1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent-io-tree.h" 18 #include "extent_map.h" 19 #include "ctree.h" 20 #include "btrfs_inode.h" 21 #include "volumes.h" 22 #include "check-integrity.h" 23 #include "locking.h" 24 #include "rcu-string.h" 25 #include "backref.h" 26 #include "disk-io.h" 27 28 static struct kmem_cache *extent_state_cache; 29 static struct kmem_cache *extent_buffer_cache; 30 static struct bio_set btrfs_bioset; 31 32 static inline bool extent_state_in_tree(const struct extent_state *state) 33 { 34 return !RB_EMPTY_NODE(&state->rb_node); 35 } 36 37 #ifdef CONFIG_BTRFS_DEBUG 38 static LIST_HEAD(states); 39 static DEFINE_SPINLOCK(leak_lock); 40 41 static inline void btrfs_leak_debug_add(spinlock_t *lock, 42 struct list_head *new, 43 struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(lock, flags); 50 } 51 52 static inline void btrfs_leak_debug_del(spinlock_t *lock, 53 struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(lock, flags); 60 } 61 62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 63 { 64 struct extent_buffer *eb; 65 unsigned long flags; 66 67 /* 68 * If we didn't get into open_ctree our allocated_ebs will not be 69 * initialized, so just skip this. 70 */ 71 if (!fs_info->allocated_ebs.next) 72 return; 73 74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 75 while (!list_empty(&fs_info->allocated_ebs)) { 76 eb = list_first_entry(&fs_info->allocated_ebs, 77 struct extent_buffer, leak_list); 78 pr_err( 79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 81 btrfs_header_owner(eb)); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 86 } 87 88 static inline void btrfs_extent_state_leak_debug_check(void) 89 { 90 struct extent_state *state; 91 92 while (!list_empty(&states)) { 93 state = list_entry(states.next, struct extent_state, leak_list); 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 95 state->start, state->end, state->state, 96 extent_state_in_tree(state), 97 refcount_read(&state->refs)); 98 list_del(&state->leak_list); 99 kmem_cache_free(extent_state_cache, state); 100 } 101 } 102 103 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 105 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 106 struct extent_io_tree *tree, u64 start, u64 end) 107 { 108 struct inode *inode = tree->private_data; 109 u64 isize; 110 111 if (!inode || !is_data_inode(inode)) 112 return; 113 114 isize = i_size_read(inode); 115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 117 "%s: ino %llu isize %llu odd range [%llu,%llu]", 118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 119 } 120 } 121 #else 122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 123 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 124 #define btrfs_extent_state_leak_debug_check() do {} while (0) 125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 126 #endif 127 128 struct tree_entry { 129 u64 start; 130 u64 end; 131 struct rb_node rb_node; 132 }; 133 134 struct extent_page_data { 135 struct bio *bio; 136 /* tells writepage not to lock the state bits for this range 137 * it still does the unlocking 138 */ 139 unsigned int extent_locked:1; 140 141 /* tells the submit_bio code to use REQ_SYNC */ 142 unsigned int sync_io:1; 143 }; 144 145 static int add_extent_changeset(struct extent_state *state, unsigned bits, 146 struct extent_changeset *changeset, 147 int set) 148 { 149 int ret; 150 151 if (!changeset) 152 return 0; 153 if (set && (state->state & bits) == bits) 154 return 0; 155 if (!set && (state->state & bits) == 0) 156 return 0; 157 changeset->bytes_changed += state->end - state->start + 1; 158 ret = ulist_add(&changeset->range_changed, state->start, state->end, 159 GFP_ATOMIC); 160 return ret; 161 } 162 163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 164 unsigned long bio_flags) 165 { 166 blk_status_t ret = 0; 167 struct extent_io_tree *tree = bio->bi_private; 168 169 bio->bi_private = NULL; 170 171 if (tree->ops) 172 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 173 mirror_num, bio_flags); 174 else 175 btrfsic_submit_bio(bio); 176 177 return blk_status_to_errno(ret); 178 } 179 180 /* Cleanup unsubmitted bios */ 181 static void end_write_bio(struct extent_page_data *epd, int ret) 182 { 183 if (epd->bio) { 184 epd->bio->bi_status = errno_to_blk_status(ret); 185 bio_endio(epd->bio); 186 epd->bio = NULL; 187 } 188 } 189 190 /* 191 * Submit bio from extent page data via submit_one_bio 192 * 193 * Return 0 if everything is OK. 194 * Return <0 for error. 195 */ 196 static int __must_check flush_write_bio(struct extent_page_data *epd) 197 { 198 int ret = 0; 199 200 if (epd->bio) { 201 ret = submit_one_bio(epd->bio, 0, 0); 202 /* 203 * Clean up of epd->bio is handled by its endio function. 204 * And endio is either triggered by successful bio execution 205 * or the error handler of submit bio hook. 206 * So at this point, no matter what happened, we don't need 207 * to clean up epd->bio. 208 */ 209 epd->bio = NULL; 210 } 211 return ret; 212 } 213 214 int __init extent_state_cache_init(void) 215 { 216 extent_state_cache = kmem_cache_create("btrfs_extent_state", 217 sizeof(struct extent_state), 0, 218 SLAB_MEM_SPREAD, NULL); 219 if (!extent_state_cache) 220 return -ENOMEM; 221 return 0; 222 } 223 224 int __init extent_io_init(void) 225 { 226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 227 sizeof(struct extent_buffer), 0, 228 SLAB_MEM_SPREAD, NULL); 229 if (!extent_buffer_cache) 230 return -ENOMEM; 231 232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 233 offsetof(struct btrfs_io_bio, bio), 234 BIOSET_NEED_BVECS)) 235 goto free_buffer_cache; 236 237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 238 goto free_bioset; 239 240 return 0; 241 242 free_bioset: 243 bioset_exit(&btrfs_bioset); 244 245 free_buffer_cache: 246 kmem_cache_destroy(extent_buffer_cache); 247 extent_buffer_cache = NULL; 248 return -ENOMEM; 249 } 250 251 void __cold extent_state_cache_exit(void) 252 { 253 btrfs_extent_state_leak_debug_check(); 254 kmem_cache_destroy(extent_state_cache); 255 } 256 257 void __cold extent_io_exit(void) 258 { 259 /* 260 * Make sure all delayed rcu free are flushed before we 261 * destroy caches. 262 */ 263 rcu_barrier(); 264 kmem_cache_destroy(extent_buffer_cache); 265 bioset_exit(&btrfs_bioset); 266 } 267 268 /* 269 * For the file_extent_tree, we want to hold the inode lock when we lookup and 270 * update the disk_i_size, but lockdep will complain because our io_tree we hold 271 * the tree lock and get the inode lock when setting delalloc. These two things 272 * are unrelated, so make a class for the file_extent_tree so we don't get the 273 * two locking patterns mixed up. 274 */ 275 static struct lock_class_key file_extent_tree_class; 276 277 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 278 struct extent_io_tree *tree, unsigned int owner, 279 void *private_data) 280 { 281 tree->fs_info = fs_info; 282 tree->state = RB_ROOT; 283 tree->ops = NULL; 284 tree->dirty_bytes = 0; 285 spin_lock_init(&tree->lock); 286 tree->private_data = private_data; 287 tree->owner = owner; 288 if (owner == IO_TREE_INODE_FILE_EXTENT) 289 lockdep_set_class(&tree->lock, &file_extent_tree_class); 290 } 291 292 void extent_io_tree_release(struct extent_io_tree *tree) 293 { 294 spin_lock(&tree->lock); 295 /* 296 * Do a single barrier for the waitqueue_active check here, the state 297 * of the waitqueue should not change once extent_io_tree_release is 298 * called. 299 */ 300 smp_mb(); 301 while (!RB_EMPTY_ROOT(&tree->state)) { 302 struct rb_node *node; 303 struct extent_state *state; 304 305 node = rb_first(&tree->state); 306 state = rb_entry(node, struct extent_state, rb_node); 307 rb_erase(&state->rb_node, &tree->state); 308 RB_CLEAR_NODE(&state->rb_node); 309 /* 310 * btree io trees aren't supposed to have tasks waiting for 311 * changes in the flags of extent states ever. 312 */ 313 ASSERT(!waitqueue_active(&state->wq)); 314 free_extent_state(state); 315 316 cond_resched_lock(&tree->lock); 317 } 318 spin_unlock(&tree->lock); 319 } 320 321 static struct extent_state *alloc_extent_state(gfp_t mask) 322 { 323 struct extent_state *state; 324 325 /* 326 * The given mask might be not appropriate for the slab allocator, 327 * drop the unsupported bits 328 */ 329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 330 state = kmem_cache_alloc(extent_state_cache, mask); 331 if (!state) 332 return state; 333 state->state = 0; 334 state->failrec = NULL; 335 RB_CLEAR_NODE(&state->rb_node); 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 337 refcount_set(&state->refs, 1); 338 init_waitqueue_head(&state->wq); 339 trace_alloc_extent_state(state, mask, _RET_IP_); 340 return state; 341 } 342 343 void free_extent_state(struct extent_state *state) 344 { 345 if (!state) 346 return; 347 if (refcount_dec_and_test(&state->refs)) { 348 WARN_ON(extent_state_in_tree(state)); 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 350 trace_free_extent_state(state, _RET_IP_); 351 kmem_cache_free(extent_state_cache, state); 352 } 353 } 354 355 static struct rb_node *tree_insert(struct rb_root *root, 356 struct rb_node *search_start, 357 u64 offset, 358 struct rb_node *node, 359 struct rb_node ***p_in, 360 struct rb_node **parent_in) 361 { 362 struct rb_node **p; 363 struct rb_node *parent = NULL; 364 struct tree_entry *entry; 365 366 if (p_in && parent_in) { 367 p = *p_in; 368 parent = *parent_in; 369 goto do_insert; 370 } 371 372 p = search_start ? &search_start : &root->rb_node; 373 while (*p) { 374 parent = *p; 375 entry = rb_entry(parent, struct tree_entry, rb_node); 376 377 if (offset < entry->start) 378 p = &(*p)->rb_left; 379 else if (offset > entry->end) 380 p = &(*p)->rb_right; 381 else 382 return parent; 383 } 384 385 do_insert: 386 rb_link_node(node, parent, p); 387 rb_insert_color(node, root); 388 return NULL; 389 } 390 391 /** 392 * __etree_search - searche @tree for an entry that contains @offset. Such 393 * entry would have entry->start <= offset && entry->end >= offset. 394 * 395 * @tree - the tree to search 396 * @offset - offset that should fall within an entry in @tree 397 * @next_ret - pointer to the first entry whose range ends after @offset 398 * @prev - pointer to the first entry whose range begins before @offset 399 * @p_ret - pointer where new node should be anchored (used when inserting an 400 * entry in the tree) 401 * @parent_ret - points to entry which would have been the parent of the entry, 402 * containing @offset 403 * 404 * This function returns a pointer to the entry that contains @offset byte 405 * address. If no such entry exists, then NULL is returned and the other 406 * pointer arguments to the function are filled, otherwise the found entry is 407 * returned and other pointers are left untouched. 408 */ 409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 410 struct rb_node **next_ret, 411 struct rb_node **prev_ret, 412 struct rb_node ***p_ret, 413 struct rb_node **parent_ret) 414 { 415 struct rb_root *root = &tree->state; 416 struct rb_node **n = &root->rb_node; 417 struct rb_node *prev = NULL; 418 struct rb_node *orig_prev = NULL; 419 struct tree_entry *entry; 420 struct tree_entry *prev_entry = NULL; 421 422 while (*n) { 423 prev = *n; 424 entry = rb_entry(prev, struct tree_entry, rb_node); 425 prev_entry = entry; 426 427 if (offset < entry->start) 428 n = &(*n)->rb_left; 429 else if (offset > entry->end) 430 n = &(*n)->rb_right; 431 else 432 return *n; 433 } 434 435 if (p_ret) 436 *p_ret = n; 437 if (parent_ret) 438 *parent_ret = prev; 439 440 if (next_ret) { 441 orig_prev = prev; 442 while (prev && offset > prev_entry->end) { 443 prev = rb_next(prev); 444 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 445 } 446 *next_ret = prev; 447 prev = orig_prev; 448 } 449 450 if (prev_ret) { 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 452 while (prev && offset < prev_entry->start) { 453 prev = rb_prev(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *prev_ret = prev; 457 } 458 return NULL; 459 } 460 461 static inline struct rb_node * 462 tree_search_for_insert(struct extent_io_tree *tree, 463 u64 offset, 464 struct rb_node ***p_ret, 465 struct rb_node **parent_ret) 466 { 467 struct rb_node *next= NULL; 468 struct rb_node *ret; 469 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 471 if (!ret) 472 return next; 473 return ret; 474 } 475 476 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 477 u64 offset) 478 { 479 return tree_search_for_insert(tree, offset, NULL, NULL); 480 } 481 482 /* 483 * utility function to look for merge candidates inside a given range. 484 * Any extents with matching state are merged together into a single 485 * extent in the tree. Extents with EXTENT_IO in their state field 486 * are not merged because the end_io handlers need to be able to do 487 * operations on them without sleeping (or doing allocations/splits). 488 * 489 * This should be called with the tree lock held. 490 */ 491 static void merge_state(struct extent_io_tree *tree, 492 struct extent_state *state) 493 { 494 struct extent_state *other; 495 struct rb_node *other_node; 496 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 498 return; 499 500 other_node = rb_prev(&state->rb_node); 501 if (other_node) { 502 other = rb_entry(other_node, struct extent_state, rb_node); 503 if (other->end == state->start - 1 && 504 other->state == state->state) { 505 if (tree->private_data && 506 is_data_inode(tree->private_data)) 507 btrfs_merge_delalloc_extent(tree->private_data, 508 state, other); 509 state->start = other->start; 510 rb_erase(&other->rb_node, &tree->state); 511 RB_CLEAR_NODE(&other->rb_node); 512 free_extent_state(other); 513 } 514 } 515 other_node = rb_next(&state->rb_node); 516 if (other_node) { 517 other = rb_entry(other_node, struct extent_state, rb_node); 518 if (other->start == state->end + 1 && 519 other->state == state->state) { 520 if (tree->private_data && 521 is_data_inode(tree->private_data)) 522 btrfs_merge_delalloc_extent(tree->private_data, 523 state, other); 524 state->end = other->end; 525 rb_erase(&other->rb_node, &tree->state); 526 RB_CLEAR_NODE(&other->rb_node); 527 free_extent_state(other); 528 } 529 } 530 } 531 532 static void set_state_bits(struct extent_io_tree *tree, 533 struct extent_state *state, unsigned *bits, 534 struct extent_changeset *changeset); 535 536 /* 537 * insert an extent_state struct into the tree. 'bits' are set on the 538 * struct before it is inserted. 539 * 540 * This may return -EEXIST if the extent is already there, in which case the 541 * state struct is freed. 542 * 543 * The tree lock is not taken internally. This is a utility function and 544 * probably isn't what you want to call (see set/clear_extent_bit). 545 */ 546 static int insert_state(struct extent_io_tree *tree, 547 struct extent_state *state, u64 start, u64 end, 548 struct rb_node ***p, 549 struct rb_node **parent, 550 unsigned *bits, struct extent_changeset *changeset) 551 { 552 struct rb_node *node; 553 554 if (end < start) { 555 btrfs_err(tree->fs_info, 556 "insert state: end < start %llu %llu", end, start); 557 WARN_ON(1); 558 } 559 state->start = start; 560 state->end = end; 561 562 set_state_bits(tree, state, bits, changeset); 563 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 565 if (node) { 566 struct extent_state *found; 567 found = rb_entry(node, struct extent_state, rb_node); 568 btrfs_err(tree->fs_info, 569 "found node %llu %llu on insert of %llu %llu", 570 found->start, found->end, start, end); 571 return -EEXIST; 572 } 573 merge_state(tree, state); 574 return 0; 575 } 576 577 /* 578 * split a given extent state struct in two, inserting the preallocated 579 * struct 'prealloc' as the newly created second half. 'split' indicates an 580 * offset inside 'orig' where it should be split. 581 * 582 * Before calling, 583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 584 * are two extent state structs in the tree: 585 * prealloc: [orig->start, split - 1] 586 * orig: [ split, orig->end ] 587 * 588 * The tree locks are not taken by this function. They need to be held 589 * by the caller. 590 */ 591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 592 struct extent_state *prealloc, u64 split) 593 { 594 struct rb_node *node; 595 596 if (tree->private_data && is_data_inode(tree->private_data)) 597 btrfs_split_delalloc_extent(tree->private_data, orig, split); 598 599 prealloc->start = orig->start; 600 prealloc->end = split - 1; 601 prealloc->state = orig->state; 602 orig->start = split; 603 604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 605 &prealloc->rb_node, NULL, NULL); 606 if (node) { 607 free_extent_state(prealloc); 608 return -EEXIST; 609 } 610 return 0; 611 } 612 613 static struct extent_state *next_state(struct extent_state *state) 614 { 615 struct rb_node *next = rb_next(&state->rb_node); 616 if (next) 617 return rb_entry(next, struct extent_state, rb_node); 618 else 619 return NULL; 620 } 621 622 /* 623 * utility function to clear some bits in an extent state struct. 624 * it will optionally wake up anyone waiting on this state (wake == 1). 625 * 626 * If no bits are set on the state struct after clearing things, the 627 * struct is freed and removed from the tree 628 */ 629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 630 struct extent_state *state, 631 unsigned *bits, int wake, 632 struct extent_changeset *changeset) 633 { 634 struct extent_state *next; 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 636 int ret; 637 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 639 u64 range = state->end - state->start + 1; 640 WARN_ON(range > tree->dirty_bytes); 641 tree->dirty_bytes -= range; 642 } 643 644 if (tree->private_data && is_data_inode(tree->private_data)) 645 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 646 647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 648 BUG_ON(ret < 0); 649 state->state &= ~bits_to_clear; 650 if (wake) 651 wake_up(&state->wq); 652 if (state->state == 0) { 653 next = next_state(state); 654 if (extent_state_in_tree(state)) { 655 rb_erase(&state->rb_node, &tree->state); 656 RB_CLEAR_NODE(&state->rb_node); 657 free_extent_state(state); 658 } else { 659 WARN_ON(1); 660 } 661 } else { 662 merge_state(tree, state); 663 next = next_state(state); 664 } 665 return next; 666 } 667 668 static struct extent_state * 669 alloc_extent_state_atomic(struct extent_state *prealloc) 670 { 671 if (!prealloc) 672 prealloc = alloc_extent_state(GFP_ATOMIC); 673 674 return prealloc; 675 } 676 677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 678 { 679 struct inode *inode = tree->private_data; 680 681 btrfs_panic(btrfs_sb(inode->i_sb), err, 682 "locking error: extent tree was modified by another thread while locked"); 683 } 684 685 /* 686 * clear some bits on a range in the tree. This may require splitting 687 * or inserting elements in the tree, so the gfp mask is used to 688 * indicate which allocations or sleeping are allowed. 689 * 690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 691 * the given range from the tree regardless of state (ie for truncate). 692 * 693 * the range [start, end] is inclusive. 694 * 695 * This takes the tree lock, and returns 0 on success and < 0 on error. 696 */ 697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 698 unsigned bits, int wake, int delete, 699 struct extent_state **cached_state, 700 gfp_t mask, struct extent_changeset *changeset) 701 { 702 struct extent_state *state; 703 struct extent_state *cached; 704 struct extent_state *prealloc = NULL; 705 struct rb_node *node; 706 u64 last_end; 707 int err; 708 int clear = 0; 709 710 btrfs_debug_check_extent_io_range(tree, start, end); 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 712 713 if (bits & EXTENT_DELALLOC) 714 bits |= EXTENT_NORESERVE; 715 716 if (delete) 717 bits |= ~EXTENT_CTLBITS; 718 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 720 clear = 1; 721 again: 722 if (!prealloc && gfpflags_allow_blocking(mask)) { 723 /* 724 * Don't care for allocation failure here because we might end 725 * up not needing the pre-allocated extent state at all, which 726 * is the case if we only have in the tree extent states that 727 * cover our input range and don't cover too any other range. 728 * If we end up needing a new extent state we allocate it later. 729 */ 730 prealloc = alloc_extent_state(mask); 731 } 732 733 spin_lock(&tree->lock); 734 if (cached_state) { 735 cached = *cached_state; 736 737 if (clear) { 738 *cached_state = NULL; 739 cached_state = NULL; 740 } 741 742 if (cached && extent_state_in_tree(cached) && 743 cached->start <= start && cached->end > start) { 744 if (clear) 745 refcount_dec(&cached->refs); 746 state = cached; 747 goto hit_next; 748 } 749 if (clear) 750 free_extent_state(cached); 751 } 752 /* 753 * this search will find the extents that end after 754 * our range starts 755 */ 756 node = tree_search(tree, start); 757 if (!node) 758 goto out; 759 state = rb_entry(node, struct extent_state, rb_node); 760 hit_next: 761 if (state->start > end) 762 goto out; 763 WARN_ON(state->end < start); 764 last_end = state->end; 765 766 /* the state doesn't have the wanted bits, go ahead */ 767 if (!(state->state & bits)) { 768 state = next_state(state); 769 goto next; 770 } 771 772 /* 773 * | ---- desired range ---- | 774 * | state | or 775 * | ------------- state -------------- | 776 * 777 * We need to split the extent we found, and may flip 778 * bits on second half. 779 * 780 * If the extent we found extends past our range, we 781 * just split and search again. It'll get split again 782 * the next time though. 