1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/module.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "compat.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 27 static LIST_HEAD(buffers); 28 static LIST_HEAD(states); 29 30 #define LEAK_DEBUG 0 31 #if LEAK_DEBUG 32 static DEFINE_SPINLOCK(leak_lock); 33 #endif 34 35 #define BUFFER_LRU_MAX 64 36 37 struct tree_entry { 38 u64 start; 39 u64 end; 40 struct rb_node rb_node; 41 }; 42 43 struct extent_page_data { 44 struct bio *bio; 45 struct extent_io_tree *tree; 46 get_extent_t *get_extent; 47 48 /* tells writepage not to lock the state bits for this range 49 * it still does the unlocking 50 */ 51 unsigned int extent_locked:1; 52 53 /* tells the submit_bio code to use a WRITE_SYNC */ 54 unsigned int sync_io:1; 55 }; 56 57 static noinline void flush_write_bio(void *data); 58 static inline struct btrfs_fs_info * 59 tree_fs_info(struct extent_io_tree *tree) 60 { 61 return btrfs_sb(tree->mapping->host->i_sb); 62 } 63 64 int __init extent_io_init(void) 65 { 66 extent_state_cache = kmem_cache_create("extent_state", 67 sizeof(struct extent_state), 0, 68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 69 if (!extent_state_cache) 70 return -ENOMEM; 71 72 extent_buffer_cache = kmem_cache_create("extent_buffers", 73 sizeof(struct extent_buffer), 0, 74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 75 if (!extent_buffer_cache) 76 goto free_state_cache; 77 return 0; 78 79 free_state_cache: 80 kmem_cache_destroy(extent_state_cache); 81 return -ENOMEM; 82 } 83 84 void extent_io_exit(void) 85 { 86 struct extent_state *state; 87 struct extent_buffer *eb; 88 89 while (!list_empty(&states)) { 90 state = list_entry(states.next, struct extent_state, leak_list); 91 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 92 "state %lu in tree %p refs %d\n", 93 (unsigned long long)state->start, 94 (unsigned long long)state->end, 95 state->state, state->tree, atomic_read(&state->refs)); 96 list_del(&state->leak_list); 97 kmem_cache_free(extent_state_cache, state); 98 99 } 100 101 while (!list_empty(&buffers)) { 102 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 104 "refs %d\n", (unsigned long long)eb->start, 105 eb->len, atomic_read(&eb->refs)); 106 list_del(&eb->leak_list); 107 kmem_cache_free(extent_buffer_cache, eb); 108 } 109 if (extent_state_cache) 110 kmem_cache_destroy(extent_state_cache); 111 if (extent_buffer_cache) 112 kmem_cache_destroy(extent_buffer_cache); 113 } 114 115 void extent_io_tree_init(struct extent_io_tree *tree, 116 struct address_space *mapping) 117 { 118 tree->state = RB_ROOT; 119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 120 tree->ops = NULL; 121 tree->dirty_bytes = 0; 122 spin_lock_init(&tree->lock); 123 spin_lock_init(&tree->buffer_lock); 124 tree->mapping = mapping; 125 } 126 127 static struct extent_state *alloc_extent_state(gfp_t mask) 128 { 129 struct extent_state *state; 130 #if LEAK_DEBUG 131 unsigned long flags; 132 #endif 133 134 state = kmem_cache_alloc(extent_state_cache, mask); 135 if (!state) 136 return state; 137 state->state = 0; 138 state->private = 0; 139 state->tree = NULL; 140 #if LEAK_DEBUG 141 spin_lock_irqsave(&leak_lock, flags); 142 list_add(&state->leak_list, &states); 143 spin_unlock_irqrestore(&leak_lock, flags); 144 #endif 145 atomic_set(&state->refs, 1); 146 init_waitqueue_head(&state->wq); 147 trace_alloc_extent_state(state, mask, _RET_IP_); 148 return state; 149 } 150 151 void free_extent_state(struct extent_state *state) 152 { 153 if (!state) 154 return; 155 if (atomic_dec_and_test(&state->refs)) { 156 #if LEAK_DEBUG 157 unsigned long flags; 158 #endif 159 WARN_ON(state->tree); 160 #if LEAK_DEBUG 161 spin_lock_irqsave(&leak_lock, flags); 162 list_del(&state->leak_list); 163 spin_unlock_irqrestore(&leak_lock, flags); 164 #endif 165 trace_free_extent_state(state, _RET_IP_); 166 kmem_cache_free(extent_state_cache, state); 167 } 168 } 169 170 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 171 struct rb_node *node) 172 { 173 struct rb_node **p = &root->rb_node; 174 struct rb_node *parent = NULL; 175 struct tree_entry *entry; 176 177 while (*p) { 178 parent = *p; 179 entry = rb_entry(parent, struct tree_entry, rb_node); 180 181 if (offset < entry->start) 182 p = &(*p)->rb_left; 183 else if (offset > entry->end) 184 p = &(*p)->rb_right; 185 else 186 return parent; 187 } 188 189 entry = rb_entry(node, struct tree_entry, rb_node); 190 rb_link_node(node, parent, p); 191 rb_insert_color(node, root); 192 return NULL; 193 } 194 195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 196 struct rb_node **prev_ret, 197 struct rb_node **next_ret) 198 { 199 struct rb_root *root = &tree->state; 200 struct rb_node *n = root->rb_node; 201 struct rb_node *prev = NULL; 202 struct rb_node *orig_prev = NULL; 203 struct tree_entry *entry; 204 struct tree_entry *prev_entry = NULL; 205 206 while (n) { 207 entry = rb_entry(n, struct tree_entry, rb_node); 208 prev = n; 209 prev_entry = entry; 210 211 if (offset < entry->start) 212 n = n->rb_left; 213 else if (offset > entry->end) 214 n = n->rb_right; 215 else 216 return n; 217 } 218 219 if (prev_ret) { 220 orig_prev = prev; 221 while (prev && offset > prev_entry->end) { 222 prev = rb_next(prev); 223 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 224 } 225 *prev_ret = prev; 226 prev = orig_prev; 227 } 228 229 if (next_ret) { 230 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 231 while (prev && offset < prev_entry->start) { 232 prev = rb_prev(prev); 233 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 234 } 235 *next_ret = prev; 236 } 237 return NULL; 238 } 239 240 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 241 u64 offset) 242 { 243 struct rb_node *prev = NULL; 244 struct rb_node *ret; 245 246 ret = __etree_search(tree, offset, &prev, NULL); 247 if (!ret) 248 return prev; 249 return ret; 250 } 251 252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 253 struct extent_state *other) 254 { 255 if (tree->ops && tree->ops->merge_extent_hook) 256 tree->ops->merge_extent_hook(tree->mapping->host, new, 257 other); 258 } 259 260 /* 261 * utility function to look for merge candidates inside a given range. 262 * Any extents with matching state are merged together into a single 263 * extent in the tree. Extents with EXTENT_IO in their state field 264 * are not merged because the end_io handlers need to be able to do 265 * operations on them without sleeping (or doing allocations/splits). 266 * 267 * This should be called with the tree lock held. 268 */ 269 static void merge_state(struct extent_io_tree *tree, 270 struct extent_state *state) 271 { 272 struct extent_state *other; 273 struct rb_node *other_node; 274 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 276 return; 277 278 other_node = rb_prev(&state->rb_node); 279 if (other_node) { 280 other = rb_entry(other_node, struct extent_state, rb_node); 281 if (other->end == state->start - 1 && 282 other->state == state->state) { 283 merge_cb(tree, state, other); 284 state->start = other->start; 285 other->tree = NULL; 286 rb_erase(&other->rb_node, &tree->state); 287 free_extent_state(other); 288 } 289 } 290 other_node = rb_next(&state->rb_node); 291 if (other_node) { 292 other = rb_entry(other_node, struct extent_state, rb_node); 293 if (other->start == state->end + 1 && 294 other->state == state->state) { 295 merge_cb(tree, state, other); 296 state->end = other->end; 297 other->tree = NULL; 298 rb_erase(&other->rb_node, &tree->state); 299 free_extent_state(other); 300 } 301 } 302 } 303 304 static void set_state_cb(struct extent_io_tree *tree, 305 struct extent_state *state, int *bits) 306 { 307 if (tree->ops && tree->ops->set_bit_hook) 308 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 309 } 310 311 static void clear_state_cb(struct extent_io_tree *tree, 312 struct extent_state *state, int *bits) 313 { 314 if (tree->ops && tree->ops->clear_bit_hook) 315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 316 } 317 318 static void set_state_bits(struct extent_io_tree *tree, 319 struct extent_state *state, int *bits); 320 321 /* 322 * insert an extent_state struct into the tree. 'bits' are set on the 323 * struct before it is inserted. 324 * 325 * This may return -EEXIST if the extent is already there, in which case the 326 * state struct is freed. 327 * 328 * The tree lock is not taken internally. This is a utility function and 329 * probably isn't what you want to call (see set/clear_extent_bit). 330 */ 331 static int insert_state(struct extent_io_tree *tree, 332 struct extent_state *state, u64 start, u64 end, 333 int *bits) 334 { 335 struct rb_node *node; 336 337 if (end < start) { 338 printk(KERN_ERR "btrfs end < start %llu %llu\n", 339 (unsigned long long)end, 340 (unsigned long long)start); 341 WARN_ON(1); 342 } 343 state->start = start; 344 state->end = end; 345 346 set_state_bits(tree, state, bits); 347 348 node = tree_insert(&tree->state, end, &state->rb_node); 349 if (node) { 350 struct extent_state *found; 351 found = rb_entry(node, struct extent_state, rb_node); 352 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 353 "%llu %llu\n", (unsigned long long)found->start, 354 (unsigned long long)found->end, 355 (unsigned long long)start, (unsigned long long)end); 356 return -EEXIST; 357 } 358 state->tree = tree; 359 merge_state(tree, state); 360 return 0; 361 } 362 363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 364 u64 split) 365 { 366 if (tree->ops && tree->ops->split_extent_hook) 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 368 } 369 370 /* 371 * split a given extent state struct in two, inserting the preallocated 372 * struct 'prealloc' as the newly created second half. 'split' indicates an 373 * offset inside 'orig' where it should be split. 374 * 375 * Before calling, 376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 377 * are two extent state structs in the tree: 378 * prealloc: [orig->start, split - 1] 379 * orig: [ split, orig->end ] 380 * 381 * The tree locks are not taken by this function. They need to be held 382 * by the caller. 383 */ 384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 385 struct extent_state *prealloc, u64 split) 386 { 387 struct rb_node *node; 388 389 split_cb(tree, orig, split); 390 391 prealloc->start = orig->start; 392 prealloc->end = split - 1; 393 prealloc->state = orig->state; 394 orig->start = split; 395 396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 397 if (node) { 398 free_extent_state(prealloc); 399 return -EEXIST; 400 } 401 prealloc->tree = tree; 402 return 0; 403 } 404 405 static struct extent_state *next_state(struct extent_state *state) 406 { 407 struct rb_node *next = rb_next(&state->rb_node); 408 if (next) 409 return rb_entry(next, struct extent_state, rb_node); 410 else 411 return NULL; 412 } 413 414 /* 415 * utility function to clear some bits in an extent state struct. 416 * it will optionally wake up any one waiting on this state (wake == 1) 417 * 418 * If no bits are set on the state struct after clearing things, the 419 * struct is freed and removed from the tree 420 */ 421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 422 struct extent_state *state, 423 int *bits, int wake) 424 { 425 struct extent_state *next; 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 427 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 429 u64 range = state->end - state->start + 1; 430 WARN_ON(range > tree->dirty_bytes); 431 tree->dirty_bytes -= range; 432 } 433 clear_state_cb(tree, state, bits); 434 state->state &= ~bits_to_clear; 435 if (wake) 436 wake_up(&state->wq); 437 if (state->state == 0) { 438 next = next_state(state); 439 if (state->tree) { 440 rb_erase(&state->rb_node, &tree->state); 441 state->tree = NULL; 442 free_extent_state(state); 443 } else { 444 WARN_ON(1); 445 } 446 } else { 447 merge_state(tree, state); 448 next = next_state(state); 449 } 450 return next; 451 } 452 453 static struct extent_state * 454 alloc_extent_state_atomic(struct extent_state *prealloc) 455 { 456 if (!prealloc) 457 prealloc = alloc_extent_state(GFP_ATOMIC); 458 459 return prealloc; 460 } 461 462 void extent_io_tree_panic(struct extent_io_tree *tree, int err) 463 { 464 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 465 "Extent tree was modified by another " 466 "thread while locked."); 467 } 468 469 /* 470 * clear some bits on a range in the tree. This may require splitting 471 * or inserting elements in the tree, so the gfp mask is used to 472 * indicate which allocations or sleeping are allowed. 473 * 474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 475 * the given range from the tree regardless of state (ie for truncate). 476 * 477 * the range [start, end] is inclusive. 478 * 479 * This takes the tree lock, and returns 0 on success and < 0 on error. 480 */ 481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 482 int bits, int wake, int delete, 483 struct extent_state **cached_state, 484 gfp_t mask) 485 { 486 struct extent_state *state; 487 struct extent_state *cached; 488 struct extent_state *prealloc = NULL; 489 struct rb_node *node; 490 u64 last_end; 491 int err; 492 int clear = 0; 493 494 if (delete) 495 bits |= ~EXTENT_CTLBITS; 496 bits |= EXTENT_FIRST_DELALLOC; 497 498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 499 clear = 1; 500 again: 501 if (!prealloc && (mask & __GFP_WAIT)) { 502 prealloc = alloc_extent_state(mask); 503 if (!prealloc) 504 return -ENOMEM; 505 } 506 507 spin_lock(&tree->lock); 508 if (cached_state) { 509 cached = *cached_state; 510 511 if (clear) { 512 *cached_state = NULL; 513 cached_state = NULL; 514 } 515 516 if (cached && cached->tree && cached->start <= start && 517 cached->end > start) { 518 if (clear) 519 atomic_dec(&cached->refs); 520 state = cached; 521 goto hit_next; 522 } 523 if (clear) 524 free_extent_state(cached); 525 } 526 /* 527 * this search will find the extents that end after 528 * our range starts 529 */ 530 node = tree_search(tree, start); 531 if (!node) 532 goto out; 533 state = rb_entry(node, struct extent_state, rb_node); 534 hit_next: 535 if (state->start > end) 536 goto out; 537 WARN_ON(state->end < start); 538 last_end = state->end; 539 540 /* the state doesn't have the wanted bits, go ahead */ 541 if (!(state->state & bits)) { 542 state = next_state(state); 543 goto next; 544 } 545 546 /* 547 * | ---- desired range ---- | 548 * | state | or 549 * | ------------- state -------------- | 550 * 551 * We need to split the extent we found, and may flip 552 * bits on second half. 553 * 554 * If the extent we found extends past our range, we 555 * just split and search again. It'll get split again 556 * the next time though. 557 * 558 * If the extent we found is inside our range, we clear 559 * the desired bit on it. 560 */ 561 562 if (state->start < start) { 563 prealloc = alloc_extent_state_atomic(prealloc); 564 BUG_ON(!prealloc); 565 err = split_state(tree, state, prealloc, start); 566 if (err) 567 extent_io_tree_panic(tree, err); 568 569 prealloc = NULL; 570 if (err) 571 goto out; 572 if (state->end <= end) { 573 clear_state_bit(tree, state, &bits, wake); 574 if (last_end == (u64)-1) 575 goto out; 576 start = last_end + 1; 577 } 578 goto search_again; 579 } 580 /* 581 * | ---- desired range ---- | 582 * | state | 583 * We need to split the extent, and clear the bit 584 * on the first half 585 */ 586 if (state->start <= end && state->end > end) { 587 prealloc = alloc_extent_state_atomic(prealloc); 588 BUG_ON(!prealloc); 589 err = split_state(tree, state, prealloc, end + 1); 590 if (err) 591 extent_io_tree_panic(tree, err); 592 593 if (wake) 594 wake_up(&state->wq); 595 596 clear_state_bit(tree, prealloc, &bits, wake); 597 598 prealloc = NULL; 599 goto out; 600 } 601 602 state = clear_state_bit(tree, state, &bits, wake); 603 next: 604 if (last_end == (u64)-1) 605 goto out; 606 start = last_end + 1; 607 if (start <= end && state && !need_resched()) 608 goto hit_next; 609 goto search_again; 610 611 out: 612 spin_unlock(&tree->lock); 613 if (prealloc) 614 free_extent_state(prealloc); 615 616 return 0; 617 618 search_again: 619 if (start > end) 620 goto out; 621 spin_unlock(&tree->lock); 622 if (mask & __GFP_WAIT) 623 cond_resched(); 624 goto again; 625 } 626 627 static void wait_on_state(struct extent_io_tree *tree, 628 struct extent_state *state) 629 __releases(tree->lock) 630 __acquires(tree->lock) 631 { 632 DEFINE_WAIT(wait); 633 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 634 spin_unlock(&tree->lock); 635 schedule(); 636 spin_lock(&tree->lock); 637 finish_wait(&state->wq, &wait); 638 } 639 640 /* 641 * waits for one or more bits to clear on a range in the state tree. 642 * The range [start, end] is inclusive. 