xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 609e478b)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		printk_ratelimited(KERN_DEBUG
100 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 	if (!tree->mapping)
139 		return NULL;
140 	return btrfs_sb(tree->mapping->host->i_sb);
141 }
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 				     offsetof(struct btrfs_io_bio, bio));
159 	if (!btrfs_bioset)
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_free(btrfs_bioset);
169 	btrfs_bioset = NULL;
170 
171 free_buffer_cache:
172 	kmem_cache_destroy(extent_buffer_cache);
173 	extent_buffer_cache = NULL;
174 
175 free_state_cache:
176 	kmem_cache_destroy(extent_state_cache);
177 	extent_state_cache = NULL;
178 	return -ENOMEM;
179 }
180 
181 void extent_io_exit(void)
182 {
183 	btrfs_leak_debug_check();
184 
185 	/*
186 	 * Make sure all delayed rcu free are flushed before we
187 	 * destroy caches.
188 	 */
189 	rcu_barrier();
190 	if (extent_state_cache)
191 		kmem_cache_destroy(extent_state_cache);
192 	if (extent_buffer_cache)
193 		kmem_cache_destroy(extent_buffer_cache);
194 	if (btrfs_bioset)
195 		bioset_free(btrfs_bioset);
196 }
197 
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 			 struct address_space *mapping)
200 {
201 	tree->state = RB_ROOT;
202 	tree->ops = NULL;
203 	tree->dirty_bytes = 0;
204 	spin_lock_init(&tree->lock);
205 	tree->mapping = mapping;
206 }
207 
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 	struct extent_state *state;
211 
212 	state = kmem_cache_alloc(extent_state_cache, mask);
213 	if (!state)
214 		return state;
215 	state->state = 0;
216 	state->private = 0;
217 	RB_CLEAR_NODE(&state->rb_node);
218 	btrfs_leak_debug_add(&state->leak_list, &states);
219 	atomic_set(&state->refs, 1);
220 	init_waitqueue_head(&state->wq);
221 	trace_alloc_extent_state(state, mask, _RET_IP_);
222 	return state;
223 }
224 
225 void free_extent_state(struct extent_state *state)
226 {
227 	if (!state)
228 		return;
229 	if (atomic_dec_and_test(&state->refs)) {
230 		WARN_ON(extent_state_in_tree(state));
231 		btrfs_leak_debug_del(&state->leak_list);
232 		trace_free_extent_state(state, _RET_IP_);
233 		kmem_cache_free(extent_state_cache, state);
234 	}
235 }
236 
237 static struct rb_node *tree_insert(struct rb_root *root,
238 				   struct rb_node *search_start,
239 				   u64 offset,
240 				   struct rb_node *node,
241 				   struct rb_node ***p_in,
242 				   struct rb_node **parent_in)
243 {
244 	struct rb_node **p;
245 	struct rb_node *parent = NULL;
246 	struct tree_entry *entry;
247 
248 	if (p_in && parent_in) {
249 		p = *p_in;
250 		parent = *parent_in;
251 		goto do_insert;
252 	}
253 
254 	p = search_start ? &search_start : &root->rb_node;
255 	while (*p) {
256 		parent = *p;
257 		entry = rb_entry(parent, struct tree_entry, rb_node);
258 
259 		if (offset < entry->start)
260 			p = &(*p)->rb_left;
261 		else if (offset > entry->end)
262 			p = &(*p)->rb_right;
263 		else
264 			return parent;
265 	}
266 
267 do_insert:
268 	rb_link_node(node, parent, p);
269 	rb_insert_color(node, root);
270 	return NULL;
271 }
272 
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 				      struct rb_node **prev_ret,
275 				      struct rb_node **next_ret,
276 				      struct rb_node ***p_ret,
277 				      struct rb_node **parent_ret)
278 {
279 	struct rb_root *root = &tree->state;
280 	struct rb_node **n = &root->rb_node;
281 	struct rb_node *prev = NULL;
282 	struct rb_node *orig_prev = NULL;
283 	struct tree_entry *entry;
284 	struct tree_entry *prev_entry = NULL;
285 
286 	while (*n) {
287 		prev = *n;
288 		entry = rb_entry(prev, struct tree_entry, rb_node);
289 		prev_entry = entry;
290 
291 		if (offset < entry->start)
292 			n = &(*n)->rb_left;
293 		else if (offset > entry->end)
294 			n = &(*n)->rb_right;
295 		else
296 			return *n;
297 	}
298 
299 	if (p_ret)
300 		*p_ret = n;
301 	if (parent_ret)
302 		*parent_ret = prev;
303 
304 	if (prev_ret) {
305 		orig_prev = prev;
306 		while (prev && offset > prev_entry->end) {
307 			prev = rb_next(prev);
308 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 		}
310 		*prev_ret = prev;
311 		prev = orig_prev;
312 	}
313 
314 	if (next_ret) {
315 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 		while (prev && offset < prev_entry->start) {
317 			prev = rb_prev(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*next_ret = prev;
321 	}
322 	return NULL;
323 }
324 
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 		       u64 offset,
328 		       struct rb_node ***p_ret,
329 		       struct rb_node **parent_ret)
330 {
331 	struct rb_node *prev = NULL;
332 	struct rb_node *ret;
333 
334 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 	if (!ret)
336 		return prev;
337 	return ret;
338 }
339 
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 					  u64 offset)
342 {
343 	return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345 
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 		     struct extent_state *other)
348 {
349 	if (tree->ops && tree->ops->merge_extent_hook)
350 		tree->ops->merge_extent_hook(tree->mapping->host, new,
351 					     other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned long *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned long *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned long *bits);
414 
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426 			struct extent_state *state, u64 start, u64 end,
427 			struct rb_node ***p,
428 			struct rb_node **parent,
429 			unsigned long *bits)
430 {
431 	struct rb_node *node;
432 
433 	if (end < start)
434 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 		       end, start);
436 	state->start = start;
437 	state->end = end;
438 
439 	set_state_bits(tree, state, bits);
440 
441 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 	if (node) {
443 		struct extent_state *found;
444 		found = rb_entry(node, struct extent_state, rb_node);
445 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 		       "%llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned long *bits, int wake)
515 {
516 	struct extent_state *next;
517 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
518 
519 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 		u64 range = state->end - state->start + 1;
521 		WARN_ON(range > tree->dirty_bytes);
522 		tree->dirty_bytes -= range;
523 	}
524 	clear_state_cb(tree, state, bits);
525 	state->state &= ~bits_to_clear;
526 	if (wake)
527 		wake_up(&state->wq);
528 	if (state->state == 0) {
529 		next = next_state(state);
530 		if (extent_state_in_tree(state)) {
531 			rb_erase(&state->rb_node, &tree->state);
532 			RB_CLEAR_NODE(&state->rb_node);
533 			free_extent_state(state);
534 		} else {
535 			WARN_ON(1);
536 		}
537 	} else {
538 		merge_state(tree, state);
539 		next = next_state(state);
540 	}
541 	return next;
542 }
543 
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 	if (!prealloc)
548 		prealloc = alloc_extent_state(GFP_ATOMIC);
549 
550 	return prealloc;
551 }
552 
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 		    "Extent tree was modified by another "
557 		    "thread while locked.");
558 }
559 
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 		     unsigned long bits, int wake, int delete,
574 		     struct extent_state **cached_state,
575 		     gfp_t mask)
576 {
577 	struct extent_state *state;
578 	struct extent_state *cached;
579 	struct extent_state *prealloc = NULL;
580 	struct rb_node *node;
581 	u64 last_end;
582 	int err;
583 	int clear = 0;
584 
585 	btrfs_debug_check_extent_io_range(tree, start, end);
586 
587 	if (bits & EXTENT_DELALLOC)
588 		bits |= EXTENT_NORESERVE;
589 
590 	if (delete)
591 		bits |= ~EXTENT_CTLBITS;
592 	bits |= EXTENT_FIRST_DELALLOC;
593 
594 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 		clear = 1;
596 again:
597 	if (!prealloc && (mask & __GFP_WAIT)) {
598 		prealloc = alloc_extent_state(mask);
599 		if (!prealloc)
600 			return -ENOMEM;
601 	}
602 
603 	spin_lock(&tree->lock);
604 	if (cached_state) {
605 		cached = *cached_state;
606 
607 		if (clear) {
608 			*cached_state = NULL;
609 			cached_state = NULL;
610 		}
611 
612 		if (cached && extent_state_in_tree(cached) &&
613 		    cached->start <= start && cached->end > start) {
614 			if (clear)
615 				atomic_dec(&cached->refs);
616 			state = cached;
617 			goto hit_next;
618 		}
619 		if (clear)
620 			free_extent_state(cached);
621 	}
622 	/*
623 	 * this search will find the extents that end after
624 	 * our range starts
625 	 */
626 	node = tree_search(tree, start);
627 	if (!node)
628 		goto out;
629 	state = rb_entry(node, struct extent_state, rb_node);
630 hit_next:
631 	if (state->start > end)
632 		goto out;
633 	WARN_ON(state->end < start);
634 	last_end = state->end;
635 
636 	/* the state doesn't have the wanted bits, go ahead */
637 	if (!(state->state & bits)) {
638 		state = next_state(state);
639 		goto next;
640 	}
641 
642 	/*
643 	 *     | ---- desired range ---- |
644 	 *  | state | or
645 	 *  | ------------- state -------------- |
646 	 *
647 	 * We need to split the extent we found, and may flip
648 	 * bits on second half.
649 	 *
650 	 * If the extent we found extends past our range, we
651 	 * just split and search again.  It'll get split again
652 	 * the next time though.
653 	 *
654 	 * If the extent we found is inside our range, we clear
655 	 * the desired bit on it.
656 	 */
657 
658 	if (state->start < start) {
659 		prealloc = alloc_extent_state_atomic(prealloc);
660 		BUG_ON(!prealloc);
661 		err = split_state(tree, state, prealloc, start);
662 		if (err)
663 			extent_io_tree_panic(tree, err);
664 
665 		prealloc = NULL;
666 		if (err)
667 			goto out;
668 		if (state->end <= end) {
669 			state = clear_state_bit(tree, state, &bits, wake);
670 			goto next;
671 		}
672 		goto search_again;
673 	}
674 	/*
675 	 * | ---- desired range ---- |
676 	 *                        | state |
677 	 * We need to split the extent, and clear the bit
678 	 * on the first half
679 	 */
680 	if (state->start <= end && state->end > end) {
681 		prealloc = alloc_extent_state_atomic(prealloc);
682 		BUG_ON(!prealloc);
683 		err = split_state(tree, state, prealloc, end + 1);
684 		if (err)
685 			extent_io_tree_panic(tree, err);
686 
687 		if (wake)
688 			wake_up(&state->wq);
689 
690 		clear_state_bit(tree, prealloc, &bits, wake);
691 
692 		prealloc = NULL;
693 		goto out;
694 	}
695 
696 	state = clear_state_bit(tree, state, &bits, wake);
697 next:
698 	if (last_end == (u64)-1)
699 		goto out;
700 	start = last_end + 1;
701 	if (start <= end && state && !need_resched())
702 		goto hit_next;
703 	goto search_again;
704 
705 out:
706 	spin_unlock(&tree->lock);
707 	if (prealloc)
708 		free_extent_state(prealloc);
709 
710 	return 0;
711 
712 search_again:
713 	if (start > end)
714 		goto out;
715 	spin_unlock(&tree->lock);
716 	if (mask & __GFP_WAIT)
717 		cond_resched();
718 	goto again;
719 }
720 
721 static void wait_on_state(struct extent_io_tree *tree,
722 			  struct extent_state *state)
723 		__releases(tree->lock)
724 		__acquires(tree->lock)
725 {
726 	DEFINE_WAIT(wait);
727 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
728 	spin_unlock(&tree->lock);
729 	schedule();
730 	spin_lock(&tree->lock);
731 	finish_wait(&state->wq, &wait);
732 }
733 
734 /*
735  * waits for one or more bits to clear on a range in the state tree.
736  * The range [start, end] is inclusive.
737  * The tree lock is taken by this function
738  */
739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 			    unsigned long bits)
741 {
742 	struct extent_state *state;
743 	struct rb_node *node;
744 
745 	btrfs_debug_check_extent_io_range(tree, start, end);
746 
747 	spin_lock(&tree->lock);
748 again:
749 	while (1) {
750 		/*
751 		 * this search will find all the extents that end after
752 		 * our range starts
753 		 */
754 		node = tree_search(tree, start);
755 process_node:
756 		if (!node)
757 			break;
758 
759 		state = rb_entry(node, struct extent_state, rb_node);
760 
761 		if (state->start > end)
762 			goto out;
763 
764 		if (state->state & bits) {
765 			start = state->start;
766 			atomic_inc(&state->refs);
767 			wait_on_state(tree, state);
768 			free_extent_state(state);
769 			goto again;
770 		}
771 		start = state->end + 1;
772 
773 		if (start > end)
774 			break;
775 
776 		if (!cond_resched_lock(&tree->lock)) {
777 			node = rb_next(node);
778 			goto process_node;
779 		}
780 	}
781 out:
782 	spin_unlock(&tree->lock);
783 }
784 
785 static void set_state_bits(struct extent_io_tree *tree,
786 			   struct extent_state *state,
787 			   unsigned long *bits)
788 {
789 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
790 
791 	set_state_cb(tree, state, bits);
792 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
793 		u64 range = state->end - state->start + 1;
794 		tree->dirty_bytes += range;
795 	}
796 	state->state |= bits_to_set;
797 }
798 
799 static void cache_state(struct extent_state *state,
800 			struct extent_state **cached_ptr)
801 {
802 	if (cached_ptr && !(*cached_ptr)) {
803 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 			*cached_ptr = state;
805 			atomic_inc(&state->refs);
806 		}
807 	}
808 }
809 
810 /*
811  * set some bits on a range in the tree.  This may require allocations or
812  * sleeping, so the gfp mask is used to indicate what is allowed.
813  *
814  * If any of the exclusive bits are set, this will fail with -EEXIST if some
815  * part of the range already has the desired bits set.  The start of the
816  * existing range is returned in failed_start in this case.
817  *
818  * [start, end] is inclusive This takes the tree lock.
819  */
820 
821 static int __must_check
822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
823 		 unsigned long bits, unsigned long exclusive_bits,
824 		 u64 *failed_start, struct extent_state **cached_state,
825 		 gfp_t mask)
826 {
827 	struct extent_state *state;
828 	struct extent_state *prealloc = NULL;
829 	struct rb_node *node;
830 	struct rb_node **p;
831 	struct rb_node *parent;
832 	int err = 0;
833 	u64 last_start;
834 	u64 last_end;
835 
836 	btrfs_debug_check_extent_io_range(tree, start, end);
837 
838 	bits |= EXTENT_FIRST_DELALLOC;
839 again:
840 	if (!prealloc && (mask & __GFP_WAIT)) {
841 		prealloc = alloc_extent_state(mask);
842 		BUG_ON(!prealloc);
843 	}
844 
845 	spin_lock(&tree->lock);
846 	if (cached_state && *cached_state) {
847 		state = *cached_state;
848 		if (state->start <= start && state->end > start &&
849 		    extent_state_in_tree(state)) {
850 			node = &state->rb_node;
851 			goto hit_next;
852 		}
853 	}
854 	/*
855 	 * this search will find all the extents that end after
856 	 * our range starts.
857 	 */
858 	node = tree_search_for_insert(tree, start, &p, &parent);
859 	if (!node) {
860 		prealloc = alloc_extent_state_atomic(prealloc);
861 		BUG_ON(!prealloc);
862 		err = insert_state(tree, prealloc, start, end,
863 				   &p, &parent, &bits);
864 		if (err)
865 			extent_io_tree_panic(tree, err);
866 
867 		cache_state(prealloc, cached_state);
868 		prealloc = NULL;
869 		goto out;
870 	}
871 	state = rb_entry(node, struct extent_state, rb_node);
872 hit_next:
873 	last_start = state->start;
874 	last_end = state->end;
875 
876 	/*
877 	 * | ---- desired range ---- |
878 	 * | state |
879 	 *
880 	 * Just lock what we found and keep going
881 	 */
882 	if (state->start == start && state->end <= end) {
883 		if (state->state & exclusive_bits) {
884 			*failed_start = state->start;
885 			err = -EEXIST;
886 			goto out;
887 		}
888 
889 		set_state_bits(tree, state, &bits);
890 		cache_state(state, cached_state);
891 		merge_state(tree, state);
892 		if (last_end == (u64)-1)
893 			goto out;
894 		start = last_end + 1;
895 		state = next_state(state);
896 		if (start < end && state && state->start == start &&
897 		    !need_resched())
898 			goto hit_next;
899 		goto search_again;
900 	}
901 
902 	/*
903 	 *     | ---- desired range ---- |
904 	 * | state |
905 	 *   or
906 	 * | ------------- state -------------- |
907 	 *
908 	 * We need to split the extent we found, and may flip bits on
909 	 * second half.
910 	 *
911 	 * If the extent we found extends past our
912 	 * range, we just split and search again.  It'll get split
913 	 * again the next time though.
914 	 *
915 	 * If the extent we found is inside our range, we set the
916 	 * desired bit on it.
917 	 */
918 	if (state->start < start) {
919 		if (state->state & exclusive_bits) {
920 			*failed_start = start;
921 			err = -EEXIST;
922 			goto out;
923 		}
924 
925 		prealloc = alloc_extent_state_atomic(prealloc);
926 		BUG_ON(!prealloc);
927 		err = split_state(tree, state, prealloc, start);
928 		if (err)
929 			extent_io_tree_panic(tree, err);
930 
931 		prealloc = NULL;
932 		if (err)
933 			goto out;
934 		if (state->end <= end) {
935 			set_state_bits(tree, state, &bits);
936 			cache_state(state, cached_state);
937 			merge_state(tree, state);
938 			if (last_end == (u64)-1)
939 				goto out;
940 			start = last_end + 1;
941 			state = next_state(state);
942 			if (start < end && state && state->start == start &&
943 			    !need_resched())
944 				goto hit_next;
945 		}
946 		goto search_again;
947 	}
948 	/*
949 	 * | ---- desired range ---- |
950 	 *     | state | or               | state |
951 	 *
952 	 * There's a hole, we need to insert something in it and
953 	 * ignore the extent we found.
954 	 */
955 	if (state->start > start) {
956 		u64 this_end;
957 		if (end < last_start)
958 			this_end = end;
959 		else
960 			this_end = last_start - 1;
961 
962 		prealloc = alloc_extent_state_atomic(prealloc);
963 		BUG_ON(!prealloc);
964 
965 		/*
966 		 * Avoid to free 'prealloc' if it can be merged with
967 		 * the later extent.
