1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "block-group.h" 30 31 static struct kmem_cache *extent_state_cache; 32 static struct kmem_cache *extent_buffer_cache; 33 static struct bio_set btrfs_bioset; 34 35 static inline bool extent_state_in_tree(const struct extent_state *state) 36 { 37 return !RB_EMPTY_NODE(&state->rb_node); 38 } 39 40 #ifdef CONFIG_BTRFS_DEBUG 41 static LIST_HEAD(states); 42 static DEFINE_SPINLOCK(leak_lock); 43 44 static inline void btrfs_leak_debug_add(spinlock_t *lock, 45 struct list_head *new, 46 struct list_head *head) 47 { 48 unsigned long flags; 49 50 spin_lock_irqsave(lock, flags); 51 list_add(new, head); 52 spin_unlock_irqrestore(lock, flags); 53 } 54 55 static inline void btrfs_leak_debug_del(spinlock_t *lock, 56 struct list_head *entry) 57 { 58 unsigned long flags; 59 60 spin_lock_irqsave(lock, flags); 61 list_del(entry); 62 spin_unlock_irqrestore(lock, flags); 63 } 64 65 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 66 { 67 struct extent_buffer *eb; 68 unsigned long flags; 69 70 /* 71 * If we didn't get into open_ctree our allocated_ebs will not be 72 * initialized, so just skip this. 73 */ 74 if (!fs_info->allocated_ebs.next) 75 return; 76 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 91 static inline void btrfs_extent_state_leak_debug_check(void) 92 { 93 struct extent_state *state; 94 95 while (!list_empty(&states)) { 96 state = list_entry(states.next, struct extent_state, leak_list); 97 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 98 state->start, state->end, state->state, 99 extent_state_in_tree(state), 100 refcount_read(&state->refs)); 101 list_del(&state->leak_list); 102 kmem_cache_free(extent_state_cache, state); 103 } 104 } 105 106 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 107 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 108 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 109 struct extent_io_tree *tree, u64 start, u64 end) 110 { 111 struct inode *inode = tree->private_data; 112 u64 isize; 113 114 if (!inode || !is_data_inode(inode)) 115 return; 116 117 isize = i_size_read(inode); 118 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 119 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 120 "%s: ino %llu isize %llu odd range [%llu,%llu]", 121 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 122 } 123 } 124 #else 125 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 126 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 127 #define btrfs_extent_state_leak_debug_check() do {} while (0) 128 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 129 #endif 130 131 struct tree_entry { 132 u64 start; 133 u64 end; 134 struct rb_node rb_node; 135 }; 136 137 struct extent_page_data { 138 struct bio *bio; 139 /* tells writepage not to lock the state bits for this range 140 * it still does the unlocking 141 */ 142 unsigned int extent_locked:1; 143 144 /* tells the submit_bio code to use REQ_SYNC */ 145 unsigned int sync_io:1; 146 }; 147 148 static int add_extent_changeset(struct extent_state *state, u32 bits, 149 struct extent_changeset *changeset, 150 int set) 151 { 152 int ret; 153 154 if (!changeset) 155 return 0; 156 if (set && (state->state & bits) == bits) 157 return 0; 158 if (!set && (state->state & bits) == 0) 159 return 0; 160 changeset->bytes_changed += state->end - state->start + 1; 161 ret = ulist_add(&changeset->range_changed, state->start, state->end, 162 GFP_ATOMIC); 163 return ret; 164 } 165 166 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 167 unsigned long bio_flags) 168 { 169 blk_status_t ret = 0; 170 struct extent_io_tree *tree = bio->bi_private; 171 172 bio->bi_private = NULL; 173 174 if (is_data_inode(tree->private_data)) 175 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 176 bio_flags); 177 else 178 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 179 mirror_num, bio_flags); 180 181 return blk_status_to_errno(ret); 182 } 183 184 /* Cleanup unsubmitted bios */ 185 static void end_write_bio(struct extent_page_data *epd, int ret) 186 { 187 if (epd->bio) { 188 epd->bio->bi_status = errno_to_blk_status(ret); 189 bio_endio(epd->bio); 190 epd->bio = NULL; 191 } 192 } 193 194 /* 195 * Submit bio from extent page data via submit_one_bio 196 * 197 * Return 0 if everything is OK. 198 * Return <0 for error. 199 */ 200 static int __must_check flush_write_bio(struct extent_page_data *epd) 201 { 202 int ret = 0; 203 204 if (epd->bio) { 205 ret = submit_one_bio(epd->bio, 0, 0); 206 /* 207 * Clean up of epd->bio is handled by its endio function. 208 * And endio is either triggered by successful bio execution 209 * or the error handler of submit bio hook. 210 * So at this point, no matter what happened, we don't need 211 * to clean up epd->bio. 212 */ 213 epd->bio = NULL; 214 } 215 return ret; 216 } 217 218 int __init extent_state_cache_init(void) 219 { 220 extent_state_cache = kmem_cache_create("btrfs_extent_state", 221 sizeof(struct extent_state), 0, 222 SLAB_MEM_SPREAD, NULL); 223 if (!extent_state_cache) 224 return -ENOMEM; 225 return 0; 226 } 227 228 int __init extent_io_init(void) 229 { 230 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 231 sizeof(struct extent_buffer), 0, 232 SLAB_MEM_SPREAD, NULL); 233 if (!extent_buffer_cache) 234 return -ENOMEM; 235 236 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 237 offsetof(struct btrfs_io_bio, bio), 238 BIOSET_NEED_BVECS)) 239 goto free_buffer_cache; 240 241 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 242 goto free_bioset; 243 244 return 0; 245 246 free_bioset: 247 bioset_exit(&btrfs_bioset); 248 249 free_buffer_cache: 250 kmem_cache_destroy(extent_buffer_cache); 251 extent_buffer_cache = NULL; 252 return -ENOMEM; 253 } 254 255 void __cold extent_state_cache_exit(void) 256 { 257 btrfs_extent_state_leak_debug_check(); 258 kmem_cache_destroy(extent_state_cache); 259 } 260 261 void __cold extent_io_exit(void) 262 { 263 /* 264 * Make sure all delayed rcu free are flushed before we 265 * destroy caches. 266 */ 267 rcu_barrier(); 268 kmem_cache_destroy(extent_buffer_cache); 269 bioset_exit(&btrfs_bioset); 270 } 271 272 /* 273 * For the file_extent_tree, we want to hold the inode lock when we lookup and 274 * update the disk_i_size, but lockdep will complain because our io_tree we hold 275 * the tree lock and get the inode lock when setting delalloc. These two things 276 * are unrelated, so make a class for the file_extent_tree so we don't get the 277 * two locking patterns mixed up. 278 */ 279 static struct lock_class_key file_extent_tree_class; 280 281 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 282 struct extent_io_tree *tree, unsigned int owner, 283 void *private_data) 284 { 285 tree->fs_info = fs_info; 286 tree->state = RB_ROOT; 287 tree->dirty_bytes = 0; 288 spin_lock_init(&tree->lock); 289 tree->private_data = private_data; 290 tree->owner = owner; 291 if (owner == IO_TREE_INODE_FILE_EXTENT) 292 lockdep_set_class(&tree->lock, &file_extent_tree_class); 293 } 294 295 void extent_io_tree_release(struct extent_io_tree *tree) 296 { 297 spin_lock(&tree->lock); 298 /* 299 * Do a single barrier for the waitqueue_active check here, the state 300 * of the waitqueue should not change once extent_io_tree_release is 301 * called. 302 */ 303 smp_mb(); 304 while (!RB_EMPTY_ROOT(&tree->state)) { 305 struct rb_node *node; 306 struct extent_state *state; 307 308 node = rb_first(&tree->state); 309 state = rb_entry(node, struct extent_state, rb_node); 310 rb_erase(&state->rb_node, &tree->state); 311 RB_CLEAR_NODE(&state->rb_node); 312 /* 313 * btree io trees aren't supposed to have tasks waiting for 314 * changes in the flags of extent states ever. 315 */ 316 ASSERT(!waitqueue_active(&state->wq)); 317 free_extent_state(state); 318 319 cond_resched_lock(&tree->lock); 320 } 321 spin_unlock(&tree->lock); 322 } 323 324 static struct extent_state *alloc_extent_state(gfp_t mask) 325 { 326 struct extent_state *state; 327 328 /* 329 * The given mask might be not appropriate for the slab allocator, 330 * drop the unsupported bits 331 */ 332 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 333 state = kmem_cache_alloc(extent_state_cache, mask); 334 if (!state) 335 return state; 336 state->state = 0; 337 state->failrec = NULL; 338 RB_CLEAR_NODE(&state->rb_node); 339 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 340 refcount_set(&state->refs, 1); 341 init_waitqueue_head(&state->wq); 342 trace_alloc_extent_state(state, mask, _RET_IP_); 343 return state; 344 } 345 346 void free_extent_state(struct extent_state *state) 347 { 348 if (!state) 349 return; 350 if (refcount_dec_and_test(&state->refs)) { 351 WARN_ON(extent_state_in_tree(state)); 352 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 353 trace_free_extent_state(state, _RET_IP_); 354 kmem_cache_free(extent_state_cache, state); 355 } 356 } 357 358 static struct rb_node *tree_insert(struct rb_root *root, 359 struct rb_node *search_start, 360 u64 offset, 361 struct rb_node *node, 362 struct rb_node ***p_in, 363 struct rb_node **parent_in) 364 { 365 struct rb_node **p; 366 struct rb_node *parent = NULL; 367 struct tree_entry *entry; 368 369 if (p_in && parent_in) { 370 p = *p_in; 371 parent = *parent_in; 372 goto do_insert; 373 } 374 375 p = search_start ? &search_start : &root->rb_node; 376 while (*p) { 377 parent = *p; 378 entry = rb_entry(parent, struct tree_entry, rb_node); 379 380 if (offset < entry->start) 381 p = &(*p)->rb_left; 382 else if (offset > entry->end) 383 p = &(*p)->rb_right; 384 else 385 return parent; 386 } 387 388 do_insert: 389 rb_link_node(node, parent, p); 390 rb_insert_color(node, root); 391 return NULL; 392 } 393 394 /** 395 * Search @tree for an entry that contains @offset. Such entry would have 396 * entry->start <= offset && entry->end >= offset. 397 * 398 * @tree: the tree to search 399 * @offset: offset that should fall within an entry in @tree 400 * @next_ret: pointer to the first entry whose range ends after @offset 401 * @prev_ret: pointer to the first entry whose range begins before @offset 402 * @p_ret: pointer where new node should be anchored (used when inserting an 403 * entry in the tree) 404 * @parent_ret: points to entry which would have been the parent of the entry, 405 * containing @offset 406 * 407 * This function returns a pointer to the entry that contains @offset byte 408 * address. If no such entry exists, then NULL is returned and the other 409 * pointer arguments to the function are filled, otherwise the found entry is 410 * returned and other pointers are left untouched. 411 */ 412 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 413 struct rb_node **next_ret, 414 struct rb_node **prev_ret, 415 struct rb_node ***p_ret, 416 struct rb_node **parent_ret) 417 { 418 struct rb_root *root = &tree->state; 419 struct rb_node **n = &root->rb_node; 420 struct rb_node *prev = NULL; 421 struct rb_node *orig_prev = NULL; 422 struct tree_entry *entry; 423 struct tree_entry *prev_entry = NULL; 424 425 while (*n) { 426 prev = *n; 427 entry = rb_entry(prev, struct tree_entry, rb_node); 428 prev_entry = entry; 429 430 if (offset < entry->start) 431 n = &(*n)->rb_left; 432 else if (offset > entry->end) 433 n = &(*n)->rb_right; 434 else 435 return *n; 436 } 437 438 if (p_ret) 439 *p_ret = n; 440 if (parent_ret) 441 *parent_ret = prev; 442 443 if (next_ret) { 444 orig_prev = prev; 445 while (prev && offset > prev_entry->end) { 446 prev = rb_next(prev); 447 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 448 } 449 *next_ret = prev; 450 prev = orig_prev; 451 } 452 453 if (prev_ret) { 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 while (prev && offset < prev_entry->start) { 456 prev = rb_prev(prev); 457 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 458 } 459 *prev_ret = prev; 460 } 461 return NULL; 462 } 463 464 static inline struct rb_node * 465 tree_search_for_insert(struct extent_io_tree *tree, 466 u64 offset, 467 struct rb_node ***p_ret, 468 struct rb_node **parent_ret) 469 { 470 struct rb_node *next= NULL; 471 struct rb_node *ret; 472 473 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 474 if (!ret) 475 return next; 476 return ret; 477 } 478 479 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 480 u64 offset) 481 { 482 return tree_search_for_insert(tree, offset, NULL, NULL); 483 } 484 485 /* 486 * utility function to look for merge candidates inside a given range. 487 * Any extents with matching state are merged together into a single 488 * extent in the tree. Extents with EXTENT_IO in their state field 489 * are not merged because the end_io handlers need to be able to do 490 * operations on them without sleeping (or doing allocations/splits). 491 * 492 * This should be called with the tree lock held. 493 */ 494 static void merge_state(struct extent_io_tree *tree, 495 struct extent_state *state) 496 { 497 struct extent_state *other; 498 struct rb_node *other_node; 499 500 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 501 return; 502 503 other_node = rb_prev(&state->rb_node); 504 if (other_node) { 505 other = rb_entry(other_node, struct extent_state, rb_node); 506 if (other->end == state->start - 1 && 507 other->state == state->state) { 508 if (tree->private_data && 509 is_data_inode(tree->private_data)) 510 btrfs_merge_delalloc_extent(tree->private_data, 511 state, other); 512 state->start = other->start; 513 rb_erase(&other->rb_node, &tree->state); 514 RB_CLEAR_NODE(&other->rb_node); 515 free_extent_state(other); 516 } 517 } 518 other_node = rb_next(&state->rb_node); 519 if (other_node) { 520 other = rb_entry(other_node, struct extent_state, rb_node); 521 if (other->start == state->end + 1 && 522 other->state == state->state) { 523 if (tree->private_data && 524 is_data_inode(tree->private_data)) 525 btrfs_merge_delalloc_extent(tree->private_data, 526 state, other); 527 state->end = other->end; 528 rb_erase(&other->rb_node, &tree->state); 529 RB_CLEAR_NODE(&other->rb_node); 530 free_extent_state(other); 531 } 532 } 533 } 534 535 static void set_state_bits(struct extent_io_tree *tree, 536 struct extent_state *state, u32 *bits, 537 struct extent_changeset *changeset); 538 539 /* 540 * insert an extent_state struct into the tree. 'bits' are set on the 541 * struct before it is inserted. 542 * 543 * This may return -EEXIST if the extent is already there, in which case the 544 * state struct is freed. 545 * 546 * The tree lock is not taken internally. This is a utility function and 547 * probably isn't what you want to call (see set/clear_extent_bit). 548 */ 549 static int insert_state(struct extent_io_tree *tree, 550 struct extent_state *state, u64 start, u64 end, 551 struct rb_node ***p, 552 struct rb_node **parent, 553 u32 *bits, struct extent_changeset *changeset) 554 { 555 struct rb_node *node; 556 557 if (end < start) { 558 btrfs_err(tree->fs_info, 559 "insert state: end < start %llu %llu", end, start); 560 WARN_ON(1); 561 } 562 state->start = start; 563 state->end = end; 564 565 set_state_bits(tree, state, bits, changeset); 566 567 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 568 if (node) { 569 struct extent_state *found; 570 found = rb_entry(node, struct extent_state, rb_node); 571 btrfs_err(tree->fs_info, 572 "found node %llu %llu on insert of %llu %llu", 573 found->start, found->end, start, end); 574 return -EEXIST; 575 } 576 merge_state(tree, state); 577 return 0; 578 } 579 580 /* 581 * split a given extent state struct in two, inserting the preallocated 582 * struct 'prealloc' as the newly created second half. 'split' indicates an 583 * offset inside 'orig' where it should be split. 584 * 585 * Before calling, 586 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 587 * are two extent state structs in the tree: 588 * prealloc: [orig->start, split - 1] 589 * orig: [ split, orig->end ] 590 * 591 * The tree locks are not taken by this function. They need to be held 592 * by the caller. 593 */ 594 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 595 struct extent_state *prealloc, u64 split) 596 { 597 struct rb_node *node; 598 599 if (tree->private_data && is_data_inode(tree->private_data)) 600 btrfs_split_delalloc_extent(tree->private_data, orig, split); 601 602 prealloc->start = orig->start; 603 prealloc->end = split - 1; 604 prealloc->state = orig->state; 605 orig->start = split; 606 607 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 608 &prealloc->rb_node, NULL, NULL); 609 if (node) { 610 free_extent_state(prealloc); 611 return -EEXIST; 612 } 613 return 0; 614 } 615 616 static struct extent_state *next_state(struct extent_state *state) 617 { 618 struct rb_node *next = rb_next(&state->rb_node); 619 if (next) 620 return rb_entry(next, struct extent_state, rb_node); 621 else 622 return NULL; 623 } 624 625 /* 626 * utility function to clear some bits in an extent state struct. 627 * it will optionally wake up anyone waiting on this state (wake == 1). 628 * 629 * If no bits are set on the state struct after clearing things, the 630 * struct is freed and removed from the tree 631 */ 632 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 633 struct extent_state *state, 634 u32 *bits, int wake, 635 struct extent_changeset *changeset) 636 { 637 struct extent_state *next; 638 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 639 int ret; 640 641 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 642 u64 range = state->end - state->start + 1; 643 WARN_ON(range > tree->dirty_bytes); 644 tree->dirty_bytes -= range; 645 } 646 647 if (tree->private_data && is_data_inode(tree->private_data)) 648 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 649 650 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 651 BUG_ON(ret < 0); 652 state->state &= ~bits_to_clear; 653 if (wake) 654 wake_up(&state->wq); 655 if (state->state == 0) { 656 next = next_state(state); 657 if (extent_state_in_tree(state)) { 658 rb_erase(&state->rb_node, &tree->state); 659 RB_CLEAR_NODE(&state->rb_node); 660 free_extent_state(state); 661 } else { 662 WARN_ON(1); 663 } 664 } else { 665 merge_state(tree, state); 666 next = next_state(state); 667 } 668 return next; 669 } 670 671 static struct extent_state * 672 alloc_extent_state_atomic(struct extent_state *prealloc) 673 { 674 if (!prealloc) 675 prealloc = alloc_extent_state(GFP_ATOMIC); 676 677 return prealloc; 678 } 679 680 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 681 { 682 btrfs_panic(tree->fs_info, err, 683 "locking error: extent tree was modified by another thread while locked"); 684 } 685 686 /* 687 * clear some bits on a range in the tree. This may require splitting 688 * or inserting elements in the tree, so the gfp mask is used to 689 * indicate which allocations or sleeping are allowed. 690 * 691 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 692 * the given range from the tree regardless of state (ie for truncate). 693 * 694 * the range [start, end] is inclusive. 695 * 696 * This takes the tree lock, and returns 0 on success and < 0 on error. 697 */ 698 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 699 u32 bits, int wake, int delete, 700 struct extent_state **cached_state, 701 gfp_t mask, struct extent_changeset *changeset) 702 { 703 struct extent_state *state; 704 struct extent_state *cached; 705 struct extent_state *prealloc = NULL; 706 struct rb_node *node; 707 u64 last_end; 708 int err; 709 int clear = 0; 710 711 btrfs_debug_check_extent_io_range(tree, start, end); 712 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 713 714 if (bits & EXTENT_DELALLOC) 715 bits |= EXTENT_NORESERVE; 716 717 if (delete) 718 bits |= ~EXTENT_CTLBITS; 719 720 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 721 clear = 1; 722 again: 723 if (!prealloc && gfpflags_allow_blocking(mask)) { 724 /* 725 * Don't care for allocation failure here because we might end 726 * up not needing the pre-allocated extent state at all, which 727 * is the case if we only have in the tree extent states that 728 * cover our input range and don't cover too any other range. 729 * If we end up needing a new extent state we allocate it later. 730 */ 731 prealloc = alloc_extent_state(mask); 732 } 733 734 spin_lock(&tree->lock); 735 if (cached_state) { 736 cached = *cached_state; 737 738 if (clear) { 739 *cached_state = NULL; 740 cached_state = NULL; 741 } 742 743 if (cached && extent_state_in_tree(cached) && 744 cached->start <= start && cached->end > start) { 745 if (clear) 746 refcount_dec(&cached->refs); 747 state = cached; 748 goto hit_next; 749 } 750 if (clear) 751 free_extent_state(cached); 752 } 753 /* 754 * this search will find the extents that end after 755 * our range starts 756 */ 757 node = tree_search(tree, start); 758 if (!node) 759 goto out; 760 state = rb_entry(node, struct extent_state, rb_node); 761 hit_next: 762 if (state->start > end) 763 goto out; 764 WARN_ON(state->end < start); 765 last_end = state->end; 766 767 /* the state doesn't have the wanted bits, go ahead */ 768 if (!(state->state & bits)) { 769 state = next_state(state); 770 goto next; 771 } 772 773 /* 774 * | ---- desired range ---- | 775 * | state | or 776 * | ------------- state -------------- | 777 * 778 * We need to split the extent we found, and may flip 779 * bits on second half. 780 * 781 * If the extent we found extends past our range, we 782 * just split and search again. It'll get split again 783 * the next time though. 784 * 785 * If the extent we found is inside our range, we clear 786 * the desired bit on it. 787 */ 788 789 if (state->start < start) { 790 prealloc = alloc_extent_state_atomic(prealloc); 791 BUG_ON(!prealloc); 792 err = split_state(tree, state, prealloc, start); 793 if (err) 794 extent_io_tree_panic(tree, err); 795 796 prealloc = NULL; 797 if (err) 798 goto out; 799 if (state->end <= end) { 800 state = clear_state_bit(tree, state, &bits, wake, 801 changeset); 802 goto next; 803 } 804 goto search_again; 805 } 806 /* 807 * | ---- desired range ---- | 808 * | state | 809 * We need to split the extent, and clear the bit 810 * on the first half 811 */ 812 if (state->start <= end && state->end > end) { 813 prealloc = alloc_extent_state_atomic(prealloc); 814 BUG_ON(!prealloc); 815 err = split_state(tree, state, prealloc, end + 1); 816 if (err) 817 extent_io_tree_panic(tree, err); 818 819 if (wake) 820 wake_up(&state->wq); 821 822 clear_state_bit(tree, prealloc, &bits, wake, changeset); 823 824 prealloc = NULL; 825 goto out; 826 } 827 828 state = clear_state_bit(tree, state, &bits, wake, changeset); 829 next: 830 if (last_end == (u64)-1) 831 goto out; 832 start = last_end + 1; 833 if (start <= end && state && !need_resched()) 834 goto hit_next; 835 836 search_again: 837 if (start > end) 838 goto out; 839 spin_unlock(&tree->lock); 840 if (gfpflags_allow_blocking(mask)) 841 cond_resched(); 842 goto again; 843 844 out: 845 spin_unlock(&tree->lock); 846 if (prealloc) 847 free_extent_state(prealloc); 848 849 return 0; 850 851 } 852 853 static void wait_on_state(struct extent_io_tree *tree, 854 struct extent_state *state) 855 __releases(tree->lock) 856 __acquires(tree->lock) 857 { 858 DEFINE_WAIT(wait); 859 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 860 spin_unlock(&tree->lock); 861 schedule(); 862 spin_lock(&tree->lock); 863 finish_wait(&state->wq, &wait); 864 } 865 866 /* 867 * waits for one or more bits to clear on a range in the state tree. 868 * The range [start, end] is inclusive. 