783 * 784 * If the extent we found is inside our range, we clear 785 * the desired bit on it. 786 */ 787 788 if (state->start < start) { 789 prealloc = alloc_extent_state_atomic(prealloc); 790 BUG_ON(!prealloc); 791 err = split_state(tree, state, prealloc, start); 792 if (err) 793 extent_io_tree_panic(tree, err); 794 795 prealloc = NULL; 796 if (err) 797 goto out; 798 if (state->end <= end) { 799 state = clear_state_bit(tree, state, &bits, wake, 800 changeset); 801 goto next; 802 } 803 goto search_again; 804 } 805 /* 806 * | ---- desired range ---- | 807 * | state | 808 * We need to split the extent, and clear the bit 809 * on the first half 810 */ 811 if (state->start <= end && state->end > end) { 812 prealloc = alloc_extent_state_atomic(prealloc); 813 BUG_ON(!prealloc); 814 err = split_state(tree, state, prealloc, end + 1); 815 if (err) 816 extent_io_tree_panic(tree, err); 817 818 if (wake) 819 wake_up(&state->wq); 820 821 clear_state_bit(tree, prealloc, &bits, wake, changeset); 822 823 prealloc = NULL; 824 goto out; 825 } 826 827 state = clear_state_bit(tree, state, &bits, wake, changeset); 828 next: 829 if (last_end == (u64)-1) 830 goto out; 831 start = last_end + 1; 832 if (start <= end && state && !need_resched()) 833 goto hit_next; 834 835 search_again: 836 if (start > end) 837 goto out; 838 spin_unlock(&tree->lock); 839 if (gfpflags_allow_blocking(mask)) 840 cond_resched(); 841 goto again; 842 843 out: 844 spin_unlock(&tree->lock); 845 if (prealloc) 846 free_extent_state(prealloc); 847 848 return 0; 849 850 } 851 852 static void wait_on_state(struct extent_io_tree *tree, 853 struct extent_state *state) 854 __releases(tree->lock) 855 __acquires(tree->lock) 856 { 857 DEFINE_WAIT(wait); 858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 859 spin_unlock(&tree->lock); 860 schedule(); 861 spin_lock(&tree->lock); 862 finish_wait(&state->wq, &wait); 863 } 864 865 /* 866 * waits for one or more bits to clear on a range in the state tree. 867 * The range [start, end] is inclusive. 868 * The tree lock is taken by this function 869 */ 870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 871 unsigned long bits) 872 { 873 struct extent_state *state; 874 struct rb_node *node; 875 876 btrfs_debug_check_extent_io_range(tree, start, end); 877 878 spin_lock(&tree->lock); 879 again: 880 while (1) { 881 /* 882 * this search will find all the extents that end after 883 * our range starts 884 */ 885 node = tree_search(tree, start); 886 process_node: 887 if (!node) 888 break; 889 890 state = rb_entry(node, struct extent_state, rb_node); 891 892 if (state->start > end) 893 goto out; 894 895 if (state->state & bits) { 896 start = state->start; 897 refcount_inc(&state->refs); 898 wait_on_state(tree, state); 899 free_extent_state(state); 900 goto again; 901 } 902 start = state->end + 1; 903 904 if (start > end) 905 break; 906 907 if (!cond_resched_lock(&tree->lock)) { 908 node = rb_next(node); 909 goto process_node; 910 } 911 } 912 out: 913 spin_unlock(&tree->lock); 914 } 915 916 static void set_state_bits(struct extent_io_tree *tree, 917 struct extent_state *state, 918 unsigned *bits, struct extent_changeset *changeset) 919 { 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 921 int ret; 922 923 if (tree->private_data && is_data_inode(tree->private_data)) 924 btrfs_set_delalloc_extent(tree->private_data, state, bits); 925 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 927 u64 range = state->end - state->start + 1; 928 tree->dirty_bytes += range; 929 } 930 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 931 BUG_ON(ret < 0); 932 state->state |= bits_to_set; 933 } 934 935 static void cache_state_if_flags(struct extent_state *state, 936 struct extent_state **cached_ptr, 937 unsigned flags) 938 { 939 if (cached_ptr && !(*cached_ptr)) { 940 if (!flags || (state->state & flags)) { 941 *cached_ptr = state; 942 refcount_inc(&state->refs); 943 } 944 } 945 } 946 947 static void cache_state(struct extent_state *state, 948 struct extent_state **cached_ptr) 949 { 950 return cache_state_if_flags(state, cached_ptr, 951 EXTENT_LOCKED | EXTENT_BOUNDARY); 952 } 953 954 /* 955 * set some bits on a range in the tree. This may require allocations or 956 * sleeping, so the gfp mask is used to indicate what is allowed. 957 * 958 * If any of the exclusive bits are set, this will fail with -EEXIST if some 959 * part of the range already has the desired bits set. The start of the 960 * existing range is returned in failed_start in this case. 961 * 962 * [start, end] is inclusive This takes the tree lock. 963 */ 964 965 static int __must_check 966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 967 unsigned bits, unsigned exclusive_bits, 968 u64 *failed_start, struct extent_state **cached_state, 969 gfp_t mask, struct extent_changeset *changeset) 970 { 971 struct extent_state *state; 972 struct extent_state *prealloc = NULL; 973 struct rb_node *node; 974 struct rb_node **p; 975 struct rb_node *parent; 976 int err = 0; 977 u64 last_start; 978 u64 last_end; 979 980 btrfs_debug_check_extent_io_range(tree, start, end); 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 982 983 again: 984 if (!prealloc && gfpflags_allow_blocking(mask)) { 985 /* 986 * Don't care for allocation failure here because we might end 987 * up not needing the pre-allocated extent state at all, which 988 * is the case if we only have in the tree extent states that 989 * cover our input range and don't cover too any other range. 990 * If we end up needing a new extent state we allocate it later. 991 */ 992 prealloc = alloc_extent_state(mask); 993 } 994 995 spin_lock(&tree->lock); 996 if (cached_state && *cached_state) { 997 state = *cached_state; 998 if (state->start <= start && state->end > start && 999 extent_state_in_tree(state)) { 1000 node = &state->rb_node; 1001 goto hit_next; 1002 } 1003 } 1004 /* 1005 * this search will find all the extents that end after 1006 * our range starts. 1007 */ 1008 node = tree_search_for_insert(tree, start, &p, &parent); 1009 if (!node) { 1010 prealloc = alloc_extent_state_atomic(prealloc); 1011 BUG_ON(!prealloc); 1012 err = insert_state(tree, prealloc, start, end, 1013 &p, &parent, &bits, changeset); 1014 if (err) 1015 extent_io_tree_panic(tree, err); 1016 1017 cache_state(prealloc, cached_state); 1018 prealloc = NULL; 1019 goto out; 1020 } 1021 state = rb_entry(node, struct extent_state, rb_node); 1022 hit_next: 1023 last_start = state->start; 1024 last_end = state->end; 1025 1026 /* 1027 * | ---- desired range ---- | 1028 * | state | 1029 * 1030 * Just lock what we found and keep going 1031 */ 1032 if (state->start == start && state->end <= end) { 1033 if (state->state & exclusive_bits) { 1034 *failed_start = state->start; 1035 err = -EEXIST; 1036 goto out; 1037 } 1038 1039 set_state_bits(tree, state, &bits, changeset); 1040 cache_state(state, cached_state); 1041 merge_state(tree, state); 1042 if (last_end == (u64)-1) 1043 goto out; 1044 start = last_end + 1; 1045 state = next_state(state); 1046 if (start < end && state && state->start == start && 1047 !need_resched()) 1048 goto hit_next; 1049 goto search_again; 1050 } 1051 1052 /* 1053 * | ---- desired range ---- | 1054 * | state | 1055 * or 1056 * | ------------- state -------------- | 1057 * 1058 * We need to split the extent we found, and may flip bits on 1059 * second half. 1060 * 1061 * If the extent we found extends past our 1062 * range, we just split and search again. It'll get split 1063 * again the next time though. 1064 * 1065 * If the extent we found is inside our range, we set the 1066 * desired bit on it. 1067 */ 1068 if (state->start < start) { 1069 if (state->state & exclusive_bits) { 1070 *failed_start = start; 1071 err = -EEXIST; 1072 goto out; 1073 } 1074 1075 /* 1076 * If this extent already has all the bits we want set, then 1077 * skip it, not necessary to split it or do anything with it. 1078 */ 1079 if ((state->state & bits) == bits) { 1080 start = state->end + 1; 1081 cache_state(state, cached_state); 1082 goto search_again; 1083 } 1084 1085 prealloc = alloc_extent_state_atomic(prealloc); 1086 BUG_ON(!prealloc); 1087 err = split_state(tree, state, prealloc, start); 1088 if (err) 1089 extent_io_tree_panic(tree, err); 1090 1091 prealloc = NULL; 1092 if (err) 1093 goto out; 1094 if (state->end <= end) { 1095 set_state_bits(tree, state, &bits, changeset); 1096 cache_state(state, cached_state); 1097 merge_state(tree, state); 1098 if (last_end == (u64)-1) 1099 goto out; 1100 start = last_end + 1; 1101 state = next_state(state); 1102 if (start < end && state && state->start == start && 1103 !need_resched()) 1104 goto hit_next; 1105 } 1106 goto search_again; 1107 } 1108 /* 1109 * | ---- desired range ---- | 1110 * | state | or | state | 1111 * 1112 * There's a hole, we need to insert something in it and 1113 * ignore the extent we found. 1114 */ 1115 if (state->start > start) { 1116 u64 this_end; 1117 if (end < last_start) 1118 this_end = end; 1119 else 1120 this_end = last_start - 1; 1121 1122 prealloc = alloc_extent_state_atomic(prealloc); 1123 BUG_ON(!prealloc); 1124 1125 /* 1126 * Avoid to free 'prealloc' if it can be merged with 1127 * the later extent. 1128 */ 1129 err = insert_state(tree, prealloc, start, this_end, 1130 NULL, NULL, &bits, changeset); 1131 if (err) 1132 extent_io_tree_panic(tree, err); 1133 1134 cache_state(prealloc, cached_state); 1135 prealloc = NULL; 1136 start = this_end + 1; 1137 goto search_again; 1138 } 1139 /* 1140 * | ---- desired range ---- | 1141 * | state | 1142 * We need to split the extent, and set the bit 1143 * on the first half 1144 */ 1145 if (state->start <= end && state->end > end) { 1146 if (state->state & exclusive_bits) { 1147 *failed_start = start; 1148 err = -EEXIST; 1149 goto out; 1150 } 1151 1152 prealloc = alloc_extent_state_atomic(prealloc); 1153 BUG_ON(!prealloc); 1154 err = split_state(tree, state, prealloc, end + 1); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 set_state_bits(tree, prealloc, &bits, changeset); 1159 cache_state(prealloc, cached_state); 1160 merge_state(tree, prealloc); 1161 prealloc = NULL; 1162 goto out; 1163 } 1164 1165 search_again: 1166 if (start > end) 1167 goto out; 1168 spin_unlock(&tree->lock); 1169 if (gfpflags_allow_blocking(mask)) 1170 cond_resched(); 1171 goto again; 1172 1173 out: 1174 spin_unlock(&tree->lock); 1175 if (prealloc) 1176 free_extent_state(prealloc); 1177 1178 return err; 1179 1180 } 1181 1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1183 unsigned bits, u64 * failed_start, 1184 struct extent_state **cached_state, gfp_t mask) 1185 { 1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1187 cached_state, mask, NULL); 1188 } 1189 1190 1191 /** 1192 * convert_extent_bit - convert all bits in a given range from one bit to 1193 * another 1194 * @tree: the io tree to search 1195 * @start: the start offset in bytes 1196 * @end: the end offset in bytes (inclusive) 1197 * @bits: the bits to set in this range 1198 * @clear_bits: the bits to clear in this range 1199 * @cached_state: state that we're going to cache 1200 * 1201 * This will go through and set bits for the given range. If any states exist 1202 * already in this range they are set with the given bit and cleared of the 1203 * clear_bits. This is only meant to be used by things that are mergeable, ie 1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1205 * boundary bits like LOCK. 1206 * 1207 * All allocations are done with GFP_NOFS. 1208 */ 1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1210 unsigned bits, unsigned clear_bits, 1211 struct extent_state **cached_state) 1212 { 1213 struct extent_state *state; 1214 struct extent_state *prealloc = NULL; 1215 struct rb_node *node; 1216 struct rb_node **p; 1217 struct rb_node *parent; 1218 int err = 0; 1219 u64 last_start; 1220 u64 last_end; 1221 bool first_iteration = true; 1222 1223 btrfs_debug_check_extent_io_range(tree, start, end); 1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1225 clear_bits); 1226 1227 again: 1228 if (!prealloc) { 1229 /* 1230 * Best effort, don't worry if extent state allocation fails 1231 * here for the first iteration. We might have a cached state 1232 * that matches exactly the target range, in which case no 1233 * extent state allocations are needed. We'll only know this 1234 * after locking the tree. 1235 */ 1236 prealloc = alloc_extent_state(GFP_NOFS); 1237 if (!prealloc && !first_iteration) 1238 return -ENOMEM; 1239 } 1240 1241 spin_lock(&tree->lock); 1242 if (cached_state && *cached_state) { 1243 state = *cached_state; 1244 if (state->start <= start && state->end > start && 1245 extent_state_in_tree(state)) { 1246 node = &state->rb_node; 1247 goto hit_next; 1248 } 1249 } 1250 1251 /* 1252 * this search will find all the extents that end after 1253 * our range starts. 1254 */ 1255 node = tree_search_for_insert(tree, start, &p, &parent); 1256 if (!node) { 1257 prealloc = alloc_extent_state_atomic(prealloc); 1258 if (!prealloc) { 1259 err = -ENOMEM; 1260 goto out; 1261 } 1262 err = insert_state(tree, prealloc, start, end, 1263 &p, &parent, &bits, NULL); 1264 if (err) 1265 extent_io_tree_panic(tree, err); 1266 cache_state(prealloc, cached_state); 1267 prealloc = NULL; 1268 goto out; 1269 } 1270 state = rb_entry(node, struct extent_state, rb_node); 1271 hit_next: 1272 last_start = state->start; 1273 last_end = state->end; 1274 1275 /* 1276 * | ---- desired range ---- | 1277 * | state | 1278 * 1279 * Just lock what we found and keep going 1280 */ 1281 if (state->start == start && state->end <= end) { 1282 set_state_bits(tree, state, &bits, NULL); 1283 cache_state(state, cached_state); 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1285 if (last_end == (u64)-1) 1286 goto out; 1287 start = last_end + 1; 1288 if (start < end && state && state->start == start && 1289 !need_resched()) 1290 goto hit_next; 1291 goto search_again; 1292 } 1293 1294 /* 1295 * | ---- desired range ---- | 1296 * | state | 1297 * or 1298 * | ------------- state -------------- | 1299 * 1300 * We need to split the extent we found, and may flip bits on 1301 * second half. 1302 * 1303 * If the extent we found extends past our 1304 * range, we just split and search again. It'll get split 1305 * again the next time though. 1306 * 1307 * If the extent we found is inside our range, we set the 1308 * desired bit on it. 1309 */ 1310 if (state->start < start) { 1311 prealloc = alloc_extent_state_atomic(prealloc); 1312 if (!prealloc) { 1313 err = -ENOMEM; 1314 goto out; 1315 } 1316 err = split_state(tree, state, prealloc, start); 1317 if (err) 1318 extent_io_tree_panic(tree, err); 1319 prealloc = NULL; 1320 if (err) 1321 goto out; 1322 if (state->end <= end) { 1323 set_state_bits(tree, state, &bits, NULL); 1324 cache_state(state, cached_state); 1325 state = clear_state_bit(tree, state, &clear_bits, 0, 1326 NULL); 1327 if (last_end == (u64)-1) 1328 goto out; 1329 start = last_end + 1; 1330 if (start < end && state && state->start == start && 1331 !need_resched()) 1332 goto hit_next; 1333 } 1334 goto search_again; 1335 } 1336 /* 1337 * | ---- desired range ---- | 1338 * | state | or | state | 1339 * 1340 * There's a hole, we need to insert something in it and 1341 * ignore the extent we found. 1342 */ 1343 if (state->start > start) { 1344 u64 this_end; 1345 if (end < last_start) 1346 this_end = end; 1347 else 1348 this_end = last_start - 1; 1349 1350 prealloc = alloc_extent_state_atomic(prealloc); 1351 if (!prealloc) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 /* 1357 * Avoid to free 'prealloc' if it can be merged with 1358 * the later extent. 1359 */ 1360 err = insert_state(tree, prealloc, start, this_end, 1361 NULL, NULL, &bits, NULL); 1362 if (err) 1363 extent_io_tree_panic(tree, err); 1364 cache_state(prealloc, cached_state); 1365 prealloc = NULL; 1366 start = this_end + 1; 1367 goto search_again; 1368 } 1369 /* 1370 * | ---- desired range ---- | 1371 * | state | 1372 * We need to split the extent, and set the bit 1373 * on the first half 1374 */ 1375 if (state->start <= end && state->end > end) { 1376 prealloc = alloc_extent_state_atomic(prealloc); 1377 if (!prealloc) { 1378 err = -ENOMEM; 1379 goto out; 1380 } 1381 1382 err = split_state(tree, state, prealloc, end + 1); 1383 if (err) 1384 extent_io_tree_panic(tree, err); 1385 1386 set_state_bits(tree, prealloc, &bits, NULL); 1387 cache_state(prealloc, cached_state); 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1389 prealloc = NULL; 1390 goto out; 1391 } 1392 1393 search_again: 1394 if (start > end) 1395 goto out; 1396 spin_unlock(&tree->lock); 1397 cond_resched(); 1398 first_iteration = false; 1399 goto again; 1400 1401 out: 1402 spin_unlock(&tree->lock); 1403 if (prealloc) 1404 free_extent_state(prealloc); 1405 1406 return err; 1407 } 1408 1409 /* wrappers around set/clear extent bit */ 1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1411 unsigned bits, struct extent_changeset *changeset) 1412 { 1413 /* 1414 * We don't support EXTENT_LOCKED yet, as current changeset will 1415 * record any bits changed, so for EXTENT_LOCKED case, it will 1416 * either fail with -EEXIST or changeset will record the whole 1417 * range. 1418 */ 1419 BUG_ON(bits & EXTENT_LOCKED); 1420 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1422 changeset); 1423 } 1424 1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1426 unsigned bits) 1427 { 1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1429 GFP_NOWAIT, NULL); 1430 } 1431 1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1433 unsigned bits, int wake, int delete, 1434 struct extent_state **cached) 1435 { 1436 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1437 cached, GFP_NOFS, NULL); 1438 } 1439 1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1441 unsigned bits, struct extent_changeset *changeset) 1442 { 1443 /* 1444 * Don't support EXTENT_LOCKED case, same reason as 1445 * set_record_extent_bits(). 1446 */ 1447 BUG_ON(bits & EXTENT_LOCKED); 1448 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1450 changeset); 1451 } 1452 1453 /* 1454 * either insert or lock state struct between start and end use mask to tell 1455 * us if waiting is desired. 1456 */ 1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1458 struct extent_state **cached_state) 1459 { 1460 int err; 1461 u64 failed_start; 1462 1463 while (1) { 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1465 EXTENT_LOCKED, &failed_start, 1466 cached_state, GFP_NOFS, NULL); 1467 if (err == -EEXIST) { 1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1469 start = failed_start; 1470 } else 1471 break; 1472 WARN_ON(start > end); 1473 } 1474 return err; 1475 } 1476 1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1478 { 1479 int err; 1480 u64 failed_start; 1481 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1483 &failed_start, NULL, GFP_NOFS, NULL); 1484 if (err == -EEXIST) { 1485 if (failed_start > start) 1486 clear_extent_bit(tree, start, failed_start - 1, 1487 EXTENT_LOCKED, 1, 0, NULL); 1488 return 0; 1489 } 1490 return 1; 1491 } 1492 1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1494 { 1495 unsigned long index = start >> PAGE_SHIFT; 1496 unsigned long end_index = end >> PAGE_SHIFT; 1497 struct page *page; 1498 1499 while (index <= end_index) { 1500 page = find_get_page(inode->i_mapping, index); 1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1502 clear_page_dirty_for_io(page); 1503 put_page(page); 1504 index++; 1505 } 1506 } 1507 1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 __set_page_dirty_nobuffers(page); 1518 account_page_redirty(page); 1519 put_page(page); 1520 index++; 1521 } 1522 } 1523 1524 /* find the first state struct with 'bits' set after 'start', and 1525 * return it. tree->lock must be held. NULL will returned if 1526 * nothing was found after 'start' 1527 */ 1528 static struct extent_state * 1529 find_first_extent_bit_state(struct extent_io_tree *tree, 1530 u64 start, unsigned bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * find the first offset in the io tree with 'bits' set. zero is 1558 * returned if we find something, and *start_ret and *end_ret are 1559 * set to reflect the state struct that was found. 1560 * 1561 * If nothing was found, 1 is returned. If found something, return 0. 