xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40 
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 					struct list_head *new,
43 					struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(lock, flags);
50 }
51 
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 					struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(lock, flags);
60 }
61 
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 	struct extent_buffer *eb;
65 	unsigned long flags;
66 
67 	/*
68 	 * If we didn't get into open_ctree our allocated_ebs will not be
69 	 * initialized, so just skip this.
70 	 */
71 	if (!fs_info->allocated_ebs.next)
72 		return;
73 
74 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 	while (!list_empty(&fs_info->allocated_ebs)) {
76 		eb = list_first_entry(&fs_info->allocated_ebs,
77 				      struct extent_buffer, leak_list);
78 		pr_err(
79 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 		       btrfs_header_owner(eb));
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87 
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 	struct extent_state *state;
91 
92 	while (!list_empty(&states)) {
93 		state = list_entry(states.next, struct extent_state, leak_list);
94 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 		       state->start, state->end, state->state,
96 		       extent_state_in_tree(state),
97 		       refcount_read(&state->refs));
98 		list_del(&state->leak_list);
99 		kmem_cache_free(extent_state_cache, state);
100 	}
101 }
102 
103 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
104 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 		struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 	struct inode *inode = tree->private_data;
109 	u64 isize;
110 
111 	if (!inode || !is_data_inode(inode))
112 		return;
113 
114 	isize = i_size_read(inode);
115 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 	}
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
126 #endif
127 
128 struct tree_entry {
129 	u64 start;
130 	u64 end;
131 	struct rb_node rb_node;
132 };
133 
134 struct extent_page_data {
135 	struct bio *bio;
136 	/* tells writepage not to lock the state bits for this range
137 	 * it still does the unlocking
138 	 */
139 	unsigned int extent_locked:1;
140 
141 	/* tells the submit_bio code to use REQ_SYNC */
142 	unsigned int sync_io:1;
143 };
144 
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 				 struct extent_changeset *changeset,
147 				 int set)
148 {
149 	int ret;
150 
151 	if (!changeset)
152 		return 0;
153 	if (set && (state->state & bits) == bits)
154 		return 0;
155 	if (!set && (state->state & bits) == 0)
156 		return 0;
157 	changeset->bytes_changed += state->end - state->start + 1;
158 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 			GFP_ATOMIC);
160 	return ret;
161 }
162 
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 				       unsigned long bio_flags)
165 {
166 	blk_status_t ret = 0;
167 	struct extent_io_tree *tree = bio->bi_private;
168 
169 	bio->bi_private = NULL;
170 
171 	if (tree->ops)
172 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 						 mirror_num, bio_flags);
174 	else
175 		btrfsic_submit_bio(bio);
176 
177 	return blk_status_to_errno(ret);
178 }
179 
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183 	if (epd->bio) {
184 		epd->bio->bi_status = errno_to_blk_status(ret);
185 		bio_endio(epd->bio);
186 		epd->bio = NULL;
187 	}
188 }
189 
190 /*
191  * Submit bio from extent page data via submit_one_bio
192  *
193  * Return 0 if everything is OK.
194  * Return <0 for error.
195  */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198 	int ret = 0;
199 
200 	if (epd->bio) {
201 		ret = submit_one_bio(epd->bio, 0, 0);
202 		/*
203 		 * Clean up of epd->bio is handled by its endio function.
204 		 * And endio is either triggered by successful bio execution
205 		 * or the error handler of submit bio hook.
206 		 * So at this point, no matter what happened, we don't need
207 		 * to clean up epd->bio.
208 		 */
209 		epd->bio = NULL;
210 	}
211 	return ret;
212 }
213 
214 int __init extent_state_cache_init(void)
215 {
216 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 			sizeof(struct extent_state), 0,
218 			SLAB_MEM_SPREAD, NULL);
219 	if (!extent_state_cache)
220 		return -ENOMEM;
221 	return 0;
222 }
223 
224 int __init extent_io_init(void)
225 {
226 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 			sizeof(struct extent_buffer), 0,
228 			SLAB_MEM_SPREAD, NULL);
229 	if (!extent_buffer_cache)
230 		return -ENOMEM;
231 
232 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 			offsetof(struct btrfs_io_bio, bio),
234 			BIOSET_NEED_BVECS))
235 		goto free_buffer_cache;
236 
237 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 		goto free_bioset;
239 
240 	return 0;
241 
242 free_bioset:
243 	bioset_exit(&btrfs_bioset);
244 
245 free_buffer_cache:
246 	kmem_cache_destroy(extent_buffer_cache);
247 	extent_buffer_cache = NULL;
248 	return -ENOMEM;
249 }
250 
251 void __cold extent_state_cache_exit(void)
252 {
253 	btrfs_extent_state_leak_debug_check();
254 	kmem_cache_destroy(extent_state_cache);
255 }
256 
257 void __cold extent_io_exit(void)
258 {
259 	/*
260 	 * Make sure all delayed rcu free are flushed before we
261 	 * destroy caches.
262 	 */
263 	rcu_barrier();
264 	kmem_cache_destroy(extent_buffer_cache);
265 	bioset_exit(&btrfs_bioset);
266 }
267 
268 /*
269  * For the file_extent_tree, we want to hold the inode lock when we lookup and
270  * update the disk_i_size, but lockdep will complain because our io_tree we hold
271  * the tree lock and get the inode lock when setting delalloc.  These two things
272  * are unrelated, so make a class for the file_extent_tree so we don't get the
273  * two locking patterns mixed up.
274  */
275 static struct lock_class_key file_extent_tree_class;
276 
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 			 struct extent_io_tree *tree, unsigned int owner,
279 			 void *private_data)
280 {
281 	tree->fs_info = fs_info;
282 	tree->state = RB_ROOT;
283 	tree->ops = NULL;
284 	tree->dirty_bytes = 0;
285 	spin_lock_init(&tree->lock);
286 	tree->private_data = private_data;
287 	tree->owner = owner;
288 	if (owner == IO_TREE_INODE_FILE_EXTENT)
289 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291 
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 	spin_lock(&tree->lock);
295 	/*
296 	 * Do a single barrier for the waitqueue_active check here, the state
297 	 * of the waitqueue should not change once extent_io_tree_release is
298 	 * called.
299 	 */
300 	smp_mb();
301 	while (!RB_EMPTY_ROOT(&tree->state)) {
302 		struct rb_node *node;
303 		struct extent_state *state;
304 
305 		node = rb_first(&tree->state);
306 		state = rb_entry(node, struct extent_state, rb_node);
307 		rb_erase(&state->rb_node, &tree->state);
308 		RB_CLEAR_NODE(&state->rb_node);
309 		/*
310 		 * btree io trees aren't supposed to have tasks waiting for
311 		 * changes in the flags of extent states ever.
312 		 */
313 		ASSERT(!waitqueue_active(&state->wq));
314 		free_extent_state(state);
315 
316 		cond_resched_lock(&tree->lock);
317 	}
318 	spin_unlock(&tree->lock);
319 }
320 
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 	struct extent_state *state;
324 
325 	/*
326 	 * The given mask might be not appropriate for the slab allocator,
327 	 * drop the unsupported bits
328 	 */
329 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 	state = kmem_cache_alloc(extent_state_cache, mask);
331 	if (!state)
332 		return state;
333 	state->state = 0;
334 	state->failrec = NULL;
335 	RB_CLEAR_NODE(&state->rb_node);
336 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 	refcount_set(&state->refs, 1);
338 	init_waitqueue_head(&state->wq);
339 	trace_alloc_extent_state(state, mask, _RET_IP_);
340 	return state;
341 }
342 
343 void free_extent_state(struct extent_state *state)
344 {
345 	if (!state)
346 		return;
347 	if (refcount_dec_and_test(&state->refs)) {
348 		WARN_ON(extent_state_in_tree(state));
349 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 		trace_free_extent_state(state, _RET_IP_);
351 		kmem_cache_free(extent_state_cache, state);
352 	}
353 }
354 
355 static struct rb_node *tree_insert(struct rb_root *root,
356 				   struct rb_node *search_start,
357 				   u64 offset,
358 				   struct rb_node *node,
359 				   struct rb_node ***p_in,
360 				   struct rb_node **parent_in)
361 {
362 	struct rb_node **p;
363 	struct rb_node *parent = NULL;
364 	struct tree_entry *entry;
365 
366 	if (p_in && parent_in) {
367 		p = *p_in;
368 		parent = *parent_in;
369 		goto do_insert;
370 	}
371 
372 	p = search_start ? &search_start : &root->rb_node;
373 	while (*p) {
374 		parent = *p;
375 		entry = rb_entry(parent, struct tree_entry, rb_node);
376 
377 		if (offset < entry->start)
378 			p = &(*p)->rb_left;
379 		else if (offset > entry->end)
380 			p = &(*p)->rb_right;
381 		else
382 			return parent;
383 	}
384 
385 do_insert:
386 	rb_link_node(node, parent, p);
387 	rb_insert_color(node, root);
388 	return NULL;
389 }
390 
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *	    entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 				      struct rb_node **next_ret,
411 				      struct rb_node **prev_ret,
412 				      struct rb_node ***p_ret,
413 				      struct rb_node **parent_ret)
414 {
415 	struct rb_root *root = &tree->state;
416 	struct rb_node **n = &root->rb_node;
417 	struct rb_node *prev = NULL;
418 	struct rb_node *orig_prev = NULL;
419 	struct tree_entry *entry;
420 	struct tree_entry *prev_entry = NULL;
421 
422 	while (*n) {
423 		prev = *n;
424 		entry = rb_entry(prev, struct tree_entry, rb_node);
425 		prev_entry = entry;
426 
427 		if (offset < entry->start)
428 			n = &(*n)->rb_left;
429 		else if (offset > entry->end)
430 			n = &(*n)->rb_right;
431 		else
432 			return *n;
433 	}
434 
435 	if (p_ret)
436 		*p_ret = n;
437 	if (parent_ret)
438 		*parent_ret = prev;
439 
440 	if (next_ret) {
441 		orig_prev = prev;
442 		while (prev && offset > prev_entry->end) {
443 			prev = rb_next(prev);
444 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 		}
446 		*next_ret = prev;
447 		prev = orig_prev;
448 	}
449 
450 	if (prev_ret) {
451 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 		while (prev && offset < prev_entry->start) {
453 			prev = rb_prev(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*prev_ret = prev;
457 	}
458 	return NULL;
459 }
460 
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 		       u64 offset,
464 		       struct rb_node ***p_ret,
465 		       struct rb_node **parent_ret)
466 {
467 	struct rb_node *next= NULL;
468 	struct rb_node *ret;
469 
470 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 	if (!ret)
472 		return next;
473 	return ret;
474 }
475 
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 					  u64 offset)
478 {
479 	return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481 
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492 		        struct extent_state *state)
493 {
494 	struct extent_state *other;
495 	struct rb_node *other_node;
496 
497 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 		return;
499 
500 	other_node = rb_prev(&state->rb_node);
501 	if (other_node) {
502 		other = rb_entry(other_node, struct extent_state, rb_node);
503 		if (other->end == state->start - 1 &&
504 		    other->state == state->state) {
505 			if (tree->private_data &&
506 			    is_data_inode(tree->private_data))
507 				btrfs_merge_delalloc_extent(tree->private_data,
508 							    state, other);
509 			state->start = other->start;
510 			rb_erase(&other->rb_node, &tree->state);
511 			RB_CLEAR_NODE(&other->rb_node);
512 			free_extent_state(other);
513 		}
514 	}
515 	other_node = rb_next(&state->rb_node);
516 	if (other_node) {
517 		other = rb_entry(other_node, struct extent_state, rb_node);
518 		if (other->start == state->end + 1 &&
519 		    other->state == state->state) {
520 			if (tree->private_data &&
521 			    is_data_inode(tree->private_data))
522 				btrfs_merge_delalloc_extent(tree->private_data,
523 							    state, other);
524 			state->end = other->end;
525 			rb_erase(&other->rb_node, &tree->state);
526 			RB_CLEAR_NODE(&other->rb_node);
527 			free_extent_state(other);
528 		}
529 	}
530 }
531 
532 static void set_state_bits(struct extent_io_tree *tree,
533 			   struct extent_state *state, unsigned *bits,
534 			   struct extent_changeset *changeset);
535 
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547 			struct extent_state *state, u64 start, u64 end,
548 			struct rb_node ***p,
549 			struct rb_node **parent,
550 			unsigned *bits, struct extent_changeset *changeset)
551 {
552 	struct rb_node *node;
553 
554 	if (end < start) {
555 		btrfs_err(tree->fs_info,
556 			"insert state: end < start %llu %llu", end, start);
557 		WARN_ON(1);
558 	}
559 	state->start = start;
560 	state->end = end;
561 
562 	set_state_bits(tree, state, bits, changeset);
563 
564 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 	if (node) {
566 		struct extent_state *found;
567 		found = rb_entry(node, struct extent_state, rb_node);
568 		btrfs_err(tree->fs_info,
569 		       "found node %llu %llu on insert of %llu %llu",
570 		       found->start, found->end, start, end);
571 		return -EEXIST;
572 	}
573 	merge_state(tree, state);
574 	return 0;
575 }
576 
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 		       struct extent_state *prealloc, u64 split)
593 {
594 	struct rb_node *node;
595 
596 	if (tree->private_data && is_data_inode(tree->private_data))
597 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
598 
599 	prealloc->start = orig->start;
600 	prealloc->end = split - 1;
601 	prealloc->state = orig->state;
602 	orig->start = split;
603 
604 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 			   &prealloc->rb_node, NULL, NULL);
606 	if (node) {
607 		free_extent_state(prealloc);
608 		return -EEXIST;
609 	}
610 	return 0;
611 }
612 
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 	struct rb_node *next = rb_next(&state->rb_node);
616 	if (next)
617 		return rb_entry(next, struct extent_state, rb_node);
618 	else
619 		return NULL;
620 }
621 
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 					    struct extent_state *state,
631 					    unsigned *bits, int wake,
632 					    struct extent_changeset *changeset)
633 {
634 	struct extent_state *next;
635 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 	int ret;
637 
638 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 		u64 range = state->end - state->start + 1;
640 		WARN_ON(range > tree->dirty_bytes);
641 		tree->dirty_bytes -= range;
642 	}
643 
644 	if (tree->private_data && is_data_inode(tree->private_data))
645 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646 
647 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 	BUG_ON(ret < 0);
649 	state->state &= ~bits_to_clear;
650 	if (wake)
651 		wake_up(&state->wq);
652 	if (state->state == 0) {
653 		next = next_state(state);
654 		if (extent_state_in_tree(state)) {
655 			rb_erase(&state->rb_node, &tree->state);
656 			RB_CLEAR_NODE(&state->rb_node);
657 			free_extent_state(state);
658 		} else {
659 			WARN_ON(1);
660 		}
661 	} else {
662 		merge_state(tree, state);
663 		next = next_state(state);
664 	}
665 	return next;
666 }
667 
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 	if (!prealloc)
672 		prealloc = alloc_extent_state(GFP_ATOMIC);
673 
674 	return prealloc;
675 }
676 
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 	struct inode *inode = tree->private_data;
680 
681 	btrfs_panic(btrfs_sb(inode->i_sb), err,
682 	"locking error: extent tree was modified by another thread while locked");
683 }
684 
685 /*
686  * clear some bits on a range in the tree.  This may require splitting
687  * or inserting elements in the tree, so the gfp mask is used to
688  * indicate which allocations or sleeping are allowed.
689  *
690  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691  * the given range from the tree regardless of state (ie for truncate).
692  *
693  * the range [start, end] is inclusive.
694  *
695  * This takes the tree lock, and returns 0 on success and < 0 on error.
696  */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 			      unsigned bits, int wake, int delete,
699 			      struct extent_state **cached_state,
700 			      gfp_t mask, struct extent_changeset *changeset)
701 {
702 	struct extent_state *state;
703 	struct extent_state *cached;
704 	struct extent_state *prealloc = NULL;
705 	struct rb_node *node;
706 	u64 last_end;
707 	int err;
708 	int clear = 0;
709 
710 	btrfs_debug_check_extent_io_range(tree, start, end);
711 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712 
713 	if (bits & EXTENT_DELALLOC)
714 		bits |= EXTENT_NORESERVE;
715 
716 	if (delete)
717 		bits |= ~EXTENT_CTLBITS;
718 
719 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 		clear = 1;
721 again:
722 	if (!prealloc && gfpflags_allow_blocking(mask)) {
723 		/*
724 		 * Don't care for allocation failure here because we might end
725 		 * up not needing the pre-allocated extent state at all, which
726 		 * is the case if we only have in the tree extent states that
727 		 * cover our input range and don't cover too any other range.
728 		 * If we end up needing a new extent state we allocate it later.
729 		 */
730 		prealloc = alloc_extent_state(mask);
731 	}
732 
733 	spin_lock(&tree->lock);
734 	if (cached_state) {
735 		cached = *cached_state;
736 
737 		if (clear) {
738 			*cached_state = NULL;
739 			cached_state = NULL;
740 		}
741 
742 		if (cached && extent_state_in_tree(cached) &&
743 		    cached->start <= start && cached->end > start) {
744 			if (clear)
745 				refcount_dec(&cached->refs);
746 			state = cached;
747 			goto hit_next;
748 		}
749 		if (clear)
750 			free_extent_state(cached);
751 	}
752 	/*
753 	 * this search will find the extents that end after
754 	 * our range starts
755 	 */
756 	node = tree_search(tree, start);
757 	if (!node)
758 		goto out;
759 	state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 	if (state->start > end)
762 		goto out;
763 	WARN_ON(state->end < start);
764 	last_end = state->end;
765 
766 	/* the state doesn't have the wanted bits, go ahead */
767 	if (!(state->state & bits)) {
768 		state = next_state(state);
769 		goto next;
770 	}
771 
772 	/*
773 	 *     | ---- desired range ---- |
774 	 *  | state | or
775 	 *  | ------------- state -------------- |
776 	 *
777 	 * We need to split the extent we found, and may flip
778 	 * bits on second half.
779 	 *
780 	 * If the extent we found extends past our range, we
781 	 * just split and search again.  It'll get split again
782 	 * the next time though.
783 	 *
784 	 * If the extent we found is inside our range, we clear
785 	 * the desired bit on it.
786 	 */
787 
788 	if (state->start < start) {
789 		prealloc = alloc_extent_state_atomic(prealloc);
790 		BUG_ON(!prealloc);
791 		err = split_state(tree, state, prealloc, start);
792 		if (err)
793 			extent_io_tree_panic(tree, err);
794 
795 		prealloc = NULL;
796 		if (err)
797 			goto out;
798 		if (state->end <= end) {
799 			state = clear_state_bit(tree, state, &bits, wake,
800 						changeset);
801 			goto next;
802 		}
803 		goto search_again;
804 	}
805 	/*
806 	 * | ---- desired range ---- |
807 	 *                        | state |
808 	 * We need to split the extent, and clear the bit
809 	 * on the first half
810 	 */
811 	if (state->start <= end && state->end > end) {
812 		prealloc = alloc_extent_state_atomic(prealloc);
813 		BUG_ON(!prealloc);
814 		err = split_state(tree, state, prealloc, end + 1);
815 		if (err)
816 			extent_io_tree_panic(tree, err);
817 
818 		if (wake)
819 			wake_up(&state->wq);
820 
821 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
822 
823 		prealloc = NULL;
824 		goto out;
825 	}
826 
827 	state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 	if (last_end == (u64)-1)
830 		goto out;
831 	start = last_end + 1;
832 	if (start <= end && state && !need_resched())
833 		goto hit_next;
834 
835 search_again:
836 	if (start > end)
837 		goto out;
838 	spin_unlock(&tree->lock);
839 	if (gfpflags_allow_blocking(mask))
840 		cond_resched();
841 	goto again;
842 
843 out:
844 	spin_unlock(&tree->lock);
845 	if (prealloc)
846 		free_extent_state(prealloc);
847 
848 	return 0;
849 
850 }
851 
852 static void wait_on_state(struct extent_io_tree *tree,
853 			  struct extent_state *state)
854 		__releases(tree->lock)
855 		__acquires(tree->lock)
856 {
857 	DEFINE_WAIT(wait);
858 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 	spin_unlock(&tree->lock);
860 	schedule();
861 	spin_lock(&tree->lock);
862 	finish_wait(&state->wq, &wait);
863 }
864 
865 /*
866  * waits for one or more bits to clear on a range in the state tree.
867  * The range [start, end] is inclusive.
868  * The tree lock is taken by this function
869  */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 			    unsigned long bits)
872 {
873 	struct extent_state *state;
874 	struct rb_node *node;
875 
876 	btrfs_debug_check_extent_io_range(tree, start, end);
877 
878 	spin_lock(&tree->lock);
879 again:
880 	while (1) {
881 		/*
882 		 * this search will find all the extents that end after
883 		 * our range starts
884 		 */
885 		node = tree_search(tree, start);
886 process_node:
887 		if (!node)
888 			break;
889 
890 		state = rb_entry(node, struct extent_state, rb_node);
891 
892 		if (state->start > end)
893 			goto out;
894 
895 		if (state->state & bits) {
896 			start = state->start;
897 			refcount_inc(&state->refs);
898 			wait_on_state(tree, state);
899 			free_extent_state(state);
900 			goto again;
901 		}
902 		start = state->end + 1;
903 
904 		if (start > end)
905 			break;
906 
907 		if (!cond_resched_lock(&tree->lock)) {
908 			node = rb_next(node);
909 			goto process_node;
910 		}
911 	}
912 out:
913 	spin_unlock(&tree->lock);
914 }
915 
916 static void set_state_bits(struct extent_io_tree *tree,
917 			   struct extent_state *state,
918 			   unsigned *bits, struct extent_changeset *changeset)
919 {
920 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 	int ret;
922 
923 	if (tree->private_data && is_data_inode(tree->private_data))
924 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
925 
926 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 		u64 range = state->end - state->start + 1;
928 		tree->dirty_bytes += range;
929 	}
930 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 	BUG_ON(ret < 0);
932 	state->state |= bits_to_set;
933 }
934 
935 static void cache_state_if_flags(struct extent_state *state,
936 				 struct extent_state **cached_ptr,
937 				 unsigned flags)
938 {
939 	if (cached_ptr && !(*cached_ptr)) {
940 		if (!flags || (state->state & flags)) {
941 			*cached_ptr = state;
942 			refcount_inc(&state->refs);
943 		}
944 	}
945 }
946 
947 static void cache_state(struct extent_state *state,
948 			struct extent_state **cached_ptr)
949 {
950 	return cache_state_if_flags(state, cached_ptr,
951 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953 
954 /*
955  * set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The start of the
960  * existing range is returned in failed_start in this case.
961  *
962  * [start, end] is inclusive This takes the tree lock.
