1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 static void process_one_page(struct btrfs_fs_info *fs_info, 185 struct page *page, struct page *locked_page, 186 unsigned long page_ops, u64 start, u64 end) 187 { 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 197 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_page_end_writer_lock(fs_info, page, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct page *page = &fbatch.folios[i]->page; 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_page_start_writer_lock(fs_info, page, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_page_end_writer_lock(fs_info, page, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, 1, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 436 437 ASSERT(page_offset(page) <= start && 438 start + len <= page_offset(page) + PAGE_SIZE); 439 440 if (uptodate && btrfs_verify_page(page, start)) 441 btrfs_page_set_uptodate(fs_info, page, start, len); 442 else 443 btrfs_page_clear_uptodate(fs_info, page, start, len); 444 445 if (!btrfs_is_subpage(fs_info, page)) 446 unlock_page(page); 447 else 448 btrfs_subpage_end_reader(fs_info, page, start, len); 449 } 450 451 /* 452 * after a writepage IO is done, we need to: 453 * clear the uptodate bits on error 454 * clear the writeback bits in the extent tree for this IO 455 * end_page_writeback if the page has no more pending IO 456 * 457 * Scheduling is not allowed, so the extent state tree is expected 458 * to have one and only one object corresponding to this IO. 459 */ 460 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 461 { 462 struct bio *bio = &bbio->bio; 463 int error = blk_status_to_errno(bio->bi_status); 464 struct bio_vec *bvec; 465 struct bvec_iter_all iter_all; 466 467 ASSERT(!bio_flagged(bio, BIO_CLONED)); 468 bio_for_each_segment_all(bvec, bio, iter_all) { 469 struct page *page = bvec->bv_page; 470 struct inode *inode = page->mapping->host; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 const u32 sectorsize = fs_info->sectorsize; 473 u64 start = page_offset(page) + bvec->bv_offset; 474 u32 len = bvec->bv_len; 475 476 /* Our read/write should always be sector aligned. */ 477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 478 btrfs_err(fs_info, 479 "partial page write in btrfs with offset %u and length %u", 480 bvec->bv_offset, bvec->bv_len); 481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 482 btrfs_info(fs_info, 483 "incomplete page write with offset %u and length %u", 484 bvec->bv_offset, bvec->bv_len); 485 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 487 if (error) 488 mapping_set_error(page->mapping, error); 489 btrfs_page_clear_writeback(fs_info, page, start, len); 490 } 491 492 bio_put(bio); 493 } 494 495 /* 496 * Record previously processed extent range 497 * 498 * For endio_readpage_release_extent() to handle a full extent range, reducing 499 * the extent io operations. 500 */ 501 struct processed_extent { 502 struct btrfs_inode *inode; 503 /* Start of the range in @inode */ 504 u64 start; 505 /* End of the range in @inode */ 506 u64 end; 507 bool uptodate; 508 }; 509 510 /* 511 * Try to release processed extent range 512 * 513 * May not release the extent range right now if the current range is 514 * contiguous to processed extent. 515 * 516 * Will release processed extent when any of @inode, @uptodate, the range is 517 * no longer contiguous to the processed range. 518 * 519 * Passing @inode == NULL will force processed extent to be released. 520 */ 521 static void endio_readpage_release_extent(struct processed_extent *processed, 522 struct btrfs_inode *inode, u64 start, u64 end, 523 bool uptodate) 524 { 525 struct extent_state *cached = NULL; 526 struct extent_io_tree *tree; 527 528 /* The first extent, initialize @processed */ 529 if (!processed->inode) 530 goto update; 531 532 /* 533 * Contiguous to processed extent, just uptodate the end. 534 * 535 * Several things to notice: 536 * 537 * - bio can be merged as long as on-disk bytenr is contiguous 538 * This means we can have page belonging to other inodes, thus need to 539 * check if the inode still matches. 540 * - bvec can contain range beyond current page for multi-page bvec 541 * Thus we need to do processed->end + 1 >= start check 542 */ 543 if (processed->inode == inode && processed->uptodate == uptodate && 544 processed->end + 1 >= start && end >= processed->end) { 545 processed->end = end; 546 return; 547 } 548 549 tree = &processed->inode->io_tree; 550 /* 551 * Now we don't have range contiguous to the processed range, release 552 * the processed range now. 553 */ 554 unlock_extent(tree, processed->start, processed->end, &cached); 555 556 update: 557 /* Update processed to current range */ 558 processed->inode = inode; 559 processed->start = start; 560 processed->end = end; 561 processed->uptodate = uptodate; 562 } 563 564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 565 { 566 ASSERT(PageLocked(page)); 567 if (!btrfs_is_subpage(fs_info, page)) 568 return; 569 570 ASSERT(PagePrivate(page)); 571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 572 } 573 574 /* 575 * after a readpage IO is done, we need to: 576 * clear the uptodate bits on error 577 * set the uptodate bits if things worked 578 * set the page up to date if all extents in the tree are uptodate 579 * clear the lock bit in the extent tree 580 * unlock the page if there are no other extents locked for it 581 * 582 * Scheduling is not allowed, so the extent state tree is expected 583 * to have one and only one object corresponding to this IO. 584 */ 585 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 586 { 587 struct bio *bio = &bbio->bio; 588 struct bio_vec *bvec; 589 struct processed_extent processed = { 0 }; 590 /* 591 * The offset to the beginning of a bio, since one bio can never be 592 * larger than UINT_MAX, u32 here is enough. 593 */ 594 u32 bio_offset = 0; 595 struct bvec_iter_all iter_all; 596 597 ASSERT(!bio_flagged(bio, BIO_CLONED)); 598 bio_for_each_segment_all(bvec, bio, iter_all) { 599 bool uptodate = !bio->bi_status; 600 struct page *page = bvec->bv_page; 601 struct inode *inode = page->mapping->host; 602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 603 const u32 sectorsize = fs_info->sectorsize; 604 u64 start; 605 u64 end; 606 u32 len; 607 608 btrfs_debug(fs_info, 609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 610 bio->bi_iter.bi_sector, bio->bi_status, 611 bbio->mirror_num); 612 613 /* 614 * We always issue full-sector reads, but if some block in a 615 * page fails to read, blk_update_request() will advance 616 * bv_offset and adjust bv_len to compensate. Print a warning 617 * for unaligned offsets, and an error if they don't add up to 618 * a full sector. 619 */ 620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 621 btrfs_err(fs_info, 622 "partial page read in btrfs with offset %u and length %u", 623 bvec->bv_offset, bvec->bv_len); 624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 625 sectorsize)) 626 btrfs_info(fs_info, 627 "incomplete page read with offset %u and length %u", 628 bvec->bv_offset, bvec->bv_len); 629 630 start = page_offset(page) + bvec->bv_offset; 631 end = start + bvec->bv_len - 1; 632 len = bvec->bv_len; 633 634 if (likely(uptodate)) { 635 loff_t i_size = i_size_read(inode); 636 pgoff_t end_index = i_size >> PAGE_SHIFT; 637 638 /* 639 * Zero out the remaining part if this range straddles 640 * i_size. 641 * 642 * Here we should only zero the range inside the bvec, 643 * not touch anything else. 644 * 645 * NOTE: i_size is exclusive while end is inclusive. 646 */ 647 if (page->index == end_index && i_size <= end) { 648 u32 zero_start = max(offset_in_page(i_size), 649 offset_in_page(start)); 650 651 zero_user_segment(page, zero_start, 652 offset_in_page(end) + 1); 653 } 654 } 655 656 /* Update page status and unlock. */ 657 end_page_read(page, uptodate, start, len); 658 endio_readpage_release_extent(&processed, BTRFS_I(inode), 659 start, end, uptodate); 660 661 ASSERT(bio_offset + len > bio_offset); 662 bio_offset += len; 663 664 } 665 /* Release the last extent */ 666 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 667 bio_put(bio); 668 } 669 670 /* 671 * Populate every free slot in a provided array with pages. 672 * 673 * @nr_pages: number of pages to allocate 674 * @page_array: the array to fill with pages; any existing non-null entries in 675 * the array will be skipped 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 682 { 683 unsigned int allocated; 684 685 for (allocated = 0; allocated < nr_pages;) { 686 unsigned int last = allocated; 687 688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 689 690 if (allocated == nr_pages) 691 return 0; 692 693 /* 694 * During this iteration, no page could be allocated, even 695 * though alloc_pages_bulk_array() falls back to alloc_page() 696 * if it could not bulk-allocate. So we must be out of memory. 697 */ 698 if (allocated == last) { 699 for (int i = 0; i < allocated; i++) { 700 __free_page(page_array[i]); 701 page_array[i] = NULL; 702 } 703 return -ENOMEM; 704 } 705 706 memalloc_retry_wait(GFP_NOFS); 707 } 708 return 0; 709 } 710 711 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 712 struct page *page, u64 disk_bytenr, 713 unsigned int pg_offset) 714 { 715 struct bio *bio = &bio_ctrl->bbio->bio; 716 struct bio_vec *bvec = bio_last_bvec_all(bio); 717 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 718 719 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 720 /* 721 * For compression, all IO should have its logical bytenr set 722 * to the starting bytenr of the compressed extent. 723 */ 724 return bio->bi_iter.bi_sector == sector; 725 } 726 727 /* 728 * The contig check requires the following conditions to be met: 729 * 730 * 1) The pages are belonging to the same inode 731 * This is implied by the call chain. 732 * 733 * 2) The range has adjacent logical bytenr 734 * 735 * 3) The range has adjacent file offset 736 * This is required for the usage of btrfs_bio->file_offset. 737 */ 738 return bio_end_sector(bio) == sector && 739 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 740 page_offset(page) + pg_offset; 741 } 742 743 static void alloc_new_bio(struct btrfs_inode *inode, 744 struct btrfs_bio_ctrl *bio_ctrl, 745 u64 disk_bytenr, u64 file_offset) 746 { 747 struct btrfs_fs_info *fs_info = inode->root->fs_info; 748 struct btrfs_bio *bbio; 749 750 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 751 bio_ctrl->end_io_func, NULL); 752 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 753 bbio->inode = inode; 754 bbio->file_offset = file_offset; 755 bio_ctrl->bbio = bbio; 756 bio_ctrl->len_to_oe_boundary = U32_MAX; 757 758 /* Limit data write bios to the ordered boundary. */ 759 if (bio_ctrl->wbc) { 760 struct btrfs_ordered_extent *ordered; 761 762 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 763 if (ordered) { 764 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 765 ordered->file_offset + 766 ordered->disk_num_bytes - file_offset); 767 bbio->ordered = ordered; 768 } 769 770 /* 771 * Pick the last added device to support cgroup writeback. For 772 * multi-device file systems this means blk-cgroup policies have 773 * to always be set on the last added/replaced device. 774 * This is a bit odd but has been like that for a long time. 775 */ 776 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 777 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 778 } 779 } 780 781 /* 782 * @disk_bytenr: logical bytenr where the write will be 783 * @page: page to add to the bio 784 * @size: portion of page that we want to write to 785 * @pg_offset: offset of the new bio or to check whether we are adding 786 * a contiguous page to the previous one 787 * 788 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 789 * new one in @bio_ctrl->bbio. 790 * The mirror number for this IO should already be initizlied in 791 * @bio_ctrl->mirror_num. 792 */ 793 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 794 u64 disk_bytenr, struct page *page, 795 size_t size, unsigned long pg_offset) 796 { 797 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 798 799 ASSERT(pg_offset + size <= PAGE_SIZE); 800 ASSERT(bio_ctrl->end_io_func); 801 802 if (bio_ctrl->bbio && 803 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 804 submit_one_bio(bio_ctrl); 805 806 do { 807 u32 len = size; 808 809 /* Allocate new bio if needed */ 810 if (!bio_ctrl->bbio) { 811 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 812 page_offset(page) + pg_offset); 813 } 814 815 /* Cap to the current ordered extent boundary if there is one. */ 816 if (len > bio_ctrl->len_to_oe_boundary) { 817 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 818 ASSERT(is_data_inode(&inode->vfs_inode)); 819 len = bio_ctrl->len_to_oe_boundary; 820 } 821 822 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 823 /* bio full: move on to a new one */ 824 submit_one_bio(bio_ctrl); 825 continue; 826 } 827 828 if (bio_ctrl->wbc) 829 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 830 831 size -= len; 832 pg_offset += len; 833 disk_bytenr += len; 834 835 /* 836 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 837 * sector aligned. alloc_new_bio() then sets it to the end of 838 * our ordered extent for writes into zoned devices. 839 * 840 * When len_to_oe_boundary is tracking an ordered extent, we 841 * trust the ordered extent code to align things properly, and 842 * the check above to cap our write to the ordered extent 843 * boundary is correct. 844 * 845 * When len_to_oe_boundary is U32_MAX, the cap above would 846 * result in a 4095 byte IO for the last page right before 847 * we hit the bio limit of UINT_MAX. bio_add_page() has all 848 * the checks required to make sure we don't overflow the bio, 849 * and we should just ignore len_to_oe_boundary completely 850 * unless we're using it to track an ordered extent. 851 * 852 * It's pretty hard to make a bio sized U32_MAX, but it can 853 * happen when the page cache is able to feed us contiguous 854 * pages for large extents. 