1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 struct inode *inode = tree->private_data; 93 u64 isize; 94 95 if (!inode || !is_data_inode(inode)) 96 return; 97 98 isize = i_size_read(inode); 99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 101 "%s: ino %llu isize %llu odd range [%llu,%llu]", 102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 103 } 104 } 105 #else 106 #define btrfs_leak_debug_add(new, head) do {} while (0) 107 #define btrfs_leak_debug_del(entry) do {} while (0) 108 #define btrfs_leak_debug_check() do {} while (0) 109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 110 #endif 111 112 #define BUFFER_LRU_MAX 64 113 114 struct tree_entry { 115 u64 start; 116 u64 end; 117 struct rb_node rb_node; 118 }; 119 120 struct extent_page_data { 121 struct bio *bio; 122 struct extent_io_tree *tree; 123 /* tells writepage not to lock the state bits for this range 124 * it still does the unlocking 125 */ 126 unsigned int extent_locked:1; 127 128 /* tells the submit_bio code to use REQ_SYNC */ 129 unsigned int sync_io:1; 130 }; 131 132 static int add_extent_changeset(struct extent_state *state, unsigned bits, 133 struct extent_changeset *changeset, 134 int set) 135 { 136 int ret; 137 138 if (!changeset) 139 return 0; 140 if (set && (state->state & bits) == bits) 141 return 0; 142 if (!set && (state->state & bits) == 0) 143 return 0; 144 changeset->bytes_changed += state->end - state->start + 1; 145 ret = ulist_add(&changeset->range_changed, state->start, state->end, 146 GFP_ATOMIC); 147 return ret; 148 } 149 150 static void flush_write_bio(struct extent_page_data *epd); 151 152 int __init extent_io_init(void) 153 { 154 extent_state_cache = kmem_cache_create("btrfs_extent_state", 155 sizeof(struct extent_state), 0, 156 SLAB_MEM_SPREAD, NULL); 157 if (!extent_state_cache) 158 return -ENOMEM; 159 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 161 sizeof(struct extent_buffer), 0, 162 SLAB_MEM_SPREAD, NULL); 163 if (!extent_buffer_cache) 164 goto free_state_cache; 165 166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 167 offsetof(struct btrfs_io_bio, bio), 168 BIOSET_NEED_BVECS)) 169 goto free_buffer_cache; 170 171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 172 goto free_bioset; 173 174 return 0; 175 176 free_bioset: 177 bioset_exit(&btrfs_bioset); 178 179 free_buffer_cache: 180 kmem_cache_destroy(extent_buffer_cache); 181 extent_buffer_cache = NULL; 182 183 free_state_cache: 184 kmem_cache_destroy(extent_state_cache); 185 extent_state_cache = NULL; 186 return -ENOMEM; 187 } 188 189 void __cold extent_io_exit(void) 190 { 191 btrfs_leak_debug_check(); 192 193 /* 194 * Make sure all delayed rcu free are flushed before we 195 * destroy caches. 196 */ 197 rcu_barrier(); 198 kmem_cache_destroy(extent_state_cache); 199 kmem_cache_destroy(extent_buffer_cache); 200 bioset_exit(&btrfs_bioset); 201 } 202 203 void extent_io_tree_init(struct extent_io_tree *tree, 204 void *private_data) 205 { 206 tree->state = RB_ROOT; 207 tree->ops = NULL; 208 tree->dirty_bytes = 0; 209 spin_lock_init(&tree->lock); 210 tree->private_data = private_data; 211 } 212 213 static struct extent_state *alloc_extent_state(gfp_t mask) 214 { 215 struct extent_state *state; 216 217 /* 218 * The given mask might be not appropriate for the slab allocator, 219 * drop the unsupported bits 220 */ 221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 222 state = kmem_cache_alloc(extent_state_cache, mask); 223 if (!state) 224 return state; 225 state->state = 0; 226 state->failrec = NULL; 227 RB_CLEAR_NODE(&state->rb_node); 228 btrfs_leak_debug_add(&state->leak_list, &states); 229 refcount_set(&state->refs, 1); 230 init_waitqueue_head(&state->wq); 231 trace_alloc_extent_state(state, mask, _RET_IP_); 232 return state; 233 } 234 235 void free_extent_state(struct extent_state *state) 236 { 237 if (!state) 238 return; 239 if (refcount_dec_and_test(&state->refs)) { 240 WARN_ON(extent_state_in_tree(state)); 241 btrfs_leak_debug_del(&state->leak_list); 242 trace_free_extent_state(state, _RET_IP_); 243 kmem_cache_free(extent_state_cache, state); 244 } 245 } 246 247 static struct rb_node *tree_insert(struct rb_root *root, 248 struct rb_node *search_start, 249 u64 offset, 250 struct rb_node *node, 251 struct rb_node ***p_in, 252 struct rb_node **parent_in) 253 { 254 struct rb_node **p; 255 struct rb_node *parent = NULL; 256 struct tree_entry *entry; 257 258 if (p_in && parent_in) { 259 p = *p_in; 260 parent = *parent_in; 261 goto do_insert; 262 } 263 264 p = search_start ? &search_start : &root->rb_node; 265 while (*p) { 266 parent = *p; 267 entry = rb_entry(parent, struct tree_entry, rb_node); 268 269 if (offset < entry->start) 270 p = &(*p)->rb_left; 271 else if (offset > entry->end) 272 p = &(*p)->rb_right; 273 else 274 return parent; 275 } 276 277 do_insert: 278 rb_link_node(node, parent, p); 279 rb_insert_color(node, root); 280 return NULL; 281 } 282 283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 284 struct rb_node **prev_ret, 285 struct rb_node **next_ret, 286 struct rb_node ***p_ret, 287 struct rb_node **parent_ret) 288 { 289 struct rb_root *root = &tree->state; 290 struct rb_node **n = &root->rb_node; 291 struct rb_node *prev = NULL; 292 struct rb_node *orig_prev = NULL; 293 struct tree_entry *entry; 294 struct tree_entry *prev_entry = NULL; 295 296 while (*n) { 297 prev = *n; 298 entry = rb_entry(prev, struct tree_entry, rb_node); 299 prev_entry = entry; 300 301 if (offset < entry->start) 302 n = &(*n)->rb_left; 303 else if (offset > entry->end) 304 n = &(*n)->rb_right; 305 else 306 return *n; 307 } 308 309 if (p_ret) 310 *p_ret = n; 311 if (parent_ret) 312 *parent_ret = prev; 313 314 if (prev_ret) { 315 orig_prev = prev; 316 while (prev && offset > prev_entry->end) { 317 prev = rb_next(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *prev_ret = prev; 321 prev = orig_prev; 322 } 323 324 if (next_ret) { 325 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 326 while (prev && offset < prev_entry->start) { 327 prev = rb_prev(prev); 328 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 329 } 330 *next_ret = prev; 331 } 332 return NULL; 333 } 334 335 static inline struct rb_node * 336 tree_search_for_insert(struct extent_io_tree *tree, 337 u64 offset, 338 struct rb_node ***p_ret, 339 struct rb_node **parent_ret) 340 { 341 struct rb_node *prev = NULL; 342 struct rb_node *ret; 343 344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 345 if (!ret) 346 return prev; 347 return ret; 348 } 349 350 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 351 u64 offset) 352 { 353 return tree_search_for_insert(tree, offset, NULL, NULL); 354 } 355 356 /* 357 * utility function to look for merge candidates inside a given range. 358 * Any extents with matching state are merged together into a single 359 * extent in the tree. Extents with EXTENT_IO in their state field 360 * are not merged because the end_io handlers need to be able to do 361 * operations on them without sleeping (or doing allocations/splits). 362 * 363 * This should be called with the tree lock held. 364 */ 365 static void merge_state(struct extent_io_tree *tree, 366 struct extent_state *state) 367 { 368 struct extent_state *other; 369 struct rb_node *other_node; 370 371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 372 return; 373 374 other_node = rb_prev(&state->rb_node); 375 if (other_node) { 376 other = rb_entry(other_node, struct extent_state, rb_node); 377 if (other->end == state->start - 1 && 378 other->state == state->state) { 379 if (tree->private_data && 380 is_data_inode(tree->private_data)) 381 btrfs_merge_delalloc_extent(tree->private_data, 382 state, other); 383 state->start = other->start; 384 rb_erase(&other->rb_node, &tree->state); 385 RB_CLEAR_NODE(&other->rb_node); 386 free_extent_state(other); 387 } 388 } 389 other_node = rb_next(&state->rb_node); 390 if (other_node) { 391 other = rb_entry(other_node, struct extent_state, rb_node); 392 if (other->start == state->end + 1 && 393 other->state == state->state) { 394 if (tree->private_data && 395 is_data_inode(tree->private_data)) 396 btrfs_merge_delalloc_extent(tree->private_data, 397 state, other); 398 state->end = other->end; 399 rb_erase(&other->rb_node, &tree->state); 400 RB_CLEAR_NODE(&other->rb_node); 401 free_extent_state(other); 402 } 403 } 404 } 405 406 static void set_state_bits(struct extent_io_tree *tree, 407 struct extent_state *state, unsigned *bits, 408 struct extent_changeset *changeset); 409 410 /* 411 * insert an extent_state struct into the tree. 'bits' are set on the 412 * struct before it is inserted. 413 * 414 * This may return -EEXIST if the extent is already there, in which case the 415 * state struct is freed. 416 * 417 * The tree lock is not taken internally. This is a utility function and 418 * probably isn't what you want to call (see set/clear_extent_bit). 419 */ 420 static int insert_state(struct extent_io_tree *tree, 421 struct extent_state *state, u64 start, u64 end, 422 struct rb_node ***p, 423 struct rb_node **parent, 424 unsigned *bits, struct extent_changeset *changeset) 425 { 426 struct rb_node *node; 427 428 if (end < start) 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 430 end, start); 431 state->start = start; 432 state->end = end; 433 434 set_state_bits(tree, state, bits, changeset); 435 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 437 if (node) { 438 struct extent_state *found; 439 found = rb_entry(node, struct extent_state, rb_node); 440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 441 found->start, found->end, start, end); 442 return -EEXIST; 443 } 444 merge_state(tree, state); 445 return 0; 446 } 447 448 /* 449 * split a given extent state struct in two, inserting the preallocated 450 * struct 'prealloc' as the newly created second half. 'split' indicates an 451 * offset inside 'orig' where it should be split. 452 * 453 * Before calling, 454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 455 * are two extent state structs in the tree: 456 * prealloc: [orig->start, split - 1] 457 * orig: [ split, orig->end ] 458 * 459 * The tree locks are not taken by this function. They need to be held 460 * by the caller. 461 */ 462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 463 struct extent_state *prealloc, u64 split) 464 { 465 struct rb_node *node; 466 467 if (tree->private_data && is_data_inode(tree->private_data)) 468 btrfs_split_delalloc_extent(tree->private_data, orig, split); 469 470 prealloc->start = orig->start; 471 prealloc->end = split - 1; 472 prealloc->state = orig->state; 473 orig->start = split; 474 475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 476 &prealloc->rb_node, NULL, NULL); 477 if (node) { 478 free_extent_state(prealloc); 479 return -EEXIST; 480 } 481 return 0; 482 } 483 484 static struct extent_state *next_state(struct extent_state *state) 485 { 486 struct rb_node *next = rb_next(&state->rb_node); 487 if (next) 488 return rb_entry(next, struct extent_state, rb_node); 489 else 490 return NULL; 491 } 492 493 /* 494 * utility function to clear some bits in an extent state struct. 495 * it will optionally wake up anyone waiting on this state (wake == 1). 496 * 497 * If no bits are set on the state struct after clearing things, the 498 * struct is freed and removed from the tree 499 */ 500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 501 struct extent_state *state, 502 unsigned *bits, int wake, 503 struct extent_changeset *changeset) 504 { 505 struct extent_state *next; 506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 507 int ret; 508 509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 510 u64 range = state->end - state->start + 1; 511 WARN_ON(range > tree->dirty_bytes); 512 tree->dirty_bytes -= range; 513 } 514 515 if (tree->private_data && is_data_inode(tree->private_data)) 516 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 517 518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 519 BUG_ON(ret < 0); 520 state->state &= ~bits_to_clear; 521 if (wake) 522 wake_up(&state->wq); 523 if (state->state == 0) { 524 next = next_state(state); 525 if (extent_state_in_tree(state)) { 526 rb_erase(&state->rb_node, &tree->state); 527 RB_CLEAR_NODE(&state->rb_node); 528 free_extent_state(state); 529 } else { 530 WARN_ON(1); 531 } 532 } else { 533 merge_state(tree, state); 534 next = next_state(state); 535 } 536 return next; 537 } 538 539 static struct extent_state * 540 alloc_extent_state_atomic(struct extent_state *prealloc) 541 { 542 if (!prealloc) 543 prealloc = alloc_extent_state(GFP_ATOMIC); 544 545 return prealloc; 546 } 547 548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 549 { 550 struct inode *inode = tree->private_data; 551 552 btrfs_panic(btrfs_sb(inode->i_sb), err, 553 "locking error: extent tree was modified by another thread while locked"); 554 } 555 556 /* 557 * clear some bits on a range in the tree. This may require splitting 558 * or inserting elements in the tree, so the gfp mask is used to 559 * indicate which allocations or sleeping are allowed. 560 * 561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 562 * the given range from the tree regardless of state (ie for truncate). 563 * 564 * the range [start, end] is inclusive. 565 * 566 * This takes the tree lock, and returns 0 on success and < 0 on error. 567 */ 568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 569 unsigned bits, int wake, int delete, 570 struct extent_state **cached_state, 571 gfp_t mask, struct extent_changeset *changeset) 572 { 573 struct extent_state *state; 574 struct extent_state *cached; 575 struct extent_state *prealloc = NULL; 576 struct rb_node *node; 577 u64 last_end; 578 int err; 579 int clear = 0; 580 581 btrfs_debug_check_extent_io_range(tree, start, end); 582 583 if (bits & EXTENT_DELALLOC) 584 bits |= EXTENT_NORESERVE; 585 586 if (delete) 587 bits |= ~EXTENT_CTLBITS; 588 bits |= EXTENT_FIRST_DELALLOC; 589 590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 591 clear = 1; 592 again: 593 if (!prealloc && gfpflags_allow_blocking(mask)) { 594 /* 595 * Don't care for allocation failure here because we might end 596 * up not needing the pre-allocated extent state at all, which 597 * is the case if we only have in the tree extent states that 598 * cover our input range and don't cover too any other range. 599 * If we end up needing a new extent state we allocate it later. 600 */ 601 prealloc = alloc_extent_state(mask); 602 } 603 604 spin_lock(&tree->lock); 605 if (cached_state) { 606 cached = *cached_state; 607 608 if (clear) { 609 *cached_state = NULL; 610 cached_state = NULL; 611 } 612 613 if (cached && extent_state_in_tree(cached) && 614 cached->start <= start && cached->end > start) { 615 if (clear) 616 refcount_dec(&cached->refs); 617 state = cached; 618 goto hit_next; 619 } 620 if (clear) 621 free_extent_state(cached); 622 } 623 /* 624 * this search will find the extents that end after 625 * our range starts 626 */ 627 node = tree_search(tree, start); 628 if (!node) 629 goto out; 630 state = rb_entry(node, struct extent_state, rb_node); 631 hit_next: 632 if (state->start > end) 633 goto out; 634 WARN_ON(state->end < start); 635 last_end = state->end; 636 637 /* the state doesn't have the wanted bits, go ahead */ 638 if (!(state->state & bits)) { 639 state = next_state(state); 640 goto next; 641 } 642 643 /* 644 * | ---- desired range ---- | 645 * | state | or 646 * | ------------- state -------------- | 647 * 648 * We need to split the extent we found, and may flip 649 * bits on second half. 650 * 651 * If the extent we found extends past our range, we 652 * just split and search again. It'll get split again 653 * the next time though. 654 * 655 * If the extent we found is inside our range, we clear 656 * the desired bit on it. 657 */ 658 659 if (state->start < start) { 660 prealloc = alloc_extent_state_atomic(prealloc); 661 BUG_ON(!prealloc); 662 err = split_state(tree, state, prealloc, start); 663 if (err) 664 extent_io_tree_panic(tree, err); 665 666 prealloc = NULL; 667 if (err) 668 goto out; 669 if (state->end <= end) { 670 state = clear_state_bit(tree, state, &bits, wake, 671 changeset); 672 goto next; 673 } 674 goto search_again; 675 } 676 /* 677 * | ---- desired range ---- | 678 * | state | 679 * We need to split the extent, and clear the bit 680 * on the first half 681 */ 682 if (state->start <= end && state->end > end) { 683 prealloc = alloc_extent_state_atomic(prealloc); 684 BUG_ON(!prealloc); 685 err = split_state(tree, state, prealloc, end + 1); 686 if (err) 687 extent_io_tree_panic(tree, err); 688 689 if (wake) 690 wake_up(&state->wq); 691 692 clear_state_bit(tree, prealloc, &bits, wake, changeset); 693 694 prealloc = NULL; 695 goto out; 696 } 697 698 state = clear_state_bit(tree, state, &bits, wake, changeset); 699 next: 700 if (last_end == (u64)-1) 701 goto out; 702 start = last_end + 1; 703 if (start <= end && state && !need_resched()) 704 goto hit_next; 705 706 search_again: 707 if (start > end) 708 goto out; 709 spin_unlock(&tree->lock); 710 if (gfpflags_allow_blocking(mask)) 711 cond_resched(); 712 goto again; 713 714 out: 715 spin_unlock(&tree->lock); 716 if (prealloc) 717 free_extent_state(prealloc); 718 719 return 0; 720 721 } 722 723 static void wait_on_state(struct extent_io_tree *tree, 724 struct extent_state *state) 725 __releases(tree->lock) 726 __acquires(tree->lock) 727 { 728 DEFINE_WAIT(wait); 729 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 730 spin_unlock(&tree->lock); 731 schedule(); 732 spin_lock(&tree->lock); 733 finish_wait(&state->wq, &wait); 734 } 735 736 /* 737 * waits for one or more bits to clear on a range in the state tree. 738 * The range [start, end] is inclusive. 739 * The tree lock is taken by this function 740 */ 741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 742 unsigned long bits) 743 { 744 struct extent_state *state; 745 struct rb_node *node; 746 747 btrfs_debug_check_extent_io_range(tree, start, end); 748 749 spin_lock(&tree->lock); 750 again: 751 while (1) { 752 /* 753 * this search will find all the extents that end after 754 * our range starts 755 */ 756 node = tree_search(tree, start); 757 process_node: 758 if (!node) 759 break; 760 761 state = rb_entry(node, struct extent_state, rb_node); 762 763 if (state->start > end) 764 goto out; 765 766 if (state->state & bits) { 767 start = state->start; 768 refcount_inc(&state->refs); 769 wait_on_state(tree, state); 770 free_extent_state(state); 771 goto again; 772 } 773 start = state->end + 1; 774 775 if (start > end) 776 break; 777 778 if (!cond_resched_lock(&tree->lock)) { 779 node = rb_next(node); 780 goto process_node; 781 } 782 } 783 out: 784 spin_unlock(&tree->lock); 785 } 786 787 static void set_state_bits(struct extent_io_tree *tree, 788 struct extent_state *state, 789 unsigned *bits, struct extent_changeset *changeset) 790 { 791 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 792 int ret; 793 794 if (tree->private_data && is_data_inode(tree->private_data)) 795 btrfs_set_delalloc_extent(tree->private_data, state, bits); 796 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 802 BUG_ON(ret < 0); 803 state->state |= bits_to_set; 804 } 805 806 static void cache_state_if_flags(struct extent_state *state, 807 struct extent_state **cached_ptr, 808 unsigned flags) 809 { 810 if (cached_ptr && !(*cached_ptr)) { 811 if (!flags || (state->state & flags)) { 812 *cached_ptr = state; 813 refcount_inc(&state->refs); 814 } 815 } 816 } 817 818 static void cache_state(struct extent_state *state, 819 struct extent_state **cached_ptr) 820 { 821 return cache_state_if_flags(state, cached_ptr, 822 EXTENT_IOBITS | EXTENT_BOUNDARY); 823 } 824 825 /* 826 * set some bits on a range in the tree. This may require allocations or 827 * sleeping, so the gfp mask is used to indicate what is allowed. 