xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 5ed78e55)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28 
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 	return !RB_EMPTY_NODE(&state->rb_node);
32 }
33 
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37 
38 static DEFINE_SPINLOCK(leak_lock);
39 
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 	unsigned long flags;
44 
45 	spin_lock_irqsave(&leak_lock, flags);
46 	list_add(new, head);
47 	spin_unlock_irqrestore(&leak_lock, flags);
48 }
49 
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 	unsigned long flags;
54 
55 	spin_lock_irqsave(&leak_lock, flags);
56 	list_del(entry);
57 	spin_unlock_irqrestore(&leak_lock, flags);
58 }
59 
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 	struct extent_state *state;
64 	struct extent_buffer *eb;
65 
66 	while (!list_empty(&states)) {
67 		state = list_entry(states.next, struct extent_state, leak_list);
68 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 		       state->start, state->end, state->state,
70 		       extent_state_in_tree(state),
71 		       atomic_read(&state->refs));
72 		list_del(&state->leak_list);
73 		kmem_cache_free(extent_state_cache, state);
74 	}
75 
76 	while (!list_empty(&buffers)) {
77 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use REQ_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	/*
230 	 * The given mask might be not appropriate for the slab allocator,
231 	 * drop the unsupported bits
232 	 */
233 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
234 	state = kmem_cache_alloc(extent_state_cache, mask);
235 	if (!state)
236 		return state;
237 	state->state = 0;
238 	state->failrec = NULL;
239 	RB_CLEAR_NODE(&state->rb_node);
240 	btrfs_leak_debug_add(&state->leak_list, &states);
241 	atomic_set(&state->refs, 1);
242 	init_waitqueue_head(&state->wq);
243 	trace_alloc_extent_state(state, mask, _RET_IP_);
244 	return state;
245 }
246 
247 void free_extent_state(struct extent_state *state)
248 {
249 	if (!state)
250 		return;
251 	if (atomic_dec_and_test(&state->refs)) {
252 		WARN_ON(extent_state_in_tree(state));
253 		btrfs_leak_debug_del(&state->leak_list);
254 		trace_free_extent_state(state, _RET_IP_);
255 		kmem_cache_free(extent_state_cache, state);
256 	}
257 }
258 
259 static struct rb_node *tree_insert(struct rb_root *root,
260 				   struct rb_node *search_start,
261 				   u64 offset,
262 				   struct rb_node *node,
263 				   struct rb_node ***p_in,
264 				   struct rb_node **parent_in)
265 {
266 	struct rb_node **p;
267 	struct rb_node *parent = NULL;
268 	struct tree_entry *entry;
269 
270 	if (p_in && parent_in) {
271 		p = *p_in;
272 		parent = *parent_in;
273 		goto do_insert;
274 	}
275 
276 	p = search_start ? &search_start : &root->rb_node;
277 	while (*p) {
278 		parent = *p;
279 		entry = rb_entry(parent, struct tree_entry, rb_node);
280 
281 		if (offset < entry->start)
282 			p = &(*p)->rb_left;
283 		else if (offset > entry->end)
284 			p = &(*p)->rb_right;
285 		else
286 			return parent;
287 	}
288 
289 do_insert:
290 	rb_link_node(node, parent, p);
291 	rb_insert_color(node, root);
292 	return NULL;
293 }
294 
295 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
296 				      struct rb_node **prev_ret,
297 				      struct rb_node **next_ret,
298 				      struct rb_node ***p_ret,
299 				      struct rb_node **parent_ret)
300 {
301 	struct rb_root *root = &tree->state;
302 	struct rb_node **n = &root->rb_node;
303 	struct rb_node *prev = NULL;
304 	struct rb_node *orig_prev = NULL;
305 	struct tree_entry *entry;
306 	struct tree_entry *prev_entry = NULL;
307 
308 	while (*n) {
309 		prev = *n;
310 		entry = rb_entry(prev, struct tree_entry, rb_node);
311 		prev_entry = entry;
312 
313 		if (offset < entry->start)
314 			n = &(*n)->rb_left;
315 		else if (offset > entry->end)
316 			n = &(*n)->rb_right;
317 		else
318 			return *n;
319 	}
320 
321 	if (p_ret)
322 		*p_ret = n;
323 	if (parent_ret)
324 		*parent_ret = prev;
325 
326 	if (prev_ret) {
327 		orig_prev = prev;
328 		while (prev && offset > prev_entry->end) {
329 			prev = rb_next(prev);
330 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 		}
332 		*prev_ret = prev;
333 		prev = orig_prev;
334 	}
335 
336 	if (next_ret) {
337 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 		while (prev && offset < prev_entry->start) {
339 			prev = rb_prev(prev);
340 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 		}
342 		*next_ret = prev;
343 	}
344 	return NULL;
345 }
346 
347 static inline struct rb_node *
348 tree_search_for_insert(struct extent_io_tree *tree,
349 		       u64 offset,
350 		       struct rb_node ***p_ret,
351 		       struct rb_node **parent_ret)
352 {
353 	struct rb_node *prev = NULL;
354 	struct rb_node *ret;
355 
356 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
357 	if (!ret)
358 		return prev;
359 	return ret;
360 }
361 
362 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 					  u64 offset)
364 {
365 	return tree_search_for_insert(tree, offset, NULL, NULL);
366 }
367 
368 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 		     struct extent_state *other)
370 {
371 	if (tree->ops && tree->ops->merge_extent_hook)
372 		tree->ops->merge_extent_hook(tree->mapping->host, new,
373 					     other);
374 }
375 
376 /*
377  * utility function to look for merge candidates inside a given range.
378  * Any extents with matching state are merged together into a single
379  * extent in the tree.  Extents with EXTENT_IO in their state field
380  * are not merged because the end_io handlers need to be able to do
381  * operations on them without sleeping (or doing allocations/splits).
382  *
383  * This should be called with the tree lock held.
384  */
385 static void merge_state(struct extent_io_tree *tree,
386 		        struct extent_state *state)
387 {
388 	struct extent_state *other;
389 	struct rb_node *other_node;
390 
391 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
392 		return;
393 
394 	other_node = rb_prev(&state->rb_node);
395 	if (other_node) {
396 		other = rb_entry(other_node, struct extent_state, rb_node);
397 		if (other->end == state->start - 1 &&
398 		    other->state == state->state) {
399 			merge_cb(tree, state, other);
400 			state->start = other->start;
401 			rb_erase(&other->rb_node, &tree->state);
402 			RB_CLEAR_NODE(&other->rb_node);
403 			free_extent_state(other);
404 		}
405 	}
406 	other_node = rb_next(&state->rb_node);
407 	if (other_node) {
408 		other = rb_entry(other_node, struct extent_state, rb_node);
409 		if (other->start == state->end + 1 &&
410 		    other->state == state->state) {
411 			merge_cb(tree, state, other);
412 			state->end = other->end;
413 			rb_erase(&other->rb_node, &tree->state);
414 			RB_CLEAR_NODE(&other->rb_node);
415 			free_extent_state(other);
416 		}
417 	}
418 }
419 
420 static void set_state_cb(struct extent_io_tree *tree,
421 			 struct extent_state *state, unsigned *bits)
422 {
423 	if (tree->ops && tree->ops->set_bit_hook)
424 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
425 }
426 
427 static void clear_state_cb(struct extent_io_tree *tree,
428 			   struct extent_state *state, unsigned *bits)
429 {
430 	if (tree->ops && tree->ops->clear_bit_hook)
431 		tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 				state, bits);
433 }
434 
435 static void set_state_bits(struct extent_io_tree *tree,
436 			   struct extent_state *state, unsigned *bits,
437 			   struct extent_changeset *changeset);
438 
439 /*
440  * insert an extent_state struct into the tree.  'bits' are set on the
441  * struct before it is inserted.
442  *
443  * This may return -EEXIST if the extent is already there, in which case the
444  * state struct is freed.
445  *
446  * The tree lock is not taken internally.  This is a utility function and
447  * probably isn't what you want to call (see set/clear_extent_bit).
448  */
449 static int insert_state(struct extent_io_tree *tree,
450 			struct extent_state *state, u64 start, u64 end,
451 			struct rb_node ***p,
452 			struct rb_node **parent,
453 			unsigned *bits, struct extent_changeset *changeset)
454 {
455 	struct rb_node *node;
456 
457 	if (end < start)
458 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
459 		       end, start);
460 	state->start = start;
461 	state->end = end;
462 
463 	set_state_bits(tree, state, bits, changeset);
464 
465 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
466 	if (node) {
467 		struct extent_state *found;
468 		found = rb_entry(node, struct extent_state, rb_node);
469 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
470 		       found->start, found->end, start, end);
471 		return -EEXIST;
472 	}
473 	merge_state(tree, state);
474 	return 0;
475 }
476 
477 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
478 		     u64 split)
479 {
480 	if (tree->ops && tree->ops->split_extent_hook)
481 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 }
483 
484 /*
485  * split a given extent state struct in two, inserting the preallocated
486  * struct 'prealloc' as the newly created second half.  'split' indicates an
487  * offset inside 'orig' where it should be split.
488  *
489  * Before calling,
490  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
491  * are two extent state structs in the tree:
492  * prealloc: [orig->start, split - 1]
493  * orig: [ split, orig->end ]
494  *
495  * The tree locks are not taken by this function. They need to be held
496  * by the caller.
497  */
498 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 		       struct extent_state *prealloc, u64 split)
500 {
501 	struct rb_node *node;
502 
503 	split_cb(tree, orig, split);
504 
505 	prealloc->start = orig->start;
506 	prealloc->end = split - 1;
507 	prealloc->state = orig->state;
508 	orig->start = split;
509 
510 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 			   &prealloc->rb_node, NULL, NULL);
512 	if (node) {
513 		free_extent_state(prealloc);
514 		return -EEXIST;
515 	}
516 	return 0;
517 }
518 
519 static struct extent_state *next_state(struct extent_state *state)
520 {
521 	struct rb_node *next = rb_next(&state->rb_node);
522 	if (next)
523 		return rb_entry(next, struct extent_state, rb_node);
524 	else
525 		return NULL;
526 }
527 
528 /*
529  * utility function to clear some bits in an extent state struct.
530  * it will optionally wake up any one waiting on this state (wake == 1).
531  *
532  * If no bits are set on the state struct after clearing things, the
533  * struct is freed and removed from the tree
534  */
535 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 					    struct extent_state *state,
537 					    unsigned *bits, int wake,
538 					    struct extent_changeset *changeset)
539 {
540 	struct extent_state *next;
541 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
542 
543 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
544 		u64 range = state->end - state->start + 1;
545 		WARN_ON(range > tree->dirty_bytes);
546 		tree->dirty_bytes -= range;
547 	}
548 	clear_state_cb(tree, state, bits);
549 	add_extent_changeset(state, bits_to_clear, changeset, 0);
550 	state->state &= ~bits_to_clear;
551 	if (wake)
552 		wake_up(&state->wq);
553 	if (state->state == 0) {
554 		next = next_state(state);
555 		if (extent_state_in_tree(state)) {
556 			rb_erase(&state->rb_node, &tree->state);
557 			RB_CLEAR_NODE(&state->rb_node);
558 			free_extent_state(state);
559 		} else {
560 			WARN_ON(1);
561 		}
562 	} else {
563 		merge_state(tree, state);
564 		next = next_state(state);
565 	}
566 	return next;
567 }
568 
569 static struct extent_state *
570 alloc_extent_state_atomic(struct extent_state *prealloc)
571 {
572 	if (!prealloc)
573 		prealloc = alloc_extent_state(GFP_ATOMIC);
574 
575 	return prealloc;
576 }
577 
578 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
579 {
580 	btrfs_panic(tree_fs_info(tree), err,
581 		    "Locking error: Extent tree was modified by another thread while locked.");
582 }
583 
584 /*
585  * clear some bits on a range in the tree.  This may require splitting
586  * or inserting elements in the tree, so the gfp mask is used to
587  * indicate which allocations or sleeping are allowed.
588  *
589  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590  * the given range from the tree regardless of state (ie for truncate).
591  *
592  * the range [start, end] is inclusive.
593  *
594  * This takes the tree lock, and returns 0 on success and < 0 on error.
595  */
596 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 			      unsigned bits, int wake, int delete,
598 			      struct extent_state **cached_state,
599 			      gfp_t mask, struct extent_changeset *changeset)
600 {
601 	struct extent_state *state;
602 	struct extent_state *cached;
603 	struct extent_state *prealloc = NULL;
604 	struct rb_node *node;
605 	u64 last_end;
606 	int err;
607 	int clear = 0;
608 
609 	btrfs_debug_check_extent_io_range(tree, start, end);
610 
611 	if (bits & EXTENT_DELALLOC)
612 		bits |= EXTENT_NORESERVE;
613 
614 	if (delete)
615 		bits |= ~EXTENT_CTLBITS;
616 	bits |= EXTENT_FIRST_DELALLOC;
617 
618 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 		clear = 1;
620 again:
621 	if (!prealloc && gfpflags_allow_blocking(mask)) {
622 		/*
623 		 * Don't care for allocation failure here because we might end
624 		 * up not needing the pre-allocated extent state at all, which
625 		 * is the case if we only have in the tree extent states that
626 		 * cover our input range and don't cover too any other range.
627 		 * If we end up needing a new extent state we allocate it later.
628 		 */
629 		prealloc = alloc_extent_state(mask);
630 	}
631 
632 	spin_lock(&tree->lock);
633 	if (cached_state) {
634 		cached = *cached_state;
635 
636 		if (clear) {
637 			*cached_state = NULL;
638 			cached_state = NULL;
639 		}
640 
641 		if (cached && extent_state_in_tree(cached) &&
642 		    cached->start <= start && cached->end > start) {
643 			if (clear)
644 				atomic_dec(&cached->refs);
645 			state = cached;
646 			goto hit_next;
647 		}
648 		if (clear)
649 			free_extent_state(cached);
650 	}
651 	/*
652 	 * this search will find the extents that end after
653 	 * our range starts
654 	 */
655 	node = tree_search(tree, start);
656 	if (!node)
657 		goto out;
658 	state = rb_entry(node, struct extent_state, rb_node);
659 hit_next:
660 	if (state->start > end)
661 		goto out;
662 	WARN_ON(state->end < start);
663 	last_end = state->end;
664 
665 	/* the state doesn't have the wanted bits, go ahead */
666 	if (!(state->state & bits)) {
667 		state = next_state(state);
668 		goto next;
669 	}
670 
671 	/*
672 	 *     | ---- desired range ---- |
673 	 *  | state | or
674 	 *  | ------------- state -------------- |
675 	 *
676 	 * We need to split the extent we found, and may flip
677 	 * bits on second half.
678 	 *
679 	 * If the extent we found extends past our range, we
680 	 * just split and search again.  It'll get split again
681 	 * the next time though.
682 	 *
683 	 * If the extent we found is inside our range, we clear
684 	 * the desired bit on it.
685 	 */
686 
687 	if (state->start < start) {
688 		prealloc = alloc_extent_state_atomic(prealloc);
689 		BUG_ON(!prealloc);
690 		err = split_state(tree, state, prealloc, start);
691 		if (err)
692 			extent_io_tree_panic(tree, err);
693 
694 		prealloc = NULL;
695 		if (err)
696 			goto out;
697 		if (state->end <= end) {
698 			state = clear_state_bit(tree, state, &bits, wake,
699 						changeset);
700 			goto next;
701 		}
702 		goto search_again;
703 	}
704 	/*
705 	 * | ---- desired range ---- |
706 	 *                        | state |
707 	 * We need to split the extent, and clear the bit
708 	 * on the first half
709 	 */
710 	if (state->start <= end && state->end > end) {
711 		prealloc = alloc_extent_state_atomic(prealloc);
712 		BUG_ON(!prealloc);
713 		err = split_state(tree, state, prealloc, end + 1);
714 		if (err)
715 			extent_io_tree_panic(tree, err);
716 
717 		if (wake)
718 			wake_up(&state->wq);
719 
720 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
721 
722 		prealloc = NULL;
723 		goto out;
724 	}
725 
726 	state = clear_state_bit(tree, state, &bits, wake, changeset);
727 next:
728 	if (last_end == (u64)-1)
729 		goto out;
730 	start = last_end + 1;
731 	if (start <= end && state && !need_resched())
732 		goto hit_next;
733 
734 search_again:
735 	if (start > end)
736 		goto out;
737 	spin_unlock(&tree->lock);
738 	if (gfpflags_allow_blocking(mask))
739 		cond_resched();
740 	goto again;
741 
742 out:
743 	spin_unlock(&tree->lock);
744 	if (prealloc)
745 		free_extent_state(prealloc);
746 
747 	return 0;
748 
749 }
750 
751 static void wait_on_state(struct extent_io_tree *tree,
752 			  struct extent_state *state)
753 		__releases(tree->lock)
754 		__acquires(tree->lock)
755 {
756 	DEFINE_WAIT(wait);
757 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
758 	spin_unlock(&tree->lock);
759 	schedule();
760 	spin_lock(&tree->lock);
761 	finish_wait(&state->wq, &wait);
762 }
763 
764 /*
765  * waits for one or more bits to clear on a range in the state tree.
766  * The range [start, end] is inclusive.
767  * The tree lock is taken by this function
768  */
769 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 			    unsigned long bits)
771 {
772 	struct extent_state *state;
773 	struct rb_node *node;
774 
775 	btrfs_debug_check_extent_io_range(tree, start, end);
776 
777 	spin_lock(&tree->lock);
778 again:
779 	while (1) {
780 		/*
781 		 * this search will find all the extents that end after
782 		 * our range starts
783 		 */
784 		node = tree_search(tree, start);
785 process_node:
786 		if (!node)
787 			break;
788 
789 		state = rb_entry(node, struct extent_state, rb_node);
790 
791 		if (state->start > end)
792 			goto out;
793 
794 		if (state->state & bits) {
795 			start = state->start;
796 			atomic_inc(&state->refs);
797 			wait_on_state(tree, state);
798 			free_extent_state(state);
799 			goto again;
800 		}
801 		start = state->end + 1;
802 
803 		if (start > end)
804 			break;
805 
806 		if (!cond_resched_lock(&tree->lock)) {
807 			node = rb_next(node);
808 			goto process_node;
809 		}
810 	}
811 out:
812 	spin_unlock(&tree->lock);
813 }
814 
815 static void set_state_bits(struct extent_io_tree *tree,
816 			   struct extent_state *state,
817 			   unsigned *bits, struct extent_changeset *changeset)
818 {
819 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
820 
821 	set_state_cb(tree, state, bits);
822 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
823 		u64 range = state->end - state->start + 1;
824 		tree->dirty_bytes += range;
825 	}
826 	add_extent_changeset(state, bits_to_set, changeset, 1);
827 	state->state |= bits_to_set;
828 }
829 
830 static void cache_state_if_flags(struct extent_state *state,
831 				 struct extent_state **cached_ptr,
832 				 unsigned flags)
833 {
834 	if (cached_ptr && !(*cached_ptr)) {
835 		if (!flags || (state->state & flags)) {
836 			*cached_ptr = state;
837 			atomic_inc(&state->refs);
838 		}
839 	}
840 }
841 
842 static void cache_state(struct extent_state *state,
843 			struct extent_state **cached_ptr)
844 {
845 	return cache_state_if_flags(state, cached_ptr,
846 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
847 }
848 
849 /*
850  * set some bits on a range in the tree.  This may require allocations or
851  * sleeping, so the gfp mask is used to indicate what is allowed.
852  *
853  * If any of the exclusive bits are set, this will fail with -EEXIST if some
854  * part of the range already has the desired bits set.  The start of the
855  * existing range is returned in failed_start in this case.
856  *
857  * [start, end] is inclusive This takes the tree lock.
858  */
859 
860 static int __must_check
861 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
862 		 unsigned bits, unsigned exclusive_bits,
863 		 u64 *failed_start, struct extent_state **cached_state,
864 		 gfp_t mask, struct extent_changeset *changeset)
865 {
866 	struct extent_state *state;
867 	struct extent_state *prealloc = NULL;
868 	struct rb_node *node;
869 	struct rb_node **p;
870 	struct rb_node *parent;
871 	int err = 0;
872 	u64 last_start;
873 	u64 last_end;
874 
875 	btrfs_debug_check_extent_io_range(tree, start, end);
876 
877 	bits |= EXTENT_FIRST_DELALLOC;
878 again:
879 	if (!prealloc && gfpflags_allow_blocking(mask)) {
880 		/*
881 		 * Don't care for allocation failure here because we might end
882 		 * up not needing the pre-allocated extent state at all, which
883 		 * is the case if we only have in the tree extent states that
884 		 * cover our input range and don't cover too any other range.
885 		 * If we end up needing a new extent state we allocate it later.
886 		 */
887 		prealloc = alloc_extent_state(mask);
888 	}
889 
890 	spin_lock(&tree->lock);
891 	if (cached_state && *cached_state) {
892 		state = *cached_state;
893 		if (state->start <= start && state->end > start &&
894 		    extent_state_in_tree(state)) {
895 			node = &state->rb_node;
896 			goto hit_next;
897 		}
898 	}
899 	/*
900 	 * this search will find all the extents that end after
901 	 * our range starts.
902 	 */
903 	node = tree_search_for_insert(tree, start, &p, &parent);
904 	if (!node) {
905 		prealloc = alloc_extent_state_atomic(prealloc);
906 		BUG_ON(!prealloc);
907 		err = insert_state(tree, prealloc, start, end,
908 				   &p, &parent, &bits, changeset);
909 		if (err)
910 			extent_io_tree_panic(tree, err);
911 
912 		cache_state(prealloc, cached_state);
913 		prealloc = NULL;
914 		goto out;
915 	}
916 	state = rb_entry(node, struct extent_state, rb_node);
917 hit_next:
918 	last_start = state->start;
919 	last_end = state->end;
920 
921 	/*
922 	 * | ---- desired range ---- |
923 	 * | state |
924 	 *
925 	 * Just lock what we found and keep going
926 	 */
927 	if (state->start == start && state->end <= end) {
928 		if (state->state & exclusive_bits) {
929 			*failed_start = state->start;
930 			err = -EEXIST;
931 			goto out;
932 		}
933 
934 		set_state_bits(tree, state, &bits, changeset);
935 		cache_state(state, cached_state);
936 		merge_state(tree, state);
937 		if (last_end == (u64)-1)
938 			goto out;
939 		start = last_end + 1;
940 		state = next_state(state);
941 		if (start < end && state && state->start == start &&
942 		    !need_resched())
943 			goto hit_next;
944 		goto search_again;
945 	}
946 
947 	/*
948 	 *     | ---- desired range ---- |
949 	 * | state |
950 	 *   or
951 	 * | ------------- state -------------- |
952 	 *
953 	 * We need to split the extent we found, and may flip bits on
954 	 * second half.