869 * The tree lock is taken by this function 870 */ 871 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 872 u32 bits) 873 { 874 struct extent_state *state; 875 struct rb_node *node; 876 877 btrfs_debug_check_extent_io_range(tree, start, end); 878 879 spin_lock(&tree->lock); 880 again: 881 while (1) { 882 /* 883 * this search will find all the extents that end after 884 * our range starts 885 */ 886 node = tree_search(tree, start); 887 process_node: 888 if (!node) 889 break; 890 891 state = rb_entry(node, struct extent_state, rb_node); 892 893 if (state->start > end) 894 goto out; 895 896 if (state->state & bits) { 897 start = state->start; 898 refcount_inc(&state->refs); 899 wait_on_state(tree, state); 900 free_extent_state(state); 901 goto again; 902 } 903 start = state->end + 1; 904 905 if (start > end) 906 break; 907 908 if (!cond_resched_lock(&tree->lock)) { 909 node = rb_next(node); 910 goto process_node; 911 } 912 } 913 out: 914 spin_unlock(&tree->lock); 915 } 916 917 static void set_state_bits(struct extent_io_tree *tree, 918 struct extent_state *state, 919 u32 *bits, struct extent_changeset *changeset) 920 { 921 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 922 int ret; 923 924 if (tree->private_data && is_data_inode(tree->private_data)) 925 btrfs_set_delalloc_extent(tree->private_data, state, bits); 926 927 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 928 u64 range = state->end - state->start + 1; 929 tree->dirty_bytes += range; 930 } 931 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 932 BUG_ON(ret < 0); 933 state->state |= bits_to_set; 934 } 935 936 static void cache_state_if_flags(struct extent_state *state, 937 struct extent_state **cached_ptr, 938 unsigned flags) 939 { 940 if (cached_ptr && !(*cached_ptr)) { 941 if (!flags || (state->state & flags)) { 942 *cached_ptr = state; 943 refcount_inc(&state->refs); 944 } 945 } 946 } 947 948 static void cache_state(struct extent_state *state, 949 struct extent_state **cached_ptr) 950 { 951 return cache_state_if_flags(state, cached_ptr, 952 EXTENT_LOCKED | EXTENT_BOUNDARY); 953 } 954 955 /* 956 * set some bits on a range in the tree. This may require allocations or 957 * sleeping, so the gfp mask is used to indicate what is allowed. 958 * 959 * If any of the exclusive bits are set, this will fail with -EEXIST if some 960 * part of the range already has the desired bits set. The start of the 961 * existing range is returned in failed_start in this case. 962 * 963 * [start, end] is inclusive This takes the tree lock. 964 */ 965 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 966 u32 exclusive_bits, u64 *failed_start, 967 struct extent_state **cached_state, gfp_t mask, 968 struct extent_changeset *changeset) 969 { 970 struct extent_state *state; 971 struct extent_state *prealloc = NULL; 972 struct rb_node *node; 973 struct rb_node **p; 974 struct rb_node *parent; 975 int err = 0; 976 u64 last_start; 977 u64 last_end; 978 979 btrfs_debug_check_extent_io_range(tree, start, end); 980 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 981 982 if (exclusive_bits) 983 ASSERT(failed_start); 984 else 985 ASSERT(failed_start == NULL); 986 again: 987 if (!prealloc && gfpflags_allow_blocking(mask)) { 988 /* 989 * Don't care for allocation failure here because we might end 990 * up not needing the pre-allocated extent state at all, which 991 * is the case if we only have in the tree extent states that 992 * cover our input range and don't cover too any other range. 993 * If we end up needing a new extent state we allocate it later. 994 */ 995 prealloc = alloc_extent_state(mask); 996 } 997 998 spin_lock(&tree->lock); 999 if (cached_state && *cached_state) { 1000 state = *cached_state; 1001 if (state->start <= start && state->end > start && 1002 extent_state_in_tree(state)) { 1003 node = &state->rb_node; 1004 goto hit_next; 1005 } 1006 } 1007 /* 1008 * this search will find all the extents that end after 1009 * our range starts. 1010 */ 1011 node = tree_search_for_insert(tree, start, &p, &parent); 1012 if (!node) { 1013 prealloc = alloc_extent_state_atomic(prealloc); 1014 BUG_ON(!prealloc); 1015 err = insert_state(tree, prealloc, start, end, 1016 &p, &parent, &bits, changeset); 1017 if (err) 1018 extent_io_tree_panic(tree, err); 1019 1020 cache_state(prealloc, cached_state); 1021 prealloc = NULL; 1022 goto out; 1023 } 1024 state = rb_entry(node, struct extent_state, rb_node); 1025 hit_next: 1026 last_start = state->start; 1027 last_end = state->end; 1028 1029 /* 1030 * | ---- desired range ---- | 1031 * | state | 1032 * 1033 * Just lock what we found and keep going 1034 */ 1035 if (state->start == start && state->end <= end) { 1036 if (state->state & exclusive_bits) { 1037 *failed_start = state->start; 1038 err = -EEXIST; 1039 goto out; 1040 } 1041 1042 set_state_bits(tree, state, &bits, changeset); 1043 cache_state(state, cached_state); 1044 merge_state(tree, state); 1045 if (last_end == (u64)-1) 1046 goto out; 1047 start = last_end + 1; 1048 state = next_state(state); 1049 if (start < end && state && state->start == start && 1050 !need_resched()) 1051 goto hit_next; 1052 goto search_again; 1053 } 1054 1055 /* 1056 * | ---- desired range ---- | 1057 * | state | 1058 * or 1059 * | ------------- state -------------- | 1060 * 1061 * We need to split the extent we found, and may flip bits on 1062 * second half. 1063 * 1064 * If the extent we found extends past our 1065 * range, we just split and search again. It'll get split 1066 * again the next time though. 1067 * 1068 * If the extent we found is inside our range, we set the 1069 * desired bit on it. 1070 */ 1071 if (state->start < start) { 1072 if (state->state & exclusive_bits) { 1073 *failed_start = start; 1074 err = -EEXIST; 1075 goto out; 1076 } 1077 1078 /* 1079 * If this extent already has all the bits we want set, then 1080 * skip it, not necessary to split it or do anything with it. 1081 */ 1082 if ((state->state & bits) == bits) { 1083 start = state->end + 1; 1084 cache_state(state, cached_state); 1085 goto search_again; 1086 } 1087 1088 prealloc = alloc_extent_state_atomic(prealloc); 1089 BUG_ON(!prealloc); 1090 err = split_state(tree, state, prealloc, start); 1091 if (err) 1092 extent_io_tree_panic(tree, err); 1093 1094 prealloc = NULL; 1095 if (err) 1096 goto out; 1097 if (state->end <= end) { 1098 set_state_bits(tree, state, &bits, changeset); 1099 cache_state(state, cached_state); 1100 merge_state(tree, state); 1101 if (last_end == (u64)-1) 1102 goto out; 1103 start = last_end + 1; 1104 state = next_state(state); 1105 if (start < end && state && state->start == start && 1106 !need_resched()) 1107 goto hit_next; 1108 } 1109 goto search_again; 1110 } 1111 /* 1112 * | ---- desired range ---- | 1113 * | state | or | state | 1114 * 1115 * There's a hole, we need to insert something in it and 1116 * ignore the extent we found. 1117 */ 1118 if (state->start > start) { 1119 u64 this_end; 1120 if (end < last_start) 1121 this_end = end; 1122 else 1123 this_end = last_start - 1; 1124 1125 prealloc = alloc_extent_state_atomic(prealloc); 1126 BUG_ON(!prealloc); 1127 1128 /* 1129 * Avoid to free 'prealloc' if it can be merged with 1130 * the later extent. 1131 */ 1132 err = insert_state(tree, prealloc, start, this_end, 1133 NULL, NULL, &bits, changeset); 1134 if (err) 1135 extent_io_tree_panic(tree, err); 1136 1137 cache_state(prealloc, cached_state); 1138 prealloc = NULL; 1139 start = this_end + 1; 1140 goto search_again; 1141 } 1142 /* 1143 * | ---- desired range ---- | 1144 * | state | 1145 * We need to split the extent, and set the bit 1146 * on the first half 1147 */ 1148 if (state->start <= end && state->end > end) { 1149 if (state->state & exclusive_bits) { 1150 *failed_start = start; 1151 err = -EEXIST; 1152 goto out; 1153 } 1154 1155 prealloc = alloc_extent_state_atomic(prealloc); 1156 BUG_ON(!prealloc); 1157 err = split_state(tree, state, prealloc, end + 1); 1158 if (err) 1159 extent_io_tree_panic(tree, err); 1160 1161 set_state_bits(tree, prealloc, &bits, changeset); 1162 cache_state(prealloc, cached_state); 1163 merge_state(tree, prealloc); 1164 prealloc = NULL; 1165 goto out; 1166 } 1167 1168 search_again: 1169 if (start > end) 1170 goto out; 1171 spin_unlock(&tree->lock); 1172 if (gfpflags_allow_blocking(mask)) 1173 cond_resched(); 1174 goto again; 1175 1176 out: 1177 spin_unlock(&tree->lock); 1178 if (prealloc) 1179 free_extent_state(prealloc); 1180 1181 return err; 1182 1183 } 1184 1185 /** 1186 * convert_extent_bit - convert all bits in a given range from one bit to 1187 * another 1188 * @tree: the io tree to search 1189 * @start: the start offset in bytes 1190 * @end: the end offset in bytes (inclusive) 1191 * @bits: the bits to set in this range 1192 * @clear_bits: the bits to clear in this range 1193 * @cached_state: state that we're going to cache 1194 * 1195 * This will go through and set bits for the given range. If any states exist 1196 * already in this range they are set with the given bit and cleared of the 1197 * clear_bits. This is only meant to be used by things that are mergeable, ie 1198 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1199 * boundary bits like LOCK. 1200 * 1201 * All allocations are done with GFP_NOFS. 1202 */ 1203 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1204 u32 bits, u32 clear_bits, 1205 struct extent_state **cached_state) 1206 { 1207 struct extent_state *state; 1208 struct extent_state *prealloc = NULL; 1209 struct rb_node *node; 1210 struct rb_node **p; 1211 struct rb_node *parent; 1212 int err = 0; 1213 u64 last_start; 1214 u64 last_end; 1215 bool first_iteration = true; 1216 1217 btrfs_debug_check_extent_io_range(tree, start, end); 1218 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1219 clear_bits); 1220 1221 again: 1222 if (!prealloc) { 1223 /* 1224 * Best effort, don't worry if extent state allocation fails 1225 * here for the first iteration. We might have a cached state 1226 * that matches exactly the target range, in which case no 1227 * extent state allocations are needed. We'll only know this 1228 * after locking the tree. 1229 */ 1230 prealloc = alloc_extent_state(GFP_NOFS); 1231 if (!prealloc && !first_iteration) 1232 return -ENOMEM; 1233 } 1234 1235 spin_lock(&tree->lock); 1236 if (cached_state && *cached_state) { 1237 state = *cached_state; 1238 if (state->start <= start && state->end > start && 1239 extent_state_in_tree(state)) { 1240 node = &state->rb_node; 1241 goto hit_next; 1242 } 1243 } 1244 1245 /* 1246 * this search will find all the extents that end after 1247 * our range starts. 1248 */ 1249 node = tree_search_for_insert(tree, start, &p, &parent); 1250 if (!node) { 1251 prealloc = alloc_extent_state_atomic(prealloc); 1252 if (!prealloc) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 err = insert_state(tree, prealloc, start, end, 1257 &p, &parent, &bits, NULL); 1258 if (err) 1259 extent_io_tree_panic(tree, err); 1260 cache_state(prealloc, cached_state); 1261 prealloc = NULL; 1262 goto out; 1263 } 1264 state = rb_entry(node, struct extent_state, rb_node); 1265 hit_next: 1266 last_start = state->start; 1267 last_end = state->end; 1268 1269 /* 1270 * | ---- desired range ---- | 1271 * | state | 1272 * 1273 * Just lock what we found and keep going 1274 */ 1275 if (state->start == start && state->end <= end) { 1276 set_state_bits(tree, state, &bits, NULL); 1277 cache_state(state, cached_state); 1278 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1279 if (last_end == (u64)-1) 1280 goto out; 1281 start = last_end + 1; 1282 if (start < end && state && state->start == start && 1283 !need_resched()) 1284 goto hit_next; 1285 goto search_again; 1286 } 1287 1288 /* 1289 * | ---- desired range ---- | 1290 * | state | 1291 * or 1292 * | ------------- state -------------- | 1293 * 1294 * We need to split the extent we found, and may flip bits on 1295 * second half. 1296 * 1297 * If the extent we found extends past our 1298 * range, we just split and search again. It'll get split 1299 * again the next time though. 1300 * 1301 * If the extent we found is inside our range, we set the 1302 * desired bit on it. 1303 */ 1304 if (state->start < start) { 1305 prealloc = alloc_extent_state_atomic(prealloc); 1306 if (!prealloc) { 1307 err = -ENOMEM; 1308 goto out; 1309 } 1310 err = split_state(tree, state, prealloc, start); 1311 if (err) 1312 extent_io_tree_panic(tree, err); 1313 prealloc = NULL; 1314 if (err) 1315 goto out; 1316 if (state->end <= end) { 1317 set_state_bits(tree, state, &bits, NULL); 1318 cache_state(state, cached_state); 1319 state = clear_state_bit(tree, state, &clear_bits, 0, 1320 NULL); 1321 if (last_end == (u64)-1) 1322 goto out; 1323 start = last_end + 1; 1324 if (start < end && state && state->start == start && 1325 !need_resched()) 1326 goto hit_next; 1327 } 1328 goto search_again; 1329 } 1330 /* 1331 * | ---- desired range ---- | 1332 * | state | or | state | 1333 * 1334 * There's a hole, we need to insert something in it and 1335 * ignore the extent we found. 1336 */ 1337 if (state->start > start) { 1338 u64 this_end; 1339 if (end < last_start) 1340 this_end = end; 1341 else 1342 this_end = last_start - 1; 1343 1344 prealloc = alloc_extent_state_atomic(prealloc); 1345 if (!prealloc) { 1346 err = -ENOMEM; 1347 goto out; 1348 } 1349 1350 /* 1351 * Avoid to free 'prealloc' if it can be merged with 1352 * the later extent. 1353 */ 1354 err = insert_state(tree, prealloc, start, this_end, 1355 NULL, NULL, &bits, NULL); 1356 if (err) 1357 extent_io_tree_panic(tree, err); 1358 cache_state(prealloc, cached_state); 1359 prealloc = NULL; 1360 start = this_end + 1; 1361 goto search_again; 1362 } 1363 /* 1364 * | ---- desired range ---- | 1365 * | state | 1366 * We need to split the extent, and set the bit 1367 * on the first half 1368 */ 1369 if (state->start <= end && state->end > end) { 1370 prealloc = alloc_extent_state_atomic(prealloc); 1371 if (!prealloc) { 1372 err = -ENOMEM; 1373 goto out; 1374 } 1375 1376 err = split_state(tree, state, prealloc, end + 1); 1377 if (err) 1378 extent_io_tree_panic(tree, err); 1379 1380 set_state_bits(tree, prealloc, &bits, NULL); 1381 cache_state(prealloc, cached_state); 1382 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1383 prealloc = NULL; 1384 goto out; 1385 } 1386 1387 search_again: 1388 if (start > end) 1389 goto out; 1390 spin_unlock(&tree->lock); 1391 cond_resched(); 1392 first_iteration = false; 1393 goto again; 1394 1395 out: 1396 spin_unlock(&tree->lock); 1397 if (prealloc) 1398 free_extent_state(prealloc); 1399 1400 return err; 1401 } 1402 1403 /* wrappers around set/clear extent bit */ 1404 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1405 u32 bits, struct extent_changeset *changeset) 1406 { 1407 /* 1408 * We don't support EXTENT_LOCKED yet, as current changeset will 1409 * record any bits changed, so for EXTENT_LOCKED case, it will 1410 * either fail with -EEXIST or changeset will record the whole 1411 * range. 1412 */ 1413 BUG_ON(bits & EXTENT_LOCKED); 1414 1415 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1416 changeset); 1417 } 1418 1419 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1420 u32 bits) 1421 { 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1423 GFP_NOWAIT, NULL); 1424 } 1425 1426 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits, int wake, int delete, 1428 struct extent_state **cached) 1429 { 1430 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1431 cached, GFP_NOFS, NULL); 1432 } 1433 1434 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1435 u32 bits, struct extent_changeset *changeset) 1436 { 1437 /* 1438 * Don't support EXTENT_LOCKED case, same reason as 1439 * set_record_extent_bits(). 1440 */ 1441 BUG_ON(bits & EXTENT_LOCKED); 1442 1443 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1444 changeset); 1445 } 1446 1447 /* 1448 * either insert or lock state struct between start and end use mask to tell 1449 * us if waiting is desired. 1450 */ 1451 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1452 struct extent_state **cached_state) 1453 { 1454 int err; 1455 u64 failed_start; 1456 1457 while (1) { 1458 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1459 EXTENT_LOCKED, &failed_start, 1460 cached_state, GFP_NOFS, NULL); 1461 if (err == -EEXIST) { 1462 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1463 start = failed_start; 1464 } else 1465 break; 1466 WARN_ON(start > end); 1467 } 1468 return err; 1469 } 1470 1471 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1472 { 1473 int err; 1474 u64 failed_start; 1475 1476 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1477 &failed_start, NULL, GFP_NOFS, NULL); 1478 if (err == -EEXIST) { 1479 if (failed_start > start) 1480 clear_extent_bit(tree, start, failed_start - 1, 1481 EXTENT_LOCKED, 1, 0, NULL); 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1488 { 1489 unsigned long index = start >> PAGE_SHIFT; 1490 unsigned long end_index = end >> PAGE_SHIFT; 1491 struct page *page; 1492 1493 while (index <= end_index) { 1494 page = find_get_page(inode->i_mapping, index); 1495 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1496 clear_page_dirty_for_io(page); 1497 put_page(page); 1498 index++; 1499 } 1500 } 1501 1502 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1503 { 1504 unsigned long index = start >> PAGE_SHIFT; 1505 unsigned long end_index = end >> PAGE_SHIFT; 1506 struct page *page; 1507 1508 while (index <= end_index) { 1509 page = find_get_page(inode->i_mapping, index); 1510 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1511 __set_page_dirty_nobuffers(page); 1512 account_page_redirty(page); 1513 put_page(page); 1514 index++; 1515 } 1516 } 1517 1518 /* find the first state struct with 'bits' set after 'start', and 1519 * return it. tree->lock must be held. NULL will returned if 1520 * nothing was found after 'start' 1521 */ 1522 static struct extent_state * 1523 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1524 { 1525 struct rb_node *node; 1526 struct extent_state *state; 1527 1528 /* 1529 * this search will find all the extents that end after 1530 * our range starts. 1531 */ 1532 node = tree_search(tree, start); 1533 if (!node) 1534 goto out; 1535 1536 while (1) { 1537 state = rb_entry(node, struct extent_state, rb_node); 1538 if (state->end >= start && (state->state & bits)) 1539 return state; 1540 1541 node = rb_next(node); 1542 if (!node) 1543 break; 1544 } 1545 out: 1546 return NULL; 1547 } 1548 1549 /* 1550 * Find the first offset in the io tree with one or more @bits set. 1551 * 1552 * Note: If there are multiple bits set in @bits, any of them will match. 1553 * 1554 * Return 0 if we find something, and update @start_ret and @end_ret. 1555 * Return 1 if we found nothing. 1556 */ 1557 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1558 u64 *start_ret, u64 *end_ret, u32 bits, 1559 struct extent_state **cached_state) 1560 { 1561 struct extent_state *state; 1562 int ret = 1; 1563 1564 spin_lock(&tree->lock); 1565 if (cached_state && *cached_state) { 1566 state = *cached_state; 1567 if (state->end == start - 1 && extent_state_in_tree(state)) { 1568 while ((state = next_state(state)) != NULL) { 1569 if (state->state & bits) 1570 goto got_it; 1571 } 1572 free_extent_state(*cached_state); 1573 *cached_state = NULL; 1574 goto out; 1575 } 1576 free_extent_state(*cached_state); 1577 *cached_state = NULL; 1578 } 1579 1580 state = find_first_extent_bit_state(tree, start, bits); 1581 got_it: 1582 if (state) { 1583 cache_state_if_flags(state, cached_state, 0); 1584 *start_ret = state->start; 1585 *end_ret = state->end; 1586 ret = 0; 1587 } 1588 out: 1589 spin_unlock(&tree->lock); 1590 return ret; 1591 } 1592 1593 /** 1594 * Find a contiguous area of bits 1595 * 1596 * @tree: io tree to check 1597 * @start: offset to start the search from 1598 * @start_ret: the first offset we found with the bits set 1599 * @end_ret: the final contiguous range of the bits that were set 1600 * @bits: bits to look for 1601 * 1602 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1603 * to set bits appropriately, and then merge them again. During this time it 1604 * will drop the tree->lock, so use this helper if you want to find the actual 1605 * contiguous area for given bits. We will search to the first bit we find, and 1606 * then walk down the tree until we find a non-contiguous area. The area 1607 * returned will be the full contiguous area with the bits set. 1608 */ 1609 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1610 u64 *start_ret, u64 *end_ret, u32 bits) 1611 { 1612 struct extent_state *state; 1613 int ret = 1; 1614 1615 spin_lock(&tree->lock); 1616 state = find_first_extent_bit_state(tree, start, bits); 1617 if (state) { 1618 *start_ret = state->start; 1619 *end_ret = state->end; 1620 while ((state = next_state(state)) != NULL) { 1621 if (state->start > (*end_ret + 1)) 1622 break; 1623 *end_ret = state->end; 1624 } 1625 ret = 0; 1626 } 1627 spin_unlock(&tree->lock); 1628 return ret; 1629 } 1630 1631 /** 1632 * Find the first range that has @bits not set. This range could start before 1633 * @start. 1634 * 1635 * @tree: the tree to search 1636 * @start: offset at/after which the found extent should start 1637 * @start_ret: records the beginning of the range 1638 * @end_ret: records the end of the range (inclusive) 1639 * @bits: the set of bits which must be unset 1640 * 1641 * Since unallocated range is also considered one which doesn't have the bits 1642 * set it's possible that @end_ret contains -1, this happens in case the range 1643 * spans (last_range_end, end of device]. In this case it's up to the caller to 1644 * trim @end_ret to the appropriate size. 1645 */ 1646 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1647 u64 *start_ret, u64 *end_ret, u32 bits) 1648 { 1649 struct extent_state *state; 1650 struct rb_node *node, *prev = NULL, *next; 1651 1652 spin_lock(&tree->lock); 1653 1654 /* Find first extent with bits cleared */ 1655 while (1) { 1656 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1657 if (!node && !next && !prev) { 1658 /* 1659 * Tree is completely empty, send full range and let 1660 * caller deal with it 1661 */ 1662 *start_ret = 0; 1663 *end_ret = -1; 1664 goto out; 1665 } else if (!node && !next) { 1666 /* 1667 * We are past the last allocated chunk, set start at 1668 * the end of the last extent. 1669 */ 1670 state = rb_entry(prev, struct extent_state, rb_node); 1671 *start_ret = state->end + 1; 1672 *end_ret = -1; 1673 goto out; 1674 } else if (!node) { 1675 node = next; 1676 } 1677 /* 1678 * At this point 'node' either contains 'start' or start is 1679 * before 'node' 1680 */ 1681 state = rb_entry(node, struct extent_state, rb_node); 1682 1683 if (in_range(start, state->start, state->end - state->start + 1)) { 1684 if (state->state & bits) { 1685 /* 1686 * |--range with bits sets--| 1687 * | 1688 * start 1689 */ 1690 start = state->end + 1; 1691 } else { 1692 /* 1693 * 'start' falls within a range that doesn't 1694 * have the bits set, so take its start as 1695 * the beginning of the desired range 1696 * 1697 * |--range with bits cleared----| 1698 * | 1699 * start 1700 */ 1701 *start_ret = state->start; 1702 break; 1703 } 1704 } else { 1705 /* 1706 * |---prev range---|---hole/unset---|---node range---| 1707 * | 1708 * start 1709 * 1710 * or 1711 * 1712 * |---hole/unset--||--first node--| 1713 * 0 | 1714 * start 1715 */ 1716 if (prev) { 1717 state = rb_entry(prev, struct extent_state, 1718 rb_node); 1719 *start_ret = state->end + 1; 1720 } else { 1721 *start_ret = 0; 1722 } 1723 break; 1724 } 1725 } 1726 1727 /* 1728 * Find the longest stretch from start until an entry which has the 1729 * bits set 1730 */ 1731 while (1) { 1732 state = rb_entry(node, struct extent_state, rb_node); 1733 if (state->end >= start && !(state->state & bits)) { 1734 *end_ret = state->end; 1735 } else { 1736 *end_ret = state->start - 1; 1737 break; 1738 } 1739 1740 node = rb_next(node); 1741 if (!node) 1742 break; 1743 } 1744 out: 1745 spin_unlock(&tree->lock); 1746 } 1747 1748 /* 1749 * find a contiguous range of bytes in the file marked as delalloc, not 1750 * more than 'max_bytes'. start and end are used to return the range, 1751 * 1752 * true is returned if we find something, false if nothing was in the tree 1753 */ 1754 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1755 u64 *end, u64 max_bytes, 1756 struct extent_state **cached_state) 1757 { 1758 struct rb_node *node; 1759 struct extent_state *state; 1760 u64 cur_start = *start; 1761 bool found = false; 1762 u64 total_bytes = 0; 1763 1764 spin_lock(&tree->lock); 1765 1766 /* 1767 * this search will find all the extents that end after 1768 * our range starts. 1769 */ 1770 node = tree_search(tree, cur_start); 1771 if (!node) { 1772 *end = (u64)-1; 1773 goto out; 1774 } 1775 1776 while (1) { 1777 state = rb_entry(node, struct extent_state, rb_node); 1778 if (found && (state->start != cur_start || 1779 (state->state & EXTENT_BOUNDARY))) { 1780 goto out; 1781 } 1782 if (!