xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 3db55767)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40 
41 static struct kmem_cache *extent_buffer_cache;
42 
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 	struct btrfs_fs_info *fs_info = eb->fs_info;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53 
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 	struct btrfs_fs_info *fs_info = eb->fs_info;
57 	unsigned long flags;
58 
59 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 	list_del(&eb->leak_list);
61 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63 
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 	struct extent_buffer *eb;
67 	unsigned long flags;
68 
69 	/*
70 	 * If we didn't get into open_ctree our allocated_ebs will not be
71 	 * initialized, so just skip this.
72 	 */
73 	if (!fs_info->allocated_ebs.next)
74 		return;
75 
76 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 	while (!list_empty(&fs_info->allocated_ebs)) {
79 		eb = list_first_entry(&fs_info->allocated_ebs,
80 				      struct extent_buffer, leak_list);
81 		pr_err(
82 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 		       btrfs_header_owner(eb));
85 		list_del(&eb->leak_list);
86 		kmem_cache_free(extent_buffer_cache, eb);
87 	}
88 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
93 #endif
94 
95 /*
96  * Structure to record info about the bio being assembled, and other info like
97  * how many bytes are there before stripe/ordered extent boundary.
98  */
99 struct btrfs_bio_ctrl {
100 	struct btrfs_bio *bbio;
101 	int mirror_num;
102 	enum btrfs_compression_type compress_type;
103 	u32 len_to_oe_boundary;
104 	blk_opf_t opf;
105 	btrfs_bio_end_io_t end_io_func;
106 	struct writeback_control *wbc;
107 
108 	/*
109 	 * This is for metadata read, to provide the extra needed verification
110 	 * info.  This has to be provided for submit_one_bio(), as
111 	 * submit_one_bio() can submit a bio if it ends at stripe boundary.  If
112 	 * no such parent_check is provided, the metadata can hit false alert at
113 	 * endio time.
114 	 */
115 	struct btrfs_tree_parent_check *parent_check;
116 
117 	/*
118 	 * Tell writepage not to lock the state bits for this range, it still
119 	 * does the unlocking.
120 	 */
121 	bool extent_locked;
122 };
123 
124 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
125 {
126 	struct btrfs_bio *bbio = bio_ctrl->bbio;
127 	int mirror_num = bio_ctrl->mirror_num;
128 
129 	if (!bbio)
130 		return;
131 
132 	/* Caller should ensure the bio has at least some range added */
133 	ASSERT(bbio->bio.bi_iter.bi_size);
134 
135 	if (!is_data_inode(&bbio->inode->vfs_inode)) {
136 		if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) {
137 			/*
138 			 * For metadata read, we should have the parent_check,
139 			 * and copy it to bbio for metadata verification.
140 			 */
141 			ASSERT(bio_ctrl->parent_check);
142 			memcpy(&bbio->parent_check,
143 			       bio_ctrl->parent_check,
144 			       sizeof(struct btrfs_tree_parent_check));
145 		}
146 		bbio->bio.bi_opf |= REQ_META;
147 	}
148 
149 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
150 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
151 		btrfs_submit_compressed_read(bbio, mirror_num);
152 	else
153 		btrfs_submit_bio(bbio, mirror_num);
154 
155 	/* The bbio is owned by the end_io handler now */
156 	bio_ctrl->bbio = NULL;
157 }
158 
159 /*
160  * Submit or fail the current bio in the bio_ctrl structure.
161  */
162 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
163 {
164 	struct btrfs_bio *bbio = bio_ctrl->bbio;
165 
166 	if (!bbio)
167 		return;
168 
169 	if (ret) {
170 		ASSERT(ret < 0);
171 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
172 		/* The bio is owned by the end_io handler now */
173 		bio_ctrl->bbio = NULL;
174 	} else {
175 		submit_one_bio(bio_ctrl);
176 	}
177 }
178 
179 int __init extent_buffer_init_cachep(void)
180 {
181 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
182 			sizeof(struct extent_buffer), 0,
183 			SLAB_MEM_SPREAD, NULL);
184 	if (!extent_buffer_cache)
185 		return -ENOMEM;
186 
187 	return 0;
188 }
189 
190 void __cold extent_buffer_free_cachep(void)
191 {
192 	/*
193 	 * Make sure all delayed rcu free are flushed before we
194 	 * destroy caches.
195 	 */
196 	rcu_barrier();
197 	kmem_cache_destroy(extent_buffer_cache);
198 }
199 
200 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
201 {
202 	unsigned long index = start >> PAGE_SHIFT;
203 	unsigned long end_index = end >> PAGE_SHIFT;
204 	struct page *page;
205 
206 	while (index <= end_index) {
207 		page = find_get_page(inode->i_mapping, index);
208 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
209 		clear_page_dirty_for_io(page);
210 		put_page(page);
211 		index++;
212 	}
213 }
214 
215 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
216 {
217 	struct address_space *mapping = inode->i_mapping;
218 	unsigned long index = start >> PAGE_SHIFT;
219 	unsigned long end_index = end >> PAGE_SHIFT;
220 	struct folio *folio;
221 
222 	while (index <= end_index) {
223 		folio = filemap_get_folio(mapping, index);
224 		filemap_dirty_folio(mapping, folio);
225 		folio_account_redirty(folio);
226 		index += folio_nr_pages(folio);
227 		folio_put(folio);
228 	}
229 }
230 
231 /*
232  * Process one page for __process_pages_contig().
233  *
234  * Return >0 if we hit @page == @locked_page.
235  * Return 0 if we updated the page status.
236  * Return -EGAIN if the we need to try again.
237  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
238  */
239 static int process_one_page(struct btrfs_fs_info *fs_info,
240 			    struct address_space *mapping,
241 			    struct page *page, struct page *locked_page,
242 			    unsigned long page_ops, u64 start, u64 end)
243 {
244 	u32 len;
245 
246 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
247 	len = end + 1 - start;
248 
249 	if (page_ops & PAGE_SET_ORDERED)
250 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
251 	if (page_ops & PAGE_SET_ERROR)
252 		btrfs_page_clamp_set_error(fs_info, page, start, len);
253 	if (page_ops & PAGE_START_WRITEBACK) {
254 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
255 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
256 	}
257 	if (page_ops & PAGE_END_WRITEBACK)
258 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
259 
260 	if (page == locked_page)
261 		return 1;
262 
263 	if (page_ops & PAGE_LOCK) {
264 		int ret;
265 
266 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
267 		if (ret)
268 			return ret;
269 		if (!PageDirty(page) || page->mapping != mapping) {
270 			btrfs_page_end_writer_lock(fs_info, page, start, len);
271 			return -EAGAIN;
272 		}
273 	}
274 	if (page_ops & PAGE_UNLOCK)
275 		btrfs_page_end_writer_lock(fs_info, page, start, len);
276 	return 0;
277 }
278 
279 static int __process_pages_contig(struct address_space *mapping,
280 				  struct page *locked_page,
281 				  u64 start, u64 end, unsigned long page_ops,
282 				  u64 *processed_end)
283 {
284 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
285 	pgoff_t start_index = start >> PAGE_SHIFT;
286 	pgoff_t end_index = end >> PAGE_SHIFT;
287 	pgoff_t index = start_index;
288 	unsigned long pages_processed = 0;
289 	struct folio_batch fbatch;
290 	int err = 0;
291 	int i;
292 
293 	if (page_ops & PAGE_LOCK) {
294 		ASSERT(page_ops == PAGE_LOCK);
295 		ASSERT(processed_end && *processed_end == start);
296 	}
297 
298 	if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
299 		mapping_set_error(mapping, -EIO);
300 
301 	folio_batch_init(&fbatch);
302 	while (index <= end_index) {
303 		int found_folios;
304 
305 		found_folios = filemap_get_folios_contig(mapping, &index,
306 				end_index, &fbatch);
307 
308 		if (found_folios == 0) {
309 			/*
310 			 * Only if we're going to lock these pages, we can find
311 			 * nothing at @index.
312 			 */
313 			ASSERT(page_ops & PAGE_LOCK);
314 			err = -EAGAIN;
315 			goto out;
316 		}
317 
318 		for (i = 0; i < found_folios; i++) {
319 			int process_ret;
320 			struct folio *folio = fbatch.folios[i];
321 			process_ret = process_one_page(fs_info, mapping,
322 					&folio->page, locked_page, page_ops,
323 					start, end);
324 			if (process_ret < 0) {
325 				err = -EAGAIN;
326 				folio_batch_release(&fbatch);
327 				goto out;
328 			}
329 			pages_processed += folio_nr_pages(folio);
330 		}
331 		folio_batch_release(&fbatch);
332 		cond_resched();
333 	}
334 out:
335 	if (err && processed_end) {
336 		/*
337 		 * Update @processed_end. I know this is awful since it has
338 		 * two different return value patterns (inclusive vs exclusive).
339 		 *
340 		 * But the exclusive pattern is necessary if @start is 0, or we
341 		 * underflow and check against processed_end won't work as
342 		 * expected.
343 		 */
344 		if (pages_processed)
345 			*processed_end = min(end,
346 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
347 		else
348 			*processed_end = start;
349 	}
350 	return err;
351 }
352 
353 static noinline void __unlock_for_delalloc(struct inode *inode,
354 					   struct page *locked_page,
355 					   u64 start, u64 end)
356 {
357 	unsigned long index = start >> PAGE_SHIFT;
358 	unsigned long end_index = end >> PAGE_SHIFT;
359 
360 	ASSERT(locked_page);
361 	if (index == locked_page->index && end_index == index)
362 		return;
363 
364 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
365 			       PAGE_UNLOCK, NULL);
366 }
367 
368 static noinline int lock_delalloc_pages(struct inode *inode,
369 					struct page *locked_page,
370 					u64 delalloc_start,
371 					u64 delalloc_end)
372 {
373 	unsigned long index = delalloc_start >> PAGE_SHIFT;
374 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
375 	u64 processed_end = delalloc_start;
376 	int ret;
377 
378 	ASSERT(locked_page);
379 	if (index == locked_page->index && index == end_index)
380 		return 0;
381 
382 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
383 				     delalloc_end, PAGE_LOCK, &processed_end);
384 	if (ret == -EAGAIN && processed_end > delalloc_start)
385 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
386 				      processed_end);
387 	return ret;
388 }
389 
390 /*
391  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
392  * more than @max_bytes.
393  *
394  * @start:	The original start bytenr to search.
395  *		Will store the extent range start bytenr.
396  * @end:	The original end bytenr of the search range
397  *		Will store the extent range end bytenr.
398  *
399  * Return true if we find a delalloc range which starts inside the original
400  * range, and @start/@end will store the delalloc range start/end.
401  *
402  * Return false if we can't find any delalloc range which starts inside the
403  * original range, and @start/@end will be the non-delalloc range start/end.
404  */
405 EXPORT_FOR_TESTS
406 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
407 				    struct page *locked_page, u64 *start,
408 				    u64 *end)
409 {
410 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
411 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
412 	const u64 orig_start = *start;
413 	const u64 orig_end = *end;
414 	/* The sanity tests may not set a valid fs_info. */
415 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
416 	u64 delalloc_start;
417 	u64 delalloc_end;
418 	bool found;
419 	struct extent_state *cached_state = NULL;
420 	int ret;
421 	int loops = 0;
422 
423 	/* Caller should pass a valid @end to indicate the search range end */
424 	ASSERT(orig_end > orig_start);
425 
426 	/* The range should at least cover part of the page */
427 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
428 		 orig_end <= page_offset(locked_page)));
429 again:
430 	/* step one, find a bunch of delalloc bytes starting at start */
431 	delalloc_start = *start;
432 	delalloc_end = 0;
433 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
434 					  max_bytes, &cached_state);
435 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
436 		*start = delalloc_start;
437 
438 		/* @delalloc_end can be -1, never go beyond @orig_end */
439 		*end = min(delalloc_end, orig_end);
440 		free_extent_state(cached_state);
441 		return false;
442 	}
443 
444 	/*
445 	 * start comes from the offset of locked_page.  We have to lock
446 	 * pages in order, so we can't process delalloc bytes before
447 	 * locked_page
448 	 */
449 	if (delalloc_start < *start)
450 		delalloc_start = *start;
451 
452 	/*
453 	 * make sure to limit the number of pages we try to lock down
454 	 */
455 	if (delalloc_end + 1 - delalloc_start > max_bytes)
456 		delalloc_end = delalloc_start + max_bytes - 1;
457 
458 	/* step two, lock all the pages after the page that has start */
459 	ret = lock_delalloc_pages(inode, locked_page,
460 				  delalloc_start, delalloc_end);
461 	ASSERT(!ret || ret == -EAGAIN);
462 	if (ret == -EAGAIN) {
463 		/* some of the pages are gone, lets avoid looping by
464 		 * shortening the size of the delalloc range we're searching
465 		 */
466 		free_extent_state(cached_state);
467 		cached_state = NULL;
468 		if (!loops) {
469 			max_bytes = PAGE_SIZE;
470 			loops = 1;
471 			goto again;
472 		} else {
473 			found = false;
474 			goto out_failed;
475 		}
476 	}
477 
478 	/* step three, lock the state bits for the whole range */
479 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
480 
481 	/* then test to make sure it is all still delalloc */
482 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
483 			     EXTENT_DELALLOC, 1, cached_state);
484 	if (!ret) {
485 		unlock_extent(tree, delalloc_start, delalloc_end,
486 			      &cached_state);
487 		__unlock_for_delalloc(inode, locked_page,
488 			      delalloc_start, delalloc_end);
489 		cond_resched();
490 		goto again;
491 	}
492 	free_extent_state(cached_state);
493 	*start = delalloc_start;
494 	*end = delalloc_end;
495 out_failed:
496 	return found;
497 }
498 
499 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
500 				  struct page *locked_page,
501 				  u32 clear_bits, unsigned long page_ops)
502 {
503 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
504 
505 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
506 			       start, end, page_ops, NULL);
507 }
508 
509 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
510 {
511 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
512 
513 	ASSERT(page_offset(page) <= start &&
514 	       start + len <= page_offset(page) + PAGE_SIZE);
515 
516 	if (uptodate) {
517 		if (fsverity_active(page->mapping->host) &&
518 		    !PageError(page) &&
519 		    !PageUptodate(page) &&
520 		    start < i_size_read(page->mapping->host) &&
521 		    !fsverity_verify_page(page)) {
522 			btrfs_page_set_error(fs_info, page, start, len);
523 		} else {
524 			btrfs_page_set_uptodate(fs_info, page, start, len);
525 		}
526 	} else {
527 		btrfs_page_clear_uptodate(fs_info, page, start, len);
528 		btrfs_page_set_error(fs_info, page, start, len);
529 	}
530 
531 	if (!btrfs_is_subpage(fs_info, page))
532 		unlock_page(page);
533 	else
534 		btrfs_subpage_end_reader(fs_info, page, start, len);
535 }
536 
537 /* lots and lots of room for performance fixes in the end_bio funcs */
538 
539 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
540 {
541 	struct btrfs_inode *inode;
542 	const bool uptodate = (err == 0);
543 	int ret = 0;
544 
545 	ASSERT(page && page->mapping);
546 	inode = BTRFS_I(page->mapping->host);
547 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
548 
549 	if (!uptodate) {
550 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
551 		u32 len;
552 
553 		ASSERT(end + 1 - start <= U32_MAX);
554 		len = end + 1 - start;
555 
556 		btrfs_page_clear_uptodate(fs_info, page, start, len);
557 		btrfs_page_set_error(fs_info, page, start, len);
558 		ret = err < 0 ? err : -EIO;
559 		mapping_set_error(page->mapping, ret);
560 	}
561 }
562 
563 /*
564  * after a writepage IO is done, we need to:
565  * clear the uptodate bits on error
566  * clear the writeback bits in the extent tree for this IO
567  * end_page_writeback if the page has no more pending IO
568  *
569  * Scheduling is not allowed, so the extent state tree is expected
570  * to have one and only one object corresponding to this IO.
571  */
572 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
573 {
574 	struct bio *bio = &bbio->bio;
575 	int error = blk_status_to_errno(bio->bi_status);
576 	struct bio_vec *bvec;
577 	u64 start;
578 	u64 end;
579 	struct bvec_iter_all iter_all;
580 
581 	ASSERT(!bio_flagged(bio, BIO_CLONED));
582 	bio_for_each_segment_all(bvec, bio, iter_all) {
583 		struct page *page = bvec->bv_page;
584 		struct inode *inode = page->mapping->host;
585 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
586 		const u32 sectorsize = fs_info->sectorsize;
587 
588 		/* Our read/write should always be sector aligned. */
589 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
590 			btrfs_err(fs_info,
591 		"partial page write in btrfs with offset %u and length %u",
592 				  bvec->bv_offset, bvec->bv_len);
593 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
594 			btrfs_info(fs_info,
595 		"incomplete page write with offset %u and length %u",
596 				   bvec->bv_offset, bvec->bv_len);
597 
598 		start = page_offset(page) + bvec->bv_offset;
599 		end = start + bvec->bv_len - 1;
600 
601 		end_extent_writepage(page, error, start, end);
602 
603 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
604 	}
605 
606 	bio_put(bio);
607 }
608 
609 /*
610  * Record previously processed extent range
611  *
612  * For endio_readpage_release_extent() to handle a full extent range, reducing
613  * the extent io operations.
614  */
615 struct processed_extent {
616 	struct btrfs_inode *inode;
617 	/* Start of the range in @inode */
618 	u64 start;
619 	/* End of the range in @inode */
620 	u64 end;
621 	bool uptodate;
622 };
623 
624 /*
625  * Try to release processed extent range
626  *
627  * May not release the extent range right now if the current range is
628  * contiguous to processed extent.
629  *
630  * Will release processed extent when any of @inode, @uptodate, the range is
631  * no longer contiguous to the processed range.
632  *
633  * Passing @inode == NULL will force processed extent to be released.
634  */
635 static void endio_readpage_release_extent(struct processed_extent *processed,
636 			      struct btrfs_inode *inode, u64 start, u64 end,
637 			      bool uptodate)
638 {
639 	struct extent_state *cached = NULL;
640 	struct extent_io_tree *tree;
641 
642 	/* The first extent, initialize @processed */
643 	if (!processed->inode)
644 		goto update;
645 
646 	/*
647 	 * Contiguous to processed extent, just uptodate the end.
648 	 *
649 	 * Several things to notice:
650 	 *
651 	 * - bio can be merged as long as on-disk bytenr is contiguous
652 	 *   This means we can have page belonging to other inodes, thus need to
653 	 *   check if the inode still matches.
654 	 * - bvec can contain range beyond current page for multi-page bvec
655 	 *   Thus we need to do processed->end + 1 >= start check
656 	 */
657 	if (processed->inode == inode && processed->uptodate == uptodate &&
658 	    processed->end + 1 >= start && end >= processed->end) {
659 		processed->end = end;
660 		return;
661 	}
662 
663 	tree = &processed->inode->io_tree;
664 	/*
665 	 * Now we don't have range contiguous to the processed range, release
666 	 * the processed range now.
667 	 */
668 	unlock_extent(tree, processed->start, processed->end, &cached);
669 
670 update:
671 	/* Update processed to current range */
672 	processed->inode = inode;
673 	processed->start = start;
674 	processed->end = end;
675 	processed->uptodate = uptodate;
676 }
677 
678 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
679 {
680 	ASSERT(PageLocked(page));
681 	if (!btrfs_is_subpage(fs_info, page))
682 		return;
683 
684 	ASSERT(PagePrivate(page));
685 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
686 }
687 
688 /*
689  * Find extent buffer for a givne bytenr.
690  *
691  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
692  * in endio context.
693  */
694 static struct extent_buffer *find_extent_buffer_readpage(
695 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
696 {
697 	struct extent_buffer *eb;
698 
699 	/*
700 	 * For regular sectorsize, we can use page->private to grab extent
701 	 * buffer
702 	 */
703 	if (fs_info->nodesize >= PAGE_SIZE) {
704 		ASSERT(PagePrivate(page) && page->private);
705 		return (struct extent_buffer *)page->private;
706 	}
707 
708 	/* For subpage case, we need to lookup buffer radix tree */
709 	rcu_read_lock();
710 	eb = radix_tree_lookup(&fs_info->buffer_radix,
711 			       bytenr >> fs_info->sectorsize_bits);
712 	rcu_read_unlock();
713 	ASSERT(eb);
714 	return eb;
715 }
716 
717 /*
718  * after a readpage IO is done, we need to:
719  * clear the uptodate bits on error
720  * set the uptodate bits if things worked
721  * set the page up to date if all extents in the tree are uptodate
722  * clear the lock bit in the extent tree
723  * unlock the page if there are no other extents locked for it
724  *
725  * Scheduling is not allowed, so the extent state tree is expected
726  * to have one and only one object corresponding to this IO.
