1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned long *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned long *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned long *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned long *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned long *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned long bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 prealloc = alloc_extent_state(mask); 599 if (!prealloc) 600 return -ENOMEM; 601 } 602 603 spin_lock(&tree->lock); 604 if (cached_state) { 605 cached = *cached_state; 606 607 if (clear) { 608 *cached_state = NULL; 609 cached_state = NULL; 610 } 611 612 if (cached && extent_state_in_tree(cached) && 613 cached->start <= start && cached->end > start) { 614 if (clear) 615 atomic_dec(&cached->refs); 616 state = cached; 617 goto hit_next; 618 } 619 if (clear) 620 free_extent_state(cached); 621 } 622 /* 623 * this search will find the extents that end after 624 * our range starts 625 */ 626 node = tree_search(tree, start); 627 if (!node) 628 goto out; 629 state = rb_entry(node, struct extent_state, rb_node); 630 hit_next: 631 if (state->start > end) 632 goto out; 633 WARN_ON(state->end < start); 634 last_end = state->end; 635 636 /* the state doesn't have the wanted bits, go ahead */ 637 if (!(state->state & bits)) { 638 state = next_state(state); 639 goto next; 640 } 641 642 /* 643 * | ---- desired range ---- | 644 * | state | or 645 * | ------------- state -------------- | 646 * 647 * We need to split the extent we found, and may flip 648 * bits on second half. 649 * 650 * If the extent we found extends past our range, we 651 * just split and search again. It'll get split again 652 * the next time though. 653 * 654 * If the extent we found is inside our range, we clear 655 * the desired bit on it. 656 */ 657 658 if (state->start < start) { 659 prealloc = alloc_extent_state_atomic(prealloc); 660 BUG_ON(!prealloc); 661 err = split_state(tree, state, prealloc, start); 662 if (err) 663 extent_io_tree_panic(tree, err); 664 665 prealloc = NULL; 666 if (err) 667 goto out; 668 if (state->end <= end) { 669 state = clear_state_bit(tree, state, &bits, wake); 670 goto next; 671 } 672 goto search_again; 673 } 674 /* 675 * | ---- desired range ---- | 676 * | state | 677 * We need to split the extent, and clear the bit 678 * on the first half 679 */ 680 if (state->start <= end && state->end > end) { 681 prealloc = alloc_extent_state_atomic(prealloc); 682 BUG_ON(!prealloc); 683 err = split_state(tree, state, prealloc, end + 1); 684 if (err) 685 extent_io_tree_panic(tree, err); 686 687 if (wake) 688 wake_up(&state->wq); 689 690 clear_state_bit(tree, prealloc, &bits, wake); 691 692 prealloc = NULL; 693 goto out; 694 } 695 696 state = clear_state_bit(tree, state, &bits, wake); 697 next: 698 if (last_end == (u64)-1) 699 goto out; 700 start = last_end + 1; 701 if (start <= end && state && !need_resched()) 702 goto hit_next; 703 goto search_again; 704 705 out: 706 spin_unlock(&tree->lock); 707 if (prealloc) 708 free_extent_state(prealloc); 709 710 return 0; 711 712 search_again: 713 if (start > end) 714 goto out; 715 spin_unlock(&tree->lock); 716 if (mask & __GFP_WAIT) 717 cond_resched(); 718 goto again; 719 } 720 721 static void wait_on_state(struct extent_io_tree *tree, 722 struct extent_state *state) 723 __releases(tree->lock) 724 __acquires(tree->lock) 725 { 726 DEFINE_WAIT(wait); 727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 728 spin_unlock(&tree->lock); 729 schedule(); 730 spin_lock(&tree->lock); 731 finish_wait(&state->wq, &wait); 732 } 733 734 /* 735 * waits for one or more bits to clear on a range in the state tree. 736 * The range [start, end] is inclusive. 737 * The tree lock is taken by this function 738 */ 739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 740 unsigned long bits) 741 { 742 struct extent_state *state; 743 struct rb_node *node; 744 745 btrfs_debug_check_extent_io_range(tree, start, end); 746 747 spin_lock(&tree->lock); 748 again: 749 while (1) { 750 /* 751 * this search will find all the extents that end after 752 * our range starts 753 */ 754 node = tree_search(tree, start); 755 process_node: 756 if (!node) 757 break; 758 759 state = rb_entry(node, struct extent_state, rb_node); 760 761 if (state->start > end) 762 goto out; 763 764 if (state->state & bits) { 765 start = state->start; 766 atomic_inc(&state->refs); 767 wait_on_state(tree, state); 768 free_extent_state(state); 769 goto again; 770 } 771 start = state->end + 1; 772 773 if (start > end) 774 break; 775 776 if (!cond_resched_lock(&tree->lock)) { 777 node = rb_next(node); 778 goto process_node; 779 } 780 } 781 out: 782 spin_unlock(&tree->lock); 783 } 784 785 static void set_state_bits(struct extent_io_tree *tree, 786 struct extent_state *state, 787 unsigned long *bits) 788 { 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 790 791 set_state_cb(tree, state, bits); 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 793 u64 range = state->end - state->start + 1; 794 tree->dirty_bytes += range; 795 } 796 state->state |= bits_to_set; 797 } 798 799 static void cache_state(struct extent_state *state, 800 struct extent_state **cached_ptr) 801 { 802 if (cached_ptr && !(*cached_ptr)) { 803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 804 *cached_ptr = state; 805 atomic_inc(&state->refs); 806 } 807 } 808 } 809 810 /* 811 * set some bits on a range in the tree. This may require allocations or 812 * sleeping, so the gfp mask is used to indicate what is allowed. 813 * 814 * If any of the exclusive bits are set, this will fail with -EEXIST if some 815 * part of the range already has the desired bits set. The start of the 816 * existing range is returned in failed_start in this case. 817 * 818 * [start, end] is inclusive This takes the tree lock. 819 */ 820 821 static int __must_check 822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 823 unsigned long bits, unsigned long exclusive_bits, 824 u64 *failed_start, struct extent_state **cached_state, 825 gfp_t mask) 826 { 827 struct extent_state *state; 828 struct extent_state *prealloc = NULL; 829 struct rb_node *node; 830 struct rb_node **p; 831 struct rb_node *parent; 832 int err = 0; 833 u64 last_start; 834 u64 last_end; 835 836 btrfs_debug_check_extent_io_range(tree, start, end); 837 838 bits |= EXTENT_FIRST_DELALLOC; 839 again: 840 if (!prealloc && (mask & __GFP_WAIT)) { 841 prealloc = alloc_extent_state(mask); 842 BUG_ON(!prealloc); 843 } 844 845 spin_lock(&tree->lock); 846 if (cached_state && *cached_state) { 847 state = *cached_state; 848 if (state->start <= start && state->end > start && 849 extent_state_in_tree(state)) { 850 node = &state->rb_node; 851 goto hit_next; 852 } 853 } 854 /* 855 * this search will find all the extents that end after 856 * our range starts. 857 */ 858 node = tree_search_for_insert(tree, start, &p, &parent); 859 if (!node) { 860 prealloc = alloc_extent_state_atomic(prealloc); 861 BUG_ON(!prealloc); 862 err = insert_state(tree, prealloc, start, end, 863 &p, &parent, &bits); 864 if (err) 865 extent_io_tree_panic(tree, err); 866 867 cache_state(prealloc, cached_state); 868 prealloc = NULL; 869 goto out; 870 } 871 state = rb_entry(node, struct extent_state, rb_node); 872 hit_next: 873 last_start = state->start; 874 last_end = state->end; 875 876 /* 877 * | ---- desired range ---- | 878 * | state | 879 * 880 * Just lock what we found and keep going 881 */ 882 if (state->start == start && state->end <= end) { 883 if (state->state & exclusive_bits) { 884 *failed_start = state->start; 885 err = -EEXIST; 886 goto out; 887 } 888 889 set_state_bits(tree, state, &bits); 890 cache_state(state, cached_state); 891 merge_state(tree, state); 892 if (last_end == (u64)-1) 893 goto out; 894 start = last_end + 1; 895 state = next_state(state); 896 if (start < end && state && state->start == start && 897 !need_resched()) 898 goto hit_next; 899 goto search_again; 900 } 901 902 /* 903 * | ---- desired range ---- | 904 * | state | 905 * or 906 * | ------------- state -------------- | 907 * 908 * We need to split the extent we found, and may flip bits on 909 * second half. 910 * 911 * If the extent we found extends past our 912 * range, we just split and search again. It'll get split 913 * again the next time though. 914 * 915 * If the extent we found is inside our range, we set the 916 * desired bit on it. 917 */ 918 if (state->start < start) { 919 if (state->state & exclusive_bits) { 920 *failed_start = start; 921 err = -EEXIST; 922 goto out; 923 } 924 925 prealloc = alloc_extent_state_atomic(prealloc); 926 BUG_ON(!prealloc); 927 err = split_state(tree, state, prealloc, start); 928 if (err) 929 extent_io_tree_panic(tree, err); 930 931 prealloc = NULL; 932 if (err) 933 goto out; 934 if (state->end <= end) { 935 set_state_bits(tree, state, &bits); 936 cache_state(state, cached_state); 937 merge_state(tree, state); 938 if (last_end == (u64)-1) 939 goto out; 940 start = last_end + 1; 941 state = next_state(state); 942 if (start < end && state && state->start == start && 943 !need_resched()) 944 goto hit_next; 945 } 946 goto search_again; 947 } 948 /* 949 * | ---- desired range ---- | 950 * | state | or | state | 951 * 952 * There's a hole, we need to insert something in it and 953 * ignore the extent we found. 954 */ 955 if (state->start > start) { 956 u64 this_end; 957 if (end < last_start) 958 this_end = end; 959 else 960 this_end = last_start - 1; 961 962 prealloc = alloc_extent_state_atomic(prealloc); 963 BUG_ON(!prealloc); 964 965 /* 966 * Avoid to free 'prealloc' if it can be merged with 967 * the later extent. 968 */ 969 err = insert_state(tree, prealloc, start, this_end, 970 NULL, NULL, &bits); 971 if (err) 972 extent_io_tree_panic(tree, err); 973 974 cache_state(prealloc, cached_state); 975 prealloc = NULL; 976 start = this_end + 1; 977 goto search_again; 978 } 979 /* 980 * | ---- desired range ---- | 981 * | state | 982 * We need to split the extent, and set the bit 983 * on the first half 984 */ 985 if (state->start <= end && state->end > end) { 986 if (state->state & exclusive_bits) { 987 *failed_start = start; 988 err = -EEXIST; 989 goto out; 990 } 991 992 prealloc = alloc_extent_state_atomic(prealloc); 993 BUG_ON(!prealloc); 994 err = split_state(tree, state, prealloc, end + 1); 995 if (err) 996 extent_io_tree_panic(tree, err); 997 998 set_state_bits(tree, prealloc, &bits); 999 cache_state(prealloc, cached_state); 1000 merge_state(tree, prealloc); 1001 prealloc = NULL; 1002 goto out; 1003 } 1004 1005 goto search_again; 1006 1007 out: 1008 spin_unlock(&tree->lock); 1009 if (prealloc) 1010 free_extent_state(prealloc); 1011 1012 return err; 1013 1014 search_again: 1015 if (start > end) 1016 goto out; 1017 spin_unlock(&tree->lock); 1018 if (mask & __GFP_WAIT) 1019 cond_resched(); 1020 goto again; 1021 } 1022 1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1024 unsigned long bits, u64 * failed_start, 1025 struct extent_state **cached_state, gfp_t mask) 1026 { 1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1028 cached_state, mask); 1029 } 1030 1031 1032 /** 1033 * convert_extent_bit - convert all bits in a given range from one bit to 1034 * another 1035 * @tree: the io tree to search 1036 * @start: the start offset in bytes 1037 * @end: the end offset in bytes (inclusive) 1038 * @bits: the bits to set in this range 1039 * @clear_bits: the bits to clear in this range 1040 * @cached_state: state that we're going to cache 1041 * @mask: the allocation mask 1042 * 1043 * This will go through and set bits for the given range. If any states exist 1044 * already in this range they are set with the given bit and cleared of the 1045 * clear_bits. This is only meant to be used by things that are mergeable, ie 1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1047 * boundary bits like LOCK. 1048 */ 1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1050 unsigned long bits, unsigned long clear_bits, 1051 struct extent_state **cached_state, gfp_t mask) 1052 { 1053 struct extent_state *state; 1054 struct extent_state *prealloc = NULL; 1055 struct rb_node *node; 1056 struct rb_node **p; 1057 struct rb_node *parent; 1058 int err = 0; 1059 u64 last_start; 1060 u64 last_end; 1061 1062 btrfs_debug_check_extent_io_range(tree, start, end); 1063 1064 again: 1065 if (!prealloc && (mask & __GFP_WAIT)) { 1066 prealloc = alloc_extent_state(mask); 1067 if (!prealloc) 1068 return -ENOMEM; 1069 } 1070 1071 spin_lock(&tree->lock); 1072 if (cached_state && *cached_state) { 1073 state = *cached_state; 1074 if (state->start <= start && state->end > start && 1075 extent_state_in_tree(state)) { 1076 node = &state->rb_node; 1077 goto hit_next; 1078 } 1079 } 1080 1081 /* 1082 * this search will find all the extents that end after 1083 * our range starts. 1084 */ 1085 node = tree_search_for_insert(tree, start, &p, &parent); 1086 if (!node) { 1087 prealloc = alloc_extent_state_atomic(prealloc); 1088 if (!prealloc) { 1089 err = -ENOMEM; 1090 goto out; 1091 } 1092 err = insert_state(tree, prealloc, start, end, 1093 &p, &parent, &bits); 1094 if (err) 1095 extent_io_tree_panic(tree, err); 1096 cache_state(prealloc, cached_state); 1097 prealloc = NULL; 1098 goto out; 1099 } 1100 state = rb_entry(node, struct extent_state, rb_node); 1101 hit_next: 1102 last_start = state->start; 1103 last_end = state->end; 1104 1105 /* 1106 * | ---- desired range ---- | 1107 * | state | 1108 * 1109 * Just lock what we found and keep going 1110 */ 1111 if (state->start == start && state->end <= end) { 1112 set_state_bits(tree, state, &bits); 1113 cache_state(state, cached_state); 1114 state = clear_state_bit(tree, state, &clear_bits, 0); 1115 if (last_end == (u64)-1) 1116 goto out; 1117 start = last_end + 1; 1118 if (start < end && state && state->start == start && 1119 !need_resched()) 1120 goto hit_next; 1121 goto search_again; 1122 } 1123 1124 /* 1125 * | ---- desired range ---- | 1126 * | state | 1127 * or 1128 * | ------------- state -------------- | 1129 * 1130 * We need to split the extent we found, and may flip bits on 1131 * second half. 1132 * 1133 * If the extent we found extends past our 1134 * range, we just split and search again. It'll get split 1135 * again the next time though. 1136 * 1137 * If the extent we found is inside our range, we set the 1138 * desired bit on it. 1139 */ 1140 if (state->start < start) { 1141 prealloc = alloc_extent_state_atomic(prealloc); 1142 if (!prealloc) { 1143 err = -ENOMEM; 1144 goto out; 1145 } 1146 err = split_state(tree, state, prealloc, start); 1147 if (err) 1148 extent_io_tree_panic(tree, err); 1149 prealloc = NULL; 1150 if (err) 1151 goto out; 1152 if (state->end <= end) { 1153 set_state_bits(tree, state, &bits); 1154 cache_state(state, cached_state); 1155 state = clear_state_bit(tree, state, &clear_bits, 0); 1156 if (last_end == (u64)-1) 1157 goto out; 1158 start = last_end + 1; 1159 if (start < end && state && state->start == start && 1160 !need_resched()) 1161 goto hit_next; 1162 } 1163 goto search_again; 1164 } 1165 /* 1166 * | ---- desired range ---- | 1167 * | state | or | state | 1168 * 1169 * There's a hole, we need to insert something in it and 1170 * ignore the extent we found. 1171 */ 1172 if (state->start > start) { 1173 u64 this_end; 1174 if (end < last_start) 1175 this_end = end; 1176 else 1177 this_end = last_start - 1; 1178 1179 prealloc = alloc_extent_state_atomic(prealloc); 1180 if (!prealloc) { 1181 err = -ENOMEM; 1182 goto out; 1183 } 1184 1185 /* 1186 * Avoid to free 'prealloc' if it can be merged with 1187 * the later extent. 1188 */ 1189 err = insert_state(tree, prealloc, start, this_end, 1190 NULL, NULL, &bits); 1191 if (err) 1192 extent_io_tree_panic(tree, err); 1193 cache_state(prealloc, cached_state); 1194 prealloc = NULL; 1195 start = this_end + 1; 1196 goto search_again; 1197 } 1198 /* 1199 * | ---- desired range ---- | 1200 * | state | 1201 * We need to split the extent, and set the bit 1202 * on the first half 1203 */ 1204 if (state->start <= end && state->end > end) { 1205 prealloc = alloc_extent_state_atomic(prealloc); 1206 if (!prealloc) { 1207 err = -ENOMEM; 1208 goto out; 1209 } 1210 1211 err = split_state(tree, state, prealloc, end + 1); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 1215 set_state_bits(tree, prealloc, &bits); 1216 cache_state(prealloc, cached_state); 1217 clear_state_bit(tree, prealloc, &clear_bits, 0); 1218 prealloc = NULL; 1219 goto out; 1220 } 1221 1222 goto search_again; 1223 1224 out: 1225 spin_unlock(&tree->lock); 1226 if (prealloc) 1227 free_extent_state(prealloc); 1228 1229 return err; 1230 1231 search_again: 1232 if (start > end) 1233 goto out; 1234 spin_unlock(&tree->lock); 1235 if (mask & __GFP_WAIT) 1236 cond_resched(); 1237 goto again; 1238 } 1239 1240 /* wrappers around set/clear extent bit */ 1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1242 gfp_t mask) 1243 { 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1245 NULL, mask); 1246 } 1247 1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1249 unsigned long bits, gfp_t mask) 1250 { 1251 return set_extent_bit(tree, start, end, bits, NULL, 1252 NULL, mask); 1253 } 1254 1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1256 unsigned long bits, gfp_t mask) 1257 { 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1259 } 1260 1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1262 struct extent_state **cached_state, gfp_t mask) 1263 { 1264 return set_extent_bit(tree, start, end, 1265 EXTENT_DELALLOC | EXTENT_UPTODATE, 1266 NULL, cached_state, mask); 1267 } 1268 1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1270 struct extent_state **cached_state, gfp_t mask) 1271 { 1272 return set_extent_bit(tree, start, end, 1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1274 NULL, cached_state, mask); 1275 } 1276 1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1278 gfp_t mask) 1279 { 1280 return clear_extent_bit(tree, start, end, 1281 EXTENT_DIRTY | EXTENT_DELALLOC | 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1283 } 1284 1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1286 gfp_t mask) 1287 { 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1289 NULL, mask); 1290 } 1291 1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1293 struct extent_state **cached_state, gfp_t mask) 1294 { 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1296 cached_state, mask); 1297 } 1298 1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1300 struct extent_state **cached_state, gfp_t mask) 1301 { 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1303 cached_state, mask); 1304 } 1305 1306 /* 1307 * either insert or lock state struct between start and end use mask to tell 1308 * us if waiting is desired. 