1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 /* 599 * Don't care for allocation failure here because we might end 600 * up not needing the pre-allocated extent state at all, which 601 * is the case if we only have in the tree extent states that 602 * cover our input range and don't cover too any other range. 603 * If we end up needing a new extent state we allocate it later. 604 */ 605 prealloc = alloc_extent_state(mask); 606 } 607 608 spin_lock(&tree->lock); 609 if (cached_state) { 610 cached = *cached_state; 611 612 if (clear) { 613 *cached_state = NULL; 614 cached_state = NULL; 615 } 616 617 if (cached && extent_state_in_tree(cached) && 618 cached->start <= start && cached->end > start) { 619 if (clear) 620 atomic_dec(&cached->refs); 621 state = cached; 622 goto hit_next; 623 } 624 if (clear) 625 free_extent_state(cached); 626 } 627 /* 628 * this search will find the extents that end after 629 * our range starts 630 */ 631 node = tree_search(tree, start); 632 if (!node) 633 goto out; 634 state = rb_entry(node, struct extent_state, rb_node); 635 hit_next: 636 if (state->start > end) 637 goto out; 638 WARN_ON(state->end < start); 639 last_end = state->end; 640 641 /* the state doesn't have the wanted bits, go ahead */ 642 if (!(state->state & bits)) { 643 state = next_state(state); 644 goto next; 645 } 646 647 /* 648 * | ---- desired range ---- | 649 * | state | or 650 * | ------------- state -------------- | 651 * 652 * We need to split the extent we found, and may flip 653 * bits on second half. 654 * 655 * If the extent we found extends past our range, we 656 * just split and search again. It'll get split again 657 * the next time though. 658 * 659 * If the extent we found is inside our range, we clear 660 * the desired bit on it. 661 */ 662 663 if (state->start < start) { 664 prealloc = alloc_extent_state_atomic(prealloc); 665 BUG_ON(!prealloc); 666 err = split_state(tree, state, prealloc, start); 667 if (err) 668 extent_io_tree_panic(tree, err); 669 670 prealloc = NULL; 671 if (err) 672 goto out; 673 if (state->end <= end) { 674 state = clear_state_bit(tree, state, &bits, wake); 675 goto next; 676 } 677 goto search_again; 678 } 679 /* 680 * | ---- desired range ---- | 681 * | state | 682 * We need to split the extent, and clear the bit 683 * on the first half 684 */ 685 if (state->start <= end && state->end > end) { 686 prealloc = alloc_extent_state_atomic(prealloc); 687 BUG_ON(!prealloc); 688 err = split_state(tree, state, prealloc, end + 1); 689 if (err) 690 extent_io_tree_panic(tree, err); 691 692 if (wake) 693 wake_up(&state->wq); 694 695 clear_state_bit(tree, prealloc, &bits, wake); 696 697 prealloc = NULL; 698 goto out; 699 } 700 701 state = clear_state_bit(tree, state, &bits, wake); 702 next: 703 if (last_end == (u64)-1) 704 goto out; 705 start = last_end + 1; 706 if (start <= end && state && !need_resched()) 707 goto hit_next; 708 goto search_again; 709 710 out: 711 spin_unlock(&tree->lock); 712 if (prealloc) 713 free_extent_state(prealloc); 714 715 return 0; 716 717 search_again: 718 if (start > end) 719 goto out; 720 spin_unlock(&tree->lock); 721 if (mask & __GFP_WAIT) 722 cond_resched(); 723 goto again; 724 } 725 726 static void wait_on_state(struct extent_io_tree *tree, 727 struct extent_state *state) 728 __releases(tree->lock) 729 __acquires(tree->lock) 730 { 731 DEFINE_WAIT(wait); 732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 733 spin_unlock(&tree->lock); 734 schedule(); 735 spin_lock(&tree->lock); 736 finish_wait(&state->wq, &wait); 737 } 738 739 /* 740 * waits for one or more bits to clear on a range in the state tree. 741 * The range [start, end] is inclusive. 742 * The tree lock is taken by this function 743 */ 744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 745 unsigned long bits) 746 { 747 struct extent_state *state; 748 struct rb_node *node; 749 750 btrfs_debug_check_extent_io_range(tree, start, end); 751 752 spin_lock(&tree->lock); 753 again: 754 while (1) { 755 /* 756 * this search will find all the extents that end after 757 * our range starts 758 */ 759 node = tree_search(tree, start); 760 process_node: 761 if (!node) 762 break; 763 764 state = rb_entry(node, struct extent_state, rb_node); 765 766 if (state->start > end) 767 goto out; 768 769 if (state->state & bits) { 770 start = state->start; 771 atomic_inc(&state->refs); 772 wait_on_state(tree, state); 773 free_extent_state(state); 774 goto again; 775 } 776 start = state->end + 1; 777 778 if (start > end) 779 break; 780 781 if (!cond_resched_lock(&tree->lock)) { 782 node = rb_next(node); 783 goto process_node; 784 } 785 } 786 out: 787 spin_unlock(&tree->lock); 788 } 789 790 static void set_state_bits(struct extent_io_tree *tree, 791 struct extent_state *state, 792 unsigned *bits) 793 { 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 795 796 set_state_cb(tree, state, bits); 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 798 u64 range = state->end - state->start + 1; 799 tree->dirty_bytes += range; 800 } 801 state->state |= bits_to_set; 802 } 803 804 static void cache_state_if_flags(struct extent_state *state, 805 struct extent_state **cached_ptr, 806 unsigned flags) 807 { 808 if (cached_ptr && !(*cached_ptr)) { 809 if (!flags || (state->state & flags)) { 810 *cached_ptr = state; 811 atomic_inc(&state->refs); 812 } 813 } 814 } 815 816 static void cache_state(struct extent_state *state, 817 struct extent_state **cached_ptr) 818 { 819 return cache_state_if_flags(state, cached_ptr, 820 EXTENT_IOBITS | EXTENT_BOUNDARY); 821 } 822 823 /* 824 * set some bits on a range in the tree. This may require allocations or 825 * sleeping, so the gfp mask is used to indicate what is allowed. 826 * 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some 828 * part of the range already has the desired bits set. The start of the 829 * existing range is returned in failed_start in this case. 830 * 831 * [start, end] is inclusive This takes the tree lock. 832 */ 833 834 static int __must_check 835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 836 unsigned bits, unsigned exclusive_bits, 837 u64 *failed_start, struct extent_state **cached_state, 838 gfp_t mask) 839 { 840 struct extent_state *state; 841 struct extent_state *prealloc = NULL; 842 struct rb_node *node; 843 struct rb_node **p; 844 struct rb_node *parent; 845 int err = 0; 846 u64 last_start; 847 u64 last_end; 848 849 btrfs_debug_check_extent_io_range(tree, start, end); 850 851 bits |= EXTENT_FIRST_DELALLOC; 852 again: 853 if (!prealloc && (mask & __GFP_WAIT)) { 854 prealloc = alloc_extent_state(mask); 855 BUG_ON(!prealloc); 856 } 857 858 spin_lock(&tree->lock); 859 if (cached_state && *cached_state) { 860 state = *cached_state; 861 if (state->start <= start && state->end > start && 862 extent_state_in_tree(state)) { 863 node = &state->rb_node; 864 goto hit_next; 865 } 866 } 867 /* 868 * this search will find all the extents that end after 869 * our range starts. 870 */ 871 node = tree_search_for_insert(tree, start, &p, &parent); 872 if (!node) { 873 prealloc = alloc_extent_state_atomic(prealloc); 874 BUG_ON(!prealloc); 875 err = insert_state(tree, prealloc, start, end, 876 &p, &parent, &bits); 877 if (err) 878 extent_io_tree_panic(tree, err); 879 880 cache_state(prealloc, cached_state); 881 prealloc = NULL; 882 goto out; 883 } 884 state = rb_entry(node, struct extent_state, rb_node); 885 hit_next: 886 last_start = state->start; 887 last_end = state->end; 888 889 /* 890 * | ---- desired range ---- | 891 * | state | 892 * 893 * Just lock what we found and keep going 894 */ 895 if (state->start == start && state->end <= end) { 896 if (state->state & exclusive_bits) { 897 *failed_start = state->start; 898 err = -EEXIST; 899 goto out; 900 } 901 902 set_state_bits(tree, state, &bits); 903 cache_state(state, cached_state); 904 merge_state(tree, state); 905 if (last_end == (u64)-1) 906 goto out; 907 start = last_end + 1; 908 state = next_state(state); 909 if (start < end && state && state->start == start && 910 !need_resched()) 911 goto hit_next; 912 goto search_again; 913 } 914 915 /* 916 * | ---- desired range ---- | 917 * | state | 918 * or 919 * | ------------- state -------------- | 920 * 921 * We need to split the extent we found, and may flip bits on 922 * second half. 923 * 924 * If the extent we found extends past our 925 * range, we just split and search again. It'll get split 926 * again the next time though. 