1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 static void process_one_page(struct btrfs_fs_info *fs_info, 185 struct page *page, struct page *locked_page, 186 unsigned long page_ops, u64 start, u64 end) 187 { 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 197 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_page_end_writer_lock(fs_info, page, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct page *page = &fbatch.folios[i]->page; 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_page_start_writer_lock(fs_info, page, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_page_end_writer_lock(fs_info, page, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, 1, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 436 437 ASSERT(page_offset(page) <= start && 438 start + len <= page_offset(page) + PAGE_SIZE); 439 440 if (uptodate && btrfs_verify_page(page, start)) 441 btrfs_page_set_uptodate(fs_info, page, start, len); 442 else 443 btrfs_page_clear_uptodate(fs_info, page, start, len); 444 445 if (!btrfs_is_subpage(fs_info, page)) 446 unlock_page(page); 447 else 448 btrfs_subpage_end_reader(fs_info, page, start, len); 449 } 450 451 /* 452 * after a writepage IO is done, we need to: 453 * clear the uptodate bits on error 454 * clear the writeback bits in the extent tree for this IO 455 * end_page_writeback if the page has no more pending IO 456 * 457 * Scheduling is not allowed, so the extent state tree is expected 458 * to have one and only one object corresponding to this IO. 459 */ 460 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 461 { 462 struct bio *bio = &bbio->bio; 463 int error = blk_status_to_errno(bio->bi_status); 464 struct bio_vec *bvec; 465 struct bvec_iter_all iter_all; 466 467 ASSERT(!bio_flagged(bio, BIO_CLONED)); 468 bio_for_each_segment_all(bvec, bio, iter_all) { 469 struct page *page = bvec->bv_page; 470 struct inode *inode = page->mapping->host; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 const u32 sectorsize = fs_info->sectorsize; 473 u64 start = page_offset(page) + bvec->bv_offset; 474 u32 len = bvec->bv_len; 475 476 /* Our read/write should always be sector aligned. */ 477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 478 btrfs_err(fs_info, 479 "partial page write in btrfs with offset %u and length %u", 480 bvec->bv_offset, bvec->bv_len); 481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 482 btrfs_info(fs_info, 483 "incomplete page write with offset %u and length %u", 484 bvec->bv_offset, bvec->bv_len); 485 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 487 if (error) 488 mapping_set_error(page->mapping, error); 489 btrfs_page_clear_writeback(fs_info, page, start, len); 490 } 491 492 bio_put(bio); 493 } 494 495 /* 496 * Record previously processed extent range 497 * 498 * For endio_readpage_release_extent() to handle a full extent range, reducing 499 * the extent io operations. 500 */ 501 struct processed_extent { 502 struct btrfs_inode *inode; 503 /* Start of the range in @inode */ 504 u64 start; 505 /* End of the range in @inode */ 506 u64 end; 507 bool uptodate; 508 }; 509 510 /* 511 * Try to release processed extent range 512 * 513 * May not release the extent range right now if the current range is 514 * contiguous to processed extent. 515 * 516 * Will release processed extent when any of @inode, @uptodate, the range is 517 * no longer contiguous to the processed range. 518 * 519 * Passing @inode == NULL will force processed extent to be released. 520 */ 521 static void endio_readpage_release_extent(struct processed_extent *processed, 522 struct btrfs_inode *inode, u64 start, u64 end, 523 bool uptodate) 524 { 525 struct extent_state *cached = NULL; 526 struct extent_io_tree *tree; 527 528 /* The first extent, initialize @processed */ 529 if (!processed->inode) 530 goto update; 531 532 /* 533 * Contiguous to processed extent, just uptodate the end. 534 * 535 * Several things to notice: 536 * 537 * - bio can be merged as long as on-disk bytenr is contiguous 538 * This means we can have page belonging to other inodes, thus need to 539 * check if the inode still matches. 540 * - bvec can contain range beyond current page for multi-page bvec 541 * Thus we need to do processed->end + 1 >= start check 542 */ 543 if (processed->inode == inode && processed->uptodate == uptodate && 544 processed->end + 1 >= start && end >= processed->end) { 545 processed->end = end; 546 return; 547 } 548 549 tree = &processed->inode->io_tree; 550 /* 551 * Now we don't have range contiguous to the processed range, release 552 * the processed range now. 553 */ 554 unlock_extent(tree, processed->start, processed->end, &cached); 555 556 update: 557 /* Update processed to current range */ 558 processed->inode = inode; 559 processed->start = start; 560 processed->end = end; 561 processed->uptodate = uptodate; 562 } 563 564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 565 { 566 ASSERT(PageLocked(page)); 567 if (!btrfs_is_subpage(fs_info, page)) 568 return; 569 570 ASSERT(PagePrivate(page)); 571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 572 } 573 574 /* 575 * after a readpage IO is done, we need to: 576 * clear the uptodate bits on error 577 * set the uptodate bits if things worked 578 * set the page up to date if all extents in the tree are uptodate 579 * clear the lock bit in the extent tree 580 * unlock the page if there are no other extents locked for it 581 * 582 * Scheduling is not allowed, so the extent state tree is expected 583 * to have one and only one object corresponding to this IO. 584 */ 585 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 586 { 587 struct bio *bio = &bbio->bio; 588 struct bio_vec *bvec; 589 struct processed_extent processed = { 0 }; 590 /* 591 * The offset to the beginning of a bio, since one bio can never be 592 * larger than UINT_MAX, u32 here is enough. 593 */ 594 u32 bio_offset = 0; 595 struct bvec_iter_all iter_all; 596 597 ASSERT(!bio_flagged(bio, BIO_CLONED)); 598 bio_for_each_segment_all(bvec, bio, iter_all) { 599 bool uptodate = !bio->bi_status; 600 struct page *page = bvec->bv_page; 601 struct inode *inode = page->mapping->host; 602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 603 const u32 sectorsize = fs_info->sectorsize; 604 u64 start; 605 u64 end; 606 u32 len; 607 608 btrfs_debug(fs_info, 609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 610 bio->bi_iter.bi_sector, bio->bi_status, 611 bbio->mirror_num); 612 613 /* 614 * We always issue full-sector reads, but if some block in a 615 * page fails to read, blk_update_request() will advance 616 * bv_offset and adjust bv_len to compensate. Print a warning 617 * for unaligned offsets, and an error if they don't add up to 618 * a full sector. 619 */ 620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 621 btrfs_err(fs_info, 622 "partial page read in btrfs with offset %u and length %u", 623 bvec->bv_offset, bvec->bv_len); 624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 625 sectorsize)) 626 btrfs_info(fs_info, 627 "incomplete page read with offset %u and length %u", 628 bvec->bv_offset, bvec->bv_len); 629 630 start = page_offset(page) + bvec->bv_offset; 631 end = start + bvec->bv_len - 1; 632 len = bvec->bv_len; 633 634 if (likely(uptodate)) { 635 loff_t i_size = i_size_read(inode); 636 pgoff_t end_index = i_size >> PAGE_SHIFT; 637 638 /* 639 * Zero out the remaining part if this range straddles 640 * i_size. 641 * 642 * Here we should only zero the range inside the bvec, 643 * not touch anything else. 644 * 645 * NOTE: i_size is exclusive while end is inclusive. 646 */ 647 if (page->index == end_index && i_size <= end) { 648 u32 zero_start = max(offset_in_page(i_size), 649 offset_in_page(start)); 650 651 zero_user_segment(page, zero_start, 652 offset_in_page(end) + 1); 653 } 654 } 655 656 /* Update page status and unlock. */ 657 end_page_read(page, uptodate, start, len); 658 endio_readpage_release_extent(&processed, BTRFS_I(inode), 659 start, end, uptodate); 660 661 ASSERT(bio_offset + len > bio_offset); 662 bio_offset += len; 663 664 } 665 /* Release the last extent */ 666 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 667 bio_put(bio); 668 } 669 670 /* 671 * Populate every free slot in a provided array with pages. 672 * 673 * @nr_pages: number of pages to allocate 674 * @page_array: the array to fill with pages; any existing non-null entries in 675 * the array will be skipped 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, the partially allocated pages would be freed and 679 * the array slots zeroed 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 682 { 683 unsigned int allocated; 684 685 for (allocated = 0; allocated < nr_pages;) { 686 unsigned int last = allocated; 687 688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 689 if (unlikely(allocated == last)) { 690 /* No progress, fail and do cleanup. */ 691 for (int i = 0; i < allocated; i++) { 692 __free_page(page_array[i]); 693 page_array[i] = NULL; 694 } 695 return -ENOMEM; 696 } 697 } 698 return 0; 699 } 700 701 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 702 struct page *page, u64 disk_bytenr, 703 unsigned int pg_offset) 704 { 705 struct bio *bio = &bio_ctrl->bbio->bio; 706 struct bio_vec *bvec = bio_last_bvec_all(bio); 707 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 708 709 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 710 /* 711 * For compression, all IO should have its logical bytenr set 712 * to the starting bytenr of the compressed extent. 713 */ 714 return bio->bi_iter.bi_sector == sector; 715 } 716 717 /* 718 * The contig check requires the following conditions to be met: 719 * 720 * 1) The pages are belonging to the same inode 721 * This is implied by the call chain. 722 * 723 * 2) The range has adjacent logical bytenr 724 * 725 * 3) The range has adjacent file offset 726 * This is required for the usage of btrfs_bio->file_offset. 727 */ 728 return bio_end_sector(bio) == sector && 729 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 730 page_offset(page) + pg_offset; 731 } 732 733 static void alloc_new_bio(struct btrfs_inode *inode, 734 struct btrfs_bio_ctrl *bio_ctrl, 735 u64 disk_bytenr, u64 file_offset) 736 { 737 struct btrfs_fs_info *fs_info = inode->root->fs_info; 738 struct btrfs_bio *bbio; 739 740 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 741 bio_ctrl->end_io_func, NULL); 742 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 743 bbio->inode = inode; 744 bbio->file_offset = file_offset; 745 bio_ctrl->bbio = bbio; 746 bio_ctrl->len_to_oe_boundary = U32_MAX; 747 748 /* Limit data write bios to the ordered boundary. */ 749 if (bio_ctrl->wbc) { 750 struct btrfs_ordered_extent *ordered; 751 752 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 753 if (ordered) { 754 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 755 ordered->file_offset + 756 ordered->disk_num_bytes - file_offset); 757 bbio->ordered = ordered; 758 } 759 760 /* 761 * Pick the last added device to support cgroup writeback. For 762 * multi-device file systems this means blk-cgroup policies have 763 * to always be set on the last added/replaced device. 764 * This is a bit odd but has been like that for a long time. 765 */ 766 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 767 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 768 } 769 } 770 771 /* 772 * @disk_bytenr: logical bytenr where the write will be 773 * @page: page to add to the bio 774 * @size: portion of page that we want to write to 775 * @pg_offset: offset of the new bio or to check whether we are adding 776 * a contiguous page to the previous one 777 * 778 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 779 * new one in @bio_ctrl->bbio. 780 * The mirror number for this IO should already be initizlied in 781 * @bio_ctrl->mirror_num. 782 */ 783 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 784 u64 disk_bytenr, struct page *page, 785 size_t size, unsigned long pg_offset) 786 { 787 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 788 789 ASSERT(pg_offset + size <= PAGE_SIZE); 790 ASSERT(bio_ctrl->end_io_func); 791 792 if (bio_ctrl->bbio && 793 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 794 submit_one_bio(bio_ctrl); 795 796 do { 797 u32 len = size; 798 799 /* Allocate new bio if needed */ 800 if (!bio_ctrl->bbio) { 801 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 802 page_offset(page) + pg_offset); 803 } 804 805 /* Cap to the current ordered extent boundary if there is one. */ 806 if (len > bio_ctrl->len_to_oe_boundary) { 807 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 808 ASSERT(is_data_inode(&inode->vfs_inode)); 809 len = bio_ctrl->len_to_oe_boundary; 810 } 811 812 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 813 /* bio full: move on to a new one */ 814 submit_one_bio(bio_ctrl); 815 continue; 816 } 817 818 if (bio_ctrl->wbc) 819 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 820 821 size -= len; 822 pg_offset += len; 823 disk_bytenr += len; 824 825 /* 826 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 827 * sector aligned. alloc_new_bio() then sets it to the end of 828 * our ordered extent for writes into zoned devices. 829 * 830 * When len_to_oe_boundary is tracking an ordered extent, we 831 * trust the ordered extent code to align things properly, and 832 * the check above to cap our write to the ordered extent 833 * boundary is correct. 834 * 835 * When len_to_oe_boundary is U32_MAX, the cap above would 836 * result in a 4095 byte IO for the last page right before 837 * we hit the bio limit of UINT_MAX. bio_add_page() has all 838 * the checks required to make sure we don't overflow the bio, 839 * and we should just ignore len_to_oe_boundary completely 840 * unless we're using it to track an ordered extent. 841 * 842 * It's pretty hard to make a bio sized U32_MAX, but it can 843 * happen when the page cache is able to feed us contiguous 844 * pages for large extents. 845 */ 846 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 847 bio_ctrl->len_to_oe_boundary -= len; 848 849 /* Ordered extent boundary: move on to a new bio. */ 850 if (bio_ctrl->len_to_oe_boundary == 0) 851 submit_one_bio(bio_ctrl); 852 } while (size); 853 } 854 855 static int attach_extent_buffer_page(struct extent_buffer *eb, 856 struct page *page, 857 struct btrfs_subpage *prealloc) 858 { 859 struct btrfs_fs_info *fs_info = eb->fs_info; 860 int ret = 0; 861 862 /* 863 * If the page is mapped to btree inode, we should hold the private 864 * lock to prevent race. 865 * For cloned or dummy extent buffers, their pages are not mapped and 866 * will not race with any other ebs. 867 */ 868 if (page->mapping) 869 lockdep_assert_held(&page->mapping->private_lock); 870 871 if (fs_info->nodesize >= PAGE_SIZE) { 872 if (!PagePrivate(page)) 873 attach_page_private(page, eb); 874 else 875 WARN_ON(page->private != (unsigned long)eb); 876 return 0; 877 } 878 879 /* Already mapped, just free prealloc */ 880 if (PagePrivate(page)) { 881 btrfs_free_subpage(prealloc); 882 return 0; 883 } 884 885 if (prealloc) 886 /* Has preallocated memory for subpage */ 887 attach_page_private(page, prealloc); 888 else 889 /* Do new allocation to attach subpage */ 890 ret = btrfs_attach_subpage(fs_info, page, 891 BTRFS_SUBPAGE_METADATA); 892 return ret; 893 } 894 895 int set_page_extent_mapped(struct page *page) 896 { 897 struct btrfs_fs_info *fs_info; 898 899 ASSERT(page->mapping); 900 901 if (PagePrivate(page)) 902 return 0; 903 904 fs_info = btrfs_sb(page->mapping->host->i_sb); 905 906 if (btrfs_is_subpage(fs_info, page)) 907 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 908 909 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 910 return 0; 911 } 912 913 void clear_page_extent_mapped(struct page *page) 914 { 915 struct btrfs_fs_info *fs_info; 916 917 ASSERT(page->mapping); 918 919 if (!PagePrivate(page)) 920 return; 921 922 fs_info = btrfs_sb(page->mapping->host->i_sb); 923 if (btrfs_is_subpage(fs_info, page)) 924 return btrfs_detach_subpage(fs_info, page); 925 926 detach_page_private(page); 927 } 928 929 static struct extent_map * 930 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 931 u64 start, u64 len, struct extent_map **em_cached) 932 { 933 struct extent_map *em; 934 935 if (em_cached && *em_cached) { 936 em = *em_cached; 937 if (extent_map_in_tree(em) && start >= em->start && 938 start < extent_map_end(em)) { 939 refcount_inc(&em->refs); 940 return em; 941 } 942 943 free_extent_map(em); 944 *em_cached = NULL; 945 } 946 947 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 948 if (em_cached && !IS_ERR(em)) { 949 BUG_ON(*em_cached); 950 refcount_inc(&em->refs); 951 *em_cached = em; 952 } 953 return em; 954 } 955 /* 956 * basic readpage implementation. Locked extent state structs are inserted 957 * into the tree that are removed when the IO is done (by the end_io 958 * handlers) 959 * XXX JDM: This needs looking at to ensure proper page locking 960 * return 0 on success, otherwise return error 961 */ 962 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 963 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 964 { 965 struct inode *inode = page->mapping->host; 966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 967 u64 start = page_offset(page); 968 const u64 end = start + PAGE_SIZE - 1; 969 u64 cur = start; 970 u64 extent_offset; 971 u64 last_byte = i_size_read(inode); 972 u64 block_start; 973 struct extent_map *em; 974 int ret = 0; 975 size_t pg_offset = 0; 976 size_t iosize; 977 size_t blocksize = inode->i_sb->s_blocksize; 978 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 979 980 ret = set_page_extent_mapped(page); 981 if (ret < 0) { 982 unlock_extent(tree, start, end, NULL); 983 unlock_page(page); 984 return ret; 985 } 986 987 if (page->index == last_byte >> PAGE_SHIFT) { 988 size_t zero_offset = offset_in_page(last_byte); 989 990 if (zero_offset) { 991 iosize = PAGE_SIZE - zero_offset; 992 memzero_page(page, zero_offset, iosize); 993 } 994 } 995 bio_ctrl->end_io_func = end_bio_extent_readpage; 996 begin_page_read(fs_info, page); 997 while (cur <= end) { 998 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 999 bool force_bio_submit = false; 1000 u64 disk_bytenr; 1001 1002 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1003 if (cur >= last_byte) { 1004 iosize = PAGE_SIZE - pg_offset; 1005 memzero_page(page, pg_offset, iosize); 1006 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1007 end_page_read(page, true, cur, iosize); 1008 break; 1009 } 1010 em = __get_extent_map(inode, page, pg_offset, cur, 1011 end - cur + 1, em_cached); 1012 if (IS_ERR(em)) { 1013 unlock_extent(tree, cur, end, NULL); 1014 end_page_read(page, false, cur, end + 1 - cur); 1015 return PTR_ERR(em); 1016 } 1017 extent_offset = cur - em->start; 1018 BUG_ON(extent_map_end(em) <= cur); 1019 BUG_ON(end < cur); 1020 1021 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1022 compress_type = em->compress_type; 1023 1024 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1025 iosize = ALIGN(iosize, blocksize); 1026 if (compress_type != BTRFS_COMPRESS_NONE) 1027 disk_bytenr = em->block_start; 1028 else 1029 disk_bytenr = em->block_start + extent_offset; 1030 block_start = em->block_start; 1031 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1032 block_start = EXTENT_MAP_HOLE; 1033 1034 /* 1035 * If we have a file range that points to a compressed extent 1036 * and it's followed by a consecutive file range that points 1037 * to the same compressed extent (possibly with a different 1038 * offset and/or length, so it either points to the whole extent 1039 * or only part of it), we must make sure we do not submit a 1040 * single bio to populate the pages for the 2 ranges because 1041 * this makes the compressed extent read zero out the pages 1042 * belonging to the 2nd range. Imagine the following scenario: 1043 * 1044 * File layout 1045 * [0 - 8K] [8K - 24K] 1046 * | | 1047 * | | 1048 * points to extent X, points to extent X, 1049 * offset 4K, length of 8K offset 0, length 16K 1050 * 1051 * [extent X, compressed length = 4K uncompressed length = 16K] 1052 * 1053 * If the bio to read the compressed extent covers both ranges, 1054 * it will decompress extent X into the pages belonging to the 1055 * first range and then it will stop, zeroing out the remaining 1056 * pages that belong to the other range that points to extent X. 1057 * So here we make sure we submit 2 bios, one for the first 1058 * range and another one for the third range. Both will target 1059 * the same physical extent from disk, but we can't currently 1060 * make the compressed bio endio callback populate the pages 1061 * for both ranges because each compressed bio is tightly 1062 * coupled with a single extent map, and each range can have 1063 * an extent map with a different offset value relative to the 1064 * uncompressed data of our extent and different lengths. This 1065 * is a corner case so we prioritize correctness over 1066 * non-optimal behavior (submitting 2 bios for the same extent). 1067 */ 1068 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1069 prev_em_start && *prev_em_start != (u64)-1 && 1070 *prev_em_start != em->start) 1071 force_bio_submit = true; 1072 1073 if (prev_em_start) 1074 *prev_em_start = em->start; 1075 1076 free_extent_map(em); 1077 em = NULL; 1078 1079 /* we've found a hole, just zero and go on */ 1080 if (block_start == EXTENT_MAP_HOLE) { 1081 memzero_page(page, pg_offset, iosize); 1082 1083 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1084 end_page_read(page, true, cur, iosize); 1085 cur = cur + iosize; 1086 pg_offset += iosize; 1087 continue; 1088 } 1089 /* the get_extent function already copied into the page */ 1090 if (block_start == EXTENT_MAP_INLINE) { 1091 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1092 end_page_read(page, true, cur, iosize); 1093 cur = cur + iosize; 1094 pg_offset += iosize; 1095 continue; 1096 } 1097 1098 if (bio_ctrl->compress_type != compress_type) { 1099 submit_one_bio(bio_ctrl); 1100 bio_ctrl->compress_type = compress_type; 1101 } 1102 1103 if (force_bio_submit) 1104 submit_one_bio(bio_ctrl); 1105 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1106 pg_offset); 1107 cur = cur + iosize; 1108 pg_offset += iosize; 1109 } 1110 1111 return 0; 1112 } 1113 1114 int btrfs_read_folio(struct file *file, struct folio *folio) 1115 { 1116 struct page *page = &folio->page; 1117 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1118 u64 start = page_offset(page); 1119 u64 end = start + PAGE_SIZE - 1; 1120 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1121 int ret; 1122 1123 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1124 1125 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1126 /* 1127 * If btrfs_do_readpage() failed we will want to submit the assembled 1128 * bio to do the cleanup. 1129 */ 1130 submit_one_bio(&bio_ctrl); 1131 return ret; 1132 } 1133 1134 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1135 u64 start, u64 end, 1136 struct extent_map **em_cached, 1137 struct btrfs_bio_ctrl *bio_ctrl, 1138 u64 *prev_em_start) 1139 { 1140 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1141 int index; 1142 1143 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1144 1145 for (index = 0; index < nr_pages; index++) { 1146 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1147 prev_em_start); 1148 put_page(pages[index]); 1149 } 1150 } 1151 1152 /* 1153 * helper for __extent_writepage, doing all of the delayed allocation setup. 1154 * 1155 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1156 * to write the page (copy into inline extent). In this case the IO has 1157 * been started and the page is already unlocked. 1158 * 1159 * This returns 0 if all went well (page still locked) 1160 * This returns < 0 if there were errors (page still locked) 1161 */ 1162 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1163 struct page *page, struct writeback_control *wbc) 1164 { 1165 const u64 page_start = page_offset(page); 1166 const u64 page_end = page_start + PAGE_SIZE - 1; 1167 u64 delalloc_start = page_start; 1168 u64 delalloc_end = page_end; 1169 u64 delalloc_to_write = 0; 1170 int ret = 0; 1171 1172 while (delalloc_start < page_end) { 1173 delalloc_end = page_end; 1174 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1175 &delalloc_start, &delalloc_end)) { 1176 delalloc_start = delalloc_end + 1; 1177 continue; 1178 } 1179 1180 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1181 delalloc_end, wbc); 1182 if (ret < 0) 1183 return ret; 1184 1185 delalloc_start = delalloc_end + 1; 1186 } 1187 1188 /* 1189 * delalloc_end is already one less than the total length, so 1190 * we don't subtract one from PAGE_SIZE 1191 */ 1192 delalloc_to_write += 1193 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1194 1195 /* 1196 * If btrfs_run_dealloc_range() already started I/O and unlocked 1197 * the pages, we just need to account for them here. 1198 */ 1199 if (ret == 1) { 1200 wbc->nr_to_write -= delalloc_to_write; 1201 return 1; 1202 } 1203 1204 if (wbc->nr_to_write < delalloc_to_write) { 1205 int thresh = 8192; 1206 1207 if (delalloc_to_write < thresh * 2) 1208 thresh = delalloc_to_write; 1209 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1210 thresh); 1211 } 1212 1213 return 0; 1214 } 1215 1216 /* 1217 * Find the first byte we need to write. 1218 * 1219 * For subpage, one page can contain several sectors, and 1220 * __extent_writepage_io() will just grab all extent maps in the page 1221 * range and try to submit all non-inline/non-compressed extents. 1222 * 1223 * This is a big problem for subpage, we shouldn't re-submit already written 1224 * data at all. 1225 * This function will lookup subpage dirty bit to find which range we really 1226 * need to submit. 1227 * 1228 * Return the next dirty range in [@start, @end). 1229 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1230 */ 1231 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1232 struct page *page, u64 *start, u64 *end) 1233 { 1234 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1235 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1236 u64 orig_start = *start; 1237 /* Declare as unsigned long so we can use bitmap ops */ 1238 unsigned long flags; 1239 int range_start_bit; 1240 int range_end_bit; 1241 1242 /* 1243 * For regular sector size == page size case, since one page only 1244 * contains one sector, we return the page offset directly. 1245 */ 1246 if (!btrfs_is_subpage(fs_info, page)) { 1247 *start = page_offset(page); 1248 *end = page_offset(page) + PAGE_SIZE; 1249 return; 1250 } 1251 1252 range_start_bit = spi->dirty_offset + 1253 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1254 1255 /* We should have the page locked, but just in case */ 1256 spin_lock_irqsave(&subpage->lock, flags); 1257 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1258 spi->dirty_offset + spi->bitmap_nr_bits); 1259 spin_unlock_irqrestore(&subpage->lock, flags); 1260 1261 range_start_bit -= spi->dirty_offset; 1262 range_end_bit -= spi->dirty_offset; 1263 1264 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1265 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1266 } 1267 1268 /* 1269 * helper for __extent_writepage. This calls the writepage start hooks, 1270 * and does the loop to map the page into extents and bios. 1271 * 1272 * We return 1 if the IO is started and the page is unlocked, 1273 * 0 if all went well (page still locked) 1274 * < 0 if there were errors (page still locked) 1275 */ 1276 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1277 struct page *page, 1278 struct btrfs_bio_ctrl *bio_ctrl, 1279 loff_t i_size, 1280 int *nr_ret) 1281 { 1282 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1283 u64 cur = page_offset(page); 1284 u64 end = cur + PAGE_SIZE - 1; 1285 u64 extent_offset; 1286 u64 block_start; 1287 struct extent_map *em; 1288 int ret = 0; 1289 int nr = 0; 1290 1291 ret = btrfs_writepage_cow_fixup(page); 1292 if (ret) { 1293 /* Fixup worker will requeue */ 1294 redirty_page_for_writepage(bio_ctrl->wbc, page); 1295 unlock_page(page); 1296 return 1; 1297 } 1298 1299 bio_ctrl->end_io_func = end_bio_extent_writepage; 1300 while (cur <= end) { 1301 u32 len = end - cur + 1; 1302 u64 disk_bytenr; 1303 u64 em_end; 1304 u64 dirty_range_start = cur; 1305 u64 dirty_range_end; 1306 u32 iosize; 1307 1308 if (cur >= i_size) { 1309 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1310 true); 1311 /* 1312 * This range is beyond i_size, thus we don't need to 1313 * bother writing back. 1314 * But we still need to clear the dirty subpage bit, or 1315 * the next time the page gets dirtied, we will try to 1316 * writeback the sectors with subpage dirty bits, 1317 * causing writeback without ordered extent. 1318 */ 1319 btrfs_page_clear_dirty(fs_info, page, cur, len); 1320 break; 1321 } 1322 1323 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1324 &dirty_range_end); 1325 if (cur < dirty_range_start) { 1326 cur = dirty_range_start; 1327 continue; 1328 } 1329 1330 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1331 if (IS_ERR(em)) { 1332 ret = PTR_ERR_OR_ZERO(em); 1333 goto out_error; 1334 } 1335 1336 extent_offset = cur - em->start; 1337 em_end = extent_map_end(em); 1338 ASSERT(cur <= em_end); 1339 ASSERT(cur < end); 1340 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1341 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1342 1343 block_start = em->block_start; 1344 disk_bytenr = em->block_start + extent_offset; 1345 1346 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1347 ASSERT(block_start != EXTENT_MAP_HOLE); 1348 ASSERT(block_start != EXTENT_MAP_INLINE); 1349 1350 /* 1351 * Note that em_end from extent_map_end() and dirty_range_end from 1352 * find_next_dirty_byte() are all exclusive 1353 */ 1354 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1355 free_extent_map(em); 1356 em = NULL; 1357 1358 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1359 if (!PageWriteback(page)) { 1360 btrfs_err(inode->root->fs_info, 1361 "page %lu not writeback, cur %llu end %llu", 1362 page->index, cur, end); 1363 } 1364 1365 /* 1366 * Although the PageDirty bit is cleared before entering this 1367 * function, subpage dirty bit is not cleared. 1368 * So clear subpage dirty bit here so next time we won't submit 1369 * page for range already written to disk. 1370 */ 1371 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1372 1373 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1374 cur - page_offset(page)); 1375 cur += iosize; 1376 nr++; 1377 } 1378 1379 btrfs_page_assert_not_dirty(fs_info, page); 1380 *nr_ret = nr; 1381 return 0; 1382 1383 out_error: 1384 /* 1385 * If we finish without problem, we should not only clear page dirty, 1386 * but also empty subpage dirty bits 1387 */ 1388 *nr_ret = nr; 1389 return ret; 1390 } 1391 1392 /* 1393 * the writepage semantics are similar to regular writepage. extent 1394 * records are inserted to lock ranges in the tree, and as dirty areas 1395 * are found, they are marked writeback. Then the lock bits are removed 1396 * and the end_io handler clears the writeback ranges 1397 * 1398 * Return 0 if everything goes well. 1399 * Return <0 for error. 1400 */ 1401 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1402 { 1403 struct folio *folio = page_folio(page); 1404 struct inode *inode = page->mapping->host; 1405 const u64 page_start = page_offset(page); 1406 int ret; 1407 int nr = 0; 1408 size_t pg_offset; 1409 loff_t i_size = i_size_read(inode); 1410 unsigned long end_index = i_size >> PAGE_SHIFT; 1411 1412 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1413 1414 WARN_ON(!PageLocked(page)); 1415 1416 pg_offset = offset_in_page(i_size); 1417 if (page->index > end_index || 1418 (page->index == end_index && !pg_offset)) { 1419 folio_invalidate(folio, 0, folio_size(folio)); 1420 folio_unlock(folio); 1421 return 0; 1422 } 1423 1424 if (page->index == end_index) 1425 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1426 1427 ret = set_page_extent_mapped(page); 1428 if (ret < 0) 1429 goto done; 1430 1431 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1432 if (ret == 1) 1433 return 0; 1434 if (ret) 1435 goto done; 1436 1437 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1438 if (ret == 1) 1439 return 0; 1440 1441 bio_ctrl->wbc->nr_to_write--; 1442 1443 done: 1444 if (nr == 0) { 1445 /* make sure the mapping tag for page dirty gets cleared */ 1446 set_page_writeback(page); 1447 end_page_writeback(page); 1448 } 1449 if (ret) { 1450 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1451 PAGE_SIZE, !ret); 1452 mapping_set_error(page->mapping, ret); 1453 } 1454 unlock_page(page); 1455 ASSERT(ret <= 0); 1456 return ret; 1457 } 1458 1459 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1460 { 1461 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1462 TASK_UNINTERRUPTIBLE); 1463 } 1464 1465 /* 1466 * Lock extent buffer status and pages for writeback. 1467 * 1468 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1469 * extent buffer is not dirty) 1470 * Return %true is the extent buffer is submitted to bio. 1471 */ 1472 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1473 struct writeback_control *wbc) 1474 { 1475 struct btrfs_fs_info *fs_info = eb->fs_info; 1476 bool ret = false; 1477 1478 btrfs_tree_lock(eb); 1479 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1480 btrfs_tree_unlock(eb); 1481 if (wbc->sync_mode != WB_SYNC_ALL) 1482 return false; 1483 wait_on_extent_buffer_writeback(eb); 1484 btrfs_tree_lock(eb); 1485 } 1486 1487 /* 1488 * We need to do this to prevent races in people who check if the eb is 1489 * under IO since we can end up having no IO bits set for a short period 1490 * of time. 1491 */ 1492 spin_lock(&eb->refs_lock); 1493 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1494 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1495 spin_unlock(&eb->refs_lock); 1496 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1497 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1498 -eb->len, 1499 fs_info->dirty_metadata_batch); 1500 ret = true; 1501 } else { 1502 spin_unlock(&eb->refs_lock); 1503 } 1504 btrfs_tree_unlock(eb); 1505 return ret; 1506 } 1507 1508 static void set_btree_ioerr(struct extent_buffer *eb) 1509 { 1510 struct btrfs_fs_info *fs_info = eb->fs_info; 1511 1512 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1513 1514 /* 1515 * A read may stumble upon this buffer later, make sure that it gets an 1516 * error and knows there was an error. 