xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 5bd8e16d)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       state->start, state->end, state->state, state->tree,
65 		       atomic_read(&state->refs));
66 		list_del(&state->leak_list);
67 		kmem_cache_free(extent_state_cache, state);
68 	}
69 
70 	while (!list_empty(&buffers)) {
71 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 		       "refs %d\n",
74 		       eb->start, eb->len, atomic_read(&eb->refs));
75 		list_del(&eb->leak_list);
76 		kmem_cache_free(extent_buffer_cache, eb);
77 	}
78 }
79 
80 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
81 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 		struct inode *inode, u64 start, u64 end)
84 {
85 	u64 isize = i_size_read(inode);
86 
87 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 		printk_ratelimited(KERN_DEBUG
89 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
90 				caller, btrfs_ino(inode), isize, start, end);
91 	}
92 }
93 #else
94 #define btrfs_leak_debug_add(new, head)	do {} while (0)
95 #define btrfs_leak_debug_del(entry)	do {} while (0)
96 #define btrfs_leak_debug_check()	do {} while (0)
97 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
98 #endif
99 
100 #define BUFFER_LRU_MAX 64
101 
102 struct tree_entry {
103 	u64 start;
104 	u64 end;
105 	struct rb_node rb_node;
106 };
107 
108 struct extent_page_data {
109 	struct bio *bio;
110 	struct extent_io_tree *tree;
111 	get_extent_t *get_extent;
112 	unsigned long bio_flags;
113 
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use a WRITE_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static noinline void flush_write_bio(void *data);
124 static inline struct btrfs_fs_info *
125 tree_fs_info(struct extent_io_tree *tree)
126 {
127 	return btrfs_sb(tree->mapping->host->i_sb);
128 }
129 
130 int __init extent_io_init(void)
131 {
132 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
133 			sizeof(struct extent_state), 0,
134 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
135 	if (!extent_state_cache)
136 		return -ENOMEM;
137 
138 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
139 			sizeof(struct extent_buffer), 0,
140 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
141 	if (!extent_buffer_cache)
142 		goto free_state_cache;
143 
144 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 				     offsetof(struct btrfs_io_bio, bio));
146 	if (!btrfs_bioset)
147 		goto free_buffer_cache;
148 	return 0;
149 
150 free_buffer_cache:
151 	kmem_cache_destroy(extent_buffer_cache);
152 	extent_buffer_cache = NULL;
153 
154 free_state_cache:
155 	kmem_cache_destroy(extent_state_cache);
156 	extent_state_cache = NULL;
157 	return -ENOMEM;
158 }
159 
160 void extent_io_exit(void)
161 {
162 	btrfs_leak_debug_check();
163 
164 	/*
165 	 * Make sure all delayed rcu free are flushed before we
166 	 * destroy caches.
167 	 */
168 	rcu_barrier();
169 	if (extent_state_cache)
170 		kmem_cache_destroy(extent_state_cache);
171 	if (extent_buffer_cache)
172 		kmem_cache_destroy(extent_buffer_cache);
173 	if (btrfs_bioset)
174 		bioset_free(btrfs_bioset);
175 }
176 
177 void extent_io_tree_init(struct extent_io_tree *tree,
178 			 struct address_space *mapping)
179 {
180 	tree->state = RB_ROOT;
181 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
182 	tree->ops = NULL;
183 	tree->dirty_bytes = 0;
184 	spin_lock_init(&tree->lock);
185 	spin_lock_init(&tree->buffer_lock);
186 	tree->mapping = mapping;
187 }
188 
189 static struct extent_state *alloc_extent_state(gfp_t mask)
190 {
191 	struct extent_state *state;
192 
193 	state = kmem_cache_alloc(extent_state_cache, mask);
194 	if (!state)
195 		return state;
196 	state->state = 0;
197 	state->private = 0;
198 	state->tree = NULL;
199 	btrfs_leak_debug_add(&state->leak_list, &states);
200 	atomic_set(&state->refs, 1);
201 	init_waitqueue_head(&state->wq);
202 	trace_alloc_extent_state(state, mask, _RET_IP_);
203 	return state;
204 }
205 
206 void free_extent_state(struct extent_state *state)
207 {
208 	if (!state)
209 		return;
210 	if (atomic_dec_and_test(&state->refs)) {
211 		WARN_ON(state->tree);
212 		btrfs_leak_debug_del(&state->leak_list);
213 		trace_free_extent_state(state, _RET_IP_);
214 		kmem_cache_free(extent_state_cache, state);
215 	}
216 }
217 
218 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
219 				   struct rb_node *node)
220 {
221 	struct rb_node **p = &root->rb_node;
222 	struct rb_node *parent = NULL;
223 	struct tree_entry *entry;
224 
225 	while (*p) {
226 		parent = *p;
227 		entry = rb_entry(parent, struct tree_entry, rb_node);
228 
229 		if (offset < entry->start)
230 			p = &(*p)->rb_left;
231 		else if (offset > entry->end)
232 			p = &(*p)->rb_right;
233 		else
234 			return parent;
235 	}
236 
237 	rb_link_node(node, parent, p);
238 	rb_insert_color(node, root);
239 	return NULL;
240 }
241 
242 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
243 				     struct rb_node **prev_ret,
244 				     struct rb_node **next_ret)
245 {
246 	struct rb_root *root = &tree->state;
247 	struct rb_node *n = root->rb_node;
248 	struct rb_node *prev = NULL;
249 	struct rb_node *orig_prev = NULL;
250 	struct tree_entry *entry;
251 	struct tree_entry *prev_entry = NULL;
252 
253 	while (n) {
254 		entry = rb_entry(n, struct tree_entry, rb_node);
255 		prev = n;
256 		prev_entry = entry;
257 
258 		if (offset < entry->start)
259 			n = n->rb_left;
260 		else if (offset > entry->end)
261 			n = n->rb_right;
262 		else
263 			return n;
264 	}
265 
266 	if (prev_ret) {
267 		orig_prev = prev;
268 		while (prev && offset > prev_entry->end) {
269 			prev = rb_next(prev);
270 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
271 		}
272 		*prev_ret = prev;
273 		prev = orig_prev;
274 	}
275 
276 	if (next_ret) {
277 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
278 		while (prev && offset < prev_entry->start) {
279 			prev = rb_prev(prev);
280 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
281 		}
282 		*next_ret = prev;
283 	}
284 	return NULL;
285 }
286 
287 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
288 					  u64 offset)
289 {
290 	struct rb_node *prev = NULL;
291 	struct rb_node *ret;
292 
293 	ret = __etree_search(tree, offset, &prev, NULL);
294 	if (!ret)
295 		return prev;
296 	return ret;
297 }
298 
299 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
300 		     struct extent_state *other)
301 {
302 	if (tree->ops && tree->ops->merge_extent_hook)
303 		tree->ops->merge_extent_hook(tree->mapping->host, new,
304 					     other);
305 }
306 
307 /*
308  * utility function to look for merge candidates inside a given range.
309  * Any extents with matching state are merged together into a single
310  * extent in the tree.  Extents with EXTENT_IO in their state field
311  * are not merged because the end_io handlers need to be able to do
312  * operations on them without sleeping (or doing allocations/splits).
313  *
314  * This should be called with the tree lock held.
315  */
316 static void merge_state(struct extent_io_tree *tree,
317 		        struct extent_state *state)
318 {
319 	struct extent_state *other;
320 	struct rb_node *other_node;
321 
322 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
323 		return;
324 
325 	other_node = rb_prev(&state->rb_node);
326 	if (other_node) {
327 		other = rb_entry(other_node, struct extent_state, rb_node);
328 		if (other->end == state->start - 1 &&
329 		    other->state == state->state) {
330 			merge_cb(tree, state, other);
331 			state->start = other->start;
332 			other->tree = NULL;
333 			rb_erase(&other->rb_node, &tree->state);
334 			free_extent_state(other);
335 		}
336 	}
337 	other_node = rb_next(&state->rb_node);
338 	if (other_node) {
339 		other = rb_entry(other_node, struct extent_state, rb_node);
340 		if (other->start == state->end + 1 &&
341 		    other->state == state->state) {
342 			merge_cb(tree, state, other);
343 			state->end = other->end;
344 			other->tree = NULL;
345 			rb_erase(&other->rb_node, &tree->state);
346 			free_extent_state(other);
347 		}
348 	}
349 }
350 
351 static void set_state_cb(struct extent_io_tree *tree,
352 			 struct extent_state *state, unsigned long *bits)
353 {
354 	if (tree->ops && tree->ops->set_bit_hook)
355 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
356 }
357 
358 static void clear_state_cb(struct extent_io_tree *tree,
359 			   struct extent_state *state, unsigned long *bits)
360 {
361 	if (tree->ops && tree->ops->clear_bit_hook)
362 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
363 }
364 
365 static void set_state_bits(struct extent_io_tree *tree,
366 			   struct extent_state *state, unsigned long *bits);
367 
368 /*
369  * insert an extent_state struct into the tree.  'bits' are set on the
370  * struct before it is inserted.
371  *
372  * This may return -EEXIST if the extent is already there, in which case the
373  * state struct is freed.
374  *
375  * The tree lock is not taken internally.  This is a utility function and
376  * probably isn't what you want to call (see set/clear_extent_bit).
377  */
378 static int insert_state(struct extent_io_tree *tree,
379 			struct extent_state *state, u64 start, u64 end,
380 			unsigned long *bits)
381 {
382 	struct rb_node *node;
383 
384 	if (end < start)
385 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
386 		       end, start);
387 	state->start = start;
388 	state->end = end;
389 
390 	set_state_bits(tree, state, bits);
391 
392 	node = tree_insert(&tree->state, end, &state->rb_node);
393 	if (node) {
394 		struct extent_state *found;
395 		found = rb_entry(node, struct extent_state, rb_node);
396 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
397 		       "%llu %llu\n",
398 		       found->start, found->end, start, end);
399 		return -EEXIST;
400 	}
401 	state->tree = tree;
402 	merge_state(tree, state);
403 	return 0;
404 }
405 
406 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
407 		     u64 split)
408 {
409 	if (tree->ops && tree->ops->split_extent_hook)
410 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
411 }
412 
413 /*
414  * split a given extent state struct in two, inserting the preallocated
415  * struct 'prealloc' as the newly created second half.  'split' indicates an
416  * offset inside 'orig' where it should be split.
417  *
418  * Before calling,
419  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
420  * are two extent state structs in the tree:
421  * prealloc: [orig->start, split - 1]
422  * orig: [ split, orig->end ]
423  *
424  * The tree locks are not taken by this function. They need to be held
425  * by the caller.
426  */
427 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
428 		       struct extent_state *prealloc, u64 split)
429 {
430 	struct rb_node *node;
431 
432 	split_cb(tree, orig, split);
433 
434 	prealloc->start = orig->start;
435 	prealloc->end = split - 1;
436 	prealloc->state = orig->state;
437 	orig->start = split;
438 
439 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
440 	if (node) {
441 		free_extent_state(prealloc);
442 		return -EEXIST;
443 	}
444 	prealloc->tree = tree;
445 	return 0;
446 }
447 
448 static struct extent_state *next_state(struct extent_state *state)
449 {
450 	struct rb_node *next = rb_next(&state->rb_node);
451 	if (next)
452 		return rb_entry(next, struct extent_state, rb_node);
453 	else
454 		return NULL;
455 }
456 
457 /*
458  * utility function to clear some bits in an extent state struct.
459  * it will optionally wake up any one waiting on this state (wake == 1).
460  *
461  * If no bits are set on the state struct after clearing things, the
462  * struct is freed and removed from the tree
463  */
464 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
465 					    struct extent_state *state,
466 					    unsigned long *bits, int wake)
467 {
468 	struct extent_state *next;
469 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
470 
471 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
472 		u64 range = state->end - state->start + 1;
473 		WARN_ON(range > tree->dirty_bytes);
474 		tree->dirty_bytes -= range;
475 	}
476 	clear_state_cb(tree, state, bits);
477 	state->state &= ~bits_to_clear;
478 	if (wake)
479 		wake_up(&state->wq);
480 	if (state->state == 0) {
481 		next = next_state(state);
482 		if (state->tree) {
483 			rb_erase(&state->rb_node, &tree->state);
484 			state->tree = NULL;
485 			free_extent_state(state);
486 		} else {
487 			WARN_ON(1);
488 		}
489 	} else {
490 		merge_state(tree, state);
491 		next = next_state(state);
492 	}
493 	return next;
494 }
495 
496 static struct extent_state *
497 alloc_extent_state_atomic(struct extent_state *prealloc)
498 {
499 	if (!prealloc)
500 		prealloc = alloc_extent_state(GFP_ATOMIC);
501 
502 	return prealloc;
503 }
504 
505 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
506 {
507 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
508 		    "Extent tree was modified by another "
509 		    "thread while locked.");
510 }
511 
512 /*
513  * clear some bits on a range in the tree.  This may require splitting
514  * or inserting elements in the tree, so the gfp mask is used to
515  * indicate which allocations or sleeping are allowed.
516  *
517  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
518  * the given range from the tree regardless of state (ie for truncate).
519  *
520  * the range [start, end] is inclusive.
521  *
522  * This takes the tree lock, and returns 0 on success and < 0 on error.
523  */
524 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
525 		     unsigned long bits, int wake, int delete,
526 		     struct extent_state **cached_state,
527 		     gfp_t mask)
528 {
529 	struct extent_state *state;
530 	struct extent_state *cached;
531 	struct extent_state *prealloc = NULL;
532 	struct rb_node *node;
533 	u64 last_end;
534 	int err;
535 	int clear = 0;
536 
537 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
538 
539 	if (bits & EXTENT_DELALLOC)
540 		bits |= EXTENT_NORESERVE;
541 
542 	if (delete)
543 		bits |= ~EXTENT_CTLBITS;
544 	bits |= EXTENT_FIRST_DELALLOC;
545 
546 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
547 		clear = 1;
548 again:
549 	if (!prealloc && (mask & __GFP_WAIT)) {
550 		prealloc = alloc_extent_state(mask);
551 		if (!prealloc)
552 			return -ENOMEM;
553 	}
554 
555 	spin_lock(&tree->lock);
556 	if (cached_state) {
557 		cached = *cached_state;
558 
559 		if (clear) {
560 			*cached_state = NULL;
561 			cached_state = NULL;
562 		}
563 
564 		if (cached && cached->tree && cached->start <= start &&
565 		    cached->end > start) {
566 			if (clear)
567 				atomic_dec(&cached->refs);
568 			state = cached;
569 			goto hit_next;
570 		}
571 		if (clear)
572 			free_extent_state(cached);
573 	}
574 	/*
575 	 * this search will find the extents that end after
576 	 * our range starts
577 	 */
578 	node = tree_search(tree, start);
579 	if (!node)
580 		goto out;
581 	state = rb_entry(node, struct extent_state, rb_node);
582 hit_next:
583 	if (state->start > end)
584 		goto out;
585 	WARN_ON(state->end < start);
586 	last_end = state->end;
587 
588 	/* the state doesn't have the wanted bits, go ahead */
589 	if (!(state->state & bits)) {
590 		state = next_state(state);
591 		goto next;
592 	}
593 
594 	/*
595 	 *     | ---- desired range ---- |
596 	 *  | state | or
597 	 *  | ------------- state -------------- |
598 	 *
599 	 * We need to split the extent we found, and may flip
600 	 * bits on second half.
601 	 *
602 	 * If the extent we found extends past our range, we
603 	 * just split and search again.  It'll get split again
604 	 * the next time though.
605 	 *
606 	 * If the extent we found is inside our range, we clear
607 	 * the desired bit on it.
608 	 */
609 
610 	if (state->start < start) {
611 		prealloc = alloc_extent_state_atomic(prealloc);
612 		BUG_ON(!prealloc);
613 		err = split_state(tree, state, prealloc, start);
614 		if (err)
615 			extent_io_tree_panic(tree, err);
616 
617 		prealloc = NULL;
618 		if (err)
619 			goto out;
620 		if (state->end <= end) {
621 			state = clear_state_bit(tree, state, &bits, wake);
622 			goto next;
623 		}
624 		goto search_again;
625 	}
626 	/*
627 	 * | ---- desired range ---- |
628 	 *                        | state |
629 	 * We need to split the extent, and clear the bit
630 	 * on the first half
631 	 */
632 	if (state->start <= end && state->end > end) {
633 		prealloc = alloc_extent_state_atomic(prealloc);
634 		BUG_ON(!prealloc);
635 		err = split_state(tree, state, prealloc, end + 1);
636 		if (err)
637 			extent_io_tree_panic(tree, err);
638 
639 		if (wake)
640 			wake_up(&state->wq);
641 
642 		clear_state_bit(tree, prealloc, &bits, wake);
643 
644 		prealloc = NULL;
645 		goto out;
646 	}
647 
648 	state = clear_state_bit(tree, state, &bits, wake);
649 next:
650 	if (last_end == (u64)-1)
651 		goto out;
652 	start = last_end + 1;
653 	if (start <= end && state && !need_resched())
654 		goto hit_next;
655 	goto search_again;
656 
657 out:
658 	spin_unlock(&tree->lock);
659 	if (prealloc)
660 		free_extent_state(prealloc);
661 
662 	return 0;
663 
664 search_again:
665 	if (start > end)
666 		goto out;
667 	spin_unlock(&tree->lock);
668 	if (mask & __GFP_WAIT)
669 		cond_resched();
670 	goto again;
671 }
672 
673 static void wait_on_state(struct extent_io_tree *tree,
674 			  struct extent_state *state)
675 		__releases(tree->lock)
676 		__acquires(tree->lock)
677 {
678 	DEFINE_WAIT(wait);
679 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
680 	spin_unlock(&tree->lock);
681 	schedule();
682 	spin_lock(&tree->lock);
683 	finish_wait(&state->wq, &wait);
684 }
685 
686 /*
687  * waits for one or more bits to clear on a range in the state tree.
688  * The range [start, end] is inclusive.
689  * The tree lock is taken by this function
690  */
691 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
692 			    unsigned long bits)
693 {
694 	struct extent_state *state;
695 	struct rb_node *node;
696 
697 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
698 
699 	spin_lock(&tree->lock);
700 again:
701 	while (1) {
702 		/*
703 		 * this search will find all the extents that end after
704 		 * our range starts
705 		 */
706 		node = tree_search(tree, start);
707 		if (!node)
708 			break;
709 
710 		state = rb_entry(node, struct extent_state, rb_node);
711 
712 		if (state->start > end)
713 			goto out;
714 
715 		if (state->state & bits) {
716 			start = state->start;
717 			atomic_inc(&state->refs);
718 			wait_on_state(tree, state);
719 			free_extent_state(state);
720 			goto again;
721 		}
722 		start = state->end + 1;
723 
724 		if (start > end)
725 			break;
726 
727 		cond_resched_lock(&tree->lock);
728 	}
729 out:
730 	spin_unlock(&tree->lock);
731 }
732 
733 static void set_state_bits(struct extent_io_tree *tree,
734 			   struct extent_state *state,
735 			   unsigned long *bits)
736 {
737 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
738 
739 	set_state_cb(tree, state, bits);
740 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
741 		u64 range = state->end - state->start + 1;
742 		tree->dirty_bytes += range;
743 	}
744 	state->state |= bits_to_set;
745 }
746 
747 static void cache_state(struct extent_state *state,
748 			struct extent_state **cached_ptr)
749 {
750 	if (cached_ptr && !(*cached_ptr)) {
751 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
752 			*cached_ptr = state;
753 			atomic_inc(&state->refs);
754 		}
755 	}
756 }
757 
758 /*
759  * set some bits on a range in the tree.  This may require allocations or
760  * sleeping, so the gfp mask is used to indicate what is allowed.
