xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 5b4cb650)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	struct inode *inode = tree->private_data;
93 	u64 isize;
94 
95 	if (!inode || !is_data_inode(inode))
96 		return;
97 
98 	isize = i_size_read(inode);
99 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 	}
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head)	do {} while (0)
107 #define btrfs_leak_debug_del(entry)	do {} while (0)
108 #define btrfs_leak_debug_check()	do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
110 #endif
111 
112 #define BUFFER_LRU_MAX 64
113 
114 struct tree_entry {
115 	u64 start;
116 	u64 end;
117 	struct rb_node rb_node;
118 };
119 
120 struct extent_page_data {
121 	struct bio *bio;
122 	struct extent_io_tree *tree;
123 	/* tells writepage not to lock the state bits for this range
124 	 * it still does the unlocking
125 	 */
126 	unsigned int extent_locked:1;
127 
128 	/* tells the submit_bio code to use REQ_SYNC */
129 	unsigned int sync_io:1;
130 };
131 
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 				 struct extent_changeset *changeset,
134 				 int set)
135 {
136 	int ret;
137 
138 	if (!changeset)
139 		return 0;
140 	if (set && (state->state & bits) == bits)
141 		return 0;
142 	if (!set && (state->state & bits) == 0)
143 		return 0;
144 	changeset->bytes_changed += state->end - state->start + 1;
145 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
146 			GFP_ATOMIC);
147 	return ret;
148 }
149 
150 static void flush_write_bio(struct extent_page_data *epd);
151 
152 int __init extent_io_init(void)
153 {
154 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 			sizeof(struct extent_state), 0,
156 			SLAB_MEM_SPREAD, NULL);
157 	if (!extent_state_cache)
158 		return -ENOMEM;
159 
160 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 			sizeof(struct extent_buffer), 0,
162 			SLAB_MEM_SPREAD, NULL);
163 	if (!extent_buffer_cache)
164 		goto free_state_cache;
165 
166 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 			offsetof(struct btrfs_io_bio, bio),
168 			BIOSET_NEED_BVECS))
169 		goto free_buffer_cache;
170 
171 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
172 		goto free_bioset;
173 
174 	return 0;
175 
176 free_bioset:
177 	bioset_exit(&btrfs_bioset);
178 
179 free_buffer_cache:
180 	kmem_cache_destroy(extent_buffer_cache);
181 	extent_buffer_cache = NULL;
182 
183 free_state_cache:
184 	kmem_cache_destroy(extent_state_cache);
185 	extent_state_cache = NULL;
186 	return -ENOMEM;
187 }
188 
189 void __cold extent_io_exit(void)
190 {
191 	btrfs_leak_debug_check();
192 
193 	/*
194 	 * Make sure all delayed rcu free are flushed before we
195 	 * destroy caches.
196 	 */
197 	rcu_barrier();
198 	kmem_cache_destroy(extent_state_cache);
199 	kmem_cache_destroy(extent_buffer_cache);
200 	bioset_exit(&btrfs_bioset);
201 }
202 
203 void extent_io_tree_init(struct extent_io_tree *tree,
204 			 void *private_data)
205 {
206 	tree->state = RB_ROOT;
207 	tree->ops = NULL;
208 	tree->dirty_bytes = 0;
209 	spin_lock_init(&tree->lock);
210 	tree->private_data = private_data;
211 }
212 
213 static struct extent_state *alloc_extent_state(gfp_t mask)
214 {
215 	struct extent_state *state;
216 
217 	/*
218 	 * The given mask might be not appropriate for the slab allocator,
219 	 * drop the unsupported bits
220 	 */
221 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222 	state = kmem_cache_alloc(extent_state_cache, mask);
223 	if (!state)
224 		return state;
225 	state->state = 0;
226 	state->failrec = NULL;
227 	RB_CLEAR_NODE(&state->rb_node);
228 	btrfs_leak_debug_add(&state->leak_list, &states);
229 	refcount_set(&state->refs, 1);
230 	init_waitqueue_head(&state->wq);
231 	trace_alloc_extent_state(state, mask, _RET_IP_);
232 	return state;
233 }
234 
235 void free_extent_state(struct extent_state *state)
236 {
237 	if (!state)
238 		return;
239 	if (refcount_dec_and_test(&state->refs)) {
240 		WARN_ON(extent_state_in_tree(state));
241 		btrfs_leak_debug_del(&state->leak_list);
242 		trace_free_extent_state(state, _RET_IP_);
243 		kmem_cache_free(extent_state_cache, state);
244 	}
245 }
246 
247 static struct rb_node *tree_insert(struct rb_root *root,
248 				   struct rb_node *search_start,
249 				   u64 offset,
250 				   struct rb_node *node,
251 				   struct rb_node ***p_in,
252 				   struct rb_node **parent_in)
253 {
254 	struct rb_node **p;
255 	struct rb_node *parent = NULL;
256 	struct tree_entry *entry;
257 
258 	if (p_in && parent_in) {
259 		p = *p_in;
260 		parent = *parent_in;
261 		goto do_insert;
262 	}
263 
264 	p = search_start ? &search_start : &root->rb_node;
265 	while (*p) {
266 		parent = *p;
267 		entry = rb_entry(parent, struct tree_entry, rb_node);
268 
269 		if (offset < entry->start)
270 			p = &(*p)->rb_left;
271 		else if (offset > entry->end)
272 			p = &(*p)->rb_right;
273 		else
274 			return parent;
275 	}
276 
277 do_insert:
278 	rb_link_node(node, parent, p);
279 	rb_insert_color(node, root);
280 	return NULL;
281 }
282 
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284 				      struct rb_node **prev_ret,
285 				      struct rb_node **next_ret,
286 				      struct rb_node ***p_ret,
287 				      struct rb_node **parent_ret)
288 {
289 	struct rb_root *root = &tree->state;
290 	struct rb_node **n = &root->rb_node;
291 	struct rb_node *prev = NULL;
292 	struct rb_node *orig_prev = NULL;
293 	struct tree_entry *entry;
294 	struct tree_entry *prev_entry = NULL;
295 
296 	while (*n) {
297 		prev = *n;
298 		entry = rb_entry(prev, struct tree_entry, rb_node);
299 		prev_entry = entry;
300 
301 		if (offset < entry->start)
302 			n = &(*n)->rb_left;
303 		else if (offset > entry->end)
304 			n = &(*n)->rb_right;
305 		else
306 			return *n;
307 	}
308 
309 	if (p_ret)
310 		*p_ret = n;
311 	if (parent_ret)
312 		*parent_ret = prev;
313 
314 	if (prev_ret) {
315 		orig_prev = prev;
316 		while (prev && offset > prev_entry->end) {
317 			prev = rb_next(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*prev_ret = prev;
321 		prev = orig_prev;
322 	}
323 
324 	if (next_ret) {
325 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 		while (prev && offset < prev_entry->start) {
327 			prev = rb_prev(prev);
328 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 		}
330 		*next_ret = prev;
331 	}
332 	return NULL;
333 }
334 
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
337 		       u64 offset,
338 		       struct rb_node ***p_ret,
339 		       struct rb_node **parent_ret)
340 {
341 	struct rb_node *prev = NULL;
342 	struct rb_node *ret;
343 
344 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
345 	if (!ret)
346 		return prev;
347 	return ret;
348 }
349 
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 					  u64 offset)
352 {
353 	return tree_search_for_insert(tree, offset, NULL, NULL);
354 }
355 
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static void merge_state(struct extent_io_tree *tree,
366 		        struct extent_state *state)
367 {
368 	struct extent_state *other;
369 	struct rb_node *other_node;
370 
371 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372 		return;
373 
374 	other_node = rb_prev(&state->rb_node);
375 	if (other_node) {
376 		other = rb_entry(other_node, struct extent_state, rb_node);
377 		if (other->end == state->start - 1 &&
378 		    other->state == state->state) {
379 			if (tree->private_data &&
380 			    is_data_inode(tree->private_data))
381 				btrfs_merge_delalloc_extent(tree->private_data,
382 							    state, other);
383 			state->start = other->start;
384 			rb_erase(&other->rb_node, &tree->state);
385 			RB_CLEAR_NODE(&other->rb_node);
386 			free_extent_state(other);
387 		}
388 	}
389 	other_node = rb_next(&state->rb_node);
390 	if (other_node) {
391 		other = rb_entry(other_node, struct extent_state, rb_node);
392 		if (other->start == state->end + 1 &&
393 		    other->state == state->state) {
394 			if (tree->private_data &&
395 			    is_data_inode(tree->private_data))
396 				btrfs_merge_delalloc_extent(tree->private_data,
397 							    state, other);
398 			state->end = other->end;
399 			rb_erase(&other->rb_node, &tree->state);
400 			RB_CLEAR_NODE(&other->rb_node);
401 			free_extent_state(other);
402 		}
403 	}
404 }
405 
406 static void set_state_bits(struct extent_io_tree *tree,
407 			   struct extent_state *state, unsigned *bits,
408 			   struct extent_changeset *changeset);
409 
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421 			struct extent_state *state, u64 start, u64 end,
422 			struct rb_node ***p,
423 			struct rb_node **parent,
424 			unsigned *bits, struct extent_changeset *changeset)
425 {
426 	struct rb_node *node;
427 
428 	if (end < start)
429 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430 		       end, start);
431 	state->start = start;
432 	state->end = end;
433 
434 	set_state_bits(tree, state, bits, changeset);
435 
436 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437 	if (node) {
438 		struct extent_state *found;
439 		found = rb_entry(node, struct extent_state, rb_node);
440 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441 		       found->start, found->end, start, end);
442 		return -EEXIST;
443 	}
444 	merge_state(tree, state);
445 	return 0;
446 }
447 
448 /*
449  * split a given extent state struct in two, inserting the preallocated
450  * struct 'prealloc' as the newly created second half.  'split' indicates an
451  * offset inside 'orig' where it should be split.
452  *
453  * Before calling,
454  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
455  * are two extent state structs in the tree:
456  * prealloc: [orig->start, split - 1]
457  * orig: [ split, orig->end ]
458  *
459  * The tree locks are not taken by this function. They need to be held
460  * by the caller.
461  */
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 		       struct extent_state *prealloc, u64 split)
464 {
465 	struct rb_node *node;
466 
467 	if (tree->private_data && is_data_inode(tree->private_data))
468 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
469 
470 	prealloc->start = orig->start;
471 	prealloc->end = split - 1;
472 	prealloc->state = orig->state;
473 	orig->start = split;
474 
475 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 			   &prealloc->rb_node, NULL, NULL);
477 	if (node) {
478 		free_extent_state(prealloc);
479 		return -EEXIST;
480 	}
481 	return 0;
482 }
483 
484 static struct extent_state *next_state(struct extent_state *state)
485 {
486 	struct rb_node *next = rb_next(&state->rb_node);
487 	if (next)
488 		return rb_entry(next, struct extent_state, rb_node);
489 	else
490 		return NULL;
491 }
492 
493 /*
494  * utility function to clear some bits in an extent state struct.
495  * it will optionally wake up anyone waiting on this state (wake == 1).
496  *
497  * If no bits are set on the state struct after clearing things, the
498  * struct is freed and removed from the tree
499  */
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 					    struct extent_state *state,
502 					    unsigned *bits, int wake,
503 					    struct extent_changeset *changeset)
504 {
505 	struct extent_state *next;
506 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
507 	int ret;
508 
509 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510 		u64 range = state->end - state->start + 1;
511 		WARN_ON(range > tree->dirty_bytes);
512 		tree->dirty_bytes -= range;
513 	}
514 
515 	if (tree->private_data && is_data_inode(tree->private_data))
516 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517 
518 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519 	BUG_ON(ret < 0);
520 	state->state &= ~bits_to_clear;
521 	if (wake)
522 		wake_up(&state->wq);
523 	if (state->state == 0) {
524 		next = next_state(state);
525 		if (extent_state_in_tree(state)) {
526 			rb_erase(&state->rb_node, &tree->state);
527 			RB_CLEAR_NODE(&state->rb_node);
528 			free_extent_state(state);
529 		} else {
530 			WARN_ON(1);
531 		}
532 	} else {
533 		merge_state(tree, state);
534 		next = next_state(state);
535 	}
536 	return next;
537 }
538 
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
541 {
542 	if (!prealloc)
543 		prealloc = alloc_extent_state(GFP_ATOMIC);
544 
545 	return prealloc;
546 }
547 
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 {
550 	struct inode *inode = tree->private_data;
551 
552 	btrfs_panic(btrfs_sb(inode->i_sb), err,
553 	"locking error: extent tree was modified by another thread while locked");
554 }
555 
556 /*
557  * clear some bits on a range in the tree.  This may require splitting
558  * or inserting elements in the tree, so the gfp mask is used to
559  * indicate which allocations or sleeping are allowed.
560  *
561  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562  * the given range from the tree regardless of state (ie for truncate).
563  *
564  * the range [start, end] is inclusive.
565  *
566  * This takes the tree lock, and returns 0 on success and < 0 on error.
567  */
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569 			      unsigned bits, int wake, int delete,
570 			      struct extent_state **cached_state,
571 			      gfp_t mask, struct extent_changeset *changeset)
572 {
573 	struct extent_state *state;
574 	struct extent_state *cached;
575 	struct extent_state *prealloc = NULL;
576 	struct rb_node *node;
577 	u64 last_end;
578 	int err;
579 	int clear = 0;
580 
581 	btrfs_debug_check_extent_io_range(tree, start, end);
582 
583 	if (bits & EXTENT_DELALLOC)
584 		bits |= EXTENT_NORESERVE;
585 
586 	if (delete)
587 		bits |= ~EXTENT_CTLBITS;
588 	bits |= EXTENT_FIRST_DELALLOC;
589 
590 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 		clear = 1;
592 again:
593 	if (!prealloc && gfpflags_allow_blocking(mask)) {
594 		/*
595 		 * Don't care for allocation failure here because we might end
596 		 * up not needing the pre-allocated extent state at all, which
597 		 * is the case if we only have in the tree extent states that
598 		 * cover our input range and don't cover too any other range.
599 		 * If we end up needing a new extent state we allocate it later.
600 		 */
601 		prealloc = alloc_extent_state(mask);
602 	}
603 
604 	spin_lock(&tree->lock);
605 	if (cached_state) {
606 		cached = *cached_state;
607 
608 		if (clear) {
609 			*cached_state = NULL;
610 			cached_state = NULL;
611 		}
612 
613 		if (cached && extent_state_in_tree(cached) &&
614 		    cached->start <= start && cached->end > start) {
615 			if (clear)
616 				refcount_dec(&cached->refs);
617 			state = cached;
618 			goto hit_next;
619 		}
620 		if (clear)
621 			free_extent_state(cached);
622 	}
623 	/*
624 	 * this search will find the extents that end after
625 	 * our range starts
626 	 */
627 	node = tree_search(tree, start);
628 	if (!node)
629 		goto out;
630 	state = rb_entry(node, struct extent_state, rb_node);
631 hit_next:
632 	if (state->start > end)
633 		goto out;
634 	WARN_ON(state->end < start);
635 	last_end = state->end;
636 
637 	/* the state doesn't have the wanted bits, go ahead */
638 	if (!(state->state & bits)) {
639 		state = next_state(state);
640 		goto next;
641 	}
642 
643 	/*
644 	 *     | ---- desired range ---- |
645 	 *  | state | or
646 	 *  | ------------- state -------------- |
647 	 *
648 	 * We need to split the extent we found, and may flip
649 	 * bits on second half.
650 	 *
651 	 * If the extent we found extends past our range, we
652 	 * just split and search again.  It'll get split again
653 	 * the next time though.
654 	 *
655 	 * If the extent we found is inside our range, we clear
656 	 * the desired bit on it.
657 	 */
658 
659 	if (state->start < start) {
660 		prealloc = alloc_extent_state_atomic(prealloc);
661 		BUG_ON(!prealloc);
662 		err = split_state(tree, state, prealloc, start);
663 		if (err)
664 			extent_io_tree_panic(tree, err);
665 
666 		prealloc = NULL;
667 		if (err)
668 			goto out;
669 		if (state->end <= end) {
670 			state = clear_state_bit(tree, state, &bits, wake,
671 						changeset);
672 			goto next;
673 		}
674 		goto search_again;
675 	}
676 	/*
677 	 * | ---- desired range ---- |
678 	 *                        | state |
679 	 * We need to split the extent, and clear the bit
680 	 * on the first half
681 	 */
682 	if (state->start <= end && state->end > end) {
683 		prealloc = alloc_extent_state_atomic(prealloc);
684 		BUG_ON(!prealloc);
685 		err = split_state(tree, state, prealloc, end + 1);
686 		if (err)
687 			extent_io_tree_panic(tree, err);
688 
689 		if (wake)
690 			wake_up(&state->wq);
691 
692 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
693 
694 		prealloc = NULL;
695 		goto out;
696 	}
697 
698 	state = clear_state_bit(tree, state, &bits, wake, changeset);
699 next:
700 	if (last_end == (u64)-1)
701 		goto out;
702 	start = last_end + 1;
703 	if (start <= end && state && !need_resched())
704 		goto hit_next;
705 
706 search_again:
707 	if (start > end)
708 		goto out;
709 	spin_unlock(&tree->lock);
710 	if (gfpflags_allow_blocking(mask))
711 		cond_resched();
712 	goto again;
713 
714 out:
715 	spin_unlock(&tree->lock);
716 	if (prealloc)
717 		free_extent_state(prealloc);
718 
719 	return 0;
720 
721 }
722 
723 static void wait_on_state(struct extent_io_tree *tree,
724 			  struct extent_state *state)
725 		__releases(tree->lock)
726 		__acquires(tree->lock)
727 {
728 	DEFINE_WAIT(wait);
729 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730 	spin_unlock(&tree->lock);
731 	schedule();
732 	spin_lock(&tree->lock);
733 	finish_wait(&state->wq, &wait);
734 }
735 
736 /*
737  * waits for one or more bits to clear on a range in the state tree.
738  * The range [start, end] is inclusive.
739  * The tree lock is taken by this function
740  */
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742 			    unsigned long bits)
743 {
744 	struct extent_state *state;
745 	struct rb_node *node;
746 
747 	btrfs_debug_check_extent_io_range(tree, start, end);
748 
749 	spin_lock(&tree->lock);
750 again:
751 	while (1) {
752 		/*
753 		 * this search will find all the extents that end after
754 		 * our range starts
755 		 */
756 		node = tree_search(tree, start);
757 process_node:
758 		if (!node)
759 			break;
760 
761 		state = rb_entry(node, struct extent_state, rb_node);
762 
763 		if (state->start > end)
764 			goto out;
765 
766 		if (state->state & bits) {
767 			start = state->start;
768 			refcount_inc(&state->refs);
769 			wait_on_state(tree, state);
770 			free_extent_state(state);
771 			goto again;
772 		}
773 		start = state->end + 1;
774 
775 		if (start > end)
776 			break;
777 
778 		if (!cond_resched_lock(&tree->lock)) {
779 			node = rb_next(node);
780 			goto process_node;
781 		}
782 	}
783 out:
784 	spin_unlock(&tree->lock);
785 }
786 
787 static void set_state_bits(struct extent_io_tree *tree,
788 			   struct extent_state *state,
789 			   unsigned *bits, struct extent_changeset *changeset)
790 {
791 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
792 	int ret;
793 
794 	if (tree->private_data && is_data_inode(tree->private_data))
795 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
796 
797 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 		u64 range = state->end - state->start + 1;
799 		tree->dirty_bytes += range;
800 	}
801 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802 	BUG_ON(ret < 0);
803 	state->state |= bits_to_set;
804 }
805 
806 static void cache_state_if_flags(struct extent_state *state,
807 				 struct extent_state **cached_ptr,
808 				 unsigned flags)
809 {
810 	if (cached_ptr && !(*cached_ptr)) {
811 		if (!flags || (state->state & flags)) {
812 			*cached_ptr = state;
813 			refcount_inc(&state->refs);
814 		}
815 	}
816 }
817 
818 static void cache_state(struct extent_state *state,
819 			struct extent_state **cached_ptr)
820 {
821 	return cache_state_if_flags(state, cached_ptr,
822 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
823 }
824 
825 /*
826  * set some bits on a range in the tree.  This may require allocations or
827  * sleeping, so the gfp mask is used to indicate what is allowed.
828  *
829  * If any of the exclusive bits are set, this will fail with -EEXIST if some
830  * part of the range already has the desired bits set.  The start of the
831  * existing range is returned in failed_start in this case.
832  *
833  * [start, end] is inclusive This takes the tree lock.
834  */
835 
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838 		 unsigned bits, unsigned exclusive_bits,
839 		 u64 *failed_start, struct extent_state **cached_state,
840 		 gfp_t mask, struct extent_changeset *changeset)
841 {
842 	struct extent_state *state;
843 	struct extent_state *prealloc = NULL;
844 	struct rb_node *node;
845 	struct rb_node **p;
846 	struct rb_node *parent;
847 	int err = 0;
848 	u64 last_start;
849 	u64 last_end;
850 
851 	btrfs_debug_check_extent_io_range(tree, start, end);
852 
853 	bits |= EXTENT_FIRST_DELALLOC;
854 again:
855 	if (!prealloc && gfpflags_allow_blocking(mask)) {
856 		/*
857 		 * Don't care for allocation failure here because we might end
858 		 * up not needing the pre-allocated extent state at all, which
859 		 * is the case if we only have in the tree extent states that
860 		 * cover our input range and don't cover too any other range.
861 		 * If we end up needing a new extent state we allocate it later.
862 		 */
863 		prealloc = alloc_extent_state(mask);
864 	}
865 
866 	spin_lock(&tree->lock);
867 	if (cached_state && *cached_state) {
868 		state = *cached_state;
869 		if (state->start <= start && state->end > start &&
870 		    extent_state_in_tree(state)) {
871 			node = &state->rb_node;
872 			goto hit_next;
873 		}
874 	}
875 	/*
876 	 * this search will find all the extents that end after
877 	 * our range starts.
