1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "compat.h" 17 #include "ctree.h" 18 #include "btrfs_inode.h" 19 #include "volumes.h" 20 #include "check-integrity.h" 21 #include "locking.h" 22 #include "rcu-string.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 #ifdef CONFIG_BTRFS_DEBUG 29 static LIST_HEAD(buffers); 30 static LIST_HEAD(states); 31 32 static DEFINE_SPINLOCK(leak_lock); 33 34 static inline 35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 36 { 37 unsigned long flags; 38 39 spin_lock_irqsave(&leak_lock, flags); 40 list_add(new, head); 41 spin_unlock_irqrestore(&leak_lock, flags); 42 } 43 44 static inline 45 void btrfs_leak_debug_del(struct list_head *entry) 46 { 47 unsigned long flags; 48 49 spin_lock_irqsave(&leak_lock, flags); 50 list_del(entry); 51 spin_unlock_irqrestore(&leak_lock, flags); 52 } 53 54 static inline 55 void btrfs_leak_debug_check(void) 56 { 57 struct extent_state *state; 58 struct extent_buffer *eb; 59 60 while (!list_empty(&states)) { 61 state = list_entry(states.next, struct extent_state, leak_list); 62 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 63 "state %lu in tree %p refs %d\n", 64 (unsigned long long)state->start, 65 (unsigned long long)state->end, 66 state->state, state->tree, atomic_read(&state->refs)); 67 list_del(&state->leak_list); 68 kmem_cache_free(extent_state_cache, state); 69 } 70 71 while (!list_empty(&buffers)) { 72 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 74 "refs %d\n", (unsigned long long)eb->start, 75 eb->len, atomic_read(&eb->refs)); 76 list_del(&eb->leak_list); 77 kmem_cache_free(extent_buffer_cache, eb); 78 } 79 } 80 81 #define btrfs_debug_check_extent_io_range(inode, start, end) \ 82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end)) 83 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 84 struct inode *inode, u64 start, u64 end) 85 { 86 u64 isize = i_size_read(inode); 87 88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 89 printk_ratelimited(KERN_DEBUG 90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 91 caller, 92 (unsigned long long)btrfs_ino(inode), 93 (unsigned long long)isize, 94 (unsigned long long)start, 95 (unsigned long long)end); 96 } 97 } 98 #else 99 #define btrfs_leak_debug_add(new, head) do {} while (0) 100 #define btrfs_leak_debug_del(entry) do {} while (0) 101 #define btrfs_leak_debug_check() do {} while (0) 102 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 103 #endif 104 105 #define BUFFER_LRU_MAX 64 106 107 struct tree_entry { 108 u64 start; 109 u64 end; 110 struct rb_node rb_node; 111 }; 112 113 struct extent_page_data { 114 struct bio *bio; 115 struct extent_io_tree *tree; 116 get_extent_t *get_extent; 117 unsigned long bio_flags; 118 119 /* tells writepage not to lock the state bits for this range 120 * it still does the unlocking 121 */ 122 unsigned int extent_locked:1; 123 124 /* tells the submit_bio code to use a WRITE_SYNC */ 125 unsigned int sync_io:1; 126 }; 127 128 static noinline void flush_write_bio(void *data); 129 static inline struct btrfs_fs_info * 130 tree_fs_info(struct extent_io_tree *tree) 131 { 132 return btrfs_sb(tree->mapping->host->i_sb); 133 } 134 135 int __init extent_io_init(void) 136 { 137 extent_state_cache = kmem_cache_create("btrfs_extent_state", 138 sizeof(struct extent_state), 0, 139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 140 if (!extent_state_cache) 141 return -ENOMEM; 142 143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 144 sizeof(struct extent_buffer), 0, 145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 146 if (!extent_buffer_cache) 147 goto free_state_cache; 148 149 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 150 offsetof(struct btrfs_io_bio, bio)); 151 if (!btrfs_bioset) 152 goto free_buffer_cache; 153 return 0; 154 155 free_buffer_cache: 156 kmem_cache_destroy(extent_buffer_cache); 157 extent_buffer_cache = NULL; 158 159 free_state_cache: 160 kmem_cache_destroy(extent_state_cache); 161 extent_state_cache = NULL; 162 return -ENOMEM; 163 } 164 165 void extent_io_exit(void) 166 { 167 btrfs_leak_debug_check(); 168 169 /* 170 * Make sure all delayed rcu free are flushed before we 171 * destroy caches. 172 */ 173 rcu_barrier(); 174 if (extent_state_cache) 175 kmem_cache_destroy(extent_state_cache); 176 if (extent_buffer_cache) 177 kmem_cache_destroy(extent_buffer_cache); 178 if (btrfs_bioset) 179 bioset_free(btrfs_bioset); 180 } 181 182 void extent_io_tree_init(struct extent_io_tree *tree, 183 struct address_space *mapping) 184 { 185 tree->state = RB_ROOT; 186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 187 tree->ops = NULL; 188 tree->dirty_bytes = 0; 189 spin_lock_init(&tree->lock); 190 spin_lock_init(&tree->buffer_lock); 191 tree->mapping = mapping; 192 } 193 194 static struct extent_state *alloc_extent_state(gfp_t mask) 195 { 196 struct extent_state *state; 197 198 state = kmem_cache_alloc(extent_state_cache, mask); 199 if (!state) 200 return state; 201 state->state = 0; 202 state->private = 0; 203 state->tree = NULL; 204 btrfs_leak_debug_add(&state->leak_list, &states); 205 atomic_set(&state->refs, 1); 206 init_waitqueue_head(&state->wq); 207 trace_alloc_extent_state(state, mask, _RET_IP_); 208 return state; 209 } 210 211 void free_extent_state(struct extent_state *state) 212 { 213 if (!state) 214 return; 215 if (atomic_dec_and_test(&state->refs)) { 216 WARN_ON(state->tree); 217 btrfs_leak_debug_del(&state->leak_list); 218 trace_free_extent_state(state, _RET_IP_); 219 kmem_cache_free(extent_state_cache, state); 220 } 221 } 222 223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 224 struct rb_node *node) 225 { 226 struct rb_node **p = &root->rb_node; 227 struct rb_node *parent = NULL; 228 struct tree_entry *entry; 229 230 while (*p) { 231 parent = *p; 232 entry = rb_entry(parent, struct tree_entry, rb_node); 233 234 if (offset < entry->start) 235 p = &(*p)->rb_left; 236 else if (offset > entry->end) 237 p = &(*p)->rb_right; 238 else 239 return parent; 240 } 241 242 rb_link_node(node, parent, p); 243 rb_insert_color(node, root); 244 return NULL; 245 } 246 247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 248 struct rb_node **prev_ret, 249 struct rb_node **next_ret) 250 { 251 struct rb_root *root = &tree->state; 252 struct rb_node *n = root->rb_node; 253 struct rb_node *prev = NULL; 254 struct rb_node *orig_prev = NULL; 255 struct tree_entry *entry; 256 struct tree_entry *prev_entry = NULL; 257 258 while (n) { 259 entry = rb_entry(n, struct tree_entry, rb_node); 260 prev = n; 261 prev_entry = entry; 262 263 if (offset < entry->start) 264 n = n->rb_left; 265 else if (offset > entry->end) 266 n = n->rb_right; 267 else 268 return n; 269 } 270 271 if (prev_ret) { 272 orig_prev = prev; 273 while (prev && offset > prev_entry->end) { 274 prev = rb_next(prev); 275 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 276 } 277 *prev_ret = prev; 278 prev = orig_prev; 279 } 280 281 if (next_ret) { 282 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 283 while (prev && offset < prev_entry->start) { 284 prev = rb_prev(prev); 285 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 286 } 287 *next_ret = prev; 288 } 289 return NULL; 290 } 291 292 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 293 u64 offset) 294 { 295 struct rb_node *prev = NULL; 296 struct rb_node *ret; 297 298 ret = __etree_search(tree, offset, &prev, NULL); 299 if (!ret) 300 return prev; 301 return ret; 302 } 303 304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 305 struct extent_state *other) 306 { 307 if (tree->ops && tree->ops->merge_extent_hook) 308 tree->ops->merge_extent_hook(tree->mapping->host, new, 309 other); 310 } 311 312 /* 313 * utility function to look for merge candidates inside a given range. 314 * Any extents with matching state are merged together into a single 315 * extent in the tree. Extents with EXTENT_IO in their state field 316 * are not merged because the end_io handlers need to be able to do 317 * operations on them without sleeping (or doing allocations/splits). 318 * 319 * This should be called with the tree lock held. 320 */ 321 static void merge_state(struct extent_io_tree *tree, 322 struct extent_state *state) 323 { 324 struct extent_state *other; 325 struct rb_node *other_node; 326 327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 328 return; 329 330 other_node = rb_prev(&state->rb_node); 331 if (other_node) { 332 other = rb_entry(other_node, struct extent_state, rb_node); 333 if (other->end == state->start - 1 && 334 other->state == state->state) { 335 merge_cb(tree, state, other); 336 state->start = other->start; 337 other->tree = NULL; 338 rb_erase(&other->rb_node, &tree->state); 339 free_extent_state(other); 340 } 341 } 342 other_node = rb_next(&state->rb_node); 343 if (other_node) { 344 other = rb_entry(other_node, struct extent_state, rb_node); 345 if (other->start == state->end + 1 && 346 other->state == state->state) { 347 merge_cb(tree, state, other); 348 state->end = other->end; 349 other->tree = NULL; 350 rb_erase(&other->rb_node, &tree->state); 351 free_extent_state(other); 352 } 353 } 354 } 355 356 static void set_state_cb(struct extent_io_tree *tree, 357 struct extent_state *state, unsigned long *bits) 358 { 359 if (tree->ops && tree->ops->set_bit_hook) 360 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 361 } 362 363 static void clear_state_cb(struct extent_io_tree *tree, 364 struct extent_state *state, unsigned long *bits) 365 { 366 if (tree->ops && tree->ops->clear_bit_hook) 367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 368 } 369 370 static void set_state_bits(struct extent_io_tree *tree, 371 struct extent_state *state, unsigned long *bits); 372 373 /* 374 * insert an extent_state struct into the tree. 'bits' are set on the 375 * struct before it is inserted. 376 * 377 * This may return -EEXIST if the extent is already there, in which case the 378 * state struct is freed. 379 * 380 * The tree lock is not taken internally. This is a utility function and 381 * probably isn't what you want to call (see set/clear_extent_bit). 382 */ 383 static int insert_state(struct extent_io_tree *tree, 384 struct extent_state *state, u64 start, u64 end, 385 unsigned long *bits) 386 { 387 struct rb_node *node; 388 389 if (end < start) 390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n", 391 (unsigned long long)end, 392 (unsigned long long)start); 393 state->start = start; 394 state->end = end; 395 396 set_state_bits(tree, state, bits); 397 398 node = tree_insert(&tree->state, end, &state->rb_node); 399 if (node) { 400 struct extent_state *found; 401 found = rb_entry(node, struct extent_state, rb_node); 402 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 403 "%llu %llu\n", (unsigned long long)found->start, 404 (unsigned long long)found->end, 405 (unsigned long long)start, (unsigned long long)end); 406 return -EEXIST; 407 } 408 state->tree = tree; 409 merge_state(tree, state); 410 return 0; 411 } 412 413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 414 u64 split) 415 { 416 if (tree->ops && tree->ops->split_extent_hook) 417 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 418 } 419 420 /* 421 * split a given extent state struct in two, inserting the preallocated 422 * struct 'prealloc' as the newly created second half. 'split' indicates an 423 * offset inside 'orig' where it should be split. 424 * 425 * Before calling, 426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 427 * are two extent state structs in the tree: 428 * prealloc: [orig->start, split - 1] 429 * orig: [ split, orig->end ] 430 * 431 * The tree locks are not taken by this function. They need to be held 432 * by the caller. 433 */ 434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 435 struct extent_state *prealloc, u64 split) 436 { 437 struct rb_node *node; 438 439 split_cb(tree, orig, split); 440 441 prealloc->start = orig->start; 442 prealloc->end = split - 1; 443 prealloc->state = orig->state; 444 orig->start = split; 445 446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 447 if (node) { 448 free_extent_state(prealloc); 449 return -EEXIST; 450 } 451 prealloc->tree = tree; 452 return 0; 453 } 454 455 static struct extent_state *next_state(struct extent_state *state) 456 { 457 struct rb_node *next = rb_next(&state->rb_node); 458 if (next) 459 return rb_entry(next, struct extent_state, rb_node); 460 else 461 return NULL; 462 } 463 464 /* 465 * utility function to clear some bits in an extent state struct. 466 * it will optionally wake up any one waiting on this state (wake == 1). 467 * 468 * If no bits are set on the state struct after clearing things, the 469 * struct is freed and removed from the tree 470 */ 471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 472 struct extent_state *state, 473 unsigned long *bits, int wake) 474 { 475 struct extent_state *next; 476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 477 478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 479 u64 range = state->end - state->start + 1; 480 WARN_ON(range > tree->dirty_bytes); 481 tree->dirty_bytes -= range; 482 } 483 clear_state_cb(tree, state, bits); 484 state->state &= ~bits_to_clear; 485 if (wake) 486 wake_up(&state->wq); 487 if (state->state == 0) { 488 next = next_state(state); 489 if (state->tree) { 490 rb_erase(&state->rb_node, &tree->state); 491 state->tree = NULL; 492 free_extent_state(state); 493 } else { 494 WARN_ON(1); 495 } 496 } else { 497 merge_state(tree, state); 498 next = next_state(state); 499 } 500 return next; 501 } 502 503 static struct extent_state * 504 alloc_extent_state_atomic(struct extent_state *prealloc) 505 { 506 if (!prealloc) 507 prealloc = alloc_extent_state(GFP_ATOMIC); 508 509 return prealloc; 510 } 511 512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 513 { 514 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 515 "Extent tree was modified by another " 516 "thread while locked."); 517 } 518 519 /* 520 * clear some bits on a range in the tree. This may require splitting 521 * or inserting elements in the tree, so the gfp mask is used to 522 * indicate which allocations or sleeping are allowed. 523 * 524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 525 * the given range from the tree regardless of state (ie for truncate). 526 * 527 * the range [start, end] is inclusive. 528 * 529 * This takes the tree lock, and returns 0 on success and < 0 on error. 530 */ 531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 532 unsigned long bits, int wake, int delete, 533 struct extent_state **cached_state, 534 gfp_t mask) 535 { 536 struct extent_state *state; 537 struct extent_state *cached; 538 struct extent_state *prealloc = NULL; 539 struct rb_node *node; 540 u64 last_end; 541 int err; 542 int clear = 0; 543 544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 545 546 if (bits & EXTENT_DELALLOC) 547 bits |= EXTENT_NORESERVE; 548 549 if (delete) 550 bits |= ~EXTENT_CTLBITS; 551 bits |= EXTENT_FIRST_DELALLOC; 552 553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 554 clear = 1; 555 again: 556 if (!prealloc && (mask & __GFP_WAIT)) { 557 prealloc = alloc_extent_state(mask); 558 if (!prealloc) 559 return -ENOMEM; 560 } 561 562 spin_lock(&tree->lock); 563 if (cached_state) { 564 cached = *cached_state; 565 566 if (clear) { 567 *cached_state = NULL; 568 cached_state = NULL; 569 } 570 571 if (cached && cached->tree && cached->start <= start && 572 cached->end > start) { 573 if (clear) 574 atomic_dec(&cached->refs); 575 state = cached; 576 goto hit_next; 577 } 578 if (clear) 579 free_extent_state(cached); 580 } 581 /* 582 * this search will find the extents that end after 583 * our range starts 584 */ 585 node = tree_search(tree, start); 586 if (!node) 587 goto out; 588 state = rb_entry(node, struct extent_state, rb_node); 589 hit_next: 590 if (state->start > end) 591 goto out; 592 WARN_ON(state->end < start); 593 last_end = state->end; 594 595 /* the state doesn't have the wanted bits, go ahead */ 596 if (!(state->state & bits)) { 597 state = next_state(state); 598 goto next; 599 } 600 601 /* 602 * | ---- desired range ---- | 603 * | state | or 604 * | ------------- state -------------- | 605 * 606 * We need to split the extent we found, and may flip 607 * bits on second half. 608 * 609 * If the extent we found extends past our range, we 610 * just split and search again. It'll get split again 611 * the next time though. 612 * 613 * If the extent we found is inside our range, we clear 614 * the desired bit on it. 615 */ 616 617 if (state->start < start) { 618 prealloc = alloc_extent_state_atomic(prealloc); 619 BUG_ON(!prealloc); 620 err = split_state(tree, state, prealloc, start); 621 if (err) 622 extent_io_tree_panic(tree, err); 623 624 prealloc = NULL; 625 if (err) 626 goto out; 627 if (state->end <= end) { 628 state = clear_state_bit(tree, state, &bits, wake); 629 goto next; 630 } 631 goto search_again; 632 } 633 /* 634 * | ---- desired range ---- | 635 * | state | 636 * We need to split the extent, and clear the bit 637 * on the first half 638 */ 639 if (state->start <= end && state->end > end) { 640 prealloc = alloc_extent_state_atomic(prealloc); 641 BUG_ON(!prealloc); 642 err = split_state(tree, state, prealloc, end + 1); 643 if (err) 644 extent_io_tree_panic(tree, err); 645 646 if (wake) 647 wake_up(&state->wq); 648 649 clear_state_bit(tree, prealloc, &bits, wake); 650 651 prealloc = NULL; 652 goto out; 653 } 654 655 state = clear_state_bit(tree, state, &bits, wake); 656 next: 657 if (last_end == (u64)-1) 658 goto out; 659 start = last_end + 1; 660 if (start <= end && state && !need_resched()) 661 goto hit_next; 662 goto search_again; 663 664 out: 665 spin_unlock(&tree->lock); 666 if (prealloc) 667 free_extent_state(prealloc); 668 669 return 0; 670 671 search_again: 672 if (start > end) 673 goto out; 674 spin_unlock(&tree->lock); 675 if (mask & __GFP_WAIT) 676 cond_resched(); 677 goto again; 678 } 679 680 static void wait_on_state(struct extent_io_tree *tree, 681 struct extent_state *state) 682 __releases(tree->lock) 683 __acquires(tree->lock) 684 { 685 DEFINE_WAIT(wait); 686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 687 spin_unlock(&tree->lock); 688 schedule(); 689 spin_lock(&tree->lock); 690 finish_wait(&state->wq, &wait); 691 } 692 693 /* 694 * waits for one or more bits to clear on a range in the state tree. 695 * The range [start, end] is inclusive. 