1309 */ 1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1311 unsigned long bits, struct extent_state **cached_state) 1312 { 1313 int err; 1314 u64 failed_start; 1315 while (1) { 1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1317 EXTENT_LOCKED, &failed_start, 1318 cached_state, GFP_NOFS); 1319 if (err == -EEXIST) { 1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1321 start = failed_start; 1322 } else 1323 break; 1324 WARN_ON(start > end); 1325 } 1326 return err; 1327 } 1328 1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1330 { 1331 return lock_extent_bits(tree, start, end, 0, NULL); 1332 } 1333 1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1335 { 1336 int err; 1337 u64 failed_start; 1338 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1340 &failed_start, NULL, GFP_NOFS); 1341 if (err == -EEXIST) { 1342 if (failed_start > start) 1343 clear_extent_bit(tree, start, failed_start - 1, 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1345 return 0; 1346 } 1347 return 1; 1348 } 1349 1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1351 struct extent_state **cached, gfp_t mask) 1352 { 1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1354 mask); 1355 } 1356 1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1360 GFP_NOFS); 1361 } 1362 1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1364 { 1365 unsigned long index = start >> PAGE_CACHE_SHIFT; 1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1367 struct page *page; 1368 1369 while (index <= end_index) { 1370 page = find_get_page(inode->i_mapping, index); 1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1372 clear_page_dirty_for_io(page); 1373 page_cache_release(page); 1374 index++; 1375 } 1376 return 0; 1377 } 1378 1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1380 { 1381 unsigned long index = start >> PAGE_CACHE_SHIFT; 1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1383 struct page *page; 1384 1385 while (index <= end_index) { 1386 page = find_get_page(inode->i_mapping, index); 1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1388 account_page_redirty(page); 1389 __set_page_dirty_nobuffers(page); 1390 page_cache_release(page); 1391 index++; 1392 } 1393 return 0; 1394 } 1395 1396 /* 1397 * helper function to set both pages and extents in the tree writeback 1398 */ 1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1400 { 1401 unsigned long index = start >> PAGE_CACHE_SHIFT; 1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1403 struct page *page; 1404 1405 while (index <= end_index) { 1406 page = find_get_page(tree->mapping, index); 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1408 set_page_writeback(page); 1409 page_cache_release(page); 1410 index++; 1411 } 1412 return 0; 1413 } 1414 1415 /* find the first state struct with 'bits' set after 'start', and 1416 * return it. tree->lock must be held. NULL will returned if 1417 * nothing was found after 'start' 1418 */ 1419 static struct extent_state * 1420 find_first_extent_bit_state(struct extent_io_tree *tree, 1421 u64 start, unsigned long bits) 1422 { 1423 struct rb_node *node; 1424 struct extent_state *state; 1425 1426 /* 1427 * this search will find all the extents that end after 1428 * our range starts. 1429 */ 1430 node = tree_search(tree, start); 1431 if (!node) 1432 goto out; 1433 1434 while (1) { 1435 state = rb_entry(node, struct extent_state, rb_node); 1436 if (state->end >= start && (state->state & bits)) 1437 return state; 1438 1439 node = rb_next(node); 1440 if (!node) 1441 break; 1442 } 1443 out: 1444 return NULL; 1445 } 1446 1447 /* 1448 * find the first offset in the io tree with 'bits' set. zero is 1449 * returned if we find something, and *start_ret and *end_ret are 1450 * set to reflect the state struct that was found. 1451 * 1452 * If nothing was found, 1 is returned. If found something, return 0. 1453 */ 1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1455 u64 *start_ret, u64 *end_ret, unsigned long bits, 1456 struct extent_state **cached_state) 1457 { 1458 struct extent_state *state; 1459 struct rb_node *n; 1460 int ret = 1; 1461 1462 spin_lock(&tree->lock); 1463 if (cached_state && *cached_state) { 1464 state = *cached_state; 1465 if (state->end == start - 1 && extent_state_in_tree(state)) { 1466 n = rb_next(&state->rb_node); 1467 while (n) { 1468 state = rb_entry(n, struct extent_state, 1469 rb_node); 1470 if (state->state & bits) 1471 goto got_it; 1472 n = rb_next(n); 1473 } 1474 free_extent_state(*cached_state); 1475 *cached_state = NULL; 1476 goto out; 1477 } 1478 free_extent_state(*cached_state); 1479 *cached_state = NULL; 1480 } 1481 1482 state = find_first_extent_bit_state(tree, start, bits); 1483 got_it: 1484 if (state) { 1485 cache_state(state, cached_state); 1486 *start_ret = state->start; 1487 *end_ret = state->end; 1488 ret = 0; 1489 } 1490 out: 1491 spin_unlock(&tree->lock); 1492 return ret; 1493 } 1494 1495 /* 1496 * find a contiguous range of bytes in the file marked as delalloc, not 1497 * more than 'max_bytes'. start and end are used to return the range, 1498 * 1499 * 1 is returned if we find something, 0 if nothing was in the tree 1500 */ 1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1502 u64 *start, u64 *end, u64 max_bytes, 1503 struct extent_state **cached_state) 1504 { 1505 struct rb_node *node; 1506 struct extent_state *state; 1507 u64 cur_start = *start; 1508 u64 found = 0; 1509 u64 total_bytes = 0; 1510 1511 spin_lock(&tree->lock); 1512 1513 /* 1514 * this search will find all the extents that end after 1515 * our range starts. 1516 */ 1517 node = tree_search(tree, cur_start); 1518 if (!node) { 1519 if (!found) 1520 *end = (u64)-1; 1521 goto out; 1522 } 1523 1524 while (1) { 1525 state = rb_entry(node, struct extent_state, rb_node); 1526 if (found && (state->start != cur_start || 1527 (state->state & EXTENT_BOUNDARY))) { 1528 goto out; 1529 } 1530 if (!(state->state & EXTENT_DELALLOC)) { 1531 if (!found) 1532 *end = state->end; 1533 goto out; 1534 } 1535 if (!found) { 1536 *start = state->start; 1537 *cached_state = state; 1538 atomic_inc(&state->refs); 1539 } 1540 found++; 1541 *end = state->end; 1542 cur_start = state->end + 1; 1543 node = rb_next(node); 1544 total_bytes += state->end - state->start + 1; 1545 if (total_bytes >= max_bytes) 1546 break; 1547 if (!node) 1548 break; 1549 } 1550 out: 1551 spin_unlock(&tree->lock); 1552 return found; 1553 } 1554 1555 static noinline void __unlock_for_delalloc(struct inode *inode, 1556 struct page *locked_page, 1557 u64 start, u64 end) 1558 { 1559 int ret; 1560 struct page *pages[16]; 1561 unsigned long index = start >> PAGE_CACHE_SHIFT; 1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1563 unsigned long nr_pages = end_index - index + 1; 1564 int i; 1565 1566 if (index == locked_page->index && end_index == index) 1567 return; 1568 1569 while (nr_pages > 0) { 1570 ret = find_get_pages_contig(inode->i_mapping, index, 1571 min_t(unsigned long, nr_pages, 1572 ARRAY_SIZE(pages)), pages); 1573 for (i = 0; i < ret; i++) { 1574 if (pages[i] != locked_page) 1575 unlock_page(pages[i]); 1576 page_cache_release(pages[i]); 1577 } 1578 nr_pages -= ret; 1579 index += ret; 1580 cond_resched(); 1581 } 1582 } 1583 1584 static noinline int lock_delalloc_pages(struct inode *inode, 1585 struct page *locked_page, 1586 u64 delalloc_start, 1587 u64 delalloc_end) 1588 { 1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1590 unsigned long start_index = index; 1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1592 unsigned long pages_locked = 0; 1593 struct page *pages[16]; 1594 unsigned long nrpages; 1595 int ret; 1596 int i; 1597 1598 /* the caller is responsible for locking the start index */ 1599 if (index == locked_page->index && index == end_index) 1600 return 0; 1601 1602 /* skip the page at the start index */ 1603 nrpages = end_index - index + 1; 1604 while (nrpages > 0) { 1605 ret = find_get_pages_contig(inode->i_mapping, index, 1606 min_t(unsigned long, 1607 nrpages, ARRAY_SIZE(pages)), pages); 1608 if (ret == 0) { 1609 ret = -EAGAIN; 1610 goto done; 1611 } 1612 /* now we have an array of pages, lock them all */ 1613 for (i = 0; i < ret; i++) { 1614 /* 1615 * the caller is taking responsibility for 1616 * locked_page 1617 */ 1618 if (pages[i] != locked_page) { 1619 lock_page(pages[i]); 1620 if (!PageDirty(pages[i]) || 1621 pages[i]->mapping != inode->i_mapping) { 1622 ret = -EAGAIN; 1623 unlock_page(pages[i]); 1624 page_cache_release(pages[i]); 1625 goto done; 1626 } 1627 } 1628 page_cache_release(pages[i]); 1629 pages_locked++; 1630 } 1631 nrpages -= ret; 1632 index += ret; 1633 cond_resched(); 1634 } 1635 ret = 0; 1636 done: 1637 if (ret && pages_locked) { 1638 __unlock_for_delalloc(inode, locked_page, 1639 delalloc_start, 1640 ((u64)(start_index + pages_locked - 1)) << 1641 PAGE_CACHE_SHIFT); 1642 } 1643 return ret; 1644 } 1645 1646 /* 1647 * find a contiguous range of bytes in the file marked as delalloc, not 1648 * more than 'max_bytes'. start and end are used to return the range, 1649 * 1650 * 1 is returned if we find something, 0 if nothing was in the tree 1651 */ 1652 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1653 struct extent_io_tree *tree, 1654 struct page *locked_page, u64 *start, 1655 u64 *end, u64 max_bytes) 1656 { 1657 u64 delalloc_start; 1658 u64 delalloc_end; 1659 u64 found; 1660 struct extent_state *cached_state = NULL; 1661 int ret; 1662 int loops = 0; 1663 1664 again: 1665 /* step one, find a bunch of delalloc bytes starting at start */ 1666 delalloc_start = *start; 1667 delalloc_end = 0; 1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1669 max_bytes, &cached_state); 1670 if (!found || delalloc_end <= *start) { 1671 *start = delalloc_start; 1672 *end = delalloc_end; 1673 free_extent_state(cached_state); 1674 return 0; 1675 } 1676 1677 /* 1678 * start comes from the offset of locked_page. We have to lock 1679 * pages in order, so we can't process delalloc bytes before 1680 * locked_page 1681 */ 1682 if (delalloc_start < *start) 1683 delalloc_start = *start; 1684 1685 /* 1686 * make sure to limit the number of pages we try to lock down 1687 */ 1688 if (delalloc_end + 1 - delalloc_start > max_bytes) 1689 delalloc_end = delalloc_start + max_bytes - 1; 1690 1691 /* step two, lock all the pages after the page that has start */ 1692 ret = lock_delalloc_pages(inode, locked_page, 1693 delalloc_start, delalloc_end); 1694 if (ret == -EAGAIN) { 1695 /* some of the pages are gone, lets avoid looping by 1696 * shortening the size of the delalloc range we're searching 1697 */ 1698 free_extent_state(cached_state); 1699 cached_state = NULL; 1700 if (!loops) { 1701 max_bytes = PAGE_CACHE_SIZE; 1702 loops = 1; 1703 goto again; 1704 } else { 1705 found = 0; 1706 goto out_failed; 1707 } 1708 } 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1710 1711 /* step three, lock the state bits for the whole range */ 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1713 1714 /* then test to make sure it is all still delalloc */ 1715 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1716 EXTENT_DELALLOC, 1, cached_state); 1717 if (!ret) { 1718 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1719 &cached_state, GFP_NOFS); 1720 __unlock_for_delalloc(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 cond_resched(); 1723 goto again; 1724 } 1725 free_extent_state(cached_state); 1726 *start = delalloc_start; 1727 *end = delalloc_end; 1728 out_failed: 1729 return found; 1730 } 1731 1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1733 struct page *locked_page, 1734 unsigned long clear_bits, 1735 unsigned long page_ops) 1736 { 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1738 int ret; 1739 struct page *pages[16]; 1740 unsigned long index = start >> PAGE_CACHE_SHIFT; 1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1742 unsigned long nr_pages = end_index - index + 1; 1743 int i; 1744 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1746 if (page_ops == 0) 1747 return 0; 1748 1749 while (nr_pages > 0) { 1750 ret = find_get_pages_contig(inode->i_mapping, index, 1751 min_t(unsigned long, 1752 nr_pages, ARRAY_SIZE(pages)), pages); 1753 for (i = 0; i < ret; i++) { 1754 1755 if (page_ops & PAGE_SET_PRIVATE2) 1756 SetPagePrivate2(pages[i]); 1757 1758 if (pages[i] == locked_page) { 1759 page_cache_release(pages[i]); 1760 continue; 1761 } 1762 if (page_ops & PAGE_CLEAR_DIRTY) 1763 clear_page_dirty_for_io(pages[i]); 1764 if (page_ops & PAGE_SET_WRITEBACK) 1765 set_page_writeback(pages[i]); 1766 if (page_ops & PAGE_END_WRITEBACK) 1767 end_page_writeback(pages[i]); 1768 if (page_ops & PAGE_UNLOCK) 1769 unlock_page(pages[i]); 1770 page_cache_release(pages[i]); 1771 } 1772 nr_pages -= ret; 1773 index += ret; 1774 cond_resched(); 1775 } 1776 return 0; 1777 } 1778 1779 /* 1780 * count the number of bytes in the tree that have a given bit(s) 1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1782 * cached. The total number found is returned. 1783 */ 1784 u64 count_range_bits(struct extent_io_tree *tree, 1785 u64 *start, u64 search_end, u64 max_bytes, 1786 unsigned long bits, int contig) 1787 { 1788 struct rb_node *node; 1789 struct extent_state *state; 1790 u64 cur_start = *start; 1791 u64 total_bytes = 0; 1792 u64 last = 0; 1793 int found = 0; 1794 1795 if (WARN_ON(search_end <= cur_start)) 1796 return 0; 1797 1798 spin_lock(&tree->lock); 1799 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1800 total_bytes = tree->dirty_bytes; 1801 goto out; 1802 } 1803 /* 1804 * this search will find all the extents that end after 1805 * our range starts. 1806 */ 1807 node = tree_search(tree, cur_start); 1808 if (!node) 1809 goto out; 1810 1811 while (1) { 1812 state = rb_entry(node, struct extent_state, rb_node); 1813 if (state->start > search_end) 1814 break; 1815 if (contig && found && state->start > last + 1) 1816 break; 1817 if (state->end >= cur_start && (state->state & bits) == bits) { 1818 total_bytes += min(search_end, state->end) + 1 - 1819 max(cur_start, state->start); 1820 if (total_bytes >= max_bytes) 1821 break; 1822 if (!found) { 1823 *start = max(cur_start, state->start); 1824 found = 1; 1825 } 1826 last = state->end; 1827 } else if (contig && found) { 1828 break; 1829 } 1830 node = rb_next(node); 1831 if (!node) 1832 break; 1833 } 1834 out: 1835 spin_unlock(&tree->lock); 1836 return total_bytes; 1837 } 1838 1839 /* 1840 * set the private field for a given byte offset in the tree. If there isn't 1841 * an extent_state there already, this does nothing. 1842 */ 1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1844 { 1845 struct rb_node *node; 1846 struct extent_state *state; 1847 int ret = 0; 1848 1849 spin_lock(&tree->lock); 1850 /* 1851 * this search will find all the extents that end after 1852 * our range starts. 1853 */ 1854 node = tree_search(tree, start); 1855 if (!node) { 1856 ret = -ENOENT; 1857 goto out; 1858 } 1859 state = rb_entry(node, struct extent_state, rb_node); 1860 if (state->start != start) { 1861 ret = -ENOENT; 1862 goto out; 1863 } 1864 state->private = private; 1865 out: 1866 spin_unlock(&tree->lock); 1867 return ret; 1868 } 1869 1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1871 { 1872 struct rb_node *node; 1873 struct extent_state *state; 1874 int ret = 0; 1875 1876 spin_lock(&tree->lock); 1877 /* 1878 * this search will find all the extents that end after 1879 * our range starts. 1880 */ 1881 node = tree_search(tree, start); 1882 if (!node) { 1883 ret = -ENOENT; 1884 goto out; 1885 } 1886 state = rb_entry(node, struct extent_state, rb_node); 1887 if (state->start != start) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 *private = state->private; 1892 out: 1893 spin_unlock(&tree->lock); 1894 return ret; 1895 } 1896 1897 /* 1898 * searches a range in the state tree for a given mask. 