1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 28 static struct kmem_cache *extent_state_cache; 29 static struct kmem_cache *extent_buffer_cache; 30 static struct bio_set btrfs_bioset; 31 32 static inline bool extent_state_in_tree(const struct extent_state *state) 33 { 34 return !RB_EMPTY_NODE(&state->rb_node); 35 } 36 37 #ifdef CONFIG_BTRFS_DEBUG 38 static LIST_HEAD(states); 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50 } 51 52 static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60 } 61 62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63 { 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86 } 87 88 static inline void btrfs_extent_state_leak_debug_check(void) 89 { 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101 } 102 103 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107 { 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120 } 121 #else 122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 124 #define btrfs_extent_state_leak_debug_check() do {} while (0) 125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126 #endif 127 128 struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132 }; 133 134 struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143 }; 144 145 static int add_extent_changeset(struct extent_state *state, u32 bits, 146 struct extent_changeset *changeset, 147 int set) 148 { 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161 } 162 163 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165 { 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (is_data_inode(tree->private_data)) 172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 173 bio_flags); 174 else 175 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 176 mirror_num, bio_flags); 177 178 return blk_status_to_errno(ret); 179 } 180 181 /* Cleanup unsubmitted bios */ 182 static void end_write_bio(struct extent_page_data *epd, int ret) 183 { 184 if (epd->bio) { 185 epd->bio->bi_status = errno_to_blk_status(ret); 186 bio_endio(epd->bio); 187 epd->bio = NULL; 188 } 189 } 190 191 /* 192 * Submit bio from extent page data via submit_one_bio 193 * 194 * Return 0 if everything is OK. 195 * Return <0 for error. 196 */ 197 static int __must_check flush_write_bio(struct extent_page_data *epd) 198 { 199 int ret = 0; 200 201 if (epd->bio) { 202 ret = submit_one_bio(epd->bio, 0, 0); 203 /* 204 * Clean up of epd->bio is handled by its endio function. 205 * And endio is either triggered by successful bio execution 206 * or the error handler of submit bio hook. 207 * So at this point, no matter what happened, we don't need 208 * to clean up epd->bio. 209 */ 210 epd->bio = NULL; 211 } 212 return ret; 213 } 214 215 int __init extent_state_cache_init(void) 216 { 217 extent_state_cache = kmem_cache_create("btrfs_extent_state", 218 sizeof(struct extent_state), 0, 219 SLAB_MEM_SPREAD, NULL); 220 if (!extent_state_cache) 221 return -ENOMEM; 222 return 0; 223 } 224 225 int __init extent_io_init(void) 226 { 227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 228 sizeof(struct extent_buffer), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_buffer_cache) 231 return -ENOMEM; 232 233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 234 offsetof(struct btrfs_io_bio, bio), 235 BIOSET_NEED_BVECS)) 236 goto free_buffer_cache; 237 238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 239 goto free_bioset; 240 241 return 0; 242 243 free_bioset: 244 bioset_exit(&btrfs_bioset); 245 246 free_buffer_cache: 247 kmem_cache_destroy(extent_buffer_cache); 248 extent_buffer_cache = NULL; 249 return -ENOMEM; 250 } 251 252 void __cold extent_state_cache_exit(void) 253 { 254 btrfs_extent_state_leak_debug_check(); 255 kmem_cache_destroy(extent_state_cache); 256 } 257 258 void __cold extent_io_exit(void) 259 { 260 /* 261 * Make sure all delayed rcu free are flushed before we 262 * destroy caches. 263 */ 264 rcu_barrier(); 265 kmem_cache_destroy(extent_buffer_cache); 266 bioset_exit(&btrfs_bioset); 267 } 268 269 /* 270 * For the file_extent_tree, we want to hold the inode lock when we lookup and 271 * update the disk_i_size, but lockdep will complain because our io_tree we hold 272 * the tree lock and get the inode lock when setting delalloc. These two things 273 * are unrelated, so make a class for the file_extent_tree so we don't get the 274 * two locking patterns mixed up. 275 */ 276 static struct lock_class_key file_extent_tree_class; 277 278 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 279 struct extent_io_tree *tree, unsigned int owner, 280 void *private_data) 281 { 282 tree->fs_info = fs_info; 283 tree->state = RB_ROOT; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290 } 291 292 void extent_io_tree_release(struct extent_io_tree *tree) 293 { 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319 } 320 321 static struct extent_state *alloc_extent_state(gfp_t mask) 322 { 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341 } 342 343 void free_extent_state(struct extent_state *state) 344 { 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353 } 354 355 static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361 { 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385 do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389 } 390 391 /** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414 { 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459 } 460 461 static inline struct rb_node * 462 tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466 { 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474 } 475 476 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478 { 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480 } 481 482 /* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491 static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493 { 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530 } 531 532 static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, u32 *bits, 534 struct extent_changeset *changeset); 535 536 /* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546 static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 u32 *bits, struct extent_changeset *changeset) 551 { 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575 } 576 577 /* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593 { 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611 } 612 613 static struct extent_state *next_state(struct extent_state *state) 614 { 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620 } 621 622 /* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 u32 *bits, int wake, 632 struct extent_changeset *changeset) 633 { 634 struct extent_state *next; 635 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666 } 667 668 static struct extent_state * 669 alloc_extent_state_atomic(struct extent_state *prealloc) 670 { 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675 } 676 677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678 { 679 btrfs_panic(tree->fs_info, err, 680 "locking error: extent tree was modified by another thread while locked"); 681 } 682 683 /* 684 * clear some bits on a range in the tree. This may require splitting 685 * or inserting elements in the tree, so the gfp mask is used to 686 * indicate which allocations or sleeping are allowed. 687 * 688 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 689 * the given range from the tree regardless of state (ie for truncate). 690 * 691 * the range [start, end] is inclusive. 692 * 693 * This takes the tree lock, and returns 0 on success and < 0 on error. 694 */ 695 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 696 u32 bits, int wake, int delete, 697 struct extent_state **cached_state, 698 gfp_t mask, struct extent_changeset *changeset) 699 { 700 struct extent_state *state; 701 struct extent_state *cached; 702 struct extent_state *prealloc = NULL; 703 struct rb_node *node; 704 u64 last_end; 705 int err; 706 int clear = 0; 707 708 btrfs_debug_check_extent_io_range(tree, start, end); 709 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 710 711 if (bits & EXTENT_DELALLOC) 712 bits |= EXTENT_NORESERVE; 713 714 if (delete) 715 bits |= ~EXTENT_CTLBITS; 716 717 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 718 clear = 1; 719 again: 720 if (!prealloc && gfpflags_allow_blocking(mask)) { 721 /* 722 * Don't care for allocation failure here because we might end 723 * up not needing the pre-allocated extent state at all, which 724 * is the case if we only have in the tree extent states that 725 * cover our input range and don't cover too any other range. 726 * If we end up needing a new extent state we allocate it later. 727 */ 728 prealloc = alloc_extent_state(mask); 729 } 730 731 spin_lock(&tree->lock); 732 if (cached_state) { 733 cached = *cached_state; 734 735 if (clear) { 736 *cached_state = NULL; 737 cached_state = NULL; 738 } 739 740 if (cached && extent_state_in_tree(cached) && 741 cached->start <= start && cached->end > start) { 742 if (clear) 743 refcount_dec(&cached->refs); 744 state = cached; 745 goto hit_next; 746 } 747 if (clear) 748 free_extent_state(cached); 749 } 750 /* 751 * this search will find the extents that end after 752 * our range starts 753 */ 754 node = tree_search(tree, start); 755 if (!node) 756 goto out; 757 state = rb_entry(node, struct extent_state, rb_node); 758 hit_next: 759 if (state->start > end) 760 goto out; 761 WARN_ON(state->end < start); 762 last_end = state->end; 763 764 /* the state doesn't have the wanted bits, go ahead */ 765 if (!(state->state & bits)) { 766 state = next_state(state); 767 goto next; 768 } 769 770 /* 771 * | ---- desired range ---- | 772 * | state | or 773 * | ------------- state -------------- | 774 * 775 * We need to split the extent we found, and may flip 776 * bits on second half. 777 * 778 * If the extent we found extends past our range, we 779 * just split and search again. It'll get split again 780 * the next time though. 781 * 782 * If the extent we found is inside our range, we clear 783 * the desired bit on it. 784 */ 785 786 if (state->start < start) { 787 prealloc = alloc_extent_state_atomic(prealloc); 788 BUG_ON(!prealloc); 789 err = split_state(tree, state, prealloc, start); 790 if (err) 791 extent_io_tree_panic(tree, err); 792 793 prealloc = NULL; 794 if (err) 795 goto out; 796 if (state->end <= end) { 797 state = clear_state_bit(tree, state, &bits, wake, 798 changeset); 799 goto next; 800 } 801 goto search_again; 802 } 803 /* 804 * | ---- desired range ---- | 805 * | state | 806 * We need to split the extent, and clear the bit 807 * on the first half 808 */ 809 if (state->start <= end && state->end > end) { 810 prealloc = alloc_extent_state_atomic(prealloc); 811 BUG_ON(!prealloc); 812 err = split_state(tree, state, prealloc, end + 1); 813 if (err) 814 extent_io_tree_panic(tree, err); 815 816 if (wake) 817 wake_up(&state->wq); 818 819 clear_state_bit(tree, prealloc, &bits, wake, changeset); 820 821 prealloc = NULL; 822 goto out; 823 } 824 825 state = clear_state_bit(tree, state, &bits, wake, changeset); 826 next: 827 if (last_end == (u64)-1) 828 goto out; 829 start = last_end + 1; 830 if (start <= end && state && !need_resched()) 831 goto hit_next; 832 833 search_again: 834 if (start > end) 835 goto out; 836 spin_unlock(&tree->lock); 837 if (gfpflags_allow_blocking(mask)) 838 cond_resched(); 839 goto again; 840 841 out: 842 spin_unlock(&tree->lock); 843 if (prealloc) 844 free_extent_state(prealloc); 845 846 return 0; 847 848 } 849 850 static void wait_on_state(struct extent_io_tree *tree, 851 struct extent_state *state) 852 __releases(tree->lock) 853 __acquires(tree->lock) 854 { 855 DEFINE_WAIT(wait); 856 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 857 spin_unlock(&tree->lock); 858 schedule(); 859 spin_lock(&tree->lock); 860 finish_wait(&state->wq, &wait); 861 } 862 863 /* 864 * waits for one or more bits to clear on a range in the state tree. 865 * The range [start, end] is inclusive. 866 * The tree lock is taken by this function 867 */ 868 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 869 u32 bits) 870 { 871 struct extent_state *state; 872 struct rb_node *node; 873 874 btrfs_debug_check_extent_io_range(tree, start, end); 875 876 spin_lock(&tree->lock); 877 again: 878 while (1) { 879 /* 880 * this search will find all the extents that end after 881 * our range starts 882 */ 883 node = tree_search(tree, start); 884 process_node: 885 if (!node) 886 break; 887 888 state = rb_entry(node, struct extent_state, rb_node); 889 890 if (state->start > end) 891 goto out; 892 893 if (state->state & bits) { 894 start = state->start; 895 refcount_inc(&state->refs); 896 wait_on_state(tree, state); 897 free_extent_state(state); 898 goto again; 899 } 900 start = state->end + 1; 901 902 if (start > end) 903 break; 904 905 if (!cond_resched_lock(&tree->lock)) { 906 node = rb_next(node); 907 goto process_node; 908 } 909 } 910 out: 911 spin_unlock(&tree->lock); 912 } 913 914 static void set_state_bits(struct extent_io_tree *tree, 915 struct extent_state *state, 916 u32 *bits, struct extent_changeset *changeset) 917 { 918 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 919 int ret; 920 921 if (tree->private_data && is_data_inode(tree->private_data)) 922 btrfs_set_delalloc_extent(tree->private_data, state, bits); 923 924 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 925 u64 range = state->end - state->start + 1; 926 tree->dirty_bytes += range; 927 } 928 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 929 BUG_ON(ret < 0); 930 state->state |= bits_to_set; 931 } 932 933 static void cache_state_if_flags(struct extent_state *state, 934 struct extent_state **cached_ptr, 935 unsigned flags) 936 { 937 if (cached_ptr && !(*cached_ptr)) { 938 if (!flags || (state->state & flags)) { 939 *cached_ptr = state; 940 refcount_inc(&state->refs); 941 } 942 } 943 } 944 945 static void cache_state(struct extent_state *state, 946 struct extent_state **cached_ptr) 947 { 948 return cache_state_if_flags(state, cached_ptr, 949 EXTENT_LOCKED | EXTENT_BOUNDARY); 950 } 951 952 /* 953 * set some bits on a range in the tree. This may require allocations or 954 * sleeping, so the gfp mask is used to indicate what is allowed. 955 * 956 * If any of the exclusive bits are set, this will fail with -EEXIST if some 957 * part of the range already has the desired bits set. The start of the 958 * existing range is returned in failed_start in this case. 959 * 960 * [start, end] is inclusive This takes the tree lock. 961 */ 962 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 963 u32 exclusive_bits, u64 *failed_start, 964 struct extent_state **cached_state, gfp_t mask, 965 struct extent_changeset *changeset) 966 { 967 struct extent_state *state; 968 struct extent_state *prealloc = NULL; 969 struct rb_node *node; 970 struct rb_node **p; 971 struct rb_node *parent; 972 int err = 0; 973 u64 last_start; 974 u64 last_end; 975 976 btrfs_debug_check_extent_io_range(tree, start, end); 977 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 978 979 if (exclusive_bits) 980 ASSERT(failed_start); 981 else 982 ASSERT(failed_start == NULL); 983 again: 984 if (!prealloc && gfpflags_allow_blocking(mask)) { 985 /* 986 * Don't care for allocation failure here because we might end 987 * up not needing the pre-allocated extent state at all, which 988 * is the case if we only have in the tree extent states that 989 * cover our input range and don't cover too any other range. 990 * If we end up needing a new extent state we allocate it later. 991 */ 992 prealloc = alloc_extent_state(mask); 993 } 994 995 spin_lock(&tree->lock); 996 if (cached_state && *cached_state) { 997 state = *cached_state; 998 if (state->start <= start && state->end > start && 999 extent_state_in_tree(state)) { 1000 node = &state->rb_node; 1001 goto hit_next; 1002 } 1003 } 1004 /* 1005 * this search will find all the extents that end after 1006 * our range starts. 1007 */ 1008 node = tree_search_for_insert(tree, start, &p, &parent); 1009 if (!node) { 1010 prealloc = alloc_extent_state_atomic(prealloc); 1011 BUG_ON(!prealloc); 1012 err = insert_state(tree, prealloc, start, end, 1013 &p, &parent, &bits, changeset); 1014 if (err) 1015 extent_io_tree_panic(tree, err); 1016 1017 cache_state(prealloc, cached_state); 1018 prealloc = NULL; 1019 goto out; 1020 } 1021 state = rb_entry(node, struct extent_state, rb_node); 1022 hit_next: 1023 last_start = state->start; 1024 last_end = state->end; 1025 1026 /* 1027 * | ---- desired range ---- | 1028 * | state | 1029 * 1030 * Just lock what we found and keep going 1031 */ 1032 if (state->start == start && state->end <= end) { 1033 if (state->state & exclusive_bits) { 1034 *failed_start = state->start; 1035 err = -EEXIST; 1036 goto out; 1037 } 1038 1039 set_state_bits(tree, state, &bits, changeset); 1040 cache_state(state, cached_state); 1041 merge_state(tree, state); 1042 if (last_end == (u64)-1) 1043 goto out; 1044 start = last_end + 1; 1045 state = next_state(state); 1046 if (start < end && state && state->start == start && 1047 !need_resched()) 1048 goto hit_next; 1049 goto search_again; 1050 } 1051 1052 /* 1053 * | ---- desired range ---- | 1054 * | state | 1055 * or 1056 * | ------------- state -------------- | 1057 * 1058 * We need to split the extent we found, and may flip bits on 1059 * second half. 1060 * 1061 * If the extent we found extends past our 1062 * range, we just split and search again. It'll get split 1063 * again the next time though. 1064 * 1065 * If the extent we found is inside our range, we set the 1066 * desired bit on it. 1067 */ 1068 if (state->start < start) { 1069 if (state->state & exclusive_bits) { 1070 *failed_start = start; 1071 err = -EEXIST; 1072 goto out; 1073 } 1074 1075 /* 1076 * If this extent already has all the bits we want set, then 1077 * skip it, not necessary to split it or do anything with it. 1078 */ 1079 if ((state->state & bits) == bits) { 1080 start = state->end + 1; 1081 cache_state(state, cached_state); 1082 goto search_again; 1083 } 1084 1085 prealloc = alloc_extent_state_atomic(prealloc); 1086 BUG_ON(!prealloc); 1087 err = split_state(tree, state, prealloc, start); 1088 if (err) 1089 extent_io_tree_panic(tree, err); 1090 1091 prealloc = NULL; 1092 if (err) 1093 goto out; 1094 if (state->end <= end) { 1095 set_state_bits(tree, state, &bits, changeset); 1096 cache_state(state, cached_state); 1097 merge_state(tree, state); 1098 if (last_end == (u64)-1) 1099 goto out; 1100 start = last_end + 1; 1101 state = next_state(state); 1102 if (start < end && state && state->start == start && 1103 !need_resched()) 1104 goto hit_next; 1105 } 1106 goto search_again; 1107 } 1108 /* 1109 * | ---- desired range ---- | 1110 * | state | or | state | 1111 * 1112 * There's a hole, we need to insert something in it and 1113 * ignore the extent we found. 1114 */ 1115 if (state->start > start) { 1116 u64 this_end; 1117 if (end < last_start) 1118 this_end = end; 1119 else 1120 this_end = last_start - 1; 1121 1122 prealloc = alloc_extent_state_atomic(prealloc); 1123 BUG_ON(!prealloc); 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 NULL, NULL, &bits, changeset); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 1134 cache_state(prealloc, cached_state); 1135 prealloc = NULL; 1136 start = this_end + 1; 1137 goto search_again; 1138 } 1139 /* 1140 * | ---- desired range ---- | 1141 * | state | 1142 * We need to split the extent, and set the bit 1143 * on the first half 1144 */ 1145 if (state->start <= end && state->end > end) { 1146 if (state->state & exclusive_bits) { 1147 *failed_start = start; 1148 err = -EEXIST; 1149 goto out; 1150 } 1151 1152 prealloc = alloc_extent_state_atomic(prealloc); 1153 BUG_ON(!prealloc); 1154 err = split_state(tree, state, prealloc, end + 1); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 set_state_bits(tree, prealloc, &bits, changeset); 1159 cache_state(prealloc, cached_state); 1160 merge_state(tree, prealloc); 1161 prealloc = NULL; 1162 goto out; 1163 } 1164 1165 search_again: 1166 if (start > end) 1167 goto out; 1168 spin_unlock(&tree->lock); 1169 if (gfpflags_allow_blocking(mask)) 1170 cond_resched(); 1171 goto again; 1172 1173 out: 1174 spin_unlock(&tree->lock); 1175 if (prealloc) 1176 free_extent_state(prealloc); 1177 1178 return err; 1179 1180 } 1181 1182 /** 1183 * convert_extent_bit - convert all bits in a given range from one bit to 1184 * another 1185 * @tree: the io tree to search 1186 * @start: the start offset in bytes 1187 * @end: the end offset in bytes (inclusive) 1188 * @bits: the bits to set in this range 1189 * @clear_bits: the bits to clear in this range 1190 * @cached_state: state that we're going to cache 1191 * 1192 * This will go through and set bits for the given range. If any states exist 1193 * already in this range they are set with the given bit and cleared of the 1194 * clear_bits. This is only meant to be used by things that are mergeable, ie 1195 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1196 * boundary bits like LOCK. 1197 * 1198 * All allocations are done with GFP_NOFS. 1199 */ 1200 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1201 u32 bits, u32 clear_bits, 1202 struct extent_state **cached_state) 1203 { 1204 struct extent_state *state; 1205 struct extent_state *prealloc = NULL; 1206 struct rb_node *node; 1207 struct rb_node **p; 1208 struct rb_node *parent; 1209 int err = 0; 1210 u64 last_start; 1211 u64 last_end; 1212 bool first_iteration = true; 1213 1214 btrfs_debug_check_extent_io_range(tree, start, end); 1215 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1216 clear_bits); 1217 1218 again: 1219 if (!prealloc) { 1220 /* 1221 * Best effort, don't worry if extent state allocation fails 1222 * here for the first iteration. We might have a cached state 1223 * that matches exactly the target range, in which case no 1224 * extent state allocations are needed. We'll only know this 1225 * after locking the tree. 1226 */ 1227 prealloc = alloc_extent_state(GFP_NOFS); 1228 if (!prealloc && !first_iteration) 1229 return -ENOMEM; 1230 } 1231 1232 spin_lock(&tree->lock); 1233 if (cached_state && *cached_state) { 1234 state = *cached_state; 1235 if (state->start <= start && state->end > start && 1236 extent_state_in_tree(state)) { 1237 node = &state->rb_node; 1238 goto hit_next; 1239 } 1240 } 1241 1242 /* 1243 * this search will find all the extents that end after 1244 * our range starts. 