963  */
964 
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 		 unsigned bits, unsigned exclusive_bits,
968 		 u64 *failed_start, struct extent_state **cached_state,
969 		 gfp_t mask, struct extent_changeset *changeset)
970 {
971 	struct extent_state *state;
972 	struct extent_state *prealloc = NULL;
973 	struct rb_node *node;
974 	struct rb_node **p;
975 	struct rb_node *parent;
976 	int err = 0;
977 	u64 last_start;
978 	u64 last_end;
979 
980 	btrfs_debug_check_extent_io_range(tree, start, end);
981 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982 
983 again:
984 	if (!prealloc && gfpflags_allow_blocking(mask)) {
985 		/*
986 		 * Don't care for allocation failure here because we might end
987 		 * up not needing the pre-allocated extent state at all, which
988 		 * is the case if we only have in the tree extent states that
989 		 * cover our input range and don't cover too any other range.
990 		 * If we end up needing a new extent state we allocate it later.
991 		 */
992 		prealloc = alloc_extent_state(mask);
993 	}
994 
995 	spin_lock(&tree->lock);
996 	if (cached_state && *cached_state) {
997 		state = *cached_state;
998 		if (state->start <= start && state->end > start &&
999 		    extent_state_in_tree(state)) {
1000 			node = &state->rb_node;
1001 			goto hit_next;
1002 		}
1003 	}
1004 	/*
1005 	 * this search will find all the extents that end after
1006 	 * our range starts.
1007 	 */
1008 	node = tree_search_for_insert(tree, start, &p, &parent);
1009 	if (!node) {
1010 		prealloc = alloc_extent_state_atomic(prealloc);
1011 		BUG_ON(!prealloc);
1012 		err = insert_state(tree, prealloc, start, end,
1013 				   &p, &parent, &bits, changeset);
1014 		if (err)
1015 			extent_io_tree_panic(tree, err);
1016 
1017 		cache_state(prealloc, cached_state);
1018 		prealloc = NULL;
1019 		goto out;
1020 	}
1021 	state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 	last_start = state->start;
1024 	last_end = state->end;
1025 
1026 	/*
1027 	 * | ---- desired range ---- |
1028 	 * | state |
1029 	 *
1030 	 * Just lock what we found and keep going
1031 	 */
1032 	if (state->start == start && state->end <= end) {
1033 		if (state->state & exclusive_bits) {
1034 			*failed_start = state->start;
1035 			err = -EEXIST;
1036 			goto out;
1037 		}
1038 
1039 		set_state_bits(tree, state, &bits, changeset);
1040 		cache_state(state, cached_state);
1041 		merge_state(tree, state);
1042 		if (last_end == (u64)-1)
1043 			goto out;
1044 		start = last_end + 1;
1045 		state = next_state(state);
1046 		if (start < end && state && state->start == start &&
1047 		    !need_resched())
1048 			goto hit_next;
1049 		goto search_again;
1050 	}
1051 
1052 	/*
1053 	 *     | ---- desired range ---- |
1054 	 * | state |
1055 	 *   or
1056 	 * | ------------- state -------------- |
1057 	 *
1058 	 * We need to split the extent we found, and may flip bits on
1059 	 * second half.
1060 	 *
1061 	 * If the extent we found extends past our
1062 	 * range, we just split and search again.  It'll get split
1063 	 * again the next time though.
1064 	 *
1065 	 * If the extent we found is inside our range, we set the
1066 	 * desired bit on it.
1067 	 */
1068 	if (state->start < start) {
1069 		if (state->state & exclusive_bits) {
1070 			*failed_start = start;
1071 			err = -EEXIST;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * If this extent already has all the bits we want set, then
1077 		 * skip it, not necessary to split it or do anything with it.
1078 		 */
1079 		if ((state->state & bits) == bits) {
1080 			start = state->end + 1;
1081 			cache_state(state, cached_state);
1082 			goto search_again;
1083 		}
1084 
1085 		prealloc = alloc_extent_state_atomic(prealloc);
1086 		BUG_ON(!prealloc);
1087 		err = split_state(tree, state, prealloc, start);
1088 		if (err)
1089 			extent_io_tree_panic(tree, err);
1090 
1091 		prealloc = NULL;
1092 		if (err)
1093 			goto out;
1094 		if (state->end <= end) {
1095 			set_state_bits(tree, state, &bits, changeset);
1096 			cache_state(state, cached_state);
1097 			merge_state(tree, state);
1098 			if (last_end == (u64)-1)
1099 				goto out;
1100 			start = last_end + 1;
1101 			state = next_state(state);
1102 			if (start < end && state && state->start == start &&
1103 			    !need_resched())
1104 				goto hit_next;
1105 		}
1106 		goto search_again;
1107 	}
1108 	/*
1109 	 * | ---- desired range ---- |
1110 	 *     | state | or               | state |
1111 	 *
1112 	 * There's a hole, we need to insert something in it and
1113 	 * ignore the extent we found.
1114 	 */
1115 	if (state->start > start) {
1116 		u64 this_end;
1117 		if (end < last_start)
1118 			this_end = end;
1119 		else
1120 			this_end = last_start - 1;
1121 
1122 		prealloc = alloc_extent_state_atomic(prealloc);
1123 		BUG_ON(!prealloc);
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   NULL, NULL, &bits, changeset);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 
1134 		cache_state(prealloc, cached_state);
1135 		prealloc = NULL;
1136 		start = this_end + 1;
1137 		goto search_again;
1138 	}
1139 	/*
1140 	 * | ---- desired range ---- |
1141 	 *                        | state |
1142 	 * We need to split the extent, and set the bit
1143 	 * on the first half
1144 	 */
1145 	if (state->start <= end && state->end > end) {
1146 		if (state->state & exclusive_bits) {
1147 			*failed_start = start;
1148 			err = -EEXIST;
1149 			goto out;
1150 		}
1151 
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		BUG_ON(!prealloc);
1154 		err = split_state(tree, state, prealloc, end + 1);
1155 		if (err)
1156 			extent_io_tree_panic(tree, err);
1157 
1158 		set_state_bits(tree, prealloc, &bits, changeset);
1159 		cache_state(prealloc, cached_state);
1160 		merge_state(tree, prealloc);
1161 		prealloc = NULL;
1162 		goto out;
1163 	}
1164 
1165 search_again:
1166 	if (start > end)
1167 		goto out;
1168 	spin_unlock(&tree->lock);
1169 	if (gfpflags_allow_blocking(mask))
1170 		cond_resched();
1171 	goto again;
1172 
1173 out:
1174 	spin_unlock(&tree->lock);
1175 	if (prealloc)
1176 		free_extent_state(prealloc);
1177 
1178 	return err;
1179 
1180 }
1181 
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 		   unsigned bits, u64 * failed_start,
1184 		   struct extent_state **cached_state, gfp_t mask)
1185 {
1186 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 				cached_state, mask, NULL);
1188 }
1189 
1190 
1191 /**
1192  * convert_extent_bit - convert all bits in a given range from one bit to
1193  * 			another
1194  * @tree:	the io tree to search
1195  * @start:	the start offset in bytes
1196  * @end:	the end offset in bytes (inclusive)
1197  * @bits:	the bits to set in this range
1198  * @clear_bits:	the bits to clear in this range
1199  * @cached_state:	state that we're going to cache
1200  *
1201  * This will go through and set bits for the given range.  If any states exist
1202  * already in this range they are set with the given bit and cleared of the
1203  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1204  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1205  * boundary bits like LOCK.
1206  *
1207  * All allocations are done with GFP_NOFS.
1208  */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 		       unsigned bits, unsigned clear_bits,
1211 		       struct extent_state **cached_state)
1212 {
1213 	struct extent_state *state;
1214 	struct extent_state *prealloc = NULL;
1215 	struct rb_node *node;
1216 	struct rb_node **p;
1217 	struct rb_node *parent;
1218 	int err = 0;
1219 	u64 last_start;
1220 	u64 last_end;
1221 	bool first_iteration = true;
1222 
1223 	btrfs_debug_check_extent_io_range(tree, start, end);
1224 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 				       clear_bits);
1226 
1227 again:
1228 	if (!prealloc) {
1229 		/*
1230 		 * Best effort, don't worry if extent state allocation fails
1231 		 * here for the first iteration. We might have a cached state
1232 		 * that matches exactly the target range, in which case no
1233 		 * extent state allocations are needed. We'll only know this
1234 		 * after locking the tree.
1235 		 */
1236 		prealloc = alloc_extent_state(GFP_NOFS);
1237 		if (!prealloc && !first_iteration)
1238 			return -ENOMEM;
1239 	}
1240 
1241 	spin_lock(&tree->lock);
1242 	if (cached_state && *cached_state) {
1243 		state = *cached_state;
1244 		if (state->start <= start && state->end > start &&
1245 		    extent_state_in_tree(state)) {
1246 			node = &state->rb_node;
1247 			goto hit_next;
1248 		}
1249 	}
1250 
1251 	/*
1252 	 * this search will find all the extents that end after
1253 	 * our range starts.
1254 	 */
1255 	node = tree_search_for_insert(tree, start, &p, &parent);
1256 	if (!node) {
1257 		prealloc = alloc_extent_state_atomic(prealloc);
1258 		if (!prealloc) {
1259 			err = -ENOMEM;
1260 			goto out;
1261 		}
1262 		err = insert_state(tree, prealloc, start, end,
1263 				   &p, &parent, &bits, NULL);
1264 		if (err)
1265 			extent_io_tree_panic(tree, err);
1266 		cache_state(prealloc, cached_state);
1267 		prealloc = NULL;
1268 		goto out;
1269 	}
1270 	state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272 	last_start = state->start;
1273 	last_end = state->end;
1274 
1275 	/*
1276 	 * | ---- desired range ---- |
1277 	 * | state |
1278 	 *
1279 	 * Just lock what we found and keep going
1280 	 */
1281 	if (state->start == start && state->end <= end) {
1282 		set_state_bits(tree, state, &bits, NULL);
1283 		cache_state(state, cached_state);
1284 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 		if (last_end == (u64)-1)
1286 			goto out;
1287 		start = last_end + 1;
1288 		if (start < end && state && state->start == start &&
1289 		    !need_resched())
1290 			goto hit_next;
1291 		goto search_again;
1292 	}
1293 
1294 	/*
1295 	 *     | ---- desired range ---- |
1296 	 * | state |
1297 	 *   or
1298 	 * | ------------- state -------------- |
1299 	 *
1300 	 * We need to split the extent we found, and may flip bits on
1301 	 * second half.
1302 	 *
1303 	 * If the extent we found extends past our
1304 	 * range, we just split and search again.  It'll get split
1305 	 * again the next time though.
1306 	 *
1307 	 * If the extent we found is inside our range, we set the
1308 	 * desired bit on it.
1309 	 */
1310 	if (state->start < start) {
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 		err = split_state(tree, state, prealloc, start);
1317 		if (err)
1318 			extent_io_tree_panic(tree, err);
1319 		prealloc = NULL;
1320 		if (err)
1321 			goto out;
1322 		if (state->end <= end) {
1323 			set_state_bits(tree, state, &bits, NULL);
1324 			cache_state(state, cached_state);
1325 			state = clear_state_bit(tree, state, &clear_bits, 0,
1326 						NULL);
1327 			if (last_end == (u64)-1)
1328 				goto out;
1329 			start = last_end + 1;
1330 			if (start < end && state && state->start == start &&
1331 			    !need_resched())
1332 				goto hit_next;
1333 		}
1334 		goto search_again;
1335 	}
1336 	/*
1337 	 * | ---- desired range ---- |
1338 	 *     | state | or               | state |
1339 	 *
1340 	 * There's a hole, we need to insert something in it and
1341 	 * ignore the extent we found.
1342 	 */
1343 	if (state->start > start) {
1344 		u64 this_end;
1345 		if (end < last_start)
1346 			this_end = end;
1347 		else
1348 			this_end = last_start - 1;
1349 
1350 		prealloc = alloc_extent_state_atomic(prealloc);
1351 		if (!prealloc) {
1352 			err = -ENOMEM;
1353 			goto out;
1354 		}
1355 
1356 		/*
1357 		 * Avoid to free 'prealloc' if it can be merged with
1358 		 * the later extent.
1359 		 */
1360 		err = insert_state(tree, prealloc, start, this_end,
1361 				   NULL, NULL, &bits, NULL);
1362 		if (err)
1363 			extent_io_tree_panic(tree, err);
1364 		cache_state(prealloc, cached_state);
1365 		prealloc = NULL;
1366 		start = this_end + 1;
1367 		goto search_again;
1368 	}
1369 	/*
1370 	 * | ---- desired range ---- |
1371 	 *                        | state |
1372 	 * We need to split the extent, and set the bit
1373 	 * on the first half
1374 	 */
1375 	if (state->start <= end && state->end > end) {
1376 		prealloc = alloc_extent_state_atomic(prealloc);
1377 		if (!prealloc) {
1378 			err = -ENOMEM;
1379 			goto out;
1380 		}
1381 
1382 		err = split_state(tree, state, prealloc, end + 1);
1383 		if (err)
1384 			extent_io_tree_panic(tree, err);
1385 
1386 		set_state_bits(tree, prealloc, &bits, NULL);
1387 		cache_state(prealloc, cached_state);
1388 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 		prealloc = NULL;
1390 		goto out;
1391 	}
1392 
1393 search_again:
1394 	if (start > end)
1395 		goto out;
1396 	spin_unlock(&tree->lock);
1397 	cond_resched();
1398 	first_iteration = false;
1399 	goto again;
1400 
1401 out:
1402 	spin_unlock(&tree->lock);
1403 	if (prealloc)
1404 		free_extent_state(prealloc);
1405 
1406 	return err;
1407 }
1408 
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 			   unsigned bits, struct extent_changeset *changeset)
1412 {
1413 	/*
1414 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 	 * either fail with -EEXIST or changeset will record the whole
1417 	 * range.
1418 	 */
1419 	BUG_ON(bits & EXTENT_LOCKED);
1420 
1421 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 				changeset);
1423 }
1424 
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 			   unsigned bits)
1427 {
1428 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 				GFP_NOWAIT, NULL);
1430 }
1431 
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 		     unsigned bits, int wake, int delete,
1434 		     struct extent_state **cached)
1435 {
1436 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 				  cached, GFP_NOFS, NULL);
1438 }
1439 
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 		unsigned bits, struct extent_changeset *changeset)
1442 {
1443 	/*
1444 	 * Don't support EXTENT_LOCKED case, same reason as
1445 	 * set_record_extent_bits().
1446 	 */
1447 	BUG_ON(bits & EXTENT_LOCKED);
1448 
1449 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 				  changeset);
1451 }
1452 
1453 /*
1454  * either insert or lock state struct between start and end use mask to tell
1455  * us if waiting is desired.
1456  */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 		     struct extent_state **cached_state)
1459 {
1460 	int err;
1461 	u64 failed_start;
1462 
1463 	while (1) {
1464 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 				       EXTENT_LOCKED, &failed_start,
1466 				       cached_state, GFP_NOFS, NULL);
1467 		if (err == -EEXIST) {
1468 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 			start = failed_start;
1470 		} else
1471 			break;
1472 		WARN_ON(start > end);
1473 	}
1474 	return err;
1475 }
1476 
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 	int err;
1480 	u64 failed_start;
1481 
1482 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 			       &failed_start, NULL, GFP_NOFS, NULL);
1484 	if (err == -EEXIST) {
1485 		if (failed_start > start)
1486 			clear_extent_bit(tree, start, failed_start - 1,
1487 					 EXTENT_LOCKED, 1, 0, NULL);
1488 		return 0;
1489 	}
1490 	return 1;
1491 }
1492 
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495 	unsigned long index = start >> PAGE_SHIFT;
1496 	unsigned long end_index = end >> PAGE_SHIFT;
1497 	struct page *page;
1498 
1499 	while (index <= end_index) {
1500 		page = find_get_page(inode->i_mapping, index);
1501 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 		clear_page_dirty_for_io(page);
1503 		put_page(page);
1504 		index++;
1505 	}
1506 }
1507 
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 	unsigned long index = start >> PAGE_SHIFT;
1511 	unsigned long end_index = end >> PAGE_SHIFT;
1512 	struct page *page;
1513 
1514 	while (index <= end_index) {
1515 		page = find_get_page(inode->i_mapping, index);
1516 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 		__set_page_dirty_nobuffers(page);
1518 		account_page_redirty(page);
1519 		put_page(page);
1520 		index++;
1521 	}
1522 }
1523 
1524 /* find the first state struct with 'bits' set after 'start', and
1525  * return it.  tree->lock must be held.  NULL will returned if
1526  * nothing was found after 'start'
1527  */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530 			    u64 start, unsigned bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * find the first offset in the io tree with 'bits' set. zero is
1558  * returned if we find something, and *start_ret and *end_ret are
1559  * set to reflect the state struct that was found.
1560  *
1561  * If nothing was found, 1 is returned. If found something, return 0.
1562  */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1565 			  struct extent_state **cached_state)
1566 {
1567 	struct extent_state *state;
1568 	int ret = 1;
1569 
1570 	spin_lock(&tree->lock);
1571 	if (cached_state && *cached_state) {
1572 		state = *cached_state;
1573 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 			while ((state = next_state(state)) != NULL) {
1575 				if (state->state & bits)
1576 					goto got_it;
1577 			}
1578 			free_extent_state(*cached_state);
1579 			*cached_state = NULL;
1580 			goto out;
1581 		}
1582 		free_extent_state(*cached_state);
1583 		*cached_state = NULL;
1584 	}
1585 
1586 	state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588 	if (state) {
1589 		cache_state_if_flags(state, cached_state, 0);
1590 		*start_ret = state->start;
1591 		*end_ret = state->end;
1592 		ret = 0;
1593 	}
1594 out:
1595 	spin_unlock(&tree->lock);
1596 	return ret;
1597 }
1598 
1599 /**
1600  * find_contiguous_extent_bit: find a contiguous area of bits
1601  * @tree - io tree to check
1602  * @start - offset to start the search from
1603  * @start_ret - the first offset we found with the bits set
1604  * @end_ret - the final contiguous range of the bits that were set
1605  * @bits - bits to look for
1606  *
1607  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608  * to set bits appropriately, and then merge them again.  During this time it
1609  * will drop the tree->lock, so use this helper if you want to find the actual
1610  * contiguous area for given bits.  We will search to the first bit we find, and
1611  * then walk down the tree until we find a non-contiguous area.  The area
1612  * returned will be the full contiguous area with the bits set.
1613  */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 			       u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617 	struct extent_state *state;
1618 	int ret = 1;
1619 
1620 	spin_lock(&tree->lock);
1621 	state = find_first_extent_bit_state(tree, start, bits);
1622 	if (state) {
1623 		*start_ret = state->start;
1624 		*end_ret = state->end;
1625 		while ((state = next_state(state)) != NULL) {
1626 			if (state->start > (*end_ret + 1))
1627 				break;
1628 			*end_ret = state->end;
1629 		}
1630 		ret = 0;
1631 	}
1632 	spin_unlock(&tree->lock);
1633 	return ret;
1634 }
1635 
1636 /**
1637  * find_first_clear_extent_bit - find the first range that has @bits not set.
1638  * This range could start before @start.
1639  *
1640  * @tree - the tree to search
1641  * @start - the offset at/after which the found extent should start
1642  * @start_ret - records the beginning of the range
1643  * @end_ret - records the end of the range (inclusive)
1644  * @bits - the set of bits which must be unset
1645  *
1646  * Since unallocated range is also considered one which doesn't have the bits
1647  * set it's possible that @end_ret contains -1, this happens in case the range
1648  * spans (last_range_end, end of device]. In this case it's up to the caller to
1649  * trim @end_ret to the appropriate size.
1650  */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654 	struct extent_state *state;
1655 	struct rb_node *node, *prev = NULL, *next;
1656 
1657 	spin_lock(&tree->lock);
1658 
1659 	/* Find first extent with bits cleared */
1660 	while (1) {
1661 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 		if (!node && !next && !prev) {
1663 			/*
1664 			 * Tree is completely empty, send full range and let
1665 			 * caller deal with it
1666 			 */
1667 			*start_ret = 0;
1668 			*end_ret = -1;
1669 			goto out;
1670 		} else if (!node && !next) {
1671 			/*
1672 			 * We are past the last allocated chunk, set start at
1673 			 * the end of the last extent.
1674 			 */
1675 			state = rb_entry(prev, struct extent_state, rb_node);
1676 			*start_ret = state->end + 1;
1677 			*end_ret = -1;
1678 			goto out;
1679 		} else if (!node) {
1680 			node = next;
1681 		}
1682 		/*
1683 		 * At this point 'node' either contains 'start' or start is
1684 		 * before 'node'
1685 		 */
1686 		state = rb_entry(node, struct extent_state, rb_node);
1687 
1688 		if (in_range(start, state->start, state->end - state->start + 1)) {
1689 			if (state->state & bits) {
1690 				/*
1691 				 * |--range with bits sets--|
1692 				 *    |
1693 				 *    start
1694 				 */
1695 				start = state->end + 1;
1696 			} else {
1697 				/*
1698 				 * 'start' falls within a range that doesn't
1699 				 * have the bits set, so take its start as
1700 				 * the beginning of the desired range
1701 				 *
1702 				 * |--range with bits cleared----|
1703 				 *      |
1704 				 *      start
1705 				 */
1706 				*start_ret = state->start;
1707 				break;
1708 			}
1709 		} else {
1710 			/*
1711 			 * |---prev range---|---hole/unset---|---node range---|
1712 			 *                          |
1713 			 *                        start
1714 			 *
1715 			 *                        or
1716 			 *
1717 			 * |---hole/unset--||--first node--|
1718 			 * 0   |
1719 			 *    start
1720 			 */
1721 			if (prev) {
1722 				state = rb_entry(prev, struct extent_state,
1723 						 rb_node);
1724 				*start_ret = state->end + 1;
1725 			} else {
1726 				*start_ret = 0;
1727 			}
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Find the longest stretch from start until an entry which has the
1734 	 * bits set
1735 	 */
1736 	while (1) {
1737 		state = rb_entry(node, struct extent_state, rb_node);
1738 		if (state->end >= start && !(state->state & bits)) {
1739 			*end_ret = state->end;
1740 		} else {
1741 			*end_ret = state->start - 1;
1742 			break;
1743 		}
1744 
1745 		node = rb_next(node);
1746 		if (!node)
1747 			break;
1748 	}
1749 out:
1750 	spin_unlock(&tree->lock);
1751 }
1752 
1753 /*
1754  * find a contiguous range of bytes in the file marked as delalloc, not
1755  * more than 'max_bytes'.  start and end are used to return the range,
1756  *
1757  * true is returned if we find something, false if nothing was in the tree
1758  */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 			       u64 *end, u64 max_bytes,
1761 			       struct extent_state **cached_state)
1762 {
1763 	struct rb_node *node;
1764 	struct extent_state *state;
1765 	u64 cur_start = *start;
1766 	bool found = false;
1767 	u64 total_bytes = 0;
1768 
1769 	spin_lock(&tree->lock);
1770 
1771 	/*
1772 	 * this search will find all the extents that end after
1773 	 * our range starts.
