xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 61ae993c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40 
41 static struct kmem_cache *extent_buffer_cache;
42 
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 	struct btrfs_fs_info *fs_info = eb->fs_info;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53 
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 	struct btrfs_fs_info *fs_info = eb->fs_info;
57 	unsigned long flags;
58 
59 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 	list_del(&eb->leak_list);
61 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63 
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 	struct extent_buffer *eb;
67 	unsigned long flags;
68 
69 	/*
70 	 * If we didn't get into open_ctree our allocated_ebs will not be
71 	 * initialized, so just skip this.
72 	 */
73 	if (!fs_info->allocated_ebs.next)
74 		return;
75 
76 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 	while (!list_empty(&fs_info->allocated_ebs)) {
79 		eb = list_first_entry(&fs_info->allocated_ebs,
80 				      struct extent_buffer, leak_list);
81 		pr_err(
82 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 		       btrfs_header_owner(eb));
85 		list_del(&eb->leak_list);
86 		kmem_cache_free(extent_buffer_cache, eb);
87 	}
88 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
93 #endif
94 
95 /*
96  * Structure to record info about the bio being assembled, and other info like
97  * how many bytes are there before stripe/ordered extent boundary.
98  */
99 struct btrfs_bio_ctrl {
100 	struct btrfs_bio *bbio;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_oe_boundary;
103 	blk_opf_t opf;
104 	btrfs_bio_end_io_t end_io_func;
105 	struct writeback_control *wbc;
106 };
107 
108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109 {
110 	struct btrfs_bio *bbio = bio_ctrl->bbio;
111 
112 	if (!bbio)
113 		return;
114 
115 	/* Caller should ensure the bio has at least some range added */
116 	ASSERT(bbio->bio.bi_iter.bi_size);
117 
118 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 		btrfs_submit_compressed_read(bbio);
121 	else
122 		btrfs_submit_bio(bbio, 0);
123 
124 	/* The bbio is owned by the end_io handler now */
125 	bio_ctrl->bbio = NULL;
126 }
127 
128 /*
129  * Submit or fail the current bio in the bio_ctrl structure.
130  */
131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132 {
133 	struct btrfs_bio *bbio = bio_ctrl->bbio;
134 
135 	if (!bbio)
136 		return;
137 
138 	if (ret) {
139 		ASSERT(ret < 0);
140 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 		/* The bio is owned by the end_io handler now */
142 		bio_ctrl->bbio = NULL;
143 	} else {
144 		submit_one_bio(bio_ctrl);
145 	}
146 }
147 
148 int __init extent_buffer_init_cachep(void)
149 {
150 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 			sizeof(struct extent_buffer), 0,
152 			SLAB_MEM_SPREAD, NULL);
153 	if (!extent_buffer_cache)
154 		return -ENOMEM;
155 
156 	return 0;
157 }
158 
159 void __cold extent_buffer_free_cachep(void)
160 {
161 	/*
162 	 * Make sure all delayed rcu free are flushed before we
163 	 * destroy caches.
164 	 */
165 	rcu_barrier();
166 	kmem_cache_destroy(extent_buffer_cache);
167 }
168 
169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170 {
171 	unsigned long index = start >> PAGE_SHIFT;
172 	unsigned long end_index = end >> PAGE_SHIFT;
173 	struct page *page;
174 
175 	while (index <= end_index) {
176 		page = find_get_page(inode->i_mapping, index);
177 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 		clear_page_dirty_for_io(page);
179 		put_page(page);
180 		index++;
181 	}
182 }
183 
184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 			     struct page *page, struct page *locked_page,
186 			     unsigned long page_ops, u64 start, u64 end)
187 {
188 	u32 len;
189 
190 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 	len = end + 1 - start;
192 
193 	if (page_ops & PAGE_SET_ORDERED)
194 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 	if (page_ops & PAGE_START_WRITEBACK) {
196 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198 	}
199 	if (page_ops & PAGE_END_WRITEBACK)
200 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201 
202 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 		btrfs_page_end_writer_lock(fs_info, page, start, len);
204 }
205 
206 static void __process_pages_contig(struct address_space *mapping,
207 				   struct page *locked_page, u64 start, u64 end,
208 				   unsigned long page_ops)
209 {
210 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 	pgoff_t start_index = start >> PAGE_SHIFT;
212 	pgoff_t end_index = end >> PAGE_SHIFT;
213 	pgoff_t index = start_index;
214 	struct folio_batch fbatch;
215 	int i;
216 
217 	folio_batch_init(&fbatch);
218 	while (index <= end_index) {
219 		int found_folios;
220 
221 		found_folios = filemap_get_folios_contig(mapping, &index,
222 				end_index, &fbatch);
223 		for (i = 0; i < found_folios; i++) {
224 			struct folio *folio = fbatch.folios[i];
225 
226 			process_one_page(fs_info, &folio->page, locked_page,
227 					 page_ops, start, end);
228 		}
229 		folio_batch_release(&fbatch);
230 		cond_resched();
231 	}
232 }
233 
234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 					   struct page *locked_page,
236 					   u64 start, u64 end)
237 {
238 	unsigned long index = start >> PAGE_SHIFT;
239 	unsigned long end_index = end >> PAGE_SHIFT;
240 
241 	ASSERT(locked_page);
242 	if (index == locked_page->index && end_index == index)
243 		return;
244 
245 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
246 			       PAGE_UNLOCK);
247 }
248 
249 static noinline int lock_delalloc_pages(struct inode *inode,
250 					struct page *locked_page,
251 					u64 start,
252 					u64 end)
253 {
254 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 	struct address_space *mapping = inode->i_mapping;
256 	pgoff_t start_index = start >> PAGE_SHIFT;
257 	pgoff_t end_index = end >> PAGE_SHIFT;
258 	pgoff_t index = start_index;
259 	u64 processed_end = start;
260 	struct folio_batch fbatch;
261 
262 	if (index == locked_page->index && index == end_index)
263 		return 0;
264 
265 	folio_batch_init(&fbatch);
266 	while (index <= end_index) {
267 		unsigned int found_folios, i;
268 
269 		found_folios = filemap_get_folios_contig(mapping, &index,
270 				end_index, &fbatch);
271 		if (found_folios == 0)
272 			goto out;
273 
274 		for (i = 0; i < found_folios; i++) {
275 			struct page *page = &fbatch.folios[i]->page;
276 			u32 len = end + 1 - start;
277 
278 			if (page == locked_page)
279 				continue;
280 
281 			if (btrfs_page_start_writer_lock(fs_info, page, start,
282 							 len))
283 				goto out;
284 
285 			if (!PageDirty(page) || page->mapping != mapping) {
286 				btrfs_page_end_writer_lock(fs_info, page, start,
287 							   len);
288 				goto out;
289 			}
290 
291 			processed_end = page_offset(page) + PAGE_SIZE - 1;
292 		}
293 		folio_batch_release(&fbatch);
294 		cond_resched();
295 	}
296 
297 	return 0;
298 out:
299 	folio_batch_release(&fbatch);
300 	if (processed_end > start)
301 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302 	return -EAGAIN;
303 }
304 
305 /*
306  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307  * more than @max_bytes.
308  *
309  * @start:	The original start bytenr to search.
310  *		Will store the extent range start bytenr.
311  * @end:	The original end bytenr of the search range
312  *		Will store the extent range end bytenr.
313  *
314  * Return true if we find a delalloc range which starts inside the original
315  * range, and @start/@end will store the delalloc range start/end.
316  *
317  * Return false if we can't find any delalloc range which starts inside the
318  * original range, and @start/@end will be the non-delalloc range start/end.
319  */
320 EXPORT_FOR_TESTS
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 				    struct page *locked_page, u64 *start,
323 				    u64 *end)
324 {
325 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 	const u64 orig_start = *start;
328 	const u64 orig_end = *end;
329 	/* The sanity tests may not set a valid fs_info. */
330 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 	u64 delalloc_start;
332 	u64 delalloc_end;
333 	bool found;
334 	struct extent_state *cached_state = NULL;
335 	int ret;
336 	int loops = 0;
337 
338 	/* Caller should pass a valid @end to indicate the search range end */
339 	ASSERT(orig_end > orig_start);
340 
341 	/* The range should at least cover part of the page */
342 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 		 orig_end <= page_offset(locked_page)));
344 again:
345 	/* step one, find a bunch of delalloc bytes starting at start */
346 	delalloc_start = *start;
347 	delalloc_end = 0;
348 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 					  max_bytes, &cached_state);
350 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 		*start = delalloc_start;
352 
353 		/* @delalloc_end can be -1, never go beyond @orig_end */
354 		*end = min(delalloc_end, orig_end);
355 		free_extent_state(cached_state);
356 		return false;
357 	}
358 
359 	/*
360 	 * start comes from the offset of locked_page.  We have to lock
361 	 * pages in order, so we can't process delalloc bytes before
362 	 * locked_page
363 	 */
364 	if (delalloc_start < *start)
365 		delalloc_start = *start;
366 
367 	/*
368 	 * make sure to limit the number of pages we try to lock down
369 	 */
370 	if (delalloc_end + 1 - delalloc_start > max_bytes)
371 		delalloc_end = delalloc_start + max_bytes - 1;
372 
373 	/* step two, lock all the pages after the page that has start */
374 	ret = lock_delalloc_pages(inode, locked_page,
375 				  delalloc_start, delalloc_end);
376 	ASSERT(!ret || ret == -EAGAIN);
377 	if (ret == -EAGAIN) {
378 		/* some of the pages are gone, lets avoid looping by
379 		 * shortening the size of the delalloc range we're searching
380 		 */
381 		free_extent_state(cached_state);
382 		cached_state = NULL;
383 		if (!loops) {
384 			max_bytes = PAGE_SIZE;
385 			loops = 1;
386 			goto again;
387 		} else {
388 			found = false;
389 			goto out_failed;
390 		}
391 	}
392 
393 	/* step three, lock the state bits for the whole range */
394 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395 
396 	/* then test to make sure it is all still delalloc */
397 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 			     EXTENT_DELALLOC, 1, cached_state);
399 	if (!ret) {
400 		unlock_extent(tree, delalloc_start, delalloc_end,
401 			      &cached_state);
402 		__unlock_for_delalloc(inode, locked_page,
403 			      delalloc_start, delalloc_end);
404 		cond_resched();
405 		goto again;
406 	}
407 	free_extent_state(cached_state);
408 	*start = delalloc_start;
409 	*end = delalloc_end;
410 out_failed:
411 	return found;
412 }
413 
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 				  struct page *locked_page,
416 				  u32 clear_bits, unsigned long page_ops)
417 {
418 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419 
420 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 			       start, end, page_ops);
422 }
423 
424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 	if (!fsverity_active(page->mapping->host) ||
427 	    PageUptodate(page) ||
428 	    start >= i_size_read(page->mapping->host))
429 		return true;
430 	return fsverity_verify_page(page);
431 }
432 
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436 
437 	ASSERT(page_offset(page) <= start &&
438 	       start + len <= page_offset(page) + PAGE_SIZE);
439 
440 	if (uptodate && btrfs_verify_page(page, start))
441 		btrfs_page_set_uptodate(fs_info, page, start, len);
442 	else
443 		btrfs_page_clear_uptodate(fs_info, page, start, len);
444 
445 	if (!btrfs_is_subpage(fs_info, page))
446 		unlock_page(page);
447 	else
448 		btrfs_subpage_end_reader(fs_info, page, start, len);
449 }
450 
451 /*
452  * after a writepage IO is done, we need to:
453  * clear the uptodate bits on error
454  * clear the writeback bits in the extent tree for this IO
455  * end_page_writeback if the page has no more pending IO
456  *
457  * Scheduling is not allowed, so the extent state tree is expected
458  * to have one and only one object corresponding to this IO.
459  */
460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461 {
462 	struct bio *bio = &bbio->bio;
463 	int error = blk_status_to_errno(bio->bi_status);
464 	struct bio_vec *bvec;
465 	struct bvec_iter_all iter_all;
466 
467 	ASSERT(!bio_flagged(bio, BIO_CLONED));
468 	bio_for_each_segment_all(bvec, bio, iter_all) {
469 		struct page *page = bvec->bv_page;
470 		struct inode *inode = page->mapping->host;
471 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 		const u32 sectorsize = fs_info->sectorsize;
473 		u64 start = page_offset(page) + bvec->bv_offset;
474 		u32 len = bvec->bv_len;
475 
476 		/* Our read/write should always be sector aligned. */
477 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 			btrfs_err(fs_info,
479 		"partial page write in btrfs with offset %u and length %u",
480 				  bvec->bv_offset, bvec->bv_len);
481 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 			btrfs_info(fs_info,
483 		"incomplete page write with offset %u and length %u",
484 				   bvec->bv_offset, bvec->bv_len);
485 
486 		btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487 		if (error)
488 			mapping_set_error(page->mapping, error);
489 		btrfs_page_clear_writeback(fs_info, page, start, len);
490 	}
491 
492 	bio_put(bio);
493 }
494 
495 /*
496  * Record previously processed extent range
497  *
498  * For endio_readpage_release_extent() to handle a full extent range, reducing
499  * the extent io operations.
500  */
501 struct processed_extent {
502 	struct btrfs_inode *inode;
503 	/* Start of the range in @inode */
504 	u64 start;
505 	/* End of the range in @inode */
506 	u64 end;
507 	bool uptodate;
508 };
509 
510 /*
511  * Try to release processed extent range
512  *
513  * May not release the extent range right now if the current range is
514  * contiguous to processed extent.
515  *
516  * Will release processed extent when any of @inode, @uptodate, the range is
517  * no longer contiguous to the processed range.
518  *
519  * Passing @inode == NULL will force processed extent to be released.
520  */
521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 			      struct btrfs_inode *inode, u64 start, u64 end,
523 			      bool uptodate)
524 {
525 	struct extent_state *cached = NULL;
526 	struct extent_io_tree *tree;
527 
528 	/* The first extent, initialize @processed */
529 	if (!processed->inode)
530 		goto update;
531 
532 	/*
533 	 * Contiguous to processed extent, just uptodate the end.
534 	 *
535 	 * Several things to notice:
536 	 *
537 	 * - bio can be merged as long as on-disk bytenr is contiguous
538 	 *   This means we can have page belonging to other inodes, thus need to
539 	 *   check if the inode still matches.
540 	 * - bvec can contain range beyond current page for multi-page bvec
541 	 *   Thus we need to do processed->end + 1 >= start check
542 	 */
543 	if (processed->inode == inode && processed->uptodate == uptodate &&
544 	    processed->end + 1 >= start && end >= processed->end) {
545 		processed->end = end;
546 		return;
547 	}
548 
549 	tree = &processed->inode->io_tree;
550 	/*
551 	 * Now we don't have range contiguous to the processed range, release
552 	 * the processed range now.
553 	 */
554 	unlock_extent(tree, processed->start, processed->end, &cached);
555 
556 update:
557 	/* Update processed to current range */
558 	processed->inode = inode;
559 	processed->start = start;
560 	processed->end = end;
561 	processed->uptodate = uptodate;
562 }
563 
564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565 {
566 	ASSERT(PageLocked(page));
567 	if (!btrfs_is_subpage(fs_info, page))
568 		return;
569 
570 	ASSERT(PagePrivate(page));
571 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572 }
573 
574 /*
575  * after a readpage IO is done, we need to:
576  * clear the uptodate bits on error
577  * set the uptodate bits if things worked
578  * set the page up to date if all extents in the tree are uptodate
579  * clear the lock bit in the extent tree
580  * unlock the page if there are no other extents locked for it
581  *
582  * Scheduling is not allowed, so the extent state tree is expected
583  * to have one and only one object corresponding to this IO.
584  */
585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586 {
587 	struct bio *bio = &bbio->bio;
588 	struct bio_vec *bvec;
589 	struct processed_extent processed = { 0 };
590 	/*
591 	 * The offset to the beginning of a bio, since one bio can never be
592 	 * larger than UINT_MAX, u32 here is enough.
593 	 */
594 	u32 bio_offset = 0;
595 	struct bvec_iter_all iter_all;
596 
597 	ASSERT(!bio_flagged(bio, BIO_CLONED));
598 	bio_for_each_segment_all(bvec, bio, iter_all) {
599 		bool uptodate = !bio->bi_status;
600 		struct page *page = bvec->bv_page;
601 		struct inode *inode = page->mapping->host;
602 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 		const u32 sectorsize = fs_info->sectorsize;
604 		u64 start;
605 		u64 end;
606 		u32 len;
607 
608 		btrfs_debug(fs_info,
609 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 			bio->bi_iter.bi_sector, bio->bi_status,
611 			bbio->mirror_num);
612 
613 		/*
614 		 * We always issue full-sector reads, but if some block in a
615 		 * page fails to read, blk_update_request() will advance
616 		 * bv_offset and adjust bv_len to compensate.  Print a warning
617 		 * for unaligned offsets, and an error if they don't add up to
618 		 * a full sector.
619 		 */
620 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621 			btrfs_err(fs_info,
622 		"partial page read in btrfs with offset %u and length %u",
623 				  bvec->bv_offset, bvec->bv_len);
624 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625 				     sectorsize))
626 			btrfs_info(fs_info,
627 		"incomplete page read with offset %u and length %u",
628 				   bvec->bv_offset, bvec->bv_len);
629 
630 		start = page_offset(page) + bvec->bv_offset;
631 		end = start + bvec->bv_len - 1;
632 		len = bvec->bv_len;
633 
634 		if (likely(uptodate)) {
635 			loff_t i_size = i_size_read(inode);
636 			pgoff_t end_index = i_size >> PAGE_SHIFT;
637 
638 			/*
639 			 * Zero out the remaining part if this range straddles
640 			 * i_size.
641 			 *
642 			 * Here we should only zero the range inside the bvec,
643 			 * not touch anything else.
644 			 *
645 			 * NOTE: i_size is exclusive while end is inclusive.
