xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 5104d265)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       (unsigned long long)state->start,
65 		       (unsigned long long)state->end,
66 		       state->state, state->tree, atomic_read(&state->refs));
67 		list_del(&state->leak_list);
68 		kmem_cache_free(extent_state_cache, state);
69 	}
70 
71 	while (!list_empty(&buffers)) {
72 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 		       "refs %d\n", (unsigned long long)eb->start,
75 		       eb->len, atomic_read(&eb->refs));
76 		list_del(&eb->leak_list);
77 		kmem_cache_free(extent_buffer_cache, eb);
78 	}
79 }
80 
81 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
82 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 		struct inode *inode, u64 start, u64 end)
85 {
86 	u64 isize = i_size_read(inode);
87 
88 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 		printk_ratelimited(KERN_DEBUG
90 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 				caller,
92 				(unsigned long long)btrfs_ino(inode),
93 				(unsigned long long)isize,
94 				(unsigned long long)start,
95 				(unsigned long long)end);
96 	}
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head)	do {} while (0)
100 #define btrfs_leak_debug_del(entry)	do {} while (0)
101 #define btrfs_leak_debug_check()	do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
103 #endif
104 
105 #define BUFFER_LRU_MAX 64
106 
107 struct tree_entry {
108 	u64 start;
109 	u64 end;
110 	struct rb_node rb_node;
111 };
112 
113 struct extent_page_data {
114 	struct bio *bio;
115 	struct extent_io_tree *tree;
116 	get_extent_t *get_extent;
117 	unsigned long bio_flags;
118 
119 	/* tells writepage not to lock the state bits for this range
120 	 * it still does the unlocking
121 	 */
122 	unsigned int extent_locked:1;
123 
124 	/* tells the submit_bio code to use a WRITE_SYNC */
125 	unsigned int sync_io:1;
126 };
127 
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132 	return btrfs_sb(tree->mapping->host->i_sb);
133 }
134 
135 int __init extent_io_init(void)
136 {
137 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
138 			sizeof(struct extent_state), 0,
139 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140 	if (!extent_state_cache)
141 		return -ENOMEM;
142 
143 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144 			sizeof(struct extent_buffer), 0,
145 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146 	if (!extent_buffer_cache)
147 		goto free_state_cache;
148 
149 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 				     offsetof(struct btrfs_io_bio, bio));
151 	if (!btrfs_bioset)
152 		goto free_buffer_cache;
153 	return 0;
154 
155 free_buffer_cache:
156 	kmem_cache_destroy(extent_buffer_cache);
157 	extent_buffer_cache = NULL;
158 
159 free_state_cache:
160 	kmem_cache_destroy(extent_state_cache);
161 	extent_state_cache = NULL;
162 	return -ENOMEM;
163 }
164 
165 void extent_io_exit(void)
166 {
167 	btrfs_leak_debug_check();
168 
169 	/*
170 	 * Make sure all delayed rcu free are flushed before we
171 	 * destroy caches.
172 	 */
173 	rcu_barrier();
174 	if (extent_state_cache)
175 		kmem_cache_destroy(extent_state_cache);
176 	if (extent_buffer_cache)
177 		kmem_cache_destroy(extent_buffer_cache);
178 	if (btrfs_bioset)
179 		bioset_free(btrfs_bioset);
180 }
181 
182 void extent_io_tree_init(struct extent_io_tree *tree,
183 			 struct address_space *mapping)
184 {
185 	tree->state = RB_ROOT;
186 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187 	tree->ops = NULL;
188 	tree->dirty_bytes = 0;
189 	spin_lock_init(&tree->lock);
190 	spin_lock_init(&tree->buffer_lock);
191 	tree->mapping = mapping;
192 }
193 
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196 	struct extent_state *state;
197 
198 	state = kmem_cache_alloc(extent_state_cache, mask);
199 	if (!state)
200 		return state;
201 	state->state = 0;
202 	state->private = 0;
203 	state->tree = NULL;
204 	btrfs_leak_debug_add(&state->leak_list, &states);
205 	atomic_set(&state->refs, 1);
206 	init_waitqueue_head(&state->wq);
207 	trace_alloc_extent_state(state, mask, _RET_IP_);
208 	return state;
209 }
210 
211 void free_extent_state(struct extent_state *state)
212 {
213 	if (!state)
214 		return;
215 	if (atomic_dec_and_test(&state->refs)) {
216 		WARN_ON(state->tree);
217 		btrfs_leak_debug_del(&state->leak_list);
218 		trace_free_extent_state(state, _RET_IP_);
219 		kmem_cache_free(extent_state_cache, state);
220 	}
221 }
222 
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 				   struct rb_node *node)
225 {
226 	struct rb_node **p = &root->rb_node;
227 	struct rb_node *parent = NULL;
228 	struct tree_entry *entry;
229 
230 	while (*p) {
231 		parent = *p;
232 		entry = rb_entry(parent, struct tree_entry, rb_node);
233 
234 		if (offset < entry->start)
235 			p = &(*p)->rb_left;
236 		else if (offset > entry->end)
237 			p = &(*p)->rb_right;
238 		else
239 			return parent;
240 	}
241 
242 	rb_link_node(node, parent, p);
243 	rb_insert_color(node, root);
244 	return NULL;
245 }
246 
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248 				     struct rb_node **prev_ret,
249 				     struct rb_node **next_ret)
250 {
251 	struct rb_root *root = &tree->state;
252 	struct rb_node *n = root->rb_node;
253 	struct rb_node *prev = NULL;
254 	struct rb_node *orig_prev = NULL;
255 	struct tree_entry *entry;
256 	struct tree_entry *prev_entry = NULL;
257 
258 	while (n) {
259 		entry = rb_entry(n, struct tree_entry, rb_node);
260 		prev = n;
261 		prev_entry = entry;
262 
263 		if (offset < entry->start)
264 			n = n->rb_left;
265 		else if (offset > entry->end)
266 			n = n->rb_right;
267 		else
268 			return n;
269 	}
270 
271 	if (prev_ret) {
272 		orig_prev = prev;
273 		while (prev && offset > prev_entry->end) {
274 			prev = rb_next(prev);
275 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 		}
277 		*prev_ret = prev;
278 		prev = orig_prev;
279 	}
280 
281 	if (next_ret) {
282 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283 		while (prev && offset < prev_entry->start) {
284 			prev = rb_prev(prev);
285 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 		}
287 		*next_ret = prev;
288 	}
289 	return NULL;
290 }
291 
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 					  u64 offset)
294 {
295 	struct rb_node *prev = NULL;
296 	struct rb_node *ret;
297 
298 	ret = __etree_search(tree, offset, &prev, NULL);
299 	if (!ret)
300 		return prev;
301 	return ret;
302 }
303 
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 		     struct extent_state *other)
306 {
307 	if (tree->ops && tree->ops->merge_extent_hook)
308 		tree->ops->merge_extent_hook(tree->mapping->host, new,
309 					     other);
310 }
311 
312 /*
313  * utility function to look for merge candidates inside a given range.
314  * Any extents with matching state are merged together into a single
315  * extent in the tree.  Extents with EXTENT_IO in their state field
316  * are not merged because the end_io handlers need to be able to do
317  * operations on them without sleeping (or doing allocations/splits).
318  *
319  * This should be called with the tree lock held.
320  */
321 static void merge_state(struct extent_io_tree *tree,
322 		        struct extent_state *state)
323 {
324 	struct extent_state *other;
325 	struct rb_node *other_node;
326 
327 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328 		return;
329 
330 	other_node = rb_prev(&state->rb_node);
331 	if (other_node) {
332 		other = rb_entry(other_node, struct extent_state, rb_node);
333 		if (other->end == state->start - 1 &&
334 		    other->state == state->state) {
335 			merge_cb(tree, state, other);
336 			state->start = other->start;
337 			other->tree = NULL;
338 			rb_erase(&other->rb_node, &tree->state);
339 			free_extent_state(other);
340 		}
341 	}
342 	other_node = rb_next(&state->rb_node);
343 	if (other_node) {
344 		other = rb_entry(other_node, struct extent_state, rb_node);
345 		if (other->start == state->end + 1 &&
346 		    other->state == state->state) {
347 			merge_cb(tree, state, other);
348 			state->end = other->end;
349 			other->tree = NULL;
350 			rb_erase(&other->rb_node, &tree->state);
351 			free_extent_state(other);
352 		}
353 	}
354 }
355 
356 static void set_state_cb(struct extent_io_tree *tree,
357 			 struct extent_state *state, unsigned long *bits)
358 {
359 	if (tree->ops && tree->ops->set_bit_hook)
360 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362 
363 static void clear_state_cb(struct extent_io_tree *tree,
364 			   struct extent_state *state, unsigned long *bits)
365 {
366 	if (tree->ops && tree->ops->clear_bit_hook)
367 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369 
370 static void set_state_bits(struct extent_io_tree *tree,
371 			   struct extent_state *state, unsigned long *bits);
372 
373 /*
374  * insert an extent_state struct into the tree.  'bits' are set on the
375  * struct before it is inserted.
376  *
377  * This may return -EEXIST if the extent is already there, in which case the
378  * state struct is freed.
379  *
380  * The tree lock is not taken internally.  This is a utility function and
381  * probably isn't what you want to call (see set/clear_extent_bit).
382  */
383 static int insert_state(struct extent_io_tree *tree,
384 			struct extent_state *state, u64 start, u64 end,
385 			unsigned long *bits)
386 {
387 	struct rb_node *node;
388 
389 	if (end < start)
390 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391 		       (unsigned long long)end,
392 		       (unsigned long long)start);
393 	state->start = start;
394 	state->end = end;
395 
396 	set_state_bits(tree, state, bits);
397 
398 	node = tree_insert(&tree->state, end, &state->rb_node);
399 	if (node) {
400 		struct extent_state *found;
401 		found = rb_entry(node, struct extent_state, rb_node);
402 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 		       "%llu %llu\n", (unsigned long long)found->start,
404 		       (unsigned long long)found->end,
405 		       (unsigned long long)start, (unsigned long long)end);
406 		return -EEXIST;
407 	}
408 	state->tree = tree;
409 	merge_state(tree, state);
410 	return 0;
411 }
412 
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414 		     u64 split)
415 {
416 	if (tree->ops && tree->ops->split_extent_hook)
417 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419 
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 		       struct extent_state *prealloc, u64 split)
436 {
437 	struct rb_node *node;
438 
439 	split_cb(tree, orig, split);
440 
441 	prealloc->start = orig->start;
442 	prealloc->end = split - 1;
443 	prealloc->state = orig->state;
444 	orig->start = split;
445 
446 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 	if (node) {
448 		free_extent_state(prealloc);
449 		return -EEXIST;
450 	}
451 	prealloc->tree = tree;
452 	return 0;
453 }
454 
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457 	struct rb_node *next = rb_next(&state->rb_node);
458 	if (next)
459 		return rb_entry(next, struct extent_state, rb_node);
460 	else
461 		return NULL;
462 }
463 
464 /*
465  * utility function to clear some bits in an extent state struct.
466  * it will optionally wake up any one waiting on this state (wake == 1).
467  *
468  * If no bits are set on the state struct after clearing things, the
469  * struct is freed and removed from the tree
470  */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 					    struct extent_state *state,
473 					    unsigned long *bits, int wake)
474 {
475 	struct extent_state *next;
476 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477 
478 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479 		u64 range = state->end - state->start + 1;
480 		WARN_ON(range > tree->dirty_bytes);
481 		tree->dirty_bytes -= range;
482 	}
483 	clear_state_cb(tree, state, bits);
484 	state->state &= ~bits_to_clear;
485 	if (wake)
486 		wake_up(&state->wq);
487 	if (state->state == 0) {
488 		next = next_state(state);
489 		if (state->tree) {
490 			rb_erase(&state->rb_node, &tree->state);
491 			state->tree = NULL;
492 			free_extent_state(state);
493 		} else {
494 			WARN_ON(1);
495 		}
496 	} else {
497 		merge_state(tree, state);
498 		next = next_state(state);
499 	}
500 	return next;
501 }
502 
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506 	if (!prealloc)
507 		prealloc = alloc_extent_state(GFP_ATOMIC);
508 
509 	return prealloc;
510 }
511 
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 		    "Extent tree was modified by another "
516 		    "thread while locked.");
517 }
518 
519 /*
520  * clear some bits on a range in the tree.  This may require splitting
521  * or inserting elements in the tree, so the gfp mask is used to
522  * indicate which allocations or sleeping are allowed.
523  *
524  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525  * the given range from the tree regardless of state (ie for truncate).
526  *
527  * the range [start, end] is inclusive.
528  *
529  * This takes the tree lock, and returns 0 on success and < 0 on error.
530  */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532 		     unsigned long bits, int wake, int delete,
533 		     struct extent_state **cached_state,
534 		     gfp_t mask)
535 {
536 	struct extent_state *state;
537 	struct extent_state *cached;
538 	struct extent_state *prealloc = NULL;
539 	struct rb_node *node;
540 	u64 last_end;
541 	int err;
542 	int clear = 0;
543 
544 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545 
546 	if (bits & EXTENT_DELALLOC)
547 		bits |= EXTENT_NORESERVE;
548 
549 	if (delete)
550 		bits |= ~EXTENT_CTLBITS;
551 	bits |= EXTENT_FIRST_DELALLOC;
552 
553 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 		clear = 1;
555 again:
556 	if (!prealloc && (mask & __GFP_WAIT)) {
557 		prealloc = alloc_extent_state(mask);
558 		if (!prealloc)
559 			return -ENOMEM;
560 	}
561 
562 	spin_lock(&tree->lock);
563 	if (cached_state) {
564 		cached = *cached_state;
565 
566 		if (clear) {
567 			*cached_state = NULL;
568 			cached_state = NULL;
569 		}
570 
571 		if (cached && cached->tree && cached->start <= start &&
572 		    cached->end > start) {
573 			if (clear)
574 				atomic_dec(&cached->refs);
575 			state = cached;
576 			goto hit_next;
577 		}
578 		if (clear)
579 			free_extent_state(cached);
580 	}
581 	/*
582 	 * this search will find the extents that end after
583 	 * our range starts
584 	 */
585 	node = tree_search(tree, start);
586 	if (!node)
587 		goto out;
588 	state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590 	if (state->start > end)
591 		goto out;
592 	WARN_ON(state->end < start);
593 	last_end = state->end;
594 
595 	/* the state doesn't have the wanted bits, go ahead */
596 	if (!(state->state & bits)) {
597 		state = next_state(state);
598 		goto next;
599 	}
600 
601 	/*
602 	 *     | ---- desired range ---- |
603 	 *  | state | or
604 	 *  | ------------- state -------------- |
605 	 *
606 	 * We need to split the extent we found, and may flip
607 	 * bits on second half.
608 	 *
609 	 * If the extent we found extends past our range, we
610 	 * just split and search again.  It'll get split again
611 	 * the next time though.
612 	 *
613 	 * If the extent we found is inside our range, we clear
614 	 * the desired bit on it.
615 	 */
616 
617 	if (state->start < start) {
618 		prealloc = alloc_extent_state_atomic(prealloc);
619 		BUG_ON(!prealloc);
620 		err = split_state(tree, state, prealloc, start);
621 		if (err)
622 			extent_io_tree_panic(tree, err);
623 
624 		prealloc = NULL;
625 		if (err)
626 			goto out;
627 		if (state->end <= end) {
628 			state = clear_state_bit(tree, state, &bits, wake);
629 			goto next;
630 		}
631 		goto search_again;
632 	}
633 	/*
634 	 * | ---- desired range ---- |
635 	 *                        | state |
636 	 * We need to split the extent, and clear the bit
637 	 * on the first half
638 	 */
639 	if (state->start <= end && state->end > end) {
640 		prealloc = alloc_extent_state_atomic(prealloc);
641 		BUG_ON(!prealloc);
642 		err = split_state(tree, state, prealloc, end + 1);
643 		if (err)
644 			extent_io_tree_panic(tree, err);
645 
646 		if (wake)
647 			wake_up(&state->wq);
648 
649 		clear_state_bit(tree, prealloc, &bits, wake);
650 
651 		prealloc = NULL;
652 		goto out;
653 	}
654 
655 	state = clear_state_bit(tree, state, &bits, wake);
656 next:
657 	if (last_end == (u64)-1)
658 		goto out;
659 	start = last_end + 1;
660 	if (start <= end && state && !need_resched())
661 		goto hit_next;
662 	goto search_again;
663 
664 out:
665 	spin_unlock(&tree->lock);
666 	if (prealloc)
667 		free_extent_state(prealloc);
668 
669 	return 0;
670 
671 search_again:
672 	if (start > end)
673 		goto out;
674 	spin_unlock(&tree->lock);
675 	if (mask & __GFP_WAIT)
676 		cond_resched();
677 	goto again;
678 }
679 
680 static void wait_on_state(struct extent_io_tree *tree,
681 			  struct extent_state *state)
682 		__releases(tree->lock)
683 		__acquires(tree->lock)
684 {
685 	DEFINE_WAIT(wait);
686 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687 	spin_unlock(&tree->lock);
688 	schedule();
689 	spin_lock(&tree->lock);
690 	finish_wait(&state->wq, &wait);
691 }
692 
693 /*
694  * waits for one or more bits to clear on a range in the state tree.
695  * The range [start, end] is inclusive.
696  * The tree lock is taken by this function
697  */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 			    unsigned long bits)
700 {
701 	struct extent_state *state;
702 	struct rb_node *node;
703 
704 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705 
706 	spin_lock(&tree->lock);
707 again:
708 	while (1) {
709 		/*
710 		 * this search will find all the extents that end after
711 		 * our range starts
712 		 */
713 		node = tree_search(tree, start);
714 		if (!node)
715 			break;
716 
717 		state = rb_entry(node, struct extent_state, rb_node);
718 
719 		if (state->start > end)
720 			goto out;
721 
722 		if (state->state & bits) {
723 			start = state->start;
724 			atomic_inc(&state->refs);
725 			wait_on_state(tree, state);
726 			free_extent_state(state);
727 			goto again;
728 		}
729 		start = state->end + 1;
730 
731 		if (start > end)
732 			break;
733 
734 		cond_resched_lock(&tree->lock);
735 	}
736 out:
737 	spin_unlock(&tree->lock);
738 }
739 
740 static void set_state_bits(struct extent_io_tree *tree,
741 			   struct extent_state *state,
742 			   unsigned long *bits)
743 {
744 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745 
746 	set_state_cb(tree, state, bits);
747 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748 		u64 range = state->end - state->start + 1;
749 		tree->dirty_bytes += range;
750 	}
751 	state->state |= bits_to_set;
752 }
753 
754 static void cache_state(struct extent_state *state,
755 			struct extent_state **cached_ptr)
756 {
757 	if (cached_ptr && !(*cached_ptr)) {
758 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 			*cached_ptr = state;
760 			atomic_inc(&state->refs);
761 		}
762 	}
763 }
764 
765 static void uncache_state(struct extent_state **cached_ptr)
766 {
767 	if (cached_ptr && (*cached_ptr)) {
768 		struct extent_state *state = *cached_ptr;
769 		*cached_ptr = NULL;
770 		free_extent_state(state);
771 	}
772 }
773 
774 /*
775  * set some bits on a range in the tree.  This may require allocations or
776  * sleeping, so the gfp mask is used to indicate what is allowed.
