1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 100 "%s: ino %llu isize %llu odd range [%llu,%llu]", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static void add_extent_changeset(struct extent_state *state, unsigned bits, 135 struct extent_changeset *changeset, 136 int set) 137 { 138 int ret; 139 140 if (!changeset) 141 return; 142 if (set && (state->state & bits) == bits) 143 return; 144 if (!set && (state->state & bits) == 0) 145 return; 146 changeset->bytes_changed += state->end - state->start + 1; 147 ret = ulist_add(changeset->range_changed, state->start, state->end, 148 GFP_ATOMIC); 149 /* ENOMEM */ 150 BUG_ON(ret < 0); 151 } 152 153 static noinline void flush_write_bio(void *data); 154 static inline struct btrfs_fs_info * 155 tree_fs_info(struct extent_io_tree *tree) 156 { 157 if (!tree->mapping) 158 return NULL; 159 return btrfs_sb(tree->mapping->host->i_sb); 160 } 161 162 int __init extent_io_init(void) 163 { 164 extent_state_cache = kmem_cache_create("btrfs_extent_state", 165 sizeof(struct extent_state), 0, 166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 167 if (!extent_state_cache) 168 return -ENOMEM; 169 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 171 sizeof(struct extent_buffer), 0, 172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 173 if (!extent_buffer_cache) 174 goto free_state_cache; 175 176 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 177 offsetof(struct btrfs_io_bio, bio)); 178 if (!btrfs_bioset) 179 goto free_buffer_cache; 180 181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 182 goto free_bioset; 183 184 return 0; 185 186 free_bioset: 187 bioset_free(btrfs_bioset); 188 btrfs_bioset = NULL; 189 190 free_buffer_cache: 191 kmem_cache_destroy(extent_buffer_cache); 192 extent_buffer_cache = NULL; 193 194 free_state_cache: 195 kmem_cache_destroy(extent_state_cache); 196 extent_state_cache = NULL; 197 return -ENOMEM; 198 } 199 200 void extent_io_exit(void) 201 { 202 btrfs_leak_debug_check(); 203 204 /* 205 * Make sure all delayed rcu free are flushed before we 206 * destroy caches. 207 */ 208 rcu_barrier(); 209 kmem_cache_destroy(extent_state_cache); 210 kmem_cache_destroy(extent_buffer_cache); 211 if (btrfs_bioset) 212 bioset_free(btrfs_bioset); 213 } 214 215 void extent_io_tree_init(struct extent_io_tree *tree, 216 struct address_space *mapping) 217 { 218 tree->state = RB_ROOT; 219 tree->ops = NULL; 220 tree->dirty_bytes = 0; 221 spin_lock_init(&tree->lock); 222 tree->mapping = mapping; 223 } 224 225 static struct extent_state *alloc_extent_state(gfp_t mask) 226 { 227 struct extent_state *state; 228 229 state = kmem_cache_alloc(extent_state_cache, mask); 230 if (!state) 231 return state; 232 state->state = 0; 233 state->failrec = NULL; 234 RB_CLEAR_NODE(&state->rb_node); 235 btrfs_leak_debug_add(&state->leak_list, &states); 236 atomic_set(&state->refs, 1); 237 init_waitqueue_head(&state->wq); 238 trace_alloc_extent_state(state, mask, _RET_IP_); 239 return state; 240 } 241 242 void free_extent_state(struct extent_state *state) 243 { 244 if (!state) 245 return; 246 if (atomic_dec_and_test(&state->refs)) { 247 WARN_ON(extent_state_in_tree(state)); 248 btrfs_leak_debug_del(&state->leak_list); 249 trace_free_extent_state(state, _RET_IP_); 250 kmem_cache_free(extent_state_cache, state); 251 } 252 } 253 254 static struct rb_node *tree_insert(struct rb_root *root, 255 struct rb_node *search_start, 256 u64 offset, 257 struct rb_node *node, 258 struct rb_node ***p_in, 259 struct rb_node **parent_in) 260 { 261 struct rb_node **p; 262 struct rb_node *parent = NULL; 263 struct tree_entry *entry; 264 265 if (p_in && parent_in) { 266 p = *p_in; 267 parent = *parent_in; 268 goto do_insert; 269 } 270 271 p = search_start ? &search_start : &root->rb_node; 272 while (*p) { 273 parent = *p; 274 entry = rb_entry(parent, struct tree_entry, rb_node); 275 276 if (offset < entry->start) 277 p = &(*p)->rb_left; 278 else if (offset > entry->end) 279 p = &(*p)->rb_right; 280 else 281 return parent; 282 } 283 284 do_insert: 285 rb_link_node(node, parent, p); 286 rb_insert_color(node, root); 287 return NULL; 288 } 289 290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 291 struct rb_node **prev_ret, 292 struct rb_node **next_ret, 293 struct rb_node ***p_ret, 294 struct rb_node **parent_ret) 295 { 296 struct rb_root *root = &tree->state; 297 struct rb_node **n = &root->rb_node; 298 struct rb_node *prev = NULL; 299 struct rb_node *orig_prev = NULL; 300 struct tree_entry *entry; 301 struct tree_entry *prev_entry = NULL; 302 303 while (*n) { 304 prev = *n; 305 entry = rb_entry(prev, struct tree_entry, rb_node); 306 prev_entry = entry; 307 308 if (offset < entry->start) 309 n = &(*n)->rb_left; 310 else if (offset > entry->end) 311 n = &(*n)->rb_right; 312 else 313 return *n; 314 } 315 316 if (p_ret) 317 *p_ret = n; 318 if (parent_ret) 319 *parent_ret = prev; 320 321 if (prev_ret) { 322 orig_prev = prev; 323 while (prev && offset > prev_entry->end) { 324 prev = rb_next(prev); 325 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 326 } 327 *prev_ret = prev; 328 prev = orig_prev; 329 } 330 331 if (next_ret) { 332 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 333 while (prev && offset < prev_entry->start) { 334 prev = rb_prev(prev); 335 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 336 } 337 *next_ret = prev; 338 } 339 return NULL; 340 } 341 342 static inline struct rb_node * 343 tree_search_for_insert(struct extent_io_tree *tree, 344 u64 offset, 345 struct rb_node ***p_ret, 346 struct rb_node **parent_ret) 347 { 348 struct rb_node *prev = NULL; 349 struct rb_node *ret; 350 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 352 if (!ret) 353 return prev; 354 return ret; 355 } 356 357 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 358 u64 offset) 359 { 360 return tree_search_for_insert(tree, offset, NULL, NULL); 361 } 362 363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 364 struct extent_state *other) 365 { 366 if (tree->ops && tree->ops->merge_extent_hook) 367 tree->ops->merge_extent_hook(tree->mapping->host, new, 368 other); 369 } 370 371 /* 372 * utility function to look for merge candidates inside a given range. 373 * Any extents with matching state are merged together into a single 374 * extent in the tree. Extents with EXTENT_IO in their state field 375 * are not merged because the end_io handlers need to be able to do 376 * operations on them without sleeping (or doing allocations/splits). 377 * 378 * This should be called with the tree lock held. 379 */ 380 static void merge_state(struct extent_io_tree *tree, 381 struct extent_state *state) 382 { 383 struct extent_state *other; 384 struct rb_node *other_node; 385 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 387 return; 388 389 other_node = rb_prev(&state->rb_node); 390 if (other_node) { 391 other = rb_entry(other_node, struct extent_state, rb_node); 392 if (other->end == state->start - 1 && 393 other->state == state->state) { 394 merge_cb(tree, state, other); 395 state->start = other->start; 396 rb_erase(&other->rb_node, &tree->state); 397 RB_CLEAR_NODE(&other->rb_node); 398 free_extent_state(other); 399 } 400 } 401 other_node = rb_next(&state->rb_node); 402 if (other_node) { 403 other = rb_entry(other_node, struct extent_state, rb_node); 404 if (other->start == state->end + 1 && 405 other->state == state->state) { 406 merge_cb(tree, state, other); 407 state->end = other->end; 408 rb_erase(&other->rb_node, &tree->state); 409 RB_CLEAR_NODE(&other->rb_node); 410 free_extent_state(other); 411 } 412 } 413 } 414 415 static void set_state_cb(struct extent_io_tree *tree, 416 struct extent_state *state, unsigned *bits) 417 { 418 if (tree->ops && tree->ops->set_bit_hook) 419 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 420 } 421 422 static void clear_state_cb(struct extent_io_tree *tree, 423 struct extent_state *state, unsigned *bits) 424 { 425 if (tree->ops && tree->ops->clear_bit_hook) 426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 427 } 428 429 static void set_state_bits(struct extent_io_tree *tree, 430 struct extent_state *state, unsigned *bits, 431 struct extent_changeset *changeset); 432 433 /* 434 * insert an extent_state struct into the tree. 'bits' are set on the 435 * struct before it is inserted. 436 * 437 * This may return -EEXIST if the extent is already there, in which case the 438 * state struct is freed. 439 * 440 * The tree lock is not taken internally. This is a utility function and 441 * probably isn't what you want to call (see set/clear_extent_bit). 442 */ 443 static int insert_state(struct extent_io_tree *tree, 444 struct extent_state *state, u64 start, u64 end, 445 struct rb_node ***p, 446 struct rb_node **parent, 447 unsigned *bits, struct extent_changeset *changeset) 448 { 449 struct rb_node *node; 450 451 if (end < start) 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 453 end, start); 454 state->start = start; 455 state->end = end; 456 457 set_state_bits(tree, state, bits, changeset); 458 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 460 if (node) { 461 struct extent_state *found; 462 found = rb_entry(node, struct extent_state, rb_node); 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 464 "%llu %llu\n", 465 found->start, found->end, start, end); 466 return -EEXIST; 467 } 468 merge_state(tree, state); 469 return 0; 470 } 471 472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 473 u64 split) 474 { 475 if (tree->ops && tree->ops->split_extent_hook) 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 477 } 478 479 /* 480 * split a given extent state struct in two, inserting the preallocated 481 * struct 'prealloc' as the newly created second half. 'split' indicates an 482 * offset inside 'orig' where it should be split. 483 * 484 * Before calling, 485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 486 * are two extent state structs in the tree: 487 * prealloc: [orig->start, split - 1] 488 * orig: [ split, orig->end ] 489 * 490 * The tree locks are not taken by this function. They need to be held 491 * by the caller. 492 */ 493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 494 struct extent_state *prealloc, u64 split) 495 { 496 struct rb_node *node; 497 498 split_cb(tree, orig, split); 499 500 prealloc->start = orig->start; 501 prealloc->end = split - 1; 502 prealloc->state = orig->state; 503 orig->start = split; 504 505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 506 &prealloc->rb_node, NULL, NULL); 507 if (node) { 508 free_extent_state(prealloc); 509 return -EEXIST; 510 } 511 return 0; 512 } 513 514 static struct extent_state *next_state(struct extent_state *state) 515 { 516 struct rb_node *next = rb_next(&state->rb_node); 517 if (next) 518 return rb_entry(next, struct extent_state, rb_node); 519 else 520 return NULL; 521 } 522 523 /* 524 * utility function to clear some bits in an extent state struct. 525 * it will optionally wake up any one waiting on this state (wake == 1). 526 * 527 * If no bits are set on the state struct after clearing things, the 528 * struct is freed and removed from the tree 529 */ 530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 531 struct extent_state *state, 532 unsigned *bits, int wake, 533 struct extent_changeset *changeset) 534 { 535 struct extent_state *next; 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 537 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 539 u64 range = state->end - state->start + 1; 540 WARN_ON(range > tree->dirty_bytes); 541 tree->dirty_bytes -= range; 542 } 543 clear_state_cb(tree, state, bits); 544 add_extent_changeset(state, bits_to_clear, changeset, 0); 545 state->state &= ~bits_to_clear; 546 if (wake) 547 wake_up(&state->wq); 548 if (state->state == 0) { 549 next = next_state(state); 550 if (extent_state_in_tree(state)) { 551 rb_erase(&state->rb_node, &tree->state); 552 RB_CLEAR_NODE(&state->rb_node); 553 free_extent_state(state); 554 } else { 555 WARN_ON(1); 556 } 557 } else { 558 merge_state(tree, state); 559 next = next_state(state); 560 } 561 return next; 562 } 563 564 static struct extent_state * 565 alloc_extent_state_atomic(struct extent_state *prealloc) 566 { 567 if (!prealloc) 568 prealloc = alloc_extent_state(GFP_ATOMIC); 569 570 return prealloc; 571 } 572 573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 574 { 575 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 576 "Extent tree was modified by another " 577 "thread while locked."); 578 } 579 580 /* 581 * clear some bits on a range in the tree. This may require splitting 582 * or inserting elements in the tree, so the gfp mask is used to 583 * indicate which allocations or sleeping are allowed. 584 * 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 586 * the given range from the tree regardless of state (ie for truncate). 587 * 588 * the range [start, end] is inclusive. 589 * 590 * This takes the tree lock, and returns 0 on success and < 0 on error. 591 */ 592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 593 unsigned bits, int wake, int delete, 594 struct extent_state **cached_state, 595 gfp_t mask, struct extent_changeset *changeset) 596 { 597 struct extent_state *state; 598 struct extent_state *cached; 599 struct extent_state *prealloc = NULL; 600 struct rb_node *node; 601 u64 last_end; 602 int err; 603 int clear = 0; 604 605 btrfs_debug_check_extent_io_range(tree, start, end); 606 607 if (bits & EXTENT_DELALLOC) 608 bits |= EXTENT_NORESERVE; 609 610 if (delete) 611 bits |= ~EXTENT_CTLBITS; 612 bits |= EXTENT_FIRST_DELALLOC; 613 614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 615 clear = 1; 616 again: 617 if (!prealloc && gfpflags_allow_blocking(mask)) { 618 /* 619 * Don't care for allocation failure here because we might end 620 * up not needing the pre-allocated extent state at all, which 621 * is the case if we only have in the tree extent states that 622 * cover our input range and don't cover too any other range. 623 * If we end up needing a new extent state we allocate it later. 624 */ 625 prealloc = alloc_extent_state(mask); 626 } 627 628 spin_lock(&tree->lock); 629 if (cached_state) { 630 cached = *cached_state; 631 632 if (clear) { 633 *cached_state = NULL; 634 cached_state = NULL; 635 } 636 637 if (cached && extent_state_in_tree(cached) && 638 cached->start <= start && cached->end > start) { 639 if (clear) 640 atomic_dec(&cached->refs); 641 state = cached; 642 goto hit_next; 643 } 644 if (clear) 645 free_extent_state(cached); 646 } 647 /* 648 * this search will find the extents that end after 649 * our range starts 650 */ 651 node = tree_search(tree, start); 652 if (!node) 653 goto out; 654 state = rb_entry(node, struct extent_state, rb_node); 655 hit_next: 656 if (state->start > end) 657 goto out; 658 WARN_ON(state->end < start); 659 last_end = state->end; 660 661 /* the state doesn't have the wanted bits, go ahead */ 662 if (!(state->state & bits)) { 663 state = next_state(state); 664 goto next; 665 } 666 667 /* 668 * | ---- desired range ---- | 669 * | state | or 670 * | ------------- state -------------- | 671 * 672 * We need to split the extent we found, and may flip 673 * bits on second half. 674 * 675 * If the extent we found extends past our range, we 676 * just split and search again. It'll get split again 677 * the next time though. 678 * 679 * If the extent we found is inside our range, we clear 680 * the desired bit on it. 681 */ 682 683 if (state->start < start) { 684 prealloc = alloc_extent_state_atomic(prealloc); 685 BUG_ON(!prealloc); 686 err = split_state(tree, state, prealloc, start); 687 if (err) 688 extent_io_tree_panic(tree, err); 689 690 prealloc = NULL; 691 if (err) 692 goto out; 693 if (state->end <= end) { 694 state = clear_state_bit(tree, state, &bits, wake, 695 changeset); 696 goto next; 697 } 698 goto search_again; 699 } 700 /* 701 * | ---- desired range ---- | 702 * | state | 703 * We need to split the extent, and clear the bit 704 * on the first half 705 */ 706 if (state->start <= end && state->end > end) { 707 prealloc = alloc_extent_state_atomic(prealloc); 708 BUG_ON(!prealloc); 709 err = split_state(tree, state, prealloc, end + 1); 710 if (err) 711 extent_io_tree_panic(tree, err); 712 713 if (wake) 714 wake_up(&state->wq); 715 716 clear_state_bit(tree, prealloc, &bits, wake, changeset); 717 718 prealloc = NULL; 719 goto out; 720 } 721 722 state = clear_state_bit(tree, state, &bits, wake, changeset); 723 next: 724 if (last_end == (u64)-1) 725 goto out; 726 start = last_end + 1; 727 if (start <= end && state && !need_resched()) 728 goto hit_next; 729 goto search_again; 730 731 out: 732 spin_unlock(&tree->lock); 733 if (prealloc) 734 free_extent_state(prealloc); 735 736 return 0; 737 738 search_again: 739 if (start > end) 740 goto out; 741 spin_unlock(&tree->lock); 742 if (gfpflags_allow_blocking(mask)) 743 cond_resched(); 744 goto again; 745 } 746 747 static void wait_on_state(struct extent_io_tree *tree, 748 struct extent_state *state) 749 __releases(tree->lock) 750 __acquires(tree->lock) 751 { 752 DEFINE_WAIT(wait); 753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 754 spin_unlock(&tree->lock); 755 schedule(); 756 spin_lock(&tree->lock); 757 finish_wait(&state->wq, &wait); 758 } 759 760 /* 761 * waits for one or more bits to clear on a range in the state tree. 762 * The range [start, end] is inclusive. 763 * The tree lock is taken by this function 764 */ 765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 766 unsigned long bits) 767 { 768 struct extent_state *state; 769 struct rb_node *node; 770 771 btrfs_debug_check_extent_io_range(tree, start, end); 772 773 spin_lock(&tree->lock); 774 again: 775 while (1) { 776 /* 777 * this search will find all the extents that end after 778 * our range starts 779 */ 780 node = tree_search(tree, start); 781 process_node: 782 if (!node) 783 break; 784 785 state = rb_entry(node, struct extent_state, rb_node); 786 787 if (state->start > end) 788 goto out; 789 790 if (state->state & bits) { 791 start = state->start; 792 atomic_inc(&state->refs); 793 wait_on_state(tree, state); 794 free_extent_state(state); 795 goto again; 796 } 797 start = state->end + 1; 798 799 if (start > end) 800 break; 801 802 if (!cond_resched_lock(&tree->lock)) { 803 node = rb_next(node); 804 goto process_node; 805 } 806 } 807 out: 808 spin_unlock(&tree->lock); 809 } 810 811 static void set_state_bits(struct extent_io_tree *tree, 812 struct extent_state *state, 813 unsigned *bits, struct extent_changeset *changeset) 814 { 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 816 817 set_state_cb(tree, state, bits); 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 819 u64 range = state->end - state->start + 1; 820 tree->dirty_bytes += range; 821 } 822 add_extent_changeset(state, bits_to_set, changeset, 1); 823 state->state |= bits_to_set; 824 } 825 826 static void cache_state_if_flags(struct extent_state *state, 827 struct extent_state **cached_ptr, 828 unsigned flags) 829 { 830 if (cached_ptr && !(*cached_ptr)) { 831 if (!flags || (state->state & flags)) { 832 *cached_ptr = state; 833 atomic_inc(&state->refs); 834 } 835 } 836 } 837 838 static void cache_state(struct extent_state *state, 839 struct extent_state **cached_ptr) 840 { 841 return cache_state_if_flags(state, cached_ptr, 842 EXTENT_IOBITS | EXTENT_BOUNDARY); 843 } 844 845 /* 846 * set some bits on a range in the tree. This may require allocations or 847 * sleeping, so the gfp mask is used to indicate what is allowed. 