1517 */ 1518 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1519 1520 /* 1521 * We need to set the mapping with the io error as well because a write 1522 * error will flip the file system readonly, and then syncfs() will 1523 * return a 0 because we are readonly if we don't modify the err seq for 1524 * the superblock. 1525 */ 1526 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1527 1528 /* 1529 * If writeback for a btree extent that doesn't belong to a log tree 1530 * failed, increment the counter transaction->eb_write_errors. 1531 * We do this because while the transaction is running and before it's 1532 * committing (when we call filemap_fdata[write|wait]_range against 1533 * the btree inode), we might have 1534 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1535 * returns an error or an error happens during writeback, when we're 1536 * committing the transaction we wouldn't know about it, since the pages 1537 * can be no longer dirty nor marked anymore for writeback (if a 1538 * subsequent modification to the extent buffer didn't happen before the 1539 * transaction commit), which makes filemap_fdata[write|wait]_range not 1540 * able to find the pages tagged with SetPageError at transaction 1541 * commit time. So if this happens we must abort the transaction, 1542 * otherwise we commit a super block with btree roots that point to 1543 * btree nodes/leafs whose content on disk is invalid - either garbage 1544 * or the content of some node/leaf from a past generation that got 1545 * cowed or deleted and is no longer valid. 1546 * 1547 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1548 * not be enough - we need to distinguish between log tree extents vs 1549 * non-log tree extents, and the next filemap_fdatawait_range() call 1550 * will catch and clear such errors in the mapping - and that call might 1551 * be from a log sync and not from a transaction commit. Also, checking 1552 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1553 * not done and would not be reliable - the eb might have been released 1554 * from memory and reading it back again means that flag would not be 1555 * set (since it's a runtime flag, not persisted on disk). 1556 * 1557 * Using the flags below in the btree inode also makes us achieve the 1558 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1559 * writeback for all dirty pages and before filemap_fdatawait_range() 1560 * is called, the writeback for all dirty pages had already finished 1561 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1562 * filemap_fdatawait_range() would return success, as it could not know 1563 * that writeback errors happened (the pages were no longer tagged for 1564 * writeback). 1565 */ 1566 switch (eb->log_index) { 1567 case -1: 1568 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1569 break; 1570 case 0: 1571 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1572 break; 1573 case 1: 1574 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1575 break; 1576 default: 1577 BUG(); /* unexpected, logic error */ 1578 } 1579 } 1580 1581 /* 1582 * The endio specific version which won't touch any unsafe spinlock in endio 1583 * context. 1584 */ 1585 static struct extent_buffer *find_extent_buffer_nolock( 1586 struct btrfs_fs_info *fs_info, u64 start) 1587 { 1588 struct extent_buffer *eb; 1589 1590 rcu_read_lock(); 1591 eb = radix_tree_lookup(&fs_info->buffer_radix, 1592 start >> fs_info->sectorsize_bits); 1593 if (eb && atomic_inc_not_zero(&eb->refs)) { 1594 rcu_read_unlock(); 1595 return eb; 1596 } 1597 rcu_read_unlock(); 1598 return NULL; 1599 } 1600 1601 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1602 { 1603 struct extent_buffer *eb = bbio->private; 1604 struct btrfs_fs_info *fs_info = eb->fs_info; 1605 bool uptodate = !bbio->bio.bi_status; 1606 struct bvec_iter_all iter_all; 1607 struct bio_vec *bvec; 1608 u32 bio_offset = 0; 1609 1610 if (!uptodate) 1611 set_btree_ioerr(eb); 1612 1613 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1614 u64 start = eb->start + bio_offset; 1615 struct page *page = bvec->bv_page; 1616 u32 len = bvec->bv_len; 1617 1618 btrfs_page_clear_writeback(fs_info, page, start, len); 1619 bio_offset += len; 1620 } 1621 1622 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1623 smp_mb__after_atomic(); 1624 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1625 1626 bio_put(&bbio->bio); 1627 } 1628 1629 static void prepare_eb_write(struct extent_buffer *eb) 1630 { 1631 u32 nritems; 1632 unsigned long start; 1633 unsigned long end; 1634 1635 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1636 1637 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1638 nritems = btrfs_header_nritems(eb); 1639 if (btrfs_header_level(eb) > 0) { 1640 end = btrfs_node_key_ptr_offset(eb, nritems); 1641 memzero_extent_buffer(eb, end, eb->len - end); 1642 } else { 1643 /* 1644 * Leaf: 1645 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1646 */ 1647 start = btrfs_item_nr_offset(eb, nritems); 1648 end = btrfs_item_nr_offset(eb, 0); 1649 if (nritems == 0) 1650 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1651 else 1652 end += btrfs_item_offset(eb, nritems - 1); 1653 memzero_extent_buffer(eb, start, end - start); 1654 } 1655 } 1656 1657 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1658 struct writeback_control *wbc) 1659 { 1660 struct btrfs_fs_info *fs_info = eb->fs_info; 1661 struct btrfs_bio *bbio; 1662 1663 prepare_eb_write(eb); 1664 1665 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1666 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1667 eb->fs_info, extent_buffer_write_end_io, eb); 1668 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1669 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1670 wbc_init_bio(wbc, &bbio->bio); 1671 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1672 bbio->file_offset = eb->start; 1673 if (fs_info->nodesize < PAGE_SIZE) { 1674 struct page *p = eb->pages[0]; 1675 1676 lock_page(p); 1677 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1678 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1679 eb->len)) { 1680 clear_page_dirty_for_io(p); 1681 wbc->nr_to_write--; 1682 } 1683 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1684 wbc_account_cgroup_owner(wbc, p, eb->len); 1685 unlock_page(p); 1686 } else { 1687 for (int i = 0; i < num_extent_pages(eb); i++) { 1688 struct page *p = eb->pages[i]; 1689 1690 lock_page(p); 1691 clear_page_dirty_for_io(p); 1692 set_page_writeback(p); 1693 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1694 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1695 wbc->nr_to_write--; 1696 unlock_page(p); 1697 } 1698 } 1699 btrfs_submit_bio(bbio, 0); 1700 } 1701 1702 /* 1703 * Submit one subpage btree page. 1704 * 1705 * The main difference to submit_eb_page() is: 1706 * - Page locking 1707 * For subpage, we don't rely on page locking at all. 1708 * 1709 * - Flush write bio 1710 * We only flush bio if we may be unable to fit current extent buffers into 1711 * current bio. 1712 * 1713 * Return >=0 for the number of submitted extent buffers. 1714 * Return <0 for fatal error. 1715 */ 1716 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1717 { 1718 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1719 int submitted = 0; 1720 u64 page_start = page_offset(page); 1721 int bit_start = 0; 1722 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1723 1724 /* Lock and write each dirty extent buffers in the range */ 1725 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1726 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1727 struct extent_buffer *eb; 1728 unsigned long flags; 1729 u64 start; 1730 1731 /* 1732 * Take private lock to ensure the subpage won't be detached 1733 * in the meantime. 1734 */ 1735 spin_lock(&page->mapping->private_lock); 1736 if (!PagePrivate(page)) { 1737 spin_unlock(&page->mapping->private_lock); 1738 break; 1739 } 1740 spin_lock_irqsave(&subpage->lock, flags); 1741 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1742 subpage->bitmaps)) { 1743 spin_unlock_irqrestore(&subpage->lock, flags); 1744 spin_unlock(&page->mapping->private_lock); 1745 bit_start++; 1746 continue; 1747 } 1748 1749 start = page_start + bit_start * fs_info->sectorsize; 1750 bit_start += sectors_per_node; 1751 1752 /* 1753 * Here we just want to grab the eb without touching extra 1754 * spin locks, so call find_extent_buffer_nolock(). 1755 */ 1756 eb = find_extent_buffer_nolock(fs_info, start); 1757 spin_unlock_irqrestore(&subpage->lock, flags); 1758 spin_unlock(&page->mapping->private_lock); 1759 1760 /* 1761 * The eb has already reached 0 refs thus find_extent_buffer() 1762 * doesn't return it. We don't need to write back such eb 1763 * anyway. 1764 */ 1765 if (!eb) 1766 continue; 1767 1768 if (lock_extent_buffer_for_io(eb, wbc)) { 1769 write_one_eb(eb, wbc); 1770 submitted++; 1771 } 1772 free_extent_buffer(eb); 1773 } 1774 return submitted; 1775 } 1776 1777 /* 1778 * Submit all page(s) of one extent buffer. 1779 * 1780 * @page: the page of one extent buffer 1781 * @eb_context: to determine if we need to submit this page, if current page 1782 * belongs to this eb, we don't need to submit 1783 * 1784 * The caller should pass each page in their bytenr order, and here we use 1785 * @eb_context to determine if we have submitted pages of one extent buffer. 1786 * 1787 * If we have, we just skip until we hit a new page that doesn't belong to 1788 * current @eb_context. 1789 * 1790 * If not, we submit all the page(s) of the extent buffer. 1791 * 1792 * Return >0 if we have submitted the extent buffer successfully. 1793 * Return 0 if we don't need to submit the page, as it's already submitted by 1794 * previous call. 1795 * Return <0 for fatal error. 1796 */ 1797 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1798 { 1799 struct writeback_control *wbc = ctx->wbc; 1800 struct address_space *mapping = page->mapping; 1801 struct extent_buffer *eb; 1802 int ret; 1803 1804 if (!PagePrivate(page)) 1805 return 0; 1806 1807 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1808 return submit_eb_subpage(page, wbc); 1809 1810 spin_lock(&mapping->private_lock); 1811 if (!PagePrivate(page)) { 1812 spin_unlock(&mapping->private_lock); 1813 return 0; 1814 } 1815 1816 eb = (struct extent_buffer *)page->private; 1817 1818 /* 1819 * Shouldn't happen and normally this would be a BUG_ON but no point 1820 * crashing the machine for something we can survive anyway. 1821 */ 1822 if (WARN_ON(!eb)) { 1823 spin_unlock(&mapping->private_lock); 1824 return 0; 1825 } 1826 1827 if (eb == ctx->eb) { 1828 spin_unlock(&mapping->private_lock); 1829 return 0; 1830 } 1831 ret = atomic_inc_not_zero(&eb->refs); 1832 spin_unlock(&mapping->private_lock); 1833 if (!ret) 1834 return 0; 1835 1836 ctx->eb = eb; 1837 1838 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1839 if (ret) { 1840 if (ret == -EBUSY) 1841 ret = 0; 1842 free_extent_buffer(eb); 1843 return ret; 1844 } 1845 1846 if (!lock_extent_buffer_for_io(eb, wbc)) { 1847 free_extent_buffer(eb); 1848 return 0; 1849 } 1850 /* Implies write in zoned mode. */ 1851 if (ctx->zoned_bg) { 1852 /* Mark the last eb in the block group. */ 1853 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1854 ctx->zoned_bg->meta_write_pointer += eb->len; 1855 } 1856 write_one_eb(eb, wbc); 1857 free_extent_buffer(eb); 1858 return 1; 1859 } 1860 1861 int btree_write_cache_pages(struct address_space *mapping, 1862 struct writeback_control *wbc) 1863 { 1864 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1865 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1866 int ret = 0; 1867 int done = 0; 1868 int nr_to_write_done = 0; 1869 struct folio_batch fbatch; 1870 unsigned int nr_folios; 1871 pgoff_t index; 1872 pgoff_t end; /* Inclusive */ 1873 int scanned = 0; 1874 xa_mark_t tag; 1875 1876 folio_batch_init(&fbatch); 1877 if (wbc->range_cyclic) { 1878 index = mapping->writeback_index; /* Start from prev offset */ 1879 end = -1; 1880 /* 1881 * Start from the beginning does not need to cycle over the 1882 * range, mark it as scanned. 1883 */ 1884 scanned = (index == 0); 1885 } else { 1886 index = wbc->range_start >> PAGE_SHIFT; 1887 end = wbc->range_end >> PAGE_SHIFT; 1888 scanned = 1; 1889 } 1890 if (wbc->sync_mode == WB_SYNC_ALL) 1891 tag = PAGECACHE_TAG_TOWRITE; 1892 else 1893 tag = PAGECACHE_TAG_DIRTY; 1894 btrfs_zoned_meta_io_lock(fs_info); 1895 retry: 1896 if (wbc->sync_mode == WB_SYNC_ALL) 1897 tag_pages_for_writeback(mapping, index, end); 1898 while (!done && !nr_to_write_done && (index <= end) && 1899 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1900 tag, &fbatch))) { 1901 unsigned i; 1902 1903 for (i = 0; i < nr_folios; i++) { 1904 struct folio *folio = fbatch.folios[i]; 1905 1906 ret = submit_eb_page(&folio->page, &ctx); 1907 if (ret == 0) 1908 continue; 1909 if (ret < 0) { 1910 done = 1; 1911 break; 1912 } 1913 1914 /* 1915 * the filesystem may choose to bump up nr_to_write. 1916 * We have to make sure to honor the new nr_to_write 1917 * at any time 1918 */ 1919 nr_to_write_done = wbc->nr_to_write <= 0; 1920 } 1921 folio_batch_release(&fbatch); 1922 cond_resched(); 1923 } 1924 if (!scanned && !done) { 1925 /* 1926 * We hit the last page and there is more work to be done: wrap 1927 * back to the start of the file 1928 */ 1929 scanned = 1; 1930 index = 0; 1931 goto retry; 1932 } 1933 /* 1934 * If something went wrong, don't allow any metadata write bio to be 1935 * submitted. 1936 * 1937 * This would prevent use-after-free if we had dirty pages not 1938 * cleaned up, which can still happen by fuzzed images. 1939 * 1940 * - Bad extent tree 1941 * Allowing existing tree block to be allocated for other trees. 1942 * 1943 * - Log tree operations 1944 * Exiting tree blocks get allocated to log tree, bumps its 1945 * generation, then get cleaned in tree re-balance. 1946 * Such tree block will not be written back, since it's clean, 1947 * thus no WRITTEN flag set. 1948 * And after log writes back, this tree block is not traced by 1949 * any dirty extent_io_tree. 1950 * 1951 * - Offending tree block gets re-dirtied from its original owner 1952 * Since it has bumped generation, no WRITTEN flag, it can be 1953 * reused without COWing. This tree block will not be traced 1954 * by btrfs_transaction::dirty_pages. 1955 * 1956 * Now such dirty tree block will not be cleaned by any dirty 1957 * extent io tree. Thus we don't want to submit such wild eb 1958 * if the fs already has error. 1959 * 1960 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1961 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1962 */ 1963 if (ret > 0) 1964 ret = 0; 1965 if (!ret && BTRFS_FS_ERROR(fs_info)) 1966 ret = -EROFS; 1967 1968 if (ctx.zoned_bg) 1969 btrfs_put_block_group(ctx.zoned_bg); 1970 btrfs_zoned_meta_io_unlock(fs_info); 1971 return ret; 1972 } 1973 1974 /* 1975 * Walk the list of dirty pages of the given address space and write all of them. 1976 * 1977 * @mapping: address space structure to write 1978 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1979 * @bio_ctrl: holds context for the write, namely the bio 1980 * 1981 * If a page is already under I/O, write_cache_pages() skips it, even 1982 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1983 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1984 * and msync() need to guarantee that all the data which was dirty at the time 1985 * the call was made get new I/O started against them. If wbc->sync_mode is 1986 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1987 * existing IO to complete. 1988 */ 1989 static int extent_write_cache_pages(struct address_space *mapping, 1990 struct btrfs_bio_ctrl *bio_ctrl) 1991 { 1992 struct writeback_control *wbc = bio_ctrl->wbc; 1993 struct inode *inode = mapping->host; 1994 int ret = 0; 1995 int done = 0; 1996 int nr_to_write_done = 0; 1997 struct folio_batch fbatch; 1998 unsigned int nr_folios; 1999 pgoff_t index; 2000 pgoff_t end; /* Inclusive */ 2001 pgoff_t done_index; 2002 int range_whole = 0; 2003 int scanned = 0; 2004 xa_mark_t tag; 2005 2006 /* 2007 * We have to hold onto the inode so that ordered extents can do their 2008 * work when the IO finishes. The alternative to this is failing to add 2009 * an ordered extent if the igrab() fails there and that is a huge pain 2010 * to deal with, so instead just hold onto the inode throughout the 2011 * writepages operation. If it fails here we are freeing up the inode 2012 * anyway and we'd rather not waste our time writing out stuff that is 2013 * going to be truncated anyway. 2014 */ 2015 if (!igrab(inode)) 2016 return 0; 2017 2018 folio_batch_init(&fbatch); 2019 if (wbc->range_cyclic) { 2020 index = mapping->writeback_index; /* Start from prev offset */ 2021 end = -1; 2022 /* 2023 * Start from the beginning does not need to cycle over the 2024 * range, mark it as scanned. 2025 */ 2026 scanned = (index == 0); 2027 } else { 2028 index = wbc->range_start >> PAGE_SHIFT; 2029 end = wbc->range_end >> PAGE_SHIFT; 2030 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2031 range_whole = 1; 2032 scanned = 1; 2033 } 2034 2035 /* 2036 * We do the tagged writepage as long as the snapshot flush bit is set 2037 * and we are the first one who do the filemap_flush() on this inode. 