878 	 */
879 	node = tree_search_for_insert(tree, start, &p, &parent);
880 	if (!node) {
881 		prealloc = alloc_extent_state_atomic(prealloc);
882 		BUG_ON(!prealloc);
883 		err = insert_state(tree, prealloc, start, end,
884 				   &p, &parent, &bits, changeset);
885 		if (err)
886 			extent_io_tree_panic(tree, err);
887 
888 		cache_state(prealloc, cached_state);
889 		prealloc = NULL;
890 		goto out;
891 	}
892 	state = rb_entry(node, struct extent_state, rb_node);
893 hit_next:
894 	last_start = state->start;
895 	last_end = state->end;
896 
897 	/*
898 	 * | ---- desired range ---- |
899 	 * | state |
900 	 *
901 	 * Just lock what we found and keep going
902 	 */
903 	if (state->start == start && state->end <= end) {
904 		if (state->state & exclusive_bits) {
905 			*failed_start = state->start;
906 			err = -EEXIST;
907 			goto out;
908 		}
909 
910 		set_state_bits(tree, state, &bits, changeset);
911 		cache_state(state, cached_state);
912 		merge_state(tree, state);
913 		if (last_end == (u64)-1)
914 			goto out;
915 		start = last_end + 1;
916 		state = next_state(state);
917 		if (start < end && state && state->start == start &&
918 		    !need_resched())
919 			goto hit_next;
920 		goto search_again;
921 	}
922 
923 	/*
924 	 *     | ---- desired range ---- |
925 	 * | state |
926 	 *   or
927 	 * | ------------- state -------------- |
928 	 *
929 	 * We need to split the extent we found, and may flip bits on
930 	 * second half.
931 	 *
932 	 * If the extent we found extends past our
933 	 * range, we just split and search again.  It'll get split
934 	 * again the next time though.
935 	 *
936 	 * If the extent we found is inside our range, we set the
937 	 * desired bit on it.
938 	 */
939 	if (state->start < start) {
940 		if (state->state & exclusive_bits) {
941 			*failed_start = start;
942 			err = -EEXIST;
943 			goto out;
944 		}
945 
946 		prealloc = alloc_extent_state_atomic(prealloc);
947 		BUG_ON(!prealloc);
948 		err = split_state(tree, state, prealloc, start);
949 		if (err)
950 			extent_io_tree_panic(tree, err);
951 
952 		prealloc = NULL;
953 		if (err)
954 			goto out;
955 		if (state->end <= end) {
956 			set_state_bits(tree, state, &bits, changeset);
957 			cache_state(state, cached_state);
958 			merge_state(tree, state);
959 			if (last_end == (u64)-1)
960 				goto out;
961 			start = last_end + 1;
962 			state = next_state(state);
963 			if (start < end && state && state->start == start &&
964 			    !need_resched())
965 				goto hit_next;
966 		}
967 		goto search_again;
968 	}
969 	/*
970 	 * | ---- desired range ---- |
971 	 *     | state | or               | state |
972 	 *
973 	 * There's a hole, we need to insert something in it and
974 	 * ignore the extent we found.
975 	 */
976 	if (state->start > start) {
977 		u64 this_end;
978 		if (end < last_start)
979 			this_end = end;
980 		else
981 			this_end = last_start - 1;
982 
983 		prealloc = alloc_extent_state_atomic(prealloc);
984 		BUG_ON(!prealloc);
985 
986 		/*
987 		 * Avoid to free 'prealloc' if it can be merged with
988 		 * the later extent.
989 		 */
990 		err = insert_state(tree, prealloc, start, this_end,
991 				   NULL, NULL, &bits, changeset);
992 		if (err)
993 			extent_io_tree_panic(tree, err);
994 
995 		cache_state(prealloc, cached_state);
996 		prealloc = NULL;
997 		start = this_end + 1;
998 		goto search_again;
999 	}
1000 	/*
1001 	 * | ---- desired range ---- |
1002 	 *                        | state |
1003 	 * We need to split the extent, and set the bit
1004 	 * on the first half
1005 	 */
1006 	if (state->start <= end && state->end > end) {
1007 		if (state->state & exclusive_bits) {
1008 			*failed_start = start;
1009 			err = -EEXIST;
1010 			goto out;
1011 		}
1012 
1013 		prealloc = alloc_extent_state_atomic(prealloc);
1014 		BUG_ON(!prealloc);
1015 		err = split_state(tree, state, prealloc, end + 1);
1016 		if (err)
1017 			extent_io_tree_panic(tree, err);
1018 
1019 		set_state_bits(tree, prealloc, &bits, changeset);
1020 		cache_state(prealloc, cached_state);
1021 		merge_state(tree, prealloc);
1022 		prealloc = NULL;
1023 		goto out;
1024 	}
1025 
1026 search_again:
1027 	if (start > end)
1028 		goto out;
1029 	spin_unlock(&tree->lock);
1030 	if (gfpflags_allow_blocking(mask))
1031 		cond_resched();
1032 	goto again;
1033 
1034 out:
1035 	spin_unlock(&tree->lock);
1036 	if (prealloc)
1037 		free_extent_state(prealloc);
1038 
1039 	return err;
1040 
1041 }
1042 
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044 		   unsigned bits, u64 * failed_start,
1045 		   struct extent_state **cached_state, gfp_t mask)
1046 {
1047 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048 				cached_state, mask, NULL);
1049 }
1050 
1051 
1052 /**
1053  * convert_extent_bit - convert all bits in a given range from one bit to
1054  * 			another
1055  * @tree:	the io tree to search
1056  * @start:	the start offset in bytes
1057  * @end:	the end offset in bytes (inclusive)
1058  * @bits:	the bits to set in this range
1059  * @clear_bits:	the bits to clear in this range
1060  * @cached_state:	state that we're going to cache
1061  *
1062  * This will go through and set bits for the given range.  If any states exist
1063  * already in this range they are set with the given bit and cleared of the
1064  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1065  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1066  * boundary bits like LOCK.
1067  *
1068  * All allocations are done with GFP_NOFS.
1069  */
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071 		       unsigned bits, unsigned clear_bits,
1072 		       struct extent_state **cached_state)
1073 {
1074 	struct extent_state *state;
1075 	struct extent_state *prealloc = NULL;
1076 	struct rb_node *node;
1077 	struct rb_node **p;
1078 	struct rb_node *parent;
1079 	int err = 0;
1080 	u64 last_start;
1081 	u64 last_end;
1082 	bool first_iteration = true;
1083 
1084 	btrfs_debug_check_extent_io_range(tree, start, end);
1085 
1086 again:
1087 	if (!prealloc) {
1088 		/*
1089 		 * Best effort, don't worry if extent state allocation fails
1090 		 * here for the first iteration. We might have a cached state
1091 		 * that matches exactly the target range, in which case no
1092 		 * extent state allocations are needed. We'll only know this
1093 		 * after locking the tree.
1094 		 */
1095 		prealloc = alloc_extent_state(GFP_NOFS);
1096 		if (!prealloc && !first_iteration)
1097 			return -ENOMEM;
1098 	}
1099 
1100 	spin_lock(&tree->lock);
1101 	if (cached_state && *cached_state) {
1102 		state = *cached_state;
1103 		if (state->start <= start && state->end > start &&
1104 		    extent_state_in_tree(state)) {
1105 			node = &state->rb_node;
1106 			goto hit_next;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * this search will find all the extents that end after
1112 	 * our range starts.
1113 	 */
1114 	node = tree_search_for_insert(tree, start, &p, &parent);
1115 	if (!node) {
1116 		prealloc = alloc_extent_state_atomic(prealloc);
1117 		if (!prealloc) {
1118 			err = -ENOMEM;
1119 			goto out;
1120 		}
1121 		err = insert_state(tree, prealloc, start, end,
1122 				   &p, &parent, &bits, NULL);
1123 		if (err)
1124 			extent_io_tree_panic(tree, err);
1125 		cache_state(prealloc, cached_state);
1126 		prealloc = NULL;
1127 		goto out;
1128 	}
1129 	state = rb_entry(node, struct extent_state, rb_node);
1130 hit_next:
1131 	last_start = state->start;
1132 	last_end = state->end;
1133 
1134 	/*
1135 	 * | ---- desired range ---- |
1136 	 * | state |
1137 	 *
1138 	 * Just lock what we found and keep going
1139 	 */
1140 	if (state->start == start && state->end <= end) {
1141 		set_state_bits(tree, state, &bits, NULL);
1142 		cache_state(state, cached_state);
1143 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144 		if (last_end == (u64)-1)
1145 			goto out;
1146 		start = last_end + 1;
1147 		if (start < end && state && state->start == start &&
1148 		    !need_resched())
1149 			goto hit_next;
1150 		goto search_again;
1151 	}
1152 
1153 	/*
1154 	 *     | ---- desired range ---- |
1155 	 * | state |
1156 	 *   or
1157 	 * | ------------- state -------------- |
1158 	 *
1159 	 * We need to split the extent we found, and may flip bits on
1160 	 * second half.
1161 	 *
1162 	 * If the extent we found extends past our
1163 	 * range, we just split and search again.  It'll get split
1164 	 * again the next time though.
1165 	 *
1166 	 * If the extent we found is inside our range, we set the
1167 	 * desired bit on it.
1168 	 */
1169 	if (state->start < start) {
1170 		prealloc = alloc_extent_state_atomic(prealloc);
1171 		if (!prealloc) {
1172 			err = -ENOMEM;
1173 			goto out;
1174 		}
1175 		err = split_state(tree, state, prealloc, start);
1176 		if (err)
1177 			extent_io_tree_panic(tree, err);
1178 		prealloc = NULL;
1179 		if (err)
1180 			goto out;
1181 		if (state->end <= end) {
1182 			set_state_bits(tree, state, &bits, NULL);
1183 			cache_state(state, cached_state);
1184 			state = clear_state_bit(tree, state, &clear_bits, 0,
1185 						NULL);
1186 			if (last_end == (u64)-1)
1187 				goto out;
1188 			start = last_end + 1;
1189 			if (start < end && state && state->start == start &&
1190 			    !need_resched())
1191 				goto hit_next;
1192 		}
1193 		goto search_again;
1194 	}
1195 	/*
1196 	 * | ---- desired range ---- |
1197 	 *     | state | or               | state |
1198 	 *
1199 	 * There's a hole, we need to insert something in it and
1200 	 * ignore the extent we found.
1201 	 */
1202 	if (state->start > start) {
1203 		u64 this_end;
1204 		if (end < last_start)
1205 			this_end = end;
1206 		else
1207 			this_end = last_start - 1;
1208 
1209 		prealloc = alloc_extent_state_atomic(prealloc);
1210 		if (!prealloc) {
1211 			err = -ENOMEM;
1212 			goto out;
1213 		}
1214 
1215 		/*
1216 		 * Avoid to free 'prealloc' if it can be merged with
1217 		 * the later extent.
1218 		 */
1219 		err = insert_state(tree, prealloc, start, this_end,
1220 				   NULL, NULL, &bits, NULL);
1221 		if (err)
1222 			extent_io_tree_panic(tree, err);
1223 		cache_state(prealloc, cached_state);
1224 		prealloc = NULL;
1225 		start = this_end + 1;
1226 		goto search_again;
1227 	}
1228 	/*
1229 	 * | ---- desired range ---- |
1230 	 *                        | state |
1231 	 * We need to split the extent, and set the bit
1232 	 * on the first half
1233 	 */
1234 	if (state->start <= end && state->end > end) {
1235 		prealloc = alloc_extent_state_atomic(prealloc);
1236 		if (!prealloc) {
1237 			err = -ENOMEM;
1238 			goto out;
1239 		}
1240 
1241 		err = split_state(tree, state, prealloc, end + 1);
1242 		if (err)
1243 			extent_io_tree_panic(tree, err);
1244 
1245 		set_state_bits(tree, prealloc, &bits, NULL);
1246 		cache_state(prealloc, cached_state);
1247 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1248 		prealloc = NULL;
1249 		goto out;
1250 	}
1251 
1252 search_again:
1253 	if (start > end)
1254 		goto out;
1255 	spin_unlock(&tree->lock);
1256 	cond_resched();
1257 	first_iteration = false;
1258 	goto again;
1259 
1260 out:
1261 	spin_unlock(&tree->lock);
1262 	if (prealloc)
1263 		free_extent_state(prealloc);
1264 
1265 	return err;
1266 }
1267 
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270 			   unsigned bits, struct extent_changeset *changeset)
1271 {
1272 	/*
1273 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1274 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1275 	 * either fail with -EEXIST or changeset will record the whole
1276 	 * range.
1277 	 */
1278 	BUG_ON(bits & EXTENT_LOCKED);
1279 
1280 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1281 				changeset);
1282 }
1283 
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285 		     unsigned bits, int wake, int delete,
1286 		     struct extent_state **cached)
1287 {
1288 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289 				  cached, GFP_NOFS, NULL);
1290 }
1291 
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293 		unsigned bits, struct extent_changeset *changeset)
1294 {
1295 	/*
1296 	 * Don't support EXTENT_LOCKED case, same reason as
1297 	 * set_record_extent_bits().
1298 	 */
1299 	BUG_ON(bits & EXTENT_LOCKED);
1300 
1301 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1302 				  changeset);
1303 }
1304 
1305 /*
1306  * either insert or lock state struct between start and end use mask to tell
1307  * us if waiting is desired.
1308  */
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310 		     struct extent_state **cached_state)
1311 {
1312 	int err;
1313 	u64 failed_start;
1314 
1315 	while (1) {
1316 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317 				       EXTENT_LOCKED, &failed_start,
1318 				       cached_state, GFP_NOFS, NULL);
1319 		if (err == -EEXIST) {
1320 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 			start = failed_start;
1322 		} else
1323 			break;
1324 		WARN_ON(start > end);
1325 	}
1326 	return err;
1327 }
1328 
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331 	int err;
1332 	u64 failed_start;
1333 
1334 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335 			       &failed_start, NULL, GFP_NOFS, NULL);
1336 	if (err == -EEXIST) {
1337 		if (failed_start > start)
1338 			clear_extent_bit(tree, start, failed_start - 1,
1339 					 EXTENT_LOCKED, 1, 0, NULL);
1340 		return 0;
1341 	}
1342 	return 1;
1343 }
1344 
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1346 {
1347 	unsigned long index = start >> PAGE_SHIFT;
1348 	unsigned long end_index = end >> PAGE_SHIFT;
1349 	struct page *page;
1350 
1351 	while (index <= end_index) {
1352 		page = find_get_page(inode->i_mapping, index);
1353 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354 		clear_page_dirty_for_io(page);
1355 		put_page(page);
1356 		index++;
1357 	}
1358 }
1359 
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362 	unsigned long index = start >> PAGE_SHIFT;
1363 	unsigned long end_index = end >> PAGE_SHIFT;
1364 	struct page *page;
1365 
1366 	while (index <= end_index) {
1367 		page = find_get_page(inode->i_mapping, index);
1368 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 		__set_page_dirty_nobuffers(page);
1370 		account_page_redirty(page);
1371 		put_page(page);
1372 		index++;
1373 	}
1374 }
1375 
1376 /* find the first state struct with 'bits' set after 'start', and
1377  * return it.  tree->lock must be held.  NULL will returned if
1378  * nothing was found after 'start'
1379  */
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382 			    u64 start, unsigned bits)
1383 {
1384 	struct rb_node *node;
1385 	struct extent_state *state;
1386 
1387 	/*
1388 	 * this search will find all the extents that end after
1389 	 * our range starts.
1390 	 */
1391 	node = tree_search(tree, start);
1392 	if (!node)
1393 		goto out;
1394 
1395 	while (1) {
1396 		state = rb_entry(node, struct extent_state, rb_node);
1397 		if (state->end >= start && (state->state & bits))
1398 			return state;
1399 
1400 		node = rb_next(node);
1401 		if (!node)
1402 			break;
1403 	}
1404 out:
1405 	return NULL;
1406 }
1407 
1408 /*
1409  * find the first offset in the io tree with 'bits' set. zero is
1410  * returned if we find something, and *start_ret and *end_ret are
1411  * set to reflect the state struct that was found.
1412  *
1413  * If nothing was found, 1 is returned. If found something, return 0.
1414  */
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1417 			  struct extent_state **cached_state)
1418 {
1419 	struct extent_state *state;
1420 	int ret = 1;
1421 
1422 	spin_lock(&tree->lock);
1423 	if (cached_state && *cached_state) {
1424 		state = *cached_state;
1425 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1426 			while ((state = next_state(state)) != NULL) {
1427 				if (state->state & bits)
1428 					goto got_it;
1429 			}
1430 			free_extent_state(*cached_state);
1431 			*cached_state = NULL;
1432 			goto out;
1433 		}
1434 		free_extent_state(*cached_state);
1435 		*cached_state = NULL;
1436 	}
1437 
1438 	state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440 	if (state) {
1441 		cache_state_if_flags(state, cached_state, 0);
1442 		*start_ret = state->start;
1443 		*end_ret = state->end;
1444 		ret = 0;
1445 	}
1446 out:
1447 	spin_unlock(&tree->lock);
1448 	return ret;
1449 }
1450 
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * true is returned if we find something, false if nothing was in the tree
1456  */
1457 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1458 					u64 *start, u64 *end, u64 max_bytes,
1459 					struct extent_state **cached_state)
1460 {
1461 	struct rb_node *node;
1462 	struct extent_state *state;
1463 	u64 cur_start = *start;
1464 	bool found = false;
1465 	u64 total_bytes = 0;
1466 
1467 	spin_lock(&tree->lock);
1468 
1469 	/*
1470 	 * this search will find all the extents that end after
1471 	 * our range starts.
1472 	 */
1473 	node = tree_search(tree, cur_start);
1474 	if (!node) {
1475 		*end = (u64)-1;
1476 		goto out;
1477 	}
1478 
1479 	while (1) {
1480 		state = rb_entry(node, struct extent_state, rb_node);
1481 		if (found && (state->start != cur_start ||
1482 			      (state->state & EXTENT_BOUNDARY))) {
1483 			goto out;
1484 		}
1485 		if (!(state->state & EXTENT_DELALLOC)) {
1486 			if (!found)
1487 				*end = state->end;
1488 			goto out;
1489 		}
1490 		if (!found) {
1491 			*start = state->start;
1492 			*cached_state = state;
1493 			refcount_inc(&state->refs);
1494 		}
1495 		found = true;
1496 		*end = state->end;
1497 		cur_start = state->end + 1;
1498 		node = rb_next(node);
1499 		total_bytes += state->end - state->start + 1;
1500 		if (total_bytes >= max_bytes)
1501 			break;
1502 		if (!node)
1503 			break;
1504 	}
1505 out:
1506 	spin_unlock(&tree->lock);
1507 	return found;
1508 }
1509 
1510 static int __process_pages_contig(struct address_space *mapping,
1511 				  struct page *locked_page,
1512 				  pgoff_t start_index, pgoff_t end_index,
1513 				  unsigned long page_ops, pgoff_t *index_ret);
1514 
1515 static noinline void __unlock_for_delalloc(struct inode *inode,
1516 					   struct page *locked_page,
1517 					   u64 start, u64 end)
1518 {
1519 	unsigned long index = start >> PAGE_SHIFT;
1520 	unsigned long end_index = end >> PAGE_SHIFT;
1521 
1522 	ASSERT(locked_page);
1523 	if (index == locked_page->index && end_index == index)
1524 		return;
1525 
1526 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1527 			       PAGE_UNLOCK, NULL);
1528 }
1529 
1530 static noinline int lock_delalloc_pages(struct inode *inode,
1531 					struct page *locked_page,
1532 					u64 delalloc_start,
1533 					u64 delalloc_end)
1534 {
1535 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1536 	unsigned long index_ret = index;
1537 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1538 	int ret;
1539 
1540 	ASSERT(locked_page);
1541 	if (index == locked_page->index && index == end_index)
1542 		return 0;
1543 
1544 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1545 				     end_index, PAGE_LOCK, &index_ret);
1546 	if (ret == -EAGAIN)
1547 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1548 				      (u64)index_ret << PAGE_SHIFT);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1554  * more than @max_bytes.  @Start and @end are used to return the range,
1555  *
1556  * Return: true if we find something
1557  *         false if nothing was in the tree
1558  */
1559 EXPORT_FOR_TESTS
1560 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1561 				    struct extent_io_tree *tree,
1562 				    struct page *locked_page, u64 *start,
1563 				    u64 *end)
1564 {
1565 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1566 	u64 delalloc_start;
1567 	u64 delalloc_end;
1568 	bool found;
1569 	struct extent_state *cached_state = NULL;
1570 	int ret;
1571 	int loops = 0;
1572 
1573 again:
1574 	/* step one, find a bunch of delalloc bytes starting at start */
1575 	delalloc_start = *start;
1576 	delalloc_end = 0;
1577 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1578 				    max_bytes, &cached_state);
1579 	if (!found || delalloc_end <= *start) {
1580 		*start = delalloc_start;
1581 		*end = delalloc_end;
1582 		free_extent_state(cached_state);
1583 		return false;
1584 	}
1585 
1586 	/*
1587 	 * start comes from the offset of locked_page.  We have to lock
1588 	 * pages in order, so we can't process delalloc bytes before
1589 	 * locked_page
1590 	 */
1591 	if (delalloc_start < *start)
1592 		delalloc_start = *start;
1593 
1594 	/*
1595 	 * make sure to limit the number of pages we try to lock down
1596 	 */
1597 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1598 		delalloc_end = delalloc_start + max_bytes - 1;
1599 
1600 	/* step two, lock all the pages after the page that has start */
1601 	ret = lock_delalloc_pages(inode, locked_page,
1602 				  delalloc_start, delalloc_end);
1603 	ASSERT(!ret || ret == -EAGAIN);
1604 	if (ret == -EAGAIN) {
1605 		/* some of the pages are gone, lets avoid looping by
1606 		 * shortening the size of the delalloc range we're searching
1607 		 */
1608 		free_extent_state(cached_state);
1609 		cached_state = NULL;
1610 		if (!loops) {
1611 			max_bytes = PAGE_SIZE;
1612 			loops = 1;
1613 			goto again;
1614 		} else {
1615 			found = false;
1616 			goto out_failed;
1617 		}
1618 	}
1619 
1620 	/* step three, lock the state bits for the whole range */
1621 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1622 
1623 	/* then test to make sure it is all still delalloc */
1624 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1625 			     EXTENT_DELALLOC, 1, cached_state);
1626 	if (!ret) {
1627 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1628 				     &cached_state);
1629 		__unlock_for_delalloc(inode, locked_page,
1630 			      delalloc_start, delalloc_end);
1631 		cond_resched();
1632 		goto again;
1633 	}
1634 	free_extent_state(cached_state);
1635 	*start = delalloc_start;
1636 	*end = delalloc_end;
1637 out_failed:
1638 	return found;
1639 }
1640 
1641 static int __process_pages_contig(struct address_space *mapping,
1642 				  struct page *locked_page,
1643 				  pgoff_t start_index, pgoff_t end_index,
1644 				  unsigned long page_ops, pgoff_t *index_ret)
1645 {
1646 	unsigned long nr_pages = end_index - start_index + 1;
1647 	unsigned long pages_locked = 0;
1648 	pgoff_t index = start_index;
1649 	struct page *pages[16];
1650 	unsigned ret;
1651 	int err = 0;
1652 	int i;
1653 
1654 	if (page_ops & PAGE_LOCK) {
1655 		ASSERT(page_ops == PAGE_LOCK);
1656 		ASSERT(index_ret && *index_ret == start_index);
1657 	}
1658 
1659 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1660 		mapping_set_error(mapping, -EIO);
1661 
1662 	while (nr_pages > 0) {
1663 		ret = find_get_pages_contig(mapping, index,
1664 				     min_t(unsigned long,
1665 				     nr_pages, ARRAY_SIZE(pages)), pages);
1666 		if (ret == 0) {
1667 			/*
1668 			 * Only if we're going to lock these pages,
1669 			 * can we find nothing at @index.