(state->state & EXTENT_DELALLOC)) { 1783 if (!found) 1784 *end = state->end; 1785 goto out; 1786 } 1787 if (!found) { 1788 *start = state->start; 1789 *cached_state = state; 1790 refcount_inc(&state->refs); 1791 } 1792 found = true; 1793 *end = state->end; 1794 cur_start = state->end + 1; 1795 node = rb_next(node); 1796 total_bytes += state->end - state->start + 1; 1797 if (total_bytes >= max_bytes) 1798 break; 1799 if (!node) 1800 break; 1801 } 1802 out: 1803 spin_unlock(&tree->lock); 1804 return found; 1805 } 1806 1807 static int __process_pages_contig(struct address_space *mapping, 1808 struct page *locked_page, 1809 pgoff_t start_index, pgoff_t end_index, 1810 unsigned long page_ops, pgoff_t *index_ret); 1811 1812 static noinline void __unlock_for_delalloc(struct inode *inode, 1813 struct page *locked_page, 1814 u64 start, u64 end) 1815 { 1816 unsigned long index = start >> PAGE_SHIFT; 1817 unsigned long end_index = end >> PAGE_SHIFT; 1818 1819 ASSERT(locked_page); 1820 if (index == locked_page->index && end_index == index) 1821 return; 1822 1823 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1824 PAGE_UNLOCK, NULL); 1825 } 1826 1827 static noinline int lock_delalloc_pages(struct inode *inode, 1828 struct page *locked_page, 1829 u64 delalloc_start, 1830 u64 delalloc_end) 1831 { 1832 unsigned long index = delalloc_start >> PAGE_SHIFT; 1833 unsigned long index_ret = index; 1834 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1835 int ret; 1836 1837 ASSERT(locked_page); 1838 if (index == locked_page->index && index == end_index) 1839 return 0; 1840 1841 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1842 end_index, PAGE_LOCK, &index_ret); 1843 if (ret == -EAGAIN) 1844 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1845 (u64)index_ret << PAGE_SHIFT); 1846 return ret; 1847 } 1848 1849 /* 1850 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1851 * more than @max_bytes. @Start and @end are used to return the range, 1852 * 1853 * Return: true if we find something 1854 * false if nothing was in the tree 1855 */ 1856 EXPORT_FOR_TESTS 1857 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1858 struct page *locked_page, u64 *start, 1859 u64 *end) 1860 { 1861 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1862 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1863 u64 delalloc_start; 1864 u64 delalloc_end; 1865 bool found; 1866 struct extent_state *cached_state = NULL; 1867 int ret; 1868 int loops = 0; 1869 1870 again: 1871 /* step one, find a bunch of delalloc bytes starting at start */ 1872 delalloc_start = *start; 1873 delalloc_end = 0; 1874 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1875 max_bytes, &cached_state); 1876 if (!found || delalloc_end <= *start) { 1877 *start = delalloc_start; 1878 *end = delalloc_end; 1879 free_extent_state(cached_state); 1880 return false; 1881 } 1882 1883 /* 1884 * start comes from the offset of locked_page. We have to lock 1885 * pages in order, so we can't process delalloc bytes before 1886 * locked_page 1887 */ 1888 if (delalloc_start < *start) 1889 delalloc_start = *start; 1890 1891 /* 1892 * make sure to limit the number of pages we try to lock down 1893 */ 1894 if (delalloc_end + 1 - delalloc_start > max_bytes) 1895 delalloc_end = delalloc_start + max_bytes - 1; 1896 1897 /* step two, lock all the pages after the page that has start */ 1898 ret = lock_delalloc_pages(inode, locked_page, 1899 delalloc_start, delalloc_end); 1900 ASSERT(!ret || ret == -EAGAIN); 1901 if (ret == -EAGAIN) { 1902 /* some of the pages are gone, lets avoid looping by 1903 * shortening the size of the delalloc range we're searching 1904 */ 1905 free_extent_state(cached_state); 1906 cached_state = NULL; 1907 if (!loops) { 1908 max_bytes = PAGE_SIZE; 1909 loops = 1; 1910 goto again; 1911 } else { 1912 found = false; 1913 goto out_failed; 1914 } 1915 } 1916 1917 /* step three, lock the state bits for the whole range */ 1918 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1919 1920 /* then test to make sure it is all still delalloc */ 1921 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1922 EXTENT_DELALLOC, 1, cached_state); 1923 if (!ret) { 1924 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1925 &cached_state); 1926 __unlock_for_delalloc(inode, locked_page, 1927 delalloc_start, delalloc_end); 1928 cond_resched(); 1929 goto again; 1930 } 1931 free_extent_state(cached_state); 1932 *start = delalloc_start; 1933 *end = delalloc_end; 1934 out_failed: 1935 return found; 1936 } 1937 1938 static int __process_pages_contig(struct address_space *mapping, 1939 struct page *locked_page, 1940 pgoff_t start_index, pgoff_t end_index, 1941 unsigned long page_ops, pgoff_t *index_ret) 1942 { 1943 unsigned long nr_pages = end_index - start_index + 1; 1944 unsigned long pages_processed = 0; 1945 pgoff_t index = start_index; 1946 struct page *pages[16]; 1947 unsigned ret; 1948 int err = 0; 1949 int i; 1950 1951 if (page_ops & PAGE_LOCK) { 1952 ASSERT(page_ops == PAGE_LOCK); 1953 ASSERT(index_ret && *index_ret == start_index); 1954 } 1955 1956 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1957 mapping_set_error(mapping, -EIO); 1958 1959 while (nr_pages > 0) { 1960 ret = find_get_pages_contig(mapping, index, 1961 min_t(unsigned long, 1962 nr_pages, ARRAY_SIZE(pages)), pages); 1963 if (ret == 0) { 1964 /* 1965 * Only if we're going to lock these pages, 1966 * can we find nothing at @index. 1967 */ 1968 ASSERT(page_ops & PAGE_LOCK); 1969 err = -EAGAIN; 1970 goto out; 1971 } 1972 1973 for (i = 0; i < ret; i++) { 1974 if (page_ops & PAGE_SET_PRIVATE2) 1975 SetPagePrivate2(pages[i]); 1976 1977 if (locked_page && pages[i] == locked_page) { 1978 put_page(pages[i]); 1979 pages_processed++; 1980 continue; 1981 } 1982 if (page_ops & PAGE_START_WRITEBACK) { 1983 clear_page_dirty_for_io(pages[i]); 1984 set_page_writeback(pages[i]); 1985 } 1986 if (page_ops & PAGE_SET_ERROR) 1987 SetPageError(pages[i]); 1988 if (page_ops & PAGE_END_WRITEBACK) 1989 end_page_writeback(pages[i]); 1990 if (page_ops & PAGE_UNLOCK) 1991 unlock_page(pages[i]); 1992 if (page_ops & PAGE_LOCK) { 1993 lock_page(pages[i]); 1994 if (!PageDirty(pages[i]) || 1995 pages[i]->mapping != mapping) { 1996 unlock_page(pages[i]); 1997 for (; i < ret; i++) 1998 put_page(pages[i]); 1999 err = -EAGAIN; 2000 goto out; 2001 } 2002 } 2003 put_page(pages[i]); 2004 pages_processed++; 2005 } 2006 nr_pages -= ret; 2007 index += ret; 2008 cond_resched(); 2009 } 2010 out: 2011 if (err && index_ret) 2012 *index_ret = start_index + pages_processed - 1; 2013 return err; 2014 } 2015 2016 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2017 struct page *locked_page, 2018 u32 clear_bits, unsigned long page_ops) 2019 { 2020 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2021 2022 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2023 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2024 page_ops, NULL); 2025 } 2026 2027 /* 2028 * count the number of bytes in the tree that have a given bit(s) 2029 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2030 * cached. The total number found is returned. 2031 */ 2032 u64 count_range_bits(struct extent_io_tree *tree, 2033 u64 *start, u64 search_end, u64 max_bytes, 2034 u32 bits, int contig) 2035 { 2036 struct rb_node *node; 2037 struct extent_state *state; 2038 u64 cur_start = *start; 2039 u64 total_bytes = 0; 2040 u64 last = 0; 2041 int found = 0; 2042 2043 if (WARN_ON(search_end <= cur_start)) 2044 return 0; 2045 2046 spin_lock(&tree->lock); 2047 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2048 total_bytes = tree->dirty_bytes; 2049 goto out; 2050 } 2051 /* 2052 * this search will find all the extents that end after 2053 * our range starts. 2054 */ 2055 node = tree_search(tree, cur_start); 2056 if (!node) 2057 goto out; 2058 2059 while (1) { 2060 state = rb_entry(node, struct extent_state, rb_node); 2061 if (state->start > search_end) 2062 break; 2063 if (contig && found && state->start > last + 1) 2064 break; 2065 if (state->end >= cur_start && (state->state & bits) == bits) { 2066 total_bytes += min(search_end, state->end) + 1 - 2067 max(cur_start, state->start); 2068 if (total_bytes >= max_bytes) 2069 break; 2070 if (!found) { 2071 *start = max(cur_start, state->start); 2072 found = 1; 2073 } 2074 last = state->end; 2075 } else if (contig && found) { 2076 break; 2077 } 2078 node = rb_next(node); 2079 if (!node) 2080 break; 2081 } 2082 out: 2083 spin_unlock(&tree->lock); 2084 return total_bytes; 2085 } 2086 2087 /* 2088 * set the private field for a given byte offset in the tree. If there isn't 2089 * an extent_state there already, this does nothing. 2090 */ 2091 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2092 struct io_failure_record *failrec) 2093 { 2094 struct rb_node *node; 2095 struct extent_state *state; 2096 int ret = 0; 2097 2098 spin_lock(&tree->lock); 2099 /* 2100 * this search will find all the extents that end after 2101 * our range starts. 2102 */ 2103 node = tree_search(tree, start); 2104 if (!node) { 2105 ret = -ENOENT; 2106 goto out; 2107 } 2108 state = rb_entry(node, struct extent_state, rb_node); 2109 if (state->start != start) { 2110 ret = -ENOENT; 2111 goto out; 2112 } 2113 state->failrec = failrec; 2114 out: 2115 spin_unlock(&tree->lock); 2116 return ret; 2117 } 2118 2119 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2120 { 2121 struct rb_node *node; 2122 struct extent_state *state; 2123 struct io_failure_record *failrec; 2124 2125 spin_lock(&tree->lock); 2126 /* 2127 * this search will find all the extents that end after 2128 * our range starts. 2129 */ 2130 node = tree_search(tree, start); 2131 if (!node) { 2132 failrec = ERR_PTR(-ENOENT); 2133 goto out; 2134 } 2135 state = rb_entry(node, struct extent_state, rb_node); 2136 if (state->start != start) { 2137 failrec = ERR_PTR(-ENOENT); 2138 goto out; 2139 } 2140 2141 failrec = state->failrec; 2142 out: 2143 spin_unlock(&tree->lock); 2144 return failrec; 2145 } 2146 2147 /* 2148 * searches a range in the state tree for a given mask. 2149 * If 'filled' == 1, this returns 1 only if every extent in the tree 2150 * has the bits set. Otherwise, 1 is returned if any bit in the 2151 * range is found set. 2152 */ 2153 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2154 u32 bits, int filled, struct extent_state *cached) 2155 { 2156 struct extent_state *state = NULL; 2157 struct rb_node *node; 2158 int bitset = 0; 2159 2160 spin_lock(&tree->lock); 2161 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2162 cached->end > start) 2163 node = &cached->rb_node; 2164 else 2165 node = tree_search(tree, start); 2166 while (node && start <= end) { 2167 state = rb_entry(node, struct extent_state, rb_node); 2168 2169 if (filled && state->start > start) { 2170 bitset = 0; 2171 break; 2172 } 2173 2174 if (state->start > end) 2175 break; 2176 2177 if (state->state & bits) { 2178 bitset = 1; 2179 if (!filled) 2180 break; 2181 } else if (filled) { 2182 bitset = 0; 2183 break; 2184 } 2185 2186 if (state->end == (u64)-1) 2187 break; 2188 2189 start = state->end + 1; 2190 if (start > end) 2191 break; 2192 node = rb_next(node); 2193 if (!node) { 2194 if (filled) 2195 bitset = 0; 2196 break; 2197 } 2198 } 2199 spin_unlock(&tree->lock); 2200 return bitset; 2201 } 2202 2203 /* 2204 * helper function to set a given page up to date if all the 2205 * extents in the tree for that page are up to date 2206 */ 2207 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2208 { 2209 u64 start = page_offset(page); 2210 u64 end = start + PAGE_SIZE - 1; 2211 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2212 SetPageUptodate(page); 2213 } 2214 2215 int free_io_failure(struct extent_io_tree *failure_tree, 2216 struct extent_io_tree *io_tree, 2217 struct io_failure_record *rec) 2218 { 2219 int ret; 2220 int err = 0; 2221 2222 set_state_failrec(failure_tree, rec->start, NULL); 2223 ret = clear_extent_bits(failure_tree, rec->start, 2224 rec->start + rec->len - 1, 2225 EXTENT_LOCKED | EXTENT_DIRTY); 2226 if (ret) 2227 err = ret; 2228 2229 ret = clear_extent_bits(io_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_DAMAGED); 2232 if (ret && !err) 2233 err = ret; 2234 2235 kfree(rec); 2236 return err; 2237 } 2238 2239 /* 2240 * this bypasses the standard btrfs submit functions deliberately, as 2241 * the standard behavior is to write all copies in a raid setup. here we only 2242 * want to write the one bad copy. so we do the mapping for ourselves and issue 2243 * submit_bio directly. 2244 * to avoid any synchronization issues, wait for the data after writing, which 2245 * actually prevents the read that triggered the error from finishing. 2246 * currently, there can be no more than two copies of every data bit. thus, 2247 * exactly one rewrite is required. 2248 */ 2249 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2250 u64 length, u64 logical, struct page *page, 2251 unsigned int pg_offset, int mirror_num) 2252 { 2253 struct bio *bio; 2254 struct btrfs_device *dev; 2255 u64 map_length = 0; 2256 u64 sector; 2257 struct btrfs_bio *bbio = NULL; 2258 int ret; 2259 2260 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2261 BUG_ON(!mirror_num); 2262 2263 if (btrfs_is_zoned(fs_info)) 2264 return btrfs_repair_one_zone(fs_info, logical); 2265 2266 bio = btrfs_io_bio_alloc(1); 2267 bio->bi_iter.bi_size = 0; 2268 map_length = length; 2269 2270 /* 2271 * Avoid races with device replace and make sure our bbio has devices 2272 * associated to its stripes that don't go away while we are doing the 2273 * read repair operation. 2274 */ 2275 btrfs_bio_counter_inc_blocked(fs_info); 2276 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2277 /* 2278 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2279 * to update all raid stripes, but here we just want to correct 2280 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2281 * stripe's dev and sector. 2282 */ 2283 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2284 &map_length, &bbio, 0); 2285 if (ret) { 2286 btrfs_bio_counter_dec(fs_info); 2287 bio_put(bio); 2288 return -EIO; 2289 } 2290 ASSERT(bbio->mirror_num == 1); 2291 } else { 2292 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2293 &map_length, &bbio, mirror_num); 2294 if (ret) { 2295 btrfs_bio_counter_dec(fs_info); 2296 bio_put(bio); 2297 return -EIO; 2298 } 2299 BUG_ON(mirror_num != bbio->mirror_num); 2300 } 2301 2302 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2303 bio->bi_iter.bi_sector = sector; 2304 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2305 btrfs_put_bbio(bbio); 2306 if (!dev || !dev->bdev || 2307 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2308 btrfs_bio_counter_dec(fs_info); 2309 bio_put(bio); 2310 return -EIO; 2311 } 2312 bio_set_dev(bio, dev->bdev); 2313 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2314 bio_add_page(bio, page, length, pg_offset); 2315 2316 if (btrfsic_submit_bio_wait(bio)) { 2317 /* try to remap that extent elsewhere? */ 2318 btrfs_bio_counter_dec(fs_info); 2319 bio_put(bio); 2320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2321 return -EIO; 2322 } 2323 2324 btrfs_info_rl_in_rcu(fs_info, 2325 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2326 ino, start, 2327 rcu_str_deref(dev->name), sector); 2328 btrfs_bio_counter_dec(fs_info); 2329 bio_put(bio); 2330 return 0; 2331 } 2332 2333 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2334 { 2335 struct btrfs_fs_info *fs_info = eb->fs_info; 2336 u64 start = eb->start; 2337 int i, num_pages = num_extent_pages(eb); 2338 int ret = 0; 2339 2340 if (sb_rdonly(fs_info->sb)) 2341 return -EROFS; 2342 2343 for (i = 0; i < num_pages; i++) { 2344 struct page *p = eb->pages[i]; 2345 2346 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2347 start - page_offset(p), mirror_num); 2348 if (ret) 2349 break; 2350 start += PAGE_SIZE; 2351 } 2352 2353 return ret; 2354 } 2355 2356 /* 2357 * each time an IO finishes, we do a fast check in the IO failure tree 2358 * to see if we need to process or clean up an io_failure_record 2359 */ 2360 int clean_io_failure(struct btrfs_fs_info *fs_info, 2361 struct extent_io_tree *failure_tree, 2362 struct extent_io_tree *io_tree, u64 start, 2363 struct page *page, u64 ino, unsigned int pg_offset) 2364 { 2365 u64 private; 2366 struct io_failure_record *failrec; 2367 struct extent_state *state; 2368 int num_copies; 2369 int ret; 2370 2371 private = 0; 2372 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2373 EXTENT_DIRTY, 0); 2374 if (!ret) 2375 return 0; 2376 2377 failrec = get_state_failrec(failure_tree, start); 2378 if (IS_ERR(failrec)) 2379 return 0; 2380 2381 BUG_ON(!failrec->this_mirror); 2382 2383 if (failrec->in_validation) { 2384 /* there was no real error, just free the record */ 2385 btrfs_debug(fs_info, 2386 "clean_io_failure: freeing dummy error at %llu", 2387 failrec->start); 2388 goto out; 2389 } 2390 if (sb_rdonly(fs_info->sb)) 2391 goto out; 2392 2393 spin_lock(&io_tree->lock); 2394 state = find_first_extent_bit_state(io_tree, 2395 failrec->start, 2396 EXTENT_LOCKED); 2397 spin_unlock(&io_tree->lock); 2398 2399 if (state && state->start <= failrec->start && 2400 state->end >= failrec->start + failrec->len - 1) { 2401 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2402 failrec->len); 2403 if (num_copies > 1) { 2404 repair_io_failure(fs_info, ino, start, failrec->len, 2405 failrec->logical, page, pg_offset, 2406 failrec->failed_mirror); 2407 } 2408 } 2409 2410 out: 2411 free_io_failure(failure_tree, io_tree, failrec); 2412 2413 return 0; 2414 } 2415 2416 /* 2417 * Can be called when 2418 * - hold extent lock 2419 * - under ordered extent 2420 * - the inode is freeing 2421 */ 2422 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2423 { 2424 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2425 struct io_failure_record *failrec; 2426 struct extent_state *state, *next; 2427 2428 if (RB_EMPTY_ROOT(&failure_tree->state)) 2429 return; 2430 2431 spin_lock(&failure_tree->lock); 2432 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2433 while (state) { 2434 if (state->start > end) 2435 break; 2436 2437 ASSERT(state->end <= end); 2438 2439 next = next_state(state); 2440 2441 failrec = state->failrec; 2442 free_extent_state(state); 2443 kfree(failrec); 2444 2445 state = next; 2446 } 2447 spin_unlock(&failure_tree->lock); 2448 } 2449 2450 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2451 u64 start, u64 end) 2452 { 2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2454 struct io_failure_record *failrec; 2455 struct extent_map *em; 2456 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2457 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2458 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2459 int ret; 2460 u64 logical; 2461 2462 failrec = get_state_failrec(failure_tree, start); 2463 if (!IS_ERR(failrec)) { 2464 btrfs_debug(fs_info, 2465 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2466 failrec->logical, failrec->start, failrec->len, 2467 failrec->in_validation); 2468 /* 2469 * when data can be on disk more than twice, add to failrec here 2470 * (e.g. with a list for failed_mirror) to make 2471 * clean_io_failure() clean all those errors at once. 2472 */ 2473 2474 return failrec; 2475 } 2476 2477 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2478 if (!failrec) 2479 return ERR_PTR(-ENOMEM); 2480 2481 failrec->start = start; 2482 failrec->len = end - start + 1; 2483 failrec->this_mirror = 0; 2484 failrec->bio_flags = 0; 2485 failrec->in_validation = 0; 2486 2487 read_lock(&em_tree->lock); 2488 em = lookup_extent_mapping(em_tree, start, failrec->len); 2489 if (!em) { 2490 read_unlock(&em_tree->lock); 2491 kfree(failrec); 2492 return ERR_PTR(-EIO); 2493 } 2494 2495 if (em->start > start || em->start + em->len <= start) { 2496 free_extent_map(em); 2497 em = NULL; 2498 } 2499 read_unlock(&em_tree->lock); 2500 if (!em) { 2501 kfree(failrec); 2502 return ERR_PTR(-EIO); 2503 } 2504 2505 logical = start - em->start; 2506 logical = em->block_start + logical; 2507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2508 logical = em->block_start; 2509 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2510 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2511 } 2512 2513 btrfs_debug(fs_info, 2514 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2515 logical, start, failrec->len); 2516 2517 failrec->logical = logical; 2518 free_extent_map(em); 2519 2520 /* Set the bits in the private failure tree */ 2521 ret = set_extent_bits(failure_tree, start, end, 2522 EXTENT_LOCKED | EXTENT_DIRTY); 2523 if (ret >= 0) { 2524 ret = set_state_failrec(failure_tree, start, failrec); 2525 /* Set the bits in the inode's tree */ 2526 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2527 } else if (ret < 0) { 2528 kfree(failrec); 2529 return ERR_PTR(ret); 2530 } 2531 2532 return failrec; 2533 } 2534 2535 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2536 struct io_failure_record *failrec, 2537 int failed_mirror) 2538 { 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2540 int num_copies; 2541 2542 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2543 if (num_copies == 1) { 2544 /* 2545 * we only have a single copy of the data, so don't bother with 2546 * all the retry and error correction code that follows. no 2547 * matter what the error is, it is very likely to persist. 2548 */ 2549 btrfs_debug(fs_info, 2550 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2551 num_copies, failrec->this_mirror, failed_mirror); 2552 return false; 2553 } 2554 2555 /* 2556 * there are two premises: 2557 * a) deliver good data to the caller 2558 * b) correct the bad sectors on disk 2559 */ 2560 if (needs_validation) { 2561 /* 2562 * to fulfill b), we need to know the exact failing sectors, as 2563 * we don't want to rewrite any more than the failed ones. thus, 2564 * we need separate read requests for the failed bio 2565 * 2566 * if the following BUG_ON triggers, our validation request got 2567 * merged. we need separate requests for our algorithm to work. 2568 */ 2569 BUG_ON(failrec->in_validation); 2570 failrec->in_validation = 1; 2571 failrec->this_mirror = failed_mirror; 2572 } else { 2573 /* 2574 * we're ready to fulfill a) and b) alongside. get a good copy 2575 * of the failed sector and if we succeed, we have setup 2576 * everything for repair_io_failure to do the rest for us. 2577 */ 2578 if (failrec->in_validation) { 2579 BUG_ON(failrec->this_mirror != failed_mirror); 2580 failrec->in_validation = 0; 2581 failrec->this_mirror = 0; 2582 } 2583 failrec->failed_mirror = failed_mirror; 2584 failrec->this_mirror++; 2585 if (failrec->this_mirror == failed_mirror) 2586 failrec->this_mirror++; 2587 } 2588 2589 if (failrec->this_mirror > num_copies) { 2590 btrfs_debug(fs_info, 2591 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2592 num_copies, failrec->this_mirror, failed_mirror); 2593 return false; 2594 } 2595 2596 return true; 2597 } 2598 2599 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2600 { 2601 u64 len = 0; 2602 const u32 blocksize = inode->i_sb->s_blocksize; 2603 2604 /* 2605 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2606 * I/O error. In this case, we already know exactly which sector was 2607 * bad, so we don't need to validate. 2608 */ 2609 if (bio->bi_status == BLK_STS_OK) 2610 return false; 2611 2612 /* 2613 * We need to validate each sector individually if the failed I/O was 2614 * for multiple sectors. 2615 * 2616 * There are a few possible bios that can end up here: 2617 * 1. A buffered read bio, which is not cloned. 2618 * 2. A direct I/O read bio, which is cloned. 2619 * 3. A (buffered or direct) repair bio, which is not cloned. 2620 * 2621 * For cloned bios (case 2), we can get the size from 2622 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2623 * it from the bvecs. 