848 * 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some 850 * part of the range already has the desired bits set. The start of the 851 * existing range is returned in failed_start in this case. 852 * 853 * [start, end] is inclusive This takes the tree lock. 854 */ 855 856 static int __must_check 857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 858 unsigned bits, unsigned exclusive_bits, 859 u64 *failed_start, struct extent_state **cached_state, 860 gfp_t mask, struct extent_changeset *changeset) 861 { 862 struct extent_state *state; 863 struct extent_state *prealloc = NULL; 864 struct rb_node *node; 865 struct rb_node **p; 866 struct rb_node *parent; 867 int err = 0; 868 u64 last_start; 869 u64 last_end; 870 871 btrfs_debug_check_extent_io_range(tree, start, end); 872 873 bits |= EXTENT_FIRST_DELALLOC; 874 again: 875 if (!prealloc && gfpflags_allow_blocking(mask)) { 876 prealloc = alloc_extent_state(mask); 877 BUG_ON(!prealloc); 878 } 879 880 spin_lock(&tree->lock); 881 if (cached_state && *cached_state) { 882 state = *cached_state; 883 if (state->start <= start && state->end > start && 884 extent_state_in_tree(state)) { 885 node = &state->rb_node; 886 goto hit_next; 887 } 888 } 889 /* 890 * this search will find all the extents that end after 891 * our range starts. 892 */ 893 node = tree_search_for_insert(tree, start, &p, &parent); 894 if (!node) { 895 prealloc = alloc_extent_state_atomic(prealloc); 896 BUG_ON(!prealloc); 897 err = insert_state(tree, prealloc, start, end, 898 &p, &parent, &bits, changeset); 899 if (err) 900 extent_io_tree_panic(tree, err); 901 902 cache_state(prealloc, cached_state); 903 prealloc = NULL; 904 goto out; 905 } 906 state = rb_entry(node, struct extent_state, rb_node); 907 hit_next: 908 last_start = state->start; 909 last_end = state->end; 910 911 /* 912 * | ---- desired range ---- | 913 * | state | 914 * 915 * Just lock what we found and keep going 916 */ 917 if (state->start == start && state->end <= end) { 918 if (state->state & exclusive_bits) { 919 *failed_start = state->start; 920 err = -EEXIST; 921 goto out; 922 } 923 924 set_state_bits(tree, state, &bits, changeset); 925 cache_state(state, cached_state); 926 merge_state(tree, state); 927 if (last_end == (u64)-1) 928 goto out; 929 start = last_end + 1; 930 state = next_state(state); 931 if (start < end && state && state->start == start && 932 !need_resched()) 933 goto hit_next; 934 goto search_again; 935 } 936 937 /* 938 * | ---- desired range ---- | 939 * | state | 940 * or 941 * | ------------- state -------------- | 942 * 943 * We need to split the extent we found, and may flip bits on 944 * second half. 945 * 946 * If the extent we found extends past our 947 * range, we just split and search again. It'll get split 948 * again the next time though. 949 * 950 * If the extent we found is inside our range, we set the 951 * desired bit on it. 952 */ 953 if (state->start < start) { 954 if (state->state & exclusive_bits) { 955 *failed_start = start; 956 err = -EEXIST; 957 goto out; 958 } 959 960 prealloc = alloc_extent_state_atomic(prealloc); 961 BUG_ON(!prealloc); 962 err = split_state(tree, state, prealloc, start); 963 if (err) 964 extent_io_tree_panic(tree, err); 965 966 prealloc = NULL; 967 if (err) 968 goto out; 969 if (state->end <= end) { 970 set_state_bits(tree, state, &bits, changeset); 971 cache_state(state, cached_state); 972 merge_state(tree, state); 973 if (last_end == (u64)-1) 974 goto out; 975 start = last_end + 1; 976 state = next_state(state); 977 if (start < end && state && state->start == start && 978 !need_resched()) 979 goto hit_next; 980 } 981 goto search_again; 982 } 983 /* 984 * | ---- desired range ---- | 985 * | state | or | state | 986 * 987 * There's a hole, we need to insert something in it and 988 * ignore the extent we found. 989 */ 990 if (state->start > start) { 991 u64 this_end; 992 if (end < last_start) 993 this_end = end; 994 else 995 this_end = last_start - 1; 996 997 prealloc = alloc_extent_state_atomic(prealloc); 998 BUG_ON(!prealloc); 999 1000 /* 1001 * Avoid to free 'prealloc' if it can be merged with 1002 * the later extent. 1003 */ 1004 err = insert_state(tree, prealloc, start, this_end, 1005 NULL, NULL, &bits, changeset); 1006 if (err) 1007 extent_io_tree_panic(tree, err); 1008 1009 cache_state(prealloc, cached_state); 1010 prealloc = NULL; 1011 start = this_end + 1; 1012 goto search_again; 1013 } 1014 /* 1015 * | ---- desired range ---- | 1016 * | state | 1017 * We need to split the extent, and set the bit 1018 * on the first half 1019 */ 1020 if (state->start <= end && state->end > end) { 1021 if (state->state & exclusive_bits) { 1022 *failed_start = start; 1023 err = -EEXIST; 1024 goto out; 1025 } 1026 1027 prealloc = alloc_extent_state_atomic(prealloc); 1028 BUG_ON(!prealloc); 1029 err = split_state(tree, state, prealloc, end + 1); 1030 if (err) 1031 extent_io_tree_panic(tree, err); 1032 1033 set_state_bits(tree, prealloc, &bits, changeset); 1034 cache_state(prealloc, cached_state); 1035 merge_state(tree, prealloc); 1036 prealloc = NULL; 1037 goto out; 1038 } 1039 1040 goto search_again; 1041 1042 out: 1043 spin_unlock(&tree->lock); 1044 if (prealloc) 1045 free_extent_state(prealloc); 1046 1047 return err; 1048 1049 search_again: 1050 if (start > end) 1051 goto out; 1052 spin_unlock(&tree->lock); 1053 if (gfpflags_allow_blocking(mask)) 1054 cond_resched(); 1055 goto again; 1056 } 1057 1058 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1059 unsigned bits, u64 * failed_start, 1060 struct extent_state **cached_state, gfp_t mask) 1061 { 1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1063 cached_state, mask, NULL); 1064 } 1065 1066 1067 /** 1068 * convert_extent_bit - convert all bits in a given range from one bit to 1069 * another 1070 * @tree: the io tree to search 1071 * @start: the start offset in bytes 1072 * @end: the end offset in bytes (inclusive) 1073 * @bits: the bits to set in this range 1074 * @clear_bits: the bits to clear in this range 1075 * @cached_state: state that we're going to cache 1076 * @mask: the allocation mask 1077 * 1078 * This will go through and set bits for the given range. If any states exist 1079 * already in this range they are set with the given bit and cleared of the 1080 * clear_bits. This is only meant to be used by things that are mergeable, ie 1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1082 * boundary bits like LOCK. 1083 */ 1084 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1085 unsigned bits, unsigned clear_bits, 1086 struct extent_state **cached_state, gfp_t mask) 1087 { 1088 struct extent_state *state; 1089 struct extent_state *prealloc = NULL; 1090 struct rb_node *node; 1091 struct rb_node **p; 1092 struct rb_node *parent; 1093 int err = 0; 1094 u64 last_start; 1095 u64 last_end; 1096 bool first_iteration = true; 1097 1098 btrfs_debug_check_extent_io_range(tree, start, end); 1099 1100 again: 1101 if (!prealloc && gfpflags_allow_blocking(mask)) { 1102 /* 1103 * Best effort, don't worry if extent state allocation fails 1104 * here for the first iteration. We might have a cached state 1105 * that matches exactly the target range, in which case no 1106 * extent state allocations are needed. We'll only know this 1107 * after locking the tree. 1108 */ 1109 prealloc = alloc_extent_state(mask); 1110 if (!prealloc && !first_iteration) 1111 return -ENOMEM; 1112 } 1113 1114 spin_lock(&tree->lock); 1115 if (cached_state && *cached_state) { 1116 state = *cached_state; 1117 if (state->start <= start && state->end > start && 1118 extent_state_in_tree(state)) { 1119 node = &state->rb_node; 1120 goto hit_next; 1121 } 1122 } 1123 1124 /* 1125 * this search will find all the extents that end after 1126 * our range starts. 1127 */ 1128 node = tree_search_for_insert(tree, start, &p, &parent); 1129 if (!node) { 1130 prealloc = alloc_extent_state_atomic(prealloc); 1131 if (!prealloc) { 1132 err = -ENOMEM; 1133 goto out; 1134 } 1135 err = insert_state(tree, prealloc, start, end, 1136 &p, &parent, &bits, NULL); 1137 if (err) 1138 extent_io_tree_panic(tree, err); 1139 cache_state(prealloc, cached_state); 1140 prealloc = NULL; 1141 goto out; 1142 } 1143 state = rb_entry(node, struct extent_state, rb_node); 1144 hit_next: 1145 last_start = state->start; 1146 last_end = state->end; 1147 1148 /* 1149 * | ---- desired range ---- | 1150 * | state | 1151 * 1152 * Just lock what we found and keep going 1153 */ 1154 if (state->start == start && state->end <= end) { 1155 set_state_bits(tree, state, &bits, NULL); 1156 cache_state(state, cached_state); 1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1158 if (last_end == (u64)-1) 1159 goto out; 1160 start = last_end + 1; 1161 if (start < end && state && state->start == start && 1162 !need_resched()) 1163 goto hit_next; 1164 goto search_again; 1165 } 1166 1167 /* 1168 * | ---- desired range ---- | 1169 * | state | 1170 * or 1171 * | ------------- state -------------- | 1172 * 1173 * We need to split the extent we found, and may flip bits on 1174 * second half. 1175 * 1176 * If the extent we found extends past our 1177 * range, we just split and search again. It'll get split 1178 * again the next time though. 1179 * 1180 * If the extent we found is inside our range, we set the 1181 * desired bit on it. 1182 */ 1183 if (state->start < start) { 1184 prealloc = alloc_extent_state_atomic(prealloc); 1185 if (!prealloc) { 1186 err = -ENOMEM; 1187 goto out; 1188 } 1189 err = split_state(tree, state, prealloc, start); 1190 if (err) 1191 extent_io_tree_panic(tree, err); 1192 prealloc = NULL; 1193 if (err) 1194 goto out; 1195 if (state->end <= end) { 1196 set_state_bits(tree, state, &bits, NULL); 1197 cache_state(state, cached_state); 1198 state = clear_state_bit(tree, state, &clear_bits, 0, 1199 NULL); 1200 if (last_end == (u64)-1) 1201 goto out; 1202 start = last_end + 1; 1203 if (start < end && state && state->start == start && 1204 !need_resched()) 1205 goto hit_next; 1206 } 1207 goto search_again; 1208 } 1209 /* 1210 * | ---- desired range ---- | 1211 * | state | or | state | 1212 * 1213 * There's a hole, we need to insert something in it and 1214 * ignore the extent we found. 1215 */ 1216 if (state->start > start) { 1217 u64 this_end; 1218 if (end < last_start) 1219 this_end = end; 1220 else 1221 this_end = last_start - 1; 1222 1223 prealloc = alloc_extent_state_atomic(prealloc); 1224 if (!prealloc) { 1225 err = -ENOMEM; 1226 goto out; 1227 } 1228 1229 /* 1230 * Avoid to free 'prealloc' if it can be merged with 1231 * the later extent. 1232 */ 1233 err = insert_state(tree, prealloc, start, this_end, 1234 NULL, NULL, &bits, NULL); 1235 if (err) 1236 extent_io_tree_panic(tree, err); 1237 cache_state(prealloc, cached_state); 1238 prealloc = NULL; 1239 start = this_end + 1; 1240 goto search_again; 1241 } 1242 /* 1243 * | ---- desired range ---- | 1244 * | state | 1245 * We need to split the extent, and set the bit 1246 * on the first half 1247 */ 1248 if (state->start <= end && state->end > end) { 1249 prealloc = alloc_extent_state_atomic(prealloc); 1250 if (!prealloc) { 1251 err = -ENOMEM; 1252 goto out; 1253 } 1254 1255 err = split_state(tree, state, prealloc, end + 1); 1256 if (err) 1257 extent_io_tree_panic(tree, err); 1258 1259 set_state_bits(tree, prealloc, &bits, NULL); 1260 cache_state(prealloc, cached_state); 1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1262 prealloc = NULL; 1263 goto out; 1264 } 1265 1266 goto search_again; 1267 1268 out: 1269 spin_unlock(&tree->lock); 1270 if (prealloc) 1271 free_extent_state(prealloc); 1272 1273 return err; 1274 1275 search_again: 1276 if (start > end) 1277 goto out; 1278 spin_unlock(&tree->lock); 1279 if (gfpflags_allow_blocking(mask)) 1280 cond_resched(); 1281 first_iteration = false; 1282 goto again; 1283 } 1284 1285 /* wrappers around set/clear extent bit */ 1286 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1287 unsigned bits, gfp_t mask, 1288 struct extent_changeset *changeset) 1289 { 1290 /* 1291 * We don't support EXTENT_LOCKED yet, as current changeset will 1292 * record any bits changed, so for EXTENT_LOCKED case, it will 1293 * either fail with -EEXIST or changeset will record the whole 1294 * range. 1295 */ 1296 BUG_ON(bits & EXTENT_LOCKED); 1297 1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask, 1299 changeset); 1300 } 1301 1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1303 unsigned bits, int wake, int delete, 1304 struct extent_state **cached, gfp_t mask) 1305 { 1306 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1307 cached, mask, NULL); 1308 } 1309 1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1311 unsigned bits, gfp_t mask, 1312 struct extent_changeset *changeset) 1313 { 1314 /* 1315 * Don't support EXTENT_LOCKED case, same reason as 1316 * set_record_extent_bits(). 1317 */ 1318 BUG_ON(bits & EXTENT_LOCKED); 1319 1320 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask, 1321 changeset); 1322 } 1323 1324 /* 1325 * either insert or lock state struct between start and end use mask to tell 1326 * us if waiting is desired. 1327 */ 1328 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1329 struct extent_state **cached_state) 1330 { 1331 int err; 1332 u64 failed_start; 1333 1334 while (1) { 1335 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1336 EXTENT_LOCKED, &failed_start, 1337 cached_state, GFP_NOFS, NULL); 1338 if (err == -EEXIST) { 1339 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1340 start = failed_start; 1341 } else 1342 break; 1343 WARN_ON(start > end); 1344 } 1345 return err; 1346 } 1347 1348 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1349 { 1350 int err; 1351 u64 failed_start; 1352 1353 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1354 &failed_start, NULL, GFP_NOFS, NULL); 1355 if (err == -EEXIST) { 1356 if (failed_start > start) 1357 clear_extent_bit(tree, start, failed_start - 1, 1358 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1359 return 0; 1360 } 1361 return 1; 1362 } 1363 1364 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1365 { 1366 unsigned long index = start >> PAGE_CACHE_SHIFT; 1367 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1368 struct page *page; 1369 1370 while (index <= end_index) { 1371 page = find_get_page(inode->i_mapping, index); 1372 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1373 clear_page_dirty_for_io(page); 1374 page_cache_release(page); 1375 index++; 1376 } 1377 } 1378 1379 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1380 { 1381 unsigned long index = start >> PAGE_CACHE_SHIFT; 1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1383 struct page *page; 1384 1385 while (index <= end_index) { 1386 page = find_get_page(inode->i_mapping, index); 1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1388 __set_page_dirty_nobuffers(page); 1389 account_page_redirty(page); 1390 page_cache_release(page); 1391 index++; 1392 } 1393 } 1394 1395 /* 1396 * helper function to set both pages and extents in the tree writeback 1397 */ 1398 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1399 { 1400 unsigned long index = start >> PAGE_CACHE_SHIFT; 1401 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1402 struct page *page; 1403 1404 while (index <= end_index) { 1405 page = find_get_page(tree->mapping, index); 1406 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1407 set_page_writeback(page); 1408 page_cache_release(page); 1409 index++; 1410 } 1411 } 1412 1413 /* find the first state struct with 'bits' set after 'start', and 1414 * return it. tree->lock must be held. NULL will returned if 1415 * nothing was found after 'start' 1416 */ 1417 static struct extent_state * 1418 find_first_extent_bit_state(struct extent_io_tree *tree, 1419 u64 start, unsigned bits) 1420 { 1421 struct rb_node *node; 1422 struct extent_state *state; 1423 1424 /* 1425 * this search will find all the extents that end after 1426 * our range starts. 1427 */ 1428 node = tree_search(tree, start); 1429 if (!node) 1430 goto out; 1431 1432 while (1) { 1433 state = rb_entry(node, struct extent_state, rb_node); 1434 if (state->end >= start && (state->state & bits)) 1435 return state; 1436 1437 node = rb_next(node); 1438 if (!node) 1439 break; 1440 } 1441 out: 1442 return NULL; 1443 } 1444 1445 /* 1446 * find the first offset in the io tree with 'bits' set. zero is 1447 * returned if we find something, and *start_ret and *end_ret are 1448 * set to reflect the state struct that was found. 1449 * 1450 * If nothing was found, 1 is returned. If found something, return 0. 1451 */ 1452 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1453 u64 *start_ret, u64 *end_ret, unsigned bits, 1454 struct extent_state **cached_state) 1455 { 1456 struct extent_state *state; 1457 struct rb_node *n; 1458 int ret = 1; 1459 1460 spin_lock(&tree->lock); 1461 if (cached_state && *cached_state) { 1462 state = *cached_state; 1463 if (state->end == start - 1 && extent_state_in_tree(state)) { 1464 n = rb_next(&state->rb_node); 1465 while (n) { 1466 state = rb_entry(n, struct extent_state, 1467 rb_node); 1468 if (state->state & bits) 1469 goto got_it; 1470 n = rb_next(n); 1471 } 1472 free_extent_state(*cached_state); 1473 *cached_state = NULL; 1474 goto out; 1475 } 1476 free_extent_state(*cached_state); 1477 *cached_state = NULL; 1478 } 1479 1480 state = find_first_extent_bit_state(tree, start, bits); 1481 got_it: 1482 if (state) { 1483 cache_state_if_flags(state, cached_state, 0); 1484 *start_ret = state->start; 1485 *end_ret = state->end; 1486 ret = 0; 1487 } 1488 out: 1489 spin_unlock(&tree->lock); 1490 return ret; 1491 } 1492 1493 /* 1494 * find a contiguous range of bytes in the file marked as delalloc, not 1495 * more than 'max_bytes'. start and end are used to return the range, 1496 * 1497 * 1 is returned if we find something, 0 if nothing was in the tree 1498 */ 1499 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1500 u64 *start, u64 *end, u64 max_bytes, 1501 struct extent_state **cached_state) 1502 { 1503 struct rb_node *node; 1504 struct extent_state *state; 1505 u64 cur_start = *start; 1506 u64 found = 0; 1507 u64 total_bytes = 0; 1508 1509 spin_lock(&tree->lock); 1510 1511 /* 1512 * this search will find all the extents that end after 1513 * our range starts. 1514 */ 1515 node = tree_search(tree, cur_start); 1516 if (!node) { 1517 if (!found) 1518 *end = (u64)-1; 1519 goto out; 1520 } 1521 1522 while (1) { 1523 state = rb_entry(node, struct extent_state, rb_node); 1524 if (found && (state->start != cur_start || 1525 (state->state & EXTENT_BOUNDARY))) { 1526 goto out; 1527 } 1528 if (!