646 			 */
647 			if (page->index == end_index && i_size <= end) {
648 				u32 zero_start = max(offset_in_page(i_size),
649 						     offset_in_page(start));
650 
651 				zero_user_segment(page, zero_start,
652 						  offset_in_page(end) + 1);
653 			}
654 		}
655 
656 		/* Update page status and unlock. */
657 		end_page_read(page, uptodate, start, len);
658 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 					      start, end, uptodate);
660 
661 		ASSERT(bio_offset + len > bio_offset);
662 		bio_offset += len;
663 
664 	}
665 	/* Release the last extent */
666 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667 	bio_put(bio);
668 }
669 
670 /*
671  * Populate every free slot in a provided array with pages.
672  *
673  * @nr_pages:   number of pages to allocate
674  * @page_array: the array to fill with pages; any existing non-null entries in
675  * 		the array will be skipped
676  *
677  * Return: 0        if all pages were able to be allocated;
678  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
679  *                  the array slots zeroed
680  */
681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682 {
683 	unsigned int allocated;
684 
685 	for (allocated = 0; allocated < nr_pages;) {
686 		unsigned int last = allocated;
687 
688 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689 
690 		if (allocated == nr_pages)
691 			return 0;
692 
693 		/*
694 		 * During this iteration, no page could be allocated, even
695 		 * though alloc_pages_bulk_array() falls back to alloc_page()
696 		 * if  it could not bulk-allocate. So we must be out of memory.
697 		 */
698 		if (allocated == last) {
699 			for (int i = 0; i < allocated; i++) {
700 				__free_page(page_array[i]);
701 				page_array[i] = NULL;
702 			}
703 			return -ENOMEM;
704 		}
705 
706 		memalloc_retry_wait(GFP_NOFS);
707 	}
708 	return 0;
709 }
710 
711 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
712 				struct page *page, u64 disk_bytenr,
713 				unsigned int pg_offset)
714 {
715 	struct bio *bio = &bio_ctrl->bbio->bio;
716 	struct bio_vec *bvec = bio_last_bvec_all(bio);
717 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
718 
719 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
720 		/*
721 		 * For compression, all IO should have its logical bytenr set
722 		 * to the starting bytenr of the compressed extent.
723 		 */
724 		return bio->bi_iter.bi_sector == sector;
725 	}
726 
727 	/*
728 	 * The contig check requires the following conditions to be met:
729 	 *
730 	 * 1) The pages are belonging to the same inode
731 	 *    This is implied by the call chain.
732 	 *
733 	 * 2) The range has adjacent logical bytenr
734 	 *
735 	 * 3) The range has adjacent file offset
736 	 *    This is required for the usage of btrfs_bio->file_offset.
737 	 */
738 	return bio_end_sector(bio) == sector &&
739 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
740 		page_offset(page) + pg_offset;
741 }
742 
743 static void alloc_new_bio(struct btrfs_inode *inode,
744 			  struct btrfs_bio_ctrl *bio_ctrl,
745 			  u64 disk_bytenr, u64 file_offset)
746 {
747 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
748 	struct btrfs_bio *bbio;
749 
750 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
751 			       bio_ctrl->end_io_func, NULL);
752 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
753 	bbio->inode = inode;
754 	bbio->file_offset = file_offset;
755 	bio_ctrl->bbio = bbio;
756 	bio_ctrl->len_to_oe_boundary = U32_MAX;
757 
758 	/* Limit data write bios to the ordered boundary. */
759 	if (bio_ctrl->wbc) {
760 		struct btrfs_ordered_extent *ordered;
761 
762 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
763 		if (ordered) {
764 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
765 					ordered->file_offset +
766 					ordered->disk_num_bytes - file_offset);
767 			bbio->ordered = ordered;
768 		}
769 
770 		/*
771 		 * Pick the last added device to support cgroup writeback.  For
772 		 * multi-device file systems this means blk-cgroup policies have
773 		 * to always be set on the last added/replaced device.
774 		 * This is a bit odd but has been like that for a long time.
775 		 */
776 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
777 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
778 	}
779 }
780 
781 /*
782  * @disk_bytenr: logical bytenr where the write will be
783  * @page:	page to add to the bio
784  * @size:	portion of page that we want to write to
785  * @pg_offset:	offset of the new bio or to check whether we are adding
786  *              a contiguous page to the previous one
787  *
788  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
789  * new one in @bio_ctrl->bbio.
790  * The mirror number for this IO should already be initizlied in
791  * @bio_ctrl->mirror_num.
792  */
793 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
794 			       u64 disk_bytenr, struct page *page,
795 			       size_t size, unsigned long pg_offset)
796 {
797 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
798 
799 	ASSERT(pg_offset + size <= PAGE_SIZE);
800 	ASSERT(bio_ctrl->end_io_func);
801 
802 	if (bio_ctrl->bbio &&
803 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
804 		submit_one_bio(bio_ctrl);
805 
806 	do {
807 		u32 len = size;
808 
809 		/* Allocate new bio if needed */
810 		if (!bio_ctrl->bbio) {
811 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
812 				      page_offset(page) + pg_offset);
813 		}
814 
815 		/* Cap to the current ordered extent boundary if there is one. */
816 		if (len > bio_ctrl->len_to_oe_boundary) {
817 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
818 			ASSERT(is_data_inode(&inode->vfs_inode));
819 			len = bio_ctrl->len_to_oe_boundary;
820 		}
821 
822 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
823 			/* bio full: move on to a new one */
824 			submit_one_bio(bio_ctrl);
825 			continue;
826 		}
827 
828 		if (bio_ctrl->wbc)
829 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
830 
831 		size -= len;
832 		pg_offset += len;
833 		disk_bytenr += len;
834 
835 		/*
836 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
837 		 * sector aligned.  alloc_new_bio() then sets it to the end of
838 		 * our ordered extent for writes into zoned devices.
839 		 *
840 		 * When len_to_oe_boundary is tracking an ordered extent, we
841 		 * trust the ordered extent code to align things properly, and
842 		 * the check above to cap our write to the ordered extent
843 		 * boundary is correct.
844 		 *
845 		 * When len_to_oe_boundary is U32_MAX, the cap above would
846 		 * result in a 4095 byte IO for the last page right before
847 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
848 		 * the checks required to make sure we don't overflow the bio,
849 		 * and we should just ignore len_to_oe_boundary completely
850 		 * unless we're using it to track an ordered extent.
851 		 *
852 		 * It's pretty hard to make a bio sized U32_MAX, but it can
853 		 * happen when the page cache is able to feed us contiguous
854 		 * pages for large extents.
855 		 */
856 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857 			bio_ctrl->len_to_oe_boundary -= len;
858 
859 		/* Ordered extent boundary: move on to a new bio. */
860 		if (bio_ctrl->len_to_oe_boundary == 0)
861 			submit_one_bio(bio_ctrl);
862 	} while (size);
863 }
864 
865 static int attach_extent_buffer_page(struct extent_buffer *eb,
866 				     struct page *page,
867 				     struct btrfs_subpage *prealloc)
868 {
869 	struct btrfs_fs_info *fs_info = eb->fs_info;
870 	int ret = 0;
871 
872 	/*
873 	 * If the page is mapped to btree inode, we should hold the private
874 	 * lock to prevent race.
875 	 * For cloned or dummy extent buffers, their pages are not mapped and
876 	 * will not race with any other ebs.
877 	 */
878 	if (page->mapping)
879 		lockdep_assert_held(&page->mapping->private_lock);
880 
881 	if (fs_info->nodesize >= PAGE_SIZE) {
882 		if (!PagePrivate(page))
883 			attach_page_private(page, eb);
884 		else
885 			WARN_ON(page->private != (unsigned long)eb);
886 		return 0;
887 	}
888 
889 	/* Already mapped, just free prealloc */
890 	if (PagePrivate(page)) {
891 		btrfs_free_subpage(prealloc);
892 		return 0;
893 	}
894 
895 	if (prealloc)
896 		/* Has preallocated memory for subpage */
897 		attach_page_private(page, prealloc);
898 	else
899 		/* Do new allocation to attach subpage */
900 		ret = btrfs_attach_subpage(fs_info, page,
901 					   BTRFS_SUBPAGE_METADATA);
902 	return ret;
903 }
904 
905 int set_page_extent_mapped(struct page *page)
906 {
907 	struct btrfs_fs_info *fs_info;
908 
909 	ASSERT(page->mapping);
910 
911 	if (PagePrivate(page))
912 		return 0;
913 
914 	fs_info = btrfs_sb(page->mapping->host->i_sb);
915 
916 	if (btrfs_is_subpage(fs_info, page))
917 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
918 
919 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
920 	return 0;
921 }
922 
923 void clear_page_extent_mapped(struct page *page)
924 {
925 	struct btrfs_fs_info *fs_info;
926 
927 	ASSERT(page->mapping);
928 
929 	if (!PagePrivate(page))
930 		return;
931 
932 	fs_info = btrfs_sb(page->mapping->host->i_sb);
933 	if (btrfs_is_subpage(fs_info, page))
934 		return btrfs_detach_subpage(fs_info, page);
935 
936 	detach_page_private(page);
937 }
938 
939 static struct extent_map *
940 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
941 		 u64 start, u64 len, struct extent_map **em_cached)
942 {
943 	struct extent_map *em;
944 
945 	if (em_cached && *em_cached) {
946 		em = *em_cached;
947 		if (extent_map_in_tree(em) && start >= em->start &&
948 		    start < extent_map_end(em)) {
949 			refcount_inc(&em->refs);
950 			return em;
951 		}
952 
953 		free_extent_map(em);
954 		*em_cached = NULL;
955 	}
956 
957 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
958 	if (em_cached && !IS_ERR(em)) {
959 		BUG_ON(*em_cached);
960 		refcount_inc(&em->refs);
961 		*em_cached = em;
962 	}
963 	return em;
964 }
965 /*
966  * basic readpage implementation.  Locked extent state structs are inserted
967  * into the tree that are removed when the IO is done (by the end_io
968  * handlers)
969  * XXX JDM: This needs looking at to ensure proper page locking
970  * return 0 on success, otherwise return error
971  */
972 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
973 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
974 {
975 	struct inode *inode = page->mapping->host;
976 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
977 	u64 start = page_offset(page);
978 	const u64 end = start + PAGE_SIZE - 1;
979 	u64 cur = start;
980 	u64 extent_offset;
981 	u64 last_byte = i_size_read(inode);
982 	u64 block_start;
983 	struct extent_map *em;
984 	int ret = 0;
985 	size_t pg_offset = 0;
986 	size_t iosize;
987 	size_t blocksize = inode->i_sb->s_blocksize;
988 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
989 
990 	ret = set_page_extent_mapped(page);
991 	if (ret < 0) {
992 		unlock_extent(tree, start, end, NULL);
993 		unlock_page(page);
994 		return ret;
995 	}
996 
997 	if (page->index == last_byte >> PAGE_SHIFT) {
998 		size_t zero_offset = offset_in_page(last_byte);
999 
1000 		if (zero_offset) {
1001 			iosize = PAGE_SIZE - zero_offset;
1002 			memzero_page(page, zero_offset, iosize);
1003 		}
1004 	}
1005 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1006 	begin_page_read(fs_info, page);
1007 	while (cur <= end) {
1008 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1009 		bool force_bio_submit = false;
1010 		u64 disk_bytenr;
1011 
1012 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1013 		if (cur >= last_byte) {
1014 			iosize = PAGE_SIZE - pg_offset;
1015 			memzero_page(page, pg_offset, iosize);
1016 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1017 			end_page_read(page, true, cur, iosize);
1018 			break;
1019 		}
1020 		em = __get_extent_map(inode, page, pg_offset, cur,
1021 				      end - cur + 1, em_cached);
1022 		if (IS_ERR(em)) {
1023 			unlock_extent(tree, cur, end, NULL);
1024 			end_page_read(page, false, cur, end + 1 - cur);
1025 			return PTR_ERR(em);
1026 		}
1027 		extent_offset = cur - em->start;
1028 		BUG_ON(extent_map_end(em) <= cur);
1029 		BUG_ON(end < cur);
1030 
1031 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1032 			compress_type = em->compress_type;
1033 
1034 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1035 		iosize = ALIGN(iosize, blocksize);
1036 		if (compress_type != BTRFS_COMPRESS_NONE)
1037 			disk_bytenr = em->block_start;
1038 		else
1039 			disk_bytenr = em->block_start + extent_offset;
1040 		block_start = em->block_start;
1041 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1042 			block_start = EXTENT_MAP_HOLE;
1043 
1044 		/*
1045 		 * If we have a file range that points to a compressed extent
1046 		 * and it's followed by a consecutive file range that points
1047 		 * to the same compressed extent (possibly with a different
1048 		 * offset and/or length, so it either points to the whole extent
1049 		 * or only part of it), we must make sure we do not submit a
1050 		 * single bio to populate the pages for the 2 ranges because
1051 		 * this makes the compressed extent read zero out the pages
1052 		 * belonging to the 2nd range. Imagine the following scenario:
1053 		 *
1054 		 *  File layout
1055 		 *  [0 - 8K]                     [8K - 24K]
1056 		 *    |                               |
1057 		 *    |                               |
1058 		 * points to extent X,         points to extent X,
1059 		 * offset 4K, length of 8K     offset 0, length 16K
1060 		 *
1061 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1062 		 *
1063 		 * If the bio to read the compressed extent covers both ranges,
1064 		 * it will decompress extent X into the pages belonging to the
1065 		 * first range and then it will stop, zeroing out the remaining
1066 		 * pages that belong to the other range that points to extent X.
1067 		 * So here we make sure we submit 2 bios, one for the first
1068 		 * range and another one for the third range. Both will target
1069 		 * the same physical extent from disk, but we can't currently
1070 		 * make the compressed bio endio callback populate the pages
1071 		 * for both ranges because each compressed bio is tightly
1072 		 * coupled with a single extent map, and each range can have
1073 		 * an extent map with a different offset value relative to the
1074 		 * uncompressed data of our extent and different lengths. This
1075 		 * is a corner case so we prioritize correctness over
1076 		 * non-optimal behavior (submitting 2 bios for the same extent).
1077 		 */
1078 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1079 		    prev_em_start && *prev_em_start != (u64)-1 &&
1080 		    *prev_em_start != em->start)
1081 			force_bio_submit = true;
1082 
1083 		if (prev_em_start)
1084 			*prev_em_start = em->start;
1085 
1086 		free_extent_map(em);
1087 		em = NULL;
1088 
1089 		/* we've found a hole, just zero and go on */
1090 		if (block_start == EXTENT_MAP_HOLE) {
1091 			memzero_page(page, pg_offset, iosize);
1092 
1093 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1094 			end_page_read(page, true, cur, iosize);
1095 			cur = cur + iosize;
1096 			pg_offset += iosize;
1097 			continue;
1098 		}
1099 		/* the get_extent function already copied into the page */
1100 		if (block_start == EXTENT_MAP_INLINE) {
1101 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1102 			end_page_read(page, true, cur, iosize);
1103 			cur = cur + iosize;
1104 			pg_offset += iosize;
1105 			continue;
1106 		}
1107 
1108 		if (bio_ctrl->compress_type != compress_type) {
1109 			submit_one_bio(bio_ctrl);
1110 			bio_ctrl->compress_type = compress_type;
1111 		}
1112 
1113 		if (force_bio_submit)
1114 			submit_one_bio(bio_ctrl);
1115 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1116 				   pg_offset);
1117 		cur = cur + iosize;
1118 		pg_offset += iosize;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 int btrfs_read_folio(struct file *file, struct folio *folio)
1125 {
1126 	struct page *page = &folio->page;
1127 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1128 	u64 start = page_offset(page);
1129 	u64 end = start + PAGE_SIZE - 1;
1130 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1131 	int ret;
1132 
1133 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1134 
1135 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1136 	/*
1137 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1138 	 * bio to do the cleanup.
1139 	 */
1140 	submit_one_bio(&bio_ctrl);
1141 	return ret;
1142 }
1143 
1144 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1145 					u64 start, u64 end,
1146 					struct extent_map **em_cached,
1147 					struct btrfs_bio_ctrl *bio_ctrl,
1148 					u64 *prev_em_start)
1149 {
1150 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1151 	int index;
1152 
1153 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1154 
1155 	for (index = 0; index < nr_pages; index++) {
1156 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1157 				  prev_em_start);
1158 		put_page(pages[index]);
1159 	}
1160 }
1161 
1162 /*
1163  * helper for __extent_writepage, doing all of the delayed allocation setup.
1164  *
1165  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1166  * to write the page (copy into inline extent).  In this case the IO has
1167  * been started and the page is already unlocked.
1168  *
1169  * This returns 0 if all went well (page still locked)
1170  * This returns < 0 if there were errors (page still locked)
1171  */
1172 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1173 		struct page *page, struct writeback_control *wbc)
1174 {
1175 	const u64 page_start = page_offset(page);
1176 	const u64 page_end = page_start + PAGE_SIZE - 1;
1177 	u64 delalloc_start = page_start;
1178 	u64 delalloc_end = page_end;
1179 	u64 delalloc_to_write = 0;
1180 	int ret = 0;
1181 
1182 	while (delalloc_start < page_end) {
1183 		delalloc_end = page_end;
1184 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1185 					      &delalloc_start, &delalloc_end)) {
1186 			delalloc_start = delalloc_end + 1;
1187 			continue;
1188 		}
1189 
1190 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1191 					       delalloc_end, wbc);
1192 		if (ret < 0)
1193 			return ret;
1194 
1195 		delalloc_start = delalloc_end + 1;
1196 	}
1197 
1198 	/*
1199 	 * delalloc_end is already one less than the total length, so
1200 	 * we don't subtract one from PAGE_SIZE
1201 	 */
1202 	delalloc_to_write +=
1203 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1204 
1205 	/*
1206 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1207 	 * the pages, we just need to account for them here.
1208 	 */
1209 	if (ret == 1) {
1210 		wbc->nr_to_write -= delalloc_to_write;
1211 		return 1;
1212 	}
1213 
1214 	if (wbc->nr_to_write < delalloc_to_write) {
1215 		int thresh = 8192;
1216 
1217 		if (delalloc_to_write < thresh * 2)
1218 			thresh = delalloc_to_write;
1219 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1220 					 thresh);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Find the first byte we need to write.
1228  *
1229  * For subpage, one page can contain several sectors, and
1230  * __extent_writepage_io() will just grab all extent maps in the page
1231  * range and try to submit all non-inline/non-compressed extents.
1232  *
1233  * This is a big problem for subpage, we shouldn't re-submit already written
1234  * data at all.