696 * The tree lock is taken by this function 697 */ 698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 699 unsigned long bits) 700 { 701 struct extent_state *state; 702 struct rb_node *node; 703 704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 705 706 spin_lock(&tree->lock); 707 again: 708 while (1) { 709 /* 710 * this search will find all the extents that end after 711 * our range starts 712 */ 713 node = tree_search(tree, start); 714 if (!node) 715 break; 716 717 state = rb_entry(node, struct extent_state, rb_node); 718 719 if (state->start > end) 720 goto out; 721 722 if (state->state & bits) { 723 start = state->start; 724 atomic_inc(&state->refs); 725 wait_on_state(tree, state); 726 free_extent_state(state); 727 goto again; 728 } 729 start = state->end + 1; 730 731 if (start > end) 732 break; 733 734 cond_resched_lock(&tree->lock); 735 } 736 out: 737 spin_unlock(&tree->lock); 738 } 739 740 static void set_state_bits(struct extent_io_tree *tree, 741 struct extent_state *state, 742 unsigned long *bits) 743 { 744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 745 746 set_state_cb(tree, state, bits); 747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 748 u64 range = state->end - state->start + 1; 749 tree->dirty_bytes += range; 750 } 751 state->state |= bits_to_set; 752 } 753 754 static void cache_state(struct extent_state *state, 755 struct extent_state **cached_ptr) 756 { 757 if (cached_ptr && !(*cached_ptr)) { 758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 759 *cached_ptr = state; 760 atomic_inc(&state->refs); 761 } 762 } 763 } 764 765 static void uncache_state(struct extent_state **cached_ptr) 766 { 767 if (cached_ptr && (*cached_ptr)) { 768 struct extent_state *state = *cached_ptr; 769 *cached_ptr = NULL; 770 free_extent_state(state); 771 } 772 } 773 774 /* 775 * set some bits on a range in the tree. This may require allocations or 776 * sleeping, so the gfp mask is used to indicate what is allowed. 777 * 778 * If any of the exclusive bits are set, this will fail with -EEXIST if some 779 * part of the range already has the desired bits set. The start of the 780 * existing range is returned in failed_start in this case. 781 * 782 * [start, end] is inclusive This takes the tree lock. 783 */ 784 785 static int __must_check 786 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 787 unsigned long bits, unsigned long exclusive_bits, 788 u64 *failed_start, struct extent_state **cached_state, 789 gfp_t mask) 790 { 791 struct extent_state *state; 792 struct extent_state *prealloc = NULL; 793 struct rb_node *node; 794 int err = 0; 795 u64 last_start; 796 u64 last_end; 797 798 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 799 800 bits |= EXTENT_FIRST_DELALLOC; 801 again: 802 if (!prealloc && (mask & __GFP_WAIT)) { 803 prealloc = alloc_extent_state(mask); 804 BUG_ON(!prealloc); 805 } 806 807 spin_lock(&tree->lock); 808 if (cached_state && *cached_state) { 809 state = *cached_state; 810 if (state->start <= start && state->end > start && 811 state->tree) { 812 node = &state->rb_node; 813 goto hit_next; 814 } 815 } 816 /* 817 * this search will find all the extents that end after 818 * our range starts. 819 */ 820 node = tree_search(tree, start); 821 if (!node) { 822 prealloc = alloc_extent_state_atomic(prealloc); 823 BUG_ON(!prealloc); 824 err = insert_state(tree, prealloc, start, end, &bits); 825 if (err) 826 extent_io_tree_panic(tree, err); 827 828 prealloc = NULL; 829 goto out; 830 } 831 state = rb_entry(node, struct extent_state, rb_node); 832 hit_next: 833 last_start = state->start; 834 last_end = state->end; 835 836 /* 837 * | ---- desired range ---- | 838 * | state | 839 * 840 * Just lock what we found and keep going 841 */ 842 if (state->start == start && state->end <= end) { 843 if (state->state & exclusive_bits) { 844 *failed_start = state->start; 845 err = -EEXIST; 846 goto out; 847 } 848 849 set_state_bits(tree, state, &bits); 850 cache_state(state, cached_state); 851 merge_state(tree, state); 852 if (last_end == (u64)-1) 853 goto out; 854 start = last_end + 1; 855 state = next_state(state); 856 if (start < end && state && state->start == start && 857 !need_resched()) 858 goto hit_next; 859 goto search_again; 860 } 861 862 /* 863 * | ---- desired range ---- | 864 * | state | 865 * or 866 * | ------------- state -------------- | 867 * 868 * We need to split the extent we found, and may flip bits on 869 * second half. 870 * 871 * If the extent we found extends past our 872 * range, we just split and search again. It'll get split 873 * again the next time though. 874 * 875 * If the extent we found is inside our range, we set the 876 * desired bit on it. 877 */ 878 if (state->start < start) { 879 if (state->state & exclusive_bits) { 880 *failed_start = start; 881 err = -EEXIST; 882 goto out; 883 } 884 885 prealloc = alloc_extent_state_atomic(prealloc); 886 BUG_ON(!prealloc); 887 err = split_state(tree, state, prealloc, start); 888 if (err) 889 extent_io_tree_panic(tree, err); 890 891 prealloc = NULL; 892 if (err) 893 goto out; 894 if (state->end <= end) { 895 set_state_bits(tree, state, &bits); 896 cache_state(state, cached_state); 897 merge_state(tree, state); 898 if (last_end == (u64)-1) 899 goto out; 900 start = last_end + 1; 901 state = next_state(state); 902 if (start < end && state && state->start == start && 903 !need_resched()) 904 goto hit_next; 905 } 906 goto search_again; 907 } 908 /* 909 * | ---- desired range ---- | 910 * | state | or | state | 911 * 912 * There's a hole, we need to insert something in it and 913 * ignore the extent we found. 914 */ 915 if (state->start > start) { 916 u64 this_end; 917 if (end < last_start) 918 this_end = end; 919 else 920 this_end = last_start - 1; 921 922 prealloc = alloc_extent_state_atomic(prealloc); 923 BUG_ON(!prealloc); 924 925 /* 926 * Avoid to free 'prealloc' if it can be merged with 927 * the later extent. 928 */ 929 err = insert_state(tree, prealloc, start, this_end, 930 &bits); 931 if (err) 932 extent_io_tree_panic(tree, err); 933 934 cache_state(prealloc, cached_state); 935 prealloc = NULL; 936 start = this_end + 1; 937 goto search_again; 938 } 939 /* 940 * | ---- desired range ---- | 941 * | state | 942 * We need to split the extent, and set the bit 943 * on the first half 944 */ 945 if (state->start <= end && state->end > end) { 946 if (state->state & exclusive_bits) { 947 *failed_start = start; 948 err = -EEXIST; 949 goto out; 950 } 951 952 prealloc = alloc_extent_state_atomic(prealloc); 953 BUG_ON(!prealloc); 954 err = split_state(tree, state, prealloc, end + 1); 955 if (err) 956 extent_io_tree_panic(tree, err); 957 958 set_state_bits(tree, prealloc, &bits); 959 cache_state(prealloc, cached_state); 960 merge_state(tree, prealloc); 961 prealloc = NULL; 962 goto out; 963 } 964 965 goto search_again; 966 967 out: 968 spin_unlock(&tree->lock); 969 if (prealloc) 970 free_extent_state(prealloc); 971 972 return err; 973 974 search_again: 975 if (start > end) 976 goto out; 977 spin_unlock(&tree->lock); 978 if (mask & __GFP_WAIT) 979 cond_resched(); 980 goto again; 981 } 982 983 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 984 unsigned long bits, u64 * failed_start, 985 struct extent_state **cached_state, gfp_t mask) 986 { 987 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 988 cached_state, mask); 989 } 990 991 992 /** 993 * convert_extent_bit - convert all bits in a given range from one bit to 994 * another 995 * @tree: the io tree to search 996 * @start: the start offset in bytes 997 * @end: the end offset in bytes (inclusive) 998 * @bits: the bits to set in this range 999 * @clear_bits: the bits to clear in this range 1000 * @cached_state: state that we're going to cache 1001 * @mask: the allocation mask 1002 * 1003 * This will go through and set bits for the given range. If any states exist 1004 * already in this range they are set with the given bit and cleared of the 1005 * clear_bits. This is only meant to be used by things that are mergeable, ie 1006 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1007 * boundary bits like LOCK. 1008 */ 1009 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1010 unsigned long bits, unsigned long clear_bits, 1011 struct extent_state **cached_state, gfp_t mask) 1012 { 1013 struct extent_state *state; 1014 struct extent_state *prealloc = NULL; 1015 struct rb_node *node; 1016 int err = 0; 1017 u64 last_start; 1018 u64 last_end; 1019 1020 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end); 1021 1022 again: 1023 if (!prealloc && (mask & __GFP_WAIT)) { 1024 prealloc = alloc_extent_state(mask); 1025 if (!prealloc) 1026 return -ENOMEM; 1027 } 1028 1029 spin_lock(&tree->lock); 1030 if (cached_state && *cached_state) { 1031 state = *cached_state; 1032 if (state->start <= start && state->end > start && 1033 state->tree) { 1034 node = &state->rb_node; 1035 goto hit_next; 1036 } 1037 } 1038 1039 /* 1040 * this search will find all the extents that end after 1041 * our range starts. 1042 */ 1043 node = tree_search(tree, start); 1044 if (!node) { 1045 prealloc = alloc_extent_state_atomic(prealloc); 1046 if (!prealloc) { 1047 err = -ENOMEM; 1048 goto out; 1049 } 1050 err = insert_state(tree, prealloc, start, end, &bits); 1051 prealloc = NULL; 1052 if (err) 1053 extent_io_tree_panic(tree, err); 1054 goto out; 1055 } 1056 state = rb_entry(node, struct extent_state, rb_node); 1057 hit_next: 1058 last_start = state->start; 1059 last_end = state->end; 1060 1061 /* 1062 * | ---- desired range ---- | 1063 * | state | 1064 * 1065 * Just lock what we found and keep going 1066 */ 1067 if (state->start == start && state->end <= end) { 1068 set_state_bits(tree, state, &bits); 1069 cache_state(state, cached_state); 1070 state = clear_state_bit(tree, state, &clear_bits, 0); 1071 if (last_end == (u64)-1) 1072 goto out; 1073 start = last_end + 1; 1074 if (start < end && state && state->start == start && 1075 !need_resched()) 1076 goto hit_next; 1077 goto search_again; 1078 } 1079 1080 /* 1081 * | ---- desired range ---- | 1082 * | state | 1083 * or 1084 * | ------------- state -------------- | 1085 * 1086 * We need to split the extent we found, and may flip bits on 1087 * second half. 1088 * 1089 * If the extent we found extends past our 1090 * range, we just split and search again. It'll get split 1091 * again the next time though. 1092 * 1093 * If the extent we found is inside our range, we set the 1094 * desired bit on it. 1095 */ 1096 if (state->start < start) { 1097 prealloc = alloc_extent_state_atomic(prealloc); 1098 if (!prealloc) { 1099 err = -ENOMEM; 1100 goto out; 1101 } 1102 err = split_state(tree, state, prealloc, start); 1103 if (err) 1104 extent_io_tree_panic(tree, err); 1105 prealloc = NULL; 1106 if (err) 1107 goto out; 1108 if (state->end <= end) { 1109 set_state_bits(tree, state, &bits); 1110 cache_state(state, cached_state); 1111 state = clear_state_bit(tree, state, &clear_bits, 0); 1112 if (last_end == (u64)-1) 1113 goto out; 1114 start = last_end + 1; 1115 if (start < end && state && state->start == start && 1116 !need_resched()) 1117 goto hit_next; 1118 } 1119 goto search_again; 1120 } 1121 /* 1122 * | ---- desired range ---- | 1123 * | state | or | state | 1124 * 1125 * There's a hole, we need to insert something in it and 1126 * ignore the extent we found. 1127 */ 1128 if (state->start > start) { 1129 u64 this_end; 1130 if (end < last_start) 1131 this_end = end; 1132 else 1133 this_end = last_start - 1; 1134 1135 prealloc = alloc_extent_state_atomic(prealloc); 1136 if (!prealloc) { 1137 err = -ENOMEM; 1138 goto out; 1139 } 1140 1141 /* 1142 * Avoid to free 'prealloc' if it can be merged with 1143 * the later extent. 1144 */ 1145 err = insert_state(tree, prealloc, start, this_end, 1146 &bits); 1147 if (err) 1148 extent_io_tree_panic(tree, err); 1149 cache_state(prealloc, cached_state); 1150 prealloc = NULL; 1151 start = this_end + 1; 1152 goto search_again; 1153 } 1154 /* 1155 * | ---- desired range ---- | 1156 * | state | 1157 * We need to split the extent, and set the bit 1158 * on the first half 1159 */ 1160 if (state->start <= end && state->end > end) { 1161 prealloc = alloc_extent_state_atomic(prealloc); 1162 if (!prealloc) { 1163 err = -ENOMEM; 1164 goto out; 1165 } 1166 1167 err = split_state(tree, state, prealloc, end + 1); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 1171 set_state_bits(tree, prealloc, &bits); 1172 cache_state(prealloc, cached_state); 1173 clear_state_bit(tree, prealloc, &clear_bits, 0); 1174 prealloc = NULL; 1175 goto out; 1176 } 1177 1178 goto search_again; 1179 1180 out: 1181 spin_unlock(&tree->lock); 1182 if (prealloc) 1183 free_extent_state(prealloc); 1184 1185 return err; 1186 1187 search_again: 1188 if (start > end) 1189 goto out; 1190 spin_unlock(&tree->lock); 1191 if (mask & __GFP_WAIT) 1192 cond_resched(); 1193 goto again; 1194 } 1195 1196 /* wrappers around set/clear extent bit */ 1197 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1198 gfp_t mask) 1199 { 1200 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1201 NULL, mask); 1202 } 1203 1204 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1205 unsigned long bits, gfp_t mask) 1206 { 1207 return set_extent_bit(tree, start, end, bits, NULL, 1208 NULL, mask); 1209 } 1210 1211 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1212 unsigned long bits, gfp_t mask) 1213 { 1214 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1215 } 1216 1217 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1218 struct extent_state **cached_state, gfp_t mask) 1219 { 1220 return set_extent_bit(tree, start, end, 1221 EXTENT_DELALLOC | EXTENT_UPTODATE, 1222 NULL, cached_state, mask); 1223 } 1224 1225 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1226 struct extent_state **cached_state, gfp_t mask) 1227 { 1228 return set_extent_bit(tree, start, end, 1229 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1230 NULL, cached_state, mask); 1231 } 1232 1233 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1234 gfp_t mask) 1235 { 1236 return clear_extent_bit(tree, start, end, 1237 EXTENT_DIRTY | EXTENT_DELALLOC | 1238 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1239 } 1240 1241 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1242 gfp_t mask) 1243 { 1244 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1245 NULL, mask); 1246 } 1247 1248 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1249 struct extent_state **cached_state, gfp_t mask) 1250 { 1251 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1252 cached_state, mask); 1253 } 1254 1255 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1256 struct extent_state **cached_state, gfp_t mask) 1257 { 1258 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1259 cached_state, mask); 1260 } 1261 1262 /* 1263 * either insert or lock state struct between start and end use mask to tell 1264 * us if waiting is desired. 1265 */ 1266 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1267 unsigned long bits, struct extent_state **cached_state) 1268 { 1269 int err; 1270 u64 failed_start; 1271 while (1) { 1272 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1273 EXTENT_LOCKED, &failed_start, 1274 cached_state, GFP_NOFS); 1275 if (err == -EEXIST) { 1276 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1277 start = failed_start; 1278 } else 1279 break; 1280 WARN_ON(start > end); 1281 } 1282 return err; 1283 } 1284 1285 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1286 { 1287 return lock_extent_bits(tree, start, end, 0, NULL); 1288 } 1289 1290 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1291 { 1292 int err; 1293 u64 failed_start; 1294 1295 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1296 &failed_start, NULL, GFP_NOFS); 1297 if (err == -EEXIST) { 1298 if (failed_start > start) 1299 clear_extent_bit(tree, start, failed_start - 1, 1300 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1301 return 0; 1302 } 1303 return 1; 1304 } 1305 1306 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1307 struct extent_state **cached, gfp_t mask) 1308 { 1309 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1310 mask); 1311 } 1312 1313 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1314 { 1315 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1316 GFP_NOFS); 1317 } 1318 1319 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1320 { 1321 unsigned long index = start >> PAGE_CACHE_SHIFT; 1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1323 struct page *page; 1324 1325 while (index <= end_index) { 1326 page = find_get_page(inode->i_mapping, index); 1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1328 clear_page_dirty_for_io(page); 1329 page_cache_release(page); 1330 index++; 1331 } 1332 return 0; 1333 } 1334 1335 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1336 { 1337 unsigned long index = start >> PAGE_CACHE_SHIFT; 1338 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1339 struct page *page; 1340 1341 while (index <= end_index) { 1342 page = find_get_page(inode->i_mapping, index); 1343 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1344 account_page_redirty(page); 1345 __set_page_dirty_nobuffers(page); 1346 page_cache_release(page); 1347 index++; 1348 } 1349 return 0; 1350 } 1351 1352 /* 1353 * helper function to set both pages and extents in the tree writeback 1354 */ 1355 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1356 { 1357 unsigned long index = start >> PAGE_CACHE_SHIFT; 1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1359 struct page *page; 1360 1361 while (index <= end_index) { 1362 page = find_get_page(tree->mapping, index); 1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1364 set_page_writeback(page); 1365 page_cache_release(page); 1366 index++; 1367 } 1368 return 0; 1369 } 1370 1371 /* find the first state struct with 'bits' set after 'start', and 1372 * return it. tree->lock must be held. NULL will returned if 1373 * nothing was found after 'start' 1374 */ 1375 static struct extent_state * 1376 find_first_extent_bit_state(struct extent_io_tree *tree, 1377 u64 start, unsigned long bits) 1378 { 1379 struct rb_node *node; 1380 struct extent_state *state; 1381 1382 /* 1383 * this search will find all the extents that end after 1384 * our range starts. 