xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 4800cd83)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21 
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24 
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29 
30 #define BUFFER_LRU_MAX 64
31 
32 struct tree_entry {
33 	u64 start;
34 	u64 end;
35 	struct rb_node rb_node;
36 };
37 
38 struct extent_page_data {
39 	struct bio *bio;
40 	struct extent_io_tree *tree;
41 	get_extent_t *get_extent;
42 
43 	/* tells writepage not to lock the state bits for this range
44 	 * it still does the unlocking
45 	 */
46 	unsigned int extent_locked:1;
47 
48 	/* tells the submit_bio code to use a WRITE_SYNC */
49 	unsigned int sync_io:1;
50 };
51 
52 int __init extent_io_init(void)
53 {
54 	extent_state_cache = kmem_cache_create("extent_state",
55 			sizeof(struct extent_state), 0,
56 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 	if (!extent_state_cache)
58 		return -ENOMEM;
59 
60 	extent_buffer_cache = kmem_cache_create("extent_buffers",
61 			sizeof(struct extent_buffer), 0,
62 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 	if (!extent_buffer_cache)
64 		goto free_state_cache;
65 	return 0;
66 
67 free_state_cache:
68 	kmem_cache_destroy(extent_state_cache);
69 	return -ENOMEM;
70 }
71 
72 void extent_io_exit(void)
73 {
74 	struct extent_state *state;
75 	struct extent_buffer *eb;
76 
77 	while (!list_empty(&states)) {
78 		state = list_entry(states.next, struct extent_state, leak_list);
79 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 		       "state %lu in tree %p refs %d\n",
81 		       (unsigned long long)state->start,
82 		       (unsigned long long)state->end,
83 		       state->state, state->tree, atomic_read(&state->refs));
84 		list_del(&state->leak_list);
85 		kmem_cache_free(extent_state_cache, state);
86 
87 	}
88 
89 	while (!list_empty(&buffers)) {
90 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 		       "refs %d\n", (unsigned long long)eb->start,
93 		       eb->len, atomic_read(&eb->refs));
94 		list_del(&eb->leak_list);
95 		kmem_cache_free(extent_buffer_cache, eb);
96 	}
97 	if (extent_state_cache)
98 		kmem_cache_destroy(extent_state_cache);
99 	if (extent_buffer_cache)
100 		kmem_cache_destroy(extent_buffer_cache);
101 }
102 
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 			  struct address_space *mapping, gfp_t mask)
105 {
106 	tree->state = RB_ROOT;
107 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 	tree->ops = NULL;
109 	tree->dirty_bytes = 0;
110 	spin_lock_init(&tree->lock);
111 	spin_lock_init(&tree->buffer_lock);
112 	tree->mapping = mapping;
113 }
114 
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 	struct extent_state *state;
118 #if LEAK_DEBUG
119 	unsigned long flags;
120 #endif
121 
122 	state = kmem_cache_alloc(extent_state_cache, mask);
123 	if (!state)
124 		return state;
125 	state->state = 0;
126 	state->private = 0;
127 	state->tree = NULL;
128 #if LEAK_DEBUG
129 	spin_lock_irqsave(&leak_lock, flags);
130 	list_add(&state->leak_list, &states);
131 	spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 	atomic_set(&state->refs, 1);
134 	init_waitqueue_head(&state->wq);
135 	return state;
136 }
137 
138 void free_extent_state(struct extent_state *state)
139 {
140 	if (!state)
141 		return;
142 	if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 		unsigned long flags;
145 #endif
146 		WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 		spin_lock_irqsave(&leak_lock, flags);
149 		list_del(&state->leak_list);
150 		spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 		kmem_cache_free(extent_state_cache, state);
153 	}
154 }
155 
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 				   struct rb_node *node)
158 {
159 	struct rb_node **p = &root->rb_node;
160 	struct rb_node *parent = NULL;
161 	struct tree_entry *entry;
162 
163 	while (*p) {
164 		parent = *p;
165 		entry = rb_entry(parent, struct tree_entry, rb_node);
166 
167 		if (offset < entry->start)
168 			p = &(*p)->rb_left;
169 		else if (offset > entry->end)
170 			p = &(*p)->rb_right;
171 		else
172 			return parent;
173 	}
174 
175 	entry = rb_entry(node, struct tree_entry, rb_node);
176 	rb_link_node(node, parent, p);
177 	rb_insert_color(node, root);
178 	return NULL;
179 }
180 
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 				     struct rb_node **prev_ret,
183 				     struct rb_node **next_ret)
184 {
185 	struct rb_root *root = &tree->state;
186 	struct rb_node *n = root->rb_node;
187 	struct rb_node *prev = NULL;
188 	struct rb_node *orig_prev = NULL;
189 	struct tree_entry *entry;
190 	struct tree_entry *prev_entry = NULL;
191 
192 	while (n) {
193 		entry = rb_entry(n, struct tree_entry, rb_node);
194 		prev = n;
195 		prev_entry = entry;
196 
197 		if (offset < entry->start)
198 			n = n->rb_left;
199 		else if (offset > entry->end)
200 			n = n->rb_right;
201 		else
202 			return n;
203 	}
204 
205 	if (prev_ret) {
206 		orig_prev = prev;
207 		while (prev && offset > prev_entry->end) {
208 			prev = rb_next(prev);
209 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210 		}
211 		*prev_ret = prev;
212 		prev = orig_prev;
213 	}
214 
215 	if (next_ret) {
216 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 		while (prev && offset < prev_entry->start) {
218 			prev = rb_prev(prev);
219 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 		}
221 		*next_ret = prev;
222 	}
223 	return NULL;
224 }
225 
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 					  u64 offset)
228 {
229 	struct rb_node *prev = NULL;
230 	struct rb_node *ret;
231 
232 	ret = __etree_search(tree, offset, &prev, NULL);
233 	if (!ret)
234 		return prev;
235 	return ret;
236 }
237 
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 		     struct extent_state *other)
240 {
241 	if (tree->ops && tree->ops->merge_extent_hook)
242 		tree->ops->merge_extent_hook(tree->mapping->host, new,
243 					     other);
244 }
245 
246 /*
247  * utility function to look for merge candidates inside a given range.
248  * Any extents with matching state are merged together into a single
249  * extent in the tree.  Extents with EXTENT_IO in their state field
250  * are not merged because the end_io handlers need to be able to do
251  * operations on them without sleeping (or doing allocations/splits).
252  *
253  * This should be called with the tree lock held.
254  */
255 static int merge_state(struct extent_io_tree *tree,
256 		       struct extent_state *state)
257 {
258 	struct extent_state *other;
259 	struct rb_node *other_node;
260 
261 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 		return 0;
263 
264 	other_node = rb_prev(&state->rb_node);
265 	if (other_node) {
266 		other = rb_entry(other_node, struct extent_state, rb_node);
267 		if (other->end == state->start - 1 &&
268 		    other->state == state->state) {
269 			merge_cb(tree, state, other);
270 			state->start = other->start;
271 			other->tree = NULL;
272 			rb_erase(&other->rb_node, &tree->state);
273 			free_extent_state(other);
274 		}
275 	}
276 	other_node = rb_next(&state->rb_node);
277 	if (other_node) {
278 		other = rb_entry(other_node, struct extent_state, rb_node);
279 		if (other->start == state->end + 1 &&
280 		    other->state == state->state) {
281 			merge_cb(tree, state, other);
282 			other->start = state->start;
283 			state->tree = NULL;
284 			rb_erase(&state->rb_node, &tree->state);
285 			free_extent_state(state);
286 			state = NULL;
287 		}
288 	}
289 
290 	return 0;
291 }
292 
293 static int set_state_cb(struct extent_io_tree *tree,
294 			 struct extent_state *state, int *bits)
295 {
296 	if (tree->ops && tree->ops->set_bit_hook) {
297 		return tree->ops->set_bit_hook(tree->mapping->host,
298 					       state, bits);
299 	}
300 
301 	return 0;
302 }
303 
304 static void clear_state_cb(struct extent_io_tree *tree,
305 			   struct extent_state *state, int *bits)
306 {
307 	if (tree->ops && tree->ops->clear_bit_hook)
308 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
309 }
310 
311 /*
312  * insert an extent_state struct into the tree.  'bits' are set on the
313  * struct before it is inserted.
314  *
315  * This may return -EEXIST if the extent is already there, in which case the
316  * state struct is freed.
317  *
318  * The tree lock is not taken internally.  This is a utility function and
319  * probably isn't what you want to call (see set/clear_extent_bit).
320  */
321 static int insert_state(struct extent_io_tree *tree,
322 			struct extent_state *state, u64 start, u64 end,
323 			int *bits)
324 {
325 	struct rb_node *node;
326 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 	int ret;
328 
329 	if (end < start) {
330 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 		       (unsigned long long)end,
332 		       (unsigned long long)start);
333 		WARN_ON(1);
334 	}
335 	state->start = start;
336 	state->end = end;
337 	ret = set_state_cb(tree, state, bits);
338 	if (ret)
339 		return ret;
340 
341 	if (bits_to_set & EXTENT_DIRTY)
342 		tree->dirty_bytes += end - start + 1;
343 	state->state |= bits_to_set;
344 	node = tree_insert(&tree->state, end, &state->rb_node);
345 	if (node) {
346 		struct extent_state *found;
347 		found = rb_entry(node, struct extent_state, rb_node);
348 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 		       "%llu %llu\n", (unsigned long long)found->start,
350 		       (unsigned long long)found->end,
351 		       (unsigned long long)start, (unsigned long long)end);
352 		free_extent_state(state);
353 		return -EEXIST;
354 	}
355 	state->tree = tree;
356 	merge_state(tree, state);
357 	return 0;
358 }
359 
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 		     u64 split)
362 {
363 	if (tree->ops && tree->ops->split_extent_hook)
364 		return tree->ops->split_extent_hook(tree->mapping->host,
365 						    orig, split);
366 	return 0;
367 }
368 
369 /*
370  * split a given extent state struct in two, inserting the preallocated
371  * struct 'prealloc' as the newly created second half.  'split' indicates an
372  * offset inside 'orig' where it should be split.
373  *
374  * Before calling,
375  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
376  * are two extent state structs in the tree:
377  * prealloc: [orig->start, split - 1]
378  * orig: [ split, orig->end ]
379  *
380  * The tree locks are not taken by this function. They need to be held
381  * by the caller.
382  */
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 		       struct extent_state *prealloc, u64 split)
385 {
386 	struct rb_node *node;
387 
388 	split_cb(tree, orig, split);
389 
390 	prealloc->start = orig->start;
391 	prealloc->end = split - 1;
392 	prealloc->state = orig->state;
393 	orig->start = split;
394 
395 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 	if (node) {
397 		free_extent_state(prealloc);
398 		return -EEXIST;
399 	}
400 	prealloc->tree = tree;
401 	return 0;
402 }
403 
404 /*
405  * utility function to clear some bits in an extent state struct.
406  * it will optionally wake up any one waiting on this state (wake == 1), or
407  * forcibly remove the state from the tree (delete == 1).
408  *
409  * If no bits are set on the state struct after clearing things, the
410  * struct is freed and removed from the tree
411  */
412 static int clear_state_bit(struct extent_io_tree *tree,
413 			    struct extent_state *state,
414 			    int *bits, int wake)
415 {
416 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 	int ret = state->state & bits_to_clear;
418 
419 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 		u64 range = state->end - state->start + 1;
421 		WARN_ON(range > tree->dirty_bytes);
422 		tree->dirty_bytes -= range;
423 	}
424 	clear_state_cb(tree, state, bits);
425 	state->state &= ~bits_to_clear;
426 	if (wake)
427 		wake_up(&state->wq);
428 	if (state->state == 0) {
429 		if (state->tree) {
430 			rb_erase(&state->rb_node, &tree->state);
431 			state->tree = NULL;
432 			free_extent_state(state);
433 		} else {
434 			WARN_ON(1);
435 		}
436 	} else {
437 		merge_state(tree, state);
438 	}
439 	return ret;
440 }
441 
442 /*
443  * clear some bits on a range in the tree.  This may require splitting
444  * or inserting elements in the tree, so the gfp mask is used to
445  * indicate which allocations or sleeping are allowed.
446  *
447  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448  * the given range from the tree regardless of state (ie for truncate).
449  *
450  * the range [start, end] is inclusive.
451  *
452  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453  * bits were already set, or zero if none of the bits were already set.
454  */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 		     int bits, int wake, int delete,
457 		     struct extent_state **cached_state,
458 		     gfp_t mask)
459 {
460 	struct extent_state *state;
461 	struct extent_state *cached;
462 	struct extent_state *prealloc = NULL;
463 	struct rb_node *next_node;
464 	struct rb_node *node;
465 	u64 last_end;
466 	int err;
467 	int set = 0;
468 	int clear = 0;
469 
470 	if (delete)
471 		bits |= ~EXTENT_CTLBITS;
472 	bits |= EXTENT_FIRST_DELALLOC;
473 
474 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 		clear = 1;
476 again:
477 	if (!prealloc && (mask & __GFP_WAIT)) {
478 		prealloc = alloc_extent_state(mask);
479 		if (!prealloc)
480 			return -ENOMEM;
481 	}
482 
483 	spin_lock(&tree->lock);
484 	if (cached_state) {
485 		cached = *cached_state;
486 
487 		if (clear) {
488 			*cached_state = NULL;
489 			cached_state = NULL;
490 		}
491 
492 		if (cached && cached->tree && cached->start == start) {
493 			if (clear)
494 				atomic_dec(&cached->refs);
495 			state = cached;
496 			goto hit_next;
497 		}
498 		if (clear)
499 			free_extent_state(cached);
500 	}
501 	/*
502 	 * this search will find the extents that end after
503 	 * our range starts
504 	 */
505 	node = tree_search(tree, start);
506 	if (!node)
507 		goto out;
508 	state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 	if (state->start > end)
511 		goto out;
512 	WARN_ON(state->end < start);
513 	last_end = state->end;
514 
515 	/*
516 	 *     | ---- desired range ---- |
517 	 *  | state | or
518 	 *  | ------------- state -------------- |
519 	 *
520 	 * We need to split the extent we found, and may flip
521 	 * bits on second half.
522 	 *
523 	 * If the extent we found extends past our range, we
524 	 * just split and search again.  It'll get split again
525 	 * the next time though.
526 	 *
527 	 * If the extent we found is inside our range, we clear
528 	 * the desired bit on it.
