1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 state->start, state->end, state->state, state->tree, 65 atomic_read(&state->refs)); 66 list_del(&state->leak_list); 67 kmem_cache_free(extent_state_cache, state); 68 } 69 70 while (!list_empty(&buffers)) { 71 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 73 "refs %d\n", 74 eb->start, eb->len, atomic_read(&eb->refs)); 75 list_del(&eb->leak_list); 76 kmem_cache_free(extent_buffer_cache, eb); 77 } 78 } 79 80 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 82 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 83 struct inode *inode, u64 start, u64 end) 84 { 85 u64 isize = i_size_read(inode); 86 87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 88 printk_ratelimited(KERN_DEBUG 89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 90 caller, btrfs_ino(inode), isize, start, end); 91 } 92 } 93 #else 94 #define btrfs_leak_debug_add(new, head) do {} while (0) 95 #define btrfs_leak_debug_del(entry) do {} while (0) 96 #define btrfs_leak_debug_check() do {} while (0) 97 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 98 #endif 99 100 #define BUFFER_LRU_MAX 64 101 102 struct tree_entry { 103 u64 start; 104 u64 end; 105 struct rb_node rb_node; 106 }; 107 108 struct extent_page_data { 109 struct bio *bio; 110 struct extent_io_tree *tree; 111 get_extent_t *get_extent; 112 unsigned long bio_flags; 113 114 /* tells writepage not to lock the state bits for this range 115 * it still does the unlocking 116 */ 117 unsigned int extent_locked:1; 118 119 /* tells the submit_bio code to use a WRITE_SYNC */ 120 unsigned int sync_io:1; 121 }; 122 123 static noinline void flush_write_bio(void *data); 124 static inline struct btrfs_fs_info * 125 tree_fs_info(struct extent_io_tree *tree) 126 { 127 return btrfs_sb(tree->mapping->host->i_sb); 128 } 129 130 int __init extent_io_init(void) 131 { 132 extent_state_cache = kmem_cache_create("btrfs_extent_state", 133 sizeof(struct extent_state), 0, 134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 135 if (!extent_state_cache) 136 return -ENOMEM; 137 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 139 sizeof(struct extent_buffer), 0, 140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 141 if (!extent_buffer_cache) 142 goto free_state_cache; 143 144 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 145 offsetof(struct btrfs_io_bio, bio)); 146 if (!btrfs_bioset) 147 goto free_buffer_cache; 148 return 0; 149 150 free_buffer_cache: 151 kmem_cache_destroy(extent_buffer_cache); 152 extent_buffer_cache = NULL; 153 154 free_state_cache: 155 kmem_cache_destroy(extent_state_cache); 156 extent_state_cache = NULL; 157 return -ENOMEM; 158 } 159 160 void extent_io_exit(void) 161 { 162 btrfs_leak_debug_check(); 163 164 /* 165 * Make sure all delayed rcu free are flushed before we 166 * destroy caches. 167 */ 168 rcu_barrier(); 169 if (extent_state_cache) 170 kmem_cache_destroy(extent_state_cache); 171 if (extent_buffer_cache) 172 kmem_cache_destroy(extent_buffer_cache); 173 if (btrfs_bioset) 174 bioset_free(btrfs_bioset); 175 } 176 177 void extent_io_tree_init(struct extent_io_tree *tree, 178 struct address_space *mapping) 179 { 180 tree->state = RB_ROOT; 181 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 182 tree->ops = NULL; 183 tree->dirty_bytes = 0; 184 spin_lock_init(&tree->lock); 185 spin_lock_init(&tree->buffer_lock); 186 tree->mapping = mapping; 187 } 188 189 static struct extent_state *alloc_extent_state(gfp_t mask) 190 { 191 struct extent_state *state; 192 193 state = kmem_cache_alloc(extent_state_cache, mask); 194 if (!state) 195 return state; 196 state->state = 0; 197 state->private = 0; 198 state->tree = NULL; 199 btrfs_leak_debug_add(&state->leak_list, &states); 200 atomic_set(&state->refs, 1); 201 init_waitqueue_head(&state->wq); 202 trace_alloc_extent_state(state, mask, _RET_IP_); 203 return state; 204 } 205 206 void free_extent_state(struct extent_state *state) 207 { 208 if (!state) 209 return; 210 if (atomic_dec_and_test(&state->refs)) { 211 WARN_ON(state->tree); 212 btrfs_leak_debug_del(&state->leak_list); 213 trace_free_extent_state(state, _RET_IP_); 214 kmem_cache_free(extent_state_cache, state); 215 } 216 } 217 218 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 219 struct rb_node *node) 220 { 221 struct rb_node **p = &root->rb_node; 222 struct rb_node *parent = NULL; 223 struct tree_entry *entry; 224 225 while (*p) { 226 parent = *p; 227 entry = rb_entry(parent, struct tree_entry, rb_node); 228 229 if (offset < entry->start) 230 p = &(*p)->rb_left; 231 else if (offset > entry->end) 232 p = &(*p)->rb_right; 233 else 234 return parent; 235 } 236 237 rb_link_node(node, parent, p); 238 rb_insert_color(node, root); 239 return NULL; 240 } 241 242 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 243 struct rb_node **prev_ret, 244 struct rb_node **next_ret) 245 { 246 struct rb_root *root = &tree->state; 247 struct rb_node *n = root->rb_node; 248 struct rb_node *prev = NULL; 249 struct rb_node *orig_prev = NULL; 250 struct tree_entry *entry; 251 struct tree_entry *prev_entry = NULL; 252 253 while (n) { 254 entry = rb_entry(n, struct tree_entry, rb_node); 255 prev = n; 256 prev_entry = entry; 257 258 if (offset < entry->start) 259 n = n->rb_left; 260 else if (offset > entry->end) 261 n = n->rb_right; 262 else 263 return n; 264 } 265 266 if (prev_ret) { 267 orig_prev = prev; 268 while (prev && offset > prev_entry->end) { 269 prev = rb_next(prev); 270 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 271 } 272 *prev_ret = prev; 273 prev = orig_prev; 274 } 275 276 if (next_ret) { 277 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 278 while (prev && offset < prev_entry->start) { 279 prev = rb_prev(prev); 280 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 281 } 282 *next_ret = prev; 283 } 284 return NULL; 285 } 286 287 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 288 u64 offset) 289 { 290 struct rb_node *prev = NULL; 291 struct rb_node *ret; 292 293 ret = __etree_search(tree, offset, &prev, NULL); 294 if (!ret) 295 return prev; 296 return ret; 297 } 298 299 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 300 struct extent_state *other) 301 { 302 if (tree->ops && tree->ops->merge_extent_hook) 303 tree->ops->merge_extent_hook(tree->mapping->host, new, 304 other); 305 } 306 307 /* 308 * utility function to look for merge candidates inside a given range. 309 * Any extents with matching state are merged together into a single 310 * extent in the tree. Extents with EXTENT_IO in their state field 311 * are not merged because the end_io handlers need to be able to do 312 * operations on them without sleeping (or doing allocations/splits). 313 * 314 * This should be called with the tree lock held. 315 */ 316 static void merge_state(struct extent_io_tree *tree, 317 struct extent_state *state) 318 { 319 struct extent_state *other; 320 struct rb_node *other_node; 321 322 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 323 return; 324 325 other_node = rb_prev(&state->rb_node); 326 if (other_node) { 327 other = rb_entry(other_node, struct extent_state, rb_node); 328 if (other->end == state->start - 1 && 329 other->state == state->state) { 330 merge_cb(tree, state, other); 331 state->start = other->start; 332 other->tree = NULL; 333 rb_erase(&other->rb_node, &tree->state); 334 free_extent_state(other); 335 } 336 } 337 other_node = rb_next(&state->rb_node); 338 if (other_node) { 339 other = rb_entry(other_node, struct extent_state, rb_node); 340 if (other->start == state->end + 1 && 341 other->state == state->state) { 342 merge_cb(tree, state, other); 343 state->end = other->end; 344 other->tree = NULL; 345 rb_erase(&other->rb_node, &tree->state); 346 free_extent_state(other); 347 } 348 } 349 } 350 351 static void set_state_cb(struct extent_io_tree *tree, 352 struct extent_state *state, unsigned long *bits) 353 { 354 if (tree->ops && tree->ops->set_bit_hook) 355 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 356 } 357 358 static void clear_state_cb(struct extent_io_tree *tree, 359 struct extent_state *state, unsigned long *bits) 360 { 361 if (tree->ops && tree->ops->clear_bit_hook) 362 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 363 } 364 365 static void set_state_bits(struct extent_io_tree *tree, 366 struct extent_state *state, unsigned long *bits); 367 368 /* 369 * insert an extent_state struct into the tree. 'bits' are set on the 370 * struct before it is inserted. 371 * 372 * This may return -EEXIST if the extent is already there, in which case the 373 * state struct is freed. 374 * 375 * The tree lock is not taken internally. This is a utility function and 376 * probably isn't what you want to call (see set/clear_extent_bit). 377 */ 378 static int insert_state(struct extent_io_tree *tree, 379 struct extent_state *state, u64 start, u64 end, 380 unsigned long *bits) 381 { 382 struct rb_node *node; 383 384 if (end < start) 385 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 386 end, start); 387 state->start = start; 388 state->end = end; 389 390 set_state_bits(tree, state, bits); 391 392 node = tree_insert(&tree->state, end, &state->rb_node); 393 if (node) { 394 struct extent_state *found; 395 found = rb_entry(node, struct extent_state, rb_node); 396 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 397 "%llu %llu\n", 398 found->start, found->end, start, end); 399 return -EEXIST; 400 } 401 state->tree = tree; 402 merge_state(tree, state); 403 return 0; 404 } 405 406 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 407 u64 split) 408 { 409 if (tree->ops && tree->ops->split_extent_hook) 410 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 411 } 412 413 /* 414 * split a given extent state struct in two, inserting the preallocated 415 * struct 'prealloc' as the newly created second half. 'split' indicates an 416 * offset inside 'orig' where it should be split. 417 * 418 * Before calling, 419 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 420 * are two extent state structs in the tree: 421 * prealloc: [orig->start, split - 1] 422 * orig: [ split, orig->end ] 423 * 424 * The tree locks are not taken by this function. They need to be held 425 * by the caller. 426 */ 427 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 428 struct extent_state *prealloc, u64 split) 429 { 430 struct rb_node *node; 431 432 split_cb(tree, orig, split); 433 434 prealloc->start = orig->start; 435 prealloc->end = split - 1; 436 prealloc->state = orig->state; 437 orig->start = split; 438 439 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 440 if (node) { 441 free_extent_state(prealloc); 442 return -EEXIST; 443 } 444 prealloc->tree = tree; 445 return 0; 446 } 447 448 static struct extent_state *next_state(struct extent_state *state) 449 { 450 struct rb_node *next = rb_next(&state->rb_node); 451 if (next) 452 return rb_entry(next, struct extent_state, rb_node); 453 else 454 return NULL; 455 } 456 457 /* 458 * utility function to clear some bits in an extent state struct. 459 * it will optionally wake up any one waiting on this state (wake == 1). 460 * 461 * If no bits are set on the state struct after clearing things, the 462 * struct is freed and removed from the tree 463 */ 464 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 465 struct extent_state *state, 466 unsigned long *bits, int wake) 467 { 468 struct extent_state *next; 469 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 470 471 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 472 u64 range = state->end - state->start + 1; 473 WARN_ON(range > tree->dirty_bytes); 474 tree->dirty_bytes -= range; 475 } 476 clear_state_cb(tree, state, bits); 477 state->state &= ~bits_to_clear; 478 if (wake) 479 wake_up(&state->wq); 480 if (state->state == 0) { 481 next = next_state(state); 482 if (state->tree) { 483 rb_erase(&state->rb_node, &tree->state); 484 state->tree = NULL; 485 free_extent_state(state); 486 } else { 487 WARN_ON(1); 488 } 489 } else { 490 merge_state(tree, state); 491 next = next_state(state); 492 } 493 return next; 494 } 495 496 static struct extent_state * 497 alloc_extent_state_atomic(struct extent_state *prealloc) 498 { 499 if (!prealloc) 500 prealloc = alloc_extent_state(GFP_ATOMIC); 501 502 return prealloc; 503 } 504 505 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 506 { 507 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 508 "Extent tree was modified by another " 509 "thread while locked."); 510 } 511 512 /* 513 * clear some bits on a range in the tree. This may require splitting 514 * or inserting elements in the tree, so the gfp mask is used to 515 * indicate which allocations or sleeping are allowed. 516 * 517 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 518 * the given range from the tree regardless of state (ie for truncate). 519 * 520 * the range [start, end] is inclusive. 521 * 522 * This takes the tree lock, and returns 0 on success and < 0 on error. 523 */ 524 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 525 unsigned long bits, int wake, int delete, 526 struct extent_state **cached_state, 527 gfp_t mask) 528 { 529 struct extent_state *state; 530 struct extent_state *cached; 531 struct extent_state *prealloc = NULL; 532 struct rb_node *node; 533 u64 last_end; 534 int err; 535 int clear = 0; 536 537 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 538 539 if (bits & EXTENT_DELALLOC) 540 bits |= EXTENT_NORESERVE; 541 542 if (delete) 543 bits |= ~EXTENT_CTLBITS; 544 bits |= EXTENT_FIRST_DELALLOC; 545 546 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 547 clear = 1; 548 again: 549 if (!prealloc && (mask & __GFP_WAIT)) { 550 prealloc = alloc_extent_state(mask); 551 if (!prealloc) 552 return -ENOMEM; 553 } 554 555 spin_lock(&tree->lock); 556 if (cached_state) { 557 cached = *cached_state; 558 559 if (clear) { 560 *cached_state = NULL; 561 cached_state = NULL; 562 } 563 564 if (cached && cached->tree && cached->start <= start && 565 cached->end > start) { 566 if (clear) 567 atomic_dec(&cached->refs); 568 state = cached; 569 goto hit_next; 570 } 571 if (clear) 572 free_extent_state(cached); 573 } 574 /* 575 * this search will find the extents that end after 576 * our range starts 577 */ 578 node = tree_search(tree, start); 579 if (!node) 580 goto out; 581 state = rb_entry(node, struct extent_state, rb_node); 582 hit_next: 583 if (state->start > end) 584 goto out; 585 WARN_ON(state->end < start); 586 last_end = state->end; 587 588 /* the state doesn't have the wanted bits, go ahead */ 589 if (!(state->state & bits)) { 590 state = next_state(state); 591 goto next; 592 } 593 594 /* 595 * | ---- desired range ---- | 596 * | state | or 597 * | ------------- state -------------- | 598 * 599 * We need to split the extent we found, and may flip 600 * bits on second half. 601 * 602 * If the extent we found extends past our range, we 603 * just split and search again. It'll get split again 604 * the next time though. 605 * 606 * If the extent we found is inside our range, we clear 607 * the desired bit on it. 608 */ 609 610 if (state->start < start) { 611 prealloc = alloc_extent_state_atomic(prealloc); 612 BUG_ON(!prealloc); 613 err = split_state(tree, state, prealloc, start); 614 if (err) 615 extent_io_tree_panic(tree, err); 616 617 prealloc = NULL; 618 if (err) 619 goto out; 620 if (state->end <= end) { 621 state = clear_state_bit(tree, state, &bits, wake); 622 goto next; 623 } 624 goto search_again; 625 } 626 /* 627 * | ---- desired range ---- | 628 * | state | 629 * We need to split the extent, and clear the bit 630 * on the first half 631 */ 632 if (state->start <= end && state->end > end) { 633 prealloc = alloc_extent_state_atomic(prealloc); 634 BUG_ON(!prealloc); 635 err = split_state(tree, state, prealloc, end + 1); 636 if (err) 637 extent_io_tree_panic(tree, err); 638 639 if (wake) 640 wake_up(&state->wq); 641 642 clear_state_bit(tree, prealloc, &bits, wake); 643 644 prealloc = NULL; 645 goto out; 646 } 647 648 state = clear_state_bit(tree, state, &bits, wake); 649 next: 650 if (last_end == (u64)-1) 651 goto out; 652 start = last_end + 1; 653 if (start <= end && state && !need_resched()) 654 goto hit_next; 655 goto search_again; 656 657 out: 658 spin_unlock(&tree->lock); 659 if (prealloc) 660 free_extent_state(prealloc); 661 662 return 0; 663 664 search_again: 665 if (start > end) 666 goto out; 667 spin_unlock(&tree->lock); 668 if (mask & __GFP_WAIT) 669 cond_resched(); 670 goto again; 671 } 672 673 static void wait_on_state(struct extent_io_tree *tree, 674 struct extent_state *state) 675 __releases(tree->lock) 676 __acquires(tree->lock) 677 { 678 DEFINE_WAIT(wait); 679 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 680 spin_unlock(&tree->lock); 681 schedule(); 682 spin_lock(&tree->lock); 683 finish_wait(&state->wq, &wait); 684 } 685 686 /* 687 * waits for one or more bits to clear on a range in the state tree. 688 * The range [start, end] is inclusive. 689 * The tree lock is taken by this function 690 */ 691 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 692 unsigned long bits) 693 { 694 struct extent_state *state; 695 struct rb_node *node; 696 697 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 698 699 spin_lock(&tree->lock); 700 again: 701 while (1) { 702 /* 703 * this search will find all the extents that end after 704 * our range starts 705 */ 706 node = tree_search(tree, start); 707 if (!node) 708 break; 709 710 state = rb_entry(node, struct extent_state, rb_node); 711 712 if (state->start > end) 713 goto out; 714 715 if (state->state & bits) { 716 start = state->start; 717 atomic_inc(&state->refs); 718 wait_on_state(tree, state); 719 free_extent_state(state); 720 goto again; 721 } 722 start = state->end + 1; 723 724 if (start > end) 725 break; 726 727 cond_resched_lock(&tree->lock); 728 } 729 out: 730 spin_unlock(&tree->lock); 731 } 732 733 static void set_state_bits(struct extent_io_tree *tree, 734 struct extent_state *state, 735 unsigned long *bits) 736 { 737 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 738 739 set_state_cb(tree, state, bits); 740 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 741 u64 range = state->end - state->start + 1; 742 tree->dirty_bytes += range; 743 } 744 state->state |= bits_to_set; 745 } 746 747 static void cache_state(struct extent_state *state, 748 struct extent_state **cached_ptr) 749 { 750 if (cached_ptr && !