761  *
762  * If any of the exclusive bits are set, this will fail with -EEXIST if some
763  * part of the range already has the desired bits set.  The start of the
764  * existing range is returned in failed_start in this case.
765  *
766  * [start, end] is inclusive This takes the tree lock.
767  */
768 
769 static int __must_check
770 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
771 		 unsigned long bits, unsigned long exclusive_bits,
772 		 u64 *failed_start, struct extent_state **cached_state,
773 		 gfp_t mask)
774 {
775 	struct extent_state *state;
776 	struct extent_state *prealloc = NULL;
777 	struct rb_node *node;
778 	int err = 0;
779 	u64 last_start;
780 	u64 last_end;
781 
782 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
783 
784 	bits |= EXTENT_FIRST_DELALLOC;
785 again:
786 	if (!prealloc && (mask & __GFP_WAIT)) {
787 		prealloc = alloc_extent_state(mask);
788 		BUG_ON(!prealloc);
789 	}
790 
791 	spin_lock(&tree->lock);
792 	if (cached_state && *cached_state) {
793 		state = *cached_state;
794 		if (state->start <= start && state->end > start &&
795 		    state->tree) {
796 			node = &state->rb_node;
797 			goto hit_next;
798 		}
799 	}
800 	/*
801 	 * this search will find all the extents that end after
802 	 * our range starts.
803 	 */
804 	node = tree_search(tree, start);
805 	if (!node) {
806 		prealloc = alloc_extent_state_atomic(prealloc);
807 		BUG_ON(!prealloc);
808 		err = insert_state(tree, prealloc, start, end, &bits);
809 		if (err)
810 			extent_io_tree_panic(tree, err);
811 
812 		prealloc = NULL;
813 		goto out;
814 	}
815 	state = rb_entry(node, struct extent_state, rb_node);
816 hit_next:
817 	last_start = state->start;
818 	last_end = state->end;
819 
820 	/*
821 	 * | ---- desired range ---- |
822 	 * | state |
823 	 *
824 	 * Just lock what we found and keep going
825 	 */
826 	if (state->start == start && state->end <= end) {
827 		if (state->state & exclusive_bits) {
828 			*failed_start = state->start;
829 			err = -EEXIST;
830 			goto out;
831 		}
832 
833 		set_state_bits(tree, state, &bits);
834 		cache_state(state, cached_state);
835 		merge_state(tree, state);
836 		if (last_end == (u64)-1)
837 			goto out;
838 		start = last_end + 1;
839 		state = next_state(state);
840 		if (start < end && state && state->start == start &&
841 		    !need_resched())
842 			goto hit_next;
843 		goto search_again;
844 	}
845 
846 	/*
847 	 *     | ---- desired range ---- |
848 	 * | state |
849 	 *   or
850 	 * | ------------- state -------------- |
851 	 *
852 	 * We need to split the extent we found, and may flip bits on
853 	 * second half.
854 	 *
855 	 * If the extent we found extends past our
856 	 * range, we just split and search again.  It'll get split
857 	 * again the next time though.
858 	 *
859 	 * If the extent we found is inside our range, we set the
860 	 * desired bit on it.
861 	 */
862 	if (state->start < start) {
863 		if (state->state & exclusive_bits) {
864 			*failed_start = start;
865 			err = -EEXIST;
866 			goto out;
867 		}
868 
869 		prealloc = alloc_extent_state_atomic(prealloc);
870 		BUG_ON(!prealloc);
871 		err = split_state(tree, state, prealloc, start);
872 		if (err)
873 			extent_io_tree_panic(tree, err);
874 
875 		prealloc = NULL;
876 		if (err)
877 			goto out;
878 		if (state->end <= end) {
879 			set_state_bits(tree, state, &bits);
880 			cache_state(state, cached_state);
881 			merge_state(tree, state);
882 			if (last_end == (u64)-1)
883 				goto out;
884 			start = last_end + 1;
885 			state = next_state(state);
886 			if (start < end && state && state->start == start &&
887 			    !need_resched())
888 				goto hit_next;
889 		}
890 		goto search_again;
891 	}
892 	/*
893 	 * | ---- desired range ---- |
894 	 *     | state | or               | state |
895 	 *
896 	 * There's a hole, we need to insert something in it and
897 	 * ignore the extent we found.
898 	 */
899 	if (state->start > start) {
900 		u64 this_end;
901 		if (end < last_start)
902 			this_end = end;
903 		else
904 			this_end = last_start - 1;
905 
906 		prealloc = alloc_extent_state_atomic(prealloc);
907 		BUG_ON(!prealloc);
908 
909 		/*
910 		 * Avoid to free 'prealloc' if it can be merged with
911 		 * the later extent.
912 		 */
913 		err = insert_state(tree, prealloc, start, this_end,
914 				   &bits);
915 		if (err)
916 			extent_io_tree_panic(tree, err);
917 
918 		cache_state(prealloc, cached_state);
919 		prealloc = NULL;
920 		start = this_end + 1;
921 		goto search_again;
922 	}
923 	/*
924 	 * | ---- desired range ---- |
925 	 *                        | state |
926 	 * We need to split the extent, and set the bit
927 	 * on the first half
928 	 */
929 	if (state->start <= end && state->end > end) {
930 		if (state->state & exclusive_bits) {
931 			*failed_start = start;
932 			err = -EEXIST;
933 			goto out;
934 		}
935 
936 		prealloc = alloc_extent_state_atomic(prealloc);
937 		BUG_ON(!prealloc);
938 		err = split_state(tree, state, prealloc, end + 1);
939 		if (err)
940 			extent_io_tree_panic(tree, err);
941 
942 		set_state_bits(tree, prealloc, &bits);
943 		cache_state(prealloc, cached_state);
944 		merge_state(tree, prealloc);
945 		prealloc = NULL;
946 		goto out;
947 	}
948 
949 	goto search_again;
950 
951 out:
952 	spin_unlock(&tree->lock);
953 	if (prealloc)
954 		free_extent_state(prealloc);
955 
956 	return err;
957 
958 search_again:
959 	if (start > end)
960 		goto out;
961 	spin_unlock(&tree->lock);
962 	if (mask & __GFP_WAIT)
963 		cond_resched();
964 	goto again;
965 }
966 
967 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
968 		   unsigned long bits, u64 * failed_start,
969 		   struct extent_state **cached_state, gfp_t mask)
970 {
971 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
972 				cached_state, mask);
973 }
974 
975 
976 /**
977  * convert_extent_bit - convert all bits in a given range from one bit to
978  * 			another
979  * @tree:	the io tree to search
980  * @start:	the start offset in bytes
981  * @end:	the end offset in bytes (inclusive)
982  * @bits:	the bits to set in this range
983  * @clear_bits:	the bits to clear in this range
984  * @cached_state:	state that we're going to cache
985  * @mask:	the allocation mask
986  *
987  * This will go through and set bits for the given range.  If any states exist
988  * already in this range they are set with the given bit and cleared of the
989  * clear_bits.  This is only meant to be used by things that are mergeable, ie
990  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
991  * boundary bits like LOCK.
992  */
993 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
994 		       unsigned long bits, unsigned long clear_bits,
995 		       struct extent_state **cached_state, gfp_t mask)
996 {
997 	struct extent_state *state;
998 	struct extent_state *prealloc = NULL;
999 	struct rb_node *node;
1000 	int err = 0;
1001 	u64 last_start;
1002 	u64 last_end;
1003 
1004 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1005 
1006 again:
1007 	if (!prealloc && (mask & __GFP_WAIT)) {
1008 		prealloc = alloc_extent_state(mask);
1009 		if (!prealloc)
1010 			return -ENOMEM;
1011 	}
1012 
1013 	spin_lock(&tree->lock);
1014 	if (cached_state && *cached_state) {
1015 		state = *cached_state;
1016 		if (state->start <= start && state->end > start &&
1017 		    state->tree) {
1018 			node = &state->rb_node;
1019 			goto hit_next;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * this search will find all the extents that end after
1025 	 * our range starts.
1026 	 */
1027 	node = tree_search(tree, start);
1028 	if (!node) {
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		if (!prealloc) {
1031 			err = -ENOMEM;
1032 			goto out;
1033 		}
1034 		err = insert_state(tree, prealloc, start, end, &bits);
1035 		prealloc = NULL;
1036 		if (err)
1037 			extent_io_tree_panic(tree, err);
1038 		goto out;
1039 	}
1040 	state = rb_entry(node, struct extent_state, rb_node);
1041 hit_next:
1042 	last_start = state->start;
1043 	last_end = state->end;
1044 
1045 	/*
1046 	 * | ---- desired range ---- |
1047 	 * | state |
1048 	 *
1049 	 * Just lock what we found and keep going
1050 	 */
1051 	if (state->start == start && state->end <= end) {
1052 		set_state_bits(tree, state, &bits);
1053 		cache_state(state, cached_state);
1054 		state = clear_state_bit(tree, state, &clear_bits, 0);
1055 		if (last_end == (u64)-1)
1056 			goto out;
1057 		start = last_end + 1;
1058 		if (start < end && state && state->start == start &&
1059 		    !need_resched())
1060 			goto hit_next;
1061 		goto search_again;
1062 	}
1063 
1064 	/*
1065 	 *     | ---- desired range ---- |
1066 	 * | state |
1067 	 *   or
1068 	 * | ------------- state -------------- |
1069 	 *
1070 	 * We need to split the extent we found, and may flip bits on
1071 	 * second half.
1072 	 *
1073 	 * If the extent we found extends past our
1074 	 * range, we just split and search again.  It'll get split
1075 	 * again the next time though.
1076 	 *
1077 	 * If the extent we found is inside our range, we set the
1078 	 * desired bit on it.
1079 	 */
1080 	if (state->start < start) {
1081 		prealloc = alloc_extent_state_atomic(prealloc);
1082 		if (!prealloc) {
1083 			err = -ENOMEM;
1084 			goto out;
1085 		}
1086 		err = split_state(tree, state, prealloc, start);
1087 		if (err)
1088 			extent_io_tree_panic(tree, err);
1089 		prealloc = NULL;
1090 		if (err)
1091 			goto out;
1092 		if (state->end <= end) {
1093 			set_state_bits(tree, state, &bits);
1094 			cache_state(state, cached_state);
1095 			state = clear_state_bit(tree, state, &clear_bits, 0);
1096 			if (last_end == (u64)-1)
1097 				goto out;
1098 			start = last_end + 1;
1099 			if (start < end && state && state->start == start &&
1100 			    !need_resched())
1101 				goto hit_next;
1102 		}
1103 		goto search_again;
1104 	}
1105 	/*
1106 	 * | ---- desired range ---- |
1107 	 *     | state | or               | state |
1108 	 *
1109 	 * There's a hole, we need to insert something in it and
1110 	 * ignore the extent we found.
1111 	 */
1112 	if (state->start > start) {
1113 		u64 this_end;
1114 		if (end < last_start)
1115 			this_end = end;
1116 		else
1117 			this_end = last_start - 1;
1118 
1119 		prealloc = alloc_extent_state_atomic(prealloc);
1120 		if (!prealloc) {
1121 			err = -ENOMEM;
1122 			goto out;
1123 		}
1124 
1125 		/*
1126 		 * Avoid to free 'prealloc' if it can be merged with
1127 		 * the later extent.
1128 		 */
1129 		err = insert_state(tree, prealloc, start, this_end,
1130 				   &bits);
1131 		if (err)
1132 			extent_io_tree_panic(tree, err);
1133 		cache_state(prealloc, cached_state);
1134 		prealloc = NULL;
1135 		start = this_end + 1;
1136 		goto search_again;
1137 	}
1138 	/*
1139 	 * | ---- desired range ---- |
1140 	 *                        | state |
1141 	 * We need to split the extent, and set the bit
1142 	 * on the first half
1143 	 */
1144 	if (state->start <= end && state->end > end) {
1145 		prealloc = alloc_extent_state_atomic(prealloc);
1146 		if (!prealloc) {
1147 			err = -ENOMEM;
1148 			goto out;
1149 		}
1150 
1151 		err = split_state(tree, state, prealloc, end + 1);
1152 		if (err)
1153 			extent_io_tree_panic(tree, err);
1154 
1155 		set_state_bits(tree, prealloc, &bits);
1156 		cache_state(prealloc, cached_state);
1157 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1158 		prealloc = NULL;
1159 		goto out;
1160 	}
1161 
1162 	goto search_again;
1163 
1164 out:
1165 	spin_unlock(&tree->lock);
1166 	if (prealloc)
1167 		free_extent_state(prealloc);
1168 
1169 	return err;
1170 
1171 search_again:
1172 	if (start > end)
1173 		goto out;
1174 	spin_unlock(&tree->lock);
1175 	if (mask & __GFP_WAIT)
1176 		cond_resched();
1177 	goto again;
1178 }
1179 
1180 /* wrappers around set/clear extent bit */
1181 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1182 		     gfp_t mask)
1183 {
1184 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1185 			      NULL, mask);
1186 }
1187 
1188 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1189 		    unsigned long bits, gfp_t mask)
1190 {
1191 	return set_extent_bit(tree, start, end, bits, NULL,
1192 			      NULL, mask);
1193 }
1194 
1195 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1196 		      unsigned long bits, gfp_t mask)
1197 {
1198 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1199 }
1200 
1201 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1202 			struct extent_state **cached_state, gfp_t mask)
1203 {
1204 	return set_extent_bit(tree, start, end,
1205 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1206 			      NULL, cached_state, mask);
1207 }
1208 
1209 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1210 		      struct extent_state **cached_state, gfp_t mask)
1211 {
1212 	return set_extent_bit(tree, start, end,
1213 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1214 			      NULL, cached_state, mask);
1215 }
1216 
1217 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1218 		       gfp_t mask)
1219 {
1220 	return clear_extent_bit(tree, start, end,
1221 				EXTENT_DIRTY | EXTENT_DELALLOC |
1222 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1223 }
1224 
1225 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1226 		     gfp_t mask)
1227 {
1228 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1229 			      NULL, mask);
1230 }
1231 
1232 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1233 			struct extent_state **cached_state, gfp_t mask)
1234 {
1235 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1236 			      cached_state, mask);
1237 }
1238 
1239 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1240 			  struct extent_state **cached_state, gfp_t mask)
1241 {
1242 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1243 				cached_state, mask);
1244 }
1245 
1246 /*
1247  * either insert or lock state struct between start and end use mask to tell
1248  * us if waiting is desired.
1249  */
1250 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1251 		     unsigned long bits, struct extent_state **cached_state)
1252 {
1253 	int err;
1254 	u64 failed_start;
1255 	while (1) {
1256 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1257 				       EXTENT_LOCKED, &failed_start,
1258 				       cached_state, GFP_NOFS);
1259 		if (err == -EEXIST) {
1260 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1261 			start = failed_start;
1262 		} else
1263 			break;
1264 		WARN_ON(start > end);
1265 	}
1266 	return err;
1267 }
1268 
1269 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1270 {
1271 	return lock_extent_bits(tree, start, end, 0, NULL);
1272 }
1273 
1274 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1275 {
1276 	int err;
1277 	u64 failed_start;
1278 
1279 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1280 			       &failed_start, NULL, GFP_NOFS);
1281 	if (err == -EEXIST) {
1282 		if (failed_start > start)
1283 			clear_extent_bit(tree, start, failed_start - 1,
1284 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1285 		return 0;
1286 	}
1287 	return 1;
1288 }
1289 
1290 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1291 			 struct extent_state **cached, gfp_t mask)
1292 {
1293 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1294 				mask);
1295 }
1296 
1297 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1298 {
1299 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1300 				GFP_NOFS);
1301 }
1302 
1303 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1304 {
1305 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1306 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1307 	struct page *page;
1308 
1309 	while (index <= end_index) {
1310 		page = find_get_page(inode->i_mapping, index);
1311 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1312 		clear_page_dirty_for_io(page);
1313 		page_cache_release(page);
1314 		index++;
1315 	}
1316 	return 0;
1317 }
1318 
1319 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 	struct page *page;
1324 
1325 	while (index <= end_index) {
1326 		page = find_get_page(inode->i_mapping, index);
1327 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 		account_page_redirty(page);
1329 		__set_page_dirty_nobuffers(page);
1330 		page_cache_release(page);
1331 		index++;
1332 	}
1333 	return 0;
1334 }
1335 
1336 /*
1337  * helper function to set both pages and extents in the tree writeback
1338  */
1339 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1340 {
1341 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1342 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1343 	struct page *page;
1344 
1345 	while (index <= end_index) {
1346 		page = find_get_page(tree->mapping, index);
1347 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1348 		set_page_writeback(page);
1349 		page_cache_release(page);
1350 		index++;
1351 	}
1352 	return 0;
1353 }
1354 
1355 /* find the first state struct with 'bits' set after 'start', and
1356  * return it.  tree->lock must be held.  NULL will returned if
1357  * nothing was found after 'start'
1358  */
1359 static struct extent_state *
1360 find_first_extent_bit_state(struct extent_io_tree *tree,
1361 			    u64 start, unsigned long bits)
1362 {
1363 	struct rb_node *node;
1364 	struct extent_state *state;
1365 
1366 	/*
1367 	 * this search will find all the extents that end after
1368 	 * our range starts.
1369 	 */
1370 	node = tree_search(tree, start);
1371 	if (!node)
1372 		goto out;
1373 
1374 	while (1) {
1375 		state = rb_entry(node, struct extent_state, rb_node);
1376 		if (state->end >= start && (state->state & bits))
1377 			return state;
1378 
1379 		node = rb_next(node);
1380 		if (!node)
1381 			break;
1382 	}
1383 out:
1384 	return NULL;
1385 }
1386 
1387 /*
1388  * find the first offset in the io tree with 'bits' set. zero is
1389  * returned if we find something, and *start_ret and *end_ret are
1390  * set to reflect the state struct that was found.
1391  *
1392  * If nothing was found, 1 is returned. If found something, return 0.
1393  */
1394 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1395 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1396 			  struct extent_state **cached_state)
1397 {
1398 	struct extent_state *state;
1399 	struct rb_node *n;
1400 	int ret = 1;
1401 
1402 	spin_lock(&tree->lock);
1403 	if (cached_state && *cached_state) {
1404 		state = *cached_state;
1405 		if (state->end == start - 1 && state->tree) {
1406 			n = rb_next(&state->rb_node);
1407 			while (n) {
1408 				state = rb_entry(n, struct extent_state,
1409 						 rb_node);
1410 				if (state->state & bits)
1411 					goto got_it;
1412 				n = rb_next(n);
1413 			}
1414 			free_extent_state(*cached_state);
1415 			*cached_state = NULL;
1416 			goto out;
1417 		}
1418 		free_extent_state(*cached_state);
1419 		*cached_state = NULL;
1420 	}
1421 
1422 	state = find_first_extent_bit_state(tree, start, bits);
1423 got_it:
1424 	if (state) {
1425 		cache_state(state, cached_state);
1426 		*start_ret = state->start;
1427 		*end_ret = state->end;
1428 		ret = 0;
1429 	}
1430 out:
1431 	spin_unlock(&tree->lock);
1432 	return ret;
1433 }
1434 
1435 /*
1436  * find a contiguous range of bytes in the file marked as delalloc, not
1437  * more than 'max_bytes'.  start and end are used to return the range,
1438  *
1439  * 1 is returned if we find something, 0 if nothing was in the tree
1440  */
1441 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1442 					u64 *start, u64 *end, u64 max_bytes,
1443 					struct extent_state **cached_state)
1444 {
1445 	struct rb_node *node;
1446 	struct extent_state *state;
1447 	u64 cur_start = *start;
1448 	u64 found = 0;
1449 	u64 total_bytes = 0;
1450 
1451 	spin_lock(&tree->lock);
1452 
1453 	/*
1454 	 * this search will find all the extents that end after
1455 	 * our range starts.