955 	 *
956 	 * If the extent we found extends past our
957 	 * range, we just split and search again.  It'll get split
958 	 * again the next time though.
959 	 *
960 	 * If the extent we found is inside our range, we set the
961 	 * desired bit on it.
962 	 */
963 	if (state->start < start) {
964 		if (state->state & exclusive_bits) {
965 			*failed_start = start;
966 			err = -EEXIST;
967 			goto out;
968 		}
969 
970 		prealloc = alloc_extent_state_atomic(prealloc);
971 		BUG_ON(!prealloc);
972 		err = split_state(tree, state, prealloc, start);
973 		if (err)
974 			extent_io_tree_panic(tree, err);
975 
976 		prealloc = NULL;
977 		if (err)
978 			goto out;
979 		if (state->end <= end) {
980 			set_state_bits(tree, state, &bits, changeset);
981 			cache_state(state, cached_state);
982 			merge_state(tree, state);
983 			if (last_end == (u64)-1)
984 				goto out;
985 			start = last_end + 1;
986 			state = next_state(state);
987 			if (start < end && state && state->start == start &&
988 			    !need_resched())
989 				goto hit_next;
990 		}
991 		goto search_again;
992 	}
993 	/*
994 	 * | ---- desired range ---- |
995 	 *     | state | or               | state |
996 	 *
997 	 * There's a hole, we need to insert something in it and
998 	 * ignore the extent we found.
999 	 */
1000 	if (state->start > start) {
1001 		u64 this_end;
1002 		if (end < last_start)
1003 			this_end = end;
1004 		else
1005 			this_end = last_start - 1;
1006 
1007 		prealloc = alloc_extent_state_atomic(prealloc);
1008 		BUG_ON(!prealloc);
1009 
1010 		/*
1011 		 * Avoid to free 'prealloc' if it can be merged with
1012 		 * the later extent.
1013 		 */
1014 		err = insert_state(tree, prealloc, start, this_end,
1015 				   NULL, NULL, &bits, changeset);
1016 		if (err)
1017 			extent_io_tree_panic(tree, err);
1018 
1019 		cache_state(prealloc, cached_state);
1020 		prealloc = NULL;
1021 		start = this_end + 1;
1022 		goto search_again;
1023 	}
1024 	/*
1025 	 * | ---- desired range ---- |
1026 	 *                        | state |
1027 	 * We need to split the extent, and set the bit
1028 	 * on the first half
1029 	 */
1030 	if (state->start <= end && state->end > end) {
1031 		if (state->state & exclusive_bits) {
1032 			*failed_start = start;
1033 			err = -EEXIST;
1034 			goto out;
1035 		}
1036 
1037 		prealloc = alloc_extent_state_atomic(prealloc);
1038 		BUG_ON(!prealloc);
1039 		err = split_state(tree, state, prealloc, end + 1);
1040 		if (err)
1041 			extent_io_tree_panic(tree, err);
1042 
1043 		set_state_bits(tree, prealloc, &bits, changeset);
1044 		cache_state(prealloc, cached_state);
1045 		merge_state(tree, prealloc);
1046 		prealloc = NULL;
1047 		goto out;
1048 	}
1049 
1050 search_again:
1051 	if (start > end)
1052 		goto out;
1053 	spin_unlock(&tree->lock);
1054 	if (gfpflags_allow_blocking(mask))
1055 		cond_resched();
1056 	goto again;
1057 
1058 out:
1059 	spin_unlock(&tree->lock);
1060 	if (prealloc)
1061 		free_extent_state(prealloc);
1062 
1063 	return err;
1064 
1065 }
1066 
1067 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1068 		   unsigned bits, u64 * failed_start,
1069 		   struct extent_state **cached_state, gfp_t mask)
1070 {
1071 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1072 				cached_state, mask, NULL);
1073 }
1074 
1075 
1076 /**
1077  * convert_extent_bit - convert all bits in a given range from one bit to
1078  * 			another
1079  * @tree:	the io tree to search
1080  * @start:	the start offset in bytes
1081  * @end:	the end offset in bytes (inclusive)
1082  * @bits:	the bits to set in this range
1083  * @clear_bits:	the bits to clear in this range
1084  * @cached_state:	state that we're going to cache
1085  *
1086  * This will go through and set bits for the given range.  If any states exist
1087  * already in this range they are set with the given bit and cleared of the
1088  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1089  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1090  * boundary bits like LOCK.
1091  *
1092  * All allocations are done with GFP_NOFS.
1093  */
1094 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1095 		       unsigned bits, unsigned clear_bits,
1096 		       struct extent_state **cached_state)
1097 {
1098 	struct extent_state *state;
1099 	struct extent_state *prealloc = NULL;
1100 	struct rb_node *node;
1101 	struct rb_node **p;
1102 	struct rb_node *parent;
1103 	int err = 0;
1104 	u64 last_start;
1105 	u64 last_end;
1106 	bool first_iteration = true;
1107 
1108 	btrfs_debug_check_extent_io_range(tree, start, end);
1109 
1110 again:
1111 	if (!prealloc) {
1112 		/*
1113 		 * Best effort, don't worry if extent state allocation fails
1114 		 * here for the first iteration. We might have a cached state
1115 		 * that matches exactly the target range, in which case no
1116 		 * extent state allocations are needed. We'll only know this
1117 		 * after locking the tree.
1118 		 */
1119 		prealloc = alloc_extent_state(GFP_NOFS);
1120 		if (!prealloc && !first_iteration)
1121 			return -ENOMEM;
1122 	}
1123 
1124 	spin_lock(&tree->lock);
1125 	if (cached_state && *cached_state) {
1126 		state = *cached_state;
1127 		if (state->start <= start && state->end > start &&
1128 		    extent_state_in_tree(state)) {
1129 			node = &state->rb_node;
1130 			goto hit_next;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * this search will find all the extents that end after
1136 	 * our range starts.
1137 	 */
1138 	node = tree_search_for_insert(tree, start, &p, &parent);
1139 	if (!node) {
1140 		prealloc = alloc_extent_state_atomic(prealloc);
1141 		if (!prealloc) {
1142 			err = -ENOMEM;
1143 			goto out;
1144 		}
1145 		err = insert_state(tree, prealloc, start, end,
1146 				   &p, &parent, &bits, NULL);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		cache_state(prealloc, cached_state);
1150 		prealloc = NULL;
1151 		goto out;
1152 	}
1153 	state = rb_entry(node, struct extent_state, rb_node);
1154 hit_next:
1155 	last_start = state->start;
1156 	last_end = state->end;
1157 
1158 	/*
1159 	 * | ---- desired range ---- |
1160 	 * | state |
1161 	 *
1162 	 * Just lock what we found and keep going
1163 	 */
1164 	if (state->start == start && state->end <= end) {
1165 		set_state_bits(tree, state, &bits, NULL);
1166 		cache_state(state, cached_state);
1167 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1168 		if (last_end == (u64)-1)
1169 			goto out;
1170 		start = last_end + 1;
1171 		if (start < end && state && state->start == start &&
1172 		    !need_resched())
1173 			goto hit_next;
1174 		goto search_again;
1175 	}
1176 
1177 	/*
1178 	 *     | ---- desired range ---- |
1179 	 * | state |
1180 	 *   or
1181 	 * | ------------- state -------------- |
1182 	 *
1183 	 * We need to split the extent we found, and may flip bits on
1184 	 * second half.
1185 	 *
1186 	 * If the extent we found extends past our
1187 	 * range, we just split and search again.  It'll get split
1188 	 * again the next time though.
1189 	 *
1190 	 * If the extent we found is inside our range, we set the
1191 	 * desired bit on it.
1192 	 */
1193 	if (state->start < start) {
1194 		prealloc = alloc_extent_state_atomic(prealloc);
1195 		if (!prealloc) {
1196 			err = -ENOMEM;
1197 			goto out;
1198 		}
1199 		err = split_state(tree, state, prealloc, start);
1200 		if (err)
1201 			extent_io_tree_panic(tree, err);
1202 		prealloc = NULL;
1203 		if (err)
1204 			goto out;
1205 		if (state->end <= end) {
1206 			set_state_bits(tree, state, &bits, NULL);
1207 			cache_state(state, cached_state);
1208 			state = clear_state_bit(tree, state, &clear_bits, 0,
1209 						NULL);
1210 			if (last_end == (u64)-1)
1211 				goto out;
1212 			start = last_end + 1;
1213 			if (start < end && state && state->start == start &&
1214 			    !need_resched())
1215 				goto hit_next;
1216 		}
1217 		goto search_again;
1218 	}
1219 	/*
1220 	 * | ---- desired range ---- |
1221 	 *     | state | or               | state |
1222 	 *
1223 	 * There's a hole, we need to insert something in it and
1224 	 * ignore the extent we found.
1225 	 */
1226 	if (state->start > start) {
1227 		u64 this_end;
1228 		if (end < last_start)
1229 			this_end = end;
1230 		else
1231 			this_end = last_start - 1;
1232 
1233 		prealloc = alloc_extent_state_atomic(prealloc);
1234 		if (!prealloc) {
1235 			err = -ENOMEM;
1236 			goto out;
1237 		}
1238 
1239 		/*
1240 		 * Avoid to free 'prealloc' if it can be merged with
1241 		 * the later extent.
1242 		 */
1243 		err = insert_state(tree, prealloc, start, this_end,
1244 				   NULL, NULL, &bits, NULL);
1245 		if (err)
1246 			extent_io_tree_panic(tree, err);
1247 		cache_state(prealloc, cached_state);
1248 		prealloc = NULL;
1249 		start = this_end + 1;
1250 		goto search_again;
1251 	}
1252 	/*
1253 	 * | ---- desired range ---- |
1254 	 *                        | state |
1255 	 * We need to split the extent, and set the bit
1256 	 * on the first half
1257 	 */
1258 	if (state->start <= end && state->end > end) {
1259 		prealloc = alloc_extent_state_atomic(prealloc);
1260 		if (!prealloc) {
1261 			err = -ENOMEM;
1262 			goto out;
1263 		}
1264 
1265 		err = split_state(tree, state, prealloc, end + 1);
1266 		if (err)
1267 			extent_io_tree_panic(tree, err);
1268 
1269 		set_state_bits(tree, prealloc, &bits, NULL);
1270 		cache_state(prealloc, cached_state);
1271 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1272 		prealloc = NULL;
1273 		goto out;
1274 	}
1275 
1276 search_again:
1277 	if (start > end)
1278 		goto out;
1279 	spin_unlock(&tree->lock);
1280 	cond_resched();
1281 	first_iteration = false;
1282 	goto again;
1283 
1284 out:
1285 	spin_unlock(&tree->lock);
1286 	if (prealloc)
1287 		free_extent_state(prealloc);
1288 
1289 	return err;
1290 }
1291 
1292 /* wrappers around set/clear extent bit */
1293 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1294 			   unsigned bits, struct extent_changeset *changeset)
1295 {
1296 	/*
1297 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 	 * either fail with -EEXIST or changeset will record the whole
1300 	 * range.
1301 	 */
1302 	BUG_ON(bits & EXTENT_LOCKED);
1303 
1304 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1305 				changeset);
1306 }
1307 
1308 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 		     unsigned bits, int wake, int delete,
1310 		     struct extent_state **cached, gfp_t mask)
1311 {
1312 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 				  cached, mask, NULL);
1314 }
1315 
1316 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 		unsigned bits, struct extent_changeset *changeset)
1318 {
1319 	/*
1320 	 * Don't support EXTENT_LOCKED case, same reason as
1321 	 * set_record_extent_bits().
1322 	 */
1323 	BUG_ON(bits & EXTENT_LOCKED);
1324 
1325 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1326 				  changeset);
1327 }
1328 
1329 /*
1330  * either insert or lock state struct between start and end use mask to tell
1331  * us if waiting is desired.
1332  */
1333 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1334 		     struct extent_state **cached_state)
1335 {
1336 	int err;
1337 	u64 failed_start;
1338 
1339 	while (1) {
1340 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1341 				       EXTENT_LOCKED, &failed_start,
1342 				       cached_state, GFP_NOFS, NULL);
1343 		if (err == -EEXIST) {
1344 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 			start = failed_start;
1346 		} else
1347 			break;
1348 		WARN_ON(start > end);
1349 	}
1350 	return err;
1351 }
1352 
1353 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1354 {
1355 	int err;
1356 	u64 failed_start;
1357 
1358 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1359 			       &failed_start, NULL, GFP_NOFS, NULL);
1360 	if (err == -EEXIST) {
1361 		if (failed_start > start)
1362 			clear_extent_bit(tree, start, failed_start - 1,
1363 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1364 		return 0;
1365 	}
1366 	return 1;
1367 }
1368 
1369 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371 	unsigned long index = start >> PAGE_SHIFT;
1372 	unsigned long end_index = end >> PAGE_SHIFT;
1373 	struct page *page;
1374 
1375 	while (index <= end_index) {
1376 		page = find_get_page(inode->i_mapping, index);
1377 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 		clear_page_dirty_for_io(page);
1379 		put_page(page);
1380 		index++;
1381 	}
1382 }
1383 
1384 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1385 {
1386 	unsigned long index = start >> PAGE_SHIFT;
1387 	unsigned long end_index = end >> PAGE_SHIFT;
1388 	struct page *page;
1389 
1390 	while (index <= end_index) {
1391 		page = find_get_page(inode->i_mapping, index);
1392 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1393 		__set_page_dirty_nobuffers(page);
1394 		account_page_redirty(page);
1395 		put_page(page);
1396 		index++;
1397 	}
1398 }
1399 
1400 /*
1401  * helper function to set both pages and extents in the tree writeback
1402  */
1403 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1404 {
1405 	unsigned long index = start >> PAGE_SHIFT;
1406 	unsigned long end_index = end >> PAGE_SHIFT;
1407 	struct page *page;
1408 
1409 	while (index <= end_index) {
1410 		page = find_get_page(tree->mapping, index);
1411 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1412 		set_page_writeback(page);
1413 		put_page(page);
1414 		index++;
1415 	}
1416 }
1417 
1418 /* find the first state struct with 'bits' set after 'start', and
1419  * return it.  tree->lock must be held.  NULL will returned if
1420  * nothing was found after 'start'
1421  */
1422 static struct extent_state *
1423 find_first_extent_bit_state(struct extent_io_tree *tree,
1424 			    u64 start, unsigned bits)
1425 {
1426 	struct rb_node *node;
1427 	struct extent_state *state;
1428 
1429 	/*
1430 	 * this search will find all the extents that end after
1431 	 * our range starts.
1432 	 */
1433 	node = tree_search(tree, start);
1434 	if (!node)
1435 		goto out;
1436 
1437 	while (1) {
1438 		state = rb_entry(node, struct extent_state, rb_node);
1439 		if (state->end >= start && (state->state & bits))
1440 			return state;
1441 
1442 		node = rb_next(node);
1443 		if (!node)
1444 			break;
1445 	}
1446 out:
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * find the first offset in the io tree with 'bits' set. zero is
1452  * returned if we find something, and *start_ret and *end_ret are
1453  * set to reflect the state struct that was found.
1454  *
1455  * If nothing was found, 1 is returned. If found something, return 0.
1456  */
1457 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1458 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1459 			  struct extent_state **cached_state)
1460 {
1461 	struct extent_state *state;
1462 	struct rb_node *n;
1463 	int ret = 1;
1464 
1465 	spin_lock(&tree->lock);
1466 	if (cached_state && *cached_state) {
1467 		state = *cached_state;
1468 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1469 			n = rb_next(&state->rb_node);
1470 			while (n) {
1471 				state = rb_entry(n, struct extent_state,
1472 						 rb_node);
1473 				if (state->state & bits)
1474 					goto got_it;
1475 				n = rb_next(n);
1476 			}
1477 			free_extent_state(*cached_state);
1478 			*cached_state = NULL;
1479 			goto out;
1480 		}
1481 		free_extent_state(*cached_state);
1482 		*cached_state = NULL;
1483 	}
1484 
1485 	state = find_first_extent_bit_state(tree, start, bits);
1486 got_it:
1487 	if (state) {
1488 		cache_state_if_flags(state, cached_state, 0);
1489 		*start_ret = state->start;
1490 		*end_ret = state->end;
1491 		ret = 0;
1492 	}
1493 out:
1494 	spin_unlock(&tree->lock);
1495 	return ret;
1496 }
1497 
1498 /*
1499  * find a contiguous range of bytes in the file marked as delalloc, not
1500  * more than 'max_bytes'.  start and end are used to return the range,
1501  *
1502  * 1 is returned if we find something, 0 if nothing was in the tree
1503  */
1504 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1505 					u64 *start, u64 *end, u64 max_bytes,
1506 					struct extent_state **cached_state)
1507 {
1508 	struct rb_node *node;
1509 	struct extent_state *state;
1510 	u64 cur_start = *start;
1511 	u64 found = 0;
1512 	u64 total_bytes = 0;
1513 
1514 	spin_lock(&tree->lock);
1515 
1516 	/*
1517 	 * this search will find all the extents that end after
1518 	 * our range starts.
1519 	 */
1520 	node = tree_search(tree, cur_start);
1521 	if (!node) {
1522 		if (!found)
1523 			*end = (u64)-1;
1524 		goto out;
1525 	}
1526 
1527 	while (1) {
1528 		state = rb_entry(node, struct extent_state, rb_node);
1529 		if (found && (state->start != cur_start ||
1530 			      (state->state & EXTENT_BOUNDARY))) {
1531 			goto out;
1532 		}
1533 		if (!(state->state & EXTENT_DELALLOC)) {
1534 			if (!found)
1535 				*end = state->end;
1536 			goto out;
1537 		}
1538 		if (!found) {
1539 			*start = state->start;
1540 			*cached_state = state;
1541 			atomic_inc(&state->refs);
1542 		}
1543 		found++;
1544 		*end = state->end;
1545 		cur_start = state->end + 1;
1546 		node = rb_next(node);
1547 		total_bytes += state->end - state->start + 1;
1548 		if (total_bytes >= max_bytes)
1549 			break;
1550 		if (!node)
1551 			break;
1552 	}
1553 out:
1554 	spin_unlock(&tree->lock);
1555 	return found;
1556 }
1557 
1558 static int __process_pages_contig(struct address_space *mapping,
1559 				  struct page *locked_page,
1560 				  pgoff_t start_index, pgoff_t end_index,
1561 				  unsigned long page_ops, pgoff_t *index_ret);
1562 
1563 static noinline void __unlock_for_delalloc(struct inode *inode,
1564 					   struct page *locked_page,
1565 					   u64 start, u64 end)
1566 {
1567 	unsigned long index = start >> PAGE_SHIFT;
1568 	unsigned long end_index = end >> PAGE_SHIFT;
1569 
1570 	ASSERT(locked_page);
1571 	if (index == locked_page->index && end_index == index)
1572 		return;
1573 
1574 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 			       PAGE_UNLOCK, NULL);
1576 }
1577 
1578 static noinline int lock_delalloc_pages(struct inode *inode,
1579 					struct page *locked_page,
1580 					u64 delalloc_start,
1581 					u64 delalloc_end)
1582 {
1583 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1584 	unsigned long index_ret = index;
1585 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1586 	int ret;
1587 
1588 	ASSERT(locked_page);
1589 	if (index == locked_page->index && index == end_index)
1590 		return 0;
1591 
1592 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 				     end_index, PAGE_LOCK, &index_ret);
1594 	if (ret == -EAGAIN)
1595 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 				      (u64)index_ret << PAGE_SHIFT);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * find a contiguous range of bytes in the file marked as delalloc, not
1602  * more than 'max_bytes'.  start and end are used to return the range,
1603  *
1604  * 1 is returned if we find something, 0 if nothing was in the tree
1605  */
1606 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 				    struct extent_io_tree *tree,
1608 				    struct page *locked_page, u64 *start,
1609 				    u64 *end, u64 max_bytes)
1610 {
1611 	u64 delalloc_start;
1612 	u64 delalloc_end;
1613 	u64 found;
1614 	struct extent_state *cached_state = NULL;
1615 	int ret;
1616 	int loops = 0;
1617 
1618 again:
1619 	/* step one, find a bunch of delalloc bytes starting at start */
1620 	delalloc_start = *start;
1621 	delalloc_end = 0;
1622 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1623 				    max_bytes, &cached_state);
1624 	if (!found || delalloc_end <= *start) {
1625 		*start = delalloc_start;
1626 		*end = delalloc_end;
1627 		free_extent_state(cached_state);
1628 		return 0;
1629 	}
1630 
1631 	/*
1632 	 * start comes from the offset of locked_page.  We have to lock
1633 	 * pages in order, so we can't process delalloc bytes before
1634 	 * locked_page
1635 	 */
1636 	if (delalloc_start < *start)
1637 		delalloc_start = *start;
1638 
1639 	/*
1640 	 * make sure to limit the number of pages we try to lock down
1641 	 */
1642 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 		delalloc_end = delalloc_start + max_bytes - 1;
1644 
1645 	/* step two, lock all the pages after the page that has start */
1646 	ret = lock_delalloc_pages(inode, locked_page,
1647 				  delalloc_start, delalloc_end);
1648 	if (ret == -EAGAIN) {
1649 		/* some of the pages are gone, lets avoid looping by
1650 		 * shortening the size of the delalloc range we're searching
1651 		 */
1652 		free_extent_state(cached_state);
1653 		cached_state = NULL;
1654 		if (!loops) {
1655 			max_bytes = PAGE_SIZE;
1656 			loops = 1;
1657 			goto again;
1658 		} else {
1659 			found = 0;
1660 			goto out_failed;
1661 		}
1662 	}
1663 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1664 
1665 	/* step three, lock the state bits for the whole range */
1666 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1667 
1668 	/* then test to make sure it is all still delalloc */
1669 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1670 			     EXTENT_DELALLOC, 1, cached_state);
1671 	if (!ret) {
1672 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 				     &cached_state, GFP_NOFS);
1674 		__unlock_for_delalloc(inode, locked_page,
1675 			      delalloc_start, delalloc_end);
1676 		cond_resched();
1677 		goto again;
1678 	}
1679 	free_extent_state(cached_state);
1680 	*start = delalloc_start;
1681 	*end = delalloc_end;
1682 out_failed:
1683 	return found;
1684 }
1685 
1686 static int __process_pages_contig(struct address_space *mapping,
1687 				  struct page *locked_page,
1688 				  pgoff_t start_index, pgoff_t end_index,
1689 				  unsigned long page_ops, pgoff_t *index_ret)
1690 {
1691 	unsigned long nr_pages = end_index - start_index + 1;
1692 	unsigned long pages_locked = 0;
1693 	pgoff_t index = start_index;
1694 	struct page *pages[16];
1695 	unsigned ret;
1696 	int err = 0;
1697 	int i;
1698 
1699 	if (page_ops & PAGE_LOCK) {
1700 		ASSERT(page_ops == PAGE_LOCK);
1701 		ASSERT(index_ret && *index_ret == start_index);
1702 	}
1703 
1704 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1705 		mapping_set_error(mapping, -EIO);
1706 
1707 	while (nr_pages > 0) {
1708 		ret = find_get_pages_contig(mapping, index,
1709 				     min_t(unsigned long,
1710 				     nr_pages, ARRAY_SIZE(pages)), pages);
1711 		if (ret == 0) {
1712 			/*
1713 			 * Only if we're going to lock these pages,
1714 			 * can we find nothing at @index.