727  */
728 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
729 {
730 	struct bio *bio = &bbio->bio;
731 	struct bio_vec *bvec;
732 	struct processed_extent processed = { 0 };
733 	/*
734 	 * The offset to the beginning of a bio, since one bio can never be
735 	 * larger than UINT_MAX, u32 here is enough.
736 	 */
737 	u32 bio_offset = 0;
738 	int mirror;
739 	struct bvec_iter_all iter_all;
740 
741 	ASSERT(!bio_flagged(bio, BIO_CLONED));
742 	bio_for_each_segment_all(bvec, bio, iter_all) {
743 		bool uptodate = !bio->bi_status;
744 		struct page *page = bvec->bv_page;
745 		struct inode *inode = page->mapping->host;
746 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
747 		const u32 sectorsize = fs_info->sectorsize;
748 		u64 start;
749 		u64 end;
750 		u32 len;
751 
752 		btrfs_debug(fs_info,
753 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
754 			bio->bi_iter.bi_sector, bio->bi_status,
755 			bbio->mirror_num);
756 
757 		/*
758 		 * We always issue full-sector reads, but if some block in a
759 		 * page fails to read, blk_update_request() will advance
760 		 * bv_offset and adjust bv_len to compensate.  Print a warning
761 		 * for unaligned offsets, and an error if they don't add up to
762 		 * a full sector.
763 		 */
764 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
765 			btrfs_err(fs_info,
766 		"partial page read in btrfs with offset %u and length %u",
767 				  bvec->bv_offset, bvec->bv_len);
768 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
769 				     sectorsize))
770 			btrfs_info(fs_info,
771 		"incomplete page read with offset %u and length %u",
772 				   bvec->bv_offset, bvec->bv_len);
773 
774 		start = page_offset(page) + bvec->bv_offset;
775 		end = start + bvec->bv_len - 1;
776 		len = bvec->bv_len;
777 
778 		mirror = bbio->mirror_num;
779 		if (uptodate && !is_data_inode(inode) &&
780 		    btrfs_validate_metadata_buffer(bbio, page, start, end, mirror))
781 			uptodate = false;
782 
783 		if (likely(uptodate)) {
784 			loff_t i_size = i_size_read(inode);
785 			pgoff_t end_index = i_size >> PAGE_SHIFT;
786 
787 			/*
788 			 * Zero out the remaining part if this range straddles
789 			 * i_size.
790 			 *
791 			 * Here we should only zero the range inside the bvec,
792 			 * not touch anything else.
793 			 *
794 			 * NOTE: i_size is exclusive while end is inclusive.
795 			 */
796 			if (page->index == end_index && i_size <= end) {
797 				u32 zero_start = max(offset_in_page(i_size),
798 						     offset_in_page(start));
799 
800 				zero_user_segment(page, zero_start,
801 						  offset_in_page(end) + 1);
802 			}
803 		} else if (!is_data_inode(inode)) {
804 			struct extent_buffer *eb;
805 
806 			eb = find_extent_buffer_readpage(fs_info, page, start);
807 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
808 			eb->read_mirror = mirror;
809 			atomic_dec(&eb->io_pages);
810 		}
811 
812 		/* Update page status and unlock. */
813 		end_page_read(page, uptodate, start, len);
814 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
815 					      start, end, PageUptodate(page));
816 
817 		ASSERT(bio_offset + len > bio_offset);
818 		bio_offset += len;
819 
820 	}
821 	/* Release the last extent */
822 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
823 	bio_put(bio);
824 }
825 
826 /*
827  * Populate every free slot in a provided array with pages.
828  *
829  * @nr_pages:   number of pages to allocate
830  * @page_array: the array to fill with pages; any existing non-null entries in
831  * 		the array will be skipped
832  *
833  * Return: 0        if all pages were able to be allocated;
834  *         -ENOMEM  otherwise, and the caller is responsible for freeing all
835  *                  non-null page pointers in the array.
836  */
837 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
838 {
839 	unsigned int allocated;
840 
841 	for (allocated = 0; allocated < nr_pages;) {
842 		unsigned int last = allocated;
843 
844 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
845 
846 		if (allocated == nr_pages)
847 			return 0;
848 
849 		/*
850 		 * During this iteration, no page could be allocated, even
851 		 * though alloc_pages_bulk_array() falls back to alloc_page()
852 		 * if  it could not bulk-allocate. So we must be out of memory.
853 		 */
854 		if (allocated == last)
855 			return -ENOMEM;
856 
857 		memalloc_retry_wait(GFP_NOFS);
858 	}
859 	return 0;
860 }
861 
862 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
863 				struct page *page, u64 disk_bytenr,
864 				unsigned int pg_offset)
865 {
866 	struct bio *bio = &bio_ctrl->bbio->bio;
867 	struct bio_vec *bvec = bio_last_bvec_all(bio);
868 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
869 
870 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
871 		/*
872 		 * For compression, all IO should have its logical bytenr set
873 		 * to the starting bytenr of the compressed extent.
874 		 */
875 		return bio->bi_iter.bi_sector == sector;
876 	}
877 
878 	/*
879 	 * The contig check requires the following conditions to be met:
880 	 *
881 	 * 1) The pages are belonging to the same inode
882 	 *    This is implied by the call chain.
883 	 *
884 	 * 2) The range has adjacent logical bytenr
885 	 *
886 	 * 3) The range has adjacent file offset
887 	 *    This is required for the usage of btrfs_bio->file_offset.
888 	 */
889 	return bio_end_sector(bio) == sector &&
890 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
891 		page_offset(page) + pg_offset;
892 }
893 
894 static void alloc_new_bio(struct btrfs_inode *inode,
895 			  struct btrfs_bio_ctrl *bio_ctrl,
896 			  u64 disk_bytenr, u64 file_offset)
897 {
898 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
899 	struct btrfs_bio *bbio;
900 
901 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
902 			       bio_ctrl->end_io_func, NULL);
903 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
904 	bbio->inode = inode;
905 	bbio->file_offset = file_offset;
906 	bio_ctrl->bbio = bbio;
907 	bio_ctrl->len_to_oe_boundary = U32_MAX;
908 
909 	/*
910 	 * Limit the extent to the ordered boundary for Zone Append.
911 	 * Compressed bios aren't submitted directly, so it doesn't apply to
912 	 * them.
913 	 */
914 	if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE &&
915 	    btrfs_use_zone_append(bbio)) {
916 		struct btrfs_ordered_extent *ordered;
917 
918 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
919 		if (ordered) {
920 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
921 					ordered->file_offset +
922 					ordered->disk_num_bytes - file_offset);
923 			btrfs_put_ordered_extent(ordered);
924 		}
925 	}
926 
927 	if (bio_ctrl->wbc) {
928 		/*
929 		 * Pick the last added device to support cgroup writeback.  For
930 		 * multi-device file systems this means blk-cgroup policies have
931 		 * to always be set on the last added/replaced device.
932 		 * This is a bit odd but has been like that for a long time.
933 		 */
934 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
935 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
936 	}
937 }
938 
939 /*
940  * @disk_bytenr: logical bytenr where the write will be
941  * @page:	page to add to the bio
942  * @size:	portion of page that we want to write to
943  * @pg_offset:	offset of the new bio or to check whether we are adding
944  *              a contiguous page to the previous one
945  *
946  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
947  * new one in @bio_ctrl->bbio.
948  * The mirror number for this IO should already be initizlied in
949  * @bio_ctrl->mirror_num.
950  */
951 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
952 			       u64 disk_bytenr, struct page *page,
953 			       size_t size, unsigned long pg_offset)
954 {
955 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
956 
957 	ASSERT(pg_offset + size <= PAGE_SIZE);
958 	ASSERT(bio_ctrl->end_io_func);
959 
960 	if (bio_ctrl->bbio &&
961 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
962 		submit_one_bio(bio_ctrl);
963 
964 	do {
965 		u32 len = size;
966 
967 		/* Allocate new bio if needed */
968 		if (!bio_ctrl->bbio) {
969 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
970 				      page_offset(page) + pg_offset);
971 		}
972 
973 		/* Cap to the current ordered extent boundary if there is one. */
974 		if (len > bio_ctrl->len_to_oe_boundary) {
975 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
976 			ASSERT(is_data_inode(&inode->vfs_inode));
977 			len = bio_ctrl->len_to_oe_boundary;
978 		}
979 
980 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
981 			/* bio full: move on to a new one */
982 			submit_one_bio(bio_ctrl);
983 			continue;
984 		}
985 
986 		if (bio_ctrl->wbc)
987 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
988 
989 		size -= len;
990 		pg_offset += len;
991 		disk_bytenr += len;
992 		bio_ctrl->len_to_oe_boundary -= len;
993 
994 		/* Ordered extent boundary: move on to a new bio. */
995 		if (bio_ctrl->len_to_oe_boundary == 0)
996 			submit_one_bio(bio_ctrl);
997 	} while (size);
998 }
999 
1000 static int attach_extent_buffer_page(struct extent_buffer *eb,
1001 				     struct page *page,
1002 				     struct btrfs_subpage *prealloc)
1003 {
1004 	struct btrfs_fs_info *fs_info = eb->fs_info;
1005 	int ret = 0;
1006 
1007 	/*
1008 	 * If the page is mapped to btree inode, we should hold the private
1009 	 * lock to prevent race.
1010 	 * For cloned or dummy extent buffers, their pages are not mapped and
1011 	 * will not race with any other ebs.
1012 	 */
1013 	if (page->mapping)
1014 		lockdep_assert_held(&page->mapping->private_lock);
1015 
1016 	if (fs_info->nodesize >= PAGE_SIZE) {
1017 		if (!PagePrivate(page))
1018 			attach_page_private(page, eb);
1019 		else
1020 			WARN_ON(page->private != (unsigned long)eb);
1021 		return 0;
1022 	}
1023 
1024 	/* Already mapped, just free prealloc */
1025 	if (PagePrivate(page)) {
1026 		btrfs_free_subpage(prealloc);
1027 		return 0;
1028 	}
1029 
1030 	if (prealloc)
1031 		/* Has preallocated memory for subpage */
1032 		attach_page_private(page, prealloc);
1033 	else
1034 		/* Do new allocation to attach subpage */
1035 		ret = btrfs_attach_subpage(fs_info, page,
1036 					   BTRFS_SUBPAGE_METADATA);
1037 	return ret;
1038 }
1039 
1040 int set_page_extent_mapped(struct page *page)
1041 {
1042 	struct btrfs_fs_info *fs_info;
1043 
1044 	ASSERT(page->mapping);
1045 
1046 	if (PagePrivate(page))
1047 		return 0;
1048 
1049 	fs_info = btrfs_sb(page->mapping->host->i_sb);
1050 
1051 	if (btrfs_is_subpage(fs_info, page))
1052 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1053 
1054 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1055 	return 0;
1056 }
1057 
1058 void clear_page_extent_mapped(struct page *page)
1059 {
1060 	struct btrfs_fs_info *fs_info;
1061 
1062 	ASSERT(page->mapping);
1063 
1064 	if (!PagePrivate(page))
1065 		return;
1066 
1067 	fs_info = btrfs_sb(page->mapping->host->i_sb);
1068 	if (btrfs_is_subpage(fs_info, page))
1069 		return btrfs_detach_subpage(fs_info, page);
1070 
1071 	detach_page_private(page);
1072 }
1073 
1074 static struct extent_map *
1075 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1076 		 u64 start, u64 len, struct extent_map **em_cached)
1077 {
1078 	struct extent_map *em;
1079 
1080 	if (em_cached && *em_cached) {
1081 		em = *em_cached;
1082 		if (extent_map_in_tree(em) && start >= em->start &&
1083 		    start < extent_map_end(em)) {
1084 			refcount_inc(&em->refs);
1085 			return em;
1086 		}
1087 
1088 		free_extent_map(em);
1089 		*em_cached = NULL;
1090 	}
1091 
1092 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1093 	if (em_cached && !IS_ERR(em)) {
1094 		BUG_ON(*em_cached);
1095 		refcount_inc(&em->refs);
1096 		*em_cached = em;
1097 	}
1098 	return em;
1099 }
1100 /*
1101  * basic readpage implementation.  Locked extent state structs are inserted
1102  * into the tree that are removed when the IO is done (by the end_io
1103  * handlers)
1104  * XXX JDM: This needs looking at to ensure proper page locking
1105  * return 0 on success, otherwise return error
1106  */
1107 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1108 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
1109 {
1110 	struct inode *inode = page->mapping->host;
1111 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1112 	u64 start = page_offset(page);
1113 	const u64 end = start + PAGE_SIZE - 1;
1114 	u64 cur = start;
1115 	u64 extent_offset;
1116 	u64 last_byte = i_size_read(inode);
1117 	u64 block_start;
1118 	struct extent_map *em;
1119 	int ret = 0;
1120 	size_t pg_offset = 0;
1121 	size_t iosize;
1122 	size_t blocksize = inode->i_sb->s_blocksize;
1123 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1124 
1125 	ret = set_page_extent_mapped(page);
1126 	if (ret < 0) {
1127 		unlock_extent(tree, start, end, NULL);
1128 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1129 		unlock_page(page);
1130 		return ret;
1131 	}
1132 
1133 	if (page->index == last_byte >> PAGE_SHIFT) {
1134 		size_t zero_offset = offset_in_page(last_byte);
1135 
1136 		if (zero_offset) {
1137 			iosize = PAGE_SIZE - zero_offset;
1138 			memzero_page(page, zero_offset, iosize);
1139 		}
1140 	}
1141 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1142 	begin_page_read(fs_info, page);
1143 	while (cur <= end) {
1144 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1145 		bool force_bio_submit = false;
1146 		u64 disk_bytenr;
1147 
1148 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1149 		if (cur >= last_byte) {
1150 			iosize = PAGE_SIZE - pg_offset;
1151 			memzero_page(page, pg_offset, iosize);
1152 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1153 			end_page_read(page, true, cur, iosize);
1154 			break;
1155 		}
1156 		em = __get_extent_map(inode, page, pg_offset, cur,
1157 				      end - cur + 1, em_cached);
1158 		if (IS_ERR(em)) {
1159 			unlock_extent(tree, cur, end, NULL);
1160 			end_page_read(page, false, cur, end + 1 - cur);
1161 			return PTR_ERR(em);
1162 		}
1163 		extent_offset = cur - em->start;
1164 		BUG_ON(extent_map_end(em) <= cur);
1165 		BUG_ON(end < cur);
1166 
1167 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1168 			compress_type = em->compress_type;
1169 
1170 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1171 		iosize = ALIGN(iosize, blocksize);
1172 		if (compress_type != BTRFS_COMPRESS_NONE)
1173 			disk_bytenr = em->block_start;
1174 		else
1175 			disk_bytenr = em->block_start + extent_offset;
1176 		block_start = em->block_start;
1177 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1178 			block_start = EXTENT_MAP_HOLE;
1179 
1180 		/*
1181 		 * If we have a file range that points to a compressed extent
1182 		 * and it's followed by a consecutive file range that points
1183 		 * to the same compressed extent (possibly with a different
1184 		 * offset and/or length, so it either points to the whole extent
1185 		 * or only part of it), we must make sure we do not submit a
1186 		 * single bio to populate the pages for the 2 ranges because
1187 		 * this makes the compressed extent read zero out the pages
1188 		 * belonging to the 2nd range. Imagine the following scenario:
1189 		 *
1190 		 *  File layout
1191 		 *  [0 - 8K]                     [8K - 24K]
1192 		 *    |                               |
1193 		 *    |                               |
1194 		 * points to extent X,         points to extent X,
1195 		 * offset 4K, length of 8K     offset 0, length 16K
1196 		 *
1197 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1198 		 *
1199 		 * If the bio to read the compressed extent covers both ranges,
1200 		 * it will decompress extent X into the pages belonging to the
1201 		 * first range and then it will stop, zeroing out the remaining
1202 		 * pages that belong to the other range that points to extent X.
1203 		 * So here we make sure we submit 2 bios, one for the first
1204 		 * range and another one for the third range. Both will target
1205 		 * the same physical extent from disk, but we can't currently
1206 		 * make the compressed bio endio callback populate the pages
1207 		 * for both ranges because each compressed bio is tightly
1208 		 * coupled with a single extent map, and each range can have
1209 		 * an extent map with a different offset value relative to the
1210 		 * uncompressed data of our extent and different lengths. This
1211 		 * is a corner case so we prioritize correctness over
1212 		 * non-optimal behavior (submitting 2 bios for the same extent).
1213 		 */
1214 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1215 		    prev_em_start && *prev_em_start != (u64)-1 &&
1216 		    *prev_em_start != em->start)
1217 			force_bio_submit = true;
1218 
1219 		if (prev_em_start)
1220 			*prev_em_start = em->start;
1221 
1222 		free_extent_map(em);
1223 		em = NULL;
1224 
1225 		/* we've found a hole, just zero and go on */
1226 		if (block_start == EXTENT_MAP_HOLE) {
1227 			memzero_page(page, pg_offset, iosize);
1228 
1229 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1230 			end_page_read(page, true, cur, iosize);
1231 			cur = cur + iosize;
1232 			pg_offset += iosize;
1233 			continue;
1234 		}
1235 		/* the get_extent function already copied into the page */
1236 		if (block_start == EXTENT_MAP_INLINE) {
1237 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1238 			end_page_read(page, true, cur, iosize);
1239 			cur = cur + iosize;
1240 			pg_offset += iosize;
1241 			continue;
1242 		}
1243 
1244 		if (bio_ctrl->compress_type != compress_type) {
1245 			submit_one_bio(bio_ctrl);
1246 			bio_ctrl->compress_type = compress_type;
1247 		}
1248 
1249 		if (force_bio_submit)
1250 			submit_one_bio(bio_ctrl);
1251 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1252 				   pg_offset);
1253 		cur = cur + iosize;
1254 		pg_offset += iosize;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 int btrfs_read_folio(struct file *file, struct folio *folio)
1261 {
1262 	struct page *page = &folio->page;
1263 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1264 	u64 start = page_offset(page);
1265 	u64 end = start + PAGE_SIZE - 1;
1266 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1267 	int ret;
1268 
1269 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1270 
1271 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1272 	/*
1273 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1274 	 * bio to do the cleanup.
1275 	 */
1276 	submit_one_bio(&bio_ctrl);
1277 	return ret;
1278 }
1279 
1280 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1281 					u64 start, u64 end,
1282 					struct extent_map **em_cached,
1283 					struct btrfs_bio_ctrl *bio_ctrl,
1284 					u64 *prev_em_start)
1285 {
1286 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1287 	int index;
1288 
1289 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1290 
1291 	for (index = 0; index < nr_pages; index++) {
1292 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1293 				  prev_em_start);
1294 		put_page(pages[index]);
1295 	}
1296 }
1297 
1298 /*
1299  * helper for __extent_writepage, doing all of the delayed allocation setup.
1300  *
1301  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1302  * to write the page (copy into inline extent).  In this case the IO has
1303  * been started and the page is already unlocked.
1304  *
1305  * This returns 0 if all went well (page still locked)
1306  * This returns < 0 if there were errors (page still locked)
1307  */
1308 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1309 		struct page *page, struct writeback_control *wbc)
1310 {
1311 	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1312 	u64 delalloc_start = page_offset(page);
1313 	u64 delalloc_to_write = 0;
1314 	/* How many pages are started by btrfs_run_delalloc_range() */
1315 	unsigned long nr_written = 0;
1316 	int ret;
1317 	int page_started = 0;
1318 
1319 	while (delalloc_start < page_end) {
1320 		u64 delalloc_end = page_end;
1321 		bool found;
1322 
1323 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
1324 					       &delalloc_start,
1325 					       &delalloc_end);
1326 		if (!found) {
1327 			delalloc_start = delalloc_end + 1;
1328 			continue;
1329 		}
1330 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1331 				delalloc_end, &page_started, &nr_written, wbc);
1332 		if (ret) {
1333 			btrfs_page_set_error(inode->root->fs_info, page,
1334 					     page_offset(page), PAGE_SIZE);
1335 			return ret;
1336 		}
1337 		/*
1338 		 * delalloc_end is already one less than the total length, so
1339 		 * we don't subtract one from PAGE_SIZE
1340 		 */
1341 		delalloc_to_write += (delalloc_end - delalloc_start +
1342 				      PAGE_SIZE) >> PAGE_SHIFT;
1343 		delalloc_start = delalloc_end + 1;
1344 	}
1345 	if (wbc->nr_to_write < delalloc_to_write) {
1346 		int thresh = 8192;
1347 
1348 		if (delalloc_to_write < thresh * 2)
1349 			thresh = delalloc_to_write;
1350 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1351 					 thresh);
1352 	}
1353 
1354 	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1355 	if (page_started) {
1356 		/*
1357 		 * We've unlocked the page, so we can't update the mapping's
1358 		 * writeback index, just update nr_to_write.