1456 	 */
1457 	node = tree_search(tree, cur_start);
1458 	if (!node) {
1459 		if (!found)
1460 			*end = (u64)-1;
1461 		goto out;
1462 	}
1463 
1464 	while (1) {
1465 		state = rb_entry(node, struct extent_state, rb_node);
1466 		if (found && (state->start != cur_start ||
1467 			      (state->state & EXTENT_BOUNDARY))) {
1468 			goto out;
1469 		}
1470 		if (!(state->state & EXTENT_DELALLOC)) {
1471 			if (!found)
1472 				*end = state->end;
1473 			goto out;
1474 		}
1475 		if (!found) {
1476 			*start = state->start;
1477 			*cached_state = state;
1478 			atomic_inc(&state->refs);
1479 		}
1480 		found++;
1481 		*end = state->end;
1482 		cur_start = state->end + 1;
1483 		node = rb_next(node);
1484 		total_bytes += state->end - state->start + 1;
1485 		if (total_bytes >= max_bytes) {
1486 			*end = *start + max_bytes - 1;
1487 			break;
1488 		}
1489 		if (!node)
1490 			break;
1491 	}
1492 out:
1493 	spin_unlock(&tree->lock);
1494 	return found;
1495 }
1496 
1497 static noinline void __unlock_for_delalloc(struct inode *inode,
1498 					   struct page *locked_page,
1499 					   u64 start, u64 end)
1500 {
1501 	int ret;
1502 	struct page *pages[16];
1503 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1504 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1505 	unsigned long nr_pages = end_index - index + 1;
1506 	int i;
1507 
1508 	if (index == locked_page->index && end_index == index)
1509 		return;
1510 
1511 	while (nr_pages > 0) {
1512 		ret = find_get_pages_contig(inode->i_mapping, index,
1513 				     min_t(unsigned long, nr_pages,
1514 				     ARRAY_SIZE(pages)), pages);
1515 		for (i = 0; i < ret; i++) {
1516 			if (pages[i] != locked_page)
1517 				unlock_page(pages[i]);
1518 			page_cache_release(pages[i]);
1519 		}
1520 		nr_pages -= ret;
1521 		index += ret;
1522 		cond_resched();
1523 	}
1524 }
1525 
1526 static noinline int lock_delalloc_pages(struct inode *inode,
1527 					struct page *locked_page,
1528 					u64 delalloc_start,
1529 					u64 delalloc_end)
1530 {
1531 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1532 	unsigned long start_index = index;
1533 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1534 	unsigned long pages_locked = 0;
1535 	struct page *pages[16];
1536 	unsigned long nrpages;
1537 	int ret;
1538 	int i;
1539 
1540 	/* the caller is responsible for locking the start index */
1541 	if (index == locked_page->index && index == end_index)
1542 		return 0;
1543 
1544 	/* skip the page at the start index */
1545 	nrpages = end_index - index + 1;
1546 	while (nrpages > 0) {
1547 		ret = find_get_pages_contig(inode->i_mapping, index,
1548 				     min_t(unsigned long,
1549 				     nrpages, ARRAY_SIZE(pages)), pages);
1550 		if (ret == 0) {
1551 			ret = -EAGAIN;
1552 			goto done;
1553 		}
1554 		/* now we have an array of pages, lock them all */
1555 		for (i = 0; i < ret; i++) {
1556 			/*
1557 			 * the caller is taking responsibility for
1558 			 * locked_page
1559 			 */
1560 			if (pages[i] != locked_page) {
1561 				lock_page(pages[i]);
1562 				if (!PageDirty(pages[i]) ||
1563 				    pages[i]->mapping != inode->i_mapping) {
1564 					ret = -EAGAIN;
1565 					unlock_page(pages[i]);
1566 					page_cache_release(pages[i]);
1567 					goto done;
1568 				}
1569 			}
1570 			page_cache_release(pages[i]);
1571 			pages_locked++;
1572 		}
1573 		nrpages -= ret;
1574 		index += ret;
1575 		cond_resched();
1576 	}
1577 	ret = 0;
1578 done:
1579 	if (ret && pages_locked) {
1580 		__unlock_for_delalloc(inode, locked_page,
1581 			      delalloc_start,
1582 			      ((u64)(start_index + pages_locked - 1)) <<
1583 			      PAGE_CACHE_SHIFT);
1584 	}
1585 	return ret;
1586 }
1587 
1588 /*
1589  * find a contiguous range of bytes in the file marked as delalloc, not
1590  * more than 'max_bytes'.  start and end are used to return the range,
1591  *
1592  * 1 is returned if we find something, 0 if nothing was in the tree
1593  */
1594 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1595 					     struct extent_io_tree *tree,
1596 					     struct page *locked_page,
1597 					     u64 *start, u64 *end,
1598 					     u64 max_bytes)
1599 {
1600 	u64 delalloc_start;
1601 	u64 delalloc_end;
1602 	u64 found;
1603 	struct extent_state *cached_state = NULL;
1604 	int ret;
1605 	int loops = 0;
1606 
1607 again:
1608 	/* step one, find a bunch of delalloc bytes starting at start */
1609 	delalloc_start = *start;
1610 	delalloc_end = 0;
1611 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1612 				    max_bytes, &cached_state);
1613 	if (!found || delalloc_end <= *start) {
1614 		*start = delalloc_start;
1615 		*end = delalloc_end;
1616 		free_extent_state(cached_state);
1617 		return found;
1618 	}
1619 
1620 	/*
1621 	 * start comes from the offset of locked_page.  We have to lock
1622 	 * pages in order, so we can't process delalloc bytes before
1623 	 * locked_page
1624 	 */
1625 	if (delalloc_start < *start)
1626 		delalloc_start = *start;
1627 
1628 	/*
1629 	 * make sure to limit the number of pages we try to lock down
1630 	 * if we're looping.
1631 	 */
1632 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1633 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1634 
1635 	/* step two, lock all the pages after the page that has start */
1636 	ret = lock_delalloc_pages(inode, locked_page,
1637 				  delalloc_start, delalloc_end);
1638 	if (ret == -EAGAIN) {
1639 		/* some of the pages are gone, lets avoid looping by
1640 		 * shortening the size of the delalloc range we're searching
1641 		 */
1642 		free_extent_state(cached_state);
1643 		if (!loops) {
1644 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1645 			max_bytes = PAGE_CACHE_SIZE - offset;
1646 			loops = 1;
1647 			goto again;
1648 		} else {
1649 			found = 0;
1650 			goto out_failed;
1651 		}
1652 	}
1653 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1654 
1655 	/* step three, lock the state bits for the whole range */
1656 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1657 
1658 	/* then test to make sure it is all still delalloc */
1659 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1660 			     EXTENT_DELALLOC, 1, cached_state);
1661 	if (!ret) {
1662 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1663 				     &cached_state, GFP_NOFS);
1664 		__unlock_for_delalloc(inode, locked_page,
1665 			      delalloc_start, delalloc_end);
1666 		cond_resched();
1667 		goto again;
1668 	}
1669 	free_extent_state(cached_state);
1670 	*start = delalloc_start;
1671 	*end = delalloc_end;
1672 out_failed:
1673 	return found;
1674 }
1675 
1676 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1677 				 struct page *locked_page,
1678 				 unsigned long clear_bits,
1679 				 unsigned long page_ops)
1680 {
1681 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1682 	int ret;
1683 	struct page *pages[16];
1684 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1685 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1686 	unsigned long nr_pages = end_index - index + 1;
1687 	int i;
1688 
1689 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1690 	if (page_ops == 0)
1691 		return 0;
1692 
1693 	while (nr_pages > 0) {
1694 		ret = find_get_pages_contig(inode->i_mapping, index,
1695 				     min_t(unsigned long,
1696 				     nr_pages, ARRAY_SIZE(pages)), pages);
1697 		for (i = 0; i < ret; i++) {
1698 
1699 			if (page_ops & PAGE_SET_PRIVATE2)
1700 				SetPagePrivate2(pages[i]);
1701 
1702 			if (pages[i] == locked_page) {
1703 				page_cache_release(pages[i]);
1704 				continue;
1705 			}
1706 			if (page_ops & PAGE_CLEAR_DIRTY)
1707 				clear_page_dirty_for_io(pages[i]);
1708 			if (page_ops & PAGE_SET_WRITEBACK)
1709 				set_page_writeback(pages[i]);
1710 			if (page_ops & PAGE_END_WRITEBACK)
1711 				end_page_writeback(pages[i]);
1712 			if (page_ops & PAGE_UNLOCK)
1713 				unlock_page(pages[i]);
1714 			page_cache_release(pages[i]);
1715 		}
1716 		nr_pages -= ret;
1717 		index += ret;
1718 		cond_resched();
1719 	}
1720 	return 0;
1721 }
1722 
1723 /*
1724  * count the number of bytes in the tree that have a given bit(s)
1725  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1726  * cached.  The total number found is returned.
1727  */
1728 u64 count_range_bits(struct extent_io_tree *tree,
1729 		     u64 *start, u64 search_end, u64 max_bytes,
1730 		     unsigned long bits, int contig)
1731 {
1732 	struct rb_node *node;
1733 	struct extent_state *state;
1734 	u64 cur_start = *start;
1735 	u64 total_bytes = 0;
1736 	u64 last = 0;
1737 	int found = 0;
1738 
1739 	if (search_end <= cur_start) {
1740 		WARN_ON(1);
1741 		return 0;
1742 	}
1743 
1744 	spin_lock(&tree->lock);
1745 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1746 		total_bytes = tree->dirty_bytes;
1747 		goto out;
1748 	}
1749 	/*
1750 	 * this search will find all the extents that end after
1751 	 * our range starts.
1752 	 */
1753 	node = tree_search(tree, cur_start);
1754 	if (!node)
1755 		goto out;
1756 
1757 	while (1) {
1758 		state = rb_entry(node, struct extent_state, rb_node);
1759 		if (state->start > search_end)
1760 			break;
1761 		if (contig && found && state->start > last + 1)
1762 			break;
1763 		if (state->end >= cur_start && (state->state & bits) == bits) {
1764 			total_bytes += min(search_end, state->end) + 1 -
1765 				       max(cur_start, state->start);
1766 			if (total_bytes >= max_bytes)
1767 				break;
1768 			if (!found) {
1769 				*start = max(cur_start, state->start);
1770 				found = 1;
1771 			}
1772 			last = state->end;
1773 		} else if (contig && found) {
1774 			break;
1775 		}
1776 		node = rb_next(node);
1777 		if (!node)
1778 			break;
1779 	}
1780 out:
1781 	spin_unlock(&tree->lock);
1782 	return total_bytes;
1783 }
1784 
1785 /*
1786  * set the private field for a given byte offset in the tree.  If there isn't
1787  * an extent_state there already, this does nothing.
1788  */
1789 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1790 {
1791 	struct rb_node *node;
1792 	struct extent_state *state;
1793 	int ret = 0;
1794 
1795 	spin_lock(&tree->lock);
1796 	/*
1797 	 * this search will find all the extents that end after
1798 	 * our range starts.
1799 	 */
1800 	node = tree_search(tree, start);
1801 	if (!node) {
1802 		ret = -ENOENT;
1803 		goto out;
1804 	}
1805 	state = rb_entry(node, struct extent_state, rb_node);
1806 	if (state->start != start) {
1807 		ret = -ENOENT;
1808 		goto out;
1809 	}
1810 	state->private = private;
1811 out:
1812 	spin_unlock(&tree->lock);
1813 	return ret;
1814 }
1815 
1816 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1817 {
1818 	struct rb_node *node;
1819 	struct extent_state *state;
1820 	int ret = 0;
1821 
1822 	spin_lock(&tree->lock);
1823 	/*
1824 	 * this search will find all the extents that end after
1825 	 * our range starts.
1826 	 */
1827 	node = tree_search(tree, start);
1828 	if (!node) {
1829 		ret = -ENOENT;
1830 		goto out;
1831 	}
1832 	state = rb_entry(node, struct extent_state, rb_node);
1833 	if (state->start != start) {
1834 		ret = -ENOENT;
1835 		goto out;
1836 	}
1837 	*private = state->private;
1838 out:
1839 	spin_unlock(&tree->lock);
1840 	return ret;
1841 }
1842 
1843 /*
1844  * searches a range in the state tree for a given mask.
1845  * If 'filled' == 1, this returns 1 only if every extent in the tree
1846  * has the bits set.  Otherwise, 1 is returned if any bit in the
1847  * range is found set.
1848  */
1849 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1850 		   unsigned long bits, int filled, struct extent_state *cached)
1851 {
1852 	struct extent_state *state = NULL;
1853 	struct rb_node *node;
1854 	int bitset = 0;
1855 
1856 	spin_lock(&tree->lock);
1857 	if (cached && cached->tree && cached->start <= start &&
1858 	    cached->end > start)
1859 		node = &cached->rb_node;
1860 	else
1861 		node = tree_search(tree, start);
1862 	while (node && start <= end) {
1863 		state = rb_entry(node, struct extent_state, rb_node);
1864 
1865 		if (filled && state->start > start) {
1866 			bitset = 0;
1867 			break;
1868 		}
1869 
1870 		if (state->start > end)
1871 			break;
1872 
1873 		if (state->state & bits) {
1874 			bitset = 1;
1875 			if (!filled)
1876 				break;
1877 		} else if (filled) {
1878 			bitset = 0;
1879 			break;
1880 		}
1881 
1882 		if (state->end == (u64)-1)
1883 			break;
1884 
1885 		start = state->end + 1;
1886 		if (start > end)
1887 			break;
1888 		node = rb_next(node);
1889 		if (!node) {
1890 			if (filled)
1891 				bitset = 0;
1892 			break;
1893 		}
1894 	}
1895 	spin_unlock(&tree->lock);
1896 	return bitset;
1897 }
1898 
1899 /*
1900  * helper function to set a given page up to date if all the
1901  * extents in the tree for that page are up to date
1902  */
1903 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1904 {
1905 	u64 start = page_offset(page);
1906 	u64 end = start + PAGE_CACHE_SIZE - 1;
1907 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1908 		SetPageUptodate(page);
1909 }
1910 
1911 /*
1912  * When IO fails, either with EIO or csum verification fails, we
1913  * try other mirrors that might have a good copy of the data.  This
1914  * io_failure_record is used to record state as we go through all the
1915  * mirrors.  If another mirror has good data, the page is set up to date
1916  * and things continue.  If a good mirror can't be found, the original
1917  * bio end_io callback is called to indicate things have failed.
1918  */
1919 struct io_failure_record {
1920 	struct page *page;
1921 	u64 start;
1922 	u64 len;
1923 	u64 logical;
1924 	unsigned long bio_flags;
1925 	int this_mirror;
1926 	int failed_mirror;
1927 	int in_validation;
1928 };
1929 
1930 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1931 				int did_repair)
1932 {
1933 	int ret;
1934 	int err = 0;
1935 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1936 
1937 	set_state_private(failure_tree, rec->start, 0);
1938 	ret = clear_extent_bits(failure_tree, rec->start,
1939 				rec->start + rec->len - 1,
1940 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1941 	if (ret)
1942 		err = ret;
1943 
1944 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1945 				rec->start + rec->len - 1,
1946 				EXTENT_DAMAGED, GFP_NOFS);
1947 	if (ret && !err)
1948 		err = ret;
1949 
1950 	kfree(rec);
1951 	return err;
1952 }
1953 
1954 static void repair_io_failure_callback(struct bio *bio, int err)
1955 {
1956 	complete(bio->bi_private);
1957 }
1958 
1959 /*
1960  * this bypasses the standard btrfs submit functions deliberately, as
1961  * the standard behavior is to write all copies in a raid setup. here we only
1962  * want to write the one bad copy. so we do the mapping for ourselves and issue
1963  * submit_bio directly.
1964  * to avoid any synchronization issues, wait for the data after writing, which
1965  * actually prevents the read that triggered the error from finishing.
1966  * currently, there can be no more than two copies of every data bit. thus,
1967  * exactly one rewrite is required.