643 * The tree lock is taken by this function 644 */ 645 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 646 { 647 struct extent_state *state; 648 struct rb_node *node; 649 650 spin_lock(&tree->lock); 651 again: 652 while (1) { 653 /* 654 * this search will find all the extents that end after 655 * our range starts 656 */ 657 node = tree_search(tree, start); 658 if (!node) 659 break; 660 661 state = rb_entry(node, struct extent_state, rb_node); 662 663 if (state->start > end) 664 goto out; 665 666 if (state->state & bits) { 667 start = state->start; 668 atomic_inc(&state->refs); 669 wait_on_state(tree, state); 670 free_extent_state(state); 671 goto again; 672 } 673 start = state->end + 1; 674 675 if (start > end) 676 break; 677 678 cond_resched_lock(&tree->lock); 679 } 680 out: 681 spin_unlock(&tree->lock); 682 } 683 684 static void set_state_bits(struct extent_io_tree *tree, 685 struct extent_state *state, 686 int *bits) 687 { 688 int bits_to_set = *bits & ~EXTENT_CTLBITS; 689 690 set_state_cb(tree, state, bits); 691 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 692 u64 range = state->end - state->start + 1; 693 tree->dirty_bytes += range; 694 } 695 state->state |= bits_to_set; 696 } 697 698 static void cache_state(struct extent_state *state, 699 struct extent_state **cached_ptr) 700 { 701 if (cached_ptr && !(*cached_ptr)) { 702 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 703 *cached_ptr = state; 704 atomic_inc(&state->refs); 705 } 706 } 707 } 708 709 static void uncache_state(struct extent_state **cached_ptr) 710 { 711 if (cached_ptr && (*cached_ptr)) { 712 struct extent_state *state = *cached_ptr; 713 *cached_ptr = NULL; 714 free_extent_state(state); 715 } 716 } 717 718 /* 719 * set some bits on a range in the tree. This may require allocations or 720 * sleeping, so the gfp mask is used to indicate what is allowed. 721 * 722 * If any of the exclusive bits are set, this will fail with -EEXIST if some 723 * part of the range already has the desired bits set. The start of the 724 * existing range is returned in failed_start in this case. 725 * 726 * [start, end] is inclusive This takes the tree lock. 727 */ 728 729 static int __must_check 730 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 731 int bits, int exclusive_bits, u64 *failed_start, 732 struct extent_state **cached_state, gfp_t mask) 733 { 734 struct extent_state *state; 735 struct extent_state *prealloc = NULL; 736 struct rb_node *node; 737 int err = 0; 738 u64 last_start; 739 u64 last_end; 740 741 bits |= EXTENT_FIRST_DELALLOC; 742 again: 743 if (!prealloc && (mask & __GFP_WAIT)) { 744 prealloc = alloc_extent_state(mask); 745 BUG_ON(!prealloc); 746 } 747 748 spin_lock(&tree->lock); 749 if (cached_state && *cached_state) { 750 state = *cached_state; 751 if (state->start <= start && state->end > start && 752 state->tree) { 753 node = &state->rb_node; 754 goto hit_next; 755 } 756 } 757 /* 758 * this search will find all the extents that end after 759 * our range starts. 760 */ 761 node = tree_search(tree, start); 762 if (!node) { 763 prealloc = alloc_extent_state_atomic(prealloc); 764 BUG_ON(!prealloc); 765 err = insert_state(tree, prealloc, start, end, &bits); 766 if (err) 767 extent_io_tree_panic(tree, err); 768 769 prealloc = NULL; 770 goto out; 771 } 772 state = rb_entry(node, struct extent_state, rb_node); 773 hit_next: 774 last_start = state->start; 775 last_end = state->end; 776 777 /* 778 * | ---- desired range ---- | 779 * | state | 780 * 781 * Just lock what we found and keep going 782 */ 783 if (state->start == start && state->end <= end) { 784 struct rb_node *next_node; 785 if (state->state & exclusive_bits) { 786 *failed_start = state->start; 787 err = -EEXIST; 788 goto out; 789 } 790 791 set_state_bits(tree, state, &bits); 792 793 cache_state(state, cached_state); 794 merge_state(tree, state); 795 if (last_end == (u64)-1) 796 goto out; 797 798 start = last_end + 1; 799 next_node = rb_next(&state->rb_node); 800 if (next_node && start < end && prealloc && !need_resched()) { 801 state = rb_entry(next_node, struct extent_state, 802 rb_node); 803 if (state->start == start) 804 goto hit_next; 805 } 806 goto search_again; 807 } 808 809 /* 810 * | ---- desired range ---- | 811 * | state | 812 * or 813 * | ------------- state -------------- | 814 * 815 * We need to split the extent we found, and may flip bits on 816 * second half. 817 * 818 * If the extent we found extends past our 819 * range, we just split and search again. It'll get split 820 * again the next time though. 821 * 822 * If the extent we found is inside our range, we set the 823 * desired bit on it. 824 */ 825 if (state->start < start) { 826 if (state->state & exclusive_bits) { 827 *failed_start = start; 828 err = -EEXIST; 829 goto out; 830 } 831 832 prealloc = alloc_extent_state_atomic(prealloc); 833 BUG_ON(!prealloc); 834 err = split_state(tree, state, prealloc, start); 835 if (err) 836 extent_io_tree_panic(tree, err); 837 838 prealloc = NULL; 839 if (err) 840 goto out; 841 if (state->end <= end) { 842 set_state_bits(tree, state, &bits); 843 cache_state(state, cached_state); 844 merge_state(tree, state); 845 if (last_end == (u64)-1) 846 goto out; 847 start = last_end + 1; 848 } 849 goto search_again; 850 } 851 /* 852 * | ---- desired range ---- | 853 * | state | or | state | 854 * 855 * There's a hole, we need to insert something in it and 856 * ignore the extent we found. 857 */ 858 if (state->start > start) { 859 u64 this_end; 860 if (end < last_start) 861 this_end = end; 862 else 863 this_end = last_start - 1; 864 865 prealloc = alloc_extent_state_atomic(prealloc); 866 BUG_ON(!prealloc); 867 868 /* 869 * Avoid to free 'prealloc' if it can be merged with 870 * the later extent. 871 */ 872 err = insert_state(tree, prealloc, start, this_end, 873 &bits); 874 if (err) 875 extent_io_tree_panic(tree, err); 876 877 cache_state(prealloc, cached_state); 878 prealloc = NULL; 879 start = this_end + 1; 880 goto search_again; 881 } 882 /* 883 * | ---- desired range ---- | 884 * | state | 885 * We need to split the extent, and set the bit 886 * on the first half 887 */ 888 if (state->start <= end && state->end > end) { 889 if (state->state & exclusive_bits) { 890 *failed_start = start; 891 err = -EEXIST; 892 goto out; 893 } 894 895 prealloc = alloc_extent_state_atomic(prealloc); 896 BUG_ON(!prealloc); 897 err = split_state(tree, state, prealloc, end + 1); 898 if (err) 899 extent_io_tree_panic(tree, err); 900 901 set_state_bits(tree, prealloc, &bits); 902 cache_state(prealloc, cached_state); 903 merge_state(tree, prealloc); 904 prealloc = NULL; 905 goto out; 906 } 907 908 goto search_again; 909 910 out: 911 spin_unlock(&tree->lock); 912 if (prealloc) 913 free_extent_state(prealloc); 914 915 return err; 916 917 search_again: 918 if (start > end) 919 goto out; 920 spin_unlock(&tree->lock); 921 if (mask & __GFP_WAIT) 922 cond_resched(); 923 goto again; 924 } 925 926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, 927 u64 *failed_start, struct extent_state **cached_state, 928 gfp_t mask) 929 { 930 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 931 cached_state, mask); 932 } 933 934 935 /** 936 * convert_extent - convert all bits in a given range from one bit to another 937 * @tree: the io tree to search 938 * @start: the start offset in bytes 939 * @end: the end offset in bytes (inclusive) 940 * @bits: the bits to set in this range 941 * @clear_bits: the bits to clear in this range 942 * @mask: the allocation mask 943 * 944 * This will go through and set bits for the given range. If any states exist 945 * already in this range they are set with the given bit and cleared of the 946 * clear_bits. This is only meant to be used by things that are mergeable, ie 947 * converting from say DELALLOC to DIRTY. This is not meant to be used with 948 * boundary bits like LOCK. 949 */ 950 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 951 int bits, int clear_bits, gfp_t mask) 952 { 953 struct extent_state *state; 954 struct extent_state *prealloc = NULL; 955 struct rb_node *node; 956 int err = 0; 957 u64 last_start; 958 u64 last_end; 959 960 again: 961 if (!prealloc && (mask & __GFP_WAIT)) { 962 prealloc = alloc_extent_state(mask); 963 if (!prealloc) 964 return -ENOMEM; 965 } 966 967 spin_lock(&tree->lock); 968 /* 969 * this search will find all the extents that end after 970 * our range starts. 971 */ 972 node = tree_search(tree, start); 973 if (!node) { 974 prealloc = alloc_extent_state_atomic(prealloc); 975 if (!prealloc) { 976 err = -ENOMEM; 977 goto out; 978 } 979 err = insert_state(tree, prealloc, start, end, &bits); 980 prealloc = NULL; 981 if (err) 982 extent_io_tree_panic(tree, err); 983 goto out; 984 } 985 state = rb_entry(node, struct extent_state, rb_node); 986 hit_next: 987 last_start = state->start; 988 last_end = state->end; 989 990 /* 991 * | ---- desired range ---- | 992 * | state | 993 * 994 * Just lock what we found and keep going 995 */ 996 if (state->start == start && state->end <= end) { 997 struct rb_node *next_node; 998 999 set_state_bits(tree, state, &bits); 1000 clear_state_bit(tree, state, &clear_bits, 0); 1001 if (last_end == (u64)-1) 1002 goto out; 1003 1004 start = last_end + 1; 1005 next_node = rb_next(&state->rb_node); 1006 if (next_node && start < end && prealloc && !need_resched()) { 1007 state = rb_entry(next_node, struct extent_state, 1008 rb_node); 1009 if (state->start == start) 1010 goto hit_next; 1011 } 1012 goto search_again; 1013 } 1014 1015 /* 1016 * | ---- desired range ---- | 1017 * | state | 1018 * or 1019 * | ------------- state -------------- | 1020 * 1021 * We need to split the extent we found, and may flip bits on 1022 * second half. 1023 * 1024 * If the extent we found extends past our 1025 * range, we just split and search again. It'll get split 1026 * again the next time though. 1027 * 1028 * If the extent we found is inside our range, we set the 1029 * desired bit on it. 1030 */ 1031 if (state->start < start) { 1032 prealloc = alloc_extent_state_atomic(prealloc); 1033 if (!prealloc) { 1034 err = -ENOMEM; 1035 goto out; 1036 } 1037 err = split_state(tree, state, prealloc, start); 1038 if (err) 1039 extent_io_tree_panic(tree, err); 1040 prealloc = NULL; 1041 if (err) 1042 goto out; 1043 if (state->end <= end) { 1044 set_state_bits(tree, state, &bits); 1045 clear_state_bit(tree, state, &clear_bits, 0); 1046 if (last_end == (u64)-1) 1047 goto out; 1048 start = last_end + 1; 1049 } 1050 goto search_again; 1051 } 1052 /* 1053 * | ---- desired range ---- | 1054 * | state | or | state | 1055 * 1056 * There's a hole, we need to insert something in it and 1057 * ignore the extent we found. 1058 */ 1059 if (state->start > start) { 1060 u64 this_end; 1061 if (end < last_start) 1062 this_end = end; 1063 else 1064 this_end = last_start - 1; 1065 1066 prealloc = alloc_extent_state_atomic(prealloc); 1067 if (!prealloc) { 1068 err = -ENOMEM; 1069 goto out; 1070 } 1071 1072 /* 1073 * Avoid to free 'prealloc' if it can be merged with 1074 * the later extent. 1075 */ 1076 err = insert_state(tree, prealloc, start, this_end, 1077 &bits); 1078 if (err) 1079 extent_io_tree_panic(tree, err); 1080 prealloc = NULL; 1081 start = this_end + 1; 1082 goto search_again; 1083 } 1084 /* 1085 * | ---- desired range ---- | 1086 * | state | 1087 * We need to split the extent, and set the bit 1088 * on the first half 1089 */ 1090 if (state->start <= end && state->end > end) { 1091 prealloc = alloc_extent_state_atomic(prealloc); 1092 if (!prealloc) { 1093 err = -ENOMEM; 1094 goto out; 1095 } 1096 1097 err = split_state(tree, state, prealloc, end + 1); 1098 if (err) 1099 extent_io_tree_panic(tree, err); 1100 1101 set_state_bits(tree, prealloc, &bits); 1102 clear_state_bit(tree, prealloc, &clear_bits, 0); 1103 prealloc = NULL; 1104 goto out; 1105 } 1106 1107 goto search_again; 1108 1109 out: 1110 spin_unlock(&tree->lock); 1111 if (prealloc) 1112 free_extent_state(prealloc); 1113 1114 return err; 1115 1116 search_again: 1117 if (start > end) 1118 goto out; 1119 spin_unlock(&tree->lock); 1120 if (mask & __GFP_WAIT) 1121 cond_resched(); 1122 goto again; 1123 } 1124 1125 /* wrappers around set/clear extent bit */ 1126 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1127 gfp_t mask) 1128 { 1129 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1130 NULL, mask); 1131 } 1132 1133 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1134 int bits, gfp_t mask) 1135 { 1136 return set_extent_bit(tree, start, end, bits, NULL, 1137 NULL, mask); 1138 } 1139 1140 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1141 int bits, gfp_t mask) 1142 { 1143 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1144 } 1145 1146 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1147 struct extent_state **cached_state, gfp_t mask) 1148 { 1149 return set_extent_bit(tree, start, end, 1150 EXTENT_DELALLOC | EXTENT_UPTODATE, 1151 NULL, cached_state, mask); 1152 } 1153 1154 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1155 gfp_t mask) 1156 { 1157 return clear_extent_bit(tree, start, end, 1158 EXTENT_DIRTY | EXTENT_DELALLOC | 1159 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1160 } 1161 1162 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1163 gfp_t mask) 1164 { 1165 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1166 NULL, mask); 1167 } 1168 1169 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1170 struct extent_state **cached_state, gfp_t mask) 1171 { 1172 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 1173 cached_state, mask); 1174 } 1175 1176 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 1177 u64 end, struct extent_state **cached_state, 1178 gfp_t mask) 1179 { 1180 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1181 cached_state, mask); 1182 } 1183 1184 /* 1185 * either insert or lock state struct between start and end use mask to tell 1186 * us if waiting is desired. 1187 */ 1188 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1189 int bits, struct extent_state **cached_state) 1190 { 1191 int err; 1192 u64 failed_start; 1193 while (1) { 1194 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1195 EXTENT_LOCKED, &failed_start, 1196 cached_state, GFP_NOFS); 1197 if (err == -EEXIST) { 1198 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1199 start = failed_start; 1200 } else 1201 break; 1202 WARN_ON(start > end); 1203 } 1204 return err; 1205 } 1206 1207 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1208 { 1209 return lock_extent_bits(tree, start, end, 0, NULL); 1210 } 1211 1212 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1213 { 1214 int err; 1215 u64 failed_start; 1216 1217 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1218 &failed_start, NULL, GFP_NOFS); 1219 if (err == -EEXIST) { 1220 if (failed_start > start) 1221 clear_extent_bit(tree, start, failed_start - 1, 1222 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1223 return 0; 1224 } 1225 return 1; 1226 } 1227 1228 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1229 struct extent_state **cached, gfp_t mask) 1230 { 1231 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1232 mask); 1233 } 1234 1235 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1236 { 1237 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1238 GFP_NOFS); 1239 } 1240 1241 /* 1242 * helper function to set both pages and extents in the tree writeback 1243 */ 1244 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1245 { 1246 unsigned long index = start >> PAGE_CACHE_SHIFT; 1247 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1248 struct page *page; 1249 1250 while (index <= end_index) { 1251 page = find_get_page(tree->mapping, index); 1252 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1253 set_page_writeback(page); 1254 page_cache_release(page); 1255 index++; 1256 } 1257 return 0; 1258 } 1259 1260 /* find the first state struct with 'bits' set after 'start', and 1261 * return it. tree->lock must be held. NULL will returned if 1262 * nothing was found after 'start' 1263 */ 1264 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1265 u64 start, int bits) 1266 { 1267 struct rb_node *node; 1268 struct extent_state *state; 1269 1270 /* 1271 * this search will find all the extents that end after 1272 * our range starts. 1273 */ 1274 node = tree_search(tree, start); 1275 if (!node) 1276 goto out; 1277 1278 while (1) { 1279 state = rb_entry(node, struct extent_state, rb_node); 1280 if (state->end >= start && (state->state & bits)) 1281 return state; 1282 1283 node = rb_next(node); 1284 if (!node) 1285 break; 1286 } 1287 out: 1288 return NULL; 1289 } 1290 1291 /* 1292 * find the first offset in the io tree with 'bits' set. zero is 1293 * returned if we find something, and *start_ret and *end_ret are 1294 * set to reflect the state struct that was found. 