855 */ 856 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 857 bio_ctrl->len_to_oe_boundary -= len; 858 859 /* Ordered extent boundary: move on to a new bio. */ 860 if (bio_ctrl->len_to_oe_boundary == 0) 861 submit_one_bio(bio_ctrl); 862 } while (size); 863 } 864 865 static int attach_extent_buffer_page(struct extent_buffer *eb, 866 struct page *page, 867 struct btrfs_subpage *prealloc) 868 { 869 struct btrfs_fs_info *fs_info = eb->fs_info; 870 int ret = 0; 871 872 /* 873 * If the page is mapped to btree inode, we should hold the private 874 * lock to prevent race. 875 * For cloned or dummy extent buffers, their pages are not mapped and 876 * will not race with any other ebs. 877 */ 878 if (page->mapping) 879 lockdep_assert_held(&page->mapping->private_lock); 880 881 if (fs_info->nodesize >= PAGE_SIZE) { 882 if (!PagePrivate(page)) 883 attach_page_private(page, eb); 884 else 885 WARN_ON(page->private != (unsigned long)eb); 886 return 0; 887 } 888 889 /* Already mapped, just free prealloc */ 890 if (PagePrivate(page)) { 891 btrfs_free_subpage(prealloc); 892 return 0; 893 } 894 895 if (prealloc) 896 /* Has preallocated memory for subpage */ 897 attach_page_private(page, prealloc); 898 else 899 /* Do new allocation to attach subpage */ 900 ret = btrfs_attach_subpage(fs_info, page, 901 BTRFS_SUBPAGE_METADATA); 902 return ret; 903 } 904 905 int set_page_extent_mapped(struct page *page) 906 { 907 struct btrfs_fs_info *fs_info; 908 909 ASSERT(page->mapping); 910 911 if (PagePrivate(page)) 912 return 0; 913 914 fs_info = btrfs_sb(page->mapping->host->i_sb); 915 916 if (btrfs_is_subpage(fs_info, page)) 917 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 918 919 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 920 return 0; 921 } 922 923 void clear_page_extent_mapped(struct page *page) 924 { 925 struct btrfs_fs_info *fs_info; 926 927 ASSERT(page->mapping); 928 929 if (!PagePrivate(page)) 930 return; 931 932 fs_info = btrfs_sb(page->mapping->host->i_sb); 933 if (btrfs_is_subpage(fs_info, page)) 934 return btrfs_detach_subpage(fs_info, page); 935 936 detach_page_private(page); 937 } 938 939 static struct extent_map * 940 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 941 u64 start, u64 len, struct extent_map **em_cached) 942 { 943 struct extent_map *em; 944 945 if (em_cached && *em_cached) { 946 em = *em_cached; 947 if (extent_map_in_tree(em) && start >= em->start && 948 start < extent_map_end(em)) { 949 refcount_inc(&em->refs); 950 return em; 951 } 952 953 free_extent_map(em); 954 *em_cached = NULL; 955 } 956 957 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 958 if (em_cached && !IS_ERR(em)) { 959 BUG_ON(*em_cached); 960 refcount_inc(&em->refs); 961 *em_cached = em; 962 } 963 return em; 964 } 965 /* 966 * basic readpage implementation. Locked extent state structs are inserted 967 * into the tree that are removed when the IO is done (by the end_io 968 * handlers) 969 * XXX JDM: This needs looking at to ensure proper page locking 970 * return 0 on success, otherwise return error 971 */ 972 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 973 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 974 { 975 struct inode *inode = page->mapping->host; 976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 977 u64 start = page_offset(page); 978 const u64 end = start + PAGE_SIZE - 1; 979 u64 cur = start; 980 u64 extent_offset; 981 u64 last_byte = i_size_read(inode); 982 u64 block_start; 983 struct extent_map *em; 984 int ret = 0; 985 size_t pg_offset = 0; 986 size_t iosize; 987 size_t blocksize = inode->i_sb->s_blocksize; 988 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 989 990 ret = set_page_extent_mapped(page); 991 if (ret < 0) { 992 unlock_extent(tree, start, end, NULL); 993 unlock_page(page); 994 return ret; 995 } 996 997 if (page->index == last_byte >> PAGE_SHIFT) { 998 size_t zero_offset = offset_in_page(last_byte); 999 1000 if (zero_offset) { 1001 iosize = PAGE_SIZE - zero_offset; 1002 memzero_page(page, zero_offset, iosize); 1003 } 1004 } 1005 bio_ctrl->end_io_func = end_bio_extent_readpage; 1006 begin_page_read(fs_info, page); 1007 while (cur <= end) { 1008 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1009 bool force_bio_submit = false; 1010 u64 disk_bytenr; 1011 1012 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1013 if (cur >= last_byte) { 1014 iosize = PAGE_SIZE - pg_offset; 1015 memzero_page(page, pg_offset, iosize); 1016 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1017 end_page_read(page, true, cur, iosize); 1018 break; 1019 } 1020 em = __get_extent_map(inode, page, pg_offset, cur, 1021 end - cur + 1, em_cached); 1022 if (IS_ERR(em)) { 1023 unlock_extent(tree, cur, end, NULL); 1024 end_page_read(page, false, cur, end + 1 - cur); 1025 return PTR_ERR(em); 1026 } 1027 extent_offset = cur - em->start; 1028 BUG_ON(extent_map_end(em) <= cur); 1029 BUG_ON(end < cur); 1030 1031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1032 compress_type = em->compress_type; 1033 1034 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1035 iosize = ALIGN(iosize, blocksize); 1036 if (compress_type != BTRFS_COMPRESS_NONE) 1037 disk_bytenr = em->block_start; 1038 else 1039 disk_bytenr = em->block_start + extent_offset; 1040 block_start = em->block_start; 1041 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1042 block_start = EXTENT_MAP_HOLE; 1043 1044 /* 1045 * If we have a file range that points to a compressed extent 1046 * and it's followed by a consecutive file range that points 1047 * to the same compressed extent (possibly with a different 1048 * offset and/or length, so it either points to the whole extent 1049 * or only part of it), we must make sure we do not submit a 1050 * single bio to populate the pages for the 2 ranges because 1051 * this makes the compressed extent read zero out the pages 1052 * belonging to the 2nd range. Imagine the following scenario: 1053 * 1054 * File layout 1055 * [0 - 8K] [8K - 24K] 1056 * | | 1057 * | | 1058 * points to extent X, points to extent X, 1059 * offset 4K, length of 8K offset 0, length 16K 1060 * 1061 * [extent X, compressed length = 4K uncompressed length = 16K] 1062 * 1063 * If the bio to read the compressed extent covers both ranges, 1064 * it will decompress extent X into the pages belonging to the 1065 * first range and then it will stop, zeroing out the remaining 1066 * pages that belong to the other range that points to extent X. 1067 * So here we make sure we submit 2 bios, one for the first 1068 * range and another one for the third range. Both will target 1069 * the same physical extent from disk, but we can't currently 1070 * make the compressed bio endio callback populate the pages 1071 * for both ranges because each compressed bio is tightly 1072 * coupled with a single extent map, and each range can have 1073 * an extent map with a different offset value relative to the 1074 * uncompressed data of our extent and different lengths. This 1075 * is a corner case so we prioritize correctness over 1076 * non-optimal behavior (submitting 2 bios for the same extent). 1077 */ 1078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1079 prev_em_start && *prev_em_start != (u64)-1 && 1080 *prev_em_start != em->start) 1081 force_bio_submit = true; 1082 1083 if (prev_em_start) 1084 *prev_em_start = em->start; 1085 1086 free_extent_map(em); 1087 em = NULL; 1088 1089 /* we've found a hole, just zero and go on */ 1090 if (block_start == EXTENT_MAP_HOLE) { 1091 memzero_page(page, pg_offset, iosize); 1092 1093 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1094 end_page_read(page, true, cur, iosize); 1095 cur = cur + iosize; 1096 pg_offset += iosize; 1097 continue; 1098 } 1099 /* the get_extent function already copied into the page */ 1100 if (block_start == EXTENT_MAP_INLINE) { 1101 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1102 end_page_read(page, true, cur, iosize); 1103 cur = cur + iosize; 1104 pg_offset += iosize; 1105 continue; 1106 } 1107 1108 if (bio_ctrl->compress_type != compress_type) { 1109 submit_one_bio(bio_ctrl); 1110 bio_ctrl->compress_type = compress_type; 1111 } 1112 1113 if (force_bio_submit) 1114 submit_one_bio(bio_ctrl); 1115 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1116 pg_offset); 1117 cur = cur + iosize; 1118 pg_offset += iosize; 1119 } 1120 1121 return 0; 1122 } 1123 1124 int btrfs_read_folio(struct file *file, struct folio *folio) 1125 { 1126 struct page *page = &folio->page; 1127 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1128 u64 start = page_offset(page); 1129 u64 end = start + PAGE_SIZE - 1; 1130 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1131 int ret; 1132 1133 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1134 1135 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1136 /* 1137 * If btrfs_do_readpage() failed we will want to submit the assembled 1138 * bio to do the cleanup. 1139 */ 1140 submit_one_bio(&bio_ctrl); 1141 return ret; 1142 } 1143 1144 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1145 u64 start, u64 end, 1146 struct extent_map **em_cached, 1147 struct btrfs_bio_ctrl *bio_ctrl, 1148 u64 *prev_em_start) 1149 { 1150 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1151 int index; 1152 1153 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1154 1155 for (index = 0; index < nr_pages; index++) { 1156 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1157 prev_em_start); 1158 put_page(pages[index]); 1159 } 1160 } 1161 1162 /* 1163 * helper for __extent_writepage, doing all of the delayed allocation setup. 1164 * 1165 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1166 * to write the page (copy into inline extent). In this case the IO has 1167 * been started and the page is already unlocked. 1168 * 1169 * This returns 0 if all went well (page still locked) 1170 * This returns < 0 if there were errors (page still locked) 1171 */ 1172 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1173 struct page *page, struct writeback_control *wbc) 1174 { 1175 const u64 page_start = page_offset(page); 1176 const u64 page_end = page_start + PAGE_SIZE - 1; 1177 u64 delalloc_start = page_start; 1178 u64 delalloc_end = page_end; 1179 u64 delalloc_to_write = 0; 1180 int ret = 0; 1181 1182 while (delalloc_start < page_end) { 1183 delalloc_end = page_end; 1184 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1185 &delalloc_start, &delalloc_end)) { 1186 delalloc_start = delalloc_end + 1; 1187 continue; 1188 } 1189 1190 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1191 delalloc_end, wbc); 1192 if (ret < 0) 1193 return ret; 1194 1195 delalloc_start = delalloc_end + 1; 1196 } 1197 1198 /* 1199 * delalloc_end is already one less than the total length, so 1200 * we don't subtract one from PAGE_SIZE 1201 */ 1202 delalloc_to_write += 1203 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1204 1205 /* 1206 * If btrfs_run_dealloc_range() already started I/O and unlocked 1207 * the pages, we just need to account for them here. 1208 */ 1209 if (ret == 1) { 1210 wbc->nr_to_write -= delalloc_to_write; 1211 return 1; 1212 } 1213 1214 if (wbc->nr_to_write < delalloc_to_write) { 1215 int thresh = 8192; 1216 1217 if (delalloc_to_write < thresh * 2) 1218 thresh = delalloc_to_write; 1219 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1220 thresh); 1221 } 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Find the first byte we need to write. 1228 * 1229 * For subpage, one page can contain several sectors, and 1230 * __extent_writepage_io() will just grab all extent maps in the page 1231 * range and try to submit all non-inline/non-compressed extents. 1232 * 1233 * This is a big problem for subpage, we shouldn't re-submit already written 1234 * data at all. 1235 * This function will lookup subpage dirty bit to find which range we really 1236 * need to submit. 1237 * 1238 * Return the next dirty range in [@start, @end). 1239 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1240 */ 1241 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1242 struct page *page, u64 *start, u64 *end) 1243 { 1244 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1245 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1246 u64 orig_start = *start; 1247 /* Declare as unsigned long so we can use bitmap ops */ 1248 unsigned long flags; 1249 int range_start_bit; 1250 int range_end_bit; 1251 1252 /* 1253 * For regular sector size == page size case, since one page only 1254 * contains one sector, we return the page offset directly. 1255 */ 1256 if (!btrfs_is_subpage(fs_info, page)) { 1257 *start = page_offset(page); 1258 *end = page_offset(page) + PAGE_SIZE; 1259 return; 1260 } 1261 1262 range_start_bit = spi->dirty_offset + 1263 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1264 1265 /* We should have the page locked, but just in case */ 1266 spin_lock_irqsave(&subpage->lock, flags); 1267 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1268 spi->dirty_offset + spi->bitmap_nr_bits); 1269 spin_unlock_irqrestore(&subpage->lock, flags); 1270 1271 range_start_bit -= spi->dirty_offset; 1272 range_end_bit -= spi->dirty_offset; 1273 1274 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1275 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1276 } 1277 1278 /* 1279 * helper for __extent_writepage. This calls the writepage start hooks, 1280 * and does the loop to map the page into extents and bios. 1281 * 1282 * We return 1 if the IO is started and the page is unlocked, 1283 * 0 if all went well (page still locked) 1284 * < 0 if there were errors (page still locked) 1285 */ 1286 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1287 struct page *page, 1288 struct btrfs_bio_ctrl *bio_ctrl, 1289 loff_t i_size, 1290 int *nr_ret) 1291 { 1292 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1293 u64 cur = page_offset(page); 1294 u64 end = cur + PAGE_SIZE - 1; 1295 u64 extent_offset; 1296 u64 block_start; 1297 struct extent_map *em; 1298 int ret = 0; 1299 int nr = 0; 1300 1301 ret = btrfs_writepage_cow_fixup(page); 1302 if (ret) { 1303 /* Fixup worker will requeue */ 1304 redirty_page_for_writepage(bio_ctrl->wbc, page); 1305 unlock_page(page); 1306 return 1; 1307 } 1308 1309 bio_ctrl->end_io_func = end_bio_extent_writepage; 1310 while (cur <= end) { 1311 u32 len = end - cur + 1; 1312 u64 disk_bytenr; 1313 u64 em_end; 1314 u64 dirty_range_start = cur; 1315 u64 dirty_range_end; 1316 u32 iosize; 1317 1318 if (cur >= i_size) { 1319 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1320 true); 1321 /* 1322 * This range is beyond i_size, thus we don't need to 1323 * bother writing back. 1324 * But we still need to clear the dirty subpage bit, or 1325 * the next time the page gets dirtied, we will try to 1326 * writeback the sectors with subpage dirty bits, 1327 * causing writeback without ordered extent. 1328 */ 1329 btrfs_page_clear_dirty(fs_info, page, cur, len); 1330 break; 1331 } 1332 1333 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1334 &dirty_range_end); 1335 if (cur < dirty_range_start) { 1336 cur = dirty_range_start; 1337 continue; 1338 } 1339 1340 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1341 if (IS_ERR(em)) { 1342 ret = PTR_ERR_OR_ZERO(em); 1343 goto out_error; 1344 } 1345 1346 extent_offset = cur - em->start; 1347 em_end = extent_map_end(em); 1348 ASSERT(cur <= em_end); 1349 ASSERT(cur < end); 1350 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1351 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1352 1353 block_start = em->block_start; 1354 disk_bytenr = em->block_start + extent_offset; 1355 1356 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1357 ASSERT(block_start != EXTENT_MAP_HOLE); 1358 ASSERT(block_start != EXTENT_MAP_INLINE); 1359 1360 /* 1361 * Note that em_end from extent_map_end() and dirty_range_end from 1362 * find_next_dirty_byte() are all exclusive 1363 */ 1364 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1365 free_extent_map(em); 1366 em = NULL; 1367 1368 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1369 if (!PageWriteback(page)) { 1370 btrfs_err(inode->root->fs_info, 1371 "page %lu not writeback, cur %llu end %llu", 1372 page->index, cur, end); 1373 } 1374 1375 /* 1376 * Although the PageDirty bit is cleared before entering this 1377 * function, subpage dirty bit is not cleared. 1378 * So clear subpage dirty bit here so next time we won't submit 1379 * page for range already written to disk. 1380 */ 1381 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1382 1383 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1384 cur - page_offset(page)); 1385 cur += iosize; 1386 nr++; 1387 } 1388 1389 btrfs_page_assert_not_dirty(fs_info, page); 1390 *nr_ret = nr; 1391 return 0; 1392 1393 out_error: 1394 /* 1395 * If we finish without problem, we should not only clear page dirty, 1396 * but also empty subpage dirty bits 1397 */ 1398 *nr_ret = nr; 1399 return ret; 1400 } 1401 1402 /* 1403 * the writepage semantics are similar to regular writepage. extent 1404 * records are inserted to lock ranges in the tree, and as dirty areas 1405 * are found, they are marked writeback. Then the lock bits are removed 1406 * and the end_io handler clears the writeback ranges 1407 * 1408 * Return 0 if everything goes well. 1409 * Return <0 for error. 