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree 1900 * has the bits set. Otherwise, 1 is returned if any bit in the 1901 * range is found set. 1902 */ 1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1904 unsigned long bits, int filled, struct extent_state *cached) 1905 { 1906 struct extent_state *state = NULL; 1907 struct rb_node *node; 1908 int bitset = 0; 1909 1910 spin_lock(&tree->lock); 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1912 cached->end > start) 1913 node = &cached->rb_node; 1914 else 1915 node = tree_search(tree, start); 1916 while (node && start <= end) { 1917 state = rb_entry(node, struct extent_state, rb_node); 1918 1919 if (filled && state->start > start) { 1920 bitset = 0; 1921 break; 1922 } 1923 1924 if (state->start > end) 1925 break; 1926 1927 if (state->state & bits) { 1928 bitset = 1; 1929 if (!filled) 1930 break; 1931 } else if (filled) { 1932 bitset = 0; 1933 break; 1934 } 1935 1936 if (state->end == (u64)-1) 1937 break; 1938 1939 start = state->end + 1; 1940 if (start > end) 1941 break; 1942 node = rb_next(node); 1943 if (!node) { 1944 if (filled) 1945 bitset = 0; 1946 break; 1947 } 1948 } 1949 spin_unlock(&tree->lock); 1950 return bitset; 1951 } 1952 1953 /* 1954 * helper function to set a given page up to date if all the 1955 * extents in the tree for that page are up to date 1956 */ 1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1958 { 1959 u64 start = page_offset(page); 1960 u64 end = start + PAGE_CACHE_SIZE - 1; 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1962 SetPageUptodate(page); 1963 } 1964 1965 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1966 { 1967 int ret; 1968 int err = 0; 1969 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1970 1971 set_state_private(failure_tree, rec->start, 0); 1972 ret = clear_extent_bits(failure_tree, rec->start, 1973 rec->start + rec->len - 1, 1974 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1975 if (ret) 1976 err = ret; 1977 1978 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1979 rec->start + rec->len - 1, 1980 EXTENT_DAMAGED, GFP_NOFS); 1981 if (ret && !err) 1982 err = ret; 1983 1984 kfree(rec); 1985 return err; 1986 } 1987 1988 /* 1989 * this bypasses the standard btrfs submit functions deliberately, as 1990 * the standard behavior is to write all copies in a raid setup. here we only 1991 * want to write the one bad copy. so we do the mapping for ourselves and issue 1992 * submit_bio directly. 1993 * to avoid any synchronization issues, wait for the data after writing, which 1994 * actually prevents the read that triggered the error from finishing. 1995 * currently, there can be no more than two copies of every data bit. thus, 1996 * exactly one rewrite is required. 1997 */ 1998 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 1999 struct page *page, unsigned int pg_offset, int mirror_num) 2000 { 2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2002 struct bio *bio; 2003 struct btrfs_device *dev; 2004 u64 map_length = 0; 2005 u64 sector; 2006 struct btrfs_bio *bbio = NULL; 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2008 int ret; 2009 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2011 BUG_ON(!mirror_num); 2012 2013 /* we can't repair anything in raid56 yet */ 2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2015 return 0; 2016 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2018 if (!bio) 2019 return -EIO; 2020 bio->bi_iter.bi_size = 0; 2021 map_length = length; 2022 2023 ret = btrfs_map_block(fs_info, WRITE, logical, 2024 &map_length, &bbio, mirror_num); 2025 if (ret) { 2026 bio_put(bio); 2027 return -EIO; 2028 } 2029 BUG_ON(mirror_num != bbio->mirror_num); 2030 sector = bbio->stripes[mirror_num-1].physical >> 9; 2031 bio->bi_iter.bi_sector = sector; 2032 dev = bbio->stripes[mirror_num-1].dev; 2033 kfree(bbio); 2034 if (!dev || !dev->bdev || !dev->writeable) { 2035 bio_put(bio); 2036 return -EIO; 2037 } 2038 bio->bi_bdev = dev->bdev; 2039 bio_add_page(bio, page, length, pg_offset); 2040 2041 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2042 /* try to remap that extent elsewhere? */ 2043 bio_put(bio); 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2045 return -EIO; 2046 } 2047 2048 printk_ratelimited_in_rcu(KERN_INFO 2049 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2050 btrfs_ino(inode), start, 2051 rcu_str_deref(dev->name), sector); 2052 bio_put(bio); 2053 return 0; 2054 } 2055 2056 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2057 int mirror_num) 2058 { 2059 u64 start = eb->start; 2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2061 int ret = 0; 2062 2063 if (root->fs_info->sb->s_flags & MS_RDONLY) 2064 return -EROFS; 2065 2066 for (i = 0; i < num_pages; i++) { 2067 struct page *p = eb->pages[i]; 2068 2069 ret = repair_io_failure(root->fs_info->btree_inode, start, 2070 PAGE_CACHE_SIZE, start, p, 2071 start - page_offset(p), mirror_num); 2072 if (ret) 2073 break; 2074 start += PAGE_CACHE_SIZE; 2075 } 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * each time an IO finishes, we do a fast check in the IO failure tree 2082 * to see if we need to process or clean up an io_failure_record 2083 */ 2084 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2085 unsigned int pg_offset) 2086 { 2087 u64 private; 2088 u64 private_failure; 2089 struct io_failure_record *failrec; 2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2091 struct extent_state *state; 2092 int num_copies; 2093 int ret; 2094 2095 private = 0; 2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2097 (u64)-1, 1, EXTENT_DIRTY, 0); 2098 if (!ret) 2099 return 0; 2100 2101 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2102 &private_failure); 2103 if (ret) 2104 return 0; 2105 2106 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2107 BUG_ON(!failrec->this_mirror); 2108 2109 if (failrec->in_validation) { 2110 /* there was no real error, just free the record */ 2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2112 failrec->start); 2113 goto out; 2114 } 2115 if (fs_info->sb->s_flags & MS_RDONLY) 2116 goto out; 2117 2118 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2120 failrec->start, 2121 EXTENT_LOCKED); 2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2123 2124 if (state && state->start <= failrec->start && 2125 state->end >= failrec->start + failrec->len - 1) { 2126 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2127 failrec->len); 2128 if (num_copies > 1) { 2129 repair_io_failure(inode, start, failrec->len, 2130 failrec->logical, page, 2131 pg_offset, failrec->failed_mirror); 2132 } 2133 } 2134 2135 out: 2136 free_io_failure(inode, failrec); 2137 2138 return 0; 2139 } 2140 2141 /* 2142 * Can be called when 2143 * - hold extent lock 2144 * - under ordered extent 2145 * - the inode is freeing 2146 */ 2147 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2148 { 2149 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2150 struct io_failure_record *failrec; 2151 struct extent_state *state, *next; 2152 2153 if (RB_EMPTY_ROOT(&failure_tree->state)) 2154 return; 2155 2156 spin_lock(&failure_tree->lock); 2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2158 while (state) { 2159 if (state->start > end) 2160 break; 2161 2162 ASSERT(state->end <= end); 2163 2164 next = next_state(state); 2165 2166 failrec = (struct io_failure_record *)state->private; 2167 free_extent_state(state); 2168 kfree(failrec); 2169 2170 state = next; 2171 } 2172 spin_unlock(&failure_tree->lock); 2173 } 2174 2175 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2176 struct io_failure_record **failrec_ret) 2177 { 2178 struct io_failure_record *failrec; 2179 u64 private; 2180 struct extent_map *em; 2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2184 int ret; 2185 u64 logical; 2186 2187 ret = get_state_private(failure_tree, start, &private); 2188 if (ret) { 2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2190 if (!failrec) 2191 return -ENOMEM; 2192 2193 failrec->start = start; 2194 failrec->len = end - start + 1; 2195 failrec->this_mirror = 0; 2196 failrec->bio_flags = 0; 2197 failrec->in_validation = 0; 2198 2199 read_lock(&em_tree->lock); 2200 em = lookup_extent_mapping(em_tree, start, failrec->len); 2201 if (!em) { 2202 read_unlock(&em_tree->lock); 2203 kfree(failrec); 2204 return -EIO; 2205 } 2206 2207 if (em->start > start || em->start + em->len <= start) { 2208 free_extent_map(em); 2209 em = NULL; 2210 } 2211 read_unlock(&em_tree->lock); 2212 if (!em) { 2213 kfree(failrec); 2214 return -EIO; 2215 } 2216 2217 logical = start - em->start; 2218 logical = em->block_start + logical; 2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2220 logical = em->block_start; 2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2222 extent_set_compress_type(&failrec->bio_flags, 2223 em->compress_type); 2224 } 2225 2226 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2227 logical, start, failrec->len); 2228 2229 failrec->logical = logical; 2230 free_extent_map(em); 2231 2232 /* set the bits in the private failure tree */ 2233 ret = set_extent_bits(failure_tree, start, end, 2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2235 if (ret >= 0) 2236 ret = set_state_private(failure_tree, start, 2237 (u64)(unsigned long)failrec); 2238 /* set the bits in the inode's tree */ 2239 if (ret >= 0) 2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2241 GFP_NOFS); 2242 if (ret < 0) { 2243 kfree(failrec); 2244 return ret; 2245 } 2246 } else { 2247 failrec = (struct io_failure_record *)(unsigned long)private; 2248 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2249 failrec->logical, failrec->start, failrec->len, 2250 failrec->in_validation); 2251 /* 2252 * when data can be on disk more than twice, add to failrec here 2253 * (e.g. with a list for failed_mirror) to make 2254 * clean_io_failure() clean all those errors at once. 2255 */ 2256 } 2257 2258 *failrec_ret = failrec; 2259 2260 return 0; 2261 } 2262 2263 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2264 struct io_failure_record *failrec, int failed_mirror) 2265 { 2266 int num_copies; 2267 2268 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2269 failrec->logical, failrec->len); 2270 if (num_copies == 1) { 2271 /* 2272 * we only have a single copy of the data, so don't bother with 2273 * all the retry and error correction code that follows. no 2274 * matter what the error is, it is very likely to persist. 2275 */ 2276 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2277 num_copies, failrec->this_mirror, failed_mirror); 2278 return 0; 2279 } 2280 2281 /* 2282 * there are two premises: 2283 * a) deliver good data to the caller 2284 * b) correct the bad sectors on disk 2285 */ 2286 if (failed_bio->bi_vcnt > 1) { 2287 /* 2288 * to fulfill b), we need to know the exact failing sectors, as 2289 * we don't want to rewrite any more than the failed ones. thus, 2290 * we need separate read requests for the failed bio 2291 * 2292 * if the following BUG_ON triggers, our validation request got 2293 * merged. we need separate requests for our algorithm to work. 2294 */ 2295 BUG_ON(failrec->in_validation); 2296 failrec->in_validation = 1; 2297 failrec->this_mirror = failed_mirror; 2298 } else { 2299 /* 2300 * we're ready to fulfill a) and b) alongside. get a good copy 2301 * of the failed sector and if we succeed, we have setup 2302 * everything for repair_io_failure to do the rest for us. 2303 */ 2304 if (failrec->in_validation) { 2305 BUG_ON(failrec->this_mirror != failed_mirror); 2306 failrec->in_validation = 0; 2307 failrec->this_mirror = 0; 2308 } 2309 failrec->failed_mirror = failed_mirror; 2310 failrec->this_mirror++; 2311 if (failrec->this_mirror == failed_mirror) 2312 failrec->this_mirror++; 2313 } 2314 2315 if (failrec->this_mirror > num_copies) { 2316 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2317 num_copies, failrec->this_mirror, failed_mirror); 2318 return 0; 2319 } 2320 2321 return 1; 2322 } 2323 2324 2325 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2326 struct io_failure_record *failrec, 2327 struct page *page, int pg_offset, int icsum, 2328 bio_end_io_t *endio_func, void *data) 2329 { 2330 struct bio *bio; 2331 struct btrfs_io_bio *btrfs_failed_bio; 2332 struct btrfs_io_bio *btrfs_bio; 2333 2334 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2335 if (!bio) 2336 return NULL; 2337 2338 bio->bi_end_io = endio_func; 2339 bio->bi_iter.bi_sector = failrec->logical >> 9; 2340 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2341 bio->bi_iter.bi_size = 0; 2342 bio->bi_private = data; 2343 2344 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2345 if (btrfs_failed_bio->csum) { 2346 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2347 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2348 2349 btrfs_bio = btrfs_io_bio(bio); 2350 btrfs_bio->csum = btrfs_bio->csum_inline; 2351 icsum *= csum_size; 2352 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2353 csum_size); 2354 } 2355 2356 bio_add_page(bio, page, failrec->len, pg_offset); 2357 2358 return bio; 2359 } 2360 2361 /* 2362 * this is a generic handler for readpage errors (default 2363 * readpage_io_failed_hook). if other copies exist, read those and write back 2364 * good data to the failed position. does not investigate in remapping the 2365 * failed extent elsewhere, hoping the device will be smart enough to do this as 2366 * needed 2367 */ 2368 2369 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2370 struct page *page, u64 start, u64 end, 2371 int failed_mirror) 2372 { 2373 struct io_failure_record *failrec; 2374 struct inode *inode = page->mapping->host; 2375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2376 struct bio *bio; 2377 int read_mode; 2378 int ret; 2379 2380 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2381 2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2383 if (ret) 2384 return ret; 2385 2386 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2387 if (!ret) { 2388 free_io_failure(inode, failrec); 2389 return -EIO; 2390 } 2391 2392 if (failed_bio->bi_vcnt > 1) 2393 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2394 else 2395 read_mode = READ_SYNC; 2396 2397 phy_offset >>= inode->i_sb->s_blocksize_bits; 2398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2399 start - page_offset(page), 2400 (int)phy_offset, failed_bio->bi_end_io, 2401 NULL); 2402 if (!bio) { 2403 free_io_failure(inode, failrec); 2404 return -EIO; 2405 } 2406 2407 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2408 read_mode, failrec->this_mirror, failrec->in_validation); 2409 2410 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2411 failrec->this_mirror, 2412 failrec->bio_flags, 0); 2413 if (ret) { 2414 free_io_failure(inode, failrec); 2415 bio_put(bio); 2416 } 2417 2418 return ret; 2419 } 2420 2421 /* lots and lots of room for performance fixes in the end_bio funcs */ 2422 2423 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2424 { 2425 int uptodate = (err == 0); 2426 struct extent_io_tree *tree; 2427 int ret = 0; 2428 2429 tree = &BTRFS_I(page->mapping->host)->io_tree; 2430 2431 if (tree->ops && tree->ops->writepage_end_io_hook) { 2432 ret = tree->ops->writepage_end_io_hook(page, start, 2433 end, NULL, uptodate); 2434 if (ret) 2435 uptodate = 0; 2436 } 2437 2438 if (!uptodate) { 2439 ClearPageUptodate(page); 2440 SetPageError(page); 2441 ret = ret < 0 ? ret : -EIO; 2442 mapping_set_error(page->mapping, ret); 2443 } 2444 return 0; 2445 } 2446 2447 /* 2448 * after a writepage IO is done, we need to: 2449 * clear the uptodate bits on error 2450 * clear the writeback bits in the extent tree for this IO 2451 * end_page_writeback if the page has no more pending IO 2452 * 2453 * Scheduling is not allowed, so the extent state tree is expected 2454 * to have one and only one object corresponding to this IO. 2455 */ 2456 static void end_bio_extent_writepage(struct bio *bio, int err) 2457 { 2458 struct bio_vec *bvec; 2459 u64 start; 2460 u64 end; 2461 int i; 2462 2463 bio_for_each_segment_all(bvec, bio, i) { 2464 struct page *page = bvec->bv_page; 2465 2466 /* We always issue full-page reads, but if some block 2467 * in a page fails to read, blk_update_request() will 2468 * advance bv_offset and adjust bv_len to compensate. 