828 * 829 * If any of the exclusive bits are set, this will fail with -EEXIST if some 830 * part of the range already has the desired bits set. The start of the 831 * existing range is returned in failed_start in this case. 832 * 833 * [start, end] is inclusive This takes the tree lock. 834 */ 835 836 static int __must_check 837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 838 unsigned bits, unsigned exclusive_bits, 839 u64 *failed_start, struct extent_state **cached_state, 840 gfp_t mask, struct extent_changeset *changeset) 841 { 842 struct extent_state *state; 843 struct extent_state *prealloc = NULL; 844 struct rb_node *node; 845 struct rb_node **p; 846 struct rb_node *parent; 847 int err = 0; 848 u64 last_start; 849 u64 last_end; 850 851 btrfs_debug_check_extent_io_range(tree, start, end); 852 853 bits |= EXTENT_FIRST_DELALLOC; 854 again: 855 if (!prealloc && gfpflags_allow_blocking(mask)) { 856 /* 857 * Don't care for allocation failure here because we might end 858 * up not needing the pre-allocated extent state at all, which 859 * is the case if we only have in the tree extent states that 860 * cover our input range and don't cover too any other range. 861 * If we end up needing a new extent state we allocate it later. 862 */ 863 prealloc = alloc_extent_state(mask); 864 } 865 866 spin_lock(&tree->lock); 867 if (cached_state && *cached_state) { 868 state = *cached_state; 869 if (state->start <= start && state->end > start && 870 extent_state_in_tree(state)) { 871 node = &state->rb_node; 872 goto hit_next; 873 } 874 } 875 /* 876 * this search will find all the extents that end after 877 * our range starts. 878 */ 879 node = tree_search_for_insert(tree, start, &p, &parent); 880 if (!node) { 881 prealloc = alloc_extent_state_atomic(prealloc); 882 BUG_ON(!prealloc); 883 err = insert_state(tree, prealloc, start, end, 884 &p, &parent, &bits, changeset); 885 if (err) 886 extent_io_tree_panic(tree, err); 887 888 cache_state(prealloc, cached_state); 889 prealloc = NULL; 890 goto out; 891 } 892 state = rb_entry(node, struct extent_state, rb_node); 893 hit_next: 894 last_start = state->start; 895 last_end = state->end; 896 897 /* 898 * | ---- desired range ---- | 899 * | state | 900 * 901 * Just lock what we found and keep going 902 */ 903 if (state->start == start && state->end <= end) { 904 if (state->state & exclusive_bits) { 905 *failed_start = state->start; 906 err = -EEXIST; 907 goto out; 908 } 909 910 set_state_bits(tree, state, &bits, changeset); 911 cache_state(state, cached_state); 912 merge_state(tree, state); 913 if (last_end == (u64)-1) 914 goto out; 915 start = last_end + 1; 916 state = next_state(state); 917 if (start < end && state && state->start == start && 918 !need_resched()) 919 goto hit_next; 920 goto search_again; 921 } 922 923 /* 924 * | ---- desired range ---- | 925 * | state | 926 * or 927 * | ------------- state -------------- | 928 * 929 * We need to split the extent we found, and may flip bits on 930 * second half. 931 * 932 * If the extent we found extends past our 933 * range, we just split and search again. It'll get split 934 * again the next time though. 935 * 936 * If the extent we found is inside our range, we set the 937 * desired bit on it. 938 */ 939 if (state->start < start) { 940 if (state->state & exclusive_bits) { 941 *failed_start = start; 942 err = -EEXIST; 943 goto out; 944 } 945 946 prealloc = alloc_extent_state_atomic(prealloc); 947 BUG_ON(!prealloc); 948 err = split_state(tree, state, prealloc, start); 949 if (err) 950 extent_io_tree_panic(tree, err); 951 952 prealloc = NULL; 953 if (err) 954 goto out; 955 if (state->end <= end) { 956 set_state_bits(tree, state, &bits, changeset); 957 cache_state(state, cached_state); 958 merge_state(tree, state); 959 if (last_end == (u64)-1) 960 goto out; 961 start = last_end + 1; 962 state = next_state(state); 963 if (start < end && state && state->start == start && 964 !need_resched()) 965 goto hit_next; 966 } 967 goto search_again; 968 } 969 /* 970 * | ---- desired range ---- | 971 * | state | or | state | 972 * 973 * There's a hole, we need to insert something in it and 974 * ignore the extent we found. 975 */ 976 if (state->start > start) { 977 u64 this_end; 978 if (end < last_start) 979 this_end = end; 980 else 981 this_end = last_start - 1; 982 983 prealloc = alloc_extent_state_atomic(prealloc); 984 BUG_ON(!prealloc); 985 986 /* 987 * Avoid to free 'prealloc' if it can be merged with 988 * the later extent. 989 */ 990 err = insert_state(tree, prealloc, start, this_end, 991 NULL, NULL, &bits, changeset); 992 if (err) 993 extent_io_tree_panic(tree, err); 994 995 cache_state(prealloc, cached_state); 996 prealloc = NULL; 997 start = this_end + 1; 998 goto search_again; 999 } 1000 /* 1001 * | ---- desired range ---- | 1002 * | state | 1003 * We need to split the extent, and set the bit 1004 * on the first half 1005 */ 1006 if (state->start <= end && state->end > end) { 1007 if (state->state & exclusive_bits) { 1008 *failed_start = start; 1009 err = -EEXIST; 1010 goto out; 1011 } 1012 1013 prealloc = alloc_extent_state_atomic(prealloc); 1014 BUG_ON(!prealloc); 1015 err = split_state(tree, state, prealloc, end + 1); 1016 if (err) 1017 extent_io_tree_panic(tree, err); 1018 1019 set_state_bits(tree, prealloc, &bits, changeset); 1020 cache_state(prealloc, cached_state); 1021 merge_state(tree, prealloc); 1022 prealloc = NULL; 1023 goto out; 1024 } 1025 1026 search_again: 1027 if (start > end) 1028 goto out; 1029 spin_unlock(&tree->lock); 1030 if (gfpflags_allow_blocking(mask)) 1031 cond_resched(); 1032 goto again; 1033 1034 out: 1035 spin_unlock(&tree->lock); 1036 if (prealloc) 1037 free_extent_state(prealloc); 1038 1039 return err; 1040 1041 } 1042 1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1044 unsigned bits, u64 * failed_start, 1045 struct extent_state **cached_state, gfp_t mask) 1046 { 1047 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1048 cached_state, mask, NULL); 1049 } 1050 1051 1052 /** 1053 * convert_extent_bit - convert all bits in a given range from one bit to 1054 * another 1055 * @tree: the io tree to search 1056 * @start: the start offset in bytes 1057 * @end: the end offset in bytes (inclusive) 1058 * @bits: the bits to set in this range 1059 * @clear_bits: the bits to clear in this range 1060 * @cached_state: state that we're going to cache 1061 * 1062 * This will go through and set bits for the given range. If any states exist 1063 * already in this range they are set with the given bit and cleared of the 1064 * clear_bits. This is only meant to be used by things that are mergeable, ie 1065 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1066 * boundary bits like LOCK. 1067 * 1068 * All allocations are done with GFP_NOFS. 1069 */ 1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1071 unsigned bits, unsigned clear_bits, 1072 struct extent_state **cached_state) 1073 { 1074 struct extent_state *state; 1075 struct extent_state *prealloc = NULL; 1076 struct rb_node *node; 1077 struct rb_node **p; 1078 struct rb_node *parent; 1079 int err = 0; 1080 u64 last_start; 1081 u64 last_end; 1082 bool first_iteration = true; 1083 1084 btrfs_debug_check_extent_io_range(tree, start, end); 1085 1086 again: 1087 if (!prealloc) { 1088 /* 1089 * Best effort, don't worry if extent state allocation fails 1090 * here for the first iteration. We might have a cached state 1091 * that matches exactly the target range, in which case no 1092 * extent state allocations are needed. We'll only know this 1093 * after locking the tree. 1094 */ 1095 prealloc = alloc_extent_state(GFP_NOFS); 1096 if (!prealloc && !first_iteration) 1097 return -ENOMEM; 1098 } 1099 1100 spin_lock(&tree->lock); 1101 if (cached_state && *cached_state) { 1102 state = *cached_state; 1103 if (state->start <= start && state->end > start && 1104 extent_state_in_tree(state)) { 1105 node = &state->rb_node; 1106 goto hit_next; 1107 } 1108 } 1109 1110 /* 1111 * this search will find all the extents that end after 1112 * our range starts. 1113 */ 1114 node = tree_search_for_insert(tree, start, &p, &parent); 1115 if (!node) { 1116 prealloc = alloc_extent_state_atomic(prealloc); 1117 if (!prealloc) { 1118 err = -ENOMEM; 1119 goto out; 1120 } 1121 err = insert_state(tree, prealloc, start, end, 1122 &p, &parent, &bits, NULL); 1123 if (err) 1124 extent_io_tree_panic(tree, err); 1125 cache_state(prealloc, cached_state); 1126 prealloc = NULL; 1127 goto out; 1128 } 1129 state = rb_entry(node, struct extent_state, rb_node); 1130 hit_next: 1131 last_start = state->start; 1132 last_end = state->end; 1133 1134 /* 1135 * | ---- desired range ---- | 1136 * | state | 1137 * 1138 * Just lock what we found and keep going 1139 */ 1140 if (state->start == start && state->end <= end) { 1141 set_state_bits(tree, state, &bits, NULL); 1142 cache_state(state, cached_state); 1143 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1144 if (last_end == (u64)-1) 1145 goto out; 1146 start = last_end + 1; 1147 if (start < end && state && state->start == start && 1148 !need_resched()) 1149 goto hit_next; 1150 goto search_again; 1151 } 1152 1153 /* 1154 * | ---- desired range ---- | 1155 * | state | 1156 * or 1157 * | ------------- state -------------- | 1158 * 1159 * We need to split the extent we found, and may flip bits on 1160 * second half. 1161 * 1162 * If the extent we found extends past our 1163 * range, we just split and search again. It'll get split 1164 * again the next time though. 1165 * 1166 * If the extent we found is inside our range, we set the 1167 * desired bit on it. 1168 */ 1169 if (state->start < start) { 1170 prealloc = alloc_extent_state_atomic(prealloc); 1171 if (!prealloc) { 1172 err = -ENOMEM; 1173 goto out; 1174 } 1175 err = split_state(tree, state, prealloc, start); 1176 if (err) 1177 extent_io_tree_panic(tree, err); 1178 prealloc = NULL; 1179 if (err) 1180 goto out; 1181 if (state->end <= end) { 1182 set_state_bits(tree, state, &bits, NULL); 1183 cache_state(state, cached_state); 1184 state = clear_state_bit(tree, state, &clear_bits, 0, 1185 NULL); 1186 if (last_end == (u64)-1) 1187 goto out; 1188 start = last_end + 1; 1189 if (start < end && state && state->start == start && 1190 !need_resched()) 1191 goto hit_next; 1192 } 1193 goto search_again; 1194 } 1195 /* 1196 * | ---- desired range ---- | 1197 * | state | or | state | 1198 * 1199 * There's a hole, we need to insert something in it and 1200 * ignore the extent we found. 1201 */ 1202 if (state->start > start) { 1203 u64 this_end; 1204 if (end < last_start) 1205 this_end = end; 1206 else 1207 this_end = last_start - 1; 1208 1209 prealloc = alloc_extent_state_atomic(prealloc); 1210 if (!prealloc) { 1211 err = -ENOMEM; 1212 goto out; 1213 } 1214 1215 /* 1216 * Avoid to free 'prealloc' if it can be merged with 1217 * the later extent. 1218 */ 1219 err = insert_state(tree, prealloc, start, this_end, 1220 NULL, NULL, &bits, NULL); 1221 if (err) 1222 extent_io_tree_panic(tree, err); 1223 cache_state(prealloc, cached_state); 1224 prealloc = NULL; 1225 start = this_end + 1; 1226 goto search_again; 1227 } 1228 /* 1229 * | ---- desired range ---- | 1230 * | state | 1231 * We need to split the extent, and set the bit 1232 * on the first half 1233 */ 1234 if (state->start <= end && state->end > end) { 1235 prealloc = alloc_extent_state_atomic(prealloc); 1236 if (!prealloc) { 1237 err = -ENOMEM; 1238 goto out; 1239 } 1240 1241 err = split_state(tree, state, prealloc, end + 1); 1242 if (err) 1243 extent_io_tree_panic(tree, err); 1244 1245 set_state_bits(tree, prealloc, &bits, NULL); 1246 cache_state(prealloc, cached_state); 1247 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1248 prealloc = NULL; 1249 goto out; 1250 } 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 cond_resched(); 1257 first_iteration = false; 1258 goto again; 1259 1260 out: 1261 spin_unlock(&tree->lock); 1262 if (prealloc) 1263 free_extent_state(prealloc); 1264 1265 return err; 1266 } 1267 1268 /* wrappers around set/clear extent bit */ 1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1270 unsigned bits, struct extent_changeset *changeset) 1271 { 1272 /* 1273 * We don't support EXTENT_LOCKED yet, as current changeset will 1274 * record any bits changed, so for EXTENT_LOCKED case, it will 1275 * either fail with -EEXIST or changeset will record the whole 1276 * range. 1277 */ 1278 BUG_ON(bits & EXTENT_LOCKED); 1279 1280 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1281 changeset); 1282 } 1283 1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1285 unsigned bits, int wake, int delete, 1286 struct extent_state **cached) 1287 { 1288 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1289 cached, GFP_NOFS, NULL); 1290 } 1291 1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1293 unsigned bits, struct extent_changeset *changeset) 1294 { 1295 /* 1296 * Don't support EXTENT_LOCKED case, same reason as 1297 * set_record_extent_bits(). 1298 */ 1299 BUG_ON(bits & EXTENT_LOCKED); 1300 1301 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1302 changeset); 1303 } 1304 1305 /* 1306 * either insert or lock state struct between start and end use mask to tell 1307 * us if waiting is desired. 1308 */ 1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1310 struct extent_state **cached_state) 1311 { 1312 int err; 1313 u64 failed_start; 1314 1315 while (1) { 1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1317 EXTENT_LOCKED, &failed_start, 1318 cached_state, GFP_NOFS, NULL); 1319 if (err == -EEXIST) { 1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1321 start = failed_start; 1322 } else 1323 break; 1324 WARN_ON(start > end); 1325 } 1326 return err; 1327 } 1328 1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1330 { 1331 int err; 1332 u64 failed_start; 1333 1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1335 &failed_start, NULL, GFP_NOFS, NULL); 1336 if (err == -EEXIST) { 1337 if (failed_start > start) 1338 clear_extent_bit(tree, start, failed_start - 1, 1339 EXTENT_LOCKED, 1, 0, NULL); 1340 return 0; 1341 } 1342 return 1; 1343 } 1344 1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1346 { 1347 unsigned long index = start >> PAGE_SHIFT; 1348 unsigned long end_index = end >> PAGE_SHIFT; 1349 struct page *page; 1350 1351 while (index <= end_index) { 1352 page = find_get_page(inode->i_mapping, index); 1353 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1354 clear_page_dirty_for_io(page); 1355 put_page(page); 1356 index++; 1357 } 1358 } 1359 1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1361 { 1362 unsigned long index = start >> PAGE_SHIFT; 1363 unsigned long end_index = end >> PAGE_SHIFT; 1364 struct page *page; 1365 1366 while (index <= end_index) { 1367 page = find_get_page(inode->i_mapping, index); 1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1369 __set_page_dirty_nobuffers(page); 1370 account_page_redirty(page); 1371 put_page(page); 1372 index++; 1373 } 1374 } 1375 1376 /* find the first state struct with 'bits' set after 'start', and 1377 * return it. tree->lock must be held. NULL will returned if 1378 * nothing was found after 'start' 1379 */ 1380 static struct extent_state * 1381 find_first_extent_bit_state(struct extent_io_tree *tree, 1382 u64 start, unsigned bits) 1383 { 1384 struct rb_node *node; 1385 struct extent_state *state; 1386 1387 /* 1388 * this search will find all the extents that end after 1389 * our range starts. 1390 */ 1391 node = tree_search(tree, start); 1392 if (!node) 1393 goto out; 1394 1395 while (1) { 1396 state = rb_entry(node, struct extent_state, rb_node); 1397 if (state->end >= start && (state->state & bits)) 1398 return state; 1399 1400 node = rb_next(node); 1401 if (!node) 1402 break; 1403 } 1404 out: 1405 return NULL; 1406 } 1407 1408 /* 1409 * find the first offset in the io tree with 'bits' set. zero is 1410 * returned if we find something, and *start_ret and *end_ret are 1411 * set to reflect the state struct that was found. 1412 * 1413 * If nothing was found, 1 is returned. If found something, return 0. 1414 */ 1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1416 u64 *start_ret, u64 *end_ret, unsigned bits, 1417 struct extent_state **cached_state) 1418 { 1419 struct extent_state *state; 1420 int ret = 1; 1421 1422 spin_lock(&tree->lock); 1423 if (cached_state && *cached_state) { 1424 state = *cached_state; 1425 if (state->end == start - 1 && extent_state_in_tree(state)) { 1426 while ((state = next_state(state)) != NULL) { 1427 if (state->state & bits) 1428 goto got_it; 1429 } 1430 free_extent_state(*cached_state); 1431 *cached_state = NULL; 1432 goto out; 1433 } 1434 free_extent_state(*cached_state); 1435 *cached_state = NULL; 1436 } 1437 1438 state = find_first_extent_bit_state(tree, start, bits); 1439 got_it: 1440 if (state) { 1441 cache_state_if_flags(state, cached_state, 0); 1442 *start_ret = state->start; 1443 *end_ret = state->end; 1444 ret = 0; 1445 } 1446 out: 1447 spin_unlock(&tree->lock); 1448 return ret; 1449 } 1450 1451 /* 1452 * find a contiguous range of bytes in the file marked as delalloc, not 1453 * more than 'max_bytes'. start and end are used to return the range, 1454 * 1455 * true is returned if we find something, false if nothing was in the tree 1456 */ 1457 static noinline bool find_delalloc_range(struct extent_io_tree *tree, 1458 u64 *start, u64 *end, u64 max_bytes, 1459 struct extent_state **cached_state) 1460 { 1461 struct rb_node *node; 1462 struct extent_state *state; 1463 u64 cur_start = *start; 1464 bool found = false; 1465 u64 total_bytes = 0; 1466 1467 spin_lock(&tree->lock); 1468 1469 /* 1470 * this search will find all the extents that end after 1471 * our range starts. 1472 */ 1473 node = tree_search(tree, cur_start); 1474 if (!node) { 1475 *end = (u64)-1; 1476 goto out; 1477 } 1478 1479 while (1) { 1480 state = rb_entry(node, struct extent_state, rb_node); 1481 if (found && (state->start != cur_start || 1482 (state->state & EXTENT_BOUNDARY))) { 1483 goto out; 1484 } 1485 if (!(state->state & EXTENT_DELALLOC)) { 1486 if (!found) 1487 *end = state->end; 1488 goto out; 1489 } 1490 if (!found) { 1491 *start = state->start; 1492 *cached_state = state; 1493 refcount_inc(&state->refs); 1494 } 1495 found = true; 1496 *end = state->end; 1497 cur_start = state->end + 1; 1498 node = rb_next(node); 1499 total_bytes += state->end - state->start + 1; 1500 if (total_bytes >= max_bytes) 1501 break; 1502 if (!node) 1503 break; 1504 } 1505 out: 1506 spin_unlock(&tree->lock); 1507 return found; 1508 } 1509 1510 static int __process_pages_contig(struct address_space *mapping, 1511 struct page *locked_page, 1512 pgoff_t start_index, pgoff_t end_index, 1513 unsigned long page_ops, pgoff_t *index_ret); 1514 1515 static noinline void __unlock_for_delalloc(struct inode *inode, 1516 struct page *locked_page, 1517 u64 start, u64 end) 1518 { 1519 unsigned long index = start >> PAGE_SHIFT; 1520 unsigned long end_index = end >> PAGE_SHIFT; 1521 1522 ASSERT(locked_page); 1523 if (index == locked_page->index && end_index == index) 1524 return; 1525 1526 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1527 PAGE_UNLOCK, NULL); 1528 } 1529 1530 static noinline int lock_delalloc_pages(struct inode *inode, 1531 struct page *locked_page, 1532 u64 delalloc_start, 1533 u64 delalloc_end) 1534 { 1535 unsigned long index = delalloc_start >> PAGE_SHIFT; 1536 unsigned long index_ret = index; 1537 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1538 int ret; 1539 1540 ASSERT(locked_page); 1541 if (index == locked_page->index && index == end_index) 1542 return 0; 1543 1544 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1545 end_index, PAGE_LOCK, &index_ret); 1546 if (ret == -EAGAIN) 1547 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1548 (u64)index_ret << PAGE_SHIFT); 1549 return ret; 1550 } 1551 1552 /* 1553 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1554 * more than @max_bytes. @Start and @end are used to return the range, 1555 * 1556 * Return: true if we find something 1557 * false if nothing was in the tree 1558 */ 1559 EXPORT_FOR_TESTS 1560 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1561 struct extent_io_tree *tree, 1562 struct page *locked_page, u64 *start, 1563 u64 *end) 1564 { 1565 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1566 u64 delalloc_start; 1567 u64 delalloc_end; 1568 bool found; 1569 struct extent_state *cached_state = NULL; 1570 int ret; 1571 int loops = 0; 1572 1573 again: 1574 /* step one, find a bunch of delalloc bytes starting at start */ 1575 delalloc_start = *start; 1576 delalloc_end = 0; 1577 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1578 max_bytes, &cached_state); 1579 if (!found || delalloc_end <= *start) { 1580 *start = delalloc_start; 1581 *end = delalloc_end; 1582 free_extent_state(cached_state); 1583 return false; 1584 } 1585 1586 /* 1587 * start comes from the offset of locked_page. We have to lock 1588 * pages in order, so we can't process delalloc bytes before 1589 * locked_page 1590 */ 1591 if (delalloc_start < *start) 1592 delalloc_start = *start; 1593 1594 /* 1595 * make sure to limit the number of pages we try to lock down 1596 */ 1597 if (delalloc_end + 1 - delalloc_start > max_bytes) 1598 delalloc_end = delalloc_start + max_bytes - 1; 1599 1600 /* step two, lock all the pages after the page that has start */ 1601 ret = lock_delalloc_pages(inode, locked_page, 1602 delalloc_start, delalloc_end); 1603 ASSERT(!ret || ret == -EAGAIN); 1604 if (ret == -EAGAIN) { 1605 /* some of the pages are gone, lets avoid looping by 1606 * shortening the size of the delalloc range we're searching 1607 */ 1608 free_extent_state(cached_state); 1609 cached_state = NULL; 1610 if (!loops) { 1611 max_bytes = PAGE_SIZE; 1612 loops = 1; 1613 goto again; 1614 } else { 1615 found = false; 1616 goto out_failed; 1617 } 1618 } 1619 1620 /* step three, lock the state bits for the whole range */ 1621 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1622 1623 /* then test to make sure it is all still delalloc */ 1624 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1625 EXTENT_DELALLOC, 1, cached_state); 1626 if (!ret) { 1627 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1628 &cached_state); 1629 __unlock_for_delalloc(inode, locked_page, 1630 delalloc_start, delalloc_end); 1631 cond_resched(); 1632 goto again; 1633 } 1634 free_extent_state(cached_state); 1635 *start = delalloc_start; 1636 *end = delalloc_end; 1637 out_failed: 1638 return found; 1639 } 1640 1641 static int __process_pages_contig(struct address_space *mapping, 1642 struct page *locked_page, 1643 pgoff_t start_index, pgoff_t end_index, 1644 unsigned long page_ops, pgoff_t *index_ret) 1645 { 1646 unsigned long nr_pages = end_index - start_index + 1; 1647 unsigned long pages_locked = 0; 1648 pgoff_t index = start_index; 1649 struct page *pages[16]; 1650 unsigned ret; 1651 int err = 0; 1652 int i; 1653 1654 if (page_ops & PAGE_LOCK) { 1655 ASSERT(page_ops == PAGE_LOCK); 1656 ASSERT(index_ret && *index_ret == start_index); 1657 } 1658 1659 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1660 mapping_set_error(mapping, -EIO); 1661 1662 while (nr_pages > 0) { 1663 ret = find_get_pages_contig(mapping, index, 1664 min_t(unsigned long, 1665 nr_pages, ARRAY_SIZE(pages)), pages); 1666 if (ret == 0) { 1667 /* 1668 * Only if we're going to lock these pages, 1669 * can we find nothing at @index. 