1670 			 */
1671 			ASSERT(page_ops & PAGE_LOCK);
1672 			err = -EAGAIN;
1673 			goto out;
1674 		}
1675 
1676 		for (i = 0; i < ret; i++) {
1677 			if (page_ops & PAGE_SET_PRIVATE2)
1678 				SetPagePrivate2(pages[i]);
1679 
1680 			if (pages[i] == locked_page) {
1681 				put_page(pages[i]);
1682 				pages_locked++;
1683 				continue;
1684 			}
1685 			if (page_ops & PAGE_CLEAR_DIRTY)
1686 				clear_page_dirty_for_io(pages[i]);
1687 			if (page_ops & PAGE_SET_WRITEBACK)
1688 				set_page_writeback(pages[i]);
1689 			if (page_ops & PAGE_SET_ERROR)
1690 				SetPageError(pages[i]);
1691 			if (page_ops & PAGE_END_WRITEBACK)
1692 				end_page_writeback(pages[i]);
1693 			if (page_ops & PAGE_UNLOCK)
1694 				unlock_page(pages[i]);
1695 			if (page_ops & PAGE_LOCK) {
1696 				lock_page(pages[i]);
1697 				if (!PageDirty(pages[i]) ||
1698 				    pages[i]->mapping != mapping) {
1699 					unlock_page(pages[i]);
1700 					put_page(pages[i]);
1701 					err = -EAGAIN;
1702 					goto out;
1703 				}
1704 			}
1705 			put_page(pages[i]);
1706 			pages_locked++;
1707 		}
1708 		nr_pages -= ret;
1709 		index += ret;
1710 		cond_resched();
1711 	}
1712 out:
1713 	if (err && index_ret)
1714 		*index_ret = start_index + pages_locked - 1;
1715 	return err;
1716 }
1717 
1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719 				 u64 delalloc_end, struct page *locked_page,
1720 				 unsigned clear_bits,
1721 				 unsigned long page_ops)
1722 {
1723 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1724 			 NULL);
1725 
1726 	__process_pages_contig(inode->i_mapping, locked_page,
1727 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1728 			       page_ops, NULL);
1729 }
1730 
1731 /*
1732  * count the number of bytes in the tree that have a given bit(s)
1733  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1734  * cached.  The total number found is returned.
1735  */
1736 u64 count_range_bits(struct extent_io_tree *tree,
1737 		     u64 *start, u64 search_end, u64 max_bytes,
1738 		     unsigned bits, int contig)
1739 {
1740 	struct rb_node *node;
1741 	struct extent_state *state;
1742 	u64 cur_start = *start;
1743 	u64 total_bytes = 0;
1744 	u64 last = 0;
1745 	int found = 0;
1746 
1747 	if (WARN_ON(search_end <= cur_start))
1748 		return 0;
1749 
1750 	spin_lock(&tree->lock);
1751 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752 		total_bytes = tree->dirty_bytes;
1753 		goto out;
1754 	}
1755 	/*
1756 	 * this search will find all the extents that end after
1757 	 * our range starts.
1758 	 */
1759 	node = tree_search(tree, cur_start);
1760 	if (!node)
1761 		goto out;
1762 
1763 	while (1) {
1764 		state = rb_entry(node, struct extent_state, rb_node);
1765 		if (state->start > search_end)
1766 			break;
1767 		if (contig && found && state->start > last + 1)
1768 			break;
1769 		if (state->end >= cur_start && (state->state & bits) == bits) {
1770 			total_bytes += min(search_end, state->end) + 1 -
1771 				       max(cur_start, state->start);
1772 			if (total_bytes >= max_bytes)
1773 				break;
1774 			if (!found) {
1775 				*start = max(cur_start, state->start);
1776 				found = 1;
1777 			}
1778 			last = state->end;
1779 		} else if (contig && found) {
1780 			break;
1781 		}
1782 		node = rb_next(node);
1783 		if (!node)
1784 			break;
1785 	}
1786 out:
1787 	spin_unlock(&tree->lock);
1788 	return total_bytes;
1789 }
1790 
1791 /*
1792  * set the private field for a given byte offset in the tree.  If there isn't
1793  * an extent_state there already, this does nothing.
1794  */
1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1796 		struct io_failure_record *failrec)
1797 {
1798 	struct rb_node *node;
1799 	struct extent_state *state;
1800 	int ret = 0;
1801 
1802 	spin_lock(&tree->lock);
1803 	/*
1804 	 * this search will find all the extents that end after
1805 	 * our range starts.
1806 	 */
1807 	node = tree_search(tree, start);
1808 	if (!node) {
1809 		ret = -ENOENT;
1810 		goto out;
1811 	}
1812 	state = rb_entry(node, struct extent_state, rb_node);
1813 	if (state->start != start) {
1814 		ret = -ENOENT;
1815 		goto out;
1816 	}
1817 	state->failrec = failrec;
1818 out:
1819 	spin_unlock(&tree->lock);
1820 	return ret;
1821 }
1822 
1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1824 		struct io_failure_record **failrec)
1825 {
1826 	struct rb_node *node;
1827 	struct extent_state *state;
1828 	int ret = 0;
1829 
1830 	spin_lock(&tree->lock);
1831 	/*
1832 	 * this search will find all the extents that end after
1833 	 * our range starts.
1834 	 */
1835 	node = tree_search(tree, start);
1836 	if (!node) {
1837 		ret = -ENOENT;
1838 		goto out;
1839 	}
1840 	state = rb_entry(node, struct extent_state, rb_node);
1841 	if (state->start != start) {
1842 		ret = -ENOENT;
1843 		goto out;
1844 	}
1845 	*failrec = state->failrec;
1846 out:
1847 	spin_unlock(&tree->lock);
1848 	return ret;
1849 }
1850 
1851 /*
1852  * searches a range in the state tree for a given mask.
1853  * If 'filled' == 1, this returns 1 only if every extent in the tree
1854  * has the bits set.  Otherwise, 1 is returned if any bit in the
1855  * range is found set.
1856  */
1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1858 		   unsigned bits, int filled, struct extent_state *cached)
1859 {
1860 	struct extent_state *state = NULL;
1861 	struct rb_node *node;
1862 	int bitset = 0;
1863 
1864 	spin_lock(&tree->lock);
1865 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1866 	    cached->end > start)
1867 		node = &cached->rb_node;
1868 	else
1869 		node = tree_search(tree, start);
1870 	while (node && start <= end) {
1871 		state = rb_entry(node, struct extent_state, rb_node);
1872 
1873 		if (filled && state->start > start) {
1874 			bitset = 0;
1875 			break;
1876 		}
1877 
1878 		if (state->start > end)
1879 			break;
1880 
1881 		if (state->state & bits) {
1882 			bitset = 1;
1883 			if (!filled)
1884 				break;
1885 		} else if (filled) {
1886 			bitset = 0;
1887 			break;
1888 		}
1889 
1890 		if (state->end == (u64)-1)
1891 			break;
1892 
1893 		start = state->end + 1;
1894 		if (start > end)
1895 			break;
1896 		node = rb_next(node);
1897 		if (!node) {
1898 			if (filled)
1899 				bitset = 0;
1900 			break;
1901 		}
1902 	}
1903 	spin_unlock(&tree->lock);
1904 	return bitset;
1905 }
1906 
1907 /*
1908  * helper function to set a given page up to date if all the
1909  * extents in the tree for that page are up to date
1910  */
1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1912 {
1913 	u64 start = page_offset(page);
1914 	u64 end = start + PAGE_SIZE - 1;
1915 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1916 		SetPageUptodate(page);
1917 }
1918 
1919 int free_io_failure(struct extent_io_tree *failure_tree,
1920 		    struct extent_io_tree *io_tree,
1921 		    struct io_failure_record *rec)
1922 {
1923 	int ret;
1924 	int err = 0;
1925 
1926 	set_state_failrec(failure_tree, rec->start, NULL);
1927 	ret = clear_extent_bits(failure_tree, rec->start,
1928 				rec->start + rec->len - 1,
1929 				EXTENT_LOCKED | EXTENT_DIRTY);
1930 	if (ret)
1931 		err = ret;
1932 
1933 	ret = clear_extent_bits(io_tree, rec->start,
1934 				rec->start + rec->len - 1,
1935 				EXTENT_DAMAGED);
1936 	if (ret && !err)
1937 		err = ret;
1938 
1939 	kfree(rec);
1940 	return err;
1941 }
1942 
1943 /*
1944  * this bypasses the standard btrfs submit functions deliberately, as
1945  * the standard behavior is to write all copies in a raid setup. here we only
1946  * want to write the one bad copy. so we do the mapping for ourselves and issue
1947  * submit_bio directly.
1948  * to avoid any synchronization issues, wait for the data after writing, which
1949  * actually prevents the read that triggered the error from finishing.
1950  * currently, there can be no more than two copies of every data bit. thus,
1951  * exactly one rewrite is required.
1952  */
1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954 		      u64 length, u64 logical, struct page *page,
1955 		      unsigned int pg_offset, int mirror_num)
1956 {
1957 	struct bio *bio;
1958 	struct btrfs_device *dev;
1959 	u64 map_length = 0;
1960 	u64 sector;
1961 	struct btrfs_bio *bbio = NULL;
1962 	int ret;
1963 
1964 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1965 	BUG_ON(!mirror_num);
1966 
1967 	bio = btrfs_io_bio_alloc(1);
1968 	bio->bi_iter.bi_size = 0;
1969 	map_length = length;
1970 
1971 	/*
1972 	 * Avoid races with device replace and make sure our bbio has devices
1973 	 * associated to its stripes that don't go away while we are doing the
1974 	 * read repair operation.
1975 	 */
1976 	btrfs_bio_counter_inc_blocked(fs_info);
1977 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1978 		/*
1979 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980 		 * to update all raid stripes, but here we just want to correct
1981 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982 		 * stripe's dev and sector.
1983 		 */
1984 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985 				      &map_length, &bbio, 0);
1986 		if (ret) {
1987 			btrfs_bio_counter_dec(fs_info);
1988 			bio_put(bio);
1989 			return -EIO;
1990 		}
1991 		ASSERT(bbio->mirror_num == 1);
1992 	} else {
1993 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994 				      &map_length, &bbio, mirror_num);
1995 		if (ret) {
1996 			btrfs_bio_counter_dec(fs_info);
1997 			bio_put(bio);
1998 			return -EIO;
1999 		}
2000 		BUG_ON(mirror_num != bbio->mirror_num);
2001 	}
2002 
2003 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2004 	bio->bi_iter.bi_sector = sector;
2005 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2006 	btrfs_put_bbio(bbio);
2007 	if (!dev || !dev->bdev ||
2008 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2009 		btrfs_bio_counter_dec(fs_info);
2010 		bio_put(bio);
2011 		return -EIO;
2012 	}
2013 	bio_set_dev(bio, dev->bdev);
2014 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2015 	bio_add_page(bio, page, length, pg_offset);
2016 
2017 	if (btrfsic_submit_bio_wait(bio)) {
2018 		/* try to remap that extent elsewhere? */
2019 		btrfs_bio_counter_dec(fs_info);
2020 		bio_put(bio);
2021 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2022 		return -EIO;
2023 	}
2024 
2025 	btrfs_info_rl_in_rcu(fs_info,
2026 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2027 				  ino, start,
2028 				  rcu_str_deref(dev->name), sector);
2029 	btrfs_bio_counter_dec(fs_info);
2030 	bio_put(bio);
2031 	return 0;
2032 }
2033 
2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035 			 struct extent_buffer *eb, int mirror_num)
2036 {
2037 	u64 start = eb->start;
2038 	int i, num_pages = num_extent_pages(eb);
2039 	int ret = 0;
2040 
2041 	if (sb_rdonly(fs_info->sb))
2042 		return -EROFS;
2043 
2044 	for (i = 0; i < num_pages; i++) {
2045 		struct page *p = eb->pages[i];
2046 
2047 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2048 					start - page_offset(p), mirror_num);
2049 		if (ret)
2050 			break;
2051 		start += PAGE_SIZE;
2052 	}
2053 
2054 	return ret;
2055 }
2056 
2057 /*
2058  * each time an IO finishes, we do a fast check in the IO failure tree
2059  * to see if we need to process or clean up an io_failure_record
2060  */
2061 int clean_io_failure(struct btrfs_fs_info *fs_info,
2062 		     struct extent_io_tree *failure_tree,
2063 		     struct extent_io_tree *io_tree, u64 start,
2064 		     struct page *page, u64 ino, unsigned int pg_offset)
2065 {
2066 	u64 private;
2067 	struct io_failure_record *failrec;
2068 	struct extent_state *state;
2069 	int num_copies;
2070 	int ret;
2071 
2072 	private = 0;
2073 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2074 			       EXTENT_DIRTY, 0);
2075 	if (!ret)
2076 		return 0;
2077 
2078 	ret = get_state_failrec(failure_tree, start, &failrec);
2079 	if (ret)
2080 		return 0;
2081 
2082 	BUG_ON(!failrec->this_mirror);
2083 
2084 	if (failrec->in_validation) {
2085 		/* there was no real error, just free the record */
2086 		btrfs_debug(fs_info,
2087 			"clean_io_failure: freeing dummy error at %llu",
2088 			failrec->start);
2089 		goto out;
2090 	}
2091 	if (sb_rdonly(fs_info->sb))
2092 		goto out;
2093 
2094 	spin_lock(&io_tree->lock);
2095 	state = find_first_extent_bit_state(io_tree,
2096 					    failrec->start,
2097 					    EXTENT_LOCKED);
2098 	spin_unlock(&io_tree->lock);
2099 
2100 	if (state && state->start <= failrec->start &&
2101 	    state->end >= failrec->start + failrec->len - 1) {
2102 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 					      failrec->len);
2104 		if (num_copies > 1)  {
2105 			repair_io_failure(fs_info, ino, start, failrec->len,
2106 					  failrec->logical, page, pg_offset,
2107 					  failrec->failed_mirror);
2108 		}
2109 	}
2110 
2111 out:
2112 	free_io_failure(failure_tree, io_tree, failrec);
2113 
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Can be called when
2119  * - hold extent lock
2120  * - under ordered extent
2121  * - the inode is freeing
2122  */
2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2124 {
2125 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2126 	struct io_failure_record *failrec;
2127 	struct extent_state *state, *next;
2128 
2129 	if (RB_EMPTY_ROOT(&failure_tree->state))
2130 		return;
2131 
2132 	spin_lock(&failure_tree->lock);
2133 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2134 	while (state) {
2135 		if (state->start > end)
2136 			break;
2137 
2138 		ASSERT(state->end <= end);
2139 
2140 		next = next_state(state);
2141 
2142 		failrec = state->failrec;
2143 		free_extent_state(state);
2144 		kfree(failrec);
2145 
2146 		state = next;
2147 	}
2148 	spin_unlock(&failure_tree->lock);
2149 }
2150 
2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2152 		struct io_failure_record **failrec_ret)
2153 {
2154 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2155 	struct io_failure_record *failrec;
2156 	struct extent_map *em;
2157 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2160 	int ret;
2161 	u64 logical;
2162 
2163 	ret = get_state_failrec(failure_tree, start, &failrec);
2164 	if (ret) {
2165 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2166 		if (!failrec)
2167 			return -ENOMEM;
2168 
2169 		failrec->start = start;
2170 		failrec->len = end - start + 1;
2171 		failrec->this_mirror = 0;
2172 		failrec->bio_flags = 0;
2173 		failrec->in_validation = 0;
2174 
2175 		read_lock(&em_tree->lock);
2176 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2177 		if (!em) {
2178 			read_unlock(&em_tree->lock);
2179 			kfree(failrec);
2180 			return -EIO;
2181 		}
2182 
2183 		if (em->start > start || em->start + em->len <= start) {
2184 			free_extent_map(em);
2185 			em = NULL;
2186 		}
2187 		read_unlock(&em_tree->lock);
2188 		if (!em) {
2189 			kfree(failrec);
2190 			return -EIO;
2191 		}
2192 
2193 		logical = start - em->start;
2194 		logical = em->block_start + logical;
2195 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196 			logical = em->block_start;
2197 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198 			extent_set_compress_type(&failrec->bio_flags,
2199 						 em->compress_type);
2200 		}
2201 
2202 		btrfs_debug(fs_info,
2203 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204 			logical, start, failrec->len);
2205 
2206 		failrec->logical = logical;
2207 		free_extent_map(em);
2208 
2209 		/* set the bits in the private failure tree */
2210 		ret = set_extent_bits(failure_tree, start, end,
2211 					EXTENT_LOCKED | EXTENT_DIRTY);
2212 		if (ret >= 0)
2213 			ret = set_state_failrec(failure_tree, start, failrec);
2214 		/* set the bits in the inode's tree */
2215 		if (ret >= 0)
2216 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2217 		if (ret < 0) {
2218 			kfree(failrec);
2219 			return ret;
2220 		}
2221 	} else {
2222 		btrfs_debug(fs_info,
2223 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224 			failrec->logical, failrec->start, failrec->len,
2225 			failrec->in_validation);
2226 		/*
2227 		 * when data can be on disk more than twice, add to failrec here
2228 		 * (e.g. with a list for failed_mirror) to make
2229 		 * clean_io_failure() clean all those errors at once.
2230 		 */
2231 	}
2232 
2233 	*failrec_ret = failrec;
2234 
2235 	return 0;
2236 }
2237 
2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2239 			   struct io_failure_record *failrec, int failed_mirror)
2240 {
2241 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2242 	int num_copies;
2243 
2244 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2245 	if (num_copies == 1) {
2246 		/*
2247 		 * we only have a single copy of the data, so don't bother with
2248 		 * all the retry and error correction code that follows. no
2249 		 * matter what the error is, it is very likely to persist.
2250 		 */
2251 		btrfs_debug(fs_info,
2252 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253 			num_copies, failrec->this_mirror, failed_mirror);
2254 		return false;
2255 	}
2256 
2257 	/*
2258 	 * there are two premises:
2259 	 *	a) deliver good data to the caller
2260 	 *	b) correct the bad sectors on disk
2261 	 */
2262 	if (failed_bio_pages > 1) {
2263 		/*
2264 		 * to fulfill b), we need to know the exact failing sectors, as
2265 		 * we don't want to rewrite any more than the failed ones. thus,
2266 		 * we need separate read requests for the failed bio
2267 		 *
2268 		 * if the following BUG_ON triggers, our validation request got
2269 		 * merged. we need separate requests for our algorithm to work.
2270 		 */
2271 		BUG_ON(failrec->in_validation);
2272 		failrec->in_validation = 1;
2273 		failrec->this_mirror = failed_mirror;
2274 	} else {
2275 		/*
2276 		 * we're ready to fulfill a) and b) alongside. get a good copy
2277 		 * of the failed sector and if we succeed, we have setup
2278 		 * everything for repair_io_failure to do the rest for us.