1715 			 */
1716 			ASSERT(page_ops & PAGE_LOCK);
1717 			return ret;
1718 		}
1719 
1720 		for (i = 0; i < ret; i++) {
1721 			if (page_ops & PAGE_SET_PRIVATE2)
1722 				SetPagePrivate2(pages[i]);
1723 
1724 			if (pages[i] == locked_page) {
1725 				put_page(pages[i]);
1726 				pages_locked++;
1727 				continue;
1728 			}
1729 			if (page_ops & PAGE_CLEAR_DIRTY)
1730 				clear_page_dirty_for_io(pages[i]);
1731 			if (page_ops & PAGE_SET_WRITEBACK)
1732 				set_page_writeback(pages[i]);
1733 			if (page_ops & PAGE_SET_ERROR)
1734 				SetPageError(pages[i]);
1735 			if (page_ops & PAGE_END_WRITEBACK)
1736 				end_page_writeback(pages[i]);
1737 			if (page_ops & PAGE_UNLOCK)
1738 				unlock_page(pages[i]);
1739 			if (page_ops & PAGE_LOCK) {
1740 				lock_page(pages[i]);
1741 				if (!PageDirty(pages[i]) ||
1742 				    pages[i]->mapping != mapping) {
1743 					unlock_page(pages[i]);
1744 					put_page(pages[i]);
1745 					err = -EAGAIN;
1746 					goto out;
1747 				}
1748 			}
1749 			put_page(pages[i]);
1750 			pages_locked++;
1751 		}
1752 		nr_pages -= ret;
1753 		index += ret;
1754 		cond_resched();
1755 	}
1756 out:
1757 	if (err && index_ret)
1758 		*index_ret = start_index + pages_locked - 1;
1759 	return err;
1760 }
1761 
1762 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1763 				 u64 delalloc_end, struct page *locked_page,
1764 				 unsigned clear_bits,
1765 				 unsigned long page_ops)
1766 {
1767 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1768 			 NULL, GFP_NOFS);
1769 
1770 	__process_pages_contig(inode->i_mapping, locked_page,
1771 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1772 			       page_ops, NULL);
1773 }
1774 
1775 /*
1776  * count the number of bytes in the tree that have a given bit(s)
1777  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1778  * cached.  The total number found is returned.
1779  */
1780 u64 count_range_bits(struct extent_io_tree *tree,
1781 		     u64 *start, u64 search_end, u64 max_bytes,
1782 		     unsigned bits, int contig)
1783 {
1784 	struct rb_node *node;
1785 	struct extent_state *state;
1786 	u64 cur_start = *start;
1787 	u64 total_bytes = 0;
1788 	u64 last = 0;
1789 	int found = 0;
1790 
1791 	if (WARN_ON(search_end <= cur_start))
1792 		return 0;
1793 
1794 	spin_lock(&tree->lock);
1795 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 		total_bytes = tree->dirty_bytes;
1797 		goto out;
1798 	}
1799 	/*
1800 	 * this search will find all the extents that end after
1801 	 * our range starts.
1802 	 */
1803 	node = tree_search(tree, cur_start);
1804 	if (!node)
1805 		goto out;
1806 
1807 	while (1) {
1808 		state = rb_entry(node, struct extent_state, rb_node);
1809 		if (state->start > search_end)
1810 			break;
1811 		if (contig && found && state->start > last + 1)
1812 			break;
1813 		if (state->end >= cur_start && (state->state & bits) == bits) {
1814 			total_bytes += min(search_end, state->end) + 1 -
1815 				       max(cur_start, state->start);
1816 			if (total_bytes >= max_bytes)
1817 				break;
1818 			if (!found) {
1819 				*start = max(cur_start, state->start);
1820 				found = 1;
1821 			}
1822 			last = state->end;
1823 		} else if (contig && found) {
1824 			break;
1825 		}
1826 		node = rb_next(node);
1827 		if (!node)
1828 			break;
1829 	}
1830 out:
1831 	spin_unlock(&tree->lock);
1832 	return total_bytes;
1833 }
1834 
1835 /*
1836  * set the private field for a given byte offset in the tree.  If there isn't
1837  * an extent_state there already, this does nothing.
1838  */
1839 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1840 		struct io_failure_record *failrec)
1841 {
1842 	struct rb_node *node;
1843 	struct extent_state *state;
1844 	int ret = 0;
1845 
1846 	spin_lock(&tree->lock);
1847 	/*
1848 	 * this search will find all the extents that end after
1849 	 * our range starts.
1850 	 */
1851 	node = tree_search(tree, start);
1852 	if (!node) {
1853 		ret = -ENOENT;
1854 		goto out;
1855 	}
1856 	state = rb_entry(node, struct extent_state, rb_node);
1857 	if (state->start != start) {
1858 		ret = -ENOENT;
1859 		goto out;
1860 	}
1861 	state->failrec = failrec;
1862 out:
1863 	spin_unlock(&tree->lock);
1864 	return ret;
1865 }
1866 
1867 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1868 		struct io_failure_record **failrec)
1869 {
1870 	struct rb_node *node;
1871 	struct extent_state *state;
1872 	int ret = 0;
1873 
1874 	spin_lock(&tree->lock);
1875 	/*
1876 	 * this search will find all the extents that end after
1877 	 * our range starts.
1878 	 */
1879 	node = tree_search(tree, start);
1880 	if (!node) {
1881 		ret = -ENOENT;
1882 		goto out;
1883 	}
1884 	state = rb_entry(node, struct extent_state, rb_node);
1885 	if (state->start != start) {
1886 		ret = -ENOENT;
1887 		goto out;
1888 	}
1889 	*failrec = state->failrec;
1890 out:
1891 	spin_unlock(&tree->lock);
1892 	return ret;
1893 }
1894 
1895 /*
1896  * searches a range in the state tree for a given mask.
1897  * If 'filled' == 1, this returns 1 only if every extent in the tree
1898  * has the bits set.  Otherwise, 1 is returned if any bit in the
1899  * range is found set.
1900  */
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902 		   unsigned bits, int filled, struct extent_state *cached)
1903 {
1904 	struct extent_state *state = NULL;
1905 	struct rb_node *node;
1906 	int bitset = 0;
1907 
1908 	spin_lock(&tree->lock);
1909 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1910 	    cached->end > start)
1911 		node = &cached->rb_node;
1912 	else
1913 		node = tree_search(tree, start);
1914 	while (node && start <= end) {
1915 		state = rb_entry(node, struct extent_state, rb_node);
1916 
1917 		if (filled && state->start > start) {
1918 			bitset = 0;
1919 			break;
1920 		}
1921 
1922 		if (state->start > end)
1923 			break;
1924 
1925 		if (state->state & bits) {
1926 			bitset = 1;
1927 			if (!filled)
1928 				break;
1929 		} else if (filled) {
1930 			bitset = 0;
1931 			break;
1932 		}
1933 
1934 		if (state->end == (u64)-1)
1935 			break;
1936 
1937 		start = state->end + 1;
1938 		if (start > end)
1939 			break;
1940 		node = rb_next(node);
1941 		if (!node) {
1942 			if (filled)
1943 				bitset = 0;
1944 			break;
1945 		}
1946 	}
1947 	spin_unlock(&tree->lock);
1948 	return bitset;
1949 }
1950 
1951 /*
1952  * helper function to set a given page up to date if all the
1953  * extents in the tree for that page are up to date
1954  */
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 {
1957 	u64 start = page_offset(page);
1958 	u64 end = start + PAGE_SIZE - 1;
1959 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960 		SetPageUptodate(page);
1961 }
1962 
1963 int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
1964 {
1965 	int ret;
1966 	int err = 0;
1967 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
1968 
1969 	set_state_failrec(failure_tree, rec->start, NULL);
1970 	ret = clear_extent_bits(failure_tree, rec->start,
1971 				rec->start + rec->len - 1,
1972 				EXTENT_LOCKED | EXTENT_DIRTY);
1973 	if (ret)
1974 		err = ret;
1975 
1976 	ret = clear_extent_bits(&inode->io_tree, rec->start,
1977 				rec->start + rec->len - 1,
1978 				EXTENT_DAMAGED);
1979 	if (ret && !err)
1980 		err = ret;
1981 
1982 	kfree(rec);
1983 	return err;
1984 }
1985 
1986 /*
1987  * this bypasses the standard btrfs submit functions deliberately, as
1988  * the standard behavior is to write all copies in a raid setup. here we only
1989  * want to write the one bad copy. so we do the mapping for ourselves and issue
1990  * submit_bio directly.
1991  * to avoid any synchronization issues, wait for the data after writing, which
1992  * actually prevents the read that triggered the error from finishing.
1993  * currently, there can be no more than two copies of every data bit. thus,
1994  * exactly one rewrite is required.
1995  */
1996 int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1997 		u64 logical, struct page *page,
1998 		unsigned int pg_offset, int mirror_num)
1999 {
2000 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2001 	struct bio *bio;
2002 	struct btrfs_device *dev;
2003 	u64 map_length = 0;
2004 	u64 sector;
2005 	struct btrfs_bio *bbio = NULL;
2006 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2007 	int ret;
2008 
2009 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2010 	BUG_ON(!mirror_num);
2011 
2012 	/* we can't repair anything in raid56 yet */
2013 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2014 		return 0;
2015 
2016 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2017 	if (!bio)
2018 		return -EIO;
2019 	bio->bi_iter.bi_size = 0;
2020 	map_length = length;
2021 
2022 	/*
2023 	 * Avoid races with device replace and make sure our bbio has devices
2024 	 * associated to its stripes that don't go away while we are doing the
2025 	 * read repair operation.
2026 	 */
2027 	btrfs_bio_counter_inc_blocked(fs_info);
2028 	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2029 			      &map_length, &bbio, mirror_num);
2030 	if (ret) {
2031 		btrfs_bio_counter_dec(fs_info);
2032 		bio_put(bio);
2033 		return -EIO;
2034 	}
2035 	BUG_ON(mirror_num != bbio->mirror_num);
2036 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2037 	bio->bi_iter.bi_sector = sector;
2038 	dev = bbio->stripes[mirror_num-1].dev;
2039 	btrfs_put_bbio(bbio);
2040 	if (!dev || !dev->bdev || !dev->writeable) {
2041 		btrfs_bio_counter_dec(fs_info);
2042 		bio_put(bio);
2043 		return -EIO;
2044 	}
2045 	bio->bi_bdev = dev->bdev;
2046 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2047 	bio_add_page(bio, page, length, pg_offset);
2048 
2049 	if (btrfsic_submit_bio_wait(bio)) {
2050 		/* try to remap that extent elsewhere? */
2051 		btrfs_bio_counter_dec(fs_info);
2052 		bio_put(bio);
2053 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054 		return -EIO;
2055 	}
2056 
2057 	btrfs_info_rl_in_rcu(fs_info,
2058 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2059 				  btrfs_ino(inode), start,
2060 				  rcu_str_deref(dev->name), sector);
2061 	btrfs_bio_counter_dec(fs_info);
2062 	bio_put(bio);
2063 	return 0;
2064 }
2065 
2066 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2067 			 struct extent_buffer *eb, int mirror_num)
2068 {
2069 	u64 start = eb->start;
2070 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2071 	int ret = 0;
2072 
2073 	if (fs_info->sb->s_flags & MS_RDONLY)
2074 		return -EROFS;
2075 
2076 	for (i = 0; i < num_pages; i++) {
2077 		struct page *p = eb->pages[i];
2078 
2079 		ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
2080 					PAGE_SIZE, start, p,
2081 					start - page_offset(p), mirror_num);
2082 		if (ret)
2083 			break;
2084 		start += PAGE_SIZE;
2085 	}
2086 
2087 	return ret;
2088 }
2089 
2090 /*
2091  * each time an IO finishes, we do a fast check in the IO failure tree
2092  * to see if we need to process or clean up an io_failure_record
2093  */
2094 int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
2095 		     unsigned int pg_offset)
2096 {
2097 	u64 private;
2098 	struct io_failure_record *failrec;
2099 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2100 	struct extent_state *state;
2101 	int num_copies;
2102 	int ret;
2103 
2104 	private = 0;
2105 	ret = count_range_bits(&inode->io_failure_tree, &private,
2106 				(u64)-1, 1, EXTENT_DIRTY, 0);
2107 	if (!ret)
2108 		return 0;
2109 
2110 	ret = get_state_failrec(&inode->io_failure_tree, start,
2111 			&failrec);
2112 	if (ret)
2113 		return 0;
2114 
2115 	BUG_ON(!failrec->this_mirror);
2116 
2117 	if (failrec->in_validation) {
2118 		/* there was no real error, just free the record */
2119 		btrfs_debug(fs_info,
2120 			"clean_io_failure: freeing dummy error at %llu",
2121 			failrec->start);
2122 		goto out;
2123 	}
2124 	if (fs_info->sb->s_flags & MS_RDONLY)
2125 		goto out;
2126 
2127 	spin_lock(&inode->io_tree.lock);
2128 	state = find_first_extent_bit_state(&inode->io_tree,
2129 					    failrec->start,
2130 					    EXTENT_LOCKED);
2131 	spin_unlock(&inode->io_tree.lock);
2132 
2133 	if (state && state->start <= failrec->start &&
2134 	    state->end >= failrec->start + failrec->len - 1) {
2135 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136 					      failrec->len);
2137 		if (num_copies > 1)  {
2138 			repair_io_failure(inode, start, failrec->len,
2139 					  failrec->logical, page,
2140 					  pg_offset, failrec->failed_mirror);
2141 		}
2142 	}
2143 
2144 out:
2145 	free_io_failure(inode, failrec);
2146 
2147 	return 0;
2148 }
2149 
2150 /*
2151  * Can be called when
2152  * - hold extent lock
2153  * - under ordered extent
2154  * - the inode is freeing
2155  */
2156 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2157 {
2158 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2159 	struct io_failure_record *failrec;
2160 	struct extent_state *state, *next;
2161 
2162 	if (RB_EMPTY_ROOT(&failure_tree->state))
2163 		return;
2164 
2165 	spin_lock(&failure_tree->lock);
2166 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2167 	while (state) {
2168 		if (state->start > end)
2169 			break;
2170 
2171 		ASSERT(state->end <= end);
2172 
2173 		next = next_state(state);
2174 
2175 		failrec = state->failrec;
2176 		free_extent_state(state);
2177 		kfree(failrec);
2178 
2179 		state = next;
2180 	}
2181 	spin_unlock(&failure_tree->lock);
2182 }
2183 
2184 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2185 		struct io_failure_record **failrec_ret)
2186 {
2187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 	struct io_failure_record *failrec;
2189 	struct extent_map *em;
2190 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2193 	int ret;
2194 	u64 logical;
2195 
2196 	ret = get_state_failrec(failure_tree, start, &failrec);
2197 	if (ret) {
2198 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2199 		if (!failrec)
2200 			return -ENOMEM;
2201 
2202 		failrec->start = start;
2203 		failrec->len = end - start + 1;
2204 		failrec->this_mirror = 0;
2205 		failrec->bio_flags = 0;
2206 		failrec->in_validation = 0;
2207 
2208 		read_lock(&em_tree->lock);
2209 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2210 		if (!em) {
2211 			read_unlock(&em_tree->lock);
2212 			kfree(failrec);
2213 			return -EIO;
2214 		}
2215 
2216 		if (em->start > start || em->start + em->len <= start) {
2217 			free_extent_map(em);
2218 			em = NULL;
2219 		}
2220 		read_unlock(&em_tree->lock);
2221 		if (!em) {
2222 			kfree(failrec);
2223 			return -EIO;
2224 		}
2225 
2226 		logical = start - em->start;
2227 		logical = em->block_start + logical;
2228 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2229 			logical = em->block_start;
2230 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2231 			extent_set_compress_type(&failrec->bio_flags,
2232 						 em->compress_type);
2233 		}
2234 
2235 		btrfs_debug(fs_info,
2236 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2237 			logical, start, failrec->len);
2238 
2239 		failrec->logical = logical;
2240 		free_extent_map(em);
2241 
2242 		/* set the bits in the private failure tree */
2243 		ret = set_extent_bits(failure_tree, start, end,
2244 					EXTENT_LOCKED | EXTENT_DIRTY);
2245 		if (ret >= 0)
2246 			ret = set_state_failrec(failure_tree, start, failrec);
2247 		/* set the bits in the inode's tree */
2248 		if (ret >= 0)
2249 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2250 		if (ret < 0) {
2251 			kfree(failrec);
2252 			return ret;
2253 		}
2254 	} else {
2255 		btrfs_debug(fs_info,
2256 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2257 			failrec->logical, failrec->start, failrec->len,
2258 			failrec->in_validation);
2259 		/*
2260 		 * when data can be on disk more than twice, add to failrec here
2261 		 * (e.g. with a list for failed_mirror) to make
2262 		 * clean_io_failure() clean all those errors at once.
2263 		 */
2264 	}
2265 
2266 	*failrec_ret = failrec;
2267 
2268 	return 0;
2269 }
2270 
2271 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2272 			   struct io_failure_record *failrec, int failed_mirror)
2273 {
2274 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2275 	int num_copies;
2276 
2277 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2278 	if (num_copies == 1) {
2279 		/*
2280 		 * we only have a single copy of the data, so don't bother with
2281 		 * all the retry and error correction code that follows. no
2282 		 * matter what the error is, it is very likely to persist.
2283 		 */
2284 		btrfs_debug(fs_info,
2285 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2286 			num_copies, failrec->this_mirror, failed_mirror);
2287 		return 0;
2288 	}
2289 
2290 	/*
2291 	 * there are two premises:
2292 	 *	a) deliver good data to the caller
2293 	 *	b) correct the bad sectors on disk
2294 	 */
2295 	if (failed_bio->bi_vcnt > 1) {
2296 		/*
2297 		 * to fulfill b), we need to know the exact failing sectors, as
2298 		 * we don't want to rewrite any more than the failed ones. thus,
2299 		 * we need separate read requests for the failed bio
2300 		 *
2301 		 * if the following BUG_ON triggers, our validation request got
2302 		 * merged. we need separate requests for our algorithm to work.
2303 		 */
2304 		BUG_ON(failrec->in_validation);
2305 		failrec->in_validation = 1;
2306 		failrec->this_mirror = failed_mirror;
2307 	} else {
2308 		/*
2309 		 * we're ready to fulfill a) and b) alongside. get a good copy
2310 		 * of the failed sector and if we succeed, we have setup
2311 		 * everything for repair_io_failure to do the rest for us.