968 		 */
969 		err = insert_state(tree, prealloc, start, this_end,
970 				   NULL, NULL, &bits);
971 		if (err)
972 			extent_io_tree_panic(tree, err);
973 
974 		cache_state(prealloc, cached_state);
975 		prealloc = NULL;
976 		start = this_end + 1;
977 		goto search_again;
978 	}
979 	/*
980 	 * | ---- desired range ---- |
981 	 *                        | state |
982 	 * We need to split the extent, and set the bit
983 	 * on the first half
984 	 */
985 	if (state->start <= end && state->end > end) {
986 		if (state->state & exclusive_bits) {
987 			*failed_start = start;
988 			err = -EEXIST;
989 			goto out;
990 		}
991 
992 		prealloc = alloc_extent_state_atomic(prealloc);
993 		BUG_ON(!prealloc);
994 		err = split_state(tree, state, prealloc, end + 1);
995 		if (err)
996 			extent_io_tree_panic(tree, err);
997 
998 		set_state_bits(tree, prealloc, &bits);
999 		cache_state(prealloc, cached_state);
1000 		merge_state(tree, prealloc);
1001 		prealloc = NULL;
1002 		goto out;
1003 	}
1004 
1005 	goto search_again;
1006 
1007 out:
1008 	spin_unlock(&tree->lock);
1009 	if (prealloc)
1010 		free_extent_state(prealloc);
1011 
1012 	return err;
1013 
1014 search_again:
1015 	if (start > end)
1016 		goto out;
1017 	spin_unlock(&tree->lock);
1018 	if (mask & __GFP_WAIT)
1019 		cond_resched();
1020 	goto again;
1021 }
1022 
1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 		   unsigned long bits, u64 * failed_start,
1025 		   struct extent_state **cached_state, gfp_t mask)
1026 {
1027 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 				cached_state, mask);
1029 }
1030 
1031 
1032 /**
1033  * convert_extent_bit - convert all bits in a given range from one bit to
1034  * 			another
1035  * @tree:	the io tree to search
1036  * @start:	the start offset in bytes
1037  * @end:	the end offset in bytes (inclusive)
1038  * @bits:	the bits to set in this range
1039  * @clear_bits:	the bits to clear in this range
1040  * @cached_state:	state that we're going to cache
1041  * @mask:	the allocation mask
1042  *
1043  * This will go through and set bits for the given range.  If any states exist
1044  * already in this range they are set with the given bit and cleared of the
1045  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1046  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1047  * boundary bits like LOCK.
1048  */
1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1050 		       unsigned long bits, unsigned long clear_bits,
1051 		       struct extent_state **cached_state, gfp_t mask)
1052 {
1053 	struct extent_state *state;
1054 	struct extent_state *prealloc = NULL;
1055 	struct rb_node *node;
1056 	struct rb_node **p;
1057 	struct rb_node *parent;
1058 	int err = 0;
1059 	u64 last_start;
1060 	u64 last_end;
1061 
1062 	btrfs_debug_check_extent_io_range(tree, start, end);
1063 
1064 again:
1065 	if (!prealloc && (mask & __GFP_WAIT)) {
1066 		prealloc = alloc_extent_state(mask);
1067 		if (!prealloc)
1068 			return -ENOMEM;
1069 	}
1070 
1071 	spin_lock(&tree->lock);
1072 	if (cached_state && *cached_state) {
1073 		state = *cached_state;
1074 		if (state->start <= start && state->end > start &&
1075 		    extent_state_in_tree(state)) {
1076 			node = &state->rb_node;
1077 			goto hit_next;
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * this search will find all the extents that end after
1083 	 * our range starts.
1084 	 */
1085 	node = tree_search_for_insert(tree, start, &p, &parent);
1086 	if (!node) {
1087 		prealloc = alloc_extent_state_atomic(prealloc);
1088 		if (!prealloc) {
1089 			err = -ENOMEM;
1090 			goto out;
1091 		}
1092 		err = insert_state(tree, prealloc, start, end,
1093 				   &p, &parent, &bits);
1094 		if (err)
1095 			extent_io_tree_panic(tree, err);
1096 		cache_state(prealloc, cached_state);
1097 		prealloc = NULL;
1098 		goto out;
1099 	}
1100 	state = rb_entry(node, struct extent_state, rb_node);
1101 hit_next:
1102 	last_start = state->start;
1103 	last_end = state->end;
1104 
1105 	/*
1106 	 * | ---- desired range ---- |
1107 	 * | state |
1108 	 *
1109 	 * Just lock what we found and keep going
1110 	 */
1111 	if (state->start == start && state->end <= end) {
1112 		set_state_bits(tree, state, &bits);
1113 		cache_state(state, cached_state);
1114 		state = clear_state_bit(tree, state, &clear_bits, 0);
1115 		if (last_end == (u64)-1)
1116 			goto out;
1117 		start = last_end + 1;
1118 		if (start < end && state && state->start == start &&
1119 		    !need_resched())
1120 			goto hit_next;
1121 		goto search_again;
1122 	}
1123 
1124 	/*
1125 	 *     | ---- desired range ---- |
1126 	 * | state |
1127 	 *   or
1128 	 * | ------------- state -------------- |
1129 	 *
1130 	 * We need to split the extent we found, and may flip bits on
1131 	 * second half.
1132 	 *
1133 	 * If the extent we found extends past our
1134 	 * range, we just split and search again.  It'll get split
1135 	 * again the next time though.
1136 	 *
1137 	 * If the extent we found is inside our range, we set the
1138 	 * desired bit on it.
1139 	 */
1140 	if (state->start < start) {
1141 		prealloc = alloc_extent_state_atomic(prealloc);
1142 		if (!prealloc) {
1143 			err = -ENOMEM;
1144 			goto out;
1145 		}
1146 		err = split_state(tree, state, prealloc, start);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		prealloc = NULL;
1150 		if (err)
1151 			goto out;
1152 		if (state->end <= end) {
1153 			set_state_bits(tree, state, &bits);
1154 			cache_state(state, cached_state);
1155 			state = clear_state_bit(tree, state, &clear_bits, 0);
1156 			if (last_end == (u64)-1)
1157 				goto out;
1158 			start = last_end + 1;
1159 			if (start < end && state && state->start == start &&
1160 			    !need_resched())
1161 				goto hit_next;
1162 		}
1163 		goto search_again;
1164 	}
1165 	/*
1166 	 * | ---- desired range ---- |
1167 	 *     | state | or               | state |
1168 	 *
1169 	 * There's a hole, we need to insert something in it and
1170 	 * ignore the extent we found.
1171 	 */
1172 	if (state->start > start) {
1173 		u64 this_end;
1174 		if (end < last_start)
1175 			this_end = end;
1176 		else
1177 			this_end = last_start - 1;
1178 
1179 		prealloc = alloc_extent_state_atomic(prealloc);
1180 		if (!prealloc) {
1181 			err = -ENOMEM;
1182 			goto out;
1183 		}
1184 
1185 		/*
1186 		 * Avoid to free 'prealloc' if it can be merged with
1187 		 * the later extent.
1188 		 */
1189 		err = insert_state(tree, prealloc, start, this_end,
1190 				   NULL, NULL, &bits);
1191 		if (err)
1192 			extent_io_tree_panic(tree, err);
1193 		cache_state(prealloc, cached_state);
1194 		prealloc = NULL;
1195 		start = this_end + 1;
1196 		goto search_again;
1197 	}
1198 	/*
1199 	 * | ---- desired range ---- |
1200 	 *                        | state |
1201 	 * We need to split the extent, and set the bit
1202 	 * on the first half
1203 	 */
1204 	if (state->start <= end && state->end > end) {
1205 		prealloc = alloc_extent_state_atomic(prealloc);
1206 		if (!prealloc) {
1207 			err = -ENOMEM;
1208 			goto out;
1209 		}
1210 
1211 		err = split_state(tree, state, prealloc, end + 1);
1212 		if (err)
1213 			extent_io_tree_panic(tree, err);
1214 
1215 		set_state_bits(tree, prealloc, &bits);
1216 		cache_state(prealloc, cached_state);
1217 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1218 		prealloc = NULL;
1219 		goto out;
1220 	}
1221 
1222 	goto search_again;
1223 
1224 out:
1225 	spin_unlock(&tree->lock);
1226 	if (prealloc)
1227 		free_extent_state(prealloc);
1228 
1229 	return err;
1230 
1231 search_again:
1232 	if (start > end)
1233 		goto out;
1234 	spin_unlock(&tree->lock);
1235 	if (mask & __GFP_WAIT)
1236 		cond_resched();
1237 	goto again;
1238 }
1239 
1240 /* wrappers around set/clear extent bit */
1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 		     gfp_t mask)
1243 {
1244 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1245 			      NULL, mask);
1246 }
1247 
1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1249 		    unsigned long bits, gfp_t mask)
1250 {
1251 	return set_extent_bit(tree, start, end, bits, NULL,
1252 			      NULL, mask);
1253 }
1254 
1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1256 		      unsigned long bits, gfp_t mask)
1257 {
1258 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1259 }
1260 
1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1262 			struct extent_state **cached_state, gfp_t mask)
1263 {
1264 	return set_extent_bit(tree, start, end,
1265 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1266 			      NULL, cached_state, mask);
1267 }
1268 
1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 		      struct extent_state **cached_state, gfp_t mask)
1271 {
1272 	return set_extent_bit(tree, start, end,
1273 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 			      NULL, cached_state, mask);
1275 }
1276 
1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 		       gfp_t mask)
1279 {
1280 	return clear_extent_bit(tree, start, end,
1281 				EXTENT_DIRTY | EXTENT_DELALLOC |
1282 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1283 }
1284 
1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 		     gfp_t mask)
1287 {
1288 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1289 			      NULL, mask);
1290 }
1291 
1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293 			struct extent_state **cached_state, gfp_t mask)
1294 {
1295 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1296 			      cached_state, mask);
1297 }
1298 
1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 			  struct extent_state **cached_state, gfp_t mask)
1301 {
1302 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1303 				cached_state, mask);
1304 }
1305 
1306 /*
1307  * either insert or lock state struct between start and end use mask to tell
1308  * us if waiting is desired.
1309  */
1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 		     unsigned long bits, struct extent_state **cached_state)
1312 {
1313 	int err;
1314 	u64 failed_start;
1315 	while (1) {
1316 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 				       EXTENT_LOCKED, &failed_start,
1318 				       cached_state, GFP_NOFS);
1319 		if (err == -EEXIST) {
1320 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 			start = failed_start;
1322 		} else
1323 			break;
1324 		WARN_ON(start > end);
1325 	}
1326 	return err;
1327 }
1328 
1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331 	return lock_extent_bits(tree, start, end, 0, NULL);
1332 }
1333 
1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1335 {
1336 	int err;
1337 	u64 failed_start;
1338 
1339 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 			       &failed_start, NULL, GFP_NOFS);
1341 	if (err == -EEXIST) {
1342 		if (failed_start > start)
1343 			clear_extent_bit(tree, start, failed_start - 1,
1344 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1345 		return 0;
1346 	}
1347 	return 1;
1348 }
1349 
1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 			 struct extent_state **cached, gfp_t mask)
1352 {
1353 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 				mask);
1355 }
1356 
1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1360 				GFP_NOFS);
1361 }
1362 
1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 	struct page *page;
1368 
1369 	while (index <= end_index) {
1370 		page = find_get_page(inode->i_mapping, index);
1371 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 		clear_page_dirty_for_io(page);
1373 		page_cache_release(page);
1374 		index++;
1375 	}
1376 	return 0;
1377 }
1378 
1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 	struct page *page;
1384 
1385 	while (index <= end_index) {
1386 		page = find_get_page(inode->i_mapping, index);
1387 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 		account_page_redirty(page);
1389 		__set_page_dirty_nobuffers(page);
1390 		page_cache_release(page);
1391 		index++;
1392 	}
1393 	return 0;
1394 }
1395 
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 	struct page *page;
1404 
1405 	while (index <= end_index) {
1406 		page = find_get_page(tree->mapping, index);
1407 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 		set_page_writeback(page);
1409 		page_cache_release(page);
1410 		index++;
1411 	}
1412 	return 0;
1413 }
1414 
1415 /* find the first state struct with 'bits' set after 'start', and
1416  * return it.  tree->lock must be held.  NULL will returned if
1417  * nothing was found after 'start'
1418  */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 			    u64 start, unsigned long bits)
1422 {
1423 	struct rb_node *node;
1424 	struct extent_state *state;
1425 
1426 	/*
1427 	 * this search will find all the extents that end after
1428 	 * our range starts.
1429 	 */
1430 	node = tree_search(tree, start);
1431 	if (!node)
1432 		goto out;
1433 
1434 	while (1) {
1435 		state = rb_entry(node, struct extent_state, rb_node);
1436 		if (state->end >= start && (state->state & bits))
1437 			return state;
1438 
1439 		node = rb_next(node);
1440 		if (!node)
1441 			break;
1442 	}
1443 out:
1444 	return NULL;
1445 }
1446 
1447 /*
1448  * find the first offset in the io tree with 'bits' set. zero is
1449  * returned if we find something, and *start_ret and *end_ret are
1450  * set to reflect the state struct that was found.
1451  *
1452  * If nothing was found, 1 is returned. If found something, return 0.
1453  */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1456 			  struct extent_state **cached_state)
1457 {
1458 	struct extent_state *state;
1459 	struct rb_node *n;
1460 	int ret = 1;
1461 
1462 	spin_lock(&tree->lock);
1463 	if (cached_state && *cached_state) {
1464 		state = *cached_state;
1465 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 			n = rb_next(&state->rb_node);
1467 			while (n) {
1468 				state = rb_entry(n, struct extent_state,
1469 						 rb_node);
1470 				if (state->state & bits)
1471 					goto got_it;
1472 				n = rb_next(n);
1473 			}
1474 			free_extent_state(*cached_state);
1475 			*cached_state = NULL;
1476 			goto out;
1477 		}
1478 		free_extent_state(*cached_state);
1479 		*cached_state = NULL;
1480 	}
1481 
1482 	state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 	if (state) {
1485 		cache_state(state, cached_state);
1486 		*start_ret = state->start;
1487 		*end_ret = state->end;
1488 		ret = 0;
1489 	}
1490 out:
1491 	spin_unlock(&tree->lock);
1492 	return ret;
1493 }
1494 
1495 /*
1496  * find a contiguous range of bytes in the file marked as delalloc, not
1497  * more than 'max_bytes'.  start and end are used to return the range,
1498  *
1499  * 1 is returned if we find something, 0 if nothing was in the tree
1500  */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 					u64 *start, u64 *end, u64 max_bytes,
1503 					struct extent_state **cached_state)
1504 {
1505 	struct rb_node *node;
1506 	struct extent_state *state;
1507 	u64 cur_start = *start;
1508 	u64 found = 0;
1509 	u64 total_bytes = 0;
1510 
1511 	spin_lock(&tree->lock);
1512 
1513 	/*
1514 	 * this search will find all the extents that end after
1515 	 * our range starts.
1516 	 */
1517 	node = tree_search(tree, cur_start);
1518 	if (!node) {
1519 		if (!found)
1520 			*end = (u64)-1;
1521 		goto out;
1522 	}
1523 
1524 	while (1) {
1525 		state = rb_entry(node, struct extent_state, rb_node);
1526 		if (found && (state->start != cur_start ||
1527 			      (state->state & EXTENT_BOUNDARY))) {
1528 			goto out;
1529 		}
1530 		if (!(state->state & EXTENT_DELALLOC)) {
1531 			if (!found)
1532 				*end = state->end;
1533 			goto out;
1534 		}
1535 		if (!found) {
1536 			*start = state->start;
1537 			*cached_state = state;
1538 			atomic_inc(&state->refs);
1539 		}
1540 		found++;
1541 		*end = state->end;
1542 		cur_start = state->end + 1;
1543 		node = rb_next(node);
1544 		total_bytes += state->end - state->start + 1;
1545 		if (total_bytes >= max_bytes)
1546 			break;
1547 		if (!node)
1548 			break;
1549 	}
1550 out:
1551 	spin_unlock(&tree->lock);
1552 	return found;
1553 }
1554 
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 					   struct page *locked_page,
1557 					   u64 start, u64 end)
1558 {
1559 	int ret;
1560 	struct page *pages[16];
1561 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 	unsigned long nr_pages = end_index - index + 1;
1564 	int i;
1565 
1566 	if (index == locked_page->index && end_index == index)
1567 		return;
1568 
1569 	while (nr_pages > 0) {
1570 		ret = find_get_pages_contig(inode->i_mapping, index,
1571 				     min_t(unsigned long, nr_pages,
1572 				     ARRAY_SIZE(pages)), pages);
1573 		for (i = 0; i < ret; i++) {
1574 			if (pages[i] != locked_page)
1575 				unlock_page(pages[i]);
1576 			page_cache_release(pages[i]);
1577 		}
1578 		nr_pages -= ret;
1579 		index += ret;
1580 		cond_resched();
1581 	}
1582 }
1583 
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 					struct page *locked_page,
1586 					u64 delalloc_start,
1587 					u64 delalloc_end)
1588 {
1589 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 	unsigned long start_index = index;
1591 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 	unsigned long pages_locked = 0;
1593 	struct page *pages[16];
1594 	unsigned long nrpages;
1595 	int ret;
1596 	int i;
1597 
1598 	/* the caller is responsible for locking the start index */
1599 	if (index == locked_page->index && index == end_index)
1600 		return 0;
1601 
1602 	/* skip the page at the start index */
1603 	nrpages = end_index - index + 1;
1604 	while (nrpages > 0) {
1605 		ret = find_get_pages_contig(inode->i_mapping, index,
1606 				     min_t(unsigned long,
1607 				     nrpages, ARRAY_SIZE(pages)), pages);
1608 		if (ret == 0) {
1609 			ret = -EAGAIN;
1610 			goto done;
1611 		}
1612 		/* now we have an array of pages, lock them all */
1613 		for (i = 0; i < ret; i++) {
1614 			/*
1615 			 * the caller is taking responsibility for
1616 			 * locked_page
1617 			 */
1618 			if (pages[i] != locked_page) {
1619 				lock_page(pages[i]);
1620 				if (!PageDirty(pages[i]) ||
1621 				    pages[i]->mapping != inode->i_mapping) {
1622 					ret = -EAGAIN;
1623 					unlock_page(pages[i]);
1624 					page_cache_release(pages[i]);
1625 					goto done;
1626 				}
1627 			}
1628 			page_cache_release(pages[i]);
1629 			pages_locked++;
1630 		}
1631 		nrpages -= ret;
1632 		index += ret;
1633 		cond_resched();
1634 	}
1635 	ret = 0;
1636 done:
1637 	if (ret && pages_locked) {
1638 		__unlock_for_delalloc(inode, locked_page,
1639 			      delalloc_start,
1640 			      ((u64)(start_index + pages_locked - 1)) <<
1641 			      PAGE_CACHE_SHIFT);
1642 	}
1643 	return ret;
1644 }
1645 
1646 /*
1647  * find a contiguous range of bytes in the file marked as delalloc, not
1648  * more than 'max_bytes'.  start and end are used to return the range,
1649  *
1650  * 1 is returned if we find something, 0 if nothing was in the tree
1651  */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 				    struct extent_io_tree *tree,
1654 				    struct page *locked_page, u64 *start,
1655 				    u64 *end, u64 max_bytes)
1656 {
1657 	u64 delalloc_start;
1658 	u64 delalloc_end;
1659 	u64 found;
1660 	struct extent_state *cached_state = NULL;
1661 	int ret;
1662 	int loops = 0;
1663 
1664 again:
1665 	/* step one, find a bunch of delalloc bytes starting at start */
1666 	delalloc_start = *start;
1667 	delalloc_end = 0;
1668 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 				    max_bytes, &cached_state);
1670 	if (!found || delalloc_end <= *start) {
1671 		*start = delalloc_start;
1672 		*end = delalloc_end;
1673 		free_extent_state(cached_state);
1674 		return 0;
1675 	}
1676 
1677 	/*
1678 	 * start comes from the offset of locked_page.  We have to lock
1679 	 * pages in order, so we can't process delalloc bytes before
1680 	 * locked_page
1681 	 */
1682 	if (delalloc_start < *start)
1683 		delalloc_start = *start;
1684 
1685 	/*
1686 	 * make sure to limit the number of pages we try to lock down
1687 	 */
1688 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 		delalloc_end = delalloc_start + max_bytes - 1;
1690 
1691 	/* step two, lock all the pages after the page that has start */
1692 	ret = lock_delalloc_pages(inode, locked_page,
1693 				  delalloc_start, delalloc_end);
1694 	if (ret == -EAGAIN) {
1695 		/* some of the pages are gone, lets avoid looping by
1696 		 * shortening the size of the delalloc range we're searching
1697 		 */
1698 		free_extent_state(cached_state);
1699 		cached_state = NULL;
1700 		if (!loops) {
1701 			max_bytes = PAGE_CACHE_SIZE;
1702 			loops = 1;
1703 			goto again;
1704 		} else {
1705 			found = 0;
1706 			goto out_failed;
1707 		}
1708 	}
1709 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710 
1711 	/* step three, lock the state bits for the whole range */
1712 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1713 
1714 	/* then test to make sure it is all still delalloc */
1715 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 			     EXTENT_DELALLOC, 1, cached_state);
1717 	if (!ret) {
1718 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 				     &cached_state, GFP_NOFS);
1720 		__unlock_for_delalloc(inode, locked_page,
1721 			      delalloc_start, delalloc_end);
1722 		cond_resched();
1723 		goto again;
1724 	}
1725 	free_extent_state(cached_state);
1726 	*start = delalloc_start;
1727 	*end = delalloc_end;
1728 out_failed:
1729 	return found;
1730 }
1731 
1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 				 struct page *locked_page,
1734 				 unsigned long clear_bits,
1735 				 unsigned long page_ops)
1736 {
1737 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 	int ret;
1739 	struct page *pages[16];
1740 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 	unsigned long nr_pages = end_index - index + 1;
1743 	int i;
1744 
1745 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 	if (page_ops == 0)
1747 		return 0;
1748 
1749 	while (nr_pages > 0) {
1750 		ret = find_get_pages_contig(inode->i_mapping, index,
1751 				     min_t(unsigned long,
1752 				     nr_pages, ARRAY_SIZE(pages)), pages);
1753 		for (i = 0; i < ret; i++) {
1754 
1755 			if (page_ops & PAGE_SET_PRIVATE2)
1756 				SetPagePrivate2(pages[i]);
1757 
1758 			if (pages[i] == locked_page) {
1759 				page_cache_release(pages[i]);
1760 				continue;
1761 			}
1762 			if (page_ops & PAGE_CLEAR_DIRTY)
1763 				clear_page_dirty_for_io(pages[i]);
1764 			if (page_ops & PAGE_SET_WRITEBACK)
1765 				set_page_writeback(pages[i]);
1766 			if (page_ops & PAGE_END_WRITEBACK)
1767 				end_page_writeback(pages[i]);
1768 			if (page_ops & PAGE_UNLOCK)
1769 				unlock_page(pages[i]);
1770 			page_cache_release(pages[i]);
1771 		}
1772 		nr_pages -= ret;
1773 		index += ret;
1774 		cond_resched();
1775 	}
1776 	return 0;
1777 }
1778 
1779 /*
1780  * count the number of bytes in the tree that have a given bit(s)
1781  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1782  * cached.  The total number found is returned.