1385 */ 1386 node = tree_search(tree, start); 1387 if (!node) 1388 goto out; 1389 1390 while (1) { 1391 state = rb_entry(node, struct extent_state, rb_node); 1392 if (state->end >= start && (state->state & bits)) 1393 return state; 1394 1395 node = rb_next(node); 1396 if (!node) 1397 break; 1398 } 1399 out: 1400 return NULL; 1401 } 1402 1403 /* 1404 * find the first offset in the io tree with 'bits' set. zero is 1405 * returned if we find something, and *start_ret and *end_ret are 1406 * set to reflect the state struct that was found. 1407 * 1408 * If nothing was found, 1 is returned. If found something, return 0. 1409 */ 1410 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1411 u64 *start_ret, u64 *end_ret, unsigned long bits, 1412 struct extent_state **cached_state) 1413 { 1414 struct extent_state *state; 1415 struct rb_node *n; 1416 int ret = 1; 1417 1418 spin_lock(&tree->lock); 1419 if (cached_state && *cached_state) { 1420 state = *cached_state; 1421 if (state->end == start - 1 && state->tree) { 1422 n = rb_next(&state->rb_node); 1423 while (n) { 1424 state = rb_entry(n, struct extent_state, 1425 rb_node); 1426 if (state->state & bits) 1427 goto got_it; 1428 n = rb_next(n); 1429 } 1430 free_extent_state(*cached_state); 1431 *cached_state = NULL; 1432 goto out; 1433 } 1434 free_extent_state(*cached_state); 1435 *cached_state = NULL; 1436 } 1437 1438 state = find_first_extent_bit_state(tree, start, bits); 1439 got_it: 1440 if (state) { 1441 cache_state(state, cached_state); 1442 *start_ret = state->start; 1443 *end_ret = state->end; 1444 ret = 0; 1445 } 1446 out: 1447 spin_unlock(&tree->lock); 1448 return ret; 1449 } 1450 1451 /* 1452 * find a contiguous range of bytes in the file marked as delalloc, not 1453 * more than 'max_bytes'. start and end are used to return the range, 1454 * 1455 * 1 is returned if we find something, 0 if nothing was in the tree 1456 */ 1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1458 u64 *start, u64 *end, u64 max_bytes, 1459 struct extent_state **cached_state) 1460 { 1461 struct rb_node *node; 1462 struct extent_state *state; 1463 u64 cur_start = *start; 1464 u64 found = 0; 1465 u64 total_bytes = 0; 1466 1467 spin_lock(&tree->lock); 1468 1469 /* 1470 * this search will find all the extents that end after 1471 * our range starts. 1472 */ 1473 node = tree_search(tree, cur_start); 1474 if (!node) { 1475 if (!found) 1476 *end = (u64)-1; 1477 goto out; 1478 } 1479 1480 while (1) { 1481 state = rb_entry(node, struct extent_state, rb_node); 1482 if (found && (state->start != cur_start || 1483 (state->state & EXTENT_BOUNDARY))) { 1484 goto out; 1485 } 1486 if (!(state->state & EXTENT_DELALLOC)) { 1487 if (!found) 1488 *end = state->end; 1489 goto out; 1490 } 1491 if (!found) { 1492 *start = state->start; 1493 *cached_state = state; 1494 atomic_inc(&state->refs); 1495 } 1496 found++; 1497 *end = state->end; 1498 cur_start = state->end + 1; 1499 node = rb_next(node); 1500 if (!node) 1501 break; 1502 total_bytes += state->end - state->start + 1; 1503 if (total_bytes >= max_bytes) 1504 break; 1505 } 1506 out: 1507 spin_unlock(&tree->lock); 1508 return found; 1509 } 1510 1511 static noinline void __unlock_for_delalloc(struct inode *inode, 1512 struct page *locked_page, 1513 u64 start, u64 end) 1514 { 1515 int ret; 1516 struct page *pages[16]; 1517 unsigned long index = start >> PAGE_CACHE_SHIFT; 1518 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1519 unsigned long nr_pages = end_index - index + 1; 1520 int i; 1521 1522 if (index == locked_page->index && end_index == index) 1523 return; 1524 1525 while (nr_pages > 0) { 1526 ret = find_get_pages_contig(inode->i_mapping, index, 1527 min_t(unsigned long, nr_pages, 1528 ARRAY_SIZE(pages)), pages); 1529 for (i = 0; i < ret; i++) { 1530 if (pages[i] != locked_page) 1531 unlock_page(pages[i]); 1532 page_cache_release(pages[i]); 1533 } 1534 nr_pages -= ret; 1535 index += ret; 1536 cond_resched(); 1537 } 1538 } 1539 1540 static noinline int lock_delalloc_pages(struct inode *inode, 1541 struct page *locked_page, 1542 u64 delalloc_start, 1543 u64 delalloc_end) 1544 { 1545 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1546 unsigned long start_index = index; 1547 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1548 unsigned long pages_locked = 0; 1549 struct page *pages[16]; 1550 unsigned long nrpages; 1551 int ret; 1552 int i; 1553 1554 /* the caller is responsible for locking the start index */ 1555 if (index == locked_page->index && index == end_index) 1556 return 0; 1557 1558 /* skip the page at the start index */ 1559 nrpages = end_index - index + 1; 1560 while (nrpages > 0) { 1561 ret = find_get_pages_contig(inode->i_mapping, index, 1562 min_t(unsigned long, 1563 nrpages, ARRAY_SIZE(pages)), pages); 1564 if (ret == 0) { 1565 ret = -EAGAIN; 1566 goto done; 1567 } 1568 /* now we have an array of pages, lock them all */ 1569 for (i = 0; i < ret; i++) { 1570 /* 1571 * the caller is taking responsibility for 1572 * locked_page 1573 */ 1574 if (pages[i] != locked_page) { 1575 lock_page(pages[i]); 1576 if (!PageDirty(pages[i]) || 1577 pages[i]->mapping != inode->i_mapping) { 1578 ret = -EAGAIN; 1579 unlock_page(pages[i]); 1580 page_cache_release(pages[i]); 1581 goto done; 1582 } 1583 } 1584 page_cache_release(pages[i]); 1585 pages_locked++; 1586 } 1587 nrpages -= ret; 1588 index += ret; 1589 cond_resched(); 1590 } 1591 ret = 0; 1592 done: 1593 if (ret && pages_locked) { 1594 __unlock_for_delalloc(inode, locked_page, 1595 delalloc_start, 1596 ((u64)(start_index + pages_locked - 1)) << 1597 PAGE_CACHE_SHIFT); 1598 } 1599 return ret; 1600 } 1601 1602 /* 1603 * find a contiguous range of bytes in the file marked as delalloc, not 1604 * more than 'max_bytes'. start and end are used to return the range, 1605 * 1606 * 1 is returned if we find something, 0 if nothing was in the tree 1607 */ 1608 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1609 struct extent_io_tree *tree, 1610 struct page *locked_page, 1611 u64 *start, u64 *end, 1612 u64 max_bytes) 1613 { 1614 u64 delalloc_start; 1615 u64 delalloc_end; 1616 u64 found; 1617 struct extent_state *cached_state = NULL; 1618 int ret; 1619 int loops = 0; 1620 1621 again: 1622 /* step one, find a bunch of delalloc bytes starting at start */ 1623 delalloc_start = *start; 1624 delalloc_end = 0; 1625 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1626 max_bytes, &cached_state); 1627 if (!found || delalloc_end <= *start) { 1628 *start = delalloc_start; 1629 *end = delalloc_end; 1630 free_extent_state(cached_state); 1631 return found; 1632 } 1633 1634 /* 1635 * start comes from the offset of locked_page. We have to lock 1636 * pages in order, so we can't process delalloc bytes before 1637 * locked_page 1638 */ 1639 if (delalloc_start < *start) 1640 delalloc_start = *start; 1641 1642 /* 1643 * make sure to limit the number of pages we try to lock down 1644 * if we're looping. 1645 */ 1646 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1647 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1648 1649 /* step two, lock all the pages after the page that has start */ 1650 ret = lock_delalloc_pages(inode, locked_page, 1651 delalloc_start, delalloc_end); 1652 if (ret == -EAGAIN) { 1653 /* some of the pages are gone, lets avoid looping by 1654 * shortening the size of the delalloc range we're searching 1655 */ 1656 free_extent_state(cached_state); 1657 if (!loops) { 1658 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1659 max_bytes = PAGE_CACHE_SIZE - offset; 1660 loops = 1; 1661 goto again; 1662 } else { 1663 found = 0; 1664 goto out_failed; 1665 } 1666 } 1667 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1668 1669 /* step three, lock the state bits for the whole range */ 1670 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1671 1672 /* then test to make sure it is all still delalloc */ 1673 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1674 EXTENT_DELALLOC, 1, cached_state); 1675 if (!ret) { 1676 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1677 &cached_state, GFP_NOFS); 1678 __unlock_for_delalloc(inode, locked_page, 1679 delalloc_start, delalloc_end); 1680 cond_resched(); 1681 goto again; 1682 } 1683 free_extent_state(cached_state); 1684 *start = delalloc_start; 1685 *end = delalloc_end; 1686 out_failed: 1687 return found; 1688 } 1689 1690 int extent_clear_unlock_delalloc(struct inode *inode, 1691 struct extent_io_tree *tree, 1692 u64 start, u64 end, struct page *locked_page, 1693 unsigned long op) 1694 { 1695 int ret; 1696 struct page *pages[16]; 1697 unsigned long index = start >> PAGE_CACHE_SHIFT; 1698 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1699 unsigned long nr_pages = end_index - index + 1; 1700 int i; 1701 unsigned long clear_bits = 0; 1702 1703 if (op & EXTENT_CLEAR_UNLOCK) 1704 clear_bits |= EXTENT_LOCKED; 1705 if (op & EXTENT_CLEAR_DIRTY) 1706 clear_bits |= EXTENT_DIRTY; 1707 1708 if (op & EXTENT_CLEAR_DELALLOC) 1709 clear_bits |= EXTENT_DELALLOC; 1710 1711 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1712 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1713 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1714 EXTENT_SET_PRIVATE2))) 1715 return 0; 1716 1717 while (nr_pages > 0) { 1718 ret = find_get_pages_contig(inode->i_mapping, index, 1719 min_t(unsigned long, 1720 nr_pages, ARRAY_SIZE(pages)), pages); 1721 for (i = 0; i < ret; i++) { 1722 1723 if (op & EXTENT_SET_PRIVATE2) 1724 SetPagePrivate2(pages[i]); 1725 1726 if (pages[i] == locked_page) { 1727 page_cache_release(pages[i]); 1728 continue; 1729 } 1730 if (op & EXTENT_CLEAR_DIRTY) 1731 clear_page_dirty_for_io(pages[i]); 1732 if (op & EXTENT_SET_WRITEBACK) 1733 set_page_writeback(pages[i]); 1734 if (op & EXTENT_END_WRITEBACK) 1735 end_page_writeback(pages[i]); 1736 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1737 unlock_page(pages[i]); 1738 page_cache_release(pages[i]); 1739 } 1740 nr_pages -= ret; 1741 index += ret; 1742 cond_resched(); 1743 } 1744 return 0; 1745 } 1746 1747 /* 1748 * count the number of bytes in the tree that have a given bit(s) 1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1750 * cached. The total number found is returned. 1751 */ 1752 u64 count_range_bits(struct extent_io_tree *tree, 1753 u64 *start, u64 search_end, u64 max_bytes, 1754 unsigned long bits, int contig) 1755 { 1756 struct rb_node *node; 1757 struct extent_state *state; 1758 u64 cur_start = *start; 1759 u64 total_bytes = 0; 1760 u64 last = 0; 1761 int found = 0; 1762 1763 if (search_end <= cur_start) { 1764 WARN_ON(1); 1765 return 0; 1766 } 1767 1768 spin_lock(&tree->lock); 1769 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1770 total_bytes = tree->dirty_bytes; 1771 goto out; 1772 } 1773 /* 1774 * this search will find all the extents that end after 1775 * our range starts. 1776 */ 1777 node = tree_search(tree, cur_start); 1778 if (!node) 1779 goto out; 1780 1781 while (1) { 1782 state = rb_entry(node, struct extent_state, rb_node); 1783 if (state->start > search_end) 1784 break; 1785 if (contig && found && state->start > last + 1) 1786 break; 1787 if (state->end >= cur_start && (state->state & bits) == bits) { 1788 total_bytes += min(search_end, state->end) + 1 - 1789 max(cur_start, state->start); 1790 if (total_bytes >= max_bytes) 1791 break; 1792 if (!found) { 1793 *start = max(cur_start, state->start); 1794 found = 1; 1795 } 1796 last = state->end; 1797 } else if (contig && found) { 1798 break; 1799 } 1800 node = rb_next(node); 1801 if (!node) 1802 break; 1803 } 1804 out: 1805 spin_unlock(&tree->lock); 1806 return total_bytes; 1807 } 1808 1809 /* 1810 * set the private field for a given byte offset in the tree. If there isn't 1811 * an extent_state there already, this does nothing. 1812 */ 1813 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1814 { 1815 struct rb_node *node; 1816 struct extent_state *state; 1817 int ret = 0; 1818 1819 spin_lock(&tree->lock); 1820 /* 1821 * this search will find all the extents that end after 1822 * our range starts. 1823 */ 1824 node = tree_search(tree, start); 1825 if (!node) { 1826 ret = -ENOENT; 1827 goto out; 1828 } 1829 state = rb_entry(node, struct extent_state, rb_node); 1830 if (state->start != start) { 1831 ret = -ENOENT; 1832 goto out; 1833 } 1834 state->private = private; 1835 out: 1836 spin_unlock(&tree->lock); 1837 return ret; 1838 } 1839 1840 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[], 1841 int count) 1842 { 1843 struct rb_node *node; 1844 struct extent_state *state; 1845 1846 spin_lock(&tree->lock); 1847 /* 1848 * this search will find all the extents that end after 1849 * our range starts. 1850 */ 1851 node = tree_search(tree, start); 1852 BUG_ON(!node); 1853 1854 state = rb_entry(node, struct extent_state, rb_node); 1855 BUG_ON(state->start != start); 1856 1857 while (count) { 1858 state->private = *csums++; 1859 count--; 1860 state = next_state(state); 1861 } 1862 spin_unlock(&tree->lock); 1863 } 1864 1865 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index) 1866 { 1867 struct bio_vec *bvec = bio->bi_io_vec + bio_index; 1868 1869 return page_offset(bvec->bv_page) + bvec->bv_offset; 1870 } 1871 1872 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index, 1873 u32 csums[], int count) 1874 { 1875 struct rb_node *node; 1876 struct extent_state *state = NULL; 1877 u64 start; 1878 1879 spin_lock(&tree->lock); 1880 do { 1881 start = __btrfs_get_bio_offset(bio, bio_index); 1882 if (state == NULL || state->start != start) { 1883 node = tree_search(tree, start); 1884 BUG_ON(!node); 1885 1886 state = rb_entry(node, struct extent_state, rb_node); 1887 BUG_ON(state->start != start); 1888 } 1889 state->private = *csums++; 1890 count--; 1891 bio_index++; 1892 1893 state = next_state(state); 1894 } while (count); 1895 spin_unlock(&tree->lock); 1896 } 1897 1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1899 { 1900 struct rb_node *node; 1901 struct extent_state *state; 1902 int ret = 0; 1903 1904 spin_lock(&tree->lock); 1905 /* 1906 * this search will find all the extents that end after 1907 * our range starts. 1908 */ 1909 node = tree_search(tree, start); 1910 if (!node) { 1911 ret = -ENOENT; 1912 goto out; 1913 } 1914 state = rb_entry(node, struct extent_state, rb_node); 1915 if (state->start != start) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 *private = state->private; 1920 out: 1921 spin_unlock(&tree->lock); 1922 return ret; 1923 } 1924 1925 /* 1926 * searches a range in the state tree for a given mask. 1927 * If 'filled' == 1, this returns 1 only if every extent in the tree 1928 * has the bits set. Otherwise, 1 is returned if any bit in the 1929 * range is found set. 1930 */ 1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1932 unsigned long bits, int filled, struct extent_state *cached) 1933 { 1934 struct extent_state *state = NULL; 1935 struct rb_node *node; 1936 int bitset = 0; 1937 1938 spin_lock(&tree->lock); 1939 if (cached && cached->tree && cached->start <= start && 1940 cached->end > start) 1941 node = &cached->rb_node; 1942 else 1943 node = tree_search(tree, start); 1944 while (node && start <= end) { 1945 state = rb_entry(node, struct extent_state, rb_node); 1946 1947 if (filled && state->start > start) { 1948 bitset = 0; 1949 break; 1950 } 1951 1952 if (state->start > end) 1953 break; 1954 1955 if (state->state & bits) { 1956 bitset = 1; 1957 if (!filled) 1958 break; 1959 } else if (filled) { 1960 bitset = 0; 1961 break; 1962 } 1963 1964 if (state->end == (u64)-1) 1965 break; 1966 1967 start = state->end + 1; 1968 if (start > end) 1969 break; 1970 node = rb_next(node); 1971 if (!node) { 1972 if (filled) 1973 bitset = 0; 1974 break; 1975 } 1976 } 1977 spin_unlock(&tree->lock); 1978 return bitset; 1979 } 1980 1981 /* 1982 * helper function to set a given page up to date if all the 1983 * extents in the tree for that page are up to date 1984 */ 1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1986 { 1987 u64 start = page_offset(page); 1988 u64 end = start + PAGE_CACHE_SIZE - 1; 1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1990 SetPageUptodate(page); 1991 } 1992 1993 /* 1994 * When IO fails, either with EIO or csum verification fails, we 1995 * try other mirrors that might have a good copy of the data. This 1996 * io_failure_record is used to record state as we go through all the 1997 * mirrors. If another mirror has good data, the page is set up to date 1998 * and things continue. If a good mirror can't be found, the original 1999 * bio end_io callback is called to indicate things have failed. 