2312 		 */
2313 		if (failrec->in_validation) {
2314 			BUG_ON(failrec->this_mirror != failed_mirror);
2315 			failrec->in_validation = 0;
2316 			failrec->this_mirror = 0;
2317 		}
2318 		failrec->failed_mirror = failed_mirror;
2319 		failrec->this_mirror++;
2320 		if (failrec->this_mirror == failed_mirror)
2321 			failrec->this_mirror++;
2322 	}
2323 
2324 	if (failrec->this_mirror > num_copies) {
2325 		btrfs_debug(fs_info,
2326 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2327 			num_copies, failrec->this_mirror, failed_mirror);
2328 		return 0;
2329 	}
2330 
2331 	return 1;
2332 }
2333 
2334 
2335 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 				    struct io_failure_record *failrec,
2337 				    struct page *page, int pg_offset, int icsum,
2338 				    bio_end_io_t *endio_func, void *data)
2339 {
2340 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2341 	struct bio *bio;
2342 	struct btrfs_io_bio *btrfs_failed_bio;
2343 	struct btrfs_io_bio *btrfs_bio;
2344 
2345 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2346 	if (!bio)
2347 		return NULL;
2348 
2349 	bio->bi_end_io = endio_func;
2350 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2351 	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2352 	bio->bi_iter.bi_size = 0;
2353 	bio->bi_private = data;
2354 
2355 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 	if (btrfs_failed_bio->csum) {
2357 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358 
2359 		btrfs_bio = btrfs_io_bio(bio);
2360 		btrfs_bio->csum = btrfs_bio->csum_inline;
2361 		icsum *= csum_size;
2362 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2363 		       csum_size);
2364 	}
2365 
2366 	bio_add_page(bio, page, failrec->len, pg_offset);
2367 
2368 	return bio;
2369 }
2370 
2371 /*
2372  * this is a generic handler for readpage errors (default
2373  * readpage_io_failed_hook). if other copies exist, read those and write back
2374  * good data to the failed position. does not investigate in remapping the
2375  * failed extent elsewhere, hoping the device will be smart enough to do this as
2376  * needed
2377  */
2378 
2379 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 			      struct page *page, u64 start, u64 end,
2381 			      int failed_mirror)
2382 {
2383 	struct io_failure_record *failrec;
2384 	struct inode *inode = page->mapping->host;
2385 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 	struct bio *bio;
2387 	int read_mode = 0;
2388 	int ret;
2389 
2390 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2391 
2392 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 	if (ret)
2394 		return ret;
2395 
2396 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 	if (!ret) {
2398 		free_io_failure(BTRFS_I(inode), failrec);
2399 		return -EIO;
2400 	}
2401 
2402 	if (failed_bio->bi_vcnt > 1)
2403 		read_mode |= REQ_FAILFAST_DEV;
2404 
2405 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2406 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2407 				      start - page_offset(page),
2408 				      (int)phy_offset, failed_bio->bi_end_io,
2409 				      NULL);
2410 	if (!bio) {
2411 		free_io_failure(BTRFS_I(inode), failrec);
2412 		return -EIO;
2413 	}
2414 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2415 
2416 	btrfs_debug(btrfs_sb(inode->i_sb),
2417 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2418 		read_mode, failrec->this_mirror, failrec->in_validation);
2419 
2420 	ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2421 					 failrec->bio_flags, 0);
2422 	if (ret) {
2423 		free_io_failure(BTRFS_I(inode), failrec);
2424 		bio_put(bio);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 /* lots and lots of room for performance fixes in the end_bio funcs */
2431 
2432 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2433 {
2434 	int uptodate = (err == 0);
2435 	struct extent_io_tree *tree;
2436 	int ret = 0;
2437 
2438 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2439 
2440 	if (tree->ops && tree->ops->writepage_end_io_hook)
2441 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2442 				uptodate);
2443 
2444 	if (!uptodate) {
2445 		ClearPageUptodate(page);
2446 		SetPageError(page);
2447 		ret = ret < 0 ? ret : -EIO;
2448 		mapping_set_error(page->mapping, ret);
2449 	}
2450 }
2451 
2452 /*
2453  * after a writepage IO is done, we need to:
2454  * clear the uptodate bits on error
2455  * clear the writeback bits in the extent tree for this IO
2456  * end_page_writeback if the page has no more pending IO
2457  *
2458  * Scheduling is not allowed, so the extent state tree is expected
2459  * to have one and only one object corresponding to this IO.
2460  */
2461 static void end_bio_extent_writepage(struct bio *bio)
2462 {
2463 	struct bio_vec *bvec;
2464 	u64 start;
2465 	u64 end;
2466 	int i;
2467 
2468 	bio_for_each_segment_all(bvec, bio, i) {
2469 		struct page *page = bvec->bv_page;
2470 		struct inode *inode = page->mapping->host;
2471 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2472 
2473 		/* We always issue full-page reads, but if some block
2474 		 * in a page fails to read, blk_update_request() will
2475 		 * advance bv_offset and adjust bv_len to compensate.
2476 		 * Print a warning for nonzero offsets, and an error
2477 		 * if they don't add up to a full page.  */
2478 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2479 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2480 				btrfs_err(fs_info,
2481 				   "partial page write in btrfs with offset %u and length %u",
2482 					bvec->bv_offset, bvec->bv_len);
2483 			else
2484 				btrfs_info(fs_info,
2485 				   "incomplete page write in btrfs with offset %u and length %u",
2486 					bvec->bv_offset, bvec->bv_len);
2487 		}
2488 
2489 		start = page_offset(page);
2490 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2491 
2492 		end_extent_writepage(page, bio->bi_error, start, end);
2493 		end_page_writeback(page);
2494 	}
2495 
2496 	bio_put(bio);
2497 }
2498 
2499 static void
2500 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2501 			      int uptodate)
2502 {
2503 	struct extent_state *cached = NULL;
2504 	u64 end = start + len - 1;
2505 
2506 	if (uptodate && tree->track_uptodate)
2507 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2508 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2509 }
2510 
2511 /*
2512  * after a readpage IO is done, we need to:
2513  * clear the uptodate bits on error
2514  * set the uptodate bits if things worked
2515  * set the page up to date if all extents in the tree are uptodate
2516  * clear the lock bit in the extent tree
2517  * unlock the page if there are no other extents locked for it
2518  *
2519  * Scheduling is not allowed, so the extent state tree is expected
2520  * to have one and only one object corresponding to this IO.
2521  */
2522 static void end_bio_extent_readpage(struct bio *bio)
2523 {
2524 	struct bio_vec *bvec;
2525 	int uptodate = !bio->bi_error;
2526 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2527 	struct extent_io_tree *tree;
2528 	u64 offset = 0;
2529 	u64 start;
2530 	u64 end;
2531 	u64 len;
2532 	u64 extent_start = 0;
2533 	u64 extent_len = 0;
2534 	int mirror;
2535 	int ret;
2536 	int i;
2537 
2538 	bio_for_each_segment_all(bvec, bio, i) {
2539 		struct page *page = bvec->bv_page;
2540 		struct inode *inode = page->mapping->host;
2541 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2542 
2543 		btrfs_debug(fs_info,
2544 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2545 			(u64)bio->bi_iter.bi_sector, bio->bi_error,
2546 			io_bio->mirror_num);
2547 		tree = &BTRFS_I(inode)->io_tree;
2548 
2549 		/* We always issue full-page reads, but if some block
2550 		 * in a page fails to read, blk_update_request() will
2551 		 * advance bv_offset and adjust bv_len to compensate.
2552 		 * Print a warning for nonzero offsets, and an error
2553 		 * if they don't add up to a full page.  */
2554 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2556 				btrfs_err(fs_info,
2557 					"partial page read in btrfs with offset %u and length %u",
2558 					bvec->bv_offset, bvec->bv_len);
2559 			else
2560 				btrfs_info(fs_info,
2561 					"incomplete page read in btrfs with offset %u and length %u",
2562 					bvec->bv_offset, bvec->bv_len);
2563 		}
2564 
2565 		start = page_offset(page);
2566 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2567 		len = bvec->bv_len;
2568 
2569 		mirror = io_bio->mirror_num;
2570 		if (likely(uptodate && tree->ops)) {
2571 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2572 							      page, start, end,
2573 							      mirror);
2574 			if (ret)
2575 				uptodate = 0;
2576 			else
2577 				clean_io_failure(BTRFS_I(inode), start,
2578 						page, 0);
2579 		}
2580 
2581 		if (likely(uptodate))
2582 			goto readpage_ok;
2583 
2584 		if (tree->ops) {
2585 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2586 			if (!ret && !bio->bi_error)
2587 				uptodate = 1;
2588 		} else {
2589 			/*
2590 			 * The generic bio_readpage_error handles errors the
2591 			 * following way: If possible, new read requests are
2592 			 * created and submitted and will end up in
2593 			 * end_bio_extent_readpage as well (if we're lucky, not
2594 			 * in the !uptodate case). In that case it returns 0 and
2595 			 * we just go on with the next page in our bio. If it
2596 			 * can't handle the error it will return -EIO and we
2597 			 * remain responsible for that page.
2598 			 */
2599 			ret = bio_readpage_error(bio, offset, page, start, end,
2600 						 mirror);
2601 			if (ret == 0) {
2602 				uptodate = !bio->bi_error;
2603 				offset += len;
2604 				continue;
2605 			}
2606 		}
2607 readpage_ok:
2608 		if (likely(uptodate)) {
2609 			loff_t i_size = i_size_read(inode);
2610 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2611 			unsigned off;
2612 
2613 			/* Zero out the end if this page straddles i_size */
2614 			off = i_size & (PAGE_SIZE-1);
2615 			if (page->index == end_index && off)
2616 				zero_user_segment(page, off, PAGE_SIZE);
2617 			SetPageUptodate(page);
2618 		} else {
2619 			ClearPageUptodate(page);
2620 			SetPageError(page);
2621 		}
2622 		unlock_page(page);
2623 		offset += len;
2624 
2625 		if (unlikely(!uptodate)) {
2626 			if (extent_len) {
2627 				endio_readpage_release_extent(tree,
2628 							      extent_start,
2629 							      extent_len, 1);
2630 				extent_start = 0;
2631 				extent_len = 0;
2632 			}
2633 			endio_readpage_release_extent(tree, start,
2634 						      end - start + 1, 0);
2635 		} else if (!extent_len) {
2636 			extent_start = start;
2637 			extent_len = end + 1 - start;
2638 		} else if (extent_start + extent_len == start) {
2639 			extent_len += end + 1 - start;
2640 		} else {
2641 			endio_readpage_release_extent(tree, extent_start,
2642 						      extent_len, uptodate);
2643 			extent_start = start;
2644 			extent_len = end + 1 - start;
2645 		}
2646 	}
2647 
2648 	if (extent_len)
2649 		endio_readpage_release_extent(tree, extent_start, extent_len,
2650 					      uptodate);
2651 	if (io_bio->end_io)
2652 		io_bio->end_io(io_bio, bio->bi_error);
2653 	bio_put(bio);
2654 }
2655 
2656 /*
2657  * this allocates from the btrfs_bioset.  We're returning a bio right now
2658  * but you can call btrfs_io_bio for the appropriate container_of magic
2659  */
2660 struct bio *
2661 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2662 		gfp_t gfp_flags)
2663 {
2664 	struct btrfs_io_bio *btrfs_bio;
2665 	struct bio *bio;
2666 
2667 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2668 
2669 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2670 		while (!bio && (nr_vecs /= 2)) {
2671 			bio = bio_alloc_bioset(gfp_flags,
2672 					       nr_vecs, btrfs_bioset);
2673 		}
2674 	}
2675 
2676 	if (bio) {
2677 		bio->bi_bdev = bdev;
2678 		bio->bi_iter.bi_sector = first_sector;
2679 		btrfs_bio = btrfs_io_bio(bio);
2680 		btrfs_bio->csum = NULL;
2681 		btrfs_bio->csum_allocated = NULL;
2682 		btrfs_bio->end_io = NULL;
2683 	}
2684 	return bio;
2685 }
2686 
2687 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2688 {
2689 	struct btrfs_io_bio *btrfs_bio;
2690 	struct bio *new;
2691 
2692 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2693 	if (new) {
2694 		btrfs_bio = btrfs_io_bio(new);
2695 		btrfs_bio->csum = NULL;
2696 		btrfs_bio->csum_allocated = NULL;
2697 		btrfs_bio->end_io = NULL;
2698 	}
2699 	return new;
2700 }
2701 
2702 /* this also allocates from the btrfs_bioset */
2703 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2704 {
2705 	struct btrfs_io_bio *btrfs_bio;
2706 	struct bio *bio;
2707 
2708 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2709 	if (bio) {
2710 		btrfs_bio = btrfs_io_bio(bio);
2711 		btrfs_bio->csum = NULL;
2712 		btrfs_bio->csum_allocated = NULL;
2713 		btrfs_bio->end_io = NULL;
2714 	}
2715 	return bio;
2716 }
2717 
2718 
2719 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2720 				       unsigned long bio_flags)
2721 {
2722 	int ret = 0;
2723 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2724 	struct page *page = bvec->bv_page;
2725 	struct extent_io_tree *tree = bio->bi_private;
2726 	u64 start;
2727 
2728 	start = page_offset(page) + bvec->bv_offset;
2729 
2730 	bio->bi_private = NULL;
2731 	bio_get(bio);
2732 
2733 	if (tree->ops)
2734 		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2735 					   mirror_num, bio_flags, start);
2736 	else
2737 		btrfsic_submit_bio(bio);
2738 
2739 	bio_put(bio);
2740 	return ret;
2741 }
2742 
2743 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2744 		     unsigned long offset, size_t size, struct bio *bio,
2745 		     unsigned long bio_flags)
2746 {
2747 	int ret = 0;
2748 	if (tree->ops)
2749 		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2750 						bio_flags);
2751 	return ret;
2752 
2753 }
2754 
2755 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2756 			      struct writeback_control *wbc,
2757 			      struct page *page, sector_t sector,
2758 			      size_t size, unsigned long offset,
2759 			      struct block_device *bdev,
2760 			      struct bio **bio_ret,
2761 			      bio_end_io_t end_io_func,
2762 			      int mirror_num,
2763 			      unsigned long prev_bio_flags,
2764 			      unsigned long bio_flags,
2765 			      bool force_bio_submit)
2766 {
2767 	int ret = 0;
2768 	struct bio *bio;
2769 	int contig = 0;
2770 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772 
2773 	if (bio_ret && *bio_ret) {
2774 		bio = *bio_ret;
2775 		if (old_compressed)
2776 			contig = bio->bi_iter.bi_sector == sector;
2777 		else
2778 			contig = bio_end_sector(bio) == sector;
2779 
2780 		if (prev_bio_flags != bio_flags || !contig ||
2781 		    force_bio_submit ||
2782 		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2783 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2784 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2785 			if (ret < 0) {
2786 				*bio_ret = NULL;
2787 				return ret;
2788 			}
2789 			bio = NULL;
2790 		} else {
2791 			if (wbc)
2792 				wbc_account_io(wbc, page, page_size);
2793 			return 0;
2794 		}
2795 	}
2796 
2797 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2798 			GFP_NOFS | __GFP_HIGH);
2799 	if (!bio)
2800 		return -ENOMEM;
2801 
2802 	bio_add_page(bio, page, page_size, offset);
2803 	bio->bi_end_io = end_io_func;
2804 	bio->bi_private = tree;
2805 	bio_set_op_attrs(bio, op, op_flags);
2806 	if (wbc) {
2807 		wbc_init_bio(wbc, bio);
2808 		wbc_account_io(wbc, page, page_size);
2809 	}
2810 
2811 	if (bio_ret)
2812 		*bio_ret = bio;
2813 	else
2814 		ret = submit_one_bio(bio, mirror_num, bio_flags);
2815 
2816 	return ret;
2817 }
2818 
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 				      struct page *page)
2821 {
2822 	if (!PagePrivate(page)) {
2823 		SetPagePrivate(page);
2824 		get_page(page);
2825 		set_page_private(page, (unsigned long)eb);
2826 	} else {
2827 		WARN_ON(page->private != (unsigned long)eb);
2828 	}
2829 }
2830 
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 	if (!PagePrivate(page)) {
2834 		SetPagePrivate(page);
2835 		get_page(page);
2836 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 	}
2838 }
2839 
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 		 u64 start, u64 len, get_extent_t *get_extent,
2843 		 struct extent_map **em_cached)
2844 {
2845 	struct extent_map *em;
2846 
2847 	if (em_cached && *em_cached) {
2848 		em = *em_cached;
2849 		if (extent_map_in_tree(em) && start >= em->start &&
2850 		    start < extent_map_end(em)) {
2851 			atomic_inc(&em->refs);
2852 			return em;
2853 		}
2854 
2855 		free_extent_map(em);
2856 		*em_cached = NULL;
2857 	}
2858 
2859 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2860 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 		BUG_ON(*em_cached);
2862 		atomic_inc(&em->refs);
2863 		*em_cached = em;
2864 	}
2865 	return em;
2866 }
2867 /*
2868  * basic readpage implementation.  Locked extent state structs are inserted
2869  * into the tree that are removed when the IO is done (by the end_io
2870  * handlers)
2871  * XXX JDM: This needs looking at to ensure proper page locking
2872  * return 0 on success, otherwise return error
2873  */
2874 static int __do_readpage(struct extent_io_tree *tree,
2875 			 struct page *page,
2876 			 get_extent_t *get_extent,
2877 			 struct extent_map **em_cached,
2878 			 struct bio **bio, int mirror_num,
2879 			 unsigned long *bio_flags, int read_flags,
2880 			 u64 *prev_em_start)
2881 {
2882 	struct inode *inode = page->mapping->host;
2883 	u64 start = page_offset(page);
2884 	u64 page_end = start + PAGE_SIZE - 1;
2885 	u64 end;
2886 	u64 cur = start;
2887 	u64 extent_offset;
2888 	u64 last_byte = i_size_read(inode);
2889 	u64 block_start;
2890 	u64 cur_end;
2891 	sector_t sector;
2892 	struct extent_map *em;
2893 	struct block_device *bdev;
2894 	int ret = 0;
2895 	int nr = 0;
2896 	size_t pg_offset = 0;
2897 	size_t iosize;
2898 	size_t disk_io_size;
2899 	size_t blocksize = inode->i_sb->s_blocksize;
2900 	unsigned long this_bio_flag = 0;
2901 
2902 	set_page_extent_mapped(page);
2903 
2904 	end = page_end;
2905 	if (!PageUptodate(page)) {
2906 		if (cleancache_get_page(page) == 0) {
2907 			BUG_ON(blocksize != PAGE_SIZE);
2908 			unlock_extent(tree, start, end);
2909 			goto out;
2910 		}
2911 	}
2912 
2913 	if (page->index == last_byte >> PAGE_SHIFT) {
2914 		char *userpage;
2915 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2916 
2917 		if (zero_offset) {
2918 			iosize = PAGE_SIZE - zero_offset;
2919 			userpage = kmap_atomic(page);
2920 			memset(userpage + zero_offset, 0, iosize);
2921 			flush_dcache_page(page);
2922 			kunmap_atomic(userpage);
2923 		}
2924 	}
2925 	while (cur <= end) {
2926 		bool force_bio_submit = false;
2927 
2928 		if (cur >= last_byte) {
2929 			char *userpage;
2930 			struct extent_state *cached = NULL;
2931 
2932 			iosize = PAGE_SIZE - pg_offset;
2933 			userpage = kmap_atomic(page);
2934 			memset(userpage + pg_offset, 0, iosize);
2935 			flush_dcache_page(page);
2936 			kunmap_atomic(userpage);
2937 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 					    &cached, GFP_NOFS);
2939 			unlock_extent_cached(tree, cur,
2940 					     cur + iosize - 1,
2941 					     &cached, GFP_NOFS);
2942 			break;
2943 		}
2944 		em = __get_extent_map(inode, page, pg_offset, cur,
2945 				      end - cur + 1, get_extent, em_cached);
2946 		if (IS_ERR_OR_NULL(em)) {
2947 			SetPageError(page);
2948 			unlock_extent(tree, cur, end);
2949 			break;
2950 		}
2951 		extent_offset = cur - em->start;
2952 		BUG_ON(extent_map_end(em) <= cur);
2953 		BUG_ON(end < cur);
2954 
2955 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 			extent_set_compress_type(&this_bio_flag,
2958 						 em->compress_type);
2959 		}
2960 
2961 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 		cur_end = min(extent_map_end(em) - 1, end);
2963 		iosize = ALIGN(iosize, blocksize);
2964 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 			disk_io_size = em->block_len;
2966 			sector = em->block_start >> 9;
2967 		} else {
2968 			sector = (em->block_start + extent_offset) >> 9;
2969 			disk_io_size = iosize;
2970 		}
2971 		bdev = em->bdev;
2972 		block_start = em->block_start;
2973 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 			block_start = EXTENT_MAP_HOLE;
2975 
2976 		/*
2977 		 * If we have a file range that points to a compressed extent
2978 		 * and it's followed by a consecutive file range that points to
2979 		 * to the same compressed extent (possibly with a different
2980 		 * offset and/or length, so it either points to the whole extent
2981 		 * or only part of it), we must make sure we do not submit a
2982 		 * single bio to populate the pages for the 2 ranges because
2983 		 * this makes the compressed extent read zero out the pages
2984 		 * belonging to the 2nd range. Imagine the following scenario:
2985 		 *
2986 		 *  File layout
2987 		 *  [0 - 8K]                     [8K - 24K]
2988 		 *    |                               |
2989 		 *    |                               |
2990 		 * points to extent X,         points to extent X,
2991 		 * offset 4K, length of 8K     offset 0, length 16K
2992 		 *
2993 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 		 *
2995 		 * If the bio to read the compressed extent covers both ranges,
2996 		 * it will decompress extent X into the pages belonging to the
2997 		 * first range and then it will stop, zeroing out the remaining
2998 		 * pages that belong to the other range that points to extent X.
2999 		 * So here we make sure we submit 2 bios, one for the first
3000 		 * range and another one for the third range. Both will target
3001 		 * the same physical extent from disk, but we can't currently
3002 		 * make the compressed bio endio callback populate the pages
3003 		 * for both ranges because each compressed bio is tightly
3004 		 * coupled with a single extent map, and each range can have
3005 		 * an extent map with a different offset value relative to the
3006 		 * uncompressed data of our extent and different lengths. This
3007 		 * is a corner case so we prioritize correctness over
3008 		 * non-optimal behavior (submitting 2 bios for the same extent).