1359 		 */
1360 		wbc->nr_to_write -= nr_written;
1361 		return 1;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Find the first byte we need to write.
1369  *
1370  * For subpage, one page can contain several sectors, and
1371  * __extent_writepage_io() will just grab all extent maps in the page
1372  * range and try to submit all non-inline/non-compressed extents.
1373  *
1374  * This is a big problem for subpage, we shouldn't re-submit already written
1375  * data at all.
1376  * This function will lookup subpage dirty bit to find which range we really
1377  * need to submit.
1378  *
1379  * Return the next dirty range in [@start, @end).
1380  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1381  */
1382 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1383 				 struct page *page, u64 *start, u64 *end)
1384 {
1385 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1386 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1387 	u64 orig_start = *start;
1388 	/* Declare as unsigned long so we can use bitmap ops */
1389 	unsigned long flags;
1390 	int range_start_bit;
1391 	int range_end_bit;
1392 
1393 	/*
1394 	 * For regular sector size == page size case, since one page only
1395 	 * contains one sector, we return the page offset directly.
1396 	 */
1397 	if (!btrfs_is_subpage(fs_info, page)) {
1398 		*start = page_offset(page);
1399 		*end = page_offset(page) + PAGE_SIZE;
1400 		return;
1401 	}
1402 
1403 	range_start_bit = spi->dirty_offset +
1404 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1405 
1406 	/* We should have the page locked, but just in case */
1407 	spin_lock_irqsave(&subpage->lock, flags);
1408 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1409 			       spi->dirty_offset + spi->bitmap_nr_bits);
1410 	spin_unlock_irqrestore(&subpage->lock, flags);
1411 
1412 	range_start_bit -= spi->dirty_offset;
1413 	range_end_bit -= spi->dirty_offset;
1414 
1415 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1416 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1417 }
1418 
1419 /*
1420  * helper for __extent_writepage.  This calls the writepage start hooks,
1421  * and does the loop to map the page into extents and bios.
1422  *
1423  * We return 1 if the IO is started and the page is unlocked,
1424  * 0 if all went well (page still locked)
1425  * < 0 if there were errors (page still locked)
1426  */
1427 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1428 				 struct page *page,
1429 				 struct btrfs_bio_ctrl *bio_ctrl,
1430 				 loff_t i_size,
1431 				 int *nr_ret)
1432 {
1433 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1434 	u64 cur = page_offset(page);
1435 	u64 end = cur + PAGE_SIZE - 1;
1436 	u64 extent_offset;
1437 	u64 block_start;
1438 	struct extent_map *em;
1439 	int ret = 0;
1440 	int nr = 0;
1441 	bool compressed;
1442 
1443 	ret = btrfs_writepage_cow_fixup(page);
1444 	if (ret) {
1445 		/* Fixup worker will requeue */
1446 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1447 		unlock_page(page);
1448 		return 1;
1449 	}
1450 
1451 	/*
1452 	 * we don't want to touch the inode after unlocking the page,
1453 	 * so we update the mapping writeback index now
1454 	 */
1455 	bio_ctrl->wbc->nr_to_write--;
1456 
1457 	bio_ctrl->end_io_func = end_bio_extent_writepage;
1458 	while (cur <= end) {
1459 		u64 disk_bytenr;
1460 		u64 em_end;
1461 		u64 dirty_range_start = cur;
1462 		u64 dirty_range_end;
1463 		u32 iosize;
1464 
1465 		if (cur >= i_size) {
1466 			btrfs_writepage_endio_finish_ordered(inode, page, cur,
1467 							     end, true);
1468 			/*
1469 			 * This range is beyond i_size, thus we don't need to
1470 			 * bother writing back.
1471 			 * But we still need to clear the dirty subpage bit, or
1472 			 * the next time the page gets dirtied, we will try to
1473 			 * writeback the sectors with subpage dirty bits,
1474 			 * causing writeback without ordered extent.
1475 			 */
1476 			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
1477 			break;
1478 		}
1479 
1480 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1481 				     &dirty_range_end);
1482 		if (cur < dirty_range_start) {
1483 			cur = dirty_range_start;
1484 			continue;
1485 		}
1486 
1487 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
1488 		if (IS_ERR(em)) {
1489 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
1490 			ret = PTR_ERR_OR_ZERO(em);
1491 			goto out_error;
1492 		}
1493 
1494 		extent_offset = cur - em->start;
1495 		em_end = extent_map_end(em);
1496 		ASSERT(cur <= em_end);
1497 		ASSERT(cur < end);
1498 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1499 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1500 		block_start = em->block_start;
1501 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1502 		disk_bytenr = em->block_start + extent_offset;
1503 
1504 		/*
1505 		 * Note that em_end from extent_map_end() and dirty_range_end from
1506 		 * find_next_dirty_byte() are all exclusive
1507 		 */
1508 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1509 		free_extent_map(em);
1510 		em = NULL;
1511 
1512 		/*
1513 		 * compressed and inline extents are written through other
1514 		 * paths in the FS
1515 		 */
1516 		if (compressed || block_start == EXTENT_MAP_HOLE ||
1517 		    block_start == EXTENT_MAP_INLINE) {
1518 			if (compressed)
1519 				nr++;
1520 			else
1521 				btrfs_writepage_endio_finish_ordered(inode,
1522 						page, cur, cur + iosize - 1, true);
1523 			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1524 			cur += iosize;
1525 			continue;
1526 		}
1527 
1528 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1529 		if (!PageWriteback(page)) {
1530 			btrfs_err(inode->root->fs_info,
1531 				   "page %lu not writeback, cur %llu end %llu",
1532 			       page->index, cur, end);
1533 		}
1534 
1535 		/*
1536 		 * Although the PageDirty bit is cleared before entering this
1537 		 * function, subpage dirty bit is not cleared.
1538 		 * So clear subpage dirty bit here so next time we won't submit
1539 		 * page for range already written to disk.
1540 		 */
1541 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1542 
1543 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1544 				   cur - page_offset(page));
1545 		cur += iosize;
1546 		nr++;
1547 	}
1548 
1549 	btrfs_page_assert_not_dirty(fs_info, page);
1550 	*nr_ret = nr;
1551 	return 0;
1552 
1553 out_error:
1554 	/*
1555 	 * If we finish without problem, we should not only clear page dirty,
1556 	 * but also empty subpage dirty bits
1557 	 */
1558 	*nr_ret = nr;
1559 	return ret;
1560 }
1561 
1562 /*
1563  * the writepage semantics are similar to regular writepage.  extent
1564  * records are inserted to lock ranges in the tree, and as dirty areas
1565  * are found, they are marked writeback.  Then the lock bits are removed
1566  * and the end_io handler clears the writeback ranges
1567  *
1568  * Return 0 if everything goes well.
1569  * Return <0 for error.
1570  */
1571 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1572 {
1573 	struct folio *folio = page_folio(page);
1574 	struct inode *inode = page->mapping->host;
1575 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1576 	const u64 page_start = page_offset(page);
1577 	const u64 page_end = page_start + PAGE_SIZE - 1;
1578 	int ret;
1579 	int nr = 0;
1580 	size_t pg_offset;
1581 	loff_t i_size = i_size_read(inode);
1582 	unsigned long end_index = i_size >> PAGE_SHIFT;
1583 
1584 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1585 
1586 	WARN_ON(!PageLocked(page));
1587 
1588 	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
1589 			       page_offset(page), PAGE_SIZE);
1590 
1591 	pg_offset = offset_in_page(i_size);
1592 	if (page->index > end_index ||
1593 	   (page->index == end_index && !pg_offset)) {
1594 		folio_invalidate(folio, 0, folio_size(folio));
1595 		folio_unlock(folio);
1596 		return 0;
1597 	}
1598 
1599 	if (page->index == end_index)
1600 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1601 
1602 	ret = set_page_extent_mapped(page);
1603 	if (ret < 0) {
1604 		SetPageError(page);
1605 		goto done;
1606 	}
1607 
1608 	if (!bio_ctrl->extent_locked) {
1609 		ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1610 		if (ret == 1)
1611 			return 0;
1612 		if (ret)
1613 			goto done;
1614 	}
1615 
1616 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1617 	if (ret == 1)
1618 		return 0;
1619 
1620 done:
1621 	if (nr == 0) {
1622 		/* make sure the mapping tag for page dirty gets cleared */
1623 		set_page_writeback(page);
1624 		end_page_writeback(page);
1625 	}
1626 	/*
1627 	 * Here we used to have a check for PageError() and then set @ret and
1628 	 * call end_extent_writepage().
1629 	 *
1630 	 * But in fact setting @ret here will cause different error paths
1631 	 * between subpage and regular sectorsize.
1632 	 *
1633 	 * For regular page size, we never submit current page, but only add
1634 	 * current page to current bio.
1635 	 * The bio submission can only happen in next page.
1636 	 * Thus if we hit the PageError() branch, @ret is already set to
1637 	 * non-zero value and will not get updated for regular sectorsize.
1638 	 *
1639 	 * But for subpage case, it's possible we submit part of current page,
1640 	 * thus can get PageError() set by submitted bio of the same page,
1641 	 * while our @ret is still 0.
1642 	 *
1643 	 * So here we unify the behavior and don't set @ret.
1644 	 * Error can still be properly passed to higher layer as page will
1645 	 * be set error, here we just don't handle the IO failure.
1646 	 *
1647 	 * NOTE: This is just a hotfix for subpage.
1648 	 * The root fix will be properly ending ordered extent when we hit
1649 	 * an error during writeback.
1650 	 *
1651 	 * But that needs a bigger refactoring, as we not only need to grab the
1652 	 * submitted OE, but also need to know exactly at which bytenr we hit
1653 	 * the error.
1654 	 * Currently the full page based __extent_writepage_io() is not
1655 	 * capable of that.
1656 	 */
1657 	if (PageError(page))
1658 		end_extent_writepage(page, ret, page_start, page_end);
1659 	if (bio_ctrl->extent_locked) {
1660 		struct writeback_control *wbc = bio_ctrl->wbc;
1661 
1662 		/*
1663 		 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(),
1664 		 * the page can either be locked by lock_page() or
1665 		 * process_one_page().
1666 		 * Let btrfs_page_unlock_writer() handle both cases.
1667 		 */
1668 		ASSERT(wbc);
1669 		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
1670 					 wbc->range_end + 1 - wbc->range_start);
1671 	} else {
1672 		unlock_page(page);
1673 	}
1674 	ASSERT(ret <= 0);
1675 	return ret;
1676 }
1677 
1678 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1679 {
1680 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1681 		       TASK_UNINTERRUPTIBLE);
1682 }
1683 
1684 static void end_extent_buffer_writeback(struct extent_buffer *eb)
1685 {
1686 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1687 	smp_mb__after_atomic();
1688 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1689 }
1690 
1691 /*
1692  * Lock extent buffer status and pages for writeback.
1693  *
1694  * May try to flush write bio if we can't get the lock.
1695  *
1696  * Return  0 if the extent buffer doesn't need to be submitted.
1697  *           (E.g. the extent buffer is not dirty)
1698  * Return >0 is the extent buffer is submitted to bio.
1699  * Return <0 if something went wrong, no page is locked.
1700  */
1701 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
1702 			  struct btrfs_bio_ctrl *bio_ctrl)
1703 {
1704 	struct btrfs_fs_info *fs_info = eb->fs_info;
1705 	int i, num_pages;
1706 	int flush = 0;
1707 	int ret = 0;
1708 
1709 	if (!btrfs_try_tree_write_lock(eb)) {
1710 		submit_write_bio(bio_ctrl, 0);
1711 		flush = 1;
1712 		btrfs_tree_lock(eb);
1713 	}
1714 
1715 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1716 		btrfs_tree_unlock(eb);
1717 		if (bio_ctrl->wbc->sync_mode != WB_SYNC_ALL)
1718 			return 0;
1719 		if (!flush) {
1720 			submit_write_bio(bio_ctrl, 0);
1721 			flush = 1;
1722 		}
1723 		while (1) {
1724 			wait_on_extent_buffer_writeback(eb);
1725 			btrfs_tree_lock(eb);
1726 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
1727 				break;
1728 			btrfs_tree_unlock(eb);
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * We need to do this to prevent races in people who check if the eb is
1734 	 * under IO since we can end up having no IO bits set for a short period
1735 	 * of time.
1736 	 */
1737 	spin_lock(&eb->refs_lock);
1738 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1739 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1740 		spin_unlock(&eb->refs_lock);
1741 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1742 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1743 					 -eb->len,
1744 					 fs_info->dirty_metadata_batch);
1745 		ret = 1;
1746 	} else {
1747 		spin_unlock(&eb->refs_lock);
1748 	}
1749 
1750 	btrfs_tree_unlock(eb);
1751 
1752 	/*
1753 	 * Either we don't need to submit any tree block, or we're submitting
1754 	 * subpage eb.
1755 	 * Subpage metadata doesn't use page locking at all, so we can skip
1756 	 * the page locking.
1757 	 */
1758 	if (!ret || fs_info->nodesize < PAGE_SIZE)
1759 		return ret;
1760 
1761 	num_pages = num_extent_pages(eb);
1762 	for (i = 0; i < num_pages; i++) {
1763 		struct page *p = eb->pages[i];
1764 
1765 		if (!trylock_page(p)) {
1766 			if (!flush) {
1767 				submit_write_bio(bio_ctrl, 0);
1768 				flush = 1;
1769 			}
1770 			lock_page(p);
1771 		}
1772 	}
1773 
1774 	return ret;
1775 }
1776 
1777 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
1778 {
1779 	struct btrfs_fs_info *fs_info = eb->fs_info;
1780 
1781 	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
1782 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
1783 		return;
1784 
1785 	/*
1786 	 * A read may stumble upon this buffer later, make sure that it gets an
1787 	 * error and knows there was an error.
1788 	 */
1789 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1790 
1791 	/*
1792 	 * We need to set the mapping with the io error as well because a write
1793 	 * error will flip the file system readonly, and then syncfs() will
1794 	 * return a 0 because we are readonly if we don't modify the err seq for
1795 	 * the superblock.
1796 	 */
1797 	mapping_set_error(page->mapping, -EIO);
1798 
1799 	/*
1800 	 * If writeback for a btree extent that doesn't belong to a log tree
1801 	 * failed, increment the counter transaction->eb_write_errors.
1802 	 * We do this because while the transaction is running and before it's
1803 	 * committing (when we call filemap_fdata[write|wait]_range against
1804 	 * the btree inode), we might have
1805 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1806 	 * returns an error or an error happens during writeback, when we're
1807 	 * committing the transaction we wouldn't know about it, since the pages
1808 	 * can be no longer dirty nor marked anymore for writeback (if a
1809 	 * subsequent modification to the extent buffer didn't happen before the
1810 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1811 	 * able to find the pages tagged with SetPageError at transaction
1812 	 * commit time. So if this happens we must abort the transaction,
1813 	 * otherwise we commit a super block with btree roots that point to
1814 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1815 	 * or the content of some node/leaf from a past generation that got
1816 	 * cowed or deleted and is no longer valid.
1817 	 *
1818 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1819 	 * not be enough - we need to distinguish between log tree extents vs
1820 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1821 	 * will catch and clear such errors in the mapping - and that call might
1822 	 * be from a log sync and not from a transaction commit. Also, checking
1823 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1824 	 * not done and would not be reliable - the eb might have been released
1825 	 * from memory and reading it back again means that flag would not be
1826 	 * set (since it's a runtime flag, not persisted on disk).
1827 	 *
1828 	 * Using the flags below in the btree inode also makes us achieve the
1829 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1830 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1831 	 * is called, the writeback for all dirty pages had already finished
1832 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1833 	 * filemap_fdatawait_range() would return success, as it could not know
1834 	 * that writeback errors happened (the pages were no longer tagged for
1835 	 * writeback).
1836 	 */
1837 	switch (eb->log_index) {
1838 	case -1:
1839 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1840 		break;
1841 	case 0:
1842 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1843 		break;
1844 	case 1:
1845 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1846 		break;
1847 	default:
1848 		BUG(); /* unexpected, logic error */
1849 	}
1850 }
1851 
1852 /*
1853  * The endio specific version which won't touch any unsafe spinlock in endio
1854  * context.
1855  */
1856 static struct extent_buffer *find_extent_buffer_nolock(
1857 		struct btrfs_fs_info *fs_info, u64 start)
1858 {
1859 	struct extent_buffer *eb;
1860 
1861 	rcu_read_lock();
1862 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1863 			       start >> fs_info->sectorsize_bits);
1864 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1865 		rcu_read_unlock();
1866 		return eb;
1867 	}
1868 	rcu_read_unlock();
1869 	return NULL;
1870 }
1871 
1872 /*
1873  * The endio function for subpage extent buffer write.
1874  *
1875  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
1876  * after all extent buffers in the page has finished their writeback.
1877  */
1878 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
1879 {
1880 	struct bio *bio = &bbio->bio;
1881 	struct btrfs_fs_info *fs_info;
1882 	struct bio_vec *bvec;
1883 	struct bvec_iter_all iter_all;
1884 
1885 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
1886 	ASSERT(fs_info->nodesize < PAGE_SIZE);
1887 
1888 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1889 	bio_for_each_segment_all(bvec, bio, iter_all) {
1890 		struct page *page = bvec->bv_page;
1891 		u64 bvec_start = page_offset(page) + bvec->bv_offset;
1892 		u64 bvec_end = bvec_start + bvec->bv_len - 1;
1893 		u64 cur_bytenr = bvec_start;
1894 
1895 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
1896 
1897 		/* Iterate through all extent buffers in the range */
1898 		while (cur_bytenr <= bvec_end) {
1899 			struct extent_buffer *eb;
1900 			int done;
1901 
1902 			/*
1903 			 * Here we can't use find_extent_buffer(), as it may
1904 			 * try to lock eb->refs_lock, which is not safe in endio
1905 			 * context.
1906 			 */
1907 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
1908 			ASSERT(eb);
1909 
1910 			cur_bytenr = eb->start + eb->len;
1911 
1912 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
1913 			done = atomic_dec_and_test(&eb->io_pages);
1914 			ASSERT(done);
1915 
1916 			if (bio->bi_status ||
1917 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
1918 				ClearPageUptodate(page);
1919 				set_btree_ioerr(page, eb);
1920 			}
1921 
1922 			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
1923 						      eb->len);
1924 			end_extent_buffer_writeback(eb);
1925 			/*
1926 			 * free_extent_buffer() will grab spinlock which is not
1927 			 * safe in endio context. Thus here we manually dec
1928 			 * the ref.
1929 			 */
1930 			atomic_dec(&eb->refs);
1931 		}
1932 	}
1933 	bio_put(bio);
1934 }
1935 
1936 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
1937 {
1938 	struct bio *bio = &bbio->bio;
1939 	struct bio_vec *bvec;
1940 	struct extent_buffer *eb;
1941 	int done;
1942 	struct bvec_iter_all iter_all;
1943 
1944 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1945 	bio_for_each_segment_all(bvec, bio, iter_all) {
1946 		struct page *page = bvec->bv_page;
1947 
1948 		eb = (struct extent_buffer *)page->private;
1949 		BUG_ON(!eb);
1950 		done = atomic_dec_and_test(&eb->io_pages);
1951 
1952 		if (bio->bi_status ||
1953 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
1954 			ClearPageUptodate(page);
1955 			set_btree_ioerr(page, eb);
1956 		}
1957 
1958 		end_page_writeback(page);
1959 
1960 		if (!done)
1961 			continue;
1962 
1963 		end_extent_buffer_writeback(eb);
1964 	}
1965 
1966 	bio_put(bio);
1967 }
1968 
1969 static void prepare_eb_write(struct extent_buffer *eb)
1970 {
1971 	u32 nritems;
1972 	unsigned long start;
1973 	unsigned long end;
1974 
1975 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1976 	atomic_set(&eb->io_pages, num_extent_pages(eb));
1977 
1978 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1979 	nritems = btrfs_header_nritems(eb);
1980 	if (btrfs_header_level(eb) > 0) {
1981 		end = btrfs_node_key_ptr_offset(eb, nritems);
1982 		memzero_extent_buffer(eb, end, eb->len - end);
1983 	} else {
1984 		/*
1985 		 * Leaf:
1986 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1987 		 */
1988 		start = btrfs_item_nr_offset(eb, nritems);
1989 		end = btrfs_item_nr_offset(eb, 0);
1990 		if (nritems == 0)
1991 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1992 		else
1993 			end += btrfs_item_offset(eb, nritems - 1);
1994 		memzero_extent_buffer(eb, start, end - start);
1995 	}
1996 }
1997 
1998 /*
1999  * Unlike the work in write_one_eb(), we rely completely on extent locking.