1245 */ 1246 node = tree_search_for_insert(tree, start, &p, &parent); 1247 if (!node) { 1248 prealloc = alloc_extent_state_atomic(prealloc); 1249 if (!prealloc) { 1250 err = -ENOMEM; 1251 goto out; 1252 } 1253 err = insert_state(tree, prealloc, start, end, 1254 &p, &parent, &bits, NULL); 1255 if (err) 1256 extent_io_tree_panic(tree, err); 1257 cache_state(prealloc, cached_state); 1258 prealloc = NULL; 1259 goto out; 1260 } 1261 state = rb_entry(node, struct extent_state, rb_node); 1262 hit_next: 1263 last_start = state->start; 1264 last_end = state->end; 1265 1266 /* 1267 * | ---- desired range ---- | 1268 * | state | 1269 * 1270 * Just lock what we found and keep going 1271 */ 1272 if (state->start == start && state->end <= end) { 1273 set_state_bits(tree, state, &bits, NULL); 1274 cache_state(state, cached_state); 1275 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1276 if (last_end == (u64)-1) 1277 goto out; 1278 start = last_end + 1; 1279 if (start < end && state && state->start == start && 1280 !need_resched()) 1281 goto hit_next; 1282 goto search_again; 1283 } 1284 1285 /* 1286 * | ---- desired range ---- | 1287 * | state | 1288 * or 1289 * | ------------- state -------------- | 1290 * 1291 * We need to split the extent we found, and may flip bits on 1292 * second half. 1293 * 1294 * If the extent we found extends past our 1295 * range, we just split and search again. It'll get split 1296 * again the next time though. 1297 * 1298 * If the extent we found is inside our range, we set the 1299 * desired bit on it. 1300 */ 1301 if (state->start < start) { 1302 prealloc = alloc_extent_state_atomic(prealloc); 1303 if (!prealloc) { 1304 err = -ENOMEM; 1305 goto out; 1306 } 1307 err = split_state(tree, state, prealloc, start); 1308 if (err) 1309 extent_io_tree_panic(tree, err); 1310 prealloc = NULL; 1311 if (err) 1312 goto out; 1313 if (state->end <= end) { 1314 set_state_bits(tree, state, &bits, NULL); 1315 cache_state(state, cached_state); 1316 state = clear_state_bit(tree, state, &clear_bits, 0, 1317 NULL); 1318 if (last_end == (u64)-1) 1319 goto out; 1320 start = last_end + 1; 1321 if (start < end && state && state->start == start && 1322 !need_resched()) 1323 goto hit_next; 1324 } 1325 goto search_again; 1326 } 1327 /* 1328 * | ---- desired range ---- | 1329 * | state | or | state | 1330 * 1331 * There's a hole, we need to insert something in it and 1332 * ignore the extent we found. 1333 */ 1334 if (state->start > start) { 1335 u64 this_end; 1336 if (end < last_start) 1337 this_end = end; 1338 else 1339 this_end = last_start - 1; 1340 1341 prealloc = alloc_extent_state_atomic(prealloc); 1342 if (!prealloc) { 1343 err = -ENOMEM; 1344 goto out; 1345 } 1346 1347 /* 1348 * Avoid to free 'prealloc' if it can be merged with 1349 * the later extent. 1350 */ 1351 err = insert_state(tree, prealloc, start, this_end, 1352 NULL, NULL, &bits, NULL); 1353 if (err) 1354 extent_io_tree_panic(tree, err); 1355 cache_state(prealloc, cached_state); 1356 prealloc = NULL; 1357 start = this_end + 1; 1358 goto search_again; 1359 } 1360 /* 1361 * | ---- desired range ---- | 1362 * | state | 1363 * We need to split the extent, and set the bit 1364 * on the first half 1365 */ 1366 if (state->start <= end && state->end > end) { 1367 prealloc = alloc_extent_state_atomic(prealloc); 1368 if (!prealloc) { 1369 err = -ENOMEM; 1370 goto out; 1371 } 1372 1373 err = split_state(tree, state, prealloc, end + 1); 1374 if (err) 1375 extent_io_tree_panic(tree, err); 1376 1377 set_state_bits(tree, prealloc, &bits, NULL); 1378 cache_state(prealloc, cached_state); 1379 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1380 prealloc = NULL; 1381 goto out; 1382 } 1383 1384 search_again: 1385 if (start > end) 1386 goto out; 1387 spin_unlock(&tree->lock); 1388 cond_resched(); 1389 first_iteration = false; 1390 goto again; 1391 1392 out: 1393 spin_unlock(&tree->lock); 1394 if (prealloc) 1395 free_extent_state(prealloc); 1396 1397 return err; 1398 } 1399 1400 /* wrappers around set/clear extent bit */ 1401 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1402 u32 bits, struct extent_changeset *changeset) 1403 { 1404 /* 1405 * We don't support EXTENT_LOCKED yet, as current changeset will 1406 * record any bits changed, so for EXTENT_LOCKED case, it will 1407 * either fail with -EEXIST or changeset will record the whole 1408 * range. 1409 */ 1410 BUG_ON(bits & EXTENT_LOCKED); 1411 1412 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1413 changeset); 1414 } 1415 1416 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1417 u32 bits) 1418 { 1419 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1420 GFP_NOWAIT, NULL); 1421 } 1422 1423 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1424 u32 bits, int wake, int delete, 1425 struct extent_state **cached) 1426 { 1427 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1428 cached, GFP_NOFS, NULL); 1429 } 1430 1431 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1432 u32 bits, struct extent_changeset *changeset) 1433 { 1434 /* 1435 * Don't support EXTENT_LOCKED case, same reason as 1436 * set_record_extent_bits(). 1437 */ 1438 BUG_ON(bits & EXTENT_LOCKED); 1439 1440 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1441 changeset); 1442 } 1443 1444 /* 1445 * either insert or lock state struct between start and end use mask to tell 1446 * us if waiting is desired. 1447 */ 1448 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1449 struct extent_state **cached_state) 1450 { 1451 int err; 1452 u64 failed_start; 1453 1454 while (1) { 1455 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1456 EXTENT_LOCKED, &failed_start, 1457 cached_state, GFP_NOFS, NULL); 1458 if (err == -EEXIST) { 1459 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1460 start = failed_start; 1461 } else 1462 break; 1463 WARN_ON(start > end); 1464 } 1465 return err; 1466 } 1467 1468 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1469 { 1470 int err; 1471 u64 failed_start; 1472 1473 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1474 &failed_start, NULL, GFP_NOFS, NULL); 1475 if (err == -EEXIST) { 1476 if (failed_start > start) 1477 clear_extent_bit(tree, start, failed_start - 1, 1478 EXTENT_LOCKED, 1, 0, NULL); 1479 return 0; 1480 } 1481 return 1; 1482 } 1483 1484 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1485 { 1486 unsigned long index = start >> PAGE_SHIFT; 1487 unsigned long end_index = end >> PAGE_SHIFT; 1488 struct page *page; 1489 1490 while (index <= end_index) { 1491 page = find_get_page(inode->i_mapping, index); 1492 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1493 clear_page_dirty_for_io(page); 1494 put_page(page); 1495 index++; 1496 } 1497 } 1498 1499 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1500 { 1501 unsigned long index = start >> PAGE_SHIFT; 1502 unsigned long end_index = end >> PAGE_SHIFT; 1503 struct page *page; 1504 1505 while (index <= end_index) { 1506 page = find_get_page(inode->i_mapping, index); 1507 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1508 __set_page_dirty_nobuffers(page); 1509 account_page_redirty(page); 1510 put_page(page); 1511 index++; 1512 } 1513 } 1514 1515 /* find the first state struct with 'bits' set after 'start', and 1516 * return it. tree->lock must be held. NULL will returned if 1517 * nothing was found after 'start' 1518 */ 1519 static struct extent_state * 1520 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1521 { 1522 struct rb_node *node; 1523 struct extent_state *state; 1524 1525 /* 1526 * this search will find all the extents that end after 1527 * our range starts. 1528 */ 1529 node = tree_search(tree, start); 1530 if (!node) 1531 goto out; 1532 1533 while (1) { 1534 state = rb_entry(node, struct extent_state, rb_node); 1535 if (state->end >= start && (state->state & bits)) 1536 return state; 1537 1538 node = rb_next(node); 1539 if (!node) 1540 break; 1541 } 1542 out: 1543 return NULL; 1544 } 1545 1546 /* 1547 * Find the first offset in the io tree with one or more @bits set. 1548 * 1549 * Note: If there are multiple bits set in @bits, any of them will match. 1550 * 1551 * Return 0 if we find something, and update @start_ret and @end_ret. 1552 * Return 1 if we found nothing. 1553 */ 1554 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1555 u64 *start_ret, u64 *end_ret, u32 bits, 1556 struct extent_state **cached_state) 1557 { 1558 struct extent_state *state; 1559 int ret = 1; 1560 1561 spin_lock(&tree->lock); 1562 if (cached_state && *cached_state) { 1563 state = *cached_state; 1564 if (state->end == start - 1 && extent_state_in_tree(state)) { 1565 while ((state = next_state(state)) != NULL) { 1566 if (state->state & bits) 1567 goto got_it; 1568 } 1569 free_extent_state(*cached_state); 1570 *cached_state = NULL; 1571 goto out; 1572 } 1573 free_extent_state(*cached_state); 1574 *cached_state = NULL; 1575 } 1576 1577 state = find_first_extent_bit_state(tree, start, bits); 1578 got_it: 1579 if (state) { 1580 cache_state_if_flags(state, cached_state, 0); 1581 *start_ret = state->start; 1582 *end_ret = state->end; 1583 ret = 0; 1584 } 1585 out: 1586 spin_unlock(&tree->lock); 1587 return ret; 1588 } 1589 1590 /** 1591 * find_contiguous_extent_bit: find a contiguous area of bits 1592 * @tree - io tree to check 1593 * @start - offset to start the search from 1594 * @start_ret - the first offset we found with the bits set 1595 * @end_ret - the final contiguous range of the bits that were set 1596 * @bits - bits to look for 1597 * 1598 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1599 * to set bits appropriately, and then merge them again. During this time it 1600 * will drop the tree->lock, so use this helper if you want to find the actual 1601 * contiguous area for given bits. We will search to the first bit we find, and 1602 * then walk down the tree until we find a non-contiguous area. The area 1603 * returned will be the full contiguous area with the bits set. 1604 */ 1605 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1606 u64 *start_ret, u64 *end_ret, u32 bits) 1607 { 1608 struct extent_state *state; 1609 int ret = 1; 1610 1611 spin_lock(&tree->lock); 1612 state = find_first_extent_bit_state(tree, start, bits); 1613 if (state) { 1614 *start_ret = state->start; 1615 *end_ret = state->end; 1616 while ((state = next_state(state)) != NULL) { 1617 if (state->start > (*end_ret + 1)) 1618 break; 1619 *end_ret = state->end; 1620 } 1621 ret = 0; 1622 } 1623 spin_unlock(&tree->lock); 1624 return ret; 1625 } 1626 1627 /** 1628 * find_first_clear_extent_bit - find the first range that has @bits not set. 1629 * This range could start before @start. 1630 * 1631 * @tree - the tree to search 1632 * @start - the offset at/after which the found extent should start 1633 * @start_ret - records the beginning of the range 1634 * @end_ret - records the end of the range (inclusive) 1635 * @bits - the set of bits which must be unset 1636 * 1637 * Since unallocated range is also considered one which doesn't have the bits 1638 * set it's possible that @end_ret contains -1, this happens in case the range 1639 * spans (last_range_end, end of device]. In this case it's up to the caller to 1640 * trim @end_ret to the appropriate size. 1641 */ 1642 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1643 u64 *start_ret, u64 *end_ret, u32 bits) 1644 { 1645 struct extent_state *state; 1646 struct rb_node *node, *prev = NULL, *next; 1647 1648 spin_lock(&tree->lock); 1649 1650 /* Find first extent with bits cleared */ 1651 while (1) { 1652 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1653 if (!node && !next && !prev) { 1654 /* 1655 * Tree is completely empty, send full range and let 1656 * caller deal with it 1657 */ 1658 *start_ret = 0; 1659 *end_ret = -1; 1660 goto out; 1661 } else if (!node && !next) { 1662 /* 1663 * We are past the last allocated chunk, set start at 1664 * the end of the last extent. 1665 */ 1666 state = rb_entry(prev, struct extent_state, rb_node); 1667 *start_ret = state->end + 1; 1668 *end_ret = -1; 1669 goto out; 1670 } else if (!node) { 1671 node = next; 1672 } 1673 /* 1674 * At this point 'node' either contains 'start' or start is 1675 * before 'node' 1676 */ 1677 state = rb_entry(node, struct extent_state, rb_node); 1678 1679 if (in_range(start, state->start, state->end - state->start + 1)) { 1680 if (state->state & bits) { 1681 /* 1682 * |--range with bits sets--| 1683 * | 1684 * start 1685 */ 1686 start = state->end + 1; 1687 } else { 1688 /* 1689 * 'start' falls within a range that doesn't 1690 * have the bits set, so take its start as 1691 * the beginning of the desired range 1692 * 1693 * |--range with bits cleared----| 1694 * | 1695 * start 1696 */ 1697 *start_ret = state->start; 1698 break; 1699 } 1700 } else { 1701 /* 1702 * |---prev range---|---hole/unset---|---node range---| 1703 * | 1704 * start 1705 * 1706 * or 1707 * 1708 * |---hole/unset--||--first node--| 1709 * 0 | 1710 * start 1711 */ 1712 if (prev) { 1713 state = rb_entry(prev, struct extent_state, 1714 rb_node); 1715 *start_ret = state->end + 1; 1716 } else { 1717 *start_ret = 0; 1718 } 1719 break; 1720 } 1721 } 1722 1723 /* 1724 * Find the longest stretch from start until an entry which has the 1725 * bits set 1726 */ 1727 while (1) { 1728 state = rb_entry(node, struct extent_state, rb_node); 1729 if (state->end >= start && !(state->state & bits)) { 1730 *end_ret = state->end; 1731 } else { 1732 *end_ret = state->start - 1; 1733 break; 1734 } 1735 1736 node = rb_next(node); 1737 if (!node) 1738 break; 1739 } 1740 out: 1741 spin_unlock(&tree->lock); 1742 } 1743 1744 /* 1745 * find a contiguous range of bytes in the file marked as delalloc, not 1746 * more than 'max_bytes'. start and end are used to return the range, 1747 * 1748 * true is returned if we find something, false if nothing was in the tree 1749 */ 1750 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1751 u64 *end, u64 max_bytes, 1752 struct extent_state **cached_state) 1753 { 1754 struct rb_node *node; 1755 struct extent_state *state; 1756 u64 cur_start = *start; 1757 bool found = false; 1758 u64 total_bytes = 0; 1759 1760 spin_lock(&tree->lock); 1761 1762 /* 1763 * this search will find all the extents that end after 1764 * our range starts. 1765 */ 1766 node = tree_search(tree, cur_start); 1767 if (!node) { 1768 *end = (u64)-1; 1769 goto out; 1770 } 1771 1772 while (1) { 1773 state = rb_entry(node, struct extent_state, rb_node); 1774 if (found && (state->start != cur_start || 1775 (state->state & EXTENT_BOUNDARY))) { 1776 goto out; 1777 } 1778 if (!(state->state & EXTENT_DELALLOC)) { 1779 if (!found) 1780 *end = state->end; 1781 goto out; 1782 } 1783 if (!found) { 1784 *start = state->start; 1785 *cached_state = state; 1786 refcount_inc(&state->refs); 1787 } 1788 found = true; 1789 *end = state->end; 1790 cur_start = state->end + 1; 1791 node = rb_next(node); 1792 total_bytes += state->end - state->start + 1; 1793 if (total_bytes >= max_bytes) 1794 break; 1795 if (!node) 1796 break; 1797 } 1798 out: 1799 spin_unlock(&tree->lock); 1800 return found; 1801 } 1802 1803 static int __process_pages_contig(struct address_space *mapping, 1804 struct page *locked_page, 1805 pgoff_t start_index, pgoff_t end_index, 1806 unsigned long page_ops, pgoff_t *index_ret); 1807 1808 static noinline void __unlock_for_delalloc(struct inode *inode, 1809 struct page *locked_page, 1810 u64 start, u64 end) 1811 { 1812 unsigned long index = start >> PAGE_SHIFT; 1813 unsigned long end_index = end >> PAGE_SHIFT; 1814 1815 ASSERT(locked_page); 1816 if (index == locked_page->index && end_index == index) 1817 return; 1818 1819 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1820 PAGE_UNLOCK, NULL); 1821 } 1822 1823 static noinline int lock_delalloc_pages(struct inode *inode, 1824 struct page *locked_page, 1825 u64 delalloc_start, 1826 u64 delalloc_end) 1827 { 1828 unsigned long index = delalloc_start >> PAGE_SHIFT; 1829 unsigned long index_ret = index; 1830 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1831 int ret; 1832 1833 ASSERT(locked_page); 1834 if (index == locked_page->index && index == end_index) 1835 return 0; 1836 1837 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1838 end_index, PAGE_LOCK, &index_ret); 1839 if (ret == -EAGAIN) 1840 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1841 (u64)index_ret << PAGE_SHIFT); 1842 return ret; 1843 } 1844 1845 /* 1846 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1847 * more than @max_bytes. @Start and @end are used to return the range, 1848 * 1849 * Return: true if we find something 1850 * false if nothing was in the tree 1851 */ 1852 EXPORT_FOR_TESTS 1853 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1854 struct page *locked_page, u64 *start, 1855 u64 *end) 1856 { 1857 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1858 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1859 u64 delalloc_start; 1860 u64 delalloc_end; 1861 bool found; 1862 struct extent_state *cached_state = NULL; 1863 int ret; 1864 int loops = 0; 1865 1866 again: 1867 /* step one, find a bunch of delalloc bytes starting at start */ 1868 delalloc_start = *start; 1869 delalloc_end = 0; 1870 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1871 max_bytes, &cached_state); 1872 if (!found || delalloc_end <= *start) { 1873 *start = delalloc_start; 1874 *end = delalloc_end; 1875 free_extent_state(cached_state); 1876 return false; 1877 } 1878 1879 /* 1880 * start comes from the offset of locked_page. We have to lock 1881 * pages in order, so we can't process delalloc bytes before 1882 * locked_page 1883 */ 1884 if (delalloc_start < *start) 1885 delalloc_start = *start; 1886 1887 /* 1888 * make sure to limit the number of pages we try to lock down 1889 */ 1890 if (delalloc_end + 1 - delalloc_start > max_bytes) 1891 delalloc_end = delalloc_start + max_bytes - 1; 1892 1893 /* step two, lock all the pages after the page that has start */ 1894 ret = lock_delalloc_pages(inode, locked_page, 1895 delalloc_start, delalloc_end); 1896 ASSERT(!ret || ret == -EAGAIN); 1897 if (ret == -EAGAIN) { 1898 /* some of the pages are gone, lets avoid looping by 1899 * shortening the size of the delalloc range we're searching 1900 */ 1901 free_extent_state(cached_state); 1902 cached_state = NULL; 1903 if (!loops) { 1904 max_bytes = PAGE_SIZE; 1905 loops = 1; 1906 goto again; 1907 } else { 1908 found = false; 1909 goto out_failed; 1910 } 1911 } 1912 1913 /* step three, lock the state bits for the whole range */ 1914 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1915 1916 /* then test to make sure it is all still delalloc */ 1917 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1918 EXTENT_DELALLOC, 1, cached_state); 1919 if (!ret) { 1920 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1921 &cached_state); 1922 __unlock_for_delalloc(inode, locked_page, 1923 delalloc_start, delalloc_end); 1924 cond_resched(); 1925 goto again; 1926 } 1927 free_extent_state(cached_state); 1928 *start = delalloc_start; 1929 *end = delalloc_end; 1930 out_failed: 1931 return found; 1932 } 1933 1934 static int __process_pages_contig(struct address_space *mapping, 1935 struct page *locked_page, 1936 pgoff_t start_index, pgoff_t end_index, 1937 unsigned long page_ops, pgoff_t *index_ret) 1938 { 1939 unsigned long nr_pages = end_index - start_index + 1; 1940 unsigned long pages_processed = 0; 1941 pgoff_t index = start_index; 1942 struct page *pages[16]; 1943 unsigned ret; 1944 int err = 0; 1945 int i; 1946 1947 if (page_ops & PAGE_LOCK) { 1948 ASSERT(page_ops == PAGE_LOCK); 1949 ASSERT(index_ret && *index_ret == start_index); 1950 } 1951 1952 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1953 mapping_set_error(mapping, -EIO); 1954 1955 while (nr_pages > 0) { 1956 ret = find_get_pages_contig(mapping, index, 1957 min_t(unsigned long, 1958 nr_pages, ARRAY_SIZE(pages)), pages); 1959 if (ret == 0) { 1960 /* 1961 * Only if we're going to lock these pages, 1962 * can we find nothing at @index. 