2038 * 2039 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2040 * not race in and drop the bit. 2041 */ 2042 if (range_whole && wbc->nr_to_write == LONG_MAX && 2043 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2044 &BTRFS_I(inode)->runtime_flags)) 2045 wbc->tagged_writepages = 1; 2046 2047 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2048 tag = PAGECACHE_TAG_TOWRITE; 2049 else 2050 tag = PAGECACHE_TAG_DIRTY; 2051 retry: 2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2053 tag_pages_for_writeback(mapping, index, end); 2054 done_index = index; 2055 while (!done && !nr_to_write_done && (index <= end) && 2056 (nr_folios = filemap_get_folios_tag(mapping, &index, 2057 end, tag, &fbatch))) { 2058 unsigned i; 2059 2060 for (i = 0; i < nr_folios; i++) { 2061 struct folio *folio = fbatch.folios[i]; 2062 2063 done_index = folio_next_index(folio); 2064 /* 2065 * At this point we hold neither the i_pages lock nor 2066 * the page lock: the page may be truncated or 2067 * invalidated (changing page->mapping to NULL), 2068 * or even swizzled back from swapper_space to 2069 * tmpfs file mapping 2070 */ 2071 if (!folio_trylock(folio)) { 2072 submit_write_bio(bio_ctrl, 0); 2073 folio_lock(folio); 2074 } 2075 2076 if (unlikely(folio->mapping != mapping)) { 2077 folio_unlock(folio); 2078 continue; 2079 } 2080 2081 if (!folio_test_dirty(folio)) { 2082 /* Someone wrote it for us. */ 2083 folio_unlock(folio); 2084 continue; 2085 } 2086 2087 if (wbc->sync_mode != WB_SYNC_NONE) { 2088 if (folio_test_writeback(folio)) 2089 submit_write_bio(bio_ctrl, 0); 2090 folio_wait_writeback(folio); 2091 } 2092 2093 if (folio_test_writeback(folio) || 2094 !folio_clear_dirty_for_io(folio)) { 2095 folio_unlock(folio); 2096 continue; 2097 } 2098 2099 ret = __extent_writepage(&folio->page, bio_ctrl); 2100 if (ret < 0) { 2101 done = 1; 2102 break; 2103 } 2104 2105 /* 2106 * The filesystem may choose to bump up nr_to_write. 2107 * We have to make sure to honor the new nr_to_write 2108 * at any time. 2109 */ 2110 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2111 wbc->nr_to_write <= 0); 2112 } 2113 folio_batch_release(&fbatch); 2114 cond_resched(); 2115 } 2116 if (!scanned && !done) { 2117 /* 2118 * We hit the last page and there is more work to be done: wrap 2119 * back to the start of the file 2120 */ 2121 scanned = 1; 2122 index = 0; 2123 2124 /* 2125 * If we're looping we could run into a page that is locked by a 2126 * writer and that writer could be waiting on writeback for a 2127 * page in our current bio, and thus deadlock, so flush the 2128 * write bio here. 2129 */ 2130 submit_write_bio(bio_ctrl, 0); 2131 goto retry; 2132 } 2133 2134 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2135 mapping->writeback_index = done_index; 2136 2137 btrfs_add_delayed_iput(BTRFS_I(inode)); 2138 return ret; 2139 } 2140 2141 /* 2142 * Submit the pages in the range to bio for call sites which delalloc range has 2143 * already been ran (aka, ordered extent inserted) and all pages are still 2144 * locked. 2145 */ 2146 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2147 u64 start, u64 end, struct writeback_control *wbc, 2148 bool pages_dirty) 2149 { 2150 bool found_error = false; 2151 int ret = 0; 2152 struct address_space *mapping = inode->i_mapping; 2153 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2154 const u32 sectorsize = fs_info->sectorsize; 2155 loff_t i_size = i_size_read(inode); 2156 u64 cur = start; 2157 struct btrfs_bio_ctrl bio_ctrl = { 2158 .wbc = wbc, 2159 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2160 }; 2161 2162 if (wbc->no_cgroup_owner) 2163 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2164 2165 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2166 2167 while (cur <= end) { 2168 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2169 u32 cur_len = cur_end + 1 - cur; 2170 struct page *page; 2171 int nr = 0; 2172 2173 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2174 ASSERT(PageLocked(page)); 2175 if (pages_dirty && page != locked_page) { 2176 ASSERT(PageDirty(page)); 2177 clear_page_dirty_for_io(page); 2178 } 2179 2180 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2181 i_size, &nr); 2182 if (ret == 1) 2183 goto next_page; 2184 2185 /* Make sure the mapping tag for page dirty gets cleared. */ 2186 if (nr == 0) { 2187 set_page_writeback(page); 2188 end_page_writeback(page); 2189 } 2190 if (ret) { 2191 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2192 cur, cur_len, !ret); 2193 mapping_set_error(page->mapping, ret); 2194 } 2195 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2196 if (ret < 0) 2197 found_error = true; 2198 next_page: 2199 put_page(page); 2200 cur = cur_end + 1; 2201 } 2202 2203 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2204 } 2205 2206 int extent_writepages(struct address_space *mapping, 2207 struct writeback_control *wbc) 2208 { 2209 struct inode *inode = mapping->host; 2210 int ret = 0; 2211 struct btrfs_bio_ctrl bio_ctrl = { 2212 .wbc = wbc, 2213 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2214 }; 2215 2216 /* 2217 * Allow only a single thread to do the reloc work in zoned mode to 2218 * protect the write pointer updates. 2219 */ 2220 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2221 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2222 submit_write_bio(&bio_ctrl, ret); 2223 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2224 return ret; 2225 } 2226 2227 void extent_readahead(struct readahead_control *rac) 2228 { 2229 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2230 struct page *pagepool[16]; 2231 struct extent_map *em_cached = NULL; 2232 u64 prev_em_start = (u64)-1; 2233 int nr; 2234 2235 while ((nr = readahead_page_batch(rac, pagepool))) { 2236 u64 contig_start = readahead_pos(rac); 2237 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2238 2239 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2240 &em_cached, &bio_ctrl, &prev_em_start); 2241 } 2242 2243 if (em_cached) 2244 free_extent_map(em_cached); 2245 submit_one_bio(&bio_ctrl); 2246 } 2247 2248 /* 2249 * basic invalidate_folio code, this waits on any locked or writeback 2250 * ranges corresponding to the folio, and then deletes any extent state 2251 * records from the tree 2252 */ 2253 int extent_invalidate_folio(struct extent_io_tree *tree, 2254 struct folio *folio, size_t offset) 2255 { 2256 struct extent_state *cached_state = NULL; 2257 u64 start = folio_pos(folio); 2258 u64 end = start + folio_size(folio) - 1; 2259 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2260 2261 /* This function is only called for the btree inode */ 2262 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2263 2264 start += ALIGN(offset, blocksize); 2265 if (start > end) 2266 return 0; 2267 2268 lock_extent(tree, start, end, &cached_state); 2269 folio_wait_writeback(folio); 2270 2271 /* 2272 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2273 * so here we only need to unlock the extent range to free any 2274 * existing extent state. 2275 */ 2276 unlock_extent(tree, start, end, &cached_state); 2277 return 0; 2278 } 2279 2280 /* 2281 * a helper for release_folio, this tests for areas of the page that 2282 * are locked or under IO and drops the related state bits if it is safe 2283 * to drop the page. 2284 */ 2285 static int try_release_extent_state(struct extent_io_tree *tree, 2286 struct page *page, gfp_t mask) 2287 { 2288 u64 start = page_offset(page); 2289 u64 end = start + PAGE_SIZE - 1; 2290 int ret = 1; 2291 2292 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2293 ret = 0; 2294 } else { 2295 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2296 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS | 2297 EXTENT_QGROUP_RESERVED); 2298 2299 /* 2300 * At this point we can safely clear everything except the 2301 * locked bit, the nodatasum bit and the delalloc new bit. 2302 * The delalloc new bit will be cleared by ordered extent 2303 * completion. 2304 */ 2305 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2306 2307 /* if clear_extent_bit failed for enomem reasons, 2308 * we can't allow the release to continue. 2309 */ 2310 if (ret < 0) 2311 ret = 0; 2312 else 2313 ret = 1; 2314 } 2315 return ret; 2316 } 2317 2318 /* 2319 * a helper for release_folio. As long as there are no locked extents 2320 * in the range corresponding to the page, both state records and extent 2321 * map records are removed 2322 */ 2323 int try_release_extent_mapping(struct page *page, gfp_t mask) 2324 { 2325 struct extent_map *em; 2326 u64 start = page_offset(page); 2327 u64 end = start + PAGE_SIZE - 1; 2328 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2329 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2330 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2331 2332 if (gfpflags_allow_blocking(mask) && 2333 page->mapping->host->i_size > SZ_16M) { 2334 u64 len; 2335 while (start <= end) { 2336 struct btrfs_fs_info *fs_info; 2337 u64 cur_gen; 2338 2339 len = end - start + 1; 2340 write_lock(&map->lock); 2341 em = lookup_extent_mapping(map, start, len); 2342 if (!em) { 2343 write_unlock(&map->lock); 2344 break; 2345 } 2346 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2347 em->start != start) { 2348 write_unlock(&map->lock); 2349 free_extent_map(em); 2350 break; 2351 } 2352 if (test_range_bit(tree, em->start, 2353 extent_map_end(em) - 1, 2354 EXTENT_LOCKED, 0, NULL)) 2355 goto next; 2356 /* 2357 * If it's not in the list of modified extents, used 2358 * by a fast fsync, we can remove it. If it's being 2359 * logged we can safely remove it since fsync took an 2360 * extra reference on the em. 2361 */ 2362 if (list_empty(&em->list) || 2363 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2364 goto remove_em; 2365 /* 2366 * If it's in the list of modified extents, remove it 2367 * only if its generation is older then the current one, 2368 * in which case we don't need it for a fast fsync. 2369 * Otherwise don't remove it, we could be racing with an 2370 * ongoing fast fsync that could miss the new extent. 2371 */ 2372 fs_info = btrfs_inode->root->fs_info; 2373 spin_lock(&fs_info->trans_lock); 2374 cur_gen = fs_info->generation; 2375 spin_unlock(&fs_info->trans_lock); 2376 if (em->generation >= cur_gen) 2377 goto next; 2378 remove_em: 2379 /* 2380 * We only remove extent maps that are not in the list of 2381 * modified extents or that are in the list but with a 2382 * generation lower then the current generation, so there 2383 * is no need to set the full fsync flag on the inode (it 2384 * hurts the fsync performance for workloads with a data 2385 * size that exceeds or is close to the system's memory). 2386 */ 2387 remove_extent_mapping(map, em); 2388 /* once for the rb tree */ 2389 free_extent_map(em); 2390 next: 2391 start = extent_map_end(em); 2392 write_unlock(&map->lock); 2393 2394 /* once for us */ 2395 free_extent_map(em); 2396 2397 cond_resched(); /* Allow large-extent preemption. */ 2398 } 2399 } 2400 return try_release_extent_state(tree, page, mask); 2401 } 2402 2403 struct btrfs_fiemap_entry { 2404 u64 offset; 2405 u64 phys; 2406 u64 len; 2407 u32 flags; 2408 }; 2409 2410 /* 2411 * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file 2412 * range from the inode's io tree, unlock the subvolume tree search path, flush 2413 * the fiemap cache and relock the file range and research the subvolume tree. 2414 * The value here is something negative that can't be confused with a valid 2415 * errno value and different from 1 because that's also a return value from 2416 * fiemap_fill_next_extent() and also it's often used to mean some btree search 2417 * did not find a key, so make it some distinct negative value. 2418 */ 2419 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1)) 2420 2421 /* 2422 * Used to: 2423 * 2424 * - Cache the next entry to be emitted to the fiemap buffer, so that we can 2425 * merge extents that are contiguous and can be grouped as a single one; 2426 * 2427 * - Store extents ready to be written to the fiemap buffer in an intermediary 2428 * buffer. This intermediary buffer is to ensure that in case the fiemap 2429 * buffer is memory mapped to the fiemap target file, we don't deadlock 2430 * during btrfs_page_mkwrite(). This is because during fiemap we are locking 2431 * an extent range in order to prevent races with delalloc flushing and 2432 * ordered extent completion, which is needed in order to reliably detect 2433 * delalloc in holes and prealloc extents. And this can lead to a deadlock 2434 * if the fiemap buffer is memory mapped to the file we are running fiemap 2435 * against (a silly, useless in practice scenario, but possible) because 2436 * btrfs_page_mkwrite() will try to lock the same extent range. 2437 */ 2438 struct fiemap_cache { 2439 /* An array of ready fiemap entries. */ 2440 struct btrfs_fiemap_entry *entries; 2441 /* Number of entries in the entries array. */ 2442 int entries_size; 2443 /* Index of the next entry in the entries array to write to. */ 2444 int entries_pos; 2445 /* 2446 * Once the entries array is full, this indicates what's the offset for 2447 * the next file extent item we must search for in the inode's subvolume 2448 * tree after unlocking the extent range in the inode's io tree and 2449 * releasing the search path. 2450 */ 2451 u64 next_search_offset; 2452 /* 2453 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it 2454 * to count ourselves emitted extents and stop instead of relying on 2455 * fiemap_fill_next_extent() because we buffer ready fiemap entries at 2456 * the @entries array, and we want to stop as soon as we hit the max 2457 * amount of extents to map, not just to save time but also to make the 2458 * logic at extent_fiemap() simpler. 2459 */ 2460 unsigned int extents_mapped; 2461 /* Fields for the cached extent (unsubmitted, not ready, extent). */ 2462 u64 offset; 2463 u64 phys; 2464 u64 len; 2465 u32 flags; 2466 bool cached; 2467 }; 2468 2469 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo, 2470 struct fiemap_cache *cache) 2471 { 2472 for (int i = 0; i < cache->entries_pos; i++) { 2473 struct btrfs_fiemap_entry *entry = &cache->entries[i]; 2474 int ret; 2475 2476 ret = fiemap_fill_next_extent(fieinfo, entry->offset, 2477 entry->phys, entry->len, 2478 entry->flags); 2479 /* 2480 * Ignore 1 (reached max entries) because we keep track of that 2481 * ourselves in emit_fiemap_extent(). 2482 */ 2483 if (ret < 0) 2484 return ret; 2485 } 2486 cache->entries_pos = 0; 2487 2488 return 0; 2489 } 2490 2491 /* 2492 * Helper to submit fiemap extent. 2493 * 2494 * Will try to merge current fiemap extent specified by @offset, @phys, 2495 * @len and @flags with cached one. 2496 * And only when we fails to merge, cached one will be submitted as 2497 * fiemap extent. 2498 * 2499 * Return value is the same as fiemap_fill_next_extent(). 2500 */ 2501 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2502 struct fiemap_cache *cache, 2503 u64 offset, u64 phys, u64 len, u32 flags) 2504 { 2505 struct btrfs_fiemap_entry *entry; 2506 u64 cache_end; 2507 2508 /* Set at the end of extent_fiemap(). */ 2509 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2510 2511 if (!cache->cached) 2512 goto assign; 2513 2514 /* 2515 * When iterating the extents of the inode, at extent_fiemap(), we may 2516 * find an extent that starts at an offset behind the end offset of the 2517 * previous extent we processed. This happens if fiemap is called 2518 * without FIEMAP_FLAG_SYNC and there are ordered extents completing 2519 * after we had to unlock the file range, release the search path, emit 2520 * the fiemap extents stored in the buffer (cache->entries array) and 2521 * the lock the remainder of the range and re-search the btree. 2522 * 2523 * For example we are in leaf X processing its last item, which is the 2524 * file extent item for file range [512K, 1M[, and after 2525 * btrfs_next_leaf() releases the path, there's an ordered extent that 2526 * completes for the file range [768K, 2M[, and that results in trimming 2527 * the file extent item so that it now corresponds to the file range 2528 * [512K, 768K[ and a new file extent item is inserted for the file 2529 * range [768K, 2M[, which may end up as the last item of leaf X or as 2530 * the first item of the next leaf - in either case btrfs_next_leaf() 2531 * will leave us with a path pointing to the new extent item, for the 2532 * file range [768K, 2M[, since that's the first key that follows the 2533 * last one we processed. So in order not to report overlapping extents 2534 * to user space, we trim the length of the previously cached extent and 2535 * emit it. 2536 * 2537 * Upon calling btrfs_next_leaf() we may also find an extent with an 2538 * offset smaller than or equals to cache->offset, and this happens 2539 * when we had a hole or prealloc extent with several delalloc ranges in 2540 * it, but after btrfs_next_leaf() released the path, delalloc was 2541 * flushed and the resulting ordered extents were completed, so we can 2542 * now have found a file extent item for an offset that is smaller than 2543 * or equals to what we have in cache->offset. We deal with this as 2544 * described below. 