2000  * Page locking is only utilized at minimum to keep the VMM code happy.
2001  */
2002 static void write_one_subpage_eb(struct extent_buffer *eb,
2003 				 struct btrfs_bio_ctrl *bio_ctrl)
2004 {
2005 	struct btrfs_fs_info *fs_info = eb->fs_info;
2006 	struct page *page = eb->pages[0];
2007 	bool no_dirty_ebs = false;
2008 
2009 	prepare_eb_write(eb);
2010 
2011 	/* clear_page_dirty_for_io() in subpage helper needs page locked */
2012 	lock_page(page);
2013 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2014 
2015 	/* Check if this is the last dirty bit to update nr_written */
2016 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2017 							  eb->start, eb->len);
2018 	if (no_dirty_ebs)
2019 		clear_page_dirty_for_io(page);
2020 
2021 	bio_ctrl->end_io_func = end_bio_subpage_eb_writepage;
2022 
2023 	submit_extent_page(bio_ctrl, eb->start, page, eb->len,
2024 			   eb->start - page_offset(page));
2025 	unlock_page(page);
2026 	/*
2027 	 * Submission finished without problem, if no range of the page is
2028 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
2029 	 */
2030 	if (no_dirty_ebs)
2031 		bio_ctrl->wbc->nr_to_write--;
2032 }
2033 
2034 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2035 			struct btrfs_bio_ctrl *bio_ctrl)
2036 {
2037 	u64 disk_bytenr = eb->start;
2038 	int i, num_pages;
2039 
2040 	prepare_eb_write(eb);
2041 
2042 	bio_ctrl->end_io_func = end_bio_extent_buffer_writepage;
2043 
2044 	num_pages = num_extent_pages(eb);
2045 	for (i = 0; i < num_pages; i++) {
2046 		struct page *p = eb->pages[i];
2047 
2048 		clear_page_dirty_for_io(p);
2049 		set_page_writeback(p);
2050 		submit_extent_page(bio_ctrl, disk_bytenr, p, PAGE_SIZE, 0);
2051 		disk_bytenr += PAGE_SIZE;
2052 		bio_ctrl->wbc->nr_to_write--;
2053 		unlock_page(p);
2054 	}
2055 }
2056 
2057 /*
2058  * Submit one subpage btree page.
2059  *
2060  * The main difference to submit_eb_page() is:
2061  * - Page locking
2062  *   For subpage, we don't rely on page locking at all.
2063  *
2064  * - Flush write bio
2065  *   We only flush bio if we may be unable to fit current extent buffers into
2066  *   current bio.
2067  *
2068  * Return >=0 for the number of submitted extent buffers.
2069  * Return <0 for fatal error.
2070  */
2071 static int submit_eb_subpage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
2072 {
2073 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2074 	int submitted = 0;
2075 	u64 page_start = page_offset(page);
2076 	int bit_start = 0;
2077 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2078 	int ret;
2079 
2080 	/* Lock and write each dirty extent buffers in the range */
2081 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2082 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2083 		struct extent_buffer *eb;
2084 		unsigned long flags;
2085 		u64 start;
2086 
2087 		/*
2088 		 * Take private lock to ensure the subpage won't be detached
2089 		 * in the meantime.
2090 		 */
2091 		spin_lock(&page->mapping->private_lock);
2092 		if (!PagePrivate(page)) {
2093 			spin_unlock(&page->mapping->private_lock);
2094 			break;
2095 		}
2096 		spin_lock_irqsave(&subpage->lock, flags);
2097 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2098 			      subpage->bitmaps)) {
2099 			spin_unlock_irqrestore(&subpage->lock, flags);
2100 			spin_unlock(&page->mapping->private_lock);
2101 			bit_start++;
2102 			continue;
2103 		}
2104 
2105 		start = page_start + bit_start * fs_info->sectorsize;
2106 		bit_start += sectors_per_node;
2107 
2108 		/*
2109 		 * Here we just want to grab the eb without touching extra
2110 		 * spin locks, so call find_extent_buffer_nolock().
2111 		 */
2112 		eb = find_extent_buffer_nolock(fs_info, start);
2113 		spin_unlock_irqrestore(&subpage->lock, flags);
2114 		spin_unlock(&page->mapping->private_lock);
2115 
2116 		/*
2117 		 * The eb has already reached 0 refs thus find_extent_buffer()
2118 		 * doesn't return it. We don't need to write back such eb
2119 		 * anyway.
2120 		 */
2121 		if (!eb)
2122 			continue;
2123 
2124 		ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2125 		if (ret == 0) {
2126 			free_extent_buffer(eb);
2127 			continue;
2128 		}
2129 		if (ret < 0) {
2130 			free_extent_buffer(eb);
2131 			goto cleanup;
2132 		}
2133 		write_one_subpage_eb(eb, bio_ctrl);
2134 		free_extent_buffer(eb);
2135 		submitted++;
2136 	}
2137 	return submitted;
2138 
2139 cleanup:
2140 	/* We hit error, end bio for the submitted extent buffers */
2141 	submit_write_bio(bio_ctrl, ret);
2142 	return ret;
2143 }
2144 
2145 /*
2146  * Submit all page(s) of one extent buffer.
2147  *
2148  * @page:	the page of one extent buffer
2149  * @eb_context:	to determine if we need to submit this page, if current page
2150  *		belongs to this eb, we don't need to submit
2151  *
2152  * The caller should pass each page in their bytenr order, and here we use
2153  * @eb_context to determine if we have submitted pages of one extent buffer.
2154  *
2155  * If we have, we just skip until we hit a new page that doesn't belong to
2156  * current @eb_context.
2157  *
2158  * If not, we submit all the page(s) of the extent buffer.
2159  *
2160  * Return >0 if we have submitted the extent buffer successfully.
2161  * Return 0 if we don't need to submit the page, as it's already submitted by
2162  * previous call.
2163  * Return <0 for fatal error.
2164  */
2165 static int submit_eb_page(struct page *page, struct btrfs_bio_ctrl *bio_ctrl,
2166 			  struct extent_buffer **eb_context)
2167 {
2168 	struct address_space *mapping = page->mapping;
2169 	struct btrfs_block_group *cache = NULL;
2170 	struct extent_buffer *eb;
2171 	int ret;
2172 
2173 	if (!PagePrivate(page))
2174 		return 0;
2175 
2176 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2177 		return submit_eb_subpage(page, bio_ctrl);
2178 
2179 	spin_lock(&mapping->private_lock);
2180 	if (!PagePrivate(page)) {
2181 		spin_unlock(&mapping->private_lock);
2182 		return 0;
2183 	}
2184 
2185 	eb = (struct extent_buffer *)page->private;
2186 
2187 	/*
2188 	 * Shouldn't happen and normally this would be a BUG_ON but no point
2189 	 * crashing the machine for something we can survive anyway.
2190 	 */
2191 	if (WARN_ON(!eb)) {
2192 		spin_unlock(&mapping->private_lock);
2193 		return 0;
2194 	}
2195 
2196 	if (eb == *eb_context) {
2197 		spin_unlock(&mapping->private_lock);
2198 		return 0;
2199 	}
2200 	ret = atomic_inc_not_zero(&eb->refs);
2201 	spin_unlock(&mapping->private_lock);
2202 	if (!ret)
2203 		return 0;
2204 
2205 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2206 		/*
2207 		 * If for_sync, this hole will be filled with
2208 		 * trasnsaction commit.
2209 		 */
2210 		if (bio_ctrl->wbc->sync_mode == WB_SYNC_ALL &&
2211 		    !bio_ctrl->wbc->for_sync)
2212 			ret = -EAGAIN;
2213 		else
2214 			ret = 0;
2215 		free_extent_buffer(eb);
2216 		return ret;
2217 	}
2218 
2219 	*eb_context = eb;
2220 
2221 	ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2222 	if (ret <= 0) {
2223 		btrfs_revert_meta_write_pointer(cache, eb);
2224 		if (cache)
2225 			btrfs_put_block_group(cache);
2226 		free_extent_buffer(eb);
2227 		return ret;
2228 	}
2229 	if (cache) {
2230 		/*
2231 		 * Implies write in zoned mode. Mark the last eb in a block group.
2232 		 */
2233 		btrfs_schedule_zone_finish_bg(cache, eb);
2234 		btrfs_put_block_group(cache);
2235 	}
2236 	write_one_eb(eb, bio_ctrl);
2237 	free_extent_buffer(eb);
2238 	return 1;
2239 }
2240 
2241 int btree_write_cache_pages(struct address_space *mapping,
2242 				   struct writeback_control *wbc)
2243 {
2244 	struct extent_buffer *eb_context = NULL;
2245 	struct btrfs_bio_ctrl bio_ctrl = {
2246 		.wbc = wbc,
2247 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2248 		.extent_locked = 0,
2249 	};
2250 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2251 	int ret = 0;
2252 	int done = 0;
2253 	int nr_to_write_done = 0;
2254 	struct folio_batch fbatch;
2255 	unsigned int nr_folios;
2256 	pgoff_t index;
2257 	pgoff_t end;		/* Inclusive */
2258 	int scanned = 0;
2259 	xa_mark_t tag;
2260 
2261 	folio_batch_init(&fbatch);
2262 	if (wbc->range_cyclic) {
2263 		index = mapping->writeback_index; /* Start from prev offset */
2264 		end = -1;
2265 		/*
2266 		 * Start from the beginning does not need to cycle over the
2267 		 * range, mark it as scanned.
2268 		 */
2269 		scanned = (index == 0);
2270 	} else {
2271 		index = wbc->range_start >> PAGE_SHIFT;
2272 		end = wbc->range_end >> PAGE_SHIFT;
2273 		scanned = 1;
2274 	}
2275 	if (wbc->sync_mode == WB_SYNC_ALL)
2276 		tag = PAGECACHE_TAG_TOWRITE;
2277 	else
2278 		tag = PAGECACHE_TAG_DIRTY;
2279 	btrfs_zoned_meta_io_lock(fs_info);
2280 retry:
2281 	if (wbc->sync_mode == WB_SYNC_ALL)
2282 		tag_pages_for_writeback(mapping, index, end);
2283 	while (!done && !nr_to_write_done && (index <= end) &&
2284 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2285 					    tag, &fbatch))) {
2286 		unsigned i;
2287 
2288 		for (i = 0; i < nr_folios; i++) {
2289 			struct folio *folio = fbatch.folios[i];
2290 
2291 			ret = submit_eb_page(&folio->page, &bio_ctrl, &eb_context);
2292 			if (ret == 0)
2293 				continue;
2294 			if (ret < 0) {
2295 				done = 1;
2296 				break;
2297 			}
2298 
2299 			/*
2300 			 * the filesystem may choose to bump up nr_to_write.
2301 			 * We have to make sure to honor the new nr_to_write
2302 			 * at any time
2303 			 */
2304 			nr_to_write_done = wbc->nr_to_write <= 0;
2305 		}
2306 		folio_batch_release(&fbatch);
2307 		cond_resched();
2308 	}
2309 	if (!scanned && !done) {
2310 		/*
2311 		 * We hit the last page and there is more work to be done: wrap
2312 		 * back to the start of the file
2313 		 */
2314 		scanned = 1;
2315 		index = 0;
2316 		goto retry;
2317 	}
2318 	/*
2319 	 * If something went wrong, don't allow any metadata write bio to be
2320 	 * submitted.
2321 	 *
2322 	 * This would prevent use-after-free if we had dirty pages not
2323 	 * cleaned up, which can still happen by fuzzed images.
2324 	 *
2325 	 * - Bad extent tree
2326 	 *   Allowing existing tree block to be allocated for other trees.
2327 	 *
2328 	 * - Log tree operations
2329 	 *   Exiting tree blocks get allocated to log tree, bumps its
2330 	 *   generation, then get cleaned in tree re-balance.
2331 	 *   Such tree block will not be written back, since it's clean,
2332 	 *   thus no WRITTEN flag set.
2333 	 *   And after log writes back, this tree block is not traced by
2334 	 *   any dirty extent_io_tree.
2335 	 *
2336 	 * - Offending tree block gets re-dirtied from its original owner
2337 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2338 	 *   reused without COWing. This tree block will not be traced
2339 	 *   by btrfs_transaction::dirty_pages.
2340 	 *
2341 	 *   Now such dirty tree block will not be cleaned by any dirty
2342 	 *   extent io tree. Thus we don't want to submit such wild eb
2343 	 *   if the fs already has error.
2344 	 *
2345 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2346 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2347 	 */
2348 	if (ret > 0)
2349 		ret = 0;
2350 	if (!ret && BTRFS_FS_ERROR(fs_info))
2351 		ret = -EROFS;
2352 	submit_write_bio(&bio_ctrl, ret);
2353 
2354 	btrfs_zoned_meta_io_unlock(fs_info);
2355 	return ret;
2356 }
2357 
2358 /*
2359  * Walk the list of dirty pages of the given address space and write all of them.
2360  *
2361  * @mapping:   address space structure to write
2362  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2363  * @bio_ctrl:  holds context for the write, namely the bio
2364  *
2365  * If a page is already under I/O, write_cache_pages() skips it, even
2366  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2367  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2368  * and msync() need to guarantee that all the data which was dirty at the time
2369  * the call was made get new I/O started against them.  If wbc->sync_mode is
2370  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2371  * existing IO to complete.
2372  */
2373 static int extent_write_cache_pages(struct address_space *mapping,
2374 			     struct btrfs_bio_ctrl *bio_ctrl)
2375 {
2376 	struct writeback_control *wbc = bio_ctrl->wbc;
2377 	struct inode *inode = mapping->host;
2378 	int ret = 0;
2379 	int done = 0;
2380 	int nr_to_write_done = 0;
2381 	struct folio_batch fbatch;
2382 	unsigned int nr_folios;
2383 	pgoff_t index;
2384 	pgoff_t end;		/* Inclusive */
2385 	pgoff_t done_index;
2386 	int range_whole = 0;
2387 	int scanned = 0;
2388 	xa_mark_t tag;
2389 
2390 	/*
2391 	 * We have to hold onto the inode so that ordered extents can do their
2392 	 * work when the IO finishes.  The alternative to this is failing to add
2393 	 * an ordered extent if the igrab() fails there and that is a huge pain
2394 	 * to deal with, so instead just hold onto the inode throughout the
2395 	 * writepages operation.  If it fails here we are freeing up the inode
2396 	 * anyway and we'd rather not waste our time writing out stuff that is
2397 	 * going to be truncated anyway.
2398 	 */
2399 	if (!igrab(inode))
2400 		return 0;
2401 
2402 	folio_batch_init(&fbatch);
2403 	if (wbc->range_cyclic) {
2404 		index = mapping->writeback_index; /* Start from prev offset */
2405 		end = -1;
2406 		/*
2407 		 * Start from the beginning does not need to cycle over the
2408 		 * range, mark it as scanned.
2409 		 */
2410 		scanned = (index == 0);
2411 	} else {
2412 		index = wbc->range_start >> PAGE_SHIFT;
2413 		end = wbc->range_end >> PAGE_SHIFT;
2414 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2415 			range_whole = 1;
2416 		scanned = 1;
2417 	}
2418 
2419 	/*
2420 	 * We do the tagged writepage as long as the snapshot flush bit is set
2421 	 * and we are the first one who do the filemap_flush() on this inode.
2422 	 *
2423 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2424 	 * not race in and drop the bit.
2425 	 */
2426 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2427 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2428 			       &BTRFS_I(inode)->runtime_flags))
2429 		wbc->tagged_writepages = 1;
2430 
2431 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2432 		tag = PAGECACHE_TAG_TOWRITE;
2433 	else
2434 		tag = PAGECACHE_TAG_DIRTY;
2435 retry:
2436 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2437 		tag_pages_for_writeback(mapping, index, end);
2438 	done_index = index;
2439 	while (!done && !nr_to_write_done && (index <= end) &&
2440 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2441 							end, tag, &fbatch))) {
2442 		unsigned i;
2443 
2444 		for (i = 0; i < nr_folios; i++) {
2445 			struct folio *folio = fbatch.folios[i];
2446 
2447 			done_index = folio->index + folio_nr_pages(folio);
2448 			/*
2449 			 * At this point we hold neither the i_pages lock nor
2450 			 * the page lock: the page may be truncated or
2451 			 * invalidated (changing page->mapping to NULL),
2452 			 * or even swizzled back from swapper_space to
2453 			 * tmpfs file mapping
2454 			 */
2455 			if (!folio_trylock(folio)) {
2456 				submit_write_bio(bio_ctrl, 0);
2457 				folio_lock(folio);
2458 			}
2459 
2460 			if (unlikely(folio->mapping != mapping)) {
2461 				folio_unlock(folio);
2462 				continue;
2463 			}
2464 
2465 			if (wbc->sync_mode != WB_SYNC_NONE) {
2466 				if (folio_test_writeback(folio))
2467 					submit_write_bio(bio_ctrl, 0);
2468 				folio_wait_writeback(folio);
2469 			}
2470 
2471 			if (folio_test_writeback(folio) ||
2472 			    !folio_clear_dirty_for_io(folio)) {
2473 				folio_unlock(folio);
2474 				continue;
2475 			}
2476 
2477 			ret = __extent_writepage(&folio->page, bio_ctrl);
2478 			if (ret < 0) {
2479 				done = 1;
2480 				break;
2481 			}
2482 
2483 			/*
2484 			 * the filesystem may choose to bump up nr_to_write.
2485 			 * We have to make sure to honor the new nr_to_write
2486 			 * at any time
2487 			 */
2488 			nr_to_write_done = wbc->nr_to_write <= 0;
2489 		}
2490 		folio_batch_release(&fbatch);
2491 		cond_resched();
2492 	}
2493 	if (!scanned && !done) {
2494 		/*
2495 		 * We hit the last page and there is more work to be done: wrap
2496 		 * back to the start of the file
2497 		 */
2498 		scanned = 1;
2499 		index = 0;
2500 
2501 		/*
2502 		 * If we're looping we could run into a page that is locked by a
2503 		 * writer and that writer could be waiting on writeback for a
2504 		 * page in our current bio, and thus deadlock, so flush the
2505 		 * write bio here.
2506 		 */
2507 		submit_write_bio(bio_ctrl, 0);
2508 		goto retry;
2509 	}
2510 
2511 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2512 		mapping->writeback_index = done_index;
2513 
2514 	btrfs_add_delayed_iput(BTRFS_I(inode));
2515 	return ret;
2516 }
2517 
2518 /*
2519  * Submit the pages in the range to bio for call sites which delalloc range has
2520  * already been ran (aka, ordered extent inserted) and all pages are still
2521  * locked.
2522  */
2523 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
2524 {
2525 	bool found_error = false;
2526 	int first_error = 0;
2527 	int ret = 0;
2528 	struct address_space *mapping = inode->i_mapping;
2529 	struct page *page;
2530 	u64 cur = start;
2531 	unsigned long nr_pages;
2532 	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
2533 	struct writeback_control wbc_writepages = {
2534 		.sync_mode	= WB_SYNC_ALL,
2535 		.range_start	= start,
2536 		.range_end	= end + 1,
2537 		.no_cgroup_owner = 1,
2538 	};
2539 	struct btrfs_bio_ctrl bio_ctrl = {
2540 		.wbc = &wbc_writepages,
2541 		/* We're called from an async helper function */
2542 		.opf = REQ_OP_WRITE | REQ_BTRFS_CGROUP_PUNT |
2543 			wbc_to_write_flags(&wbc_writepages),
2544 		.extent_locked = 1,
2545 	};
2546 
2547 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2548 	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
2549 		   PAGE_SHIFT;
2550 	wbc_writepages.nr_to_write = nr_pages * 2;
2551 
2552 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2553 	while (cur <= end) {
2554 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2555 
2556 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2557 		/*
2558 		 * All pages in the range are locked since
2559 		 * btrfs_run_delalloc_range(), thus there is no way to clear
2560 		 * the page dirty flag.