1968  */
1969 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1970 			u64 length, u64 logical, struct page *page,
1971 			int mirror_num)
1972 {
1973 	struct bio *bio;
1974 	struct btrfs_device *dev;
1975 	DECLARE_COMPLETION_ONSTACK(compl);
1976 	u64 map_length = 0;
1977 	u64 sector;
1978 	struct btrfs_bio *bbio = NULL;
1979 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1980 	int ret;
1981 
1982 	BUG_ON(!mirror_num);
1983 
1984 	/* we can't repair anything in raid56 yet */
1985 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1986 		return 0;
1987 
1988 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1989 	if (!bio)
1990 		return -EIO;
1991 	bio->bi_private = &compl;
1992 	bio->bi_end_io = repair_io_failure_callback;
1993 	bio->bi_size = 0;
1994 	map_length = length;
1995 
1996 	ret = btrfs_map_block(fs_info, WRITE, logical,
1997 			      &map_length, &bbio, mirror_num);
1998 	if (ret) {
1999 		bio_put(bio);
2000 		return -EIO;
2001 	}
2002 	BUG_ON(mirror_num != bbio->mirror_num);
2003 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2004 	bio->bi_sector = sector;
2005 	dev = bbio->stripes[mirror_num-1].dev;
2006 	kfree(bbio);
2007 	if (!dev || !dev->bdev || !dev->writeable) {
2008 		bio_put(bio);
2009 		return -EIO;
2010 	}
2011 	bio->bi_bdev = dev->bdev;
2012 	bio_add_page(bio, page, length, start - page_offset(page));
2013 	btrfsic_submit_bio(WRITE_SYNC, bio);
2014 	wait_for_completion(&compl);
2015 
2016 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2017 		/* try to remap that extent elsewhere? */
2018 		bio_put(bio);
2019 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2020 		return -EIO;
2021 	}
2022 
2023 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2024 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2025 		      start, rcu_str_deref(dev->name), sector);
2026 
2027 	bio_put(bio);
2028 	return 0;
2029 }
2030 
2031 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2032 			 int mirror_num)
2033 {
2034 	u64 start = eb->start;
2035 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2036 	int ret = 0;
2037 
2038 	for (i = 0; i < num_pages; i++) {
2039 		struct page *p = extent_buffer_page(eb, i);
2040 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2041 					start, p, mirror_num);
2042 		if (ret)
2043 			break;
2044 		start += PAGE_CACHE_SIZE;
2045 	}
2046 
2047 	return ret;
2048 }
2049 
2050 /*
2051  * each time an IO finishes, we do a fast check in the IO failure tree
2052  * to see if we need to process or clean up an io_failure_record
2053  */
2054 static int clean_io_failure(u64 start, struct page *page)
2055 {
2056 	u64 private;
2057 	u64 private_failure;
2058 	struct io_failure_record *failrec;
2059 	struct btrfs_fs_info *fs_info;
2060 	struct extent_state *state;
2061 	int num_copies;
2062 	int did_repair = 0;
2063 	int ret;
2064 	struct inode *inode = page->mapping->host;
2065 
2066 	private = 0;
2067 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2068 				(u64)-1, 1, EXTENT_DIRTY, 0);
2069 	if (!ret)
2070 		return 0;
2071 
2072 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2073 				&private_failure);
2074 	if (ret)
2075 		return 0;
2076 
2077 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2078 	BUG_ON(!failrec->this_mirror);
2079 
2080 	if (failrec->in_validation) {
2081 		/* there was no real error, just free the record */
2082 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2083 			 failrec->start);
2084 		did_repair = 1;
2085 		goto out;
2086 	}
2087 
2088 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2089 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2090 					    failrec->start,
2091 					    EXTENT_LOCKED);
2092 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2093 
2094 	if (state && state->start <= failrec->start &&
2095 	    state->end >= failrec->start + failrec->len - 1) {
2096 		fs_info = BTRFS_I(inode)->root->fs_info;
2097 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2098 					      failrec->len);
2099 		if (num_copies > 1)  {
2100 			ret = repair_io_failure(fs_info, start, failrec->len,
2101 						failrec->logical, page,
2102 						failrec->failed_mirror);
2103 			did_repair = !ret;
2104 		}
2105 		ret = 0;
2106 	}
2107 
2108 out:
2109 	if (!ret)
2110 		ret = free_io_failure(inode, failrec, did_repair);
2111 
2112 	return ret;
2113 }
2114 
2115 /*
2116  * this is a generic handler for readpage errors (default
2117  * readpage_io_failed_hook). if other copies exist, read those and write back
2118  * good data to the failed position. does not investigate in remapping the
2119  * failed extent elsewhere, hoping the device will be smart enough to do this as
2120  * needed
2121  */
2122 
2123 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2124 			      struct page *page, u64 start, u64 end,
2125 			      int failed_mirror)
2126 {
2127 	struct io_failure_record *failrec = NULL;
2128 	u64 private;
2129 	struct extent_map *em;
2130 	struct inode *inode = page->mapping->host;
2131 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2132 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2133 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2134 	struct bio *bio;
2135 	struct btrfs_io_bio *btrfs_failed_bio;
2136 	struct btrfs_io_bio *btrfs_bio;
2137 	int num_copies;
2138 	int ret;
2139 	int read_mode;
2140 	u64 logical;
2141 
2142 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2143 
2144 	ret = get_state_private(failure_tree, start, &private);
2145 	if (ret) {
2146 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2147 		if (!failrec)
2148 			return -ENOMEM;
2149 		failrec->start = start;
2150 		failrec->len = end - start + 1;
2151 		failrec->this_mirror = 0;
2152 		failrec->bio_flags = 0;
2153 		failrec->in_validation = 0;
2154 
2155 		read_lock(&em_tree->lock);
2156 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2157 		if (!em) {
2158 			read_unlock(&em_tree->lock);
2159 			kfree(failrec);
2160 			return -EIO;
2161 		}
2162 
2163 		if (em->start > start || em->start + em->len < start) {
2164 			free_extent_map(em);
2165 			em = NULL;
2166 		}
2167 		read_unlock(&em_tree->lock);
2168 
2169 		if (!em) {
2170 			kfree(failrec);
2171 			return -EIO;
2172 		}
2173 		logical = start - em->start;
2174 		logical = em->block_start + logical;
2175 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2176 			logical = em->block_start;
2177 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2178 			extent_set_compress_type(&failrec->bio_flags,
2179 						 em->compress_type);
2180 		}
2181 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2182 			 "len=%llu\n", logical, start, failrec->len);
2183 		failrec->logical = logical;
2184 		free_extent_map(em);
2185 
2186 		/* set the bits in the private failure tree */
2187 		ret = set_extent_bits(failure_tree, start, end,
2188 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2189 		if (ret >= 0)
2190 			ret = set_state_private(failure_tree, start,
2191 						(u64)(unsigned long)failrec);
2192 		/* set the bits in the inode's tree */
2193 		if (ret >= 0)
2194 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2195 						GFP_NOFS);
2196 		if (ret < 0) {
2197 			kfree(failrec);
2198 			return ret;
2199 		}
2200 	} else {
2201 		failrec = (struct io_failure_record *)(unsigned long)private;
2202 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2203 			 "start=%llu, len=%llu, validation=%d\n",
2204 			 failrec->logical, failrec->start, failrec->len,
2205 			 failrec->in_validation);
2206 		/*
2207 		 * when data can be on disk more than twice, add to failrec here
2208 		 * (e.g. with a list for failed_mirror) to make
2209 		 * clean_io_failure() clean all those errors at once.
2210 		 */
2211 	}
2212 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2213 				      failrec->logical, failrec->len);
2214 	if (num_copies == 1) {
2215 		/*
2216 		 * we only have a single copy of the data, so don't bother with
2217 		 * all the retry and error correction code that follows. no
2218 		 * matter what the error is, it is very likely to persist.
2219 		 */
2220 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2221 			 num_copies, failrec->this_mirror, failed_mirror);
2222 		free_io_failure(inode, failrec, 0);
2223 		return -EIO;
2224 	}
2225 
2226 	/*
2227 	 * there are two premises:
2228 	 *	a) deliver good data to the caller
2229 	 *	b) correct the bad sectors on disk
2230 	 */
2231 	if (failed_bio->bi_vcnt > 1) {
2232 		/*
2233 		 * to fulfill b), we need to know the exact failing sectors, as
2234 		 * we don't want to rewrite any more than the failed ones. thus,
2235 		 * we need separate read requests for the failed bio
2236 		 *
2237 		 * if the following BUG_ON triggers, our validation request got
2238 		 * merged. we need separate requests for our algorithm to work.
2239 		 */
2240 		BUG_ON(failrec->in_validation);
2241 		failrec->in_validation = 1;
2242 		failrec->this_mirror = failed_mirror;
2243 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2244 	} else {
2245 		/*
2246 		 * we're ready to fulfill a) and b) alongside. get a good copy
2247 		 * of the failed sector and if we succeed, we have setup
2248 		 * everything for repair_io_failure to do the rest for us.
2249 		 */
2250 		if (failrec->in_validation) {
2251 			BUG_ON(failrec->this_mirror != failed_mirror);
2252 			failrec->in_validation = 0;
2253 			failrec->this_mirror = 0;
2254 		}
2255 		failrec->failed_mirror = failed_mirror;
2256 		failrec->this_mirror++;
2257 		if (failrec->this_mirror == failed_mirror)
2258 			failrec->this_mirror++;
2259 		read_mode = READ_SYNC;
2260 	}
2261 
2262 	if (failrec->this_mirror > num_copies) {
2263 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2264 			 num_copies, failrec->this_mirror, failed_mirror);
2265 		free_io_failure(inode, failrec, 0);
2266 		return -EIO;
2267 	}
2268 
2269 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2270 	if (!bio) {
2271 		free_io_failure(inode, failrec, 0);
2272 		return -EIO;
2273 	}
2274 	bio->bi_end_io = failed_bio->bi_end_io;
2275 	bio->bi_sector = failrec->logical >> 9;
2276 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2277 	bio->bi_size = 0;
2278 
2279 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2280 	if (btrfs_failed_bio->csum) {
2281 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2282 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2283 
2284 		btrfs_bio = btrfs_io_bio(bio);
2285 		btrfs_bio->csum = btrfs_bio->csum_inline;
2286 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2287 		phy_offset *= csum_size;
2288 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2289 		       csum_size);
2290 	}
2291 
2292 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2293 
2294 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2295 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2296 		 failrec->this_mirror, num_copies, failrec->in_validation);
2297 
2298 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2299 					 failrec->this_mirror,
2300 					 failrec->bio_flags, 0);
2301 	return ret;
2302 }
2303 
2304 /* lots and lots of room for performance fixes in the end_bio funcs */
2305 
2306 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2307 {
2308 	int uptodate = (err == 0);
2309 	struct extent_io_tree *tree;
2310 	int ret;
2311 
2312 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2313 
2314 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2315 		ret = tree->ops->writepage_end_io_hook(page, start,
2316 					       end, NULL, uptodate);
2317 		if (ret)
2318 			uptodate = 0;
2319 	}
2320 
2321 	if (!uptodate) {
2322 		ClearPageUptodate(page);
2323 		SetPageError(page);
2324 	}
2325 	return 0;
2326 }
2327 
2328 /*
2329  * after a writepage IO is done, we need to:
2330  * clear the uptodate bits on error
2331  * clear the writeback bits in the extent tree for this IO
2332  * end_page_writeback if the page has no more pending IO
2333  *
2334  * Scheduling is not allowed, so the extent state tree is expected
2335  * to have one and only one object corresponding to this IO.
2336  */
2337 static void end_bio_extent_writepage(struct bio *bio, int err)
2338 {
2339 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2340 	struct extent_io_tree *tree;
2341 	u64 start;
2342 	u64 end;
2343 
2344 	do {
2345 		struct page *page = bvec->bv_page;
2346 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2347 
2348 		/* We always issue full-page reads, but if some block
2349 		 * in a page fails to read, blk_update_request() will
2350 		 * advance bv_offset and adjust bv_len to compensate.
2351 		 * Print a warning for nonzero offsets, and an error
2352 		 * if they don't add up to a full page.  */
2353 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2354 			printk("%s page write in btrfs with offset %u and length %u\n",
2355 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2356 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2357 			       bvec->bv_offset, bvec->bv_len);
2358 
2359 		start = page_offset(page);
2360 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2361 
2362 		if (--bvec >= bio->bi_io_vec)
2363 			prefetchw(&bvec->bv_page->flags);
2364 
2365 		if (end_extent_writepage(page, err, start, end))
2366 			continue;
2367 
2368 		end_page_writeback(page);
2369 	} while (bvec >= bio->bi_io_vec);
2370 
2371 	bio_put(bio);
2372 }
2373 
2374 static void
2375 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2376 			      int uptodate)
2377 {
2378 	struct extent_state *cached = NULL;
2379 	u64 end = start + len - 1;
2380 
2381 	if (uptodate && tree->track_uptodate)
2382 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2383 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2384 }
2385 
2386 /*
2387  * after a readpage IO is done, we need to:
2388  * clear the uptodate bits on error
2389  * set the uptodate bits if things worked
2390  * set the page up to date if all extents in the tree are uptodate
2391  * clear the lock bit in the extent tree
2392  * unlock the page if there are no other extents locked for it
2393  *
2394  * Scheduling is not allowed, so the extent state tree is expected
2395  * to have one and only one object corresponding to this IO.
2396  */
2397 static void end_bio_extent_readpage(struct bio *bio, int err)
2398 {
2399 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2400 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2401 	struct bio_vec *bvec = bio->bi_io_vec;
2402 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2403 	struct extent_io_tree *tree;
2404 	u64 offset = 0;
2405 	u64 start;
2406 	u64 end;
2407 	u64 len;
2408 	u64 extent_start = 0;
2409 	u64 extent_len = 0;
2410 	int mirror;
2411 	int ret;
2412 
2413 	if (err)
2414 		uptodate = 0;
2415 
2416 	do {
2417 		struct page *page = bvec->bv_page;
2418 		struct inode *inode = page->mapping->host;
2419 
2420 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2421 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2422 			 io_bio->mirror_num);
2423 		tree = &BTRFS_I(inode)->io_tree;
2424 
2425 		/* We always issue full-page reads, but if some block
2426 		 * in a page fails to read, blk_update_request() will
2427 		 * advance bv_offset and adjust bv_len to compensate.
2428 		 * Print a warning for nonzero offsets, and an error
2429 		 * if they don't add up to a full page.  */
2430 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2431 			printk("%s page read in btrfs with offset %u and length %u\n",
2432 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2433 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2434 			       bvec->bv_offset, bvec->bv_len);
2435 
2436 		start = page_offset(page);
2437 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2438 		len = bvec->bv_len;
2439 
2440 		if (++bvec <= bvec_end)
2441 			prefetchw(&bvec->bv_page->flags);
2442 
2443 		mirror = io_bio->mirror_num;
2444 		if (likely(uptodate && tree->ops &&
2445 			   tree->ops->readpage_end_io_hook)) {
2446 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2447 							      page, start, end,
2448 							      mirror);
2449 			if (ret)
2450 				uptodate = 0;
2451 			else
2452 				clean_io_failure(start, page);
2453 		}
2454 
2455 		if (likely(uptodate))
2456 			goto readpage_ok;
2457 
2458 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2459 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2460 			if (!ret && !err &&
2461 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2462 				uptodate = 1;
2463 		} else {
2464 			/*
2465 			 * The generic bio_readpage_error handles errors the
2466 			 * following way: If possible, new read requests are
2467 			 * created and submitted and will end up in
2468 			 * end_bio_extent_readpage as well (if we're lucky, not
2469 			 * in the !uptodate case). In that case it returns 0 and
2470 			 * we just go on with the next page in our bio. If it
2471 			 * can't handle the error it will return -EIO and we
2472 			 * remain responsible for that page.
2473 			 */
2474 			ret = bio_readpage_error(bio, offset, page, start, end,
2475 						 mirror);
2476 			if (ret == 0) {
2477 				uptodate =
2478 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2479 				if (err)
2480 					uptodate = 0;
2481 				continue;
2482 			}
2483 		}
2484 readpage_ok:
2485 		if (likely(uptodate)) {
2486 			loff_t i_size = i_size_read(inode);
2487 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2488 			unsigned offset;
2489 
2490 			/* Zero out the end if this page straddles i_size */
2491 			offset = i_size & (PAGE_CACHE_SIZE-1);
2492 			if (page->index == end_index && offset)
2493 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2494 			SetPageUptodate(page);
2495 		} else {
2496 			ClearPageUptodate(page);
2497 			SetPageError(page);
2498 		}
2499 		unlock_page(page);
2500 		offset += len;
2501 
2502 		if (unlikely(!uptodate)) {
2503 			if (extent_len) {
2504 				endio_readpage_release_extent(tree,
2505 							      extent_start,
2506 							      extent_len, 1);
2507 				extent_start = 0;
2508 				extent_len = 0;
2509 			}
2510 			endio_readpage_release_extent(tree, start,
2511 						      end - start + 1, 0);
2512 		} else if (!extent_len) {
2513 			extent_start = start;
2514 			extent_len = end + 1 - start;
2515 		} else if (extent_start + extent_len == start) {
2516 			extent_len += end + 1 - start;
2517 		} else {
2518 			endio_readpage_release_extent(tree, extent_start,
2519 						      extent_len, uptodate);
2520 			extent_start = start;
2521 			extent_len = end + 1 - start;
2522 		}
2523 	} while (bvec <= bvec_end);
2524 
2525 	if (extent_len)
2526 		endio_readpage_release_extent(tree, extent_start, extent_len,
2527 					      uptodate);
2528 	if (io_bio->end_io)
2529 		io_bio->end_io(io_bio, err);
2530 	bio_put(bio);
2531 }
2532 
2533 /*
2534  * this allocates from the btrfs_bioset.  We're returning a bio right now
2535  * but you can call btrfs_io_bio for the appropriate container_of magic
2536  */
2537 struct bio *
2538 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2539 		gfp_t gfp_flags)
2540 {
2541 	struct btrfs_io_bio *btrfs_bio;
2542 	struct bio *bio;
2543 
2544 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2545 
2546 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2547 		while (!bio && (nr_vecs /= 2)) {
2548 			bio = bio_alloc_bioset(gfp_flags,
2549 					       nr_vecs, btrfs_bioset);
2550 		}
2551 	}
2552 
2553 	if (bio) {
2554 		bio->bi_size = 0;
2555 		bio->bi_bdev = bdev;
2556 		bio->bi_sector = first_sector;
2557 		btrfs_bio = btrfs_io_bio(bio);
2558 		btrfs_bio->csum = NULL;
2559 		btrfs_bio->csum_allocated = NULL;
2560 		btrfs_bio->end_io = NULL;
2561 	}
2562 	return bio;
2563 }
2564 
2565 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2566 {
2567 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2568 }
2569 
2570 
2571 /* this also allocates from the btrfs_bioset */
2572 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2573 {
2574 	struct btrfs_io_bio *btrfs_bio;
2575 	struct bio *bio;
2576 
2577 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2578 	if (bio) {
2579 		btrfs_bio = btrfs_io_bio(bio);
2580 		btrfs_bio->csum = NULL;
2581 		btrfs_bio->csum_allocated = NULL;
2582 		btrfs_bio->end_io = NULL;
2583 	}
2584 	return bio;
2585 }
2586 
2587 
2588 static int __must_check submit_one_bio(int rw, struct bio *bio,
2589 				       int mirror_num, unsigned long bio_flags)
2590 {
2591 	int ret = 0;
2592 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2593 	struct page *page = bvec->bv_page;
2594 	struct extent_io_tree *tree = bio->bi_private;
2595 	u64 start;
2596 
2597 	start = page_offset(page) + bvec->bv_offset;
2598 
2599 	bio->bi_private = NULL;
2600 
2601 	bio_get(bio);
2602 
2603 	if (tree->ops && tree->ops->submit_bio_hook)
2604 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2605 					   mirror_num, bio_flags, start);
2606 	else
2607 		btrfsic_submit_bio(rw, bio);
2608 
2609 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2610 		ret = -EOPNOTSUPP;
2611 	bio_put(bio);
2612 	return ret;
2613 }
2614 
2615 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2616 		     unsigned long offset, size_t size, struct bio *bio,
2617 		     unsigned long bio_flags)
2618 {
2619 	int ret = 0;
2620 	if (tree->ops && tree->ops->merge_bio_hook)
2621 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2622 						bio_flags);
2623 	BUG_ON(ret < 0);
2624 	return ret;
2625 
2626 }
2627 
2628 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2629 			      struct page *page, sector_t sector,
2630 			      size_t size, unsigned long offset,
2631 			      struct block_device *bdev,
2632 			      struct bio **bio_ret,
2633 			      unsigned long max_pages,
2634 			      bio_end_io_t end_io_func,
2635 			      int mirror_num,
2636 			      unsigned long prev_bio_flags,
2637 			      unsigned long bio_flags)
2638 {
2639 	int ret = 0;
2640 	struct bio *bio;
2641 	int nr;
2642 	int contig = 0;