777  *
778  * If any of the exclusive bits are set, this will fail with -EEXIST if some
779  * part of the range already has the desired bits set.  The start of the
780  * existing range is returned in failed_start in this case.
781  *
782  * [start, end] is inclusive This takes the tree lock.
783  */
784 
785 static int __must_check
786 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
787 		 unsigned long bits, unsigned long exclusive_bits,
788 		 u64 *failed_start, struct extent_state **cached_state,
789 		 gfp_t mask)
790 {
791 	struct extent_state *state;
792 	struct extent_state *prealloc = NULL;
793 	struct rb_node *node;
794 	int err = 0;
795 	u64 last_start;
796 	u64 last_end;
797 
798 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799 
800 	bits |= EXTENT_FIRST_DELALLOC;
801 again:
802 	if (!prealloc && (mask & __GFP_WAIT)) {
803 		prealloc = alloc_extent_state(mask);
804 		BUG_ON(!prealloc);
805 	}
806 
807 	spin_lock(&tree->lock);
808 	if (cached_state && *cached_state) {
809 		state = *cached_state;
810 		if (state->start <= start && state->end > start &&
811 		    state->tree) {
812 			node = &state->rb_node;
813 			goto hit_next;
814 		}
815 	}
816 	/*
817 	 * this search will find all the extents that end after
818 	 * our range starts.
819 	 */
820 	node = tree_search(tree, start);
821 	if (!node) {
822 		prealloc = alloc_extent_state_atomic(prealloc);
823 		BUG_ON(!prealloc);
824 		err = insert_state(tree, prealloc, start, end, &bits);
825 		if (err)
826 			extent_io_tree_panic(tree, err);
827 
828 		prealloc = NULL;
829 		goto out;
830 	}
831 	state = rb_entry(node, struct extent_state, rb_node);
832 hit_next:
833 	last_start = state->start;
834 	last_end = state->end;
835 
836 	/*
837 	 * | ---- desired range ---- |
838 	 * | state |
839 	 *
840 	 * Just lock what we found and keep going
841 	 */
842 	if (state->start == start && state->end <= end) {
843 		if (state->state & exclusive_bits) {
844 			*failed_start = state->start;
845 			err = -EEXIST;
846 			goto out;
847 		}
848 
849 		set_state_bits(tree, state, &bits);
850 		cache_state(state, cached_state);
851 		merge_state(tree, state);
852 		if (last_end == (u64)-1)
853 			goto out;
854 		start = last_end + 1;
855 		state = next_state(state);
856 		if (start < end && state && state->start == start &&
857 		    !need_resched())
858 			goto hit_next;
859 		goto search_again;
860 	}
861 
862 	/*
863 	 *     | ---- desired range ---- |
864 	 * | state |
865 	 *   or
866 	 * | ------------- state -------------- |
867 	 *
868 	 * We need to split the extent we found, and may flip bits on
869 	 * second half.
870 	 *
871 	 * If the extent we found extends past our
872 	 * range, we just split and search again.  It'll get split
873 	 * again the next time though.
874 	 *
875 	 * If the extent we found is inside our range, we set the
876 	 * desired bit on it.
877 	 */
878 	if (state->start < start) {
879 		if (state->state & exclusive_bits) {
880 			*failed_start = start;
881 			err = -EEXIST;
882 			goto out;
883 		}
884 
885 		prealloc = alloc_extent_state_atomic(prealloc);
886 		BUG_ON(!prealloc);
887 		err = split_state(tree, state, prealloc, start);
888 		if (err)
889 			extent_io_tree_panic(tree, err);
890 
891 		prealloc = NULL;
892 		if (err)
893 			goto out;
894 		if (state->end <= end) {
895 			set_state_bits(tree, state, &bits);
896 			cache_state(state, cached_state);
897 			merge_state(tree, state);
898 			if (last_end == (u64)-1)
899 				goto out;
900 			start = last_end + 1;
901 			state = next_state(state);
902 			if (start < end && state && state->start == start &&
903 			    !need_resched())
904 				goto hit_next;
905 		}
906 		goto search_again;
907 	}
908 	/*
909 	 * | ---- desired range ---- |
910 	 *     | state | or               | state |
911 	 *
912 	 * There's a hole, we need to insert something in it and
913 	 * ignore the extent we found.
914 	 */
915 	if (state->start > start) {
916 		u64 this_end;
917 		if (end < last_start)
918 			this_end = end;
919 		else
920 			this_end = last_start - 1;
921 
922 		prealloc = alloc_extent_state_atomic(prealloc);
923 		BUG_ON(!prealloc);
924 
925 		/*
926 		 * Avoid to free 'prealloc' if it can be merged with
927 		 * the later extent.
928 		 */
929 		err = insert_state(tree, prealloc, start, this_end,
930 				   &bits);
931 		if (err)
932 			extent_io_tree_panic(tree, err);
933 
934 		cache_state(prealloc, cached_state);
935 		prealloc = NULL;
936 		start = this_end + 1;
937 		goto search_again;
938 	}
939 	/*
940 	 * | ---- desired range ---- |
941 	 *                        | state |
942 	 * We need to split the extent, and set the bit
943 	 * on the first half
944 	 */
945 	if (state->start <= end && state->end > end) {
946 		if (state->state & exclusive_bits) {
947 			*failed_start = start;
948 			err = -EEXIST;
949 			goto out;
950 		}
951 
952 		prealloc = alloc_extent_state_atomic(prealloc);
953 		BUG_ON(!prealloc);
954 		err = split_state(tree, state, prealloc, end + 1);
955 		if (err)
956 			extent_io_tree_panic(tree, err);
957 
958 		set_state_bits(tree, prealloc, &bits);
959 		cache_state(prealloc, cached_state);
960 		merge_state(tree, prealloc);
961 		prealloc = NULL;
962 		goto out;
963 	}
964 
965 	goto search_again;
966 
967 out:
968 	spin_unlock(&tree->lock);
969 	if (prealloc)
970 		free_extent_state(prealloc);
971 
972 	return err;
973 
974 search_again:
975 	if (start > end)
976 		goto out;
977 	spin_unlock(&tree->lock);
978 	if (mask & __GFP_WAIT)
979 		cond_resched();
980 	goto again;
981 }
982 
983 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984 		   unsigned long bits, u64 * failed_start,
985 		   struct extent_state **cached_state, gfp_t mask)
986 {
987 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988 				cached_state, mask);
989 }
990 
991 
992 /**
993  * convert_extent_bit - convert all bits in a given range from one bit to
994  * 			another
995  * @tree:	the io tree to search
996  * @start:	the start offset in bytes
997  * @end:	the end offset in bytes (inclusive)
998  * @bits:	the bits to set in this range
999  * @clear_bits:	the bits to clear in this range
1000  * @cached_state:	state that we're going to cache
1001  * @mask:	the allocation mask
1002  *
1003  * This will go through and set bits for the given range.  If any states exist
1004  * already in this range they are set with the given bit and cleared of the
1005  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1006  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1007  * boundary bits like LOCK.
1008  */
1009 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1010 		       unsigned long bits, unsigned long clear_bits,
1011 		       struct extent_state **cached_state, gfp_t mask)
1012 {
1013 	struct extent_state *state;
1014 	struct extent_state *prealloc = NULL;
1015 	struct rb_node *node;
1016 	int err = 0;
1017 	u64 last_start;
1018 	u64 last_end;
1019 
1020 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021 
1022 again:
1023 	if (!prealloc && (mask & __GFP_WAIT)) {
1024 		prealloc = alloc_extent_state(mask);
1025 		if (!prealloc)
1026 			return -ENOMEM;
1027 	}
1028 
1029 	spin_lock(&tree->lock);
1030 	if (cached_state && *cached_state) {
1031 		state = *cached_state;
1032 		if (state->start <= start && state->end > start &&
1033 		    state->tree) {
1034 			node = &state->rb_node;
1035 			goto hit_next;
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * this search will find all the extents that end after
1041 	 * our range starts.
1042 	 */
1043 	node = tree_search(tree, start);
1044 	if (!node) {
1045 		prealloc = alloc_extent_state_atomic(prealloc);
1046 		if (!prealloc) {
1047 			err = -ENOMEM;
1048 			goto out;
1049 		}
1050 		err = insert_state(tree, prealloc, start, end, &bits);
1051 		prealloc = NULL;
1052 		if (err)
1053 			extent_io_tree_panic(tree, err);
1054 		goto out;
1055 	}
1056 	state = rb_entry(node, struct extent_state, rb_node);
1057 hit_next:
1058 	last_start = state->start;
1059 	last_end = state->end;
1060 
1061 	/*
1062 	 * | ---- desired range ---- |
1063 	 * | state |
1064 	 *
1065 	 * Just lock what we found and keep going
1066 	 */
1067 	if (state->start == start && state->end <= end) {
1068 		set_state_bits(tree, state, &bits);
1069 		cache_state(state, cached_state);
1070 		state = clear_state_bit(tree, state, &clear_bits, 0);
1071 		if (last_end == (u64)-1)
1072 			goto out;
1073 		start = last_end + 1;
1074 		if (start < end && state && state->start == start &&
1075 		    !need_resched())
1076 			goto hit_next;
1077 		goto search_again;
1078 	}
1079 
1080 	/*
1081 	 *     | ---- desired range ---- |
1082 	 * | state |
1083 	 *   or
1084 	 * | ------------- state -------------- |
1085 	 *
1086 	 * We need to split the extent we found, and may flip bits on
1087 	 * second half.
1088 	 *
1089 	 * If the extent we found extends past our
1090 	 * range, we just split and search again.  It'll get split
1091 	 * again the next time though.
1092 	 *
1093 	 * If the extent we found is inside our range, we set the
1094 	 * desired bit on it.
1095 	 */
1096 	if (state->start < start) {
1097 		prealloc = alloc_extent_state_atomic(prealloc);
1098 		if (!prealloc) {
1099 			err = -ENOMEM;
1100 			goto out;
1101 		}
1102 		err = split_state(tree, state, prealloc, start);
1103 		if (err)
1104 			extent_io_tree_panic(tree, err);
1105 		prealloc = NULL;
1106 		if (err)
1107 			goto out;
1108 		if (state->end <= end) {
1109 			set_state_bits(tree, state, &bits);
1110 			cache_state(state, cached_state);
1111 			state = clear_state_bit(tree, state, &clear_bits, 0);
1112 			if (last_end == (u64)-1)
1113 				goto out;
1114 			start = last_end + 1;
1115 			if (start < end && state && state->start == start &&
1116 			    !need_resched())
1117 				goto hit_next;
1118 		}
1119 		goto search_again;
1120 	}
1121 	/*
1122 	 * | ---- desired range ---- |
1123 	 *     | state | or               | state |
1124 	 *
1125 	 * There's a hole, we need to insert something in it and
1126 	 * ignore the extent we found.
1127 	 */
1128 	if (state->start > start) {
1129 		u64 this_end;
1130 		if (end < last_start)
1131 			this_end = end;
1132 		else
1133 			this_end = last_start - 1;
1134 
1135 		prealloc = alloc_extent_state_atomic(prealloc);
1136 		if (!prealloc) {
1137 			err = -ENOMEM;
1138 			goto out;
1139 		}
1140 
1141 		/*
1142 		 * Avoid to free 'prealloc' if it can be merged with
1143 		 * the later extent.
1144 		 */
1145 		err = insert_state(tree, prealloc, start, this_end,
1146 				   &bits);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		cache_state(prealloc, cached_state);
1150 		prealloc = NULL;
1151 		start = this_end + 1;
1152 		goto search_again;
1153 	}
1154 	/*
1155 	 * | ---- desired range ---- |
1156 	 *                        | state |
1157 	 * We need to split the extent, and set the bit
1158 	 * on the first half
1159 	 */
1160 	if (state->start <= end && state->end > end) {
1161 		prealloc = alloc_extent_state_atomic(prealloc);
1162 		if (!prealloc) {
1163 			err = -ENOMEM;
1164 			goto out;
1165 		}
1166 
1167 		err = split_state(tree, state, prealloc, end + 1);
1168 		if (err)
1169 			extent_io_tree_panic(tree, err);
1170 
1171 		set_state_bits(tree, prealloc, &bits);
1172 		cache_state(prealloc, cached_state);
1173 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1174 		prealloc = NULL;
1175 		goto out;
1176 	}
1177 
1178 	goto search_again;
1179 
1180 out:
1181 	spin_unlock(&tree->lock);
1182 	if (prealloc)
1183 		free_extent_state(prealloc);
1184 
1185 	return err;
1186 
1187 search_again:
1188 	if (start > end)
1189 		goto out;
1190 	spin_unlock(&tree->lock);
1191 	if (mask & __GFP_WAIT)
1192 		cond_resched();
1193 	goto again;
1194 }
1195 
1196 /* wrappers around set/clear extent bit */
1197 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198 		     gfp_t mask)
1199 {
1200 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1201 			      NULL, mask);
1202 }
1203 
1204 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205 		    unsigned long bits, gfp_t mask)
1206 {
1207 	return set_extent_bit(tree, start, end, bits, NULL,
1208 			      NULL, mask);
1209 }
1210 
1211 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1212 		      unsigned long bits, gfp_t mask)
1213 {
1214 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1215 }
1216 
1217 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1218 			struct extent_state **cached_state, gfp_t mask)
1219 {
1220 	return set_extent_bit(tree, start, end,
1221 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1222 			      NULL, cached_state, mask);
1223 }
1224 
1225 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226 		      struct extent_state **cached_state, gfp_t mask)
1227 {
1228 	return set_extent_bit(tree, start, end,
1229 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230 			      NULL, cached_state, mask);
1231 }
1232 
1233 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 		       gfp_t mask)
1235 {
1236 	return clear_extent_bit(tree, start, end,
1237 				EXTENT_DIRTY | EXTENT_DELALLOC |
1238 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1239 }
1240 
1241 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242 		     gfp_t mask)
1243 {
1244 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1245 			      NULL, mask);
1246 }
1247 
1248 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249 			struct extent_state **cached_state, gfp_t mask)
1250 {
1251 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1252 			      cached_state, mask);
1253 }
1254 
1255 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256 			  struct extent_state **cached_state, gfp_t mask)
1257 {
1258 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1259 				cached_state, mask);
1260 }
1261 
1262 /*
1263  * either insert or lock state struct between start and end use mask to tell
1264  * us if waiting is desired.
1265  */
1266 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1267 		     unsigned long bits, struct extent_state **cached_state)
1268 {
1269 	int err;
1270 	u64 failed_start;
1271 	while (1) {
1272 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273 				       EXTENT_LOCKED, &failed_start,
1274 				       cached_state, GFP_NOFS);
1275 		if (err == -EEXIST) {
1276 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277 			start = failed_start;
1278 		} else
1279 			break;
1280 		WARN_ON(start > end);
1281 	}
1282 	return err;
1283 }
1284 
1285 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1286 {
1287 	return lock_extent_bits(tree, start, end, 0, NULL);
1288 }
1289 
1290 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1291 {
1292 	int err;
1293 	u64 failed_start;
1294 
1295 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296 			       &failed_start, NULL, GFP_NOFS);
1297 	if (err == -EEXIST) {
1298 		if (failed_start > start)
1299 			clear_extent_bit(tree, start, failed_start - 1,
1300 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1301 		return 0;
1302 	}
1303 	return 1;
1304 }
1305 
1306 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307 			 struct extent_state **cached, gfp_t mask)
1308 {
1309 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310 				mask);
1311 }
1312 
1313 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1314 {
1315 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1316 				GFP_NOFS);
1317 }
1318 
1319 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 	struct page *page;
1324 
1325 	while (index <= end_index) {
1326 		page = find_get_page(inode->i_mapping, index);
1327 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 		clear_page_dirty_for_io(page);
1329 		page_cache_release(page);
1330 		index++;
1331 	}
1332 	return 0;
1333 }
1334 
1335 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336 {
1337 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1338 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339 	struct page *page;
1340 
1341 	while (index <= end_index) {
1342 		page = find_get_page(inode->i_mapping, index);
1343 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344 		account_page_redirty(page);
1345 		__set_page_dirty_nobuffers(page);
1346 		page_cache_release(page);
1347 		index++;
1348 	}
1349 	return 0;
1350 }
1351 
1352 /*
1353  * helper function to set both pages and extents in the tree writeback
1354  */
1355 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1356 {
1357 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 	struct page *page;
1360 
1361 	while (index <= end_index) {
1362 		page = find_get_page(tree->mapping, index);
1363 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364 		set_page_writeback(page);
1365 		page_cache_release(page);
1366 		index++;
1367 	}
1368 	return 0;
1369 }
1370 
1371 /* find the first state struct with 'bits' set after 'start', and
1372  * return it.  tree->lock must be held.  NULL will returned if
1373  * nothing was found after 'start'
1374  */
1375 static struct extent_state *
1376 find_first_extent_bit_state(struct extent_io_tree *tree,
1377 			    u64 start, unsigned long bits)
1378 {
1379 	struct rb_node *node;
1380 	struct extent_state *state;
1381 
1382 	/*
1383 	 * this search will find all the extents that end after
1384 	 * our range starts.
1385 	 */
1386 	node = tree_search(tree, start);
1387 	if (!node)
1388 		goto out;
1389 
1390 	while (1) {
1391 		state = rb_entry(node, struct extent_state, rb_node);
1392 		if (state->end >= start && (state->state & bits))
1393 			return state;
1394 
1395 		node = rb_next(node);
1396 		if (!node)
1397 			break;
1398 	}
1399 out:
1400 	return NULL;
1401 }
1402 
1403 /*
1404  * find the first offset in the io tree with 'bits' set. zero is
1405  * returned if we find something, and *start_ret and *end_ret are
1406  * set to reflect the state struct that was found.
1407  *
1408  * If nothing was found, 1 is returned. If found something, return 0.
1409  */
1410 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1411 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1412 			  struct extent_state **cached_state)
1413 {
1414 	struct extent_state *state;
1415 	struct rb_node *n;
1416 	int ret = 1;
1417 
1418 	spin_lock(&tree->lock);
1419 	if (cached_state && *cached_state) {
1420 		state = *cached_state;
1421 		if (state->end == start - 1 && state->tree) {
1422 			n = rb_next(&state->rb_node);
1423 			while (n) {
1424 				state = rb_entry(n, struct extent_state,
1425 						 rb_node);
1426 				if (state->state & bits)
1427 					goto got_it;
1428 				n = rb_next(n);
1429 			}
1430 			free_extent_state(*cached_state);
1431 			*cached_state = NULL;
1432 			goto out;
1433 		}
1434 		free_extent_state(*cached_state);
1435 		*cached_state = NULL;
1436 	}
1437 
1438 	state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440 	if (state) {
1441 		cache_state(state, cached_state);
1442 		*start_ret = state->start;
1443 		*end_ret = state->end;
1444 		ret = 0;
1445 	}
1446 out:
1447 	spin_unlock(&tree->lock);
1448 	return ret;
1449 }
1450 
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * 1 is returned if we find something, 0 if nothing was in the tree
1456  */
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458 					u64 *start, u64 *end, u64 max_bytes,
1459 					struct extent_state **cached_state)
1460 {
1461 	struct rb_node *node;
1462 	struct extent_state *state;
1463 	u64 cur_start = *start;
1464 	u64 found = 0;
1465 	u64 total_bytes = 0;
1466 
1467 	spin_lock(&tree->lock);
1468 
1469 	/*
1470 	 * this search will find all the extents that end after
1471 	 * our range starts.