2561 		 */
2562 		ASSERT(PageLocked(page));
2563 		ASSERT(PageDirty(page));
2564 		clear_page_dirty_for_io(page);
2565 		ret = __extent_writepage(page, &bio_ctrl);
2566 		ASSERT(ret <= 0);
2567 		if (ret < 0) {
2568 			found_error = true;
2569 			first_error = ret;
2570 		}
2571 		put_page(page);
2572 		cur = cur_end + 1;
2573 	}
2574 
2575 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2576 
2577 	wbc_detach_inode(&wbc_writepages);
2578 	if (found_error)
2579 		return first_error;
2580 	return ret;
2581 }
2582 
2583 int extent_writepages(struct address_space *mapping,
2584 		      struct writeback_control *wbc)
2585 {
2586 	struct inode *inode = mapping->host;
2587 	int ret = 0;
2588 	struct btrfs_bio_ctrl bio_ctrl = {
2589 		.wbc = wbc,
2590 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2591 		.extent_locked = 0,
2592 	};
2593 
2594 	/*
2595 	 * Allow only a single thread to do the reloc work in zoned mode to
2596 	 * protect the write pointer updates.
2597 	 */
2598 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2599 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2600 	submit_write_bio(&bio_ctrl, ret);
2601 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2602 	return ret;
2603 }
2604 
2605 void extent_readahead(struct readahead_control *rac)
2606 {
2607 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2608 	struct page *pagepool[16];
2609 	struct extent_map *em_cached = NULL;
2610 	u64 prev_em_start = (u64)-1;
2611 	int nr;
2612 
2613 	while ((nr = readahead_page_batch(rac, pagepool))) {
2614 		u64 contig_start = readahead_pos(rac);
2615 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2616 
2617 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2618 				&em_cached, &bio_ctrl, &prev_em_start);
2619 	}
2620 
2621 	if (em_cached)
2622 		free_extent_map(em_cached);
2623 	submit_one_bio(&bio_ctrl);
2624 }
2625 
2626 /*
2627  * basic invalidate_folio code, this waits on any locked or writeback
2628  * ranges corresponding to the folio, and then deletes any extent state
2629  * records from the tree
2630  */
2631 int extent_invalidate_folio(struct extent_io_tree *tree,
2632 			  struct folio *folio, size_t offset)
2633 {
2634 	struct extent_state *cached_state = NULL;
2635 	u64 start = folio_pos(folio);
2636 	u64 end = start + folio_size(folio) - 1;
2637 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2638 
2639 	/* This function is only called for the btree inode */
2640 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2641 
2642 	start += ALIGN(offset, blocksize);
2643 	if (start > end)
2644 		return 0;
2645 
2646 	lock_extent(tree, start, end, &cached_state);
2647 	folio_wait_writeback(folio);
2648 
2649 	/*
2650 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2651 	 * so here we only need to unlock the extent range to free any
2652 	 * existing extent state.
2653 	 */
2654 	unlock_extent(tree, start, end, &cached_state);
2655 	return 0;
2656 }
2657 
2658 /*
2659  * a helper for release_folio, this tests for areas of the page that
2660  * are locked or under IO and drops the related state bits if it is safe
2661  * to drop the page.
2662  */
2663 static int try_release_extent_state(struct extent_io_tree *tree,
2664 				    struct page *page, gfp_t mask)
2665 {
2666 	u64 start = page_offset(page);
2667 	u64 end = start + PAGE_SIZE - 1;
2668 	int ret = 1;
2669 
2670 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2671 		ret = 0;
2672 	} else {
2673 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2674 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2675 
2676 		/*
2677 		 * At this point we can safely clear everything except the
2678 		 * locked bit, the nodatasum bit and the delalloc new bit.
2679 		 * The delalloc new bit will be cleared by ordered extent
2680 		 * completion.
2681 		 */
2682 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
2683 					 mask, NULL);
2684 
2685 		/* if clear_extent_bit failed for enomem reasons,
2686 		 * we can't allow the release to continue.
2687 		 */
2688 		if (ret < 0)
2689 			ret = 0;
2690 		else
2691 			ret = 1;
2692 	}
2693 	return ret;
2694 }
2695 
2696 /*
2697  * a helper for release_folio.  As long as there are no locked extents
2698  * in the range corresponding to the page, both state records and extent
2699  * map records are removed
2700  */
2701 int try_release_extent_mapping(struct page *page, gfp_t mask)
2702 {
2703 	struct extent_map *em;
2704 	u64 start = page_offset(page);
2705 	u64 end = start + PAGE_SIZE - 1;
2706 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2707 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2708 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2709 
2710 	if (gfpflags_allow_blocking(mask) &&
2711 	    page->mapping->host->i_size > SZ_16M) {
2712 		u64 len;
2713 		while (start <= end) {
2714 			struct btrfs_fs_info *fs_info;
2715 			u64 cur_gen;
2716 
2717 			len = end - start + 1;
2718 			write_lock(&map->lock);
2719 			em = lookup_extent_mapping(map, start, len);
2720 			if (!em) {
2721 				write_unlock(&map->lock);
2722 				break;
2723 			}
2724 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2725 			    em->start != start) {
2726 				write_unlock(&map->lock);
2727 				free_extent_map(em);
2728 				break;
2729 			}
2730 			if (test_range_bit(tree, em->start,
2731 					   extent_map_end(em) - 1,
2732 					   EXTENT_LOCKED, 0, NULL))
2733 				goto next;
2734 			/*
2735 			 * If it's not in the list of modified extents, used
2736 			 * by a fast fsync, we can remove it. If it's being
2737 			 * logged we can safely remove it since fsync took an
2738 			 * extra reference on the em.
2739 			 */
2740 			if (list_empty(&em->list) ||
2741 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2742 				goto remove_em;
2743 			/*
2744 			 * If it's in the list of modified extents, remove it
2745 			 * only if its generation is older then the current one,
2746 			 * in which case we don't need it for a fast fsync.
2747 			 * Otherwise don't remove it, we could be racing with an
2748 			 * ongoing fast fsync that could miss the new extent.
2749 			 */
2750 			fs_info = btrfs_inode->root->fs_info;
2751 			spin_lock(&fs_info->trans_lock);
2752 			cur_gen = fs_info->generation;
2753 			spin_unlock(&fs_info->trans_lock);
2754 			if (em->generation >= cur_gen)
2755 				goto next;
2756 remove_em:
2757 			/*
2758 			 * We only remove extent maps that are not in the list of
2759 			 * modified extents or that are in the list but with a
2760 			 * generation lower then the current generation, so there
2761 			 * is no need to set the full fsync flag on the inode (it
2762 			 * hurts the fsync performance for workloads with a data
2763 			 * size that exceeds or is close to the system's memory).
2764 			 */
2765 			remove_extent_mapping(map, em);
2766 			/* once for the rb tree */
2767 			free_extent_map(em);
2768 next:
2769 			start = extent_map_end(em);
2770 			write_unlock(&map->lock);
2771 
2772 			/* once for us */
2773 			free_extent_map(em);
2774 
2775 			cond_resched(); /* Allow large-extent preemption. */
2776 		}
2777 	}
2778 	return try_release_extent_state(tree, page, mask);
2779 }
2780 
2781 /*
2782  * To cache previous fiemap extent
2783  *
2784  * Will be used for merging fiemap extent
2785  */
2786 struct fiemap_cache {
2787 	u64 offset;
2788 	u64 phys;
2789 	u64 len;
2790 	u32 flags;
2791 	bool cached;
2792 };
2793 
2794 /*
2795  * Helper to submit fiemap extent.
2796  *
2797  * Will try to merge current fiemap extent specified by @offset, @phys,
2798  * @len and @flags with cached one.
2799  * And only when we fails to merge, cached one will be submitted as
2800  * fiemap extent.
2801  *
2802  * Return value is the same as fiemap_fill_next_extent().
2803  */
2804 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2805 				struct fiemap_cache *cache,
2806 				u64 offset, u64 phys, u64 len, u32 flags)
2807 {
2808 	int ret = 0;
2809 
2810 	/* Set at the end of extent_fiemap(). */
2811 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2812 
2813 	if (!cache->cached)
2814 		goto assign;
2815 
2816 	/*
2817 	 * Sanity check, extent_fiemap() should have ensured that new
2818 	 * fiemap extent won't overlap with cached one.
2819 	 * Not recoverable.
2820 	 *
2821 	 * NOTE: Physical address can overlap, due to compression
2822 	 */
2823 	if (cache->offset + cache->len > offset) {
2824 		WARN_ON(1);
2825 		return -EINVAL;
2826 	}
2827 
2828 	/*
2829 	 * Only merges fiemap extents if
2830 	 * 1) Their logical addresses are continuous
2831 	 *
2832 	 * 2) Their physical addresses are continuous
2833 	 *    So truly compressed (physical size smaller than logical size)
2834 	 *    extents won't get merged with each other
2835 	 *
2836 	 * 3) Share same flags
2837 	 */
2838 	if (cache->offset + cache->len  == offset &&
2839 	    cache->phys + cache->len == phys  &&
2840 	    cache->flags == flags) {
2841 		cache->len += len;
2842 		return 0;
2843 	}
2844 
2845 	/* Not mergeable, need to submit cached one */
2846 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2847 				      cache->len, cache->flags);
2848 	cache->cached = false;
2849 	if (ret)
2850 		return ret;
2851 assign:
2852 	cache->cached = true;
2853 	cache->offset = offset;
2854 	cache->phys = phys;
2855 	cache->len = len;
2856 	cache->flags = flags;
2857 
2858 	return 0;
2859 }
2860 
2861 /*
2862  * Emit last fiemap cache
2863  *
2864  * The last fiemap cache may still be cached in the following case:
2865  * 0		      4k		    8k
2866  * |<- Fiemap range ->|
2867  * |<------------  First extent ----------->|
2868  *
2869  * In this case, the first extent range will be cached but not emitted.
2870  * So we must emit it before ending extent_fiemap().
2871  */
2872 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2873 				  struct fiemap_cache *cache)
2874 {
2875 	int ret;
2876 
2877 	if (!cache->cached)
2878 		return 0;
2879 
2880 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2881 				      cache->len, cache->flags);
2882 	cache->cached = false;
2883 	if (ret > 0)
2884 		ret = 0;
2885 	return ret;
2886 }
2887 
2888 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2889 {
2890 	struct extent_buffer *clone;
2891 	struct btrfs_key key;
2892 	int slot;
2893 	int ret;
2894 
2895 	path->slots[0]++;
2896 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2897 		return 0;
2898 
2899 	ret = btrfs_next_leaf(inode->root, path);
2900 	if (ret != 0)
2901 		return ret;
2902 
2903 	/*
2904 	 * Don't bother with cloning if there are no more file extent items for
2905 	 * our inode.
2906 	 */
2907 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2908 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2909 		return 1;
2910 
2911 	/* See the comment at fiemap_search_slot() about why we clone. */
2912 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2913 	if (!clone)
2914 		return -ENOMEM;
2915 
2916 	slot = path->slots[0];
2917 	btrfs_release_path(path);
2918 	path->nodes[0] = clone;
2919 	path->slots[0] = slot;
2920 
2921 	return 0;
2922 }
2923 
2924 /*
2925  * Search for the first file extent item that starts at a given file offset or
2926  * the one that starts immediately before that offset.
2927  * Returns: 0 on success, < 0 on error, 1 if not found.
2928  */
2929 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2930 			      u64 file_offset)
2931 {
2932 	const u64 ino = btrfs_ino(inode);
2933 	struct btrfs_root *root = inode->root;
2934 	struct extent_buffer *clone;
2935 	struct btrfs_key key;
2936 	int slot;
2937 	int ret;
2938 
2939 	key.objectid = ino;
2940 	key.type = BTRFS_EXTENT_DATA_KEY;
2941 	key.offset = file_offset;
2942 
2943 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2944 	if (ret < 0)
2945 		return ret;
2946 
2947 	if (ret > 0 && path->slots[0] > 0) {
2948 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2949 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2950 			path->slots[0]--;
2951 	}
2952 
2953 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2954 		ret = btrfs_next_leaf(root, path);
2955 		if (ret != 0)
2956 			return ret;
2957 
2958 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2959 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2960 			return 1;
2961 	}
2962 
2963 	/*
2964 	 * We clone the leaf and use it during fiemap. This is because while
2965 	 * using the leaf we do expensive things like checking if an extent is
2966 	 * shared, which can take a long time. In order to prevent blocking
2967 	 * other tasks for too long, we use a clone of the leaf. We have locked
2968 	 * the file range in the inode's io tree, so we know none of our file
2969 	 * extent items can change. This way we avoid blocking other tasks that
2970 	 * want to insert items for other inodes in the same leaf or b+tree
2971 	 * rebalance operations (triggered for example when someone is trying
2972 	 * to push items into this leaf when trying to insert an item in a
2973 	 * neighbour leaf).
2974 	 * We also need the private clone because holding a read lock on an
2975 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2976 	 * when we call fiemap_fill_next_extent(), because that may cause a page
2977 	 * fault when filling the user space buffer with fiemap data.
2978 	 */
2979 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2980 	if (!clone)
2981 		return -ENOMEM;
2982 
2983 	slot = path->slots[0];
2984 	btrfs_release_path(path);
2985 	path->nodes[0] = clone;
2986 	path->slots[0] = slot;
2987 
2988 	return 0;
2989 }
2990 
2991 /*
2992  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2993  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2994  * extent. The end offset (@end) is inclusive.
2995  */
2996 static int fiemap_process_hole(struct btrfs_inode *inode,
2997 			       struct fiemap_extent_info *fieinfo,
2998 			       struct fiemap_cache *cache,
2999 			       struct extent_state **delalloc_cached_state,
3000 			       struct btrfs_backref_share_check_ctx *backref_ctx,
3001 			       u64 disk_bytenr, u64 extent_offset,
3002 			       u64 extent_gen,
3003 			       u64 start, u64 end)
3004 {
3005 	const u64 i_size = i_size_read(&inode->vfs_inode);
3006 	u64 cur_offset = start;
3007 	u64 last_delalloc_end = 0;
3008 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3009 	bool checked_extent_shared = false;
3010 	int ret;
3011 
3012 	/*
3013 	 * There can be no delalloc past i_size, so don't waste time looking for
3014 	 * it beyond i_size.
3015 	 */
3016 	while (cur_offset < end && cur_offset < i_size) {
3017 		u64 delalloc_start;
3018 		u64 delalloc_end;
3019 		u64 prealloc_start;
3020 		u64 prealloc_len = 0;
3021 		bool delalloc;
3022 
3023 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3024 							delalloc_cached_state,
3025 							&delalloc_start,
3026 							&delalloc_end);
3027 		if (!delalloc)
3028 			break;
3029 
3030 		/*
3031 		 * If this is a prealloc extent we have to report every section
3032 		 * of it that has no delalloc.
3033 		 */
3034 		if (disk_bytenr != 0) {
3035 			if (last_delalloc_end == 0) {
3036 				prealloc_start = start;
3037 				prealloc_len = delalloc_start - start;
3038 			} else {
3039 				prealloc_start = last_delalloc_end + 1;
3040 				prealloc_len = delalloc_start - prealloc_start;
3041 			}
3042 		}
3043 
3044 		if (prealloc_len > 0) {
3045 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
3046 				ret = btrfs_is_data_extent_shared(inode,
3047 								  disk_bytenr,
3048 								  extent_gen,
3049 								  backref_ctx);
3050 				if (ret < 0)
3051 					return ret;
3052 				else if (ret > 0)
3053 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
3054 
3055 				checked_extent_shared = true;
3056 			}
3057 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3058 						 disk_bytenr + extent_offset,
3059 						 prealloc_len, prealloc_flags);
3060 			if (ret)
3061 				return ret;
3062 			extent_offset += prealloc_len;
3063 		}
3064 
3065 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3066 					 delalloc_end + 1 - delalloc_start,
3067 					 FIEMAP_EXTENT_DELALLOC |
3068 					 FIEMAP_EXTENT_UNKNOWN);
3069 		if (ret)
3070 			return ret;
3071 
3072 		last_delalloc_end = delalloc_end;
3073 		cur_offset = delalloc_end + 1;
3074 		extent_offset += cur_offset - delalloc_start;
3075 		cond_resched();
3076 	}
3077 
3078 	/*
3079 	 * Either we found no delalloc for the whole prealloc extent or we have
3080 	 * a prealloc extent that spans i_size or starts at or after i_size.
3081 	 */
3082 	if (disk_bytenr != 0 && last_delalloc_end < end) {
3083 		u64 prealloc_start;
3084 		u64 prealloc_len;
3085 
3086 		if (last_delalloc_end == 0) {
3087 			prealloc_start = start;
3088 			prealloc_len = end + 1 - start;
3089 		} else {
3090 			prealloc_start = last_delalloc_end + 1;
3091 			prealloc_len = end + 1 - prealloc_start;
3092 		}
3093 
3094 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
3095 			ret = btrfs_is_data_extent_shared(inode,
3096 							  disk_bytenr,
3097 							  extent_gen,
3098 							  backref_ctx);
3099 			if (ret < 0)
3100 				return ret;
3101 			else if (ret > 0)
3102 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
3103 		}
3104 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3105 					 disk_bytenr + extent_offset,
3106 					 prealloc_len, prealloc_flags);
3107 		if (ret)
3108 			return ret;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3115 					  struct btrfs_path *path,
3116 					  u64 *last_extent_end_ret)
3117 {
3118 	const u64 ino = btrfs_ino(inode);
3119 	struct btrfs_root *root = inode->root;
3120 	struct extent_buffer *leaf;
3121 	struct btrfs_file_extent_item *ei;
3122 	struct btrfs_key key;
3123 	u64 disk_bytenr;
3124 	int ret;
3125 
3126 	/*
3127 	 * Lookup the last file extent. We're not using i_size here because
3128 	 * there might be preallocation past i_size.
3129 	 */
3130 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3131 	/* There can't be a file extent item at offset (u64)-1 */
3132 	ASSERT(ret != 0);
3133 	if (ret < 0)
3134 		return ret;
3135 
3136 	/*
3137 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3138 	 * slot > 0, except if the btree is empty, which is impossible because
3139 	 * at least it has the inode item for this inode and all the items for
3140 	 * the root inode 256.
3141 	 */
3142 	ASSERT(path->slots[0] > 0);
3143 	path->slots[0]--;
3144 	leaf = path->nodes[0];
3145 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3146 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3147 		/* No file extent items in the subvolume tree. */
3148 		*last_extent_end_ret = 0;
3149 		return 0;
3150 	}
3151 
3152 	/*
3153 	 * For an inline extent, the disk_bytenr is where inline data starts at,
3154 	 * so first check if we have an inline extent item before checking if we
3155 	 * have an implicit hole (disk_bytenr == 0).
3156 	 */
3157 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3158 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3159 		*last_extent_end_ret = btrfs_file_extent_end(path);
3160 		return 0;
3161 	}
3162 
3163 	/*
3164 	 * Find the last file extent item that is not a hole (when NO_HOLES is
3165 	 * not enabled). This should take at most 2 iterations in the worst
3166 	 * case: we have one hole file extent item at slot 0 of a leaf and
3167 	 * another hole file extent item as the last item in the previous leaf.
3168 	 * This is because we merge file extent items that represent holes.
3169 	 */
3170 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3171 	while (disk_bytenr == 0) {
3172 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3173 		if (ret < 0) {
3174 			return ret;
3175 		} else if (ret > 0) {
3176 			/* No file extent items that are not holes. */
3177 			*last_extent_end_ret = 0;
3178 			return 0;
3179 		}
3180 		leaf = path->nodes[0];
3181 		ei = btrfs_item_ptr(leaf, path->slots[0],
3182 				    struct btrfs_file_extent_item);
3183 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3184 	}
3185 
3186 	*last_extent_end_ret = btrfs_file_extent_end(path);
3187 	return 0;
3188 }
3189 
3190 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3191 		  u64 start, u64 len)
3192 {
3193 	const u64 ino = btrfs_ino(inode);
3194 	struct extent_state *cached_state = NULL;
3195 	struct extent_state *delalloc_cached_state = NULL;
3196 	struct btrfs_path *path;
3197 	struct fiemap_cache cache = { 0 };
3198 	struct btrfs_backref_share_check_ctx *backref_ctx;
3199 	u64 last_extent_end;
3200 	u64 prev_extent_end;
3201 	u64 lockstart;
3202 	u64 lockend;
3203 	bool stopped = false;
3204 	int ret;
3205 
3206 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3207 	path = btrfs_alloc_path();
3208 	if (!backref_ctx || !path) {
3209 		ret = -ENOMEM;
3210 		goto out;
3211 	}
3212 
3213 	lockstart = round_down(start, inode->root->fs_info->sectorsize);
3214 	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
3215 	prev_extent_end = lockstart;
3216 
3217 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3218 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3219 
3220 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3221 	if (ret < 0)
3222 		goto out_unlock;
3223 	btrfs_release_path(path);
3224 
3225 	path->reada = READA_FORWARD;
3226 	ret = fiemap_search_slot(inode, path, lockstart);
3227 	if (ret < 0) {
3228 		goto out_unlock;
3229 	} else if (ret > 0) {
3230 		/*
3231 		 * No file extent item found, but we may have delalloc between
3232 		 * the current offset and i_size. So check for that.