1670 */ 1671 ASSERT(page_ops & PAGE_LOCK); 1672 err = -EAGAIN; 1673 goto out; 1674 } 1675 1676 for (i = 0; i < ret; i++) { 1677 if (page_ops & PAGE_SET_PRIVATE2) 1678 SetPagePrivate2(pages[i]); 1679 1680 if (pages[i] == locked_page) { 1681 put_page(pages[i]); 1682 pages_locked++; 1683 continue; 1684 } 1685 if (page_ops & PAGE_CLEAR_DIRTY) 1686 clear_page_dirty_for_io(pages[i]); 1687 if (page_ops & PAGE_SET_WRITEBACK) 1688 set_page_writeback(pages[i]); 1689 if (page_ops & PAGE_SET_ERROR) 1690 SetPageError(pages[i]); 1691 if (page_ops & PAGE_END_WRITEBACK) 1692 end_page_writeback(pages[i]); 1693 if (page_ops & PAGE_UNLOCK) 1694 unlock_page(pages[i]); 1695 if (page_ops & PAGE_LOCK) { 1696 lock_page(pages[i]); 1697 if (!PageDirty(pages[i]) || 1698 pages[i]->mapping != mapping) { 1699 unlock_page(pages[i]); 1700 put_page(pages[i]); 1701 err = -EAGAIN; 1702 goto out; 1703 } 1704 } 1705 put_page(pages[i]); 1706 pages_locked++; 1707 } 1708 nr_pages -= ret; 1709 index += ret; 1710 cond_resched(); 1711 } 1712 out: 1713 if (err && index_ret) 1714 *index_ret = start_index + pages_locked - 1; 1715 return err; 1716 } 1717 1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1719 u64 delalloc_end, struct page *locked_page, 1720 unsigned clear_bits, 1721 unsigned long page_ops) 1722 { 1723 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1724 NULL); 1725 1726 __process_pages_contig(inode->i_mapping, locked_page, 1727 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1728 page_ops, NULL); 1729 } 1730 1731 /* 1732 * count the number of bytes in the tree that have a given bit(s) 1733 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1734 * cached. The total number found is returned. 1735 */ 1736 u64 count_range_bits(struct extent_io_tree *tree, 1737 u64 *start, u64 search_end, u64 max_bytes, 1738 unsigned bits, int contig) 1739 { 1740 struct rb_node *node; 1741 struct extent_state *state; 1742 u64 cur_start = *start; 1743 u64 total_bytes = 0; 1744 u64 last = 0; 1745 int found = 0; 1746 1747 if (WARN_ON(search_end <= cur_start)) 1748 return 0; 1749 1750 spin_lock(&tree->lock); 1751 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1752 total_bytes = tree->dirty_bytes; 1753 goto out; 1754 } 1755 /* 1756 * this search will find all the extents that end after 1757 * our range starts. 1758 */ 1759 node = tree_search(tree, cur_start); 1760 if (!node) 1761 goto out; 1762 1763 while (1) { 1764 state = rb_entry(node, struct extent_state, rb_node); 1765 if (state->start > search_end) 1766 break; 1767 if (contig && found && state->start > last + 1) 1768 break; 1769 if (state->end >= cur_start && (state->state & bits) == bits) { 1770 total_bytes += min(search_end, state->end) + 1 - 1771 max(cur_start, state->start); 1772 if (total_bytes >= max_bytes) 1773 break; 1774 if (!found) { 1775 *start = max(cur_start, state->start); 1776 found = 1; 1777 } 1778 last = state->end; 1779 } else if (contig && found) { 1780 break; 1781 } 1782 node = rb_next(node); 1783 if (!node) 1784 break; 1785 } 1786 out: 1787 spin_unlock(&tree->lock); 1788 return total_bytes; 1789 } 1790 1791 /* 1792 * set the private field for a given byte offset in the tree. If there isn't 1793 * an extent_state there already, this does nothing. 1794 */ 1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1796 struct io_failure_record *failrec) 1797 { 1798 struct rb_node *node; 1799 struct extent_state *state; 1800 int ret = 0; 1801 1802 spin_lock(&tree->lock); 1803 /* 1804 * this search will find all the extents that end after 1805 * our range starts. 1806 */ 1807 node = tree_search(tree, start); 1808 if (!node) { 1809 ret = -ENOENT; 1810 goto out; 1811 } 1812 state = rb_entry(node, struct extent_state, rb_node); 1813 if (state->start != start) { 1814 ret = -ENOENT; 1815 goto out; 1816 } 1817 state->failrec = failrec; 1818 out: 1819 spin_unlock(&tree->lock); 1820 return ret; 1821 } 1822 1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1824 struct io_failure_record **failrec) 1825 { 1826 struct rb_node *node; 1827 struct extent_state *state; 1828 int ret = 0; 1829 1830 spin_lock(&tree->lock); 1831 /* 1832 * this search will find all the extents that end after 1833 * our range starts. 1834 */ 1835 node = tree_search(tree, start); 1836 if (!node) { 1837 ret = -ENOENT; 1838 goto out; 1839 } 1840 state = rb_entry(node, struct extent_state, rb_node); 1841 if (state->start != start) { 1842 ret = -ENOENT; 1843 goto out; 1844 } 1845 *failrec = state->failrec; 1846 out: 1847 spin_unlock(&tree->lock); 1848 return ret; 1849 } 1850 1851 /* 1852 * searches a range in the state tree for a given mask. 1853 * If 'filled' == 1, this returns 1 only if every extent in the tree 1854 * has the bits set. Otherwise, 1 is returned if any bit in the 1855 * range is found set. 1856 */ 1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1858 unsigned bits, int filled, struct extent_state *cached) 1859 { 1860 struct extent_state *state = NULL; 1861 struct rb_node *node; 1862 int bitset = 0; 1863 1864 spin_lock(&tree->lock); 1865 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1866 cached->end > start) 1867 node = &cached->rb_node; 1868 else 1869 node = tree_search(tree, start); 1870 while (node && start <= end) { 1871 state = rb_entry(node, struct extent_state, rb_node); 1872 1873 if (filled && state->start > start) { 1874 bitset = 0; 1875 break; 1876 } 1877 1878 if (state->start > end) 1879 break; 1880 1881 if (state->state & bits) { 1882 bitset = 1; 1883 if (!filled) 1884 break; 1885 } else if (filled) { 1886 bitset = 0; 1887 break; 1888 } 1889 1890 if (state->end == (u64)-1) 1891 break; 1892 1893 start = state->end + 1; 1894 if (start > end) 1895 break; 1896 node = rb_next(node); 1897 if (!node) { 1898 if (filled) 1899 bitset = 0; 1900 break; 1901 } 1902 } 1903 spin_unlock(&tree->lock); 1904 return bitset; 1905 } 1906 1907 /* 1908 * helper function to set a given page up to date if all the 1909 * extents in the tree for that page are up to date 1910 */ 1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1912 { 1913 u64 start = page_offset(page); 1914 u64 end = start + PAGE_SIZE - 1; 1915 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1916 SetPageUptodate(page); 1917 } 1918 1919 int free_io_failure(struct extent_io_tree *failure_tree, 1920 struct extent_io_tree *io_tree, 1921 struct io_failure_record *rec) 1922 { 1923 int ret; 1924 int err = 0; 1925 1926 set_state_failrec(failure_tree, rec->start, NULL); 1927 ret = clear_extent_bits(failure_tree, rec->start, 1928 rec->start + rec->len - 1, 1929 EXTENT_LOCKED | EXTENT_DIRTY); 1930 if (ret) 1931 err = ret; 1932 1933 ret = clear_extent_bits(io_tree, rec->start, 1934 rec->start + rec->len - 1, 1935 EXTENT_DAMAGED); 1936 if (ret && !err) 1937 err = ret; 1938 1939 kfree(rec); 1940 return err; 1941 } 1942 1943 /* 1944 * this bypasses the standard btrfs submit functions deliberately, as 1945 * the standard behavior is to write all copies in a raid setup. here we only 1946 * want to write the one bad copy. so we do the mapping for ourselves and issue 1947 * submit_bio directly. 1948 * to avoid any synchronization issues, wait for the data after writing, which 1949 * actually prevents the read that triggered the error from finishing. 1950 * currently, there can be no more than two copies of every data bit. thus, 1951 * exactly one rewrite is required. 1952 */ 1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1954 u64 length, u64 logical, struct page *page, 1955 unsigned int pg_offset, int mirror_num) 1956 { 1957 struct bio *bio; 1958 struct btrfs_device *dev; 1959 u64 map_length = 0; 1960 u64 sector; 1961 struct btrfs_bio *bbio = NULL; 1962 int ret; 1963 1964 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1965 BUG_ON(!mirror_num); 1966 1967 bio = btrfs_io_bio_alloc(1); 1968 bio->bi_iter.bi_size = 0; 1969 map_length = length; 1970 1971 /* 1972 * Avoid races with device replace and make sure our bbio has devices 1973 * associated to its stripes that don't go away while we are doing the 1974 * read repair operation. 1975 */ 1976 btrfs_bio_counter_inc_blocked(fs_info); 1977 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 1978 /* 1979 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 1980 * to update all raid stripes, but here we just want to correct 1981 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 1982 * stripe's dev and sector. 1983 */ 1984 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 1985 &map_length, &bbio, 0); 1986 if (ret) { 1987 btrfs_bio_counter_dec(fs_info); 1988 bio_put(bio); 1989 return -EIO; 1990 } 1991 ASSERT(bbio->mirror_num == 1); 1992 } else { 1993 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 1994 &map_length, &bbio, mirror_num); 1995 if (ret) { 1996 btrfs_bio_counter_dec(fs_info); 1997 bio_put(bio); 1998 return -EIO; 1999 } 2000 BUG_ON(mirror_num != bbio->mirror_num); 2001 } 2002 2003 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2004 bio->bi_iter.bi_sector = sector; 2005 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2006 btrfs_put_bbio(bbio); 2007 if (!dev || !dev->bdev || 2008 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2009 btrfs_bio_counter_dec(fs_info); 2010 bio_put(bio); 2011 return -EIO; 2012 } 2013 bio_set_dev(bio, dev->bdev); 2014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2015 bio_add_page(bio, page, length, pg_offset); 2016 2017 if (btrfsic_submit_bio_wait(bio)) { 2018 /* try to remap that extent elsewhere? */ 2019 btrfs_bio_counter_dec(fs_info); 2020 bio_put(bio); 2021 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2022 return -EIO; 2023 } 2024 2025 btrfs_info_rl_in_rcu(fs_info, 2026 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2027 ino, start, 2028 rcu_str_deref(dev->name), sector); 2029 btrfs_bio_counter_dec(fs_info); 2030 bio_put(bio); 2031 return 0; 2032 } 2033 2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2035 struct extent_buffer *eb, int mirror_num) 2036 { 2037 u64 start = eb->start; 2038 int i, num_pages = num_extent_pages(eb); 2039 int ret = 0; 2040 2041 if (sb_rdonly(fs_info->sb)) 2042 return -EROFS; 2043 2044 for (i = 0; i < num_pages; i++) { 2045 struct page *p = eb->pages[i]; 2046 2047 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2048 start - page_offset(p), mirror_num); 2049 if (ret) 2050 break; 2051 start += PAGE_SIZE; 2052 } 2053 2054 return ret; 2055 } 2056 2057 /* 2058 * each time an IO finishes, we do a fast check in the IO failure tree 2059 * to see if we need to process or clean up an io_failure_record 2060 */ 2061 int clean_io_failure(struct btrfs_fs_info *fs_info, 2062 struct extent_io_tree *failure_tree, 2063 struct extent_io_tree *io_tree, u64 start, 2064 struct page *page, u64 ino, unsigned int pg_offset) 2065 { 2066 u64 private; 2067 struct io_failure_record *failrec; 2068 struct extent_state *state; 2069 int num_copies; 2070 int ret; 2071 2072 private = 0; 2073 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2074 EXTENT_DIRTY, 0); 2075 if (!ret) 2076 return 0; 2077 2078 ret = get_state_failrec(failure_tree, start, &failrec); 2079 if (ret) 2080 return 0; 2081 2082 BUG_ON(!failrec->this_mirror); 2083 2084 if (failrec->in_validation) { 2085 /* there was no real error, just free the record */ 2086 btrfs_debug(fs_info, 2087 "clean_io_failure: freeing dummy error at %llu", 2088 failrec->start); 2089 goto out; 2090 } 2091 if (sb_rdonly(fs_info->sb)) 2092 goto out; 2093 2094 spin_lock(&io_tree->lock); 2095 state = find_first_extent_bit_state(io_tree, 2096 failrec->start, 2097 EXTENT_LOCKED); 2098 spin_unlock(&io_tree->lock); 2099 2100 if (state && state->start <= failrec->start && 2101 state->end >= failrec->start + failrec->len - 1) { 2102 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2103 failrec->len); 2104 if (num_copies > 1) { 2105 repair_io_failure(fs_info, ino, start, failrec->len, 2106 failrec->logical, page, pg_offset, 2107 failrec->failed_mirror); 2108 } 2109 } 2110 2111 out: 2112 free_io_failure(failure_tree, io_tree, failrec); 2113 2114 return 0; 2115 } 2116 2117 /* 2118 * Can be called when 2119 * - hold extent lock 2120 * - under ordered extent 2121 * - the inode is freeing 2122 */ 2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2124 { 2125 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2126 struct io_failure_record *failrec; 2127 struct extent_state *state, *next; 2128 2129 if (RB_EMPTY_ROOT(&failure_tree->state)) 2130 return; 2131 2132 spin_lock(&failure_tree->lock); 2133 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2134 while (state) { 2135 if (state->start > end) 2136 break; 2137 2138 ASSERT(state->end <= end); 2139 2140 next = next_state(state); 2141 2142 failrec = state->failrec; 2143 free_extent_state(state); 2144 kfree(failrec); 2145 2146 state = next; 2147 } 2148 spin_unlock(&failure_tree->lock); 2149 } 2150 2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2152 struct io_failure_record **failrec_ret) 2153 { 2154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2155 struct io_failure_record *failrec; 2156 struct extent_map *em; 2157 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2158 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2159 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2160 int ret; 2161 u64 logical; 2162 2163 ret = get_state_failrec(failure_tree, start, &failrec); 2164 if (ret) { 2165 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2166 if (!failrec) 2167 return -ENOMEM; 2168 2169 failrec->start = start; 2170 failrec->len = end - start + 1; 2171 failrec->this_mirror = 0; 2172 failrec->bio_flags = 0; 2173 failrec->in_validation = 0; 2174 2175 read_lock(&em_tree->lock); 2176 em = lookup_extent_mapping(em_tree, start, failrec->len); 2177 if (!em) { 2178 read_unlock(&em_tree->lock); 2179 kfree(failrec); 2180 return -EIO; 2181 } 2182 2183 if (em->start > start || em->start + em->len <= start) { 2184 free_extent_map(em); 2185 em = NULL; 2186 } 2187 read_unlock(&em_tree->lock); 2188 if (!em) { 2189 kfree(failrec); 2190 return -EIO; 2191 } 2192 2193 logical = start - em->start; 2194 logical = em->block_start + logical; 2195 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2196 logical = em->block_start; 2197 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2198 extent_set_compress_type(&failrec->bio_flags, 2199 em->compress_type); 2200 } 2201 2202 btrfs_debug(fs_info, 2203 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2204 logical, start, failrec->len); 2205 2206 failrec->logical = logical; 2207 free_extent_map(em); 2208 2209 /* set the bits in the private failure tree */ 2210 ret = set_extent_bits(failure_tree, start, end, 2211 EXTENT_LOCKED | EXTENT_DIRTY); 2212 if (ret >= 0) 2213 ret = set_state_failrec(failure_tree, start, failrec); 2214 /* set the bits in the inode's tree */ 2215 if (ret >= 0) 2216 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2217 if (ret < 0) { 2218 kfree(failrec); 2219 return ret; 2220 } 2221 } else { 2222 btrfs_debug(fs_info, 2223 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2224 failrec->logical, failrec->start, failrec->len, 2225 failrec->in_validation); 2226 /* 2227 * when data can be on disk more than twice, add to failrec here 2228 * (e.g. with a list for failed_mirror) to make 2229 * clean_io_failure() clean all those errors at once. 2230 */ 2231 } 2232 2233 *failrec_ret = failrec; 2234 2235 return 0; 2236 } 2237 2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2239 struct io_failure_record *failrec, int failed_mirror) 2240 { 2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2242 int num_copies; 2243 2244 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2245 if (num_copies == 1) { 2246 /* 2247 * we only have a single copy of the data, so don't bother with 2248 * all the retry and error correction code that follows. no 2249 * matter what the error is, it is very likely to persist. 