(state->state & EXTENT_DELALLOC)) { 1529 if (!found) 1530 *end = state->end; 1531 goto out; 1532 } 1533 if (!found) { 1534 *start = state->start; 1535 *cached_state = state; 1536 atomic_inc(&state->refs); 1537 } 1538 found++; 1539 *end = state->end; 1540 cur_start = state->end + 1; 1541 node = rb_next(node); 1542 total_bytes += state->end - state->start + 1; 1543 if (total_bytes >= max_bytes) 1544 break; 1545 if (!node) 1546 break; 1547 } 1548 out: 1549 spin_unlock(&tree->lock); 1550 return found; 1551 } 1552 1553 static noinline void __unlock_for_delalloc(struct inode *inode, 1554 struct page *locked_page, 1555 u64 start, u64 end) 1556 { 1557 int ret; 1558 struct page *pages[16]; 1559 unsigned long index = start >> PAGE_CACHE_SHIFT; 1560 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1561 unsigned long nr_pages = end_index - index + 1; 1562 int i; 1563 1564 if (index == locked_page->index && end_index == index) 1565 return; 1566 1567 while (nr_pages > 0) { 1568 ret = find_get_pages_contig(inode->i_mapping, index, 1569 min_t(unsigned long, nr_pages, 1570 ARRAY_SIZE(pages)), pages); 1571 for (i = 0; i < ret; i++) { 1572 if (pages[i] != locked_page) 1573 unlock_page(pages[i]); 1574 page_cache_release(pages[i]); 1575 } 1576 nr_pages -= ret; 1577 index += ret; 1578 cond_resched(); 1579 } 1580 } 1581 1582 static noinline int lock_delalloc_pages(struct inode *inode, 1583 struct page *locked_page, 1584 u64 delalloc_start, 1585 u64 delalloc_end) 1586 { 1587 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1588 unsigned long start_index = index; 1589 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1590 unsigned long pages_locked = 0; 1591 struct page *pages[16]; 1592 unsigned long nrpages; 1593 int ret; 1594 int i; 1595 1596 /* the caller is responsible for locking the start index */ 1597 if (index == locked_page->index && index == end_index) 1598 return 0; 1599 1600 /* skip the page at the start index */ 1601 nrpages = end_index - index + 1; 1602 while (nrpages > 0) { 1603 ret = find_get_pages_contig(inode->i_mapping, index, 1604 min_t(unsigned long, 1605 nrpages, ARRAY_SIZE(pages)), pages); 1606 if (ret == 0) { 1607 ret = -EAGAIN; 1608 goto done; 1609 } 1610 /* now we have an array of pages, lock them all */ 1611 for (i = 0; i < ret; i++) { 1612 /* 1613 * the caller is taking responsibility for 1614 * locked_page 1615 */ 1616 if (pages[i] != locked_page) { 1617 lock_page(pages[i]); 1618 if (!PageDirty(pages[i]) || 1619 pages[i]->mapping != inode->i_mapping) { 1620 ret = -EAGAIN; 1621 unlock_page(pages[i]); 1622 page_cache_release(pages[i]); 1623 goto done; 1624 } 1625 } 1626 page_cache_release(pages[i]); 1627 pages_locked++; 1628 } 1629 nrpages -= ret; 1630 index += ret; 1631 cond_resched(); 1632 } 1633 ret = 0; 1634 done: 1635 if (ret && pages_locked) { 1636 __unlock_for_delalloc(inode, locked_page, 1637 delalloc_start, 1638 ((u64)(start_index + pages_locked - 1)) << 1639 PAGE_CACHE_SHIFT); 1640 } 1641 return ret; 1642 } 1643 1644 /* 1645 * find a contiguous range of bytes in the file marked as delalloc, not 1646 * more than 'max_bytes'. start and end are used to return the range, 1647 * 1648 * 1 is returned if we find something, 0 if nothing was in the tree 1649 */ 1650 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1651 struct extent_io_tree *tree, 1652 struct page *locked_page, u64 *start, 1653 u64 *end, u64 max_bytes) 1654 { 1655 u64 delalloc_start; 1656 u64 delalloc_end; 1657 u64 found; 1658 struct extent_state *cached_state = NULL; 1659 int ret; 1660 int loops = 0; 1661 1662 again: 1663 /* step one, find a bunch of delalloc bytes starting at start */ 1664 delalloc_start = *start; 1665 delalloc_end = 0; 1666 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1667 max_bytes, &cached_state); 1668 if (!found || delalloc_end <= *start) { 1669 *start = delalloc_start; 1670 *end = delalloc_end; 1671 free_extent_state(cached_state); 1672 return 0; 1673 } 1674 1675 /* 1676 * start comes from the offset of locked_page. We have to lock 1677 * pages in order, so we can't process delalloc bytes before 1678 * locked_page 1679 */ 1680 if (delalloc_start < *start) 1681 delalloc_start = *start; 1682 1683 /* 1684 * make sure to limit the number of pages we try to lock down 1685 */ 1686 if (delalloc_end + 1 - delalloc_start > max_bytes) 1687 delalloc_end = delalloc_start + max_bytes - 1; 1688 1689 /* step two, lock all the pages after the page that has start */ 1690 ret = lock_delalloc_pages(inode, locked_page, 1691 delalloc_start, delalloc_end); 1692 if (ret == -EAGAIN) { 1693 /* some of the pages are gone, lets avoid looping by 1694 * shortening the size of the delalloc range we're searching 1695 */ 1696 free_extent_state(cached_state); 1697 cached_state = NULL; 1698 if (!loops) { 1699 max_bytes = PAGE_CACHE_SIZE; 1700 loops = 1; 1701 goto again; 1702 } else { 1703 found = 0; 1704 goto out_failed; 1705 } 1706 } 1707 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1708 1709 /* step three, lock the state bits for the whole range */ 1710 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1711 1712 /* then test to make sure it is all still delalloc */ 1713 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1714 EXTENT_DELALLOC, 1, cached_state); 1715 if (!ret) { 1716 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1717 &cached_state, GFP_NOFS); 1718 __unlock_for_delalloc(inode, locked_page, 1719 delalloc_start, delalloc_end); 1720 cond_resched(); 1721 goto again; 1722 } 1723 free_extent_state(cached_state); 1724 *start = delalloc_start; 1725 *end = delalloc_end; 1726 out_failed: 1727 return found; 1728 } 1729 1730 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1731 struct page *locked_page, 1732 unsigned clear_bits, 1733 unsigned long page_ops) 1734 { 1735 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1736 int ret; 1737 struct page *pages[16]; 1738 unsigned long index = start >> PAGE_CACHE_SHIFT; 1739 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1740 unsigned long nr_pages = end_index - index + 1; 1741 int i; 1742 1743 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1744 if (page_ops == 0) 1745 return; 1746 1747 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1748 mapping_set_error(inode->i_mapping, -EIO); 1749 1750 while (nr_pages > 0) { 1751 ret = find_get_pages_contig(inode->i_mapping, index, 1752 min_t(unsigned long, 1753 nr_pages, ARRAY_SIZE(pages)), pages); 1754 for (i = 0; i < ret; i++) { 1755 1756 if (page_ops & PAGE_SET_PRIVATE2) 1757 SetPagePrivate2(pages[i]); 1758 1759 if (pages[i] == locked_page) { 1760 page_cache_release(pages[i]); 1761 continue; 1762 } 1763 if (page_ops & PAGE_CLEAR_DIRTY) 1764 clear_page_dirty_for_io(pages[i]); 1765 if (page_ops & PAGE_SET_WRITEBACK) 1766 set_page_writeback(pages[i]); 1767 if (page_ops & PAGE_SET_ERROR) 1768 SetPageError(pages[i]); 1769 if (page_ops & PAGE_END_WRITEBACK) 1770 end_page_writeback(pages[i]); 1771 if (page_ops & PAGE_UNLOCK) 1772 unlock_page(pages[i]); 1773 page_cache_release(pages[i]); 1774 } 1775 nr_pages -= ret; 1776 index += ret; 1777 cond_resched(); 1778 } 1779 } 1780 1781 /* 1782 * count the number of bytes in the tree that have a given bit(s) 1783 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1784 * cached. The total number found is returned. 1785 */ 1786 u64 count_range_bits(struct extent_io_tree *tree, 1787 u64 *start, u64 search_end, u64 max_bytes, 1788 unsigned bits, int contig) 1789 { 1790 struct rb_node *node; 1791 struct extent_state *state; 1792 u64 cur_start = *start; 1793 u64 total_bytes = 0; 1794 u64 last = 0; 1795 int found = 0; 1796 1797 if (WARN_ON(search_end <= cur_start)) 1798 return 0; 1799 1800 spin_lock(&tree->lock); 1801 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1802 total_bytes = tree->dirty_bytes; 1803 goto out; 1804 } 1805 /* 1806 * this search will find all the extents that end after 1807 * our range starts. 1808 */ 1809 node = tree_search(tree, cur_start); 1810 if (!node) 1811 goto out; 1812 1813 while (1) { 1814 state = rb_entry(node, struct extent_state, rb_node); 1815 if (state->start > search_end) 1816 break; 1817 if (contig && found && state->start > last + 1) 1818 break; 1819 if (state->end >= cur_start && (state->state & bits) == bits) { 1820 total_bytes += min(search_end, state->end) + 1 - 1821 max(cur_start, state->start); 1822 if (total_bytes >= max_bytes) 1823 break; 1824 if (!found) { 1825 *start = max(cur_start, state->start); 1826 found = 1; 1827 } 1828 last = state->end; 1829 } else if (contig && found) { 1830 break; 1831 } 1832 node = rb_next(node); 1833 if (!node) 1834 break; 1835 } 1836 out: 1837 spin_unlock(&tree->lock); 1838 return total_bytes; 1839 } 1840 1841 /* 1842 * set the private field for a given byte offset in the tree. If there isn't 1843 * an extent_state there already, this does nothing. 1844 */ 1845 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1846 struct io_failure_record *failrec) 1847 { 1848 struct rb_node *node; 1849 struct extent_state *state; 1850 int ret = 0; 1851 1852 spin_lock(&tree->lock); 1853 /* 1854 * this search will find all the extents that end after 1855 * our range starts. 1856 */ 1857 node = tree_search(tree, start); 1858 if (!node) { 1859 ret = -ENOENT; 1860 goto out; 1861 } 1862 state = rb_entry(node, struct extent_state, rb_node); 1863 if (state->start != start) { 1864 ret = -ENOENT; 1865 goto out; 1866 } 1867 state->failrec = failrec; 1868 out: 1869 spin_unlock(&tree->lock); 1870 return ret; 1871 } 1872 1873 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1874 struct io_failure_record **failrec) 1875 { 1876 struct rb_node *node; 1877 struct extent_state *state; 1878 int ret = 0; 1879 1880 spin_lock(&tree->lock); 1881 /* 1882 * this search will find all the extents that end after 1883 * our range starts. 1884 */ 1885 node = tree_search(tree, start); 1886 if (!node) { 1887 ret = -ENOENT; 1888 goto out; 1889 } 1890 state = rb_entry(node, struct extent_state, rb_node); 1891 if (state->start != start) { 1892 ret = -ENOENT; 1893 goto out; 1894 } 1895 *failrec = state->failrec; 1896 out: 1897 spin_unlock(&tree->lock); 1898 return ret; 1899 } 1900 1901 /* 1902 * searches a range in the state tree for a given mask. 1903 * If 'filled' == 1, this returns 1 only if every extent in the tree 1904 * has the bits set. Otherwise, 1 is returned if any bit in the 1905 * range is found set. 1906 */ 1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1908 unsigned bits, int filled, struct extent_state *cached) 1909 { 1910 struct extent_state *state = NULL; 1911 struct rb_node *node; 1912 int bitset = 0; 1913 1914 spin_lock(&tree->lock); 1915 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1916 cached->end > start) 1917 node = &cached->rb_node; 1918 else 1919 node = tree_search(tree, start); 1920 while (node && start <= end) { 1921 state = rb_entry(node, struct extent_state, rb_node); 1922 1923 if (filled && state->start > start) { 1924 bitset = 0; 1925 break; 1926 } 1927 1928 if (state->start > end) 1929 break; 1930 1931 if (state->state & bits) { 1932 bitset = 1; 1933 if (!filled) 1934 break; 1935 } else if (filled) { 1936 bitset = 0; 1937 break; 1938 } 1939 1940 if (state->end == (u64)-1) 1941 break; 1942 1943 start = state->end + 1; 1944 if (start > end) 1945 break; 1946 node = rb_next(node); 1947 if (!node) { 1948 if (filled) 1949 bitset = 0; 1950 break; 1951 } 1952 } 1953 spin_unlock(&tree->lock); 1954 return bitset; 1955 } 1956 1957 /* 1958 * helper function to set a given page up to date if all the 1959 * extents in the tree for that page are up to date 1960 */ 1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1962 { 1963 u64 start = page_offset(page); 1964 u64 end = start + PAGE_CACHE_SIZE - 1; 1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1966 SetPageUptodate(page); 1967 } 1968 1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1970 { 1971 int ret; 1972 int err = 0; 1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1974 1975 set_state_failrec(failure_tree, rec->start, NULL); 1976 ret = clear_extent_bits(failure_tree, rec->start, 1977 rec->start + rec->len - 1, 1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1979 if (ret) 1980 err = ret; 1981 1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1983 rec->start + rec->len - 1, 1984 EXTENT_DAMAGED, GFP_NOFS); 1985 if (ret && !err) 1986 err = ret; 1987 1988 kfree(rec); 1989 return err; 1990 } 1991 1992 /* 1993 * this bypasses the standard btrfs submit functions deliberately, as 1994 * the standard behavior is to write all copies in a raid setup. here we only 1995 * want to write the one bad copy. so we do the mapping for ourselves and issue 1996 * submit_bio directly. 1997 * to avoid any synchronization issues, wait for the data after writing, which 1998 * actually prevents the read that triggered the error from finishing. 1999 * currently, there can be no more than two copies of every data bit. thus, 2000 * exactly one rewrite is required. 2001 */ 2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2003 struct page *page, unsigned int pg_offset, int mirror_num) 2004 { 2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2006 struct bio *bio; 2007 struct btrfs_device *dev; 2008 u64 map_length = 0; 2009 u64 sector; 2010 struct btrfs_bio *bbio = NULL; 2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2012 int ret; 2013 2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2015 BUG_ON(!mirror_num); 2016 2017 /* we can't repair anything in raid56 yet */ 2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2019 return 0; 2020 2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2022 if (!bio) 2023 return -EIO; 2024 bio->bi_iter.bi_size = 0; 2025 map_length = length; 2026 2027 ret = btrfs_map_block(fs_info, WRITE, logical, 2028 &map_length, &bbio, mirror_num); 2029 if (ret) { 2030 bio_put(bio); 2031 return -EIO; 2032 } 2033 BUG_ON(mirror_num != bbio->mirror_num); 2034 sector = bbio->stripes[mirror_num-1].physical >> 9; 2035 bio->bi_iter.bi_sector = sector; 2036 dev = bbio->stripes[mirror_num-1].dev; 2037 btrfs_put_bbio(bbio); 2038 if (!dev || !dev->bdev || !dev->writeable) { 2039 bio_put(bio); 2040 return -EIO; 2041 } 2042 bio->bi_bdev = dev->bdev; 2043 bio_add_page(bio, page, length, pg_offset); 2044 2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2046 /* try to remap that extent elsewhere? */ 2047 bio_put(bio); 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2049 return -EIO; 2050 } 2051 2052 btrfs_info_rl_in_rcu(fs_info, 2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2054 btrfs_ino(inode), start, 2055 rcu_str_deref(dev->name), sector); 2056 bio_put(bio); 2057 return 0; 2058 } 2059 2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2061 int mirror_num) 2062 { 2063 u64 start = eb->start; 2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2065 int ret = 0; 2066 2067 if (root->fs_info->sb->s_flags & MS_RDONLY) 2068 return -EROFS; 2069 2070 for (i = 0; i < num_pages; i++) { 2071 struct page *p = eb->pages[i]; 2072 2073 ret = repair_io_failure(root->fs_info->btree_inode, start, 2074 PAGE_CACHE_SIZE, start, p, 2075 start - page_offset(p), mirror_num); 2076 if (ret) 2077 break; 2078 start += PAGE_CACHE_SIZE; 2079 } 2080 2081 return ret; 2082 } 2083 2084 /* 2085 * each time an IO finishes, we do a fast check in the IO failure tree 2086 * to see if we need to process or clean up an io_failure_record 2087 */ 2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2089 unsigned int pg_offset) 2090 { 2091 u64 private; 2092 struct io_failure_record *failrec; 2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2094 struct extent_state *state; 2095 int num_copies; 2096 int ret; 2097 2098 private = 0; 2099 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2100 (u64)-1, 1, EXTENT_DIRTY, 0); 2101 if (!ret) 2102 return 0; 2103 2104 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start, 2105 &failrec); 2106 if (ret) 2107 return 0; 2108 2109 BUG_ON(!failrec->this_mirror); 2110 2111 if (failrec->in_validation) { 2112 /* there was no real error, just free the record */ 2113 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2114 failrec->start); 2115 goto out; 2116 } 2117 if (fs_info->sb->s_flags & MS_RDONLY) 2118 goto out; 2119 2120 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2121 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2122 failrec->start, 2123 EXTENT_LOCKED); 2124 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2125 2126 if (state && state->start <= failrec->start && 2127 state->end >= failrec->start + failrec->len - 1) { 2128 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2129 failrec->len); 2130 if (num_copies > 1) { 2131 repair_io_failure(inode, start, failrec->len, 2132 failrec->logical, page, 2133 pg_offset, failrec->failed_mirror); 2134 } 2135 } 2136 2137 out: 2138 free_io_failure(inode, failrec); 2139 2140 return 0; 2141 } 2142 2143 /* 2144 * Can be called when 2145 * - hold extent lock 2146 * - under ordered extent 2147 * - the inode is freeing 2148 */ 2149 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2150 { 2151 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2152 struct io_failure_record *failrec; 2153 struct extent_state *state, *next; 2154 2155 if (RB_EMPTY_ROOT(&failure_tree->state)) 2156 return; 2157 2158 spin_lock(&failure_tree->lock); 2159 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2160 while (state) { 2161 if (state->start > end) 2162 break; 2163 2164 ASSERT(state->end <= end); 2165 2166 next = next_state(state); 2167 2168 failrec = state->failrec; 2169 free_extent_state(state); 2170 kfree(failrec); 2171 2172 state = next; 2173 } 2174 spin_unlock(&failure_tree->lock); 2175 } 2176 2177 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2178 struct io_failure_record **failrec_ret) 2179 { 2180 struct io_failure_record *failrec; 2181 struct extent_map *em; 2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2185 int ret; 2186 u64 logical; 2187 2188 ret = get_state_failrec(failure_tree, start, &failrec); 2189 if (ret) { 2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2191 if (!failrec) 2192 return -ENOMEM; 2193 2194 failrec->start = start; 2195 failrec->len = end - start + 1; 2196 failrec->this_mirror = 0; 2197 failrec->bio_flags = 0; 2198 failrec->in_validation = 0; 2199 2200 read_lock(&em_tree->lock); 2201 em = lookup_extent_mapping(em_tree, start, failrec->len); 2202 if (!em) { 2203 read_unlock(&em_tree->lock); 2204 kfree(failrec); 2205 return -EIO; 2206 } 2207 2208 if (em->start > start || em->start + em->len <= start) { 2209 free_extent_map(em); 2210 em = NULL; 2211 } 2212 read_unlock(&em_tree->lock); 2213 if (!em) { 2214 kfree(failrec); 2215 return -EIO; 2216 } 2217 2218 logical = start - em->start; 2219 logical = em->block_start + logical; 2220 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2221 logical = em->block_start; 2222 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2223 extent_set_compress_type(&failrec->bio_flags, 2224 em->compress_type); 2225 } 2226 2227 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2228 logical, start, failrec->len); 2229 2230 failrec->logical = logical; 2231 free_extent_map(em); 2232 2233 /* set the bits in the private failure tree */ 2234 ret = set_extent_bits(failure_tree, start, end, 2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2236 if (ret >= 0) 2237 ret = set_state_failrec(failure_tree, start, failrec); 2238 /* set the bits in the inode's tree */ 2239 if (ret >= 0) 2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2241 GFP_NOFS); 2242 if (ret < 0) { 2243 kfree(failrec); 2244 return ret; 2245 } 2246 } else { 2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2248 failrec->logical, failrec->start, failrec->len, 2249 failrec->in_validation); 2250 /* 2251 * when data can be on disk more than twice, add to failrec here 2252 * (e.g. with a list for failed_mirror) to make 2253 * clean_io_failure() clean all those errors at once. 2254 */ 2255 } 2256 2257 *failrec_ret = failrec; 2258 2259 return 0; 2260 } 2261 2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2263 struct io_failure_record *failrec, int failed_mirror) 2264 { 2265 int num_copies; 2266 2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2268 failrec->logical, failrec->len); 2269 if (num_copies == 1) { 2270 /* 2271 * we only have a single copy of the data, so don't bother with 2272 * all the retry and error correction code that follows. no 2273 * matter what the error is, it is very likely to persist. 