1472 	 */
1473 	node = tree_search(tree, cur_start);
1474 	if (!node) {
1475 		if (!found)
1476 			*end = (u64)-1;
1477 		goto out;
1478 	}
1479 
1480 	while (1) {
1481 		state = rb_entry(node, struct extent_state, rb_node);
1482 		if (found && (state->start != cur_start ||
1483 			      (state->state & EXTENT_BOUNDARY))) {
1484 			goto out;
1485 		}
1486 		if (!(state->state & EXTENT_DELALLOC)) {
1487 			if (!found)
1488 				*end = state->end;
1489 			goto out;
1490 		}
1491 		if (!found) {
1492 			*start = state->start;
1493 			*cached_state = state;
1494 			atomic_inc(&state->refs);
1495 		}
1496 		found++;
1497 		*end = state->end;
1498 		cur_start = state->end + 1;
1499 		node = rb_next(node);
1500 		if (!node)
1501 			break;
1502 		total_bytes += state->end - state->start + 1;
1503 		if (total_bytes >= max_bytes)
1504 			break;
1505 	}
1506 out:
1507 	spin_unlock(&tree->lock);
1508 	return found;
1509 }
1510 
1511 static noinline void __unlock_for_delalloc(struct inode *inode,
1512 					   struct page *locked_page,
1513 					   u64 start, u64 end)
1514 {
1515 	int ret;
1516 	struct page *pages[16];
1517 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1518 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519 	unsigned long nr_pages = end_index - index + 1;
1520 	int i;
1521 
1522 	if (index == locked_page->index && end_index == index)
1523 		return;
1524 
1525 	while (nr_pages > 0) {
1526 		ret = find_get_pages_contig(inode->i_mapping, index,
1527 				     min_t(unsigned long, nr_pages,
1528 				     ARRAY_SIZE(pages)), pages);
1529 		for (i = 0; i < ret; i++) {
1530 			if (pages[i] != locked_page)
1531 				unlock_page(pages[i]);
1532 			page_cache_release(pages[i]);
1533 		}
1534 		nr_pages -= ret;
1535 		index += ret;
1536 		cond_resched();
1537 	}
1538 }
1539 
1540 static noinline int lock_delalloc_pages(struct inode *inode,
1541 					struct page *locked_page,
1542 					u64 delalloc_start,
1543 					u64 delalloc_end)
1544 {
1545 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546 	unsigned long start_index = index;
1547 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548 	unsigned long pages_locked = 0;
1549 	struct page *pages[16];
1550 	unsigned long nrpages;
1551 	int ret;
1552 	int i;
1553 
1554 	/* the caller is responsible for locking the start index */
1555 	if (index == locked_page->index && index == end_index)
1556 		return 0;
1557 
1558 	/* skip the page at the start index */
1559 	nrpages = end_index - index + 1;
1560 	while (nrpages > 0) {
1561 		ret = find_get_pages_contig(inode->i_mapping, index,
1562 				     min_t(unsigned long,
1563 				     nrpages, ARRAY_SIZE(pages)), pages);
1564 		if (ret == 0) {
1565 			ret = -EAGAIN;
1566 			goto done;
1567 		}
1568 		/* now we have an array of pages, lock them all */
1569 		for (i = 0; i < ret; i++) {
1570 			/*
1571 			 * the caller is taking responsibility for
1572 			 * locked_page
1573 			 */
1574 			if (pages[i] != locked_page) {
1575 				lock_page(pages[i]);
1576 				if (!PageDirty(pages[i]) ||
1577 				    pages[i]->mapping != inode->i_mapping) {
1578 					ret = -EAGAIN;
1579 					unlock_page(pages[i]);
1580 					page_cache_release(pages[i]);
1581 					goto done;
1582 				}
1583 			}
1584 			page_cache_release(pages[i]);
1585 			pages_locked++;
1586 		}
1587 		nrpages -= ret;
1588 		index += ret;
1589 		cond_resched();
1590 	}
1591 	ret = 0;
1592 done:
1593 	if (ret && pages_locked) {
1594 		__unlock_for_delalloc(inode, locked_page,
1595 			      delalloc_start,
1596 			      ((u64)(start_index + pages_locked - 1)) <<
1597 			      PAGE_CACHE_SHIFT);
1598 	}
1599 	return ret;
1600 }
1601 
1602 /*
1603  * find a contiguous range of bytes in the file marked as delalloc, not
1604  * more than 'max_bytes'.  start and end are used to return the range,
1605  *
1606  * 1 is returned if we find something, 0 if nothing was in the tree
1607  */
1608 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609 					     struct extent_io_tree *tree,
1610 					     struct page *locked_page,
1611 					     u64 *start, u64 *end,
1612 					     u64 max_bytes)
1613 {
1614 	u64 delalloc_start;
1615 	u64 delalloc_end;
1616 	u64 found;
1617 	struct extent_state *cached_state = NULL;
1618 	int ret;
1619 	int loops = 0;
1620 
1621 again:
1622 	/* step one, find a bunch of delalloc bytes starting at start */
1623 	delalloc_start = *start;
1624 	delalloc_end = 0;
1625 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1626 				    max_bytes, &cached_state);
1627 	if (!found || delalloc_end <= *start) {
1628 		*start = delalloc_start;
1629 		*end = delalloc_end;
1630 		free_extent_state(cached_state);
1631 		return found;
1632 	}
1633 
1634 	/*
1635 	 * start comes from the offset of locked_page.  We have to lock
1636 	 * pages in order, so we can't process delalloc bytes before
1637 	 * locked_page
1638 	 */
1639 	if (delalloc_start < *start)
1640 		delalloc_start = *start;
1641 
1642 	/*
1643 	 * make sure to limit the number of pages we try to lock down
1644 	 * if we're looping.
1645 	 */
1646 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1647 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1648 
1649 	/* step two, lock all the pages after the page that has start */
1650 	ret = lock_delalloc_pages(inode, locked_page,
1651 				  delalloc_start, delalloc_end);
1652 	if (ret == -EAGAIN) {
1653 		/* some of the pages are gone, lets avoid looping by
1654 		 * shortening the size of the delalloc range we're searching
1655 		 */
1656 		free_extent_state(cached_state);
1657 		if (!loops) {
1658 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659 			max_bytes = PAGE_CACHE_SIZE - offset;
1660 			loops = 1;
1661 			goto again;
1662 		} else {
1663 			found = 0;
1664 			goto out_failed;
1665 		}
1666 	}
1667 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1668 
1669 	/* step three, lock the state bits for the whole range */
1670 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1671 
1672 	/* then test to make sure it is all still delalloc */
1673 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1674 			     EXTENT_DELALLOC, 1, cached_state);
1675 	if (!ret) {
1676 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677 				     &cached_state, GFP_NOFS);
1678 		__unlock_for_delalloc(inode, locked_page,
1679 			      delalloc_start, delalloc_end);
1680 		cond_resched();
1681 		goto again;
1682 	}
1683 	free_extent_state(cached_state);
1684 	*start = delalloc_start;
1685 	*end = delalloc_end;
1686 out_failed:
1687 	return found;
1688 }
1689 
1690 int extent_clear_unlock_delalloc(struct inode *inode,
1691 				struct extent_io_tree *tree,
1692 				u64 start, u64 end, struct page *locked_page,
1693 				unsigned long op)
1694 {
1695 	int ret;
1696 	struct page *pages[16];
1697 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1698 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699 	unsigned long nr_pages = end_index - index + 1;
1700 	int i;
1701 	unsigned long clear_bits = 0;
1702 
1703 	if (op & EXTENT_CLEAR_UNLOCK)
1704 		clear_bits |= EXTENT_LOCKED;
1705 	if (op & EXTENT_CLEAR_DIRTY)
1706 		clear_bits |= EXTENT_DIRTY;
1707 
1708 	if (op & EXTENT_CLEAR_DELALLOC)
1709 		clear_bits |= EXTENT_DELALLOC;
1710 
1711 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1712 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714 		    EXTENT_SET_PRIVATE2)))
1715 		return 0;
1716 
1717 	while (nr_pages > 0) {
1718 		ret = find_get_pages_contig(inode->i_mapping, index,
1719 				     min_t(unsigned long,
1720 				     nr_pages, ARRAY_SIZE(pages)), pages);
1721 		for (i = 0; i < ret; i++) {
1722 
1723 			if (op & EXTENT_SET_PRIVATE2)
1724 				SetPagePrivate2(pages[i]);
1725 
1726 			if (pages[i] == locked_page) {
1727 				page_cache_release(pages[i]);
1728 				continue;
1729 			}
1730 			if (op & EXTENT_CLEAR_DIRTY)
1731 				clear_page_dirty_for_io(pages[i]);
1732 			if (op & EXTENT_SET_WRITEBACK)
1733 				set_page_writeback(pages[i]);
1734 			if (op & EXTENT_END_WRITEBACK)
1735 				end_page_writeback(pages[i]);
1736 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1737 				unlock_page(pages[i]);
1738 			page_cache_release(pages[i]);
1739 		}
1740 		nr_pages -= ret;
1741 		index += ret;
1742 		cond_resched();
1743 	}
1744 	return 0;
1745 }
1746 
1747 /*
1748  * count the number of bytes in the tree that have a given bit(s)
1749  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1750  * cached.  The total number found is returned.
1751  */
1752 u64 count_range_bits(struct extent_io_tree *tree,
1753 		     u64 *start, u64 search_end, u64 max_bytes,
1754 		     unsigned long bits, int contig)
1755 {
1756 	struct rb_node *node;
1757 	struct extent_state *state;
1758 	u64 cur_start = *start;
1759 	u64 total_bytes = 0;
1760 	u64 last = 0;
1761 	int found = 0;
1762 
1763 	if (search_end <= cur_start) {
1764 		WARN_ON(1);
1765 		return 0;
1766 	}
1767 
1768 	spin_lock(&tree->lock);
1769 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770 		total_bytes = tree->dirty_bytes;
1771 		goto out;
1772 	}
1773 	/*
1774 	 * this search will find all the extents that end after
1775 	 * our range starts.
1776 	 */
1777 	node = tree_search(tree, cur_start);
1778 	if (!node)
1779 		goto out;
1780 
1781 	while (1) {
1782 		state = rb_entry(node, struct extent_state, rb_node);
1783 		if (state->start > search_end)
1784 			break;
1785 		if (contig && found && state->start > last + 1)
1786 			break;
1787 		if (state->end >= cur_start && (state->state & bits) == bits) {
1788 			total_bytes += min(search_end, state->end) + 1 -
1789 				       max(cur_start, state->start);
1790 			if (total_bytes >= max_bytes)
1791 				break;
1792 			if (!found) {
1793 				*start = max(cur_start, state->start);
1794 				found = 1;
1795 			}
1796 			last = state->end;
1797 		} else if (contig && found) {
1798 			break;
1799 		}
1800 		node = rb_next(node);
1801 		if (!node)
1802 			break;
1803 	}
1804 out:
1805 	spin_unlock(&tree->lock);
1806 	return total_bytes;
1807 }
1808 
1809 /*
1810  * set the private field for a given byte offset in the tree.  If there isn't
1811  * an extent_state there already, this does nothing.
1812  */
1813 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814 {
1815 	struct rb_node *node;
1816 	struct extent_state *state;
1817 	int ret = 0;
1818 
1819 	spin_lock(&tree->lock);
1820 	/*
1821 	 * this search will find all the extents that end after
1822 	 * our range starts.
1823 	 */
1824 	node = tree_search(tree, start);
1825 	if (!node) {
1826 		ret = -ENOENT;
1827 		goto out;
1828 	}
1829 	state = rb_entry(node, struct extent_state, rb_node);
1830 	if (state->start != start) {
1831 		ret = -ENOENT;
1832 		goto out;
1833 	}
1834 	state->private = private;
1835 out:
1836 	spin_unlock(&tree->lock);
1837 	return ret;
1838 }
1839 
1840 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1841 			    int count)
1842 {
1843 	struct rb_node *node;
1844 	struct extent_state *state;
1845 
1846 	spin_lock(&tree->lock);
1847 	/*
1848 	 * this search will find all the extents that end after
1849 	 * our range starts.
1850 	 */
1851 	node = tree_search(tree, start);
1852 	BUG_ON(!node);
1853 
1854 	state = rb_entry(node, struct extent_state, rb_node);
1855 	BUG_ON(state->start != start);
1856 
1857 	while (count) {
1858 		state->private = *csums++;
1859 		count--;
1860 		state = next_state(state);
1861 	}
1862 	spin_unlock(&tree->lock);
1863 }
1864 
1865 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1866 {
1867 	struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1868 
1869 	return page_offset(bvec->bv_page) + bvec->bv_offset;
1870 }
1871 
1872 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1873 			u32 csums[], int count)
1874 {
1875 	struct rb_node *node;
1876 	struct extent_state *state = NULL;
1877 	u64 start;
1878 
1879 	spin_lock(&tree->lock);
1880 	do {
1881 		start = __btrfs_get_bio_offset(bio, bio_index);
1882 		if (state == NULL || state->start != start) {
1883 			node = tree_search(tree, start);
1884 			BUG_ON(!node);
1885 
1886 			state = rb_entry(node, struct extent_state, rb_node);
1887 			BUG_ON(state->start != start);
1888 		}
1889 		state->private = *csums++;
1890 		count--;
1891 		bio_index++;
1892 
1893 		state = next_state(state);
1894 	} while (count);
1895 	spin_unlock(&tree->lock);
1896 }
1897 
1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899 {
1900 	struct rb_node *node;
1901 	struct extent_state *state;
1902 	int ret = 0;
1903 
1904 	spin_lock(&tree->lock);
1905 	/*
1906 	 * this search will find all the extents that end after
1907 	 * our range starts.
1908 	 */
1909 	node = tree_search(tree, start);
1910 	if (!node) {
1911 		ret = -ENOENT;
1912 		goto out;
1913 	}
1914 	state = rb_entry(node, struct extent_state, rb_node);
1915 	if (state->start != start) {
1916 		ret = -ENOENT;
1917 		goto out;
1918 	}
1919 	*private = state->private;
1920 out:
1921 	spin_unlock(&tree->lock);
1922 	return ret;
1923 }
1924 
1925 /*
1926  * searches a range in the state tree for a given mask.
1927  * If 'filled' == 1, this returns 1 only if every extent in the tree
1928  * has the bits set.  Otherwise, 1 is returned if any bit in the
1929  * range is found set.
1930  */
1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1932 		   unsigned long bits, int filled, struct extent_state *cached)
1933 {
1934 	struct extent_state *state = NULL;
1935 	struct rb_node *node;
1936 	int bitset = 0;
1937 
1938 	spin_lock(&tree->lock);
1939 	if (cached && cached->tree && cached->start <= start &&
1940 	    cached->end > start)
1941 		node = &cached->rb_node;
1942 	else
1943 		node = tree_search(tree, start);
1944 	while (node && start <= end) {
1945 		state = rb_entry(node, struct extent_state, rb_node);
1946 
1947 		if (filled && state->start > start) {
1948 			bitset = 0;
1949 			break;
1950 		}
1951 
1952 		if (state->start > end)
1953 			break;
1954 
1955 		if (state->state & bits) {
1956 			bitset = 1;
1957 			if (!filled)
1958 				break;
1959 		} else if (filled) {
1960 			bitset = 0;
1961 			break;
1962 		}
1963 
1964 		if (state->end == (u64)-1)
1965 			break;
1966 
1967 		start = state->end + 1;
1968 		if (start > end)
1969 			break;
1970 		node = rb_next(node);
1971 		if (!node) {
1972 			if (filled)
1973 				bitset = 0;
1974 			break;
1975 		}
1976 	}
1977 	spin_unlock(&tree->lock);
1978 	return bitset;
1979 }
1980 
1981 /*
1982  * helper function to set a given page up to date if all the
1983  * extents in the tree for that page are up to date
1984  */
1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1986 {
1987 	u64 start = page_offset(page);
1988 	u64 end = start + PAGE_CACHE_SIZE - 1;
1989 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1990 		SetPageUptodate(page);
1991 }
1992 
1993 /*
1994  * When IO fails, either with EIO or csum verification fails, we
1995  * try other mirrors that might have a good copy of the data.  This
1996  * io_failure_record is used to record state as we go through all the
1997  * mirrors.  If another mirror has good data, the page is set up to date
1998  * and things continue.  If a good mirror can't be found, the original
1999  * bio end_io callback is called to indicate things have failed.
2000  */
2001 struct io_failure_record {
2002 	struct page *page;
2003 	u64 start;
2004 	u64 len;
2005 	u64 logical;
2006 	unsigned long bio_flags;
2007 	int this_mirror;
2008 	int failed_mirror;
2009 	int in_validation;
2010 };
2011 
2012 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
2013 				int did_repair)
2014 {
2015 	int ret;
2016 	int err = 0;
2017 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018 
2019 	set_state_private(failure_tree, rec->start, 0);
2020 	ret = clear_extent_bits(failure_tree, rec->start,
2021 				rec->start + rec->len - 1,
2022 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2023 	if (ret)
2024 		err = ret;
2025 
2026 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2027 				rec->start + rec->len - 1,
2028 				EXTENT_DAMAGED, GFP_NOFS);
2029 	if (ret && !err)
2030 		err = ret;
2031 
2032 	kfree(rec);
2033 	return err;
2034 }
2035 
2036 static void repair_io_failure_callback(struct bio *bio, int err)
2037 {
2038 	complete(bio->bi_private);
2039 }
2040 
2041 /*
2042  * this bypasses the standard btrfs submit functions deliberately, as
2043  * the standard behavior is to write all copies in a raid setup. here we only
2044  * want to write the one bad copy. so we do the mapping for ourselves and issue
2045  * submit_bio directly.
2046  * to avoid any synchronization issues, wait for the data after writing, which
2047  * actually prevents the read that triggered the error from finishing.
2048  * currently, there can be no more than two copies of every data bit. thus,
2049  * exactly one rewrite is required.