1783  */
1784 u64 count_range_bits(struct extent_io_tree *tree,
1785 		     u64 *start, u64 search_end, u64 max_bytes,
1786 		     unsigned long bits, int contig)
1787 {
1788 	struct rb_node *node;
1789 	struct extent_state *state;
1790 	u64 cur_start = *start;
1791 	u64 total_bytes = 0;
1792 	u64 last = 0;
1793 	int found = 0;
1794 
1795 	if (WARN_ON(search_end <= cur_start))
1796 		return 0;
1797 
1798 	spin_lock(&tree->lock);
1799 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 		total_bytes = tree->dirty_bytes;
1801 		goto out;
1802 	}
1803 	/*
1804 	 * this search will find all the extents that end after
1805 	 * our range starts.
1806 	 */
1807 	node = tree_search(tree, cur_start);
1808 	if (!node)
1809 		goto out;
1810 
1811 	while (1) {
1812 		state = rb_entry(node, struct extent_state, rb_node);
1813 		if (state->start > search_end)
1814 			break;
1815 		if (contig && found && state->start > last + 1)
1816 			break;
1817 		if (state->end >= cur_start && (state->state & bits) == bits) {
1818 			total_bytes += min(search_end, state->end) + 1 -
1819 				       max(cur_start, state->start);
1820 			if (total_bytes >= max_bytes)
1821 				break;
1822 			if (!found) {
1823 				*start = max(cur_start, state->start);
1824 				found = 1;
1825 			}
1826 			last = state->end;
1827 		} else if (contig && found) {
1828 			break;
1829 		}
1830 		node = rb_next(node);
1831 		if (!node)
1832 			break;
1833 	}
1834 out:
1835 	spin_unlock(&tree->lock);
1836 	return total_bytes;
1837 }
1838 
1839 /*
1840  * set the private field for a given byte offset in the tree.  If there isn't
1841  * an extent_state there already, this does nothing.
1842  */
1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1844 {
1845 	struct rb_node *node;
1846 	struct extent_state *state;
1847 	int ret = 0;
1848 
1849 	spin_lock(&tree->lock);
1850 	/*
1851 	 * this search will find all the extents that end after
1852 	 * our range starts.
1853 	 */
1854 	node = tree_search(tree, start);
1855 	if (!node) {
1856 		ret = -ENOENT;
1857 		goto out;
1858 	}
1859 	state = rb_entry(node, struct extent_state, rb_node);
1860 	if (state->start != start) {
1861 		ret = -ENOENT;
1862 		goto out;
1863 	}
1864 	state->private = private;
1865 out:
1866 	spin_unlock(&tree->lock);
1867 	return ret;
1868 }
1869 
1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871 {
1872 	struct rb_node *node;
1873 	struct extent_state *state;
1874 	int ret = 0;
1875 
1876 	spin_lock(&tree->lock);
1877 	/*
1878 	 * this search will find all the extents that end after
1879 	 * our range starts.
1880 	 */
1881 	node = tree_search(tree, start);
1882 	if (!node) {
1883 		ret = -ENOENT;
1884 		goto out;
1885 	}
1886 	state = rb_entry(node, struct extent_state, rb_node);
1887 	if (state->start != start) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	*private = state->private;
1892 out:
1893 	spin_unlock(&tree->lock);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * searches a range in the state tree for a given mask.
1899  * If 'filled' == 1, this returns 1 only if every extent in the tree
1900  * has the bits set.  Otherwise, 1 is returned if any bit in the
1901  * range is found set.
1902  */
1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1904 		   unsigned long bits, int filled, struct extent_state *cached)
1905 {
1906 	struct extent_state *state = NULL;
1907 	struct rb_node *node;
1908 	int bitset = 0;
1909 
1910 	spin_lock(&tree->lock);
1911 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1912 	    cached->end > start)
1913 		node = &cached->rb_node;
1914 	else
1915 		node = tree_search(tree, start);
1916 	while (node && start <= end) {
1917 		state = rb_entry(node, struct extent_state, rb_node);
1918 
1919 		if (filled && state->start > start) {
1920 			bitset = 0;
1921 			break;
1922 		}
1923 
1924 		if (state->start > end)
1925 			break;
1926 
1927 		if (state->state & bits) {
1928 			bitset = 1;
1929 			if (!filled)
1930 				break;
1931 		} else if (filled) {
1932 			bitset = 0;
1933 			break;
1934 		}
1935 
1936 		if (state->end == (u64)-1)
1937 			break;
1938 
1939 		start = state->end + 1;
1940 		if (start > end)
1941 			break;
1942 		node = rb_next(node);
1943 		if (!node) {
1944 			if (filled)
1945 				bitset = 0;
1946 			break;
1947 		}
1948 	}
1949 	spin_unlock(&tree->lock);
1950 	return bitset;
1951 }
1952 
1953 /*
1954  * helper function to set a given page up to date if all the
1955  * extents in the tree for that page are up to date
1956  */
1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1958 {
1959 	u64 start = page_offset(page);
1960 	u64 end = start + PAGE_CACHE_SIZE - 1;
1961 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1962 		SetPageUptodate(page);
1963 }
1964 
1965 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1966 {
1967 	int ret;
1968 	int err = 0;
1969 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1970 
1971 	set_state_private(failure_tree, rec->start, 0);
1972 	ret = clear_extent_bits(failure_tree, rec->start,
1973 				rec->start + rec->len - 1,
1974 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1975 	if (ret)
1976 		err = ret;
1977 
1978 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1979 				rec->start + rec->len - 1,
1980 				EXTENT_DAMAGED, GFP_NOFS);
1981 	if (ret && !err)
1982 		err = ret;
1983 
1984 	kfree(rec);
1985 	return err;
1986 }
1987 
1988 /*
1989  * this bypasses the standard btrfs submit functions deliberately, as
1990  * the standard behavior is to write all copies in a raid setup. here we only
1991  * want to write the one bad copy. so we do the mapping for ourselves and issue
1992  * submit_bio directly.
1993  * to avoid any synchronization issues, wait for the data after writing, which
1994  * actually prevents the read that triggered the error from finishing.
1995  * currently, there can be no more than two copies of every data bit. thus,
1996  * exactly one rewrite is required.
1997  */
1998 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
1999 		      struct page *page, unsigned int pg_offset, int mirror_num)
2000 {
2001 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2002 	struct bio *bio;
2003 	struct btrfs_device *dev;
2004 	u64 map_length = 0;
2005 	u64 sector;
2006 	struct btrfs_bio *bbio = NULL;
2007 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2008 	int ret;
2009 
2010 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2011 	BUG_ON(!mirror_num);
2012 
2013 	/* we can't repair anything in raid56 yet */
2014 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 		return 0;
2016 
2017 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2018 	if (!bio)
2019 		return -EIO;
2020 	bio->bi_iter.bi_size = 0;
2021 	map_length = length;
2022 
2023 	ret = btrfs_map_block(fs_info, WRITE, logical,
2024 			      &map_length, &bbio, mirror_num);
2025 	if (ret) {
2026 		bio_put(bio);
2027 		return -EIO;
2028 	}
2029 	BUG_ON(mirror_num != bbio->mirror_num);
2030 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2031 	bio->bi_iter.bi_sector = sector;
2032 	dev = bbio->stripes[mirror_num-1].dev;
2033 	kfree(bbio);
2034 	if (!dev || !dev->bdev || !dev->writeable) {
2035 		bio_put(bio);
2036 		return -EIO;
2037 	}
2038 	bio->bi_bdev = dev->bdev;
2039 	bio_add_page(bio, page, length, pg_offset);
2040 
2041 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2042 		/* try to remap that extent elsewhere? */
2043 		bio_put(bio);
2044 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2045 		return -EIO;
2046 	}
2047 
2048 	printk_ratelimited_in_rcu(KERN_INFO
2049 				  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2050 				  btrfs_ino(inode), start,
2051 				  rcu_str_deref(dev->name), sector);
2052 	bio_put(bio);
2053 	return 0;
2054 }
2055 
2056 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2057 			 int mirror_num)
2058 {
2059 	u64 start = eb->start;
2060 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 	int ret = 0;
2062 
2063 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2064 		return -EROFS;
2065 
2066 	for (i = 0; i < num_pages; i++) {
2067 		struct page *p = eb->pages[i];
2068 
2069 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2070 					PAGE_CACHE_SIZE, start, p,
2071 					start - page_offset(p), mirror_num);
2072 		if (ret)
2073 			break;
2074 		start += PAGE_CACHE_SIZE;
2075 	}
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * each time an IO finishes, we do a fast check in the IO failure tree
2082  * to see if we need to process or clean up an io_failure_record
2083  */
2084 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2085 		     unsigned int pg_offset)
2086 {
2087 	u64 private;
2088 	u64 private_failure;
2089 	struct io_failure_record *failrec;
2090 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2091 	struct extent_state *state;
2092 	int num_copies;
2093 	int ret;
2094 
2095 	private = 0;
2096 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 				(u64)-1, 1, EXTENT_DIRTY, 0);
2098 	if (!ret)
2099 		return 0;
2100 
2101 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2102 				&private_failure);
2103 	if (ret)
2104 		return 0;
2105 
2106 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2107 	BUG_ON(!failrec->this_mirror);
2108 
2109 	if (failrec->in_validation) {
2110 		/* there was no real error, just free the record */
2111 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 			 failrec->start);
2113 		goto out;
2114 	}
2115 	if (fs_info->sb->s_flags & MS_RDONLY)
2116 		goto out;
2117 
2118 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 					    failrec->start,
2121 					    EXTENT_LOCKED);
2122 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123 
2124 	if (state && state->start <= failrec->start &&
2125 	    state->end >= failrec->start + failrec->len - 1) {
2126 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 					      failrec->len);
2128 		if (num_copies > 1)  {
2129 			repair_io_failure(inode, start, failrec->len,
2130 					  failrec->logical, page,
2131 					  pg_offset, failrec->failed_mirror);
2132 		}
2133 	}
2134 
2135 out:
2136 	free_io_failure(inode, failrec);
2137 
2138 	return 0;
2139 }
2140 
2141 /*
2142  * Can be called when
2143  * - hold extent lock
2144  * - under ordered extent
2145  * - the inode is freeing
2146  */
2147 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2148 {
2149 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2150 	struct io_failure_record *failrec;
2151 	struct extent_state *state, *next;
2152 
2153 	if (RB_EMPTY_ROOT(&failure_tree->state))
2154 		return;
2155 
2156 	spin_lock(&failure_tree->lock);
2157 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 	while (state) {
2159 		if (state->start > end)
2160 			break;
2161 
2162 		ASSERT(state->end <= end);
2163 
2164 		next = next_state(state);
2165 
2166 		failrec = (struct io_failure_record *)state->private;
2167 		free_extent_state(state);
2168 		kfree(failrec);
2169 
2170 		state = next;
2171 	}
2172 	spin_unlock(&failure_tree->lock);
2173 }
2174 
2175 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 				struct io_failure_record **failrec_ret)
2177 {
2178 	struct io_failure_record *failrec;
2179 	u64 private;
2180 	struct extent_map *em;
2181 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 	int ret;
2185 	u64 logical;
2186 
2187 	ret = get_state_private(failure_tree, start, &private);
2188 	if (ret) {
2189 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 		if (!failrec)
2191 			return -ENOMEM;
2192 
2193 		failrec->start = start;
2194 		failrec->len = end - start + 1;
2195 		failrec->this_mirror = 0;
2196 		failrec->bio_flags = 0;
2197 		failrec->in_validation = 0;
2198 
2199 		read_lock(&em_tree->lock);
2200 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 		if (!em) {
2202 			read_unlock(&em_tree->lock);
2203 			kfree(failrec);
2204 			return -EIO;
2205 		}
2206 
2207 		if (em->start > start || em->start + em->len <= start) {
2208 			free_extent_map(em);
2209 			em = NULL;
2210 		}
2211 		read_unlock(&em_tree->lock);
2212 		if (!em) {
2213 			kfree(failrec);
2214 			return -EIO;
2215 		}
2216 
2217 		logical = start - em->start;
2218 		logical = em->block_start + logical;
2219 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 			logical = em->block_start;
2221 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 			extent_set_compress_type(&failrec->bio_flags,
2223 						 em->compress_type);
2224 		}
2225 
2226 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2227 			 logical, start, failrec->len);
2228 
2229 		failrec->logical = logical;
2230 		free_extent_map(em);
2231 
2232 		/* set the bits in the private failure tree */
2233 		ret = set_extent_bits(failure_tree, start, end,
2234 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235 		if (ret >= 0)
2236 			ret = set_state_private(failure_tree, start,
2237 						(u64)(unsigned long)failrec);
2238 		/* set the bits in the inode's tree */
2239 		if (ret >= 0)
2240 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 						GFP_NOFS);
2242 		if (ret < 0) {
2243 			kfree(failrec);
2244 			return ret;
2245 		}
2246 	} else {
2247 		failrec = (struct io_failure_record *)(unsigned long)private;
2248 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2249 			 failrec->logical, failrec->start, failrec->len,
2250 			 failrec->in_validation);
2251 		/*
2252 		 * when data can be on disk more than twice, add to failrec here
2253 		 * (e.g. with a list for failed_mirror) to make
2254 		 * clean_io_failure() clean all those errors at once.
2255 		 */
2256 	}
2257 
2258 	*failrec_ret = failrec;
2259 
2260 	return 0;
2261 }
2262 
2263 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2264 			   struct io_failure_record *failrec, int failed_mirror)
2265 {
2266 	int num_copies;
2267 
2268 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2269 				      failrec->logical, failrec->len);
2270 	if (num_copies == 1) {
2271 		/*
2272 		 * we only have a single copy of the data, so don't bother with
2273 		 * all the retry and error correction code that follows. no
2274 		 * matter what the error is, it is very likely to persist.
2275 		 */
2276 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2277 			 num_copies, failrec->this_mirror, failed_mirror);
2278 		return 0;
2279 	}
2280 
2281 	/*
2282 	 * there are two premises:
2283 	 *	a) deliver good data to the caller
2284 	 *	b) correct the bad sectors on disk
2285 	 */
2286 	if (failed_bio->bi_vcnt > 1) {
2287 		/*
2288 		 * to fulfill b), we need to know the exact failing sectors, as
2289 		 * we don't want to rewrite any more than the failed ones. thus,
2290 		 * we need separate read requests for the failed bio
2291 		 *
2292 		 * if the following BUG_ON triggers, our validation request got
2293 		 * merged. we need separate requests for our algorithm to work.
2294 		 */
2295 		BUG_ON(failrec->in_validation);
2296 		failrec->in_validation = 1;
2297 		failrec->this_mirror = failed_mirror;
2298 	} else {
2299 		/*
2300 		 * we're ready to fulfill a) and b) alongside. get a good copy
2301 		 * of the failed sector and if we succeed, we have setup
2302 		 * everything for repair_io_failure to do the rest for us.
2303 		 */
2304 		if (failrec->in_validation) {
2305 			BUG_ON(failrec->this_mirror != failed_mirror);
2306 			failrec->in_validation = 0;
2307 			failrec->this_mirror = 0;
2308 		}
2309 		failrec->failed_mirror = failed_mirror;
2310 		failrec->this_mirror++;
2311 		if (failrec->this_mirror == failed_mirror)
2312 			failrec->this_mirror++;
2313 	}
2314 
2315 	if (failrec->this_mirror > num_copies) {
2316 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2317 			 num_copies, failrec->this_mirror, failed_mirror);
2318 		return 0;
2319 	}
2320 
2321 	return 1;
2322 }
2323 
2324 
2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 				    struct io_failure_record *failrec,
2327 				    struct page *page, int pg_offset, int icsum,
2328 				    bio_end_io_t *endio_func, void *data)
2329 {
2330 	struct bio *bio;
2331 	struct btrfs_io_bio *btrfs_failed_bio;
2332 	struct btrfs_io_bio *btrfs_bio;
2333 
2334 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2335 	if (!bio)
2336 		return NULL;
2337 
2338 	bio->bi_end_io = endio_func;
2339 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2340 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2341 	bio->bi_iter.bi_size = 0;
2342 	bio->bi_private = data;
2343 
2344 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2345 	if (btrfs_failed_bio->csum) {
2346 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2347 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2348 
2349 		btrfs_bio = btrfs_io_bio(bio);
2350 		btrfs_bio->csum = btrfs_bio->csum_inline;
2351 		icsum *= csum_size;
2352 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2353 		       csum_size);
2354 	}
2355 
2356 	bio_add_page(bio, page, failrec->len, pg_offset);
2357 
2358 	return bio;
2359 }
2360 
2361 /*
2362  * this is a generic handler for readpage errors (default
2363  * readpage_io_failed_hook). if other copies exist, read those and write back
2364  * good data to the failed position. does not investigate in remapping the
2365  * failed extent elsewhere, hoping the device will be smart enough to do this as
2366  * needed
2367  */
2368 
2369 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2370 			      struct page *page, u64 start, u64 end,
2371 			      int failed_mirror)
2372 {
2373 	struct io_failure_record *failrec;
2374 	struct inode *inode = page->mapping->host;
2375 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2376 	struct bio *bio;
2377 	int read_mode;
2378 	int ret;
2379 
2380 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2381 
2382 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 	if (ret)
2384 		return ret;
2385 
2386 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2387 	if (!ret) {
2388 		free_io_failure(inode, failrec);
2389 		return -EIO;
2390 	}
2391 
2392 	if (failed_bio->bi_vcnt > 1)
2393 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2394 	else
2395 		read_mode = READ_SYNC;
2396 
2397 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2398 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2399 				      start - page_offset(page),
2400 				      (int)phy_offset, failed_bio->bi_end_io,
2401 				      NULL);
2402 	if (!bio) {
2403 		free_io_failure(inode, failrec);
2404 		return -EIO;
2405 	}
2406 
2407 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2408 		 read_mode, failrec->this_mirror, failrec->in_validation);
2409 
2410 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2411 					 failrec->this_mirror,
2412 					 failrec->bio_flags, 0);
2413 	if (ret) {
2414 		free_io_failure(inode, failrec);
2415 		bio_put(bio);
2416 	}
2417 
2418 	return ret;
2419 }
2420 
2421 /* lots and lots of room for performance fixes in the end_bio funcs */
2422 
2423 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424 {
2425 	int uptodate = (err == 0);
2426 	struct extent_io_tree *tree;
2427 	int ret = 0;
2428 
2429 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2430 
2431 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2432 		ret = tree->ops->writepage_end_io_hook(page, start,
2433 					       end, NULL, uptodate);
2434 		if (ret)
2435 			uptodate = 0;
2436 	}
2437 
2438 	if (!uptodate) {
2439 		ClearPageUptodate(page);
2440 		SetPageError(page);
2441 		ret = ret < 0 ? ret : -EIO;
2442 		mapping_set_error(page->mapping, ret);
2443 	}
2444 	return 0;
2445 }
2446 
2447 /*
2448  * after a writepage IO is done, we need to:
2449  * clear the uptodate bits on error
2450  * clear the writeback bits in the extent tree for this IO
2451  * end_page_writeback if the page has no more pending IO
2452  *
2453  * Scheduling is not allowed, so the extent state tree is expected
2454  * to have one and only one object corresponding to this IO.