1963 */ 1964 ASSERT(page_ops & PAGE_LOCK); 1965 err = -EAGAIN; 1966 goto out; 1967 } 1968 1969 for (i = 0; i < ret; i++) { 1970 if (page_ops & PAGE_SET_PRIVATE2) 1971 SetPagePrivate2(pages[i]); 1972 1973 if (locked_page && pages[i] == locked_page) { 1974 put_page(pages[i]); 1975 pages_processed++; 1976 continue; 1977 } 1978 if (page_ops & PAGE_CLEAR_DIRTY) 1979 clear_page_dirty_for_io(pages[i]); 1980 if (page_ops & PAGE_SET_WRITEBACK) 1981 set_page_writeback(pages[i]); 1982 if (page_ops & PAGE_SET_ERROR) 1983 SetPageError(pages[i]); 1984 if (page_ops & PAGE_END_WRITEBACK) 1985 end_page_writeback(pages[i]); 1986 if (page_ops & PAGE_UNLOCK) 1987 unlock_page(pages[i]); 1988 if (page_ops & PAGE_LOCK) { 1989 lock_page(pages[i]); 1990 if (!PageDirty(pages[i]) || 1991 pages[i]->mapping != mapping) { 1992 unlock_page(pages[i]); 1993 for (; i < ret; i++) 1994 put_page(pages[i]); 1995 err = -EAGAIN; 1996 goto out; 1997 } 1998 } 1999 put_page(pages[i]); 2000 pages_processed++; 2001 } 2002 nr_pages -= ret; 2003 index += ret; 2004 cond_resched(); 2005 } 2006 out: 2007 if (err && index_ret) 2008 *index_ret = start_index + pages_processed - 1; 2009 return err; 2010 } 2011 2012 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2013 struct page *locked_page, 2014 u32 clear_bits, unsigned long page_ops) 2015 { 2016 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2017 2018 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2019 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2020 page_ops, NULL); 2021 } 2022 2023 /* 2024 * count the number of bytes in the tree that have a given bit(s) 2025 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2026 * cached. The total number found is returned. 2027 */ 2028 u64 count_range_bits(struct extent_io_tree *tree, 2029 u64 *start, u64 search_end, u64 max_bytes, 2030 u32 bits, int contig) 2031 { 2032 struct rb_node *node; 2033 struct extent_state *state; 2034 u64 cur_start = *start; 2035 u64 total_bytes = 0; 2036 u64 last = 0; 2037 int found = 0; 2038 2039 if (WARN_ON(search_end <= cur_start)) 2040 return 0; 2041 2042 spin_lock(&tree->lock); 2043 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2044 total_bytes = tree->dirty_bytes; 2045 goto out; 2046 } 2047 /* 2048 * this search will find all the extents that end after 2049 * our range starts. 2050 */ 2051 node = tree_search(tree, cur_start); 2052 if (!node) 2053 goto out; 2054 2055 while (1) { 2056 state = rb_entry(node, struct extent_state, rb_node); 2057 if (state->start > search_end) 2058 break; 2059 if (contig && found && state->start > last + 1) 2060 break; 2061 if (state->end >= cur_start && (state->state & bits) == bits) { 2062 total_bytes += min(search_end, state->end) + 1 - 2063 max(cur_start, state->start); 2064 if (total_bytes >= max_bytes) 2065 break; 2066 if (!found) { 2067 *start = max(cur_start, state->start); 2068 found = 1; 2069 } 2070 last = state->end; 2071 } else if (contig && found) { 2072 break; 2073 } 2074 node = rb_next(node); 2075 if (!node) 2076 break; 2077 } 2078 out: 2079 spin_unlock(&tree->lock); 2080 return total_bytes; 2081 } 2082 2083 /* 2084 * set the private field for a given byte offset in the tree. If there isn't 2085 * an extent_state there already, this does nothing. 2086 */ 2087 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2088 struct io_failure_record *failrec) 2089 { 2090 struct rb_node *node; 2091 struct extent_state *state; 2092 int ret = 0; 2093 2094 spin_lock(&tree->lock); 2095 /* 2096 * this search will find all the extents that end after 2097 * our range starts. 2098 */ 2099 node = tree_search(tree, start); 2100 if (!node) { 2101 ret = -ENOENT; 2102 goto out; 2103 } 2104 state = rb_entry(node, struct extent_state, rb_node); 2105 if (state->start != start) { 2106 ret = -ENOENT; 2107 goto out; 2108 } 2109 state->failrec = failrec; 2110 out: 2111 spin_unlock(&tree->lock); 2112 return ret; 2113 } 2114 2115 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2116 { 2117 struct rb_node *node; 2118 struct extent_state *state; 2119 struct io_failure_record *failrec; 2120 2121 spin_lock(&tree->lock); 2122 /* 2123 * this search will find all the extents that end after 2124 * our range starts. 2125 */ 2126 node = tree_search(tree, start); 2127 if (!node) { 2128 failrec = ERR_PTR(-ENOENT); 2129 goto out; 2130 } 2131 state = rb_entry(node, struct extent_state, rb_node); 2132 if (state->start != start) { 2133 failrec = ERR_PTR(-ENOENT); 2134 goto out; 2135 } 2136 2137 failrec = state->failrec; 2138 out: 2139 spin_unlock(&tree->lock); 2140 return failrec; 2141 } 2142 2143 /* 2144 * searches a range in the state tree for a given mask. 2145 * If 'filled' == 1, this returns 1 only if every extent in the tree 2146 * has the bits set. Otherwise, 1 is returned if any bit in the 2147 * range is found set. 2148 */ 2149 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2150 u32 bits, int filled, struct extent_state *cached) 2151 { 2152 struct extent_state *state = NULL; 2153 struct rb_node *node; 2154 int bitset = 0; 2155 2156 spin_lock(&tree->lock); 2157 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2158 cached->end > start) 2159 node = &cached->rb_node; 2160 else 2161 node = tree_search(tree, start); 2162 while (node && start <= end) { 2163 state = rb_entry(node, struct extent_state, rb_node); 2164 2165 if (filled && state->start > start) { 2166 bitset = 0; 2167 break; 2168 } 2169 2170 if (state->start > end) 2171 break; 2172 2173 if (state->state & bits) { 2174 bitset = 1; 2175 if (!filled) 2176 break; 2177 } else if (filled) { 2178 bitset = 0; 2179 break; 2180 } 2181 2182 if (state->end == (u64)-1) 2183 break; 2184 2185 start = state->end + 1; 2186 if (start > end) 2187 break; 2188 node = rb_next(node); 2189 if (!node) { 2190 if (filled) 2191 bitset = 0; 2192 break; 2193 } 2194 } 2195 spin_unlock(&tree->lock); 2196 return bitset; 2197 } 2198 2199 /* 2200 * helper function to set a given page up to date if all the 2201 * extents in the tree for that page are up to date 2202 */ 2203 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2204 { 2205 u64 start = page_offset(page); 2206 u64 end = start + PAGE_SIZE - 1; 2207 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2208 SetPageUptodate(page); 2209 } 2210 2211 int free_io_failure(struct extent_io_tree *failure_tree, 2212 struct extent_io_tree *io_tree, 2213 struct io_failure_record *rec) 2214 { 2215 int ret; 2216 int err = 0; 2217 2218 set_state_failrec(failure_tree, rec->start, NULL); 2219 ret = clear_extent_bits(failure_tree, rec->start, 2220 rec->start + rec->len - 1, 2221 EXTENT_LOCKED | EXTENT_DIRTY); 2222 if (ret) 2223 err = ret; 2224 2225 ret = clear_extent_bits(io_tree, rec->start, 2226 rec->start + rec->len - 1, 2227 EXTENT_DAMAGED); 2228 if (ret && !err) 2229 err = ret; 2230 2231 kfree(rec); 2232 return err; 2233 } 2234 2235 /* 2236 * this bypasses the standard btrfs submit functions deliberately, as 2237 * the standard behavior is to write all copies in a raid setup. here we only 2238 * want to write the one bad copy. so we do the mapping for ourselves and issue 2239 * submit_bio directly. 2240 * to avoid any synchronization issues, wait for the data after writing, which 2241 * actually prevents the read that triggered the error from finishing. 2242 * currently, there can be no more than two copies of every data bit. thus, 2243 * exactly one rewrite is required. 2244 */ 2245 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2246 u64 length, u64 logical, struct page *page, 2247 unsigned int pg_offset, int mirror_num) 2248 { 2249 struct bio *bio; 2250 struct btrfs_device *dev; 2251 u64 map_length = 0; 2252 u64 sector; 2253 struct btrfs_bio *bbio = NULL; 2254 int ret; 2255 2256 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2257 BUG_ON(!mirror_num); 2258 2259 bio = btrfs_io_bio_alloc(1); 2260 bio->bi_iter.bi_size = 0; 2261 map_length = length; 2262 2263 /* 2264 * Avoid races with device replace and make sure our bbio has devices 2265 * associated to its stripes that don't go away while we are doing the 2266 * read repair operation. 2267 */ 2268 btrfs_bio_counter_inc_blocked(fs_info); 2269 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2270 /* 2271 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2272 * to update all raid stripes, but here we just want to correct 2273 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2274 * stripe's dev and sector. 2275 */ 2276 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2277 &map_length, &bbio, 0); 2278 if (ret) { 2279 btrfs_bio_counter_dec(fs_info); 2280 bio_put(bio); 2281 return -EIO; 2282 } 2283 ASSERT(bbio->mirror_num == 1); 2284 } else { 2285 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2286 &map_length, &bbio, mirror_num); 2287 if (ret) { 2288 btrfs_bio_counter_dec(fs_info); 2289 bio_put(bio); 2290 return -EIO; 2291 } 2292 BUG_ON(mirror_num != bbio->mirror_num); 2293 } 2294 2295 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2296 bio->bi_iter.bi_sector = sector; 2297 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2298 btrfs_put_bbio(bbio); 2299 if (!dev || !dev->bdev || 2300 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2301 btrfs_bio_counter_dec(fs_info); 2302 bio_put(bio); 2303 return -EIO; 2304 } 2305 bio_set_dev(bio, dev->bdev); 2306 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2307 bio_add_page(bio, page, length, pg_offset); 2308 2309 if (btrfsic_submit_bio_wait(bio)) { 2310 /* try to remap that extent elsewhere? */ 2311 btrfs_bio_counter_dec(fs_info); 2312 bio_put(bio); 2313 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2314 return -EIO; 2315 } 2316 2317 btrfs_info_rl_in_rcu(fs_info, 2318 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2319 ino, start, 2320 rcu_str_deref(dev->name), sector); 2321 btrfs_bio_counter_dec(fs_info); 2322 bio_put(bio); 2323 return 0; 2324 } 2325 2326 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2327 { 2328 struct btrfs_fs_info *fs_info = eb->fs_info; 2329 u64 start = eb->start; 2330 int i, num_pages = num_extent_pages(eb); 2331 int ret = 0; 2332 2333 if (sb_rdonly(fs_info->sb)) 2334 return -EROFS; 2335 2336 for (i = 0; i < num_pages; i++) { 2337 struct page *p = eb->pages[i]; 2338 2339 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2340 start - page_offset(p), mirror_num); 2341 if (ret) 2342 break; 2343 start += PAGE_SIZE; 2344 } 2345 2346 return ret; 2347 } 2348 2349 /* 2350 * each time an IO finishes, we do a fast check in the IO failure tree 2351 * to see if we need to process or clean up an io_failure_record 2352 */ 2353 int clean_io_failure(struct btrfs_fs_info *fs_info, 2354 struct extent_io_tree *failure_tree, 2355 struct extent_io_tree *io_tree, u64 start, 2356 struct page *page, u64 ino, unsigned int pg_offset) 2357 { 2358 u64 private; 2359 struct io_failure_record *failrec; 2360 struct extent_state *state; 2361 int num_copies; 2362 int ret; 2363 2364 private = 0; 2365 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2366 EXTENT_DIRTY, 0); 2367 if (!ret) 2368 return 0; 2369 2370 failrec = get_state_failrec(failure_tree, start); 2371 if (IS_ERR(failrec)) 2372 return 0; 2373 2374 BUG_ON(!failrec->this_mirror); 2375 2376 if (failrec->in_validation) { 2377 /* there was no real error, just free the record */ 2378 btrfs_debug(fs_info, 2379 "clean_io_failure: freeing dummy error at %llu", 2380 failrec->start); 2381 goto out; 2382 } 2383 if (sb_rdonly(fs_info->sb)) 2384 goto out; 2385 2386 spin_lock(&io_tree->lock); 2387 state = find_first_extent_bit_state(io_tree, 2388 failrec->start, 2389 EXTENT_LOCKED); 2390 spin_unlock(&io_tree->lock); 2391 2392 if (state && state->start <= failrec->start && 2393 state->end >= failrec->start + failrec->len - 1) { 2394 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2395 failrec->len); 2396 if (num_copies > 1) { 2397 repair_io_failure(fs_info, ino, start, failrec->len, 2398 failrec->logical, page, pg_offset, 2399 failrec->failed_mirror); 2400 } 2401 } 2402 2403 out: 2404 free_io_failure(failure_tree, io_tree, failrec); 2405 2406 return 0; 2407 } 2408 2409 /* 2410 * Can be called when 2411 * - hold extent lock 2412 * - under ordered extent 2413 * - the inode is freeing 2414 */ 2415 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2416 { 2417 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2418 struct io_failure_record *failrec; 2419 struct extent_state *state, *next; 2420 2421 if (RB_EMPTY_ROOT(&failure_tree->state)) 2422 return; 2423 2424 spin_lock(&failure_tree->lock); 2425 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2426 while (state) { 2427 if (state->start > end) 2428 break; 2429 2430 ASSERT(state->end <= end); 2431 2432 next = next_state(state); 2433 2434 failrec = state->failrec; 2435 free_extent_state(state); 2436 kfree(failrec); 2437 2438 state = next; 2439 } 2440 spin_unlock(&failure_tree->lock); 2441 } 2442 2443 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2444 u64 start, u64 end) 2445 { 2446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2447 struct io_failure_record *failrec; 2448 struct extent_map *em; 2449 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2450 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2451 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2452 int ret; 2453 u64 logical; 2454 2455 failrec = get_state_failrec(failure_tree, start); 2456 if (!IS_ERR(failrec)) { 2457 btrfs_debug(fs_info, 2458 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2459 failrec->logical, failrec->start, failrec->len, 2460 failrec->in_validation); 2461 /* 2462 * when data can be on disk more than twice, add to failrec here 2463 * (e.g. with a list for failed_mirror) to make 2464 * clean_io_failure() clean all those errors at once. 2465 */ 2466 2467 return failrec; 2468 } 2469 2470 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2471 if (!failrec) 2472 return ERR_PTR(-ENOMEM); 2473 2474 failrec->start = start; 2475 failrec->len = end - start + 1; 2476 failrec->this_mirror = 0; 2477 failrec->bio_flags = 0; 2478 failrec->in_validation = 0; 2479 2480 read_lock(&em_tree->lock); 2481 em = lookup_extent_mapping(em_tree, start, failrec->len); 2482 if (!em) { 2483 read_unlock(&em_tree->lock); 2484 kfree(failrec); 2485 return ERR_PTR(-EIO); 2486 } 2487 2488 if (em->start > start || em->start + em->len <= start) { 2489 free_extent_map(em); 2490 em = NULL; 2491 } 2492 read_unlock(&em_tree->lock); 2493 if (!em) { 2494 kfree(failrec); 2495 return ERR_PTR(-EIO); 2496 } 2497 2498 logical = start - em->start; 2499 logical = em->block_start + logical; 2500 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2501 logical = em->block_start; 2502 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2503 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2504 } 2505 2506 btrfs_debug(fs_info, 2507 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2508 logical, start, failrec->len); 2509 2510 failrec->logical = logical; 2511 free_extent_map(em); 2512 2513 /* Set the bits in the private failure tree */ 2514 ret = set_extent_bits(failure_tree, start, end, 2515 EXTENT_LOCKED | EXTENT_DIRTY); 2516 if (ret >= 0) { 2517 ret = set_state_failrec(failure_tree, start, failrec); 2518 /* Set the bits in the inode's tree */ 2519 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2520 } else if (ret < 0) { 2521 kfree(failrec); 2522 return ERR_PTR(ret); 2523 } 2524 2525 return failrec; 2526 } 2527 2528 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2529 struct io_failure_record *failrec, 2530 int failed_mirror) 2531 { 2532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2533 int num_copies; 2534 2535 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2536 if (num_copies == 1) { 2537 /* 2538 * we only have a single copy of the data, so don't bother with 2539 * all the retry and error correction code that follows. no 2540 * matter what the error is, it is very likely to persist. 2541 */ 2542 btrfs_debug(fs_info, 2543 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2544 num_copies, failrec->this_mirror, failed_mirror); 2545 return false; 2546 } 2547 2548 /* 2549 * there are two premises: 2550 * a) deliver good data to the caller 2551 * b) correct the bad sectors on disk 2552 */ 2553 if (needs_validation) { 2554 /* 2555 * to fulfill b), we need to know the exact failing sectors, as 2556 * we don't want to rewrite any more than the failed ones. thus, 2557 * we need separate read requests for the failed bio 2558 * 2559 * if the following BUG_ON triggers, our validation request got 2560 * merged. we need separate requests for our algorithm to work. 2561 */ 2562 BUG_ON(failrec->in_validation); 2563 failrec->in_validation = 1; 2564 failrec->this_mirror = failed_mirror; 2565 } else { 2566 /* 2567 * we're ready to fulfill a) and b) alongside. get a good copy 2568 * of the failed sector and if we succeed, we have setup 2569 * everything for repair_io_failure to do the rest for us. 2570 */ 2571 if (failrec->in_validation) { 2572 BUG_ON(failrec->this_mirror != failed_mirror); 2573 failrec->in_validation = 0; 2574 failrec->this_mirror = 0; 2575 } 2576 failrec->failed_mirror = failed_mirror; 2577 failrec->this_mirror++; 2578 if (failrec->this_mirror == failed_mirror) 2579 failrec->this_mirror++; 2580 } 2581 2582 if (failrec->this_mirror > num_copies) { 2583 btrfs_debug(fs_info, 2584 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2585 num_copies, failrec->this_mirror, failed_mirror); 2586 return false; 2587 } 2588 2589 return true; 2590 } 2591 2592 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2593 { 2594 u64 len = 0; 2595 const u32 blocksize = inode->i_sb->s_blocksize; 2596 2597 /* 2598 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2599 * I/O error. In this case, we already know exactly which sector was 2600 * bad, so we don't need to validate. 2601 */ 2602 if (bio->bi_status == BLK_STS_OK) 2603 return false; 2604 2605 /* 2606 * We need to validate each sector individually if the failed I/O was 2607 * for multiple sectors. 2608 * 2609 * There are a few possible bios that can end up here: 2610 * 1. A buffered read bio, which is not cloned. 2611 * 2. A direct I/O read bio, which is cloned. 2612 * 3. A (buffered or direct) repair bio, which is not cloned. 2613 * 2614 * For cloned bios (case 2), we can get the size from 2615 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2616 * it from the bvecs. 