1774 	 */
1775 	node = tree_search(tree, cur_start);
1776 	if (!node) {
1777 		*end = (u64)-1;
1778 		goto out;
1779 	}
1780 
1781 	while (1) {
1782 		state = rb_entry(node, struct extent_state, rb_node);
1783 		if (found && (state->start != cur_start ||
1784 			      (state->state & EXTENT_BOUNDARY))) {
1785 			goto out;
1786 		}
1787 		if (!(state->state & EXTENT_DELALLOC)) {
1788 			if (!found)
1789 				*end = state->end;
1790 			goto out;
1791 		}
1792 		if (!found) {
1793 			*start = state->start;
1794 			*cached_state = state;
1795 			refcount_inc(&state->refs);
1796 		}
1797 		found = true;
1798 		*end = state->end;
1799 		cur_start = state->end + 1;
1800 		node = rb_next(node);
1801 		total_bytes += state->end - state->start + 1;
1802 		if (total_bytes >= max_bytes)
1803 			break;
1804 		if (!node)
1805 			break;
1806 	}
1807 out:
1808 	spin_unlock(&tree->lock);
1809 	return found;
1810 }
1811 
1812 static int __process_pages_contig(struct address_space *mapping,
1813 				  struct page *locked_page,
1814 				  pgoff_t start_index, pgoff_t end_index,
1815 				  unsigned long page_ops, pgoff_t *index_ret);
1816 
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818 					   struct page *locked_page,
1819 					   u64 start, u64 end)
1820 {
1821 	unsigned long index = start >> PAGE_SHIFT;
1822 	unsigned long end_index = end >> PAGE_SHIFT;
1823 
1824 	ASSERT(locked_page);
1825 	if (index == locked_page->index && end_index == index)
1826 		return;
1827 
1828 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 			       PAGE_UNLOCK, NULL);
1830 }
1831 
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833 					struct page *locked_page,
1834 					u64 delalloc_start,
1835 					u64 delalloc_end)
1836 {
1837 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 	unsigned long index_ret = index;
1839 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 	int ret;
1841 
1842 	ASSERT(locked_page);
1843 	if (index == locked_page->index && index == end_index)
1844 		return 0;
1845 
1846 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 				     end_index, PAGE_LOCK, &index_ret);
1848 	if (ret == -EAGAIN)
1849 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 				      (u64)index_ret << PAGE_SHIFT);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856  * more than @max_bytes.  @Start and @end are used to return the range,
1857  *
1858  * Return: true if we find something
1859  *         false if nothing was in the tree
1860  */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 				    struct page *locked_page, u64 *start,
1864 				    u64 *end)
1865 {
1866 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 	u64 delalloc_start;
1869 	u64 delalloc_end;
1870 	bool found;
1871 	struct extent_state *cached_state = NULL;
1872 	int ret;
1873 	int loops = 0;
1874 
1875 again:
1876 	/* step one, find a bunch of delalloc bytes starting at start */
1877 	delalloc_start = *start;
1878 	delalloc_end = 0;
1879 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 					  max_bytes, &cached_state);
1881 	if (!found || delalloc_end <= *start) {
1882 		*start = delalloc_start;
1883 		*end = delalloc_end;
1884 		free_extent_state(cached_state);
1885 		return false;
1886 	}
1887 
1888 	/*
1889 	 * start comes from the offset of locked_page.  We have to lock
1890 	 * pages in order, so we can't process delalloc bytes before
1891 	 * locked_page
1892 	 */
1893 	if (delalloc_start < *start)
1894 		delalloc_start = *start;
1895 
1896 	/*
1897 	 * make sure to limit the number of pages we try to lock down
1898 	 */
1899 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 		delalloc_end = delalloc_start + max_bytes - 1;
1901 
1902 	/* step two, lock all the pages after the page that has start */
1903 	ret = lock_delalloc_pages(inode, locked_page,
1904 				  delalloc_start, delalloc_end);
1905 	ASSERT(!ret || ret == -EAGAIN);
1906 	if (ret == -EAGAIN) {
1907 		/* some of the pages are gone, lets avoid looping by
1908 		 * shortening the size of the delalloc range we're searching
1909 		 */
1910 		free_extent_state(cached_state);
1911 		cached_state = NULL;
1912 		if (!loops) {
1913 			max_bytes = PAGE_SIZE;
1914 			loops = 1;
1915 			goto again;
1916 		} else {
1917 			found = false;
1918 			goto out_failed;
1919 		}
1920 	}
1921 
1922 	/* step three, lock the state bits for the whole range */
1923 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924 
1925 	/* then test to make sure it is all still delalloc */
1926 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 			     EXTENT_DELALLOC, 1, cached_state);
1928 	if (!ret) {
1929 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 				     &cached_state);
1931 		__unlock_for_delalloc(inode, locked_page,
1932 			      delalloc_start, delalloc_end);
1933 		cond_resched();
1934 		goto again;
1935 	}
1936 	free_extent_state(cached_state);
1937 	*start = delalloc_start;
1938 	*end = delalloc_end;
1939 out_failed:
1940 	return found;
1941 }
1942 
1943 static int __process_pages_contig(struct address_space *mapping,
1944 				  struct page *locked_page,
1945 				  pgoff_t start_index, pgoff_t end_index,
1946 				  unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948 	unsigned long nr_pages = end_index - start_index + 1;
1949 	unsigned long pages_locked = 0;
1950 	pgoff_t index = start_index;
1951 	struct page *pages[16];
1952 	unsigned ret;
1953 	int err = 0;
1954 	int i;
1955 
1956 	if (page_ops & PAGE_LOCK) {
1957 		ASSERT(page_ops == PAGE_LOCK);
1958 		ASSERT(index_ret && *index_ret == start_index);
1959 	}
1960 
1961 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 		mapping_set_error(mapping, -EIO);
1963 
1964 	while (nr_pages > 0) {
1965 		ret = find_get_pages_contig(mapping, index,
1966 				     min_t(unsigned long,
1967 				     nr_pages, ARRAY_SIZE(pages)), pages);
1968 		if (ret == 0) {
1969 			/*
1970 			 * Only if we're going to lock these pages,
1971 			 * can we find nothing at @index.
1972 			 */
1973 			ASSERT(page_ops & PAGE_LOCK);
1974 			err = -EAGAIN;
1975 			goto out;
1976 		}
1977 
1978 		for (i = 0; i < ret; i++) {
1979 			if (page_ops & PAGE_SET_PRIVATE2)
1980 				SetPagePrivate2(pages[i]);
1981 
1982 			if (locked_page && pages[i] == locked_page) {
1983 				put_page(pages[i]);
1984 				pages_locked++;
1985 				continue;
1986 			}
1987 			if (page_ops & PAGE_CLEAR_DIRTY)
1988 				clear_page_dirty_for_io(pages[i]);
1989 			if (page_ops & PAGE_SET_WRITEBACK)
1990 				set_page_writeback(pages[i]);
1991 			if (page_ops & PAGE_SET_ERROR)
1992 				SetPageError(pages[i]);
1993 			if (page_ops & PAGE_END_WRITEBACK)
1994 				end_page_writeback(pages[i]);
1995 			if (page_ops & PAGE_UNLOCK)
1996 				unlock_page(pages[i]);
1997 			if (page_ops & PAGE_LOCK) {
1998 				lock_page(pages[i]);
1999 				if (!PageDirty(pages[i]) ||
2000 				    pages[i]->mapping != mapping) {
2001 					unlock_page(pages[i]);
2002 					for (; i < ret; i++)
2003 						put_page(pages[i]);
2004 					err = -EAGAIN;
2005 					goto out;
2006 				}
2007 			}
2008 			put_page(pages[i]);
2009 			pages_locked++;
2010 		}
2011 		nr_pages -= ret;
2012 		index += ret;
2013 		cond_resched();
2014 	}
2015 out:
2016 	if (err && index_ret)
2017 		*index_ret = start_index + pages_locked - 1;
2018 	return err;
2019 }
2020 
2021 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2022 				  struct page *locked_page,
2023 				  unsigned clear_bits,
2024 				  unsigned long page_ops)
2025 {
2026 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2027 
2028 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2029 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 			       page_ops, NULL);
2031 }
2032 
2033 /*
2034  * count the number of bytes in the tree that have a given bit(s)
2035  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2036  * cached.  The total number found is returned.
2037  */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039 		     u64 *start, u64 search_end, u64 max_bytes,
2040 		     unsigned bits, int contig)
2041 {
2042 	struct rb_node *node;
2043 	struct extent_state *state;
2044 	u64 cur_start = *start;
2045 	u64 total_bytes = 0;
2046 	u64 last = 0;
2047 	int found = 0;
2048 
2049 	if (WARN_ON(search_end <= cur_start))
2050 		return 0;
2051 
2052 	spin_lock(&tree->lock);
2053 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 		total_bytes = tree->dirty_bytes;
2055 		goto out;
2056 	}
2057 	/*
2058 	 * this search will find all the extents that end after
2059 	 * our range starts.
2060 	 */
2061 	node = tree_search(tree, cur_start);
2062 	if (!node)
2063 		goto out;
2064 
2065 	while (1) {
2066 		state = rb_entry(node, struct extent_state, rb_node);
2067 		if (state->start > search_end)
2068 			break;
2069 		if (contig && found && state->start > last + 1)
2070 			break;
2071 		if (state->end >= cur_start && (state->state & bits) == bits) {
2072 			total_bytes += min(search_end, state->end) + 1 -
2073 				       max(cur_start, state->start);
2074 			if (total_bytes >= max_bytes)
2075 				break;
2076 			if (!found) {
2077 				*start = max(cur_start, state->start);
2078 				found = 1;
2079 			}
2080 			last = state->end;
2081 		} else if (contig && found) {
2082 			break;
2083 		}
2084 		node = rb_next(node);
2085 		if (!node)
2086 			break;
2087 	}
2088 out:
2089 	spin_unlock(&tree->lock);
2090 	return total_bytes;
2091 }
2092 
2093 /*
2094  * set the private field for a given byte offset in the tree.  If there isn't
2095  * an extent_state there already, this does nothing.
2096  */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 		      struct io_failure_record *failrec)
2099 {
2100 	struct rb_node *node;
2101 	struct extent_state *state;
2102 	int ret = 0;
2103 
2104 	spin_lock(&tree->lock);
2105 	/*
2106 	 * this search will find all the extents that end after
2107 	 * our range starts.
2108 	 */
2109 	node = tree_search(tree, start);
2110 	if (!node) {
2111 		ret = -ENOENT;
2112 		goto out;
2113 	}
2114 	state = rb_entry(node, struct extent_state, rb_node);
2115 	if (state->start != start) {
2116 		ret = -ENOENT;
2117 		goto out;
2118 	}
2119 	state->failrec = failrec;
2120 out:
2121 	spin_unlock(&tree->lock);
2122 	return ret;
2123 }
2124 
2125 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2126 {
2127 	struct rb_node *node;
2128 	struct extent_state *state;
2129 	struct io_failure_record *failrec;
2130 
2131 	spin_lock(&tree->lock);
2132 	/*
2133 	 * this search will find all the extents that end after
2134 	 * our range starts.
2135 	 */
2136 	node = tree_search(tree, start);
2137 	if (!node) {
2138 		failrec = ERR_PTR(-ENOENT);
2139 		goto out;
2140 	}
2141 	state = rb_entry(node, struct extent_state, rb_node);
2142 	if (state->start != start) {
2143 		failrec = ERR_PTR(-ENOENT);
2144 		goto out;
2145 	}
2146 
2147 	failrec = state->failrec;
2148 out:
2149 	spin_unlock(&tree->lock);
2150 	return failrec;
2151 }
2152 
2153 /*
2154  * searches a range in the state tree for a given mask.
2155  * If 'filled' == 1, this returns 1 only if every extent in the tree
2156  * has the bits set.  Otherwise, 1 is returned if any bit in the
2157  * range is found set.
2158  */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 		   unsigned bits, int filled, struct extent_state *cached)
2161 {
2162 	struct extent_state *state = NULL;
2163 	struct rb_node *node;
2164 	int bitset = 0;
2165 
2166 	spin_lock(&tree->lock);
2167 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 	    cached->end > start)
2169 		node = &cached->rb_node;
2170 	else
2171 		node = tree_search(tree, start);
2172 	while (node && start <= end) {
2173 		state = rb_entry(node, struct extent_state, rb_node);
2174 
2175 		if (filled && state->start > start) {
2176 			bitset = 0;
2177 			break;
2178 		}
2179 
2180 		if (state->start > end)
2181 			break;
2182 
2183 		if (state->state & bits) {
2184 			bitset = 1;
2185 			if (!filled)
2186 				break;
2187 		} else if (filled) {
2188 			bitset = 0;
2189 			break;
2190 		}
2191 
2192 		if (state->end == (u64)-1)
2193 			break;
2194 
2195 		start = state->end + 1;
2196 		if (start > end)
2197 			break;
2198 		node = rb_next(node);
2199 		if (!node) {
2200 			if (filled)
2201 				bitset = 0;
2202 			break;
2203 		}
2204 	}
2205 	spin_unlock(&tree->lock);
2206 	return bitset;
2207 }
2208 
2209 /*
2210  * helper function to set a given page up to date if all the
2211  * extents in the tree for that page are up to date
2212  */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215 	u64 start = page_offset(page);
2216 	u64 end = start + PAGE_SIZE - 1;
2217 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 		SetPageUptodate(page);
2219 }
2220 
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222 		    struct extent_io_tree *io_tree,
2223 		    struct io_failure_record *rec)
2224 {
2225 	int ret;
2226 	int err = 0;
2227 
2228 	set_state_failrec(failure_tree, rec->start, NULL);
2229 	ret = clear_extent_bits(failure_tree, rec->start,
2230 				rec->start + rec->len - 1,
2231 				EXTENT_LOCKED | EXTENT_DIRTY);
2232 	if (ret)
2233 		err = ret;
2234 
2235 	ret = clear_extent_bits(io_tree, rec->start,
2236 				rec->start + rec->len - 1,
2237 				EXTENT_DAMAGED);
2238 	if (ret && !err)
2239 		err = ret;
2240 
2241 	kfree(rec);
2242 	return err;
2243 }
2244 
2245 /*
2246  * this bypasses the standard btrfs submit functions deliberately, as
2247  * the standard behavior is to write all copies in a raid setup. here we only
2248  * want to write the one bad copy. so we do the mapping for ourselves and issue
2249  * submit_bio directly.
2250  * to avoid any synchronization issues, wait for the data after writing, which
2251  * actually prevents the read that triggered the error from finishing.
2252  * currently, there can be no more than two copies of every data bit. thus,
2253  * exactly one rewrite is required.
2254  */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 		      u64 length, u64 logical, struct page *page,
2257 		      unsigned int pg_offset, int mirror_num)
2258 {
2259 	struct bio *bio;
2260 	struct btrfs_device *dev;
2261 	u64 map_length = 0;
2262 	u64 sector;
2263 	struct btrfs_bio *bbio = NULL;
2264 	int ret;
2265 
2266 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 	BUG_ON(!mirror_num);
2268 
2269 	bio = btrfs_io_bio_alloc(1);
2270 	bio->bi_iter.bi_size = 0;
2271 	map_length = length;
2272 
2273 	/*
2274 	 * Avoid races with device replace and make sure our bbio has devices
2275 	 * associated to its stripes that don't go away while we are doing the
2276 	 * read repair operation.
2277 	 */
2278 	btrfs_bio_counter_inc_blocked(fs_info);
2279 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 		/*
2281 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 		 * to update all raid stripes, but here we just want to correct
2283 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 		 * stripe's dev and sector.
2285 		 */
2286 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 				      &map_length, &bbio, 0);
2288 		if (ret) {
2289 			btrfs_bio_counter_dec(fs_info);
2290 			bio_put(bio);
2291 			return -EIO;
2292 		}
2293 		ASSERT(bbio->mirror_num == 1);
2294 	} else {
2295 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 				      &map_length, &bbio, mirror_num);
2297 		if (ret) {
2298 			btrfs_bio_counter_dec(fs_info);
2299 			bio_put(bio);
2300 			return -EIO;
2301 		}
2302 		BUG_ON(mirror_num != bbio->mirror_num);
2303 	}
2304 
2305 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 	bio->bi_iter.bi_sector = sector;
2307 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 	btrfs_put_bbio(bbio);
2309 	if (!dev || !dev->bdev ||
2310 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 		btrfs_bio_counter_dec(fs_info);
2312 		bio_put(bio);
2313 		return -EIO;
2314 	}
2315 	bio_set_dev(bio, dev->bdev);
2316 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 	bio_add_page(bio, page, length, pg_offset);
2318 
2319 	if (btrfsic_submit_bio_wait(bio)) {
2320 		/* try to remap that extent elsewhere? */
2321 		btrfs_bio_counter_dec(fs_info);
2322 		bio_put(bio);
2323 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 		return -EIO;
2325 	}
2326 
2327 	btrfs_info_rl_in_rcu(fs_info,
2328 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 				  ino, start,
2330 				  rcu_str_deref(dev->name), sector);
2331 	btrfs_bio_counter_dec(fs_info);
2332 	bio_put(bio);
2333 	return 0;
2334 }
2335 
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338 	struct btrfs_fs_info *fs_info = eb->fs_info;
2339 	u64 start = eb->start;
2340 	int i, num_pages = num_extent_pages(eb);
2341 	int ret = 0;
2342 
2343 	if (sb_rdonly(fs_info->sb))
2344 		return -EROFS;
2345 
2346 	for (i = 0; i < num_pages; i++) {
2347 		struct page *p = eb->pages[i];
2348 
2349 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 					start - page_offset(p), mirror_num);
2351 		if (ret)
2352 			break;
2353 		start += PAGE_SIZE;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 /*
2360  * each time an IO finishes, we do a fast check in the IO failure tree
2361  * to see if we need to process or clean up an io_failure_record
2362  */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 		     struct extent_io_tree *failure_tree,
2365 		     struct extent_io_tree *io_tree, u64 start,
2366 		     struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368 	u64 private;
2369 	struct io_failure_record *failrec;
2370 	struct extent_state *state;
2371 	int num_copies;
2372 	int ret;
2373 
2374 	private = 0;
2375 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 			       EXTENT_DIRTY, 0);
2377 	if (!ret)
2378 		return 0;
2379 
2380 	failrec = get_state_failrec(failure_tree, start);
2381 	if (IS_ERR(failrec))
2382 		return 0;
2383 
2384 	BUG_ON(!failrec->this_mirror);
2385 
2386 	if (failrec->in_validation) {
2387 		/* there was no real error, just free the record */
2388 		btrfs_debug(fs_info,
2389 			"clean_io_failure: freeing dummy error at %llu",
2390 			failrec->start);
2391 		goto out;
2392 	}
2393 	if (sb_rdonly(fs_info->sb))
2394 		goto out;
2395 
2396 	spin_lock(&io_tree->lock);
2397 	state = find_first_extent_bit_state(io_tree,
2398 					    failrec->start,
2399 					    EXTENT_LOCKED);
2400 	spin_unlock(&io_tree->lock);
2401 
2402 	if (state && state->start <= failrec->start &&
2403 	    state->end >= failrec->start + failrec->len - 1) {
2404 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 					      failrec->len);
2406 		if (num_copies > 1)  {
2407 			repair_io_failure(fs_info, ino, start, failrec->len,
2408 					  failrec->logical, page, pg_offset,
2409 					  failrec->failed_mirror);
2410 		}
2411 	}
2412 
2413 out:
2414 	free_io_failure(failure_tree, io_tree, failrec);
2415 
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Can be called when
2421  * - hold extent lock
2422  * - under ordered extent
2423  * - the inode is freeing
2424  */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 	struct io_failure_record *failrec;
2429 	struct extent_state *state, *next;
2430 
2431 	if (RB_EMPTY_ROOT(&failure_tree->state))
2432 		return;
2433 
2434 	spin_lock(&failure_tree->lock);
2435 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 	while (state) {
2437 		if (state->start > end)
2438 			break;
2439 
2440 		ASSERT(state->end <= end);
2441 
2442 		next = next_state(state);
2443 
2444 		failrec = state->failrec;
2445 		free_extent_state(state);
2446 		kfree(failrec);
2447 
2448 		state = next;
2449 	}
2450 	spin_unlock(&failure_tree->lock);
2451 }
2452 
2453 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454 							     u64 start, u64 end)
2455 {
2456 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 	struct io_failure_record *failrec;
2458 	struct extent_map *em;
2459 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 	int ret;
2463 	u64 logical;
2464 
2465 	failrec = get_state_failrec(failure_tree, start);
2466 	if (!IS_ERR(failrec)) {
2467 		btrfs_debug(fs_info,
2468 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469 			failrec->logical, failrec->start, failrec->len,
2470 			failrec->in_validation);
2471 		/*
2472 		 * when data can be on disk more than twice, add to failrec here
2473 		 * (e.g. with a list for failed_mirror) to make
2474 		 * clean_io_failure() clean all those errors at once.
2475 		 */
2476 
2477 		return failrec;
2478 	}
2479 
2480 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481 	if (!failrec)
2482 		return ERR_PTR(-ENOMEM);
2483 
2484 	failrec->start = start;
2485 	failrec->len = end - start + 1;
2486 	failrec->this_mirror = 0;
2487 	failrec->bio_flags = 0;
2488 	failrec->in_validation = 0;
2489 
2490 	read_lock(&em_tree->lock);
2491 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2492 	if (!em) {
2493 		read_unlock(&em_tree->lock);
2494 		kfree(failrec);
2495 		return ERR_PTR(-EIO);
2496 	}
2497 
2498 	if (em->start > start || em->start + em->len <= start) {
2499 		free_extent_map(em);
2500 		em = NULL;
2501 	}
2502 	read_unlock(&em_tree->lock);
2503 	if (!em) {
2504 		kfree(failrec);
2505 		return ERR_PTR(-EIO);
2506 	}
2507 
2508 	logical = start - em->start;
2509 	logical = em->block_start + logical;
2510 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511 		logical = em->block_start;
2512 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514 	}
2515 
2516 	btrfs_debug(fs_info,
2517 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518 		    logical, start, failrec->len);
2519 
2520 	failrec->logical = logical;
2521 	free_extent_map(em);
2522 
2523 	/* Set the bits in the private failure tree */
2524 	ret = set_extent_bits(failure_tree, start, end,
2525 			      EXTENT_LOCKED | EXTENT_DIRTY);
2526 	if (ret >= 0) {
2527 		ret = set_state_failrec(failure_tree, start, failrec);
2528 		/* Set the bits in the inode's tree */
2529 		ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530 	} else if (ret < 0) {
2531 		kfree(failrec);
2532 		return ERR_PTR(ret);
2533 	}
2534 
2535 	return failrec;
2536 }
2537 
2538 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539 				   struct io_failure_record *failrec,
2540 				   int failed_mirror)
2541 {
2542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2543 	int num_copies;
2544 
2545 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2546 	if (num_copies == 1) {
2547 		/*
2548 		 * we only have a single copy of the data, so don't bother with
2549 		 * all the retry and error correction code that follows. no
2550 		 * matter what the error is, it is very likely to persist.