2250 */ 2251 btrfs_debug(fs_info, 2252 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2253 num_copies, failrec->this_mirror, failed_mirror); 2254 return false; 2255 } 2256 2257 /* 2258 * there are two premises: 2259 * a) deliver good data to the caller 2260 * b) correct the bad sectors on disk 2261 */ 2262 if (failed_bio_pages > 1) { 2263 /* 2264 * to fulfill b), we need to know the exact failing sectors, as 2265 * we don't want to rewrite any more than the failed ones. thus, 2266 * we need separate read requests for the failed bio 2267 * 2268 * if the following BUG_ON triggers, our validation request got 2269 * merged. we need separate requests for our algorithm to work. 2270 */ 2271 BUG_ON(failrec->in_validation); 2272 failrec->in_validation = 1; 2273 failrec->this_mirror = failed_mirror; 2274 } else { 2275 /* 2276 * we're ready to fulfill a) and b) alongside. get a good copy 2277 * of the failed sector and if we succeed, we have setup 2278 * everything for repair_io_failure to do the rest for us. 2279 */ 2280 if (failrec->in_validation) { 2281 BUG_ON(failrec->this_mirror != failed_mirror); 2282 failrec->in_validation = 0; 2283 failrec->this_mirror = 0; 2284 } 2285 failrec->failed_mirror = failed_mirror; 2286 failrec->this_mirror++; 2287 if (failrec->this_mirror == failed_mirror) 2288 failrec->this_mirror++; 2289 } 2290 2291 if (failrec->this_mirror > num_copies) { 2292 btrfs_debug(fs_info, 2293 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2294 num_copies, failrec->this_mirror, failed_mirror); 2295 return false; 2296 } 2297 2298 return true; 2299 } 2300 2301 2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2303 struct io_failure_record *failrec, 2304 struct page *page, int pg_offset, int icsum, 2305 bio_end_io_t *endio_func, void *data) 2306 { 2307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2308 struct bio *bio; 2309 struct btrfs_io_bio *btrfs_failed_bio; 2310 struct btrfs_io_bio *btrfs_bio; 2311 2312 bio = btrfs_io_bio_alloc(1); 2313 bio->bi_end_io = endio_func; 2314 bio->bi_iter.bi_sector = failrec->logical >> 9; 2315 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2316 bio->bi_iter.bi_size = 0; 2317 bio->bi_private = data; 2318 2319 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2320 if (btrfs_failed_bio->csum) { 2321 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2322 2323 btrfs_bio = btrfs_io_bio(bio); 2324 btrfs_bio->csum = btrfs_bio->csum_inline; 2325 icsum *= csum_size; 2326 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2327 csum_size); 2328 } 2329 2330 bio_add_page(bio, page, failrec->len, pg_offset); 2331 2332 return bio; 2333 } 2334 2335 /* 2336 * This is a generic handler for readpage errors. If other copies exist, read 2337 * those and write back good data to the failed position. Does not investigate 2338 * in remapping the failed extent elsewhere, hoping the device will be smart 2339 * enough to do this as needed 2340 */ 2341 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2342 struct page *page, u64 start, u64 end, 2343 int failed_mirror) 2344 { 2345 struct io_failure_record *failrec; 2346 struct inode *inode = page->mapping->host; 2347 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2348 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2349 struct bio *bio; 2350 int read_mode = 0; 2351 blk_status_t status; 2352 int ret; 2353 unsigned failed_bio_pages = bio_pages_all(failed_bio); 2354 2355 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2356 2357 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2358 if (ret) 2359 return ret; 2360 2361 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2362 failed_mirror)) { 2363 free_io_failure(failure_tree, tree, failrec); 2364 return -EIO; 2365 } 2366 2367 if (failed_bio_pages > 1) 2368 read_mode |= REQ_FAILFAST_DEV; 2369 2370 phy_offset >>= inode->i_sb->s_blocksize_bits; 2371 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2372 start - page_offset(page), 2373 (int)phy_offset, failed_bio->bi_end_io, 2374 NULL); 2375 bio->bi_opf = REQ_OP_READ | read_mode; 2376 2377 btrfs_debug(btrfs_sb(inode->i_sb), 2378 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2379 read_mode, failrec->this_mirror, failrec->in_validation); 2380 2381 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2382 failrec->bio_flags, 0); 2383 if (status) { 2384 free_io_failure(failure_tree, tree, failrec); 2385 bio_put(bio); 2386 ret = blk_status_to_errno(status); 2387 } 2388 2389 return ret; 2390 } 2391 2392 /* lots and lots of room for performance fixes in the end_bio funcs */ 2393 2394 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2395 { 2396 int uptodate = (err == 0); 2397 int ret = 0; 2398 2399 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2400 2401 if (!uptodate) { 2402 ClearPageUptodate(page); 2403 SetPageError(page); 2404 ret = err < 0 ? err : -EIO; 2405 mapping_set_error(page->mapping, ret); 2406 } 2407 } 2408 2409 /* 2410 * after a writepage IO is done, we need to: 2411 * clear the uptodate bits on error 2412 * clear the writeback bits in the extent tree for this IO 2413 * end_page_writeback if the page has no more pending IO 2414 * 2415 * Scheduling is not allowed, so the extent state tree is expected 2416 * to have one and only one object corresponding to this IO. 2417 */ 2418 static void end_bio_extent_writepage(struct bio *bio) 2419 { 2420 int error = blk_status_to_errno(bio->bi_status); 2421 struct bio_vec *bvec; 2422 u64 start; 2423 u64 end; 2424 int i; 2425 2426 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2427 bio_for_each_segment_all(bvec, bio, i) { 2428 struct page *page = bvec->bv_page; 2429 struct inode *inode = page->mapping->host; 2430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2431 2432 /* We always issue full-page reads, but if some block 2433 * in a page fails to read, blk_update_request() will 2434 * advance bv_offset and adjust bv_len to compensate. 2435 * Print a warning for nonzero offsets, and an error 2436 * if they don't add up to a full page. */ 2437 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2438 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2439 btrfs_err(fs_info, 2440 "partial page write in btrfs with offset %u and length %u", 2441 bvec->bv_offset, bvec->bv_len); 2442 else 2443 btrfs_info(fs_info, 2444 "incomplete page write in btrfs with offset %u and length %u", 2445 bvec->bv_offset, bvec->bv_len); 2446 } 2447 2448 start = page_offset(page); 2449 end = start + bvec->bv_offset + bvec->bv_len - 1; 2450 2451 end_extent_writepage(page, error, start, end); 2452 end_page_writeback(page); 2453 } 2454 2455 bio_put(bio); 2456 } 2457 2458 static void 2459 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2460 int uptodate) 2461 { 2462 struct extent_state *cached = NULL; 2463 u64 end = start + len - 1; 2464 2465 if (uptodate && tree->track_uptodate) 2466 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2467 unlock_extent_cached_atomic(tree, start, end, &cached); 2468 } 2469 2470 /* 2471 * after a readpage IO is done, we need to: 2472 * clear the uptodate bits on error 2473 * set the uptodate bits if things worked 2474 * set the page up to date if all extents in the tree are uptodate 2475 * clear the lock bit in the extent tree 2476 * unlock the page if there are no other extents locked for it 2477 * 2478 * Scheduling is not allowed, so the extent state tree is expected 2479 * to have one and only one object corresponding to this IO. 2480 */ 2481 static void end_bio_extent_readpage(struct bio *bio) 2482 { 2483 struct bio_vec *bvec; 2484 int uptodate = !bio->bi_status; 2485 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2486 struct extent_io_tree *tree, *failure_tree; 2487 u64 offset = 0; 2488 u64 start; 2489 u64 end; 2490 u64 len; 2491 u64 extent_start = 0; 2492 u64 extent_len = 0; 2493 int mirror; 2494 int ret; 2495 int i; 2496 2497 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2498 bio_for_each_segment_all(bvec, bio, i) { 2499 struct page *page = bvec->bv_page; 2500 struct inode *inode = page->mapping->host; 2501 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2502 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2503 != BTRFS_BTREE_INODE_OBJECTID; 2504 2505 btrfs_debug(fs_info, 2506 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2507 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2508 io_bio->mirror_num); 2509 tree = &BTRFS_I(inode)->io_tree; 2510 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2511 2512 /* We always issue full-page reads, but if some block 2513 * in a page fails to read, blk_update_request() will 2514 * advance bv_offset and adjust bv_len to compensate. 2515 * Print a warning for nonzero offsets, and an error 2516 * if they don't add up to a full page. */ 2517 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2518 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2519 btrfs_err(fs_info, 2520 "partial page read in btrfs with offset %u and length %u", 2521 bvec->bv_offset, bvec->bv_len); 2522 else 2523 btrfs_info(fs_info, 2524 "incomplete page read in btrfs with offset %u and length %u", 2525 bvec->bv_offset, bvec->bv_len); 2526 } 2527 2528 start = page_offset(page); 2529 end = start + bvec->bv_offset + bvec->bv_len - 1; 2530 len = bvec->bv_len; 2531 2532 mirror = io_bio->mirror_num; 2533 if (likely(uptodate)) { 2534 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2535 page, start, end, 2536 mirror); 2537 if (ret) 2538 uptodate = 0; 2539 else 2540 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2541 failure_tree, tree, start, 2542 page, 2543 btrfs_ino(BTRFS_I(inode)), 0); 2544 } 2545 2546 if (likely(uptodate)) 2547 goto readpage_ok; 2548 2549 if (data_inode) { 2550 2551 /* 2552 * The generic bio_readpage_error handles errors the 2553 * following way: If possible, new read requests are 2554 * created and submitted and will end up in 2555 * end_bio_extent_readpage as well (if we're lucky, 2556 * not in the !uptodate case). In that case it returns 2557 * 0 and we just go on with the next page in our bio. 2558 * If it can't handle the error it will return -EIO and 2559 * we remain responsible for that page. 2560 */ 2561 ret = bio_readpage_error(bio, offset, page, start, end, 2562 mirror); 2563 if (ret == 0) { 2564 uptodate = !bio->bi_status; 2565 offset += len; 2566 continue; 2567 } 2568 } else { 2569 struct extent_buffer *eb; 2570 2571 eb = (struct extent_buffer *)page->private; 2572 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2573 eb->read_mirror = mirror; 2574 atomic_dec(&eb->io_pages); 2575 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2576 &eb->bflags)) 2577 btree_readahead_hook(eb, -EIO); 2578 2579 ret = -EIO; 2580 } 2581 readpage_ok: 2582 if (likely(uptodate)) { 2583 loff_t i_size = i_size_read(inode); 2584 pgoff_t end_index = i_size >> PAGE_SHIFT; 2585 unsigned off; 2586 2587 /* Zero out the end if this page straddles i_size */ 2588 off = offset_in_page(i_size); 2589 if (page->index == end_index && off) 2590 zero_user_segment(page, off, PAGE_SIZE); 2591 SetPageUptodate(page); 2592 } else { 2593 ClearPageUptodate(page); 2594 SetPageError(page); 2595 } 2596 unlock_page(page); 2597 offset += len; 2598 2599 if (unlikely(!uptodate)) { 2600 if (extent_len) { 2601 endio_readpage_release_extent(tree, 2602 extent_start, 2603 extent_len, 1); 2604 extent_start = 0; 2605 extent_len = 0; 2606 } 2607 endio_readpage_release_extent(tree, start, 2608 end - start + 1, 0); 2609 } else if (!extent_len) { 2610 extent_start = start; 2611 extent_len = end + 1 - start; 2612 } else if (extent_start + extent_len == start) { 2613 extent_len += end + 1 - start; 2614 } else { 2615 endio_readpage_release_extent(tree, extent_start, 2616 extent_len, uptodate); 2617 extent_start = start; 2618 extent_len = end + 1 - start; 2619 } 2620 } 2621 2622 if (extent_len) 2623 endio_readpage_release_extent(tree, extent_start, extent_len, 2624 uptodate); 2625 btrfs_io_bio_free_csum(io_bio); 2626 bio_put(bio); 2627 } 2628 2629 /* 2630 * Initialize the members up to but not including 'bio'. Use after allocating a 2631 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2632 * 'bio' because use of __GFP_ZERO is not supported. 2633 */ 2634 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2635 { 2636 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2637 } 2638 2639 /* 2640 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2641 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2642 * for the appropriate container_of magic 2643 */ 2644 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2645 { 2646 struct bio *bio; 2647 2648 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2649 bio_set_dev(bio, bdev); 2650 bio->bi_iter.bi_sector = first_byte >> 9; 2651 btrfs_io_bio_init(btrfs_io_bio(bio)); 2652 return bio; 2653 } 2654 2655 struct bio *btrfs_bio_clone(struct bio *bio) 2656 { 2657 struct btrfs_io_bio *btrfs_bio; 2658 struct bio *new; 2659 2660 /* Bio allocation backed by a bioset does not fail */ 2661 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2662 btrfs_bio = btrfs_io_bio(new); 2663 btrfs_io_bio_init(btrfs_bio); 2664 btrfs_bio->iter = bio->bi_iter; 2665 return new; 2666 } 2667 2668 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2669 { 2670 struct bio *bio; 2671 2672 /* Bio allocation backed by a bioset does not fail */ 2673 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2674 btrfs_io_bio_init(btrfs_io_bio(bio)); 2675 return bio; 2676 } 2677 2678 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2679 { 2680 struct bio *bio; 2681 struct btrfs_io_bio *btrfs_bio; 2682 2683 /* this will never fail when it's backed by a bioset */ 2684 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2685 ASSERT(bio); 2686 2687 btrfs_bio = btrfs_io_bio(bio); 2688 btrfs_io_bio_init(btrfs_bio); 2689 2690 bio_trim(bio, offset >> 9, size >> 9); 2691 btrfs_bio->iter = bio->bi_iter; 2692 return bio; 2693 } 2694 2695 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 2696 unsigned long bio_flags) 2697 { 2698 blk_status_t ret = 0; 2699 struct bio_vec *bvec = bio_last_bvec_all(bio); 2700 struct page *page = bvec->bv_page; 2701 struct extent_io_tree *tree = bio->bi_private; 2702 u64 start; 2703 2704 start = page_offset(page) + bvec->bv_offset; 2705 2706 bio->bi_private = NULL; 2707 2708 if (tree->ops) 2709 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 2710 mirror_num, bio_flags, start); 2711 else 2712 btrfsic_submit_bio(bio); 2713 2714 return blk_status_to_errno(ret); 2715 } 2716 2717 /* 2718 * @opf: bio REQ_OP_* and REQ_* flags as one value 2719 * @tree: tree so we can call our merge_bio hook 2720 * @wbc: optional writeback control for io accounting 2721 * @page: page to add to the bio 2722 * @pg_offset: offset of the new bio or to check whether we are adding 2723 * a contiguous page to the previous one 2724 * @size: portion of page that we want to write 2725 * @offset: starting offset in the page 2726 * @bdev: attach newly created bios to this bdev 2727 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2728 * @end_io_func: end_io callback for new bio 2729 * @mirror_num: desired mirror to read/write 2730 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2731 * @bio_flags: flags of the current bio to see if we can merge them 2732 */ 2733 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2734 struct writeback_control *wbc, 2735 struct page *page, u64 offset, 2736 size_t size, unsigned long pg_offset, 2737 struct block_device *bdev, 2738 struct bio **bio_ret, 2739 bio_end_io_t end_io_func, 2740 int mirror_num, 2741 unsigned long prev_bio_flags, 2742 unsigned long bio_flags, 2743 bool force_bio_submit) 2744 { 2745 int ret = 0; 2746 struct bio *bio; 2747 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2748 sector_t sector = offset >> 9; 2749 2750 ASSERT(bio_ret); 2751 2752 if (*bio_ret) { 2753 bool contig; 2754 bool can_merge = true; 2755 2756 bio = *bio_ret; 2757 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2758 contig = bio->bi_iter.bi_sector == sector; 2759 else 2760 contig = bio_end_sector(bio) == sector; 2761 2762 ASSERT(tree->ops); 2763 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 2764 can_merge = false; 2765 2766 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2767 force_bio_submit || 2768 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2769 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2770 if (ret < 0) { 2771 *bio_ret = NULL; 2772 return ret; 2773 } 2774 bio = NULL; 2775 } else { 2776 if (wbc) 2777 wbc_account_io(wbc, page, page_size); 2778 return 0; 2779 } 2780 } 2781 2782 bio = btrfs_bio_alloc(bdev, offset); 2783 bio_add_page(bio, page, page_size, pg_offset); 2784 bio->bi_end_io = end_io_func; 2785 bio->bi_private = tree; 2786 bio->bi_write_hint = page->mapping->host->i_write_hint; 2787 bio->bi_opf = opf; 2788 if (wbc) { 2789 wbc_init_bio(wbc, bio); 2790 wbc_account_io(wbc, page, page_size); 2791 } 2792 2793 *bio_ret = bio; 2794 2795 return ret; 2796 } 2797 2798 static void attach_extent_buffer_page(struct extent_buffer *eb, 2799 struct page *page) 2800 { 2801 if (!PagePrivate(page)) { 2802 SetPagePrivate(page); 2803 get_page(page); 2804 set_page_private(page, (unsigned long)eb); 2805 } else { 2806 WARN_ON(page->private != (unsigned long)eb); 2807 } 2808 } 2809 2810 void set_page_extent_mapped(struct page *page) 2811 { 2812 if (!PagePrivate(page)) { 2813 SetPagePrivate(page); 2814 get_page(page); 2815 set_page_private(page, EXTENT_PAGE_PRIVATE); 2816 } 2817 } 2818 2819 static struct extent_map * 2820 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2821 u64 start, u64 len, get_extent_t *get_extent, 2822 struct extent_map **em_cached) 2823 { 2824 struct extent_map *em; 2825 2826 if (em_cached && *em_cached) { 2827 em = *em_cached; 2828 if (extent_map_in_tree(em) && start >= em->start && 2829 start < extent_map_end(em)) { 2830 refcount_inc(&em->refs); 2831 return em; 2832 } 2833 2834 free_extent_map(em); 2835 *em_cached = NULL; 2836 } 2837 2838 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2839 if (em_cached && !IS_ERR_OR_NULL(em)) { 2840 BUG_ON(*em_cached); 2841 refcount_inc(&em->refs); 2842 *em_cached = em; 2843 } 2844 return em; 2845 } 2846 /* 2847 * basic readpage implementation. Locked extent state structs are inserted 2848 * into the tree that are removed when the IO is done (by the end_io 2849 * handlers) 2850 * XXX JDM: This needs looking at to ensure proper page locking 2851 * return 0 on success, otherwise return error 2852 */ 2853 static int __do_readpage(struct extent_io_tree *tree, 2854 struct page *page, 2855 get_extent_t *get_extent, 2856 struct extent_map **em_cached, 2857 struct bio **bio, int mirror_num, 2858 unsigned long *bio_flags, unsigned int read_flags, 2859 u64 *prev_em_start) 2860 { 2861 struct inode *inode = page->mapping->host; 2862 u64 start = page_offset(page); 2863 const u64 end = start + PAGE_SIZE - 1; 2864 u64 cur = start; 2865 u64 extent_offset; 2866 u64 last_byte = i_size_read(inode); 2867 u64 block_start; 2868 u64 cur_end; 2869 struct extent_map *em; 2870 struct block_device *bdev; 2871 int ret = 0; 2872 int nr = 0; 2873 size_t pg_offset = 0; 2874 size_t iosize; 2875 size_t disk_io_size; 2876 size_t blocksize = inode->i_sb->s_blocksize; 2877 unsigned long this_bio_flag = 0; 2878 2879 set_page_extent_mapped(page); 2880 2881 if (!PageUptodate(page)) { 2882 if (cleancache_get_page(page) == 0) { 2883 BUG_ON(blocksize != PAGE_SIZE); 2884 unlock_extent(tree, start, end); 2885 goto out; 2886 } 2887 } 2888 2889 if (page->index == last_byte >> PAGE_SHIFT) { 2890 char *userpage; 2891 size_t zero_offset = offset_in_page(last_byte); 2892 2893 if (zero_offset) { 2894 iosize = PAGE_SIZE - zero_offset; 2895 userpage = kmap_atomic(page); 2896 memset(userpage + zero_offset, 0, iosize); 2897 flush_dcache_page(page); 2898 kunmap_atomic(userpage); 2899 } 2900 } 2901 while (cur <= end) { 2902 bool force_bio_submit = false; 2903 u64 offset; 2904 2905 if (cur >= last_byte) { 2906 char *userpage; 2907 struct extent_state *cached = NULL; 2908 2909 iosize = PAGE_SIZE - pg_offset; 2910 userpage = kmap_atomic(page); 2911 memset(userpage + pg_offset, 0, iosize); 2912 flush_dcache_page(page); 2913 kunmap_atomic(userpage); 2914 set_extent_uptodate(tree, cur, cur + iosize - 1, 2915 &cached, GFP_NOFS); 2916 unlock_extent_cached(tree, cur, 2917 cur + iosize - 1, &cached); 2918 break; 2919 } 2920 em = __get_extent_map(inode, page, pg_offset, cur, 2921 end - cur + 1, get_extent, em_cached); 2922 if (IS_ERR_OR_NULL(em)) { 2923 SetPageError(page); 2924 unlock_extent(tree, cur, end); 2925 break; 2926 } 2927 extent_offset = cur - em->start; 2928 BUG_ON(extent_map_end(em) <= cur); 2929 BUG_ON(end < cur); 2930 2931 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2932 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2933 extent_set_compress_type(&this_bio_flag, 2934 em->compress_type); 2935 } 2936 2937 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2938 cur_end = min(extent_map_end(em) - 1, end); 2939 iosize = ALIGN(iosize, blocksize); 2940 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2941 disk_io_size = em->block_len; 2942 offset = em->block_start; 2943 } else { 2944 offset = em->block_start + extent_offset; 2945 disk_io_size = iosize; 2946 } 2947 bdev = em->bdev; 2948 block_start = em->block_start; 2949 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2950 block_start = EXTENT_MAP_HOLE; 2951 2952 /* 2953 * If we have a file range that points to a compressed extent 2954 * and it's followed by a consecutive file range that points to 2955 * to the same compressed extent (possibly with a different 2956 * offset and/or length, so it either points to the whole extent 2957 * or only part of it), we must make sure we do not submit a 2958 * single bio to populate the pages for the 2 ranges because 2959 * this makes the compressed extent read zero out the pages 2960 * belonging to the 2nd range. Imagine the following scenario: 2961 * 2962 * File layout 2963 * [0 - 8K] [8K - 24K] 2964 * | | 2965 * | | 2966 * points to extent X, points to extent X, 2967 * offset 4K, length of 8K offset 0, length 16K 2968 * 2969 * [extent X, compressed length = 4K uncompressed length = 16K] 2970 * 2971 * If the bio to read the compressed extent covers both ranges, 2972 * it will decompress extent X into the pages belonging to the 2973 * first range and then it will stop, zeroing out the remaining 2974 * pages that belong to the other range that points to extent X. 2975 * So here we make sure we submit 2 bios, one for the first 2976 * range and another one for the third range. Both will target 2977 * the same physical extent from disk, but we can't currently 2978 * make the compressed bio endio callback populate the pages 2979 * for both ranges because each compressed bio is tightly 2980 * coupled with a single extent map, and each range can have 2981 * an extent map with a different offset value relative to the 2982 * uncompressed data of our extent and different lengths. This 2983 * is a corner case so we prioritize correctness over 2984 * non-optimal behavior (submitting 2 bios for the same extent). 