(*cached_ptr)) { 751 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 752 *cached_ptr = state; 753 atomic_inc(&state->refs); 754 } 755 } 756 } 757 758 /* 759 * set some bits on a range in the tree. This may require allocations or 760 * sleeping, so the gfp mask is used to indicate what is allowed. 761 * 762 * If any of the exclusive bits are set, this will fail with -EEXIST if some 763 * part of the range already has the desired bits set. The start of the 764 * existing range is returned in failed_start in this case. 765 * 766 * [start, end] is inclusive This takes the tree lock. 767 */ 768 769 static int __must_check 770 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 771 unsigned long bits, unsigned long exclusive_bits, 772 u64 *failed_start, struct extent_state **cached_state, 773 gfp_t mask) 774 { 775 struct extent_state *state; 776 struct extent_state *prealloc = NULL; 777 struct rb_node *node; 778 int err = 0; 779 u64 last_start; 780 u64 last_end; 781 782 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 783 784 bits |= EXTENT_FIRST_DELALLOC; 785 again: 786 if (!prealloc && (mask & __GFP_WAIT)) { 787 prealloc = alloc_extent_state(mask); 788 BUG_ON(!prealloc); 789 } 790 791 spin_lock(&tree->lock); 792 if (cached_state && *cached_state) { 793 state = *cached_state; 794 if (state->start <= start && state->end > start && 795 state->tree) { 796 node = &state->rb_node; 797 goto hit_next; 798 } 799 } 800 /* 801 * this search will find all the extents that end after 802 * our range starts. 803 */ 804 node = tree_search(tree, start); 805 if (!node) { 806 prealloc = alloc_extent_state_atomic(prealloc); 807 BUG_ON(!prealloc); 808 err = insert_state(tree, prealloc, start, end, &bits); 809 if (err) 810 extent_io_tree_panic(tree, err); 811 812 prealloc = NULL; 813 goto out; 814 } 815 state = rb_entry(node, struct extent_state, rb_node); 816 hit_next: 817 last_start = state->start; 818 last_end = state->end; 819 820 /* 821 * | ---- desired range ---- | 822 * | state | 823 * 824 * Just lock what we found and keep going 825 */ 826 if (state->start == start && state->end <= end) { 827 if (state->state & exclusive_bits) { 828 *failed_start = state->start; 829 err = -EEXIST; 830 goto out; 831 } 832 833 set_state_bits(tree, state, &bits); 834 cache_state(state, cached_state); 835 merge_state(tree, state); 836 if (last_end == (u64)-1) 837 goto out; 838 start = last_end + 1; 839 state = next_state(state); 840 if (start < end && state && state->start == start && 841 !need_resched()) 842 goto hit_next; 843 goto search_again; 844 } 845 846 /* 847 * | ---- desired range ---- | 848 * | state | 849 * or 850 * | ------------- state -------------- | 851 * 852 * We need to split the extent we found, and may flip bits on 853 * second half. 854 * 855 * If the extent we found extends past our 856 * range, we just split and search again. It'll get split 857 * again the next time though. 858 * 859 * If the extent we found is inside our range, we set the 860 * desired bit on it. 861 */ 862 if (state->start < start) { 863 if (state->state & exclusive_bits) { 864 *failed_start = start; 865 err = -EEXIST; 866 goto out; 867 } 868 869 prealloc = alloc_extent_state_atomic(prealloc); 870 BUG_ON(!prealloc); 871 err = split_state(tree, state, prealloc, start); 872 if (err) 873 extent_io_tree_panic(tree, err); 874 875 prealloc = NULL; 876 if (err) 877 goto out; 878 if (state->end <= end) { 879 set_state_bits(tree, state, &bits); 880 cache_state(state, cached_state); 881 merge_state(tree, state); 882 if (last_end == (u64)-1) 883 goto out; 884 start = last_end + 1; 885 state = next_state(state); 886 if (start < end && state && state->start == start && 887 !need_resched()) 888 goto hit_next; 889 } 890 goto search_again; 891 } 892 /* 893 * | ---- desired range ---- | 894 * | state | or | state | 895 * 896 * There's a hole, we need to insert something in it and 897 * ignore the extent we found. 898 */ 899 if (state->start > start) { 900 u64 this_end; 901 if (end < last_start) 902 this_end = end; 903 else 904 this_end = last_start - 1; 905 906 prealloc = alloc_extent_state_atomic(prealloc); 907 BUG_ON(!prealloc); 908 909 /* 910 * Avoid to free 'prealloc' if it can be merged with 911 * the later extent. 912 */ 913 err = insert_state(tree, prealloc, start, this_end, 914 &bits); 915 if (err) 916 extent_io_tree_panic(tree, err); 917 918 cache_state(prealloc, cached_state); 919 prealloc = NULL; 920 start = this_end + 1; 921 goto search_again; 922 } 923 /* 924 * | ---- desired range ---- | 925 * | state | 926 * We need to split the extent, and set the bit 927 * on the first half 928 */ 929 if (state->start <= end && state->end > end) { 930 if (state->state & exclusive_bits) { 931 *failed_start = start; 932 err = -EEXIST; 933 goto out; 934 } 935 936 prealloc = alloc_extent_state_atomic(prealloc); 937 BUG_ON(!prealloc); 938 err = split_state(tree, state, prealloc, end + 1); 939 if (err) 940 extent_io_tree_panic(tree, err); 941 942 set_state_bits(tree, prealloc, &bits); 943 cache_state(prealloc, cached_state); 944 merge_state(tree, prealloc); 945 prealloc = NULL; 946 goto out; 947 } 948 949 goto search_again; 950 951 out: 952 spin_unlock(&tree->lock); 953 if (prealloc) 954 free_extent_state(prealloc); 955 956 return err; 957 958 search_again: 959 if (start > end) 960 goto out; 961 spin_unlock(&tree->lock); 962 if (mask & __GFP_WAIT) 963 cond_resched(); 964 goto again; 965 } 966 967 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 968 unsigned long bits, u64 * failed_start, 969 struct extent_state **cached_state, gfp_t mask) 970 { 971 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 972 cached_state, mask); 973 } 974 975 976 /** 977 * convert_extent_bit - convert all bits in a given range from one bit to 978 * another 979 * @tree: the io tree to search 980 * @start: the start offset in bytes 981 * @end: the end offset in bytes (inclusive) 982 * @bits: the bits to set in this range 983 * @clear_bits: the bits to clear in this range 984 * @cached_state: state that we're going to cache 985 * @mask: the allocation mask 986 * 987 * This will go through and set bits for the given range. If any states exist 988 * already in this range they are set with the given bit and cleared of the 989 * clear_bits. This is only meant to be used by things that are mergeable, ie 990 * converting from say DELALLOC to DIRTY. This is not meant to be used with 991 * boundary bits like LOCK. 992 */ 993 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 994 unsigned long bits, unsigned long clear_bits, 995 struct extent_state **cached_state, gfp_t mask) 996 { 997 struct extent_state *state; 998 struct extent_state *prealloc = NULL; 999 struct rb_node *node; 1000 int err = 0; 1001 u64 last_start; 1002 u64 last_end; 1003 1004 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1005 1006 again: 1007 if (!prealloc && (mask & __GFP_WAIT)) { 1008 prealloc = alloc_extent_state(mask); 1009 if (!prealloc) 1010 return -ENOMEM; 1011 } 1012 1013 spin_lock(&tree->lock); 1014 if (cached_state && *cached_state) { 1015 state = *cached_state; 1016 if (state->start <= start && state->end > start && 1017 state->tree) { 1018 node = &state->rb_node; 1019 goto hit_next; 1020 } 1021 } 1022 1023 /* 1024 * this search will find all the extents that end after 1025 * our range starts. 1026 */ 1027 node = tree_search(tree, start); 1028 if (!node) { 1029 prealloc = alloc_extent_state_atomic(prealloc); 1030 if (!prealloc) { 1031 err = -ENOMEM; 1032 goto out; 1033 } 1034 err = insert_state(tree, prealloc, start, end, &bits); 1035 prealloc = NULL; 1036 if (err) 1037 extent_io_tree_panic(tree, err); 1038 goto out; 1039 } 1040 state = rb_entry(node, struct extent_state, rb_node); 1041 hit_next: 1042 last_start = state->start; 1043 last_end = state->end; 1044 1045 /* 1046 * | ---- desired range ---- | 1047 * | state | 1048 * 1049 * Just lock what we found and keep going 1050 */ 1051 if (state->start == start && state->end <= end) { 1052 set_state_bits(tree, state, &bits); 1053 cache_state(state, cached_state); 1054 state = clear_state_bit(tree, state, &clear_bits, 0); 1055 if (last_end == (u64)-1) 1056 goto out; 1057 start = last_end + 1; 1058 if (start < end && state && state->start == start && 1059 !need_resched()) 1060 goto hit_next; 1061 goto search_again; 1062 } 1063 1064 /* 1065 * | ---- desired range ---- | 1066 * | state | 1067 * or 1068 * | ------------- state -------------- | 1069 * 1070 * We need to split the extent we found, and may flip bits on 1071 * second half. 1072 * 1073 * If the extent we found extends past our 1074 * range, we just split and search again. It'll get split 1075 * again the next time though. 1076 * 1077 * If the extent we found is inside our range, we set the 1078 * desired bit on it. 1079 */ 1080 if (state->start < start) { 1081 prealloc = alloc_extent_state_atomic(prealloc); 1082 if (!prealloc) { 1083 err = -ENOMEM; 1084 goto out; 1085 } 1086 err = split_state(tree, state, prealloc, start); 1087 if (err) 1088 extent_io_tree_panic(tree, err); 1089 prealloc = NULL; 1090 if (err) 1091 goto out; 1092 if (state->end <= end) { 1093 set_state_bits(tree, state, &bits); 1094 cache_state(state, cached_state); 1095 state = clear_state_bit(tree, state, &clear_bits, 0); 1096 if (last_end == (u64)-1) 1097 goto out; 1098 start = last_end + 1; 1099 if (start < end && state && state->start == start && 1100 !need_resched()) 1101 goto hit_next; 1102 } 1103 goto search_again; 1104 } 1105 /* 1106 * | ---- desired range ---- | 1107 * | state | or | state | 1108 * 1109 * There's a hole, we need to insert something in it and 1110 * ignore the extent we found. 1111 */ 1112 if (state->start > start) { 1113 u64 this_end; 1114 if (end < last_start) 1115 this_end = end; 1116 else 1117 this_end = last_start - 1; 1118 1119 prealloc = alloc_extent_state_atomic(prealloc); 1120 if (!prealloc) { 1121 err = -ENOMEM; 1122 goto out; 1123 } 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 &bits); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 cache_state(prealloc, cached_state); 1134 prealloc = NULL; 1135 start = this_end + 1; 1136 goto search_again; 1137 } 1138 /* 1139 * | ---- desired range ---- | 1140 * | state | 1141 * We need to split the extent, and set the bit 1142 * on the first half 1143 */ 1144 if (state->start <= end && state->end > end) { 1145 prealloc = alloc_extent_state_atomic(prealloc); 1146 if (!prealloc) { 1147 err = -ENOMEM; 1148 goto out; 1149 } 1150 1151 err = split_state(tree, state, prealloc, end + 1); 1152 if (err) 1153 extent_io_tree_panic(tree, err); 1154 1155 set_state_bits(tree, prealloc, &bits); 1156 cache_state(prealloc, cached_state); 1157 clear_state_bit(tree, prealloc, &clear_bits, 0); 1158 prealloc = NULL; 1159 goto out; 1160 } 1161 1162 goto search_again; 1163 1164 out: 1165 spin_unlock(&tree->lock); 1166 if (prealloc) 1167 free_extent_state(prealloc); 1168 1169 return err; 1170 1171 search_again: 1172 if (start > end) 1173 goto out; 1174 spin_unlock(&tree->lock); 1175 if (mask & __GFP_WAIT) 1176 cond_resched(); 1177 goto again; 1178 } 1179 1180 /* wrappers around set/clear extent bit */ 1181 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1182 gfp_t mask) 1183 { 1184 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1185 NULL, mask); 1186 } 1187 1188 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1189 unsigned long bits, gfp_t mask) 1190 { 1191 return set_extent_bit(tree, start, end, bits, NULL, 1192 NULL, mask); 1193 } 1194 1195 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1196 unsigned long bits, gfp_t mask) 1197 { 1198 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1199 } 1200 1201 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1202 struct extent_state **cached_state, gfp_t mask) 1203 { 1204 return set_extent_bit(tree, start, end, 1205 EXTENT_DELALLOC | EXTENT_UPTODATE, 1206 NULL, cached_state, mask); 1207 } 1208 1209 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1210 struct extent_state **cached_state, gfp_t mask) 1211 { 1212 return set_extent_bit(tree, start, end, 1213 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1214 NULL, cached_state, mask); 1215 } 1216 1217 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1218 gfp_t mask) 1219 { 1220 return clear_extent_bit(tree, start, end, 1221 EXTENT_DIRTY | EXTENT_DELALLOC | 1222 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1223 } 1224 1225 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1226 gfp_t mask) 1227 { 1228 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1229 NULL, mask); 1230 } 1231 1232 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1233 struct extent_state **cached_state, gfp_t mask) 1234 { 1235 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1236 cached_state, mask); 1237 } 1238 1239 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1240 struct extent_state **cached_state, gfp_t mask) 1241 { 1242 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1243 cached_state, mask); 1244 } 1245 1246 /* 1247 * either insert or lock state struct between start and end use mask to tell 1248 * us if waiting is desired. 1249 */ 1250 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1251 unsigned long bits, struct extent_state **cached_state) 1252 { 1253 int err; 1254 u64 failed_start; 1255 while (1) { 1256 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1257 EXTENT_LOCKED, &failed_start, 1258 cached_state, GFP_NOFS); 1259 if (err == -EEXIST) { 1260 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1261 start = failed_start; 1262 } else 1263 break; 1264 WARN_ON(start > end); 1265 } 1266 return err; 1267 } 1268 1269 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1270 { 1271 return lock_extent_bits(tree, start, end, 0, NULL); 1272 } 1273 1274 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1275 { 1276 int err; 1277 u64 failed_start; 1278 1279 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1280 &failed_start, NULL, GFP_NOFS); 1281 if (err == -EEXIST) { 1282 if (failed_start > start) 1283 clear_extent_bit(tree, start, failed_start - 1, 1284 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1285 return 0; 1286 } 1287 return 1; 1288 } 1289 1290 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1291 struct extent_state **cached, gfp_t mask) 1292 { 1293 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1294 mask); 1295 } 1296 1297 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1298 { 1299 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1300 GFP_NOFS); 1301 } 1302 1303 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1304 { 1305 unsigned long index = start >> PAGE_CACHE_SHIFT; 1306 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1307 struct page *page; 1308 1309 while (index <= end_index) { 1310 page = find_get_page(inode->i_mapping, index); 1311 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1312 clear_page_dirty_for_io(page); 1313 page_cache_release(page); 1314 index++; 1315 } 1316 return 0; 1317 } 1318 1319 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1320 { 1321 unsigned long index = start >> PAGE_CACHE_SHIFT; 1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1323 struct page *page; 1324 1325 while (index <= end_index) { 1326 page = find_get_page(inode->i_mapping, index); 1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1328 account_page_redirty(page); 1329 __set_page_dirty_nobuffers(page); 1330 page_cache_release(page); 1331 index++; 1332 } 1333 return 0; 1334 } 1335 1336 /* 1337 * helper function to set both pages and extents in the tree writeback 1338 */ 1339 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1340 { 1341 unsigned long index = start >> PAGE_CACHE_SHIFT; 1342 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1343 struct page *page; 1344 1345 while (index <= end_index) { 1346 page = find_get_page(tree->mapping, index); 1347 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1348 set_page_writeback(page); 1349 page_cache_release(page); 1350 index++; 1351 } 1352 return 0; 1353 } 1354 1355 /* find the first state struct with 'bits' set after 'start', and 1356 * return it. tree->lock must be held. NULL will returned if 1357 * nothing was found after 'start' 1358 */ 1359 static struct extent_state * 1360 find_first_extent_bit_state(struct extent_io_tree *tree, 1361 u64 start, unsigned long bits) 1362 { 1363 struct rb_node *node; 1364 struct extent_state *state; 1365 1366 /* 1367 * this search will find all the extents that end after 1368 * our range starts. 1369 */ 1370 node = tree_search(tree, start); 1371 if (!node) 1372 goto out; 1373 1374 while (1) { 1375 state = rb_entry(node, struct extent_state, rb_node); 1376 if (state->end >= start && (state->state & bits)) 1377 return state; 1378 1379 node = rb_next(node); 1380 if (!node) 1381 break; 1382 } 1383 out: 1384 return NULL; 1385 } 1386 1387 /* 1388 * find the first offset in the io tree with 'bits' set. zero is 1389 * returned if we find something, and *start_ret and *end_ret are 1390 * set to reflect the state struct that was found. 1391 * 1392 * If nothing was found, 1 is returned. If found something, return 0. 