529 	 */
530 
531 	if (state->start < start) {
532 		if (!prealloc)
533 			prealloc = alloc_extent_state(GFP_ATOMIC);
534 		err = split_state(tree, state, prealloc, start);
535 		BUG_ON(err == -EEXIST);
536 		prealloc = NULL;
537 		if (err)
538 			goto out;
539 		if (state->end <= end) {
540 			set |= clear_state_bit(tree, state, &bits, wake);
541 			if (last_end == (u64)-1)
542 				goto out;
543 			start = last_end + 1;
544 		}
545 		goto search_again;
546 	}
547 	/*
548 	 * | ---- desired range ---- |
549 	 *                        | state |
550 	 * We need to split the extent, and clear the bit
551 	 * on the first half
552 	 */
553 	if (state->start <= end && state->end > end) {
554 		if (!prealloc)
555 			prealloc = alloc_extent_state(GFP_ATOMIC);
556 		err = split_state(tree, state, prealloc, end + 1);
557 		BUG_ON(err == -EEXIST);
558 		if (wake)
559 			wake_up(&state->wq);
560 
561 		set |= clear_state_bit(tree, prealloc, &bits, wake);
562 
563 		prealloc = NULL;
564 		goto out;
565 	}
566 
567 	if (state->end < end && prealloc && !need_resched())
568 		next_node = rb_next(&state->rb_node);
569 	else
570 		next_node = NULL;
571 
572 	set |= clear_state_bit(tree, state, &bits, wake);
573 	if (last_end == (u64)-1)
574 		goto out;
575 	start = last_end + 1;
576 	if (start <= end && next_node) {
577 		state = rb_entry(next_node, struct extent_state,
578 				 rb_node);
579 		if (state->start == start)
580 			goto hit_next;
581 	}
582 	goto search_again;
583 
584 out:
585 	spin_unlock(&tree->lock);
586 	if (prealloc)
587 		free_extent_state(prealloc);
588 
589 	return set;
590 
591 search_again:
592 	if (start > end)
593 		goto out;
594 	spin_unlock(&tree->lock);
595 	if (mask & __GFP_WAIT)
596 		cond_resched();
597 	goto again;
598 }
599 
600 static int wait_on_state(struct extent_io_tree *tree,
601 			 struct extent_state *state)
602 		__releases(tree->lock)
603 		__acquires(tree->lock)
604 {
605 	DEFINE_WAIT(wait);
606 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 	spin_unlock(&tree->lock);
608 	schedule();
609 	spin_lock(&tree->lock);
610 	finish_wait(&state->wq, &wait);
611 	return 0;
612 }
613 
614 /*
615  * waits for one or more bits to clear on a range in the state tree.
616  * The range [start, end] is inclusive.
617  * The tree lock is taken by this function
618  */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 	struct extent_state *state;
622 	struct rb_node *node;
623 
624 	spin_lock(&tree->lock);
625 again:
626 	while (1) {
627 		/*
628 		 * this search will find all the extents that end after
629 		 * our range starts
630 		 */
631 		node = tree_search(tree, start);
632 		if (!node)
633 			break;
634 
635 		state = rb_entry(node, struct extent_state, rb_node);
636 
637 		if (state->start > end)
638 			goto out;
639 
640 		if (state->state & bits) {
641 			start = state->start;
642 			atomic_inc(&state->refs);
643 			wait_on_state(tree, state);
644 			free_extent_state(state);
645 			goto again;
646 		}
647 		start = state->end + 1;
648 
649 		if (start > end)
650 			break;
651 
652 		if (need_resched()) {
653 			spin_unlock(&tree->lock);
654 			cond_resched();
655 			spin_lock(&tree->lock);
656 		}
657 	}
658 out:
659 	spin_unlock(&tree->lock);
660 	return 0;
661 }
662 
663 static int set_state_bits(struct extent_io_tree *tree,
664 			   struct extent_state *state,
665 			   int *bits)
666 {
667 	int ret;
668 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
669 
670 	ret = set_state_cb(tree, state, bits);
671 	if (ret)
672 		return ret;
673 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 		u64 range = state->end - state->start + 1;
675 		tree->dirty_bytes += range;
676 	}
677 	state->state |= bits_to_set;
678 
679 	return 0;
680 }
681 
682 static void cache_state(struct extent_state *state,
683 			struct extent_state **cached_ptr)
684 {
685 	if (cached_ptr && !(*cached_ptr)) {
686 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 			*cached_ptr = state;
688 			atomic_inc(&state->refs);
689 		}
690 	}
691 }
692 
693 /*
694  * set some bits on a range in the tree.  This may require allocations or
695  * sleeping, so the gfp mask is used to indicate what is allowed.
696  *
697  * If any of the exclusive bits are set, this will fail with -EEXIST if some
698  * part of the range already has the desired bits set.  The start of the
699  * existing range is returned in failed_start in this case.
700  *
701  * [start, end] is inclusive This takes the tree lock.
702  */
703 
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 		   int bits, int exclusive_bits, u64 *failed_start,
706 		   struct extent_state **cached_state, gfp_t mask)
707 {
708 	struct extent_state *state;
709 	struct extent_state *prealloc = NULL;
710 	struct rb_node *node;
711 	int err = 0;
712 	u64 last_start;
713 	u64 last_end;
714 
715 	bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 	if (!prealloc && (mask & __GFP_WAIT)) {
718 		prealloc = alloc_extent_state(mask);
719 		if (!prealloc)
720 			return -ENOMEM;
721 	}
722 
723 	spin_lock(&tree->lock);
724 	if (cached_state && *cached_state) {
725 		state = *cached_state;
726 		if (state->start == start && state->tree) {
727 			node = &state->rb_node;
728 			goto hit_next;
729 		}
730 	}
731 	/*
732 	 * this search will find all the extents that end after
733 	 * our range starts.
734 	 */
735 	node = tree_search(tree, start);
736 	if (!node) {
737 		err = insert_state(tree, prealloc, start, end, &bits);
738 		prealloc = NULL;
739 		BUG_ON(err == -EEXIST);
740 		goto out;
741 	}
742 	state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 	last_start = state->start;
745 	last_end = state->end;
746 
747 	/*
748 	 * | ---- desired range ---- |
749 	 * | state |
750 	 *
751 	 * Just lock what we found and keep going
752 	 */
753 	if (state->start == start && state->end <= end) {
754 		struct rb_node *next_node;
755 		if (state->state & exclusive_bits) {
756 			*failed_start = state->start;
757 			err = -EEXIST;
758 			goto out;
759 		}
760 
761 		err = set_state_bits(tree, state, &bits);
762 		if (err)
763 			goto out;
764 
765 		cache_state(state, cached_state);
766 		merge_state(tree, state);
767 		if (last_end == (u64)-1)
768 			goto out;
769 
770 		start = last_end + 1;
771 		if (start < end && prealloc && !need_resched()) {
772 			next_node = rb_next(node);
773 			if (next_node) {
774 				state = rb_entry(next_node, struct extent_state,
775 						 rb_node);
776 				if (state->start == start)
777 					goto hit_next;
778 			}
779 		}
780 		goto search_again;
781 	}
782 
783 	/*
784 	 *     | ---- desired range ---- |
785 	 * | state |
786 	 *   or
787 	 * | ------------- state -------------- |
788 	 *
789 	 * We need to split the extent we found, and may flip bits on
790 	 * second half.
791 	 *
792 	 * If the extent we found extends past our
793 	 * range, we just split and search again.  It'll get split
794 	 * again the next time though.
795 	 *
796 	 * If the extent we found is inside our range, we set the
797 	 * desired bit on it.
798 	 */
799 	if (state->start < start) {
800 		if (state->state & exclusive_bits) {
801 			*failed_start = start;
802 			err = -EEXIST;
803 			goto out;
804 		}
805 		err = split_state(tree, state, prealloc, start);
806 		BUG_ON(err == -EEXIST);
807 		prealloc = NULL;
808 		if (err)
809 			goto out;
810 		if (state->end <= end) {
811 			err = set_state_bits(tree, state, &bits);
812 			if (err)
813 				goto out;
814 			cache_state(state, cached_state);
815 			merge_state(tree, state);
816 			if (last_end == (u64)-1)
817 				goto out;
818 			start = last_end + 1;
819 		}
820 		goto search_again;
821 	}
822 	/*
823 	 * | ---- desired range ---- |
824 	 *     | state | or               | state |
825 	 *
826 	 * There's a hole, we need to insert something in it and
827 	 * ignore the extent we found.
828 	 */
829 	if (state->start > start) {
830 		u64 this_end;
831 		if (end < last_start)
832 			this_end = end;
833 		else
834 			this_end = last_start - 1;
835 		err = insert_state(tree, prealloc, start, this_end,
836 				   &bits);
837 		BUG_ON(err == -EEXIST);
838 		if (err) {
839 			prealloc = NULL;
840 			goto out;
841 		}
842 		cache_state(prealloc, cached_state);
843 		prealloc = NULL;
844 		start = this_end + 1;
845 		goto search_again;
846 	}
847 	/*
848 	 * | ---- desired range ---- |
849 	 *                        | state |
850 	 * We need to split the extent, and set the bit
851 	 * on the first half
852 	 */
853 	if (state->start <= end && state->end > end) {
854 		if (state->state & exclusive_bits) {
855 			*failed_start = start;
856 			err = -EEXIST;
857 			goto out;
858 		}
859 		err = split_state(tree, state, prealloc, end + 1);
860 		BUG_ON(err == -EEXIST);
861 
862 		err = set_state_bits(tree, prealloc, &bits);
863 		if (err) {
864 			prealloc = NULL;
865 			goto out;
866 		}
867 		cache_state(prealloc, cached_state);
868 		merge_state(tree, prealloc);
869 		prealloc = NULL;
870 		goto out;
871 	}
872 
873 	goto search_again;
874 
875 out:
876 	spin_unlock(&tree->lock);
877 	if (prealloc)
878 		free_extent_state(prealloc);
879 
880 	return err;
881 
882 search_again:
883 	if (start > end)
884 		goto out;
885 	spin_unlock(&tree->lock);
886 	if (mask & __GFP_WAIT)
887 		cond_resched();
888 	goto again;
889 }
890 
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893 		     gfp_t mask)
894 {
895 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896 			      NULL, mask);
897 }
898 
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 		    int bits, gfp_t mask)
901 {
902 	return set_extent_bit(tree, start, end, bits, 0, NULL,
903 			      NULL, mask);
904 }
905 
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 		      int bits, gfp_t mask)
908 {
909 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
910 }
911 
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 			struct extent_state **cached_state, gfp_t mask)
914 {
915 	return set_extent_bit(tree, start, end,
916 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 			      0, NULL, cached_state, mask);
918 }
919 
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921 		       gfp_t mask)
922 {
923 	return clear_extent_bit(tree, start, end,
924 				EXTENT_DIRTY | EXTENT_DELALLOC |
925 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
926 }
927 
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929 		     gfp_t mask)
930 {
931 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932 			      NULL, mask);
933 }
934 
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936 		       gfp_t mask)
937 {
938 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939 				NULL, mask);
940 }
941 
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943 			gfp_t mask)
944 {
945 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946 			      NULL, mask);
947 }
948 
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 				 u64 end, struct extent_state **cached_state,
951 				 gfp_t mask)
952 {
953 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954 				cached_state, mask);
955 }
956 
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
958 {
959 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
960 }
961 
962 /*
963  * either insert or lock state struct between start and end use mask to tell
964  * us if waiting is desired.
965  */
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 		     int bits, struct extent_state **cached_state, gfp_t mask)
968 {
969 	int err;
970 	u64 failed_start;
971 	while (1) {
972 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 				     EXTENT_LOCKED, &failed_start,
974 				     cached_state, mask);
975 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 			start = failed_start;
978 		} else {
979 			break;
980 		}
981 		WARN_ON(start > end);
982 	}
983 	return err;
984 }
985 
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
987 {
988 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
989 }
990 
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992 		    gfp_t mask)
993 {
994 	int err;
995 	u64 failed_start;
996 
997 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 			     &failed_start, NULL, mask);
999 	if (err == -EEXIST) {
1000 		if (failed_start > start)
1001 			clear_extent_bit(tree, start, failed_start - 1,
1002 					 EXTENT_LOCKED, 1, 0, NULL, mask);
1003 		return 0;
1004 	}
1005 	return 1;
1006 }
1007 
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 			 struct extent_state **cached, gfp_t mask)
1010 {
1011 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012 				mask);
1013 }
1014 
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016 		  gfp_t mask)
1017 {
1018 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019 				mask);
1020 }
1021 
1022 /*
1023  * helper function to set pages and extents in the tree dirty
1024  */
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1026 {
1027 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029 	struct page *page;
1030 
1031 	while (index <= end_index) {
1032 		page = find_get_page(tree->mapping, index);
1033 		BUG_ON(!page);
1034 		__set_page_dirty_nobuffers(page);
1035 		page_cache_release(page);
1036 		index++;
1037 	}
1038 	return 0;
1039 }
1040 
1041 /*
1042  * helper function to set both pages and extents in the tree writeback
1043  */
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045 {
1046 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 	struct page *page;
1049 
1050 	while (index <= end_index) {
1051 		page = find_get_page(tree->mapping, index);
1052 		BUG_ON(!page);
1053 		set_page_writeback(page);
1054 		page_cache_release(page);
1055 		index++;
1056 	}
1057 	return 0;
1058 }
1059 
1060 /*
1061  * find the first offset in the io tree with 'bits' set. zero is
1062  * returned if we find something, and *start_ret and *end_ret are
1063  * set to reflect the state struct that was found.
1064  *
1065  * If nothing was found, 1 is returned, < 0 on error
1066  */
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 			  u64 *start_ret, u64 *end_ret, int bits)
1069 {
1070 	struct rb_node *node;
1071 	struct extent_state *state;
1072 	int ret = 1;
1073 
1074 	spin_lock(&tree->lock);
1075 	/*
1076 	 * this search will find all the extents that end after
1077 	 * our range starts.
1078 	 */
1079 	node = tree_search(tree, start);
1080 	if (!node)
1081 		goto out;
1082 
1083 	while (1) {
1084 		state = rb_entry(node, struct extent_state, rb_node);
1085 		if (state->end >= start && (state->state & bits)) {
1086 			*start_ret = state->start;
1087 			*end_ret = state->end;
1088 			ret = 0;
1089 			break;
1090 		}
1091 		node = rb_next(node);
1092 		if (!node)
1093 			break;
1094 	}
1095 out:
1096 	spin_unlock(&tree->lock);
1097 	return ret;
1098 }
1099 
1100 /* find the first state struct with 'bits' set after 'start', and
1101  * return it.  tree->lock must be held.  NULL will returned if
1102  * nothing was found after 'start'
1103  */
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 						 u64 start, int bits)
1106 {
1107 	struct rb_node *node;
1108 	struct extent_state *state;
1109 
1110 	/*
1111 	 * this search will find all the extents that end after
1112 	 * our range starts.
1113 	 */
1114 	node = tree_search(tree, start);
1115 	if (!node)
1116 		goto out;
1117 
1118 	while (1) {
1119 		state = rb_entry(node, struct extent_state, rb_node);
1120 		if (state->end >= start && (state->state & bits))
1121 			return state;
1122 
1123 		node = rb_next(node);
1124 		if (!node)
1125 			break;
1126 	}
1127 out:
1128 	return NULL;
1129 }
1130 
1131 /*
1132  * find a contiguous range of bytes in the file marked as delalloc, not
1133  * more than 'max_bytes'.  start and end are used to return the range,
1134  *
1135  * 1 is returned if we find something, 0 if nothing was in the tree
1136  */
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 					u64 *start, u64 *end, u64 max_bytes,
1139 					struct extent_state **cached_state)
1140 {
1141 	struct rb_node *node;
1142 	struct extent_state *state;
1143 	u64 cur_start = *start;
1144 	u64 found = 0;
1145 	u64 total_bytes = 0;
1146 
1147 	spin_lock(&tree->lock);
1148 
1149 	/*
1150 	 * this search will find all the extents that end after
1151 	 * our range starts.