2643 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2644 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2645 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2646 
2647 	if (bio_ret && *bio_ret) {
2648 		bio = *bio_ret;
2649 		if (old_compressed)
2650 			contig = bio->bi_sector == sector;
2651 		else
2652 			contig = bio_end_sector(bio) == sector;
2653 
2654 		if (prev_bio_flags != bio_flags || !contig ||
2655 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2656 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2657 			ret = submit_one_bio(rw, bio, mirror_num,
2658 					     prev_bio_flags);
2659 			if (ret < 0)
2660 				return ret;
2661 			bio = NULL;
2662 		} else {
2663 			return 0;
2664 		}
2665 	}
2666 	if (this_compressed)
2667 		nr = BIO_MAX_PAGES;
2668 	else
2669 		nr = bio_get_nr_vecs(bdev);
2670 
2671 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2672 	if (!bio)
2673 		return -ENOMEM;
2674 
2675 	bio_add_page(bio, page, page_size, offset);
2676 	bio->bi_end_io = end_io_func;
2677 	bio->bi_private = tree;
2678 
2679 	if (bio_ret)
2680 		*bio_ret = bio;
2681 	else
2682 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2683 
2684 	return ret;
2685 }
2686 
2687 static void attach_extent_buffer_page(struct extent_buffer *eb,
2688 				      struct page *page)
2689 {
2690 	if (!PagePrivate(page)) {
2691 		SetPagePrivate(page);
2692 		page_cache_get(page);
2693 		set_page_private(page, (unsigned long)eb);
2694 	} else {
2695 		WARN_ON(page->private != (unsigned long)eb);
2696 	}
2697 }
2698 
2699 void set_page_extent_mapped(struct page *page)
2700 {
2701 	if (!PagePrivate(page)) {
2702 		SetPagePrivate(page);
2703 		page_cache_get(page);
2704 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2705 	}
2706 }
2707 
2708 static struct extent_map *
2709 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2710 		 u64 start, u64 len, get_extent_t *get_extent,
2711 		 struct extent_map **em_cached)
2712 {
2713 	struct extent_map *em;
2714 
2715 	if (em_cached && *em_cached) {
2716 		em = *em_cached;
2717 		if (em->in_tree && start >= em->start &&
2718 		    start < extent_map_end(em)) {
2719 			atomic_inc(&em->refs);
2720 			return em;
2721 		}
2722 
2723 		free_extent_map(em);
2724 		*em_cached = NULL;
2725 	}
2726 
2727 	em = get_extent(inode, page, pg_offset, start, len, 0);
2728 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2729 		BUG_ON(*em_cached);
2730 		atomic_inc(&em->refs);
2731 		*em_cached = em;
2732 	}
2733 	return em;
2734 }
2735 /*
2736  * basic readpage implementation.  Locked extent state structs are inserted
2737  * into the tree that are removed when the IO is done (by the end_io
2738  * handlers)
2739  * XXX JDM: This needs looking at to ensure proper page locking
2740  */
2741 static int __do_readpage(struct extent_io_tree *tree,
2742 			 struct page *page,
2743 			 get_extent_t *get_extent,
2744 			 struct extent_map **em_cached,
2745 			 struct bio **bio, int mirror_num,
2746 			 unsigned long *bio_flags, int rw)
2747 {
2748 	struct inode *inode = page->mapping->host;
2749 	u64 start = page_offset(page);
2750 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2751 	u64 end;
2752 	u64 cur = start;
2753 	u64 extent_offset;
2754 	u64 last_byte = i_size_read(inode);
2755 	u64 block_start;
2756 	u64 cur_end;
2757 	sector_t sector;
2758 	struct extent_map *em;
2759 	struct block_device *bdev;
2760 	int ret;
2761 	int nr = 0;
2762 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2763 	size_t pg_offset = 0;
2764 	size_t iosize;
2765 	size_t disk_io_size;
2766 	size_t blocksize = inode->i_sb->s_blocksize;
2767 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2768 
2769 	set_page_extent_mapped(page);
2770 
2771 	end = page_end;
2772 	if (!PageUptodate(page)) {
2773 		if (cleancache_get_page(page) == 0) {
2774 			BUG_ON(blocksize != PAGE_SIZE);
2775 			unlock_extent(tree, start, end);
2776 			goto out;
2777 		}
2778 	}
2779 
2780 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2781 		char *userpage;
2782 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2783 
2784 		if (zero_offset) {
2785 			iosize = PAGE_CACHE_SIZE - zero_offset;
2786 			userpage = kmap_atomic(page);
2787 			memset(userpage + zero_offset, 0, iosize);
2788 			flush_dcache_page(page);
2789 			kunmap_atomic(userpage);
2790 		}
2791 	}
2792 	while (cur <= end) {
2793 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2794 
2795 		if (cur >= last_byte) {
2796 			char *userpage;
2797 			struct extent_state *cached = NULL;
2798 
2799 			iosize = PAGE_CACHE_SIZE - pg_offset;
2800 			userpage = kmap_atomic(page);
2801 			memset(userpage + pg_offset, 0, iosize);
2802 			flush_dcache_page(page);
2803 			kunmap_atomic(userpage);
2804 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2805 					    &cached, GFP_NOFS);
2806 			if (!parent_locked)
2807 				unlock_extent_cached(tree, cur,
2808 						     cur + iosize - 1,
2809 						     &cached, GFP_NOFS);
2810 			break;
2811 		}
2812 		em = __get_extent_map(inode, page, pg_offset, cur,
2813 				      end - cur + 1, get_extent, em_cached);
2814 		if (IS_ERR_OR_NULL(em)) {
2815 			SetPageError(page);
2816 			if (!parent_locked)
2817 				unlock_extent(tree, cur, end);
2818 			break;
2819 		}
2820 		extent_offset = cur - em->start;
2821 		BUG_ON(extent_map_end(em) <= cur);
2822 		BUG_ON(end < cur);
2823 
2824 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2825 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2826 			extent_set_compress_type(&this_bio_flag,
2827 						 em->compress_type);
2828 		}
2829 
2830 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2831 		cur_end = min(extent_map_end(em) - 1, end);
2832 		iosize = ALIGN(iosize, blocksize);
2833 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2834 			disk_io_size = em->block_len;
2835 			sector = em->block_start >> 9;
2836 		} else {
2837 			sector = (em->block_start + extent_offset) >> 9;
2838 			disk_io_size = iosize;
2839 		}
2840 		bdev = em->bdev;
2841 		block_start = em->block_start;
2842 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2843 			block_start = EXTENT_MAP_HOLE;
2844 		free_extent_map(em);
2845 		em = NULL;
2846 
2847 		/* we've found a hole, just zero and go on */
2848 		if (block_start == EXTENT_MAP_HOLE) {
2849 			char *userpage;
2850 			struct extent_state *cached = NULL;
2851 
2852 			userpage = kmap_atomic(page);
2853 			memset(userpage + pg_offset, 0, iosize);
2854 			flush_dcache_page(page);
2855 			kunmap_atomic(userpage);
2856 
2857 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2858 					    &cached, GFP_NOFS);
2859 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2860 			                     &cached, GFP_NOFS);
2861 			cur = cur + iosize;
2862 			pg_offset += iosize;
2863 			continue;
2864 		}
2865 		/* the get_extent function already copied into the page */
2866 		if (test_range_bit(tree, cur, cur_end,
2867 				   EXTENT_UPTODATE, 1, NULL)) {
2868 			check_page_uptodate(tree, page);
2869 			if (!parent_locked)
2870 				unlock_extent(tree, cur, cur + iosize - 1);
2871 			cur = cur + iosize;
2872 			pg_offset += iosize;
2873 			continue;
2874 		}
2875 		/* we have an inline extent but it didn't get marked up
2876 		 * to date.  Error out
2877 		 */
2878 		if (block_start == EXTENT_MAP_INLINE) {
2879 			SetPageError(page);
2880 			if (!parent_locked)
2881 				unlock_extent(tree, cur, cur + iosize - 1);
2882 			cur = cur + iosize;
2883 			pg_offset += iosize;
2884 			continue;
2885 		}
2886 
2887 		pnr -= page->index;
2888 		ret = submit_extent_page(rw, tree, page,
2889 					 sector, disk_io_size, pg_offset,
2890 					 bdev, bio, pnr,
2891 					 end_bio_extent_readpage, mirror_num,
2892 					 *bio_flags,
2893 					 this_bio_flag);
2894 		if (!ret) {
2895 			nr++;
2896 			*bio_flags = this_bio_flag;
2897 		} else {
2898 			SetPageError(page);
2899 			if (!parent_locked)
2900 				unlock_extent(tree, cur, cur + iosize - 1);
2901 		}
2902 		cur = cur + iosize;
2903 		pg_offset += iosize;
2904 	}
2905 out:
2906 	if (!nr) {
2907 		if (!PageError(page))
2908 			SetPageUptodate(page);
2909 		unlock_page(page);
2910 	}
2911 	return 0;
2912 }
2913 
2914 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2915 					     struct page *pages[], int nr_pages,
2916 					     u64 start, u64 end,
2917 					     get_extent_t *get_extent,
2918 					     struct extent_map **em_cached,
2919 					     struct bio **bio, int mirror_num,
2920 					     unsigned long *bio_flags, int rw)
2921 {
2922 	struct inode *inode;
2923 	struct btrfs_ordered_extent *ordered;
2924 	int index;
2925 
2926 	inode = pages[0]->mapping->host;
2927 	while (1) {
2928 		lock_extent(tree, start, end);
2929 		ordered = btrfs_lookup_ordered_range(inode, start,
2930 						     end - start + 1);
2931 		if (!ordered)
2932 			break;
2933 		unlock_extent(tree, start, end);
2934 		btrfs_start_ordered_extent(inode, ordered, 1);
2935 		btrfs_put_ordered_extent(ordered);
2936 	}
2937 
2938 	for (index = 0; index < nr_pages; index++) {
2939 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2940 			      mirror_num, bio_flags, rw);
2941 		page_cache_release(pages[index]);
2942 	}
2943 }
2944 
2945 static void __extent_readpages(struct extent_io_tree *tree,
2946 			       struct page *pages[],
2947 			       int nr_pages, get_extent_t *get_extent,
2948 			       struct extent_map **em_cached,
2949 			       struct bio **bio, int mirror_num,
2950 			       unsigned long *bio_flags, int rw)
2951 {
2952 	u64 start = 0;
2953 	u64 end = 0;
2954 	u64 page_start;
2955 	int index;
2956 	int first_index = 0;
2957 
2958 	for (index = 0; index < nr_pages; index++) {
2959 		page_start = page_offset(pages[index]);
2960 		if (!end) {
2961 			start = page_start;
2962 			end = start + PAGE_CACHE_SIZE - 1;
2963 			first_index = index;
2964 		} else if (end + 1 == page_start) {
2965 			end += PAGE_CACHE_SIZE;
2966 		} else {
2967 			__do_contiguous_readpages(tree, &pages[first_index],
2968 						  index - first_index, start,
2969 						  end, get_extent, em_cached,
2970 						  bio, mirror_num, bio_flags,
2971 						  rw);
2972 			start = page_start;
2973 			end = start + PAGE_CACHE_SIZE - 1;
2974 			first_index = index;
2975 		}
2976 	}
2977 
2978 	if (end)
2979 		__do_contiguous_readpages(tree, &pages[first_index],
2980 					  index - first_index, start,
2981 					  end, get_extent, em_cached, bio,
2982 					  mirror_num, bio_flags, rw);
2983 }
2984 
2985 static int __extent_read_full_page(struct extent_io_tree *tree,
2986 				   struct page *page,
2987 				   get_extent_t *get_extent,
2988 				   struct bio **bio, int mirror_num,
2989 				   unsigned long *bio_flags, int rw)
2990 {
2991 	struct inode *inode = page->mapping->host;
2992 	struct btrfs_ordered_extent *ordered;
2993 	u64 start = page_offset(page);
2994 	u64 end = start + PAGE_CACHE_SIZE - 1;
2995 	int ret;
2996 
2997 	while (1) {
2998 		lock_extent(tree, start, end);
2999 		ordered = btrfs_lookup_ordered_extent(inode, start);
3000 		if (!ordered)
3001 			break;
3002 		unlock_extent(tree, start, end);
3003 		btrfs_start_ordered_extent(inode, ordered, 1);
3004 		btrfs_put_ordered_extent(ordered);
3005 	}
3006 
3007 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3008 			    bio_flags, rw);
3009 	return ret;
3010 }
3011 
3012 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3013 			    get_extent_t *get_extent, int mirror_num)
3014 {
3015 	struct bio *bio = NULL;
3016 	unsigned long bio_flags = 0;
3017 	int ret;
3018 
3019 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3020 				      &bio_flags, READ);
3021 	if (bio)
3022 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3023 	return ret;
3024 }
3025 
3026 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3027 				 get_extent_t *get_extent, int mirror_num)
3028 {
3029 	struct bio *bio = NULL;
3030 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3031 	int ret;
3032 
3033 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3034 				      &bio_flags, READ);
3035 	if (bio)
3036 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3037 	return ret;
3038 }
3039 
3040 static noinline void update_nr_written(struct page *page,
3041 				      struct writeback_control *wbc,
3042 				      unsigned long nr_written)
3043 {
3044 	wbc->nr_to_write -= nr_written;
3045 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3046 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3047 		page->mapping->writeback_index = page->index + nr_written;
3048 }
3049 
3050 /*
3051  * the writepage semantics are similar to regular writepage.  extent
3052  * records are inserted to lock ranges in the tree, and as dirty areas
3053  * are found, they are marked writeback.  Then the lock bits are removed
3054  * and the end_io handler clears the writeback ranges
3055  */
3056 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3057 			      void *data)
3058 {
3059 	struct inode *inode = page->mapping->host;
3060 	struct extent_page_data *epd = data;
3061 	struct extent_io_tree *tree = epd->tree;
3062 	u64 start = page_offset(page);
3063 	u64 delalloc_start;
3064 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3065 	u64 end;
3066 	u64 cur = start;
3067 	u64 extent_offset;
3068 	u64 last_byte = i_size_read(inode);
3069 	u64 block_start;
3070 	u64 iosize;
3071 	sector_t sector;
3072 	struct extent_state *cached_state = NULL;
3073 	struct extent_map *em;
3074 	struct block_device *bdev;
3075 	int ret;
3076 	int nr = 0;
3077 	size_t pg_offset = 0;
3078 	size_t blocksize;
3079 	loff_t i_size = i_size_read(inode);
3080 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3081 	u64 nr_delalloc;
3082 	u64 delalloc_end;
3083 	int page_started;
3084 	int compressed;
3085 	int write_flags;
3086 	unsigned long nr_written = 0;
3087 	bool fill_delalloc = true;
3088 
3089 	if (wbc->sync_mode == WB_SYNC_ALL)
3090 		write_flags = WRITE_SYNC;
3091 	else
3092 		write_flags = WRITE;
3093 
3094 	trace___extent_writepage(page, inode, wbc);
3095 
3096 	WARN_ON(!PageLocked(page));
3097 
3098 	ClearPageError(page);
3099 
3100 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3101 	if (page->index > end_index ||
3102 	   (page->index == end_index && !pg_offset)) {
3103 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3104 		unlock_page(page);
3105 		return 0;
3106 	}
3107 
3108 	if (page->index == end_index) {
3109 		char *userpage;
3110 
3111 		userpage = kmap_atomic(page);
3112 		memset(userpage + pg_offset, 0,
3113 		       PAGE_CACHE_SIZE - pg_offset);
3114 		kunmap_atomic(userpage);
3115 		flush_dcache_page(page);
3116 	}
3117 	pg_offset = 0;
3118 
3119 	set_page_extent_mapped(page);
3120 
3121 	if (!tree->ops || !tree->ops->fill_delalloc)
3122 		fill_delalloc = false;
3123 
3124 	delalloc_start = start;
3125 	delalloc_end = 0;
3126 	page_started = 0;
3127 	if (!epd->extent_locked && fill_delalloc) {
3128 		u64 delalloc_to_write = 0;
3129 		/*
3130 		 * make sure the wbc mapping index is at least updated
3131 		 * to this page.
3132 		 */
3133 		update_nr_written(page, wbc, 0);
3134 
3135 		while (delalloc_end < page_end) {
3136 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3137 						       page,
3138 						       &delalloc_start,
3139 						       &delalloc_end,
3140 						       128 * 1024 * 1024);
3141 			if (nr_delalloc == 0) {
3142 				delalloc_start = delalloc_end + 1;
3143 				continue;
3144 			}
3145 			ret = tree->ops->fill_delalloc(inode, page,
3146 						       delalloc_start,
3147 						       delalloc_end,
3148 						       &page_started,
3149 						       &nr_written);
3150 			/* File system has been set read-only */
3151 			if (ret) {
3152 				SetPageError(page);
3153 				goto done;
3154 			}
3155 			/*
3156 			 * delalloc_end is already one less than the total
3157 			 * length, so we don't subtract one from
3158 			 * PAGE_CACHE_SIZE
3159 			 */
3160 			delalloc_to_write += (delalloc_end - delalloc_start +
3161 					      PAGE_CACHE_SIZE) >>
3162 					      PAGE_CACHE_SHIFT;
3163 			delalloc_start = delalloc_end + 1;
3164 		}
3165 		if (wbc->nr_to_write < delalloc_to_write) {
3166 			int thresh = 8192;
3167 
3168 			if (delalloc_to_write < thresh * 2)
3169 				thresh = delalloc_to_write;
3170 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3171 						 thresh);
3172 		}
3173 
3174 		/* did the fill delalloc function already unlock and start
3175 		 * the IO?
3176 		 */
3177 		if (page_started) {
3178 			ret = 0;
3179 			/*
3180 			 * we've unlocked the page, so we can't update
3181 			 * the mapping's writeback index, just update
3182 			 * nr_to_write.
3183 			 */
3184 			wbc->nr_to_write -= nr_written;
3185 			goto done_unlocked;
3186 		}
3187 	}
3188 	if (tree->ops && tree->ops->writepage_start_hook) {
3189 		ret = tree->ops->writepage_start_hook(page, start,
3190 						      page_end);
3191 		if (ret) {
3192 			/* Fixup worker will requeue */
3193 			if (ret == -EBUSY)
3194 				wbc->pages_skipped++;
3195 			else
3196 				redirty_page_for_writepage(wbc, page);
3197 			update_nr_written(page, wbc, nr_written);
3198 			unlock_page(page);
3199 			ret = 0;
3200 			goto done_unlocked;
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * we don't want to touch the inode after unlocking the page,
3206 	 * so we update the mapping writeback index now
3207 	 */
3208 	update_nr_written(page, wbc, nr_written + 1);
3209 
3210 	end = page_end;
3211 	if (last_byte <= start) {
3212 		if (tree->ops && tree->ops->writepage_end_io_hook)
3213 			tree->ops->writepage_end_io_hook(page, start,
3214 							 page_end, NULL, 1);
3215 		goto done;
3216 	}
3217 
3218 	blocksize = inode->i_sb->s_blocksize;
3219 
3220 	while (cur <= end) {
3221 		if (cur >= last_byte) {
3222 			if (tree->ops && tree->ops->writepage_end_io_hook)
3223 				tree->ops->writepage_end_io_hook(page, cur,
3224 							 page_end, NULL, 1);
3225 			break;
3226 		}
3227 		em = epd->get_extent(inode, page, pg_offset, cur,
3228 				     end - cur + 1, 1);
3229 		if (IS_ERR_OR_NULL(em)) {
3230 			SetPageError(page);
3231 			break;
3232 		}
3233 
3234 		extent_offset = cur - em->start;
3235 		BUG_ON(extent_map_end(em) <= cur);
3236 		BUG_ON(end < cur);
3237 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3238 		iosize = ALIGN(iosize, blocksize);
3239 		sector = (em->block_start + extent_offset) >> 9;
3240 		bdev = em->bdev;
3241 		block_start = em->block_start;
3242 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3243 		free_extent_map(em);
3244 		em = NULL;
3245 
3246 		/*
3247 		 * compressed and inline extents are written through other
3248 		 * paths in the FS
3249 		 */
3250 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3251 		    block_start == EXTENT_MAP_INLINE) {
3252 			/*
3253 			 * end_io notification does not happen here for
3254 			 * compressed extents
3255 			 */
3256 			if (!compressed && tree->ops &&
3257 			    tree->ops->writepage_end_io_hook)
3258 				tree->ops->writepage_end_io_hook(page, cur,
3259 							 cur + iosize - 1,
3260 							 NULL, 1);
3261 			else if (compressed) {
3262 				/* we don't want to end_page_writeback on
3263 				 * a compressed extent.  this happens
3264 				 * elsewhere
3265 				 */
3266 				nr++;
3267 			}
3268 
3269 			cur += iosize;
3270 			pg_offset += iosize;
3271 			continue;
3272 		}
3273 		/* leave this out until we have a page_mkwrite call */
3274 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3275 				   EXTENT_DIRTY, 0, NULL)) {
3276 			cur = cur + iosize;
3277 			pg_offset += iosize;
3278 			continue;
3279 		}
3280 
3281 		if (tree->ops && tree->ops->writepage_io_hook) {
3282 			ret = tree->ops->writepage_io_hook(page, cur,
3283 						cur + iosize - 1);
3284 		} else {
3285 			ret = 0;
3286 		}
3287 		if (ret) {
3288 			SetPageError(page);
3289 		} else {
3290 			unsigned long max_nr = end_index + 1;
3291 
3292 			set_range_writeback(tree, cur, cur + iosize - 1);
3293 			if (!PageWriteback(page)) {
3294 				printk(KERN_ERR "btrfs warning page %lu not "
3295 				       "writeback, cur %llu end %llu\n",
3296 				       page->index, cur, end);
3297 			}
3298 
3299 			ret = submit_extent_page(write_flags, tree, page,
3300 						 sector, iosize, pg_offset,
3301 						 bdev, &epd->bio, max_nr,
3302 						 end_bio_extent_writepage,
3303 						 0, 0, 0);
3304 			if (ret)
3305 				SetPageError(page);
3306 		}
3307 		cur = cur + iosize;
3308 		pg_offset += iosize;
3309 		nr++;
3310 	}
3311 done:
3312 	if (nr == 0) {
3313 		/* make sure the mapping tag for page dirty gets cleared */
3314 		set_page_writeback(page);
3315 		end_page_writeback(page);
3316 	}
3317 	unlock_page(page);
3318 
3319 done_unlocked:
3320 
3321 	/* drop our reference on any cached states */
3322 	free_extent_state(cached_state);
3323 	return 0;
3324 }
3325 
3326 static int eb_wait(void *word)
3327 {
3328 	io_schedule();
3329 	return 0;
3330 }
3331 
3332 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3333 {
3334 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3335 		    TASK_UNINTERRUPTIBLE);
3336 }
3337 
3338 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3339 				     struct btrfs_fs_info *fs_info,
3340 				     struct extent_page_data *epd)
3341 {
3342 	unsigned long i, num_pages;
3343 	int flush = 0;
3344 	int ret = 0;
3345 
3346 	if (!btrfs_try_tree_write_lock(eb)) {
3347 		flush = 1;
3348 		flush_write_bio(epd);
3349 		btrfs_tree_lock(eb);
3350 	}
3351 
3352 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3353 		btrfs_tree_unlock(eb);
3354 		if (!epd->sync_io)
3355 			return 0;
3356 		if (!flush) {
3357 			flush_write_bio(epd);
3358 			flush = 1;
3359 		}
3360 		while (1) {
3361 			wait_on_extent_buffer_writeback(eb);
3362 			btrfs_tree_lock(eb);
3363 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3364 				break;
3365 			btrfs_tree_unlock(eb);
3366 		}
3367 	}
3368 
3369 	/*
3370 	 * We need to do this to prevent races in people who check if the eb is
3371 	 * under IO since we can end up having no IO bits set for a short period
3372 	 * of time.