2985 */ 2986 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 2987 prev_em_start && *prev_em_start != (u64)-1 && 2988 *prev_em_start != em->orig_start) 2989 force_bio_submit = true; 2990 2991 if (prev_em_start) 2992 *prev_em_start = em->orig_start; 2993 2994 free_extent_map(em); 2995 em = NULL; 2996 2997 /* we've found a hole, just zero and go on */ 2998 if (block_start == EXTENT_MAP_HOLE) { 2999 char *userpage; 3000 struct extent_state *cached = NULL; 3001 3002 userpage = kmap_atomic(page); 3003 memset(userpage + pg_offset, 0, iosize); 3004 flush_dcache_page(page); 3005 kunmap_atomic(userpage); 3006 3007 set_extent_uptodate(tree, cur, cur + iosize - 1, 3008 &cached, GFP_NOFS); 3009 unlock_extent_cached(tree, cur, 3010 cur + iosize - 1, &cached); 3011 cur = cur + iosize; 3012 pg_offset += iosize; 3013 continue; 3014 } 3015 /* the get_extent function already copied into the page */ 3016 if (test_range_bit(tree, cur, cur_end, 3017 EXTENT_UPTODATE, 1, NULL)) { 3018 check_page_uptodate(tree, page); 3019 unlock_extent(tree, cur, cur + iosize - 1); 3020 cur = cur + iosize; 3021 pg_offset += iosize; 3022 continue; 3023 } 3024 /* we have an inline extent but it didn't get marked up 3025 * to date. Error out 3026 */ 3027 if (block_start == EXTENT_MAP_INLINE) { 3028 SetPageError(page); 3029 unlock_extent(tree, cur, cur + iosize - 1); 3030 cur = cur + iosize; 3031 pg_offset += iosize; 3032 continue; 3033 } 3034 3035 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3036 page, offset, disk_io_size, 3037 pg_offset, bdev, bio, 3038 end_bio_extent_readpage, mirror_num, 3039 *bio_flags, 3040 this_bio_flag, 3041 force_bio_submit); 3042 if (!ret) { 3043 nr++; 3044 *bio_flags = this_bio_flag; 3045 } else { 3046 SetPageError(page); 3047 unlock_extent(tree, cur, cur + iosize - 1); 3048 goto out; 3049 } 3050 cur = cur + iosize; 3051 pg_offset += iosize; 3052 } 3053 out: 3054 if (!nr) { 3055 if (!PageError(page)) 3056 SetPageUptodate(page); 3057 unlock_page(page); 3058 } 3059 return ret; 3060 } 3061 3062 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3063 struct page *pages[], int nr_pages, 3064 u64 start, u64 end, 3065 struct extent_map **em_cached, 3066 struct bio **bio, 3067 unsigned long *bio_flags, 3068 u64 *prev_em_start) 3069 { 3070 struct inode *inode; 3071 struct btrfs_ordered_extent *ordered; 3072 int index; 3073 3074 inode = pages[0]->mapping->host; 3075 while (1) { 3076 lock_extent(tree, start, end); 3077 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3078 end - start + 1); 3079 if (!ordered) 3080 break; 3081 unlock_extent(tree, start, end); 3082 btrfs_start_ordered_extent(inode, ordered, 1); 3083 btrfs_put_ordered_extent(ordered); 3084 } 3085 3086 for (index = 0; index < nr_pages; index++) { 3087 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3088 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3089 put_page(pages[index]); 3090 } 3091 } 3092 3093 static void __extent_readpages(struct extent_io_tree *tree, 3094 struct page *pages[], 3095 int nr_pages, 3096 struct extent_map **em_cached, 3097 struct bio **bio, unsigned long *bio_flags, 3098 u64 *prev_em_start) 3099 { 3100 u64 start = 0; 3101 u64 end = 0; 3102 u64 page_start; 3103 int index; 3104 int first_index = 0; 3105 3106 for (index = 0; index < nr_pages; index++) { 3107 page_start = page_offset(pages[index]); 3108 if (!end) { 3109 start = page_start; 3110 end = start + PAGE_SIZE - 1; 3111 first_index = index; 3112 } else if (end + 1 == page_start) { 3113 end += PAGE_SIZE; 3114 } else { 3115 __do_contiguous_readpages(tree, &pages[first_index], 3116 index - first_index, start, 3117 end, em_cached, 3118 bio, bio_flags, 3119 prev_em_start); 3120 start = page_start; 3121 end = start + PAGE_SIZE - 1; 3122 first_index = index; 3123 } 3124 } 3125 3126 if (end) 3127 __do_contiguous_readpages(tree, &pages[first_index], 3128 index - first_index, start, 3129 end, em_cached, bio, 3130 bio_flags, prev_em_start); 3131 } 3132 3133 static int __extent_read_full_page(struct extent_io_tree *tree, 3134 struct page *page, 3135 get_extent_t *get_extent, 3136 struct bio **bio, int mirror_num, 3137 unsigned long *bio_flags, 3138 unsigned int read_flags) 3139 { 3140 struct inode *inode = page->mapping->host; 3141 struct btrfs_ordered_extent *ordered; 3142 u64 start = page_offset(page); 3143 u64 end = start + PAGE_SIZE - 1; 3144 int ret; 3145 3146 while (1) { 3147 lock_extent(tree, start, end); 3148 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3149 PAGE_SIZE); 3150 if (!ordered) 3151 break; 3152 unlock_extent(tree, start, end); 3153 btrfs_start_ordered_extent(inode, ordered, 1); 3154 btrfs_put_ordered_extent(ordered); 3155 } 3156 3157 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3158 bio_flags, read_flags, NULL); 3159 return ret; 3160 } 3161 3162 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3163 get_extent_t *get_extent, int mirror_num) 3164 { 3165 struct bio *bio = NULL; 3166 unsigned long bio_flags = 0; 3167 int ret; 3168 3169 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3170 &bio_flags, 0); 3171 if (bio) 3172 ret = submit_one_bio(bio, mirror_num, bio_flags); 3173 return ret; 3174 } 3175 3176 static void update_nr_written(struct writeback_control *wbc, 3177 unsigned long nr_written) 3178 { 3179 wbc->nr_to_write -= nr_written; 3180 } 3181 3182 /* 3183 * helper for __extent_writepage, doing all of the delayed allocation setup. 3184 * 3185 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3186 * to write the page (copy into inline extent). In this case the IO has 3187 * been started and the page is already unlocked. 3188 * 3189 * This returns 0 if all went well (page still locked) 3190 * This returns < 0 if there were errors (page still locked) 3191 */ 3192 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3193 struct page *page, struct writeback_control *wbc, 3194 u64 delalloc_start, unsigned long *nr_written) 3195 { 3196 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3197 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3198 bool found; 3199 u64 delalloc_to_write = 0; 3200 u64 delalloc_end = 0; 3201 int ret; 3202 int page_started = 0; 3203 3204 3205 while (delalloc_end < page_end) { 3206 found = find_lock_delalloc_range(inode, tree, 3207 page, 3208 &delalloc_start, 3209 &delalloc_end); 3210 if (!found) { 3211 delalloc_start = delalloc_end + 1; 3212 continue; 3213 } 3214 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3215 delalloc_end, &page_started, nr_written, wbc); 3216 /* File system has been set read-only */ 3217 if (ret) { 3218 SetPageError(page); 3219 /* 3220 * btrfs_run_delalloc_range should return < 0 for error 3221 * but just in case, we use > 0 here meaning the IO is 3222 * started, so we don't want to return > 0 unless 3223 * things are going well. 3224 */ 3225 ret = ret < 0 ? ret : -EIO; 3226 goto done; 3227 } 3228 /* 3229 * delalloc_end is already one less than the total length, so 3230 * we don't subtract one from PAGE_SIZE 3231 */ 3232 delalloc_to_write += (delalloc_end - delalloc_start + 3233 PAGE_SIZE) >> PAGE_SHIFT; 3234 delalloc_start = delalloc_end + 1; 3235 } 3236 if (wbc->nr_to_write < delalloc_to_write) { 3237 int thresh = 8192; 3238 3239 if (delalloc_to_write < thresh * 2) 3240 thresh = delalloc_to_write; 3241 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3242 thresh); 3243 } 3244 3245 /* did the fill delalloc function already unlock and start 3246 * the IO? 3247 */ 3248 if (page_started) { 3249 /* 3250 * we've unlocked the page, so we can't update 3251 * the mapping's writeback index, just update 3252 * nr_to_write. 3253 */ 3254 wbc->nr_to_write -= *nr_written; 3255 return 1; 3256 } 3257 3258 ret = 0; 3259 3260 done: 3261 return ret; 3262 } 3263 3264 /* 3265 * helper for __extent_writepage. This calls the writepage start hooks, 3266 * and does the loop to map the page into extents and bios. 3267 * 3268 * We return 1 if the IO is started and the page is unlocked, 3269 * 0 if all went well (page still locked) 3270 * < 0 if there were errors (page still locked) 3271 */ 3272 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3273 struct page *page, 3274 struct writeback_control *wbc, 3275 struct extent_page_data *epd, 3276 loff_t i_size, 3277 unsigned long nr_written, 3278 unsigned int write_flags, int *nr_ret) 3279 { 3280 struct extent_io_tree *tree = epd->tree; 3281 u64 start = page_offset(page); 3282 u64 page_end = start + PAGE_SIZE - 1; 3283 u64 end; 3284 u64 cur = start; 3285 u64 extent_offset; 3286 u64 block_start; 3287 u64 iosize; 3288 struct extent_map *em; 3289 struct block_device *bdev; 3290 size_t pg_offset = 0; 3291 size_t blocksize; 3292 int ret = 0; 3293 int nr = 0; 3294 bool compressed; 3295 3296 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3297 if (ret) { 3298 /* Fixup worker will requeue */ 3299 if (ret == -EBUSY) 3300 wbc->pages_skipped++; 3301 else 3302 redirty_page_for_writepage(wbc, page); 3303 3304 update_nr_written(wbc, nr_written); 3305 unlock_page(page); 3306 return 1; 3307 } 3308 3309 /* 3310 * we don't want to touch the inode after unlocking the page, 3311 * so we update the mapping writeback index now 3312 */ 3313 update_nr_written(wbc, nr_written + 1); 3314 3315 end = page_end; 3316 if (i_size <= start) { 3317 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); 3318 goto done; 3319 } 3320 3321 blocksize = inode->i_sb->s_blocksize; 3322 3323 while (cur <= end) { 3324 u64 em_end; 3325 u64 offset; 3326 3327 if (cur >= i_size) { 3328 btrfs_writepage_endio_finish_ordered(page, cur, 3329 page_end, 1); 3330 break; 3331 } 3332 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3333 end - cur + 1, 1); 3334 if (IS_ERR_OR_NULL(em)) { 3335 SetPageError(page); 3336 ret = PTR_ERR_OR_ZERO(em); 3337 break; 3338 } 3339 3340 extent_offset = cur - em->start; 3341 em_end = extent_map_end(em); 3342 BUG_ON(em_end <= cur); 3343 BUG_ON(end < cur); 3344 iosize = min(em_end - cur, end - cur + 1); 3345 iosize = ALIGN(iosize, blocksize); 3346 offset = em->block_start + extent_offset; 3347 bdev = em->bdev; 3348 block_start = em->block_start; 3349 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3350 free_extent_map(em); 3351 em = NULL; 3352 3353 /* 3354 * compressed and inline extents are written through other 3355 * paths in the FS 3356 */ 3357 if (compressed || block_start == EXTENT_MAP_HOLE || 3358 block_start == EXTENT_MAP_INLINE) { 3359 /* 3360 * end_io notification does not happen here for 3361 * compressed extents 3362 */ 3363 if (!compressed) 3364 btrfs_writepage_endio_finish_ordered(page, cur, 3365 cur + iosize - 1, 3366 1); 3367 else if (compressed) { 3368 /* we don't want to end_page_writeback on 3369 * a compressed extent. this happens 3370 * elsewhere 3371 */ 3372 nr++; 3373 } 3374 3375 cur += iosize; 3376 pg_offset += iosize; 3377 continue; 3378 } 3379 3380 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3381 if (!PageWriteback(page)) { 3382 btrfs_err(BTRFS_I(inode)->root->fs_info, 3383 "page %lu not writeback, cur %llu end %llu", 3384 page->index, cur, end); 3385 } 3386 3387 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3388 page, offset, iosize, pg_offset, 3389 bdev, &epd->bio, 3390 end_bio_extent_writepage, 3391 0, 0, 0, false); 3392 if (ret) { 3393 SetPageError(page); 3394 if (PageWriteback(page)) 3395 end_page_writeback(page); 3396 } 3397 3398 cur = cur + iosize; 3399 pg_offset += iosize; 3400 nr++; 3401 } 3402 done: 3403 *nr_ret = nr; 3404 return ret; 3405 } 3406 3407 /* 3408 * the writepage semantics are similar to regular writepage. extent 3409 * records are inserted to lock ranges in the tree, and as dirty areas 3410 * are found, they are marked writeback. Then the lock bits are removed 3411 * and the end_io handler clears the writeback ranges 3412 */ 3413 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3414 struct extent_page_data *epd) 3415 { 3416 struct inode *inode = page->mapping->host; 3417 u64 start = page_offset(page); 3418 u64 page_end = start + PAGE_SIZE - 1; 3419 int ret; 3420 int nr = 0; 3421 size_t pg_offset = 0; 3422 loff_t i_size = i_size_read(inode); 3423 unsigned long end_index = i_size >> PAGE_SHIFT; 3424 unsigned int write_flags = 0; 3425 unsigned long nr_written = 0; 3426 3427 write_flags = wbc_to_write_flags(wbc); 3428 3429 trace___extent_writepage(page, inode, wbc); 3430 3431 WARN_ON(!PageLocked(page)); 3432 3433 ClearPageError(page); 3434 3435 pg_offset = offset_in_page(i_size); 3436 if (page->index > end_index || 3437 (page->index == end_index && !pg_offset)) { 3438 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3439 unlock_page(page); 3440 return 0; 3441 } 3442 3443 if (page->index == end_index) { 3444 char *userpage; 3445 3446 userpage = kmap_atomic(page); 3447 memset(userpage + pg_offset, 0, 3448 PAGE_SIZE - pg_offset); 3449 kunmap_atomic(userpage); 3450 flush_dcache_page(page); 3451 } 3452 3453 pg_offset = 0; 3454 3455 set_page_extent_mapped(page); 3456 3457 if (!epd->extent_locked) { 3458 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3459 if (ret == 1) 3460 goto done_unlocked; 3461 if (ret) 3462 goto done; 3463 } 3464 3465 ret = __extent_writepage_io(inode, page, wbc, epd, 3466 i_size, nr_written, write_flags, &nr); 3467 if (ret == 1) 3468 goto done_unlocked; 3469 3470 done: 3471 if (nr == 0) { 3472 /* make sure the mapping tag for page dirty gets cleared */ 3473 set_page_writeback(page); 3474 end_page_writeback(page); 3475 } 3476 if (PageError(page)) { 3477 ret = ret < 0 ? ret : -EIO; 3478 end_extent_writepage(page, ret, start, page_end); 3479 } 3480 unlock_page(page); 3481 return ret; 3482 3483 done_unlocked: 3484 return 0; 3485 } 3486 3487 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3488 { 3489 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3490 TASK_UNINTERRUPTIBLE); 3491 } 3492 3493 static noinline_for_stack int 3494 lock_extent_buffer_for_io(struct extent_buffer *eb, 3495 struct btrfs_fs_info *fs_info, 3496 struct extent_page_data *epd) 3497 { 3498 int i, num_pages; 3499 int flush = 0; 3500 int ret = 0; 3501 3502 if (!btrfs_try_tree_write_lock(eb)) { 3503 flush = 1; 3504 flush_write_bio(epd); 3505 btrfs_tree_lock(eb); 3506 } 3507 3508 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3509 btrfs_tree_unlock(eb); 3510 if (!epd->sync_io) 3511 return 0; 3512 if (!flush) { 3513 flush_write_bio(epd); 3514 flush = 1; 3515 } 3516 while (1) { 3517 wait_on_extent_buffer_writeback(eb); 3518 btrfs_tree_lock(eb); 3519 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3520 break; 3521 btrfs_tree_unlock(eb); 3522 } 3523 } 3524 3525 /* 3526 * We need to do this to prevent races in people who check if the eb is 3527 * under IO since we can end up having no IO bits set for a short period 3528 * of time. 3529 */ 3530 spin_lock(&eb->refs_lock); 3531 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3532 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3533 spin_unlock(&eb->refs_lock); 3534 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3535 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3536 -eb->len, 3537 fs_info->dirty_metadata_batch); 3538 ret = 1; 3539 } else { 3540 spin_unlock(&eb->refs_lock); 3541 } 3542 3543 btrfs_tree_unlock(eb); 3544 3545 if (!ret) 3546 return ret; 3547 3548 num_pages = num_extent_pages(eb); 3549 for (i = 0; i < num_pages; i++) { 3550 struct page *p = eb->pages[i]; 3551 3552 if (!trylock_page(p)) { 3553 if (!flush) { 3554 flush_write_bio(epd); 3555 flush = 1; 3556 } 3557 lock_page(p); 3558 } 3559 } 3560 3561 return ret; 3562 } 3563 3564 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3565 { 3566 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3567 smp_mb__after_atomic(); 3568 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3569 } 3570 3571 static void set_btree_ioerr(struct page *page) 3572 { 3573 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3574 3575 SetPageError(page); 3576 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3577 return; 3578 3579 /* 3580 * If writeback for a btree extent that doesn't belong to a log tree 3581 * failed, increment the counter transaction->eb_write_errors. 3582 * We do this because while the transaction is running and before it's 3583 * committing (when we call filemap_fdata[write|wait]_range against 3584 * the btree inode), we might have 3585 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3586 * returns an error or an error happens during writeback, when we're 3587 * committing the transaction we wouldn't know about it, since the pages 3588 * can be no longer dirty nor marked anymore for writeback (if a 3589 * subsequent modification to the extent buffer didn't happen before the 3590 * transaction commit), which makes filemap_fdata[write|wait]_range not 3591 * able to find the pages tagged with SetPageError at transaction 3592 * commit time. So if this happens we must abort the transaction, 3593 * otherwise we commit a super block with btree roots that point to 3594 * btree nodes/leafs whose content on disk is invalid - either garbage 3595 * or the content of some node/leaf from a past generation that got 3596 * cowed or deleted and is no longer valid. 3597 * 3598 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3599 * not be enough - we need to distinguish between log tree extents vs 3600 * non-log tree extents, and the next filemap_fdatawait_range() call 3601 * will catch and clear such errors in the mapping - and that call might 3602 * be from a log sync and not from a transaction commit. Also, checking 3603 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3604 * not done and would not be reliable - the eb might have been released 3605 * from memory and reading it back again means that flag would not be 3606 * set (since it's a runtime flag, not persisted on disk). 3607 * 3608 * Using the flags below in the btree inode also makes us achieve the 3609 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3610 * writeback for all dirty pages and before filemap_fdatawait_range() 3611 * is called, the writeback for all dirty pages had already finished 3612 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3613 * filemap_fdatawait_range() would return success, as it could not know 3614 * that writeback errors happened (the pages were no longer tagged for 3615 * writeback). 