2551 		 */
2552 		btrfs_debug(fs_info,
2553 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554 			num_copies, failrec->this_mirror, failed_mirror);
2555 		return false;
2556 	}
2557 
2558 	/*
2559 	 * there are two premises:
2560 	 *	a) deliver good data to the caller
2561 	 *	b) correct the bad sectors on disk
2562 	 */
2563 	if (needs_validation) {
2564 		/*
2565 		 * to fulfill b), we need to know the exact failing sectors, as
2566 		 * we don't want to rewrite any more than the failed ones. thus,
2567 		 * we need separate read requests for the failed bio
2568 		 *
2569 		 * if the following BUG_ON triggers, our validation request got
2570 		 * merged. we need separate requests for our algorithm to work.
2571 		 */
2572 		BUG_ON(failrec->in_validation);
2573 		failrec->in_validation = 1;
2574 		failrec->this_mirror = failed_mirror;
2575 	} else {
2576 		/*
2577 		 * we're ready to fulfill a) and b) alongside. get a good copy
2578 		 * of the failed sector and if we succeed, we have setup
2579 		 * everything for repair_io_failure to do the rest for us.
2580 		 */
2581 		if (failrec->in_validation) {
2582 			BUG_ON(failrec->this_mirror != failed_mirror);
2583 			failrec->in_validation = 0;
2584 			failrec->this_mirror = 0;
2585 		}
2586 		failrec->failed_mirror = failed_mirror;
2587 		failrec->this_mirror++;
2588 		if (failrec->this_mirror == failed_mirror)
2589 			failrec->this_mirror++;
2590 	}
2591 
2592 	if (failrec->this_mirror > num_copies) {
2593 		btrfs_debug(fs_info,
2594 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595 			num_copies, failrec->this_mirror, failed_mirror);
2596 		return false;
2597 	}
2598 
2599 	return true;
2600 }
2601 
2602 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2603 {
2604 	u64 len = 0;
2605 	const u32 blocksize = inode->i_sb->s_blocksize;
2606 
2607 	/*
2608 	 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609 	 * I/O error. In this case, we already know exactly which sector was
2610 	 * bad, so we don't need to validate.
2611 	 */
2612 	if (bio->bi_status == BLK_STS_OK)
2613 		return false;
2614 
2615 	/*
2616 	 * We need to validate each sector individually if the failed I/O was
2617 	 * for multiple sectors.
2618 	 *
2619 	 * There are a few possible bios that can end up here:
2620 	 * 1. A buffered read bio, which is not cloned.
2621 	 * 2. A direct I/O read bio, which is cloned.
2622 	 * 3. A (buffered or direct) repair bio, which is not cloned.
2623 	 *
2624 	 * For cloned bios (case 2), we can get the size from
2625 	 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626 	 * it from the bvecs.
2627 	 */
2628 	if (bio_flagged(bio, BIO_CLONED)) {
2629 		if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2630 			return true;
2631 	} else {
2632 		struct bio_vec *bvec;
2633 		int i;
2634 
2635 		bio_for_each_bvec_all(bvec, bio, i) {
2636 			len += bvec->bv_len;
2637 			if (len > blocksize)
2638 				return true;
2639 		}
2640 	}
2641 	return false;
2642 }
2643 
2644 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645 				      struct bio *failed_bio, u64 phy_offset,
2646 				      struct page *page, unsigned int pgoff,
2647 				      u64 start, u64 end, int failed_mirror,
2648 				      submit_bio_hook_t *submit_bio_hook)
2649 {
2650 	struct io_failure_record *failrec;
2651 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2652 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2653 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2654 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655 	const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2656 	bool need_validation;
2657 	struct bio *repair_bio;
2658 	struct btrfs_io_bio *repair_io_bio;
2659 	blk_status_t status;
2660 
2661 	btrfs_debug(fs_info,
2662 		   "repair read error: read error at %llu", start);
2663 
2664 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2665 
2666 	failrec = btrfs_get_io_failure_record(inode, start, end);
2667 	if (IS_ERR(failrec))
2668 		return errno_to_blk_status(PTR_ERR(failrec));
2669 
2670 	need_validation = btrfs_io_needs_validation(inode, failed_bio);
2671 
2672 	if (!btrfs_check_repairable(inode, need_validation, failrec,
2673 				    failed_mirror)) {
2674 		free_io_failure(failure_tree, tree, failrec);
2675 		return BLK_STS_IOERR;
2676 	}
2677 
2678 	repair_bio = btrfs_io_bio_alloc(1);
2679 	repair_io_bio = btrfs_io_bio(repair_bio);
2680 	repair_bio->bi_opf = REQ_OP_READ;
2681 	if (need_validation)
2682 		repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2684 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685 	repair_bio->bi_private = failed_bio->bi_private;
2686 
2687 	if (failed_io_bio->csum) {
2688 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689 
2690 		repair_io_bio->csum = repair_io_bio->csum_inline;
2691 		memcpy(repair_io_bio->csum,
2692 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2693 	}
2694 
2695 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2696 	repair_io_bio->logical = failrec->start;
2697 	repair_io_bio->iter = repair_bio->bi_iter;
2698 
2699 	btrfs_debug(btrfs_sb(inode->i_sb),
2700 "repair read error: submitting new read to mirror %d, in_validation=%d",
2701 		    failrec->this_mirror, failrec->in_validation);
2702 
2703 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704 				 failrec->bio_flags);
2705 	if (status) {
2706 		free_io_failure(failure_tree, tree, failrec);
2707 		bio_put(repair_bio);
2708 	}
2709 	return status;
2710 }
2711 
2712 /* lots and lots of room for performance fixes in the end_bio funcs */
2713 
2714 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2715 {
2716 	int uptodate = (err == 0);
2717 	int ret = 0;
2718 
2719 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2720 
2721 	if (!uptodate) {
2722 		ClearPageUptodate(page);
2723 		SetPageError(page);
2724 		ret = err < 0 ? err : -EIO;
2725 		mapping_set_error(page->mapping, ret);
2726 	}
2727 }
2728 
2729 /*
2730  * after a writepage IO is done, we need to:
2731  * clear the uptodate bits on error
2732  * clear the writeback bits in the extent tree for this IO
2733  * end_page_writeback if the page has no more pending IO
2734  *
2735  * Scheduling is not allowed, so the extent state tree is expected
2736  * to have one and only one object corresponding to this IO.
2737  */
2738 static void end_bio_extent_writepage(struct bio *bio)
2739 {
2740 	int error = blk_status_to_errno(bio->bi_status);
2741 	struct bio_vec *bvec;
2742 	u64 start;
2743 	u64 end;
2744 	struct bvec_iter_all iter_all;
2745 
2746 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2747 	bio_for_each_segment_all(bvec, bio, iter_all) {
2748 		struct page *page = bvec->bv_page;
2749 		struct inode *inode = page->mapping->host;
2750 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2751 
2752 		/* We always issue full-page reads, but if some block
2753 		 * in a page fails to read, blk_update_request() will
2754 		 * advance bv_offset and adjust bv_len to compensate.
2755 		 * Print a warning for nonzero offsets, and an error
2756 		 * if they don't add up to a full page.  */
2757 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2759 				btrfs_err(fs_info,
2760 				   "partial page write in btrfs with offset %u and length %u",
2761 					bvec->bv_offset, bvec->bv_len);
2762 			else
2763 				btrfs_info(fs_info,
2764 				   "incomplete page write in btrfs with offset %u and length %u",
2765 					bvec->bv_offset, bvec->bv_len);
2766 		}
2767 
2768 		start = page_offset(page);
2769 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2770 
2771 		end_extent_writepage(page, error, start, end);
2772 		end_page_writeback(page);
2773 	}
2774 
2775 	bio_put(bio);
2776 }
2777 
2778 static void
2779 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780 			      int uptodate)
2781 {
2782 	struct extent_state *cached = NULL;
2783 	u64 end = start + len - 1;
2784 
2785 	if (uptodate && tree->track_uptodate)
2786 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2787 	unlock_extent_cached_atomic(tree, start, end, &cached);
2788 }
2789 
2790 /*
2791  * after a readpage IO is done, we need to:
2792  * clear the uptodate bits on error
2793  * set the uptodate bits if things worked
2794  * set the page up to date if all extents in the tree are uptodate
2795  * clear the lock bit in the extent tree
2796  * unlock the page if there are no other extents locked for it
2797  *
2798  * Scheduling is not allowed, so the extent state tree is expected
2799  * to have one and only one object corresponding to this IO.
2800  */
2801 static void end_bio_extent_readpage(struct bio *bio)
2802 {
2803 	struct bio_vec *bvec;
2804 	int uptodate = !bio->bi_status;
2805 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2806 	struct extent_io_tree *tree, *failure_tree;
2807 	u64 offset = 0;
2808 	u64 start;
2809 	u64 end;
2810 	u64 len;
2811 	u64 extent_start = 0;
2812 	u64 extent_len = 0;
2813 	int mirror;
2814 	int ret;
2815 	struct bvec_iter_all iter_all;
2816 
2817 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2818 	bio_for_each_segment_all(bvec, bio, iter_all) {
2819 		struct page *page = bvec->bv_page;
2820 		struct inode *inode = page->mapping->host;
2821 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2822 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2823 			!= BTRFS_BTREE_INODE_OBJECTID;
2824 
2825 		btrfs_debug(fs_info,
2826 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2827 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2828 			io_bio->mirror_num);
2829 		tree = &BTRFS_I(inode)->io_tree;
2830 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2831 
2832 		/* We always issue full-page reads, but if some block
2833 		 * in a page fails to read, blk_update_request() will
2834 		 * advance bv_offset and adjust bv_len to compensate.
2835 		 * Print a warning for nonzero offsets, and an error
2836 		 * if they don't add up to a full page.  */
2837 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2839 				btrfs_err(fs_info,
2840 					"partial page read in btrfs with offset %u and length %u",
2841 					bvec->bv_offset, bvec->bv_len);
2842 			else
2843 				btrfs_info(fs_info,
2844 					"incomplete page read in btrfs with offset %u and length %u",
2845 					bvec->bv_offset, bvec->bv_len);
2846 		}
2847 
2848 		start = page_offset(page);
2849 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2850 		len = bvec->bv_len;
2851 
2852 		mirror = io_bio->mirror_num;
2853 		if (likely(uptodate)) {
2854 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855 							      page, start, end,
2856 							      mirror);
2857 			if (ret)
2858 				uptodate = 0;
2859 			else
2860 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861 						 failure_tree, tree, start,
2862 						 page,
2863 						 btrfs_ino(BTRFS_I(inode)), 0);
2864 		}
2865 
2866 		if (likely(uptodate))
2867 			goto readpage_ok;
2868 
2869 		if (data_inode) {
2870 
2871 			/*
2872 			 * The generic bio_readpage_error handles errors the
2873 			 * following way: If possible, new read requests are
2874 			 * created and submitted and will end up in
2875 			 * end_bio_extent_readpage as well (if we're lucky,
2876 			 * not in the !uptodate case). In that case it returns
2877 			 * 0 and we just go on with the next page in our bio.
2878 			 * If it can't handle the error it will return -EIO and
2879 			 * we remain responsible for that page.
2880 			 */
2881 			if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882 						start - page_offset(page),
2883 						start, end, mirror,
2884 						tree->ops->submit_bio_hook)) {
2885 				uptodate = !bio->bi_status;
2886 				offset += len;
2887 				continue;
2888 			}
2889 		} else {
2890 			struct extent_buffer *eb;
2891 
2892 			eb = (struct extent_buffer *)page->private;
2893 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894 			eb->read_mirror = mirror;
2895 			atomic_dec(&eb->io_pages);
2896 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897 					       &eb->bflags))
2898 				btree_readahead_hook(eb, -EIO);
2899 		}
2900 readpage_ok:
2901 		if (likely(uptodate)) {
2902 			loff_t i_size = i_size_read(inode);
2903 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2904 			unsigned off;
2905 
2906 			/* Zero out the end if this page straddles i_size */
2907 			off = offset_in_page(i_size);
2908 			if (page->index == end_index && off)
2909 				zero_user_segment(page, off, PAGE_SIZE);
2910 			SetPageUptodate(page);
2911 		} else {
2912 			ClearPageUptodate(page);
2913 			SetPageError(page);
2914 		}
2915 		unlock_page(page);
2916 		offset += len;
2917 
2918 		if (unlikely(!uptodate)) {
2919 			if (extent_len) {
2920 				endio_readpage_release_extent(tree,
2921 							      extent_start,
2922 							      extent_len, 1);
2923 				extent_start = 0;
2924 				extent_len = 0;
2925 			}
2926 			endio_readpage_release_extent(tree, start,
2927 						      end - start + 1, 0);
2928 		} else if (!extent_len) {
2929 			extent_start = start;
2930 			extent_len = end + 1 - start;
2931 		} else if (extent_start + extent_len == start) {
2932 			extent_len += end + 1 - start;
2933 		} else {
2934 			endio_readpage_release_extent(tree, extent_start,
2935 						      extent_len, uptodate);
2936 			extent_start = start;
2937 			extent_len = end + 1 - start;
2938 		}
2939 	}
2940 
2941 	if (extent_len)
2942 		endio_readpage_release_extent(tree, extent_start, extent_len,
2943 					      uptodate);
2944 	btrfs_io_bio_free_csum(io_bio);
2945 	bio_put(bio);
2946 }
2947 
2948 /*
2949  * Initialize the members up to but not including 'bio'. Use after allocating a
2950  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951  * 'bio' because use of __GFP_ZERO is not supported.
2952  */
2953 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2954 {
2955 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956 }
2957 
2958 /*
2959  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2961  * for the appropriate container_of magic
2962  */
2963 struct bio *btrfs_bio_alloc(u64 first_byte)
2964 {
2965 	struct bio *bio;
2966 
2967 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2968 	bio->bi_iter.bi_sector = first_byte >> 9;
2969 	btrfs_io_bio_init(btrfs_io_bio(bio));
2970 	return bio;
2971 }
2972 
2973 struct bio *btrfs_bio_clone(struct bio *bio)
2974 {
2975 	struct btrfs_io_bio *btrfs_bio;
2976 	struct bio *new;
2977 
2978 	/* Bio allocation backed by a bioset does not fail */
2979 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2980 	btrfs_bio = btrfs_io_bio(new);
2981 	btrfs_io_bio_init(btrfs_bio);
2982 	btrfs_bio->iter = bio->bi_iter;
2983 	return new;
2984 }
2985 
2986 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2987 {
2988 	struct bio *bio;
2989 
2990 	/* Bio allocation backed by a bioset does not fail */
2991 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2992 	btrfs_io_bio_init(btrfs_io_bio(bio));
2993 	return bio;
2994 }
2995 
2996 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2997 {
2998 	struct bio *bio;
2999 	struct btrfs_io_bio *btrfs_bio;
3000 
3001 	/* this will never fail when it's backed by a bioset */
3002 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3003 	ASSERT(bio);
3004 
3005 	btrfs_bio = btrfs_io_bio(bio);
3006 	btrfs_io_bio_init(btrfs_bio);
3007 
3008 	bio_trim(bio, offset >> 9, size >> 9);
3009 	btrfs_bio->iter = bio->bi_iter;
3010 	return bio;
3011 }
3012 
3013 /*
3014  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3015  * @wbc:	optional writeback control for io accounting
3016  * @page:	page to add to the bio
3017  * @pg_offset:	offset of the new bio or to check whether we are adding
3018  *              a contiguous page to the previous one
3019  * @size:	portion of page that we want to write
3020  * @offset:	starting offset in the page
3021  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3022  * @end_io_func:     end_io callback for new bio
3023  * @mirror_num:	     desired mirror to read/write
3024  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3025  * @bio_flags:	flags of the current bio to see if we can merge them
3026  */
3027 static int submit_extent_page(unsigned int opf,
3028 			      struct writeback_control *wbc,
3029 			      struct page *page, u64 offset,
3030 			      size_t size, unsigned long pg_offset,
3031 			      struct bio **bio_ret,
3032 			      bio_end_io_t end_io_func,
3033 			      int mirror_num,
3034 			      unsigned long prev_bio_flags,
3035 			      unsigned long bio_flags,
3036 			      bool force_bio_submit)
3037 {
3038 	int ret = 0;
3039 	struct bio *bio;
3040 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
3041 	sector_t sector = offset >> 9;
3042 	struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3043 
3044 	ASSERT(bio_ret);
3045 
3046 	if (*bio_ret) {
3047 		bool contig;
3048 		bool can_merge = true;
3049 
3050 		bio = *bio_ret;
3051 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3052 			contig = bio->bi_iter.bi_sector == sector;
3053 		else
3054 			contig = bio_end_sector(bio) == sector;
3055 
3056 		ASSERT(tree->ops);
3057 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3058 			can_merge = false;
3059 
3060 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3061 		    force_bio_submit ||
3062 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3063 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3064 			if (ret < 0) {
3065 				*bio_ret = NULL;
3066 				return ret;
3067 			}
3068 			bio = NULL;
3069 		} else {
3070 			if (wbc)
3071 				wbc_account_cgroup_owner(wbc, page, page_size);
3072 			return 0;
3073 		}
3074 	}
3075 
3076 	bio = btrfs_bio_alloc(offset);
3077 	bio_add_page(bio, page, page_size, pg_offset);
3078 	bio->bi_end_io = end_io_func;
3079 	bio->bi_private = tree;
3080 	bio->bi_write_hint = page->mapping->host->i_write_hint;
3081 	bio->bi_opf = opf;
3082 	if (wbc) {
3083 		struct block_device *bdev;
3084 
3085 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086 		bio_set_dev(bio, bdev);
3087 		wbc_init_bio(wbc, bio);
3088 		wbc_account_cgroup_owner(wbc, page, page_size);
3089 	}
3090 
3091 	*bio_ret = bio;
3092 
3093 	return ret;
3094 }
3095 
3096 static void attach_extent_buffer_page(struct extent_buffer *eb,
3097 				      struct page *page)
3098 {
3099 	if (!PagePrivate(page))
3100 		attach_page_private(page, eb);
3101 	else
3102 		WARN_ON(page->private != (unsigned long)eb);
3103 }
3104 
3105 void set_page_extent_mapped(struct page *page)
3106 {
3107 	if (!PagePrivate(page))
3108 		attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3109 }
3110 
3111 static struct extent_map *
3112 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113 		 u64 start, u64 len, get_extent_t *get_extent,
3114 		 struct extent_map **em_cached)
3115 {
3116 	struct extent_map *em;
3117 
3118 	if (em_cached && *em_cached) {
3119 		em = *em_cached;
3120 		if (extent_map_in_tree(em) && start >= em->start &&
3121 		    start < extent_map_end(em)) {
3122 			refcount_inc(&em->refs);
3123 			return em;
3124 		}
3125 
3126 		free_extent_map(em);
3127 		*em_cached = NULL;
3128 	}
3129 
3130 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3131 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3132 		BUG_ON(*em_cached);
3133 		refcount_inc(&em->refs);
3134 		*em_cached = em;
3135 	}
3136 	return em;
3137 }
3138 /*
3139  * basic readpage implementation.  Locked extent state structs are inserted
3140  * into the tree that are removed when the IO is done (by the end_io
3141  * handlers)
3142  * XXX JDM: This needs looking at to ensure proper page locking
3143  * return 0 on success, otherwise return error
3144  */
3145 static int __do_readpage(struct page *page,
3146 			 get_extent_t *get_extent,
3147 			 struct extent_map **em_cached,
3148 			 struct bio **bio, int mirror_num,
3149 			 unsigned long *bio_flags, unsigned int read_flags,
3150 			 u64 *prev_em_start)
3151 {
3152 	struct inode *inode = page->mapping->host;
3153 	u64 start = page_offset(page);
3154 	const u64 end = start + PAGE_SIZE - 1;
3155 	u64 cur = start;
3156 	u64 extent_offset;
3157 	u64 last_byte = i_size_read(inode);
3158 	u64 block_start;
3159 	u64 cur_end;
3160 	struct extent_map *em;
3161 	int ret = 0;
3162 	int nr = 0;
3163 	size_t pg_offset = 0;
3164 	size_t iosize;
3165 	size_t disk_io_size;
3166 	size_t blocksize = inode->i_sb->s_blocksize;
3167 	unsigned long this_bio_flag = 0;
3168 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3169 
3170 	set_page_extent_mapped(page);
3171 
3172 	if (!PageUptodate(page)) {
3173 		if (cleancache_get_page(page) == 0) {
3174 			BUG_ON(blocksize != PAGE_SIZE);
3175 			unlock_extent(tree, start, end);
3176 			goto out;
3177 		}
3178 	}
3179 
3180 	if (page->index == last_byte >> PAGE_SHIFT) {
3181 		char *userpage;
3182 		size_t zero_offset = offset_in_page(last_byte);
3183 
3184 		if (zero_offset) {
3185 			iosize = PAGE_SIZE - zero_offset;
3186 			userpage = kmap_atomic(page);
3187 			memset(userpage + zero_offset, 0, iosize);
3188 			flush_dcache_page(page);
3189 			kunmap_atomic(userpage);
3190 		}
3191 	}
3192 	while (cur <= end) {
3193 		bool force_bio_submit = false;
3194 		u64 offset;
3195 
3196 		if (cur >= last_byte) {
3197 			char *userpage;
3198 			struct extent_state *cached = NULL;
3199 
3200 			iosize = PAGE_SIZE - pg_offset;
3201 			userpage = kmap_atomic(page);
3202 			memset(userpage + pg_offset, 0, iosize);
3203 			flush_dcache_page(page);
3204 			kunmap_atomic(userpage);
3205 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3206 					    &cached, GFP_NOFS);
3207 			unlock_extent_cached(tree, cur,
3208 					     cur + iosize - 1, &cached);
3209 			break;
3210 		}
3211 		em = __get_extent_map(inode, page, pg_offset, cur,
3212 				      end - cur + 1, get_extent, em_cached);
3213 		if (IS_ERR_OR_NULL(em)) {
3214 			SetPageError(page);
3215 			unlock_extent(tree, cur, end);
3216 			break;
3217 		}
3218 		extent_offset = cur - em->start;
3219 		BUG_ON(extent_map_end(em) <= cur);
3220 		BUG_ON(end < cur);
3221 
3222 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3223 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3224 			extent_set_compress_type(&this_bio_flag,
3225 						 em->compress_type);
3226 		}
3227 
3228 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229 		cur_end = min(extent_map_end(em) - 1, end);
3230 		iosize = ALIGN(iosize, blocksize);
3231 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232 			disk_io_size = em->block_len;
3233 			offset = em->block_start;
3234 		} else {
3235 			offset = em->block_start + extent_offset;
3236 			disk_io_size = iosize;
3237 		}
3238 		block_start = em->block_start;
3239 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240 			block_start = EXTENT_MAP_HOLE;
3241 
3242 		/*
3243 		 * If we have a file range that points to a compressed extent
3244 		 * and it's followed by a consecutive file range that points to
3245 		 * to the same compressed extent (possibly with a different
3246 		 * offset and/or length, so it either points to the whole extent
3247 		 * or only part of it), we must make sure we do not submit a
3248 		 * single bio to populate the pages for the 2 ranges because
3249 		 * this makes the compressed extent read zero out the pages
3250 		 * belonging to the 2nd range. Imagine the following scenario:
3251 		 *
3252 		 *  File layout
3253 		 *  [0 - 8K]                     [8K - 24K]
3254 		 *    |                               |
3255 		 *    |                               |
3256 		 * points to extent X,         points to extent X,
3257 		 * offset 4K, length of 8K     offset 0, length 16K
3258 		 *
3259 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3260 		 *
3261 		 * If the bio to read the compressed extent covers both ranges,
3262 		 * it will decompress extent X into the pages belonging to the
3263 		 * first range and then it will stop, zeroing out the remaining
3264 		 * pages that belong to the other range that points to extent X.