2274 */ 2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2276 num_copies, failrec->this_mirror, failed_mirror); 2277 return 0; 2278 } 2279 2280 /* 2281 * there are two premises: 2282 * a) deliver good data to the caller 2283 * b) correct the bad sectors on disk 2284 */ 2285 if (failed_bio->bi_vcnt > 1) { 2286 /* 2287 * to fulfill b), we need to know the exact failing sectors, as 2288 * we don't want to rewrite any more than the failed ones. thus, 2289 * we need separate read requests for the failed bio 2290 * 2291 * if the following BUG_ON triggers, our validation request got 2292 * merged. we need separate requests for our algorithm to work. 2293 */ 2294 BUG_ON(failrec->in_validation); 2295 failrec->in_validation = 1; 2296 failrec->this_mirror = failed_mirror; 2297 } else { 2298 /* 2299 * we're ready to fulfill a) and b) alongside. get a good copy 2300 * of the failed sector and if we succeed, we have setup 2301 * everything for repair_io_failure to do the rest for us. 2302 */ 2303 if (failrec->in_validation) { 2304 BUG_ON(failrec->this_mirror != failed_mirror); 2305 failrec->in_validation = 0; 2306 failrec->this_mirror = 0; 2307 } 2308 failrec->failed_mirror = failed_mirror; 2309 failrec->this_mirror++; 2310 if (failrec->this_mirror == failed_mirror) 2311 failrec->this_mirror++; 2312 } 2313 2314 if (failrec->this_mirror > num_copies) { 2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2316 num_copies, failrec->this_mirror, failed_mirror); 2317 return 0; 2318 } 2319 2320 return 1; 2321 } 2322 2323 2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2325 struct io_failure_record *failrec, 2326 struct page *page, int pg_offset, int icsum, 2327 bio_end_io_t *endio_func, void *data) 2328 { 2329 struct bio *bio; 2330 struct btrfs_io_bio *btrfs_failed_bio; 2331 struct btrfs_io_bio *btrfs_bio; 2332 2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2334 if (!bio) 2335 return NULL; 2336 2337 bio->bi_end_io = endio_func; 2338 bio->bi_iter.bi_sector = failrec->logical >> 9; 2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2340 bio->bi_iter.bi_size = 0; 2341 bio->bi_private = data; 2342 2343 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2344 if (btrfs_failed_bio->csum) { 2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2347 2348 btrfs_bio = btrfs_io_bio(bio); 2349 btrfs_bio->csum = btrfs_bio->csum_inline; 2350 icsum *= csum_size; 2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2352 csum_size); 2353 } 2354 2355 bio_add_page(bio, page, failrec->len, pg_offset); 2356 2357 return bio; 2358 } 2359 2360 /* 2361 * this is a generic handler for readpage errors (default 2362 * readpage_io_failed_hook). if other copies exist, read those and write back 2363 * good data to the failed position. does not investigate in remapping the 2364 * failed extent elsewhere, hoping the device will be smart enough to do this as 2365 * needed 2366 */ 2367 2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2369 struct page *page, u64 start, u64 end, 2370 int failed_mirror) 2371 { 2372 struct io_failure_record *failrec; 2373 struct inode *inode = page->mapping->host; 2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2375 struct bio *bio; 2376 int read_mode; 2377 int ret; 2378 2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2380 2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2382 if (ret) 2383 return ret; 2384 2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2386 if (!ret) { 2387 free_io_failure(inode, failrec); 2388 return -EIO; 2389 } 2390 2391 if (failed_bio->bi_vcnt > 1) 2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2393 else 2394 read_mode = READ_SYNC; 2395 2396 phy_offset >>= inode->i_sb->s_blocksize_bits; 2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2398 start - page_offset(page), 2399 (int)phy_offset, failed_bio->bi_end_io, 2400 NULL); 2401 if (!bio) { 2402 free_io_failure(inode, failrec); 2403 return -EIO; 2404 } 2405 2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2407 read_mode, failrec->this_mirror, failrec->in_validation); 2408 2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2410 failrec->this_mirror, 2411 failrec->bio_flags, 0); 2412 if (ret) { 2413 free_io_failure(inode, failrec); 2414 bio_put(bio); 2415 } 2416 2417 return ret; 2418 } 2419 2420 /* lots and lots of room for performance fixes in the end_bio funcs */ 2421 2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2423 { 2424 int uptodate = (err == 0); 2425 struct extent_io_tree *tree; 2426 int ret = 0; 2427 2428 tree = &BTRFS_I(page->mapping->host)->io_tree; 2429 2430 if (tree->ops && tree->ops->writepage_end_io_hook) { 2431 ret = tree->ops->writepage_end_io_hook(page, start, 2432 end, NULL, uptodate); 2433 if (ret) 2434 uptodate = 0; 2435 } 2436 2437 if (!uptodate) { 2438 ClearPageUptodate(page); 2439 SetPageError(page); 2440 ret = ret < 0 ? ret : -EIO; 2441 mapping_set_error(page->mapping, ret); 2442 } 2443 } 2444 2445 /* 2446 * after a writepage IO is done, we need to: 2447 * clear the uptodate bits on error 2448 * clear the writeback bits in the extent tree for this IO 2449 * end_page_writeback if the page has no more pending IO 2450 * 2451 * Scheduling is not allowed, so the extent state tree is expected 2452 * to have one and only one object corresponding to this IO. 2453 */ 2454 static void end_bio_extent_writepage(struct bio *bio) 2455 { 2456 struct bio_vec *bvec; 2457 u64 start; 2458 u64 end; 2459 int i; 2460 2461 bio_for_each_segment_all(bvec, bio, i) { 2462 struct page *page = bvec->bv_page; 2463 2464 /* We always issue full-page reads, but if some block 2465 * in a page fails to read, blk_update_request() will 2466 * advance bv_offset and adjust bv_len to compensate. 2467 * Print a warning for nonzero offsets, and an error 2468 * if they don't add up to a full page. */ 2469 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2470 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2472 "partial page write in btrfs with offset %u and length %u", 2473 bvec->bv_offset, bvec->bv_len); 2474 else 2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2476 "incomplete page write in btrfs with offset %u and " 2477 "length %u", 2478 bvec->bv_offset, bvec->bv_len); 2479 } 2480 2481 start = page_offset(page); 2482 end = start + bvec->bv_offset + bvec->bv_len - 1; 2483 2484 end_extent_writepage(page, bio->bi_error, start, end); 2485 end_page_writeback(page); 2486 } 2487 2488 bio_put(bio); 2489 } 2490 2491 static void 2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2493 int uptodate) 2494 { 2495 struct extent_state *cached = NULL; 2496 u64 end = start + len - 1; 2497 2498 if (uptodate && tree->track_uptodate) 2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2501 } 2502 2503 /* 2504 * after a readpage IO is done, we need to: 2505 * clear the uptodate bits on error 2506 * set the uptodate bits if things worked 2507 * set the page up to date if all extents in the tree are uptodate 2508 * clear the lock bit in the extent tree 2509 * unlock the page if there are no other extents locked for it 2510 * 2511 * Scheduling is not allowed, so the extent state tree is expected 2512 * to have one and only one object corresponding to this IO. 2513 */ 2514 static void end_bio_extent_readpage(struct bio *bio) 2515 { 2516 struct bio_vec *bvec; 2517 int uptodate = !bio->bi_error; 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2519 struct extent_io_tree *tree; 2520 u64 offset = 0; 2521 u64 start; 2522 u64 end; 2523 u64 len; 2524 u64 extent_start = 0; 2525 u64 extent_len = 0; 2526 int mirror; 2527 int ret; 2528 int i; 2529 2530 bio_for_each_segment_all(bvec, bio, i) { 2531 struct page *page = bvec->bv_page; 2532 struct inode *inode = page->mapping->host; 2533 2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, 2536 bio->bi_error, io_bio->mirror_num); 2537 tree = &BTRFS_I(inode)->io_tree; 2538 2539 /* We always issue full-page reads, but if some block 2540 * in a page fails to read, blk_update_request() will 2541 * advance bv_offset and adjust bv_len to compensate. 2542 * Print a warning for nonzero offsets, and an error 2543 * if they don't add up to a full page. */ 2544 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2545 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2547 "partial page read in btrfs with offset %u and length %u", 2548 bvec->bv_offset, bvec->bv_len); 2549 else 2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2551 "incomplete page read in btrfs with offset %u and " 2552 "length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 } 2555 2556 start = page_offset(page); 2557 end = start + bvec->bv_offset + bvec->bv_len - 1; 2558 len = bvec->bv_len; 2559 2560 mirror = io_bio->mirror_num; 2561 if (likely(uptodate && tree->ops && 2562 tree->ops->readpage_end_io_hook)) { 2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2564 page, start, end, 2565 mirror); 2566 if (ret) 2567 uptodate = 0; 2568 else 2569 clean_io_failure(inode, start, page, 0); 2570 } 2571 2572 if (likely(uptodate)) 2573 goto readpage_ok; 2574 2575 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2577 if (!ret && !bio->bi_error) 2578 uptodate = 1; 2579 } else { 2580 /* 2581 * The generic bio_readpage_error handles errors the 2582 * following way: If possible, new read requests are 2583 * created and submitted and will end up in 2584 * end_bio_extent_readpage as well (if we're lucky, not 2585 * in the !uptodate case). In that case it returns 0 and 2586 * we just go on with the next page in our bio. If it 2587 * can't handle the error it will return -EIO and we 2588 * remain responsible for that page. 2589 */ 2590 ret = bio_readpage_error(bio, offset, page, start, end, 2591 mirror); 2592 if (ret == 0) { 2593 uptodate = !bio->bi_error; 2594 offset += len; 2595 continue; 2596 } 2597 } 2598 readpage_ok: 2599 if (likely(uptodate)) { 2600 loff_t i_size = i_size_read(inode); 2601 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2602 unsigned off; 2603 2604 /* Zero out the end if this page straddles i_size */ 2605 off = i_size & (PAGE_CACHE_SIZE-1); 2606 if (page->index == end_index && off) 2607 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2608 SetPageUptodate(page); 2609 } else { 2610 ClearPageUptodate(page); 2611 SetPageError(page); 2612 } 2613 unlock_page(page); 2614 offset += len; 2615 2616 if (unlikely(!uptodate)) { 2617 if (extent_len) { 2618 endio_readpage_release_extent(tree, 2619 extent_start, 2620 extent_len, 1); 2621 extent_start = 0; 2622 extent_len = 0; 2623 } 2624 endio_readpage_release_extent(tree, start, 2625 end - start + 1, 0); 2626 } else if (!extent_len) { 2627 extent_start = start; 2628 extent_len = end + 1 - start; 2629 } else if (extent_start + extent_len == start) { 2630 extent_len += end + 1 - start; 2631 } else { 2632 endio_readpage_release_extent(tree, extent_start, 2633 extent_len, uptodate); 2634 extent_start = start; 2635 extent_len = end + 1 - start; 2636 } 2637 } 2638 2639 if (extent_len) 2640 endio_readpage_release_extent(tree, extent_start, extent_len, 2641 uptodate); 2642 if (io_bio->end_io) 2643 io_bio->end_io(io_bio, bio->bi_error); 2644 bio_put(bio); 2645 } 2646 2647 /* 2648 * this allocates from the btrfs_bioset. We're returning a bio right now 2649 * but you can call btrfs_io_bio for the appropriate container_of magic 2650 */ 2651 struct bio * 2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2653 gfp_t gfp_flags) 2654 { 2655 struct btrfs_io_bio *btrfs_bio; 2656 struct bio *bio; 2657 2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2659 2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2661 while (!bio && (nr_vecs /= 2)) { 2662 bio = bio_alloc_bioset(gfp_flags, 2663 nr_vecs, btrfs_bioset); 2664 } 2665 } 2666 2667 if (bio) { 2668 bio->bi_bdev = bdev; 2669 bio->bi_iter.bi_sector = first_sector; 2670 btrfs_bio = btrfs_io_bio(bio); 2671 btrfs_bio->csum = NULL; 2672 btrfs_bio->csum_allocated = NULL; 2673 btrfs_bio->end_io = NULL; 2674 } 2675 return bio; 2676 } 2677 2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2679 { 2680 struct btrfs_io_bio *btrfs_bio; 2681 struct bio *new; 2682 2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2684 if (new) { 2685 btrfs_bio = btrfs_io_bio(new); 2686 btrfs_bio->csum = NULL; 2687 btrfs_bio->csum_allocated = NULL; 2688 btrfs_bio->end_io = NULL; 2689 2690 #ifdef CONFIG_BLK_CGROUP 2691 /* FIXME, put this into bio_clone_bioset */ 2692 if (bio->bi_css) 2693 bio_associate_blkcg(new, bio->bi_css); 2694 #endif 2695 } 2696 return new; 2697 } 2698 2699 /* this also allocates from the btrfs_bioset */ 2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2701 { 2702 struct btrfs_io_bio *btrfs_bio; 2703 struct bio *bio; 2704 2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2706 if (bio) { 2707 btrfs_bio = btrfs_io_bio(bio); 2708 btrfs_bio->csum = NULL; 2709 btrfs_bio->csum_allocated = NULL; 2710 btrfs_bio->end_io = NULL; 2711 } 2712 return bio; 2713 } 2714 2715 2716 static int __must_check submit_one_bio(int rw, struct bio *bio, 2717 int mirror_num, unsigned long bio_flags) 2718 { 2719 int ret = 0; 2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2721 struct page *page = bvec->bv_page; 2722 struct extent_io_tree *tree = bio->bi_private; 2723 u64 start; 2724 2725 start = page_offset(page) + bvec->bv_offset; 2726 2727 bio->bi_private = NULL; 2728 2729 bio_get(bio); 2730 2731 if (tree->ops && tree->ops->submit_bio_hook) 2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2733 mirror_num, bio_flags, start); 2734 else 2735 btrfsic_submit_bio(rw, bio); 2736 2737 bio_put(bio); 2738 return ret; 2739 } 2740 2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2742 unsigned long offset, size_t size, struct bio *bio, 2743 unsigned long bio_flags) 2744 { 2745 int ret = 0; 2746 if (tree->ops && tree->ops->merge_bio_hook) 2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2748 bio_flags); 2749 BUG_ON(ret < 0); 2750 return ret; 2751 2752 } 2753 2754 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2755 struct writeback_control *wbc, 2756 struct page *page, sector_t sector, 2757 size_t size, unsigned long offset, 2758 struct block_device *bdev, 2759 struct bio **bio_ret, 2760 unsigned long max_pages, 2761 bio_end_io_t end_io_func, 2762 int mirror_num, 2763 unsigned long prev_bio_flags, 2764 unsigned long bio_flags, 2765 bool force_bio_submit) 2766 { 2767 int ret = 0; 2768 struct bio *bio; 2769 int contig = 0; 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2771 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2772 2773 if (bio_ret && *bio_ret) { 2774 bio = *bio_ret; 2775 if (old_compressed) 2776 contig = bio->bi_iter.bi_sector == sector; 2777 else 2778 contig = bio_end_sector(bio) == sector; 2779 2780 if (prev_bio_flags != bio_flags || !contig || 2781 force_bio_submit || 2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2783 bio_add_page(bio, page, page_size, offset) < page_size) { 2784 ret = submit_one_bio(rw, bio, mirror_num, 2785 prev_bio_flags); 2786 if (ret < 0) { 2787 *bio_ret = NULL; 2788 return ret; 2789 } 2790 bio = NULL; 2791 } else { 2792 if (wbc) 2793 wbc_account_io(wbc, page, page_size); 2794 return 0; 2795 } 2796 } 2797 2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES, 2799 GFP_NOFS | __GFP_HIGH); 2800 if (!bio) 2801 return -ENOMEM; 2802 2803 bio_add_page(bio, page, page_size, offset); 2804 bio->bi_end_io = end_io_func; 2805 bio->bi_private = tree; 2806 if (wbc) { 2807 wbc_init_bio(wbc, bio); 2808 wbc_account_io(wbc, page, page_size); 2809 } 2810 2811 if (bio_ret) 2812 *bio_ret = bio; 2813 else 2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2815 2816 return ret; 2817 } 2818 2819 static void attach_extent_buffer_page(struct extent_buffer *eb, 2820 struct page *page) 2821 { 2822 if (!PagePrivate(page)) { 2823 SetPagePrivate(page); 2824 page_cache_get(page); 2825 set_page_private(page, (unsigned long)eb); 2826 } else { 2827 WARN_ON(page->private != (unsigned long)eb); 2828 } 2829 } 2830 2831 void set_page_extent_mapped(struct page *page) 2832 { 2833 if (!PagePrivate(page)) { 2834 SetPagePrivate(page); 2835 page_cache_get(page); 2836 set_page_private(page, EXTENT_PAGE_PRIVATE); 2837 } 2838 } 2839 2840 static struct extent_map * 2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2842 u64 start, u64 len, get_extent_t *get_extent, 2843 struct extent_map **em_cached) 2844 { 2845 struct extent_map *em; 2846 2847 if (em_cached && *em_cached) { 2848 em = *em_cached; 2849 if (extent_map_in_tree(em) && start >= em->start && 2850 start < extent_map_end(em)) { 2851 atomic_inc(&em->refs); 2852 return em; 2853 } 2854 2855 free_extent_map(em); 2856 *em_cached = NULL; 2857 } 2858 2859 em = get_extent(inode, page, pg_offset, start, len, 0); 2860 if (em_cached && !IS_ERR_OR_NULL(em)) { 2861 BUG_ON(*em_cached); 2862 atomic_inc(&em->refs); 2863 *em_cached = em; 2864 } 2865 return em; 2866 } 2867 /* 2868 * basic readpage implementation. Locked extent state structs are inserted 2869 * into the tree that are removed when the IO is done (by the end_io 2870 * handlers) 2871 * XXX JDM: This needs looking at to ensure proper page locking 2872 */ 2873 static int __do_readpage(struct extent_io_tree *tree, 2874 struct page *page, 2875 get_extent_t *get_extent, 2876 struct extent_map **em_cached, 2877 struct bio **bio, int mirror_num, 2878 unsigned long *bio_flags, int rw, 2879 u64 *prev_em_start) 2880 { 2881 struct inode *inode = page->mapping->host; 2882 u64 start = page_offset(page); 2883 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2884 u64 end; 2885 u64 cur = start; 2886 u64 extent_offset; 2887 u64 last_byte = i_size_read(inode); 2888 u64 block_start; 2889 u64 cur_end; 2890 sector_t sector; 2891 struct extent_map *em; 2892 struct block_device *bdev; 2893 int ret; 2894 int nr = 0; 2895 size_t pg_offset = 0; 2896 size_t iosize; 2897 size_t disk_io_size; 2898 size_t blocksize = inode->i_sb->s_blocksize; 2899 unsigned long this_bio_flag = 0; 2900 2901 set_page_extent_mapped(page); 2902 2903 end = page_end; 2904 if (!PageUptodate(page)) { 2905 if (cleancache_get_page(page) == 0) { 2906 BUG_ON(blocksize != PAGE_SIZE); 2907 unlock_extent(tree, start, end); 2908 goto out; 2909 } 2910 } 2911 2912 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2913 char *userpage; 2914 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2915 2916 if (zero_offset) { 2917 iosize = PAGE_CACHE_SIZE - zero_offset; 2918 userpage = kmap_atomic(page); 2919 memset(userpage + zero_offset, 0, iosize); 2920 flush_dcache_page(page); 2921 kunmap_atomic(userpage); 2922 } 2923 } 2924 while (cur <= end) { 2925 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2926 bool force_bio_submit = false; 2927 2928 if (cur >= last_byte) { 2929 char *userpage; 2930 struct extent_state *cached = NULL; 2931 2932 iosize = PAGE_CACHE_SIZE - pg_offset; 2933 userpage = kmap_atomic(page); 2934 memset(userpage + pg_offset, 0, iosize); 2935 flush_dcache_page(page); 2936 kunmap_atomic(userpage); 2937 set_extent_uptodate(tree, cur, cur + iosize - 1, 2938 &cached, GFP_NOFS); 2939 unlock_extent_cached(tree, cur, 2940 cur + iosize - 1, 2941 &cached, GFP_NOFS); 2942 break; 2943 } 2944 em = __get_extent_map(inode, page, pg_offset, cur, 2945 end - cur + 1, get_extent, em_cached); 2946 if (IS_ERR_OR_NULL(em)) { 2947 SetPageError(page); 2948 unlock_extent(tree, cur, end); 2949 break; 2950 } 2951 extent_offset = cur - em->start; 2952 BUG_ON(extent_map_end(em) <= cur); 2953 BUG_ON(end < cur); 2954 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2957 extent_set_compress_type(&this_bio_flag, 2958 em->compress_type); 2959 } 2960 2961 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2962 cur_end = min(extent_map_end(em) - 1, end); 2963 iosize = ALIGN(iosize, blocksize); 2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2965 disk_io_size = em->block_len; 2966 sector = em->block_start >> 9; 2967 } else { 2968 sector = (em->block_start + extent_offset) >> 9; 2969 disk_io_size = iosize; 2970 } 2971 bdev = em->bdev; 2972 block_start = em->block_start; 2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2974 block_start = EXTENT_MAP_HOLE; 2975 2976 /* 2977 * If we have a file range that points to a compressed extent 2978 * and it's followed by a consecutive file range that points to 2979 * to the same compressed extent (possibly with a different 2980 * offset and/or length, so it either points to the whole extent 2981 * or only part of it), we must make sure we do not submit a 2982 * single bio to populate the pages for the 2 ranges because 2983 * this makes the compressed extent read zero out the pages 2984 * belonging to the 2nd range. Imagine the following scenario: 2985 * 2986 * File layout 2987 * [0 - 8K] [8K - 24K] 2988 * | | 2989 * | | 2990 * points to extent X, points to extent X, 2991 * offset 4K, length of 8K offset 0, length 16K 2992 * 2993 * [extent X, compressed length = 4K uncompressed length = 16K] 2994 * 2995 * If the bio to read the compressed extent covers both ranges, 2996 * it will decompress extent X into the pages belonging to the 2997 * first range and then it will stop, zeroing out the remaining 2998 * pages that belong to the other range that points to extent X. 2999 * So here we make sure we submit 2 bios, one for the first 3000 * range and another one for the third range. Both will target 3001 * the same physical extent from disk, but we can't currently 3002 * make the compressed bio endio callback populate the pages 3003 * for both ranges because each compressed bio is tightly 3004 * coupled with a single extent map, and each range can have 3005 * an extent map with a different offset value relative to the 3006 * uncompressed data of our extent and different lengths. This 3007 * is a corner case so we prioritize correctness over 3008 * non-optimal behavior (submitting 2 bios for the same extent). 