 4873 atomic_inc(&eb->refs); 4874 return eb; 4875 free_eb: 4876 btrfs_release_extent_buffer(eb); 4877 return exists; 4878 } 4879 #endif 4880 4881 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4882 u64 start) 4883 { 4884 unsigned long len = fs_info->tree_root->nodesize; 4885 unsigned long num_pages = num_extent_pages(start, len); 4886 unsigned long i; 4887 unsigned long index = start >> PAGE_SHIFT; 4888 struct extent_buffer *eb; 4889 struct extent_buffer *exists = NULL; 4890 struct page *p; 4891 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4892 int uptodate = 1; 4893 int ret; 4894 4895 eb = find_extent_buffer(fs_info, start); 4896 if (eb) 4897 return eb; 4898 4899 eb = __alloc_extent_buffer(fs_info, start, len); 4900 if (!eb) 4901 return NULL; 4902 4903 for (i = 0; i < num_pages; i++, index++) { 4904 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4905 if (!p) 4906 goto free_eb; 4907 4908 spin_lock(&mapping->private_lock); 4909 if (PagePrivate(p)) { 4910 /* 4911 * We could have already allocated an eb for this page 4912 * and attached one so lets see if we can get a ref on 4913 * the existing eb, and if we can we know it's good and 4914 * we can just return that one, else we know we can just 4915 * overwrite page->private. 4916 */ 4917 exists = (struct extent_buffer *)p->private; 4918 if (atomic_inc_not_zero(&exists->refs)) { 4919 spin_unlock(&mapping->private_lock); 4920 unlock_page(p); 4921 put_page(p); 4922 mark_extent_buffer_accessed(exists, p); 4923 goto free_eb; 4924 } 4925 exists = NULL; 4926 4927 /* 4928 * Do this so attach doesn't complain and we need to 4929 * drop the ref the old guy had. 4930 */ 4931 ClearPagePrivate(p); 4932 WARN_ON(PageDirty(p)); 4933 put_page(p); 4934 } 4935 attach_extent_buffer_page(eb, p); 4936 spin_unlock(&mapping->private_lock); 4937 WARN_ON(PageDirty(p)); 4938 eb->pages[i] = p; 4939 if (!PageUptodate(p)) 4940 uptodate = 0; 4941 4942 /* 4943 * see below about how we avoid a nasty race with release page 4944 * and why we unlock later 4945 */ 4946 } 4947 if (uptodate) 4948 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4949 again: 4950 ret = radix_tree_preload(GFP_NOFS); 4951 if (ret) 4952 goto free_eb; 4953 4954 spin_lock(&fs_info->buffer_lock); 4955 ret = radix_tree_insert(&fs_info->buffer_radix, 4956 start >> PAGE_SHIFT, eb); 4957 spin_unlock(&fs_info->buffer_lock); 4958 radix_tree_preload_end(); 4959 if (ret == -EEXIST) { 4960 exists = find_extent_buffer(fs_info, start); 4961 if (exists) 4962 goto free_eb; 4963 else 4964 goto again; 4965 } 4966 /* add one reference for the tree */ 4967 check_buffer_tree_ref(eb); 4968 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4969 4970 /* 4971 * there is a race where release page may have 4972 * tried to find this extent buffer in the radix 4973 * but failed. It will tell the VM it is safe to 4974 * reclaim the, and it will clear the page private bit. 4975 * We must make sure to set the page private bit properly 4976 * after the extent buffer is in the radix tree so 4977 * it doesn't get lost 4978 */ 4979 SetPageChecked(eb->pages[0]); 4980 for (i = 1; i < num_pages; i++) { 4981 p = eb->pages[i]; 4982 ClearPageChecked(p); 4983 unlock_page(p); 4984 } 4985 unlock_page(eb->pages[0]); 4986 return eb; 4987 4988 free_eb: 4989 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4990 for (i = 0; i < num_pages; i++) { 4991 if (eb->pages[i]) 4992 unlock_page(eb->pages[i]); 4993 } 4994 4995 btrfs_release_extent_buffer(eb); 4996 return exists; 4997 } 4998 4999 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5000 { 5001 struct extent_buffer *eb = 5002 container_of(head, struct extent_buffer, rcu_head); 5003 