1393 */ 1394 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1395 u64 *start_ret, u64 *end_ret, unsigned long bits, 1396 struct extent_state **cached_state) 1397 { 1398 struct extent_state *state; 1399 struct rb_node *n; 1400 int ret = 1; 1401 1402 spin_lock(&tree->lock); 1403 if (cached_state && *cached_state) { 1404 state = *cached_state; 1405 if (state->end == start - 1 && state->tree) { 1406 n = rb_next(&state->rb_node); 1407 while (n) { 1408 state = rb_entry(n, struct extent_state, 1409 rb_node); 1410 if (state->state & bits) 1411 goto got_it; 1412 n = rb_next(n); 1413 } 1414 free_extent_state(*cached_state); 1415 *cached_state = NULL; 1416 goto out; 1417 } 1418 free_extent_state(*cached_state); 1419 *cached_state = NULL; 1420 } 1421 1422 state = find_first_extent_bit_state(tree, start, bits); 1423 got_it: 1424 if (state) { 1425 cache_state(state, cached_state); 1426 *start_ret = state->start; 1427 *end_ret = state->end; 1428 ret = 0; 1429 } 1430 out: 1431 spin_unlock(&tree->lock); 1432 return ret; 1433 } 1434 1435 /* 1436 * find a contiguous range of bytes in the file marked as delalloc, not 1437 * more than 'max_bytes'. start and end are used to return the range, 1438 * 1439 * 1 is returned if we find something, 0 if nothing was in the tree 1440 */ 1441 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1442 u64 *start, u64 *end, u64 max_bytes, 1443 struct extent_state **cached_state) 1444 { 1445 struct rb_node *node; 1446 struct extent_state *state; 1447 u64 cur_start = *start; 1448 u64 found = 0; 1449 u64 total_bytes = 0; 1450 1451 spin_lock(&tree->lock); 1452 1453 /* 1454 * this search will find all the extents that end after 1455 * our range starts. 1456 */ 1457 node = tree_search(tree, cur_start); 1458 if (!node) { 1459 if (!found) 1460 *end = (u64)-1; 1461 goto out; 1462 } 1463 1464 while (1) { 1465 state = rb_entry(node, struct extent_state, rb_node); 1466 if (found && (state->start != cur_start || 1467 (state->state & EXTENT_BOUNDARY))) { 1468 goto out; 1469 } 1470 if (!(state->state & EXTENT_DELALLOC)) { 1471 if (!found) 1472 *end = state->end; 1473 goto out; 1474 } 1475 if (!found) { 1476 *start = state->start; 1477 *cached_state = state; 1478 atomic_inc(&state->refs); 1479 } 1480 found++; 1481 *end = state->end; 1482 cur_start = state->end + 1; 1483 node = rb_next(node); 1484 total_bytes += state->end - state->start + 1; 1485 if (total_bytes >= max_bytes) { 1486 *end = *start + max_bytes - 1; 1487 break; 1488 } 1489 if (!node) 1490 break; 1491 } 1492 out: 1493 spin_unlock(&tree->lock); 1494 return found; 1495 } 1496 1497 static noinline void __unlock_for_delalloc(struct inode *inode, 1498 struct page *locked_page, 1499 u64 start, u64 end) 1500 { 1501 int ret; 1502 struct page *pages[16]; 1503 unsigned long index = start >> PAGE_CACHE_SHIFT; 1504 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1505 unsigned long nr_pages = end_index - index + 1; 1506 int i; 1507 1508 if (index == locked_page->index && end_index == index) 1509 return; 1510 1511 while (nr_pages > 0) { 1512 ret = find_get_pages_contig(inode->i_mapping, index, 1513 min_t(unsigned long, nr_pages, 1514 ARRAY_SIZE(pages)), pages); 1515 for (i = 0; i < ret; i++) { 1516 if (pages[i] != locked_page) 1517 unlock_page(pages[i]); 1518 page_cache_release(pages[i]); 1519 } 1520 nr_pages -= ret; 1521 index += ret; 1522 cond_resched(); 1523 } 1524 } 1525 1526 static noinline int lock_delalloc_pages(struct inode *inode, 1527 struct page *locked_page, 1528 u64 delalloc_start, 1529 u64 delalloc_end) 1530 { 1531 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1532 unsigned long start_index = index; 1533 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1534 unsigned long pages_locked = 0; 1535 struct page *pages[16]; 1536 unsigned long nrpages; 1537 int ret; 1538 int i; 1539 1540 /* the caller is responsible for locking the start index */ 1541 if (index == locked_page->index && index == end_index) 1542 return 0; 1543 1544 /* skip the page at the start index */ 1545 nrpages = end_index - index + 1; 1546 while (nrpages > 0) { 1547 ret = find_get_pages_contig(inode->i_mapping, index, 1548 min_t(unsigned long, 1549 nrpages, ARRAY_SIZE(pages)), pages); 1550 if (ret == 0) { 1551 ret = -EAGAIN; 1552 goto done; 1553 } 1554 /* now we have an array of pages, lock them all */ 1555 for (i = 0; i < ret; i++) { 1556 /* 1557 * the caller is taking responsibility for 1558 * locked_page 1559 */ 1560 if (pages[i] != locked_page) { 1561 lock_page(pages[i]); 1562 if (!PageDirty(pages[i]) || 1563 pages[i]->mapping != inode->i_mapping) { 1564 ret = -EAGAIN; 1565 unlock_page(pages[i]); 1566 page_cache_release(pages[i]); 1567 goto done; 1568 } 1569 } 1570 page_cache_release(pages[i]); 1571 pages_locked++; 1572 } 1573 nrpages -= ret; 1574 index += ret; 1575 cond_resched(); 1576 } 1577 ret = 0; 1578 done: 1579 if (ret && pages_locked) { 1580 __unlock_for_delalloc(inode, locked_page, 1581 delalloc_start, 1582 ((u64)(start_index + pages_locked - 1)) << 1583 PAGE_CACHE_SHIFT); 1584 } 1585 return ret; 1586 } 1587 1588 /* 1589 * find a contiguous range of bytes in the file marked as delalloc, not 1590 * more than 'max_bytes'. start and end are used to return the range, 1591 * 1592 * 1 is returned if we find something, 0 if nothing was in the tree 1593 */ 1594 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1595 struct extent_io_tree *tree, 1596 struct page *locked_page, 1597 u64 *start, u64 *end, 1598 u64 max_bytes) 1599 { 1600 u64 delalloc_start; 1601 u64 delalloc_end; 1602 u64 found; 1603 struct extent_state *cached_state = NULL; 1604 int ret; 1605 int loops = 0; 1606 1607 again: 1608 /* step one, find a bunch of delalloc bytes starting at start */ 1609 delalloc_start = *start; 1610 delalloc_end = 0; 1611 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1612 max_bytes, &cached_state); 1613 if (!found || delalloc_end <= *start) { 1614 *start = delalloc_start; 1615 *end = delalloc_end; 1616 free_extent_state(cached_state); 1617 return found; 1618 } 1619 1620 /* 1621 * start comes from the offset of locked_page. We have to lock 1622 * pages in order, so we can't process delalloc bytes before 1623 * locked_page 1624 */ 1625 if (delalloc_start < *start) 1626 delalloc_start = *start; 1627 1628 /* 1629 * make sure to limit the number of pages we try to lock down 1630 * if we're looping. 1631 */ 1632 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1633 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1634 1635 /* step two, lock all the pages after the page that has start */ 1636 ret = lock_delalloc_pages(inode, locked_page, 1637 delalloc_start, delalloc_end); 1638 if (ret == -EAGAIN) { 1639 /* some of the pages are gone, lets avoid looping by 1640 * shortening the size of the delalloc range we're searching 1641 */ 1642 free_extent_state(cached_state); 1643 if (!loops) { 1644 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1645 max_bytes = PAGE_CACHE_SIZE - offset; 1646 loops = 1; 1647 goto again; 1648 } else { 1649 found = 0; 1650 goto out_failed; 1651 } 1652 } 1653 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1654 1655 /* step three, lock the state bits for the whole range */ 1656 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1657 1658 /* then test to make sure it is all still delalloc */ 1659 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1660 EXTENT_DELALLOC, 1, cached_state); 1661 if (!ret) { 1662 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1663 &cached_state, GFP_NOFS); 1664 __unlock_for_delalloc(inode, locked_page, 1665 delalloc_start, delalloc_end); 1666 cond_resched(); 1667 goto again; 1668 } 1669 free_extent_state(cached_state); 1670 *start = delalloc_start; 1671 *end = delalloc_end; 1672 out_failed: 1673 return found; 1674 } 1675 1676 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1677 struct page *locked_page, 1678 unsigned long clear_bits, 1679 unsigned long page_ops) 1680 { 1681 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1682 int ret; 1683 struct page *pages[16]; 1684 unsigned long index = start >> PAGE_CACHE_SHIFT; 1685 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1686 unsigned long nr_pages = end_index - index + 1; 1687 int i; 1688 1689 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1690 if (page_ops == 0) 1691 return 0; 1692 1693 while (nr_pages > 0) { 1694 ret = find_get_pages_contig(inode->i_mapping, index, 1695 min_t(unsigned long, 1696 nr_pages, ARRAY_SIZE(pages)), pages); 1697 for (i = 0; i < ret; i++) { 1698 1699 if (page_ops & PAGE_SET_PRIVATE2) 1700 SetPagePrivate2(pages[i]); 1701 1702 if (pages[i] == locked_page) { 1703 page_cache_release(pages[i]); 1704 continue; 1705 } 1706 if (page_ops & PAGE_CLEAR_DIRTY) 1707 clear_page_dirty_for_io(pages[i]); 1708 if (page_ops & PAGE_SET_WRITEBACK) 1709 set_page_writeback(pages[i]); 1710 if (page_ops & PAGE_END_WRITEBACK) 1711 end_page_writeback(pages[i]); 1712 if (page_ops & PAGE_UNLOCK) 1713 unlock_page(pages[i]); 1714 page_cache_release(pages[i]); 1715 } 1716 nr_pages -= ret; 1717 index += ret; 1718 cond_resched(); 1719 } 1720 return 0; 1721 } 1722 1723 /* 1724 * count the number of bytes in the tree that have a given bit(s) 1725 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1726 * cached. The total number found is returned. 1727 */ 1728 u64 count_range_bits(struct extent_io_tree *tree, 1729 u64 *start, u64 search_end, u64 max_bytes, 1730 unsigned long bits, int contig) 1731 { 1732 struct rb_node *node; 1733 struct extent_state *state; 1734 u64 cur_start = *start; 1735 u64 total_bytes = 0; 1736 u64 last = 0; 1737 int found = 0; 1738 1739 if (search_end <= cur_start) { 1740 WARN_ON(1); 1741 return 0; 1742 } 1743 1744 spin_lock(&tree->lock); 1745 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1746 total_bytes = tree->dirty_bytes; 1747 goto out; 1748 } 1749 /* 1750 * this search will find all the extents that end after 1751 * our range starts. 1752 */ 1753 node = tree_search(tree, cur_start); 1754 if (!node) 1755 goto out; 1756 1757 while (1) { 1758 state = rb_entry(node, struct extent_state, rb_node); 1759 if (state->start > search_end) 1760 break; 1761 if (contig && found && state->start > last + 1) 1762 break; 1763 if (state->end >= cur_start && (state->state & bits) == bits) { 1764 total_bytes += min(search_end, state->end) + 1 - 1765 max(cur_start, state->start); 1766 if (total_bytes >= max_bytes) 1767 break; 1768 if (!found) { 1769 *start = max(cur_start, state->start); 1770 found = 1; 1771 } 1772 last = state->end; 1773 } else if (contig && found) { 1774 break; 1775 } 1776 node = rb_next(node); 1777 if (!node) 1778 break; 1779 } 1780 out: 1781 spin_unlock(&tree->lock); 1782 return total_bytes; 1783 } 1784 1785 /* 1786 * set the private field for a given byte offset in the tree. If there isn't 1787 * an extent_state there already, this does nothing. 1788 */ 1789 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1790 { 1791 struct rb_node *node; 1792 struct extent_state *state; 1793 int ret = 0; 1794 1795 spin_lock(&tree->lock); 1796 /* 1797 * this search will find all the extents that end after 1798 * our range starts. 1799 */ 1800 node = tree_search(tree, start); 1801 if (!node) { 1802 ret = -ENOENT; 1803 goto out; 1804 } 1805 state = rb_entry(node, struct extent_state, rb_node); 1806 if (state->start != start) { 1807 ret = -ENOENT; 1808 goto out; 1809 } 1810 state->private = private; 1811 out: 1812 spin_unlock(&tree->lock); 1813 return ret; 1814 } 1815 1816 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1817 { 1818 struct rb_node *node; 1819 struct extent_state *state; 1820 int ret = 0; 1821 1822 spin_lock(&tree->lock); 1823 /* 1824 * this search will find all the extents that end after 1825 * our range starts. 1826 */ 1827 node = tree_search(tree, start); 1828 if (!node) { 1829 ret = -ENOENT; 1830 goto out; 1831 } 1832 state = rb_entry(node, struct extent_state, rb_node); 1833 if (state->start != start) { 1834 ret = -ENOENT; 1835 goto out; 1836 } 1837 *private = state->private; 1838 out: 1839 spin_unlock(&tree->lock); 1840 return ret; 1841 } 1842 1843 /* 1844 * searches a range in the state tree for a given mask. 1845 * If 'filled' == 1, this returns 1 only if every extent in the tree 1846 * has the bits set. Otherwise, 1 is returned if any bit in the 1847 * range is found set. 1848 */ 1849 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1850 unsigned long bits, int filled, struct extent_state *cached) 1851 { 1852 struct extent_state *state = NULL; 1853 struct rb_node *node; 1854 int bitset = 0; 1855 1856 spin_lock(&tree->lock); 1857 if (cached && cached->tree && cached->start <= start && 1858 cached->end > start) 1859 node = &cached->rb_node; 1860 else 1861 node = tree_search(tree, start); 1862 while (node && start <= end) { 1863 state = rb_entry(node, struct extent_state, rb_node); 1864 1865 if (filled && state->start > start) { 1866 bitset = 0; 1867 break; 1868 } 1869 1870 if (state->start > end) 1871 break; 1872 1873 if (state->state & bits) { 1874 bitset = 1; 1875 if (!filled) 1876 break; 1877 } else if (filled) { 1878 bitset = 0; 1879 break; 1880 } 1881 1882 if (state->end == (u64)-1) 1883 break; 1884 1885 start = state->end + 1; 1886 if (start > end) 1887 break; 1888 node = rb_next(node); 1889 if (!node) { 1890 if (filled) 1891 bitset = 0; 1892 break; 1893 } 1894 } 1895 spin_unlock(&tree->lock); 1896 return bitset; 1897 } 1898 1899 /* 1900 * helper function to set a given page up to date if all the 1901 * extents in the tree for that page are up to date 1902 */ 1903 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1904 { 1905 u64 start = page_offset(page); 1906 u64 end = start + PAGE_CACHE_SIZE - 1; 1907 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1908 SetPageUptodate(page); 1909 } 1910 1911 /* 1912 * When IO fails, either with EIO or csum verification fails, we 1913 * try other mirrors that might have a good copy of the data. This 1914 * io_failure_record is used to record state as we go through all the 1915 * mirrors. If another mirror has good data, the page is set up to date 1916 * and things continue. If a good mirror can't be found, the original 1917 * bio end_io callback is called to indicate things have failed. 1918 */ 1919 struct io_failure_record { 1920 struct page *page; 1921 u64 start; 1922 u64 len; 1923 u64 logical; 1924 unsigned long bio_flags; 1925 int this_mirror; 1926 int failed_mirror; 1927 int in_validation; 1928 }; 1929 1930 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1931 int did_repair) 1932 { 1933 int ret; 1934 int err = 0; 1935 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1936 1937 set_state_private(failure_tree, rec->start, 0); 1938 ret = clear_extent_bits(failure_tree, rec->start, 1939 rec->start + rec->len - 1, 1940 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1941 if (ret) 1942 err = ret; 1943 1944 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1945 rec->start + rec->len - 1, 1946 EXTENT_DAMAGED, GFP_NOFS); 1947 if (ret && !err) 1948 err = ret; 1949 1950 kfree(rec); 1951 return err; 1952 } 1953 1954 static void repair_io_failure_callback(struct bio *bio, int err) 1955 { 1956 complete(bio->bi_private); 1957 } 1958 1959 /* 1960 * this bypasses the standard btrfs submit functions deliberately, as 1961 * the standard behavior is to write all copies in a raid setup. here we only 1962 * want to write the one bad copy. so we do the mapping for ourselves and issue 1963 * submit_bio directly. 1964 * to avoid any synchronization issues, wait for the data after writing, which 1965 * actually prevents the read that triggered the error from finishing. 1966 * currently, there can be no more than two copies of every data bit. thus, 1967 * exactly one rewrite is required. 