1295 * 1296 * If nothing was found, 1 is returned, < 0 on error 1297 */ 1298 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1299 u64 *start_ret, u64 *end_ret, int bits) 1300 { 1301 struct extent_state *state; 1302 int ret = 1; 1303 1304 spin_lock(&tree->lock); 1305 state = find_first_extent_bit_state(tree, start, bits); 1306 if (state) { 1307 *start_ret = state->start; 1308 *end_ret = state->end; 1309 ret = 0; 1310 } 1311 spin_unlock(&tree->lock); 1312 return ret; 1313 } 1314 1315 /* 1316 * find a contiguous range of bytes in the file marked as delalloc, not 1317 * more than 'max_bytes'. start and end are used to return the range, 1318 * 1319 * 1 is returned if we find something, 0 if nothing was in the tree 1320 */ 1321 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1322 u64 *start, u64 *end, u64 max_bytes, 1323 struct extent_state **cached_state) 1324 { 1325 struct rb_node *node; 1326 struct extent_state *state; 1327 u64 cur_start = *start; 1328 u64 found = 0; 1329 u64 total_bytes = 0; 1330 1331 spin_lock(&tree->lock); 1332 1333 /* 1334 * this search will find all the extents that end after 1335 * our range starts. 1336 */ 1337 node = tree_search(tree, cur_start); 1338 if (!node) { 1339 if (!found) 1340 *end = (u64)-1; 1341 goto out; 1342 } 1343 1344 while (1) { 1345 state = rb_entry(node, struct extent_state, rb_node); 1346 if (found && (state->start != cur_start || 1347 (state->state & EXTENT_BOUNDARY))) { 1348 goto out; 1349 } 1350 if (!(state->state & EXTENT_DELALLOC)) { 1351 if (!found) 1352 *end = state->end; 1353 goto out; 1354 } 1355 if (!found) { 1356 *start = state->start; 1357 *cached_state = state; 1358 atomic_inc(&state->refs); 1359 } 1360 found++; 1361 *end = state->end; 1362 cur_start = state->end + 1; 1363 node = rb_next(node); 1364 if (!node) 1365 break; 1366 total_bytes += state->end - state->start + 1; 1367 if (total_bytes >= max_bytes) 1368 break; 1369 } 1370 out: 1371 spin_unlock(&tree->lock); 1372 return found; 1373 } 1374 1375 static noinline void __unlock_for_delalloc(struct inode *inode, 1376 struct page *locked_page, 1377 u64 start, u64 end) 1378 { 1379 int ret; 1380 struct page *pages[16]; 1381 unsigned long index = start >> PAGE_CACHE_SHIFT; 1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1383 unsigned long nr_pages = end_index - index + 1; 1384 int i; 1385 1386 if (index == locked_page->index && end_index == index) 1387 return; 1388 1389 while (nr_pages > 0) { 1390 ret = find_get_pages_contig(inode->i_mapping, index, 1391 min_t(unsigned long, nr_pages, 1392 ARRAY_SIZE(pages)), pages); 1393 for (i = 0; i < ret; i++) { 1394 if (pages[i] != locked_page) 1395 unlock_page(pages[i]); 1396 page_cache_release(pages[i]); 1397 } 1398 nr_pages -= ret; 1399 index += ret; 1400 cond_resched(); 1401 } 1402 } 1403 1404 static noinline int lock_delalloc_pages(struct inode *inode, 1405 struct page *locked_page, 1406 u64 delalloc_start, 1407 u64 delalloc_end) 1408 { 1409 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1410 unsigned long start_index = index; 1411 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1412 unsigned long pages_locked = 0; 1413 struct page *pages[16]; 1414 unsigned long nrpages; 1415 int ret; 1416 int i; 1417 1418 /* the caller is responsible for locking the start index */ 1419 if (index == locked_page->index && index == end_index) 1420 return 0; 1421 1422 /* skip the page at the start index */ 1423 nrpages = end_index - index + 1; 1424 while (nrpages > 0) { 1425 ret = find_get_pages_contig(inode->i_mapping, index, 1426 min_t(unsigned long, 1427 nrpages, ARRAY_SIZE(pages)), pages); 1428 if (ret == 0) { 1429 ret = -EAGAIN; 1430 goto done; 1431 } 1432 /* now we have an array of pages, lock them all */ 1433 for (i = 0; i < ret; i++) { 1434 /* 1435 * the caller is taking responsibility for 1436 * locked_page 1437 */ 1438 if (pages[i] != locked_page) { 1439 lock_page(pages[i]); 1440 if (!PageDirty(pages[i]) || 1441 pages[i]->mapping != inode->i_mapping) { 1442 ret = -EAGAIN; 1443 unlock_page(pages[i]); 1444 page_cache_release(pages[i]); 1445 goto done; 1446 } 1447 } 1448 page_cache_release(pages[i]); 1449 pages_locked++; 1450 } 1451 nrpages -= ret; 1452 index += ret; 1453 cond_resched(); 1454 } 1455 ret = 0; 1456 done: 1457 if (ret && pages_locked) { 1458 __unlock_for_delalloc(inode, locked_page, 1459 delalloc_start, 1460 ((u64)(start_index + pages_locked - 1)) << 1461 PAGE_CACHE_SHIFT); 1462 } 1463 return ret; 1464 } 1465 1466 /* 1467 * find a contiguous range of bytes in the file marked as delalloc, not 1468 * more than 'max_bytes'. start and end are used to return the range, 1469 * 1470 * 1 is returned if we find something, 0 if nothing was in the tree 1471 */ 1472 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1473 struct extent_io_tree *tree, 1474 struct page *locked_page, 1475 u64 *start, u64 *end, 1476 u64 max_bytes) 1477 { 1478 u64 delalloc_start; 1479 u64 delalloc_end; 1480 u64 found; 1481 struct extent_state *cached_state = NULL; 1482 int ret; 1483 int loops = 0; 1484 1485 again: 1486 /* step one, find a bunch of delalloc bytes starting at start */ 1487 delalloc_start = *start; 1488 delalloc_end = 0; 1489 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1490 max_bytes, &cached_state); 1491 if (!found || delalloc_end <= *start) { 1492 *start = delalloc_start; 1493 *end = delalloc_end; 1494 free_extent_state(cached_state); 1495 return found; 1496 } 1497 1498 /* 1499 * start comes from the offset of locked_page. We have to lock 1500 * pages in order, so we can't process delalloc bytes before 1501 * locked_page 1502 */ 1503 if (delalloc_start < *start) 1504 delalloc_start = *start; 1505 1506 /* 1507 * make sure to limit the number of pages we try to lock down 1508 * if we're looping. 1509 */ 1510 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1511 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1512 1513 /* step two, lock all the pages after the page that has start */ 1514 ret = lock_delalloc_pages(inode, locked_page, 1515 delalloc_start, delalloc_end); 1516 if (ret == -EAGAIN) { 1517 /* some of the pages are gone, lets avoid looping by 1518 * shortening the size of the delalloc range we're searching 1519 */ 1520 free_extent_state(cached_state); 1521 if (!loops) { 1522 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1523 max_bytes = PAGE_CACHE_SIZE - offset; 1524 loops = 1; 1525 goto again; 1526 } else { 1527 found = 0; 1528 goto out_failed; 1529 } 1530 } 1531 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1532 1533 /* step three, lock the state bits for the whole range */ 1534 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1535 1536 /* then test to make sure it is all still delalloc */ 1537 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1538 EXTENT_DELALLOC, 1, cached_state); 1539 if (!ret) { 1540 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1541 &cached_state, GFP_NOFS); 1542 __unlock_for_delalloc(inode, locked_page, 1543 delalloc_start, delalloc_end); 1544 cond_resched(); 1545 goto again; 1546 } 1547 free_extent_state(cached_state); 1548 *start = delalloc_start; 1549 *end = delalloc_end; 1550 out_failed: 1551 return found; 1552 } 1553 1554 int extent_clear_unlock_delalloc(struct inode *inode, 1555 struct extent_io_tree *tree, 1556 u64 start, u64 end, struct page *locked_page, 1557 unsigned long op) 1558 { 1559 int ret; 1560 struct page *pages[16]; 1561 unsigned long index = start >> PAGE_CACHE_SHIFT; 1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1563 unsigned long nr_pages = end_index - index + 1; 1564 int i; 1565 int clear_bits = 0; 1566 1567 if (op & EXTENT_CLEAR_UNLOCK) 1568 clear_bits |= EXTENT_LOCKED; 1569 if (op & EXTENT_CLEAR_DIRTY) 1570 clear_bits |= EXTENT_DIRTY; 1571 1572 if (op & EXTENT_CLEAR_DELALLOC) 1573 clear_bits |= EXTENT_DELALLOC; 1574 1575 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1576 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1577 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1578 EXTENT_SET_PRIVATE2))) 1579 return 0; 1580 1581 while (nr_pages > 0) { 1582 ret = find_get_pages_contig(inode->i_mapping, index, 1583 min_t(unsigned long, 1584 nr_pages, ARRAY_SIZE(pages)), pages); 1585 for (i = 0; i < ret; i++) { 1586 1587 if (op & EXTENT_SET_PRIVATE2) 1588 SetPagePrivate2(pages[i]); 1589 1590 if (pages[i] == locked_page) { 1591 page_cache_release(pages[i]); 1592 continue; 1593 } 1594 if (op & EXTENT_CLEAR_DIRTY) 1595 clear_page_dirty_for_io(pages[i]); 1596 if (op & EXTENT_SET_WRITEBACK) 1597 set_page_writeback(pages[i]); 1598 if (op & EXTENT_END_WRITEBACK) 1599 end_page_writeback(pages[i]); 1600 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1601 unlock_page(pages[i]); 1602 page_cache_release(pages[i]); 1603 } 1604 nr_pages -= ret; 1605 index += ret; 1606 cond_resched(); 1607 } 1608 return 0; 1609 } 1610 1611 /* 1612 * count the number of bytes in the tree that have a given bit(s) 1613 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1614 * cached. The total number found is returned. 1615 */ 1616 u64 count_range_bits(struct extent_io_tree *tree, 1617 u64 *start, u64 search_end, u64 max_bytes, 1618 unsigned long bits, int contig) 1619 { 1620 struct rb_node *node; 1621 struct extent_state *state; 1622 u64 cur_start = *start; 1623 u64 total_bytes = 0; 1624 u64 last = 0; 1625 int found = 0; 1626 1627 if (search_end <= cur_start) { 1628 WARN_ON(1); 1629 return 0; 1630 } 1631 1632 spin_lock(&tree->lock); 1633 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1634 total_bytes = tree->dirty_bytes; 1635 goto out; 1636 } 1637 /* 1638 * this search will find all the extents that end after 1639 * our range starts. 1640 */ 1641 node = tree_search(tree, cur_start); 1642 if (!node) 1643 goto out; 1644 1645 while (1) { 1646 state = rb_entry(node, struct extent_state, rb_node); 1647 if (state->start > search_end) 1648 break; 1649 if (contig && found && state->start > last + 1) 1650 break; 1651 if (state->end >= cur_start && (state->state & bits) == bits) { 1652 total_bytes += min(search_end, state->end) + 1 - 1653 max(cur_start, state->start); 1654 if (total_bytes >= max_bytes) 1655 break; 1656 if (!found) { 1657 *start = max(cur_start, state->start); 1658 found = 1; 1659 } 1660 last = state->end; 1661 } else if (contig && found) { 1662 break; 1663 } 1664 node = rb_next(node); 1665 if (!node) 1666 break; 1667 } 1668 out: 1669 spin_unlock(&tree->lock); 1670 return total_bytes; 1671 } 1672 1673 /* 1674 * set the private field for a given byte offset in the tree. If there isn't 1675 * an extent_state there already, this does nothing. 1676 */ 1677 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1678 { 1679 struct rb_node *node; 1680 struct extent_state *state; 1681 int ret = 0; 1682 1683 spin_lock(&tree->lock); 1684 /* 1685 * this search will find all the extents that end after 1686 * our range starts. 1687 */ 1688 node = tree_search(tree, start); 1689 if (!node) { 1690 ret = -ENOENT; 1691 goto out; 1692 } 1693 state = rb_entry(node, struct extent_state, rb_node); 1694 if (state->start != start) { 1695 ret = -ENOENT; 1696 goto out; 1697 } 1698 state->private = private; 1699 out: 1700 spin_unlock(&tree->lock); 1701 return ret; 1702 } 1703 1704 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1705 { 1706 struct rb_node *node; 1707 struct extent_state *state; 1708 int ret = 0; 1709 1710 spin_lock(&tree->lock); 1711 /* 1712 * this search will find all the extents that end after 1713 * our range starts. 1714 */ 1715 node = tree_search(tree, start); 1716 if (!node) { 1717 ret = -ENOENT; 1718 goto out; 1719 } 1720 state = rb_entry(node, struct extent_state, rb_node); 1721 if (state->start != start) { 1722 ret = -ENOENT; 1723 goto out; 1724 } 1725 *private = state->private; 1726 out: 1727 spin_unlock(&tree->lock); 1728 return ret; 1729 } 1730 1731 /* 1732 * searches a range in the state tree for a given mask. 1733 * If 'filled' == 1, this returns 1 only if every extent in the tree 1734 * has the bits set. Otherwise, 1 is returned if any bit in the 1735 * range is found set. 1736 */ 1737 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1738 int bits, int filled, struct extent_state *cached) 1739 { 1740 struct extent_state *state = NULL; 1741 struct rb_node *node; 1742 int bitset = 0; 1743 1744 spin_lock(&tree->lock); 1745 if (cached && cached->tree && cached->start <= start && 1746 cached->end > start) 1747 node = &cached->rb_node; 1748 else 1749 node = tree_search(tree, start); 1750 while (node && start <= end) { 1751 state = rb_entry(node, struct extent_state, rb_node); 1752 1753 if (filled && state->start > start) { 1754 bitset = 0; 1755 break; 1756 } 1757 1758 if (state->start > end) 1759 break; 1760 1761 if (state->state & bits) { 1762 bitset = 1; 1763 if (!filled) 1764 break; 1765 } else if (filled) { 1766 bitset = 0; 1767 break; 1768 } 1769 1770 if (state->end == (u64)-1) 1771 break; 1772 1773 start = state->end + 1; 1774 if (start > end) 1775 break; 1776 node = rb_next(node); 1777 if (!node) { 1778 if (filled) 1779 bitset = 0; 1780 break; 1781 } 1782 } 1783 spin_unlock(&tree->lock); 1784 return bitset; 1785 } 1786 1787 /* 1788 * helper function to set a given page up to date if all the 1789 * extents in the tree for that page are up to date 1790 */ 1791 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1792 { 1793 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1794 u64 end = start + PAGE_CACHE_SIZE - 1; 1795 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1796 SetPageUptodate(page); 1797 } 1798 1799 /* 1800 * helper function to unlock a page if all the extents in the tree 1801 * for that page are unlocked 1802 */ 1803 static void check_page_locked(struct extent_io_tree *tree, struct page *page) 1804 { 1805 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1806 u64 end = start + PAGE_CACHE_SIZE - 1; 1807 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1808 unlock_page(page); 1809 } 1810 1811 /* 1812 * helper function to end page writeback if all the extents 1813 * in the tree for that page are done with writeback 1814 */ 1815 static void check_page_writeback(struct extent_io_tree *tree, 1816 struct page *page) 1817 { 1818 end_page_writeback(page); 1819 } 1820 1821 /* 1822 * When IO fails, either with EIO or csum verification fails, we 1823 * try other mirrors that might have a good copy of the data. This 1824 * io_failure_record is used to record state as we go through all the 1825 * mirrors. If another mirror has good data, the page is set up to date 1826 * and things continue. If a good mirror can't be found, the original 1827 * bio end_io callback is called to indicate things have failed. 1828 */ 1829 struct io_failure_record { 1830 struct page *page; 1831 u64 start; 1832 u64 len; 1833 u64 logical; 1834 unsigned long bio_flags; 1835 int this_mirror; 1836 int failed_mirror; 1837 int in_validation; 1838 }; 1839 1840 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1841 int did_repair) 1842 { 1843 int ret; 1844 int err = 0; 1845 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1846 1847 set_state_private(failure_tree, rec->start, 0); 1848 ret = clear_extent_bits(failure_tree, rec->start, 1849 rec->start + rec->len - 1, 1850 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1851 if (ret) 1852 err = ret; 1853 1854 if (did_repair) { 1855 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1856 rec->start + rec->len - 1, 1857 EXTENT_DAMAGED, GFP_NOFS); 1858 if (ret && !err) 1859 err = ret; 1860 } 1861 1862 kfree(rec); 1863 return err; 1864 } 1865 1866 static void repair_io_failure_callback(struct bio *bio, int err) 1867 { 1868 complete(bio->bi_private); 1869 } 1870 1871 /* 1872 * this bypasses the standard btrfs submit functions deliberately, as 1873 * the standard behavior is to write all copies in a raid setup. here we only 1874 * want to write the one bad copy. so we do the mapping for ourselves and issue 1875 * submit_bio directly. 1876 * to avoid any synchonization issues, wait for the data after writing, which 1877 * actually prevents the read that triggered the error from finishing. 1878 * currently, there can be no more than two copies of every data bit. thus, 1879 * exactly one rewrite is required. 