3233 		 */
3234 		ret = 0;
3235 		goto check_eof_delalloc;
3236 	}
3237 
3238 	while (prev_extent_end < lockend) {
3239 		struct extent_buffer *leaf = path->nodes[0];
3240 		struct btrfs_file_extent_item *ei;
3241 		struct btrfs_key key;
3242 		u64 extent_end;
3243 		u64 extent_len;
3244 		u64 extent_offset = 0;
3245 		u64 extent_gen;
3246 		u64 disk_bytenr = 0;
3247 		u64 flags = 0;
3248 		int extent_type;
3249 		u8 compression;
3250 
3251 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3252 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3253 			break;
3254 
3255 		extent_end = btrfs_file_extent_end(path);
3256 
3257 		/*
3258 		 * The first iteration can leave us at an extent item that ends
3259 		 * before our range's start. Move to the next item.
3260 		 */
3261 		if (extent_end <= lockstart)
3262 			goto next_item;
3263 
3264 		backref_ctx->curr_leaf_bytenr = leaf->start;
3265 
3266 		/* We have in implicit hole (NO_HOLES feature enabled). */
3267 		if (prev_extent_end < key.offset) {
3268 			const u64 range_end = min(key.offset, lockend) - 1;
3269 
3270 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3271 						  &delalloc_cached_state,
3272 						  backref_ctx, 0, 0, 0,
3273 						  prev_extent_end, range_end);
3274 			if (ret < 0) {
3275 				goto out_unlock;
3276 			} else if (ret > 0) {
3277 				/* fiemap_fill_next_extent() told us to stop. */
3278 				stopped = true;
3279 				break;
3280 			}
3281 
3282 			/* We've reached the end of the fiemap range, stop. */
3283 			if (key.offset >= lockend) {
3284 				stopped = true;
3285 				break;
3286 			}
3287 		}
3288 
3289 		extent_len = extent_end - key.offset;
3290 		ei = btrfs_item_ptr(leaf, path->slots[0],
3291 				    struct btrfs_file_extent_item);
3292 		compression = btrfs_file_extent_compression(leaf, ei);
3293 		extent_type = btrfs_file_extent_type(leaf, ei);
3294 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3295 
3296 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3297 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3298 			if (compression == BTRFS_COMPRESS_NONE)
3299 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3300 		}
3301 
3302 		if (compression != BTRFS_COMPRESS_NONE)
3303 			flags |= FIEMAP_EXTENT_ENCODED;
3304 
3305 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3306 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3307 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3308 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3309 						 extent_len, flags);
3310 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3311 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3312 						  &delalloc_cached_state,
3313 						  backref_ctx,
3314 						  disk_bytenr, extent_offset,
3315 						  extent_gen, key.offset,
3316 						  extent_end - 1);
3317 		} else if (disk_bytenr == 0) {
3318 			/* We have an explicit hole. */
3319 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3320 						  &delalloc_cached_state,
3321 						  backref_ctx, 0, 0, 0,
3322 						  key.offset, extent_end - 1);
3323 		} else {
3324 			/* We have a regular extent. */
3325 			if (fieinfo->fi_extents_max) {
3326 				ret = btrfs_is_data_extent_shared(inode,
3327 								  disk_bytenr,
3328 								  extent_gen,
3329 								  backref_ctx);
3330 				if (ret < 0)
3331 					goto out_unlock;
3332 				else if (ret > 0)
3333 					flags |= FIEMAP_EXTENT_SHARED;
3334 			}
3335 
3336 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3337 						 disk_bytenr + extent_offset,
3338 						 extent_len, flags);
3339 		}
3340 
3341 		if (ret < 0) {
3342 			goto out_unlock;
3343 		} else if (ret > 0) {
3344 			/* fiemap_fill_next_extent() told us to stop. */
3345 			stopped = true;
3346 			break;
3347 		}
3348 
3349 		prev_extent_end = extent_end;
3350 next_item:
3351 		if (fatal_signal_pending(current)) {
3352 			ret = -EINTR;
3353 			goto out_unlock;
3354 		}
3355 
3356 		ret = fiemap_next_leaf_item(inode, path);
3357 		if (ret < 0) {
3358 			goto out_unlock;
3359 		} else if (ret > 0) {
3360 			/* No more file extent items for this inode. */
3361 			break;
3362 		}
3363 		cond_resched();
3364 	}
3365 
3366 check_eof_delalloc:
3367 	/*
3368 	 * Release (and free) the path before emitting any final entries to
3369 	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3370 	 * once we find no more file extent items exist, we may have a
3371 	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3372 	 * faults when copying data to the user space buffer.
3373 	 */
3374 	btrfs_free_path(path);
3375 	path = NULL;
3376 
3377 	if (!stopped && prev_extent_end < lockend) {
3378 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3379 					  &delalloc_cached_state, backref_ctx,
3380 					  0, 0, 0, prev_extent_end, lockend - 1);
3381 		if (ret < 0)
3382 			goto out_unlock;
3383 		prev_extent_end = lockend;
3384 	}
3385 
3386 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3387 		const u64 i_size = i_size_read(&inode->vfs_inode);
3388 
3389 		if (prev_extent_end < i_size) {
3390 			u64 delalloc_start;
3391 			u64 delalloc_end;
3392 			bool delalloc;
3393 
3394 			delalloc = btrfs_find_delalloc_in_range(inode,
3395 								prev_extent_end,
3396 								i_size - 1,
3397 								&delalloc_cached_state,
3398 								&delalloc_start,
3399 								&delalloc_end);
3400 			if (!delalloc)
3401 				cache.flags |= FIEMAP_EXTENT_LAST;
3402 		} else {
3403 			cache.flags |= FIEMAP_EXTENT_LAST;
3404 		}
3405 	}
3406 
3407 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3408 
3409 out_unlock:
3410 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3411 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3412 out:
3413 	free_extent_state(delalloc_cached_state);
3414 	btrfs_free_backref_share_ctx(backref_ctx);
3415 	btrfs_free_path(path);
3416 	return ret;
3417 }
3418 
3419 static void __free_extent_buffer(struct extent_buffer *eb)
3420 {
3421 	kmem_cache_free(extent_buffer_cache, eb);
3422 }
3423 
3424 int extent_buffer_under_io(const struct extent_buffer *eb)
3425 {
3426 	return (atomic_read(&eb->io_pages) ||
3427 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3428 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3429 }
3430 
3431 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3432 {
3433 	struct btrfs_subpage *subpage;
3434 
3435 	lockdep_assert_held(&page->mapping->private_lock);
3436 
3437 	if (PagePrivate(page)) {
3438 		subpage = (struct btrfs_subpage *)page->private;
3439 		if (atomic_read(&subpage->eb_refs))
3440 			return true;
3441 		/*
3442 		 * Even there is no eb refs here, we may still have
3443 		 * end_page_read() call relying on page::private.
3444 		 */
3445 		if (atomic_read(&subpage->readers))
3446 			return true;
3447 	}
3448 	return false;
3449 }
3450 
3451 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3452 {
3453 	struct btrfs_fs_info *fs_info = eb->fs_info;
3454 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3455 
3456 	/*
3457 	 * For mapped eb, we're going to change the page private, which should
3458 	 * be done under the private_lock.
3459 	 */
3460 	if (mapped)
3461 		spin_lock(&page->mapping->private_lock);
3462 
3463 	if (!PagePrivate(page)) {
3464 		if (mapped)
3465 			spin_unlock(&page->mapping->private_lock);
3466 		return;
3467 	}
3468 
3469 	if (fs_info->nodesize >= PAGE_SIZE) {
3470 		/*
3471 		 * We do this since we'll remove the pages after we've
3472 		 * removed the eb from the radix tree, so we could race
3473 		 * and have this page now attached to the new eb.  So
3474 		 * only clear page_private if it's still connected to
3475 		 * this eb.
3476 		 */
3477 		if (PagePrivate(page) &&
3478 		    page->private == (unsigned long)eb) {
3479 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3480 			BUG_ON(PageDirty(page));
3481 			BUG_ON(PageWriteback(page));
3482 			/*
3483 			 * We need to make sure we haven't be attached
3484 			 * to a new eb.
3485 			 */
3486 			detach_page_private(page);
3487 		}
3488 		if (mapped)
3489 			spin_unlock(&page->mapping->private_lock);
3490 		return;
3491 	}
3492 
3493 	/*
3494 	 * For subpage, we can have dummy eb with page private.  In this case,
3495 	 * we can directly detach the private as such page is only attached to
3496 	 * one dummy eb, no sharing.
3497 	 */
3498 	if (!mapped) {
3499 		btrfs_detach_subpage(fs_info, page);
3500 		return;
3501 	}
3502 
3503 	btrfs_page_dec_eb_refs(fs_info, page);
3504 
3505 	/*
3506 	 * We can only detach the page private if there are no other ebs in the
3507 	 * page range and no unfinished IO.
3508 	 */
3509 	if (!page_range_has_eb(fs_info, page))
3510 		btrfs_detach_subpage(fs_info, page);
3511 
3512 	spin_unlock(&page->mapping->private_lock);
3513 }
3514 
3515 /* Release all pages attached to the extent buffer */
3516 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3517 {
3518 	int i;
3519 	int num_pages;
3520 
3521 	ASSERT(!extent_buffer_under_io(eb));
3522 
3523 	num_pages = num_extent_pages(eb);
3524 	for (i = 0; i < num_pages; i++) {
3525 		struct page *page = eb->pages[i];
3526 
3527 		if (!page)
3528 			continue;
3529 
3530 		detach_extent_buffer_page(eb, page);
3531 
3532 		/* One for when we allocated the page */
3533 		put_page(page);
3534 	}
3535 }
3536 
3537 /*
3538  * Helper for releasing the extent buffer.
3539  */
3540 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3541 {
3542 	btrfs_release_extent_buffer_pages(eb);
3543 	btrfs_leak_debug_del_eb(eb);
3544 	__free_extent_buffer(eb);
3545 }
3546 
3547 static struct extent_buffer *
3548 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3549 		      unsigned long len)
3550 {
3551 	struct extent_buffer *eb = NULL;
3552 
3553 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3554 	eb->start = start;
3555 	eb->len = len;
3556 	eb->fs_info = fs_info;
3557 	init_rwsem(&eb->lock);
3558 
3559 	btrfs_leak_debug_add_eb(eb);
3560 	INIT_LIST_HEAD(&eb->release_list);
3561 
3562 	spin_lock_init(&eb->refs_lock);
3563 	atomic_set(&eb->refs, 1);
3564 	atomic_set(&eb->io_pages, 0);
3565 
3566 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3567 
3568 	return eb;
3569 }
3570 
3571 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3572 {
3573 	int i;
3574 	struct extent_buffer *new;
3575 	int num_pages = num_extent_pages(src);
3576 	int ret;
3577 
3578 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3579 	if (new == NULL)
3580 		return NULL;
3581 
3582 	/*
3583 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3584 	 * btrfs_release_extent_buffer() have different behavior for
3585 	 * UNMAPPED subpage extent buffer.
3586 	 */
3587 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3588 
3589 	ret = btrfs_alloc_page_array(num_pages, new->pages);
3590 	if (ret) {
3591 		btrfs_release_extent_buffer(new);
3592 		return NULL;
3593 	}
3594 
3595 	for (i = 0; i < num_pages; i++) {
3596 		int ret;
3597 		struct page *p = new->pages[i];
3598 
3599 		ret = attach_extent_buffer_page(new, p, NULL);
3600 		if (ret < 0) {
3601 			btrfs_release_extent_buffer(new);
3602 			return NULL;
3603 		}
3604 		WARN_ON(PageDirty(p));
3605 		copy_page(page_address(p), page_address(src->pages[i]));
3606 	}
3607 	set_extent_buffer_uptodate(new);
3608 
3609 	return new;
3610 }
3611 
3612 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3613 						  u64 start, unsigned long len)
3614 {
3615 	struct extent_buffer *eb;
3616 	int num_pages;
3617 	int i;
3618 	int ret;
3619 
3620 	eb = __alloc_extent_buffer(fs_info, start, len);
3621 	if (!eb)
3622 		return NULL;
3623 
3624 	num_pages = num_extent_pages(eb);
3625 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3626 	if (ret)
3627 		goto err;
3628 
3629 	for (i = 0; i < num_pages; i++) {
3630 		struct page *p = eb->pages[i];
3631 
3632 		ret = attach_extent_buffer_page(eb, p, NULL);
3633 		if (ret < 0)
3634 			goto err;
3635 	}
3636 
3637 	set_extent_buffer_uptodate(eb);
3638 	btrfs_set_header_nritems(eb, 0);
3639 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3640 
3641 	return eb;
3642 err:
3643 	for (i = 0; i < num_pages; i++) {
3644 		if (eb->pages[i]) {
3645 			detach_extent_buffer_page(eb, eb->pages[i]);
3646 			__free_page(eb->pages[i]);
3647 		}
3648 	}
3649 	__free_extent_buffer(eb);
3650 	return NULL;
3651 }
3652 
3653 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3654 						u64 start)
3655 {
3656 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3657 }
3658 
3659 static void check_buffer_tree_ref(struct extent_buffer *eb)
3660 {
3661 	int refs;
3662 	/*
3663 	 * The TREE_REF bit is first set when the extent_buffer is added
3664 	 * to the radix tree. It is also reset, if unset, when a new reference
3665 	 * is created by find_extent_buffer.
3666 	 *
3667 	 * It is only cleared in two cases: freeing the last non-tree
3668 	 * reference to the extent_buffer when its STALE bit is set or
3669 	 * calling release_folio when the tree reference is the only reference.
3670 	 *
3671 	 * In both cases, care is taken to ensure that the extent_buffer's
3672 	 * pages are not under io. However, release_folio can be concurrently
3673 	 * called with creating new references, which is prone to race
3674 	 * conditions between the calls to check_buffer_tree_ref in those
3675 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3676 	 *
3677 	 * The actual lifetime of the extent_buffer in the radix tree is
3678 	 * adequately protected by the refcount, but the TREE_REF bit and
3679 	 * its corresponding reference are not. To protect against this
3680 	 * class of races, we call check_buffer_tree_ref from the codepaths
3681 	 * which trigger io after they set eb->io_pages. Note that once io is
3682 	 * initiated, TREE_REF can no longer be cleared, so that is the
3683 	 * moment at which any such race is best fixed.
3684 	 */
3685 	refs = atomic_read(&eb->refs);
3686 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3687 		return;
3688 
3689 	spin_lock(&eb->refs_lock);
3690 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3691 		atomic_inc(&eb->refs);
3692 	spin_unlock(&eb->refs_lock);
3693 }
3694 
3695 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3696 		struct page *accessed)
3697 {
3698 	int num_pages, i;
3699 
3700 	check_buffer_tree_ref(eb);
3701 
3702 	num_pages = num_extent_pages(eb);
3703 	for (i = 0; i < num_pages; i++) {
3704 		struct page *p = eb->pages[i];
3705 
3706 		if (p != accessed)
3707 			mark_page_accessed(p);
3708 	}
3709 }
3710 
3711 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3712 					 u64 start)
3713 {
3714 	struct extent_buffer *eb;
3715 
3716 	eb = find_extent_buffer_nolock(fs_info, start);
3717 	if (!eb)
3718 		return NULL;
3719 	/*
3720 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3721 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3722 	 * another task running free_extent_buffer() might have seen that flag
3723 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3724 	 * writeback flags not set) and it's still in the tree (flag
3725 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3726 	 * decrementing the extent buffer's reference count twice.  So here we
3727 	 * could race and increment the eb's reference count, clear its stale
3728 	 * flag, mark it as dirty and drop our reference before the other task
3729 	 * finishes executing free_extent_buffer, which would later result in
3730 	 * an attempt to free an extent buffer that is dirty.
3731 	 */
3732 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3733 		spin_lock(&eb->refs_lock);
3734 		spin_unlock(&eb->refs_lock);
3735 	}
3736 	mark_extent_buffer_accessed(eb, NULL);
3737 	return eb;
3738 }
3739 
3740 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3741 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3742 					u64 start)
3743 {
3744 	struct extent_buffer *eb, *exists = NULL;
3745 	int ret;
3746 
3747 	eb = find_extent_buffer(fs_info, start);
3748 	if (eb)
3749 		return eb;
3750 	eb = alloc_dummy_extent_buffer(fs_info, start);
3751 	if (!eb)
3752 		return ERR_PTR(-ENOMEM);
3753 	eb->fs_info = fs_info;
3754 again:
3755 	ret = radix_tree_preload(GFP_NOFS);
3756 	if (ret) {
3757 		exists = ERR_PTR(ret);
3758 		goto free_eb;
3759 	}
3760 	spin_lock(&fs_info->buffer_lock);
3761 	ret = radix_tree_insert(&fs_info->buffer_radix,
3762 				start >> fs_info->sectorsize_bits, eb);
3763 	spin_unlock(&fs_info->buffer_lock);
3764 	radix_tree_preload_end();
3765 	if (ret == -EEXIST) {
3766 		exists = find_extent_buffer(fs_info, start);
3767 		if (exists)
3768 			goto free_eb;
3769 		else
3770 			goto again;
3771 	}
3772 	check_buffer_tree_ref(eb);
3773 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3774 
3775 	return eb;
3776 free_eb:
3777 	btrfs_release_extent_buffer(eb);
3778 	return exists;
3779 }
3780 #endif
3781 
3782 static struct extent_buffer *grab_extent_buffer(
3783 		struct btrfs_fs_info *fs_info, struct page *page)
3784 {
3785 	struct extent_buffer *exists;
3786 
3787 	/*
3788 	 * For subpage case, we completely rely on radix tree to ensure we
3789 	 * don't try to insert two ebs for the same bytenr.  So here we always
3790 	 * return NULL and just continue.
3791 	 */
3792 	if (fs_info->nodesize < PAGE_SIZE)
3793 		return NULL;
3794 
3795 	/* Page not yet attached to an extent buffer */
3796 	if (!PagePrivate(page))
3797 		return NULL;
3798 
3799 	/*
3800 	 * We could have already allocated an eb for this page and attached one
3801 	 * so lets see if we can get a ref on the existing eb, and if we can we
3802 	 * know it's good and we can just return that one, else we know we can
3803 	 * just overwrite page->private.
3804 	 */
3805 	exists = (struct extent_buffer *)page->private;
3806 	if (atomic_inc_not_zero(&exists->refs))
3807 		return exists;
3808 
3809 	WARN_ON(PageDirty(page));
3810 	detach_page_private(page);
3811 	return NULL;
3812 }
3813 
3814 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3815 {
3816 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3817 		btrfs_err(fs_info, "bad tree block start %llu", start);
3818 		return -EINVAL;
3819 	}
3820 
3821 	if (fs_info->nodesize < PAGE_SIZE &&
3822 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3823 		btrfs_err(fs_info,
3824 		"tree block crosses page boundary, start %llu nodesize %u",
3825 			  start, fs_info->nodesize);
3826 		return -EINVAL;
3827 	}
3828 	if (fs_info->nodesize >= PAGE_SIZE &&
3829 	    !PAGE_ALIGNED(start)) {
3830 		btrfs_err(fs_info,
3831 		"tree block is not page aligned, start %llu nodesize %u",
3832 			  start, fs_info->nodesize);
3833 		return -EINVAL;
3834 	}
3835 	return 0;
3836 }
3837 
3838 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3839 					  u64 start, u64 owner_root, int level)
3840 {
3841 	unsigned long len = fs_info->nodesize;
3842 	int num_pages;
3843 	int i;
3844 	unsigned long index = start >> PAGE_SHIFT;
3845 	struct extent_buffer *eb;
3846 	struct extent_buffer *exists = NULL;
3847 	struct page *p;
3848 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3849 	u64 lockdep_owner = owner_root;
3850 	int uptodate = 1;
3851 	int ret;
3852 
3853 	if (check_eb_alignment(fs_info, start))
3854 		return ERR_PTR(-EINVAL);
3855 
3856 #if BITS_PER_LONG == 32
3857 	if (start >= MAX_LFS_FILESIZE) {
3858 		btrfs_err_rl(fs_info,
3859 		"extent buffer %llu is beyond 32bit page cache limit", start);
3860 		btrfs_err_32bit_limit(fs_info);
3861 		return ERR_PTR(-EOVERFLOW);
3862 	}
3863 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3864 		btrfs_warn_32bit_limit(fs_info);
3865 #endif
3866 
3867 	eb = find_extent_buffer(fs_info, start);
3868 	if (eb)
3869 		return eb;
3870 
3871 	eb = __alloc_extent_buffer(fs_info, start, len);
3872 	if (!eb)
3873 		return ERR_PTR(-ENOMEM);
3874 
3875 	/*
3876 	 * The reloc trees are just snapshots, so we need them to appear to be
3877 	 * just like any other fs tree WRT lockdep.