1968 */ 1969 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 1970 u64 length, u64 logical, struct page *page, 1971 int mirror_num) 1972 { 1973 struct bio *bio; 1974 struct btrfs_device *dev; 1975 DECLARE_COMPLETION_ONSTACK(compl); 1976 u64 map_length = 0; 1977 u64 sector; 1978 struct btrfs_bio *bbio = NULL; 1979 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 1980 int ret; 1981 1982 BUG_ON(!mirror_num); 1983 1984 /* we can't repair anything in raid56 yet */ 1985 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 1986 return 0; 1987 1988 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 1989 if (!bio) 1990 return -EIO; 1991 bio->bi_private = &compl; 1992 bio->bi_end_io = repair_io_failure_callback; 1993 bio->bi_size = 0; 1994 map_length = length; 1995 1996 ret = btrfs_map_block(fs_info, WRITE, logical, 1997 &map_length, &bbio, mirror_num); 1998 if (ret) { 1999 bio_put(bio); 2000 return -EIO; 2001 } 2002 BUG_ON(mirror_num != bbio->mirror_num); 2003 sector = bbio->stripes[mirror_num-1].physical >> 9; 2004 bio->bi_sector = sector; 2005 dev = bbio->stripes[mirror_num-1].dev; 2006 kfree(bbio); 2007 if (!dev || !dev->bdev || !dev->writeable) { 2008 bio_put(bio); 2009 return -EIO; 2010 } 2011 bio->bi_bdev = dev->bdev; 2012 bio_add_page(bio, page, length, start - page_offset(page)); 2013 btrfsic_submit_bio(WRITE_SYNC, bio); 2014 wait_for_completion(&compl); 2015 2016 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2017 /* try to remap that extent elsewhere? */ 2018 bio_put(bio); 2019 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2020 return -EIO; 2021 } 2022 2023 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2024 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2025 start, rcu_str_deref(dev->name), sector); 2026 2027 bio_put(bio); 2028 return 0; 2029 } 2030 2031 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2032 int mirror_num) 2033 { 2034 u64 start = eb->start; 2035 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2036 int ret = 0; 2037 2038 for (i = 0; i < num_pages; i++) { 2039 struct page *p = extent_buffer_page(eb, i); 2040 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2041 start, p, mirror_num); 2042 if (ret) 2043 break; 2044 start += PAGE_CACHE_SIZE; 2045 } 2046 2047 return ret; 2048 } 2049 2050 /* 2051 * each time an IO finishes, we do a fast check in the IO failure tree 2052 * to see if we need to process or clean up an io_failure_record 2053 */ 2054 static int clean_io_failure(u64 start, struct page *page) 2055 { 2056 u64 private; 2057 u64 private_failure; 2058 struct io_failure_record *failrec; 2059 struct btrfs_fs_info *fs_info; 2060 struct extent_state *state; 2061 int num_copies; 2062 int did_repair = 0; 2063 int ret; 2064 struct inode *inode = page->mapping->host; 2065 2066 private = 0; 2067 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2068 (u64)-1, 1, EXTENT_DIRTY, 0); 2069 if (!ret) 2070 return 0; 2071 2072 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2073 &private_failure); 2074 if (ret) 2075 return 0; 2076 2077 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2078 BUG_ON(!failrec->this_mirror); 2079 2080 if (failrec->in_validation) { 2081 /* there was no real error, just free the record */ 2082 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2083 failrec->start); 2084 did_repair = 1; 2085 goto out; 2086 } 2087 2088 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2089 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2090 failrec->start, 2091 EXTENT_LOCKED); 2092 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2093 2094 if (state && state->start <= failrec->start && 2095 state->end >= failrec->start + failrec->len - 1) { 2096 fs_info = BTRFS_I(inode)->root->fs_info; 2097 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2098 failrec->len); 2099 if (num_copies > 1) { 2100 ret = repair_io_failure(fs_info, start, failrec->len, 2101 failrec->logical, page, 2102 failrec->failed_mirror); 2103 did_repair = !ret; 2104 } 2105 ret = 0; 2106 } 2107 2108 out: 2109 if (!ret) 2110 ret = free_io_failure(inode, failrec, did_repair); 2111 2112 return ret; 2113 } 2114 2115 /* 2116 * this is a generic handler for readpage errors (default 2117 * readpage_io_failed_hook). if other copies exist, read those and write back 2118 * good data to the failed position. does not investigate in remapping the 2119 * failed extent elsewhere, hoping the device will be smart enough to do this as 2120 * needed 2121 */ 2122 2123 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2124 struct page *page, u64 start, u64 end, 2125 int failed_mirror) 2126 { 2127 struct io_failure_record *failrec = NULL; 2128 u64 private; 2129 struct extent_map *em; 2130 struct inode *inode = page->mapping->host; 2131 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2132 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2133 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2134 struct bio *bio; 2135 struct btrfs_io_bio *btrfs_failed_bio; 2136 struct btrfs_io_bio *btrfs_bio; 2137 int num_copies; 2138 int ret; 2139 int read_mode; 2140 u64 logical; 2141 2142 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2143 2144 ret = get_state_private(failure_tree, start, &private); 2145 if (ret) { 2146 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2147 if (!failrec) 2148 return -ENOMEM; 2149 failrec->start = start; 2150 failrec->len = end - start + 1; 2151 failrec->this_mirror = 0; 2152 failrec->bio_flags = 0; 2153 failrec->in_validation = 0; 2154 2155 read_lock(&em_tree->lock); 2156 em = lookup_extent_mapping(em_tree, start, failrec->len); 2157 if (!em) { 2158 read_unlock(&em_tree->lock); 2159 kfree(failrec); 2160 return -EIO; 2161 } 2162 2163 if (em->start > start || em->start + em->len < start) { 2164 free_extent_map(em); 2165 em = NULL; 2166 } 2167 read_unlock(&em_tree->lock); 2168 2169 if (!em) { 2170 kfree(failrec); 2171 return -EIO; 2172 } 2173 logical = start - em->start; 2174 logical = em->block_start + logical; 2175 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2176 logical = em->block_start; 2177 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2178 extent_set_compress_type(&failrec->bio_flags, 2179 em->compress_type); 2180 } 2181 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2182 "len=%llu\n", logical, start, failrec->len); 2183 failrec->logical = logical; 2184 free_extent_map(em); 2185 2186 /* set the bits in the private failure tree */ 2187 ret = set_extent_bits(failure_tree, start, end, 2188 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2189 if (ret >= 0) 2190 ret = set_state_private(failure_tree, start, 2191 (u64)(unsigned long)failrec); 2192 /* set the bits in the inode's tree */ 2193 if (ret >= 0) 2194 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2195 GFP_NOFS); 2196 if (ret < 0) { 2197 kfree(failrec); 2198 return ret; 2199 } 2200 } else { 2201 failrec = (struct io_failure_record *)(unsigned long)private; 2202 pr_debug("bio_readpage_error: (found) logical=%llu, " 2203 "start=%llu, len=%llu, validation=%d\n", 2204 failrec->logical, failrec->start, failrec->len, 2205 failrec->in_validation); 2206 /* 2207 * when data can be on disk more than twice, add to failrec here 2208 * (e.g. with a list for failed_mirror) to make 2209 * clean_io_failure() clean all those errors at once. 2210 */ 2211 } 2212 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2213 failrec->logical, failrec->len); 2214 if (num_copies == 1) { 2215 /* 2216 * we only have a single copy of the data, so don't bother with 2217 * all the retry and error correction code that follows. no 2218 * matter what the error is, it is very likely to persist. 2219 */ 2220 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2221 num_copies, failrec->this_mirror, failed_mirror); 2222 free_io_failure(inode, failrec, 0); 2223 return -EIO; 2224 } 2225 2226 /* 2227 * there are two premises: 2228 * a) deliver good data to the caller 2229 * b) correct the bad sectors on disk 2230 */ 2231 if (failed_bio->bi_vcnt > 1) { 2232 /* 2233 * to fulfill b), we need to know the exact failing sectors, as 2234 * we don't want to rewrite any more than the failed ones. thus, 2235 * we need separate read requests for the failed bio 2236 * 2237 * if the following BUG_ON triggers, our validation request got 2238 * merged. we need separate requests for our algorithm to work. 2239 */ 2240 BUG_ON(failrec->in_validation); 2241 failrec->in_validation = 1; 2242 failrec->this_mirror = failed_mirror; 2243 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2244 } else { 2245 /* 2246 * we're ready to fulfill a) and b) alongside. get a good copy 2247 * of the failed sector and if we succeed, we have setup 2248 * everything for repair_io_failure to do the rest for us. 2249 */ 2250 if (failrec->in_validation) { 2251 BUG_ON(failrec->this_mirror != failed_mirror); 2252 failrec->in_validation = 0; 2253 failrec->this_mirror = 0; 2254 } 2255 failrec->failed_mirror = failed_mirror; 2256 failrec->this_mirror++; 2257 if (failrec->this_mirror == failed_mirror) 2258 failrec->this_mirror++; 2259 read_mode = READ_SYNC; 2260 } 2261 2262 if (failrec->this_mirror > num_copies) { 2263 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2264 num_copies, failrec->this_mirror, failed_mirror); 2265 free_io_failure(inode, failrec, 0); 2266 return -EIO; 2267 } 2268 2269 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2270 if (!bio) { 2271 free_io_failure(inode, failrec, 0); 2272 return -EIO; 2273 } 2274 bio->bi_end_io = failed_bio->bi_end_io; 2275 bio->bi_sector = failrec->logical >> 9; 2276 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2277 bio->bi_size = 0; 2278 2279 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2280 if (btrfs_failed_bio->csum) { 2281 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2282 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2283 2284 btrfs_bio = btrfs_io_bio(bio); 2285 btrfs_bio->csum = btrfs_bio->csum_inline; 2286 phy_offset >>= inode->i_sb->s_blocksize_bits; 2287 phy_offset *= csum_size; 2288 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2289 csum_size); 2290 } 2291 2292 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2293 2294 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2295 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2296 failrec->this_mirror, num_copies, failrec->in_validation); 2297 2298 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2299 failrec->this_mirror, 2300 failrec->bio_flags, 0); 2301 return ret; 2302 } 2303 2304 /* lots and lots of room for performance fixes in the end_bio funcs */ 2305 2306 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2307 { 2308 int uptodate = (err == 0); 2309 struct extent_io_tree *tree; 2310 int ret; 2311 2312 tree = &BTRFS_I(page->mapping->host)->io_tree; 2313 2314 if (tree->ops && tree->ops->writepage_end_io_hook) { 2315 ret = tree->ops->writepage_end_io_hook(page, start, 2316 end, NULL, uptodate); 2317 if (ret) 2318 uptodate = 0; 2319 } 2320 2321 if (!uptodate) { 2322 ClearPageUptodate(page); 2323 SetPageError(page); 2324 } 2325 return 0; 2326 } 2327 2328 /* 2329 * after a writepage IO is done, we need to: 2330 * clear the uptodate bits on error 2331 * clear the writeback bits in the extent tree for this IO 2332 * end_page_writeback if the page has no more pending IO 2333 * 2334 * Scheduling is not allowed, so the extent state tree is expected 2335 * to have one and only one object corresponding to this IO. 2336 */ 2337 static void end_bio_extent_writepage(struct bio *bio, int err) 2338 { 2339 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2340 struct extent_io_tree *tree; 2341 u64 start; 2342 u64 end; 2343 2344 do { 2345 struct page *page = bvec->bv_page; 2346 tree = &BTRFS_I(page->mapping->host)->io_tree; 2347 2348 /* We always issue full-page reads, but if some block 2349 * in a page fails to read, blk_update_request() will 2350 * advance bv_offset and adjust bv_len to compensate. 2351 * Print a warning for nonzero offsets, and an error 2352 * if they don't add up to a full page. */ 2353 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2354 printk("%s page write in btrfs with offset %u and length %u\n", 2355 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2356 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2357 bvec->bv_offset, bvec->bv_len); 2358 2359 start = page_offset(page); 2360 end = start + bvec->bv_offset + bvec->bv_len - 1; 2361 2362 if (--bvec >= bio->bi_io_vec) 2363 prefetchw(&bvec->bv_page->flags); 2364 2365 if (end_extent_writepage(page, err, start, end)) 2366 continue; 2367 2368 end_page_writeback(page); 2369 } while (bvec >= bio->bi_io_vec); 2370 2371 bio_put(bio); 2372 } 2373 2374 static void 2375 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2376 int uptodate) 2377 { 2378 struct extent_state *cached = NULL; 2379 u64 end = start + len - 1; 2380 2381 if (uptodate && tree->track_uptodate) 2382 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2383 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2384 } 2385 2386 /* 2387 * after a readpage IO is done, we need to: 2388 * clear the uptodate bits on error 2389 * set the uptodate bits if things worked 2390 * set the page up to date if all extents in the tree are uptodate 2391 * clear the lock bit in the extent tree 2392 * unlock the page if there are no other extents locked for it 2393 * 2394 * Scheduling is not allowed, so the extent state tree is expected 2395 * to have one and only one object corresponding to this IO. 2396 */ 2397 static void end_bio_extent_readpage(struct bio *bio, int err) 2398 { 2399 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2400 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2401 struct bio_vec *bvec = bio->bi_io_vec; 2402 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2403 struct extent_io_tree *tree; 2404 u64 offset = 0; 2405 u64 start; 2406 u64 end; 2407 u64 len; 2408 u64 extent_start = 0; 2409 u64 extent_len = 0; 2410 int mirror; 2411 int ret; 2412 2413 if (err) 2414 uptodate = 0; 2415 2416 do { 2417 struct page *page = bvec->bv_page; 2418 struct inode *inode = page->mapping->host; 2419 2420 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2421 "mirror=%lu\n", (u64)bio->bi_sector, err, 2422 io_bio->mirror_num); 2423 tree = &BTRFS_I(inode)->io_tree; 2424 2425 /* We always issue full-page reads, but if some block 2426 * in a page fails to read, blk_update_request() will 2427 * advance bv_offset and adjust bv_len to compensate. 2428 * Print a warning for nonzero offsets, and an error 2429 * if they don't add up to a full page. */ 2430 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2431 printk("%s page read in btrfs with offset %u and length %u\n", 2432 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2433 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2434 bvec->bv_offset, bvec->bv_len); 2435 2436 start = page_offset(page); 2437 end = start + bvec->bv_offset + bvec->bv_len - 1; 2438 len = bvec->bv_len; 2439 2440 if (++bvec <= bvec_end) 2441 prefetchw(&bvec->bv_page->flags); 2442 2443 mirror = io_bio->mirror_num; 2444 if (likely(uptodate && tree->ops && 2445 tree->ops->readpage_end_io_hook)) { 2446 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2447 page, start, end, 2448 mirror); 2449 if (ret) 2450 uptodate = 0; 2451 else 2452 clean_io_failure(start, page); 2453 } 2454 2455 if (likely(uptodate)) 2456 goto readpage_ok; 2457 2458 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2459 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2460 if (!ret && !err && 2461 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2462 uptodate = 1; 2463 } else { 2464 /* 2465 * The generic bio_readpage_error handles errors the 2466 * following way: If possible, new read requests are 2467 * created and submitted and will end up in 2468 * end_bio_extent_readpage as well (if we're lucky, not 2469 * in the !uptodate case). In that case it returns 0 and 2470 * we just go on with the next page in our bio. If it 2471 * can't handle the error it will return -EIO and we 2472 * remain responsible for that page. 2473 */ 2474 ret = bio_readpage_error(bio, offset, page, start, end, 2475 mirror); 2476 if (ret == 0) { 2477 uptodate = 2478 test_bit(BIO_UPTODATE, &bio->bi_flags); 2479 if (err) 2480 uptodate = 0; 2481 continue; 2482 } 2483 } 2484 readpage_ok: 2485 if (likely(uptodate)) { 2486 loff_t i_size = i_size_read(inode); 2487 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2488 unsigned offset; 2489 2490 /* Zero out the end if this page straddles i_size */ 2491 offset = i_size & (PAGE_CACHE_SIZE-1); 2492 if (page->index == end_index && offset) 2493 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2494 SetPageUptodate(page); 2495 } else { 2496 ClearPageUptodate(page); 2497 SetPageError(page); 2498 } 2499 unlock_page(page); 2500 offset += len; 2501 2502 if (unlikely(!uptodate)) { 2503 if (extent_len) { 2504 endio_readpage_release_extent(tree, 2505 extent_start, 2506 extent_len, 1); 2507 extent_start = 0; 2508 extent_len = 0; 2509 } 2510 endio_readpage_release_extent(tree, start, 2511 end - start + 1, 0); 2512 } else if (!extent_len) { 2513 extent_start = start; 2514 extent_len = end + 1 - start; 2515 } else if (extent_start + extent_len == start) { 2516 extent_len += end + 1 - start; 2517 } else { 2518 endio_readpage_release_extent(tree, extent_start, 2519 extent_len, uptodate); 2520 extent_start = start; 2521 extent_len = end + 1 - start; 2522 } 2523 } while (bvec <= bvec_end); 2524 2525 if (extent_len) 2526 endio_readpage_release_extent(tree, extent_start, extent_len, 2527 uptodate); 2528 if (io_bio->end_io) 2529 io_bio->end_io(io_bio, err); 2530 bio_put(bio); 2531 } 2532 2533 /* 2534 * this allocates from the btrfs_bioset. We're returning a bio right now 2535 * but you can call btrfs_io_bio for the appropriate container_of magic 2536 */ 2537 struct bio * 2538 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2539 gfp_t gfp_flags) 2540 { 2541 struct btrfs_io_bio *btrfs_bio; 2542 struct bio *bio; 2543 2544 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2545 2546 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2547 while (!bio && (nr_vecs /= 2)) { 2548 bio = bio_alloc_bioset(gfp_flags, 2549 nr_vecs, btrfs_bioset); 2550 } 2551 } 2552 2553 if (bio) { 2554 bio->bi_size = 0; 2555 bio->bi_bdev = bdev; 2556 bio->bi_sector = first_sector; 2557 btrfs_bio = btrfs_io_bio(bio); 2558 btrfs_bio->csum = NULL; 2559 btrfs_bio->csum_allocated = NULL; 2560 btrfs_bio->end_io = NULL; 2561 } 2562 return bio; 2563 } 2564 2565 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2566 { 2567 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2568 } 2569 2570 2571 /* this also allocates from the btrfs_bioset */ 2572 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2573 { 2574 struct btrfs_io_bio *btrfs_bio; 2575 struct bio *bio; 2576 2577 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2578 if (bio) { 2579 btrfs_bio = btrfs_io_bio(bio); 2580 btrfs_bio->csum = NULL; 2581 btrfs_bio->csum_allocated = NULL; 2582 btrfs_bio->end_io = NULL; 2583 } 2584 return bio; 2585 } 2586 2587 2588 static int __must_check submit_one_bio(int rw, struct bio *bio, 2589 int mirror_num, unsigned long bio_flags) 2590 { 2591 int ret = 0; 2592 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2593 struct page *page = bvec->bv_page; 2594 struct extent_io_tree *tree = bio->bi_private; 2595 u64 start; 2596 2597 start = page_offset(page) + bvec->bv_offset; 2598 2599 bio->bi_private = NULL; 2600 2601 bio_get(bio); 2602 2603 if (tree->ops && tree->ops->submit_bio_hook) 2604 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2605 mirror_num, bio_flags, start); 2606 else 2607 btrfsic_submit_bio(rw, bio); 2608 2609 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2610 ret = -EOPNOTSUPP; 2611 bio_put(bio); 2612 return ret; 2613 } 2614 2615 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2616 unsigned long offset, size_t size, struct bio *bio, 2617 unsigned long bio_flags) 2618 { 2619 int ret = 0; 2620 if (tree->ops && tree->ops->merge_bio_hook) 2621 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2622 bio_flags); 2623 BUG_ON(ret < 0); 2624 return ret; 2625 2626 } 2627 2628 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2629 struct page *page, sector_t sector, 2630 size_t size, unsigned long offset, 2631 struct block_device *bdev, 2632 struct bio **bio_ret, 2633 unsigned long max_pages, 2634 bio_end_io_t