1880 */ 1881 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start, 1882 u64 length, u64 logical, struct page *page, 1883 int mirror_num) 1884 { 1885 struct bio *bio; 1886 struct btrfs_device *dev; 1887 DECLARE_COMPLETION_ONSTACK(compl); 1888 u64 map_length = 0; 1889 u64 sector; 1890 struct btrfs_bio *bbio = NULL; 1891 int ret; 1892 1893 BUG_ON(!mirror_num); 1894 1895 bio = bio_alloc(GFP_NOFS, 1); 1896 if (!bio) 1897 return -EIO; 1898 bio->bi_private = &compl; 1899 bio->bi_end_io = repair_io_failure_callback; 1900 bio->bi_size = 0; 1901 map_length = length; 1902 1903 ret = btrfs_map_block(map_tree, WRITE, logical, 1904 &map_length, &bbio, mirror_num); 1905 if (ret) { 1906 bio_put(bio); 1907 return -EIO; 1908 } 1909 BUG_ON(mirror_num != bbio->mirror_num); 1910 sector = bbio->stripes[mirror_num-1].physical >> 9; 1911 bio->bi_sector = sector; 1912 dev = bbio->stripes[mirror_num-1].dev; 1913 kfree(bbio); 1914 if (!dev || !dev->bdev || !dev->writeable) { 1915 bio_put(bio); 1916 return -EIO; 1917 } 1918 bio->bi_bdev = dev->bdev; 1919 bio_add_page(bio, page, length, start-page_offset(page)); 1920 btrfsic_submit_bio(WRITE_SYNC, bio); 1921 wait_for_completion(&compl); 1922 1923 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 1924 /* try to remap that extent elsewhere? */ 1925 bio_put(bio); 1926 return -EIO; 1927 } 1928 1929 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s " 1930 "sector %llu)\n", page->mapping->host->i_ino, start, 1931 dev->name, sector); 1932 1933 bio_put(bio); 1934 return 0; 1935 } 1936 1937 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 1938 int mirror_num) 1939 { 1940 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 1941 u64 start = eb->start; 1942 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 1943 int ret = 0; 1944 1945 for (i = 0; i < num_pages; i++) { 1946 struct page *p = extent_buffer_page(eb, i); 1947 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE, 1948 start, p, mirror_num); 1949 if (ret) 1950 break; 1951 start += PAGE_CACHE_SIZE; 1952 } 1953 1954 return ret; 1955 } 1956 1957 /* 1958 * each time an IO finishes, we do a fast check in the IO failure tree 1959 * to see if we need to process or clean up an io_failure_record 1960 */ 1961 static int clean_io_failure(u64 start, struct page *page) 1962 { 1963 u64 private; 1964 u64 private_failure; 1965 struct io_failure_record *failrec; 1966 struct btrfs_mapping_tree *map_tree; 1967 struct extent_state *state; 1968 int num_copies; 1969 int did_repair = 0; 1970 int ret; 1971 struct inode *inode = page->mapping->host; 1972 1973 private = 0; 1974 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1975 (u64)-1, 1, EXTENT_DIRTY, 0); 1976 if (!ret) 1977 return 0; 1978 1979 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 1980 &private_failure); 1981 if (ret) 1982 return 0; 1983 1984 failrec = (struct io_failure_record *)(unsigned long) private_failure; 1985 BUG_ON(!failrec->this_mirror); 1986 1987 if (failrec->in_validation) { 1988 /* there was no real error, just free the record */ 1989 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 1990 failrec->start); 1991 did_repair = 1; 1992 goto out; 1993 } 1994 1995 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1996 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1997 failrec->start, 1998 EXTENT_LOCKED); 1999 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2000 2001 if (state && state->start == failrec->start) { 2002 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; 2003 num_copies = btrfs_num_copies(map_tree, failrec->logical, 2004 failrec->len); 2005 if (num_copies > 1) { 2006 ret = repair_io_failure(map_tree, start, failrec->len, 2007 failrec->logical, page, 2008 failrec->failed_mirror); 2009 did_repair = !ret; 2010 } 2011 } 2012 2013 out: 2014 if (!ret) 2015 ret = free_io_failure(inode, failrec, did_repair); 2016 2017 return ret; 2018 } 2019 2020 /* 2021 * this is a generic handler for readpage errors (default 2022 * readpage_io_failed_hook). if other copies exist, read those and write back 2023 * good data to the failed position. does not investigate in remapping the 2024 * failed extent elsewhere, hoping the device will be smart enough to do this as 2025 * needed 2026 */ 2027 2028 static int bio_readpage_error(struct bio *failed_bio, struct page *page, 2029 u64 start, u64 end, int failed_mirror, 2030 struct extent_state *state) 2031 { 2032 struct io_failure_record *failrec = NULL; 2033 u64 private; 2034 struct extent_map *em; 2035 struct inode *inode = page->mapping->host; 2036 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2037 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2038 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2039 struct bio *bio; 2040 int num_copies; 2041 int ret; 2042 int read_mode; 2043 u64 logical; 2044 2045 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2046 2047 ret = get_state_private(failure_tree, start, &private); 2048 if (ret) { 2049 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2050 if (!failrec) 2051 return -ENOMEM; 2052 failrec->start = start; 2053 failrec->len = end - start + 1; 2054 failrec->this_mirror = 0; 2055 failrec->bio_flags = 0; 2056 failrec->in_validation = 0; 2057 2058 read_lock(&em_tree->lock); 2059 em = lookup_extent_mapping(em_tree, start, failrec->len); 2060 if (!em) { 2061 read_unlock(&em_tree->lock); 2062 kfree(failrec); 2063 return -EIO; 2064 } 2065 2066 if (em->start > start || em->start + em->len < start) { 2067 free_extent_map(em); 2068 em = NULL; 2069 } 2070 read_unlock(&em_tree->lock); 2071 2072 if (!em || IS_ERR(em)) { 2073 kfree(failrec); 2074 return -EIO; 2075 } 2076 logical = start - em->start; 2077 logical = em->block_start + logical; 2078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2079 logical = em->block_start; 2080 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2081 extent_set_compress_type(&failrec->bio_flags, 2082 em->compress_type); 2083 } 2084 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2085 "len=%llu\n", logical, start, failrec->len); 2086 failrec->logical = logical; 2087 free_extent_map(em); 2088 2089 /* set the bits in the private failure tree */ 2090 ret = set_extent_bits(failure_tree, start, end, 2091 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2092 if (ret >= 0) 2093 ret = set_state_private(failure_tree, start, 2094 (u64)(unsigned long)failrec); 2095 /* set the bits in the inode's tree */ 2096 if (ret >= 0) 2097 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2098 GFP_NOFS); 2099 if (ret < 0) { 2100 kfree(failrec); 2101 return ret; 2102 } 2103 } else { 2104 failrec = (struct io_failure_record *)(unsigned long)private; 2105 pr_debug("bio_readpage_error: (found) logical=%llu, " 2106 "start=%llu, len=%llu, validation=%d\n", 2107 failrec->logical, failrec->start, failrec->len, 2108 failrec->in_validation); 2109 /* 2110 * when data can be on disk more than twice, add to failrec here 2111 * (e.g. with a list for failed_mirror) to make 2112 * clean_io_failure() clean all those errors at once. 2113 */ 2114 } 2115 num_copies = btrfs_num_copies( 2116 &BTRFS_I(inode)->root->fs_info->mapping_tree, 2117 failrec->logical, failrec->len); 2118 if (num_copies == 1) { 2119 /* 2120 * we only have a single copy of the data, so don't bother with 2121 * all the retry and error correction code that follows. no 2122 * matter what the error is, it is very likely to persist. 2123 */ 2124 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " 2125 "state=%p, num_copies=%d, next_mirror %d, " 2126 "failed_mirror %d\n", state, num_copies, 2127 failrec->this_mirror, failed_mirror); 2128 free_io_failure(inode, failrec, 0); 2129 return -EIO; 2130 } 2131 2132 if (!state) { 2133 spin_lock(&tree->lock); 2134 state = find_first_extent_bit_state(tree, failrec->start, 2135 EXTENT_LOCKED); 2136 if (state && state->start != failrec->start) 2137 state = NULL; 2138 spin_unlock(&tree->lock); 2139 } 2140 2141 /* 2142 * there are two premises: 2143 * a) deliver good data to the caller 2144 * b) correct the bad sectors on disk 2145 */ 2146 if (failed_bio->bi_vcnt > 1) { 2147 /* 2148 * to fulfill b), we need to know the exact failing sectors, as 2149 * we don't want to rewrite any more than the failed ones. thus, 2150 * we need separate read requests for the failed bio 2151 * 2152 * if the following BUG_ON triggers, our validation request got 2153 * merged. we need separate requests for our algorithm to work. 2154 */ 2155 BUG_ON(failrec->in_validation); 2156 failrec->in_validation = 1; 2157 failrec->this_mirror = failed_mirror; 2158 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2159 } else { 2160 /* 2161 * we're ready to fulfill a) and b) alongside. get a good copy 2162 * of the failed sector and if we succeed, we have setup 2163 * everything for repair_io_failure to do the rest for us. 2164 */ 2165 if (failrec->in_validation) { 2166 BUG_ON(failrec->this_mirror != failed_mirror); 2167 failrec->in_validation = 0; 2168 failrec->this_mirror = 0; 2169 } 2170 failrec->failed_mirror = failed_mirror; 2171 failrec->this_mirror++; 2172 if (failrec->this_mirror == failed_mirror) 2173 failrec->this_mirror++; 2174 read_mode = READ_SYNC; 2175 } 2176 2177 if (!state || failrec->this_mirror > num_copies) { 2178 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " 2179 "next_mirror %d, failed_mirror %d\n", state, 2180 num_copies, failrec->this_mirror, failed_mirror); 2181 free_io_failure(inode, failrec, 0); 2182 return -EIO; 2183 } 2184 2185 bio = bio_alloc(GFP_NOFS, 1); 2186 if (!bio) { 2187 free_io_failure(inode, failrec, 0); 2188 return -EIO; 2189 } 2190 bio->bi_private = state; 2191 bio->bi_end_io = failed_bio->bi_end_io; 2192 bio->bi_sector = failrec->logical >> 9; 2193 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2194 bio->bi_size = 0; 2195 2196 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2197 2198 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2199 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2200 failrec->this_mirror, num_copies, failrec->in_validation); 2201 2202 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2203 failrec->this_mirror, 2204 failrec->bio_flags, 0); 2205 return ret; 2206 } 2207 2208 /* lots and lots of room for performance fixes in the end_bio funcs */ 2209 2210 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2211 { 2212 int uptodate = (err == 0); 2213 struct extent_io_tree *tree; 2214 int ret; 2215 2216 tree = &BTRFS_I(page->mapping->host)->io_tree; 2217 2218 if (tree->ops && tree->ops->writepage_end_io_hook) { 2219 ret = tree->ops->writepage_end_io_hook(page, start, 2220 end, NULL, uptodate); 2221 if (ret) 2222 uptodate = 0; 2223 } 2224 2225 if (!uptodate && tree->ops && 2226 tree->ops->writepage_io_failed_hook) { 2227 ret = tree->ops->writepage_io_failed_hook(NULL, page, 2228 start, end, NULL); 2229 /* Writeback already completed */ 2230 if (ret == 0) 2231 return 1; 2232 } 2233 2234 if (!uptodate) { 2235 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS); 2236 ClearPageUptodate(page); 2237 SetPageError(page); 2238 } 2239 return 0; 2240 } 2241 2242 /* 2243 * after a writepage IO is done, we need to: 2244 * clear the uptodate bits on error 2245 * clear the writeback bits in the extent tree for this IO 2246 * end_page_writeback if the page has no more pending IO 2247 * 2248 * Scheduling is not allowed, so the extent state tree is expected 2249 * to have one and only one object corresponding to this IO. 2250 */ 2251 static void end_bio_extent_writepage(struct bio *bio, int err) 2252 { 2253 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2254 struct extent_io_tree *tree; 2255 u64 start; 2256 u64 end; 2257 int whole_page; 2258 2259 do { 2260 struct page *page = bvec->bv_page; 2261 tree = &BTRFS_I(page->mapping->host)->io_tree; 2262 2263 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2264 bvec->bv_offset; 2265 end = start + bvec->bv_len - 1; 2266 2267 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2268 whole_page = 1; 2269 else 2270 whole_page = 0; 2271 2272 if (--bvec >= bio->bi_io_vec) 2273 prefetchw(&bvec->bv_page->flags); 2274 2275 if (end_extent_writepage(page, err, start, end)) 2276 continue; 2277 2278 if (whole_page) 2279 end_page_writeback(page); 2280 else 2281 check_page_writeback(tree, page); 2282 } while (bvec >= bio->bi_io_vec); 2283 2284 bio_put(bio); 2285 } 2286 2287 /* 2288 * after a readpage IO is done, we need to: 2289 * clear the uptodate bits on error 2290 * set the uptodate bits if things worked 2291 * set the page up to date if all extents in the tree are uptodate 2292 * clear the lock bit in the extent tree 2293 * unlock the page if there are no other extents locked for it 2294 * 2295 * Scheduling is not allowed, so the extent state tree is expected 2296 * to have one and only one object corresponding to this IO. 2297 */ 2298 static void end_bio_extent_readpage(struct bio *bio, int err) 2299 { 2300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2301 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2302 struct bio_vec *bvec = bio->bi_io_vec; 2303 struct extent_io_tree *tree; 2304 u64 start; 2305 u64 end; 2306 int whole_page; 2307 int mirror; 2308 int ret; 2309 2310 if (err) 2311 uptodate = 0; 2312 2313 do { 2314 struct page *page = bvec->bv_page; 2315 struct extent_state *cached = NULL; 2316 struct extent_state *state; 2317 2318 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, " 2319 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err, 2320 (long int)bio->bi_bdev); 2321 tree = &BTRFS_I(page->mapping->host)->io_tree; 2322 2323 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 2324 bvec->bv_offset; 2325 end = start + bvec->bv_len - 1; 2326 2327 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 2328 whole_page = 1; 2329 else 2330 whole_page = 0; 2331 2332 if (++bvec <= bvec_end) 2333 prefetchw(&bvec->bv_page->flags); 2334 2335 spin_lock(&tree->lock); 2336 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 2337 if (state && state->start == start) { 2338 /* 2339 * take a reference on the state, unlock will drop 2340 * the ref 2341 */ 2342 cache_state(state, &cached); 2343 } 2344 spin_unlock(&tree->lock); 2345 2346 mirror = (int)(unsigned long)bio->bi_bdev; 2347 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 2348 ret = tree->ops->readpage_end_io_hook(page, start, end, 2349 state, mirror); 2350 if (ret) 2351 uptodate = 0; 2352 else 2353 clean_io_failure(start, page); 2354 } 2355 2356 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { 2357 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2358 if (!ret && !err && 2359 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2360 uptodate = 1; 2361 } else if (!uptodate) { 2362 /* 2363 * The generic bio_readpage_error handles errors the 2364 * following way: If possible, new read requests are 2365 * created and submitted and will end up in 2366 * end_bio_extent_readpage as well (if we're lucky, not 2367 * in the !uptodate case). In that case it returns 0 and 2368 * we just go on with the next page in our bio. If it 2369 * can't handle the error it will return -EIO and we 2370 * remain responsible for that page. 2371 */ 2372 ret = bio_readpage_error(bio, page, start, end, mirror, NULL); 2373 if (ret == 0) { 2374 uptodate = 2375 test_bit(BIO_UPTODATE, &bio->bi_flags); 2376 if (err) 2377 uptodate = 0; 2378 uncache_state(&cached); 2379 continue; 2380 } 2381 } 2382 2383 if (uptodate && tree->track_uptodate) { 2384 set_extent_uptodate(tree, start, end, &cached, 2385 GFP_ATOMIC); 2386 } 2387 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2388 2389 if (whole_page) { 2390 if (uptodate) { 2391 SetPageUptodate(page); 2392 } else { 2393 ClearPageUptodate(page); 2394 SetPageError(page); 2395 } 2396 unlock_page(page); 2397 } else { 2398 if (uptodate) { 2399 check_page_uptodate(tree, page); 2400 } else { 2401 ClearPageUptodate(page); 2402 SetPageError(page); 2403 } 2404 check_page_locked(tree, page); 2405 } 2406 } while (bvec <= bvec_end); 2407 2408 bio_put(bio); 2409 } 2410 2411 struct bio * 2412 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2413 gfp_t gfp_flags) 2414 { 2415 struct bio *bio; 2416 2417 bio = bio_alloc(gfp_flags, nr_vecs); 2418 2419 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2420 while (!bio && (nr_vecs /= 2)) 2421 bio = bio_alloc(gfp_flags, nr_vecs); 2422 } 2423 2424 if (bio) { 2425 bio->bi_size = 0; 2426 bio->bi_bdev = bdev; 2427 bio->bi_sector = first_sector; 2428 } 2429 return bio; 2430 } 2431 2432 /* 2433 * Since writes are async, they will only return -ENOMEM. 2434 * Reads can return the full range of I/O error conditions. 