2050  */
2051 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2052 			u64 length, u64 logical, struct page *page,
2053 			int mirror_num)
2054 {
2055 	struct bio *bio;
2056 	struct btrfs_device *dev;
2057 	DECLARE_COMPLETION_ONSTACK(compl);
2058 	u64 map_length = 0;
2059 	u64 sector;
2060 	struct btrfs_bio *bbio = NULL;
2061 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2062 	int ret;
2063 
2064 	BUG_ON(!mirror_num);
2065 
2066 	/* we can't repair anything in raid56 yet */
2067 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2068 		return 0;
2069 
2070 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2071 	if (!bio)
2072 		return -EIO;
2073 	bio->bi_private = &compl;
2074 	bio->bi_end_io = repair_io_failure_callback;
2075 	bio->bi_size = 0;
2076 	map_length = length;
2077 
2078 	ret = btrfs_map_block(fs_info, WRITE, logical,
2079 			      &map_length, &bbio, mirror_num);
2080 	if (ret) {
2081 		bio_put(bio);
2082 		return -EIO;
2083 	}
2084 	BUG_ON(mirror_num != bbio->mirror_num);
2085 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2086 	bio->bi_sector = sector;
2087 	dev = bbio->stripes[mirror_num-1].dev;
2088 	kfree(bbio);
2089 	if (!dev || !dev->bdev || !dev->writeable) {
2090 		bio_put(bio);
2091 		return -EIO;
2092 	}
2093 	bio->bi_bdev = dev->bdev;
2094 	bio_add_page(bio, page, length, start - page_offset(page));
2095 	btrfsic_submit_bio(WRITE_SYNC, bio);
2096 	wait_for_completion(&compl);
2097 
2098 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2099 		/* try to remap that extent elsewhere? */
2100 		bio_put(bio);
2101 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2102 		return -EIO;
2103 	}
2104 
2105 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2106 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2107 		      start, rcu_str_deref(dev->name), sector);
2108 
2109 	bio_put(bio);
2110 	return 0;
2111 }
2112 
2113 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2114 			 int mirror_num)
2115 {
2116 	u64 start = eb->start;
2117 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2118 	int ret = 0;
2119 
2120 	for (i = 0; i < num_pages; i++) {
2121 		struct page *p = extent_buffer_page(eb, i);
2122 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2123 					start, p, mirror_num);
2124 		if (ret)
2125 			break;
2126 		start += PAGE_CACHE_SIZE;
2127 	}
2128 
2129 	return ret;
2130 }
2131 
2132 /*
2133  * each time an IO finishes, we do a fast check in the IO failure tree
2134  * to see if we need to process or clean up an io_failure_record
2135  */
2136 static int clean_io_failure(u64 start, struct page *page)
2137 {
2138 	u64 private;
2139 	u64 private_failure;
2140 	struct io_failure_record *failrec;
2141 	struct btrfs_fs_info *fs_info;
2142 	struct extent_state *state;
2143 	int num_copies;
2144 	int did_repair = 0;
2145 	int ret;
2146 	struct inode *inode = page->mapping->host;
2147 
2148 	private = 0;
2149 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2150 				(u64)-1, 1, EXTENT_DIRTY, 0);
2151 	if (!ret)
2152 		return 0;
2153 
2154 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2155 				&private_failure);
2156 	if (ret)
2157 		return 0;
2158 
2159 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2160 	BUG_ON(!failrec->this_mirror);
2161 
2162 	if (failrec->in_validation) {
2163 		/* there was no real error, just free the record */
2164 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2165 			 failrec->start);
2166 		did_repair = 1;
2167 		goto out;
2168 	}
2169 
2170 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2171 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2172 					    failrec->start,
2173 					    EXTENT_LOCKED);
2174 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2175 
2176 	if (state && state->start == failrec->start) {
2177 		fs_info = BTRFS_I(inode)->root->fs_info;
2178 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2179 					      failrec->len);
2180 		if (num_copies > 1)  {
2181 			ret = repair_io_failure(fs_info, start, failrec->len,
2182 						failrec->logical, page,
2183 						failrec->failed_mirror);
2184 			did_repair = !ret;
2185 		}
2186 		ret = 0;
2187 	}
2188 
2189 out:
2190 	if (!ret)
2191 		ret = free_io_failure(inode, failrec, did_repair);
2192 
2193 	return ret;
2194 }
2195 
2196 /*
2197  * this is a generic handler for readpage errors (default
2198  * readpage_io_failed_hook). if other copies exist, read those and write back
2199  * good data to the failed position. does not investigate in remapping the
2200  * failed extent elsewhere, hoping the device will be smart enough to do this as
2201  * needed
2202  */
2203 
2204 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2205 				u64 start, u64 end, int failed_mirror,
2206 				struct extent_state *state)
2207 {
2208 	struct io_failure_record *failrec = NULL;
2209 	u64 private;
2210 	struct extent_map *em;
2211 	struct inode *inode = page->mapping->host;
2212 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2213 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2214 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2215 	struct bio *bio;
2216 	int num_copies;
2217 	int ret;
2218 	int read_mode;
2219 	u64 logical;
2220 
2221 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2222 
2223 	ret = get_state_private(failure_tree, start, &private);
2224 	if (ret) {
2225 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226 		if (!failrec)
2227 			return -ENOMEM;
2228 		failrec->start = start;
2229 		failrec->len = end - start + 1;
2230 		failrec->this_mirror = 0;
2231 		failrec->bio_flags = 0;
2232 		failrec->in_validation = 0;
2233 
2234 		read_lock(&em_tree->lock);
2235 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2236 		if (!em) {
2237 			read_unlock(&em_tree->lock);
2238 			kfree(failrec);
2239 			return -EIO;
2240 		}
2241 
2242 		if (em->start > start || em->start + em->len < start) {
2243 			free_extent_map(em);
2244 			em = NULL;
2245 		}
2246 		read_unlock(&em_tree->lock);
2247 
2248 		if (!em) {
2249 			kfree(failrec);
2250 			return -EIO;
2251 		}
2252 		logical = start - em->start;
2253 		logical = em->block_start + logical;
2254 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2255 			logical = em->block_start;
2256 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2257 			extent_set_compress_type(&failrec->bio_flags,
2258 						 em->compress_type);
2259 		}
2260 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261 			 "len=%llu\n", logical, start, failrec->len);
2262 		failrec->logical = logical;
2263 		free_extent_map(em);
2264 
2265 		/* set the bits in the private failure tree */
2266 		ret = set_extent_bits(failure_tree, start, end,
2267 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 		if (ret >= 0)
2269 			ret = set_state_private(failure_tree, start,
2270 						(u64)(unsigned long)failrec);
2271 		/* set the bits in the inode's tree */
2272 		if (ret >= 0)
2273 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 						GFP_NOFS);
2275 		if (ret < 0) {
2276 			kfree(failrec);
2277 			return ret;
2278 		}
2279 	} else {
2280 		failrec = (struct io_failure_record *)(unsigned long)private;
2281 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2282 			 "start=%llu, len=%llu, validation=%d\n",
2283 			 failrec->logical, failrec->start, failrec->len,
2284 			 failrec->in_validation);
2285 		/*
2286 		 * when data can be on disk more than twice, add to failrec here
2287 		 * (e.g. with a list for failed_mirror) to make
2288 		 * clean_io_failure() clean all those errors at once.
2289 		 */
2290 	}
2291 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2292 				      failrec->logical, failrec->len);
2293 	if (num_copies == 1) {
2294 		/*
2295 		 * we only have a single copy of the data, so don't bother with
2296 		 * all the retry and error correction code that follows. no
2297 		 * matter what the error is, it is very likely to persist.
2298 		 */
2299 		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2300 			 "state=%p, num_copies=%d, next_mirror %d, "
2301 			 "failed_mirror %d\n", state, num_copies,
2302 			 failrec->this_mirror, failed_mirror);
2303 		free_io_failure(inode, failrec, 0);
2304 		return -EIO;
2305 	}
2306 
2307 	if (!state) {
2308 		spin_lock(&tree->lock);
2309 		state = find_first_extent_bit_state(tree, failrec->start,
2310 						    EXTENT_LOCKED);
2311 		if (state && state->start != failrec->start)
2312 			state = NULL;
2313 		spin_unlock(&tree->lock);
2314 	}
2315 
2316 	/*
2317 	 * there are two premises:
2318 	 *	a) deliver good data to the caller
2319 	 *	b) correct the bad sectors on disk
2320 	 */
2321 	if (failed_bio->bi_vcnt > 1) {
2322 		/*
2323 		 * to fulfill b), we need to know the exact failing sectors, as
2324 		 * we don't want to rewrite any more than the failed ones. thus,
2325 		 * we need separate read requests for the failed bio
2326 		 *
2327 		 * if the following BUG_ON triggers, our validation request got
2328 		 * merged. we need separate requests for our algorithm to work.
2329 		 */
2330 		BUG_ON(failrec->in_validation);
2331 		failrec->in_validation = 1;
2332 		failrec->this_mirror = failed_mirror;
2333 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2334 	} else {
2335 		/*
2336 		 * we're ready to fulfill a) and b) alongside. get a good copy
2337 		 * of the failed sector and if we succeed, we have setup
2338 		 * everything for repair_io_failure to do the rest for us.
2339 		 */
2340 		if (failrec->in_validation) {
2341 			BUG_ON(failrec->this_mirror != failed_mirror);
2342 			failrec->in_validation = 0;
2343 			failrec->this_mirror = 0;
2344 		}
2345 		failrec->failed_mirror = failed_mirror;
2346 		failrec->this_mirror++;
2347 		if (failrec->this_mirror == failed_mirror)
2348 			failrec->this_mirror++;
2349 		read_mode = READ_SYNC;
2350 	}
2351 
2352 	if (!state || failrec->this_mirror > num_copies) {
2353 		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2354 			 "next_mirror %d, failed_mirror %d\n", state,
2355 			 num_copies, failrec->this_mirror, failed_mirror);
2356 		free_io_failure(inode, failrec, 0);
2357 		return -EIO;
2358 	}
2359 
2360 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2361 	if (!bio) {
2362 		free_io_failure(inode, failrec, 0);
2363 		return -EIO;
2364 	}
2365 	bio->bi_private = state;
2366 	bio->bi_end_io = failed_bio->bi_end_io;
2367 	bio->bi_sector = failrec->logical >> 9;
2368 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2369 	bio->bi_size = 0;
2370 
2371 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2372 
2373 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2374 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2375 		 failrec->this_mirror, num_copies, failrec->in_validation);
2376 
2377 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2378 					 failrec->this_mirror,
2379 					 failrec->bio_flags, 0);
2380 	return ret;
2381 }
2382 
2383 /* lots and lots of room for performance fixes in the end_bio funcs */
2384 
2385 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2386 {
2387 	int uptodate = (err == 0);
2388 	struct extent_io_tree *tree;
2389 	int ret;
2390 
2391 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2392 
2393 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2394 		ret = tree->ops->writepage_end_io_hook(page, start,
2395 					       end, NULL, uptodate);
2396 		if (ret)
2397 			uptodate = 0;
2398 	}
2399 
2400 	if (!uptodate) {
2401 		ClearPageUptodate(page);
2402 		SetPageError(page);
2403 	}
2404 	return 0;
2405 }
2406 
2407 /*
2408  * after a writepage IO is done, we need to:
2409  * clear the uptodate bits on error
2410  * clear the writeback bits in the extent tree for this IO
2411  * end_page_writeback if the page has no more pending IO
2412  *
2413  * Scheduling is not allowed, so the extent state tree is expected
2414  * to have one and only one object corresponding to this IO.
2415  */
2416 static void end_bio_extent_writepage(struct bio *bio, int err)
2417 {
2418 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2419 	struct extent_io_tree *tree;
2420 	u64 start;
2421 	u64 end;
2422 
2423 	do {
2424 		struct page *page = bvec->bv_page;
2425 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2426 
2427 		/* We always issue full-page reads, but if some block
2428 		 * in a page fails to read, blk_update_request() will
2429 		 * advance bv_offset and adjust bv_len to compensate.
2430 		 * Print a warning for nonzero offsets, and an error
2431 		 * if they don't add up to a full page.  */
2432 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2433 			printk("%s page write in btrfs with offset %u and length %u\n",
2434 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2435 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2436 			       bvec->bv_offset, bvec->bv_len);
2437 
2438 		start = page_offset(page);
2439 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2440 
2441 		if (--bvec >= bio->bi_io_vec)
2442 			prefetchw(&bvec->bv_page->flags);
2443 
2444 		if (end_extent_writepage(page, err, start, end))
2445 			continue;
2446 
2447 		end_page_writeback(page);
2448 	} while (bvec >= bio->bi_io_vec);
2449 
2450 	bio_put(bio);
2451 }
2452 
2453 /*
2454  * after a readpage IO is done, we need to:
2455  * clear the uptodate bits on error
2456  * set the uptodate bits if things worked
2457  * set the page up to date if all extents in the tree are uptodate
2458  * clear the lock bit in the extent tree
2459  * unlock the page if there are no other extents locked for it
2460  *
2461  * Scheduling is not allowed, so the extent state tree is expected
2462  * to have one and only one object corresponding to this IO.
2463  */
2464 static void end_bio_extent_readpage(struct bio *bio, int err)
2465 {
2466 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2467 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2468 	struct bio_vec *bvec = bio->bi_io_vec;
2469 	struct extent_io_tree *tree;
2470 	u64 start;
2471 	u64 end;
2472 	int mirror;
2473 	int ret;
2474 
2475 	if (err)
2476 		uptodate = 0;
2477 
2478 	do {
2479 		struct page *page = bvec->bv_page;
2480 		struct extent_state *cached = NULL;
2481 		struct extent_state *state;
2482 		struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2483 		struct inode *inode = page->mapping->host;
2484 
2485 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2486 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2487 			 io_bio->mirror_num);
2488 		tree = &BTRFS_I(inode)->io_tree;
2489 
2490 		/* We always issue full-page reads, but if some block
2491 		 * in a page fails to read, blk_update_request() will
2492 		 * advance bv_offset and adjust bv_len to compensate.
2493 		 * Print a warning for nonzero offsets, and an error
2494 		 * if they don't add up to a full page.  */
2495 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2496 			printk("%s page read in btrfs with offset %u and length %u\n",
2497 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2498 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2499 			       bvec->bv_offset, bvec->bv_len);
2500 
2501 		start = page_offset(page);
2502 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2503 
2504 		if (++bvec <= bvec_end)
2505 			prefetchw(&bvec->bv_page->flags);
2506 
2507 		spin_lock(&tree->lock);
2508 		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2509 		if (state && state->start == start) {
2510 			/*
2511 			 * take a reference on the state, unlock will drop
2512 			 * the ref
2513 			 */
2514 			cache_state(state, &cached);
2515 		}
2516 		spin_unlock(&tree->lock);
2517 
2518 		mirror = io_bio->mirror_num;
2519 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2520 			ret = tree->ops->readpage_end_io_hook(page, start, end,
2521 							      state, mirror);
2522 			if (ret)
2523 				uptodate = 0;
2524 			else
2525 				clean_io_failure(start, page);
2526 		}
2527 
2528 		if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2529 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2530 			if (!ret && !err &&
2531 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2532 				uptodate = 1;
2533 		} else if (!uptodate) {
2534 			/*
2535 			 * The generic bio_readpage_error handles errors the
2536 			 * following way: If possible, new read requests are
2537 			 * created and submitted and will end up in
2538 			 * end_bio_extent_readpage as well (if we're lucky, not
2539 			 * in the !uptodate case). In that case it returns 0 and
2540 			 * we just go on with the next page in our bio. If it
2541 			 * can't handle the error it will return -EIO and we
2542 			 * remain responsible for that page.