3878 	 */
3879 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3880 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3881 
3882 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3883 
3884 	num_pages = num_extent_pages(eb);
3885 	for (i = 0; i < num_pages; i++, index++) {
3886 		struct btrfs_subpage *prealloc = NULL;
3887 
3888 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3889 		if (!p) {
3890 			exists = ERR_PTR(-ENOMEM);
3891 			goto free_eb;
3892 		}
3893 
3894 		/*
3895 		 * Preallocate page->private for subpage case, so that we won't
3896 		 * allocate memory with private_lock hold.  The memory will be
3897 		 * freed by attach_extent_buffer_page() or freed manually if
3898 		 * we exit earlier.
3899 		 *
3900 		 * Although we have ensured one subpage eb can only have one
3901 		 * page, but it may change in the future for 16K page size
3902 		 * support, so we still preallocate the memory in the loop.
3903 		 */
3904 		if (fs_info->nodesize < PAGE_SIZE) {
3905 			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3906 			if (IS_ERR(prealloc)) {
3907 				ret = PTR_ERR(prealloc);
3908 				unlock_page(p);
3909 				put_page(p);
3910 				exists = ERR_PTR(ret);
3911 				goto free_eb;
3912 			}
3913 		}
3914 
3915 		spin_lock(&mapping->private_lock);
3916 		exists = grab_extent_buffer(fs_info, p);
3917 		if (exists) {
3918 			spin_unlock(&mapping->private_lock);
3919 			unlock_page(p);
3920 			put_page(p);
3921 			mark_extent_buffer_accessed(exists, p);
3922 			btrfs_free_subpage(prealloc);
3923 			goto free_eb;
3924 		}
3925 		/* Should not fail, as we have preallocated the memory */
3926 		ret = attach_extent_buffer_page(eb, p, prealloc);
3927 		ASSERT(!ret);
3928 		/*
3929 		 * To inform we have extra eb under allocation, so that
3930 		 * detach_extent_buffer_page() won't release the page private
3931 		 * when the eb hasn't yet been inserted into radix tree.
3932 		 *
3933 		 * The ref will be decreased when the eb released the page, in
3934 		 * detach_extent_buffer_page().
3935 		 * Thus needs no special handling in error path.
3936 		 */
3937 		btrfs_page_inc_eb_refs(fs_info, p);
3938 		spin_unlock(&mapping->private_lock);
3939 
3940 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3941 		eb->pages[i] = p;
3942 		if (!PageUptodate(p))
3943 			uptodate = 0;
3944 
3945 		/*
3946 		 * We can't unlock the pages just yet since the extent buffer
3947 		 * hasn't been properly inserted in the radix tree, this
3948 		 * opens a race with btree_release_folio which can free a page
3949 		 * while we are still filling in all pages for the buffer and
3950 		 * we could crash.
3951 		 */
3952 	}
3953 	if (uptodate)
3954 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3955 again:
3956 	ret = radix_tree_preload(GFP_NOFS);
3957 	if (ret) {
3958 		exists = ERR_PTR(ret);
3959 		goto free_eb;
3960 	}
3961 
3962 	spin_lock(&fs_info->buffer_lock);
3963 	ret = radix_tree_insert(&fs_info->buffer_radix,
3964 				start >> fs_info->sectorsize_bits, eb);
3965 	spin_unlock(&fs_info->buffer_lock);
3966 	radix_tree_preload_end();
3967 	if (ret == -EEXIST) {
3968 		exists = find_extent_buffer(fs_info, start);
3969 		if (exists)
3970 			goto free_eb;
3971 		else
3972 			goto again;
3973 	}
3974 	/* add one reference for the tree */
3975 	check_buffer_tree_ref(eb);
3976 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3977 
3978 	/*
3979 	 * Now it's safe to unlock the pages because any calls to
3980 	 * btree_release_folio will correctly detect that a page belongs to a
3981 	 * live buffer and won't free them prematurely.
3982 	 */
3983 	for (i = 0; i < num_pages; i++)
3984 		unlock_page(eb->pages[i]);
3985 	return eb;
3986 
3987 free_eb:
3988 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3989 	for (i = 0; i < num_pages; i++) {
3990 		if (eb->pages[i])
3991 			unlock_page(eb->pages[i]);
3992 	}
3993 
3994 	btrfs_release_extent_buffer(eb);
3995 	return exists;
3996 }
3997 
3998 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3999 {
4000 	struct extent_buffer *eb =
4001 			container_of(head, struct extent_buffer, rcu_head);
4002 
4003 	__free_extent_buffer(eb);
4004 }
4005 
4006 static int release_extent_buffer(struct extent_buffer *eb)
4007 	__releases(&eb->refs_lock)
4008 {
4009 	lockdep_assert_held(&eb->refs_lock);
4010 
4011 	WARN_ON(atomic_read(&eb->refs) == 0);
4012 	if (atomic_dec_and_test(&eb->refs)) {
4013 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4014 			struct btrfs_fs_info *fs_info = eb->fs_info;
4015 
4016 			spin_unlock(&eb->refs_lock);
4017 
4018 			spin_lock(&fs_info->buffer_lock);
4019 			radix_tree_delete(&fs_info->buffer_radix,
4020 					  eb->start >> fs_info->sectorsize_bits);
4021 			spin_unlock(&fs_info->buffer_lock);
4022 		} else {
4023 			spin_unlock(&eb->refs_lock);
4024 		}
4025 
4026 		btrfs_leak_debug_del_eb(eb);
4027 		/* Should be safe to release our pages at this point */
4028 		btrfs_release_extent_buffer_pages(eb);
4029 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4030 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4031 			__free_extent_buffer(eb);
4032 			return 1;
4033 		}
4034 #endif
4035 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4036 		return 1;
4037 	}
4038 	spin_unlock(&eb->refs_lock);
4039 
4040 	return 0;
4041 }
4042 
4043 void free_extent_buffer(struct extent_buffer *eb)
4044 {
4045 	int refs;
4046 	if (!eb)
4047 		return;
4048 
4049 	refs = atomic_read(&eb->refs);
4050 	while (1) {
4051 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4052 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4053 			refs == 1))
4054 			break;
4055 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4056 			return;
4057 	}
4058 
4059 	spin_lock(&eb->refs_lock);
4060 	if (atomic_read(&eb->refs) == 2 &&
4061 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4062 	    !extent_buffer_under_io(eb) &&
4063 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4064 		atomic_dec(&eb->refs);
4065 
4066 	/*
4067 	 * I know this is terrible, but it's temporary until we stop tracking
4068 	 * the uptodate bits and such for the extent buffers.
4069 	 */
4070 	release_extent_buffer(eb);
4071 }
4072 
4073 void free_extent_buffer_stale(struct extent_buffer *eb)
4074 {
4075 	if (!eb)
4076 		return;
4077 
4078 	spin_lock(&eb->refs_lock);
4079 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4080 
4081 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4082 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4083 		atomic_dec(&eb->refs);
4084 	release_extent_buffer(eb);
4085 }
4086 
4087 static void btree_clear_page_dirty(struct page *page)
4088 {
4089 	ASSERT(PageDirty(page));
4090 	ASSERT(PageLocked(page));
4091 	clear_page_dirty_for_io(page);
4092 	xa_lock_irq(&page->mapping->i_pages);
4093 	if (!PageDirty(page))
4094 		__xa_clear_mark(&page->mapping->i_pages,
4095 				page_index(page), PAGECACHE_TAG_DIRTY);
4096 	xa_unlock_irq(&page->mapping->i_pages);
4097 }
4098 
4099 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4100 {
4101 	struct btrfs_fs_info *fs_info = eb->fs_info;
4102 	struct page *page = eb->pages[0];
4103 	bool last;
4104 
4105 	/* btree_clear_page_dirty() needs page locked */
4106 	lock_page(page);
4107 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4108 						  eb->len);
4109 	if (last)
4110 		btree_clear_page_dirty(page);
4111 	unlock_page(page);
4112 	WARN_ON(atomic_read(&eb->refs) == 0);
4113 }
4114 
4115 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4116 			      struct extent_buffer *eb)
4117 {
4118 	struct btrfs_fs_info *fs_info = eb->fs_info;
4119 	int i;
4120 	int num_pages;
4121 	struct page *page;
4122 
4123 	btrfs_assert_tree_write_locked(eb);
4124 
4125 	if (trans && btrfs_header_generation(eb) != trans->transid)
4126 		return;
4127 
4128 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4129 		return;
4130 
4131 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4132 				 fs_info->dirty_metadata_batch);
4133 
4134 	if (eb->fs_info->nodesize < PAGE_SIZE)
4135 		return clear_subpage_extent_buffer_dirty(eb);
4136 
4137 	num_pages = num_extent_pages(eb);
4138 
4139 	for (i = 0; i < num_pages; i++) {
4140 		page = eb->pages[i];
4141 		if (!PageDirty(page))
4142 			continue;
4143 		lock_page(page);
4144 		btree_clear_page_dirty(page);
4145 		ClearPageError(page);
4146 		unlock_page(page);
4147 	}
4148 	WARN_ON(atomic_read(&eb->refs) == 0);
4149 }
4150 
4151 bool set_extent_buffer_dirty(struct extent_buffer *eb)
4152 {
4153 	int i;
4154 	int num_pages;
4155 	bool was_dirty;
4156 
4157 	check_buffer_tree_ref(eb);
4158 
4159 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4160 
4161 	num_pages = num_extent_pages(eb);
4162 	WARN_ON(atomic_read(&eb->refs) == 0);
4163 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4164 
4165 	if (!was_dirty) {
4166 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4167 
4168 		/*
4169 		 * For subpage case, we can have other extent buffers in the
4170 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4171 		 * have to clear page dirty without subpage lock held.
4172 		 * This can cause race where our page gets dirty cleared after
4173 		 * we just set it.
4174 		 *
4175 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4176 		 * its page for other reasons, we can use page lock to prevent
4177 		 * the above race.
4178 		 */
4179 		if (subpage)
4180 			lock_page(eb->pages[0]);
4181 		for (i = 0; i < num_pages; i++)
4182 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4183 					     eb->start, eb->len);
4184 		if (subpage)
4185 			unlock_page(eb->pages[0]);
4186 	}
4187 #ifdef CONFIG_BTRFS_DEBUG
4188 	for (i = 0; i < num_pages; i++)
4189 		ASSERT(PageDirty(eb->pages[i]));
4190 #endif
4191 
4192 	return was_dirty;
4193 }
4194 
4195 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4196 {
4197 	struct btrfs_fs_info *fs_info = eb->fs_info;
4198 	struct page *page;
4199 	int num_pages;
4200 	int i;
4201 
4202 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4203 	num_pages = num_extent_pages(eb);
4204 	for (i = 0; i < num_pages; i++) {
4205 		page = eb->pages[i];
4206 		if (!page)
4207 			continue;
4208 
4209 		/*
4210 		 * This is special handling for metadata subpage, as regular
4211 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4212 		 */
4213 		if (fs_info->nodesize >= PAGE_SIZE)
4214 			ClearPageUptodate(page);
4215 		else
4216 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4217 						     eb->len);
4218 	}
4219 }
4220 
4221 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4222 {
4223 	struct btrfs_fs_info *fs_info = eb->fs_info;
4224 	struct page *page;
4225 	int num_pages;
4226 	int i;
4227 
4228 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4229 	num_pages = num_extent_pages(eb);
4230 	for (i = 0; i < num_pages; i++) {
4231 		page = eb->pages[i];
4232 
4233 		/*
4234 		 * This is special handling for metadata subpage, as regular
4235 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4236 		 */
4237 		if (fs_info->nodesize >= PAGE_SIZE)
4238 			SetPageUptodate(page);
4239 		else
4240 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4241 						   eb->len);
4242 	}
4243 }
4244 
4245 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4246 				      int mirror_num,
4247 				      struct btrfs_tree_parent_check *check)
4248 {
4249 	struct btrfs_fs_info *fs_info = eb->fs_info;
4250 	struct extent_io_tree *io_tree;
4251 	struct page *page = eb->pages[0];
4252 	struct extent_state *cached_state = NULL;
4253 	struct btrfs_bio_ctrl bio_ctrl = {
4254 		.opf = REQ_OP_READ,
4255 		.mirror_num = mirror_num,
4256 		.parent_check = check,
4257 	};
4258 	int ret;
4259 
4260 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4261 	ASSERT(PagePrivate(page));
4262 	ASSERT(check);
4263 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4264 
4265 	if (wait == WAIT_NONE) {
4266 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4267 				     &cached_state))
4268 			return -EAGAIN;
4269 	} else {
4270 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4271 				  &cached_state);
4272 		if (ret < 0)
4273 			return ret;
4274 	}
4275 
4276 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4277 	    PageUptodate(page) ||
4278 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4279 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4280 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4281 			      &cached_state);
4282 		return 0;
4283 	}
4284 
4285 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4286 	eb->read_mirror = 0;
4287 	atomic_set(&eb->io_pages, 1);
4288 	check_buffer_tree_ref(eb);
4289 	bio_ctrl.end_io_func = end_bio_extent_readpage;
4290 
4291 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4292 
4293 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4294 	submit_extent_page(&bio_ctrl, eb->start, page, eb->len,
4295 			   eb->start - page_offset(page));
4296 	submit_one_bio(&bio_ctrl);
4297 	if (wait != WAIT_COMPLETE) {
4298 		free_extent_state(cached_state);
4299 		return 0;
4300 	}
4301 
4302 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
4303 			EXTENT_LOCKED, &cached_state);
4304 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4305 		return -EIO;
4306 	return 0;
4307 }
4308 
4309 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4310 			     struct btrfs_tree_parent_check *check)
4311 {
4312 	int i;
4313 	struct page *page;
4314 	int locked_pages = 0;
4315 	int all_uptodate = 1;
4316 	int num_pages;
4317 	unsigned long num_reads = 0;
4318 	struct btrfs_bio_ctrl bio_ctrl = {
4319 		.opf = REQ_OP_READ,
4320 		.mirror_num = mirror_num,
4321 		.parent_check = check,
4322 	};
4323 
4324 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4325 		return 0;
4326 
4327 	/*
4328 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4329 	 * operation, which could potentially still be in flight.  In this case
4330 	 * we simply want to return an error.
4331 	 */
4332 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4333 		return -EIO;
4334 
4335 	if (eb->fs_info->nodesize < PAGE_SIZE)
4336 		return read_extent_buffer_subpage(eb, wait, mirror_num, check);
4337 
4338 	num_pages = num_extent_pages(eb);
4339 	for (i = 0; i < num_pages; i++) {
4340 		page = eb->pages[i];
4341 		if (wait == WAIT_NONE) {
4342 			/*
4343 			 * WAIT_NONE is only utilized by readahead. If we can't
4344 			 * acquire the lock atomically it means either the eb
4345 			 * is being read out or under modification.
4346 			 * Either way the eb will be or has been cached,
4347 			 * readahead can exit safely.
4348 			 */
4349 			if (!trylock_page(page))
4350 				goto unlock_exit;
4351 		} else {
4352 			lock_page(page);
4353 		}
4354 		locked_pages++;
4355 	}
4356 	/*
4357 	 * We need to firstly lock all pages to make sure that
4358 	 * the uptodate bit of our pages won't be affected by
4359 	 * clear_extent_buffer_uptodate().
4360 	 */
4361 	for (i = 0; i < num_pages; i++) {
4362 		page = eb->pages[i];
4363 		if (!PageUptodate(page)) {
4364 			num_reads++;
4365 			all_uptodate = 0;
4366 		}
4367 	}
4368 
4369 	if (all_uptodate) {
4370 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4371 		goto unlock_exit;
4372 	}
4373 
4374 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4375 	eb->read_mirror = 0;
4376 	atomic_set(&eb->io_pages, num_reads);
4377 	/*
4378 	 * It is possible for release_folio to clear the TREE_REF bit before we
4379 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
4380 	 */
4381 	check_buffer_tree_ref(eb);
4382 	bio_ctrl.end_io_func = end_bio_extent_readpage;
4383 	for (i = 0; i < num_pages; i++) {
4384 		page = eb->pages[i];
4385 
4386 		if (!PageUptodate(page)) {
4387 			ClearPageError(page);
4388 			submit_extent_page(&bio_ctrl, page_offset(page), page,
4389 					   PAGE_SIZE, 0);
4390 		} else {
4391 			unlock_page(page);
4392 		}
4393 	}
4394 
4395 	submit_one_bio(&bio_ctrl);
4396 
4397 	if (wait != WAIT_COMPLETE)
4398 		return 0;
4399 
4400 	for (i = 0; i < num_pages; i++) {
4401 		page = eb->pages[i];
4402 		wait_on_page_locked(page);
4403 		if (!PageUptodate(page))
4404 			return -EIO;
4405 	}
4406 
4407 	return 0;
4408 
4409 unlock_exit:
4410 	while (locked_pages > 0) {
4411 		locked_pages--;
4412 		page = eb->pages[locked_pages];
4413 		unlock_page(page);
4414 	}
4415 	return 0;
4416 }
4417 
4418 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4419 			    unsigned long len)
4420 {
4421 	btrfs_warn(eb->fs_info,
4422 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4423 		eb->start, eb->len, start, len);
4424 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4425 
4426 	return true;
4427 }
4428 
4429 /*
4430  * Check if the [start, start + len) range is valid before reading/writing
4431  * the eb.
4432  * NOTE: @start and @len are offset inside the eb, not logical address.
4433  *
4434  * Caller should not touch the dst/src memory if this function returns error.
4435  */
4436 static inline int check_eb_range(const struct extent_buffer *eb,
4437 				 unsigned long start, unsigned long len)
4438 {
4439 	unsigned long offset;
4440 
4441 	/* start, start + len should not go beyond eb->len nor overflow */
4442 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4443 		return report_eb_range(eb, start, len);
4444 
4445 	return false;
4446 }
4447 
4448 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4449 			unsigned long start, unsigned long len)
4450 {
4451 	size_t cur;
4452 	size_t offset;
4453 	struct page *page;
4454 	char *kaddr;
4455 	char *dst = (char *)dstv;
4456 	unsigned long i = get_eb_page_index(start);
4457 
4458 	if (check_eb_range(eb, start, len))
4459 		return;
4460 
4461 	offset = get_eb_offset_in_page(eb, start);
4462 
4463 	while (len > 0) {
4464 		page = eb->pages[i];
4465 
4466 		cur = min(len, (PAGE_SIZE - offset));
4467 		kaddr = page_address(page);
4468 		memcpy(dst, kaddr + offset, cur);
4469 
4470 		dst += cur;
4471 		len -= cur;
4472 		offset = 0;
4473 		i++;
4474 	}
4475 }
4476 
4477 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4478 				       void __user *dstv,
4479 				       unsigned long start, unsigned long len)
4480 {
4481 	size_t cur;
4482 	size_t offset;
4483 	struct page *page;
4484 	char *kaddr;
4485 	char __user *dst = (char __user *)dstv;
4486 	unsigned long i = get_eb_page_index(start);
4487 	int ret = 0;
4488 
4489 	WARN_ON(start > eb->len);
4490 	WARN_ON(start + len > eb->start + eb->len);
4491 
4492 	offset = get_eb_offset_in_page(eb, start);
4493 
4494 	while (len > 0) {
4495 		page = eb->pages[i];
4496 
4497 		cur = min(len, (PAGE_SIZE - offset));
4498 		kaddr = page_address(page);
4499 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4500 			ret = -EFAULT;
4501 			break;
4502 		}
4503 
4504 		dst += cur;
4505 		len -= cur;
4506 		offset = 0;
4507 		i++;
4508 	}
4509 
4510 	return ret;
4511 }
4512 
4513 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4514 			 unsigned long start, unsigned long len)
4515 {
4516 	size_t cur;
4517 	size_t offset;
4518 	struct page *page;
4519 	char *kaddr;
4520 	char *ptr = (char *)ptrv;
4521 	unsigned long i = get_eb_page_index(start);
4522 	int ret = 0;
4523 
4524 	if (check_eb_range(eb, start, len))
4525 		return -EINVAL;
4526 
4527 	offset = get_eb_offset_in_page(eb, start);
4528 
4529 	while (len > 0) {
4530 		page = eb->pages[i];
4531 
4532 		cur = min(len, (PAGE_SIZE - offset));
4533 
4534 		kaddr = page_address(page);
4535 		ret = memcmp(ptr, kaddr + offset, cur);
4536 		if (ret)
4537 			break;
4538 
4539 		ptr += cur;
4540 		len -= cur;
4541 		offset = 0;
4542 		i++;
4543 	}
4544 	return ret;
4545 }
4546 
4547 /*
4548  * Check that the extent buffer is uptodate.