2279 		 */
2280 		if (failrec->in_validation) {
2281 			BUG_ON(failrec->this_mirror != failed_mirror);
2282 			failrec->in_validation = 0;
2283 			failrec->this_mirror = 0;
2284 		}
2285 		failrec->failed_mirror = failed_mirror;
2286 		failrec->this_mirror++;
2287 		if (failrec->this_mirror == failed_mirror)
2288 			failrec->this_mirror++;
2289 	}
2290 
2291 	if (failrec->this_mirror > num_copies) {
2292 		btrfs_debug(fs_info,
2293 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294 			num_copies, failrec->this_mirror, failed_mirror);
2295 		return false;
2296 	}
2297 
2298 	return true;
2299 }
2300 
2301 
2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303 				    struct io_failure_record *failrec,
2304 				    struct page *page, int pg_offset, int icsum,
2305 				    bio_end_io_t *endio_func, void *data)
2306 {
2307 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2308 	struct bio *bio;
2309 	struct btrfs_io_bio *btrfs_failed_bio;
2310 	struct btrfs_io_bio *btrfs_bio;
2311 
2312 	bio = btrfs_io_bio_alloc(1);
2313 	bio->bi_end_io = endio_func;
2314 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2315 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2316 	bio->bi_iter.bi_size = 0;
2317 	bio->bi_private = data;
2318 
2319 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 	if (btrfs_failed_bio->csum) {
2321 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322 
2323 		btrfs_bio = btrfs_io_bio(bio);
2324 		btrfs_bio->csum = btrfs_bio->csum_inline;
2325 		icsum *= csum_size;
2326 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2327 		       csum_size);
2328 	}
2329 
2330 	bio_add_page(bio, page, failrec->len, pg_offset);
2331 
2332 	return bio;
2333 }
2334 
2335 /*
2336  * This is a generic handler for readpage errors. If other copies exist, read
2337  * those and write back good data to the failed position. Does not investigate
2338  * in remapping the failed extent elsewhere, hoping the device will be smart
2339  * enough to do this as needed
2340  */
2341 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2342 			      struct page *page, u64 start, u64 end,
2343 			      int failed_mirror)
2344 {
2345 	struct io_failure_record *failrec;
2346 	struct inode *inode = page->mapping->host;
2347 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2348 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2349 	struct bio *bio;
2350 	int read_mode = 0;
2351 	blk_status_t status;
2352 	int ret;
2353 	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2354 
2355 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2356 
2357 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2358 	if (ret)
2359 		return ret;
2360 
2361 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2362 				    failed_mirror)) {
2363 		free_io_failure(failure_tree, tree, failrec);
2364 		return -EIO;
2365 	}
2366 
2367 	if (failed_bio_pages > 1)
2368 		read_mode |= REQ_FAILFAST_DEV;
2369 
2370 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2371 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2372 				      start - page_offset(page),
2373 				      (int)phy_offset, failed_bio->bi_end_io,
2374 				      NULL);
2375 	bio->bi_opf = REQ_OP_READ | read_mode;
2376 
2377 	btrfs_debug(btrfs_sb(inode->i_sb),
2378 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2379 		read_mode, failrec->this_mirror, failrec->in_validation);
2380 
2381 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2382 					 failrec->bio_flags, 0);
2383 	if (status) {
2384 		free_io_failure(failure_tree, tree, failrec);
2385 		bio_put(bio);
2386 		ret = blk_status_to_errno(status);
2387 	}
2388 
2389 	return ret;
2390 }
2391 
2392 /* lots and lots of room for performance fixes in the end_bio funcs */
2393 
2394 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2395 {
2396 	int uptodate = (err == 0);
2397 	int ret = 0;
2398 
2399 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2400 
2401 	if (!uptodate) {
2402 		ClearPageUptodate(page);
2403 		SetPageError(page);
2404 		ret = err < 0 ? err : -EIO;
2405 		mapping_set_error(page->mapping, ret);
2406 	}
2407 }
2408 
2409 /*
2410  * after a writepage IO is done, we need to:
2411  * clear the uptodate bits on error
2412  * clear the writeback bits in the extent tree for this IO
2413  * end_page_writeback if the page has no more pending IO
2414  *
2415  * Scheduling is not allowed, so the extent state tree is expected
2416  * to have one and only one object corresponding to this IO.
2417  */
2418 static void end_bio_extent_writepage(struct bio *bio)
2419 {
2420 	int error = blk_status_to_errno(bio->bi_status);
2421 	struct bio_vec *bvec;
2422 	u64 start;
2423 	u64 end;
2424 	int i;
2425 
2426 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2427 	bio_for_each_segment_all(bvec, bio, i) {
2428 		struct page *page = bvec->bv_page;
2429 		struct inode *inode = page->mapping->host;
2430 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2431 
2432 		/* We always issue full-page reads, but if some block
2433 		 * in a page fails to read, blk_update_request() will
2434 		 * advance bv_offset and adjust bv_len to compensate.
2435 		 * Print a warning for nonzero offsets, and an error
2436 		 * if they don't add up to a full page.  */
2437 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2438 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2439 				btrfs_err(fs_info,
2440 				   "partial page write in btrfs with offset %u and length %u",
2441 					bvec->bv_offset, bvec->bv_len);
2442 			else
2443 				btrfs_info(fs_info,
2444 				   "incomplete page write in btrfs with offset %u and length %u",
2445 					bvec->bv_offset, bvec->bv_len);
2446 		}
2447 
2448 		start = page_offset(page);
2449 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2450 
2451 		end_extent_writepage(page, error, start, end);
2452 		end_page_writeback(page);
2453 	}
2454 
2455 	bio_put(bio);
2456 }
2457 
2458 static void
2459 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2460 			      int uptodate)
2461 {
2462 	struct extent_state *cached = NULL;
2463 	u64 end = start + len - 1;
2464 
2465 	if (uptodate && tree->track_uptodate)
2466 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2467 	unlock_extent_cached_atomic(tree, start, end, &cached);
2468 }
2469 
2470 /*
2471  * after a readpage IO is done, we need to:
2472  * clear the uptodate bits on error
2473  * set the uptodate bits if things worked
2474  * set the page up to date if all extents in the tree are uptodate
2475  * clear the lock bit in the extent tree
2476  * unlock the page if there are no other extents locked for it
2477  *
2478  * Scheduling is not allowed, so the extent state tree is expected
2479  * to have one and only one object corresponding to this IO.
2480  */
2481 static void end_bio_extent_readpage(struct bio *bio)
2482 {
2483 	struct bio_vec *bvec;
2484 	int uptodate = !bio->bi_status;
2485 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2486 	struct extent_io_tree *tree, *failure_tree;
2487 	u64 offset = 0;
2488 	u64 start;
2489 	u64 end;
2490 	u64 len;
2491 	u64 extent_start = 0;
2492 	u64 extent_len = 0;
2493 	int mirror;
2494 	int ret;
2495 	int i;
2496 
2497 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2498 	bio_for_each_segment_all(bvec, bio, i) {
2499 		struct page *page = bvec->bv_page;
2500 		struct inode *inode = page->mapping->host;
2501 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2502 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2503 			!= BTRFS_BTREE_INODE_OBJECTID;
2504 
2505 		btrfs_debug(fs_info,
2506 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2507 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2508 			io_bio->mirror_num);
2509 		tree = &BTRFS_I(inode)->io_tree;
2510 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2511 
2512 		/* We always issue full-page reads, but if some block
2513 		 * in a page fails to read, blk_update_request() will
2514 		 * advance bv_offset and adjust bv_len to compensate.
2515 		 * Print a warning for nonzero offsets, and an error
2516 		 * if they don't add up to a full page.  */
2517 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2518 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2519 				btrfs_err(fs_info,
2520 					"partial page read in btrfs with offset %u and length %u",
2521 					bvec->bv_offset, bvec->bv_len);
2522 			else
2523 				btrfs_info(fs_info,
2524 					"incomplete page read in btrfs with offset %u and length %u",
2525 					bvec->bv_offset, bvec->bv_len);
2526 		}
2527 
2528 		start = page_offset(page);
2529 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2530 		len = bvec->bv_len;
2531 
2532 		mirror = io_bio->mirror_num;
2533 		if (likely(uptodate)) {
2534 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2535 							      page, start, end,
2536 							      mirror);
2537 			if (ret)
2538 				uptodate = 0;
2539 			else
2540 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2541 						 failure_tree, tree, start,
2542 						 page,
2543 						 btrfs_ino(BTRFS_I(inode)), 0);
2544 		}
2545 
2546 		if (likely(uptodate))
2547 			goto readpage_ok;
2548 
2549 		if (data_inode) {
2550 
2551 			/*
2552 			 * The generic bio_readpage_error handles errors the
2553 			 * following way: If possible, new read requests are
2554 			 * created and submitted and will end up in
2555 			 * end_bio_extent_readpage as well (if we're lucky,
2556 			 * not in the !uptodate case). In that case it returns
2557 			 * 0 and we just go on with the next page in our bio.
2558 			 * If it can't handle the error it will return -EIO and
2559 			 * we remain responsible for that page.
2560 			 */
2561 			ret = bio_readpage_error(bio, offset, page, start, end,
2562 						 mirror);
2563 			if (ret == 0) {
2564 				uptodate = !bio->bi_status;
2565 				offset += len;
2566 				continue;
2567 			}
2568 		} else {
2569 			struct extent_buffer *eb;
2570 
2571 			eb = (struct extent_buffer *)page->private;
2572 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2573 			eb->read_mirror = mirror;
2574 			atomic_dec(&eb->io_pages);
2575 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2576 					       &eb->bflags))
2577 				btree_readahead_hook(eb, -EIO);
2578 
2579 			ret = -EIO;
2580 		}
2581 readpage_ok:
2582 		if (likely(uptodate)) {
2583 			loff_t i_size = i_size_read(inode);
2584 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2585 			unsigned off;
2586 
2587 			/* Zero out the end if this page straddles i_size */
2588 			off = offset_in_page(i_size);
2589 			if (page->index == end_index && off)
2590 				zero_user_segment(page, off, PAGE_SIZE);
2591 			SetPageUptodate(page);
2592 		} else {
2593 			ClearPageUptodate(page);
2594 			SetPageError(page);
2595 		}
2596 		unlock_page(page);
2597 		offset += len;
2598 
2599 		if (unlikely(!uptodate)) {
2600 			if (extent_len) {
2601 				endio_readpage_release_extent(tree,
2602 							      extent_start,
2603 							      extent_len, 1);
2604 				extent_start = 0;
2605 				extent_len = 0;
2606 			}
2607 			endio_readpage_release_extent(tree, start,
2608 						      end - start + 1, 0);
2609 		} else if (!extent_len) {
2610 			extent_start = start;
2611 			extent_len = end + 1 - start;
2612 		} else if (extent_start + extent_len == start) {
2613 			extent_len += end + 1 - start;
2614 		} else {
2615 			endio_readpage_release_extent(tree, extent_start,
2616 						      extent_len, uptodate);
2617 			extent_start = start;
2618 			extent_len = end + 1 - start;
2619 		}
2620 	}
2621 
2622 	if (extent_len)
2623 		endio_readpage_release_extent(tree, extent_start, extent_len,
2624 					      uptodate);
2625 	btrfs_io_bio_free_csum(io_bio);
2626 	bio_put(bio);
2627 }
2628 
2629 /*
2630  * Initialize the members up to but not including 'bio'. Use after allocating a
2631  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2632  * 'bio' because use of __GFP_ZERO is not supported.
2633  */
2634 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2635 {
2636 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2637 }
2638 
2639 /*
2640  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2641  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2642  * for the appropriate container_of magic
2643  */
2644 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2645 {
2646 	struct bio *bio;
2647 
2648 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2649 	bio_set_dev(bio, bdev);
2650 	bio->bi_iter.bi_sector = first_byte >> 9;
2651 	btrfs_io_bio_init(btrfs_io_bio(bio));
2652 	return bio;
2653 }
2654 
2655 struct bio *btrfs_bio_clone(struct bio *bio)
2656 {
2657 	struct btrfs_io_bio *btrfs_bio;
2658 	struct bio *new;
2659 
2660 	/* Bio allocation backed by a bioset does not fail */
2661 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2662 	btrfs_bio = btrfs_io_bio(new);
2663 	btrfs_io_bio_init(btrfs_bio);
2664 	btrfs_bio->iter = bio->bi_iter;
2665 	return new;
2666 }
2667 
2668 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2669 {
2670 	struct bio *bio;
2671 
2672 	/* Bio allocation backed by a bioset does not fail */
2673 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2674 	btrfs_io_bio_init(btrfs_io_bio(bio));
2675 	return bio;
2676 }
2677 
2678 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2679 {
2680 	struct bio *bio;
2681 	struct btrfs_io_bio *btrfs_bio;
2682 
2683 	/* this will never fail when it's backed by a bioset */
2684 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2685 	ASSERT(bio);
2686 
2687 	btrfs_bio = btrfs_io_bio(bio);
2688 	btrfs_io_bio_init(btrfs_bio);
2689 
2690 	bio_trim(bio, offset >> 9, size >> 9);
2691 	btrfs_bio->iter = bio->bi_iter;
2692 	return bio;
2693 }
2694 
2695 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2696 				       unsigned long bio_flags)
2697 {
2698 	blk_status_t ret = 0;
2699 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2700 	struct page *page = bvec->bv_page;
2701 	struct extent_io_tree *tree = bio->bi_private;
2702 	u64 start;
2703 
2704 	start = page_offset(page) + bvec->bv_offset;
2705 
2706 	bio->bi_private = NULL;
2707 
2708 	if (tree->ops)
2709 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2710 					   mirror_num, bio_flags, start);
2711 	else
2712 		btrfsic_submit_bio(bio);
2713 
2714 	return blk_status_to_errno(ret);
2715 }
2716 
2717 /*
2718  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2719  * @tree:	tree so we can call our merge_bio hook
2720  * @wbc:	optional writeback control for io accounting
2721  * @page:	page to add to the bio
2722  * @pg_offset:	offset of the new bio or to check whether we are adding
2723  *              a contiguous page to the previous one
2724  * @size:	portion of page that we want to write
2725  * @offset:	starting offset in the page
2726  * @bdev:	attach newly created bios to this bdev
2727  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2728  * @end_io_func:     end_io callback for new bio
2729  * @mirror_num:	     desired mirror to read/write
2730  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2731  * @bio_flags:	flags of the current bio to see if we can merge them
2732  */
2733 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2734 			      struct writeback_control *wbc,
2735 			      struct page *page, u64 offset,
2736 			      size_t size, unsigned long pg_offset,
2737 			      struct block_device *bdev,
2738 			      struct bio **bio_ret,
2739 			      bio_end_io_t end_io_func,
2740 			      int mirror_num,
2741 			      unsigned long prev_bio_flags,
2742 			      unsigned long bio_flags,
2743 			      bool force_bio_submit)
2744 {
2745 	int ret = 0;
2746 	struct bio *bio;
2747 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2748 	sector_t sector = offset >> 9;
2749 
2750 	ASSERT(bio_ret);
2751 
2752 	if (*bio_ret) {
2753 		bool contig;
2754 		bool can_merge = true;
2755 
2756 		bio = *bio_ret;
2757 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2758 			contig = bio->bi_iter.bi_sector == sector;
2759 		else
2760 			contig = bio_end_sector(bio) == sector;
2761 
2762 		ASSERT(tree->ops);
2763 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2764 			can_merge = false;
2765 
2766 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2767 		    force_bio_submit ||
2768 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2769 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2770 			if (ret < 0) {
2771 				*bio_ret = NULL;
2772 				return ret;
2773 			}
2774 			bio = NULL;
2775 		} else {
2776 			if (wbc)
2777 				wbc_account_io(wbc, page, page_size);
2778 			return 0;
2779 		}
2780 	}
2781 
2782 	bio = btrfs_bio_alloc(bdev, offset);
2783 	bio_add_page(bio, page, page_size, pg_offset);
2784 	bio->bi_end_io = end_io_func;
2785 	bio->bi_private = tree;
2786 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2787 	bio->bi_opf = opf;
2788 	if (wbc) {
2789 		wbc_init_bio(wbc, bio);
2790 		wbc_account_io(wbc, page, page_size);
2791 	}
2792 
2793 	*bio_ret = bio;
2794 
2795 	return ret;
2796 }
2797 
2798 static void attach_extent_buffer_page(struct extent_buffer *eb,
2799 				      struct page *page)
2800 {
2801 	if (!PagePrivate(page)) {
2802 		SetPagePrivate(page);
2803 		get_page(page);
2804 		set_page_private(page, (unsigned long)eb);
2805 	} else {
2806 		WARN_ON(page->private != (unsigned long)eb);
2807 	}
2808 }
2809 
2810 void set_page_extent_mapped(struct page *page)
2811 {
2812 	if (!PagePrivate(page)) {
2813 		SetPagePrivate(page);
2814 		get_page(page);
2815 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2816 	}
2817 }
2818 
2819 static struct extent_map *
2820 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2821 		 u64 start, u64 len, get_extent_t *get_extent,
2822 		 struct extent_map **em_cached)
2823 {
2824 	struct extent_map *em;
2825 
2826 	if (em_cached && *em_cached) {
2827 		em = *em_cached;
2828 		if (extent_map_in_tree(em) && start >= em->start &&
2829 		    start < extent_map_end(em)) {
2830 			refcount_inc(&em->refs);
2831 			return em;
2832 		}
2833 
2834 		free_extent_map(em);
2835 		*em_cached = NULL;
2836 	}
2837 
2838 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2839 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2840 		BUG_ON(*em_cached);
2841 		refcount_inc(&em->refs);
2842 		*em_cached = em;
2843 	}
2844 	return em;
2845 }
2846 /*
2847  * basic readpage implementation.  Locked extent state structs are inserted
2848  * into the tree that are removed when the IO is done (by the end_io
2849  * handlers)
2850  * XXX JDM: This needs looking at to ensure proper page locking
2851  * return 0 on success, otherwise return error
2852  */
2853 static int __do_readpage(struct extent_io_tree *tree,
2854 			 struct page *page,
2855 			 get_extent_t *get_extent,
2856 			 struct extent_map **em_cached,
2857 			 struct bio **bio, int mirror_num,
2858 			 unsigned long *bio_flags, unsigned int read_flags,
2859 			 u64 *prev_em_start)
2860 {
2861 	struct inode *inode = page->mapping->host;
2862 	u64 start = page_offset(page);
2863 	const u64 end = start + PAGE_SIZE - 1;
2864 	u64 cur = start;
2865 	u64 extent_offset;
2866 	u64 last_byte = i_size_read(inode);
2867 	u64 block_start;
2868 	u64 cur_end;
2869 	struct extent_map *em;
2870 	struct block_device *bdev;
2871 	int ret = 0;
2872 	int nr = 0;
2873 	size_t pg_offset = 0;
2874 	size_t iosize;
2875 	size_t disk_io_size;
2876 	size_t blocksize = inode->i_sb->s_blocksize;
2877 	unsigned long this_bio_flag = 0;
2878 
2879 	set_page_extent_mapped(page);
2880 
2881 	if (!PageUptodate(page)) {
2882 		if (cleancache_get_page(page) == 0) {
2883 			BUG_ON(blocksize != PAGE_SIZE);
2884 			unlock_extent(tree, start, end);
2885 			goto out;
2886 		}
2887 	}
2888 
2889 	if (page->index == last_byte >> PAGE_SHIFT) {
2890 		char *userpage;
2891 		size_t zero_offset = offset_in_page(last_byte);
2892 
2893 		if (zero_offset) {
2894 			iosize = PAGE_SIZE - zero_offset;
2895 			userpage = kmap_atomic(page);
2896 			memset(userpage + zero_offset, 0, iosize);
2897 			flush_dcache_page(page);
2898 			kunmap_atomic(userpage);
2899 		}
2900 	}
2901 	while (cur <= end) {
2902 		bool force_bio_submit = false;
2903 		u64 offset;
2904 
2905 		if (cur >= last_byte) {
2906 			char *userpage;
2907 			struct extent_state *cached = NULL;
2908 
2909 			iosize = PAGE_SIZE - pg_offset;
2910 			userpage = kmap_atomic(page);
2911 			memset(userpage + pg_offset, 0, iosize);
2912 			flush_dcache_page(page);
2913 			kunmap_atomic(userpage);
2914 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2915 					    &cached, GFP_NOFS);
2916 			unlock_extent_cached(tree, cur,
2917 					     cur + iosize - 1, &cached);
2918 			break;
2919 		}
2920 		em = __get_extent_map(inode, page, pg_offset, cur,
2921 				      end - cur + 1, get_extent, em_cached);
2922 		if (IS_ERR_OR_NULL(em)) {
2923 			SetPageError(page);
2924 			unlock_extent(tree, cur, end);
2925 			break;
2926 		}
2927 		extent_offset = cur - em->start;
2928 		BUG_ON(extent_map_end(em) <= cur);
2929 		BUG_ON(end < cur);
2930 
2931 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2932 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2933 			extent_set_compress_type(&this_bio_flag,
2934 						 em->compress_type);
2935 		}
2936 
2937 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2938 		cur_end = min(extent_map_end(em) - 1, end);
2939 		iosize = ALIGN(iosize, blocksize);
2940 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2941 			disk_io_size = em->block_len;
2942 			offset = em->block_start;
2943 		} else {
2944 			offset = em->block_start + extent_offset;
2945 			disk_io_size = iosize;
2946 		}
2947 		bdev = em->bdev;
2948 		block_start = em->block_start;
2949 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2950 			block_start = EXTENT_MAP_HOLE;
2951 
2952 		/*
2953 		 * If we have a file range that points to a compressed extent
2954 		 * and it's followed by a consecutive file range that points to
2955 		 * to the same compressed extent (possibly with a different
2956 		 * offset and/or length, so it either points to the whole extent
2957 		 * or only part of it), we must make sure we do not submit a
2958 		 * single bio to populate the pages for the 2 ranges because
2959 		 * this makes the compressed extent read zero out the pages
2960 		 * belonging to the 2nd range. Imagine the following scenario:
2961 		 *
2962 		 *  File layout
2963 		 *  [0 - 8K]                     [8K - 24K]
2964 		 *    |                               |
2965 		 *    |                               |
2966 		 * points to extent X,         points to extent X,
2967 		 * offset 4K, length of 8K     offset 0, length 16K
2968 		 *
2969 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2970 		 *
2971 		 * If the bio to read the compressed extent covers both ranges,
2972 		 * it will decompress extent X into the pages belonging to the
2973 		 * first range and then it will stop, zeroing out the remaining
2974 		 * pages that belong to the other range that points to extent X.
2975 		 * So here we make sure we submit 2 bios, one for the first
2976 		 * range and another one for the third range. Both will target
2977 		 * the same physical extent from disk, but we can't currently
2978 		 * make the compressed bio endio callback populate the pages
2979 		 * for both ranges because each compressed bio is tightly
2980 		 * coupled with a single extent map, and each range can have
2981 		 * an extent map with a different offset value relative to the
2982 		 * uncompressed data of our extent and different lengths. This
2983 		 * is a corner case so we prioritize correctness over
2984 		 * non-optimal behavior (submitting 2 bios for the same extent).