3265 		 * So here we make sure we submit 2 bios, one for the first
3266 		 * range and another one for the third range. Both will target
3267 		 * the same physical extent from disk, but we can't currently
3268 		 * make the compressed bio endio callback populate the pages
3269 		 * for both ranges because each compressed bio is tightly
3270 		 * coupled with a single extent map, and each range can have
3271 		 * an extent map with a different offset value relative to the
3272 		 * uncompressed data of our extent and different lengths. This
3273 		 * is a corner case so we prioritize correctness over
3274 		 * non-optimal behavior (submitting 2 bios for the same extent).
3275 		 */
3276 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277 		    prev_em_start && *prev_em_start != (u64)-1 &&
3278 		    *prev_em_start != em->start)
3279 			force_bio_submit = true;
3280 
3281 		if (prev_em_start)
3282 			*prev_em_start = em->start;
3283 
3284 		free_extent_map(em);
3285 		em = NULL;
3286 
3287 		/* we've found a hole, just zero and go on */
3288 		if (block_start == EXTENT_MAP_HOLE) {
3289 			char *userpage;
3290 			struct extent_state *cached = NULL;
3291 
3292 			userpage = kmap_atomic(page);
3293 			memset(userpage + pg_offset, 0, iosize);
3294 			flush_dcache_page(page);
3295 			kunmap_atomic(userpage);
3296 
3297 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3298 					    &cached, GFP_NOFS);
3299 			unlock_extent_cached(tree, cur,
3300 					     cur + iosize - 1, &cached);
3301 			cur = cur + iosize;
3302 			pg_offset += iosize;
3303 			continue;
3304 		}
3305 		/* the get_extent function already copied into the page */
3306 		if (test_range_bit(tree, cur, cur_end,
3307 				   EXTENT_UPTODATE, 1, NULL)) {
3308 			check_page_uptodate(tree, page);
3309 			unlock_extent(tree, cur, cur + iosize - 1);
3310 			cur = cur + iosize;
3311 			pg_offset += iosize;
3312 			continue;
3313 		}
3314 		/* we have an inline extent but it didn't get marked up
3315 		 * to date.  Error out
3316 		 */
3317 		if (block_start == EXTENT_MAP_INLINE) {
3318 			SetPageError(page);
3319 			unlock_extent(tree, cur, cur + iosize - 1);
3320 			cur = cur + iosize;
3321 			pg_offset += iosize;
3322 			continue;
3323 		}
3324 
3325 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3326 					 page, offset, disk_io_size,
3327 					 pg_offset, bio,
3328 					 end_bio_extent_readpage, mirror_num,
3329 					 *bio_flags,
3330 					 this_bio_flag,
3331 					 force_bio_submit);
3332 		if (!ret) {
3333 			nr++;
3334 			*bio_flags = this_bio_flag;
3335 		} else {
3336 			SetPageError(page);
3337 			unlock_extent(tree, cur, cur + iosize - 1);
3338 			goto out;
3339 		}
3340 		cur = cur + iosize;
3341 		pg_offset += iosize;
3342 	}
3343 out:
3344 	if (!nr) {
3345 		if (!PageError(page))
3346 			SetPageUptodate(page);
3347 		unlock_page(page);
3348 	}
3349 	return ret;
3350 }
3351 
3352 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3353 					     u64 start, u64 end,
3354 					     struct extent_map **em_cached,
3355 					     struct bio **bio,
3356 					     unsigned long *bio_flags,
3357 					     u64 *prev_em_start)
3358 {
3359 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3360 	int index;
3361 
3362 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3363 
3364 	for (index = 0; index < nr_pages; index++) {
3365 		__do_readpage(pages[index], btrfs_get_extent, em_cached,
3366 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3367 		put_page(pages[index]);
3368 	}
3369 }
3370 
3371 static int __extent_read_full_page(struct page *page,
3372 				   get_extent_t *get_extent,
3373 				   struct bio **bio, int mirror_num,
3374 				   unsigned long *bio_flags,
3375 				   unsigned int read_flags)
3376 {
3377 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3378 	u64 start = page_offset(page);
3379 	u64 end = start + PAGE_SIZE - 1;
3380 	int ret;
3381 
3382 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3383 
3384 	ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3385 			    bio_flags, read_flags, NULL);
3386 	return ret;
3387 }
3388 
3389 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390 			  int mirror_num)
3391 {
3392 	struct bio *bio = NULL;
3393 	unsigned long bio_flags = 0;
3394 	int ret;
3395 
3396 	ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3397 				      &bio_flags, 0);
3398 	if (bio)
3399 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3400 	return ret;
3401 }
3402 
3403 static void update_nr_written(struct writeback_control *wbc,
3404 			      unsigned long nr_written)
3405 {
3406 	wbc->nr_to_write -= nr_written;
3407 }
3408 
3409 /*
3410  * helper for __extent_writepage, doing all of the delayed allocation setup.
3411  *
3412  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3413  * to write the page (copy into inline extent).  In this case the IO has
3414  * been started and the page is already unlocked.
3415  *
3416  * This returns 0 if all went well (page still locked)
3417  * This returns < 0 if there were errors (page still locked)
3418  */
3419 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3420 		struct page *page, struct writeback_control *wbc,
3421 		u64 delalloc_start, unsigned long *nr_written)
3422 {
3423 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3424 	bool found;
3425 	u64 delalloc_to_write = 0;
3426 	u64 delalloc_end = 0;
3427 	int ret;
3428 	int page_started = 0;
3429 
3430 
3431 	while (delalloc_end < page_end) {
3432 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3433 					       &delalloc_start,
3434 					       &delalloc_end);
3435 		if (!found) {
3436 			delalloc_start = delalloc_end + 1;
3437 			continue;
3438 		}
3439 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3440 				delalloc_end, &page_started, nr_written, wbc);
3441 		if (ret) {
3442 			SetPageError(page);
3443 			/*
3444 			 * btrfs_run_delalloc_range should return < 0 for error
3445 			 * but just in case, we use > 0 here meaning the IO is
3446 			 * started, so we don't want to return > 0 unless
3447 			 * things are going well.
3448 			 */
3449 			return ret < 0 ? ret : -EIO;
3450 		}
3451 		/*
3452 		 * delalloc_end is already one less than the total length, so
3453 		 * we don't subtract one from PAGE_SIZE
3454 		 */
3455 		delalloc_to_write += (delalloc_end - delalloc_start +
3456 				      PAGE_SIZE) >> PAGE_SHIFT;
3457 		delalloc_start = delalloc_end + 1;
3458 	}
3459 	if (wbc->nr_to_write < delalloc_to_write) {
3460 		int thresh = 8192;
3461 
3462 		if (delalloc_to_write < thresh * 2)
3463 			thresh = delalloc_to_write;
3464 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465 					 thresh);
3466 	}
3467 
3468 	/* did the fill delalloc function already unlock and start
3469 	 * the IO?
3470 	 */
3471 	if (page_started) {
3472 		/*
3473 		 * we've unlocked the page, so we can't update
3474 		 * the mapping's writeback index, just update
3475 		 * nr_to_write.
3476 		 */
3477 		wbc->nr_to_write -= *nr_written;
3478 		return 1;
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 /*
3485  * helper for __extent_writepage.  This calls the writepage start hooks,
3486  * and does the loop to map the page into extents and bios.
3487  *
3488  * We return 1 if the IO is started and the page is unlocked,
3489  * 0 if all went well (page still locked)
3490  * < 0 if there were errors (page still locked)
3491  */
3492 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3493 				 struct page *page,
3494 				 struct writeback_control *wbc,
3495 				 struct extent_page_data *epd,
3496 				 loff_t i_size,
3497 				 unsigned long nr_written,
3498 				 int *nr_ret)
3499 {
3500 	struct extent_io_tree *tree = &inode->io_tree;
3501 	u64 start = page_offset(page);
3502 	u64 page_end = start + PAGE_SIZE - 1;
3503 	u64 end;
3504 	u64 cur = start;
3505 	u64 extent_offset;
3506 	u64 block_start;
3507 	u64 iosize;
3508 	struct extent_map *em;
3509 	size_t pg_offset = 0;
3510 	size_t blocksize;
3511 	int ret = 0;
3512 	int nr = 0;
3513 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3514 	bool compressed;
3515 
3516 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3517 	if (ret) {
3518 		/* Fixup worker will requeue */
3519 		redirty_page_for_writepage(wbc, page);
3520 		update_nr_written(wbc, nr_written);
3521 		unlock_page(page);
3522 		return 1;
3523 	}
3524 
3525 	/*
3526 	 * we don't want to touch the inode after unlocking the page,
3527 	 * so we update the mapping writeback index now
3528 	 */
3529 	update_nr_written(wbc, nr_written + 1);
3530 
3531 	end = page_end;
3532 	blocksize = inode->vfs_inode.i_sb->s_blocksize;
3533 
3534 	while (cur <= end) {
3535 		u64 em_end;
3536 		u64 offset;
3537 
3538 		if (cur >= i_size) {
3539 			btrfs_writepage_endio_finish_ordered(page, cur,
3540 							     page_end, 1);
3541 			break;
3542 		}
3543 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3544 		if (IS_ERR_OR_NULL(em)) {
3545 			SetPageError(page);
3546 			ret = PTR_ERR_OR_ZERO(em);
3547 			break;
3548 		}
3549 
3550 		extent_offset = cur - em->start;
3551 		em_end = extent_map_end(em);
3552 		BUG_ON(em_end <= cur);
3553 		BUG_ON(end < cur);
3554 		iosize = min(em_end - cur, end - cur + 1);
3555 		iosize = ALIGN(iosize, blocksize);
3556 		offset = em->block_start + extent_offset;
3557 		block_start = em->block_start;
3558 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3559 		free_extent_map(em);
3560 		em = NULL;
3561 
3562 		/*
3563 		 * compressed and inline extents are written through other
3564 		 * paths in the FS
3565 		 */
3566 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3567 		    block_start == EXTENT_MAP_INLINE) {
3568 			if (compressed)
3569 				nr++;
3570 			else
3571 				btrfs_writepage_endio_finish_ordered(page, cur,
3572 							cur + iosize - 1, 1);
3573 			cur += iosize;
3574 			pg_offset += iosize;
3575 			continue;
3576 		}
3577 
3578 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3579 		if (!PageWriteback(page)) {
3580 			btrfs_err(inode->root->fs_info,
3581 				   "page %lu not writeback, cur %llu end %llu",
3582 			       page->index, cur, end);
3583 		}
3584 
3585 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3586 					 page, offset, iosize, pg_offset,
3587 					 &epd->bio,
3588 					 end_bio_extent_writepage,
3589 					 0, 0, 0, false);
3590 		if (ret) {
3591 			SetPageError(page);
3592 			if (PageWriteback(page))
3593 				end_page_writeback(page);
3594 		}
3595 
3596 		cur = cur + iosize;
3597 		pg_offset += iosize;
3598 		nr++;
3599 	}
3600 	*nr_ret = nr;
3601 	return ret;
3602 }
3603 
3604 /*
3605  * the writepage semantics are similar to regular writepage.  extent
3606  * records are inserted to lock ranges in the tree, and as dirty areas
3607  * are found, they are marked writeback.  Then the lock bits are removed
3608  * and the end_io handler clears the writeback ranges
3609  *
3610  * Return 0 if everything goes well.
3611  * Return <0 for error.
3612  */
3613 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3614 			      struct extent_page_data *epd)
3615 {
3616 	struct inode *inode = page->mapping->host;
3617 	u64 start = page_offset(page);
3618 	u64 page_end = start + PAGE_SIZE - 1;
3619 	int ret;
3620 	int nr = 0;
3621 	size_t pg_offset;
3622 	loff_t i_size = i_size_read(inode);
3623 	unsigned long end_index = i_size >> PAGE_SHIFT;
3624 	unsigned long nr_written = 0;
3625 
3626 	trace___extent_writepage(page, inode, wbc);
3627 
3628 	WARN_ON(!PageLocked(page));
3629 
3630 	ClearPageError(page);
3631 
3632 	pg_offset = offset_in_page(i_size);
3633 	if (page->index > end_index ||
3634 	   (page->index == end_index && !pg_offset)) {
3635 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3636 		unlock_page(page);
3637 		return 0;
3638 	}
3639 
3640 	if (page->index == end_index) {
3641 		char *userpage;
3642 
3643 		userpage = kmap_atomic(page);
3644 		memset(userpage + pg_offset, 0,
3645 		       PAGE_SIZE - pg_offset);
3646 		kunmap_atomic(userpage);
3647 		flush_dcache_page(page);
3648 	}
3649 
3650 	set_page_extent_mapped(page);
3651 
3652 	if (!epd->extent_locked) {
3653 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654 					 &nr_written);
3655 		if (ret == 1)
3656 			return 0;
3657 		if (ret)
3658 			goto done;
3659 	}
3660 
3661 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662 				    nr_written, &nr);
3663 	if (ret == 1)
3664 		return 0;
3665 
3666 done:
3667 	if (nr == 0) {
3668 		/* make sure the mapping tag for page dirty gets cleared */
3669 		set_page_writeback(page);
3670 		end_page_writeback(page);
3671 	}
3672 	if (PageError(page)) {
3673 		ret = ret < 0 ? ret : -EIO;
3674 		end_extent_writepage(page, ret, start, page_end);
3675 	}
3676 	unlock_page(page);
3677 	ASSERT(ret <= 0);
3678 	return ret;
3679 }
3680 
3681 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3682 {
3683 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684 		       TASK_UNINTERRUPTIBLE);
3685 }
3686 
3687 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688 {
3689 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690 	smp_mb__after_atomic();
3691 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692 }
3693 
3694 /*
3695  * Lock eb pages and flush the bio if we can't the locks
3696  *
3697  * Return  0 if nothing went wrong
3698  * Return >0 is same as 0, except bio is not submitted
3699  * Return <0 if something went wrong, no page is locked
3700  */
3701 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3702 			  struct extent_page_data *epd)
3703 {
3704 	struct btrfs_fs_info *fs_info = eb->fs_info;
3705 	int i, num_pages, failed_page_nr;
3706 	int flush = 0;
3707 	int ret = 0;
3708 
3709 	if (!btrfs_try_tree_write_lock(eb)) {
3710 		ret = flush_write_bio(epd);
3711 		if (ret < 0)
3712 			return ret;
3713 		flush = 1;
3714 		btrfs_tree_lock(eb);
3715 	}
3716 
3717 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3718 		btrfs_tree_unlock(eb);
3719 		if (!epd->sync_io)
3720 			return 0;
3721 		if (!flush) {
3722 			ret = flush_write_bio(epd);
3723 			if (ret < 0)
3724 				return ret;
3725 			flush = 1;
3726 		}
3727 		while (1) {
3728 			wait_on_extent_buffer_writeback(eb);
3729 			btrfs_tree_lock(eb);
3730 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731 				break;
3732 			btrfs_tree_unlock(eb);
3733 		}
3734 	}
3735 
3736 	/*
3737 	 * We need to do this to prevent races in people who check if the eb is
3738 	 * under IO since we can end up having no IO bits set for a short period
3739 	 * of time.
3740 	 */
3741 	spin_lock(&eb->refs_lock);
3742 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3744 		spin_unlock(&eb->refs_lock);
3745 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3746 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747 					 -eb->len,
3748 					 fs_info->dirty_metadata_batch);
3749 		ret = 1;
3750 	} else {
3751 		spin_unlock(&eb->refs_lock);
3752 	}
3753 
3754 	btrfs_tree_unlock(eb);
3755 
3756 	if (!ret)
3757 		return ret;
3758 
3759 	num_pages = num_extent_pages(eb);
3760 	for (i = 0; i < num_pages; i++) {
3761 		struct page *p = eb->pages[i];
3762 
3763 		if (!trylock_page(p)) {
3764 			if (!flush) {
3765 				int err;
3766 
3767 				err = flush_write_bio(epd);
3768 				if (err < 0) {
3769 					ret = err;
3770 					failed_page_nr = i;
3771 					goto err_unlock;
3772 				}
3773 				flush = 1;
3774 			}
3775 			lock_page(p);
3776 		}
3777 	}
3778 
3779 	return ret;
3780 err_unlock:
3781 	/* Unlock already locked pages */
3782 	for (i = 0; i < failed_page_nr; i++)
3783 		unlock_page(eb->pages[i]);
3784 	/*
3785 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787 	 * be made and undo everything done before.
3788 	 */
3789 	btrfs_tree_lock(eb);
3790 	spin_lock(&eb->refs_lock);
3791 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792 	end_extent_buffer_writeback(eb);
3793 	spin_unlock(&eb->refs_lock);
3794 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795 				 fs_info->dirty_metadata_batch);
3796 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797 	btrfs_tree_unlock(eb);
3798 	return ret;
3799 }
3800 
3801 static void set_btree_ioerr(struct page *page)
3802 {
3803 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3804 	struct btrfs_fs_info *fs_info;
3805 
3806 	SetPageError(page);
3807 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808 		return;
3809 
3810 	/*
3811 	 * If we error out, we should add back the dirty_metadata_bytes
3812 	 * to make it consistent.
3813 	 */
3814 	fs_info = eb->fs_info;
3815 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816 				 eb->len, fs_info->dirty_metadata_batch);
3817 
3818 	/*
3819 	 * If writeback for a btree extent that doesn't belong to a log tree
3820 	 * failed, increment the counter transaction->eb_write_errors.
3821 	 * We do this because while the transaction is running and before it's
3822 	 * committing (when we call filemap_fdata[write|wait]_range against
3823 	 * the btree inode), we might have
3824 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825 	 * returns an error or an error happens during writeback, when we're
3826 	 * committing the transaction we wouldn't know about it, since the pages
3827 	 * can be no longer dirty nor marked anymore for writeback (if a
3828 	 * subsequent modification to the extent buffer didn't happen before the
3829 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3830 	 * able to find the pages tagged with SetPageError at transaction
3831 	 * commit time. So if this happens we must abort the transaction,
3832 	 * otherwise we commit a super block with btree roots that point to
3833 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3834 	 * or the content of some node/leaf from a past generation that got
3835 	 * cowed or deleted and is no longer valid.
3836 	 *
3837 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838 	 * not be enough - we need to distinguish between log tree extents vs
3839 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3840 	 * will catch and clear such errors in the mapping - and that call might
3841 	 * be from a log sync and not from a transaction commit. Also, checking
3842 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843 	 * not done and would not be reliable - the eb might have been released
3844 	 * from memory and reading it back again means that flag would not be
3845 	 * set (since it's a runtime flag, not persisted on disk).
3846 	 *
3847 	 * Using the flags below in the btree inode also makes us achieve the
3848 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3850 	 * is called, the writeback for all dirty pages had already finished
3851 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852 	 * filemap_fdatawait_range() would return success, as it could not know
3853 	 * that writeback errors happened (the pages were no longer tagged for
3854 	 * writeback).
3855 	 */
3856 	switch (eb->log_index) {
3857 	case -1:
3858 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3859 		break;
3860 	case 0:
3861 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3862 		break;
3863 	case 1:
3864 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3865 		break;
3866 	default:
3867 		BUG(); /* unexpected, logic error */
3868 	}
3869 }
3870 
3871 static void end_bio_extent_buffer_writepage(struct bio *bio)
3872 {
3873 	struct bio_vec *bvec;
3874 	struct extent_buffer *eb;
3875 	int done;
3876 	struct bvec_iter_all iter_all;
3877 
3878 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3879 	bio_for_each_segment_all(bvec, bio, iter_all) {
3880 		struct page *page = bvec->bv_page;
3881 
3882 		eb = (struct extent_buffer *)page->private;
3883 		BUG_ON(!eb);
3884 		done = atomic_dec_and_test(&eb->io_pages);
3885 
3886 		if (bio->bi_status ||
3887 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3888 			ClearPageUptodate(page);
3889 			set_btree_ioerr(page);
3890 		}
3891 
3892 		end_page_writeback(page);
3893 
3894 		if (!done)
3895 			continue;
3896 
3897 		end_extent_buffer_writeback(eb);
3898 	}
3899 
3900 	bio_put(bio);
3901 }
3902 
3903 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3904 			struct writeback_control *wbc,
3905 			struct extent_page_data *epd)
3906 {
3907 	u64 offset = eb->start;
3908 	u32 nritems;
3909 	int i, num_pages;
3910 	unsigned long start, end;
3911 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3912 	int ret = 0;
3913 
3914 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3915 	num_pages = num_extent_pages(eb);
3916 	atomic_set(&eb->io_pages, num_pages);
3917 
3918 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3919 	nritems = btrfs_header_nritems(eb);
3920 	if (btrfs_header_level(eb) > 0) {
3921 		end = btrfs_node_key_ptr_offset(nritems);
3922 
3923 		memzero_extent_buffer(eb, end, eb->len - end);
3924 	} else {
3925 		/*
3926 		 * leaf:
3927 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928 		 */
3929 		start = btrfs_item_nr_offset(nritems);
3930 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3931 		memzero_extent_buffer(eb, start, end - start);
3932 	}
3933 
3934 	for (i = 0; i < num_pages; i++) {
3935 		struct page *p = eb->pages[i];
3936 
3937 		clear_page_dirty_for_io(p);
3938 		set_page_writeback(p);
3939 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3940 					 p, offset, PAGE_SIZE, 0,
3941 					 &epd->bio,
3942 					 end_bio_extent_buffer_writepage,
3943 					 0, 0, 0, false);
3944 		if (ret) {
3945 			set_btree_ioerr(p);
3946 			if (PageWriteback(p))
3947 				end_page_writeback(p);
3948 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949 				end_extent_buffer_writeback(eb);
3950 			ret = -EIO;
3951 			break;
3952 		}
3953 		offset += PAGE_SIZE;
3954 		update_nr_written(wbc, 1);
3955 		unlock_page(p);
3956 	}
3957 
3958 	if (unlikely(ret)) {
3959 		for (; i < num_pages; i++) {
3960 			struct page *p = eb->pages[i];
3961 			clear_page_dirty_for_io(p);
3962 			unlock_page(p);
3963 		}
3964 	}
3965 
3966 	return ret;
3967 }
3968 
3969 int btree_write_cache_pages(struct address_space *mapping,
3970 				   struct writeback_control *wbc)
3971 {
3972 	struct extent_buffer *eb, *prev_eb = NULL;
3973 	struct extent_page_data epd = {
3974 		.bio = NULL,
3975 		.extent_locked = 0,
3976 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977 	};
3978 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3979 	int ret = 0;
3980 	int done = 0;
3981 	int nr_to_write_done = 0;
3982 	struct pagevec pvec;
3983 	int nr_pages;
3984 	pgoff_t index;
3985 	pgoff_t end;		/* Inclusive */
3986 	int scanned = 0;
3987 	xa_mark_t tag;
3988 
3989 	pagevec_init(&pvec);
3990 	if (wbc->range_cyclic) {
3991 		index = mapping->writeback_index; /* Start from prev offset */
3992 		end = -1;
3993 		/*
3994 		 * Start from the beginning does not need to cycle over the
3995 		 * range, mark it as scanned.