2469 * Print a warning for nonzero offsets, and an error 2470 * if they don't add up to a full page. */ 2471 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2472 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2473 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2474 "partial page write in btrfs with offset %u and length %u", 2475 bvec->bv_offset, bvec->bv_len); 2476 else 2477 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2478 "incomplete page write in btrfs with offset %u and " 2479 "length %u", 2480 bvec->bv_offset, bvec->bv_len); 2481 } 2482 2483 start = page_offset(page); 2484 end = start + bvec->bv_offset + bvec->bv_len - 1; 2485 2486 if (end_extent_writepage(page, err, start, end)) 2487 continue; 2488 2489 end_page_writeback(page); 2490 } 2491 2492 bio_put(bio); 2493 } 2494 2495 static void 2496 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2497 int uptodate) 2498 { 2499 struct extent_state *cached = NULL; 2500 u64 end = start + len - 1; 2501 2502 if (uptodate && tree->track_uptodate) 2503 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2504 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2505 } 2506 2507 /* 2508 * after a readpage IO is done, we need to: 2509 * clear the uptodate bits on error 2510 * set the uptodate bits if things worked 2511 * set the page up to date if all extents in the tree are uptodate 2512 * clear the lock bit in the extent tree 2513 * unlock the page if there are no other extents locked for it 2514 * 2515 * Scheduling is not allowed, so the extent state tree is expected 2516 * to have one and only one object corresponding to this IO. 2517 */ 2518 static void end_bio_extent_readpage(struct bio *bio, int err) 2519 { 2520 struct bio_vec *bvec; 2521 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2522 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2523 struct extent_io_tree *tree; 2524 u64 offset = 0; 2525 u64 start; 2526 u64 end; 2527 u64 len; 2528 u64 extent_start = 0; 2529 u64 extent_len = 0; 2530 int mirror; 2531 int ret; 2532 int i; 2533 2534 if (err) 2535 uptodate = 0; 2536 2537 bio_for_each_segment_all(bvec, bio, i) { 2538 struct page *page = bvec->bv_page; 2539 struct inode *inode = page->mapping->host; 2540 2541 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2542 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2543 io_bio->mirror_num); 2544 tree = &BTRFS_I(inode)->io_tree; 2545 2546 /* We always issue full-page reads, but if some block 2547 * in a page fails to read, blk_update_request() will 2548 * advance bv_offset and adjust bv_len to compensate. 2549 * Print a warning for nonzero offsets, and an error 2550 * if they don't add up to a full page. */ 2551 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2552 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2553 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2554 "partial page read in btrfs with offset %u and length %u", 2555 bvec->bv_offset, bvec->bv_len); 2556 else 2557 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2558 "incomplete page read in btrfs with offset %u and " 2559 "length %u", 2560 bvec->bv_offset, bvec->bv_len); 2561 } 2562 2563 start = page_offset(page); 2564 end = start + bvec->bv_offset + bvec->bv_len - 1; 2565 len = bvec->bv_len; 2566 2567 mirror = io_bio->mirror_num; 2568 if (likely(uptodate && tree->ops && 2569 tree->ops->readpage_end_io_hook)) { 2570 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2571 page, start, end, 2572 mirror); 2573 if (ret) 2574 uptodate = 0; 2575 else 2576 clean_io_failure(inode, start, page, 0); 2577 } 2578 2579 if (likely(uptodate)) 2580 goto readpage_ok; 2581 2582 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2583 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2584 if (!ret && !err && 2585 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2586 uptodate = 1; 2587 } else { 2588 /* 2589 * The generic bio_readpage_error handles errors the 2590 * following way: If possible, new read requests are 2591 * created and submitted and will end up in 2592 * end_bio_extent_readpage as well (if we're lucky, not 2593 * in the !uptodate case). In that case it returns 0 and 2594 * we just go on with the next page in our bio. If it 2595 * can't handle the error it will return -EIO and we 2596 * remain responsible for that page. 2597 */ 2598 ret = bio_readpage_error(bio, offset, page, start, end, 2599 mirror); 2600 if (ret == 0) { 2601 uptodate = 2602 test_bit(BIO_UPTODATE, &bio->bi_flags); 2603 if (err) 2604 uptodate = 0; 2605 offset += len; 2606 continue; 2607 } 2608 } 2609 readpage_ok: 2610 if (likely(uptodate)) { 2611 loff_t i_size = i_size_read(inode); 2612 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2613 unsigned off; 2614 2615 /* Zero out the end if this page straddles i_size */ 2616 off = i_size & (PAGE_CACHE_SIZE-1); 2617 if (page->index == end_index && off) 2618 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2619 SetPageUptodate(page); 2620 } else { 2621 ClearPageUptodate(page); 2622 SetPageError(page); 2623 } 2624 unlock_page(page); 2625 offset += len; 2626 2627 if (unlikely(!uptodate)) { 2628 if (extent_len) { 2629 endio_readpage_release_extent(tree, 2630 extent_start, 2631 extent_len, 1); 2632 extent_start = 0; 2633 extent_len = 0; 2634 } 2635 endio_readpage_release_extent(tree, start, 2636 end - start + 1, 0); 2637 } else if (!extent_len) { 2638 extent_start = start; 2639 extent_len = end + 1 - start; 2640 } else if (extent_start + extent_len == start) { 2641 extent_len += end + 1 - start; 2642 } else { 2643 endio_readpage_release_extent(tree, extent_start, 2644 extent_len, uptodate); 2645 extent_start = start; 2646 extent_len = end + 1 - start; 2647 } 2648 } 2649 2650 if (extent_len) 2651 endio_readpage_release_extent(tree, extent_start, extent_len, 2652 uptodate); 2653 if (io_bio->end_io) 2654 io_bio->end_io(io_bio, err); 2655 bio_put(bio); 2656 } 2657 2658 /* 2659 * this allocates from the btrfs_bioset. We're returning a bio right now 2660 * but you can call btrfs_io_bio for the appropriate container_of magic 2661 */ 2662 struct bio * 2663 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2664 gfp_t gfp_flags) 2665 { 2666 struct btrfs_io_bio *btrfs_bio; 2667 struct bio *bio; 2668 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2670 2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2672 while (!bio && (nr_vecs /= 2)) { 2673 bio = bio_alloc_bioset(gfp_flags, 2674 nr_vecs, btrfs_bioset); 2675 } 2676 } 2677 2678 if (bio) { 2679 bio->bi_bdev = bdev; 2680 bio->bi_iter.bi_sector = first_sector; 2681 btrfs_bio = btrfs_io_bio(bio); 2682 btrfs_bio->csum = NULL; 2683 btrfs_bio->csum_allocated = NULL; 2684 btrfs_bio->end_io = NULL; 2685 } 2686 return bio; 2687 } 2688 2689 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2690 { 2691 struct btrfs_io_bio *btrfs_bio; 2692 struct bio *new; 2693 2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2695 if (new) { 2696 btrfs_bio = btrfs_io_bio(new); 2697 btrfs_bio->csum = NULL; 2698 btrfs_bio->csum_allocated = NULL; 2699 btrfs_bio->end_io = NULL; 2700 } 2701 return new; 2702 } 2703 2704 /* this also allocates from the btrfs_bioset */ 2705 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2706 { 2707 struct btrfs_io_bio *btrfs_bio; 2708 struct bio *bio; 2709 2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2711 if (bio) { 2712 btrfs_bio = btrfs_io_bio(bio); 2713 btrfs_bio->csum = NULL; 2714 btrfs_bio->csum_allocated = NULL; 2715 btrfs_bio->end_io = NULL; 2716 } 2717 return bio; 2718 } 2719 2720 2721 static int __must_check submit_one_bio(int rw, struct bio *bio, 2722 int mirror_num, unsigned long bio_flags) 2723 { 2724 int ret = 0; 2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2726 struct page *page = bvec->bv_page; 2727 struct extent_io_tree *tree = bio->bi_private; 2728 u64 start; 2729 2730 start = page_offset(page) + bvec->bv_offset; 2731 2732 bio->bi_private = NULL; 2733 2734 bio_get(bio); 2735 2736 if (tree->ops && tree->ops->submit_bio_hook) 2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2738 mirror_num, bio_flags, start); 2739 else 2740 btrfsic_submit_bio(rw, bio); 2741 2742 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2743 ret = -EOPNOTSUPP; 2744 bio_put(bio); 2745 return ret; 2746 } 2747 2748 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2749 unsigned long offset, size_t size, struct bio *bio, 2750 unsigned long bio_flags) 2751 { 2752 int ret = 0; 2753 if (tree->ops && tree->ops->merge_bio_hook) 2754 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2755 bio_flags); 2756 BUG_ON(ret < 0); 2757 return ret; 2758 2759 } 2760 2761 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2762 struct page *page, sector_t sector, 2763 size_t size, unsigned long offset, 2764 struct block_device *bdev, 2765 struct bio **bio_ret, 2766 unsigned long max_pages, 2767 bio_end_io_t end_io_func, 2768 int mirror_num, 2769 unsigned long prev_bio_flags, 2770 unsigned long bio_flags) 2771 { 2772 int ret = 0; 2773 struct bio *bio; 2774 int nr; 2775 int contig = 0; 2776 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2778 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2779 2780 if (bio_ret && *bio_ret) { 2781 bio = *bio_ret; 2782 if (old_compressed) 2783 contig = bio->bi_iter.bi_sector == sector; 2784 else 2785 contig = bio_end_sector(bio) == sector; 2786 2787 if (prev_bio_flags != bio_flags || !contig || 2788 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2789 bio_add_page(bio, page, page_size, offset) < page_size) { 2790 ret = submit_one_bio(rw, bio, mirror_num, 2791 prev_bio_flags); 2792 if (ret < 0) 2793 return ret; 2794 bio = NULL; 2795 } else { 2796 return 0; 2797 } 2798 } 2799 if (this_compressed) 2800 nr = BIO_MAX_PAGES; 2801 else 2802 nr = bio_get_nr_vecs(bdev); 2803 2804 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2805 if (!bio) 2806 return -ENOMEM; 2807 2808 bio_add_page(bio, page, page_size, offset); 2809 bio->bi_end_io = end_io_func; 2810 bio->bi_private = tree; 2811 2812 if (bio_ret) 2813 *bio_ret = bio; 2814 else 2815 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2816 2817 return ret; 2818 } 2819 2820 static void attach_extent_buffer_page(struct extent_buffer *eb, 2821 struct page *page) 2822 { 2823 if (!PagePrivate(page)) { 2824 SetPagePrivate(page); 2825 page_cache_get(page); 2826 set_page_private(page, (unsigned long)eb); 2827 } else { 2828 WARN_ON(page->private != (unsigned long)eb); 2829 } 2830 } 2831 2832 void set_page_extent_mapped(struct page *page) 2833 { 2834 if (!PagePrivate(page)) { 2835 SetPagePrivate(page); 2836 page_cache_get(page); 2837 set_page_private(page, EXTENT_PAGE_PRIVATE); 2838 } 2839 } 2840 2841 static struct extent_map * 2842 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2843 u64 start, u64 len, get_extent_t *get_extent, 2844 struct extent_map **em_cached) 2845 { 2846 struct extent_map *em; 2847 2848 if (em_cached && *em_cached) { 2849 em = *em_cached; 2850 if (extent_map_in_tree(em) && start >= em->start && 2851 start < extent_map_end(em)) { 2852 atomic_inc(&em->refs); 2853 return em; 2854 } 2855 2856 free_extent_map(em); 2857 *em_cached = NULL; 2858 } 2859 2860 em = get_extent(inode, page, pg_offset, start, len, 0); 2861 if (em_cached && !IS_ERR_OR_NULL(em)) { 2862 BUG_ON(*em_cached); 2863 atomic_inc(&em->refs); 2864 *em_cached = em; 2865 } 2866 return em; 2867 } 2868 /* 2869 * basic readpage implementation. Locked extent state structs are inserted 2870 * into the tree that are removed when the IO is done (by the end_io 2871 * handlers) 2872 * XXX JDM: This needs looking at to ensure proper page locking 2873 */ 2874 static int __do_readpage(struct extent_io_tree *tree, 2875 struct page *page, 2876 get_extent_t *get_extent, 2877 struct extent_map **em_cached, 2878 struct bio **bio, int mirror_num, 2879 unsigned long *bio_flags, int rw) 2880 { 2881 struct inode *inode = page->mapping->host; 2882 u64 start = page_offset(page); 2883 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2884 u64 end; 2885 u64 cur = start; 2886 u64 extent_offset; 2887 u64 last_byte = i_size_read(inode); 2888 u64 block_start; 2889 u64 cur_end; 2890 sector_t sector; 2891 struct extent_map *em; 2892 struct block_device *bdev; 2893 int ret; 2894 int nr = 0; 2895 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2896 size_t pg_offset = 0; 2897 size_t iosize; 2898 size_t disk_io_size; 2899 size_t blocksize = inode->i_sb->s_blocksize; 2900 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2901 2902 set_page_extent_mapped(page); 2903 2904 end = page_end; 2905 if (!PageUptodate(page)) { 2906 if (cleancache_get_page(page) == 0) { 2907 BUG_ON(blocksize != PAGE_SIZE); 2908 unlock_extent(tree, start, end); 2909 goto out; 2910 } 2911 } 2912 2913 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2914 char *userpage; 2915 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2916 2917 if (zero_offset) { 2918 iosize = PAGE_CACHE_SIZE - zero_offset; 2919 userpage = kmap_atomic(page); 2920 memset(userpage + zero_offset, 0, iosize); 2921 flush_dcache_page(page); 2922 kunmap_atomic(userpage); 2923 } 2924 } 2925 while (cur <= end) { 2926 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2927 2928 if (cur >= last_byte) { 2929 char *userpage; 2930 struct extent_state *cached = NULL; 2931 2932 iosize = PAGE_CACHE_SIZE - pg_offset; 2933 userpage = kmap_atomic(page); 2934 memset(userpage + pg_offset, 0, iosize); 2935 flush_dcache_page(page); 2936 kunmap_atomic(userpage); 2937 set_extent_uptodate(tree, cur, cur + iosize - 1, 2938 &cached, GFP_NOFS); 2939 if (!parent_locked) 2940 unlock_extent_cached(tree, cur, 2941 cur + iosize - 1, 2942 &cached, GFP_NOFS); 2943 break; 2944 } 2945 em = __get_extent_map(inode, page, pg_offset, cur, 2946 end - cur + 1, get_extent, em_cached); 2947 if (IS_ERR_OR_NULL(em)) { 2948 SetPageError(page); 2949 if (!parent_locked) 2950 unlock_extent(tree, cur, end); 2951 break; 2952 } 2953 extent_offset = cur - em->start; 2954 BUG_ON(extent_map_end(em) <= cur); 2955 BUG_ON(end < cur); 2956 2957 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2958 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2959 extent_set_compress_type(&this_bio_flag, 2960 em->compress_type); 2961 } 2962 2963 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2964 cur_end = min(extent_map_end(em) - 1, end); 2965 iosize = ALIGN(iosize, blocksize); 2966 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2967 disk_io_size = em->block_len; 2968 sector = em->block_start >> 9; 2969 } else { 2970 sector = (em->block_start + extent_offset) >> 9; 2971 disk_io_size = iosize; 2972 } 2973 bdev = em->bdev; 2974 block_start = em->block_start; 2975 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2976 block_start = EXTENT_MAP_HOLE; 2977 free_extent_map(em); 2978 em = NULL; 2979 2980 /* we've found a hole, just zero and go on */ 2981 if (block_start == EXTENT_MAP_HOLE) { 2982 char *userpage; 2983 struct extent_state *cached = NULL; 2984 2985 userpage = kmap_atomic(page); 2986 memset(userpage + pg_offset, 0, iosize); 2987 flush_dcache_page(page); 2988 kunmap_atomic(userpage); 2989 2990 set_extent_uptodate(tree, cur, cur + iosize - 1, 2991 &cached, GFP_NOFS); 2992 unlock_extent_cached(tree, cur, cur + iosize - 1, 2993 &cached, GFP_NOFS); 2994 cur = cur + iosize; 2995 pg_offset += iosize; 2996 continue; 2997 } 2998 /* the get_extent function already copied into the page */ 2999 if (test_range_bit(tree, cur, cur_end, 3000 EXTENT_UPTODATE, 1, NULL)) { 3001 check_page_uptodate(tree, page); 3002 if (!parent_locked) 3003 unlock_extent(tree, cur, cur + iosize - 1); 3004 cur = cur + iosize; 3005 pg_offset += iosize; 3006 continue; 3007 } 3008 /* we have an inline extent but it didn't get marked up 3009 * to date. Error out 3010 */ 3011 if (block_start == EXTENT_MAP_INLINE) { 3012 SetPageError(page); 3013 if (!parent_locked) 3014 unlock_extent(tree, cur, cur + iosize - 1); 3015 cur = cur + iosize; 3016 pg_offset += iosize; 3017 continue; 3018 } 3019 3020 pnr -= page->index; 3021 ret = submit_extent_page(rw, tree, page, 3022 sector, disk_io_size, pg_offset, 3023 bdev, bio, pnr, 3024 end_bio_extent_readpage, mirror_num, 3025 *bio_flags, 3026 this_bio_flag); 3027 if (!ret) { 3028 nr++; 3029 *bio_flags = this_bio_flag; 3030 } else { 3031 SetPageError(page); 3032 if (!parent_locked) 3033 unlock_extent(tree, cur, cur + iosize - 1); 3034 } 3035 cur = cur + iosize; 3036 pg_offset += iosize; 3037 } 3038 out: 3039 if (!nr) { 3040 if (!PageError(page)) 3041 SetPageUptodate(page); 3042 unlock_page(page); 3043 } 3044 return 0; 3045 } 3046 3047 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3048 struct page *pages[], int nr_pages, 3049 u64 start, u64 end, 3050 get_extent_t *get_extent, 3051 struct extent_map **em_cached, 3052 struct bio **bio, int mirror_num, 3053 unsigned long *bio_flags, int rw) 3054 { 3055 struct inode *inode; 3056 struct btrfs_ordered_extent *ordered; 3057 int index; 3058 3059 inode = pages[0]->mapping->host; 3060 while (1) { 3061 lock_extent(tree, start, end); 3062 ordered = btrfs_lookup_ordered_range(inode, start, 3063 end - start + 1); 3064 if (!ordered) 3065 break; 3066 unlock_extent(tree, start, end); 3067 btrfs_start_ordered_extent(inode, ordered, 1); 3068 btrfs_put_ordered_extent(ordered); 3069 } 3070 3071 for (index = 0; index < nr_pages; index++) { 3072 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3073 mirror_num, bio_flags, rw); 3074 page_cache_release(pages[index]); 3075 } 3076 } 3077 3078 static void __extent_readpages(struct extent_io_tree *tree, 3079 struct page *pages[], 3080 int nr_pages, get_extent_t *get_extent, 3081 struct extent_map **em_cached, 3082 struct bio **bio, int mirror_num, 3083 unsigned long *bio_flags, int rw) 3084 { 3085 u64 start = 0; 3086 u64 end = 0; 3087 u64 page_start; 3088 int index; 3089 int first_index = 0; 3090 3091 for (index = 0; index < nr_pages; index++) { 3092 page_start = page_offset(pages[index]); 3093 if (!end) { 3094 start = page_start; 3095 end = start + PAGE_CACHE_SIZE - 1; 3096 first_index = index; 3097 } else if (end + 1 == page_start) { 3098 end += PAGE_CACHE_SIZE; 3099 } else { 3100 __do_contiguous_readpages(tree, &pages[first_index], 3101 index - first_index, start, 3102 end, get_extent, em_cached, 3103 bio, mirror_num, bio_flags, 3104 rw); 3105 start = page_start; 3106 end = start + PAGE_CACHE_SIZE - 1; 3107 first_index = index; 3108 } 3109 } 3110 3111 if (end) 3112 __do_contiguous_readpages(tree, &pages[first_index], 3113 index - first_index, start, 3114 end, get_extent, em_cached, bio, 3115 mirror_num, bio_flags, rw); 3116 } 3117 3118 static int __extent_read_full_page(struct extent_io_tree *tree, 3119 struct page *page, 3120 get_extent_t *get_extent, 3121 struct bio **bio, int mirror_num, 3122 unsigned long *bio_flags, int rw) 3123 { 3124 struct inode *inode = page->mapping->host; 3125 struct btrfs_ordered_extent *ordered; 3126 u64 start = page_offset(page); 3127 u64 end = start + PAGE_CACHE_SIZE - 1; 3128 int ret; 3129 3130 while (1) { 3131 lock_extent(tree, start, end); 3132 ordered = btrfs_lookup_ordered_extent(inode, start); 3133 if (!ordered) 3134 break; 3135 unlock_extent(tree, start, end); 3136 btrfs_start_ordered_extent(inode, ordered, 1); 3137 btrfs_put_ordered_extent(ordered); 3138 } 3139 3140 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3141 bio_flags, rw); 3142 return ret; 3143 } 3144 3145 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3146 get_extent_t *get_extent, int mirror_num) 3147 { 3148 struct bio *bio = NULL; 3149 unsigned long bio_flags = 0; 3150 int ret; 3151 3152 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3153 &bio_flags, READ); 3154 if (bio) 3155 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3156 return ret; 3157 } 3158 3159 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3160 get_extent_t *get_extent, int mirror_num) 3161 { 3162 struct bio *bio = NULL; 3163 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3164 int ret; 3165 3166 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3167 &bio_flags, READ); 3168 if (bio) 3169 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3170 return ret; 3171 } 3172 3173 static noinline void update_nr_written(struct page *page, 3174 struct writeback_control *wbc, 3175 unsigned long nr_written) 3176 { 3177 wbc->nr_to_write -= nr_written; 3178 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3179 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3180 page->mapping->writeback_index = page->index + nr_written; 3181 } 3182 3183 /* 3184 * helper for __extent_writepage, doing all of the delayed allocation setup. 3185 * 3186 * This returns 1 if our fill_delalloc function did all the work required 3187 * to write the page (copy into inline extent). In this case the IO has 3188 * been started and the page is already unlocked. 3189 * 3190 * This returns 0 if all went well (page still locked) 3191 * This returns < 0 if there were errors (page still locked) 3192 */ 3193 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3194 struct page *page, struct writeback_control *wbc, 3195 struct extent_page_data *epd, 3196 u64 delalloc_start, 3197 unsigned long *nr_written) 3198 { 3199 struct extent_io_tree *tree = epd->tree; 3200 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3201 u64 nr_delalloc; 3202 u64 delalloc_to_write = 0; 3203 u64 delalloc_end = 0; 3204 int ret; 3205 int page_started = 0; 3206 3207 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3208 return 0; 3209 3210 while (delalloc_end < page_end) { 3211 nr_delalloc = find_lock_delalloc_range(inode, tree, 3212 page, 3213 &delalloc_start, 3214 &delalloc_end, 3215 128 * 1024 * 1024); 3216 if (nr_delalloc == 0) { 3217 delalloc_start = delalloc_end + 1; 3218 continue; 3219 } 3220 ret = tree->ops->fill_delalloc(inode, page, 3221 delalloc_start, 3222 delalloc_end, 3223 &page_started, 3224 nr_written); 3225 /* File system has been set read-only */ 3226 if (ret) { 3227 SetPageError(page); 3228 /* fill_delalloc should be return < 0 for error 3229 * but just in case, we use > 0 here meaning the 3230 * IO is started, so we don't want to return > 0 3231 * unless things are going well. 3232 */ 3233 ret = ret < 0 ? ret : -EIO; 3234 goto done; 3235 } 3236 /* 3237 * delalloc_end is already one less than the total 3238 * length, so we don't subtract one from 3239 * PAGE_CACHE_SIZE 3240 */ 3241 delalloc_to_write += (delalloc_end - delalloc_start + 3242 PAGE_CACHE_SIZE) >> 3243 PAGE_CACHE_SHIFT; 3244 delalloc_start = delalloc_end + 1; 3245 } 3246 if (wbc->nr_to_write < delalloc_to_write) { 3247 int thresh = 8192; 3248 3249 if (delalloc_to_write < thresh * 2) 3250 thresh = delalloc_to_write; 3251 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3252 thresh); 3253 } 3254 3255 /* did the fill delalloc function already unlock and start 3256 * the IO? 3257 */ 3258 if (page_started) { 3259 /* 3260 * we've unlocked the page, so we can't update 3261 * the mapping's writeback index, just update 3262 * nr_to_write. 3263 */ 3264 wbc->nr_to_write -= *nr_written; 3265 return 1; 3266 } 3267 3268 ret = 0; 3269 3270 done: 3271 return ret; 3272 } 3273 3274 /* 3275 * helper for __extent_writepage. This calls the writepage start hooks, 3276 * and does the loop to map the page into extents and bios. 3277 * 3278 * We return 1 if the IO is started and the page is unlocked, 3279 * 0 if all went well (page still locked) 3280 * < 0 if there were errors (page still locked) 3281 */ 3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3283 struct page *page, 3284 struct writeback_control *wbc, 3285 struct extent_page_data *epd, 3286 loff_t i_size, 3287 unsigned long nr_written, 3288 int write_flags, int *nr_ret) 3289 { 3290 struct extent_io_tree *tree = epd->tree; 3291 u64 start = page_offset(page); 3292 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3293 u64 end; 3294 u64 cur = start; 3295 u64 extent_offset; 3296 u64 block_start; 3297 u64 iosize; 3298 sector_t sector; 3299 struct extent_state *cached_state = NULL; 3300 struct extent_map *em; 3301 struct block_device *bdev; 3302 size_t pg_offset = 0; 3303 size_t blocksize; 3304 int ret = 0; 3305 int nr = 0; 3306 bool compressed; 3307 3308 if (tree->ops && tree->ops->writepage_start_hook) { 3309 ret = tree->ops->writepage_start_hook(page, start, 3310 page_end); 3311 if (ret) { 3312 /* Fixup worker will requeue */ 3313 if (ret == -EBUSY) 3314 wbc->pages_skipped++; 3315 else 3316 redirty_page_for_writepage(wbc, page); 3317 3318 update_nr_written(page, wbc, nr_written); 3319 unlock_page(page); 3320 ret = 1; 3321 goto done_unlocked; 3322 } 3323 } 3324 3325 /* 3326 * we don't want to touch the inode after unlocking the page, 3327 * so we update the mapping writeback index now 3328 */ 3329 update_nr_written(page, wbc, nr_written + 1); 3330 3331 end = page_end; 3332 if (i_size <= start) { 3333 if (tree->ops && tree->ops->writepage_end_io_hook) 3334 tree->ops->writepage_end_io_hook(page, start, 3335 page_end, NULL, 1); 3336 goto done; 3337 } 3338 3339 blocksize = inode->i_sb->s_blocksize; 3340 3341 while (cur <= end) { 3342 u64 em_end; 3343 if (cur >= i_size) { 3344 if (tree->ops && tree->ops->writepage_end_io_hook) 3345 tree->ops->writepage_end_io_hook(page, cur, 3346 page_end, NULL, 1); 3347 break; 3348 } 3349 em = epd->get_extent(inode, page, pg_offset, cur, 3350 end - cur + 1, 1); 3351 if (IS_ERR_OR_NULL(em)) { 3352 SetPageError(page); 3353 ret = PTR_ERR_OR_ZERO(em); 3354 break; 3355 } 3356 3357 extent_offset = cur - em->start; 3358 em_end = extent_map_end(em); 3359 BUG_ON(em_end <= cur); 3360 BUG_ON(end < cur); 3361 iosize = min(em_end - cur, end - cur + 1); 3362 iosize = ALIGN(iosize, blocksize); 3363 sector = (em->block_start + extent_offset) >> 9; 3364 bdev = em->bdev; 3365 block_start = em->block_start; 3366 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3367 free_extent_map(em); 3368 em = NULL; 3369 3370 /* 3371 * compressed and inline extents are written through other 3372 * paths in the FS 3373 */ 3374 if (compressed || block_start == EXTENT_MAP_HOLE || 3375 block_start == EXTENT_MAP_INLINE) { 3376 /* 3377 * end_io notification does not happen here for 3378 * compressed extents 3379 */ 3380 if (!compressed && tree->ops && 3381 tree->ops->writepage_end_io_hook) 3382 tree->ops->writepage_end_io_hook(page, cur, 3383 cur + iosize - 1, 3384 NULL, 1); 3385 else if (compressed) { 3386 /* we don't want to end_page_writeback on 3387 * a compressed extent. this happens 3388 * elsewhere 3389 */ 3390 nr++; 3391 } 3392 3393 cur += iosize; 3394 pg_offset += iosize; 3395 continue; 3396 } 3397 3398 if (tree->ops && tree->ops->writepage_io_hook) { 3399 ret = tree->ops->writepage_io_hook(page, cur, 3400 cur + iosize - 1); 3401 } else { 3402 ret = 0; 3403 } 3404 if (ret) { 3405 SetPageError(page); 3406 } else { 3407 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3408 3409 set_range_writeback(tree, cur, cur + iosize - 1); 3410 if (!PageWriteback(page)) { 3411 btrfs_err(BTRFS_I(inode)->root->fs_info, 3412 "page %lu not writeback, cur %llu end %llu", 3413 page->index, cur, end); 3414 } 3415 3416 ret = submit_extent_page(write_flags, tree, page, 3417 sector, iosize, pg_offset, 3418 bdev, &epd->bio, max_nr, 3419 end_bio_extent_writepage, 3420 0, 0, 0); 3421 if (ret) 3422 SetPageError(page); 3423 } 3424 cur = cur + iosize; 3425 pg_offset += iosize; 3426 nr++; 3427 } 3428 done: 3429 *nr_ret = nr; 3430 3431 done_unlocked: 3432 3433 /* drop our reference on any cached states */ 3434 free_extent_state(cached_state); 3435 return ret; 3436 } 3437 3438 /* 3439 * the writepage semantics are similar to regular writepage. extent 3440 * records are inserted to lock ranges in the tree, and as dirty areas 3441 * are found, they are marked writeback. Then the lock bits are removed 3442 * and the end_io handler clears the writeback ranges 3443 */ 3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3445 void *data) 3446 { 3447 struct inode *inode = page->mapping->host; 3448 struct extent_page_data *epd = data; 3449 u64 start = page_offset(page); 3450 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3451 int ret; 3452 int nr = 0; 3453 size_t pg_offset = 0; 3454 loff_t i_size = i_size_read(inode); 3455 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3456 int write_flags; 3457 unsigned long nr_written = 0; 3458 3459 if (wbc->sync_mode == WB_SYNC_ALL) 3460 write_flags = WRITE_SYNC; 3461 else 3462 write_flags = WRITE; 3463 3464 trace___extent_writepage(page, inode, wbc); 3465 3466 WARN_ON(!PageLocked(page)); 3467 3468 ClearPageError(page); 3469 3470 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3471 if (page->index > end_index || 3472 (page->index == end_index && !pg_offset)) { 3473 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3474 unlock_page(page); 3475 return 0; 3476 } 3477 3478 if (page->index == end_index) { 3479 char *userpage; 3480 3481 userpage = kmap_atomic(page); 3482 memset(userpage + pg_offset, 0, 3483 PAGE_CACHE_SIZE - pg_offset); 3484 kunmap_atomic(userpage); 3485 flush_dcache_page(page); 3486 } 3487 3488 pg_offset = 0; 3489 3490 set_page_extent_mapped(page); 3491 3492 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3493 if (ret == 1) 3494 goto done_unlocked; 3495 if (ret) 3496 goto done; 3497 3498 ret = __extent_writepage_io(inode, page, wbc, epd, 3499 i_size, nr_written, write_flags, &nr); 3500 if (ret == 1) 3501 goto done_unlocked; 3502 3503 done: 3504 if (nr == 0) { 3505 /* make sure the mapping tag for page dirty gets cleared */ 3506 set_page_writeback(page); 3507 end_page_writeback(page); 3508 } 3509 if (PageError(page)) { 3510 ret = ret < 0 ? ret : -EIO; 3511 end_extent_writepage(page, ret, start, page_end); 3512 } 3513 unlock_page(page); 3514 return ret; 3515 3516 done_unlocked: 3517 return 0; 3518 } 3519 3520 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3521 { 3522 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3523 TASK_UNINTERRUPTIBLE); 3524 } 3525 3526 static noinline_for_stack int 3527 lock_extent_buffer_for_io(struct extent_buffer *eb, 3528 struct btrfs_fs_info *fs_info, 3529 struct extent_page_data *epd) 3530 { 3531 unsigned long i, num_pages; 3532 int flush = 0; 3533 int ret = 0; 3534 3535 if (!btrfs_try_tree_write_lock(eb)) { 3536 flush = 1; 3537 flush_write_bio(epd); 3538 btrfs_tree_lock(eb); 3539 } 3540 3541 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3542 btrfs_tree_unlock(eb); 3543 if (!epd->sync_io) 3544 return 0; 3545 if (!flush) { 3546 flush_write_bio(epd); 3547 flush = 1; 3548 } 3549 while (1) { 3550 wait_on_extent_buffer_writeback(eb); 3551 btrfs_tree_lock(eb); 3552 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3553 break; 3554 btrfs_tree_unlock(eb); 3555 } 3556 } 3557 3558 /* 3559 * We need to do this to prevent races in people who check if the eb is 3560 * under IO since we can end up having no IO bits set for a short period 3561 * of time. 3562 */ 3563 spin_lock(&eb->refs_lock); 3564 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3565 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3566 spin_unlock(&eb->refs_lock); 3567 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3568 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3569 -eb->len, 3570 fs_info->dirty_metadata_batch); 3571 ret = 1; 3572 } else { 3573 spin_unlock(&eb->refs_lock); 3574 } 3575 3576 btrfs_tree_unlock(eb); 3577 3578 if (!ret) 3579 return ret; 3580 3581 num_pages = num_extent_pages(eb->start, eb->len); 3582 for (i = 0; i < num_pages; i++) { 3583 struct page *p = eb->pages[i]; 3584 3585 if (!trylock_page(p)) { 3586 if (!flush) { 3587 flush_write_bio(epd); 3588 flush = 1; 3589 } 3590 lock_page(p); 3591 } 3592 } 3593 3594 return ret; 3595 } 3596 3597 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3598 { 3599 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3600 smp_mb__after_atomic(); 3601 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3602 } 3603 3604 static void set_btree_ioerr(struct page *page) 3605 { 3606 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3607 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3608 3609 SetPageError(page); 3610 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3611 return; 3612 3613 /* 3614 * If writeback for a btree extent that doesn't belong to a log tree 3615 * failed, increment the counter transaction->eb_write_errors. 3616 * We do this because while the transaction is running and before it's 3617 * committing (when we call filemap_fdata[write|wait]_range against 3618 * the btree inode), we might have 3619 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3620 * returns an error or an error happens during writeback, when we're 3621 * committing the transaction we wouldn't know about it, since the pages 3622 * can be no longer dirty nor marked anymore for writeback (if a 3623 * subsequent modification to the extent buffer didn't happen before the 3624 * transaction commit), which makes filemap_fdata[write|wait]_range not 3625 * able to find the pages tagged with SetPageError at transaction 3626 * commit time. So if this happens we must abort the transaction, 3627 * otherwise we commit a super block with btree roots that point to 3628 * btree nodes/leafs whose content on disk is invalid - either garbage 3629 * or the content of some node/leaf from a past generation that got 3630 * cowed or deleted and is no longer valid. 3631 * 3632 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3633 * not be enough - we need to distinguish between log tree extents vs 3634 * non-log tree extents, and the next filemap_fdatawait_range() call 3635 * will catch and clear such errors in the mapping - and that call might 3636 * be from a log sync and not from a transaction commit. Also, checking 3637 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3638 * not done and would not be reliable - the eb might have been released 3639 * from memory and reading it back again means that flag would not be 3640 * set (since it's a runtime flag, not persisted on disk). 3641 * 3642 * Using the flags below in the btree inode also makes us achieve the 3643 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3644 * writeback for all dirty pages and before filemap_fdatawait_range() 3645 * is called, the writeback for all dirty pages had already finished 3646 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3647 * filemap_fdatawait_range() would return success, as it could not know 3648 * that writeback errors happened (the pages were no longer tagged for 3649 * writeback). 