2435 */ 2436 static int __must_check submit_one_bio(int rw, struct bio *bio, 2437 int mirror_num, unsigned long bio_flags) 2438 { 2439 int ret = 0; 2440 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2441 struct page *page = bvec->bv_page; 2442 struct extent_io_tree *tree = bio->bi_private; 2443 u64 start; 2444 2445 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 2446 2447 bio->bi_private = NULL; 2448 2449 bio_get(bio); 2450 2451 if (tree->ops && tree->ops->submit_bio_hook) 2452 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2453 mirror_num, bio_flags, start); 2454 else 2455 btrfsic_submit_bio(rw, bio); 2456 2457 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2458 ret = -EOPNOTSUPP; 2459 bio_put(bio); 2460 return ret; 2461 } 2462 2463 static int merge_bio(struct extent_io_tree *tree, struct page *page, 2464 unsigned long offset, size_t size, struct bio *bio, 2465 unsigned long bio_flags) 2466 { 2467 int ret = 0; 2468 if (tree->ops && tree->ops->merge_bio_hook) 2469 ret = tree->ops->merge_bio_hook(page, offset, size, bio, 2470 bio_flags); 2471 BUG_ON(ret < 0); 2472 return ret; 2473 2474 } 2475 2476 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2477 struct page *page, sector_t sector, 2478 size_t size, unsigned long offset, 2479 struct block_device *bdev, 2480 struct bio **bio_ret, 2481 unsigned long max_pages, 2482 bio_end_io_t end_io_func, 2483 int mirror_num, 2484 unsigned long prev_bio_flags, 2485 unsigned long bio_flags) 2486 { 2487 int ret = 0; 2488 struct bio *bio; 2489 int nr; 2490 int contig = 0; 2491 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2492 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2493 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2494 2495 if (bio_ret && *bio_ret) { 2496 bio = *bio_ret; 2497 if (old_compressed) 2498 contig = bio->bi_sector == sector; 2499 else 2500 contig = bio->bi_sector + (bio->bi_size >> 9) == 2501 sector; 2502 2503 if (prev_bio_flags != bio_flags || !contig || 2504 merge_bio(tree, page, offset, page_size, bio, bio_flags) || 2505 bio_add_page(bio, page, page_size, offset) < page_size) { 2506 ret = submit_one_bio(rw, bio, mirror_num, 2507 prev_bio_flags); 2508 if (ret < 0) 2509 return ret; 2510 bio = NULL; 2511 } else { 2512 return 0; 2513 } 2514 } 2515 if (this_compressed) 2516 nr = BIO_MAX_PAGES; 2517 else 2518 nr = bio_get_nr_vecs(bdev); 2519 2520 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2521 if (!bio) 2522 return -ENOMEM; 2523 2524 bio_add_page(bio, page, page_size, offset); 2525 bio->bi_end_io = end_io_func; 2526 bio->bi_private = tree; 2527 2528 if (bio_ret) 2529 *bio_ret = bio; 2530 else 2531 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2532 2533 return ret; 2534 } 2535 2536 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 2537 { 2538 if (!PagePrivate(page)) { 2539 SetPagePrivate(page); 2540 page_cache_get(page); 2541 set_page_private(page, (unsigned long)eb); 2542 } else { 2543 WARN_ON(page->private != (unsigned long)eb); 2544 } 2545 } 2546 2547 void set_page_extent_mapped(struct page *page) 2548 { 2549 if (!PagePrivate(page)) { 2550 SetPagePrivate(page); 2551 page_cache_get(page); 2552 set_page_private(page, EXTENT_PAGE_PRIVATE); 2553 } 2554 } 2555 2556 /* 2557 * basic readpage implementation. Locked extent state structs are inserted 2558 * into the tree that are removed when the IO is done (by the end_io 2559 * handlers) 2560 * XXX JDM: This needs looking at to ensure proper page locking 2561 */ 2562 static int __extent_read_full_page(struct extent_io_tree *tree, 2563 struct page *page, 2564 get_extent_t *get_extent, 2565 struct bio **bio, int mirror_num, 2566 unsigned long *bio_flags) 2567 { 2568 struct inode *inode = page->mapping->host; 2569 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2570 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2571 u64 end; 2572 u64 cur = start; 2573 u64 extent_offset; 2574 u64 last_byte = i_size_read(inode); 2575 u64 block_start; 2576 u64 cur_end; 2577 sector_t sector; 2578 struct extent_map *em; 2579 struct block_device *bdev; 2580 struct btrfs_ordered_extent *ordered; 2581 int ret; 2582 int nr = 0; 2583 size_t pg_offset = 0; 2584 size_t iosize; 2585 size_t disk_io_size; 2586 size_t blocksize = inode->i_sb->s_blocksize; 2587 unsigned long this_bio_flag = 0; 2588 2589 set_page_extent_mapped(page); 2590 2591 if (!PageUptodate(page)) { 2592 if (cleancache_get_page(page) == 0) { 2593 BUG_ON(blocksize != PAGE_SIZE); 2594 goto out; 2595 } 2596 } 2597 2598 end = page_end; 2599 while (1) { 2600 lock_extent(tree, start, end); 2601 ordered = btrfs_lookup_ordered_extent(inode, start); 2602 if (!ordered) 2603 break; 2604 unlock_extent(tree, start, end); 2605 btrfs_start_ordered_extent(inode, ordered, 1); 2606 btrfs_put_ordered_extent(ordered); 2607 } 2608 2609 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2610 char *userpage; 2611 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2612 2613 if (zero_offset) { 2614 iosize = PAGE_CACHE_SIZE - zero_offset; 2615 userpage = kmap_atomic(page); 2616 memset(userpage + zero_offset, 0, iosize); 2617 flush_dcache_page(page); 2618 kunmap_atomic(userpage); 2619 } 2620 } 2621 while (cur <= end) { 2622 if (cur >= last_byte) { 2623 char *userpage; 2624 struct extent_state *cached = NULL; 2625 2626 iosize = PAGE_CACHE_SIZE - pg_offset; 2627 userpage = kmap_atomic(page); 2628 memset(userpage + pg_offset, 0, iosize); 2629 flush_dcache_page(page); 2630 kunmap_atomic(userpage); 2631 set_extent_uptodate(tree, cur, cur + iosize - 1, 2632 &cached, GFP_NOFS); 2633 unlock_extent_cached(tree, cur, cur + iosize - 1, 2634 &cached, GFP_NOFS); 2635 break; 2636 } 2637 em = get_extent(inode, page, pg_offset, cur, 2638 end - cur + 1, 0); 2639 if (IS_ERR_OR_NULL(em)) { 2640 SetPageError(page); 2641 unlock_extent(tree, cur, end); 2642 break; 2643 } 2644 extent_offset = cur - em->start; 2645 BUG_ON(extent_map_end(em) <= cur); 2646 BUG_ON(end < cur); 2647 2648 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2649 this_bio_flag = EXTENT_BIO_COMPRESSED; 2650 extent_set_compress_type(&this_bio_flag, 2651 em->compress_type); 2652 } 2653 2654 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2655 cur_end = min(extent_map_end(em) - 1, end); 2656 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2657 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2658 disk_io_size = em->block_len; 2659 sector = em->block_start >> 9; 2660 } else { 2661 sector = (em->block_start + extent_offset) >> 9; 2662 disk_io_size = iosize; 2663 } 2664 bdev = em->bdev; 2665 block_start = em->block_start; 2666 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2667 block_start = EXTENT_MAP_HOLE; 2668 free_extent_map(em); 2669 em = NULL; 2670 2671 /* we've found a hole, just zero and go on */ 2672 if (block_start == EXTENT_MAP_HOLE) { 2673 char *userpage; 2674 struct extent_state *cached = NULL; 2675 2676 userpage = kmap_atomic(page); 2677 memset(userpage + pg_offset, 0, iosize); 2678 flush_dcache_page(page); 2679 kunmap_atomic(userpage); 2680 2681 set_extent_uptodate(tree, cur, cur + iosize - 1, 2682 &cached, GFP_NOFS); 2683 unlock_extent_cached(tree, cur, cur + iosize - 1, 2684 &cached, GFP_NOFS); 2685 cur = cur + iosize; 2686 pg_offset += iosize; 2687 continue; 2688 } 2689 /* the get_extent function already copied into the page */ 2690 if (test_range_bit(tree, cur, cur_end, 2691 EXTENT_UPTODATE, 1, NULL)) { 2692 check_page_uptodate(tree, page); 2693 unlock_extent(tree, cur, cur + iosize - 1); 2694 cur = cur + iosize; 2695 pg_offset += iosize; 2696 continue; 2697 } 2698 /* we have an inline extent but it didn't get marked up 2699 * to date. Error out 2700 */ 2701 if (block_start == EXTENT_MAP_INLINE) { 2702 SetPageError(page); 2703 unlock_extent(tree, cur, cur + iosize - 1); 2704 cur = cur + iosize; 2705 pg_offset += iosize; 2706 continue; 2707 } 2708 2709 ret = 0; 2710 if (tree->ops && tree->ops->readpage_io_hook) { 2711 ret = tree->ops->readpage_io_hook(page, cur, 2712 cur + iosize - 1); 2713 } 2714 if (!ret) { 2715 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2716 pnr -= page->index; 2717 ret = submit_extent_page(READ, tree, page, 2718 sector, disk_io_size, pg_offset, 2719 bdev, bio, pnr, 2720 end_bio_extent_readpage, mirror_num, 2721 *bio_flags, 2722 this_bio_flag); 2723 BUG_ON(ret == -ENOMEM); 2724 nr++; 2725 *bio_flags = this_bio_flag; 2726 } 2727 if (ret) 2728 SetPageError(page); 2729 cur = cur + iosize; 2730 pg_offset += iosize; 2731 } 2732 out: 2733 if (!nr) { 2734 if (!PageError(page)) 2735 SetPageUptodate(page); 2736 unlock_page(page); 2737 } 2738 return 0; 2739 } 2740 2741 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2742 get_extent_t *get_extent, int mirror_num) 2743 { 2744 struct bio *bio = NULL; 2745 unsigned long bio_flags = 0; 2746 int ret; 2747 2748 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 2749 &bio_flags); 2750 if (bio) 2751 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 2752 return ret; 2753 } 2754 2755 static noinline void update_nr_written(struct page *page, 2756 struct writeback_control *wbc, 2757 unsigned long nr_written) 2758 { 2759 wbc->nr_to_write -= nr_written; 2760 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2761 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2762 page->mapping->writeback_index = page->index + nr_written; 2763 } 2764 2765 /* 2766 * the writepage semantics are similar to regular writepage. extent 2767 * records are inserted to lock ranges in the tree, and as dirty areas 2768 * are found, they are marked writeback. Then the lock bits are removed 2769 * and the end_io handler clears the writeback ranges 2770 */ 2771 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2772 void *data) 2773 { 2774 struct inode *inode = page->mapping->host; 2775 struct extent_page_data *epd = data; 2776 struct extent_io_tree *tree = epd->tree; 2777 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2778 u64 delalloc_start; 2779 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2780 u64 end; 2781 u64 cur = start; 2782 u64 extent_offset; 2783 u64 last_byte = i_size_read(inode); 2784 u64 block_start; 2785 u64 iosize; 2786 sector_t sector; 2787 struct extent_state *cached_state = NULL; 2788 struct extent_map *em; 2789 struct block_device *bdev; 2790 int ret; 2791 int nr = 0; 2792 size_t pg_offset = 0; 2793 size_t blocksize; 2794 loff_t i_size = i_size_read(inode); 2795 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2796 u64 nr_delalloc; 2797 u64 delalloc_end; 2798 int page_started; 2799 int compressed; 2800 int write_flags; 2801 unsigned long nr_written = 0; 2802 bool fill_delalloc = true; 2803 2804 if (wbc->sync_mode == WB_SYNC_ALL) 2805 write_flags = WRITE_SYNC; 2806 else 2807 write_flags = WRITE; 2808 2809 trace___extent_writepage(page, inode, wbc); 2810 2811 WARN_ON(!PageLocked(page)); 2812 2813 ClearPageError(page); 2814 2815 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2816 if (page->index > end_index || 2817 (page->index == end_index && !pg_offset)) { 2818 page->mapping->a_ops->invalidatepage(page, 0); 2819 unlock_page(page); 2820 return 0; 2821 } 2822 2823 if (page->index == end_index) { 2824 char *userpage; 2825 2826 userpage = kmap_atomic(page); 2827 memset(userpage + pg_offset, 0, 2828 PAGE_CACHE_SIZE - pg_offset); 2829 kunmap_atomic(userpage); 2830 flush_dcache_page(page); 2831 } 2832 pg_offset = 0; 2833 2834 set_page_extent_mapped(page); 2835 2836 if (!tree->ops || !tree->ops->fill_delalloc) 2837 fill_delalloc = false; 2838 2839 delalloc_start = start; 2840 delalloc_end = 0; 2841 page_started = 0; 2842 if (!epd->extent_locked && fill_delalloc) { 2843 u64 delalloc_to_write = 0; 2844 /* 2845 * make sure the wbc mapping index is at least updated 2846 * to this page. 2847 */ 2848 update_nr_written(page, wbc, 0); 2849 2850 while (delalloc_end < page_end) { 2851 nr_delalloc = find_lock_delalloc_range(inode, tree, 2852 page, 2853 &delalloc_start, 2854 &delalloc_end, 2855 128 * 1024 * 1024); 2856 if (nr_delalloc == 0) { 2857 delalloc_start = delalloc_end + 1; 2858 continue; 2859 } 2860 ret = tree->ops->fill_delalloc(inode, page, 2861 delalloc_start, 2862 delalloc_end, 2863 &page_started, 2864 &nr_written); 2865 /* File system has been set read-only */ 2866 if (ret) { 2867 SetPageError(page); 2868 goto done; 2869 } 2870 /* 2871 * delalloc_end is already one less than the total 2872 * length, so we don't subtract one from 2873 * PAGE_CACHE_SIZE 2874 */ 2875 delalloc_to_write += (delalloc_end - delalloc_start + 2876 PAGE_CACHE_SIZE) >> 2877 PAGE_CACHE_SHIFT; 2878 delalloc_start = delalloc_end + 1; 2879 } 2880 if (wbc->nr_to_write < delalloc_to_write) { 2881 int thresh = 8192; 2882 2883 if (delalloc_to_write < thresh * 2) 2884 thresh = delalloc_to_write; 2885 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2886 thresh); 2887 } 2888 2889 /* did the fill delalloc function already unlock and start 2890 * the IO? 2891 */ 2892 if (page_started) { 2893 ret = 0; 2894 /* 2895 * we've unlocked the page, so we can't update 2896 * the mapping's writeback index, just update 2897 * nr_to_write. 2898 */ 2899 wbc->nr_to_write -= nr_written; 2900 goto done_unlocked; 2901 } 2902 } 2903 if (tree->ops && tree->ops->writepage_start_hook) { 2904 ret = tree->ops->writepage_start_hook(page, start, 2905 page_end); 2906 if (ret) { 2907 /* Fixup worker will requeue */ 2908 if (ret == -EBUSY) 2909 wbc->pages_skipped++; 2910 else 2911 redirty_page_for_writepage(wbc, page); 2912 update_nr_written(page, wbc, nr_written); 2913 unlock_page(page); 2914 ret = 0; 2915 goto done_unlocked; 2916 } 2917 } 2918 2919 /* 2920 * we don't want to touch the inode after unlocking the page, 2921 * so we update the mapping writeback index now 2922 */ 2923 update_nr_written(page, wbc, nr_written + 1); 2924 2925 end = page_end; 2926 if (last_byte <= start) { 2927 if (tree->ops && tree->ops->writepage_end_io_hook) 2928 tree->ops->writepage_end_io_hook(page, start, 2929 page_end, NULL, 1); 2930 goto done; 2931 } 2932 2933 blocksize = inode->i_sb->s_blocksize; 2934 2935 while (cur <= end) { 2936 if (cur >= last_byte) { 2937 if (tree->ops && tree->ops->writepage_end_io_hook) 2938 tree->ops->writepage_end_io_hook(page, cur, 2939 page_end, NULL, 1); 2940 break; 2941 } 2942 em = epd->get_extent(inode, page, pg_offset, cur, 2943 end - cur + 1, 1); 2944 if (IS_ERR_OR_NULL(em)) { 2945 SetPageError(page); 2946 break; 2947 } 2948 2949 extent_offset = cur - em->start; 2950 BUG_ON(extent_map_end(em) <= cur); 2951 BUG_ON(end < cur); 2952 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2953 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2954 sector = (em->block_start + extent_offset) >> 9; 2955 bdev = em->bdev; 2956 block_start = em->block_start; 2957 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2958 free_extent_map(em); 2959 em = NULL; 2960 2961 /* 2962 * compressed and inline extents are written through other 2963 * paths in the FS 2964 */ 2965 if (compressed || block_start == EXTENT_MAP_HOLE || 2966 block_start == EXTENT_MAP_INLINE) { 2967 /* 2968 * end_io notification does not happen here for 2969 * compressed extents 2970 */ 2971 if (!compressed && tree->ops && 2972 tree->ops->writepage_end_io_hook) 2973 tree->ops->writepage_end_io_hook(page, cur, 2974 cur + iosize - 1, 2975 NULL, 1); 2976 else if (compressed) { 2977 /* we don't want to end_page_writeback on 2978 * a compressed extent. this happens 2979 * elsewhere 2980 */ 2981 nr++; 2982 } 2983 2984 cur += iosize; 2985 pg_offset += iosize; 2986 continue; 2987 } 2988 /* leave this out until we have a page_mkwrite call */ 2989 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2990 EXTENT_DIRTY, 0, NULL)) { 2991 cur = cur + iosize; 2992 pg_offset += iosize; 2993 continue; 2994 } 2995 2996 if (tree->ops && tree->ops->writepage_io_hook) { 2997 ret = tree->ops->writepage_io_hook(page, cur, 2998 cur + iosize - 1); 2999 } else { 3000 ret = 0; 3001 } 3002 if (ret) { 3003 SetPageError(page); 3004 } else { 3005 unsigned long max_nr = end_index + 1; 3006 3007 set_range_writeback(tree, cur, cur + iosize - 1); 3008 if (!PageWriteback(page)) { 3009 printk(KERN_ERR "btrfs warning page %lu not " 3010 "writeback, cur %llu end %llu\n", 3011 page->index, (unsigned long long)cur, 3012 (unsigned long long)end); 3013 } 3014 3015 ret = submit_extent_page(write_flags, tree, page, 3016 sector, iosize, pg_offset, 3017 bdev, &epd->bio, max_nr, 3018 end_bio_extent_writepage, 3019 0, 0, 0); 3020 if (ret) 3021 SetPageError(page); 3022 } 3023 cur = cur + iosize; 3024 pg_offset += iosize; 3025 nr++; 3026 } 3027 done: 3028 if (nr == 0) { 3029 /* make sure the mapping tag for page dirty gets cleared */ 3030 set_page_writeback(page); 3031 end_page_writeback(page); 3032 } 3033 unlock_page(page); 3034 3035 done_unlocked: 3036 3037 /* drop our reference on any cached states */ 3038 free_extent_state(cached_state); 3039 return 0; 3040 } 3041 3042 static int eb_wait(void *word) 3043 { 3044 io_schedule(); 3045 return 0; 3046 } 3047 3048 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3049 { 3050 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3051 TASK_UNINTERRUPTIBLE); 3052 } 3053 3054 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3055 struct btrfs_fs_info *fs_info, 3056 struct