3616 */ 3617 switch (eb->log_index) { 3618 case -1: 3619 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3620 break; 3621 case 0: 3622 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3623 break; 3624 case 1: 3625 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3626 break; 3627 default: 3628 BUG(); /* unexpected, logic error */ 3629 } 3630 } 3631 3632 static void end_bio_extent_buffer_writepage(struct bio *bio) 3633 { 3634 struct bio_vec *bvec; 3635 struct extent_buffer *eb; 3636 int i, done; 3637 3638 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3639 bio_for_each_segment_all(bvec, bio, i) { 3640 struct page *page = bvec->bv_page; 3641 3642 eb = (struct extent_buffer *)page->private; 3643 BUG_ON(!eb); 3644 done = atomic_dec_and_test(&eb->io_pages); 3645 3646 if (bio->bi_status || 3647 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3648 ClearPageUptodate(page); 3649 set_btree_ioerr(page); 3650 } 3651 3652 end_page_writeback(page); 3653 3654 if (!done) 3655 continue; 3656 3657 end_extent_buffer_writeback(eb); 3658 } 3659 3660 bio_put(bio); 3661 } 3662 3663 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3664 struct btrfs_fs_info *fs_info, 3665 struct writeback_control *wbc, 3666 struct extent_page_data *epd) 3667 { 3668 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3669 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3670 u64 offset = eb->start; 3671 u32 nritems; 3672 int i, num_pages; 3673 unsigned long start, end; 3674 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3675 int ret = 0; 3676 3677 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3678 num_pages = num_extent_pages(eb); 3679 atomic_set(&eb->io_pages, num_pages); 3680 3681 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3682 nritems = btrfs_header_nritems(eb); 3683 if (btrfs_header_level(eb) > 0) { 3684 end = btrfs_node_key_ptr_offset(nritems); 3685 3686 memzero_extent_buffer(eb, end, eb->len - end); 3687 } else { 3688 /* 3689 * leaf: 3690 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3691 */ 3692 start = btrfs_item_nr_offset(nritems); 3693 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3694 memzero_extent_buffer(eb, start, end - start); 3695 } 3696 3697 for (i = 0; i < num_pages; i++) { 3698 struct page *p = eb->pages[i]; 3699 3700 clear_page_dirty_for_io(p); 3701 set_page_writeback(p); 3702 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3703 p, offset, PAGE_SIZE, 0, bdev, 3704 &epd->bio, 3705 end_bio_extent_buffer_writepage, 3706 0, 0, 0, false); 3707 if (ret) { 3708 set_btree_ioerr(p); 3709 if (PageWriteback(p)) 3710 end_page_writeback(p); 3711 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3712 end_extent_buffer_writeback(eb); 3713 ret = -EIO; 3714 break; 3715 } 3716 offset += PAGE_SIZE; 3717 update_nr_written(wbc, 1); 3718 unlock_page(p); 3719 } 3720 3721 if (unlikely(ret)) { 3722 for (; i < num_pages; i++) { 3723 struct page *p = eb->pages[i]; 3724 clear_page_dirty_for_io(p); 3725 unlock_page(p); 3726 } 3727 } 3728 3729 return ret; 3730 } 3731 3732 int btree_write_cache_pages(struct address_space *mapping, 3733 struct writeback_control *wbc) 3734 { 3735 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3736 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3737 struct extent_buffer *eb, *prev_eb = NULL; 3738 struct extent_page_data epd = { 3739 .bio = NULL, 3740 .tree = tree, 3741 .extent_locked = 0, 3742 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3743 }; 3744 int ret = 0; 3745 int done = 0; 3746 int nr_to_write_done = 0; 3747 struct pagevec pvec; 3748 int nr_pages; 3749 pgoff_t index; 3750 pgoff_t end; /* Inclusive */ 3751 int scanned = 0; 3752 xa_mark_t tag; 3753 3754 pagevec_init(&pvec); 3755 if (wbc->range_cyclic) { 3756 index = mapping->writeback_index; /* Start from prev offset */ 3757 end = -1; 3758 } else { 3759 index = wbc->range_start >> PAGE_SHIFT; 3760 end = wbc->range_end >> PAGE_SHIFT; 3761 scanned = 1; 3762 } 3763 if (wbc->sync_mode == WB_SYNC_ALL) 3764 tag = PAGECACHE_TAG_TOWRITE; 3765 else 3766 tag = PAGECACHE_TAG_DIRTY; 3767 retry: 3768 if (wbc->sync_mode == WB_SYNC_ALL) 3769 tag_pages_for_writeback(mapping, index, end); 3770 while (!done && !nr_to_write_done && (index <= end) && 3771 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3772 tag))) { 3773 unsigned i; 3774 3775 scanned = 1; 3776 for (i = 0; i < nr_pages; i++) { 3777 struct page *page = pvec.pages[i]; 3778 3779 if (!PagePrivate(page)) 3780 continue; 3781 3782 spin_lock(&mapping->private_lock); 3783 if (!PagePrivate(page)) { 3784 spin_unlock(&mapping->private_lock); 3785 continue; 3786 } 3787 3788 eb = (struct extent_buffer *)page->private; 3789 3790 /* 3791 * Shouldn't happen and normally this would be a BUG_ON 3792 * but no sense in crashing the users box for something 3793 * we can survive anyway. 3794 */ 3795 if (WARN_ON(!eb)) { 3796 spin_unlock(&mapping->private_lock); 3797 continue; 3798 } 3799 3800 if (eb == prev_eb) { 3801 spin_unlock(&mapping->private_lock); 3802 continue; 3803 } 3804 3805 ret = atomic_inc_not_zero(&eb->refs); 3806 spin_unlock(&mapping->private_lock); 3807 if (!ret) 3808 continue; 3809 3810 prev_eb = eb; 3811 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3812 if (!ret) { 3813 free_extent_buffer(eb); 3814 continue; 3815 } 3816 3817 ret = write_one_eb(eb, fs_info, wbc, &epd); 3818 if (ret) { 3819 done = 1; 3820 free_extent_buffer(eb); 3821 break; 3822 } 3823 free_extent_buffer(eb); 3824 3825 /* 3826 * the filesystem may choose to bump up nr_to_write. 3827 * We have to make sure to honor the new nr_to_write 3828 * at any time 3829 */ 3830 nr_to_write_done = wbc->nr_to_write <= 0; 3831 } 3832 pagevec_release(&pvec); 3833 cond_resched(); 3834 } 3835 if (!scanned && !done) { 3836 /* 3837 * We hit the last page and there is more work to be done: wrap 3838 * back to the start of the file 3839 */ 3840 scanned = 1; 3841 index = 0; 3842 goto retry; 3843 } 3844 flush_write_bio(&epd); 3845 return ret; 3846 } 3847 3848 /** 3849 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3850 * @mapping: address space structure to write 3851 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3852 * @data: data passed to __extent_writepage function 3853 * 3854 * If a page is already under I/O, write_cache_pages() skips it, even 3855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3857 * and msync() need to guarantee that all the data which was dirty at the time 3858 * the call was made get new I/O started against them. If wbc->sync_mode is 3859 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3860 * existing IO to complete. 3861 */ 3862 static int extent_write_cache_pages(struct address_space *mapping, 3863 struct writeback_control *wbc, 3864 struct extent_page_data *epd) 3865 { 3866 struct inode *inode = mapping->host; 3867 int ret = 0; 3868 int done = 0; 3869 int nr_to_write_done = 0; 3870 struct pagevec pvec; 3871 int nr_pages; 3872 pgoff_t index; 3873 pgoff_t end; /* Inclusive */ 3874 pgoff_t done_index; 3875 int range_whole = 0; 3876 int scanned = 0; 3877 xa_mark_t tag; 3878 3879 /* 3880 * We have to hold onto the inode so that ordered extents can do their 3881 * work when the IO finishes. The alternative to this is failing to add 3882 * an ordered extent if the igrab() fails there and that is a huge pain 3883 * to deal with, so instead just hold onto the inode throughout the 3884 * writepages operation. If it fails here we are freeing up the inode 3885 * anyway and we'd rather not waste our time writing out stuff that is 3886 * going to be truncated anyway. 3887 */ 3888 if (!igrab(inode)) 3889 return 0; 3890 3891 pagevec_init(&pvec); 3892 if (wbc->range_cyclic) { 3893 index = mapping->writeback_index; /* Start from prev offset */ 3894 end = -1; 3895 } else { 3896 index = wbc->range_start >> PAGE_SHIFT; 3897 end = wbc->range_end >> PAGE_SHIFT; 3898 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3899 range_whole = 1; 3900 scanned = 1; 3901 } 3902 3903 /* 3904 * We do the tagged writepage as long as the snapshot flush bit is set 3905 * and we are the first one who do the filemap_flush() on this inode. 3906 * 3907 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3908 * not race in and drop the bit. 3909 */ 3910 if (range_whole && wbc->nr_to_write == LONG_MAX && 3911 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3912 &BTRFS_I(inode)->runtime_flags)) 3913 wbc->tagged_writepages = 1; 3914 3915 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3916 tag = PAGECACHE_TAG_TOWRITE; 3917 else 3918 tag = PAGECACHE_TAG_DIRTY; 3919 retry: 3920 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3921 tag_pages_for_writeback(mapping, index, end); 3922 done_index = index; 3923 while (!done && !nr_to_write_done && (index <= end) && 3924 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3925 &index, end, tag))) { 3926 unsigned i; 3927 3928 scanned = 1; 3929 for (i = 0; i < nr_pages; i++) { 3930 struct page *page = pvec.pages[i]; 3931 3932 done_index = page->index; 3933 /* 3934 * At this point we hold neither the i_pages lock nor 3935 * the page lock: the page may be truncated or 3936 * invalidated (changing page->mapping to NULL), 3937 * or even swizzled back from swapper_space to 3938 * tmpfs file mapping 3939 */ 3940 if (!trylock_page(page)) { 3941 flush_write_bio(epd); 3942 lock_page(page); 3943 } 3944 3945 if (unlikely(page->mapping != mapping)) { 3946 unlock_page(page); 3947 continue; 3948 } 3949 3950 if (wbc->sync_mode != WB_SYNC_NONE) { 3951 if (PageWriteback(page)) 3952 flush_write_bio(epd); 3953 wait_on_page_writeback(page); 3954 } 3955 3956 if (PageWriteback(page) || 3957 !clear_page_dirty_for_io(page)) { 3958 unlock_page(page); 3959 continue; 3960 } 3961 3962 ret = __extent_writepage(page, wbc, epd); 3963 3964 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3965 unlock_page(page); 3966 ret = 0; 3967 } 3968 if (ret < 0) { 3969 /* 3970 * done_index is set past this page, 3971 * so media errors will not choke 3972 * background writeout for the entire 3973 * file. This has consequences for 3974 * range_cyclic semantics (ie. it may 3975 * not be suitable for data integrity 3976 * writeout). 3977 */ 3978 done_index = page->index + 1; 3979 done = 1; 3980 break; 3981 } 3982 3983 /* 3984 * the filesystem may choose to bump up nr_to_write. 3985 * We have to make sure to honor the new nr_to_write 3986 * at any time 3987 */ 3988 nr_to_write_done = wbc->nr_to_write <= 0; 3989 } 3990 pagevec_release(&pvec); 3991 cond_resched(); 3992 } 3993 if (!scanned && !done) { 3994 /* 3995 * We hit the last page and there is more work to be done: wrap 3996 * back to the start of the file 3997 */ 3998 scanned = 1; 3999 index = 0; 4000 goto retry; 4001 } 4002 4003 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4004 mapping->writeback_index = done_index; 4005 4006 btrfs_add_delayed_iput(inode); 4007 return ret; 4008 } 4009 4010 static void flush_write_bio(struct extent_page_data *epd) 4011 { 4012 if (epd->bio) { 4013 int ret; 4014 4015 ret = submit_one_bio(epd->bio, 0, 0); 4016 BUG_ON(ret < 0); /* -ENOMEM */ 4017 epd->bio = NULL; 4018 } 4019 } 4020 4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4022 { 4023 int ret; 4024 struct extent_page_data epd = { 4025 .bio = NULL, 4026 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4027 .extent_locked = 0, 4028 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4029 }; 4030 4031 ret = __extent_writepage(page, wbc, &epd); 4032 4033 flush_write_bio(&epd); 4034 return ret; 4035 } 4036 4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4038 int mode) 4039 { 4040 int ret = 0; 4041 struct address_space *mapping = inode->i_mapping; 4042 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4043 struct page *page; 4044 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4045 PAGE_SHIFT; 4046 4047 struct extent_page_data epd = { 4048 .bio = NULL, 4049 .tree = tree, 4050 .extent_locked = 1, 4051 .sync_io = mode == WB_SYNC_ALL, 4052 }; 4053 struct writeback_control wbc_writepages = { 4054 .sync_mode = mode, 4055 .nr_to_write = nr_pages * 2, 4056 .range_start = start, 4057 .range_end = end + 1, 4058 }; 4059 4060 while (start <= end) { 4061 page = find_get_page(mapping, start >> PAGE_SHIFT); 4062 if (clear_page_dirty_for_io(page)) 4063 ret = __extent_writepage(page, &wbc_writepages, &epd); 4064 else { 4065 btrfs_writepage_endio_finish_ordered(page, start, 4066 start + PAGE_SIZE - 1, 1); 4067 unlock_page(page); 4068 } 4069 put_page(page); 4070 start += PAGE_SIZE; 4071 } 4072 4073 flush_write_bio(&epd); 4074 return ret; 4075 } 4076 4077 int extent_writepages(struct address_space *mapping, 4078 struct writeback_control *wbc) 4079 { 4080 int ret = 0; 4081 struct extent_page_data epd = { 4082 .bio = NULL, 4083 .tree = &BTRFS_I(mapping->host)->io_tree, 4084 .extent_locked = 0, 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4086 }; 4087 4088 ret = extent_write_cache_pages(mapping, wbc, &epd); 4089 flush_write_bio(&epd); 4090 return ret; 4091 } 4092 4093 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4094 unsigned nr_pages) 4095 { 4096 struct bio *bio = NULL; 4097 unsigned long bio_flags = 0; 4098 struct page *pagepool[16]; 4099 struct extent_map *em_cached = NULL; 4100 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4101 int nr = 0; 4102 u64 prev_em_start = (u64)-1; 4103 4104 while (!list_empty(pages)) { 4105 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { 4106 struct page *page = list_entry(pages->prev, 4107 struct page, lru); 4108 4109 prefetchw(&page->flags); 4110 list_del(&page->lru); 4111 if (add_to_page_cache_lru(page, mapping, page->index, 4112 readahead_gfp_mask(mapping))) { 4113 put_page(page); 4114 continue; 4115 } 4116 4117 pagepool[nr++] = page; 4118 } 4119 4120 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4121 &bio_flags, &prev_em_start); 4122 } 4123 4124 if (em_cached) 4125 free_extent_map(em_cached); 4126 4127 if (bio) 4128 return submit_one_bio(bio, 0, bio_flags); 4129 return 0; 4130 } 4131 4132 /* 4133 * basic invalidatepage code, this waits on any locked or writeback 4134 * ranges corresponding to the page, and then deletes any extent state 4135 * records from the tree 4136 */ 4137 int extent_invalidatepage(struct extent_io_tree *tree, 4138 struct page *page, unsigned long offset) 4139 { 4140 struct extent_state *cached_state = NULL; 4141 u64 start = page_offset(page); 4142 u64 end = start + PAGE_SIZE - 1; 4143 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4144 4145 start += ALIGN(offset, blocksize); 4146 if (start > end) 4147 return 0; 4148 4149 lock_extent_bits(tree, start, end, &cached_state); 4150 wait_on_page_writeback(page); 4151 clear_extent_bit(tree, start, end, 4152 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4153 EXTENT_DO_ACCOUNTING, 4154 1, 1, &cached_state); 4155 return 0; 4156 } 4157 4158 /* 4159 * a helper for releasepage, this tests for areas of the page that 4160 * are locked or under IO and drops the related state bits if it is safe 4161 * to drop the page. 4162 */ 4163 static int try_release_extent_state(struct extent_io_tree *tree, 4164 struct page *page, gfp_t mask) 4165 { 4166 u64 start = page_offset(page); 4167 u64 end = start + PAGE_SIZE - 1; 4168 int ret = 1; 4169 4170 if (test_range_bit(tree, start, end, 4171 EXTENT_IOBITS, 0, NULL)) 4172 ret = 0; 4173 else { 4174 /* 4175 * at this point we can safely clear everything except the 4176 * locked bit and the nodatasum bit 4177 */ 4178 ret = __clear_extent_bit(tree, start, end, 4179 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4180 0, 0, NULL, mask, NULL); 4181 4182 /* if clear_extent_bit failed for enomem reasons, 4183 * we can't allow the release to continue. 4184 */ 4185 if (ret < 0) 4186 ret = 0; 4187 else 4188 ret = 1; 4189 } 4190 return ret; 4191 } 4192 4193 /* 4194 * a helper for releasepage. As long as there are no locked extents 4195 * in the range corresponding to the page, both state records and extent 4196 * map records are removed 4197 */ 4198 int try_release_extent_mapping(struct page *page, gfp_t mask) 4199 { 4200 struct extent_map *em; 4201 u64 start = page_offset(page); 4202 u64 end = start + PAGE_SIZE - 1; 4203 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4204 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4205 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4206 4207 if (gfpflags_allow_blocking(mask) && 4208 page->mapping->host->i_size > SZ_16M) { 4209 u64 len; 4210 while (start <= end) { 4211 len = end - start + 1; 4212 write_lock(&map->lock); 4213 em = lookup_extent_mapping(map, start, len); 4214 if (!em) { 4215 write_unlock(&map->lock); 4216 break; 4217 } 4218 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4219 em->start != start) { 4220 write_unlock(&map->lock); 4221 free_extent_map(em); 4222 break; 4223 } 4224 if (!test_range_bit(tree, em->start, 4225 extent_map_end(em) - 1, 4226 EXTENT_LOCKED | EXTENT_WRITEBACK, 4227 0, NULL)) { 4228 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4229 &btrfs_inode->runtime_flags); 4230 remove_extent_mapping(map, em); 4231 /* once for the rb tree */ 4232 free_extent_map(em); 4233 } 4234 start = extent_map_end(em); 4235 write_unlock(&map->lock); 4236 4237 /* once for us */ 4238 free_extent_map(em); 4239 } 4240 } 4241 return try_release_extent_state(tree, page, mask); 4242 } 4243 4244 /* 4245 * helper function for fiemap, which doesn't want to see any holes. 4246 * This maps until we find something past 'last' 4247 */ 4248 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4249 u64 offset, u64 last) 4250 { 4251 u64 sectorsize = btrfs_inode_sectorsize(inode); 4252 struct extent_map *em; 4253 u64 len; 4254 4255 if (offset >= last) 4256 return NULL; 4257 4258 while (1) { 4259 len = last - offset; 4260 if (len == 0) 4261 break; 4262 len = ALIGN(len, sectorsize); 4263 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset, 4264 len, 0); 4265 if (IS_ERR_OR_NULL(em)) 4266 return em; 4267 4268 /* if this isn't a hole return it */ 4269 if (em->block_start != EXTENT_MAP_HOLE) 4270 return em; 4271 4272 /* this is a hole, advance to the next extent */ 4273 offset = extent_map_end(em); 4274 free_extent_map(em); 4275 if (offset >= last) 4276 break; 4277 } 4278 return NULL; 4279 } 4280 4281 /* 4282 * To cache previous fiemap extent 4283 * 4284 * Will be used for merging fiemap extent 4285 */ 4286 struct fiemap_cache { 4287 u64 offset; 4288 u64 phys; 4289 u64 len; 4290 u32 flags; 4291 bool cached; 4292 }; 4293 4294 /* 4295 * Helper to submit fiemap extent. 4296 * 4297 * Will try to merge current fiemap extent specified by @offset, @phys, 4298 * @len and @flags with cached one. 4299 * And only when we fails to merge, cached one will be submitted as 4300 * fiemap extent. 4301 * 4302 * Return value is the same as fiemap_fill_next_extent(). 4303 */ 4304 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4305 struct fiemap_cache *cache, 4306 u64 offset, u64 phys, u64 len, u32 flags) 4307 { 4308 int ret = 0; 4309 4310 if (!cache->cached) 4311 goto assign; 4312 4313 /* 4314 * Sanity check, extent_fiemap() should have ensured that new 4315 * fiemap extent won't overlap with cached one. 4316 * Not recoverable. 4317 * 4318 * NOTE: Physical address can overlap, due to compression 4319 */ 4320 if (cache->offset + cache->len > offset) { 4321 WARN_ON(1); 4322 return -EINVAL; 4323 } 4324 4325 /* 4326 * Only merges fiemap extents if 4327 * 1) Their logical addresses are continuous 4328 * 4329 * 2) Their physical addresses are continuous 4330 * So truly compressed (physical size smaller than logical size) 4331 * extents won't get merged with each other 4332 * 4333 * 3) Share same flags except FIEMAP_EXTENT_LAST 4334 * So regular extent won't get merged with prealloc extent 4335 */ 4336 if (cache->offset + cache->len == offset && 4337 cache->phys + cache->len == phys && 4338 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4339 (flags & ~FIEMAP_EXTENT_LAST)) { 4340 cache->len += len; 4341 cache->flags |= flags; 4342 goto try_submit_last; 4343 } 4344 4345 /* Not mergeable, need to submit cached one */ 4346 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4347 cache->len, cache->flags); 4348 cache->cached = false; 4349 if (ret) 4350 return ret; 4351 assign: 4352 cache->cached = true; 4353 cache->offset = offset; 4354 cache->phys = phys; 4355 cache->len = len; 4356 cache->flags = flags; 4357 try_submit_last: 4358 if (cache->flags & FIEMAP_EXTENT_LAST) { 4359 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4360 cache->phys, cache->len, cache->flags); 4361 cache->cached = false; 4362 } 4363 return ret; 4364 } 4365 4366 /* 4367 * Emit last fiemap cache 4368 * 4369 * The last fiemap cache may still be cached in the following case: 4370 * 0 4k 8k 4371 * |<- Fiemap range ->| 4372 * |<------------ First extent ----------->| 4373 * 4374 * In this case, the first extent range will be cached but not emitted. 4375 * So we must emit it before ending extent_fiemap(). 