1152 	 */
1153 	node = tree_search(tree, cur_start);
1154 	if (!node) {
1155 		if (!found)
1156 			*end = (u64)-1;
1157 		goto out;
1158 	}
1159 
1160 	while (1) {
1161 		state = rb_entry(node, struct extent_state, rb_node);
1162 		if (found && (state->start != cur_start ||
1163 			      (state->state & EXTENT_BOUNDARY))) {
1164 			goto out;
1165 		}
1166 		if (!(state->state & EXTENT_DELALLOC)) {
1167 			if (!found)
1168 				*end = state->end;
1169 			goto out;
1170 		}
1171 		if (!found) {
1172 			*start = state->start;
1173 			*cached_state = state;
1174 			atomic_inc(&state->refs);
1175 		}
1176 		found++;
1177 		*end = state->end;
1178 		cur_start = state->end + 1;
1179 		node = rb_next(node);
1180 		if (!node)
1181 			break;
1182 		total_bytes += state->end - state->start + 1;
1183 		if (total_bytes >= max_bytes)
1184 			break;
1185 	}
1186 out:
1187 	spin_unlock(&tree->lock);
1188 	return found;
1189 }
1190 
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 					  struct page *locked_page,
1193 					  u64 start, u64 end)
1194 {
1195 	int ret;
1196 	struct page *pages[16];
1197 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 	unsigned long nr_pages = end_index - index + 1;
1200 	int i;
1201 
1202 	if (index == locked_page->index && end_index == index)
1203 		return 0;
1204 
1205 	while (nr_pages > 0) {
1206 		ret = find_get_pages_contig(inode->i_mapping, index,
1207 				     min_t(unsigned long, nr_pages,
1208 				     ARRAY_SIZE(pages)), pages);
1209 		for (i = 0; i < ret; i++) {
1210 			if (pages[i] != locked_page)
1211 				unlock_page(pages[i]);
1212 			page_cache_release(pages[i]);
1213 		}
1214 		nr_pages -= ret;
1215 		index += ret;
1216 		cond_resched();
1217 	}
1218 	return 0;
1219 }
1220 
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 					struct page *locked_page,
1223 					u64 delalloc_start,
1224 					u64 delalloc_end)
1225 {
1226 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 	unsigned long start_index = index;
1228 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 	unsigned long pages_locked = 0;
1230 	struct page *pages[16];
1231 	unsigned long nrpages;
1232 	int ret;
1233 	int i;
1234 
1235 	/* the caller is responsible for locking the start index */
1236 	if (index == locked_page->index && index == end_index)
1237 		return 0;
1238 
1239 	/* skip the page at the start index */
1240 	nrpages = end_index - index + 1;
1241 	while (nrpages > 0) {
1242 		ret = find_get_pages_contig(inode->i_mapping, index,
1243 				     min_t(unsigned long,
1244 				     nrpages, ARRAY_SIZE(pages)), pages);
1245 		if (ret == 0) {
1246 			ret = -EAGAIN;
1247 			goto done;
1248 		}
1249 		/* now we have an array of pages, lock them all */
1250 		for (i = 0; i < ret; i++) {
1251 			/*
1252 			 * the caller is taking responsibility for
1253 			 * locked_page
1254 			 */
1255 			if (pages[i] != locked_page) {
1256 				lock_page(pages[i]);
1257 				if (!PageDirty(pages[i]) ||
1258 				    pages[i]->mapping != inode->i_mapping) {
1259 					ret = -EAGAIN;
1260 					unlock_page(pages[i]);
1261 					page_cache_release(pages[i]);
1262 					goto done;
1263 				}
1264 			}
1265 			page_cache_release(pages[i]);
1266 			pages_locked++;
1267 		}
1268 		nrpages -= ret;
1269 		index += ret;
1270 		cond_resched();
1271 	}
1272 	ret = 0;
1273 done:
1274 	if (ret && pages_locked) {
1275 		__unlock_for_delalloc(inode, locked_page,
1276 			      delalloc_start,
1277 			      ((u64)(start_index + pages_locked - 1)) <<
1278 			      PAGE_CACHE_SHIFT);
1279 	}
1280 	return ret;
1281 }
1282 
1283 /*
1284  * find a contiguous range of bytes in the file marked as delalloc, not
1285  * more than 'max_bytes'.  start and end are used to return the range,
1286  *
1287  * 1 is returned if we find something, 0 if nothing was in the tree
1288  */
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 					     struct extent_io_tree *tree,
1291 					     struct page *locked_page,
1292 					     u64 *start, u64 *end,
1293 					     u64 max_bytes)
1294 {
1295 	u64 delalloc_start;
1296 	u64 delalloc_end;
1297 	u64 found;
1298 	struct extent_state *cached_state = NULL;
1299 	int ret;
1300 	int loops = 0;
1301 
1302 again:
1303 	/* step one, find a bunch of delalloc bytes starting at start */
1304 	delalloc_start = *start;
1305 	delalloc_end = 0;
1306 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 				    max_bytes, &cached_state);
1308 	if (!found || delalloc_end <= *start) {
1309 		*start = delalloc_start;
1310 		*end = delalloc_end;
1311 		free_extent_state(cached_state);
1312 		return found;
1313 	}
1314 
1315 	/*
1316 	 * start comes from the offset of locked_page.  We have to lock
1317 	 * pages in order, so we can't process delalloc bytes before
1318 	 * locked_page
1319 	 */
1320 	if (delalloc_start < *start)
1321 		delalloc_start = *start;
1322 
1323 	/*
1324 	 * make sure to limit the number of pages we try to lock down
1325 	 * if we're looping.
1326 	 */
1327 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329 
1330 	/* step two, lock all the pages after the page that has start */
1331 	ret = lock_delalloc_pages(inode, locked_page,
1332 				  delalloc_start, delalloc_end);
1333 	if (ret == -EAGAIN) {
1334 		/* some of the pages are gone, lets avoid looping by
1335 		 * shortening the size of the delalloc range we're searching
1336 		 */
1337 		free_extent_state(cached_state);
1338 		if (!loops) {
1339 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 			max_bytes = PAGE_CACHE_SIZE - offset;
1341 			loops = 1;
1342 			goto again;
1343 		} else {
1344 			found = 0;
1345 			goto out_failed;
1346 		}
1347 	}
1348 	BUG_ON(ret);
1349 
1350 	/* step three, lock the state bits for the whole range */
1351 	lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 			 0, &cached_state, GFP_NOFS);
1353 
1354 	/* then test to make sure it is all still delalloc */
1355 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 			     EXTENT_DELALLOC, 1, cached_state);
1357 	if (!ret) {
1358 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 				     &cached_state, GFP_NOFS);
1360 		__unlock_for_delalloc(inode, locked_page,
1361 			      delalloc_start, delalloc_end);
1362 		cond_resched();
1363 		goto again;
1364 	}
1365 	free_extent_state(cached_state);
1366 	*start = delalloc_start;
1367 	*end = delalloc_end;
1368 out_failed:
1369 	return found;
1370 }
1371 
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 				struct extent_io_tree *tree,
1374 				u64 start, u64 end, struct page *locked_page,
1375 				unsigned long op)
1376 {
1377 	int ret;
1378 	struct page *pages[16];
1379 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 	unsigned long nr_pages = end_index - index + 1;
1382 	int i;
1383 	int clear_bits = 0;
1384 
1385 	if (op & EXTENT_CLEAR_UNLOCK)
1386 		clear_bits |= EXTENT_LOCKED;
1387 	if (op & EXTENT_CLEAR_DIRTY)
1388 		clear_bits |= EXTENT_DIRTY;
1389 
1390 	if (op & EXTENT_CLEAR_DELALLOC)
1391 		clear_bits |= EXTENT_DELALLOC;
1392 
1393 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 		    EXTENT_SET_PRIVATE2)))
1397 		return 0;
1398 
1399 	while (nr_pages > 0) {
1400 		ret = find_get_pages_contig(inode->i_mapping, index,
1401 				     min_t(unsigned long,
1402 				     nr_pages, ARRAY_SIZE(pages)), pages);
1403 		for (i = 0; i < ret; i++) {
1404 
1405 			if (op & EXTENT_SET_PRIVATE2)
1406 				SetPagePrivate2(pages[i]);
1407 
1408 			if (pages[i] == locked_page) {
1409 				page_cache_release(pages[i]);
1410 				continue;
1411 			}
1412 			if (op & EXTENT_CLEAR_DIRTY)
1413 				clear_page_dirty_for_io(pages[i]);
1414 			if (op & EXTENT_SET_WRITEBACK)
1415 				set_page_writeback(pages[i]);
1416 			if (op & EXTENT_END_WRITEBACK)
1417 				end_page_writeback(pages[i]);
1418 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 				unlock_page(pages[i]);
1420 			page_cache_release(pages[i]);
1421 		}
1422 		nr_pages -= ret;
1423 		index += ret;
1424 		cond_resched();
1425 	}
1426 	return 0;
1427 }
1428 
1429 /*
1430  * count the number of bytes in the tree that have a given bit(s)
1431  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1432  * cached.  The total number found is returned.
1433  */
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 		     u64 *start, u64 search_end, u64 max_bytes,
1436 		     unsigned long bits, int contig)
1437 {
1438 	struct rb_node *node;
1439 	struct extent_state *state;
1440 	u64 cur_start = *start;
1441 	u64 total_bytes = 0;
1442 	u64 last = 0;
1443 	int found = 0;
1444 
1445 	if (search_end <= cur_start) {
1446 		WARN_ON(1);
1447 		return 0;
1448 	}
1449 
1450 	spin_lock(&tree->lock);
1451 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1452 		total_bytes = tree->dirty_bytes;
1453 		goto out;
1454 	}
1455 	/*
1456 	 * this search will find all the extents that end after
1457 	 * our range starts.
1458 	 */
1459 	node = tree_search(tree, cur_start);
1460 	if (!node)
1461 		goto out;
1462 
1463 	while (1) {
1464 		state = rb_entry(node, struct extent_state, rb_node);
1465 		if (state->start > search_end)
1466 			break;
1467 		if (contig && found && state->start > last + 1)
1468 			break;
1469 		if (state->end >= cur_start && (state->state & bits) == bits) {
1470 			total_bytes += min(search_end, state->end) + 1 -
1471 				       max(cur_start, state->start);
1472 			if (total_bytes >= max_bytes)
1473 				break;
1474 			if (!found) {
1475 				*start = state->start;
1476 				found = 1;
1477 			}
1478 			last = state->end;
1479 		} else if (contig && found) {
1480 			break;
1481 		}
1482 		node = rb_next(node);
1483 		if (!node)
1484 			break;
1485 	}
1486 out:
1487 	spin_unlock(&tree->lock);
1488 	return total_bytes;
1489 }
1490 
1491 /*
1492  * set the private field for a given byte offset in the tree.  If there isn't
1493  * an extent_state there already, this does nothing.
1494  */
1495 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1496 {
1497 	struct rb_node *node;
1498 	struct extent_state *state;
1499 	int ret = 0;
1500 
1501 	spin_lock(&tree->lock);
1502 	/*
1503 	 * this search will find all the extents that end after
1504 	 * our range starts.
1505 	 */
1506 	node = tree_search(tree, start);
1507 	if (!node) {
1508 		ret = -ENOENT;
1509 		goto out;
1510 	}
1511 	state = rb_entry(node, struct extent_state, rb_node);
1512 	if (state->start != start) {
1513 		ret = -ENOENT;
1514 		goto out;
1515 	}
1516 	state->private = private;
1517 out:
1518 	spin_unlock(&tree->lock);
1519 	return ret;
1520 }
1521 
1522 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1523 {
1524 	struct rb_node *node;
1525 	struct extent_state *state;
1526 	int ret = 0;
1527 
1528 	spin_lock(&tree->lock);
1529 	/*
1530 	 * this search will find all the extents that end after
1531 	 * our range starts.
1532 	 */
1533 	node = tree_search(tree, start);
1534 	if (!node) {
1535 		ret = -ENOENT;
1536 		goto out;
1537 	}
1538 	state = rb_entry(node, struct extent_state, rb_node);
1539 	if (state->start != start) {
1540 		ret = -ENOENT;
1541 		goto out;
1542 	}
1543 	*private = state->private;
1544 out:
1545 	spin_unlock(&tree->lock);
1546 	return ret;
1547 }
1548 
1549 /*
1550  * searches a range in the state tree for a given mask.
1551  * If 'filled' == 1, this returns 1 only if every extent in the tree
1552  * has the bits set.  Otherwise, 1 is returned if any bit in the
1553  * range is found set.
1554  */
1555 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1556 		   int bits, int filled, struct extent_state *cached)
1557 {
1558 	struct extent_state *state = NULL;
1559 	struct rb_node *node;
1560 	int bitset = 0;
1561 
1562 	spin_lock(&tree->lock);
1563 	if (cached && cached->tree && cached->start == start)
1564 		node = &cached->rb_node;
1565 	else
1566 		node = tree_search(tree, start);
1567 	while (node && start <= end) {
1568 		state = rb_entry(node, struct extent_state, rb_node);
1569 
1570 		if (filled && state->start > start) {
1571 			bitset = 0;
1572 			break;
1573 		}
1574 
1575 		if (state->start > end)
1576 			break;
1577 
1578 		if (state->state & bits) {
1579 			bitset = 1;
1580 			if (!filled)
1581 				break;
1582 		} else if (filled) {
1583 			bitset = 0;
1584 			break;
1585 		}
1586 
1587 		if (state->end == (u64)-1)
1588 			break;
1589 
1590 		start = state->end + 1;
1591 		if (start > end)
1592 			break;
1593 		node = rb_next(node);
1594 		if (!node) {
1595 			if (filled)
1596 				bitset = 0;
1597 			break;
1598 		}
1599 	}
1600 	spin_unlock(&tree->lock);
1601 	return bitset;
1602 }
1603 
1604 /*
1605  * helper function to set a given page up to date if all the
1606  * extents in the tree for that page are up to date
1607  */
1608 static int check_page_uptodate(struct extent_io_tree *tree,
1609 			       struct page *page)
1610 {
1611 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1612 	u64 end = start + PAGE_CACHE_SIZE - 1;
1613 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1614 		SetPageUptodate(page);
1615 	return 0;
1616 }
1617 
1618 /*
1619  * helper function to unlock a page if all the extents in the tree
1620  * for that page are unlocked
1621  */
1622 static int check_page_locked(struct extent_io_tree *tree,
1623 			     struct page *page)
1624 {
1625 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1626 	u64 end = start + PAGE_CACHE_SIZE - 1;
1627 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1628 		unlock_page(page);
1629 	return 0;
1630 }
1631 
1632 /*
1633  * helper function to end page writeback if all the extents
1634  * in the tree for that page are done with writeback
1635  */
1636 static int check_page_writeback(struct extent_io_tree *tree,
1637 			     struct page *page)
1638 {
1639 	end_page_writeback(page);
1640 	return 0;
1641 }
1642 
1643 /* lots and lots of room for performance fixes in the end_bio funcs */
1644 
1645 /*
1646  * after a writepage IO is done, we need to:
1647  * clear the uptodate bits on error
1648  * clear the writeback bits in the extent tree for this IO
1649  * end_page_writeback if the page has no more pending IO
1650  *
1651  * Scheduling is not allowed, so the extent state tree is expected
1652  * to have one and only one object corresponding to this IO.