2985 		 */
2986 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2987 		    prev_em_start && *prev_em_start != (u64)-1 &&
2988 		    *prev_em_start != em->orig_start)
2989 			force_bio_submit = true;
2990 
2991 		if (prev_em_start)
2992 			*prev_em_start = em->orig_start;
2993 
2994 		free_extent_map(em);
2995 		em = NULL;
2996 
2997 		/* we've found a hole, just zero and go on */
2998 		if (block_start == EXTENT_MAP_HOLE) {
2999 			char *userpage;
3000 			struct extent_state *cached = NULL;
3001 
3002 			userpage = kmap_atomic(page);
3003 			memset(userpage + pg_offset, 0, iosize);
3004 			flush_dcache_page(page);
3005 			kunmap_atomic(userpage);
3006 
3007 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3008 					    &cached, GFP_NOFS);
3009 			unlock_extent_cached(tree, cur,
3010 					     cur + iosize - 1, &cached);
3011 			cur = cur + iosize;
3012 			pg_offset += iosize;
3013 			continue;
3014 		}
3015 		/* the get_extent function already copied into the page */
3016 		if (test_range_bit(tree, cur, cur_end,
3017 				   EXTENT_UPTODATE, 1, NULL)) {
3018 			check_page_uptodate(tree, page);
3019 			unlock_extent(tree, cur, cur + iosize - 1);
3020 			cur = cur + iosize;
3021 			pg_offset += iosize;
3022 			continue;
3023 		}
3024 		/* we have an inline extent but it didn't get marked up
3025 		 * to date.  Error out
3026 		 */
3027 		if (block_start == EXTENT_MAP_INLINE) {
3028 			SetPageError(page);
3029 			unlock_extent(tree, cur, cur + iosize - 1);
3030 			cur = cur + iosize;
3031 			pg_offset += iosize;
3032 			continue;
3033 		}
3034 
3035 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3036 					 page, offset, disk_io_size,
3037 					 pg_offset, bdev, bio,
3038 					 end_bio_extent_readpage, mirror_num,
3039 					 *bio_flags,
3040 					 this_bio_flag,
3041 					 force_bio_submit);
3042 		if (!ret) {
3043 			nr++;
3044 			*bio_flags = this_bio_flag;
3045 		} else {
3046 			SetPageError(page);
3047 			unlock_extent(tree, cur, cur + iosize - 1);
3048 			goto out;
3049 		}
3050 		cur = cur + iosize;
3051 		pg_offset += iosize;
3052 	}
3053 out:
3054 	if (!nr) {
3055 		if (!PageError(page))
3056 			SetPageUptodate(page);
3057 		unlock_page(page);
3058 	}
3059 	return ret;
3060 }
3061 
3062 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3063 					     struct page *pages[], int nr_pages,
3064 					     u64 start, u64 end,
3065 					     struct extent_map **em_cached,
3066 					     struct bio **bio,
3067 					     unsigned long *bio_flags,
3068 					     u64 *prev_em_start)
3069 {
3070 	struct inode *inode;
3071 	struct btrfs_ordered_extent *ordered;
3072 	int index;
3073 
3074 	inode = pages[0]->mapping->host;
3075 	while (1) {
3076 		lock_extent(tree, start, end);
3077 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3078 						     end - start + 1);
3079 		if (!ordered)
3080 			break;
3081 		unlock_extent(tree, start, end);
3082 		btrfs_start_ordered_extent(inode, ordered, 1);
3083 		btrfs_put_ordered_extent(ordered);
3084 	}
3085 
3086 	for (index = 0; index < nr_pages; index++) {
3087 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3088 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3089 		put_page(pages[index]);
3090 	}
3091 }
3092 
3093 static void __extent_readpages(struct extent_io_tree *tree,
3094 			       struct page *pages[],
3095 			       int nr_pages,
3096 			       struct extent_map **em_cached,
3097 			       struct bio **bio, unsigned long *bio_flags,
3098 			       u64 *prev_em_start)
3099 {
3100 	u64 start = 0;
3101 	u64 end = 0;
3102 	u64 page_start;
3103 	int index;
3104 	int first_index = 0;
3105 
3106 	for (index = 0; index < nr_pages; index++) {
3107 		page_start = page_offset(pages[index]);
3108 		if (!end) {
3109 			start = page_start;
3110 			end = start + PAGE_SIZE - 1;
3111 			first_index = index;
3112 		} else if (end + 1 == page_start) {
3113 			end += PAGE_SIZE;
3114 		} else {
3115 			__do_contiguous_readpages(tree, &pages[first_index],
3116 						  index - first_index, start,
3117 						  end, em_cached,
3118 						  bio, bio_flags,
3119 						  prev_em_start);
3120 			start = page_start;
3121 			end = start + PAGE_SIZE - 1;
3122 			first_index = index;
3123 		}
3124 	}
3125 
3126 	if (end)
3127 		__do_contiguous_readpages(tree, &pages[first_index],
3128 					  index - first_index, start,
3129 					  end, em_cached, bio,
3130 					  bio_flags, prev_em_start);
3131 }
3132 
3133 static int __extent_read_full_page(struct extent_io_tree *tree,
3134 				   struct page *page,
3135 				   get_extent_t *get_extent,
3136 				   struct bio **bio, int mirror_num,
3137 				   unsigned long *bio_flags,
3138 				   unsigned int read_flags)
3139 {
3140 	struct inode *inode = page->mapping->host;
3141 	struct btrfs_ordered_extent *ordered;
3142 	u64 start = page_offset(page);
3143 	u64 end = start + PAGE_SIZE - 1;
3144 	int ret;
3145 
3146 	while (1) {
3147 		lock_extent(tree, start, end);
3148 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3149 						PAGE_SIZE);
3150 		if (!ordered)
3151 			break;
3152 		unlock_extent(tree, start, end);
3153 		btrfs_start_ordered_extent(inode, ordered, 1);
3154 		btrfs_put_ordered_extent(ordered);
3155 	}
3156 
3157 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3158 			    bio_flags, read_flags, NULL);
3159 	return ret;
3160 }
3161 
3162 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3163 			    get_extent_t *get_extent, int mirror_num)
3164 {
3165 	struct bio *bio = NULL;
3166 	unsigned long bio_flags = 0;
3167 	int ret;
3168 
3169 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3170 				      &bio_flags, 0);
3171 	if (bio)
3172 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3173 	return ret;
3174 }
3175 
3176 static void update_nr_written(struct writeback_control *wbc,
3177 			      unsigned long nr_written)
3178 {
3179 	wbc->nr_to_write -= nr_written;
3180 }
3181 
3182 /*
3183  * helper for __extent_writepage, doing all of the delayed allocation setup.
3184  *
3185  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3186  * to write the page (copy into inline extent).  In this case the IO has
3187  * been started and the page is already unlocked.
3188  *
3189  * This returns 0 if all went well (page still locked)
3190  * This returns < 0 if there were errors (page still locked)
3191  */
3192 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3193 		struct page *page, struct writeback_control *wbc,
3194 		u64 delalloc_start, unsigned long *nr_written)
3195 {
3196 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3197 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3198 	bool found;
3199 	u64 delalloc_to_write = 0;
3200 	u64 delalloc_end = 0;
3201 	int ret;
3202 	int page_started = 0;
3203 
3204 
3205 	while (delalloc_end < page_end) {
3206 		found = find_lock_delalloc_range(inode, tree,
3207 					       page,
3208 					       &delalloc_start,
3209 					       &delalloc_end);
3210 		if (!found) {
3211 			delalloc_start = delalloc_end + 1;
3212 			continue;
3213 		}
3214 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3215 				delalloc_end, &page_started, nr_written, wbc);
3216 		/* File system has been set read-only */
3217 		if (ret) {
3218 			SetPageError(page);
3219 			/*
3220 			 * btrfs_run_delalloc_range should return < 0 for error
3221 			 * but just in case, we use > 0 here meaning the IO is
3222 			 * started, so we don't want to return > 0 unless
3223 			 * things are going well.
3224 			 */
3225 			ret = ret < 0 ? ret : -EIO;
3226 			goto done;
3227 		}
3228 		/*
3229 		 * delalloc_end is already one less than the total length, so
3230 		 * we don't subtract one from PAGE_SIZE
3231 		 */
3232 		delalloc_to_write += (delalloc_end - delalloc_start +
3233 				      PAGE_SIZE) >> PAGE_SHIFT;
3234 		delalloc_start = delalloc_end + 1;
3235 	}
3236 	if (wbc->nr_to_write < delalloc_to_write) {
3237 		int thresh = 8192;
3238 
3239 		if (delalloc_to_write < thresh * 2)
3240 			thresh = delalloc_to_write;
3241 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3242 					 thresh);
3243 	}
3244 
3245 	/* did the fill delalloc function already unlock and start
3246 	 * the IO?
3247 	 */
3248 	if (page_started) {
3249 		/*
3250 		 * we've unlocked the page, so we can't update
3251 		 * the mapping's writeback index, just update
3252 		 * nr_to_write.
3253 		 */
3254 		wbc->nr_to_write -= *nr_written;
3255 		return 1;
3256 	}
3257 
3258 	ret = 0;
3259 
3260 done:
3261 	return ret;
3262 }
3263 
3264 /*
3265  * helper for __extent_writepage.  This calls the writepage start hooks,
3266  * and does the loop to map the page into extents and bios.
3267  *
3268  * We return 1 if the IO is started and the page is unlocked,
3269  * 0 if all went well (page still locked)
3270  * < 0 if there were errors (page still locked)
3271  */
3272 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3273 				 struct page *page,
3274 				 struct writeback_control *wbc,
3275 				 struct extent_page_data *epd,
3276 				 loff_t i_size,
3277 				 unsigned long nr_written,
3278 				 unsigned int write_flags, int *nr_ret)
3279 {
3280 	struct extent_io_tree *tree = epd->tree;
3281 	u64 start = page_offset(page);
3282 	u64 page_end = start + PAGE_SIZE - 1;
3283 	u64 end;
3284 	u64 cur = start;
3285 	u64 extent_offset;
3286 	u64 block_start;
3287 	u64 iosize;
3288 	struct extent_map *em;
3289 	struct block_device *bdev;
3290 	size_t pg_offset = 0;
3291 	size_t blocksize;
3292 	int ret = 0;
3293 	int nr = 0;
3294 	bool compressed;
3295 
3296 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3297 	if (ret) {
3298 		/* Fixup worker will requeue */
3299 		if (ret == -EBUSY)
3300 			wbc->pages_skipped++;
3301 		else
3302 			redirty_page_for_writepage(wbc, page);
3303 
3304 		update_nr_written(wbc, nr_written);
3305 		unlock_page(page);
3306 		return 1;
3307 	}
3308 
3309 	/*
3310 	 * we don't want to touch the inode after unlocking the page,
3311 	 * so we update the mapping writeback index now
3312 	 */
3313 	update_nr_written(wbc, nr_written + 1);
3314 
3315 	end = page_end;
3316 	if (i_size <= start) {
3317 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3318 		goto done;
3319 	}
3320 
3321 	blocksize = inode->i_sb->s_blocksize;
3322 
3323 	while (cur <= end) {
3324 		u64 em_end;
3325 		u64 offset;
3326 
3327 		if (cur >= i_size) {
3328 			btrfs_writepage_endio_finish_ordered(page, cur,
3329 							     page_end, 1);
3330 			break;
3331 		}
3332 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3333 				     end - cur + 1, 1);
3334 		if (IS_ERR_OR_NULL(em)) {
3335 			SetPageError(page);
3336 			ret = PTR_ERR_OR_ZERO(em);
3337 			break;
3338 		}
3339 
3340 		extent_offset = cur - em->start;
3341 		em_end = extent_map_end(em);
3342 		BUG_ON(em_end <= cur);
3343 		BUG_ON(end < cur);
3344 		iosize = min(em_end - cur, end - cur + 1);
3345 		iosize = ALIGN(iosize, blocksize);
3346 		offset = em->block_start + extent_offset;
3347 		bdev = em->bdev;
3348 		block_start = em->block_start;
3349 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3350 		free_extent_map(em);
3351 		em = NULL;
3352 
3353 		/*
3354 		 * compressed and inline extents are written through other
3355 		 * paths in the FS
3356 		 */
3357 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3358 		    block_start == EXTENT_MAP_INLINE) {
3359 			/*
3360 			 * end_io notification does not happen here for
3361 			 * compressed extents
3362 			 */
3363 			if (!compressed)
3364 				btrfs_writepage_endio_finish_ordered(page, cur,
3365 							    cur + iosize - 1,
3366 							    1);
3367 			else if (compressed) {
3368 				/* we don't want to end_page_writeback on
3369 				 * a compressed extent.  this happens
3370 				 * elsewhere
3371 				 */
3372 				nr++;
3373 			}
3374 
3375 			cur += iosize;
3376 			pg_offset += iosize;
3377 			continue;
3378 		}
3379 
3380 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3381 		if (!PageWriteback(page)) {
3382 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3383 				   "page %lu not writeback, cur %llu end %llu",
3384 			       page->index, cur, end);
3385 		}
3386 
3387 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3388 					 page, offset, iosize, pg_offset,
3389 					 bdev, &epd->bio,
3390 					 end_bio_extent_writepage,
3391 					 0, 0, 0, false);
3392 		if (ret) {
3393 			SetPageError(page);
3394 			if (PageWriteback(page))
3395 				end_page_writeback(page);
3396 		}
3397 
3398 		cur = cur + iosize;
3399 		pg_offset += iosize;
3400 		nr++;
3401 	}
3402 done:
3403 	*nr_ret = nr;
3404 	return ret;
3405 }
3406 
3407 /*
3408  * the writepage semantics are similar to regular writepage.  extent
3409  * records are inserted to lock ranges in the tree, and as dirty areas
3410  * are found, they are marked writeback.  Then the lock bits are removed
3411  * and the end_io handler clears the writeback ranges
3412  */
3413 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3414 			      struct extent_page_data *epd)
3415 {
3416 	struct inode *inode = page->mapping->host;
3417 	u64 start = page_offset(page);
3418 	u64 page_end = start + PAGE_SIZE - 1;
3419 	int ret;
3420 	int nr = 0;
3421 	size_t pg_offset = 0;
3422 	loff_t i_size = i_size_read(inode);
3423 	unsigned long end_index = i_size >> PAGE_SHIFT;
3424 	unsigned int write_flags = 0;
3425 	unsigned long nr_written = 0;
3426 
3427 	write_flags = wbc_to_write_flags(wbc);
3428 
3429 	trace___extent_writepage(page, inode, wbc);
3430 
3431 	WARN_ON(!PageLocked(page));
3432 
3433 	ClearPageError(page);
3434 
3435 	pg_offset = offset_in_page(i_size);
3436 	if (page->index > end_index ||
3437 	   (page->index == end_index && !pg_offset)) {
3438 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3439 		unlock_page(page);
3440 		return 0;
3441 	}
3442 
3443 	if (page->index == end_index) {
3444 		char *userpage;
3445 
3446 		userpage = kmap_atomic(page);
3447 		memset(userpage + pg_offset, 0,
3448 		       PAGE_SIZE - pg_offset);
3449 		kunmap_atomic(userpage);
3450 		flush_dcache_page(page);
3451 	}
3452 
3453 	pg_offset = 0;
3454 
3455 	set_page_extent_mapped(page);
3456 
3457 	if (!epd->extent_locked) {
3458 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3459 		if (ret == 1)
3460 			goto done_unlocked;
3461 		if (ret)
3462 			goto done;
3463 	}
3464 
3465 	ret = __extent_writepage_io(inode, page, wbc, epd,
3466 				    i_size, nr_written, write_flags, &nr);
3467 	if (ret == 1)
3468 		goto done_unlocked;
3469 
3470 done:
3471 	if (nr == 0) {
3472 		/* make sure the mapping tag for page dirty gets cleared */
3473 		set_page_writeback(page);
3474 		end_page_writeback(page);
3475 	}
3476 	if (PageError(page)) {
3477 		ret = ret < 0 ? ret : -EIO;
3478 		end_extent_writepage(page, ret, start, page_end);
3479 	}
3480 	unlock_page(page);
3481 	return ret;
3482 
3483 done_unlocked:
3484 	return 0;
3485 }
3486 
3487 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3488 {
3489 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3490 		       TASK_UNINTERRUPTIBLE);
3491 }
3492 
3493 static noinline_for_stack int
3494 lock_extent_buffer_for_io(struct extent_buffer *eb,
3495 			  struct btrfs_fs_info *fs_info,
3496 			  struct extent_page_data *epd)
3497 {
3498 	int i, num_pages;
3499 	int flush = 0;
3500 	int ret = 0;
3501 
3502 	if (!btrfs_try_tree_write_lock(eb)) {
3503 		flush = 1;
3504 		flush_write_bio(epd);
3505 		btrfs_tree_lock(eb);
3506 	}
3507 
3508 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3509 		btrfs_tree_unlock(eb);
3510 		if (!epd->sync_io)
3511 			return 0;
3512 		if (!flush) {
3513 			flush_write_bio(epd);
3514 			flush = 1;
3515 		}
3516 		while (1) {
3517 			wait_on_extent_buffer_writeback(eb);
3518 			btrfs_tree_lock(eb);
3519 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3520 				break;
3521 			btrfs_tree_unlock(eb);
3522 		}
3523 	}
3524 
3525 	/*
3526 	 * We need to do this to prevent races in people who check if the eb is
3527 	 * under IO since we can end up having no IO bits set for a short period
3528 	 * of time.
3529 	 */
3530 	spin_lock(&eb->refs_lock);
3531 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3532 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3533 		spin_unlock(&eb->refs_lock);
3534 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3535 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3536 					 -eb->len,
3537 					 fs_info->dirty_metadata_batch);
3538 		ret = 1;
3539 	} else {
3540 		spin_unlock(&eb->refs_lock);
3541 	}
3542 
3543 	btrfs_tree_unlock(eb);
3544 
3545 	if (!ret)
3546 		return ret;
3547 
3548 	num_pages = num_extent_pages(eb);
3549 	for (i = 0; i < num_pages; i++) {
3550 		struct page *p = eb->pages[i];
3551 
3552 		if (!trylock_page(p)) {
3553 			if (!flush) {
3554 				flush_write_bio(epd);
3555 				flush = 1;
3556 			}
3557 			lock_page(p);
3558 		}
3559 	}
3560 
3561 	return ret;
3562 }
3563 
3564 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3565 {
3566 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3567 	smp_mb__after_atomic();
3568 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3569 }
3570 
3571 static void set_btree_ioerr(struct page *page)
3572 {
3573 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3574 
3575 	SetPageError(page);
3576 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3577 		return;
3578 
3579 	/*
3580 	 * If writeback for a btree extent that doesn't belong to a log tree
3581 	 * failed, increment the counter transaction->eb_write_errors.
3582 	 * We do this because while the transaction is running and before it's
3583 	 * committing (when we call filemap_fdata[write|wait]_range against
3584 	 * the btree inode), we might have
3585 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3586 	 * returns an error or an error happens during writeback, when we're
3587 	 * committing the transaction we wouldn't know about it, since the pages
3588 	 * can be no longer dirty nor marked anymore for writeback (if a
3589 	 * subsequent modification to the extent buffer didn't happen before the
3590 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3591 	 * able to find the pages tagged with SetPageError at transaction
3592 	 * commit time. So if this happens we must abort the transaction,
3593 	 * otherwise we commit a super block with btree roots that point to
3594 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3595 	 * or the content of some node/leaf from a past generation that got
3596 	 * cowed or deleted and is no longer valid.
3597 	 *
3598 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3599 	 * not be enough - we need to distinguish between log tree extents vs
3600 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3601 	 * will catch and clear such errors in the mapping - and that call might
3602 	 * be from a log sync and not from a transaction commit. Also, checking
3603 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3604 	 * not done and would not be reliable - the eb might have been released
3605 	 * from memory and reading it back again means that flag would not be
3606 	 * set (since it's a runtime flag, not persisted on disk).
3607 	 *
3608 	 * Using the flags below in the btree inode also makes us achieve the
3609 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3610 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3611 	 * is called, the writeback for all dirty pages had already finished
3612 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3613 	 * filemap_fdatawait_range() would return success, as it could not know
3614 	 * that writeback errors happened (the pages were no longer tagged for
3615 	 * writeback).