1235  * This function will lookup subpage dirty bit to find which range we really
1236  * need to submit.
1237  *
1238  * Return the next dirty range in [@start, @end).
1239  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1240  */
1241 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1242 				 struct page *page, u64 *start, u64 *end)
1243 {
1244 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1245 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1246 	u64 orig_start = *start;
1247 	/* Declare as unsigned long so we can use bitmap ops */
1248 	unsigned long flags;
1249 	int range_start_bit;
1250 	int range_end_bit;
1251 
1252 	/*
1253 	 * For regular sector size == page size case, since one page only
1254 	 * contains one sector, we return the page offset directly.
1255 	 */
1256 	if (!btrfs_is_subpage(fs_info, page)) {
1257 		*start = page_offset(page);
1258 		*end = page_offset(page) + PAGE_SIZE;
1259 		return;
1260 	}
1261 
1262 	range_start_bit = spi->dirty_offset +
1263 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1264 
1265 	/* We should have the page locked, but just in case */
1266 	spin_lock_irqsave(&subpage->lock, flags);
1267 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1268 			       spi->dirty_offset + spi->bitmap_nr_bits);
1269 	spin_unlock_irqrestore(&subpage->lock, flags);
1270 
1271 	range_start_bit -= spi->dirty_offset;
1272 	range_end_bit -= spi->dirty_offset;
1273 
1274 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1275 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1276 }
1277 
1278 /*
1279  * helper for __extent_writepage.  This calls the writepage start hooks,
1280  * and does the loop to map the page into extents and bios.
1281  *
1282  * We return 1 if the IO is started and the page is unlocked,
1283  * 0 if all went well (page still locked)
1284  * < 0 if there were errors (page still locked)
1285  */
1286 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1287 				 struct page *page,
1288 				 struct btrfs_bio_ctrl *bio_ctrl,
1289 				 loff_t i_size,
1290 				 int *nr_ret)
1291 {
1292 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1293 	u64 cur = page_offset(page);
1294 	u64 end = cur + PAGE_SIZE - 1;
1295 	u64 extent_offset;
1296 	u64 block_start;
1297 	struct extent_map *em;
1298 	int ret = 0;
1299 	int nr = 0;
1300 
1301 	ret = btrfs_writepage_cow_fixup(page);
1302 	if (ret) {
1303 		/* Fixup worker will requeue */
1304 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1305 		unlock_page(page);
1306 		return 1;
1307 	}
1308 
1309 	bio_ctrl->end_io_func = end_bio_extent_writepage;
1310 	while (cur <= end) {
1311 		u32 len = end - cur + 1;
1312 		u64 disk_bytenr;
1313 		u64 em_end;
1314 		u64 dirty_range_start = cur;
1315 		u64 dirty_range_end;
1316 		u32 iosize;
1317 
1318 		if (cur >= i_size) {
1319 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1320 						       true);
1321 			/*
1322 			 * This range is beyond i_size, thus we don't need to
1323 			 * bother writing back.
1324 			 * But we still need to clear the dirty subpage bit, or
1325 			 * the next time the page gets dirtied, we will try to
1326 			 * writeback the sectors with subpage dirty bits,
1327 			 * causing writeback without ordered extent.
1328 			 */
1329 			btrfs_page_clear_dirty(fs_info, page, cur, len);
1330 			break;
1331 		}
1332 
1333 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1334 				     &dirty_range_end);
1335 		if (cur < dirty_range_start) {
1336 			cur = dirty_range_start;
1337 			continue;
1338 		}
1339 
1340 		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1341 		if (IS_ERR(em)) {
1342 			ret = PTR_ERR_OR_ZERO(em);
1343 			goto out_error;
1344 		}
1345 
1346 		extent_offset = cur - em->start;
1347 		em_end = extent_map_end(em);
1348 		ASSERT(cur <= em_end);
1349 		ASSERT(cur < end);
1350 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1351 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1352 
1353 		block_start = em->block_start;
1354 		disk_bytenr = em->block_start + extent_offset;
1355 
1356 		ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1357 		ASSERT(block_start != EXTENT_MAP_HOLE);
1358 		ASSERT(block_start != EXTENT_MAP_INLINE);
1359 
1360 		/*
1361 		 * Note that em_end from extent_map_end() and dirty_range_end from
1362 		 * find_next_dirty_byte() are all exclusive
1363 		 */
1364 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1365 		free_extent_map(em);
1366 		em = NULL;
1367 
1368 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1369 		if (!PageWriteback(page)) {
1370 			btrfs_err(inode->root->fs_info,
1371 				   "page %lu not writeback, cur %llu end %llu",
1372 			       page->index, cur, end);
1373 		}
1374 
1375 		/*
1376 		 * Although the PageDirty bit is cleared before entering this
1377 		 * function, subpage dirty bit is not cleared.
1378 		 * So clear subpage dirty bit here so next time we won't submit
1379 		 * page for range already written to disk.
1380 		 */
1381 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1382 
1383 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1384 				   cur - page_offset(page));
1385 		cur += iosize;
1386 		nr++;
1387 	}
1388 
1389 	btrfs_page_assert_not_dirty(fs_info, page);
1390 	*nr_ret = nr;
1391 	return 0;
1392 
1393 out_error:
1394 	/*
1395 	 * If we finish without problem, we should not only clear page dirty,
1396 	 * but also empty subpage dirty bits
1397 	 */
1398 	*nr_ret = nr;
1399 	return ret;
1400 }
1401 
1402 /*
1403  * the writepage semantics are similar to regular writepage.  extent
1404  * records are inserted to lock ranges in the tree, and as dirty areas
1405  * are found, they are marked writeback.  Then the lock bits are removed
1406  * and the end_io handler clears the writeback ranges
1407  *
1408  * Return 0 if everything goes well.
1409  * Return <0 for error.
1410  */
1411 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1412 {
1413 	struct folio *folio = page_folio(page);
1414 	struct inode *inode = page->mapping->host;
1415 	const u64 page_start = page_offset(page);
1416 	int ret;
1417 	int nr = 0;
1418 	size_t pg_offset;
1419 	loff_t i_size = i_size_read(inode);
1420 	unsigned long end_index = i_size >> PAGE_SHIFT;
1421 
1422 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1423 
1424 	WARN_ON(!PageLocked(page));
1425 
1426 	pg_offset = offset_in_page(i_size);
1427 	if (page->index > end_index ||
1428 	   (page->index == end_index && !pg_offset)) {
1429 		folio_invalidate(folio, 0, folio_size(folio));
1430 		folio_unlock(folio);
1431 		return 0;
1432 	}
1433 
1434 	if (page->index == end_index)
1435 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1436 
1437 	ret = set_page_extent_mapped(page);
1438 	if (ret < 0)
1439 		goto done;
1440 
1441 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1442 	if (ret == 1)
1443 		return 0;
1444 	if (ret)
1445 		goto done;
1446 
1447 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1448 	if (ret == 1)
1449 		return 0;
1450 
1451 	bio_ctrl->wbc->nr_to_write--;
1452 
1453 done:
1454 	if (nr == 0) {
1455 		/* make sure the mapping tag for page dirty gets cleared */
1456 		set_page_writeback(page);
1457 		end_page_writeback(page);
1458 	}
1459 	if (ret) {
1460 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1461 					       PAGE_SIZE, !ret);
1462 		mapping_set_error(page->mapping, ret);
1463 	}
1464 	unlock_page(page);
1465 	ASSERT(ret <= 0);
1466 	return ret;
1467 }
1468 
1469 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1470 {
1471 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1472 		       TASK_UNINTERRUPTIBLE);
1473 }
1474 
1475 /*
1476  * Lock extent buffer status and pages for writeback.
1477  *
1478  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1479  * extent buffer is not dirty)
1480  * Return %true is the extent buffer is submitted to bio.
1481  */
1482 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1483 			  struct writeback_control *wbc)
1484 {
1485 	struct btrfs_fs_info *fs_info = eb->fs_info;
1486 	bool ret = false;
1487 
1488 	btrfs_tree_lock(eb);
1489 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1490 		btrfs_tree_unlock(eb);
1491 		if (wbc->sync_mode != WB_SYNC_ALL)
1492 			return false;
1493 		wait_on_extent_buffer_writeback(eb);
1494 		btrfs_tree_lock(eb);
1495 	}
1496 
1497 	/*
1498 	 * We need to do this to prevent races in people who check if the eb is
1499 	 * under IO since we can end up having no IO bits set for a short period
1500 	 * of time.
1501 	 */
1502 	spin_lock(&eb->refs_lock);
1503 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1504 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1505 		spin_unlock(&eb->refs_lock);
1506 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1507 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1508 					 -eb->len,
1509 					 fs_info->dirty_metadata_batch);
1510 		ret = true;
1511 	} else {
1512 		spin_unlock(&eb->refs_lock);
1513 	}
1514 	btrfs_tree_unlock(eb);
1515 	return ret;
1516 }
1517 
1518 static void set_btree_ioerr(struct extent_buffer *eb)
1519 {
1520 	struct btrfs_fs_info *fs_info = eb->fs_info;
1521 
1522 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1523 
1524 	/*
1525 	 * A read may stumble upon this buffer later, make sure that it gets an
1526 	 * error and knows there was an error.
1527 	 */
1528 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1529 
1530 	/*
1531 	 * We need to set the mapping with the io error as well because a write
1532 	 * error will flip the file system readonly, and then syncfs() will
1533 	 * return a 0 because we are readonly if we don't modify the err seq for
1534 	 * the superblock.
1535 	 */
1536 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1537 
1538 	/*
1539 	 * If writeback for a btree extent that doesn't belong to a log tree
1540 	 * failed, increment the counter transaction->eb_write_errors.
1541 	 * We do this because while the transaction is running and before it's
1542 	 * committing (when we call filemap_fdata[write|wait]_range against
1543 	 * the btree inode), we might have
1544 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1545 	 * returns an error or an error happens during writeback, when we're
1546 	 * committing the transaction we wouldn't know about it, since the pages
1547 	 * can be no longer dirty nor marked anymore for writeback (if a
1548 	 * subsequent modification to the extent buffer didn't happen before the
1549 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1550 	 * able to find the pages tagged with SetPageError at transaction
1551 	 * commit time. So if this happens we must abort the transaction,
1552 	 * otherwise we commit a super block with btree roots that point to
1553 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1554 	 * or the content of some node/leaf from a past generation that got
1555 	 * cowed or deleted and is no longer valid.
1556 	 *
1557 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1558 	 * not be enough - we need to distinguish between log tree extents vs
1559 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1560 	 * will catch and clear such errors in the mapping - and that call might
1561 	 * be from a log sync and not from a transaction commit. Also, checking
1562 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1563 	 * not done and would not be reliable - the eb might have been released
1564 	 * from memory and reading it back again means that flag would not be
1565 	 * set (since it's a runtime flag, not persisted on disk).
1566 	 *
1567 	 * Using the flags below in the btree inode also makes us achieve the
1568 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1569 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1570 	 * is called, the writeback for all dirty pages had already finished
1571 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1572 	 * filemap_fdatawait_range() would return success, as it could not know
1573 	 * that writeback errors happened (the pages were no longer tagged for
1574 	 * writeback).
1575 	 */
1576 	switch (eb->log_index) {
1577 	case -1:
1578 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1579 		break;
1580 	case 0:
1581 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1582 		break;
1583 	case 1:
1584 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1585 		break;
1586 	default:
1587 		BUG(); /* unexpected, logic error */
1588 	}
1589 }
1590 
1591 /*
1592  * The endio specific version which won't touch any unsafe spinlock in endio
1593  * context.
1594  */
1595 static struct extent_buffer *find_extent_buffer_nolock(
1596 		struct btrfs_fs_info *fs_info, u64 start)
1597 {
1598 	struct extent_buffer *eb;
1599 
1600 	rcu_read_lock();
1601 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1602 			       start >> fs_info->sectorsize_bits);
1603 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1604 		rcu_read_unlock();
1605 		return eb;
1606 	}
1607 	rcu_read_unlock();
1608 	return NULL;
1609 }
1610 
1611 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1612 {
1613 	struct extent_buffer *eb = bbio->private;
1614 	struct btrfs_fs_info *fs_info = eb->fs_info;
1615 	bool uptodate = !bbio->bio.bi_status;
1616 	struct bvec_iter_all iter_all;
1617 	struct bio_vec *bvec;
1618 	u32 bio_offset = 0;
1619 
1620 	if (!uptodate)
1621 		set_btree_ioerr(eb);
1622 
1623 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1624 		u64 start = eb->start + bio_offset;
1625 		struct page *page = bvec->bv_page;
1626 		u32 len = bvec->bv_len;
1627 
1628 		btrfs_page_clear_writeback(fs_info, page, start, len);
1629 		bio_offset += len;
1630 	}
1631 
1632 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1633 	smp_mb__after_atomic();
1634 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1635 
1636 	bio_put(&bbio->bio);
1637 }
1638 
1639 static void prepare_eb_write(struct extent_buffer *eb)
1640 {
1641 	u32 nritems;
1642 	unsigned long start;
1643 	unsigned long end;
1644 
1645 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1646 
1647 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1648 	nritems = btrfs_header_nritems(eb);
1649 	if (btrfs_header_level(eb) > 0) {
1650 		end = btrfs_node_key_ptr_offset(eb, nritems);
1651 		memzero_extent_buffer(eb, end, eb->len - end);
1652 	} else {
1653 		/*
1654 		 * Leaf:
1655 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1656 		 */
1657 		start = btrfs_item_nr_offset(eb, nritems);
1658 		end = btrfs_item_nr_offset(eb, 0);
1659 		if (nritems == 0)
1660 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1661 		else
1662 			end += btrfs_item_offset(eb, nritems - 1);
1663 		memzero_extent_buffer(eb, start, end - start);
1664 	}
1665 }
1666 
1667 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1668 					    struct writeback_control *wbc)
1669 {
1670 	struct btrfs_fs_info *fs_info = eb->fs_info;
1671 	struct btrfs_bio *bbio;
1672 
1673 	prepare_eb_write(eb);
1674 
1675 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1676 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1677 			       eb->fs_info, extent_buffer_write_end_io, eb);
1678 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1679 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1680 	wbc_init_bio(wbc, &bbio->bio);
1681 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1682 	bbio->file_offset = eb->start;
1683 	if (fs_info->nodesize < PAGE_SIZE) {
1684 		struct page *p = eb->pages[0];
1685 
1686 		lock_page(p);
1687 		btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1688 		if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1689 						       eb->len)) {
1690 			clear_page_dirty_for_io(p);
1691 			wbc->nr_to_write--;
1692 		}
1693 		__bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1694 		wbc_account_cgroup_owner(wbc, p, eb->len);
1695 		unlock_page(p);
1696 	} else {
1697 		for (int i = 0; i < num_extent_pages(eb); i++) {
1698 			struct page *p = eb->pages[i];
1699 
1700 			lock_page(p);
1701 			clear_page_dirty_for_io(p);
1702 			set_page_writeback(p);
1703 			__bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1704 			wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1705 			wbc->nr_to_write--;
1706 			unlock_page(p);
1707 		}
1708 	}
1709 	btrfs_submit_bio(bbio, 0);
1710 }
1711 
1712 /*
1713  * Submit one subpage btree page.
1714  *
1715  * The main difference to submit_eb_page() is:
1716  * - Page locking
1717  *   For subpage, we don't rely on page locking at all.
1718  *
1719  * - Flush write bio
1720  *   We only flush bio if we may be unable to fit current extent buffers into
1721  *   current bio.
1722  *
1723  * Return >=0 for the number of submitted extent buffers.
1724  * Return <0 for fatal error.
1725  */
1726 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1727 {
1728 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1729 	int submitted = 0;
1730 	u64 page_start = page_offset(page);
1731 	int bit_start = 0;
1732 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1733 
1734 	/* Lock and write each dirty extent buffers in the range */
1735 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1736 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1737 		struct extent_buffer *eb;
1738 		unsigned long flags;
1739 		u64 start;
1740 
1741 		/*
1742 		 * Take private lock to ensure the subpage won't be detached
1743 		 * in the meantime.
1744 		 */
1745 		spin_lock(&page->mapping->private_lock);
1746 		if (!PagePrivate(page)) {
1747 			spin_unlock(&page->mapping->private_lock);
1748 			break;
1749 		}
1750 		spin_lock_irqsave(&subpage->lock, flags);
1751 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1752 			      subpage->bitmaps)) {
1753 			spin_unlock_irqrestore(&subpage->lock, flags);
1754 			spin_unlock(&page->mapping->private_lock);
1755 			bit_start++;
1756 			continue;
1757 		}
1758 
1759 		start = page_start + bit_start * fs_info->sectorsize;
1760 		bit_start += sectors_per_node;
1761 
1762 		/*
1763 		 * Here we just want to grab the eb without touching extra
1764 		 * spin locks, so call find_extent_buffer_nolock().
1765 		 */
1766 		eb = find_extent_buffer_nolock(fs_info, start);
1767 		spin_unlock_irqrestore(&subpage->lock, flags);
1768 		spin_unlock(&page->mapping->private_lock);
1769 
1770 		/*
1771 		 * The eb has already reached 0 refs thus find_extent_buffer()
1772 		 * doesn't return it. We don't need to write back such eb
1773 		 * anyway.
1774 		 */
1775 		if (!eb)
1776 			continue;
1777 
1778 		if (lock_extent_buffer_for_io(eb, wbc)) {
1779 			write_one_eb(eb, wbc);
1780 			submitted++;
1781 		}
1782 		free_extent_buffer(eb);
1783 	}
1784 	return submitted;
1785 }
1786 
1787 /*
1788  * Submit all page(s) of one extent buffer.
1789  *
1790  * @page:	the page of one extent buffer
1791  * @eb_context:	to determine if we need to submit this page, if current page
1792  *		belongs to this eb, we don't need to submit
1793  *
1794  * The caller should pass each page in their bytenr order, and here we use
1795  * @eb_context to determine if we have submitted pages of one extent buffer.
1796  *
1797  * If we have, we just skip until we hit a new page that doesn't belong to
1798  * current @eb_context.
1799  *
1800  * If not, we submit all the page(s) of the extent buffer.