end_io_func, 2635 int mirror_num, 2636 unsigned long prev_bio_flags, 2637 unsigned long bio_flags) 2638 { 2639 int ret = 0; 2640 struct bio *bio; 2641 int nr; 2642 int contig = 0; 2643 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2644 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2645 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2646 2647 if (bio_ret && *bio_ret) { 2648 bio = *bio_ret; 2649 if (old_compressed) 2650 contig = bio->bi_sector == sector; 2651 else 2652 contig = bio_end_sector(bio) == sector; 2653 2654 if (prev_bio_flags != bio_flags || !contig || 2655 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2656 bio_add_page(bio, page, page_size, offset) < page_size) { 2657 ret = submit_one_bio(rw, bio, mirror_num, 2658 prev_bio_flags); 2659 if (ret < 0) 2660 return ret; 2661 bio = NULL; 2662 } else { 2663 return 0; 2664 } 2665 } 2666 if (this_compressed) 2667 nr = BIO_MAX_PAGES; 2668 else 2669 nr = bio_get_nr_vecs(bdev); 2670 2671 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2672 if (!bio) 2673 return -ENOMEM; 2674 2675 bio_add_page(bio, page, page_size, offset); 2676 bio->bi_end_io = end_io_func; 2677 bio->bi_private = tree; 2678 2679 if (bio_ret) 2680 *bio_ret = bio; 2681 else 2682 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2683 2684 return ret; 2685 } 2686 2687 static void attach_extent_buffer_page(struct extent_buffer *eb, 2688 struct page *page) 2689 { 2690 if (!PagePrivate(page)) { 2691 SetPagePrivate(page); 2692 page_cache_get(page); 2693 set_page_private(page, (unsigned long)eb); 2694 } else { 2695 WARN_ON(page->private != (unsigned long)eb); 2696 } 2697 } 2698 2699 void set_page_extent_mapped(struct page *page) 2700 { 2701 if (!PagePrivate(page)) { 2702 SetPagePrivate(page); 2703 page_cache_get(page); 2704 set_page_private(page, EXTENT_PAGE_PRIVATE); 2705 } 2706 } 2707 2708 static struct extent_map * 2709 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2710 u64 start, u64 len, get_extent_t *get_extent, 2711 struct extent_map **em_cached) 2712 { 2713 struct extent_map *em; 2714 2715 if (em_cached && *em_cached) { 2716 em = *em_cached; 2717 if (em->in_tree && start >= em->start && 2718 start < extent_map_end(em)) { 2719 atomic_inc(&em->refs); 2720 return em; 2721 } 2722 2723 free_extent_map(em); 2724 *em_cached = NULL; 2725 } 2726 2727 em = get_extent(inode, page, pg_offset, start, len, 0); 2728 if (em_cached && !IS_ERR_OR_NULL(em)) { 2729 BUG_ON(*em_cached); 2730 atomic_inc(&em->refs); 2731 *em_cached = em; 2732 } 2733 return em; 2734 } 2735 /* 2736 * basic readpage implementation. Locked extent state structs are inserted 2737 * into the tree that are removed when the IO is done (by the end_io 2738 * handlers) 2739 * XXX JDM: This needs looking at to ensure proper page locking 2740 */ 2741 static int __do_readpage(struct extent_io_tree *tree, 2742 struct page *page, 2743 get_extent_t *get_extent, 2744 struct extent_map **em_cached, 2745 struct bio **bio, int mirror_num, 2746 unsigned long *bio_flags, int rw) 2747 { 2748 struct inode *inode = page->mapping->host; 2749 u64 start = page_offset(page); 2750 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2751 u64 end; 2752 u64 cur = start; 2753 u64 extent_offset; 2754 u64 last_byte = i_size_read(inode); 2755 u64 block_start; 2756 u64 cur_end; 2757 sector_t sector; 2758 struct extent_map *em; 2759 struct block_device *bdev; 2760 int ret; 2761 int nr = 0; 2762 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2763 size_t pg_offset = 0; 2764 size_t iosize; 2765 size_t disk_io_size; 2766 size_t blocksize = inode->i_sb->s_blocksize; 2767 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2768 2769 set_page_extent_mapped(page); 2770 2771 end = page_end; 2772 if (!PageUptodate(page)) { 2773 if (cleancache_get_page(page) == 0) { 2774 BUG_ON(blocksize != PAGE_SIZE); 2775 unlock_extent(tree, start, end); 2776 goto out; 2777 } 2778 } 2779 2780 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2781 char *userpage; 2782 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2783 2784 if (zero_offset) { 2785 iosize = PAGE_CACHE_SIZE - zero_offset; 2786 userpage = kmap_atomic(page); 2787 memset(userpage + zero_offset, 0, iosize); 2788 flush_dcache_page(page); 2789 kunmap_atomic(userpage); 2790 } 2791 } 2792 while (cur <= end) { 2793 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2794 2795 if (cur >= last_byte) { 2796 char *userpage; 2797 struct extent_state *cached = NULL; 2798 2799 iosize = PAGE_CACHE_SIZE - pg_offset; 2800 userpage = kmap_atomic(page); 2801 memset(userpage + pg_offset, 0, iosize); 2802 flush_dcache_page(page); 2803 kunmap_atomic(userpage); 2804 set_extent_uptodate(tree, cur, cur + iosize - 1, 2805 &cached, GFP_NOFS); 2806 if (!parent_locked) 2807 unlock_extent_cached(tree, cur, 2808 cur + iosize - 1, 2809 &cached, GFP_NOFS); 2810 break; 2811 } 2812 em = __get_extent_map(inode, page, pg_offset, cur, 2813 end - cur + 1, get_extent, em_cached); 2814 if (IS_ERR_OR_NULL(em)) { 2815 SetPageError(page); 2816 if (!parent_locked) 2817 unlock_extent(tree, cur, end); 2818 break; 2819 } 2820 extent_offset = cur - em->start; 2821 BUG_ON(extent_map_end(em) <= cur); 2822 BUG_ON(end < cur); 2823 2824 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2825 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2826 extent_set_compress_type(&this_bio_flag, 2827 em->compress_type); 2828 } 2829 2830 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2831 cur_end = min(extent_map_end(em) - 1, end); 2832 iosize = ALIGN(iosize, blocksize); 2833 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2834 disk_io_size = em->block_len; 2835 sector = em->block_start >> 9; 2836 } else { 2837 sector = (em->block_start + extent_offset) >> 9; 2838 disk_io_size = iosize; 2839 } 2840 bdev = em->bdev; 2841 block_start = em->block_start; 2842 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2843 block_start = EXTENT_MAP_HOLE; 2844 free_extent_map(em); 2845 em = NULL; 2846 2847 /* we've found a hole, just zero and go on */ 2848 if (block_start == EXTENT_MAP_HOLE) { 2849 char *userpage; 2850 struct extent_state *cached = NULL; 2851 2852 userpage = kmap_atomic(page); 2853 memset(userpage + pg_offset, 0, iosize); 2854 flush_dcache_page(page); 2855 kunmap_atomic(userpage); 2856 2857 set_extent_uptodate(tree, cur, cur + iosize - 1, 2858 &cached, GFP_NOFS); 2859 unlock_extent_cached(tree, cur, cur + iosize - 1, 2860 &cached, GFP_NOFS); 2861 cur = cur + iosize; 2862 pg_offset += iosize; 2863 continue; 2864 } 2865 /* the get_extent function already copied into the page */ 2866 if (test_range_bit(tree, cur, cur_end, 2867 EXTENT_UPTODATE, 1, NULL)) { 2868 check_page_uptodate(tree, page); 2869 if (!parent_locked) 2870 unlock_extent(tree, cur, cur + iosize - 1); 2871 cur = cur + iosize; 2872 pg_offset += iosize; 2873 continue; 2874 } 2875 /* we have an inline extent but it didn't get marked up 2876 * to date. Error out 2877 */ 2878 if (block_start == EXTENT_MAP_INLINE) { 2879 SetPageError(page); 2880 if (!parent_locked) 2881 unlock_extent(tree, cur, cur + iosize - 1); 2882 cur = cur + iosize; 2883 pg_offset += iosize; 2884 continue; 2885 } 2886 2887 pnr -= page->index; 2888 ret = submit_extent_page(rw, tree, page, 2889 sector, disk_io_size, pg_offset, 2890 bdev, bio, pnr, 2891 end_bio_extent_readpage, mirror_num, 2892 *bio_flags, 2893 this_bio_flag); 2894 if (!ret) { 2895 nr++; 2896 *bio_flags = this_bio_flag; 2897 } else { 2898 SetPageError(page); 2899 if (!parent_locked) 2900 unlock_extent(tree, cur, cur + iosize - 1); 2901 } 2902 cur = cur + iosize; 2903 pg_offset += iosize; 2904 } 2905 out: 2906 if (!nr) { 2907 if (!PageError(page)) 2908 SetPageUptodate(page); 2909 unlock_page(page); 2910 } 2911 return 0; 2912 } 2913 2914 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2915 struct page *pages[], int nr_pages, 2916 u64 start, u64 end, 2917 get_extent_t *get_extent, 2918 struct extent_map **em_cached, 2919 struct bio **bio, int mirror_num, 2920 unsigned long *bio_flags, int rw) 2921 { 2922 struct inode *inode; 2923 struct btrfs_ordered_extent *ordered; 2924 int index; 2925 2926 inode = pages[0]->mapping->host; 2927 while (1) { 2928 lock_extent(tree, start, end); 2929 ordered = btrfs_lookup_ordered_range(inode, start, 2930 end - start + 1); 2931 if (!ordered) 2932 break; 2933 unlock_extent(tree, start, end); 2934 btrfs_start_ordered_extent(inode, ordered, 1); 2935 btrfs_put_ordered_extent(ordered); 2936 } 2937 2938 for (index = 0; index < nr_pages; index++) { 2939 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2940 mirror_num, bio_flags, rw); 2941 page_cache_release(pages[index]); 2942 } 2943 } 2944 2945 static void __extent_readpages(struct extent_io_tree *tree, 2946 struct page *pages[], 2947 int nr_pages, get_extent_t *get_extent, 2948 struct extent_map **em_cached, 2949 struct bio **bio, int mirror_num, 2950 unsigned long *bio_flags, int rw) 2951 { 2952 u64 start = 0; 2953 u64 end = 0; 2954 u64 page_start; 2955 int index; 2956 int first_index = 0; 2957 2958 for (index = 0; index < nr_pages; index++) { 2959 page_start = page_offset(pages[index]); 2960 if (!end) { 2961 start = page_start; 2962 end = start + PAGE_CACHE_SIZE - 1; 2963 first_index = index; 2964 } else if (end + 1 == page_start) { 2965 end += PAGE_CACHE_SIZE; 2966 } else { 2967 __do_contiguous_readpages(tree, &pages[first_index], 2968 index - first_index, start, 2969 end, get_extent, em_cached, 2970 bio, mirror_num, bio_flags, 2971 rw); 2972 start = page_start; 2973 end = start + PAGE_CACHE_SIZE - 1; 2974 first_index = index; 2975 } 2976 } 2977 2978 if (end) 2979 __do_contiguous_readpages(tree, &pages[first_index], 2980 index - first_index, start, 2981 end, get_extent, em_cached, bio, 2982 mirror_num, bio_flags, rw); 2983 } 2984 2985 static int __extent_read_full_page(struct extent_io_tree *tree, 2986 struct page *page, 2987 get_extent_t *get_extent, 2988 struct bio **bio, int mirror_num, 2989 unsigned long *bio_flags, int rw) 2990 { 2991 struct inode *inode = page->mapping->host; 2992 struct btrfs_ordered_extent *ordered; 2993 u64 start = page_offset(page); 2994 u64 end = start + PAGE_CACHE_SIZE - 1; 2995 int ret; 2996 2997 while (1) { 2998 lock_extent(tree, start, end); 2999 ordered = btrfs_lookup_ordered_extent(inode, start); 3000 if (!ordered) 3001 break; 3002 unlock_extent(tree, start, end); 3003 btrfs_start_ordered_extent(inode, ordered, 1); 3004 btrfs_put_ordered_extent(ordered); 3005 } 3006 3007 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3008 bio_flags, rw); 3009 return ret; 3010 } 3011 3012 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3013 get_extent_t *get_extent, int mirror_num) 3014 { 3015 struct bio *bio = NULL; 3016 unsigned long bio_flags = 0; 3017 int ret; 3018 3019 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3020 &bio_flags, READ); 3021 if (bio) 3022 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3023 return ret; 3024 } 3025 3026 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3027 get_extent_t *get_extent, int mirror_num) 3028 { 3029 struct bio *bio = NULL; 3030 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3031 int ret; 3032 3033 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3034 &bio_flags, READ); 3035 if (bio) 3036 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3037 return ret; 3038 } 3039 3040 static noinline void update_nr_written(struct page *page, 3041 struct writeback_control *wbc, 3042 unsigned long nr_written) 3043 { 3044 wbc->nr_to_write -= nr_written; 3045 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3046 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3047 page->mapping->writeback_index = page->index + nr_written; 3048 } 3049 3050 /* 3051 * the writepage semantics are similar to regular writepage. extent 3052 * records are inserted to lock ranges in the tree, and as dirty areas 3053 * are found, they are marked writeback. Then the lock bits are removed 3054 * and the end_io handler clears the writeback ranges 3055 */ 3056 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3057 void *data) 3058 { 3059 struct inode *inode = page->mapping->host; 3060 struct extent_page_data *epd = data; 3061 struct extent_io_tree *tree = epd->tree; 3062 u64 start = page_offset(page); 3063 u64 delalloc_start; 3064 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3065 u64 end; 3066 u64 cur = start; 3067 u64 extent_offset; 3068 u64 last_byte = i_size_read(inode); 3069 u64 block_start; 3070 u64 iosize; 3071 sector_t sector; 3072 struct extent_state *cached_state = NULL; 3073 struct extent_map *em; 3074 struct block_device *bdev; 3075 int ret; 3076 int nr = 0; 3077 size_t pg_offset = 0; 3078 size_t blocksize; 3079 loff_t i_size = i_size_read(inode); 3080 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3081 u64 nr_delalloc; 3082 u64 delalloc_end; 3083 int page_started; 3084 int compressed; 3085 int write_flags; 3086 unsigned long nr_written = 0; 3087 bool fill_delalloc = true; 3088 3089 if (wbc->sync_mode == WB_SYNC_ALL) 3090 write_flags = WRITE_SYNC; 3091 else 3092 write_flags = WRITE; 3093 3094 trace___extent_writepage(page, inode, wbc); 3095 3096 WARN_ON(!PageLocked(page)); 3097 3098 ClearPageError(page); 3099 3100 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3101 if (page->index > end_index || 3102 (page->index == end_index && !pg_offset)) { 3103 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3104 unlock_page(page); 3105 return 0; 3106 } 3107 3108 if (page->index == end_index) { 3109 char *userpage; 3110 3111 userpage = kmap_atomic(page); 3112 memset(userpage + pg_offset, 0, 3113 PAGE_CACHE_SIZE - pg_offset); 3114 kunmap_atomic(userpage); 3115 flush_dcache_page(page); 3116 } 3117 pg_offset = 0; 3118 3119 set_page_extent_mapped(page); 3120 3121 if (!tree->ops || !tree->ops->fill_delalloc) 3122 fill_delalloc = false; 3123 3124 delalloc_start = start; 3125 delalloc_end = 0; 3126 page_started = 0; 3127 if (!epd->extent_locked && fill_delalloc) { 3128 u64 delalloc_to_write = 0; 3129 /* 3130 * make sure the wbc mapping index is at least updated 3131 * to this page. 3132 */ 3133 update_nr_written(page, wbc, 0); 3134 3135 while (delalloc_end < page_end) { 3136 nr_delalloc = find_lock_delalloc_range(inode, tree, 3137 page, 3138 &delalloc_start, 3139 &delalloc_end, 3140 128 * 1024 * 1024); 3141 if (nr_delalloc == 0) { 3142 delalloc_start = delalloc_end + 1; 3143 continue; 3144 } 3145 ret = tree->ops->fill_delalloc(inode, page, 3146 delalloc_start, 3147 delalloc_end, 3148 &page_started, 3149 &nr_written); 3150 /* File system has been set read-only */ 3151 if (ret) { 3152 SetPageError(page); 3153 goto done; 3154 } 3155 /* 3156 * delalloc_end is already one less than the total 3157 * length, so we don't subtract one from 3158 * PAGE_CACHE_SIZE 3159 */ 3160 delalloc_to_write += (delalloc_end - delalloc_start + 3161 PAGE_CACHE_SIZE) >> 3162 PAGE_CACHE_SHIFT; 3163 delalloc_start = delalloc_end + 1; 3164 } 3165 if (wbc->nr_to_write < delalloc_to_write) { 3166 int thresh = 8192; 3167 3168 if (delalloc_to_write < thresh * 2) 3169 thresh = delalloc_to_write; 3170 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3171 thresh); 3172 } 3173 3174 /* did the fill delalloc function already unlock and start 3175 * the IO? 3176 */ 3177 if (page_started) { 3178 ret = 0; 3179 /* 3180 * we've unlocked the page, so we can't update 3181 * the mapping's writeback index, just update 3182 * nr_to_write. 