1653  */
1654 static void end_bio_extent_writepage(struct bio *bio, int err)
1655 {
1656 	int uptodate = err == 0;
1657 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1658 	struct extent_io_tree *tree;
1659 	u64 start;
1660 	u64 end;
1661 	int whole_page;
1662 	int ret;
1663 
1664 	do {
1665 		struct page *page = bvec->bv_page;
1666 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1667 
1668 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1669 			 bvec->bv_offset;
1670 		end = start + bvec->bv_len - 1;
1671 
1672 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1673 			whole_page = 1;
1674 		else
1675 			whole_page = 0;
1676 
1677 		if (--bvec >= bio->bi_io_vec)
1678 			prefetchw(&bvec->bv_page->flags);
1679 		if (tree->ops && tree->ops->writepage_end_io_hook) {
1680 			ret = tree->ops->writepage_end_io_hook(page, start,
1681 						       end, NULL, uptodate);
1682 			if (ret)
1683 				uptodate = 0;
1684 		}
1685 
1686 		if (!uptodate && tree->ops &&
1687 		    tree->ops->writepage_io_failed_hook) {
1688 			ret = tree->ops->writepage_io_failed_hook(bio, page,
1689 							 start, end, NULL);
1690 			if (ret == 0) {
1691 				uptodate = (err == 0);
1692 				continue;
1693 			}
1694 		}
1695 
1696 		if (!uptodate) {
1697 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1698 			ClearPageUptodate(page);
1699 			SetPageError(page);
1700 		}
1701 
1702 		if (whole_page)
1703 			end_page_writeback(page);
1704 		else
1705 			check_page_writeback(tree, page);
1706 	} while (bvec >= bio->bi_io_vec);
1707 
1708 	bio_put(bio);
1709 }
1710 
1711 /*
1712  * after a readpage IO is done, we need to:
1713  * clear the uptodate bits on error
1714  * set the uptodate bits if things worked
1715  * set the page up to date if all extents in the tree are uptodate
1716  * clear the lock bit in the extent tree
1717  * unlock the page if there are no other extents locked for it
1718  *
1719  * Scheduling is not allowed, so the extent state tree is expected
1720  * to have one and only one object corresponding to this IO.
1721  */
1722 static void end_bio_extent_readpage(struct bio *bio, int err)
1723 {
1724 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1725 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1726 	struct bio_vec *bvec = bio->bi_io_vec;
1727 	struct extent_io_tree *tree;
1728 	u64 start;
1729 	u64 end;
1730 	int whole_page;
1731 	int ret;
1732 
1733 	if (err)
1734 		uptodate = 0;
1735 
1736 	do {
1737 		struct page *page = bvec->bv_page;
1738 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1739 
1740 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1741 			bvec->bv_offset;
1742 		end = start + bvec->bv_len - 1;
1743 
1744 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1745 			whole_page = 1;
1746 		else
1747 			whole_page = 0;
1748 
1749 		if (++bvec <= bvec_end)
1750 			prefetchw(&bvec->bv_page->flags);
1751 
1752 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1753 			ret = tree->ops->readpage_end_io_hook(page, start, end,
1754 							      NULL);
1755 			if (ret)
1756 				uptodate = 0;
1757 		}
1758 		if (!uptodate && tree->ops &&
1759 		    tree->ops->readpage_io_failed_hook) {
1760 			ret = tree->ops->readpage_io_failed_hook(bio, page,
1761 							 start, end, NULL);
1762 			if (ret == 0) {
1763 				uptodate =
1764 					test_bit(BIO_UPTODATE, &bio->bi_flags);
1765 				if (err)
1766 					uptodate = 0;
1767 				continue;
1768 			}
1769 		}
1770 
1771 		if (uptodate) {
1772 			set_extent_uptodate(tree, start, end,
1773 					    GFP_ATOMIC);
1774 		}
1775 		unlock_extent(tree, start, end, GFP_ATOMIC);
1776 
1777 		if (whole_page) {
1778 			if (uptodate) {
1779 				SetPageUptodate(page);
1780 			} else {
1781 				ClearPageUptodate(page);
1782 				SetPageError(page);
1783 			}
1784 			unlock_page(page);
1785 		} else {
1786 			if (uptodate) {
1787 				check_page_uptodate(tree, page);
1788 			} else {
1789 				ClearPageUptodate(page);
1790 				SetPageError(page);
1791 			}
1792 			check_page_locked(tree, page);
1793 		}
1794 	} while (bvec <= bvec_end);
1795 
1796 	bio_put(bio);
1797 }
1798 
1799 /*
1800  * IO done from prepare_write is pretty simple, we just unlock
1801  * the structs in the extent tree when done, and set the uptodate bits
1802  * as appropriate.
1803  */
1804 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1805 {
1806 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1807 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1808 	struct extent_io_tree *tree;
1809 	u64 start;
1810 	u64 end;
1811 
1812 	do {
1813 		struct page *page = bvec->bv_page;
1814 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1815 
1816 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1817 			bvec->bv_offset;
1818 		end = start + bvec->bv_len - 1;
1819 
1820 		if (--bvec >= bio->bi_io_vec)
1821 			prefetchw(&bvec->bv_page->flags);
1822 
1823 		if (uptodate) {
1824 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1825 		} else {
1826 			ClearPageUptodate(page);
1827 			SetPageError(page);
1828 		}
1829 
1830 		unlock_extent(tree, start, end, GFP_ATOMIC);
1831 
1832 	} while (bvec >= bio->bi_io_vec);
1833 
1834 	bio_put(bio);
1835 }
1836 
1837 struct bio *
1838 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1839 		gfp_t gfp_flags)
1840 {
1841 	struct bio *bio;
1842 
1843 	bio = bio_alloc(gfp_flags, nr_vecs);
1844 
1845 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1846 		while (!bio && (nr_vecs /= 2))
1847 			bio = bio_alloc(gfp_flags, nr_vecs);
1848 	}
1849 
1850 	if (bio) {
1851 		bio->bi_size = 0;
1852 		bio->bi_bdev = bdev;
1853 		bio->bi_sector = first_sector;
1854 	}
1855 	return bio;
1856 }
1857 
1858 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1859 			  unsigned long bio_flags)
1860 {
1861 	int ret = 0;
1862 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1863 	struct page *page = bvec->bv_page;
1864 	struct extent_io_tree *tree = bio->bi_private;
1865 	u64 start;
1866 
1867 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1868 
1869 	bio->bi_private = NULL;
1870 
1871 	bio_get(bio);
1872 
1873 	if (tree->ops && tree->ops->submit_bio_hook)
1874 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1875 					   mirror_num, bio_flags, start);
1876 	else
1877 		submit_bio(rw, bio);
1878 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1879 		ret = -EOPNOTSUPP;
1880 	bio_put(bio);
1881 	return ret;
1882 }
1883 
1884 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1885 			      struct page *page, sector_t sector,
1886 			      size_t size, unsigned long offset,
1887 			      struct block_device *bdev,
1888 			      struct bio **bio_ret,
1889 			      unsigned long max_pages,
1890 			      bio_end_io_t end_io_func,
1891 			      int mirror_num,
1892 			      unsigned long prev_bio_flags,
1893 			      unsigned long bio_flags)
1894 {
1895 	int ret = 0;
1896 	struct bio *bio;
1897 	int nr;
1898 	int contig = 0;
1899 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1900 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1901 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1902 
1903 	if (bio_ret && *bio_ret) {
1904 		bio = *bio_ret;
1905 		if (old_compressed)
1906 			contig = bio->bi_sector == sector;
1907 		else
1908 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1909 				sector;
1910 
1911 		if (prev_bio_flags != bio_flags || !contig ||
1912 		    (tree->ops && tree->ops->merge_bio_hook &&
1913 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1914 					       bio_flags)) ||
1915 		    bio_add_page(bio, page, page_size, offset) < page_size) {
1916 			ret = submit_one_bio(rw, bio, mirror_num,
1917 					     prev_bio_flags);
1918 			bio = NULL;
1919 		} else {
1920 			return 0;
1921 		}
1922 	}
1923 	if (this_compressed)
1924 		nr = BIO_MAX_PAGES;
1925 	else
1926 		nr = bio_get_nr_vecs(bdev);
1927 
1928 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1929 	if (!bio)
1930 		return -ENOMEM;
1931 
1932 	bio_add_page(bio, page, page_size, offset);
1933 	bio->bi_end_io = end_io_func;
1934 	bio->bi_private = tree;
1935 
1936 	if (bio_ret)
1937 		*bio_ret = bio;
1938 	else
1939 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1940 
1941 	return ret;
1942 }
1943 
1944 void set_page_extent_mapped(struct page *page)
1945 {
1946 	if (!PagePrivate(page)) {
1947 		SetPagePrivate(page);
1948 		page_cache_get(page);
1949 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1950 	}
1951 }
1952 
1953 static void set_page_extent_head(struct page *page, unsigned long len)
1954 {
1955 	WARN_ON(!PagePrivate(page));
1956 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1957 }
1958 
1959 /*
1960  * basic readpage implementation.  Locked extent state structs are inserted
1961  * into the tree that are removed when the IO is done (by the end_io
1962  * handlers)
1963  */
1964 static int __extent_read_full_page(struct extent_io_tree *tree,
1965 				   struct page *page,
1966 				   get_extent_t *get_extent,
1967 				   struct bio **bio, int mirror_num,
1968 				   unsigned long *bio_flags)
1969 {
1970 	struct inode *inode = page->mapping->host;
1971 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1972 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1973 	u64 end;
1974 	u64 cur = start;
1975 	u64 extent_offset;
1976 	u64 last_byte = i_size_read(inode);
1977 	u64 block_start;
1978 	u64 cur_end;
1979 	sector_t sector;
1980 	struct extent_map *em;
1981 	struct block_device *bdev;
1982 	struct btrfs_ordered_extent *ordered;
1983 	int ret;
1984 	int nr = 0;
1985 	size_t page_offset = 0;
1986 	size_t iosize;
1987 	size_t disk_io_size;
1988 	size_t blocksize = inode->i_sb->s_blocksize;
1989 	unsigned long this_bio_flag = 0;
1990 
1991 	set_page_extent_mapped(page);
1992 
1993 	end = page_end;
1994 	while (1) {
1995 		lock_extent(tree, start, end, GFP_NOFS);
1996 		ordered = btrfs_lookup_ordered_extent(inode, start);
1997 		if (!ordered)
1998 			break;
1999 		unlock_extent(tree, start, end, GFP_NOFS);
2000 		btrfs_start_ordered_extent(inode, ordered, 1);
2001 		btrfs_put_ordered_extent(ordered);
2002 	}
2003 
2004 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2005 		char *userpage;
2006 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2007 
2008 		if (zero_offset) {
2009 			iosize = PAGE_CACHE_SIZE - zero_offset;
2010 			userpage = kmap_atomic(page, KM_USER0);
2011 			memset(userpage + zero_offset, 0, iosize);
2012 			flush_dcache_page(page);
2013 			kunmap_atomic(userpage, KM_USER0);
2014 		}
2015 	}
2016 	while (cur <= end) {
2017 		if (cur >= last_byte) {
2018 			char *userpage;
2019 			iosize = PAGE_CACHE_SIZE - page_offset;
2020 			userpage = kmap_atomic(page, KM_USER0);
2021 			memset(userpage + page_offset, 0, iosize);
2022 			flush_dcache_page(page);
2023 			kunmap_atomic(userpage, KM_USER0);
2024 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2025 					    GFP_NOFS);
2026 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2027 			break;
2028 		}
2029 		em = get_extent(inode, page, page_offset, cur,
2030 				end - cur + 1, 0);
2031 		if (IS_ERR(em) || !em) {
2032 			SetPageError(page);
2033 			unlock_extent(tree, cur, end, GFP_NOFS);
2034 			break;
2035 		}
2036 		extent_offset = cur - em->start;
2037 		BUG_ON(extent_map_end(em) <= cur);
2038 		BUG_ON(end < cur);
2039 
2040 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2041 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2042 			extent_set_compress_type(&this_bio_flag,
2043 						 em->compress_type);
2044 		}
2045 
2046 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2047 		cur_end = min(extent_map_end(em) - 1, end);
2048 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2049 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2050 			disk_io_size = em->block_len;
2051 			sector = em->block_start >> 9;
2052 		} else {
2053 			sector = (em->block_start + extent_offset) >> 9;
2054 			disk_io_size = iosize;
2055 		}
2056 		bdev = em->bdev;
2057 		block_start = em->block_start;
2058 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2059 			block_start = EXTENT_MAP_HOLE;
2060 		free_extent_map(em);
2061 		em = NULL;
2062 
2063 		/* we've found a hole, just zero and go on */
2064 		if (block_start == EXTENT_MAP_HOLE) {
2065 			char *userpage;
2066 			userpage = kmap_atomic(page, KM_USER0);
2067 			memset(userpage + page_offset, 0, iosize);
2068 			flush_dcache_page(page);
2069 			kunmap_atomic(userpage, KM_USER0);
2070 
2071 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2072 					    GFP_NOFS);
2073 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2074 			cur = cur + iosize;
2075 			page_offset += iosize;
2076 			continue;
2077 		}
2078 		/* the get_extent function already copied into the page */
2079 		if (test_range_bit(tree, cur, cur_end,
2080 				   EXTENT_UPTODATE, 1, NULL)) {
2081 			check_page_uptodate(tree, page);
2082 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2083 			cur = cur + iosize;
2084 			page_offset += iosize;
2085 			continue;
2086 		}
2087 		/* we have an inline extent but it didn't get marked up
2088 		 * to date.  Error out
2089 		 */
2090 		if (block_start == EXTENT_MAP_INLINE) {
2091 			SetPageError(page);
2092 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2093 			cur = cur + iosize;
2094 			page_offset += iosize;
2095 			continue;
2096 		}
2097 
2098 		ret = 0;
2099 		if (tree->ops && tree->ops->readpage_io_hook) {
2100 			ret = tree->ops->readpage_io_hook(page, cur,
2101 							  cur + iosize - 1);
2102 		}
2103 		if (!ret) {
2104 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2105 			pnr -= page->index;
2106 			ret = submit_extent_page(READ, tree, page,
2107 					 sector, disk_io_size, page_offset,
2108 					 bdev, bio, pnr,
2109 					 end_bio_extent_readpage, mirror_num,
2110 					 *bio_flags,
2111 					 this_bio_flag);
2112 			nr++;
2113 			*bio_flags = this_bio_flag;
2114 		}
2115 		if (ret)
2116 			SetPageError(page);
2117 		cur = cur + iosize;
2118 		page_offset += iosize;
2119 	}
2120 	if (!nr) {
2121 		if (!PageError(page))
2122 			SetPageUptodate(page);
2123 		unlock_page(page);
2124 	}
2125 	return 0;
2126 }
2127 
2128 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2129 			    get_extent_t *get_extent)
2130 {
2131 	struct bio *bio = NULL;
2132 	unsigned long bio_flags = 0;
2133 	int ret;
2134 
2135 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2136 				      &bio_flags);
2137 	if (bio)
2138 		ret = submit_one_bio(READ, bio, 0, bio_flags);
2139 	return ret;
2140 }
2141 
2142 static noinline void update_nr_written(struct page *page,
2143 				      struct writeback_control *wbc,
2144 				      unsigned long nr_written)
2145 {
2146 	wbc->nr_to_write -= nr_written;
2147 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2148 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2149 		page->mapping->writeback_index = page->index + nr_written;
2150 }
2151 
2152 /*
2153  * the writepage semantics are similar to regular writepage.  extent
2154  * records are inserted to lock ranges in the tree, and as dirty areas
2155  * are found, they are marked writeback.  Then the lock bits are removed
2156  * and the end_io handler clears the writeback ranges
2157  */
2158 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2159 			      void *data)
2160 {
2161 	struct inode *inode = page->mapping->host;
2162 	struct extent_page_data *epd = data;
2163 	struct extent_io_tree *tree = epd->tree;
2164 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2165 	u64 delalloc_start;
2166 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2167 	u64 end;
2168 	u64 cur = start;
2169 	u64 extent_offset;
2170 	u64 last_byte = i_size_read(inode);
2171 	u64 block_start;
2172 	u64 iosize;
2173 	sector_t sector;
2174 	struct extent_state *cached_state = NULL;
2175 	struct extent_map *em;
2176 	struct block_device *bdev;
2177 	int ret;
2178 	int nr = 0;
2179 	size_t pg_offset = 0;
2180 	size_t blocksize;
2181 	loff_t i_size = i_size_read(inode);
2182 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2183 	u64 nr_delalloc;
2184 	u64 delalloc_end;
2185 	int page_started;
2186 	int compressed;
2187 	int write_flags;
2188 	unsigned long nr_written = 0;
2189 
2190 	if (wbc->sync_mode == WB_SYNC_ALL)
2191 		write_flags = WRITE_SYNC_PLUG;
2192 	else
2193 		write_flags = WRITE;
2194 
2195 	WARN_ON(!PageLocked(page));
2196 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2197 	if (page->index > end_index ||
2198 	   (page->index == end_index && !pg_offset)) {
2199 		page->mapping->a_ops->invalidatepage(page, 0);
2200 		unlock_page(page);
2201 		return 0;
2202 	}
2203 
2204 	if (page->index == end_index) {
2205 		char *userpage;
2206 
2207 		userpage = kmap_atomic(page, KM_USER0);
2208 		memset(userpage + pg_offset, 0,
2209 		       PAGE_CACHE_SIZE - pg_offset);
2210 		kunmap_atomic(userpage, KM_USER0);
2211 		flush_dcache_page(page);
2212 	}
2213 	pg_offset = 0;
2214 
2215 	set_page_extent_mapped(page);
2216 
2217 	delalloc_start = start;
2218 	delalloc_end = 0;
2219 	page_started = 0;
2220 	if (!epd->extent_locked) {
2221 		u64 delalloc_to_write = 0;
2222 		/*
2223 		 * make sure the wbc mapping index is at least updated
2224 		 * to this page.