2624 */ 2625 if (bio_flagged(bio, BIO_CLONED)) { 2626 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2627 return true; 2628 } else { 2629 struct bio_vec *bvec; 2630 int i; 2631 2632 bio_for_each_bvec_all(bvec, bio, i) { 2633 len += bvec->bv_len; 2634 if (len > blocksize) 2635 return true; 2636 } 2637 } 2638 return false; 2639 } 2640 2641 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2642 struct bio *failed_bio, u32 bio_offset, 2643 struct page *page, unsigned int pgoff, 2644 u64 start, u64 end, int failed_mirror, 2645 submit_bio_hook_t *submit_bio_hook) 2646 { 2647 struct io_failure_record *failrec; 2648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2649 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2650 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2651 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2652 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2653 bool need_validation; 2654 struct bio *repair_bio; 2655 struct btrfs_io_bio *repair_io_bio; 2656 blk_status_t status; 2657 2658 btrfs_debug(fs_info, 2659 "repair read error: read error at %llu", start); 2660 2661 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2662 2663 failrec = btrfs_get_io_failure_record(inode, start, end); 2664 if (IS_ERR(failrec)) 2665 return errno_to_blk_status(PTR_ERR(failrec)); 2666 2667 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2668 2669 if (!btrfs_check_repairable(inode, need_validation, failrec, 2670 failed_mirror)) { 2671 free_io_failure(failure_tree, tree, failrec); 2672 return BLK_STS_IOERR; 2673 } 2674 2675 repair_bio = btrfs_io_bio_alloc(1); 2676 repair_io_bio = btrfs_io_bio(repair_bio); 2677 repair_bio->bi_opf = REQ_OP_READ; 2678 if (need_validation) 2679 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2680 repair_bio->bi_end_io = failed_bio->bi_end_io; 2681 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2682 repair_bio->bi_private = failed_bio->bi_private; 2683 2684 if (failed_io_bio->csum) { 2685 const u32 csum_size = fs_info->csum_size; 2686 2687 repair_io_bio->csum = repair_io_bio->csum_inline; 2688 memcpy(repair_io_bio->csum, 2689 failed_io_bio->csum + csum_size * icsum, csum_size); 2690 } 2691 2692 bio_add_page(repair_bio, page, failrec->len, pgoff); 2693 repair_io_bio->logical = failrec->start; 2694 repair_io_bio->iter = repair_bio->bi_iter; 2695 2696 btrfs_debug(btrfs_sb(inode->i_sb), 2697 "repair read error: submitting new read to mirror %d, in_validation=%d", 2698 failrec->this_mirror, failrec->in_validation); 2699 2700 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2701 failrec->bio_flags); 2702 if (status) { 2703 free_io_failure(failure_tree, tree, failrec); 2704 bio_put(repair_bio); 2705 } 2706 return status; 2707 } 2708 2709 /* lots and lots of room for performance fixes in the end_bio funcs */ 2710 2711 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2712 { 2713 int uptodate = (err == 0); 2714 int ret = 0; 2715 2716 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2717 2718 if (!uptodate) { 2719 ClearPageUptodate(page); 2720 SetPageError(page); 2721 ret = err < 0 ? err : -EIO; 2722 mapping_set_error(page->mapping, ret); 2723 } 2724 } 2725 2726 /* 2727 * after a writepage IO is done, we need to: 2728 * clear the uptodate bits on error 2729 * clear the writeback bits in the extent tree for this IO 2730 * end_page_writeback if the page has no more pending IO 2731 * 2732 * Scheduling is not allowed, so the extent state tree is expected 2733 * to have one and only one object corresponding to this IO. 2734 */ 2735 static void end_bio_extent_writepage(struct bio *bio) 2736 { 2737 int error = blk_status_to_errno(bio->bi_status); 2738 struct bio_vec *bvec; 2739 u64 start; 2740 u64 end; 2741 struct bvec_iter_all iter_all; 2742 bool first_bvec = true; 2743 2744 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2745 bio_for_each_segment_all(bvec, bio, iter_all) { 2746 struct page *page = bvec->bv_page; 2747 struct inode *inode = page->mapping->host; 2748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2749 2750 /* We always issue full-page reads, but if some block 2751 * in a page fails to read, blk_update_request() will 2752 * advance bv_offset and adjust bv_len to compensate. 2753 * Print a warning for nonzero offsets, and an error 2754 * if they don't add up to a full page. */ 2755 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2756 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2757 btrfs_err(fs_info, 2758 "partial page write in btrfs with offset %u and length %u", 2759 bvec->bv_offset, bvec->bv_len); 2760 else 2761 btrfs_info(fs_info, 2762 "incomplete page write in btrfs with offset %u and length %u", 2763 bvec->bv_offset, bvec->bv_len); 2764 } 2765 2766 start = page_offset(page); 2767 end = start + bvec->bv_offset + bvec->bv_len - 1; 2768 2769 if (first_bvec) { 2770 btrfs_record_physical_zoned(inode, start, bio); 2771 first_bvec = false; 2772 } 2773 2774 end_extent_writepage(page, error, start, end); 2775 end_page_writeback(page); 2776 } 2777 2778 bio_put(bio); 2779 } 2780 2781 /* 2782 * Record previously processed extent range 2783 * 2784 * For endio_readpage_release_extent() to handle a full extent range, reducing 2785 * the extent io operations. 2786 */ 2787 struct processed_extent { 2788 struct btrfs_inode *inode; 2789 /* Start of the range in @inode */ 2790 u64 start; 2791 /* End of the range in @inode */ 2792 u64 end; 2793 bool uptodate; 2794 }; 2795 2796 /* 2797 * Try to release processed extent range 2798 * 2799 * May not release the extent range right now if the current range is 2800 * contiguous to processed extent. 2801 * 2802 * Will release processed extent when any of @inode, @uptodate, the range is 2803 * no longer contiguous to the processed range. 2804 * 2805 * Passing @inode == NULL will force processed extent to be released. 2806 */ 2807 static void endio_readpage_release_extent(struct processed_extent *processed, 2808 struct btrfs_inode *inode, u64 start, u64 end, 2809 bool uptodate) 2810 { 2811 struct extent_state *cached = NULL; 2812 struct extent_io_tree *tree; 2813 2814 /* The first extent, initialize @processed */ 2815 if (!processed->inode) 2816 goto update; 2817 2818 /* 2819 * Contiguous to processed extent, just uptodate the end. 2820 * 2821 * Several things to notice: 2822 * 2823 * - bio can be merged as long as on-disk bytenr is contiguous 2824 * This means we can have page belonging to other inodes, thus need to 2825 * check if the inode still matches. 2826 * - bvec can contain range beyond current page for multi-page bvec 2827 * Thus we need to do processed->end + 1 >= start check 2828 */ 2829 if (processed->inode == inode && processed->uptodate == uptodate && 2830 processed->end + 1 >= start && end >= processed->end) { 2831 processed->end = end; 2832 return; 2833 } 2834 2835 tree = &processed->inode->io_tree; 2836 /* 2837 * Now we don't have range contiguous to the processed range, release 2838 * the processed range now. 2839 */ 2840 if (processed->uptodate && tree->track_uptodate) 2841 set_extent_uptodate(tree, processed->start, processed->end, 2842 &cached, GFP_ATOMIC); 2843 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2844 &cached); 2845 2846 update: 2847 /* Update processed to current range */ 2848 processed->inode = inode; 2849 processed->start = start; 2850 processed->end = end; 2851 processed->uptodate = uptodate; 2852 } 2853 2854 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2855 { 2856 ASSERT(PageLocked(page)); 2857 if (fs_info->sectorsize == PAGE_SIZE) 2858 return; 2859 2860 ASSERT(PagePrivate(page)); 2861 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2862 } 2863 2864 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2865 { 2866 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2867 2868 ASSERT(page_offset(page) <= start && 2869 start + len <= page_offset(page) + PAGE_SIZE); 2870 2871 if (uptodate) { 2872 btrfs_page_set_uptodate(fs_info, page, start, len); 2873 } else { 2874 btrfs_page_clear_uptodate(fs_info, page, start, len); 2875 btrfs_page_set_error(fs_info, page, start, len); 2876 } 2877 2878 if (fs_info->sectorsize == PAGE_SIZE) 2879 unlock_page(page); 2880 else if (is_data_inode(page->mapping->host)) 2881 /* 2882 * For subpage data, unlock the page if we're the last reader. 2883 * For subpage metadata, page lock is not utilized for read. 2884 */ 2885 btrfs_subpage_end_reader(fs_info, page, start, len); 2886 } 2887 2888 /* 2889 * after a readpage IO is done, we need to: 2890 * clear the uptodate bits on error 2891 * set the uptodate bits if things worked 2892 * set the page up to date if all extents in the tree are uptodate 2893 * clear the lock bit in the extent tree 2894 * unlock the page if there are no other extents locked for it 2895 * 2896 * Scheduling is not allowed, so the extent state tree is expected 2897 * to have one and only one object corresponding to this IO. 2898 */ 2899 static void end_bio_extent_readpage(struct bio *bio) 2900 { 2901 struct bio_vec *bvec; 2902 int uptodate = !bio->bi_status; 2903 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2904 struct extent_io_tree *tree, *failure_tree; 2905 struct processed_extent processed = { 0 }; 2906 /* 2907 * The offset to the beginning of a bio, since one bio can never be 2908 * larger than UINT_MAX, u32 here is enough. 2909 */ 2910 u32 bio_offset = 0; 2911 int mirror; 2912 int ret; 2913 struct bvec_iter_all iter_all; 2914 2915 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2916 bio_for_each_segment_all(bvec, bio, iter_all) { 2917 struct page *page = bvec->bv_page; 2918 struct inode *inode = page->mapping->host; 2919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2920 const u32 sectorsize = fs_info->sectorsize; 2921 u64 start; 2922 u64 end; 2923 u32 len; 2924 2925 btrfs_debug(fs_info, 2926 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2927 bio->bi_iter.bi_sector, bio->bi_status, 2928 io_bio->mirror_num); 2929 tree = &BTRFS_I(inode)->io_tree; 2930 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2931 2932 /* 2933 * We always issue full-sector reads, but if some block in a 2934 * page fails to read, blk_update_request() will advance 2935 * bv_offset and adjust bv_len to compensate. Print a warning 2936 * for unaligned offsets, and an error if they don't add up to 2937 * a full sector. 2938 */ 2939 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2940 btrfs_err(fs_info, 2941 "partial page read in btrfs with offset %u and length %u", 2942 bvec->bv_offset, bvec->bv_len); 2943 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 2944 sectorsize)) 2945 btrfs_info(fs_info, 2946 "incomplete page read with offset %u and length %u", 2947 bvec->bv_offset, bvec->bv_len); 2948 2949 start = page_offset(page) + bvec->bv_offset; 2950 end = start + bvec->bv_len - 1; 2951 len = bvec->bv_len; 2952 2953 mirror = io_bio->mirror_num; 2954 if (likely(uptodate)) { 2955 if (is_data_inode(inode)) 2956 ret = btrfs_verify_data_csum(io_bio, 2957 bio_offset, page, start, end, 2958 mirror); 2959 else 2960 ret = btrfs_validate_metadata_buffer(io_bio, 2961 page, start, end, mirror); 2962 if (ret) 2963 uptodate = 0; 2964 else 2965 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2966 failure_tree, tree, start, 2967 page, 2968 btrfs_ino(BTRFS_I(inode)), 0); 2969 } 2970 2971 if (likely(uptodate)) 2972 goto readpage_ok; 2973 2974 if (is_data_inode(inode)) { 2975 2976 /* 2977 * The generic bio_readpage_error handles errors the 2978 * following way: If possible, new read requests are 2979 * created and submitted and will end up in 2980 * end_bio_extent_readpage as well (if we're lucky, 2981 * not in the !uptodate case). In that case it returns 2982 * 0 and we just go on with the next page in our bio. 2983 * If it can't handle the error it will return -EIO and 2984 * we remain responsible for that page. 2985 */ 2986 if (!btrfs_submit_read_repair(inode, bio, bio_offset, 2987 page, 2988 start - page_offset(page), 2989 start, end, mirror, 2990 btrfs_submit_data_bio)) { 2991 uptodate = !bio->bi_status; 2992 ASSERT(bio_offset + len > bio_offset); 2993 bio_offset += len; 2994 continue; 2995 } 2996 } else { 2997 struct extent_buffer *eb; 2998 2999 eb = (struct extent_buffer *)page->private; 3000 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3001 eb->read_mirror = mirror; 3002 atomic_dec(&eb->io_pages); 3003 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 3004 &eb->bflags)) 3005 btree_readahead_hook(eb, -EIO); 3006 } 3007 readpage_ok: 3008 if (likely(uptodate)) { 3009 loff_t i_size = i_size_read(inode); 3010 pgoff_t end_index = i_size >> PAGE_SHIFT; 3011 3012 /* 3013 * Zero out the remaining part if this range straddles 3014 * i_size. 3015 * 3016 * Here we should only zero the range inside the bvec, 3017 * not touch anything else. 3018 * 3019 * NOTE: i_size is exclusive while end is inclusive. 3020 */ 3021 if (page->index == end_index && i_size <= end) { 3022 u32 zero_start = max(offset_in_page(i_size), 3023 offset_in_page(end)); 3024 3025 zero_user_segment(page, zero_start, 3026 offset_in_page(end) + 1); 3027 } 3028 } 3029 ASSERT(bio_offset + len > bio_offset); 3030 bio_offset += len; 3031 3032 /* Update page status and unlock */ 3033 end_page_read(page, uptodate, start, len); 3034 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3035 start, end, uptodate); 3036 } 3037 /* Release the last extent */ 3038 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3039 btrfs_io_bio_free_csum(io_bio); 3040 bio_put(bio); 3041 } 3042 3043 /* 3044 * Initialize the members up to but not including 'bio'. Use after allocating a 3045 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3046 * 'bio' because use of __GFP_ZERO is not supported. 3047 */ 3048 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3049 { 3050 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3051 } 3052 3053 /* 3054 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3055 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3056 * for the appropriate container_of magic 3057 */ 3058 struct bio *btrfs_bio_alloc(u64 first_byte) 3059 { 3060 struct bio *bio; 3061 3062 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 3063 bio->bi_iter.bi_sector = first_byte >> 9; 3064 btrfs_io_bio_init(btrfs_io_bio(bio)); 3065 return bio; 3066 } 3067 3068 struct bio *btrfs_bio_clone(struct bio *bio) 3069 { 3070 struct btrfs_io_bio *btrfs_bio; 3071 struct bio *new; 3072 3073 /* Bio allocation backed by a bioset does not fail */ 3074 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3075 btrfs_bio = btrfs_io_bio(new); 3076 btrfs_io_bio_init(btrfs_bio); 3077 btrfs_bio->iter = bio->bi_iter; 3078 return new; 3079 } 3080 3081 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3082 { 3083 struct bio *bio; 3084 3085 /* Bio allocation backed by a bioset does not fail */ 3086 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3087 btrfs_io_bio_init(btrfs_io_bio(bio)); 3088 return bio; 3089 } 3090 3091 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3092 { 3093 struct bio *bio; 3094 struct btrfs_io_bio *btrfs_bio; 3095 3096 /* this will never fail when it's backed by a bioset */ 3097 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3098 ASSERT(bio); 3099 3100 btrfs_bio = btrfs_io_bio(bio); 3101 btrfs_io_bio_init(btrfs_bio); 3102 3103 bio_trim(bio, offset >> 9, size >> 9); 3104 btrfs_bio->iter = bio->bi_iter; 3105 return bio; 3106 } 3107 3108 /** 3109 * Attempt to add a page to bio 3110 * 3111 * @bio: destination bio 3112 * @page: page to add to the bio 3113 * @disk_bytenr: offset of the new bio or to check whether we are adding 3114 * a contiguous page to the previous one 3115 * @pg_offset: starting offset in the page 3116 * @size: portion of page that we want to write 3117 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3118 * @bio_flags: flags of the current bio to see if we can merge them 3119 * @return: true if page was added, false otherwise 3120 * 3121 * Attempt to add a page to bio considering stripe alignment etc. 3122 * 3123 * Return true if successfully page added. Otherwise, return false. 3124 */ 3125 static bool btrfs_bio_add_page(struct bio *bio, struct page *page, 3126 u64 disk_bytenr, unsigned int size, 3127 unsigned int pg_offset, 3128 unsigned long prev_bio_flags, 3129 unsigned long bio_flags) 3130 { 3131 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3132 bool contig; 3133 int ret; 3134 3135 if (prev_bio_flags != bio_flags) 3136 return false; 3137 3138 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3139 contig = bio->bi_iter.bi_sector == sector; 3140 else 3141 contig = bio_end_sector(bio) == sector; 3142 if (!contig) 3143 return false; 3144 3145 if (btrfs_bio_fits_in_stripe(page, size, bio, bio_flags)) 3146 return false; 3147 3148 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3149 struct page *first_page = bio_first_bvec_all(bio)->bv_page; 3150 3151 if (!btrfs_bio_fits_in_ordered_extent(first_page, bio, size)) 3152 return false; 3153 ret = bio_add_zone_append_page(bio, page, size, pg_offset); 3154 } else { 3155 ret = bio_add_page(bio, page, size, pg_offset); 3156 } 3157 3158 return ret == size; 3159 } 3160 3161 /* 3162 * @opf: bio REQ_OP_* and REQ_* flags as one value 3163 * @wbc: optional writeback control for io accounting 3164 * @page: page to add to the bio 3165 * @disk_bytenr: logical bytenr where the write will be 3166 * @size: portion of page that we want to write to 3167 * @pg_offset: offset of the new bio or to check whether we are adding 3168 * a contiguous page to the previous one 3169 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3170 * @end_io_func: end_io callback for new bio 3171 * @mirror_num: desired mirror to read/write 3172 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3173 * @bio_flags: flags of the current bio to see if we can merge them 3174 */ 3175 static int submit_extent_page(unsigned int opf, 3176 struct writeback_control *wbc, 3177 struct page *page, u64 disk_bytenr, 3178 size_t size, unsigned long pg_offset, 3179 struct bio **bio_ret, 3180 bio_end_io_t end_io_func, 3181 int mirror_num, 3182 unsigned long prev_bio_flags, 3183 unsigned long bio_flags, 3184 bool force_bio_submit) 3185 { 3186 int ret = 0; 3187 struct bio *bio; 3188 size_t io_size = min_t(size_t, size, PAGE_SIZE); 3189 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3190 struct extent_io_tree *tree = &inode->io_tree; 3191 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3192 3193 ASSERT(bio_ret); 3194 3195 if (*bio_ret) { 3196 bio = *bio_ret; 3197 if (force_bio_submit || 3198 !btrfs_bio_add_page(bio, page, disk_bytenr, io_size, 3199 pg_offset, prev_bio_flags, bio_flags)) { 3200 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3201 if (ret < 0) { 3202 *bio_ret = NULL; 3203 return ret; 3204 } 3205 bio = NULL; 3206 } else { 3207 if (wbc) 3208 wbc_account_cgroup_owner(wbc, page, io_size); 3209 return 0; 3210 } 3211 } 3212 3213 bio = btrfs_bio_alloc(disk_bytenr); 3214 bio_add_page(bio, page, io_size, pg_offset); 3215 bio->bi_end_io = end_io_func; 3216 bio->bi_private = tree; 3217 bio->bi_write_hint = page->mapping->host->i_write_hint; 3218 bio->bi_opf = opf; 3219 if (wbc) { 3220 struct block_device *bdev; 3221 3222 bdev = fs_info->fs_devices->latest_bdev; 3223 bio_set_dev(bio, bdev); 3224 wbc_init_bio(wbc, bio); 3225 wbc_account_cgroup_owner(wbc, page, io_size); 3226 } 3227 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) { 3228 struct extent_map *em; 3229 struct map_lookup *map; 3230 3231 em = btrfs_get_chunk_map(fs_info, disk_bytenr, io_size); 3232 if (IS_ERR(em)) 3233 return PTR_ERR(em); 3234 3235 map = em->map_lookup; 3236 /* We only support single profile for now */ 3237 ASSERT(map->num_stripes == 1); 3238 btrfs_io_bio(bio)->device = map->stripes[0].dev; 3239 3240 free_extent_map(em); 3241 } 3242 3243 *bio_ret = bio; 3244 3245 return ret; 3246 } 3247 3248 static int attach_extent_buffer_page(struct extent_buffer *eb, 3249 struct page *page, 3250 struct btrfs_subpage *prealloc) 3251 { 3252 struct btrfs_fs_info *fs_info = eb->fs_info; 3253 int ret = 0; 3254 3255 /* 3256 * If the page is mapped to btree inode, we should hold the private 3257 * lock to prevent race. 3258 * For cloned or dummy extent buffers, their pages are not mapped and 3259 * will not race with any other ebs. 3260 */ 3261 if (page->mapping) 3262 lockdep_assert_held(&page->mapping->private_lock); 3263 3264 if (fs_info->sectorsize == PAGE_SIZE) { 3265 if (!PagePrivate(page)) 3266 attach_page_private(page, eb); 3267 else 3268 WARN_ON(page->private != (unsigned long)eb); 3269 return 0; 3270 } 3271 3272 /* Already mapped, just free prealloc */ 3273 if (PagePrivate(page)) { 3274 btrfs_free_subpage(prealloc); 3275 return 0; 3276 } 3277 3278 if (prealloc) 3279 /* Has preallocated memory for subpage */ 3280 attach_page_private(page, prealloc); 3281 else 3282 /* Do new allocation to attach subpage */ 3283 ret = btrfs_attach_subpage(fs_info, page, 3284 BTRFS_SUBPAGE_METADATA); 3285 return ret; 3286 } 3287 3288 int set_page_extent_mapped(struct page *page) 3289 { 3290 struct btrfs_fs_info *fs_info; 3291 3292 ASSERT(page->mapping); 3293 3294 if (PagePrivate(page)) 3295 return 0; 3296 3297 fs_info = btrfs_sb(page->mapping->host->i_sb); 3298 3299 if (fs_info->sectorsize < PAGE_SIZE) 3300 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3301 3302 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3303 return 0; 3304 } 3305 3306 void clear_page_extent_mapped(struct page *page) 3307 { 3308 struct btrfs_fs_info *fs_info; 3309 3310 ASSERT(page->mapping); 3311 3312 if (!PagePrivate(page)) 3313 return; 3314 3315 fs_info = btrfs_sb(page->mapping->host->i_sb); 3316 if (fs_info->sectorsize < PAGE_SIZE) 3317 return btrfs_detach_subpage(fs_info, page); 3318 3319 detach_page_private(page); 3320 } 3321 3322 static struct extent_map * 3323 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3324 u64 start, u64 len, struct extent_map **em_cached) 3325 { 3326 struct extent_map *em; 3327 3328 if (em_cached && *em_cached) { 3329 em = *em_cached; 3330 if (extent_map_in_tree(em) && start >= em->start && 3331 start < extent_map_end(em)) { 3332 refcount_inc(&em->refs); 3333 return em; 3334 } 3335 3336 free_extent_map(em); 3337 *em_cached = NULL; 3338 } 3339 3340 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3341 if (em_cached && !IS_ERR_OR_NULL(em)) { 3342 BUG_ON(*em_cached); 3343 refcount_inc(&em->refs); 3344 *em_cached = em; 3345 } 3346 return em; 3347 } 3348 /* 3349 * basic readpage implementation. Locked extent state structs are inserted 3350 * into the tree that are removed when the IO is done (by the end_io 3351 * handlers) 3352 * XXX JDM: This needs looking at to ensure proper page locking 3353 * return 0 on success, otherwise return error 3354 */ 3355 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3356 struct bio **bio, unsigned long *bio_flags, 3357 unsigned int read_flags, u64 *prev_em_start) 3358 { 3359 struct inode *inode = page->mapping->host; 3360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3361 u64 start = page_offset(page); 3362 const u64 end = start + PAGE_SIZE - 1; 3363 u64 cur = start; 3364 u64 extent_offset; 3365 u64 last_byte = i_size_read(inode); 3366 u64 block_start; 3367 u64 cur_end; 3368 struct extent_map *em; 3369 int ret = 0; 3370 int nr = 0; 3371 size_t pg_offset = 0; 3372 size_t iosize; 3373 size_t blocksize = inode->i_sb->s_blocksize; 3374 unsigned long this_bio_flag = 0; 3375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3376 3377 ret = set_page_extent_mapped(page); 3378 if (ret < 0) { 3379 unlock_extent(tree, start, end); 3380 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3381 unlock_page(page); 3382 goto out; 3383 } 3384 3385 if (!PageUptodate(page)) { 3386 if (cleancache_get_page(page) == 0) { 3387 BUG_ON(blocksize != PAGE_SIZE); 3388 unlock_extent(tree, start, end); 3389 unlock_page(page); 3390 goto out; 3391 } 3392 } 3393 3394 if (page->index == last_byte >> PAGE_SHIFT) { 3395 char *userpage; 3396 size_t zero_offset = offset_in_page(last_byte); 3397 3398 if (zero_offset) { 3399 iosize = PAGE_SIZE - zero_offset; 3400 userpage = kmap_atomic(page); 3401 memset(userpage + zero_offset, 0, iosize); 3402 flush_dcache_page(page); 3403 kunmap_atomic(userpage); 3404 } 3405 } 3406 begin_page_read(fs_info, page); 3407 while (cur <= end) { 3408 bool force_bio_submit = false; 3409 u64 disk_bytenr; 3410 3411 if (cur >= last_byte) { 3412 char *userpage; 3413 struct extent_state *cached = NULL; 3414 3415 iosize = PAGE_SIZE - pg_offset; 3416 userpage = kmap_atomic(page); 3417 memset(userpage + pg_offset, 0, iosize); 3418 flush_dcache_page(page); 3419 kunmap_atomic(userpage); 3420 set_extent_uptodate(tree, cur, cur + iosize - 1, 3421 &cached, GFP_NOFS); 3422 unlock_extent_cached(tree, cur, 3423 cur + iosize - 1, &cached); 3424 end_page_read(page, true, cur, iosize); 3425 break; 3426 } 3427 em = __get_extent_map(inode, page, pg_offset, cur, 3428 end - cur + 1, em_cached); 3429 if (IS_ERR_OR_NULL(em)) { 3430 unlock_extent(tree, cur, end); 3431 end_page_read(page, false, cur, end + 1 - cur); 3432 break; 3433 } 3434 extent_offset = cur - em->start; 3435 BUG_ON(extent_map_end(em) <= cur); 3436 BUG_ON(end < cur); 3437 3438 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3439 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3440 extent_set_compress_type(&this_bio_flag, 3441 em->compress_type); 3442 } 3443 3444 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3445 cur_end = min(extent_map_end(em) - 1, end); 3446 iosize = ALIGN(iosize, blocksize); 3447 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3448 disk_bytenr = em->block_start; 3449 else 3450 disk_bytenr = em->block_start + extent_offset; 3451 block_start = em->block_start; 3452 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3453 block_start = EXTENT_MAP_HOLE; 3454 3455 /* 3456 * If we have a file range that points to a compressed extent 3457 * and it's followed by a consecutive file range that points 3458 * to the same compressed extent (possibly with a different 3459 * offset and/or length, so it either points to the whole extent 3460 * or only part of it), we must make sure we do not submit a 3461 * single bio to populate the pages for the 2 ranges because 3462 * this makes the compressed extent read zero out the pages 3463 * belonging to the 2nd range. Imagine the following scenario: 3464 * 3465 * File layout 3466 * [0 - 8K] [8K - 24K] 3467 * | | 3468 * | | 3469 * points to extent X, points to extent X, 3470 * offset 4K, length of 8K offset 0, length 16K 3471 * 3472 * [extent X, compressed length = 4K uncompressed length = 16K] 3473 * 3474 * If the bio to read the compressed extent covers both ranges, 3475 * it will decompress extent X into the pages belonging to the 3476 * first range and then it will stop, zeroing out the remaining 3477 * pages that belong to the other range that points to extent X. 3478 * So here we make sure we submit 2 bios, one for the first 3479 * range and another one for the third range. Both will target 3480 * the same physical extent from disk, but we can't currently 3481 * make the compressed bio endio callback populate the pages 3482 * for both ranges because each compressed bio is tightly 3483 * coupled with a single extent map, and each range can have 3484 * an extent map with a different offset value relative to the 3485 * uncompressed data of our extent and different lengths. This 3486 * is a corner case so we prioritize correctness over 3487 * non-optimal behavior (submitting 2 bios for the same extent). 