2545 */ 2546 cache_end = cache->offset + cache->len; 2547 if (cache_end > offset) { 2548 if (offset == cache->offset) { 2549 /* 2550 * We cached a dealloc range (found in the io tree) for 2551 * a hole or prealloc extent and we have now found a 2552 * file extent item for the same offset. What we have 2553 * now is more recent and up to date, so discard what 2554 * we had in the cache and use what we have just found. 2555 */ 2556 goto assign; 2557 } else if (offset > cache->offset) { 2558 /* 2559 * The extent range we previously found ends after the 2560 * offset of the file extent item we found and that 2561 * offset falls somewhere in the middle of that previous 2562 * extent range. So adjust the range we previously found 2563 * to end at the offset of the file extent item we have 2564 * just found, since this extent is more up to date. 2565 * Emit that adjusted range and cache the file extent 2566 * item we have just found. This corresponds to the case 2567 * where a previously found file extent item was split 2568 * due to an ordered extent completing. 2569 */ 2570 cache->len = offset - cache->offset; 2571 goto emit; 2572 } else { 2573 const u64 range_end = offset + len; 2574 2575 /* 2576 * The offset of the file extent item we have just found 2577 * is behind the cached offset. This means we were 2578 * processing a hole or prealloc extent for which we 2579 * have found delalloc ranges (in the io tree), so what 2580 * we have in the cache is the last delalloc range we 2581 * found while the file extent item we found can be 2582 * either for a whole delalloc range we previously 2583 * emmitted or only a part of that range. 2584 * 2585 * We have two cases here: 2586 * 2587 * 1) The file extent item's range ends at or behind the 2588 * cached extent's end. In this case just ignore the 2589 * current file extent item because we don't want to 2590 * overlap with previous ranges that may have been 2591 * emmitted already; 2592 * 2593 * 2) The file extent item starts behind the currently 2594 * cached extent but its end offset goes beyond the 2595 * end offset of the cached extent. We don't want to 2596 * overlap with a previous range that may have been 2597 * emmitted already, so we emit the currently cached 2598 * extent and then partially store the current file 2599 * extent item's range in the cache, for the subrange 2600 * going the cached extent's end to the end of the 2601 * file extent item. 2602 */ 2603 if (range_end <= cache_end) 2604 return 0; 2605 2606 if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC))) 2607 phys += cache_end - offset; 2608 2609 offset = cache_end; 2610 len = range_end - cache_end; 2611 goto emit; 2612 } 2613 } 2614 2615 /* 2616 * Only merges fiemap extents if 2617 * 1) Their logical addresses are continuous 2618 * 2619 * 2) Their physical addresses are continuous 2620 * So truly compressed (physical size smaller than logical size) 2621 * extents won't get merged with each other 2622 * 2623 * 3) Share same flags 2624 */ 2625 if (cache->offset + cache->len == offset && 2626 cache->phys + cache->len == phys && 2627 cache->flags == flags) { 2628 cache->len += len; 2629 return 0; 2630 } 2631 2632 emit: 2633 /* Not mergeable, need to submit cached one */ 2634 2635 if (cache->entries_pos == cache->entries_size) { 2636 /* 2637 * We will need to research for the end offset of the last 2638 * stored extent and not from the current offset, because after 2639 * unlocking the range and releasing the path, if there's a hole 2640 * between that end offset and this current offset, a new extent 2641 * may have been inserted due to a new write, so we don't want 2642 * to miss it. 2643 */ 2644 entry = &cache->entries[cache->entries_size - 1]; 2645 cache->next_search_offset = entry->offset + entry->len; 2646 cache->cached = false; 2647 2648 return BTRFS_FIEMAP_FLUSH_CACHE; 2649 } 2650 2651 entry = &cache->entries[cache->entries_pos]; 2652 entry->offset = cache->offset; 2653 entry->phys = cache->phys; 2654 entry->len = cache->len; 2655 entry->flags = cache->flags; 2656 cache->entries_pos++; 2657 cache->extents_mapped++; 2658 2659 if (cache->extents_mapped == fieinfo->fi_extents_max) { 2660 cache->cached = false; 2661 return 1; 2662 } 2663 assign: 2664 cache->cached = true; 2665 cache->offset = offset; 2666 cache->phys = phys; 2667 cache->len = len; 2668 cache->flags = flags; 2669 2670 return 0; 2671 } 2672 2673 /* 2674 * Emit last fiemap cache 2675 * 2676 * The last fiemap cache may still be cached in the following case: 2677 * 0 4k 8k 2678 * |<- Fiemap range ->| 2679 * |<------------ First extent ----------->| 2680 * 2681 * In this case, the first extent range will be cached but not emitted. 2682 * So we must emit it before ending extent_fiemap(). 2683 */ 2684 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2685 struct fiemap_cache *cache) 2686 { 2687 int ret; 2688 2689 if (!cache->cached) 2690 return 0; 2691 2692 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2693 cache->len, cache->flags); 2694 cache->cached = false; 2695 if (ret > 0) 2696 ret = 0; 2697 return ret; 2698 } 2699 2700 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2701 { 2702 struct extent_buffer *clone; 2703 struct btrfs_key key; 2704 int slot; 2705 int ret; 2706 2707 path->slots[0]++; 2708 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2709 return 0; 2710 2711 ret = btrfs_next_leaf(inode->root, path); 2712 if (ret != 0) 2713 return ret; 2714 2715 /* 2716 * Don't bother with cloning if there are no more file extent items for 2717 * our inode. 2718 */ 2719 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2720 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2721 return 1; 2722 2723 /* See the comment at fiemap_search_slot() about why we clone. */ 2724 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2725 if (!clone) 2726 return -ENOMEM; 2727 2728 slot = path->slots[0]; 2729 btrfs_release_path(path); 2730 path->nodes[0] = clone; 2731 path->slots[0] = slot; 2732 2733 return 0; 2734 } 2735 2736 /* 2737 * Search for the first file extent item that starts at a given file offset or 2738 * the one that starts immediately before that offset. 2739 * Returns: 0 on success, < 0 on error, 1 if not found. 2740 */ 2741 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2742 u64 file_offset) 2743 { 2744 const u64 ino = btrfs_ino(inode); 2745 struct btrfs_root *root = inode->root; 2746 struct extent_buffer *clone; 2747 struct btrfs_key key; 2748 int slot; 2749 int ret; 2750 2751 key.objectid = ino; 2752 key.type = BTRFS_EXTENT_DATA_KEY; 2753 key.offset = file_offset; 2754 2755 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2756 if (ret < 0) 2757 return ret; 2758 2759 if (ret > 0 && path->slots[0] > 0) { 2760 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2761 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2762 path->slots[0]--; 2763 } 2764 2765 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2766 ret = btrfs_next_leaf(root, path); 2767 if (ret != 0) 2768 return ret; 2769 2770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2771 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2772 return 1; 2773 } 2774 2775 /* 2776 * We clone the leaf and use it during fiemap. This is because while 2777 * using the leaf we do expensive things like checking if an extent is 2778 * shared, which can take a long time. In order to prevent blocking 2779 * other tasks for too long, we use a clone of the leaf. We have locked 2780 * the file range in the inode's io tree, so we know none of our file 2781 * extent items can change. This way we avoid blocking other tasks that 2782 * want to insert items for other inodes in the same leaf or b+tree 2783 * rebalance operations (triggered for example when someone is trying 2784 * to push items into this leaf when trying to insert an item in a 2785 * neighbour leaf). 2786 * We also need the private clone because holding a read lock on an 2787 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2788 * when we check if extents are shared, as backref walking may need to 2789 * lock the same leaf we are processing. 2790 */ 2791 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2792 if (!clone) 2793 return -ENOMEM; 2794 2795 slot = path->slots[0]; 2796 btrfs_release_path(path); 2797 path->nodes[0] = clone; 2798 path->slots[0] = slot; 2799 2800 return 0; 2801 } 2802 2803 /* 2804 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2805 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2806 * extent. The end offset (@end) is inclusive. 2807 */ 2808 static int fiemap_process_hole(struct btrfs_inode *inode, 2809 struct fiemap_extent_info *fieinfo, 2810 struct fiemap_cache *cache, 2811 struct extent_state **delalloc_cached_state, 2812 struct btrfs_backref_share_check_ctx *backref_ctx, 2813 u64 disk_bytenr, u64 extent_offset, 2814 u64 extent_gen, 2815 u64 start, u64 end) 2816 { 2817 const u64 i_size = i_size_read(&inode->vfs_inode); 2818 u64 cur_offset = start; 2819 u64 last_delalloc_end = 0; 2820 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2821 bool checked_extent_shared = false; 2822 int ret; 2823 2824 /* 2825 * There can be no delalloc past i_size, so don't waste time looking for 2826 * it beyond i_size. 2827 */ 2828 while (cur_offset < end && cur_offset < i_size) { 2829 u64 delalloc_start; 2830 u64 delalloc_end; 2831 u64 prealloc_start; 2832 u64 prealloc_len = 0; 2833 bool delalloc; 2834 2835 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2836 delalloc_cached_state, 2837 &delalloc_start, 2838 &delalloc_end); 2839 if (!delalloc) 2840 break; 2841 2842 /* 2843 * If this is a prealloc extent we have to report every section 2844 * of it that has no delalloc. 2845 */ 2846 if (disk_bytenr != 0) { 2847 if (last_delalloc_end == 0) { 2848 prealloc_start = start; 2849 prealloc_len = delalloc_start - start; 2850 } else { 2851 prealloc_start = last_delalloc_end + 1; 2852 prealloc_len = delalloc_start - prealloc_start; 2853 } 2854 } 2855 2856 if (prealloc_len > 0) { 2857 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2858 ret = btrfs_is_data_extent_shared(inode, 2859 disk_bytenr, 2860 extent_gen, 2861 backref_ctx); 2862 if (ret < 0) 2863 return ret; 2864 else if (ret > 0) 2865 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2866 2867 checked_extent_shared = true; 2868 } 2869 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2870 disk_bytenr + extent_offset, 2871 prealloc_len, prealloc_flags); 2872 if (ret) 2873 return ret; 2874 extent_offset += prealloc_len; 2875 } 2876 2877 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2878 delalloc_end + 1 - delalloc_start, 2879 FIEMAP_EXTENT_DELALLOC | 2880 FIEMAP_EXTENT_UNKNOWN); 2881 if (ret) 2882 return ret; 2883 2884 last_delalloc_end = delalloc_end; 2885 cur_offset = delalloc_end + 1; 2886 extent_offset += cur_offset - delalloc_start; 2887 cond_resched(); 2888 } 2889 2890 /* 2891 * Either we found no delalloc for the whole prealloc extent or we have 2892 * a prealloc extent that spans i_size or starts at or after i_size. 2893 */ 2894 if (disk_bytenr != 0 && last_delalloc_end < end) { 2895 u64 prealloc_start; 2896 u64 prealloc_len; 2897 2898 if (last_delalloc_end == 0) { 2899 prealloc_start = start; 2900 prealloc_len = end + 1 - start; 2901 } else { 2902 prealloc_start = last_delalloc_end + 1; 2903 prealloc_len = end + 1 - prealloc_start; 2904 } 2905 2906 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2907 ret = btrfs_is_data_extent_shared(inode, 2908 disk_bytenr, 2909 extent_gen, 2910 backref_ctx); 2911 if (ret < 0) 2912 return ret; 2913 else if (ret > 0) 2914 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2915 } 2916 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2917 disk_bytenr + extent_offset, 2918 prealloc_len, prealloc_flags); 2919 if (ret) 2920 return ret; 2921 } 2922 2923 return 0; 2924 } 2925 2926 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2927 struct btrfs_path *path, 2928 u64 *last_extent_end_ret) 2929 { 2930 const u64 ino = btrfs_ino(inode); 2931 struct btrfs_root *root = inode->root; 2932 struct extent_buffer *leaf; 2933 struct btrfs_file_extent_item *ei; 2934 struct btrfs_key key; 2935 u64 disk_bytenr; 2936 int ret; 2937 2938 /* 2939 * Lookup the last file extent. We're not using i_size here because 2940 * there might be preallocation past i_size. 2941 */ 2942 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2943 /* There can't be a file extent item at offset (u64)-1 */ 2944 ASSERT(ret != 0); 2945 if (ret < 0) 2946 return ret; 2947 2948 /* 2949 * For a non-existing key, btrfs_search_slot() always leaves us at a 2950 * slot > 0, except if the btree is empty, which is impossible because 2951 * at least it has the inode item for this inode and all the items for 2952 * the root inode 256. 2953 */ 2954 ASSERT(path->slots[0] > 0); 2955 path->slots[0]--; 2956 leaf = path->nodes[0]; 2957 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2958 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2959 /* No file extent items in the subvolume tree. */ 2960 *last_extent_end_ret = 0; 2961 return 0; 2962 } 2963 2964 /* 2965 * For an inline extent, the disk_bytenr is where inline data starts at, 2966 * so first check if we have an inline extent item before checking if we 2967 * have an implicit hole (disk_bytenr == 0). 2968 */ 2969 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2970 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2971 *last_extent_end_ret = btrfs_file_extent_end(path); 2972 return 0; 2973 } 2974 2975 /* 2976 * Find the last file extent item that is not a hole (when NO_HOLES is 2977 * not enabled). This should take at most 2 iterations in the worst 2978 * case: we have one hole file extent item at slot 0 of a leaf and 2979 * another hole file extent item as the last item in the previous leaf. 2980 * This is because we merge file extent items that represent holes. 2981 */ 2982 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2983 while (disk_bytenr == 0) { 2984 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2985 if (ret < 0) { 2986 return ret; 2987 } else if (ret > 0) { 2988 /* No file extent items that are not holes. */ 2989 *last_extent_end_ret = 0; 2990 return 0; 2991 } 2992 leaf = path->nodes[0]; 2993 ei = btrfs_item_ptr(leaf, path->slots[0], 2994 struct btrfs_file_extent_item); 2995 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2996 } 2997 2998 *last_extent_end_ret = btrfs_file_extent_end(path); 2999 return 0; 3000 } 3001 3002 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3003 u64 start, u64 len) 3004 { 3005 const u64 ino = btrfs_ino(inode); 3006 struct extent_state *cached_state = NULL; 3007 struct extent_state *delalloc_cached_state = NULL; 3008 struct btrfs_path *path; 3009 struct fiemap_cache cache = { 0 }; 3010 struct btrfs_backref_share_check_ctx *backref_ctx; 3011 u64 last_extent_end; 3012 u64 prev_extent_end; 3013 u64 range_start; 3014 u64 range_end; 3015 const u64 sectorsize = inode->root->fs_info->sectorsize; 3016 bool stopped = false; 3017 int ret; 3018 3019 cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry); 3020 cache.entries = kmalloc_array(cache.entries_size, 3021 sizeof(struct btrfs_fiemap_entry), 3022 GFP_KERNEL); 3023 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3024 path = btrfs_alloc_path(); 3025 if (!cache.entries || !backref_ctx || !path) { 3026 ret = -ENOMEM; 3027 goto out; 3028 } 3029 3030 restart: 3031 range_start = round_down(start, sectorsize); 3032 range_end = round_up(start + len, sectorsize); 3033 prev_extent_end = range_start; 3034 3035 lock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3036 3037 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3038 if (ret < 0) 3039 goto out_unlock; 3040 btrfs_release_path(path); 3041 3042 path->reada = READA_FORWARD; 3043 ret = fiemap_search_slot(inode, path, range_start); 3044 if (ret < 0) { 3045 goto out_unlock; 3046 } else if (ret > 0) { 3047 /* 3048 * No file extent item found, but we may have delalloc between 3049 * the current offset and i_size. So check for that. 3050 */ 3051 ret = 0; 3052 goto check_eof_delalloc; 3053 } 3054 3055 while (prev_extent_end < range_end) { 3056 struct extent_buffer *leaf = path->nodes[0]; 3057 struct btrfs_file_extent_item *ei; 3058 struct btrfs_key key; 3059 u64 extent_end; 3060 u64 extent_len; 3061 u64 extent_offset = 0; 3062 u64 extent_gen; 3063 u64 disk_bytenr = 0; 3064 u64 flags = 0; 3065 int extent_type; 3066 u8 compression; 3067 3068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3069 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3070 break; 3071 3072 extent_end = btrfs_file_extent_end(path); 3073 3074 /* 3075 * The first iteration can leave us at an extent item that ends 3076 * before our range's start. Move to the next item. 3077 */ 3078 if (extent_end <= range_start) 3079 goto next_item; 3080 3081 backref_ctx->curr_leaf_bytenr = leaf->start; 3082 3083 /* We have in implicit hole (NO_HOLES feature enabled). */ 3084 if (prev_extent_end < key.offset) { 3085 const u64 hole_end = min(key.offset, range_end) - 1; 3086 3087 ret = fiemap_process_hole(inode, fieinfo, &cache, 3088 &delalloc_cached_state, 3089 backref_ctx, 0, 0, 0, 3090 prev_extent_end, hole_end); 3091 if (ret < 0) { 3092 goto out_unlock; 3093 } else if (ret > 0) { 3094 /* fiemap_fill_next_extent() told us to stop. */ 3095 stopped = true; 3096 break; 3097 } 3098 3099 /* We've reached the end of the fiemap range, stop. */ 3100 if (key.offset >= range_end) { 3101 