1562 */ 1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1564 u64 *start_ret, u64 *end_ret, unsigned bits, 1565 struct extent_state **cached_state) 1566 { 1567 struct extent_state *state; 1568 int ret = 1; 1569 1570 spin_lock(&tree->lock); 1571 if (cached_state && *cached_state) { 1572 state = *cached_state; 1573 if (state->end == start - 1 && extent_state_in_tree(state)) { 1574 while ((state = next_state(state)) != NULL) { 1575 if (state->state & bits) 1576 goto got_it; 1577 } 1578 free_extent_state(*cached_state); 1579 *cached_state = NULL; 1580 goto out; 1581 } 1582 free_extent_state(*cached_state); 1583 *cached_state = NULL; 1584 } 1585 1586 state = find_first_extent_bit_state(tree, start, bits); 1587 got_it: 1588 if (state) { 1589 cache_state_if_flags(state, cached_state, 0); 1590 *start_ret = state->start; 1591 *end_ret = state->end; 1592 ret = 0; 1593 } 1594 out: 1595 spin_unlock(&tree->lock); 1596 return ret; 1597 } 1598 1599 /** 1600 * find_contiguous_extent_bit: find a contiguous area of bits 1601 * @tree - io tree to check 1602 * @start - offset to start the search from 1603 * @start_ret - the first offset we found with the bits set 1604 * @end_ret - the final contiguous range of the bits that were set 1605 * @bits - bits to look for 1606 * 1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1608 * to set bits appropriately, and then merge them again. During this time it 1609 * will drop the tree->lock, so use this helper if you want to find the actual 1610 * contiguous area for given bits. We will search to the first bit we find, and 1611 * then walk down the tree until we find a non-contiguous area. The area 1612 * returned will be the full contiguous area with the bits set. 1613 */ 1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1615 u64 *start_ret, u64 *end_ret, unsigned bits) 1616 { 1617 struct extent_state *state; 1618 int ret = 1; 1619 1620 spin_lock(&tree->lock); 1621 state = find_first_extent_bit_state(tree, start, bits); 1622 if (state) { 1623 *start_ret = state->start; 1624 *end_ret = state->end; 1625 while ((state = next_state(state)) != NULL) { 1626 if (state->start > (*end_ret + 1)) 1627 break; 1628 *end_ret = state->end; 1629 } 1630 ret = 0; 1631 } 1632 spin_unlock(&tree->lock); 1633 return ret; 1634 } 1635 1636 /** 1637 * find_first_clear_extent_bit - find the first range that has @bits not set. 1638 * This range could start before @start. 1639 * 1640 * @tree - the tree to search 1641 * @start - the offset at/after which the found extent should start 1642 * @start_ret - records the beginning of the range 1643 * @end_ret - records the end of the range (inclusive) 1644 * @bits - the set of bits which must be unset 1645 * 1646 * Since unallocated range is also considered one which doesn't have the bits 1647 * set it's possible that @end_ret contains -1, this happens in case the range 1648 * spans (last_range_end, end of device]. In this case it's up to the caller to 1649 * trim @end_ret to the appropriate size. 1650 */ 1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1652 u64 *start_ret, u64 *end_ret, unsigned bits) 1653 { 1654 struct extent_state *state; 1655 struct rb_node *node, *prev = NULL, *next; 1656 1657 spin_lock(&tree->lock); 1658 1659 /* Find first extent with bits cleared */ 1660 while (1) { 1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1662 if (!node && !next && !prev) { 1663 /* 1664 * Tree is completely empty, send full range and let 1665 * caller deal with it 1666 */ 1667 *start_ret = 0; 1668 *end_ret = -1; 1669 goto out; 1670 } else if (!node && !next) { 1671 /* 1672 * We are past the last allocated chunk, set start at 1673 * the end of the last extent. 1674 */ 1675 state = rb_entry(prev, struct extent_state, rb_node); 1676 *start_ret = state->end + 1; 1677 *end_ret = -1; 1678 goto out; 1679 } else if (!node) { 1680 node = next; 1681 } 1682 /* 1683 * At this point 'node' either contains 'start' or start is 1684 * before 'node' 1685 */ 1686 state = rb_entry(node, struct extent_state, rb_node); 1687 1688 if (in_range(start, state->start, state->end - state->start + 1)) { 1689 if (state->state & bits) { 1690 /* 1691 * |--range with bits sets--| 1692 * | 1693 * start 1694 */ 1695 start = state->end + 1; 1696 } else { 1697 /* 1698 * 'start' falls within a range that doesn't 1699 * have the bits set, so take its start as 1700 * the beginning of the desired range 1701 * 1702 * |--range with bits cleared----| 1703 * | 1704 * start 1705 */ 1706 *start_ret = state->start; 1707 break; 1708 } 1709 } else { 1710 /* 1711 * |---prev range---|---hole/unset---|---node range---| 1712 * | 1713 * start 1714 * 1715 * or 1716 * 1717 * |---hole/unset--||--first node--| 1718 * 0 | 1719 * start 1720 */ 1721 if (prev) { 1722 state = rb_entry(prev, struct extent_state, 1723 rb_node); 1724 *start_ret = state->end + 1; 1725 } else { 1726 *start_ret = 0; 1727 } 1728 break; 1729 } 1730 } 1731 1732 /* 1733 * Find the longest stretch from start until an entry which has the 1734 * bits set 1735 */ 1736 while (1) { 1737 state = rb_entry(node, struct extent_state, rb_node); 1738 if (state->end >= start && !(state->state & bits)) { 1739 *end_ret = state->end; 1740 } else { 1741 *end_ret = state->start - 1; 1742 break; 1743 } 1744 1745 node = rb_next(node); 1746 if (!node) 1747 break; 1748 } 1749 out: 1750 spin_unlock(&tree->lock); 1751 } 1752 1753 /* 1754 * find a contiguous range of bytes in the file marked as delalloc, not 1755 * more than 'max_bytes'. start and end are used to return the range, 1756 * 1757 * true is returned if we find something, false if nothing was in the tree 1758 */ 1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1760 u64 *end, u64 max_bytes, 1761 struct extent_state **cached_state) 1762 { 1763 struct rb_node *node; 1764 struct extent_state *state; 1765 u64 cur_start = *start; 1766 bool found = false; 1767 u64 total_bytes = 0; 1768 1769 spin_lock(&tree->lock); 1770 1771 /* 1772 * this search will find all the extents that end after 1773 * our range starts. 1774 */ 1775 node = tree_search(tree, cur_start); 1776 if (!node) { 1777 *end = (u64)-1; 1778 goto out; 1779 } 1780 1781 while (1) { 1782 state = rb_entry(node, struct extent_state, rb_node); 1783 if (found && (state->start != cur_start || 1784 (state->state & EXTENT_BOUNDARY))) { 1785 goto out; 1786 } 1787 if (!(state->state & EXTENT_DELALLOC)) { 1788 if (!found) 1789 *end = state->end; 1790 goto out; 1791 } 1792 if (!found) { 1793 *start = state->start; 1794 *cached_state = state; 1795 refcount_inc(&state->refs); 1796 } 1797 found = true; 1798 *end = state->end; 1799 cur_start = state->end + 1; 1800 node = rb_next(node); 1801 total_bytes += state->end - state->start + 1; 1802 if (total_bytes >= max_bytes) 1803 break; 1804 if (!node) 1805 break; 1806 } 1807 out: 1808 spin_unlock(&tree->lock); 1809 return found; 1810 } 1811 1812 static int __process_pages_contig(struct address_space *mapping, 1813 struct page *locked_page, 1814 pgoff_t start_index, pgoff_t end_index, 1815 unsigned long page_ops, pgoff_t *index_ret); 1816 1817 static noinline void __unlock_for_delalloc(struct inode *inode, 1818 struct page *locked_page, 1819 u64 start, u64 end) 1820 { 1821 unsigned long index = start >> PAGE_SHIFT; 1822 unsigned long end_index = end >> PAGE_SHIFT; 1823 1824 ASSERT(locked_page); 1825 if (index == locked_page->index && end_index == index) 1826 return; 1827 1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1829 PAGE_UNLOCK, NULL); 1830 } 1831 1832 static noinline int lock_delalloc_pages(struct inode *inode, 1833 struct page *locked_page, 1834 u64 delalloc_start, 1835 u64 delalloc_end) 1836 { 1837 unsigned long index = delalloc_start >> PAGE_SHIFT; 1838 unsigned long index_ret = index; 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1840 int ret; 1841 1842 ASSERT(locked_page); 1843 if (index == locked_page->index && index == end_index) 1844 return 0; 1845 1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1847 end_index, PAGE_LOCK, &index_ret); 1848 if (ret == -EAGAIN) 1849 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1850 (u64)index_ret << PAGE_SHIFT); 1851 return ret; 1852 } 1853 1854 /* 1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1856 * more than @max_bytes. @Start and @end are used to return the range, 1857 * 1858 * Return: true if we find something 1859 * false if nothing was in the tree 1860 */ 1861 EXPORT_FOR_TESTS 1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1863 struct page *locked_page, u64 *start, 1864 u64 *end) 1865 { 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1868 u64 delalloc_start; 1869 u64 delalloc_end; 1870 bool found; 1871 struct extent_state *cached_state = NULL; 1872 int ret; 1873 int loops = 0; 1874 1875 again: 1876 /* step one, find a bunch of delalloc bytes starting at start */ 1877 delalloc_start = *start; 1878 delalloc_end = 0; 1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1880 max_bytes, &cached_state); 1881 if (!found || delalloc_end <= *start) { 1882 *start = delalloc_start; 1883 *end = delalloc_end; 1884 free_extent_state(cached_state); 1885 return false; 1886 } 1887 1888 /* 1889 * start comes from the offset of locked_page. We have to lock 1890 * pages in order, so we can't process delalloc bytes before 1891 * locked_page 1892 */ 1893 if (delalloc_start < *start) 1894 delalloc_start = *start; 1895 1896 /* 1897 * make sure to limit the number of pages we try to lock down 1898 */ 1899 if (delalloc_end + 1 - delalloc_start > max_bytes) 1900 delalloc_end = delalloc_start + max_bytes - 1; 1901 1902 /* step two, lock all the pages after the page that has start */ 1903 ret = lock_delalloc_pages(inode, locked_page, 1904 delalloc_start, delalloc_end); 1905 ASSERT(!ret || ret == -EAGAIN); 1906 if (ret == -EAGAIN) { 1907 /* some of the pages are gone, lets avoid looping by 1908 * shortening the size of the delalloc range we're searching 1909 */ 1910 free_extent_state(cached_state); 1911 cached_state = NULL; 1912 if (!loops) { 1913 max_bytes = PAGE_SIZE; 1914 loops = 1; 1915 goto again; 1916 } else { 1917 found = false; 1918 goto out_failed; 1919 } 1920 } 1921 1922 /* step three, lock the state bits for the whole range */ 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1924 1925 /* then test to make sure it is all still delalloc */ 1926 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1927 EXTENT_DELALLOC, 1, cached_state); 1928 if (!ret) { 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1930 &cached_state); 1931 __unlock_for_delalloc(inode, locked_page, 1932 delalloc_start, delalloc_end); 1933 cond_resched(); 1934 goto again; 1935 } 1936 free_extent_state(cached_state); 1937 *start = delalloc_start; 1938 *end = delalloc_end; 1939 out_failed: 1940 return found; 1941 } 1942 1943 static int __process_pages_contig(struct address_space *mapping, 1944 struct page *locked_page, 1945 pgoff_t start_index, pgoff_t end_index, 1946 unsigned long page_ops, pgoff_t *index_ret) 1947 { 1948 unsigned long nr_pages = end_index - start_index + 1; 1949 unsigned long pages_locked = 0; 1950 pgoff_t index = start_index; 1951 struct page *pages[16]; 1952 unsigned ret; 1953 int err = 0; 1954 int i; 1955 1956 if (page_ops & PAGE_LOCK) { 1957 ASSERT(page_ops == PAGE_LOCK); 1958 ASSERT(index_ret && *index_ret == start_index); 1959 } 1960 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1962 mapping_set_error(mapping, -EIO); 1963 1964 while (nr_pages > 0) { 1965 ret = find_get_pages_contig(mapping, index, 1966 min_t(unsigned long, 1967 nr_pages, ARRAY_SIZE(pages)), pages); 1968 if (ret == 0) { 1969 /* 1970 * Only if we're going to lock these pages, 1971 * can we find nothing at @index. 1972 */ 1973 ASSERT(page_ops & PAGE_LOCK); 1974 err = -EAGAIN; 1975 goto out; 1976 } 1977 1978 for (i = 0; i < ret; i++) { 1979 if (page_ops & PAGE_SET_PRIVATE2) 1980 SetPagePrivate2(pages[i]); 1981 1982 if (locked_page && pages[i] == locked_page) { 1983 put_page(pages[i]); 1984 pages_locked++; 1985 continue; 1986 } 1987 if (page_ops & PAGE_CLEAR_DIRTY) 1988 clear_page_dirty_for_io(pages[i]); 1989 if (page_ops & PAGE_SET_WRITEBACK) 1990 set_page_writeback(pages[i]); 1991 if (page_ops & PAGE_SET_ERROR) 1992 SetPageError(pages[i]); 1993 if (page_ops & PAGE_END_WRITEBACK) 1994 end_page_writeback(pages[i]); 1995 if (page_ops & PAGE_UNLOCK) 1996 unlock_page(pages[i]); 1997 if (page_ops & PAGE_LOCK) { 1998 lock_page(pages[i]); 1999 if (!PageDirty(pages[i]) || 2000 pages[i]->mapping != mapping) { 2001 unlock_page(pages[i]); 2002 put_page(pages[i]); 2003 err = -EAGAIN; 2004 goto out; 2005 } 2006 } 2007 put_page(pages[i]); 2008 pages_locked++; 2009 } 2010 nr_pages -= ret; 2011 index += ret; 2012 cond_resched(); 2013 } 2014 out: 2015 if (err && index_ret) 2016 *index_ret = start_index + pages_locked - 1; 2017 return err; 2018 } 2019 2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 2021 struct page *locked_page, 2022 unsigned clear_bits, 2023 unsigned long page_ops) 2024 { 2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 2026 NULL); 2027 2028 __process_pages_contig(inode->i_mapping, locked_page, 2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 2030 page_ops, NULL); 2031 } 2032 2033 /* 2034 * count the number of bytes in the tree that have a given bit(s) 2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2036 * cached. The total number found is returned. 2037 */ 2038 u64 count_range_bits(struct extent_io_tree *tree, 2039 u64 *start, u64 search_end, u64 max_bytes, 2040 unsigned bits, int contig) 2041 { 2042 struct rb_node *node; 2043 struct extent_state *state; 2044 u64 cur_start = *start; 2045 u64 total_bytes = 0; 2046 u64 last = 0; 2047 int found = 0; 2048 2049 if (WARN_ON(search_end <= cur_start)) 2050 return 0; 2051 2052 spin_lock(&tree->lock); 2053 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2054 total_bytes = tree->dirty_bytes; 2055 goto out; 2056 } 2057 /* 2058 * this search will find all the extents that end after 2059 * our range starts. 2060 */ 2061 node = tree_search(tree, cur_start); 2062 if (!node) 2063 goto out; 2064 2065 while (1) { 2066 state = rb_entry(node, struct extent_state, rb_node); 2067 if (state->start > search_end) 2068 break; 2069 if (contig && found && state->start > last + 1) 2070 break; 2071 if (state->end >= cur_start && (state->state & bits) == bits) { 2072 total_bytes += min(search_end, state->end) + 1 - 2073 max(cur_start, state->start); 2074 if (total_bytes >= max_bytes) 2075 break; 2076 if (!found) { 2077 *start = max(cur_start, state->start); 2078 found = 1; 2079 } 2080 last = state->end; 2081 } else if (contig && found) { 2082 break; 2083 } 2084 node = rb_next(node); 2085 if (!node) 2086 break; 2087 } 2088 out: 2089 spin_unlock(&tree->lock); 2090 return total_bytes; 2091 } 2092 2093 /* 2094 * set the private field for a given byte offset in the tree. If there isn't 2095 * an extent_state there already, this does nothing. 2096 */ 2097 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2098 struct io_failure_record *failrec) 2099 { 2100 struct rb_node *node; 2101 struct extent_state *state; 2102 int ret = 0; 2103 2104 spin_lock(&tree->lock); 2105 /* 2106 * this search will find all the extents that end after 2107 * our range starts. 2108 */ 2109 node = tree_search(tree, start); 2110 if (!node) { 2111 ret = -ENOENT; 2112 goto out; 2113 } 2114 state = rb_entry(node, struct extent_state, rb_node); 2115 if (state->start != start) { 2116 ret = -ENOENT; 2117 goto out; 2118 } 2119 state->failrec = failrec; 2120 out: 2121 spin_unlock(&tree->lock); 2122 return ret; 2123 } 2124 2125 int get_state_failrec(struct extent_io_tree *tree, u64 start, 2126 struct io_failure_record **failrec) 2127 { 2128 struct rb_node *node; 2129 struct extent_state *state; 2130 int ret = 0; 2131 2132 spin_lock(&tree->lock); 2133 /* 2134 * this search will find all the extents that end after 2135 * our range starts. 2136 */ 2137 node = tree_search(tree, start); 2138 if (!node) { 2139 ret = -ENOENT; 2140 goto out; 2141 } 2142 state = rb_entry(node, struct extent_state, rb_node); 2143 if (state->start != start) { 2144 ret = -ENOENT; 2145 goto out; 2146 } 2147 *failrec = state->failrec; 2148 out: 2149 spin_unlock(&tree->lock); 2150 return ret; 2151 } 2152 2153 /* 2154 * searches a range in the state tree for a given mask. 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree 2156 * has the bits set. Otherwise, 1 is returned if any bit in the 2157 * range is found set. 2158 */ 2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2160 unsigned bits, int filled, struct extent_state *cached) 2161 { 2162 struct extent_state *state = NULL; 2163 struct rb_node *node; 2164 int bitset = 0; 2165 2166 spin_lock(&tree->lock); 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2168 cached->end > start) 2169 node = &cached->rb_node; 2170 else 2171 node = tree_search(tree, start); 2172 while (node && start <= end) { 2173 state = rb_entry(node, struct extent_state, rb_node); 2174 2175 if (filled && state->start > start) { 2176 bitset = 0; 2177 break; 2178 } 2179 2180 if (state->start > end) 2181 break; 2182 2183 if (state->state & bits) { 2184 bitset = 1; 2185 if (!filled) 2186 break; 2187 } else if (filled) { 2188 bitset = 0; 2189 break; 2190 } 2191 2192 if (state->end == (u64)-1) 2193 break; 2194 2195 start = state->end + 1; 2196 if (start > end) 2197 break; 2198 node = rb_next(node); 2199 if (!node) { 2200 if (filled) 2201 bitset = 0; 2202 break; 2203 } 2204 } 2205 spin_unlock(&tree->lock); 2206 return bitset; 2207 } 2208 2209 /* 2210 * helper function to set a given page up to date if all the 2211 * extents in the tree for that page are up to date 2212 */ 2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 2214 { 2215 u64 start = page_offset(page); 2216 u64 end = start + PAGE_SIZE - 1; 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 2218 SetPageUptodate(page); 2219 } 2220 2221 int free_io_failure(struct extent_io_tree *failure_tree, 2222 struct extent_io_tree *io_tree, 2223 struct io_failure_record *rec) 2224 { 2225 int ret; 2226 int err = 0; 2227 2228 set_state_failrec(failure_tree, rec->start, NULL); 2229 ret = clear_extent_bits(failure_tree, rec->start, 2230 rec->start + rec->len - 1, 2231 EXTENT_LOCKED | EXTENT_DIRTY); 2232 if (ret) 2233 err = ret; 2234 2235 ret = clear_extent_bits(io_tree, rec->start, 2236 rec->start + rec->len - 1, 2237 EXTENT_DAMAGED); 2238 if (ret && !err) 2239 err = ret; 2240 2241 kfree(rec); 2242 return err; 2243 } 2244 2245 /* 2246 * this bypasses the standard btrfs submit functions deliberately, as 2247 * the standard behavior is to write all copies in a raid setup. here we only 2248 * want to write the one bad copy. so we do the mapping for ourselves and issue 2249 * submit_bio directly. 2250 * to avoid any synchronization issues, wait for the data after writing, which 2251 * actually prevents the read that triggered the error from finishing. 2252 * currently, there can be no more than two copies of every data bit. thus, 2253 * exactly one rewrite is required. 2254 */ 2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2256 u64 length, u64 logical, struct page *page, 2257 unsigned int pg_offset, int mirror_num) 2258 { 2259 struct bio *bio; 2260 struct btrfs_device *dev; 2261 u64 map_length = 0; 2262 u64 sector; 2263 struct btrfs_bio *bbio = NULL; 2264 int ret; 2265 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2267 BUG_ON(!mirror_num); 2268 2269 bio = btrfs_io_bio_alloc(1); 2270 bio->bi_iter.bi_size = 0; 2271 map_length = length; 2272 2273 /* 2274 * Avoid races with device replace and make sure our bbio has devices 2275 * associated to its stripes that don't go away while we are doing the 2276 * read repair operation. 2277 */ 2278 btrfs_bio_counter_inc_blocked(fs_info); 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2280 /* 2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2282 * to update all raid stripes, but here we just want to correct 2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2284 * stripe's dev and sector. 