3488 */ 3489 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3490 prev_em_start && *prev_em_start != (u64)-1 && 3491 *prev_em_start != em->start) 3492 force_bio_submit = true; 3493 3494 if (prev_em_start) 3495 *prev_em_start = em->start; 3496 3497 free_extent_map(em); 3498 em = NULL; 3499 3500 /* we've found a hole, just zero and go on */ 3501 if (block_start == EXTENT_MAP_HOLE) { 3502 char *userpage; 3503 struct extent_state *cached = NULL; 3504 3505 userpage = kmap_atomic(page); 3506 memset(userpage + pg_offset, 0, iosize); 3507 flush_dcache_page(page); 3508 kunmap_atomic(userpage); 3509 3510 set_extent_uptodate(tree, cur, cur + iosize - 1, 3511 &cached, GFP_NOFS); 3512 unlock_extent_cached(tree, cur, 3513 cur + iosize - 1, &cached); 3514 end_page_read(page, true, cur, iosize); 3515 cur = cur + iosize; 3516 pg_offset += iosize; 3517 continue; 3518 } 3519 /* the get_extent function already copied into the page */ 3520 if (test_range_bit(tree, cur, cur_end, 3521 EXTENT_UPTODATE, 1, NULL)) { 3522 check_page_uptodate(tree, page); 3523 unlock_extent(tree, cur, cur + iosize - 1); 3524 end_page_read(page, true, cur, iosize); 3525 cur = cur + iosize; 3526 pg_offset += iosize; 3527 continue; 3528 } 3529 /* we have an inline extent but it didn't get marked up 3530 * to date. Error out 3531 */ 3532 if (block_start == EXTENT_MAP_INLINE) { 3533 unlock_extent(tree, cur, cur + iosize - 1); 3534 end_page_read(page, false, cur, iosize); 3535 cur = cur + iosize; 3536 pg_offset += iosize; 3537 continue; 3538 } 3539 3540 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3541 page, disk_bytenr, iosize, 3542 pg_offset, bio, 3543 end_bio_extent_readpage, 0, 3544 *bio_flags, 3545 this_bio_flag, 3546 force_bio_submit); 3547 if (!ret) { 3548 nr++; 3549 *bio_flags = this_bio_flag; 3550 } else { 3551 unlock_extent(tree, cur, cur + iosize - 1); 3552 end_page_read(page, false, cur, iosize); 3553 goto out; 3554 } 3555 cur = cur + iosize; 3556 pg_offset += iosize; 3557 } 3558 out: 3559 return ret; 3560 } 3561 3562 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3563 u64 start, u64 end, 3564 struct extent_map **em_cached, 3565 struct bio **bio, 3566 unsigned long *bio_flags, 3567 u64 *prev_em_start) 3568 { 3569 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3570 int index; 3571 3572 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3573 3574 for (index = 0; index < nr_pages; index++) { 3575 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3576 REQ_RAHEAD, prev_em_start); 3577 put_page(pages[index]); 3578 } 3579 } 3580 3581 static void update_nr_written(struct writeback_control *wbc, 3582 unsigned long nr_written) 3583 { 3584 wbc->nr_to_write -= nr_written; 3585 } 3586 3587 /* 3588 * helper for __extent_writepage, doing all of the delayed allocation setup. 3589 * 3590 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3591 * to write the page (copy into inline extent). In this case the IO has 3592 * been started and the page is already unlocked. 3593 * 3594 * This returns 0 if all went well (page still locked) 3595 * This returns < 0 if there were errors (page still locked) 3596 */ 3597 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3598 struct page *page, struct writeback_control *wbc, 3599 u64 delalloc_start, unsigned long *nr_written) 3600 { 3601 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3602 bool found; 3603 u64 delalloc_to_write = 0; 3604 u64 delalloc_end = 0; 3605 int ret; 3606 int page_started = 0; 3607 3608 3609 while (delalloc_end < page_end) { 3610 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3611 &delalloc_start, 3612 &delalloc_end); 3613 if (!found) { 3614 delalloc_start = delalloc_end + 1; 3615 continue; 3616 } 3617 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3618 delalloc_end, &page_started, nr_written, wbc); 3619 if (ret) { 3620 SetPageError(page); 3621 /* 3622 * btrfs_run_delalloc_range should return < 0 for error 3623 * but just in case, we use > 0 here meaning the IO is 3624 * started, so we don't want to return > 0 unless 3625 * things are going well. 3626 */ 3627 return ret < 0 ? ret : -EIO; 3628 } 3629 /* 3630 * delalloc_end is already one less than the total length, so 3631 * we don't subtract one from PAGE_SIZE 3632 */ 3633 delalloc_to_write += (delalloc_end - delalloc_start + 3634 PAGE_SIZE) >> PAGE_SHIFT; 3635 delalloc_start = delalloc_end + 1; 3636 } 3637 if (wbc->nr_to_write < delalloc_to_write) { 3638 int thresh = 8192; 3639 3640 if (delalloc_to_write < thresh * 2) 3641 thresh = delalloc_to_write; 3642 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3643 thresh); 3644 } 3645 3646 /* did the fill delalloc function already unlock and start 3647 * the IO? 3648 */ 3649 if (page_started) { 3650 /* 3651 * we've unlocked the page, so we can't update 3652 * the mapping's writeback index, just update 3653 * nr_to_write. 3654 */ 3655 wbc->nr_to_write -= *nr_written; 3656 return 1; 3657 } 3658 3659 return 0; 3660 } 3661 3662 /* 3663 * helper for __extent_writepage. This calls the writepage start hooks, 3664 * and does the loop to map the page into extents and bios. 3665 * 3666 * We return 1 if the IO is started and the page is unlocked, 3667 * 0 if all went well (page still locked) 3668 * < 0 if there were errors (page still locked) 3669 */ 3670 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3671 struct page *page, 3672 struct writeback_control *wbc, 3673 struct extent_page_data *epd, 3674 loff_t i_size, 3675 unsigned long nr_written, 3676 int *nr_ret) 3677 { 3678 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3679 struct extent_io_tree *tree = &inode->io_tree; 3680 u64 start = page_offset(page); 3681 u64 end = start + PAGE_SIZE - 1; 3682 u64 cur = start; 3683 u64 extent_offset; 3684 u64 block_start; 3685 struct extent_map *em; 3686 int ret = 0; 3687 int nr = 0; 3688 u32 opf = REQ_OP_WRITE; 3689 const unsigned int write_flags = wbc_to_write_flags(wbc); 3690 bool compressed; 3691 3692 ret = btrfs_writepage_cow_fixup(page, start, end); 3693 if (ret) { 3694 /* Fixup worker will requeue */ 3695 redirty_page_for_writepage(wbc, page); 3696 update_nr_written(wbc, nr_written); 3697 unlock_page(page); 3698 return 1; 3699 } 3700 3701 /* 3702 * we don't want to touch the inode after unlocking the page, 3703 * so we update the mapping writeback index now 3704 */ 3705 update_nr_written(wbc, nr_written + 1); 3706 3707 while (cur <= end) { 3708 u64 disk_bytenr; 3709 u64 em_end; 3710 u32 iosize; 3711 3712 if (cur >= i_size) { 3713 btrfs_writepage_endio_finish_ordered(page, cur, end, 1); 3714 break; 3715 } 3716 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3717 if (IS_ERR_OR_NULL(em)) { 3718 SetPageError(page); 3719 ret = PTR_ERR_OR_ZERO(em); 3720 break; 3721 } 3722 3723 extent_offset = cur - em->start; 3724 em_end = extent_map_end(em); 3725 ASSERT(cur <= em_end); 3726 ASSERT(cur < end); 3727 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3728 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3729 block_start = em->block_start; 3730 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3731 disk_bytenr = em->block_start + extent_offset; 3732 3733 /* Note that em_end from extent_map_end() is exclusive */ 3734 iosize = min(em_end, end + 1) - cur; 3735 3736 if (btrfs_use_zone_append(inode, em)) 3737 opf = REQ_OP_ZONE_APPEND; 3738 3739 free_extent_map(em); 3740 em = NULL; 3741 3742 /* 3743 * compressed and inline extents are written through other 3744 * paths in the FS 3745 */ 3746 if (compressed || block_start == EXTENT_MAP_HOLE || 3747 block_start == EXTENT_MAP_INLINE) { 3748 if (compressed) 3749 nr++; 3750 else 3751 btrfs_writepage_endio_finish_ordered(page, cur, 3752 cur + iosize - 1, 1); 3753 cur += iosize; 3754 continue; 3755 } 3756 3757 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3758 if (!PageWriteback(page)) { 3759 btrfs_err(inode->root->fs_info, 3760 "page %lu not writeback, cur %llu end %llu", 3761 page->index, cur, end); 3762 } 3763 3764 ret = submit_extent_page(opf | write_flags, wbc, page, 3765 disk_bytenr, iosize, 3766 cur - page_offset(page), &epd->bio, 3767 end_bio_extent_writepage, 3768 0, 0, 0, false); 3769 if (ret) { 3770 SetPageError(page); 3771 if (PageWriteback(page)) 3772 end_page_writeback(page); 3773 } 3774 3775 cur += iosize; 3776 nr++; 3777 } 3778 *nr_ret = nr; 3779 return ret; 3780 } 3781 3782 /* 3783 * the writepage semantics are similar to regular writepage. extent 3784 * records are inserted to lock ranges in the tree, and as dirty areas 3785 * are found, they are marked writeback. Then the lock bits are removed 3786 * and the end_io handler clears the writeback ranges 3787 * 3788 * Return 0 if everything goes well. 3789 * Return <0 for error. 3790 */ 3791 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3792 struct extent_page_data *epd) 3793 { 3794 struct inode *inode = page->mapping->host; 3795 u64 start = page_offset(page); 3796 u64 page_end = start + PAGE_SIZE - 1; 3797 int ret; 3798 int nr = 0; 3799 size_t pg_offset; 3800 loff_t i_size = i_size_read(inode); 3801 unsigned long end_index = i_size >> PAGE_SHIFT; 3802 unsigned long nr_written = 0; 3803 3804 trace___extent_writepage(page, inode, wbc); 3805 3806 WARN_ON(!PageLocked(page)); 3807 3808 ClearPageError(page); 3809 3810 pg_offset = offset_in_page(i_size); 3811 if (page->index > end_index || 3812 (page->index == end_index && !pg_offset)) { 3813 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3814 unlock_page(page); 3815 return 0; 3816 } 3817 3818 if (page->index == end_index) { 3819 char *userpage; 3820 3821 userpage = kmap_atomic(page); 3822 memset(userpage + pg_offset, 0, 3823 PAGE_SIZE - pg_offset); 3824 kunmap_atomic(userpage); 3825 flush_dcache_page(page); 3826 } 3827 3828 ret = set_page_extent_mapped(page); 3829 if (ret < 0) { 3830 SetPageError(page); 3831 goto done; 3832 } 3833 3834 if (!epd->extent_locked) { 3835 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3836 &nr_written); 3837 if (ret == 1) 3838 return 0; 3839 if (ret) 3840 goto done; 3841 } 3842 3843 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3844 nr_written, &nr); 3845 if (ret == 1) 3846 return 0; 3847 3848 done: 3849 if (nr == 0) { 3850 /* make sure the mapping tag for page dirty gets cleared */ 3851 set_page_writeback(page); 3852 end_page_writeback(page); 3853 } 3854 if (PageError(page)) { 3855 ret = ret < 0 ? ret : -EIO; 3856 end_extent_writepage(page, ret, start, page_end); 3857 } 3858 unlock_page(page); 3859 ASSERT(ret <= 0); 3860 return ret; 3861 } 3862 3863 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3864 { 3865 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3866 TASK_UNINTERRUPTIBLE); 3867 } 3868 3869 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3870 { 3871 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3872 smp_mb__after_atomic(); 3873 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3874 } 3875 3876 /* 3877 * Lock extent buffer status and pages for writeback. 3878 * 3879 * May try to flush write bio if we can't get the lock. 3880 * 3881 * Return 0 if the extent buffer doesn't need to be submitted. 3882 * (E.g. the extent buffer is not dirty) 3883 * Return >0 is the extent buffer is submitted to bio. 3884 * Return <0 if something went wrong, no page is locked. 3885 */ 3886 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3887 struct extent_page_data *epd) 3888 { 3889 struct btrfs_fs_info *fs_info = eb->fs_info; 3890 int i, num_pages, failed_page_nr; 3891 int flush = 0; 3892 int ret = 0; 3893 3894 if (!btrfs_try_tree_write_lock(eb)) { 3895 ret = flush_write_bio(epd); 3896 if (ret < 0) 3897 return ret; 3898 flush = 1; 3899 btrfs_tree_lock(eb); 3900 } 3901 3902 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3903 btrfs_tree_unlock(eb); 3904 if (!epd->sync_io) 3905 return 0; 3906 if (!flush) { 3907 ret = flush_write_bio(epd); 3908 if (ret < 0) 3909 return ret; 3910 flush = 1; 3911 } 3912 while (1) { 3913 wait_on_extent_buffer_writeback(eb); 3914 btrfs_tree_lock(eb); 3915 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3916 break; 3917 btrfs_tree_unlock(eb); 3918 } 3919 } 3920 3921 /* 3922 * We need to do this to prevent races in people who check if the eb is 3923 * under IO since we can end up having no IO bits set for a short period 3924 * of time. 3925 */ 3926 spin_lock(&eb->refs_lock); 3927 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3928 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3929 spin_unlock(&eb->refs_lock); 3930 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3931 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3932 -eb->len, 3933 fs_info->dirty_metadata_batch); 3934 ret = 1; 3935 } else { 3936 spin_unlock(&eb->refs_lock); 3937 } 3938 3939 btrfs_tree_unlock(eb); 3940 3941 if (!ret) 3942 return ret; 3943 3944 num_pages = num_extent_pages(eb); 3945 for (i = 0; i < num_pages; i++) { 3946 struct page *p = eb->pages[i]; 3947 3948 if (!trylock_page(p)) { 3949 if (!flush) { 3950 int err; 3951 3952 err = flush_write_bio(epd); 3953 if (err < 0) { 3954 ret = err; 3955 failed_page_nr = i; 3956 goto err_unlock; 3957 } 3958 flush = 1; 3959 } 3960 lock_page(p); 3961 } 3962 } 3963 3964 return ret; 3965 err_unlock: 3966 /* Unlock already locked pages */ 3967 for (i = 0; i < failed_page_nr; i++) 3968 unlock_page(eb->pages[i]); 3969 /* 3970 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3971 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3972 * be made and undo everything done before. 3973 */ 3974 btrfs_tree_lock(eb); 3975 spin_lock(&eb->refs_lock); 3976 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3977 end_extent_buffer_writeback(eb); 3978 spin_unlock(&eb->refs_lock); 3979 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3980 fs_info->dirty_metadata_batch); 3981 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3982 btrfs_tree_unlock(eb); 3983 return ret; 3984 } 3985 3986 static void set_btree_ioerr(struct page *page) 3987 { 3988 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3989 struct btrfs_fs_info *fs_info; 3990 3991 SetPageError(page); 3992 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3993 return; 3994 3995 /* 3996 * If we error out, we should add back the dirty_metadata_bytes 3997 * to make it consistent. 3998 */ 3999 fs_info = eb->fs_info; 4000 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4001 eb->len, fs_info->dirty_metadata_batch); 4002 4003 /* 4004 * If writeback for a btree extent that doesn't belong to a log tree 4005 * failed, increment the counter transaction->eb_write_errors. 4006 * We do this because while the transaction is running and before it's 4007 * committing (when we call filemap_fdata[write|wait]_range against 4008 * the btree inode), we might have 4009 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4010 * returns an error or an error happens during writeback, when we're 4011 * committing the transaction we wouldn't know about it, since the pages 4012 * can be no longer dirty nor marked anymore for writeback (if a 4013 * subsequent modification to the extent buffer didn't happen before the 4014 * transaction commit), which makes filemap_fdata[write|wait]_range not 4015 * able to find the pages tagged with SetPageError at transaction 4016 * commit time. So if this happens we must abort the transaction, 4017 * otherwise we commit a super block with btree roots that point to 4018 * btree nodes/leafs whose content on disk is invalid - either garbage 4019 * or the content of some node/leaf from a past generation that got 4020 * cowed or deleted and is no longer valid. 4021 * 4022 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4023 * not be enough - we need to distinguish between log tree extents vs 4024 * non-log tree extents, and the next filemap_fdatawait_range() call 4025 * will catch and clear such errors in the mapping - and that call might 4026 * be from a log sync and not from a transaction commit. Also, checking 4027 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4028 * not done and would not be reliable - the eb might have been released 4029 * from memory and reading it back again means that flag would not be 4030 * set (since it's a runtime flag, not persisted on disk). 4031 * 4032 * Using the flags below in the btree inode also makes us achieve the 4033 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4034 * writeback for all dirty pages and before filemap_fdatawait_range() 4035 * is called, the writeback for all dirty pages had already finished 4036 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4037 * filemap_fdatawait_range() would return success, as it could not know 4038 * that writeback errors happened (the pages were no longer tagged for 4039 * writeback). 4040 */ 4041 switch (eb->log_index) { 4042 case -1: 4043 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 4044 break; 4045 case 0: 4046 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 4047 break; 4048 case 1: 4049 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 4050 break; 4051 default: 4052 BUG(); /* unexpected, logic error */ 4053 } 4054 } 4055 4056 static void end_bio_extent_buffer_writepage(struct bio *bio) 4057 { 4058 struct bio_vec *bvec; 4059 struct extent_buffer *eb; 4060 int done; 4061 struct bvec_iter_all iter_all; 4062 4063 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4064 bio_for_each_segment_all(bvec, bio, iter_all) { 4065 struct page *page = bvec->bv_page; 4066 4067 eb = (struct extent_buffer *)page->private; 4068 BUG_ON(!eb); 4069 done = atomic_dec_and_test(&eb->io_pages); 4070 4071 if (bio->bi_status || 4072 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4073 ClearPageUptodate(page); 4074 set_btree_ioerr(page); 4075 } 4076 4077 end_page_writeback(page); 4078 4079 if (!done) 4080 continue; 4081 4082 end_extent_buffer_writeback(eb); 4083 } 4084 4085 bio_put(bio); 4086 } 4087 4088 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4089 struct writeback_control *wbc, 4090 struct extent_page_data *epd) 4091 { 4092 u64 disk_bytenr = eb->start; 4093 u32 nritems; 4094 int i, num_pages; 4095 unsigned long start, end; 4096 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4097 int ret = 0; 4098 4099 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4100 num_pages = num_extent_pages(eb); 4101 atomic_set(&eb->io_pages, num_pages); 4102 4103 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 4104 nritems = btrfs_header_nritems(eb); 4105 if (btrfs_header_level(eb) > 0) { 4106 end = btrfs_node_key_ptr_offset(nritems); 4107 4108 memzero_extent_buffer(eb, end, eb->len - end); 4109 } else { 4110 /* 4111 * leaf: 4112 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4113 */ 4114 start = btrfs_item_nr_offset(nritems); 4115 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4116 memzero_extent_buffer(eb, start, end - start); 4117 } 4118 4119 for (i = 0; i < num_pages; i++) { 4120 struct page *p = eb->pages[i]; 4121 4122 clear_page_dirty_for_io(p); 4123 set_page_writeback(p); 4124 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4125 p, disk_bytenr, PAGE_SIZE, 0, 4126 &epd->bio, 4127 end_bio_extent_buffer_writepage, 4128 0, 0, 0, false); 4129 if (ret) { 4130 set_btree_ioerr(p); 4131 if (PageWriteback(p)) 4132 end_page_writeback(p); 4133 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4134 end_extent_buffer_writeback(eb); 4135 ret = -EIO; 4136 break; 4137 } 4138 disk_bytenr += PAGE_SIZE; 4139 update_nr_written(wbc, 1); 4140 unlock_page(p); 4141 } 4142 4143 if (unlikely(ret)) { 4144 for (; i < num_pages; i++) { 4145 struct page *p = eb->pages[i]; 4146 clear_page_dirty_for_io(p); 4147 unlock_page(p); 4148 } 4149 } 4150 4151 return ret; 4152 } 4153 4154 /* 4155 * Submit all page(s) of one extent buffer. 4156 * 4157 * @page: the page of one extent buffer 4158 * @eb_context: to determine if we need to submit this page, if current page 4159 * belongs to this eb, we don't need to submit 4160 * 4161 * The caller should pass each page in their bytenr order, and here we use 4162 * @eb_context to determine if we have submitted pages of one extent buffer. 4163 * 4164 * If we have, we just skip until we hit a new page that doesn't belong to 4165 * current @eb_context. 4166 * 4167 * If not, we submit all the page(s) of the extent buffer. 4168 * 4169 * Return >0 if we have submitted the extent buffer successfully. 4170 * Return 0 if we don't need to submit the page, as it's already submitted by 4171 * previous call. 4172 * Return <0 for fatal error. 4173 */ 4174 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4175 struct extent_page_data *epd, 4176 struct extent_buffer **eb_context) 4177 { 4178 struct address_space *mapping = page->mapping; 4179 struct btrfs_block_group *cache = NULL; 4180 struct extent_buffer *eb; 4181 int ret; 4182 4183 if (!PagePrivate(page)) 4184 return 0; 4185 4186 spin_lock(&mapping->private_lock); 4187 if (!PagePrivate(page)) { 4188 spin_unlock(&mapping->private_lock); 4189 return 0; 4190 } 4191 4192 eb = (struct extent_buffer *)page->private; 4193 4194 /* 4195 * Shouldn't happen and normally this would be a BUG_ON but no point 4196 * crashing the machine for something we can survive anyway. 