stopped = true; 3102 break; 3103 } 3104 } 3105 3106 extent_len = extent_end - key.offset; 3107 ei = btrfs_item_ptr(leaf, path->slots[0], 3108 struct btrfs_file_extent_item); 3109 compression = btrfs_file_extent_compression(leaf, ei); 3110 extent_type = btrfs_file_extent_type(leaf, ei); 3111 extent_gen = btrfs_file_extent_generation(leaf, ei); 3112 3113 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3114 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3115 if (compression == BTRFS_COMPRESS_NONE) 3116 extent_offset = btrfs_file_extent_offset(leaf, ei); 3117 } 3118 3119 if (compression != BTRFS_COMPRESS_NONE) 3120 flags |= FIEMAP_EXTENT_ENCODED; 3121 3122 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3123 flags |= FIEMAP_EXTENT_DATA_INLINE; 3124 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3125 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3126 extent_len, flags); 3127 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3128 ret = fiemap_process_hole(inode, fieinfo, &cache, 3129 &delalloc_cached_state, 3130 backref_ctx, 3131 disk_bytenr, extent_offset, 3132 extent_gen, key.offset, 3133 extent_end - 1); 3134 } else if (disk_bytenr == 0) { 3135 /* We have an explicit hole. */ 3136 ret = fiemap_process_hole(inode, fieinfo, &cache, 3137 &delalloc_cached_state, 3138 backref_ctx, 0, 0, 0, 3139 key.offset, extent_end - 1); 3140 } else { 3141 /* We have a regular extent. */ 3142 if (fieinfo->fi_extents_max) { 3143 ret = btrfs_is_data_extent_shared(inode, 3144 disk_bytenr, 3145 extent_gen, 3146 backref_ctx); 3147 if (ret < 0) 3148 goto out_unlock; 3149 else if (ret > 0) 3150 flags |= FIEMAP_EXTENT_SHARED; 3151 } 3152 3153 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3154 disk_bytenr + extent_offset, 3155 extent_len, flags); 3156 } 3157 3158 if (ret < 0) { 3159 goto out_unlock; 3160 } else if (ret > 0) { 3161 /* emit_fiemap_extent() told us to stop. */ 3162 stopped = true; 3163 break; 3164 } 3165 3166 prev_extent_end = extent_end; 3167 next_item: 3168 if (fatal_signal_pending(current)) { 3169 ret = -EINTR; 3170 goto out_unlock; 3171 } 3172 3173 ret = fiemap_next_leaf_item(inode, path); 3174 if (ret < 0) { 3175 goto out_unlock; 3176 } else if (ret > 0) { 3177 /* No more file extent items for this inode. */ 3178 break; 3179 } 3180 cond_resched(); 3181 } 3182 3183 check_eof_delalloc: 3184 if (!stopped && prev_extent_end < range_end) { 3185 ret = fiemap_process_hole(inode, fieinfo, &cache, 3186 &delalloc_cached_state, backref_ctx, 3187 0, 0, 0, prev_extent_end, range_end - 1); 3188 if (ret < 0) 3189 goto out_unlock; 3190 prev_extent_end = range_end; 3191 } 3192 3193 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3194 const u64 i_size = i_size_read(&inode->vfs_inode); 3195 3196 if (prev_extent_end < i_size) { 3197 u64 delalloc_start; 3198 u64 delalloc_end; 3199 bool delalloc; 3200 3201 delalloc = btrfs_find_delalloc_in_range(inode, 3202 prev_extent_end, 3203 i_size - 1, 3204 &delalloc_cached_state, 3205 &delalloc_start, 3206 &delalloc_end); 3207 if (!delalloc) 3208 cache.flags |= FIEMAP_EXTENT_LAST; 3209 } else { 3210 cache.flags |= FIEMAP_EXTENT_LAST; 3211 } 3212 } 3213 3214 out_unlock: 3215 unlock_extent(&inode->io_tree, range_start, range_end, &cached_state); 3216 3217 if (ret == BTRFS_FIEMAP_FLUSH_CACHE) { 3218 btrfs_release_path(path); 3219 ret = flush_fiemap_cache(fieinfo, &cache); 3220 if (ret) 3221 goto out; 3222 len -= cache.next_search_offset - start; 3223 start = cache.next_search_offset; 3224 goto restart; 3225 } else if (ret < 0) { 3226 goto out; 3227 } 3228 3229 /* 3230 * Must free the path before emitting to the fiemap buffer because we 3231 * may have a non-cloned leaf and if the fiemap buffer is memory mapped 3232 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger 3233 * waiting for an ordered extent that in order to complete needs to 3234 * modify that leaf, therefore leading to a deadlock. 3235 */ 3236 btrfs_free_path(path); 3237 path = NULL; 3238 3239 ret = flush_fiemap_cache(fieinfo, &cache); 3240 if (ret) 3241 goto out; 3242 3243 ret = emit_last_fiemap_cache(fieinfo, &cache); 3244 out: 3245 free_extent_state(delalloc_cached_state); 3246 kfree(cache.entries); 3247 btrfs_free_backref_share_ctx(backref_ctx); 3248 btrfs_free_path(path); 3249 return ret; 3250 } 3251 3252 static void __free_extent_buffer(struct extent_buffer *eb) 3253 { 3254 kmem_cache_free(extent_buffer_cache, eb); 3255 } 3256 3257 static int extent_buffer_under_io(const struct extent_buffer *eb) 3258 { 3259 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3260 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3261 } 3262 3263 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3264 { 3265 struct btrfs_subpage *subpage; 3266 3267 lockdep_assert_held(&page->mapping->private_lock); 3268 3269 if (PagePrivate(page)) { 3270 subpage = (struct btrfs_subpage *)page->private; 3271 if (atomic_read(&subpage->eb_refs)) 3272 return true; 3273 /* 3274 * Even there is no eb refs here, we may still have 3275 * end_page_read() call relying on page::private. 3276 */ 3277 if (atomic_read(&subpage->readers)) 3278 return true; 3279 } 3280 return false; 3281 } 3282 3283 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3284 { 3285 struct btrfs_fs_info *fs_info = eb->fs_info; 3286 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3287 3288 /* 3289 * For mapped eb, we're going to change the page private, which should 3290 * be done under the private_lock. 3291 */ 3292 if (mapped) 3293 spin_lock(&page->mapping->private_lock); 3294 3295 if (!PagePrivate(page)) { 3296 if (mapped) 3297 spin_unlock(&page->mapping->private_lock); 3298 return; 3299 } 3300 3301 if (fs_info->nodesize >= PAGE_SIZE) { 3302 /* 3303 * We do this since we'll remove the pages after we've 3304 * removed the eb from the radix tree, so we could race 3305 * and have this page now attached to the new eb. So 3306 * only clear page_private if it's still connected to 3307 * this eb. 3308 */ 3309 if (PagePrivate(page) && 3310 page->private == (unsigned long)eb) { 3311 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3312 BUG_ON(PageDirty(page)); 3313 BUG_ON(PageWriteback(page)); 3314 /* 3315 * We need to make sure we haven't be attached 3316 * to a new eb. 3317 */ 3318 detach_page_private(page); 3319 } 3320 if (mapped) 3321 spin_unlock(&page->mapping->private_lock); 3322 return; 3323 } 3324 3325 /* 3326 * For subpage, we can have dummy eb with page private. In this case, 3327 * we can directly detach the private as such page is only attached to 3328 * one dummy eb, no sharing. 3329 */ 3330 if (!mapped) { 3331 btrfs_detach_subpage(fs_info, page); 3332 return; 3333 } 3334 3335 btrfs_page_dec_eb_refs(fs_info, page); 3336 3337 /* 3338 * We can only detach the page private if there are no other ebs in the 3339 * page range and no unfinished IO. 3340 */ 3341 if (!page_range_has_eb(fs_info, page)) 3342 btrfs_detach_subpage(fs_info, page); 3343 3344 spin_unlock(&page->mapping->private_lock); 3345 } 3346 3347 /* Release all pages attached to the extent buffer */ 3348 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3349 { 3350 int i; 3351 int num_pages; 3352 3353 ASSERT(!extent_buffer_under_io(eb)); 3354 3355 num_pages = num_extent_pages(eb); 3356 for (i = 0; i < num_pages; i++) { 3357 struct page *page = eb->pages[i]; 3358 3359 if (!page) 3360 continue; 3361 3362 detach_extent_buffer_page(eb, page); 3363 3364 /* One for when we allocated the page */ 3365 put_page(page); 3366 } 3367 } 3368 3369 /* 3370 * Helper for releasing the extent buffer. 3371 */ 3372 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3373 { 3374 btrfs_release_extent_buffer_pages(eb); 3375 btrfs_leak_debug_del_eb(eb); 3376 __free_extent_buffer(eb); 3377 } 3378 3379 static struct extent_buffer * 3380 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3381 unsigned long len) 3382 { 3383 struct extent_buffer *eb = NULL; 3384 3385 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3386 eb->start = start; 3387 eb->len = len; 3388 eb->fs_info = fs_info; 3389 init_rwsem(&eb->lock); 3390 3391 btrfs_leak_debug_add_eb(eb); 3392 3393 spin_lock_init(&eb->refs_lock); 3394 atomic_set(&eb->refs, 1); 3395 3396 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3397 3398 return eb; 3399 } 3400 3401 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3402 { 3403 int i; 3404 struct extent_buffer *new; 3405 int num_pages = num_extent_pages(src); 3406 int ret; 3407 3408 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3409 if (new == NULL) 3410 return NULL; 3411 3412 /* 3413 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3414 * btrfs_release_extent_buffer() have different behavior for 3415 * UNMAPPED subpage extent buffer. 3416 */ 3417 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3418 3419 ret = btrfs_alloc_page_array(num_pages, new->pages); 3420 if (ret) { 3421 btrfs_release_extent_buffer(new); 3422 return NULL; 3423 } 3424 3425 for (i = 0; i < num_pages; i++) { 3426 int ret; 3427 struct page *p = new->pages[i]; 3428 3429 ret = attach_extent_buffer_page(new, p, NULL); 3430 if (ret < 0) { 3431 btrfs_release_extent_buffer(new); 3432 return NULL; 3433 } 3434 WARN_ON(PageDirty(p)); 3435 } 3436 copy_extent_buffer_full(new, src); 3437 set_extent_buffer_uptodate(new); 3438 3439 return new; 3440 } 3441 3442 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3443 u64 start, unsigned long len) 3444 { 3445 struct extent_buffer *eb; 3446 int num_pages; 3447 int i; 3448 int ret; 3449 3450 eb = __alloc_extent_buffer(fs_info, start, len); 3451 if (!eb) 3452 return NULL; 3453 3454 num_pages = num_extent_pages(eb); 3455 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3456 if (ret) 3457 goto err; 3458 3459 for (i = 0; i < num_pages; i++) { 3460 struct page *p = eb->pages[i]; 3461 3462 ret = attach_extent_buffer_page(eb, p, NULL); 3463 if (ret < 0) 3464 goto err; 3465 } 3466 3467 set_extent_buffer_uptodate(eb); 3468 btrfs_set_header_nritems(eb, 0); 3469 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3470 3471 return eb; 3472 err: 3473 for (i = 0; i < num_pages; i++) { 3474 if (eb->pages[i]) { 3475 detach_extent_buffer_page(eb, eb->pages[i]); 3476 __free_page(eb->pages[i]); 3477 } 3478 } 3479 __free_extent_buffer(eb); 3480 return NULL; 3481 } 3482 3483 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3484 u64 start) 3485 { 3486 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3487 } 3488 3489 static void check_buffer_tree_ref(struct extent_buffer *eb) 3490 { 3491 int refs; 3492 /* 3493 * The TREE_REF bit is first set when the extent_buffer is added 3494 * to the radix tree. It is also reset, if unset, when a new reference 3495 * is created by find_extent_buffer. 3496 * 3497 * It is only cleared in two cases: freeing the last non-tree 3498 * reference to the extent_buffer when its STALE bit is set or 3499 * calling release_folio when the tree reference is the only reference. 3500 * 3501 * In both cases, care is taken to ensure that the extent_buffer's 3502 * pages are not under io. However, release_folio can be concurrently 3503 * called with creating new references, which is prone to race 3504 * conditions between the calls to check_buffer_tree_ref in those 3505 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3506 * 3507 * The actual lifetime of the extent_buffer in the radix tree is 3508 * adequately protected by the refcount, but the TREE_REF bit and 3509 * its corresponding reference are not. To protect against this 3510 * class of races, we call check_buffer_tree_ref from the codepaths 3511 * which trigger io. Note that once io is initiated, TREE_REF can no 3512 * longer be cleared, so that is the moment at which any such race is 3513 * best fixed. 3514 */ 3515 refs = atomic_read(&eb->refs); 3516 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3517 return; 3518 3519 spin_lock(&eb->refs_lock); 3520 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3521 atomic_inc(&eb->refs); 3522 spin_unlock(&eb->refs_lock); 3523 } 3524 3525 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3526 struct page *accessed) 3527 { 3528 int num_pages, i; 3529 3530 check_buffer_tree_ref(eb); 3531 3532 num_pages = num_extent_pages(eb); 3533 for (i = 0; i < num_pages; i++) { 3534 struct page *p = eb->pages[i]; 3535 3536 if (p != accessed) 3537 mark_page_accessed(p); 3538 } 3539 } 3540 3541 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3542 u64 start) 3543 { 3544 struct extent_buffer *eb; 3545 3546 eb = find_extent_buffer_nolock(fs_info, start); 3547 if (!eb) 3548 return NULL; 3549 /* 3550 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3551 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3552 * another task running free_extent_buffer() might have seen that flag 3553 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3554 * writeback flags not set) and it's still in the tree (flag 3555 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3556 * decrementing the extent buffer's reference count twice. So here we 3557 * could race and increment the eb's reference count, clear its stale 3558 * flag, mark it as dirty and drop our reference before the other task 3559 * finishes executing free_extent_buffer, which would later result in 3560 * an attempt to free an extent buffer that is dirty. 3561 */ 3562 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3563 spin_lock(&eb->refs_lock); 3564 spin_unlock(&eb->refs_lock); 3565 } 3566 mark_extent_buffer_accessed(eb, NULL); 3567 return eb; 3568 } 3569 3570 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3571 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3572 u64 start) 3573 { 3574 struct extent_buffer *eb, *exists = NULL; 3575 int ret; 3576 3577 eb = find_extent_buffer(fs_info, start); 3578 if (eb) 3579 return eb; 3580 eb = alloc_dummy_extent_buffer(fs_info, start); 3581 if (!eb) 3582 return ERR_PTR(-ENOMEM); 3583 eb->fs_info = fs_info; 3584 again: 3585 ret = radix_tree_preload(GFP_NOFS); 3586 if (ret) { 3587 exists = ERR_PTR(ret); 3588 goto free_eb; 3589 } 3590 spin_lock(&fs_info->buffer_lock); 3591 ret = radix_tree_insert(&fs_info->buffer_radix, 3592 start >> fs_info->sectorsize_bits, eb); 3593 spin_unlock(&fs_info->buffer_lock); 3594 radix_tree_preload_end(); 3595 if (ret == -EEXIST) { 3596 exists = find_extent_buffer(fs_info, start); 3597 if (exists) 3598 goto free_eb; 3599 else 3600 goto again; 3601 } 3602 check_buffer_tree_ref(eb); 3603 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3604 3605 return eb; 3606 free_eb: 3607 btrfs_release_extent_buffer(eb); 3608 return exists; 3609 } 3610 #endif 3611 3612 static struct extent_buffer *grab_extent_buffer( 3613 struct btrfs_fs_info *fs_info, struct page *page) 3614 { 3615 struct extent_buffer *exists; 3616 3617 /* 3618 * For subpage case, we completely rely on radix tree to ensure we 3619 * don't try to insert two ebs for the same bytenr. So here we always 3620 * return NULL and just continue. 3621 */ 3622 if (fs_info->nodesize < PAGE_SIZE) 3623 return NULL; 3624 3625 /* Page not yet attached to an extent buffer */ 3626 if (!PagePrivate(page)) 3627 return NULL; 3628 3629 /* 3630 * We could have already allocated an eb for this page and attached one 3631 * so lets see if we can get a ref on the existing eb, and if we can we 3632 * know it's good and we can just return that one, else we know we can 3633 * just overwrite page->private. 3634 */ 3635 exists = (struct extent_buffer *)page->private; 3636 if (atomic_inc_not_zero(&exists->refs)) 3637 return exists; 3638 3639 WARN_ON(PageDirty(page)); 3640 detach_page_private(page); 3641 return NULL; 3642 } 3643 3644 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3645 { 3646 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3647 btrfs_err(fs_info, "bad tree block start %llu", start); 3648 return -EINVAL; 3649 } 3650 3651 if (fs_info->nodesize < PAGE_SIZE && 3652 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3653 btrfs_err(fs_info, 3654 "tree block crosses page boundary, start %llu nodesize %u", 3655 start, fs_info->nodesize); 3656 return -EINVAL; 3657 } 3658 if (fs_info->nodesize >= PAGE_SIZE && 3659 !PAGE_ALIGNED(start)) { 3660 btrfs_err(fs_info, 3661 "tree block is not page aligned, start %llu nodesize %u", 3662 start, fs_info->nodesize); 3663 return -EINVAL; 3664 } 3665 return 0; 3666 } 3667 3668 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3669 u64 start, u64 owner_root, int level) 3670 { 3671 unsigned long len = fs_info->nodesize; 3672 int num_pages; 3673 int i; 3674 unsigned long index = start >> PAGE_SHIFT; 3675 struct extent_buffer *eb; 3676 struct extent_buffer *exists = NULL; 3677 struct page *p; 3678 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3679 struct btrfs_subpage *prealloc = NULL; 3680 u64 lockdep_owner = owner_root; 3681 int uptodate = 1; 3682 int ret; 3683 3684 if (check_eb_alignment(fs_info, start)) 3685 return ERR_PTR(-EINVAL); 3686 3687 #if BITS_PER_LONG == 32 3688 if (start >= MAX_LFS_FILESIZE) { 3689 btrfs_err_rl(fs_info, 3690 "extent buffer %llu is beyond 32bit page cache limit", start); 3691 btrfs_err_32bit_limit(fs_info); 3692 return ERR_PTR(-EOVERFLOW); 3693 } 3694 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3695 btrfs_warn_32bit_limit(fs_info); 3696 #endif 3697 3698 eb = find_extent_buffer(fs_info, start); 3699 if (eb) 3700 return eb; 3701 3702 eb = __alloc_extent_buffer(fs_info, start, len); 3703 if (!eb) 3704 return ERR_PTR(-ENOMEM); 3705 3706 /* 3707 * The reloc trees are just snapshots, so we need them to appear to be 3708 * just like any other fs tree WRT lockdep. 