927 * 928 * If the extent we found is inside our range, we set the 929 * desired bit on it. 930 */ 931 if (state->start < start) { 932 if (state->state & exclusive_bits) { 933 *failed_start = start; 934 err = -EEXIST; 935 goto out; 936 } 937 938 prealloc = alloc_extent_state_atomic(prealloc); 939 BUG_ON(!prealloc); 940 err = split_state(tree, state, prealloc, start); 941 if (err) 942 extent_io_tree_panic(tree, err); 943 944 prealloc = NULL; 945 if (err) 946 goto out; 947 if (state->end <= end) { 948 set_state_bits(tree, state, &bits); 949 cache_state(state, cached_state); 950 merge_state(tree, state); 951 if (last_end == (u64)-1) 952 goto out; 953 start = last_end + 1; 954 state = next_state(state); 955 if (start < end && state && state->start == start && 956 !need_resched()) 957 goto hit_next; 958 } 959 goto search_again; 960 } 961 /* 962 * | ---- desired range ---- | 963 * | state | or | state | 964 * 965 * There's a hole, we need to insert something in it and 966 * ignore the extent we found. 967 */ 968 if (state->start > start) { 969 u64 this_end; 970 if (end < last_start) 971 this_end = end; 972 else 973 this_end = last_start - 1; 974 975 prealloc = alloc_extent_state_atomic(prealloc); 976 BUG_ON(!prealloc); 977 978 /* 979 * Avoid to free 'prealloc' if it can be merged with 980 * the later extent. 981 */ 982 err = insert_state(tree, prealloc, start, this_end, 983 NULL, NULL, &bits); 984 if (err) 985 extent_io_tree_panic(tree, err); 986 987 cache_state(prealloc, cached_state); 988 prealloc = NULL; 989 start = this_end + 1; 990 goto search_again; 991 } 992 /* 993 * | ---- desired range ---- | 994 * | state | 995 * We need to split the extent, and set the bit 996 * on the first half 997 */ 998 if (state->start <= end && state->end > end) { 999 if (state->state & exclusive_bits) { 1000 *failed_start = start; 1001 err = -EEXIST; 1002 goto out; 1003 } 1004 1005 prealloc = alloc_extent_state_atomic(prealloc); 1006 BUG_ON(!prealloc); 1007 err = split_state(tree, state, prealloc, end + 1); 1008 if (err) 1009 extent_io_tree_panic(tree, err); 1010 1011 set_state_bits(tree, prealloc, &bits); 1012 cache_state(prealloc, cached_state); 1013 merge_state(tree, prealloc); 1014 prealloc = NULL; 1015 goto out; 1016 } 1017 1018 goto search_again; 1019 1020 out: 1021 spin_unlock(&tree->lock); 1022 if (prealloc) 1023 free_extent_state(prealloc); 1024 1025 return err; 1026 1027 search_again: 1028 if (start > end) 1029 goto out; 1030 spin_unlock(&tree->lock); 1031 if (mask & __GFP_WAIT) 1032 cond_resched(); 1033 goto again; 1034 } 1035 1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1037 unsigned bits, u64 * failed_start, 1038 struct extent_state **cached_state, gfp_t mask) 1039 { 1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1041 cached_state, mask); 1042 } 1043 1044 1045 /** 1046 * convert_extent_bit - convert all bits in a given range from one bit to 1047 * another 1048 * @tree: the io tree to search 1049 * @start: the start offset in bytes 1050 * @end: the end offset in bytes (inclusive) 1051 * @bits: the bits to set in this range 1052 * @clear_bits: the bits to clear in this range 1053 * @cached_state: state that we're going to cache 1054 * @mask: the allocation mask 1055 * 1056 * This will go through and set bits for the given range. If any states exist 1057 * already in this range they are set with the given bit and cleared of the 1058 * clear_bits. This is only meant to be used by things that are mergeable, ie 1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1060 * boundary bits like LOCK. 1061 */ 1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1063 unsigned bits, unsigned clear_bits, 1064 struct extent_state **cached_state, gfp_t mask) 1065 { 1066 struct extent_state *state; 1067 struct extent_state *prealloc = NULL; 1068 struct rb_node *node; 1069 struct rb_node **p; 1070 struct rb_node *parent; 1071 int err = 0; 1072 u64 last_start; 1073 u64 last_end; 1074 bool first_iteration = true; 1075 1076 btrfs_debug_check_extent_io_range(tree, start, end); 1077 1078 again: 1079 if (!prealloc && (mask & __GFP_WAIT)) { 1080 /* 1081 * Best effort, don't worry if extent state allocation fails 1082 * here for the first iteration. We might have a cached state 1083 * that matches exactly the target range, in which case no 1084 * extent state allocations are needed. We'll only know this 1085 * after locking the tree. 1086 */ 1087 prealloc = alloc_extent_state(mask); 1088 if (!prealloc && !first_iteration) 1089 return -ENOMEM; 1090 } 1091 1092 spin_lock(&tree->lock); 1093 if (cached_state && *cached_state) { 1094 state = *cached_state; 1095 if (state->start <= start && state->end > start && 1096 extent_state_in_tree(state)) { 1097 node = &state->rb_node; 1098 goto hit_next; 1099 } 1100 } 1101 1102 /* 1103 * this search will find all the extents that end after 1104 * our range starts. 1105 */ 1106 node = tree_search_for_insert(tree, start, &p, &parent); 1107 if (!node) { 1108 prealloc = alloc_extent_state_atomic(prealloc); 1109 if (!prealloc) { 1110 err = -ENOMEM; 1111 goto out; 1112 } 1113 err = insert_state(tree, prealloc, start, end, 1114 &p, &parent, &bits); 1115 if (err) 1116 extent_io_tree_panic(tree, err); 1117 cache_state(prealloc, cached_state); 1118 prealloc = NULL; 1119 goto out; 1120 } 1121 state = rb_entry(node, struct extent_state, rb_node); 1122 hit_next: 1123 last_start = state->start; 1124 last_end = state->end; 1125 1126 /* 1127 * | ---- desired range ---- | 1128 * | state | 1129 * 1130 * Just lock what we found and keep going 1131 */ 1132 if (state->start == start && state->end <= end) { 1133 set_state_bits(tree, state, &bits); 1134 cache_state(state, cached_state); 1135 state = clear_state_bit(tree, state, &clear_bits, 0); 1136 if (last_end == (u64)-1) 1137 goto out; 1138 start = last_end + 1; 1139 if (start < end && state && state->start == start && 1140 !need_resched()) 1141 goto hit_next; 1142 goto search_again; 1143 } 1144 1145 /* 1146 * | ---- desired range ---- | 1147 * | state | 1148 * or 1149 * | ------------- state -------------- | 1150 * 1151 * We need to split the extent we found, and may flip bits on 1152 * second half. 1153 * 1154 * If the extent we found extends past our 1155 * range, we just split and search again. It'll get split 1156 * again the next time though. 1157 * 1158 * If the extent we found is inside our range, we set the 1159 * desired bit on it. 1160 */ 1161 if (state->start < start) { 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 if (!prealloc) { 1164 err = -ENOMEM; 1165 goto out; 1166 } 1167 err = split_state(tree, state, prealloc, start); 1168 if (err) 1169 extent_io_tree_panic(tree, err); 1170 prealloc = NULL; 1171 if (err) 1172 goto out; 1173 if (state->end <= end) { 1174 set_state_bits(tree, state, &bits); 1175 cache_state(state, cached_state); 1176 state = clear_state_bit(tree, state, &clear_bits, 0); 1177 if (last_end == (u64)-1) 1178 goto out; 1179 start = last_end + 1; 1180 if (start < end && state && state->start == start && 1181 !need_resched()) 1182 goto hit_next; 1183 } 1184 goto search_again; 1185 } 1186 /* 1187 * | ---- desired range ---- | 1188 * | state | or | state | 1189 * 1190 * There's a hole, we need to insert something in it and 1191 * ignore the extent we found. 1192 */ 1193 if (state->start > start) { 1194 u64 this_end; 1195 if (end < last_start) 1196 this_end = end; 1197 else 1198 this_end = last_start - 1; 1199 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 1206 /* 1207 * Avoid to free 'prealloc' if it can be merged with 1208 * the later extent. 