3009 		 */
3010 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 		    prev_em_start && *prev_em_start != (u64)-1 &&
3012 		    *prev_em_start != em->orig_start)
3013 			force_bio_submit = true;
3014 
3015 		if (prev_em_start)
3016 			*prev_em_start = em->orig_start;
3017 
3018 		free_extent_map(em);
3019 		em = NULL;
3020 
3021 		/* we've found a hole, just zero and go on */
3022 		if (block_start == EXTENT_MAP_HOLE) {
3023 			char *userpage;
3024 			struct extent_state *cached = NULL;
3025 
3026 			userpage = kmap_atomic(page);
3027 			memset(userpage + pg_offset, 0, iosize);
3028 			flush_dcache_page(page);
3029 			kunmap_atomic(userpage);
3030 
3031 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 					    &cached, GFP_NOFS);
3033 			unlock_extent_cached(tree, cur,
3034 					     cur + iosize - 1,
3035 					     &cached, GFP_NOFS);
3036 			cur = cur + iosize;
3037 			pg_offset += iosize;
3038 			continue;
3039 		}
3040 		/* the get_extent function already copied into the page */
3041 		if (test_range_bit(tree, cur, cur_end,
3042 				   EXTENT_UPTODATE, 1, NULL)) {
3043 			check_page_uptodate(tree, page);
3044 			unlock_extent(tree, cur, cur + iosize - 1);
3045 			cur = cur + iosize;
3046 			pg_offset += iosize;
3047 			continue;
3048 		}
3049 		/* we have an inline extent but it didn't get marked up
3050 		 * to date.  Error out
3051 		 */
3052 		if (block_start == EXTENT_MAP_INLINE) {
3053 			SetPageError(page);
3054 			unlock_extent(tree, cur, cur + iosize - 1);
3055 			cur = cur + iosize;
3056 			pg_offset += iosize;
3057 			continue;
3058 		}
3059 
3060 		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3061 					 page, sector, disk_io_size, pg_offset,
3062 					 bdev, bio,
3063 					 end_bio_extent_readpage, mirror_num,
3064 					 *bio_flags,
3065 					 this_bio_flag,
3066 					 force_bio_submit);
3067 		if (!ret) {
3068 			nr++;
3069 			*bio_flags = this_bio_flag;
3070 		} else {
3071 			SetPageError(page);
3072 			unlock_extent(tree, cur, cur + iosize - 1);
3073 			goto out;
3074 		}
3075 		cur = cur + iosize;
3076 		pg_offset += iosize;
3077 	}
3078 out:
3079 	if (!nr) {
3080 		if (!PageError(page))
3081 			SetPageUptodate(page);
3082 		unlock_page(page);
3083 	}
3084 	return ret;
3085 }
3086 
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 					     struct page *pages[], int nr_pages,
3089 					     u64 start, u64 end,
3090 					     get_extent_t *get_extent,
3091 					     struct extent_map **em_cached,
3092 					     struct bio **bio, int mirror_num,
3093 					     unsigned long *bio_flags,
3094 					     u64 *prev_em_start)
3095 {
3096 	struct inode *inode;
3097 	struct btrfs_ordered_extent *ordered;
3098 	int index;
3099 
3100 	inode = pages[0]->mapping->host;
3101 	while (1) {
3102 		lock_extent(tree, start, end);
3103 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3104 						     end - start + 1);
3105 		if (!ordered)
3106 			break;
3107 		unlock_extent(tree, start, end);
3108 		btrfs_start_ordered_extent(inode, ordered, 1);
3109 		btrfs_put_ordered_extent(ordered);
3110 	}
3111 
3112 	for (index = 0; index < nr_pages; index++) {
3113 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 			      mirror_num, bio_flags, 0, prev_em_start);
3115 		put_page(pages[index]);
3116 	}
3117 }
3118 
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 			       struct page *pages[],
3121 			       int nr_pages, get_extent_t *get_extent,
3122 			       struct extent_map **em_cached,
3123 			       struct bio **bio, int mirror_num,
3124 			       unsigned long *bio_flags,
3125 			       u64 *prev_em_start)
3126 {
3127 	u64 start = 0;
3128 	u64 end = 0;
3129 	u64 page_start;
3130 	int index;
3131 	int first_index = 0;
3132 
3133 	for (index = 0; index < nr_pages; index++) {
3134 		page_start = page_offset(pages[index]);
3135 		if (!end) {
3136 			start = page_start;
3137 			end = start + PAGE_SIZE - 1;
3138 			first_index = index;
3139 		} else if (end + 1 == page_start) {
3140 			end += PAGE_SIZE;
3141 		} else {
3142 			__do_contiguous_readpages(tree, &pages[first_index],
3143 						  index - first_index, start,
3144 						  end, get_extent, em_cached,
3145 						  bio, mirror_num, bio_flags,
3146 						  prev_em_start);
3147 			start = page_start;
3148 			end = start + PAGE_SIZE - 1;
3149 			first_index = index;
3150 		}
3151 	}
3152 
3153 	if (end)
3154 		__do_contiguous_readpages(tree, &pages[first_index],
3155 					  index - first_index, start,
3156 					  end, get_extent, em_cached, bio,
3157 					  mirror_num, bio_flags,
3158 					  prev_em_start);
3159 }
3160 
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 				   struct page *page,
3163 				   get_extent_t *get_extent,
3164 				   struct bio **bio, int mirror_num,
3165 				   unsigned long *bio_flags, int read_flags)
3166 {
3167 	struct inode *inode = page->mapping->host;
3168 	struct btrfs_ordered_extent *ordered;
3169 	u64 start = page_offset(page);
3170 	u64 end = start + PAGE_SIZE - 1;
3171 	int ret;
3172 
3173 	while (1) {
3174 		lock_extent(tree, start, end);
3175 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3176 						PAGE_SIZE);
3177 		if (!ordered)
3178 			break;
3179 		unlock_extent(tree, start, end);
3180 		btrfs_start_ordered_extent(inode, ordered, 1);
3181 		btrfs_put_ordered_extent(ordered);
3182 	}
3183 
3184 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 			    bio_flags, read_flags, NULL);
3186 	return ret;
3187 }
3188 
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 			    get_extent_t *get_extent, int mirror_num)
3191 {
3192 	struct bio *bio = NULL;
3193 	unsigned long bio_flags = 0;
3194 	int ret;
3195 
3196 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 				      &bio_flags, 0);
3198 	if (bio)
3199 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3200 	return ret;
3201 }
3202 
3203 static void update_nr_written(struct writeback_control *wbc,
3204 			      unsigned long nr_written)
3205 {
3206 	wbc->nr_to_write -= nr_written;
3207 }
3208 
3209 /*
3210  * helper for __extent_writepage, doing all of the delayed allocation setup.
3211  *
3212  * This returns 1 if our fill_delalloc function did all the work required
3213  * to write the page (copy into inline extent).  In this case the IO has
3214  * been started and the page is already unlocked.
3215  *
3216  * This returns 0 if all went well (page still locked)
3217  * This returns < 0 if there were errors (page still locked)
3218  */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 			      struct page *page, struct writeback_control *wbc,
3221 			      struct extent_page_data *epd,
3222 			      u64 delalloc_start,
3223 			      unsigned long *nr_written)
3224 {
3225 	struct extent_io_tree *tree = epd->tree;
3226 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3227 	u64 nr_delalloc;
3228 	u64 delalloc_to_write = 0;
3229 	u64 delalloc_end = 0;
3230 	int ret;
3231 	int page_started = 0;
3232 
3233 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 		return 0;
3235 
3236 	while (delalloc_end < page_end) {
3237 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 					       page,
3239 					       &delalloc_start,
3240 					       &delalloc_end,
3241 					       BTRFS_MAX_EXTENT_SIZE);
3242 		if (nr_delalloc == 0) {
3243 			delalloc_start = delalloc_end + 1;
3244 			continue;
3245 		}
3246 		ret = tree->ops->fill_delalloc(inode, page,
3247 					       delalloc_start,
3248 					       delalloc_end,
3249 					       &page_started,
3250 					       nr_written);
3251 		/* File system has been set read-only */
3252 		if (ret) {
3253 			SetPageError(page);
3254 			/* fill_delalloc should be return < 0 for error
3255 			 * but just in case, we use > 0 here meaning the
3256 			 * IO is started, so we don't want to return > 0
3257 			 * unless things are going well.
3258 			 */
3259 			ret = ret < 0 ? ret : -EIO;
3260 			goto done;
3261 		}
3262 		/*
3263 		 * delalloc_end is already one less than the total length, so
3264 		 * we don't subtract one from PAGE_SIZE
3265 		 */
3266 		delalloc_to_write += (delalloc_end - delalloc_start +
3267 				      PAGE_SIZE) >> PAGE_SHIFT;
3268 		delalloc_start = delalloc_end + 1;
3269 	}
3270 	if (wbc->nr_to_write < delalloc_to_write) {
3271 		int thresh = 8192;
3272 
3273 		if (delalloc_to_write < thresh * 2)
3274 			thresh = delalloc_to_write;
3275 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 					 thresh);
3277 	}
3278 
3279 	/* did the fill delalloc function already unlock and start
3280 	 * the IO?
3281 	 */
3282 	if (page_started) {
3283 		/*
3284 		 * we've unlocked the page, so we can't update
3285 		 * the mapping's writeback index, just update
3286 		 * nr_to_write.
3287 		 */
3288 		wbc->nr_to_write -= *nr_written;
3289 		return 1;
3290 	}
3291 
3292 	ret = 0;
3293 
3294 done:
3295 	return ret;
3296 }
3297 
3298 /*
3299  * helper for __extent_writepage.  This calls the writepage start hooks,
3300  * and does the loop to map the page into extents and bios.
3301  *
3302  * We return 1 if the IO is started and the page is unlocked,
3303  * 0 if all went well (page still locked)
3304  * < 0 if there were errors (page still locked)
3305  */
3306 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 				 struct page *page,
3308 				 struct writeback_control *wbc,
3309 				 struct extent_page_data *epd,
3310 				 loff_t i_size,
3311 				 unsigned long nr_written,
3312 				 int write_flags, int *nr_ret)
3313 {
3314 	struct extent_io_tree *tree = epd->tree;
3315 	u64 start = page_offset(page);
3316 	u64 page_end = start + PAGE_SIZE - 1;
3317 	u64 end;
3318 	u64 cur = start;
3319 	u64 extent_offset;
3320 	u64 block_start;
3321 	u64 iosize;
3322 	sector_t sector;
3323 	struct extent_map *em;
3324 	struct block_device *bdev;
3325 	size_t pg_offset = 0;
3326 	size_t blocksize;
3327 	int ret = 0;
3328 	int nr = 0;
3329 	bool compressed;
3330 
3331 	if (tree->ops && tree->ops->writepage_start_hook) {
3332 		ret = tree->ops->writepage_start_hook(page, start,
3333 						      page_end);
3334 		if (ret) {
3335 			/* Fixup worker will requeue */
3336 			if (ret == -EBUSY)
3337 				wbc->pages_skipped++;
3338 			else
3339 				redirty_page_for_writepage(wbc, page);
3340 
3341 			update_nr_written(wbc, nr_written);
3342 			unlock_page(page);
3343 			return 1;
3344 		}
3345 	}
3346 
3347 	/*
3348 	 * we don't want to touch the inode after unlocking the page,
3349 	 * so we update the mapping writeback index now
3350 	 */
3351 	update_nr_written(wbc, nr_written + 1);
3352 
3353 	end = page_end;
3354 	if (i_size <= start) {
3355 		if (tree->ops && tree->ops->writepage_end_io_hook)
3356 			tree->ops->writepage_end_io_hook(page, start,
3357 							 page_end, NULL, 1);
3358 		goto done;
3359 	}
3360 
3361 	blocksize = inode->i_sb->s_blocksize;
3362 
3363 	while (cur <= end) {
3364 		u64 em_end;
3365 
3366 		if (cur >= i_size) {
3367 			if (tree->ops && tree->ops->writepage_end_io_hook)
3368 				tree->ops->writepage_end_io_hook(page, cur,
3369 							 page_end, NULL, 1);
3370 			break;
3371 		}
3372 		em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3373 				     end - cur + 1, 1);
3374 		if (IS_ERR_OR_NULL(em)) {
3375 			SetPageError(page);
3376 			ret = PTR_ERR_OR_ZERO(em);
3377 			break;
3378 		}
3379 
3380 		extent_offset = cur - em->start;
3381 		em_end = extent_map_end(em);
3382 		BUG_ON(em_end <= cur);
3383 		BUG_ON(end < cur);
3384 		iosize = min(em_end - cur, end - cur + 1);
3385 		iosize = ALIGN(iosize, blocksize);
3386 		sector = (em->block_start + extent_offset) >> 9;
3387 		bdev = em->bdev;
3388 		block_start = em->block_start;
3389 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3390 		free_extent_map(em);
3391 		em = NULL;
3392 
3393 		/*
3394 		 * compressed and inline extents are written through other
3395 		 * paths in the FS
3396 		 */
3397 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3398 		    block_start == EXTENT_MAP_INLINE) {
3399 			/*
3400 			 * end_io notification does not happen here for
3401 			 * compressed extents
3402 			 */
3403 			if (!compressed && tree->ops &&
3404 			    tree->ops->writepage_end_io_hook)
3405 				tree->ops->writepage_end_io_hook(page, cur,
3406 							 cur + iosize - 1,
3407 							 NULL, 1);
3408 			else if (compressed) {
3409 				/* we don't want to end_page_writeback on
3410 				 * a compressed extent.  this happens
3411 				 * elsewhere
3412 				 */
3413 				nr++;
3414 			}
3415 
3416 			cur += iosize;
3417 			pg_offset += iosize;
3418 			continue;
3419 		}
3420 
3421 		set_range_writeback(tree, cur, cur + iosize - 1);
3422 		if (!PageWriteback(page)) {
3423 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3424 				   "page %lu not writeback, cur %llu end %llu",
3425 			       page->index, cur, end);
3426 		}
3427 
3428 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3429 					 page, sector, iosize, pg_offset,
3430 					 bdev, &epd->bio,
3431 					 end_bio_extent_writepage,
3432 					 0, 0, 0, false);
3433 		if (ret) {
3434 			SetPageError(page);
3435 			if (PageWriteback(page))
3436 				end_page_writeback(page);
3437 		}
3438 
3439 		cur = cur + iosize;
3440 		pg_offset += iosize;
3441 		nr++;
3442 	}
3443 done:
3444 	*nr_ret = nr;
3445 	return ret;
3446 }
3447 
3448 /*
3449  * the writepage semantics are similar to regular writepage.  extent
3450  * records are inserted to lock ranges in the tree, and as dirty areas
3451  * are found, they are marked writeback.  Then the lock bits are removed
3452  * and the end_io handler clears the writeback ranges
3453  */
3454 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3455 			      void *data)
3456 {
3457 	struct inode *inode = page->mapping->host;
3458 	struct extent_page_data *epd = data;
3459 	u64 start = page_offset(page);
3460 	u64 page_end = start + PAGE_SIZE - 1;
3461 	int ret;
3462 	int nr = 0;
3463 	size_t pg_offset = 0;
3464 	loff_t i_size = i_size_read(inode);
3465 	unsigned long end_index = i_size >> PAGE_SHIFT;
3466 	int write_flags = 0;
3467 	unsigned long nr_written = 0;
3468 
3469 	if (wbc->sync_mode == WB_SYNC_ALL)
3470 		write_flags = REQ_SYNC;
3471 
3472 	trace___extent_writepage(page, inode, wbc);
3473 
3474 	WARN_ON(!PageLocked(page));
3475 
3476 	ClearPageError(page);
3477 
3478 	pg_offset = i_size & (PAGE_SIZE - 1);
3479 	if (page->index > end_index ||
3480 	   (page->index == end_index && !pg_offset)) {
3481 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3482 		unlock_page(page);
3483 		return 0;
3484 	}
3485 
3486 	if (page->index == end_index) {
3487 		char *userpage;
3488 
3489 		userpage = kmap_atomic(page);
3490 		memset(userpage + pg_offset, 0,
3491 		       PAGE_SIZE - pg_offset);
3492 		kunmap_atomic(userpage);
3493 		flush_dcache_page(page);
3494 	}
3495 
3496 	pg_offset = 0;
3497 
3498 	set_page_extent_mapped(page);
3499 
3500 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 	if (ret == 1)
3502 		goto done_unlocked;
3503 	if (ret)
3504 		goto done;
3505 
3506 	ret = __extent_writepage_io(inode, page, wbc, epd,
3507 				    i_size, nr_written, write_flags, &nr);
3508 	if (ret == 1)
3509 		goto done_unlocked;
3510 
3511 done:
3512 	if (nr == 0) {
3513 		/* make sure the mapping tag for page dirty gets cleared */
3514 		set_page_writeback(page);
3515 		end_page_writeback(page);
3516 	}
3517 	if (PageError(page)) {
3518 		ret = ret < 0 ? ret : -EIO;
3519 		end_extent_writepage(page, ret, start, page_end);
3520 	}
3521 	unlock_page(page);
3522 	return ret;
3523 
3524 done_unlocked:
3525 	return 0;
3526 }
3527 
3528 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3529 {
3530 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 		       TASK_UNINTERRUPTIBLE);
3532 }
3533 
3534 static noinline_for_stack int
3535 lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 			  struct btrfs_fs_info *fs_info,
3537 			  struct extent_page_data *epd)
3538 {
3539 	unsigned long i, num_pages;
3540 	int flush = 0;
3541 	int ret = 0;
3542 
3543 	if (!btrfs_try_tree_write_lock(eb)) {
3544 		flush = 1;
3545 		flush_write_bio(epd);
3546 		btrfs_tree_lock(eb);
3547 	}
3548 
3549 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 		btrfs_tree_unlock(eb);
3551 		if (!epd->sync_io)
3552 			return 0;
3553 		if (!flush) {
3554 			flush_write_bio(epd);
3555 			flush = 1;
3556 		}
3557 		while (1) {
3558 			wait_on_extent_buffer_writeback(eb);
3559 			btrfs_tree_lock(eb);
3560 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3561 				break;
3562 			btrfs_tree_unlock(eb);
3563 		}
3564 	}
3565 
3566 	/*
3567 	 * We need to do this to prevent races in people who check if the eb is
3568 	 * under IO since we can end up having no IO bits set for a short period
3569 	 * of time.
3570 	 */
3571 	spin_lock(&eb->refs_lock);
3572 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3574 		spin_unlock(&eb->refs_lock);
3575 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3576 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3577 				     -eb->len,
3578 				     fs_info->dirty_metadata_batch);
3579 		ret = 1;
3580 	} else {
3581 		spin_unlock(&eb->refs_lock);
3582 	}
3583 
3584 	btrfs_tree_unlock(eb);
3585 
3586 	if (!ret)
3587 		return ret;
3588 
3589 	num_pages = num_extent_pages(eb->start, eb->len);
3590 	for (i = 0; i < num_pages; i++) {
3591 		struct page *p = eb->pages[i];
3592 
3593 		if (!trylock_page(p)) {
3594 			if (!flush) {
3595 				flush_write_bio(epd);
3596 				flush = 1;
3597 			}
3598 			lock_page(p);
3599 		}
3600 	}
3601 
3602 	return ret;
3603 }
3604 
3605 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3606 {
3607 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3608 	smp_mb__after_atomic();
3609 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3610 }
3611 
3612 static void set_btree_ioerr(struct page *page)
3613 {
3614 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3615 
3616 	SetPageError(page);
3617 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3618 		return;
3619 
3620 	/*
3621 	 * If writeback for a btree extent that doesn't belong to a log tree
3622 	 * failed, increment the counter transaction->eb_write_errors.
3623 	 * We do this because while the transaction is running and before it's
3624 	 * committing (when we call filemap_fdata[write|wait]_range against
3625 	 * the btree inode), we might have
3626 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 	 * returns an error or an error happens during writeback, when we're
3628 	 * committing the transaction we wouldn't know about it, since the pages
3629 	 * can be no longer dirty nor marked anymore for writeback (if a
3630 	 * subsequent modification to the extent buffer didn't happen before the
3631 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 	 * able to find the pages tagged with SetPageError at transaction
3633 	 * commit time. So if this happens we must abort the transaction,
3634 	 * otherwise we commit a super block with btree roots that point to
3635 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 	 * or the content of some node/leaf from a past generation that got
3637 	 * cowed or deleted and is no longer valid.
3638 	 *
3639 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 	 * not be enough - we need to distinguish between log tree extents vs
3641 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 	 * will catch and clear such errors in the mapping - and that call might
3643 	 * be from a log sync and not from a transaction commit. Also, checking
3644 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 	 * not done and would not be reliable - the eb might have been released
3646 	 * from memory and reading it back again means that flag would not be
3647 	 * set (since it's a runtime flag, not persisted on disk).
3648 	 *
3649 	 * Using the flags below in the btree inode also makes us achieve the
3650 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 	 * is called, the writeback for all dirty pages had already finished
3653 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 	 * filemap_fdatawait_range() would return success, as it could not know
3655 	 * that writeback errors happened (the pages were no longer tagged for
3656 	 * writeback).