2455  */
2456 static void end_bio_extent_writepage(struct bio *bio, int err)
2457 {
2458 	struct bio_vec *bvec;
2459 	u64 start;
2460 	u64 end;
2461 	int i;
2462 
2463 	bio_for_each_segment_all(bvec, bio, i) {
2464 		struct page *page = bvec->bv_page;
2465 
2466 		/* We always issue full-page reads, but if some block
2467 		 * in a page fails to read, blk_update_request() will
2468 		 * advance bv_offset and adjust bv_len to compensate.
2469 		 * Print a warning for nonzero offsets, and an error
2470 		 * if they don't add up to a full page.  */
2471 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2472 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2473 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2474 				   "partial page write in btrfs with offset %u and length %u",
2475 					bvec->bv_offset, bvec->bv_len);
2476 			else
2477 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2478 				   "incomplete page write in btrfs with offset %u and "
2479 				   "length %u",
2480 					bvec->bv_offset, bvec->bv_len);
2481 		}
2482 
2483 		start = page_offset(page);
2484 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2485 
2486 		if (end_extent_writepage(page, err, start, end))
2487 			continue;
2488 
2489 		end_page_writeback(page);
2490 	}
2491 
2492 	bio_put(bio);
2493 }
2494 
2495 static void
2496 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2497 			      int uptodate)
2498 {
2499 	struct extent_state *cached = NULL;
2500 	u64 end = start + len - 1;
2501 
2502 	if (uptodate && tree->track_uptodate)
2503 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2504 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2505 }
2506 
2507 /*
2508  * after a readpage IO is done, we need to:
2509  * clear the uptodate bits on error
2510  * set the uptodate bits if things worked
2511  * set the page up to date if all extents in the tree are uptodate
2512  * clear the lock bit in the extent tree
2513  * unlock the page if there are no other extents locked for it
2514  *
2515  * Scheduling is not allowed, so the extent state tree is expected
2516  * to have one and only one object corresponding to this IO.
2517  */
2518 static void end_bio_extent_readpage(struct bio *bio, int err)
2519 {
2520 	struct bio_vec *bvec;
2521 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2522 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2523 	struct extent_io_tree *tree;
2524 	u64 offset = 0;
2525 	u64 start;
2526 	u64 end;
2527 	u64 len;
2528 	u64 extent_start = 0;
2529 	u64 extent_len = 0;
2530 	int mirror;
2531 	int ret;
2532 	int i;
2533 
2534 	if (err)
2535 		uptodate = 0;
2536 
2537 	bio_for_each_segment_all(bvec, bio, i) {
2538 		struct page *page = bvec->bv_page;
2539 		struct inode *inode = page->mapping->host;
2540 
2541 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2542 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
2543 			 io_bio->mirror_num);
2544 		tree = &BTRFS_I(inode)->io_tree;
2545 
2546 		/* We always issue full-page reads, but if some block
2547 		 * in a page fails to read, blk_update_request() will
2548 		 * advance bv_offset and adjust bv_len to compensate.
2549 		 * Print a warning for nonzero offsets, and an error
2550 		 * if they don't add up to a full page.  */
2551 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2552 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2553 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2554 				   "partial page read in btrfs with offset %u and length %u",
2555 					bvec->bv_offset, bvec->bv_len);
2556 			else
2557 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2558 				   "incomplete page read in btrfs with offset %u and "
2559 				   "length %u",
2560 					bvec->bv_offset, bvec->bv_len);
2561 		}
2562 
2563 		start = page_offset(page);
2564 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2565 		len = bvec->bv_len;
2566 
2567 		mirror = io_bio->mirror_num;
2568 		if (likely(uptodate && tree->ops &&
2569 			   tree->ops->readpage_end_io_hook)) {
2570 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2571 							      page, start, end,
2572 							      mirror);
2573 			if (ret)
2574 				uptodate = 0;
2575 			else
2576 				clean_io_failure(inode, start, page, 0);
2577 		}
2578 
2579 		if (likely(uptodate))
2580 			goto readpage_ok;
2581 
2582 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2583 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2584 			if (!ret && !err &&
2585 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2586 				uptodate = 1;
2587 		} else {
2588 			/*
2589 			 * The generic bio_readpage_error handles errors the
2590 			 * following way: If possible, new read requests are
2591 			 * created and submitted and will end up in
2592 			 * end_bio_extent_readpage as well (if we're lucky, not
2593 			 * in the !uptodate case). In that case it returns 0 and
2594 			 * we just go on with the next page in our bio. If it
2595 			 * can't handle the error it will return -EIO and we
2596 			 * remain responsible for that page.
2597 			 */
2598 			ret = bio_readpage_error(bio, offset, page, start, end,
2599 						 mirror);
2600 			if (ret == 0) {
2601 				uptodate =
2602 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2603 				if (err)
2604 					uptodate = 0;
2605 				offset += len;
2606 				continue;
2607 			}
2608 		}
2609 readpage_ok:
2610 		if (likely(uptodate)) {
2611 			loff_t i_size = i_size_read(inode);
2612 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2613 			unsigned off;
2614 
2615 			/* Zero out the end if this page straddles i_size */
2616 			off = i_size & (PAGE_CACHE_SIZE-1);
2617 			if (page->index == end_index && off)
2618 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2619 			SetPageUptodate(page);
2620 		} else {
2621 			ClearPageUptodate(page);
2622 			SetPageError(page);
2623 		}
2624 		unlock_page(page);
2625 		offset += len;
2626 
2627 		if (unlikely(!uptodate)) {
2628 			if (extent_len) {
2629 				endio_readpage_release_extent(tree,
2630 							      extent_start,
2631 							      extent_len, 1);
2632 				extent_start = 0;
2633 				extent_len = 0;
2634 			}
2635 			endio_readpage_release_extent(tree, start,
2636 						      end - start + 1, 0);
2637 		} else if (!extent_len) {
2638 			extent_start = start;
2639 			extent_len = end + 1 - start;
2640 		} else if (extent_start + extent_len == start) {
2641 			extent_len += end + 1 - start;
2642 		} else {
2643 			endio_readpage_release_extent(tree, extent_start,
2644 						      extent_len, uptodate);
2645 			extent_start = start;
2646 			extent_len = end + 1 - start;
2647 		}
2648 	}
2649 
2650 	if (extent_len)
2651 		endio_readpage_release_extent(tree, extent_start, extent_len,
2652 					      uptodate);
2653 	if (io_bio->end_io)
2654 		io_bio->end_io(io_bio, err);
2655 	bio_put(bio);
2656 }
2657 
2658 /*
2659  * this allocates from the btrfs_bioset.  We're returning a bio right now
2660  * but you can call btrfs_io_bio for the appropriate container_of magic
2661  */
2662 struct bio *
2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 		gfp_t gfp_flags)
2665 {
2666 	struct btrfs_io_bio *btrfs_bio;
2667 	struct bio *bio;
2668 
2669 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2670 
2671 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2672 		while (!bio && (nr_vecs /= 2)) {
2673 			bio = bio_alloc_bioset(gfp_flags,
2674 					       nr_vecs, btrfs_bioset);
2675 		}
2676 	}
2677 
2678 	if (bio) {
2679 		bio->bi_bdev = bdev;
2680 		bio->bi_iter.bi_sector = first_sector;
2681 		btrfs_bio = btrfs_io_bio(bio);
2682 		btrfs_bio->csum = NULL;
2683 		btrfs_bio->csum_allocated = NULL;
2684 		btrfs_bio->end_io = NULL;
2685 	}
2686 	return bio;
2687 }
2688 
2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690 {
2691 	struct btrfs_io_bio *btrfs_bio;
2692 	struct bio *new;
2693 
2694 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 	if (new) {
2696 		btrfs_bio = btrfs_io_bio(new);
2697 		btrfs_bio->csum = NULL;
2698 		btrfs_bio->csum_allocated = NULL;
2699 		btrfs_bio->end_io = NULL;
2700 	}
2701 	return new;
2702 }
2703 
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706 {
2707 	struct btrfs_io_bio *btrfs_bio;
2708 	struct bio *bio;
2709 
2710 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 	if (bio) {
2712 		btrfs_bio = btrfs_io_bio(bio);
2713 		btrfs_bio->csum = NULL;
2714 		btrfs_bio->csum_allocated = NULL;
2715 		btrfs_bio->end_io = NULL;
2716 	}
2717 	return bio;
2718 }
2719 
2720 
2721 static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 				       int mirror_num, unsigned long bio_flags)
2723 {
2724 	int ret = 0;
2725 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 	struct page *page = bvec->bv_page;
2727 	struct extent_io_tree *tree = bio->bi_private;
2728 	u64 start;
2729 
2730 	start = page_offset(page) + bvec->bv_offset;
2731 
2732 	bio->bi_private = NULL;
2733 
2734 	bio_get(bio);
2735 
2736 	if (tree->ops && tree->ops->submit_bio_hook)
2737 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2738 					   mirror_num, bio_flags, start);
2739 	else
2740 		btrfsic_submit_bio(rw, bio);
2741 
2742 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2743 		ret = -EOPNOTSUPP;
2744 	bio_put(bio);
2745 	return ret;
2746 }
2747 
2748 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2749 		     unsigned long offset, size_t size, struct bio *bio,
2750 		     unsigned long bio_flags)
2751 {
2752 	int ret = 0;
2753 	if (tree->ops && tree->ops->merge_bio_hook)
2754 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2755 						bio_flags);
2756 	BUG_ON(ret < 0);
2757 	return ret;
2758 
2759 }
2760 
2761 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2762 			      struct page *page, sector_t sector,
2763 			      size_t size, unsigned long offset,
2764 			      struct block_device *bdev,
2765 			      struct bio **bio_ret,
2766 			      unsigned long max_pages,
2767 			      bio_end_io_t end_io_func,
2768 			      int mirror_num,
2769 			      unsigned long prev_bio_flags,
2770 			      unsigned long bio_flags)
2771 {
2772 	int ret = 0;
2773 	struct bio *bio;
2774 	int nr;
2775 	int contig = 0;
2776 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2777 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2778 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2779 
2780 	if (bio_ret && *bio_ret) {
2781 		bio = *bio_ret;
2782 		if (old_compressed)
2783 			contig = bio->bi_iter.bi_sector == sector;
2784 		else
2785 			contig = bio_end_sector(bio) == sector;
2786 
2787 		if (prev_bio_flags != bio_flags || !contig ||
2788 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2789 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2790 			ret = submit_one_bio(rw, bio, mirror_num,
2791 					     prev_bio_flags);
2792 			if (ret < 0)
2793 				return ret;
2794 			bio = NULL;
2795 		} else {
2796 			return 0;
2797 		}
2798 	}
2799 	if (this_compressed)
2800 		nr = BIO_MAX_PAGES;
2801 	else
2802 		nr = bio_get_nr_vecs(bdev);
2803 
2804 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2805 	if (!bio)
2806 		return -ENOMEM;
2807 
2808 	bio_add_page(bio, page, page_size, offset);
2809 	bio->bi_end_io = end_io_func;
2810 	bio->bi_private = tree;
2811 
2812 	if (bio_ret)
2813 		*bio_ret = bio;
2814 	else
2815 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2816 
2817 	return ret;
2818 }
2819 
2820 static void attach_extent_buffer_page(struct extent_buffer *eb,
2821 				      struct page *page)
2822 {
2823 	if (!PagePrivate(page)) {
2824 		SetPagePrivate(page);
2825 		page_cache_get(page);
2826 		set_page_private(page, (unsigned long)eb);
2827 	} else {
2828 		WARN_ON(page->private != (unsigned long)eb);
2829 	}
2830 }
2831 
2832 void set_page_extent_mapped(struct page *page)
2833 {
2834 	if (!PagePrivate(page)) {
2835 		SetPagePrivate(page);
2836 		page_cache_get(page);
2837 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2838 	}
2839 }
2840 
2841 static struct extent_map *
2842 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2843 		 u64 start, u64 len, get_extent_t *get_extent,
2844 		 struct extent_map **em_cached)
2845 {
2846 	struct extent_map *em;
2847 
2848 	if (em_cached && *em_cached) {
2849 		em = *em_cached;
2850 		if (extent_map_in_tree(em) && start >= em->start &&
2851 		    start < extent_map_end(em)) {
2852 			atomic_inc(&em->refs);
2853 			return em;
2854 		}
2855 
2856 		free_extent_map(em);
2857 		*em_cached = NULL;
2858 	}
2859 
2860 	em = get_extent(inode, page, pg_offset, start, len, 0);
2861 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 		BUG_ON(*em_cached);
2863 		atomic_inc(&em->refs);
2864 		*em_cached = em;
2865 	}
2866 	return em;
2867 }
2868 /*
2869  * basic readpage implementation.  Locked extent state structs are inserted
2870  * into the tree that are removed when the IO is done (by the end_io
2871  * handlers)
2872  * XXX JDM: This needs looking at to ensure proper page locking
2873  */
2874 static int __do_readpage(struct extent_io_tree *tree,
2875 			 struct page *page,
2876 			 get_extent_t *get_extent,
2877 			 struct extent_map **em_cached,
2878 			 struct bio **bio, int mirror_num,
2879 			 unsigned long *bio_flags, int rw)
2880 {
2881 	struct inode *inode = page->mapping->host;
2882 	u64 start = page_offset(page);
2883 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2884 	u64 end;
2885 	u64 cur = start;
2886 	u64 extent_offset;
2887 	u64 last_byte = i_size_read(inode);
2888 	u64 block_start;
2889 	u64 cur_end;
2890 	sector_t sector;
2891 	struct extent_map *em;
2892 	struct block_device *bdev;
2893 	int ret;
2894 	int nr = 0;
2895 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2896 	size_t pg_offset = 0;
2897 	size_t iosize;
2898 	size_t disk_io_size;
2899 	size_t blocksize = inode->i_sb->s_blocksize;
2900 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2901 
2902 	set_page_extent_mapped(page);
2903 
2904 	end = page_end;
2905 	if (!PageUptodate(page)) {
2906 		if (cleancache_get_page(page) == 0) {
2907 			BUG_ON(blocksize != PAGE_SIZE);
2908 			unlock_extent(tree, start, end);
2909 			goto out;
2910 		}
2911 	}
2912 
2913 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2914 		char *userpage;
2915 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2916 
2917 		if (zero_offset) {
2918 			iosize = PAGE_CACHE_SIZE - zero_offset;
2919 			userpage = kmap_atomic(page);
2920 			memset(userpage + zero_offset, 0, iosize);
2921 			flush_dcache_page(page);
2922 			kunmap_atomic(userpage);
2923 		}
2924 	}
2925 	while (cur <= end) {
2926 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2927 
2928 		if (cur >= last_byte) {
2929 			char *userpage;
2930 			struct extent_state *cached = NULL;
2931 
2932 			iosize = PAGE_CACHE_SIZE - pg_offset;
2933 			userpage = kmap_atomic(page);
2934 			memset(userpage + pg_offset, 0, iosize);
2935 			flush_dcache_page(page);
2936 			kunmap_atomic(userpage);
2937 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 					    &cached, GFP_NOFS);
2939 			if (!parent_locked)
2940 				unlock_extent_cached(tree, cur,
2941 						     cur + iosize - 1,
2942 						     &cached, GFP_NOFS);
2943 			break;
2944 		}
2945 		em = __get_extent_map(inode, page, pg_offset, cur,
2946 				      end - cur + 1, get_extent, em_cached);
2947 		if (IS_ERR_OR_NULL(em)) {
2948 			SetPageError(page);
2949 			if (!parent_locked)
2950 				unlock_extent(tree, cur, end);
2951 			break;
2952 		}
2953 		extent_offset = cur - em->start;
2954 		BUG_ON(extent_map_end(em) <= cur);
2955 		BUG_ON(end < cur);
2956 
2957 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2958 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2959 			extent_set_compress_type(&this_bio_flag,
2960 						 em->compress_type);
2961 		}
2962 
2963 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2964 		cur_end = min(extent_map_end(em) - 1, end);
2965 		iosize = ALIGN(iosize, blocksize);
2966 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2967 			disk_io_size = em->block_len;
2968 			sector = em->block_start >> 9;
2969 		} else {
2970 			sector = (em->block_start + extent_offset) >> 9;
2971 			disk_io_size = iosize;
2972 		}
2973 		bdev = em->bdev;
2974 		block_start = em->block_start;
2975 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2976 			block_start = EXTENT_MAP_HOLE;
2977 		free_extent_map(em);
2978 		em = NULL;
2979 
2980 		/* we've found a hole, just zero and go on */
2981 		if (block_start == EXTENT_MAP_HOLE) {
2982 			char *userpage;
2983 			struct extent_state *cached = NULL;
2984 
2985 			userpage = kmap_atomic(page);
2986 			memset(userpage + pg_offset, 0, iosize);
2987 			flush_dcache_page(page);
2988 			kunmap_atomic(userpage);
2989 
2990 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2991 					    &cached, GFP_NOFS);
2992 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2993 			                     &cached, GFP_NOFS);
2994 			cur = cur + iosize;
2995 			pg_offset += iosize;
2996 			continue;
2997 		}
2998 		/* the get_extent function already copied into the page */
2999 		if (test_range_bit(tree, cur, cur_end,
3000 				   EXTENT_UPTODATE, 1, NULL)) {
3001 			check_page_uptodate(tree, page);
3002 			if (!parent_locked)
3003 				unlock_extent(tree, cur, cur + iosize - 1);
3004 			cur = cur + iosize;
3005 			pg_offset += iosize;
3006 			continue;
3007 		}
3008 		/* we have an inline extent but it didn't get marked up
3009 		 * to date.  Error out
3010 		 */
3011 		if (block_start == EXTENT_MAP_INLINE) {
3012 			SetPageError(page);
3013 			if (!parent_locked)
3014 				unlock_extent(tree, cur, cur + iosize - 1);
3015 			cur = cur + iosize;
3016 			pg_offset += iosize;
3017 			continue;
3018 		}
3019 
3020 		pnr -= page->index;
3021 		ret = submit_extent_page(rw, tree, page,
3022 					 sector, disk_io_size, pg_offset,
3023 					 bdev, bio, pnr,
3024 					 end_bio_extent_readpage, mirror_num,
3025 					 *bio_flags,
3026 					 this_bio_flag);
3027 		if (!ret) {
3028 			nr++;
3029 			*bio_flags = this_bio_flag;
3030 		} else {
3031 			SetPageError(page);
3032 			if (!parent_locked)
3033 				unlock_extent(tree, cur, cur + iosize - 1);
3034 		}
3035 		cur = cur + iosize;
3036 		pg_offset += iosize;
3037 	}
3038 out:
3039 	if (!nr) {
3040 		if (!PageError(page))
3041 			SetPageUptodate(page);
3042 		unlock_page(page);
3043 	}
3044 	return 0;
3045 }
3046 
3047 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3048 					     struct page *pages[], int nr_pages,
3049 					     u64 start, u64 end,
3050 					     get_extent_t *get_extent,
3051 					     struct extent_map **em_cached,
3052 					     struct bio **bio, int mirror_num,
3053 					     unsigned long *bio_flags, int rw)
3054 {
3055 	struct inode *inode;
3056 	struct btrfs_ordered_extent *ordered;
3057 	int index;
3058 
3059 	inode = pages[0]->mapping->host;
3060 	while (1) {
3061 		lock_extent(tree, start, end);
3062 		ordered = btrfs_lookup_ordered_range(inode, start,
3063 						     end - start + 1);
3064 		if (!ordered)
3065 			break;
3066 		unlock_extent(tree, start, end);
3067 		btrfs_start_ordered_extent(inode, ordered, 1);
3068 		btrfs_put_ordered_extent(ordered);
3069 	}
3070 
3071 	for (index = 0; index < nr_pages; index++) {
3072 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3073 			      mirror_num, bio_flags, rw);
3074 		page_cache_release(pages[index]);
3075 	}
3076 }
3077 
3078 static void __extent_readpages(struct extent_io_tree *tree,
3079 			       struct page *pages[],
3080 			       int nr_pages, get_extent_t *get_extent,
3081 			       struct extent_map **em_cached,
3082 			       struct bio **bio, int mirror_num,
3083 			       unsigned long *bio_flags, int rw)
3084 {
3085 	u64 start = 0;
3086 	u64 end = 0;
3087 	u64 page_start;
3088 	int index;
3089 	int first_index = 0;
3090 
3091 	for (index = 0; index < nr_pages; index++) {
3092 		page_start = page_offset(pages[index]);
3093 		if (!end) {
3094 			start = page_start;
3095 			end = start + PAGE_CACHE_SIZE - 1;
3096 			first_index = index;
3097 		} else if (end + 1 == page_start) {
3098 			end += PAGE_CACHE_SIZE;
3099 		} else {
3100 			__do_contiguous_readpages(tree, &pages[first_index],
3101 						  index - first_index, start,
3102 						  end, get_extent, em_cached,
3103 						  bio, mirror_num, bio_flags,
3104 						  rw);
3105 			start = page_start;
3106 			end = start + PAGE_CACHE_SIZE - 1;
3107 			first_index = index;
3108 		}
3109 	}
3110 
3111 	if (end)
3112 		__do_contiguous_readpages(tree, &pages[first_index],
3113 					  index - first_index, start,
3114 					  end, get_extent, em_cached, bio,
3115 					  mirror_num, bio_flags, rw);
3116 }
3117 
3118 static int __extent_read_full_page(struct extent_io_tree *tree,
3119 				   struct page *page,
3120 				   get_extent_t *get_extent,
3121 				   struct bio **bio, int mirror_num,
3122 				   unsigned long *bio_flags, int rw)
3123 {
3124 	struct inode *inode = page->mapping->host;
3125 	struct btrfs_ordered_extent *ordered;
3126 	u64 start = page_offset(page);
3127 	u64 end = start + PAGE_CACHE_SIZE - 1;
3128 	int ret;
3129 
3130 	while (1) {
3131 		lock_extent(tree, start, end);
3132 		ordered = btrfs_lookup_ordered_extent(inode, start);
3133 		if (!ordered)
3134 			break;
3135 		unlock_extent(tree, start, end);
3136 		btrfs_start_ordered_extent(inode, ordered, 1);
3137 		btrfs_put_ordered_extent(ordered);
3138 	}
3139 
3140 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3141 			    bio_flags, rw);
3142 	return ret;
3143 }
3144 
3145 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3146 			    get_extent_t *get_extent, int mirror_num)
3147 {
3148 	struct bio *bio = NULL;
3149 	unsigned long bio_flags = 0;
3150 	int ret;
3151 
3152 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3153 				      &bio_flags, READ);
3154 	if (bio)
3155 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3156 	return ret;
3157 }
3158 
3159 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3160 				 get_extent_t *get_extent, int mirror_num)
3161 {
3162 	struct bio *bio = NULL;
3163 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3164 	int ret;
3165 
3166 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3167 				      &bio_flags, READ);
3168 	if (bio)
3169 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3170 	return ret;
3171 }
3172 
3173 static noinline void update_nr_written(struct page *page,
3174 				      struct writeback_control *wbc,
3175 				      unsigned long nr_written)
3176 {
3177 	wbc->nr_to_write -= nr_written;
3178 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3179 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3180 		page->mapping->writeback_index = page->index + nr_written;
3181 }
3182 
3183 /*
3184  * helper for __extent_writepage, doing all of the delayed allocation setup.