1209 */ 1210 err = insert_state(tree, prealloc, start, this_end, 1211 NULL, NULL, &bits); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 cache_state(prealloc, cached_state); 1215 prealloc = NULL; 1216 start = this_end + 1; 1217 goto search_again; 1218 } 1219 /* 1220 * | ---- desired range ---- | 1221 * | state | 1222 * We need to split the extent, and set the bit 1223 * on the first half 1224 */ 1225 if (state->start <= end && state->end > end) { 1226 prealloc = alloc_extent_state_atomic(prealloc); 1227 if (!prealloc) { 1228 err = -ENOMEM; 1229 goto out; 1230 } 1231 1232 err = split_state(tree, state, prealloc, end + 1); 1233 if (err) 1234 extent_io_tree_panic(tree, err); 1235 1236 set_state_bits(tree, prealloc, &bits); 1237 cache_state(prealloc, cached_state); 1238 clear_state_bit(tree, prealloc, &clear_bits, 0); 1239 prealloc = NULL; 1240 goto out; 1241 } 1242 1243 goto search_again; 1244 1245 out: 1246 spin_unlock(&tree->lock); 1247 if (prealloc) 1248 free_extent_state(prealloc); 1249 1250 return err; 1251 1252 search_again: 1253 if (start > end) 1254 goto out; 1255 spin_unlock(&tree->lock); 1256 if (mask & __GFP_WAIT) 1257 cond_resched(); 1258 first_iteration = false; 1259 goto again; 1260 } 1261 1262 /* wrappers around set/clear extent bit */ 1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1264 gfp_t mask) 1265 { 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1267 NULL, mask); 1268 } 1269 1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1271 unsigned bits, gfp_t mask) 1272 { 1273 return set_extent_bit(tree, start, end, bits, NULL, 1274 NULL, mask); 1275 } 1276 1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1278 unsigned bits, gfp_t mask) 1279 { 1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1281 } 1282 1283 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1284 struct extent_state **cached_state, gfp_t mask) 1285 { 1286 return set_extent_bit(tree, start, end, 1287 EXTENT_DELALLOC | EXTENT_UPTODATE, 1288 NULL, cached_state, mask); 1289 } 1290 1291 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1292 struct extent_state **cached_state, gfp_t mask) 1293 { 1294 return set_extent_bit(tree, start, end, 1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1296 NULL, cached_state, mask); 1297 } 1298 1299 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1300 gfp_t mask) 1301 { 1302 return clear_extent_bit(tree, start, end, 1303 EXTENT_DIRTY | EXTENT_DELALLOC | 1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1305 } 1306 1307 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1308 gfp_t mask) 1309 { 1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1311 NULL, mask); 1312 } 1313 1314 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1315 struct extent_state **cached_state, gfp_t mask) 1316 { 1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1318 cached_state, mask); 1319 } 1320 1321 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1322 struct extent_state **cached_state, gfp_t mask) 1323 { 1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1325 cached_state, mask); 1326 } 1327 1328 /* 1329 * either insert or lock state struct between start and end use mask to tell 1330 * us if waiting is desired. 1331 */ 1332 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1333 unsigned bits, struct extent_state **cached_state) 1334 { 1335 int err; 1336 u64 failed_start; 1337 1338 while (1) { 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1340 EXTENT_LOCKED, &failed_start, 1341 cached_state, GFP_NOFS); 1342 if (err == -EEXIST) { 1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1344 start = failed_start; 1345 } else 1346 break; 1347 WARN_ON(start > end); 1348 } 1349 return err; 1350 } 1351 1352 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1353 { 1354 return lock_extent_bits(tree, start, end, 0, NULL); 1355 } 1356 1357 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 int err; 1360 u64 failed_start; 1361 1362 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1363 &failed_start, NULL, GFP_NOFS); 1364 if (err == -EEXIST) { 1365 if (failed_start > start) 1366 clear_extent_bit(tree, start, failed_start - 1, 1367 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1368 return 0; 1369 } 1370 return 1; 1371 } 1372 1373 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1374 struct extent_state **cached, gfp_t mask) 1375 { 1376 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1377 mask); 1378 } 1379 1380 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1381 { 1382 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1383 GFP_NOFS); 1384 } 1385 1386 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1387 { 1388 unsigned long index = start >> PAGE_CACHE_SHIFT; 1389 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1390 struct page *page; 1391 1392 while (index <= end_index) { 1393 page = find_get_page(inode->i_mapping, index); 1394 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1395 clear_page_dirty_for_io(page); 1396 page_cache_release(page); 1397 index++; 1398 } 1399 return 0; 1400 } 1401 1402 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1403 { 1404 unsigned long index = start >> PAGE_CACHE_SHIFT; 1405 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1406 struct page *page; 1407 1408 while (index <= end_index) { 1409 page = find_get_page(inode->i_mapping, index); 1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1411 __set_page_dirty_nobuffers(page); 1412 account_page_redirty(page); 1413 page_cache_release(page); 1414 index++; 1415 } 1416 return 0; 1417 } 1418 1419 /* 1420 * helper function to set both pages and extents in the tree writeback 1421 */ 1422 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1423 { 1424 unsigned long index = start >> PAGE_CACHE_SHIFT; 1425 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1426 struct page *page; 1427 1428 while (index <= end_index) { 1429 page = find_get_page(tree->mapping, index); 1430 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1431 set_page_writeback(page); 1432 page_cache_release(page); 1433 index++; 1434 } 1435 return 0; 1436 } 1437 1438 /* find the first state struct with 'bits' set after 'start', and 1439 * return it. tree->lock must be held. NULL will returned if 1440 * nothing was found after 'start' 1441 */ 1442 static struct extent_state * 1443 find_first_extent_bit_state(struct extent_io_tree *tree, 1444 u64 start, unsigned bits) 1445 { 1446 struct rb_node *node; 1447 struct extent_state *state; 1448 1449 /* 1450 * this search will find all the extents that end after 1451 * our range starts. 1452 */ 1453 node = tree_search(tree, start); 1454 if (!node) 1455 goto out; 1456 1457 while (1) { 1458 state = rb_entry(node, struct extent_state, rb_node); 1459 if (state->end >= start && (state->state & bits)) 1460 return state; 1461 1462 node = rb_next(node); 1463 if (!node) 1464 break; 1465 } 1466 out: 1467 return NULL; 1468 } 1469 1470 /* 1471 * find the first offset in the io tree with 'bits' set. zero is 1472 * returned if we find something, and *start_ret and *end_ret are 1473 * set to reflect the state struct that was found. 1474 * 1475 * If nothing was found, 1 is returned. If found something, return 0. 1476 */ 1477 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1478 u64 *start_ret, u64 *end_ret, unsigned bits, 1479 struct extent_state **cached_state) 1480 { 1481 struct extent_state *state; 1482 struct rb_node *n; 1483 int ret = 1; 1484 1485 spin_lock(&tree->lock); 1486 if (cached_state && *cached_state) { 1487 state = *cached_state; 1488 if (state->end == start - 1 && extent_state_in_tree(state)) { 1489 n = rb_next(&state->rb_node); 1490 while (n) { 1491 state = rb_entry(n, struct extent_state, 1492 rb_node); 1493 if (state->state & bits) 1494 goto got_it; 1495 n = rb_next(n); 1496 } 1497 free_extent_state(*cached_state); 1498 *cached_state = NULL; 1499 goto out; 1500 } 1501 free_extent_state(*cached_state); 1502 *cached_state = NULL; 1503 } 1504 1505 state = find_first_extent_bit_state(tree, start, bits); 1506 got_it: 1507 if (state) { 1508 cache_state_if_flags(state, cached_state, 0); 1509 *start_ret = state->start; 1510 *end_ret = state->end; 1511 ret = 0; 1512 } 1513 out: 1514 spin_unlock(&tree->lock); 1515 return ret; 1516 } 1517 1518 /* 1519 * find a contiguous range of bytes in the file marked as delalloc, not 1520 * more than 'max_bytes'. start and end are used to return the range, 1521 * 1522 * 1 is returned if we find something, 0 if nothing was in the tree 1523 */ 1524 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1525 u64 *start, u64 *end, u64 max_bytes, 1526 struct extent_state **cached_state) 1527 { 1528 struct rb_node *node; 1529 struct extent_state *state; 1530 u64 cur_start = *start; 1531 u64 found = 0; 1532 u64 total_bytes = 0; 1533 1534 spin_lock(&tree->lock); 1535 1536 /* 1537 * this search will find all the extents that end after 1538 * our range starts. 1539 */ 1540 node = tree_search(tree, cur_start); 1541 if (!node) { 1542 if (!found) 1543 *end = (u64)-1; 1544 goto out; 1545 } 1546 1547 while (1) { 1548 state = rb_entry(node, struct extent_state, rb_node); 1549 if (found && (state->start != cur_start || 1550 (state->state & EXTENT_BOUNDARY))) { 1551 goto out; 1552 } 1553 if (!