1410 */ 1411 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1412 { 1413 struct folio *folio = page_folio(page); 1414 struct inode *inode = page->mapping->host; 1415 const u64 page_start = page_offset(page); 1416 int ret; 1417 int nr = 0; 1418 size_t pg_offset; 1419 loff_t i_size = i_size_read(inode); 1420 unsigned long end_index = i_size >> PAGE_SHIFT; 1421 1422 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1423 1424 WARN_ON(!PageLocked(page)); 1425 1426 pg_offset = offset_in_page(i_size); 1427 if (page->index > end_index || 1428 (page->index == end_index && !pg_offset)) { 1429 folio_invalidate(folio, 0, folio_size(folio)); 1430 folio_unlock(folio); 1431 return 0; 1432 } 1433 1434 if (page->index == end_index) 1435 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1436 1437 ret = set_page_extent_mapped(page); 1438 if (ret < 0) 1439 goto done; 1440 1441 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1442 if (ret == 1) 1443 return 0; 1444 if (ret) 1445 goto done; 1446 1447 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1448 if (ret == 1) 1449 return 0; 1450 1451 bio_ctrl->wbc->nr_to_write--; 1452 1453 done: 1454 if (nr == 0) { 1455 /* make sure the mapping tag for page dirty gets cleared */ 1456 set_page_writeback(page); 1457 end_page_writeback(page); 1458 } 1459 if (ret) { 1460 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1461 PAGE_SIZE, !ret); 1462 mapping_set_error(page->mapping, ret); 1463 } 1464 unlock_page(page); 1465 ASSERT(ret <= 0); 1466 return ret; 1467 } 1468 1469 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1470 { 1471 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1472 TASK_UNINTERRUPTIBLE); 1473 } 1474 1475 /* 1476 * Lock extent buffer status and pages for writeback. 1477 * 1478 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1479 * extent buffer is not dirty) 1480 * Return %true is the extent buffer is submitted to bio. 1481 */ 1482 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1483 struct writeback_control *wbc) 1484 { 1485 struct btrfs_fs_info *fs_info = eb->fs_info; 1486 bool ret = false; 1487 1488 btrfs_tree_lock(eb); 1489 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1490 btrfs_tree_unlock(eb); 1491 if (wbc->sync_mode != WB_SYNC_ALL) 1492 return false; 1493 wait_on_extent_buffer_writeback(eb); 1494 btrfs_tree_lock(eb); 1495 } 1496 1497 /* 1498 * We need to do this to prevent races in people who check if the eb is 1499 * under IO since we can end up having no IO bits set for a short period 1500 * of time. 1501 */ 1502 spin_lock(&eb->refs_lock); 1503 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1504 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1505 spin_unlock(&eb->refs_lock); 1506 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1507 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1508 -eb->len, 1509 fs_info->dirty_metadata_batch); 1510 ret = true; 1511 } else { 1512 spin_unlock(&eb->refs_lock); 1513 } 1514 btrfs_tree_unlock(eb); 1515 return ret; 1516 } 1517 1518 static void set_btree_ioerr(struct extent_buffer *eb) 1519 { 1520 struct btrfs_fs_info *fs_info = eb->fs_info; 1521 1522 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1523 1524 /* 1525 * A read may stumble upon this buffer later, make sure that it gets an 1526 * error and knows there was an error. 1527 */ 1528 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1529 1530 /* 1531 * We need to set the mapping with the io error as well because a write 1532 * error will flip the file system readonly, and then syncfs() will 1533 * return a 0 because we are readonly if we don't modify the err seq for 1534 * the superblock. 1535 */ 1536 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1537 1538 /* 1539 * If writeback for a btree extent that doesn't belong to a log tree 1540 * failed, increment the counter transaction->eb_write_errors. 1541 * We do this because while the transaction is running and before it's 1542 * committing (when we call filemap_fdata[write|wait]_range against 1543 * the btree inode), we might have 1544 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1545 * returns an error or an error happens during writeback, when we're 1546 * committing the transaction we wouldn't know about it, since the pages 1547 * can be no longer dirty nor marked anymore for writeback (if a 1548 * subsequent modification to the extent buffer didn't happen before the 1549 * transaction commit), which makes filemap_fdata[write|wait]_range not 1550 * able to find the pages tagged with SetPageError at transaction 1551 * commit time. So if this happens we must abort the transaction, 1552 * otherwise we commit a super block with btree roots that point to 1553 * btree nodes/leafs whose content on disk is invalid - either garbage 1554 * or the content of some node/leaf from a past generation that got 1555 * cowed or deleted and is no longer valid. 1556 * 1557 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1558 * not be enough - we need to distinguish between log tree extents vs 1559 * non-log tree extents, and the next filemap_fdatawait_range() call 1560 * will catch and clear such errors in the mapping - and that call might 1561 * be from a log sync and not from a transaction commit. Also, checking 1562 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1563 * not done and would not be reliable - the eb might have been released 1564 * from memory and reading it back again means that flag would not be 1565 * set (since it's a runtime flag, not persisted on disk). 1566 * 1567 * Using the flags below in the btree inode also makes us achieve the 1568 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1569 * writeback for all dirty pages and before filemap_fdatawait_range() 1570 * is called, the writeback for all dirty pages had already finished 1571 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1572 * filemap_fdatawait_range() would return success, as it could not know 1573 * that writeback errors happened (the pages were no longer tagged for 1574 * writeback). 1575 */ 1576 switch (eb->log_index) { 1577 case -1: 1578 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1579 break; 1580 case 0: 1581 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1582 break; 1583 case 1: 1584 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1585 break; 1586 default: 1587 BUG(); /* unexpected, logic error */ 1588 } 1589 } 1590 1591 /* 1592 * The endio specific version which won't touch any unsafe spinlock in endio 1593 * context. 1594 */ 1595 static struct extent_buffer *find_extent_buffer_nolock( 1596 struct btrfs_fs_info *fs_info, u64 start) 1597 { 1598 struct extent_buffer *eb; 1599 1600 rcu_read_lock(); 1601 eb = radix_tree_lookup(&fs_info->buffer_radix, 1602 start >> fs_info->sectorsize_bits); 1603 if (eb && atomic_inc_not_zero(&eb->refs)) { 1604 rcu_read_unlock(); 1605 return eb; 1606 } 1607 rcu_read_unlock(); 1608 return NULL; 1609 } 1610 1611 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1612 { 1613 struct extent_buffer *eb = bbio->private; 1614 struct btrfs_fs_info *fs_info = eb->fs_info; 1615 bool uptodate = !bbio->bio.bi_status; 1616 struct bvec_iter_all iter_all; 1617 struct bio_vec *bvec; 1618 u32 bio_offset = 0; 1619 1620 if (!uptodate) 1621 set_btree_ioerr(eb); 1622 1623 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1624 u64 start = eb->start + bio_offset; 1625 struct page *page = bvec->bv_page; 1626 u32 len = bvec->bv_len; 1627 1628 btrfs_page_clear_writeback(fs_info, page, start, len); 1629 bio_offset += len; 1630 } 1631 1632 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1633 smp_mb__after_atomic(); 1634 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1635 1636 bio_put(&bbio->bio); 1637 } 1638 1639 static void prepare_eb_write(struct extent_buffer *eb) 1640 { 1641 u32 nritems; 1642 unsigned long start; 1643 unsigned long end; 1644 1645 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1646 1647 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1648 nritems = btrfs_header_nritems(eb); 1649 if (btrfs_header_level(eb) > 0) { 1650 end = btrfs_node_key_ptr_offset(eb, nritems); 1651 memzero_extent_buffer(eb, end, eb->len - end); 1652 } else { 1653 /* 1654 * Leaf: 1655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1656 */ 1657 start = btrfs_item_nr_offset(eb, nritems); 1658 end = btrfs_item_nr_offset(eb, 0); 1659 if (nritems == 0) 1660 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1661 else 1662 end += btrfs_item_offset(eb, nritems - 1); 1663 memzero_extent_buffer(eb, start, end - start); 1664 } 1665 } 1666 1667 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1668 struct writeback_control *wbc) 1669 { 1670 struct btrfs_fs_info *fs_info = eb->fs_info; 1671 struct btrfs_bio *bbio; 1672 1673 prepare_eb_write(eb); 1674 1675 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1676 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1677 eb->fs_info, extent_buffer_write_end_io, eb); 1678 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1679 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1680 wbc_init_bio(wbc, &bbio->bio); 1681 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1682 bbio->file_offset = eb->start; 1683 if (fs_info->nodesize < PAGE_SIZE) { 1684 struct page *p = eb->pages[0]; 1685 1686 lock_page(p); 1687 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1688 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1689 eb->len)) { 1690 clear_page_dirty_for_io(p); 1691 wbc->nr_to_write--; 1692 } 1693 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1694 wbc_account_cgroup_owner(wbc, p, eb->len); 1695 unlock_page(p); 1696 } else { 1697 for (int i = 0; i < num_extent_pages(eb); i++) { 1698 struct page *p = eb->pages[i]; 1699 1700 lock_page(p); 1701 clear_page_dirty_for_io(p); 1702 set_page_writeback(p); 1703 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1704 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1705 wbc->nr_to_write--; 1706 unlock_page(p); 1707 } 1708 } 1709 btrfs_submit_bio(bbio, 0); 1710 } 1711 1712 /* 1713 * Submit one subpage btree page. 1714 * 1715 * The main difference to submit_eb_page() is: 1716 * - Page locking 1717 * For subpage, we don't rely on page locking at all. 1718 * 1719 * - Flush write bio 1720 * We only flush bio if we may be unable to fit current extent buffers into 1721 * current bio. 1722 * 1723 * Return >=0 for the number of submitted extent buffers. 1724 * Return <0 for fatal error. 1725 */ 1726 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1727 { 1728 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1729 int submitted = 0; 1730 u64 page_start = page_offset(page); 1731 int bit_start = 0; 1732 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1733 1734 /* Lock and write each dirty extent buffers in the range */ 1735 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1736 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1737 struct extent_buffer *eb; 1738 unsigned long flags; 1739 u64 start; 1740 1741 /* 1742 * Take private lock to ensure the subpage won't be detached 1743 * in the meantime. 1744 */ 1745 spin_lock(&page->mapping->private_lock); 1746 if (!PagePrivate(page)) { 1747 spin_unlock(&page->mapping->private_lock); 1748 break; 1749 } 1750 spin_lock_irqsave(&subpage->lock, flags); 1751 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1752 subpage->bitmaps)) { 1753 spin_unlock_irqrestore(&subpage->lock, flags); 1754 spin_unlock(&page->mapping->private_lock); 1755 bit_start++; 1756 continue; 1757 } 1758 1759 start = page_start + bit_start * fs_info->sectorsize; 1760 bit_start += sectors_per_node; 1761 1762 /* 1763 * Here we just want to grab the eb without touching extra 1764 * spin locks, so call find_extent_buffer_nolock(). 1765 */ 1766 eb = find_extent_buffer_nolock(fs_info, start); 1767 spin_unlock_irqrestore(&subpage->lock, flags); 1768 spin_unlock(&page->mapping->private_lock); 1769 1770 /* 1771 * The eb has already reached 0 refs thus find_extent_buffer() 1772 * doesn't return it. We don't need to write back such eb 1773 * anyway. 1774 */ 1775 if (!eb) 1776 continue; 1777 1778 if (lock_extent_buffer_for_io(eb, wbc)) { 1779 write_one_eb(eb, wbc); 1780 submitted++; 1781 } 1782 free_extent_buffer(eb); 1783 } 1784 return submitted; 1785 } 1786 1787 /* 1788 * Submit all page(s) of one extent buffer. 1789 * 1790 * @page: the page of one extent buffer 1791 * @eb_context: to determine if we need to submit this page, if current page 1792 * belongs to this eb, we don't need to submit 1793 * 1794 * The caller should pass each page in their bytenr order, and here we use 1795 * @eb_context to determine if we have submitted pages of one extent buffer. 1796 * 1797 * If we have, we just skip until we hit a new page that doesn't belong to 1798 * current @eb_context. 1799 * 1800 * If not, we submit all the page(s) of the extent buffer. 1801 * 1802 * Return >0 if we have submitted the extent buffer successfully. 1803 * Return 0 if we don't need to submit the page, as it's already submitted by 1804 * previous call. 1805 * Return <0 for fatal error. 1806 */ 1807 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1808 { 1809 struct writeback_control *wbc = ctx->wbc; 1810 struct address_space *mapping = page->mapping; 1811 struct extent_buffer *eb; 1812 int ret; 1813 1814 if (!PagePrivate(page)) 1815 return 0; 1816 1817 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1818 return submit_eb_subpage(page, wbc); 1819 1820 spin_lock(&mapping->private_lock); 1821 if (!PagePrivate(page)) { 1822 spin_unlock(&mapping->private_lock); 1823 return 0; 1824 } 1825 1826 eb = (struct extent_buffer *)page->private; 1827 1828 /* 1829 * Shouldn't happen and normally this would be a BUG_ON but no point 1830 * crashing the machine for something we can survive anyway. 1831 */ 1832 if (WARN_ON(!eb)) { 1833 spin_unlock(&mapping->private_lock); 1834 return 0; 1835 } 1836 1837 if (eb == ctx->eb) { 1838 spin_unlock(&mapping->private_lock); 1839 return 0; 1840 } 1841 ret = atomic_inc_not_zero(&eb->refs); 1842 spin_unlock(&mapping->private_lock); 1843 if (!ret) 1844 return 0; 1845 1846 ctx->eb = eb; 1847 1848 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1849 if (ret) { 1850 if (ret == -EBUSY) 1851 ret = 0; 1852 free_extent_buffer(eb); 1853 return ret; 1854 } 1855 1856 if (!lock_extent_buffer_for_io(eb, wbc)) { 1857 free_extent_buffer(eb); 1858 return 0; 1859 } 1860 /* Implies write in zoned mode. */ 1861 if (ctx->zoned_bg) { 1862 /* Mark the last eb in the block group. */ 1863 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1864 ctx->zoned_bg->meta_write_pointer += eb->len; 1865 } 1866 write_one_eb(eb, wbc); 1867 free_extent_buffer(eb); 1868 return 1; 1869 } 1870 1871 int btree_write_cache_pages(struct address_space *mapping, 1872 struct writeback_control *wbc) 1873 { 1874 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1875 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1876 int ret = 0; 1877 int done = 0; 1878 int nr_to_write_done = 0; 1879 struct folio_batch fbatch; 1880 unsigned int nr_folios; 1881 pgoff_t index; 1882 pgoff_t end; /* Inclusive */ 1883 int scanned = 0; 1884 xa_mark_t tag; 1885 1886 folio_batch_init(&fbatch); 1887 if (wbc->range_cyclic) { 1888 index = mapping->writeback_index; /* Start from prev offset */ 1889 end = -1; 1890 /* 1891 * Start from the beginning does not need to cycle over the 1892 * range, mark it as scanned. 1893 */ 1894 scanned = (index == 0); 1895 } else { 1896 index = wbc->range_start >> PAGE_SHIFT; 1897 end = wbc->range_end >> PAGE_SHIFT; 1898 scanned = 1; 1899 } 1900 if (wbc->sync_mode == WB_SYNC_ALL) 1901 tag = PAGECACHE_TAG_TOWRITE; 1902 else 1903 tag = PAGECACHE_TAG_DIRTY; 1904 btrfs_zoned_meta_io_lock(fs_info); 1905 retry: 1906 if (wbc->sync_mode == WB_SYNC_ALL) 1907 tag_pages_for_writeback(mapping, index, end); 1908 while (!done && !nr_to_write_done && (index <= end) && 1909 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1910 tag, &fbatch))) { 1911 unsigned i; 1912 1913 for (i = 0; i < nr_folios; i++) { 1914 struct folio *folio = fbatch.folios[i]; 1915 1916 ret = submit_eb_page(&folio->page, &ctx); 1917 if (ret == 0) 1918 continue; 1919 if (ret < 0) { 1920 done = 1; 1921 break; 1922 } 1923 1924 /* 1925 * the filesystem may choose to bump up nr_to_write. 1926 * We have to make sure to honor the new nr_to_write 1927 * at any time 1928 */ 1929 nr_to_write_done = wbc->nr_to_write <= 0; 1930 } 1931 folio_batch_release(&fbatch); 1932 cond_resched(); 1933 } 1934 if (!scanned && !done) { 1935 /* 1936 * We hit the last page and there is more work to be done: wrap 1937 * back to the start of the file 1938 */ 1939 scanned = 1; 1940 index = 0; 1941 goto retry; 1942 } 1943 /* 1944 * If something went wrong, don't allow any metadata write bio to be 1945 * submitted. 1946 * 1947 * This would prevent use-after-free if we had dirty pages not 1948 * cleaned up, which can still happen by fuzzed images. 