3373 	 */
3374 	spin_lock(&eb->refs_lock);
3375 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3376 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3377 		spin_unlock(&eb->refs_lock);
3378 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3379 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3380 				     -eb->len,
3381 				     fs_info->dirty_metadata_batch);
3382 		ret = 1;
3383 	} else {
3384 		spin_unlock(&eb->refs_lock);
3385 	}
3386 
3387 	btrfs_tree_unlock(eb);
3388 
3389 	if (!ret)
3390 		return ret;
3391 
3392 	num_pages = num_extent_pages(eb->start, eb->len);
3393 	for (i = 0; i < num_pages; i++) {
3394 		struct page *p = extent_buffer_page(eb, i);
3395 
3396 		if (!trylock_page(p)) {
3397 			if (!flush) {
3398 				flush_write_bio(epd);
3399 				flush = 1;
3400 			}
3401 			lock_page(p);
3402 		}
3403 	}
3404 
3405 	return ret;
3406 }
3407 
3408 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3409 {
3410 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3411 	smp_mb__after_clear_bit();
3412 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3413 }
3414 
3415 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3416 {
3417 	int uptodate = err == 0;
3418 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3419 	struct extent_buffer *eb;
3420 	int done;
3421 
3422 	do {
3423 		struct page *page = bvec->bv_page;
3424 
3425 		bvec--;
3426 		eb = (struct extent_buffer *)page->private;
3427 		BUG_ON(!eb);
3428 		done = atomic_dec_and_test(&eb->io_pages);
3429 
3430 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3431 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3432 			ClearPageUptodate(page);
3433 			SetPageError(page);
3434 		}
3435 
3436 		end_page_writeback(page);
3437 
3438 		if (!done)
3439 			continue;
3440 
3441 		end_extent_buffer_writeback(eb);
3442 	} while (bvec >= bio->bi_io_vec);
3443 
3444 	bio_put(bio);
3445 
3446 }
3447 
3448 static int write_one_eb(struct extent_buffer *eb,
3449 			struct btrfs_fs_info *fs_info,
3450 			struct writeback_control *wbc,
3451 			struct extent_page_data *epd)
3452 {
3453 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3454 	u64 offset = eb->start;
3455 	unsigned long i, num_pages;
3456 	unsigned long bio_flags = 0;
3457 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3458 	int ret = 0;
3459 
3460 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3461 	num_pages = num_extent_pages(eb->start, eb->len);
3462 	atomic_set(&eb->io_pages, num_pages);
3463 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3464 		bio_flags = EXTENT_BIO_TREE_LOG;
3465 
3466 	for (i = 0; i < num_pages; i++) {
3467 		struct page *p = extent_buffer_page(eb, i);
3468 
3469 		clear_page_dirty_for_io(p);
3470 		set_page_writeback(p);
3471 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3472 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3473 					 -1, end_bio_extent_buffer_writepage,
3474 					 0, epd->bio_flags, bio_flags);
3475 		epd->bio_flags = bio_flags;
3476 		if (ret) {
3477 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3478 			SetPageError(p);
3479 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3480 				end_extent_buffer_writeback(eb);
3481 			ret = -EIO;
3482 			break;
3483 		}
3484 		offset += PAGE_CACHE_SIZE;
3485 		update_nr_written(p, wbc, 1);
3486 		unlock_page(p);
3487 	}
3488 
3489 	if (unlikely(ret)) {
3490 		for (; i < num_pages; i++) {
3491 			struct page *p = extent_buffer_page(eb, i);
3492 			unlock_page(p);
3493 		}
3494 	}
3495 
3496 	return ret;
3497 }
3498 
3499 int btree_write_cache_pages(struct address_space *mapping,
3500 				   struct writeback_control *wbc)
3501 {
3502 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3503 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3504 	struct extent_buffer *eb, *prev_eb = NULL;
3505 	struct extent_page_data epd = {
3506 		.bio = NULL,
3507 		.tree = tree,
3508 		.extent_locked = 0,
3509 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3510 		.bio_flags = 0,
3511 	};
3512 	int ret = 0;
3513 	int done = 0;
3514 	int nr_to_write_done = 0;
3515 	struct pagevec pvec;
3516 	int nr_pages;
3517 	pgoff_t index;
3518 	pgoff_t end;		/* Inclusive */
3519 	int scanned = 0;
3520 	int tag;
3521 
3522 	pagevec_init(&pvec, 0);
3523 	if (wbc->range_cyclic) {
3524 		index = mapping->writeback_index; /* Start from prev offset */
3525 		end = -1;
3526 	} else {
3527 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3528 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3529 		scanned = 1;
3530 	}
3531 	if (wbc->sync_mode == WB_SYNC_ALL)
3532 		tag = PAGECACHE_TAG_TOWRITE;
3533 	else
3534 		tag = PAGECACHE_TAG_DIRTY;
3535 retry:
3536 	if (wbc->sync_mode == WB_SYNC_ALL)
3537 		tag_pages_for_writeback(mapping, index, end);
3538 	while (!done && !nr_to_write_done && (index <= end) &&
3539 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3540 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3541 		unsigned i;
3542 
3543 		scanned = 1;
3544 		for (i = 0; i < nr_pages; i++) {
3545 			struct page *page = pvec.pages[i];
3546 
3547 			if (!PagePrivate(page))
3548 				continue;
3549 
3550 			if (!wbc->range_cyclic && page->index > end) {
3551 				done = 1;
3552 				break;
3553 			}
3554 
3555 			spin_lock(&mapping->private_lock);
3556 			if (!PagePrivate(page)) {
3557 				spin_unlock(&mapping->private_lock);
3558 				continue;
3559 			}
3560 
3561 			eb = (struct extent_buffer *)page->private;
3562 
3563 			/*
3564 			 * Shouldn't happen and normally this would be a BUG_ON
3565 			 * but no sense in crashing the users box for something
3566 			 * we can survive anyway.
3567 			 */
3568 			if (!eb) {
3569 				spin_unlock(&mapping->private_lock);
3570 				WARN_ON(1);
3571 				continue;
3572 			}
3573 
3574 			if (eb == prev_eb) {
3575 				spin_unlock(&mapping->private_lock);
3576 				continue;
3577 			}
3578 
3579 			ret = atomic_inc_not_zero(&eb->refs);
3580 			spin_unlock(&mapping->private_lock);
3581 			if (!ret)
3582 				continue;
3583 
3584 			prev_eb = eb;
3585 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3586 			if (!ret) {
3587 				free_extent_buffer(eb);
3588 				continue;
3589 			}
3590 
3591 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3592 			if (ret) {
3593 				done = 1;
3594 				free_extent_buffer(eb);
3595 				break;
3596 			}
3597 			free_extent_buffer(eb);
3598 
3599 			/*
3600 			 * the filesystem may choose to bump up nr_to_write.
3601 			 * We have to make sure to honor the new nr_to_write
3602 			 * at any time
3603 			 */
3604 			nr_to_write_done = wbc->nr_to_write <= 0;
3605 		}
3606 		pagevec_release(&pvec);
3607 		cond_resched();
3608 	}
3609 	if (!scanned && !done) {
3610 		/*
3611 		 * We hit the last page and there is more work to be done: wrap
3612 		 * back to the start of the file
3613 		 */
3614 		scanned = 1;
3615 		index = 0;
3616 		goto retry;
3617 	}
3618 	flush_write_bio(&epd);
3619 	return ret;
3620 }
3621 
3622 /**
3623  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3624  * @mapping: address space structure to write
3625  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3626  * @writepage: function called for each page
3627  * @data: data passed to writepage function
3628  *
3629  * If a page is already under I/O, write_cache_pages() skips it, even
3630  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3631  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3632  * and msync() need to guarantee that all the data which was dirty at the time
3633  * the call was made get new I/O started against them.  If wbc->sync_mode is
3634  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3635  * existing IO to complete.
3636  */
3637 static int extent_write_cache_pages(struct extent_io_tree *tree,
3638 			     struct address_space *mapping,
3639 			     struct writeback_control *wbc,
3640 			     writepage_t writepage, void *data,
3641 			     void (*flush_fn)(void *))
3642 {
3643 	struct inode *inode = mapping->host;
3644 	int ret = 0;
3645 	int done = 0;
3646 	int nr_to_write_done = 0;
3647 	struct pagevec pvec;
3648 	int nr_pages;
3649 	pgoff_t index;
3650 	pgoff_t end;		/* Inclusive */
3651 	int scanned = 0;
3652 	int tag;
3653 
3654 	/*
3655 	 * We have to hold onto the inode so that ordered extents can do their
3656 	 * work when the IO finishes.  The alternative to this is failing to add
3657 	 * an ordered extent if the igrab() fails there and that is a huge pain
3658 	 * to deal with, so instead just hold onto the inode throughout the
3659 	 * writepages operation.  If it fails here we are freeing up the inode
3660 	 * anyway and we'd rather not waste our time writing out stuff that is
3661 	 * going to be truncated anyway.
3662 	 */
3663 	if (!igrab(inode))
3664 		return 0;
3665 
3666 	pagevec_init(&pvec, 0);
3667 	if (wbc->range_cyclic) {
3668 		index = mapping->writeback_index; /* Start from prev offset */
3669 		end = -1;
3670 	} else {
3671 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3672 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3673 		scanned = 1;
3674 	}
3675 	if (wbc->sync_mode == WB_SYNC_ALL)
3676 		tag = PAGECACHE_TAG_TOWRITE;
3677 	else
3678 		tag = PAGECACHE_TAG_DIRTY;
3679 retry:
3680 	if (wbc->sync_mode == WB_SYNC_ALL)
3681 		tag_pages_for_writeback(mapping, index, end);
3682 	while (!done && !nr_to_write_done && (index <= end) &&
3683 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3684 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3685 		unsigned i;
3686 
3687 		scanned = 1;
3688 		for (i = 0; i < nr_pages; i++) {
3689 			struct page *page = pvec.pages[i];
3690 
3691 			/*
3692 			 * At this point we hold neither mapping->tree_lock nor
3693 			 * lock on the page itself: the page may be truncated or
3694 			 * invalidated (changing page->mapping to NULL), or even
3695 			 * swizzled back from swapper_space to tmpfs file
3696 			 * mapping
3697 			 */
3698 			if (!trylock_page(page)) {
3699 				flush_fn(data);
3700 				lock_page(page);
3701 			}
3702 
3703 			if (unlikely(page->mapping != mapping)) {
3704 				unlock_page(page);
3705 				continue;
3706 			}
3707 
3708 			if (!wbc->range_cyclic && page->index > end) {
3709 				done = 1;
3710 				unlock_page(page);
3711 				continue;
3712 			}
3713 
3714 			if (wbc->sync_mode != WB_SYNC_NONE) {
3715 				if (PageWriteback(page))
3716 					flush_fn(data);
3717 				wait_on_page_writeback(page);
3718 			}
3719 
3720 			if (PageWriteback(page) ||
3721 			    !clear_page_dirty_for_io(page)) {
3722 				unlock_page(page);
3723 				continue;
3724 			}
3725 
3726 			ret = (*writepage)(page, wbc, data);
3727 
3728 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3729 				unlock_page(page);
3730 				ret = 0;
3731 			}
3732 			if (ret)
3733 				done = 1;
3734 
3735 			/*
3736 			 * the filesystem may choose to bump up nr_to_write.
3737 			 * We have to make sure to honor the new nr_to_write
3738 			 * at any time
3739 			 */
3740 			nr_to_write_done = wbc->nr_to_write <= 0;
3741 		}
3742 		pagevec_release(&pvec);
3743 		cond_resched();
3744 	}
3745 	if (!scanned && !done) {
3746 		/*
3747 		 * We hit the last page and there is more work to be done: wrap
3748 		 * back to the start of the file
3749 		 */
3750 		scanned = 1;
3751 		index = 0;
3752 		goto retry;
3753 	}
3754 	btrfs_add_delayed_iput(inode);
3755 	return ret;
3756 }
3757 
3758 static void flush_epd_write_bio(struct extent_page_data *epd)
3759 {
3760 	if (epd->bio) {
3761 		int rw = WRITE;
3762 		int ret;
3763 
3764 		if (epd->sync_io)
3765 			rw = WRITE_SYNC;
3766 
3767 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3768 		BUG_ON(ret < 0); /* -ENOMEM */
3769 		epd->bio = NULL;
3770 	}
3771 }
3772 
3773 static noinline void flush_write_bio(void *data)
3774 {
3775 	struct extent_page_data *epd = data;
3776 	flush_epd_write_bio(epd);
3777 }
3778 
3779 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3780 			  get_extent_t *get_extent,
3781 			  struct writeback_control *wbc)
3782 {
3783 	int ret;
3784 	struct extent_page_data epd = {
3785 		.bio = NULL,
3786 		.tree = tree,
3787 		.get_extent = get_extent,
3788 		.extent_locked = 0,
3789 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3790 		.bio_flags = 0,
3791 	};
3792 
3793 	ret = __extent_writepage(page, wbc, &epd);
3794 
3795 	flush_epd_write_bio(&epd);
3796 	return ret;
3797 }
3798 
3799 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3800 			      u64 start, u64 end, get_extent_t *get_extent,
3801 			      int mode)
3802 {
3803 	int ret = 0;
3804 	struct address_space *mapping = inode->i_mapping;
3805 	struct page *page;
3806 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3807 		PAGE_CACHE_SHIFT;
3808 
3809 	struct extent_page_data epd = {
3810 		.bio = NULL,
3811 		.tree = tree,
3812 		.get_extent = get_extent,
3813 		.extent_locked = 1,
3814 		.sync_io = mode == WB_SYNC_ALL,
3815 		.bio_flags = 0,
3816 	};
3817 	struct writeback_control wbc_writepages = {
3818 		.sync_mode	= mode,
3819 		.nr_to_write	= nr_pages * 2,
3820 		.range_start	= start,
3821 		.range_end	= end + 1,
3822 	};
3823 
3824 	while (start <= end) {
3825 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3826 		if (clear_page_dirty_for_io(page))
3827 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3828 		else {
3829 			if (tree->ops && tree->ops->writepage_end_io_hook)
3830 				tree->ops->writepage_end_io_hook(page, start,
3831 						 start + PAGE_CACHE_SIZE - 1,
3832 						 NULL, 1);
3833 			unlock_page(page);
3834 		}
3835 		page_cache_release(page);
3836 		start += PAGE_CACHE_SIZE;
3837 	}
3838 
3839 	flush_epd_write_bio(&epd);
3840 	return ret;
3841 }
3842 
3843 int extent_writepages(struct extent_io_tree *tree,
3844 		      struct address_space *mapping,
3845 		      get_extent_t *get_extent,
3846 		      struct writeback_control *wbc)
3847 {
3848 	int ret = 0;
3849 	struct extent_page_data epd = {
3850 		.bio = NULL,
3851 		.tree = tree,
3852 		.get_extent = get_extent,
3853 		.extent_locked = 0,
3854 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3855 		.bio_flags = 0,
3856 	};
3857 
3858 	ret = extent_write_cache_pages(tree, mapping, wbc,
3859 				       __extent_writepage, &epd,
3860 				       flush_write_bio);
3861 	flush_epd_write_bio(&epd);
3862 	return ret;
3863 }
3864 
3865 int extent_readpages(struct extent_io_tree *tree,
3866 		     struct address_space *mapping,
3867 		     struct list_head *pages, unsigned nr_pages,
3868 		     get_extent_t get_extent)
3869 {
3870 	struct bio *bio = NULL;
3871 	unsigned page_idx;
3872 	unsigned long bio_flags = 0;
3873 	struct page *pagepool[16];
3874 	struct page *page;
3875 	struct extent_map *em_cached = NULL;
3876 	int nr = 0;
3877 
3878 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3879 		page = list_entry(pages->prev, struct page, lru);
3880 
3881 		prefetchw(&page->flags);
3882 		list_del(&page->lru);
3883 		if (add_to_page_cache_lru(page, mapping,
3884 					page->index, GFP_NOFS)) {
3885 			page_cache_release(page);
3886 			continue;
3887 		}
3888 
3889 		pagepool[nr++] = page;
3890 		if (nr < ARRAY_SIZE(pagepool))
3891 			continue;
3892 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3893 				   &bio, 0, &bio_flags, READ);
3894 		nr = 0;
3895 	}
3896 	if (nr)
3897 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3898 				   &bio, 0, &bio_flags, READ);
3899 
3900 	if (em_cached)
3901 		free_extent_map(em_cached);
3902 
3903 	BUG_ON(!list_empty(pages));
3904 	if (bio)
3905 		return submit_one_bio(READ, bio, 0, bio_flags);
3906 	return 0;
3907 }
3908 
3909 /*
3910  * basic invalidatepage code, this waits on any locked or writeback
3911  * ranges corresponding to the page, and then deletes any extent state
3912  * records from the tree
3913  */
3914 int extent_invalidatepage(struct extent_io_tree *tree,
3915 			  struct page *page, unsigned long offset)
3916 {
3917 	struct extent_state *cached_state = NULL;
3918 	u64 start = page_offset(page);
3919 	u64 end = start + PAGE_CACHE_SIZE - 1;
3920 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3921 
3922 	start += ALIGN(offset, blocksize);
3923 	if (start > end)
3924 		return 0;
3925 
3926 	lock_extent_bits(tree, start, end, 0, &cached_state);
3927 	wait_on_page_writeback(page);
3928 	clear_extent_bit(tree, start, end,
3929 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3930 			 EXTENT_DO_ACCOUNTING,
3931 			 1, 1, &cached_state, GFP_NOFS);
3932 	return 0;
3933 }
3934 
3935 /*
3936  * a helper for releasepage, this tests for areas of the page that
3937  * are locked or under IO and drops the related state bits if it is safe
3938  * to drop the page.