(state->state & EXTENT_DELALLOC)) { 1554 if (!found) 1555 *end = state->end; 1556 goto out; 1557 } 1558 if (!found) { 1559 *start = state->start; 1560 *cached_state = state; 1561 atomic_inc(&state->refs); 1562 } 1563 found++; 1564 *end = state->end; 1565 cur_start = state->end + 1; 1566 node = rb_next(node); 1567 total_bytes += state->end - state->start + 1; 1568 if (total_bytes >= max_bytes) 1569 break; 1570 if (!node) 1571 break; 1572 } 1573 out: 1574 spin_unlock(&tree->lock); 1575 return found; 1576 } 1577 1578 static noinline void __unlock_for_delalloc(struct inode *inode, 1579 struct page *locked_page, 1580 u64 start, u64 end) 1581 { 1582 int ret; 1583 struct page *pages[16]; 1584 unsigned long index = start >> PAGE_CACHE_SHIFT; 1585 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1586 unsigned long nr_pages = end_index - index + 1; 1587 int i; 1588 1589 if (index == locked_page->index && end_index == index) 1590 return; 1591 1592 while (nr_pages > 0) { 1593 ret = find_get_pages_contig(inode->i_mapping, index, 1594 min_t(unsigned long, nr_pages, 1595 ARRAY_SIZE(pages)), pages); 1596 for (i = 0; i < ret; i++) { 1597 if (pages[i] != locked_page) 1598 unlock_page(pages[i]); 1599 page_cache_release(pages[i]); 1600 } 1601 nr_pages -= ret; 1602 index += ret; 1603 cond_resched(); 1604 } 1605 } 1606 1607 static noinline int lock_delalloc_pages(struct inode *inode, 1608 struct page *locked_page, 1609 u64 delalloc_start, 1610 u64 delalloc_end) 1611 { 1612 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1613 unsigned long start_index = index; 1614 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1615 unsigned long pages_locked = 0; 1616 struct page *pages[16]; 1617 unsigned long nrpages; 1618 int ret; 1619 int i; 1620 1621 /* the caller is responsible for locking the start index */ 1622 if (index == locked_page->index && index == end_index) 1623 return 0; 1624 1625 /* skip the page at the start index */ 1626 nrpages = end_index - index + 1; 1627 while (nrpages > 0) { 1628 ret = find_get_pages_contig(inode->i_mapping, index, 1629 min_t(unsigned long, 1630 nrpages, ARRAY_SIZE(pages)), pages); 1631 if (ret == 0) { 1632 ret = -EAGAIN; 1633 goto done; 1634 } 1635 /* now we have an array of pages, lock them all */ 1636 for (i = 0; i < ret; i++) { 1637 /* 1638 * the caller is taking responsibility for 1639 * locked_page 1640 */ 1641 if (pages[i] != locked_page) { 1642 lock_page(pages[i]); 1643 if (!PageDirty(pages[i]) || 1644 pages[i]->mapping != inode->i_mapping) { 1645 ret = -EAGAIN; 1646 unlock_page(pages[i]); 1647 page_cache_release(pages[i]); 1648 goto done; 1649 } 1650 } 1651 page_cache_release(pages[i]); 1652 pages_locked++; 1653 } 1654 nrpages -= ret; 1655 index += ret; 1656 cond_resched(); 1657 } 1658 ret = 0; 1659 done: 1660 if (ret && pages_locked) { 1661 __unlock_for_delalloc(inode, locked_page, 1662 delalloc_start, 1663 ((u64)(start_index + pages_locked - 1)) << 1664 PAGE_CACHE_SHIFT); 1665 } 1666 return ret; 1667 } 1668 1669 /* 1670 * find a contiguous range of bytes in the file marked as delalloc, not 1671 * more than 'max_bytes'. start and end are used to return the range, 1672 * 1673 * 1 is returned if we find something, 0 if nothing was in the tree 1674 */ 1675 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1676 struct extent_io_tree *tree, 1677 struct page *locked_page, u64 *start, 1678 u64 *end, u64 max_bytes) 1679 { 1680 u64 delalloc_start; 1681 u64 delalloc_end; 1682 u64 found; 1683 struct extent_state *cached_state = NULL; 1684 int ret; 1685 int loops = 0; 1686 1687 again: 1688 /* step one, find a bunch of delalloc bytes starting at start */ 1689 delalloc_start = *start; 1690 delalloc_end = 0; 1691 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1692 max_bytes, &cached_state); 1693 if (!found || delalloc_end <= *start) { 1694 *start = delalloc_start; 1695 *end = delalloc_end; 1696 free_extent_state(cached_state); 1697 return 0; 1698 } 1699 1700 /* 1701 * start comes from the offset of locked_page. We have to lock 1702 * pages in order, so we can't process delalloc bytes before 1703 * locked_page 1704 */ 1705 if (delalloc_start < *start) 1706 delalloc_start = *start; 1707 1708 /* 1709 * make sure to limit the number of pages we try to lock down 1710 */ 1711 if (delalloc_end + 1 - delalloc_start > max_bytes) 1712 delalloc_end = delalloc_start + max_bytes - 1; 1713 1714 /* step two, lock all the pages after the page that has start */ 1715 ret = lock_delalloc_pages(inode, locked_page, 1716 delalloc_start, delalloc_end); 1717 if (ret == -EAGAIN) { 1718 /* some of the pages are gone, lets avoid looping by 1719 * shortening the size of the delalloc range we're searching 1720 */ 1721 free_extent_state(cached_state); 1722 cached_state = NULL; 1723 if (!loops) { 1724 max_bytes = PAGE_CACHE_SIZE; 1725 loops = 1; 1726 goto again; 1727 } else { 1728 found = 0; 1729 goto out_failed; 1730 } 1731 } 1732 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1733 1734 /* step three, lock the state bits for the whole range */ 1735 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1736 1737 /* then test to make sure it is all still delalloc */ 1738 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1739 EXTENT_DELALLOC, 1, cached_state); 1740 if (!ret) { 1741 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1742 &cached_state, GFP_NOFS); 1743 __unlock_for_delalloc(inode, locked_page, 1744 delalloc_start, delalloc_end); 1745 cond_resched(); 1746 goto again; 1747 } 1748 free_extent_state(cached_state); 1749 *start = delalloc_start; 1750 *end = delalloc_end; 1751 out_failed: 1752 return found; 1753 } 1754 1755 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1756 struct page *locked_page, 1757 unsigned clear_bits, 1758 unsigned long page_ops) 1759 { 1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1761 int ret; 1762 struct page *pages[16]; 1763 unsigned long index = start >> PAGE_CACHE_SHIFT; 1764 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1765 unsigned long nr_pages = end_index - index + 1; 1766 int i; 1767 1768 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1769 if (page_ops == 0) 1770 return 0; 1771 1772 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1773 mapping_set_error(inode->i_mapping, -EIO); 1774 1775 while (nr_pages > 0) { 1776 ret = find_get_pages_contig(inode->i_mapping, index, 1777 min_t(unsigned long, 1778 nr_pages, ARRAY_SIZE(pages)), pages); 1779 for (i = 0; i < ret; i++) { 1780 1781 if (page_ops & PAGE_SET_PRIVATE2) 1782 SetPagePrivate2(pages[i]); 1783 1784 if (pages[i] == locked_page) { 1785 page_cache_release(pages[i]); 1786 continue; 1787 } 1788 if (page_ops & PAGE_CLEAR_DIRTY) 1789 clear_page_dirty_for_io(pages[i]); 1790 if (page_ops & PAGE_SET_WRITEBACK) 1791 set_page_writeback(pages[i]); 1792 if (page_ops & PAGE_SET_ERROR) 1793 SetPageError(pages[i]); 1794 if (page_ops & PAGE_END_WRITEBACK) 1795 end_page_writeback(pages[i]); 1796 if (page_ops & PAGE_UNLOCK) 1797 unlock_page(pages[i]); 1798 page_cache_release(pages[i]); 1799 } 1800 nr_pages -= ret; 1801 index += ret; 1802 cond_resched(); 1803 } 1804 return 0; 1805 } 1806 1807 /* 1808 * count the number of bytes in the tree that have a given bit(s) 1809 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1810 * cached. The total number found is returned. 1811 */ 1812 u64 count_range_bits(struct extent_io_tree *tree, 1813 u64 *start, u64 search_end, u64 max_bytes, 1814 unsigned bits, int contig) 1815 { 1816 struct rb_node *node; 1817 struct extent_state *state; 1818 u64 cur_start = *start; 1819 u64 total_bytes = 0; 1820 u64 last = 0; 1821 int found = 0; 1822 1823 if (WARN_ON(search_end <= cur_start)) 1824 return 0; 1825 1826 spin_lock(&tree->lock); 1827 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1828 total_bytes = tree->dirty_bytes; 1829 goto out; 1830 } 1831 /* 1832 * this search will find all the extents that end after 1833 * our range starts. 1834 */ 1835 node = tree_search(tree, cur_start); 1836 if (!node) 1837 goto out; 1838 1839 while (1) { 1840 state = rb_entry(node, struct extent_state, rb_node); 1841 if (state->start > search_end) 1842 break; 1843 if (contig && found && state->start > last + 1) 1844 break; 1845 if (state->end >= cur_start && (state->state & bits) == bits) { 1846 total_bytes += min(search_end, state->end) + 1 - 1847 max(cur_start, state->start); 1848 if (total_bytes >= max_bytes) 1849 break; 1850 if (!found) { 1851 *start = max(cur_start, state->start); 1852 found = 1; 1853 } 1854 last = state->end; 1855 } else if (contig && found) { 1856 break; 1857 } 1858 node = rb_next(node); 1859 if (!node) 1860 break; 1861 } 1862 out: 1863 spin_unlock(&tree->lock); 1864 return total_bytes; 1865 } 1866 1867 /* 1868 * set the private field for a given byte offset in the tree. If there isn't 1869 * an extent_state there already, this does nothing. 