1949 * 1950 * - Bad extent tree 1951 * Allowing existing tree block to be allocated for other trees. 1952 * 1953 * - Log tree operations 1954 * Exiting tree blocks get allocated to log tree, bumps its 1955 * generation, then get cleaned in tree re-balance. 1956 * Such tree block will not be written back, since it's clean, 1957 * thus no WRITTEN flag set. 1958 * And after log writes back, this tree block is not traced by 1959 * any dirty extent_io_tree. 1960 * 1961 * - Offending tree block gets re-dirtied from its original owner 1962 * Since it has bumped generation, no WRITTEN flag, it can be 1963 * reused without COWing. This tree block will not be traced 1964 * by btrfs_transaction::dirty_pages. 1965 * 1966 * Now such dirty tree block will not be cleaned by any dirty 1967 * extent io tree. Thus we don't want to submit such wild eb 1968 * if the fs already has error. 1969 * 1970 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1971 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1972 */ 1973 if (ret > 0) 1974 ret = 0; 1975 if (!ret && BTRFS_FS_ERROR(fs_info)) 1976 ret = -EROFS; 1977 1978 if (ctx.zoned_bg) 1979 btrfs_put_block_group(ctx.zoned_bg); 1980 btrfs_zoned_meta_io_unlock(fs_info); 1981 return ret; 1982 } 1983 1984 /* 1985 * Walk the list of dirty pages of the given address space and write all of them. 1986 * 1987 * @mapping: address space structure to write 1988 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1989 * @bio_ctrl: holds context for the write, namely the bio 1990 * 1991 * If a page is already under I/O, write_cache_pages() skips it, even 1992 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1993 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1994 * and msync() need to guarantee that all the data which was dirty at the time 1995 * the call was made get new I/O started against them. If wbc->sync_mode is 1996 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1997 * existing IO to complete. 1998 */ 1999 static int extent_write_cache_pages(struct address_space *mapping, 2000 struct btrfs_bio_ctrl *bio_ctrl) 2001 { 2002 struct writeback_control *wbc = bio_ctrl->wbc; 2003 struct inode *inode = mapping->host; 2004 int ret = 0; 2005 int done = 0; 2006 int nr_to_write_done = 0; 2007 struct folio_batch fbatch; 2008 unsigned int nr_folios; 2009 pgoff_t index; 2010 pgoff_t end; /* Inclusive */ 2011 pgoff_t done_index; 2012 int range_whole = 0; 2013 int scanned = 0; 2014 xa_mark_t tag; 2015 2016 /* 2017 * We have to hold onto the inode so that ordered extents can do their 2018 * work when the IO finishes. The alternative to this is failing to add 2019 * an ordered extent if the igrab() fails there and that is a huge pain 2020 * to deal with, so instead just hold onto the inode throughout the 2021 * writepages operation. If it fails here we are freeing up the inode 2022 * anyway and we'd rather not waste our time writing out stuff that is 2023 * going to be truncated anyway. 2024 */ 2025 if (!igrab(inode)) 2026 return 0; 2027 2028 folio_batch_init(&fbatch); 2029 if (wbc->range_cyclic) { 2030 index = mapping->writeback_index; /* Start from prev offset */ 2031 end = -1; 2032 /* 2033 * Start from the beginning does not need to cycle over the 2034 * range, mark it as scanned. 2035 */ 2036 scanned = (index == 0); 2037 } else { 2038 index = wbc->range_start >> PAGE_SHIFT; 2039 end = wbc->range_end >> PAGE_SHIFT; 2040 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2041 range_whole = 1; 2042 scanned = 1; 2043 } 2044 2045 /* 2046 * We do the tagged writepage as long as the snapshot flush bit is set 2047 * and we are the first one who do the filemap_flush() on this inode. 2048 * 2049 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2050 * not race in and drop the bit. 2051 */ 2052 if (range_whole && wbc->nr_to_write == LONG_MAX && 2053 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2054 &BTRFS_I(inode)->runtime_flags)) 2055 wbc->tagged_writepages = 1; 2056 2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2058 tag = PAGECACHE_TAG_TOWRITE; 2059 else 2060 tag = PAGECACHE_TAG_DIRTY; 2061 retry: 2062 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2063 tag_pages_for_writeback(mapping, index, end); 2064 done_index = index; 2065 while (!done && !nr_to_write_done && (index <= end) && 2066 (nr_folios = filemap_get_folios_tag(mapping, &index, 2067 end, tag, &fbatch))) { 2068 unsigned i; 2069 2070 for (i = 0; i < nr_folios; i++) { 2071 struct folio *folio = fbatch.folios[i]; 2072 2073 done_index = folio_next_index(folio); 2074 /* 2075 * At this point we hold neither the i_pages lock nor 2076 * the page lock: the page may be truncated or 2077 * invalidated (changing page->mapping to NULL), 2078 * or even swizzled back from swapper_space to 2079 * tmpfs file mapping 2080 */ 2081 if (!folio_trylock(folio)) { 2082 submit_write_bio(bio_ctrl, 0); 2083 folio_lock(folio); 2084 } 2085 2086 if (unlikely(folio->mapping != mapping)) { 2087 folio_unlock(folio); 2088 continue; 2089 } 2090 2091 if (!folio_test_dirty(folio)) { 2092 /* Someone wrote it for us. */ 2093 folio_unlock(folio); 2094 continue; 2095 } 2096 2097 if (wbc->sync_mode != WB_SYNC_NONE) { 2098 if (folio_test_writeback(folio)) 2099 submit_write_bio(bio_ctrl, 0); 2100 folio_wait_writeback(folio); 2101 } 2102 2103 if (folio_test_writeback(folio) || 2104 !folio_clear_dirty_for_io(folio)) { 2105 folio_unlock(folio); 2106 continue; 2107 } 2108 2109 ret = __extent_writepage(&folio->page, bio_ctrl); 2110 if (ret < 0) { 2111 done = 1; 2112 break; 2113 } 2114 2115 /* 2116 * The filesystem may choose to bump up nr_to_write. 2117 * We have to make sure to honor the new nr_to_write 2118 * at any time. 2119 */ 2120 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2121 wbc->nr_to_write <= 0); 2122 } 2123 folio_batch_release(&fbatch); 2124 cond_resched(); 2125 } 2126 if (!scanned && !done) { 2127 /* 2128 * We hit the last page and there is more work to be done: wrap 2129 * back to the start of the file 2130 */ 2131 scanned = 1; 2132 index = 0; 2133 2134 /* 2135 * If we're looping we could run into a page that is locked by a 2136 * writer and that writer could be waiting on writeback for a 2137 * page in our current bio, and thus deadlock, so flush the 2138 * write bio here. 2139 */ 2140 submit_write_bio(bio_ctrl, 0); 2141 goto retry; 2142 } 2143 2144 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2145 mapping->writeback_index = done_index; 2146 2147 btrfs_add_delayed_iput(BTRFS_I(inode)); 2148 return ret; 2149 } 2150 2151 /* 2152 * Submit the pages in the range to bio for call sites which delalloc range has 2153 * already been ran (aka, ordered extent inserted) and all pages are still 2154 * locked. 2155 */ 2156 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2157 u64 start, u64 end, struct writeback_control *wbc, 2158 bool pages_dirty) 2159 { 2160 bool found_error = false; 2161 int ret = 0; 2162 struct address_space *mapping = inode->i_mapping; 2163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2164 const u32 sectorsize = fs_info->sectorsize; 2165 loff_t i_size = i_size_read(inode); 2166 u64 cur = start; 2167 struct btrfs_bio_ctrl bio_ctrl = { 2168 .wbc = wbc, 2169 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2170 }; 2171 2172 if (wbc->no_cgroup_owner) 2173 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2174 2175 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2176 2177 while (cur <= end) { 2178 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2179 u32 cur_len = cur_end + 1 - cur; 2180 struct page *page; 2181 int nr = 0; 2182 2183 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2184 ASSERT(PageLocked(page)); 2185 if (pages_dirty && page != locked_page) { 2186 ASSERT(PageDirty(page)); 2187 clear_page_dirty_for_io(page); 2188 } 2189 2190 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2191 i_size, &nr); 2192 if (ret == 1) 2193 goto next_page; 2194 2195 /* Make sure the mapping tag for page dirty gets cleared. */ 2196 if (nr == 0) { 2197 set_page_writeback(page); 2198 end_page_writeback(page); 2199 } 2200 if (ret) { 2201 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2202 cur, cur_len, !ret); 2203 mapping_set_error(page->mapping, ret); 2204 } 2205 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2206 if (ret < 0) 2207 found_error = true; 2208 next_page: 2209 put_page(page); 2210 cur = cur_end + 1; 2211 } 2212 2213 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2214 } 2215 2216 int extent_writepages(struct address_space *mapping, 2217 struct writeback_control *wbc) 2218 { 2219 struct inode *inode = mapping->host; 2220 int ret = 0; 2221 struct btrfs_bio_ctrl bio_ctrl = { 2222 .wbc = wbc, 2223 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2224 }; 2225 2226 /* 2227 * Allow only a single thread to do the reloc work in zoned mode to 2228 * protect the write pointer updates. 2229 */ 2230 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2231 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2232 submit_write_bio(&bio_ctrl, ret); 2233 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2234 return ret; 2235 } 2236 2237 void extent_readahead(struct readahead_control *rac) 2238 { 2239 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2240 struct page *pagepool[16]; 2241 struct extent_map *em_cached = NULL; 2242 u64 prev_em_start = (u64)-1; 2243 int nr; 2244 2245 while ((nr = readahead_page_batch(rac, pagepool))) { 2246 u64 contig_start = readahead_pos(rac); 2247 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2248 2249 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2250 &em_cached, &bio_ctrl, &prev_em_start); 2251 } 2252 2253 if (em_cached) 2254 free_extent_map(em_cached); 2255 submit_one_bio(&bio_ctrl); 2256 } 2257 2258 /* 2259 * basic invalidate_folio code, this waits on any locked or writeback 2260 * ranges corresponding to the folio, and then deletes any extent state 2261 * records from the tree 2262 */ 2263 int extent_invalidate_folio(struct extent_io_tree *tree, 2264 struct folio *folio, size_t offset) 2265 { 2266 struct extent_state *cached_state = NULL; 2267 u64 start = folio_pos(folio); 2268 u64 end = start + folio_size(folio) - 1; 2269 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2270 2271 /* This function is only called for the btree inode */ 2272 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2273 2274 start += ALIGN(offset, blocksize); 2275 if (start > end) 2276 return 0; 2277 2278 lock_extent(tree, start, end, &cached_state); 2279 folio_wait_writeback(folio); 2280 2281 /* 2282 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2283 * so here we only need to unlock the extent range to free any 2284 * existing extent state. 2285 */ 2286 unlock_extent(tree, start, end, &cached_state); 2287 return 0; 2288 } 2289 2290 /* 2291 * a helper for release_folio, this tests for areas of the page that 2292 * are locked or under IO and drops the related state bits if it is safe 2293 * to drop the page. 2294 */ 2295 static int try_release_extent_state(struct extent_io_tree *tree, 2296 struct page *page, gfp_t mask) 2297 { 2298 u64 start = page_offset(page); 2299 u64 end = start + PAGE_SIZE - 1; 2300 int ret = 1; 2301 2302 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2303 ret = 0; 2304 } else { 2305 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2306 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2307 2308 /* 2309 * At this point we can safely clear everything except the 2310 * locked bit, the nodatasum bit and the delalloc new bit. 2311 * The delalloc new bit will be cleared by ordered extent 2312 * completion. 2313 */ 2314 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2315 2316 /* if clear_extent_bit failed for enomem reasons, 2317 * we can't allow the release to continue. 2318 */ 2319 if (ret < 0) 2320 ret = 0; 2321 else 2322 ret = 1; 2323 } 2324 return ret; 2325 } 2326 2327 /* 2328 * a helper for release_folio. As long as there are no locked extents 2329 * in the range corresponding to the page, both state records and extent 2330 * map records are removed 2331 */ 2332 int try_release_extent_mapping(struct page *page, gfp_t mask) 2333 { 2334 struct extent_map *em; 2335 u64 start = page_offset(page); 2336 u64 end = start + PAGE_SIZE - 1; 2337 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2338 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2339 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2340 2341 if (gfpflags_allow_blocking(mask) && 2342 page->mapping->host->i_size > SZ_16M) { 2343 u64 len; 2344 while (start <= end) { 2345 struct btrfs_fs_info *fs_info; 2346 u64 cur_gen; 2347 2348 len = end - start + 1; 2349 write_lock(&map->lock); 2350 em = lookup_extent_mapping(map, start, len); 2351 if (!em) { 2352 write_unlock(&map->lock); 2353 break; 2354 } 2355 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2356 em->start != start) { 2357 write_unlock(&map->lock); 2358 free_extent_map(em); 2359 break; 2360 } 2361 if (test_range_bit(tree, em->start, 2362 extent_map_end(em) - 1, 2363 EXTENT_LOCKED, 0, NULL)) 2364 goto next; 2365 /* 2366 * If it's not in the list of modified extents, used 2367 * by a fast fsync, we can remove it. If it's being 2368 * logged we can safely remove it since fsync took an 2369 * extra reference on the em. 2370 */ 2371 if (list_empty(&em->list) || 2372 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2373 goto remove_em; 2374 /* 2375 * If it's in the list of modified extents, remove it 2376 * only if its generation is older then the current one, 2377 * in which case we don't need it for a fast fsync. 2378 * Otherwise don't remove it, we could be racing with an 2379 * ongoing fast fsync that could miss the new extent. 2380 */ 2381 fs_info = btrfs_inode->root->fs_info; 2382 spin_lock(&fs_info->trans_lock); 2383 cur_gen = fs_info->generation; 2384 spin_unlock(&fs_info->trans_lock); 2385 if (em->generation >= cur_gen) 2386 goto next; 2387 remove_em: 2388 /* 2389 * We only remove extent maps that are not in the list of 2390 * modified extents or that are in the list but with a 2391 * generation lower then the current generation, so there 2392 * is no need to set the full fsync flag on the inode (it 2393 * hurts the fsync performance for workloads with a data 2394 * size that exceeds or is close to the system's memory). 2395 */ 2396 remove_extent_mapping(map, em); 2397 /* once for the rb tree */ 2398 free_extent_map(em); 2399 next: 2400 start = extent_map_end(em); 2401 write_unlock(&map->lock); 2402 2403 /* once for us */ 2404 free_extent_map(em); 2405 2406 cond_resched(); /* Allow large-extent preemption. */ 2407 } 2408 } 2409 return try_release_extent_state(tree, page, mask); 2410 } 2411 2412 /* 2413 * To cache previous fiemap extent 2414 * 2415 * Will be used for merging fiemap extent 2416 */ 2417 struct fiemap_cache { 2418 u64 offset; 2419 u64 phys; 2420 u64 len; 2421 u32 flags; 2422 bool cached; 2423 }; 2424 2425 /* 2426 * Helper to submit fiemap extent. 2427 * 2428 * Will try to merge current fiemap extent specified by @offset, @phys, 2429 * @len and @flags with cached one. 2430 * And only when we fails to merge, cached one will be submitted as 2431 * fiemap extent. 2432 * 2433 * Return value is the same as fiemap_fill_next_extent(). 2434 */ 2435 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2436 struct fiemap_cache *cache, 2437 u64 offset, u64 phys, u64 len, u32 flags) 2438 { 2439 int ret = 0; 2440 2441 /* Set at the end of extent_fiemap(). */ 2442 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2443 2444 if (!cache->cached) 2445 goto assign; 2446 2447 /* 2448 * Sanity check, extent_fiemap() should have ensured that new 2449 * fiemap extent won't overlap with cached one. 2450 * Not recoverable. 