3650 */ 3651 switch (eb->log_index) { 3652 case -1: 3653 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3654 break; 3655 case 0: 3656 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3657 break; 3658 case 1: 3659 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3660 break; 3661 default: 3662 BUG(); /* unexpected, logic error */ 3663 } 3664 } 3665 3666 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3667 { 3668 struct bio_vec *bvec; 3669 struct extent_buffer *eb; 3670 int i, done; 3671 3672 bio_for_each_segment_all(bvec, bio, i) { 3673 struct page *page = bvec->bv_page; 3674 3675 eb = (struct extent_buffer *)page->private; 3676 BUG_ON(!eb); 3677 done = atomic_dec_and_test(&eb->io_pages); 3678 3679 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3680 ClearPageUptodate(page); 3681 set_btree_ioerr(page); 3682 } 3683 3684 end_page_writeback(page); 3685 3686 if (!done) 3687 continue; 3688 3689 end_extent_buffer_writeback(eb); 3690 } 3691 3692 bio_put(bio); 3693 } 3694 3695 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3696 struct btrfs_fs_info *fs_info, 3697 struct writeback_control *wbc, 3698 struct extent_page_data *epd) 3699 { 3700 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3701 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3702 u64 offset = eb->start; 3703 unsigned long i, num_pages; 3704 unsigned long bio_flags = 0; 3705 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3706 int ret = 0; 3707 3708 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3709 num_pages = num_extent_pages(eb->start, eb->len); 3710 atomic_set(&eb->io_pages, num_pages); 3711 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3712 bio_flags = EXTENT_BIO_TREE_LOG; 3713 3714 for (i = 0; i < num_pages; i++) { 3715 struct page *p = eb->pages[i]; 3716 3717 clear_page_dirty_for_io(p); 3718 set_page_writeback(p); 3719 ret = submit_extent_page(rw, tree, p, offset >> 9, 3720 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3721 -1, end_bio_extent_buffer_writepage, 3722 0, epd->bio_flags, bio_flags); 3723 epd->bio_flags = bio_flags; 3724 if (ret) { 3725 set_btree_ioerr(p); 3726 end_page_writeback(p); 3727 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3728 end_extent_buffer_writeback(eb); 3729 ret = -EIO; 3730 break; 3731 } 3732 offset += PAGE_CACHE_SIZE; 3733 update_nr_written(p, wbc, 1); 3734 unlock_page(p); 3735 } 3736 3737 if (unlikely(ret)) { 3738 for (; i < num_pages; i++) { 3739 struct page *p = eb->pages[i]; 3740 clear_page_dirty_for_io(p); 3741 unlock_page(p); 3742 } 3743 } 3744 3745 return ret; 3746 } 3747 3748 int btree_write_cache_pages(struct address_space *mapping, 3749 struct writeback_control *wbc) 3750 { 3751 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3752 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3753 struct extent_buffer *eb, *prev_eb = NULL; 3754 struct extent_page_data epd = { 3755 .bio = NULL, 3756 .tree = tree, 3757 .extent_locked = 0, 3758 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3759 .bio_flags = 0, 3760 }; 3761 int ret = 0; 3762 int done = 0; 3763 int nr_to_write_done = 0; 3764 struct pagevec pvec; 3765 int nr_pages; 3766 pgoff_t index; 3767 pgoff_t end; /* Inclusive */ 3768 int scanned = 0; 3769 int tag; 3770 3771 pagevec_init(&pvec, 0); 3772 if (wbc->range_cyclic) { 3773 index = mapping->writeback_index; /* Start from prev offset */ 3774 end = -1; 3775 } else { 3776 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3777 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3778 scanned = 1; 3779 } 3780 if (wbc->sync_mode == WB_SYNC_ALL) 3781 tag = PAGECACHE_TAG_TOWRITE; 3782 else 3783 tag = PAGECACHE_TAG_DIRTY; 3784 retry: 3785 if (wbc->sync_mode == WB_SYNC_ALL) 3786 tag_pages_for_writeback(mapping, index, end); 3787 while (!done && !nr_to_write_done && (index <= end) && 3788 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3789 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3790 unsigned i; 3791 3792 scanned = 1; 3793 for (i = 0; i < nr_pages; i++) { 3794 struct page *page = pvec.pages[i]; 3795 3796 if (!PagePrivate(page)) 3797 continue; 3798 3799 if (!wbc->range_cyclic && page->index > end) { 3800 done = 1; 3801 break; 3802 } 3803 3804 spin_lock(&mapping->private_lock); 3805 if (!PagePrivate(page)) { 3806 spin_unlock(&mapping->private_lock); 3807 continue; 3808 } 3809 3810 eb = (struct extent_buffer *)page->private; 3811 3812 /* 3813 * Shouldn't happen and normally this would be a BUG_ON 3814 * but no sense in crashing the users box for something 3815 * we can survive anyway. 3816 */ 3817 if (WARN_ON(!eb)) { 3818 spin_unlock(&mapping->private_lock); 3819 continue; 3820 } 3821 3822 if (eb == prev_eb) { 3823 spin_unlock(&mapping->private_lock); 3824 continue; 3825 } 3826 3827 ret = atomic_inc_not_zero(&eb->refs); 3828 spin_unlock(&mapping->private_lock); 3829 if (!ret) 3830 continue; 3831 3832 prev_eb = eb; 3833 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3834 if (!ret) { 3835 free_extent_buffer(eb); 3836 continue; 3837 } 3838 3839 ret = write_one_eb(eb, fs_info, wbc, &epd); 3840 if (ret) { 3841 done = 1; 3842 free_extent_buffer(eb); 3843 break; 3844 } 3845 free_extent_buffer(eb); 3846 3847 /* 3848 * the filesystem may choose to bump up nr_to_write. 3849 * We have to make sure to honor the new nr_to_write 3850 * at any time 3851 */ 3852 nr_to_write_done = wbc->nr_to_write <= 0; 3853 } 3854 pagevec_release(&pvec); 3855 cond_resched(); 3856 } 3857 if (!scanned && !done) { 3858 /* 3859 * We hit the last page and there is more work to be done: wrap 3860 * back to the start of the file 3861 */ 3862 scanned = 1; 3863 index = 0; 3864 goto retry; 3865 } 3866 flush_write_bio(&epd); 3867 return ret; 3868 } 3869 3870 /** 3871 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3872 * @mapping: address space structure to write 3873 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3874 * @writepage: function called for each page 3875 * @data: data passed to writepage function 3876 * 3877 * If a page is already under I/O, write_cache_pages() skips it, even 3878 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3879 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3880 * and msync() need to guarantee that all the data which was dirty at the time 3881 * the call was made get new I/O started against them. If wbc->sync_mode is 3882 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3883 * existing IO to complete. 3884 */ 3885 static int extent_write_cache_pages(struct extent_io_tree *tree, 3886 struct address_space *mapping, 3887 struct writeback_control *wbc, 3888 writepage_t writepage, void *data, 3889 void (*flush_fn)(void *)) 3890 { 3891 struct inode *inode = mapping->host; 3892 int ret = 0; 3893 int done = 0; 3894 int err = 0; 3895 int nr_to_write_done = 0; 3896 struct pagevec pvec; 3897 int nr_pages; 3898 pgoff_t index; 3899 pgoff_t end; /* Inclusive */ 3900 int scanned = 0; 3901 int tag; 3902 3903 /* 3904 * We have to hold onto the inode so that ordered extents can do their 3905 * work when the IO finishes. The alternative to this is failing to add 3906 * an ordered extent if the igrab() fails there and that is a huge pain 3907 * to deal with, so instead just hold onto the inode throughout the 3908 * writepages operation. If it fails here we are freeing up the inode 3909 * anyway and we'd rather not waste our time writing out stuff that is 3910 * going to be truncated anyway. 3911 */ 3912 if (!igrab(inode)) 3913 return 0; 3914 3915 pagevec_init(&pvec, 0); 3916 if (wbc->range_cyclic) { 3917 index = mapping->writeback_index; /* Start from prev offset */ 3918 end = -1; 3919 } else { 3920 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3921 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3922 scanned = 1; 3923 } 3924 if (wbc->sync_mode == WB_SYNC_ALL) 3925 tag = PAGECACHE_TAG_TOWRITE; 3926 else 3927 tag = PAGECACHE_TAG_DIRTY; 3928 retry: 3929 if (wbc->sync_mode == WB_SYNC_ALL) 3930 tag_pages_for_writeback(mapping, index, end); 3931 while (!done && !nr_to_write_done && (index <= end) && 3932 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3933 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3934 unsigned i; 3935 3936 scanned = 1; 3937 for (i = 0; i < nr_pages; i++) { 3938 struct page *page = pvec.pages[i]; 3939 3940 /* 3941 * At this point we hold neither mapping->tree_lock nor 3942 * lock on the page itself: the page may be truncated or 3943 * invalidated (changing page->mapping to NULL), or even 3944 * swizzled back from swapper_space to tmpfs file 3945 * mapping 3946 */ 3947 if (!trylock_page(page)) { 3948 flush_fn(data); 3949 lock_page(page); 3950 } 3951 3952 if (unlikely(page->mapping != mapping)) { 3953 unlock_page(page); 3954 continue; 3955 } 3956 3957 if (!wbc->range_cyclic && page->index > end) { 3958 done = 1; 3959 unlock_page(page); 3960 continue; 3961 } 3962 3963 if (wbc->sync_mode != WB_SYNC_NONE) { 3964 if (PageWriteback(page)) 3965 flush_fn(data); 3966 wait_on_page_writeback(page); 3967 } 3968 3969 if (PageWriteback(page) || 3970 !clear_page_dirty_for_io(page)) { 3971 unlock_page(page); 3972 continue; 3973 } 3974 3975 ret = (*writepage)(page, wbc, data); 3976 3977 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3978 unlock_page(page); 3979 ret = 0; 3980 } 3981 if (!err && ret < 0) 3982 err = ret; 3983 3984 /* 3985 * the filesystem may choose to bump up nr_to_write. 3986 * We have to make sure to honor the new nr_to_write 3987 * at any time 3988 */ 3989 nr_to_write_done = wbc->nr_to_write <= 0; 3990 } 3991 pagevec_release(&pvec); 3992 cond_resched(); 3993 } 3994 if (!scanned && !done && !err) { 3995 /* 3996 * We hit the last page and there is more work to be done: wrap 3997 * back to the start of the file 3998 */ 3999 scanned = 1; 4000 index = 0; 4001 goto retry; 4002 } 4003 btrfs_add_delayed_iput(inode); 4004 return err; 4005 } 4006 4007 static void flush_epd_write_bio(struct extent_page_data *epd) 4008 { 4009 if (epd->bio) { 4010 int rw = WRITE; 4011 int ret; 4012 4013 if (epd->sync_io) 4014 rw = WRITE_SYNC; 4015 4016 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4017 BUG_ON(ret < 0); /* -ENOMEM */ 4018 epd->bio = NULL; 4019 } 4020 } 4021 4022 static noinline void flush_write_bio(void *data) 4023 { 4024 struct extent_page_data *epd = data; 4025 flush_epd_write_bio(epd); 4026 } 4027 4028 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4029 get_extent_t *get_extent, 4030 struct writeback_control *wbc) 4031 { 4032 int ret; 4033 struct extent_page_data epd = { 4034 .bio = NULL, 4035 .tree = tree, 4036 .get_extent = get_extent, 4037 .extent_locked = 0, 4038 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4039 .bio_flags = 0, 4040 }; 4041 4042 ret = __extent_writepage(page, wbc, &epd); 4043 4044 flush_epd_write_bio(&epd); 4045 return ret; 4046 } 4047 4048 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4049 u64 start, u64 end, get_extent_t *get_extent, 4050 int mode) 4051 { 4052 int ret = 0; 4053 struct address_space *mapping = inode->i_mapping; 4054 struct page *page; 4055 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4056 PAGE_CACHE_SHIFT; 4057 4058 struct extent_page_data epd = { 4059 .bio = NULL, 4060 .tree = tree, 4061 .get_extent = get_extent, 4062 .extent_locked = 1, 4063 .sync_io = mode == WB_SYNC_ALL, 4064 .bio_flags = 0, 4065 }; 4066 struct writeback_control wbc_writepages = { 4067 .sync_mode = mode, 4068 .nr_to_write = nr_pages * 2, 4069 .range_start = start, 4070 .range_end = end + 1, 4071 }; 4072 4073 while (start <= end) { 4074 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4075 if (clear_page_dirty_for_io(page)) 4076 ret = __extent_writepage(page, &wbc_writepages, &epd); 4077 else { 4078 if (tree->ops && tree->ops->writepage_end_io_hook) 4079 tree->ops->writepage_end_io_hook(page, start, 4080 start + PAGE_CACHE_SIZE - 1, 4081 NULL, 1); 4082 unlock_page(page); 4083 } 4084 page_cache_release(page); 4085 start += PAGE_CACHE_SIZE; 4086 } 4087 4088 flush_epd_write_bio(&epd); 4089 return ret; 4090 } 4091 4092 int extent_writepages(struct extent_io_tree *tree, 4093 struct address_space *mapping, 4094 get_extent_t *get_extent, 4095 struct writeback_control *wbc) 4096 { 4097 int ret = 0; 4098 struct extent_page_data epd = { 4099 .bio = NULL, 4100 .tree = tree, 4101 .get_extent = get_extent, 4102 .extent_locked = 0, 4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4104 .bio_flags = 0, 4105 }; 4106 4107 ret = extent_write_cache_pages(tree, mapping, wbc, 4108 __extent_writepage, &epd, 4109 flush_write_bio); 4110 flush_epd_write_bio(&epd); 4111 return ret; 4112 } 4113 4114 int extent_readpages(struct extent_io_tree *tree, 4115 struct address_space *mapping, 4116 struct list_head *pages, unsigned nr_pages, 4117 get_extent_t get_extent) 4118 { 4119 struct bio *bio = NULL; 4120 unsigned page_idx; 4121 unsigned long bio_flags = 0; 4122 struct page *pagepool[16]; 4123 struct page *page; 4124 struct extent_map *em_cached = NULL; 4125 int nr = 0; 4126 4127 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4128 page = list_entry(pages->prev, struct page, lru); 4129 4130 prefetchw(&page->flags); 4131 list_del(&page->lru); 4132 if (add_to_page_cache_lru(page, mapping, 4133 page->index, GFP_NOFS)) { 4134 page_cache_release(page); 4135 continue; 4136 } 4137 4138 pagepool[nr++] = page; 4139 if (nr < ARRAY_SIZE(pagepool)) 4140 continue; 4141 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4142 &bio, 0, &bio_flags, READ); 4143 nr = 0; 4144 } 4145 if (nr) 4146 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4147 &bio, 0, &bio_flags, READ); 4148 4149 if (em_cached) 4150 free_extent_map(em_cached); 4151 4152 BUG_ON(!list_empty(pages)); 4153 if (bio) 4154 return submit_one_bio(READ, bio, 0, bio_flags); 4155 return 0; 4156 } 4157 4158 /* 4159 * basic invalidatepage code, this waits on any locked or writeback 4160 * ranges corresponding to the page, and then deletes any extent state 4161 * records from the tree 4162 */ 4163 int extent_invalidatepage(struct extent_io_tree *tree, 4164 struct page *page, unsigned long offset) 4165 { 4166 struct extent_state *cached_state = NULL; 4167 u64 start = page_offset(page); 4168 u64 end = start + PAGE_CACHE_SIZE - 1; 4169 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4170 4171 start += ALIGN(offset, blocksize); 4172 if (start > end) 4173 return 0; 4174 4175 lock_extent_bits(tree, start, end, 0, &cached_state); 4176 wait_on_page_writeback(page); 4177 clear_extent_bit(tree, start, end, 4178 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4179 EXTENT_DO_ACCOUNTING, 4180 1, 1, &cached_state, GFP_NOFS); 4181 return 0; 4182 } 4183 4184 /* 4185 * a helper for releasepage, this tests for areas of the page that 4186 * are locked or under IO and drops the related state bits if it is safe 4187 * to drop the page. 4188 */ 4189 static int try_release_extent_state(struct extent_map_tree *map, 4190 struct extent_io_tree *tree, 4191 struct page *page, gfp_t mask) 4192 { 4193 u64 start = page_offset(page); 4194 u64 end = start + PAGE_CACHE_SIZE - 1; 4195 int ret = 1; 4196 4197 if (test_range_bit(tree, start, end, 4198 EXTENT_IOBITS, 0, NULL)) 4199 ret = 0; 4200 else { 4201 if ((mask & GFP_NOFS) == GFP_NOFS) 4202 mask = GFP_NOFS; 4203 /* 4204 * at this point we can safely clear everything except the 4205 * locked bit and the nodatasum bit 4206 */ 4207 ret = clear_extent_bit(tree, start, end, 4208 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4209 0, 0, NULL, mask); 4210 4211 /* if clear_extent_bit failed for enomem reasons, 4212 * we can't allow the release to continue. 4213 */ 4214 if (ret < 0) 4215 ret = 0; 4216 else 4217 ret = 1; 4218 } 4219 return ret; 4220 } 4221 4222 /* 4223 * a helper for releasepage. As long as there are no locked extents 4224 * in the range corresponding to the page, both state records and extent 4225 * map records are removed 4226 */ 4227 int try_release_extent_mapping(struct extent_map_tree *map, 4228 struct extent_io_tree *tree, struct page *page, 4229 gfp_t mask) 4230 { 4231 struct extent_map *em; 4232 u64 start = page_offset(page); 4233 u64 end = start + PAGE_CACHE_SIZE - 1; 4234 4235 if ((mask & __GFP_WAIT) && 4236 page->mapping->host->i_size > 16 * 1024 * 1024) { 4237 u64 len; 4238 while (start <= end) { 4239 len = end - start + 1; 4240 write_lock(&map->lock); 4241 em = lookup_extent_mapping(map, start, len); 4242 if (!em) { 4243 write_unlock(&map->lock); 4244 break; 4245 } 4246 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4247 em->start != start) { 4248 write_unlock(&map->lock); 4249 free_extent_map(em); 4250 break; 4251 } 4252 if (!test_range_bit(tree, em->start, 4253 extent_map_end(em) - 1, 4254 EXTENT_LOCKED | EXTENT_WRITEBACK, 4255 0, NULL)) { 4256 remove_extent_mapping(map, em); 4257 /* once for the rb tree */ 4258 free_extent_map(em); 4259 } 4260 start = extent_map_end(em); 4261 write_unlock(&map->lock); 4262 4263 /* once for us */ 4264 free_extent_map(em); 4265 } 4266 } 4267 return try_release_extent_state(map, tree, page, mask); 4268 } 4269 4270 /* 4271 * helper function for fiemap, which doesn't want to see any holes. 