1870 */ 1871 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1872 { 1873 struct rb_node *node; 1874 struct extent_state *state; 1875 int ret = 0; 1876 1877 spin_lock(&tree->lock); 1878 /* 1879 * this search will find all the extents that end after 1880 * our range starts. 1881 */ 1882 node = tree_search(tree, start); 1883 if (!node) { 1884 ret = -ENOENT; 1885 goto out; 1886 } 1887 state = rb_entry(node, struct extent_state, rb_node); 1888 if (state->start != start) { 1889 ret = -ENOENT; 1890 goto out; 1891 } 1892 state->private = private; 1893 out: 1894 spin_unlock(&tree->lock); 1895 return ret; 1896 } 1897 1898 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1899 { 1900 struct rb_node *node; 1901 struct extent_state *state; 1902 int ret = 0; 1903 1904 spin_lock(&tree->lock); 1905 /* 1906 * this search will find all the extents that end after 1907 * our range starts. 1908 */ 1909 node = tree_search(tree, start); 1910 if (!node) { 1911 ret = -ENOENT; 1912 goto out; 1913 } 1914 state = rb_entry(node, struct extent_state, rb_node); 1915 if (state->start != start) { 1916 ret = -ENOENT; 1917 goto out; 1918 } 1919 *private = state->private; 1920 out: 1921 spin_unlock(&tree->lock); 1922 return ret; 1923 } 1924 1925 /* 1926 * searches a range in the state tree for a given mask. 1927 * If 'filled' == 1, this returns 1 only if every extent in the tree 1928 * has the bits set. Otherwise, 1 is returned if any bit in the 1929 * range is found set. 1930 */ 1931 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1932 unsigned bits, int filled, struct extent_state *cached) 1933 { 1934 struct extent_state *state = NULL; 1935 struct rb_node *node; 1936 int bitset = 0; 1937 1938 spin_lock(&tree->lock); 1939 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1940 cached->end > start) 1941 node = &cached->rb_node; 1942 else 1943 node = tree_search(tree, start); 1944 while (node && start <= end) { 1945 state = rb_entry(node, struct extent_state, rb_node); 1946 1947 if (filled && state->start > start) { 1948 bitset = 0; 1949 break; 1950 } 1951 1952 if (state->start > end) 1953 break; 1954 1955 if (state->state & bits) { 1956 bitset = 1; 1957 if (!filled) 1958 break; 1959 } else if (filled) { 1960 bitset = 0; 1961 break; 1962 } 1963 1964 if (state->end == (u64)-1) 1965 break; 1966 1967 start = state->end + 1; 1968 if (start > end) 1969 break; 1970 node = rb_next(node); 1971 if (!node) { 1972 if (filled) 1973 bitset = 0; 1974 break; 1975 } 1976 } 1977 spin_unlock(&tree->lock); 1978 return bitset; 1979 } 1980 1981 /* 1982 * helper function to set a given page up to date if all the 1983 * extents in the tree for that page are up to date 1984 */ 1985 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1986 { 1987 u64 start = page_offset(page); 1988 u64 end = start + PAGE_CACHE_SIZE - 1; 1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1990 SetPageUptodate(page); 1991 } 1992 1993 int free_io_failure(struct inode *inode, struct io_failure_record *rec) 1994 { 1995 int ret; 1996 int err = 0; 1997 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1998 1999 set_state_private(failure_tree, rec->start, 0); 2000 ret = clear_extent_bits(failure_tree, rec->start, 2001 rec->start + rec->len - 1, 2002 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2003 if (ret) 2004 err = ret; 2005 2006 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 2007 rec->start + rec->len - 1, 2008 EXTENT_DAMAGED, GFP_NOFS); 2009 if (ret && !err) 2010 err = ret; 2011 2012 kfree(rec); 2013 return err; 2014 } 2015 2016 /* 2017 * this bypasses the standard btrfs submit functions deliberately, as 2018 * the standard behavior is to write all copies in a raid setup. here we only 2019 * want to write the one bad copy. so we do the mapping for ourselves and issue 2020 * submit_bio directly. 2021 * to avoid any synchronization issues, wait for the data after writing, which 2022 * actually prevents the read that triggered the error from finishing. 2023 * currently, there can be no more than two copies of every data bit. thus, 2024 * exactly one rewrite is required. 2025 */ 2026 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical, 2027 struct page *page, unsigned int pg_offset, int mirror_num) 2028 { 2029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2030 struct bio *bio; 2031 struct btrfs_device *dev; 2032 u64 map_length = 0; 2033 u64 sector; 2034 struct btrfs_bio *bbio = NULL; 2035 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2036 int ret; 2037 2038 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2039 BUG_ON(!mirror_num); 2040 2041 /* we can't repair anything in raid56 yet */ 2042 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2043 return 0; 2044 2045 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2046 if (!bio) 2047 return -EIO; 2048 bio->bi_iter.bi_size = 0; 2049 map_length = length; 2050 2051 ret = btrfs_map_block(fs_info, WRITE, logical, 2052 &map_length, &bbio, mirror_num); 2053 if (ret) { 2054 bio_put(bio); 2055 return -EIO; 2056 } 2057 BUG_ON(mirror_num != bbio->mirror_num); 2058 sector = bbio->stripes[mirror_num-1].physical >> 9; 2059 bio->bi_iter.bi_sector = sector; 2060 dev = bbio->stripes[mirror_num-1].dev; 2061 btrfs_put_bbio(bbio); 2062 if (!dev || !dev->bdev || !dev->writeable) { 2063 bio_put(bio); 2064 return -EIO; 2065 } 2066 bio->bi_bdev = dev->bdev; 2067 bio_add_page(bio, page, length, pg_offset); 2068 2069 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2070 /* try to remap that extent elsewhere? */ 2071 bio_put(bio); 2072 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2073 return -EIO; 2074 } 2075 2076 printk_ratelimited_in_rcu(KERN_INFO 2077 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n", 2078 btrfs_ino(inode), start, 2079 rcu_str_deref(dev->name), sector); 2080 bio_put(bio); 2081 return 0; 2082 } 2083 2084 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2085 int mirror_num) 2086 { 2087 u64 start = eb->start; 2088 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2089 int ret = 0; 2090 2091 if (root->fs_info->sb->s_flags & MS_RDONLY) 2092 return -EROFS; 2093 2094 for (i = 0; i < num_pages; i++) { 2095 struct page *p = eb->pages[i]; 2096 2097 ret = repair_io_failure(root->fs_info->btree_inode, start, 2098 PAGE_CACHE_SIZE, start, p, 2099 start - page_offset(p), mirror_num); 2100 if (ret) 2101 break; 2102 start += PAGE_CACHE_SIZE; 2103 } 2104 2105 return ret; 2106 } 2107 2108 /* 2109 * each time an IO finishes, we do a fast check in the IO failure tree 2110 * to see if we need to process or clean up an io_failure_record 2111 */ 2112 int clean_io_failure(struct inode *inode, u64 start, struct page *page, 2113 unsigned int pg_offset) 2114 { 2115 u64 private; 2116 u64 private_failure; 2117 struct io_failure_record *failrec; 2118 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2119 struct extent_state *state; 2120 int num_copies; 2121 int ret; 2122 2123 private = 0; 2124 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2125 (u64)-1, 1, EXTENT_DIRTY, 0); 2126 if (!ret) 2127 return 0; 2128 2129 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2130 &private_failure); 2131 if (ret) 2132 return 0; 2133 2134 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2135 BUG_ON(!failrec->this_mirror); 2136 2137 if (failrec->in_validation) { 2138 /* there was no real error, just free the record */ 2139 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2140 failrec->start); 2141 goto out; 2142 } 2143 if (fs_info->sb->s_flags & MS_RDONLY) 2144 goto out; 2145 2146 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2147 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2148 failrec->start, 2149 EXTENT_LOCKED); 2150 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2151 2152 if (state && state->start <= failrec->start && 2153 state->end >= failrec->start + failrec->len - 1) { 2154 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2155 failrec->len); 2156 if (num_copies > 1) { 2157 repair_io_failure(inode, start, failrec->len, 2158 failrec->logical, page, 2159 pg_offset, failrec->failed_mirror); 2160 } 2161 } 2162 2163 out: 2164 free_io_failure(inode, failrec); 2165 2166 return 0; 2167 } 2168 2169 /* 2170 * Can be called when 2171 * - hold extent lock 2172 * - under ordered extent 2173 * - the inode is freeing 2174 */ 2175 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end) 2176 { 2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2178 struct io_failure_record *failrec; 2179 struct extent_state *state, *next; 2180 2181 if (RB_EMPTY_ROOT(&failure_tree->state)) 