2451 * 2452 * NOTE: Physical address can overlap, due to compression 2453 */ 2454 if (cache->offset + cache->len > offset) { 2455 WARN_ON(1); 2456 return -EINVAL; 2457 } 2458 2459 /* 2460 * Only merges fiemap extents if 2461 * 1) Their logical addresses are continuous 2462 * 2463 * 2) Their physical addresses are continuous 2464 * So truly compressed (physical size smaller than logical size) 2465 * extents won't get merged with each other 2466 * 2467 * 3) Share same flags 2468 */ 2469 if (cache->offset + cache->len == offset && 2470 cache->phys + cache->len == phys && 2471 cache->flags == flags) { 2472 cache->len += len; 2473 return 0; 2474 } 2475 2476 /* Not mergeable, need to submit cached one */ 2477 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2478 cache->len, cache->flags); 2479 cache->cached = false; 2480 if (ret) 2481 return ret; 2482 assign: 2483 cache->cached = true; 2484 cache->offset = offset; 2485 cache->phys = phys; 2486 cache->len = len; 2487 cache->flags = flags; 2488 2489 return 0; 2490 } 2491 2492 /* 2493 * Emit last fiemap cache 2494 * 2495 * The last fiemap cache may still be cached in the following case: 2496 * 0 4k 8k 2497 * |<- Fiemap range ->| 2498 * |<------------ First extent ----------->| 2499 * 2500 * In this case, the first extent range will be cached but not emitted. 2501 * So we must emit it before ending extent_fiemap(). 2502 */ 2503 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2504 struct fiemap_cache *cache) 2505 { 2506 int ret; 2507 2508 if (!cache->cached) 2509 return 0; 2510 2511 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2512 cache->len, cache->flags); 2513 cache->cached = false; 2514 if (ret > 0) 2515 ret = 0; 2516 return ret; 2517 } 2518 2519 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2520 { 2521 struct extent_buffer *clone; 2522 struct btrfs_key key; 2523 int slot; 2524 int ret; 2525 2526 path->slots[0]++; 2527 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2528 return 0; 2529 2530 ret = btrfs_next_leaf(inode->root, path); 2531 if (ret != 0) 2532 return ret; 2533 2534 /* 2535 * Don't bother with cloning if there are no more file extent items for 2536 * our inode. 2537 */ 2538 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2539 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2540 return 1; 2541 2542 /* See the comment at fiemap_search_slot() about why we clone. */ 2543 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2544 if (!clone) 2545 return -ENOMEM; 2546 2547 slot = path->slots[0]; 2548 btrfs_release_path(path); 2549 path->nodes[0] = clone; 2550 path->slots[0] = slot; 2551 2552 return 0; 2553 } 2554 2555 /* 2556 * Search for the first file extent item that starts at a given file offset or 2557 * the one that starts immediately before that offset. 2558 * Returns: 0 on success, < 0 on error, 1 if not found. 2559 */ 2560 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2561 u64 file_offset) 2562 { 2563 const u64 ino = btrfs_ino(inode); 2564 struct btrfs_root *root = inode->root; 2565 struct extent_buffer *clone; 2566 struct btrfs_key key; 2567 int slot; 2568 int ret; 2569 2570 key.objectid = ino; 2571 key.type = BTRFS_EXTENT_DATA_KEY; 2572 key.offset = file_offset; 2573 2574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2575 if (ret < 0) 2576 return ret; 2577 2578 if (ret > 0 && path->slots[0] > 0) { 2579 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2580 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2581 path->slots[0]--; 2582 } 2583 2584 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2585 ret = btrfs_next_leaf(root, path); 2586 if (ret != 0) 2587 return ret; 2588 2589 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2590 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2591 return 1; 2592 } 2593 2594 /* 2595 * We clone the leaf and use it during fiemap. This is because while 2596 * using the leaf we do expensive things like checking if an extent is 2597 * shared, which can take a long time. In order to prevent blocking 2598 * other tasks for too long, we use a clone of the leaf. We have locked 2599 * the file range in the inode's io tree, so we know none of our file 2600 * extent items can change. This way we avoid blocking other tasks that 2601 * want to insert items for other inodes in the same leaf or b+tree 2602 * rebalance operations (triggered for example when someone is trying 2603 * to push items into this leaf when trying to insert an item in a 2604 * neighbour leaf). 2605 * We also need the private clone because holding a read lock on an 2606 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2607 * when we call fiemap_fill_next_extent(), because that may cause a page 2608 * fault when filling the user space buffer with fiemap data. 2609 */ 2610 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2611 if (!clone) 2612 return -ENOMEM; 2613 2614 slot = path->slots[0]; 2615 btrfs_release_path(path); 2616 path->nodes[0] = clone; 2617 path->slots[0] = slot; 2618 2619 return 0; 2620 } 2621 2622 /* 2623 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2624 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2625 * extent. The end offset (@end) is inclusive. 2626 */ 2627 static int fiemap_process_hole(struct btrfs_inode *inode, 2628 struct fiemap_extent_info *fieinfo, 2629 struct fiemap_cache *cache, 2630 struct extent_state **delalloc_cached_state, 2631 struct btrfs_backref_share_check_ctx *backref_ctx, 2632 u64 disk_bytenr, u64 extent_offset, 2633 u64 extent_gen, 2634 u64 start, u64 end) 2635 { 2636 const u64 i_size = i_size_read(&inode->vfs_inode); 2637 u64 cur_offset = start; 2638 u64 last_delalloc_end = 0; 2639 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2640 bool checked_extent_shared = false; 2641 int ret; 2642 2643 /* 2644 * There can be no delalloc past i_size, so don't waste time looking for 2645 * it beyond i_size. 2646 */ 2647 while (cur_offset < end && cur_offset < i_size) { 2648 u64 delalloc_start; 2649 u64 delalloc_end; 2650 u64 prealloc_start; 2651 u64 prealloc_len = 0; 2652 bool delalloc; 2653 2654 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2655 delalloc_cached_state, 2656 &delalloc_start, 2657 &delalloc_end); 2658 if (!delalloc) 2659 break; 2660 2661 /* 2662 * If this is a prealloc extent we have to report every section 2663 * of it that has no delalloc. 2664 */ 2665 if (disk_bytenr != 0) { 2666 if (last_delalloc_end == 0) { 2667 prealloc_start = start; 2668 prealloc_len = delalloc_start - start; 2669 } else { 2670 prealloc_start = last_delalloc_end + 1; 2671 prealloc_len = delalloc_start - prealloc_start; 2672 } 2673 } 2674 2675 if (prealloc_len > 0) { 2676 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2677 ret = btrfs_is_data_extent_shared(inode, 2678 disk_bytenr, 2679 extent_gen, 2680 backref_ctx); 2681 if (ret < 0) 2682 return ret; 2683 else if (ret > 0) 2684 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2685 2686 checked_extent_shared = true; 2687 } 2688 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2689 disk_bytenr + extent_offset, 2690 prealloc_len, prealloc_flags); 2691 if (ret) 2692 return ret; 2693 extent_offset += prealloc_len; 2694 } 2695 2696 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2697 delalloc_end + 1 - delalloc_start, 2698 FIEMAP_EXTENT_DELALLOC | 2699 FIEMAP_EXTENT_UNKNOWN); 2700 if (ret) 2701 return ret; 2702 2703 last_delalloc_end = delalloc_end; 2704 cur_offset = delalloc_end + 1; 2705 extent_offset += cur_offset - delalloc_start; 2706 cond_resched(); 2707 } 2708 2709 /* 2710 * Either we found no delalloc for the whole prealloc extent or we have 2711 * a prealloc extent that spans i_size or starts at or after i_size. 2712 */ 2713 if (disk_bytenr != 0 && last_delalloc_end < end) { 2714 u64 prealloc_start; 2715 u64 prealloc_len; 2716 2717 if (last_delalloc_end == 0) { 2718 prealloc_start = start; 2719 prealloc_len = end + 1 - start; 2720 } else { 2721 prealloc_start = last_delalloc_end + 1; 2722 prealloc_len = end + 1 - prealloc_start; 2723 } 2724 2725 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2726 ret = btrfs_is_data_extent_shared(inode, 2727 disk_bytenr, 2728 extent_gen, 2729 backref_ctx); 2730 if (ret < 0) 2731 return ret; 2732 else if (ret > 0) 2733 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2734 } 2735 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2736 disk_bytenr + extent_offset, 2737 prealloc_len, prealloc_flags); 2738 if (ret) 2739 return ret; 2740 } 2741 2742 return 0; 2743 } 2744 2745 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2746 struct btrfs_path *path, 2747 u64 *last_extent_end_ret) 2748 { 2749 const u64 ino = btrfs_ino(inode); 2750 struct btrfs_root *root = inode->root; 2751 struct extent_buffer *leaf; 2752 struct btrfs_file_extent_item *ei; 2753 struct btrfs_key key; 2754 u64 disk_bytenr; 2755 int ret; 2756 2757 /* 2758 * Lookup the last file extent. We're not using i_size here because 2759 * there might be preallocation past i_size. 2760 */ 2761 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2762 /* There can't be a file extent item at offset (u64)-1 */ 2763 ASSERT(ret != 0); 2764 if (ret < 0) 2765 return ret; 2766 2767 /* 2768 * For a non-existing key, btrfs_search_slot() always leaves us at a 2769 * slot > 0, except if the btree is empty, which is impossible because 2770 * at least it has the inode item for this inode and all the items for 2771 * the root inode 256. 2772 */ 2773 ASSERT(path->slots[0] > 0); 2774 path->slots[0]--; 2775 leaf = path->nodes[0]; 2776 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2777 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2778 /* No file extent items in the subvolume tree. */ 2779 *last_extent_end_ret = 0; 2780 return 0; 2781 } 2782 2783 /* 2784 * For an inline extent, the disk_bytenr is where inline data starts at, 2785 * so first check if we have an inline extent item before checking if we 2786 * have an implicit hole (disk_bytenr == 0). 2787 */ 2788 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2789 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2790 *last_extent_end_ret = btrfs_file_extent_end(path); 2791 return 0; 2792 } 2793 2794 /* 2795 * Find the last file extent item that is not a hole (when NO_HOLES is 2796 * not enabled). This should take at most 2 iterations in the worst 2797 * case: we have one hole file extent item at slot 0 of a leaf and 2798 * another hole file extent item as the last item in the previous leaf. 2799 * This is because we merge file extent items that represent holes. 2800 */ 2801 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2802 while (disk_bytenr == 0) { 2803 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2804 if (ret < 0) { 2805 return ret; 2806 } else if (ret > 0) { 2807 /* No file extent items that are not holes. */ 2808 *last_extent_end_ret = 0; 2809 return 0; 2810 } 2811 leaf = path->nodes[0]; 2812 ei = btrfs_item_ptr(leaf, path->slots[0], 2813 struct btrfs_file_extent_item); 2814 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2815 } 2816 2817 *last_extent_end_ret = btrfs_file_extent_end(path); 2818 return 0; 2819 } 2820 2821 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2822 u64 start, u64 len) 2823 { 2824 const u64 ino = btrfs_ino(inode); 2825 struct extent_state *cached_state = NULL; 2826 struct extent_state *delalloc_cached_state = NULL; 2827 struct btrfs_path *path; 2828 struct fiemap_cache cache = { 0 }; 2829 struct btrfs_backref_share_check_ctx *backref_ctx; 2830 u64 last_extent_end; 2831 u64 prev_extent_end; 2832 u64 lockstart; 2833 u64 lockend; 2834 bool stopped = false; 2835 int ret; 2836 2837 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2838 path = btrfs_alloc_path(); 2839 if (!backref_ctx || !path) { 2840 ret = -ENOMEM; 2841 goto out; 2842 } 2843 2844 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2845 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2846 prev_extent_end = lockstart; 2847 2848 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2849 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2850 2851 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2852 if (ret < 0) 2853 goto out_unlock; 2854 btrfs_release_path(path); 2855 2856 path->reada = READA_FORWARD; 2857 ret = fiemap_search_slot(inode, path, lockstart); 2858 if (ret < 0) { 2859 goto out_unlock; 2860 } else if (ret > 0) { 2861 /* 2862 * No file extent item found, but we may have delalloc between 2863 * the current offset and i_size. So check for that. 2864 */ 2865 ret = 0; 2866 goto check_eof_delalloc; 2867 } 2868 2869 while (prev_extent_end < lockend) { 2870 struct extent_buffer *leaf = path->nodes[0]; 2871 struct btrfs_file_extent_item *ei; 2872 struct btrfs_key key; 2873 u64 extent_end; 2874 u64 extent_len; 2875 u64 extent_offset = 0; 2876 u64 extent_gen; 2877 u64 disk_bytenr = 0; 2878 u64 flags = 0; 2879 int extent_type; 2880 u8 compression; 2881 2882 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2883 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2884 break; 2885 2886 extent_end = btrfs_file_extent_end(path); 2887 2888 /* 2889 * The first iteration can leave us at an extent item that ends 2890 * before our range's start. Move to the next item. 2891 */ 2892 if (extent_end <= lockstart) 2893 goto next_item; 2894 2895 backref_ctx->curr_leaf_bytenr = leaf->start; 2896 2897 /* We have in implicit hole (NO_HOLES feature enabled). */ 2898 if (prev_extent_end < key.offset) { 2899 const u64 range_end = min(key.offset, lockend) - 1; 2900 2901 ret = fiemap_process_hole(inode, fieinfo, &cache, 2902 &delalloc_cached_state, 2903 backref_ctx, 0, 0, 0, 2904 prev_extent_end, range_end); 2905 if (ret < 0) { 2906 goto out_unlock; 2907 } else if (ret > 0) { 2908 /* fiemap_fill_next_extent() told us to stop. */ 2909 stopped = true; 2910 break; 2911 } 2912 2913 /* We've reached the end of the fiemap range, stop. */ 2914 if (key.offset >= lockend) { 2915 stopped = true; 2916 break; 2917 } 2918 } 2919 2920 extent_len = extent_end - key.offset; 2921 ei = btrfs_item_ptr(leaf, path->slots[0], 2922 struct btrfs_file_extent_item); 2923 compression = btrfs_file_extent_compression(leaf, ei); 2924 extent_type = btrfs_file_extent_type(leaf, ei); 2925 extent_gen = btrfs_file_extent_generation(leaf, ei); 2926 2927 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2928 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2929 if (compression == BTRFS_COMPRESS_NONE) 2930 extent_offset = btrfs_file_extent_offset(leaf, ei); 2931 } 2932 2933 if (compression != BTRFS_COMPRESS_NONE) 2934 flags |= FIEMAP_EXTENT_ENCODED; 2935 2936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2937 flags |= FIEMAP_EXTENT_DATA_INLINE; 2938 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 2939 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 2940 extent_len, flags); 2941 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2942 ret = fiemap_process_hole(inode, fieinfo, &cache, 2943 &delalloc_cached_state, 2944 backref_ctx, 2945 disk_bytenr, extent_offset, 2946 extent_gen, key.offset, 2947 extent_end - 1); 2948 } else if (disk_bytenr == 0) { 2949 /* We have an explicit hole. */ 2950 ret = fiemap_process_hole(inode, fieinfo, &cache, 2951 &delalloc_cached_state, 2952 backref_ctx, 0, 0, 0, 2953 key.offset, extent_end - 1); 2954 } else { 2955 /* We have a regular extent. */ 2956 if (fieinfo->fi_extents_max) { 2957 ret = btrfs_is_data_extent_shared(inode, 2958 disk_bytenr, 2959 extent_gen, 2960 backref_ctx); 2961 if (ret < 0) 2962 goto out_unlock; 2963 else if (ret > 0) 2964 flags |= FIEMAP_EXTENT_SHARED; 2965 } 2966 2967 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 2968 disk_bytenr + extent_offset, 2969 extent_len, flags); 2970 } 2971 2972 if (ret < 0) { 2973 goto out_unlock; 2974 } else if (ret > 0) { 2975 /* fiemap_fill_next_extent() told us to stop. */ 2976 stopped = true; 2977 break; 2978 } 2979 2980 prev_extent_end = extent_end; 2981 next_item: 2982 if (fatal_signal_pending(current)) { 2983 ret = -EINTR; 2984 goto out_unlock; 2985 } 2986 2987 ret = fiemap_next_leaf_item(inode, path); 2988 if (ret < 0) { 2989 goto out_unlock; 2990 } else if (ret > 0) { 2991 /* No more file extent items for this inode. */ 2992 break; 2993 } 2994 cond_resched(); 2995 } 2996 2997 check_eof_delalloc: 2998 /* 2999 * Release (and free) the path before emitting any final entries to 3000 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3001 * once we find no more file extent items exist, we may have a 3002 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3003 * faults when copying data to the user space buffer. 