2285 */ 2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2287 &map_length, &bbio, 0); 2288 if (ret) { 2289 btrfs_bio_counter_dec(fs_info); 2290 bio_put(bio); 2291 return -EIO; 2292 } 2293 ASSERT(bbio->mirror_num == 1); 2294 } else { 2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2296 &map_length, &bbio, mirror_num); 2297 if (ret) { 2298 btrfs_bio_counter_dec(fs_info); 2299 bio_put(bio); 2300 return -EIO; 2301 } 2302 BUG_ON(mirror_num != bbio->mirror_num); 2303 } 2304 2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2306 bio->bi_iter.bi_sector = sector; 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2308 btrfs_put_bbio(bbio); 2309 if (!dev || !dev->bdev || 2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2311 btrfs_bio_counter_dec(fs_info); 2312 bio_put(bio); 2313 return -EIO; 2314 } 2315 bio_set_dev(bio, dev->bdev); 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2317 bio_add_page(bio, page, length, pg_offset); 2318 2319 if (btrfsic_submit_bio_wait(bio)) { 2320 /* try to remap that extent elsewhere? */ 2321 btrfs_bio_counter_dec(fs_info); 2322 bio_put(bio); 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2324 return -EIO; 2325 } 2326 2327 btrfs_info_rl_in_rcu(fs_info, 2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2329 ino, start, 2330 rcu_str_deref(dev->name), sector); 2331 btrfs_bio_counter_dec(fs_info); 2332 bio_put(bio); 2333 return 0; 2334 } 2335 2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2337 { 2338 struct btrfs_fs_info *fs_info = eb->fs_info; 2339 u64 start = eb->start; 2340 int i, num_pages = num_extent_pages(eb); 2341 int ret = 0; 2342 2343 if (sb_rdonly(fs_info->sb)) 2344 return -EROFS; 2345 2346 for (i = 0; i < num_pages; i++) { 2347 struct page *p = eb->pages[i]; 2348 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2350 start - page_offset(p), mirror_num); 2351 if (ret) 2352 break; 2353 start += PAGE_SIZE; 2354 } 2355 2356 return ret; 2357 } 2358 2359 /* 2360 * each time an IO finishes, we do a fast check in the IO failure tree 2361 * to see if we need to process or clean up an io_failure_record 2362 */ 2363 int clean_io_failure(struct btrfs_fs_info *fs_info, 2364 struct extent_io_tree *failure_tree, 2365 struct extent_io_tree *io_tree, u64 start, 2366 struct page *page, u64 ino, unsigned int pg_offset) 2367 { 2368 u64 private; 2369 struct io_failure_record *failrec; 2370 struct extent_state *state; 2371 int num_copies; 2372 int ret; 2373 2374 private = 0; 2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2376 EXTENT_DIRTY, 0); 2377 if (!ret) 2378 return 0; 2379 2380 ret = get_state_failrec(failure_tree, start, &failrec); 2381 if (ret) 2382 return 0; 2383 2384 BUG_ON(!failrec->this_mirror); 2385 2386 if (failrec->in_validation) { 2387 /* there was no real error, just free the record */ 2388 btrfs_debug(fs_info, 2389 "clean_io_failure: freeing dummy error at %llu", 2390 failrec->start); 2391 goto out; 2392 } 2393 if (sb_rdonly(fs_info->sb)) 2394 goto out; 2395 2396 spin_lock(&io_tree->lock); 2397 state = find_first_extent_bit_state(io_tree, 2398 failrec->start, 2399 EXTENT_LOCKED); 2400 spin_unlock(&io_tree->lock); 2401 2402 if (state && state->start <= failrec->start && 2403 state->end >= failrec->start + failrec->len - 1) { 2404 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2405 failrec->len); 2406 if (num_copies > 1) { 2407 repair_io_failure(fs_info, ino, start, failrec->len, 2408 failrec->logical, page, pg_offset, 2409 failrec->failed_mirror); 2410 } 2411 } 2412 2413 out: 2414 free_io_failure(failure_tree, io_tree, failrec); 2415 2416 return 0; 2417 } 2418 2419 /* 2420 * Can be called when 2421 * - hold extent lock 2422 * - under ordered extent 2423 * - the inode is freeing 2424 */ 2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2426 { 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2428 struct io_failure_record *failrec; 2429 struct extent_state *state, *next; 2430 2431 if (RB_EMPTY_ROOT(&failure_tree->state)) 2432 return; 2433 2434 spin_lock(&failure_tree->lock); 2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2436 while (state) { 2437 if (state->start > end) 2438 break; 2439 2440 ASSERT(state->end <= end); 2441 2442 next = next_state(state); 2443 2444 failrec = state->failrec; 2445 free_extent_state(state); 2446 kfree(failrec); 2447 2448 state = next; 2449 } 2450 spin_unlock(&failure_tree->lock); 2451 } 2452 2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2454 struct io_failure_record **failrec_ret) 2455 { 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2457 struct io_failure_record *failrec; 2458 struct extent_map *em; 2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2462 int ret; 2463 u64 logical; 2464 2465 ret = get_state_failrec(failure_tree, start, &failrec); 2466 if (ret) { 2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2468 if (!failrec) 2469 return -ENOMEM; 2470 2471 failrec->start = start; 2472 failrec->len = end - start + 1; 2473 failrec->this_mirror = 0; 2474 failrec->bio_flags = 0; 2475 failrec->in_validation = 0; 2476 2477 read_lock(&em_tree->lock); 2478 em = lookup_extent_mapping(em_tree, start, failrec->len); 2479 if (!em) { 2480 read_unlock(&em_tree->lock); 2481 kfree(failrec); 2482 return -EIO; 2483 } 2484 2485 if (em->start > start || em->start + em->len <= start) { 2486 free_extent_map(em); 2487 em = NULL; 2488 } 2489 read_unlock(&em_tree->lock); 2490 if (!em) { 2491 kfree(failrec); 2492 return -EIO; 2493 } 2494 2495 logical = start - em->start; 2496 logical = em->block_start + logical; 2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2498 logical = em->block_start; 2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2500 extent_set_compress_type(&failrec->bio_flags, 2501 em->compress_type); 2502 } 2503 2504 btrfs_debug(fs_info, 2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2506 logical, start, failrec->len); 2507 2508 failrec->logical = logical; 2509 free_extent_map(em); 2510 2511 /* set the bits in the private failure tree */ 2512 ret = set_extent_bits(failure_tree, start, end, 2513 EXTENT_LOCKED | EXTENT_DIRTY); 2514 if (ret >= 0) 2515 ret = set_state_failrec(failure_tree, start, failrec); 2516 /* set the bits in the inode's tree */ 2517 if (ret >= 0) 2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2519 if (ret < 0) { 2520 kfree(failrec); 2521 return ret; 2522 } 2523 } else { 2524 btrfs_debug(fs_info, 2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2526 failrec->logical, failrec->start, failrec->len, 2527 failrec->in_validation); 2528 /* 2529 * when data can be on disk more than twice, add to failrec here 2530 * (e.g. with a list for failed_mirror) to make 2531 * clean_io_failure() clean all those errors at once. 2532 */ 2533 } 2534 2535 *failrec_ret = failrec; 2536 2537 return 0; 2538 } 2539 2540 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation, 2541 struct io_failure_record *failrec, 2542 int failed_mirror) 2543 { 2544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2545 int num_copies; 2546 2547 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2548 if (num_copies == 1) { 2549 /* 2550 * we only have a single copy of the data, so don't bother with 2551 * all the retry and error correction code that follows. no 2552 * matter what the error is, it is very likely to persist. 2553 */ 2554 btrfs_debug(fs_info, 2555 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2556 num_copies, failrec->this_mirror, failed_mirror); 2557 return false; 2558 } 2559 2560 /* 2561 * there are two premises: 2562 * a) deliver good data to the caller 2563 * b) correct the bad sectors on disk 2564 */ 2565 if (needs_validation) { 2566 /* 2567 * to fulfill b), we need to know the exact failing sectors, as 2568 * we don't want to rewrite any more than the failed ones. thus, 2569 * we need separate read requests for the failed bio 2570 * 2571 * if the following BUG_ON triggers, our validation request got 2572 * merged. we need separate requests for our algorithm to work. 2573 */ 2574 BUG_ON(failrec->in_validation); 2575 failrec->in_validation = 1; 2576 failrec->this_mirror = failed_mirror; 2577 } else { 2578 /* 2579 * we're ready to fulfill a) and b) alongside. get a good copy 2580 * of the failed sector and if we succeed, we have setup 2581 * everything for repair_io_failure to do the rest for us. 2582 */ 2583 if (failrec->in_validation) { 2584 BUG_ON(failrec->this_mirror != failed_mirror); 2585 failrec->in_validation = 0; 2586 failrec->this_mirror = 0; 2587 } 2588 failrec->failed_mirror = failed_mirror; 2589 failrec->this_mirror++; 2590 if (failrec->this_mirror == failed_mirror) 2591 failrec->this_mirror++; 2592 } 2593 2594 if (failrec->this_mirror > num_copies) { 2595 btrfs_debug(fs_info, 2596 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2597 num_copies, failrec->this_mirror, failed_mirror); 2598 return false; 2599 } 2600 2601 return true; 2602 } 2603 2604 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio) 2605 { 2606 u64 len = 0; 2607 const u32 blocksize = inode->i_sb->s_blocksize; 2608 2609 /* 2610 * If bi_status is BLK_STS_OK, then this was a checksum error, not an 2611 * I/O error. In this case, we already know exactly which sector was 2612 * bad, so we don't need to validate. 2613 */ 2614 if (bio->bi_status == BLK_STS_OK) 2615 return false; 2616 2617 /* 2618 * We need to validate each sector individually if the failed I/O was 2619 * for multiple sectors. 2620 * 2621 * There are a few possible bios that can end up here: 2622 * 1. A buffered read bio, which is not cloned. 2623 * 2. A direct I/O read bio, which is cloned. 2624 * 3. A (buffered or direct) repair bio, which is not cloned. 2625 * 2626 * For cloned bios (case 2), we can get the size from 2627 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get 2628 * it from the bvecs. 2629 */ 2630 if (bio_flagged(bio, BIO_CLONED)) { 2631 if (btrfs_io_bio(bio)->iter.bi_size > blocksize) 2632 return true; 2633 } else { 2634 struct bio_vec *bvec; 2635 int i; 2636 2637 bio_for_each_bvec_all(bvec, bio, i) { 2638 len += bvec->bv_len; 2639 if (len > blocksize) 2640 return true; 2641 } 2642 } 2643 return false; 2644 } 2645 2646 blk_status_t btrfs_submit_read_repair(struct inode *inode, 2647 struct bio *failed_bio, u64 phy_offset, 2648 struct page *page, unsigned int pgoff, 2649 u64 start, u64 end, int failed_mirror, 2650 submit_bio_hook_t *submit_bio_hook) 2651 { 2652 struct io_failure_record *failrec; 2653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2654 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2656 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio); 2657 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits; 2658 bool need_validation; 2659 struct bio *repair_bio; 2660 struct btrfs_io_bio *repair_io_bio; 2661 blk_status_t status; 2662 int ret; 2663 2664 btrfs_debug(fs_info, 2665 "repair read error: read error at %llu", start); 2666 2667 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2668 2669 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2670 if (ret) 2671 return errno_to_blk_status(ret); 2672 2673 need_validation = btrfs_io_needs_validation(inode, failed_bio); 2674 2675 if (!btrfs_check_repairable(inode, need_validation, failrec, 2676 failed_mirror)) { 2677 free_io_failure(failure_tree, tree, failrec); 2678 return BLK_STS_IOERR; 2679 } 2680 2681 repair_bio = btrfs_io_bio_alloc(1); 2682 repair_io_bio = btrfs_io_bio(repair_bio); 2683 repair_bio->bi_opf = REQ_OP_READ; 2684 if (need_validation) 2685 repair_bio->bi_opf |= REQ_FAILFAST_DEV; 2686 repair_bio->bi_end_io = failed_bio->bi_end_io; 2687 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2688 repair_bio->bi_private = failed_bio->bi_private; 2689 2690 if (failed_io_bio->csum) { 2691 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2692 2693 repair_io_bio->csum = repair_io_bio->csum_inline; 2694 memcpy(repair_io_bio->csum, 2695 failed_io_bio->csum + csum_size * icsum, csum_size); 2696 } 2697 2698 bio_add_page(repair_bio, page, failrec->len, pgoff); 2699 repair_io_bio->logical = failrec->start; 2700 repair_io_bio->iter = repair_bio->bi_iter; 2701 2702 btrfs_debug(btrfs_sb(inode->i_sb), 2703 "repair read error: submitting new read to mirror %d, in_validation=%d", 2704 failrec->this_mirror, failrec->in_validation); 2705 2706 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2707 failrec->bio_flags); 2708 if (status) { 2709 free_io_failure(failure_tree, tree, failrec); 2710 bio_put(repair_bio); 2711 } 2712 return status; 2713 } 2714 2715 /* lots and lots of room for performance fixes in the end_bio funcs */ 2716 2717 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2718 { 2719 int uptodate = (err == 0); 2720 int ret = 0; 2721 2722 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2723 2724 if (!uptodate) { 2725 ClearPageUptodate(page); 2726 SetPageError(page); 2727 ret = err < 0 ? err : -EIO; 2728 mapping_set_error(page->mapping, ret); 2729 } 2730 } 2731 2732 /* 2733 * after a writepage IO is done, we need to: 2734 * clear the uptodate bits on error 2735 * clear the writeback bits in the extent tree for this IO 2736 * end_page_writeback if the page has no more pending IO 2737 * 2738 * Scheduling is not allowed, so the extent state tree is expected 2739 * to have one and only one object corresponding to this IO. 2740 */ 2741 static void end_bio_extent_writepage(struct bio *bio) 2742 { 2743 int error = blk_status_to_errno(bio->bi_status); 2744 struct bio_vec *bvec; 2745 u64 start; 2746 u64 end; 2747 struct bvec_iter_all iter_all; 2748 2749 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2750 bio_for_each_segment_all(bvec, bio, iter_all) { 2751 struct page *page = bvec->bv_page; 2752 struct inode *inode = page->mapping->host; 2753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2754 2755 /* We always issue full-page reads, but if some block 2756 * in a page fails to read, blk_update_request() will 2757 * advance bv_offset and adjust bv_len to compensate. 2758 * Print a warning for nonzero offsets, and an error 2759 * if they don't add up to a full page. */ 2760 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2761 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2762 btrfs_err(fs_info, 2763 "partial page write in btrfs with offset %u and length %u", 2764 bvec->bv_offset, bvec->bv_len); 2765 else 2766 btrfs_info(fs_info, 2767 "incomplete page write in btrfs with offset %u and length %u", 2768 bvec->bv_offset, bvec->bv_len); 2769 } 2770 2771 start = page_offset(page); 2772 end = start + bvec->bv_offset + bvec->bv_len - 1; 2773 2774 end_extent_writepage(page, error, start, end); 2775 end_page_writeback(page); 2776 } 2777 2778 bio_put(bio); 2779 } 2780 2781 static void 2782 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2783 int uptodate) 2784 { 2785 struct extent_state *cached = NULL; 2786 u64 end = start + len - 1; 2787 2788 if (uptodate && tree->track_uptodate) 2789 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2790 unlock_extent_cached_atomic(tree, start, end, &cached); 2791 } 2792 2793 /* 2794 * after a readpage IO is done, we need to: 2795 * clear the uptodate bits on error 2796 * set the uptodate bits if things worked 2797 * set the page up to date if all extents in the tree are uptodate 2798 * clear the lock bit in the extent tree 2799 * unlock the page if there are no other extents locked for it 2800 * 2801 * Scheduling is not allowed, so the extent state tree is expected 2802 * to have one and only one object corresponding to this IO. 2803 */ 2804 static void end_bio_extent_readpage(struct bio *bio) 2805 { 2806 struct bio_vec *bvec; 2807 int uptodate = !bio->bi_status; 2808 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2809 struct extent_io_tree *tree, *failure_tree; 2810 u64 offset = 0; 2811 u64 start; 2812 u64 end; 2813 u64 len; 2814 u64 extent_start = 0; 2815 u64 extent_len = 0; 2816 int mirror; 2817 int ret; 2818 struct bvec_iter_all iter_all; 2819 2820 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2821 bio_for_each_segment_all(bvec, bio, iter_all) { 2822 struct page *page = bvec->bv_page; 2823 struct inode *inode = page->mapping->host; 2824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2825 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2826 != BTRFS_BTREE_INODE_OBJECTID; 2827 2828 btrfs_debug(fs_info, 2829 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2830 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2831 io_bio->mirror_num); 2832 tree = &BTRFS_I(inode)->io_tree; 2833 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2834 2835 /* We always issue full-page reads, but if some block 2836 * in a page fails to read, blk_update_request() will 2837 * advance bv_offset and adjust bv_len to compensate. 2838 * Print a warning for nonzero offsets, and an error 2839 * if they don't add up to a full page. */ 2840 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2841 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2842 btrfs_err(fs_info, 2843 "partial page read in btrfs with offset %u and length %u", 2844 bvec->bv_offset, bvec->bv_len); 2845 else 2846 btrfs_info(fs_info, 2847 "incomplete page read in btrfs with offset %u and length %u", 2848 bvec->bv_offset, bvec->bv_len); 2849 } 2850 2851 start = page_offset(page); 2852 end = start + bvec->bv_offset + bvec->bv_len - 1; 2853 len = bvec->bv_len; 2854 2855 mirror = io_bio->mirror_num; 2856 if (likely(uptodate)) { 2857 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2858 page, start, end, 2859 mirror); 2860 if (ret) 2861 uptodate = 0; 2862 else 2863 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2864 failure_tree, tree, start, 2865 page, 2866 btrfs_ino(BTRFS_I(inode)), 0); 2867 } 2868 2869 if (likely(uptodate)) 2870 goto readpage_ok; 2871 2872 if (data_inode) { 2873 2874 /* 2875 * The generic bio_readpage_error handles errors the 2876 * following way: If possible, new read requests are 2877 * created and submitted and will end up in 2878 * end_bio_extent_readpage as well (if we're lucky, 2879 * not in the !uptodate case). In that case it returns 2880 * 0 and we just go on with the next page in our bio. 2881 * If it can't handle the error it will return -EIO and 2882 * we remain responsible for that page. 2883 */ 2884 if (!btrfs_submit_read_repair(inode, bio, offset, page, 2885 start - page_offset(page), 2886 start, end, mirror, 2887 tree->ops->submit_bio_hook)) { 2888 uptodate = !bio->bi_status; 2889 offset += len; 2890 continue; 2891 } 2892 } else { 2893 struct extent_buffer *eb; 2894 2895 eb = (struct extent_buffer *)page->private; 2896 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2897 eb->read_mirror = mirror; 2898 atomic_dec(&eb->io_pages); 2899 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2900 &eb->bflags)) 2901 btree_readahead_hook(eb, -EIO); 2902 } 2903 readpage_ok: 2904 if (likely(uptodate)) { 2905 loff_t i_size = i_size_read(inode); 2906 pgoff_t end_index = i_size >> PAGE_SHIFT; 2907 unsigned off; 2908 2909 /* Zero out the end if this page straddles i_size */ 2910 off = offset_in_page(i_size); 2911 if (page->index == end_index && off) 2912 zero_user_segment(page, off, PAGE_SIZE); 2913 SetPageUptodate(page); 2914 } else { 2915 ClearPageUptodate(page); 2916 SetPageError(page); 2917 } 2918 unlock_page(page); 2919 offset += len; 2920 2921 if (unlikely(!uptodate)) { 2922 if (extent_len) { 2923 endio_readpage_release_extent(tree, 2924 extent_start, 2925 extent_len, 1); 2926 extent_start = 0; 2927 extent_len = 0; 2928 } 2929 endio_readpage_release_extent(tree, start, 2930 end - start + 1, 0); 2931 } else if (!extent_len) { 2932 extent_start = start; 2933 extent_len = end + 1 - start; 2934 } else if (extent_start + extent_len == start) { 2935 extent_len += end + 1 - start; 2936 } else { 2937 endio_readpage_release_extent(tree, extent_start, 2938 extent_len, uptodate); 2939 extent_start = start; 2940 extent_len = end + 1 - start; 2941 } 2942 } 2943 2944 if (extent_len) 2945 endio_readpage_release_extent(tree, extent_start, extent_len, 2946 uptodate); 2947 btrfs_io_bio_free_csum(io_bio); 2948 bio_put(bio); 2949 } 2950 2951 /* 2952 * Initialize the members up to but not including 'bio'. Use after allocating a 2953 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2954 * 'bio' because use of __GFP_ZERO is not supported. 2955 */ 2956 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2957 { 2958 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2959 } 2960 2961 /* 2962 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2963 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2964 * for the appropriate container_of magic 2965 */ 2966 struct bio *btrfs_bio_alloc(u64 first_byte) 2967 { 2968 struct bio *bio; 2969 2970 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2971 bio->bi_iter.bi_sector = first_byte >> 9; 2972 btrfs_io_bio_init(btrfs_io_bio(bio)); 2973 return bio; 2974 } 2975 2976 struct bio *btrfs_bio_clone(struct bio *bio) 2977 { 2978 struct btrfs_io_bio *btrfs_bio; 2979 struct bio *new; 2980 2981 /* Bio allocation backed by a bioset does not fail */ 2982 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2983 btrfs_bio = btrfs_io_bio(new); 2984 btrfs_io_bio_init(btrfs_bio); 2985 btrfs_bio->iter = bio->bi_iter; 2986 return new; 2987 } 2988 2989 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2990 { 2991 struct bio *bio; 2992 2993 /* Bio allocation backed by a bioset does not fail */ 2994 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2995 btrfs_io_bio_init(btrfs_io_bio(bio)); 2996 return bio; 2997 } 2998 2999 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 3000 { 3001 struct bio *bio; 3002 struct btrfs_io_bio *btrfs_bio; 3003 3004 /* this will never fail when it's backed by a bioset */ 3005 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3006 ASSERT(bio); 3007 3008 btrfs_bio = btrfs_io_bio(bio); 3009 btrfs_io_bio_init(btrfs_bio); 3010 3011 bio_trim(bio, offset >> 9, size >> 9); 3012 btrfs_bio->iter = bio->bi_iter; 3013 return bio; 3014 } 3015 3016 /* 3017 * @opf: bio REQ_OP_* and REQ_* flags as one value 3018 * @wbc: optional writeback control for io accounting 3019 * @page: page to add to the bio 3020 * @pg_offset: offset of the new bio or to check whether we are adding 3021 * a contiguous page to the previous one 3022 * @size: portion of page that we want to write 3023 * @offset: starting offset in the page 3024 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3025 * @end_io_func: end_io callback for new bio 3026 * @mirror_num: desired mirror to read/write 3027 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3028 * @bio_flags: flags of the current bio to see if we can merge them 3029 */ 3030 static int submit_extent_page(unsigned int opf, 3031 struct writeback_control *wbc, 3032 struct page *page, u64 offset, 3033 size_t size, unsigned long pg_offset, 3034 struct bio **bio_ret, 3035 bio_end_io_t end_io_func, 3036 int mirror_num, 3037 unsigned long prev_bio_flags, 3038 unsigned long bio_flags, 3039 bool force_bio_submit) 3040 { 3041 int ret = 0; 3042 struct bio *bio; 3043 size_t page_size = min_t(size_t, size, PAGE_SIZE); 3044 sector_t sector = offset >> 9; 3045 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree; 3046 3047 ASSERT(bio_ret); 3048 3049 if (*bio_ret) { 3050 bool contig; 3051 bool can_merge = true; 3052 3053 bio = *bio_ret; 3054 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 3055 contig = bio->bi_iter.bi_sector == sector; 3056 else 3057 contig = bio_end_sector(bio) == sector; 3058 3059 ASSERT(tree->ops); 3060 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 3061 can_merge = false; 3062 3063 if (prev_bio_flags != bio_flags || !contig || !can_merge || 3064 force_bio_submit || 3065 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 3066 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 3067 if (ret < 0) { 3068 *bio_ret = NULL; 3069 return ret; 3070 } 