extent_page_data *epd) 3057 { 3058 unsigned long i, num_pages; 3059 int flush = 0; 3060 int ret = 0; 3061 3062 if (!btrfs_try_tree_write_lock(eb)) { 3063 flush = 1; 3064 flush_write_bio(epd); 3065 btrfs_tree_lock(eb); 3066 } 3067 3068 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3069 btrfs_tree_unlock(eb); 3070 if (!epd->sync_io) 3071 return 0; 3072 if (!flush) { 3073 flush_write_bio(epd); 3074 flush = 1; 3075 } 3076 while (1) { 3077 wait_on_extent_buffer_writeback(eb); 3078 btrfs_tree_lock(eb); 3079 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3080 break; 3081 btrfs_tree_unlock(eb); 3082 } 3083 } 3084 3085 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3086 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3087 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3088 spin_lock(&fs_info->delalloc_lock); 3089 if (fs_info->dirty_metadata_bytes >= eb->len) 3090 fs_info->dirty_metadata_bytes -= eb->len; 3091 else 3092 WARN_ON(1); 3093 spin_unlock(&fs_info->delalloc_lock); 3094 ret = 1; 3095 } 3096 3097 btrfs_tree_unlock(eb); 3098 3099 if (!ret) 3100 return ret; 3101 3102 num_pages = num_extent_pages(eb->start, eb->len); 3103 for (i = 0; i < num_pages; i++) { 3104 struct page *p = extent_buffer_page(eb, i); 3105 3106 if (!trylock_page(p)) { 3107 if (!flush) { 3108 flush_write_bio(epd); 3109 flush = 1; 3110 } 3111 lock_page(p); 3112 } 3113 } 3114 3115 return ret; 3116 } 3117 3118 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3119 { 3120 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3121 smp_mb__after_clear_bit(); 3122 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3123 } 3124 3125 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3126 { 3127 int uptodate = err == 0; 3128 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3129 struct extent_buffer *eb; 3130 int done; 3131 3132 do { 3133 struct page *page = bvec->bv_page; 3134 3135 bvec--; 3136 eb = (struct extent_buffer *)page->private; 3137 BUG_ON(!eb); 3138 done = atomic_dec_and_test(&eb->io_pages); 3139 3140 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3141 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3142 ClearPageUptodate(page); 3143 SetPageError(page); 3144 } 3145 3146 end_page_writeback(page); 3147 3148 if (!done) 3149 continue; 3150 3151 end_extent_buffer_writeback(eb); 3152 } while (bvec >= bio->bi_io_vec); 3153 3154 bio_put(bio); 3155 3156 } 3157 3158 static int write_one_eb(struct extent_buffer *eb, 3159 struct btrfs_fs_info *fs_info, 3160 struct writeback_control *wbc, 3161 struct extent_page_data *epd) 3162 { 3163 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3164 u64 offset = eb->start; 3165 unsigned long i, num_pages; 3166 int rw = (epd->sync_io ? WRITE_SYNC : WRITE); 3167 int ret; 3168 3169 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3170 num_pages = num_extent_pages(eb->start, eb->len); 3171 atomic_set(&eb->io_pages, num_pages); 3172 for (i = 0; i < num_pages; i++) { 3173 struct page *p = extent_buffer_page(eb, i); 3174 3175 clear_page_dirty_for_io(p); 3176 set_page_writeback(p); 3177 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3178 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3179 -1, end_bio_extent_buffer_writepage, 3180 0, 0, 0); 3181 if (ret) { 3182 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3183 SetPageError(p); 3184 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3185 end_extent_buffer_writeback(eb); 3186 ret = -EIO; 3187 break; 3188 } 3189 offset += PAGE_CACHE_SIZE; 3190 update_nr_written(p, wbc, 1); 3191 unlock_page(p); 3192 } 3193 3194 if (unlikely(ret)) { 3195 for (; i < num_pages; i++) { 3196 struct page *p = extent_buffer_page(eb, i); 3197 unlock_page(p); 3198 } 3199 } 3200 3201 return ret; 3202 } 3203 3204 int btree_write_cache_pages(struct address_space *mapping, 3205 struct writeback_control *wbc) 3206 { 3207 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3208 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3209 struct extent_buffer *eb, *prev_eb = NULL; 3210 struct extent_page_data epd = { 3211 .bio = NULL, 3212 .tree = tree, 3213 .extent_locked = 0, 3214 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3215 }; 3216 int ret = 0; 3217 int done = 0; 3218 int nr_to_write_done = 0; 3219 struct pagevec pvec; 3220 int nr_pages; 3221 pgoff_t index; 3222 pgoff_t end; /* Inclusive */ 3223 int scanned = 0; 3224 int tag; 3225 3226 pagevec_init(&pvec, 0); 3227 if (wbc->range_cyclic) { 3228 index = mapping->writeback_index; /* Start from prev offset */ 3229 end = -1; 3230 } else { 3231 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3232 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3233 scanned = 1; 3234 } 3235 if (wbc->sync_mode == WB_SYNC_ALL) 3236 tag = PAGECACHE_TAG_TOWRITE; 3237 else 3238 tag = PAGECACHE_TAG_DIRTY; 3239 retry: 3240 if (wbc->sync_mode == WB_SYNC_ALL) 3241 tag_pages_for_writeback(mapping, index, end); 3242 while (!done && !nr_to_write_done && (index <= end) && 3243 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3245 unsigned i; 3246 3247 scanned = 1; 3248 for (i = 0; i < nr_pages; i++) { 3249 struct page *page = pvec.pages[i]; 3250 3251 if (!PagePrivate(page)) 3252 continue; 3253 3254 if (!wbc->range_cyclic && page->index > end) { 3255 done = 1; 3256 break; 3257 } 3258 3259 eb = (struct extent_buffer *)page->private; 3260 if (!eb) { 3261 WARN_ON(1); 3262 continue; 3263 } 3264 3265 if (eb == prev_eb) 3266 continue; 3267 3268 if (!atomic_inc_not_zero(&eb->refs)) { 3269 WARN_ON(1); 3270 continue; 3271 } 3272 3273 prev_eb = eb; 3274 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3275 if (!ret) { 3276 free_extent_buffer(eb); 3277 continue; 3278 } 3279 3280 ret = write_one_eb(eb, fs_info, wbc, &epd); 3281 if (ret) { 3282 done = 1; 3283 free_extent_buffer(eb); 3284 break; 3285 } 3286 free_extent_buffer(eb); 3287 3288 /* 3289 * the filesystem may choose to bump up nr_to_write. 3290 * We have to make sure to honor the new nr_to_write 3291 * at any time 3292 */ 3293 nr_to_write_done = wbc->nr_to_write <= 0; 3294 } 3295 pagevec_release(&pvec); 3296 cond_resched(); 3297 } 3298 if (!scanned && !done) { 3299 /* 3300 * We hit the last page and there is more work to be done: wrap 3301 * back to the start of the file 3302 */ 3303 scanned = 1; 3304 index = 0; 3305 goto retry; 3306 } 3307 flush_write_bio(&epd); 3308 return ret; 3309 } 3310 3311 /** 3312 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3313 * @mapping: address space structure to write 3314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3315 * @writepage: function called for each page 3316 * @data: data passed to writepage function 3317 * 3318 * If a page is already under I/O, write_cache_pages() skips it, even 3319 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3320 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3321 * and msync() need to guarantee that all the data which was dirty at the time 3322 * the call was made get new I/O started against them. If wbc->sync_mode is 3323 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3324 * existing IO to complete. 3325 */ 3326 static int extent_write_cache_pages(struct extent_io_tree *tree, 3327 struct address_space *mapping, 3328 struct writeback_control *wbc, 3329 writepage_t writepage, void *data, 3330 void (*flush_fn)(void *)) 3331 { 3332 int ret = 0; 3333 int done = 0; 3334 int nr_to_write_done = 0; 3335 struct pagevec pvec; 3336 int nr_pages; 3337 pgoff_t index; 3338 pgoff_t end; /* Inclusive */ 3339 int scanned = 0; 3340 int tag; 3341 3342 pagevec_init(&pvec, 0); 3343 if (wbc->range_cyclic) { 3344 index = mapping->writeback_index; /* Start from prev offset */ 3345 end = -1; 3346 } else { 3347 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3348 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3349 scanned = 1; 3350 } 3351 if (wbc->sync_mode == WB_SYNC_ALL) 3352 tag = PAGECACHE_TAG_TOWRITE; 3353 else 3354 tag = PAGECACHE_TAG_DIRTY; 3355 retry: 3356 if (wbc->sync_mode == WB_SYNC_ALL) 3357 tag_pages_for_writeback(mapping, index, end); 3358 while (!done && !nr_to_write_done && (index <= end) && 3359 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3360 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3361 unsigned i; 3362 3363 scanned = 1; 3364 for (i = 0; i < nr_pages; i++) { 3365 struct page *page = pvec.pages[i]; 3366 3367 /* 3368 * At this point we hold neither mapping->tree_lock nor 3369 * lock on the page itself: the page may be truncated or 3370 * invalidated (changing page->mapping to NULL), or even 3371 * swizzled back from swapper_space to tmpfs file 3372 * mapping 3373 */ 3374 if (tree->ops && 3375 tree->ops->write_cache_pages_lock_hook) { 3376 tree->ops->write_cache_pages_lock_hook(page, 3377 data, flush_fn); 3378 } else { 3379 if (!trylock_page(page)) { 3380 flush_fn(data); 3381 lock_page(page); 3382 } 3383 } 3384 3385 if (unlikely(page->mapping != mapping)) { 3386 unlock_page(page); 3387 continue; 3388 } 3389 3390 if (!wbc->range_cyclic && page->index > end) { 3391 done = 1; 3392 unlock_page(page); 3393 continue; 3394 } 3395 3396 if (wbc->sync_mode != WB_SYNC_NONE) { 3397 if (PageWriteback(page)) 3398 flush_fn(data); 3399 wait_on_page_writeback(page); 3400 } 3401 3402 if (PageWriteback(page) || 3403 !clear_page_dirty_for_io(page)) { 3404 unlock_page(page); 3405 continue; 3406 } 3407 3408 ret = (*writepage)(page, wbc, data); 3409 3410 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3411 unlock_page(page); 3412 ret = 0; 3413 } 3414 if (ret) 3415 done = 1; 3416 3417 /* 3418 * the filesystem may choose to bump up nr_to_write. 3419 * We have to make sure to honor the new nr_to_write 3420 * at any time 3421 */ 3422 nr_to_write_done = wbc->nr_to_write <= 0; 3423 } 3424 pagevec_release(&pvec); 3425 cond_resched(); 3426 } 3427 if (!scanned && !done) { 3428 /* 3429 * We hit the last page and there is more work to be done: wrap 3430 * back to the start of the file 3431 */ 3432 scanned = 1; 3433 index = 0; 3434 goto retry; 3435 } 3436 return ret; 3437 } 3438 3439 static void flush_epd_write_bio(struct extent_page_data *epd) 3440 { 3441 if (epd->bio) { 3442 int rw = WRITE; 3443 int ret; 3444 3445 if (epd->sync_io) 3446 rw = WRITE_SYNC; 3447 3448 ret = submit_one_bio(rw, epd->bio, 0, 0); 3449 BUG_ON(ret < 0); /* -ENOMEM */ 3450 epd->bio = NULL; 3451 } 3452 } 3453 3454 static noinline void flush_write_bio(void *data) 3455 { 3456 struct extent_page_data *epd = data; 3457 flush_epd_write_bio(epd); 3458 } 3459 3460 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3461 get_extent_t *get_extent, 3462 struct writeback_control *wbc) 3463 { 3464 int ret; 3465 struct extent_page_data epd = { 3466 .bio = NULL, 3467 .tree = tree, 3468 .get_extent = get_extent, 3469 .extent_locked = 0, 3470 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3471 }; 3472 3473 ret = __extent_writepage(page, wbc, &epd); 3474 3475 flush_epd_write_bio(&epd); 3476 return ret; 3477 } 3478 3479 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3480 u64 start, u64 end, get_extent_t *get_extent, 3481 int mode) 3482 { 3483 int ret = 0; 3484 struct address_space *mapping = inode->i_mapping; 3485 struct page *page; 3486 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3487 PAGE_CACHE_SHIFT; 3488 3489 struct extent_page_data epd = { 3490 .bio = NULL, 3491 .tree = tree, 3492 .get_extent = get_extent, 3493 .extent_locked = 1, 3494 .sync_io = mode == WB_SYNC_ALL, 3495 }; 3496 struct writeback_control wbc_writepages = { 3497 .sync_mode = mode, 3498 .nr_to_write = nr_pages * 2, 3499 .range_start = start, 3500 .range_end = end + 1, 3501 }; 3502 3503 while (start <= end) { 3504 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3505 if (clear_page_dirty_for_io(page)) 3506 ret = __extent_writepage(page, &wbc_writepages, &epd); 3507 else { 3508 if (tree->ops && tree->ops->writepage_end_io_hook) 3509 tree->ops->writepage_end_io_hook(page, start, 3510 start + PAGE_CACHE_SIZE - 1, 3511 NULL, 1); 3512 unlock_page(page); 3513 } 3514 page_cache_release(page); 3515 start += PAGE_CACHE_SIZE; 3516 } 3517 3518 flush_epd_write_bio(&epd); 3519 return ret; 3520 } 3521 3522 int extent_writepages(struct extent_io_tree *tree, 3523 struct address_space *mapping, 3524 get_extent_t *get_extent, 3525 struct writeback_control *wbc) 3526 { 3527 int ret = 0; 3528 struct extent_page_data epd = { 3529 .bio = NULL, 3530 .tree = tree, 3531 .get_extent = get_extent, 3532 .extent_locked = 0, 3533 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3534 }; 3535 3536 ret = extent_write_cache_pages(tree, mapping, wbc, 3537 __extent_writepage, &epd, 3538 flush_write_bio); 3539 flush_epd_write_bio(&epd); 3540 return ret; 3541 } 3542 3543 int extent_readpages(struct extent_io_tree *tree, 3544 struct address_space *mapping, 3545 struct list_head *pages, unsigned nr_pages, 3546 get_extent_t get_extent) 3547 { 3548 struct bio *bio = NULL; 3549 unsigned page_idx; 3550 unsigned long bio_flags = 0; 3551 3552 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3553 struct page *page = list_entry(pages->prev, struct page, lru); 3554 3555 prefetchw(&page->flags); 3556 list_del(&page->lru); 3557 if (!add_to_page_cache_lru(page, mapping, 3558 page->index, GFP_NOFS)) { 3559 __extent_read_full_page(tree, page, get_extent, 3560 &bio, 0, &bio_flags); 3561 } 3562 page_cache_release(page); 3563 } 3564 BUG_ON(!list_empty(pages)); 3565 if (bio) 3566 return submit_one_bio(READ, bio, 0, bio_flags); 3567 return 0; 3568 } 3569 3570 /* 3571 * basic invalidatepage code, this waits on any locked or writeback 3572 * ranges corresponding to the page, and then deletes any extent state 3573 * records from the tree 3574 */ 3575 int extent_invalidatepage(struct extent_io_tree *tree, 3576 struct page *page, unsigned long offset) 3577 { 3578 struct extent_state *cached_state = NULL; 3579 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 3580 u64 end = start + PAGE_CACHE_SIZE - 1; 3581 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3582 3583 start += (offset + blocksize - 1) & ~(blocksize - 1); 3584 if (start > end) 3585 return 0; 3586 3587 lock_extent_bits(tree, start, end, 0, &cached_state); 3588 wait_on_page_writeback(page); 3589 clear_extent_bit(tree, start, end, 3590 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3591 EXTENT_DO_ACCOUNTING, 3592 1, 1, &cached_state, GFP_NOFS); 3593 return 0; 3594 } 3595 3596 /* 3597 * a helper for releasepage, this tests for areas of the page that 3598 * are locked or under IO and drops the related state bits if it is safe 3599 * to drop the page. 3600 */ 3601 int try_release_extent_state(struct extent_map_tree *map, 3602 struct extent_io_tree *tree, struct page *page, 3603 gfp_t mask) 3604 { 3605 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3606 u64 end = start + PAGE_CACHE_SIZE - 1; 3607 int ret = 1; 3608 3609 if (test_range_bit(tree, start, end, 3610 EXTENT_IOBITS, 0, NULL)) 3611 ret = 0; 3612 else { 3613 if ((mask & GFP_NOFS) == GFP_NOFS) 3614 mask = GFP_NOFS; 3615 /* 3616 * at this point we can safely clear everything except the 3617 * locked bit and the nodatasum bit 3618 */ 3619 ret = clear_extent_bit(tree, start, end, 3620 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3621 0, 0, NULL, mask); 3622 3623 /* if clear_extent_bit failed for enomem reasons, 3624 * we can't allow the release to continue. 3625 */ 3626 if (ret < 0) 3627 ret = 0; 3628 else 3629 ret = 1; 3630 } 3631 return ret; 3632 } 3633 3634 /* 3635 * a helper for releasepage. As long as there are no locked extents 3636 * in the range corresponding to the page, both state records and extent 3637 * map records are removed 3638 */ 3639 int try_release_extent_mapping(struct extent_map_tree *map, 3640 struct extent_io_tree *tree, struct page *page, 3641 gfp_t mask) 3642 { 3643 struct extent_map *em; 3644 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 3645 u64 end = start + PAGE_CACHE_SIZE - 1; 3646 3647 if ((mask & __GFP_WAIT) && 3648 page->mapping->host->i_size > 16 * 1024 * 1024) { 3649 u64 len; 3650 while (start <= end) { 3651 len = end - start + 1; 3652 write_lock(&map->lock); 3653 em = lookup_extent_mapping(map, start, len); 3654 if (!em) { 3655 write_unlock(&map->lock); 3656 break; 3657 } 3658 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3659 em->start != start) { 3660 write_unlock(&map->lock); 3661 free_extent_map(em); 3662 break; 3663 } 3664 if (!test_range_bit(tree, em->start, 3665 extent_map_end(em) - 1, 3666 EXTENT_LOCKED | EXTENT_WRITEBACK, 3667 0, NULL)) { 3668 remove_extent_mapping(map, em); 3669 /* once for the rb tree */ 3670 free_extent_map(em); 3671 } 3672 start = extent_map_end(em); 3673 write_unlock(&map->lock); 3674 3675 /* once for us */ 3676 free_extent_map(em); 3677 } 3678 } 3679 return try_release_extent_state(map, tree, page, mask); 3680 } 3681 3682 /* 3683 * helper function for fiemap, which doesn't want to see any holes. 