3185  *
3186  * This returns 1 if our fill_delalloc function did all the work required
3187  * to write the page (copy into inline extent).  In this case the IO has
3188  * been started and the page is already unlocked.
3189  *
3190  * This returns 0 if all went well (page still locked)
3191  * This returns < 0 if there were errors (page still locked)
3192  */
3193 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3194 			      struct page *page, struct writeback_control *wbc,
3195 			      struct extent_page_data *epd,
3196 			      u64 delalloc_start,
3197 			      unsigned long *nr_written)
3198 {
3199 	struct extent_io_tree *tree = epd->tree;
3200 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3201 	u64 nr_delalloc;
3202 	u64 delalloc_to_write = 0;
3203 	u64 delalloc_end = 0;
3204 	int ret;
3205 	int page_started = 0;
3206 
3207 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3208 		return 0;
3209 
3210 	while (delalloc_end < page_end) {
3211 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3212 					       page,
3213 					       &delalloc_start,
3214 					       &delalloc_end,
3215 					       128 * 1024 * 1024);
3216 		if (nr_delalloc == 0) {
3217 			delalloc_start = delalloc_end + 1;
3218 			continue;
3219 		}
3220 		ret = tree->ops->fill_delalloc(inode, page,
3221 					       delalloc_start,
3222 					       delalloc_end,
3223 					       &page_started,
3224 					       nr_written);
3225 		/* File system has been set read-only */
3226 		if (ret) {
3227 			SetPageError(page);
3228 			/* fill_delalloc should be return < 0 for error
3229 			 * but just in case, we use > 0 here meaning the
3230 			 * IO is started, so we don't want to return > 0
3231 			 * unless things are going well.
3232 			 */
3233 			ret = ret < 0 ? ret : -EIO;
3234 			goto done;
3235 		}
3236 		/*
3237 		 * delalloc_end is already one less than the total
3238 		 * length, so we don't subtract one from
3239 		 * PAGE_CACHE_SIZE
3240 		 */
3241 		delalloc_to_write += (delalloc_end - delalloc_start +
3242 				      PAGE_CACHE_SIZE) >>
3243 				      PAGE_CACHE_SHIFT;
3244 		delalloc_start = delalloc_end + 1;
3245 	}
3246 	if (wbc->nr_to_write < delalloc_to_write) {
3247 		int thresh = 8192;
3248 
3249 		if (delalloc_to_write < thresh * 2)
3250 			thresh = delalloc_to_write;
3251 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3252 					 thresh);
3253 	}
3254 
3255 	/* did the fill delalloc function already unlock and start
3256 	 * the IO?
3257 	 */
3258 	if (page_started) {
3259 		/*
3260 		 * we've unlocked the page, so we can't update
3261 		 * the mapping's writeback index, just update
3262 		 * nr_to_write.
3263 		 */
3264 		wbc->nr_to_write -= *nr_written;
3265 		return 1;
3266 	}
3267 
3268 	ret = 0;
3269 
3270 done:
3271 	return ret;
3272 }
3273 
3274 /*
3275  * helper for __extent_writepage.  This calls the writepage start hooks,
3276  * and does the loop to map the page into extents and bios.
3277  *
3278  * We return 1 if the IO is started and the page is unlocked,
3279  * 0 if all went well (page still locked)
3280  * < 0 if there were errors (page still locked)
3281  */
3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3283 				 struct page *page,
3284 				 struct writeback_control *wbc,
3285 				 struct extent_page_data *epd,
3286 				 loff_t i_size,
3287 				 unsigned long nr_written,
3288 				 int write_flags, int *nr_ret)
3289 {
3290 	struct extent_io_tree *tree = epd->tree;
3291 	u64 start = page_offset(page);
3292 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3293 	u64 end;
3294 	u64 cur = start;
3295 	u64 extent_offset;
3296 	u64 block_start;
3297 	u64 iosize;
3298 	sector_t sector;
3299 	struct extent_state *cached_state = NULL;
3300 	struct extent_map *em;
3301 	struct block_device *bdev;
3302 	size_t pg_offset = 0;
3303 	size_t blocksize;
3304 	int ret = 0;
3305 	int nr = 0;
3306 	bool compressed;
3307 
3308 	if (tree->ops && tree->ops->writepage_start_hook) {
3309 		ret = tree->ops->writepage_start_hook(page, start,
3310 						      page_end);
3311 		if (ret) {
3312 			/* Fixup worker will requeue */
3313 			if (ret == -EBUSY)
3314 				wbc->pages_skipped++;
3315 			else
3316 				redirty_page_for_writepage(wbc, page);
3317 
3318 			update_nr_written(page, wbc, nr_written);
3319 			unlock_page(page);
3320 			ret = 1;
3321 			goto done_unlocked;
3322 		}
3323 	}
3324 
3325 	/*
3326 	 * we don't want to touch the inode after unlocking the page,
3327 	 * so we update the mapping writeback index now
3328 	 */
3329 	update_nr_written(page, wbc, nr_written + 1);
3330 
3331 	end = page_end;
3332 	if (i_size <= start) {
3333 		if (tree->ops && tree->ops->writepage_end_io_hook)
3334 			tree->ops->writepage_end_io_hook(page, start,
3335 							 page_end, NULL, 1);
3336 		goto done;
3337 	}
3338 
3339 	blocksize = inode->i_sb->s_blocksize;
3340 
3341 	while (cur <= end) {
3342 		u64 em_end;
3343 		if (cur >= i_size) {
3344 			if (tree->ops && tree->ops->writepage_end_io_hook)
3345 				tree->ops->writepage_end_io_hook(page, cur,
3346 							 page_end, NULL, 1);
3347 			break;
3348 		}
3349 		em = epd->get_extent(inode, page, pg_offset, cur,
3350 				     end - cur + 1, 1);
3351 		if (IS_ERR_OR_NULL(em)) {
3352 			SetPageError(page);
3353 			ret = PTR_ERR_OR_ZERO(em);
3354 			break;
3355 		}
3356 
3357 		extent_offset = cur - em->start;
3358 		em_end = extent_map_end(em);
3359 		BUG_ON(em_end <= cur);
3360 		BUG_ON(end < cur);
3361 		iosize = min(em_end - cur, end - cur + 1);
3362 		iosize = ALIGN(iosize, blocksize);
3363 		sector = (em->block_start + extent_offset) >> 9;
3364 		bdev = em->bdev;
3365 		block_start = em->block_start;
3366 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3367 		free_extent_map(em);
3368 		em = NULL;
3369 
3370 		/*
3371 		 * compressed and inline extents are written through other
3372 		 * paths in the FS
3373 		 */
3374 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3375 		    block_start == EXTENT_MAP_INLINE) {
3376 			/*
3377 			 * end_io notification does not happen here for
3378 			 * compressed extents
3379 			 */
3380 			if (!compressed && tree->ops &&
3381 			    tree->ops->writepage_end_io_hook)
3382 				tree->ops->writepage_end_io_hook(page, cur,
3383 							 cur + iosize - 1,
3384 							 NULL, 1);
3385 			else if (compressed) {
3386 				/* we don't want to end_page_writeback on
3387 				 * a compressed extent.  this happens
3388 				 * elsewhere
3389 				 */
3390 				nr++;
3391 			}
3392 
3393 			cur += iosize;
3394 			pg_offset += iosize;
3395 			continue;
3396 		}
3397 
3398 		if (tree->ops && tree->ops->writepage_io_hook) {
3399 			ret = tree->ops->writepage_io_hook(page, cur,
3400 						cur + iosize - 1);
3401 		} else {
3402 			ret = 0;
3403 		}
3404 		if (ret) {
3405 			SetPageError(page);
3406 		} else {
3407 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3408 
3409 			set_range_writeback(tree, cur, cur + iosize - 1);
3410 			if (!PageWriteback(page)) {
3411 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3412 					   "page %lu not writeback, cur %llu end %llu",
3413 				       page->index, cur, end);
3414 			}
3415 
3416 			ret = submit_extent_page(write_flags, tree, page,
3417 						 sector, iosize, pg_offset,
3418 						 bdev, &epd->bio, max_nr,
3419 						 end_bio_extent_writepage,
3420 						 0, 0, 0);
3421 			if (ret)
3422 				SetPageError(page);
3423 		}
3424 		cur = cur + iosize;
3425 		pg_offset += iosize;
3426 		nr++;
3427 	}
3428 done:
3429 	*nr_ret = nr;
3430 
3431 done_unlocked:
3432 
3433 	/* drop our reference on any cached states */
3434 	free_extent_state(cached_state);
3435 	return ret;
3436 }
3437 
3438 /*
3439  * the writepage semantics are similar to regular writepage.  extent
3440  * records are inserted to lock ranges in the tree, and as dirty areas
3441  * are found, they are marked writeback.  Then the lock bits are removed
3442  * and the end_io handler clears the writeback ranges
3443  */
3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3445 			      void *data)
3446 {
3447 	struct inode *inode = page->mapping->host;
3448 	struct extent_page_data *epd = data;
3449 	u64 start = page_offset(page);
3450 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3451 	int ret;
3452 	int nr = 0;
3453 	size_t pg_offset = 0;
3454 	loff_t i_size = i_size_read(inode);
3455 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3456 	int write_flags;
3457 	unsigned long nr_written = 0;
3458 
3459 	if (wbc->sync_mode == WB_SYNC_ALL)
3460 		write_flags = WRITE_SYNC;
3461 	else
3462 		write_flags = WRITE;
3463 
3464 	trace___extent_writepage(page, inode, wbc);
3465 
3466 	WARN_ON(!PageLocked(page));
3467 
3468 	ClearPageError(page);
3469 
3470 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3471 	if (page->index > end_index ||
3472 	   (page->index == end_index && !pg_offset)) {
3473 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3474 		unlock_page(page);
3475 		return 0;
3476 	}
3477 
3478 	if (page->index == end_index) {
3479 		char *userpage;
3480 
3481 		userpage = kmap_atomic(page);
3482 		memset(userpage + pg_offset, 0,
3483 		       PAGE_CACHE_SIZE - pg_offset);
3484 		kunmap_atomic(userpage);
3485 		flush_dcache_page(page);
3486 	}
3487 
3488 	pg_offset = 0;
3489 
3490 	set_page_extent_mapped(page);
3491 
3492 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3493 	if (ret == 1)
3494 		goto done_unlocked;
3495 	if (ret)
3496 		goto done;
3497 
3498 	ret = __extent_writepage_io(inode, page, wbc, epd,
3499 				    i_size, nr_written, write_flags, &nr);
3500 	if (ret == 1)
3501 		goto done_unlocked;
3502 
3503 done:
3504 	if (nr == 0) {
3505 		/* make sure the mapping tag for page dirty gets cleared */
3506 		set_page_writeback(page);
3507 		end_page_writeback(page);
3508 	}
3509 	if (PageError(page)) {
3510 		ret = ret < 0 ? ret : -EIO;
3511 		end_extent_writepage(page, ret, start, page_end);
3512 	}
3513 	unlock_page(page);
3514 	return ret;
3515 
3516 done_unlocked:
3517 	return 0;
3518 }
3519 
3520 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3521 {
3522 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3523 		       TASK_UNINTERRUPTIBLE);
3524 }
3525 
3526 static noinline_for_stack int
3527 lock_extent_buffer_for_io(struct extent_buffer *eb,
3528 			  struct btrfs_fs_info *fs_info,
3529 			  struct extent_page_data *epd)
3530 {
3531 	unsigned long i, num_pages;
3532 	int flush = 0;
3533 	int ret = 0;
3534 
3535 	if (!btrfs_try_tree_write_lock(eb)) {
3536 		flush = 1;
3537 		flush_write_bio(epd);
3538 		btrfs_tree_lock(eb);
3539 	}
3540 
3541 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3542 		btrfs_tree_unlock(eb);
3543 		if (!epd->sync_io)
3544 			return 0;
3545 		if (!flush) {
3546 			flush_write_bio(epd);
3547 			flush = 1;
3548 		}
3549 		while (1) {
3550 			wait_on_extent_buffer_writeback(eb);
3551 			btrfs_tree_lock(eb);
3552 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3553 				break;
3554 			btrfs_tree_unlock(eb);
3555 		}
3556 	}
3557 
3558 	/*
3559 	 * We need to do this to prevent races in people who check if the eb is
3560 	 * under IO since we can end up having no IO bits set for a short period
3561 	 * of time.
3562 	 */
3563 	spin_lock(&eb->refs_lock);
3564 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3565 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3566 		spin_unlock(&eb->refs_lock);
3567 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3568 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3569 				     -eb->len,
3570 				     fs_info->dirty_metadata_batch);
3571 		ret = 1;
3572 	} else {
3573 		spin_unlock(&eb->refs_lock);
3574 	}
3575 
3576 	btrfs_tree_unlock(eb);
3577 
3578 	if (!ret)
3579 		return ret;
3580 
3581 	num_pages = num_extent_pages(eb->start, eb->len);
3582 	for (i = 0; i < num_pages; i++) {
3583 		struct page *p = eb->pages[i];
3584 
3585 		if (!trylock_page(p)) {
3586 			if (!flush) {
3587 				flush_write_bio(epd);
3588 				flush = 1;
3589 			}
3590 			lock_page(p);
3591 		}
3592 	}
3593 
3594 	return ret;
3595 }
3596 
3597 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3598 {
3599 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3600 	smp_mb__after_atomic();
3601 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3602 }
3603 
3604 static void set_btree_ioerr(struct page *page)
3605 {
3606 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3607 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3608 
3609 	SetPageError(page);
3610 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3611 		return;
3612 
3613 	/*
3614 	 * If writeback for a btree extent that doesn't belong to a log tree
3615 	 * failed, increment the counter transaction->eb_write_errors.