3009 */ 3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3011 prev_em_start && *prev_em_start != (u64)-1 && 3012 *prev_em_start != em->orig_start) 3013 force_bio_submit = true; 3014 3015 if (prev_em_start) 3016 *prev_em_start = em->orig_start; 3017 3018 free_extent_map(em); 3019 em = NULL; 3020 3021 /* we've found a hole, just zero and go on */ 3022 if (block_start == EXTENT_MAP_HOLE) { 3023 char *userpage; 3024 struct extent_state *cached = NULL; 3025 3026 userpage = kmap_atomic(page); 3027 memset(userpage + pg_offset, 0, iosize); 3028 flush_dcache_page(page); 3029 kunmap_atomic(userpage); 3030 3031 set_extent_uptodate(tree, cur, cur + iosize - 1, 3032 &cached, GFP_NOFS); 3033 unlock_extent_cached(tree, cur, 3034 cur + iosize - 1, 3035 &cached, GFP_NOFS); 3036 cur = cur + iosize; 3037 pg_offset += iosize; 3038 continue; 3039 } 3040 /* the get_extent function already copied into the page */ 3041 if (test_range_bit(tree, cur, cur_end, 3042 EXTENT_UPTODATE, 1, NULL)) { 3043 check_page_uptodate(tree, page); 3044 unlock_extent(tree, cur, cur + iosize - 1); 3045 cur = cur + iosize; 3046 pg_offset += iosize; 3047 continue; 3048 } 3049 /* we have an inline extent but it didn't get marked up 3050 * to date. Error out 3051 */ 3052 if (block_start == EXTENT_MAP_INLINE) { 3053 SetPageError(page); 3054 unlock_extent(tree, cur, cur + iosize - 1); 3055 cur = cur + iosize; 3056 pg_offset += iosize; 3057 continue; 3058 } 3059 3060 pnr -= page->index; 3061 ret = submit_extent_page(rw, tree, NULL, page, 3062 sector, disk_io_size, pg_offset, 3063 bdev, bio, pnr, 3064 end_bio_extent_readpage, mirror_num, 3065 *bio_flags, 3066 this_bio_flag, 3067 force_bio_submit); 3068 if (!ret) { 3069 nr++; 3070 *bio_flags = this_bio_flag; 3071 } else { 3072 SetPageError(page); 3073 unlock_extent(tree, cur, cur + iosize - 1); 3074 } 3075 cur = cur + iosize; 3076 pg_offset += iosize; 3077 } 3078 out: 3079 if (!nr) { 3080 if (!PageError(page)) 3081 SetPageUptodate(page); 3082 unlock_page(page); 3083 } 3084 return 0; 3085 } 3086 3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3088 struct page *pages[], int nr_pages, 3089 u64 start, u64 end, 3090 get_extent_t *get_extent, 3091 struct extent_map **em_cached, 3092 struct bio **bio, int mirror_num, 3093 unsigned long *bio_flags, int rw, 3094 u64 *prev_em_start) 3095 { 3096 struct inode *inode; 3097 struct btrfs_ordered_extent *ordered; 3098 int index; 3099 3100 inode = pages[0]->mapping->host; 3101 while (1) { 3102 lock_extent(tree, start, end); 3103 ordered = btrfs_lookup_ordered_range(inode, start, 3104 end - start + 1); 3105 if (!ordered) 3106 break; 3107 unlock_extent(tree, start, end); 3108 btrfs_start_ordered_extent(inode, ordered, 1); 3109 btrfs_put_ordered_extent(ordered); 3110 } 3111 3112 for (index = 0; index < nr_pages; index++) { 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3114 mirror_num, bio_flags, rw, prev_em_start); 3115 page_cache_release(pages[index]); 3116 } 3117 } 3118 3119 static void __extent_readpages(struct extent_io_tree *tree, 3120 struct page *pages[], 3121 int nr_pages, get_extent_t *get_extent, 3122 struct extent_map **em_cached, 3123 struct bio **bio, int mirror_num, 3124 unsigned long *bio_flags, int rw, 3125 u64 *prev_em_start) 3126 { 3127 u64 start = 0; 3128 u64 end = 0; 3129 u64 page_start; 3130 int index; 3131 int first_index = 0; 3132 3133 for (index = 0; index < nr_pages; index++) { 3134 page_start = page_offset(pages[index]); 3135 if (!end) { 3136 start = page_start; 3137 end = start + PAGE_CACHE_SIZE - 1; 3138 first_index = index; 3139 } else if (end + 1 == page_start) { 3140 end += PAGE_CACHE_SIZE; 3141 } else { 3142 __do_contiguous_readpages(tree, &pages[first_index], 3143 index - first_index, start, 3144 end, get_extent, em_cached, 3145 bio, mirror_num, bio_flags, 3146 rw, prev_em_start); 3147 start = page_start; 3148 end = start + PAGE_CACHE_SIZE - 1; 3149 first_index = index; 3150 } 3151 } 3152 3153 if (end) 3154 __do_contiguous_readpages(tree, &pages[first_index], 3155 index - first_index, start, 3156 end, get_extent, em_cached, bio, 3157 mirror_num, bio_flags, rw, 3158 prev_em_start); 3159 } 3160 3161 static int __extent_read_full_page(struct extent_io_tree *tree, 3162 struct page *page, 3163 get_extent_t *get_extent, 3164 struct bio **bio, int mirror_num, 3165 unsigned long *bio_flags, int rw) 3166 { 3167 struct inode *inode = page->mapping->host; 3168 struct btrfs_ordered_extent *ordered; 3169 u64 start = page_offset(page); 3170 u64 end = start + PAGE_CACHE_SIZE - 1; 3171 int ret; 3172 3173 while (1) { 3174 lock_extent(tree, start, end); 3175 ordered = btrfs_lookup_ordered_range(inode, start, 3176 PAGE_CACHE_SIZE); 3177 if (!ordered) 3178 break; 3179 unlock_extent(tree, start, end); 3180 btrfs_start_ordered_extent(inode, ordered, 1); 3181 btrfs_put_ordered_extent(ordered); 3182 } 3183 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3185 bio_flags, rw, NULL); 3186 return ret; 3187 } 3188 3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3190 get_extent_t *get_extent, int mirror_num) 3191 { 3192 struct bio *bio = NULL; 3193 unsigned long bio_flags = 0; 3194 int ret; 3195 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3197 &bio_flags, READ); 3198 if (bio) 3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3200 return ret; 3201 } 3202 3203 static noinline void update_nr_written(struct page *page, 3204 struct writeback_control *wbc, 3205 unsigned long nr_written) 3206 { 3207 wbc->nr_to_write -= nr_written; 3208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3209 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3210 page->mapping->writeback_index = page->index + nr_written; 3211 } 3212 3213 /* 3214 * helper for __extent_writepage, doing all of the delayed allocation setup. 3215 * 3216 * This returns 1 if our fill_delalloc function did all the work required 3217 * to write the page (copy into inline extent). In this case the IO has 3218 * been started and the page is already unlocked. 3219 * 3220 * This returns 0 if all went well (page still locked) 3221 * This returns < 0 if there were errors (page still locked) 3222 */ 3223 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3224 struct page *page, struct writeback_control *wbc, 3225 struct extent_page_data *epd, 3226 u64 delalloc_start, 3227 unsigned long *nr_written) 3228 { 3229 struct extent_io_tree *tree = epd->tree; 3230 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3231 u64 nr_delalloc; 3232 u64 delalloc_to_write = 0; 3233 u64 delalloc_end = 0; 3234 int ret; 3235 int page_started = 0; 3236 3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3238 return 0; 3239 3240 while (delalloc_end < page_end) { 3241 nr_delalloc = find_lock_delalloc_range(inode, tree, 3242 page, 3243 &delalloc_start, 3244 &delalloc_end, 3245 BTRFS_MAX_EXTENT_SIZE); 3246 if (nr_delalloc == 0) { 3247 delalloc_start = delalloc_end + 1; 3248 continue; 3249 } 3250 ret = tree->ops->fill_delalloc(inode, page, 3251 delalloc_start, 3252 delalloc_end, 3253 &page_started, 3254 nr_written); 3255 /* File system has been set read-only */ 3256 if (ret) { 3257 SetPageError(page); 3258 /* fill_delalloc should be return < 0 for error 3259 * but just in case, we use > 0 here meaning the 3260 * IO is started, so we don't want to return > 0 3261 * unless things are going well. 3262 */ 3263 ret = ret < 0 ? ret : -EIO; 3264 goto done; 3265 } 3266 /* 3267 * delalloc_end is already one less than the total 3268 * length, so we don't subtract one from 3269 * PAGE_CACHE_SIZE 3270 */ 3271 delalloc_to_write += (delalloc_end - delalloc_start + 3272 PAGE_CACHE_SIZE) >> 3273 PAGE_CACHE_SHIFT; 3274 delalloc_start = delalloc_end + 1; 3275 } 3276 if (wbc->nr_to_write < delalloc_to_write) { 3277 int thresh = 8192; 3278 3279 if (delalloc_to_write < thresh * 2) 3280 thresh = delalloc_to_write; 3281 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3282 thresh); 3283 } 3284 3285 /* did the fill delalloc function already unlock and start 3286 * the IO? 3287 */ 3288 if (page_started) { 3289 /* 3290 * we've unlocked the page, so we can't update 3291 * the mapping's writeback index, just update 3292 * nr_to_write. 3293 */ 3294 wbc->nr_to_write -= *nr_written; 3295 return 1; 3296 } 3297 3298 ret = 0; 3299 3300 done: 3301 return ret; 3302 } 3303 3304 /* 3305 * helper for __extent_writepage. This calls the writepage start hooks, 3306 * and does the loop to map the page into extents and bios. 3307 * 3308 * We return 1 if the IO is started and the page is unlocked, 3309 * 0 if all went well (page still locked) 3310 * < 0 if there were errors (page still locked) 3311 */ 3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3313 struct page *page, 3314 struct writeback_control *wbc, 3315 struct extent_page_data *epd, 3316 loff_t i_size, 3317 unsigned long nr_written, 3318 int write_flags, int *nr_ret) 3319 { 3320 struct extent_io_tree *tree = epd->tree; 3321 u64 start = page_offset(page); 3322 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3323 u64 end; 3324 u64 cur = start; 3325 u64 extent_offset; 3326 u64 block_start; 3327 u64 iosize; 3328 sector_t sector; 3329 struct extent_state *cached_state = NULL; 3330 struct extent_map *em; 3331 struct block_device *bdev; 3332 size_t pg_offset = 0; 3333 size_t blocksize; 3334 int ret = 0; 3335 int nr = 0; 3336 bool compressed; 3337 3338 if (tree->ops && tree->ops->writepage_start_hook) { 3339 ret = tree->ops->writepage_start_hook(page, start, 3340 page_end); 3341 if (ret) { 3342 /* Fixup worker will requeue */ 3343 if (ret == -EBUSY) 3344 wbc->pages_skipped++; 3345 else 3346 redirty_page_for_writepage(wbc, page); 3347 3348 update_nr_written(page, wbc, nr_written); 3349 unlock_page(page); 3350 ret = 1; 3351 goto done_unlocked; 3352 } 3353 } 3354 3355 /* 3356 * we don't want to touch the inode after unlocking the page, 3357 * so we update the mapping writeback index now 3358 */ 3359 update_nr_written(page, wbc, nr_written + 1); 3360 3361 end = page_end; 3362 if (i_size <= start) { 3363 if (tree->ops && tree->ops->writepage_end_io_hook) 3364 tree->ops->writepage_end_io_hook(page, start, 3365 page_end, NULL, 1); 3366 goto done; 3367 } 3368 3369 blocksize = inode->i_sb->s_blocksize; 3370 3371 while (cur <= end) { 3372 u64 em_end; 3373 if (cur >= i_size) { 3374 if (tree->ops && tree->ops->writepage_end_io_hook) 3375 tree->ops->writepage_end_io_hook(page, cur, 3376 page_end, NULL, 1); 3377 break; 3378 } 3379 em = epd->get_extent(inode, page, pg_offset, cur, 3380 end - cur + 1, 1); 3381 if (IS_ERR_OR_NULL(em)) { 3382 SetPageError(page); 3383 ret = PTR_ERR_OR_ZERO(em); 3384 break; 3385 } 3386 3387 extent_offset = cur - em->start; 3388 em_end = extent_map_end(em); 3389 BUG_ON(em_end <= cur); 3390 BUG_ON(end < cur); 3391 iosize = min(em_end - cur, end - cur + 1); 3392 iosize = ALIGN(iosize, blocksize); 3393 sector = (em->block_start + extent_offset) >> 9; 3394 bdev = em->bdev; 3395 block_start = em->block_start; 3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3397 free_extent_map(em); 3398 em = NULL; 3399 3400 /* 3401 * compressed and inline extents are written through other 3402 * paths in the FS 3403 */ 3404 if (compressed || block_start == EXTENT_MAP_HOLE || 3405 block_start == EXTENT_MAP_INLINE) { 3406 /* 3407 * end_io notification does not happen here for 3408 * compressed extents 3409 */ 3410 if (!compressed && tree->ops && 3411 tree->ops->writepage_end_io_hook) 3412 tree->ops->writepage_end_io_hook(page, cur, 3413 cur + iosize - 1, 3414 NULL, 1); 3415 else if (compressed) { 3416 /* we don't want to end_page_writeback on 3417 * a compressed extent. this happens 3418 * elsewhere 3419 */ 3420 nr++; 3421 } 3422 3423 cur += iosize; 3424 pg_offset += iosize; 3425 continue; 3426 } 3427 3428 if (tree->ops && tree->ops->writepage_io_hook) { 3429 ret = tree->ops->writepage_io_hook(page, cur, 3430 cur + iosize - 1); 3431 } else { 3432 ret = 0; 3433 } 3434 if (ret) { 3435 SetPageError(page); 3436 } else { 3437 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3438 3439 set_range_writeback(tree, cur, cur + iosize - 1); 3440 if (!PageWriteback(page)) { 3441 btrfs_err(BTRFS_I(inode)->root->fs_info, 3442 "page %lu not writeback, cur %llu end %llu", 3443 page->index, cur, end); 3444 } 3445 3446 ret = submit_extent_page(write_flags, tree, wbc, page, 3447 sector, iosize, pg_offset, 3448 bdev, &epd->bio, max_nr, 3449 end_bio_extent_writepage, 3450 0, 0, 0, false); 3451 if (ret) 3452 SetPageError(page); 3453 } 3454 cur = cur + iosize; 3455 pg_offset += iosize; 3456 nr++; 3457 } 3458 done: 3459 *nr_ret = nr; 3460 3461 done_unlocked: 3462 3463 /* drop our reference on any cached states */ 3464 free_extent_state(cached_state); 3465 return ret; 3466 } 3467 3468 /* 3469 * the writepage semantics are similar to regular writepage. extent 3470 * records are inserted to lock ranges in the tree, and as dirty areas 3471 * are found, they are marked writeback. Then the lock bits are removed 3472 * and the end_io handler clears the writeback ranges 3473 */ 3474 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3475 void *data) 3476 { 3477 struct inode *inode = page->mapping->host; 3478 struct extent_page_data *epd = data; 3479 u64 start = page_offset(page); 3480 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3481 int ret; 3482 int nr = 0; 3483 size_t pg_offset = 0; 3484 loff_t i_size = i_size_read(inode); 3485 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3486 int write_flags; 3487 unsigned long nr_written = 0; 3488 3489 if (wbc->sync_mode == WB_SYNC_ALL) 3490 write_flags = WRITE_SYNC; 3491 else 3492 write_flags = WRITE; 3493 3494 trace___extent_writepage(page, inode, wbc); 3495 3496 WARN_ON(!PageLocked(page)); 3497 3498 ClearPageError(page); 3499 3500 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3501 if (page->index > end_index || 3502 (page->index == end_index && !pg_offset)) { 3503 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3504 unlock_page(page); 3505 return 0; 3506 } 3507 3508 if (page->index == end_index) { 3509 char *userpage; 3510 3511 userpage = kmap_atomic(page); 3512 memset(userpage + pg_offset, 0, 3513 PAGE_CACHE_SIZE - pg_offset); 3514 kunmap_atomic(userpage); 3515 flush_dcache_page(page); 3516 } 3517 3518 pg_offset = 0; 3519 3520 set_page_extent_mapped(page); 3521 3522 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3523 if (ret == 1) 3524 goto done_unlocked; 3525 if (ret) 3526 goto done; 3527 3528 ret = __extent_writepage_io(inode, page, wbc, epd, 3529 i_size, nr_written, write_flags, &nr); 3530 if (ret == 1) 3531 goto done_unlocked; 3532 3533 done: 3534 if (nr == 0) { 3535 /* make sure the mapping tag for page dirty gets cleared */ 3536 set_page_writeback(page); 3537 end_page_writeback(page); 3538 } 3539 if (PageError(page)) { 3540 ret = ret < 0 ? ret : -EIO; 3541 end_extent_writepage(page, ret, start, page_end); 3542 } 3543 unlock_page(page); 3544 return ret; 3545 3546 done_unlocked: 3547 return 0; 3548 } 3549 3550 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3551 { 3552 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3553 TASK_UNINTERRUPTIBLE); 3554 } 3555 3556 static noinline_for_stack int 3557 lock_extent_buffer_for_io(struct extent_buffer *eb, 3558 struct btrfs_fs_info *fs_info, 3559 struct extent_page_data *epd) 3560 { 3561 unsigned long i, num_pages; 3562 int flush = 0; 3563 int ret = 0; 3564 3565 if (!btrfs_try_tree_write_lock(eb)) { 3566 flush = 1; 3567 flush_write_bio(epd); 3568 btrfs_tree_lock(eb); 3569 } 3570 3571 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3572 btrfs_tree_unlock(eb); 3573 if (!epd->sync_io) 3574 return 0; 3575 if (!flush) { 3576 flush_write_bio(epd); 3577 flush = 1; 3578 } 3579 while (1) { 3580 wait_on_extent_buffer_writeback(eb); 3581 btrfs_tree_lock(eb); 3582 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3583 break; 3584 btrfs_tree_unlock(eb); 3585 } 3586 } 3587 3588 /* 3589 * We need to do this to prevent races in people who check if the eb is 3590 * under IO since we can end up having no IO bits set for a short period 3591 * of time. 3592 */ 3593 spin_lock(&eb->refs_lock); 3594 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3595 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3596 spin_unlock(&eb->refs_lock); 3597 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3598 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3599 -eb->len, 3600 fs_info->dirty_metadata_batch); 3601 ret = 1; 3602 } else { 3603 spin_unlock(&eb->refs_lock); 3604 } 3605 3606 btrfs_tree_unlock(eb); 3607 3608 if (!ret) 3609 return ret; 3610 3611 num_pages = num_extent_pages(eb->start, eb->len); 3612 for (i = 0; i < num_pages; i++) { 3613 struct page *p = eb->pages[i]; 3614 3615 if (!trylock_page(p)) { 3616 if (!flush) { 3617 flush_write_bio(epd); 3618 flush = 1; 3619 } 3620 lock_page(p); 3621 } 3622 } 3623 3624 return ret; 3625 } 3626 3627 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3628 { 3629 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3630 smp_mb__after_atomic(); 3631 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3632 } 3633 3634 static void set_btree_ioerr(struct page *page) 3635 { 3636 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3637 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3638 3639 SetPageError(page); 3640 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3641 return; 3642 3643 /* 3644 * If writeback for a btree extent that doesn't belong to a log tree 3645 * failed, increment the counter transaction->eb_write_errors. 3646 * We do this because while the transaction is running and before it's 3647 * committing (when we call filemap_fdata[write|wait]_range against 3648 * the btree inode), we might have 3649 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3650 * returns an error or an error happens during writeback, when we're 3651 * committing the transaction we wouldn't know about it, since the pages 3652 * can be no longer dirty nor marked anymore for writeback (if a 3653 * subsequent modification to the extent buffer didn't happen before the 3654 * transaction commit), which makes filemap_fdata[write|wait]_range not 3655 * able to find the pages tagged with SetPageError at transaction 3656 * commit time. So if this happens we must abort the transaction, 3657 * otherwise we commit a super block with btree roots that point to 3658 * btree nodes/leafs whose content on disk is invalid - either garbage 3659 * or the content of some node/leaf from a past generation that got 3660 * cowed or deleted and is no longer valid. 3661 * 3662 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3663 * not be enough - we need to distinguish between log tree extents vs 3664 * non-log tree extents, and the next filemap_fdatawait_range() call 3665 * will catch and clear such errors in the mapping - and that call might 3666 * be from a log sync and not from a transaction commit. Also, checking 3667 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3668 * not done and would not be reliable - the eb might have been released 3669 * from memory and reading it back again means that flag would not be 3670 * set (since it's a runtime flag, not persisted on disk). 