2000 */ 2001 struct io_failure_record { 2002 struct page *page; 2003 u64 start; 2004 u64 len; 2005 u64 logical; 2006 unsigned long bio_flags; 2007 int this_mirror; 2008 int failed_mirror; 2009 int in_validation; 2010 }; 2011 2012 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 2013 int did_repair) 2014 { 2015 int ret; 2016 int err = 0; 2017 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2018 2019 set_state_private(failure_tree, rec->start, 0); 2020 ret = clear_extent_bits(failure_tree, rec->start, 2021 rec->start + rec->len - 1, 2022 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2023 if (ret) 2024 err = ret; 2025 2026 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2027 rec->start + rec->len - 1, 2028 EXTENT_DAMAGED, GFP_NOFS); 2029 if (ret && !err) 2030 err = ret; 2031 2032 kfree(rec); 2033 return err; 2034 } 2035 2036 static void repair_io_failure_callback(struct bio *bio, int err) 2037 { 2038 complete(bio->bi_private); 2039 } 2040 2041 /* 2042 * this bypasses the standard btrfs submit functions deliberately, as 2043 * the standard behavior is to write all copies in a raid setup. here we only 2044 * want to write the one bad copy. so we do the mapping for ourselves and issue 2045 * submit_bio directly. 2046 * to avoid any synchronization issues, wait for the data after writing, which 2047 * actually prevents the read that triggered the error from finishing. 2048 * currently, there can be no more than two copies of every data bit. thus, 2049 * exactly one rewrite is required. 2050 */ 2051 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 2052 u64 length, u64 logical, struct page *page, 2053 int mirror_num) 2054 { 2055 struct bio *bio; 2056 struct btrfs_device *dev; 2057 DECLARE_COMPLETION_ONSTACK(compl); 2058 u64 map_length = 0; 2059 u64 sector; 2060 struct btrfs_bio *bbio = NULL; 2061 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2062 int ret; 2063 2064 BUG_ON(!mirror_num); 2065 2066 /* we can't repair anything in raid56 yet */ 2067 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2068 return 0; 2069 2070 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2071 if (!bio) 2072 return -EIO; 2073 bio->bi_private = &compl; 2074 bio->bi_end_io = repair_io_failure_callback; 2075 bio->bi_size = 0; 2076 map_length = length; 2077 2078 ret = btrfs_map_block(fs_info, WRITE, logical, 2079 &map_length, &bbio, mirror_num); 2080 if (ret) { 2081 bio_put(bio); 2082 return -EIO; 2083 } 2084 BUG_ON(mirror_num != bbio->mirror_num); 2085 sector = bbio->stripes[mirror_num-1].physical >> 9; 2086 bio->bi_sector = sector; 2087 dev = bbio->stripes[mirror_num-1].dev; 2088 kfree(bbio); 2089 if (!dev || !dev->bdev || !dev->writeable) { 2090 bio_put(bio); 2091 return -EIO; 2092 } 2093 bio->bi_bdev = dev->bdev; 2094 bio_add_page(bio, page, length, start - page_offset(page)); 2095 btrfsic_submit_bio(WRITE_SYNC, bio); 2096 wait_for_completion(&compl); 2097 2098 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2099 /* try to remap that extent elsewhere? */ 2100 bio_put(bio); 2101 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2102 return -EIO; 2103 } 2104 2105 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu " 2106 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2107 start, rcu_str_deref(dev->name), sector); 2108 2109 bio_put(bio); 2110 return 0; 2111 } 2112 2113 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2114 int mirror_num) 2115 { 2116 u64 start = eb->start; 2117 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2118 int ret = 0; 2119 2120 for (i = 0; i < num_pages; i++) { 2121 struct page *p = extent_buffer_page(eb, i); 2122 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2123 start, p, mirror_num); 2124 if (ret) 2125 break; 2126 start += PAGE_CACHE_SIZE; 2127 } 2128 2129 return ret; 2130 } 2131 2132 /* 2133 * each time an IO finishes, we do a fast check in the IO failure tree 2134 * to see if we need to process or clean up an io_failure_record 2135 */ 2136 static int clean_io_failure(u64 start, struct page *page) 2137 { 2138 u64 private; 2139 u64 private_failure; 2140 struct io_failure_record *failrec; 2141 struct btrfs_fs_info *fs_info; 2142 struct extent_state *state; 2143 int num_copies; 2144 int did_repair = 0; 2145 int ret; 2146 struct inode *inode = page->mapping->host; 2147 2148 private = 0; 2149 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2150 (u64)-1, 1, EXTENT_DIRTY, 0); 2151 if (!ret) 2152 return 0; 2153 2154 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2155 &private_failure); 2156 if (ret) 2157 return 0; 2158 2159 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2160 BUG_ON(!failrec->this_mirror); 2161 2162 if (failrec->in_validation) { 2163 /* there was no real error, just free the record */ 2164 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2165 failrec->start); 2166 did_repair = 1; 2167 goto out; 2168 } 2169 2170 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2171 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2172 failrec->start, 2173 EXTENT_LOCKED); 2174 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2175 2176 if (state && state->start == failrec->start) { 2177 fs_info = BTRFS_I(inode)->root->fs_info; 2178 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2179 failrec->len); 2180 if (num_copies > 1) { 2181 ret = repair_io_failure(fs_info, start, failrec->len, 2182 failrec->logical, page, 2183 failrec->failed_mirror); 2184 did_repair = !ret; 2185 } 2186 ret = 0; 2187 } 2188 2189 out: 2190 if (!ret) 2191 ret = free_io_failure(inode, failrec, did_repair); 2192 2193 return ret; 2194 } 2195 2196 /* 2197 * this is a generic handler for readpage errors (default 2198 * readpage_io_failed_hook). if other copies exist, read those and write back 2199 * good data to the failed position. does not investigate in remapping the 2200 * failed extent elsewhere, hoping the device will be smart enough to do this as 2201 * needed 2202 */ 2203 2204 static int bio_readpage_error(struct bio *failed_bio, struct page *page, 2205 u64 start, u64 end, int failed_mirror, 2206 struct extent_state *state) 2207 { 2208 struct io_failure_record *failrec = NULL; 2209 u64 private; 2210 struct extent_map *em; 2211 struct inode *inode = page->mapping->host; 2212 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2213 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2214 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2215 struct bio *bio; 2216 int num_copies; 2217 int ret; 2218 int read_mode; 2219 u64 logical; 2220 2221 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2222 2223 ret = get_state_private(failure_tree, start, &private); 2224 if (ret) { 2225 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2226 if (!failrec) 2227 return -ENOMEM; 2228 failrec->start = start; 2229 failrec->len = end - start + 1; 2230 failrec->this_mirror = 0; 2231 failrec->bio_flags = 0; 2232 failrec->in_validation = 0; 2233 2234 read_lock(&em_tree->lock); 2235 em = lookup_extent_mapping(em_tree, start, failrec->len); 2236 if (!em) { 2237 read_unlock(&em_tree->lock); 2238 kfree(failrec); 2239 return -EIO; 2240 } 2241 2242 if (em->start > start || em->start + em->len < start) { 2243 free_extent_map(em); 2244 em = NULL; 2245 } 2246 read_unlock(&em_tree->lock); 2247 2248 if (!em) { 2249 kfree(failrec); 2250 return -EIO; 2251 } 2252 logical = start - em->start; 2253 logical = em->block_start + logical; 2254 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2255 logical = em->block_start; 2256 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2257 extent_set_compress_type(&failrec->bio_flags, 2258 em->compress_type); 2259 } 2260 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2261 "len=%llu\n", logical, start, failrec->len); 2262 failrec->logical = logical; 2263 free_extent_map(em); 2264 2265 /* set the bits in the private failure tree */ 2266 ret = set_extent_bits(failure_tree, start, end, 2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2268 if (ret >= 0) 2269 ret = set_state_private(failure_tree, start, 2270 (u64)(unsigned long)failrec); 2271 /* set the bits in the inode's tree */ 2272 if (ret >= 0) 2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2274 GFP_NOFS); 2275 if (ret < 0) { 2276 kfree(failrec); 2277 return ret; 2278 } 2279 } else { 2280 failrec = (struct io_failure_record *)(unsigned long)private; 2281 pr_debug("bio_readpage_error: (found) logical=%llu, " 2282 "start=%llu, len=%llu, validation=%d\n", 2283 failrec->logical, failrec->start, failrec->len, 2284 failrec->in_validation); 2285 /* 2286 * when data can be on disk more than twice, add to failrec here 2287 * (e.g. with a list for failed_mirror) to make 2288 * clean_io_failure() clean all those errors at once. 2289 */ 2290 } 2291 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2292 failrec->logical, failrec->len); 2293 if (num_copies == 1) { 2294 /* 2295 * we only have a single copy of the data, so don't bother with 2296 * all the retry and error correction code that follows. no 2297 * matter what the error is, it is very likely to persist. 2298 */ 2299 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " 2300 "state=%p, num_copies=%d, next_mirror %d, " 2301 "failed_mirror %d\n", state, num_copies, 2302 failrec->this_mirror, failed_mirror); 2303 free_io_failure(inode, failrec, 0); 2304 return -EIO; 2305 } 2306 2307 if (!state) { 2308 spin_lock(&tree->lock); 2309 state = find_first_extent_bit_state(tree, failrec->start, 2310 EXTENT_LOCKED); 2311 if (state && state->start != failrec->start) 2312 state = NULL; 2313 spin_unlock(&tree->lock); 2314 } 2315 2316 /* 2317 * there are two premises: 2318 * a) deliver good data to the caller 2319 * b) correct the bad sectors on disk 2320 */ 2321 if (failed_bio->bi_vcnt > 1) { 2322 /* 2323 * to fulfill b), we need to know the exact failing sectors, as 2324 * we don't want to rewrite any more than the failed ones. thus, 2325 * we need separate read requests for the failed bio 2326 * 2327 * if the following BUG_ON triggers, our validation request got 2328 * merged. we need separate requests for our algorithm to work. 2329 */ 2330 BUG_ON(failrec->in_validation); 2331 failrec->in_validation = 1; 2332 failrec->this_mirror = failed_mirror; 2333 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2334 } else { 2335 /* 2336 * we're ready to fulfill a) and b) alongside. get a good copy 2337 * of the failed sector and if we succeed, we have setup 2338 * everything for repair_io_failure to do the rest for us. 2339 */ 2340 if (failrec->in_validation) { 2341 BUG_ON(failrec->this_mirror != failed_mirror); 2342 failrec->in_validation = 0; 2343 failrec->this_mirror = 0; 2344 } 2345 failrec->failed_mirror = failed_mirror; 2346 failrec->this_mirror++; 2347 if (failrec->this_mirror == failed_mirror) 2348 failrec->this_mirror++; 2349 read_mode = READ_SYNC; 2350 } 2351 2352 if (!state || failrec->this_mirror > num_copies) { 2353 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " 2354 "next_mirror %d, failed_mirror %d\n", state, 2355 num_copies, failrec->this_mirror, failed_mirror); 2356 free_io_failure(inode, failrec, 0); 2357 return -EIO; 2358 } 2359 2360 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2361 if (!bio) { 2362 free_io_failure(inode, failrec, 0); 2363 return -EIO; 2364 } 2365 bio->bi_private = state; 2366 bio->bi_end_io = failed_bio->bi_end_io; 2367 bio->bi_sector = failrec->logical >> 9; 2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2369 bio->bi_size = 0; 2370 2371 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2372 2373 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2374 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2375 failrec->this_mirror, num_copies, failrec->in_validation); 2376 2377 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2378 failrec->this_mirror, 2379 failrec->bio_flags, 0); 2380 return ret; 2381 } 2382 2383 /* lots and lots of room for performance fixes in the end_bio funcs */ 2384 2385 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2386 { 2387 int uptodate = (err == 0); 2388 struct extent_io_tree *tree; 2389 int ret; 2390 2391 tree = &BTRFS_I(page->mapping->host)->io_tree; 2392 2393 if (tree->ops && tree->ops->writepage_end_io_hook) { 2394 ret = tree->ops->writepage_end_io_hook(page, start, 2395 end, NULL, uptodate); 2396 if (ret) 2397 uptodate = 0; 2398 } 2399 2400 if (!uptodate) { 2401 ClearPageUptodate(page); 2402 SetPageError(page); 2403 } 2404 return 0; 2405 } 2406 2407 /* 2408 * after a writepage IO is done, we need to: 2409 * clear the uptodate bits on error 2410 * clear the writeback bits in the extent tree for this IO 2411 * end_page_writeback if the page has no more pending IO 2412 * 2413 * Scheduling is not allowed, so the extent state tree is expected 2414 * to have one and only one object corresponding to this IO. 2415 */ 2416 static void end_bio_extent_writepage(struct bio *bio, int err) 2417 { 2418 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2419 struct extent_io_tree *tree; 2420 u64 start; 2421 u64 end; 2422 2423 do { 2424 struct page *page = bvec->bv_page; 2425 tree = &BTRFS_I(page->mapping->host)->io_tree; 2426 2427 /* We always issue full-page reads, but if some block 2428 * in a page fails to read, blk_update_request() will 2429 * advance bv_offset and adjust bv_len to compensate. 2430 * Print a warning for nonzero offsets, and an error 2431 * if they don't add up to a full page. */ 2432 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2433 printk("%s page write in btrfs with offset %u and length %u\n", 2434 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2435 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2436 bvec->bv_offset, bvec->bv_len); 2437 2438 start = page_offset(page); 2439 end = start + bvec->bv_offset + bvec->bv_len - 1; 2440 2441 if (--bvec >= bio->bi_io_vec) 2442 prefetchw(&bvec->bv_page->flags); 2443 2444 if (end_extent_writepage(page, err, start, end)) 2445 continue; 2446 2447 end_page_writeback(page); 2448 } while (bvec >= bio->bi_io_vec); 2449 2450 bio_put(bio); 2451 } 2452 2453 /* 2454 * after a readpage IO is done, we need to: 2455 * clear the uptodate bits on error 2456 * set the uptodate bits if things worked 2457 * set the page up to date if all extents in the tree are uptodate 2458 * clear the lock bit in the extent tree 2459 * unlock the page if there are no other extents locked for it 2460 * 2461 * Scheduling is not allowed, so the extent state tree is expected 2462 * to have one and only one object corresponding to this IO. 2463 */ 2464 static void end_bio_extent_readpage(struct bio *bio, int err) 2465 { 2466 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2467 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 2468 struct bio_vec *bvec = bio->bi_io_vec; 2469 struct extent_io_tree *tree; 2470 u64 start; 2471 u64 end; 2472 int mirror; 2473 int ret; 2474 2475 if (err) 2476 uptodate = 0; 2477 2478 do { 2479 struct page *page = bvec->bv_page; 2480 struct extent_state *cached = NULL; 2481 struct extent_state *state; 2482 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2483 struct inode *inode = page->mapping->host; 2484 2485 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2486 "mirror=%lu\n", (u64)bio->bi_sector, err, 2487 io_bio->mirror_num); 2488 tree = &BTRFS_I(inode)->io_tree; 2489 2490 /* We always issue full-page reads, but if some block 2491 * in a page fails to read, blk_update_request() will 2492 * advance bv_offset and adjust bv_len to compensate. 