2182 return; 2183 2184 spin_lock(&failure_tree->lock); 2185 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2186 while (state) { 2187 if (state->start > end) 2188 break; 2189 2190 ASSERT(state->end <= end); 2191 2192 next = next_state(state); 2193 2194 failrec = (struct io_failure_record *)(unsigned long)state->private; 2195 free_extent_state(state); 2196 kfree(failrec); 2197 2198 state = next; 2199 } 2200 spin_unlock(&failure_tree->lock); 2201 } 2202 2203 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2204 struct io_failure_record **failrec_ret) 2205 { 2206 struct io_failure_record *failrec; 2207 u64 private; 2208 struct extent_map *em; 2209 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2210 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2211 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2212 int ret; 2213 u64 logical; 2214 2215 ret = get_state_private(failure_tree, start, &private); 2216 if (ret) { 2217 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2218 if (!failrec) 2219 return -ENOMEM; 2220 2221 failrec->start = start; 2222 failrec->len = end - start + 1; 2223 failrec->this_mirror = 0; 2224 failrec->bio_flags = 0; 2225 failrec->in_validation = 0; 2226 2227 read_lock(&em_tree->lock); 2228 em = lookup_extent_mapping(em_tree, start, failrec->len); 2229 if (!em) { 2230 read_unlock(&em_tree->lock); 2231 kfree(failrec); 2232 return -EIO; 2233 } 2234 2235 if (em->start > start || em->start + em->len <= start) { 2236 free_extent_map(em); 2237 em = NULL; 2238 } 2239 read_unlock(&em_tree->lock); 2240 if (!em) { 2241 kfree(failrec); 2242 return -EIO; 2243 } 2244 2245 logical = start - em->start; 2246 logical = em->block_start + logical; 2247 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2248 logical = em->block_start; 2249 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2250 extent_set_compress_type(&failrec->bio_flags, 2251 em->compress_type); 2252 } 2253 2254 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n", 2255 logical, start, failrec->len); 2256 2257 failrec->logical = logical; 2258 free_extent_map(em); 2259 2260 /* set the bits in the private failure tree */ 2261 ret = set_extent_bits(failure_tree, start, end, 2262 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2263 if (ret >= 0) 2264 ret = set_state_private(failure_tree, start, 2265 (u64)(unsigned long)failrec); 2266 /* set the bits in the inode's tree */ 2267 if (ret >= 0) 2268 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2269 GFP_NOFS); 2270 if (ret < 0) { 2271 kfree(failrec); 2272 return ret; 2273 } 2274 } else { 2275 failrec = (struct io_failure_record *)(unsigned long)private; 2276 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n", 2277 failrec->logical, failrec->start, failrec->len, 2278 failrec->in_validation); 2279 /* 2280 * when data can be on disk more than twice, add to failrec here 2281 * (e.g. with a list for failed_mirror) to make 2282 * clean_io_failure() clean all those errors at once. 2283 */ 2284 } 2285 2286 *failrec_ret = failrec; 2287 2288 return 0; 2289 } 2290 2291 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio, 2292 struct io_failure_record *failrec, int failed_mirror) 2293 { 2294 int num_copies; 2295 2296 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2297 failrec->logical, failrec->len); 2298 if (num_copies == 1) { 2299 /* 2300 * we only have a single copy of the data, so don't bother with 2301 * all the retry and error correction code that follows. no 2302 * matter what the error is, it is very likely to persist. 2303 */ 2304 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2305 num_copies, failrec->this_mirror, failed_mirror); 2306 return 0; 2307 } 2308 2309 /* 2310 * there are two premises: 2311 * a) deliver good data to the caller 2312 * b) correct the bad sectors on disk 2313 */ 2314 if (failed_bio->bi_vcnt > 1) { 2315 /* 2316 * to fulfill b), we need to know the exact failing sectors, as 2317 * we don't want to rewrite any more than the failed ones. thus, 2318 * we need separate read requests for the failed bio 2319 * 2320 * if the following BUG_ON triggers, our validation request got 2321 * merged. we need separate requests for our algorithm to work. 2322 */ 2323 BUG_ON(failrec->in_validation); 2324 failrec->in_validation = 1; 2325 failrec->this_mirror = failed_mirror; 2326 } else { 2327 /* 2328 * we're ready to fulfill a) and b) alongside. get a good copy 2329 * of the failed sector and if we succeed, we have setup 2330 * everything for repair_io_failure to do the rest for us. 2331 */ 2332 if (failrec->in_validation) { 2333 BUG_ON(failrec->this_mirror != failed_mirror); 2334 failrec->in_validation = 0; 2335 failrec->this_mirror = 0; 2336 } 2337 failrec->failed_mirror = failed_mirror; 2338 failrec->this_mirror++; 2339 if (failrec->this_mirror == failed_mirror) 2340 failrec->this_mirror++; 2341 } 2342 2343 if (failrec->this_mirror > num_copies) { 2344 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2345 num_copies, failrec->this_mirror, failed_mirror); 2346 return 0; 2347 } 2348 2349 return 1; 2350 } 2351 2352 2353 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2354 struct io_failure_record *failrec, 2355 struct page *page, int pg_offset, int icsum, 2356 bio_end_io_t *endio_func, void *data) 2357 { 2358 struct bio *bio; 2359 struct btrfs_io_bio *btrfs_failed_bio; 2360 struct btrfs_io_bio *btrfs_bio; 2361 2362 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2363 if (!bio) 2364 return NULL; 2365 2366 bio->bi_end_io = endio_func; 2367 bio->bi_iter.bi_sector = failrec->logical >> 9; 2368 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2369 bio->bi_iter.bi_size = 0; 2370 bio->bi_private = data; 2371 2372 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2373 if (btrfs_failed_bio->csum) { 2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2375 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2376 2377 btrfs_bio = btrfs_io_bio(bio); 2378 btrfs_bio->csum = btrfs_bio->csum_inline; 2379 icsum *= csum_size; 2380 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2381 csum_size); 2382 } 2383 2384 bio_add_page(bio, page, failrec->len, pg_offset); 2385 2386 return bio; 2387 } 2388 2389 /* 2390 * this is a generic handler for readpage errors (default 2391 * readpage_io_failed_hook). if other copies exist, read those and write back 2392 * good data to the failed position. does not investigate in remapping the 2393 * failed extent elsewhere, hoping the device will be smart enough to do this as 2394 * needed 2395 */ 2396 2397 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2398 struct page *page, u64 start, u64 end, 2399 int failed_mirror) 2400 { 2401 struct io_failure_record *failrec; 2402 struct inode *inode = page->mapping->host; 2403 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2404 struct bio *bio; 2405 int read_mode; 2406 int ret; 2407 2408 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2409 2410 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2411 if (ret) 2412 return ret; 2413 2414 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror); 2415 if (!ret) { 2416 free_io_failure(inode, failrec); 2417 return -EIO; 2418 } 2419 2420 if (failed_bio->bi_vcnt > 1) 2421 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2422 else 2423 read_mode = READ_SYNC; 2424 2425 phy_offset >>= inode->i_sb->s_blocksize_bits; 2426 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2427 start - page_offset(page), 2428 (int)phy_offset, failed_bio->bi_end_io, 2429 NULL); 2430 if (!bio) { 2431 free_io_failure(inode, failrec); 2432 return -EIO; 2433 } 2434 2435 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n", 2436 read_mode, failrec->this_mirror, failrec->in_validation); 2437 2438 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2439 failrec->this_mirror, 2440 failrec->bio_flags, 0); 2441 if (ret) { 2442 free_io_failure(inode, failrec); 2443 bio_put(bio); 2444 } 2445 2446 return ret; 2447 } 2448 2449 /* lots and lots of room for performance fixes in the end_bio funcs */ 2450 2451 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2452 { 2453 int uptodate = (err == 0); 2454 struct extent_io_tree *tree; 2455 int ret = 0; 2456 2457 tree = &BTRFS_I(page->mapping->host)->io_tree; 2458 2459 if (tree->ops && tree->ops->writepage_end_io_hook) { 2460 ret = tree->ops->writepage_end_io_hook(page, start, 2461 end, NULL, uptodate); 2462 if (ret) 2463 uptodate = 0; 2464 } 2465 2466 if (!uptodate) { 2467 ClearPageUptodate(page); 2468 SetPageError(page); 2469 ret = ret < 0 ? ret : -EIO; 2470 mapping_set_error(page->mapping, ret); 2471 } 2472 return 0; 2473 } 2474 2475 /* 2476 * after a writepage IO is done, we need to: 2477 * clear the uptodate bits on error 2478 * clear the writeback bits in the extent tree for this IO 2479 * end_page_writeback if the page has no more pending IO 2480 * 2481 * Scheduling is not allowed, so the extent state tree is expected 2482 * to have one and only one object corresponding to this IO. 2483 */ 2484 static void end_bio_extent_writepage(struct bio *bio, int err) 2485 { 2486 struct bio_vec *bvec; 2487 u64 start; 2488 u64 end; 2489 int i; 2490 2491 bio_for_each_segment_all(bvec, bio, i) { 2492 struct page *page = bvec->bv_page; 2493 2494 /* We always issue full-page reads, but if some block 2495 * in a page fails to read, blk_update_request() will 2496 * advance bv_offset and adjust bv_len to compensate. 