3004 */ 3005 btrfs_free_path(path); 3006 path = NULL; 3007 3008 if (!stopped && prev_extent_end < lockend) { 3009 ret = fiemap_process_hole(inode, fieinfo, &cache, 3010 &delalloc_cached_state, backref_ctx, 3011 0, 0, 0, prev_extent_end, lockend - 1); 3012 if (ret < 0) 3013 goto out_unlock; 3014 prev_extent_end = lockend; 3015 } 3016 3017 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3018 const u64 i_size = i_size_read(&inode->vfs_inode); 3019 3020 if (prev_extent_end < i_size) { 3021 u64 delalloc_start; 3022 u64 delalloc_end; 3023 bool delalloc; 3024 3025 delalloc = btrfs_find_delalloc_in_range(inode, 3026 prev_extent_end, 3027 i_size - 1, 3028 &delalloc_cached_state, 3029 &delalloc_start, 3030 &delalloc_end); 3031 if (!delalloc) 3032 cache.flags |= FIEMAP_EXTENT_LAST; 3033 } else { 3034 cache.flags |= FIEMAP_EXTENT_LAST; 3035 } 3036 } 3037 3038 ret = emit_last_fiemap_cache(fieinfo, &cache); 3039 3040 out_unlock: 3041 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3042 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3043 out: 3044 free_extent_state(delalloc_cached_state); 3045 btrfs_free_backref_share_ctx(backref_ctx); 3046 btrfs_free_path(path); 3047 return ret; 3048 } 3049 3050 static void __free_extent_buffer(struct extent_buffer *eb) 3051 { 3052 kmem_cache_free(extent_buffer_cache, eb); 3053 } 3054 3055 static int extent_buffer_under_io(const struct extent_buffer *eb) 3056 { 3057 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3058 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3059 } 3060 3061 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3062 { 3063 struct btrfs_subpage *subpage; 3064 3065 lockdep_assert_held(&page->mapping->private_lock); 3066 3067 if (PagePrivate(page)) { 3068 subpage = (struct btrfs_subpage *)page->private; 3069 if (atomic_read(&subpage->eb_refs)) 3070 return true; 3071 /* 3072 * Even there is no eb refs here, we may still have 3073 * end_page_read() call relying on page::private. 3074 */ 3075 if (atomic_read(&subpage->readers)) 3076 return true; 3077 } 3078 return false; 3079 } 3080 3081 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3082 { 3083 struct btrfs_fs_info *fs_info = eb->fs_info; 3084 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3085 3086 /* 3087 * For mapped eb, we're going to change the page private, which should 3088 * be done under the private_lock. 3089 */ 3090 if (mapped) 3091 spin_lock(&page->mapping->private_lock); 3092 3093 if (!PagePrivate(page)) { 3094 if (mapped) 3095 spin_unlock(&page->mapping->private_lock); 3096 return; 3097 } 3098 3099 if (fs_info->nodesize >= PAGE_SIZE) { 3100 /* 3101 * We do this since we'll remove the pages after we've 3102 * removed the eb from the radix tree, so we could race 3103 * and have this page now attached to the new eb. So 3104 * only clear page_private if it's still connected to 3105 * this eb. 3106 */ 3107 if (PagePrivate(page) && 3108 page->private == (unsigned long)eb) { 3109 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3110 BUG_ON(PageDirty(page)); 3111 BUG_ON(PageWriteback(page)); 3112 /* 3113 * We need to make sure we haven't be attached 3114 * to a new eb. 3115 */ 3116 detach_page_private(page); 3117 } 3118 if (mapped) 3119 spin_unlock(&page->mapping->private_lock); 3120 return; 3121 } 3122 3123 /* 3124 * For subpage, we can have dummy eb with page private. In this case, 3125 * we can directly detach the private as such page is only attached to 3126 * one dummy eb, no sharing. 3127 */ 3128 if (!mapped) { 3129 btrfs_detach_subpage(fs_info, page); 3130 return; 3131 } 3132 3133 btrfs_page_dec_eb_refs(fs_info, page); 3134 3135 /* 3136 * We can only detach the page private if there are no other ebs in the 3137 * page range and no unfinished IO. 3138 */ 3139 if (!page_range_has_eb(fs_info, page)) 3140 btrfs_detach_subpage(fs_info, page); 3141 3142 spin_unlock(&page->mapping->private_lock); 3143 } 3144 3145 /* Release all pages attached to the extent buffer */ 3146 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3147 { 3148 int i; 3149 int num_pages; 3150 3151 ASSERT(!extent_buffer_under_io(eb)); 3152 3153 num_pages = num_extent_pages(eb); 3154 for (i = 0; i < num_pages; i++) { 3155 struct page *page = eb->pages[i]; 3156 3157 if (!page) 3158 continue; 3159 3160 detach_extent_buffer_page(eb, page); 3161 3162 /* One for when we allocated the page */ 3163 put_page(page); 3164 } 3165 } 3166 3167 /* 3168 * Helper for releasing the extent buffer. 3169 */ 3170 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3171 { 3172 btrfs_release_extent_buffer_pages(eb); 3173 btrfs_leak_debug_del_eb(eb); 3174 __free_extent_buffer(eb); 3175 } 3176 3177 static struct extent_buffer * 3178 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3179 unsigned long len) 3180 { 3181 struct extent_buffer *eb = NULL; 3182 3183 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3184 eb->start = start; 3185 eb->len = len; 3186 eb->fs_info = fs_info; 3187 init_rwsem(&eb->lock); 3188 3189 btrfs_leak_debug_add_eb(eb); 3190 3191 spin_lock_init(&eb->refs_lock); 3192 atomic_set(&eb->refs, 1); 3193 3194 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3195 3196 return eb; 3197 } 3198 3199 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3200 { 3201 int i; 3202 struct extent_buffer *new; 3203 int num_pages = num_extent_pages(src); 3204 int ret; 3205 3206 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3207 if (new == NULL) 3208 return NULL; 3209 3210 /* 3211 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3212 * btrfs_release_extent_buffer() have different behavior for 3213 * UNMAPPED subpage extent buffer. 3214 */ 3215 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3216 3217 ret = btrfs_alloc_page_array(num_pages, new->pages); 3218 if (ret) { 3219 btrfs_release_extent_buffer(new); 3220 return NULL; 3221 } 3222 3223 for (i = 0; i < num_pages; i++) { 3224 int ret; 3225 struct page *p = new->pages[i]; 3226 3227 ret = attach_extent_buffer_page(new, p, NULL); 3228 if (ret < 0) { 3229 btrfs_release_extent_buffer(new); 3230 return NULL; 3231 } 3232 WARN_ON(PageDirty(p)); 3233 } 3234 copy_extent_buffer_full(new, src); 3235 set_extent_buffer_uptodate(new); 3236 3237 return new; 3238 } 3239 3240 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3241 u64 start, unsigned long len) 3242 { 3243 struct extent_buffer *eb; 3244 int num_pages; 3245 int i; 3246 int ret; 3247 3248 eb = __alloc_extent_buffer(fs_info, start, len); 3249 if (!eb) 3250 return NULL; 3251 3252 num_pages = num_extent_pages(eb); 3253 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3254 if (ret) 3255 goto err; 3256 3257 for (i = 0; i < num_pages; i++) { 3258 struct page *p = eb->pages[i]; 3259 3260 ret = attach_extent_buffer_page(eb, p, NULL); 3261 if (ret < 0) 3262 goto err; 3263 } 3264 3265 set_extent_buffer_uptodate(eb); 3266 btrfs_set_header_nritems(eb, 0); 3267 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3268 3269 return eb; 3270 err: 3271 for (i = 0; i < num_pages; i++) { 3272 if (eb->pages[i]) { 3273 detach_extent_buffer_page(eb, eb->pages[i]); 3274 __free_page(eb->pages[i]); 3275 } 3276 } 3277 __free_extent_buffer(eb); 3278 return NULL; 3279 } 3280 3281 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3282 u64 start) 3283 { 3284 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3285 } 3286 3287 static void check_buffer_tree_ref(struct extent_buffer *eb) 3288 { 3289 int refs; 3290 /* 3291 * The TREE_REF bit is first set when the extent_buffer is added 3292 * to the radix tree. It is also reset, if unset, when a new reference 3293 * is created by find_extent_buffer. 3294 * 3295 * It is only cleared in two cases: freeing the last non-tree 3296 * reference to the extent_buffer when its STALE bit is set or 3297 * calling release_folio when the tree reference is the only reference. 3298 * 3299 * In both cases, care is taken to ensure that the extent_buffer's 3300 * pages are not under io. However, release_folio can be concurrently 3301 * called with creating new references, which is prone to race 3302 * conditions between the calls to check_buffer_tree_ref in those 3303 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3304 * 3305 * The actual lifetime of the extent_buffer in the radix tree is 3306 * adequately protected by the refcount, but the TREE_REF bit and 3307 * its corresponding reference are not. To protect against this 3308 * class of races, we call check_buffer_tree_ref from the codepaths 3309 * which trigger io. Note that once io is initiated, TREE_REF can no 3310 * longer be cleared, so that is the moment at which any such race is 3311 * best fixed. 3312 */ 3313 refs = atomic_read(&eb->refs); 3314 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3315 return; 3316 3317 spin_lock(&eb->refs_lock); 3318 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3319 atomic_inc(&eb->refs); 3320 spin_unlock(&eb->refs_lock); 3321 } 3322 3323 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3324 struct page *accessed) 3325 { 3326 int num_pages, i; 3327 3328 check_buffer_tree_ref(eb); 3329 3330 num_pages = num_extent_pages(eb); 3331 for (i = 0; i < num_pages; i++) { 3332 struct page *p = eb->pages[i]; 3333 3334 if (p != accessed) 3335 mark_page_accessed(p); 3336 } 3337 } 3338 3339 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3340 u64 start) 3341 { 3342 struct extent_buffer *eb; 3343 3344 eb = find_extent_buffer_nolock(fs_info, start); 3345 if (!eb) 3346 return NULL; 3347 /* 3348 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3349 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3350 * another task running free_extent_buffer() might have seen that flag 3351 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3352 * writeback flags not set) and it's still in the tree (flag 3353 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3354 * decrementing the extent buffer's reference count twice. So here we 3355 * could race and increment the eb's reference count, clear its stale 3356 * flag, mark it as dirty and drop our reference before the other task 3357 * finishes executing free_extent_buffer, which would later result in 3358 * an attempt to free an extent buffer that is dirty. 3359 */ 3360 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3361 spin_lock(&eb->refs_lock); 3362 spin_unlock(&eb->refs_lock); 3363 } 3364 mark_extent_buffer_accessed(eb, NULL); 3365 return eb; 3366 } 3367 3368 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3369 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3370 u64 start) 3371 { 3372 struct extent_buffer *eb, *exists = NULL; 3373 int ret; 3374 3375 eb = find_extent_buffer(fs_info, start); 3376 if (eb) 3377 return eb; 3378 eb = alloc_dummy_extent_buffer(fs_info, start); 3379 if (!eb) 3380 return ERR_PTR(-ENOMEM); 3381 eb->fs_info = fs_info; 3382 again: 3383 ret = radix_tree_preload(GFP_NOFS); 3384 if (ret) { 3385 exists = ERR_PTR(ret); 3386 goto free_eb; 3387 } 3388 spin_lock(&fs_info->buffer_lock); 3389 ret = radix_tree_insert(&fs_info->buffer_radix, 3390 start >> fs_info->sectorsize_bits, eb); 3391 spin_unlock(&fs_info->buffer_lock); 3392 radix_tree_preload_end(); 3393 if (ret == -EEXIST) { 3394 exists = find_extent_buffer(fs_info, start); 3395 if (exists) 3396 goto free_eb; 3397 else 3398 goto again; 3399 } 3400 check_buffer_tree_ref(eb); 3401 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3402 3403 return eb; 3404 free_eb: 3405 btrfs_release_extent_buffer(eb); 3406 return exists; 3407 } 3408 #endif 3409 3410 static struct extent_buffer *grab_extent_buffer( 3411 struct btrfs_fs_info *fs_info, struct page *page) 3412 { 3413 struct extent_buffer *exists; 3414 3415 /* 3416 * For subpage case, we completely rely on radix tree to ensure we 3417 * don't try to insert two ebs for the same bytenr. So here we always 3418 * return NULL and just continue. 3419 */ 3420 if (fs_info->nodesize < PAGE_SIZE) 3421 return NULL; 3422 3423 /* Page not yet attached to an extent buffer */ 3424 if (!PagePrivate(page)) 3425 return NULL; 3426 3427 /* 3428 * We could have already allocated an eb for this page and attached one 3429 * so lets see if we can get a ref on the existing eb, and if we can we 3430 * know it's good and we can just return that one, else we know we can 3431 * just overwrite page->private. 3432 */ 3433 exists = (struct extent_buffer *)page->private; 3434 if (atomic_inc_not_zero(&exists->refs)) 3435 return exists; 3436 3437 WARN_ON(PageDirty(page)); 3438 detach_page_private(page); 3439 return NULL; 3440 } 3441 3442 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3443 { 3444 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3445 btrfs_err(fs_info, "bad tree block start %llu", start); 3446 return -EINVAL; 3447 } 3448 3449 if (fs_info->nodesize < PAGE_SIZE && 3450 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3451 btrfs_err(fs_info, 3452 "tree block crosses page boundary, start %llu nodesize %u", 3453 start, fs_info->nodesize); 3454 return -EINVAL; 3455 } 3456 if (fs_info->nodesize >= PAGE_SIZE && 3457 !PAGE_ALIGNED(start)) { 3458 btrfs_err(fs_info, 3459 "tree block is not page aligned, start %llu nodesize %u", 3460 start, fs_info->nodesize); 3461 return -EINVAL; 3462 } 3463 return 0; 3464 } 3465 3466 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3467 u64 start, u64 owner_root, int level) 3468 { 3469 unsigned long len = fs_info->nodesize; 3470 int num_pages; 3471 int i; 3472 unsigned long index = start >> PAGE_SHIFT; 3473 struct extent_buffer *eb; 3474 struct extent_buffer *exists = NULL; 3475 struct page *p; 3476 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3477 struct btrfs_subpage *prealloc = NULL; 3478 u64 lockdep_owner = owner_root; 3479 int uptodate = 1; 3480 int ret; 3481 3482 if (check_eb_alignment(fs_info, start)) 3483 return ERR_PTR(-EINVAL); 3484 3485 #if BITS_PER_LONG == 32 3486 if (start >= MAX_LFS_FILESIZE) { 3487 btrfs_err_rl(fs_info, 3488 "extent buffer %llu is beyond 32bit page cache limit", start); 3489 btrfs_err_32bit_limit(fs_info); 3490 return ERR_PTR(-EOVERFLOW); 3491 } 3492 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3493 btrfs_warn_32bit_limit(fs_info); 3494 #endif 3495 3496 eb = find_extent_buffer(fs_info, start); 3497 if (eb) 3498 return eb; 3499 3500 eb = __alloc_extent_buffer(fs_info, start, len); 3501 if (!eb) 3502 return ERR_PTR(-ENOMEM); 3503 3504 /* 3505 * The reloc trees are just snapshots, so we need them to appear to be 3506 * just like any other fs tree WRT lockdep. 3507 */ 3508 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3509 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3510 3511 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3512 3513 num_pages = num_extent_pages(eb); 3514 3515 /* 3516 * Preallocate page->private for subpage case, so that we won't 3517 * allocate memory with private_lock nor page lock hold. 3518 * 3519 * The memory will be freed by attach_extent_buffer_page() or freed 3520 * manually if we exit earlier. 3521 */ 3522 if (fs_info->nodesize < PAGE_SIZE) { 3523 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3524 if (IS_ERR(prealloc)) { 3525 exists = ERR_CAST(prealloc); 3526 goto free_eb; 3527 } 3528 } 3529 3530 for (i = 0; i < num_pages; i++, index++) { 3531 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3532 if (!p) { 3533 exists = ERR_PTR(-ENOMEM); 3534 btrfs_free_subpage(prealloc); 3535 goto free_eb; 3536 } 3537 3538 spin_lock(&mapping->private_lock); 3539 exists = grab_extent_buffer(fs_info, p); 3540 if (exists) { 3541 spin_unlock(&mapping->private_lock); 3542 unlock_page(p); 3543 put_page(p); 3544 mark_extent_buffer_accessed(exists, p); 3545 btrfs_free_subpage(prealloc); 3546 goto free_eb; 3547 } 3548 /* Should not fail, as we have preallocated the memory */ 3549 ret = attach_extent_buffer_page(eb, p, prealloc); 3550 ASSERT(!ret); 3551 /* 3552 * To inform we have extra eb under allocation, so that 3553 * detach_extent_buffer_page() won't release the page private 3554 * when the eb hasn't yet been inserted into radix tree. 3555 * 3556 * The ref will be decreased when the eb released the page, in 3557 * detach_extent_buffer_page(). 