2617 */ 2618 if (bio_flagged(bio, BIO_CLONED)) { 2619 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2620 return true; 2621 } else { 2622 struct bio_vec *bvec; 2623 int i; 2624 2625 bio_for_each_bvec_all(bvec, bio, i) { 2626 len += bvec->bv_len; 2627 if (len > blocksize) 2628 return true; 2629 } 2630 } 2631 return false; 2632 } 2633 2634 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2635 struct bio *failed_bio, u32 bio_offset, 2636 struct page *page, unsigned int pgoff, 2637 u64 start, u64 end, int failed_mirror, 2638 submit_bio_hook_t *submit_bio_hook) 2639 { 2640 struct io_failure_record *failrec; 2641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2642 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2643 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2644 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2645 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2646 bool need_validation; 2647 struct bio *repair_bio; 2648 struct btrfs_io_bio *repair_io_bio; 2649 blk_status_t status; 2650 2651 btrfs_debug(fs_info, 2652 "repair read error: read error at %llu", start); 2653 2654 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2655 2656 failrec = btrfs_get_io_failure_record(inode, start, end); 2657 if (IS_ERR(failrec)) 2658 return errno_to_blk_status(PTR_ERR(failrec)); 2659 2660 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2661 2662 if (!btrfs_check_repairable(inode, need_validation, failrec, 2663 failed_mirror)) { 2664 free_io_failure(failure_tree, tree, failrec); 2665 return BLK_STS_IOERR; 2666 } 2667 2668 repair_bio = btrfs_io_bio_alloc(1); 2669 repair_io_bio = btrfs_io_bio(repair_bio); 2670 repair_bio->bi_opf = REQ_OP_READ; 2671 if (need_validation) 2672 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2673 repair_bio->bi_end_io = failed_bio->bi_end_io; 2674 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2675 repair_bio->bi_private = failed_bio->bi_private; 2676 2677 if (failed_io_bio->csum) { 2678 const u32 csum_size = fs_info->csum_size; 2679 2680 repair_io_bio->csum = repair_io_bio->csum_inline; 2681 memcpy(repair_io_bio->csum, 2682 failed_io_bio->csum + csum_size * icsum, csum_size); 2683 } 2684 2685 bio_add_page(repair_bio, page, failrec->len, pgoff); 2686 repair_io_bio->logical = failrec->start; 2687 repair_io_bio->iter = repair_bio->bi_iter; 2688 2689 btrfs_debug(btrfs_sb(inode->i_sb), 2690 "repair read error: submitting new read to mirror %d, in_validation=%d", 2691 failrec->this_mirror, failrec->in_validation); 2692 2693 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2694 failrec->bio_flags); 2695 if (status) { 2696 free_io_failure(failure_tree, tree, failrec); 2697 bio_put(repair_bio); 2698 } 2699 return status; 2700 } 2701 2702 /* lots and lots of room for performance fixes in the end_bio funcs */ 2703 2704 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2705 { 2706 int uptodate = (err == 0); 2707 int ret = 0; 2708 2709 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2710 2711 if (!uptodate) { 2712 ClearPageUptodate(page); 2713 SetPageError(page); 2714 ret = err < 0 ? err : -EIO; 2715 mapping_set_error(page->mapping, ret); 2716 } 2717 } 2718 2719 /* 2720 * after a writepage IO is done, we need to: 2721 * clear the uptodate bits on error 2722 * clear the writeback bits in the extent tree for this IO 2723 * end_page_writeback if the page has no more pending IO 2724 * 2725 * Scheduling is not allowed, so the extent state tree is expected 2726 * to have one and only one object corresponding to this IO. 2727 */ 2728 static void end_bio_extent_writepage(struct bio *bio) 2729 { 2730 int error = blk_status_to_errno(bio->bi_status); 2731 struct bio_vec *bvec; 2732 u64 start; 2733 u64 end; 2734 struct bvec_iter_all iter_all; 2735 2736 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2737 bio_for_each_segment_all(bvec, bio, iter_all) { 2738 struct page *page = bvec->bv_page; 2739 struct inode *inode = page->mapping->host; 2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2741 2742 /* We always issue full-page reads, but if some block 2743 * in a page fails to read, blk_update_request() will 2744 * advance bv_offset and adjust bv_len to compensate. 2745 * Print a warning for nonzero offsets, and an error 2746 * if they don't add up to a full page. */ 2747 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2748 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2749 btrfs_err(fs_info, 2750 "partial page write in btrfs with offset %u and length %u", 2751 bvec->bv_offset, bvec->bv_len); 2752 else 2753 btrfs_info(fs_info, 2754 "incomplete page write in btrfs with offset %u and length %u", 2755 bvec->bv_offset, bvec->bv_len); 2756 } 2757 2758 start = page_offset(page); 2759 end = start + bvec->bv_offset + bvec->bv_len - 1; 2760 2761 end_extent_writepage(page, error, start, end); 2762 end_page_writeback(page); 2763 } 2764 2765 bio_put(bio); 2766 } 2767 2768 /* 2769 * Record previously processed extent range 2770 * 2771 * For endio_readpage_release_extent() to handle a full extent range, reducing 2772 * the extent io operations. 2773 */ 2774 struct processed_extent { 2775 struct btrfs_inode *inode; 2776 /* Start of the range in @inode */ 2777 u64 start; 2778 /* End of the range in in @inode */ 2779 u64 end; 2780 bool uptodate; 2781 }; 2782 2783 /* 2784 * Try to release processed extent range 2785 * 2786 * May not release the extent range right now if the current range is 2787 * contiguous to processed extent. 2788 * 2789 * Will release processed extent when any of @inode, @uptodate, the range is 2790 * no longer contiguous to the processed range. 2791 * 2792 * Passing @inode == NULL will force processed extent to be released. 2793 */ 2794 static void endio_readpage_release_extent(struct processed_extent *processed, 2795 struct btrfs_inode *inode, u64 start, u64 end, 2796 bool uptodate) 2797 { 2798 struct extent_state *cached = NULL; 2799 struct extent_io_tree *tree; 2800 2801 /* The first extent, initialize @processed */ 2802 if (!processed->inode) 2803 goto update; 2804 2805 /* 2806 * Contiguous to processed extent, just uptodate the end. 2807 * 2808 * Several things to notice: 2809 * 2810 * - bio can be merged as long as on-disk bytenr is contiguous 2811 * This means we can have page belonging to other inodes, thus need to 2812 * check if the inode still matches. 2813 * - bvec can contain range beyond current page for multi-page bvec 2814 * Thus we need to do processed->end + 1 >= start check 2815 */ 2816 if (processed->inode == inode && processed->uptodate == uptodate && 2817 processed->end + 1 >= start && end >= processed->end) { 2818 processed->end = end; 2819 return; 2820 } 2821 2822 tree = &processed->inode->io_tree; 2823 /* 2824 * Now we don't have range contiguous to the processed range, release 2825 * the processed range now. 2826 */ 2827 if (processed->uptodate && tree->track_uptodate) 2828 set_extent_uptodate(tree, processed->start, processed->end, 2829 &cached, GFP_ATOMIC); 2830 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2831 &cached); 2832 2833 update: 2834 /* Update processed to current range */ 2835 processed->inode = inode; 2836 processed->start = start; 2837 processed->end = end; 2838 processed->uptodate = uptodate; 2839 } 2840 2841 static void endio_readpage_update_page_status(struct page *page, bool uptodate) 2842 { 2843 if (uptodate) { 2844 SetPageUptodate(page); 2845 } else { 2846 ClearPageUptodate(page); 2847 SetPageError(page); 2848 } 2849 unlock_page(page); 2850 } 2851 2852 /* 2853 * after a readpage IO is done, we need to: 2854 * clear the uptodate bits on error 2855 * set the uptodate bits if things worked 2856 * set the page up to date if all extents in the tree are uptodate 2857 * clear the lock bit in the extent tree 2858 * unlock the page if there are no other extents locked for it 2859 * 2860 * Scheduling is not allowed, so the extent state tree is expected 2861 * to have one and only one object corresponding to this IO. 2862 */ 2863 static void end_bio_extent_readpage(struct bio *bio) 2864 { 2865 struct bio_vec *bvec; 2866 int uptodate = !bio->bi_status; 2867 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2868 struct extent_io_tree *tree, *failure_tree; 2869 struct processed_extent processed = { 0 }; 2870 /* 2871 * The offset to the beginning of a bio, since one bio can never be 2872 * larger than UINT_MAX, u32 here is enough. 2873 */ 2874 u32 bio_offset = 0; 2875 int mirror; 2876 int ret; 2877 struct bvec_iter_all iter_all; 2878 2879 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2880 bio_for_each_segment_all(bvec, bio, iter_all) { 2881 struct page *page = bvec->bv_page; 2882 struct inode *inode = page->mapping->host; 2883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2884 const u32 sectorsize = fs_info->sectorsize; 2885 u64 start; 2886 u64 end; 2887 u32 len; 2888 2889 btrfs_debug(fs_info, 2890 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2891 bio->bi_iter.bi_sector, bio->bi_status, 2892 io_bio->mirror_num); 2893 tree = &BTRFS_I(inode)->io_tree; 2894 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2895 2896 /* 2897 * We always issue full-sector reads, but if some block in a 2898 * page fails to read, blk_update_request() will advance 2899 * bv_offset and adjust bv_len to compensate. Print a warning 2900 * for unaligned offsets, and an error if they don't add up to 2901 * a full sector. 2902 */ 2903 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2904 btrfs_err(fs_info, 2905 "partial page read in btrfs with offset %u and length %u", 2906 bvec->bv_offset, bvec->bv_len); 2907 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 2908 sectorsize)) 2909 btrfs_info(fs_info, 2910 "incomplete page read with offset %u and length %u", 2911 bvec->bv_offset, bvec->bv_len); 2912 2913 start = page_offset(page) + bvec->bv_offset; 2914 end = start + bvec->bv_len - 1; 2915 len = bvec->bv_len; 2916 2917 mirror = io_bio->mirror_num; 2918 if (likely(uptodate)) { 2919 if (is_data_inode(inode)) 2920 ret = btrfs_verify_data_csum(io_bio, 2921 bio_offset, page, start, end, 2922 mirror); 2923 else 2924 ret = btrfs_validate_metadata_buffer(io_bio, 2925 page, start, end, mirror); 2926 if (ret) 2927 uptodate = 0; 2928 else 2929 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2930 failure_tree, tree, start, 2931 page, 2932 btrfs_ino(BTRFS_I(inode)), 0); 2933 } 2934 2935 if (likely(uptodate)) 2936 goto readpage_ok; 2937 2938 if (is_data_inode(inode)) { 2939 2940 /* 2941 * The generic bio_readpage_error handles errors the 2942 * following way: If possible, new read requests are 2943 * created and submitted and will end up in 2944 * end_bio_extent_readpage as well (if we're lucky, 2945 * not in the !uptodate case). In that case it returns 2946 * 0 and we just go on with the next page in our bio. 2947 * If it can't handle the error it will return -EIO and 2948 * we remain responsible for that page. 2949 */ 2950 if (!btrfs_submit_read_repair(inode, bio, bio_offset, 2951 page, 2952 start - page_offset(page), 2953 start, end, mirror, 2954 btrfs_submit_data_bio)) { 2955 uptodate = !bio->bi_status; 2956 ASSERT(bio_offset + len > bio_offset); 2957 bio_offset += len; 2958 continue; 2959 } 2960 } else { 2961 struct extent_buffer *eb; 2962 2963 eb = (struct extent_buffer *)page->private; 2964 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2965 eb->read_mirror = mirror; 2966 atomic_dec(&eb->io_pages); 2967 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2968 &eb->bflags)) 2969 btree_readahead_hook(eb, -EIO); 2970 } 2971 readpage_ok: 2972 if (likely(uptodate)) { 2973 loff_t i_size = i_size_read(inode); 2974 pgoff_t end_index = i_size >> PAGE_SHIFT; 2975 unsigned off; 2976 2977 /* Zero out the end if this page straddles i_size */ 2978 off = offset_in_page(i_size); 2979 if (page->index == end_index && off) 2980 zero_user_segment(page, off, PAGE_SIZE); 2981 } 2982 ASSERT(bio_offset + len > bio_offset); 2983 bio_offset += len; 2984 2985 /* Update page status and unlock */ 2986 endio_readpage_update_page_status(page, uptodate); 2987 endio_readpage_release_extent(&processed, BTRFS_I(inode), 2988 start, end, uptodate); 2989 } 2990 /* Release the last extent */ 2991 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 2992 btrfs_io_bio_free_csum(io_bio); 2993 bio_put(bio); 2994 } 2995 2996 /* 2997 * Initialize the members up to but not including 'bio'. Use after allocating a 2998 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2999 * 'bio' because use of __GFP_ZERO is not supported. 3000 */ 3001 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 3002 { 3003 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 3004 } 3005 3006 /* 3007 * The following helpers allocate a bio. As it's backed by a bioset, it'll 3008 * never fail. We're returning a bio right now but you can call btrfs_io_bio 3009 * for the appropriate container_of magic 3010 */ 3011 struct bio *btrfs_bio_alloc(u64 first_byte) 3012 { 3013 struct bio *bio; 3014 3015 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 3016 bio->bi_iter.bi_sector = first_byte >> 9; 3017 btrfs_io_bio_init(btrfs_io_bio(bio)); 3018 return bio; 3019 } 3020 3021 struct bio *btrfs_bio_clone(struct bio *bio) 3022 { 3023 struct btrfs_io_bio *btrfs_bio; 3024 struct bio *new; 3025 3026 /* Bio allocation backed by a bioset does not fail */ 3027 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3028 btrfs_bio = btrfs_io_bio(new); 3029 btrfs_io_bio_init(btrfs_bio); 3030 btrfs_bio->iter = bio->bi_iter; 3031 return new; 3032 } 3033 3034 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 3035 { 3036 struct bio *bio; 3037 3038 /* Bio allocation backed by a bioset does not fail */ 3039 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3040 btrfs_io_bio_init(btrfs_io_bio(bio)); 3041 return bio; 3042 } 3043 3044 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3045 { 3046 struct bio *bio; 3047 struct btrfs_io_bio *btrfs_bio; 3048 3049 /* this will never fail when it's backed by a bioset */ 3050 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3051 ASSERT(bio); 3052 3053 btrfs_bio = btrfs_io_bio(bio); 3054 btrfs_io_bio_init(btrfs_bio); 3055 3056 bio_trim(bio, offset >> 9, size >> 9); 3057 btrfs_bio->iter = bio->bi_iter; 3058 return bio; 3059 } 3060 3061 /* 3062 * @opf: bio REQ_OP_* and REQ_* flags as one value 3063 * @wbc: optional writeback control for io accounting 3064 * @page: page to add to the bio 3065 * @pg_offset: offset of the new bio or to check whether we are adding 3066 * a contiguous page to the previous one 3067 * @size: portion of page that we want to write 3068 * @offset: starting offset in the page 3069 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3070 * @end_io_func: end_io callback for new bio 3071 * @mirror_num: desired mirror to read/write 3072 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3073 * @bio_flags: flags of the current bio to see if we can merge them 3074 */ 3075 static int submit_extent_page(unsigned int opf, 3076 struct writeback_control *wbc, 3077 struct page *page, u64 offset, 3078 size_t size, unsigned long pg_offset, 3079 struct bio **bio_ret, 3080 bio_end_io_t end_io_func, 3081 int mirror_num, 3082 unsigned long prev_bio_flags, 3083 unsigned long bio_flags, 3084 bool force_bio_submit) 3085 { 3086 int ret = 0; 3087 struct bio *bio; 3088 size_t io_size = min_t(size_t, size, PAGE_SIZE); 3089 sector_t sector = offset >> 9; 3090 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3091 3092 ASSERT(bio_ret); 3093 3094 if (*bio_ret) { 3095 bool contig; 3096 bool can_merge = true; 3097 3098 bio = *bio_ret; 3099 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3100 contig = bio->bi_iter.bi_sector == sector; 3101 else 3102 contig = bio_end_sector(bio) == sector; 3103 3104 if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags)) 3105 can_merge = false; 3106 3107 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3108 force_bio_submit || 3109 bio_add_page(bio, page, io_size, pg_offset) < io_size) { 3110 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3111 if (ret < 0) { 3112 *bio_ret = NULL; 3113 return ret; 3114 } 3115 bio = NULL; 3116 } else { 3117 if (wbc) 3118 wbc_account_cgroup_owner(wbc, page, io_size); 3119 return 0; 3120 } 3121 } 3122 3123 bio = btrfs_bio_alloc(offset); 3124 bio_add_page(bio, page, io_size, pg_offset); 3125 bio->bi_end_io = end_io_func; 3126 bio->bi_private = tree; 3127 bio->bi_write_hint = page->mapping->host->i_write_hint; 3128 bio->bi_opf = opf; 3129 if (wbc) { 3130 struct block_device *bdev; 3131 3132 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3133 bio_set_dev(bio, bdev); 3134 wbc_init_bio(wbc, bio); 3135 wbc_account_cgroup_owner(wbc, page, io_size); 3136 } 3137 3138 *bio_ret = bio; 3139 3140 return ret; 3141 } 3142 3143 static void attach_extent_buffer_page(struct extent_buffer *eb, 3144 struct page *page) 3145 { 3146 /* 3147 * If the page is mapped to btree inode, we should hold the private 3148 * lock to prevent race. 3149 * For cloned or dummy extent buffers, their pages are not mapped and 3150 * will not race with any other ebs. 3151 */ 3152 if (page->mapping) 3153 lockdep_assert_held(&page->mapping->private_lock); 3154 3155 if (!PagePrivate(page)) 3156 attach_page_private(page, eb); 3157 else 3158 WARN_ON(page->private != (unsigned long)eb); 3159 } 3160 3161 void set_page_extent_mapped(struct page *page) 3162 { 3163 if (!PagePrivate(page)) 3164 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3165 } 3166 3167 static struct extent_map * 3168 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3169 u64 start, u64 len, struct extent_map **em_cached) 3170 { 3171 struct extent_map *em; 3172 3173 if (em_cached && *em_cached) { 3174 em = *em_cached; 3175 if (extent_map_in_tree(em) && start >= em->start && 3176 start < extent_map_end(em)) { 3177 refcount_inc(&em->refs); 3178 return em; 3179 } 3180 3181 free_extent_map(em); 3182 *em_cached = NULL; 3183 } 3184 3185 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3186 if (em_cached && !IS_ERR_OR_NULL(em)) { 3187 BUG_ON(*em_cached); 3188 refcount_inc(&em->refs); 3189 *em_cached = em; 3190 } 3191 return em; 3192 } 3193 /* 3194 * basic readpage implementation. Locked extent state structs are inserted 3195 * into the tree that are removed when the IO is done (by the end_io 3196 * handlers) 3197 * XXX JDM: This needs looking at to ensure proper page locking 3198 * return 0 on success, otherwise return error 3199 */ 3200 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3201 struct bio **bio, unsigned long *bio_flags, 3202 unsigned int read_flags, u64 *prev_em_start) 3203 { 3204 struct inode *inode = page->mapping->host; 3205 u64 start = page_offset(page); 3206 const u64 end = start + PAGE_SIZE - 1; 3207 u64 cur = start; 3208 u64 extent_offset; 3209 u64 last_byte = i_size_read(inode); 3210 u64 block_start; 3211 u64 cur_end; 3212 struct extent_map *em; 3213 int ret = 0; 3214 int nr = 0; 3215 size_t pg_offset = 0; 3216 size_t iosize; 3217 size_t blocksize = inode->i_sb->s_blocksize; 3218 unsigned long this_bio_flag = 0; 3219 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3220 3221 set_page_extent_mapped(page); 3222 3223 if (!PageUptodate(page)) { 3224 if (cleancache_get_page(page) == 0) { 3225 BUG_ON(blocksize != PAGE_SIZE); 3226 unlock_extent(tree, start, end); 3227 goto out; 3228 } 3229 } 3230 3231 if (page->index == last_byte >> PAGE_SHIFT) { 3232 char *userpage; 3233 size_t zero_offset = offset_in_page(last_byte); 3234 3235 if (zero_offset) { 3236 iosize = PAGE_SIZE - zero_offset; 3237 userpage = kmap_atomic(page); 3238 memset(userpage + zero_offset, 0, iosize); 3239 flush_dcache_page(page); 3240 kunmap_atomic(userpage); 3241 } 3242 } 3243 while (cur <= end) { 3244 bool force_bio_submit = false; 3245 u64 offset; 3246 3247 if (cur >= last_byte) { 3248 char *userpage; 3249 struct extent_state *cached = NULL; 3250 3251 iosize = PAGE_SIZE - pg_offset; 3252 userpage = kmap_atomic(page); 3253 memset(userpage + pg_offset, 0, iosize); 3254 flush_dcache_page(page); 3255 kunmap_atomic(userpage); 3256 set_extent_uptodate(tree, cur, cur + iosize - 1, 3257 &cached, GFP_NOFS); 3258 unlock_extent_cached(tree, cur, 3259 cur + iosize - 1, &cached); 3260 break; 3261 } 3262 em = __get_extent_map(inode, page, pg_offset, cur, 3263 end - cur + 1, em_cached); 3264 if (IS_ERR_OR_NULL(em)) { 3265 SetPageError(page); 3266 unlock_extent(tree, cur, end); 3267 break; 3268 } 3269 extent_offset = cur - em->start; 3270 BUG_ON(extent_map_end(em) <= cur); 3271 BUG_ON(end < cur); 3272 3273 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3274 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3275 extent_set_compress_type(&this_bio_flag, 3276 em->compress_type); 3277 } 3278 3279 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3280 cur_end = min(extent_map_end(em) - 1, end); 3281 iosize = ALIGN(iosize, blocksize); 3282 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3283 offset = em->block_start; 3284 else 3285 offset = em->block_start + extent_offset; 3286 block_start = em->block_start; 3287 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3288 block_start = EXTENT_MAP_HOLE; 3289 3290 /* 3291 * If we have a file range that points to a compressed extent 3292 * and it's followed by a consecutive file range that points 3293 * to the same compressed extent (possibly with a different 3294 * offset and/or length, so it either points to the whole extent 3295 * or only part of it), we must make sure we do not submit a 3296 * single bio to populate the pages for the 2 ranges because 3297 * this makes the compressed extent read zero out the pages 3298 * belonging to the 2nd range. Imagine the following scenario: 3299 * 3300 * File layout 3301 * [0 - 8K] [8K - 24K] 3302 * | | 3303 * | | 3304 * points to extent X, points to extent X, 3305 * offset 4K, length of 8K offset 0, length 16K 3306 * 3307 * [extent X, compressed length = 4K uncompressed length = 16K] 3308 * 3309 * If the bio to read the compressed extent covers both ranges, 3310 * it will decompress extent X into the pages belonging to the 3311 * first range and then it will stop, zeroing out the remaining 3312 * pages that belong to the other range that points to extent X. 3313 * So here we make sure we submit 2 bios, one for the first 3314 * range and another one for the third range. Both will target 3315 * the same physical extent from disk, but we can't currently 3316 * make the compressed bio endio callback populate the pages 3317 * for both ranges because each compressed bio is tightly 3318 * coupled with a single extent map, and each range can have 3319 * an extent map with a different offset value relative to the 3320 * uncompressed data of our extent and different lengths. This 3321 * is a corner case so we prioritize correctness over 3322 * non-optimal behavior (submitting 2 bios for the same extent). 