3684 * This maps until we find something past 'last' 3685 */ 3686 static struct extent_map *get_extent_skip_holes(struct inode *inode, 3687 u64 offset, 3688 u64 last, 3689 get_extent_t *get_extent) 3690 { 3691 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 3692 struct extent_map *em; 3693 u64 len; 3694 3695 if (offset >= last) 3696 return NULL; 3697 3698 while(1) { 3699 len = last - offset; 3700 if (len == 0) 3701 break; 3702 len = (len + sectorsize - 1) & ~(sectorsize - 1); 3703 em = get_extent(inode, NULL, 0, offset, len, 0); 3704 if (IS_ERR_OR_NULL(em)) 3705 return em; 3706 3707 /* if this isn't a hole return it */ 3708 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 3709 em->block_start != EXTENT_MAP_HOLE) { 3710 return em; 3711 } 3712 3713 /* this is a hole, advance to the next extent */ 3714 offset = extent_map_end(em); 3715 free_extent_map(em); 3716 if (offset >= last) 3717 break; 3718 } 3719 return NULL; 3720 } 3721 3722 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3723 __u64 start, __u64 len, get_extent_t *get_extent) 3724 { 3725 int ret = 0; 3726 u64 off = start; 3727 u64 max = start + len; 3728 u32 flags = 0; 3729 u32 found_type; 3730 u64 last; 3731 u64 last_for_get_extent = 0; 3732 u64 disko = 0; 3733 u64 isize = i_size_read(inode); 3734 struct btrfs_key found_key; 3735 struct extent_map *em = NULL; 3736 struct extent_state *cached_state = NULL; 3737 struct btrfs_path *path; 3738 struct btrfs_file_extent_item *item; 3739 int end = 0; 3740 u64 em_start = 0; 3741 u64 em_len = 0; 3742 u64 em_end = 0; 3743 unsigned long emflags; 3744 3745 if (len == 0) 3746 return -EINVAL; 3747 3748 path = btrfs_alloc_path(); 3749 if (!path) 3750 return -ENOMEM; 3751 path->leave_spinning = 1; 3752 3753 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 3754 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 3755 3756 /* 3757 * lookup the last file extent. We're not using i_size here 3758 * because there might be preallocation past i_size 3759 */ 3760 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 3761 path, btrfs_ino(inode), -1, 0); 3762 if (ret < 0) { 3763 btrfs_free_path(path); 3764 return ret; 3765 } 3766 WARN_ON(!ret); 3767 path->slots[0]--; 3768 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3769 struct btrfs_file_extent_item); 3770 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 3771 found_type = btrfs_key_type(&found_key); 3772 3773 /* No extents, but there might be delalloc bits */ 3774 if (found_key.objectid != btrfs_ino(inode) || 3775 found_type != BTRFS_EXTENT_DATA_KEY) { 3776 /* have to trust i_size as the end */ 3777 last = (u64)-1; 3778 last_for_get_extent = isize; 3779 } else { 3780 /* 3781 * remember the start of the last extent. There are a 3782 * bunch of different factors that go into the length of the 3783 * extent, so its much less complex to remember where it started 3784 */ 3785 last = found_key.offset; 3786 last_for_get_extent = last + 1; 3787 } 3788 btrfs_free_path(path); 3789 3790 /* 3791 * we might have some extents allocated but more delalloc past those 3792 * extents. so, we trust isize unless the start of the last extent is 3793 * beyond isize 3794 */ 3795 if (last < isize) { 3796 last = (u64)-1; 3797 last_for_get_extent = isize; 3798 } 3799 3800 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 3801 &cached_state); 3802 3803 em = get_extent_skip_holes(inode, start, last_for_get_extent, 3804 get_extent); 3805 if (!em) 3806 goto out; 3807 if (IS_ERR(em)) { 3808 ret = PTR_ERR(em); 3809 goto out; 3810 } 3811 3812 while (!end) { 3813 u64 offset_in_extent; 3814 3815 /* break if the extent we found is outside the range */ 3816 if (em->start >= max || extent_map_end(em) < off) 3817 break; 3818 3819 /* 3820 * get_extent may return an extent that starts before our 3821 * requested range. We have to make sure the ranges 3822 * we return to fiemap always move forward and don't 3823 * overlap, so adjust the offsets here 3824 */ 3825 em_start = max(em->start, off); 3826 3827 /* 3828 * record the offset from the start of the extent 3829 * for adjusting the disk offset below 3830 */ 3831 offset_in_extent = em_start - em->start; 3832 em_end = extent_map_end(em); 3833 em_len = em_end - em_start; 3834 emflags = em->flags; 3835 disko = 0; 3836 flags = 0; 3837 3838 /* 3839 * bump off for our next call to get_extent 3840 */ 3841 off = extent_map_end(em); 3842 if (off >= max) 3843 end = 1; 3844 3845 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 3846 end = 1; 3847 flags |= FIEMAP_EXTENT_LAST; 3848 } else if (em->block_start == EXTENT_MAP_INLINE) { 3849 flags |= (FIEMAP_EXTENT_DATA_INLINE | 3850 FIEMAP_EXTENT_NOT_ALIGNED); 3851 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 3852 flags |= (FIEMAP_EXTENT_DELALLOC | 3853 FIEMAP_EXTENT_UNKNOWN); 3854 } else { 3855 disko = em->block_start + offset_in_extent; 3856 } 3857 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3858 flags |= FIEMAP_EXTENT_ENCODED; 3859 3860 free_extent_map(em); 3861 em = NULL; 3862 if ((em_start >= last) || em_len == (u64)-1 || 3863 (last == (u64)-1 && isize <= em_end)) { 3864 flags |= FIEMAP_EXTENT_LAST; 3865 end = 1; 3866 } 3867 3868 /* now scan forward to see if this is really the last extent. */ 3869 em = get_extent_skip_holes(inode, off, last_for_get_extent, 3870 get_extent); 3871 if (IS_ERR(em)) { 3872 ret = PTR_ERR(em); 3873 goto out; 3874 } 3875 if (!em) { 3876 flags |= FIEMAP_EXTENT_LAST; 3877 end = 1; 3878 } 3879 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 3880 em_len, flags); 3881 if (ret) 3882 goto out_free; 3883 } 3884 out_free: 3885 free_extent_map(em); 3886 out: 3887 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 3888 &cached_state, GFP_NOFS); 3889 return ret; 3890 } 3891 3892 inline struct page *extent_buffer_page(struct extent_buffer *eb, 3893 unsigned long i) 3894 { 3895 return eb->pages[i]; 3896 } 3897 3898 inline unsigned long num_extent_pages(u64 start, u64 len) 3899 { 3900 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3901 (start >> PAGE_CACHE_SHIFT); 3902 } 3903 3904 static void __free_extent_buffer(struct extent_buffer *eb) 3905 { 3906 #if LEAK_DEBUG 3907 unsigned long flags; 3908 spin_lock_irqsave(&leak_lock, flags); 3909 list_del(&eb->leak_list); 3910 spin_unlock_irqrestore(&leak_lock, flags); 3911 #endif 3912 if (eb->pages && eb->pages != eb->inline_pages) 3913 kfree(eb->pages); 3914 kmem_cache_free(extent_buffer_cache, eb); 3915 } 3916 3917 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3918 u64 start, 3919 unsigned long len, 3920 gfp_t mask) 3921 { 3922 struct extent_buffer *eb = NULL; 3923 #if LEAK_DEBUG 3924 unsigned long flags; 3925 #endif 3926 3927 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3928 if (eb == NULL) 3929 return NULL; 3930 eb->start = start; 3931 eb->len = len; 3932 eb->tree = tree; 3933 rwlock_init(&eb->lock); 3934 atomic_set(&eb->write_locks, 0); 3935 atomic_set(&eb->read_locks, 0); 3936 atomic_set(&eb->blocking_readers, 0); 3937 atomic_set(&eb->blocking_writers, 0); 3938 atomic_set(&eb->spinning_readers, 0); 3939 atomic_set(&eb->spinning_writers, 0); 3940 eb->lock_nested = 0; 3941 init_waitqueue_head(&eb->write_lock_wq); 3942 init_waitqueue_head(&eb->read_lock_wq); 3943 3944 #if LEAK_DEBUG 3945 spin_lock_irqsave(&leak_lock, flags); 3946 list_add(&eb->leak_list, &buffers); 3947 spin_unlock_irqrestore(&leak_lock, flags); 3948 #endif 3949 spin_lock_init(&eb->refs_lock); 3950 atomic_set(&eb->refs, 1); 3951 atomic_set(&eb->io_pages, 0); 3952 3953 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) { 3954 struct page **pages; 3955 int num_pages = (len + PAGE_CACHE_SIZE - 1) >> 3956 PAGE_CACHE_SHIFT; 3957 pages = kzalloc(num_pages, mask); 3958 if (!pages) { 3959 __free_extent_buffer(eb); 3960 return NULL; 3961 } 3962 eb->pages = pages; 3963 } else { 3964 eb->pages = eb->inline_pages; 3965 } 3966 3967 return eb; 3968 } 3969 3970 static int extent_buffer_under_io(struct extent_buffer *eb) 3971 { 3972 return (atomic_read(&eb->io_pages) || 3973 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3974 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3975 } 3976 3977 /* 3978 * Helper for releasing extent buffer page. 3979 */ 3980 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 3981 unsigned long start_idx) 3982 { 3983 unsigned long index; 3984 struct page *page; 3985 3986 BUG_ON(extent_buffer_under_io(eb)); 3987 3988 index = num_extent_pages(eb->start, eb->len); 3989 if (start_idx >= index) 3990 return; 3991 3992 do { 3993 index--; 3994 page = extent_buffer_page(eb, index); 3995 if (page) { 3996 spin_lock(&page->mapping->private_lock); 3997 /* 3998 * We do this since we'll remove the pages after we've 3999 * removed the eb from the radix tree, so we could race 4000 * and have this page now attached to the new eb. So 4001 * only clear page_private if it's still connected to 4002 * this eb. 4003 */ 4004 if (PagePrivate(page) && 4005 page->private == (unsigned long)eb) { 4006 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4007 BUG_ON(PageDirty(page)); 4008 BUG_ON(PageWriteback(page)); 4009 /* 4010 * We need to make sure we haven't be attached 4011 * to a new eb. 4012 */ 4013 ClearPagePrivate(page); 4014 set_page_private(page, 0); 4015 /* One for the page private */ 4016 page_cache_release(page); 4017 } 4018 spin_unlock(&page->mapping->private_lock); 4019 4020 /* One for when we alloced the page */ 4021 page_cache_release(page); 4022 } 4023 } while (index != start_idx); 4024 } 4025 4026 /* 4027 * Helper for releasing the extent buffer. 4028 */ 4029 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4030 { 4031 btrfs_release_extent_buffer_page(eb, 0); 4032 __free_extent_buffer(eb); 4033 } 4034 4035 static void check_buffer_tree_ref(struct extent_buffer *eb) 4036 { 4037 /* the ref bit is tricky. We have to make sure it is set 4038 * if we have the buffer dirty. Otherwise the 4039 * code to free a buffer can end up dropping a dirty 4040 * page 4041 * 4042 * Once the ref bit is set, it won't go away while the 4043 * buffer is dirty or in writeback, and it also won't 4044 * go away while we have the reference count on the 4045 * eb bumped. 4046 * 4047 * We can't just set the ref bit without bumping the 4048 * ref on the eb because free_extent_buffer might 4049 * see the ref bit and try to clear it. If this happens 4050 * free_extent_buffer might end up dropping our original 4051 * ref by mistake and freeing the page before we are able 4052 * to add one more ref. 4053 * 4054 * So bump the ref count first, then set the bit. If someone 4055 * beat us to it, drop the ref we added. 4056 */ 4057 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4058 atomic_inc(&eb->refs); 4059 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4060 atomic_dec(&eb->refs); 4061 } 4062 } 4063 4064 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4065 { 4066 unsigned long num_pages, i; 4067 4068 check_buffer_tree_ref(eb); 4069 4070 num_pages = num_extent_pages(eb->start, eb->len); 4071 for (i = 0; i < num_pages; i++) { 4072 struct page *p = extent_buffer_page(eb, i); 4073 mark_page_accessed(p); 4074 } 4075 } 4076 4077 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4078 u64 start, unsigned long len) 4079 { 4080 unsigned long num_pages = num_extent_pages(start, len); 4081 unsigned long i; 4082 unsigned long index = start >> PAGE_CACHE_SHIFT; 4083 struct extent_buffer *eb; 4084 struct extent_buffer *exists = NULL; 4085 struct page *p; 4086 struct address_space *mapping = tree->mapping; 4087 int uptodate = 1; 4088 int ret; 4089 4090 rcu_read_lock(); 4091 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4092 if (eb && atomic_inc_not_zero(&eb->refs)) { 4093 rcu_read_unlock(); 4094 mark_extent_buffer_accessed(eb); 4095 return eb; 4096 } 4097 rcu_read_unlock(); 4098 4099 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4100 if (!eb) 4101 return NULL; 4102 4103 for (i = 0; i < num_pages; i++, index++) { 4104 p = find_or_create_page(mapping, index, GFP_NOFS); 4105 if (!p) { 4106 WARN_ON(1); 4107 goto free_eb; 4108 } 4109 4110 spin_lock(&mapping->private_lock); 4111 if (PagePrivate(p)) { 4112 /* 4113 * We could have already allocated an eb for this page 4114 * and attached one so lets see if we can get a ref on 4115 * the existing eb, and if we can we know it's good and 4116 * we can just return that one, else we know we can just 4117 * overwrite page->private. 4118 */ 4119 exists = (struct extent_buffer *)p->private; 4120 if (atomic_inc_not_zero(&exists->refs)) { 4121 spin_unlock(&mapping->private_lock); 4122 unlock_page(p); 4123 page_cache_release(p); 4124 mark_extent_buffer_accessed(exists); 4125 goto free_eb; 4126 } 4127 4128 /* 4129 * Do this so attach doesn't complain and we need to 4130 * drop the ref the old guy had. 4131 */ 4132 ClearPagePrivate(p); 4133 WARN_ON(PageDirty(p)); 4134 page_cache_release(p); 4135 } 4136 attach_extent_buffer_page(eb, p); 4137 spin_unlock(&mapping->private_lock); 4138 WARN_ON(PageDirty(p)); 4139 mark_page_accessed(p); 4140 eb->pages[i] = p; 4141 if (!PageUptodate(p)) 4142 uptodate = 0; 4143 4144 /* 4145 * see below about how we avoid a nasty race with release page 4146 * and why we unlock later 4147 */ 4148 } 4149 if (uptodate) 4150 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4151 again: 4152 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4153 if (ret) 4154 goto free_eb; 4155 4156 spin_lock(&tree->buffer_lock); 4157 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4158 if (ret == -EEXIST) { 4159 exists = radix_tree_lookup(&tree->buffer, 4160 start >> PAGE_CACHE_SHIFT); 4161 if (!atomic_inc_not_zero(&exists->refs)) { 4162 spin_unlock(&tree->buffer_lock); 4163 radix_tree_preload_end(); 4164 exists = NULL; 4165 goto again; 4166 } 4167 spin_unlock(&tree->buffer_lock); 4168 radix_tree_preload_end(); 4169 mark_extent_buffer_accessed(exists); 4170 goto free_eb; 4171 } 4172 /* add one reference for the tree */ 4173 spin_lock(&eb->refs_lock); 4174 check_buffer_tree_ref(eb); 4175 spin_unlock(&eb->refs_lock); 4176 spin_unlock(&tree->buffer_lock); 4177 radix_tree_preload_end(); 4178 4179 /* 4180 * there is a race where release page may have 4181 * tried to find this extent buffer in the radix 4182 * but failed. It will tell the VM it is safe to 4183 * reclaim the, and it will clear the page private bit. 4184 * We must make sure to set the page private bit properly 4185 * after the extent buffer is in the radix tree so 4186 * it doesn't get lost 4187 */ 4188 SetPageChecked(eb->pages[0]); 4189 for (i = 1; i < num_pages; i++) { 4190 p = extent_buffer_page(eb, i); 4191 ClearPageChecked(p); 4192 unlock_page(p); 4193 } 4194 unlock_page(eb->pages[0]); 4195 return eb; 4196 4197 free_eb: 4198 for (i = 0; i < num_pages; i++) { 4199 if (eb->pages[i]) 4200 unlock_page(eb->pages[i]); 4201 } 4202 4203 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4204 btrfs_release_extent_buffer(eb); 4205 return exists; 4206 } 4207 4208 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4209 u64 start, unsigned long len) 4210 { 4211 struct extent_buffer *eb; 4212 4213 rcu_read_lock(); 4214 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4215 if (eb && atomic_inc_not_zero(&eb->refs)) { 4216 rcu_read_unlock(); 4217 mark_extent_buffer_accessed(eb); 4218 return eb; 4219 } 4220 rcu_read_unlock(); 4221 4222 return NULL; 4223 } 4224 4225 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4226 { 4227 struct extent_buffer *eb = 4228 container_of(head, struct extent_buffer, rcu_head); 4229 4230 __free_extent_buffer(eb); 4231 } 4232 4233 /* Expects to have eb->eb_lock already held */ 4234 static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask) 4235 { 4236 WARN_ON(atomic_read(&eb->refs) == 0); 4237 if (atomic_dec_and_test(&eb->refs)) { 4238 struct extent_io_tree *tree = eb->tree; 4239 4240 spin_unlock(&eb->refs_lock); 4241 4242 spin_lock(&tree->buffer_lock); 4243 radix_tree_delete(&tree->buffer, 4244 eb->start >> PAGE_CACHE_SHIFT); 4245 spin_unlock(&tree->buffer_lock); 4246 4247 /* Should be safe to release our pages at this point */ 4248 btrfs_release_extent_buffer_page(eb, 0); 4249 4250 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4251 return; 4252 } 4253 spin_unlock(&eb->refs_lock); 4254 } 4255 4256 void free_extent_buffer(struct extent_buffer *eb) 4257 { 4258 if (!eb) 4259 return; 4260 4261 spin_lock(&eb->refs_lock); 4262 if (atomic_read(&eb->refs) == 2 && 4263 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4264 !extent_buffer_under_io(eb) && 4265 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4266 atomic_dec(&eb->refs); 4267 4268 /* 4269 * I know this is terrible, but it's temporary until we stop tracking 4270 * the uptodate bits and such for the extent buffers. 