3558 * Thus needs no special handling in error path. 3559 */ 3560 btrfs_page_inc_eb_refs(fs_info, p); 3561 spin_unlock(&mapping->private_lock); 3562 3563 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3564 eb->pages[i] = p; 3565 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3566 uptodate = 0; 3567 3568 /* 3569 * We can't unlock the pages just yet since the extent buffer 3570 * hasn't been properly inserted in the radix tree, this 3571 * opens a race with btree_release_folio which can free a page 3572 * while we are still filling in all pages for the buffer and 3573 * we could crash. 3574 */ 3575 } 3576 if (uptodate) 3577 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3578 again: 3579 ret = radix_tree_preload(GFP_NOFS); 3580 if (ret) { 3581 exists = ERR_PTR(ret); 3582 goto free_eb; 3583 } 3584 3585 spin_lock(&fs_info->buffer_lock); 3586 ret = radix_tree_insert(&fs_info->buffer_radix, 3587 start >> fs_info->sectorsize_bits, eb); 3588 spin_unlock(&fs_info->buffer_lock); 3589 radix_tree_preload_end(); 3590 if (ret == -EEXIST) { 3591 exists = find_extent_buffer(fs_info, start); 3592 if (exists) 3593 goto free_eb; 3594 else 3595 goto again; 3596 } 3597 /* add one reference for the tree */ 3598 check_buffer_tree_ref(eb); 3599 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3600 3601 /* 3602 * Now it's safe to unlock the pages because any calls to 3603 * btree_release_folio will correctly detect that a page belongs to a 3604 * live buffer and won't free them prematurely. 3605 */ 3606 for (i = 0; i < num_pages; i++) 3607 unlock_page(eb->pages[i]); 3608 return eb; 3609 3610 free_eb: 3611 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3612 for (i = 0; i < num_pages; i++) { 3613 if (eb->pages[i]) 3614 unlock_page(eb->pages[i]); 3615 } 3616 3617 btrfs_release_extent_buffer(eb); 3618 return exists; 3619 } 3620 3621 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3622 { 3623 struct extent_buffer *eb = 3624 container_of(head, struct extent_buffer, rcu_head); 3625 3626 __free_extent_buffer(eb); 3627 } 3628 3629 static int release_extent_buffer(struct extent_buffer *eb) 3630 __releases(&eb->refs_lock) 3631 { 3632 lockdep_assert_held(&eb->refs_lock); 3633 3634 WARN_ON(atomic_read(&eb->refs) == 0); 3635 if (atomic_dec_and_test(&eb->refs)) { 3636 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3637 struct btrfs_fs_info *fs_info = eb->fs_info; 3638 3639 spin_unlock(&eb->refs_lock); 3640 3641 spin_lock(&fs_info->buffer_lock); 3642 radix_tree_delete(&fs_info->buffer_radix, 3643 eb->start >> fs_info->sectorsize_bits); 3644 spin_unlock(&fs_info->buffer_lock); 3645 } else { 3646 spin_unlock(&eb->refs_lock); 3647 } 3648 3649 btrfs_leak_debug_del_eb(eb); 3650 /* Should be safe to release our pages at this point */ 3651 btrfs_release_extent_buffer_pages(eb); 3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3653 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3654 __free_extent_buffer(eb); 3655 return 1; 3656 } 3657 #endif 3658 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3659 return 1; 3660 } 3661 spin_unlock(&eb->refs_lock); 3662 3663 return 0; 3664 } 3665 3666 void free_extent_buffer(struct extent_buffer *eb) 3667 { 3668 int refs; 3669 if (!eb) 3670 return; 3671 3672 refs = atomic_read(&eb->refs); 3673 while (1) { 3674 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3675 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3676 refs == 1)) 3677 break; 3678 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3679 return; 3680 } 3681 3682 spin_lock(&eb->refs_lock); 3683 if (atomic_read(&eb->refs) == 2 && 3684 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3685 !extent_buffer_under_io(eb) && 3686 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3687 atomic_dec(&eb->refs); 3688 3689 /* 3690 * I know this is terrible, but it's temporary until we stop tracking 3691 * the uptodate bits and such for the extent buffers. 3692 */ 3693 release_extent_buffer(eb); 3694 } 3695 3696 void free_extent_buffer_stale(struct extent_buffer *eb) 3697 { 3698 if (!eb) 3699 return; 3700 3701 spin_lock(&eb->refs_lock); 3702 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3703 3704 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3705 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3706 atomic_dec(&eb->refs); 3707 release_extent_buffer(eb); 3708 } 3709 3710 static void btree_clear_page_dirty(struct page *page) 3711 { 3712 ASSERT(PageDirty(page)); 3713 ASSERT(PageLocked(page)); 3714 clear_page_dirty_for_io(page); 3715 xa_lock_irq(&page->mapping->i_pages); 3716 if (!PageDirty(page)) 3717 __xa_clear_mark(&page->mapping->i_pages, 3718 page_index(page), PAGECACHE_TAG_DIRTY); 3719 xa_unlock_irq(&page->mapping->i_pages); 3720 } 3721 3722 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3723 { 3724 struct btrfs_fs_info *fs_info = eb->fs_info; 3725 struct page *page = eb->pages[0]; 3726 bool last; 3727 3728 /* btree_clear_page_dirty() needs page locked */ 3729 lock_page(page); 3730 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3731 eb->len); 3732 if (last) 3733 btree_clear_page_dirty(page); 3734 unlock_page(page); 3735 WARN_ON(atomic_read(&eb->refs) == 0); 3736 } 3737 3738 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3739 struct extent_buffer *eb) 3740 { 3741 struct btrfs_fs_info *fs_info = eb->fs_info; 3742 int i; 3743 int num_pages; 3744 struct page *page; 3745 3746 btrfs_assert_tree_write_locked(eb); 3747 3748 if (trans && btrfs_header_generation(eb) != trans->transid) 3749 return; 3750 3751 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3752 return; 3753 3754 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3755 fs_info->dirty_metadata_batch); 3756 3757 if (eb->fs_info->nodesize < PAGE_SIZE) 3758 return clear_subpage_extent_buffer_dirty(eb); 3759 3760 num_pages = num_extent_pages(eb); 3761 3762 for (i = 0; i < num_pages; i++) { 3763 page = eb->pages[i]; 3764 if (!PageDirty(page)) 3765 continue; 3766 lock_page(page); 3767 btree_clear_page_dirty(page); 3768 unlock_page(page); 3769 } 3770 WARN_ON(atomic_read(&eb->refs) == 0); 3771 } 3772 3773 void set_extent_buffer_dirty(struct extent_buffer *eb) 3774 { 3775 int i; 3776 int num_pages; 3777 bool was_dirty; 3778 3779 check_buffer_tree_ref(eb); 3780 3781 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3782 3783 num_pages = num_extent_pages(eb); 3784 WARN_ON(atomic_read(&eb->refs) == 0); 3785 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3786 3787 if (!was_dirty) { 3788 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3789 3790 /* 3791 * For subpage case, we can have other extent buffers in the 3792 * same page, and in clear_subpage_extent_buffer_dirty() we 3793 * have to clear page dirty without subpage lock held. 3794 * This can cause race where our page gets dirty cleared after 3795 * we just set it. 3796 * 3797 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3798 * its page for other reasons, we can use page lock to prevent 3799 * the above race. 3800 */ 3801 if (subpage) 3802 lock_page(eb->pages[0]); 3803 for (i = 0; i < num_pages; i++) 3804 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3805 eb->start, eb->len); 3806 if (subpage) 3807 unlock_page(eb->pages[0]); 3808 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3809 eb->len, 3810 eb->fs_info->dirty_metadata_batch); 3811 } 3812 #ifdef CONFIG_BTRFS_DEBUG 3813 for (i = 0; i < num_pages; i++) 3814 ASSERT(PageDirty(eb->pages[i])); 3815 #endif 3816 } 3817 3818 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3819 { 3820 struct btrfs_fs_info *fs_info = eb->fs_info; 3821 struct page *page; 3822 int num_pages; 3823 int i; 3824 3825 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3826 num_pages = num_extent_pages(eb); 3827 for (i = 0; i < num_pages; i++) { 3828 page = eb->pages[i]; 3829 if (!page) 3830 continue; 3831 3832 /* 3833 * This is special handling for metadata subpage, as regular 3834 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3835 */ 3836 if (fs_info->nodesize >= PAGE_SIZE) 3837 ClearPageUptodate(page); 3838 else 3839 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3840 eb->len); 3841 } 3842 } 3843 3844 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3845 { 3846 struct btrfs_fs_info *fs_info = eb->fs_info; 3847 struct page *page; 3848 int num_pages; 3849 int i; 3850 3851 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3852 num_pages = num_extent_pages(eb); 3853 for (i = 0; i < num_pages; i++) { 3854 page = eb->pages[i]; 3855 3856 /* 3857 * This is special handling for metadata subpage, as regular 3858 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3859 */ 3860 if (fs_info->nodesize >= PAGE_SIZE) 3861 SetPageUptodate(page); 3862 else 3863 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3864 eb->len); 3865 } 3866 } 3867 3868 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3869 { 3870 struct extent_buffer *eb = bbio->private; 3871 struct btrfs_fs_info *fs_info = eb->fs_info; 3872 bool uptodate = !bbio->bio.bi_status; 3873 struct bvec_iter_all iter_all; 3874 struct bio_vec *bvec; 3875 u32 bio_offset = 0; 3876 3877 eb->read_mirror = bbio->mirror_num; 3878 3879 if (uptodate && 3880 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3881 uptodate = false; 3882 3883 if (uptodate) { 3884 set_extent_buffer_uptodate(eb); 3885 } else { 3886 clear_extent_buffer_uptodate(eb); 3887 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3888 } 3889 3890 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3891 u64 start = eb->start + bio_offset; 3892 struct page *page = bvec->bv_page; 3893 u32 len = bvec->bv_len; 3894 3895 if (uptodate) 3896 btrfs_page_set_uptodate(fs_info, page, start, len); 3897 else 3898 btrfs_page_clear_uptodate(fs_info, page, start, len); 3899 3900 bio_offset += len; 3901 } 3902 3903 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3904 smp_mb__after_atomic(); 3905 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3906 free_extent_buffer(eb); 3907 3908 bio_put(&bbio->bio); 3909 } 3910 3911 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3912 struct btrfs_tree_parent_check *check) 3913 { 3914 int num_pages = num_extent_pages(eb), i; 3915 struct btrfs_bio *bbio; 3916 3917 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3918 return 0; 3919 3920 /* 3921 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3922 * operation, which could potentially still be in flight. In this case 3923 * we simply want to return an error. 3924 */ 3925 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3926 return -EIO; 3927 3928 /* Someone else is already reading the buffer, just wait for it. */ 3929 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3930 goto done; 3931 3932 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3933 eb->read_mirror = 0; 3934 check_buffer_tree_ref(eb); 3935 atomic_inc(&eb->refs); 3936 3937 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3938 REQ_OP_READ | REQ_META, eb->fs_info, 3939 extent_buffer_read_end_io, eb); 3940 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3941 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3942 bbio->file_offset = eb->start; 3943 memcpy(&bbio->parent_check, check, sizeof(*check)); 3944 if (eb->fs_info->nodesize < PAGE_SIZE) { 3945 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 3946 eb->start - page_offset(eb->pages[0])); 3947 } else { 3948 for (i = 0; i < num_pages; i++) 3949 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 3950 } 3951 btrfs_submit_bio(bbio, mirror_num); 3952 3953 done: 3954 if (wait == WAIT_COMPLETE) { 3955 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3956 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3957 return -EIO; 3958 } 3959 3960 return 0; 3961 } 3962 3963 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3964 unsigned long len) 3965 { 3966 btrfs_warn(eb->fs_info, 3967 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 3968 eb->start, eb->len, start, len); 3969 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3970 3971 return true; 3972 } 3973 3974 /* 3975 * Check if the [start, start + len) range is valid before reading/writing 3976 * the eb. 3977 * NOTE: @start and @len are offset inside the eb, not logical address. 3978 * 3979 * Caller should not touch the dst/src memory if this function returns error. 3980 */ 3981 static inline int check_eb_range(const struct extent_buffer *eb, 3982 unsigned long start, unsigned long len) 3983 { 3984 unsigned long offset; 3985 3986 /* start, start + len should not go beyond eb->len nor overflow */ 3987 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3988 return report_eb_range(eb, start, len); 3989 3990 return false; 3991 } 3992 3993 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3994 unsigned long start, unsigned long len) 3995 { 3996 size_t cur; 3997 size_t offset; 3998 struct page *page; 3999 char *kaddr; 4000 char *dst = (char *)dstv; 4001 unsigned long i = get_eb_page_index(start); 4002 4003 if (check_eb_range(eb, start, len)) { 4004 /* 4005 * Invalid range hit, reset the memory, so callers won't get 4006 * some random garbage for their uninitialzed memory. 4007 */ 4008 memset(dstv, 0, len); 4009 return; 4010 } 4011 4012 offset = get_eb_offset_in_page(eb, start); 4013 4014 while (len > 0) { 4015 page = eb->pages[i]; 4016 4017 cur = min(len, (PAGE_SIZE - offset)); 4018 kaddr = page_address(page); 4019 memcpy(dst, kaddr + offset, cur); 4020 4021 dst += cur; 4022 len -= cur; 4023 offset = 0; 4024 i++; 4025 } 4026 } 4027 4028 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4029 void __user *dstv, 4030 unsigned long start, unsigned long len) 4031 { 4032 size_t cur; 4033 size_t offset; 4034 struct page *page; 4035 char *kaddr; 4036 char __user *dst = (char __user *)dstv; 4037 unsigned long i = get_eb_page_index(start); 4038 int ret = 0; 4039 4040 WARN_ON(start > eb->len); 4041 WARN_ON(start + len > eb->start + eb->len); 4042 4043 offset = get_eb_offset_in_page(eb, start); 4044 4045 while (len > 0) { 4046 page = eb->pages[i]; 4047 4048 cur = min(len, (PAGE_SIZE - offset)); 4049 kaddr = page_address(page); 4050 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4051 ret = -EFAULT; 4052 break; 4053 } 4054 4055 dst += cur; 4056 len -= cur; 4057 offset = 0; 4058 i++; 4059 } 4060 4061 return ret; 4062 } 4063 4064 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4065 unsigned long start, unsigned long len) 4066 { 4067 size_t cur; 4068 size_t offset; 4069 struct page *page; 4070 char *kaddr; 4071 char *ptr = (char *)ptrv; 4072 unsigned long i = get_eb_page_index(start); 4073 int ret = 0; 4074 4075 if (check_eb_range(eb, start, len)) 4076 return -EINVAL; 4077 4078 offset = get_eb_offset_in_page(eb, start); 4079 4080 while (len > 0) { 4081 page = eb->pages[i]; 4082 4083 cur = min(len, (PAGE_SIZE - offset)); 4084 4085 kaddr = page_address(page); 4086 ret = memcmp(ptr, kaddr + offset, cur); 4087 if (ret) 4088 break; 4089 4090 ptr += cur; 4091 len -= cur; 4092 offset = 0; 4093 i++; 4094 } 4095 return ret; 4096 } 4097 4098 /* 4099 * Check that the extent buffer is uptodate. 