3996 		 */
3997 		scanned = (index == 0);
3998 	} else {
3999 		index = wbc->range_start >> PAGE_SHIFT;
4000 		end = wbc->range_end >> PAGE_SHIFT;
4001 		scanned = 1;
4002 	}
4003 	if (wbc->sync_mode == WB_SYNC_ALL)
4004 		tag = PAGECACHE_TAG_TOWRITE;
4005 	else
4006 		tag = PAGECACHE_TAG_DIRTY;
4007 retry:
4008 	if (wbc->sync_mode == WB_SYNC_ALL)
4009 		tag_pages_for_writeback(mapping, index, end);
4010 	while (!done && !nr_to_write_done && (index <= end) &&
4011 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4012 			tag))) {
4013 		unsigned i;
4014 
4015 		for (i = 0; i < nr_pages; i++) {
4016 			struct page *page = pvec.pages[i];
4017 
4018 			if (!PagePrivate(page))
4019 				continue;
4020 
4021 			spin_lock(&mapping->private_lock);
4022 			if (!PagePrivate(page)) {
4023 				spin_unlock(&mapping->private_lock);
4024 				continue;
4025 			}
4026 
4027 			eb = (struct extent_buffer *)page->private;
4028 
4029 			/*
4030 			 * Shouldn't happen and normally this would be a BUG_ON
4031 			 * but no sense in crashing the users box for something
4032 			 * we can survive anyway.
4033 			 */
4034 			if (WARN_ON(!eb)) {
4035 				spin_unlock(&mapping->private_lock);
4036 				continue;
4037 			}
4038 
4039 			if (eb == prev_eb) {
4040 				spin_unlock(&mapping->private_lock);
4041 				continue;
4042 			}
4043 
4044 			ret = atomic_inc_not_zero(&eb->refs);
4045 			spin_unlock(&mapping->private_lock);
4046 			if (!ret)
4047 				continue;
4048 
4049 			prev_eb = eb;
4050 			ret = lock_extent_buffer_for_io(eb, &epd);
4051 			if (!ret) {
4052 				free_extent_buffer(eb);
4053 				continue;
4054 			} else if (ret < 0) {
4055 				done = 1;
4056 				free_extent_buffer(eb);
4057 				break;
4058 			}
4059 
4060 			ret = write_one_eb(eb, wbc, &epd);
4061 			if (ret) {
4062 				done = 1;
4063 				free_extent_buffer(eb);
4064 				break;
4065 			}
4066 			free_extent_buffer(eb);
4067 
4068 			/*
4069 			 * the filesystem may choose to bump up nr_to_write.
4070 			 * We have to make sure to honor the new nr_to_write
4071 			 * at any time
4072 			 */
4073 			nr_to_write_done = wbc->nr_to_write <= 0;
4074 		}
4075 		pagevec_release(&pvec);
4076 		cond_resched();
4077 	}
4078 	if (!scanned && !done) {
4079 		/*
4080 		 * We hit the last page and there is more work to be done: wrap
4081 		 * back to the start of the file
4082 		 */
4083 		scanned = 1;
4084 		index = 0;
4085 		goto retry;
4086 	}
4087 	ASSERT(ret <= 0);
4088 	if (ret < 0) {
4089 		end_write_bio(&epd, ret);
4090 		return ret;
4091 	}
4092 	/*
4093 	 * If something went wrong, don't allow any metadata write bio to be
4094 	 * submitted.
4095 	 *
4096 	 * This would prevent use-after-free if we had dirty pages not
4097 	 * cleaned up, which can still happen by fuzzed images.
4098 	 *
4099 	 * - Bad extent tree
4100 	 *   Allowing existing tree block to be allocated for other trees.
4101 	 *
4102 	 * - Log tree operations
4103 	 *   Exiting tree blocks get allocated to log tree, bumps its
4104 	 *   generation, then get cleaned in tree re-balance.
4105 	 *   Such tree block will not be written back, since it's clean,
4106 	 *   thus no WRITTEN flag set.
4107 	 *   And after log writes back, this tree block is not traced by
4108 	 *   any dirty extent_io_tree.
4109 	 *
4110 	 * - Offending tree block gets re-dirtied from its original owner
4111 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4112 	 *   reused without COWing. This tree block will not be traced
4113 	 *   by btrfs_transaction::dirty_pages.
4114 	 *
4115 	 *   Now such dirty tree block will not be cleaned by any dirty
4116 	 *   extent io tree. Thus we don't want to submit such wild eb
4117 	 *   if the fs already has error.
4118 	 */
4119 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120 		ret = flush_write_bio(&epd);
4121 	} else {
4122 		ret = -EROFS;
4123 		end_write_bio(&epd, ret);
4124 	}
4125 	return ret;
4126 }
4127 
4128 /**
4129  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4130  * @mapping: address space structure to write
4131  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4132  * @data: data passed to __extent_writepage function
4133  *
4134  * If a page is already under I/O, write_cache_pages() skips it, even
4135  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4136  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4137  * and msync() need to guarantee that all the data which was dirty at the time
4138  * the call was made get new I/O started against them.  If wbc->sync_mode is
4139  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140  * existing IO to complete.
4141  */
4142 static int extent_write_cache_pages(struct address_space *mapping,
4143 			     struct writeback_control *wbc,
4144 			     struct extent_page_data *epd)
4145 {
4146 	struct inode *inode = mapping->host;
4147 	int ret = 0;
4148 	int done = 0;
4149 	int nr_to_write_done = 0;
4150 	struct pagevec pvec;
4151 	int nr_pages;
4152 	pgoff_t index;
4153 	pgoff_t end;		/* Inclusive */
4154 	pgoff_t done_index;
4155 	int range_whole = 0;
4156 	int scanned = 0;
4157 	xa_mark_t tag;
4158 
4159 	/*
4160 	 * We have to hold onto the inode so that ordered extents can do their
4161 	 * work when the IO finishes.  The alternative to this is failing to add
4162 	 * an ordered extent if the igrab() fails there and that is a huge pain
4163 	 * to deal with, so instead just hold onto the inode throughout the
4164 	 * writepages operation.  If it fails here we are freeing up the inode
4165 	 * anyway and we'd rather not waste our time writing out stuff that is
4166 	 * going to be truncated anyway.
4167 	 */
4168 	if (!igrab(inode))
4169 		return 0;
4170 
4171 	pagevec_init(&pvec);
4172 	if (wbc->range_cyclic) {
4173 		index = mapping->writeback_index; /* Start from prev offset */
4174 		end = -1;
4175 		/*
4176 		 * Start from the beginning does not need to cycle over the
4177 		 * range, mark it as scanned.
4178 		 */
4179 		scanned = (index == 0);
4180 	} else {
4181 		index = wbc->range_start >> PAGE_SHIFT;
4182 		end = wbc->range_end >> PAGE_SHIFT;
4183 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184 			range_whole = 1;
4185 		scanned = 1;
4186 	}
4187 
4188 	/*
4189 	 * We do the tagged writepage as long as the snapshot flush bit is set
4190 	 * and we are the first one who do the filemap_flush() on this inode.
4191 	 *
4192 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193 	 * not race in and drop the bit.
4194 	 */
4195 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197 			       &BTRFS_I(inode)->runtime_flags))
4198 		wbc->tagged_writepages = 1;
4199 
4200 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4201 		tag = PAGECACHE_TAG_TOWRITE;
4202 	else
4203 		tag = PAGECACHE_TAG_DIRTY;
4204 retry:
4205 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4206 		tag_pages_for_writeback(mapping, index, end);
4207 	done_index = index;
4208 	while (!done && !nr_to_write_done && (index <= end) &&
4209 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210 						&index, end, tag))) {
4211 		unsigned i;
4212 
4213 		for (i = 0; i < nr_pages; i++) {
4214 			struct page *page = pvec.pages[i];
4215 
4216 			done_index = page->index + 1;
4217 			/*
4218 			 * At this point we hold neither the i_pages lock nor
4219 			 * the page lock: the page may be truncated or
4220 			 * invalidated (changing page->mapping to NULL),
4221 			 * or even swizzled back from swapper_space to
4222 			 * tmpfs file mapping
4223 			 */
4224 			if (!trylock_page(page)) {
4225 				ret = flush_write_bio(epd);
4226 				BUG_ON(ret < 0);
4227 				lock_page(page);
4228 			}
4229 
4230 			if (unlikely(page->mapping != mapping)) {
4231 				unlock_page(page);
4232 				continue;
4233 			}
4234 
4235 			if (wbc->sync_mode != WB_SYNC_NONE) {
4236 				if (PageWriteback(page)) {
4237 					ret = flush_write_bio(epd);
4238 					BUG_ON(ret < 0);
4239 				}
4240 				wait_on_page_writeback(page);
4241 			}
4242 
4243 			if (PageWriteback(page) ||
4244 			    !clear_page_dirty_for_io(page)) {
4245 				unlock_page(page);
4246 				continue;
4247 			}
4248 
4249 			ret = __extent_writepage(page, wbc, epd);
4250 			if (ret < 0) {
4251 				done = 1;
4252 				break;
4253 			}
4254 
4255 			/*
4256 			 * the filesystem may choose to bump up nr_to_write.
4257 			 * We have to make sure to honor the new nr_to_write
4258 			 * at any time
4259 			 */
4260 			nr_to_write_done = wbc->nr_to_write <= 0;
4261 		}
4262 		pagevec_release(&pvec);
4263 		cond_resched();
4264 	}
4265 	if (!scanned && !done) {
4266 		/*
4267 		 * We hit the last page and there is more work to be done: wrap
4268 		 * back to the start of the file
4269 		 */
4270 		scanned = 1;
4271 		index = 0;
4272 
4273 		/*
4274 		 * If we're looping we could run into a page that is locked by a
4275 		 * writer and that writer could be waiting on writeback for a
4276 		 * page in our current bio, and thus deadlock, so flush the
4277 		 * write bio here.
4278 		 */
4279 		ret = flush_write_bio(epd);
4280 		if (!ret)
4281 			goto retry;
4282 	}
4283 
4284 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285 		mapping->writeback_index = done_index;
4286 
4287 	btrfs_add_delayed_iput(inode);
4288 	return ret;
4289 }
4290 
4291 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4292 {
4293 	int ret;
4294 	struct extent_page_data epd = {
4295 		.bio = NULL,
4296 		.extent_locked = 0,
4297 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4298 	};
4299 
4300 	ret = __extent_writepage(page, wbc, &epd);
4301 	ASSERT(ret <= 0);
4302 	if (ret < 0) {
4303 		end_write_bio(&epd, ret);
4304 		return ret;
4305 	}
4306 
4307 	ret = flush_write_bio(&epd);
4308 	ASSERT(ret <= 0);
4309 	return ret;
4310 }
4311 
4312 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4313 			      int mode)
4314 {
4315 	int ret = 0;
4316 	struct address_space *mapping = inode->i_mapping;
4317 	struct page *page;
4318 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319 		PAGE_SHIFT;
4320 
4321 	struct extent_page_data epd = {
4322 		.bio = NULL,
4323 		.extent_locked = 1,
4324 		.sync_io = mode == WB_SYNC_ALL,
4325 	};
4326 	struct writeback_control wbc_writepages = {
4327 		.sync_mode	= mode,
4328 		.nr_to_write	= nr_pages * 2,
4329 		.range_start	= start,
4330 		.range_end	= end + 1,
4331 		/* We're called from an async helper function */
4332 		.punt_to_cgroup	= 1,
4333 		.no_cgroup_owner = 1,
4334 	};
4335 
4336 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4337 	while (start <= end) {
4338 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4339 		if (clear_page_dirty_for_io(page))
4340 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4341 		else {
4342 			btrfs_writepage_endio_finish_ordered(page, start,
4343 						    start + PAGE_SIZE - 1, 1);
4344 			unlock_page(page);
4345 		}
4346 		put_page(page);
4347 		start += PAGE_SIZE;
4348 	}
4349 
4350 	ASSERT(ret <= 0);
4351 	if (ret == 0)
4352 		ret = flush_write_bio(&epd);
4353 	else
4354 		end_write_bio(&epd, ret);
4355 
4356 	wbc_detach_inode(&wbc_writepages);
4357 	return ret;
4358 }
4359 
4360 int extent_writepages(struct address_space *mapping,
4361 		      struct writeback_control *wbc)
4362 {
4363 	int ret = 0;
4364 	struct extent_page_data epd = {
4365 		.bio = NULL,
4366 		.extent_locked = 0,
4367 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4368 	};
4369 
4370 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4371 	ASSERT(ret <= 0);
4372 	if (ret < 0) {
4373 		end_write_bio(&epd, ret);
4374 		return ret;
4375 	}
4376 	ret = flush_write_bio(&epd);
4377 	return ret;
4378 }
4379 
4380 void extent_readahead(struct readahead_control *rac)
4381 {
4382 	struct bio *bio = NULL;
4383 	unsigned long bio_flags = 0;
4384 	struct page *pagepool[16];
4385 	struct extent_map *em_cached = NULL;
4386 	u64 prev_em_start = (u64)-1;
4387 	int nr;
4388 
4389 	while ((nr = readahead_page_batch(rac, pagepool))) {
4390 		u64 contig_start = page_offset(pagepool[0]);
4391 		u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4392 
4393 		ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4394 
4395 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396 				&em_cached, &bio, &bio_flags, &prev_em_start);
4397 	}
4398 
4399 	if (em_cached)
4400 		free_extent_map(em_cached);
4401 
4402 	if (bio) {
4403 		if (submit_one_bio(bio, 0, bio_flags))
4404 			return;
4405 	}
4406 }
4407 
4408 /*
4409  * basic invalidatepage code, this waits on any locked or writeback
4410  * ranges corresponding to the page, and then deletes any extent state
4411  * records from the tree
4412  */
4413 int extent_invalidatepage(struct extent_io_tree *tree,
4414 			  struct page *page, unsigned long offset)
4415 {
4416 	struct extent_state *cached_state = NULL;
4417 	u64 start = page_offset(page);
4418 	u64 end = start + PAGE_SIZE - 1;
4419 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4420 
4421 	start += ALIGN(offset, blocksize);
4422 	if (start > end)
4423 		return 0;
4424 
4425 	lock_extent_bits(tree, start, end, &cached_state);
4426 	wait_on_page_writeback(page);
4427 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4429 	return 0;
4430 }
4431 
4432 /*
4433  * a helper for releasepage, this tests for areas of the page that
4434  * are locked or under IO and drops the related state bits if it is safe
4435  * to drop the page.
4436  */
4437 static int try_release_extent_state(struct extent_io_tree *tree,
4438 				    struct page *page, gfp_t mask)
4439 {
4440 	u64 start = page_offset(page);
4441 	u64 end = start + PAGE_SIZE - 1;
4442 	int ret = 1;
4443 
4444 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4445 		ret = 0;
4446 	} else {
4447 		/*
4448 		 * at this point we can safely clear everything except the
4449 		 * locked bit and the nodatasum bit
4450 		 */
4451 		ret = __clear_extent_bit(tree, start, end,
4452 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4453 				 0, 0, NULL, mask, NULL);
4454 
4455 		/* if clear_extent_bit failed for enomem reasons,
4456 		 * we can't allow the release to continue.
4457 		 */
4458 		if (ret < 0)
4459 			ret = 0;
4460 		else
4461 			ret = 1;
4462 	}
4463 	return ret;
4464 }
4465 
4466 /*
4467  * a helper for releasepage.  As long as there are no locked extents
4468  * in the range corresponding to the page, both state records and extent
4469  * map records are removed
4470  */
4471 int try_release_extent_mapping(struct page *page, gfp_t mask)
4472 {
4473 	struct extent_map *em;
4474 	u64 start = page_offset(page);
4475 	u64 end = start + PAGE_SIZE - 1;
4476 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4479 
4480 	if (gfpflags_allow_blocking(mask) &&
4481 	    page->mapping->host->i_size > SZ_16M) {
4482 		u64 len;
4483 		while (start <= end) {
4484 			struct btrfs_fs_info *fs_info;
4485 			u64 cur_gen;
4486 
4487 			len = end - start + 1;
4488 			write_lock(&map->lock);
4489 			em = lookup_extent_mapping(map, start, len);
4490 			if (!em) {
4491 				write_unlock(&map->lock);
4492 				break;
4493 			}
4494 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495 			    em->start != start) {
4496 				write_unlock(&map->lock);
4497 				free_extent_map(em);
4498 				break;
4499 			}
4500 			if (test_range_bit(tree, em->start,
4501 					   extent_map_end(em) - 1,
4502 					   EXTENT_LOCKED, 0, NULL))
4503 				goto next;
4504 			/*
4505 			 * If it's not in the list of modified extents, used
4506 			 * by a fast fsync, we can remove it. If it's being
4507 			 * logged we can safely remove it since fsync took an
4508 			 * extra reference on the em.
4509 			 */
4510 			if (list_empty(&em->list) ||
4511 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512 				goto remove_em;
4513 			/*
4514 			 * If it's in the list of modified extents, remove it
4515 			 * only if its generation is older then the current one,
4516 			 * in which case we don't need it for a fast fsync.
4517 			 * Otherwise don't remove it, we could be racing with an
4518 			 * ongoing fast fsync that could miss the new extent.
4519 			 */
4520 			fs_info = btrfs_inode->root->fs_info;
4521 			spin_lock(&fs_info->trans_lock);
4522 			cur_gen = fs_info->generation;
4523 			spin_unlock(&fs_info->trans_lock);
4524 			if (em->generation >= cur_gen)
4525 				goto next;
4526 remove_em:
4527 			/*
4528 			 * We only remove extent maps that are not in the list of
4529 			 * modified extents or that are in the list but with a
4530 			 * generation lower then the current generation, so there
4531 			 * is no need to set the full fsync flag on the inode (it
4532 			 * hurts the fsync performance for workloads with a data
4533 			 * size that exceeds or is close to the system's memory).
4534 			 */
4535 			remove_extent_mapping(map, em);
4536 			/* once for the rb tree */
4537 			free_extent_map(em);
4538 next:
4539 			start = extent_map_end(em);
4540 			write_unlock(&map->lock);
4541 
4542 			/* once for us */
4543 			free_extent_map(em);
4544 
4545 			cond_resched(); /* Allow large-extent preemption. */
4546 		}
4547 	}
4548 	return try_release_extent_state(tree, page, mask);
4549 }
4550 
4551 /*
4552  * helper function for fiemap, which doesn't want to see any holes.
4553  * This maps until we find something past 'last'
4554  */
4555 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4556 						u64 offset, u64 last)
4557 {
4558 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4559 	struct extent_map *em;
4560 	u64 len;
4561 
4562 	if (offset >= last)
4563 		return NULL;
4564 
4565 	while (1) {
4566 		len = last - offset;
4567 		if (len == 0)
4568 			break;
4569 		len = ALIGN(len, sectorsize);
4570 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4571 		if (IS_ERR_OR_NULL(em))
4572 			return em;
4573 
4574 		/* if this isn't a hole return it */
4575 		if (em->block_start != EXTENT_MAP_HOLE)
4576 			return em;
4577 
4578 		/* this is a hole, advance to the next extent */
4579 		offset = extent_map_end(em);
4580 		free_extent_map(em);
4581 		if (offset >= last)
4582 			break;
4583 	}
4584 	return NULL;
4585 }
4586 
4587 /*
4588  * To cache previous fiemap extent
4589  *
4590  * Will be used for merging fiemap extent
4591  */
4592 struct fiemap_cache {
4593 	u64 offset;
4594 	u64 phys;
4595 	u64 len;
4596 	u32 flags;
4597 	bool cached;
4598 };
4599 
4600 /*
4601  * Helper to submit fiemap extent.
4602  *
4603  * Will try to merge current fiemap extent specified by @offset, @phys,
4604  * @len and @flags with cached one.
4605  * And only when we fails to merge, cached one will be submitted as
4606  * fiemap extent.
4607  *
4608  * Return value is the same as fiemap_fill_next_extent().
4609  */
4610 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4611 				struct fiemap_cache *cache,
4612 				u64 offset, u64 phys, u64 len, u32 flags)
4613 {
4614 	int ret = 0;
4615 
4616 	if (!cache->cached)
4617 		goto assign;
4618 
4619 	/*
4620 	 * Sanity check, extent_fiemap() should have ensured that new
4621 	 * fiemap extent won't overlap with cached one.
4622 	 * Not recoverable.
4623 	 *
4624 	 * NOTE: Physical address can overlap, due to compression
4625 	 */
4626 	if (cache->offset + cache->len > offset) {
4627 		WARN_ON(1);
4628 		return -EINVAL;
4629 	}
4630 
4631 	/*
4632 	 * Only merges fiemap extents if
4633 	 * 1) Their logical addresses are continuous
4634 	 *
4635 	 * 2) Their physical addresses are continuous
4636 	 *    So truly compressed (physical size smaller than logical size)
4637 	 *    extents won't get merged with each other
4638 	 *
4639 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4640 	 *    So regular extent won't get merged with prealloc extent
4641 	 */
4642 	if (cache->offset + cache->len  == offset &&
4643 	    cache->phys + cache->len == phys  &&
4644 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4645 			(flags & ~FIEMAP_EXTENT_LAST)) {
4646 		cache->len += len;
4647 		cache->flags |= flags;
4648 		goto try_submit_last;
4649 	}
4650 
4651 	/* Not mergeable, need to submit cached one */
4652 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4653 				      cache->len, cache->flags);
4654 	cache->cached = false;
4655 	if (ret)
4656 		return ret;
4657 assign:
4658 	cache->cached = true;
4659 	cache->offset = offset;
4660 	cache->phys = phys;
4661 	cache->len = len;
4662 	cache->flags = flags;
4663 try_submit_last:
4664 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4665 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4666 				cache->phys, cache->len, cache->flags);
4667 		cache->cached = false;
4668 	}
4669 	return ret;
4670 }
4671 
4672 /*
4673  * Emit last fiemap cache
4674  *
4675  * The last fiemap cache may still be cached in the following case:
4676  * 0		      4k		    8k
4677  * |<- Fiemap range ->|
4678  * |<------------  First extent ----------->|
4679  *
4680  * In this case, the first extent range will be cached but not emitted.