2225 		 */
2226 		update_nr_written(page, wbc, 0);
2227 
2228 		while (delalloc_end < page_end) {
2229 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2230 						       page,
2231 						       &delalloc_start,
2232 						       &delalloc_end,
2233 						       128 * 1024 * 1024);
2234 			if (nr_delalloc == 0) {
2235 				delalloc_start = delalloc_end + 1;
2236 				continue;
2237 			}
2238 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2239 						 delalloc_end, &page_started,
2240 						 &nr_written);
2241 			/*
2242 			 * delalloc_end is already one less than the total
2243 			 * length, so we don't subtract one from
2244 			 * PAGE_CACHE_SIZE
2245 			 */
2246 			delalloc_to_write += (delalloc_end - delalloc_start +
2247 					      PAGE_CACHE_SIZE) >>
2248 					      PAGE_CACHE_SHIFT;
2249 			delalloc_start = delalloc_end + 1;
2250 		}
2251 		if (wbc->nr_to_write < delalloc_to_write) {
2252 			int thresh = 8192;
2253 
2254 			if (delalloc_to_write < thresh * 2)
2255 				thresh = delalloc_to_write;
2256 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2257 						 thresh);
2258 		}
2259 
2260 		/* did the fill delalloc function already unlock and start
2261 		 * the IO?
2262 		 */
2263 		if (page_started) {
2264 			ret = 0;
2265 			/*
2266 			 * we've unlocked the page, so we can't update
2267 			 * the mapping's writeback index, just update
2268 			 * nr_to_write.
2269 			 */
2270 			wbc->nr_to_write -= nr_written;
2271 			goto done_unlocked;
2272 		}
2273 	}
2274 	if (tree->ops && tree->ops->writepage_start_hook) {
2275 		ret = tree->ops->writepage_start_hook(page, start,
2276 						      page_end);
2277 		if (ret == -EAGAIN) {
2278 			redirty_page_for_writepage(wbc, page);
2279 			update_nr_written(page, wbc, nr_written);
2280 			unlock_page(page);
2281 			ret = 0;
2282 			goto done_unlocked;
2283 		}
2284 	}
2285 
2286 	/*
2287 	 * we don't want to touch the inode after unlocking the page,
2288 	 * so we update the mapping writeback index now
2289 	 */
2290 	update_nr_written(page, wbc, nr_written + 1);
2291 
2292 	end = page_end;
2293 	if (last_byte <= start) {
2294 		if (tree->ops && tree->ops->writepage_end_io_hook)
2295 			tree->ops->writepage_end_io_hook(page, start,
2296 							 page_end, NULL, 1);
2297 		goto done;
2298 	}
2299 
2300 	blocksize = inode->i_sb->s_blocksize;
2301 
2302 	while (cur <= end) {
2303 		if (cur >= last_byte) {
2304 			if (tree->ops && tree->ops->writepage_end_io_hook)
2305 				tree->ops->writepage_end_io_hook(page, cur,
2306 							 page_end, NULL, 1);
2307 			break;
2308 		}
2309 		em = epd->get_extent(inode, page, pg_offset, cur,
2310 				     end - cur + 1, 1);
2311 		if (IS_ERR(em) || !em) {
2312 			SetPageError(page);
2313 			break;
2314 		}
2315 
2316 		extent_offset = cur - em->start;
2317 		BUG_ON(extent_map_end(em) <= cur);
2318 		BUG_ON(end < cur);
2319 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2320 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2321 		sector = (em->block_start + extent_offset) >> 9;
2322 		bdev = em->bdev;
2323 		block_start = em->block_start;
2324 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2325 		free_extent_map(em);
2326 		em = NULL;
2327 
2328 		/*
2329 		 * compressed and inline extents are written through other
2330 		 * paths in the FS
2331 		 */
2332 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2333 		    block_start == EXTENT_MAP_INLINE) {
2334 			/*
2335 			 * end_io notification does not happen here for
2336 			 * compressed extents
2337 			 */
2338 			if (!compressed && tree->ops &&
2339 			    tree->ops->writepage_end_io_hook)
2340 				tree->ops->writepage_end_io_hook(page, cur,
2341 							 cur + iosize - 1,
2342 							 NULL, 1);
2343 			else if (compressed) {
2344 				/* we don't want to end_page_writeback on
2345 				 * a compressed extent.  this happens
2346 				 * elsewhere
2347 				 */
2348 				nr++;
2349 			}
2350 
2351 			cur += iosize;
2352 			pg_offset += iosize;
2353 			continue;
2354 		}
2355 		/* leave this out until we have a page_mkwrite call */
2356 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2357 				   EXTENT_DIRTY, 0, NULL)) {
2358 			cur = cur + iosize;
2359 			pg_offset += iosize;
2360 			continue;
2361 		}
2362 
2363 		if (tree->ops && tree->ops->writepage_io_hook) {
2364 			ret = tree->ops->writepage_io_hook(page, cur,
2365 						cur + iosize - 1);
2366 		} else {
2367 			ret = 0;
2368 		}
2369 		if (ret) {
2370 			SetPageError(page);
2371 		} else {
2372 			unsigned long max_nr = end_index + 1;
2373 
2374 			set_range_writeback(tree, cur, cur + iosize - 1);
2375 			if (!PageWriteback(page)) {
2376 				printk(KERN_ERR "btrfs warning page %lu not "
2377 				       "writeback, cur %llu end %llu\n",
2378 				       page->index, (unsigned long long)cur,
2379 				       (unsigned long long)end);
2380 			}
2381 
2382 			ret = submit_extent_page(write_flags, tree, page,
2383 						 sector, iosize, pg_offset,
2384 						 bdev, &epd->bio, max_nr,
2385 						 end_bio_extent_writepage,
2386 						 0, 0, 0);
2387 			if (ret)
2388 				SetPageError(page);
2389 		}
2390 		cur = cur + iosize;
2391 		pg_offset += iosize;
2392 		nr++;
2393 	}
2394 done:
2395 	if (nr == 0) {
2396 		/* make sure the mapping tag for page dirty gets cleared */
2397 		set_page_writeback(page);
2398 		end_page_writeback(page);
2399 	}
2400 	unlock_page(page);
2401 
2402 done_unlocked:
2403 
2404 	/* drop our reference on any cached states */
2405 	free_extent_state(cached_state);
2406 	return 0;
2407 }
2408 
2409 /**
2410  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2411  * @mapping: address space structure to write
2412  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2413  * @writepage: function called for each page
2414  * @data: data passed to writepage function
2415  *
2416  * If a page is already under I/O, write_cache_pages() skips it, even
2417  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2418  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2419  * and msync() need to guarantee that all the data which was dirty at the time
2420  * the call was made get new I/O started against them.  If wbc->sync_mode is
2421  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2422  * existing IO to complete.
2423  */
2424 static int extent_write_cache_pages(struct extent_io_tree *tree,
2425 			     struct address_space *mapping,
2426 			     struct writeback_control *wbc,
2427 			     writepage_t writepage, void *data,
2428 			     void (*flush_fn)(void *))
2429 {
2430 	int ret = 0;
2431 	int done = 0;
2432 	int nr_to_write_done = 0;
2433 	struct pagevec pvec;
2434 	int nr_pages;
2435 	pgoff_t index;
2436 	pgoff_t end;		/* Inclusive */
2437 	int scanned = 0;
2438 
2439 	pagevec_init(&pvec, 0);
2440 	if (wbc->range_cyclic) {
2441 		index = mapping->writeback_index; /* Start from prev offset */
2442 		end = -1;
2443 	} else {
2444 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2445 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2446 		scanned = 1;
2447 	}
2448 retry:
2449 	while (!done && !nr_to_write_done && (index <= end) &&
2450 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2451 			      PAGECACHE_TAG_DIRTY, min(end - index,
2452 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2453 		unsigned i;
2454 
2455 		scanned = 1;
2456 		for (i = 0; i < nr_pages; i++) {
2457 			struct page *page = pvec.pages[i];
2458 
2459 			/*
2460 			 * At this point we hold neither mapping->tree_lock nor
2461 			 * lock on the page itself: the page may be truncated or
2462 			 * invalidated (changing page->mapping to NULL), or even
2463 			 * swizzled back from swapper_space to tmpfs file
2464 			 * mapping
2465 			 */
2466 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2467 				tree->ops->write_cache_pages_lock_hook(page);
2468 			else
2469 				lock_page(page);
2470 
2471 			if (unlikely(page->mapping != mapping)) {
2472 				unlock_page(page);
2473 				continue;
2474 			}
2475 
2476 			if (!wbc->range_cyclic && page->index > end) {
2477 				done = 1;
2478 				unlock_page(page);
2479 				continue;
2480 			}
2481 
2482 			if (wbc->sync_mode != WB_SYNC_NONE) {
2483 				if (PageWriteback(page))
2484 					flush_fn(data);
2485 				wait_on_page_writeback(page);
2486 			}
2487 
2488 			if (PageWriteback(page) ||
2489 			    !clear_page_dirty_for_io(page)) {
2490 				unlock_page(page);
2491 				continue;
2492 			}
2493 
2494 			ret = (*writepage)(page, wbc, data);
2495 
2496 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2497 				unlock_page(page);
2498 				ret = 0;
2499 			}
2500 			if (ret)
2501 				done = 1;
2502 
2503 			/*
2504 			 * the filesystem may choose to bump up nr_to_write.