3071 bio = NULL; 3072 } else { 3073 if (wbc) 3074 wbc_account_cgroup_owner(wbc, page, page_size); 3075 return 0; 3076 } 3077 } 3078 3079 bio = btrfs_bio_alloc(offset); 3080 bio_add_page(bio, page, page_size, pg_offset); 3081 bio->bi_end_io = end_io_func; 3082 bio->bi_private = tree; 3083 bio->bi_write_hint = page->mapping->host->i_write_hint; 3084 bio->bi_opf = opf; 3085 if (wbc) { 3086 struct block_device *bdev; 3087 3088 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev; 3089 bio_set_dev(bio, bdev); 3090 wbc_init_bio(wbc, bio); 3091 wbc_account_cgroup_owner(wbc, page, page_size); 3092 } 3093 3094 *bio_ret = bio; 3095 3096 return ret; 3097 } 3098 3099 static void attach_extent_buffer_page(struct extent_buffer *eb, 3100 struct page *page) 3101 { 3102 if (!PagePrivate(page)) 3103 attach_page_private(page, eb); 3104 else 3105 WARN_ON(page->private != (unsigned long)eb); 3106 } 3107 3108 void set_page_extent_mapped(struct page *page) 3109 { 3110 if (!PagePrivate(page)) 3111 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3112 } 3113 3114 static struct extent_map * 3115 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3116 u64 start, u64 len, get_extent_t *get_extent, 3117 struct extent_map **em_cached) 3118 { 3119 struct extent_map *em; 3120 3121 if (em_cached && *em_cached) { 3122 em = *em_cached; 3123 if (extent_map_in_tree(em) && start >= em->start && 3124 start < extent_map_end(em)) { 3125 refcount_inc(&em->refs); 3126 return em; 3127 } 3128 3129 free_extent_map(em); 3130 *em_cached = NULL; 3131 } 3132 3133 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3134 if (em_cached && !IS_ERR_OR_NULL(em)) { 3135 BUG_ON(*em_cached); 3136 refcount_inc(&em->refs); 3137 *em_cached = em; 3138 } 3139 return em; 3140 } 3141 /* 3142 * basic readpage implementation. Locked extent state structs are inserted 3143 * into the tree that are removed when the IO is done (by the end_io 3144 * handlers) 3145 * XXX JDM: This needs looking at to ensure proper page locking 3146 * return 0 on success, otherwise return error 3147 */ 3148 static int __do_readpage(struct page *page, 3149 get_extent_t *get_extent, 3150 struct extent_map **em_cached, 3151 struct bio **bio, int mirror_num, 3152 unsigned long *bio_flags, unsigned int read_flags, 3153 u64 *prev_em_start) 3154 { 3155 struct inode *inode = page->mapping->host; 3156 u64 start = page_offset(page); 3157 const u64 end = start + PAGE_SIZE - 1; 3158 u64 cur = start; 3159 u64 extent_offset; 3160 u64 last_byte = i_size_read(inode); 3161 u64 block_start; 3162 u64 cur_end; 3163 struct extent_map *em; 3164 int ret = 0; 3165 int nr = 0; 3166 size_t pg_offset = 0; 3167 size_t iosize; 3168 size_t disk_io_size; 3169 size_t blocksize = inode->i_sb->s_blocksize; 3170 unsigned long this_bio_flag = 0; 3171 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3172 3173 set_page_extent_mapped(page); 3174 3175 if (!PageUptodate(page)) { 3176 if (cleancache_get_page(page) == 0) { 3177 BUG_ON(blocksize != PAGE_SIZE); 3178 unlock_extent(tree, start, end); 3179 goto out; 3180 } 3181 } 3182 3183 if (page->index == last_byte >> PAGE_SHIFT) { 3184 char *userpage; 3185 size_t zero_offset = offset_in_page(last_byte); 3186 3187 if (zero_offset) { 3188 iosize = PAGE_SIZE - zero_offset; 3189 userpage = kmap_atomic(page); 3190 memset(userpage + zero_offset, 0, iosize); 3191 flush_dcache_page(page); 3192 kunmap_atomic(userpage); 3193 } 3194 } 3195 while (cur <= end) { 3196 bool force_bio_submit = false; 3197 u64 offset; 3198 3199 if (cur >= last_byte) { 3200 char *userpage; 3201 struct extent_state *cached = NULL; 3202 3203 iosize = PAGE_SIZE - pg_offset; 3204 userpage = kmap_atomic(page); 3205 memset(userpage + pg_offset, 0, iosize); 3206 flush_dcache_page(page); 3207 kunmap_atomic(userpage); 3208 set_extent_uptodate(tree, cur, cur + iosize - 1, 3209 &cached, GFP_NOFS); 3210 unlock_extent_cached(tree, cur, 3211 cur + iosize - 1, &cached); 3212 break; 3213 } 3214 em = __get_extent_map(inode, page, pg_offset, cur, 3215 end - cur + 1, get_extent, em_cached); 3216 if (IS_ERR_OR_NULL(em)) { 3217 SetPageError(page); 3218 unlock_extent(tree, cur, end); 3219 break; 3220 } 3221 extent_offset = cur - em->start; 3222 BUG_ON(extent_map_end(em) <= cur); 3223 BUG_ON(end < cur); 3224 3225 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3226 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3227 extent_set_compress_type(&this_bio_flag, 3228 em->compress_type); 3229 } 3230 3231 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3232 cur_end = min(extent_map_end(em) - 1, end); 3233 iosize = ALIGN(iosize, blocksize); 3234 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 3235 disk_io_size = em->block_len; 3236 offset = em->block_start; 3237 } else { 3238 offset = em->block_start + extent_offset; 3239 disk_io_size = iosize; 3240 } 3241 block_start = em->block_start; 3242 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3243 block_start = EXTENT_MAP_HOLE; 3244 3245 /* 3246 * If we have a file range that points to a compressed extent 3247 * and it's followed by a consecutive file range that points to 3248 * to the same compressed extent (possibly with a different 3249 * offset and/or length, so it either points to the whole extent 3250 * or only part of it), we must make sure we do not submit a 3251 * single bio to populate the pages for the 2 ranges because 3252 * this makes the compressed extent read zero out the pages 3253 * belonging to the 2nd range. Imagine the following scenario: 3254 * 3255 * File layout 3256 * [0 - 8K] [8K - 24K] 3257 * | | 3258 * | | 3259 * points to extent X, points to extent X, 3260 * offset 4K, length of 8K offset 0, length 16K 3261 * 3262 * [extent X, compressed length = 4K uncompressed length = 16K] 3263 * 3264 * If the bio to read the compressed extent covers both ranges, 3265 * it will decompress extent X into the pages belonging to the 3266 * first range and then it will stop, zeroing out the remaining 3267 * pages that belong to the other range that points to extent X. 3268 * So here we make sure we submit 2 bios, one for the first 3269 * range and another one for the third range. Both will target 3270 * the same physical extent from disk, but we can't currently 3271 * make the compressed bio endio callback populate the pages 3272 * for both ranges because each compressed bio is tightly 3273 * coupled with a single extent map, and each range can have 3274 * an extent map with a different offset value relative to the 3275 * uncompressed data of our extent and different lengths. This 3276 * is a corner case so we prioritize correctness over 3277 * non-optimal behavior (submitting 2 bios for the same extent). 3278 */ 3279 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3280 prev_em_start && *prev_em_start != (u64)-1 && 3281 *prev_em_start != em->start) 3282 force_bio_submit = true; 3283 3284 if (prev_em_start) 3285 *prev_em_start = em->start; 3286 3287 free_extent_map(em); 3288 em = NULL; 3289 3290 /* we've found a hole, just zero and go on */ 3291 if (block_start == EXTENT_MAP_HOLE) { 3292 char *userpage; 3293 struct extent_state *cached = NULL; 3294 3295 userpage = kmap_atomic(page); 3296 memset(userpage + pg_offset, 0, iosize); 3297 flush_dcache_page(page); 3298 kunmap_atomic(userpage); 3299 3300 set_extent_uptodate(tree, cur, cur + iosize - 1, 3301 &cached, GFP_NOFS); 3302 unlock_extent_cached(tree, cur, 3303 cur + iosize - 1, &cached); 3304 cur = cur + iosize; 3305 pg_offset += iosize; 3306 continue; 3307 } 3308 /* the get_extent function already copied into the page */ 3309 if (test_range_bit(tree, cur, cur_end, 3310 EXTENT_UPTODATE, 1, NULL)) { 3311 check_page_uptodate(tree, page); 3312 unlock_extent(tree, cur, cur + iosize - 1); 3313 cur = cur + iosize; 3314 pg_offset += iosize; 3315 continue; 3316 } 3317 /* we have an inline extent but it didn't get marked up 3318 * to date. Error out 3319 */ 3320 if (block_start == EXTENT_MAP_INLINE) { 3321 SetPageError(page); 3322 unlock_extent(tree, cur, cur + iosize - 1); 3323 cur = cur + iosize; 3324 pg_offset += iosize; 3325 continue; 3326 } 3327 3328 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3329 page, offset, disk_io_size, 3330 pg_offset, bio, 3331 end_bio_extent_readpage, mirror_num, 3332 *bio_flags, 3333 this_bio_flag, 3334 force_bio_submit); 3335 if (!ret) { 3336 nr++; 3337 *bio_flags = this_bio_flag; 3338 } else { 3339 SetPageError(page); 3340 unlock_extent(tree, cur, cur + iosize - 1); 3341 goto out; 3342 } 3343 cur = cur + iosize; 3344 pg_offset += iosize; 3345 } 3346 out: 3347 if (!nr) { 3348 if (!PageError(page)) 3349 SetPageUptodate(page); 3350 unlock_page(page); 3351 } 3352 return ret; 3353 } 3354 3355 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3356 u64 start, u64 end, 3357 struct extent_map **em_cached, 3358 struct bio **bio, 3359 unsigned long *bio_flags, 3360 u64 *prev_em_start) 3361 { 3362 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3363 int index; 3364 3365 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3366 3367 for (index = 0; index < nr_pages; index++) { 3368 __do_readpage(pages[index], btrfs_get_extent, em_cached, 3369 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3370 put_page(pages[index]); 3371 } 3372 } 3373 3374 static int __extent_read_full_page(struct page *page, 3375 get_extent_t *get_extent, 3376 struct bio **bio, int mirror_num, 3377 unsigned long *bio_flags, 3378 unsigned int read_flags) 3379 { 3380 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3381 u64 start = page_offset(page); 3382 u64 end = start + PAGE_SIZE - 1; 3383 int ret; 3384 3385 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3386 3387 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num, 3388 bio_flags, read_flags, NULL); 3389 return ret; 3390 } 3391 3392 int extent_read_full_page(struct page *page, get_extent_t *get_extent, 3393 int mirror_num) 3394 { 3395 struct bio *bio = NULL; 3396 unsigned long bio_flags = 0; 3397 int ret; 3398 3399 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num, 3400 &bio_flags, 0); 3401 if (bio) 3402 ret = submit_one_bio(bio, mirror_num, bio_flags); 3403 return ret; 3404 } 3405 3406 static void update_nr_written(struct writeback_control *wbc, 3407 unsigned long nr_written) 3408 { 3409 wbc->nr_to_write -= nr_written; 3410 } 3411 3412 /* 3413 * helper for __extent_writepage, doing all of the delayed allocation setup. 3414 * 3415 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3416 * to write the page (copy into inline extent). In this case the IO has 3417 * been started and the page is already unlocked. 3418 * 3419 * This returns 0 if all went well (page still locked) 3420 * This returns < 0 if there were errors (page still locked) 3421 */ 3422 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3423 struct page *page, struct writeback_control *wbc, 3424 u64 delalloc_start, unsigned long *nr_written) 3425 { 3426 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3427 bool found; 3428 u64 delalloc_to_write = 0; 3429 u64 delalloc_end = 0; 3430 int ret; 3431 int page_started = 0; 3432 3433 3434 while (delalloc_end < page_end) { 3435 found = find_lock_delalloc_range(inode, page, 3436 &delalloc_start, 3437 &delalloc_end); 3438 if (!found) { 3439 delalloc_start = delalloc_end + 1; 3440 continue; 3441 } 3442 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3443 delalloc_end, &page_started, nr_written, wbc); 3444 if (ret) { 3445 SetPageError(page); 3446 /* 3447 * btrfs_run_delalloc_range should return < 0 for error 3448 * but just in case, we use > 0 here meaning the IO is 3449 * started, so we don't want to return > 0 unless 3450 * things are going well. 3451 */ 3452 ret = ret < 0 ? ret : -EIO; 3453 goto done; 3454 } 3455 /* 3456 * delalloc_end is already one less than the total length, so 3457 * we don't subtract one from PAGE_SIZE 3458 */ 3459 delalloc_to_write += (delalloc_end - delalloc_start + 3460 PAGE_SIZE) >> PAGE_SHIFT; 3461 delalloc_start = delalloc_end + 1; 3462 } 3463 if (wbc->nr_to_write < delalloc_to_write) { 3464 int thresh = 8192; 3465 3466 if (delalloc_to_write < thresh * 2) 3467 thresh = delalloc_to_write; 3468 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3469 thresh); 3470 } 3471 3472 /* did the fill delalloc function already unlock and start 3473 * the IO? 3474 */ 3475 if (page_started) { 3476 /* 3477 * we've unlocked the page, so we can't update 3478 * the mapping's writeback index, just update 3479 * nr_to_write. 3480 */ 3481 wbc->nr_to_write -= *nr_written; 3482 return 1; 3483 } 3484 3485 ret = 0; 3486 3487 done: 3488 return ret; 3489 } 3490 3491 /* 3492 * helper for __extent_writepage. This calls the writepage start hooks, 3493 * and does the loop to map the page into extents and bios. 3494 * 3495 * We return 1 if the IO is started and the page is unlocked, 3496 * 0 if all went well (page still locked) 3497 * < 0 if there were errors (page still locked) 3498 */ 3499 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3500 struct page *page, 3501 struct writeback_control *wbc, 3502 struct extent_page_data *epd, 3503 loff_t i_size, 3504 unsigned long nr_written, 3505 int *nr_ret) 3506 { 3507 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3508 u64 start = page_offset(page); 3509 u64 page_end = start + PAGE_SIZE - 1; 3510 u64 end; 3511 u64 cur = start; 3512 u64 extent_offset; 3513 u64 block_start; 3514 u64 iosize; 3515 struct extent_map *em; 3516 size_t pg_offset = 0; 3517 size_t blocksize; 3518 int ret = 0; 3519 int nr = 0; 3520 const unsigned int write_flags = wbc_to_write_flags(wbc); 3521 bool compressed; 3522 3523 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3524 if (ret) { 3525 /* Fixup worker will requeue */ 3526 redirty_page_for_writepage(wbc, page); 3527 update_nr_written(wbc, nr_written); 3528 unlock_page(page); 3529 return 1; 3530 } 3531 3532 /* 3533 * we don't want to touch the inode after unlocking the page, 3534 * so we update the mapping writeback index now 3535 */ 3536 update_nr_written(wbc, nr_written + 1); 3537 3538 end = page_end; 3539 blocksize = inode->i_sb->s_blocksize; 3540 3541 while (cur <= end) { 3542 u64 em_end; 3543 u64 offset; 3544 3545 if (cur >= i_size) { 3546 btrfs_writepage_endio_finish_ordered(page, cur, 3547 page_end, 1); 3548 break; 3549 } 3550 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur, 3551 end - cur + 1); 3552 if (IS_ERR_OR_NULL(em)) { 3553 SetPageError(page); 3554 ret = PTR_ERR_OR_ZERO(em); 3555 break; 3556 } 3557 3558 extent_offset = cur - em->start; 3559 em_end = extent_map_end(em); 3560 BUG_ON(em_end <= cur); 3561 BUG_ON(end < cur); 3562 iosize = min(em_end - cur, end - cur + 1); 3563 iosize = ALIGN(iosize, blocksize); 3564 offset = em->block_start + extent_offset; 3565 block_start = em->block_start; 3566 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3567 free_extent_map(em); 3568 em = NULL; 3569 3570 /* 3571 * compressed and inline extents are written through other 3572 * paths in the FS 3573 */ 3574 if (compressed || block_start == EXTENT_MAP_HOLE || 3575 block_start == EXTENT_MAP_INLINE) { 3576 if (compressed) 3577 nr++; 3578 else 3579 btrfs_writepage_endio_finish_ordered(page, cur, 3580 cur + iosize - 1, 1); 3581 cur += iosize; 3582 pg_offset += iosize; 3583 continue; 3584 } 3585 3586 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3587 if (!PageWriteback(page)) { 3588 btrfs_err(BTRFS_I(inode)->root->fs_info, 3589 "page %lu not writeback, cur %llu end %llu", 3590 page->index, cur, end); 3591 } 3592 3593 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3594 page, offset, iosize, pg_offset, 3595 &epd->bio, 3596 end_bio_extent_writepage, 3597 0, 0, 0, false); 3598 if (ret) { 3599 SetPageError(page); 3600 if (PageWriteback(page)) 3601 end_page_writeback(page); 3602 } 3603 3604 cur = cur + iosize; 3605 pg_offset += iosize; 3606 nr++; 3607 } 3608 *nr_ret = nr; 3609 return ret; 3610 } 3611 3612 /* 3613 * the writepage semantics are similar to regular writepage. extent 3614 * records are inserted to lock ranges in the tree, and as dirty areas 3615 * are found, they are marked writeback. Then the lock bits are removed 3616 * and the end_io handler clears the writeback ranges 3617 * 3618 * Return 0 if everything goes well. 3619 * Return <0 for error. 3620 */ 3621 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3622 struct extent_page_data *epd) 3623 { 3624 struct inode *inode = page->mapping->host; 3625 u64 start = page_offset(page); 3626 u64 page_end = start + PAGE_SIZE - 1; 3627 int ret; 3628 int nr = 0; 3629 size_t pg_offset; 3630 loff_t i_size = i_size_read(inode); 3631 unsigned long end_index = i_size >> PAGE_SHIFT; 3632 unsigned long nr_written = 0; 3633 3634 trace___extent_writepage(page, inode, wbc); 3635 3636 WARN_ON(!PageLocked(page)); 3637 3638 ClearPageError(page); 3639 3640 pg_offset = offset_in_page(i_size); 3641 if (page->index > end_index || 3642 (page->index == end_index && !pg_offset)) { 3643 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3644 unlock_page(page); 3645 return 0; 3646 } 3647 3648 if (page->index == end_index) { 3649 char *userpage; 3650 3651 userpage = kmap_atomic(page); 3652 memset(userpage + pg_offset, 0, 3653 PAGE_SIZE - pg_offset); 3654 kunmap_atomic(userpage); 3655 flush_dcache_page(page); 3656 } 3657 3658 set_page_extent_mapped(page); 3659 3660 if (!epd->extent_locked) { 3661 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3662 if (ret == 1) 3663 return 0; 3664 if (ret) 3665 goto done; 3666 } 3667 3668 ret = __extent_writepage_io(inode, page, wbc, epd, 3669 i_size, nr_written, &nr); 3670 if (ret == 1) 3671 return 0; 3672 3673 done: 3674 if (nr == 0) { 3675 /* make sure the mapping tag for page dirty gets cleared */ 3676 set_page_writeback(page); 3677 end_page_writeback(page); 3678 } 3679 if (PageError(page)) { 3680 ret = ret < 0 ? ret : -EIO; 3681 end_extent_writepage(page, ret, start, page_end); 3682 } 3683 unlock_page(page); 3684 ASSERT(ret <= 0); 3685 return ret; 3686 } 3687 3688 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3689 { 3690 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3691 TASK_UNINTERRUPTIBLE); 3692 } 3693 3694 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3695 { 3696 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3697 smp_mb__after_atomic(); 3698 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3699 } 3700 3701 /* 3702 * Lock eb pages and flush the bio if we can't the locks 3703 * 3704 * Return 0 if nothing went wrong 3705 * Return >0 is same as 0, except bio is not submitted 3706 * Return <0 if something went wrong, no page is locked 3707 */ 3708 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 3709 struct extent_page_data *epd) 3710 { 3711 struct btrfs_fs_info *fs_info = eb->fs_info; 3712 int i, num_pages, failed_page_nr; 3713 int flush = 0; 3714 int ret = 0; 3715 3716 if (!btrfs_try_tree_write_lock(eb)) { 3717 ret = flush_write_bio(epd); 3718 if (ret < 0) 3719 return ret; 3720 flush = 1; 3721 btrfs_tree_lock(eb); 3722 } 3723 3724 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3725 btrfs_tree_unlock(eb); 3726 if (!epd->sync_io) 3727 return 0; 3728 if (!flush) { 3729 ret = flush_write_bio(epd); 3730 if (ret < 0) 3731 return ret; 3732 flush = 1; 3733 } 3734 while (1) { 3735 wait_on_extent_buffer_writeback(eb); 3736 btrfs_tree_lock(eb); 3737 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3738 break; 3739 btrfs_tree_unlock(eb); 3740 } 3741 } 3742 3743 /* 3744 * We need to do this to prevent races in people who check if the eb is 3745 * under IO since we can end up having no IO bits set for a short period 3746 * of time. 3747 */ 3748 spin_lock(&eb->refs_lock); 3749 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3750 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3751 spin_unlock(&eb->refs_lock); 3752 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3753 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3754 -eb->len, 3755 fs_info->dirty_metadata_batch); 3756 ret = 1; 3757 } else { 3758 spin_unlock(&eb->refs_lock); 3759 } 3760 3761 btrfs_tree_unlock(eb); 3762 3763 if (!ret) 3764 return ret; 3765 3766 num_pages = num_extent_pages(eb); 3767 for (i = 0; i < num_pages; i++) { 3768 struct page *p = eb->pages[i]; 3769 3770 if (!trylock_page(p)) { 3771 if (!flush) { 3772 int err; 3773 3774 err = flush_write_bio(epd); 3775 if (err < 0) { 3776 ret = err; 3777 failed_page_nr = i; 3778 goto err_unlock; 3779 } 3780 flush = 1; 3781 } 3782 lock_page(p); 3783 } 3784 } 3785 3786 return ret; 3787 err_unlock: 3788 /* Unlock already locked pages */ 3789 for (i = 0; i < failed_page_nr; i++) 3790 unlock_page(eb->pages[i]); 3791 /* 3792 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 3793 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 3794 * be made and undo everything done before. 3795 */ 3796 btrfs_tree_lock(eb); 3797 spin_lock(&eb->refs_lock); 3798 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3799 end_extent_buffer_writeback(eb); 3800 spin_unlock(&eb->refs_lock); 3801 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 3802 fs_info->dirty_metadata_batch); 3803 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3804 btrfs_tree_unlock(eb); 3805 return ret; 3806 } 3807 3808 static void set_btree_ioerr(struct page *page) 3809 { 3810 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3811 struct btrfs_fs_info *fs_info; 3812 3813 SetPageError(page); 3814 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3815 return; 3816 3817 /* 3818 * If we error out, we should add back the dirty_metadata_bytes 3819 * to make it consistent. 