3671 * 3672 * Using the flags below in the btree inode also makes us achieve the 3673 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3674 * writeback for all dirty pages and before filemap_fdatawait_range() 3675 * is called, the writeback for all dirty pages had already finished 3676 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3677 * filemap_fdatawait_range() would return success, as it could not know 3678 * that writeback errors happened (the pages were no longer tagged for 3679 * writeback). 3680 */ 3681 switch (eb->log_index) { 3682 case -1: 3683 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3684 break; 3685 case 0: 3686 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3687 break; 3688 case 1: 3689 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3690 break; 3691 default: 3692 BUG(); /* unexpected, logic error */ 3693 } 3694 } 3695 3696 static void end_bio_extent_buffer_writepage(struct bio *bio) 3697 { 3698 struct bio_vec *bvec; 3699 struct extent_buffer *eb; 3700 int i, done; 3701 3702 bio_for_each_segment_all(bvec, bio, i) { 3703 struct page *page = bvec->bv_page; 3704 3705 eb = (struct extent_buffer *)page->private; 3706 BUG_ON(!eb); 3707 done = atomic_dec_and_test(&eb->io_pages); 3708 3709 if (bio->bi_error || 3710 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3711 ClearPageUptodate(page); 3712 set_btree_ioerr(page); 3713 } 3714 3715 end_page_writeback(page); 3716 3717 if (!done) 3718 continue; 3719 3720 end_extent_buffer_writeback(eb); 3721 } 3722 3723 bio_put(bio); 3724 } 3725 3726 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3727 struct btrfs_fs_info *fs_info, 3728 struct writeback_control *wbc, 3729 struct extent_page_data *epd) 3730 { 3731 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3732 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3733 u64 offset = eb->start; 3734 unsigned long i, num_pages; 3735 unsigned long bio_flags = 0; 3736 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3737 int ret = 0; 3738 3739 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3740 num_pages = num_extent_pages(eb->start, eb->len); 3741 atomic_set(&eb->io_pages, num_pages); 3742 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3743 bio_flags = EXTENT_BIO_TREE_LOG; 3744 3745 for (i = 0; i < num_pages; i++) { 3746 struct page *p = eb->pages[i]; 3747 3748 clear_page_dirty_for_io(p); 3749 set_page_writeback(p); 3750 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9, 3751 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3752 -1, end_bio_extent_buffer_writepage, 3753 0, epd->bio_flags, bio_flags, false); 3754 epd->bio_flags = bio_flags; 3755 if (ret) { 3756 set_btree_ioerr(p); 3757 end_page_writeback(p); 3758 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3759 end_extent_buffer_writeback(eb); 3760 ret = -EIO; 3761 break; 3762 } 3763 offset += PAGE_CACHE_SIZE; 3764 update_nr_written(p, wbc, 1); 3765 unlock_page(p); 3766 } 3767 3768 if (unlikely(ret)) { 3769 for (; i < num_pages; i++) { 3770 struct page *p = eb->pages[i]; 3771 clear_page_dirty_for_io(p); 3772 unlock_page(p); 3773 } 3774 } 3775 3776 return ret; 3777 } 3778 3779 int btree_write_cache_pages(struct address_space *mapping, 3780 struct writeback_control *wbc) 3781 { 3782 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3783 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3784 struct extent_buffer *eb, *prev_eb = NULL; 3785 struct extent_page_data epd = { 3786 .bio = NULL, 3787 .tree = tree, 3788 .extent_locked = 0, 3789 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3790 .bio_flags = 0, 3791 }; 3792 int ret = 0; 3793 int done = 0; 3794 int nr_to_write_done = 0; 3795 struct pagevec pvec; 3796 int nr_pages; 3797 pgoff_t index; 3798 pgoff_t end; /* Inclusive */ 3799 int scanned = 0; 3800 int tag; 3801 3802 pagevec_init(&pvec, 0); 3803 if (wbc->range_cyclic) { 3804 index = mapping->writeback_index; /* Start from prev offset */ 3805 end = -1; 3806 } else { 3807 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3808 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3809 scanned = 1; 3810 } 3811 if (wbc->sync_mode == WB_SYNC_ALL) 3812 tag = PAGECACHE_TAG_TOWRITE; 3813 else 3814 tag = PAGECACHE_TAG_DIRTY; 3815 retry: 3816 if (wbc->sync_mode == WB_SYNC_ALL) 3817 tag_pages_for_writeback(mapping, index, end); 3818 while (!done && !nr_to_write_done && (index <= end) && 3819 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3820 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3821 unsigned i; 3822 3823 scanned = 1; 3824 for (i = 0; i < nr_pages; i++) { 3825 struct page *page = pvec.pages[i]; 3826 3827 if (!PagePrivate(page)) 3828 continue; 3829 3830 if (!wbc->range_cyclic && page->index > end) { 3831 done = 1; 3832 break; 3833 } 3834 3835 spin_lock(&mapping->private_lock); 3836 if (!PagePrivate(page)) { 3837 spin_unlock(&mapping->private_lock); 3838 continue; 3839 } 3840 3841 eb = (struct extent_buffer *)page->private; 3842 3843 /* 3844 * Shouldn't happen and normally this would be a BUG_ON 3845 * but no sense in crashing the users box for something 3846 * we can survive anyway. 3847 */ 3848 if (WARN_ON(!eb)) { 3849 spin_unlock(&mapping->private_lock); 3850 continue; 3851 } 3852 3853 if (eb == prev_eb) { 3854 spin_unlock(&mapping->private_lock); 3855 continue; 3856 } 3857 3858 ret = atomic_inc_not_zero(&eb->refs); 3859 spin_unlock(&mapping->private_lock); 3860 if (!ret) 3861 continue; 3862 3863 prev_eb = eb; 3864 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3865 if (!ret) { 3866 free_extent_buffer(eb); 3867 continue; 3868 } 3869 3870 ret = write_one_eb(eb, fs_info, wbc, &epd); 3871 if (ret) { 3872 done = 1; 3873 free_extent_buffer(eb); 3874 break; 3875 } 3876 free_extent_buffer(eb); 3877 3878 /* 3879 * the filesystem may choose to bump up nr_to_write. 3880 * We have to make sure to honor the new nr_to_write 3881 * at any time 3882 */ 3883 nr_to_write_done = wbc->nr_to_write <= 0; 3884 } 3885 pagevec_release(&pvec); 3886 cond_resched(); 3887 } 3888 if (!scanned && !done) { 3889 /* 3890 * We hit the last page and there is more work to be done: wrap 3891 * back to the start of the file 3892 */ 3893 scanned = 1; 3894 index = 0; 3895 goto retry; 3896 } 3897 flush_write_bio(&epd); 3898 return ret; 3899 } 3900 3901 /** 3902 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3903 * @mapping: address space structure to write 3904 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3905 * @writepage: function called for each page 3906 * @data: data passed to writepage function 3907 * 3908 * If a page is already under I/O, write_cache_pages() skips it, even 3909 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3910 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3911 * and msync() need to guarantee that all the data which was dirty at the time 3912 * the call was made get new I/O started against them. If wbc->sync_mode is 3913 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3914 * existing IO to complete. 3915 */ 3916 static int extent_write_cache_pages(struct extent_io_tree *tree, 3917 struct address_space *mapping, 3918 struct writeback_control *wbc, 3919 writepage_t writepage, void *data, 3920 void (*flush_fn)(void *)) 3921 { 3922 struct inode *inode = mapping->host; 3923 int ret = 0; 3924 int done = 0; 3925 int err = 0; 3926 int nr_to_write_done = 0; 3927 struct pagevec pvec; 3928 int nr_pages; 3929 pgoff_t index; 3930 pgoff_t end; /* Inclusive */ 3931 int scanned = 0; 3932 int tag; 3933 3934 /* 3935 * We have to hold onto the inode so that ordered extents can do their 3936 * work when the IO finishes. The alternative to this is failing to add 3937 * an ordered extent if the igrab() fails there and that is a huge pain 3938 * to deal with, so instead just hold onto the inode throughout the 3939 * writepages operation. If it fails here we are freeing up the inode 3940 * anyway and we'd rather not waste our time writing out stuff that is 3941 * going to be truncated anyway. 3942 */ 3943 if (!igrab(inode)) 3944 return 0; 3945 3946 pagevec_init(&pvec, 0); 3947 if (wbc->range_cyclic) { 3948 index = mapping->writeback_index; /* Start from prev offset */ 3949 end = -1; 3950 } else { 3951 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3952 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3953 scanned = 1; 3954 } 3955 if (wbc->sync_mode == WB_SYNC_ALL) 3956 tag = PAGECACHE_TAG_TOWRITE; 3957 else 3958 tag = PAGECACHE_TAG_DIRTY; 3959 retry: 3960 if (wbc->sync_mode == WB_SYNC_ALL) 3961 tag_pages_for_writeback(mapping, index, end); 3962 while (!done && !nr_to_write_done && (index <= end) && 3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3965 unsigned i; 3966 3967 scanned = 1; 3968 for (i = 0; i < nr_pages; i++) { 3969 struct page *page = pvec.pages[i]; 3970 3971 /* 3972 * At this point we hold neither mapping->tree_lock nor 3973 * lock on the page itself: the page may be truncated or 3974 * invalidated (changing page->mapping to NULL), or even 3975 * swizzled back from swapper_space to tmpfs file 3976 * mapping 3977 */ 3978 if (!trylock_page(page)) { 3979 flush_fn(data); 3980 lock_page(page); 3981 } 3982 3983 if (unlikely(page->mapping != mapping)) { 3984 unlock_page(page); 3985 continue; 3986 } 3987 3988 if (!wbc->range_cyclic && page->index > end) { 3989 done = 1; 3990 unlock_page(page); 3991 continue; 3992 } 3993 3994 if (wbc->sync_mode != WB_SYNC_NONE) { 3995 if (PageWriteback(page)) 3996 flush_fn(data); 3997 wait_on_page_writeback(page); 3998 } 3999 4000 if (PageWriteback(page) || 4001 !clear_page_dirty_for_io(page)) { 4002 unlock_page(page); 4003 continue; 4004 } 4005 4006 ret = (*writepage)(page, wbc, data); 4007 4008 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4009 unlock_page(page); 4010 ret = 0; 4011 } 4012 if (!err && ret < 0) 4013 err = ret; 4014 4015 /* 4016 * the filesystem may choose to bump up nr_to_write. 4017 * We have to make sure to honor the new nr_to_write 4018 * at any time 4019 */ 4020 nr_to_write_done = wbc->nr_to_write <= 0; 4021 } 4022 pagevec_release(&pvec); 4023 cond_resched(); 4024 } 4025 if (!scanned && !done && !err) { 4026 /* 4027 * We hit the last page and there is more work to be done: wrap 4028 * back to the start of the file 4029 */ 4030 scanned = 1; 4031 index = 0; 4032 goto retry; 4033 } 4034 btrfs_add_delayed_iput(inode); 4035 return err; 4036 } 4037 4038 static void flush_epd_write_bio(struct extent_page_data *epd) 4039 { 4040 if (epd->bio) { 4041 int rw = WRITE; 4042 int ret; 4043 4044 if (epd->sync_io) 4045 rw = WRITE_SYNC; 4046 4047 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4048 BUG_ON(ret < 0); /* -ENOMEM */ 4049 epd->bio = NULL; 4050 } 4051 } 4052 4053 static noinline void flush_write_bio(void *data) 4054 { 4055 struct extent_page_data *epd = data; 4056 flush_epd_write_bio(epd); 4057 } 4058 4059 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4060 get_extent_t *get_extent, 4061 struct writeback_control *wbc) 4062 { 4063 int ret; 4064 struct extent_page_data epd = { 4065 .bio = NULL, 4066 .tree = tree, 4067 .get_extent = get_extent, 4068 .extent_locked = 0, 4069 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4070 .bio_flags = 0, 4071 }; 4072 4073 ret = __extent_writepage(page, wbc, &epd); 4074 4075 flush_epd_write_bio(&epd); 4076 return ret; 4077 } 4078 4079 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4080 u64 start, u64 end, get_extent_t *get_extent, 4081 int mode) 4082 { 4083 int ret = 0; 4084 struct address_space *mapping = inode->i_mapping; 4085 struct page *page; 4086 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4087 PAGE_CACHE_SHIFT; 4088 4089 struct extent_page_data epd = { 4090 .bio = NULL, 4091 .tree = tree, 4092 .get_extent = get_extent, 4093 .extent_locked = 1, 4094 .sync_io = mode == WB_SYNC_ALL, 4095 .bio_flags = 0, 4096 }; 4097 struct writeback_control wbc_writepages = { 4098 .sync_mode = mode, 4099 .nr_to_write = nr_pages * 2, 4100 .range_start = start, 4101 .range_end = end + 1, 4102 }; 4103 4104 while (start <= end) { 4105 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4106 if (clear_page_dirty_for_io(page)) 4107 ret = __extent_writepage(page, &wbc_writepages, &epd); 4108 else { 4109 if (tree->ops && tree->ops->writepage_end_io_hook) 4110 tree->ops->writepage_end_io_hook(page, start, 4111 start + PAGE_CACHE_SIZE - 1, 4112 NULL, 1); 4113 unlock_page(page); 4114 } 4115 page_cache_release(page); 4116 start += PAGE_CACHE_SIZE; 4117 } 4118 4119 flush_epd_write_bio(&epd); 4120 return ret; 4121 } 4122 4123 int extent_writepages(struct extent_io_tree *tree, 4124 struct address_space *mapping, 4125 get_extent_t *get_extent, 4126 struct writeback_control *wbc) 4127 { 4128 int ret = 0; 4129 struct extent_page_data epd = { 4130 .bio = NULL, 4131 .tree = tree, 4132 .get_extent = get_extent, 4133 .extent_locked = 0, 4134 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4135 .bio_flags = 0, 4136 }; 4137 4138 ret = extent_write_cache_pages(tree, mapping, wbc, 4139 __extent_writepage, &epd, 4140 flush_write_bio); 4141 flush_epd_write_bio(&epd); 4142 return ret; 4143 } 4144 4145 int extent_readpages(struct extent_io_tree *tree, 4146 struct address_space *mapping, 4147 struct list_head *pages, unsigned nr_pages, 4148 get_extent_t get_extent) 4149 { 4150 struct bio *bio = NULL; 4151 unsigned page_idx; 4152 unsigned long bio_flags = 0; 4153 struct page *pagepool[16]; 4154 struct page *page; 4155 struct extent_map *em_cached = NULL; 4156 int nr = 0; 4157 u64 prev_em_start = (u64)-1; 4158 4159 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4160 page = list_entry(pages->prev, struct page, lru); 4161 4162 prefetchw(&page->flags); 4163 list_del(&page->lru); 4164 if (add_to_page_cache_lru(page, mapping, 4165 page->index, GFP_NOFS)) { 4166 page_cache_release(page); 4167 continue; 4168 } 4169 4170 pagepool[nr++] = page; 4171 if (nr < ARRAY_SIZE(pagepool)) 4172 continue; 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4174 &bio, 0, &bio_flags, READ, &prev_em_start); 4175 nr = 0; 4176 } 4177 if (nr) 4178 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4179 &bio, 0, &bio_flags, READ, &prev_em_start); 4180 4181 if (em_cached) 4182 free_extent_map(em_cached); 4183 4184 BUG_ON(!list_empty(pages)); 4185 if (bio) 4186 return submit_one_bio(READ, bio, 0, bio_flags); 4187 return 0; 4188 } 4189 4190 /* 4191 * basic invalidatepage code, this waits on any locked or writeback 4192 * ranges corresponding to the page, and then deletes any extent state 4193 * records from the tree 4194 */ 4195 int extent_invalidatepage(struct extent_io_tree *tree, 4196 struct page *page, unsigned long offset) 4197 { 4198 struct extent_state *cached_state = NULL; 4199 u64 start = page_offset(page); 4200 u64 end = start + PAGE_CACHE_SIZE - 1; 4201 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4202 4203 start += ALIGN(offset, blocksize); 4204 if (start > end) 4205 return 0; 4206 4207 lock_extent_bits(tree, start, end, &cached_state); 4208 wait_on_page_writeback(page); 4209 clear_extent_bit(tree, start, end, 4210 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4211 EXTENT_DO_ACCOUNTING, 4212 1, 1, &cached_state, GFP_NOFS); 4213 return 0; 4214 } 4215 4216 /* 4217 * a helper for releasepage, this tests for areas of the page that 4218 * are locked or under IO and drops the related state bits if it is safe 4219 * to drop the page. 4220 */ 4221 static int try_release_extent_state(struct extent_map_tree *map, 4222 struct extent_io_tree *tree, 4223 struct page *page, gfp_t mask) 4224 { 4225 u64 start = page_offset(page); 4226 u64 end = start + PAGE_CACHE_SIZE - 1; 4227 int ret = 1; 4228 4229 if (test_range_bit(tree, start, end, 4230 EXTENT_IOBITS, 0, NULL)) 4231 ret = 0; 4232 else { 4233 if ((mask & GFP_NOFS) == GFP_NOFS) 4234 mask = GFP_NOFS; 4235 /* 4236 * at this point we can safely clear everything except the 4237 * locked bit and the nodatasum bit 4238 */ 4239 ret = clear_extent_bit(tree, start, end, 4240 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4241 0, 0, NULL, mask); 4242 4243 /* if clear_extent_bit failed for enomem reasons, 4244 * we can't allow the release to continue. 4245 */ 4246 if (ret < 0) 4247 ret = 0; 4248 else 4249 ret = 1; 4250 } 4251 return ret; 4252 } 4253 4254 /* 4255 * a helper for releasepage. As long as there are no locked extents 4256 * in the range corresponding to the page, both state records and extent 4257 * map records are removed 4258 */ 4259 int try_release_extent_mapping(struct extent_map_tree *map, 4260 struct extent_io_tree *tree, struct page *page, 4261 gfp_t mask) 4262 { 4263 struct extent_map *em; 4264 u64 start = page_offset(page); 4265 u64 end = start + PAGE_CACHE_SIZE - 1; 4266 4267 if (gfpflags_allow_blocking(mask) && 4268 page->mapping->host->i_size > SZ_16M) { 4269 u64 len; 4270 while (start <= end) { 4271 len = end - start + 1; 4272 write_lock(&map->lock); 4273 em = lookup_extent_mapping(map, start, len); 4274 if (!em) { 4275 write_unlock(&map->lock); 4276 break; 4277 } 4278 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4279 em->start != start) { 4280 write_unlock(&map->lock); 4281 free_extent_map(em); 4282 break; 4283 } 4284 if (!test_range_bit(tree, em->start, 4285 extent_map_end(em) - 1, 4286 EXTENT_LOCKED | EXTENT_WRITEBACK, 4287 0, NULL)) { 4288 remove_extent_mapping(map, em); 4289 /* once for the rb tree */ 4290 free_extent_map(em); 4291 } 4292 start = extent_map_end(em); 4293 write_unlock(&map->lock); 4294 4295 /* once for us */ 4296 free_extent_map(em); 4297 } 4298 } 4299 return try_release_extent_state(map, tree, page, mask); 4300 } 4301 4302 /* 4303 * helper function for fiemap, which doesn't want to see any holes. 