4272 * This maps until we find something past 'last' 4273 */ 4274 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4275 u64 offset, 4276 u64 last, 4277 get_extent_t *get_extent) 4278 { 4279 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4280 struct extent_map *em; 4281 u64 len; 4282 4283 if (offset >= last) 4284 return NULL; 4285 4286 while (1) { 4287 len = last - offset; 4288 if (len == 0) 4289 break; 4290 len = ALIGN(len, sectorsize); 4291 em = get_extent(inode, NULL, 0, offset, len, 0); 4292 if (IS_ERR_OR_NULL(em)) 4293 return em; 4294 4295 /* if this isn't a hole return it */ 4296 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4297 em->block_start != EXTENT_MAP_HOLE) { 4298 return em; 4299 } 4300 4301 /* this is a hole, advance to the next extent */ 4302 offset = extent_map_end(em); 4303 free_extent_map(em); 4304 if (offset >= last) 4305 break; 4306 } 4307 return NULL; 4308 } 4309 4310 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4311 __u64 start, __u64 len, get_extent_t *get_extent) 4312 { 4313 int ret = 0; 4314 u64 off = start; 4315 u64 max = start + len; 4316 u32 flags = 0; 4317 u32 found_type; 4318 u64 last; 4319 u64 last_for_get_extent = 0; 4320 u64 disko = 0; 4321 u64 isize = i_size_read(inode); 4322 struct btrfs_key found_key; 4323 struct extent_map *em = NULL; 4324 struct extent_state *cached_state = NULL; 4325 struct btrfs_path *path; 4326 struct btrfs_root *root = BTRFS_I(inode)->root; 4327 int end = 0; 4328 u64 em_start = 0; 4329 u64 em_len = 0; 4330 u64 em_end = 0; 4331 4332 if (len == 0) 4333 return -EINVAL; 4334 4335 path = btrfs_alloc_path(); 4336 if (!path) 4337 return -ENOMEM; 4338 path->leave_spinning = 1; 4339 4340 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4341 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4342 4343 /* 4344 * lookup the last file extent. We're not using i_size here 4345 * because there might be preallocation past i_size 4346 */ 4347 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4348 0); 4349 if (ret < 0) { 4350 btrfs_free_path(path); 4351 return ret; 4352 } 4353 WARN_ON(!ret); 4354 path->slots[0]--; 4355 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4356 found_type = found_key.type; 4357 4358 /* No extents, but there might be delalloc bits */ 4359 if (found_key.objectid != btrfs_ino(inode) || 4360 found_type != BTRFS_EXTENT_DATA_KEY) { 4361 /* have to trust i_size as the end */ 4362 last = (u64)-1; 4363 last_for_get_extent = isize; 4364 } else { 4365 /* 4366 * remember the start of the last extent. There are a 4367 * bunch of different factors that go into the length of the 4368 * extent, so its much less complex to remember where it started 4369 */ 4370 last = found_key.offset; 4371 last_for_get_extent = last + 1; 4372 } 4373 btrfs_release_path(path); 4374 4375 /* 4376 * we might have some extents allocated but more delalloc past those 4377 * extents. so, we trust isize unless the start of the last extent is 4378 * beyond isize 4379 */ 4380 if (last < isize) { 4381 last = (u64)-1; 4382 last_for_get_extent = isize; 4383 } 4384 4385 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4386 &cached_state); 4387 4388 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4389 get_extent); 4390 if (!em) 4391 goto out; 4392 if (IS_ERR(em)) { 4393 ret = PTR_ERR(em); 4394 goto out; 4395 } 4396 4397 while (!end) { 4398 u64 offset_in_extent = 0; 4399 4400 /* break if the extent we found is outside the range */ 4401 if (em->start >= max || extent_map_end(em) < off) 4402 break; 4403 4404 /* 4405 * get_extent may return an extent that starts before our 4406 * requested range. We have to make sure the ranges 4407 * we return to fiemap always move forward and don't 4408 * overlap, so adjust the offsets here 4409 */ 4410 em_start = max(em->start, off); 4411 4412 /* 4413 * record the offset from the start of the extent 4414 * for adjusting the disk offset below. Only do this if the 4415 * extent isn't compressed since our in ram offset may be past 4416 * what we have actually allocated on disk. 4417 */ 4418 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4419 offset_in_extent = em_start - em->start; 4420 em_end = extent_map_end(em); 4421 em_len = em_end - em_start; 4422 disko = 0; 4423 flags = 0; 4424 4425 /* 4426 * bump off for our next call to get_extent 4427 */ 4428 off = extent_map_end(em); 4429 if (off >= max) 4430 end = 1; 4431 4432 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4433 end = 1; 4434 flags |= FIEMAP_EXTENT_LAST; 4435 } else if (em->block_start == EXTENT_MAP_INLINE) { 4436 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4437 FIEMAP_EXTENT_NOT_ALIGNED); 4438 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4439 flags |= (FIEMAP_EXTENT_DELALLOC | 4440 FIEMAP_EXTENT_UNKNOWN); 4441 } else if (fieinfo->fi_extents_max) { 4442 u64 bytenr = em->block_start - 4443 (em->start - em->orig_start); 4444 4445 disko = em->block_start + offset_in_extent; 4446 4447 /* 4448 * As btrfs supports shared space, this information 4449 * can be exported to userspace tools via 4450 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4451 * then we're just getting a count and we can skip the 4452 * lookup stuff. 4453 */ 4454 ret = btrfs_check_shared(NULL, root->fs_info, 4455 root->objectid, 4456 btrfs_ino(inode), bytenr); 4457 if (ret < 0) 4458 goto out_free; 4459 if (ret) 4460 flags |= FIEMAP_EXTENT_SHARED; 4461 ret = 0; 4462 } 4463 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4464 flags |= FIEMAP_EXTENT_ENCODED; 4465 4466 free_extent_map(em); 4467 em = NULL; 4468 if ((em_start >= last) || em_len == (u64)-1 || 4469 (last == (u64)-1 && isize <= em_end)) { 4470 flags |= FIEMAP_EXTENT_LAST; 4471 end = 1; 4472 } 4473 4474 /* now scan forward to see if this is really the last extent. */ 4475 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4476 get_extent); 4477 if (IS_ERR(em)) { 4478 ret = PTR_ERR(em); 4479 goto out; 4480 } 4481 if (!em) { 4482 flags |= FIEMAP_EXTENT_LAST; 4483 end = 1; 4484 } 4485 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4486 em_len, flags); 4487 if (ret) 4488 goto out_free; 4489 } 4490 out_free: 4491 free_extent_map(em); 4492 out: 4493 btrfs_free_path(path); 4494 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4495 &cached_state, GFP_NOFS); 4496 return ret; 4497 } 4498 4499 static void __free_extent_buffer(struct extent_buffer *eb) 4500 { 4501 btrfs_leak_debug_del(&eb->leak_list); 4502 kmem_cache_free(extent_buffer_cache, eb); 4503 } 4504 4505 int extent_buffer_under_io(struct extent_buffer *eb) 4506 { 4507 return (atomic_read(&eb->io_pages) || 4508 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4509 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4510 } 4511 4512 /* 4513 * Helper for releasing extent buffer page. 4514 */ 4515 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4516 { 4517 unsigned long index; 4518 struct page *page; 4519 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4520 4521 BUG_ON(extent_buffer_under_io(eb)); 4522 4523 index = num_extent_pages(eb->start, eb->len); 4524 if (index == 0) 4525 return; 4526 4527 do { 4528 index--; 4529 page = eb->pages[index]; 4530 if (page && mapped) { 4531 spin_lock(&page->mapping->private_lock); 4532 /* 4533 * We do this since we'll remove the pages after we've 4534 * removed the eb from the radix tree, so we could race 4535 * and have this page now attached to the new eb. So 4536 * only clear page_private if it's still connected to 4537 * this eb. 4538 */ 4539 if (PagePrivate(page) && 4540 page->private == (unsigned long)eb) { 4541 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4542 BUG_ON(PageDirty(page)); 4543 BUG_ON(PageWriteback(page)); 4544 /* 4545 * We need to make sure we haven't be attached 4546 * to a new eb. 4547 */ 4548 ClearPagePrivate(page); 4549 set_page_private(page, 0); 4550 /* One for the page private */ 4551 page_cache_release(page); 4552 } 4553 spin_unlock(&page->mapping->private_lock); 4554 4555 } 4556 if (page) { 4557 /* One for when we alloced the page */ 4558 page_cache_release(page); 4559 } 4560 } while (index != 0); 4561 } 4562 4563 /* 4564 * Helper for releasing the extent buffer. 4565 */ 4566 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4567 { 4568 btrfs_release_extent_buffer_page(eb); 4569 __free_extent_buffer(eb); 4570 } 4571 4572 static struct extent_buffer * 4573 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4574 unsigned long len, gfp_t mask) 4575 { 4576 struct extent_buffer *eb = NULL; 4577 4578 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4579 if (eb == NULL) 4580 return NULL; 4581 eb->start = start; 4582 eb->len = len; 4583 eb->fs_info = fs_info; 4584 eb->bflags = 0; 4585 rwlock_init(&eb->lock); 4586 atomic_set(&eb->write_locks, 0); 4587 atomic_set(&eb->read_locks, 0); 4588 atomic_set(&eb->blocking_readers, 0); 4589 atomic_set(&eb->blocking_writers, 0); 4590 atomic_set(&eb->spinning_readers, 0); 4591 atomic_set(&eb->spinning_writers, 0); 4592 eb->lock_nested = 0; 4593 init_waitqueue_head(&eb->write_lock_wq); 4594 init_waitqueue_head(&eb->read_lock_wq); 4595 4596 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4597 4598 spin_lock_init(&eb->refs_lock); 4599 atomic_set(&eb->refs, 1); 4600 atomic_set(&eb->io_pages, 0); 4601 4602 /* 4603 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4604 */ 4605 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4606 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4607 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4608 4609 return eb; 4610 } 4611 4612 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4613 { 4614 unsigned long i; 4615 struct page *p; 4616 struct extent_buffer *new; 4617 unsigned long num_pages = num_extent_pages(src->start, src->len); 4618 4619 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4620 if (new == NULL) 4621 return NULL; 4622 4623 for (i = 0; i < num_pages; i++) { 4624 p = alloc_page(GFP_NOFS); 4625 if (!p) { 4626 btrfs_release_extent_buffer(new); 4627 return NULL; 4628 } 4629 attach_extent_buffer_page(new, p); 4630 WARN_ON(PageDirty(p)); 4631 SetPageUptodate(p); 4632 new->pages[i] = p; 4633 } 4634 4635 copy_extent_buffer(new, src, 0, 0, src->len); 4636 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4637 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4638 4639 return new; 4640 } 4641 4642 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4643 { 4644 struct extent_buffer *eb; 4645 unsigned long num_pages = num_extent_pages(0, len); 4646 unsigned long i; 4647 4648 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4649 if (!eb) 4650 return NULL; 4651 4652 for (i = 0; i < num_pages; i++) { 4653 eb->pages[i] = alloc_page(GFP_NOFS); 4654 if (!eb->pages[i]) 4655 goto err; 4656 } 4657 set_extent_buffer_uptodate(eb); 4658 btrfs_set_header_nritems(eb, 0); 4659 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4660 4661 return eb; 4662 err: 4663 for (; i > 0; i--) 4664 __free_page(eb->pages[i - 1]); 4665 __free_extent_buffer(eb); 4666 return NULL; 4667 } 4668 4669 static void check_buffer_tree_ref(struct extent_buffer *eb) 4670 { 4671 int refs; 4672 /* the ref bit is tricky. We have to make sure it is set 4673 * if we have the buffer dirty. Otherwise the 4674 * code to free a buffer can end up dropping a dirty 4675 * page 4676 * 4677 * Once the ref bit is set, it won't go away while the 4678 * buffer is dirty or in writeback, and it also won't 4679 * go away while we have the reference count on the 4680 * eb bumped. 4681 * 4682 * We can't just set the ref bit without bumping the 4683 * ref on the eb because free_extent_buffer might 4684 * see the ref bit and try to clear it. If this happens 4685 * free_extent_buffer might end up dropping our original 4686 * ref by mistake and freeing the page before we are able 4687 * to add one more ref. 4688 * 4689 * So bump the ref count first, then set the bit. If someone 4690 * beat us to it, drop the ref we added. 4691 */ 4692 refs = atomic_read(&eb->refs); 4693 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4694 return; 4695 4696 spin_lock(&eb->refs_lock); 4697 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4698 atomic_inc(&eb->refs); 4699 spin_unlock(&eb->refs_lock); 4700 } 4701 4702 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4703 struct page *accessed) 4704 { 4705 unsigned long num_pages, i; 4706 4707 check_buffer_tree_ref(eb); 4708 4709 num_pages = num_extent_pages(eb->start, eb->len); 4710 for (i = 0; i < num_pages; i++) { 4711 struct page *p = eb->pages[i]; 4712 4713 if (p != accessed) 4714 mark_page_accessed(p); 4715 } 4716 } 4717 4718 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4719 u64 start) 4720 { 4721 struct extent_buffer *eb; 4722 4723 rcu_read_lock(); 4724 eb = radix_tree_lookup(&fs_info->buffer_radix, 4725 start >> PAGE_CACHE_SHIFT); 4726 if (eb && atomic_inc_not_zero(&eb->refs)) { 4727 rcu_read_unlock(); 4728 mark_extent_buffer_accessed(eb, NULL); 4729 return eb; 4730 } 4731 rcu_read_unlock(); 4732 4733 return NULL; 4734 } 4735 4736 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4737 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4738 u64 start, unsigned long len) 4739 { 4740 struct extent_buffer *eb, *exists = NULL; 4741 int ret; 4742 4743 eb = find_extent_buffer(fs_info, start); 4744 if (eb) 4745 return eb; 4746 eb = alloc_dummy_extent_buffer(start, len); 4747 if (!eb) 4748 return NULL; 4749 eb->fs_info = fs_info; 4750 again: 4751 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4752 if (ret) 4753 goto free_eb; 4754 spin_lock(&fs_info->buffer_lock); 4755 ret = radix_tree_insert(&fs_info->buffer_radix, 4756 start >> PAGE_CACHE_SHIFT, eb); 4757 spin_unlock(&fs_info->buffer_lock); 4758 radix_tree_preload_end(); 4759 if (ret == -EEXIST) { 4760 exists = find_extent_buffer(fs_info, start); 4761 if (exists) 4762 goto free_eb; 4763 else 4764 goto again; 4765 } 4766 check_buffer_tree_ref(eb); 4767 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4768 4769 /* 4770 * We will free dummy extent buffer's if they come into 4771 * free_extent_buffer with a ref count of 2, but if we are using this we 4772 * want the buffers to stay in memory until we're done with them, so 4773 * bump the ref count again. 4774 */ 4775 atomic_inc(&eb->refs); 4776 return eb; 4777 free_eb: 4778 btrfs_release_extent_buffer(eb); 4779 return exists; 4780 } 4781 #endif 4782 4783 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4784 u64 start, unsigned long len) 4785 { 4786 unsigned long num_pages = num_extent_pages(start, len); 4787 unsigned long i; 4788 unsigned long index = start >> PAGE_CACHE_SHIFT; 4789 struct extent_buffer *eb; 4790 struct extent_buffer *exists = NULL; 4791 struct page *p; 4792 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4793 int uptodate = 1; 4794 int ret; 4795 4796 eb = find_extent_buffer(fs_info, start); 4797 if (eb) 4798 return eb; 4799 4800 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS); 4801 if (!eb) 4802 return NULL; 4803 4804 for (i = 0; i < num_pages; i++, index++) { 4805 p = find_or_create_page(mapping, index, GFP_NOFS); 4806 if (!p) 4807 goto free_eb; 4808 4809 spin_lock(&mapping->private_lock); 4810 if (PagePrivate(p)) { 4811 /* 4812 * We could have already allocated an eb for this page 4813 * and attached one so lets see if we can get a ref on 4814 * the existing eb, and if we can we know it's good and 4815 * we can just return that one, else we know we can just 4816 * overwrite page->private. 4817 */ 4818 exists = (struct extent_buffer *)p->private; 4819 if (atomic_inc_not_zero(&exists->refs)) { 4820 spin_unlock(&mapping->private_lock); 4821 unlock_page(p); 4822 page_cache_release(p); 4823 mark_extent_buffer_accessed(exists, p); 4824 goto free_eb; 4825 } 4826 4827 /* 4828 * Do this so attach doesn't complain and we need to 4829 * drop the ref the old guy had. 4830 */ 4831 ClearPagePrivate(p); 4832 WARN_ON(PageDirty(p)); 4833 page_cache_release(p); 4834 } 4835 attach_extent_buffer_page(eb, p); 4836 spin_unlock(&mapping->private_lock); 4837 WARN_ON(PageDirty(p)); 4838 eb->pages[i] = p; 4839 if (!PageUptodate(p)) 4840 uptodate = 0; 4841 4842 /* 4843 * see below about how we avoid a nasty race with release page 4844 * and why we unlock later 4845 */ 4846 } 4847 if (uptodate) 4848 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4849 again: 4850 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4851 if (ret) 4852 goto free_eb; 4853 4854 spin_lock(&fs_info->buffer_lock); 4855 ret = radix_tree_insert(&fs_info->buffer_radix, 4856 start >> PAGE_CACHE_SHIFT, eb); 4857 spin_unlock(&fs_info->buffer_lock); 4858 radix_tree_preload_end(); 4859 if (ret == -EEXIST) { 4860 exists = find_extent_buffer(fs_info, start); 4861 if (exists) 4862 goto free_eb; 4863 else 4864 goto again; 4865 } 4866 /* add one reference for the tree */ 4867 check_buffer_tree_ref(eb); 4868 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4869 4870 /* 4871 * there is a race where release page may have 4872 * tried to find this extent buffer in the radix 4873 * but failed. It will tell the VM it is safe to 4874 * reclaim the, and it will clear the page private bit. 4875 * We must make sure to set the page private bit properly 4876 * after the extent buffer is in the radix tree so 4877 * it doesn't get lost 4878 */ 4879 SetPageChecked(eb->pages[0]); 4880 for (i = 1; i < num_pages; i++) { 4881 p = eb->pages[i]; 4882 ClearPageChecked(p); 4883 unlock_page(p); 4884 } 4885 unlock_page(eb->pages[0]); 4886 return eb; 4887 4888 free_eb: 4889 for (i = 0; i < num_pages; i++) { 4890 if (eb->pages[i]) 4891 unlock_page(eb->pages[i]); 4892 } 4893 4894 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4895 btrfs_release_extent_buffer(eb); 4896 return exists; 4897 } 4898 4899 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4900 { 4901 struct extent_buffer *eb = 4902 container_of(head, struct extent_buffer, rcu_head); 4903 4904 __free_extent_buffer(eb); 4905 } 4906 4907 /* Expects to have eb->eb_lock already held */ 4908 static int release_extent_buffer(struct extent_buffer *eb) 4909 { 4910 WARN_ON(atomic_read(&eb->refs) == 0); 4911 if (atomic_dec_and_test(&eb->refs)) { 4912 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4913 struct btrfs_fs_info *fs_info = eb->fs_info; 4914 4915 spin_unlock(&eb->refs_lock); 4916 4917 spin_lock(&fs_info->buffer_lock); 4918 radix_tree_delete(&fs_info->buffer_radix, 4919 eb->start >> PAGE_CACHE_SHIFT); 4920 spin_unlock(&fs_info->buffer_lock); 4921 } else { 4922 spin_unlock(&eb->refs_lock); 4923 } 4924 4925 /* Should be safe to release our pages at this point */ 4926 btrfs_release_extent_buffer_page(eb); 4927 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4928 return 1; 4929 } 4930 spin_unlock(&eb->refs_lock); 4931 4932 return 0; 4933 } 4934 4935 void free_extent_buffer(struct extent_buffer *eb) 4936 { 4937 int refs; 4938 int old; 4939 if (!eb) 4940 return; 4941 4942 while (1) { 4943 refs = atomic_read(&eb->refs); 4944 if (refs <= 3) 4945 break; 4946 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4947 if (old == refs) 4948 return; 4949 } 4950 4951 spin_lock(&eb->refs_lock); 4952 if (atomic_read(&eb->refs) == 2 && 4953 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4954 atomic_dec(&eb->refs); 4955 4956 if (atomic_read(&eb->refs) == 2 && 4957 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4958 !extent_buffer_under_io(eb) && 4959 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4960 atomic_dec(&eb->refs); 4961 4962 /* 4963 * I know this is terrible, but it's temporary until we stop tracking 4964 * the uptodate bits and such for the extent buffers. 