3657 	 */
3658 	switch (eb->log_index) {
3659 	case -1:
3660 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3661 		break;
3662 	case 0:
3663 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3664 		break;
3665 	case 1:
3666 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3667 		break;
3668 	default:
3669 		BUG(); /* unexpected, logic error */
3670 	}
3671 }
3672 
3673 static void end_bio_extent_buffer_writepage(struct bio *bio)
3674 {
3675 	struct bio_vec *bvec;
3676 	struct extent_buffer *eb;
3677 	int i, done;
3678 
3679 	bio_for_each_segment_all(bvec, bio, i) {
3680 		struct page *page = bvec->bv_page;
3681 
3682 		eb = (struct extent_buffer *)page->private;
3683 		BUG_ON(!eb);
3684 		done = atomic_dec_and_test(&eb->io_pages);
3685 
3686 		if (bio->bi_error ||
3687 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3688 			ClearPageUptodate(page);
3689 			set_btree_ioerr(page);
3690 		}
3691 
3692 		end_page_writeback(page);
3693 
3694 		if (!done)
3695 			continue;
3696 
3697 		end_extent_buffer_writeback(eb);
3698 	}
3699 
3700 	bio_put(bio);
3701 }
3702 
3703 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3704 			struct btrfs_fs_info *fs_info,
3705 			struct writeback_control *wbc,
3706 			struct extent_page_data *epd)
3707 {
3708 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3709 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3710 	u64 offset = eb->start;
3711 	u32 nritems;
3712 	unsigned long i, num_pages;
3713 	unsigned long bio_flags = 0;
3714 	unsigned long start, end;
3715 	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3716 	int ret = 0;
3717 
3718 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3719 	num_pages = num_extent_pages(eb->start, eb->len);
3720 	atomic_set(&eb->io_pages, num_pages);
3721 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3722 		bio_flags = EXTENT_BIO_TREE_LOG;
3723 
3724 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 	nritems = btrfs_header_nritems(eb);
3726 	if (btrfs_header_level(eb) > 0) {
3727 		end = btrfs_node_key_ptr_offset(nritems);
3728 
3729 		memzero_extent_buffer(eb, end, eb->len - end);
3730 	} else {
3731 		/*
3732 		 * leaf:
3733 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 		 */
3735 		start = btrfs_item_nr_offset(nritems);
3736 		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
3737 		memzero_extent_buffer(eb, start, end - start);
3738 	}
3739 
3740 	for (i = 0; i < num_pages; i++) {
3741 		struct page *p = eb->pages[i];
3742 
3743 		clear_page_dirty_for_io(p);
3744 		set_page_writeback(p);
3745 		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3747 					 &epd->bio,
3748 					 end_bio_extent_buffer_writepage,
3749 					 0, epd->bio_flags, bio_flags, false);
3750 		epd->bio_flags = bio_flags;
3751 		if (ret) {
3752 			set_btree_ioerr(p);
3753 			if (PageWriteback(p))
3754 				end_page_writeback(p);
3755 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 				end_extent_buffer_writeback(eb);
3757 			ret = -EIO;
3758 			break;
3759 		}
3760 		offset += PAGE_SIZE;
3761 		update_nr_written(wbc, 1);
3762 		unlock_page(p);
3763 	}
3764 
3765 	if (unlikely(ret)) {
3766 		for (; i < num_pages; i++) {
3767 			struct page *p = eb->pages[i];
3768 			clear_page_dirty_for_io(p);
3769 			unlock_page(p);
3770 		}
3771 	}
3772 
3773 	return ret;
3774 }
3775 
3776 int btree_write_cache_pages(struct address_space *mapping,
3777 				   struct writeback_control *wbc)
3778 {
3779 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 	struct extent_buffer *eb, *prev_eb = NULL;
3782 	struct extent_page_data epd = {
3783 		.bio = NULL,
3784 		.tree = tree,
3785 		.extent_locked = 0,
3786 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 		.bio_flags = 0,
3788 	};
3789 	int ret = 0;
3790 	int done = 0;
3791 	int nr_to_write_done = 0;
3792 	struct pagevec pvec;
3793 	int nr_pages;
3794 	pgoff_t index;
3795 	pgoff_t end;		/* Inclusive */
3796 	int scanned = 0;
3797 	int tag;
3798 
3799 	pagevec_init(&pvec, 0);
3800 	if (wbc->range_cyclic) {
3801 		index = mapping->writeback_index; /* Start from prev offset */
3802 		end = -1;
3803 	} else {
3804 		index = wbc->range_start >> PAGE_SHIFT;
3805 		end = wbc->range_end >> PAGE_SHIFT;
3806 		scanned = 1;
3807 	}
3808 	if (wbc->sync_mode == WB_SYNC_ALL)
3809 		tag = PAGECACHE_TAG_TOWRITE;
3810 	else
3811 		tag = PAGECACHE_TAG_DIRTY;
3812 retry:
3813 	if (wbc->sync_mode == WB_SYNC_ALL)
3814 		tag_pages_for_writeback(mapping, index, end);
3815 	while (!done && !nr_to_write_done && (index <= end) &&
3816 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 		unsigned i;
3819 
3820 		scanned = 1;
3821 		for (i = 0; i < nr_pages; i++) {
3822 			struct page *page = pvec.pages[i];
3823 
3824 			if (!PagePrivate(page))
3825 				continue;
3826 
3827 			if (!wbc->range_cyclic && page->index > end) {
3828 				done = 1;
3829 				break;
3830 			}
3831 
3832 			spin_lock(&mapping->private_lock);
3833 			if (!PagePrivate(page)) {
3834 				spin_unlock(&mapping->private_lock);
3835 				continue;
3836 			}
3837 
3838 			eb = (struct extent_buffer *)page->private;
3839 
3840 			/*
3841 			 * Shouldn't happen and normally this would be a BUG_ON
3842 			 * but no sense in crashing the users box for something
3843 			 * we can survive anyway.
3844 			 */
3845 			if (WARN_ON(!eb)) {
3846 				spin_unlock(&mapping->private_lock);
3847 				continue;
3848 			}
3849 
3850 			if (eb == prev_eb) {
3851 				spin_unlock(&mapping->private_lock);
3852 				continue;
3853 			}
3854 
3855 			ret = atomic_inc_not_zero(&eb->refs);
3856 			spin_unlock(&mapping->private_lock);
3857 			if (!ret)
3858 				continue;
3859 
3860 			prev_eb = eb;
3861 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 			if (!ret) {
3863 				free_extent_buffer(eb);
3864 				continue;
3865 			}
3866 
3867 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 			if (ret) {
3869 				done = 1;
3870 				free_extent_buffer(eb);
3871 				break;
3872 			}
3873 			free_extent_buffer(eb);
3874 
3875 			/*
3876 			 * the filesystem may choose to bump up nr_to_write.
3877 			 * We have to make sure to honor the new nr_to_write
3878 			 * at any time
3879 			 */
3880 			nr_to_write_done = wbc->nr_to_write <= 0;
3881 		}
3882 		pagevec_release(&pvec);
3883 		cond_resched();
3884 	}
3885 	if (!scanned && !done) {
3886 		/*
3887 		 * We hit the last page and there is more work to be done: wrap
3888 		 * back to the start of the file
3889 		 */
3890 		scanned = 1;
3891 		index = 0;
3892 		goto retry;
3893 	}
3894 	flush_write_bio(&epd);
3895 	return ret;
3896 }
3897 
3898 /**
3899  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900  * @mapping: address space structure to write
3901  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902  * @writepage: function called for each page
3903  * @data: data passed to writepage function
3904  *
3905  * If a page is already under I/O, write_cache_pages() skips it, even
3906  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3907  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3908  * and msync() need to guarantee that all the data which was dirty at the time
3909  * the call was made get new I/O started against them.  If wbc->sync_mode is
3910  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911  * existing IO to complete.
3912  */
3913 static int extent_write_cache_pages(struct address_space *mapping,
3914 			     struct writeback_control *wbc,
3915 			     writepage_t writepage, void *data,
3916 			     void (*flush_fn)(void *))
3917 {
3918 	struct inode *inode = mapping->host;
3919 	int ret = 0;
3920 	int done = 0;
3921 	int nr_to_write_done = 0;
3922 	struct pagevec pvec;
3923 	int nr_pages;
3924 	pgoff_t index;
3925 	pgoff_t end;		/* Inclusive */
3926 	pgoff_t done_index;
3927 	int range_whole = 0;
3928 	int scanned = 0;
3929 	int tag;
3930 
3931 	/*
3932 	 * We have to hold onto the inode so that ordered extents can do their
3933 	 * work when the IO finishes.  The alternative to this is failing to add
3934 	 * an ordered extent if the igrab() fails there and that is a huge pain
3935 	 * to deal with, so instead just hold onto the inode throughout the
3936 	 * writepages operation.  If it fails here we are freeing up the inode
3937 	 * anyway and we'd rather not waste our time writing out stuff that is
3938 	 * going to be truncated anyway.
3939 	 */
3940 	if (!igrab(inode))
3941 		return 0;
3942 
3943 	pagevec_init(&pvec, 0);
3944 	if (wbc->range_cyclic) {
3945 		index = mapping->writeback_index; /* Start from prev offset */
3946 		end = -1;
3947 	} else {
3948 		index = wbc->range_start >> PAGE_SHIFT;
3949 		end = wbc->range_end >> PAGE_SHIFT;
3950 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 			range_whole = 1;
3952 		scanned = 1;
3953 	}
3954 	if (wbc->sync_mode == WB_SYNC_ALL)
3955 		tag = PAGECACHE_TAG_TOWRITE;
3956 	else
3957 		tag = PAGECACHE_TAG_DIRTY;
3958 retry:
3959 	if (wbc->sync_mode == WB_SYNC_ALL)
3960 		tag_pages_for_writeback(mapping, index, end);
3961 	done_index = index;
3962 	while (!done && !nr_to_write_done && (index <= end) &&
3963 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3965 		unsigned i;
3966 
3967 		scanned = 1;
3968 		for (i = 0; i < nr_pages; i++) {
3969 			struct page *page = pvec.pages[i];
3970 
3971 			done_index = page->index;
3972 			/*
3973 			 * At this point we hold neither mapping->tree_lock nor
3974 			 * lock on the page itself: the page may be truncated or
3975 			 * invalidated (changing page->mapping to NULL), or even
3976 			 * swizzled back from swapper_space to tmpfs file
3977 			 * mapping
3978 			 */
3979 			if (!trylock_page(page)) {
3980 				flush_fn(data);
3981 				lock_page(page);
3982 			}
3983 
3984 			if (unlikely(page->mapping != mapping)) {
3985 				unlock_page(page);
3986 				continue;
3987 			}
3988 
3989 			if (!wbc->range_cyclic && page->index > end) {
3990 				done = 1;
3991 				unlock_page(page);
3992 				continue;
3993 			}
3994 
3995 			if (wbc->sync_mode != WB_SYNC_NONE) {
3996 				if (PageWriteback(page))
3997 					flush_fn(data);
3998 				wait_on_page_writeback(page);
3999 			}
4000 
4001 			if (PageWriteback(page) ||
4002 			    !clear_page_dirty_for_io(page)) {
4003 				unlock_page(page);
4004 				continue;
4005 			}
4006 
4007 			ret = (*writepage)(page, wbc, data);
4008 
4009 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 				unlock_page(page);
4011 				ret = 0;
4012 			}
4013 			if (ret < 0) {
4014 				/*
4015 				 * done_index is set past this page,
4016 				 * so media errors will not choke
4017 				 * background writeout for the entire
4018 				 * file. This has consequences for
4019 				 * range_cyclic semantics (ie. it may
4020 				 * not be suitable for data integrity
4021 				 * writeout).
4022 				 */
4023 				done_index = page->index + 1;
4024 				done = 1;
4025 				break;
4026 			}
4027 
4028 			/*
4029 			 * the filesystem may choose to bump up nr_to_write.
4030 			 * We have to make sure to honor the new nr_to_write
4031 			 * at any time
4032 			 */
4033 			nr_to_write_done = wbc->nr_to_write <= 0;
4034 		}
4035 		pagevec_release(&pvec);
4036 		cond_resched();
4037 	}
4038 	if (!scanned && !done) {
4039 		/*
4040 		 * We hit the last page and there is more work to be done: wrap
4041 		 * back to the start of the file
4042 		 */
4043 		scanned = 1;
4044 		index = 0;
4045 		goto retry;
4046 	}
4047 
4048 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 		mapping->writeback_index = done_index;
4050 
4051 	btrfs_add_delayed_iput(inode);
4052 	return ret;
4053 }
4054 
4055 static void flush_epd_write_bio(struct extent_page_data *epd)
4056 {
4057 	if (epd->bio) {
4058 		int ret;
4059 
4060 		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061 				 epd->sync_io ? REQ_SYNC : 0);
4062 
4063 		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4064 		BUG_ON(ret < 0); /* -ENOMEM */
4065 		epd->bio = NULL;
4066 	}
4067 }
4068 
4069 static noinline void flush_write_bio(void *data)
4070 {
4071 	struct extent_page_data *epd = data;
4072 	flush_epd_write_bio(epd);
4073 }
4074 
4075 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 			  get_extent_t *get_extent,
4077 			  struct writeback_control *wbc)
4078 {
4079 	int ret;
4080 	struct extent_page_data epd = {
4081 		.bio = NULL,
4082 		.tree = tree,
4083 		.get_extent = get_extent,
4084 		.extent_locked = 0,
4085 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 		.bio_flags = 0,
4087 	};
4088 
4089 	ret = __extent_writepage(page, wbc, &epd);
4090 
4091 	flush_epd_write_bio(&epd);
4092 	return ret;
4093 }
4094 
4095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 			      u64 start, u64 end, get_extent_t *get_extent,
4097 			      int mode)
4098 {
4099 	int ret = 0;
4100 	struct address_space *mapping = inode->i_mapping;
4101 	struct page *page;
4102 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 		PAGE_SHIFT;
4104 
4105 	struct extent_page_data epd = {
4106 		.bio = NULL,
4107 		.tree = tree,
4108 		.get_extent = get_extent,
4109 		.extent_locked = 1,
4110 		.sync_io = mode == WB_SYNC_ALL,
4111 		.bio_flags = 0,
4112 	};
4113 	struct writeback_control wbc_writepages = {
4114 		.sync_mode	= mode,
4115 		.nr_to_write	= nr_pages * 2,
4116 		.range_start	= start,
4117 		.range_end	= end + 1,
4118 	};
4119 
4120 	while (start <= end) {
4121 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4122 		if (clear_page_dirty_for_io(page))
4123 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 		else {
4125 			if (tree->ops && tree->ops->writepage_end_io_hook)
4126 				tree->ops->writepage_end_io_hook(page, start,
4127 						 start + PAGE_SIZE - 1,
4128 						 NULL, 1);
4129 			unlock_page(page);
4130 		}
4131 		put_page(page);
4132 		start += PAGE_SIZE;
4133 	}
4134 
4135 	flush_epd_write_bio(&epd);
4136 	return ret;
4137 }
4138 
4139 int extent_writepages(struct extent_io_tree *tree,
4140 		      struct address_space *mapping,
4141 		      get_extent_t *get_extent,
4142 		      struct writeback_control *wbc)
4143 {
4144 	int ret = 0;
4145 	struct extent_page_data epd = {
4146 		.bio = NULL,
4147 		.tree = tree,
4148 		.get_extent = get_extent,
4149 		.extent_locked = 0,
4150 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4151 		.bio_flags = 0,
4152 	};
4153 
4154 	ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4155 				       flush_write_bio);
4156 	flush_epd_write_bio(&epd);
4157 	return ret;
4158 }
4159 
4160 int extent_readpages(struct extent_io_tree *tree,
4161 		     struct address_space *mapping,
4162 		     struct list_head *pages, unsigned nr_pages,
4163 		     get_extent_t get_extent)
4164 {
4165 	struct bio *bio = NULL;
4166 	unsigned page_idx;
4167 	unsigned long bio_flags = 0;
4168 	struct page *pagepool[16];
4169 	struct page *page;
4170 	struct extent_map *em_cached = NULL;
4171 	int nr = 0;
4172 	u64 prev_em_start = (u64)-1;
4173 
4174 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4175 		page = list_entry(pages->prev, struct page, lru);
4176 
4177 		prefetchw(&page->flags);
4178 		list_del(&page->lru);
4179 		if (add_to_page_cache_lru(page, mapping,
4180 					page->index,
4181 					readahead_gfp_mask(mapping))) {
4182 			put_page(page);
4183 			continue;
4184 		}
4185 
4186 		pagepool[nr++] = page;
4187 		if (nr < ARRAY_SIZE(pagepool))
4188 			continue;
4189 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4190 				   &bio, 0, &bio_flags, &prev_em_start);
4191 		nr = 0;
4192 	}
4193 	if (nr)
4194 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4195 				   &bio, 0, &bio_flags, &prev_em_start);
4196 
4197 	if (em_cached)
4198 		free_extent_map(em_cached);
4199 
4200 	BUG_ON(!list_empty(pages));
4201 	if (bio)
4202 		return submit_one_bio(bio, 0, bio_flags);
4203 	return 0;
4204 }
4205 
4206 /*
4207  * basic invalidatepage code, this waits on any locked or writeback
4208  * ranges corresponding to the page, and then deletes any extent state
4209  * records from the tree
4210  */
4211 int extent_invalidatepage(struct extent_io_tree *tree,
4212 			  struct page *page, unsigned long offset)
4213 {
4214 	struct extent_state *cached_state = NULL;
4215 	u64 start = page_offset(page);
4216 	u64 end = start + PAGE_SIZE - 1;
4217 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218 
4219 	start += ALIGN(offset, blocksize);
4220 	if (start > end)
4221 		return 0;
4222 
4223 	lock_extent_bits(tree, start, end, &cached_state);
4224 	wait_on_page_writeback(page);
4225 	clear_extent_bit(tree, start, end,
4226 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 			 EXTENT_DO_ACCOUNTING,
4228 			 1, 1, &cached_state, GFP_NOFS);
4229 	return 0;
4230 }
4231 
4232 /*
4233  * a helper for releasepage, this tests for areas of the page that
4234  * are locked or under IO and drops the related state bits if it is safe
4235  * to drop the page.
4236  */
4237 static int try_release_extent_state(struct extent_map_tree *map,
4238 				    struct extent_io_tree *tree,
4239 				    struct page *page, gfp_t mask)
4240 {
4241 	u64 start = page_offset(page);
4242 	u64 end = start + PAGE_SIZE - 1;
4243 	int ret = 1;
4244 
4245 	if (test_range_bit(tree, start, end,
4246 			   EXTENT_IOBITS, 0, NULL))
4247 		ret = 0;
4248 	else {
4249 		/*
4250 		 * at this point we can safely clear everything except the
4251 		 * locked bit and the nodatasum bit
4252 		 */
4253 		ret = clear_extent_bit(tree, start, end,
4254 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4255 				 0, 0, NULL, mask);
4256 
4257 		/* if clear_extent_bit failed for enomem reasons,
4258 		 * we can't allow the release to continue.
4259 		 */
4260 		if (ret < 0)
4261 			ret = 0;
4262 		else
4263 			ret = 1;
4264 	}
4265 	return ret;
4266 }
4267 
4268 /*
4269  * a helper for releasepage.  As long as there are no locked extents
4270  * in the range corresponding to the page, both state records and extent
4271  * map records are removed
4272  */
4273 int try_release_extent_mapping(struct extent_map_tree *map,
4274 			       struct extent_io_tree *tree, struct page *page,
4275 			       gfp_t mask)
4276 {
4277 	struct extent_map *em;
4278 	u64 start = page_offset(page);
4279 	u64 end = start + PAGE_SIZE - 1;
4280 
4281 	if (gfpflags_allow_blocking(mask) &&
4282 	    page->mapping->host->i_size > SZ_16M) {
4283 		u64 len;
4284 		while (start <= end) {
4285 			len = end - start + 1;
4286 			write_lock(&map->lock);
4287 			em = lookup_extent_mapping(map, start, len);
4288 			if (!em) {
4289 				write_unlock(&map->lock);
4290 				break;
4291 			}
4292 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 			    em->start != start) {
4294 				write_unlock(&map->lock);
4295 				free_extent_map(em);
4296 				break;
4297 			}
4298 			if (!test_range_bit(tree, em->start,
4299 					    extent_map_end(em) - 1,
4300 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4301 					    0, NULL)) {
4302 				remove_extent_mapping(map, em);
4303 				/* once for the rb tree */
4304 				free_extent_map(em);
4305 			}
4306 			start = extent_map_end(em);
4307 			write_unlock(&map->lock);
4308 
4309 			/* once for us */
4310 			free_extent_map(em);
4311 		}
4312 	}
4313 	return try_release_extent_state(map, tree, page, mask);
4314 }
4315 
4316 /*
4317  * helper function for fiemap, which doesn't want to see any holes.
4318  * This maps until we find something past 'last'
4319  */
4320 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4321 						u64 offset,
4322 						u64 last,
4323 						get_extent_t *get_extent)
4324 {
4325 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4326 	struct extent_map *em;
4327 	u64 len;
4328 
4329 	if (offset >= last)
4330 		return NULL;
4331 
4332 	while (1) {
4333 		len = last - offset;
4334 		if (len == 0)
4335 			break;
4336 		len = ALIGN(len, sectorsize);
4337 		em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4338 		if (IS_ERR_OR_NULL(em))
4339 			return em;
4340 
4341 		/* if this isn't a hole return it */
4342 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 		    em->block_start != EXTENT_MAP_HOLE) {
4344 			return em;
4345 		}
4346 
4347 		/* this is a hole, advance to the next extent */
4348 		offset = extent_map_end(em);
4349 		free_extent_map(em);
4350 		if (offset >= last)
4351 			break;
4352 	}
4353 	return NULL;
4354 }
4355 
4356 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4357 		__u64 start, __u64 len, get_extent_t *get_extent)
4358 {
4359 	int ret = 0;
4360 	u64 off = start;
4361 	u64 max = start + len;
4362 	u32 flags = 0;
4363 	u32 found_type;
4364 	u64 last;
4365 	u64 last_for_get_extent = 0;
4366 	u64 disko = 0;
4367 	u64 isize = i_size_read(inode);
4368 	struct btrfs_key found_key;
4369 	struct extent_map *em = NULL;
4370 	struct extent_state *cached_state = NULL;
4371 	struct btrfs_path *path;
4372 	struct btrfs_root *root = BTRFS_I(inode)->root;
4373 	int end = 0;
4374 	u64 em_start = 0;
4375 	u64 em_len = 0;
4376 	u64 em_end = 0;
4377 
4378 	if (len == 0)
4379 		return -EINVAL;
4380 
4381 	path = btrfs_alloc_path();
4382 	if (!path)
4383 		return -ENOMEM;
4384 	path->leave_spinning = 1;
4385 
4386 	start = round_down(start, btrfs_inode_sectorsize(inode));
4387 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4388 
4389 	/*
4390 	 * lookup the last file extent.  We're not using i_size here
4391 	 * because there might be preallocation past i_size
4392 	 */
4393 	ret = btrfs_lookup_file_extent(NULL, root, path,
4394 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4395 	if (ret < 0) {
4396 		btrfs_free_path(path);
4397 		return ret;
4398 	} else {
4399 		WARN_ON(!ret);
4400 		if (ret == 1)
4401 			ret = 0;
4402 	}
4403 
4404 	path->slots[0]--;
4405 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4406 	found_type = found_key.type;
4407 
4408 	/* No extents, but there might be delalloc bits */
4409 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4410 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4411 		/* have to trust i_size as the end */
4412 		last = (u64)-1;
4413 		last_for_get_extent = isize;
4414 	} else {
4415 		/*
4416 		 * remember the start of the last extent.  There are a
4417 		 * bunch of different factors that go into the length of the
4418 		 * extent, so its much less complex to remember where it started
4419 		 */
4420 		last = found_key.offset;
4421 		last_for_get_extent = last + 1;
4422 	}
4423 	btrfs_release_path(path);
4424 
4425 	/*
4426 	 * we might have some extents allocated but more delalloc past those
4427 	 * extents.  so, we trust isize unless the start of the last extent is
4428 	 * beyond isize
4429 	 */
4430 	if (last < isize) {
4431 		last = (u64)-1;
4432 		last_for_get_extent = isize;
4433 	}
4434 
4435 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4436 			 &cached_state);
4437 
4438 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4439 				   get_extent);
4440 	if (!em)
4441 		goto out;
4442 	if (IS_ERR(em)) {
4443 		ret = PTR_ERR(em);
4444 		goto out;
4445 	}
4446 
4447 	while (!end) {
4448 		u64 offset_in_extent = 0;
4449 
4450 		/* break if the extent we found is outside the range */
4451 		if (em->start >= max || extent_map_end(em) < off)
4452 			break;
4453 
4454 		/*
4455 		 * get_extent may return an extent that starts before our
4456 		 * requested range.  We have to make sure the ranges
4457 		 * we return to fiemap always move forward and don't
4458 		 * overlap, so adjust the offsets here
4459 		 */
4460 		em_start = max(em->start, off);
4461 
4462 		/*
4463 		 * record the offset from the start of the extent
4464 		 * for adjusting the disk offset below.  Only do this if the
4465 		 * extent isn't compressed since our in ram offset may be past
4466 		 * what we have actually allocated on disk.