3820 */ 3821 fs_info = eb->fs_info; 3822 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3823 eb->len, fs_info->dirty_metadata_batch); 3824 3825 /* 3826 * If writeback for a btree extent that doesn't belong to a log tree 3827 * failed, increment the counter transaction->eb_write_errors. 3828 * We do this because while the transaction is running and before it's 3829 * committing (when we call filemap_fdata[write|wait]_range against 3830 * the btree inode), we might have 3831 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3832 * returns an error or an error happens during writeback, when we're 3833 * committing the transaction we wouldn't know about it, since the pages 3834 * can be no longer dirty nor marked anymore for writeback (if a 3835 * subsequent modification to the extent buffer didn't happen before the 3836 * transaction commit), which makes filemap_fdata[write|wait]_range not 3837 * able to find the pages tagged with SetPageError at transaction 3838 * commit time. So if this happens we must abort the transaction, 3839 * otherwise we commit a super block with btree roots that point to 3840 * btree nodes/leafs whose content on disk is invalid - either garbage 3841 * or the content of some node/leaf from a past generation that got 3842 * cowed or deleted and is no longer valid. 3843 * 3844 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3845 * not be enough - we need to distinguish between log tree extents vs 3846 * non-log tree extents, and the next filemap_fdatawait_range() call 3847 * will catch and clear such errors in the mapping - and that call might 3848 * be from a log sync and not from a transaction commit. Also, checking 3849 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3850 * not done and would not be reliable - the eb might have been released 3851 * from memory and reading it back again means that flag would not be 3852 * set (since it's a runtime flag, not persisted on disk). 3853 * 3854 * Using the flags below in the btree inode also makes us achieve the 3855 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3856 * writeback for all dirty pages and before filemap_fdatawait_range() 3857 * is called, the writeback for all dirty pages had already finished 3858 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3859 * filemap_fdatawait_range() would return success, as it could not know 3860 * that writeback errors happened (the pages were no longer tagged for 3861 * writeback). 3862 */ 3863 switch (eb->log_index) { 3864 case -1: 3865 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3866 break; 3867 case 0: 3868 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3869 break; 3870 case 1: 3871 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3872 break; 3873 default: 3874 BUG(); /* unexpected, logic error */ 3875 } 3876 } 3877 3878 static void end_bio_extent_buffer_writepage(struct bio *bio) 3879 { 3880 struct bio_vec *bvec; 3881 struct extent_buffer *eb; 3882 int done; 3883 struct bvec_iter_all iter_all; 3884 3885 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3886 bio_for_each_segment_all(bvec, bio, iter_all) { 3887 struct page *page = bvec->bv_page; 3888 3889 eb = (struct extent_buffer *)page->private; 3890 BUG_ON(!eb); 3891 done = atomic_dec_and_test(&eb->io_pages); 3892 3893 if (bio->bi_status || 3894 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3895 ClearPageUptodate(page); 3896 set_btree_ioerr(page); 3897 } 3898 3899 end_page_writeback(page); 3900 3901 if (!done) 3902 continue; 3903 3904 end_extent_buffer_writeback(eb); 3905 } 3906 3907 bio_put(bio); 3908 } 3909 3910 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3911 struct writeback_control *wbc, 3912 struct extent_page_data *epd) 3913 { 3914 u64 offset = eb->start; 3915 u32 nritems; 3916 int i, num_pages; 3917 unsigned long start, end; 3918 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3919 int ret = 0; 3920 3921 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3922 num_pages = num_extent_pages(eb); 3923 atomic_set(&eb->io_pages, num_pages); 3924 3925 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3926 nritems = btrfs_header_nritems(eb); 3927 if (btrfs_header_level(eb) > 0) { 3928 end = btrfs_node_key_ptr_offset(nritems); 3929 3930 memzero_extent_buffer(eb, end, eb->len - end); 3931 } else { 3932 /* 3933 * leaf: 3934 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3935 */ 3936 start = btrfs_item_nr_offset(nritems); 3937 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 3938 memzero_extent_buffer(eb, start, end - start); 3939 } 3940 3941 for (i = 0; i < num_pages; i++) { 3942 struct page *p = eb->pages[i]; 3943 3944 clear_page_dirty_for_io(p); 3945 set_page_writeback(p); 3946 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 3947 p, offset, PAGE_SIZE, 0, 3948 &epd->bio, 3949 end_bio_extent_buffer_writepage, 3950 0, 0, 0, false); 3951 if (ret) { 3952 set_btree_ioerr(p); 3953 if (PageWriteback(p)) 3954 end_page_writeback(p); 3955 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3956 end_extent_buffer_writeback(eb); 3957 ret = -EIO; 3958 break; 3959 } 3960 offset += PAGE_SIZE; 3961 update_nr_written(wbc, 1); 3962 unlock_page(p); 3963 } 3964 3965 if (unlikely(ret)) { 3966 for (; i < num_pages; i++) { 3967 struct page *p = eb->pages[i]; 3968 clear_page_dirty_for_io(p); 3969 unlock_page(p); 3970 } 3971 } 3972 3973 return ret; 3974 } 3975 3976 int btree_write_cache_pages(struct address_space *mapping, 3977 struct writeback_control *wbc) 3978 { 3979 struct extent_buffer *eb, *prev_eb = NULL; 3980 struct extent_page_data epd = { 3981 .bio = NULL, 3982 .extent_locked = 0, 3983 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3984 }; 3985 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3986 int ret = 0; 3987 int done = 0; 3988 int nr_to_write_done = 0; 3989 struct pagevec pvec; 3990 int nr_pages; 3991 pgoff_t index; 3992 pgoff_t end; /* Inclusive */ 3993 int scanned = 0; 3994 xa_mark_t tag; 3995 3996 pagevec_init(&pvec); 3997 if (wbc->range_cyclic) { 3998 index = mapping->writeback_index; /* Start from prev offset */ 3999 end = -1; 4000 /* 4001 * Start from the beginning does not need to cycle over the 4002 * range, mark it as scanned. 4003 */ 4004 scanned = (index == 0); 4005 } else { 4006 index = wbc->range_start >> PAGE_SHIFT; 4007 end = wbc->range_end >> PAGE_SHIFT; 4008 scanned = 1; 4009 } 4010 if (wbc->sync_mode == WB_SYNC_ALL) 4011 tag = PAGECACHE_TAG_TOWRITE; 4012 else 4013 tag = PAGECACHE_TAG_DIRTY; 4014 retry: 4015 if (wbc->sync_mode == WB_SYNC_ALL) 4016 tag_pages_for_writeback(mapping, index, end); 4017 while (!done && !nr_to_write_done && (index <= end) && 4018 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4019 tag))) { 4020 unsigned i; 4021 4022 for (i = 0; i < nr_pages; i++) { 4023 struct page *page = pvec.pages[i]; 4024 4025 if (!PagePrivate(page)) 4026 continue; 4027 4028 spin_lock(&mapping->private_lock); 4029 if (!PagePrivate(page)) { 4030 spin_unlock(&mapping->private_lock); 4031 continue; 4032 } 4033 4034 eb = (struct extent_buffer *)page->private; 4035 4036 /* 4037 * Shouldn't happen and normally this would be a BUG_ON 4038 * but no sense in crashing the users box for something 4039 * we can survive anyway. 4040 */ 4041 if (WARN_ON(!eb)) { 4042 spin_unlock(&mapping->private_lock); 4043 continue; 4044 } 4045 4046 if (eb == prev_eb) { 4047 spin_unlock(&mapping->private_lock); 4048 continue; 4049 } 4050 4051 ret = atomic_inc_not_zero(&eb->refs); 4052 spin_unlock(&mapping->private_lock); 4053 if (!ret) 4054 continue; 4055 4056 prev_eb = eb; 4057 ret = lock_extent_buffer_for_io(eb, &epd); 4058 if (!ret) { 4059 free_extent_buffer(eb); 4060 continue; 4061 } else if (ret < 0) { 4062 done = 1; 4063 free_extent_buffer(eb); 4064 break; 4065 } 4066 4067 ret = write_one_eb(eb, wbc, &epd); 4068 if (ret) { 4069 done = 1; 4070 free_extent_buffer(eb); 4071 break; 4072 } 4073 free_extent_buffer(eb); 4074 4075 /* 4076 * the filesystem may choose to bump up nr_to_write. 4077 * We have to make sure to honor the new nr_to_write 4078 * at any time 4079 */ 4080 nr_to_write_done = wbc->nr_to_write <= 0; 4081 } 4082 pagevec_release(&pvec); 4083 cond_resched(); 4084 } 4085 if (!scanned && !done) { 4086 /* 4087 * We hit the last page and there is more work to be done: wrap 4088 * back to the start of the file 4089 */ 4090 scanned = 1; 4091 index = 0; 4092 goto retry; 4093 } 4094 ASSERT(ret <= 0); 4095 if (ret < 0) { 4096 end_write_bio(&epd, ret); 4097 return ret; 4098 } 4099 /* 4100 * If something went wrong, don't allow any metadata write bio to be 4101 * submitted. 4102 * 4103 * This would prevent use-after-free if we had dirty pages not 4104 * cleaned up, which can still happen by fuzzed images. 4105 * 4106 * - Bad extent tree 4107 * Allowing existing tree block to be allocated for other trees. 4108 * 4109 * - Log tree operations 4110 * Exiting tree blocks get allocated to log tree, bumps its 4111 * generation, then get cleaned in tree re-balance. 4112 * Such tree block will not be written back, since it's clean, 4113 * thus no WRITTEN flag set. 4114 * And after log writes back, this tree block is not traced by 4115 * any dirty extent_io_tree. 4116 * 4117 * - Offending tree block gets re-dirtied from its original owner 4118 * Since it has bumped generation, no WRITTEN flag, it can be 4119 * reused without COWing. This tree block will not be traced 4120 * by btrfs_transaction::dirty_pages. 4121 * 4122 * Now such dirty tree block will not be cleaned by any dirty 4123 * extent io tree. Thus we don't want to submit such wild eb 4124 * if the fs already has error. 4125 */ 4126 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4127 ret = flush_write_bio(&epd); 4128 } else { 4129 ret = -EUCLEAN; 4130 end_write_bio(&epd, ret); 4131 } 4132 return ret; 4133 } 4134 4135 /** 4136 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 4137 * @mapping: address space structure to write 4138 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4139 * @data: data passed to __extent_writepage function 4140 * 4141 * If a page is already under I/O, write_cache_pages() skips it, even 4142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4144 * and msync() need to guarantee that all the data which was dirty at the time 4145 * the call was made get new I/O started against them. If wbc->sync_mode is 4146 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4147 * existing IO to complete. 4148 */ 4149 static int extent_write_cache_pages(struct address_space *mapping, 4150 struct writeback_control *wbc, 4151 struct extent_page_data *epd) 4152 { 4153 struct inode *inode = mapping->host; 4154 int ret = 0; 4155 int done = 0; 4156 int nr_to_write_done = 0; 4157 struct pagevec pvec; 4158 int nr_pages; 4159 pgoff_t index; 4160 pgoff_t end; /* Inclusive */ 4161 pgoff_t done_index; 4162 int range_whole = 0; 4163 int scanned = 0; 4164 xa_mark_t tag; 4165 4166 /* 4167 * We have to hold onto the inode so that ordered extents can do their 4168 * work when the IO finishes. The alternative to this is failing to add 4169 * an ordered extent if the igrab() fails there and that is a huge pain 4170 * to deal with, so instead just hold onto the inode throughout the 4171 * writepages operation. If it fails here we are freeing up the inode 4172 * anyway and we'd rather not waste our time writing out stuff that is 4173 * going to be truncated anyway. 4174 */ 4175 if (!igrab(inode)) 4176 return 0; 4177 4178 pagevec_init(&pvec); 4179 if (wbc->range_cyclic) { 4180 index = mapping->writeback_index; /* Start from prev offset */ 4181 end = -1; 4182 /* 4183 * Start from the beginning does not need to cycle over the 4184 * range, mark it as scanned. 4185 */ 4186 scanned = (index == 0); 4187 } else { 4188 index = wbc->range_start >> PAGE_SHIFT; 4189 end = wbc->range_end >> PAGE_SHIFT; 4190 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4191 range_whole = 1; 4192 scanned = 1; 4193 } 4194 4195 /* 4196 * We do the tagged writepage as long as the snapshot flush bit is set 4197 * and we are the first one who do the filemap_flush() on this inode. 4198 * 4199 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4200 * not race in and drop the bit. 4201 */ 4202 if (range_whole && wbc->nr_to_write == LONG_MAX && 4203 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4204 &BTRFS_I(inode)->runtime_flags)) 4205 wbc->tagged_writepages = 1; 4206 4207 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4208 tag = PAGECACHE_TAG_TOWRITE; 4209 else 4210 tag = PAGECACHE_TAG_DIRTY; 4211 retry: 4212 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4213 tag_pages_for_writeback(mapping, index, end); 4214 done_index = index; 4215 while (!done && !nr_to_write_done && (index <= end) && 4216 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 4217 &index, end, tag))) { 4218 unsigned i; 4219 4220 for (i = 0; i < nr_pages; i++) { 4221 struct page *page = pvec.pages[i]; 4222 4223 done_index = page->index + 1; 4224 /* 4225 * At this point we hold neither the i_pages lock nor 4226 * the page lock: the page may be truncated or 4227 * invalidated (changing page->mapping to NULL), 4228 * or even swizzled back from swapper_space to 4229 * tmpfs file mapping 4230 */ 4231 if (!trylock_page(page)) { 4232 ret = flush_write_bio(epd); 4233 BUG_ON(ret < 0); 4234 lock_page(page); 4235 } 4236 4237 if (unlikely(page->mapping != mapping)) { 4238 unlock_page(page); 4239 continue; 4240 } 4241 4242 if (wbc->sync_mode != WB_SYNC_NONE) { 4243 if (PageWriteback(page)) { 4244 ret = flush_write_bio(epd); 4245 BUG_ON(ret < 0); 4246 } 4247 wait_on_page_writeback(page); 4248 } 4249 4250 if (PageWriteback(page) || 4251 !clear_page_dirty_for_io(page)) { 4252 unlock_page(page); 4253 continue; 4254 } 4255 4256 ret = __extent_writepage(page, wbc, epd); 4257 if (ret < 0) { 4258 done = 1; 4259 break; 4260 } 4261 4262 /* 4263 * the filesystem may choose to bump up nr_to_write. 4264 * We have to make sure to honor the new nr_to_write 4265 * at any time 4266 */ 4267 nr_to_write_done = wbc->nr_to_write <= 0; 4268 } 4269 pagevec_release(&pvec); 4270 cond_resched(); 4271 } 4272 if (!scanned && !done) { 4273 /* 4274 * We hit the last page and there is more work to be done: wrap 4275 * back to the start of the file 4276 */ 4277 scanned = 1; 4278 index = 0; 4279 4280 /* 4281 * If we're looping we could run into a page that is locked by a 4282 * writer and that writer could be waiting on writeback for a 4283 * page in our current bio, and thus deadlock, so flush the 4284 * write bio here. 4285 */ 4286 ret = flush_write_bio(epd); 4287 if (!ret) 4288 goto retry; 4289 } 4290 4291 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4292 mapping->writeback_index = done_index; 4293 4294 btrfs_add_delayed_iput(inode); 4295 return ret; 4296 } 4297 4298 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4299 { 4300 int ret; 4301 struct extent_page_data epd = { 4302 .bio = NULL, 4303 .extent_locked = 0, 4304 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4305 }; 4306 4307 ret = __extent_writepage(page, wbc, &epd); 4308 ASSERT(ret <= 0); 4309 if (ret < 0) { 4310 end_write_bio(&epd, ret); 4311 return ret; 4312 } 4313 4314 ret = flush_write_bio(&epd); 4315 ASSERT(ret <= 0); 4316 return ret; 4317 } 4318 4319 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4320 int mode) 4321 { 4322 int ret = 0; 4323 struct address_space *mapping = inode->i_mapping; 4324 struct page *page; 4325 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4326 PAGE_SHIFT; 4327 4328 struct extent_page_data epd = { 4329 .bio = NULL, 4330 .extent_locked = 1, 4331 .sync_io = mode == WB_SYNC_ALL, 4332 }; 4333 struct writeback_control wbc_writepages = { 4334 .sync_mode = mode, 4335 .nr_to_write = nr_pages * 2, 4336 .range_start = start, 4337 .range_end = end + 1, 4338 /* We're called from an async helper function */ 4339 .punt_to_cgroup = 1, 4340 .no_cgroup_owner = 1, 4341 }; 4342 4343 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 4344 while (start <= end) { 4345 page = find_get_page(mapping, start >> PAGE_SHIFT); 4346 if (clear_page_dirty_for_io(page)) 4347 ret = __extent_writepage(page, &wbc_writepages, &epd); 4348 else { 4349 btrfs_writepage_endio_finish_ordered(page, start, 4350 start + PAGE_SIZE - 1, 1); 4351 unlock_page(page); 4352 } 4353 put_page(page); 4354 start += PAGE_SIZE; 4355 } 4356 4357 ASSERT(ret <= 0); 4358 if (ret == 0) 4359 ret = flush_write_bio(&epd); 4360 else 4361 end_write_bio(&epd, ret); 4362 4363 wbc_detach_inode(&wbc_writepages); 4364 return ret; 4365 } 4366 4367 int extent_writepages(struct address_space *mapping, 4368 struct writeback_control *wbc) 4369 { 4370 int ret = 0; 4371 struct extent_page_data epd = { 4372 .bio = NULL, 4373 .extent_locked = 0, 4374 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4375 }; 4376 4377 ret = extent_write_cache_pages(mapping, wbc, &epd); 4378 ASSERT(ret <= 0); 4379 if (ret < 0) { 4380 end_write_bio(&epd, ret); 4381 return ret; 4382 } 4383 ret = flush_write_bio(&epd); 4384 return ret; 4385 } 4386 4387 void extent_readahead(struct readahead_control *rac) 4388 { 4389 struct bio *bio = NULL; 4390 unsigned long bio_flags = 0; 4391 struct page *pagepool[16]; 4392 struct extent_map *em_cached = NULL; 4393 u64 prev_em_start = (u64)-1; 4394 int nr; 4395 4396 while ((nr = readahead_page_batch(rac, pagepool))) { 4397 u64 contig_start = page_offset(pagepool[0]); 4398 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1; 4399 4400 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end); 4401 4402 contiguous_readpages(pagepool, nr, contig_start, contig_end, 4403 &em_cached, &bio, &bio_flags, &prev_em_start); 4404 } 4405 4406 if (em_cached) 4407 free_extent_map(em_cached); 4408 4409 if (bio) { 4410 if (submit_one_bio(bio, 0, bio_flags)) 4411 return; 4412 } 4413 } 4414 4415 /* 4416 * basic invalidatepage code, this waits on any locked or writeback 4417 * ranges corresponding to the page, and then deletes any extent state 4418 * records from the tree 4419 */ 4420 int extent_invalidatepage(struct extent_io_tree *tree, 4421 struct page *page, unsigned long offset) 4422 { 4423 struct extent_state *cached_state = NULL; 4424 u64 start = page_offset(page); 4425 u64 end = start + PAGE_SIZE - 1; 4426 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4427 4428 start += ALIGN(offset, blocksize); 4429 if (start > end) 4430 return 0; 4431 4432 lock_extent_bits(tree, start, end, &cached_state); 4433 wait_on_page_writeback(page); 4434 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC | 4435 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state); 4436 return 0; 4437 } 4438 4439 /* 4440 * a helper for releasepage, this tests for areas of the page that 4441 * are locked or under IO and drops the related state bits if it is safe 4442 * to drop the page. 4443 */ 4444 static int try_release_extent_state(struct extent_io_tree *tree, 4445 struct page *page, gfp_t mask) 4446 { 4447 u64 start = page_offset(page); 4448 u64 end = start + PAGE_SIZE - 1; 4449 int ret = 1; 4450 4451 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 4452 ret = 0; 4453 } else { 4454 /* 4455 * at this point we can safely clear everything except the 4456 * locked bit and the nodatasum bit 4457 */ 4458 ret = __clear_extent_bit(tree, start, end, 4459 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4460 0, 0, NULL, mask, NULL); 4461 4462 /* if clear_extent_bit failed for enomem reasons, 4463 * we can't allow the release to continue. 4464 */ 4465 if (ret < 0) 4466 ret = 0; 4467 else 4468 ret = 1; 4469 } 4470 return ret; 4471 } 4472 4473 /* 4474 * a helper for releasepage. As long as there are no locked extents 4475 * in the range corresponding to the page, both state records and extent 4476 * map records are removed 4477 */ 4478 int try_release_extent_mapping(struct page *page, gfp_t mask) 4479 { 4480 struct extent_map *em; 4481 u64 start = page_offset(page); 4482 u64 end = start + PAGE_SIZE - 1; 4483 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4484 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4485 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4486 4487 if (gfpflags_allow_blocking(mask) && 4488 page->mapping->host->i_size > SZ_16M) { 4489 u64 len; 4490 while (start <= end) { 4491 len = end - start + 1; 4492 write_lock(&map->lock); 4493 em = lookup_extent_mapping(map, start, len); 4494 if (!em) { 4495 write_unlock(&map->lock); 4496 break; 4497 } 4498 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4499 em->start != start) { 4500 write_unlock(&map->lock); 4501 free_extent_map(em); 4502 break; 4503 } 4504 if (!test_range_bit(tree, em->start, 4505 extent_map_end(em) - 1, 4506 EXTENT_LOCKED, 0, NULL)) { 4507 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4508 &btrfs_inode->runtime_flags); 4509 remove_extent_mapping(map, em); 4510 /* once for the rb tree */ 4511 free_extent_map(em); 4512 } 4513 start = extent_map_end(em); 4514 write_unlock(&map->lock); 4515 4516 /* once for us */ 4517 free_extent_map(em); 4518 } 4519 } 4520 return try_release_extent_state(tree, page, mask); 4521 } 4522 4523 /* 4524 * helper function for fiemap, which doesn't want to see any holes. 