3939  */
3940 static int try_release_extent_state(struct extent_map_tree *map,
3941 				    struct extent_io_tree *tree,
3942 				    struct page *page, gfp_t mask)
3943 {
3944 	u64 start = page_offset(page);
3945 	u64 end = start + PAGE_CACHE_SIZE - 1;
3946 	int ret = 1;
3947 
3948 	if (test_range_bit(tree, start, end,
3949 			   EXTENT_IOBITS, 0, NULL))
3950 		ret = 0;
3951 	else {
3952 		if ((mask & GFP_NOFS) == GFP_NOFS)
3953 			mask = GFP_NOFS;
3954 		/*
3955 		 * at this point we can safely clear everything except the
3956 		 * locked bit and the nodatasum bit
3957 		 */
3958 		ret = clear_extent_bit(tree, start, end,
3959 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3960 				 0, 0, NULL, mask);
3961 
3962 		/* if clear_extent_bit failed for enomem reasons,
3963 		 * we can't allow the release to continue.
3964 		 */
3965 		if (ret < 0)
3966 			ret = 0;
3967 		else
3968 			ret = 1;
3969 	}
3970 	return ret;
3971 }
3972 
3973 /*
3974  * a helper for releasepage.  As long as there are no locked extents
3975  * in the range corresponding to the page, both state records and extent
3976  * map records are removed
3977  */
3978 int try_release_extent_mapping(struct extent_map_tree *map,
3979 			       struct extent_io_tree *tree, struct page *page,
3980 			       gfp_t mask)
3981 {
3982 	struct extent_map *em;
3983 	u64 start = page_offset(page);
3984 	u64 end = start + PAGE_CACHE_SIZE - 1;
3985 
3986 	if ((mask & __GFP_WAIT) &&
3987 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3988 		u64 len;
3989 		while (start <= end) {
3990 			len = end - start + 1;
3991 			write_lock(&map->lock);
3992 			em = lookup_extent_mapping(map, start, len);
3993 			if (!em) {
3994 				write_unlock(&map->lock);
3995 				break;
3996 			}
3997 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3998 			    em->start != start) {
3999 				write_unlock(&map->lock);
4000 				free_extent_map(em);
4001 				break;
4002 			}
4003 			if (!test_range_bit(tree, em->start,
4004 					    extent_map_end(em) - 1,
4005 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4006 					    0, NULL)) {
4007 				remove_extent_mapping(map, em);
4008 				/* once for the rb tree */
4009 				free_extent_map(em);
4010 			}
4011 			start = extent_map_end(em);
4012 			write_unlock(&map->lock);
4013 
4014 			/* once for us */
4015 			free_extent_map(em);
4016 		}
4017 	}
4018 	return try_release_extent_state(map, tree, page, mask);
4019 }
4020 
4021 /*
4022  * helper function for fiemap, which doesn't want to see any holes.
4023  * This maps until we find something past 'last'
4024  */
4025 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4026 						u64 offset,
4027 						u64 last,
4028 						get_extent_t *get_extent)
4029 {
4030 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4031 	struct extent_map *em;
4032 	u64 len;
4033 
4034 	if (offset >= last)
4035 		return NULL;
4036 
4037 	while(1) {
4038 		len = last - offset;
4039 		if (len == 0)
4040 			break;
4041 		len = ALIGN(len, sectorsize);
4042 		em = get_extent(inode, NULL, 0, offset, len, 0);
4043 		if (IS_ERR_OR_NULL(em))
4044 			return em;
4045 
4046 		/* if this isn't a hole return it */
4047 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4048 		    em->block_start != EXTENT_MAP_HOLE) {
4049 			return em;
4050 		}
4051 
4052 		/* this is a hole, advance to the next extent */
4053 		offset = extent_map_end(em);
4054 		free_extent_map(em);
4055 		if (offset >= last)
4056 			break;
4057 	}
4058 	return NULL;
4059 }
4060 
4061 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4062 		__u64 start, __u64 len, get_extent_t *get_extent)
4063 {
4064 	int ret = 0;
4065 	u64 off = start;
4066 	u64 max = start + len;
4067 	u32 flags = 0;
4068 	u32 found_type;
4069 	u64 last;
4070 	u64 last_for_get_extent = 0;
4071 	u64 disko = 0;
4072 	u64 isize = i_size_read(inode);
4073 	struct btrfs_key found_key;
4074 	struct extent_map *em = NULL;
4075 	struct extent_state *cached_state = NULL;
4076 	struct btrfs_path *path;
4077 	struct btrfs_file_extent_item *item;
4078 	int end = 0;
4079 	u64 em_start = 0;
4080 	u64 em_len = 0;
4081 	u64 em_end = 0;
4082 	unsigned long emflags;
4083 
4084 	if (len == 0)
4085 		return -EINVAL;
4086 
4087 	path = btrfs_alloc_path();
4088 	if (!path)
4089 		return -ENOMEM;
4090 	path->leave_spinning = 1;
4091 
4092 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4093 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4094 
4095 	/*
4096 	 * lookup the last file extent.  We're not using i_size here
4097 	 * because there might be preallocation past i_size
4098 	 */
4099 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4100 				       path, btrfs_ino(inode), -1, 0);
4101 	if (ret < 0) {
4102 		btrfs_free_path(path);
4103 		return ret;
4104 	}
4105 	WARN_ON(!ret);
4106 	path->slots[0]--;
4107 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4108 			      struct btrfs_file_extent_item);
4109 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4110 	found_type = btrfs_key_type(&found_key);
4111 
4112 	/* No extents, but there might be delalloc bits */
4113 	if (found_key.objectid != btrfs_ino(inode) ||
4114 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4115 		/* have to trust i_size as the end */
4116 		last = (u64)-1;
4117 		last_for_get_extent = isize;
4118 	} else {
4119 		/*
4120 		 * remember the start of the last extent.  There are a
4121 		 * bunch of different factors that go into the length of the
4122 		 * extent, so its much less complex to remember where it started
4123 		 */
4124 		last = found_key.offset;
4125 		last_for_get_extent = last + 1;
4126 	}
4127 	btrfs_free_path(path);
4128 
4129 	/*
4130 	 * we might have some extents allocated but more delalloc past those
4131 	 * extents.  so, we trust isize unless the start of the last extent is
4132 	 * beyond isize
4133 	 */
4134 	if (last < isize) {
4135 		last = (u64)-1;
4136 		last_for_get_extent = isize;
4137 	}
4138 
4139 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4140 			 &cached_state);
4141 
4142 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4143 				   get_extent);
4144 	if (!em)
4145 		goto out;
4146 	if (IS_ERR(em)) {
4147 		ret = PTR_ERR(em);
4148 		goto out;
4149 	}
4150 
4151 	while (!end) {
4152 		u64 offset_in_extent = 0;
4153 
4154 		/* break if the extent we found is outside the range */
4155 		if (em->start >= max || extent_map_end(em) < off)
4156 			break;
4157 
4158 		/*
4159 		 * get_extent may return an extent that starts before our
4160 		 * requested range.  We have to make sure the ranges
4161 		 * we return to fiemap always move forward and don't
4162 		 * overlap, so adjust the offsets here
4163 		 */
4164 		em_start = max(em->start, off);
4165 
4166 		/*
4167 		 * record the offset from the start of the extent
4168 		 * for adjusting the disk offset below.  Only do this if the
4169 		 * extent isn't compressed since our in ram offset may be past
4170 		 * what we have actually allocated on disk.
4171 		 */
4172 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4173 			offset_in_extent = em_start - em->start;
4174 		em_end = extent_map_end(em);
4175 		em_len = em_end - em_start;
4176 		emflags = em->flags;
4177 		disko = 0;
4178 		flags = 0;
4179 
4180 		/*
4181 		 * bump off for our next call to get_extent
4182 		 */
4183 		off = extent_map_end(em);
4184 		if (off >= max)
4185 			end = 1;
4186 
4187 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4188 			end = 1;
4189 			flags |= FIEMAP_EXTENT_LAST;
4190 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4191 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4192 				  FIEMAP_EXTENT_NOT_ALIGNED);
4193 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4194 			flags |= (FIEMAP_EXTENT_DELALLOC |
4195 				  FIEMAP_EXTENT_UNKNOWN);
4196 		} else {
4197 			disko = em->block_start + offset_in_extent;
4198 		}
4199 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4200 			flags |= FIEMAP_EXTENT_ENCODED;
4201 
4202 		free_extent_map(em);
4203 		em = NULL;
4204 		if ((em_start >= last) || em_len == (u64)-1 ||
4205 		   (last == (u64)-1 && isize <= em_end)) {
4206 			flags |= FIEMAP_EXTENT_LAST;
4207 			end = 1;
4208 		}
4209 
4210 		/* now scan forward to see if this is really the last extent. */
4211 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4212 					   get_extent);
4213 		if (IS_ERR(em)) {
4214 			ret = PTR_ERR(em);
4215 			goto out;
4216 		}
4217 		if (!em) {
4218 			flags |= FIEMAP_EXTENT_LAST;
4219 			end = 1;
4220 		}
4221 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4222 					      em_len, flags);
4223 		if (ret)
4224 			goto out_free;
4225 	}
4226 out_free:
4227 	free_extent_map(em);
4228 out:
4229 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4230 			     &cached_state, GFP_NOFS);
4231 	return ret;
4232 }
4233 
4234 static void __free_extent_buffer(struct extent_buffer *eb)
4235 {
4236 	btrfs_leak_debug_del(&eb->leak_list);
4237 	kmem_cache_free(extent_buffer_cache, eb);
4238 }
4239 
4240 static int extent_buffer_under_io(struct extent_buffer *eb)
4241 {
4242 	return (atomic_read(&eb->io_pages) ||
4243 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4244 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4245 }
4246 
4247 /*
4248  * Helper for releasing extent buffer page.
4249  */
4250 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4251 						unsigned long start_idx)
4252 {
4253 	unsigned long index;
4254 	unsigned long num_pages;
4255 	struct page *page;
4256 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4257 
4258 	BUG_ON(extent_buffer_under_io(eb));
4259 
4260 	num_pages = num_extent_pages(eb->start, eb->len);
4261 	index = start_idx + num_pages;
4262 	if (start_idx >= index)
4263 		return;
4264 
4265 	do {
4266 		index--;
4267 		page = extent_buffer_page(eb, index);
4268 		if (page && mapped) {
4269 			spin_lock(&page->mapping->private_lock);
4270 			/*
4271 			 * We do this since we'll remove the pages after we've
4272 			 * removed the eb from the radix tree, so we could race
4273 			 * and have this page now attached to the new eb.  So
4274 			 * only clear page_private if it's still connected to
4275 			 * this eb.
4276 			 */
4277 			if (PagePrivate(page) &&
4278 			    page->private == (unsigned long)eb) {
4279 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4280 				BUG_ON(PageDirty(page));
4281 				BUG_ON(PageWriteback(page));
4282 				/*
4283 				 * We need to make sure we haven't be attached
4284 				 * to a new eb.
4285 				 */
4286 				ClearPagePrivate(page);
4287 				set_page_private(page, 0);
4288 				/* One for the page private */
4289 				page_cache_release(page);
4290 			}
4291 			spin_unlock(&page->mapping->private_lock);
4292 
4293 		}
4294 		if (page) {
4295 			/* One for when we alloced the page */
4296 			page_cache_release(page);
4297 		}
4298 	} while (index != start_idx);
4299 }
4300 
4301 /*
4302  * Helper for releasing the extent buffer.
4303  */
4304 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4305 {
4306 	btrfs_release_extent_buffer_page(eb, 0);
4307 	__free_extent_buffer(eb);
4308 }
4309 
4310 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4311 						   u64 start,
4312 						   unsigned long len,
4313 						   gfp_t mask)
4314 {
4315 	struct extent_buffer *eb = NULL;
4316 
4317 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4318 	if (eb == NULL)
4319 		return NULL;
4320 	eb->start = start;
4321 	eb->len = len;
4322 	eb->tree = tree;
4323 	eb->bflags = 0;
4324 	rwlock_init(&eb->lock);
4325 	atomic_set(&eb->write_locks, 0);
4326 	atomic_set(&eb->read_locks, 0);
4327 	atomic_set(&eb->blocking_readers, 0);
4328 	atomic_set(&eb->blocking_writers, 0);
4329 	atomic_set(&eb->spinning_readers, 0);
4330 	atomic_set(&eb->spinning_writers, 0);
4331 	eb->lock_nested = 0;
4332 	init_waitqueue_head(&eb->write_lock_wq);
4333 	init_waitqueue_head(&eb->read_lock_wq);
4334 
4335 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4336 
4337 	spin_lock_init(&eb->refs_lock);
4338 	atomic_set(&eb->refs, 1);
4339 	atomic_set(&eb->io_pages, 0);
4340 
4341 	/*
4342 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4343 	 */
4344 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4345 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4346 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4347 
4348 	return eb;
4349 }
4350 
4351 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4352 {
4353 	unsigned long i;
4354 	struct page *p;
4355 	struct extent_buffer *new;
4356 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4357 
4358 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4359 	if (new == NULL)
4360 		return NULL;
4361 
4362 	for (i = 0; i < num_pages; i++) {
4363 		p = alloc_page(GFP_NOFS);
4364 		if (!p) {
4365 			btrfs_release_extent_buffer(new);
4366 			return NULL;
4367 		}
4368 		attach_extent_buffer_page(new, p);
4369 		WARN_ON(PageDirty(p));
4370 		SetPageUptodate(p);
4371 		new->pages[i] = p;
4372 	}
4373 
4374 	copy_extent_buffer(new, src, 0, 0, src->len);
4375 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4376 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4377 
4378 	return new;
4379 }
4380 
4381 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4382 {
4383 	struct extent_buffer *eb;
4384 	unsigned long num_pages = num_extent_pages(0, len);
4385 	unsigned long i;
4386 
4387 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4388 	if (!eb)
4389 		return NULL;
4390 
4391 	for (i = 0; i < num_pages; i++) {
4392 		eb->pages[i] = alloc_page(GFP_NOFS);
4393 		if (!eb->pages[i])
4394 			goto err;
4395 	}
4396 	set_extent_buffer_uptodate(eb);
4397 	btrfs_set_header_nritems(eb, 0);
4398 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4399 
4400 	return eb;
4401 err:
4402 	for (; i > 0; i--)
4403 		__free_page(eb->pages[i - 1]);
4404 	__free_extent_buffer(eb);
4405 	return NULL;
4406 }
4407 
4408 static void check_buffer_tree_ref(struct extent_buffer *eb)
4409 {
4410 	int refs;
4411 	/* the ref bit is tricky.  We have to make sure it is set
4412 	 * if we have the buffer dirty.   Otherwise the
4413 	 * code to free a buffer can end up dropping a dirty
4414 	 * page
4415 	 *
4416 	 * Once the ref bit is set, it won't go away while the
4417 	 * buffer is dirty or in writeback, and it also won't
4418 	 * go away while we have the reference count on the
4419 	 * eb bumped.
4420 	 *
4421 	 * We can't just set the ref bit without bumping the
4422 	 * ref on the eb because free_extent_buffer might
4423 	 * see the ref bit and try to clear it.  If this happens
4424 	 * free_extent_buffer might end up dropping our original
4425 	 * ref by mistake and freeing the page before we are able
4426 	 * to add one more ref.
4427 	 *
4428 	 * So bump the ref count first, then set the bit.  If someone
4429 	 * beat us to it, drop the ref we added.
4430 	 */
4431 	refs = atomic_read(&eb->refs);
4432 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4433 		return;
4434 
4435 	spin_lock(&eb->refs_lock);
4436 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4437 		atomic_inc(&eb->refs);
4438 	spin_unlock(&eb->refs_lock);
4439 }
4440 
4441 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4442 {
4443 	unsigned long num_pages, i;
4444 
4445 	check_buffer_tree_ref(eb);
4446 
4447 	num_pages = num_extent_pages(eb->start, eb->len);
4448 	for (i = 0; i < num_pages; i++) {
4449 		struct page *p = extent_buffer_page(eb, i);
4450 		mark_page_accessed(p);
4451 	}
4452 }
4453 
4454 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4455 					  u64 start, unsigned long len)
4456 {
4457 	unsigned long num_pages = num_extent_pages(start, len);
4458 	unsigned long i;
4459 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4460 	struct extent_buffer *eb;
4461 	struct extent_buffer *exists = NULL;
4462 	struct page *p;
4463 	struct address_space *mapping = tree->mapping;
4464 	int uptodate = 1;
4465 	int ret;
4466 
4467 	rcu_read_lock();
4468 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4469 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4470 		rcu_read_unlock();
4471 		mark_extent_buffer_accessed(eb);
4472 		return eb;
4473 	}
4474 	rcu_read_unlock();
4475 
4476 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4477 	if (!eb)
4478 		return NULL;
4479 
4480 	for (i = 0; i < num_pages; i++, index++) {
4481 		p = find_or_create_page(mapping, index, GFP_NOFS);
4482 		if (!p)
4483 			goto free_eb;
4484 
4485 		spin_lock(&mapping->private_lock);
4486 		if (PagePrivate(p)) {
4487 			/*
4488 			 * We could have already allocated an eb for this page
4489 			 * and attached one so lets see if we can get a ref on
4490 			 * the existing eb, and if we can we know it's good and
4491 			 * we can just return that one, else we know we can just
4492 			 * overwrite page->private.
4493 			 */
4494 			exists = (struct extent_buffer *)p->private;
4495 			if (atomic_inc_not_zero(&exists->refs)) {
4496 				spin_unlock(&mapping->private_lock);
4497 				unlock_page(p);
4498 				page_cache_release(p);
4499 				mark_extent_buffer_accessed(exists);
4500 				goto free_eb;
4501 			}
4502 
4503 			/*
4504 			 * Do this so attach doesn't complain and we need to
4505 			 * drop the ref the old guy had.
4506 			 */
4507 			ClearPagePrivate(p);
4508 			WARN_ON(PageDirty(p));
4509 			page_cache_release(p);
4510 		}
4511 		attach_extent_buffer_page(eb, p);
4512 		spin_unlock(&mapping->private_lock);
4513 		WARN_ON(PageDirty(p));
4514 		mark_page_accessed(p);
4515 		eb->pages[i] = p;
4516 		if (!PageUptodate(p))
4517 			uptodate = 0;
4518 
4519 		/*
4520 		 * see below about how we avoid a nasty race with release page
4521 		 * and why we unlock later
4522 		 */
4523 	}
4524 	if (uptodate)
4525 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4526 again:
4527 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4528 	if (ret)
4529 		goto free_eb;
4530 
4531 	spin_lock(&tree->buffer_lock);
4532 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4533 	if (ret == -EEXIST) {
4534 		exists = radix_tree_lookup(&tree->buffer,
4535 						start >> PAGE_CACHE_SHIFT);
4536 		if (!atomic_inc_not_zero(&exists->refs)) {
4537 			spin_unlock(&tree->buffer_lock);
4538 			radix_tree_preload_end();
4539 			exists = NULL;
4540 			goto again;
4541 		}
4542 		spin_unlock(&tree->buffer_lock);
4543 		radix_tree_preload_end();
4544 		mark_extent_buffer_accessed(exists);
4545 		goto free_eb;
4546 	}
4547 	/* add one reference for the tree */
4548 	check_buffer_tree_ref(eb);
4549 	spin_unlock(&tree->buffer_lock);
4550 	radix_tree_preload_end();
4551 
4552 	/*
4553 	 * there is a race where release page may have
4554 	 * tried to find this extent buffer in the radix
4555 	 * but failed.  It will tell the VM it is safe to
4556 	 * reclaim the, and it will clear the page private bit.