5004 __free_extent_buffer(eb); 5005 } 5006 5007 /* Expects to have eb->eb_lock already held */ 5008 static int release_extent_buffer(struct extent_buffer *eb) 5009 { 5010 WARN_ON(atomic_read(&eb->refs) == 0); 5011 if (atomic_dec_and_test(&eb->refs)) { 5012 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5013 struct btrfs_fs_info *fs_info = eb->fs_info; 5014 5015 spin_unlock(&eb->refs_lock); 5016 5017 spin_lock(&fs_info->buffer_lock); 5018 radix_tree_delete(&fs_info->buffer_radix, 5019 eb->start >> PAGE_SHIFT); 5020 spin_unlock(&fs_info->buffer_lock); 5021 } else { 5022 spin_unlock(&eb->refs_lock); 5023 } 5024 5025 /* Should be safe to release our pages at this point */ 5026 btrfs_release_extent_buffer_page(eb); 5027 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5028 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5029 __free_extent_buffer(eb); 5030 return 1; 5031 } 5032 #endif 5033 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5034 return 1; 5035 } 5036 spin_unlock(&eb->refs_lock); 5037 5038 return 0; 5039 } 5040 5041 void free_extent_buffer(struct extent_buffer *eb) 5042 { 5043 int refs; 5044 int old; 5045 if (!eb) 5046 return; 5047 5048 while (1) { 5049 refs = atomic_read(&eb->refs); 5050 if (refs <= 3) 5051 break; 5052 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5053 if (old == refs) 5054 return; 5055 } 5056 5057 spin_lock(&eb->refs_lock); 5058 if (atomic_read(&eb->refs) == 2 && 5059 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5060 atomic_dec(&eb->refs); 5061 5062 if (atomic_read(&eb->refs) == 2 && 5063 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5064 !extent_buffer_under_io(eb) && 5065 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5066 atomic_dec(&eb->refs); 5067 5068 /* 5069 * I know this is terrible, but it's temporary until we stop tracking 5070 * the uptodate bits and such for the extent buffers. 5071 */ 5072 release_extent_buffer(eb); 5073 } 5074 5075 void free_extent_buffer_stale(struct extent_buffer *eb) 5076 { 5077 if (!eb) 5078 return; 5079 5080 spin_lock(&eb->refs_lock); 5081 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5082 5083 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5084 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5085 atomic_dec(&eb->refs); 5086 release_extent_buffer(eb); 5087 } 5088 5089 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5090 { 5091 unsigned long i; 5092 unsigned long num_pages; 5093 struct page *page; 5094 5095 num_pages = num_extent_pages(eb->start, eb->len); 5096 5097 for (i = 0; i < num_pages; i++) { 5098 page = eb->pages[i]; 5099 if (!PageDirty(page)) 5100 continue; 5101 5102 lock_page(page); 5103 WARN_ON(!PagePrivate(page)); 5104 5105 clear_page_dirty_for_io(page); 5106 spin_lock_irq(&page->mapping->tree_lock); 5107 if (!PageDirty(page)) { 5108 radix_tree_tag_clear(&page->mapping->page_tree, 5109 page_index(page), 5110 PAGECACHE_TAG_DIRTY); 5111 } 5112 spin_unlock_irq(&page->mapping->tree_lock); 5113 ClearPageError(page); 5114 unlock_page(page); 5115 } 5116 WARN_ON(atomic_read(&eb->refs) == 0); 5117 } 5118 5119 int set_extent_buffer_dirty(struct extent_buffer *eb) 5120 { 5121 unsigned long i; 5122 unsigned long num_pages; 5123 int was_dirty = 0; 5124 5125 check_buffer_tree_ref(eb); 5126 5127 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5128 5129 num_pages = num_extent_pages(eb->start, eb->len); 5130 WARN_ON(atomic_read(&eb->refs) == 0); 5131 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5132 5133 for (i = 0; i < num_pages; i++) 5134 set_page_dirty(eb->pages[i]); 5135 return was_dirty; 5136 } 5137 5138 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5139 { 