4525 * This maps until we find something past 'last' 4526 */ 4527 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4528 u64 offset, u64 last) 4529 { 4530 u64 sectorsize = btrfs_inode_sectorsize(inode); 4531 struct extent_map *em; 4532 u64 len; 4533 4534 if (offset >= last) 4535 return NULL; 4536 4537 while (1) { 4538 len = last - offset; 4539 if (len == 0) 4540 break; 4541 len = ALIGN(len, sectorsize); 4542 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4543 if (IS_ERR_OR_NULL(em)) 4544 return em; 4545 4546 /* if this isn't a hole return it */ 4547 if (em->block_start != EXTENT_MAP_HOLE) 4548 return em; 4549 4550 /* this is a hole, advance to the next extent */ 4551 offset = extent_map_end(em); 4552 free_extent_map(em); 4553 if (offset >= last) 4554 break; 4555 } 4556 return NULL; 4557 } 4558 4559 /* 4560 * To cache previous fiemap extent 4561 * 4562 * Will be used for merging fiemap extent 4563 */ 4564 struct fiemap_cache { 4565 u64 offset; 4566 u64 phys; 4567 u64 len; 4568 u32 flags; 4569 bool cached; 4570 }; 4571 4572 /* 4573 * Helper to submit fiemap extent. 4574 * 4575 * Will try to merge current fiemap extent specified by @offset, @phys, 4576 * @len and @flags with cached one. 4577 * And only when we fails to merge, cached one will be submitted as 4578 * fiemap extent. 4579 * 4580 * Return value is the same as fiemap_fill_next_extent(). 4581 */ 4582 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4583 struct fiemap_cache *cache, 4584 u64 offset, u64 phys, u64 len, u32 flags) 4585 { 4586 int ret = 0; 4587 4588 if (!cache->cached) 4589 goto assign; 4590 4591 /* 4592 * Sanity check, extent_fiemap() should have ensured that new 4593 * fiemap extent won't overlap with cached one. 4594 * Not recoverable. 4595 * 4596 * NOTE: Physical address can overlap, due to compression 4597 */ 4598 if (cache->offset + cache->len > offset) { 4599 WARN_ON(1); 4600 return -EINVAL; 4601 } 4602 4603 /* 4604 * Only merges fiemap extents if 4605 * 1) Their logical addresses are continuous 4606 * 4607 * 2) Their physical addresses are continuous 4608 * So truly compressed (physical size smaller than logical size) 4609 * extents won't get merged with each other 4610 * 4611 * 3) Share same flags except FIEMAP_EXTENT_LAST 4612 * So regular extent won't get merged with prealloc extent 4613 */ 4614 if (cache->offset + cache->len == offset && 4615 cache->phys + cache->len == phys && 4616 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4617 (flags & ~FIEMAP_EXTENT_LAST)) { 4618 cache->len += len; 4619 cache->flags |= flags; 4620 goto try_submit_last; 4621 } 4622 4623 /* Not mergeable, need to submit cached one */ 4624 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4625 cache->len, cache->flags); 4626 cache->cached = false; 4627 if (ret) 4628 return ret; 4629 assign: 4630 cache->cached = true; 4631 cache->offset = offset; 4632 cache->phys = phys; 4633 cache->len = len; 4634 cache->flags = flags; 4635 try_submit_last: 4636 if (cache->flags & FIEMAP_EXTENT_LAST) { 4637 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4638 cache->phys, cache->len, cache->flags); 4639 cache->cached = false; 4640 } 4641 return ret; 4642 } 4643 4644 /* 4645 * Emit last fiemap cache 4646 * 4647 * The last fiemap cache may still be cached in the following case: 4648 * 0 4k 8k 4649 * |<- Fiemap range ->| 4650 * |<------------ First extent ----------->| 4651 * 4652 * In this case, the first extent range will be cached but not emitted. 4653 * So we must emit it before ending extent_fiemap(). 4654 */ 4655 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 4656 struct fiemap_cache *cache) 4657 { 4658 int ret; 4659 4660 if (!cache->cached) 4661 return 0; 4662 4663 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4664 cache->len, cache->flags); 4665 cache->cached = false; 4666 if (ret > 0) 4667 ret = 0; 4668 return ret; 4669 } 4670 4671 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4672 __u64 start, __u64 len) 4673 { 4674 int ret = 0; 4675 u64 off = start; 4676 u64 max = start + len; 4677 u32 flags = 0; 4678 u32 found_type; 4679 u64 last; 4680 u64 last_for_get_extent = 0; 4681 u64 disko = 0; 4682 u64 isize = i_size_read(inode); 4683 struct btrfs_key found_key; 4684 struct extent_map *em = NULL; 4685 struct extent_state *cached_state = NULL; 4686 struct btrfs_path *path; 4687 struct btrfs_root *root = BTRFS_I(inode)->root; 4688 struct fiemap_cache cache = { 0 }; 4689 struct ulist *roots; 4690 struct ulist *tmp_ulist; 4691 int end = 0; 4692 u64 em_start = 0; 4693 u64 em_len = 0; 4694 u64 em_end = 0; 4695 4696 if (len == 0) 4697 return -EINVAL; 4698 4699 path = btrfs_alloc_path(); 4700 if (!path) 4701 return -ENOMEM; 4702 path->leave_spinning = 1; 4703 4704 roots = ulist_alloc(GFP_KERNEL); 4705 tmp_ulist = ulist_alloc(GFP_KERNEL); 4706 if (!roots || !tmp_ulist) { 4707 ret = -ENOMEM; 4708 goto out_free_ulist; 4709 } 4710 4711 start = round_down(start, btrfs_inode_sectorsize(inode)); 4712 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4713 4714 /* 4715 * lookup the last file extent. We're not using i_size here 4716 * because there might be preallocation past i_size 4717 */ 4718 ret = btrfs_lookup_file_extent(NULL, root, path, 4719 btrfs_ino(BTRFS_I(inode)), -1, 0); 4720 if (ret < 0) { 4721 goto out_free_ulist; 4722 } else { 4723 WARN_ON(!ret); 4724 if (ret == 1) 4725 ret = 0; 4726 } 4727 4728 path->slots[0]--; 4729 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4730 found_type = found_key.type; 4731 4732 /* No extents, but there might be delalloc bits */ 4733 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4734 found_type != BTRFS_EXTENT_DATA_KEY) { 4735 /* have to trust i_size as the end */ 4736 last = (u64)-1; 4737 last_for_get_extent = isize; 4738 } else { 4739 /* 4740 * remember the start of the last extent. There are a 4741 * bunch of different factors that go into the length of the 4742 * extent, so its much less complex to remember where it started 4743 */ 4744 last = found_key.offset; 4745 last_for_get_extent = last + 1; 4746 } 4747 btrfs_release_path(path); 4748 4749 /* 4750 * we might have some extents allocated but more delalloc past those 4751 * extents. so, we trust isize unless the start of the last extent is 4752 * beyond isize 4753 */ 4754 if (last < isize) { 4755 last = (u64)-1; 4756 last_for_get_extent = isize; 4757 } 4758 4759 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4760 &cached_state); 4761 4762 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4763 if (!em) 4764 goto out; 4765 if (IS_ERR(em)) { 4766 ret = PTR_ERR(em); 4767 goto out; 4768 } 4769 4770 while (!end) { 4771 u64 offset_in_extent = 0; 4772 4773 /* break if the extent we found is outside the range */ 4774 if (em->start >= max || extent_map_end(em) < off) 4775 break; 4776 4777 /* 4778 * get_extent may return an extent that starts before our 4779 * requested range. We have to make sure the ranges 4780 * we return to fiemap always move forward and don't 4781 * overlap, so adjust the offsets here 4782 */ 4783 em_start = max(em->start, off); 4784 4785 /* 4786 * record the offset from the start of the extent 4787 * for adjusting the disk offset below. Only do this if the 4788 * extent isn't compressed since our in ram offset may be past 4789 * what we have actually allocated on disk. 4790 */ 4791 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4792 offset_in_extent = em_start - em->start; 4793 em_end = extent_map_end(em); 4794 em_len = em_end - em_start; 4795 flags = 0; 4796 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4797 disko = em->block_start + offset_in_extent; 4798 else 4799 disko = 0; 4800 4801 /* 4802 * bump off for our next call to get_extent 4803 */ 4804 off = extent_map_end(em); 4805 if (off >= max) 4806 end = 1; 4807 4808 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4809 end = 1; 4810 flags |= FIEMAP_EXTENT_LAST; 4811 } else if (em->block_start == EXTENT_MAP_INLINE) { 4812 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4813 FIEMAP_EXTENT_NOT_ALIGNED); 4814 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4815 flags |= (FIEMAP_EXTENT_DELALLOC | 4816 FIEMAP_EXTENT_UNKNOWN); 4817 } else if (fieinfo->fi_extents_max) { 4818 u64 bytenr = em->block_start - 4819 (em->start - em->orig_start); 4820 4821 /* 4822 * As btrfs supports shared space, this information 4823 * can be exported to userspace tools via 4824 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4825 * then we're just getting a count and we can skip the 4826 * lookup stuff. 4827 */ 4828 ret = btrfs_check_shared(root, 4829 btrfs_ino(BTRFS_I(inode)), 4830 bytenr, roots, tmp_ulist); 4831 if (ret < 0) 4832 goto out_free; 4833 if (ret) 4834 flags |= FIEMAP_EXTENT_SHARED; 4835 ret = 0; 4836 } 4837 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4838 flags |= FIEMAP_EXTENT_ENCODED; 4839 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4840 flags |= FIEMAP_EXTENT_UNWRITTEN; 4841 4842 free_extent_map(em); 4843 em = NULL; 4844 if ((em_start >= last) || em_len == (u64)-1 || 4845 (last == (u64)-1 && isize <= em_end)) { 4846 flags |= FIEMAP_EXTENT_LAST; 4847 end = 1; 4848 } 4849 4850 /* now scan forward to see if this is really the last extent. */ 4851 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4852 if (IS_ERR(em)) { 4853 ret = PTR_ERR(em); 4854 goto out; 4855 } 4856 if (!em) { 4857 flags |= FIEMAP_EXTENT_LAST; 4858 end = 1; 4859 } 4860 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4861 em_len, flags); 4862 if (ret) { 4863 if (ret == 1) 4864 ret = 0; 4865 goto out_free; 4866 } 4867 } 4868 out_free: 4869 if (!ret) 4870 ret = emit_last_fiemap_cache(fieinfo, &cache); 4871 free_extent_map(em); 4872 out: 4873 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4874 &cached_state); 4875 4876 out_free_ulist: 4877 btrfs_free_path(path); 4878 ulist_free(roots); 4879 ulist_free(tmp_ulist); 4880 return ret; 4881 } 4882 4883 static void __free_extent_buffer(struct extent_buffer *eb) 4884 { 4885 kmem_cache_free(extent_buffer_cache, eb); 4886 } 4887 4888 int extent_buffer_under_io(const struct extent_buffer *eb) 4889 { 4890 return (atomic_read(&eb->io_pages) || 4891 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4892 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4893 } 4894 4895 /* 4896 * Release all pages attached to the extent buffer. 4897 */ 4898 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4899 { 4900 int i; 4901 int num_pages; 4902 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4903 4904 BUG_ON(extent_buffer_under_io(eb)); 4905 4906 num_pages = num_extent_pages(eb); 4907 for (i = 0; i < num_pages; i++) { 4908 struct page *page = eb->pages[i]; 4909 4910 if (!page) 4911 continue; 4912 if (mapped) 4913 spin_lock(&page->mapping->private_lock); 4914 /* 4915 * We do this since we'll remove the pages after we've 4916 * removed the eb from the radix tree, so we could race 4917 * and have this page now attached to the new eb. So 4918 * only clear page_private if it's still connected to 4919 * this eb. 4920 */ 4921 if (PagePrivate(page) && 4922 page->private == (unsigned long)eb) { 4923 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4924 BUG_ON(PageDirty(page)); 4925 BUG_ON(PageWriteback(page)); 4926 /* 4927 * We need to make sure we haven't be attached 4928 * to a new eb. 4929 */ 4930 detach_page_private(page); 4931 } 4932 4933 if (mapped) 4934 spin_unlock(&page->mapping->private_lock); 4935 4936 /* One for when we allocated the page */ 4937 put_page(page); 4938 } 4939 } 4940 4941 /* 4942 * Helper for releasing the extent buffer. 4943 */ 4944 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4945 { 4946 btrfs_release_extent_buffer_pages(eb); 4947 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 4948 __free_extent_buffer(eb); 4949 } 4950 4951 static struct extent_buffer * 4952 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4953 unsigned long len) 4954 { 4955 struct extent_buffer *eb = NULL; 4956 4957 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4958 eb->start = start; 4959 eb->len = len; 4960 eb->fs_info = fs_info; 4961 eb->bflags = 0; 4962 rwlock_init(&eb->lock); 4963 atomic_set(&eb->blocking_readers, 0); 4964 eb->blocking_writers = 0; 4965 eb->lock_nested = false; 4966 init_waitqueue_head(&eb->write_lock_wq); 4967 init_waitqueue_head(&eb->read_lock_wq); 4968 4969 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 4970 &fs_info->allocated_ebs); 4971 4972 spin_lock_init(&eb->refs_lock); 4973 atomic_set(&eb->refs, 1); 4974 atomic_set(&eb->io_pages, 0); 4975 4976 /* 4977 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4978 */ 4979 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4980 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4981 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4982 4983 #ifdef CONFIG_BTRFS_DEBUG 4984 eb->spinning_writers = 0; 4985 atomic_set(&eb->spinning_readers, 0); 4986 atomic_set(&eb->read_locks, 0); 4987 eb->write_locks = 0; 4988 #endif 4989 4990 return eb; 4991 } 4992 4993 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 4994 { 4995 int i; 4996 struct page *p; 4997 struct extent_buffer *new; 4998 int num_pages = num_extent_pages(src); 4999 5000 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5001 if (new == NULL) 5002 return NULL; 5003 5004 for (i = 0; i < num_pages; i++) { 5005 p = alloc_page(GFP_NOFS); 5006 if (!p) { 5007 btrfs_release_extent_buffer(new); 5008 return NULL; 5009 } 5010 attach_extent_buffer_page(new, p); 5011 WARN_ON(PageDirty(p)); 5012 SetPageUptodate(p); 5013 new->pages[i] = p; 5014 copy_page(page_address(p), page_address(src->pages[i])); 5015 } 5016 5017 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 5018 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5019 5020 return new; 5021 } 5022 5023 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5024 u64 start, unsigned long len) 5025 { 5026 struct extent_buffer *eb; 5027 int num_pages; 5028 int i; 5029 5030 eb = __alloc_extent_buffer(fs_info, start, len); 5031 if (!eb) 5032 return NULL; 5033 5034 num_pages = num_extent_pages(eb); 5035 for (i = 0; i < num_pages; i++) { 5036 eb->pages[i] = alloc_page(GFP_NOFS); 5037 if (!eb->pages[i]) 5038 goto err; 5039 } 5040 set_extent_buffer_uptodate(eb); 5041 btrfs_set_header_nritems(eb, 0); 5042 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5043 5044 return eb; 5045 err: 5046 for (; i > 0; i--) 5047 __free_page(eb->pages[i - 1]); 5048 __free_extent_buffer(eb); 5049 return NULL; 5050 } 5051 5052 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5053 u64 start) 5054 { 5055 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5056 } 5057 5058 static void check_buffer_tree_ref(struct extent_buffer *eb) 5059 { 5060 int refs; 5061 /* the ref bit is tricky. We have to make sure it is set 5062 * if we have the buffer dirty. Otherwise the 5063 * code to free a buffer can end up dropping a dirty 5064 * page 5065 * 5066 * Once the ref bit is set, it won't go away while the 5067 * buffer is dirty or in writeback, and it also won't 5068 * go away while we have the reference count on the 5069 * eb bumped. 5070 * 5071 * We can't just set the ref bit without bumping the 5072 * ref on the eb because free_extent_buffer might 5073 * see the ref bit and try to clear it. If this happens 5074 * free_extent_buffer might end up dropping our original 5075 * ref by mistake and freeing the page before we are able 5076 * to add one more ref. 5077 * 5078 * So bump the ref count first, then set the bit. If someone 5079 * beat us to it, drop the ref we added. 5080 */ 5081 refs = atomic_read(&eb->refs); 5082 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5083 return; 5084 5085 spin_lock(&eb->refs_lock); 5086 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5087 atomic_inc(&eb->refs); 5088 spin_unlock(&eb->refs_lock); 5089 } 5090 5091 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 5092 struct page *accessed) 5093 { 5094 int num_pages, i; 5095 5096 check_buffer_tree_ref(eb); 5097 5098 num_pages = num_extent_pages(eb); 5099 for (i = 0; i < num_pages; i++) { 5100 struct page *p = eb->pages[i]; 5101 5102 if (p != accessed) 5103 mark_page_accessed(p); 5104 } 5105 } 5106 5107 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 5108 u64 start) 5109 { 5110 struct extent_buffer *eb; 5111 5112 rcu_read_lock(); 5113 eb = radix_tree_lookup(&fs_info->buffer_radix, 5114 start >> PAGE_SHIFT); 5115 if (eb && atomic_inc_not_zero(&eb->refs)) { 5116 rcu_read_unlock(); 5117 /* 5118 * Lock our eb's refs_lock to avoid races with 5119 * free_extent_buffer. When we get our eb it might be flagged 5120 * with EXTENT_BUFFER_STALE and another task running 5121 * free_extent_buffer might have seen that flag set, 5122 * eb->refs == 2, that the buffer isn't under IO (dirty and 5123 * writeback flags not set) and it's still in the tree (flag 5124 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 5125 * of decrementing the extent buffer's reference count twice. 5126 * So here we could race and increment the eb's reference count, 5127 * clear its stale flag, mark it as dirty and drop our reference 5128 * before the other task finishes executing free_extent_buffer, 5129 * which would later result in an attempt to free an extent 5130 * buffer that is dirty. 5131 */ 5132 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 5133 spin_lock(&eb->refs_lock); 5134 spin_unlock(&eb->refs_lock); 5135 } 5136 mark_extent_buffer_accessed(eb, NULL); 5137 return eb; 5138 } 5139 rcu_read_unlock(); 5140 5141 return NULL; 5142 } 5143 5144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5145 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 5146 u64 start) 5147 { 5148 struct extent_buffer *eb, *exists = NULL; 5149 int ret; 5150 5151 eb = find_extent_buffer(fs_info, start); 5152 if (eb) 5153 return eb; 5154 eb = alloc_dummy_extent_buffer(fs_info, start); 5155 if (!eb) 5156 return ERR_PTR(-ENOMEM); 5157 eb->fs_info = fs_info; 5158 again: 5159 ret = radix_tree_preload(GFP_NOFS); 5160 if (ret) { 5161 exists = ERR_PTR(ret); 5162 goto free_eb; 5163 } 5164 spin_lock(&fs_info->buffer_lock); 5165 ret = radix_tree_insert(&fs_info->buffer_radix, 5166 start >> PAGE_SHIFT, eb); 5167 spin_unlock(&fs_info->buffer_lock); 5168 radix_tree_preload_end(); 5169 if (ret == -EEXIST) { 5170 exists = find_extent_buffer(fs_info, start); 5171 if (exists) 5172 goto free_eb; 5173 else 5174 goto again; 5175 } 5176 check_buffer_tree_ref(eb); 5177 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5178 5179 return eb; 5180 free_eb: 5181 btrfs_release_extent_buffer(eb); 5182 return exists; 5183 } 5184 #endif 5185 5186 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 5187 u64 start) 5188 { 5189 unsigned long len = fs_info->nodesize; 5190 int num_pages; 5191 int i; 5192 unsigned long index = start >> PAGE_SHIFT; 5193 struct extent_buffer *eb; 5194 struct extent_buffer *exists = NULL; 5195 struct page *p; 5196 struct address_space *mapping = fs_info->btree_inode->i_mapping; 5197 int uptodate = 1; 5198 int ret; 5199 5200 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 5201 btrfs_err(fs_info, "bad tree block start %llu", start); 5202 return ERR_PTR(-EINVAL); 5203 } 5204 5205 eb = find_extent_buffer(fs_info, start); 5206 if (eb) 5207 return eb; 5208 5209 eb = __alloc_extent_buffer(fs_info, start, len); 5210 if (!eb) 5211 return ERR_PTR(-ENOMEM); 5212 5213 num_pages = num_extent_pages(eb); 5214 for (i = 0; i < num_pages; i++, index++) { 5215 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 5216 if (!p) { 5217 exists = ERR_PTR(-ENOMEM); 5218 goto free_eb; 5219 } 5220 5221 spin_lock(&mapping->private_lock); 5222 if (PagePrivate(p)) { 5223 /* 5224 * We could have already allocated an eb for this page 5225 * and attached one so lets see if we can get a ref on 5226 * the existing eb, and if we can we know it's good and 5227 * we can just return that one, else we know we can just 5228 * overwrite page->private. 5229 */ 5230 exists = (struct extent_buffer *)p->private; 5231 if (atomic_inc_not_zero(&exists->refs)) { 5232 spin_unlock(&mapping->private_lock); 5233 unlock_page(p); 5234 put_page(p); 5235 mark_extent_buffer_accessed(exists, p); 5236 goto free_eb; 5237 } 5238 exists = NULL; 5239 5240 /* 5241 * Do this so attach doesn't complain and we need to 5242 * drop the ref the old guy had. 5243 */ 5244 ClearPagePrivate(p); 5245 WARN_ON(PageDirty(p)); 5246 put_page(p); 5247 } 5248 attach_extent_buffer_page(eb, p); 5249 spin_unlock(&mapping->private_lock); 5250 WARN_ON(PageDirty(p)); 5251 eb->pages[i] = p; 5252 if (!PageUptodate(p)) 5253 uptodate = 0; 5254 5255 /* 5256 * We can't unlock the pages just yet since the extent buffer 5257 * hasn't been properly inserted in the radix tree, this 5258 * opens a race with btree_releasepage which can free a page 5259 * while we are still filling in all pages for the buffer and 5260 * we could crash. 5261 */ 5262 } 5263 if (uptodate) 5264 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5265 again: 5266 ret = radix_tree_preload(GFP_NOFS); 5267 if (ret) { 5268 exists = ERR_PTR(ret); 5269 goto free_eb; 5270 } 5271 5272 spin_lock(&fs_info->buffer_lock); 5273 ret = radix_tree_insert(&fs_info->buffer_radix, 5274 start >> PAGE_SHIFT, eb); 5275 spin_unlock(&fs_info->buffer_lock); 5276 radix_tree_preload_end(); 5277 if (ret == -EEXIST) { 5278 exists = find_extent_buffer(fs_info, start); 5279 if (exists) 5280 goto free_eb; 5281 else 5282 goto again; 5283 } 5284 /* add one reference for the tree */ 5285 check_buffer_tree_ref(eb); 5286 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 5287 5288 /* 5289 * Now it's safe to unlock the pages because any calls to 5290 * btree_releasepage will correctly detect that a page belongs to a 5291 * live buffer and won't free them prematurely. 