4681  * So we must emit it before ending extent_fiemap().
4682  */
4683 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4684 				  struct fiemap_cache *cache)
4685 {
4686 	int ret;
4687 
4688 	if (!cache->cached)
4689 		return 0;
4690 
4691 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4692 				      cache->len, cache->flags);
4693 	cache->cached = false;
4694 	if (ret > 0)
4695 		ret = 0;
4696 	return ret;
4697 }
4698 
4699 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4700 		  u64 start, u64 len)
4701 {
4702 	int ret = 0;
4703 	u64 off = start;
4704 	u64 max = start + len;
4705 	u32 flags = 0;
4706 	u32 found_type;
4707 	u64 last;
4708 	u64 last_for_get_extent = 0;
4709 	u64 disko = 0;
4710 	u64 isize = i_size_read(inode);
4711 	struct btrfs_key found_key;
4712 	struct extent_map *em = NULL;
4713 	struct extent_state *cached_state = NULL;
4714 	struct btrfs_path *path;
4715 	struct btrfs_root *root = BTRFS_I(inode)->root;
4716 	struct fiemap_cache cache = { 0 };
4717 	struct ulist *roots;
4718 	struct ulist *tmp_ulist;
4719 	int end = 0;
4720 	u64 em_start = 0;
4721 	u64 em_len = 0;
4722 	u64 em_end = 0;
4723 
4724 	if (len == 0)
4725 		return -EINVAL;
4726 
4727 	path = btrfs_alloc_path();
4728 	if (!path)
4729 		return -ENOMEM;
4730 	path->leave_spinning = 1;
4731 
4732 	roots = ulist_alloc(GFP_KERNEL);
4733 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4734 	if (!roots || !tmp_ulist) {
4735 		ret = -ENOMEM;
4736 		goto out_free_ulist;
4737 	}
4738 
4739 	start = round_down(start, btrfs_inode_sectorsize(inode));
4740 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4741 
4742 	/*
4743 	 * lookup the last file extent.  We're not using i_size here
4744 	 * because there might be preallocation past i_size
4745 	 */
4746 	ret = btrfs_lookup_file_extent(NULL, root, path,
4747 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4748 	if (ret < 0) {
4749 		goto out_free_ulist;
4750 	} else {
4751 		WARN_ON(!ret);
4752 		if (ret == 1)
4753 			ret = 0;
4754 	}
4755 
4756 	path->slots[0]--;
4757 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4758 	found_type = found_key.type;
4759 
4760 	/* No extents, but there might be delalloc bits */
4761 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4762 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4763 		/* have to trust i_size as the end */
4764 		last = (u64)-1;
4765 		last_for_get_extent = isize;
4766 	} else {
4767 		/*
4768 		 * remember the start of the last extent.  There are a
4769 		 * bunch of different factors that go into the length of the
4770 		 * extent, so its much less complex to remember where it started
4771 		 */
4772 		last = found_key.offset;
4773 		last_for_get_extent = last + 1;
4774 	}
4775 	btrfs_release_path(path);
4776 
4777 	/*
4778 	 * we might have some extents allocated but more delalloc past those
4779 	 * extents.  so, we trust isize unless the start of the last extent is
4780 	 * beyond isize
4781 	 */
4782 	if (last < isize) {
4783 		last = (u64)-1;
4784 		last_for_get_extent = isize;
4785 	}
4786 
4787 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788 			 &cached_state);
4789 
4790 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4791 	if (!em)
4792 		goto out;
4793 	if (IS_ERR(em)) {
4794 		ret = PTR_ERR(em);
4795 		goto out;
4796 	}
4797 
4798 	while (!end) {
4799 		u64 offset_in_extent = 0;
4800 
4801 		/* break if the extent we found is outside the range */
4802 		if (em->start >= max || extent_map_end(em) < off)
4803 			break;
4804 
4805 		/*
4806 		 * get_extent may return an extent that starts before our
4807 		 * requested range.  We have to make sure the ranges
4808 		 * we return to fiemap always move forward and don't
4809 		 * overlap, so adjust the offsets here
4810 		 */
4811 		em_start = max(em->start, off);
4812 
4813 		/*
4814 		 * record the offset from the start of the extent
4815 		 * for adjusting the disk offset below.  Only do this if the
4816 		 * extent isn't compressed since our in ram offset may be past
4817 		 * what we have actually allocated on disk.
4818 		 */
4819 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4820 			offset_in_extent = em_start - em->start;
4821 		em_end = extent_map_end(em);
4822 		em_len = em_end - em_start;
4823 		flags = 0;
4824 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4825 			disko = em->block_start + offset_in_extent;
4826 		else
4827 			disko = 0;
4828 
4829 		/*
4830 		 * bump off for our next call to get_extent
4831 		 */
4832 		off = extent_map_end(em);
4833 		if (off >= max)
4834 			end = 1;
4835 
4836 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4837 			end = 1;
4838 			flags |= FIEMAP_EXTENT_LAST;
4839 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4840 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4841 				  FIEMAP_EXTENT_NOT_ALIGNED);
4842 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4843 			flags |= (FIEMAP_EXTENT_DELALLOC |
4844 				  FIEMAP_EXTENT_UNKNOWN);
4845 		} else if (fieinfo->fi_extents_max) {
4846 			u64 bytenr = em->block_start -
4847 				(em->start - em->orig_start);
4848 
4849 			/*
4850 			 * As btrfs supports shared space, this information
4851 			 * can be exported to userspace tools via
4852 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4853 			 * then we're just getting a count and we can skip the
4854 			 * lookup stuff.
4855 			 */
4856 			ret = btrfs_check_shared(root,
4857 						 btrfs_ino(BTRFS_I(inode)),
4858 						 bytenr, roots, tmp_ulist);
4859 			if (ret < 0)
4860 				goto out_free;
4861 			if (ret)
4862 				flags |= FIEMAP_EXTENT_SHARED;
4863 			ret = 0;
4864 		}
4865 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4866 			flags |= FIEMAP_EXTENT_ENCODED;
4867 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4868 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4869 
4870 		free_extent_map(em);
4871 		em = NULL;
4872 		if ((em_start >= last) || em_len == (u64)-1 ||
4873 		   (last == (u64)-1 && isize <= em_end)) {
4874 			flags |= FIEMAP_EXTENT_LAST;
4875 			end = 1;
4876 		}
4877 
4878 		/* now scan forward to see if this is really the last extent. */
4879 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4880 		if (IS_ERR(em)) {
4881 			ret = PTR_ERR(em);
4882 			goto out;
4883 		}
4884 		if (!em) {
4885 			flags |= FIEMAP_EXTENT_LAST;
4886 			end = 1;
4887 		}
4888 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4889 					   em_len, flags);
4890 		if (ret) {
4891 			if (ret == 1)
4892 				ret = 0;
4893 			goto out_free;
4894 		}
4895 	}
4896 out_free:
4897 	if (!ret)
4898 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4899 	free_extent_map(em);
4900 out:
4901 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4902 			     &cached_state);
4903 
4904 out_free_ulist:
4905 	btrfs_free_path(path);
4906 	ulist_free(roots);
4907 	ulist_free(tmp_ulist);
4908 	return ret;
4909 }
4910 
4911 static void __free_extent_buffer(struct extent_buffer *eb)
4912 {
4913 	kmem_cache_free(extent_buffer_cache, eb);
4914 }
4915 
4916 int extent_buffer_under_io(const struct extent_buffer *eb)
4917 {
4918 	return (atomic_read(&eb->io_pages) ||
4919 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4920 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4921 }
4922 
4923 /*
4924  * Release all pages attached to the extent buffer.
4925  */
4926 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4927 {
4928 	int i;
4929 	int num_pages;
4930 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4931 
4932 	BUG_ON(extent_buffer_under_io(eb));
4933 
4934 	num_pages = num_extent_pages(eb);
4935 	for (i = 0; i < num_pages; i++) {
4936 		struct page *page = eb->pages[i];
4937 
4938 		if (!page)
4939 			continue;
4940 		if (mapped)
4941 			spin_lock(&page->mapping->private_lock);
4942 		/*
4943 		 * We do this since we'll remove the pages after we've
4944 		 * removed the eb from the radix tree, so we could race
4945 		 * and have this page now attached to the new eb.  So
4946 		 * only clear page_private if it's still connected to
4947 		 * this eb.
4948 		 */
4949 		if (PagePrivate(page) &&
4950 		    page->private == (unsigned long)eb) {
4951 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4952 			BUG_ON(PageDirty(page));
4953 			BUG_ON(PageWriteback(page));
4954 			/*
4955 			 * We need to make sure we haven't be attached
4956 			 * to a new eb.
4957 			 */
4958 			detach_page_private(page);
4959 		}
4960 
4961 		if (mapped)
4962 			spin_unlock(&page->mapping->private_lock);
4963 
4964 		/* One for when we allocated the page */
4965 		put_page(page);
4966 	}
4967 }
4968 
4969 /*
4970  * Helper for releasing the extent buffer.
4971  */
4972 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973 {
4974 	btrfs_release_extent_buffer_pages(eb);
4975 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4976 	__free_extent_buffer(eb);
4977 }
4978 
4979 static struct extent_buffer *
4980 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4981 		      unsigned long len)
4982 {
4983 	struct extent_buffer *eb = NULL;
4984 
4985 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4986 	eb->start = start;
4987 	eb->len = len;
4988 	eb->fs_info = fs_info;
4989 	eb->bflags = 0;
4990 	rwlock_init(&eb->lock);
4991 	atomic_set(&eb->blocking_readers, 0);
4992 	eb->blocking_writers = 0;
4993 	eb->lock_nested = false;
4994 	init_waitqueue_head(&eb->write_lock_wq);
4995 	init_waitqueue_head(&eb->read_lock_wq);
4996 
4997 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998 			     &fs_info->allocated_ebs);
4999 
5000 	spin_lock_init(&eb->refs_lock);
5001 	atomic_set(&eb->refs, 1);
5002 	atomic_set(&eb->io_pages, 0);
5003 
5004 	/*
5005 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006 	 */
5007 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
5009 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5010 
5011 #ifdef CONFIG_BTRFS_DEBUG
5012 	eb->spinning_writers = 0;
5013 	atomic_set(&eb->spinning_readers, 0);
5014 	atomic_set(&eb->read_locks, 0);
5015 	eb->write_locks = 0;
5016 #endif
5017 
5018 	return eb;
5019 }
5020 
5021 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5022 {
5023 	int i;
5024 	struct page *p;
5025 	struct extent_buffer *new;
5026 	int num_pages = num_extent_pages(src);
5027 
5028 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5029 	if (new == NULL)
5030 		return NULL;
5031 
5032 	for (i = 0; i < num_pages; i++) {
5033 		p = alloc_page(GFP_NOFS);
5034 		if (!p) {
5035 			btrfs_release_extent_buffer(new);
5036 			return NULL;
5037 		}
5038 		attach_extent_buffer_page(new, p);
5039 		WARN_ON(PageDirty(p));
5040 		SetPageUptodate(p);
5041 		new->pages[i] = p;
5042 		copy_page(page_address(p), page_address(src->pages[i]));
5043 	}
5044 
5045 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5046 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5047 
5048 	return new;
5049 }
5050 
5051 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052 						  u64 start, unsigned long len)
5053 {
5054 	struct extent_buffer *eb;
5055 	int num_pages;
5056 	int i;
5057 
5058 	eb = __alloc_extent_buffer(fs_info, start, len);
5059 	if (!eb)
5060 		return NULL;
5061 
5062 	num_pages = num_extent_pages(eb);
5063 	for (i = 0; i < num_pages; i++) {
5064 		eb->pages[i] = alloc_page(GFP_NOFS);
5065 		if (!eb->pages[i])
5066 			goto err;
5067 	}
5068 	set_extent_buffer_uptodate(eb);
5069 	btrfs_set_header_nritems(eb, 0);
5070 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5071 
5072 	return eb;
5073 err:
5074 	for (; i > 0; i--)
5075 		__free_page(eb->pages[i - 1]);
5076 	__free_extent_buffer(eb);
5077 	return NULL;
5078 }
5079 
5080 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5081 						u64 start)
5082 {
5083 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5084 }
5085 
5086 static void check_buffer_tree_ref(struct extent_buffer *eb)
5087 {
5088 	int refs;
5089 	/*
5090 	 * The TREE_REF bit is first set when the extent_buffer is added
5091 	 * to the radix tree. It is also reset, if unset, when a new reference
5092 	 * is created by find_extent_buffer.
5093 	 *
5094 	 * It is only cleared in two cases: freeing the last non-tree
5095 	 * reference to the extent_buffer when its STALE bit is set or
5096 	 * calling releasepage when the tree reference is the only reference.
5097 	 *
5098 	 * In both cases, care is taken to ensure that the extent_buffer's
5099 	 * pages are not under io. However, releasepage can be concurrently
5100 	 * called with creating new references, which is prone to race
5101 	 * conditions between the calls to check_buffer_tree_ref in those
5102 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5103 	 *
5104 	 * The actual lifetime of the extent_buffer in the radix tree is
5105 	 * adequately protected by the refcount, but the TREE_REF bit and
5106 	 * its corresponding reference are not. To protect against this
5107 	 * class of races, we call check_buffer_tree_ref from the codepaths
5108 	 * which trigger io after they set eb->io_pages. Note that once io is
5109 	 * initiated, TREE_REF can no longer be cleared, so that is the
5110 	 * moment at which any such race is best fixed.
5111 	 */
5112 	refs = atomic_read(&eb->refs);
5113 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5114 		return;
5115 
5116 	spin_lock(&eb->refs_lock);
5117 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5118 		atomic_inc(&eb->refs);
5119 	spin_unlock(&eb->refs_lock);
5120 }
5121 
5122 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5123 		struct page *accessed)
5124 {
5125 	int num_pages, i;
5126 
5127 	check_buffer_tree_ref(eb);
5128 
5129 	num_pages = num_extent_pages(eb);
5130 	for (i = 0; i < num_pages; i++) {
5131 		struct page *p = eb->pages[i];
5132 
5133 		if (p != accessed)
5134 			mark_page_accessed(p);
5135 	}
5136 }
5137 
5138 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5139 					 u64 start)
5140 {
5141 	struct extent_buffer *eb;
5142 
5143 	rcu_read_lock();
5144 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5145 			       start >> PAGE_SHIFT);
5146 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5147 		rcu_read_unlock();
5148 		/*
5149 		 * Lock our eb's refs_lock to avoid races with
5150 		 * free_extent_buffer. When we get our eb it might be flagged
5151 		 * with EXTENT_BUFFER_STALE and another task running
5152 		 * free_extent_buffer might have seen that flag set,
5153 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5154 		 * writeback flags not set) and it's still in the tree (flag
5155 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5156 		 * of decrementing the extent buffer's reference count twice.
5157 		 * So here we could race and increment the eb's reference count,
5158 		 * clear its stale flag, mark it as dirty and drop our reference
5159 		 * before the other task finishes executing free_extent_buffer,
5160 		 * which would later result in an attempt to free an extent
5161 		 * buffer that is dirty.
5162 		 */
5163 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5164 			spin_lock(&eb->refs_lock);
5165 			spin_unlock(&eb->refs_lock);
5166 		}
5167 		mark_extent_buffer_accessed(eb, NULL);
5168 		return eb;
5169 	}
5170 	rcu_read_unlock();
5171 
5172 	return NULL;
5173 }
5174 
5175 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5176 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5177 					u64 start)
5178 {
5179 	struct extent_buffer *eb, *exists = NULL;
5180 	int ret;
5181 
5182 	eb = find_extent_buffer(fs_info, start);
5183 	if (eb)
5184 		return eb;
5185 	eb = alloc_dummy_extent_buffer(fs_info, start);
5186 	if (!eb)
5187 		return ERR_PTR(-ENOMEM);
5188 	eb->fs_info = fs_info;
5189 again:
5190 	ret = radix_tree_preload(GFP_NOFS);
5191 	if (ret) {
5192 		exists = ERR_PTR(ret);
5193 		goto free_eb;
5194 	}
5195 	spin_lock(&fs_info->buffer_lock);
5196 	ret = radix_tree_insert(&fs_info->buffer_radix,
5197 				start >> PAGE_SHIFT, eb);
5198 	spin_unlock(&fs_info->buffer_lock);
5199 	radix_tree_preload_end();
5200 	if (ret == -EEXIST) {
5201 		exists = find_extent_buffer(fs_info, start);
5202 		if (exists)
5203 			goto free_eb;
5204 		else
5205 			goto again;
5206 	}
5207 	check_buffer_tree_ref(eb);
5208 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5209 
5210 	return eb;
5211 free_eb:
5212 	btrfs_release_extent_buffer(eb);
5213 	return exists;
5214 }
5215 #endif
5216 
5217 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5218 					  u64 start)
5219 {
5220 	unsigned long len = fs_info->nodesize;
5221 	int num_pages;
5222 	int i;
5223 	unsigned long index = start >> PAGE_SHIFT;
5224 	struct extent_buffer *eb;
5225 	struct extent_buffer *exists = NULL;
5226 	struct page *p;
5227 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5228 	int uptodate = 1;
5229 	int ret;
5230 
5231 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5232 		btrfs_err(fs_info, "bad tree block start %llu", start);
5233 		return ERR_PTR(-EINVAL);
5234 	}
5235 
5236 	eb = find_extent_buffer(fs_info, start);
5237 	if (eb)
5238 		return eb;
5239 
5240 	eb = __alloc_extent_buffer(fs_info, start, len);
5241 	if (!eb)
5242 		return ERR_PTR(-ENOMEM);
5243 
5244 	num_pages = num_extent_pages(eb);
5245 	for (i = 0; i < num_pages; i++, index++) {
5246 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5247 		if (!p) {
5248 			exists = ERR_PTR(-ENOMEM);
5249 			goto free_eb;
5250 		}
5251 
5252 		spin_lock(&mapping->private_lock);
5253 		if (PagePrivate(p)) {
5254 			/*
5255 			 * We could have already allocated an eb for this page
5256 			 * and attached one so lets see if we can get a ref on
5257 			 * the existing eb, and if we can we know it's good and
5258 			 * we can just return that one, else we know we can just
5259 			 * overwrite page->private.
5260 			 */
5261 			exists = (struct extent_buffer *)p->private;
5262 			if (atomic_inc_not_zero(&exists->refs)) {
5263 				spin_unlock(&mapping->private_lock);
5264 				unlock_page(p);
5265 				put_page(p);
5266 				mark_extent_buffer_accessed(exists, p);
5267 				goto free_eb;
5268 			}
5269 			exists = NULL;
5270 
5271 			/*
5272 			 * Do this so attach doesn't complain and we need to
5273 			 * drop the ref the old guy had.
5274 			 */
5275 			ClearPagePrivate(p);
5276 			WARN_ON(PageDirty(p));
5277 			put_page(p);
5278 		}
5279 		attach_extent_buffer_page(eb, p);
5280 		spin_unlock(&mapping->private_lock);
5281 		WARN_ON(PageDirty(p));
5282 		eb->pages[i] = p;
5283 		if (!PageUptodate(p))
5284 			uptodate = 0;
5285 
5286 		/*
5287 		 * We can't unlock the pages just yet since the extent buffer
5288 		 * hasn't been properly inserted in the radix tree, this
5289 		 * opens a race with btree_releasepage which can free a page
5290 		 * while we are still filling in all pages for the buffer and
5291 		 * we could crash.
5292 		 */
5293 	}
5294 	if (uptodate)
5295 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5296 again:
5297 	ret = radix_tree_preload(GFP_NOFS);
5298 	if (ret) {
5299 		exists = ERR_PTR(ret);
5300 		goto free_eb;
5301 	}
5302 
5303 	spin_lock(&fs_info->buffer_lock);
5304 	ret = radix_tree_insert(&fs_info->buffer_radix,
5305 				start >> PAGE_SHIFT, eb);
5306 	spin_unlock(&fs_info->buffer_lock);
5307 	radix_tree_preload_end();
5308 	if (ret == -EEXIST) {
5309 		exists = find_extent_buffer(fs_info, start);
5310 		if (exists)
5311 			goto free_eb;
5312 		else
5313 			goto again;
5314 	}
5315 	/* add one reference for the tree */
5316 	check_buffer_tree_ref(eb);
5317 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5318 
5319 	/*
5320 	 * Now it's safe to unlock the pages because any calls to
5321 	 * btree_releasepage will correctly detect that a page belongs to a
5322 	 * live buffer and won't free them prematurely.
5323 	 */
5324 	for (i = 0; i < num_pages; i++)
5325 		unlock_page(eb->pages[i]);
5326 	return eb;
5327 
5328 free_eb:
5329 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5330 	for (i = 0; i < num_pages; i++) {
5331 		if (eb->pages[i])
5332 			unlock_page(eb->pages[i]);
5333 	}
5334 
5335 	btrfs_release_extent_buffer(eb);
5336 	return exists;
5337 }
5338 
5339 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5340 {
5341 	struct extent_buffer *eb =
5342 			container_of(head, struct extent_buffer, rcu_head);
5343 
5344 	__free_extent_buffer(eb);
5345 }
5346 
5347 static int release_extent_buffer(struct extent_buffer *eb)
5348 	__releases(&eb->refs_lock)
5349 {
5350 	lockdep_assert_held(&eb->refs_lock);
5351 
5352 	WARN_ON(atomic_read(&eb->refs) == 0);
5353 	if (atomic_dec_and_test(&eb->refs)) {
5354 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5355 			struct btrfs_fs_info *fs_info = eb->fs_info;
5356 
5357 			spin_unlock(&eb->refs_lock);
5358 
5359 			spin_lock(&fs_info->buffer_lock);
5360 			radix_tree_delete(&fs_info->buffer_radix,
5361 					  eb->start >> PAGE_SHIFT);
5362 			spin_unlock(&fs_info->buffer_lock);
5363 		} else {
5364 			spin_unlock(&eb->refs_lock);
5365 		}
5366 
5367 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5368 		/* Should be safe to release our pages at this point */
5369 		btrfs_release_extent_buffer_pages(eb);
5370 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5371 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5372 			__free_extent_buffer(eb);
5373 			return 1;
5374 		}
5375 #endif
5376 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5377 		return 1;
5378 	}
5379 	spin_unlock(&eb->refs_lock);
5380 
5381 	return 0;
5382 }
5383 
5384 void free_extent_buffer(struct extent_buffer *eb)
5385 {
5386 	int refs;
5387 	int old;
5388 	if (!eb)
5389 		return;
5390 
5391 	while (1) {
5392 		refs = atomic_read(&eb->refs);
5393 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5394 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5395 			refs == 1))
5396 			break;
5397 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5398 		if (old == refs)
5399 			return;
5400 	}
5401 
5402 	spin_lock(&eb->refs_lock);
5403 	if (atomic_read(&eb->refs) == 2 &&
5404 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5405 	    !extent_buffer_under_io(eb) &&
5406 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407 		atomic_dec(&eb->refs);
5408 
5409 	/*
5410 	 * I know this is terrible, but it's temporary until we stop tracking
5411 	 * the uptodate bits and such for the extent buffers.