2497 * Print a warning for nonzero offsets, and an error 2498 * if they don't add up to a full page. */ 2499 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2500 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2501 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2502 "partial page write in btrfs with offset %u and length %u", 2503 bvec->bv_offset, bvec->bv_len); 2504 else 2505 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2506 "incomplete page write in btrfs with offset %u and " 2507 "length %u", 2508 bvec->bv_offset, bvec->bv_len); 2509 } 2510 2511 start = page_offset(page); 2512 end = start + bvec->bv_offset + bvec->bv_len - 1; 2513 2514 if (end_extent_writepage(page, err, start, end)) 2515 continue; 2516 2517 end_page_writeback(page); 2518 } 2519 2520 bio_put(bio); 2521 } 2522 2523 static void 2524 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2525 int uptodate) 2526 { 2527 struct extent_state *cached = NULL; 2528 u64 end = start + len - 1; 2529 2530 if (uptodate && tree->track_uptodate) 2531 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2532 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2533 } 2534 2535 /* 2536 * after a readpage IO is done, we need to: 2537 * clear the uptodate bits on error 2538 * set the uptodate bits if things worked 2539 * set the page up to date if all extents in the tree are uptodate 2540 * clear the lock bit in the extent tree 2541 * unlock the page if there are no other extents locked for it 2542 * 2543 * Scheduling is not allowed, so the extent state tree is expected 2544 * to have one and only one object corresponding to this IO. 2545 */ 2546 static void end_bio_extent_readpage(struct bio *bio, int err) 2547 { 2548 struct bio_vec *bvec; 2549 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2550 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2551 struct extent_io_tree *tree; 2552 u64 offset = 0; 2553 u64 start; 2554 u64 end; 2555 u64 len; 2556 u64 extent_start = 0; 2557 u64 extent_len = 0; 2558 int mirror; 2559 int ret; 2560 int i; 2561 2562 if (err) 2563 uptodate = 0; 2564 2565 bio_for_each_segment_all(bvec, bio, i) { 2566 struct page *page = bvec->bv_page; 2567 struct inode *inode = page->mapping->host; 2568 2569 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2570 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err, 2571 io_bio->mirror_num); 2572 tree = &BTRFS_I(inode)->io_tree; 2573 2574 /* We always issue full-page reads, but if some block 2575 * in a page fails to read, blk_update_request() will 2576 * advance bv_offset and adjust bv_len to compensate. 2577 * Print a warning for nonzero offsets, and an error 2578 * if they don't add up to a full page. */ 2579 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2580 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2581 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2582 "partial page read in btrfs with offset %u and length %u", 2583 bvec->bv_offset, bvec->bv_len); 2584 else 2585 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2586 "incomplete page read in btrfs with offset %u and " 2587 "length %u", 2588 bvec->bv_offset, bvec->bv_len); 2589 } 2590 2591 start = page_offset(page); 2592 end = start + bvec->bv_offset + bvec->bv_len - 1; 2593 len = bvec->bv_len; 2594 2595 mirror = io_bio->mirror_num; 2596 if (likely(uptodate && tree->ops && 2597 tree->ops->readpage_end_io_hook)) { 2598 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2599 page, start, end, 2600 mirror); 2601 if (ret) 2602 uptodate = 0; 2603 else 2604 clean_io_failure(inode, start, page, 0); 2605 } 2606 2607 if (likely(uptodate)) 2608 goto readpage_ok; 2609 2610 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2611 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2612 if (!ret && !err && 2613 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2614 uptodate = 1; 2615 } else { 2616 /* 2617 * The generic bio_readpage_error handles errors the 2618 * following way: If possible, new read requests are 2619 * created and submitted and will end up in 2620 * end_bio_extent_readpage as well (if we're lucky, not 2621 * in the !uptodate case). In that case it returns 0 and 2622 * we just go on with the next page in our bio. If it 2623 * can't handle the error it will return -EIO and we 2624 * remain responsible for that page. 2625 */ 2626 ret = bio_readpage_error(bio, offset, page, start, end, 2627 mirror); 2628 if (ret == 0) { 2629 uptodate = 2630 test_bit(BIO_UPTODATE, &bio->bi_flags); 2631 if (err) 2632 uptodate = 0; 2633 offset += len; 2634 continue; 2635 } 2636 } 2637 readpage_ok: 2638 if (likely(uptodate)) { 2639 loff_t i_size = i_size_read(inode); 2640 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2641 unsigned off; 2642 2643 /* Zero out the end if this page straddles i_size */ 2644 off = i_size & (PAGE_CACHE_SIZE-1); 2645 if (page->index == end_index && off) 2646 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2647 SetPageUptodate(page); 2648 } else { 2649 ClearPageUptodate(page); 2650 SetPageError(page); 2651 } 2652 unlock_page(page); 2653 offset += len; 2654 2655 if (unlikely(!uptodate)) { 2656 if (extent_len) { 2657 endio_readpage_release_extent(tree, 2658 extent_start, 2659 extent_len, 1); 2660 extent_start = 0; 2661 extent_len = 0; 2662 } 2663 endio_readpage_release_extent(tree, start, 2664 end - start + 1, 0); 2665 } else if (!extent_len) { 2666 extent_start = start; 2667 extent_len = end + 1 - start; 2668 } else if (extent_start + extent_len == start) { 2669 extent_len += end + 1 - start; 2670 } else { 2671 endio_readpage_release_extent(tree, extent_start, 2672 extent_len, uptodate); 2673 extent_start = start; 2674 extent_len = end + 1 - start; 2675 } 2676 } 2677 2678 if (extent_len) 2679 endio_readpage_release_extent(tree, extent_start, extent_len, 2680 uptodate); 2681 if (io_bio->end_io) 2682 io_bio->end_io(io_bio, err); 2683 bio_put(bio); 2684 } 2685 2686 /* 2687 * this allocates from the btrfs_bioset. We're returning a bio right now 2688 * but you can call btrfs_io_bio for the appropriate container_of magic 2689 */ 2690 struct bio * 2691 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2692 gfp_t gfp_flags) 2693 { 2694 struct btrfs_io_bio *btrfs_bio; 2695 struct bio *bio; 2696 2697 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2698 2699 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2700 while (!bio && (nr_vecs /= 2)) { 2701 bio = bio_alloc_bioset(gfp_flags, 2702 nr_vecs, btrfs_bioset); 2703 } 2704 } 2705 2706 if (bio) { 2707 bio->bi_bdev = bdev; 2708 bio->bi_iter.bi_sector = first_sector; 2709 btrfs_bio = btrfs_io_bio(bio); 2710 btrfs_bio->csum = NULL; 2711 btrfs_bio->csum_allocated = NULL; 2712 btrfs_bio->end_io = NULL; 2713 } 2714 return bio; 2715 } 2716 2717 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2718 { 2719 struct btrfs_io_bio *btrfs_bio; 2720 struct bio *new; 2721 2722 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2723 if (new) { 2724 btrfs_bio = btrfs_io_bio(new); 2725 btrfs_bio->csum = NULL; 2726 btrfs_bio->csum_allocated = NULL; 2727 btrfs_bio->end_io = NULL; 2728 } 2729 return new; 2730 } 2731 2732 /* this also allocates from the btrfs_bioset */ 2733 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2734 { 2735 struct btrfs_io_bio *btrfs_bio; 2736 struct bio *bio; 2737 2738 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2739 if (bio) { 2740 btrfs_bio = btrfs_io_bio(bio); 2741 btrfs_bio->csum = NULL; 2742 btrfs_bio->csum_allocated = NULL; 2743 btrfs_bio->end_io = NULL; 2744 } 2745 return bio; 2746 } 2747 2748 2749 static int __must_check submit_one_bio(int rw, struct bio *bio, 2750 int mirror_num, unsigned