3616 	 */
3617 	switch (eb->log_index) {
3618 	case -1:
3619 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3620 		break;
3621 	case 0:
3622 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3623 		break;
3624 	case 1:
3625 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3626 		break;
3627 	default:
3628 		BUG(); /* unexpected, logic error */
3629 	}
3630 }
3631 
3632 static void end_bio_extent_buffer_writepage(struct bio *bio)
3633 {
3634 	struct bio_vec *bvec;
3635 	struct extent_buffer *eb;
3636 	int i, done;
3637 
3638 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3639 	bio_for_each_segment_all(bvec, bio, i) {
3640 		struct page *page = bvec->bv_page;
3641 
3642 		eb = (struct extent_buffer *)page->private;
3643 		BUG_ON(!eb);
3644 		done = atomic_dec_and_test(&eb->io_pages);
3645 
3646 		if (bio->bi_status ||
3647 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3648 			ClearPageUptodate(page);
3649 			set_btree_ioerr(page);
3650 		}
3651 
3652 		end_page_writeback(page);
3653 
3654 		if (!done)
3655 			continue;
3656 
3657 		end_extent_buffer_writeback(eb);
3658 	}
3659 
3660 	bio_put(bio);
3661 }
3662 
3663 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3664 			struct btrfs_fs_info *fs_info,
3665 			struct writeback_control *wbc,
3666 			struct extent_page_data *epd)
3667 {
3668 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3669 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3670 	u64 offset = eb->start;
3671 	u32 nritems;
3672 	int i, num_pages;
3673 	unsigned long start, end;
3674 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3675 	int ret = 0;
3676 
3677 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3678 	num_pages = num_extent_pages(eb);
3679 	atomic_set(&eb->io_pages, num_pages);
3680 
3681 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3682 	nritems = btrfs_header_nritems(eb);
3683 	if (btrfs_header_level(eb) > 0) {
3684 		end = btrfs_node_key_ptr_offset(nritems);
3685 
3686 		memzero_extent_buffer(eb, end, eb->len - end);
3687 	} else {
3688 		/*
3689 		 * leaf:
3690 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3691 		 */
3692 		start = btrfs_item_nr_offset(nritems);
3693 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3694 		memzero_extent_buffer(eb, start, end - start);
3695 	}
3696 
3697 	for (i = 0; i < num_pages; i++) {
3698 		struct page *p = eb->pages[i];
3699 
3700 		clear_page_dirty_for_io(p);
3701 		set_page_writeback(p);
3702 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3703 					 p, offset, PAGE_SIZE, 0, bdev,
3704 					 &epd->bio,
3705 					 end_bio_extent_buffer_writepage,
3706 					 0, 0, 0, false);
3707 		if (ret) {
3708 			set_btree_ioerr(p);
3709 			if (PageWriteback(p))
3710 				end_page_writeback(p);
3711 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3712 				end_extent_buffer_writeback(eb);
3713 			ret = -EIO;
3714 			break;
3715 		}
3716 		offset += PAGE_SIZE;
3717 		update_nr_written(wbc, 1);
3718 		unlock_page(p);
3719 	}
3720 
3721 	if (unlikely(ret)) {
3722 		for (; i < num_pages; i++) {
3723 			struct page *p = eb->pages[i];
3724 			clear_page_dirty_for_io(p);
3725 			unlock_page(p);
3726 		}
3727 	}
3728 
3729 	return ret;
3730 }
3731 
3732 int btree_write_cache_pages(struct address_space *mapping,
3733 				   struct writeback_control *wbc)
3734 {
3735 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3736 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3737 	struct extent_buffer *eb, *prev_eb = NULL;
3738 	struct extent_page_data epd = {
3739 		.bio = NULL,
3740 		.tree = tree,
3741 		.extent_locked = 0,
3742 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3743 	};
3744 	int ret = 0;
3745 	int done = 0;
3746 	int nr_to_write_done = 0;
3747 	struct pagevec pvec;
3748 	int nr_pages;
3749 	pgoff_t index;
3750 	pgoff_t end;		/* Inclusive */
3751 	int scanned = 0;
3752 	xa_mark_t tag;
3753 
3754 	pagevec_init(&pvec);
3755 	if (wbc->range_cyclic) {
3756 		index = mapping->writeback_index; /* Start from prev offset */
3757 		end = -1;
3758 	} else {
3759 		index = wbc->range_start >> PAGE_SHIFT;
3760 		end = wbc->range_end >> PAGE_SHIFT;
3761 		scanned = 1;
3762 	}
3763 	if (wbc->sync_mode == WB_SYNC_ALL)
3764 		tag = PAGECACHE_TAG_TOWRITE;
3765 	else
3766 		tag = PAGECACHE_TAG_DIRTY;
3767 retry:
3768 	if (wbc->sync_mode == WB_SYNC_ALL)
3769 		tag_pages_for_writeback(mapping, index, end);
3770 	while (!done && !nr_to_write_done && (index <= end) &&
3771 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3772 			tag))) {
3773 		unsigned i;
3774 
3775 		scanned = 1;
3776 		for (i = 0; i < nr_pages; i++) {
3777 			struct page *page = pvec.pages[i];
3778 
3779 			if (!PagePrivate(page))
3780 				continue;
3781 
3782 			spin_lock(&mapping->private_lock);
3783 			if (!PagePrivate(page)) {
3784 				spin_unlock(&mapping->private_lock);
3785 				continue;
3786 			}
3787 
3788 			eb = (struct extent_buffer *)page->private;
3789 
3790 			/*
3791 			 * Shouldn't happen and normally this would be a BUG_ON
3792 			 * but no sense in crashing the users box for something
3793 			 * we can survive anyway.
3794 			 */
3795 			if (WARN_ON(!eb)) {
3796 				spin_unlock(&mapping->private_lock);
3797 				continue;
3798 			}
3799 
3800 			if (eb == prev_eb) {
3801 				spin_unlock(&mapping->private_lock);
3802 				continue;
3803 			}
3804 
3805 			ret = atomic_inc_not_zero(&eb->refs);
3806 			spin_unlock(&mapping->private_lock);
3807 			if (!ret)
3808 				continue;
3809 
3810 			prev_eb = eb;
3811 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3812 			if (!ret) {
3813 				free_extent_buffer(eb);
3814 				continue;
3815 			}
3816 
3817 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3818 			if (ret) {
3819 				done = 1;
3820 				free_extent_buffer(eb);
3821 				break;
3822 			}
3823 			free_extent_buffer(eb);
3824 
3825 			/*
3826 			 * the filesystem may choose to bump up nr_to_write.
3827 			 * We have to make sure to honor the new nr_to_write
3828 			 * at any time
3829 			 */
3830 			nr_to_write_done = wbc->nr_to_write <= 0;
3831 		}
3832 		pagevec_release(&pvec);
3833 		cond_resched();
3834 	}
3835 	if (!scanned && !done) {
3836 		/*
3837 		 * We hit the last page and there is more work to be done: wrap
3838 		 * back to the start of the file
3839 		 */
3840 		scanned = 1;
3841 		index = 0;
3842 		goto retry;
3843 	}
3844 	flush_write_bio(&epd);
3845 	return ret;
3846 }
3847 
3848 /**
3849  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3850  * @mapping: address space structure to write
3851  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3852  * @data: data passed to __extent_writepage function
3853  *
3854  * If a page is already under I/O, write_cache_pages() skips it, even
3855  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3856  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3857  * and msync() need to guarantee that all the data which was dirty at the time
3858  * the call was made get new I/O started against them.  If wbc->sync_mode is
3859  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3860  * existing IO to complete.
3861  */
3862 static int extent_write_cache_pages(struct address_space *mapping,
3863 			     struct writeback_control *wbc,
3864 			     struct extent_page_data *epd)
3865 {
3866 	struct inode *inode = mapping->host;
3867 	int ret = 0;
3868 	int done = 0;
3869 	int nr_to_write_done = 0;
3870 	struct pagevec pvec;
3871 	int nr_pages;
3872 	pgoff_t index;
3873 	pgoff_t end;		/* Inclusive */
3874 	pgoff_t done_index;
3875 	int range_whole = 0;
3876 	int scanned = 0;
3877 	xa_mark_t tag;
3878 
3879 	/*
3880 	 * We have to hold onto the inode so that ordered extents can do their
3881 	 * work when the IO finishes.  The alternative to this is failing to add
3882 	 * an ordered extent if the igrab() fails there and that is a huge pain
3883 	 * to deal with, so instead just hold onto the inode throughout the
3884 	 * writepages operation.  If it fails here we are freeing up the inode
3885 	 * anyway and we'd rather not waste our time writing out stuff that is
3886 	 * going to be truncated anyway.
3887 	 */
3888 	if (!igrab(inode))
3889 		return 0;
3890 
3891 	pagevec_init(&pvec);
3892 	if (wbc->range_cyclic) {
3893 		index = mapping->writeback_index; /* Start from prev offset */
3894 		end = -1;
3895 	} else {
3896 		index = wbc->range_start >> PAGE_SHIFT;
3897 		end = wbc->range_end >> PAGE_SHIFT;
3898 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3899 			range_whole = 1;
3900 		scanned = 1;
3901 	}
3902 
3903 	/*
3904 	 * We do the tagged writepage as long as the snapshot flush bit is set
3905 	 * and we are the first one who do the filemap_flush() on this inode.
3906 	 *
3907 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3908 	 * not race in and drop the bit.
3909 	 */
3910 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
3911 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3912 			       &BTRFS_I(inode)->runtime_flags))
3913 		wbc->tagged_writepages = 1;
3914 
3915 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3916 		tag = PAGECACHE_TAG_TOWRITE;
3917 	else
3918 		tag = PAGECACHE_TAG_DIRTY;
3919 retry:
3920 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3921 		tag_pages_for_writeback(mapping, index, end);
3922 	done_index = index;
3923 	while (!done && !nr_to_write_done && (index <= end) &&
3924 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3925 						&index, end, tag))) {
3926 		unsigned i;
3927 
3928 		scanned = 1;
3929 		for (i = 0; i < nr_pages; i++) {
3930 			struct page *page = pvec.pages[i];
3931 
3932 			done_index = page->index;
3933 			/*
3934 			 * At this point we hold neither the i_pages lock nor
3935 			 * the page lock: the page may be truncated or
3936 			 * invalidated (changing page->mapping to NULL),
3937 			 * or even swizzled back from swapper_space to
3938 			 * tmpfs file mapping
3939 			 */
3940 			if (!trylock_page(page)) {
3941 				flush_write_bio(epd);
3942 				lock_page(page);
3943 			}
3944 
3945 			if (unlikely(page->mapping != mapping)) {
3946 				unlock_page(page);
3947 				continue;
3948 			}
3949 
3950 			if (wbc->sync_mode != WB_SYNC_NONE) {
3951 				if (PageWriteback(page))
3952 					flush_write_bio(epd);
3953 				wait_on_page_writeback(page);
3954 			}
3955 
3956 			if (PageWriteback(page) ||
3957 			    !clear_page_dirty_for_io(page)) {
3958 				unlock_page(page);
3959 				continue;
3960 			}
3961 
3962 			ret = __extent_writepage(page, wbc, epd);
3963 
3964 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3965 				unlock_page(page);
3966 				ret = 0;
3967 			}
3968 			if (ret < 0) {
3969 				/*
3970 				 * done_index is set past this page,
3971 				 * so media errors will not choke
3972 				 * background writeout for the entire
3973 				 * file. This has consequences for
3974 				 * range_cyclic semantics (ie. it may
3975 				 * not be suitable for data integrity
3976 				 * writeout).
3977 				 */
3978 				done_index = page->index + 1;
3979 				done = 1;
3980 				break;
3981 			}
3982 
3983 			/*
3984 			 * the filesystem may choose to bump up nr_to_write.
3985 			 * We have to make sure to honor the new nr_to_write
3986 			 * at any time
3987 			 */
3988 			nr_to_write_done = wbc->nr_to_write <= 0;
3989 		}
3990 		pagevec_release(&pvec);
3991 		cond_resched();
3992 	}
3993 	if (!scanned && !done) {
3994 		/*
3995 		 * We hit the last page and there is more work to be done: wrap
3996 		 * back to the start of the file
3997 		 */
3998 		scanned = 1;
3999 		index = 0;
4000 		goto retry;
4001 	}
4002 
4003 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4004 		mapping->writeback_index = done_index;
4005 
4006 	btrfs_add_delayed_iput(inode);
4007 	return ret;
4008 }
4009 
4010 static void flush_write_bio(struct extent_page_data *epd)
4011 {
4012 	if (epd->bio) {
4013 		int ret;
4014 
4015 		ret = submit_one_bio(epd->bio, 0, 0);
4016 		BUG_ON(ret < 0); /* -ENOMEM */
4017 		epd->bio = NULL;
4018 	}
4019 }
4020 
4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4022 {
4023 	int ret;
4024 	struct extent_page_data epd = {
4025 		.bio = NULL,
4026 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4027 		.extent_locked = 0,
4028 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4029 	};
4030 
4031 	ret = __extent_writepage(page, wbc, &epd);
4032 
4033 	flush_write_bio(&epd);
4034 	return ret;
4035 }
4036 
4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4038 			      int mode)
4039 {
4040 	int ret = 0;
4041 	struct address_space *mapping = inode->i_mapping;
4042 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4043 	struct page *page;
4044 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045 		PAGE_SHIFT;
4046 
4047 	struct extent_page_data epd = {
4048 		.bio = NULL,
4049 		.tree = tree,
4050 		.extent_locked = 1,
4051 		.sync_io = mode == WB_SYNC_ALL,
4052 	};
4053 	struct writeback_control wbc_writepages = {
4054 		.sync_mode	= mode,
4055 		.nr_to_write	= nr_pages * 2,
4056 		.range_start	= start,
4057 		.range_end	= end + 1,
4058 	};
4059 
4060 	while (start <= end) {
4061 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4062 		if (clear_page_dirty_for_io(page))
4063 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4064 		else {
4065 			btrfs_writepage_endio_finish_ordered(page, start,
4066 						    start + PAGE_SIZE - 1, 1);
4067 			unlock_page(page);
4068 		}
4069 		put_page(page);
4070 		start += PAGE_SIZE;
4071 	}
4072 
4073 	flush_write_bio(&epd);
4074 	return ret;
4075 }
4076 
4077 int extent_writepages(struct address_space *mapping,
4078 		      struct writeback_control *wbc)
4079 {
4080 	int ret = 0;
4081 	struct extent_page_data epd = {
4082 		.bio = NULL,
4083 		.tree = &BTRFS_I(mapping->host)->io_tree,
4084 		.extent_locked = 0,
4085 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 	};
4087 
4088 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4089 	flush_write_bio(&epd);
4090 	return ret;
4091 }
4092 
4093 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094 		     unsigned nr_pages)
4095 {
4096 	struct bio *bio = NULL;
4097 	unsigned long bio_flags = 0;
4098 	struct page *pagepool[16];
4099 	struct extent_map *em_cached = NULL;
4100 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4101 	int nr = 0;
4102 	u64 prev_em_start = (u64)-1;
4103 
4104 	while (!list_empty(pages)) {
4105 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106 			struct page *page = list_entry(pages->prev,
4107 						       struct page, lru);
4108 
4109 			prefetchw(&page->flags);
4110 			list_del(&page->lru);
4111 			if (add_to_page_cache_lru(page, mapping, page->index,
4112 						readahead_gfp_mask(mapping))) {
4113 				put_page(page);
4114 				continue;
4115 			}
4116 
4117 			pagepool[nr++] = page;
4118 		}
4119 
4120 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4121 				   &bio_flags, &prev_em_start);
4122 	}
4123 
4124 	if (em_cached)
4125 		free_extent_map(em_cached);
4126 
4127 	if (bio)
4128 		return submit_one_bio(bio, 0, bio_flags);
4129 	return 0;
4130 }
4131 
4132 /*
4133  * basic invalidatepage code, this waits on any locked or writeback
4134  * ranges corresponding to the page, and then deletes any extent state
4135  * records from the tree
4136  */
4137 int extent_invalidatepage(struct extent_io_tree *tree,
4138 			  struct page *page, unsigned long offset)
4139 {
4140 	struct extent_state *cached_state = NULL;
4141 	u64 start = page_offset(page);
4142 	u64 end = start + PAGE_SIZE - 1;
4143 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4144 
4145 	start += ALIGN(offset, blocksize);
4146 	if (start > end)
4147 		return 0;
4148 
4149 	lock_extent_bits(tree, start, end, &cached_state);
4150 	wait_on_page_writeback(page);
4151 	clear_extent_bit(tree, start, end,
4152 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4153 			 EXTENT_DO_ACCOUNTING,
4154 			 1, 1, &cached_state);
4155 	return 0;
4156 }
4157 
4158 /*
4159  * a helper for releasepage, this tests for areas of the page that
4160  * are locked or under IO and drops the related state bits if it is safe
4161  * to drop the page.
4162  */
4163 static int try_release_extent_state(struct extent_io_tree *tree,
4164 				    struct page *page, gfp_t mask)
4165 {
4166 	u64 start = page_offset(page);
4167 	u64 end = start + PAGE_SIZE - 1;
4168 	int ret = 1;
4169 
4170 	if (test_range_bit(tree, start, end,
4171 			   EXTENT_IOBITS, 0, NULL))
4172 		ret = 0;
4173 	else {
4174 		/*
4175 		 * at this point we can safely clear everything except the
4176 		 * locked bit and the nodatasum bit
4177 		 */
4178 		ret = __clear_extent_bit(tree, start, end,
4179 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4180 				 0, 0, NULL, mask, NULL);
4181 
4182 		/* if clear_extent_bit failed for enomem reasons,
4183 		 * we can't allow the release to continue.
4184 		 */
4185 		if (ret < 0)
4186 			ret = 0;
4187 		else
4188 			ret = 1;
4189 	}
4190 	return ret;
4191 }
4192 
4193 /*
4194  * a helper for releasepage.  As long as there are no locked extents
4195  * in the range corresponding to the page, both state records and extent
4196  * map records are removed
4197  */
4198 int try_release_extent_mapping(struct page *page, gfp_t mask)
4199 {
4200 	struct extent_map *em;
4201 	u64 start = page_offset(page);
4202 	u64 end = start + PAGE_SIZE - 1;
4203 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4204 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4205 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4206 
4207 	if (gfpflags_allow_blocking(mask) &&
4208 	    page->mapping->host->i_size > SZ_16M) {
4209 		u64 len;
4210 		while (start <= end) {
4211 			len = end - start + 1;
4212 			write_lock(&map->lock);
4213 			em = lookup_extent_mapping(map, start, len);
4214 			if (!em) {
4215 				write_unlock(&map->lock);
4216 				break;
4217 			}
4218 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4219 			    em->start != start) {
4220 				write_unlock(&map->lock);
4221 				free_extent_map(em);
4222 				break;
4223 			}
4224 			if (!test_range_bit(tree, em->start,
4225 					    extent_map_end(em) - 1,
4226 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4227 					    0, NULL)) {
4228 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4229 					&btrfs_inode->runtime_flags);
4230 				remove_extent_mapping(map, em);
4231 				/* once for the rb tree */
4232 				free_extent_map(em);
4233 			}
4234 			start = extent_map_end(em);
4235 			write_unlock(&map->lock);
4236 
4237 			/* once for us */
4238 			free_extent_map(em);
4239 		}
4240 	}
4241 	return try_release_extent_state(tree, page, mask);
4242 }
4243 
4244 /*
4245  * helper function for fiemap, which doesn't want to see any holes.
4246  * This maps until we find something past 'last'
4247  */
4248 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4249 						u64 offset, u64 last)
4250 {
4251 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4252 	struct extent_map *em;
4253 	u64 len;
4254 
4255 	if (offset >= last)
4256 		return NULL;
4257 
4258 	while (1) {
4259 		len = last - offset;
4260 		if (len == 0)
4261 			break;
4262 		len = ALIGN(len, sectorsize);
4263 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4264 				len, 0);
4265 		if (IS_ERR_OR_NULL(em))
4266 			return em;
4267 
4268 		/* if this isn't a hole return it */
4269 		if (em->block_start != EXTENT_MAP_HOLE)
4270 			return em;
4271 
4272 		/* this is a hole, advance to the next extent */
4273 		offset = extent_map_end(em);
4274 		free_extent_map(em);
4275 		if (offset >= last)
4276 			break;
4277 	}
4278 	return NULL;
4279 }
4280 
4281 /*
4282  * To cache previous fiemap extent
4283  *
4284  * Will be used for merging fiemap extent
4285  */
4286 struct fiemap_cache {
4287 	u64 offset;
4288 	u64 phys;
4289 	u64 len;
4290 	u32 flags;
4291 	bool cached;
4292 };
4293 
4294 /*
4295  * Helper to submit fiemap extent.
4296  *
4297  * Will try to merge current fiemap extent specified by @offset, @phys,
4298  * @len and @flags with cached one.
4299  * And only when we fails to merge, cached one will be submitted as
4300  * fiemap extent.
4301  *
4302  * Return value is the same as fiemap_fill_next_extent().
4303  */
4304 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4305 				struct fiemap_cache *cache,
4306 				u64 offset, u64 phys, u64 len, u32 flags)
4307 {
4308 	int ret = 0;
4309 
4310 	if (!cache->cached)
4311 		goto assign;
4312 
4313 	/*
4314 	 * Sanity check, extent_fiemap() should have ensured that new
4315 	 * fiemap extent won't overlap with cached one.
4316 	 * Not recoverable.
4317 	 *
4318 	 * NOTE: Physical address can overlap, due to compression
4319 	 */
4320 	if (cache->offset + cache->len > offset) {
4321 		WARN_ON(1);
4322 		return -EINVAL;
4323 	}
4324 
4325 	/*
4326 	 * Only merges fiemap extents if
4327 	 * 1) Their logical addresses are continuous
4328 	 *
4329 	 * 2) Their physical addresses are continuous
4330 	 *    So truly compressed (physical size smaller than logical size)
4331 	 *    extents won't get merged with each other
4332 	 *
4333 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4334 	 *    So regular extent won't get merged with prealloc extent
4335 	 */
4336 	if (cache->offset + cache->len  == offset &&
4337 	    cache->phys + cache->len == phys  &&
4338 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4339 			(flags & ~FIEMAP_EXTENT_LAST)) {
4340 		cache->len += len;
4341 		cache->flags |= flags;
4342 		goto try_submit_last;
4343 	}
4344 
4345 	/* Not mergeable, need to submit cached one */
4346 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4347 				      cache->len, cache->flags);
4348 	cache->cached = false;
4349 	if (ret)
4350 		return ret;
4351 assign:
4352 	cache->cached = true;
4353 	cache->offset = offset;
4354 	cache->phys = phys;
4355 	cache->len = len;
4356 	cache->flags = flags;
4357 try_submit_last:
4358 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4359 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4360 				cache->phys, cache->len, cache->flags);
4361 		cache->cached = false;
4362 	}
4363 	return ret;
4364 }
4365 
4366 /*
4367  * Emit last fiemap cache
4368  *
4369  * The last fiemap cache may still be cached in the following case:
4370  * 0		      4k		    8k
4371  * |<- Fiemap range ->|
4372  * |<------------  First extent ----------->|
4373  *
4374  * In this case, the first extent range will be cached but not emitted.
4375  * So we must emit it before ending extent_fiemap().