3616 	 * We do this because while the transaction is running and before it's
3617 	 * committing (when we call filemap_fdata[write|wait]_range against
3618 	 * the btree inode), we might have
3619 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3620 	 * returns an error or an error happens during writeback, when we're
3621 	 * committing the transaction we wouldn't know about it, since the pages
3622 	 * can be no longer dirty nor marked anymore for writeback (if a
3623 	 * subsequent modification to the extent buffer didn't happen before the
3624 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3625 	 * able to find the pages tagged with SetPageError at transaction
3626 	 * commit time. So if this happens we must abort the transaction,
3627 	 * otherwise we commit a super block with btree roots that point to
3628 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3629 	 * or the content of some node/leaf from a past generation that got
3630 	 * cowed or deleted and is no longer valid.
3631 	 *
3632 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3633 	 * not be enough - we need to distinguish between log tree extents vs
3634 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3635 	 * will catch and clear such errors in the mapping - and that call might
3636 	 * be from a log sync and not from a transaction commit. Also, checking
3637 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3638 	 * not done and would not be reliable - the eb might have been released
3639 	 * from memory and reading it back again means that flag would not be
3640 	 * set (since it's a runtime flag, not persisted on disk).
3641 	 *
3642 	 * Using the flags below in the btree inode also makes us achieve the
3643 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3644 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3645 	 * is called, the writeback for all dirty pages had already finished
3646 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3647 	 * filemap_fdatawait_range() would return success, as it could not know
3648 	 * that writeback errors happened (the pages were no longer tagged for
3649 	 * writeback).
3650 	 */
3651 	switch (eb->log_index) {
3652 	case -1:
3653 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3654 		break;
3655 	case 0:
3656 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3657 		break;
3658 	case 1:
3659 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3660 		break;
3661 	default:
3662 		BUG(); /* unexpected, logic error */
3663 	}
3664 }
3665 
3666 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3667 {
3668 	struct bio_vec *bvec;
3669 	struct extent_buffer *eb;
3670 	int i, done;
3671 
3672 	bio_for_each_segment_all(bvec, bio, i) {
3673 		struct page *page = bvec->bv_page;
3674 
3675 		eb = (struct extent_buffer *)page->private;
3676 		BUG_ON(!eb);
3677 		done = atomic_dec_and_test(&eb->io_pages);
3678 
3679 		if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3680 			ClearPageUptodate(page);
3681 			set_btree_ioerr(page);
3682 		}
3683 
3684 		end_page_writeback(page);
3685 
3686 		if (!done)
3687 			continue;
3688 
3689 		end_extent_buffer_writeback(eb);
3690 	}
3691 
3692 	bio_put(bio);
3693 }
3694 
3695 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3696 			struct btrfs_fs_info *fs_info,
3697 			struct writeback_control *wbc,
3698 			struct extent_page_data *epd)
3699 {
3700 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3701 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3702 	u64 offset = eb->start;
3703 	unsigned long i, num_pages;
3704 	unsigned long bio_flags = 0;
3705 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3706 	int ret = 0;
3707 
3708 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3709 	num_pages = num_extent_pages(eb->start, eb->len);
3710 	atomic_set(&eb->io_pages, num_pages);
3711 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3712 		bio_flags = EXTENT_BIO_TREE_LOG;
3713 
3714 	for (i = 0; i < num_pages; i++) {
3715 		struct page *p = eb->pages[i];
3716 
3717 		clear_page_dirty_for_io(p);
3718 		set_page_writeback(p);
3719 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3720 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3721 					 -1, end_bio_extent_buffer_writepage,
3722 					 0, epd->bio_flags, bio_flags);
3723 		epd->bio_flags = bio_flags;
3724 		if (ret) {
3725 			set_btree_ioerr(p);
3726 			end_page_writeback(p);
3727 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3728 				end_extent_buffer_writeback(eb);
3729 			ret = -EIO;
3730 			break;
3731 		}
3732 		offset += PAGE_CACHE_SIZE;
3733 		update_nr_written(p, wbc, 1);
3734 		unlock_page(p);
3735 	}
3736 
3737 	if (unlikely(ret)) {
3738 		for (; i < num_pages; i++) {
3739 			struct page *p = eb->pages[i];
3740 			clear_page_dirty_for_io(p);
3741 			unlock_page(p);
3742 		}
3743 	}
3744 
3745 	return ret;
3746 }
3747 
3748 int btree_write_cache_pages(struct address_space *mapping,
3749 				   struct writeback_control *wbc)
3750 {
3751 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3752 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3753 	struct extent_buffer *eb, *prev_eb = NULL;
3754 	struct extent_page_data epd = {
3755 		.bio = NULL,
3756 		.tree = tree,
3757 		.extent_locked = 0,
3758 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3759 		.bio_flags = 0,
3760 	};
3761 	int ret = 0;
3762 	int done = 0;
3763 	int nr_to_write_done = 0;
3764 	struct pagevec pvec;
3765 	int nr_pages;
3766 	pgoff_t index;
3767 	pgoff_t end;		/* Inclusive */
3768 	int scanned = 0;
3769 	int tag;
3770 
3771 	pagevec_init(&pvec, 0);
3772 	if (wbc->range_cyclic) {
3773 		index = mapping->writeback_index; /* Start from prev offset */
3774 		end = -1;
3775 	} else {
3776 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3777 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3778 		scanned = 1;
3779 	}
3780 	if (wbc->sync_mode == WB_SYNC_ALL)
3781 		tag = PAGECACHE_TAG_TOWRITE;
3782 	else
3783 		tag = PAGECACHE_TAG_DIRTY;
3784 retry:
3785 	if (wbc->sync_mode == WB_SYNC_ALL)
3786 		tag_pages_for_writeback(mapping, index, end);
3787 	while (!done && !nr_to_write_done && (index <= end) &&
3788 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3789 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3790 		unsigned i;
3791 
3792 		scanned = 1;
3793 		for (i = 0; i < nr_pages; i++) {
3794 			struct page *page = pvec.pages[i];
3795 
3796 			if (!PagePrivate(page))
3797 				continue;
3798 
3799 			if (!wbc->range_cyclic && page->index > end) {
3800 				done = 1;
3801 				break;
3802 			}
3803 
3804 			spin_lock(&mapping->private_lock);
3805 			if (!PagePrivate(page)) {
3806 				spin_unlock(&mapping->private_lock);
3807 				continue;
3808 			}
3809 
3810 			eb = (struct extent_buffer *)page->private;
3811 
3812 			/*
3813 			 * Shouldn't happen and normally this would be a BUG_ON
3814 			 * but no sense in crashing the users box for something
3815 			 * we can survive anyway.
3816 			 */
3817 			if (WARN_ON(!eb)) {
3818 				spin_unlock(&mapping->private_lock);
3819 				continue;
3820 			}
3821 
3822 			if (eb == prev_eb) {
3823 				spin_unlock(&mapping->private_lock);
3824 				continue;
3825 			}
3826 
3827 			ret = atomic_inc_not_zero(&eb->refs);
3828 			spin_unlock(&mapping->private_lock);
3829 			if (!ret)
3830 				continue;
3831 
3832 			prev_eb = eb;
3833 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3834 			if (!ret) {
3835 				free_extent_buffer(eb);
3836 				continue;
3837 			}
3838 
3839 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3840 			if (ret) {
3841 				done = 1;
3842 				free_extent_buffer(eb);
3843 				break;
3844 			}
3845 			free_extent_buffer(eb);
3846 
3847 			/*
3848 			 * the filesystem may choose to bump up nr_to_write.
3849 			 * We have to make sure to honor the new nr_to_write
3850 			 * at any time
3851 			 */
3852 			nr_to_write_done = wbc->nr_to_write <= 0;
3853 		}
3854 		pagevec_release(&pvec);
3855 		cond_resched();
3856 	}
3857 	if (!scanned && !done) {
3858 		/*
3859 		 * We hit the last page and there is more work to be done: wrap
3860 		 * back to the start of the file
3861 		 */
3862 		scanned = 1;
3863 		index = 0;
3864 		goto retry;
3865 	}
3866 	flush_write_bio(&epd);
3867 	return ret;
3868 }
3869 
3870 /**
3871  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3872  * @mapping: address space structure to write
3873  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3874  * @writepage: function called for each page
3875  * @data: data passed to writepage function
3876  *
3877  * If a page is already under I/O, write_cache_pages() skips it, even
3878  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3879  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3880  * and msync() need to guarantee that all the data which was dirty at the time
3881  * the call was made get new I/O started against them.  If wbc->sync_mode is
3882  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3883  * existing IO to complete.
3884  */
3885 static int extent_write_cache_pages(struct extent_io_tree *tree,
3886 			     struct address_space *mapping,
3887 			     struct writeback_control *wbc,
3888 			     writepage_t writepage, void *data,
3889 			     void (*flush_fn)(void *))
3890 {
3891 	struct inode *inode = mapping->host;
3892 	int ret = 0;
3893 	int done = 0;
3894 	int err = 0;
3895 	int nr_to_write_done = 0;
3896 	struct pagevec pvec;
3897 	int nr_pages;
3898 	pgoff_t index;
3899 	pgoff_t end;		/* Inclusive */
3900 	int scanned = 0;
3901 	int tag;
3902 
3903 	/*
3904 	 * We have to hold onto the inode so that ordered extents can do their
3905 	 * work when the IO finishes.  The alternative to this is failing to add
3906 	 * an ordered extent if the igrab() fails there and that is a huge pain
3907 	 * to deal with, so instead just hold onto the inode throughout the
3908 	 * writepages operation.  If it fails here we are freeing up the inode
3909 	 * anyway and we'd rather not waste our time writing out stuff that is
3910 	 * going to be truncated anyway.
3911 	 */
3912 	if (!igrab(inode))
3913 		return 0;
3914 
3915 	pagevec_init(&pvec, 0);
3916 	if (wbc->range_cyclic) {
3917 		index = mapping->writeback_index; /* Start from prev offset */
3918 		end = -1;
3919 	} else {
3920 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3921 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3922 		scanned = 1;
3923 	}
3924 	if (wbc->sync_mode == WB_SYNC_ALL)
3925 		tag = PAGECACHE_TAG_TOWRITE;
3926 	else
3927 		tag = PAGECACHE_TAG_DIRTY;
3928 retry:
3929 	if (wbc->sync_mode == WB_SYNC_ALL)
3930 		tag_pages_for_writeback(mapping, index, end);
3931 	while (!done && !nr_to_write_done && (index <= end) &&
3932 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3933 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3934 		unsigned i;
3935 
3936 		scanned = 1;
3937 		for (i = 0; i < nr_pages; i++) {
3938 			struct page *page = pvec.pages[i];
3939 
3940 			/*
3941 			 * At this point we hold neither mapping->tree_lock nor
3942 			 * lock on the page itself: the page may be truncated or
3943 			 * invalidated (changing page->mapping to NULL), or even
3944 			 * swizzled back from swapper_space to tmpfs file
3945 			 * mapping
3946 			 */
3947 			if (!trylock_page(page)) {
3948 				flush_fn(data);
3949 				lock_page(page);
3950 			}
3951 
3952 			if (unlikely(page->mapping != mapping)) {
3953 				unlock_page(page);
3954 				continue;
3955 			}
3956 
3957 			if (!wbc->range_cyclic && page->index > end) {
3958 				done = 1;
3959 				unlock_page(page);
3960 				continue;
3961 			}
3962 
3963 			if (wbc->sync_mode != WB_SYNC_NONE) {
3964 				if (PageWriteback(page))
3965 					flush_fn(data);
3966 				wait_on_page_writeback(page);
3967 			}
3968 
3969 			if (PageWriteback(page) ||
3970 			    !clear_page_dirty_for_io(page)) {
3971 				unlock_page(page);
3972 				continue;
3973 			}
3974 
3975 			ret = (*writepage)(page, wbc, data);
3976 
3977 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3978 				unlock_page(page);
3979 				ret = 0;
3980 			}
3981 			if (!err && ret < 0)
3982 				err = ret;
3983 
3984 			/*
3985 			 * the filesystem may choose to bump up nr_to_write.
3986 			 * We have to make sure to honor the new nr_to_write
3987 			 * at any time
3988 			 */
3989 			nr_to_write_done = wbc->nr_to_write <= 0;
3990 		}
3991 		pagevec_release(&pvec);
3992 		cond_resched();
3993 	}
3994 	if (!scanned && !done && !err) {
3995 		/*
3996 		 * We hit the last page and there is more work to be done: wrap
3997 		 * back to the start of the file
3998 		 */
3999 		scanned = 1;
4000 		index = 0;
4001 		goto retry;
4002 	}
4003 	btrfs_add_delayed_iput(inode);
4004 	return err;
4005 }
4006 
4007 static void flush_epd_write_bio(struct extent_page_data *epd)
4008 {
4009 	if (epd->bio) {
4010 		int rw = WRITE;
4011 		int ret;
4012 
4013 		if (epd->sync_io)
4014 			rw = WRITE_SYNC;
4015 
4016 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4017 		BUG_ON(ret < 0); /* -ENOMEM */
4018 		epd->bio = NULL;
4019 	}
4020 }
4021 
4022 static noinline void flush_write_bio(void *data)
4023 {
4024 	struct extent_page_data *epd = data;
4025 	flush_epd_write_bio(epd);
4026 }
4027 
4028 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4029 			  get_extent_t *get_extent,
4030 			  struct writeback_control *wbc)
4031 {
4032 	int ret;
4033 	struct extent_page_data epd = {
4034 		.bio = NULL,
4035 		.tree = tree,
4036 		.get_extent = get_extent,
4037 		.extent_locked = 0,
4038 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4039 		.bio_flags = 0,
4040 	};
4041 
4042 	ret = __extent_writepage(page, wbc, &epd);
4043 
4044 	flush_epd_write_bio(&epd);
4045 	return ret;
4046 }
4047 
4048 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4049 			      u64 start, u64 end, get_extent_t *get_extent,
4050 			      int mode)
4051 {
4052 	int ret = 0;
4053 	struct address_space *mapping = inode->i_mapping;
4054 	struct page *page;
4055 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4056 		PAGE_CACHE_SHIFT;
4057 
4058 	struct extent_page_data epd = {
4059 		.bio = NULL,
4060 		.tree = tree,
4061 		.get_extent = get_extent,
4062 		.extent_locked = 1,
4063 		.sync_io = mode == WB_SYNC_ALL,
4064 		.bio_flags = 0,
4065 	};
4066 	struct writeback_control wbc_writepages = {
4067 		.sync_mode	= mode,
4068 		.nr_to_write	= nr_pages * 2,
4069 		.range_start	= start,
4070 		.range_end	= end + 1,
4071 	};
4072 
4073 	while (start <= end) {
4074 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4075 		if (clear_page_dirty_for_io(page))
4076 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4077 		else {
4078 			if (tree->ops && tree->ops->writepage_end_io_hook)
4079 				tree->ops->writepage_end_io_hook(page, start,
4080 						 start + PAGE_CACHE_SIZE - 1,
4081 						 NULL, 1);
4082 			unlock_page(page);
4083 		}
4084 		page_cache_release(page);
4085 		start += PAGE_CACHE_SIZE;
4086 	}
4087 
4088 	flush_epd_write_bio(&epd);
4089 	return ret;
4090 }
4091 
4092 int extent_writepages(struct extent_io_tree *tree,
4093 		      struct address_space *mapping,
4094 		      get_extent_t *get_extent,
4095 		      struct writeback_control *wbc)
4096 {
4097 	int ret = 0;
4098 	struct extent_page_data epd = {
4099 		.bio = NULL,
4100 		.tree = tree,
4101 		.get_extent = get_extent,
4102 		.extent_locked = 0,
4103 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4104 		.bio_flags = 0,
4105 	};
4106 
4107 	ret = extent_write_cache_pages(tree, mapping, wbc,
4108 				       __extent_writepage, &epd,
4109 				       flush_write_bio);
4110 	flush_epd_write_bio(&epd);
4111 	return ret;
4112 }
4113 
4114 int extent_readpages(struct extent_io_tree *tree,
4115 		     struct address_space *mapping,
4116 		     struct list_head *pages, unsigned nr_pages,
4117 		     get_extent_t get_extent)
4118 {
4119 	struct bio *bio = NULL;
4120 	unsigned page_idx;
4121 	unsigned long bio_flags = 0;
4122 	struct page *pagepool[16];
4123 	struct page *page;
4124 	struct extent_map *em_cached = NULL;
4125 	int nr = 0;
4126 
4127 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4128 		page = list_entry(pages->prev, struct page, lru);
4129 
4130 		prefetchw(&page->flags);
4131 		list_del(&page->lru);
4132 		if (add_to_page_cache_lru(page, mapping,
4133 					page->index, GFP_NOFS)) {
4134 			page_cache_release(page);
4135 			continue;
4136 		}
4137 
4138 		pagepool[nr++] = page;
4139 		if (nr < ARRAY_SIZE(pagepool))
4140 			continue;
4141 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4142 				   &bio, 0, &bio_flags, READ);
4143 		nr = 0;
4144 	}
4145 	if (nr)
4146 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4147 				   &bio, 0, &bio_flags, READ);
4148 
4149 	if (em_cached)
4150 		free_extent_map(em_cached);
4151 
4152 	BUG_ON(!list_empty(pages));
4153 	if (bio)
4154 		return submit_one_bio(READ, bio, 0, bio_flags);
4155 	return 0;
4156 }
4157 
4158 /*
4159  * basic invalidatepage code, this waits on any locked or writeback
4160  * ranges corresponding to the page, and then deletes any extent state
4161  * records from the tree
4162  */
4163 int extent_invalidatepage(struct extent_io_tree *tree,
4164 			  struct page *page, unsigned long offset)
4165 {
4166 	struct extent_state *cached_state = NULL;
4167 	u64 start = page_offset(page);
4168 	u64 end = start + PAGE_CACHE_SIZE - 1;
4169 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4170 
4171 	start += ALIGN(offset, blocksize);
4172 	if (start > end)
4173 		return 0;
4174 
4175 	lock_extent_bits(tree, start, end, 0, &cached_state);
4176 	wait_on_page_writeback(page);
4177 	clear_extent_bit(tree, start, end,
4178 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4179 			 EXTENT_DO_ACCOUNTING,
4180 			 1, 1, &cached_state, GFP_NOFS);
4181 	return 0;
4182 }
4183 
4184 /*
4185  * a helper for releasepage, this tests for areas of the page that
4186  * are locked or under IO and drops the related state bits if it is safe
4187  * to drop the page.
4188  */
4189 static int try_release_extent_state(struct extent_map_tree *map,
4190 				    struct extent_io_tree *tree,
4191 				    struct page *page, gfp_t mask)
4192 {
4193 	u64 start = page_offset(page);
4194 	u64 end = start + PAGE_CACHE_SIZE - 1;
4195 	int ret = 1;
4196 
4197 	if (test_range_bit(tree, start, end,
4198 			   EXTENT_IOBITS, 0, NULL))
4199 		ret = 0;
4200 	else {
4201 		if ((mask & GFP_NOFS) == GFP_NOFS)
4202 			mask = GFP_NOFS;
4203 		/*
4204 		 * at this point we can safely clear everything except the
4205 		 * locked bit and the nodatasum bit
4206 		 */
4207 		ret = clear_extent_bit(tree, start, end,
4208 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4209 				 0, 0, NULL, mask);
4210 
4211 		/* if clear_extent_bit failed for enomem reasons,
4212 		 * we can't allow the release to continue.