2505 			 * We have to make sure to honor the new nr_to_write
2506 			 * at any time
2507 			 */
2508 			nr_to_write_done = wbc->nr_to_write <= 0;
2509 		}
2510 		pagevec_release(&pvec);
2511 		cond_resched();
2512 	}
2513 	if (!scanned && !done) {
2514 		/*
2515 		 * We hit the last page and there is more work to be done: wrap
2516 		 * back to the start of the file
2517 		 */
2518 		scanned = 1;
2519 		index = 0;
2520 		goto retry;
2521 	}
2522 	return ret;
2523 }
2524 
2525 static void flush_epd_write_bio(struct extent_page_data *epd)
2526 {
2527 	if (epd->bio) {
2528 		if (epd->sync_io)
2529 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2530 		else
2531 			submit_one_bio(WRITE, epd->bio, 0, 0);
2532 		epd->bio = NULL;
2533 	}
2534 }
2535 
2536 static noinline void flush_write_bio(void *data)
2537 {
2538 	struct extent_page_data *epd = data;
2539 	flush_epd_write_bio(epd);
2540 }
2541 
2542 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2543 			  get_extent_t *get_extent,
2544 			  struct writeback_control *wbc)
2545 {
2546 	int ret;
2547 	struct address_space *mapping = page->mapping;
2548 	struct extent_page_data epd = {
2549 		.bio = NULL,
2550 		.tree = tree,
2551 		.get_extent = get_extent,
2552 		.extent_locked = 0,
2553 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2554 	};
2555 	struct writeback_control wbc_writepages = {
2556 		.sync_mode	= wbc->sync_mode,
2557 		.older_than_this = NULL,
2558 		.nr_to_write	= 64,
2559 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2560 		.range_end	= (loff_t)-1,
2561 	};
2562 
2563 	ret = __extent_writepage(page, wbc, &epd);
2564 
2565 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
2566 				 __extent_writepage, &epd, flush_write_bio);
2567 	flush_epd_write_bio(&epd);
2568 	return ret;
2569 }
2570 
2571 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2572 			      u64 start, u64 end, get_extent_t *get_extent,
2573 			      int mode)
2574 {
2575 	int ret = 0;
2576 	struct address_space *mapping = inode->i_mapping;
2577 	struct page *page;
2578 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2579 		PAGE_CACHE_SHIFT;
2580 
2581 	struct extent_page_data epd = {
2582 		.bio = NULL,
2583 		.tree = tree,
2584 		.get_extent = get_extent,
2585 		.extent_locked = 1,
2586 		.sync_io = mode == WB_SYNC_ALL,
2587 	};
2588 	struct writeback_control wbc_writepages = {
2589 		.sync_mode	= mode,
2590 		.older_than_this = NULL,
2591 		.nr_to_write	= nr_pages * 2,
2592 		.range_start	= start,
2593 		.range_end	= end + 1,
2594 	};
2595 
2596 	while (start <= end) {
2597 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2598 		if (clear_page_dirty_for_io(page))
2599 			ret = __extent_writepage(page, &wbc_writepages, &epd);
2600 		else {
2601 			if (tree->ops && tree->ops->writepage_end_io_hook)
2602 				tree->ops->writepage_end_io_hook(page, start,
2603 						 start + PAGE_CACHE_SIZE - 1,
2604 						 NULL, 1);
2605 			unlock_page(page);
2606 		}
2607 		page_cache_release(page);
2608 		start += PAGE_CACHE_SIZE;
2609 	}
2610 
2611 	flush_epd_write_bio(&epd);
2612 	return ret;
2613 }
2614 
2615 int extent_writepages(struct extent_io_tree *tree,
2616 		      struct address_space *mapping,
2617 		      get_extent_t *get_extent,
2618 		      struct writeback_control *wbc)
2619 {
2620 	int ret = 0;
2621 	struct extent_page_data epd = {
2622 		.bio = NULL,
2623 		.tree = tree,
2624 		.get_extent = get_extent,
2625 		.extent_locked = 0,
2626 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2627 	};
2628 
2629 	ret = extent_write_cache_pages(tree, mapping, wbc,
2630 				       __extent_writepage, &epd,
2631 				       flush_write_bio);
2632 	flush_epd_write_bio(&epd);
2633 	return ret;
2634 }
2635 
2636 int extent_readpages(struct extent_io_tree *tree,
2637 		     struct address_space *mapping,
2638 		     struct list_head *pages, unsigned nr_pages,
2639 		     get_extent_t get_extent)
2640 {
2641 	struct bio *bio = NULL;
2642 	unsigned page_idx;
2643 	unsigned long bio_flags = 0;
2644 
2645 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2646 		struct page *page = list_entry(pages->prev, struct page, lru);
2647 
2648 		prefetchw(&page->flags);
2649 		list_del(&page->lru);
2650 		if (!add_to_page_cache_lru(page, mapping,
2651 					page->index, GFP_KERNEL)) {
2652 			__extent_read_full_page(tree, page, get_extent,
2653 						&bio, 0, &bio_flags);
2654 		}
2655 		page_cache_release(page);
2656 	}
2657 	BUG_ON(!list_empty(pages));
2658 	if (bio)
2659 		submit_one_bio(READ, bio, 0, bio_flags);
2660 	return 0;
2661 }
2662 
2663 /*
2664  * basic invalidatepage code, this waits on any locked or writeback
2665  * ranges corresponding to the page, and then deletes any extent state
2666  * records from the tree
2667  */
2668 int extent_invalidatepage(struct extent_io_tree *tree,
2669 			  struct page *page, unsigned long offset)
2670 {
2671 	struct extent_state *cached_state = NULL;
2672 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2673 	u64 end = start + PAGE_CACHE_SIZE - 1;
2674 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2675 
2676 	start += (offset + blocksize - 1) & ~(blocksize - 1);
2677 	if (start > end)
2678 		return 0;
2679 
2680 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2681 	wait_on_page_writeback(page);
2682 	clear_extent_bit(tree, start, end,
2683 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2684 			 EXTENT_DO_ACCOUNTING,
2685 			 1, 1, &cached_state, GFP_NOFS);
2686 	return 0;
2687 }
2688 
2689 /*
2690  * simple commit_write call, set_range_dirty is used to mark both
2691  * the pages and the extent records as dirty
2692  */
2693 int extent_commit_write(struct extent_io_tree *tree,
2694 			struct inode *inode, struct page *page,
2695 			unsigned from, unsigned to)
2696 {
2697 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2698 
2699 	set_page_extent_mapped(page);
2700 	set_page_dirty(page);
2701 
2702 	if (pos > inode->i_size) {
2703 		i_size_write(inode, pos);
2704 		mark_inode_dirty(inode);
2705 	}
2706 	return 0;
2707 }
2708 
2709 int extent_prepare_write(struct extent_io_tree *tree,
2710 			 struct inode *inode, struct page *page,
2711 			 unsigned from, unsigned to, get_extent_t *get_extent)
2712 {
2713 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2714 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2715 	u64 block_start;
2716 	u64 orig_block_start;
2717 	u64 block_end;
2718 	u64 cur_end;
2719 	struct extent_map *em;
2720 	unsigned blocksize = 1 << inode->i_blkbits;
2721 	size_t page_offset = 0;
2722 	size_t block_off_start;
2723 	size_t block_off_end;
2724 	int err = 0;
2725 	int iocount = 0;
2726 	int ret = 0;
2727 	int isnew;
2728 
2729 	set_page_extent_mapped(page);
2730 
2731 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2732 	block_end = (page_start + to - 1) | (blocksize - 1);
2733 	orig_block_start = block_start;
2734 
2735 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2736 	while (block_start <= block_end) {
2737 		em = get_extent(inode, page, page_offset, block_start,
2738 				block_end - block_start + 1, 1);
2739 		if (IS_ERR(em) || !em)
2740 			goto err;
2741 
2742 		cur_end = min(block_end, extent_map_end(em) - 1);
2743 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2744 		block_off_end = block_off_start + blocksize;
2745 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2746 
2747 		if (!PageUptodate(page) && isnew &&
2748 		    (block_off_end > to || block_off_start < from)) {
2749 			void *kaddr;
2750 
2751 			kaddr = kmap_atomic(page, KM_USER0);
2752 			if (block_off_end > to)
2753 				memset(kaddr + to, 0, block_off_end - to);
2754 			if (block_off_start < from)
2755 				memset(kaddr + block_off_start, 0,
2756 				       from - block_off_start);
2757 			flush_dcache_page(page);
2758 			kunmap_atomic(kaddr, KM_USER0);
2759 		}
2760 		if ((em->block_start != EXTENT_MAP_HOLE &&
2761 		     em->block_start != EXTENT_MAP_INLINE) &&
2762 		    !isnew && !PageUptodate(page) &&
2763 		    (block_off_end > to || block_off_start < from) &&
2764 		    !test_range_bit(tree, block_start, cur_end,
2765 				    EXTENT_UPTODATE, 1, NULL)) {
2766 			u64 sector;
2767 			u64 extent_offset = block_start - em->start;
2768 			size_t iosize;
2769 			sector = (em->block_start + extent_offset) >> 9;
2770 			iosize = (cur_end - block_start + blocksize) &
2771 				~((u64)blocksize - 1);
2772 			/*
2773 			 * we've already got the extent locked, but we
2774 			 * need to split the state such that our end_bio
2775 			 * handler can clear the lock.
2776 			 */
2777 			set_extent_bit(tree, block_start,
2778 				       block_start + iosize - 1,
2779 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2780 			ret = submit_extent_page(READ, tree, page,
2781 					 sector, iosize, page_offset, em->bdev,
2782 					 NULL, 1,
2783 					 end_bio_extent_preparewrite, 0,
2784 					 0, 0);
2785 			if (ret && !err)
2786 				err = ret;
2787 			iocount++;
2788 			block_start = block_start + iosize;
2789 		} else {
2790 			set_extent_uptodate(tree, block_start, cur_end,
2791 					    GFP_NOFS);
2792 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2793 			block_start = cur_end + 1;
2794 		}
2795 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2796 		free_extent_map(em);
2797 	}
2798 	if (iocount) {
2799 		wait_extent_bit(tree, orig_block_start,
2800 				block_end, EXTENT_LOCKED);
2801 	}
2802 	check_page_uptodate(tree, page);
2803 err:
2804 	/* FIXME, zero out newly allocated blocks on error */
2805 	return err;
2806 }
2807 
2808 /*
2809  * a helper for releasepage, this tests for areas of the page that
2810  * are locked or under IO and drops the related state bits if it is safe
2811  * to drop the page.
2812  */
2813 int try_release_extent_state(struct extent_map_tree *map,
2814 			     struct extent_io_tree *tree, struct page *page,
2815 			     gfp_t mask)
2816 {
2817 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2818 	u64 end = start + PAGE_CACHE_SIZE - 1;
2819 	int ret = 1;
2820 
2821 	if (test_range_bit(tree, start, end,
2822 			   EXTENT_IOBITS, 0, NULL))
2823 		ret = 0;
2824 	else {
2825 		if ((mask & GFP_NOFS) == GFP_NOFS)
2826 			mask = GFP_NOFS;
2827 		/*
2828 		 * at this point we can safely clear everything except the
2829 		 * locked bit and the nodatasum bit
2830 		 */
2831 		ret = clear_extent_bit(tree, start, end,
2832 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2833 				 0, 0, NULL, mask);
2834 
2835 		/* if clear_extent_bit failed for enomem reasons,
2836 		 * we can't allow the release to continue.
2837 		 */
2838 		if (ret < 0)
2839 			ret = 0;
2840 		else
2841 			ret = 1;
2842 	}
2843 	return ret;
2844 }
2845 
2846 /*
2847  * a helper for releasepage.  As long as there are no locked extents
2848  * in the range corresponding to the page, both state records and extent
2849  * map records are removed
2850  */
2851 int try_release_extent_mapping(struct extent_map_tree *map,
2852 			       struct extent_io_tree *tree, struct page *page,
2853 			       gfp_t mask)
2854 {
2855 	struct extent_map *em;
2856 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2857 	u64 end = start + PAGE_CACHE_SIZE - 1;
2858 
2859 	if ((mask & __GFP_WAIT) &&
2860 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2861 		u64 len;
2862 		while (start <= end) {
2863 			len = end - start + 1;
2864 			write_lock(&map->lock);
2865 			em = lookup_extent_mapping(map, start, len);
2866 			if (!em || IS_ERR(em)) {
2867 				write_unlock(&map->lock);
2868 				break;
2869 			}
2870 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2871 			    em->start != start) {
2872 				write_unlock(&map->lock);
2873 				free_extent_map(em);
2874 				break;
2875 			}
2876 			if (!test_range_bit(tree, em->start,
2877 					    extent_map_end(em) - 1,
2878 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2879 					    0, NULL)) {
2880 				remove_extent_mapping(map, em);
2881 				/* once for the rb tree */
2882 				free_extent_map(em);
2883 			}
2884 			start = extent_map_end(em);
2885 			write_unlock(&map->lock);
2886 
2887 			/* once for us */
2888 			free_extent_map(em);
2889 		}
2890 	}
2891 	return try_release_extent_state(map, tree, page, mask);
2892 }
2893 
2894 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2895 		get_extent_t *get_extent)
2896 {
2897 	struct inode *inode = mapping->host;
2898 	struct extent_state *cached_state = NULL;
2899 	u64 start = iblock << inode->i_blkbits;
2900 	sector_t sector = 0;
2901 	size_t blksize = (1 << inode->i_blkbits);
2902 	struct extent_map *em;
2903 
2904 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2905 			 0, &cached_state, GFP_NOFS);
2906 	em = get_extent(inode, NULL, 0, start, blksize, 0);
2907 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2908 			     start + blksize - 1, &cached_state, GFP_NOFS);
2909 	if (!em || IS_ERR(em))
2910 		return 0;
2911 
2912 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
2913 		goto out;
2914 
2915 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2916 out:
2917 	free_extent_map(em);
2918 	return sector;
2919 }
2920 
2921 /*
2922  * helper function for fiemap, which doesn't want to see any holes.