3183 */ 3184 wbc->nr_to_write -= nr_written; 3185 goto done_unlocked; 3186 } 3187 } 3188 if (tree->ops && tree->ops->writepage_start_hook) { 3189 ret = tree->ops->writepage_start_hook(page, start, 3190 page_end); 3191 if (ret) { 3192 /* Fixup worker will requeue */ 3193 if (ret == -EBUSY) 3194 wbc->pages_skipped++; 3195 else 3196 redirty_page_for_writepage(wbc, page); 3197 update_nr_written(page, wbc, nr_written); 3198 unlock_page(page); 3199 ret = 0; 3200 goto done_unlocked; 3201 } 3202 } 3203 3204 /* 3205 * we don't want to touch the inode after unlocking the page, 3206 * so we update the mapping writeback index now 3207 */ 3208 update_nr_written(page, wbc, nr_written + 1); 3209 3210 end = page_end; 3211 if (last_byte <= start) { 3212 if (tree->ops && tree->ops->writepage_end_io_hook) 3213 tree->ops->writepage_end_io_hook(page, start, 3214 page_end, NULL, 1); 3215 goto done; 3216 } 3217 3218 blocksize = inode->i_sb->s_blocksize; 3219 3220 while (cur <= end) { 3221 if (cur >= last_byte) { 3222 if (tree->ops && tree->ops->writepage_end_io_hook) 3223 tree->ops->writepage_end_io_hook(page, cur, 3224 page_end, NULL, 1); 3225 break; 3226 } 3227 em = epd->get_extent(inode, page, pg_offset, cur, 3228 end - cur + 1, 1); 3229 if (IS_ERR_OR_NULL(em)) { 3230 SetPageError(page); 3231 break; 3232 } 3233 3234 extent_offset = cur - em->start; 3235 BUG_ON(extent_map_end(em) <= cur); 3236 BUG_ON(end < cur); 3237 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3238 iosize = ALIGN(iosize, blocksize); 3239 sector = (em->block_start + extent_offset) >> 9; 3240 bdev = em->bdev; 3241 block_start = em->block_start; 3242 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3243 free_extent_map(em); 3244 em = NULL; 3245 3246 /* 3247 * compressed and inline extents are written through other 3248 * paths in the FS 3249 */ 3250 if (compressed || block_start == EXTENT_MAP_HOLE || 3251 block_start == EXTENT_MAP_INLINE) { 3252 /* 3253 * end_io notification does not happen here for 3254 * compressed extents 3255 */ 3256 if (!compressed && tree->ops && 3257 tree->ops->writepage_end_io_hook) 3258 tree->ops->writepage_end_io_hook(page, cur, 3259 cur + iosize - 1, 3260 NULL, 1); 3261 else if (compressed) { 3262 /* we don't want to end_page_writeback on 3263 * a compressed extent. this happens 3264 * elsewhere 3265 */ 3266 nr++; 3267 } 3268 3269 cur += iosize; 3270 pg_offset += iosize; 3271 continue; 3272 } 3273 /* leave this out until we have a page_mkwrite call */ 3274 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3275 EXTENT_DIRTY, 0, NULL)) { 3276 cur = cur + iosize; 3277 pg_offset += iosize; 3278 continue; 3279 } 3280 3281 if (tree->ops && tree->ops->writepage_io_hook) { 3282 ret = tree->ops->writepage_io_hook(page, cur, 3283 cur + iosize - 1); 3284 } else { 3285 ret = 0; 3286 } 3287 if (ret) { 3288 SetPageError(page); 3289 } else { 3290 unsigned long max_nr = end_index + 1; 3291 3292 set_range_writeback(tree, cur, cur + iosize - 1); 3293 if (!PageWriteback(page)) { 3294 printk(KERN_ERR "btrfs warning page %lu not " 3295 "writeback, cur %llu end %llu\n", 3296 page->index, cur, end); 3297 } 3298 3299 ret = submit_extent_page(write_flags, tree, page, 3300 sector, iosize, pg_offset, 3301 bdev, &epd->bio, max_nr, 3302 end_bio_extent_writepage, 3303 0, 0, 0); 3304 if (ret) 3305 SetPageError(page); 3306 } 3307 cur = cur + iosize; 3308 pg_offset += iosize; 3309 nr++; 3310 } 3311 done: 3312 if (nr == 0) { 3313 /* make sure the mapping tag for page dirty gets cleared */ 3314 set_page_writeback(page); 3315 end_page_writeback(page); 3316 } 3317 unlock_page(page); 3318 3319 done_unlocked: 3320 3321 /* drop our reference on any cached states */ 3322 free_extent_state(cached_state); 3323 return 0; 3324 } 3325 3326 static int eb_wait(void *word) 3327 { 3328 io_schedule(); 3329 return 0; 3330 } 3331 3332 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3333 { 3334 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3335 TASK_UNINTERRUPTIBLE); 3336 } 3337 3338 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3339 struct btrfs_fs_info *fs_info, 3340 struct extent_page_data *epd) 3341 { 3342 unsigned long i, num_pages; 3343 int flush = 0; 3344 int ret = 0; 3345 3346 if (!btrfs_try_tree_write_lock(eb)) { 3347 flush = 1; 3348 flush_write_bio(epd); 3349 btrfs_tree_lock(eb); 3350 } 3351 3352 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3353 btrfs_tree_unlock(eb); 3354 if (!epd->sync_io) 3355 return 0; 3356 if (!flush) { 3357 flush_write_bio(epd); 3358 flush = 1; 3359 } 3360 while (1) { 3361 wait_on_extent_buffer_writeback(eb); 3362 btrfs_tree_lock(eb); 3363 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3364 break; 3365 btrfs_tree_unlock(eb); 3366 } 3367 } 3368 3369 /* 3370 * We need to do this to prevent races in people who check if the eb is 3371 * under IO since we can end up having no IO bits set for a short period 3372 * of time. 3373 */ 3374 spin_lock(&eb->refs_lock); 3375 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3376 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3377 spin_unlock(&eb->refs_lock); 3378 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3379 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3380 -eb->len, 3381 fs_info->dirty_metadata_batch); 3382 ret = 1; 3383 } else { 3384 spin_unlock(&eb->refs_lock); 3385 } 3386 3387 btrfs_tree_unlock(eb); 3388 3389 if (!ret) 3390 return ret; 3391 3392 num_pages = num_extent_pages(eb->start, eb->len); 3393 for (i = 0; i < num_pages; i++) { 3394 struct page *p = extent_buffer_page(eb, i); 3395 3396 if (!trylock_page(p)) { 3397 if (!flush) { 3398 flush_write_bio(epd); 3399 flush = 1; 3400 } 3401 lock_page(p); 3402 } 3403 } 3404 3405 return ret; 3406 } 3407 3408 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3409 { 3410 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3411 smp_mb__after_clear_bit(); 3412 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3413 } 3414 3415 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3416 { 3417 int uptodate = err == 0; 3418 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3419 struct extent_buffer *eb; 3420 int done; 3421 3422 do { 3423 struct page *page = bvec->bv_page; 3424 3425 bvec--; 3426 eb = (struct extent_buffer *)page->private; 3427 BUG_ON(!eb); 3428 done = atomic_dec_and_test(&eb->io_pages); 3429 3430 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3431 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3432 ClearPageUptodate(page); 3433 SetPageError(page); 3434 } 3435 3436 end_page_writeback(page); 3437 3438 if (!done) 3439 continue; 3440 3441 end_extent_buffer_writeback(eb); 3442 } while (bvec >= bio->bi_io_vec); 3443 3444 bio_put(bio); 3445 3446 } 3447 3448 static int write_one_eb(struct extent_buffer *eb, 3449 struct btrfs_fs_info *fs_info, 3450 struct writeback_control *wbc, 3451 struct extent_page_data *epd) 3452 { 3453 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3454 u64 offset = eb->start; 3455 unsigned long i, num_pages; 3456 unsigned long bio_flags = 0; 3457 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3458 int ret = 0; 3459 3460 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3461 num_pages = num_extent_pages(eb->start, eb->len); 3462 atomic_set(&eb->io_pages, num_pages); 3463 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3464 bio_flags = EXTENT_BIO_TREE_LOG; 3465 3466 for (i = 0; i < num_pages; i++) { 3467 struct page *p = extent_buffer_page(eb, i); 3468 3469 clear_page_dirty_for_io(p); 3470 set_page_writeback(p); 3471 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3472 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3473 -1, end_bio_extent_buffer_writepage, 3474 0, epd->bio_flags, bio_flags); 3475 epd->bio_flags = bio_flags; 3476 if (ret) { 3477 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3478 SetPageError(p); 3479 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3480 end_extent_buffer_writeback(eb); 3481 ret = -EIO; 3482 break; 3483 } 3484 offset += PAGE_CACHE_SIZE; 3485 update_nr_written(p, wbc, 1); 3486 unlock_page(p); 3487 } 3488 3489 if (unlikely(ret)) { 3490 for (; i < num_pages; i++) { 3491 struct page *p = extent_buffer_page(eb, i); 3492 unlock_page(p); 3493 } 3494 } 3495 3496 return ret; 3497 } 3498 3499 int btree_write_cache_pages(struct address_space *mapping, 3500 struct writeback_control *wbc) 3501 { 3502 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3503 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3504 struct extent_buffer *eb, *prev_eb = NULL; 3505 struct extent_page_data epd = { 3506 .bio = NULL, 3507 .tree = tree, 3508 .extent_locked = 0, 3509 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3510 .bio_flags = 0, 3511 }; 3512 int ret = 0; 3513 int done = 0; 3514 int nr_to_write_done = 0; 3515 struct pagevec pvec; 3516 int nr_pages; 3517 pgoff_t index; 3518 pgoff_t end; /* Inclusive */ 3519 int scanned = 0; 3520 int tag; 3521 3522 pagevec_init(&pvec, 0); 3523 if (wbc->range_cyclic) { 3524 index = mapping->writeback_index; /* Start from prev offset */ 3525 end = -1; 3526 } else { 3527 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3528 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3529 scanned = 1; 3530 } 3531 if (wbc->sync_mode == WB_SYNC_ALL) 3532 tag = PAGECACHE_TAG_TOWRITE; 3533 else 3534 tag = PAGECACHE_TAG_DIRTY; 3535 retry: 3536 if (wbc->sync_mode == WB_SYNC_ALL) 3537 tag_pages_for_writeback(mapping, index, end); 3538 while (!done && !nr_to_write_done && (index <= end) && 3539 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3540 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3541 unsigned i; 3542 3543 scanned = 1; 3544 for (i = 0; i < nr_pages; i++) { 3545 struct page *page = pvec.pages[i]; 3546 3547 if (!PagePrivate(page)) 3548 continue; 3549 3550 if (!wbc->range_cyclic && page->index > end) { 3551 done = 1; 3552 break; 3553 } 3554 3555 spin_lock(&mapping->private_lock); 3556 if (!PagePrivate(page)) { 3557 spin_unlock(&mapping->private_lock); 3558 continue; 3559 } 3560 3561 eb = (struct extent_buffer *)page->private; 3562 3563 /* 3564 * Shouldn't happen and normally this would be a BUG_ON 3565 * but no sense in crashing the users box for something 3566 * we can survive anyway. 3567 */ 3568 if (!eb) { 3569 spin_unlock(&mapping->private_lock); 3570 WARN_ON(1); 3571 continue; 3572 } 3573 3574 if (eb == prev_eb) { 3575 spin_unlock(&mapping->private_lock); 3576 continue; 3577 } 3578 3579 ret = atomic_inc_not_zero(&eb->refs); 3580 spin_unlock(&mapping->private_lock); 3581 if (!ret) 3582 continue; 3583 3584 prev_eb = eb; 3585 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3586 if (!ret) { 3587 free_extent_buffer(eb); 3588 continue; 3589 } 3590 3591 ret = write_one_eb(eb, fs_info, wbc, &epd); 3592 if (ret) { 3593 done = 1; 3594 free_extent_buffer(eb); 3595 break; 3596 } 3597 free_extent_buffer(eb); 3598 3599 /* 3600 * the filesystem may choose to bump up nr_to_write. 3601 * We have to make sure to honor the new nr_to_write 3602 * at any time 3603 */ 3604 nr_to_write_done = wbc->nr_to_write <= 0; 3605 } 3606 pagevec_release(&pvec); 3607 cond_resched(); 3608 } 3609 if (!scanned && !done) { 3610 /* 3611 * We hit the last page and there is more work to be done: wrap 3612 * back to the start of the file 3613 */ 3614 scanned = 1; 3615 index = 0; 3616 goto retry; 3617 } 3618 flush_write_bio(&epd); 3619 return ret; 3620 } 3621 3622 /** 3623 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3624 * @mapping: address space structure to write 3625 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3626 * @writepage: function called for each page 3627 * @data: data passed to writepage function 3628 * 3629 * If a page is already under I/O, write_cache_pages() skips it, even 3630 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3631 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3632 * and msync() need to guarantee that all the data which was dirty at the time 3633 * the call was made get new I/O started against them. If wbc->sync_mode is 3634 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3635 * existing IO to complete. 3636 */ 3637 static int extent_write_cache_pages(struct extent_io_tree *tree, 3638 struct address_space *mapping, 3639 struct writeback_control *wbc, 3640 writepage_t writepage, void *data, 3641 void (*flush_fn)(void *)) 3642 { 3643 struct inode *inode = mapping->host; 3644 int ret = 0; 3645 int done = 0; 3646 int nr_to_write_done = 0; 3647 struct pagevec pvec; 3648 int nr_pages; 3649 pgoff_t index; 3650 pgoff_t end; /* Inclusive */ 3651 int scanned = 0; 3652 int tag; 3653 3654 /* 3655 * We have to hold onto the inode so that ordered extents can do their 3656 * work when the IO finishes. The alternative to this is failing to add 3657 * an ordered extent if the igrab() fails there and that is a huge pain 3658 * to deal with, so instead just hold onto the inode throughout the 3659 * writepages operation. If it fails here we are freeing up the inode 3660 * anyway and we'd rather not waste our time writing out stuff that is 3661 * going to be truncated anyway. 3662 */ 3663 if (!igrab(inode)) 3664 return 0; 3665 3666 pagevec_init(&pvec, 0); 3667 if (wbc->range_cyclic) { 3668 index = mapping->writeback_index; /* Start from prev offset */ 3669 end = -1; 3670 } else { 3671 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3672 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3673 scanned = 1; 3674 } 3675 if (wbc->sync_mode == WB_SYNC_ALL) 3676 tag = PAGECACHE_TAG_TOWRITE; 3677 else 3678 tag = PAGECACHE_TAG_DIRTY; 3679 retry: 3680 if (wbc->sync_mode == WB_SYNC_ALL) 3681 tag_pages_for_writeback(mapping, index, end); 3682 while (!done && !nr_to_write_done && (index <= end) && 3683 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3684 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3685 unsigned i; 3686 3687 scanned = 1; 3688 for (i = 0; i < nr_pages; i++) { 3689 struct page *page = pvec.pages[i]; 3690 3691 /* 3692 * At this point we hold neither mapping->tree_lock nor 3693 * lock on the page itself: the page may be truncated or 3694 * invalidated (changing page->mapping to NULL), or even 3695 * swizzled back from swapper_space to tmpfs file 3696 * mapping 3697 */ 3698 if (!trylock_page(page)) { 3699 flush_fn(data); 3700 lock_page(page); 3701 } 3702 3703 if (unlikely(page->mapping != mapping)) { 3704 unlock_page(page); 3705 continue; 3706 } 3707 3708 if (!wbc->range_cyclic && page->index > end) { 3709 done = 1; 3710 unlock_page(page); 3711 continue; 3712 } 3713 3714 if (wbc->sync_mode != WB_SYNC_NONE) { 3715 if (PageWriteback(page)) 3716 flush_fn(data); 3717 wait_on_page_writeback(page); 3718 } 3719 3720 if (PageWriteback(page) || 3721 !clear_page_dirty_for_io(page)) { 3722 unlock_page(page); 3723 continue; 3724 } 3725 3726 ret = (*writepage)(page, wbc, data); 3727 3728 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3729 unlock_page(page); 3730 ret = 0; 3731 } 3732 if (ret) 3733 done = 1; 3734 3735 /* 3736 * the filesystem may choose to bump up nr_to_write. 3737 * We have to make sure to honor the new nr_to_write 3738 * at any time 3739 */ 3740 nr_to_write_done = wbc->nr_to_write <= 0; 3741 } 3742 pagevec_release(&pvec); 3743 cond_resched(); 3744 } 3745 if (!scanned && !done) { 3746 /* 3747 * We hit the last page and there is more work to be done: wrap 3748 * back to the start of the file 3749 */ 3750 scanned = 1; 3751 index = 0; 3752 goto retry; 3753 } 3754 btrfs_add_delayed_iput(inode); 3755 return ret; 3756 } 3757 3758 static void flush_epd_write_bio(struct extent_page_data *epd) 3759 { 3760 if (epd->bio) { 3761 int rw = WRITE; 3762 int ret; 3763 3764 if (epd->sync_io) 3765 rw = WRITE_SYNC; 3766 3767 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3768 BUG_ON(ret < 0); /* -ENOMEM */ 3769 epd->bio = NULL; 3770 } 3771 } 3772 3773 static noinline void flush_write_bio(void *data) 3774 { 3775 struct extent_page_data *epd = data; 3776 flush_epd_write_bio(epd); 3777 } 3778 3779 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3780 get_extent_t *get_extent, 3781 struct writeback_control *wbc) 3782 { 3783 int ret; 3784 struct extent_page_data epd = { 3785 .bio = NULL, 3786 .tree = tree, 3787 .get_extent = get_extent, 3788 .extent_locked = 0, 3789 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3790 .bio_flags = 0, 3791 }; 3792 3793 ret = __extent_writepage(page, wbc, &epd); 3794 3795 flush_epd_write_bio(&epd); 3796 return ret; 3797 } 3798 3799 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3800 u64 start, u64 end, get_extent_t *get_extent, 3801 int mode) 3802 { 3803 int ret = 0; 3804 struct address_space *mapping = inode->i_mapping; 3805 struct page *page; 3806 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3807 PAGE_CACHE_SHIFT; 3808 3809 struct extent_page_data epd = { 3810 .bio = NULL, 3811 .tree = tree, 3812 .get_extent = get_extent, 3813 .extent_locked = 1, 3814 .sync_io = mode == WB_SYNC_ALL, 3815 .bio_flags = 0, 3816 }; 3817 struct writeback_control wbc_writepages = { 3818 .sync_mode = mode, 3819 .nr_to_write = nr_pages * 2, 3820 .range_start = start, 3821 .range_end = end + 1, 3822 }; 3823 3824 while (start <= end) { 3825 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3826 if (clear_page_dirty_for_io(page)) 3827 ret = __extent_writepage(page, &wbc_writepages, &epd); 3828 else { 3829 if (tree->ops && tree->ops->writepage_end_io_hook) 3830 tree->ops->writepage_end_io_hook(page, start, 3831 start + PAGE_CACHE_SIZE - 1, 3832 NULL, 1); 3833 unlock_page(page); 3834 } 3835 page_cache_release(page); 3836 start += PAGE_CACHE_SIZE; 3837 } 3838 3839 flush_epd_write_bio(&epd); 3840 return ret; 3841 } 3842 3843 int extent_writepages(struct extent_io_tree *tree, 3844 struct address_space *mapping, 3845 get_extent_t *get_extent, 3846 struct writeback_control *wbc) 3847 { 3848 int ret = 0; 3849 struct extent_page_data epd = { 3850 .bio = NULL, 3851 .tree = tree, 3852 .get_extent = get_extent, 3853 .extent_locked = 0, 3854 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3855 .bio_flags = 0, 3856 }; 3857 3858 ret = extent_write_cache_pages(tree, mapping, wbc, 3859 __extent_writepage, &epd, 3860 flush_write_bio); 3861 flush_epd_write_bio(&epd); 3862 return ret; 3863 } 3864 3865 int extent_readpages(struct extent_io_tree *tree, 3866 struct address_space *mapping, 3867 struct list_head *pages, unsigned nr_pages, 3868 get_extent_t get_extent) 3869 { 3870 struct bio *bio = NULL; 3871 unsigned page_idx; 3872 unsigned long bio_flags = 0; 3873 struct page *pagepool[16]; 3874 struct page *page; 3875 struct extent_map *em_cached = NULL; 3876 int nr = 0; 3877 3878 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3879 page = list_entry(pages->prev, struct page, lru); 3880 3881 prefetchw(&page->flags); 3882 list_del(&page->lru); 3883 if (add_to_page_cache_lru(page, mapping, 3884 page->index, GFP_NOFS)) { 3885 page_cache_release(page); 3886 continue; 3887 } 3888 3889 pagepool[nr++] = page; 3890 if (nr < ARRAY_SIZE(pagepool)) 3891 continue; 3892 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3893 &bio, 0, &bio_flags, READ); 3894 nr = 0; 3895 } 3896 if (nr) 3897 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 3898 &bio, 0, &bio_flags, READ); 3899 3900 if (em_cached) 3901 free_extent_map(em_cached); 3902 3903 BUG_ON(!list_empty(pages)); 3904 if (bio) 3905 return submit_one_bio(READ, bio, 0, bio_flags); 3906 return 0; 3907 } 3908 3909 /* 3910 * basic invalidatepage code, this waits on any locked or writeback 3911 * ranges corresponding to the page, and then deletes any extent state 3912 * records from the tree 3913 */ 3914 int extent_invalidatepage(struct extent_io_tree *tree, 3915 struct page *page, unsigned long offset) 3916 { 3917 struct extent_state *cached_state = NULL; 3918 u64 start = page_offset(page); 3919 u64 end = start + PAGE_CACHE_SIZE - 1; 3920 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3921 3922 start += ALIGN(offset, blocksize); 3923 if (start > end) 3924 return 0; 3925 3926 lock_extent_bits(tree, start, end, 0, &cached_state); 3927 wait_on_page_writeback(page); 3928 clear_extent_bit(tree, start, end, 3929 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3930 EXTENT_DO_ACCOUNTING, 3931 1, 1, &cached_state, GFP_NOFS); 3932 return 0; 3933 } 3934 3935 /* 3936 * a helper for releasepage, this tests for areas of the page that 3937 * are locked or under IO and drops the related state bits if it is safe 3938 * to drop the page. 3939 */ 3940 static int try_release_extent_state(struct extent_map_tree *map, 3941 struct extent_io_tree *tree, 3942 struct page *page, gfp_t mask) 3943 { 3944 u64 start = page_offset(page); 3945 u64 end = start + PAGE_CACHE_SIZE - 1; 3946 int ret = 1; 3947 3948 if (test_range_bit(tree, start, end, 3949 EXTENT_IOBITS, 0, NULL)) 3950 ret = 0; 3951 else { 3952 if ((mask & GFP_NOFS) == GFP_NOFS) 3953 mask = GFP_NOFS; 3954 /* 3955 * at this point we can safely clear everything except the 3956 * locked bit and the nodatasum bit 3957 */ 3958 ret = clear_extent_bit(tree, start, end, 3959 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3960 0, 0, NULL, mask); 3961 3962 /* if clear_extent_bit failed for enomem reasons, 3963 * we can't allow the release to continue. 