2493 * Print a warning for nonzero offsets, and an error 2494 * if they don't add up to a full page. */ 2495 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) 2496 printk("%s page read in btrfs with offset %u and length %u\n", 2497 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE 2498 ? KERN_ERR "partial" : KERN_INFO "incomplete", 2499 bvec->bv_offset, bvec->bv_len); 2500 2501 start = page_offset(page); 2502 end = start + bvec->bv_offset + bvec->bv_len - 1; 2503 2504 if (++bvec <= bvec_end) 2505 prefetchw(&bvec->bv_page->flags); 2506 2507 spin_lock(&tree->lock); 2508 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 2509 if (state && state->start == start) { 2510 /* 2511 * take a reference on the state, unlock will drop 2512 * the ref 2513 */ 2514 cache_state(state, &cached); 2515 } 2516 spin_unlock(&tree->lock); 2517 2518 mirror = io_bio->mirror_num; 2519 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 2520 ret = tree->ops->readpage_end_io_hook(page, start, end, 2521 state, mirror); 2522 if (ret) 2523 uptodate = 0; 2524 else 2525 clean_io_failure(start, page); 2526 } 2527 2528 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { 2529 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2530 if (!ret && !err && 2531 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2532 uptodate = 1; 2533 } else if (!uptodate) { 2534 /* 2535 * The generic bio_readpage_error handles errors the 2536 * following way: If possible, new read requests are 2537 * created and submitted and will end up in 2538 * end_bio_extent_readpage as well (if we're lucky, not 2539 * in the !uptodate case). In that case it returns 0 and 2540 * we just go on with the next page in our bio. If it 2541 * can't handle the error it will return -EIO and we 2542 * remain responsible for that page. 2543 */ 2544 ret = bio_readpage_error(bio, page, start, end, mirror, NULL); 2545 if (ret == 0) { 2546 uptodate = 2547 test_bit(BIO_UPTODATE, &bio->bi_flags); 2548 if (err) 2549 uptodate = 0; 2550 uncache_state(&cached); 2551 continue; 2552 } 2553 } 2554 2555 if (uptodate && tree->track_uptodate) { 2556 set_extent_uptodate(tree, start, end, &cached, 2557 GFP_ATOMIC); 2558 } 2559 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2560 2561 if (uptodate) { 2562 loff_t i_size = i_size_read(inode); 2563 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2564 unsigned offset; 2565 2566 /* Zero out the end if this page straddles i_size */ 2567 offset = i_size & (PAGE_CACHE_SIZE-1); 2568 if (page->index == end_index && offset) 2569 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2570 SetPageUptodate(page); 2571 } else { 2572 ClearPageUptodate(page); 2573 SetPageError(page); 2574 } 2575 unlock_page(page); 2576 } while (bvec <= bvec_end); 2577 2578 bio_put(bio); 2579 } 2580 2581 /* 2582 * this allocates from the btrfs_bioset. We're returning a bio right now 2583 * but you can call btrfs_io_bio for the appropriate container_of magic 2584 */ 2585 struct bio * 2586 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2587 gfp_t gfp_flags) 2588 { 2589 struct bio *bio; 2590 2591 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2592 2593 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2594 while (!bio && (nr_vecs /= 2)) { 2595 bio = bio_alloc_bioset(gfp_flags, 2596 nr_vecs, btrfs_bioset); 2597 } 2598 } 2599 2600 if (bio) { 2601 bio->bi_size = 0; 2602 bio->bi_bdev = bdev; 2603 bio->bi_sector = first_sector; 2604 } 2605 return bio; 2606 } 2607 2608 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2609 { 2610 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2611 } 2612 2613 2614 /* this also allocates from the btrfs_bioset */ 2615 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2616 { 2617 return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2618 } 2619 2620 2621 static int __must_check submit_one_bio(int rw, struct bio *bio, 2622 int mirror_num, unsigned long bio_flags) 2623 { 2624 int ret = 0; 2625 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2626 struct page *page = bvec->bv_page; 2627 struct extent_io_tree *tree = bio->bi_private; 2628 u64 start; 2629 2630 start = page_offset(page) + bvec->bv_offset; 2631 2632 bio->bi_private = NULL; 2633 2634 bio_get(bio); 2635 2636 if (tree->ops && tree->ops->submit_bio_hook) 2637 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2638 mirror_num, bio_flags, start); 2639 else 2640 btrfsic_submit_bio(rw, bio); 2641 2642 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2643 ret = -EOPNOTSUPP; 2644 bio_put(bio); 2645 return ret; 2646 } 2647 2648 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2649 unsigned long offset, size_t size, struct bio *bio, 2650 unsigned long bio_flags) 2651 { 2652 int ret = 0; 2653 if (tree->ops && tree->ops->merge_bio_hook) 2654 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2655 bio_flags); 2656 BUG_ON(ret < 0); 2657 return ret; 2658 2659 } 2660 2661 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2662 struct page *page, sector_t sector, 2663 size_t size, unsigned long offset, 2664 struct block_device *bdev, 2665 struct bio **bio_ret, 2666 unsigned long max_pages, 2667 bio_end_io_t end_io_func, 2668 int mirror_num, 2669 unsigned long prev_bio_flags, 2670 unsigned long bio_flags) 2671 { 2672 int ret = 0; 2673 struct bio *bio; 2674 int nr; 2675 int contig = 0; 2676 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2677 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2678 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2679 2680 if (bio_ret && *bio_ret) { 2681 bio = *bio_ret; 2682 if (old_compressed) 2683 contig = bio->bi_sector == sector; 2684 else 2685 contig = bio_end_sector(bio) == sector; 2686 2687 if (prev_bio_flags != bio_flags || !contig || 2688 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2689 bio_add_page(bio, page, page_size, offset) < page_size) { 2690 ret = submit_one_bio(rw, bio, mirror_num, 2691 prev_bio_flags); 2692 if (ret < 0) 2693 return ret; 2694 bio = NULL; 2695 } else { 2696 return 0; 2697 } 2698 } 2699 if (this_compressed) 2700 nr = BIO_MAX_PAGES; 2701 else 2702 nr = bio_get_nr_vecs(bdev); 2703 2704 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2705 if (!bio) 2706 return -ENOMEM; 2707 2708 bio_add_page(bio, page, page_size, offset); 2709 bio->bi_end_io = end_io_func; 2710 bio->bi_private = tree; 2711 2712 if (bio_ret) 2713 *bio_ret = bio; 2714 else 2715 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2716 2717 return ret; 2718 } 2719 2720 static void attach_extent_buffer_page(struct extent_buffer *eb, 2721 struct page *page) 2722 { 2723 if (!PagePrivate(page)) { 2724 SetPagePrivate(page); 2725 page_cache_get(page); 2726 set_page_private(page, (unsigned long)eb); 2727 } else { 2728 WARN_ON(page->private != (unsigned long)eb); 2729 } 2730 } 2731 2732 void set_page_extent_mapped(struct page *page) 2733 { 2734 if (!PagePrivate(page)) { 2735 SetPagePrivate(page); 2736 page_cache_get(page); 2737 set_page_private(page, EXTENT_PAGE_PRIVATE); 2738 } 2739 } 2740 2741 /* 2742 * basic readpage implementation. Locked extent state structs are inserted 2743 * into the tree that are removed when the IO is done (by the end_io 2744 * handlers) 2745 * XXX JDM: This needs looking at to ensure proper page locking 2746 */ 2747 static int __extent_read_full_page(struct extent_io_tree *tree, 2748 struct page *page, 2749 get_extent_t *get_extent, 2750 struct bio **bio, int mirror_num, 2751 unsigned long *bio_flags, int rw) 2752 { 2753 struct inode *inode = page->mapping->host; 2754 u64 start = page_offset(page); 2755 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2756 u64 end; 2757 u64 cur = start; 2758 u64 extent_offset; 2759 u64 last_byte = i_size_read(inode); 2760 u64 block_start; 2761 u64 cur_end; 2762 sector_t sector; 2763 struct extent_map *em; 2764 struct block_device *bdev; 2765 struct btrfs_ordered_extent *ordered; 2766 int ret; 2767 int nr = 0; 2768 size_t pg_offset = 0; 2769 size_t iosize; 2770 size_t disk_io_size; 2771 size_t blocksize = inode->i_sb->s_blocksize; 2772 unsigned long this_bio_flag = 0; 2773 2774 set_page_extent_mapped(page); 2775 2776 if (!PageUptodate(page)) { 2777 if (cleancache_get_page(page) == 0) { 2778 BUG_ON(blocksize != PAGE_SIZE); 2779 goto out; 2780 } 2781 } 2782 2783 end = page_end; 2784 while (1) { 2785 lock_extent(tree, start, end); 2786 ordered = btrfs_lookup_ordered_extent(inode, start); 2787 if (!ordered) 2788 break; 2789 unlock_extent(tree, start, end); 2790 btrfs_start_ordered_extent(inode, ordered, 1); 2791 btrfs_put_ordered_extent(ordered); 2792 } 2793 2794 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2795 char *userpage; 2796 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2797 2798 if (zero_offset) { 2799 iosize = PAGE_CACHE_SIZE - zero_offset; 2800 userpage = kmap_atomic(page); 2801 memset(userpage + zero_offset, 0, iosize); 2802 flush_dcache_page(page); 2803 kunmap_atomic(userpage); 2804 } 2805 } 2806 while (cur <= end) { 2807 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2808 2809 if (cur >= last_byte) { 2810 char *userpage; 2811 struct extent_state *cached = NULL; 2812 2813 iosize = PAGE_CACHE_SIZE - pg_offset; 2814 userpage = kmap_atomic(page); 2815 memset(userpage + pg_offset, 0, iosize); 2816 flush_dcache_page(page); 2817 kunmap_atomic(userpage); 2818 set_extent_uptodate(tree, cur, cur + iosize - 1, 2819 &cached, GFP_NOFS); 2820 unlock_extent_cached(tree, cur, cur + iosize - 1, 2821 &cached, GFP_NOFS); 2822 break; 2823 } 2824 em = get_extent(inode, page, pg_offset, cur, 2825 end - cur + 1, 0); 2826 if (IS_ERR_OR_NULL(em)) { 2827 SetPageError(page); 2828 unlock_extent(tree, cur, end); 2829 break; 2830 } 2831 extent_offset = cur - em->start; 2832 BUG_ON(extent_map_end(em) <= cur); 2833 BUG_ON(end < cur); 2834 2835 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2836 this_bio_flag = EXTENT_BIO_COMPRESSED; 2837 extent_set_compress_type(&this_bio_flag, 2838 em->compress_type); 2839 } 2840 2841 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2842 cur_end = min(extent_map_end(em) - 1, end); 2843 iosize = ALIGN(iosize, blocksize); 2844 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2845 disk_io_size = em->block_len; 2846 sector = em->block_start >> 9; 2847 } else { 2848 sector = (em->block_start + extent_offset) >> 9; 2849 disk_io_size = iosize; 2850 } 2851 bdev = em->bdev; 2852 block_start = em->block_start; 2853 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2854 block_start = EXTENT_MAP_HOLE; 2855 free_extent_map(em); 2856 em = NULL; 2857 2858 /* we've found a hole, just zero and go on */ 2859 if (block_start == EXTENT_MAP_HOLE) { 2860 char *userpage; 2861 struct extent_state *cached = NULL; 2862 2863 userpage = kmap_atomic(page); 2864 memset(userpage + pg_offset, 0, iosize); 2865 flush_dcache_page(page); 2866 kunmap_atomic(userpage); 2867 2868 set_extent_uptodate(tree, cur, cur + iosize - 1, 2869 &cached, GFP_NOFS); 2870 unlock_extent_cached(tree, cur, cur + iosize - 1, 2871 &cached, GFP_NOFS); 2872 cur = cur + iosize; 2873 pg_offset += iosize; 2874 continue; 2875 } 2876 /* the get_extent function already copied into the page */ 2877 if (test_range_bit(tree, cur, cur_end, 2878 EXTENT_UPTODATE, 1, NULL)) { 2879 check_page_uptodate(tree, page); 2880 unlock_extent(tree, cur, cur + iosize - 1); 2881 cur = cur + iosize; 2882 pg_offset += iosize; 2883 continue; 2884 } 2885 /* we have an inline extent but it didn't get marked up 2886 * to date. Error out 2887 */ 2888 if (block_start == EXTENT_MAP_INLINE) { 2889 SetPageError(page); 2890 unlock_extent(tree, cur, cur + iosize - 1); 2891 cur = cur + iosize; 2892 pg_offset += iosize; 2893 continue; 2894 } 2895 2896 pnr -= page->index; 2897 ret = submit_extent_page(rw, tree, page, 2898 sector, disk_io_size, pg_offset, 2899 bdev, bio, pnr, 2900 end_bio_extent_readpage, mirror_num, 2901 *bio_flags, 2902 this_bio_flag); 2903 if (!ret) { 2904 nr++; 2905 *bio_flags = this_bio_flag; 2906 } else { 2907 SetPageError(page); 2908 unlock_extent(tree, cur, cur + iosize - 1); 2909 } 2910 cur = cur + iosize; 2911 pg_offset += iosize; 2912 } 2913 out: 2914 if (!nr) { 2915 if (!PageError(page)) 2916 SetPageUptodate(page); 2917 unlock_page(page); 2918 } 2919 return 0; 2920 } 2921 2922 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2923 get_extent_t *get_extent, int mirror_num) 2924 { 2925 struct bio *bio = NULL; 2926 unsigned long bio_flags = 0; 2927 int ret; 2928 2929 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 2930 &bio_flags, READ); 2931 if (bio) 2932 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 2933 return ret; 2934 } 2935 2936 static noinline void update_nr_written(struct page *page, 2937 struct writeback_control *wbc, 2938 unsigned long nr_written) 2939 { 2940 wbc->nr_to_write -= nr_written; 2941 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2942 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2943 page->mapping->writeback_index = page->index + nr_written; 2944 } 2945 2946 /* 2947 * the writepage semantics are similar to regular writepage. extent 2948 * records are inserted to lock ranges in the tree, and as dirty areas 2949 * are found, they are marked writeback. Then the lock bits are removed 2950 * and the end_io handler clears the writeback ranges 2951 */ 2952 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2953 void *data) 2954 { 2955 struct inode *inode = page->mapping->host; 2956 struct extent_page_data *epd = data; 2957 struct extent_io_tree *tree = epd->tree; 2958 u64 start = page_offset(page); 2959 u64 delalloc_start; 2960 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2961 u64 end; 2962 u64 cur = start; 2963 u64 extent_offset; 2964 u64 last_byte = i_size_read(inode); 2965 u64 block_start; 2966 u64 iosize; 2967 sector_t sector; 2968 struct extent_state *cached_state = NULL; 2969 struct extent_map *em; 2970 struct block_device *bdev; 2971 int ret; 2972 int nr = 0; 2973 size_t pg_offset = 0; 2974 size_t blocksize; 2975 loff_t i_size = i_size_read(inode); 2976 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2977 u64 nr_delalloc; 2978 u64 delalloc_end; 2979 int page_started; 2980 int compressed; 2981 int write_flags; 2982 unsigned long nr_written = 0; 2983 bool fill_delalloc = true; 2984 2985 if (wbc->sync_mode == WB_SYNC_ALL) 2986 write_flags = WRITE_SYNC; 2987 else 2988 write_flags = WRITE; 2989 2990 trace___extent_writepage(page, inode, wbc); 2991 2992 WARN_ON(!PageLocked(page)); 2993 2994 ClearPageError(page); 2995 2996 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2997 if (page->index > end_index || 2998 (page->index == end_index && !pg_offset)) { 2999 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3000 unlock_page(page); 3001 return 0; 3002 } 3003 3004 if (page->index == end_index) { 3005 char *userpage; 3006 3007 userpage = kmap_atomic(page); 3008 memset(userpage + pg_offset, 0, 3009 PAGE_CACHE_SIZE - pg_offset); 3010 kunmap_atomic(userpage); 3011 flush_dcache_page(page); 3012 } 3013 pg_offset = 0; 3014 3015 set_page_extent_mapped(page); 3016 3017 if (!tree->ops || !tree->ops->fill_delalloc) 3018 fill_delalloc = false; 3019 3020 delalloc_start = start; 3021 delalloc_end = 0; 3022 page_started = 0; 3023 if (!epd->extent_locked && fill_delalloc) { 3024 u64 delalloc_to_write = 0; 3025 /* 3026 * make sure the wbc mapping index is at least updated 3027 * to this page. 3028 */ 3029 update_nr_written(page, wbc, 0); 3030 3031 while (delalloc_end < page_end) { 3032 nr_delalloc = find_lock_delalloc_range(inode, tree, 3033 page, 3034 &delalloc_start, 3035 &delalloc_end, 3036 128 * 1024 * 1024); 3037 if (nr_delalloc == 0) { 3038 delalloc_start = delalloc_end + 1; 3039 continue; 3040 } 3041 ret = tree->ops->fill_delalloc(inode, page, 3042 delalloc_start, 3043 delalloc_end, 3044 &page_started, 3045 &nr_written); 3046 /* File system has been set read-only */ 3047 if (ret) { 3048 SetPageError(page); 3049 goto done; 3050 } 3051 /* 3052 * delalloc_end is already one less than the total 3053 * length, so we don't subtract one from 3054 * PAGE_CACHE_SIZE 3055 */ 3056 delalloc_to_write += (delalloc_end - delalloc_start + 3057 PAGE_CACHE_SIZE) >> 3058 PAGE_CACHE_SHIFT; 3059 delalloc_start = delalloc_end + 1; 3060 } 3061 if (wbc->nr_to_write < delalloc_to_write) { 3062 int thresh = 8192; 3063 3064 if (delalloc_to_write < thresh * 2) 3065 thresh = delalloc_to_write; 3066 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3067 thresh); 3068 } 3069 3070 /* did the fill delalloc function already unlock and start 3071 * the IO? 3072 */ 3073 if (page_started) { 3074 ret = 0; 3075 /* 3076 * we've unlocked the page, so we can't update 3077 * the mapping's writeback index, just update 3078 * nr_to_write. 3079 */ 3080 wbc->nr_to_write -= nr_written; 3081 goto done_unlocked; 3082 } 3083 } 3084 if (tree->ops && tree->ops->writepage_start_hook) { 3085 ret = tree->ops->writepage_start_hook(page, start, 3086 page_end); 3087 if (ret) { 3088 /* Fixup worker will requeue */ 3089 if (ret == -EBUSY) 3090 wbc->pages_skipped++; 3091 else 3092 redirty_page_for_writepage(wbc, page); 3093 update_nr_written(page, wbc, nr_written); 3094 unlock_page(page); 3095 ret = 0; 3096 goto done_unlocked; 3097 } 3098 } 3099 3100 /* 3101 * we don't want to touch the inode after unlocking the page, 3102 * so we update the mapping writeback index now 3103 */ 3104 update_nr_written(page, wbc, nr_written + 1); 3105 3106 end = page_end; 3107 if (last_byte <= start) { 3108 if (tree->ops && tree->ops->writepage_end_io_hook) 3109 tree->ops->writepage_end_io_hook(page, start, 3110 page_end, NULL, 1); 3111 goto done; 3112 } 3113 3114 blocksize = inode->i_sb->s_blocksize; 3115 3116 while (cur <= end) { 3117 if (cur >= last_byte) { 3118 if (tree->ops && tree->ops->writepage_end_io_hook) 3119 tree->ops->writepage_end_io_hook(page, cur, 3120 page_end, NULL, 1); 3121 break; 3122 } 3123 em = epd->get_extent(inode, page, pg_offset, cur, 3124 end - cur + 1, 1); 3125 if (IS_ERR_OR_NULL(em)) { 3126 SetPageError(page); 3127 break; 3128 } 3129 3130 extent_offset = cur - em->start; 3131 BUG_ON(extent_map_end(em) <= cur); 3132 BUG_ON(end < cur); 3133 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3134 iosize = ALIGN(iosize, blocksize); 3135 sector = (em->block_start + extent_offset) >> 9; 3136 bdev = em->bdev; 3137 block_start = em->block_start; 3138 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3139 free_extent_map(em); 3140 em = NULL; 3141 3142 /* 3143 * compressed and inline extents are written through other 3144 * paths in the FS 3145 */ 3146 if (compressed || block_start == EXTENT_MAP_HOLE || 3147 block_start == EXTENT_MAP_INLINE) { 3148 /* 3149 * end_io notification does not happen here for 3150 * compressed extents 3151 */ 3152 if (!compressed && tree->ops && 3153 tree->ops->writepage_end_io_hook) 3154 tree->ops->writepage_end_io_hook(page, cur, 3155 cur + iosize - 1, 3156 NULL, 1); 3157 else if (compressed) { 3158 /* we don't want to end_page_writeback on 3159 * a compressed extent. this happens 3160 * elsewhere 3161 */ 3162 nr++; 3163 } 3164 3165 cur += iosize; 3166 pg_offset += iosize; 3167 continue; 3168 } 3169 /* leave this out until we have a page_mkwrite call */ 3170 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 3171 EXTENT_DIRTY, 0, NULL)) { 3172 cur = cur + iosize; 3173 pg_offset += iosize; 3174 continue; 3175 } 3176 3177 if (tree->ops && tree->ops->writepage_io_hook) { 3178 ret = tree->ops->writepage_io_hook(page, cur, 3179 cur + iosize - 1); 3180 } else { 3181 ret = 0; 3182 } 3183 if (ret) { 3184 SetPageError(page); 3185 } else { 3186 unsigned long max_nr = end_index + 1; 3187 3188 set_range_writeback(tree, cur, cur + iosize - 1); 3189 if (!PageWriteback(page)) { 3190 printk(KERN_ERR "btrfs warning page %lu not " 3191 "writeback, cur %llu end %llu\n", 3192 page->index, (unsigned long long)cur, 3193 (unsigned long long)end); 3194 } 3195 3196 