4271 */ 4272 release_extent_buffer(eb, GFP_ATOMIC); 4273 } 4274 4275 void free_extent_buffer_stale(struct extent_buffer *eb) 4276 { 4277 if (!eb) 4278 return; 4279 4280 spin_lock(&eb->refs_lock); 4281 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4282 4283 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4284 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4285 atomic_dec(&eb->refs); 4286 release_extent_buffer(eb, GFP_NOFS); 4287 } 4288 4289 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4290 { 4291 unsigned long i; 4292 unsigned long num_pages; 4293 struct page *page; 4294 4295 num_pages = num_extent_pages(eb->start, eb->len); 4296 4297 for (i = 0; i < num_pages; i++) { 4298 page = extent_buffer_page(eb, i); 4299 if (!PageDirty(page)) 4300 continue; 4301 4302 lock_page(page); 4303 WARN_ON(!PagePrivate(page)); 4304 4305 clear_page_dirty_for_io(page); 4306 spin_lock_irq(&page->mapping->tree_lock); 4307 if (!PageDirty(page)) { 4308 radix_tree_tag_clear(&page->mapping->page_tree, 4309 page_index(page), 4310 PAGECACHE_TAG_DIRTY); 4311 } 4312 spin_unlock_irq(&page->mapping->tree_lock); 4313 ClearPageError(page); 4314 unlock_page(page); 4315 } 4316 WARN_ON(atomic_read(&eb->refs) == 0); 4317 } 4318 4319 int set_extent_buffer_dirty(struct extent_buffer *eb) 4320 { 4321 unsigned long i; 4322 unsigned long num_pages; 4323 int was_dirty = 0; 4324 4325 check_buffer_tree_ref(eb); 4326 4327 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4328 4329 num_pages = num_extent_pages(eb->start, eb->len); 4330 WARN_ON(atomic_read(&eb->refs) == 0); 4331 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4332 4333 for (i = 0; i < num_pages; i++) 4334 set_page_dirty(extent_buffer_page(eb, i)); 4335 return was_dirty; 4336 } 4337 4338 static int range_straddles_pages(u64 start, u64 len) 4339 { 4340 if (len < PAGE_CACHE_SIZE) 4341 return 1; 4342 if (start & (PAGE_CACHE_SIZE - 1)) 4343 return 1; 4344 if ((start + len) & (PAGE_CACHE_SIZE - 1)) 4345 return 1; 4346 return 0; 4347 } 4348 4349 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4350 { 4351 unsigned long i; 4352 struct page *page; 4353 unsigned long num_pages; 4354 4355 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4356 num_pages = num_extent_pages(eb->start, eb->len); 4357 for (i = 0; i < num_pages; i++) { 4358 page = extent_buffer_page(eb, i); 4359 if (page) 4360 ClearPageUptodate(page); 4361 } 4362 return 0; 4363 } 4364 4365 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4366 { 4367 unsigned long i; 4368 struct page *page; 4369 unsigned long num_pages; 4370 4371 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4372 num_pages = num_extent_pages(eb->start, eb->len); 4373 for (i = 0; i < num_pages; i++) { 4374 page = extent_buffer_page(eb, i); 4375 SetPageUptodate(page); 4376 } 4377 return 0; 4378 } 4379 4380 int extent_range_uptodate(struct extent_io_tree *tree, 4381 u64 start, u64 end) 4382 { 4383 struct page *page; 4384 int ret; 4385 int pg_uptodate = 1; 4386 int uptodate; 4387 unsigned long index; 4388 4389 if (range_straddles_pages(start, end - start + 1)) { 4390 ret = test_range_bit(tree, start, end, 4391 EXTENT_UPTODATE, 1, NULL); 4392 if (ret) 4393 return 1; 4394 } 4395 while (start <= end) { 4396 index = start >> PAGE_CACHE_SHIFT; 4397 page = find_get_page(tree->mapping, index); 4398 if (!page) 4399 return 1; 4400 uptodate = PageUptodate(page); 4401 page_cache_release(page); 4402 if (!uptodate) { 4403 pg_uptodate = 0; 4404 break; 4405 } 4406 start += PAGE_CACHE_SIZE; 4407 } 4408 return pg_uptodate; 4409 } 4410 4411 int extent_buffer_uptodate(struct extent_buffer *eb) 4412 { 4413 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4414 } 4415 4416 int read_extent_buffer_pages(struct extent_io_tree *tree, 4417 struct extent_buffer *eb, u64 start, int wait, 4418 get_extent_t *get_extent, int mirror_num) 4419 { 4420 unsigned long i; 4421 unsigned long start_i; 4422 struct page *page; 4423 int err; 4424 int ret = 0; 4425 int locked_pages = 0; 4426 int all_uptodate = 1; 4427 unsigned long num_pages; 4428 unsigned long num_reads = 0; 4429 struct bio *bio = NULL; 4430 unsigned long bio_flags = 0; 4431 4432 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4433 return 0; 4434 4435 if (start) { 4436 WARN_ON(start < eb->start); 4437 start_i = (start >> PAGE_CACHE_SHIFT) - 4438 (eb->start >> PAGE_CACHE_SHIFT); 4439 } else { 4440 start_i = 0; 4441 } 4442 4443 num_pages = num_extent_pages(eb->start, eb->len); 4444 for (i = start_i; i < num_pages; i++) { 4445 page = extent_buffer_page(eb, i); 4446 if (wait == WAIT_NONE) { 4447 if (!trylock_page(page)) 4448 goto unlock_exit; 4449 } else { 4450 lock_page(page); 4451 } 4452 locked_pages++; 4453 if (!PageUptodate(page)) { 4454 num_reads++; 4455 all_uptodate = 0; 4456 } 4457 } 4458 if (all_uptodate) { 4459 if (start_i == 0) 4460 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4461 goto unlock_exit; 4462 } 4463 4464 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4465 eb->read_mirror = 0; 4466 atomic_set(&eb->io_pages, num_reads); 4467 for (i = start_i; i < num_pages; i++) { 4468 page = extent_buffer_page(eb, i); 4469 if (!PageUptodate(page)) { 4470 ClearPageError(page); 4471 err = __extent_read_full_page(tree, page, 4472 get_extent, &bio, 4473 mirror_num, &bio_flags); 4474 if (err) 4475 ret = err; 4476 } else { 4477 unlock_page(page); 4478 } 4479 } 4480 4481 if (bio) { 4482 err = submit_one_bio(READ, bio, mirror_num, bio_flags); 4483 if (err) 4484 return err; 4485 } 4486 4487 if (ret || wait != WAIT_COMPLETE) 4488 return ret; 4489 4490 for (i = start_i; i < num_pages; i++) { 4491 page = extent_buffer_page(eb, i); 4492 wait_on_page_locked(page); 4493 if (!PageUptodate(page)) 4494 ret = -EIO; 4495 } 4496 4497 return ret; 4498 4499 unlock_exit: 4500 i = start_i; 4501 while (locked_pages > 0) { 4502 page = extent_buffer_page(eb, i); 4503 i++; 4504 unlock_page(page); 4505 locked_pages--; 4506 } 4507 return ret; 4508 } 4509 4510 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4511 unsigned long start, 4512 unsigned long len) 4513 { 4514 size_t cur; 4515 size_t offset; 4516 struct page *page; 4517 char *kaddr; 4518 char *dst = (char *)dstv; 4519 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4520 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4521 4522 WARN_ON(start > eb->len); 4523 WARN_ON(start + len > eb->start + eb->len); 4524 4525 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4526 4527 while (len > 0) { 4528 page = extent_buffer_page(eb, i); 4529 4530 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4531 kaddr = page_address(page); 4532 memcpy(dst, kaddr + offset, cur); 4533 4534 dst += cur; 4535 len -= cur; 4536 offset = 0; 4537 i++; 4538 } 4539 } 4540 4541 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4542 unsigned long min_len, char **map, 4543 unsigned long *map_start, 4544 unsigned long *map_len) 4545 { 4546 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4547 char *kaddr; 4548 struct page *p; 4549 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4550 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4551 unsigned long end_i = (start_offset + start + min_len - 1) >> 4552 PAGE_CACHE_SHIFT; 4553 4554 if (i != end_i) 4555 return -EINVAL; 4556 4557 if (i == 0) { 4558 offset = start_offset; 4559 *map_start = 0; 4560 } else { 4561 offset = 0; 4562 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4563 } 4564 4565 if (start + min_len > eb->len) { 4566 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4567 "wanted %lu %lu\n", (unsigned long long)eb->start, 4568 eb->len, start, min_len); 4569 WARN_ON(1); 4570 return -EINVAL; 4571 } 4572 4573 p = extent_buffer_page(eb, i); 4574 kaddr = page_address(p); 4575 *map = kaddr + offset; 4576 *map_len = PAGE_CACHE_SIZE - offset; 4577 return 0; 4578 } 4579 4580 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4581 unsigned long start, 4582 unsigned long len) 4583 { 4584 size_t cur; 4585 size_t offset; 4586 struct page *page; 4587 char *kaddr; 4588 char *ptr = (char *)ptrv; 4589 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4590 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4591 int ret = 0; 4592 4593 WARN_ON(start > eb->len); 4594 WARN_ON(start + len > eb->start + eb->len); 4595 4596 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4597 4598 while (len > 0) { 4599 page = extent_buffer_page(eb, i); 4600 4601 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4602 4603 kaddr = page_address(page); 4604 ret = memcmp(ptr, kaddr + offset, cur); 4605 if (ret) 4606 break; 4607 4608 ptr += cur; 4609 len -= cur; 4610 offset = 0; 4611 i++; 4612 } 4613 return ret; 4614 } 4615 4616 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4617 unsigned long start, unsigned long len) 4618 { 4619 size_t cur; 4620 size_t offset; 4621 struct page *page; 4622 char *kaddr; 4623 char *src = (char *)srcv; 4624 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4625 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4626 4627 WARN_ON(start > eb->len); 4628 WARN_ON(start + len > eb->start + eb->len); 4629 4630 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4631 4632 while (len > 0) { 4633 page = extent_buffer_page(eb, i); 4634 WARN_ON(!PageUptodate(page)); 4635 4636 cur = min(len, PAGE_CACHE_SIZE - offset); 4637 kaddr = page_address(page); 4638 memcpy(kaddr + offset, src, cur); 4639 4640 src += cur; 4641 len -= cur; 4642 offset = 0; 4643 i++; 4644 } 4645 } 4646 4647 void memset_extent_buffer(struct extent_buffer *eb, char c, 4648 unsigned long start, unsigned long len) 4649 { 4650 size_t cur; 4651 size_t offset; 4652 struct page *page; 4653 char *kaddr; 4654 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4655 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4656 4657 WARN_ON(start > eb->len); 4658 WARN_ON(start + len > eb->start + eb->len); 4659 4660 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4661 4662 while (len > 0) { 4663 page = extent_buffer_page(eb, i); 4664 WARN_ON(!PageUptodate(page)); 4665 4666 cur = min(len, PAGE_CACHE_SIZE - offset); 4667 kaddr = page_address(page); 4668 memset(kaddr + offset, c, cur); 4669 4670 len -= cur; 4671 offset = 0; 4672 i++; 4673 } 4674 } 4675 4676 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 4677 unsigned long dst_offset, unsigned long src_offset, 4678 unsigned long len) 4679 { 4680 u64 dst_len = dst->len; 4681 size_t cur; 4682 size_t offset; 4683 struct page *page; 4684 char *kaddr; 4685 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4686 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4687 4688 WARN_ON(src->len != dst_len); 4689 4690 offset = (start_offset + dst_offset) & 4691 ((unsigned long)PAGE_CACHE_SIZE - 1); 4692 4693 while (len > 0) { 4694 page = extent_buffer_page(dst, i); 4695 WARN_ON(!PageUptodate(page)); 4696 4697 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 4698 4699 kaddr = page_address(page); 4700 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4701 4702 src_offset += cur; 4703 len -= cur; 4704 offset = 0; 4705 i++; 4706 } 4707 } 4708 4709 static void move_pages(struct page *dst_page, struct page *src_page, 4710 unsigned long dst_off, unsigned long src_off, 4711 unsigned long len) 4712 { 4713 char *dst_kaddr = page_address(dst_page); 4714 if (dst_page == src_page) { 4715 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 4716 } else { 4717 char *src_kaddr = page_address(src_page); 4718 char *p = dst_kaddr + dst_off + len; 4719 char *s = src_kaddr + src_off + len; 4720 4721 while (len--) 4722 *--p = *--s; 4723 } 4724 } 4725 4726 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4727 { 4728 unsigned long distance = (src > dst) ? src - dst : dst - src; 4729 return distance < len; 4730 } 4731 4732 static void copy_pages(struct page *dst_page, struct page *src_page, 4733 unsigned long dst_off, unsigned long src_off, 4734 unsigned long len) 4735 { 4736 char *dst_kaddr = page_address(dst_page); 4737 char *src_kaddr; 4738 int must_memmove = 0; 4739 4740 if (dst_page != src_page) { 4741 src_kaddr = page_address(src_page); 4742 } else { 4743 src_kaddr = dst_kaddr; 4744 if (areas_overlap(src_off, dst_off, len)) 4745 must_memmove = 1; 4746 } 4747 4748 if (must_memmove) 4749 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4750 else 4751 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4752 } 4753 4754 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4755 unsigned long src_offset, unsigned long len) 4756 { 4757 size_t cur; 4758 size_t dst_off_in_page; 4759 size_t src_off_in_page; 4760 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4761 unsigned long dst_i; 4762 unsigned long src_i; 4763 4764 if (src_offset + len > dst->len) { 4765 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4766 "len %lu dst len %lu\n", src_offset, len, dst->len); 4767 BUG_ON(1); 4768 } 4769 if (dst_offset + len > dst->len) { 4770 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4771 "len %lu dst len %lu\n", dst_offset, len, dst->len); 4772 BUG_ON(1); 4773 } 4774 4775 while (len > 0) { 4776 dst_off_in_page = (start_offset + dst_offset) & 4777 ((unsigned long)PAGE_CACHE_SIZE - 1); 4778 src_off_in_page = (start_offset + src_offset) & 4779 ((unsigned long)PAGE_CACHE_SIZE - 1); 4780 4781 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4782 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 4783 4784 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 4785 src_off_in_page)); 4786 cur = min_t(unsigned long, cur, 4787 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 4788 4789 copy_pages(extent_buffer_page(dst, dst_i), 4790 extent_buffer_page(dst, src_i), 4791 dst_off_in_page, src_off_in_page, cur); 4792 4793 src_offset += cur; 4794 dst_offset += cur; 4795 len -= cur; 4796 } 4797 } 4798 4799 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 4800 unsigned long src_offset, unsigned long len) 4801 { 4802 size_t cur; 4803 size_t dst_off_in_page; 4804 size_t src_off_in_page; 4805 unsigned long dst_end = dst_offset + len - 1; 4806 unsigned long src_end = src_offset + len - 1; 4807 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4808 unsigned long dst_i; 4809 unsigned long src_i; 4810 4811 if (src_offset + len > dst->len) { 4812 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 4813 "len %lu len %lu\n", src_offset, len, dst->len); 4814 BUG_ON(1); 4815 } 4816 if (dst_offset + len > dst->len) { 4817 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 4818 "len %lu len %lu\n", dst_offset, len, dst->len); 4819 BUG_ON(1); 4820 } 4821 if (dst_offset < src_offset) { 4822 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4823 return; 4824 } 4825 while (len > 0) { 4826 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 4827 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 4828 4829 dst_off_in_page = (start_offset + dst_end) & 4830 ((unsigned long)PAGE_CACHE_SIZE - 1); 4831 src_off_in_page = (start_offset + src_end) & 4832 ((unsigned long)PAGE_CACHE_SIZE - 1); 4833 4834 cur = min_t(unsigned long, len, src_off_in_page + 1); 4835 cur = min(cur, dst_off_in_page + 1); 4836 move_pages(extent_buffer_page(dst, dst_i), 4837 extent_buffer_page(dst, src_i), 4838 dst_off_in_page - cur + 1, 4839 src_off_in_page - cur + 1, cur); 4840 4841 dst_end -= cur; 4842 src_end -= cur; 4843 len -= cur; 4844 } 4845 } 4846 4847 int try_release_extent_buffer(struct page *page, gfp_t mask) 4848 { 4849 struct extent_buffer *eb; 4850 4851 /* 4852 * We need to make sure noboody is attaching this page to an eb right 4853 * now. 4854 */ 4855 spin_lock(&page->mapping->private_lock); 4856 if (!PagePrivate(page)) { 4857 spin_unlock(&page->mapping->private_lock); 4858 return 1; 4859 } 4860 4861 eb = (struct extent_buffer *)page->private; 4862 BUG_ON(!eb); 4863 4864 /* 4865 * This is a little awful but should be ok, we need to make sure that 4866 * the eb doesn't disappear out from under us while we're looking at 4867 * this page. 4868 */ 4869 spin_lock(&eb->refs_lock); 4870 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4871 spin_unlock(&eb->refs_lock); 4872 spin_unlock(&page->mapping->private_lock); 4873 return 0; 4874 } 4875 spin_unlock(&page->mapping->private_lock); 4876 4877 if ((mask & GFP_NOFS) == GFP_NOFS) 4878 mask = GFP_NOFS; 4879 4880 /* 4881 * If tree ref isn't set then we know the ref on this eb is a real ref, 4882 * so just return, this page will likely be freed soon anyway. 4883 */ 4884 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4885 spin_unlock(&eb->refs_lock); 4886 return 0; 4887 } 4888 release_extent_buffer(eb, mask); 4889 4890 return 1; 4891 } 4892