4467 		 */
4468 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4469 			offset_in_extent = em_start - em->start;
4470 		em_end = extent_map_end(em);
4471 		em_len = em_end - em_start;
4472 		disko = 0;
4473 		flags = 0;
4474 
4475 		/*
4476 		 * bump off for our next call to get_extent
4477 		 */
4478 		off = extent_map_end(em);
4479 		if (off >= max)
4480 			end = 1;
4481 
4482 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4483 			end = 1;
4484 			flags |= FIEMAP_EXTENT_LAST;
4485 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4486 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4487 				  FIEMAP_EXTENT_NOT_ALIGNED);
4488 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4489 			flags |= (FIEMAP_EXTENT_DELALLOC |
4490 				  FIEMAP_EXTENT_UNKNOWN);
4491 		} else if (fieinfo->fi_extents_max) {
4492 			struct btrfs_trans_handle *trans;
4493 
4494 			u64 bytenr = em->block_start -
4495 				(em->start - em->orig_start);
4496 
4497 			disko = em->block_start + offset_in_extent;
4498 
4499 			/*
4500 			 * We need a trans handle to get delayed refs
4501 			 */
4502 			trans = btrfs_join_transaction(root);
4503 			/*
4504 			 * It's OK if we can't start a trans we can still check
4505 			 * from commit_root
4506 			 */
4507 			if (IS_ERR(trans))
4508 				trans = NULL;
4509 
4510 			/*
4511 			 * As btrfs supports shared space, this information
4512 			 * can be exported to userspace tools via
4513 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4514 			 * then we're just getting a count and we can skip the
4515 			 * lookup stuff.
4516 			 */
4517 			ret = btrfs_check_shared(trans, root->fs_info,
4518 					root->objectid,
4519 					btrfs_ino(BTRFS_I(inode)), bytenr);
4520 			if (trans)
4521 				btrfs_end_transaction(trans);
4522 			if (ret < 0)
4523 				goto out_free;
4524 			if (ret)
4525 				flags |= FIEMAP_EXTENT_SHARED;
4526 			ret = 0;
4527 		}
4528 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4529 			flags |= FIEMAP_EXTENT_ENCODED;
4530 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4531 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4532 
4533 		free_extent_map(em);
4534 		em = NULL;
4535 		if ((em_start >= last) || em_len == (u64)-1 ||
4536 		   (last == (u64)-1 && isize <= em_end)) {
4537 			flags |= FIEMAP_EXTENT_LAST;
4538 			end = 1;
4539 		}
4540 
4541 		/* now scan forward to see if this is really the last extent. */
4542 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4543 					   get_extent);
4544 		if (IS_ERR(em)) {
4545 			ret = PTR_ERR(em);
4546 			goto out;
4547 		}
4548 		if (!em) {
4549 			flags |= FIEMAP_EXTENT_LAST;
4550 			end = 1;
4551 		}
4552 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4553 					      em_len, flags);
4554 		if (ret) {
4555 			if (ret == 1)
4556 				ret = 0;
4557 			goto out_free;
4558 		}
4559 	}
4560 out_free:
4561 	free_extent_map(em);
4562 out:
4563 	btrfs_free_path(path);
4564 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4565 			     &cached_state, GFP_NOFS);
4566 	return ret;
4567 }
4568 
4569 static void __free_extent_buffer(struct extent_buffer *eb)
4570 {
4571 	btrfs_leak_debug_del(&eb->leak_list);
4572 	kmem_cache_free(extent_buffer_cache, eb);
4573 }
4574 
4575 int extent_buffer_under_io(struct extent_buffer *eb)
4576 {
4577 	return (atomic_read(&eb->io_pages) ||
4578 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4579 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4580 }
4581 
4582 /*
4583  * Helper for releasing extent buffer page.
4584  */
4585 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4586 {
4587 	unsigned long index;
4588 	struct page *page;
4589 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4590 
4591 	BUG_ON(extent_buffer_under_io(eb));
4592 
4593 	index = num_extent_pages(eb->start, eb->len);
4594 	if (index == 0)
4595 		return;
4596 
4597 	do {
4598 		index--;
4599 		page = eb->pages[index];
4600 		if (!page)
4601 			continue;
4602 		if (mapped)
4603 			spin_lock(&page->mapping->private_lock);
4604 		/*
4605 		 * We do this since we'll remove the pages after we've
4606 		 * removed the eb from the radix tree, so we could race
4607 		 * and have this page now attached to the new eb.  So
4608 		 * only clear page_private if it's still connected to
4609 		 * this eb.
4610 		 */
4611 		if (PagePrivate(page) &&
4612 		    page->private == (unsigned long)eb) {
4613 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4614 			BUG_ON(PageDirty(page));
4615 			BUG_ON(PageWriteback(page));
4616 			/*
4617 			 * We need to make sure we haven't be attached
4618 			 * to a new eb.
4619 			 */
4620 			ClearPagePrivate(page);
4621 			set_page_private(page, 0);
4622 			/* One for the page private */
4623 			put_page(page);
4624 		}
4625 
4626 		if (mapped)
4627 			spin_unlock(&page->mapping->private_lock);
4628 
4629 		/* One for when we allocated the page */
4630 		put_page(page);
4631 	} while (index != 0);
4632 }
4633 
4634 /*
4635  * Helper for releasing the extent buffer.
4636  */
4637 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4638 {
4639 	btrfs_release_extent_buffer_page(eb);
4640 	__free_extent_buffer(eb);
4641 }
4642 
4643 static struct extent_buffer *
4644 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4645 		      unsigned long len)
4646 {
4647 	struct extent_buffer *eb = NULL;
4648 
4649 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4650 	eb->start = start;
4651 	eb->len = len;
4652 	eb->fs_info = fs_info;
4653 	eb->bflags = 0;
4654 	rwlock_init(&eb->lock);
4655 	atomic_set(&eb->write_locks, 0);
4656 	atomic_set(&eb->read_locks, 0);
4657 	atomic_set(&eb->blocking_readers, 0);
4658 	atomic_set(&eb->blocking_writers, 0);
4659 	atomic_set(&eb->spinning_readers, 0);
4660 	atomic_set(&eb->spinning_writers, 0);
4661 	eb->lock_nested = 0;
4662 	init_waitqueue_head(&eb->write_lock_wq);
4663 	init_waitqueue_head(&eb->read_lock_wq);
4664 
4665 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4666 
4667 	spin_lock_init(&eb->refs_lock);
4668 	atomic_set(&eb->refs, 1);
4669 	atomic_set(&eb->io_pages, 0);
4670 
4671 	/*
4672 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4673 	 */
4674 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4675 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4676 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4677 
4678 	return eb;
4679 }
4680 
4681 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4682 {
4683 	unsigned long i;
4684 	struct page *p;
4685 	struct extent_buffer *new;
4686 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4687 
4688 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4689 	if (new == NULL)
4690 		return NULL;
4691 
4692 	for (i = 0; i < num_pages; i++) {
4693 		p = alloc_page(GFP_NOFS);
4694 		if (!p) {
4695 			btrfs_release_extent_buffer(new);
4696 			return NULL;
4697 		}
4698 		attach_extent_buffer_page(new, p);
4699 		WARN_ON(PageDirty(p));
4700 		SetPageUptodate(p);
4701 		new->pages[i] = p;
4702 		copy_page(page_address(p), page_address(src->pages[i]));
4703 	}
4704 
4705 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4706 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4707 
4708 	return new;
4709 }
4710 
4711 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4712 						  u64 start, unsigned long len)
4713 {
4714 	struct extent_buffer *eb;
4715 	unsigned long num_pages;
4716 	unsigned long i;
4717 
4718 	num_pages = num_extent_pages(start, len);
4719 
4720 	eb = __alloc_extent_buffer(fs_info, start, len);
4721 	if (!eb)
4722 		return NULL;
4723 
4724 	for (i = 0; i < num_pages; i++) {
4725 		eb->pages[i] = alloc_page(GFP_NOFS);
4726 		if (!eb->pages[i])
4727 			goto err;
4728 	}
4729 	set_extent_buffer_uptodate(eb);
4730 	btrfs_set_header_nritems(eb, 0);
4731 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4732 
4733 	return eb;
4734 err:
4735 	for (; i > 0; i--)
4736 		__free_page(eb->pages[i - 1]);
4737 	__free_extent_buffer(eb);
4738 	return NULL;
4739 }
4740 
4741 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4742 						u64 start)
4743 {
4744 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4745 }
4746 
4747 static void check_buffer_tree_ref(struct extent_buffer *eb)
4748 {
4749 	int refs;
4750 	/* the ref bit is tricky.  We have to make sure it is set
4751 	 * if we have the buffer dirty.   Otherwise the
4752 	 * code to free a buffer can end up dropping a dirty
4753 	 * page
4754 	 *
4755 	 * Once the ref bit is set, it won't go away while the
4756 	 * buffer is dirty or in writeback, and it also won't
4757 	 * go away while we have the reference count on the
4758 	 * eb bumped.
4759 	 *
4760 	 * We can't just set the ref bit without bumping the
4761 	 * ref on the eb because free_extent_buffer might
4762 	 * see the ref bit and try to clear it.  If this happens
4763 	 * free_extent_buffer might end up dropping our original
4764 	 * ref by mistake and freeing the page before we are able
4765 	 * to add one more ref.
4766 	 *
4767 	 * So bump the ref count first, then set the bit.  If someone
4768 	 * beat us to it, drop the ref we added.
4769 	 */
4770 	refs = atomic_read(&eb->refs);
4771 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4772 		return;
4773 
4774 	spin_lock(&eb->refs_lock);
4775 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 		atomic_inc(&eb->refs);
4777 	spin_unlock(&eb->refs_lock);
4778 }
4779 
4780 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4781 		struct page *accessed)
4782 {
4783 	unsigned long num_pages, i;
4784 
4785 	check_buffer_tree_ref(eb);
4786 
4787 	num_pages = num_extent_pages(eb->start, eb->len);
4788 	for (i = 0; i < num_pages; i++) {
4789 		struct page *p = eb->pages[i];
4790 
4791 		if (p != accessed)
4792 			mark_page_accessed(p);
4793 	}
4794 }
4795 
4796 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4797 					 u64 start)
4798 {
4799 	struct extent_buffer *eb;
4800 
4801 	rcu_read_lock();
4802 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4803 			       start >> PAGE_SHIFT);
4804 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4805 		rcu_read_unlock();
4806 		/*
4807 		 * Lock our eb's refs_lock to avoid races with
4808 		 * free_extent_buffer. When we get our eb it might be flagged
4809 		 * with EXTENT_BUFFER_STALE and another task running
4810 		 * free_extent_buffer might have seen that flag set,
4811 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4812 		 * writeback flags not set) and it's still in the tree (flag
4813 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4814 		 * of decrementing the extent buffer's reference count twice.
4815 		 * So here we could race and increment the eb's reference count,
4816 		 * clear its stale flag, mark it as dirty and drop our reference
4817 		 * before the other task finishes executing free_extent_buffer,
4818 		 * which would later result in an attempt to free an extent
4819 		 * buffer that is dirty.
4820 		 */
4821 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4822 			spin_lock(&eb->refs_lock);
4823 			spin_unlock(&eb->refs_lock);
4824 		}
4825 		mark_extent_buffer_accessed(eb, NULL);
4826 		return eb;
4827 	}
4828 	rcu_read_unlock();
4829 
4830 	return NULL;
4831 }
4832 
4833 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4834 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4835 					u64 start)
4836 {
4837 	struct extent_buffer *eb, *exists = NULL;
4838 	int ret;
4839 
4840 	eb = find_extent_buffer(fs_info, start);
4841 	if (eb)
4842 		return eb;
4843 	eb = alloc_dummy_extent_buffer(fs_info, start);
4844 	if (!eb)
4845 		return NULL;
4846 	eb->fs_info = fs_info;
4847 again:
4848 	ret = radix_tree_preload(GFP_NOFS);
4849 	if (ret)
4850 		goto free_eb;
4851 	spin_lock(&fs_info->buffer_lock);
4852 	ret = radix_tree_insert(&fs_info->buffer_radix,
4853 				start >> PAGE_SHIFT, eb);
4854 	spin_unlock(&fs_info->buffer_lock);
4855 	radix_tree_preload_end();
4856 	if (ret == -EEXIST) {
4857 		exists = find_extent_buffer(fs_info, start);
4858 		if (exists)
4859 			goto free_eb;
4860 		else
4861 			goto again;
4862 	}
4863 	check_buffer_tree_ref(eb);
4864 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4865 
4866 	/*
4867 	 * We will free dummy extent buffer's if they come into
4868 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4869 	 * want the buffers to stay in memory until we're done with them, so
4870 	 * bump the ref count again.
4871 	 */
4872 	atomic_inc(&eb->refs);
4873 	return eb;
4874 free_eb:
4875 	btrfs_release_extent_buffer(eb);
4876 	return exists;
4877 }
4878 #endif
4879 
4880 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4881 					  u64 start)
4882 {
4883 	unsigned long len = fs_info->nodesize;
4884 	unsigned long num_pages = num_extent_pages(start, len);
4885 	unsigned long i;
4886 	unsigned long index = start >> PAGE_SHIFT;
4887 	struct extent_buffer *eb;
4888 	struct extent_buffer *exists = NULL;
4889 	struct page *p;
4890 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4891 	int uptodate = 1;
4892 	int ret;
4893 
4894 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4895 		btrfs_err(fs_info, "bad tree block start %llu", start);
4896 		return ERR_PTR(-EINVAL);
4897 	}
4898 
4899 	eb = find_extent_buffer(fs_info, start);
4900 	if (eb)
4901 		return eb;
4902 
4903 	eb = __alloc_extent_buffer(fs_info, start, len);
4904 	if (!eb)
4905 		return ERR_PTR(-ENOMEM);
4906 
4907 	for (i = 0; i < num_pages; i++, index++) {
4908 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4909 		if (!p) {
4910 			exists = ERR_PTR(-ENOMEM);
4911 			goto free_eb;
4912 		}
4913 
4914 		spin_lock(&mapping->private_lock);
4915 		if (PagePrivate(p)) {
4916 			/*
4917 			 * We could have already allocated an eb for this page
4918 			 * and attached one so lets see if we can get a ref on
4919 			 * the existing eb, and if we can we know it's good and
4920 			 * we can just return that one, else we know we can just
4921 			 * overwrite page->private.
4922 			 */
4923 			exists = (struct extent_buffer *)p->private;
4924 			if (atomic_inc_not_zero(&exists->refs)) {
4925 				spin_unlock(&mapping->private_lock);
4926 				unlock_page(p);
4927 				put_page(p);
4928 				mark_extent_buffer_accessed(exists, p);
4929 				goto free_eb;
4930 			}
4931 			exists = NULL;
4932 
4933 			/*
4934 			 * Do this so attach doesn't complain and we need to
4935 			 * drop the ref the old guy had.
4936 			 */
4937 			ClearPagePrivate(p);
4938 			WARN_ON(PageDirty(p));
4939 			put_page(p);
4940 		}
4941 		attach_extent_buffer_page(eb, p);
4942 		spin_unlock(&mapping->private_lock);
4943 		WARN_ON(PageDirty(p));
4944 		eb->pages[i] = p;
4945 		if (!PageUptodate(p))
4946 			uptodate = 0;
4947 
4948 		/*
4949 		 * see below about how we avoid a nasty race with release page
4950 		 * and why we unlock later
4951 		 */
4952 	}
4953 	if (uptodate)
4954 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4955 again:
4956 	ret = radix_tree_preload(GFP_NOFS);
4957 	if (ret) {
4958 		exists = ERR_PTR(ret);
4959 		goto free_eb;
4960 	}
4961 
4962 	spin_lock(&fs_info->buffer_lock);
4963 	ret = radix_tree_insert(&fs_info->buffer_radix,
4964 				start >> PAGE_SHIFT, eb);
4965 	spin_unlock(&fs_info->buffer_lock);
4966 	radix_tree_preload_end();
4967 	if (ret == -EEXIST) {
4968 		exists = find_extent_buffer(fs_info, start);
4969 		if (exists)
4970 			goto free_eb;
4971 		else
4972 			goto again;
4973 	}
4974 	/* add one reference for the tree */
4975 	check_buffer_tree_ref(eb);
4976 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4977 
4978 	/*
4979 	 * there is a race where release page may have
4980 	 * tried to find this extent buffer in the radix
4981 	 * but failed.  It will tell the VM it is safe to
4982 	 * reclaim the, and it will clear the page private bit.
4983 	 * We must make sure to set the page private bit properly
4984 	 * after the extent buffer is in the radix tree so
4985 	 * it doesn't get lost
4986 	 */
4987 	SetPageChecked(eb->pages[0]);
4988 	for (i = 1; i < num_pages; i++) {
4989 		p = eb->pages[i];
4990 		ClearPageChecked(p);
4991 		unlock_page(p);
4992 	}
4993 	unlock_page(eb->pages[0]);
4994 	return eb;
4995 
4996 free_eb:
4997 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4998 	for (i = 0; i < num_pages; i++) {
4999 		if (eb->pages[i])
5000 			unlock_page(eb->pages[i]);
5001 	}
5002 
5003 	btrfs_release_extent_buffer(eb);
5004 	return exists;
5005 }
5006 
5007 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5008 {
5009 	struct extent_buffer *eb =
5010 			container_of(head, struct extent_buffer, rcu_head);
5011 
5012 	__free_extent_buffer(eb);
5013 }
5014 
5015 /* Expects to have eb->eb_lock already held */
5016 static int release_extent_buffer(struct extent_buffer *eb)
5017 {
5018 	WARN_ON(atomic_read(&eb->refs) == 0);
5019 	if (atomic_dec_and_test(&eb->refs)) {
5020 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5021 			struct btrfs_fs_info *fs_info = eb->fs_info;
5022 
5023 			spin_unlock(&eb->refs_lock);
5024 
5025 			spin_lock(&fs_info->buffer_lock);
5026 			radix_tree_delete(&fs_info->buffer_radix,
5027 					  eb->start >> PAGE_SHIFT);
5028 			spin_unlock(&fs_info->buffer_lock);
5029 		} else {
5030 			spin_unlock(&eb->refs_lock);
5031 		}
5032 
5033 		/* Should be safe to release our pages at this point */
5034 		btrfs_release_extent_buffer_page(eb);
5035 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5036 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5037 			__free_extent_buffer(eb);
5038 			return 1;
5039 		}
5040 #endif
5041 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5042 		return 1;
5043 	}
5044 	spin_unlock(&eb->refs_lock);
5045 
5046 	return 0;
5047 }
5048 
5049 void free_extent_buffer(struct extent_buffer *eb)
5050 {
5051 	int refs;
5052 	int old;
5053 	if (!eb)
5054 		return;
5055 
5056 	while (1) {
5057 		refs = atomic_read(&eb->refs);
5058 		if (refs <= 3)
5059 			break;
5060 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5061 		if (old == refs)
5062 			return;
5063 	}
5064 
5065 	spin_lock(&eb->refs_lock);
5066 	if (atomic_read(&eb->refs) == 2 &&
5067 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5068 		atomic_dec(&eb->refs);
5069 
5070 	if (atomic_read(&eb->refs) == 2 &&
5071 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5072 	    !extent_buffer_under_io(eb) &&
5073 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5074 		atomic_dec(&eb->refs);
5075 
5076 	/*
5077 	 * I know this is terrible, but it's temporary until we stop tracking
5078 	 * the uptodate bits and such for the extent buffers.