4557 	 * We must make sure to set the page private bit properly
4558 	 * after the extent buffer is in the radix tree so
4559 	 * it doesn't get lost
4560 	 */
4561 	SetPageChecked(eb->pages[0]);
4562 	for (i = 1; i < num_pages; i++) {
4563 		p = extent_buffer_page(eb, i);
4564 		ClearPageChecked(p);
4565 		unlock_page(p);
4566 	}
4567 	unlock_page(eb->pages[0]);
4568 	return eb;
4569 
4570 free_eb:
4571 	for (i = 0; i < num_pages; i++) {
4572 		if (eb->pages[i])
4573 			unlock_page(eb->pages[i]);
4574 	}
4575 
4576 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4577 	btrfs_release_extent_buffer(eb);
4578 	return exists;
4579 }
4580 
4581 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4582 					 u64 start, unsigned long len)
4583 {
4584 	struct extent_buffer *eb;
4585 
4586 	rcu_read_lock();
4587 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4588 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4589 		rcu_read_unlock();
4590 		mark_extent_buffer_accessed(eb);
4591 		return eb;
4592 	}
4593 	rcu_read_unlock();
4594 
4595 	return NULL;
4596 }
4597 
4598 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4599 {
4600 	struct extent_buffer *eb =
4601 			container_of(head, struct extent_buffer, rcu_head);
4602 
4603 	__free_extent_buffer(eb);
4604 }
4605 
4606 /* Expects to have eb->eb_lock already held */
4607 static int release_extent_buffer(struct extent_buffer *eb)
4608 {
4609 	WARN_ON(atomic_read(&eb->refs) == 0);
4610 	if (atomic_dec_and_test(&eb->refs)) {
4611 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4612 			spin_unlock(&eb->refs_lock);
4613 		} else {
4614 			struct extent_io_tree *tree = eb->tree;
4615 
4616 			spin_unlock(&eb->refs_lock);
4617 
4618 			spin_lock(&tree->buffer_lock);
4619 			radix_tree_delete(&tree->buffer,
4620 					  eb->start >> PAGE_CACHE_SHIFT);
4621 			spin_unlock(&tree->buffer_lock);
4622 		}
4623 
4624 		/* Should be safe to release our pages at this point */
4625 		btrfs_release_extent_buffer_page(eb, 0);
4626 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4627 		return 1;
4628 	}
4629 	spin_unlock(&eb->refs_lock);
4630 
4631 	return 0;
4632 }
4633 
4634 void free_extent_buffer(struct extent_buffer *eb)
4635 {
4636 	int refs;
4637 	int old;
4638 	if (!eb)
4639 		return;
4640 
4641 	while (1) {
4642 		refs = atomic_read(&eb->refs);
4643 		if (refs <= 3)
4644 			break;
4645 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4646 		if (old == refs)
4647 			return;
4648 	}
4649 
4650 	spin_lock(&eb->refs_lock);
4651 	if (atomic_read(&eb->refs) == 2 &&
4652 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4653 		atomic_dec(&eb->refs);
4654 
4655 	if (atomic_read(&eb->refs) == 2 &&
4656 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4657 	    !extent_buffer_under_io(eb) &&
4658 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4659 		atomic_dec(&eb->refs);
4660 
4661 	/*
4662 	 * I know this is terrible, but it's temporary until we stop tracking
4663 	 * the uptodate bits and such for the extent buffers.
4664 	 */
4665 	release_extent_buffer(eb);
4666 }
4667 
4668 void free_extent_buffer_stale(struct extent_buffer *eb)
4669 {
4670 	if (!eb)
4671 		return;
4672 
4673 	spin_lock(&eb->refs_lock);
4674 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4675 
4676 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4677 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4678 		atomic_dec(&eb->refs);
4679 	release_extent_buffer(eb);
4680 }
4681 
4682 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4683 {
4684 	unsigned long i;
4685 	unsigned long num_pages;
4686 	struct page *page;
4687 
4688 	num_pages = num_extent_pages(eb->start, eb->len);
4689 
4690 	for (i = 0; i < num_pages; i++) {
4691 		page = extent_buffer_page(eb, i);
4692 		if (!PageDirty(page))
4693 			continue;
4694 
4695 		lock_page(page);
4696 		WARN_ON(!PagePrivate(page));
4697 
4698 		clear_page_dirty_for_io(page);
4699 		spin_lock_irq(&page->mapping->tree_lock);
4700 		if (!PageDirty(page)) {
4701 			radix_tree_tag_clear(&page->mapping->page_tree,
4702 						page_index(page),
4703 						PAGECACHE_TAG_DIRTY);
4704 		}
4705 		spin_unlock_irq(&page->mapping->tree_lock);
4706 		ClearPageError(page);
4707 		unlock_page(page);
4708 	}
4709 	WARN_ON(atomic_read(&eb->refs) == 0);
4710 }
4711 
4712 int set_extent_buffer_dirty(struct extent_buffer *eb)
4713 {
4714 	unsigned long i;
4715 	unsigned long num_pages;
4716 	int was_dirty = 0;
4717 
4718 	check_buffer_tree_ref(eb);
4719 
4720 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4721 
4722 	num_pages = num_extent_pages(eb->start, eb->len);
4723 	WARN_ON(atomic_read(&eb->refs) == 0);
4724 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4725 
4726 	for (i = 0; i < num_pages; i++)
4727 		set_page_dirty(extent_buffer_page(eb, i));
4728 	return was_dirty;
4729 }
4730 
4731 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4732 {
4733 	unsigned long i;
4734 	struct page *page;
4735 	unsigned long num_pages;
4736 
4737 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4738 	num_pages = num_extent_pages(eb->start, eb->len);
4739 	for (i = 0; i < num_pages; i++) {
4740 		page = extent_buffer_page(eb, i);
4741 		if (page)
4742 			ClearPageUptodate(page);
4743 	}
4744 	return 0;
4745 }
4746 
4747 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4748 {
4749 	unsigned long i;
4750 	struct page *page;
4751 	unsigned long num_pages;
4752 
4753 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4754 	num_pages = num_extent_pages(eb->start, eb->len);
4755 	for (i = 0; i < num_pages; i++) {
4756 		page = extent_buffer_page(eb, i);
4757 		SetPageUptodate(page);
4758 	}
4759 	return 0;
4760 }
4761 
4762 int extent_buffer_uptodate(struct extent_buffer *eb)
4763 {
4764 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4765 }
4766 
4767 int read_extent_buffer_pages(struct extent_io_tree *tree,
4768 			     struct extent_buffer *eb, u64 start, int wait,
4769 			     get_extent_t *get_extent, int mirror_num)
4770 {
4771 	unsigned long i;
4772 	unsigned long start_i;
4773 	struct page *page;
4774 	int err;
4775 	int ret = 0;
4776 	int locked_pages = 0;
4777 	int all_uptodate = 1;
4778 	unsigned long num_pages;
4779 	unsigned long num_reads = 0;
4780 	struct bio *bio = NULL;
4781 	unsigned long bio_flags = 0;
4782 
4783 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4784 		return 0;
4785 
4786 	if (start) {
4787 		WARN_ON(start < eb->start);
4788 		start_i = (start >> PAGE_CACHE_SHIFT) -
4789 			(eb->start >> PAGE_CACHE_SHIFT);
4790 	} else {
4791 		start_i = 0;
4792 	}
4793 
4794 	num_pages = num_extent_pages(eb->start, eb->len);
4795 	for (i = start_i; i < num_pages; i++) {
4796 		page = extent_buffer_page(eb, i);
4797 		if (wait == WAIT_NONE) {
4798 			if (!trylock_page(page))
4799 				goto unlock_exit;
4800 		} else {
4801 			lock_page(page);
4802 		}
4803 		locked_pages++;
4804 		if (!PageUptodate(page)) {
4805 			num_reads++;
4806 			all_uptodate = 0;
4807 		}
4808 	}
4809 	if (all_uptodate) {
4810 		if (start_i == 0)
4811 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4812 		goto unlock_exit;
4813 	}
4814 
4815 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4816 	eb->read_mirror = 0;
4817 	atomic_set(&eb->io_pages, num_reads);
4818 	for (i = start_i; i < num_pages; i++) {
4819 		page = extent_buffer_page(eb, i);
4820 		if (!PageUptodate(page)) {
4821 			ClearPageError(page);
4822 			err = __extent_read_full_page(tree, page,
4823 						      get_extent, &bio,
4824 						      mirror_num, &bio_flags,
4825 						      READ | REQ_META);
4826 			if (err)
4827 				ret = err;
4828 		} else {
4829 			unlock_page(page);
4830 		}
4831 	}
4832 
4833 	if (bio) {
4834 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4835 				     bio_flags);
4836 		if (err)
4837 			return err;
4838 	}
4839 
4840 	if (ret || wait != WAIT_COMPLETE)
4841 		return ret;
4842 
4843 	for (i = start_i; i < num_pages; i++) {
4844 		page = extent_buffer_page(eb, i);
4845 		wait_on_page_locked(page);
4846 		if (!PageUptodate(page))
4847 			ret = -EIO;
4848 	}
4849 
4850 	return ret;
4851 
4852 unlock_exit:
4853 	i = start_i;
4854 	while (locked_pages > 0) {
4855 		page = extent_buffer_page(eb, i);
4856 		i++;
4857 		unlock_page(page);
4858 		locked_pages--;
4859 	}
4860 	return ret;
4861 }
4862 
4863 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4864 			unsigned long start,
4865 			unsigned long len)
4866 {
4867 	size_t cur;
4868 	size_t offset;
4869 	struct page *page;
4870 	char *kaddr;
4871 	char *dst = (char *)dstv;
4872 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4873 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4874 
4875 	WARN_ON(start > eb->len);
4876 	WARN_ON(start + len > eb->start + eb->len);
4877 
4878 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4879 
4880 	while (len > 0) {
4881 		page = extent_buffer_page(eb, i);
4882 
4883 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4884 		kaddr = page_address(page);
4885 		memcpy(dst, kaddr + offset, cur);
4886 
4887 		dst += cur;
4888 		len -= cur;
4889 		offset = 0;
4890 		i++;
4891 	}
4892 }
4893 
4894 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4895 			       unsigned long min_len, char **map,
4896 			       unsigned long *map_start,
4897 			       unsigned long *map_len)
4898 {
4899 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4900 	char *kaddr;
4901 	struct page *p;
4902 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4903 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4904 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4905 		PAGE_CACHE_SHIFT;
4906 
4907 	if (i != end_i)
4908 		return -EINVAL;
4909 
4910 	if (i == 0) {
4911 		offset = start_offset;
4912 		*map_start = 0;
4913 	} else {
4914 		offset = 0;
4915 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4916 	}
4917 
4918 	if (start + min_len > eb->len) {
4919 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4920 		       "wanted %lu %lu\n",
4921 		       eb->start, eb->len, start, min_len);
4922 		return -EINVAL;
4923 	}
4924 
4925 	p = extent_buffer_page(eb, i);
4926 	kaddr = page_address(p);
4927 	*map = kaddr + offset;
4928 	*map_len = PAGE_CACHE_SIZE - offset;
4929 	return 0;
4930 }
4931 
4932 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4933 			  unsigned long start,
4934 			  unsigned long len)
4935 {
4936 	size_t cur;
4937 	size_t offset;
4938 	struct page *page;
4939 	char *kaddr;
4940 	char *ptr = (char *)ptrv;
4941 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4942 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4943 	int ret = 0;
4944 
4945 	WARN_ON(start > eb->len);
4946 	WARN_ON(start + len > eb->start + eb->len);
4947 
4948 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4949 
4950 	while (len > 0) {
4951 		page = extent_buffer_page(eb, i);
4952 
4953 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4954 
4955 		kaddr = page_address(page);
4956 		ret = memcmp(ptr, kaddr + offset, cur);
4957 		if (ret)
4958 			break;
4959 
4960 		ptr += cur;
4961 		len -= cur;
4962 		offset = 0;
4963 		i++;
4964 	}
4965 	return ret;
4966 }
4967 
4968 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4969 			 unsigned long start, unsigned long len)
4970 {
4971 	size_t cur;
4972 	size_t offset;
4973 	struct page *page;
4974 	char *kaddr;
4975 	char *src = (char *)srcv;
4976 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4977 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4978 
4979 	WARN_ON(start > eb->len);
4980 	WARN_ON(start + len > eb->start + eb->len);
4981 
4982 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4983 
4984 	while (len > 0) {
4985 		page = extent_buffer_page(eb, i);
4986 		WARN_ON(!PageUptodate(page));
4987 
4988 		cur = min(len, PAGE_CACHE_SIZE - offset);
4989 		kaddr = page_address(page);
4990 		memcpy(kaddr + offset, src, cur);
4991 
4992 		src += cur;
4993 		len -= cur;
4994 		offset = 0;
4995 		i++;
4996 	}
4997 }
4998 
4999 void memset_extent_buffer(struct extent_buffer *eb, char c,
5000 			  unsigned long start, unsigned long len)
5001 {
5002 	size_t cur;
5003 	size_t offset;
5004 	struct page *page;
5005 	char *kaddr;
5006 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5007 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5008 
5009 	WARN_ON(start > eb->len);
5010 	WARN_ON(start + len > eb->start + eb->len);
5011 
5012 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5013 
5014 	while (len > 0) {
5015 		page = extent_buffer_page(eb, i);
5016 		WARN_ON(!PageUptodate(page));
5017 
5018 		cur = min(len, PAGE_CACHE_SIZE - offset);
5019 		kaddr = page_address(page);
5020 		memset(kaddr + offset, c, cur);
5021 
5022 		len -= cur;
5023 		offset = 0;
5024 		i++;
5025 	}
5026 }
5027 
5028 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5029 			unsigned long dst_offset, unsigned long src_offset,
5030 			unsigned long len)
5031 {
5032 	u64 dst_len = dst->len;
5033 	size_t cur;
5034 	size_t offset;
5035 	struct page *page;
5036 	char *kaddr;
5037 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5038 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5039 
5040 	WARN_ON(src->len != dst_len);
5041 
5042 	offset = (start_offset + dst_offset) &
5043 		(PAGE_CACHE_SIZE - 1);
5044 
5045 	while (len > 0) {
5046 		page = extent_buffer_page(dst, i);
5047 		WARN_ON(!PageUptodate(page));
5048 
5049 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5050 
5051 		kaddr = page_address(page);
5052 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5053 
5054 		src_offset += cur;
5055 		len -= cur;
5056 		offset = 0;
5057 		i++;
5058 	}
5059 }
5060 
5061 static void move_pages(struct page *dst_page, struct page *src_page,
5062 		       unsigned long dst_off, unsigned long src_off,
5063 		       unsigned long len)
5064 {
5065 	char *dst_kaddr = page_address(dst_page);
5066 	if (dst_page == src_page) {
5067 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5068 	} else {
5069 		char *src_kaddr = page_address(src_page);
5070 		char *p = dst_kaddr + dst_off + len;
5071 		char *s = src_kaddr + src_off + len;
5072 
5073 		while (len--)
5074 			*--p = *--s;
5075 	}
5076 }
5077 
5078 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5079 {
5080 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5081 	return distance < len;
5082 }
5083 
5084 static void copy_pages(struct page *dst_page, struct page *src_page,
5085 		       unsigned long dst_off, unsigned long src_off,
5086 		       unsigned long len)
5087 {
5088 	char *dst_kaddr = page_address(dst_page);
5089 	char *src_kaddr;
5090 	int must_memmove = 0;
5091 
5092 	if (dst_page != src_page) {
5093 		src_kaddr = page_address(src_page);
5094 	} else {
5095 		src_kaddr = dst_kaddr;
5096 		if (areas_overlap(src_off, dst_off, len))
5097 			must_memmove = 1;
5098 	}
5099 
5100 	if (must_memmove)
5101 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5102 	else
5103 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5104 }
5105 
5106 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5107 			   unsigned long src_offset, unsigned long len)
5108 {
5109 	size_t cur;
5110 	size_t dst_off_in_page;
5111 	size_t src_off_in_page;
5112 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5113 	unsigned long dst_i;
5114 	unsigned long src_i;
5115 
5116 	if (src_offset + len > dst->len) {
5117 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5118 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5119 		BUG_ON(1);
5120 	}
5121 	if (dst_offset + len > dst->len) {
5122 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5123 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5124 		BUG_ON(1);
5125 	}
5126 
5127 	while (len > 0) {
5128 		dst_off_in_page = (start_offset + dst_offset) &
5129 			(PAGE_CACHE_SIZE - 1);
5130 		src_off_in_page = (start_offset + src_offset) &
5131 			(PAGE_CACHE_SIZE - 1);
5132 
5133 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5134 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5135 
5136 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5137 					       src_off_in_page));
5138 		cur = min_t(unsigned long, cur,
5139 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5140 
5141 		copy_pages(extent_buffer_page(dst, dst_i),
5142 			   extent_buffer_page(dst, src_i),
5143 			   dst_off_in_page, src_off_in_page, cur);
5144 
5145 		src_offset += cur;
5146 		dst_offset += cur;
5147 		len -= cur;
5148 	}
5149 }
5150 
5151 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5152 			   unsigned long src_offset, unsigned long len)
5153 {
5154 	size_t cur;
5155 	size_t dst_off_in_page;
5156 	size_t src_off_in_page;
5157 	unsigned long dst_end = dst_offset + len - 1;
5158 	unsigned long src_end = src_offset + len - 1;
5159 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5160 	unsigned long dst_i;
5161 	unsigned long src_i;
5162 
5163 	if (src_offset + len > dst->len) {
5164 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5165 		       "len %lu len %lu\n", src_offset, len, dst->len);
5166 		BUG_ON(1);
5167 	}
5168 	if (dst_offset + len > dst->len) {
5169 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5170 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5171 		BUG_ON(1);
5172 	}
5173 	if (dst_offset < src_offset) {
5174 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5175 		return;
5176 	}
5177 	while (len > 0) {
5178 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5179 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5180 
5181 		dst_off_in_page = (start_offset + dst_end) &
5182 			(PAGE_CACHE_SIZE - 1);
5183 		src_off_in_page = (start_offset + src_end) &
5184 			(PAGE_CACHE_SIZE - 1);
5185 
5186 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5187 		cur = min(cur, dst_off_in_page + 1);
5188 		move_pages(extent_buffer_page(dst, dst_i),
5189 			   extent_buffer_page(dst, src_i),
5190 			   dst_off_in_page - cur + 1,
5191 			   src_off_in_page - cur + 1, cur);
5192 
5193 		dst_end -= cur;
5194 		src_end -= cur;
5195 		len -= cur;
5196 	}
5197 }
5198 
5199 int try_release_extent_buffer(struct page *page)
5200 {
5201 	struct extent_buffer *eb;
5202 
5203 	/*
5204 	 * We need to make sure noboody is attaching this page to an eb right
5205 	 * now.
5206 	 */
5207 	spin_lock(&page->mapping->private_lock);
5208 	if (!PagePrivate(page)) {
5209 		spin_unlock(&page->mapping->private_lock);
5210 		return 1;
5211 	}
5212 
5213 	eb = (struct extent_buffer *)page->private;
5214 	BUG_ON(!eb);
5215 
5216 	/*
5217 	 * This is a little awful but should be ok, we need to make sure that
5218 	 * the eb doesn't disappear out from under us while we're looking at
5219 	 * this page.
5220 	 */
5221 	spin_lock(&eb->refs_lock);
5222 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5223 		spin_unlock(&eb->refs_lock);
5224 		spin_unlock(&page->mapping->private_lock);
5225 		return 0;
5226 	}
5227 	spin_unlock(&page->mapping->private_lock);
5228 
5229 	/*
5230 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5231 	 * so just return, this page will likely be freed soon anyway.
5232 	 */
5233 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5234 		spin_unlock(&eb->refs_lock);
5235 		return 0;
5236 	}
5237 
5238 	return release_extent_buffer(eb);
5239 }
5240