1801  *
1802  * Return >0 if we have submitted the extent buffer successfully.
1803  * Return 0 if we don't need to submit the page, as it's already submitted by
1804  * previous call.
1805  * Return <0 for fatal error.
1806  */
1807 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1808 {
1809 	struct writeback_control *wbc = ctx->wbc;
1810 	struct address_space *mapping = page->mapping;
1811 	struct extent_buffer *eb;
1812 	int ret;
1813 
1814 	if (!PagePrivate(page))
1815 		return 0;
1816 
1817 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1818 		return submit_eb_subpage(page, wbc);
1819 
1820 	spin_lock(&mapping->private_lock);
1821 	if (!PagePrivate(page)) {
1822 		spin_unlock(&mapping->private_lock);
1823 		return 0;
1824 	}
1825 
1826 	eb = (struct extent_buffer *)page->private;
1827 
1828 	/*
1829 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1830 	 * crashing the machine for something we can survive anyway.
1831 	 */
1832 	if (WARN_ON(!eb)) {
1833 		spin_unlock(&mapping->private_lock);
1834 		return 0;
1835 	}
1836 
1837 	if (eb == ctx->eb) {
1838 		spin_unlock(&mapping->private_lock);
1839 		return 0;
1840 	}
1841 	ret = atomic_inc_not_zero(&eb->refs);
1842 	spin_unlock(&mapping->private_lock);
1843 	if (!ret)
1844 		return 0;
1845 
1846 	ctx->eb = eb;
1847 
1848 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1849 	if (ret) {
1850 		if (ret == -EBUSY)
1851 			ret = 0;
1852 		free_extent_buffer(eb);
1853 		return ret;
1854 	}
1855 
1856 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1857 		free_extent_buffer(eb);
1858 		return 0;
1859 	}
1860 	/* Implies write in zoned mode. */
1861 	if (ctx->zoned_bg) {
1862 		/* Mark the last eb in the block group. */
1863 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1864 		ctx->zoned_bg->meta_write_pointer += eb->len;
1865 	}
1866 	write_one_eb(eb, wbc);
1867 	free_extent_buffer(eb);
1868 	return 1;
1869 }
1870 
1871 int btree_write_cache_pages(struct address_space *mapping,
1872 				   struct writeback_control *wbc)
1873 {
1874 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1875 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1876 	int ret = 0;
1877 	int done = 0;
1878 	int nr_to_write_done = 0;
1879 	struct folio_batch fbatch;
1880 	unsigned int nr_folios;
1881 	pgoff_t index;
1882 	pgoff_t end;		/* Inclusive */
1883 	int scanned = 0;
1884 	xa_mark_t tag;
1885 
1886 	folio_batch_init(&fbatch);
1887 	if (wbc->range_cyclic) {
1888 		index = mapping->writeback_index; /* Start from prev offset */
1889 		end = -1;
1890 		/*
1891 		 * Start from the beginning does not need to cycle over the
1892 		 * range, mark it as scanned.
1893 		 */
1894 		scanned = (index == 0);
1895 	} else {
1896 		index = wbc->range_start >> PAGE_SHIFT;
1897 		end = wbc->range_end >> PAGE_SHIFT;
1898 		scanned = 1;
1899 	}
1900 	if (wbc->sync_mode == WB_SYNC_ALL)
1901 		tag = PAGECACHE_TAG_TOWRITE;
1902 	else
1903 		tag = PAGECACHE_TAG_DIRTY;
1904 	btrfs_zoned_meta_io_lock(fs_info);
1905 retry:
1906 	if (wbc->sync_mode == WB_SYNC_ALL)
1907 		tag_pages_for_writeback(mapping, index, end);
1908 	while (!done && !nr_to_write_done && (index <= end) &&
1909 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1910 					    tag, &fbatch))) {
1911 		unsigned i;
1912 
1913 		for (i = 0; i < nr_folios; i++) {
1914 			struct folio *folio = fbatch.folios[i];
1915 
1916 			ret = submit_eb_page(&folio->page, &ctx);
1917 			if (ret == 0)
1918 				continue;
1919 			if (ret < 0) {
1920 				done = 1;
1921 				break;
1922 			}
1923 
1924 			/*
1925 			 * the filesystem may choose to bump up nr_to_write.
1926 			 * We have to make sure to honor the new nr_to_write
1927 			 * at any time
1928 			 */
1929 			nr_to_write_done = wbc->nr_to_write <= 0;
1930 		}
1931 		folio_batch_release(&fbatch);
1932 		cond_resched();
1933 	}
1934 	if (!scanned && !done) {
1935 		/*
1936 		 * We hit the last page and there is more work to be done: wrap
1937 		 * back to the start of the file
1938 		 */
1939 		scanned = 1;
1940 		index = 0;
1941 		goto retry;
1942 	}
1943 	/*
1944 	 * If something went wrong, don't allow any metadata write bio to be
1945 	 * submitted.
1946 	 *
1947 	 * This would prevent use-after-free if we had dirty pages not
1948 	 * cleaned up, which can still happen by fuzzed images.
1949 	 *
1950 	 * - Bad extent tree
1951 	 *   Allowing existing tree block to be allocated for other trees.
1952 	 *
1953 	 * - Log tree operations
1954 	 *   Exiting tree blocks get allocated to log tree, bumps its
1955 	 *   generation, then get cleaned in tree re-balance.
1956 	 *   Such tree block will not be written back, since it's clean,
1957 	 *   thus no WRITTEN flag set.
1958 	 *   And after log writes back, this tree block is not traced by
1959 	 *   any dirty extent_io_tree.
1960 	 *
1961 	 * - Offending tree block gets re-dirtied from its original owner
1962 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1963 	 *   reused without COWing. This tree block will not be traced
1964 	 *   by btrfs_transaction::dirty_pages.
1965 	 *
1966 	 *   Now such dirty tree block will not be cleaned by any dirty
1967 	 *   extent io tree. Thus we don't want to submit such wild eb
1968 	 *   if the fs already has error.
1969 	 *
1970 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1971 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1972 	 */
1973 	if (ret > 0)
1974 		ret = 0;
1975 	if (!ret && BTRFS_FS_ERROR(fs_info))
1976 		ret = -EROFS;
1977 
1978 	if (ctx.zoned_bg)
1979 		btrfs_put_block_group(ctx.zoned_bg);
1980 	btrfs_zoned_meta_io_unlock(fs_info);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * Walk the list of dirty pages of the given address space and write all of them.
1986  *
1987  * @mapping:   address space structure to write
1988  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
1989  * @bio_ctrl:  holds context for the write, namely the bio
1990  *
1991  * If a page is already under I/O, write_cache_pages() skips it, even
1992  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1993  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1994  * and msync() need to guarantee that all the data which was dirty at the time
1995  * the call was made get new I/O started against them.  If wbc->sync_mode is
1996  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1997  * existing IO to complete.
1998  */
1999 static int extent_write_cache_pages(struct address_space *mapping,
2000 			     struct btrfs_bio_ctrl *bio_ctrl)
2001 {
2002 	struct writeback_control *wbc = bio_ctrl->wbc;
2003 	struct inode *inode = mapping->host;
2004 	int ret = 0;
2005 	int done = 0;
2006 	int nr_to_write_done = 0;
2007 	struct folio_batch fbatch;
2008 	unsigned int nr_folios;
2009 	pgoff_t index;
2010 	pgoff_t end;		/* Inclusive */
2011 	pgoff_t done_index;
2012 	int range_whole = 0;
2013 	int scanned = 0;
2014 	xa_mark_t tag;
2015 
2016 	/*
2017 	 * We have to hold onto the inode so that ordered extents can do their
2018 	 * work when the IO finishes.  The alternative to this is failing to add
2019 	 * an ordered extent if the igrab() fails there and that is a huge pain
2020 	 * to deal with, so instead just hold onto the inode throughout the
2021 	 * writepages operation.  If it fails here we are freeing up the inode
2022 	 * anyway and we'd rather not waste our time writing out stuff that is
2023 	 * going to be truncated anyway.
2024 	 */
2025 	if (!igrab(inode))
2026 		return 0;
2027 
2028 	folio_batch_init(&fbatch);
2029 	if (wbc->range_cyclic) {
2030 		index = mapping->writeback_index; /* Start from prev offset */
2031 		end = -1;
2032 		/*
2033 		 * Start from the beginning does not need to cycle over the
2034 		 * range, mark it as scanned.
2035 		 */
2036 		scanned = (index == 0);
2037 	} else {
2038 		index = wbc->range_start >> PAGE_SHIFT;
2039 		end = wbc->range_end >> PAGE_SHIFT;
2040 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2041 			range_whole = 1;
2042 		scanned = 1;
2043 	}
2044 
2045 	/*
2046 	 * We do the tagged writepage as long as the snapshot flush bit is set
2047 	 * and we are the first one who do the filemap_flush() on this inode.
2048 	 *
2049 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2050 	 * not race in and drop the bit.
2051 	 */
2052 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2053 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2054 			       &BTRFS_I(inode)->runtime_flags))
2055 		wbc->tagged_writepages = 1;
2056 
2057 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058 		tag = PAGECACHE_TAG_TOWRITE;
2059 	else
2060 		tag = PAGECACHE_TAG_DIRTY;
2061 retry:
2062 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063 		tag_pages_for_writeback(mapping, index, end);
2064 	done_index = index;
2065 	while (!done && !nr_to_write_done && (index <= end) &&
2066 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2067 							end, tag, &fbatch))) {
2068 		unsigned i;
2069 
2070 		for (i = 0; i < nr_folios; i++) {
2071 			struct folio *folio = fbatch.folios[i];
2072 
2073 			done_index = folio_next_index(folio);
2074 			/*
2075 			 * At this point we hold neither the i_pages lock nor
2076 			 * the page lock: the page may be truncated or
2077 			 * invalidated (changing page->mapping to NULL),
2078 			 * or even swizzled back from swapper_space to
2079 			 * tmpfs file mapping
2080 			 */
2081 			if (!folio_trylock(folio)) {
2082 				submit_write_bio(bio_ctrl, 0);
2083 				folio_lock(folio);
2084 			}
2085 
2086 			if (unlikely(folio->mapping != mapping)) {
2087 				folio_unlock(folio);
2088 				continue;
2089 			}
2090 
2091 			if (!folio_test_dirty(folio)) {
2092 				/* Someone wrote it for us. */
2093 				folio_unlock(folio);
2094 				continue;
2095 			}
2096 
2097 			if (wbc->sync_mode != WB_SYNC_NONE) {
2098 				if (folio_test_writeback(folio))
2099 					submit_write_bio(bio_ctrl, 0);
2100 				folio_wait_writeback(folio);
2101 			}
2102 
2103 			if (folio_test_writeback(folio) ||
2104 			    !folio_clear_dirty_for_io(folio)) {
2105 				folio_unlock(folio);
2106 				continue;
2107 			}
2108 
2109 			ret = __extent_writepage(&folio->page, bio_ctrl);
2110 			if (ret < 0) {
2111 				done = 1;
2112 				break;
2113 			}
2114 
2115 			/*
2116 			 * The filesystem may choose to bump up nr_to_write.
2117 			 * We have to make sure to honor the new nr_to_write
2118 			 * at any time.
2119 			 */
2120 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2121 					    wbc->nr_to_write <= 0);
2122 		}
2123 		folio_batch_release(&fbatch);
2124 		cond_resched();
2125 	}
2126 	if (!scanned && !done) {
2127 		/*
2128 		 * We hit the last page and there is more work to be done: wrap
2129 		 * back to the start of the file
2130 		 */
2131 		scanned = 1;
2132 		index = 0;
2133 
2134 		/*
2135 		 * If we're looping we could run into a page that is locked by a
2136 		 * writer and that writer could be waiting on writeback for a
2137 		 * page in our current bio, and thus deadlock, so flush the
2138 		 * write bio here.
2139 		 */
2140 		submit_write_bio(bio_ctrl, 0);
2141 		goto retry;
2142 	}
2143 
2144 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2145 		mapping->writeback_index = done_index;
2146 
2147 	btrfs_add_delayed_iput(BTRFS_I(inode));
2148 	return ret;
2149 }
2150 
2151 /*
2152  * Submit the pages in the range to bio for call sites which delalloc range has
2153  * already been ran (aka, ordered extent inserted) and all pages are still
2154  * locked.
2155  */
2156 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2157 			       u64 start, u64 end, struct writeback_control *wbc,
2158 			       bool pages_dirty)
2159 {
2160 	bool found_error = false;
2161 	int ret = 0;
2162 	struct address_space *mapping = inode->i_mapping;
2163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2164 	const u32 sectorsize = fs_info->sectorsize;
2165 	loff_t i_size = i_size_read(inode);
2166 	u64 cur = start;
2167 	struct btrfs_bio_ctrl bio_ctrl = {
2168 		.wbc = wbc,
2169 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2170 	};
2171 
2172 	if (wbc->no_cgroup_owner)
2173 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2174 
2175 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2176 
2177 	while (cur <= end) {
2178 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2179 		u32 cur_len = cur_end + 1 - cur;
2180 		struct page *page;
2181 		int nr = 0;
2182 
2183 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2184 		ASSERT(PageLocked(page));
2185 		if (pages_dirty && page != locked_page) {
2186 			ASSERT(PageDirty(page));
2187 			clear_page_dirty_for_io(page);
2188 		}
2189 
2190 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2191 					    i_size, &nr);
2192 		if (ret == 1)
2193 			goto next_page;
2194 
2195 		/* Make sure the mapping tag for page dirty gets cleared. */
2196 		if (nr == 0) {
2197 			set_page_writeback(page);
2198 			end_page_writeback(page);
2199 		}
2200 		if (ret) {
2201 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2202 						       cur, cur_len, !ret);
2203 			mapping_set_error(page->mapping, ret);
2204 		}
2205 		btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2206 		if (ret < 0)
2207 			found_error = true;
2208 next_page:
2209 		put_page(page);
2210 		cur = cur_end + 1;
2211 	}
2212 
2213 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2214 }
2215 
2216 int extent_writepages(struct address_space *mapping,
2217 		      struct writeback_control *wbc)
2218 {
2219 	struct inode *inode = mapping->host;
2220 	int ret = 0;
2221 	struct btrfs_bio_ctrl bio_ctrl = {
2222 		.wbc = wbc,
2223 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2224 	};
2225 
2226 	/*
2227 	 * Allow only a single thread to do the reloc work in zoned mode to
2228 	 * protect the write pointer updates.
2229 	 */
2230 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2231 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2232 	submit_write_bio(&bio_ctrl, ret);
2233 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2234 	return ret;
2235 }
2236 
2237 void extent_readahead(struct readahead_control *rac)
2238 {
2239 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2240 	struct page *pagepool[16];
2241 	struct extent_map *em_cached = NULL;
2242 	u64 prev_em_start = (u64)-1;
2243 	int nr;
2244 
2245 	while ((nr = readahead_page_batch(rac, pagepool))) {
2246 		u64 contig_start = readahead_pos(rac);
2247 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2248 
2249 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2250 				&em_cached, &bio_ctrl, &prev_em_start);
2251 	}
2252 
2253 	if (em_cached)
2254 		free_extent_map(em_cached);
2255 	submit_one_bio(&bio_ctrl);
2256 }
2257 
2258 /*
2259  * basic invalidate_folio code, this waits on any locked or writeback
2260  * ranges corresponding to the folio, and then deletes any extent state
2261  * records from the tree
2262  */
2263 int extent_invalidate_folio(struct extent_io_tree *tree,
2264 			  struct folio *folio, size_t offset)
2265 {
2266 	struct extent_state *cached_state = NULL;
2267 	u64 start = folio_pos(folio);
2268 	u64 end = start + folio_size(folio) - 1;
2269 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2270 
2271 	/* This function is only called for the btree inode */
2272 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2273 
2274 	start += ALIGN(offset, blocksize);
2275 	if (start > end)
2276 		return 0;
2277 
2278 	lock_extent(tree, start, end, &cached_state);
2279 	folio_wait_writeback(folio);
2280 
2281 	/*
2282 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2283 	 * so here we only need to unlock the extent range to free any
2284 	 * existing extent state.
2285 	 */
2286 	unlock_extent(tree, start, end, &cached_state);
2287 	return 0;
2288 }
2289 
2290 /*
2291  * a helper for release_folio, this tests for areas of the page that
2292  * are locked or under IO and drops the related state bits if it is safe
2293  * to drop the page.
2294  */
2295 static int try_release_extent_state(struct extent_io_tree *tree,
2296 				    struct page *page, gfp_t mask)
2297 {
2298 	u64 start = page_offset(page);
2299 	u64 end = start + PAGE_SIZE - 1;
2300 	int ret = 1;
2301 
2302 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2303 		ret = 0;
2304 	} else {
2305 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2306 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2307 
2308 		/*
2309 		 * At this point we can safely clear everything except the
2310 		 * locked bit, the nodatasum bit and the delalloc new bit.
2311 		 * The delalloc new bit will be cleared by ordered extent
2312 		 * completion.
2313 		 */
2314 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2315 
2316 		/* if clear_extent_bit failed for enomem reasons,
2317 		 * we can't allow the release to continue.
2318 		 */
2319 		if (ret < 0)
2320 			ret = 0;
2321 		else
2322 			ret = 1;
2323 	}
2324 	return ret;
2325 }
2326 
2327 /*
2328  * a helper for release_folio.  As long as there are no locked extents
2329  * in the range corresponding to the page, both state records and extent
2330  * map records are removed
2331  */
2332 int try_release_extent_mapping(struct page *page, gfp_t mask)
2333 {
2334 	struct extent_map *em;
2335 	u64 start = page_offset(page);
2336 	u64 end = start + PAGE_SIZE - 1;
2337 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2338 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2339 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2340 
2341 	if (gfpflags_allow_blocking(mask) &&
2342 	    page->mapping->host->i_size > SZ_16M) {
2343 		u64 len;
2344 		while (start <= end) {
2345 			struct btrfs_fs_info *fs_info;
2346 			u64 cur_gen;
2347 
2348 			len = end - start + 1;
2349 			write_lock(&map->lock);
2350 			em = lookup_extent_mapping(map, start, len);
2351 			if (!em) {
2352 				write_unlock(&map->lock);
2353 				break;
2354 			}
2355 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2356 			    em->start != start) {
2357 				write_unlock(&map->lock);
2358 				free_extent_map(em);
2359 				break;
2360 			}
2361 			if (test_range_bit(tree, em->start,
2362 					   extent_map_end(em) - 1,
2363 					   EXTENT_LOCKED, 0, NULL))
2364 				goto next;
2365 			/*
2366 			 * If it's not in the list of modified extents, used
2367 			 * by a fast fsync, we can remove it. If it's being
2368 			 * logged we can safely remove it since fsync took an
2369 			 * extra reference on the em.