3709 */ 3710 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3711 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3712 3713 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3714 3715 num_pages = num_extent_pages(eb); 3716 3717 /* 3718 * Preallocate page->private for subpage case, so that we won't 3719 * allocate memory with private_lock nor page lock hold. 3720 * 3721 * The memory will be freed by attach_extent_buffer_page() or freed 3722 * manually if we exit earlier. 3723 */ 3724 if (fs_info->nodesize < PAGE_SIZE) { 3725 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3726 if (IS_ERR(prealloc)) { 3727 exists = ERR_CAST(prealloc); 3728 goto free_eb; 3729 } 3730 } 3731 3732 for (i = 0; i < num_pages; i++, index++) { 3733 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3734 if (!p) { 3735 exists = ERR_PTR(-ENOMEM); 3736 btrfs_free_subpage(prealloc); 3737 goto free_eb; 3738 } 3739 3740 spin_lock(&mapping->private_lock); 3741 exists = grab_extent_buffer(fs_info, p); 3742 if (exists) { 3743 spin_unlock(&mapping->private_lock); 3744 unlock_page(p); 3745 put_page(p); 3746 mark_extent_buffer_accessed(exists, p); 3747 btrfs_free_subpage(prealloc); 3748 goto free_eb; 3749 } 3750 /* Should not fail, as we have preallocated the memory */ 3751 ret = attach_extent_buffer_page(eb, p, prealloc); 3752 ASSERT(!ret); 3753 /* 3754 * To inform we have extra eb under allocation, so that 3755 * detach_extent_buffer_page() won't release the page private 3756 * when the eb hasn't yet been inserted into radix tree. 3757 * 3758 * The ref will be decreased when the eb released the page, in 3759 * detach_extent_buffer_page(). 3760 * Thus needs no special handling in error path. 3761 */ 3762 btrfs_page_inc_eb_refs(fs_info, p); 3763 spin_unlock(&mapping->private_lock); 3764 3765 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3766 eb->pages[i] = p; 3767 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3768 uptodate = 0; 3769 3770 /* 3771 * We can't unlock the pages just yet since the extent buffer 3772 * hasn't been properly inserted in the radix tree, this 3773 * opens a race with btree_release_folio which can free a page 3774 * while we are still filling in all pages for the buffer and 3775 * we could crash. 3776 */ 3777 } 3778 if (uptodate) 3779 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3780 again: 3781 ret = radix_tree_preload(GFP_NOFS); 3782 if (ret) { 3783 exists = ERR_PTR(ret); 3784 goto free_eb; 3785 } 3786 3787 spin_lock(&fs_info->buffer_lock); 3788 ret = radix_tree_insert(&fs_info->buffer_radix, 3789 start >> fs_info->sectorsize_bits, eb); 3790 spin_unlock(&fs_info->buffer_lock); 3791 radix_tree_preload_end(); 3792 if (ret == -EEXIST) { 3793 exists = find_extent_buffer(fs_info, start); 3794 if (exists) 3795 goto free_eb; 3796 else 3797 goto again; 3798 } 3799 /* add one reference for the tree */ 3800 check_buffer_tree_ref(eb); 3801 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3802 3803 /* 3804 * Now it's safe to unlock the pages because any calls to 3805 * btree_release_folio will correctly detect that a page belongs to a 3806 * live buffer and won't free them prematurely. 3807 */ 3808 for (i = 0; i < num_pages; i++) 3809 unlock_page(eb->pages[i]); 3810 return eb; 3811 3812 free_eb: 3813 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3814 for (i = 0; i < num_pages; i++) { 3815 if (eb->pages[i]) 3816 unlock_page(eb->pages[i]); 3817 } 3818 3819 btrfs_release_extent_buffer(eb); 3820 return exists; 3821 } 3822 3823 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3824 { 3825 struct extent_buffer *eb = 3826 container_of(head, struct extent_buffer, rcu_head); 3827 3828 __free_extent_buffer(eb); 3829 } 3830 3831 static int release_extent_buffer(struct extent_buffer *eb) 3832 __releases(&eb->refs_lock) 3833 { 3834 lockdep_assert_held(&eb->refs_lock); 3835 3836 WARN_ON(atomic_read(&eb->refs) == 0); 3837 if (atomic_dec_and_test(&eb->refs)) { 3838 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3839 struct btrfs_fs_info *fs_info = eb->fs_info; 3840 3841 spin_unlock(&eb->refs_lock); 3842 3843 spin_lock(&fs_info->buffer_lock); 3844 radix_tree_delete(&fs_info->buffer_radix, 3845 eb->start >> fs_info->sectorsize_bits); 3846 spin_unlock(&fs_info->buffer_lock); 3847 } else { 3848 spin_unlock(&eb->refs_lock); 3849 } 3850 3851 btrfs_leak_debug_del_eb(eb); 3852 /* Should be safe to release our pages at this point */ 3853 btrfs_release_extent_buffer_pages(eb); 3854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3855 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3856 __free_extent_buffer(eb); 3857 return 1; 3858 } 3859 #endif 3860 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3861 return 1; 3862 } 3863 spin_unlock(&eb->refs_lock); 3864 3865 return 0; 3866 } 3867 3868 void free_extent_buffer(struct extent_buffer *eb) 3869 { 3870 int refs; 3871 if (!eb) 3872 return; 3873 3874 refs = atomic_read(&eb->refs); 3875 while (1) { 3876 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3877 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3878 refs == 1)) 3879 break; 3880 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3881 return; 3882 } 3883 3884 spin_lock(&eb->refs_lock); 3885 if (atomic_read(&eb->refs) == 2 && 3886 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3887 !extent_buffer_under_io(eb) && 3888 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3889 atomic_dec(&eb->refs); 3890 3891 /* 3892 * I know this is terrible, but it's temporary until we stop tracking 3893 * the uptodate bits and such for the extent buffers. 3894 */ 3895 release_extent_buffer(eb); 3896 } 3897 3898 void free_extent_buffer_stale(struct extent_buffer *eb) 3899 { 3900 if (!eb) 3901 return; 3902 3903 spin_lock(&eb->refs_lock); 3904 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3905 3906 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3907 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3908 atomic_dec(&eb->refs); 3909 release_extent_buffer(eb); 3910 } 3911 3912 static void btree_clear_page_dirty(struct page *page) 3913 { 3914 ASSERT(PageDirty(page)); 3915 ASSERT(PageLocked(page)); 3916 clear_page_dirty_for_io(page); 3917 xa_lock_irq(&page->mapping->i_pages); 3918 if (!PageDirty(page)) 3919 __xa_clear_mark(&page->mapping->i_pages, 3920 page_index(page), PAGECACHE_TAG_DIRTY); 3921 xa_unlock_irq(&page->mapping->i_pages); 3922 } 3923 3924 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3925 { 3926 struct btrfs_fs_info *fs_info = eb->fs_info; 3927 struct page *page = eb->pages[0]; 3928 bool last; 3929 3930 /* btree_clear_page_dirty() needs page locked */ 3931 lock_page(page); 3932 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3933 eb->len); 3934 if (last) 3935 btree_clear_page_dirty(page); 3936 unlock_page(page); 3937 WARN_ON(atomic_read(&eb->refs) == 0); 3938 } 3939 3940 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3941 struct extent_buffer *eb) 3942 { 3943 struct btrfs_fs_info *fs_info = eb->fs_info; 3944 int i; 3945 int num_pages; 3946 struct page *page; 3947 3948 btrfs_assert_tree_write_locked(eb); 3949 3950 if (trans && btrfs_header_generation(eb) != trans->transid) 3951 return; 3952 3953 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3954 return; 3955 3956 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3957 fs_info->dirty_metadata_batch); 3958 3959 if (eb->fs_info->nodesize < PAGE_SIZE) 3960 return clear_subpage_extent_buffer_dirty(eb); 3961 3962 num_pages = num_extent_pages(eb); 3963 3964 for (i = 0; i < num_pages; i++) { 3965 page = eb->pages[i]; 3966 if (!PageDirty(page)) 3967 continue; 3968 lock_page(page); 3969 btree_clear_page_dirty(page); 3970 unlock_page(page); 3971 } 3972 WARN_ON(atomic_read(&eb->refs) == 0); 3973 } 3974 3975 void set_extent_buffer_dirty(struct extent_buffer *eb) 3976 { 3977 int i; 3978 int num_pages; 3979 bool was_dirty; 3980 3981 check_buffer_tree_ref(eb); 3982 3983 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3984 3985 num_pages = num_extent_pages(eb); 3986 WARN_ON(atomic_read(&eb->refs) == 0); 3987 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3988 3989 if (!was_dirty) { 3990 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3991 3992 /* 3993 * For subpage case, we can have other extent buffers in the 3994 * same page, and in clear_subpage_extent_buffer_dirty() we 3995 * have to clear page dirty without subpage lock held. 3996 * This can cause race where our page gets dirty cleared after 3997 * we just set it. 3998 * 3999 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4000 * its page for other reasons, we can use page lock to prevent 4001 * the above race. 4002 */ 4003 if (subpage) 4004 lock_page(eb->pages[0]); 4005 for (i = 0; i < num_pages; i++) 4006 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4007 eb->start, eb->len); 4008 if (subpage) 4009 unlock_page(eb->pages[0]); 4010 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 4011 eb->len, 4012 eb->fs_info->dirty_metadata_batch); 4013 } 4014 #ifdef CONFIG_BTRFS_DEBUG 4015 for (i = 0; i < num_pages; i++) 4016 ASSERT(PageDirty(eb->pages[i])); 4017 #endif 4018 } 4019 4020 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4021 { 4022 struct btrfs_fs_info *fs_info = eb->fs_info; 4023 struct page *page; 4024 int num_pages; 4025 int i; 4026 4027 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4028 num_pages = num_extent_pages(eb); 4029 for (i = 0; i < num_pages; i++) { 4030 page = eb->pages[i]; 4031 if (!page) 4032 continue; 4033 4034 /* 4035 * This is special handling for metadata subpage, as regular 4036 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4037 */ 4038 if (fs_info->nodesize >= PAGE_SIZE) 4039 ClearPageUptodate(page); 4040 else 4041 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4042 eb->len); 4043 } 4044 } 4045 4046 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4047 { 4048 struct btrfs_fs_info *fs_info = eb->fs_info; 4049 struct page *page; 4050 int num_pages; 4051 int i; 4052 4053 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4054 num_pages = num_extent_pages(eb); 4055 for (i = 0; i < num_pages; i++) { 4056 page = eb->pages[i]; 4057 4058 /* 4059 * This is special handling for metadata subpage, as regular 4060 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4061 */ 4062 if (fs_info->nodesize >= PAGE_SIZE) 4063 SetPageUptodate(page); 4064 else 4065 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4066 eb->len); 4067 } 4068 } 4069 4070 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 4071 { 4072 struct extent_buffer *eb = bbio->private; 4073 struct btrfs_fs_info *fs_info = eb->fs_info; 4074 bool uptodate = !bbio->bio.bi_status; 4075 struct bvec_iter_all iter_all; 4076 struct bio_vec *bvec; 4077 u32 bio_offset = 0; 4078 4079 eb->read_mirror = bbio->mirror_num; 4080 4081 if (uptodate && 4082 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 4083 uptodate = false; 4084 4085 if (uptodate) { 4086 set_extent_buffer_uptodate(eb); 4087 } else { 4088 clear_extent_buffer_uptodate(eb); 4089 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4090 } 4091 4092 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 4093 u64 start = eb->start + bio_offset; 4094 struct page *page = bvec->bv_page; 4095 u32 len = bvec->bv_len; 4096 4097 if (uptodate) 4098 btrfs_page_set_uptodate(fs_info, page, start, len); 4099 else 4100 btrfs_page_clear_uptodate(fs_info, page, start, len); 4101 4102 bio_offset += len; 4103 } 4104 4105 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4106 smp_mb__after_atomic(); 4107 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4108 free_extent_buffer(eb); 4109 4110 bio_put(&bbio->bio); 4111 } 4112 4113 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4114 struct btrfs_tree_parent_check *check) 4115 { 4116 int num_pages = num_extent_pages(eb), i; 4117 struct btrfs_bio *bbio; 4118 4119 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4120 return 0; 4121 4122 /* 4123 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4124 * operation, which could potentially still be in flight. In this case 4125 * we simply want to return an error. 4126 */ 4127 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4128 return -EIO; 4129 4130 /* Someone else is already reading the buffer, just wait for it. */ 4131 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 4132 goto done; 4133 4134 /* 4135 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above 4136 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have 4137 * started and finished reading the same eb. In this case, UPTODATE 4138 * will now be set, and we shouldn't read it in again. 4139 */ 4140 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) { 4141 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 4142 smp_mb__after_atomic(); 4143 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 4144 return 0; 4145 } 4146 4147 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4148 eb->read_mirror = 0; 4149 check_buffer_tree_ref(eb); 4150 atomic_inc(&eb->refs); 4151 4152 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 4153 REQ_OP_READ | REQ_META, eb->fs_info, 4154 extent_buffer_read_end_io, eb); 4155 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 4156 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 4157 bbio->file_offset = eb->start; 4158 memcpy(&bbio->parent_check, check, sizeof(*check)); 4159 if (eb->fs_info->nodesize < PAGE_SIZE) { 4160 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 4161 eb->start - page_offset(eb->pages[0])); 4162 } else { 4163 for (i = 0; i < num_pages; i++) 4164 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 4165 } 4166 btrfs_submit_bio(bbio, mirror_num); 4167 4168 done: 4169 if (wait == WAIT_COMPLETE) { 4170 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 4171 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4172 return -EIO; 4173 } 4174 4175 return 0; 4176 } 4177 4178 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4179 unsigned long len) 4180 { 4181 btrfs_warn(eb->fs_info, 4182 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4183 eb->start, eb->len, start, len); 4184 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4185 4186 return true; 4187 } 4188 4189 /* 4190 * Check if the [start, start + len) range is valid before reading/writing 4191 * the eb. 4192 * NOTE: @start and @len are offset inside the eb, not logical address. 4193 * 4194 * Caller should not touch the dst/src memory if this function returns error. 4195 */ 4196 static inline int check_eb_range(const struct extent_buffer *eb, 4197 unsigned long start, unsigned long len) 4198 { 4199 unsigned long offset; 4200 4201 /* start, start + len should not go beyond eb->len nor overflow */ 4202 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4203 return report_eb_range(eb, start, len); 4204 4205 return false; 4206 } 4207 4208 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4209 unsigned long start, unsigned long len) 4210 { 4211 size_t cur; 4212 size_t offset; 4213 struct page *page; 4214 char *kaddr; 4215 char *dst = (char *)dstv; 4216 unsigned long i = get_eb_page_index(start); 4217 4218 if (check_eb_range(eb, start, len)) { 4219 /* 4220 * Invalid range hit, reset the memory, so callers won't get 4221 * some random garbage for their uninitialzed memory. 4222 */ 4223 memset(dstv, 0, len); 4224 return; 4225 } 4226 4227 offset = get_eb_offset_in_page(eb, start); 4228 4229 while (len > 0) { 4230 page = eb->pages[i]; 4231 4232 cur = min(len, (PAGE_SIZE - offset)); 4233 kaddr = page_address(page); 4234 memcpy(dst, kaddr + offset, cur); 4235 4236 dst += cur; 4237 len -= cur; 4238 offset = 0; 4239 i++; 4240 } 4241 } 4242 4243 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4244 void __user *dstv, 4245 unsigned long start, unsigned long len) 4246 { 4247 size_t cur; 4248 size_t offset; 4249 struct page *page; 4250 char *kaddr; 4251 char __user *dst = (char __user *)dstv; 4252 unsigned long i = get_eb_page_index(start); 4253 int ret = 0; 4254 4255 WARN_ON(start > eb->len); 4256 WARN_ON(start + len > eb->start + eb->len); 4257 4258 offset = get_eb_offset_in_page(eb, start); 4259 4260 while (len > 0) { 4261 page = eb->pages[i]; 4262 4263 cur = min(len, (PAGE_SIZE - offset)); 4264 kaddr = page_address(page); 4265 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4266 ret = -EFAULT; 4267 break; 4268 } 4269 4270 dst += cur; 4271 len -= cur; 4272 offset = 0; 4273 i++; 4274 } 4275 4276 return ret; 4277 } 4278 4279 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4280 unsigned long start, unsigned long len) 4281 { 4282 size_t cur; 4283 size_t offset; 4284 struct page *page; 4285 char *kaddr; 4286 char *ptr = (char *)ptrv; 4287 unsigned long i = get_eb_page_index(start); 4288 int ret = 0; 4289 4290 if (check_eb_range(eb, start, len)) 4291 return -EINVAL; 4292 4293 offset = get_eb_offset_in_page(eb, start); 4294 4295 while (len > 0) { 4296 page = eb->pages[i]; 4297 4298 cur = min(len, (PAGE_SIZE - offset)); 4299 4300 kaddr = page_address(page); 4301 ret = memcmp(ptr, kaddr + offset, cur); 4302 if (ret) 4303 break; 4304 4305 ptr += cur; 4306 len -= cur; 4307 offset = 0; 4308 i++; 4309 } 4310 return ret; 4311 } 4312 4313 /* 4314 * Check that the extent buffer is uptodate. 