ret = submit_extent_page(write_flags, tree, page, 3197 sector, iosize, pg_offset, 3198 bdev, &epd->bio, max_nr, 3199 end_bio_extent_writepage, 3200 0, 0, 0); 3201 if (ret) 3202 SetPageError(page); 3203 } 3204 cur = cur + iosize; 3205 pg_offset += iosize; 3206 nr++; 3207 } 3208 done: 3209 if (nr == 0) { 3210 /* make sure the mapping tag for page dirty gets cleared */ 3211 set_page_writeback(page); 3212 end_page_writeback(page); 3213 } 3214 unlock_page(page); 3215 3216 done_unlocked: 3217 3218 /* drop our reference on any cached states */ 3219 free_extent_state(cached_state); 3220 return 0; 3221 } 3222 3223 static int eb_wait(void *word) 3224 { 3225 io_schedule(); 3226 return 0; 3227 } 3228 3229 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3230 { 3231 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, 3232 TASK_UNINTERRUPTIBLE); 3233 } 3234 3235 static int lock_extent_buffer_for_io(struct extent_buffer *eb, 3236 struct btrfs_fs_info *fs_info, 3237 struct extent_page_data *epd) 3238 { 3239 unsigned long i, num_pages; 3240 int flush = 0; 3241 int ret = 0; 3242 3243 if (!btrfs_try_tree_write_lock(eb)) { 3244 flush = 1; 3245 flush_write_bio(epd); 3246 btrfs_tree_lock(eb); 3247 } 3248 3249 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3250 btrfs_tree_unlock(eb); 3251 if (!epd->sync_io) 3252 return 0; 3253 if (!flush) { 3254 flush_write_bio(epd); 3255 flush = 1; 3256 } 3257 while (1) { 3258 wait_on_extent_buffer_writeback(eb); 3259 btrfs_tree_lock(eb); 3260 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3261 break; 3262 btrfs_tree_unlock(eb); 3263 } 3264 } 3265 3266 /* 3267 * We need to do this to prevent races in people who check if the eb is 3268 * under IO since we can end up having no IO bits set for a short period 3269 * of time. 3270 */ 3271 spin_lock(&eb->refs_lock); 3272 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3273 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3274 spin_unlock(&eb->refs_lock); 3275 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3276 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3277 -eb->len, 3278 fs_info->dirty_metadata_batch); 3279 ret = 1; 3280 } else { 3281 spin_unlock(&eb->refs_lock); 3282 } 3283 3284 btrfs_tree_unlock(eb); 3285 3286 if (!ret) 3287 return ret; 3288 3289 num_pages = num_extent_pages(eb->start, eb->len); 3290 for (i = 0; i < num_pages; i++) { 3291 struct page *p = extent_buffer_page(eb, i); 3292 3293 if (!trylock_page(p)) { 3294 if (!flush) { 3295 flush_write_bio(epd); 3296 flush = 1; 3297 } 3298 lock_page(p); 3299 } 3300 } 3301 3302 return ret; 3303 } 3304 3305 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3306 { 3307 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3308 smp_mb__after_clear_bit(); 3309 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3310 } 3311 3312 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3313 { 3314 int uptodate = err == 0; 3315 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 3316 struct extent_buffer *eb; 3317 int done; 3318 3319 do { 3320 struct page *page = bvec->bv_page; 3321 3322 bvec--; 3323 eb = (struct extent_buffer *)page->private; 3324 BUG_ON(!eb); 3325 done = atomic_dec_and_test(&eb->io_pages); 3326 3327 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3328 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3329 ClearPageUptodate(page); 3330 SetPageError(page); 3331 } 3332 3333 end_page_writeback(page); 3334 3335 if (!done) 3336 continue; 3337 3338 end_extent_buffer_writeback(eb); 3339 } while (bvec >= bio->bi_io_vec); 3340 3341 bio_put(bio); 3342 3343 } 3344 3345 static int write_one_eb(struct extent_buffer *eb, 3346 struct btrfs_fs_info *fs_info, 3347 struct writeback_control *wbc, 3348 struct extent_page_data *epd) 3349 { 3350 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3351 u64 offset = eb->start; 3352 unsigned long i, num_pages; 3353 unsigned long bio_flags = 0; 3354 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3355 int ret = 0; 3356 3357 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3358 num_pages = num_extent_pages(eb->start, eb->len); 3359 atomic_set(&eb->io_pages, num_pages); 3360 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3361 bio_flags = EXTENT_BIO_TREE_LOG; 3362 3363 for (i = 0; i < num_pages; i++) { 3364 struct page *p = extent_buffer_page(eb, i); 3365 3366 clear_page_dirty_for_io(p); 3367 set_page_writeback(p); 3368 ret = submit_extent_page(rw, eb->tree, p, offset >> 9, 3369 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3370 -1, end_bio_extent_buffer_writepage, 3371 0, epd->bio_flags, bio_flags); 3372 epd->bio_flags = bio_flags; 3373 if (ret) { 3374 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3375 SetPageError(p); 3376 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3377 end_extent_buffer_writeback(eb); 3378 ret = -EIO; 3379 break; 3380 } 3381 offset += PAGE_CACHE_SIZE; 3382 update_nr_written(p, wbc, 1); 3383 unlock_page(p); 3384 } 3385 3386 if (unlikely(ret)) { 3387 for (; i < num_pages; i++) { 3388 struct page *p = extent_buffer_page(eb, i); 3389 unlock_page(p); 3390 } 3391 } 3392 3393 return ret; 3394 } 3395 3396 int btree_write_cache_pages(struct address_space *mapping, 3397 struct writeback_control *wbc) 3398 { 3399 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3400 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3401 struct extent_buffer *eb, *prev_eb = NULL; 3402 struct extent_page_data epd = { 3403 .bio = NULL, 3404 .tree = tree, 3405 .extent_locked = 0, 3406 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3407 .bio_flags = 0, 3408 }; 3409 int ret = 0; 3410 int done = 0; 3411 int nr_to_write_done = 0; 3412 struct pagevec pvec; 3413 int nr_pages; 3414 pgoff_t index; 3415 pgoff_t end; /* Inclusive */ 3416 int scanned = 0; 3417 int tag; 3418 3419 pagevec_init(&pvec, 0); 3420 if (wbc->range_cyclic) { 3421 index = mapping->writeback_index; /* Start from prev offset */ 3422 end = -1; 3423 } else { 3424 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3425 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3426 scanned = 1; 3427 } 3428 if (wbc->sync_mode == WB_SYNC_ALL) 3429 tag = PAGECACHE_TAG_TOWRITE; 3430 else 3431 tag = PAGECACHE_TAG_DIRTY; 3432 retry: 3433 if (wbc->sync_mode == WB_SYNC_ALL) 3434 tag_pages_for_writeback(mapping, index, end); 3435 while (!done && !nr_to_write_done && (index <= end) && 3436 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3437 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3438 unsigned i; 3439 3440 scanned = 1; 3441 for (i = 0; i < nr_pages; i++) { 3442 struct page *page = pvec.pages[i]; 3443 3444 if (!PagePrivate(page)) 3445 continue; 3446 3447 if (!wbc->range_cyclic && page->index > end) { 3448 done = 1; 3449 break; 3450 } 3451 3452 spin_lock(&mapping->private_lock); 3453 if (!PagePrivate(page)) { 3454 spin_unlock(&mapping->private_lock); 3455 continue; 3456 } 3457 3458 eb = (struct extent_buffer *)page->private; 3459 3460 /* 3461 * Shouldn't happen and normally this would be a BUG_ON 3462 * but no sense in crashing the users box for something 3463 * we can survive anyway. 3464 */ 3465 if (!eb) { 3466 spin_unlock(&mapping->private_lock); 3467 WARN_ON(1); 3468 continue; 3469 } 3470 3471 if (eb == prev_eb) { 3472 spin_unlock(&mapping->private_lock); 3473 continue; 3474 } 3475 3476 ret = atomic_inc_not_zero(&eb->refs); 3477 spin_unlock(&mapping->private_lock); 3478 if (!ret) 3479 continue; 3480 3481 prev_eb = eb; 3482 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3483 if (!ret) { 3484 free_extent_buffer(eb); 3485 continue; 3486 } 3487 3488 ret = write_one_eb(eb, fs_info, wbc, &epd); 3489 if (ret) { 3490 done = 1; 3491 free_extent_buffer(eb); 3492 break; 3493 } 3494 free_extent_buffer(eb); 3495 3496 /* 3497 * the filesystem may choose to bump up nr_to_write. 3498 * We have to make sure to honor the new nr_to_write 3499 * at any time 3500 */ 3501 nr_to_write_done = wbc->nr_to_write <= 0; 3502 } 3503 pagevec_release(&pvec); 3504 cond_resched(); 3505 } 3506 if (!scanned && !done) { 3507 /* 3508 * We hit the last page and there is more work to be done: wrap 3509 * back to the start of the file 3510 */ 3511 scanned = 1; 3512 index = 0; 3513 goto retry; 3514 } 3515 flush_write_bio(&epd); 3516 return ret; 3517 } 3518 3519 /** 3520 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3521 * @mapping: address space structure to write 3522 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3523 * @writepage: function called for each page 3524 * @data: data passed to writepage function 3525 * 3526 * If a page is already under I/O, write_cache_pages() skips it, even 3527 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3528 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3529 * and msync() need to guarantee that all the data which was dirty at the time 3530 * the call was made get new I/O started against them. If wbc->sync_mode is 3531 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3532 * existing IO to complete. 3533 */ 3534 static int extent_write_cache_pages(struct extent_io_tree *tree, 3535 struct address_space *mapping, 3536 struct writeback_control *wbc, 3537 writepage_t writepage, void *data, 3538 void (*flush_fn)(void *)) 3539 { 3540 struct inode *inode = mapping->host; 3541 int ret = 0; 3542 int done = 0; 3543 int nr_to_write_done = 0; 3544 struct pagevec pvec; 3545 int nr_pages; 3546 pgoff_t index; 3547 pgoff_t end; /* Inclusive */ 3548 int scanned = 0; 3549 int tag; 3550 3551 /* 3552 * We have to hold onto the inode so that ordered extents can do their 3553 * work when the IO finishes. The alternative to this is failing to add 3554 * an ordered extent if the igrab() fails there and that is a huge pain 3555 * to deal with, so instead just hold onto the inode throughout the 3556 * writepages operation. If it fails here we are freeing up the inode 3557 * anyway and we'd rather not waste our time writing out stuff that is 3558 * going to be truncated anyway. 3559 */ 3560 if (!igrab(inode)) 3561 return 0; 3562 3563 pagevec_init(&pvec, 0); 3564 if (wbc->range_cyclic) { 3565 index = mapping->writeback_index; /* Start from prev offset */ 3566 end = -1; 3567 } else { 3568 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3569 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3570 scanned = 1; 3571 } 3572 if (wbc->sync_mode == WB_SYNC_ALL) 3573 tag = PAGECACHE_TAG_TOWRITE; 3574 else 3575 tag = PAGECACHE_TAG_DIRTY; 3576 retry: 3577 if (wbc->sync_mode == WB_SYNC_ALL) 3578 tag_pages_for_writeback(mapping, index, end); 3579 while (!done && !nr_to_write_done && (index <= end) && 3580 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3581 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3582 unsigned i; 3583 3584 scanned = 1; 3585 for (i = 0; i < nr_pages; i++) { 3586 struct page *page = pvec.pages[i]; 3587 3588 /* 3589 * At this point we hold neither mapping->tree_lock nor 3590 * lock on the page itself: the page may be truncated or 3591 * invalidated (changing page->mapping to NULL), or even 3592 * swizzled back from swapper_space to tmpfs file 3593 * mapping 3594 */ 3595 if (!trylock_page(page)) { 3596 flush_fn(data); 3597 lock_page(page); 3598 } 3599 3600 if (unlikely(page->mapping != mapping)) { 3601 unlock_page(page); 3602 continue; 3603 } 3604 3605 if (!wbc->range_cyclic && page->index > end) { 3606 done = 1; 3607 unlock_page(page); 3608 continue; 3609 } 3610 3611 if (wbc->sync_mode != WB_SYNC_NONE) { 3612 if (PageWriteback(page)) 3613 flush_fn(data); 3614 wait_on_page_writeback(page); 3615 } 3616 3617 if (PageWriteback(page) || 3618 !clear_page_dirty_for_io(page)) { 3619 unlock_page(page); 3620 continue; 3621 } 3622 3623 ret = (*writepage)(page, wbc, data); 3624 3625 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3626 unlock_page(page); 3627 ret = 0; 3628 } 3629 if (ret) 3630 done = 1; 3631 3632 /* 3633 * the filesystem may choose to bump up nr_to_write. 3634 * We have to make sure to honor the new nr_to_write 3635 * at any time 3636 */ 3637 nr_to_write_done = wbc->nr_to_write <= 0; 3638 } 3639 pagevec_release(&pvec); 3640 cond_resched(); 3641 } 3642 if (!scanned && !done) { 3643 /* 3644 * We hit the last page and there is more work to be done: wrap 3645 * back to the start of the file 3646 */ 3647 scanned = 1; 3648 index = 0; 3649 goto retry; 3650 } 3651 btrfs_add_delayed_iput(inode); 3652 return ret; 3653 } 3654 3655 static void flush_epd_write_bio(struct extent_page_data *epd) 3656 { 3657 if (epd->bio) { 3658 int rw = WRITE; 3659 int ret; 3660 3661 if (epd->sync_io) 3662 rw = WRITE_SYNC; 3663 3664 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3665 BUG_ON(ret < 0); /* -ENOMEM */ 3666 epd->bio = NULL; 3667 } 3668 } 3669 3670 static noinline void flush_write_bio(void *data) 3671 { 3672 struct extent_page_data *epd = data; 3673 flush_epd_write_bio(epd); 3674 } 3675 3676 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3677 get_extent_t *get_extent, 3678 struct writeback_control *wbc) 3679 { 3680 int ret; 3681 struct extent_page_data epd = { 3682 .bio = NULL, 3683 .tree = tree, 3684 .get_extent = get_extent, 3685 .extent_locked = 0, 3686 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3687 .bio_flags = 0, 3688 }; 3689 3690 ret = __extent_writepage(page, wbc, &epd); 3691 3692 flush_epd_write_bio(&epd); 3693 return ret; 3694 } 3695 3696 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3697 u64 start, u64 end, get_extent_t *get_extent, 3698 int mode) 3699 { 3700 int ret = 0; 3701 struct address_space *mapping = inode->i_mapping; 3702 struct page *page; 3703 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3704 PAGE_CACHE_SHIFT; 3705 3706 struct extent_page_data epd = { 3707 .bio = NULL, 3708 .tree = tree, 3709 .get_extent = get_extent, 3710 .extent_locked = 1, 3711 .sync_io = mode == WB_SYNC_ALL, 3712 .bio_flags = 0, 3713 }; 3714 struct writeback_control wbc_writepages = { 3715 .sync_mode = mode, 3716 .nr_to_write = nr_pages * 2, 3717 .range_start = start, 3718 .range_end = end + 1, 3719 }; 3720 3721 while (start <= end) { 3722 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3723 if (clear_page_dirty_for_io(page)) 3724 ret = __extent_writepage(page, &wbc_writepages, &epd); 3725 else { 3726 if (tree->ops && tree->ops->writepage_end_io_hook) 3727 tree->ops->writepage_end_io_hook(page, start, 3728 start + PAGE_CACHE_SIZE - 1, 3729 NULL, 1); 3730 unlock_page(page); 3731 } 3732 page_cache_release(page); 3733 start += PAGE_CACHE_SIZE; 3734 } 3735 3736 flush_epd_write_bio(&epd); 3737 return ret; 3738 } 3739 3740 int extent_writepages(struct extent_io_tree *tree, 3741 struct address_space *mapping, 3742 get_extent_t *get_extent, 3743 struct writeback_control *wbc) 3744 { 3745 int ret = 0; 3746 struct extent_page_data epd = { 3747 .bio = NULL, 3748 .tree = tree, 3749 .get_extent = get_extent, 3750 .extent_locked = 0, 3751 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3752 .bio_flags = 0, 3753 }; 3754 3755 ret = extent_write_cache_pages(tree, mapping, wbc, 3756 __extent_writepage, &epd, 3757 flush_write_bio); 3758 flush_epd_write_bio(&epd); 3759 return ret; 3760 } 3761 3762 int extent_readpages(struct extent_io_tree *tree, 3763 struct address_space *mapping, 3764 struct list_head *pages, unsigned nr_pages, 3765 get_extent_t get_extent) 3766 { 3767 struct bio *bio = NULL; 3768 unsigned page_idx; 3769 unsigned long bio_flags = 0; 3770 struct page *pagepool[16]; 3771 struct page *page; 3772 int i = 0; 3773 int nr = 0; 3774 3775 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3776 page = list_entry(pages->prev, struct page, lru); 3777 3778 prefetchw(&page->flags); 3779 list_del(&page->lru); 3780 if (add_to_page_cache_lru(page, mapping, 3781 page->index, GFP_NOFS)) { 3782 page_cache_release(page); 3783 continue; 3784 } 3785 3786 pagepool[nr++] = page; 3787 if (nr < ARRAY_SIZE(pagepool)) 3788 continue; 3789 for (i = 0; i < nr; i++) { 3790 __extent_read_full_page(tree, pagepool[i], get_extent, 3791 &bio, 0, &bio_flags, READ); 3792 page_cache_release(pagepool[i]); 3793 } 3794 nr = 0; 3795 } 3796 for (i = 0; i < nr; i++) { 3797 __extent_read_full_page(tree, pagepool[i], get_extent, 3798 &bio, 0, &bio_flags, READ); 3799 page_cache_release(pagepool[i]); 3800 } 3801 3802 BUG_ON(!list_empty(pages)); 3803 if (bio) 3804 return submit_one_bio(READ, bio, 0, bio_flags); 3805 return 0; 3806 } 3807 3808 /* 3809 * basic invalidatepage code, this waits on any locked or writeback 3810 * ranges corresponding to the page, and then deletes any extent state 3811 * records from the tree 3812 */ 3813 int extent_invalidatepage(struct extent_io_tree *tree, 3814 struct page *page, unsigned long offset) 3815 { 3816 struct extent_state *cached_state = NULL; 3817 u64 start = page_offset(page); 3818 u64 end = start + PAGE_CACHE_SIZE - 1; 3819 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 3820 3821 start += ALIGN(offset, blocksize); 3822 if (start > end) 3823 return 0; 3824 3825 lock_extent_bits(tree, start, end, 0, &cached_state); 3826 wait_on_page_writeback(page); 3827 clear_extent_bit(tree, start, end, 3828 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 3829 EXTENT_DO_ACCOUNTING, 3830 1, 1, &cached_state, GFP_NOFS); 3831 return 0; 3832 } 3833 3834 /* 3835 * a helper for releasepage, this tests for areas of the page that 3836 * are locked or under IO and drops the related state bits if it is safe 3837 * to drop the page. 3838 */ 3839 static int try_release_extent_state(struct extent_map_tree *map, 3840 struct extent_io_tree *tree, 3841 struct page *page, gfp_t mask) 3842 { 3843 u64 start = page_offset(page); 3844 u64 end = start + PAGE_CACHE_SIZE - 1; 3845 int ret = 1; 3846 3847 if (test_range_bit(tree, start, end, 3848 EXTENT_IOBITS, 0, NULL)) 3849 ret = 0; 3850 else { 3851 if ((mask & GFP_NOFS) == GFP_NOFS) 3852 mask = GFP_NOFS; 3853 /* 3854 * at this point we can safely clear everything except the 3855 * locked bit and the nodatasum bit 3856 */ 3857 ret = clear_extent_bit(tree, start, end, 3858 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 3859 0, 0, NULL, mask); 3860 3861 /* if clear_extent_bit failed for enomem reasons, 3862 * we can't allow the release to continue. 