2370 			 */
2371 			if (list_empty(&em->list) ||
2372 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2373 				goto remove_em;
2374 			/*
2375 			 * If it's in the list of modified extents, remove it
2376 			 * only if its generation is older then the current one,
2377 			 * in which case we don't need it for a fast fsync.
2378 			 * Otherwise don't remove it, we could be racing with an
2379 			 * ongoing fast fsync that could miss the new extent.
2380 			 */
2381 			fs_info = btrfs_inode->root->fs_info;
2382 			spin_lock(&fs_info->trans_lock);
2383 			cur_gen = fs_info->generation;
2384 			spin_unlock(&fs_info->trans_lock);
2385 			if (em->generation >= cur_gen)
2386 				goto next;
2387 remove_em:
2388 			/*
2389 			 * We only remove extent maps that are not in the list of
2390 			 * modified extents or that are in the list but with a
2391 			 * generation lower then the current generation, so there
2392 			 * is no need to set the full fsync flag on the inode (it
2393 			 * hurts the fsync performance for workloads with a data
2394 			 * size that exceeds or is close to the system's memory).
2395 			 */
2396 			remove_extent_mapping(map, em);
2397 			/* once for the rb tree */
2398 			free_extent_map(em);
2399 next:
2400 			start = extent_map_end(em);
2401 			write_unlock(&map->lock);
2402 
2403 			/* once for us */
2404 			free_extent_map(em);
2405 
2406 			cond_resched(); /* Allow large-extent preemption. */
2407 		}
2408 	}
2409 	return try_release_extent_state(tree, page, mask);
2410 }
2411 
2412 /*
2413  * To cache previous fiemap extent
2414  *
2415  * Will be used for merging fiemap extent
2416  */
2417 struct fiemap_cache {
2418 	u64 offset;
2419 	u64 phys;
2420 	u64 len;
2421 	u32 flags;
2422 	bool cached;
2423 };
2424 
2425 /*
2426  * Helper to submit fiemap extent.
2427  *
2428  * Will try to merge current fiemap extent specified by @offset, @phys,
2429  * @len and @flags with cached one.
2430  * And only when we fails to merge, cached one will be submitted as
2431  * fiemap extent.
2432  *
2433  * Return value is the same as fiemap_fill_next_extent().
2434  */
2435 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2436 				struct fiemap_cache *cache,
2437 				u64 offset, u64 phys, u64 len, u32 flags)
2438 {
2439 	int ret = 0;
2440 
2441 	/* Set at the end of extent_fiemap(). */
2442 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2443 
2444 	if (!cache->cached)
2445 		goto assign;
2446 
2447 	/*
2448 	 * Sanity check, extent_fiemap() should have ensured that new
2449 	 * fiemap extent won't overlap with cached one.
2450 	 * Not recoverable.
2451 	 *
2452 	 * NOTE: Physical address can overlap, due to compression
2453 	 */
2454 	if (cache->offset + cache->len > offset) {
2455 		WARN_ON(1);
2456 		return -EINVAL;
2457 	}
2458 
2459 	/*
2460 	 * Only merges fiemap extents if
2461 	 * 1) Their logical addresses are continuous
2462 	 *
2463 	 * 2) Their physical addresses are continuous
2464 	 *    So truly compressed (physical size smaller than logical size)
2465 	 *    extents won't get merged with each other
2466 	 *
2467 	 * 3) Share same flags
2468 	 */
2469 	if (cache->offset + cache->len  == offset &&
2470 	    cache->phys + cache->len == phys  &&
2471 	    cache->flags == flags) {
2472 		cache->len += len;
2473 		return 0;
2474 	}
2475 
2476 	/* Not mergeable, need to submit cached one */
2477 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2478 				      cache->len, cache->flags);
2479 	cache->cached = false;
2480 	if (ret)
2481 		return ret;
2482 assign:
2483 	cache->cached = true;
2484 	cache->offset = offset;
2485 	cache->phys = phys;
2486 	cache->len = len;
2487 	cache->flags = flags;
2488 
2489 	return 0;
2490 }
2491 
2492 /*
2493  * Emit last fiemap cache
2494  *
2495  * The last fiemap cache may still be cached in the following case:
2496  * 0		      4k		    8k
2497  * |<- Fiemap range ->|
2498  * |<------------  First extent ----------->|
2499  *
2500  * In this case, the first extent range will be cached but not emitted.
2501  * So we must emit it before ending extent_fiemap().
2502  */
2503 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2504 				  struct fiemap_cache *cache)
2505 {
2506 	int ret;
2507 
2508 	if (!cache->cached)
2509 		return 0;
2510 
2511 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2512 				      cache->len, cache->flags);
2513 	cache->cached = false;
2514 	if (ret > 0)
2515 		ret = 0;
2516 	return ret;
2517 }
2518 
2519 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2520 {
2521 	struct extent_buffer *clone;
2522 	struct btrfs_key key;
2523 	int slot;
2524 	int ret;
2525 
2526 	path->slots[0]++;
2527 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2528 		return 0;
2529 
2530 	ret = btrfs_next_leaf(inode->root, path);
2531 	if (ret != 0)
2532 		return ret;
2533 
2534 	/*
2535 	 * Don't bother with cloning if there are no more file extent items for
2536 	 * our inode.
2537 	 */
2538 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2539 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2540 		return 1;
2541 
2542 	/* See the comment at fiemap_search_slot() about why we clone. */
2543 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2544 	if (!clone)
2545 		return -ENOMEM;
2546 
2547 	slot = path->slots[0];
2548 	btrfs_release_path(path);
2549 	path->nodes[0] = clone;
2550 	path->slots[0] = slot;
2551 
2552 	return 0;
2553 }
2554 
2555 /*
2556  * Search for the first file extent item that starts at a given file offset or
2557  * the one that starts immediately before that offset.
2558  * Returns: 0 on success, < 0 on error, 1 if not found.
2559  */
2560 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2561 			      u64 file_offset)
2562 {
2563 	const u64 ino = btrfs_ino(inode);
2564 	struct btrfs_root *root = inode->root;
2565 	struct extent_buffer *clone;
2566 	struct btrfs_key key;
2567 	int slot;
2568 	int ret;
2569 
2570 	key.objectid = ino;
2571 	key.type = BTRFS_EXTENT_DATA_KEY;
2572 	key.offset = file_offset;
2573 
2574 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2575 	if (ret < 0)
2576 		return ret;
2577 
2578 	if (ret > 0 && path->slots[0] > 0) {
2579 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2580 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2581 			path->slots[0]--;
2582 	}
2583 
2584 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2585 		ret = btrfs_next_leaf(root, path);
2586 		if (ret != 0)
2587 			return ret;
2588 
2589 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2590 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2591 			return 1;
2592 	}
2593 
2594 	/*
2595 	 * We clone the leaf and use it during fiemap. This is because while
2596 	 * using the leaf we do expensive things like checking if an extent is
2597 	 * shared, which can take a long time. In order to prevent blocking
2598 	 * other tasks for too long, we use a clone of the leaf. We have locked
2599 	 * the file range in the inode's io tree, so we know none of our file
2600 	 * extent items can change. This way we avoid blocking other tasks that
2601 	 * want to insert items for other inodes in the same leaf or b+tree
2602 	 * rebalance operations (triggered for example when someone is trying
2603 	 * to push items into this leaf when trying to insert an item in a
2604 	 * neighbour leaf).
2605 	 * We also need the private clone because holding a read lock on an
2606 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2607 	 * when we call fiemap_fill_next_extent(), because that may cause a page
2608 	 * fault when filling the user space buffer with fiemap data.
2609 	 */
2610 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2611 	if (!clone)
2612 		return -ENOMEM;
2613 
2614 	slot = path->slots[0];
2615 	btrfs_release_path(path);
2616 	path->nodes[0] = clone;
2617 	path->slots[0] = slot;
2618 
2619 	return 0;
2620 }
2621 
2622 /*
2623  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2624  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2625  * extent. The end offset (@end) is inclusive.
2626  */
2627 static int fiemap_process_hole(struct btrfs_inode *inode,
2628 			       struct fiemap_extent_info *fieinfo,
2629 			       struct fiemap_cache *cache,
2630 			       struct extent_state **delalloc_cached_state,
2631 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2632 			       u64 disk_bytenr, u64 extent_offset,
2633 			       u64 extent_gen,
2634 			       u64 start, u64 end)
2635 {
2636 	const u64 i_size = i_size_read(&inode->vfs_inode);
2637 	u64 cur_offset = start;
2638 	u64 last_delalloc_end = 0;
2639 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2640 	bool checked_extent_shared = false;
2641 	int ret;
2642 
2643 	/*
2644 	 * There can be no delalloc past i_size, so don't waste time looking for
2645 	 * it beyond i_size.
2646 	 */
2647 	while (cur_offset < end && cur_offset < i_size) {
2648 		u64 delalloc_start;
2649 		u64 delalloc_end;
2650 		u64 prealloc_start;
2651 		u64 prealloc_len = 0;
2652 		bool delalloc;
2653 
2654 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2655 							delalloc_cached_state,
2656 							&delalloc_start,
2657 							&delalloc_end);
2658 		if (!delalloc)
2659 			break;
2660 
2661 		/*
2662 		 * If this is a prealloc extent we have to report every section
2663 		 * of it that has no delalloc.
2664 		 */
2665 		if (disk_bytenr != 0) {
2666 			if (last_delalloc_end == 0) {
2667 				prealloc_start = start;
2668 				prealloc_len = delalloc_start - start;
2669 			} else {
2670 				prealloc_start = last_delalloc_end + 1;
2671 				prealloc_len = delalloc_start - prealloc_start;
2672 			}
2673 		}
2674 
2675 		if (prealloc_len > 0) {
2676 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2677 				ret = btrfs_is_data_extent_shared(inode,
2678 								  disk_bytenr,
2679 								  extent_gen,
2680 								  backref_ctx);
2681 				if (ret < 0)
2682 					return ret;
2683 				else if (ret > 0)
2684 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2685 
2686 				checked_extent_shared = true;
2687 			}
2688 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2689 						 disk_bytenr + extent_offset,
2690 						 prealloc_len, prealloc_flags);
2691 			if (ret)
2692 				return ret;
2693 			extent_offset += prealloc_len;
2694 		}
2695 
2696 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2697 					 delalloc_end + 1 - delalloc_start,
2698 					 FIEMAP_EXTENT_DELALLOC |
2699 					 FIEMAP_EXTENT_UNKNOWN);
2700 		if (ret)
2701 			return ret;
2702 
2703 		last_delalloc_end = delalloc_end;
2704 		cur_offset = delalloc_end + 1;
2705 		extent_offset += cur_offset - delalloc_start;
2706 		cond_resched();
2707 	}
2708 
2709 	/*
2710 	 * Either we found no delalloc for the whole prealloc extent or we have
2711 	 * a prealloc extent that spans i_size or starts at or after i_size.
2712 	 */
2713 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2714 		u64 prealloc_start;
2715 		u64 prealloc_len;
2716 
2717 		if (last_delalloc_end == 0) {
2718 			prealloc_start = start;
2719 			prealloc_len = end + 1 - start;
2720 		} else {
2721 			prealloc_start = last_delalloc_end + 1;
2722 			prealloc_len = end + 1 - prealloc_start;
2723 		}
2724 
2725 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2726 			ret = btrfs_is_data_extent_shared(inode,
2727 							  disk_bytenr,
2728 							  extent_gen,
2729 							  backref_ctx);
2730 			if (ret < 0)
2731 				return ret;
2732 			else if (ret > 0)
2733 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2734 		}
2735 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2736 					 disk_bytenr + extent_offset,
2737 					 prealloc_len, prealloc_flags);
2738 		if (ret)
2739 			return ret;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2746 					  struct btrfs_path *path,
2747 					  u64 *last_extent_end_ret)
2748 {
2749 	const u64 ino = btrfs_ino(inode);
2750 	struct btrfs_root *root = inode->root;
2751 	struct extent_buffer *leaf;
2752 	struct btrfs_file_extent_item *ei;
2753 	struct btrfs_key key;
2754 	u64 disk_bytenr;
2755 	int ret;
2756 
2757 	/*
2758 	 * Lookup the last file extent. We're not using i_size here because
2759 	 * there might be preallocation past i_size.
2760 	 */
2761 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2762 	/* There can't be a file extent item at offset (u64)-1 */
2763 	ASSERT(ret != 0);
2764 	if (ret < 0)
2765 		return ret;
2766 
2767 	/*
2768 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2769 	 * slot > 0, except if the btree is empty, which is impossible because
2770 	 * at least it has the inode item for this inode and all the items for
2771 	 * the root inode 256.
2772 	 */
2773 	ASSERT(path->slots[0] > 0);
2774 	path->slots[0]--;
2775 	leaf = path->nodes[0];
2776 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2777 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2778 		/* No file extent items in the subvolume tree. */
2779 		*last_extent_end_ret = 0;
2780 		return 0;
2781 	}
2782 
2783 	/*
2784 	 * For an inline extent, the disk_bytenr is where inline data starts at,
2785 	 * so first check if we have an inline extent item before checking if we
2786 	 * have an implicit hole (disk_bytenr == 0).
2787 	 */
2788 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2789 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2790 		*last_extent_end_ret = btrfs_file_extent_end(path);
2791 		return 0;
2792 	}
2793 
2794 	/*
2795 	 * Find the last file extent item that is not a hole (when NO_HOLES is
2796 	 * not enabled). This should take at most 2 iterations in the worst
2797 	 * case: we have one hole file extent item at slot 0 of a leaf and
2798 	 * another hole file extent item as the last item in the previous leaf.
2799 	 * This is because we merge file extent items that represent holes.
2800 	 */
2801 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2802 	while (disk_bytenr == 0) {
2803 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2804 		if (ret < 0) {
2805 			return ret;
2806 		} else if (ret > 0) {
2807 			/* No file extent items that are not holes. */
2808 			*last_extent_end_ret = 0;
2809 			return 0;
2810 		}
2811 		leaf = path->nodes[0];
2812 		ei = btrfs_item_ptr(leaf, path->slots[0],
2813 				    struct btrfs_file_extent_item);
2814 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2815 	}
2816 
2817 	*last_extent_end_ret = btrfs_file_extent_end(path);
2818 	return 0;
2819 }
2820 
2821 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2822 		  u64 start, u64 len)
2823 {
2824 	const u64 ino = btrfs_ino(inode);
2825 	struct extent_state *cached_state = NULL;
2826 	struct extent_state *delalloc_cached_state = NULL;
2827 	struct btrfs_path *path;
2828 	struct fiemap_cache cache = { 0 };
2829 	struct btrfs_backref_share_check_ctx *backref_ctx;
2830 	u64 last_extent_end;
2831 	u64 prev_extent_end;
2832 	u64 lockstart;
2833 	u64 lockend;
2834 	bool stopped = false;
2835 	int ret;
2836 
2837 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2838 	path = btrfs_alloc_path();
2839 	if (!backref_ctx || !path) {
2840 		ret = -ENOMEM;
2841 		goto out;
2842 	}
2843 
2844 	lockstart = round_down(start, inode->root->fs_info->sectorsize);
2845 	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
2846 	prev_extent_end = lockstart;
2847 
2848 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2849 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2850 
2851 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2852 	if (ret < 0)
2853 		goto out_unlock;
2854 	btrfs_release_path(path);
2855 
2856 	path->reada = READA_FORWARD;
2857 	ret = fiemap_search_slot(inode, path, lockstart);
2858 	if (ret < 0) {
2859 		goto out_unlock;
2860 	} else if (ret > 0) {
2861 		/*
2862 		 * No file extent item found, but we may have delalloc between
2863 		 * the current offset and i_size. So check for that.
2864 		 */
2865 		ret = 0;
2866 		goto check_eof_delalloc;
2867 	}
2868 
2869 	while (prev_extent_end < lockend) {
2870 		struct extent_buffer *leaf = path->nodes[0];
2871 		struct btrfs_file_extent_item *ei;
2872 		struct btrfs_key key;
2873 		u64 extent_end;
2874 		u64 extent_len;
2875 		u64 extent_offset = 0;
2876 		u64 extent_gen;
2877 		u64 disk_bytenr = 0;
2878 		u64 flags = 0;
2879 		int extent_type;
2880 		u8 compression;
2881 
2882 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2883 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2884 			break;
2885 
2886 		extent_end = btrfs_file_extent_end(path);
2887 
2888 		/*
2889 		 * The first iteration can leave us at an extent item that ends
2890 		 * before our range's start. Move to the next item.