3964 */ 3965 if (ret < 0) 3966 ret = 0; 3967 else 3968 ret = 1; 3969 } 3970 return ret; 3971 } 3972 3973 /* 3974 * a helper for releasepage. As long as there are no locked extents 3975 * in the range corresponding to the page, both state records and extent 3976 * map records are removed 3977 */ 3978 int try_release_extent_mapping(struct extent_map_tree *map, 3979 struct extent_io_tree *tree, struct page *page, 3980 gfp_t mask) 3981 { 3982 struct extent_map *em; 3983 u64 start = page_offset(page); 3984 u64 end = start + PAGE_CACHE_SIZE - 1; 3985 3986 if ((mask & __GFP_WAIT) && 3987 page->mapping->host->i_size > 16 * 1024 * 1024) { 3988 u64 len; 3989 while (start <= end) { 3990 len = end - start + 1; 3991 write_lock(&map->lock); 3992 em = lookup_extent_mapping(map, start, len); 3993 if (!em) { 3994 write_unlock(&map->lock); 3995 break; 3996 } 3997 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3998 em->start != start) { 3999 write_unlock(&map->lock); 4000 free_extent_map(em); 4001 break; 4002 } 4003 if (!test_range_bit(tree, em->start, 4004 extent_map_end(em) - 1, 4005 EXTENT_LOCKED | EXTENT_WRITEBACK, 4006 0, NULL)) { 4007 remove_extent_mapping(map, em); 4008 /* once for the rb tree */ 4009 free_extent_map(em); 4010 } 4011 start = extent_map_end(em); 4012 write_unlock(&map->lock); 4013 4014 /* once for us */ 4015 free_extent_map(em); 4016 } 4017 } 4018 return try_release_extent_state(map, tree, page, mask); 4019 } 4020 4021 /* 4022 * helper function for fiemap, which doesn't want to see any holes. 4023 * This maps until we find something past 'last' 4024 */ 4025 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4026 u64 offset, 4027 u64 last, 4028 get_extent_t *get_extent) 4029 { 4030 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4031 struct extent_map *em; 4032 u64 len; 4033 4034 if (offset >= last) 4035 return NULL; 4036 4037 while(1) { 4038 len = last - offset; 4039 if (len == 0) 4040 break; 4041 len = ALIGN(len, sectorsize); 4042 em = get_extent(inode, NULL, 0, offset, len, 0); 4043 if (IS_ERR_OR_NULL(em)) 4044 return em; 4045 4046 /* if this isn't a hole return it */ 4047 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4048 em->block_start != EXTENT_MAP_HOLE) { 4049 return em; 4050 } 4051 4052 /* this is a hole, advance to the next extent */ 4053 offset = extent_map_end(em); 4054 free_extent_map(em); 4055 if (offset >= last) 4056 break; 4057 } 4058 return NULL; 4059 } 4060 4061 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4062 __u64 start, __u64 len, get_extent_t *get_extent) 4063 { 4064 int ret = 0; 4065 u64 off = start; 4066 u64 max = start + len; 4067 u32 flags = 0; 4068 u32 found_type; 4069 u64 last; 4070 u64 last_for_get_extent = 0; 4071 u64 disko = 0; 4072 u64 isize = i_size_read(inode); 4073 struct btrfs_key found_key; 4074 struct extent_map *em = NULL; 4075 struct extent_state *cached_state = NULL; 4076 struct btrfs_path *path; 4077 struct btrfs_file_extent_item *item; 4078 int end = 0; 4079 u64 em_start = 0; 4080 u64 em_len = 0; 4081 u64 em_end = 0; 4082 unsigned long emflags; 4083 4084 if (len == 0) 4085 return -EINVAL; 4086 4087 path = btrfs_alloc_path(); 4088 if (!path) 4089 return -ENOMEM; 4090 path->leave_spinning = 1; 4091 4092 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 4093 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 4094 4095 /* 4096 * lookup the last file extent. We're not using i_size here 4097 * because there might be preallocation past i_size 4098 */ 4099 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4100 path, btrfs_ino(inode), -1, 0); 4101 if (ret < 0) { 4102 btrfs_free_path(path); 4103 return ret; 4104 } 4105 WARN_ON(!ret); 4106 path->slots[0]--; 4107 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4108 struct btrfs_file_extent_item); 4109 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4110 found_type = btrfs_key_type(&found_key); 4111 4112 /* No extents, but there might be delalloc bits */ 4113 if (found_key.objectid != btrfs_ino(inode) || 4114 found_type != BTRFS_EXTENT_DATA_KEY) { 4115 /* have to trust i_size as the end */ 4116 last = (u64)-1; 4117 last_for_get_extent = isize; 4118 } else { 4119 /* 4120 * remember the start of the last extent. There are a 4121 * bunch of different factors that go into the length of the 4122 * extent, so its much less complex to remember where it started 4123 */ 4124 last = found_key.offset; 4125 last_for_get_extent = last + 1; 4126 } 4127 btrfs_free_path(path); 4128 4129 /* 4130 * we might have some extents allocated but more delalloc past those 4131 * extents. so, we trust isize unless the start of the last extent is 4132 * beyond isize 4133 */ 4134 if (last < isize) { 4135 last = (u64)-1; 4136 last_for_get_extent = isize; 4137 } 4138 4139 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4140 &cached_state); 4141 4142 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4143 get_extent); 4144 if (!em) 4145 goto out; 4146 if (IS_ERR(em)) { 4147 ret = PTR_ERR(em); 4148 goto out; 4149 } 4150 4151 while (!end) { 4152 u64 offset_in_extent = 0; 4153 4154 /* break if the extent we found is outside the range */ 4155 if (em->start >= max || extent_map_end(em) < off) 4156 break; 4157 4158 /* 4159 * get_extent may return an extent that starts before our 4160 * requested range. We have to make sure the ranges 4161 * we return to fiemap always move forward and don't 4162 * overlap, so adjust the offsets here 4163 */ 4164 em_start = max(em->start, off); 4165 4166 /* 4167 * record the offset from the start of the extent 4168 * for adjusting the disk offset below. Only do this if the 4169 * extent isn't compressed since our in ram offset may be past 4170 * what we have actually allocated on disk. 4171 */ 4172 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4173 offset_in_extent = em_start - em->start; 4174 em_end = extent_map_end(em); 4175 em_len = em_end - em_start; 4176 emflags = em->flags; 4177 disko = 0; 4178 flags = 0; 4179 4180 /* 4181 * bump off for our next call to get_extent 4182 */ 4183 off = extent_map_end(em); 4184 if (off >= max) 4185 end = 1; 4186 4187 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4188 end = 1; 4189 flags |= FIEMAP_EXTENT_LAST; 4190 } else if (em->block_start == EXTENT_MAP_INLINE) { 4191 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4192 FIEMAP_EXTENT_NOT_ALIGNED); 4193 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4194 flags |= (FIEMAP_EXTENT_DELALLOC | 4195 FIEMAP_EXTENT_UNKNOWN); 4196 } else { 4197 disko = em->block_start + offset_in_extent; 4198 } 4199 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4200 flags |= FIEMAP_EXTENT_ENCODED; 4201 4202 free_extent_map(em); 4203 em = NULL; 4204 if ((em_start >= last) || em_len == (u64)-1 || 4205 (last == (u64)-1 && isize <= em_end)) { 4206 flags |= FIEMAP_EXTENT_LAST; 4207 end = 1; 4208 } 4209 4210 /* now scan forward to see if this is really the last extent. */ 4211 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4212 get_extent); 4213 if (IS_ERR(em)) { 4214 ret = PTR_ERR(em); 4215 goto out; 4216 } 4217 if (!em) { 4218 flags |= FIEMAP_EXTENT_LAST; 4219 end = 1; 4220 } 4221 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4222 em_len, flags); 4223 if (ret) 4224 goto out_free; 4225 } 4226 out_free: 4227 free_extent_map(em); 4228 out: 4229 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4230 &cached_state, GFP_NOFS); 4231 return ret; 4232 } 4233 4234 static void __free_extent_buffer(struct extent_buffer *eb) 4235 { 4236 btrfs_leak_debug_del(&eb->leak_list); 4237 kmem_cache_free(extent_buffer_cache, eb); 4238 } 4239 4240 static int extent_buffer_under_io(struct extent_buffer *eb) 4241 { 4242 return (atomic_read(&eb->io_pages) || 4243 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4244 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4245 } 4246 4247 /* 4248 * Helper for releasing extent buffer page. 4249 */ 4250 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4251 unsigned long start_idx) 4252 { 4253 unsigned long index; 4254 unsigned long num_pages; 4255 struct page *page; 4256 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4257 4258 BUG_ON(extent_buffer_under_io(eb)); 4259 4260 num_pages = num_extent_pages(eb->start, eb->len); 4261 index = start_idx + num_pages; 4262 if (start_idx >= index) 4263 return; 4264 4265 do { 4266 index--; 4267 page = extent_buffer_page(eb, index); 4268 if (page && mapped) { 4269 spin_lock(&page->mapping->private_lock); 4270 /* 4271 * We do this since we'll remove the pages after we've 4272 * removed the eb from the radix tree, so we could race 4273 * and have this page now attached to the new eb. So 4274 * only clear page_private if it's still connected to 4275 * this eb. 4276 */ 4277 if (PagePrivate(page) && 4278 page->private == (unsigned long)eb) { 4279 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4280 BUG_ON(PageDirty(page)); 4281 BUG_ON(PageWriteback(page)); 4282 /* 4283 * We need to make sure we haven't be attached 4284 * to a new eb. 4285 */ 4286 ClearPagePrivate(page); 4287 set_page_private(page, 0); 4288 /* One for the page private */ 4289 page_cache_release(page); 4290 } 4291 spin_unlock(&page->mapping->private_lock); 4292 4293 } 4294 if (page) { 4295 /* One for when we alloced the page */ 4296 page_cache_release(page); 4297 } 4298 } while (index != start_idx); 4299 } 4300 4301 /* 4302 * Helper for releasing the extent buffer. 4303 */ 4304 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4305 { 4306 btrfs_release_extent_buffer_page(eb, 0); 4307 __free_extent_buffer(eb); 4308 } 4309 4310 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4311 u64 start, 4312 unsigned long len, 4313 gfp_t mask) 4314 { 4315 struct extent_buffer *eb = NULL; 4316 4317 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4318 if (eb == NULL) 4319 return NULL; 4320 eb->start = start; 4321 eb->len = len; 4322 eb->tree = tree; 4323 eb->bflags = 0; 4324 rwlock_init(&eb->lock); 4325 atomic_set(&eb->write_locks, 0); 4326 atomic_set(&eb->read_locks, 0); 4327 atomic_set(&eb->blocking_readers, 0); 4328 atomic_set(&eb->blocking_writers, 0); 4329 atomic_set(&eb->spinning_readers, 0); 4330 atomic_set(&eb->spinning_writers, 0); 4331 eb->lock_nested = 0; 4332 init_waitqueue_head(&eb->write_lock_wq); 4333 init_waitqueue_head(&eb->read_lock_wq); 4334 4335 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4336 4337 spin_lock_init(&eb->refs_lock); 4338 atomic_set(&eb->refs, 1); 4339 atomic_set(&eb->io_pages, 0); 4340 4341 /* 4342 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4343 */ 4344 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4345 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4346 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4347 4348 return eb; 4349 } 4350 4351 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4352 { 4353 unsigned long i; 4354 struct page *p; 4355 struct extent_buffer *new; 4356 unsigned long num_pages = num_extent_pages(src->start, src->len); 4357 4358 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4359 if (new == NULL) 4360 return NULL; 4361 4362 for (i = 0; i < num_pages; i++) { 4363 p = alloc_page(GFP_NOFS); 4364 if (!p) { 4365 btrfs_release_extent_buffer(new); 4366 return NULL; 4367 } 4368 attach_extent_buffer_page(new, p); 4369 WARN_ON(PageDirty(p)); 4370 SetPageUptodate(p); 4371 new->pages[i] = p; 4372 } 4373 4374 copy_extent_buffer(new, src, 0, 0, src->len); 4375 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4376 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4377 4378 return new; 4379 } 4380 4381 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4382 { 4383 struct extent_buffer *eb; 4384 unsigned long num_pages = num_extent_pages(0, len); 4385 unsigned long i; 4386 4387 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4388 if (!eb) 4389 return NULL; 4390 4391 for (i = 0; i < num_pages; i++) { 4392 eb->pages[i] = alloc_page(GFP_NOFS); 4393 if (!eb->pages[i]) 4394 goto err; 4395 } 4396 set_extent_buffer_uptodate(eb); 4397 btrfs_set_header_nritems(eb, 0); 4398 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4399 4400 return eb; 4401 err: 4402 for (; i > 0; i--) 4403 __free_page(eb->pages[i - 1]); 4404 __free_extent_buffer(eb); 4405 return NULL; 4406 } 4407 4408 static void check_buffer_tree_ref(struct extent_buffer *eb) 4409 { 4410 int refs; 4411 /* the ref bit is tricky. We have to make sure it is set 4412 * if we have the buffer dirty. Otherwise the 4413 * code to free a buffer can end up dropping a dirty 4414 * page 4415 * 4416 * Once the ref bit is set, it won't go away while the 4417 * buffer is dirty or in writeback, and it also won't 4418 * go away while we have the reference count on the 4419 * eb bumped. 4420 * 4421 * We can't just set the ref bit without bumping the 4422 * ref on the eb because free_extent_buffer might 4423 * see the ref bit and try to clear it. If this happens 4424 * free_extent_buffer might end up dropping our original 4425 * ref by mistake and freeing the page before we are able 4426 * to add one more ref. 4427 * 4428 * So bump the ref count first, then set the bit. If someone 4429 * beat us to it, drop the ref we added. 4430 */ 4431 refs = atomic_read(&eb->refs); 4432 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4433 return; 4434 4435 spin_lock(&eb->refs_lock); 4436 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4437 atomic_inc(&eb->refs); 4438 spin_unlock(&eb->refs_lock); 4439 } 4440 4441 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4442 { 4443 unsigned long num_pages, i; 4444 4445 check_buffer_tree_ref(eb); 4446 4447 num_pages = num_extent_pages(eb->start, eb->len); 4448 for (i = 0; i < num_pages; i++) { 4449 struct page *p = extent_buffer_page(eb, i); 4450 mark_page_accessed(p); 4451 } 4452 } 4453 4454 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4455 u64 start, unsigned long len) 4456 { 4457 unsigned long num_pages = num_extent_pages(start, len); 4458 unsigned long i; 4459 unsigned long index = start >> PAGE_CACHE_SHIFT; 4460 struct extent_buffer *eb; 4461 struct extent_buffer *exists = NULL; 4462 struct page *p; 4463 struct address_space *mapping = tree->mapping; 4464 int uptodate = 1; 4465 int ret; 4466 4467 rcu_read_lock(); 4468 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4469 if (eb && atomic_inc_not_zero(&eb->refs)) { 4470 rcu_read_unlock(); 4471 mark_extent_buffer_accessed(eb); 4472 return eb; 4473 } 4474 rcu_read_unlock(); 4475 4476 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4477 if (!eb) 4478 return NULL; 4479 4480 for (i = 0; i < num_pages; i++, index++) { 4481 p = find_or_create_page(mapping, index, GFP_NOFS); 4482 if (!p) 4483 goto free_eb; 4484 4485 spin_lock(&mapping->private_lock); 4486 if (PagePrivate(p)) { 4487 /* 4488 * We could have already allocated an eb for this page 4489 * and attached one so lets see if we can get a ref on 4490 * the existing eb, and if we can we know it's good and 4491 * we can just return that one, else we know we can just 4492 * overwrite page->private. 