4304 * This maps until we find something past 'last' 4305 */ 4306 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4307 u64 offset, 4308 u64 last, 4309 get_extent_t *get_extent) 4310 { 4311 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4312 struct extent_map *em; 4313 u64 len; 4314 4315 if (offset >= last) 4316 return NULL; 4317 4318 while (1) { 4319 len = last - offset; 4320 if (len == 0) 4321 break; 4322 len = ALIGN(len, sectorsize); 4323 em = get_extent(inode, NULL, 0, offset, len, 0); 4324 if (IS_ERR_OR_NULL(em)) 4325 return em; 4326 4327 /* if this isn't a hole return it */ 4328 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4329 em->block_start != EXTENT_MAP_HOLE) { 4330 return em; 4331 } 4332 4333 /* this is a hole, advance to the next extent */ 4334 offset = extent_map_end(em); 4335 free_extent_map(em); 4336 if (offset >= last) 4337 break; 4338 } 4339 return NULL; 4340 } 4341 4342 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4343 __u64 start, __u64 len, get_extent_t *get_extent) 4344 { 4345 int ret = 0; 4346 u64 off = start; 4347 u64 max = start + len; 4348 u32 flags = 0; 4349 u32 found_type; 4350 u64 last; 4351 u64 last_for_get_extent = 0; 4352 u64 disko = 0; 4353 u64 isize = i_size_read(inode); 4354 struct btrfs_key found_key; 4355 struct extent_map *em = NULL; 4356 struct extent_state *cached_state = NULL; 4357 struct btrfs_path *path; 4358 struct btrfs_root *root = BTRFS_I(inode)->root; 4359 int end = 0; 4360 u64 em_start = 0; 4361 u64 em_len = 0; 4362 u64 em_end = 0; 4363 4364 if (len == 0) 4365 return -EINVAL; 4366 4367 path = btrfs_alloc_path(); 4368 if (!path) 4369 return -ENOMEM; 4370 path->leave_spinning = 1; 4371 4372 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4373 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4374 4375 /* 4376 * lookup the last file extent. We're not using i_size here 4377 * because there might be preallocation past i_size 4378 */ 4379 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4380 0); 4381 if (ret < 0) { 4382 btrfs_free_path(path); 4383 return ret; 4384 } 4385 WARN_ON(!ret); 4386 path->slots[0]--; 4387 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4388 found_type = found_key.type; 4389 4390 /* No extents, but there might be delalloc bits */ 4391 if (found_key.objectid != btrfs_ino(inode) || 4392 found_type != BTRFS_EXTENT_DATA_KEY) { 4393 /* have to trust i_size as the end */ 4394 last = (u64)-1; 4395 last_for_get_extent = isize; 4396 } else { 4397 /* 4398 * remember the start of the last extent. There are a 4399 * bunch of different factors that go into the length of the 4400 * extent, so its much less complex to remember where it started 4401 */ 4402 last = found_key.offset; 4403 last_for_get_extent = last + 1; 4404 } 4405 btrfs_release_path(path); 4406 4407 /* 4408 * we might have some extents allocated but more delalloc past those 4409 * extents. so, we trust isize unless the start of the last extent is 4410 * beyond isize 4411 */ 4412 if (last < isize) { 4413 last = (u64)-1; 4414 last_for_get_extent = isize; 4415 } 4416 4417 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4418 &cached_state); 4419 4420 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4421 get_extent); 4422 if (!em) 4423 goto out; 4424 if (IS_ERR(em)) { 4425 ret = PTR_ERR(em); 4426 goto out; 4427 } 4428 4429 while (!end) { 4430 u64 offset_in_extent = 0; 4431 4432 /* break if the extent we found is outside the range */ 4433 if (em->start >= max || extent_map_end(em) < off) 4434 break; 4435 4436 /* 4437 * get_extent may return an extent that starts before our 4438 * requested range. We have to make sure the ranges 4439 * we return to fiemap always move forward and don't 4440 * overlap, so adjust the offsets here 4441 */ 4442 em_start = max(em->start, off); 4443 4444 /* 4445 * record the offset from the start of the extent 4446 * for adjusting the disk offset below. Only do this if the 4447 * extent isn't compressed since our in ram offset may be past 4448 * what we have actually allocated on disk. 4449 */ 4450 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4451 offset_in_extent = em_start - em->start; 4452 em_end = extent_map_end(em); 4453 em_len = em_end - em_start; 4454 disko = 0; 4455 flags = 0; 4456 4457 /* 4458 * bump off for our next call to get_extent 4459 */ 4460 off = extent_map_end(em); 4461 if (off >= max) 4462 end = 1; 4463 4464 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4465 end = 1; 4466 flags |= FIEMAP_EXTENT_LAST; 4467 } else if (em->block_start == EXTENT_MAP_INLINE) { 4468 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4469 FIEMAP_EXTENT_NOT_ALIGNED); 4470 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4471 flags |= (FIEMAP_EXTENT_DELALLOC | 4472 FIEMAP_EXTENT_UNKNOWN); 4473 } else if (fieinfo->fi_extents_max) { 4474 u64 bytenr = em->block_start - 4475 (em->start - em->orig_start); 4476 4477 disko = em->block_start + offset_in_extent; 4478 4479 /* 4480 * As btrfs supports shared space, this information 4481 * can be exported to userspace tools via 4482 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4483 * then we're just getting a count and we can skip the 4484 * lookup stuff. 4485 */ 4486 ret = btrfs_check_shared(NULL, root->fs_info, 4487 root->objectid, 4488 btrfs_ino(inode), bytenr); 4489 if (ret < 0) 4490 goto out_free; 4491 if (ret) 4492 flags |= FIEMAP_EXTENT_SHARED; 4493 ret = 0; 4494 } 4495 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4496 flags |= FIEMAP_EXTENT_ENCODED; 4497 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4498 flags |= FIEMAP_EXTENT_UNWRITTEN; 4499 4500 free_extent_map(em); 4501 em = NULL; 4502 if ((em_start >= last) || em_len == (u64)-1 || 4503 (last == (u64)-1 && isize <= em_end)) { 4504 flags |= FIEMAP_EXTENT_LAST; 4505 end = 1; 4506 } 4507 4508 /* now scan forward to see if this is really the last extent. */ 4509 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4510 get_extent); 4511 if (IS_ERR(em)) { 4512 ret = PTR_ERR(em); 4513 goto out; 4514 } 4515 if (!em) { 4516 flags |= FIEMAP_EXTENT_LAST; 4517 end = 1; 4518 } 4519 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4520 em_len, flags); 4521 if (ret) { 4522 if (ret == 1) 4523 ret = 0; 4524 goto out_free; 4525 } 4526 } 4527 out_free: 4528 free_extent_map(em); 4529 out: 4530 btrfs_free_path(path); 4531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4532 &cached_state, GFP_NOFS); 4533 return ret; 4534 } 4535 4536 static void __free_extent_buffer(struct extent_buffer *eb) 4537 { 4538 btrfs_leak_debug_del(&eb->leak_list); 4539 kmem_cache_free(extent_buffer_cache, eb); 4540 } 4541 4542 int extent_buffer_under_io(struct extent_buffer *eb) 4543 { 4544 return (atomic_read(&eb->io_pages) || 4545 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4546 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4547 } 4548 4549 /* 4550 * Helper for releasing extent buffer page. 4551 */ 4552 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4553 { 4554 unsigned long index; 4555 struct page *page; 4556 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4557 4558 BUG_ON(extent_buffer_under_io(eb)); 4559 4560 index = num_extent_pages(eb->start, eb->len); 4561 if (index == 0) 4562 return; 4563 4564 do { 4565 index--; 4566 page = eb->pages[index]; 4567 if (!page) 4568 continue; 4569 if (mapped) 4570 spin_lock(&page->mapping->private_lock); 4571 /* 4572 * We do this since we'll remove the pages after we've 4573 * removed the eb from the radix tree, so we could race 4574 * and have this page now attached to the new eb. So 4575 * only clear page_private if it's still connected to 4576 * this eb. 4577 */ 4578 if (PagePrivate(page) && 4579 page->private == (unsigned long)eb) { 4580 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4581 BUG_ON(PageDirty(page)); 4582 BUG_ON(PageWriteback(page)); 4583 /* 4584 * We need to make sure we haven't be attached 4585 * to a new eb. 4586 */ 4587 ClearPagePrivate(page); 4588 set_page_private(page, 0); 4589 /* One for the page private */ 4590 page_cache_release(page); 4591 } 4592 4593 if (mapped) 4594 spin_unlock(&page->mapping->private_lock); 4595 4596 /* One for when we alloced the page */ 4597 page_cache_release(page); 4598 } while (index != 0); 4599 } 4600 4601 /* 4602 * Helper for releasing the extent buffer. 4603 */ 4604 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4605 { 4606 btrfs_release_extent_buffer_page(eb); 4607 __free_extent_buffer(eb); 4608 } 4609 4610 static struct extent_buffer * 4611 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4612 unsigned long len) 4613 { 4614 struct extent_buffer *eb = NULL; 4615 4616 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4617 eb->start = start; 4618 eb->len = len; 4619 eb->fs_info = fs_info; 4620 eb->bflags = 0; 4621 rwlock_init(&eb->lock); 4622 atomic_set(&eb->write_locks, 0); 4623 atomic_set(&eb->read_locks, 0); 4624 atomic_set(&eb->blocking_readers, 0); 4625 atomic_set(&eb->blocking_writers, 0); 4626 atomic_set(&eb->spinning_readers, 0); 4627 atomic_set(&eb->spinning_writers, 0); 4628 eb->lock_nested = 0; 4629 init_waitqueue_head(&eb->write_lock_wq); 4630 init_waitqueue_head(&eb->read_lock_wq); 4631 4632 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4633 4634 spin_lock_init(&eb->refs_lock); 4635 atomic_set(&eb->refs, 1); 4636 atomic_set(&eb->io_pages, 0); 4637 4638 /* 4639 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4640 */ 4641 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4642 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4643 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4644 4645 return eb; 4646 } 4647 4648 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4649 { 4650 unsigned long i; 4651 struct page *p; 4652 struct extent_buffer *new; 4653 unsigned long num_pages = num_extent_pages(src->start, src->len); 4654 4655 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4656 if (new == NULL) 4657 return NULL; 4658 4659 for (i = 0; i < num_pages; i++) { 4660 p = alloc_page(GFP_NOFS); 4661 if (!p) { 4662 btrfs_release_extent_buffer(new); 4663 return NULL; 4664 } 4665 attach_extent_buffer_page(new, p); 4666 WARN_ON(PageDirty(p)); 4667 SetPageUptodate(p); 4668 new->pages[i] = p; 4669 } 4670 4671 copy_extent_buffer(new, src, 0, 0, src->len); 4672 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4673 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4674 4675 return new; 4676 } 4677 4678 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4679 u64 start, unsigned long len) 4680 { 4681 struct extent_buffer *eb; 4682 unsigned long num_pages; 4683 unsigned long i; 4684 4685 num_pages = num_extent_pages(start, len); 4686 4687 eb = __alloc_extent_buffer(fs_info, start, len); 4688 if (!eb) 4689 return NULL; 4690 4691 for (i = 0; i < num_pages; i++) { 4692 eb->pages[i] = alloc_page(GFP_NOFS); 4693 if (!eb->pages[i]) 4694 goto err; 4695 } 4696 set_extent_buffer_uptodate(eb); 4697 btrfs_set_header_nritems(eb, 0); 4698 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4699 4700 return eb; 4701 err: 4702 for (; i > 0; i--) 4703 __free_page(eb->pages[i - 1]); 4704 __free_extent_buffer(eb); 4705 return NULL; 4706 } 4707 4708 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4709 u64 start) 4710 { 4711 unsigned long len; 4712 4713 if (!fs_info) { 4714 /* 4715 * Called only from tests that don't always have a fs_info 4716 * available, but we know that nodesize is 4096 4717 */ 4718 len = 4096; 4719 } else { 4720 len = fs_info->tree_root->nodesize; 4721 } 4722 4723 return __alloc_dummy_extent_buffer(fs_info, start, len); 4724 } 4725 4726 static void check_buffer_tree_ref(struct extent_buffer *eb) 4727 { 4728 int refs; 4729 /* the ref bit is tricky. We have to make sure it is set 4730 * if we have the buffer dirty. Otherwise the 4731 * code to free a buffer can end up dropping a dirty 4732 * page 4733 * 4734 * Once the ref bit is set, it won't go away while the 4735 * buffer is dirty or in writeback, and it also won't 4736 * go away while we have the reference count on the 4737 * eb bumped. 4738 * 4739 * We can't just set the ref bit without bumping the 4740 * ref on the eb because free_extent_buffer might 4741 * see the ref bit and try to clear it. If this happens 4742 * free_extent_buffer might end up dropping our original 4743 * ref by mistake and freeing the page before we are able 4744 * to add one more ref. 4745 * 4746 * So bump the ref count first, then set the bit. If someone 4747 * beat us to it, drop the ref we added. 4748 */ 4749 refs = atomic_read(&eb->refs); 4750 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4751 return; 4752 4753 spin_lock(&eb->refs_lock); 4754 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4755 atomic_inc(&eb->refs); 4756 spin_unlock(&eb->refs_lock); 4757 } 4758 4759 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4760 struct page *accessed) 4761 { 4762 unsigned long num_pages, i; 4763 4764 check_buffer_tree_ref(eb); 4765 4766 num_pages = num_extent_pages(eb->start, eb->len); 4767 for (i = 0; i < num_pages; i++) { 4768 struct page *p = eb->pages[i]; 4769 4770 if (p != accessed) 4771 mark_page_accessed(p); 4772 } 4773 } 4774 4775 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4776 u64 start) 4777 { 4778 struct extent_buffer *eb; 4779 4780 rcu_read_lock(); 4781 eb = radix_tree_lookup(&fs_info->buffer_radix, 4782 start >> PAGE_CACHE_SHIFT); 4783 if (eb && atomic_inc_not_zero(&eb->refs)) { 4784 rcu_read_unlock(); 4785 /* 4786 * Lock our eb's refs_lock to avoid races with 4787 * free_extent_buffer. When we get our eb it might be flagged 4788 * with EXTENT_BUFFER_STALE and another task running 4789 * free_extent_buffer might have seen that flag set, 4790 * eb->refs == 2, that the buffer isn't under IO (dirty and 4791 * writeback flags not set) and it's still in the tree (flag 4792 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4793 * of decrementing the extent buffer's reference count twice. 4794 * So here we could race and increment the eb's reference count, 4795 * clear its stale flag, mark it as dirty and drop our reference 4796 * before the other task finishes executing free_extent_buffer, 4797 * which would later result in an attempt to free an extent 4798 * buffer that is dirty. 4799 */ 4800 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4801 spin_lock(&eb->refs_lock); 4802 spin_unlock(&eb->refs_lock); 4803 } 4804 mark_extent_buffer_accessed(eb, NULL); 4805 return eb; 4806 } 4807 rcu_read_unlock(); 4808 4809 return NULL; 4810 } 4811 4812 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4813 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4814 u64 start) 4815 { 4816 struct extent_buffer *eb, *exists = NULL; 4817 int ret; 4818 4819 eb = find_extent_buffer(fs_info, start); 4820 if (eb) 4821 return eb; 4822 eb = alloc_dummy_extent_buffer(fs_info, start); 4823 if (!eb) 4824 return NULL; 4825 eb->fs_info = fs_info; 4826 again: 4827 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4828 if (ret) 4829 goto free_eb; 4830 spin_lock(&fs_info->buffer_lock); 4831 ret = radix_tree_insert(&fs_info->buffer_radix, 4832 start >> PAGE_CACHE_SHIFT, eb); 4833 spin_unlock(&fs_info->buffer_lock); 4834 radix_tree_preload_end(); 4835 if (ret == -EEXIST) { 4836 exists = find_extent_buffer(fs_info, start); 4837 if (exists) 4838 goto free_eb; 4839 else 4840 goto again; 4841 } 4842 check_buffer_tree_ref(eb); 4843 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4844 4845 /* 4846 * We will free dummy extent buffer's if they come into 4847 * free_extent_buffer with a ref count of 2, but if we are using this we 4848 * want the buffers to stay in memory until we're done with them, so 4849 * bump the ref count again. 4850 */ 4851 atomic_inc(&eb->refs); 4852 return eb; 4853 free_eb: 4854 btrfs_release_extent_buffer(eb); 4855 return exists; 4856 } 4857 #endif 4858 4859 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4860 u64 start) 4861 { 4862 unsigned long len = fs_info->tree_root->nodesize; 4863 unsigned long num_pages = num_extent_pages(start, len); 4864 unsigned long i; 4865 unsigned long index = start >> PAGE_CACHE_SHIFT; 4866 struct extent_buffer *eb; 4867 struct extent_buffer *exists = NULL; 4868 struct page *p; 4869 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4870 int uptodate = 1; 4871 int ret; 4872 4873 eb = find_extent_buffer(fs_info, start); 4874 if (eb) 4875 return eb; 4876 4877 eb = __alloc_extent_buffer(fs_info, start, len); 4878 if (!eb) 4879 return NULL; 4880 4881 for (i = 0; i < num_pages; i++, index++) { 4882 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4883 if (!p) 4884 goto free_eb; 4885 4886 spin_lock(&mapping->private_lock); 4887 if (PagePrivate(p)) { 4888 /* 4889 * We could have already allocated an eb for this page 4890 * and attached one so lets see if we can get a ref on 4891 * the existing eb, and if we can we know it's good and 4892 * we can just return that one, else we know we can just 4893 * overwrite page->private. 4894 */ 4895 exists = (struct extent_buffer *)p->private; 4896 if (atomic_inc_not_zero(&exists->refs)) { 4897 spin_unlock(&mapping->private_lock); 4898 unlock_page(p); 4899 page_cache_release(p); 4900 mark_extent_buffer_accessed(exists, p); 4901 goto free_eb; 4902 } 4903 exists = NULL; 4904 4905 /* 4906 * Do this so attach doesn't complain and we need to 4907 * drop the ref the old guy had. 4908 */ 4909 ClearPagePrivate(p); 4910 WARN_ON(PageDirty(p)); 4911 page_cache_release(p); 4912 } 4913 attach_extent_buffer_page(eb, p); 4914 spin_unlock(&mapping->private_lock); 4915 WARN_ON(PageDirty(p)); 4916 eb->pages[i] = p; 4917 if (!PageUptodate(p)) 4918 uptodate = 0; 4919 4920 /* 4921 * see below about how we avoid a nasty race with release page 4922 * and why we unlock later 4923 */ 4924 } 4925 if (uptodate) 4926 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4927 again: 4928 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4929 if (ret) 4930 goto free_eb; 4931 4932 spin_lock(&fs_info->buffer_lock); 4933 ret = radix_tree_insert(&fs_info->buffer_radix, 4934 start >> PAGE_CACHE_SHIFT, eb); 4935 spin_unlock(&fs_info->buffer_lock); 4936 radix_tree_preload_end(); 4937 if (ret == -EEXIST) { 4938 exists = find_extent_buffer(fs_info, start); 4939 if (exists) 4940 goto free_eb; 4941 else 4942 goto again; 4943 } 4944 /* add one reference for the tree */ 4945 check_buffer_tree_ref(eb); 4946 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4947 4948 /* 4949 * there is a race where release page may have 4950 * tried to find this extent buffer in the radix 4951 * but failed. It will tell the VM it is safe to 4952 * reclaim the, and it will clear the page private bit. 4953 * We must make sure to set the page private bit properly 4954 * after the extent buffer is in the radix tree so 4955 * it doesn't get lost 4956 */ 4957 SetPageChecked(eb->pages[0]); 4958 for (i = 1; i < num_pages; i++) { 4959 p = eb->pages[i]; 4960 ClearPageChecked(p); 4961 unlock_page(p); 4962 } 4963 unlock_page(eb->pages[0]); 4964 return eb; 4965 4966 free_eb: 4967 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4968 for (i = 0; i < num_pages; i++) { 4969 if (eb->pages[i]) 4970 unlock_page(eb->pages[i]); 4971 } 4972 4973 btrfs_release_extent_buffer(eb); 4974 return exists; 4975 } 4976 4977 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4978 { 4979 struct extent_buffer *eb = 4980 container_of(head, struct extent_buffer, rcu_head); 4981 4982 __free_extent_buffer(eb); 4983 } 4984 4985 /* Expects to have eb->eb_lock already held */ 4986 static int release_extent_buffer(struct extent_buffer *eb) 4987 { 4988 WARN_ON(atomic_read(&eb->refs) == 0); 4989 if (atomic_dec_and_test(&eb->refs)) { 4990 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4991 struct btrfs_fs_info *fs_info = eb->fs_info; 4992 4993 spin_unlock(&eb->refs_lock); 4994 4995 spin_lock(&fs_info->buffer_lock); 4996 radix_tree_delete(&fs_info->buffer_radix, 4997 eb->start >> PAGE_CACHE_SHIFT); 4998 spin_unlock(&fs_info->buffer_lock); 4999 } else { 5000 spin_unlock(&eb->refs_lock); 5001 } 5002 5003 /* Should be safe to release our pages at this point */ 5004 btrfs_release_extent_buffer_page(eb); 5005 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5006 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) { 5007 __free_extent_buffer(eb); 5008 return 1; 5009 } 5010 #endif 5011 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5012 return 1; 5013 } 5014 spin_unlock(&eb->refs_lock); 5015 5016 return 0; 5017 } 5018 5019 void free_extent_buffer(struct extent_buffer *eb) 5020 { 5021 int refs; 5022 int old; 5023 if (!eb) 5024 return; 5025 5026 while (1) { 5027 refs = atomic_read(&eb->refs); 5028 if (refs <= 3) 5029 break; 5030 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5031 if (old == refs) 5032 return; 5033 } 5034 5035 spin_lock(&eb->refs_lock); 5036 if (atomic_read(&eb->refs) == 2 && 5037 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 5038 atomic_dec(&eb->refs); 5039 5040 if (atomic_read(&eb->refs) == 2 && 5041 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5042 !extent_buffer_under_io(eb) && 5043 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5044 atomic_dec(&eb->refs); 5045 5046 /* 5047 * I know this is terrible, but it's temporary until we stop tracking 5048 * the uptodate bits and such for the extent buffers. 