2891 		 */
2892 		if (extent_end <= lockstart)
2893 			goto next_item;
2894 
2895 		backref_ctx->curr_leaf_bytenr = leaf->start;
2896 
2897 		/* We have in implicit hole (NO_HOLES feature enabled). */
2898 		if (prev_extent_end < key.offset) {
2899 			const u64 range_end = min(key.offset, lockend) - 1;
2900 
2901 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2902 						  &delalloc_cached_state,
2903 						  backref_ctx, 0, 0, 0,
2904 						  prev_extent_end, range_end);
2905 			if (ret < 0) {
2906 				goto out_unlock;
2907 			} else if (ret > 0) {
2908 				/* fiemap_fill_next_extent() told us to stop. */
2909 				stopped = true;
2910 				break;
2911 			}
2912 
2913 			/* We've reached the end of the fiemap range, stop. */
2914 			if (key.offset >= lockend) {
2915 				stopped = true;
2916 				break;
2917 			}
2918 		}
2919 
2920 		extent_len = extent_end - key.offset;
2921 		ei = btrfs_item_ptr(leaf, path->slots[0],
2922 				    struct btrfs_file_extent_item);
2923 		compression = btrfs_file_extent_compression(leaf, ei);
2924 		extent_type = btrfs_file_extent_type(leaf, ei);
2925 		extent_gen = btrfs_file_extent_generation(leaf, ei);
2926 
2927 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2928 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2929 			if (compression == BTRFS_COMPRESS_NONE)
2930 				extent_offset = btrfs_file_extent_offset(leaf, ei);
2931 		}
2932 
2933 		if (compression != BTRFS_COMPRESS_NONE)
2934 			flags |= FIEMAP_EXTENT_ENCODED;
2935 
2936 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2937 			flags |= FIEMAP_EXTENT_DATA_INLINE;
2938 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2939 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2940 						 extent_len, flags);
2941 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2942 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2943 						  &delalloc_cached_state,
2944 						  backref_ctx,
2945 						  disk_bytenr, extent_offset,
2946 						  extent_gen, key.offset,
2947 						  extent_end - 1);
2948 		} else if (disk_bytenr == 0) {
2949 			/* We have an explicit hole. */
2950 			ret = fiemap_process_hole(inode, fieinfo, &cache,
2951 						  &delalloc_cached_state,
2952 						  backref_ctx, 0, 0, 0,
2953 						  key.offset, extent_end - 1);
2954 		} else {
2955 			/* We have a regular extent. */
2956 			if (fieinfo->fi_extents_max) {
2957 				ret = btrfs_is_data_extent_shared(inode,
2958 								  disk_bytenr,
2959 								  extent_gen,
2960 								  backref_ctx);
2961 				if (ret < 0)
2962 					goto out_unlock;
2963 				else if (ret > 0)
2964 					flags |= FIEMAP_EXTENT_SHARED;
2965 			}
2966 
2967 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2968 						 disk_bytenr + extent_offset,
2969 						 extent_len, flags);
2970 		}
2971 
2972 		if (ret < 0) {
2973 			goto out_unlock;
2974 		} else if (ret > 0) {
2975 			/* fiemap_fill_next_extent() told us to stop. */
2976 			stopped = true;
2977 			break;
2978 		}
2979 
2980 		prev_extent_end = extent_end;
2981 next_item:
2982 		if (fatal_signal_pending(current)) {
2983 			ret = -EINTR;
2984 			goto out_unlock;
2985 		}
2986 
2987 		ret = fiemap_next_leaf_item(inode, path);
2988 		if (ret < 0) {
2989 			goto out_unlock;
2990 		} else if (ret > 0) {
2991 			/* No more file extent items for this inode. */
2992 			break;
2993 		}
2994 		cond_resched();
2995 	}
2996 
2997 check_eof_delalloc:
2998 	/*
2999 	 * Release (and free) the path before emitting any final entries to
3000 	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3001 	 * once we find no more file extent items exist, we may have a
3002 	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3003 	 * faults when copying data to the user space buffer.
3004 	 */
3005 	btrfs_free_path(path);
3006 	path = NULL;
3007 
3008 	if (!stopped && prev_extent_end < lockend) {
3009 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3010 					  &delalloc_cached_state, backref_ctx,
3011 					  0, 0, 0, prev_extent_end, lockend - 1);
3012 		if (ret < 0)
3013 			goto out_unlock;
3014 		prev_extent_end = lockend;
3015 	}
3016 
3017 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3018 		const u64 i_size = i_size_read(&inode->vfs_inode);
3019 
3020 		if (prev_extent_end < i_size) {
3021 			u64 delalloc_start;
3022 			u64 delalloc_end;
3023 			bool delalloc;
3024 
3025 			delalloc = btrfs_find_delalloc_in_range(inode,
3026 								prev_extent_end,
3027 								i_size - 1,
3028 								&delalloc_cached_state,
3029 								&delalloc_start,
3030 								&delalloc_end);
3031 			if (!delalloc)
3032 				cache.flags |= FIEMAP_EXTENT_LAST;
3033 		} else {
3034 			cache.flags |= FIEMAP_EXTENT_LAST;
3035 		}
3036 	}
3037 
3038 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3039 
3040 out_unlock:
3041 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3042 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3043 out:
3044 	free_extent_state(delalloc_cached_state);
3045 	btrfs_free_backref_share_ctx(backref_ctx);
3046 	btrfs_free_path(path);
3047 	return ret;
3048 }
3049 
3050 static void __free_extent_buffer(struct extent_buffer *eb)
3051 {
3052 	kmem_cache_free(extent_buffer_cache, eb);
3053 }
3054 
3055 static int extent_buffer_under_io(const struct extent_buffer *eb)
3056 {
3057 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3058 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3059 }
3060 
3061 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3062 {
3063 	struct btrfs_subpage *subpage;
3064 
3065 	lockdep_assert_held(&page->mapping->private_lock);
3066 
3067 	if (PagePrivate(page)) {
3068 		subpage = (struct btrfs_subpage *)page->private;
3069 		if (atomic_read(&subpage->eb_refs))
3070 			return true;
3071 		/*
3072 		 * Even there is no eb refs here, we may still have
3073 		 * end_page_read() call relying on page::private.
3074 		 */
3075 		if (atomic_read(&subpage->readers))
3076 			return true;
3077 	}
3078 	return false;
3079 }
3080 
3081 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3082 {
3083 	struct btrfs_fs_info *fs_info = eb->fs_info;
3084 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3085 
3086 	/*
3087 	 * For mapped eb, we're going to change the page private, which should
3088 	 * be done under the private_lock.
3089 	 */
3090 	if (mapped)
3091 		spin_lock(&page->mapping->private_lock);
3092 
3093 	if (!PagePrivate(page)) {
3094 		if (mapped)
3095 			spin_unlock(&page->mapping->private_lock);
3096 		return;
3097 	}
3098 
3099 	if (fs_info->nodesize >= PAGE_SIZE) {
3100 		/*
3101 		 * We do this since we'll remove the pages after we've
3102 		 * removed the eb from the radix tree, so we could race
3103 		 * and have this page now attached to the new eb.  So
3104 		 * only clear page_private if it's still connected to
3105 		 * this eb.
3106 		 */
3107 		if (PagePrivate(page) &&
3108 		    page->private == (unsigned long)eb) {
3109 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3110 			BUG_ON(PageDirty(page));
3111 			BUG_ON(PageWriteback(page));
3112 			/*
3113 			 * We need to make sure we haven't be attached
3114 			 * to a new eb.
3115 			 */
3116 			detach_page_private(page);
3117 		}
3118 		if (mapped)
3119 			spin_unlock(&page->mapping->private_lock);
3120 		return;
3121 	}
3122 
3123 	/*
3124 	 * For subpage, we can have dummy eb with page private.  In this case,
3125 	 * we can directly detach the private as such page is only attached to
3126 	 * one dummy eb, no sharing.
3127 	 */
3128 	if (!mapped) {
3129 		btrfs_detach_subpage(fs_info, page);
3130 		return;
3131 	}
3132 
3133 	btrfs_page_dec_eb_refs(fs_info, page);
3134 
3135 	/*
3136 	 * We can only detach the page private if there are no other ebs in the
3137 	 * page range and no unfinished IO.
3138 	 */
3139 	if (!page_range_has_eb(fs_info, page))
3140 		btrfs_detach_subpage(fs_info, page);
3141 
3142 	spin_unlock(&page->mapping->private_lock);
3143 }
3144 
3145 /* Release all pages attached to the extent buffer */
3146 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3147 {
3148 	int i;
3149 	int num_pages;
3150 
3151 	ASSERT(!extent_buffer_under_io(eb));
3152 
3153 	num_pages = num_extent_pages(eb);
3154 	for (i = 0; i < num_pages; i++) {
3155 		struct page *page = eb->pages[i];
3156 
3157 		if (!page)
3158 			continue;
3159 
3160 		detach_extent_buffer_page(eb, page);
3161 
3162 		/* One for when we allocated the page */
3163 		put_page(page);
3164 	}
3165 }
3166 
3167 /*
3168  * Helper for releasing the extent buffer.
3169  */
3170 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3171 {
3172 	btrfs_release_extent_buffer_pages(eb);
3173 	btrfs_leak_debug_del_eb(eb);
3174 	__free_extent_buffer(eb);
3175 }
3176 
3177 static struct extent_buffer *
3178 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3179 		      unsigned long len)
3180 {
3181 	struct extent_buffer *eb = NULL;
3182 
3183 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3184 	eb->start = start;
3185 	eb->len = len;
3186 	eb->fs_info = fs_info;
3187 	init_rwsem(&eb->lock);
3188 
3189 	btrfs_leak_debug_add_eb(eb);
3190 
3191 	spin_lock_init(&eb->refs_lock);
3192 	atomic_set(&eb->refs, 1);
3193 
3194 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3195 
3196 	return eb;
3197 }
3198 
3199 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3200 {
3201 	int i;
3202 	struct extent_buffer *new;
3203 	int num_pages = num_extent_pages(src);
3204 	int ret;
3205 
3206 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3207 	if (new == NULL)
3208 		return NULL;
3209 
3210 	/*
3211 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3212 	 * btrfs_release_extent_buffer() have different behavior for
3213 	 * UNMAPPED subpage extent buffer.
3214 	 */
3215 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3216 
3217 	ret = btrfs_alloc_page_array(num_pages, new->pages);
3218 	if (ret) {
3219 		btrfs_release_extent_buffer(new);
3220 		return NULL;
3221 	}
3222 
3223 	for (i = 0; i < num_pages; i++) {
3224 		int ret;
3225 		struct page *p = new->pages[i];
3226 
3227 		ret = attach_extent_buffer_page(new, p, NULL);
3228 		if (ret < 0) {
3229 			btrfs_release_extent_buffer(new);
3230 			return NULL;
3231 		}
3232 		WARN_ON(PageDirty(p));
3233 	}
3234 	copy_extent_buffer_full(new, src);
3235 	set_extent_buffer_uptodate(new);
3236 
3237 	return new;
3238 }
3239 
3240 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3241 						  u64 start, unsigned long len)
3242 {
3243 	struct extent_buffer *eb;
3244 	int num_pages;
3245 	int i;
3246 	int ret;
3247 
3248 	eb = __alloc_extent_buffer(fs_info, start, len);
3249 	if (!eb)
3250 		return NULL;
3251 
3252 	num_pages = num_extent_pages(eb);
3253 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3254 	if (ret)
3255 		goto err;
3256 
3257 	for (i = 0; i < num_pages; i++) {
3258 		struct page *p = eb->pages[i];
3259 
3260 		ret = attach_extent_buffer_page(eb, p, NULL);
3261 		if (ret < 0)
3262 			goto err;
3263 	}
3264 
3265 	set_extent_buffer_uptodate(eb);
3266 	btrfs_set_header_nritems(eb, 0);
3267 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3268 
3269 	return eb;
3270 err:
3271 	for (i = 0; i < num_pages; i++) {
3272 		if (eb->pages[i]) {
3273 			detach_extent_buffer_page(eb, eb->pages[i]);
3274 			__free_page(eb->pages[i]);
3275 		}
3276 	}
3277 	__free_extent_buffer(eb);
3278 	return NULL;
3279 }
3280 
3281 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3282 						u64 start)
3283 {
3284 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3285 }
3286 
3287 static void check_buffer_tree_ref(struct extent_buffer *eb)
3288 {
3289 	int refs;
3290 	/*
3291 	 * The TREE_REF bit is first set when the extent_buffer is added
3292 	 * to the radix tree. It is also reset, if unset, when a new reference
3293 	 * is created by find_extent_buffer.
3294 	 *
3295 	 * It is only cleared in two cases: freeing the last non-tree
3296 	 * reference to the extent_buffer when its STALE bit is set or
3297 	 * calling release_folio when the tree reference is the only reference.
3298 	 *
3299 	 * In both cases, care is taken to ensure that the extent_buffer's
3300 	 * pages are not under io. However, release_folio can be concurrently
3301 	 * called with creating new references, which is prone to race
3302 	 * conditions between the calls to check_buffer_tree_ref in those
3303 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3304 	 *
3305 	 * The actual lifetime of the extent_buffer in the radix tree is
3306 	 * adequately protected by the refcount, but the TREE_REF bit and
3307 	 * its corresponding reference are not. To protect against this
3308 	 * class of races, we call check_buffer_tree_ref from the codepaths
3309 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3310 	 * longer be cleared, so that is the moment at which any such race is
3311 	 * best fixed.
3312 	 */
3313 	refs = atomic_read(&eb->refs);
3314 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3315 		return;
3316 
3317 	spin_lock(&eb->refs_lock);
3318 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3319 		atomic_inc(&eb->refs);
3320 	spin_unlock(&eb->refs_lock);
3321 }
3322 
3323 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3324 		struct page *accessed)
3325 {
3326 	int num_pages, i;
3327 
3328 	check_buffer_tree_ref(eb);
3329 
3330 	num_pages = num_extent_pages(eb);
3331 	for (i = 0; i < num_pages; i++) {
3332 		struct page *p = eb->pages[i];
3333 
3334 		if (p != accessed)
3335 			mark_page_accessed(p);
3336 	}
3337 }
3338 
3339 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3340 					 u64 start)
3341 {
3342 	struct extent_buffer *eb;
3343 
3344 	eb = find_extent_buffer_nolock(fs_info, start);
3345 	if (!eb)
3346 		return NULL;
3347 	/*
3348 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3349 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3350 	 * another task running free_extent_buffer() might have seen that flag
3351 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3352 	 * writeback flags not set) and it's still in the tree (flag
3353 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3354 	 * decrementing the extent buffer's reference count twice.  So here we
3355 	 * could race and increment the eb's reference count, clear its stale
3356 	 * flag, mark it as dirty and drop our reference before the other task
3357 	 * finishes executing free_extent_buffer, which would later result in
3358 	 * an attempt to free an extent buffer that is dirty.
3359 	 */
3360 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3361 		spin_lock(&eb->refs_lock);
3362 		spin_unlock(&eb->refs_lock);
3363 	}
3364 	mark_extent_buffer_accessed(eb, NULL);
3365 	return eb;
3366 }
3367 
3368 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3369 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3370 					u64 start)
3371 {
3372 	struct extent_buffer *eb, *exists = NULL;
3373 	int ret;
3374 
3375 	eb = find_extent_buffer(fs_info, start);
3376 	if (eb)
3377 		return eb;
3378 	eb = alloc_dummy_extent_buffer(fs_info, start);
3379 	if (!eb)
3380 		return ERR_PTR(-ENOMEM);
3381 	eb->fs_info = fs_info;
3382 again:
3383 	ret = radix_tree_preload(GFP_NOFS);
3384 	if (ret) {
3385 		exists = ERR_PTR(ret);
3386 		goto free_eb;
3387 	}
3388 	spin_lock(&fs_info->buffer_lock);
3389 	ret = radix_tree_insert(&fs_info->buffer_radix,
3390 				start >> fs_info->sectorsize_bits, eb);
3391 	spin_unlock(&fs_info->buffer_lock);
3392 	radix_tree_preload_end();
3393 	if (ret == -EEXIST) {
3394 		exists = find_extent_buffer(fs_info, start);
3395 		if (exists)
3396 			goto free_eb;
3397 		else
3398 			goto again;
3399 	}
3400 	check_buffer_tree_ref(eb);
3401 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3402 
3403 	return eb;
3404 free_eb:
3405 	btrfs_release_extent_buffer(eb);
3406 	return exists;
3407 }
3408 #endif
3409 
3410 static struct extent_buffer *grab_extent_buffer(
3411 		struct btrfs_fs_info *fs_info, struct page *page)
3412 {
3413 	struct extent_buffer *exists;
3414 
3415 	/*
3416 	 * For subpage case, we completely rely on radix tree to ensure we
3417 	 * don't try to insert two ebs for the same bytenr.  So here we always
3418 	 * return NULL and just continue.
3419 	 */
3420 	if (fs_info->nodesize < PAGE_SIZE)
3421 		return NULL;
3422 
3423 	/* Page not yet attached to an extent buffer */
3424 	if (!PagePrivate(page))
3425 		return NULL;
3426 
3427 	/*
3428 	 * We could have already allocated an eb for this page and attached one
3429 	 * so lets see if we can get a ref on the existing eb, and if we can we
3430 	 * know it's good and we can just return that one, else we know we can
3431 	 * just overwrite page->private.
3432 	 */
3433 	exists = (struct extent_buffer *)page->private;
3434 	if (atomic_inc_not_zero(&exists->refs))
3435 		return exists;
3436 
3437 	WARN_ON(PageDirty(page));
3438 	detach_page_private(page);
3439 	return NULL;
3440 }
3441 
3442 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3443 {
3444 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3445 		btrfs_err(fs_info, "bad tree block start %llu", start);
3446 		return -EINVAL;
3447 	}
3448 
3449 	if (fs_info->nodesize < PAGE_SIZE &&
3450 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3451 		btrfs_err(fs_info,
3452 		"tree block crosses page boundary, start %llu nodesize %u",
3453 			  start, fs_info->nodesize);
3454 		return -EINVAL;
3455 	}
3456 	if (fs_info->nodesize >= PAGE_SIZE &&
3457 	    !PAGE_ALIGNED(start)) {
3458 		btrfs_err(fs_info,
3459 		"tree block is not page aligned, start %llu nodesize %u",
3460 			  start, fs_info->nodesize);
3461 		return -EINVAL;
3462 	}
3463 	return 0;
3464 }
3465 
3466 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3467 					  u64 start, u64 owner_root, int level)
3468 {
3469 	unsigned long len = fs_info->nodesize;
3470 	int num_pages;
3471 	int i;
3472 	unsigned long index = start >> PAGE_SHIFT;
3473 	struct extent_buffer *eb;
3474 	struct extent_buffer *exists = NULL;
3475 	struct page *p;
3476 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3477 	struct btrfs_subpage *prealloc = NULL;
3478 	u64 lockdep_owner = owner_root;
3479 	int uptodate = 1;
3480 	int ret;
3481 
3482 	if (check_eb_alignment(fs_info, start))
3483 		return ERR_PTR(-EINVAL);
3484 
3485 #if BITS_PER_LONG == 32
3486 	if (start >= MAX_LFS_FILESIZE) {
3487 		btrfs_err_rl(fs_info,
3488 		"extent buffer %llu is beyond 32bit page cache limit", start);
3489 		btrfs_err_32bit_limit(fs_info);
3490 		return ERR_PTR(-EOVERFLOW);
3491 	}
3492 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3493 		btrfs_warn_32bit_limit(fs_info);
3494 #endif
3495 
3496 	eb = find_extent_buffer(fs_info, start);
3497 	if (eb)
3498 		return eb;
3499 
3500 	eb = __alloc_extent_buffer(fs_info, start, len);
3501 	if (!eb)
3502 		return ERR_PTR(-ENOMEM);
3503 
3504 	/*
3505 	 * The reloc trees are just snapshots, so we need them to appear to be
3506 	 * just like any other fs tree WRT lockdep.