2923  * This maps until we find something past 'last'
2924  */
2925 static struct extent_map *get_extent_skip_holes(struct inode *inode,
2926 						u64 offset,
2927 						u64 last,
2928 						get_extent_t *get_extent)
2929 {
2930 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2931 	struct extent_map *em;
2932 	u64 len;
2933 
2934 	if (offset >= last)
2935 		return NULL;
2936 
2937 	while(1) {
2938 		len = last - offset;
2939 		if (len == 0)
2940 			break;
2941 		len = (len + sectorsize - 1) & ~(sectorsize - 1);
2942 		em = get_extent(inode, NULL, 0, offset, len, 0);
2943 		if (!em || IS_ERR(em))
2944 			return em;
2945 
2946 		/* if this isn't a hole return it */
2947 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2948 		    em->block_start != EXTENT_MAP_HOLE) {
2949 			return em;
2950 		}
2951 
2952 		/* this is a hole, advance to the next extent */
2953 		offset = extent_map_end(em);
2954 		free_extent_map(em);
2955 		if (offset >= last)
2956 			break;
2957 	}
2958 	return NULL;
2959 }
2960 
2961 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2962 		__u64 start, __u64 len, get_extent_t *get_extent)
2963 {
2964 	int ret = 0;
2965 	u64 off = start;
2966 	u64 max = start + len;
2967 	u32 flags = 0;
2968 	u32 found_type;
2969 	u64 last;
2970 	u64 last_for_get_extent = 0;
2971 	u64 disko = 0;
2972 	u64 isize = i_size_read(inode);
2973 	struct btrfs_key found_key;
2974 	struct extent_map *em = NULL;
2975 	struct extent_state *cached_state = NULL;
2976 	struct btrfs_path *path;
2977 	struct btrfs_file_extent_item *item;
2978 	int end = 0;
2979 	u64 em_start = 0;
2980 	u64 em_len = 0;
2981 	u64 em_end = 0;
2982 	unsigned long emflags;
2983 
2984 	if (len == 0)
2985 		return -EINVAL;
2986 
2987 	path = btrfs_alloc_path();
2988 	if (!path)
2989 		return -ENOMEM;
2990 	path->leave_spinning = 1;
2991 
2992 	/*
2993 	 * lookup the last file extent.  We're not using i_size here
2994 	 * because there might be preallocation past i_size
2995 	 */
2996 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2997 				       path, inode->i_ino, -1, 0);
2998 	if (ret < 0) {
2999 		btrfs_free_path(path);
3000 		return ret;
3001 	}
3002 	WARN_ON(!ret);
3003 	path->slots[0]--;
3004 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3005 			      struct btrfs_file_extent_item);
3006 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3007 	found_type = btrfs_key_type(&found_key);
3008 
3009 	/* No extents, but there might be delalloc bits */
3010 	if (found_key.objectid != inode->i_ino ||
3011 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3012 		/* have to trust i_size as the end */
3013 		last = (u64)-1;
3014 		last_for_get_extent = isize;
3015 	} else {
3016 		/*
3017 		 * remember the start of the last extent.  There are a
3018 		 * bunch of different factors that go into the length of the
3019 		 * extent, so its much less complex to remember where it started
3020 		 */
3021 		last = found_key.offset;
3022 		last_for_get_extent = last + 1;
3023 	}
3024 	btrfs_free_path(path);
3025 
3026 	/*
3027 	 * we might have some extents allocated but more delalloc past those
3028 	 * extents.  so, we trust isize unless the start of the last extent is
3029 	 * beyond isize
3030 	 */
3031 	if (last < isize) {
3032 		last = (u64)-1;
3033 		last_for_get_extent = isize;
3034 	}
3035 
3036 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3037 			 &cached_state, GFP_NOFS);
3038 
3039 	em = get_extent_skip_holes(inode, off, last_for_get_extent,
3040 				   get_extent);
3041 	if (!em)
3042 		goto out;
3043 	if (IS_ERR(em)) {
3044 		ret = PTR_ERR(em);
3045 		goto out;
3046 	}
3047 
3048 	while (!end) {
3049 		u64 offset_in_extent;
3050 
3051 		/* break if the extent we found is outside the range */
3052 		if (em->start >= max || extent_map_end(em) < off)
3053 			break;
3054 
3055 		/*
3056 		 * get_extent may return an extent that starts before our
3057 		 * requested range.  We have to make sure the ranges
3058 		 * we return to fiemap always move forward and don't
3059 		 * overlap, so adjust the offsets here
3060 		 */
3061 		em_start = max(em->start, off);
3062 
3063 		/*
3064 		 * record the offset from the start of the extent
3065 		 * for adjusting the disk offset below
3066 		 */
3067 		offset_in_extent = em_start - em->start;
3068 		em_end = extent_map_end(em);
3069 		em_len = em_end - em_start;
3070 		emflags = em->flags;
3071 		disko = 0;
3072 		flags = 0;
3073 
3074 		/*
3075 		 * bump off for our next call to get_extent
3076 		 */
3077 		off = extent_map_end(em);
3078 		if (off >= max)
3079 			end = 1;
3080 
3081 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3082 			end = 1;
3083 			flags |= FIEMAP_EXTENT_LAST;
3084 		} else if (em->block_start == EXTENT_MAP_INLINE) {
3085 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3086 				  FIEMAP_EXTENT_NOT_ALIGNED);
3087 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3088 			flags |= (FIEMAP_EXTENT_DELALLOC |
3089 				  FIEMAP_EXTENT_UNKNOWN);
3090 		} else {
3091 			disko = em->block_start + offset_in_extent;
3092 		}
3093 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3094 			flags |= FIEMAP_EXTENT_ENCODED;
3095 
3096 		free_extent_map(em);
3097 		em = NULL;
3098 		if ((em_start >= last) || em_len == (u64)-1 ||
3099 		   (last == (u64)-1 && isize <= em_end)) {
3100 			flags |= FIEMAP_EXTENT_LAST;
3101 			end = 1;
3102 		}
3103 
3104 		/* now scan forward to see if this is really the last extent. */
3105 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3106 					   get_extent);
3107 		if (IS_ERR(em)) {
3108 			ret = PTR_ERR(em);
3109 			goto out;
3110 		}
3111 		if (!em) {
3112 			flags |= FIEMAP_EXTENT_LAST;
3113 			end = 1;
3114 		}
3115 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3116 					      em_len, flags);
3117 		if (ret)
3118 			goto out_free;
3119 	}
3120 out_free:
3121 	free_extent_map(em);
3122 out:
3123 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3124 			     &cached_state, GFP_NOFS);
3125 	return ret;
3126 }
3127 
3128 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3129 					      unsigned long i)
3130 {
3131 	struct page *p;
3132 	struct address_space *mapping;
3133 
3134 	if (i == 0)
3135 		return eb->first_page;
3136 	i += eb->start >> PAGE_CACHE_SHIFT;
3137 	mapping = eb->first_page->mapping;
3138 	if (!mapping)
3139 		return NULL;
3140 
3141 	/*
3142 	 * extent_buffer_page is only called after pinning the page
3143 	 * by increasing the reference count.  So we know the page must
3144 	 * be in the radix tree.
3145 	 */
3146 	rcu_read_lock();
3147 	p = radix_tree_lookup(&mapping->page_tree, i);
3148 	rcu_read_unlock();
3149 
3150 	return p;
3151 }
3152 
3153 static inline unsigned long num_extent_pages(u64 start, u64 len)
3154 {
3155 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3156 		(start >> PAGE_CACHE_SHIFT);
3157 }
3158 
3159 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3160 						   u64 start,
3161 						   unsigned long len,
3162 						   gfp_t mask)
3163 {
3164 	struct extent_buffer *eb = NULL;
3165 #if LEAK_DEBUG
3166 	unsigned long flags;
3167 #endif
3168 
3169 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3170 	if (eb == NULL)
3171 		return NULL;
3172 	eb->start = start;
3173 	eb->len = len;
3174 	spin_lock_init(&eb->lock);
3175 	init_waitqueue_head(&eb->lock_wq);
3176 
3177 #if LEAK_DEBUG
3178 	spin_lock_irqsave(&leak_lock, flags);
3179 	list_add(&eb->leak_list, &buffers);
3180 	spin_unlock_irqrestore(&leak_lock, flags);
3181 #endif
3182 	atomic_set(&eb->refs, 1);
3183 
3184 	return eb;
3185 }
3186 
3187 static void __free_extent_buffer(struct extent_buffer *eb)
3188 {
3189 #if LEAK_DEBUG
3190 	unsigned long flags;
3191 	spin_lock_irqsave(&leak_lock, flags);
3192 	list_del(&eb->leak_list);
3193 	spin_unlock_irqrestore(&leak_lock, flags);
3194 #endif
3195 	kmem_cache_free(extent_buffer_cache, eb);
3196 }
3197 
3198 /*
3199  * Helper for releasing extent buffer page.
3200  */
3201 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3202 						unsigned long start_idx)
3203 {
3204 	unsigned long index;
3205 	struct page *page;
3206 
3207 	if (!eb->first_page)
3208 		return;
3209 
3210 	index = num_extent_pages(eb->start, eb->len);
3211 	if (start_idx >= index)
3212 		return;
3213 
3214 	do {
3215 		index--;
3216 		page = extent_buffer_page(eb, index);
3217 		if (page)
3218 			page_cache_release(page);
3219 	} while (index != start_idx);
3220 }
3221 
3222 /*
3223  * Helper for releasing the extent buffer.
3224  */
3225 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3226 {
3227 	btrfs_release_extent_buffer_page(eb, 0);
3228 	__free_extent_buffer(eb);
3229 }
3230 
3231 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3232 					  u64 start, unsigned long len,
3233 					  struct page *page0,
3234 					  gfp_t mask)
3235 {
3236 	unsigned long num_pages = num_extent_pages(start, len);
3237 	unsigned long i;
3238 	unsigned long index = start >> PAGE_CACHE_SHIFT;
3239 	struct extent_buffer *eb;
3240 	struct extent_buffer *exists = NULL;
3241 	struct page *p;
3242 	struct address_space *mapping = tree->mapping;
3243 	int uptodate = 1;
3244 	int ret;
3245 
3246 	rcu_read_lock();
3247 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3248 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3249 		rcu_read_unlock();
3250 		mark_page_accessed(eb->first_page);
3251 		return eb;
3252 	}
3253 	rcu_read_unlock();
3254 
3255 	eb = __alloc_extent_buffer(tree, start, len, mask);
3256 	if (!eb)
3257 		return NULL;
3258 
3259 	if (page0) {
3260 		eb->first_page = page0;
3261 		i = 1;
3262 		index++;
3263 		page_cache_get(page0);
3264 		mark_page_accessed(page0);
3265 		set_page_extent_mapped(page0);
3266 		set_page_extent_head(page0, len);
3267 		uptodate = PageUptodate(page0);
3268 	} else {
3269 		i = 0;
3270 	}
3271 	for (; i < num_pages; i++, index++) {
3272 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3273 		if (!p) {
3274 			WARN_ON(1);
3275 			goto free_eb;
3276 		}
3277 		set_page_extent_mapped(p);
3278 		mark_page_accessed(p);
3279 		if (i == 0) {
3280 			eb->first_page = p;
3281 			set_page_extent_head(p, len);
3282 		} else {
3283 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3284 		}
3285 		if (!PageUptodate(p))
3286 			uptodate = 0;
3287 
3288 		/*
3289 		 * see below about how we avoid a nasty race with release page
3290 		 * and why we unlock later
3291 		 */
3292 		if (i != 0)
3293 			unlock_page(p);
3294 	}
3295 	if (uptodate)
3296 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3297 
3298 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3299 	if (ret)
3300 		goto free_eb;
3301 
3302 	spin_lock(&tree->buffer_lock);
3303 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3304 	if (ret == -EEXIST) {
3305 		exists = radix_tree_lookup(&tree->buffer,
3306 						start >> PAGE_CACHE_SHIFT);
3307 		/* add one reference for the caller */
3308 		atomic_inc(&exists->refs);
3309 		spin_unlock(&tree->buffer_lock);
3310 		radix_tree_preload_end();
3311 		goto free_eb;
3312 	}
3313 	/* add one reference for the tree */
3314 	atomic_inc(&eb->refs);
3315 	spin_unlock(&tree->buffer_lock);
3316 	radix_tree_preload_end();
3317 
3318 	/*
3319 	 * there is a race where release page may have
3320 	 * tried to find this extent buffer in the radix
3321 	 * but failed.  It will tell the VM it is safe to
3322 	 * reclaim the, and it will clear the page private bit.
3323 	 * We must make sure to set the page private bit properly
3324 	 * after the extent buffer is in the radix tree so
3325 	 * it doesn't get lost
3326 	 */
3327 	set_page_extent_mapped(eb->first_page);
3328 	set_page_extent_head(eb->first_page, eb->len);
3329 	if (!page0)
3330 		unlock_page(eb->first_page);
3331 	return eb;
3332 
3333 free_eb:
3334 	if (eb->first_page && !page0)
3335 		unlock_page(eb->first_page);
3336 
3337 	if (!atomic_dec_and_test(&eb->refs))
3338 		return exists;
3339 	btrfs_release_extent_buffer(eb);
3340 	return exists;
3341 }
3342 
3343 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3344 					 u64 start, unsigned long len,
3345 					  gfp_t mask)
3346 {
3347 	struct extent_buffer *eb;
3348 
3349 	rcu_read_lock();
3350 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3351 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3352 		rcu_read_unlock();
3353 		mark_page_accessed(eb->first_page);
3354 		return eb;
3355 	}
3356 	rcu_read_unlock();
3357 
3358 	return NULL;
3359 }
3360 
3361 void free_extent_buffer(struct extent_buffer *eb)
3362 {
3363 	if (!eb)
3364 		return;
3365 
3366 	if (!atomic_dec_and_test(&eb->refs))
3367 		return;
3368 
3369 	WARN_ON(1);
3370 }
3371 
3372 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3373 			      struct extent_buffer *eb)
3374 {
3375 	unsigned long i;
3376 	unsigned long num_pages;
3377 	struct page *page;
3378 
3379 	num_pages = num_extent_pages(eb->start, eb->len);
3380 
3381 	for (i = 0; i < num_pages; i++) {
3382 		page = extent_buffer_page(eb, i);
3383 		if (!PageDirty(page))
3384 			continue;
3385 
3386 		lock_page(page);
3387 		WARN_ON(!PagePrivate(page));
3388 
3389 		set_page_extent_mapped(page);
3390 		if (i == 0)
3391 			set_page_extent_head(page, eb->len);
3392 
3393 		clear_page_dirty_for_io(page);
3394 		spin_lock_irq(&page->mapping->tree_lock);
3395 		if (!PageDirty(page)) {
3396 			radix_tree_tag_clear(&page->mapping->page_tree,
3397 						page_index(page),
3398 						PAGECACHE_TAG_DIRTY);
3399 		}
3400 		spin_unlock_irq(&page->mapping->tree_lock);
3401 		unlock_page(page);
3402 	}
3403 	return 0;
3404 }
3405 
3406 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3407 				    struct extent_buffer *eb)
3408 {
3409 	return wait_on_extent_writeback(tree, eb->start,
3410 					eb->start + eb->len - 1);
3411 }
3412 
3413 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3414 			     struct extent_buffer *eb)
3415 {
3416 	unsigned long i;
3417 	unsigned long num_pages;
3418 	int was_dirty = 0;
3419 
3420 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3421 	num_pages = num_extent_pages(eb->start, eb->len);
3422 	for (i = 0; i < num_pages; i++)
3423 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3424 	return was_dirty;
3425 }
3426 
3427 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3428 				struct extent_buffer *eb,
3429 				struct extent_state **cached_state)
3430 {
3431 	unsigned long i;
3432 	struct page *page;
3433 	unsigned long num_pages;
3434 
3435 	num_pages = num_extent_pages(eb->start, eb->len);
3436 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3437 
3438 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3439 			      cached_state, GFP_NOFS);
3440 	for (i = 0; i < num_pages; i++) {
3441 		page = extent_buffer_page(eb, i);
3442 		if (page)
3443 			ClearPageUptodate(page);
3444 	}
3445 	return 0;
3446 }
3447 
3448 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3449 				struct extent_buffer *eb)
3450 {
3451 	unsigned long i;
3452 	struct page *page;
3453 	unsigned long num_pages;
3454 
3455 	num_pages = num_extent_pages(eb->start, eb->len);
3456 
3457 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3458 			    GFP_NOFS);
3459 	for (i = 0; i < num_pages; i++) {
3460 		page = extent_buffer_page(eb, i);
3461 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3462 		    ((i == num_pages - 1) &&
3463 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3464 			check_page_uptodate(tree, page);
3465 			continue;
3466 		}
3467 		SetPageUptodate(page);
3468 	}
3469 	return 0;
3470 }
3471 
3472 int extent_range_uptodate(struct extent_io_tree *tree,
3473 			  u64 start, u64 end)
3474 {
3475 	struct page *page;
3476 	int ret;
3477 	int pg_uptodate = 1;
3478 	int uptodate;
3479 	unsigned long index;
3480 
3481 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3482 	if (ret)