3323 */ 3324 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3325 prev_em_start && *prev_em_start != (u64)-1 && 3326 *prev_em_start != em->start) 3327 force_bio_submit = true; 3328 3329 if (prev_em_start) 3330 *prev_em_start = em->start; 3331 3332 free_extent_map(em); 3333 em = NULL; 3334 3335 /* we've found a hole, just zero and go on */ 3336 if (block_start == EXTENT_MAP_HOLE) { 3337 char *userpage; 3338 struct extent_state *cached = NULL; 3339 3340 userpage = kmap_atomic(page); 3341 memset(userpage + pg_offset, 0, iosize); 3342 flush_dcache_page(page); 3343 kunmap_atomic(userpage); 3344 3345 set_extent_uptodate(tree, cur, cur + iosize - 1, 3346 &cached, GFP_NOFS); 3347 unlock_extent_cached(tree, cur, 3348 cur + iosize - 1, &cached); 3349 cur = cur + iosize; 3350 pg_offset += iosize; 3351 continue; 3352 } 3353 /* the get_extent function already copied into the page */ 3354 if (test_range_bit(tree, cur, cur_end, 3355 EXTENT_UPTODATE, 1, NULL)) { 3356 check_page_uptodate(tree, page); 3357 unlock_extent(tree, cur, cur + iosize - 1); 3358 cur = cur + iosize; 3359 pg_offset += iosize; 3360 continue; 3361 } 3362 /* we have an inline extent but it didn't get marked up 3363 * to date. Error out 3364 */ 3365 if (block_start == EXTENT_MAP_INLINE) { 3366 SetPageError(page); 3367 unlock_extent(tree, cur, cur + iosize - 1); 3368 cur = cur + iosize; 3369 pg_offset += iosize; 3370 continue; 3371 } 3372 3373 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3374 page, offset, iosize, 3375 pg_offset, bio, 3376 end_bio_extent_readpage, 0, 3377 *bio_flags, 3378 this_bio_flag, 3379 force_bio_submit); 3380 if (!ret) { 3381 nr++; 3382 *bio_flags = this_bio_flag; 3383 } else { 3384 SetPageError(page); 3385 unlock_extent(tree, cur, cur + iosize - 1); 3386 goto out; 3387 } 3388 cur = cur + iosize; 3389 pg_offset += iosize; 3390 } 3391 out: 3392 if (!nr) { 3393 if (!PageError(page)) 3394 SetPageUptodate(page); 3395 unlock_page(page); 3396 } 3397 return ret; 3398 } 3399 3400 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3401 u64 start, u64 end, 3402 struct extent_map **em_cached, 3403 struct bio **bio, 3404 unsigned long *bio_flags, 3405 u64 *prev_em_start) 3406 { 3407 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3408 int index; 3409 3410 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3411 3412 for (index = 0; index < nr_pages; index++) { 3413 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags, 3414 REQ_RAHEAD, prev_em_start); 3415 put_page(pages[index]); 3416 } 3417 } 3418 3419 static void update_nr_written(struct writeback_control *wbc, 3420 unsigned long nr_written) 3421 { 3422 wbc->nr_to_write -= nr_written; 3423 } 3424 3425 /* 3426 * helper for __extent_writepage, doing all of the delayed allocation setup. 3427 * 3428 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3429 * to write the page (copy into inline extent). In this case the IO has 3430 * been started and the page is already unlocked. 3431 * 3432 * This returns 0 if all went well (page still locked) 3433 * This returns < 0 if there were errors (page still locked) 3434 */ 3435 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3436 struct page *page, struct writeback_control *wbc, 3437 u64 delalloc_start, unsigned long *nr_written) 3438 { 3439 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3440 bool found; 3441 u64 delalloc_to_write = 0; 3442 u64 delalloc_end = 0; 3443 int ret; 3444 int page_started = 0; 3445 3446 3447 while (delalloc_end < page_end) { 3448 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3449 &delalloc_start, 3450 &delalloc_end); 3451 if (!found) { 3452 delalloc_start = delalloc_end + 1; 3453 continue; 3454 } 3455 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3456 delalloc_end, &page_started, nr_written, wbc); 3457 if (ret) { 3458 SetPageError(page); 3459 /* 3460 * btrfs_run_delalloc_range should return < 0 for error 3461 * but just in case, we use > 0 here meaning the IO is 3462 * started, so we don't want to return > 0 unless 3463 * things are going well. 3464 */ 3465 return ret < 0 ? ret : -EIO; 3466 } 3467 /* 3468 * delalloc_end is already one less than the total length, so 3469 * we don't subtract one from PAGE_SIZE 3470 */ 3471 delalloc_to_write += (delalloc_end - delalloc_start + 3472 PAGE_SIZE) >> PAGE_SHIFT; 3473 delalloc_start = delalloc_end + 1; 3474 } 3475 if (wbc->nr_to_write < delalloc_to_write) { 3476 int thresh = 8192; 3477 3478 if (delalloc_to_write < thresh * 2) 3479 thresh = delalloc_to_write; 3480 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3481 thresh); 3482 } 3483 3484 /* did the fill delalloc function already unlock and start 3485 * the IO? 3486 */ 3487 if (page_started) { 3488 /* 3489 * we've unlocked the page, so we can't update 3490 * the mapping's writeback index, just update 3491 * nr_to_write. 3492 */ 3493 wbc->nr_to_write -= *nr_written; 3494 return 1; 3495 } 3496 3497 return 0; 3498 } 3499 3500 /* 3501 * helper for __extent_writepage. This calls the writepage start hooks, 3502 * and does the loop to map the page into extents and bios. 3503 * 3504 * We return 1 if the IO is started and the page is unlocked, 3505 * 0 if all went well (page still locked) 3506 * < 0 if there were errors (page still locked) 3507 */ 3508 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3509 struct page *page, 3510 struct writeback_control *wbc, 3511 struct extent_page_data *epd, 3512 loff_t i_size, 3513 unsigned long nr_written, 3514 int *nr_ret) 3515 { 3516 struct extent_io_tree *tree = &inode->io_tree; 3517 u64 start = page_offset(page); 3518 u64 page_end = start + PAGE_SIZE - 1; 3519 u64 end; 3520 u64 cur = start; 3521 u64 extent_offset; 3522 u64 block_start; 3523 u64 iosize; 3524 struct extent_map *em; 3525 size_t pg_offset = 0; 3526 size_t blocksize; 3527 int ret = 0; 3528 int nr = 0; 3529 const unsigned int write_flags = wbc_to_write_flags(wbc); 3530 bool compressed; 3531 3532 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3533 if (ret) { 3534 /* Fixup worker will requeue */ 3535 redirty_page_for_writepage(wbc, page); 3536 update_nr_written(wbc, nr_written); 3537 unlock_page(page); 3538 return 1; 3539 } 3540 3541 /* 3542 * we don't want to touch the inode after unlocking the page, 3543 * so we update the mapping writeback index now 3544 */ 3545 update_nr_written(wbc, nr_written + 1); 3546 3547 end = page_end; 3548 blocksize = inode->vfs_inode.i_sb->s_blocksize; 3549 3550 while (cur <= end) { 3551 u64 em_end; 3552 u64 offset; 3553 3554 if (cur >= i_size) { 3555 btrfs_writepage_endio_finish_ordered(page, cur, 3556 page_end, 1); 3557 break; 3558 } 3559 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3560 if (IS_ERR_OR_NULL(em)) { 3561 SetPageError(page); 3562 ret = PTR_ERR_OR_ZERO(em); 3563 break; 3564 } 3565 3566 extent_offset = cur - em->start; 3567 em_end = extent_map_end(em); 3568 BUG_ON(em_end <= cur); 3569 BUG_ON(end < cur); 3570 iosize = min(em_end - cur, end - cur + 1); 3571 iosize = ALIGN(iosize, blocksize); 3572 offset = em->block_start + extent_offset; 3573 block_start = em->block_start; 3574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3575 free_extent_map(em); 3576 em = NULL; 3577 3578 /* 3579 * compressed and inline extents are written through other 3580 * paths in the FS 3581 */ 3582 if (compressed || block_start == EXTENT_MAP_HOLE || 3583 block_start == EXTENT_MAP_INLINE) { 3584 if (compressed) 3585 nr++; 3586 else 3587 btrfs_writepage_endio_finish_ordered(page, cur, 3588 cur + iosize - 1, 1); 3589 cur += iosize; 3590 pg_offset += iosize; 3591 continue; 3592 } 3593 3594 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3595 if (!PageWriteback(page)) { 3596 btrfs_err(inode->root->fs_info, 3597 "page %lu not writeback, cur %llu end %llu", 3598 page->index, cur, end); 3599 } 3600 3601 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3602 page, offset, iosize, pg_offset, 3603 &epd->bio, 3604 end_bio_extent_writepage, 3605 0, 0, 0, false); 3606 if (ret) { 3607 SetPageError(page); 3608 if (PageWriteback(page)) 3609 end_page_writeback(page); 3610 } 3611 3612 cur = cur + iosize; 3613 pg_offset += iosize; 3614 nr++; 3615 } 3616 *nr_ret = nr; 3617 return ret; 3618 } 3619 3620 /* 3621 * the writepage semantics are similar to regular writepage. extent 3622 * records are inserted to lock ranges in the tree, and as dirty areas 3623 * are found, they are marked writeback. Then the lock bits are removed 3624 * and the end_io handler clears the writeback ranges 3625 * 3626 * Return 0 if everything goes well. 3627 * Return <0 for error. 3628 */ 3629 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3630 struct extent_page_data *epd) 3631 { 3632 struct inode *inode = page->mapping->host; 3633 u64 start = page_offset(page); 3634 u64 page_end = start + PAGE_SIZE - 1; 3635 int ret; 3636 int nr = 0; 3637 size_t pg_offset; 3638 loff_t i_size = i_size_read(inode); 3639 unsigned long end_index = i_size >> PAGE_SHIFT; 3640 unsigned long nr_written = 0; 3641 3642 trace___extent_writepage(page, inode, wbc); 3643 3644 WARN_ON(!PageLocked(page)); 3645 3646 ClearPageError(page); 3647 3648 pg_offset = offset_in_page(i_size); 3649 if (page->index > end_index || 3650 (page->index == end_index && !pg_offset)) { 3651 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3652 unlock_page(page); 3653 return 0; 3654 } 3655 3656 if (page->index == end_index) { 3657 char *userpage; 3658 3659 userpage = kmap_atomic(page); 3660 memset(userpage + pg_offset, 0, 3661 PAGE_SIZE - pg_offset); 3662 kunmap_atomic(userpage); 3663 flush_dcache_page(page); 3664 } 3665 3666 set_page_extent_mapped(page); 3667 3668 if (!epd->extent_locked) { 3669 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start, 3670 &nr_written); 3671 if (ret == 1) 3672 return 0; 3673 if (ret) 3674 goto done; 3675 } 3676 3677 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 3678 nr_written, &nr); 3679 if (ret == 1) 3680 return 0; 3681 3682 done: 3683 if (nr == 0) { 3684 /* make sure the mapping tag for page dirty gets cleared */ 3685 set_page_writeback(page); 3686 end_page_writeback(page); 3687 } 3688 if (PageError(page)) { 3689 ret = ret < 0 ? ret : -EIO; 3690 end_extent_writepage(page, ret, start, page_end); 3691 } 3692 unlock_page(page); 3693 ASSERT(ret <= 0); 3694 return ret; 3695 } 3696 3697 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3698 { 3699 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3700 TASK_UNINTERRUPTIBLE); 3701 } 3702 3703 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3704 { 3705 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3706 smp_mb__after_atomic(); 3707 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3708 } 3709 3710 /* 3711 * Lock extent buffer status and pages for writeback. 3712 * 3713 * May try to flush write bio if we can't get the lock. 3714 * 3715 * Return 0 if the extent buffer doesn't need to be submitted. 3716 * (E.g. the extent buffer is not dirty) 3717 * Return >0 is the extent buffer is submitted to bio. 3718 * Return <0 if something went wrong, no page is locked. 3719 */ 3720 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3721 struct extent_page_data *epd) 3722 { 3723 struct btrfs_fs_info *fs_info = eb->fs_info; 3724 int i, num_pages, failed_page_nr; 3725 int flush = 0; 3726 int ret = 0; 3727 3728 if (!btrfs_try_tree_write_lock(eb)) { 3729 ret = flush_write_bio(epd); 3730 if (ret < 0) 3731 return ret; 3732 flush = 1; 3733 btrfs_tree_lock(eb); 3734 } 3735 3736 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3737 btrfs_tree_unlock(eb); 3738 if (!epd->sync_io) 3739 return 0; 3740 if (!flush) { 3741 ret = flush_write_bio(epd); 3742 if (ret < 0) 3743 return ret; 3744 flush = 1; 3745 } 3746 while (1) { 3747 wait_on_extent_buffer_writeback(eb); 3748 btrfs_tree_lock(eb); 3749 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3750 break; 3751 btrfs_tree_unlock(eb); 3752 } 3753 } 3754 3755 /* 3756 * We need to do this to prevent races in people who check if the eb is 3757 * under IO since we can end up having no IO bits set for a short period 3758 * of time. 3759 */ 3760 spin_lock(&eb->refs_lock); 3761 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3762 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3763 spin_unlock(&eb->refs_lock); 3764 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3765 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3766 -eb->len, 3767 fs_info->dirty_metadata_batch); 3768 ret = 1; 3769 } else { 3770 spin_unlock(&eb->refs_lock); 3771 } 3772 3773 btrfs_tree_unlock(eb); 3774 3775 if (!ret) 3776 return ret; 3777 3778 num_pages = num_extent_pages(eb); 3779 for (i = 0; i < num_pages; i++) { 3780 struct page *p = eb->pages[i]; 3781 3782 if (!trylock_page(p)) { 3783 if (!flush) { 3784 int err; 3785 3786 err = flush_write_bio(epd); 3787 if (err < 0) { 3788 ret = err; 3789 failed_page_nr = i; 3790 goto err_unlock; 3791 } 3792 flush = 1; 3793 } 3794 lock_page(p); 3795 } 3796 } 3797 3798 return ret; 3799 err_unlock: 3800 /* Unlock already locked pages */ 3801 for (i = 0; i < failed_page_nr; i++) 3802 unlock_page(eb->pages[i]); 3803 /* 3804 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3805 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3806 * be made and undo everything done before. 3807 */ 3808 btrfs_tree_lock(eb); 3809 spin_lock(&eb->refs_lock); 3810 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3811 end_extent_buffer_writeback(eb); 3812 spin_unlock(&eb->refs_lock); 3813 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3814 fs_info->dirty_metadata_batch); 3815 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3816 btrfs_tree_unlock(eb); 3817 return ret; 3818 } 3819 3820 static void set_btree_ioerr(struct page *page) 3821 { 3822 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3823 struct btrfs_fs_info *fs_info; 3824 3825 SetPageError(page); 3826 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3827 return; 3828 3829 /* 3830 * If we error out, we should add back the dirty_metadata_bytes 3831 * to make it consistent. 3832 */ 3833 fs_info = eb->fs_info; 3834 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3835 eb->len, fs_info->dirty_metadata_batch); 3836 3837 /* 3838 * If writeback for a btree extent that doesn't belong to a log tree 3839 * failed, increment the counter transaction->eb_write_errors. 3840 * We do this because while the transaction is running and before it's 3841 * committing (when we call filemap_fdata[write|wait]_range against 3842 * the btree inode), we might have 3843 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3844 * returns an error or an error happens during writeback, when we're 3845 * committing the transaction we wouldn't know about it, since the pages 3846 * can be no longer dirty nor marked anymore for writeback (if a 3847 * subsequent modification to the extent buffer didn't happen before the 3848 * transaction commit), which makes filemap_fdata[write|wait]_range not 3849 * able to find the pages tagged with SetPageError at transaction 3850 * commit time. So if this happens we must abort the transaction, 3851 * otherwise we commit a super block with btree roots that point to 3852 * btree nodes/leafs whose content on disk is invalid - either garbage 3853 * or the content of some node/leaf from a past generation that got 3854 * cowed or deleted and is no longer valid. 3855 * 3856 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3857 * not be enough - we need to distinguish between log tree extents vs 3858 * non-log tree extents, and the next filemap_fdatawait_range() call 3859 * will catch and clear such errors in the mapping - and that call might 3860 * be from a log sync and not from a transaction commit. Also, checking 3861 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3862 * not done and would not be reliable - the eb might have been released 3863 * from memory and reading it back again means that flag would not be 3864 * set (since it's a runtime flag, not persisted on disk). 3865 * 3866 * Using the flags below in the btree inode also makes us achieve the 3867 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3868 * writeback for all dirty pages and before filemap_fdatawait_range() 3869 * is called, the writeback for all dirty pages had already finished 3870 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3871 * filemap_fdatawait_range() would return success, as it could not know 3872 * that writeback errors happened (the pages were no longer tagged for 3873 * writeback). 3874 */ 3875 switch (eb->log_index) { 3876 case -1: 3877 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3878 break; 3879 case 0: 3880 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3881 break; 3882 case 1: 3883 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3884 break; 3885 default: 3886 BUG(); /* unexpected, logic error */ 3887 } 3888 } 3889 3890 static void end_bio_extent_buffer_writepage(struct bio *bio) 3891 { 3892 struct bio_vec *bvec; 3893 struct extent_buffer *eb; 3894 int done; 3895 struct bvec_iter_all iter_all; 3896 3897 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3898 bio_for_each_segment_all(bvec, bio, iter_all) { 3899 struct page *page = bvec->bv_page; 3900 3901 eb = (struct extent_buffer *)page->private; 3902 BUG_ON(!eb); 3903 done = atomic_dec_and_test(&eb->io_pages); 3904 3905 if (bio->bi_status || 3906 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3907 ClearPageUptodate(page); 3908 set_btree_ioerr(page); 3909 } 3910 3911 end_page_writeback(page); 3912 3913 if (!done) 3914 continue; 3915 3916 end_extent_buffer_writeback(eb); 3917 } 3918 3919 bio_put(bio); 3920 } 3921 3922 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3923 struct writeback_control *wbc, 3924 struct extent_page_data *epd) 3925 { 3926 u64 offset = eb->start; 3927 u32 nritems; 3928 int i, num_pages; 3929 unsigned long start, end; 3930 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3931 int ret = 0; 3932 3933 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3934 num_pages = num_extent_pages(eb); 3935 atomic_set(&eb->io_pages, num_pages); 3936 3937 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3938 nritems = btrfs_header_nritems(eb); 3939 if (btrfs_header_level(eb) > 0) { 3940 end = btrfs_node_key_ptr_offset(nritems); 3941 3942 memzero_extent_buffer(eb, end, eb->len - end); 3943 } else { 3944 /* 3945 * leaf: 3946 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3947 */ 3948 start = btrfs_item_nr_offset(nritems); 3949 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3950 memzero_extent_buffer(eb, start, end - start); 3951 } 3952 3953 for (i = 0; i < num_pages; i++) { 3954 struct page *p = eb->pages[i]; 3955 3956 clear_page_dirty_for_io(p); 3957 set_page_writeback(p); 3958 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3959 p, offset, PAGE_SIZE, 0, 3960 &epd->bio, 3961 end_bio_extent_buffer_writepage, 3962 0, 0, 0, false); 3963 if (ret) { 3964 set_btree_ioerr(p); 3965 if (PageWriteback(p)) 3966 end_page_writeback(p); 3967 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3968 end_extent_buffer_writeback(eb); 3969 ret = -EIO; 3970 break; 3971 } 3972 offset += PAGE_SIZE; 3973 update_nr_written(wbc, 1); 3974 unlock_page(p); 3975 } 3976 3977 if (unlikely(ret)) { 3978 for (; i < num_pages; i++) { 3979 struct page *p = eb->pages[i]; 3980 clear_page_dirty_for_io(p); 3981 unlock_page(p); 3982 } 3983 } 3984 3985 return ret; 3986 } 3987 3988 /* 3989 * Submit all page(s) of one extent buffer. 3990 * 3991 * @page: the page of one extent buffer 3992 * @eb_context: to determine if we need to submit this page, if current page 3993 * belongs to this eb, we don't need to submit 3994 * 3995 * The caller should pass each page in their bytenr order, and here we use 3996 * @eb_context to determine if we have submitted pages of one extent buffer. 3997 * 3998 * If we have, we just skip until we hit a new page that doesn't belong to 3999 * current @eb_context. 4000 * 4001 * If not, we submit all the page(s) of the extent buffer. 4002 * 4003 * Return >0 if we have submitted the extent buffer successfully. 4004 * Return 0 if we don't need to submit the page, as it's already submitted by 4005 * previous call. 4006 * Return <0 for fatal error. 4007 */ 4008 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4009 struct extent_page_data *epd, 4010 struct extent_buffer **eb_context) 4011 { 4012 struct address_space *mapping = page->mapping; 4013 struct extent_buffer *eb; 4014 int ret; 4015 4016 if (!PagePrivate(page)) 4017 return 0; 4018 4019 spin_lock(&mapping->private_lock); 4020 if (!PagePrivate(page)) { 4021 spin_unlock(&mapping->private_lock); 4022 return 0; 4023 } 4024 4025 eb = (struct extent_buffer *)page->private; 4026 4027 /* 4028 * Shouldn't happen and normally this would be a BUG_ON but no point 4029 * crashing the machine for something we can survive anyway. 