2543 			 */
2544 			ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2545 			if (ret == 0) {
2546 				uptodate =
2547 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2548 				if (err)
2549 					uptodate = 0;
2550 				uncache_state(&cached);
2551 				continue;
2552 			}
2553 		}
2554 
2555 		if (uptodate && tree->track_uptodate) {
2556 			set_extent_uptodate(tree, start, end, &cached,
2557 					    GFP_ATOMIC);
2558 		}
2559 		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2560 
2561 		if (uptodate) {
2562 			loff_t i_size = i_size_read(inode);
2563 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2564 			unsigned offset;
2565 
2566 			/* Zero out the end if this page straddles i_size */
2567 			offset = i_size & (PAGE_CACHE_SIZE-1);
2568 			if (page->index == end_index && offset)
2569 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2570 			SetPageUptodate(page);
2571 		} else {
2572 			ClearPageUptodate(page);
2573 			SetPageError(page);
2574 		}
2575 		unlock_page(page);
2576 	} while (bvec <= bvec_end);
2577 
2578 	bio_put(bio);
2579 }
2580 
2581 /*
2582  * this allocates from the btrfs_bioset.  We're returning a bio right now
2583  * but you can call btrfs_io_bio for the appropriate container_of magic
2584  */
2585 struct bio *
2586 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2587 		gfp_t gfp_flags)
2588 {
2589 	struct bio *bio;
2590 
2591 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2592 
2593 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2594 		while (!bio && (nr_vecs /= 2)) {
2595 			bio = bio_alloc_bioset(gfp_flags,
2596 					       nr_vecs, btrfs_bioset);
2597 		}
2598 	}
2599 
2600 	if (bio) {
2601 		bio->bi_size = 0;
2602 		bio->bi_bdev = bdev;
2603 		bio->bi_sector = first_sector;
2604 	}
2605 	return bio;
2606 }
2607 
2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2609 {
2610 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2611 }
2612 
2613 
2614 /* this also allocates from the btrfs_bioset */
2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2616 {
2617 	return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2618 }
2619 
2620 
2621 static int __must_check submit_one_bio(int rw, struct bio *bio,
2622 				       int mirror_num, unsigned long bio_flags)
2623 {
2624 	int ret = 0;
2625 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2626 	struct page *page = bvec->bv_page;
2627 	struct extent_io_tree *tree = bio->bi_private;
2628 	u64 start;
2629 
2630 	start = page_offset(page) + bvec->bv_offset;
2631 
2632 	bio->bi_private = NULL;
2633 
2634 	bio_get(bio);
2635 
2636 	if (tree->ops && tree->ops->submit_bio_hook)
2637 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2638 					   mirror_num, bio_flags, start);
2639 	else
2640 		btrfsic_submit_bio(rw, bio);
2641 
2642 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2643 		ret = -EOPNOTSUPP;
2644 	bio_put(bio);
2645 	return ret;
2646 }
2647 
2648 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2649 		     unsigned long offset, size_t size, struct bio *bio,
2650 		     unsigned long bio_flags)
2651 {
2652 	int ret = 0;
2653 	if (tree->ops && tree->ops->merge_bio_hook)
2654 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2655 						bio_flags);
2656 	BUG_ON(ret < 0);
2657 	return ret;
2658 
2659 }
2660 
2661 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2662 			      struct page *page, sector_t sector,
2663 			      size_t size, unsigned long offset,
2664 			      struct block_device *bdev,
2665 			      struct bio **bio_ret,
2666 			      unsigned long max_pages,
2667 			      bio_end_io_t end_io_func,
2668 			      int mirror_num,
2669 			      unsigned long prev_bio_flags,
2670 			      unsigned long bio_flags)
2671 {
2672 	int ret = 0;
2673 	struct bio *bio;
2674 	int nr;
2675 	int contig = 0;
2676 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2677 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2678 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2679 
2680 	if (bio_ret && *bio_ret) {
2681 		bio = *bio_ret;
2682 		if (old_compressed)
2683 			contig = bio->bi_sector == sector;
2684 		else
2685 			contig = bio_end_sector(bio) == sector;
2686 
2687 		if (prev_bio_flags != bio_flags || !contig ||
2688 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2689 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2690 			ret = submit_one_bio(rw, bio, mirror_num,
2691 					     prev_bio_flags);
2692 			if (ret < 0)
2693 				return ret;
2694 			bio = NULL;
2695 		} else {
2696 			return 0;
2697 		}
2698 	}
2699 	if (this_compressed)
2700 		nr = BIO_MAX_PAGES;
2701 	else
2702 		nr = bio_get_nr_vecs(bdev);
2703 
2704 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2705 	if (!bio)
2706 		return -ENOMEM;
2707 
2708 	bio_add_page(bio, page, page_size, offset);
2709 	bio->bi_end_io = end_io_func;
2710 	bio->bi_private = tree;
2711 
2712 	if (bio_ret)
2713 		*bio_ret = bio;
2714 	else
2715 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2716 
2717 	return ret;
2718 }
2719 
2720 static void attach_extent_buffer_page(struct extent_buffer *eb,
2721 				      struct page *page)
2722 {
2723 	if (!PagePrivate(page)) {
2724 		SetPagePrivate(page);
2725 		page_cache_get(page);
2726 		set_page_private(page, (unsigned long)eb);
2727 	} else {
2728 		WARN_ON(page->private != (unsigned long)eb);
2729 	}
2730 }
2731 
2732 void set_page_extent_mapped(struct page *page)
2733 {
2734 	if (!PagePrivate(page)) {
2735 		SetPagePrivate(page);
2736 		page_cache_get(page);
2737 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2738 	}
2739 }
2740 
2741 /*
2742  * basic readpage implementation.  Locked extent state structs are inserted
2743  * into the tree that are removed when the IO is done (by the end_io
2744  * handlers)
2745  * XXX JDM: This needs looking at to ensure proper page locking
2746  */
2747 static int __extent_read_full_page(struct extent_io_tree *tree,
2748 				   struct page *page,
2749 				   get_extent_t *get_extent,
2750 				   struct bio **bio, int mirror_num,
2751 				   unsigned long *bio_flags, int rw)
2752 {
2753 	struct inode *inode = page->mapping->host;
2754 	u64 start = page_offset(page);
2755 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 	u64 end;
2757 	u64 cur = start;
2758 	u64 extent_offset;
2759 	u64 last_byte = i_size_read(inode);
2760 	u64 block_start;
2761 	u64 cur_end;
2762 	sector_t sector;
2763 	struct extent_map *em;
2764 	struct block_device *bdev;
2765 	struct btrfs_ordered_extent *ordered;
2766 	int ret;
2767 	int nr = 0;
2768 	size_t pg_offset = 0;
2769 	size_t iosize;
2770 	size_t disk_io_size;
2771 	size_t blocksize = inode->i_sb->s_blocksize;
2772 	unsigned long this_bio_flag = 0;
2773 
2774 	set_page_extent_mapped(page);
2775 
2776 	if (!PageUptodate(page)) {
2777 		if (cleancache_get_page(page) == 0) {
2778 			BUG_ON(blocksize != PAGE_SIZE);
2779 			goto out;
2780 		}
2781 	}
2782 
2783 	end = page_end;
2784 	while (1) {
2785 		lock_extent(tree, start, end);
2786 		ordered = btrfs_lookup_ordered_extent(inode, start);
2787 		if (!ordered)
2788 			break;
2789 		unlock_extent(tree, start, end);
2790 		btrfs_start_ordered_extent(inode, ordered, 1);
2791 		btrfs_put_ordered_extent(ordered);
2792 	}
2793 
2794 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2795 		char *userpage;
2796 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2797 
2798 		if (zero_offset) {
2799 			iosize = PAGE_CACHE_SIZE - zero_offset;
2800 			userpage = kmap_atomic(page);
2801 			memset(userpage + zero_offset, 0, iosize);
2802 			flush_dcache_page(page);
2803 			kunmap_atomic(userpage);
2804 		}
2805 	}
2806 	while (cur <= end) {
2807 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2808 
2809 		if (cur >= last_byte) {
2810 			char *userpage;
2811 			struct extent_state *cached = NULL;
2812 
2813 			iosize = PAGE_CACHE_SIZE - pg_offset;
2814 			userpage = kmap_atomic(page);
2815 			memset(userpage + pg_offset, 0, iosize);
2816 			flush_dcache_page(page);
2817 			kunmap_atomic(userpage);
2818 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2819 					    &cached, GFP_NOFS);
2820 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2821 					     &cached, GFP_NOFS);
2822 			break;
2823 		}
2824 		em = get_extent(inode, page, pg_offset, cur,
2825 				end - cur + 1, 0);
2826 		if (IS_ERR_OR_NULL(em)) {
2827 			SetPageError(page);
2828 			unlock_extent(tree, cur, end);
2829 			break;
2830 		}
2831 		extent_offset = cur - em->start;
2832 		BUG_ON(extent_map_end(em) <= cur);
2833 		BUG_ON(end < cur);
2834 
2835 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2836 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2837 			extent_set_compress_type(&this_bio_flag,
2838 						 em->compress_type);
2839 		}
2840 
2841 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2842 		cur_end = min(extent_map_end(em) - 1, end);
2843 		iosize = ALIGN(iosize, blocksize);
2844 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2845 			disk_io_size = em->block_len;
2846 			sector = em->block_start >> 9;
2847 		} else {
2848 			sector = (em->block_start + extent_offset) >> 9;
2849 			disk_io_size = iosize;
2850 		}
2851 		bdev = em->bdev;
2852 		block_start = em->block_start;
2853 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2854 			block_start = EXTENT_MAP_HOLE;
2855 		free_extent_map(em);
2856 		em = NULL;
2857 
2858 		/* we've found a hole, just zero and go on */
2859 		if (block_start == EXTENT_MAP_HOLE) {
2860 			char *userpage;
2861 			struct extent_state *cached = NULL;
2862 
2863 			userpage = kmap_atomic(page);
2864 			memset(userpage + pg_offset, 0, iosize);
2865 			flush_dcache_page(page);
2866 			kunmap_atomic(userpage);
2867 
2868 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2869 					    &cached, GFP_NOFS);
2870 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2871 			                     &cached, GFP_NOFS);
2872 			cur = cur + iosize;
2873 			pg_offset += iosize;
2874 			continue;
2875 		}
2876 		/* the get_extent function already copied into the page */
2877 		if (test_range_bit(tree, cur, cur_end,
2878 				   EXTENT_UPTODATE, 1, NULL)) {
2879 			check_page_uptodate(tree, page);
2880 			unlock_extent(tree, cur, cur + iosize - 1);
2881 			cur = cur + iosize;
2882 			pg_offset += iosize;
2883 			continue;
2884 		}
2885 		/* we have an inline extent but it didn't get marked up
2886 		 * to date.  Error out
2887 		 */
2888 		if (block_start == EXTENT_MAP_INLINE) {
2889 			SetPageError(page);
2890 			unlock_extent(tree, cur, cur + iosize - 1);
2891 			cur = cur + iosize;
2892 			pg_offset += iosize;
2893 			continue;
2894 		}
2895 
2896 		pnr -= page->index;
2897 		ret = submit_extent_page(rw, tree, page,
2898 					 sector, disk_io_size, pg_offset,
2899 					 bdev, bio, pnr,
2900 					 end_bio_extent_readpage, mirror_num,
2901 					 *bio_flags,
2902 					 this_bio_flag);
2903 		if (!ret) {
2904 			nr++;
2905 			*bio_flags = this_bio_flag;
2906 		} else {
2907 			SetPageError(page);
2908 			unlock_extent(tree, cur, cur + iosize - 1);
2909 		}
2910 		cur = cur + iosize;
2911 		pg_offset += iosize;
2912 	}
2913 out:
2914 	if (!nr) {
2915 		if (!PageError(page))
2916 			SetPageUptodate(page);
2917 		unlock_page(page);
2918 	}
2919 	return 0;
2920 }
2921 
2922 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2923 			    get_extent_t *get_extent, int mirror_num)
2924 {
2925 	struct bio *bio = NULL;
2926 	unsigned long bio_flags = 0;
2927 	int ret;
2928 
2929 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2930 				      &bio_flags, READ);
2931 	if (bio)
2932 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2933 	return ret;
2934 }
2935 
2936 static noinline void update_nr_written(struct page *page,
2937 				      struct writeback_control *wbc,
2938 				      unsigned long nr_written)
2939 {
2940 	wbc->nr_to_write -= nr_written;
2941 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2942 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2943 		page->mapping->writeback_index = page->index + nr_written;
2944 }
2945 
2946 /*
2947  * the writepage semantics are similar to regular writepage.  extent
2948  * records are inserted to lock ranges in the tree, and as dirty areas
2949  * are found, they are marked writeback.  Then the lock bits are removed
2950  * and the end_io handler clears the writeback ranges
2951  */
2952 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2953 			      void *data)
2954 {
2955 	struct inode *inode = page->mapping->host;
2956 	struct extent_page_data *epd = data;
2957 	struct extent_io_tree *tree = epd->tree;
2958 	u64 start = page_offset(page);
2959 	u64 delalloc_start;
2960 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2961 	u64 end;
2962 	u64 cur = start;
2963 	u64 extent_offset;
2964 	u64 last_byte = i_size_read(inode);
2965 	u64 block_start;
2966 	u64 iosize;
2967 	sector_t sector;
2968 	struct extent_state *cached_state = NULL;
2969 	struct extent_map *em;
2970 	struct block_device *bdev;
2971 	int ret;
2972 	int nr = 0;
2973 	size_t pg_offset = 0;
2974 	size_t blocksize;
2975 	loff_t i_size = i_size_read(inode);
2976 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2977 	u64 nr_delalloc;
2978 	u64 delalloc_end;
2979 	int page_started;
2980 	int compressed;
2981 	int write_flags;
2982 	unsigned long nr_written = 0;
2983 	bool fill_delalloc = true;
2984 
2985 	if (wbc->sync_mode == WB_SYNC_ALL)
2986 		write_flags = WRITE_SYNC;
2987 	else
2988 		write_flags = WRITE;
2989 
2990 	trace___extent_writepage(page, inode, wbc);
2991 
2992 	WARN_ON(!PageLocked(page));
2993 
2994 	ClearPageError(page);
2995 
2996 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2997 	if (page->index > end_index ||
2998 	   (page->index == end_index && !pg_offset)) {
2999 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3000 		unlock_page(page);
3001 		return 0;
3002 	}
3003 
3004 	if (page->index == end_index) {
3005 		char *userpage;
3006 
3007 		userpage = kmap_atomic(page);
3008 		memset(userpage + pg_offset, 0,
3009 		       PAGE_CACHE_SIZE - pg_offset);
3010 		kunmap_atomic(userpage);
3011 		flush_dcache_page(page);
3012 	}
3013 	pg_offset = 0;
3014 
3015 	set_page_extent_mapped(page);
3016 
3017 	if (!tree->ops || !tree->ops->fill_delalloc)
3018 		fill_delalloc = false;
3019 
3020 	delalloc_start = start;
3021 	delalloc_end = 0;
3022 	page_started = 0;
3023 	if (!epd->extent_locked && fill_delalloc) {
3024 		u64 delalloc_to_write = 0;
3025 		/*
3026 		 * make sure the wbc mapping index is at least updated
3027 		 * to this page.
3028 		 */
3029 		update_nr_written(page, wbc, 0);
3030 
3031 		while (delalloc_end < page_end) {
3032 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3033 						       page,
3034 						       &delalloc_start,
3035 						       &delalloc_end,
3036 						       128 * 1024 * 1024);
3037 			if (nr_delalloc == 0) {
3038 				delalloc_start = delalloc_end + 1;
3039 				continue;
3040 			}
3041 			ret = tree->ops->fill_delalloc(inode, page,
3042 						       delalloc_start,
3043 						       delalloc_end,
3044 						       &page_started,
3045 						       &nr_written);
3046 			/* File system has been set read-only */
3047 			if (ret) {
3048 				SetPageError(page);
3049 				goto done;
3050 			}
3051 			/*
3052 			 * delalloc_end is already one less than the total
3053 			 * length, so we don't subtract one from
3054 			 * PAGE_CACHE_SIZE
3055 			 */
3056 			delalloc_to_write += (delalloc_end - delalloc_start +
3057 					      PAGE_CACHE_SIZE) >>
3058 					      PAGE_CACHE_SHIFT;
3059 			delalloc_start = delalloc_end + 1;
3060 		}
3061 		if (wbc->nr_to_write < delalloc_to_write) {
3062 			int thresh = 8192;
3063 
3064 			if (delalloc_to_write < thresh * 2)
3065 				thresh = delalloc_to_write;
3066 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3067 						 thresh);
3068 		}
3069 
3070 		/* did the fill delalloc function already unlock and start
3071 		 * the IO?
3072 		 */
3073 		if (page_started) {
3074 			ret = 0;
3075 			/*
3076 			 * we've unlocked the page, so we can't update
3077 			 * the mapping's writeback index, just update
3078 			 * nr_to_write.
3079 			 */
3080 			wbc->nr_to_write -= nr_written;
3081 			goto done_unlocked;
3082 		}
3083 	}
3084 	if (tree->ops && tree->ops->writepage_start_hook) {
3085 		ret = tree->ops->writepage_start_hook(page, start,
3086 						      page_end);
3087 		if (ret) {
3088 			/* Fixup worker will requeue */
3089 			if (ret == -EBUSY)
3090 				wbc->pages_skipped++;
3091 			else
3092 				redirty_page_for_writepage(wbc, page);
3093 			update_nr_written(page, wbc, nr_written);
3094 			unlock_page(page);
3095 			ret = 0;
3096 			goto done_unlocked;
3097 		}
3098 	}
3099 
3100 	/*
3101 	 * we don't want to touch the inode after unlocking the page,
3102 	 * so we update the mapping writeback index now
3103 	 */
3104 	update_nr_written(page, wbc, nr_written + 1);
3105 
3106 	end = page_end;
3107 	if (last_byte <= start) {
3108 		if (tree->ops && tree->ops->writepage_end_io_hook)
3109 			tree->ops->writepage_end_io_hook(page, start,
3110 							 page_end, NULL, 1);
3111 		goto done;
3112 	}
3113 
3114 	blocksize = inode->i_sb->s_blocksize;
3115 
3116 	while (cur <= end) {
3117 		if (cur >= last_byte) {
3118 			if (tree->ops && tree->ops->writepage_end_io_hook)
3119 				tree->ops->writepage_end_io_hook(page, cur,
3120 							 page_end, NULL, 1);
3121 			break;
3122 		}
3123 		em = epd->get_extent(inode, page, pg_offset, cur,
3124 				     end - cur + 1, 1);
3125 		if (IS_ERR_OR_NULL(em)) {
3126 			SetPageError(page);
3127 			break;
3128 		}
3129 
3130 		extent_offset = cur - em->start;
3131 		BUG_ON(extent_map_end(em) <= cur);
3132 		BUG_ON(end < cur);
3133 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3134 		iosize = ALIGN(iosize, blocksize);
3135 		sector = (em->block_start + extent_offset) >> 9;
3136 		bdev = em->bdev;
3137 		block_start = em->block_start;
3138 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3139 		free_extent_map(em);
3140 		em = NULL;
3141 
3142 		/*
3143 		 * compressed and inline extents are written through other
3144 		 * paths in the FS
3145 		 */
3146 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3147 		    block_start == EXTENT_MAP_INLINE) {
3148 			/*
3149 			 * end_io notification does not happen here for
3150 			 * compressed extents
3151 			 */
3152 			if (!compressed && tree->ops &&
3153 			    tree->ops->writepage_end_io_hook)
3154 				tree->ops->writepage_end_io_hook(page, cur,
3155 							 cur + iosize - 1,
3156 							 NULL, 1);
3157 			else if (compressed) {
3158 				/* we don't want to end_page_writeback on
3159 				 * a compressed extent.  this happens
3160 				 * elsewhere
3161 				 */
3162 				nr++;
3163 			}
3164 
3165 			cur += iosize;
3166 			pg_offset += iosize;
3167 			continue;
3168 		}
3169 		/* leave this out until we have a page_mkwrite call */
3170 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3171 				   EXTENT_DIRTY, 0, NULL)) {
3172 			cur = cur + iosize;
3173 			pg_offset += iosize;
3174 			continue;
3175 		}
3176 
3177 		if (tree->ops && tree->ops->writepage_io_hook) {
3178 			ret = tree->ops->writepage_io_hook(page, cur,
3179 						cur + iosize - 1);
3180 		} else {
3181 			ret = 0;
3182 		}
3183 		if (ret) {
3184 			SetPageError(page);
3185 		} else {
3186 			unsigned long max_nr = end_index + 1;
3187 
3188 			set_range_writeback(tree, cur, cur + iosize - 1);
3189 			if (!PageWriteback(page)) {
3190 				printk(KERN_ERR "btrfs warning page %lu not "
3191 				       "writeback, cur %llu end %llu\n",
3192 				       page->index, (unsigned long long)cur,
3193 				       (unsigned long long)end);
3194 			}
3195 
3196 			ret = submit_extent_page(write_flags, tree, page,
3197 						 sector, iosize, pg_offset,
3198 						 bdev, &epd->bio, max_nr,
3199 						 end_bio_extent_writepage,
3200 						 0, 0, 0);
3201 			if (ret)
3202 				SetPageError(page);
3203 		}
3204 		cur = cur + iosize;
3205 		pg_offset += iosize;
3206 		nr++;
3207 	}
3208 done:
3209 	if (nr == 0) {
3210 		/* make sure the mapping tag for page dirty gets cleared */
3211 		set_page_writeback(page);
3212 		end_page_writeback(page);
3213 	}
3214 	unlock_page(page);
3215 
3216 done_unlocked:
3217 
3218 	/* drop our reference on any cached states */
3219 	free_extent_state(cached_state);
3220 	return 0;
3221 }
3222 
3223 static int eb_wait(void *word)
3224 {
3225 	io_schedule();
3226 	return 0;
3227 }
3228 
3229 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3230 {
3231 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3232 		    TASK_UNINTERRUPTIBLE);
3233 }
3234 
3235 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3236 				     struct btrfs_fs_info *fs_info,
3237 				     struct extent_page_data *epd)
3238 {
3239 	unsigned long i, num_pages;
3240 	int flush = 0;
3241 	int ret = 0;
3242 
3243 	if (!btrfs_try_tree_write_lock(eb)) {
3244 		flush = 1;
3245 		flush_write_bio(epd);
3246 		btrfs_tree_lock(eb);
3247 	}
3248 
3249 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3250 		btrfs_tree_unlock(eb);
3251 		if (!epd->sync_io)
3252 			return 0;
3253 		if (!flush) {
3254 			flush_write_bio(epd);
3255 			flush = 1;
3256 		}
3257 		while (1) {
3258 			wait_on_extent_buffer_writeback(eb);
3259 			btrfs_tree_lock(eb);
3260 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3261 				break;
3262 			btrfs_tree_unlock(eb);
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * We need to do this to prevent races in people who check if the eb is
3268 	 * under IO since we can end up having no IO bits set for a short period
3269 	 * of time.