3863 */ 3864 if (ret < 0) 3865 ret = 0; 3866 else 3867 ret = 1; 3868 } 3869 return ret; 3870 } 3871 3872 /* 3873 * a helper for releasepage. As long as there are no locked extents 3874 * in the range corresponding to the page, both state records and extent 3875 * map records are removed 3876 */ 3877 int try_release_extent_mapping(struct extent_map_tree *map, 3878 struct extent_io_tree *tree, struct page *page, 3879 gfp_t mask) 3880 { 3881 struct extent_map *em; 3882 u64 start = page_offset(page); 3883 u64 end = start + PAGE_CACHE_SIZE - 1; 3884 3885 if ((mask & __GFP_WAIT) && 3886 page->mapping->host->i_size > 16 * 1024 * 1024) { 3887 u64 len; 3888 while (start <= end) { 3889 len = end - start + 1; 3890 write_lock(&map->lock); 3891 em = lookup_extent_mapping(map, start, len); 3892 if (!em) { 3893 write_unlock(&map->lock); 3894 break; 3895 } 3896 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 3897 em->start != start) { 3898 write_unlock(&map->lock); 3899 free_extent_map(em); 3900 break; 3901 } 3902 if (!test_range_bit(tree, em->start, 3903 extent_map_end(em) - 1, 3904 EXTENT_LOCKED | EXTENT_WRITEBACK, 3905 0, NULL)) { 3906 remove_extent_mapping(map, em); 3907 /* once for the rb tree */ 3908 free_extent_map(em); 3909 } 3910 start = extent_map_end(em); 3911 write_unlock(&map->lock); 3912 3913 /* once for us */ 3914 free_extent_map(em); 3915 } 3916 } 3917 return try_release_extent_state(map, tree, page, mask); 3918 } 3919 3920 /* 3921 * helper function for fiemap, which doesn't want to see any holes. 3922 * This maps until we find something past 'last' 3923 */ 3924 static struct extent_map *get_extent_skip_holes(struct inode *inode, 3925 u64 offset, 3926 u64 last, 3927 get_extent_t *get_extent) 3928 { 3929 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 3930 struct extent_map *em; 3931 u64 len; 3932 3933 if (offset >= last) 3934 return NULL; 3935 3936 while(1) { 3937 len = last - offset; 3938 if (len == 0) 3939 break; 3940 len = ALIGN(len, sectorsize); 3941 em = get_extent(inode, NULL, 0, offset, len, 0); 3942 if (IS_ERR_OR_NULL(em)) 3943 return em; 3944 3945 /* if this isn't a hole return it */ 3946 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 3947 em->block_start != EXTENT_MAP_HOLE) { 3948 return em; 3949 } 3950 3951 /* this is a hole, advance to the next extent */ 3952 offset = extent_map_end(em); 3953 free_extent_map(em); 3954 if (offset >= last) 3955 break; 3956 } 3957 return NULL; 3958 } 3959 3960 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3961 __u64 start, __u64 len, get_extent_t *get_extent) 3962 { 3963 int ret = 0; 3964 u64 off = start; 3965 u64 max = start + len; 3966 u32 flags = 0; 3967 u32 found_type; 3968 u64 last; 3969 u64 last_for_get_extent = 0; 3970 u64 disko = 0; 3971 u64 isize = i_size_read(inode); 3972 struct btrfs_key found_key; 3973 struct extent_map *em = NULL; 3974 struct extent_state *cached_state = NULL; 3975 struct btrfs_path *path; 3976 struct btrfs_file_extent_item *item; 3977 int end = 0; 3978 u64 em_start = 0; 3979 u64 em_len = 0; 3980 u64 em_end = 0; 3981 unsigned long emflags; 3982 3983 if (len == 0) 3984 return -EINVAL; 3985 3986 path = btrfs_alloc_path(); 3987 if (!path) 3988 return -ENOMEM; 3989 path->leave_spinning = 1; 3990 3991 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); 3992 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); 3993 3994 /* 3995 * lookup the last file extent. We're not using i_size here 3996 * because there might be preallocation past i_size 3997 */ 3998 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 3999 path, btrfs_ino(inode), -1, 0); 4000 if (ret < 0) { 4001 btrfs_free_path(path); 4002 return ret; 4003 } 4004 WARN_ON(!ret); 4005 path->slots[0]--; 4006 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4007 struct btrfs_file_extent_item); 4008 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4009 found_type = btrfs_key_type(&found_key); 4010 4011 /* No extents, but there might be delalloc bits */ 4012 if (found_key.objectid != btrfs_ino(inode) || 4013 found_type != BTRFS_EXTENT_DATA_KEY) { 4014 /* have to trust i_size as the end */ 4015 last = (u64)-1; 4016 last_for_get_extent = isize; 4017 } else { 4018 /* 4019 * remember the start of the last extent. There are a 4020 * bunch of different factors that go into the length of the 4021 * extent, so its much less complex to remember where it started 4022 */ 4023 last = found_key.offset; 4024 last_for_get_extent = last + 1; 4025 } 4026 btrfs_free_path(path); 4027 4028 /* 4029 * we might have some extents allocated but more delalloc past those 4030 * extents. so, we trust isize unless the start of the last extent is 4031 * beyond isize 4032 */ 4033 if (last < isize) { 4034 last = (u64)-1; 4035 last_for_get_extent = isize; 4036 } 4037 4038 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4039 &cached_state); 4040 4041 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4042 get_extent); 4043 if (!em) 4044 goto out; 4045 if (IS_ERR(em)) { 4046 ret = PTR_ERR(em); 4047 goto out; 4048 } 4049 4050 while (!end) { 4051 u64 offset_in_extent; 4052 4053 /* break if the extent we found is outside the range */ 4054 if (em->start >= max || extent_map_end(em) < off) 4055 break; 4056 4057 /* 4058 * get_extent may return an extent that starts before our 4059 * requested range. We have to make sure the ranges 4060 * we return to fiemap always move forward and don't 4061 * overlap, so adjust the offsets here 4062 */ 4063 em_start = max(em->start, off); 4064 4065 /* 4066 * record the offset from the start of the extent 4067 * for adjusting the disk offset below 4068 */ 4069 offset_in_extent = em_start - em->start; 4070 em_end = extent_map_end(em); 4071 em_len = em_end - em_start; 4072 emflags = em->flags; 4073 disko = 0; 4074 flags = 0; 4075 4076 /* 4077 * bump off for our next call to get_extent 4078 */ 4079 off = extent_map_end(em); 4080 if (off >= max) 4081 end = 1; 4082 4083 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4084 end = 1; 4085 flags |= FIEMAP_EXTENT_LAST; 4086 } else if (em->block_start == EXTENT_MAP_INLINE) { 4087 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4088 FIEMAP_EXTENT_NOT_ALIGNED); 4089 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4090 flags |= (FIEMAP_EXTENT_DELALLOC | 4091 FIEMAP_EXTENT_UNKNOWN); 4092 } else { 4093 disko = em->block_start + offset_in_extent; 4094 } 4095 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4096 flags |= FIEMAP_EXTENT_ENCODED; 4097 4098 free_extent_map(em); 4099 em = NULL; 4100 if ((em_start >= last) || em_len == (u64)-1 || 4101 (last == (u64)-1 && isize <= em_end)) { 4102 flags |= FIEMAP_EXTENT_LAST; 4103 end = 1; 4104 } 4105 4106 /* now scan forward to see if this is really the last extent. */ 4107 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4108 get_extent); 4109 if (IS_ERR(em)) { 4110 ret = PTR_ERR(em); 4111 goto out; 4112 } 4113 if (!em) { 4114 flags |= FIEMAP_EXTENT_LAST; 4115 end = 1; 4116 } 4117 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4118 em_len, flags); 4119 if (ret) 4120 goto out_free; 4121 } 4122 out_free: 4123 free_extent_map(em); 4124 out: 4125 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4126 &cached_state, GFP_NOFS); 4127 return ret; 4128 } 4129 4130 static void __free_extent_buffer(struct extent_buffer *eb) 4131 { 4132 btrfs_leak_debug_del(&eb->leak_list); 4133 kmem_cache_free(extent_buffer_cache, eb); 4134 } 4135 4136 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 4137 u64 start, 4138 unsigned long len, 4139 gfp_t mask) 4140 { 4141 struct extent_buffer *eb = NULL; 4142 4143 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4144 if (eb == NULL) 4145 return NULL; 4146 eb->start = start; 4147 eb->len = len; 4148 eb->tree = tree; 4149 eb->bflags = 0; 4150 rwlock_init(&eb->lock); 4151 atomic_set(&eb->write_locks, 0); 4152 atomic_set(&eb->read_locks, 0); 4153 atomic_set(&eb->blocking_readers, 0); 4154 atomic_set(&eb->blocking_writers, 0); 4155 atomic_set(&eb->spinning_readers, 0); 4156 atomic_set(&eb->spinning_writers, 0); 4157 eb->lock_nested = 0; 4158 init_waitqueue_head(&eb->write_lock_wq); 4159 init_waitqueue_head(&eb->read_lock_wq); 4160 4161 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4162 4163 spin_lock_init(&eb->refs_lock); 4164 atomic_set(&eb->refs, 1); 4165 atomic_set(&eb->io_pages, 0); 4166 4167 /* 4168 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4169 */ 4170 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4171 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4172 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4173 4174 return eb; 4175 } 4176 4177 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4178 { 4179 unsigned long i; 4180 struct page *p; 4181 struct extent_buffer *new; 4182 unsigned long num_pages = num_extent_pages(src->start, src->len); 4183 4184 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC); 4185 if (new == NULL) 4186 return NULL; 4187 4188 for (i = 0; i < num_pages; i++) { 4189 p = alloc_page(GFP_ATOMIC); 4190 BUG_ON(!p); 4191 attach_extent_buffer_page(new, p); 4192 WARN_ON(PageDirty(p)); 4193 SetPageUptodate(p); 4194 new->pages[i] = p; 4195 } 4196 4197 copy_extent_buffer(new, src, 0, 0, src->len); 4198 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4199 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4200 4201 return new; 4202 } 4203 4204 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4205 { 4206 struct extent_buffer *eb; 4207 unsigned long num_pages = num_extent_pages(0, len); 4208 unsigned long i; 4209 4210 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC); 4211 if (!eb) 4212 return NULL; 4213 4214 for (i = 0; i < num_pages; i++) { 4215 eb->pages[i] = alloc_page(GFP_ATOMIC); 4216 if (!eb->pages[i]) 4217 goto err; 4218 } 4219 set_extent_buffer_uptodate(eb); 4220 btrfs_set_header_nritems(eb, 0); 4221 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4222 4223 return eb; 4224 err: 4225 for (; i > 0; i--) 4226 __free_page(eb->pages[i - 1]); 4227 __free_extent_buffer(eb); 4228 return NULL; 4229 } 4230 4231 static int extent_buffer_under_io(struct extent_buffer *eb) 4232 { 4233 return (atomic_read(&eb->io_pages) || 4234 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4235 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4236 } 4237 4238 /* 4239 * Helper for releasing extent buffer page. 4240 */ 4241 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4242 unsigned long start_idx) 4243 { 4244 unsigned long index; 4245 unsigned long num_pages; 4246 struct page *page; 4247 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4248 4249 BUG_ON(extent_buffer_under_io(eb)); 4250 4251 num_pages = num_extent_pages(eb->start, eb->len); 4252 index = start_idx + num_pages; 4253 if (start_idx >= index) 4254 return; 4255 4256 do { 4257 index--; 4258 page = extent_buffer_page(eb, index); 4259 if (page && mapped) { 4260 spin_lock(&page->mapping->private_lock); 4261 /* 4262 * We do this since we'll remove the pages after we've 4263 * removed the eb from the radix tree, so we could race 4264 * and have this page now attached to the new eb. So 4265 * only clear page_private if it's still connected to 4266 * this eb. 4267 */ 4268 if (PagePrivate(page) && 4269 page->private == (unsigned long)eb) { 4270 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4271 BUG_ON(PageDirty(page)); 4272 BUG_ON(PageWriteback(page)); 4273 /* 4274 * We need to make sure we haven't be attached 4275 * to a new eb. 4276 */ 4277 ClearPagePrivate(page); 4278 set_page_private(page, 0); 4279 /* One for the page private */ 4280 page_cache_release(page); 4281 } 4282 spin_unlock(&page->mapping->private_lock); 4283 4284 } 4285 if (page) { 4286 /* One for when we alloced the page */ 4287 page_cache_release(page); 4288 } 4289 } while (index != start_idx); 4290 } 4291 4292 /* 4293 * Helper for releasing the extent buffer. 4294 */ 4295 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4296 { 4297 btrfs_release_extent_buffer_page(eb, 0); 4298 __free_extent_buffer(eb); 4299 } 4300 4301 static void check_buffer_tree_ref(struct extent_buffer *eb) 4302 { 4303 int refs; 4304 /* the ref bit is tricky. We have to make sure it is set 4305 * if we have the buffer dirty. Otherwise the 4306 * code to free a buffer can end up dropping a dirty 4307 * page 4308 * 4309 * Once the ref bit is set, it won't go away while the 4310 * buffer is dirty or in writeback, and it also won't 4311 * go away while we have the reference count on the 4312 * eb bumped. 4313 * 4314 * We can't just set the ref bit without bumping the 4315 * ref on the eb because free_extent_buffer might 4316 * see the ref bit and try to clear it. If this happens 4317 * free_extent_buffer might end up dropping our original 4318 * ref by mistake and freeing the page before we are able 4319 * to add one more ref. 4320 * 4321 * So bump the ref count first, then set the bit. If someone 4322 * beat us to it, drop the ref we added. 4323 */ 4324 refs = atomic_read(&eb->refs); 4325 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4326 return; 4327 4328 spin_lock(&eb->refs_lock); 4329 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4330 atomic_inc(&eb->refs); 4331 spin_unlock(&eb->refs_lock); 4332 } 4333 4334 static void mark_extent_buffer_accessed(struct extent_buffer *eb) 4335 { 4336 unsigned long num_pages, i; 4337 4338 check_buffer_tree_ref(eb); 4339 4340 num_pages = num_extent_pages(eb->start, eb->len); 4341 for (i = 0; i < num_pages; i++) { 4342 struct page *p = extent_buffer_page(eb, i); 4343 mark_page_accessed(p); 4344 } 4345 } 4346 4347 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 4348 u64 start, unsigned long len) 4349 { 4350 unsigned long num_pages = num_extent_pages(start, len); 4351 unsigned long i; 4352 unsigned long index = start >> PAGE_CACHE_SHIFT; 4353 struct extent_buffer *eb; 4354 struct extent_buffer *exists = NULL; 4355 struct page *p; 4356 struct address_space *mapping = tree->mapping; 4357 int uptodate = 1; 4358 int ret; 4359 4360 rcu_read_lock(); 4361 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4362 if (eb && atomic_inc_not_zero(&eb->refs)) { 4363 rcu_read_unlock(); 4364 mark_extent_buffer_accessed(eb); 4365 return eb; 4366 } 4367 rcu_read_unlock(); 4368 4369 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 4370 if (!eb) 4371 return NULL; 4372 4373 for (i = 0; i < num_pages; i++, index++) { 4374 p = find_or_create_page(mapping, index, GFP_NOFS); 4375 if (!p) 4376 goto free_eb; 4377 4378 spin_lock(&mapping->private_lock); 4379 if (PagePrivate(p)) { 4380 /* 4381 * We could have already allocated an eb for this page 4382 * and attached one so lets see if we can get a ref on 4383 * the existing eb, and if we can we know it's good and 4384 * we can just return that one, else we know we can just 4385 * overwrite page->private. 4386 */ 4387 exists = (struct extent_buffer *)p->private; 4388 if (atomic_inc_not_zero(&exists->refs)) { 4389 spin_unlock(&mapping->private_lock); 4390 unlock_page(p); 4391 page_cache_release(p); 4392 mark_extent_buffer_accessed(exists); 4393 goto free_eb; 4394 } 4395 4396 /* 4397 * Do this so attach doesn't complain and we need to 4398 * drop the ref the old guy had. 4399 */ 4400 ClearPagePrivate(p); 4401 WARN_ON(PageDirty(p)); 4402 page_cache_release(p); 4403 } 4404 attach_extent_buffer_page(eb, p); 4405 spin_unlock(&mapping->private_lock); 4406 WARN_ON(PageDirty(p)); 4407 mark_page_accessed(p); 4408 eb->pages[i] = p; 4409 if (!PageUptodate(p)) 4410 uptodate = 0; 4411 4412 /* 4413 * see below about how we avoid a nasty race with release page 4414 * and why we unlock later 4415 */ 4416 } 4417 if (uptodate) 4418 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4419 again: 4420 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4421 if (ret) 4422 goto free_eb; 4423 4424 spin_lock(&tree->buffer_lock); 4425 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 4426 if (ret == -EEXIST) { 4427 exists = radix_tree_lookup(&tree->buffer, 4428 start >> PAGE_CACHE_SHIFT); 4429 if (!atomic_inc_not_zero(&exists->refs)) { 4430 spin_unlock(&tree->buffer_lock); 4431 radix_tree_preload_end(); 4432 exists = NULL; 4433 goto again; 4434 } 4435 spin_unlock(&tree->buffer_lock); 4436 radix_tree_preload_end(); 4437 mark_extent_buffer_accessed(exists); 4438 goto free_eb; 4439 } 4440 /* add one reference for the tree */ 4441 check_buffer_tree_ref(eb); 4442 spin_unlock(&tree->buffer_lock); 4443 radix_tree_preload_end(); 4444 4445 /* 4446 * there is a race where release page may have 4447 * tried to find this extent buffer in the radix 4448 * but failed. It will tell the VM it is safe to 4449 * reclaim the, and it will clear the page private bit. 4450 * We must make sure to set the page private bit properly 4451 * after the extent buffer is in the radix tree so 4452 * it doesn't get lost 4453 */ 4454 SetPageChecked(eb->pages[0]); 4455 for (i = 1; i < num_pages; i++) { 4456 p = extent_buffer_page(eb, i); 4457 ClearPageChecked(p); 4458 unlock_page(p); 4459 } 4460 unlock_page(eb->pages[0]); 4461 return eb; 4462 4463 free_eb: 4464 for (i = 0; i < num_pages; i++) { 4465 if (eb->pages[i]) 4466 unlock_page(eb->pages[i]); 4467 } 4468 4469 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4470 btrfs_release_extent_buffer(eb); 4471 return exists; 4472 } 4473 4474 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 4475 u64 start, unsigned long len) 4476 { 4477 struct extent_buffer *eb; 4478 4479 rcu_read_lock(); 4480 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 4481 if (eb && atomic_inc_not_zero(&eb->refs)) { 4482 rcu_read_unlock(); 4483 mark_extent_buffer_accessed(eb); 4484 return eb; 4485 } 4486 rcu_read_unlock(); 4487 4488 return NULL; 4489 } 4490 4491 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4492 { 4493 struct extent_buffer *eb = 4494 container_of(head, struct extent_buffer, rcu_head); 4495 4496 __free_extent_buffer(eb); 4497 } 4498 4499 /* Expects to have eb->eb_lock already held */ 4500 static int release_extent_buffer(struct extent_buffer *eb) 4501 { 4502 WARN_ON(atomic_read(&eb->refs) == 0); 4503 if (atomic_dec_and_test(&eb->refs)) { 4504 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) { 4505 spin_unlock(&eb->refs_lock); 4506 } else { 4507 struct extent_io_tree *tree = eb->tree; 4508 4509 spin_unlock(&eb->refs_lock); 4510 4511 spin_lock(&tree->buffer_lock); 4512 radix_tree_delete(&tree->buffer, 4513 eb->start >> PAGE_CACHE_SHIFT); 4514 spin_unlock(&tree->buffer_lock); 4515 } 4516 4517 /* Should be safe to release our pages at this point */ 4518 btrfs_release_extent_buffer_page(eb, 0); 4519 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4520 return 1; 4521 } 4522 spin_unlock(&eb->refs_lock); 4523 4524 return 0; 4525 } 4526 4527 void free_extent_buffer(struct extent_buffer *eb) 4528 { 4529 int refs; 4530 int old; 4531 if (!eb) 4532 return; 4533 4534 while (1) { 4535 refs = atomic_read(&eb->refs); 4536 if (refs <= 3) 4537 break; 4538 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4539 if (old == refs) 4540 return; 4541 } 4542 4543 spin_lock(&eb->refs_lock); 4544 if (atomic_read(&eb->refs) == 2 && 4545 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4546 atomic_dec(&eb->refs); 4547 4548 if (atomic_read(&eb->refs) == 2 && 4549 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4550 !extent_buffer_under_io(eb) && 4551 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4552 atomic_dec(&eb->refs); 4553 4554 /* 4555 * I know this is terrible, but it's temporary until we stop tracking 4556 * the uptodate bits and such for the extent buffers. 