4197 */ 4198 if (WARN_ON(!eb)) { 4199 spin_unlock(&mapping->private_lock); 4200 return 0; 4201 } 4202 4203 if (eb == *eb_context) { 4204 spin_unlock(&mapping->private_lock); 4205 return 0; 4206 } 4207 ret = atomic_inc_not_zero(&eb->refs); 4208 spin_unlock(&mapping->private_lock); 4209 if (!ret) 4210 return 0; 4211 4212 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4213 /* 4214 * If for_sync, this hole will be filled with 4215 * trasnsaction commit. 4216 */ 4217 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4218 ret = -EAGAIN; 4219 else 4220 ret = 0; 4221 free_extent_buffer(eb); 4222 return ret; 4223 } 4224 4225 *eb_context = eb; 4226 4227 ret = lock_extent_buffer_for_io(eb, epd); 4228 if (ret <= 0) { 4229 btrfs_revert_meta_write_pointer(cache, eb); 4230 if (cache) 4231 btrfs_put_block_group(cache); 4232 free_extent_buffer(eb); 4233 return ret; 4234 } 4235 if (cache) 4236 btrfs_put_block_group(cache); 4237 ret = write_one_eb(eb, wbc, epd); 4238 free_extent_buffer(eb); 4239 if (ret < 0) 4240 return ret; 4241 return 1; 4242 } 4243 4244 int btree_write_cache_pages(struct address_space *mapping, 4245 struct writeback_control *wbc) 4246 { 4247 struct extent_buffer *eb_context = NULL; 4248 struct extent_page_data epd = { 4249 .bio = NULL, 4250 .extent_locked = 0, 4251 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4252 }; 4253 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4254 int ret = 0; 4255 int done = 0; 4256 int nr_to_write_done = 0; 4257 struct pagevec pvec; 4258 int nr_pages; 4259 pgoff_t index; 4260 pgoff_t end; /* Inclusive */ 4261 int scanned = 0; 4262 xa_mark_t tag; 4263 4264 pagevec_init(&pvec); 4265 if (wbc->range_cyclic) { 4266 index = mapping->writeback_index; /* Start from prev offset */ 4267 end = -1; 4268 /* 4269 * Start from the beginning does not need to cycle over the 4270 * range, mark it as scanned. 4271 */ 4272 scanned = (index == 0); 4273 } else { 4274 index = wbc->range_start >> PAGE_SHIFT; 4275 end = wbc->range_end >> PAGE_SHIFT; 4276 scanned = 1; 4277 } 4278 if (wbc->sync_mode == WB_SYNC_ALL) 4279 tag = PAGECACHE_TAG_TOWRITE; 4280 else 4281 tag = PAGECACHE_TAG_DIRTY; 4282 btrfs_zoned_meta_io_lock(fs_info); 4283 retry: 4284 if (wbc->sync_mode == WB_SYNC_ALL) 4285 tag_pages_for_writeback(mapping, index, end); 4286 while (!done && !nr_to_write_done && (index <= end) && 4287 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4288 tag))) { 4289 unsigned i; 4290 4291 for (i = 0; i < nr_pages; i++) { 4292 struct page *page = pvec.pages[i]; 4293 4294 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4295 if (ret == 0) 4296 continue; 4297 if (ret < 0) { 4298 done = 1; 4299 break; 4300 } 4301 4302 /* 4303 * the filesystem may choose to bump up nr_to_write. 4304 * We have to make sure to honor the new nr_to_write 4305 * at any time 4306 */ 4307 nr_to_write_done = wbc->nr_to_write <= 0; 4308 } 4309 pagevec_release(&pvec); 4310 cond_resched(); 4311 } 4312 if (!scanned && !done) { 4313 /* 4314 * We hit the last page and there is more work to be done: wrap 4315 * back to the start of the file 4316 */ 4317 scanned = 1; 4318 index = 0; 4319 goto retry; 4320 } 4321 if (ret < 0) { 4322 end_write_bio(&epd, ret); 4323 goto out; 4324 } 4325 /* 4326 * If something went wrong, don't allow any metadata write bio to be 4327 * submitted. 4328 * 4329 * This would prevent use-after-free if we had dirty pages not 4330 * cleaned up, which can still happen by fuzzed images. 4331 * 4332 * - Bad extent tree 4333 * Allowing existing tree block to be allocated for other trees. 4334 * 4335 * - Log tree operations 4336 * Exiting tree blocks get allocated to log tree, bumps its 4337 * generation, then get cleaned in tree re-balance. 4338 * Such tree block will not be written back, since it's clean, 4339 * thus no WRITTEN flag set. 4340 * And after log writes back, this tree block is not traced by 4341 * any dirty extent_io_tree. 4342 * 4343 * - Offending tree block gets re-dirtied from its original owner 4344 * Since it has bumped generation, no WRITTEN flag, it can be 4345 * reused without COWing. This tree block will not be traced 4346 * by btrfs_transaction::dirty_pages. 4347 * 4348 * Now such dirty tree block will not be cleaned by any dirty 4349 * extent io tree. Thus we don't want to submit such wild eb 4350 * if the fs already has error. 4351 */ 4352 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4353 ret = flush_write_bio(&epd); 4354 } else { 4355 ret = -EROFS; 4356 end_write_bio(&epd, ret); 4357 } 4358 out: 4359 btrfs_zoned_meta_io_unlock(fs_info); 4360 return ret; 4361 } 4362 4363 /** 4364 * Walk the list of dirty pages of the given address space and write all of them. 4365 * 4366 * @mapping: address space structure to write 4367 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4368 * @epd: holds context for the write, namely the bio 4369 * 4370 * If a page is already under I/O, write_cache_pages() skips it, even 4371 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4372 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4373 * and msync() need to guarantee that all the data which was dirty at the time 4374 * the call was made get new I/O started against them. If wbc->sync_mode is 4375 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4376 * existing IO to complete. 4377 */ 4378 static int extent_write_cache_pages(struct address_space *mapping, 4379 struct writeback_control *wbc, 4380 struct extent_page_data *epd) 4381 { 4382 struct inode *inode = mapping->host; 4383 int ret = 0; 4384 int done = 0; 4385 int nr_to_write_done = 0; 4386 struct pagevec pvec; 4387 int nr_pages; 4388 pgoff_t index; 4389 pgoff_t end; /* Inclusive */ 4390 pgoff_t done_index; 4391 int range_whole = 0; 4392 int scanned = 0; 4393 xa_mark_t tag; 4394 4395 /* 4396 * We have to hold onto the inode so that ordered extents can do their 4397 * work when the IO finishes. The alternative to this is failing to add 4398 * an ordered extent if the igrab() fails there and that is a huge pain 4399 * to deal with, so instead just hold onto the inode throughout the 4400 * writepages operation. If it fails here we are freeing up the inode 4401 * anyway and we'd rather not waste our time writing out stuff that is 4402 * going to be truncated anyway. 4403 */ 4404 if (!igrab(inode)) 4405 return 0; 4406 4407 pagevec_init(&pvec); 4408 if (wbc->range_cyclic) { 4409 index = mapping->writeback_index; /* Start from prev offset */ 4410 end = -1; 4411 /* 4412 * Start from the beginning does not need to cycle over the 4413 * range, mark it as scanned. 4414 */ 4415 scanned = (index == 0); 4416 } else { 4417 index = wbc->range_start >> PAGE_SHIFT; 4418 end = wbc->range_end >> PAGE_SHIFT; 4419 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4420 range_whole = 1; 4421 scanned = 1; 4422 } 4423 4424 /* 4425 * We do the tagged writepage as long as the snapshot flush bit is set 4426 * and we are the first one who do the filemap_flush() on this inode. 4427 * 4428 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4429 * not race in and drop the bit. 4430 */ 4431 if (range_whole && wbc->nr_to_write == LONG_MAX && 4432 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4433 &BTRFS_I(inode)->runtime_flags)) 4434 wbc->tagged_writepages = 1; 4435 4436 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4437 tag = PAGECACHE_TAG_TOWRITE; 4438 else 4439 tag = PAGECACHE_TAG_DIRTY; 4440 retry: 4441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4442 tag_pages_for_writeback(mapping, index, end); 4443 done_index = index; 4444 while (!done && !nr_to_write_done && (index <= end) && 4445 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4446 &index, end, tag))) { 4447 unsigned i; 4448 4449 for (i = 0; i < nr_pages; i++) { 4450 struct page *page = pvec.pages[i]; 4451 4452 done_index = page->index + 1; 4453 /* 4454 * At this point we hold neither the i_pages lock nor 4455 * the page lock: the page may be truncated or 4456 * invalidated (changing page->mapping to NULL), 4457 * or even swizzled back from swapper_space to 4458 * tmpfs file mapping 4459 */ 4460 if (!trylock_page(page)) { 4461 ret = flush_write_bio(epd); 4462 BUG_ON(ret < 0); 4463 lock_page(page); 4464 } 4465 4466 if (unlikely(page->mapping != mapping)) { 4467 unlock_page(page); 4468 continue; 4469 } 4470 4471 if (wbc->sync_mode != WB_SYNC_NONE) { 4472 if (PageWriteback(page)) { 4473 ret = flush_write_bio(epd); 4474 BUG_ON(ret < 0); 4475 } 4476 wait_on_page_writeback(page); 4477 } 4478 4479 if (PageWriteback(page) || 4480 !clear_page_dirty_for_io(page)) { 4481 unlock_page(page); 4482 continue; 4483 } 4484 4485 ret = __extent_writepage(page, wbc, epd); 4486 if (ret < 0) { 4487 done = 1; 4488 break; 4489 } 4490 4491 /* 4492 * the filesystem may choose to bump up nr_to_write. 4493 * We have to make sure to honor the new nr_to_write 4494 * at any time 4495 */ 4496 nr_to_write_done = wbc->nr_to_write <= 0; 4497 } 4498 pagevec_release(&pvec); 4499 cond_resched(); 4500 } 4501 if (!scanned && !done) { 4502 /* 4503 * We hit the last page and there is more work to be done: wrap 4504 * back to the start of the file 4505 */ 4506 scanned = 1; 4507 index = 0; 4508 4509 /* 4510 * If we're looping we could run into a page that is locked by a 4511 * writer and that writer could be waiting on writeback for a 4512 * page in our current bio, and thus deadlock, so flush the 4513 * write bio here. 4514 */ 4515 ret = flush_write_bio(epd); 4516 if (!ret) 4517 goto retry; 4518 } 4519 4520 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4521 mapping->writeback_index = done_index; 4522 4523 btrfs_add_delayed_iput(inode); 4524 return ret; 4525 } 4526 4527 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4528 { 4529 int ret; 4530 struct extent_page_data epd = { 4531 .bio = NULL, 4532 .extent_locked = 0, 4533 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4534 }; 4535 4536 ret = __extent_writepage(page, wbc, &epd); 4537 ASSERT(ret <= 0); 4538 if (ret < 0) { 4539 end_write_bio(&epd, ret); 4540 return ret; 4541 } 4542 4543 ret = flush_write_bio(&epd); 4544 ASSERT(ret <= 0); 4545 return ret; 4546 } 4547 4548 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4549 int mode) 4550 { 4551 int ret = 0; 4552 struct address_space *mapping = inode->i_mapping; 4553 struct page *page; 4554 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4555 PAGE_SHIFT; 4556 4557 struct extent_page_data epd = { 4558 .bio = NULL, 4559 .extent_locked = 1, 4560 .sync_io = mode == WB_SYNC_ALL, 4561 }; 4562 struct writeback_control wbc_writepages = { 4563 .sync_mode = mode, 4564 .nr_to_write = nr_pages * 2, 4565 .range_start = start, 4566 .range_end = end + 1, 4567 /* We're called from an async helper function */ 4568 .punt_to_cgroup = 1, 4569 .no_cgroup_owner = 1, 4570 }; 4571 4572 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4573 while (start <= end) { 4574 page = find_get_page(mapping, start >> PAGE_SHIFT); 4575 if (clear_page_dirty_for_io(page)) 4576 ret = __extent_writepage(page, &wbc_writepages, &epd); 4577 else { 4578 btrfs_writepage_endio_finish_ordered(page, start, 4579 start + PAGE_SIZE - 1, 1); 4580 unlock_page(page); 4581 } 4582 put_page(page); 4583 start += PAGE_SIZE; 4584 } 4585 4586 ASSERT(ret <= 0); 4587 if (ret == 0) 4588 ret = flush_write_bio(&epd); 4589 else 4590 end_write_bio(&epd, ret); 4591 4592 wbc_detach_inode(&wbc_writepages); 4593 return ret; 4594 } 4595 4596 int extent_writepages(struct address_space *mapping, 4597 struct writeback_control *wbc) 4598 { 4599 int ret = 0; 4600 struct extent_page_data epd = { 4601 .bio = NULL, 4602 .extent_locked = 0, 4603 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4604 }; 4605 4606 ret = extent_write_cache_pages(mapping, wbc, &epd); 4607 ASSERT(ret <= 0); 4608 if (ret < 0) { 4609 end_write_bio(&epd, ret); 4610 return ret; 4611 } 4612 ret = flush_write_bio(&epd); 4613 return ret; 4614 } 4615 4616 void extent_readahead(struct readahead_control *rac) 4617 { 4618 struct bio *bio = NULL; 4619 unsigned long bio_flags = 0; 4620 struct page *pagepool[16]; 4621 struct extent_map *em_cached = NULL; 4622 u64 prev_em_start = (u64)-1; 4623 int nr; 4624 4625 while ((nr = readahead_page_batch(rac, pagepool))) { 4626 u64 contig_start = page_offset(pagepool[0]); 4627 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4628 4629 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4630 4631 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4632 &em_cached, &bio, &bio_flags, &prev_em_start); 4633 } 4634 4635 if (em_cached) 4636 free_extent_map(em_cached); 4637 4638 if (bio) { 4639 if (submit_one_bio(bio, 0, bio_flags)) 4640 return; 4641 } 4642 } 4643 4644 /* 4645 * basic invalidatepage code, this waits on any locked or writeback 4646 * ranges corresponding to the page, and then deletes any extent state 4647 * records from the tree 4648 */ 4649 int extent_invalidatepage(struct extent_io_tree *tree, 4650 struct page *page, unsigned long offset) 4651 { 4652 struct extent_state *cached_state = NULL; 4653 u64 start = page_offset(page); 4654 u64 end = start + PAGE_SIZE - 1; 4655 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4656 4657 /* This function is only called for the btree inode */ 4658 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 4659 4660 start += ALIGN(offset, blocksize); 4661 if (start > end) 4662 return 0; 4663 4664 lock_extent_bits(tree, start, end, &cached_state); 4665 wait_on_page_writeback(page); 4666 4667 /* 4668 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 4669 * so here we only need to unlock the extent range to free any 4670 * existing extent state. 4671 */ 4672 unlock_extent_cached(tree, start, end, &cached_state); 4673 return 0; 4674 } 4675 4676 /* 4677 * a helper for releasepage, this tests for areas of the page that 4678 * are locked or under IO and drops the related state bits if it is safe 4679 * to drop the page. 4680 */ 4681 static int try_release_extent_state(struct extent_io_tree *tree, 4682 struct page *page, gfp_t mask) 4683 { 4684 u64 start = page_offset(page); 4685 u64 end = start + PAGE_SIZE - 1; 4686 int ret = 1; 4687 4688 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4689 ret = 0; 4690 } else { 4691 /* 4692 * At this point we can safely clear everything except the 4693 * locked bit, the nodatasum bit and the delalloc new bit. 4694 * The delalloc new bit will be cleared by ordered extent 4695 * completion. 4696 */ 4697 ret = __clear_extent_bit(tree, start, end, 4698 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 4699 0, 0, NULL, mask, NULL); 4700 4701 /* if clear_extent_bit failed for enomem reasons, 4702 * we can't allow the release to continue. 4703 */ 4704 if (ret < 0) 4705 ret = 0; 4706 else 4707 ret = 1; 4708 } 4709 return ret; 4710 } 4711 4712 /* 4713 * a helper for releasepage. As long as there are no locked extents 4714 * in the range corresponding to the page, both state records and extent 4715 * map records are removed 4716 */ 4717 int try_release_extent_mapping(struct page *page, gfp_t mask) 4718 { 4719 struct extent_map *em; 4720 u64 start = page_offset(page); 4721 u64 end = start + PAGE_SIZE - 1; 4722 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4723 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4724 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4725 4726 if (gfpflags_allow_blocking(mask) && 4727 page->mapping->host->i_size > SZ_16M) { 4728 u64 len; 4729 while (start <= end) { 4730 struct btrfs_fs_info *fs_info; 4731 u64 cur_gen; 4732 4733 len = end - start + 1; 4734 write_lock(&map->lock); 4735 em = lookup_extent_mapping(map, start, len); 4736 if (!em) { 4737 write_unlock(&map->lock); 4738 break; 4739 } 4740 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4741 em->start != start) { 4742 write_unlock(&map->lock); 4743 free_extent_map(em); 4744 break; 4745 } 4746 if (test_range_bit(tree, em->start, 4747 extent_map_end(em) - 1, 4748 EXTENT_LOCKED, 0, NULL)) 4749 goto next; 4750 /* 4751 * If it's not in the list of modified extents, used 4752 * by a fast fsync, we can remove it. If it's being 4753 * logged we can safely remove it since fsync took an 4754 * extra reference on the em. 4755 */ 4756 if (list_empty(&em->list) || 4757 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4758 goto remove_em; 4759 /* 4760 * If it's in the list of modified extents, remove it 4761 * only if its generation is older then the current one, 4762 * in which case we don't need it for a fast fsync. 4763 * Otherwise don't remove it, we could be racing with an 4764 * ongoing fast fsync that could miss the new extent. 4765 */ 4766 fs_info = btrfs_inode->root->fs_info; 4767 spin_lock(&fs_info->trans_lock); 4768 cur_gen = fs_info->generation; 4769 spin_unlock(&fs_info->trans_lock); 4770 if (em->generation >= cur_gen) 4771 goto next; 4772 remove_em: 4773 /* 4774 * We only remove extent maps that are not in the list of 4775 * modified extents or that are in the list but with a 4776 * generation lower then the current generation, so there 4777 * is no need to set the full fsync flag on the inode (it 4778 * hurts the fsync performance for workloads with a data 4779 * size that exceeds or is close to the system's memory). 4780 */ 4781 remove_extent_mapping(map, em); 4782 /* once for the rb tree */ 4783 free_extent_map(em); 4784 next: 4785 start = extent_map_end(em); 4786 write_unlock(&map->lock); 4787 4788 /* once for us */ 4789 free_extent_map(em); 4790 4791 cond_resched(); /* Allow large-extent preemption. */ 4792 } 4793 } 4794 return try_release_extent_state(tree, page, mask); 4795 } 4796 4797 /* 4798 * helper function for fiemap, which doesn't want to see any holes. 4799 * This maps until we find something past 'last' 4800 */ 4801 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4802 u64 offset, u64 last) 4803 { 4804 u64 sectorsize = btrfs_inode_sectorsize(inode); 4805 struct extent_map *em; 4806 u64 len; 4807 4808 if (offset >= last) 4809 return NULL; 4810 4811 while (1) { 4812 len = last - offset; 4813 if (len == 0) 4814 break; 4815 len = ALIGN(len, sectorsize); 4816 em = btrfs_get_extent_fiemap(inode, offset, len); 4817 if (IS_ERR_OR_NULL(em)) 4818 return em; 4819 4820 /* if this isn't a hole return it */ 4821 if (em->block_start != EXTENT_MAP_HOLE) 4822 return em; 4823 4824 /* this is a hole, advance to the next extent */ 4825 offset = extent_map_end(em); 4826 free_extent_map(em); 4827 if (offset >= last) 4828 break; 4829 } 4830 return NULL; 4831 } 4832 4833 /* 4834 * To cache previous fiemap extent 4835 * 4836 * Will be used for merging fiemap extent 4837 */ 4838 struct fiemap_cache { 4839 u64 offset; 4840 u64 phys; 4841 u64 len; 4842 u32 flags; 4843 bool cached; 4844 }; 4845 4846 /* 4847 * Helper to submit fiemap extent. 4848 * 4849 * Will try to merge current fiemap extent specified by @offset, @phys, 4850 * @len and @flags with cached one. 4851 * And only when we fails to merge, cached one will be submitted as 4852 * fiemap extent. 4853 * 4854 * Return value is the same as fiemap_fill_next_extent(). 4855 */ 4856 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4857 struct fiemap_cache *cache, 4858 u64 offset, u64 phys, u64 len, u32 flags) 4859 { 4860 int ret = 0; 4861 4862 if (!cache->cached) 4863 goto assign; 4864 4865 /* 4866 * Sanity check, extent_fiemap() should have ensured that new 4867 * fiemap extent won't overlap with cached one. 4868 * Not recoverable. 4869 * 4870 * NOTE: Physical address can overlap, due to compression 4871 */ 4872 if (cache->offset + cache->len > offset) { 4873 WARN_ON(1); 4874 return -EINVAL; 4875 } 4876 4877 /* 4878 * Only merges fiemap extents if 4879 * 1) Their logical addresses are continuous 4880 * 4881 * 2) Their physical addresses are continuous 4882 * So truly compressed (physical size smaller than logical size) 4883 * extents won't get merged with each other 4884 * 4885 * 3) Share same flags except FIEMAP_EXTENT_LAST 4886 * So regular extent won't get merged with prealloc extent 4887 */ 4888 if (cache->offset + cache->len == offset && 4889 cache->phys + cache->len == phys && 4890 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4891 (flags & ~FIEMAP_EXTENT_LAST)) { 4892 cache->len += len; 4893 cache->flags |= flags; 4894 goto try_submit_last; 4895 } 4896 4897 /* Not mergeable, need to submit cached one */ 4898 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4899 cache->len, cache->flags); 4900 cache->cached = false; 4901 if (ret) 4902 return ret; 4903 assign: 4904 cache->cached = true; 4905 cache->offset = offset; 4906 cache->phys = phys; 4907 cache->len = len; 4908 cache->flags = flags; 4909 try_submit_last: 4910 if (cache->flags & FIEMAP_EXTENT_LAST) { 4911 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4912 cache->phys, cache->len, cache->flags); 4913 cache->cached = false; 4914 } 4915 return ret; 4916 } 4917 4918 /* 4919 * Emit last fiemap cache 4920 * 4921 * The last fiemap cache may still be cached in the following case: 4922 * 0 4k 8k 4923 * |<- Fiemap range ->| 4924 * |<------------ First extent ----------->| 4925 * 4926 * In this case, the first extent range will be cached but not emitted. 4927 * So we must emit it before ending extent_fiemap(). 4928 */ 4929 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4930 struct fiemap_cache *cache) 4931 { 4932 int ret; 4933 4934 if (!cache->cached) 4935 return 0; 4936 4937 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4938 cache->len, cache->flags); 4939 cache->cached = false; 4940 if (ret > 0) 4941 ret = 0; 4942 return ret; 4943 } 4944 4945 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4946 u64 start, u64 len) 4947 { 4948 int ret = 0; 4949 u64 off = start; 4950 u64 max = start + len; 4951 u32 flags = 0; 4952 u32 found_type; 4953 u64 last; 4954 u64 last_for_get_extent = 0; 4955 u64 disko = 0; 4956 u64 isize = i_size_read(&inode->vfs_inode); 4957 struct btrfs_key found_key; 4958 struct extent_map *em = NULL; 4959 struct extent_state *cached_state = NULL; 4960 struct btrfs_path *path; 4961 struct btrfs_root *root = inode->root; 4962 struct fiemap_cache cache = { 0 }; 4963 struct ulist *roots; 4964 struct ulist *tmp_ulist; 4965 int end = 0; 4966 u64 em_start = 0; 4967 u64 em_len = 0; 4968 u64 em_end = 0; 4969 4970 if (len == 0) 4971 return -EINVAL; 4972 4973 path = btrfs_alloc_path(); 4974 if (!path) 4975 return -ENOMEM; 4976 4977 roots = ulist_alloc(GFP_KERNEL); 4978 tmp_ulist = ulist_alloc(GFP_KERNEL); 4979 if (!roots || !tmp_ulist) { 4980 ret = -ENOMEM; 4981 goto out_free_ulist; 4982 } 4983 4984 start = round_down(start, btrfs_inode_sectorsize(inode)); 4985 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4986 4987 /* 4988 * lookup the last file extent. We're not using i_size here 4989 * because there might be preallocation past i_size 4990 */ 4991 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4992 0); 4993 if (ret < 0) { 4994 goto out_free_ulist; 4995 } else { 4996 WARN_ON(!ret); 4997 if (ret == 1) 4998 ret = 0; 4999 } 5000 5001 path->slots[0]--; 5002 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5003 found_type = found_key.type; 5004 5005 /* No extents, but there might be delalloc bits */ 5006 if (found_key.objectid != btrfs_ino(inode) || 5007 found_type != BTRFS_EXTENT_DATA_KEY) { 5008 /* have to trust i_size as the end */ 5009 last = (u64)-1; 5010 last_for_get_extent = isize; 5011 } else { 5012 /* 5013 * remember the start of the last extent. There are a 5014 * bunch of different factors that go into the length of the 5015 * extent, so its much less complex to remember where it started 5016 */ 5017 last = found_key.offset; 5018 last_for_get_extent = last + 1; 5019 } 5020 btrfs_release_path(path); 5021 5022 /* 5023 * we might have some extents allocated but more delalloc past those 5024 * extents. so, we trust isize unless the start of the last extent is 5025 * beyond isize 5026 */ 5027 if (last < isize) { 5028 last = (u64)-1; 5029 last_for_get_extent = isize; 5030 } 5031 5032 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5033 &cached_state); 5034 5035 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5036 if (!em) 5037 goto out; 5038 if (IS_ERR(em)) { 5039 ret = PTR_ERR(em); 5040 goto out; 5041 } 5042 5043 while (!end) { 5044 u64 offset_in_extent = 0; 5045 5046 /* break if the extent we found is outside the range */ 5047 if (em->start >= max || extent_map_end(em) < off) 5048 break; 5049 5050 /* 5051 * get_extent may return an extent that starts before our 5052 * requested range. We have to make sure the ranges 5053 * we return to fiemap always move forward and don't 5054 * overlap, so adjust the offsets here 5055 */ 5056 em_start = max(em->start, off); 5057 5058 /* 5059 * record the offset from the start of the extent 5060 * for adjusting the disk offset below. Only do this if the 5061 * extent isn't compressed since our in ram offset may be past 5062 * what we have actually allocated on disk. 5063 */ 5064 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5065 offset_in_extent = em_start - em->start; 5066 em_end = extent_map_end(em); 5067 em_len = em_end - em_start; 5068 flags = 0; 5069 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5070 disko = em->block_start + offset_in_extent; 5071 else 5072 disko = 0; 5073 5074 /* 5075 * bump off for our next call to get_extent 5076 */ 5077 off = extent_map_end(em); 5078 if (off >= max) 5079 end = 1; 5080 5081 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5082 end = 1; 5083 flags |= FIEMAP_EXTENT_LAST; 5084 } else if (em->block_start == EXTENT_MAP_INLINE) { 5085 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5086 FIEMAP_EXTENT_NOT_ALIGNED); 5087 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5088 flags |= (FIEMAP_EXTENT_DELALLOC | 5089 FIEMAP_EXTENT_UNKNOWN); 5090 } else if (fieinfo->fi_extents_max) { 5091 u64 bytenr = em->block_start - 5092 (em->start - em->orig_start); 5093 5094 /* 5095 * As btrfs supports shared space, this information 5096 * can be exported to userspace tools via 5097 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5098 * then we're just getting a count and we can skip the 5099 * lookup stuff. 