5049 */ 5050 release_extent_buffer(eb); 5051 } 5052 5053 void free_extent_buffer_stale(struct extent_buffer *eb) 5054 { 5055 if (!eb) 5056 return; 5057 5058 spin_lock(&eb->refs_lock); 5059 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5060 5061 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5062 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5063 atomic_dec(&eb->refs); 5064 release_extent_buffer(eb); 5065 } 5066 5067 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5068 { 5069 unsigned long i; 5070 unsigned long num_pages; 5071 struct page *page; 5072 5073 num_pages = num_extent_pages(eb->start, eb->len); 5074 5075 for (i = 0; i < num_pages; i++) { 5076 page = eb->pages[i]; 5077 if (!PageDirty(page)) 5078 continue; 5079 5080 lock_page(page); 5081 WARN_ON(!PagePrivate(page)); 5082 5083 clear_page_dirty_for_io(page); 5084 spin_lock_irq(&page->mapping->tree_lock); 5085 if (!PageDirty(page)) { 5086 radix_tree_tag_clear(&page->mapping->page_tree, 5087 page_index(page), 5088 PAGECACHE_TAG_DIRTY); 5089 } 5090 spin_unlock_irq(&page->mapping->tree_lock); 5091 ClearPageError(page); 5092 unlock_page(page); 5093 } 5094 WARN_ON(atomic_read(&eb->refs) == 0); 5095 } 5096 5097 int set_extent_buffer_dirty(struct extent_buffer *eb) 5098 { 5099 unsigned long i; 5100 unsigned long num_pages; 5101 int was_dirty = 0; 5102 5103 check_buffer_tree_ref(eb); 5104 5105 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5106 5107 num_pages = num_extent_pages(eb->start, eb->len); 5108 WARN_ON(atomic_read(&eb->refs) == 0); 5109 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5110 5111 for (i = 0; i < num_pages; i++) 5112 set_page_dirty(eb->pages[i]); 5113 return was_dirty; 5114 } 5115 5116 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5117 { 5118 unsigned long i; 5119 struct page *page; 5120 unsigned long num_pages; 5121 5122 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5123 num_pages = num_extent_pages(eb->start, eb->len); 5124 for (i = 0; i < num_pages; i++) { 5125 page = eb->pages[i]; 5126 if (page) 5127 ClearPageUptodate(page); 5128 } 5129 } 5130 5131 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5132 { 5133 unsigned long i; 5134 struct page *page; 5135 unsigned long num_pages; 5136 5137 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5138 num_pages = num_extent_pages(eb->start, eb->len); 5139 for (i = 0; i < num_pages; i++) { 5140 page = eb->pages[i]; 5141 SetPageUptodate(page); 5142 } 5143 } 5144 5145 int extent_buffer_uptodate(struct extent_buffer *eb) 5146 { 5147 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5148 } 5149 5150 int read_extent_buffer_pages(struct extent_io_tree *tree, 5151 struct extent_buffer *eb, u64 start, int wait, 5152 get_extent_t *get_extent, int mirror_num) 5153 { 5154 unsigned long i; 5155 unsigned long start_i; 5156 struct page *page; 5157 int err; 5158 int ret = 0; 5159 int locked_pages = 0; 5160 int all_uptodate = 1; 5161 unsigned long num_pages; 5162 unsigned long num_reads = 0; 5163 struct bio *bio = NULL; 5164 unsigned long bio_flags = 0; 5165 5166 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5167 return 0; 5168 5169 if (start) { 5170 WARN_ON(start < eb->start); 5171 start_i = (start >> PAGE_CACHE_SHIFT) - 5172 (eb->start >> PAGE_CACHE_SHIFT); 5173 } else { 5174 start_i = 0; 5175 } 5176 5177 num_pages = num_extent_pages(eb->start, eb->len); 5178 for (i = start_i; i < num_pages; i++) { 5179 page = eb->pages[i]; 5180 if (wait == WAIT_NONE) { 5181 if (!trylock_page(page)) 5182 goto unlock_exit; 5183 } else { 5184 lock_page(page); 5185 } 5186 locked_pages++; 5187 if (!PageUptodate(page)) { 5188 num_reads++; 5189 all_uptodate = 0; 5190 } 5191 } 5192 if (all_uptodate) { 5193 if (start_i == 0) 5194 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5195 goto unlock_exit; 5196 } 5197 5198 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5199 eb->read_mirror = 0; 5200 atomic_set(&eb->io_pages, num_reads); 5201 for (i = start_i; i < num_pages; i++) { 5202 page = eb->pages[i]; 5203 if (!PageUptodate(page)) { 5204 ClearPageError(page); 5205 err = __extent_read_full_page(tree, page, 5206 get_extent, &bio, 5207 mirror_num, &bio_flags, 5208 READ | REQ_META); 5209 if (err) 5210 ret = err; 5211 } else { 5212 unlock_page(page); 5213 } 5214 } 5215 5216 if (bio) { 5217 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5218 bio_flags); 5219 if (err) 5220 return err; 5221 } 5222 5223 if (ret || wait != WAIT_COMPLETE) 5224 return ret; 5225 5226 for (i = start_i; i < num_pages; i++) { 5227 page = eb->pages[i]; 5228 wait_on_page_locked(page); 5229 if (!PageUptodate(page)) 5230 ret = -EIO; 5231 } 5232 5233 return ret; 5234 5235 unlock_exit: 5236 i = start_i; 5237 while (locked_pages > 0) { 5238 page = eb->pages[i]; 5239 i++; 5240 unlock_page(page); 5241 locked_pages--; 5242 } 5243 return ret; 5244 } 5245 5246 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5247 unsigned long start, 5248 unsigned long len) 5249 { 5250 size_t cur; 5251 size_t offset; 5252 struct page *page; 5253 char *kaddr; 5254 char *dst = (char *)dstv; 5255 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5256 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5257 5258 WARN_ON(start > eb->len); 5259 WARN_ON(start + len > eb->start + eb->len); 5260 5261 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5262 5263 while (len > 0) { 5264 page = eb->pages[i]; 5265 5266 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5267 kaddr = page_address(page); 5268 memcpy(dst, kaddr + offset, cur); 5269 5270 dst += cur; 5271 len -= cur; 5272 offset = 0; 5273 i++; 5274 } 5275 } 5276 5277 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5278 unsigned long start, 5279 unsigned long len) 5280 { 5281 size_t cur; 5282 size_t offset; 5283 struct page *page; 5284 char *kaddr; 5285 char __user *dst = (char __user *)dstv; 5286 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5287 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5288 int ret = 0; 5289 5290 WARN_ON(start > eb->len); 5291 WARN_ON(start + len > eb->start + eb->len); 5292 5293 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5294 5295 while (len > 0) { 5296 page = eb->pages[i]; 5297 5298 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5299 kaddr = page_address(page); 5300 if (copy_to_user(dst, kaddr + offset, cur)) { 5301 ret = -EFAULT; 5302 break; 5303 } 5304 5305 dst += cur; 5306 len -= cur; 5307 offset = 0; 5308 i++; 5309 } 5310 5311 return ret; 5312 } 5313 5314 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5315 unsigned long min_len, char **map, 5316 unsigned long *map_start, 5317 unsigned long *map_len) 5318 { 5319 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5320 char *kaddr; 5321 struct page *p; 5322 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5323 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5324 unsigned long end_i = (start_offset + start + min_len - 1) >> 5325 PAGE_CACHE_SHIFT; 5326 5327 if (i != end_i) 5328 return -EINVAL; 5329 5330 if (i == 0) { 5331 offset = start_offset; 5332 *map_start = 0; 5333 } else { 5334 offset = 0; 5335 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5336 } 5337 5338 if (start + min_len > eb->len) { 5339 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5340 "wanted %lu %lu\n", 5341 eb->start, eb->len, start, min_len); 5342 return -EINVAL; 5343 } 5344 5345 p = eb->pages[i]; 5346 kaddr = page_address(p); 5347 *map = kaddr + offset; 5348 *map_len = PAGE_CACHE_SIZE - offset; 5349 return 0; 5350 } 5351 5352 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5353 unsigned long start, 5354 unsigned long len) 5355 { 5356 size_t cur; 5357 size_t offset; 5358 struct page *page; 5359 char *kaddr; 5360 char *ptr = (char *)ptrv; 5361 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5362 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5363 int ret = 0; 5364 5365 WARN_ON(start > eb->len); 5366 WARN_ON(start + len > eb->start + eb->len); 5367 5368 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5369 5370 while (len > 0) { 5371 page = eb->pages[i]; 5372 5373 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5374 5375 kaddr = page_address(page); 5376 ret = memcmp(ptr, kaddr + offset, cur); 5377 if (ret) 5378 break; 5379 5380 ptr += cur; 5381 len -= cur; 5382 offset = 0; 5383 i++; 5384 } 5385 return ret; 5386 } 5387 5388 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5389 unsigned long start, unsigned long len) 5390 { 5391 size_t cur; 5392 size_t offset; 5393 struct page *page; 5394 char *kaddr; 5395 char *src = (char *)srcv; 5396 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5397 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5398 5399 WARN_ON(start > eb->len); 5400 WARN_ON(start + len > eb->start + eb->len); 5401 5402 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5403 5404 while (len > 0) { 5405 page = eb->pages[i]; 5406 WARN_ON(!PageUptodate(page)); 5407 5408 cur = min(len, PAGE_CACHE_SIZE - offset); 5409 kaddr = page_address(page); 5410 memcpy(kaddr + offset, src, cur); 5411 5412 src += cur; 5413 len -= cur; 5414 offset = 0; 5415 i++; 5416 } 5417 } 5418 5419 void memset_extent_buffer(struct extent_buffer *eb, char c, 5420 unsigned long start, unsigned long len) 5421 { 5422 size_t cur; 5423 size_t offset; 5424 struct page *page; 5425 char *kaddr; 5426 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5427 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5428 5429 WARN_ON(start > eb->len); 5430 WARN_ON(start + len > eb->start + eb->len); 5431 5432 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5433 5434 while (len > 0) { 5435 page = eb->pages[i]; 5436 WARN_ON(!PageUptodate(page)); 5437 5438 cur = min(len, PAGE_CACHE_SIZE - offset); 5439 kaddr = page_address(page); 5440 memset(kaddr + offset, c, cur); 5441 5442 len -= cur; 5443 offset = 0; 5444 i++; 5445 } 5446 } 5447 5448 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5449 unsigned long dst_offset, unsigned long src_offset, 5450 unsigned long len) 5451 { 5452 u64 dst_len = dst->len; 5453 size_t cur; 5454 size_t offset; 5455 struct page *page; 5456 char *kaddr; 5457 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5458 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5459 5460 WARN_ON(src->len != dst_len); 5461 5462 offset = (start_offset + dst_offset) & 5463 (PAGE_CACHE_SIZE - 1); 5464 5465 while (len > 0) { 5466 page = dst->pages[i]; 5467 WARN_ON(!PageUptodate(page)); 5468 5469 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5470 5471 kaddr = page_address(page); 5472 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5473 5474 src_offset += cur; 5475 len -= cur; 5476 offset = 0; 5477 i++; 5478 } 5479 } 5480 5481 /* 5482 * The extent buffer bitmap operations are done with byte granularity because 5483 * bitmap items are not guaranteed to be aligned to a word and therefore a 5484 * single word in a bitmap may straddle two pages in the extent buffer. 5485 */ 5486 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE) 5487 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1) 5488 #define BITMAP_FIRST_BYTE_MASK(start) \ 5489 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK) 5490 #define BITMAP_LAST_BYTE_MASK(nbits) \ 5491 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1))) 5492 5493 /* 5494 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5495 * given bit number 5496 * @eb: the extent buffer 5497 * @start: offset of the bitmap item in the extent buffer 5498 * @nr: bit number 5499 * @page_index: return index of the page in the extent buffer that contains the 5500 * given bit number 5501 * @page_offset: return offset into the page given by page_index 5502 * 5503 * This helper hides the ugliness of finding the byte in an extent buffer which 5504 * contains a given bit. 5505 */ 5506 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5507 unsigned long start, unsigned long nr, 5508 unsigned long *page_index, 5509 size_t *page_offset) 5510 { 5511 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5512 size_t byte_offset = BIT_BYTE(nr); 5513 size_t offset; 5514 5515 /* 5516 * The byte we want is the offset of the extent buffer + the offset of 5517 * the bitmap item in the extent buffer + the offset of the byte in the 5518 * bitmap item. 5519 */ 5520 offset = start_offset + start + byte_offset; 5521 5522 *page_index = offset >> PAGE_CACHE_SHIFT; 5523 *page_offset = offset & (PAGE_CACHE_SIZE - 1); 5524 } 5525 5526 /** 5527 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5528 * @eb: the extent buffer 5529 * @start: offset of the bitmap item in the extent buffer 5530 * @nr: bit number to test 5531 */ 5532 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5533 unsigned long nr) 5534 { 5535 char *kaddr; 5536 struct page *page; 5537 unsigned long i; 5538 size_t offset; 5539 5540 eb_bitmap_offset(eb, start, nr, &i, &offset); 5541 page = eb->pages[i]; 5542 WARN_ON(!PageUptodate(page)); 5543 kaddr = page_address(page); 5544 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5545 } 5546 5547 /** 5548 * extent_buffer_bitmap_set - set an area of a bitmap 5549 * @eb: the extent buffer 5550 * @start: offset of the bitmap item in the extent buffer 5551 * @pos: bit number of the first bit 5552 * @len: number of bits to set 5553 */ 5554 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5555 unsigned long pos, unsigned long len) 5556 { 5557 char *kaddr; 5558 struct page *page; 5559 unsigned long i; 5560 size_t offset; 5561 const unsigned int size = pos + len; 5562 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5563 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5564 5565 eb_bitmap_offset(eb, start, pos, &i, &offset); 5566 page = eb->pages[i]; 5567 WARN_ON(!PageUptodate(page)); 5568 kaddr = page_address(page); 5569 5570 while (len >= bits_to_set) { 5571 kaddr[offset] |= mask_to_set; 5572 len -= bits_to_set; 5573 bits_to_set = BITS_PER_BYTE; 5574 mask_to_set = ~0U; 5575 if (++offset >= PAGE_CACHE_SIZE && len > 0) { 5576 offset = 0; 5577 page = eb->pages[++i]; 5578 WARN_ON(!PageUptodate(page)); 5579 kaddr = page_address(page); 5580 } 5581 } 5582 if (len) { 5583 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5584 kaddr[offset] |= mask_to_set; 5585 } 5586 } 5587 5588 5589 /** 5590 * extent_buffer_bitmap_clear - clear an area of a bitmap 5591 * @eb: the extent buffer 5592 * @start: offset of the bitmap item in the extent buffer 5593 * @pos: bit number of the first bit 5594 * @len: number of bits to clear 5595 */ 5596 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5597 unsigned long pos, unsigned long len) 5598 { 5599 char *kaddr; 5600 struct page *page; 5601 unsigned long i; 5602 size_t offset; 5603 const unsigned int size = pos + len; 5604 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5605 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5606 5607 eb_bitmap_offset(eb, start, pos, &i, &offset); 5608 page = eb->pages[i]; 5609 WARN_ON(!PageUptodate(page)); 5610 kaddr = page_address(page); 5611 5612 while (len >= bits_to_clear) { 5613 kaddr[offset] &= ~mask_to_clear; 5614 len -= bits_to_clear; 5615 bits_to_clear = BITS_PER_BYTE; 5616 mask_to_clear = ~0U; 5617 if (++offset >= PAGE_CACHE_SIZE && len > 0) { 5618 offset = 0; 5619 page = eb->pages[++i]; 5620 WARN_ON(!PageUptodate(page)); 5621 kaddr = page_address(page); 5622 } 5623 } 5624 if (len) { 5625 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5626 kaddr[offset] &= ~mask_to_clear; 5627 } 5628 } 5629 5630 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5631 { 5632 unsigned long distance = (src > dst) ? src - dst : dst - src; 5633 return distance < len; 5634 } 5635 5636 static void copy_pages(struct page *dst_page, struct page *src_page, 5637 unsigned long dst_off, unsigned long src_off, 5638 unsigned long len) 5639 { 5640 char *dst_kaddr = page_address(dst_page); 5641 char *src_kaddr; 5642 int must_memmove = 0; 5643 5644 if (dst_page != src_page) { 5645 src_kaddr = page_address(src_page); 5646 } else { 5647 src_kaddr = dst_kaddr; 5648 if (areas_overlap(src_off, dst_off, len)) 5649 must_memmove = 1; 5650 } 5651 5652 if (must_memmove) 5653 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5654 else 5655 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5656 } 5657 5658 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5659 unsigned long src_offset, unsigned long len) 5660 { 5661 size_t cur; 5662 size_t dst_off_in_page; 5663 size_t src_off_in_page; 5664 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5665 unsigned long dst_i; 5666 unsigned long src_i; 5667 5668 if (src_offset + len > dst->len) { 5669 btrfs_err(dst->fs_info, 5670 "memmove bogus src_offset %lu move " 5671 "len %lu dst len %lu", src_offset, len, dst->len); 5672 BUG_ON(1); 5673 } 5674 if (dst_offset + len > dst->len) { 5675 btrfs_err(dst->fs_info, 5676 "memmove bogus dst_offset %lu move " 5677 "len %lu dst len %lu", dst_offset, len, dst->len); 5678 BUG_ON(1); 5679 } 5680 5681 while (len > 0) { 5682 dst_off_in_page = (start_offset + dst_offset) & 5683 (PAGE_CACHE_SIZE - 1); 5684 src_off_in_page = (start_offset + src_offset) & 5685 (PAGE_CACHE_SIZE - 1); 5686 5687 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5688 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5689 5690 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5691 src_off_in_page)); 5692 cur = min_t(unsigned long, cur, 5693 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5694 5695 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5696 dst_off_in_page, src_off_in_page, cur); 5697 5698 src_offset += cur; 5699 dst_offset += cur; 5700 len -= cur; 5701 } 5702 } 5703 5704 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5705 unsigned long src_offset, unsigned long len) 5706 { 5707 size_t cur; 5708 size_t dst_off_in_page; 5709 size_t src_off_in_page; 5710 unsigned long dst_end = dst_offset + len - 1; 5711 unsigned long src_end = src_offset + len - 1; 5712 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5713 unsigned long dst_i; 5714 unsigned long src_i; 5715 5716 if (src_offset + len > dst->len) { 5717 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move " 5718 "len %lu len %lu", src_offset, len, dst->len); 5719 BUG_ON(1); 5720 } 5721 if (dst_offset + len > dst->len) { 5722 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move " 5723 "len %lu len %lu", dst_offset, len, dst->len); 5724 BUG_ON(1); 5725 } 5726 if (dst_offset < src_offset) { 5727 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5728 return; 5729 } 5730 while (len > 0) { 5731 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5732 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5733 5734 dst_off_in_page = (start_offset + dst_end) & 5735 (PAGE_CACHE_SIZE - 1); 5736 src_off_in_page = (start_offset + src_end) & 5737 (PAGE_CACHE_SIZE - 1); 5738 5739 cur = min_t(unsigned long, len, src_off_in_page + 1); 5740 cur = min(cur, dst_off_in_page + 1); 5741 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5742 dst_off_in_page - cur + 1, 5743 src_off_in_page - cur + 1, cur); 5744 5745 dst_end -= cur; 5746 src_end -= cur; 5747 len -= cur; 5748 } 5749 } 5750 5751 int try_release_extent_buffer(struct page *page) 5752 { 5753 struct extent_buffer *eb; 5754 5755 /* 5756 * We need to make sure noboody is attaching this page to an eb right 5757 * now. 5758 */ 5759 spin_lock(&page->mapping->private_lock); 5760 if (!PagePrivate(page)) { 5761 spin_unlock(&page->mapping->private_lock); 5762 return 1; 5763 } 5764 5765 eb = (struct extent_buffer *)page->private; 5766 BUG_ON(!eb); 5767 5768 /* 5769 * This is a little awful but should be ok, we need to make sure that 5770 * the eb doesn't disappear out from under us while we're looking at 5771 * this page. 5772 */ 5773 spin_lock(&eb->refs_lock); 5774 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5775 spin_unlock(&eb->refs_lock); 5776 spin_unlock(&page->mapping->private_lock); 5777 return 0; 5778 } 5779 spin_unlock(&page->mapping->private_lock); 5780 5781 /* 5782 * If tree ref isn't set then we know the ref on this eb is a real ref, 5783 * so just return, this page will likely be freed soon anyway. 5784 */ 5785 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5786 spin_unlock(&eb->refs_lock); 5787 return 0; 5788 } 5789 5790 return release_extent_buffer(eb); 5791 } 5792