3507 	 */
3508 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3509 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3510 
3511 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3512 
3513 	num_pages = num_extent_pages(eb);
3514 
3515 	/*
3516 	 * Preallocate page->private for subpage case, so that we won't
3517 	 * allocate memory with private_lock nor page lock hold.
3518 	 *
3519 	 * The memory will be freed by attach_extent_buffer_page() or freed
3520 	 * manually if we exit earlier.
3521 	 */
3522 	if (fs_info->nodesize < PAGE_SIZE) {
3523 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3524 		if (IS_ERR(prealloc)) {
3525 			exists = ERR_CAST(prealloc);
3526 			goto free_eb;
3527 		}
3528 	}
3529 
3530 	for (i = 0; i < num_pages; i++, index++) {
3531 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3532 		if (!p) {
3533 			exists = ERR_PTR(-ENOMEM);
3534 			btrfs_free_subpage(prealloc);
3535 			goto free_eb;
3536 		}
3537 
3538 		spin_lock(&mapping->private_lock);
3539 		exists = grab_extent_buffer(fs_info, p);
3540 		if (exists) {
3541 			spin_unlock(&mapping->private_lock);
3542 			unlock_page(p);
3543 			put_page(p);
3544 			mark_extent_buffer_accessed(exists, p);
3545 			btrfs_free_subpage(prealloc);
3546 			goto free_eb;
3547 		}
3548 		/* Should not fail, as we have preallocated the memory */
3549 		ret = attach_extent_buffer_page(eb, p, prealloc);
3550 		ASSERT(!ret);
3551 		/*
3552 		 * To inform we have extra eb under allocation, so that
3553 		 * detach_extent_buffer_page() won't release the page private
3554 		 * when the eb hasn't yet been inserted into radix tree.
3555 		 *
3556 		 * The ref will be decreased when the eb released the page, in
3557 		 * detach_extent_buffer_page().
3558 		 * Thus needs no special handling in error path.
3559 		 */
3560 		btrfs_page_inc_eb_refs(fs_info, p);
3561 		spin_unlock(&mapping->private_lock);
3562 
3563 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3564 		eb->pages[i] = p;
3565 		if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3566 			uptodate = 0;
3567 
3568 		/*
3569 		 * We can't unlock the pages just yet since the extent buffer
3570 		 * hasn't been properly inserted in the radix tree, this
3571 		 * opens a race with btree_release_folio which can free a page
3572 		 * while we are still filling in all pages for the buffer and
3573 		 * we could crash.
3574 		 */
3575 	}
3576 	if (uptodate)
3577 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3578 again:
3579 	ret = radix_tree_preload(GFP_NOFS);
3580 	if (ret) {
3581 		exists = ERR_PTR(ret);
3582 		goto free_eb;
3583 	}
3584 
3585 	spin_lock(&fs_info->buffer_lock);
3586 	ret = radix_tree_insert(&fs_info->buffer_radix,
3587 				start >> fs_info->sectorsize_bits, eb);
3588 	spin_unlock(&fs_info->buffer_lock);
3589 	radix_tree_preload_end();
3590 	if (ret == -EEXIST) {
3591 		exists = find_extent_buffer(fs_info, start);
3592 		if (exists)
3593 			goto free_eb;
3594 		else
3595 			goto again;
3596 	}
3597 	/* add one reference for the tree */
3598 	check_buffer_tree_ref(eb);
3599 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3600 
3601 	/*
3602 	 * Now it's safe to unlock the pages because any calls to
3603 	 * btree_release_folio will correctly detect that a page belongs to a
3604 	 * live buffer and won't free them prematurely.
3605 	 */
3606 	for (i = 0; i < num_pages; i++)
3607 		unlock_page(eb->pages[i]);
3608 	return eb;
3609 
3610 free_eb:
3611 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3612 	for (i = 0; i < num_pages; i++) {
3613 		if (eb->pages[i])
3614 			unlock_page(eb->pages[i]);
3615 	}
3616 
3617 	btrfs_release_extent_buffer(eb);
3618 	return exists;
3619 }
3620 
3621 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3622 {
3623 	struct extent_buffer *eb =
3624 			container_of(head, struct extent_buffer, rcu_head);
3625 
3626 	__free_extent_buffer(eb);
3627 }
3628 
3629 static int release_extent_buffer(struct extent_buffer *eb)
3630 	__releases(&eb->refs_lock)
3631 {
3632 	lockdep_assert_held(&eb->refs_lock);
3633 
3634 	WARN_ON(atomic_read(&eb->refs) == 0);
3635 	if (atomic_dec_and_test(&eb->refs)) {
3636 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3637 			struct btrfs_fs_info *fs_info = eb->fs_info;
3638 
3639 			spin_unlock(&eb->refs_lock);
3640 
3641 			spin_lock(&fs_info->buffer_lock);
3642 			radix_tree_delete(&fs_info->buffer_radix,
3643 					  eb->start >> fs_info->sectorsize_bits);
3644 			spin_unlock(&fs_info->buffer_lock);
3645 		} else {
3646 			spin_unlock(&eb->refs_lock);
3647 		}
3648 
3649 		btrfs_leak_debug_del_eb(eb);
3650 		/* Should be safe to release our pages at this point */
3651 		btrfs_release_extent_buffer_pages(eb);
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3653 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3654 			__free_extent_buffer(eb);
3655 			return 1;
3656 		}
3657 #endif
3658 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3659 		return 1;
3660 	}
3661 	spin_unlock(&eb->refs_lock);
3662 
3663 	return 0;
3664 }
3665 
3666 void free_extent_buffer(struct extent_buffer *eb)
3667 {
3668 	int refs;
3669 	if (!eb)
3670 		return;
3671 
3672 	refs = atomic_read(&eb->refs);
3673 	while (1) {
3674 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3675 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3676 			refs == 1))
3677 			break;
3678 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3679 			return;
3680 	}
3681 
3682 	spin_lock(&eb->refs_lock);
3683 	if (atomic_read(&eb->refs) == 2 &&
3684 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3685 	    !extent_buffer_under_io(eb) &&
3686 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3687 		atomic_dec(&eb->refs);
3688 
3689 	/*
3690 	 * I know this is terrible, but it's temporary until we stop tracking
3691 	 * the uptodate bits and such for the extent buffers.
3692 	 */
3693 	release_extent_buffer(eb);
3694 }
3695 
3696 void free_extent_buffer_stale(struct extent_buffer *eb)
3697 {
3698 	if (!eb)
3699 		return;
3700 
3701 	spin_lock(&eb->refs_lock);
3702 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3703 
3704 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3705 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3706 		atomic_dec(&eb->refs);
3707 	release_extent_buffer(eb);
3708 }
3709 
3710 static void btree_clear_page_dirty(struct page *page)
3711 {
3712 	ASSERT(PageDirty(page));
3713 	ASSERT(PageLocked(page));
3714 	clear_page_dirty_for_io(page);
3715 	xa_lock_irq(&page->mapping->i_pages);
3716 	if (!PageDirty(page))
3717 		__xa_clear_mark(&page->mapping->i_pages,
3718 				page_index(page), PAGECACHE_TAG_DIRTY);
3719 	xa_unlock_irq(&page->mapping->i_pages);
3720 }
3721 
3722 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3723 {
3724 	struct btrfs_fs_info *fs_info = eb->fs_info;
3725 	struct page *page = eb->pages[0];
3726 	bool last;
3727 
3728 	/* btree_clear_page_dirty() needs page locked */
3729 	lock_page(page);
3730 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3731 						  eb->len);
3732 	if (last)
3733 		btree_clear_page_dirty(page);
3734 	unlock_page(page);
3735 	WARN_ON(atomic_read(&eb->refs) == 0);
3736 }
3737 
3738 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3739 			      struct extent_buffer *eb)
3740 {
3741 	struct btrfs_fs_info *fs_info = eb->fs_info;
3742 	int i;
3743 	int num_pages;
3744 	struct page *page;
3745 
3746 	btrfs_assert_tree_write_locked(eb);
3747 
3748 	if (trans && btrfs_header_generation(eb) != trans->transid)
3749 		return;
3750 
3751 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3752 		return;
3753 
3754 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3755 				 fs_info->dirty_metadata_batch);
3756 
3757 	if (eb->fs_info->nodesize < PAGE_SIZE)
3758 		return clear_subpage_extent_buffer_dirty(eb);
3759 
3760 	num_pages = num_extent_pages(eb);
3761 
3762 	for (i = 0; i < num_pages; i++) {
3763 		page = eb->pages[i];
3764 		if (!PageDirty(page))
3765 			continue;
3766 		lock_page(page);
3767 		btree_clear_page_dirty(page);
3768 		unlock_page(page);
3769 	}
3770 	WARN_ON(atomic_read(&eb->refs) == 0);
3771 }
3772 
3773 void set_extent_buffer_dirty(struct extent_buffer *eb)
3774 {
3775 	int i;
3776 	int num_pages;
3777 	bool was_dirty;
3778 
3779 	check_buffer_tree_ref(eb);
3780 
3781 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3782 
3783 	num_pages = num_extent_pages(eb);
3784 	WARN_ON(atomic_read(&eb->refs) == 0);
3785 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3786 
3787 	if (!was_dirty) {
3788 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3789 
3790 		/*
3791 		 * For subpage case, we can have other extent buffers in the
3792 		 * same page, and in clear_subpage_extent_buffer_dirty() we
3793 		 * have to clear page dirty without subpage lock held.
3794 		 * This can cause race where our page gets dirty cleared after
3795 		 * we just set it.
3796 		 *
3797 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3798 		 * its page for other reasons, we can use page lock to prevent
3799 		 * the above race.
3800 		 */
3801 		if (subpage)
3802 			lock_page(eb->pages[0]);
3803 		for (i = 0; i < num_pages; i++)
3804 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3805 					     eb->start, eb->len);
3806 		if (subpage)
3807 			unlock_page(eb->pages[0]);
3808 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3809 					 eb->len,
3810 					 eb->fs_info->dirty_metadata_batch);
3811 	}
3812 #ifdef CONFIG_BTRFS_DEBUG
3813 	for (i = 0; i < num_pages; i++)
3814 		ASSERT(PageDirty(eb->pages[i]));
3815 #endif
3816 }
3817 
3818 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3819 {
3820 	struct btrfs_fs_info *fs_info = eb->fs_info;
3821 	struct page *page;
3822 	int num_pages;
3823 	int i;
3824 
3825 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3826 	num_pages = num_extent_pages(eb);
3827 	for (i = 0; i < num_pages; i++) {
3828 		page = eb->pages[i];
3829 		if (!page)
3830 			continue;
3831 
3832 		/*
3833 		 * This is special handling for metadata subpage, as regular
3834 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3835 		 */
3836 		if (fs_info->nodesize >= PAGE_SIZE)
3837 			ClearPageUptodate(page);
3838 		else
3839 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3840 						     eb->len);
3841 	}
3842 }
3843 
3844 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3845 {
3846 	struct btrfs_fs_info *fs_info = eb->fs_info;
3847 	struct page *page;
3848 	int num_pages;
3849 	int i;
3850 
3851 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3852 	num_pages = num_extent_pages(eb);
3853 	for (i = 0; i < num_pages; i++) {
3854 		page = eb->pages[i];
3855 
3856 		/*
3857 		 * This is special handling for metadata subpage, as regular
3858 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3859 		 */
3860 		if (fs_info->nodesize >= PAGE_SIZE)
3861 			SetPageUptodate(page);
3862 		else
3863 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3864 						   eb->len);
3865 	}
3866 }
3867 
3868 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3869 {
3870 	struct extent_buffer *eb = bbio->private;
3871 	struct btrfs_fs_info *fs_info = eb->fs_info;
3872 	bool uptodate = !bbio->bio.bi_status;
3873 	struct bvec_iter_all iter_all;
3874 	struct bio_vec *bvec;
3875 	u32 bio_offset = 0;
3876 
3877 	eb->read_mirror = bbio->mirror_num;
3878 
3879 	if (uptodate &&
3880 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3881 		uptodate = false;
3882 
3883 	if (uptodate) {
3884 		set_extent_buffer_uptodate(eb);
3885 	} else {
3886 		clear_extent_buffer_uptodate(eb);
3887 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3888 	}
3889 
3890 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
3891 		u64 start = eb->start + bio_offset;
3892 		struct page *page = bvec->bv_page;
3893 		u32 len = bvec->bv_len;
3894 
3895 		if (uptodate)
3896 			btrfs_page_set_uptodate(fs_info, page, start, len);
3897 		else
3898 			btrfs_page_clear_uptodate(fs_info, page, start, len);
3899 
3900 		bio_offset += len;
3901 	}
3902 
3903 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3904 	smp_mb__after_atomic();
3905 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3906 	free_extent_buffer(eb);
3907 
3908 	bio_put(&bbio->bio);
3909 }
3910 
3911 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3912 			     struct btrfs_tree_parent_check *check)
3913 {
3914 	int num_pages = num_extent_pages(eb), i;
3915 	struct btrfs_bio *bbio;
3916 
3917 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3918 		return 0;
3919 
3920 	/*
3921 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3922 	 * operation, which could potentially still be in flight.  In this case
3923 	 * we simply want to return an error.
3924 	 */
3925 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3926 		return -EIO;
3927 
3928 	/* Someone else is already reading the buffer, just wait for it. */
3929 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3930 		goto done;
3931 
3932 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3933 	eb->read_mirror = 0;
3934 	check_buffer_tree_ref(eb);
3935 	atomic_inc(&eb->refs);
3936 
3937 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3938 			       REQ_OP_READ | REQ_META, eb->fs_info,
3939 			       extent_buffer_read_end_io, eb);
3940 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3941 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3942 	bbio->file_offset = eb->start;
3943 	memcpy(&bbio->parent_check, check, sizeof(*check));
3944 	if (eb->fs_info->nodesize < PAGE_SIZE) {
3945 		__bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3946 			       eb->start - page_offset(eb->pages[0]));
3947 	} else {
3948 		for (i = 0; i < num_pages; i++)
3949 			__bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
3950 	}
3951 	btrfs_submit_bio(bbio, mirror_num);
3952 
3953 done:
3954 	if (wait == WAIT_COMPLETE) {
3955 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3956 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3957 			return -EIO;
3958 	}
3959 
3960 	return 0;
3961 }
3962 
3963 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3964 			    unsigned long len)
3965 {
3966 	btrfs_warn(eb->fs_info,
3967 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
3968 		eb->start, eb->len, start, len);
3969 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3970 
3971 	return true;
3972 }
3973 
3974 /*
3975  * Check if the [start, start + len) range is valid before reading/writing
3976  * the eb.
3977  * NOTE: @start and @len are offset inside the eb, not logical address.
3978  *
3979  * Caller should not touch the dst/src memory if this function returns error.
3980  */
3981 static inline int check_eb_range(const struct extent_buffer *eb,
3982 				 unsigned long start, unsigned long len)
3983 {
3984 	unsigned long offset;
3985 
3986 	/* start, start + len should not go beyond eb->len nor overflow */
3987 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3988 		return report_eb_range(eb, start, len);
3989 
3990 	return false;
3991 }
3992 
3993 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3994 			unsigned long start, unsigned long len)
3995 {
3996 	size_t cur;
3997 	size_t offset;
3998 	struct page *page;
3999 	char *kaddr;
4000 	char *dst = (char *)dstv;
4001 	unsigned long i = get_eb_page_index(start);
4002 
4003 	if (check_eb_range(eb, start, len)) {
4004 		/*
4005 		 * Invalid range hit, reset the memory, so callers won't get
4006 		 * some random garbage for their uninitialzed memory.
4007 		 */
4008 		memset(dstv, 0, len);
4009 		return;
4010 	}
4011 
4012 	offset = get_eb_offset_in_page(eb, start);
4013 
4014 	while (len > 0) {
4015 		page = eb->pages[i];
4016 
4017 		cur = min(len, (PAGE_SIZE - offset));
4018 		kaddr = page_address(page);
4019 		memcpy(dst, kaddr + offset, cur);
4020 
4021 		dst += cur;
4022 		len -= cur;
4023 		offset = 0;
4024 		i++;
4025 	}
4026 }
4027 
4028 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4029 				       void __user *dstv,
4030 				       unsigned long start, unsigned long len)
4031 {
4032 	size_t cur;
4033 	size_t offset;
4034 	struct page *page;
4035 	char *kaddr;
4036 	char __user *dst = (char __user *)dstv;
4037 	unsigned long i = get_eb_page_index(start);
4038 	int ret = 0;
4039 
4040 	WARN_ON(start > eb->len);
4041 	WARN_ON(start + len > eb->start + eb->len);
4042 
4043 	offset = get_eb_offset_in_page(eb, start);
4044 
4045 	while (len > 0) {
4046 		page = eb->pages[i];
4047 
4048 		cur = min(len, (PAGE_SIZE - offset));
4049 		kaddr = page_address(page);
4050 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4051 			ret = -EFAULT;
4052 			break;
4053 		}
4054 
4055 		dst += cur;
4056 		len -= cur;
4057 		offset = 0;
4058 		i++;
4059 	}
4060 
4061 	return ret;
4062 }
4063 
4064 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4065 			 unsigned long start, unsigned long len)
4066 {
4067 	size_t cur;
4068 	size_t offset;
4069 	struct page *page;
4070 	char *kaddr;
4071 	char *ptr = (char *)ptrv;
4072 	unsigned long i = get_eb_page_index(start);
4073 	int ret = 0;
4074 
4075 	if (check_eb_range(eb, start, len))
4076 		return -EINVAL;
4077 
4078 	offset = get_eb_offset_in_page(eb, start);
4079 
4080 	while (len > 0) {
4081 		page = eb->pages[i];
4082 
4083 		cur = min(len, (PAGE_SIZE - offset));
4084 
4085 		kaddr = page_address(page);
4086 		ret = memcmp(ptr, kaddr + offset, cur);
4087 		if (ret)
4088 			break;
4089 
4090 		ptr += cur;
4091 		len -= cur;
4092 		offset = 0;
4093 		i++;
4094 	}
4095 	return ret;
4096 }
4097 
4098 /*
4099  * Check that the extent buffer is uptodate.