4376 */ 4377 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4378 struct fiemap_extent_info *fieinfo, 4379 struct fiemap_cache *cache) 4380 { 4381 int ret; 4382 4383 if (!cache->cached) 4384 return 0; 4385 4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4387 cache->len, cache->flags); 4388 cache->cached = false; 4389 if (ret > 0) 4390 ret = 0; 4391 return ret; 4392 } 4393 4394 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4395 __u64 start, __u64 len) 4396 { 4397 int ret = 0; 4398 u64 off = start; 4399 u64 max = start + len; 4400 u32 flags = 0; 4401 u32 found_type; 4402 u64 last; 4403 u64 last_for_get_extent = 0; 4404 u64 disko = 0; 4405 u64 isize = i_size_read(inode); 4406 struct btrfs_key found_key; 4407 struct extent_map *em = NULL; 4408 struct extent_state *cached_state = NULL; 4409 struct btrfs_path *path; 4410 struct btrfs_root *root = BTRFS_I(inode)->root; 4411 struct fiemap_cache cache = { 0 }; 4412 int end = 0; 4413 u64 em_start = 0; 4414 u64 em_len = 0; 4415 u64 em_end = 0; 4416 4417 if (len == 0) 4418 return -EINVAL; 4419 4420 path = btrfs_alloc_path(); 4421 if (!path) 4422 return -ENOMEM; 4423 path->leave_spinning = 1; 4424 4425 start = round_down(start, btrfs_inode_sectorsize(inode)); 4426 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4427 4428 /* 4429 * lookup the last file extent. We're not using i_size here 4430 * because there might be preallocation past i_size 4431 */ 4432 ret = btrfs_lookup_file_extent(NULL, root, path, 4433 btrfs_ino(BTRFS_I(inode)), -1, 0); 4434 if (ret < 0) { 4435 btrfs_free_path(path); 4436 return ret; 4437 } else { 4438 WARN_ON(!ret); 4439 if (ret == 1) 4440 ret = 0; 4441 } 4442 4443 path->slots[0]--; 4444 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4445 found_type = found_key.type; 4446 4447 /* No extents, but there might be delalloc bits */ 4448 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4449 found_type != BTRFS_EXTENT_DATA_KEY) { 4450 /* have to trust i_size as the end */ 4451 last = (u64)-1; 4452 last_for_get_extent = isize; 4453 } else { 4454 /* 4455 * remember the start of the last extent. There are a 4456 * bunch of different factors that go into the length of the 4457 * extent, so its much less complex to remember where it started 4458 */ 4459 last = found_key.offset; 4460 last_for_get_extent = last + 1; 4461 } 4462 btrfs_release_path(path); 4463 4464 /* 4465 * we might have some extents allocated but more delalloc past those 4466 * extents. so, we trust isize unless the start of the last extent is 4467 * beyond isize 4468 */ 4469 if (last < isize) { 4470 last = (u64)-1; 4471 last_for_get_extent = isize; 4472 } 4473 4474 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4475 &cached_state); 4476 4477 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4478 if (!em) 4479 goto out; 4480 if (IS_ERR(em)) { 4481 ret = PTR_ERR(em); 4482 goto out; 4483 } 4484 4485 while (!end) { 4486 u64 offset_in_extent = 0; 4487 4488 /* break if the extent we found is outside the range */ 4489 if (em->start >= max || extent_map_end(em) < off) 4490 break; 4491 4492 /* 4493 * get_extent may return an extent that starts before our 4494 * requested range. We have to make sure the ranges 4495 * we return to fiemap always move forward and don't 4496 * overlap, so adjust the offsets here 4497 */ 4498 em_start = max(em->start, off); 4499 4500 /* 4501 * record the offset from the start of the extent 4502 * for adjusting the disk offset below. Only do this if the 4503 * extent isn't compressed since our in ram offset may be past 4504 * what we have actually allocated on disk. 4505 */ 4506 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4507 offset_in_extent = em_start - em->start; 4508 em_end = extent_map_end(em); 4509 em_len = em_end - em_start; 4510 flags = 0; 4511 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4512 disko = em->block_start + offset_in_extent; 4513 else 4514 disko = 0; 4515 4516 /* 4517 * bump off for our next call to get_extent 4518 */ 4519 off = extent_map_end(em); 4520 if (off >= max) 4521 end = 1; 4522 4523 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4524 end = 1; 4525 flags |= FIEMAP_EXTENT_LAST; 4526 } else if (em->block_start == EXTENT_MAP_INLINE) { 4527 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4528 FIEMAP_EXTENT_NOT_ALIGNED); 4529 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4530 flags |= (FIEMAP_EXTENT_DELALLOC | 4531 FIEMAP_EXTENT_UNKNOWN); 4532 } else if (fieinfo->fi_extents_max) { 4533 u64 bytenr = em->block_start - 4534 (em->start - em->orig_start); 4535 4536 /* 4537 * As btrfs supports shared space, this information 4538 * can be exported to userspace tools via 4539 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4540 * then we're just getting a count and we can skip the 4541 * lookup stuff. 4542 */ 4543 ret = btrfs_check_shared(root, 4544 btrfs_ino(BTRFS_I(inode)), 4545 bytenr); 4546 if (ret < 0) 4547 goto out_free; 4548 if (ret) 4549 flags |= FIEMAP_EXTENT_SHARED; 4550 ret = 0; 4551 } 4552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4553 flags |= FIEMAP_EXTENT_ENCODED; 4554 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4555 flags |= FIEMAP_EXTENT_UNWRITTEN; 4556 4557 free_extent_map(em); 4558 em = NULL; 4559 if ((em_start >= last) || em_len == (u64)-1 || 4560 (last == (u64)-1 && isize <= em_end)) { 4561 flags |= FIEMAP_EXTENT_LAST; 4562 end = 1; 4563 } 4564 4565 /* now scan forward to see if this is really the last extent. */ 4566 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4567 if (IS_ERR(em)) { 4568 ret = PTR_ERR(em); 4569 goto out; 4570 } 4571 if (!em) { 4572 flags |= FIEMAP_EXTENT_LAST; 4573 end = 1; 4574 } 4575 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4576 em_len, flags); 4577 if (ret) { 4578 if (ret == 1) 4579 ret = 0; 4580 goto out_free; 4581 } 4582 } 4583 out_free: 4584 if (!ret) 4585 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4586 free_extent_map(em); 4587 out: 4588 btrfs_free_path(path); 4589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4590 &cached_state); 4591 return ret; 4592 } 4593 4594 static void __free_extent_buffer(struct extent_buffer *eb) 4595 { 4596 btrfs_leak_debug_del(&eb->leak_list); 4597 kmem_cache_free(extent_buffer_cache, eb); 4598 } 4599 4600 int extent_buffer_under_io(struct extent_buffer *eb) 4601 { 4602 return (atomic_read(&eb->io_pages) || 4603 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4604 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4605 } 4606 4607 /* 4608 * Release all pages attached to the extent buffer. 4609 */ 4610 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4611 { 4612 int i; 4613 int num_pages; 4614 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4615 4616 BUG_ON(extent_buffer_under_io(eb)); 4617 4618 num_pages = num_extent_pages(eb); 4619 for (i = 0; i < num_pages; i++) { 4620 struct page *page = eb->pages[i]; 4621 4622 if (!page) 4623 continue; 4624 if (mapped) 4625 spin_lock(&page->mapping->private_lock); 4626 /* 4627 * We do this since we'll remove the pages after we've 4628 * removed the eb from the radix tree, so we could race 4629 * and have this page now attached to the new eb. So 4630 * only clear page_private if it's still connected to 4631 * this eb. 4632 */ 4633 if (PagePrivate(page) && 4634 page->private == (unsigned long)eb) { 4635 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4636 BUG_ON(PageDirty(page)); 4637 BUG_ON(PageWriteback(page)); 4638 /* 4639 * We need to make sure we haven't be attached 4640 * to a new eb. 4641 */ 4642 ClearPagePrivate(page); 4643 set_page_private(page, 0); 4644 /* One for the page private */ 4645 put_page(page); 4646 } 4647 4648 if (mapped) 4649 spin_unlock(&page->mapping->private_lock); 4650 4651 /* One for when we allocated the page */ 4652 put_page(page); 4653 } 4654 } 4655 4656 /* 4657 * Helper for releasing the extent buffer. 4658 */ 4659 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4660 { 4661 btrfs_release_extent_buffer_pages(eb); 4662 __free_extent_buffer(eb); 4663 } 4664 4665 static struct extent_buffer * 4666 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4667 unsigned long len) 4668 { 4669 struct extent_buffer *eb = NULL; 4670 4671 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4672 eb->start = start; 4673 eb->len = len; 4674 eb->fs_info = fs_info; 4675 eb->bflags = 0; 4676 rwlock_init(&eb->lock); 4677 atomic_set(&eb->write_locks, 0); 4678 atomic_set(&eb->read_locks, 0); 4679 atomic_set(&eb->blocking_readers, 0); 4680 atomic_set(&eb->blocking_writers, 0); 4681 atomic_set(&eb->spinning_readers, 0); 4682 atomic_set(&eb->spinning_writers, 0); 4683 eb->lock_nested = 0; 4684 init_waitqueue_head(&eb->write_lock_wq); 4685 init_waitqueue_head(&eb->read_lock_wq); 4686 4687 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4688 4689 spin_lock_init(&eb->refs_lock); 4690 atomic_set(&eb->refs, 1); 4691 atomic_set(&eb->io_pages, 0); 4692 4693 /* 4694 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4695 */ 4696 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4697 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4698 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4699 4700 return eb; 4701 } 4702 4703 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4704 { 4705 int i; 4706 struct page *p; 4707 struct extent_buffer *new; 4708 int num_pages = num_extent_pages(src); 4709 4710 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4711 if (new == NULL) 4712 return NULL; 4713 4714 for (i = 0; i < num_pages; i++) { 4715 p = alloc_page(GFP_NOFS); 4716 if (!p) { 4717 btrfs_release_extent_buffer(new); 4718 return NULL; 4719 } 4720 attach_extent_buffer_page(new, p); 4721 WARN_ON(PageDirty(p)); 4722 SetPageUptodate(p); 4723 new->pages[i] = p; 4724 copy_page(page_address(p), page_address(src->pages[i])); 4725 } 4726 4727 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4728 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4729 4730 return new; 4731 } 4732 4733 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4734 u64 start, unsigned long len) 4735 { 4736 struct extent_buffer *eb; 4737 int num_pages; 4738 int i; 4739 4740 eb = __alloc_extent_buffer(fs_info, start, len); 4741 if (!eb) 4742 return NULL; 4743 4744 num_pages = num_extent_pages(eb); 4745 for (i = 0; i < num_pages; i++) { 4746 eb->pages[i] = alloc_page(GFP_NOFS); 4747 if (!eb->pages[i]) 4748 goto err; 4749 } 4750 set_extent_buffer_uptodate(eb); 4751 btrfs_set_header_nritems(eb, 0); 4752 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4753 4754 return eb; 4755 err: 4756 for (; i > 0; i--) 4757 __free_page(eb->pages[i - 1]); 4758 __free_extent_buffer(eb); 4759 return NULL; 4760 } 4761 4762 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4763 u64 start) 4764 { 4765 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4766 } 4767 4768 static void check_buffer_tree_ref(struct extent_buffer *eb) 4769 { 4770 int refs; 4771 /* the ref bit is tricky. We have to make sure it is set 4772 * if we have the buffer dirty. Otherwise the 4773 * code to free a buffer can end up dropping a dirty 4774 * page 4775 * 4776 * Once the ref bit is set, it won't go away while the 4777 * buffer is dirty or in writeback, and it also won't 4778 * go away while we have the reference count on the 4779 * eb bumped. 4780 * 4781 * We can't just set the ref bit without bumping the 4782 * ref on the eb because free_extent_buffer might 4783 * see the ref bit and try to clear it. If this happens 4784 * free_extent_buffer might end up dropping our original 4785 * ref by mistake and freeing the page before we are able 4786 * to add one more ref. 4787 * 4788 * So bump the ref count first, then set the bit. If someone 4789 * beat us to it, drop the ref we added. 4790 */ 4791 refs = atomic_read(&eb->refs); 4792 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4793 return; 4794 4795 spin_lock(&eb->refs_lock); 4796 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4797 atomic_inc(&eb->refs); 4798 spin_unlock(&eb->refs_lock); 4799 } 4800 4801 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4802 struct page *accessed) 4803 { 4804 int num_pages, i; 4805 4806 check_buffer_tree_ref(eb); 4807 4808 num_pages = num_extent_pages(eb); 4809 for (i = 0; i < num_pages; i++) { 4810 struct page *p = eb->pages[i]; 4811 4812 if (p != accessed) 4813 mark_page_accessed(p); 4814 } 4815 } 4816 4817 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4818 u64 start) 4819 { 4820 struct extent_buffer *eb; 4821 4822 rcu_read_lock(); 4823 eb = radix_tree_lookup(&fs_info->buffer_radix, 4824 start >> PAGE_SHIFT); 4825 if (eb && atomic_inc_not_zero(&eb->refs)) { 4826 rcu_read_unlock(); 4827 /* 4828 * Lock our eb's refs_lock to avoid races with 4829 * free_extent_buffer. When we get our eb it might be flagged 4830 * with EXTENT_BUFFER_STALE and another task running 4831 * free_extent_buffer might have seen that flag set, 4832 * eb->refs == 2, that the buffer isn't under IO (dirty and 4833 * writeback flags not set) and it's still in the tree (flag 4834 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4835 * of decrementing the extent buffer's reference count twice. 4836 * So here we could race and increment the eb's reference count, 4837 * clear its stale flag, mark it as dirty and drop our reference 4838 * before the other task finishes executing free_extent_buffer, 4839 * which would later result in an attempt to free an extent 4840 * buffer that is dirty. 4841 */ 4842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4843 spin_lock(&eb->refs_lock); 4844 spin_unlock(&eb->refs_lock); 4845 } 4846 mark_extent_buffer_accessed(eb, NULL); 4847 return eb; 4848 } 4849 rcu_read_unlock(); 4850 4851 return NULL; 4852 } 4853 4854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4855 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4856 u64 start) 4857 { 4858 struct extent_buffer *eb, *exists = NULL; 4859 int ret; 4860 4861 eb = find_extent_buffer(fs_info, start); 4862 if (eb) 4863 return eb; 4864 eb = alloc_dummy_extent_buffer(fs_info, start); 4865 if (!eb) 4866 return NULL; 4867 eb->fs_info = fs_info; 4868 again: 4869 ret = radix_tree_preload(GFP_NOFS); 4870 if (ret) 4871 goto free_eb; 4872 spin_lock(&fs_info->buffer_lock); 4873 ret = radix_tree_insert(&fs_info->buffer_radix, 4874 start >> PAGE_SHIFT, eb); 4875 spin_unlock(&fs_info->buffer_lock); 4876 radix_tree_preload_end(); 4877 if (ret == -EEXIST) { 4878 exists = find_extent_buffer(fs_info, start); 4879 if (exists) 4880 goto free_eb; 4881 else 4882 goto again; 4883 } 4884 check_buffer_tree_ref(eb); 4885 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4886 4887 return eb; 4888 free_eb: 4889 btrfs_release_extent_buffer(eb); 4890 return exists; 4891 } 4892 #endif 4893 4894 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4895 u64 start) 4896 { 4897 unsigned long len = fs_info->nodesize; 4898 int num_pages; 4899 int i; 4900 unsigned long index = start >> PAGE_SHIFT; 4901 struct extent_buffer *eb; 4902 struct extent_buffer *exists = NULL; 4903 struct page *p; 4904 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4905 int uptodate = 1; 4906 int ret; 4907 4908 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4909 btrfs_err(fs_info, "bad tree block start %llu", start); 4910 return ERR_PTR(-EINVAL); 4911 } 4912 4913 eb = find_extent_buffer(fs_info, start); 4914 if (eb) 4915 return eb; 4916 4917 eb = __alloc_extent_buffer(fs_info, start, len); 4918 if (!eb) 4919 return ERR_PTR(-ENOMEM); 4920 4921 num_pages = num_extent_pages(eb); 4922 for (i = 0; i < num_pages; i++, index++) { 4923 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4924 if (!p) { 4925 exists = ERR_PTR(-ENOMEM); 4926 goto free_eb; 4927 } 4928 4929 spin_lock(&mapping->private_lock); 4930 if (PagePrivate(p)) { 4931 /* 4932 * We could have already allocated an eb for this page 4933 * and attached one so lets see if we can get a ref on 4934 * the existing eb, and if we can we know it's good and 4935 * we can just return that one, else we know we can just 4936 * overwrite page->private. 4937 */ 4938 exists = (struct extent_buffer *)p->private; 4939 if (atomic_inc_not_zero(&exists->refs)) { 4940 spin_unlock(&mapping->private_lock); 4941 unlock_page(p); 4942 put_page(p); 4943 mark_extent_buffer_accessed(exists, p); 4944 goto free_eb; 4945 } 4946 exists = NULL; 4947 4948 /* 4949 * Do this so attach doesn't complain and we need to 4950 * drop the ref the old guy had. 4951 */ 4952 ClearPagePrivate(p); 4953 WARN_ON(PageDirty(p)); 4954 put_page(p); 4955 } 4956 attach_extent_buffer_page(eb, p); 4957 spin_unlock(&mapping->private_lock); 4958 WARN_ON(PageDirty(p)); 4959 eb->pages[i] = p; 4960 if (!PageUptodate(p)) 4961 uptodate = 0; 4962 4963 /* 4964 * We can't unlock the pages just yet since the extent buffer 4965 * hasn't been properly inserted in the radix tree, this 4966 * opens a race with btree_releasepage which can free a page 4967 * while we are still filling in all pages for the buffer and 4968 * we could crash. 4969 */ 4970 } 4971 if (uptodate) 4972 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4973 again: 4974 ret = radix_tree_preload(GFP_NOFS); 4975 if (ret) { 4976 exists = ERR_PTR(ret); 4977 goto free_eb; 4978 } 4979 4980 spin_lock(&fs_info->buffer_lock); 4981 ret = radix_tree_insert(&fs_info->buffer_radix, 4982 start >> PAGE_SHIFT, eb); 4983 spin_unlock(&fs_info->buffer_lock); 4984 radix_tree_preload_end(); 4985 if (ret == -EEXIST) { 4986 exists = find_extent_buffer(fs_info, start); 4987 if (exists) 4988 goto free_eb; 4989 else 4990 goto again; 4991 } 4992 /* add one reference for the tree */ 4993 check_buffer_tree_ref(eb); 4994 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4995 4996 /* 4997 * Now it's safe to unlock the pages because any calls to 4998 * btree_releasepage will correctly detect that a page belongs to a 4999 * live buffer and won't free them prematurely. 5000 */ 5001 for (i = 0; i < num_pages; i++) 5002 unlock_page(eb->pages[i]); 5003 return eb; 5004 5005 free_eb: 5006 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5007 for (i = 0; i < num_pages; i++) { 5008 if (eb->pages[i]) 5009 unlock_page(eb->pages[i]); 5010 } 5011 5012 btrfs_release_extent_buffer(eb); 5013 return exists; 5014 } 5015 5016 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5017 { 5018 struct extent_buffer *eb = 5019 container_of(head, struct extent_buffer, rcu_head); 5020 5021 __free_extent_buffer(eb); 5022 } 5023 5024 static int release_extent_buffer(struct extent_buffer *eb) 5025 { 5026 lockdep_assert_held(&eb->refs_lock); 5027 5028 WARN_ON(atomic_read(&eb->refs) == 0); 5029 if (atomic_dec_and_test(&eb->refs)) { 5030 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5031 struct btrfs_fs_info *fs_info = eb->fs_info; 5032 5033 spin_unlock(&eb->refs_lock); 5034 5035 spin_lock(&fs_info->buffer_lock); 5036 radix_tree_delete(&fs_info->buffer_radix, 5037 eb->start >> PAGE_SHIFT); 5038 spin_unlock(&fs_info->buffer_lock); 5039 } else { 5040 spin_unlock(&eb->refs_lock); 5041 } 5042 5043 /* Should be safe to release our pages at this point */ 5044 btrfs_release_extent_buffer_pages(eb); 5045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5046 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5047 __free_extent_buffer(eb); 5048 return 1; 5049 } 5050 #endif 5051 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5052 return 1; 5053 } 5054 spin_unlock(&eb->refs_lock); 5055 5056 return 0; 5057 } 5058 5059 void free_extent_buffer(struct extent_buffer *eb) 5060 { 5061 int refs; 5062 int old; 5063 if (!eb) 5064 return; 5065 5066 while (1) { 5067 refs = atomic_read(&eb->refs); 5068 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5069 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5070 refs == 1)) 5071 break; 5072 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5073 if (old == refs) 5074 return; 5075 } 5076 5077 spin_lock(&eb->refs_lock); 5078 if (atomic_read(&eb->refs) == 2 && 5079 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5080 !extent_buffer_under_io(eb) && 5081 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5082 atomic_dec(&eb->refs); 5083 5084 /* 5085 * I know this is terrible, but it's temporary until we stop tracking 5086 * the uptodate bits and such for the extent buffers. 