4213 		 */
4214 		if (ret < 0)
4215 			ret = 0;
4216 		else
4217 			ret = 1;
4218 	}
4219 	return ret;
4220 }
4221 
4222 /*
4223  * a helper for releasepage.  As long as there are no locked extents
4224  * in the range corresponding to the page, both state records and extent
4225  * map records are removed
4226  */
4227 int try_release_extent_mapping(struct extent_map_tree *map,
4228 			       struct extent_io_tree *tree, struct page *page,
4229 			       gfp_t mask)
4230 {
4231 	struct extent_map *em;
4232 	u64 start = page_offset(page);
4233 	u64 end = start + PAGE_CACHE_SIZE - 1;
4234 
4235 	if ((mask & __GFP_WAIT) &&
4236 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4237 		u64 len;
4238 		while (start <= end) {
4239 			len = end - start + 1;
4240 			write_lock(&map->lock);
4241 			em = lookup_extent_mapping(map, start, len);
4242 			if (!em) {
4243 				write_unlock(&map->lock);
4244 				break;
4245 			}
4246 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4247 			    em->start != start) {
4248 				write_unlock(&map->lock);
4249 				free_extent_map(em);
4250 				break;
4251 			}
4252 			if (!test_range_bit(tree, em->start,
4253 					    extent_map_end(em) - 1,
4254 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4255 					    0, NULL)) {
4256 				remove_extent_mapping(map, em);
4257 				/* once for the rb tree */
4258 				free_extent_map(em);
4259 			}
4260 			start = extent_map_end(em);
4261 			write_unlock(&map->lock);
4262 
4263 			/* once for us */
4264 			free_extent_map(em);
4265 		}
4266 	}
4267 	return try_release_extent_state(map, tree, page, mask);
4268 }
4269 
4270 /*
4271  * helper function for fiemap, which doesn't want to see any holes.
4272  * This maps until we find something past 'last'
4273  */
4274 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4275 						u64 offset,
4276 						u64 last,
4277 						get_extent_t *get_extent)
4278 {
4279 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4280 	struct extent_map *em;
4281 	u64 len;
4282 
4283 	if (offset >= last)
4284 		return NULL;
4285 
4286 	while (1) {
4287 		len = last - offset;
4288 		if (len == 0)
4289 			break;
4290 		len = ALIGN(len, sectorsize);
4291 		em = get_extent(inode, NULL, 0, offset, len, 0);
4292 		if (IS_ERR_OR_NULL(em))
4293 			return em;
4294 
4295 		/* if this isn't a hole return it */
4296 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4297 		    em->block_start != EXTENT_MAP_HOLE) {
4298 			return em;
4299 		}
4300 
4301 		/* this is a hole, advance to the next extent */
4302 		offset = extent_map_end(em);
4303 		free_extent_map(em);
4304 		if (offset >= last)
4305 			break;
4306 	}
4307 	return NULL;
4308 }
4309 
4310 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4311 		__u64 start, __u64 len, get_extent_t *get_extent)
4312 {
4313 	int ret = 0;
4314 	u64 off = start;
4315 	u64 max = start + len;
4316 	u32 flags = 0;
4317 	u32 found_type;
4318 	u64 last;
4319 	u64 last_for_get_extent = 0;
4320 	u64 disko = 0;
4321 	u64 isize = i_size_read(inode);
4322 	struct btrfs_key found_key;
4323 	struct extent_map *em = NULL;
4324 	struct extent_state *cached_state = NULL;
4325 	struct btrfs_path *path;
4326 	struct btrfs_root *root = BTRFS_I(inode)->root;
4327 	int end = 0;
4328 	u64 em_start = 0;
4329 	u64 em_len = 0;
4330 	u64 em_end = 0;
4331 
4332 	if (len == 0)
4333 		return -EINVAL;
4334 
4335 	path = btrfs_alloc_path();
4336 	if (!path)
4337 		return -ENOMEM;
4338 	path->leave_spinning = 1;
4339 
4340 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4341 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4342 
4343 	/*
4344 	 * lookup the last file extent.  We're not using i_size here
4345 	 * because there might be preallocation past i_size
4346 	 */
4347 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4348 				       0);
4349 	if (ret < 0) {
4350 		btrfs_free_path(path);
4351 		return ret;
4352 	}
4353 	WARN_ON(!ret);
4354 	path->slots[0]--;
4355 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4356 	found_type = found_key.type;
4357 
4358 	/* No extents, but there might be delalloc bits */
4359 	if (found_key.objectid != btrfs_ino(inode) ||
4360 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4361 		/* have to trust i_size as the end */
4362 		last = (u64)-1;
4363 		last_for_get_extent = isize;
4364 	} else {
4365 		/*
4366 		 * remember the start of the last extent.  There are a
4367 		 * bunch of different factors that go into the length of the
4368 		 * extent, so its much less complex to remember where it started
4369 		 */
4370 		last = found_key.offset;
4371 		last_for_get_extent = last + 1;
4372 	}
4373 	btrfs_release_path(path);
4374 
4375 	/*
4376 	 * we might have some extents allocated but more delalloc past those
4377 	 * extents.  so, we trust isize unless the start of the last extent is
4378 	 * beyond isize
4379 	 */
4380 	if (last < isize) {
4381 		last = (u64)-1;
4382 		last_for_get_extent = isize;
4383 	}
4384 
4385 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4386 			 &cached_state);
4387 
4388 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4389 				   get_extent);
4390 	if (!em)
4391 		goto out;
4392 	if (IS_ERR(em)) {
4393 		ret = PTR_ERR(em);
4394 		goto out;
4395 	}
4396 
4397 	while (!end) {
4398 		u64 offset_in_extent = 0;
4399 
4400 		/* break if the extent we found is outside the range */
4401 		if (em->start >= max || extent_map_end(em) < off)
4402 			break;
4403 
4404 		/*
4405 		 * get_extent may return an extent that starts before our
4406 		 * requested range.  We have to make sure the ranges
4407 		 * we return to fiemap always move forward and don't
4408 		 * overlap, so adjust the offsets here
4409 		 */
4410 		em_start = max(em->start, off);
4411 
4412 		/*
4413 		 * record the offset from the start of the extent
4414 		 * for adjusting the disk offset below.  Only do this if the
4415 		 * extent isn't compressed since our in ram offset may be past
4416 		 * what we have actually allocated on disk.
4417 		 */
4418 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4419 			offset_in_extent = em_start - em->start;
4420 		em_end = extent_map_end(em);
4421 		em_len = em_end - em_start;
4422 		disko = 0;
4423 		flags = 0;
4424 
4425 		/*
4426 		 * bump off for our next call to get_extent
4427 		 */
4428 		off = extent_map_end(em);
4429 		if (off >= max)
4430 			end = 1;
4431 
4432 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4433 			end = 1;
4434 			flags |= FIEMAP_EXTENT_LAST;
4435 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4436 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4437 				  FIEMAP_EXTENT_NOT_ALIGNED);
4438 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4439 			flags |= (FIEMAP_EXTENT_DELALLOC |
4440 				  FIEMAP_EXTENT_UNKNOWN);
4441 		} else if (fieinfo->fi_extents_max) {
4442 			u64 bytenr = em->block_start -
4443 				(em->start - em->orig_start);
4444 
4445 			disko = em->block_start + offset_in_extent;
4446 
4447 			/*
4448 			 * As btrfs supports shared space, this information
4449 			 * can be exported to userspace tools via
4450 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4451 			 * then we're just getting a count and we can skip the
4452 			 * lookup stuff.
4453 			 */
4454 			ret = btrfs_check_shared(NULL, root->fs_info,
4455 						 root->objectid,
4456 						 btrfs_ino(inode), bytenr);
4457 			if (ret < 0)
4458 				goto out_free;
4459 			if (ret)
4460 				flags |= FIEMAP_EXTENT_SHARED;
4461 			ret = 0;
4462 		}
4463 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4464 			flags |= FIEMAP_EXTENT_ENCODED;
4465 
4466 		free_extent_map(em);
4467 		em = NULL;
4468 		if ((em_start >= last) || em_len == (u64)-1 ||
4469 		   (last == (u64)-1 && isize <= em_end)) {
4470 			flags |= FIEMAP_EXTENT_LAST;
4471 			end = 1;
4472 		}
4473 
4474 		/* now scan forward to see if this is really the last extent. */
4475 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4476 					   get_extent);
4477 		if (IS_ERR(em)) {
4478 			ret = PTR_ERR(em);
4479 			goto out;
4480 		}
4481 		if (!em) {
4482 			flags |= FIEMAP_EXTENT_LAST;
4483 			end = 1;
4484 		}
4485 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4486 					      em_len, flags);
4487 		if (ret)
4488 			goto out_free;
4489 	}
4490 out_free:
4491 	free_extent_map(em);
4492 out:
4493 	btrfs_free_path(path);
4494 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4495 			     &cached_state, GFP_NOFS);
4496 	return ret;
4497 }
4498 
4499 static void __free_extent_buffer(struct extent_buffer *eb)
4500 {
4501 	btrfs_leak_debug_del(&eb->leak_list);
4502 	kmem_cache_free(extent_buffer_cache, eb);
4503 }
4504 
4505 int extent_buffer_under_io(struct extent_buffer *eb)
4506 {
4507 	return (atomic_read(&eb->io_pages) ||
4508 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4509 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4510 }
4511 
4512 /*
4513  * Helper for releasing extent buffer page.
4514  */
4515 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4516 {
4517 	unsigned long index;
4518 	struct page *page;
4519 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4520 
4521 	BUG_ON(extent_buffer_under_io(eb));
4522 
4523 	index = num_extent_pages(eb->start, eb->len);
4524 	if (index == 0)
4525 		return;
4526 
4527 	do {
4528 		index--;
4529 		page = eb->pages[index];
4530 		if (page && mapped) {
4531 			spin_lock(&page->mapping->private_lock);
4532 			/*
4533 			 * We do this since we'll remove the pages after we've
4534 			 * removed the eb from the radix tree, so we could race
4535 			 * and have this page now attached to the new eb.  So
4536 			 * only clear page_private if it's still connected to
4537 			 * this eb.
4538 			 */
4539 			if (PagePrivate(page) &&
4540 			    page->private == (unsigned long)eb) {
4541 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4542 				BUG_ON(PageDirty(page));
4543 				BUG_ON(PageWriteback(page));
4544 				/*
4545 				 * We need to make sure we haven't be attached
4546 				 * to a new eb.
4547 				 */
4548 				ClearPagePrivate(page);
4549 				set_page_private(page, 0);
4550 				/* One for the page private */
4551 				page_cache_release(page);
4552 			}
4553 			spin_unlock(&page->mapping->private_lock);
4554 
4555 		}
4556 		if (page) {
4557 			/* One for when we alloced the page */
4558 			page_cache_release(page);
4559 		}
4560 	} while (index != 0);
4561 }
4562 
4563 /*
4564  * Helper for releasing the extent buffer.
4565  */
4566 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4567 {
4568 	btrfs_release_extent_buffer_page(eb);
4569 	__free_extent_buffer(eb);
4570 }
4571 
4572 static struct extent_buffer *
4573 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4574 		      unsigned long len, gfp_t mask)
4575 {
4576 	struct extent_buffer *eb = NULL;
4577 
4578 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4579 	if (eb == NULL)
4580 		return NULL;
4581 	eb->start = start;
4582 	eb->len = len;
4583 	eb->fs_info = fs_info;
4584 	eb->bflags = 0;
4585 	rwlock_init(&eb->lock);
4586 	atomic_set(&eb->write_locks, 0);
4587 	atomic_set(&eb->read_locks, 0);
4588 	atomic_set(&eb->blocking_readers, 0);
4589 	atomic_set(&eb->blocking_writers, 0);
4590 	atomic_set(&eb->spinning_readers, 0);
4591 	atomic_set(&eb->spinning_writers, 0);
4592 	eb->lock_nested = 0;
4593 	init_waitqueue_head(&eb->write_lock_wq);
4594 	init_waitqueue_head(&eb->read_lock_wq);
4595 
4596 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4597 
4598 	spin_lock_init(&eb->refs_lock);
4599 	atomic_set(&eb->refs, 1);
4600 	atomic_set(&eb->io_pages, 0);
4601 
4602 	/*
4603 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4604 	 */
4605 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4606 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4607 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4608 
4609 	return eb;
4610 }
4611 
4612 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4613 {
4614 	unsigned long i;
4615 	struct page *p;
4616 	struct extent_buffer *new;
4617 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4618 
4619 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4620 	if (new == NULL)
4621 		return NULL;
4622 
4623 	for (i = 0; i < num_pages; i++) {
4624 		p = alloc_page(GFP_NOFS);
4625 		if (!p) {
4626 			btrfs_release_extent_buffer(new);
4627 			return NULL;
4628 		}
4629 		attach_extent_buffer_page(new, p);
4630 		WARN_ON(PageDirty(p));
4631 		SetPageUptodate(p);
4632 		new->pages[i] = p;
4633 	}
4634 
4635 	copy_extent_buffer(new, src, 0, 0, src->len);
4636 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4637 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4638 
4639 	return new;
4640 }
4641 
4642 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4643 {
4644 	struct extent_buffer *eb;
4645 	unsigned long num_pages = num_extent_pages(0, len);
4646 	unsigned long i;
4647 
4648 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4649 	if (!eb)
4650 		return NULL;
4651 
4652 	for (i = 0; i < num_pages; i++) {
4653 		eb->pages[i] = alloc_page(GFP_NOFS);
4654 		if (!eb->pages[i])
4655 			goto err;
4656 	}
4657 	set_extent_buffer_uptodate(eb);
4658 	btrfs_set_header_nritems(eb, 0);
4659 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4660 
4661 	return eb;
4662 err:
4663 	for (; i > 0; i--)
4664 		__free_page(eb->pages[i - 1]);
4665 	__free_extent_buffer(eb);
4666 	return NULL;
4667 }
4668 
4669 static void check_buffer_tree_ref(struct extent_buffer *eb)
4670 {
4671 	int refs;
4672 	/* the ref bit is tricky.  We have to make sure it is set
4673 	 * if we have the buffer dirty.   Otherwise the
4674 	 * code to free a buffer can end up dropping a dirty
4675 	 * page
4676 	 *
4677 	 * Once the ref bit is set, it won't go away while the
4678 	 * buffer is dirty or in writeback, and it also won't
4679 	 * go away while we have the reference count on the
4680 	 * eb bumped.
4681 	 *
4682 	 * We can't just set the ref bit without bumping the
4683 	 * ref on the eb because free_extent_buffer might
4684 	 * see the ref bit and try to clear it.  If this happens
4685 	 * free_extent_buffer might end up dropping our original
4686 	 * ref by mistake and freeing the page before we are able
4687 	 * to add one more ref.
4688 	 *
4689 	 * So bump the ref count first, then set the bit.  If someone
4690 	 * beat us to it, drop the ref we added.
4691 	 */
4692 	refs = atomic_read(&eb->refs);
4693 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4694 		return;
4695 
4696 	spin_lock(&eb->refs_lock);
4697 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4698 		atomic_inc(&eb->refs);
4699 	spin_unlock(&eb->refs_lock);
4700 }
4701 
4702 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4703 		struct page *accessed)
4704 {
4705 	unsigned long num_pages, i;
4706 
4707 	check_buffer_tree_ref(eb);
4708 
4709 	num_pages = num_extent_pages(eb->start, eb->len);
4710 	for (i = 0; i < num_pages; i++) {
4711 		struct page *p = eb->pages[i];
4712 
4713 		if (p != accessed)
4714 			mark_page_accessed(p);
4715 	}
4716 }
4717 
4718 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4719 					 u64 start)
4720 {
4721 	struct extent_buffer *eb;
4722 
4723 	rcu_read_lock();
4724 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4725 			       start >> PAGE_CACHE_SHIFT);
4726 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4727 		rcu_read_unlock();
4728 		mark_extent_buffer_accessed(eb, NULL);
4729 		return eb;
4730 	}
4731 	rcu_read_unlock();
4732 
4733 	return NULL;
4734 }
4735 
4736 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4737 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4738 					       u64 start, unsigned long len)
4739 {
4740 	struct extent_buffer *eb, *exists = NULL;
4741 	int ret;
4742 
4743 	eb = find_extent_buffer(fs_info, start);
4744 	if (eb)
4745 		return eb;
4746 	eb = alloc_dummy_extent_buffer(start, len);
4747 	if (!eb)
4748 		return NULL;
4749 	eb->fs_info = fs_info;
4750 again:
4751 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4752 	if (ret)
4753 		goto free_eb;
4754 	spin_lock(&fs_info->buffer_lock);
4755 	ret = radix_tree_insert(&fs_info->buffer_radix,
4756 				start >> PAGE_CACHE_SHIFT, eb);
4757 	spin_unlock(&fs_info->buffer_lock);
4758 	radix_tree_preload_end();
4759 	if (ret == -EEXIST) {
4760 		exists = find_extent_buffer(fs_info, start);
4761 		if (exists)
4762 			goto free_eb;
4763 		else
4764 			goto again;
4765 	}
4766 	check_buffer_tree_ref(eb);
4767 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4768 
4769 	/*
4770 	 * We will free dummy extent buffer's if they come into
4771 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4772 	 * want the buffers to stay in memory until we're done with them, so
4773 	 * bump the ref count again.
4774 	 */
4775 	atomic_inc(&eb->refs);
4776 	return eb;
4777 free_eb:
4778 	btrfs_release_extent_buffer(eb);
4779 	return exists;
4780 }
4781 #endif
4782 
4783 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4784 					  u64 start, unsigned long len)
4785 {
4786 	unsigned long num_pages = num_extent_pages(start, len);
4787 	unsigned long i;
4788 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4789 	struct extent_buffer *eb;
4790 	struct extent_buffer *exists = NULL;
4791 	struct page *p;
4792 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4793 	int uptodate = 1;
4794 	int ret;
4795 
4796 	eb = find_extent_buffer(fs_info, start);
4797 	if (eb)
4798 		return eb;
4799 
4800 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4801 	if (!eb)
4802 		return NULL;
4803 
4804 	for (i = 0; i < num_pages; i++, index++) {
4805 		p = find_or_create_page(mapping, index, GFP_NOFS);
4806 		if (!p)
4807 			goto free_eb;
4808 
4809 		spin_lock(&mapping->private_lock);
4810 		if (PagePrivate(p)) {
4811 			/*
4812 			 * We could have already allocated an eb for this page
4813 			 * and attached one so lets see if we can get a ref on
4814 			 * the existing eb, and if we can we know it's good and
4815 			 * we can just return that one, else we know we can just
4816 			 * overwrite page->private.
4817 			 */
4818 			exists = (struct extent_buffer *)p->private;
4819 			if (atomic_inc_not_zero(&exists->refs)) {
4820 				spin_unlock(&mapping->private_lock);
4821 				unlock_page(p);
4822 				page_cache_release(p);
4823 				mark_extent_buffer_accessed(exists, p);
4824 				goto free_eb;
4825 			}
4826 
4827 			/*
4828 			 * Do this so attach doesn't complain and we need to
4829 			 * drop the ref the old guy had.
4830 			 */
4831 			ClearPagePrivate(p);
4832 			WARN_ON(PageDirty(p));
4833 			page_cache_release(p);
4834 		}
4835 		attach_extent_buffer_page(eb, p);
4836 		spin_unlock(&mapping->private_lock);
4837 		WARN_ON(PageDirty(p));
4838 		eb->pages[i] = p;
4839 		if (!PageUptodate(p))
4840 			uptodate = 0;
4841 
4842 		/*
4843 		 * see below about how we avoid a nasty race with release page
4844 		 * and why we unlock later
4845 		 */
4846 	}
4847 	if (uptodate)
4848 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4849 again:
4850 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4851 	if (ret)
4852 		goto free_eb;
4853 
4854 	spin_lock(&fs_info->buffer_lock);
4855 	ret = radix_tree_insert(&fs_info->buffer_radix,
4856 				start >> PAGE_CACHE_SHIFT, eb);
4857 	spin_unlock(&fs_info->buffer_lock);
4858 	radix_tree_preload_end();
4859 	if (ret == -EEXIST) {
4860 		exists = find_extent_buffer(fs_info, start);
4861 		if (exists)
4862 			goto free_eb;
4863 		else
4864 			goto again;
4865 	}
4866 	/* add one reference for the tree */
4867 	check_buffer_tree_ref(eb);
4868 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4869 
4870 	/*
4871 	 * there is a race where release page may have
4872 	 * tried to find this extent buffer in the radix
4873 	 * but failed.  It will tell the VM it is safe to
4874 	 * reclaim the, and it will clear the page private bit.