4100 * 4101 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4102 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4103 */ 4104 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4105 struct page *page) 4106 { 4107 struct btrfs_fs_info *fs_info = eb->fs_info; 4108 4109 /* 4110 * If we are using the commit root we could potentially clear a page 4111 * Uptodate while we're using the extent buffer that we've previously 4112 * looked up. We don't want to complain in this case, as the page was 4113 * valid before, we just didn't write it out. Instead we want to catch 4114 * the case where we didn't actually read the block properly, which 4115 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4116 */ 4117 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4118 return; 4119 4120 if (fs_info->nodesize < PAGE_SIZE) { 4121 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4122 eb->start, eb->len))) 4123 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4124 } else { 4125 WARN_ON(!PageUptodate(page)); 4126 } 4127 } 4128 4129 static void __write_extent_buffer(const struct extent_buffer *eb, 4130 const void *srcv, unsigned long start, 4131 unsigned long len, bool use_memmove) 4132 { 4133 size_t cur; 4134 size_t offset; 4135 struct page *page; 4136 char *kaddr; 4137 char *src = (char *)srcv; 4138 unsigned long i = get_eb_page_index(start); 4139 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4140 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4141 4142 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4143 4144 if (check_eb_range(eb, start, len)) 4145 return; 4146 4147 offset = get_eb_offset_in_page(eb, start); 4148 4149 while (len > 0) { 4150 page = eb->pages[i]; 4151 if (check_uptodate) 4152 assert_eb_page_uptodate(eb, page); 4153 4154 cur = min(len, PAGE_SIZE - offset); 4155 kaddr = page_address(page); 4156 if (use_memmove) 4157 memmove(kaddr + offset, src, cur); 4158 else 4159 memcpy(kaddr + offset, src, cur); 4160 4161 src += cur; 4162 len -= cur; 4163 offset = 0; 4164 i++; 4165 } 4166 } 4167 4168 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4169 unsigned long start, unsigned long len) 4170 { 4171 return __write_extent_buffer(eb, srcv, start, len, false); 4172 } 4173 4174 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4175 unsigned long start, unsigned long len) 4176 { 4177 unsigned long cur = start; 4178 4179 while (cur < start + len) { 4180 unsigned long index = get_eb_page_index(cur); 4181 unsigned int offset = get_eb_offset_in_page(eb, cur); 4182 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4183 struct page *page = eb->pages[index]; 4184 4185 assert_eb_page_uptodate(eb, page); 4186 memset(page_address(page) + offset, c, cur_len); 4187 4188 cur += cur_len; 4189 } 4190 } 4191 4192 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4193 unsigned long len) 4194 { 4195 if (check_eb_range(eb, start, len)) 4196 return; 4197 return memset_extent_buffer(eb, 0, start, len); 4198 } 4199 4200 void copy_extent_buffer_full(const struct extent_buffer *dst, 4201 const struct extent_buffer *src) 4202 { 4203 unsigned long cur = 0; 4204 4205 ASSERT(dst->len == src->len); 4206 4207 while (cur < src->len) { 4208 unsigned long index = get_eb_page_index(cur); 4209 unsigned long offset = get_eb_offset_in_page(src, cur); 4210 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4211 void *addr = page_address(src->pages[index]) + offset; 4212 4213 write_extent_buffer(dst, addr, cur, cur_len); 4214 4215 cur += cur_len; 4216 } 4217 } 4218 4219 void copy_extent_buffer(const struct extent_buffer *dst, 4220 const struct extent_buffer *src, 4221 unsigned long dst_offset, unsigned long src_offset, 4222 unsigned long len) 4223 { 4224 u64 dst_len = dst->len; 4225 size_t cur; 4226 size_t offset; 4227 struct page *page; 4228 char *kaddr; 4229 unsigned long i = get_eb_page_index(dst_offset); 4230 4231 if (check_eb_range(dst, dst_offset, len) || 4232 check_eb_range(src, src_offset, len)) 4233 return; 4234 4235 WARN_ON(src->len != dst_len); 4236 4237 offset = get_eb_offset_in_page(dst, dst_offset); 4238 4239 while (len > 0) { 4240 page = dst->pages[i]; 4241 assert_eb_page_uptodate(dst, page); 4242 4243 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4244 4245 kaddr = page_address(page); 4246 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4247 4248 src_offset += cur; 4249 len -= cur; 4250 offset = 0; 4251 i++; 4252 } 4253 } 4254 4255 /* 4256 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4257 * given bit number 4258 * @eb: the extent buffer 4259 * @start: offset of the bitmap item in the extent buffer 4260 * @nr: bit number 4261 * @page_index: return index of the page in the extent buffer that contains the 4262 * given bit number 4263 * @page_offset: return offset into the page given by page_index 4264 * 4265 * This helper hides the ugliness of finding the byte in an extent buffer which 4266 * contains a given bit. 4267 */ 4268 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4269 unsigned long start, unsigned long nr, 4270 unsigned long *page_index, 4271 size_t *page_offset) 4272 { 4273 size_t byte_offset = BIT_BYTE(nr); 4274 size_t offset; 4275 4276 /* 4277 * The byte we want is the offset of the extent buffer + the offset of 4278 * the bitmap item in the extent buffer + the offset of the byte in the 4279 * bitmap item. 4280 */ 4281 offset = start + offset_in_page(eb->start) + byte_offset; 4282 4283 *page_index = offset >> PAGE_SHIFT; 4284 *page_offset = offset_in_page(offset); 4285 } 4286 4287 /* 4288 * Determine whether a bit in a bitmap item is set. 4289 * 4290 * @eb: the extent buffer 4291 * @start: offset of the bitmap item in the extent buffer 4292 * @nr: bit number to test 4293 */ 4294 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4295 unsigned long nr) 4296 { 4297 u8 *kaddr; 4298 struct page *page; 4299 unsigned long i; 4300 size_t offset; 4301 4302 eb_bitmap_offset(eb, start, nr, &i, &offset); 4303 page = eb->pages[i]; 4304 assert_eb_page_uptodate(eb, page); 4305 kaddr = page_address(page); 4306 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4307 } 4308 4309 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4310 { 4311 unsigned long index = get_eb_page_index(bytenr); 4312 4313 if (check_eb_range(eb, bytenr, 1)) 4314 return NULL; 4315 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4316 } 4317 4318 /* 4319 * Set an area of a bitmap to 1. 4320 * 4321 * @eb: the extent buffer 4322 * @start: offset of the bitmap item in the extent buffer 4323 * @pos: bit number of the first bit 4324 * @len: number of bits to set 4325 */ 4326 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4327 unsigned long pos, unsigned long len) 4328 { 4329 unsigned int first_byte = start + BIT_BYTE(pos); 4330 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4331 const bool same_byte = (first_byte == last_byte); 4332 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4333 u8 *kaddr; 4334 4335 if (same_byte) 4336 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4337 4338 /* Handle the first byte. */ 4339 kaddr = extent_buffer_get_byte(eb, first_byte); 4340 *kaddr |= mask; 4341 if (same_byte) 4342 return; 4343 4344 /* Handle the byte aligned part. */ 4345 ASSERT(first_byte + 1 <= last_byte); 4346 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4347 4348 /* Handle the last byte. */ 4349 kaddr = extent_buffer_get_byte(eb, last_byte); 4350 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4351 } 4352 4353 4354 /* 4355 * Clear an area of a bitmap. 4356 * 4357 * @eb: the extent buffer 4358 * @start: offset of the bitmap item in the extent buffer 4359 * @pos: bit number of the first bit 4360 * @len: number of bits to clear 4361 */ 4362 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4363 unsigned long start, unsigned long pos, 4364 unsigned long len) 4365 { 4366 unsigned int first_byte = start + BIT_BYTE(pos); 4367 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4368 const bool same_byte = (first_byte == last_byte); 4369 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4370 u8 *kaddr; 4371 4372 if (same_byte) 4373 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4374 4375 /* Handle the first byte. */ 4376 kaddr = extent_buffer_get_byte(eb, first_byte); 4377 *kaddr &= ~mask; 4378 if (same_byte) 4379 return; 4380 4381 /* Handle the byte aligned part. */ 4382 ASSERT(first_byte + 1 <= last_byte); 4383 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4384 4385 /* Handle the last byte. */ 4386 kaddr = extent_buffer_get_byte(eb, last_byte); 4387 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4388 } 4389 4390 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4391 { 4392 unsigned long distance = (src > dst) ? src - dst : dst - src; 4393 return distance < len; 4394 } 4395 4396 void memcpy_extent_buffer(const struct extent_buffer *dst, 4397 unsigned long dst_offset, unsigned long src_offset, 4398 unsigned long len) 4399 { 4400 unsigned long cur_off = 0; 4401 4402 if (check_eb_range(dst, dst_offset, len) || 4403 check_eb_range(dst, src_offset, len)) 4404 return; 4405 4406 while (cur_off < len) { 4407 unsigned long cur_src = cur_off + src_offset; 4408 unsigned long pg_index = get_eb_page_index(cur_src); 4409 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4410 unsigned long cur_len = min(src_offset + len - cur_src, 4411 PAGE_SIZE - pg_off); 4412 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4413 const bool use_memmove = areas_overlap(src_offset + cur_off, 4414 dst_offset + cur_off, cur_len); 4415 4416 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4417 use_memmove); 4418 cur_off += cur_len; 4419 } 4420 } 4421 4422 void memmove_extent_buffer(const struct extent_buffer *dst, 4423 unsigned long dst_offset, unsigned long src_offset, 4424 unsigned long len) 4425 { 4426 unsigned long dst_end = dst_offset + len - 1; 4427 unsigned long src_end = src_offset + len - 1; 4428 4429 if (check_eb_range(dst, dst_offset, len) || 4430 check_eb_range(dst, src_offset, len)) 4431 return; 4432 4433 if (dst_offset < src_offset) { 4434 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4435 return; 4436 } 4437 4438 while (len > 0) { 4439 unsigned long src_i; 4440 size_t cur; 4441 size_t dst_off_in_page; 4442 size_t src_off_in_page; 4443 void *src_addr; 4444 bool use_memmove; 4445 4446 src_i = get_eb_page_index(src_end); 4447 4448 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4449 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4450 4451 cur = min_t(unsigned long, len, src_off_in_page + 1); 4452 cur = min(cur, dst_off_in_page + 1); 4453 4454 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4455 cur + 1; 4456 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4457 cur); 4458 4459 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4460 use_memmove); 4461 4462 dst_end -= cur; 4463 src_end -= cur; 4464 len -= cur; 4465 } 4466 } 4467 4468 #define GANG_LOOKUP_SIZE 16 4469 static struct extent_buffer *get_next_extent_buffer( 4470 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4471 { 4472 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4473 struct extent_buffer *found = NULL; 4474 u64 page_start = page_offset(page); 4475 u64 cur = page_start; 4476 4477 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4478 lockdep_assert_held(&fs_info->buffer_lock); 4479 4480 while (cur < page_start + PAGE_SIZE) { 4481 int ret; 4482 int i; 4483 4484 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4485 (void **)gang, cur >> fs_info->sectorsize_bits, 4486 min_t(unsigned int, GANG_LOOKUP_SIZE, 4487 PAGE_SIZE / fs_info->nodesize)); 4488 if (ret == 0) 4489 goto out; 4490 for (i = 0; i < ret; i++) { 4491 /* Already beyond page end */ 4492 if (gang[i]->start >= page_start + PAGE_SIZE) 4493 goto out; 4494 /* Found one */ 4495 if (gang[i]->start >= bytenr) { 4496 found = gang[i]; 4497 goto out; 4498 } 4499 } 4500 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4501 } 4502 out: 4503 return found; 4504 } 4505 4506 static int try_release_subpage_extent_buffer(struct page *page) 4507 { 4508 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4509 u64 cur = page_offset(page); 4510 const u64 end = page_offset(page) + PAGE_SIZE; 4511 int ret; 4512 4513 while (cur < end) { 4514 struct extent_buffer *eb = NULL; 4515 4516 /* 4517 * Unlike try_release_extent_buffer() which uses page->private 4518 * to grab buffer, for subpage case we rely on radix tree, thus 4519 * we need to ensure radix tree consistency. 4520 * 4521 * We also want an atomic snapshot of the radix tree, thus go 4522 * with spinlock rather than RCU. 4523 */ 4524 spin_lock(&fs_info->buffer_lock); 4525 eb = get_next_extent_buffer(fs_info, page, cur); 4526 if (!eb) { 4527 /* No more eb in the page range after or at cur */ 4528 spin_unlock(&fs_info->buffer_lock); 4529 break; 4530 } 4531 cur = eb->start + eb->len; 4532 4533 /* 4534 * The same as try_release_extent_buffer(), to ensure the eb 4535 * won't disappear out from under us. 4536 */ 4537 spin_lock(&eb->refs_lock); 4538 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4539 spin_unlock(&eb->refs_lock); 4540 spin_unlock(&fs_info->buffer_lock); 4541 break; 4542 } 4543 spin_unlock(&fs_info->buffer_lock); 4544 4545 /* 4546 * If tree ref isn't set then we know the ref on this eb is a 4547 * real ref, so just return, this eb will likely be freed soon 4548 * anyway. 4549 */ 4550 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4551 spin_unlock(&eb->refs_lock); 4552 break; 4553 } 4554 4555 /* 4556 * Here we don't care about the return value, we will always 4557 * check the page private at the end. And 4558 * release_extent_buffer() will release the refs_lock. 4559 */ 4560 release_extent_buffer(eb); 4561 } 4562 /* 4563 * Finally to check if we have cleared page private, as if we have 4564 * released all ebs in the page, the page private should be cleared now. 4565 */ 4566 spin_lock(&page->mapping->private_lock); 4567 if (!PagePrivate(page)) 4568 ret = 1; 4569 else 4570 ret = 0; 4571 spin_unlock(&page->mapping->private_lock); 4572 return ret; 4573 4574 } 4575 4576 int try_release_extent_buffer(struct page *page) 4577 { 4578 struct extent_buffer *eb; 4579 4580 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4581 return try_release_subpage_extent_buffer(page); 4582 4583 /* 4584 * We need to make sure nobody is changing page->private, as we rely on 4585 * page->private as the pointer to extent buffer. 4586 */ 4587 spin_lock(&page->mapping->private_lock); 4588 if (!PagePrivate(page)) { 4589 spin_unlock(&page->mapping->private_lock); 4590 return 1; 4591 } 4592 4593 eb = (struct extent_buffer *)page->private; 4594 BUG_ON(!eb); 4595 4596 /* 4597 * This is a little awful but should be ok, we need to make sure that 4598 * the eb doesn't disappear out from under us while we're looking at 4599 * this page. 4600 */ 4601 spin_lock(&eb->refs_lock); 4602 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4603 spin_unlock(&eb->refs_lock); 4604 spin_unlock(&page->mapping->private_lock); 4605 return 0; 4606 } 4607 spin_unlock(&page->mapping->private_lock); 4608 4609 /* 4610 * If tree ref isn't set then we know the ref on this eb is a real ref, 4611 * so just return, this page will likely be freed soon anyway. 4612 */ 4613 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4614 spin_unlock(&eb->refs_lock); 4615 return 0; 4616 } 4617 4618 return release_extent_buffer(eb); 4619 } 4620 4621 /* 4622 * btrfs_readahead_tree_block - attempt to readahead a child block 4623 * @fs_info: the fs_info 4624 * @bytenr: bytenr to read 4625 * @owner_root: objectid of the root that owns this eb 4626 * @gen: generation for the uptodate check, can be 0 4627 * @level: level for the eb 4628 * 4629 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4630 * normal uptodate check of the eb, without checking the generation. If we have 4631 * to read the block we will not block on anything. 4632 */ 4633 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4634 u64 bytenr, u64 owner_root, u64 gen, int level) 4635 { 4636 struct btrfs_tree_parent_check check = { 4637 .has_first_key = 0, 4638 .level = level, 4639 .transid = gen 4640 }; 4641 struct extent_buffer *eb; 4642 int ret; 4643 4644 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4645 if (IS_ERR(eb)) 4646 return; 4647 4648 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4649 free_extent_buffer(eb); 4650 return; 4651 } 4652 4653 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4654 if (ret < 0) 4655 free_extent_buffer_stale(eb); 4656 else 4657 free_extent_buffer(eb); 4658 } 4659 4660 /* 4661 * btrfs_readahead_node_child - readahead a node's child block 4662 * @node: parent node we're reading from 4663 * @slot: slot in the parent node for the child we want to read 4664 * 4665 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4666 * the slot in the node provided. 4667 */ 4668 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4669 { 4670 btrfs_readahead_tree_block(node->fs_info, 4671 btrfs_node_blockptr(node, slot), 4672 btrfs_header_owner(node), 4673 btrfs_node_ptr_generation(node, slot), 4674 btrfs_header_level(node) - 1); 4675 } 4676