4030 */ 4031 if (WARN_ON(!eb)) { 4032 spin_unlock(&mapping->private_lock); 4033 return 0; 4034 } 4035 4036 if (eb == *eb_context) { 4037 spin_unlock(&mapping->private_lock); 4038 return 0; 4039 } 4040 ret = atomic_inc_not_zero(&eb->refs); 4041 spin_unlock(&mapping->private_lock); 4042 if (!ret) 4043 return 0; 4044 4045 *eb_context = eb; 4046 4047 ret = lock_extent_buffer_for_io(eb, epd); 4048 if (ret <= 0) { 4049 free_extent_buffer(eb); 4050 return ret; 4051 } 4052 ret = write_one_eb(eb, wbc, epd); 4053 free_extent_buffer(eb); 4054 if (ret < 0) 4055 return ret; 4056 return 1; 4057 } 4058 4059 int btree_write_cache_pages(struct address_space *mapping, 4060 struct writeback_control *wbc) 4061 { 4062 struct extent_buffer *eb_context = NULL; 4063 struct extent_page_data epd = { 4064 .bio = NULL, 4065 .extent_locked = 0, 4066 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4067 }; 4068 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4069 int ret = 0; 4070 int done = 0; 4071 int nr_to_write_done = 0; 4072 struct pagevec pvec; 4073 int nr_pages; 4074 pgoff_t index; 4075 pgoff_t end; /* Inclusive */ 4076 int scanned = 0; 4077 xa_mark_t tag; 4078 4079 pagevec_init(&pvec); 4080 if (wbc->range_cyclic) { 4081 index = mapping->writeback_index; /* Start from prev offset */ 4082 end = -1; 4083 /* 4084 * Start from the beginning does not need to cycle over the 4085 * range, mark it as scanned. 4086 */ 4087 scanned = (index == 0); 4088 } else { 4089 index = wbc->range_start >> PAGE_SHIFT; 4090 end = wbc->range_end >> PAGE_SHIFT; 4091 scanned = 1; 4092 } 4093 if (wbc->sync_mode == WB_SYNC_ALL) 4094 tag = PAGECACHE_TAG_TOWRITE; 4095 else 4096 tag = PAGECACHE_TAG_DIRTY; 4097 retry: 4098 if (wbc->sync_mode == WB_SYNC_ALL) 4099 tag_pages_for_writeback(mapping, index, end); 4100 while (!done && !nr_to_write_done && (index <= end) && 4101 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4102 tag))) { 4103 unsigned i; 4104 4105 for (i = 0; i < nr_pages; i++) { 4106 struct page *page = pvec.pages[i]; 4107 4108 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4109 if (ret == 0) 4110 continue; 4111 if (ret < 0) { 4112 done = 1; 4113 break; 4114 } 4115 4116 /* 4117 * the filesystem may choose to bump up nr_to_write. 4118 * We have to make sure to honor the new nr_to_write 4119 * at any time 4120 */ 4121 nr_to_write_done = wbc->nr_to_write <= 0; 4122 } 4123 pagevec_release(&pvec); 4124 cond_resched(); 4125 } 4126 if (!scanned && !done) { 4127 /* 4128 * We hit the last page and there is more work to be done: wrap 4129 * back to the start of the file 4130 */ 4131 scanned = 1; 4132 index = 0; 4133 goto retry; 4134 } 4135 if (ret < 0) { 4136 end_write_bio(&epd, ret); 4137 return ret; 4138 } 4139 /* 4140 * If something went wrong, don't allow any metadata write bio to be 4141 * submitted. 4142 * 4143 * This would prevent use-after-free if we had dirty pages not 4144 * cleaned up, which can still happen by fuzzed images. 4145 * 4146 * - Bad extent tree 4147 * Allowing existing tree block to be allocated for other trees. 4148 * 4149 * - Log tree operations 4150 * Exiting tree blocks get allocated to log tree, bumps its 4151 * generation, then get cleaned in tree re-balance. 4152 * Such tree block will not be written back, since it's clean, 4153 * thus no WRITTEN flag set. 4154 * And after log writes back, this tree block is not traced by 4155 * any dirty extent_io_tree. 4156 * 4157 * - Offending tree block gets re-dirtied from its original owner 4158 * Since it has bumped generation, no WRITTEN flag, it can be 4159 * reused without COWing. This tree block will not be traced 4160 * by btrfs_transaction::dirty_pages. 4161 * 4162 * Now such dirty tree block will not be cleaned by any dirty 4163 * extent io tree. Thus we don't want to submit such wild eb 4164 * if the fs already has error. 4165 */ 4166 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4167 ret = flush_write_bio(&epd); 4168 } else { 4169 ret = -EROFS; 4170 end_write_bio(&epd, ret); 4171 } 4172 return ret; 4173 } 4174 4175 /** 4176 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4177 * @mapping: address space structure to write 4178 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4179 * @data: data passed to __extent_writepage function 4180 * 4181 * If a page is already under I/O, write_cache_pages() skips it, even 4182 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4183 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4184 * and msync() need to guarantee that all the data which was dirty at the time 4185 * the call was made get new I/O started against them. If wbc->sync_mode is 4186 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4187 * existing IO to complete. 4188 */ 4189 static int extent_write_cache_pages(struct address_space *mapping, 4190 struct writeback_control *wbc, 4191 struct extent_page_data *epd) 4192 { 4193 struct inode *inode = mapping->host; 4194 int ret = 0; 4195 int done = 0; 4196 int nr_to_write_done = 0; 4197 struct pagevec pvec; 4198 int nr_pages; 4199 pgoff_t index; 4200 pgoff_t end; /* Inclusive */ 4201 pgoff_t done_index; 4202 int range_whole = 0; 4203 int scanned = 0; 4204 xa_mark_t tag; 4205 4206 /* 4207 * We have to hold onto the inode so that ordered extents can do their 4208 * work when the IO finishes. The alternative to this is failing to add 4209 * an ordered extent if the igrab() fails there and that is a huge pain 4210 * to deal with, so instead just hold onto the inode throughout the 4211 * writepages operation. If it fails here we are freeing up the inode 4212 * anyway and we'd rather not waste our time writing out stuff that is 4213 * going to be truncated anyway. 4214 */ 4215 if (!igrab(inode)) 4216 return 0; 4217 4218 pagevec_init(&pvec); 4219 if (wbc->range_cyclic) { 4220 index = mapping->writeback_index; /* Start from prev offset */ 4221 end = -1; 4222 /* 4223 * Start from the beginning does not need to cycle over the 4224 * range, mark it as scanned. 4225 */ 4226 scanned = (index == 0); 4227 } else { 4228 index = wbc->range_start >> PAGE_SHIFT; 4229 end = wbc->range_end >> PAGE_SHIFT; 4230 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4231 range_whole = 1; 4232 scanned = 1; 4233 } 4234 4235 /* 4236 * We do the tagged writepage as long as the snapshot flush bit is set 4237 * and we are the first one who do the filemap_flush() on this inode. 4238 * 4239 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4240 * not race in and drop the bit. 4241 */ 4242 if (range_whole && wbc->nr_to_write == LONG_MAX && 4243 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4244 &BTRFS_I(inode)->runtime_flags)) 4245 wbc->tagged_writepages = 1; 4246 4247 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4248 tag = PAGECACHE_TAG_TOWRITE; 4249 else 4250 tag = PAGECACHE_TAG_DIRTY; 4251 retry: 4252 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4253 tag_pages_for_writeback(mapping, index, end); 4254 done_index = index; 4255 while (!done && !nr_to_write_done && (index <= end) && 4256 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4257 &index, end, tag))) { 4258 unsigned i; 4259 4260 for (i = 0; i < nr_pages; i++) { 4261 struct page *page = pvec.pages[i]; 4262 4263 done_index = page->index + 1; 4264 /* 4265 * At this point we hold neither the i_pages lock nor 4266 * the page lock: the page may be truncated or 4267 * invalidated (changing page->mapping to NULL), 4268 * or even swizzled back from swapper_space to 4269 * tmpfs file mapping 4270 */ 4271 if (!trylock_page(page)) { 4272 ret = flush_write_bio(epd); 4273 BUG_ON(ret < 0); 4274 lock_page(page); 4275 } 4276 4277 if (unlikely(page->mapping != mapping)) { 4278 unlock_page(page); 4279 continue; 4280 } 4281 4282 if (wbc->sync_mode != WB_SYNC_NONE) { 4283 if (PageWriteback(page)) { 4284 ret = flush_write_bio(epd); 4285 BUG_ON(ret < 0); 4286 } 4287 wait_on_page_writeback(page); 4288 } 4289 4290 if (PageWriteback(page) || 4291 !clear_page_dirty_for_io(page)) { 4292 unlock_page(page); 4293 continue; 4294 } 4295 4296 ret = __extent_writepage(page, wbc, epd); 4297 if (ret < 0) { 4298 done = 1; 4299 break; 4300 } 4301 4302 /* 4303 * the filesystem may choose to bump up nr_to_write. 4304 * We have to make sure to honor the new nr_to_write 4305 * at any time 4306 */ 4307 nr_to_write_done = wbc->nr_to_write <= 0; 4308 } 4309 pagevec_release(&pvec); 4310 cond_resched(); 4311 } 4312 if (!scanned && !done) { 4313 /* 4314 * We hit the last page and there is more work to be done: wrap 4315 * back to the start of the file 4316 */ 4317 scanned = 1; 4318 index = 0; 4319 4320 /* 4321 * If we're looping we could run into a page that is locked by a 4322 * writer and that writer could be waiting on writeback for a 4323 * page in our current bio, and thus deadlock, so flush the 4324 * write bio here. 4325 */ 4326 ret = flush_write_bio(epd); 4327 if (!ret) 4328 goto retry; 4329 } 4330 4331 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4332 mapping->writeback_index = done_index; 4333 4334 btrfs_add_delayed_iput(inode); 4335 return ret; 4336 } 4337 4338 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4339 { 4340 int ret; 4341 struct extent_page_data epd = { 4342 .bio = NULL, 4343 .extent_locked = 0, 4344 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4345 }; 4346 4347 ret = __extent_writepage(page, wbc, &epd); 4348 ASSERT(ret <= 0); 4349 if (ret < 0) { 4350 end_write_bio(&epd, ret); 4351 return ret; 4352 } 4353 4354 ret = flush_write_bio(&epd); 4355 ASSERT(ret <= 0); 4356 return ret; 4357 } 4358 4359 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4360 int mode) 4361 { 4362 int ret = 0; 4363 struct address_space *mapping = inode->i_mapping; 4364 struct page *page; 4365 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4366 PAGE_SHIFT; 4367 4368 struct extent_page_data epd = { 4369 .bio = NULL, 4370 .extent_locked = 1, 4371 .sync_io = mode == WB_SYNC_ALL, 4372 }; 4373 struct writeback_control wbc_writepages = { 4374 .sync_mode = mode, 4375 .nr_to_write = nr_pages * 2, 4376 .range_start = start, 4377 .range_end = end + 1, 4378 /* We're called from an async helper function */ 4379 .punt_to_cgroup = 1, 4380 .no_cgroup_owner = 1, 4381 }; 4382 4383 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4384 while (start <= end) { 4385 page = find_get_page(mapping, start >> PAGE_SHIFT); 4386 if (clear_page_dirty_for_io(page)) 4387 ret = __extent_writepage(page, &wbc_writepages, &epd); 4388 else { 4389 btrfs_writepage_endio_finish_ordered(page, start, 4390 start + PAGE_SIZE - 1, 1); 4391 unlock_page(page); 4392 } 4393 put_page(page); 4394 start += PAGE_SIZE; 4395 } 4396 4397 ASSERT(ret <= 0); 4398 if (ret == 0) 4399 ret = flush_write_bio(&epd); 4400 else 4401 end_write_bio(&epd, ret); 4402 4403 wbc_detach_inode(&wbc_writepages); 4404 return ret; 4405 } 4406 4407 int extent_writepages(struct address_space *mapping, 4408 struct writeback_control *wbc) 4409 { 4410 int ret = 0; 4411 struct extent_page_data epd = { 4412 .bio = NULL, 4413 .extent_locked = 0, 4414 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4415 }; 4416 4417 ret = extent_write_cache_pages(mapping, wbc, &epd); 4418 ASSERT(ret <= 0); 4419 if (ret < 0) { 4420 end_write_bio(&epd, ret); 4421 return ret; 4422 } 4423 ret = flush_write_bio(&epd); 4424 return ret; 4425 } 4426 4427 void extent_readahead(struct readahead_control *rac) 4428 { 4429 struct bio *bio = NULL; 4430 unsigned long bio_flags = 0; 4431 struct page *pagepool[16]; 4432 struct extent_map *em_cached = NULL; 4433 u64 prev_em_start = (u64)-1; 4434 int nr; 4435 4436 while ((nr = readahead_page_batch(rac, pagepool))) { 4437 u64 contig_start = page_offset(pagepool[0]); 4438 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4439 4440 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4441 4442 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4443 &em_cached, &bio, &bio_flags, &prev_em_start); 4444 } 4445 4446 if (em_cached) 4447 free_extent_map(em_cached); 4448 4449 if (bio) { 4450 if (submit_one_bio(bio, 0, bio_flags)) 4451 return; 4452 } 4453 } 4454 4455 /* 4456 * basic invalidatepage code, this waits on any locked or writeback 4457 * ranges corresponding to the page, and then deletes any extent state 4458 * records from the tree 4459 */ 4460 int extent_invalidatepage(struct extent_io_tree *tree, 4461 struct page *page, unsigned long offset) 4462 { 4463 struct extent_state *cached_state = NULL; 4464 u64 start = page_offset(page); 4465 u64 end = start + PAGE_SIZE - 1; 4466 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4467 4468 /* This function is only called for the btree inode */ 4469 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 4470 4471 start += ALIGN(offset, blocksize); 4472 if (start > end) 4473 return 0; 4474 4475 lock_extent_bits(tree, start, end, &cached_state); 4476 wait_on_page_writeback(page); 4477 4478 /* 4479 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 4480 * so here we only need to unlock the extent range to free any 4481 * existing extent state. 4482 */ 4483 unlock_extent_cached(tree, start, end, &cached_state); 4484 return 0; 4485 } 4486 4487 /* 4488 * a helper for releasepage, this tests for areas of the page that 4489 * are locked or under IO and drops the related state bits if it is safe 4490 * to drop the page. 4491 */ 4492 static int try_release_extent_state(struct extent_io_tree *tree, 4493 struct page *page, gfp_t mask) 4494 { 4495 u64 start = page_offset(page); 4496 u64 end = start + PAGE_SIZE - 1; 4497 int ret = 1; 4498 4499 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4500 ret = 0; 4501 } else { 4502 /* 4503 * At this point we can safely clear everything except the 4504 * locked bit, the nodatasum bit and the delalloc new bit. 4505 * The delalloc new bit will be cleared by ordered extent 4506 * completion. 4507 */ 4508 ret = __clear_extent_bit(tree, start, end, 4509 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 4510 0, 0, NULL, mask, NULL); 4511 4512 /* if clear_extent_bit failed for enomem reasons, 4513 * we can't allow the release to continue. 4514 */ 4515 if (ret < 0) 4516 ret = 0; 4517 else 4518 ret = 1; 4519 } 4520 return ret; 4521 } 4522 4523 /* 4524 * a helper for releasepage. As long as there are no locked extents 4525 * in the range corresponding to the page, both state records and extent 4526 * map records are removed 4527 */ 4528 int try_release_extent_mapping(struct page *page, gfp_t mask) 4529 { 4530 struct extent_map *em; 4531 u64 start = page_offset(page); 4532 u64 end = start + PAGE_SIZE - 1; 4533 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4534 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4535 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4536 4537 if (gfpflags_allow_blocking(mask) && 4538 page->mapping->host->i_size > SZ_16M) { 4539 u64 len; 4540 while (start <= end) { 4541 struct btrfs_fs_info *fs_info; 4542 u64 cur_gen; 4543 4544 len = end - start + 1; 4545 write_lock(&map->lock); 4546 em = lookup_extent_mapping(map, start, len); 4547 if (!em) { 4548 write_unlock(&map->lock); 4549 break; 4550 } 4551 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4552 em->start != start) { 4553 write_unlock(&map->lock); 4554 free_extent_map(em); 4555 break; 4556 } 4557 if (test_range_bit(tree, em->start, 4558 extent_map_end(em) - 1, 4559 EXTENT_LOCKED, 0, NULL)) 4560 goto next; 4561 /* 4562 * If it's not in the list of modified extents, used 4563 * by a fast fsync, we can remove it. If it's being 4564 * logged we can safely remove it since fsync took an 4565 * extra reference on the em. 4566 */ 4567 if (list_empty(&em->list) || 4568 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 4569 goto remove_em; 4570 /* 4571 * If it's in the list of modified extents, remove it 4572 * only if its generation is older then the current one, 4573 * in which case we don't need it for a fast fsync. 4574 * Otherwise don't remove it, we could be racing with an 4575 * ongoing fast fsync that could miss the new extent. 4576 */ 4577 fs_info = btrfs_inode->root->fs_info; 4578 spin_lock(&fs_info->trans_lock); 4579 cur_gen = fs_info->generation; 4580 spin_unlock(&fs_info->trans_lock); 4581 if (em->generation >= cur_gen) 4582 goto next; 4583 remove_em: 4584 /* 4585 * We only remove extent maps that are not in the list of 4586 * modified extents or that are in the list but with a 4587 * generation lower then the current generation, so there 4588 * is no need to set the full fsync flag on the inode (it 4589 * hurts the fsync performance for workloads with a data 4590 * size that exceeds or is close to the system's memory). 4591 */ 4592 remove_extent_mapping(map, em); 4593 /* once for the rb tree */ 4594 free_extent_map(em); 4595 next: 4596 start = extent_map_end(em); 4597 write_unlock(&map->lock); 4598 4599 /* once for us */ 4600 free_extent_map(em); 4601 4602 cond_resched(); /* Allow large-extent preemption. */ 4603 } 4604 } 4605 return try_release_extent_state(tree, page, mask); 4606 } 4607 4608 /* 4609 * helper function for fiemap, which doesn't want to see any holes. 4610 * This maps until we find something past 'last' 4611 */ 4612 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 4613 u64 offset, u64 last) 4614 { 4615 u64 sectorsize = btrfs_inode_sectorsize(inode); 4616 struct extent_map *em; 4617 u64 len; 4618 4619 if (offset >= last) 4620 return NULL; 4621 4622 while (1) { 4623 len = last - offset; 4624 if (len == 0) 4625 break; 4626 len = ALIGN(len, sectorsize); 4627 em = btrfs_get_extent_fiemap(inode, offset, len); 4628 if (IS_ERR_OR_NULL(em)) 4629 return em; 4630 4631 /* if this isn't a hole return it */ 4632 if (em->block_start != EXTENT_MAP_HOLE) 4633 return em; 4634 4635 /* this is a hole, advance to the next extent */ 4636 offset = extent_map_end(em); 4637 free_extent_map(em); 4638 if (offset >= last) 4639 break; 4640 } 4641 return NULL; 4642 } 4643 4644 /* 4645 * To cache previous fiemap extent 4646 * 4647 * Will be used for merging fiemap extent 4648 */ 4649 struct fiemap_cache { 4650 u64 offset; 4651 u64 phys; 4652 u64 len; 4653 u32 flags; 4654 bool cached; 4655 }; 4656 4657 /* 4658 * Helper to submit fiemap extent. 4659 * 4660 * Will try to merge current fiemap extent specified by @offset, @phys, 4661 * @len and @flags with cached one. 4662 * And only when we fails to merge, cached one will be submitted as 4663 * fiemap extent. 4664 * 4665 * Return value is the same as fiemap_fill_next_extent(). 4666 */ 4667 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4668 struct fiemap_cache *cache, 4669 u64 offset, u64 phys, u64 len, u32 flags) 4670 { 4671 int ret = 0; 4672 4673 if (!cache->cached) 4674 goto assign; 4675 4676 /* 4677 * Sanity check, extent_fiemap() should have ensured that new 4678 * fiemap extent won't overlap with cached one. 4679 * Not recoverable. 4680 * 4681 * NOTE: Physical address can overlap, due to compression 4682 */ 4683 if (cache->offset + cache->len > offset) { 4684 WARN_ON(1); 4685 return -EINVAL; 4686 } 4687 4688 /* 4689 * Only merges fiemap extents if 4690 * 1) Their logical addresses are continuous 4691 * 4692 * 2) Their physical addresses are continuous 4693 * So truly compressed (physical size smaller than logical size) 4694 * extents won't get merged with each other 4695 * 4696 * 3) Share same flags except FIEMAP_EXTENT_LAST 4697 * So regular extent won't get merged with prealloc extent 4698 */ 4699 if (cache->offset + cache->len == offset && 4700 cache->phys + cache->len == phys && 4701 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4702 (flags & ~FIEMAP_EXTENT_LAST)) { 4703 cache->len += len; 4704 cache->flags |= flags; 4705 goto try_submit_last; 4706 } 4707 4708 /* Not mergeable, need to submit cached one */ 4709 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4710 cache->len, cache->flags); 4711 cache->cached = false; 4712 if (ret) 4713 return ret; 4714 assign: 4715 cache->cached = true; 4716 cache->offset = offset; 4717 cache->phys = phys; 4718 cache->len = len; 4719 cache->flags = flags; 4720 try_submit_last: 4721 if (cache->flags & FIEMAP_EXTENT_LAST) { 4722 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4723 cache->phys, cache->len, cache->flags); 4724 cache->cached = false; 4725 } 4726 return ret; 4727 } 4728 4729 /* 4730 * Emit last fiemap cache 4731 * 4732 * The last fiemap cache may still be cached in the following case: 4733 * 0 4k 8k 4734 * |<- Fiemap range ->| 4735 * |<------------ First extent ----------->| 4736 * 4737 * In this case, the first extent range will be cached but not emitted. 4738 * So we must emit it before ending extent_fiemap(). 