3270 	 */
3271 	spin_lock(&eb->refs_lock);
3272 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3273 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3274 		spin_unlock(&eb->refs_lock);
3275 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3276 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3277 				     -eb->len,
3278 				     fs_info->dirty_metadata_batch);
3279 		ret = 1;
3280 	} else {
3281 		spin_unlock(&eb->refs_lock);
3282 	}
3283 
3284 	btrfs_tree_unlock(eb);
3285 
3286 	if (!ret)
3287 		return ret;
3288 
3289 	num_pages = num_extent_pages(eb->start, eb->len);
3290 	for (i = 0; i < num_pages; i++) {
3291 		struct page *p = extent_buffer_page(eb, i);
3292 
3293 		if (!trylock_page(p)) {
3294 			if (!flush) {
3295 				flush_write_bio(epd);
3296 				flush = 1;
3297 			}
3298 			lock_page(p);
3299 		}
3300 	}
3301 
3302 	return ret;
3303 }
3304 
3305 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3306 {
3307 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3308 	smp_mb__after_clear_bit();
3309 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3310 }
3311 
3312 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3313 {
3314 	int uptodate = err == 0;
3315 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3316 	struct extent_buffer *eb;
3317 	int done;
3318 
3319 	do {
3320 		struct page *page = bvec->bv_page;
3321 
3322 		bvec--;
3323 		eb = (struct extent_buffer *)page->private;
3324 		BUG_ON(!eb);
3325 		done = atomic_dec_and_test(&eb->io_pages);
3326 
3327 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3328 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329 			ClearPageUptodate(page);
3330 			SetPageError(page);
3331 		}
3332 
3333 		end_page_writeback(page);
3334 
3335 		if (!done)
3336 			continue;
3337 
3338 		end_extent_buffer_writeback(eb);
3339 	} while (bvec >= bio->bi_io_vec);
3340 
3341 	bio_put(bio);
3342 
3343 }
3344 
3345 static int write_one_eb(struct extent_buffer *eb,
3346 			struct btrfs_fs_info *fs_info,
3347 			struct writeback_control *wbc,
3348 			struct extent_page_data *epd)
3349 {
3350 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3351 	u64 offset = eb->start;
3352 	unsigned long i, num_pages;
3353 	unsigned long bio_flags = 0;
3354 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3355 	int ret = 0;
3356 
3357 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3358 	num_pages = num_extent_pages(eb->start, eb->len);
3359 	atomic_set(&eb->io_pages, num_pages);
3360 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3361 		bio_flags = EXTENT_BIO_TREE_LOG;
3362 
3363 	for (i = 0; i < num_pages; i++) {
3364 		struct page *p = extent_buffer_page(eb, i);
3365 
3366 		clear_page_dirty_for_io(p);
3367 		set_page_writeback(p);
3368 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3369 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3370 					 -1, end_bio_extent_buffer_writepage,
3371 					 0, epd->bio_flags, bio_flags);
3372 		epd->bio_flags = bio_flags;
3373 		if (ret) {
3374 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3375 			SetPageError(p);
3376 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3377 				end_extent_buffer_writeback(eb);
3378 			ret = -EIO;
3379 			break;
3380 		}
3381 		offset += PAGE_CACHE_SIZE;
3382 		update_nr_written(p, wbc, 1);
3383 		unlock_page(p);
3384 	}
3385 
3386 	if (unlikely(ret)) {
3387 		for (; i < num_pages; i++) {
3388 			struct page *p = extent_buffer_page(eb, i);
3389 			unlock_page(p);
3390 		}
3391 	}
3392 
3393 	return ret;
3394 }
3395 
3396 int btree_write_cache_pages(struct address_space *mapping,
3397 				   struct writeback_control *wbc)
3398 {
3399 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3400 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3401 	struct extent_buffer *eb, *prev_eb = NULL;
3402 	struct extent_page_data epd = {
3403 		.bio = NULL,
3404 		.tree = tree,
3405 		.extent_locked = 0,
3406 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3407 		.bio_flags = 0,
3408 	};
3409 	int ret = 0;
3410 	int done = 0;
3411 	int nr_to_write_done = 0;
3412 	struct pagevec pvec;
3413 	int nr_pages;
3414 	pgoff_t index;
3415 	pgoff_t end;		/* Inclusive */
3416 	int scanned = 0;
3417 	int tag;
3418 
3419 	pagevec_init(&pvec, 0);
3420 	if (wbc->range_cyclic) {
3421 		index = mapping->writeback_index; /* Start from prev offset */
3422 		end = -1;
3423 	} else {
3424 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3425 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3426 		scanned = 1;
3427 	}
3428 	if (wbc->sync_mode == WB_SYNC_ALL)
3429 		tag = PAGECACHE_TAG_TOWRITE;
3430 	else
3431 		tag = PAGECACHE_TAG_DIRTY;
3432 retry:
3433 	if (wbc->sync_mode == WB_SYNC_ALL)
3434 		tag_pages_for_writeback(mapping, index, end);
3435 	while (!done && !nr_to_write_done && (index <= end) &&
3436 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3437 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3438 		unsigned i;
3439 
3440 		scanned = 1;
3441 		for (i = 0; i < nr_pages; i++) {
3442 			struct page *page = pvec.pages[i];
3443 
3444 			if (!PagePrivate(page))
3445 				continue;
3446 
3447 			if (!wbc->range_cyclic && page->index > end) {
3448 				done = 1;
3449 				break;
3450 			}
3451 
3452 			spin_lock(&mapping->private_lock);
3453 			if (!PagePrivate(page)) {
3454 				spin_unlock(&mapping->private_lock);
3455 				continue;
3456 			}
3457 
3458 			eb = (struct extent_buffer *)page->private;
3459 
3460 			/*
3461 			 * Shouldn't happen and normally this would be a BUG_ON
3462 			 * but no sense in crashing the users box for something
3463 			 * we can survive anyway.
3464 			 */
3465 			if (!eb) {
3466 				spin_unlock(&mapping->private_lock);
3467 				WARN_ON(1);
3468 				continue;
3469 			}
3470 
3471 			if (eb == prev_eb) {
3472 				spin_unlock(&mapping->private_lock);
3473 				continue;
3474 			}
3475 
3476 			ret = atomic_inc_not_zero(&eb->refs);
3477 			spin_unlock(&mapping->private_lock);
3478 			if (!ret)
3479 				continue;
3480 
3481 			prev_eb = eb;
3482 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3483 			if (!ret) {
3484 				free_extent_buffer(eb);
3485 				continue;
3486 			}
3487 
3488 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3489 			if (ret) {
3490 				done = 1;
3491 				free_extent_buffer(eb);
3492 				break;
3493 			}
3494 			free_extent_buffer(eb);
3495 
3496 			/*
3497 			 * the filesystem may choose to bump up nr_to_write.
3498 			 * We have to make sure to honor the new nr_to_write
3499 			 * at any time
3500 			 */
3501 			nr_to_write_done = wbc->nr_to_write <= 0;
3502 		}
3503 		pagevec_release(&pvec);
3504 		cond_resched();
3505 	}
3506 	if (!scanned && !done) {
3507 		/*
3508 		 * We hit the last page and there is more work to be done: wrap
3509 		 * back to the start of the file
3510 		 */
3511 		scanned = 1;
3512 		index = 0;
3513 		goto retry;
3514 	}
3515 	flush_write_bio(&epd);
3516 	return ret;
3517 }
3518 
3519 /**
3520  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3521  * @mapping: address space structure to write
3522  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3523  * @writepage: function called for each page
3524  * @data: data passed to writepage function
3525  *
3526  * If a page is already under I/O, write_cache_pages() skips it, even
3527  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3528  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3529  * and msync() need to guarantee that all the data which was dirty at the time
3530  * the call was made get new I/O started against them.  If wbc->sync_mode is
3531  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3532  * existing IO to complete.
3533  */
3534 static int extent_write_cache_pages(struct extent_io_tree *tree,
3535 			     struct address_space *mapping,
3536 			     struct writeback_control *wbc,
3537 			     writepage_t writepage, void *data,
3538 			     void (*flush_fn)(void *))
3539 {
3540 	struct inode *inode = mapping->host;
3541 	int ret = 0;
3542 	int done = 0;
3543 	int nr_to_write_done = 0;
3544 	struct pagevec pvec;
3545 	int nr_pages;
3546 	pgoff_t index;
3547 	pgoff_t end;		/* Inclusive */
3548 	int scanned = 0;
3549 	int tag;
3550 
3551 	/*
3552 	 * We have to hold onto the inode so that ordered extents can do their
3553 	 * work when the IO finishes.  The alternative to this is failing to add
3554 	 * an ordered extent if the igrab() fails there and that is a huge pain
3555 	 * to deal with, so instead just hold onto the inode throughout the
3556 	 * writepages operation.  If it fails here we are freeing up the inode
3557 	 * anyway and we'd rather not waste our time writing out stuff that is
3558 	 * going to be truncated anyway.
3559 	 */
3560 	if (!igrab(inode))
3561 		return 0;
3562 
3563 	pagevec_init(&pvec, 0);
3564 	if (wbc->range_cyclic) {
3565 		index = mapping->writeback_index; /* Start from prev offset */
3566 		end = -1;
3567 	} else {
3568 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3569 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3570 		scanned = 1;
3571 	}
3572 	if (wbc->sync_mode == WB_SYNC_ALL)
3573 		tag = PAGECACHE_TAG_TOWRITE;
3574 	else
3575 		tag = PAGECACHE_TAG_DIRTY;
3576 retry:
3577 	if (wbc->sync_mode == WB_SYNC_ALL)
3578 		tag_pages_for_writeback(mapping, index, end);
3579 	while (!done && !nr_to_write_done && (index <= end) &&
3580 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3581 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3582 		unsigned i;
3583 
3584 		scanned = 1;
3585 		for (i = 0; i < nr_pages; i++) {
3586 			struct page *page = pvec.pages[i];
3587 
3588 			/*
3589 			 * At this point we hold neither mapping->tree_lock nor
3590 			 * lock on the page itself: the page may be truncated or
3591 			 * invalidated (changing page->mapping to NULL), or even
3592 			 * swizzled back from swapper_space to tmpfs file
3593 			 * mapping
3594 			 */
3595 			if (!trylock_page(page)) {
3596 				flush_fn(data);
3597 				lock_page(page);
3598 			}
3599 
3600 			if (unlikely(page->mapping != mapping)) {
3601 				unlock_page(page);
3602 				continue;
3603 			}
3604 
3605 			if (!wbc->range_cyclic && page->index > end) {
3606 				done = 1;
3607 				unlock_page(page);
3608 				continue;
3609 			}
3610 
3611 			if (wbc->sync_mode != WB_SYNC_NONE) {
3612 				if (PageWriteback(page))
3613 					flush_fn(data);
3614 				wait_on_page_writeback(page);
3615 			}
3616 
3617 			if (PageWriteback(page) ||
3618 			    !clear_page_dirty_for_io(page)) {
3619 				unlock_page(page);
3620 				continue;
3621 			}
3622 
3623 			ret = (*writepage)(page, wbc, data);
3624 
3625 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3626 				unlock_page(page);
3627 				ret = 0;
3628 			}
3629 			if (ret)
3630 				done = 1;
3631 
3632 			/*
3633 			 * the filesystem may choose to bump up nr_to_write.
3634 			 * We have to make sure to honor the new nr_to_write
3635 			 * at any time
3636 			 */
3637 			nr_to_write_done = wbc->nr_to_write <= 0;
3638 		}
3639 		pagevec_release(&pvec);
3640 		cond_resched();
3641 	}
3642 	if (!scanned && !done) {
3643 		/*
3644 		 * We hit the last page and there is more work to be done: wrap
3645 		 * back to the start of the file
3646 		 */
3647 		scanned = 1;
3648 		index = 0;
3649 		goto retry;
3650 	}
3651 	btrfs_add_delayed_iput(inode);
3652 	return ret;
3653 }
3654 
3655 static void flush_epd_write_bio(struct extent_page_data *epd)
3656 {
3657 	if (epd->bio) {
3658 		int rw = WRITE;
3659 		int ret;
3660 
3661 		if (epd->sync_io)
3662 			rw = WRITE_SYNC;
3663 
3664 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3665 		BUG_ON(ret < 0); /* -ENOMEM */
3666 		epd->bio = NULL;
3667 	}
3668 }
3669 
3670 static noinline void flush_write_bio(void *data)
3671 {
3672 	struct extent_page_data *epd = data;
3673 	flush_epd_write_bio(epd);
3674 }
3675 
3676 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3677 			  get_extent_t *get_extent,
3678 			  struct writeback_control *wbc)
3679 {
3680 	int ret;
3681 	struct extent_page_data epd = {
3682 		.bio = NULL,
3683 		.tree = tree,
3684 		.get_extent = get_extent,
3685 		.extent_locked = 0,
3686 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3687 		.bio_flags = 0,
3688 	};
3689 
3690 	ret = __extent_writepage(page, wbc, &epd);
3691 
3692 	flush_epd_write_bio(&epd);
3693 	return ret;
3694 }
3695 
3696 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3697 			      u64 start, u64 end, get_extent_t *get_extent,
3698 			      int mode)
3699 {
3700 	int ret = 0;
3701 	struct address_space *mapping = inode->i_mapping;
3702 	struct page *page;
3703 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3704 		PAGE_CACHE_SHIFT;
3705 
3706 	struct extent_page_data epd = {
3707 		.bio = NULL,
3708 		.tree = tree,
3709 		.get_extent = get_extent,
3710 		.extent_locked = 1,
3711 		.sync_io = mode == WB_SYNC_ALL,
3712 		.bio_flags = 0,
3713 	};
3714 	struct writeback_control wbc_writepages = {
3715 		.sync_mode	= mode,
3716 		.nr_to_write	= nr_pages * 2,
3717 		.range_start	= start,
3718 		.range_end	= end + 1,
3719 	};
3720 
3721 	while (start <= end) {
3722 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3723 		if (clear_page_dirty_for_io(page))
3724 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3725 		else {
3726 			if (tree->ops && tree->ops->writepage_end_io_hook)
3727 				tree->ops->writepage_end_io_hook(page, start,
3728 						 start + PAGE_CACHE_SIZE - 1,
3729 						 NULL, 1);
3730 			unlock_page(page);
3731 		}
3732 		page_cache_release(page);
3733 		start += PAGE_CACHE_SIZE;
3734 	}
3735 
3736 	flush_epd_write_bio(&epd);
3737 	return ret;
3738 }
3739 
3740 int extent_writepages(struct extent_io_tree *tree,
3741 		      struct address_space *mapping,
3742 		      get_extent_t *get_extent,
3743 		      struct writeback_control *wbc)
3744 {
3745 	int ret = 0;
3746 	struct extent_page_data epd = {
3747 		.bio = NULL,
3748 		.tree = tree,
3749 		.get_extent = get_extent,
3750 		.extent_locked = 0,
3751 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3752 		.bio_flags = 0,
3753 	};
3754 
3755 	ret = extent_write_cache_pages(tree, mapping, wbc,
3756 				       __extent_writepage, &epd,
3757 				       flush_write_bio);
3758 	flush_epd_write_bio(&epd);
3759 	return ret;
3760 }
3761 
3762 int extent_readpages(struct extent_io_tree *tree,
3763 		     struct address_space *mapping,
3764 		     struct list_head *pages, unsigned nr_pages,
3765 		     get_extent_t get_extent)
3766 {
3767 	struct bio *bio = NULL;
3768 	unsigned page_idx;
3769 	unsigned long bio_flags = 0;
3770 	struct page *pagepool[16];
3771 	struct page *page;
3772 	int i = 0;
3773 	int nr = 0;
3774 
3775 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3776 		page = list_entry(pages->prev, struct page, lru);
3777 
3778 		prefetchw(&page->flags);
3779 		list_del(&page->lru);
3780 		if (add_to_page_cache_lru(page, mapping,
3781 					page->index, GFP_NOFS)) {
3782 			page_cache_release(page);
3783 			continue;
3784 		}
3785 
3786 		pagepool[nr++] = page;
3787 		if (nr < ARRAY_SIZE(pagepool))
3788 			continue;
3789 		for (i = 0; i < nr; i++) {
3790 			__extent_read_full_page(tree, pagepool[i], get_extent,
3791 					&bio, 0, &bio_flags, READ);
3792 			page_cache_release(pagepool[i]);
3793 		}
3794 		nr = 0;
3795 	}
3796 	for (i = 0; i < nr; i++) {
3797 		__extent_read_full_page(tree, pagepool[i], get_extent,
3798 					&bio, 0, &bio_flags, READ);
3799 		page_cache_release(pagepool[i]);
3800 	}
3801 
3802 	BUG_ON(!list_empty(pages));
3803 	if (bio)
3804 		return submit_one_bio(READ, bio, 0, bio_flags);
3805 	return 0;
3806 }
3807 
3808 /*
3809  * basic invalidatepage code, this waits on any locked or writeback
3810  * ranges corresponding to the page, and then deletes any extent state
3811  * records from the tree
3812  */
3813 int extent_invalidatepage(struct extent_io_tree *tree,
3814 			  struct page *page, unsigned long offset)
3815 {
3816 	struct extent_state *cached_state = NULL;
3817 	u64 start = page_offset(page);
3818 	u64 end = start + PAGE_CACHE_SIZE - 1;
3819 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3820 
3821 	start += ALIGN(offset, blocksize);
3822 	if (start > end)
3823 		return 0;
3824 
3825 	lock_extent_bits(tree, start, end, 0, &cached_state);
3826 	wait_on_page_writeback(page);
3827 	clear_extent_bit(tree, start, end,
3828 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3829 			 EXTENT_DO_ACCOUNTING,
3830 			 1, 1, &cached_state, GFP_NOFS);
3831 	return 0;
3832 }
3833 
3834 /*
3835  * a helper for releasepage, this tests for areas of the page that
3836  * are locked or under IO and drops the related state bits if it is safe
3837  * to drop the page.
3838  */
3839 static int try_release_extent_state(struct extent_map_tree *map,
3840 				    struct extent_io_tree *tree,
3841 				    struct page *page, gfp_t mask)
3842 {
3843 	u64 start = page_offset(page);
3844 	u64 end = start + PAGE_CACHE_SIZE - 1;
3845 	int ret = 1;
3846 
3847 	if (test_range_bit(tree, start, end,
3848 			   EXTENT_IOBITS, 0, NULL))
3849 		ret = 0;
3850 	else {
3851 		if ((mask & GFP_NOFS) == GFP_NOFS)
3852 			mask = GFP_NOFS;
3853 		/*
3854 		 * at this point we can safely clear everything except the
3855 		 * locked bit and the nodatasum bit
3856 		 */
3857 		ret = clear_extent_bit(tree, start, end,
3858 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3859 				 0, 0, NULL, mask);
3860 
3861 		/* if clear_extent_bit failed for enomem reasons,
3862 		 * we can't allow the release to continue.