3483 		return 1;
3484 	while (start <= end) {
3485 		index = start >> PAGE_CACHE_SHIFT;
3486 		page = find_get_page(tree->mapping, index);
3487 		uptodate = PageUptodate(page);
3488 		page_cache_release(page);
3489 		if (!uptodate) {
3490 			pg_uptodate = 0;
3491 			break;
3492 		}
3493 		start += PAGE_CACHE_SIZE;
3494 	}
3495 	return pg_uptodate;
3496 }
3497 
3498 int extent_buffer_uptodate(struct extent_io_tree *tree,
3499 			   struct extent_buffer *eb,
3500 			   struct extent_state *cached_state)
3501 {
3502 	int ret = 0;
3503 	unsigned long num_pages;
3504 	unsigned long i;
3505 	struct page *page;
3506 	int pg_uptodate = 1;
3507 
3508 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3509 		return 1;
3510 
3511 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3512 			   EXTENT_UPTODATE, 1, cached_state);
3513 	if (ret)
3514 		return ret;
3515 
3516 	num_pages = num_extent_pages(eb->start, eb->len);
3517 	for (i = 0; i < num_pages; i++) {
3518 		page = extent_buffer_page(eb, i);
3519 		if (!PageUptodate(page)) {
3520 			pg_uptodate = 0;
3521 			break;
3522 		}
3523 	}
3524 	return pg_uptodate;
3525 }
3526 
3527 int read_extent_buffer_pages(struct extent_io_tree *tree,
3528 			     struct extent_buffer *eb,
3529 			     u64 start, int wait,
3530 			     get_extent_t *get_extent, int mirror_num)
3531 {
3532 	unsigned long i;
3533 	unsigned long start_i;
3534 	struct page *page;
3535 	int err;
3536 	int ret = 0;
3537 	int locked_pages = 0;
3538 	int all_uptodate = 1;
3539 	int inc_all_pages = 0;
3540 	unsigned long num_pages;
3541 	struct bio *bio = NULL;
3542 	unsigned long bio_flags = 0;
3543 
3544 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3545 		return 0;
3546 
3547 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3548 			   EXTENT_UPTODATE, 1, NULL)) {
3549 		return 0;
3550 	}
3551 
3552 	if (start) {
3553 		WARN_ON(start < eb->start);
3554 		start_i = (start >> PAGE_CACHE_SHIFT) -
3555 			(eb->start >> PAGE_CACHE_SHIFT);
3556 	} else {
3557 		start_i = 0;
3558 	}
3559 
3560 	num_pages = num_extent_pages(eb->start, eb->len);
3561 	for (i = start_i; i < num_pages; i++) {
3562 		page = extent_buffer_page(eb, i);
3563 		if (!wait) {
3564 			if (!trylock_page(page))
3565 				goto unlock_exit;
3566 		} else {
3567 			lock_page(page);
3568 		}
3569 		locked_pages++;
3570 		if (!PageUptodate(page))
3571 			all_uptodate = 0;
3572 	}
3573 	if (all_uptodate) {
3574 		if (start_i == 0)
3575 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3576 		goto unlock_exit;
3577 	}
3578 
3579 	for (i = start_i; i < num_pages; i++) {
3580 		page = extent_buffer_page(eb, i);
3581 
3582 		WARN_ON(!PagePrivate(page));
3583 
3584 		set_page_extent_mapped(page);
3585 		if (i == 0)
3586 			set_page_extent_head(page, eb->len);
3587 
3588 		if (inc_all_pages)
3589 			page_cache_get(page);
3590 		if (!PageUptodate(page)) {
3591 			if (start_i == 0)
3592 				inc_all_pages = 1;
3593 			ClearPageError(page);
3594 			err = __extent_read_full_page(tree, page,
3595 						      get_extent, &bio,
3596 						      mirror_num, &bio_flags);
3597 			if (err)
3598 				ret = err;
3599 		} else {
3600 			unlock_page(page);
3601 		}
3602 	}
3603 
3604 	if (bio)
3605 		submit_one_bio(READ, bio, mirror_num, bio_flags);
3606 
3607 	if (ret || !wait)
3608 		return ret;
3609 
3610 	for (i = start_i; i < num_pages; i++) {
3611 		page = extent_buffer_page(eb, i);
3612 		wait_on_page_locked(page);
3613 		if (!PageUptodate(page))
3614 			ret = -EIO;
3615 	}
3616 
3617 	if (!ret)
3618 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3619 	return ret;
3620 
3621 unlock_exit:
3622 	i = start_i;
3623 	while (locked_pages > 0) {
3624 		page = extent_buffer_page(eb, i);
3625 		i++;
3626 		unlock_page(page);
3627 		locked_pages--;
3628 	}
3629 	return ret;
3630 }
3631 
3632 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3633 			unsigned long start,
3634 			unsigned long len)
3635 {
3636 	size_t cur;
3637 	size_t offset;
3638 	struct page *page;
3639 	char *kaddr;
3640 	char *dst = (char *)dstv;
3641 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3642 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3643 
3644 	WARN_ON(start > eb->len);
3645 	WARN_ON(start + len > eb->start + eb->len);
3646 
3647 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3648 
3649 	while (len > 0) {
3650 		page = extent_buffer_page(eb, i);
3651 
3652 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3653 		kaddr = kmap_atomic(page, KM_USER1);
3654 		memcpy(dst, kaddr + offset, cur);
3655 		kunmap_atomic(kaddr, KM_USER1);
3656 
3657 		dst += cur;
3658 		len -= cur;
3659 		offset = 0;
3660 		i++;
3661 	}
3662 }
3663 
3664 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3665 			       unsigned long min_len, char **token, char **map,
3666 			       unsigned long *map_start,
3667 			       unsigned long *map_len, int km)
3668 {
3669 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3670 	char *kaddr;
3671 	struct page *p;
3672 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3673 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3674 	unsigned long end_i = (start_offset + start + min_len - 1) >>
3675 		PAGE_CACHE_SHIFT;
3676 
3677 	if (i != end_i)
3678 		return -EINVAL;
3679 
3680 	if (i == 0) {
3681 		offset = start_offset;
3682 		*map_start = 0;
3683 	} else {
3684 		offset = 0;
3685 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3686 	}
3687 
3688 	if (start + min_len > eb->len) {
3689 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3690 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3691 		       eb->len, start, min_len);
3692 		WARN_ON(1);
3693 	}
3694 
3695 	p = extent_buffer_page(eb, i);
3696 	kaddr = kmap_atomic(p, km);
3697 	*token = kaddr;
3698 	*map = kaddr + offset;
3699 	*map_len = PAGE_CACHE_SIZE - offset;
3700 	return 0;
3701 }
3702 
3703 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3704 		      unsigned long min_len,
3705 		      char **token, char **map,
3706 		      unsigned long *map_start,
3707 		      unsigned long *map_len, int km)
3708 {
3709 	int err;
3710 	int save = 0;
3711 	if (eb->map_token) {
3712 		unmap_extent_buffer(eb, eb->map_token, km);
3713 		eb->map_token = NULL;
3714 		save = 1;
3715 	}
3716 	err = map_private_extent_buffer(eb, start, min_len, token, map,
3717 				       map_start, map_len, km);
3718 	if (!err && save) {
3719 		eb->map_token = *token;
3720 		eb->kaddr = *map;
3721 		eb->map_start = *map_start;
3722 		eb->map_len = *map_len;
3723 	}
3724 	return err;
3725 }
3726 
3727 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3728 {
3729 	kunmap_atomic(token, km);
3730 }
3731 
3732 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3733 			  unsigned long start,
3734 			  unsigned long len)
3735 {
3736 	size_t cur;
3737 	size_t offset;
3738 	struct page *page;
3739 	char *kaddr;
3740 	char *ptr = (char *)ptrv;
3741 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3742 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3743 	int ret = 0;
3744 
3745 	WARN_ON(start > eb->len);
3746 	WARN_ON(start + len > eb->start + eb->len);
3747 
3748 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3749 
3750 	while (len > 0) {
3751 		page = extent_buffer_page(eb, i);
3752 
3753 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3754 
3755 		kaddr = kmap_atomic(page, KM_USER0);
3756 		ret = memcmp(ptr, kaddr + offset, cur);
3757 		kunmap_atomic(kaddr, KM_USER0);
3758 		if (ret)
3759 			break;
3760 
3761 		ptr += cur;
3762 		len -= cur;
3763 		offset = 0;
3764 		i++;
3765 	}
3766 	return ret;
3767 }
3768 
3769 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3770 			 unsigned long start, unsigned long len)
3771 {
3772 	size_t cur;
3773 	size_t offset;
3774 	struct page *page;
3775 	char *kaddr;
3776 	char *src = (char *)srcv;
3777 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3778 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3779 
3780 	WARN_ON(start > eb->len);
3781 	WARN_ON(start + len > eb->start + eb->len);
3782 
3783 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3784 
3785 	while (len > 0) {
3786 		page = extent_buffer_page(eb, i);
3787 		WARN_ON(!PageUptodate(page));
3788 
3789 		cur = min(len, PAGE_CACHE_SIZE - offset);
3790 		kaddr = kmap_atomic(page, KM_USER1);
3791 		memcpy(kaddr + offset, src, cur);
3792 		kunmap_atomic(kaddr, KM_USER1);
3793 
3794 		src += cur;
3795 		len -= cur;
3796 		offset = 0;
3797 		i++;
3798 	}
3799 }
3800 
3801 void memset_extent_buffer(struct extent_buffer *eb, char c,
3802 			  unsigned long start, unsigned long len)
3803 {
3804 	size_t cur;
3805 	size_t offset;
3806 	struct page *page;
3807 	char *kaddr;
3808 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3809 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3810 
3811 	WARN_ON(start > eb->len);
3812 	WARN_ON(start + len > eb->start + eb->len);
3813 
3814 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3815 
3816 	while (len > 0) {
3817 		page = extent_buffer_page(eb, i);
3818 		WARN_ON(!PageUptodate(page));
3819 
3820 		cur = min(len, PAGE_CACHE_SIZE - offset);
3821 		kaddr = kmap_atomic(page, KM_USER0);
3822 		memset(kaddr + offset, c, cur);
3823 		kunmap_atomic(kaddr, KM_USER0);
3824 
3825 		len -= cur;
3826 		offset = 0;
3827 		i++;
3828 	}
3829 }
3830 
3831 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3832 			unsigned long dst_offset, unsigned long src_offset,
3833 			unsigned long len)
3834 {
3835 	u64 dst_len = dst->len;
3836 	size_t cur;
3837 	size_t offset;
3838 	struct page *page;
3839 	char *kaddr;
3840 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3841 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3842 
3843 	WARN_ON(src->len != dst_len);
3844 
3845 	offset = (start_offset + dst_offset) &
3846 		((unsigned long)PAGE_CACHE_SIZE - 1);
3847 
3848 	while (len > 0) {
3849 		page = extent_buffer_page(dst, i);
3850 		WARN_ON(!PageUptodate(page));
3851 
3852 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3853 
3854 		kaddr = kmap_atomic(page, KM_USER0);
3855 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3856 		kunmap_atomic(kaddr, KM_USER0);
3857 
3858 		src_offset += cur;
3859 		len -= cur;
3860 		offset = 0;
3861 		i++;
3862 	}
3863 }
3864 
3865 static void move_pages(struct page *dst_page, struct page *src_page,
3866 		       unsigned long dst_off, unsigned long src_off,
3867 		       unsigned long len)
3868 {
3869 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3870 	if (dst_page == src_page) {
3871 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3872 	} else {
3873 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3874 		char *p = dst_kaddr + dst_off + len;
3875 		char *s = src_kaddr + src_off + len;
3876 
3877 		while (len--)
3878 			*--p = *--s;
3879 
3880 		kunmap_atomic(src_kaddr, KM_USER1);
3881 	}
3882 	kunmap_atomic(dst_kaddr, KM_USER0);
3883 }
3884 
3885 static void copy_pages(struct page *dst_page, struct page *src_page,
3886 		       unsigned long dst_off, unsigned long src_off,
3887 		       unsigned long len)
3888 {
3889 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3890 	char *src_kaddr;
3891 
3892 	if (dst_page != src_page)
3893 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3894 	else
3895 		src_kaddr = dst_kaddr;
3896 
3897 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3898 	kunmap_atomic(dst_kaddr, KM_USER0);
3899 	if (dst_page != src_page)
3900 		kunmap_atomic(src_kaddr, KM_USER1);
3901 }
3902 
3903 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3904 			   unsigned long src_offset, unsigned long len)
3905 {
3906 	size_t cur;
3907 	size_t dst_off_in_page;
3908 	size_t src_off_in_page;
3909 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3910 	unsigned long dst_i;
3911 	unsigned long src_i;
3912 
3913 	if (src_offset + len > dst->len) {
3914 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3915 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3916 		BUG_ON(1);
3917 	}
3918 	if (dst_offset + len > dst->len) {
3919 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3920 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3921 		BUG_ON(1);
3922 	}
3923 
3924 	while (len > 0) {
3925 		dst_off_in_page = (start_offset + dst_offset) &
3926 			((unsigned long)PAGE_CACHE_SIZE - 1);
3927 		src_off_in_page = (start_offset + src_offset) &
3928 			((unsigned long)PAGE_CACHE_SIZE - 1);
3929 
3930 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3931 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3932 
3933 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3934 					       src_off_in_page));
3935 		cur = min_t(unsigned long, cur,
3936 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3937 
3938 		copy_pages(extent_buffer_page(dst, dst_i),
3939 			   extent_buffer_page(dst, src_i),
3940 			   dst_off_in_page, src_off_in_page, cur);
3941 
3942 		src_offset += cur;
3943 		dst_offset += cur;
3944 		len -= cur;
3945 	}
3946 }
3947 
3948 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3949 			   unsigned long src_offset, unsigned long len)
3950 {
3951 	size_t cur;
3952 	size_t dst_off_in_page;
3953 	size_t src_off_in_page;
3954 	unsigned long dst_end = dst_offset + len - 1;
3955 	unsigned long src_end = src_offset + len - 1;
3956 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3957 	unsigned long dst_i;
3958 	unsigned long src_i;
3959 
3960 	if (src_offset + len > dst->len) {
3961 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3962 		       "len %lu len %lu\n", src_offset, len, dst->len);
3963 		BUG_ON(1);
3964 	}
3965 	if (dst_offset + len > dst->len) {
3966 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3967 		       "len %lu len %lu\n", dst_offset, len, dst->len);
3968 		BUG_ON(1);
3969 	}
3970 	if (dst_offset < src_offset) {
3971 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3972 		return;
3973 	}
3974 	while (len > 0) {
3975 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3976 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3977 
3978 		dst_off_in_page = (start_offset + dst_end) &
3979 			((unsigned long)PAGE_CACHE_SIZE - 1);
3980 		src_off_in_page = (start_offset + src_end) &
3981 			((unsigned long)PAGE_CACHE_SIZE - 1);
3982 
3983 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3984 		cur = min(cur, dst_off_in_page + 1);
3985 		move_pages(extent_buffer_page(dst, dst_i),
3986 			   extent_buffer_page(dst, src_i),
3987 			   dst_off_in_page - cur + 1,
3988 			   src_off_in_page - cur + 1, cur);
3989 
3990 		dst_end -= cur;
3991 		src_end -= cur;
3992 		len -= cur;
3993 	}
3994 }
3995 
3996 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3997 {
3998 	struct extent_buffer *eb =
3999 			container_of(head, struct extent_buffer, rcu_head);
4000 
4001 	btrfs_release_extent_buffer(eb);
4002 }
4003 
4004 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4005 {
4006 	u64 start = page_offset(page);
4007 	struct extent_buffer *eb;
4008 	int ret = 1;
4009 
4010 	spin_lock(&tree->buffer_lock);
4011 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4012 	if (!eb) {
4013 		spin_unlock(&tree->buffer_lock);
4014 		return ret;
4015 	}
4016 
4017 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4018 		ret = 0;
4019 		goto out;
4020 	}
4021 
4022 	/*
4023 	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4024 	 * Or go back.
4025 	 */
4026 	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4027 		ret = 0;
4028 		goto out;
4029 	}
4030 
4031 	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4032 out:
4033 	spin_unlock(&tree->buffer_lock);
4034 
4035 	/* at this point we can safely release the extent buffer */
4036 	if (atomic_read(&eb->refs) == 0)
4037 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4038 	return ret;
4039 }
4040