4739 */ 4740 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4741 struct fiemap_cache *cache) 4742 { 4743 int ret; 4744 4745 if (!cache->cached) 4746 return 0; 4747 4748 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4749 cache->len, cache->flags); 4750 cache->cached = false; 4751 if (ret > 0) 4752 ret = 0; 4753 return ret; 4754 } 4755 4756 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 4757 u64 start, u64 len) 4758 { 4759 int ret = 0; 4760 u64 off = start; 4761 u64 max = start + len; 4762 u32 flags = 0; 4763 u32 found_type; 4764 u64 last; 4765 u64 last_for_get_extent = 0; 4766 u64 disko = 0; 4767 u64 isize = i_size_read(&inode->vfs_inode); 4768 struct btrfs_key found_key; 4769 struct extent_map *em = NULL; 4770 struct extent_state *cached_state = NULL; 4771 struct btrfs_path *path; 4772 struct btrfs_root *root = inode->root; 4773 struct fiemap_cache cache = { 0 }; 4774 struct ulist *roots; 4775 struct ulist *tmp_ulist; 4776 int end = 0; 4777 u64 em_start = 0; 4778 u64 em_len = 0; 4779 u64 em_end = 0; 4780 4781 if (len == 0) 4782 return -EINVAL; 4783 4784 path = btrfs_alloc_path(); 4785 if (!path) 4786 return -ENOMEM; 4787 4788 roots = ulist_alloc(GFP_KERNEL); 4789 tmp_ulist = ulist_alloc(GFP_KERNEL); 4790 if (!roots || !tmp_ulist) { 4791 ret = -ENOMEM; 4792 goto out_free_ulist; 4793 } 4794 4795 start = round_down(start, btrfs_inode_sectorsize(inode)); 4796 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4797 4798 /* 4799 * lookup the last file extent. We're not using i_size here 4800 * because there might be preallocation past i_size 4801 */ 4802 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4803 0); 4804 if (ret < 0) { 4805 goto out_free_ulist; 4806 } else { 4807 WARN_ON(!ret); 4808 if (ret == 1) 4809 ret = 0; 4810 } 4811 4812 path->slots[0]--; 4813 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4814 found_type = found_key.type; 4815 4816 /* No extents, but there might be delalloc bits */ 4817 if (found_key.objectid != btrfs_ino(inode) || 4818 found_type != BTRFS_EXTENT_DATA_KEY) { 4819 /* have to trust i_size as the end */ 4820 last = (u64)-1; 4821 last_for_get_extent = isize; 4822 } else { 4823 /* 4824 * remember the start of the last extent. There are a 4825 * bunch of different factors that go into the length of the 4826 * extent, so its much less complex to remember where it started 4827 */ 4828 last = found_key.offset; 4829 last_for_get_extent = last + 1; 4830 } 4831 btrfs_release_path(path); 4832 4833 /* 4834 * we might have some extents allocated but more delalloc past those 4835 * extents. so, we trust isize unless the start of the last extent is 4836 * beyond isize 4837 */ 4838 if (last < isize) { 4839 last = (u64)-1; 4840 last_for_get_extent = isize; 4841 } 4842 4843 lock_extent_bits(&inode->io_tree, start, start + len - 1, 4844 &cached_state); 4845 4846 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4847 if (!em) 4848 goto out; 4849 if (IS_ERR(em)) { 4850 ret = PTR_ERR(em); 4851 goto out; 4852 } 4853 4854 while (!end) { 4855 u64 offset_in_extent = 0; 4856 4857 /* break if the extent we found is outside the range */ 4858 if (em->start >= max || extent_map_end(em) < off) 4859 break; 4860 4861 /* 4862 * get_extent may return an extent that starts before our 4863 * requested range. We have to make sure the ranges 4864 * we return to fiemap always move forward and don't 4865 * overlap, so adjust the offsets here 4866 */ 4867 em_start = max(em->start, off); 4868 4869 /* 4870 * record the offset from the start of the extent 4871 * for adjusting the disk offset below. Only do this if the 4872 * extent isn't compressed since our in ram offset may be past 4873 * what we have actually allocated on disk. 4874 */ 4875 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4876 offset_in_extent = em_start - em->start; 4877 em_end = extent_map_end(em); 4878 em_len = em_end - em_start; 4879 flags = 0; 4880 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4881 disko = em->block_start + offset_in_extent; 4882 else 4883 disko = 0; 4884 4885 /* 4886 * bump off for our next call to get_extent 4887 */ 4888 off = extent_map_end(em); 4889 if (off >= max) 4890 end = 1; 4891 4892 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4893 end = 1; 4894 flags |= FIEMAP_EXTENT_LAST; 4895 } else if (em->block_start == EXTENT_MAP_INLINE) { 4896 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4897 FIEMAP_EXTENT_NOT_ALIGNED); 4898 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4899 flags |= (FIEMAP_EXTENT_DELALLOC | 4900 FIEMAP_EXTENT_UNKNOWN); 4901 } else if (fieinfo->fi_extents_max) { 4902 u64 bytenr = em->block_start - 4903 (em->start - em->orig_start); 4904 4905 /* 4906 * As btrfs supports shared space, this information 4907 * can be exported to userspace tools via 4908 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4909 * then we're just getting a count and we can skip the 4910 * lookup stuff. 4911 */ 4912 ret = btrfs_check_shared(root, btrfs_ino(inode), 4913 bytenr, roots, tmp_ulist); 4914 if (ret < 0) 4915 goto out_free; 4916 if (ret) 4917 flags |= FIEMAP_EXTENT_SHARED; 4918 ret = 0; 4919 } 4920 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4921 flags |= FIEMAP_EXTENT_ENCODED; 4922 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4923 flags |= FIEMAP_EXTENT_UNWRITTEN; 4924 4925 free_extent_map(em); 4926 em = NULL; 4927 if ((em_start >= last) || em_len == (u64)-1 || 4928 (last == (u64)-1 && isize <= em_end)) { 4929 flags |= FIEMAP_EXTENT_LAST; 4930 end = 1; 4931 } 4932 4933 /* now scan forward to see if this is really the last extent. */ 4934 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4935 if (IS_ERR(em)) { 4936 ret = PTR_ERR(em); 4937 goto out; 4938 } 4939 if (!em) { 4940 flags |= FIEMAP_EXTENT_LAST; 4941 end = 1; 4942 } 4943 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4944 em_len, flags); 4945 if (ret) { 4946 if (ret == 1) 4947 ret = 0; 4948 goto out_free; 4949 } 4950 } 4951 out_free: 4952 if (!ret) 4953 ret = emit_last_fiemap_cache(fieinfo, &cache); 4954 free_extent_map(em); 4955 out: 4956 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 4957 &cached_state); 4958 4959 out_free_ulist: 4960 btrfs_free_path(path); 4961 ulist_free(roots); 4962 ulist_free(tmp_ulist); 4963 return ret; 4964 } 4965 4966 static void __free_extent_buffer(struct extent_buffer *eb) 4967 { 4968 kmem_cache_free(extent_buffer_cache, eb); 4969 } 4970 4971 int extent_buffer_under_io(const struct extent_buffer *eb) 4972 { 4973 return (atomic_read(&eb->io_pages) || 4974 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4975 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4976 } 4977 4978 /* 4979 * Release all pages attached to the extent buffer. 4980 */ 4981 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4982 { 4983 int i; 4984 int num_pages; 4985 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4986 4987 BUG_ON(extent_buffer_under_io(eb)); 4988 4989 num_pages = num_extent_pages(eb); 4990 for (i = 0; i < num_pages; i++) { 4991 struct page *page = eb->pages[i]; 4992 4993 if (!page) 4994 continue; 4995 if (mapped) 4996 spin_lock(&page->mapping->private_lock); 4997 /* 4998 * We do this since we'll remove the pages after we've 4999 * removed the eb from the radix tree, so we could race 5000 * and have this page now attached to the new eb. So 5001 * only clear page_private if it's still connected to 5002 * this eb. 5003 */ 5004 if (PagePrivate(page) && 5005 page->private == (unsigned long)eb) { 5006 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5007 BUG_ON(PageDirty(page)); 5008 BUG_ON(PageWriteback(page)); 5009 /* 5010 * We need to make sure we haven't be attached 5011 * to a new eb. 5012 */ 5013 detach_page_private(page); 5014 } 5015 5016 if (mapped) 5017 spin_unlock(&page->mapping->private_lock); 5018 5019 /* One for when we allocated the page */ 5020 put_page(page); 5021 } 5022 } 5023 5024 /* 5025 * Helper for releasing the extent buffer. 5026 */ 5027 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5028 { 5029 btrfs_release_extent_buffer_pages(eb); 5030 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5031 __free_extent_buffer(eb); 5032 } 5033 5034 static struct extent_buffer * 5035 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5036 unsigned long len) 5037 { 5038 struct extent_buffer *eb = NULL; 5039 5040 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5041 eb->start = start; 5042 eb->len = len; 5043 eb->fs_info = fs_info; 5044 eb->bflags = 0; 5045 init_rwsem(&eb->lock); 5046 5047 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5048 &fs_info->allocated_ebs); 5049 5050 spin_lock_init(&eb->refs_lock); 5051 atomic_set(&eb->refs, 1); 5052 atomic_set(&eb->io_pages, 0); 5053 5054 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5055 5056 return eb; 5057 } 5058 5059 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5060 { 5061 int i; 5062 struct page *p; 5063 struct extent_buffer *new; 5064 int num_pages = num_extent_pages(src); 5065 5066 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5067 if (new == NULL) 5068 return NULL; 5069 5070 for (i = 0; i < num_pages; i++) { 5071 p = alloc_page(GFP_NOFS); 5072 if (!p) { 5073 btrfs_release_extent_buffer(new); 5074 return NULL; 5075 } 5076 attach_extent_buffer_page(new, p); 5077 WARN_ON(PageDirty(p)); 5078 SetPageUptodate(p); 5079 new->pages[i] = p; 5080 copy_page(page_address(p), page_address(src->pages[i])); 5081 } 5082 5083 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 5084 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5085 5086 return new; 5087 } 5088 5089 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5090 u64 start, unsigned long len) 5091 { 5092 struct extent_buffer *eb; 5093 int num_pages; 5094 int i; 5095 5096 eb = __alloc_extent_buffer(fs_info, start, len); 5097 if (!eb) 5098 return NULL; 5099 5100 num_pages = num_extent_pages(eb); 5101 for (i = 0; i < num_pages; i++) { 5102 eb->pages[i] = alloc_page(GFP_NOFS); 5103 if (!eb->pages[i]) 5104 goto err; 5105 } 5106 set_extent_buffer_uptodate(eb); 5107 btrfs_set_header_nritems(eb, 0); 5108 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5109 5110 return eb; 5111 err: 5112 for (; i > 0; i--) 5113 __free_page(eb->pages[i - 1]); 5114 __free_extent_buffer(eb); 5115 return NULL; 5116 } 5117 5118 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5119 u64 start) 5120 { 5121 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5122 } 5123 5124 static void check_buffer_tree_ref(struct extent_buffer *eb) 5125 { 5126 int refs; 5127 /* 5128 * The TREE_REF bit is first set when the extent_buffer is added 5129 * to the radix tree. It is also reset, if unset, when a new reference 5130 * is created by find_extent_buffer. 5131 * 5132 * It is only cleared in two cases: freeing the last non-tree 5133 * reference to the extent_buffer when its STALE bit is set or 5134 * calling releasepage when the tree reference is the only reference. 5135 * 5136 * In both cases, care is taken to ensure that the extent_buffer's 5137 * pages are not under io. However, releasepage can be concurrently 5138 * called with creating new references, which is prone to race 5139 * conditions between the calls to check_buffer_tree_ref in those 5140 * codepaths and clearing TREE_REF in try_release_extent_buffer. 5141 * 5142 * The actual lifetime of the extent_buffer in the radix tree is 5143 * adequately protected by the refcount, but the TREE_REF bit and 5144 * its corresponding reference are not. To protect against this 5145 * class of races, we call check_buffer_tree_ref from the codepaths 5146 * which trigger io after they set eb->io_pages. Note that once io is 5147 * initiated, TREE_REF can no longer be cleared, so that is the 5148 * moment at which any such race is best fixed. 5149 */ 5150 refs = atomic_read(&eb->refs); 5151 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5152 return; 5153 5154 spin_lock(&eb->refs_lock); 5155 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5156 atomic_inc(&eb->refs); 5157 spin_unlock(&eb->refs_lock); 5158 } 5159 5160 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5161 struct page *accessed) 5162 { 5163 int num_pages, i; 5164 5165 check_buffer_tree_ref(eb); 5166 5167 num_pages = num_extent_pages(eb); 5168 for (i = 0; i < num_pages; i++) { 5169 struct page *p = eb->pages[i]; 5170 5171 if (p != accessed) 5172 mark_page_accessed(p); 5173 } 5174 } 5175 5176 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5177 u64 start) 5178 { 5179 struct extent_buffer *eb; 5180 5181 rcu_read_lock(); 5182 eb = radix_tree_lookup(&fs_info->buffer_radix, 5183 start >> fs_info->sectorsize_bits); 5184 if (eb && atomic_inc_not_zero(&eb->refs)) { 5185 rcu_read_unlock(); 5186 /* 5187 * Lock our eb's refs_lock to avoid races with 5188 * free_extent_buffer. When we get our eb it might be flagged 5189 * with EXTENT_BUFFER_STALE and another task running 5190 * free_extent_buffer might have seen that flag set, 5191 * eb->refs == 2, that the buffer isn't under IO (dirty and 5192 * writeback flags not set) and it's still in the tree (flag 5193 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5194 * of decrementing the extent buffer's reference count twice. 5195 * So here we could race and increment the eb's reference count, 5196 * clear its stale flag, mark it as dirty and drop our reference 5197 * before the other task finishes executing free_extent_buffer, 5198 * which would later result in an attempt to free an extent 5199 * buffer that is dirty. 5200 */ 5201 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5202 spin_lock(&eb->refs_lock); 5203 spin_unlock(&eb->refs_lock); 5204 } 5205 mark_extent_buffer_accessed(eb, NULL); 5206 return eb; 5207 } 5208 rcu_read_unlock(); 5209 5210 return NULL; 5211 } 5212 5213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5214 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5215 u64 start) 5216 { 5217 struct extent_buffer *eb, *exists = NULL; 5218 int ret; 5219 5220 eb = find_extent_buffer(fs_info, start); 5221 if (eb) 5222 return eb; 5223 eb = alloc_dummy_extent_buffer(fs_info, start); 5224 if (!eb) 5225 return ERR_PTR(-ENOMEM); 5226 eb->fs_info = fs_info; 5227 again: 5228 ret = radix_tree_preload(GFP_NOFS); 5229 if (ret) { 5230 exists = ERR_PTR(ret); 5231 goto free_eb; 5232 } 5233 spin_lock(&fs_info->buffer_lock); 5234 ret = radix_tree_insert(&fs_info->buffer_radix, 5235 start >> fs_info->sectorsize_bits, eb); 5236 spin_unlock(&fs_info->buffer_lock); 5237 radix_tree_preload_end(); 5238 if (ret == -EEXIST) { 5239 exists = find_extent_buffer(fs_info, start); 5240 if (exists) 5241 goto free_eb; 5242 else 5243 goto again; 5244 } 5245 check_buffer_tree_ref(eb); 5246 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5247 5248 return eb; 5249 free_eb: 5250 btrfs_release_extent_buffer(eb); 5251 return exists; 5252 } 5253 #endif 5254 5255 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5256 u64 start, u64 owner_root, int level) 5257 { 5258 unsigned long len = fs_info->nodesize; 5259 int num_pages; 5260 int i; 5261 unsigned long index = start >> PAGE_SHIFT; 5262 struct extent_buffer *eb; 5263 struct extent_buffer *exists = NULL; 5264 struct page *p; 5265 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5266 int uptodate = 1; 5267 int ret; 5268 5269 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5270 btrfs_err(fs_info, "bad tree block start %llu", start); 5271 return ERR_PTR(-EINVAL); 5272 } 5273 5274 if (fs_info->sectorsize < PAGE_SIZE && 5275 offset_in_page(start) + len > PAGE_SIZE) { 5276 btrfs_err(fs_info, 5277 "tree block crosses page boundary, start %llu nodesize %lu", 5278 start, len); 5279 return ERR_PTR(-EINVAL); 5280 } 5281 5282 eb = find_extent_buffer(fs_info, start); 5283 if (eb) 5284 return eb; 5285 5286 eb = __alloc_extent_buffer(fs_info, start, len); 5287 if (!eb) 5288 return ERR_PTR(-ENOMEM); 5289 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 5290 5291 num_pages = num_extent_pages(eb); 5292 for (i = 0; i < num_pages; i++, index++) { 5293 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5294 if (!p) { 5295 exists = ERR_PTR(-ENOMEM); 5296 goto free_eb; 5297 } 5298 5299 spin_lock(&mapping->private_lock); 5300 if (PagePrivate(p)) { 5301 /* 5302 * We could have already allocated an eb for this page 5303 * and attached one so lets see if we can get a ref on 5304 * the existing eb, and if we can we know it's good and 5305 * we can just return that one, else we know we can just 5306 * overwrite page->private. 5307 */ 5308 exists = (struct extent_buffer *)p->private; 5309 if (atomic_inc_not_zero(&exists->refs)) { 5310 spin_unlock(&mapping->private_lock); 5311 unlock_page(p); 5312 put_page(p); 5313 mark_extent_buffer_accessed(exists, p); 5314 goto free_eb; 5315 } 5316 exists = NULL; 5317 5318 WARN_ON(PageDirty(p)); 5319 detach_page_private(p); 5320 } 5321 attach_extent_buffer_page(eb, p); 5322 spin_unlock(&mapping->private_lock); 5323 WARN_ON(PageDirty(p)); 5324 eb->pages[i] = p; 5325 if (!PageUptodate(p)) 5326 uptodate = 0; 5327 5328 /* 5329 * We can't unlock the pages just yet since the extent buffer 5330 * hasn't been properly inserted in the radix tree, this 5331 * opens a race with btree_releasepage which can free a page 5332 * while we are still filling in all pages for the buffer and 5333 * we could crash. 5334 */ 5335 } 5336 if (uptodate) 5337 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5338 again: 5339 ret = radix_tree_preload(GFP_NOFS); 5340 if (ret) { 5341 exists = ERR_PTR(ret); 5342 goto free_eb; 5343 } 5344 5345 spin_lock(&fs_info->buffer_lock); 5346 ret = radix_tree_insert(&fs_info->buffer_radix, 5347 start >> fs_info->sectorsize_bits, eb); 5348 spin_unlock(&fs_info->buffer_lock); 5349 radix_tree_preload_end(); 5350 if (ret == -EEXIST) { 5351 exists = find_extent_buffer(fs_info, start); 5352 if (exists) 5353 goto free_eb; 5354 else 5355 goto again; 5356 } 5357 /* add one reference for the tree */ 5358 check_buffer_tree_ref(eb); 5359 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5360 5361 /* 5362 * Now it's safe to unlock the pages because any calls to 5363 * btree_releasepage will correctly detect that a page belongs to a 5364 * live buffer and won't free them prematurely. 5365 */ 5366 for (i = 0; i < num_pages; i++) 5367 unlock_page(eb->pages[i]); 5368 return eb; 5369 5370 free_eb: 5371 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5372 for (i = 0; i < num_pages; i++) { 5373 if (eb->pages[i]) 5374 unlock_page(eb->pages[i]); 5375 } 5376 5377 btrfs_release_extent_buffer(eb); 5378 return exists; 5379 } 5380 5381 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5382 { 5383 struct extent_buffer *eb = 5384 container_of(head, struct extent_buffer, rcu_head); 5385 5386 __free_extent_buffer(eb); 5387 } 5388 5389 static int release_extent_buffer(struct extent_buffer *eb) 5390 __releases(&eb->refs_lock) 5391 { 5392 lockdep_assert_held(&eb->refs_lock); 5393 5394 WARN_ON(atomic_read(&eb->refs) == 0); 5395 if (atomic_dec_and_test(&eb->refs)) { 5396 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5397 struct btrfs_fs_info *fs_info = eb->fs_info; 5398 5399 spin_unlock(&eb->refs_lock); 5400 5401 spin_lock(&fs_info->buffer_lock); 5402 radix_tree_delete(&fs_info->buffer_radix, 5403 eb->start >> fs_info->sectorsize_bits); 5404 spin_unlock(&fs_info->buffer_lock); 5405 } else { 5406 spin_unlock(&eb->refs_lock); 5407 } 5408 5409 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5410 /* Should be safe to release our pages at this point */ 5411 btrfs_release_extent_buffer_pages(eb); 5412 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5413 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5414 __free_extent_buffer(eb); 5415 return 1; 5416 } 5417 #endif 5418 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5419 return 1; 5420 } 5421 spin_unlock(&eb->refs_lock); 5422 5423 return 0; 5424 } 5425 5426 void free_extent_buffer(struct extent_buffer *eb) 5427 { 5428 int refs; 5429 int old; 5430 if (!eb) 5431 return; 5432 5433 while (1) { 5434 refs = atomic_read(&eb->refs); 5435 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5436 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5437 refs == 1)) 5438 break; 5439 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5440 if (old == refs) 5441 return; 5442 } 5443 5444 spin_lock(&eb->refs_lock); 5445 if (atomic_read(&eb->refs) == 2 && 5446 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5447 !extent_buffer_under_io(eb) && 5448 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5449 atomic_dec(&eb->refs); 5450 5451 /* 5452 * I know this is terrible, but it's temporary until we stop tracking 5453 * the uptodate bits and such for the extent buffers. 