3863 		 */
3864 		if (ret < 0)
3865 			ret = 0;
3866 		else
3867 			ret = 1;
3868 	}
3869 	return ret;
3870 }
3871 
3872 /*
3873  * a helper for releasepage.  As long as there are no locked extents
3874  * in the range corresponding to the page, both state records and extent
3875  * map records are removed
3876  */
3877 int try_release_extent_mapping(struct extent_map_tree *map,
3878 			       struct extent_io_tree *tree, struct page *page,
3879 			       gfp_t mask)
3880 {
3881 	struct extent_map *em;
3882 	u64 start = page_offset(page);
3883 	u64 end = start + PAGE_CACHE_SIZE - 1;
3884 
3885 	if ((mask & __GFP_WAIT) &&
3886 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3887 		u64 len;
3888 		while (start <= end) {
3889 			len = end - start + 1;
3890 			write_lock(&map->lock);
3891 			em = lookup_extent_mapping(map, start, len);
3892 			if (!em) {
3893 				write_unlock(&map->lock);
3894 				break;
3895 			}
3896 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3897 			    em->start != start) {
3898 				write_unlock(&map->lock);
3899 				free_extent_map(em);
3900 				break;
3901 			}
3902 			if (!test_range_bit(tree, em->start,
3903 					    extent_map_end(em) - 1,
3904 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3905 					    0, NULL)) {
3906 				remove_extent_mapping(map, em);
3907 				/* once for the rb tree */
3908 				free_extent_map(em);
3909 			}
3910 			start = extent_map_end(em);
3911 			write_unlock(&map->lock);
3912 
3913 			/* once for us */
3914 			free_extent_map(em);
3915 		}
3916 	}
3917 	return try_release_extent_state(map, tree, page, mask);
3918 }
3919 
3920 /*
3921  * helper function for fiemap, which doesn't want to see any holes.
3922  * This maps until we find something past 'last'
3923  */
3924 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3925 						u64 offset,
3926 						u64 last,
3927 						get_extent_t *get_extent)
3928 {
3929 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3930 	struct extent_map *em;
3931 	u64 len;
3932 
3933 	if (offset >= last)
3934 		return NULL;
3935 
3936 	while(1) {
3937 		len = last - offset;
3938 		if (len == 0)
3939 			break;
3940 		len = ALIGN(len, sectorsize);
3941 		em = get_extent(inode, NULL, 0, offset, len, 0);
3942 		if (IS_ERR_OR_NULL(em))
3943 			return em;
3944 
3945 		/* if this isn't a hole return it */
3946 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3947 		    em->block_start != EXTENT_MAP_HOLE) {
3948 			return em;
3949 		}
3950 
3951 		/* this is a hole, advance to the next extent */
3952 		offset = extent_map_end(em);
3953 		free_extent_map(em);
3954 		if (offset >= last)
3955 			break;
3956 	}
3957 	return NULL;
3958 }
3959 
3960 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961 		__u64 start, __u64 len, get_extent_t *get_extent)
3962 {
3963 	int ret = 0;
3964 	u64 off = start;
3965 	u64 max = start + len;
3966 	u32 flags = 0;
3967 	u32 found_type;
3968 	u64 last;
3969 	u64 last_for_get_extent = 0;
3970 	u64 disko = 0;
3971 	u64 isize = i_size_read(inode);
3972 	struct btrfs_key found_key;
3973 	struct extent_map *em = NULL;
3974 	struct extent_state *cached_state = NULL;
3975 	struct btrfs_path *path;
3976 	struct btrfs_file_extent_item *item;
3977 	int end = 0;
3978 	u64 em_start = 0;
3979 	u64 em_len = 0;
3980 	u64 em_end = 0;
3981 	unsigned long emflags;
3982 
3983 	if (len == 0)
3984 		return -EINVAL;
3985 
3986 	path = btrfs_alloc_path();
3987 	if (!path)
3988 		return -ENOMEM;
3989 	path->leave_spinning = 1;
3990 
3991 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3992 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3993 
3994 	/*
3995 	 * lookup the last file extent.  We're not using i_size here
3996 	 * because there might be preallocation past i_size
3997 	 */
3998 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3999 				       path, btrfs_ino(inode), -1, 0);
4000 	if (ret < 0) {
4001 		btrfs_free_path(path);
4002 		return ret;
4003 	}
4004 	WARN_ON(!ret);
4005 	path->slots[0]--;
4006 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4007 			      struct btrfs_file_extent_item);
4008 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4009 	found_type = btrfs_key_type(&found_key);
4010 
4011 	/* No extents, but there might be delalloc bits */
4012 	if (found_key.objectid != btrfs_ino(inode) ||
4013 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4014 		/* have to trust i_size as the end */
4015 		last = (u64)-1;
4016 		last_for_get_extent = isize;
4017 	} else {
4018 		/*
4019 		 * remember the start of the last extent.  There are a
4020 		 * bunch of different factors that go into the length of the
4021 		 * extent, so its much less complex to remember where it started
4022 		 */
4023 		last = found_key.offset;
4024 		last_for_get_extent = last + 1;
4025 	}
4026 	btrfs_free_path(path);
4027 
4028 	/*
4029 	 * we might have some extents allocated but more delalloc past those
4030 	 * extents.  so, we trust isize unless the start of the last extent is
4031 	 * beyond isize
4032 	 */
4033 	if (last < isize) {
4034 		last = (u64)-1;
4035 		last_for_get_extent = isize;
4036 	}
4037 
4038 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4039 			 &cached_state);
4040 
4041 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4042 				   get_extent);
4043 	if (!em)
4044 		goto out;
4045 	if (IS_ERR(em)) {
4046 		ret = PTR_ERR(em);
4047 		goto out;
4048 	}
4049 
4050 	while (!end) {
4051 		u64 offset_in_extent;
4052 
4053 		/* break if the extent we found is outside the range */
4054 		if (em->start >= max || extent_map_end(em) < off)
4055 			break;
4056 
4057 		/*
4058 		 * get_extent may return an extent that starts before our
4059 		 * requested range.  We have to make sure the ranges
4060 		 * we return to fiemap always move forward and don't
4061 		 * overlap, so adjust the offsets here
4062 		 */
4063 		em_start = max(em->start, off);
4064 
4065 		/*
4066 		 * record the offset from the start of the extent
4067 		 * for adjusting the disk offset below
4068 		 */
4069 		offset_in_extent = em_start - em->start;
4070 		em_end = extent_map_end(em);
4071 		em_len = em_end - em_start;
4072 		emflags = em->flags;
4073 		disko = 0;
4074 		flags = 0;
4075 
4076 		/*
4077 		 * bump off for our next call to get_extent
4078 		 */
4079 		off = extent_map_end(em);
4080 		if (off >= max)
4081 			end = 1;
4082 
4083 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4084 			end = 1;
4085 			flags |= FIEMAP_EXTENT_LAST;
4086 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4087 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4088 				  FIEMAP_EXTENT_NOT_ALIGNED);
4089 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4090 			flags |= (FIEMAP_EXTENT_DELALLOC |
4091 				  FIEMAP_EXTENT_UNKNOWN);
4092 		} else {
4093 			disko = em->block_start + offset_in_extent;
4094 		}
4095 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4096 			flags |= FIEMAP_EXTENT_ENCODED;
4097 
4098 		free_extent_map(em);
4099 		em = NULL;
4100 		if ((em_start >= last) || em_len == (u64)-1 ||
4101 		   (last == (u64)-1 && isize <= em_end)) {
4102 			flags |= FIEMAP_EXTENT_LAST;
4103 			end = 1;
4104 		}
4105 
4106 		/* now scan forward to see if this is really the last extent. */
4107 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4108 					   get_extent);
4109 		if (IS_ERR(em)) {
4110 			ret = PTR_ERR(em);
4111 			goto out;
4112 		}
4113 		if (!em) {
4114 			flags |= FIEMAP_EXTENT_LAST;
4115 			end = 1;
4116 		}
4117 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4118 					      em_len, flags);
4119 		if (ret)
4120 			goto out_free;
4121 	}
4122 out_free:
4123 	free_extent_map(em);
4124 out:
4125 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4126 			     &cached_state, GFP_NOFS);
4127 	return ret;
4128 }
4129 
4130 static void __free_extent_buffer(struct extent_buffer *eb)
4131 {
4132 	btrfs_leak_debug_del(&eb->leak_list);
4133 	kmem_cache_free(extent_buffer_cache, eb);
4134 }
4135 
4136 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4137 						   u64 start,
4138 						   unsigned long len,
4139 						   gfp_t mask)
4140 {
4141 	struct extent_buffer *eb = NULL;
4142 
4143 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4144 	if (eb == NULL)
4145 		return NULL;
4146 	eb->start = start;
4147 	eb->len = len;
4148 	eb->tree = tree;
4149 	eb->bflags = 0;
4150 	rwlock_init(&eb->lock);
4151 	atomic_set(&eb->write_locks, 0);
4152 	atomic_set(&eb->read_locks, 0);
4153 	atomic_set(&eb->blocking_readers, 0);
4154 	atomic_set(&eb->blocking_writers, 0);
4155 	atomic_set(&eb->spinning_readers, 0);
4156 	atomic_set(&eb->spinning_writers, 0);
4157 	eb->lock_nested = 0;
4158 	init_waitqueue_head(&eb->write_lock_wq);
4159 	init_waitqueue_head(&eb->read_lock_wq);
4160 
4161 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4162 
4163 	spin_lock_init(&eb->refs_lock);
4164 	atomic_set(&eb->refs, 1);
4165 	atomic_set(&eb->io_pages, 0);
4166 
4167 	/*
4168 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4169 	 */
4170 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4171 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4172 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4173 
4174 	return eb;
4175 }
4176 
4177 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4178 {
4179 	unsigned long i;
4180 	struct page *p;
4181 	struct extent_buffer *new;
4182 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4183 
4184 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4185 	if (new == NULL)
4186 		return NULL;
4187 
4188 	for (i = 0; i < num_pages; i++) {
4189 		p = alloc_page(GFP_ATOMIC);
4190 		BUG_ON(!p);
4191 		attach_extent_buffer_page(new, p);
4192 		WARN_ON(PageDirty(p));
4193 		SetPageUptodate(p);
4194 		new->pages[i] = p;
4195 	}
4196 
4197 	copy_extent_buffer(new, src, 0, 0, src->len);
4198 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4199 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4200 
4201 	return new;
4202 }
4203 
4204 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4205 {
4206 	struct extent_buffer *eb;
4207 	unsigned long num_pages = num_extent_pages(0, len);
4208 	unsigned long i;
4209 
4210 	eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4211 	if (!eb)
4212 		return NULL;
4213 
4214 	for (i = 0; i < num_pages; i++) {
4215 		eb->pages[i] = alloc_page(GFP_ATOMIC);
4216 		if (!eb->pages[i])
4217 			goto err;
4218 	}
4219 	set_extent_buffer_uptodate(eb);
4220 	btrfs_set_header_nritems(eb, 0);
4221 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4222 
4223 	return eb;
4224 err:
4225 	for (; i > 0; i--)
4226 		__free_page(eb->pages[i - 1]);
4227 	__free_extent_buffer(eb);
4228 	return NULL;
4229 }
4230 
4231 static int extent_buffer_under_io(struct extent_buffer *eb)
4232 {
4233 	return (atomic_read(&eb->io_pages) ||
4234 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4235 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4236 }
4237 
4238 /*
4239  * Helper for releasing extent buffer page.
4240  */
4241 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4242 						unsigned long start_idx)
4243 {
4244 	unsigned long index;
4245 	unsigned long num_pages;
4246 	struct page *page;
4247 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4248 
4249 	BUG_ON(extent_buffer_under_io(eb));
4250 
4251 	num_pages = num_extent_pages(eb->start, eb->len);
4252 	index = start_idx + num_pages;
4253 	if (start_idx >= index)
4254 		return;
4255 
4256 	do {
4257 		index--;
4258 		page = extent_buffer_page(eb, index);
4259 		if (page && mapped) {
4260 			spin_lock(&page->mapping->private_lock);
4261 			/*
4262 			 * We do this since we'll remove the pages after we've
4263 			 * removed the eb from the radix tree, so we could race
4264 			 * and have this page now attached to the new eb.  So
4265 			 * only clear page_private if it's still connected to
4266 			 * this eb.
4267 			 */
4268 			if (PagePrivate(page) &&
4269 			    page->private == (unsigned long)eb) {
4270 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4271 				BUG_ON(PageDirty(page));
4272 				BUG_ON(PageWriteback(page));
4273 				/*
4274 				 * We need to make sure we haven't be attached
4275 				 * to a new eb.
4276 				 */
4277 				ClearPagePrivate(page);
4278 				set_page_private(page, 0);
4279 				/* One for the page private */
4280 				page_cache_release(page);
4281 			}
4282 			spin_unlock(&page->mapping->private_lock);
4283 
4284 		}
4285 		if (page) {
4286 			/* One for when we alloced the page */
4287 			page_cache_release(page);
4288 		}
4289 	} while (index != start_idx);
4290 }
4291 
4292 /*
4293  * Helper for releasing the extent buffer.
4294  */
4295 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4296 {
4297 	btrfs_release_extent_buffer_page(eb, 0);
4298 	__free_extent_buffer(eb);
4299 }
4300 
4301 static void check_buffer_tree_ref(struct extent_buffer *eb)
4302 {
4303 	int refs;
4304 	/* the ref bit is tricky.  We have to make sure it is set
4305 	 * if we have the buffer dirty.   Otherwise the
4306 	 * code to free a buffer can end up dropping a dirty
4307 	 * page
4308 	 *
4309 	 * Once the ref bit is set, it won't go away while the
4310 	 * buffer is dirty or in writeback, and it also won't
4311 	 * go away while we have the reference count on the
4312 	 * eb bumped.
4313 	 *
4314 	 * We can't just set the ref bit without bumping the
4315 	 * ref on the eb because free_extent_buffer might
4316 	 * see the ref bit and try to clear it.  If this happens
4317 	 * free_extent_buffer might end up dropping our original
4318 	 * ref by mistake and freeing the page before we are able
4319 	 * to add one more ref.
4320 	 *
4321 	 * So bump the ref count first, then set the bit.  If someone
4322 	 * beat us to it, drop the ref we added.
4323 	 */
4324 	refs = atomic_read(&eb->refs);
4325 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4326 		return;
4327 
4328 	spin_lock(&eb->refs_lock);
4329 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4330 		atomic_inc(&eb->refs);
4331 	spin_unlock(&eb->refs_lock);
4332 }
4333 
4334 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4335 {
4336 	unsigned long num_pages, i;
4337 
4338 	check_buffer_tree_ref(eb);
4339 
4340 	num_pages = num_extent_pages(eb->start, eb->len);
4341 	for (i = 0; i < num_pages; i++) {
4342 		struct page *p = extent_buffer_page(eb, i);
4343 		mark_page_accessed(p);
4344 	}
4345 }
4346 
4347 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4348 					  u64 start, unsigned long len)
4349 {
4350 	unsigned long num_pages = num_extent_pages(start, len);
4351 	unsigned long i;
4352 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4353 	struct extent_buffer *eb;
4354 	struct extent_buffer *exists = NULL;
4355 	struct page *p;
4356 	struct address_space *mapping = tree->mapping;
4357 	int uptodate = 1;
4358 	int ret;
4359 
4360 	rcu_read_lock();
4361 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4362 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4363 		rcu_read_unlock();
4364 		mark_extent_buffer_accessed(eb);
4365 		return eb;
4366 	}
4367 	rcu_read_unlock();
4368 
4369 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4370 	if (!eb)
4371 		return NULL;
4372 
4373 	for (i = 0; i < num_pages; i++, index++) {
4374 		p = find_or_create_page(mapping, index, GFP_NOFS);
4375 		if (!p)
4376 			goto free_eb;
4377 
4378 		spin_lock(&mapping->private_lock);
4379 		if (PagePrivate(p)) {
4380 			/*
4381 			 * We could have already allocated an eb for this page
4382 			 * and attached one so lets see if we can get a ref on
4383 			 * the existing eb, and if we can we know it's good and
4384 			 * we can just return that one, else we know we can just
4385 			 * overwrite page->private.
4386 			 */
4387 			exists = (struct extent_buffer *)p->private;
4388 			if (atomic_inc_not_zero(&exists->refs)) {
4389 				spin_unlock(&mapping->private_lock);
4390 				unlock_page(p);
4391 				page_cache_release(p);
4392 				mark_extent_buffer_accessed(exists);
4393 				goto free_eb;
4394 			}
4395 
4396 			/*
4397 			 * Do this so attach doesn't complain and we need to
4398 			 * drop the ref the old guy had.
4399 			 */
4400 			ClearPagePrivate(p);
4401 			WARN_ON(PageDirty(p));
4402 			page_cache_release(p);
4403 		}
4404 		attach_extent_buffer_page(eb, p);
4405 		spin_unlock(&mapping->private_lock);
4406 		WARN_ON(PageDirty(p));
4407 		mark_page_accessed(p);
4408 		eb->pages[i] = p;
4409 		if (!PageUptodate(p))
4410 			uptodate = 0;
4411 
4412 		/*
4413 		 * see below about how we avoid a nasty race with release page
4414 		 * and why we unlock later
4415 		 */
4416 	}
4417 	if (uptodate)
4418 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4419 again:
4420 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4421 	if (ret)
4422 		goto free_eb;
4423 
4424 	spin_lock(&tree->buffer_lock);
4425 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4426 	if (ret == -EEXIST) {
4427 		exists = radix_tree_lookup(&tree->buffer,
4428 						start >> PAGE_CACHE_SHIFT);
4429 		if (!atomic_inc_not_zero(&exists->refs)) {
4430 			spin_unlock(&tree->buffer_lock);
4431 			radix_tree_preload_end();
4432 			exists = NULL;
4433 			goto again;
4434 		}
4435 		spin_unlock(&tree->buffer_lock);
4436 		radix_tree_preload_end();
4437 		mark_extent_buffer_accessed(exists);
4438 		goto free_eb;
4439 	}
4440 	/* add one reference for the tree */
4441 	check_buffer_tree_ref(eb);
4442 	spin_unlock(&tree->buffer_lock);
4443 	radix_tree_preload_end();
4444 
4445 	/*
4446 	 * there is a race where release page may have
4447 	 * tried to find this extent buffer in the radix
4448 	 * but failed.  It will tell the VM it is safe to
4449 	 * reclaim the, and it will clear the page private bit.