4376  */
4377 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4378 				  struct fiemap_extent_info *fieinfo,
4379 				  struct fiemap_cache *cache)
4380 {
4381 	int ret;
4382 
4383 	if (!cache->cached)
4384 		return 0;
4385 
4386 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 				      cache->len, cache->flags);
4388 	cache->cached = false;
4389 	if (ret > 0)
4390 		ret = 0;
4391 	return ret;
4392 }
4393 
4394 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4395 		__u64 start, __u64 len)
4396 {
4397 	int ret = 0;
4398 	u64 off = start;
4399 	u64 max = start + len;
4400 	u32 flags = 0;
4401 	u32 found_type;
4402 	u64 last;
4403 	u64 last_for_get_extent = 0;
4404 	u64 disko = 0;
4405 	u64 isize = i_size_read(inode);
4406 	struct btrfs_key found_key;
4407 	struct extent_map *em = NULL;
4408 	struct extent_state *cached_state = NULL;
4409 	struct btrfs_path *path;
4410 	struct btrfs_root *root = BTRFS_I(inode)->root;
4411 	struct fiemap_cache cache = { 0 };
4412 	int end = 0;
4413 	u64 em_start = 0;
4414 	u64 em_len = 0;
4415 	u64 em_end = 0;
4416 
4417 	if (len == 0)
4418 		return -EINVAL;
4419 
4420 	path = btrfs_alloc_path();
4421 	if (!path)
4422 		return -ENOMEM;
4423 	path->leave_spinning = 1;
4424 
4425 	start = round_down(start, btrfs_inode_sectorsize(inode));
4426 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4427 
4428 	/*
4429 	 * lookup the last file extent.  We're not using i_size here
4430 	 * because there might be preallocation past i_size
4431 	 */
4432 	ret = btrfs_lookup_file_extent(NULL, root, path,
4433 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4434 	if (ret < 0) {
4435 		btrfs_free_path(path);
4436 		return ret;
4437 	} else {
4438 		WARN_ON(!ret);
4439 		if (ret == 1)
4440 			ret = 0;
4441 	}
4442 
4443 	path->slots[0]--;
4444 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4445 	found_type = found_key.type;
4446 
4447 	/* No extents, but there might be delalloc bits */
4448 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4449 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4450 		/* have to trust i_size as the end */
4451 		last = (u64)-1;
4452 		last_for_get_extent = isize;
4453 	} else {
4454 		/*
4455 		 * remember the start of the last extent.  There are a
4456 		 * bunch of different factors that go into the length of the
4457 		 * extent, so its much less complex to remember where it started
4458 		 */
4459 		last = found_key.offset;
4460 		last_for_get_extent = last + 1;
4461 	}
4462 	btrfs_release_path(path);
4463 
4464 	/*
4465 	 * we might have some extents allocated but more delalloc past those
4466 	 * extents.  so, we trust isize unless the start of the last extent is
4467 	 * beyond isize
4468 	 */
4469 	if (last < isize) {
4470 		last = (u64)-1;
4471 		last_for_get_extent = isize;
4472 	}
4473 
4474 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4475 			 &cached_state);
4476 
4477 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4478 	if (!em)
4479 		goto out;
4480 	if (IS_ERR(em)) {
4481 		ret = PTR_ERR(em);
4482 		goto out;
4483 	}
4484 
4485 	while (!end) {
4486 		u64 offset_in_extent = 0;
4487 
4488 		/* break if the extent we found is outside the range */
4489 		if (em->start >= max || extent_map_end(em) < off)
4490 			break;
4491 
4492 		/*
4493 		 * get_extent may return an extent that starts before our
4494 		 * requested range.  We have to make sure the ranges
4495 		 * we return to fiemap always move forward and don't
4496 		 * overlap, so adjust the offsets here
4497 		 */
4498 		em_start = max(em->start, off);
4499 
4500 		/*
4501 		 * record the offset from the start of the extent
4502 		 * for adjusting the disk offset below.  Only do this if the
4503 		 * extent isn't compressed since our in ram offset may be past
4504 		 * what we have actually allocated on disk.
4505 		 */
4506 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4507 			offset_in_extent = em_start - em->start;
4508 		em_end = extent_map_end(em);
4509 		em_len = em_end - em_start;
4510 		flags = 0;
4511 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4512 			disko = em->block_start + offset_in_extent;
4513 		else
4514 			disko = 0;
4515 
4516 		/*
4517 		 * bump off for our next call to get_extent
4518 		 */
4519 		off = extent_map_end(em);
4520 		if (off >= max)
4521 			end = 1;
4522 
4523 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4524 			end = 1;
4525 			flags |= FIEMAP_EXTENT_LAST;
4526 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4527 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4528 				  FIEMAP_EXTENT_NOT_ALIGNED);
4529 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4530 			flags |= (FIEMAP_EXTENT_DELALLOC |
4531 				  FIEMAP_EXTENT_UNKNOWN);
4532 		} else if (fieinfo->fi_extents_max) {
4533 			u64 bytenr = em->block_start -
4534 				(em->start - em->orig_start);
4535 
4536 			/*
4537 			 * As btrfs supports shared space, this information
4538 			 * can be exported to userspace tools via
4539 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4540 			 * then we're just getting a count and we can skip the
4541 			 * lookup stuff.
4542 			 */
4543 			ret = btrfs_check_shared(root,
4544 						 btrfs_ino(BTRFS_I(inode)),
4545 						 bytenr);
4546 			if (ret < 0)
4547 				goto out_free;
4548 			if (ret)
4549 				flags |= FIEMAP_EXTENT_SHARED;
4550 			ret = 0;
4551 		}
4552 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4553 			flags |= FIEMAP_EXTENT_ENCODED;
4554 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4555 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4556 
4557 		free_extent_map(em);
4558 		em = NULL;
4559 		if ((em_start >= last) || em_len == (u64)-1 ||
4560 		   (last == (u64)-1 && isize <= em_end)) {
4561 			flags |= FIEMAP_EXTENT_LAST;
4562 			end = 1;
4563 		}
4564 
4565 		/* now scan forward to see if this is really the last extent. */
4566 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4567 		if (IS_ERR(em)) {
4568 			ret = PTR_ERR(em);
4569 			goto out;
4570 		}
4571 		if (!em) {
4572 			flags |= FIEMAP_EXTENT_LAST;
4573 			end = 1;
4574 		}
4575 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4576 					   em_len, flags);
4577 		if (ret) {
4578 			if (ret == 1)
4579 				ret = 0;
4580 			goto out_free;
4581 		}
4582 	}
4583 out_free:
4584 	if (!ret)
4585 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4586 	free_extent_map(em);
4587 out:
4588 	btrfs_free_path(path);
4589 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4590 			     &cached_state);
4591 	return ret;
4592 }
4593 
4594 static void __free_extent_buffer(struct extent_buffer *eb)
4595 {
4596 	btrfs_leak_debug_del(&eb->leak_list);
4597 	kmem_cache_free(extent_buffer_cache, eb);
4598 }
4599 
4600 int extent_buffer_under_io(struct extent_buffer *eb)
4601 {
4602 	return (atomic_read(&eb->io_pages) ||
4603 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4604 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4605 }
4606 
4607 /*
4608  * Release all pages attached to the extent buffer.
4609  */
4610 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4611 {
4612 	int i;
4613 	int num_pages;
4614 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4615 
4616 	BUG_ON(extent_buffer_under_io(eb));
4617 
4618 	num_pages = num_extent_pages(eb);
4619 	for (i = 0; i < num_pages; i++) {
4620 		struct page *page = eb->pages[i];
4621 
4622 		if (!page)
4623 			continue;
4624 		if (mapped)
4625 			spin_lock(&page->mapping->private_lock);
4626 		/*
4627 		 * We do this since we'll remove the pages after we've
4628 		 * removed the eb from the radix tree, so we could race
4629 		 * and have this page now attached to the new eb.  So
4630 		 * only clear page_private if it's still connected to
4631 		 * this eb.
4632 		 */
4633 		if (PagePrivate(page) &&
4634 		    page->private == (unsigned long)eb) {
4635 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4636 			BUG_ON(PageDirty(page));
4637 			BUG_ON(PageWriteback(page));
4638 			/*
4639 			 * We need to make sure we haven't be attached
4640 			 * to a new eb.
4641 			 */
4642 			ClearPagePrivate(page);
4643 			set_page_private(page, 0);
4644 			/* One for the page private */
4645 			put_page(page);
4646 		}
4647 
4648 		if (mapped)
4649 			spin_unlock(&page->mapping->private_lock);
4650 
4651 		/* One for when we allocated the page */
4652 		put_page(page);
4653 	}
4654 }
4655 
4656 /*
4657  * Helper for releasing the extent buffer.
4658  */
4659 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4660 {
4661 	btrfs_release_extent_buffer_pages(eb);
4662 	__free_extent_buffer(eb);
4663 }
4664 
4665 static struct extent_buffer *
4666 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4667 		      unsigned long len)
4668 {
4669 	struct extent_buffer *eb = NULL;
4670 
4671 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4672 	eb->start = start;
4673 	eb->len = len;
4674 	eb->fs_info = fs_info;
4675 	eb->bflags = 0;
4676 	rwlock_init(&eb->lock);
4677 	atomic_set(&eb->write_locks, 0);
4678 	atomic_set(&eb->read_locks, 0);
4679 	atomic_set(&eb->blocking_readers, 0);
4680 	atomic_set(&eb->blocking_writers, 0);
4681 	atomic_set(&eb->spinning_readers, 0);
4682 	atomic_set(&eb->spinning_writers, 0);
4683 	eb->lock_nested = 0;
4684 	init_waitqueue_head(&eb->write_lock_wq);
4685 	init_waitqueue_head(&eb->read_lock_wq);
4686 
4687 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4688 
4689 	spin_lock_init(&eb->refs_lock);
4690 	atomic_set(&eb->refs, 1);
4691 	atomic_set(&eb->io_pages, 0);
4692 
4693 	/*
4694 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4695 	 */
4696 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4697 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4698 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4699 
4700 	return eb;
4701 }
4702 
4703 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4704 {
4705 	int i;
4706 	struct page *p;
4707 	struct extent_buffer *new;
4708 	int num_pages = num_extent_pages(src);
4709 
4710 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4711 	if (new == NULL)
4712 		return NULL;
4713 
4714 	for (i = 0; i < num_pages; i++) {
4715 		p = alloc_page(GFP_NOFS);
4716 		if (!p) {
4717 			btrfs_release_extent_buffer(new);
4718 			return NULL;
4719 		}
4720 		attach_extent_buffer_page(new, p);
4721 		WARN_ON(PageDirty(p));
4722 		SetPageUptodate(p);
4723 		new->pages[i] = p;
4724 		copy_page(page_address(p), page_address(src->pages[i]));
4725 	}
4726 
4727 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4728 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4729 
4730 	return new;
4731 }
4732 
4733 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4734 						  u64 start, unsigned long len)
4735 {
4736 	struct extent_buffer *eb;
4737 	int num_pages;
4738 	int i;
4739 
4740 	eb = __alloc_extent_buffer(fs_info, start, len);
4741 	if (!eb)
4742 		return NULL;
4743 
4744 	num_pages = num_extent_pages(eb);
4745 	for (i = 0; i < num_pages; i++) {
4746 		eb->pages[i] = alloc_page(GFP_NOFS);
4747 		if (!eb->pages[i])
4748 			goto err;
4749 	}
4750 	set_extent_buffer_uptodate(eb);
4751 	btrfs_set_header_nritems(eb, 0);
4752 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4753 
4754 	return eb;
4755 err:
4756 	for (; i > 0; i--)
4757 		__free_page(eb->pages[i - 1]);
4758 	__free_extent_buffer(eb);
4759 	return NULL;
4760 }
4761 
4762 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4763 						u64 start)
4764 {
4765 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4766 }
4767 
4768 static void check_buffer_tree_ref(struct extent_buffer *eb)
4769 {
4770 	int refs;
4771 	/* the ref bit is tricky.  We have to make sure it is set
4772 	 * if we have the buffer dirty.   Otherwise the
4773 	 * code to free a buffer can end up dropping a dirty
4774 	 * page
4775 	 *
4776 	 * Once the ref bit is set, it won't go away while the
4777 	 * buffer is dirty or in writeback, and it also won't
4778 	 * go away while we have the reference count on the
4779 	 * eb bumped.
4780 	 *
4781 	 * We can't just set the ref bit without bumping the
4782 	 * ref on the eb because free_extent_buffer might
4783 	 * see the ref bit and try to clear it.  If this happens
4784 	 * free_extent_buffer might end up dropping our original
4785 	 * ref by mistake and freeing the page before we are able
4786 	 * to add one more ref.
4787 	 *
4788 	 * So bump the ref count first, then set the bit.  If someone
4789 	 * beat us to it, drop the ref we added.
4790 	 */
4791 	refs = atomic_read(&eb->refs);
4792 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4793 		return;
4794 
4795 	spin_lock(&eb->refs_lock);
4796 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4797 		atomic_inc(&eb->refs);
4798 	spin_unlock(&eb->refs_lock);
4799 }
4800 
4801 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4802 		struct page *accessed)
4803 {
4804 	int num_pages, i;
4805 
4806 	check_buffer_tree_ref(eb);
4807 
4808 	num_pages = num_extent_pages(eb);
4809 	for (i = 0; i < num_pages; i++) {
4810 		struct page *p = eb->pages[i];
4811 
4812 		if (p != accessed)
4813 			mark_page_accessed(p);
4814 	}
4815 }
4816 
4817 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4818 					 u64 start)
4819 {
4820 	struct extent_buffer *eb;
4821 
4822 	rcu_read_lock();
4823 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4824 			       start >> PAGE_SHIFT);
4825 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4826 		rcu_read_unlock();
4827 		/*
4828 		 * Lock our eb's refs_lock to avoid races with
4829 		 * free_extent_buffer. When we get our eb it might be flagged
4830 		 * with EXTENT_BUFFER_STALE and another task running
4831 		 * free_extent_buffer might have seen that flag set,
4832 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4833 		 * writeback flags not set) and it's still in the tree (flag
4834 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4835 		 * of decrementing the extent buffer's reference count twice.
4836 		 * So here we could race and increment the eb's reference count,
4837 		 * clear its stale flag, mark it as dirty and drop our reference
4838 		 * before the other task finishes executing free_extent_buffer,
4839 		 * which would later result in an attempt to free an extent
4840 		 * buffer that is dirty.
4841 		 */
4842 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4843 			spin_lock(&eb->refs_lock);
4844 			spin_unlock(&eb->refs_lock);
4845 		}
4846 		mark_extent_buffer_accessed(eb, NULL);
4847 		return eb;
4848 	}
4849 	rcu_read_unlock();
4850 
4851 	return NULL;
4852 }
4853 
4854 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4855 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4856 					u64 start)
4857 {
4858 	struct extent_buffer *eb, *exists = NULL;
4859 	int ret;
4860 
4861 	eb = find_extent_buffer(fs_info, start);
4862 	if (eb)
4863 		return eb;
4864 	eb = alloc_dummy_extent_buffer(fs_info, start);
4865 	if (!eb)
4866 		return NULL;
4867 	eb->fs_info = fs_info;
4868 again:
4869 	ret = radix_tree_preload(GFP_NOFS);
4870 	if (ret)
4871 		goto free_eb;
4872 	spin_lock(&fs_info->buffer_lock);
4873 	ret = radix_tree_insert(&fs_info->buffer_radix,
4874 				start >> PAGE_SHIFT, eb);
4875 	spin_unlock(&fs_info->buffer_lock);
4876 	radix_tree_preload_end();
4877 	if (ret == -EEXIST) {
4878 		exists = find_extent_buffer(fs_info, start);
4879 		if (exists)
4880 			goto free_eb;
4881 		else
4882 			goto again;
4883 	}
4884 	check_buffer_tree_ref(eb);
4885 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4886 
4887 	return eb;
4888 free_eb:
4889 	btrfs_release_extent_buffer(eb);
4890 	return exists;
4891 }
4892 #endif
4893 
4894 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4895 					  u64 start)
4896 {
4897 	unsigned long len = fs_info->nodesize;
4898 	int num_pages;
4899 	int i;
4900 	unsigned long index = start >> PAGE_SHIFT;
4901 	struct extent_buffer *eb;
4902 	struct extent_buffer *exists = NULL;
4903 	struct page *p;
4904 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4905 	int uptodate = 1;
4906 	int ret;
4907 
4908 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4909 		btrfs_err(fs_info, "bad tree block start %llu", start);
4910 		return ERR_PTR(-EINVAL);
4911 	}
4912 
4913 	eb = find_extent_buffer(fs_info, start);
4914 	if (eb)
4915 		return eb;
4916 
4917 	eb = __alloc_extent_buffer(fs_info, start, len);
4918 	if (!eb)
4919 		return ERR_PTR(-ENOMEM);
4920 
4921 	num_pages = num_extent_pages(eb);
4922 	for (i = 0; i < num_pages; i++, index++) {
4923 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4924 		if (!p) {
4925 			exists = ERR_PTR(-ENOMEM);
4926 			goto free_eb;
4927 		}
4928 
4929 		spin_lock(&mapping->private_lock);
4930 		if (PagePrivate(p)) {
4931 			/*
4932 			 * We could have already allocated an eb for this page
4933 			 * and attached one so lets see if we can get a ref on
4934 			 * the existing eb, and if we can we know it's good and
4935 			 * we can just return that one, else we know we can just
4936 			 * overwrite page->private.
4937 			 */
4938 			exists = (struct extent_buffer *)p->private;
4939 			if (atomic_inc_not_zero(&exists->refs)) {
4940 				spin_unlock(&mapping->private_lock);
4941 				unlock_page(p);
4942 				put_page(p);
4943 				mark_extent_buffer_accessed(exists, p);
4944 				goto free_eb;
4945 			}
4946 			exists = NULL;
4947 
4948 			/*
4949 			 * Do this so attach doesn't complain and we need to
4950 			 * drop the ref the old guy had.
4951 			 */
4952 			ClearPagePrivate(p);
4953 			WARN_ON(PageDirty(p));
4954 			put_page(p);
4955 		}
4956 		attach_extent_buffer_page(eb, p);
4957 		spin_unlock(&mapping->private_lock);
4958 		WARN_ON(PageDirty(p));
4959 		eb->pages[i] = p;
4960 		if (!PageUptodate(p))
4961 			uptodate = 0;
4962 
4963 		/*
4964 		 * We can't unlock the pages just yet since the extent buffer
4965 		 * hasn't been properly inserted in the radix tree, this
4966 		 * opens a race with btree_releasepage which can free a page
4967 		 * while we are still filling in all pages for the buffer and
4968 		 * we could crash.
4969 		 */
4970 	}
4971 	if (uptodate)
4972 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4973 again:
4974 	ret = radix_tree_preload(GFP_NOFS);
4975 	if (ret) {
4976 		exists = ERR_PTR(ret);
4977 		goto free_eb;
4978 	}
4979 
4980 	spin_lock(&fs_info->buffer_lock);
4981 	ret = radix_tree_insert(&fs_info->buffer_radix,
4982 				start >> PAGE_SHIFT, eb);
4983 	spin_unlock(&fs_info->buffer_lock);
4984 	radix_tree_preload_end();
4985 	if (ret == -EEXIST) {
4986 		exists = find_extent_buffer(fs_info, start);
4987 		if (exists)
4988 			goto free_eb;
4989 		else
4990 			goto again;
4991 	}
4992 	/* add one reference for the tree */
4993 	check_buffer_tree_ref(eb);
4994 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4995 
4996 	/*
4997 	 * Now it's safe to unlock the pages because any calls to
4998 	 * btree_releasepage will correctly detect that a page belongs to a
4999 	 * live buffer and won't free them prematurely.
5000 	 */
5001 	for (i = 0; i < num_pages; i++)
5002 		unlock_page(eb->pages[i]);
5003 	return eb;
5004 
5005 free_eb:
5006 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5007 	for (i = 0; i < num_pages; i++) {
5008 		if (eb->pages[i])
5009 			unlock_page(eb->pages[i]);
5010 	}
5011 
5012 	btrfs_release_extent_buffer(eb);
5013 	return exists;
5014 }
5015 
5016 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5017 {
5018 	struct extent_buffer *eb =
5019 			container_of(head, struct extent_buffer, rcu_head);
5020 
5021 	__free_extent_buffer(eb);
5022 }
5023 
5024 static int release_extent_buffer(struct extent_buffer *eb)
5025 {
5026 	lockdep_assert_held(&eb->refs_lock);
5027 
5028 	WARN_ON(atomic_read(&eb->refs) == 0);
5029 	if (atomic_dec_and_test(&eb->refs)) {
5030 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5031 			struct btrfs_fs_info *fs_info = eb->fs_info;
5032 
5033 			spin_unlock(&eb->refs_lock);
5034 
5035 			spin_lock(&fs_info->buffer_lock);
5036 			radix_tree_delete(&fs_info->buffer_radix,
5037 					  eb->start >> PAGE_SHIFT);
5038 			spin_unlock(&fs_info->buffer_lock);
5039 		} else {
5040 			spin_unlock(&eb->refs_lock);
5041 		}
5042 
5043 		/* Should be safe to release our pages at this point */
5044 		btrfs_release_extent_buffer_pages(eb);
5045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5046 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5047 			__free_extent_buffer(eb);
5048 			return 1;
5049 		}
5050 #endif
5051 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5052 		return 1;
5053 	}
5054 	spin_unlock(&eb->refs_lock);
5055 
5056 	return 0;
5057 }
5058 
5059 void free_extent_buffer(struct extent_buffer *eb)
5060 {
5061 	int refs;
5062 	int old;
5063 	if (!eb)
5064 		return;
5065 
5066 	while (1) {
5067 		refs = atomic_read(&eb->refs);
5068 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5069 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5070 			refs == 1))
5071 			break;
5072 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5073 		if (old == refs)
5074 			return;
5075 	}
5076 
5077 	spin_lock(&eb->refs_lock);
5078 	if (atomic_read(&eb->refs) == 2 &&
5079 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5080 	    !extent_buffer_under_io(eb) &&
5081 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5082 		atomic_dec(&eb->refs);
5083 
5084 	/*
5085 	 * I know this is terrible, but it's temporary until we stop tracking
5086 	 * the uptodate bits and such for the extent buffers.