5454 */ 5455 release_extent_buffer(eb); 5456 } 5457 5458 void free_extent_buffer_stale(struct extent_buffer *eb) 5459 { 5460 if (!eb) 5461 return; 5462 5463 spin_lock(&eb->refs_lock); 5464 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5465 5466 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5467 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5468 atomic_dec(&eb->refs); 5469 release_extent_buffer(eb); 5470 } 5471 5472 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5473 { 5474 int i; 5475 int num_pages; 5476 struct page *page; 5477 5478 num_pages = num_extent_pages(eb); 5479 5480 for (i = 0; i < num_pages; i++) { 5481 page = eb->pages[i]; 5482 if (!PageDirty(page)) 5483 continue; 5484 5485 lock_page(page); 5486 WARN_ON(!PagePrivate(page)); 5487 5488 clear_page_dirty_for_io(page); 5489 xa_lock_irq(&page->mapping->i_pages); 5490 if (!PageDirty(page)) 5491 __xa_clear_mark(&page->mapping->i_pages, 5492 page_index(page), PAGECACHE_TAG_DIRTY); 5493 xa_unlock_irq(&page->mapping->i_pages); 5494 ClearPageError(page); 5495 unlock_page(page); 5496 } 5497 WARN_ON(atomic_read(&eb->refs) == 0); 5498 } 5499 5500 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5501 { 5502 int i; 5503 int num_pages; 5504 bool was_dirty; 5505 5506 check_buffer_tree_ref(eb); 5507 5508 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5509 5510 num_pages = num_extent_pages(eb); 5511 WARN_ON(atomic_read(&eb->refs) == 0); 5512 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5513 5514 if (!was_dirty) 5515 for (i = 0; i < num_pages; i++) 5516 set_page_dirty(eb->pages[i]); 5517 5518 #ifdef CONFIG_BTRFS_DEBUG 5519 for (i = 0; i < num_pages; i++) 5520 ASSERT(PageDirty(eb->pages[i])); 5521 #endif 5522 5523 return was_dirty; 5524 } 5525 5526 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5527 { 5528 int i; 5529 struct page *page; 5530 int num_pages; 5531 5532 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5533 num_pages = num_extent_pages(eb); 5534 for (i = 0; i < num_pages; i++) { 5535 page = eb->pages[i]; 5536 if (page) 5537 ClearPageUptodate(page); 5538 } 5539 } 5540 5541 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5542 { 5543 int i; 5544 struct page *page; 5545 int num_pages; 5546 5547 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5548 num_pages = num_extent_pages(eb); 5549 for (i = 0; i < num_pages; i++) { 5550 page = eb->pages[i]; 5551 SetPageUptodate(page); 5552 } 5553 } 5554 5555 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5556 { 5557 int i; 5558 struct page *page; 5559 int err; 5560 int ret = 0; 5561 int locked_pages = 0; 5562 int all_uptodate = 1; 5563 int num_pages; 5564 unsigned long num_reads = 0; 5565 struct bio *bio = NULL; 5566 unsigned long bio_flags = 0; 5567 5568 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5569 return 0; 5570 5571 num_pages = num_extent_pages(eb); 5572 for (i = 0; i < num_pages; i++) { 5573 page = eb->pages[i]; 5574 if (wait == WAIT_NONE) { 5575 if (!trylock_page(page)) 5576 goto unlock_exit; 5577 } else { 5578 lock_page(page); 5579 } 5580 locked_pages++; 5581 } 5582 /* 5583 * We need to firstly lock all pages to make sure that 5584 * the uptodate bit of our pages won't be affected by 5585 * clear_extent_buffer_uptodate(). 5586 */ 5587 for (i = 0; i < num_pages; i++) { 5588 page = eb->pages[i]; 5589 if (!PageUptodate(page)) { 5590 num_reads++; 5591 all_uptodate = 0; 5592 } 5593 } 5594 5595 if (all_uptodate) { 5596 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5597 goto unlock_exit; 5598 } 5599 5600 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5601 eb->read_mirror = 0; 5602 atomic_set(&eb->io_pages, num_reads); 5603 /* 5604 * It is possible for releasepage to clear the TREE_REF bit before we 5605 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 5606 */ 5607 check_buffer_tree_ref(eb); 5608 for (i = 0; i < num_pages; i++) { 5609 page = eb->pages[i]; 5610 5611 if (!PageUptodate(page)) { 5612 if (ret) { 5613 atomic_dec(&eb->io_pages); 5614 unlock_page(page); 5615 continue; 5616 } 5617 5618 ClearPageError(page); 5619 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 5620 page, page_offset(page), PAGE_SIZE, 0, 5621 &bio, end_bio_extent_readpage, 5622 mirror_num, 0, 0, false); 5623 if (err) { 5624 /* 5625 * We failed to submit the bio so it's the 5626 * caller's responsibility to perform cleanup 5627 * i.e unlock page/set error bit. 5628 */ 5629 ret = err; 5630 SetPageError(page); 5631 unlock_page(page); 5632 atomic_dec(&eb->io_pages); 5633 } 5634 } else { 5635 unlock_page(page); 5636 } 5637 } 5638 5639 if (bio) { 5640 err = submit_one_bio(bio, mirror_num, bio_flags); 5641 if (err) 5642 return err; 5643 } 5644 5645 if (ret || wait != WAIT_COMPLETE) 5646 return ret; 5647 5648 for (i = 0; i < num_pages; i++) { 5649 page = eb->pages[i]; 5650 wait_on_page_locked(page); 5651 if (!PageUptodate(page)) 5652 ret = -EIO; 5653 } 5654 5655 return ret; 5656 5657 unlock_exit: 5658 while (locked_pages > 0) { 5659 locked_pages--; 5660 page = eb->pages[locked_pages]; 5661 unlock_page(page); 5662 } 5663 return ret; 5664 } 5665 5666 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 5667 unsigned long len) 5668 { 5669 btrfs_warn(eb->fs_info, 5670 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 5671 eb->start, eb->len, start, len); 5672 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5673 5674 return true; 5675 } 5676 5677 /* 5678 * Check if the [start, start + len) range is valid before reading/writing 5679 * the eb. 5680 * NOTE: @start and @len are offset inside the eb, not logical address. 5681 * 5682 * Caller should not touch the dst/src memory if this function returns error. 5683 */ 5684 static inline int check_eb_range(const struct extent_buffer *eb, 5685 unsigned long start, unsigned long len) 5686 { 5687 unsigned long offset; 5688 5689 /* start, start + len should not go beyond eb->len nor overflow */ 5690 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 5691 return report_eb_range(eb, start, len); 5692 5693 return false; 5694 } 5695 5696 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5697 unsigned long start, unsigned long len) 5698 { 5699 size_t cur; 5700 size_t offset; 5701 struct page *page; 5702 char *kaddr; 5703 char *dst = (char *)dstv; 5704 unsigned long i = get_eb_page_index(start); 5705 5706 if (check_eb_range(eb, start, len)) 5707 return; 5708 5709 offset = get_eb_offset_in_page(eb, start); 5710 5711 while (len > 0) { 5712 page = eb->pages[i]; 5713 5714 cur = min(len, (PAGE_SIZE - offset)); 5715 kaddr = page_address(page); 5716 memcpy(dst, kaddr + offset, cur); 5717 5718 dst += cur; 5719 len -= cur; 5720 offset = 0; 5721 i++; 5722 } 5723 } 5724 5725 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 5726 void __user *dstv, 5727 unsigned long start, unsigned long len) 5728 { 5729 size_t cur; 5730 size_t offset; 5731 struct page *page; 5732 char *kaddr; 5733 char __user *dst = (char __user *)dstv; 5734 unsigned long i = get_eb_page_index(start); 5735 int ret = 0; 5736 5737 WARN_ON(start > eb->len); 5738 WARN_ON(start + len > eb->start + eb->len); 5739 5740 offset = get_eb_offset_in_page(eb, start); 5741 5742 while (len > 0) { 5743 page = eb->pages[i]; 5744 5745 cur = min(len, (PAGE_SIZE - offset)); 5746 kaddr = page_address(page); 5747 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 5748 ret = -EFAULT; 5749 break; 5750 } 5751 5752 dst += cur; 5753 len -= cur; 5754 offset = 0; 5755 i++; 5756 } 5757 5758 return ret; 5759 } 5760 5761 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5762 unsigned long start, unsigned long len) 5763 { 5764 size_t cur; 5765 size_t offset; 5766 struct page *page; 5767 char *kaddr; 5768 char *ptr = (char *)ptrv; 5769 unsigned long i = get_eb_page_index(start); 5770 int ret = 0; 5771 5772 if (check_eb_range(eb, start, len)) 5773 return -EINVAL; 5774 5775 offset = get_eb_offset_in_page(eb, start); 5776 5777 while (len > 0) { 5778 page = eb->pages[i]; 5779 5780 cur = min(len, (PAGE_SIZE - offset)); 5781 5782 kaddr = page_address(page); 5783 ret = memcmp(ptr, kaddr + offset, cur); 5784 if (ret) 5785 break; 5786 5787 ptr += cur; 5788 len -= cur; 5789 offset = 0; 5790 i++; 5791 } 5792 return ret; 5793 } 5794 5795 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5796 const void *srcv) 5797 { 5798 char *kaddr; 5799 5800 WARN_ON(!PageUptodate(eb->pages[0])); 5801 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 5802 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5803 BTRFS_FSID_SIZE); 5804 } 5805 5806 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5807 { 5808 char *kaddr; 5809 5810 WARN_ON(!PageUptodate(eb->pages[0])); 5811 kaddr = page_address(eb->pages[0]) + get_eb_offset_in_page(eb, 0); 5812 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5813 BTRFS_FSID_SIZE); 5814 } 5815 5816 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5817 unsigned long start, unsigned long len) 5818 { 5819 size_t cur; 5820 size_t offset; 5821 struct page *page; 5822 char *kaddr; 5823 char *src = (char *)srcv; 5824 unsigned long i = get_eb_page_index(start); 5825 5826 if (check_eb_range(eb, start, len)) 5827 return; 5828 5829 offset = get_eb_offset_in_page(eb, start); 5830 5831 while (len > 0) { 5832 page = eb->pages[i]; 5833 WARN_ON(!PageUptodate(page)); 5834 5835 cur = min(len, PAGE_SIZE - offset); 5836 kaddr = page_address(page); 5837 memcpy(kaddr + offset, src, cur); 5838 5839 src += cur; 5840 len -= cur; 5841 offset = 0; 5842 i++; 5843 } 5844 } 5845 5846 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5847 unsigned long len) 5848 { 5849 size_t cur; 5850 size_t offset; 5851 struct page *page; 5852 char *kaddr; 5853 unsigned long i = get_eb_page_index(start); 5854 5855 if (check_eb_range(eb, start, len)) 5856 return; 5857 5858 offset = get_eb_offset_in_page(eb, start); 5859 5860 while (len > 0) { 5861 page = eb->pages[i]; 5862 WARN_ON(!PageUptodate(page)); 5863 5864 cur = min(len, PAGE_SIZE - offset); 5865 kaddr = page_address(page); 5866 memset(kaddr + offset, 0, cur); 5867 5868 len -= cur; 5869 offset = 0; 5870 i++; 5871 } 5872 } 5873 5874 void copy_extent_buffer_full(const struct extent_buffer *dst, 5875 const struct extent_buffer *src) 5876 { 5877 int i; 5878 int num_pages; 5879 5880 ASSERT(dst->len == src->len); 5881 5882 if (dst->fs_info->sectorsize == PAGE_SIZE) { 5883 num_pages = num_extent_pages(dst); 5884 for (i = 0; i < num_pages; i++) 5885 copy_page(page_address(dst->pages[i]), 5886 page_address(src->pages[i])); 5887 } else { 5888 size_t src_offset = get_eb_offset_in_page(src, 0); 5889 size_t dst_offset = get_eb_offset_in_page(dst, 0); 5890 5891 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 5892 memcpy(page_address(dst->pages[0]) + dst_offset, 5893 page_address(src->pages[0]) + src_offset, 5894 src->len); 5895 } 5896 } 5897 5898 void copy_extent_buffer(const struct extent_buffer *dst, 5899 const struct extent_buffer *src, 5900 unsigned long dst_offset, unsigned long src_offset, 5901 unsigned long len) 5902 { 5903 u64 dst_len = dst->len; 5904 size_t cur; 5905 size_t offset; 5906 struct page *page; 5907 char *kaddr; 5908 unsigned long i = get_eb_page_index(dst_offset); 5909 5910 if (check_eb_range(dst, dst_offset, len) || 5911 check_eb_range(src, src_offset, len)) 5912 return; 5913 5914 WARN_ON(src->len != dst_len); 5915 5916 offset = get_eb_offset_in_page(dst, dst_offset); 5917 5918 while (len > 0) { 5919 page = dst->pages[i]; 5920 WARN_ON(!PageUptodate(page)); 5921 5922 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5923 5924 kaddr = page_address(page); 5925 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5926 5927 src_offset += cur; 5928 len -= cur; 5929 offset = 0; 5930 i++; 5931 } 5932 } 5933 5934 /* 5935 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5936 * given bit number 5937 * @eb: the extent buffer 5938 * @start: offset of the bitmap item in the extent buffer 5939 * @nr: bit number 5940 * @page_index: return index of the page in the extent buffer that contains the 5941 * given bit number 5942 * @page_offset: return offset into the page given by page_index 5943 * 5944 * This helper hides the ugliness of finding the byte in an extent buffer which 5945 * contains a given bit. 5946 */ 5947 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5948 unsigned long start, unsigned long nr, 5949 unsigned long *page_index, 5950 size_t *page_offset) 5951 { 5952 size_t byte_offset = BIT_BYTE(nr); 5953 size_t offset; 5954 5955 /* 5956 * The byte we want is the offset of the extent buffer + the offset of 5957 * the bitmap item in the extent buffer + the offset of the byte in the 5958 * bitmap item. 5959 */ 5960 offset = start + offset_in_page(eb->start) + byte_offset; 5961 5962 *page_index = offset >> PAGE_SHIFT; 5963 *page_offset = offset_in_page(offset); 5964 } 5965 5966 /** 5967 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5968 * @eb: the extent buffer 5969 * @start: offset of the bitmap item in the extent buffer 5970 * @nr: bit number to test 5971 */ 5972 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5973 unsigned long nr) 5974 { 5975 u8 *kaddr; 5976 struct page *page; 5977 unsigned long i; 5978 size_t offset; 5979 5980 eb_bitmap_offset(eb, start, nr, &i, &offset); 5981 page = eb->pages[i]; 5982 WARN_ON(!PageUptodate(page)); 5983 kaddr = page_address(page); 5984 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5985 } 5986 5987 /** 5988 * extent_buffer_bitmap_set - set an area of a bitmap 5989 * @eb: the extent buffer 5990 * @start: offset of the bitmap item in the extent buffer 5991 * @pos: bit number of the first bit 5992 * @len: number of bits to set 5993 */ 5994 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5995 unsigned long pos, unsigned long len) 5996 { 5997 u8 *kaddr; 5998 struct page *page; 5999 unsigned long i; 6000 size_t offset; 6001 const unsigned int size = pos + len; 6002 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6003 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 6004 6005 eb_bitmap_offset(eb, start, pos, &i, &offset); 6006 page = eb->pages[i]; 6007 WARN_ON(!PageUptodate(page)); 6008 kaddr = page_address(page); 6009 6010 while (len >= bits_to_set) { 6011 kaddr[offset] |= mask_to_set; 6012 len -= bits_to_set; 6013 bits_to_set = BITS_PER_BYTE; 6014 mask_to_set = ~0; 6015 if (++offset >= PAGE_SIZE && len > 0) { 6016 offset = 0; 6017 page = eb->pages[++i]; 6018 WARN_ON(!PageUptodate(page)); 6019 kaddr = page_address(page); 6020 } 6021 } 6022 if (len) { 6023 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 6024 kaddr[offset] |= mask_to_set; 6025 } 6026 } 6027 6028 6029 /** 6030 * extent_buffer_bitmap_clear - clear an area of a bitmap 6031 * @eb: the extent buffer 6032 * @start: offset of the bitmap item in the extent buffer 6033 * @pos: bit number of the first bit 6034 * @len: number of bits to clear 6035 */ 6036 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 6037 unsigned long start, unsigned long pos, 6038 unsigned long len) 6039 { 6040 u8 *kaddr; 6041 struct page *page; 6042 unsigned long i; 6043 size_t offset; 6044 const unsigned int size = pos + len; 6045 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 6046 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 6047 6048 eb_bitmap_offset(eb, start, pos, &i, &offset); 6049 page = eb->pages[i]; 6050 WARN_ON(!PageUptodate(page)); 6051 kaddr = page_address(page); 6052 6053 while (len >= bits_to_clear) { 6054 kaddr[offset] &= ~mask_to_clear; 6055 len -= bits_to_clear; 6056 bits_to_clear = BITS_PER_BYTE; 6057 mask_to_clear = ~0; 6058 if (++offset >= PAGE_SIZE && len > 0) { 6059 offset = 0; 6060 page = eb->pages[++i]; 6061 WARN_ON(!PageUptodate(page)); 6062 kaddr = page_address(page); 6063 } 6064 } 6065 if (len) { 6066 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 6067 kaddr[offset] &= ~mask_to_clear; 6068 } 6069 } 6070 6071 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 6072 { 6073 unsigned long distance = (src > dst) ? src - dst : dst - src; 6074 return distance < len; 6075 } 6076 6077 static void copy_pages(struct page *dst_page, struct page *src_page, 6078 unsigned long dst_off, unsigned long src_off, 6079 unsigned long len) 6080 { 6081 char *dst_kaddr = page_address(dst_page); 6082 char *src_kaddr; 6083 int must_memmove = 0; 6084 6085 if (dst_page != src_page) { 6086 src_kaddr = page_address(src_page); 6087 } else { 6088 src_kaddr = dst_kaddr; 6089 if (areas_overlap(src_off, dst_off, len)) 6090 must_memmove = 1; 6091 } 6092 6093 if (must_memmove) 6094 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 6095 else 6096 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 6097 } 6098 6099 void memcpy_extent_buffer(const struct extent_buffer *dst, 6100 unsigned long dst_offset, unsigned long src_offset, 6101 unsigned long len) 6102 { 6103 size_t cur; 6104 size_t dst_off_in_page; 6105 size_t src_off_in_page; 6106 unsigned long dst_i; 6107 unsigned long src_i; 6108 6109 if (check_eb_range(dst, dst_offset, len) || 6110 check_eb_range(dst, src_offset, len)) 6111 return; 6112 6113 while (len > 0) { 6114 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 6115 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 6116 6117 dst_i = get_eb_page_index(dst_offset); 6118 src_i = get_eb_page_index(src_offset); 6119 6120 cur = min(len, (unsigned long)(PAGE_SIZE - 6121 src_off_in_page)); 6122 cur = min_t(unsigned long, cur, 6123 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6124 6125 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6126 dst_off_in_page, src_off_in_page, cur); 6127 6128 src_offset += cur; 6129 dst_offset += cur; 6130 len -= cur; 6131 } 6132 } 6133 6134 void memmove_extent_buffer(const struct extent_buffer *dst, 6135 unsigned long dst_offset, unsigned long src_offset, 6136 unsigned long len) 6137 { 6138 size_t cur; 6139 size_t dst_off_in_page; 6140 size_t src_off_in_page; 6141 unsigned long dst_end = dst_offset + len - 1; 6142 unsigned long src_end = src_offset + len - 1; 6143 unsigned long dst_i; 6144 unsigned long src_i; 6145 6146 if (check_eb_range(dst, dst_offset, len) || 6147 check_eb_range(dst, src_offset, len)) 6148 return; 6149 if (dst_offset < src_offset) { 6150 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6151 return; 6152 } 6153 while (len > 0) { 6154 dst_i = get_eb_page_index(dst_end); 6155 src_i = get_eb_page_index(src_end); 6156 6157 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 6158 src_off_in_page = get_eb_offset_in_page(dst, src_end); 6159 6160 cur = min_t(unsigned long, len, src_off_in_page + 1); 6161 cur = min(cur, dst_off_in_page + 1); 6162 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6163 dst_off_in_page - cur + 1, 6164 src_off_in_page - cur + 1, cur); 6165 6166 dst_end -= cur; 6167 src_end -= cur; 6168 len -= cur; 6169 } 6170 } 6171 6172 int try_release_extent_buffer(struct page *page) 6173 { 6174 struct extent_buffer *eb; 6175 6176 /* 6177 * We need to make sure nobody is attaching this page to an eb right 6178 * now. 6179 */ 6180 spin_lock(&page->mapping->private_lock); 6181 if (!PagePrivate(page)) { 6182 spin_unlock(&page->mapping->private_lock); 6183 return 1; 6184 } 6185 6186 eb = (struct extent_buffer *)page->private; 6187 BUG_ON(!eb); 6188 6189 /* 6190 * This is a little awful but should be ok, we need to make sure that 6191 * the eb doesn't disappear out from under us while we're looking at 6192 * this page. 6193 */ 6194 spin_lock(&eb->refs_lock); 6195 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6196 spin_unlock(&eb->refs_lock); 6197 spin_unlock(&page->mapping->private_lock); 6198 return 0; 6199 } 6200 spin_unlock(&page->mapping->private_lock); 6201 6202 /* 6203 * If tree ref isn't set then we know the ref on this eb is a real ref, 6204 * so just return, this page will likely be freed soon anyway. 6205 */ 6206 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6207 spin_unlock(&eb->refs_lock); 6208 return 0; 6209 } 6210 6211 return release_extent_buffer(eb); 6212 } 6213 6214 /* 6215 * btrfs_readahead_tree_block - attempt to readahead a child block 6216 * @fs_info: the fs_info 6217 * @bytenr: bytenr to read 6218 * @owner_root: objectid of the root that owns this eb 6219 * @gen: generation for the uptodate check, can be 0 6220 * @level: level for the eb 6221 * 6222 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 6223 * normal uptodate check of the eb, without checking the generation. If we have 6224 * to read the block we will not block on anything. 6225 */ 6226 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 6227 u64 bytenr, u64 owner_root, u64 gen, int level) 6228 { 6229 struct extent_buffer *eb; 6230 int ret; 6231 6232 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 6233 if (IS_ERR(eb)) 6234 return; 6235 6236 if (btrfs_buffer_uptodate(eb, gen, 1)) { 6237 free_extent_buffer(eb); 6238 return; 6239 } 6240 6241 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 6242 if (ret < 0) 6243 free_extent_buffer_stale(eb); 6244 else 6245 free_extent_buffer(eb); 6246 } 6247 6248 /* 6249 * btrfs_readahead_node_child - readahead a node's child block 6250 * @node: parent node we're reading from 6251 * @slot: slot in the parent node for the child we want to read 6252 * 6253 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 6254 * the slot in the node provided. 6255 */ 6256 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 6257 { 6258 btrfs_readahead_tree_block(node->fs_info, 6259 btrfs_node_blockptr(node, slot), 6260 btrfs_header_owner(node), 6261 btrfs_node_ptr_generation(node, slot), 6262 btrfs_header_level(node) - 1); 6263 } 6264