4450 	 * We must make sure to set the page private bit properly
4451 	 * after the extent buffer is in the radix tree so
4452 	 * it doesn't get lost
4453 	 */
4454 	SetPageChecked(eb->pages[0]);
4455 	for (i = 1; i < num_pages; i++) {
4456 		p = extent_buffer_page(eb, i);
4457 		ClearPageChecked(p);
4458 		unlock_page(p);
4459 	}
4460 	unlock_page(eb->pages[0]);
4461 	return eb;
4462 
4463 free_eb:
4464 	for (i = 0; i < num_pages; i++) {
4465 		if (eb->pages[i])
4466 			unlock_page(eb->pages[i]);
4467 	}
4468 
4469 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4470 	btrfs_release_extent_buffer(eb);
4471 	return exists;
4472 }
4473 
4474 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4475 					 u64 start, unsigned long len)
4476 {
4477 	struct extent_buffer *eb;
4478 
4479 	rcu_read_lock();
4480 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4481 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4482 		rcu_read_unlock();
4483 		mark_extent_buffer_accessed(eb);
4484 		return eb;
4485 	}
4486 	rcu_read_unlock();
4487 
4488 	return NULL;
4489 }
4490 
4491 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4492 {
4493 	struct extent_buffer *eb =
4494 			container_of(head, struct extent_buffer, rcu_head);
4495 
4496 	__free_extent_buffer(eb);
4497 }
4498 
4499 /* Expects to have eb->eb_lock already held */
4500 static int release_extent_buffer(struct extent_buffer *eb)
4501 {
4502 	WARN_ON(atomic_read(&eb->refs) == 0);
4503 	if (atomic_dec_and_test(&eb->refs)) {
4504 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4505 			spin_unlock(&eb->refs_lock);
4506 		} else {
4507 			struct extent_io_tree *tree = eb->tree;
4508 
4509 			spin_unlock(&eb->refs_lock);
4510 
4511 			spin_lock(&tree->buffer_lock);
4512 			radix_tree_delete(&tree->buffer,
4513 					  eb->start >> PAGE_CACHE_SHIFT);
4514 			spin_unlock(&tree->buffer_lock);
4515 		}
4516 
4517 		/* Should be safe to release our pages at this point */
4518 		btrfs_release_extent_buffer_page(eb, 0);
4519 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4520 		return 1;
4521 	}
4522 	spin_unlock(&eb->refs_lock);
4523 
4524 	return 0;
4525 }
4526 
4527 void free_extent_buffer(struct extent_buffer *eb)
4528 {
4529 	int refs;
4530 	int old;
4531 	if (!eb)
4532 		return;
4533 
4534 	while (1) {
4535 		refs = atomic_read(&eb->refs);
4536 		if (refs <= 3)
4537 			break;
4538 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4539 		if (old == refs)
4540 			return;
4541 	}
4542 
4543 	spin_lock(&eb->refs_lock);
4544 	if (atomic_read(&eb->refs) == 2 &&
4545 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4546 		atomic_dec(&eb->refs);
4547 
4548 	if (atomic_read(&eb->refs) == 2 &&
4549 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4550 	    !extent_buffer_under_io(eb) &&
4551 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4552 		atomic_dec(&eb->refs);
4553 
4554 	/*
4555 	 * I know this is terrible, but it's temporary until we stop tracking
4556 	 * the uptodate bits and such for the extent buffers.
4557 	 */
4558 	release_extent_buffer(eb);
4559 }
4560 
4561 void free_extent_buffer_stale(struct extent_buffer *eb)
4562 {
4563 	if (!eb)
4564 		return;
4565 
4566 	spin_lock(&eb->refs_lock);
4567 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4568 
4569 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4570 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4571 		atomic_dec(&eb->refs);
4572 	release_extent_buffer(eb);
4573 }
4574 
4575 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4576 {
4577 	unsigned long i;
4578 	unsigned long num_pages;
4579 	struct page *page;
4580 
4581 	num_pages = num_extent_pages(eb->start, eb->len);
4582 
4583 	for (i = 0; i < num_pages; i++) {
4584 		page = extent_buffer_page(eb, i);
4585 		if (!PageDirty(page))
4586 			continue;
4587 
4588 		lock_page(page);
4589 		WARN_ON(!PagePrivate(page));
4590 
4591 		clear_page_dirty_for_io(page);
4592 		spin_lock_irq(&page->mapping->tree_lock);
4593 		if (!PageDirty(page)) {
4594 			radix_tree_tag_clear(&page->mapping->page_tree,
4595 						page_index(page),
4596 						PAGECACHE_TAG_DIRTY);
4597 		}
4598 		spin_unlock_irq(&page->mapping->tree_lock);
4599 		ClearPageError(page);
4600 		unlock_page(page);
4601 	}
4602 	WARN_ON(atomic_read(&eb->refs) == 0);
4603 }
4604 
4605 int set_extent_buffer_dirty(struct extent_buffer *eb)
4606 {
4607 	unsigned long i;
4608 	unsigned long num_pages;
4609 	int was_dirty = 0;
4610 
4611 	check_buffer_tree_ref(eb);
4612 
4613 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4614 
4615 	num_pages = num_extent_pages(eb->start, eb->len);
4616 	WARN_ON(atomic_read(&eb->refs) == 0);
4617 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4618 
4619 	for (i = 0; i < num_pages; i++)
4620 		set_page_dirty(extent_buffer_page(eb, i));
4621 	return was_dirty;
4622 }
4623 
4624 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4625 {
4626 	unsigned long i;
4627 	struct page *page;
4628 	unsigned long num_pages;
4629 
4630 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4631 	num_pages = num_extent_pages(eb->start, eb->len);
4632 	for (i = 0; i < num_pages; i++) {
4633 		page = extent_buffer_page(eb, i);
4634 		if (page)
4635 			ClearPageUptodate(page);
4636 	}
4637 	return 0;
4638 }
4639 
4640 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4641 {
4642 	unsigned long i;
4643 	struct page *page;
4644 	unsigned long num_pages;
4645 
4646 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4647 	num_pages = num_extent_pages(eb->start, eb->len);
4648 	for (i = 0; i < num_pages; i++) {
4649 		page = extent_buffer_page(eb, i);
4650 		SetPageUptodate(page);
4651 	}
4652 	return 0;
4653 }
4654 
4655 int extent_buffer_uptodate(struct extent_buffer *eb)
4656 {
4657 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4658 }
4659 
4660 int read_extent_buffer_pages(struct extent_io_tree *tree,
4661 			     struct extent_buffer *eb, u64 start, int wait,
4662 			     get_extent_t *get_extent, int mirror_num)
4663 {
4664 	unsigned long i;
4665 	unsigned long start_i;
4666 	struct page *page;
4667 	int err;
4668 	int ret = 0;
4669 	int locked_pages = 0;
4670 	int all_uptodate = 1;
4671 	unsigned long num_pages;
4672 	unsigned long num_reads = 0;
4673 	struct bio *bio = NULL;
4674 	unsigned long bio_flags = 0;
4675 
4676 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4677 		return 0;
4678 
4679 	if (start) {
4680 		WARN_ON(start < eb->start);
4681 		start_i = (start >> PAGE_CACHE_SHIFT) -
4682 			(eb->start >> PAGE_CACHE_SHIFT);
4683 	} else {
4684 		start_i = 0;
4685 	}
4686 
4687 	num_pages = num_extent_pages(eb->start, eb->len);
4688 	for (i = start_i; i < num_pages; i++) {
4689 		page = extent_buffer_page(eb, i);
4690 		if (wait == WAIT_NONE) {
4691 			if (!trylock_page(page))
4692 				goto unlock_exit;
4693 		} else {
4694 			lock_page(page);
4695 		}
4696 		locked_pages++;
4697 		if (!PageUptodate(page)) {
4698 			num_reads++;
4699 			all_uptodate = 0;
4700 		}
4701 	}
4702 	if (all_uptodate) {
4703 		if (start_i == 0)
4704 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4705 		goto unlock_exit;
4706 	}
4707 
4708 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4709 	eb->read_mirror = 0;
4710 	atomic_set(&eb->io_pages, num_reads);
4711 	for (i = start_i; i < num_pages; i++) {
4712 		page = extent_buffer_page(eb, i);
4713 		if (!PageUptodate(page)) {
4714 			ClearPageError(page);
4715 			err = __extent_read_full_page(tree, page,
4716 						      get_extent, &bio,
4717 						      mirror_num, &bio_flags,
4718 						      READ | REQ_META);
4719 			if (err)
4720 				ret = err;
4721 		} else {
4722 			unlock_page(page);
4723 		}
4724 	}
4725 
4726 	if (bio) {
4727 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4728 				     bio_flags);
4729 		if (err)
4730 			return err;
4731 	}
4732 
4733 	if (ret || wait != WAIT_COMPLETE)
4734 		return ret;
4735 
4736 	for (i = start_i; i < num_pages; i++) {
4737 		page = extent_buffer_page(eb, i);
4738 		wait_on_page_locked(page);
4739 		if (!PageUptodate(page))
4740 			ret = -EIO;
4741 	}
4742 
4743 	return ret;
4744 
4745 unlock_exit:
4746 	i = start_i;
4747 	while (locked_pages > 0) {
4748 		page = extent_buffer_page(eb, i);
4749 		i++;
4750 		unlock_page(page);
4751 		locked_pages--;
4752 	}
4753 	return ret;
4754 }
4755 
4756 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4757 			unsigned long start,
4758 			unsigned long len)
4759 {
4760 	size_t cur;
4761 	size_t offset;
4762 	struct page *page;
4763 	char *kaddr;
4764 	char *dst = (char *)dstv;
4765 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4766 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4767 
4768 	WARN_ON(start > eb->len);
4769 	WARN_ON(start + len > eb->start + eb->len);
4770 
4771 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4772 
4773 	while (len > 0) {
4774 		page = extent_buffer_page(eb, i);
4775 
4776 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4777 		kaddr = page_address(page);
4778 		memcpy(dst, kaddr + offset, cur);
4779 
4780 		dst += cur;
4781 		len -= cur;
4782 		offset = 0;
4783 		i++;
4784 	}
4785 }
4786 
4787 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4788 			       unsigned long min_len, char **map,
4789 			       unsigned long *map_start,
4790 			       unsigned long *map_len)
4791 {
4792 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4793 	char *kaddr;
4794 	struct page *p;
4795 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4796 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4797 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4798 		PAGE_CACHE_SHIFT;
4799 
4800 	if (i != end_i)
4801 		return -EINVAL;
4802 
4803 	if (i == 0) {
4804 		offset = start_offset;
4805 		*map_start = 0;
4806 	} else {
4807 		offset = 0;
4808 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4809 	}
4810 
4811 	if (start + min_len > eb->len) {
4812 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4813 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4814 		       eb->len, start, min_len);
4815 		return -EINVAL;
4816 	}
4817 
4818 	p = extent_buffer_page(eb, i);
4819 	kaddr = page_address(p);
4820 	*map = kaddr + offset;
4821 	*map_len = PAGE_CACHE_SIZE - offset;
4822 	return 0;
4823 }
4824 
4825 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4826 			  unsigned long start,
4827 			  unsigned long len)
4828 {
4829 	size_t cur;
4830 	size_t offset;
4831 	struct page *page;
4832 	char *kaddr;
4833 	char *ptr = (char *)ptrv;
4834 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4835 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4836 	int ret = 0;
4837 
4838 	WARN_ON(start > eb->len);
4839 	WARN_ON(start + len > eb->start + eb->len);
4840 
4841 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4842 
4843 	while (len > 0) {
4844 		page = extent_buffer_page(eb, i);
4845 
4846 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4847 
4848 		kaddr = page_address(page);
4849 		ret = memcmp(ptr, kaddr + offset, cur);
4850 		if (ret)
4851 			break;
4852 
4853 		ptr += cur;
4854 		len -= cur;
4855 		offset = 0;
4856 		i++;
4857 	}
4858 	return ret;
4859 }
4860 
4861 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4862 			 unsigned long start, unsigned long len)
4863 {
4864 	size_t cur;
4865 	size_t offset;
4866 	struct page *page;
4867 	char *kaddr;
4868 	char *src = (char *)srcv;
4869 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4870 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4871 
4872 	WARN_ON(start > eb->len);
4873 	WARN_ON(start + len > eb->start + eb->len);
4874 
4875 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4876 
4877 	while (len > 0) {
4878 		page = extent_buffer_page(eb, i);
4879 		WARN_ON(!PageUptodate(page));
4880 
4881 		cur = min(len, PAGE_CACHE_SIZE - offset);
4882 		kaddr = page_address(page);
4883 		memcpy(kaddr + offset, src, cur);
4884 
4885 		src += cur;
4886 		len -= cur;
4887 		offset = 0;
4888 		i++;
4889 	}
4890 }
4891 
4892 void memset_extent_buffer(struct extent_buffer *eb, char c,
4893 			  unsigned long start, unsigned long len)
4894 {
4895 	size_t cur;
4896 	size_t offset;
4897 	struct page *page;
4898 	char *kaddr;
4899 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4900 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4901 
4902 	WARN_ON(start > eb->len);
4903 	WARN_ON(start + len > eb->start + eb->len);
4904 
4905 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4906 
4907 	while (len > 0) {
4908 		page = extent_buffer_page(eb, i);
4909 		WARN_ON(!PageUptodate(page));
4910 
4911 		cur = min(len, PAGE_CACHE_SIZE - offset);
4912 		kaddr = page_address(page);
4913 		memset(kaddr + offset, c, cur);
4914 
4915 		len -= cur;
4916 		offset = 0;
4917 		i++;
4918 	}
4919 }
4920 
4921 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4922 			unsigned long dst_offset, unsigned long src_offset,
4923 			unsigned long len)
4924 {
4925 	u64 dst_len = dst->len;
4926 	size_t cur;
4927 	size_t offset;
4928 	struct page *page;
4929 	char *kaddr;
4930 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4931 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4932 
4933 	WARN_ON(src->len != dst_len);
4934 
4935 	offset = (start_offset + dst_offset) &
4936 		((unsigned long)PAGE_CACHE_SIZE - 1);
4937 
4938 	while (len > 0) {
4939 		page = extent_buffer_page(dst, i);
4940 		WARN_ON(!PageUptodate(page));
4941 
4942 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4943 
4944 		kaddr = page_address(page);
4945 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4946 
4947 		src_offset += cur;
4948 		len -= cur;
4949 		offset = 0;
4950 		i++;
4951 	}
4952 }
4953 
4954 static void move_pages(struct page *dst_page, struct page *src_page,
4955 		       unsigned long dst_off, unsigned long src_off,
4956 		       unsigned long len)
4957 {
4958 	char *dst_kaddr = page_address(dst_page);
4959 	if (dst_page == src_page) {
4960 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4961 	} else {
4962 		char *src_kaddr = page_address(src_page);
4963 		char *p = dst_kaddr + dst_off + len;
4964 		char *s = src_kaddr + src_off + len;
4965 
4966 		while (len--)
4967 			*--p = *--s;
4968 	}
4969 }
4970 
4971 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4972 {
4973 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4974 	return distance < len;
4975 }
4976 
4977 static void copy_pages(struct page *dst_page, struct page *src_page,
4978 		       unsigned long dst_off, unsigned long src_off,
4979 		       unsigned long len)
4980 {
4981 	char *dst_kaddr = page_address(dst_page);
4982 	char *src_kaddr;
4983 	int must_memmove = 0;
4984 
4985 	if (dst_page != src_page) {
4986 		src_kaddr = page_address(src_page);
4987 	} else {
4988 		src_kaddr = dst_kaddr;
4989 		if (areas_overlap(src_off, dst_off, len))
4990 			must_memmove = 1;
4991 	}
4992 
4993 	if (must_memmove)
4994 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4995 	else
4996 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4997 }
4998 
4999 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5000 			   unsigned long src_offset, unsigned long len)
5001 {
5002 	size_t cur;
5003 	size_t dst_off_in_page;
5004 	size_t src_off_in_page;
5005 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5006 	unsigned long dst_i;
5007 	unsigned long src_i;
5008 
5009 	if (src_offset + len > dst->len) {
5010 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5011 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5012 		BUG_ON(1);
5013 	}
5014 	if (dst_offset + len > dst->len) {
5015 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5016 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5017 		BUG_ON(1);
5018 	}
5019 
5020 	while (len > 0) {
5021 		dst_off_in_page = (start_offset + dst_offset) &
5022 			((unsigned long)PAGE_CACHE_SIZE - 1);
5023 		src_off_in_page = (start_offset + src_offset) &
5024 			((unsigned long)PAGE_CACHE_SIZE - 1);
5025 
5026 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5027 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5028 
5029 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5030 					       src_off_in_page));
5031 		cur = min_t(unsigned long, cur,
5032 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5033 
5034 		copy_pages(extent_buffer_page(dst, dst_i),
5035 			   extent_buffer_page(dst, src_i),
5036 			   dst_off_in_page, src_off_in_page, cur);
5037 
5038 		src_offset += cur;
5039 		dst_offset += cur;
5040 		len -= cur;
5041 	}
5042 }
5043 
5044 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5045 			   unsigned long src_offset, unsigned long len)
5046 {
5047 	size_t cur;
5048 	size_t dst_off_in_page;
5049 	size_t src_off_in_page;
5050 	unsigned long dst_end = dst_offset + len - 1;
5051 	unsigned long src_end = src_offset + len - 1;
5052 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5053 	unsigned long dst_i;
5054 	unsigned long src_i;
5055 
5056 	if (src_offset + len > dst->len) {
5057 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5058 		       "len %lu len %lu\n", src_offset, len, dst->len);
5059 		BUG_ON(1);
5060 	}
5061 	if (dst_offset + len > dst->len) {
5062 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5063 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5064 		BUG_ON(1);
5065 	}
5066 	if (dst_offset < src_offset) {
5067 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5068 		return;
5069 	}
5070 	while (len > 0) {
5071 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5072 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5073 
5074 		dst_off_in_page = (start_offset + dst_end) &
5075 			((unsigned long)PAGE_CACHE_SIZE - 1);
5076 		src_off_in_page = (start_offset + src_end) &
5077 			((unsigned long)PAGE_CACHE_SIZE - 1);
5078 
5079 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5080 		cur = min(cur, dst_off_in_page + 1);
5081 		move_pages(extent_buffer_page(dst, dst_i),
5082 			   extent_buffer_page(dst, src_i),
5083 			   dst_off_in_page - cur + 1,
5084 			   src_off_in_page - cur + 1, cur);
5085 
5086 		dst_end -= cur;
5087 		src_end -= cur;
5088 		len -= cur;
5089 	}
5090 }
5091 
5092 int try_release_extent_buffer(struct page *page)
5093 {
5094 	struct extent_buffer *eb;
5095 
5096 	/*
5097 	 * We need to make sure noboody is attaching this page to an eb right
5098 	 * now.
5099 	 */
5100 	spin_lock(&page->mapping->private_lock);
5101 	if (!PagePrivate(page)) {
5102 		spin_unlock(&page->mapping->private_lock);
5103 		return 1;
5104 	}
5105 
5106 	eb = (struct extent_buffer *)page->private;
5107 	BUG_ON(!eb);
5108 
5109 	/*
5110 	 * This is a little awful but should be ok, we need to make sure that
5111 	 * the eb doesn't disappear out from under us while we're looking at
5112 	 * this page.
5113 	 */
5114 	spin_lock(&eb->refs_lock);
5115 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5116 		spin_unlock(&eb->refs_lock);
5117 		spin_unlock(&page->mapping->private_lock);
5118 		return 0;
5119 	}
5120 	spin_unlock(&page->mapping->private_lock);
5121 
5122 	/*
5123 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5124 	 * so just return, this page will likely be freed soon anyway.
5125 	 */
5126 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5127 		spin_unlock(&eb->refs_lock);
5128 		return 0;
5129 	}
5130 
5131 	return release_extent_buffer(eb);
5132 }
5133