4875 	 * We must make sure to set the page private bit properly
4876 	 * after the extent buffer is in the radix tree so
4877 	 * it doesn't get lost
4878 	 */
4879 	SetPageChecked(eb->pages[0]);
4880 	for (i = 1; i < num_pages; i++) {
4881 		p = eb->pages[i];
4882 		ClearPageChecked(p);
4883 		unlock_page(p);
4884 	}
4885 	unlock_page(eb->pages[0]);
4886 	return eb;
4887 
4888 free_eb:
4889 	for (i = 0; i < num_pages; i++) {
4890 		if (eb->pages[i])
4891 			unlock_page(eb->pages[i]);
4892 	}
4893 
4894 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4895 	btrfs_release_extent_buffer(eb);
4896 	return exists;
4897 }
4898 
4899 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4900 {
4901 	struct extent_buffer *eb =
4902 			container_of(head, struct extent_buffer, rcu_head);
4903 
4904 	__free_extent_buffer(eb);
4905 }
4906 
4907 /* Expects to have eb->eb_lock already held */
4908 static int release_extent_buffer(struct extent_buffer *eb)
4909 {
4910 	WARN_ON(atomic_read(&eb->refs) == 0);
4911 	if (atomic_dec_and_test(&eb->refs)) {
4912 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4913 			struct btrfs_fs_info *fs_info = eb->fs_info;
4914 
4915 			spin_unlock(&eb->refs_lock);
4916 
4917 			spin_lock(&fs_info->buffer_lock);
4918 			radix_tree_delete(&fs_info->buffer_radix,
4919 					  eb->start >> PAGE_CACHE_SHIFT);
4920 			spin_unlock(&fs_info->buffer_lock);
4921 		} else {
4922 			spin_unlock(&eb->refs_lock);
4923 		}
4924 
4925 		/* Should be safe to release our pages at this point */
4926 		btrfs_release_extent_buffer_page(eb);
4927 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4928 		return 1;
4929 	}
4930 	spin_unlock(&eb->refs_lock);
4931 
4932 	return 0;
4933 }
4934 
4935 void free_extent_buffer(struct extent_buffer *eb)
4936 {
4937 	int refs;
4938 	int old;
4939 	if (!eb)
4940 		return;
4941 
4942 	while (1) {
4943 		refs = atomic_read(&eb->refs);
4944 		if (refs <= 3)
4945 			break;
4946 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4947 		if (old == refs)
4948 			return;
4949 	}
4950 
4951 	spin_lock(&eb->refs_lock);
4952 	if (atomic_read(&eb->refs) == 2 &&
4953 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4954 		atomic_dec(&eb->refs);
4955 
4956 	if (atomic_read(&eb->refs) == 2 &&
4957 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4958 	    !extent_buffer_under_io(eb) &&
4959 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4960 		atomic_dec(&eb->refs);
4961 
4962 	/*
4963 	 * I know this is terrible, but it's temporary until we stop tracking
4964 	 * the uptodate bits and such for the extent buffers.
4965 	 */
4966 	release_extent_buffer(eb);
4967 }
4968 
4969 void free_extent_buffer_stale(struct extent_buffer *eb)
4970 {
4971 	if (!eb)
4972 		return;
4973 
4974 	spin_lock(&eb->refs_lock);
4975 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4976 
4977 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4978 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4979 		atomic_dec(&eb->refs);
4980 	release_extent_buffer(eb);
4981 }
4982 
4983 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4984 {
4985 	unsigned long i;
4986 	unsigned long num_pages;
4987 	struct page *page;
4988 
4989 	num_pages = num_extent_pages(eb->start, eb->len);
4990 
4991 	for (i = 0; i < num_pages; i++) {
4992 		page = eb->pages[i];
4993 		if (!PageDirty(page))
4994 			continue;
4995 
4996 		lock_page(page);
4997 		WARN_ON(!PagePrivate(page));
4998 
4999 		clear_page_dirty_for_io(page);
5000 		spin_lock_irq(&page->mapping->tree_lock);
5001 		if (!PageDirty(page)) {
5002 			radix_tree_tag_clear(&page->mapping->page_tree,
5003 						page_index(page),
5004 						PAGECACHE_TAG_DIRTY);
5005 		}
5006 		spin_unlock_irq(&page->mapping->tree_lock);
5007 		ClearPageError(page);
5008 		unlock_page(page);
5009 	}
5010 	WARN_ON(atomic_read(&eb->refs) == 0);
5011 }
5012 
5013 int set_extent_buffer_dirty(struct extent_buffer *eb)
5014 {
5015 	unsigned long i;
5016 	unsigned long num_pages;
5017 	int was_dirty = 0;
5018 
5019 	check_buffer_tree_ref(eb);
5020 
5021 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5022 
5023 	num_pages = num_extent_pages(eb->start, eb->len);
5024 	WARN_ON(atomic_read(&eb->refs) == 0);
5025 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5026 
5027 	for (i = 0; i < num_pages; i++)
5028 		set_page_dirty(eb->pages[i]);
5029 	return was_dirty;
5030 }
5031 
5032 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5033 {
5034 	unsigned long i;
5035 	struct page *page;
5036 	unsigned long num_pages;
5037 
5038 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5039 	num_pages = num_extent_pages(eb->start, eb->len);
5040 	for (i = 0; i < num_pages; i++) {
5041 		page = eb->pages[i];
5042 		if (page)
5043 			ClearPageUptodate(page);
5044 	}
5045 	return 0;
5046 }
5047 
5048 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5049 {
5050 	unsigned long i;
5051 	struct page *page;
5052 	unsigned long num_pages;
5053 
5054 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5055 	num_pages = num_extent_pages(eb->start, eb->len);
5056 	for (i = 0; i < num_pages; i++) {
5057 		page = eb->pages[i];
5058 		SetPageUptodate(page);
5059 	}
5060 	return 0;
5061 }
5062 
5063 int extent_buffer_uptodate(struct extent_buffer *eb)
5064 {
5065 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5066 }
5067 
5068 int read_extent_buffer_pages(struct extent_io_tree *tree,
5069 			     struct extent_buffer *eb, u64 start, int wait,
5070 			     get_extent_t *get_extent, int mirror_num)
5071 {
5072 	unsigned long i;
5073 	unsigned long start_i;
5074 	struct page *page;
5075 	int err;
5076 	int ret = 0;
5077 	int locked_pages = 0;
5078 	int all_uptodate = 1;
5079 	unsigned long num_pages;
5080 	unsigned long num_reads = 0;
5081 	struct bio *bio = NULL;
5082 	unsigned long bio_flags = 0;
5083 
5084 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5085 		return 0;
5086 
5087 	if (start) {
5088 		WARN_ON(start < eb->start);
5089 		start_i = (start >> PAGE_CACHE_SHIFT) -
5090 			(eb->start >> PAGE_CACHE_SHIFT);
5091 	} else {
5092 		start_i = 0;
5093 	}
5094 
5095 	num_pages = num_extent_pages(eb->start, eb->len);
5096 	for (i = start_i; i < num_pages; i++) {
5097 		page = eb->pages[i];
5098 		if (wait == WAIT_NONE) {
5099 			if (!trylock_page(page))
5100 				goto unlock_exit;
5101 		} else {
5102 			lock_page(page);
5103 		}
5104 		locked_pages++;
5105 		if (!PageUptodate(page)) {
5106 			num_reads++;
5107 			all_uptodate = 0;
5108 		}
5109 	}
5110 	if (all_uptodate) {
5111 		if (start_i == 0)
5112 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5113 		goto unlock_exit;
5114 	}
5115 
5116 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5117 	eb->read_mirror = 0;
5118 	atomic_set(&eb->io_pages, num_reads);
5119 	for (i = start_i; i < num_pages; i++) {
5120 		page = eb->pages[i];
5121 		if (!PageUptodate(page)) {
5122 			ClearPageError(page);
5123 			err = __extent_read_full_page(tree, page,
5124 						      get_extent, &bio,
5125 						      mirror_num, &bio_flags,
5126 						      READ | REQ_META);
5127 			if (err)
5128 				ret = err;
5129 		} else {
5130 			unlock_page(page);
5131 		}
5132 	}
5133 
5134 	if (bio) {
5135 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5136 				     bio_flags);
5137 		if (err)
5138 			return err;
5139 	}
5140 
5141 	if (ret || wait != WAIT_COMPLETE)
5142 		return ret;
5143 
5144 	for (i = start_i; i < num_pages; i++) {
5145 		page = eb->pages[i];
5146 		wait_on_page_locked(page);
5147 		if (!PageUptodate(page))
5148 			ret = -EIO;
5149 	}
5150 
5151 	return ret;
5152 
5153 unlock_exit:
5154 	i = start_i;
5155 	while (locked_pages > 0) {
5156 		page = eb->pages[i];
5157 		i++;
5158 		unlock_page(page);
5159 		locked_pages--;
5160 	}
5161 	return ret;
5162 }
5163 
5164 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5165 			unsigned long start,
5166 			unsigned long len)
5167 {
5168 	size_t cur;
5169 	size_t offset;
5170 	struct page *page;
5171 	char *kaddr;
5172 	char *dst = (char *)dstv;
5173 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5174 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5175 
5176 	WARN_ON(start > eb->len);
5177 	WARN_ON(start + len > eb->start + eb->len);
5178 
5179 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5180 
5181 	while (len > 0) {
5182 		page = eb->pages[i];
5183 
5184 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5185 		kaddr = page_address(page);
5186 		memcpy(dst, kaddr + offset, cur);
5187 
5188 		dst += cur;
5189 		len -= cur;
5190 		offset = 0;
5191 		i++;
5192 	}
5193 }
5194 
5195 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5196 			unsigned long start,
5197 			unsigned long len)
5198 {
5199 	size_t cur;
5200 	size_t offset;
5201 	struct page *page;
5202 	char *kaddr;
5203 	char __user *dst = (char __user *)dstv;
5204 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5205 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5206 	int ret = 0;
5207 
5208 	WARN_ON(start > eb->len);
5209 	WARN_ON(start + len > eb->start + eb->len);
5210 
5211 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5212 
5213 	while (len > 0) {
5214 		page = eb->pages[i];
5215 
5216 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5217 		kaddr = page_address(page);
5218 		if (copy_to_user(dst, kaddr + offset, cur)) {
5219 			ret = -EFAULT;
5220 			break;
5221 		}
5222 
5223 		dst += cur;
5224 		len -= cur;
5225 		offset = 0;
5226 		i++;
5227 	}
5228 
5229 	return ret;
5230 }
5231 
5232 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5233 			       unsigned long min_len, char **map,
5234 			       unsigned long *map_start,
5235 			       unsigned long *map_len)
5236 {
5237 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5238 	char *kaddr;
5239 	struct page *p;
5240 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5241 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5242 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5243 		PAGE_CACHE_SHIFT;
5244 
5245 	if (i != end_i)
5246 		return -EINVAL;
5247 
5248 	if (i == 0) {
5249 		offset = start_offset;
5250 		*map_start = 0;
5251 	} else {
5252 		offset = 0;
5253 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5254 	}
5255 
5256 	if (start + min_len > eb->len) {
5257 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5258 		       "wanted %lu %lu\n",
5259 		       eb->start, eb->len, start, min_len);
5260 		return -EINVAL;
5261 	}
5262 
5263 	p = eb->pages[i];
5264 	kaddr = page_address(p);
5265 	*map = kaddr + offset;
5266 	*map_len = PAGE_CACHE_SIZE - offset;
5267 	return 0;
5268 }
5269 
5270 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5271 			  unsigned long start,
5272 			  unsigned long len)
5273 {
5274 	size_t cur;
5275 	size_t offset;
5276 	struct page *page;
5277 	char *kaddr;
5278 	char *ptr = (char *)ptrv;
5279 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5280 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5281 	int ret = 0;
5282 
5283 	WARN_ON(start > eb->len);
5284 	WARN_ON(start + len > eb->start + eb->len);
5285 
5286 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5287 
5288 	while (len > 0) {
5289 		page = eb->pages[i];
5290 
5291 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5292 
5293 		kaddr = page_address(page);
5294 		ret = memcmp(ptr, kaddr + offset, cur);
5295 		if (ret)
5296 			break;
5297 
5298 		ptr += cur;
5299 		len -= cur;
5300 		offset = 0;
5301 		i++;
5302 	}
5303 	return ret;
5304 }
5305 
5306 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5307 			 unsigned long start, unsigned long len)
5308 {
5309 	size_t cur;
5310 	size_t offset;
5311 	struct page *page;
5312 	char *kaddr;
5313 	char *src = (char *)srcv;
5314 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5315 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5316 
5317 	WARN_ON(start > eb->len);
5318 	WARN_ON(start + len > eb->start + eb->len);
5319 
5320 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5321 
5322 	while (len > 0) {
5323 		page = eb->pages[i];
5324 		WARN_ON(!PageUptodate(page));
5325 
5326 		cur = min(len, PAGE_CACHE_SIZE - offset);
5327 		kaddr = page_address(page);
5328 		memcpy(kaddr + offset, src, cur);
5329 
5330 		src += cur;
5331 		len -= cur;
5332 		offset = 0;
5333 		i++;
5334 	}
5335 }
5336 
5337 void memset_extent_buffer(struct extent_buffer *eb, char c,
5338 			  unsigned long start, unsigned long len)
5339 {
5340 	size_t cur;
5341 	size_t offset;
5342 	struct page *page;
5343 	char *kaddr;
5344 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5345 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5346 
5347 	WARN_ON(start > eb->len);
5348 	WARN_ON(start + len > eb->start + eb->len);
5349 
5350 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5351 
5352 	while (len > 0) {
5353 		page = eb->pages[i];
5354 		WARN_ON(!PageUptodate(page));
5355 
5356 		cur = min(len, PAGE_CACHE_SIZE - offset);
5357 		kaddr = page_address(page);
5358 		memset(kaddr + offset, c, cur);
5359 
5360 		len -= cur;
5361 		offset = 0;
5362 		i++;
5363 	}
5364 }
5365 
5366 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5367 			unsigned long dst_offset, unsigned long src_offset,
5368 			unsigned long len)
5369 {
5370 	u64 dst_len = dst->len;
5371 	size_t cur;
5372 	size_t offset;
5373 	struct page *page;
5374 	char *kaddr;
5375 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5376 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5377 
5378 	WARN_ON(src->len != dst_len);
5379 
5380 	offset = (start_offset + dst_offset) &
5381 		(PAGE_CACHE_SIZE - 1);
5382 
5383 	while (len > 0) {
5384 		page = dst->pages[i];
5385 		WARN_ON(!PageUptodate(page));
5386 
5387 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5388 
5389 		kaddr = page_address(page);
5390 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5391 
5392 		src_offset += cur;
5393 		len -= cur;
5394 		offset = 0;
5395 		i++;
5396 	}
5397 }
5398 
5399 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5400 {
5401 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5402 	return distance < len;
5403 }
5404 
5405 static void copy_pages(struct page *dst_page, struct page *src_page,
5406 		       unsigned long dst_off, unsigned long src_off,
5407 		       unsigned long len)
5408 {
5409 	char *dst_kaddr = page_address(dst_page);
5410 	char *src_kaddr;
5411 	int must_memmove = 0;
5412 
5413 	if (dst_page != src_page) {
5414 		src_kaddr = page_address(src_page);
5415 	} else {
5416 		src_kaddr = dst_kaddr;
5417 		if (areas_overlap(src_off, dst_off, len))
5418 			must_memmove = 1;
5419 	}
5420 
5421 	if (must_memmove)
5422 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5423 	else
5424 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5425 }
5426 
5427 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5428 			   unsigned long src_offset, unsigned long len)
5429 {
5430 	size_t cur;
5431 	size_t dst_off_in_page;
5432 	size_t src_off_in_page;
5433 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5434 	unsigned long dst_i;
5435 	unsigned long src_i;
5436 
5437 	if (src_offset + len > dst->len) {
5438 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5439 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5440 		BUG_ON(1);
5441 	}
5442 	if (dst_offset + len > dst->len) {
5443 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5444 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5445 		BUG_ON(1);
5446 	}
5447 
5448 	while (len > 0) {
5449 		dst_off_in_page = (start_offset + dst_offset) &
5450 			(PAGE_CACHE_SIZE - 1);
5451 		src_off_in_page = (start_offset + src_offset) &
5452 			(PAGE_CACHE_SIZE - 1);
5453 
5454 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5455 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5456 
5457 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5458 					       src_off_in_page));
5459 		cur = min_t(unsigned long, cur,
5460 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5461 
5462 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5463 			   dst_off_in_page, src_off_in_page, cur);
5464 
5465 		src_offset += cur;
5466 		dst_offset += cur;
5467 		len -= cur;
5468 	}
5469 }
5470 
5471 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5472 			   unsigned long src_offset, unsigned long len)
5473 {
5474 	size_t cur;
5475 	size_t dst_off_in_page;
5476 	size_t src_off_in_page;
5477 	unsigned long dst_end = dst_offset + len - 1;
5478 	unsigned long src_end = src_offset + len - 1;
5479 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5480 	unsigned long dst_i;
5481 	unsigned long src_i;
5482 
5483 	if (src_offset + len > dst->len) {
5484 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5485 		       "len %lu len %lu\n", src_offset, len, dst->len);
5486 		BUG_ON(1);
5487 	}
5488 	if (dst_offset + len > dst->len) {
5489 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5490 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5491 		BUG_ON(1);
5492 	}
5493 	if (dst_offset < src_offset) {
5494 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5495 		return;
5496 	}
5497 	while (len > 0) {
5498 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5499 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5500 
5501 		dst_off_in_page = (start_offset + dst_end) &
5502 			(PAGE_CACHE_SIZE - 1);
5503 		src_off_in_page = (start_offset + src_end) &
5504 			(PAGE_CACHE_SIZE - 1);
5505 
5506 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5507 		cur = min(cur, dst_off_in_page + 1);
5508 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5509 			   dst_off_in_page - cur + 1,
5510 			   src_off_in_page - cur + 1, cur);
5511 
5512 		dst_end -= cur;
5513 		src_end -= cur;
5514 		len -= cur;
5515 	}
5516 }
5517 
5518 int try_release_extent_buffer(struct page *page)
5519 {
5520 	struct extent_buffer *eb;
5521 
5522 	/*
5523 	 * We need to make sure noboody is attaching this page to an eb right
5524 	 * now.
5525 	 */
5526 	spin_lock(&page->mapping->private_lock);
5527 	if (!PagePrivate(page)) {
5528 		spin_unlock(&page->mapping->private_lock);
5529 		return 1;
5530 	}
5531 
5532 	eb = (struct extent_buffer *)page->private;
5533 	BUG_ON(!eb);
5534 
5535 	/*
5536 	 * This is a little awful but should be ok, we need to make sure that
5537 	 * the eb doesn't disappear out from under us while we're looking at
5538 	 * this page.
5539 	 */
5540 	spin_lock(&eb->refs_lock);
5541 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5542 		spin_unlock(&eb->refs_lock);
5543 		spin_unlock(&page->mapping->private_lock);
5544 		return 0;
5545 	}
5546 	spin_unlock(&page->mapping->private_lock);
5547 
5548 	/*
5549 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5550 	 * so just return, this page will likely be freed soon anyway.
5551 	 */
5552 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5553 		spin_unlock(&eb->refs_lock);
5554 		return 0;
5555 	}
5556 
5557 	return release_extent_buffer(eb);
5558 }
5559