5079 	 */
5080 	release_extent_buffer(eb);
5081 }
5082 
5083 void free_extent_buffer_stale(struct extent_buffer *eb)
5084 {
5085 	if (!eb)
5086 		return;
5087 
5088 	spin_lock(&eb->refs_lock);
5089 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5090 
5091 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5092 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093 		atomic_dec(&eb->refs);
5094 	release_extent_buffer(eb);
5095 }
5096 
5097 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5098 {
5099 	unsigned long i;
5100 	unsigned long num_pages;
5101 	struct page *page;
5102 
5103 	num_pages = num_extent_pages(eb->start, eb->len);
5104 
5105 	for (i = 0; i < num_pages; i++) {
5106 		page = eb->pages[i];
5107 		if (!PageDirty(page))
5108 			continue;
5109 
5110 		lock_page(page);
5111 		WARN_ON(!PagePrivate(page));
5112 
5113 		clear_page_dirty_for_io(page);
5114 		spin_lock_irq(&page->mapping->tree_lock);
5115 		if (!PageDirty(page)) {
5116 			radix_tree_tag_clear(&page->mapping->page_tree,
5117 						page_index(page),
5118 						PAGECACHE_TAG_DIRTY);
5119 		}
5120 		spin_unlock_irq(&page->mapping->tree_lock);
5121 		ClearPageError(page);
5122 		unlock_page(page);
5123 	}
5124 	WARN_ON(atomic_read(&eb->refs) == 0);
5125 }
5126 
5127 int set_extent_buffer_dirty(struct extent_buffer *eb)
5128 {
5129 	unsigned long i;
5130 	unsigned long num_pages;
5131 	int was_dirty = 0;
5132 
5133 	check_buffer_tree_ref(eb);
5134 
5135 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5136 
5137 	num_pages = num_extent_pages(eb->start, eb->len);
5138 	WARN_ON(atomic_read(&eb->refs) == 0);
5139 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5140 
5141 	for (i = 0; i < num_pages; i++)
5142 		set_page_dirty(eb->pages[i]);
5143 	return was_dirty;
5144 }
5145 
5146 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5147 {
5148 	unsigned long i;
5149 	struct page *page;
5150 	unsigned long num_pages;
5151 
5152 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5153 	num_pages = num_extent_pages(eb->start, eb->len);
5154 	for (i = 0; i < num_pages; i++) {
5155 		page = eb->pages[i];
5156 		if (page)
5157 			ClearPageUptodate(page);
5158 	}
5159 }
5160 
5161 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5162 {
5163 	unsigned long i;
5164 	struct page *page;
5165 	unsigned long num_pages;
5166 
5167 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5168 	num_pages = num_extent_pages(eb->start, eb->len);
5169 	for (i = 0; i < num_pages; i++) {
5170 		page = eb->pages[i];
5171 		SetPageUptodate(page);
5172 	}
5173 }
5174 
5175 int extent_buffer_uptodate(struct extent_buffer *eb)
5176 {
5177 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5178 }
5179 
5180 int read_extent_buffer_pages(struct extent_io_tree *tree,
5181 			     struct extent_buffer *eb, int wait,
5182 			     get_extent_t *get_extent, int mirror_num)
5183 {
5184 	unsigned long i;
5185 	struct page *page;
5186 	int err;
5187 	int ret = 0;
5188 	int locked_pages = 0;
5189 	int all_uptodate = 1;
5190 	unsigned long num_pages;
5191 	unsigned long num_reads = 0;
5192 	struct bio *bio = NULL;
5193 	unsigned long bio_flags = 0;
5194 
5195 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5196 		return 0;
5197 
5198 	num_pages = num_extent_pages(eb->start, eb->len);
5199 	for (i = 0; i < num_pages; i++) {
5200 		page = eb->pages[i];
5201 		if (wait == WAIT_NONE) {
5202 			if (!trylock_page(page))
5203 				goto unlock_exit;
5204 		} else {
5205 			lock_page(page);
5206 		}
5207 		locked_pages++;
5208 	}
5209 	/*
5210 	 * We need to firstly lock all pages to make sure that
5211 	 * the uptodate bit of our pages won't be affected by
5212 	 * clear_extent_buffer_uptodate().
5213 	 */
5214 	for (i = 0; i < num_pages; i++) {
5215 		page = eb->pages[i];
5216 		if (!PageUptodate(page)) {
5217 			num_reads++;
5218 			all_uptodate = 0;
5219 		}
5220 	}
5221 
5222 	if (all_uptodate) {
5223 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5224 		goto unlock_exit;
5225 	}
5226 
5227 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5228 	eb->read_mirror = 0;
5229 	atomic_set(&eb->io_pages, num_reads);
5230 	for (i = 0; i < num_pages; i++) {
5231 		page = eb->pages[i];
5232 
5233 		if (!PageUptodate(page)) {
5234 			if (ret) {
5235 				atomic_dec(&eb->io_pages);
5236 				unlock_page(page);
5237 				continue;
5238 			}
5239 
5240 			ClearPageError(page);
5241 			err = __extent_read_full_page(tree, page,
5242 						      get_extent, &bio,
5243 						      mirror_num, &bio_flags,
5244 						      REQ_META);
5245 			if (err) {
5246 				ret = err;
5247 				/*
5248 				 * We use &bio in above __extent_read_full_page,
5249 				 * so we ensure that if it returns error, the
5250 				 * current page fails to add itself to bio and
5251 				 * it's been unlocked.
5252 				 *
5253 				 * We must dec io_pages by ourselves.
5254 				 */
5255 				atomic_dec(&eb->io_pages);
5256 			}
5257 		} else {
5258 			unlock_page(page);
5259 		}
5260 	}
5261 
5262 	if (bio) {
5263 		err = submit_one_bio(bio, mirror_num, bio_flags);
5264 		if (err)
5265 			return err;
5266 	}
5267 
5268 	if (ret || wait != WAIT_COMPLETE)
5269 		return ret;
5270 
5271 	for (i = 0; i < num_pages; i++) {
5272 		page = eb->pages[i];
5273 		wait_on_page_locked(page);
5274 		if (!PageUptodate(page))
5275 			ret = -EIO;
5276 	}
5277 
5278 	return ret;
5279 
5280 unlock_exit:
5281 	while (locked_pages > 0) {
5282 		locked_pages--;
5283 		page = eb->pages[locked_pages];
5284 		unlock_page(page);
5285 	}
5286 	return ret;
5287 }
5288 
5289 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5290 			unsigned long start,
5291 			unsigned long len)
5292 {
5293 	size_t cur;
5294 	size_t offset;
5295 	struct page *page;
5296 	char *kaddr;
5297 	char *dst = (char *)dstv;
5298 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5300 
5301 	WARN_ON(start > eb->len);
5302 	WARN_ON(start + len > eb->start + eb->len);
5303 
5304 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5305 
5306 	while (len > 0) {
5307 		page = eb->pages[i];
5308 
5309 		cur = min(len, (PAGE_SIZE - offset));
5310 		kaddr = page_address(page);
5311 		memcpy(dst, kaddr + offset, cur);
5312 
5313 		dst += cur;
5314 		len -= cur;
5315 		offset = 0;
5316 		i++;
5317 	}
5318 }
5319 
5320 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5321 			unsigned long start,
5322 			unsigned long len)
5323 {
5324 	size_t cur;
5325 	size_t offset;
5326 	struct page *page;
5327 	char *kaddr;
5328 	char __user *dst = (char __user *)dstv;
5329 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5330 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5331 	int ret = 0;
5332 
5333 	WARN_ON(start > eb->len);
5334 	WARN_ON(start + len > eb->start + eb->len);
5335 
5336 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5337 
5338 	while (len > 0) {
5339 		page = eb->pages[i];
5340 
5341 		cur = min(len, (PAGE_SIZE - offset));
5342 		kaddr = page_address(page);
5343 		if (copy_to_user(dst, kaddr + offset, cur)) {
5344 			ret = -EFAULT;
5345 			break;
5346 		}
5347 
5348 		dst += cur;
5349 		len -= cur;
5350 		offset = 0;
5351 		i++;
5352 	}
5353 
5354 	return ret;
5355 }
5356 
5357 /*
5358  * return 0 if the item is found within a page.
5359  * return 1 if the item spans two pages.
5360  * return -EINVAL otherwise.
5361  */
5362 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5363 			       unsigned long min_len, char **map,
5364 			       unsigned long *map_start,
5365 			       unsigned long *map_len)
5366 {
5367 	size_t offset = start & (PAGE_SIZE - 1);
5368 	char *kaddr;
5369 	struct page *p;
5370 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5371 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5372 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5373 		PAGE_SHIFT;
5374 
5375 	if (i != end_i)
5376 		return 1;
5377 
5378 	if (i == 0) {
5379 		offset = start_offset;
5380 		*map_start = 0;
5381 	} else {
5382 		offset = 0;
5383 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5384 	}
5385 
5386 	if (start + min_len > eb->len) {
5387 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5388 		       eb->start, eb->len, start, min_len);
5389 		return -EINVAL;
5390 	}
5391 
5392 	p = eb->pages[i];
5393 	kaddr = page_address(p);
5394 	*map = kaddr + offset;
5395 	*map_len = PAGE_SIZE - offset;
5396 	return 0;
5397 }
5398 
5399 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5400 			  unsigned long start,
5401 			  unsigned long len)
5402 {
5403 	size_t cur;
5404 	size_t offset;
5405 	struct page *page;
5406 	char *kaddr;
5407 	char *ptr = (char *)ptrv;
5408 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410 	int ret = 0;
5411 
5412 	WARN_ON(start > eb->len);
5413 	WARN_ON(start + len > eb->start + eb->len);
5414 
5415 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5416 
5417 	while (len > 0) {
5418 		page = eb->pages[i];
5419 
5420 		cur = min(len, (PAGE_SIZE - offset));
5421 
5422 		kaddr = page_address(page);
5423 		ret = memcmp(ptr, kaddr + offset, cur);
5424 		if (ret)
5425 			break;
5426 
5427 		ptr += cur;
5428 		len -= cur;
5429 		offset = 0;
5430 		i++;
5431 	}
5432 	return ret;
5433 }
5434 
5435 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5436 		const void *srcv)
5437 {
5438 	char *kaddr;
5439 
5440 	WARN_ON(!PageUptodate(eb->pages[0]));
5441 	kaddr = page_address(eb->pages[0]);
5442 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5443 			BTRFS_FSID_SIZE);
5444 }
5445 
5446 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5447 {
5448 	char *kaddr;
5449 
5450 	WARN_ON(!PageUptodate(eb->pages[0]));
5451 	kaddr = page_address(eb->pages[0]);
5452 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5453 			BTRFS_FSID_SIZE);
5454 }
5455 
5456 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5457 			 unsigned long start, unsigned long len)
5458 {
5459 	size_t cur;
5460 	size_t offset;
5461 	struct page *page;
5462 	char *kaddr;
5463 	char *src = (char *)srcv;
5464 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5465 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5466 
5467 	WARN_ON(start > eb->len);
5468 	WARN_ON(start + len > eb->start + eb->len);
5469 
5470 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5471 
5472 	while (len > 0) {
5473 		page = eb->pages[i];
5474 		WARN_ON(!PageUptodate(page));
5475 
5476 		cur = min(len, PAGE_SIZE - offset);
5477 		kaddr = page_address(page);
5478 		memcpy(kaddr + offset, src, cur);
5479 
5480 		src += cur;
5481 		len -= cur;
5482 		offset = 0;
5483 		i++;
5484 	}
5485 }
5486 
5487 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5488 		unsigned long len)
5489 {
5490 	size_t cur;
5491 	size_t offset;
5492 	struct page *page;
5493 	char *kaddr;
5494 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5495 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5496 
5497 	WARN_ON(start > eb->len);
5498 	WARN_ON(start + len > eb->start + eb->len);
5499 
5500 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5501 
5502 	while (len > 0) {
5503 		page = eb->pages[i];
5504 		WARN_ON(!PageUptodate(page));
5505 
5506 		cur = min(len, PAGE_SIZE - offset);
5507 		kaddr = page_address(page);
5508 		memset(kaddr + offset, 0, cur);
5509 
5510 		len -= cur;
5511 		offset = 0;
5512 		i++;
5513 	}
5514 }
5515 
5516 void copy_extent_buffer_full(struct extent_buffer *dst,
5517 			     struct extent_buffer *src)
5518 {
5519 	int i;
5520 	unsigned num_pages;
5521 
5522 	ASSERT(dst->len == src->len);
5523 
5524 	num_pages = num_extent_pages(dst->start, dst->len);
5525 	for (i = 0; i < num_pages; i++)
5526 		copy_page(page_address(dst->pages[i]),
5527 				page_address(src->pages[i]));
5528 }
5529 
5530 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5531 			unsigned long dst_offset, unsigned long src_offset,
5532 			unsigned long len)
5533 {
5534 	u64 dst_len = dst->len;
5535 	size_t cur;
5536 	size_t offset;
5537 	struct page *page;
5538 	char *kaddr;
5539 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5540 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5541 
5542 	WARN_ON(src->len != dst_len);
5543 
5544 	offset = (start_offset + dst_offset) &
5545 		(PAGE_SIZE - 1);
5546 
5547 	while (len > 0) {
5548 		page = dst->pages[i];
5549 		WARN_ON(!PageUptodate(page));
5550 
5551 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5552 
5553 		kaddr = page_address(page);
5554 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5555 
5556 		src_offset += cur;
5557 		len -= cur;
5558 		offset = 0;
5559 		i++;
5560 	}
5561 }
5562 
5563 void le_bitmap_set(u8 *map, unsigned int start, int len)
5564 {
5565 	u8 *p = map + BIT_BYTE(start);
5566 	const unsigned int size = start + len;
5567 	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5568 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5569 
5570 	while (len - bits_to_set >= 0) {
5571 		*p |= mask_to_set;
5572 		len -= bits_to_set;
5573 		bits_to_set = BITS_PER_BYTE;
5574 		mask_to_set = ~0;
5575 		p++;
5576 	}
5577 	if (len) {
5578 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5579 		*p |= mask_to_set;
5580 	}
5581 }
5582 
5583 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5584 {
5585 	u8 *p = map + BIT_BYTE(start);
5586 	const unsigned int size = start + len;
5587 	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5589 
5590 	while (len - bits_to_clear >= 0) {
5591 		*p &= ~mask_to_clear;
5592 		len -= bits_to_clear;
5593 		bits_to_clear = BITS_PER_BYTE;
5594 		mask_to_clear = ~0;
5595 		p++;
5596 	}
5597 	if (len) {
5598 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5599 		*p &= ~mask_to_clear;
5600 	}
5601 }
5602 
5603 /*
5604  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5605  * given bit number
5606  * @eb: the extent buffer
5607  * @start: offset of the bitmap item in the extent buffer
5608  * @nr: bit number
5609  * @page_index: return index of the page in the extent buffer that contains the
5610  * given bit number
5611  * @page_offset: return offset into the page given by page_index
5612  *
5613  * This helper hides the ugliness of finding the byte in an extent buffer which
5614  * contains a given bit.
5615  */
5616 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5617 				    unsigned long start, unsigned long nr,
5618 				    unsigned long *page_index,
5619 				    size_t *page_offset)
5620 {
5621 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5622 	size_t byte_offset = BIT_BYTE(nr);
5623 	size_t offset;
5624 
5625 	/*
5626 	 * The byte we want is the offset of the extent buffer + the offset of
5627 	 * the bitmap item in the extent buffer + the offset of the byte in the
5628 	 * bitmap item.
5629 	 */
5630 	offset = start_offset + start + byte_offset;
5631 
5632 	*page_index = offset >> PAGE_SHIFT;
5633 	*page_offset = offset & (PAGE_SIZE - 1);
5634 }
5635 
5636 /**
5637  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5638  * @eb: the extent buffer
5639  * @start: offset of the bitmap item in the extent buffer
5640  * @nr: bit number to test
5641  */
5642 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5643 			   unsigned long nr)
5644 {
5645 	u8 *kaddr;
5646 	struct page *page;
5647 	unsigned long i;
5648 	size_t offset;
5649 
5650 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5651 	page = eb->pages[i];
5652 	WARN_ON(!PageUptodate(page));
5653 	kaddr = page_address(page);
5654 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5655 }
5656 
5657 /**
5658  * extent_buffer_bitmap_set - set an area of a bitmap
5659  * @eb: the extent buffer
5660  * @start: offset of the bitmap item in the extent buffer
5661  * @pos: bit number of the first bit
5662  * @len: number of bits to set
5663  */
5664 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5665 			      unsigned long pos, unsigned long len)
5666 {
5667 	u8 *kaddr;
5668 	struct page *page;
5669 	unsigned long i;
5670 	size_t offset;
5671 	const unsigned int size = pos + len;
5672 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5673 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5674 
5675 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5676 	page = eb->pages[i];
5677 	WARN_ON(!PageUptodate(page));
5678 	kaddr = page_address(page);
5679 
5680 	while (len >= bits_to_set) {
5681 		kaddr[offset] |= mask_to_set;
5682 		len -= bits_to_set;
5683 		bits_to_set = BITS_PER_BYTE;
5684 		mask_to_set = ~0;
5685 		if (++offset >= PAGE_SIZE && len > 0) {
5686 			offset = 0;
5687 			page = eb->pages[++i];
5688 			WARN_ON(!PageUptodate(page));
5689 			kaddr = page_address(page);
5690 		}
5691 	}
5692 	if (len) {
5693 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5694 		kaddr[offset] |= mask_to_set;
5695 	}
5696 }
5697 
5698 
5699 /**
5700  * extent_buffer_bitmap_clear - clear an area of a bitmap
5701  * @eb: the extent buffer
5702  * @start: offset of the bitmap item in the extent buffer
5703  * @pos: bit number of the first bit
5704  * @len: number of bits to clear
5705  */
5706 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5707 				unsigned long pos, unsigned long len)
5708 {
5709 	u8 *kaddr;
5710 	struct page *page;
5711 	unsigned long i;
5712 	size_t offset;
5713 	const unsigned int size = pos + len;
5714 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5715 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5716 
5717 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5718 	page = eb->pages[i];
5719 	WARN_ON(!PageUptodate(page));
5720 	kaddr = page_address(page);
5721 
5722 	while (len >= bits_to_clear) {
5723 		kaddr[offset] &= ~mask_to_clear;
5724 		len -= bits_to_clear;
5725 		bits_to_clear = BITS_PER_BYTE;
5726 		mask_to_clear = ~0;
5727 		if (++offset >= PAGE_SIZE && len > 0) {
5728 			offset = 0;
5729 			page = eb->pages[++i];
5730 			WARN_ON(!PageUptodate(page));
5731 			kaddr = page_address(page);
5732 		}
5733 	}
5734 	if (len) {
5735 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5736 		kaddr[offset] &= ~mask_to_clear;
5737 	}
5738 }
5739 
5740 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5741 {
5742 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5743 	return distance < len;
5744 }
5745 
5746 static void copy_pages(struct page *dst_page, struct page *src_page,
5747 		       unsigned long dst_off, unsigned long src_off,
5748 		       unsigned long len)
5749 {
5750 	char *dst_kaddr = page_address(dst_page);
5751 	char *src_kaddr;
5752 	int must_memmove = 0;
5753 
5754 	if (dst_page != src_page) {
5755 		src_kaddr = page_address(src_page);
5756 	} else {
5757 		src_kaddr = dst_kaddr;
5758 		if (areas_overlap(src_off, dst_off, len))
5759 			must_memmove = 1;
5760 	}
5761 
5762 	if (must_memmove)
5763 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5764 	else
5765 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5766 }
5767 
5768 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5769 			   unsigned long src_offset, unsigned long len)
5770 {
5771 	struct btrfs_fs_info *fs_info = dst->fs_info;
5772 	size_t cur;
5773 	size_t dst_off_in_page;
5774 	size_t src_off_in_page;
5775 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5776 	unsigned long dst_i;
5777 	unsigned long src_i;
5778 
5779 	if (src_offset + len > dst->len) {
5780 		btrfs_err(fs_info,
5781 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5782 			 src_offset, len, dst->len);
5783 		BUG_ON(1);
5784 	}
5785 	if (dst_offset + len > dst->len) {
5786 		btrfs_err(fs_info,
5787 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5788 			 dst_offset, len, dst->len);
5789 		BUG_ON(1);
5790 	}
5791 
5792 	while (len > 0) {
5793 		dst_off_in_page = (start_offset + dst_offset) &
5794 			(PAGE_SIZE - 1);
5795 		src_off_in_page = (start_offset + src_offset) &
5796 			(PAGE_SIZE - 1);
5797 
5798 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5799 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5800 
5801 		cur = min(len, (unsigned long)(PAGE_SIZE -
5802 					       src_off_in_page));
5803 		cur = min_t(unsigned long, cur,
5804 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5805 
5806 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5807 			   dst_off_in_page, src_off_in_page, cur);
5808 
5809 		src_offset += cur;
5810 		dst_offset += cur;
5811 		len -= cur;
5812 	}
5813 }
5814 
5815 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5816 			   unsigned long src_offset, unsigned long len)
5817 {
5818 	struct btrfs_fs_info *fs_info = dst->fs_info;
5819 	size_t cur;
5820 	size_t dst_off_in_page;
5821 	size_t src_off_in_page;
5822 	unsigned long dst_end = dst_offset + len - 1;
5823 	unsigned long src_end = src_offset + len - 1;
5824 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5825 	unsigned long dst_i;
5826 	unsigned long src_i;
5827 
5828 	if (src_offset + len > dst->len) {
5829 		btrfs_err(fs_info,
5830 			  "memmove bogus src_offset %lu move len %lu len %lu",
5831 			  src_offset, len, dst->len);
5832 		BUG_ON(1);
5833 	}
5834 	if (dst_offset + len > dst->len) {
5835 		btrfs_err(fs_info,
5836 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5837 			  dst_offset, len, dst->len);
5838 		BUG_ON(1);
5839 	}
5840 	if (dst_offset < src_offset) {
5841 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5842 		return;
5843 	}
5844 	while (len > 0) {
5845 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5846 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5847 
5848 		dst_off_in_page = (start_offset + dst_end) &
5849 			(PAGE_SIZE - 1);
5850 		src_off_in_page = (start_offset + src_end) &
5851 			(PAGE_SIZE - 1);
5852 
5853 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5854 		cur = min(cur, dst_off_in_page + 1);
5855 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5856 			   dst_off_in_page - cur + 1,
5857 			   src_off_in_page - cur + 1, cur);
5858 
5859 		dst_end -= cur;
5860 		src_end -= cur;
5861 		len -= cur;
5862 	}
5863 }
5864 
5865 int try_release_extent_buffer(struct page *page)
5866 {
5867 	struct extent_buffer *eb;
5868 
5869 	/*
5870 	 * We need to make sure nobody is attaching this page to an eb right
5871 	 * now.
5872 	 */
5873 	spin_lock(&page->mapping->private_lock);
5874 	if (!PagePrivate(page)) {
5875 		spin_unlock(&page->mapping->private_lock);
5876 		return 1;
5877 	}
5878 
5879 	eb = (struct extent_buffer *)page->private;
5880 	BUG_ON(!eb);
5881 
5882 	/*
5883 	 * This is a little awful but should be ok, we need to make sure that
5884 	 * the eb doesn't disappear out from under us while we're looking at
5885 	 * this page.
5886 	 */
5887 	spin_lock(&eb->refs_lock);
5888 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5889 		spin_unlock(&eb->refs_lock);
5890 		spin_unlock(&page->mapping->private_lock);
5891 		return 0;
5892 	}
5893 	spin_unlock(&page->mapping->private_lock);
5894 
5895 	/*
5896 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5897 	 * so just return, this page will likely be freed soon anyway.
5898 	 */
5899 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5900 		spin_unlock(&eb->refs_lock);
5901 		return 0;
5902 	}
5903 
5904 	return release_extent_buffer(eb);
5905 }
5906