4493 */ 4494 exists = (struct extent_buffer *)p->private; 4495 if (atomic_inc_not_zero(&exists->refs)) { 4496 spin_unlock(&mapping->private_lock); 4497 unlock_page(p); 4498 page_cache_release(p); 4499 mark_extent_buffer_accessed(exists); 4500 goto free_eb; 4501 } 4502 4503 /* 4504 * Do this so attach doesn't complain and we need to 4505 * drop the ref the old guy had. 4506 */ 4507 ClearPagePrivate(p); 4508 WARN_ON(PageDirty(p)); 4509 page_cache_release(p); 4510 } 4511 attach_extent_buffer_page(eb, p); 4512 spin_unlock(&mapping->private_lock); 4513 WARN_ON(PageDirty(p)); 4514 mark_page_accessed(p); 4515 eb->pages[i] = p; 4516 if (!PageUptodate(p)) 4517 uptodate = 0; 4518 4519 /* 4520 * see below about how we avoid a nasty race with release page 4521 * and why we unlock later 4522 */ 4523 } 4524 if (uptodate) 4525 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4526 again: 4527 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4528 if (ret) 4529 goto free_eb; 4530 4531 spin_lock(&tree->buffer_lock); 4532 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4533 if (ret == -EEXIST) { 4534 exists = radix_tree_lookup(&tree->buffer, 4535 start >> PAGE_CACHE_SHIFT); 4536 if (!atomic_inc_not_zero(&exists->refs)) { 4537 spin_unlock(&tree->buffer_lock); 4538 radix_tree_preload_end(); 4539 exists = NULL; 4540 goto again; 4541 } 4542 spin_unlock(&tree->buffer_lock); 4543 radix_tree_preload_end(); 4544 mark_extent_buffer_accessed(exists); 4545 goto free_eb; 4546 } 4547 /* add one reference for the tree */ 4548 check_buffer_tree_ref(eb); 4549 spin_unlock(&tree->buffer_lock); 4550 radix_tree_preload_end(); 4551 4552 /* 4553 * there is a race where release page may have 4554 * tried to find this extent buffer in the radix 4555 * but failed. It will tell the VM it is safe to 4556 * reclaim the, and it will clear the page private bit. 4557 * We must make sure to set the page private bit properly 4558 * after the extent buffer is in the radix tree so 4559 * it doesn't get lost 4560 */ 4561 SetPageChecked(eb->pages[0]); 4562 for (i = 1; i < num_pages; i++) { 4563 p = extent_buffer_page(eb, i); 4564 ClearPageChecked(p); 4565 unlock_page(p); 4566 } 4567 unlock_page(eb->pages[0]); 4568 return eb; 4569 4570 free_eb: 4571 for (i = 0; i < num_pages; i++) { 4572 if (eb->pages[i]) 4573 unlock_page(eb->pages[i]); 4574 } 4575 4576 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4577 btrfs_release_extent_buffer(eb); 4578 return exists; 4579 } 4580 4581 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4582 u64 start, unsigned long len) 4583 { 4584 struct extent_buffer *eb; 4585 4586 rcu_read_lock(); 4587 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4588 if (eb && atomic_inc_not_zero(&eb->refs)) { 4589 rcu_read_unlock(); 4590 mark_extent_buffer_accessed(eb); 4591 return eb; 4592 } 4593 rcu_read_unlock(); 4594 4595 return NULL; 4596 } 4597 4598 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4599 { 4600 struct extent_buffer *eb = 4601 container_of(head, struct extent_buffer, rcu_head); 4602 4603 __free_extent_buffer(eb); 4604 } 4605 4606 /* Expects to have eb->eb_lock already held */ 4607 static int release_extent_buffer(struct extent_buffer *eb) 4608 { 4609 WARN_ON(atomic_read(&eb->refs) == 0); 4610 if (atomic_dec_and_test(&eb->refs)) { 4611 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4612 spin_unlock(&eb->refs_lock); 4613 } else { 4614 struct extent_io_tree *tree = eb->tree; 4615 4616 spin_unlock(&eb->refs_lock); 4617 4618 spin_lock(&tree->buffer_lock); 4619 radix_tree_delete(&tree->buffer, 4620 eb->start >> PAGE_CACHE_SHIFT); 4621 spin_unlock(&tree->buffer_lock); 4622 } 4623 4624 /* Should be safe to release our pages at this point */ 4625 btrfs_release_extent_buffer_page(eb, 0); 4626 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4627 return 1; 4628 } 4629 spin_unlock(&eb->refs_lock); 4630 4631 return 0; 4632 } 4633 4634 void free_extent_buffer(struct extent_buffer *eb) 4635 { 4636 int refs; 4637 int old; 4638 if (!eb) 4639 return; 4640 4641 while (1) { 4642 refs = atomic_read(&eb->refs); 4643 if (refs <= 3) 4644 break; 4645 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4646 if (old == refs) 4647 return; 4648 } 4649 4650 spin_lock(&eb->refs_lock); 4651 if (atomic_read(&eb->refs) == 2 && 4652 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4653 atomic_dec(&eb->refs); 4654 4655 if (atomic_read(&eb->refs) == 2 && 4656 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4657 !extent_buffer_under_io(eb) && 4658 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4659 atomic_dec(&eb->refs); 4660 4661 /* 4662 * I know this is terrible, but it's temporary until we stop tracking 4663 * the uptodate bits and such for the extent buffers. 4664 */ 4665 release_extent_buffer(eb); 4666 } 4667 4668 void free_extent_buffer_stale(struct extent_buffer *eb) 4669 { 4670 if (!eb) 4671 return; 4672 4673 spin_lock(&eb->refs_lock); 4674 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4675 4676 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4677 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4678 atomic_dec(&eb->refs); 4679 release_extent_buffer(eb); 4680 } 4681 4682 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4683 { 4684 unsigned long i; 4685 unsigned long num_pages; 4686 struct page *page; 4687 4688 num_pages = num_extent_pages(eb->start, eb->len); 4689 4690 for (i = 0; i < num_pages; i++) { 4691 page = extent_buffer_page(eb, i); 4692 if (!PageDirty(page)) 4693 continue; 4694 4695 lock_page(page); 4696 WARN_ON(!PagePrivate(page)); 4697 4698 clear_page_dirty_for_io(page); 4699 spin_lock_irq(&page->mapping->tree_lock); 4700 if (!PageDirty(page)) { 4701 radix_tree_tag_clear(&page->mapping->page_tree, 4702 page_index(page), 4703 PAGECACHE_TAG_DIRTY); 4704 } 4705 spin_unlock_irq(&page->mapping->tree_lock); 4706 ClearPageError(page); 4707 unlock_page(page); 4708 } 4709 WARN_ON(atomic_read(&eb->refs) == 0); 4710 } 4711 4712 int set_extent_buffer_dirty(struct extent_buffer *eb) 4713 { 4714 unsigned long i; 4715 unsigned long num_pages; 4716 int was_dirty = 0; 4717 4718 check_buffer_tree_ref(eb); 4719 4720 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4721 4722 num_pages = num_extent_pages(eb->start, eb->len); 4723 WARN_ON(atomic_read(&eb->refs) == 0); 4724 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4725 4726 for (i = 0; i < num_pages; i++) 4727 set_page_dirty(extent_buffer_page(eb, i)); 4728 return was_dirty; 4729 } 4730 4731 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4732 { 4733 unsigned long i; 4734 struct page *page; 4735 unsigned long num_pages; 4736 4737 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4738 num_pages = num_extent_pages(eb->start, eb->len); 4739 for (i = 0; i < num_pages; i++) { 4740 page = extent_buffer_page(eb, i); 4741 if (page) 4742 ClearPageUptodate(page); 4743 } 4744 return 0; 4745 } 4746 4747 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4748 { 4749 unsigned long i; 4750 struct page *page; 4751 unsigned long num_pages; 4752 4753 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4754 num_pages = num_extent_pages(eb->start, eb->len); 4755 for (i = 0; i < num_pages; i++) { 4756 page = extent_buffer_page(eb, i); 4757 SetPageUptodate(page); 4758 } 4759 return 0; 4760 } 4761 4762 int extent_buffer_uptodate(struct extent_buffer *eb) 4763 { 4764 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4765 } 4766 4767 int read_extent_buffer_pages(struct extent_io_tree *tree, 4768 struct extent_buffer *eb, u64 start, int wait, 4769 get_extent_t *get_extent, int mirror_num) 4770 { 4771 unsigned long i; 4772 unsigned long start_i; 4773 struct page *page; 4774 int err; 4775 int ret = 0; 4776 int locked_pages = 0; 4777 int all_uptodate = 1; 4778 unsigned long num_pages; 4779 unsigned long num_reads = 0; 4780 struct bio *bio = NULL; 4781 unsigned long bio_flags = 0; 4782 4783 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4784 return 0; 4785 4786 if (start) { 4787 WARN_ON(start < eb->start); 4788 start_i = (start >> PAGE_CACHE_SHIFT) - 4789 (eb->start >> PAGE_CACHE_SHIFT); 4790 } else { 4791 start_i = 0; 4792 } 4793 4794 num_pages = num_extent_pages(eb->start, eb->len); 4795 for (i = start_i; i < num_pages; i++) { 4796 page = extent_buffer_page(eb, i); 4797 if (wait == WAIT_NONE) { 4798 if (!trylock_page(page)) 4799 goto unlock_exit; 4800 } else { 4801 lock_page(page); 4802 } 4803 locked_pages++; 4804 if (!PageUptodate(page)) { 4805 num_reads++; 4806 all_uptodate = 0; 4807 } 4808 } 4809 if (all_uptodate) { 4810 if (start_i == 0) 4811 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4812 goto unlock_exit; 4813 } 4814 4815 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4816 eb->read_mirror = 0; 4817 atomic_set(&eb->io_pages, num_reads); 4818 for (i = start_i; i < num_pages; i++) { 4819 page = extent_buffer_page(eb, i); 4820 if (!PageUptodate(page)) { 4821 ClearPageError(page); 4822 err = __extent_read_full_page(tree, page, 4823 get_extent, &bio, 4824 mirror_num, &bio_flags, 4825 READ | REQ_META); 4826 if (err) 4827 ret = err; 4828 } else { 4829 unlock_page(page); 4830 } 4831 } 4832 4833 if (bio) { 4834 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4835 bio_flags); 4836 if (err) 4837 return err; 4838 } 4839 4840 if (ret || wait != WAIT_COMPLETE) 4841 return ret; 4842 4843 for (i = start_i; i < num_pages; i++) { 4844 page = extent_buffer_page(eb, i); 4845 wait_on_page_locked(page); 4846 if (!PageUptodate(page)) 4847 ret = -EIO; 4848 } 4849 4850 return ret; 4851 4852 unlock_exit: 4853 i = start_i; 4854 while (locked_pages > 0) { 4855 page = extent_buffer_page(eb, i); 4856 i++; 4857 unlock_page(page); 4858 locked_pages--; 4859 } 4860 return ret; 4861 } 4862 4863 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4864 unsigned long start, 4865 unsigned long len) 4866 { 4867 size_t cur; 4868 size_t offset; 4869 struct page *page; 4870 char *kaddr; 4871 char *dst = (char *)dstv; 4872 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4873 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4874 4875 WARN_ON(start > eb->len); 4876 WARN_ON(start + len > eb->start + eb->len); 4877 4878 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4879 4880 while (len > 0) { 4881 page = extent_buffer_page(eb, i); 4882 4883 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4884 kaddr = page_address(page); 4885 memcpy(dst, kaddr + offset, cur); 4886 4887 dst += cur; 4888 len -= cur; 4889 offset = 0; 4890 i++; 4891 } 4892 } 4893 4894 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4895 unsigned long min_len, char **map, 4896 unsigned long *map_start, 4897 unsigned long *map_len) 4898 { 4899 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4900 char *kaddr; 4901 struct page *p; 4902 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4903 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4904 unsigned long end_i = (start_offset + start + min_len - 1) >> 4905 PAGE_CACHE_SHIFT; 4906 4907 if (i != end_i) 4908 return -EINVAL; 4909 4910 if (i == 0) { 4911 offset = start_offset; 4912 *map_start = 0; 4913 } else { 4914 offset = 0; 4915 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4916 } 4917 4918 if (start + min_len > eb->len) { 4919 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4920 "wanted %lu %lu\n", 4921 eb->start, eb->len, start, min_len); 4922 return -EINVAL; 4923 } 4924 4925 p = extent_buffer_page(eb, i); 4926 kaddr = page_address(p); 4927 *map = kaddr + offset; 4928 *map_len = PAGE_CACHE_SIZE - offset; 4929 return 0; 4930 } 4931 4932 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4933 unsigned long start, 4934 unsigned long len) 4935 { 4936 size_t cur; 4937 size_t offset; 4938 struct page *page; 4939 char *kaddr; 4940 char *ptr = (char *)ptrv; 4941 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4942 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4943 int ret = 0; 4944 4945 WARN_ON(start > eb->len); 4946 WARN_ON(start + len > eb->start + eb->len); 4947 4948 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4949 4950 while (len > 0) { 4951 page = extent_buffer_page(eb, i); 4952 4953 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4954 4955 kaddr = page_address(page); 4956 ret = memcmp(ptr, kaddr + offset, cur); 4957 if (ret) 4958 break; 4959 4960 ptr += cur; 4961 len -= cur; 4962 offset = 0; 4963 i++; 4964 } 4965 return ret; 4966 } 4967 4968 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4969 unsigned long start, unsigned long len) 4970 { 4971 size_t cur; 4972 size_t offset; 4973 struct page *page; 4974 char *kaddr; 4975 char *src = (char *)srcv; 4976 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4977 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4978 4979 WARN_ON(start > eb->len); 4980 WARN_ON(start + len > eb->start + eb->len); 4981 4982 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 4983 4984 while (len > 0) { 4985 page = extent_buffer_page(eb, i); 4986 WARN_ON(!PageUptodate(page)); 4987 4988 cur = min(len, PAGE_CACHE_SIZE - offset); 4989 kaddr = page_address(page); 4990 memcpy(kaddr + offset, src, cur); 4991 4992 src += cur; 4993 len -= cur; 4994 offset = 0; 4995 i++; 4996 } 4997 } 4998 4999 void memset_extent_buffer(struct extent_buffer *eb, char c, 5000 unsigned long start, unsigned long len) 5001 { 5002 size_t cur; 5003 size_t offset; 5004 struct page *page; 5005 char *kaddr; 5006 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5007 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5008 5009 WARN_ON(start > eb->len); 5010 WARN_ON(start + len > eb->start + eb->len); 5011 5012 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5013 5014 while (len > 0) { 5015 page = extent_buffer_page(eb, i); 5016 WARN_ON(!PageUptodate(page)); 5017 5018 cur = min(len, PAGE_CACHE_SIZE - offset); 5019 kaddr = page_address(page); 5020 memset(kaddr + offset, c, cur); 5021 5022 len -= cur; 5023 offset = 0; 5024 i++; 5025 } 5026 } 5027 5028 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5029 unsigned long dst_offset, unsigned long src_offset, 5030 unsigned long len) 5031 { 5032 u64 dst_len = dst->len; 5033 size_t cur; 5034 size_t offset; 5035 struct page *page; 5036 char *kaddr; 5037 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5038 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5039 5040 WARN_ON(src->len != dst_len); 5041 5042 offset = (start_offset + dst_offset) & 5043 (PAGE_CACHE_SIZE - 1); 5044 5045 while (len > 0) { 5046 page = extent_buffer_page(dst, i); 5047 WARN_ON(!PageUptodate(page)); 5048 5049 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5050 5051 kaddr = page_address(page); 5052 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5053 5054 src_offset += cur; 5055 len -= cur; 5056 offset = 0; 5057 i++; 5058 } 5059 } 5060 5061 static void move_pages(struct page *dst_page, struct page *src_page, 5062 unsigned long dst_off, unsigned long src_off, 5063 unsigned long len) 5064 { 5065 char *dst_kaddr = page_address(dst_page); 5066 if (dst_page == src_page) { 5067 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 5068 } else { 5069 char *src_kaddr = page_address(src_page); 5070 char *p = dst_kaddr + dst_off + len; 5071 char *s = src_kaddr + src_off + len; 5072 5073 while (len--) 5074 *--p = *--s; 5075 } 5076 } 5077 5078 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5079 { 5080 unsigned long distance = (src > dst) ? src - dst : dst - src; 5081 return distance < len; 5082 } 5083 5084 static void copy_pages(struct page *dst_page, struct page *src_page, 5085 unsigned long dst_off, unsigned long src_off, 5086 unsigned long len) 5087 { 5088 char *dst_kaddr = page_address(dst_page); 5089 char *src_kaddr; 5090 int must_memmove = 0; 5091 5092 if (dst_page != src_page) { 5093 src_kaddr = page_address(src_page); 5094 } else { 5095 src_kaddr = dst_kaddr; 5096 if (areas_overlap(src_off, dst_off, len)) 5097 must_memmove = 1; 5098 } 5099 5100 if (must_memmove) 5101 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5102 else 5103 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5104 } 5105 5106 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5107 unsigned long src_offset, unsigned long len) 5108 { 5109 size_t cur; 5110 size_t dst_off_in_page; 5111 size_t src_off_in_page; 5112 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5113 unsigned long dst_i; 5114 unsigned long src_i; 5115 5116 if (src_offset + len > dst->len) { 5117 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5118 "len %lu dst len %lu\n", src_offset, len, dst->len); 5119 BUG_ON(1); 5120 } 5121 if (dst_offset + len > dst->len) { 5122 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5123 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5124 BUG_ON(1); 5125 } 5126 5127 while (len > 0) { 5128 dst_off_in_page = (start_offset + dst_offset) & 5129 (PAGE_CACHE_SIZE - 1); 5130 src_off_in_page = (start_offset + src_offset) & 5131 (PAGE_CACHE_SIZE - 1); 5132 5133 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5134 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5135 5136 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5137 src_off_in_page)); 5138 cur = min_t(unsigned long, cur, 5139 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5140 5141 copy_pages(extent_buffer_page(dst, dst_i), 5142 extent_buffer_page(dst, src_i), 5143 dst_off_in_page, src_off_in_page, cur); 5144 5145 src_offset += cur; 5146 dst_offset += cur; 5147 len -= cur; 5148 } 5149 } 5150 5151 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5152 unsigned long src_offset, unsigned long len) 5153 { 5154 size_t cur; 5155 size_t dst_off_in_page; 5156 size_t src_off_in_page; 5157 unsigned long dst_end = dst_offset + len - 1; 5158 unsigned long src_end = src_offset + len - 1; 5159 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5160 unsigned long dst_i; 5161 unsigned long src_i; 5162 5163 if (src_offset + len > dst->len) { 5164 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5165 "len %lu len %lu\n", src_offset, len, dst->len); 5166 BUG_ON(1); 5167 } 5168 if (dst_offset + len > dst->len) { 5169 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5170 "len %lu len %lu\n", dst_offset, len, dst->len); 5171 BUG_ON(1); 5172 } 5173 if (dst_offset < src_offset) { 5174 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5175 return; 5176 } 5177 while (len > 0) { 5178 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5179 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5180 5181 dst_off_in_page = (start_offset + dst_end) & 5182 (PAGE_CACHE_SIZE - 1); 5183 src_off_in_page = (start_offset + src_end) & 5184 (PAGE_CACHE_SIZE - 1); 5185 5186 cur = min_t(unsigned long, len, src_off_in_page + 1); 5187 cur = min(cur, dst_off_in_page + 1); 5188 move_pages(extent_buffer_page(dst, dst_i), 5189 extent_buffer_page(dst, src_i), 5190 dst_off_in_page - cur + 1, 5191 src_off_in_page - cur + 1, cur); 5192 5193 dst_end -= cur; 5194 src_end -= cur; 5195 len -= cur; 5196 } 5197 } 5198 5199 int try_release_extent_buffer(struct page *page) 5200 { 5201 struct extent_buffer *eb; 5202 5203 /* 5204 * We need to make sure noboody is attaching this page to an eb right 5205 * now. 5206 */ 5207 spin_lock(&page->mapping->private_lock); 5208 if (!PagePrivate(page)) { 5209 spin_unlock(&page->mapping->private_lock); 5210 return 1; 5211 } 5212 5213 eb = (struct extent_buffer *)page->private; 5214 BUG_ON(!eb); 5215 5216 /* 5217 * This is a little awful but should be ok, we need to make sure that 5218 * the eb doesn't disappear out from under us while we're looking at 5219 * this page. 5220 */ 5221 spin_lock(&eb->refs_lock); 5222 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5223 spin_unlock(&eb->refs_lock); 5224 spin_unlock(&page->mapping->private_lock); 5225 return 0; 5226 } 5227 spin_unlock(&page->mapping->private_lock); 5228 5229 /* 5230 * If tree ref isn't set then we know the ref on this eb is a real ref, 5231 * so just return, this page will likely be freed soon anyway. 5232 */ 5233 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5234 spin_unlock(&eb->refs_lock); 5235 return 0; 5236 } 5237 5238 return release_extent_buffer(eb); 5239 } 5240