5140 unsigned long i; 5141 struct page *page; 5142 unsigned long num_pages; 5143 5144 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5145 num_pages = num_extent_pages(eb->start, eb->len); 5146 for (i = 0; i < num_pages; i++) { 5147 page = eb->pages[i]; 5148 if (page) 5149 ClearPageUptodate(page); 5150 } 5151 } 5152 5153 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5154 { 5155 unsigned long i; 5156 struct page *page; 5157 unsigned long num_pages; 5158 5159 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5160 num_pages = num_extent_pages(eb->start, eb->len); 5161 for (i = 0; i < num_pages; i++) { 5162 page = eb->pages[i]; 5163 SetPageUptodate(page); 5164 } 5165 } 5166 5167 int extent_buffer_uptodate(struct extent_buffer *eb) 5168 { 5169 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5170 } 5171 5172 int read_extent_buffer_pages(struct extent_io_tree *tree, 5173 struct extent_buffer *eb, u64 start, int wait, 5174 get_extent_t *get_extent, int mirror_num) 5175 { 5176 unsigned long i; 5177 unsigned long start_i; 5178 struct page *page; 5179 int err; 5180 int ret = 0; 5181 int locked_pages = 0; 5182 int all_uptodate = 1; 5183 unsigned long num_pages; 5184 unsigned long num_reads = 0; 5185 struct bio *bio = NULL; 5186 unsigned long bio_flags = 0; 5187 5188 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5189 return 0; 5190 5191 if (start) { 5192 WARN_ON(start < eb->start); 5193 start_i = (start >> PAGE_SHIFT) - 5194 (eb->start >> PAGE_SHIFT); 5195 } else { 5196 start_i = 0; 5197 } 5198 5199 num_pages = num_extent_pages(eb->start, eb->len); 5200 for (i = start_i; i < num_pages; i++) { 5201 page = eb->pages[i]; 5202 if (wait == WAIT_NONE) { 5203 if (!trylock_page(page)) 5204 goto unlock_exit; 5205 } else { 5206 lock_page(page); 5207 } 5208 locked_pages++; 5209 if (!PageUptodate(page)) { 5210 num_reads++; 5211 all_uptodate = 0; 5212 } 5213 } 5214 if (all_uptodate) { 5215 if (start_i == 0) 5216 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5217 goto unlock_exit; 5218 } 5219 5220 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5221 eb->read_mirror = 0; 5222 atomic_set(&eb->io_pages, num_reads); 5223 for (i = start_i; i < num_pages; i++) { 5224 page = eb->pages[i]; 5225 if (!PageUptodate(page)) { 5226 ClearPageError(page); 5227 err = __extent_read_full_page(tree, page, 5228 get_extent, &bio, 5229 mirror_num, &bio_flags, 5230 READ | REQ_META); 5231 if (err) 5232 ret = err; 5233 } else { 5234 unlock_page(page); 5235 } 5236 } 5237 5238 if (bio) { 5239 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5240 bio_flags); 5241 if (err) 5242 return err; 5243 } 5244 5245 if (ret || wait != WAIT_COMPLETE) 5246 return ret; 5247 5248 for (i = start_i; i < num_pages; i++) { 5249 page = eb->pages[i]; 5250 wait_on_page_locked(page); 5251 if (!PageUptodate(page)) 5252 ret = -EIO; 5253 } 5254 5255 return ret; 5256 5257 unlock_exit: 5258 i = start_i; 5259 while (locked_pages > 0) { 5260 page = eb->pages[i]; 5261 i++; 5262 unlock_page(page); 5263 locked_pages--; 5264 } 5265 return ret; 5266 } 5267 5268 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5269 unsigned long start, 5270 unsigned long len) 5271 { 5272 size_t cur; 5273 size_t offset; 5274 struct page *page; 5275 char *kaddr; 5276 char *dst = (char *)dstv; 5277 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5278 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5279 5280 WARN_ON(start > eb->len); 5281 WARN_ON(start + len > eb->start + eb->len); 5282 5283 offset = (start_offset + start) & (PAGE_SIZE - 1); 5284 5285 while (len > 0) { 5286 page = eb->pages[i]; 5287 5288 cur = min(len, (PAGE_SIZE - offset)); 5289 kaddr = page_address(page); 5290 memcpy(dst, kaddr + offset, cur); 5291 5292 dst += cur; 5293 len -= cur; 5294 offset = 0; 5295 i++; 5296 } 5297 } 5298 5299 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5300 unsigned long start, 5301 unsigned long len) 5302 { 5303 size_t cur; 5304 size_t offset; 5305 struct page *page; 5306 char *kaddr; 5307 char __user *dst = (char __user *)dstv; 5308 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5309 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5310 int ret = 0; 5311 5312 WARN_ON(start > eb->len); 5313 WARN_ON(start + len > eb->start + eb->len); 5314 5315 offset = (start_offset + start) & (PAGE_SIZE - 1); 5316 5317 while (len > 0) { 5318 page = eb->pages[i]; 5319 5320 cur = min(len, (PAGE_SIZE - offset)); 5321 kaddr = page_address(page); 5322 if (copy_to_user(dst, kaddr + offset, cur)) { 5323 ret = -EFAULT; 5324 break; 5325 } 5326 5327 dst += cur; 5328 len -= cur; 5329 offset = 0; 5330 i++; 5331 } 5332 5333 return ret; 5334 } 5335 5336 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5337 unsigned long min_len, char **map, 5338 unsigned long *map_start, 5339 unsigned long *map_len) 5340 { 5341 size_t offset = start & (PAGE_SIZE - 1); 5342 char *kaddr; 5343 struct page *p; 5344 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5345 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5346 unsigned long end_i = (start_offset + start + min_len - 1) >> 5347 PAGE_SHIFT; 5348 5349 if (i != end_i) 5350 return -EINVAL; 5351 5352 if (i == 0) { 5353 offset = start_offset; 5354 *map_start = 0; 5355 } else { 5356 offset = 0; 5357 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5358 } 5359 5360 if (start + min_len > eb->len) { 5361 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5362 "wanted %lu %lu\n", 5363 eb->start, eb->len, start, min_len); 5364 return -EINVAL; 5365 } 5366 5367 p = eb->pages[i]; 5368 kaddr = page_address(p); 5369 *map = kaddr + offset; 5370 *map_len = PAGE_SIZE - offset; 5371 return 0; 5372 } 5373 5374 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5375 unsigned long start, 5376 unsigned long len) 5377 { 5378 size_t cur; 5379 size_t offset; 5380 struct page *page; 5381 char *kaddr; 5382 char *ptr = (char *)ptrv; 5383 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5384 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5385 int ret = 0; 5386 5387 WARN_ON(start > eb->len); 5388 WARN_ON(start + len > eb->start + eb->len); 5389 5390 offset = (start_offset + start) & (PAGE_SIZE - 1); 5391 5392 while (len > 0) { 5393 page = eb->pages[i]; 5394 5395 cur = min(len, (PAGE_SIZE - offset)); 5396 5397 kaddr = page_address(page); 5398 ret = memcmp(ptr, kaddr + offset, cur); 5399 if (ret) 5400 break; 5401 5402 ptr += cur; 5403 len -= cur; 5404 offset = 0; 5405 i++; 5406 } 5407 return ret; 5408 } 5409 5410 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5411 unsigned long start, unsigned long len) 5412 { 5413 size_t cur; 5414 size_t offset; 5415 struct page *page; 5416 char *kaddr; 5417 char *src = (char *)srcv; 5418 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5419 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5420 5421 WARN_ON(start > eb->len); 5422 WARN_ON(start + len > eb->start + eb->len); 5423 5424 offset = (start_offset + start) & (PAGE_SIZE - 1); 5425 5426 while (len > 0) { 5427 page = eb->pages[i]; 5428 WARN_ON(!PageUptodate(page)); 5429 5430 cur = min(len, PAGE_SIZE - offset); 5431 kaddr = page_address(page); 5432 memcpy(kaddr + offset, src, cur); 5433 5434 src += cur; 5435 len -= cur; 5436 offset = 0; 5437 i++; 5438 } 5439 } 5440 5441 void memset_extent_buffer(struct extent_buffer *eb, char c, 5442 unsigned long