5087 	 */
5088 	release_extent_buffer(eb);
5089 }
5090 
5091 void free_extent_buffer_stale(struct extent_buffer *eb)
5092 {
5093 	if (!eb)
5094 		return;
5095 
5096 	spin_lock(&eb->refs_lock);
5097 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5098 
5099 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5100 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5101 		atomic_dec(&eb->refs);
5102 	release_extent_buffer(eb);
5103 }
5104 
5105 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5106 {
5107 	int i;
5108 	int num_pages;
5109 	struct page *page;
5110 
5111 	num_pages = num_extent_pages(eb);
5112 
5113 	for (i = 0; i < num_pages; i++) {
5114 		page = eb->pages[i];
5115 		if (!PageDirty(page))
5116 			continue;
5117 
5118 		lock_page(page);
5119 		WARN_ON(!PagePrivate(page));
5120 
5121 		clear_page_dirty_for_io(page);
5122 		xa_lock_irq(&page->mapping->i_pages);
5123 		if (!PageDirty(page))
5124 			__xa_clear_mark(&page->mapping->i_pages,
5125 					page_index(page), PAGECACHE_TAG_DIRTY);
5126 		xa_unlock_irq(&page->mapping->i_pages);
5127 		ClearPageError(page);
5128 		unlock_page(page);
5129 	}
5130 	WARN_ON(atomic_read(&eb->refs) == 0);
5131 }
5132 
5133 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5134 {
5135 	int i;
5136 	int num_pages;
5137 	bool was_dirty;
5138 
5139 	check_buffer_tree_ref(eb);
5140 
5141 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5142 
5143 	num_pages = num_extent_pages(eb);
5144 	WARN_ON(atomic_read(&eb->refs) == 0);
5145 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5146 
5147 	if (!was_dirty)
5148 		for (i = 0; i < num_pages; i++)
5149 			set_page_dirty(eb->pages[i]);
5150 
5151 #ifdef CONFIG_BTRFS_DEBUG
5152 	for (i = 0; i < num_pages; i++)
5153 		ASSERT(PageDirty(eb->pages[i]));
5154 #endif
5155 
5156 	return was_dirty;
5157 }
5158 
5159 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5160 {
5161 	int i;
5162 	struct page *page;
5163 	int num_pages;
5164 
5165 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5166 	num_pages = num_extent_pages(eb);
5167 	for (i = 0; i < num_pages; i++) {
5168 		page = eb->pages[i];
5169 		if (page)
5170 			ClearPageUptodate(page);
5171 	}
5172 }
5173 
5174 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5175 {
5176 	int i;
5177 	struct page *page;
5178 	int num_pages;
5179 
5180 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 	num_pages = num_extent_pages(eb);
5182 	for (i = 0; i < num_pages; i++) {
5183 		page = eb->pages[i];
5184 		SetPageUptodate(page);
5185 	}
5186 }
5187 
5188 int read_extent_buffer_pages(struct extent_io_tree *tree,
5189 			     struct extent_buffer *eb, int wait, int mirror_num)
5190 {
5191 	int i;
5192 	struct page *page;
5193 	int err;
5194 	int ret = 0;
5195 	int locked_pages = 0;
5196 	int all_uptodate = 1;
5197 	int num_pages;
5198 	unsigned long num_reads = 0;
5199 	struct bio *bio = NULL;
5200 	unsigned long bio_flags = 0;
5201 
5202 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5203 		return 0;
5204 
5205 	num_pages = num_extent_pages(eb);
5206 	for (i = 0; i < num_pages; i++) {
5207 		page = eb->pages[i];
5208 		if (wait == WAIT_NONE) {
5209 			if (!trylock_page(page))
5210 				goto unlock_exit;
5211 		} else {
5212 			lock_page(page);
5213 		}
5214 		locked_pages++;
5215 	}
5216 	/*
5217 	 * We need to firstly lock all pages to make sure that
5218 	 * the uptodate bit of our pages won't be affected by
5219 	 * clear_extent_buffer_uptodate().
5220 	 */
5221 	for (i = 0; i < num_pages; i++) {
5222 		page = eb->pages[i];
5223 		if (!PageUptodate(page)) {
5224 			num_reads++;
5225 			all_uptodate = 0;
5226 		}
5227 	}
5228 
5229 	if (all_uptodate) {
5230 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5231 		goto unlock_exit;
5232 	}
5233 
5234 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5235 	eb->read_mirror = 0;
5236 	atomic_set(&eb->io_pages, num_reads);
5237 	for (i = 0; i < num_pages; i++) {
5238 		page = eb->pages[i];
5239 
5240 		if (!PageUptodate(page)) {
5241 			if (ret) {
5242 				atomic_dec(&eb->io_pages);
5243 				unlock_page(page);
5244 				continue;
5245 			}
5246 
5247 			ClearPageError(page);
5248 			err = __extent_read_full_page(tree, page,
5249 						      btree_get_extent, &bio,
5250 						      mirror_num, &bio_flags,
5251 						      REQ_META);
5252 			if (err) {
5253 				ret = err;
5254 				/*
5255 				 * We use &bio in above __extent_read_full_page,
5256 				 * so we ensure that if it returns error, the
5257 				 * current page fails to add itself to bio and
5258 				 * it's been unlocked.
5259 				 *
5260 				 * We must dec io_pages by ourselves.
5261 				 */
5262 				atomic_dec(&eb->io_pages);
5263 			}
5264 		} else {
5265 			unlock_page(page);
5266 		}
5267 	}
5268 
5269 	if (bio) {
5270 		err = submit_one_bio(bio, mirror_num, bio_flags);
5271 		if (err)
5272 			return err;
5273 	}
5274 
5275 	if (ret || wait != WAIT_COMPLETE)
5276 		return ret;
5277 
5278 	for (i = 0; i < num_pages; i++) {
5279 		page = eb->pages[i];
5280 		wait_on_page_locked(page);
5281 		if (!PageUptodate(page))
5282 			ret = -EIO;
5283 	}
5284 
5285 	return ret;
5286 
5287 unlock_exit:
5288 	while (locked_pages > 0) {
5289 		locked_pages--;
5290 		page = eb->pages[locked_pages];
5291 		unlock_page(page);
5292 	}
5293 	return ret;
5294 }
5295 
5296 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5297 			unsigned long start, unsigned long len)
5298 {
5299 	size_t cur;
5300 	size_t offset;
5301 	struct page *page;
5302 	char *kaddr;
5303 	char *dst = (char *)dstv;
5304 	size_t start_offset = offset_in_page(eb->start);
5305 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5306 
5307 	if (start + len > eb->len) {
5308 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5309 		     eb->start, eb->len, start, len);
5310 		memset(dst, 0, len);
5311 		return;
5312 	}
5313 
5314 	offset = offset_in_page(start_offset + start);
5315 
5316 	while (len > 0) {
5317 		page = eb->pages[i];
5318 
5319 		cur = min(len, (PAGE_SIZE - offset));
5320 		kaddr = page_address(page);
5321 		memcpy(dst, kaddr + offset, cur);
5322 
5323 		dst += cur;
5324 		len -= cur;
5325 		offset = 0;
5326 		i++;
5327 	}
5328 }
5329 
5330 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5331 			       void __user *dstv,
5332 			       unsigned long start, unsigned long len)
5333 {
5334 	size_t cur;
5335 	size_t offset;
5336 	struct page *page;
5337 	char *kaddr;
5338 	char __user *dst = (char __user *)dstv;
5339 	size_t start_offset = offset_in_page(eb->start);
5340 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5341 	int ret = 0;
5342 
5343 	WARN_ON(start > eb->len);
5344 	WARN_ON(start + len > eb->start + eb->len);
5345 
5346 	offset = offset_in_page(start_offset + start);
5347 
5348 	while (len > 0) {
5349 		page = eb->pages[i];
5350 
5351 		cur = min(len, (PAGE_SIZE - offset));
5352 		kaddr = page_address(page);
5353 		if (copy_to_user(dst, kaddr + offset, cur)) {
5354 			ret = -EFAULT;
5355 			break;
5356 		}
5357 
5358 		dst += cur;
5359 		len -= cur;
5360 		offset = 0;
5361 		i++;
5362 	}
5363 
5364 	return ret;
5365 }
5366 
5367 /*
5368  * return 0 if the item is found within a page.
5369  * return 1 if the item spans two pages.
5370  * return -EINVAL otherwise.
5371  */
5372 int map_private_extent_buffer(const struct extent_buffer *eb,
5373 			      unsigned long start, unsigned long min_len,
5374 			      char **map, unsigned long *map_start,
5375 			      unsigned long *map_len)
5376 {
5377 	size_t offset;
5378 	char *kaddr;
5379 	struct page *p;
5380 	size_t start_offset = offset_in_page(eb->start);
5381 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5382 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5383 		PAGE_SHIFT;
5384 
5385 	if (start + min_len > eb->len) {
5386 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5387 		       eb->start, eb->len, start, min_len);
5388 		return -EINVAL;
5389 	}
5390 
5391 	if (i != end_i)
5392 		return 1;
5393 
5394 	if (i == 0) {
5395 		offset = start_offset;
5396 		*map_start = 0;
5397 	} else {
5398 		offset = 0;
5399 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5400 	}
5401 
5402 	p = eb->pages[i];
5403 	kaddr = page_address(p);
5404 	*map = kaddr + offset;
5405 	*map_len = PAGE_SIZE - offset;
5406 	return 0;
5407 }
5408 
5409 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5410 			 unsigned long start, unsigned long len)
5411 {
5412 	size_t cur;
5413 	size_t offset;
5414 	struct page *page;
5415 	char *kaddr;
5416 	char *ptr = (char *)ptrv;
5417 	size_t start_offset = offset_in_page(eb->start);
5418 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5419 	int ret = 0;
5420 
5421 	WARN_ON(start > eb->len);
5422 	WARN_ON(start + len > eb->start + eb->len);
5423 
5424 	offset = offset_in_page(start_offset + start);
5425 
5426 	while (len > 0) {
5427 		page = eb->pages[i];
5428 
5429 		cur = min(len, (PAGE_SIZE - offset));
5430 
5431 		kaddr = page_address(page);
5432 		ret = memcmp(ptr, kaddr + offset, cur);
5433 		if (ret)
5434 			break;
5435 
5436 		ptr += cur;
5437 		len -= cur;
5438 		offset = 0;
5439 		i++;
5440 	}
5441 	return ret;
5442 }
5443 
5444 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5445 		const void *srcv)
5446 {
5447 	char *kaddr;
5448 
5449 	WARN_ON(!PageUptodate(eb->pages[0]));
5450 	kaddr = page_address(eb->pages[0]);
5451 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5452 			BTRFS_FSID_SIZE);
5453 }
5454 
5455 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5456 {
5457 	char *kaddr;
5458 
5459 	WARN_ON(!PageUptodate(eb->pages[0]));
5460 	kaddr = page_address(eb->pages[0]);
5461 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5462 			BTRFS_FSID_SIZE);
5463 }
5464 
5465 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5466 			 unsigned long start, unsigned long len)
5467 {
5468 	size_t cur;
5469 	size_t offset;
5470 	struct page *page;
5471 	char *kaddr;
5472 	char *src = (char *)srcv;
5473 	size_t start_offset = offset_in_page(eb->start);
5474 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5475 
5476 	WARN_ON(start > eb->len);
5477 	WARN_ON(start + len > eb->start + eb->len);
5478 
5479 	offset = offset_in_page(start_offset + start);
5480 
5481 	while (len > 0) {
5482 		page = eb->pages[i];
5483 		WARN_ON(!PageUptodate(page));
5484 
5485 		cur = min(len, PAGE_SIZE - offset);
5486 		kaddr = page_address(page);
5487 		memcpy(kaddr + offset, src, cur);
5488 
5489 		src += cur;
5490 		len -= cur;
5491 		offset = 0;
5492 		i++;
5493 	}
5494 }
5495 
5496 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5497 		unsigned long len)
5498 {
5499 	size_t cur;
5500 	size_t offset;
5501 	struct page *page;
5502 	char *kaddr;
5503 	size_t start_offset = offset_in_page(eb->start);
5504 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5505 
5506 	WARN_ON(start > eb->len);
5507 	WARN_ON(start + len > eb->start + eb->len);
5508 
5509 	offset = offset_in_page(start_offset + start);
5510 
5511 	while (len > 0) {
5512 		page = eb->pages[i];
5513 		WARN_ON(!PageUptodate(page));
5514 
5515 		cur = min(len, PAGE_SIZE - offset);
5516 		kaddr = page_address(page);
5517 		memset(kaddr + offset, 0, cur);
5518 
5519 		len -= cur;
5520 		offset = 0;
5521 		i++;
5522 	}
5523 }
5524 
5525 void copy_extent_buffer_full(struct extent_buffer *dst,
5526 			     struct extent_buffer *src)
5527 {
5528 	int i;
5529 	int num_pages;
5530 
5531 	ASSERT(dst->len == src->len);
5532 
5533 	num_pages = num_extent_pages(dst);
5534 	for (i = 0; i < num_pages; i++)
5535 		copy_page(page_address(dst->pages[i]),
5536 				page_address(src->pages[i]));
5537 }
5538 
5539 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5540 			unsigned long dst_offset, unsigned long src_offset,
5541 			unsigned long len)
5542 {
5543 	u64 dst_len = dst->len;
5544 	size_t cur;
5545 	size_t offset;
5546 	struct page *page;
5547 	char *kaddr;
5548 	size_t start_offset = offset_in_page(dst->start);
5549 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5550 
5551 	WARN_ON(src->len != dst_len);
5552 
5553 	offset = offset_in_page(start_offset + dst_offset);
5554 
5555 	while (len > 0) {
5556 		page = dst->pages[i];
5557 		WARN_ON(!PageUptodate(page));
5558 
5559 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5560 
5561 		kaddr = page_address(page);
5562 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5563 
5564 		src_offset += cur;
5565 		len -= cur;
5566 		offset = 0;
5567 		i++;
5568 	}
5569 }
5570 
5571 /*
5572  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5573  * given bit number
5574  * @eb: the extent buffer
5575  * @start: offset of the bitmap item in the extent buffer
5576  * @nr: bit number
5577  * @page_index: return index of the page in the extent buffer that contains the
5578  * given bit number
5579  * @page_offset: return offset into the page given by page_index
5580  *
5581  * This helper hides the ugliness of finding the byte in an extent buffer which
5582  * contains a given bit.
5583  */
5584 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5585 				    unsigned long start, unsigned long nr,
5586 				    unsigned long *page_index,
5587 				    size_t *page_offset)
5588 {
5589 	size_t start_offset = offset_in_page(eb->start);
5590 	size_t byte_offset = BIT_BYTE(nr);
5591 	size_t offset;
5592 
5593 	/*
5594 	 * The byte we want is the offset of the extent buffer + the offset of
5595 	 * the bitmap item in the extent buffer + the offset of the byte in the
5596 	 * bitmap item.
5597 	 */
5598 	offset = start_offset + start + byte_offset;
5599 
5600 	*page_index = offset >> PAGE_SHIFT;
5601 	*page_offset = offset_in_page(offset);
5602 }
5603 
5604 /**
5605  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5606  * @eb: the extent buffer
5607  * @start: offset of the bitmap item in the extent buffer
5608  * @nr: bit number to test
5609  */
5610 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5611 			   unsigned long nr)
5612 {
5613 	u8 *kaddr;
5614 	struct page *page;
5615 	unsigned long i;
5616 	size_t offset;
5617 
5618 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5619 	page = eb->pages[i];
5620 	WARN_ON(!PageUptodate(page));
5621 	kaddr = page_address(page);
5622 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5623 }
5624 
5625 /**
5626  * extent_buffer_bitmap_set - set an area of a bitmap
5627  * @eb: the extent buffer
5628  * @start: offset of the bitmap item in the extent buffer
5629  * @pos: bit number of the first bit
5630  * @len: number of bits to set
5631  */
5632 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5633 			      unsigned long pos, unsigned long len)
5634 {
5635 	u8 *kaddr;
5636 	struct page *page;
5637 	unsigned long i;
5638 	size_t offset;
5639 	const unsigned int size = pos + len;
5640 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5641 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5642 
5643 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5644 	page = eb->pages[i];
5645 	WARN_ON(!PageUptodate(page));
5646 	kaddr = page_address(page);
5647 
5648 	while (len >= bits_to_set) {
5649 		kaddr[offset] |= mask_to_set;
5650 		len -= bits_to_set;
5651 		bits_to_set = BITS_PER_BYTE;
5652 		mask_to_set = ~0;
5653 		if (++offset >= PAGE_SIZE && len > 0) {
5654 			offset = 0;
5655 			page = eb->pages[++i];
5656 			WARN_ON(!PageUptodate(page));
5657 			kaddr = page_address(page);
5658 		}
5659 	}
5660 	if (len) {
5661 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5662 		kaddr[offset] |= mask_to_set;
5663 	}
5664 }
5665 
5666 
5667 /**
5668  * extent_buffer_bitmap_clear - clear an area of a bitmap
5669  * @eb: the extent buffer
5670  * @start: offset of the bitmap item in the extent buffer
5671  * @pos: bit number of the first bit
5672  * @len: number of bits to clear
5673  */
5674 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5675 				unsigned long pos, unsigned long len)
5676 {
5677 	u8 *kaddr;
5678 	struct page *page;
5679 	unsigned long i;
5680 	size_t offset;
5681 	const unsigned int size = pos + len;
5682 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5683 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5684 
5685 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5686 	page = eb->pages[i];
5687 	WARN_ON(!PageUptodate(page));
5688 	kaddr = page_address(page);
5689 
5690 	while (len >= bits_to_clear) {
5691 		kaddr[offset] &= ~mask_to_clear;
5692 		len -= bits_to_clear;
5693 		bits_to_clear = BITS_PER_BYTE;
5694 		mask_to_clear = ~0;
5695 		if (++offset >= PAGE_SIZE && len > 0) {
5696 			offset = 0;
5697 			page = eb->pages[++i];
5698 			WARN_ON(!PageUptodate(page));
5699 			kaddr = page_address(page);
5700 		}
5701 	}
5702 	if (len) {
5703 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5704 		kaddr[offset] &= ~mask_to_clear;
5705 	}
5706 }
5707 
5708 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5709 {
5710 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5711 	return distance < len;
5712 }
5713 
5714 static void copy_pages(struct page *dst_page, struct page *src_page,
5715 		       unsigned long dst_off, unsigned long src_off,
5716 		       unsigned long len)
5717 {
5718 	char *dst_kaddr = page_address(dst_page);
5719 	char *src_kaddr;
5720 	int must_memmove = 0;
5721 
5722 	if (dst_page != src_page) {
5723 		src_kaddr = page_address(src_page);
5724 	} else {
5725 		src_kaddr = dst_kaddr;
5726 		if (areas_overlap(src_off, dst_off, len))
5727 			must_memmove = 1;
5728 	}
5729 
5730 	if (must_memmove)
5731 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732 	else
5733 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5734 }
5735 
5736 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5737 			   unsigned long src_offset, unsigned long len)
5738 {
5739 	struct btrfs_fs_info *fs_info = dst->fs_info;
5740 	size_t cur;
5741 	size_t dst_off_in_page;
5742 	size_t src_off_in_page;
5743 	size_t start_offset = offset_in_page(dst->start);
5744 	unsigned long dst_i;
5745 	unsigned long src_i;
5746 
5747 	if (src_offset + len > dst->len) {
5748 		btrfs_err(fs_info,
5749 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5750 			 src_offset, len, dst->len);
5751 		BUG_ON(1);
5752 	}
5753 	if (dst_offset + len > dst->len) {
5754 		btrfs_err(fs_info,
5755 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5756 			 dst_offset, len, dst->len);
5757 		BUG_ON(1);
5758 	}
5759 
5760 	while (len > 0) {
5761 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5762 		src_off_in_page = offset_in_page(start_offset + src_offset);
5763 
5764 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5765 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5766 
5767 		cur = min(len, (unsigned long)(PAGE_SIZE -
5768 					       src_off_in_page));
5769 		cur = min_t(unsigned long, cur,
5770 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5771 
5772 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5773 			   dst_off_in_page, src_off_in_page, cur);
5774 
5775 		src_offset += cur;
5776 		dst_offset += cur;
5777 		len -= cur;
5778 	}
5779 }
5780 
5781 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5782 			   unsigned long src_offset, unsigned long len)
5783 {
5784 	struct btrfs_fs_info *fs_info = dst->fs_info;
5785 	size_t cur;
5786 	size_t dst_off_in_page;
5787 	size_t src_off_in_page;
5788 	unsigned long dst_end = dst_offset + len - 1;
5789 	unsigned long src_end = src_offset + len - 1;
5790 	size_t start_offset = offset_in_page(dst->start);
5791 	unsigned long dst_i;
5792 	unsigned long src_i;
5793 
5794 	if (src_offset + len > dst->len) {
5795 		btrfs_err(fs_info,
5796 			  "memmove bogus src_offset %lu move len %lu len %lu",
5797 			  src_offset, len, dst->len);
5798 		BUG_ON(1);
5799 	}
5800 	if (dst_offset + len > dst->len) {
5801 		btrfs_err(fs_info,
5802 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5803 			  dst_offset, len, dst->len);
5804 		BUG_ON(1);
5805 	}
5806 	if (dst_offset < src_offset) {
5807 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5808 		return;
5809 	}
5810 	while (len > 0) {
5811 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5812 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5813 
5814 		dst_off_in_page = offset_in_page(start_offset + dst_end);
5815 		src_off_in_page = offset_in_page(start_offset + src_end);
5816 
5817 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5818 		cur = min(cur, dst_off_in_page + 1);
5819 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5820 			   dst_off_in_page - cur + 1,
5821 			   src_off_in_page - cur + 1, cur);
5822 
5823 		dst_end -= cur;
5824 		src_end -= cur;
5825 		len -= cur;
5826 	}
5827 }
5828 
5829 int try_release_extent_buffer(struct page *page)
5830 {
5831 	struct extent_buffer *eb;
5832 
5833 	/*
5834 	 * We need to make sure nobody is attaching this page to an eb right
5835 	 * now.
5836 	 */
5837 	spin_lock(&page->mapping->private_lock);
5838 	if (!PagePrivate(page)) {
5839 		spin_unlock(&page->mapping->private_lock);
5840 		return 1;
5841 	}
5842 
5843 	eb = (struct extent_buffer *)page->private;
5844 	BUG_ON(!eb);
5845 
5846 	/*
5847 	 * This is a little awful but should be ok, we need to make sure that
5848 	 * the eb doesn't disappear out from under us while we're looking at
5849 	 * this page.
5850 	 */
5851 	spin_lock(&eb->refs_lock);
5852 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5853 		spin_unlock(&eb->refs_lock);
5854 		spin_unlock(&page->mapping->private_lock);
5855 		return 0;
5856 	}
5857 	spin_unlock(&page->mapping->private_lock);
5858 
5859 	/*
5860 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5861 	 * so just return, this page will likely be freed soon anyway.
5862 	 */
5863 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5864 		spin_unlock(&eb->refs_lock);
5865 		return 0;
5866 	}
5867 
5868 	return release_extent_buffer(eb);
5869 }
5870