4965 */ 4966 release_extent_buffer(eb); 4967 } 4968 4969 void free_extent_buffer_stale(struct extent_buffer *eb) 4970 { 4971 if (!eb) 4972 return; 4973 4974 spin_lock(&eb->refs_lock); 4975 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4976 4977 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4978 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4979 atomic_dec(&eb->refs); 4980 release_extent_buffer(eb); 4981 } 4982 4983 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4984 { 4985 unsigned long i; 4986 unsigned long num_pages; 4987 struct page *page; 4988 4989 num_pages = num_extent_pages(eb->start, eb->len); 4990 4991 for (i = 0; i < num_pages; i++) { 4992 page = eb->pages[i]; 4993 if (!PageDirty(page)) 4994 continue; 4995 4996 lock_page(page); 4997 WARN_ON(!PagePrivate(page)); 4998 4999 clear_page_dirty_for_io(page); 5000 spin_lock_irq(&page->mapping->tree_lock); 5001 if (!PageDirty(page)) { 5002 radix_tree_tag_clear(&page->mapping->page_tree, 5003 page_index(page), 5004 PAGECACHE_TAG_DIRTY); 5005 } 5006 spin_unlock_irq(&page->mapping->tree_lock); 5007 ClearPageError(page); 5008 unlock_page(page); 5009 } 5010 WARN_ON(atomic_read(&eb->refs) == 0); 5011 } 5012 5013 int set_extent_buffer_dirty(struct extent_buffer *eb) 5014 { 5015 unsigned long i; 5016 unsigned long num_pages; 5017 int was_dirty = 0; 5018 5019 check_buffer_tree_ref(eb); 5020 5021 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5022 5023 num_pages = num_extent_pages(eb->start, eb->len); 5024 WARN_ON(atomic_read(&eb->refs) == 0); 5025 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5026 5027 for (i = 0; i < num_pages; i++) 5028 set_page_dirty(eb->pages[i]); 5029 return was_dirty; 5030 } 5031 5032 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5033 { 5034 unsigned long i; 5035 struct page *page; 5036 unsigned long num_pages; 5037 5038 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5039 num_pages = num_extent_pages(eb->start, eb->len); 5040 for (i = 0; i < num_pages; i++) { 5041 page = eb->pages[i]; 5042 if (page) 5043 ClearPageUptodate(page); 5044 } 5045 return 0; 5046 } 5047 5048 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5049 { 5050 unsigned long i; 5051 struct page *page; 5052 unsigned long num_pages; 5053 5054 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5055 num_pages = num_extent_pages(eb->start, eb->len); 5056 for (i = 0; i < num_pages; i++) { 5057 page = eb->pages[i]; 5058 SetPageUptodate(page); 5059 } 5060 return 0; 5061 } 5062 5063 int extent_buffer_uptodate(struct extent_buffer *eb) 5064 { 5065 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5066 } 5067 5068 int read_extent_buffer_pages(struct extent_io_tree *tree, 5069 struct extent_buffer *eb, u64 start, int wait, 5070 get_extent_t *get_extent, int mirror_num) 5071 { 5072 unsigned long i; 5073 unsigned long start_i; 5074 struct page *page; 5075 int err; 5076 int ret = 0; 5077 int locked_pages = 0; 5078 int all_uptodate = 1; 5079 unsigned long num_pages; 5080 unsigned long num_reads = 0; 5081 struct bio *bio = NULL; 5082 unsigned long bio_flags = 0; 5083 5084 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5085 return 0; 5086 5087 if (start) { 5088 WARN_ON(start < eb->start); 5089 start_i = (start >> PAGE_CACHE_SHIFT) - 5090 (eb->start >> PAGE_CACHE_SHIFT); 5091 } else { 5092 start_i = 0; 5093 } 5094 5095 num_pages = num_extent_pages(eb->start, eb->len); 5096 for (i = start_i; i < num_pages; i++) { 5097 page = eb->pages[i]; 5098 if (wait == WAIT_NONE) { 5099 if (!trylock_page(page)) 5100 goto unlock_exit; 5101 } else { 5102 lock_page(page); 5103 } 5104 locked_pages++; 5105 if (!PageUptodate(page)) { 5106 num_reads++; 5107 all_uptodate = 0; 5108 } 5109 } 5110 if (all_uptodate) { 5111 if (start_i == 0) 5112 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5113 goto unlock_exit; 5114 } 5115 5116 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5117 eb->read_mirror = 0; 5118 atomic_set(&eb->io_pages, num_reads); 5119 for (i = start_i; i < num_pages; i++) { 5120 page = eb->pages[i]; 5121 if (!PageUptodate(page)) { 5122 ClearPageError(page); 5123 err = __extent_read_full_page(tree, page, 5124 get_extent, &bio, 5125 mirror_num, &bio_flags, 5126 READ | REQ_META); 5127 if (err) 5128 ret = err; 5129 } else { 5130 unlock_page(page); 5131 } 5132 } 5133 5134 if (bio) { 5135 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5136 bio_flags); 5137 if (err) 5138 return err; 5139 } 5140 5141 if (ret || wait != WAIT_COMPLETE) 5142 return ret; 5143 5144 for (i = start_i; i < num_pages; i++) { 5145 page = eb->pages[i]; 5146 wait_on_page_locked(page); 5147 if (!PageUptodate(page)) 5148 ret = -EIO; 5149 } 5150 5151 return ret; 5152 5153 unlock_exit: 5154 i = start_i; 5155 while (locked_pages > 0) { 5156 page = eb->pages[i]; 5157 i++; 5158 unlock_page(page); 5159 locked_pages--; 5160 } 5161 return ret; 5162 } 5163 5164 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5165 unsigned long start, 5166 unsigned long len) 5167 { 5168 size_t cur; 5169 size_t offset; 5170 struct page *page; 5171 char *kaddr; 5172 char *dst = (char *)dstv; 5173 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5174 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5175 5176 WARN_ON(start > eb->len); 5177 WARN_ON(start + len > eb->start + eb->len); 5178 5179 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5180 5181 while (len > 0) { 5182 page = eb->pages[i]; 5183 5184 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5185 kaddr = page_address(page); 5186 memcpy(dst, kaddr + offset, cur); 5187 5188 dst += cur; 5189 len -= cur; 5190 offset = 0; 5191 i++; 5192 } 5193 } 5194 5195 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5196 unsigned long start, 5197 unsigned long len) 5198 { 5199 size_t cur; 5200 size_t offset; 5201 struct page *page; 5202 char *kaddr; 5203 char __user *dst = (char __user *)dstv; 5204 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5205 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5206 int ret = 0; 5207 5208 WARN_ON(start > eb->len); 5209 WARN_ON(start + len > eb->start + eb->len); 5210 5211 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5212 5213 while (len > 0) { 5214 page = eb->pages[i]; 5215 5216 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5217 kaddr = page_address(page); 5218 if (copy_to_user(dst, kaddr + offset, cur)) { 5219 ret = -EFAULT; 5220 break; 5221 } 5222 5223 dst += cur; 5224 len -= cur; 5225 offset = 0; 5226 i++; 5227 } 5228 5229 return ret; 5230 } 5231 5232 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5233 unsigned long min_len, char **map, 5234 unsigned long *map_start, 5235 unsigned long *map_len) 5236 { 5237 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5238 char *kaddr; 5239 struct page *p; 5240 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5241 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5242 unsigned long end_i = (start_offset + start + min_len - 1) >> 5243 PAGE_CACHE_SHIFT; 5244 5245 if (i != end_i) 5246 return -EINVAL; 5247 5248 if (i == 0) { 5249 offset = start_offset; 5250 *map_start = 0; 5251 } else { 5252 offset = 0; 5253 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5254 } 5255 5256 if (start + min_len > eb->len) { 5257 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5258 "wanted %lu %lu\n", 5259 eb->start, eb->len, start, min_len); 5260 return -EINVAL; 5261 } 5262 5263 p = eb->pages[i]; 5264 kaddr = page_address(p); 5265 *map = kaddr + offset; 5266 *map_len = PAGE_CACHE_SIZE - offset; 5267 return 0; 5268 } 5269 5270 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5271 unsigned long start, 5272 unsigned long len) 5273 { 5274 size_t cur; 5275 size_t offset; 5276 struct page *page; 5277 char *kaddr; 5278 char *ptr = (char *)ptrv; 5279 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5280 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5281 int ret = 0; 5282 5283 WARN_ON(start > eb->len); 5284 WARN_ON(start + len > eb->start + eb->len); 5285 5286 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5287 5288 while (len > 0) { 5289 page = eb->pages[i]; 5290 5291 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5292 5293 kaddr = page_address(page); 5294 ret = memcmp(ptr, kaddr + offset, cur); 5295 if (ret) 5296 break; 5297 5298 ptr += cur; 5299 len -= cur; 5300 offset = 0; 5301 i++; 5302 } 5303 return ret; 5304 } 5305 5306 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5307 unsigned long start, unsigned long len) 5308 { 5309 size_t cur; 5310 size_t offset; 5311 struct page *page; 5312 char *kaddr; 5313 char *src = (char *)srcv; 5314 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5315 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5316 5317 WARN_ON(start > eb->len); 5318 WARN_ON(start + len > eb->start + eb->len); 5319 5320 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5321 5322 while (len > 0) { 5323 page = eb->pages[i]; 5324 WARN_ON(!PageUptodate(page)); 5325 5326 cur = min(len, PAGE_CACHE_SIZE - offset); 5327 kaddr = page_address(page); 5328 memcpy(kaddr + offset, src, cur); 5329 5330 src += cur; 5331 len -= cur; 5332 offset = 0; 5333 i++; 5334 } 5335 } 5336 5337 void memset_extent_buffer(struct extent_buffer *eb, char c, 5338 unsigned long start, unsigned long len) 5339 { 5340 size_t cur; 5341 size_t offset; 5342 struct page *page; 5343 char *kaddr; 5344 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5345 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5346 5347 WARN_ON(start > eb->len); 5348 WARN_ON(start + len > eb->start + eb->len); 5349 5350 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5351 5352 while (len > 0) { 5353 page = eb->pages[i]; 5354 WARN_ON(!PageUptodate(page)); 5355 5356 cur = min(len, PAGE_CACHE_SIZE - offset); 5357 kaddr = page_address(page); 5358 memset(kaddr + offset, c, cur); 5359 5360 len -= cur; 5361 offset = 0; 5362 i++; 5363 } 5364 } 5365 5366 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5367 unsigned long dst_offset, unsigned long src_offset, 5368 unsigned long len) 5369 { 5370 u64 dst_len = dst->len; 5371 size_t cur; 5372 size_t offset; 5373 struct page *page; 5374 char *kaddr; 5375 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5376 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5377 5378 WARN_ON(src->len != dst_len); 5379 5380 offset = (start_offset + dst_offset) & 5381 (PAGE_CACHE_SIZE - 1); 5382 5383 while (len > 0) { 5384 page = dst->pages[i]; 5385 WARN_ON(!PageUptodate(page)); 5386 5387 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5388 5389 kaddr = page_address(page); 5390 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5391 5392 src_offset += cur; 5393 len -= cur; 5394 offset = 0; 5395 i++; 5396 } 5397 } 5398 5399 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5400 { 5401 unsigned long distance = (src > dst) ? src - dst : dst - src; 5402 return distance < len; 5403 } 5404 5405 static void copy_pages(struct page *dst_page, struct page *src_page, 5406 unsigned long dst_off, unsigned long src_off, 5407 unsigned long len) 5408 { 5409 char *dst_kaddr = page_address(dst_page); 5410 char *src_kaddr; 5411 int must_memmove = 0; 5412 5413 if (dst_page != src_page) { 5414 src_kaddr = page_address(src_page); 5415 } else { 5416 src_kaddr = dst_kaddr; 5417 if (areas_overlap(src_off, dst_off, len)) 5418 must_memmove = 1; 5419 } 5420 5421 if (must_memmove) 5422 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5423 else 5424 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5425 } 5426 5427 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5428 unsigned long src_offset, unsigned long len) 5429 { 5430 size_t cur; 5431 size_t dst_off_in_page; 5432 size_t src_off_in_page; 5433 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5434 unsigned long dst_i; 5435 unsigned long src_i; 5436 5437 if (src_offset + len > dst->len) { 5438 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5439 "len %lu dst len %lu\n", src_offset, len, dst->len); 5440 BUG_ON(1); 5441 } 5442 if (dst_offset + len > dst->len) { 5443 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5444 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5445 BUG_ON(1); 5446 } 5447 5448 while (len > 0) { 5449 dst_off_in_page = (start_offset + dst_offset) & 5450 (PAGE_CACHE_SIZE - 1); 5451 src_off_in_page = (start_offset + src_offset) & 5452 (PAGE_CACHE_SIZE - 1); 5453 5454 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5455 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5456 5457 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5458 src_off_in_page)); 5459 cur = min_t(unsigned long, cur, 5460 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5461 5462 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5463 dst_off_in_page, src_off_in_page, cur); 5464 5465 src_offset += cur; 5466 dst_offset += cur; 5467 len -= cur; 5468 } 5469 } 5470 5471 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5472 unsigned long src_offset, unsigned long len) 5473 { 5474 size_t cur; 5475 size_t dst_off_in_page; 5476 size_t src_off_in_page; 5477 unsigned long dst_end = dst_offset + len - 1; 5478 unsigned long src_end = src_offset + len - 1; 5479 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5480 unsigned long dst_i; 5481 unsigned long src_i; 5482 5483 if (src_offset + len > dst->len) { 5484 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5485 "len %lu len %lu\n", src_offset, len, dst->len); 5486 BUG_ON(1); 5487 } 5488 if (dst_offset + len > dst->len) { 5489 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5490 "len %lu len %lu\n", dst_offset, len, dst->len); 5491 BUG_ON(1); 5492 } 5493 if (dst_offset < src_offset) { 5494 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5495 return; 5496 } 5497 while (len > 0) { 5498 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5499 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5500 5501 dst_off_in_page = (start_offset + dst_end) & 5502 (PAGE_CACHE_SIZE - 1); 5503 src_off_in_page = (start_offset + src_end) & 5504 (PAGE_CACHE_SIZE - 1); 5505 5506 cur = min_t(unsigned long, len, src_off_in_page + 1); 5507 cur = min(cur, dst_off_in_page + 1); 5508 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5509 dst_off_in_page - cur + 1, 5510 src_off_in_page - cur + 1, cur); 5511 5512 dst_end -= cur; 5513 src_end -= cur; 5514 len -= cur; 5515 } 5516 } 5517 5518 int try_release_extent_buffer(struct page *page) 5519 { 5520 struct extent_buffer *eb; 5521 5522 /* 5523 * We need to make sure noboody is attaching this page to an eb right 5524 * now. 5525 */ 5526 spin_lock(&page->mapping->private_lock); 5527 if (!PagePrivate(page)) { 5528 spin_unlock(&page->mapping->private_lock); 5529 return 1; 5530 } 5531 5532 eb = (struct extent_buffer *)page->private; 5533 BUG_ON(!eb); 5534 5535 /* 5536 * This is a little awful but should be ok, we need to make sure that 5537 * the eb doesn't disappear out from under us while we're looking at 5538 * this page. 5539 */ 5540 spin_lock(&eb->refs_lock); 5541 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5542 spin_unlock(&eb->refs_lock); 5543 spin_unlock(&page->mapping->private_lock); 5544 return 0; 5545 } 5546 spin_unlock(&page->mapping->private_lock); 5547 5548 /* 5549 * If tree ref isn't set then we know the ref on this eb is a real ref, 5550 * so just return, this page will likely be freed soon anyway. 5551 */ 5552 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5553 spin_unlock(&eb->refs_lock); 5554 return 0; 5555 } 5556 5557 return release_extent_buffer(eb); 5558 } 5559