4315 * 4316 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4317 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4318 */ 4319 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4320 struct page *page) 4321 { 4322 struct btrfs_fs_info *fs_info = eb->fs_info; 4323 4324 /* 4325 * If we are using the commit root we could potentially clear a page 4326 * Uptodate while we're using the extent buffer that we've previously 4327 * looked up. We don't want to complain in this case, as the page was 4328 * valid before, we just didn't write it out. Instead we want to catch 4329 * the case where we didn't actually read the block properly, which 4330 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4331 */ 4332 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4333 return; 4334 4335 if (fs_info->nodesize < PAGE_SIZE) { 4336 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4337 eb->start, eb->len))) 4338 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4339 } else { 4340 WARN_ON(!PageUptodate(page)); 4341 } 4342 } 4343 4344 static void __write_extent_buffer(const struct extent_buffer *eb, 4345 const void *srcv, unsigned long start, 4346 unsigned long len, bool use_memmove) 4347 { 4348 size_t cur; 4349 size_t offset; 4350 struct page *page; 4351 char *kaddr; 4352 char *src = (char *)srcv; 4353 unsigned long i = get_eb_page_index(start); 4354 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4355 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4356 4357 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4358 4359 if (check_eb_range(eb, start, len)) 4360 return; 4361 4362 offset = get_eb_offset_in_page(eb, start); 4363 4364 while (len > 0) { 4365 page = eb->pages[i]; 4366 if (check_uptodate) 4367 assert_eb_page_uptodate(eb, page); 4368 4369 cur = min(len, PAGE_SIZE - offset); 4370 kaddr = page_address(page); 4371 if (use_memmove) 4372 memmove(kaddr + offset, src, cur); 4373 else 4374 memcpy(kaddr + offset, src, cur); 4375 4376 src += cur; 4377 len -= cur; 4378 offset = 0; 4379 i++; 4380 } 4381 } 4382 4383 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4384 unsigned long start, unsigned long len) 4385 { 4386 return __write_extent_buffer(eb, srcv, start, len, false); 4387 } 4388 4389 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4390 unsigned long start, unsigned long len) 4391 { 4392 unsigned long cur = start; 4393 4394 while (cur < start + len) { 4395 unsigned long index = get_eb_page_index(cur); 4396 unsigned int offset = get_eb_offset_in_page(eb, cur); 4397 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4398 struct page *page = eb->pages[index]; 4399 4400 assert_eb_page_uptodate(eb, page); 4401 memset(page_address(page) + offset, c, cur_len); 4402 4403 cur += cur_len; 4404 } 4405 } 4406 4407 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4408 unsigned long len) 4409 { 4410 if (check_eb_range(eb, start, len)) 4411 return; 4412 return memset_extent_buffer(eb, 0, start, len); 4413 } 4414 4415 void copy_extent_buffer_full(const struct extent_buffer *dst, 4416 const struct extent_buffer *src) 4417 { 4418 unsigned long cur = 0; 4419 4420 ASSERT(dst->len == src->len); 4421 4422 while (cur < src->len) { 4423 unsigned long index = get_eb_page_index(cur); 4424 unsigned long offset = get_eb_offset_in_page(src, cur); 4425 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4426 void *addr = page_address(src->pages[index]) + offset; 4427 4428 write_extent_buffer(dst, addr, cur, cur_len); 4429 4430 cur += cur_len; 4431 } 4432 } 4433 4434 void copy_extent_buffer(const struct extent_buffer *dst, 4435 const struct extent_buffer *src, 4436 unsigned long dst_offset, unsigned long src_offset, 4437 unsigned long len) 4438 { 4439 u64 dst_len = dst->len; 4440 size_t cur; 4441 size_t offset; 4442 struct page *page; 4443 char *kaddr; 4444 unsigned long i = get_eb_page_index(dst_offset); 4445 4446 if (check_eb_range(dst, dst_offset, len) || 4447 check_eb_range(src, src_offset, len)) 4448 return; 4449 4450 WARN_ON(src->len != dst_len); 4451 4452 offset = get_eb_offset_in_page(dst, dst_offset); 4453 4454 while (len > 0) { 4455 page = dst->pages[i]; 4456 assert_eb_page_uptodate(dst, page); 4457 4458 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4459 4460 kaddr = page_address(page); 4461 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4462 4463 src_offset += cur; 4464 len -= cur; 4465 offset = 0; 4466 i++; 4467 } 4468 } 4469 4470 /* 4471 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4472 * given bit number 4473 * @eb: the extent buffer 4474 * @start: offset of the bitmap item in the extent buffer 4475 * @nr: bit number 4476 * @page_index: return index of the page in the extent buffer that contains the 4477 * given bit number 4478 * @page_offset: return offset into the page given by page_index 4479 * 4480 * This helper hides the ugliness of finding the byte in an extent buffer which 4481 * contains a given bit. 4482 */ 4483 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4484 unsigned long start, unsigned long nr, 4485 unsigned long *page_index, 4486 size_t *page_offset) 4487 { 4488 size_t byte_offset = BIT_BYTE(nr); 4489 size_t offset; 4490 4491 /* 4492 * The byte we want is the offset of the extent buffer + the offset of 4493 * the bitmap item in the extent buffer + the offset of the byte in the 4494 * bitmap item. 4495 */ 4496 offset = start + offset_in_page(eb->start) + byte_offset; 4497 4498 *page_index = offset >> PAGE_SHIFT; 4499 *page_offset = offset_in_page(offset); 4500 } 4501 4502 /* 4503 * Determine whether a bit in a bitmap item is set. 4504 * 4505 * @eb: the extent buffer 4506 * @start: offset of the bitmap item in the extent buffer 4507 * @nr: bit number to test 4508 */ 4509 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4510 unsigned long nr) 4511 { 4512 u8 *kaddr; 4513 struct page *page; 4514 unsigned long i; 4515 size_t offset; 4516 4517 eb_bitmap_offset(eb, start, nr, &i, &offset); 4518 page = eb->pages[i]; 4519 assert_eb_page_uptodate(eb, page); 4520 kaddr = page_address(page); 4521 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4522 } 4523 4524 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4525 { 4526 unsigned long index = get_eb_page_index(bytenr); 4527 4528 if (check_eb_range(eb, bytenr, 1)) 4529 return NULL; 4530 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4531 } 4532 4533 /* 4534 * Set an area of a bitmap to 1. 4535 * 4536 * @eb: the extent buffer 4537 * @start: offset of the bitmap item in the extent buffer 4538 * @pos: bit number of the first bit 4539 * @len: number of bits to set 4540 */ 4541 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4542 unsigned long pos, unsigned long len) 4543 { 4544 unsigned int first_byte = start + BIT_BYTE(pos); 4545 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4546 const bool same_byte = (first_byte == last_byte); 4547 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4548 u8 *kaddr; 4549 4550 if (same_byte) 4551 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4552 4553 /* Handle the first byte. */ 4554 kaddr = extent_buffer_get_byte(eb, first_byte); 4555 *kaddr |= mask; 4556 if (same_byte) 4557 return; 4558 4559 /* Handle the byte aligned part. */ 4560 ASSERT(first_byte + 1 <= last_byte); 4561 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4562 4563 /* Handle the last byte. */ 4564 kaddr = extent_buffer_get_byte(eb, last_byte); 4565 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4566 } 4567 4568 4569 /* 4570 * Clear an area of a bitmap. 4571 * 4572 * @eb: the extent buffer 4573 * @start: offset of the bitmap item in the extent buffer 4574 * @pos: bit number of the first bit 4575 * @len: number of bits to clear 4576 */ 4577 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4578 unsigned long start, unsigned long pos, 4579 unsigned long len) 4580 { 4581 unsigned int first_byte = start + BIT_BYTE(pos); 4582 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4583 const bool same_byte = (first_byte == last_byte); 4584 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4585 u8 *kaddr; 4586 4587 if (same_byte) 4588 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4589 4590 /* Handle the first byte. */ 4591 kaddr = extent_buffer_get_byte(eb, first_byte); 4592 *kaddr &= ~mask; 4593 if (same_byte) 4594 return; 4595 4596 /* Handle the byte aligned part. */ 4597 ASSERT(first_byte + 1 <= last_byte); 4598 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4599 4600 /* Handle the last byte. */ 4601 kaddr = extent_buffer_get_byte(eb, last_byte); 4602 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4603 } 4604 4605 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4606 { 4607 unsigned long distance = (src > dst) ? src - dst : dst - src; 4608 return distance < len; 4609 } 4610 4611 void memcpy_extent_buffer(const struct extent_buffer *dst, 4612 unsigned long dst_offset, unsigned long src_offset, 4613 unsigned long len) 4614 { 4615 unsigned long cur_off = 0; 4616 4617 if (check_eb_range(dst, dst_offset, len) || 4618 check_eb_range(dst, src_offset, len)) 4619 return; 4620 4621 while (cur_off < len) { 4622 unsigned long cur_src = cur_off + src_offset; 4623 unsigned long pg_index = get_eb_page_index(cur_src); 4624 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4625 unsigned long cur_len = min(src_offset + len - cur_src, 4626 PAGE_SIZE - pg_off); 4627 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4628 const bool use_memmove = areas_overlap(src_offset + cur_off, 4629 dst_offset + cur_off, cur_len); 4630 4631 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4632 use_memmove); 4633 cur_off += cur_len; 4634 } 4635 } 4636 4637 void memmove_extent_buffer(const struct extent_buffer *dst, 4638 unsigned long dst_offset, unsigned long src_offset, 4639 unsigned long len) 4640 { 4641 unsigned long dst_end = dst_offset + len - 1; 4642 unsigned long src_end = src_offset + len - 1; 4643 4644 if (check_eb_range(dst, dst_offset, len) || 4645 check_eb_range(dst, src_offset, len)) 4646 return; 4647 4648 if (dst_offset < src_offset) { 4649 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4650 return; 4651 } 4652 4653 while (len > 0) { 4654 unsigned long src_i; 4655 size_t cur; 4656 size_t dst_off_in_page; 4657 size_t src_off_in_page; 4658 void *src_addr; 4659 bool use_memmove; 4660 4661 src_i = get_eb_page_index(src_end); 4662 4663 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4664 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4665 4666 cur = min_t(unsigned long, len, src_off_in_page + 1); 4667 cur = min(cur, dst_off_in_page + 1); 4668 4669 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4670 cur + 1; 4671 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4672 cur); 4673 4674 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4675 use_memmove); 4676 4677 dst_end -= cur; 4678 src_end -= cur; 4679 len -= cur; 4680 } 4681 } 4682 4683 #define GANG_LOOKUP_SIZE 16 4684 static struct extent_buffer *get_next_extent_buffer( 4685 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4686 { 4687 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4688 struct extent_buffer *found = NULL; 4689 u64 page_start = page_offset(page); 4690 u64 cur = page_start; 4691 4692 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4693 lockdep_assert_held(&fs_info->buffer_lock); 4694 4695 while (cur < page_start + PAGE_SIZE) { 4696 int ret; 4697 int i; 4698 4699 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4700 (void **)gang, cur >> fs_info->sectorsize_bits, 4701 min_t(unsigned int, GANG_LOOKUP_SIZE, 4702 PAGE_SIZE / fs_info->nodesize)); 4703 if (ret == 0) 4704 goto out; 4705 for (i = 0; i < ret; i++) { 4706 /* Already beyond page end */ 4707 if (gang[i]->start >= page_start + PAGE_SIZE) 4708 goto out; 4709 /* Found one */ 4710 if (gang[i]->start >= bytenr) { 4711 found = gang[i]; 4712 goto out; 4713 } 4714 } 4715 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4716 } 4717 out: 4718 return found; 4719 } 4720 4721 static int try_release_subpage_extent_buffer(struct page *page) 4722 { 4723 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4724 u64 cur = page_offset(page); 4725 const u64 end = page_offset(page) + PAGE_SIZE; 4726 int ret; 4727 4728 while (cur < end) { 4729 struct extent_buffer *eb = NULL; 4730 4731 /* 4732 * Unlike try_release_extent_buffer() which uses page->private 4733 * to grab buffer, for subpage case we rely on radix tree, thus 4734 * we need to ensure radix tree consistency. 4735 * 4736 * We also want an atomic snapshot of the radix tree, thus go 4737 * with spinlock rather than RCU. 4738 */ 4739 spin_lock(&fs_info->buffer_lock); 4740 eb = get_next_extent_buffer(fs_info, page, cur); 4741 if (!eb) { 4742 /* No more eb in the page range after or at cur */ 4743 spin_unlock(&fs_info->buffer_lock); 4744 break; 4745 } 4746 cur = eb->start + eb->len; 4747 4748 /* 4749 * The same as try_release_extent_buffer(), to ensure the eb 4750 * won't disappear out from under us. 4751 */ 4752 spin_lock(&eb->refs_lock); 4753 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4754 spin_unlock(&eb->refs_lock); 4755 spin_unlock(&fs_info->buffer_lock); 4756 break; 4757 } 4758 spin_unlock(&fs_info->buffer_lock); 4759 4760 /* 4761 * If tree ref isn't set then we know the ref on this eb is a 4762 * real ref, so just return, this eb will likely be freed soon 4763 * anyway. 4764 */ 4765 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4766 spin_unlock(&eb->refs_lock); 4767 break; 4768 } 4769 4770 /* 4771 * Here we don't care about the return value, we will always 4772 * check the page private at the end. And 4773 * release_extent_buffer() will release the refs_lock. 4774 */ 4775 release_extent_buffer(eb); 4776 } 4777 /* 4778 * Finally to check if we have cleared page private, as if we have 4779 * released all ebs in the page, the page private should be cleared now. 4780 */ 4781 spin_lock(&page->mapping->private_lock); 4782 if (!PagePrivate(page)) 4783 ret = 1; 4784 else 4785 ret = 0; 4786 spin_unlock(&page->mapping->private_lock); 4787 return ret; 4788 4789 } 4790 4791 int try_release_extent_buffer(struct page *page) 4792 { 4793 struct extent_buffer *eb; 4794 4795 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4796 return try_release_subpage_extent_buffer(page); 4797 4798 /* 4799 * We need to make sure nobody is changing page->private, as we rely on 4800 * page->private as the pointer to extent buffer. 4801 */ 4802 spin_lock(&page->mapping->private_lock); 4803 if (!PagePrivate(page)) { 4804 spin_unlock(&page->mapping->private_lock); 4805 return 1; 4806 } 4807 4808 eb = (struct extent_buffer *)page->private; 4809 BUG_ON(!eb); 4810 4811 /* 4812 * This is a little awful but should be ok, we need to make sure that 4813 * the eb doesn't disappear out from under us while we're looking at 4814 * this page. 4815 */ 4816 spin_lock(&eb->refs_lock); 4817 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4818 spin_unlock(&eb->refs_lock); 4819 spin_unlock(&page->mapping->private_lock); 4820 return 0; 4821 } 4822 spin_unlock(&page->mapping->private_lock); 4823 4824 /* 4825 * If tree ref isn't set then we know the ref on this eb is a real ref, 4826 * so just return, this page will likely be freed soon anyway. 4827 */ 4828 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4829 spin_unlock(&eb->refs_lock); 4830 return 0; 4831 } 4832 4833 return release_extent_buffer(eb); 4834 } 4835 4836 /* 4837 * btrfs_readahead_tree_block - attempt to readahead a child block 4838 * @fs_info: the fs_info 4839 * @bytenr: bytenr to read 4840 * @owner_root: objectid of the root that owns this eb 4841 * @gen: generation for the uptodate check, can be 0 4842 * @level: level for the eb 4843 * 4844 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4845 * normal uptodate check of the eb, without checking the generation. If we have 4846 * to read the block we will not block on anything. 4847 */ 4848 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4849 u64 bytenr, u64 owner_root, u64 gen, int level) 4850 { 4851 struct btrfs_tree_parent_check check = { 4852 .has_first_key = 0, 4853 .level = level, 4854 .transid = gen 4855 }; 4856 struct extent_buffer *eb; 4857 int ret; 4858 4859 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4860 if (IS_ERR(eb)) 4861 return; 4862 4863 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4864 free_extent_buffer(eb); 4865 return; 4866 } 4867 4868 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4869 if (ret < 0) 4870 free_extent_buffer_stale(eb); 4871 else 4872 free_extent_buffer(eb); 4873 } 4874 4875 /* 4876 * btrfs_readahead_node_child - readahead a node's child block 4877 * @node: parent node we're reading from 4878 * @slot: slot in the parent node for the child we want to read 4879 * 4880 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4881 * the slot in the node provided. 4882 */ 4883 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4884 { 4885 btrfs_readahead_tree_block(node->fs_info, 4886 btrfs_node_blockptr(node, slot), 4887 btrfs_header_owner(node), 4888 btrfs_node_ptr_generation(node, slot), 4889 btrfs_header_level(node) - 1); 4890 } 4891