5292 */ 5293 for (i = 0; i < num_pages; i++) 5294 unlock_page(eb->pages[i]); 5295 return eb; 5296 5297 free_eb: 5298 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5299 for (i = 0; i < num_pages; i++) { 5300 if (eb->pages[i]) 5301 unlock_page(eb->pages[i]); 5302 } 5303 5304 btrfs_release_extent_buffer(eb); 5305 return exists; 5306 } 5307 5308 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5309 { 5310 struct extent_buffer *eb = 5311 container_of(head, struct extent_buffer, rcu_head); 5312 5313 __free_extent_buffer(eb); 5314 } 5315 5316 static int release_extent_buffer(struct extent_buffer *eb) 5317 __releases(&eb->refs_lock) 5318 { 5319 lockdep_assert_held(&eb->refs_lock); 5320 5321 WARN_ON(atomic_read(&eb->refs) == 0); 5322 if (atomic_dec_and_test(&eb->refs)) { 5323 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5324 struct btrfs_fs_info *fs_info = eb->fs_info; 5325 5326 spin_unlock(&eb->refs_lock); 5327 5328 spin_lock(&fs_info->buffer_lock); 5329 radix_tree_delete(&fs_info->buffer_radix, 5330 eb->start >> PAGE_SHIFT); 5331 spin_unlock(&fs_info->buffer_lock); 5332 } else { 5333 spin_unlock(&eb->refs_lock); 5334 } 5335 5336 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5337 /* Should be safe to release our pages at this point */ 5338 btrfs_release_extent_buffer_pages(eb); 5339 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5340 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5341 __free_extent_buffer(eb); 5342 return 1; 5343 } 5344 #endif 5345 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5346 return 1; 5347 } 5348 spin_unlock(&eb->refs_lock); 5349 5350 return 0; 5351 } 5352 5353 void free_extent_buffer(struct extent_buffer *eb) 5354 { 5355 int refs; 5356 int old; 5357 if (!eb) 5358 return; 5359 5360 while (1) { 5361 refs = atomic_read(&eb->refs); 5362 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5363 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5364 refs == 1)) 5365 break; 5366 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5367 if (old == refs) 5368 return; 5369 } 5370 5371 spin_lock(&eb->refs_lock); 5372 if (atomic_read(&eb->refs) == 2 && 5373 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5374 !extent_buffer_under_io(eb) && 5375 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5376 atomic_dec(&eb->refs); 5377 5378 /* 5379 * I know this is terrible, but it's temporary until we stop tracking 5380 * the uptodate bits and such for the extent buffers. 5381 */ 5382 release_extent_buffer(eb); 5383 } 5384 5385 void free_extent_buffer_stale(struct extent_buffer *eb) 5386 { 5387 if (!eb) 5388 return; 5389 5390 spin_lock(&eb->refs_lock); 5391 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5392 5393 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5394 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5395 atomic_dec(&eb->refs); 5396 release_extent_buffer(eb); 5397 } 5398 5399 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 5400 { 5401 int i; 5402 int num_pages; 5403 struct page *page; 5404 5405 num_pages = num_extent_pages(eb); 5406 5407 for (i = 0; i < num_pages; i++) { 5408 page = eb->pages[i]; 5409 if (!PageDirty(page)) 5410 continue; 5411 5412 lock_page(page); 5413 WARN_ON(!PagePrivate(page)); 5414 5415 clear_page_dirty_for_io(page); 5416 xa_lock_irq(&page->mapping->i_pages); 5417 if (!PageDirty(page)) 5418 __xa_clear_mark(&page->mapping->i_pages, 5419 page_index(page), PAGECACHE_TAG_DIRTY); 5420 xa_unlock_irq(&page->mapping->i_pages); 5421 ClearPageError(page); 5422 unlock_page(page); 5423 } 5424 WARN_ON(atomic_read(&eb->refs) == 0); 5425 } 5426 5427 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5428 { 5429 int i; 5430 int num_pages; 5431 bool was_dirty; 5432 5433 check_buffer_tree_ref(eb); 5434 5435 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5436 5437 num_pages = num_extent_pages(eb); 5438 WARN_ON(atomic_read(&eb->refs) == 0); 5439 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5440 5441 if (!was_dirty) 5442 for (i = 0; i < num_pages; i++) 5443 set_page_dirty(eb->pages[i]); 5444 5445 #ifdef CONFIG_BTRFS_DEBUG 5446 for (i = 0; i < num_pages; i++) 5447 ASSERT(PageDirty(eb->pages[i])); 5448 #endif 5449 5450 return was_dirty; 5451 } 5452 5453 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5454 { 5455 int i; 5456 struct page *page; 5457 int num_pages; 5458 5459 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5460 num_pages = num_extent_pages(eb); 5461 for (i = 0; i < num_pages; i++) { 5462 page = eb->pages[i]; 5463 if (page) 5464 ClearPageUptodate(page); 5465 } 5466 } 5467 5468 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5469 { 5470 int i; 5471 struct page *page; 5472 int num_pages; 5473 5474 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5475 num_pages = num_extent_pages(eb); 5476 for (i = 0; i < num_pages; i++) { 5477 page = eb->pages[i]; 5478 SetPageUptodate(page); 5479 } 5480 } 5481 5482 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 5483 { 5484 int i; 5485 struct page *page; 5486 int err; 5487 int ret = 0; 5488 int locked_pages = 0; 5489 int all_uptodate = 1; 5490 int num_pages; 5491 unsigned long num_reads = 0; 5492 struct bio *bio = NULL; 5493 unsigned long bio_flags = 0; 5494 5495 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5496 return 0; 5497 5498 num_pages = num_extent_pages(eb); 5499 for (i = 0; i < num_pages; i++) { 5500 page = eb->pages[i]; 5501 if (wait == WAIT_NONE) { 5502 if (!trylock_page(page)) 5503 goto unlock_exit; 5504 } else { 5505 lock_page(page); 5506 } 5507 locked_pages++; 5508 } 5509 /* 5510 * We need to firstly lock all pages to make sure that 5511 * the uptodate bit of our pages won't be affected by 5512 * clear_extent_buffer_uptodate(). 5513 */ 5514 for (i = 0; i < num_pages; i++) { 5515 page = eb->pages[i]; 5516 if (!PageUptodate(page)) { 5517 num_reads++; 5518 all_uptodate = 0; 5519 } 5520 } 5521 5522 if (all_uptodate) { 5523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5524 goto unlock_exit; 5525 } 5526 5527 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5528 eb->read_mirror = 0; 5529 atomic_set(&eb->io_pages, num_reads); 5530 for (i = 0; i < num_pages; i++) { 5531 page = eb->pages[i]; 5532 5533 if (!PageUptodate(page)) { 5534 if (ret) { 5535 atomic_dec(&eb->io_pages); 5536 unlock_page(page); 5537 continue; 5538 } 5539 5540 ClearPageError(page); 5541 err = __extent_read_full_page(page, 5542 btree_get_extent, &bio, 5543 mirror_num, &bio_flags, 5544 REQ_META); 5545 if (err) { 5546 ret = err; 5547 /* 5548 * We use &bio in above __extent_read_full_page, 5549 * so we ensure that if it returns error, the 5550 * current page fails to add itself to bio and 5551 * it's been unlocked. 5552 * 5553 * We must dec io_pages by ourselves. 5554 */ 5555 atomic_dec(&eb->io_pages); 5556 } 5557 } else { 5558 unlock_page(page); 5559 } 5560 } 5561 5562 if (bio) { 5563 err = submit_one_bio(bio, mirror_num, bio_flags); 5564 if (err) 5565 return err; 5566 } 5567 5568 if (ret || wait != WAIT_COMPLETE) 5569 return ret; 5570 5571 for (i = 0; i < num_pages; i++) { 5572 page = eb->pages[i]; 5573 wait_on_page_locked(page); 5574 if (!PageUptodate(page)) 5575 ret = -EIO; 5576 } 5577 5578 return ret; 5579 5580 unlock_exit: 5581 while (locked_pages > 0) { 5582 locked_pages--; 5583 page = eb->pages[locked_pages]; 5584 unlock_page(page); 5585 } 5586 return ret; 5587 } 5588 5589 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5590 unsigned long start, unsigned long len) 5591 { 5592 size_t cur; 5593 size_t offset; 5594 struct page *page; 5595 char *kaddr; 5596 char *dst = (char *)dstv; 5597 unsigned long i = start >> PAGE_SHIFT; 5598 5599 if (start + len > eb->len) { 5600 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5601 eb->start, eb->len, start, len); 5602 memset(dst, 0, len); 5603 return; 5604 } 5605 5606 offset = offset_in_page(start); 5607 5608 while (len > 0) { 5609 page = eb->pages[i]; 5610 5611 cur = min(len, (PAGE_SIZE - offset)); 5612 kaddr = page_address(page); 5613 memcpy(dst, kaddr + offset, cur); 5614 5615 dst += cur; 5616 len -= cur; 5617 offset = 0; 5618 i++; 5619 } 5620 } 5621 5622 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5623 void __user *dstv, 5624 unsigned long start, unsigned long len) 5625 { 5626 size_t cur; 5627 size_t offset; 5628 struct page *page; 5629 char *kaddr; 5630 char __user *dst = (char __user *)dstv; 5631 unsigned long i = start >> PAGE_SHIFT; 5632 int ret = 0; 5633 5634 WARN_ON(start > eb->len); 5635 WARN_ON(start + len > eb->start + eb->len); 5636 5637 offset = offset_in_page(start); 5638 5639 while (len > 0) { 5640 page = eb->pages[i]; 5641 5642 cur = min(len, (PAGE_SIZE - offset)); 5643 kaddr = page_address(page); 5644 if (copy_to_user(dst, kaddr + offset, cur)) { 5645 ret = -EFAULT; 5646 break; 5647 } 5648 5649 dst += cur; 5650 len -= cur; 5651 offset = 0; 5652 i++; 5653 } 5654 5655 return ret; 5656 } 5657 5658 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5659 unsigned long start, unsigned long len) 5660 { 5661 size_t cur; 5662 size_t offset; 5663 struct page *page; 5664 char *kaddr; 5665 char *ptr = (char *)ptrv; 5666 unsigned long i = start >> PAGE_SHIFT; 5667 int ret = 0; 5668 5669 WARN_ON(start > eb->len); 5670 WARN_ON(start + len > eb->start + eb->len); 5671 5672 offset = offset_in_page(start); 5673 5674 while (len > 0) { 5675 page = eb->pages[i]; 5676 5677 cur = min(len, (PAGE_SIZE - offset)); 5678 5679 kaddr = page_address(page); 5680 ret = memcmp(ptr, kaddr + offset, cur); 5681 if (ret) 5682 break; 5683 5684 ptr += cur; 5685 len -= cur; 5686 offset = 0; 5687 i++; 5688 } 5689 return ret; 5690 } 5691 5692 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 5693 const void *srcv) 5694 { 5695 char *kaddr; 5696 5697 WARN_ON(!PageUptodate(eb->pages[0])); 5698 kaddr = page_address(eb->pages[0]); 5699 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5700 BTRFS_FSID_SIZE); 5701 } 5702 5703 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 5704 { 5705 char *kaddr; 5706 5707 WARN_ON(!PageUptodate(eb->pages[0])); 5708 kaddr = page_address(eb->pages[0]); 5709 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5710 BTRFS_FSID_SIZE); 5711 } 5712 5713 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 5714 unsigned long start, unsigned long len) 5715 { 5716 size_t cur; 5717 size_t offset; 5718 struct page *page; 5719 char *kaddr; 5720 char *src = (char *)srcv; 5721 unsigned long i = start >> PAGE_SHIFT; 5722 5723 WARN_ON(start > eb->len); 5724 WARN_ON(start + len > eb->start + eb->len); 5725 5726 offset = offset_in_page(start); 5727 5728 while (len > 0) { 5729 page = eb->pages[i]; 5730 WARN_ON(!PageUptodate(page)); 5731 5732 cur = min(len, PAGE_SIZE - offset); 5733 kaddr = page_address(page); 5734 memcpy(kaddr + offset, src, cur); 5735 5736 src += cur; 5737 len -= cur; 5738 offset = 0; 5739 i++; 5740 } 5741 } 5742 5743 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 5744 unsigned long len) 5745 { 5746 size_t cur; 5747 size_t offset; 5748 struct page *page; 5749 char *kaddr; 5750 unsigned long i = start >> PAGE_SHIFT; 5751 5752 WARN_ON(start > eb->len); 5753 WARN_ON(start + len > eb->start + eb->len); 5754 5755 offset = offset_in_page(start); 5756 5757 while (len > 0) { 5758 page = eb->pages[i]; 5759 WARN_ON(!PageUptodate(page)); 5760 5761 cur = min(len, PAGE_SIZE - offset); 5762 kaddr = page_address(page); 5763 memset(kaddr + offset, 0, cur); 5764 5765 len -= cur; 5766 offset = 0; 5767 i++; 5768 } 5769 } 5770 5771 void copy_extent_buffer_full(const struct extent_buffer *dst, 5772 const struct extent_buffer *src) 5773 { 5774 int i; 5775 int num_pages; 5776 5777 ASSERT(dst->len == src->len); 5778 5779 num_pages = num_extent_pages(dst); 5780 for (i = 0; i < num_pages; i++) 5781 copy_page(page_address(dst->pages[i]), 5782 page_address(src->pages[i])); 5783 } 5784 5785 void copy_extent_buffer(const struct extent_buffer *dst, 5786 const struct extent_buffer *src, 5787 unsigned long dst_offset, unsigned long src_offset, 5788 unsigned long len) 5789 { 5790 u64 dst_len = dst->len; 5791 size_t cur; 5792 size_t offset; 5793 struct page *page; 5794 char *kaddr; 5795 unsigned long i = dst_offset >> PAGE_SHIFT; 5796 5797 WARN_ON(src->len != dst_len); 5798 5799 offset = offset_in_page(dst_offset); 5800 5801 while (len > 0) { 5802 page = dst->pages[i]; 5803 WARN_ON(!PageUptodate(page)); 5804 5805 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5806 5807 kaddr = page_address(page); 5808 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5809 5810 src_offset += cur; 5811 len -= cur; 5812 offset = 0; 5813 i++; 5814 } 5815 } 5816 5817 /* 5818 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5819 * given bit number 5820 * @eb: the extent buffer 5821 * @start: offset of the bitmap item in the extent buffer 5822 * @nr: bit number 5823 * @page_index: return index of the page in the extent buffer that contains the 5824 * given bit number 5825 * @page_offset: return offset into the page given by page_index 5826 * 5827 * This helper hides the ugliness of finding the byte in an extent buffer which 5828 * contains a given bit. 5829 */ 5830 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 5831 unsigned long start, unsigned long nr, 5832 unsigned long *page_index, 5833 size_t *page_offset) 5834 { 5835 size_t byte_offset = BIT_BYTE(nr); 5836 size_t offset; 5837 5838 /* 5839 * The byte we want is the offset of the extent buffer + the offset of 5840 * the bitmap item in the extent buffer + the offset of the byte in the 5841 * bitmap item. 5842 */ 5843 offset = start + byte_offset; 5844 5845 *page_index = offset >> PAGE_SHIFT; 5846 *page_offset = offset_in_page(offset); 5847 } 5848 5849 /** 5850 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5851 * @eb: the extent buffer 5852 * @start: offset of the bitmap item in the extent buffer 5853 * @nr: bit number to test 5854 */ 5855 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 5856 unsigned long nr) 5857 { 5858 u8 *kaddr; 5859 struct page *page; 5860 unsigned long i; 5861 size_t offset; 5862 5863 eb_bitmap_offset(eb, start, nr, &i, &offset); 5864 page = eb->pages[i]; 5865 WARN_ON(!PageUptodate(page)); 5866 kaddr = page_address(page); 5867 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5868 } 5869 5870 /** 5871 * extent_buffer_bitmap_set - set an area of a bitmap 5872 * @eb: the extent buffer 5873 * @start: offset of the bitmap item in the extent buffer 5874 * @pos: bit number of the first bit 5875 * @len: number of bits to set 5876 */ 5877 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 5878 unsigned long pos, unsigned long len) 5879 { 5880 u8 *kaddr; 5881 struct page *page; 5882 unsigned long i; 5883 size_t offset; 5884 const unsigned int size = pos + len; 5885 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5886 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5887 5888 eb_bitmap_offset(eb, start, pos, &i, &offset); 5889 page = eb->pages[i]; 5890 WARN_ON(!PageUptodate(page)); 5891 kaddr = page_address(page); 5892 5893 while (len >= bits_to_set) { 5894 kaddr[offset] |= mask_to_set; 5895 len -= bits_to_set; 5896 bits_to_set = BITS_PER_BYTE; 5897 mask_to_set = ~0; 5898 if (++offset >= PAGE_SIZE && len > 0) { 5899 offset = 0; 5900 page = eb->pages[++i]; 5901 WARN_ON(!PageUptodate(page)); 5902 kaddr = page_address(page); 5903 } 5904 } 5905 if (len) { 5906 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5907 kaddr[offset] |= mask_to_set; 5908 } 5909 } 5910 5911 5912 /** 5913 * extent_buffer_bitmap_clear - clear an area of a bitmap 5914 * @eb: the extent buffer 5915 * @start: offset of the bitmap item in the extent buffer 5916 * @pos: bit number of the first bit 5917 * @len: number of bits to clear 5918 */ 5919 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5920 unsigned long start, unsigned long pos, 5921 unsigned long len) 5922 { 5923 u8 *kaddr; 5924 struct page *page; 5925 unsigned long i; 5926 size_t offset; 5927 const unsigned int size = pos + len; 5928 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5929 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5930 5931 eb_bitmap_offset(eb, start, pos, &i, &offset); 5932 page = eb->pages[i]; 5933 WARN_ON(!PageUptodate(page)); 5934 kaddr = page_address(page); 5935 5936 while (len >= bits_to_clear) { 5937 kaddr[offset] &= ~mask_to_clear; 5938 len -= bits_to_clear; 5939 bits_to_clear = BITS_PER_BYTE; 5940 mask_to_clear = ~0; 5941 if (++offset >= PAGE_SIZE && len > 0) { 5942 offset = 0; 5943 page = eb->pages[++i]; 5944 WARN_ON(!PageUptodate(page)); 5945 kaddr = page_address(page); 5946 } 5947 } 5948 if (len) { 5949 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5950 kaddr[offset] &= ~mask_to_clear; 5951 } 5952 } 5953 5954 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5955 { 5956 unsigned long distance = (src > dst) ? src - dst : dst - src; 5957 return distance < len; 5958 } 5959 5960 static void copy_pages(struct page *dst_page, struct page *src_page, 5961 unsigned long dst_off, unsigned long src_off, 5962 unsigned long len) 5963 { 5964 char *dst_kaddr = page_address(dst_page); 5965 char *src_kaddr; 5966 int must_memmove = 0; 5967 5968 if (dst_page != src_page) { 5969 src_kaddr = page_address(src_page); 5970 } else { 5971 src_kaddr = dst_kaddr; 5972 if (areas_overlap(src_off, dst_off, len)) 5973 must_memmove = 1; 5974 } 5975 5976 if (must_memmove) 5977 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5978 else 5979 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5980 } 5981 5982 void memcpy_extent_buffer(const struct extent_buffer *dst, 5983 unsigned long dst_offset, unsigned long src_offset, 5984 unsigned long len) 5985 { 5986 struct btrfs_fs_info *fs_info = dst->fs_info; 5987 size_t cur; 5988 size_t dst_off_in_page; 5989 size_t src_off_in_page; 5990 unsigned long dst_i; 5991 unsigned long src_i; 5992 5993 if (src_offset + len > dst->len) { 5994 btrfs_err(fs_info, 5995 "memmove bogus src_offset %lu move len %lu dst len %lu", 5996 src_offset, len, dst->len); 5997 BUG(); 5998 } 5999 if (dst_offset + len > dst->len) { 6000 btrfs_err(fs_info, 6001 "memmove bogus dst_offset %lu move len %lu dst len %lu", 6002 dst_offset, len, dst->len); 6003 BUG(); 6004 } 6005 6006 while (len > 0) { 6007 dst_off_in_page = offset_in_page(dst_offset); 6008 src_off_in_page = offset_in_page(src_offset); 6009 6010 dst_i = dst_offset >> PAGE_SHIFT; 6011 src_i = src_offset >> PAGE_SHIFT; 6012 6013 cur = min(len, (unsigned long)(PAGE_SIZE - 6014 src_off_in_page)); 6015 cur = min_t(unsigned long, cur, 6016 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 6017 6018 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6019 dst_off_in_page, src_off_in_page, cur); 6020 6021 src_offset += cur; 6022 dst_offset += cur; 6023 len -= cur; 6024 } 6025 } 6026 6027 void memmove_extent_buffer(const struct extent_buffer *dst, 6028 unsigned long dst_offset, unsigned long src_offset, 6029 unsigned long len) 6030 { 6031 struct btrfs_fs_info *fs_info = dst->fs_info; 6032 size_t cur; 6033 size_t dst_off_in_page; 6034 size_t src_off_in_page; 6035 unsigned long dst_end = dst_offset + len - 1; 6036 unsigned long src_end = src_offset + len - 1; 6037 unsigned long dst_i; 6038 unsigned long src_i; 6039 6040 if (src_offset + len > dst->len) { 6041 btrfs_err(fs_info, 6042 "memmove bogus src_offset %lu move len %lu len %lu", 6043 src_offset, len, dst->len); 6044 BUG(); 6045 } 6046 if (dst_offset + len > dst->len) { 6047 btrfs_err(fs_info, 6048 "memmove bogus dst_offset %lu move len %lu len %lu", 6049 dst_offset, len, dst->len); 6050 BUG(); 6051 } 6052 if (dst_offset < src_offset) { 6053 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 6054 return; 6055 } 6056 while (len > 0) { 6057 dst_i = dst_end >> PAGE_SHIFT; 6058 src_i = src_end >> PAGE_SHIFT; 6059 6060 dst_off_in_page = offset_in_page(dst_end); 6061 src_off_in_page = offset_in_page(src_end); 6062 6063 cur = min_t(unsigned long, len, src_off_in_page + 1); 6064 cur = min(cur, dst_off_in_page + 1); 6065 copy_pages(dst->pages[dst_i], dst->pages[src_i], 6066 dst_off_in_page - cur + 1, 6067 src_off_in_page - cur + 1, cur); 6068 6069 dst_end -= cur; 6070 src_end -= cur; 6071 len -= cur; 6072 } 6073 } 6074 6075 int try_release_extent_buffer(struct page *page) 6076 { 6077 struct extent_buffer *eb; 6078 6079 /* 6080 * We need to make sure nobody is attaching this page to an eb right 6081 * now. 6082 */ 6083 spin_lock(&page->mapping->private_lock); 6084 if (!PagePrivate(page)) { 6085 spin_unlock(&page->mapping->private_lock); 6086 return 1; 6087 } 6088 6089 eb = (struct extent_buffer *)page->private; 6090 BUG_ON(!eb); 6091 6092 /* 6093 * This is a little awful but should be ok, we need to make sure that 6094 * the eb doesn't disappear out from under us while we're looking at 6095 * this page. 6096 */ 6097 spin_lock(&eb->refs_lock); 6098 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 6099 spin_unlock(&eb->refs_lock); 6100 spin_unlock(&page->mapping->private_lock); 6101 return 0; 6102 } 6103 spin_unlock(&page->mapping->private_lock); 6104 6105 /* 6106 * If tree ref isn't set then we know the ref on this eb is a real ref, 6107 * so just return, this page will likely be freed soon anyway. 6108 */ 6109 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 6110 spin_unlock(&eb->refs_lock); 6111 return 0; 6112 } 6113 6114 return release_extent_buffer(eb); 6115 } 6116