start, unsigned long len) 5443 { 5444 size_t cur; 5445 size_t offset; 5446 struct page *page; 5447 char *kaddr; 5448 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5449 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5450 5451 WARN_ON(start > eb->len); 5452 WARN_ON(start + len > eb->start + eb->len); 5453 5454 offset = (start_offset + start) & (PAGE_SIZE - 1); 5455 5456 while (len > 0) { 5457 page = eb->pages[i]; 5458 WARN_ON(!PageUptodate(page)); 5459 5460 cur = min(len, PAGE_SIZE - offset); 5461 kaddr = page_address(page); 5462 memset(kaddr + offset, c, cur); 5463 5464 len -= cur; 5465 offset = 0; 5466 i++; 5467 } 5468 } 5469 5470 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5471 unsigned long dst_offset, unsigned long src_offset, 5472 unsigned long len) 5473 { 5474 u64 dst_len = dst->len; 5475 size_t cur; 5476 size_t offset; 5477 struct page *page; 5478 char *kaddr; 5479 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5480 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5481 5482 WARN_ON(src->len != dst_len); 5483 5484 offset = (start_offset + dst_offset) & 5485 (PAGE_SIZE - 1); 5486 5487 while (len > 0) { 5488 page = dst->pages[i]; 5489 WARN_ON(!PageUptodate(page)); 5490 5491 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5492 5493 kaddr = page_address(page); 5494 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5495 5496 src_offset += cur; 5497 len -= cur; 5498 offset = 0; 5499 i++; 5500 } 5501 } 5502 5503 /* 5504 * The extent buffer bitmap operations are done with byte granularity because 5505 * bitmap items are not guaranteed to be aligned to a word and therefore a 5506 * single word in a bitmap may straddle two pages in the extent buffer. 5507 */ 5508 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE) 5509 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1) 5510 #define BITMAP_FIRST_BYTE_MASK(start) \ 5511 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK) 5512 #define BITMAP_LAST_BYTE_MASK(nbits) \ 5513 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1))) 5514 5515 /* 5516 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5517 * given bit number 5518 * @eb: the extent buffer 5519 * @start: offset of the bitmap item in the extent buffer 5520 * @nr: bit number 5521 * @page_index: return index of the page in the extent buffer that contains the 5522 * given bit number 5523 * @page_offset: return offset into the page given by page_index 5524 * 5525 * This helper hides the ugliness of finding the byte in an extent buffer which 5526 * contains a given bit. 5527 */ 5528 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5529 unsigned long start, unsigned long nr, 5530 unsigned long *page_index, 5531 size_t *page_offset) 5532 { 5533 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1); 5534 size_t byte_offset = BIT_BYTE(nr); 5535 size_t offset; 5536 5537 /* 5538 * The byte we want is the offset of the extent buffer + the offset of 5539 * the bitmap item in the extent buffer + the offset of the byte in the 5540 * bitmap item. 5541 */ 5542 offset = start_offset + start + byte_offset; 5543 5544 *page_index = offset >> PAGE_SHIFT; 5545 *page_offset = offset & (PAGE_SIZE - 1); 5546 } 5547 5548 /** 5549 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5550 * @eb: the extent buffer 5551 * @start: offset of the bitmap item in the extent buffer 5552 * @nr: bit number to test 5553 */ 5554 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5555 unsigned long nr) 5556 { 5557 char *kaddr; 5558 struct page *page; 5559 unsigned long i; 5560 size_t offset; 5561 5562 eb_bitmap_offset(eb, start, nr, &i, &offset); 5563 page = eb->pages[i]; 5564 