4549  *
4550  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4551  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4552  */
4553 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4554 				    struct page *page)
4555 {
4556 	struct btrfs_fs_info *fs_info = eb->fs_info;
4557 
4558 	/*
4559 	 * If we are using the commit root we could potentially clear a page
4560 	 * Uptodate while we're using the extent buffer that we've previously
4561 	 * looked up.  We don't want to complain in this case, as the page was
4562 	 * valid before, we just didn't write it out.  Instead we want to catch
4563 	 * the case where we didn't actually read the block properly, which
4564 	 * would have !PageUptodate && !PageError, as we clear PageError before
4565 	 * reading.
4566 	 */
4567 	if (fs_info->nodesize < PAGE_SIZE) {
4568 		bool uptodate, error;
4569 
4570 		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
4571 						       eb->start, eb->len);
4572 		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
4573 		WARN_ON(!uptodate && !error);
4574 	} else {
4575 		WARN_ON(!PageUptodate(page) && !PageError(page));
4576 	}
4577 }
4578 
4579 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
4580 		const void *srcv)
4581 {
4582 	char *kaddr;
4583 
4584 	assert_eb_page_uptodate(eb, eb->pages[0]);
4585 	kaddr = page_address(eb->pages[0]) +
4586 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
4587 						   chunk_tree_uuid));
4588 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
4589 }
4590 
4591 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
4592 {
4593 	char *kaddr;
4594 
4595 	assert_eb_page_uptodate(eb, eb->pages[0]);
4596 	kaddr = page_address(eb->pages[0]) +
4597 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
4598 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
4599 }
4600 
4601 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4602 			 unsigned long start, unsigned long len)
4603 {
4604 	size_t cur;
4605 	size_t offset;
4606 	struct page *page;
4607 	char *kaddr;
4608 	char *src = (char *)srcv;
4609 	unsigned long i = get_eb_page_index(start);
4610 
4611 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4612 
4613 	if (check_eb_range(eb, start, len))
4614 		return;
4615 
4616 	offset = get_eb_offset_in_page(eb, start);
4617 
4618 	while (len > 0) {
4619 		page = eb->pages[i];
4620 		assert_eb_page_uptodate(eb, page);
4621 
4622 		cur = min(len, PAGE_SIZE - offset);
4623 		kaddr = page_address(page);
4624 		memcpy(kaddr + offset, src, cur);
4625 
4626 		src += cur;
4627 		len -= cur;
4628 		offset = 0;
4629 		i++;
4630 	}
4631 }
4632 
4633 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4634 		unsigned long len)
4635 {
4636 	size_t cur;
4637 	size_t offset;
4638 	struct page *page;
4639 	char *kaddr;
4640 	unsigned long i = get_eb_page_index(start);
4641 
4642 	if (check_eb_range(eb, start, len))
4643 		return;
4644 
4645 	offset = get_eb_offset_in_page(eb, start);
4646 
4647 	while (len > 0) {
4648 		page = eb->pages[i];
4649 		assert_eb_page_uptodate(eb, page);
4650 
4651 		cur = min(len, PAGE_SIZE - offset);
4652 		kaddr = page_address(page);
4653 		memset(kaddr + offset, 0, cur);
4654 
4655 		len -= cur;
4656 		offset = 0;
4657 		i++;
4658 	}
4659 }
4660 
4661 void copy_extent_buffer_full(const struct extent_buffer *dst,
4662 			     const struct extent_buffer *src)
4663 {
4664 	int i;
4665 	int num_pages;
4666 
4667 	ASSERT(dst->len == src->len);
4668 
4669 	if (dst->fs_info->nodesize >= PAGE_SIZE) {
4670 		num_pages = num_extent_pages(dst);
4671 		for (i = 0; i < num_pages; i++)
4672 			copy_page(page_address(dst->pages[i]),
4673 				  page_address(src->pages[i]));
4674 	} else {
4675 		size_t src_offset = get_eb_offset_in_page(src, 0);
4676 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
4677 
4678 		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
4679 		memcpy(page_address(dst->pages[0]) + dst_offset,
4680 		       page_address(src->pages[0]) + src_offset,
4681 		       src->len);
4682 	}
4683 }
4684 
4685 void copy_extent_buffer(const struct extent_buffer *dst,
4686 			const struct extent_buffer *src,
4687 			unsigned long dst_offset, unsigned long src_offset,
4688 			unsigned long len)
4689 {
4690 	u64 dst_len = dst->len;
4691 	size_t cur;
4692 	size_t offset;
4693 	struct page *page;
4694 	char *kaddr;
4695 	unsigned long i = get_eb_page_index(dst_offset);
4696 
4697 	if (check_eb_range(dst, dst_offset, len) ||
4698 	    check_eb_range(src, src_offset, len))
4699 		return;
4700 
4701 	WARN_ON(src->len != dst_len);
4702 
4703 	offset = get_eb_offset_in_page(dst, dst_offset);
4704 
4705 	while (len > 0) {
4706 		page = dst->pages[i];
4707 		assert_eb_page_uptodate(dst, page);
4708 
4709 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4710 
4711 		kaddr = page_address(page);
4712 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4713 
4714 		src_offset += cur;
4715 		len -= cur;
4716 		offset = 0;
4717 		i++;
4718 	}
4719 }
4720 
4721 /*
4722  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4723  * given bit number
4724  * @eb: the extent buffer
4725  * @start: offset of the bitmap item in the extent buffer
4726  * @nr: bit number
4727  * @page_index: return index of the page in the extent buffer that contains the
4728  * given bit number
4729  * @page_offset: return offset into the page given by page_index
4730  *
4731  * This helper hides the ugliness of finding the byte in an extent buffer which
4732  * contains a given bit.
4733  */
4734 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4735 				    unsigned long start, unsigned long nr,
4736 				    unsigned long *page_index,
4737 				    size_t *page_offset)
4738 {
4739 	size_t byte_offset = BIT_BYTE(nr);
4740 	size_t offset;
4741 
4742 	/*
4743 	 * The byte we want is the offset of the extent buffer + the offset of
4744 	 * the bitmap item in the extent buffer + the offset of the byte in the
4745 	 * bitmap item.
4746 	 */
4747 	offset = start + offset_in_page(eb->start) + byte_offset;
4748 
4749 	*page_index = offset >> PAGE_SHIFT;
4750 	*page_offset = offset_in_page(offset);
4751 }
4752 
4753 /*
4754  * Determine whether a bit in a bitmap item is set.
4755  *
4756  * @eb:     the extent buffer
4757  * @start:  offset of the bitmap item in the extent buffer
4758  * @nr:     bit number to test
4759  */
4760 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4761 			   unsigned long nr)
4762 {
4763 	u8 *kaddr;
4764 	struct page *page;
4765 	unsigned long i;
4766 	size_t offset;
4767 
4768 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4769 	page = eb->pages[i];
4770 	assert_eb_page_uptodate(eb, page);
4771 	kaddr = page_address(page);
4772 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4773 }
4774 
4775 /*
4776  * Set an area of a bitmap to 1.
4777  *
4778  * @eb:     the extent buffer
4779  * @start:  offset of the bitmap item in the extent buffer
4780  * @pos:    bit number of the first bit
4781  * @len:    number of bits to set
4782  */
4783 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4784 			      unsigned long pos, unsigned long len)
4785 {
4786 	u8 *kaddr;
4787 	struct page *page;
4788 	unsigned long i;
4789 	size_t offset;
4790 	const unsigned int size = pos + len;
4791 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
4792 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
4793 
4794 	eb_bitmap_offset(eb, start, pos, &i, &offset);
4795 	page = eb->pages[i];
4796 	assert_eb_page_uptodate(eb, page);
4797 	kaddr = page_address(page);
4798 
4799 	while (len >= bits_to_set) {
4800 		kaddr[offset] |= mask_to_set;
4801 		len -= bits_to_set;
4802 		bits_to_set = BITS_PER_BYTE;
4803 		mask_to_set = ~0;
4804 		if (++offset >= PAGE_SIZE && len > 0) {
4805 			offset = 0;
4806 			page = eb->pages[++i];
4807 			assert_eb_page_uptodate(eb, page);
4808 			kaddr = page_address(page);
4809 		}
4810 	}
4811 	if (len) {
4812 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
4813 		kaddr[offset] |= mask_to_set;
4814 	}
4815 }
4816 
4817 
4818 /*
4819  * Clear an area of a bitmap.
4820  *
4821  * @eb:     the extent buffer
4822  * @start:  offset of the bitmap item in the extent buffer
4823  * @pos:    bit number of the first bit
4824  * @len:    number of bits to clear
4825  */
4826 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4827 				unsigned long start, unsigned long pos,
4828 				unsigned long len)
4829 {
4830 	u8 *kaddr;
4831 	struct page *page;
4832 	unsigned long i;
4833 	size_t offset;
4834 	const unsigned int size = pos + len;
4835 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
4836 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
4837 
4838 	eb_bitmap_offset(eb, start, pos, &i, &offset);
4839 	page = eb->pages[i];
4840 	assert_eb_page_uptodate(eb, page);
4841 	kaddr = page_address(page);
4842 
4843 	while (len >= bits_to_clear) {
4844 		kaddr[offset] &= ~mask_to_clear;
4845 		len -= bits_to_clear;
4846 		bits_to_clear = BITS_PER_BYTE;
4847 		mask_to_clear = ~0;
4848 		if (++offset >= PAGE_SIZE && len > 0) {
4849 			offset = 0;
4850 			page = eb->pages[++i];
4851 			assert_eb_page_uptodate(eb, page);
4852 			kaddr = page_address(page);
4853 		}
4854 	}
4855 	if (len) {
4856 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
4857 		kaddr[offset] &= ~mask_to_clear;
4858 	}
4859 }
4860 
4861 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4862 {
4863 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4864 	return distance < len;
4865 }
4866 
4867 static void copy_pages(struct page *dst_page, struct page *src_page,
4868 		       unsigned long dst_off, unsigned long src_off,
4869 		       unsigned long len)
4870 {
4871 	char *dst_kaddr = page_address(dst_page);
4872 	char *src_kaddr;
4873 	int must_memmove = 0;
4874 
4875 	if (dst_page != src_page) {
4876 		src_kaddr = page_address(src_page);
4877 	} else {
4878 		src_kaddr = dst_kaddr;
4879 		if (areas_overlap(src_off, dst_off, len))
4880 			must_memmove = 1;
4881 	}
4882 
4883 	if (must_memmove)
4884 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4885 	else
4886 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4887 }
4888 
4889 void memcpy_extent_buffer(const struct extent_buffer *dst,
4890 			  unsigned long dst_offset, unsigned long src_offset,
4891 			  unsigned long len)
4892 {
4893 	size_t cur;
4894 	size_t dst_off_in_page;
4895 	size_t src_off_in_page;
4896 	unsigned long dst_i;
4897 	unsigned long src_i;
4898 
4899 	if (check_eb_range(dst, dst_offset, len) ||
4900 	    check_eb_range(dst, src_offset, len))
4901 		return;
4902 
4903 	while (len > 0) {
4904 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
4905 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
4906 
4907 		dst_i = get_eb_page_index(dst_offset);
4908 		src_i = get_eb_page_index(src_offset);
4909 
4910 		cur = min(len, (unsigned long)(PAGE_SIZE -
4911 					       src_off_in_page));
4912 		cur = min_t(unsigned long, cur,
4913 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
4914 
4915 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
4916 			   dst_off_in_page, src_off_in_page, cur);
4917 
4918 		src_offset += cur;
4919 		dst_offset += cur;
4920 		len -= cur;
4921 	}
4922 }
4923 
4924 void memmove_extent_buffer(const struct extent_buffer *dst,
4925 			   unsigned long dst_offset, unsigned long src_offset,
4926 			   unsigned long len)
4927 {
4928 	size_t cur;
4929 	size_t dst_off_in_page;
4930 	size_t src_off_in_page;
4931 	unsigned long dst_end = dst_offset + len - 1;
4932 	unsigned long src_end = src_offset + len - 1;
4933 	unsigned long dst_i;
4934 	unsigned long src_i;
4935 
4936 	if (check_eb_range(dst, dst_offset, len) ||
4937 	    check_eb_range(dst, src_offset, len))
4938 		return;
4939 	if (dst_offset < src_offset) {
4940 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4941 		return;
4942 	}
4943 	while (len > 0) {
4944 		dst_i = get_eb_page_index(dst_end);
4945 		src_i = get_eb_page_index(src_end);
4946 
4947 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4948 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4949 
4950 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4951 		cur = min(cur, dst_off_in_page + 1);
4952 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
4953 			   dst_off_in_page - cur + 1,
4954 			   src_off_in_page - cur + 1, cur);
4955 
4956 		dst_end -= cur;
4957 		src_end -= cur;
4958 		len -= cur;
4959 	}
4960 }
4961 
4962 #define GANG_LOOKUP_SIZE	16
4963 static struct extent_buffer *get_next_extent_buffer(
4964 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4965 {
4966 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4967 	struct extent_buffer *found = NULL;
4968 	u64 page_start = page_offset(page);
4969 	u64 cur = page_start;
4970 
4971 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4972 	lockdep_assert_held(&fs_info->buffer_lock);
4973 
4974 	while (cur < page_start + PAGE_SIZE) {
4975 		int ret;
4976 		int i;
4977 
4978 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4979 				(void **)gang, cur >> fs_info->sectorsize_bits,
4980 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4981 				      PAGE_SIZE / fs_info->nodesize));
4982 		if (ret == 0)
4983 			goto out;
4984 		for (i = 0; i < ret; i++) {
4985 			/* Already beyond page end */
4986 			if (gang[i]->start >= page_start + PAGE_SIZE)
4987 				goto out;
4988 			/* Found one */
4989 			if (gang[i]->start >= bytenr) {
4990 				found = gang[i];
4991 				goto out;
4992 			}
4993 		}
4994 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4995 	}
4996 out:
4997 	return found;
4998 }
4999 
5000 static int try_release_subpage_extent_buffer(struct page *page)
5001 {
5002 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5003 	u64 cur = page_offset(page);
5004 	const u64 end = page_offset(page) + PAGE_SIZE;
5005 	int ret;
5006 
5007 	while (cur < end) {
5008 		struct extent_buffer *eb = NULL;
5009 
5010 		/*
5011 		 * Unlike try_release_extent_buffer() which uses page->private
5012 		 * to grab buffer, for subpage case we rely on radix tree, thus
5013 		 * we need to ensure radix tree consistency.
5014 		 *
5015 		 * We also want an atomic snapshot of the radix tree, thus go
5016 		 * with spinlock rather than RCU.
5017 		 */
5018 		spin_lock(&fs_info->buffer_lock);
5019 		eb = get_next_extent_buffer(fs_info, page, cur);
5020 		if (!eb) {
5021 			/* No more eb in the page range after or at cur */
5022 			spin_unlock(&fs_info->buffer_lock);
5023 			break;
5024 		}
5025 		cur = eb->start + eb->len;
5026 
5027 		/*
5028 		 * The same as try_release_extent_buffer(), to ensure the eb
5029 		 * won't disappear out from under us.
5030 		 */
5031 		spin_lock(&eb->refs_lock);
5032 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5033 			spin_unlock(&eb->refs_lock);
5034 			spin_unlock(&fs_info->buffer_lock);
5035 			break;
5036 		}
5037 		spin_unlock(&fs_info->buffer_lock);
5038 
5039 		/*
5040 		 * If tree ref isn't set then we know the ref on this eb is a
5041 		 * real ref, so just return, this eb will likely be freed soon
5042 		 * anyway.
5043 		 */
5044 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5045 			spin_unlock(&eb->refs_lock);
5046 			break;
5047 		}
5048 
5049 		/*
5050 		 * Here we don't care about the return value, we will always
5051 		 * check the page private at the end.  And
5052 		 * release_extent_buffer() will release the refs_lock.
5053 		 */
5054 		release_extent_buffer(eb);
5055 	}
5056 	/*
5057 	 * Finally to check if we have cleared page private, as if we have
5058 	 * released all ebs in the page, the page private should be cleared now.
5059 	 */
5060 	spin_lock(&page->mapping->private_lock);
5061 	if (!PagePrivate(page))
5062 		ret = 1;
5063 	else
5064 		ret = 0;
5065 	spin_unlock(&page->mapping->private_lock);
5066 	return ret;
5067 
5068 }
5069 
5070 int try_release_extent_buffer(struct page *page)
5071 {
5072 	struct extent_buffer *eb;
5073 
5074 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5075 		return try_release_subpage_extent_buffer(page);
5076 
5077 	/*
5078 	 * We need to make sure nobody is changing page->private, as we rely on
5079 	 * page->private as the pointer to extent buffer.
5080 	 */
5081 	spin_lock(&page->mapping->private_lock);
5082 	if (!PagePrivate(page)) {
5083 		spin_unlock(&page->mapping->private_lock);
5084 		return 1;
5085 	}
5086 
5087 	eb = (struct extent_buffer *)page->private;
5088 	BUG_ON(!eb);
5089 
5090 	/*
5091 	 * This is a little awful but should be ok, we need to make sure that
5092 	 * the eb doesn't disappear out from under us while we're looking at
5093 	 * this page.
5094 	 */
5095 	spin_lock(&eb->refs_lock);
5096 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5097 		spin_unlock(&eb->refs_lock);
5098 		spin_unlock(&page->mapping->private_lock);
5099 		return 0;
5100 	}
5101 	spin_unlock(&page->mapping->private_lock);
5102 
5103 	/*
5104 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5105 	 * so just return, this page will likely be freed soon anyway.
5106 	 */
5107 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5108 		spin_unlock(&eb->refs_lock);
5109 		return 0;
5110 	}
5111 
5112 	return release_extent_buffer(eb);
5113 }
5114 
5115 /*
5116  * btrfs_readahead_tree_block - attempt to readahead a child block
5117  * @fs_info:	the fs_info
5118  * @bytenr:	bytenr to read
5119  * @owner_root: objectid of the root that owns this eb
5120  * @gen:	generation for the uptodate check, can be 0
5121  * @level:	level for the eb
5122  *
5123  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5124  * normal uptodate check of the eb, without checking the generation.  If we have
5125  * to read the block we will not block on anything.
5126  */
5127 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5128 				u64 bytenr, u64 owner_root, u64 gen, int level)
5129 {
5130 	struct btrfs_tree_parent_check check = {
5131 		.has_first_key = 0,
5132 		.level = level,
5133 		.transid = gen
5134 	};
5135 	struct extent_buffer *eb;
5136 	int ret;
5137 
5138 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5139 	if (IS_ERR(eb))
5140 		return;
5141 
5142 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5143 		free_extent_buffer(eb);
5144 		return;
5145 	}
5146 
5147 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5148 	if (ret < 0)
5149 		free_extent_buffer_stale(eb);
5150 	else
5151 		free_extent_buffer(eb);
5152 }
5153 
5154 /*
5155  * btrfs_readahead_node_child - readahead a node's child block
5156  * @node:	parent node we're reading from
5157  * @slot:	slot in the parent node for the child we want to read
5158  *
5159  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5160  * the slot in the node provided.
5161  */
5162 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5163 {
5164 	btrfs_readahead_tree_block(node->fs_info,
5165 				   btrfs_node_blockptr(node, slot),
5166 				   btrfs_header_owner(node),
5167 				   btrfs_node_ptr_generation(node, slot),
5168 				   btrfs_header_level(node) - 1);
5169 }
5170