5100 */ 5101 ret = btrfs_check_shared(root, btrfs_ino(inode), 5102 bytenr, roots, tmp_ulist); 5103 if (ret < 0) 5104 goto out_free; 5105 if (ret) 5106 flags |= FIEMAP_EXTENT_SHARED; 5107 ret = 0; 5108 } 5109 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5110 flags |= FIEMAP_EXTENT_ENCODED; 5111 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5112 flags |= FIEMAP_EXTENT_UNWRITTEN; 5113 5114 free_extent_map(em); 5115 em = NULL; 5116 if ((em_start >= last) || em_len == (u64)-1 || 5117 (last == (u64)-1 && isize <= em_end)) { 5118 flags |= FIEMAP_EXTENT_LAST; 5119 end = 1; 5120 } 5121 5122 /* now scan forward to see if this is really the last extent. */ 5123 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5124 if (IS_ERR(em)) { 5125 ret = PTR_ERR(em); 5126 goto out; 5127 } 5128 if (!em) { 5129 flags |= FIEMAP_EXTENT_LAST; 5130 end = 1; 5131 } 5132 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5133 em_len, flags); 5134 if (ret) { 5135 if (ret == 1) 5136 ret = 0; 5137 goto out_free; 5138 } 5139 } 5140 out_free: 5141 if (!ret) 5142 ret = emit_last_fiemap_cache(fieinfo, &cache); 5143 free_extent_map(em); 5144 out: 5145 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5146 &cached_state); 5147 5148 out_free_ulist: 5149 btrfs_free_path(path); 5150 ulist_free(roots); 5151 ulist_free(tmp_ulist); 5152 return ret; 5153 } 5154 5155 static void __free_extent_buffer(struct extent_buffer *eb) 5156 { 5157 kmem_cache_free(extent_buffer_cache, eb); 5158 } 5159 5160 int extent_buffer_under_io(const struct extent_buffer *eb) 5161 { 5162 return (atomic_read(&eb->io_pages) || 5163 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5164 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5165 } 5166 5167 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5168 { 5169 struct btrfs_subpage *subpage; 5170 5171 lockdep_assert_held(&page->mapping->private_lock); 5172 5173 if (PagePrivate(page)) { 5174 subpage = (struct btrfs_subpage *)page->private; 5175 if (atomic_read(&subpage->eb_refs)) 5176 return true; 5177 } 5178 return false; 5179 } 5180 5181 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5182 { 5183 struct btrfs_fs_info *fs_info = eb->fs_info; 5184 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5185 5186 /* 5187 * For mapped eb, we're going to change the page private, which should 5188 * be done under the private_lock. 5189 */ 5190 if (mapped) 5191 spin_lock(&page->mapping->private_lock); 5192 5193 if (!PagePrivate(page)) { 5194 if (mapped) 5195 spin_unlock(&page->mapping->private_lock); 5196 return; 5197 } 5198 5199 if (fs_info->sectorsize == PAGE_SIZE) { 5200 /* 5201 * We do this since we'll remove the pages after we've 5202 * removed the eb from the radix tree, so we could race 5203 * and have this page now attached to the new eb. So 5204 * only clear page_private if it's still connected to 5205 * this eb. 5206 */ 5207 if (PagePrivate(page) && 5208 page->private == (unsigned long)eb) { 5209 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5210 BUG_ON(PageDirty(page)); 5211 BUG_ON(PageWriteback(page)); 5212 /* 5213 * We need to make sure we haven't be attached 5214 * to a new eb. 5215 */ 5216 detach_page_private(page); 5217 } 5218 if (mapped) 5219 spin_unlock(&page->mapping->private_lock); 5220 return; 5221 } 5222 5223 /* 5224 * For subpage, we can have dummy eb with page private. In this case, 5225 * we can directly detach the private as such page is only attached to 5226 * one dummy eb, no sharing. 5227 */ 5228 if (!mapped) { 5229 btrfs_detach_subpage(fs_info, page); 5230 return; 5231 } 5232 5233 btrfs_page_dec_eb_refs(fs_info, page); 5234 5235 /* 5236 * We can only detach the page private if there are no other ebs in the 5237 * page range. 5238 */ 5239 if (!page_range_has_eb(fs_info, page)) 5240 btrfs_detach_subpage(fs_info, page); 5241 5242 spin_unlock(&page->mapping->private_lock); 5243 } 5244 5245 /* Release all pages attached to the extent buffer */ 5246 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5247 { 5248 int i; 5249 int num_pages; 5250 5251 ASSERT(!extent_buffer_under_io(eb)); 5252 5253 num_pages = num_extent_pages(eb); 5254 for (i = 0; i < num_pages; i++) { 5255 struct page *page = eb->pages[i]; 5256 5257 if (!page) 5258 continue; 5259 5260 detach_extent_buffer_page(eb, page); 5261 5262 /* One for when we allocated the page */ 5263 put_page(page); 5264 } 5265 } 5266 5267 /* 5268 * Helper for releasing the extent buffer. 5269 */ 5270 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5271 { 5272 btrfs_release_extent_buffer_pages(eb); 5273 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5274 __free_extent_buffer(eb); 5275 } 5276 5277 static struct extent_buffer * 5278 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5279 unsigned long len) 5280 { 5281 struct extent_buffer *eb = NULL; 5282 5283 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5284 eb->start = start; 5285 eb->len = len; 5286 eb->fs_info = fs_info; 5287 eb->bflags = 0; 5288 init_rwsem(&eb->lock); 5289 5290 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5291 &fs_info->allocated_ebs); 5292 INIT_LIST_HEAD(&eb->release_list); 5293 5294 spin_lock_init(&eb->refs_lock); 5295 atomic_set(&eb->refs, 1); 5296 atomic_set(&eb->io_pages, 0); 5297 5298 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5299 5300 return eb; 5301 } 5302 5303 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5304 { 5305 int i; 5306 struct page *p; 5307 struct extent_buffer *new; 5308 int num_pages = num_extent_pages(src); 5309 5310 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5311 if (new == NULL) 5312 return NULL; 5313 5314 /* 5315 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5316 * btrfs_release_extent_buffer() have different behavior for 5317 * UNMAPPED subpage extent buffer. 5318 */ 5319 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5320 5321 for (i = 0; i < num_pages; i++) { 5322 int ret; 5323 5324 p = alloc_page(GFP_NOFS); 5325 if (!p) { 5326 btrfs_release_extent_buffer(new); 5327 return NULL; 5328 } 5329 ret = attach_extent_buffer_page(new, p, NULL); 5330 if (ret < 0) { 5331 put_page(p); 5332 btrfs_release_extent_buffer(new); 5333 return NULL; 5334 } 5335 WARN_ON(PageDirty(p)); 5336 new->pages[i] = p; 5337 copy_page(page_address(p), page_address(src->pages[i])); 5338 } 5339 set_extent_buffer_uptodate(new); 5340 5341 return new; 5342 } 5343 5344 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5345 u64 start, unsigned long len) 5346 { 5347 struct extent_buffer *eb; 5348 int num_pages; 5349 int i; 5350 5351 eb = __alloc_extent_buffer(fs_info, start, len); 5352 if (!eb) 5353 return NULL; 5354 5355 num_pages = num_extent_pages(eb); 5356 for (i = 0; i < num_pages; i++) { 5357 int ret; 5358 5359 eb->pages[i] = alloc_page(GFP_NOFS); 5360 if (!eb->pages[i]) 5361 goto err; 5362 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5363 if (ret < 0) 5364 goto err; 5365 } 5366 set_extent_buffer_uptodate(eb); 5367 btrfs_set_header_nritems(eb, 0); 5368 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5369 5370 return eb; 5371 err: 5372 for (; i > 0; i--) { 5373 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5374 __free_page(eb->pages[i - 1]); 5375 } 5376 __free_extent_buffer(eb); 5377 return NULL; 5378 } 5379 5380 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5381 u64 start) 5382 { 5383 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5384 } 5385 5386 static void check_buffer_tree_ref(struct extent_buffer *eb) 5387 { 5388 int refs; 5389 /* 5390 * The TREE_REF bit is first set when the extent_buffer is added 5391 * to the radix tree. It is also reset, if unset, when a new reference 5392 * is created by find_extent_buffer. 5393 * 5394 * It is only cleared in two cases: freeing the last non-tree 5395 * reference to the extent_buffer when its STALE bit is set or 5396 * calling releasepage when the tree reference is the only reference. 5397 * 5398 * In both cases, care is taken to ensure that the extent_buffer's 5399 * pages are not under io. However, releasepage can be concurrently 5400 * called with creating new references, which is prone to race 5401 * conditions between the calls to check_buffer_tree_ref in those 5402 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5403 * 5404 * The actual lifetime of the extent_buffer in the radix tree is 5405 * adequately protected by the refcount, but the TREE_REF bit and 5406 * its corresponding reference are not. To protect against this 5407 * class of races, we call check_buffer_tree_ref from the codepaths 5408 * which trigger io after they set eb->io_pages. Note that once io is 5409 * initiated, TREE_REF can no longer be cleared, so that is the 5410 * moment at which any such race is best fixed. 5411 */ 5412 refs = atomic_read(&eb->refs); 5413 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5414 return; 5415 5416 spin_lock(&eb->refs_lock); 5417 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5418 atomic_inc(&eb->refs); 5419 spin_unlock(&eb->refs_lock); 5420 } 5421 5422 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5423 struct page *accessed) 5424 { 5425 int num_pages, i; 5426 5427 check_buffer_tree_ref(eb); 5428 5429 num_pages = num_extent_pages(eb); 5430 for (i = 0; i < num_pages; i++) { 5431 struct page *p = eb->pages[i]; 5432 5433 if (p != accessed) 5434 mark_page_accessed(p); 5435 } 5436 } 5437 5438 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5439 u64 start) 5440 { 5441 struct extent_buffer *eb; 5442 5443 rcu_read_lock(); 5444 eb = radix_tree_lookup(&fs_info->buffer_radix, 5445 start >> fs_info->sectorsize_bits); 5446 if (eb && atomic_inc_not_zero(&eb->refs)) { 5447 rcu_read_unlock(); 5448 /* 5449 * Lock our eb's refs_lock to avoid races with 5450 * free_extent_buffer. When we get our eb it might be flagged 5451 * with EXTENT_BUFFER_STALE and another task running 5452 * free_extent_buffer might have seen that flag set, 5453 * eb->refs == 2, that the buffer isn't under IO (dirty and 5454 * writeback flags not set) and it's still in the tree (flag 5455 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5456 * of decrementing the extent buffer's reference count twice. 5457 * So here we could race and increment the eb's reference count, 5458 * clear its stale flag, mark it as dirty and drop our reference 5459 * before the other task finishes executing free_extent_buffer, 5460 * which would later result in an attempt to free an extent 5461 * buffer that is dirty. 5462 */ 5463 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5464 spin_lock(&eb->refs_lock); 5465 spin_unlock(&eb->refs_lock); 5466 } 5467 mark_extent_buffer_accessed(eb, NULL); 5468 return eb; 5469 } 5470 rcu_read_unlock(); 5471 5472 return NULL; 5473 } 5474 5475 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5476 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5477 u64 start) 5478 { 5479 struct extent_buffer *eb, *exists = NULL; 5480 int ret; 5481 5482 eb = find_extent_buffer(fs_info, start); 5483 if (eb) 5484 return eb; 5485 eb = alloc_dummy_extent_buffer(fs_info, start); 5486 if (!eb) 5487 return ERR_PTR(-ENOMEM); 5488 eb->fs_info = fs_info; 5489 again: 5490 ret = radix_tree_preload(GFP_NOFS); 5491 if (ret) { 5492 exists = ERR_PTR(ret); 5493 goto free_eb; 5494 } 5495 spin_lock(&fs_info->buffer_lock); 5496 ret = radix_tree_insert(&fs_info->buffer_radix, 5497 start >> fs_info->sectorsize_bits, eb); 5498 spin_unlock(&fs_info->buffer_lock); 5499 radix_tree_preload_end(); 5500 if (ret == -EEXIST) { 5501 exists = find_extent_buffer(fs_info, start); 5502 if (exists) 5503 goto free_eb; 5504 else 5505 goto again; 5506 } 5507 check_buffer_tree_ref(eb); 5508 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5509 5510 return eb; 5511 free_eb: 5512 btrfs_release_extent_buffer(eb); 5513 return exists; 5514 } 5515 #endif 5516 5517 static struct extent_buffer *grab_extent_buffer( 5518 struct btrfs_fs_info *fs_info, struct page *page) 5519 { 5520 struct extent_buffer *exists; 5521 5522 /* 5523 * For subpage case, we completely rely on radix tree to ensure we 5524 * don't try to insert two ebs for the same bytenr. So here we always 5525 * return NULL and just continue. 5526 */ 5527 if (fs_info->sectorsize < PAGE_SIZE) 5528 return NULL; 5529 5530 /* Page not yet attached to an extent buffer */ 5531 if (!PagePrivate(page)) 5532 return NULL; 5533 5534 /* 5535 * We could have already allocated an eb for this page and attached one 5536 * so lets see if we can get a ref on the existing eb, and if we can we 5537 * know it's good and we can just return that one, else we know we can 5538 * just overwrite page->private. 5539 */ 5540 exists = (struct extent_buffer *)page->private; 5541 if (atomic_inc_not_zero(&exists->refs)) 5542 return exists; 5543 5544 WARN_ON(PageDirty(page)); 5545 detach_page_private(page); 5546 return NULL; 5547 } 5548 5549 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5550 u64 start, u64 owner_root, int level) 5551 { 5552 unsigned long len = fs_info->nodesize; 5553 int num_pages; 5554 int i; 5555 unsigned long index = start >> PAGE_SHIFT; 5556 struct extent_buffer *eb; 5557 struct extent_buffer *exists = NULL; 5558 struct page *p; 5559 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5560 int uptodate = 1; 5561 int ret; 5562 5563 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5564 btrfs_err(fs_info, "bad tree block start %llu", start); 5565 return ERR_PTR(-EINVAL); 5566 } 5567 5568 if (fs_info->sectorsize < PAGE_SIZE && 5569 offset_in_page(start) + len > PAGE_SIZE) { 5570 btrfs_err(fs_info, 5571 "tree block crosses page boundary, start %llu nodesize %lu", 5572 start, len); 5573 return ERR_PTR(-EINVAL); 5574 } 5575 5576 eb = find_extent_buffer(fs_info, start); 5577 if (eb) 5578 return eb; 5579 5580 eb = __alloc_extent_buffer(fs_info, start, len); 5581 if (!eb) 5582 return ERR_PTR(-ENOMEM); 5583 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 5584 5585 num_pages = num_extent_pages(eb); 5586 for (i = 0; i < num_pages; i++, index++) { 5587 struct btrfs_subpage *prealloc = NULL; 5588 5589 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5590 if (!p) { 5591 exists = ERR_PTR(-ENOMEM); 5592 goto free_eb; 5593 } 5594 5595 /* 5596 * Preallocate page->private for subpage case, so that we won't 5597 * allocate memory with private_lock hold. The memory will be 5598 * freed by attach_extent_buffer_page() or freed manually if 5599 * we exit earlier. 5600 * 5601 * Although we have ensured one subpage eb can only have one 5602 * page, but it may change in the future for 16K page size 5603 * support, so we still preallocate the memory in the loop. 5604 */ 5605 ret = btrfs_alloc_subpage(fs_info, &prealloc, 5606 BTRFS_SUBPAGE_METADATA); 5607 if (ret < 0) { 5608 unlock_page(p); 5609 put_page(p); 5610 exists = ERR_PTR(ret); 5611 goto free_eb; 5612 } 5613 5614 spin_lock(&mapping->private_lock); 5615 exists = grab_extent_buffer(fs_info, p); 5616 if (exists) { 5617 spin_unlock(&mapping->private_lock); 5618 unlock_page(p); 5619 put_page(p); 5620 mark_extent_buffer_accessed(exists, p); 5621 btrfs_free_subpage(prealloc); 5622 goto free_eb; 5623 } 5624 /* Should not fail, as we have preallocated the memory */ 5625 ret = attach_extent_buffer_page(eb, p, prealloc); 5626 ASSERT(!ret); 5627 /* 5628 * To inform we have extra eb under allocation, so that 5629 * detach_extent_buffer_page() won't release the page private 5630 * when the eb hasn't yet been inserted into radix tree. 5631 * 5632 * The ref will be decreased when the eb released the page, in 5633 * detach_extent_buffer_page(). 5634 * Thus needs no special handling in error path. 5635 */ 5636 btrfs_page_inc_eb_refs(fs_info, p); 5637 spin_unlock(&mapping->private_lock); 5638 5639 WARN_ON(PageDirty(p)); 5640 eb->pages[i] = p; 5641 if (!PageUptodate(p)) 5642 uptodate = 0; 5643 5644 /* 5645 * We can't unlock the pages just yet since the extent buffer 5646 * hasn't been properly inserted in the radix tree, this 5647 * opens a race with btree_releasepage which can free a page 5648 * while we are still filling in all pages for the buffer and 5649 * we could crash. 5650 */ 5651 } 5652 if (uptodate) 5653 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5654 again: 5655 ret = radix_tree_preload(GFP_NOFS); 5656 if (ret) { 5657 exists = ERR_PTR(ret); 5658 goto free_eb; 5659 } 5660 5661 spin_lock(&fs_info->buffer_lock); 5662 ret = radix_tree_insert(&fs_info->buffer_radix, 5663 start >> fs_info->sectorsize_bits, eb); 5664 spin_unlock(&fs_info->buffer_lock); 5665 radix_tree_preload_end(); 5666 if (ret == -EEXIST) { 5667 exists = find_extent_buffer(fs_info, start); 5668 if (exists) 5669 goto free_eb; 5670 else 5671 goto again; 5672 } 5673 /* add one reference for the tree */ 5674 check_buffer_tree_ref(eb); 5675 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5676 5677 /* 5678 * Now it's safe to unlock the pages because any calls to 5679 * btree_releasepage will correctly detect that a page belongs to a 5680 * live buffer and won't free them prematurely. 5681 */ 5682 for (i = 0; i < num_pages; i++) 5683 unlock_page(eb->pages[i]); 5684 return eb; 5685 5686 free_eb: 5687 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5688 for (i = 0; i < num_pages; i++) { 5689 if (eb->pages[i]) 5690 unlock_page(eb->pages[i]); 5691 } 5692 5693 btrfs_release_extent_buffer(eb); 5694 return exists; 5695 } 5696 5697 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5698 { 5699 struct extent_buffer *eb = 5700 container_of(head, struct extent_buffer, rcu_head); 5701 5702 __free_extent_buffer(eb); 5703 } 5704 5705 static int release_extent_buffer(struct extent_buffer *eb) 5706 __releases(&eb->refs_lock) 5707 { 5708 lockdep_assert_held(&eb->refs_lock); 5709 5710 WARN_ON(atomic_read(&eb->refs) == 0); 5711 if (atomic_dec_and_test(&eb->refs)) { 5712 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5713 struct btrfs_fs_info *fs_info = eb->fs_info; 5714 5715 spin_unlock(&eb->refs_lock); 5716 5717 spin_lock(&fs_info->buffer_lock); 5718 radix_tree_delete(&fs_info->buffer_radix, 5719 eb->start >> fs_info->sectorsize_bits); 5720 spin_unlock(&fs_info->buffer_lock); 5721 } else { 5722 spin_unlock(&eb->refs_lock); 5723 } 5724 5725 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5726 /* Should be safe to release our pages at this point */ 5727 btrfs_release_extent_buffer_pages(eb); 5728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5729 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5730 __free_extent_buffer(eb); 5731 return 1; 5732 } 5733 #endif 5734 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5735 return 1; 5736 } 5737 spin_unlock(&eb->refs_lock); 5738 5739 return 0; 5740 } 5741 5742 void free_extent_buffer(struct extent_buffer *eb) 5743 { 5744 int refs; 5745 int old; 5746 if (!eb) 5747 return; 5748 5749 while (1) { 5750 refs = atomic_read(&eb->refs); 5751 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5752 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5753 refs == 1)) 5754 break; 5755 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5756 if (old == refs) 5757 return; 5758 } 5759 5760 spin_lock(&eb->refs_lock); 5761 if (atomic_read(&eb->refs) == 2 && 5762 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5763 !extent_buffer_under_io(eb) && 5764 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5765 atomic_dec(&eb->refs); 5766 5767 /* 5768 * I know this is terrible, but it's temporary until we stop tracking 5769 * the uptodate bits and such for the extent buffers. 5770 */ 5771 release_extent_buffer(eb); 5772 } 5773 5774 void free_extent_buffer_stale(struct extent_buffer *eb) 5775 { 5776 if (!eb) 5777 return; 5778 5779 spin_lock(&eb->refs_lock); 5780 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5781 5782 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5783 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5784 atomic_dec(&eb->refs); 5785 release_extent_buffer(eb); 5786 } 5787 5788 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5789 { 5790 int i; 5791 int num_pages; 5792 struct page *page; 5793 5794 num_pages = num_extent_pages(eb); 5795 5796 for (i = 0; i < num_pages; i++) { 5797 page = eb->pages[i]; 5798 if (!PageDirty(page)) 5799 continue; 5800 5801 lock_page(page); 5802 WARN_ON(!PagePrivate(page)); 5803 5804 clear_page_dirty_for_io(page); 5805 xa_lock_irq(&page->mapping->i_pages); 5806 if (!PageDirty(page)) 5807 __xa_clear_mark(&page->mapping->i_pages, 5808 page_index(page), PAGECACHE_TAG_DIRTY); 5809 xa_unlock_irq(&page->mapping->i_pages); 5810 ClearPageError(page); 5811 unlock_page(page); 5812 } 5813 WARN_ON(atomic_read(&eb->refs) == 0); 5814 } 5815 5816 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5817 { 5818 int i; 5819 int num_pages; 5820 bool was_dirty; 5821 5822 check_buffer_tree_ref(eb); 5823 5824 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5825 5826 num_pages = num_extent_pages(eb); 5827 WARN_ON(atomic_read(&eb->refs) == 0); 5828 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5829 5830 if (!was_dirty) 5831 for (i = 0; i < num_pages; i++) 5832 set_page_dirty(eb->pages[i]); 5833 5834 #ifdef CONFIG_BTRFS_DEBUG 5835 for (i = 0; i < num_pages; i++) 5836 ASSERT(PageDirty(eb->pages[i])); 5837 #endif 5838 5839 return was_dirty; 5840 } 5841 5842 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5843 { 5844 struct btrfs_fs_info *fs_info = eb->fs_info; 5845 struct page *page; 5846 int num_pages; 5847 int i; 5848 5849 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5850 num_pages = num_extent_pages(eb); 5851 for (i = 0; i < num_pages; i++) { 5852 page = eb->pages[i]; 5853 if (page) 5854 btrfs_page_clear_uptodate(fs_info, page, 5855 eb->start, eb->len); 5856 } 5857 } 5858 5859 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5860 { 5861 struct btrfs_fs_info *fs_info = eb->fs_info; 5862 struct page *page; 5863 int num_pages; 5864 int i; 5865 5866 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5867 num_pages = num_extent_pages(eb); 5868 for (i = 0; i < num_pages; i++) { 5869 page = eb->pages[i]; 5870 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 5871 } 5872 } 5873 5874 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 5875 int mirror_num) 5876 { 5877 struct btrfs_fs_info *fs_info = eb->fs_info; 5878 struct extent_io_tree *io_tree; 5879 struct page *page = eb->pages[0]; 5880 struct bio *bio = NULL; 5881 int ret = 0; 5882 5883 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 5884 ASSERT(PagePrivate(page)); 5885 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 5886 5887 if (wait == WAIT_NONE) { 5888 ret = try_lock_extent(io_tree, eb->start, 5889 eb->start + eb->len - 1); 5890 if (ret <= 0) 5891 return ret; 5892 } else { 5893 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5894 if (ret < 0) 5895 return ret; 5896 } 5897 5898 ret = 0; 5899 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 5900 PageUptodate(page) || 5901 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 5902 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5903 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 5904 return ret; 5905 } 5906 5907 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5908 eb->read_mirror = 0; 5909 atomic_set(&eb->io_pages, 1); 5910 check_buffer_tree_ref(eb); 5911 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 5912 5913 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, page, eb->start, 5914 eb->len, eb->start - page_offset(page), &bio, 5915 end_bio_extent_readpage, mirror_num, 0, 0, 5916 true); 5917 if (ret) { 5918 /* 5919 * In the endio function, if we hit something wrong we will 5920 * increase the io_pages, so here we need to decrease it for 5921 * error path. 5922 */ 5923 atomic_dec(&eb->io_pages); 5924 } 5925 if (bio) { 5926 int tmp; 5927 5928 tmp = submit_one_bio(bio, mirror_num, 0); 5929 if (tmp < 0) 5930 return tmp; 5931 } 5932 if (ret || wait != WAIT_COMPLETE) 5933 return ret; 5934 5935 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 5936 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5937 ret = -EIO; 5938 return ret; 5939 } 5940 5941 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5942 { 5943 int i; 5944 struct page *page; 5945 int err; 5946 int ret = 0; 5947 int locked_pages = 0; 5948 int all_uptodate = 1; 5949 int num_pages; 5950 unsigned long num_reads = 0; 5951 struct bio *bio = NULL; 5952 unsigned long bio_flags = 0; 5953 5954 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5955 return 0; 5956 5957 if (eb->fs_info->sectorsize < PAGE_SIZE) 5958 return read_extent_buffer_subpage(eb, wait, mirror_num); 5959 5960 num_pages = num_extent_pages(eb); 5961 for (i = 0; i < num_pages; i++) { 5962 page = eb->pages[i]; 5963 if (wait == WAIT_NONE) { 5964 /* 5965 * WAIT_NONE is only utilized by readahead. If we can't 5966 * acquire the lock atomically it means either the eb 5967 * is being read out or under modification. 