5087 */ 5088 release_extent_buffer(eb); 5089 } 5090 5091 void free_extent_buffer_stale(struct extent_buffer *eb) 5092 { 5093 if (!eb) 5094 return; 5095 5096 spin_lock(&eb->refs_lock); 5097 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5098 5099 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5100 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5101 atomic_dec(&eb->refs); 5102 release_extent_buffer(eb); 5103 } 5104 5105 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5106 { 5107 int i; 5108 int num_pages; 5109 struct page *page; 5110 5111 num_pages = num_extent_pages(eb); 5112 5113 for (i = 0; i < num_pages; i++) { 5114 page = eb->pages[i]; 5115 if (!PageDirty(page)) 5116 continue; 5117 5118 lock_page(page); 5119 WARN_ON(!PagePrivate(page)); 5120 5121 clear_page_dirty_for_io(page); 5122 xa_lock_irq(&page->mapping->i_pages); 5123 if (!PageDirty(page)) 5124 __xa_clear_mark(&page->mapping->i_pages, 5125 page_index(page), PAGECACHE_TAG_DIRTY); 5126 xa_unlock_irq(&page->mapping->i_pages); 5127 ClearPageError(page); 5128 unlock_page(page); 5129 } 5130 WARN_ON(atomic_read(&eb->refs) == 0); 5131 } 5132 5133 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5134 { 5135 int i; 5136 int num_pages; 5137 bool was_dirty; 5138 5139 check_buffer_tree_ref(eb); 5140 5141 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5142 5143 num_pages = num_extent_pages(eb); 5144 WARN_ON(atomic_read(&eb->refs) == 0); 5145 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5146 5147 if (!was_dirty) 5148 for (i = 0; i < num_pages; i++) 5149 set_page_dirty(eb->pages[i]); 5150 5151 #ifdef CONFIG_BTRFS_DEBUG 5152 for (i = 0; i < num_pages; i++) 5153 ASSERT(PageDirty(eb->pages[i])); 5154 #endif 5155 5156 return was_dirty; 5157 } 5158 5159 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5160 { 5161 int i; 5162 struct page *page; 5163 int num_pages; 5164 5165 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5166 num_pages = num_extent_pages(eb); 5167 for (i = 0; i < num_pages; i++) { 5168 page = eb->pages[i]; 5169 if (page) 5170 ClearPageUptodate(page); 5171 } 5172 } 5173 5174 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5175 { 5176 int i; 5177 struct page *page; 5178 int num_pages; 5179 5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5181 num_pages = num_extent_pages(eb); 5182 for (i = 0; i < num_pages; i++) { 5183 page = eb->pages[i]; 5184 SetPageUptodate(page); 5185 } 5186 } 5187 5188 int read_extent_buffer_pages(struct extent_io_tree *tree, 5189 struct extent_buffer *eb, int wait, int mirror_num) 5190 { 5191 int i; 5192 struct page *page; 5193 int err; 5194 int ret = 0; 5195 int locked_pages = 0; 5196 int all_uptodate = 1; 5197 int num_pages; 5198 unsigned long num_reads = 0; 5199 struct bio *bio = NULL; 5200 unsigned long bio_flags = 0; 5201 5202 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5203 return 0; 5204 5205 num_pages = num_extent_pages(eb); 5206 for (i = 0; i < num_pages; i++) { 5207 page = eb->pages[i]; 5208 if (wait == WAIT_NONE) { 5209 if (!trylock_page(page)) 5210 goto unlock_exit; 5211 } else { 5212 lock_page(page); 5213 } 5214 locked_pages++; 5215 } 5216 /* 5217 * We need to firstly lock all pages to make sure that 5218 * the uptodate bit of our pages won't be affected by 5219 * clear_extent_buffer_uptodate(). 5220 */ 5221 for (i = 0; i < num_pages; i++) { 5222 page = eb->pages[i]; 5223 if (!PageUptodate(page)) { 5224 num_reads++; 5225 all_uptodate = 0; 5226 } 5227 } 5228 5229 if (all_uptodate) { 5230 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5231 goto unlock_exit; 5232 } 5233 5234 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5235 eb->read_mirror = 0; 5236 atomic_set(&eb->io_pages, num_reads); 5237 for (i = 0; i < num_pages; i++) { 5238 page = eb->pages[i]; 5239 5240 if (!PageUptodate(page)) { 5241 if (ret) { 5242 atomic_dec(&eb->io_pages); 5243 unlock_page(page); 5244 continue; 5245 } 5246 5247 ClearPageError(page); 5248 err = __extent_read_full_page(tree, page, 5249 btree_get_extent, &bio, 5250 mirror_num, &bio_flags, 5251 REQ_META); 5252 if (err) { 5253 ret = err; 5254 /* 5255 * We use &bio in above __extent_read_full_page, 5256 * so we ensure that if it returns error, the 5257 * current page fails to add itself to bio and 5258 * it's been unlocked. 5259 * 5260 * We must dec io_pages by ourselves. 5261 */ 5262 atomic_dec(&eb->io_pages); 5263 } 5264 } else { 5265 unlock_page(page); 5266 } 5267 } 5268 5269 if (bio) { 5270 err = submit_one_bio(bio, mirror_num, bio_flags); 5271 if (err) 5272 return err; 5273 } 5274 5275 if (ret || wait != WAIT_COMPLETE) 5276 return ret; 5277 5278 for (i = 0; i < num_pages; i++) { 5279 page = eb->pages[i]; 5280 wait_on_page_locked(page); 5281 if (!PageUptodate(page)) 5282 ret = -EIO; 5283 } 5284 5285 return ret; 5286 5287 unlock_exit: 5288 while (locked_pages > 0) { 5289 locked_pages--; 5290 page = eb->pages[locked_pages]; 5291 unlock_page(page); 5292 } 5293 return ret; 5294 } 5295 5296 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5297 unsigned long start, unsigned long len) 5298 { 5299 size_t cur; 5300 size_t offset; 5301 struct page *page; 5302 char *kaddr; 5303 char *dst = (char *)dstv; 5304 size_t start_offset = offset_in_page(eb->start); 5305 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5306 5307 if (start + len > eb->len) { 5308 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5309 eb->start, eb->len, start, len); 5310 memset(dst, 0, len); 5311 return; 5312 } 5313 5314 offset = offset_in_page(start_offset + start); 5315 5316 while (len > 0) { 5317 page = eb->pages[i]; 5318 5319 cur = min(len, (PAGE_SIZE - offset)); 5320 kaddr = page_address(page); 5321 memcpy(dst, kaddr + offset, cur); 5322 5323 dst += cur; 5324 len -= cur; 5325 offset = 0; 5326 i++; 5327 } 5328 } 5329 5330 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5331 void __user *dstv, 5332 unsigned long start, unsigned long len) 5333 { 5334 size_t cur; 5335 size_t offset; 5336 struct page *page; 5337 char *kaddr; 5338 char __user *dst = (char __user *)dstv; 5339 size_t start_offset = offset_in_page(eb->start); 5340 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5341 int ret = 0; 5342 5343 WARN_ON(start > eb->len); 5344 WARN_ON(start + len > eb->start + eb->len); 5345 5346 offset = offset_in_page(start_offset + start); 5347 5348 while (len > 0) { 5349 page = eb->pages[i]; 5350 5351 cur = min(len, (PAGE_SIZE - offset)); 5352 kaddr = page_address(page); 5353 if (copy_to_user(dst, kaddr + offset, cur)) { 5354 ret = -EFAULT; 5355 break; 5356 } 5357 5358 dst += cur; 5359 len -= cur; 5360 offset = 0; 5361 i++; 5362 } 5363 5364 return ret; 5365 } 5366 5367 /* 5368 * return 0 if the item is found within a page. 5369 * return 1 if the item spans two pages. 5370 * return -EINVAL otherwise. 5371 */ 5372 int map_private_extent_buffer(const struct extent_buffer *eb, 5373 unsigned long start, unsigned long min_len, 5374 char **map, unsigned long *map_start, 5375 unsigned long *map_len) 5376 { 5377 size_t offset; 5378 char *kaddr; 5379 struct page *p; 5380 size_t start_offset = offset_in_page(eb->start); 5381 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5382 unsigned long end_i = (start_offset + start + min_len - 1) >> 5383 PAGE_SHIFT; 5384 5385 if (start + min_len > eb->len) { 5386 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5387 eb->start, eb->len, start, min_len); 5388 return -EINVAL; 5389 } 5390 5391 if (i != end_i) 5392 return 1; 5393 5394 if (i == 0) { 5395 offset = start_offset; 5396 *map_start = 0; 5397 } else { 5398 offset = 0; 5399 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5400 } 5401 5402 p = eb->pages[i]; 5403 kaddr = page_address(p); 5404 *map = kaddr + offset; 5405 *map_len = PAGE_SIZE - offset; 5406 return 0; 5407 } 5408 5409 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5410 unsigned long start, unsigned long len) 5411 { 5412 size_t cur; 5413 size_t offset; 5414 struct page *page; 5415 char *kaddr; 5416 char *ptr = (char *)ptrv; 5417 size_t start_offset = offset_in_page(eb->start); 5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5419 int ret = 0; 5420 5421 WARN_ON(start > eb->len); 5422 WARN_ON(start + len > eb->start + eb->len); 5423 5424 offset = offset_in_page(start_offset + start); 5425 5426 while (len > 0) { 5427 page = eb->pages[i]; 5428 5429 cur = min(len, (PAGE_SIZE - offset)); 5430 5431 kaddr = page_address(page); 5432 ret = memcmp(ptr, kaddr + offset, cur); 5433 if (ret) 5434 break; 5435 5436 ptr += cur; 5437 len -= cur; 5438 offset = 0; 5439 i++; 5440 } 5441 return ret; 5442 } 5443 5444 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5445 const void *srcv) 5446 { 5447 char *kaddr; 5448 5449 WARN_ON(!PageUptodate(eb->pages[0])); 5450 kaddr = page_address(eb->pages[0]); 5451 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5452 BTRFS_FSID_SIZE); 5453 } 5454 5455 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5456 { 5457 char *kaddr; 5458 5459 WARN_ON(!PageUptodate(eb->pages[0])); 5460 kaddr = page_address(eb->pages[0]); 5461 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5462 BTRFS_FSID_SIZE); 5463 } 5464 5465 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5466 unsigned long start, unsigned long len) 5467 { 5468 size_t cur; 5469 size_t offset; 5470 struct page *page; 5471 char *kaddr; 5472 char *src = (char *)srcv; 5473 size_t start_offset = offset_in_page(eb->start); 5474 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5475 5476 WARN_ON(start > eb->len); 5477 WARN_ON(start + len > eb->start + eb->len); 5478 5479 offset = offset_in_page(start_offset + start); 5480 5481 while (len > 0) { 5482 page = eb->pages[i]; 5483 WARN_ON(!PageUptodate(page)); 5484 5485 cur = min(len, PAGE_SIZE - offset); 5486 kaddr = page_address(page); 5487 memcpy(kaddr + offset, src, cur); 5488 5489 src += cur; 5490 len -= cur; 5491 offset = 0; 5492 i++; 5493 } 5494 } 5495 5496 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5497 unsigned long len) 5498 { 5499 size_t cur; 5500 size_t offset; 5501 struct page *page; 5502 char *kaddr; 5503 size_t start_offset = offset_in_page(eb->start); 5504 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5505 5506 WARN_ON(start > eb->len); 5507 WARN_ON(start + len > eb->start + eb->len); 5508 5509 offset = offset_in_page(start_offset + start); 5510 5511 while (len > 0) { 5512 page = eb->pages[i]; 5513 WARN_ON(!PageUptodate(page)); 5514 5515 cur = min(len, PAGE_SIZE - offset); 5516 kaddr = page_address(page); 5517 memset(kaddr + offset, 0, cur); 5518 5519 len -= cur; 5520 offset = 0; 5521 i++; 5522 } 5523 } 5524 5525 void copy_extent_buffer_full(struct extent_buffer *dst, 5526 struct extent_buffer *src) 5527 { 5528 int i; 5529 int num_pages; 5530 5531 ASSERT(dst->len == src->len); 5532 5533 num_pages = num_extent_pages(dst); 5534 for (i = 0; i < num_pages; i++) 5535 copy_page(page_address(dst->pages[i]), 5536 page_address(src->pages[i])); 5537 } 5538 5539 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5540 unsigned long dst_offset, unsigned long src_offset, 5541 unsigned long len) 5542 { 5543 u64 dst_len = dst->len; 5544 size_t cur; 5545 size_t offset; 5546 struct page *page; 5547 char *kaddr; 5548 size_t start_offset = offset_in_page(dst->start); 5549 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5550 5551 WARN_ON(src->len != dst_len); 5552 5553 offset = offset_in_page(start_offset + dst_offset); 5554 5555 while (len > 0) { 5556 page = dst->pages[i]; 5557 WARN_ON(!PageUptodate(page)); 5558 5559 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5560 5561 kaddr = page_address(page); 5562 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5563 5564 src_offset += cur; 5565 len -= cur; 5566 offset = 0; 5567 i++; 5568 } 5569 } 5570 5571 /* 5572 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5573 * given bit number 5574 * @eb: the extent buffer 5575 * @start: offset of the bitmap item in the extent buffer 5576 * @nr: bit number 5577 * @page_index: return index of the page in the extent buffer that contains the 5578 * given bit number 5579 * @page_offset: return offset into the page given by page_index 5580 * 5581 * This helper hides the ugliness of finding the byte in an extent buffer which 5582 * contains a given bit. 5583 */ 5584 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5585 unsigned long start, unsigned long nr, 5586 unsigned long *page_index, 5587 size_t *page_offset) 5588 { 5589 size_t start_offset = offset_in_page(eb->start); 5590 size_t byte_offset = BIT_BYTE(nr); 5591 size_t offset; 5592 5593 /* 5594 * The byte we want is the offset of the extent buffer + the offset of 5595 * the bitmap item in the extent buffer + the offset of the byte in the 5596 * bitmap item. 5597 */ 5598 offset = start_offset + start + byte_offset; 5599 5600 *page_index = offset >> PAGE_SHIFT; 5601 *page_offset = offset_in_page(offset); 5602 } 5603 5604 /** 5605 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5606 * @eb: the extent buffer 5607 * @start: offset of the bitmap item in the extent buffer 5608 * @nr: bit number to test 5609 */ 5610 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5611 unsigned long nr) 5612 { 5613 u8 *kaddr; 5614 struct page *page; 5615 unsigned long i; 5616 size_t offset; 5617 5618 eb_bitmap_offset(eb, start, nr, &i, &offset); 5619 page = eb->pages[i]; 5620 WARN_ON(!PageUptodate(page)); 5621 kaddr = page_address(page); 5622 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5623 } 5624 5625 /** 5626 * extent_buffer_bitmap_set - set an area of a bitmap 5627 * @eb: the extent buffer 5628 * @start: offset of the bitmap item in the extent buffer 5629 * @pos: bit number of the first bit 5630 * @len: number of bits to set 5631 */ 5632 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5633 unsigned long pos, unsigned long len) 5634 { 5635 u8 *kaddr; 5636 struct page *page; 5637 unsigned long i; 5638 size_t offset; 5639 const unsigned int size = pos + len; 5640 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5641 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5642 5643 eb_bitmap_offset(eb, start, pos, &i, &offset); 5644 page = eb->pages[i]; 5645 WARN_ON(!PageUptodate(page)); 5646 kaddr = page_address(page); 5647 5648 while (len >= bits_to_set) { 5649 kaddr[offset] |= mask_to_set; 5650 len -= bits_to_set; 5651 bits_to_set = BITS_PER_BYTE; 5652 mask_to_set = ~0; 5653 if (++offset >= PAGE_SIZE && len > 0) { 5654 offset = 0; 5655 page = eb->pages[++i]; 5656 WARN_ON(!PageUptodate(page)); 5657 kaddr = page_address(page); 5658 } 5659 } 5660 if (len) { 5661 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5662 kaddr[offset] |= mask_to_set; 5663 } 5664 } 5665 5666 5667 /** 5668 * extent_buffer_bitmap_clear - clear an area of a bitmap 5669 * @eb: the extent buffer 5670 * @start: offset of the bitmap item in the extent buffer 5671 * @pos: bit number of the first bit 5672 * @len: number of bits to clear 5673 */ 5674 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5675 unsigned long pos, unsigned long len) 5676 { 5677 u8 *kaddr; 5678 struct page *page; 5679 unsigned long i; 5680 size_t offset; 5681 const unsigned int size = pos + len; 5682 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5683 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5684 5685 eb_bitmap_offset(eb, start, pos, &i, &offset); 5686 page = eb->pages[i]; 5687 WARN_ON(!PageUptodate(page)); 5688 kaddr = page_address(page); 5689 5690 while (len >= bits_to_clear) { 5691 kaddr[offset] &= ~mask_to_clear; 5692 len -= bits_to_clear; 5693 bits_to_clear = BITS_PER_BYTE; 5694 mask_to_clear = ~0; 5695 if (++offset >= PAGE_SIZE && len > 0) { 5696 offset = 0; 5697 page = eb->pages[++i]; 5698 WARN_ON(!PageUptodate(page)); 5699 kaddr = page_address(page); 5700 } 5701 } 5702 if (len) { 5703 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5704 kaddr[offset] &= ~mask_to_clear; 5705 } 5706 } 5707 5708 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5709 { 5710 unsigned long distance = (src > dst) ? src - dst : dst - src; 5711 return distance < len; 5712 } 5713 5714 static void copy_pages(struct page *dst_page, struct page *src_page, 5715 unsigned long dst_off, unsigned long src_off, 5716 unsigned long len) 5717 { 5718 char *dst_kaddr = page_address(dst_page); 5719 char *src_kaddr; 5720 int must_memmove = 0; 5721 5722 if (dst_page != src_page) { 5723 src_kaddr = page_address(src_page); 5724 } else { 5725 src_kaddr = dst_kaddr; 5726 if (areas_overlap(src_off, dst_off, len)) 5727 must_memmove = 1; 5728 } 5729 5730 if (must_memmove) 5731 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5732 else 5733 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5734 } 5735 5736 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5737 unsigned long src_offset, unsigned long len) 5738 { 5739 struct btrfs_fs_info *fs_info = dst->fs_info; 5740 size_t cur; 5741 size_t dst_off_in_page; 5742 size_t src_off_in_page; 5743 size_t start_offset = offset_in_page(dst->start); 5744 unsigned long dst_i; 5745 unsigned long src_i; 5746 5747 if (src_offset + len > dst->len) { 5748 btrfs_err(fs_info, 5749 "memmove bogus src_offset %lu move len %lu dst len %lu", 5750 src_offset, len, dst->len); 5751 BUG_ON(1); 5752 } 5753 if (dst_offset + len > dst->len) { 5754 btrfs_err(fs_info, 5755 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5756 dst_offset, len, dst->len); 5757 BUG_ON(1); 5758 } 5759 5760 while (len > 0) { 5761 dst_off_in_page = offset_in_page(start_offset + dst_offset); 5762 src_off_in_page = offset_in_page(start_offset + src_offset); 5763 5764 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5765 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5766 5767 cur = min(len, (unsigned long)(PAGE_SIZE - 5768 src_off_in_page)); 5769 cur = min_t(unsigned long, cur, 5770 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5771 5772 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5773 dst_off_in_page, src_off_in_page, cur); 5774 5775 src_offset += cur; 5776 dst_offset += cur; 5777 len -= cur; 5778 } 5779 } 5780 5781 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5782 unsigned long src_offset, unsigned long len) 5783 { 5784 struct btrfs_fs_info *fs_info = dst->fs_info; 5785 size_t cur; 5786 size_t dst_off_in_page; 5787 size_t src_off_in_page; 5788 unsigned long dst_end = dst_offset + len - 1; 5789 unsigned long src_end = src_offset + len - 1; 5790 size_t start_offset = offset_in_page(dst->start); 5791 unsigned long dst_i; 5792 unsigned long src_i; 5793 5794 if (src_offset + len > dst->len) { 5795 btrfs_err(fs_info, 5796 "memmove bogus src_offset %lu move len %lu len %lu", 5797 src_offset, len, dst->len); 5798 BUG_ON(1); 5799 } 5800 if (dst_offset + len > dst->len) { 5801 btrfs_err(fs_info, 5802 "memmove bogus dst_offset %lu move len %lu len %lu", 5803 dst_offset, len, dst->len); 5804 BUG_ON(1); 5805 } 5806 if (dst_offset < src_offset) { 5807 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5808 return; 5809 } 5810 while (len > 0) { 5811 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5812 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5813 5814 dst_off_in_page = offset_in_page(start_offset + dst_end); 5815 src_off_in_page = offset_in_page(start_offset + src_end); 5816 5817 cur = min_t(unsigned long, len, src_off_in_page + 1); 5818 cur = min(cur, dst_off_in_page + 1); 5819 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5820 dst_off_in_page - cur + 1, 5821 src_off_in_page - cur + 1, cur); 5822 5823 dst_end -= cur; 5824 src_end -= cur; 5825 len -= cur; 5826 } 5827 } 5828 5829 int try_release_extent_buffer(struct page *page) 5830 { 5831 struct extent_buffer *eb; 5832 5833 /* 5834 * We need to make sure nobody is attaching this page to an eb right 5835 * now. 5836 */ 5837 spin_lock(&page->mapping->private_lock); 5838 if (!PagePrivate(page)) { 5839 spin_unlock(&page->mapping->private_lock); 5840 return 1; 5841 } 5842 5843 eb = (struct extent_buffer *)page->private; 5844 BUG_ON(!eb); 5845 5846 /* 5847 * This is a little awful but should be ok, we need to make sure that 5848 * the eb doesn't disappear out from under us while we're looking at 5849 * this page. 5850 */ 5851 spin_lock(&eb->refs_lock); 5852 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5853 spin_unlock(&eb->refs_lock); 5854 spin_unlock(&page->mapping->private_lock); 5855 return 0; 5856 } 5857 spin_unlock(&page->mapping->private_lock); 5858 5859 /* 5860 * If tree ref isn't set then we know the ref on this eb is a real ref, 5861 * so just return, this page will likely be freed soon anyway. 5862 */ 5863 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5864 spin_unlock(&eb->refs_lock); 5865 return 0; 5866 } 5867 5868 return release_extent_buffer(eb); 5869 } 5870