5412 	 */
5413 	release_extent_buffer(eb);
5414 }
5415 
5416 void free_extent_buffer_stale(struct extent_buffer *eb)
5417 {
5418 	if (!eb)
5419 		return;
5420 
5421 	spin_lock(&eb->refs_lock);
5422 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5423 
5424 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5425 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5426 		atomic_dec(&eb->refs);
5427 	release_extent_buffer(eb);
5428 }
5429 
5430 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5431 {
5432 	int i;
5433 	int num_pages;
5434 	struct page *page;
5435 
5436 	num_pages = num_extent_pages(eb);
5437 
5438 	for (i = 0; i < num_pages; i++) {
5439 		page = eb->pages[i];
5440 		if (!PageDirty(page))
5441 			continue;
5442 
5443 		lock_page(page);
5444 		WARN_ON(!PagePrivate(page));
5445 
5446 		clear_page_dirty_for_io(page);
5447 		xa_lock_irq(&page->mapping->i_pages);
5448 		if (!PageDirty(page))
5449 			__xa_clear_mark(&page->mapping->i_pages,
5450 					page_index(page), PAGECACHE_TAG_DIRTY);
5451 		xa_unlock_irq(&page->mapping->i_pages);
5452 		ClearPageError(page);
5453 		unlock_page(page);
5454 	}
5455 	WARN_ON(atomic_read(&eb->refs) == 0);
5456 }
5457 
5458 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5459 {
5460 	int i;
5461 	int num_pages;
5462 	bool was_dirty;
5463 
5464 	check_buffer_tree_ref(eb);
5465 
5466 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5467 
5468 	num_pages = num_extent_pages(eb);
5469 	WARN_ON(atomic_read(&eb->refs) == 0);
5470 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5471 
5472 	if (!was_dirty)
5473 		for (i = 0; i < num_pages; i++)
5474 			set_page_dirty(eb->pages[i]);
5475 
5476 #ifdef CONFIG_BTRFS_DEBUG
5477 	for (i = 0; i < num_pages; i++)
5478 		ASSERT(PageDirty(eb->pages[i]));
5479 #endif
5480 
5481 	return was_dirty;
5482 }
5483 
5484 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5485 {
5486 	int i;
5487 	struct page *page;
5488 	int num_pages;
5489 
5490 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5491 	num_pages = num_extent_pages(eb);
5492 	for (i = 0; i < num_pages; i++) {
5493 		page = eb->pages[i];
5494 		if (page)
5495 			ClearPageUptodate(page);
5496 	}
5497 }
5498 
5499 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5500 {
5501 	int i;
5502 	struct page *page;
5503 	int num_pages;
5504 
5505 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5506 	num_pages = num_extent_pages(eb);
5507 	for (i = 0; i < num_pages; i++) {
5508 		page = eb->pages[i];
5509 		SetPageUptodate(page);
5510 	}
5511 }
5512 
5513 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5514 {
5515 	int i;
5516 	struct page *page;
5517 	int err;
5518 	int ret = 0;
5519 	int locked_pages = 0;
5520 	int all_uptodate = 1;
5521 	int num_pages;
5522 	unsigned long num_reads = 0;
5523 	struct bio *bio = NULL;
5524 	unsigned long bio_flags = 0;
5525 
5526 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5527 		return 0;
5528 
5529 	num_pages = num_extent_pages(eb);
5530 	for (i = 0; i < num_pages; i++) {
5531 		page = eb->pages[i];
5532 		if (wait == WAIT_NONE) {
5533 			if (!trylock_page(page))
5534 				goto unlock_exit;
5535 		} else {
5536 			lock_page(page);
5537 		}
5538 		locked_pages++;
5539 	}
5540 	/*
5541 	 * We need to firstly lock all pages to make sure that
5542 	 * the uptodate bit of our pages won't be affected by
5543 	 * clear_extent_buffer_uptodate().
5544 	 */
5545 	for (i = 0; i < num_pages; i++) {
5546 		page = eb->pages[i];
5547 		if (!PageUptodate(page)) {
5548 			num_reads++;
5549 			all_uptodate = 0;
5550 		}
5551 	}
5552 
5553 	if (all_uptodate) {
5554 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5555 		goto unlock_exit;
5556 	}
5557 
5558 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5559 	eb->read_mirror = 0;
5560 	atomic_set(&eb->io_pages, num_reads);
5561 	/*
5562 	 * It is possible for releasepage to clear the TREE_REF bit before we
5563 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5564 	 */
5565 	check_buffer_tree_ref(eb);
5566 	for (i = 0; i < num_pages; i++) {
5567 		page = eb->pages[i];
5568 
5569 		if (!PageUptodate(page)) {
5570 			if (ret) {
5571 				atomic_dec(&eb->io_pages);
5572 				unlock_page(page);
5573 				continue;
5574 			}
5575 
5576 			ClearPageError(page);
5577 			err = __extent_read_full_page(page,
5578 						      btree_get_extent, &bio,
5579 						      mirror_num, &bio_flags,
5580 						      REQ_META);
5581 			if (err) {
5582 				ret = err;
5583 				/*
5584 				 * We use &bio in above __extent_read_full_page,
5585 				 * so we ensure that if it returns error, the
5586 				 * current page fails to add itself to bio and
5587 				 * it's been unlocked.
5588 				 *
5589 				 * We must dec io_pages by ourselves.
5590 				 */
5591 				atomic_dec(&eb->io_pages);
5592 			}
5593 		} else {
5594 			unlock_page(page);
5595 		}
5596 	}
5597 
5598 	if (bio) {
5599 		err = submit_one_bio(bio, mirror_num, bio_flags);
5600 		if (err)
5601 			return err;
5602 	}
5603 
5604 	if (ret || wait != WAIT_COMPLETE)
5605 		return ret;
5606 
5607 	for (i = 0; i < num_pages; i++) {
5608 		page = eb->pages[i];
5609 		wait_on_page_locked(page);
5610 		if (!PageUptodate(page))
5611 			ret = -EIO;
5612 	}
5613 
5614 	return ret;
5615 
5616 unlock_exit:
5617 	while (locked_pages > 0) {
5618 		locked_pages--;
5619 		page = eb->pages[locked_pages];
5620 		unlock_page(page);
5621 	}
5622 	return ret;
5623 }
5624 
5625 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626 			unsigned long start, unsigned long len)
5627 {
5628 	size_t cur;
5629 	size_t offset;
5630 	struct page *page;
5631 	char *kaddr;
5632 	char *dst = (char *)dstv;
5633 	unsigned long i = start >> PAGE_SHIFT;
5634 
5635 	if (start + len > eb->len) {
5636 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5637 		     eb->start, eb->len, start, len);
5638 		memset(dst, 0, len);
5639 		return;
5640 	}
5641 
5642 	offset = offset_in_page(start);
5643 
5644 	while (len > 0) {
5645 		page = eb->pages[i];
5646 
5647 		cur = min(len, (PAGE_SIZE - offset));
5648 		kaddr = page_address(page);
5649 		memcpy(dst, kaddr + offset, cur);
5650 
5651 		dst += cur;
5652 		len -= cur;
5653 		offset = 0;
5654 		i++;
5655 	}
5656 }
5657 
5658 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5659 			       void __user *dstv,
5660 			       unsigned long start, unsigned long len)
5661 {
5662 	size_t cur;
5663 	size_t offset;
5664 	struct page *page;
5665 	char *kaddr;
5666 	char __user *dst = (char __user *)dstv;
5667 	unsigned long i = start >> PAGE_SHIFT;
5668 	int ret = 0;
5669 
5670 	WARN_ON(start > eb->len);
5671 	WARN_ON(start + len > eb->start + eb->len);
5672 
5673 	offset = offset_in_page(start);
5674 
5675 	while (len > 0) {
5676 		page = eb->pages[i];
5677 
5678 		cur = min(len, (PAGE_SIZE - offset));
5679 		kaddr = page_address(page);
5680 		if (copy_to_user(dst, kaddr + offset, cur)) {
5681 			ret = -EFAULT;
5682 			break;
5683 		}
5684 
5685 		dst += cur;
5686 		len -= cur;
5687 		offset = 0;
5688 		i++;
5689 	}
5690 
5691 	return ret;
5692 }
5693 
5694 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5695 			 unsigned long start, unsigned long len)
5696 {
5697 	size_t cur;
5698 	size_t offset;
5699 	struct page *page;
5700 	char *kaddr;
5701 	char *ptr = (char *)ptrv;
5702 	unsigned long i = start >> PAGE_SHIFT;
5703 	int ret = 0;
5704 
5705 	WARN_ON(start > eb->len);
5706 	WARN_ON(start + len > eb->start + eb->len);
5707 
5708 	offset = offset_in_page(start);
5709 
5710 	while (len > 0) {
5711 		page = eb->pages[i];
5712 
5713 		cur = min(len, (PAGE_SIZE - offset));
5714 
5715 		kaddr = page_address(page);
5716 		ret = memcmp(ptr, kaddr + offset, cur);
5717 		if (ret)
5718 			break;
5719 
5720 		ptr += cur;
5721 		len -= cur;
5722 		offset = 0;
5723 		i++;
5724 	}
5725 	return ret;
5726 }
5727 
5728 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5729 		const void *srcv)
5730 {
5731 	char *kaddr;
5732 
5733 	WARN_ON(!PageUptodate(eb->pages[0]));
5734 	kaddr = page_address(eb->pages[0]);
5735 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5736 			BTRFS_FSID_SIZE);
5737 }
5738 
5739 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5740 {
5741 	char *kaddr;
5742 
5743 	WARN_ON(!PageUptodate(eb->pages[0]));
5744 	kaddr = page_address(eb->pages[0]);
5745 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5746 			BTRFS_FSID_SIZE);
5747 }
5748 
5749 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5750 			 unsigned long start, unsigned long len)
5751 {
5752 	size_t cur;
5753 	size_t offset;
5754 	struct page *page;
5755 	char *kaddr;
5756 	char *src = (char *)srcv;
5757 	unsigned long i = start >> PAGE_SHIFT;
5758 
5759 	WARN_ON(start > eb->len);
5760 	WARN_ON(start + len > eb->start + eb->len);
5761 
5762 	offset = offset_in_page(start);
5763 
5764 	while (len > 0) {
5765 		page = eb->pages[i];
5766 		WARN_ON(!PageUptodate(page));
5767 
5768 		cur = min(len, PAGE_SIZE - offset);
5769 		kaddr = page_address(page);
5770 		memcpy(kaddr + offset, src, cur);
5771 
5772 		src += cur;
5773 		len -= cur;
5774 		offset = 0;
5775 		i++;
5776 	}
5777 }
5778 
5779 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5780 		unsigned long len)
5781 {
5782 	size_t cur;
5783 	size_t offset;
5784 	struct page *page;
5785 	char *kaddr;
5786 	unsigned long i = start >> PAGE_SHIFT;
5787 
5788 	WARN_ON(start > eb->len);
5789 	WARN_ON(start + len > eb->start + eb->len);
5790 
5791 	offset = offset_in_page(start);
5792 
5793 	while (len > 0) {
5794 		page = eb->pages[i];
5795 		WARN_ON(!PageUptodate(page));
5796 
5797 		cur = min(len, PAGE_SIZE - offset);
5798 		kaddr = page_address(page);
5799 		memset(kaddr + offset, 0, cur);
5800 
5801 		len -= cur;
5802 		offset = 0;
5803 		i++;
5804 	}
5805 }
5806 
5807 void copy_extent_buffer_full(const struct extent_buffer *dst,
5808 			     const struct extent_buffer *src)
5809 {
5810 	int i;
5811 	int num_pages;
5812 
5813 	ASSERT(dst->len == src->len);
5814 
5815 	num_pages = num_extent_pages(dst);
5816 	for (i = 0; i < num_pages; i++)
5817 		copy_page(page_address(dst->pages[i]),
5818 				page_address(src->pages[i]));
5819 }
5820 
5821 void copy_extent_buffer(const struct extent_buffer *dst,
5822 			const struct extent_buffer *src,
5823 			unsigned long dst_offset, unsigned long src_offset,
5824 			unsigned long len)
5825 {
5826 	u64 dst_len = dst->len;
5827 	size_t cur;
5828 	size_t offset;
5829 	struct page *page;
5830 	char *kaddr;
5831 	unsigned long i = dst_offset >> PAGE_SHIFT;
5832 
5833 	WARN_ON(src->len != dst_len);
5834 
5835 	offset = offset_in_page(dst_offset);
5836 
5837 	while (len > 0) {
5838 		page = dst->pages[i];
5839 		WARN_ON(!PageUptodate(page));
5840 
5841 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5842 
5843 		kaddr = page_address(page);
5844 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5845 
5846 		src_offset += cur;
5847 		len -= cur;
5848 		offset = 0;
5849 		i++;
5850 	}
5851 }
5852 
5853 /*
5854  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5855  * given bit number
5856  * @eb: the extent buffer
5857  * @start: offset of the bitmap item in the extent buffer
5858  * @nr: bit number
5859  * @page_index: return index of the page in the extent buffer that contains the
5860  * given bit number
5861  * @page_offset: return offset into the page given by page_index
5862  *
5863  * This helper hides the ugliness of finding the byte in an extent buffer which
5864  * contains a given bit.
5865  */
5866 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5867 				    unsigned long start, unsigned long nr,
5868 				    unsigned long *page_index,
5869 				    size_t *page_offset)
5870 {
5871 	size_t byte_offset = BIT_BYTE(nr);
5872 	size_t offset;
5873 
5874 	/*
5875 	 * The byte we want is the offset of the extent buffer + the offset of
5876 	 * the bitmap item in the extent buffer + the offset of the byte in the
5877 	 * bitmap item.
5878 	 */
5879 	offset = start + byte_offset;
5880 
5881 	*page_index = offset >> PAGE_SHIFT;
5882 	*page_offset = offset_in_page(offset);
5883 }
5884 
5885 /**
5886  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5887  * @eb: the extent buffer
5888  * @start: offset of the bitmap item in the extent buffer
5889  * @nr: bit number to test
5890  */
5891 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5892 			   unsigned long nr)
5893 {
5894 	u8 *kaddr;
5895 	struct page *page;
5896 	unsigned long i;
5897 	size_t offset;
5898 
5899 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5900 	page = eb->pages[i];
5901 	WARN_ON(!PageUptodate(page));
5902 	kaddr = page_address(page);
5903 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5904 }
5905 
5906 /**
5907  * extent_buffer_bitmap_set - set an area of a bitmap
5908  * @eb: the extent buffer
5909  * @start: offset of the bitmap item in the extent buffer
5910  * @pos: bit number of the first bit
5911  * @len: number of bits to set
5912  */
5913 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5914 			      unsigned long pos, unsigned long len)
5915 {
5916 	u8 *kaddr;
5917 	struct page *page;
5918 	unsigned long i;
5919 	size_t offset;
5920 	const unsigned int size = pos + len;
5921 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5922 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5923 
5924 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5925 	page = eb->pages[i];
5926 	WARN_ON(!PageUptodate(page));
5927 	kaddr = page_address(page);
5928 
5929 	while (len >= bits_to_set) {
5930 		kaddr[offset] |= mask_to_set;
5931 		len -= bits_to_set;
5932 		bits_to_set = BITS_PER_BYTE;
5933 		mask_to_set = ~0;
5934 		if (++offset >= PAGE_SIZE && len > 0) {
5935 			offset = 0;
5936 			page = eb->pages[++i];
5937 			WARN_ON(!PageUptodate(page));
5938 			kaddr = page_address(page);
5939 		}
5940 	}
5941 	if (len) {
5942 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5943 		kaddr[offset] |= mask_to_set;
5944 	}
5945 }
5946 
5947 
5948 /**
5949  * extent_buffer_bitmap_clear - clear an area of a bitmap
5950  * @eb: the extent buffer
5951  * @start: offset of the bitmap item in the extent buffer
5952  * @pos: bit number of the first bit
5953  * @len: number of bits to clear
5954  */
5955 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5956 				unsigned long start, unsigned long pos,
5957 				unsigned long len)
5958 {
5959 	u8 *kaddr;
5960 	struct page *page;
5961 	unsigned long i;
5962 	size_t offset;
5963 	const unsigned int size = pos + len;
5964 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5965 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5966 
5967 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5968 	page = eb->pages[i];
5969 	WARN_ON(!PageUptodate(page));
5970 	kaddr = page_address(page);
5971 
5972 	while (len >= bits_to_clear) {
5973 		kaddr[offset] &= ~mask_to_clear;
5974 		len -= bits_to_clear;
5975 		bits_to_clear = BITS_PER_BYTE;
5976 		mask_to_clear = ~0;
5977 		if (++offset >= PAGE_SIZE && len > 0) {
5978 			offset = 0;
5979 			page = eb->pages[++i];
5980 			WARN_ON(!PageUptodate(page));
5981 			kaddr = page_address(page);
5982 		}
5983 	}
5984 	if (len) {
5985 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5986 		kaddr[offset] &= ~mask_to_clear;
5987 	}
5988 }
5989 
5990 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5991 {
5992 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5993 	return distance < len;
5994 }
5995 
5996 static void copy_pages(struct page *dst_page, struct page *src_page,
5997 		       unsigned long dst_off, unsigned long src_off,
5998 		       unsigned long len)
5999 {
6000 	char *dst_kaddr = page_address(dst_page);
6001 	char *src_kaddr;
6002 	int must_memmove = 0;
6003 
6004 	if (dst_page != src_page) {
6005 		src_kaddr = page_address(src_page);
6006 	} else {
6007 		src_kaddr = dst_kaddr;
6008 		if (areas_overlap(src_off, dst_off, len))
6009 			must_memmove = 1;
6010 	}
6011 
6012 	if (must_memmove)
6013 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014 	else
6015 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6016 }
6017 
6018 void memcpy_extent_buffer(const struct extent_buffer *dst,
6019 			  unsigned long dst_offset, unsigned long src_offset,
6020 			  unsigned long len)
6021 {
6022 	struct btrfs_fs_info *fs_info = dst->fs_info;
6023 	size_t cur;
6024 	size_t dst_off_in_page;
6025 	size_t src_off_in_page;
6026 	unsigned long dst_i;
6027 	unsigned long src_i;
6028 
6029 	if (src_offset + len > dst->len) {
6030 		btrfs_err(fs_info,
6031 			"memmove bogus src_offset %lu move len %lu dst len %lu",
6032 			 src_offset, len, dst->len);
6033 		BUG();
6034 	}
6035 	if (dst_offset + len > dst->len) {
6036 		btrfs_err(fs_info,
6037 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
6038 			 dst_offset, len, dst->len);
6039 		BUG();
6040 	}
6041 
6042 	while (len > 0) {
6043 		dst_off_in_page = offset_in_page(dst_offset);
6044 		src_off_in_page = offset_in_page(src_offset);
6045 
6046 		dst_i = dst_offset >> PAGE_SHIFT;
6047 		src_i = src_offset >> PAGE_SHIFT;
6048 
6049 		cur = min(len, (unsigned long)(PAGE_SIZE -
6050 					       src_off_in_page));
6051 		cur = min_t(unsigned long, cur,
6052 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6053 
6054 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6055 			   dst_off_in_page, src_off_in_page, cur);
6056 
6057 		src_offset += cur;
6058 		dst_offset += cur;
6059 		len -= cur;
6060 	}
6061 }
6062 
6063 void memmove_extent_buffer(const struct extent_buffer *dst,
6064 			   unsigned long dst_offset, unsigned long src_offset,
6065 			   unsigned long len)
6066 {
6067 	struct btrfs_fs_info *fs_info = dst->fs_info;
6068 	size_t cur;
6069 	size_t dst_off_in_page;
6070 	size_t src_off_in_page;
6071 	unsigned long dst_end = dst_offset + len - 1;
6072 	unsigned long src_end = src_offset + len - 1;
6073 	unsigned long dst_i;
6074 	unsigned long src_i;
6075 
6076 	if (src_offset + len > dst->len) {
6077 		btrfs_err(fs_info,
6078 			  "memmove bogus src_offset %lu move len %lu len %lu",
6079 			  src_offset, len, dst->len);
6080 		BUG();
6081 	}
6082 	if (dst_offset + len > dst->len) {
6083 		btrfs_err(fs_info,
6084 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6085 			  dst_offset, len, dst->len);
6086 		BUG();
6087 	}
6088 	if (dst_offset < src_offset) {
6089 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6090 		return;
6091 	}
6092 	while (len > 0) {
6093 		dst_i = dst_end >> PAGE_SHIFT;
6094 		src_i = src_end >> PAGE_SHIFT;
6095 
6096 		dst_off_in_page = offset_in_page(dst_end);
6097 		src_off_in_page = offset_in_page(src_end);
6098 
6099 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6100 		cur = min(cur, dst_off_in_page + 1);
6101 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6102 			   dst_off_in_page - cur + 1,
6103 			   src_off_in_page - cur + 1, cur);
6104 
6105 		dst_end -= cur;
6106 		src_end -= cur;
6107 		len -= cur;
6108 	}
6109 }
6110 
6111 int try_release_extent_buffer(struct page *page)
6112 {
6113 	struct extent_buffer *eb;
6114 
6115 	/*
6116 	 * We need to make sure nobody is attaching this page to an eb right
6117 	 * now.
6118 	 */
6119 	spin_lock(&page->mapping->private_lock);
6120 	if (!PagePrivate(page)) {
6121 		spin_unlock(&page->mapping->private_lock);
6122 		return 1;
6123 	}
6124 
6125 	eb = (struct extent_buffer *)page->private;
6126 	BUG_ON(!eb);
6127 
6128 	/*
6129 	 * This is a little awful but should be ok, we need to make sure that
6130 	 * the eb doesn't disappear out from under us while we're looking at
6131 	 * this page.
6132 	 */
6133 	spin_lock(&eb->refs_lock);
6134 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6135 		spin_unlock(&eb->refs_lock);
6136 		spin_unlock(&page->mapping->private_lock);
6137 		return 0;
6138 	}
6139 	spin_unlock(&page->mapping->private_lock);
6140 
6141 	/*
6142 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6143 	 * so just return, this page will likely be freed soon anyway.
6144 	 */
6145 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6146 		spin_unlock(&eb->refs_lock);
6147 		return 0;
6148 	}
6149 
6150 	return release_extent_buffer(eb);
6151 }
6152