5968 * Either way the eb will be or has been cached, 5969 * readahead can exit safely. 5970 */ 5971 if (!trylock_page(page)) 5972 goto unlock_exit; 5973 } else { 5974 lock_page(page); 5975 } 5976 locked_pages++; 5977 } 5978 /* 5979 * We need to firstly lock all pages to make sure that 5980 * the uptodate bit of our pages won't be affected by 5981 * clear_extent_buffer_uptodate(). 5982 */ 5983 for (i = 0; i < num_pages; i++) { 5984 page = eb->pages[i]; 5985 if (!PageUptodate(page)) { 5986 num_reads++; 5987 all_uptodate = 0; 5988 } 5989 } 5990 5991 if (all_uptodate) { 5992 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5993 goto unlock_exit; 5994 } 5995 5996 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5997 eb->read_mirror = 0; 5998 atomic_set(&eb->io_pages, num_reads); 5999 /* 6000 * It is possible for releasepage to clear the TREE_REF bit before we 6001 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6002 */ 6003 check_buffer_tree_ref(eb); 6004 for (i = 0; i < num_pages; i++) { 6005 page = eb->pages[i]; 6006 6007 if (!PageUptodate(page)) { 6008 if (ret) { 6009 atomic_dec(&eb->io_pages); 6010 unlock_page(page); 6011 continue; 6012 } 6013 6014 ClearPageError(page); 6015 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6016 page, page_offset(page), PAGE_SIZE, 0, 6017 &bio, end_bio_extent_readpage, 6018 mirror_num, 0, 0, false); 6019 if (err) { 6020 /* 6021 * We failed to submit the bio so it's the 6022 * caller's responsibility to perform cleanup 6023 * i.e unlock page/set error bit. 6024 */ 6025 ret = err; 6026 SetPageError(page); 6027 unlock_page(page); 6028 atomic_dec(&eb->io_pages); 6029 } 6030 } else { 6031 unlock_page(page); 6032 } 6033 } 6034 6035 if (bio) { 6036 err = submit_one_bio(bio, mirror_num, bio_flags); 6037 if (err) 6038 return err; 6039 } 6040 6041 if (ret || wait != WAIT_COMPLETE) 6042 return ret; 6043 6044 for (i = 0; i < num_pages; i++) { 6045 page = eb->pages[i]; 6046 wait_on_page_locked(page); 6047 if (!PageUptodate(page)) 6048 ret = -EIO; 6049 } 6050 6051 return ret; 6052 6053 unlock_exit: 6054 while (locked_pages > 0) { 6055 locked_pages--; 6056 page = eb->pages[locked_pages]; 6057 unlock_page(page); 6058 } 6059 return ret; 6060 } 6061 6062 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6063 unsigned long len) 6064 { 6065 btrfs_warn(eb->fs_info, 6066 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6067 eb->start, eb->len, start, len); 6068 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6069 6070 return true; 6071 } 6072 6073 /* 6074 * Check if the [start, start + len) range is valid before reading/writing 6075 * the eb. 6076 * NOTE: @start and @len are offset inside the eb, not logical address. 6077 * 6078 * Caller should not touch the dst/src memory if this function returns error. 6079 */ 6080 static inline int check_eb_range(const struct extent_buffer *eb, 6081 unsigned long start, unsigned long len) 6082 { 6083 unsigned long offset; 6084 6085 /* start, start + len should not go beyond eb->len nor overflow */ 6086 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6087 return report_eb_range(eb, start, len); 6088 6089 return false; 6090 } 6091 6092 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6093 unsigned long start, unsigned long len) 6094 { 6095 size_t cur; 6096 size_t offset; 6097 struct page *page; 6098 char *kaddr; 6099 char *dst = (char *)dstv; 6100 unsigned long i = get_eb_page_index(start); 6101 6102 if (check_eb_range(eb, start, len)) 6103 return; 6104 6105 offset = get_eb_offset_in_page(eb, start); 6106 6107 while (len > 0) { 6108 page = eb->pages[i]; 6109 6110 cur = min(len, (PAGE_SIZE - offset)); 6111 kaddr = page_address(page); 6112 memcpy(dst, kaddr + offset, cur); 6113 6114 dst += cur; 6115 len -= cur; 6116 offset = 0; 6117 i++; 6118 } 6119 } 6120 6121 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6122 void __user *dstv, 6123 unsigned long start, unsigned long len) 6124 { 6125 size_t cur; 6126 size_t offset; 6127 struct page *page; 6128 char *kaddr; 6129 char __user *dst = (char __user *)dstv; 6130 unsigned long i = get_eb_page_index(start); 6131 int ret = 0; 6132 6133 WARN_ON(start > eb->len); 6134 WARN_ON(start + len > eb->start + eb->len); 6135 6136 offset = get_eb_offset_in_page(eb, start); 6137 6138 while (len > 0) { 6139 page = eb->pages[i]; 6140 6141 cur = min(len, (PAGE_SIZE - offset)); 6142 kaddr = page_address(page); 6143 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6144 ret = -EFAULT; 6145 break; 6146 } 6147 6148 dst += cur; 6149 len -= cur; 6150 offset = 0; 6151 i++; 6152 } 6153 6154 return ret; 6155 } 6156 6157 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6158 unsigned long start, unsigned long len) 6159 { 6160 size_t cur; 6161 size_t offset; 6162 struct page *page; 6163 char *kaddr; 6164 char *ptr = (char *)ptrv; 6165 unsigned long i = get_eb_page_index(start); 6166 int ret = 0; 6167 6168 if (check_eb_range(eb, start, len)) 6169 return -EINVAL; 6170 6171 offset = get_eb_offset_in_page(eb, start); 6172 6173 while (len > 0) { 6174 page = eb->pages[i]; 6175 6176 cur = min(len, (PAGE_SIZE - offset)); 6177 6178 kaddr = page_address(page); 6179 ret = memcmp(ptr, kaddr + offset, cur); 6180 if (ret) 6181 break; 6182 6183 ptr += cur; 6184 len -= cur; 6185 offset = 0; 6186 i++; 6187 } 6188 return ret; 6189 } 6190 6191 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6192 const void *srcv) 6193 { 6194 char *kaddr; 6195 6196 WARN_ON(!PageUptodate(eb->pages[0])); 6197 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6198 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 6199 BTRFS_FSID_SIZE); 6200 } 6201 6202 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6203 { 6204 char *kaddr; 6205 6206 WARN_ON(!PageUptodate(eb->pages[0])); 6207 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 6208 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 6209 BTRFS_FSID_SIZE); 6210 } 6211 6212 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6213 unsigned long start, unsigned long len) 6214 { 6215 size_t cur; 6216 size_t offset; 6217 struct page *page; 6218 char *kaddr; 6219 char *src = (char *)srcv; 6220 unsigned long i = get_eb_page_index(start); 6221 6222 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6223 6224 if (check_eb_range(eb, start, len)) 6225 return; 6226 6227 offset = get_eb_offset_in_page(eb, start); 6228 6229 while (len > 0) { 6230 page = eb->pages[i]; 6231 WARN_ON(!PageUptodate(page)); 6232 6233 cur = min(len, PAGE_SIZE - offset); 6234 kaddr = page_address(page); 6235 memcpy(kaddr + offset, src, cur); 6236 6237 src += cur; 6238 len -= cur; 6239 offset = 0; 6240 i++; 6241 } 6242 } 6243 6244 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6245 unsigned long len) 6246 { 6247 size_t cur; 6248 size_t offset; 6249 struct page *page; 6250 char *kaddr; 6251 unsigned long i = get_eb_page_index(start); 6252 6253 if (check_eb_range(eb, start, len)) 6254 return; 6255 6256 offset = get_eb_offset_in_page(eb, start); 6257 6258 while (len > 0) { 6259 page = eb->pages[i]; 6260 WARN_ON(!PageUptodate(page)); 6261 6262 cur = min(len, PAGE_SIZE - offset); 6263 kaddr = page_address(page); 6264 memset(kaddr + offset, 0, cur); 6265 6266 len -= cur; 6267 offset = 0; 6268 i++; 6269 } 6270 } 6271 6272 void copy_extent_buffer_full(const struct extent_buffer *dst, 6273 const struct extent_buffer *src) 6274 { 6275 int i; 6276 int num_pages; 6277 6278 ASSERT(dst->len == src->len); 6279 6280 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6281 num_pages = num_extent_pages(dst); 6282 for (i = 0; i < num_pages; i++) 6283 copy_page(page_address(dst->pages[i]), 6284 page_address(src->pages[i])); 6285 } else { 6286 size_t src_offset = get_eb_offset_in_page(src, 0); 6287 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6288 6289 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6290 memcpy(page_address(dst->pages[0]) + dst_offset, 6291 page_address(src->pages[0]) + src_offset, 6292 src->len); 6293 } 6294 } 6295 6296 void copy_extent_buffer(const struct extent_buffer *dst, 6297 const struct extent_buffer *src, 6298 unsigned long dst_offset, unsigned long src_offset, 6299 unsigned long len) 6300 { 6301 u64 dst_len = dst->len; 6302 size_t cur; 6303 size_t offset; 6304 struct page *page; 6305 char *kaddr; 6306 unsigned long i = get_eb_page_index(dst_offset); 6307 6308 if (check_eb_range(dst, dst_offset, len) || 6309 check_eb_range(src, src_offset, len)) 6310 return; 6311 6312 WARN_ON(src->len != dst_len); 6313 6314 offset = get_eb_offset_in_page(dst, dst_offset); 6315 6316 while (len > 0) { 6317 page = dst->pages[i]; 6318 WARN_ON(!PageUptodate(page)); 6319 6320 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6321 6322 kaddr = page_address(page); 6323 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6324 6325 src_offset += cur; 6326 len -= cur; 6327 offset = 0; 6328 i++; 6329 } 6330 } 6331 6332 /* 6333 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 6334 * given bit number 6335 * @eb: the extent buffer 6336 * @start: offset of the bitmap item in the extent buffer 6337 * @nr: bit number 6338 * @page_index: return index of the page in the extent buffer that contains the 6339 * given bit number 6340 * @page_offset: return offset into the page given by page_index 6341 * 6342 * This helper hides the ugliness of finding the byte in an extent buffer which 6343 * contains a given bit. 6344 */ 6345 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 6346 unsigned long start, unsigned long nr, 6347 unsigned long *page_index, 6348 size_t *page_offset) 6349 { 6350 size_t byte_offset = BIT_BYTE(nr); 6351 size_t offset; 6352 6353 /* 6354 * The byte we want is the offset of the extent buffer + the offset of 6355 * the bitmap item in the extent buffer + the offset of the byte in the 6356 * bitmap item. 6357 */ 6358 offset = start + offset_in_page(eb->start) + byte_offset; 6359 6360 *page_index = offset >> PAGE_SHIFT; 6361 *page_offset = offset_in_page(offset); 6362 } 6363 6364 /** 6365 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 6366 * @eb: the extent buffer 6367 * @start: offset of the bitmap item in the extent buffer 6368 * @nr: bit number to test 6369 */ 6370 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 6371 unsigned long nr) 6372 { 6373 u8 *kaddr; 6374 struct page *page; 6375 unsigned long i; 6376 size_t offset; 6377 6378 eb_bitmap_offset(eb, start, nr, &i, &offset); 6379 page = eb->pages[i]; 6380 WARN_ON(!PageUptodate(page)); 6381 kaddr = page_address(page); 6382 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 6383 } 6384 6385 /** 6386 * extent_buffer_bitmap_set - set an area of a bitmap 6387 * @eb: the extent buffer 6388 * @start: offset of the bitmap item in the extent buffer 6389 * @pos: bit number of the first bit 6390 * @len: number of bits to set 6391 */ 6392 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 6393 unsigned long pos, unsigned long len) 6394 { 6395 u8 *kaddr; 6396 struct page *page; 6397 unsigned long i; 6398 size_t offset; 6399 const unsigned int size = pos + len; 6400 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6401 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 6402 6403 eb_bitmap_offset(eb, start, pos, &i, &offset); 6404 page = eb->pages[i]; 6405 WARN_ON(!PageUptodate(page)); 6406 kaddr = page_address(page); 6407 6408 while (len >= bits_to_set) { 6409 kaddr[offset] |= mask_to_set; 6410 len -= bits_to_set; 6411 bits_to_set = BITS_PER_BYTE; 6412 mask_to_set = ~0; 6413 if (++offset >= PAGE_SIZE && len > 0) { 6414 offset = 0; 6415 page = eb->pages[++i]; 6416 WARN_ON(!PageUptodate(page)); 6417 kaddr = page_address(page); 6418 } 6419 } 6420 if (len) { 6421 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 6422 kaddr[offset] |= mask_to_set; 6423 } 6424 } 6425 6426 6427 /** 6428 * extent_buffer_bitmap_clear - clear an area of a bitmap 6429 * @eb: the extent buffer 6430 * @start: offset of the bitmap item in the extent buffer 6431 * @pos: bit number of the first bit 6432 * @len: number of bits to clear 6433 */ 6434 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 6435 unsigned long start, unsigned long pos, 6436 unsigned long len) 6437 { 6438 u8 *kaddr; 6439 struct page *page; 6440 unsigned long i; 6441 size_t offset; 6442 const unsigned int size = pos + len; 6443 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6444 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 6445 6446 eb_bitmap_offset(eb, start, pos, &i, &offset); 6447 page = eb->pages[i]; 6448 WARN_ON(!PageUptodate(page)); 6449 kaddr = page_address(page); 6450 6451 while (len >= bits_to_clear) { 6452 kaddr[offset] &= ~mask_to_clear; 6453 len -= bits_to_clear; 6454 bits_to_clear = BITS_PER_BYTE; 6455 mask_to_clear = ~0; 6456 if (++offset >= PAGE_SIZE && len > 0) { 6457 offset = 0; 6458 page = eb->pages[++i]; 6459 WARN_ON(!PageUptodate(page)); 6460 kaddr = page_address(page); 6461 } 6462 } 6463 if (len) { 6464 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 6465 kaddr[offset] &= ~mask_to_clear; 6466 } 6467 } 6468 6469 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 6470 { 6471 unsigned long distance = (src > dst) ? src - dst : dst - src; 6472 return distance < len; 6473 } 6474 6475 static void copy_pages(struct page *dst_page, struct page *src_page, 6476 unsigned long dst_off, unsigned long src_off, 6477 unsigned long len) 6478 { 6479 char *dst_kaddr = page_address(dst_page); 6480 char *src_kaddr; 6481 int must_memmove = 0; 6482 6483 if (dst_page != src_page) { 6484 src_kaddr = page_address(src_page); 6485 } else { 6486 src_kaddr = dst_kaddr; 6487 if (areas_overlap(src_off, dst_off, len)) 6488 must_memmove = 1; 6489 } 6490 6491 if (must_memmove) 6492 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6493 else 6494 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6495 } 6496 6497 void memcpy_extent_buffer(const struct extent_buffer *dst, 6498 unsigned long dst_offset, unsigned long src_offset, 6499 unsigned long len) 6500 { 6501 size_t cur; 6502 size_t dst_off_in_page; 6503 size_t src_off_in_page; 6504 unsigned long dst_i; 6505 unsigned long src_i; 6506 6507 if (check_eb_range(dst, dst_offset, len) || 6508 check_eb_range(dst, src_offset, len)) 6509 return; 6510 6511 while (len > 0) { 6512 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 6513 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 6514 6515 dst_i = get_eb_page_index(dst_offset); 6516 src_i = get_eb_page_index(src_offset); 6517 6518 cur = min(len, (unsigned long)(PAGE_SIZE - 6519 src_off_in_page)); 6520 cur = min_t(unsigned long, cur, 6521 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6522 6523 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6524 dst_off_in_page, src_off_in_page, cur); 6525 6526 src_offset += cur; 6527 dst_offset += cur; 6528 len -= cur; 6529 } 6530 } 6531 6532 void memmove_extent_buffer(const struct extent_buffer *dst, 6533 unsigned long dst_offset, unsigned long src_offset, 6534 unsigned long len) 6535 { 6536 size_t cur; 6537 size_t dst_off_in_page; 6538 size_t src_off_in_page; 6539 unsigned long dst_end = dst_offset + len - 1; 6540 unsigned long src_end = src_offset + len - 1; 6541 unsigned long dst_i; 6542 unsigned long src_i; 6543 6544 if (check_eb_range(dst, dst_offset, len) || 6545 check_eb_range(dst, src_offset, len)) 6546 return; 6547 if (dst_offset < src_offset) { 6548 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6549 return; 6550 } 6551 while (len > 0) { 6552 dst_i = get_eb_page_index(dst_end); 6553 src_i = get_eb_page_index(src_end); 6554 6555 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 6556 src_off_in_page = get_eb_offset_in_page(dst, src_end); 6557 6558 cur = min_t(unsigned long, len, src_off_in_page + 1); 6559 cur = min(cur, dst_off_in_page + 1); 6560 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6561 dst_off_in_page - cur + 1, 6562 src_off_in_page - cur + 1, cur); 6563 6564 dst_end -= cur; 6565 src_end -= cur; 6566 len -= cur; 6567 } 6568 } 6569 6570 static struct extent_buffer *get_next_extent_buffer( 6571 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 6572 { 6573 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE]; 6574 struct extent_buffer *found = NULL; 6575 u64 page_start = page_offset(page); 6576 int ret; 6577 int i; 6578 6579 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 6580 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE); 6581 lockdep_assert_held(&fs_info->buffer_lock); 6582 6583 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang, 6584 bytenr >> fs_info->sectorsize_bits, 6585 PAGE_SIZE / fs_info->nodesize); 6586 for (i = 0; i < ret; i++) { 6587 /* Already beyond page end */ 6588 if (gang[i]->start >= page_start + PAGE_SIZE) 6589 break; 6590 /* Found one */ 6591 if (gang[i]->start >= bytenr) { 6592 found = gang[i]; 6593 break; 6594 } 6595 } 6596 return found; 6597 } 6598 6599 static int try_release_subpage_extent_buffer(struct page *page) 6600 { 6601 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 6602 u64 cur = page_offset(page); 6603 const u64 end = page_offset(page) + PAGE_SIZE; 6604 int ret; 6605 6606 while (cur < end) { 6607 struct extent_buffer *eb = NULL; 6608 6609 /* 6610 * Unlike try_release_extent_buffer() which uses page->private 6611 * to grab buffer, for subpage case we rely on radix tree, thus 6612 * we need to ensure radix tree consistency. 6613 * 6614 * We also want an atomic snapshot of the radix tree, thus go 6615 * with spinlock rather than RCU. 6616 */ 6617 spin_lock(&fs_info->buffer_lock); 6618 eb = get_next_extent_buffer(fs_info, page, cur); 6619 if (!eb) { 6620 /* No more eb in the page range after or at cur */ 6621 spin_unlock(&fs_info->buffer_lock); 6622 break; 6623 } 6624 cur = eb->start + eb->len; 6625 6626 /* 6627 * The same as try_release_extent_buffer(), to ensure the eb 6628 * won't disappear out from under us. 6629 */ 6630 spin_lock(&eb->refs_lock); 6631 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6632 spin_unlock(&eb->refs_lock); 6633 spin_unlock(&fs_info->buffer_lock); 6634 break; 6635 } 6636 spin_unlock(&fs_info->buffer_lock); 6637 6638 /* 6639 * If tree ref isn't set then we know the ref on this eb is a 6640 * real ref, so just return, this eb will likely be freed soon 6641 * anyway. 6642 */ 6643 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6644 spin_unlock(&eb->refs_lock); 6645 break; 6646 } 6647 6648 /* 6649 * Here we don't care about the return value, we will always 6650 * check the page private at the end. And 6651 * release_extent_buffer() will release the refs_lock. 6652 */ 6653 release_extent_buffer(eb); 6654 } 6655 /* 6656 * Finally to check if we have cleared page private, as if we have 6657 * released all ebs in the page, the page private should be cleared now. 6658 */ 6659 spin_lock(&page->mapping->private_lock); 6660 if (!PagePrivate(page)) 6661 ret = 1; 6662 else 6663 ret = 0; 6664 spin_unlock(&page->mapping->private_lock); 6665 return ret; 6666 6667 } 6668 6669 int try_release_extent_buffer(struct page *page) 6670 { 6671 struct extent_buffer *eb; 6672 6673 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 6674 return try_release_subpage_extent_buffer(page); 6675 6676 /* 6677 * We need to make sure nobody is changing page->private, as we rely on 6678 * page->private as the pointer to extent buffer. 6679 */ 6680 spin_lock(&page->mapping->private_lock); 6681 if (!PagePrivate(page)) { 6682 spin_unlock(&page->mapping->private_lock); 6683 return 1; 6684 } 6685 6686 eb = (struct extent_buffer *)page->private; 6687 BUG_ON(!eb); 6688 6689 /* 6690 * This is a little awful but should be ok, we need to make sure that 6691 * the eb doesn't disappear out from under us while we're looking at 6692 * this page. 6693 */ 6694 spin_lock(&eb->refs_lock); 6695 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6696 spin_unlock(&eb->refs_lock); 6697 spin_unlock(&page->mapping->private_lock); 6698 return 0; 6699 } 6700 spin_unlock(&page->mapping->private_lock); 6701 6702 /* 6703 * If tree ref isn't set then we know the ref on this eb is a real ref, 6704 * so just return, this page will likely be freed soon anyway. 6705 */ 6706 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6707 spin_unlock(&eb->refs_lock); 6708 return 0; 6709 } 6710 6711 return release_extent_buffer(eb); 6712 } 6713 6714 /* 6715 * btrfs_readahead_tree_block - attempt to readahead a child block 6716 * @fs_info: the fs_info 6717 * @bytenr: bytenr to read 6718 * @owner_root: objectid of the root that owns this eb 6719 * @gen: generation for the uptodate check, can be 0 6720 * @level: level for the eb 6721 * 6722 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 6723 * normal uptodate check of the eb, without checking the generation. If we have 6724 * to read the block we will not block on anything. 6725 */ 6726 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 6727 u64 bytenr, u64 owner_root, u64 gen, int level) 6728 { 6729 struct extent_buffer *eb; 6730 int ret; 6731 6732 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 6733 if (IS_ERR(eb)) 6734 return; 6735 6736 if (btrfs_buffer_uptodate(eb, gen, 1)) { 6737 free_extent_buffer(eb); 6738 return; 6739 } 6740 6741 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 6742 if (ret < 0) 6743 free_extent_buffer_stale(eb); 6744 else 6745 free_extent_buffer(eb); 6746 } 6747 6748 /* 6749 * btrfs_readahead_node_child - readahead a node's child block 6750 * @node: parent node we're reading from 6751 * @slot: slot in the parent node for the child we want to read 6752 * 6753 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 6754 * the slot in the node provided. 6755 */ 6756 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 6757 { 6758 btrfs_readahead_tree_block(node->fs_info, 6759 btrfs_node_blockptr(node, slot), 6760 btrfs_header_owner(node), 6761 btrfs_node_ptr_generation(node, slot), 6762 btrfs_header_level(node) - 1); 6763 } 6764