4100  *
4101  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4102  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4103  */
4104 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4105 				    struct page *page)
4106 {
4107 	struct btrfs_fs_info *fs_info = eb->fs_info;
4108 
4109 	/*
4110 	 * If we are using the commit root we could potentially clear a page
4111 	 * Uptodate while we're using the extent buffer that we've previously
4112 	 * looked up.  We don't want to complain in this case, as the page was
4113 	 * valid before, we just didn't write it out.  Instead we want to catch
4114 	 * the case where we didn't actually read the block properly, which
4115 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4116 	 */
4117 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4118 		return;
4119 
4120 	if (fs_info->nodesize < PAGE_SIZE) {
4121 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4122 							 eb->start, eb->len)))
4123 			btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4124 	} else {
4125 		WARN_ON(!PageUptodate(page));
4126 	}
4127 }
4128 
4129 static void __write_extent_buffer(const struct extent_buffer *eb,
4130 				  const void *srcv, unsigned long start,
4131 				  unsigned long len, bool use_memmove)
4132 {
4133 	size_t cur;
4134 	size_t offset;
4135 	struct page *page;
4136 	char *kaddr;
4137 	char *src = (char *)srcv;
4138 	unsigned long i = get_eb_page_index(start);
4139 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4140 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4141 
4142 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4143 
4144 	if (check_eb_range(eb, start, len))
4145 		return;
4146 
4147 	offset = get_eb_offset_in_page(eb, start);
4148 
4149 	while (len > 0) {
4150 		page = eb->pages[i];
4151 		if (check_uptodate)
4152 			assert_eb_page_uptodate(eb, page);
4153 
4154 		cur = min(len, PAGE_SIZE - offset);
4155 		kaddr = page_address(page);
4156 		if (use_memmove)
4157 			memmove(kaddr + offset, src, cur);
4158 		else
4159 			memcpy(kaddr + offset, src, cur);
4160 
4161 		src += cur;
4162 		len -= cur;
4163 		offset = 0;
4164 		i++;
4165 	}
4166 }
4167 
4168 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4169 			 unsigned long start, unsigned long len)
4170 {
4171 	return __write_extent_buffer(eb, srcv, start, len, false);
4172 }
4173 
4174 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4175 				 unsigned long start, unsigned long len)
4176 {
4177 	unsigned long cur = start;
4178 
4179 	while (cur < start + len) {
4180 		unsigned long index = get_eb_page_index(cur);
4181 		unsigned int offset = get_eb_offset_in_page(eb, cur);
4182 		unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4183 		struct page *page = eb->pages[index];
4184 
4185 		assert_eb_page_uptodate(eb, page);
4186 		memset(page_address(page) + offset, c, cur_len);
4187 
4188 		cur += cur_len;
4189 	}
4190 }
4191 
4192 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4193 			   unsigned long len)
4194 {
4195 	if (check_eb_range(eb, start, len))
4196 		return;
4197 	return memset_extent_buffer(eb, 0, start, len);
4198 }
4199 
4200 void copy_extent_buffer_full(const struct extent_buffer *dst,
4201 			     const struct extent_buffer *src)
4202 {
4203 	unsigned long cur = 0;
4204 
4205 	ASSERT(dst->len == src->len);
4206 
4207 	while (cur < src->len) {
4208 		unsigned long index = get_eb_page_index(cur);
4209 		unsigned long offset = get_eb_offset_in_page(src, cur);
4210 		unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4211 		void *addr = page_address(src->pages[index]) + offset;
4212 
4213 		write_extent_buffer(dst, addr, cur, cur_len);
4214 
4215 		cur += cur_len;
4216 	}
4217 }
4218 
4219 void copy_extent_buffer(const struct extent_buffer *dst,
4220 			const struct extent_buffer *src,
4221 			unsigned long dst_offset, unsigned long src_offset,
4222 			unsigned long len)
4223 {
4224 	u64 dst_len = dst->len;
4225 	size_t cur;
4226 	size_t offset;
4227 	struct page *page;
4228 	char *kaddr;
4229 	unsigned long i = get_eb_page_index(dst_offset);
4230 
4231 	if (check_eb_range(dst, dst_offset, len) ||
4232 	    check_eb_range(src, src_offset, len))
4233 		return;
4234 
4235 	WARN_ON(src->len != dst_len);
4236 
4237 	offset = get_eb_offset_in_page(dst, dst_offset);
4238 
4239 	while (len > 0) {
4240 		page = dst->pages[i];
4241 		assert_eb_page_uptodate(dst, page);
4242 
4243 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4244 
4245 		kaddr = page_address(page);
4246 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4247 
4248 		src_offset += cur;
4249 		len -= cur;
4250 		offset = 0;
4251 		i++;
4252 	}
4253 }
4254 
4255 /*
4256  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4257  * given bit number
4258  * @eb: the extent buffer
4259  * @start: offset of the bitmap item in the extent buffer
4260  * @nr: bit number
4261  * @page_index: return index of the page in the extent buffer that contains the
4262  * given bit number
4263  * @page_offset: return offset into the page given by page_index
4264  *
4265  * This helper hides the ugliness of finding the byte in an extent buffer which
4266  * contains a given bit.
4267  */
4268 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4269 				    unsigned long start, unsigned long nr,
4270 				    unsigned long *page_index,
4271 				    size_t *page_offset)
4272 {
4273 	size_t byte_offset = BIT_BYTE(nr);
4274 	size_t offset;
4275 
4276 	/*
4277 	 * The byte we want is the offset of the extent buffer + the offset of
4278 	 * the bitmap item in the extent buffer + the offset of the byte in the
4279 	 * bitmap item.
4280 	 */
4281 	offset = start + offset_in_page(eb->start) + byte_offset;
4282 
4283 	*page_index = offset >> PAGE_SHIFT;
4284 	*page_offset = offset_in_page(offset);
4285 }
4286 
4287 /*
4288  * Determine whether a bit in a bitmap item is set.
4289  *
4290  * @eb:     the extent buffer
4291  * @start:  offset of the bitmap item in the extent buffer
4292  * @nr:     bit number to test
4293  */
4294 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4295 			   unsigned long nr)
4296 {
4297 	u8 *kaddr;
4298 	struct page *page;
4299 	unsigned long i;
4300 	size_t offset;
4301 
4302 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4303 	page = eb->pages[i];
4304 	assert_eb_page_uptodate(eb, page);
4305 	kaddr = page_address(page);
4306 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4307 }
4308 
4309 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4310 {
4311 	unsigned long index = get_eb_page_index(bytenr);
4312 
4313 	if (check_eb_range(eb, bytenr, 1))
4314 		return NULL;
4315 	return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4316 }
4317 
4318 /*
4319  * Set an area of a bitmap to 1.
4320  *
4321  * @eb:     the extent buffer
4322  * @start:  offset of the bitmap item in the extent buffer
4323  * @pos:    bit number of the first bit
4324  * @len:    number of bits to set
4325  */
4326 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4327 			      unsigned long pos, unsigned long len)
4328 {
4329 	unsigned int first_byte = start + BIT_BYTE(pos);
4330 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4331 	const bool same_byte = (first_byte == last_byte);
4332 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4333 	u8 *kaddr;
4334 
4335 	if (same_byte)
4336 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4337 
4338 	/* Handle the first byte. */
4339 	kaddr = extent_buffer_get_byte(eb, first_byte);
4340 	*kaddr |= mask;
4341 	if (same_byte)
4342 		return;
4343 
4344 	/* Handle the byte aligned part. */
4345 	ASSERT(first_byte + 1 <= last_byte);
4346 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4347 
4348 	/* Handle the last byte. */
4349 	kaddr = extent_buffer_get_byte(eb, last_byte);
4350 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4351 }
4352 
4353 
4354 /*
4355  * Clear an area of a bitmap.
4356  *
4357  * @eb:     the extent buffer
4358  * @start:  offset of the bitmap item in the extent buffer
4359  * @pos:    bit number of the first bit
4360  * @len:    number of bits to clear
4361  */
4362 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4363 				unsigned long start, unsigned long pos,
4364 				unsigned long len)
4365 {
4366 	unsigned int first_byte = start + BIT_BYTE(pos);
4367 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4368 	const bool same_byte = (first_byte == last_byte);
4369 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4370 	u8 *kaddr;
4371 
4372 	if (same_byte)
4373 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4374 
4375 	/* Handle the first byte. */
4376 	kaddr = extent_buffer_get_byte(eb, first_byte);
4377 	*kaddr &= ~mask;
4378 	if (same_byte)
4379 		return;
4380 
4381 	/* Handle the byte aligned part. */
4382 	ASSERT(first_byte + 1 <= last_byte);
4383 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4384 
4385 	/* Handle the last byte. */
4386 	kaddr = extent_buffer_get_byte(eb, last_byte);
4387 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4388 }
4389 
4390 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4391 {
4392 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4393 	return distance < len;
4394 }
4395 
4396 void memcpy_extent_buffer(const struct extent_buffer *dst,
4397 			  unsigned long dst_offset, unsigned long src_offset,
4398 			  unsigned long len)
4399 {
4400 	unsigned long cur_off = 0;
4401 
4402 	if (check_eb_range(dst, dst_offset, len) ||
4403 	    check_eb_range(dst, src_offset, len))
4404 		return;
4405 
4406 	while (cur_off < len) {
4407 		unsigned long cur_src = cur_off + src_offset;
4408 		unsigned long pg_index = get_eb_page_index(cur_src);
4409 		unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4410 		unsigned long cur_len = min(src_offset + len - cur_src,
4411 					    PAGE_SIZE - pg_off);
4412 		void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4413 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4414 						       dst_offset + cur_off, cur_len);
4415 
4416 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4417 				      use_memmove);
4418 		cur_off += cur_len;
4419 	}
4420 }
4421 
4422 void memmove_extent_buffer(const struct extent_buffer *dst,
4423 			   unsigned long dst_offset, unsigned long src_offset,
4424 			   unsigned long len)
4425 {
4426 	unsigned long dst_end = dst_offset + len - 1;
4427 	unsigned long src_end = src_offset + len - 1;
4428 
4429 	if (check_eb_range(dst, dst_offset, len) ||
4430 	    check_eb_range(dst, src_offset, len))
4431 		return;
4432 
4433 	if (dst_offset < src_offset) {
4434 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4435 		return;
4436 	}
4437 
4438 	while (len > 0) {
4439 		unsigned long src_i;
4440 		size_t cur;
4441 		size_t dst_off_in_page;
4442 		size_t src_off_in_page;
4443 		void *src_addr;
4444 		bool use_memmove;
4445 
4446 		src_i = get_eb_page_index(src_end);
4447 
4448 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4449 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4450 
4451 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4452 		cur = min(cur, dst_off_in_page + 1);
4453 
4454 		src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4455 					cur + 1;
4456 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4457 					    cur);
4458 
4459 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4460 				      use_memmove);
4461 
4462 		dst_end -= cur;
4463 		src_end -= cur;
4464 		len -= cur;
4465 	}
4466 }
4467 
4468 #define GANG_LOOKUP_SIZE	16
4469 static struct extent_buffer *get_next_extent_buffer(
4470 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4471 {
4472 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4473 	struct extent_buffer *found = NULL;
4474 	u64 page_start = page_offset(page);
4475 	u64 cur = page_start;
4476 
4477 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4478 	lockdep_assert_held(&fs_info->buffer_lock);
4479 
4480 	while (cur < page_start + PAGE_SIZE) {
4481 		int ret;
4482 		int i;
4483 
4484 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4485 				(void **)gang, cur >> fs_info->sectorsize_bits,
4486 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4487 				      PAGE_SIZE / fs_info->nodesize));
4488 		if (ret == 0)
4489 			goto out;
4490 		for (i = 0; i < ret; i++) {
4491 			/* Already beyond page end */
4492 			if (gang[i]->start >= page_start + PAGE_SIZE)
4493 				goto out;
4494 			/* Found one */
4495 			if (gang[i]->start >= bytenr) {
4496 				found = gang[i];
4497 				goto out;
4498 			}
4499 		}
4500 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4501 	}
4502 out:
4503 	return found;
4504 }
4505 
4506 static int try_release_subpage_extent_buffer(struct page *page)
4507 {
4508 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4509 	u64 cur = page_offset(page);
4510 	const u64 end = page_offset(page) + PAGE_SIZE;
4511 	int ret;
4512 
4513 	while (cur < end) {
4514 		struct extent_buffer *eb = NULL;
4515 
4516 		/*
4517 		 * Unlike try_release_extent_buffer() which uses page->private
4518 		 * to grab buffer, for subpage case we rely on radix tree, thus
4519 		 * we need to ensure radix tree consistency.
4520 		 *
4521 		 * We also want an atomic snapshot of the radix tree, thus go
4522 		 * with spinlock rather than RCU.
4523 		 */
4524 		spin_lock(&fs_info->buffer_lock);
4525 		eb = get_next_extent_buffer(fs_info, page, cur);
4526 		if (!eb) {
4527 			/* No more eb in the page range after or at cur */
4528 			spin_unlock(&fs_info->buffer_lock);
4529 			break;
4530 		}
4531 		cur = eb->start + eb->len;
4532 
4533 		/*
4534 		 * The same as try_release_extent_buffer(), to ensure the eb
4535 		 * won't disappear out from under us.
4536 		 */
4537 		spin_lock(&eb->refs_lock);
4538 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4539 			spin_unlock(&eb->refs_lock);
4540 			spin_unlock(&fs_info->buffer_lock);
4541 			break;
4542 		}
4543 		spin_unlock(&fs_info->buffer_lock);
4544 
4545 		/*
4546 		 * If tree ref isn't set then we know the ref on this eb is a
4547 		 * real ref, so just return, this eb will likely be freed soon
4548 		 * anyway.
4549 		 */
4550 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4551 			spin_unlock(&eb->refs_lock);
4552 			break;
4553 		}
4554 
4555 		/*
4556 		 * Here we don't care about the return value, we will always
4557 		 * check the page private at the end.  And
4558 		 * release_extent_buffer() will release the refs_lock.
4559 		 */
4560 		release_extent_buffer(eb);
4561 	}
4562 	/*
4563 	 * Finally to check if we have cleared page private, as if we have
4564 	 * released all ebs in the page, the page private should be cleared now.
4565 	 */
4566 	spin_lock(&page->mapping->private_lock);
4567 	if (!PagePrivate(page))
4568 		ret = 1;
4569 	else
4570 		ret = 0;
4571 	spin_unlock(&page->mapping->private_lock);
4572 	return ret;
4573 
4574 }
4575 
4576 int try_release_extent_buffer(struct page *page)
4577 {
4578 	struct extent_buffer *eb;
4579 
4580 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4581 		return try_release_subpage_extent_buffer(page);
4582 
4583 	/*
4584 	 * We need to make sure nobody is changing page->private, as we rely on
4585 	 * page->private as the pointer to extent buffer.
4586 	 */
4587 	spin_lock(&page->mapping->private_lock);
4588 	if (!PagePrivate(page)) {
4589 		spin_unlock(&page->mapping->private_lock);
4590 		return 1;
4591 	}
4592 
4593 	eb = (struct extent_buffer *)page->private;
4594 	BUG_ON(!eb);
4595 
4596 	/*
4597 	 * This is a little awful but should be ok, we need to make sure that
4598 	 * the eb doesn't disappear out from under us while we're looking at
4599 	 * this page.
4600 	 */
4601 	spin_lock(&eb->refs_lock);
4602 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4603 		spin_unlock(&eb->refs_lock);
4604 		spin_unlock(&page->mapping->private_lock);
4605 		return 0;
4606 	}
4607 	spin_unlock(&page->mapping->private_lock);
4608 
4609 	/*
4610 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4611 	 * so just return, this page will likely be freed soon anyway.
4612 	 */
4613 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4614 		spin_unlock(&eb->refs_lock);
4615 		return 0;
4616 	}
4617 
4618 	return release_extent_buffer(eb);
4619 }
4620 
4621 /*
4622  * btrfs_readahead_tree_block - attempt to readahead a child block
4623  * @fs_info:	the fs_info
4624  * @bytenr:	bytenr to read
4625  * @owner_root: objectid of the root that owns this eb
4626  * @gen:	generation for the uptodate check, can be 0
4627  * @level:	level for the eb
4628  *
4629  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4630  * normal uptodate check of the eb, without checking the generation.  If we have
4631  * to read the block we will not block on anything.
4632  */
4633 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4634 				u64 bytenr, u64 owner_root, u64 gen, int level)
4635 {
4636 	struct btrfs_tree_parent_check check = {
4637 		.has_first_key = 0,
4638 		.level = level,
4639 		.transid = gen
4640 	};
4641 	struct extent_buffer *eb;
4642 	int ret;
4643 
4644 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4645 	if (IS_ERR(eb))
4646 		return;
4647 
4648 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4649 		free_extent_buffer(eb);
4650 		return;
4651 	}
4652 
4653 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4654 	if (ret < 0)
4655 		free_extent_buffer_stale(eb);
4656 	else
4657 		free_extent_buffer(eb);
4658 }
4659 
4660 /*
4661  * btrfs_readahead_node_child - readahead a node's child block
4662  * @node:	parent node we're reading from
4663  * @slot:	slot in the parent node for the child we want to read
4664  *
4665  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4666  * the slot in the node provided.
4667  */
4668 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4669 {
4670 	btrfs_readahead_tree_block(node->fs_info,
4671 				   btrfs_node_blockptr(node, slot),
4672 				   btrfs_header_owner(node),
4673 				   btrfs_node_ptr_generation(node, slot),
4674 				   btrfs_header_level(node) - 1);
4675 }
4676