4557 */ 4558 release_extent_buffer(eb); 4559 } 4560 4561 void free_extent_buffer_stale(struct extent_buffer *eb) 4562 { 4563 if (!eb) 4564 return; 4565 4566 spin_lock(&eb->refs_lock); 4567 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4568 4569 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4570 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4571 atomic_dec(&eb->refs); 4572 release_extent_buffer(eb); 4573 } 4574 4575 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4576 { 4577 unsigned long i; 4578 unsigned long num_pages; 4579 struct page *page; 4580 4581 num_pages = num_extent_pages(eb->start, eb->len); 4582 4583 for (i = 0; i < num_pages; i++) { 4584 page = extent_buffer_page(eb, i); 4585 if (!PageDirty(page)) 4586 continue; 4587 4588 lock_page(page); 4589 WARN_ON(!PagePrivate(page)); 4590 4591 clear_page_dirty_for_io(page); 4592 spin_lock_irq(&page->mapping->tree_lock); 4593 if (!PageDirty(page)) { 4594 radix_tree_tag_clear(&page->mapping->page_tree, 4595 page_index(page), 4596 PAGECACHE_TAG_DIRTY); 4597 } 4598 spin_unlock_irq(&page->mapping->tree_lock); 4599 ClearPageError(page); 4600 unlock_page(page); 4601 } 4602 WARN_ON(atomic_read(&eb->refs) == 0); 4603 } 4604 4605 int set_extent_buffer_dirty(struct extent_buffer *eb) 4606 { 4607 unsigned long i; 4608 unsigned long num_pages; 4609 int was_dirty = 0; 4610 4611 check_buffer_tree_ref(eb); 4612 4613 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4614 4615 num_pages = num_extent_pages(eb->start, eb->len); 4616 WARN_ON(atomic_read(&eb->refs) == 0); 4617 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4618 4619 for (i = 0; i < num_pages; i++) 4620 set_page_dirty(extent_buffer_page(eb, i)); 4621 return was_dirty; 4622 } 4623 4624 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4625 { 4626 unsigned long i; 4627 struct page *page; 4628 unsigned long num_pages; 4629 4630 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4631 num_pages = num_extent_pages(eb->start, eb->len); 4632 for (i = 0; i < num_pages; i++) { 4633 page = extent_buffer_page(eb, i); 4634 if (page) 4635 ClearPageUptodate(page); 4636 } 4637 return 0; 4638 } 4639 4640 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4641 { 4642 unsigned long i; 4643 struct page *page; 4644 unsigned long num_pages; 4645 4646 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4647 num_pages = num_extent_pages(eb->start, eb->len); 4648 for (i = 0; i < num_pages; i++) { 4649 page = extent_buffer_page(eb, i); 4650 SetPageUptodate(page); 4651 } 4652 return 0; 4653 } 4654 4655 int extent_buffer_uptodate(struct extent_buffer *eb) 4656 { 4657 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4658 } 4659 4660 int read_extent_buffer_pages(struct extent_io_tree *tree, 4661 struct extent_buffer *eb, u64 start, int wait, 4662 get_extent_t *get_extent, int mirror_num) 4663 { 4664 unsigned long i; 4665 unsigned long start_i; 4666 struct page *page; 4667 int err; 4668 int ret = 0; 4669 int locked_pages = 0; 4670 int all_uptodate = 1; 4671 unsigned long num_pages; 4672 unsigned long num_reads = 0; 4673 struct bio *bio = NULL; 4674 unsigned long bio_flags = 0; 4675 4676 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4677 return 0; 4678 4679 if (start) { 4680 WARN_ON(start < eb->start); 4681 start_i = (start >> PAGE_CACHE_SHIFT) - 4682 (eb->start >> PAGE_CACHE_SHIFT); 4683 } else { 4684 start_i = 0; 4685 } 4686 4687 num_pages = num_extent_pages(eb->start, eb->len); 4688 for (i = start_i; i < num_pages; i++) { 4689 page = extent_buffer_page(eb, i); 4690 if (wait == WAIT_NONE) { 4691 if (!trylock_page(page)) 4692 goto unlock_exit; 4693 } else { 4694 lock_page(page); 4695 } 4696 locked_pages++; 4697 if (!PageUptodate(page)) { 4698 num_reads++; 4699 all_uptodate = 0; 4700 } 4701 } 4702 if (all_uptodate) { 4703 if (start_i == 0) 4704 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4705 goto unlock_exit; 4706 } 4707 4708 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4709 eb->read_mirror = 0; 4710 atomic_set(&eb->io_pages, num_reads); 4711 for (i = start_i; i < num_pages; i++) { 4712 page = extent_buffer_page(eb, i); 4713 if (!PageUptodate(page)) { 4714 ClearPageError(page); 4715 err = __extent_read_full_page(tree, page, 4716 get_extent, &bio, 4717 mirror_num, &bio_flags, 4718 READ | REQ_META); 4719 if (err) 4720 ret = err; 4721 } else { 4722 unlock_page(page); 4723 } 4724 } 4725 4726 if (bio) { 4727 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 4728 bio_flags); 4729 if (err) 4730 return err; 4731 } 4732 4733 if (ret || wait != WAIT_COMPLETE) 4734 return ret; 4735 4736 for (i = start_i; i < num_pages; i++) { 4737 page = extent_buffer_page(eb, i); 4738 wait_on_page_locked(page); 4739 if (!PageUptodate(page)) 4740 ret = -EIO; 4741 } 4742 4743 return ret; 4744 4745 unlock_exit: 4746 i = start_i; 4747 while (locked_pages > 0) { 4748 page = extent_buffer_page(eb, i); 4749 i++; 4750 unlock_page(page); 4751 locked_pages--; 4752 } 4753 return ret; 4754 } 4755 4756 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 4757 unsigned long start, 4758 unsigned long len) 4759 { 4760 size_t cur; 4761 size_t offset; 4762 struct page *page; 4763 char *kaddr; 4764 char *dst = (char *)dstv; 4765 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4766 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4767 4768 WARN_ON(start > eb->len); 4769 WARN_ON(start + len > eb->start + eb->len); 4770 4771 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4772 4773 while (len > 0) { 4774 page = extent_buffer_page(eb, i); 4775 4776 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4777 kaddr = page_address(page); 4778 memcpy(dst, kaddr + offset, cur); 4779 4780 dst += cur; 4781 len -= cur; 4782 offset = 0; 4783 i++; 4784 } 4785 } 4786 4787 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 4788 unsigned long min_len, char **map, 4789 unsigned long *map_start, 4790 unsigned long *map_len) 4791 { 4792 size_t offset = start & (PAGE_CACHE_SIZE - 1); 4793 char *kaddr; 4794 struct page *p; 4795 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4796 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4797 unsigned long end_i = (start_offset + start + min_len - 1) >> 4798 PAGE_CACHE_SHIFT; 4799 4800 if (i != end_i) 4801 return -EINVAL; 4802 4803 if (i == 0) { 4804 offset = start_offset; 4805 *map_start = 0; 4806 } else { 4807 offset = 0; 4808 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 4809 } 4810 4811 if (start + min_len > eb->len) { 4812 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 4813 "wanted %lu %lu\n", (unsigned long long)eb->start, 4814 eb->len, start, min_len); 4815 return -EINVAL; 4816 } 4817 4818 p = extent_buffer_page(eb, i); 4819 kaddr = page_address(p); 4820 *map = kaddr + offset; 4821 *map_len = PAGE_CACHE_SIZE - offset; 4822 return 0; 4823 } 4824 4825 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 4826 unsigned long start, 4827 unsigned long len) 4828 { 4829 size_t cur; 4830 size_t offset; 4831 struct page *page; 4832 char *kaddr; 4833 char *ptr = (char *)ptrv; 4834 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4835 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4836 int ret = 0; 4837 4838 WARN_ON(start > eb->len); 4839 WARN_ON(start + len > eb->start + eb->len); 4840 4841 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4842 4843 while (len > 0) { 4844 page = extent_buffer_page(eb, i); 4845 4846 cur = min(len, (PAGE_CACHE_SIZE - offset)); 4847 4848 kaddr = page_address(page); 4849 ret = memcmp(ptr, kaddr + offset, cur); 4850 if (ret) 4851 break; 4852 4853 ptr += cur; 4854 len -= cur; 4855 offset = 0; 4856 i++; 4857 } 4858 return ret; 4859 } 4860 4861 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 4862 unsigned long start, unsigned long len) 4863 { 4864 size_t cur; 4865 size_t offset; 4866 struct page *page; 4867 char *kaddr; 4868 char *src = (char *)srcv; 4869 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4870 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4871 4872 WARN_ON(start > eb->len); 4873 WARN_ON(start + len > eb->start + eb->len); 4874 4875 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4876 4877 while (len > 0) { 4878 page = extent_buffer_page(eb, i); 4879 WARN_ON(!PageUptodate(page)); 4880 4881 cur = min(len, PAGE_CACHE_SIZE - offset); 4882 kaddr = page_address(page); 4883 memcpy(kaddr + offset, src, cur); 4884 4885 src += cur; 4886 len -= cur; 4887 offset = 0; 4888 i++; 4889 } 4890 } 4891 4892 void memset_extent_buffer(struct extent_buffer *eb, char c, 4893 unsigned long start, unsigned long len) 4894 { 4895 size_t cur; 4896 size_t offset; 4897 struct page *page; 4898 char *kaddr; 4899 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 4900 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 4901 4902 WARN_ON(start > eb->len); 4903 WARN_ON(start + len > eb->start + eb->len); 4904 4905 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 4906 4907 while (len > 0) { 4908 page = extent_buffer_page(eb, i); 4909 WARN_ON(!PageUptodate(page)); 4910 4911 cur = min(len, PAGE_CACHE_SIZE - offset); 4912 kaddr = page_address(page); 4913 memset(kaddr + offset, c, cur); 4914 4915 len -= cur; 4916 offset = 0; 4917 i++; 4918 } 4919 } 4920 4921 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 4922 unsigned long dst_offset, unsigned long src_offset, 4923 unsigned long len) 4924 { 4925 u64 dst_len = dst->len; 4926 size_t cur; 4927 size_t offset; 4928 struct page *page; 4929 char *kaddr; 4930 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 4931 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 4932 4933 WARN_ON(src->len != dst_len); 4934 4935 offset = (start_offset + dst_offset) & 4936 ((unsigned long)PAGE_CACHE_SIZE - 1); 4937 4938 while (len > 0) { 4939 page = extent_buffer_page(dst, i); 4940 WARN_ON(!PageUptodate(page)); 4941 4942 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 4943 4944 kaddr = page_address(page); 4945 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4946 4947 src_offset += cur; 4948 len -= cur; 4949 offset = 0; 4950 i++; 4951 } 4952 } 4953 4954 static void move_pages(struct page *dst_page, struct page *src_page, 4955 unsigned long dst_off, unsigned long src_off, 4956 unsigned long len) 4957 { 4958 char *dst_kaddr = page_address(dst_page); 4959 if (dst_page == src_page) { 4960 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 4961 } else { 4962 char *src_kaddr = page_address(src_page); 4963 char *p = dst_kaddr + dst_off + len; 4964 char *s = src_kaddr + src_off + len; 4965 4966 while (len--) 4967 *--p = *--s; 4968 } 4969 } 4970 4971 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4972 { 4973 unsigned long distance = (src > dst) ? src - dst : dst - src; 4974 return distance < len; 4975 } 4976 4977 static void copy_pages(struct page *dst_page, struct page *src_page, 4978 unsigned long dst_off, unsigned long src_off, 4979 unsigned long len) 4980 { 4981 char *dst_kaddr = page_address(dst_page); 4982 char *src_kaddr; 4983 int must_memmove = 0; 4984 4985 if (dst_page != src_page) { 4986 src_kaddr = page_address(src_page); 4987 } else { 4988 src_kaddr = dst_kaddr; 4989 if (areas_overlap(src_off, dst_off, len)) 4990 must_memmove = 1; 4991 } 4992 4993 if (must_memmove) 4994 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4995 else 4996 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4997 } 4998 4999 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5000 unsigned long src_offset, unsigned long len) 5001 { 5002 size_t cur; 5003 size_t dst_off_in_page; 5004 size_t src_off_in_page; 5005 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5006 unsigned long dst_i; 5007 unsigned long src_i; 5008 5009 if (src_offset + len > dst->len) { 5010 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5011 "len %lu dst len %lu\n", src_offset, len, dst->len); 5012 BUG_ON(1); 5013 } 5014 if (dst_offset + len > dst->len) { 5015 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5016 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5017 BUG_ON(1); 5018 } 5019 5020 while (len > 0) { 5021 dst_off_in_page = (start_offset + dst_offset) & 5022 ((unsigned long)PAGE_CACHE_SIZE - 1); 5023 src_off_in_page = (start_offset + src_offset) & 5024 ((unsigned long)PAGE_CACHE_SIZE - 1); 5025 5026 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5027 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5028 5029 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5030 src_off_in_page)); 5031 cur = min_t(unsigned long, cur, 5032 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5033 5034 copy_pages(extent_buffer_page(dst, dst_i), 5035 extent_buffer_page(dst, src_i), 5036 dst_off_in_page, src_off_in_page, cur); 5037 5038 src_offset += cur; 5039 dst_offset += cur; 5040 len -= cur; 5041 } 5042 } 5043 5044 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5045 unsigned long src_offset, unsigned long len) 5046 { 5047 size_t cur; 5048 size_t dst_off_in_page; 5049 size_t src_off_in_page; 5050 unsigned long dst_end = dst_offset + len - 1; 5051 unsigned long src_end = src_offset + len - 1; 5052 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5053 unsigned long dst_i; 5054 unsigned long src_i; 5055 5056 if (src_offset + len > dst->len) { 5057 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 5058 "len %lu len %lu\n", src_offset, len, dst->len); 5059 BUG_ON(1); 5060 } 5061 if (dst_offset + len > dst->len) { 5062 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 5063 "len %lu len %lu\n", dst_offset, len, dst->len); 5064 BUG_ON(1); 5065 } 5066 if (dst_offset < src_offset) { 5067 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5068 return; 5069 } 5070 while (len > 0) { 5071 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5072 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5073 5074 dst_off_in_page = (start_offset + dst_end) & 5075 ((unsigned long)PAGE_CACHE_SIZE - 1); 5076 src_off_in_page = (start_offset + src_end) & 5077 ((unsigned long)PAGE_CACHE_SIZE - 1); 5078 5079 cur = min_t(unsigned long, len, src_off_in_page + 1); 5080 cur = min(cur, dst_off_in_page + 1); 5081 move_pages(extent_buffer_page(dst, dst_i), 5082 extent_buffer_page(dst, src_i), 5083 dst_off_in_page - cur + 1, 5084 src_off_in_page - cur + 1, cur); 5085 5086 dst_end -= cur; 5087 src_end -= cur; 5088 len -= cur; 5089 } 5090 } 5091 5092 int try_release_extent_buffer(struct page *page) 5093 { 5094 struct extent_buffer *eb; 5095 5096 /* 5097 * We need to make sure noboody is attaching this page to an eb right 5098 * now. 5099 */ 5100 spin_lock(&page->mapping->private_lock); 5101 if (!PagePrivate(page)) { 5102 spin_unlock(&page->mapping->private_lock); 5103 return 1; 5104 } 5105 5106 eb = (struct extent_buffer *)page->private; 5107 BUG_ON(!eb); 5108 5109 /* 5110 * This is a little awful but should be ok, we need to make sure that 5111 * the eb doesn't disappear out from under us while we're looking at 5112 * this page. 5113 */ 5114 spin_lock(&eb->refs_lock); 5115 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5116 spin_unlock(&eb->refs_lock); 5117 spin_unlock(&page->mapping->private_lock); 5118 return 0; 5119 } 5120 spin_unlock(&page->mapping->private_lock); 5121 5122 /* 5123 * If tree ref isn't set then we know the ref on this eb is a real ref, 5124 * so just return, this page will likely be freed soon anyway. 5125 */ 5126 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5127 spin_unlock(&eb->refs_lock); 5128 return 0; 5129 } 5130 5131 return release_extent_buffer(eb); 5132 } 5133