WARN_ON(!PageUptodate(page)); 5565 kaddr = page_address(page); 5566 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5567 } 5568 5569 /** 5570 * extent_buffer_bitmap_set - set an area of a bitmap 5571 * @eb: the extent buffer 5572 * @start: offset of the bitmap item in the extent buffer 5573 * @pos: bit number of the first bit 5574 * @len: number of bits to set 5575 */ 5576 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5577 unsigned long pos, unsigned long len) 5578 { 5579 char *kaddr; 5580 struct page *page; 5581 unsigned long i; 5582 size_t offset; 5583 const unsigned int size = pos + len; 5584 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5585 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5586 5587 eb_bitmap_offset(eb, start, pos, &i, &offset); 5588 page = eb->pages[i]; 5589 WARN_ON(!PageUptodate(page)); 5590 kaddr = page_address(page); 5591 5592 while (len >= bits_to_set) { 5593 kaddr[offset] |= mask_to_set; 5594 len -= bits_to_set; 5595 bits_to_set = BITS_PER_BYTE; 5596 mask_to_set = ~0U; 5597 if (++offset >= PAGE_SIZE && len > 0) { 5598 offset = 0; 5599 page = eb->pages[++i]; 5600 WARN_ON(!PageUptodate(page)); 5601 kaddr = page_address(page); 5602 } 5603 } 5604 if (len) { 5605 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5606 kaddr[offset] |= mask_to_set; 5607 } 5608 } 5609 5610 5611 /** 5612 * extent_buffer_bitmap_clear - clear an area of a bitmap 5613 * @eb: the extent buffer 5614 * @start: offset of the bitmap item in the extent buffer 5615 * @pos: bit number of the first bit 5616 * @len: number of bits to clear 5617 */ 5618 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5619 unsigned long pos, unsigned long len) 5620 { 5621 char *kaddr; 5622 struct page *page; 5623 unsigned long i; 5624 size_t offset; 5625 const unsigned int size = pos + len; 5626 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5627 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5628 5629 eb_bitmap_offset(eb, start, pos, &i, &offset); 5630 page = eb->pages[i]; 5631 WARN_ON(!PageUptodate(page)); 5632 kaddr = page_address(page); 5633 5634 while (len >= bits_to_clear) { 5635 kaddr[offset] &= ~mask_to_clear; 5636 len -= bits_to_clear; 5637 bits_to_clear = BITS_PER_BYTE; 5638 mask_to_clear = ~0U; 5639 if (++offset >= PAGE_SIZE && len > 0) { 5640 offset = 0; 5641 page = eb->pages[++i]; 5642 WARN_ON(!PageUptodate(page)); 5643 kaddr = page_address(page); 5644 } 5645 } 5646 if (len) { 5647 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5648 kaddr[offset] &= ~mask_to_clear; 5649 } 5650 } 5651 5652 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5653 { 5654 unsigned long distance = (src > dst) ? src - dst : dst - src; 5655 return distance < len; 5656 } 5657 5658 static void copy_pages(struct page *dst_page, struct page *src_page, 5659 unsigned long dst_off, unsigned long src_off, 5660 unsigned long len) 5661 { 5662 char *dst_kaddr = page_address(dst_page); 5663 char *src_kaddr; 5664 int must_memmove = 0; 5665 5666 if (dst_page != src_page) { 5667 src_kaddr = page_address(src_page); 5668 } else { 5669 src_kaddr = dst_kaddr; 5670 if (areas_overlap(src_off, dst_off, len)) 5671 must_memmove = 1; 5672 } 5673 5674 if (must_memmove) 5675 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5676 else 5677 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5678 } 5679 5680 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5681 unsigned long src_offset, unsigned long len) 5682 { 5683 size_t cur; 5684 size_t dst_off_in_page; 5685 size_t src_off_in_page; 5686 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5687 unsigned long dst_i; 5688 unsigned long src_i; 5689 5690 if (src_offset + len > dst->len) { 5691 btrfs_err(dst->fs_info, 5692 "memmove bogus src_offset %lu move " 5693 "len %lu dst len %lu", src_offset, len, dst->len); 5694 BUG_ON(1); 5695 } 5696 if (dst_offset + len > dst->len) { 5697 btrfs_err(dst->fs_info, 5698 "memmove bogus dst_offset %lu move " 5699 "len %lu dst len %lu", dst_offset, len, dst->len); 5700 BUG_ON(1); 5701 } 5702 5703 while (len > 0) { 5704 dst_off_in_page = (start_offset + dst_offset) & 5705 (PAGE_SIZE - 1); 5706 src_off_in_page = (start_offset + src_offset) & 5707 (PAGE_SIZE - 1); 5708 5709 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5710 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5711 5712 cur = min(len, (unsigned long)(PAGE_SIZE - 5713 src_off_in_page)); 5714 cur = min_t(unsigned long, cur, 5715 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5716 5717 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5718 dst_off_in_page, src_off_in_page, cur); 5719 5720 src_offset += cur; 5721 dst_offset += cur; 5722 len -= cur; 5723 } 5724 } 5725 5726 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5727 unsigned long src_offset, unsigned long len) 5728 { 5729 size_t cur; 5730 size_t dst_off_in_page; 5731 size_t src_off_in_page; 5732 unsigned long dst_end = dst_offset + len - 1; 5733 unsigned long src_end = src_offset + len - 1; 5734 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1); 5735 unsigned long dst_i; 5736 unsigned long src_i; 5737 5738 if (src_offset + len > dst->len) { 5739 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5740 "len %lu len %lu", src_offset, len, dst->len); 5741 BUG_ON(1); 5742 } 5743 if (dst_offset + len > dst->len) { 5744 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5745 "len %lu len %lu", dst_offset, len, dst->len); 5746 BUG_ON(1); 5747 } 5748 if (dst_offset < src_offset) { 5749 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5750 return; 5751 } 5752 while (len > 0) { 5753 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5754 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5755 5756 dst_off_in_page = (start_offset + dst_end) & 5757 (PAGE_SIZE - 1); 5758 src_off_in_page = (start_offset + src_end) & 5759 (PAGE_SIZE - 1); 5760 5761 cur = min_t(unsigned long, len, src_off_in_page + 1); 5762 cur = min(cur, dst_off_in_page + 1); 5763 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5764 dst_off_in_page - cur + 1, 5765 src_off_in_page - cur + 1, cur); 5766 5767 dst_end -= cur; 5768 src_end -= cur; 5769 len -= cur; 5770 } 5771 } 5772 5773 int try_release_extent_buffer(struct page *page) 5774 { 5775 struct extent_buffer *eb; 5776 5777 /* 5778 * We need to make sure nobody is attaching this page to an eb right 5779 * now. 5780 */ 5781 spin_lock(&page->mapping->private_lock); 5782 if (!PagePrivate(page)) { 5783 spin_unlock(&page->mapping->private_lock); 5784 return 1; 5785 } 5786 5787 eb = (struct extent_buffer *)page->private; 5788 BUG_ON(!eb); 5789 5790 /* 5791 * This is a little awful but should be ok, we need to make sure that 5792 * the eb doesn't disappear out from under us while we're looking at 5793 * this page. 5794 */ 5795 spin_lock(&eb->refs_lock); 5796 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5797 spin_unlock(&eb->refs_lock); 5798 spin_unlock(&page->mapping->private_lock); 5799 return 0; 5800 } 5801 spin_unlock(&page->mapping->private_lock); 5802 5803 /* 5804 * If tree ref isn't set then we know the ref on this eb is a real ref, 5805 * so just return, this page will likely be freed soon anyway. 5806 */ 5807 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5808 spin_unlock(&eb->refs_lock); 5809 return 0; 5810 } 5811 5812 return release_extent_buffer(eb); 5813 } 5814