long bio_flags) 2751 { 2752 int ret = 0; 2753 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2754 struct page *page = bvec->bv_page; 2755 struct extent_io_tree *tree = bio->bi_private; 2756 u64 start; 2757 2758 start = page_offset(page) + bvec->bv_offset; 2759 2760 bio->bi_private = NULL; 2761 2762 bio_get(bio); 2763 2764 if (tree->ops && tree->ops->submit_bio_hook) 2765 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2766 mirror_num, bio_flags, start); 2767 else 2768 btrfsic_submit_bio(rw, bio); 2769 2770 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2771 ret = -EOPNOTSUPP; 2772 bio_put(bio); 2773 return ret; 2774 } 2775 2776 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2777 unsigned long offset, size_t size, struct bio *bio, 2778 unsigned long bio_flags) 2779 { 2780 int ret = 0; 2781 if (tree->ops && tree->ops->merge_bio_hook) 2782 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2783 bio_flags); 2784 BUG_ON(ret < 0); 2785 return ret; 2786 2787 } 2788 2789 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2790 struct page *page, sector_t sector, 2791 size_t size, unsigned long offset, 2792 struct block_device *bdev, 2793 struct bio **bio_ret, 2794 unsigned long max_pages, 2795 bio_end_io_t end_io_func, 2796 int mirror_num, 2797 unsigned long prev_bio_flags, 2798 unsigned long bio_flags) 2799 { 2800 int ret = 0; 2801 struct bio *bio; 2802 int nr; 2803 int contig = 0; 2804 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2805 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2806 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2807 2808 if (bio_ret && *bio_ret) { 2809 bio = *bio_ret; 2810 if (old_compressed) 2811 contig = bio->bi_iter.bi_sector == sector; 2812 else 2813 contig = bio_end_sector(bio) == sector; 2814 2815 if (prev_bio_flags != bio_flags || !contig || 2816 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2817 bio_add_page(bio, page, page_size, offset) < page_size) { 2818 ret = submit_one_bio(rw, bio, mirror_num, 2819 prev_bio_flags); 2820 if (ret < 0) { 2821 *bio_ret = NULL; 2822 return ret; 2823 } 2824 bio = NULL; 2825 } else { 2826 return 0; 2827 } 2828 } 2829 if (this_compressed) 2830 nr = BIO_MAX_PAGES; 2831 else 2832 nr = bio_get_nr_vecs(bdev); 2833 2834 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2835 if (!bio) 2836 return -ENOMEM; 2837 2838 bio_add_page(bio, page, page_size, offset); 2839 bio->bi_end_io = end_io_func; 2840 bio->bi_private = tree; 2841 2842 if (bio_ret) 2843 *bio_ret = bio; 2844 else 2845 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2846 2847 return ret; 2848 } 2849 2850 static void attach_extent_buffer_page(struct extent_buffer *eb, 2851 struct page *page) 2852 { 2853 if (!PagePrivate(page)) { 2854 SetPagePrivate(page); 2855 page_cache_get(page); 2856 set_page_private(page, (unsigned long)eb); 2857 } else { 2858 WARN_ON(page->private != (unsigned long)eb); 2859 } 2860 } 2861 2862 void set_page_extent_mapped(struct page *page) 2863 { 2864 if (!PagePrivate(page)) { 2865 SetPagePrivate(page); 2866 page_cache_get(page); 2867 set_page_private(page, EXTENT_PAGE_PRIVATE); 2868 } 2869 } 2870 2871 static struct extent_map * 2872 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2873 u64 start, u64 len, get_extent_t *get_extent, 2874 struct extent_map **em_cached) 2875 { 2876 struct extent_map *em; 2877 2878 if (em_cached && *em_cached) { 2879 em = *em_cached; 2880 if (extent_map_in_tree(em) && start >= em->start && 2881 start < extent_map_end(em)) { 2882 atomic_inc(&em->refs); 2883 return em; 2884 } 2885 2886 free_extent_map(em); 2887 *em_cached = NULL; 2888 } 2889 2890 em = get_extent(inode, page, pg_offset, start, len, 0); 2891 if (em_cached && !IS_ERR_OR_NULL(em)) { 2892 BUG_ON(*em_cached); 2893 atomic_inc(&em->refs); 2894 *em_cached = em; 2895 } 2896 return em; 2897 } 2898 /* 2899 * basic readpage implementation. Locked extent state structs are inserted 2900 * into the tree that are removed when the IO is done (by the end_io 2901 * handlers) 2902 * XXX JDM: This needs looking at to ensure proper page locking 2903 */ 2904 static int __do_readpage(struct extent_io_tree *tree, 2905 struct page *page, 2906 get_extent_t *get_extent, 2907 struct extent_map **em_cached, 2908 struct bio **bio, int mirror_num, 2909 unsigned long *bio_flags, int rw) 2910 { 2911 struct inode *inode = page->mapping->host; 2912 u64 start = page_offset(page); 2913 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2914 u64 end; 2915 u64 cur = start; 2916 u64 extent_offset; 2917 u64 last_byte = i_size_read(inode); 2918 u64 block_start; 2919 u64 cur_end; 2920 sector_t sector; 2921 struct extent_map *em; 2922 struct block_device *bdev; 2923 int ret; 2924 int nr = 0; 2925 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2926 size_t pg_offset = 0; 2927 size_t iosize; 2928 size_t disk_io_size; 2929 size_t blocksize = inode->i_sb->s_blocksize; 2930 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2931 2932 set_page_extent_mapped(page); 2933 2934 end = page_end; 2935 if (!PageUptodate(page)) { 2936 if (cleancache_get_page(page) == 0) { 2937 BUG_ON(blocksize != PAGE_SIZE); 2938 unlock_extent(tree, start, end); 2939 goto out; 2940 } 2941 } 2942 2943 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2944 char *userpage; 2945 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2946 2947 if (zero_offset) { 2948 iosize = PAGE_CACHE_SIZE - zero_offset; 2949 userpage = kmap_atomic(page); 2950 memset(userpage + zero_offset, 0, iosize); 2951 flush_dcache_page(page); 2952 kunmap_atomic(userpage); 2953 } 2954 } 2955 while (cur <= end) { 2956 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2957 2958 if (cur >= last_byte) { 2959 char *userpage; 2960 struct extent_state *cached = NULL; 2961 2962 iosize = PAGE_CACHE_SIZE - pg_offset; 2963 userpage = kmap_atomic(page); 2964 memset(userpage + pg_offset, 0, iosize); 2965 flush_dcache_page(page); 2966 kunmap_atomic(userpage); 2967 set_extent_uptodate(tree, cur, cur + iosize - 1, 2968 &cached, GFP_NOFS); 2969 if (!parent_locked) 2970 unlock_extent_cached(tree, cur, 2971 cur + iosize - 1, 2972 &cached, GFP_NOFS); 2973 break; 2974 } 2975 em = __get_extent_map(inode, page, pg_offset, cur, 2976 end - cur + 1, get_extent, em_cached); 2977 if (IS_ERR_OR_NULL(em)) { 2978 SetPageError(page); 2979 if (!parent_locked) 2980 unlock_extent(tree, cur, end); 2981 break; 2982 } 2983 extent_offset = cur - em->start; 2984 BUG_ON(extent_map_end(em) <= cur); 2985 BUG_ON(end < cur); 2986 2987 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2988 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2989 extent_set_compress_type(&this_bio_flag, 2990 em->compress_type); 2991 } 2992 2993 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2994 cur_end = min(extent_map_end(em) - 1, end); 2995 iosize = ALIGN(iosize, blocksize); 2996 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2997 disk_io_size = em->block_len; 2998 sector = em->block_start >> 9; 2999 } else { 3000 sector = (em->block_start + extent_offset) >> 9; 3001 disk_io_size = iosize; 3002 } 3003 bdev = em->bdev; 3004 block_start = em->block_start; 3005 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3006 block_start = EXTENT_MAP_HOLE; 3007 free_extent_map(em); 3008 em = NULL; 3009 3010 /* we've found a hole, just zero and go on */ 3011 if (block_start == EXTENT_MAP_HOLE) { 3012 char *userpage; 3013 struct extent_state *cached = NULL; 3014 3015 userpage = kmap_atomic(page); 3016 memset(userpage + pg_offset, 0, iosize); 3017 flush_dcache_page(page); 3018 kunmap_atomic(userpage); 3019 3020 set_extent_uptodate(tree, cur, cur + iosize - 1, 3021 &cached, GFP_NOFS); 3022 unlock_extent_cached(tree, cur, cur + iosize - 1, 3023 &cached, GFP_NOFS); 3024 cur = cur + iosize; 3025 pg_offset += iosize; 3026 continue; 3027 } 3028 /* the get_extent function already copied into the page */ 3029 if (test_range_bit(tree, cur, cur_end, 3030 EXTENT_UPTODATE, 1, NULL)) { 3031 check_page_uptodate(tree, page); 3032 if (!parent_locked) 3033 unlock_extent(tree, cur, cur + iosize - 1); 3034 cur = cur + iosize; 3035 pg_offset += iosize; 3036 continue; 3037 } 3038 /* we have an inline extent but it didn't get marked up 3039 * to date. Error out 3040 */ 3041 if (block_start == EXTENT_MAP_INLINE) { 3042 SetPageError(page); 3043 if (!parent_locked) 3044 unlock_extent(tree, cur, cur + iosize - 1); 3045 cur = cur + iosize; 3046 pg_offset += iosize; 3047 continue; 3048 } 3049 3050 pnr -= page->index; 3051 ret = submit_extent_page(rw, tree, page, 3052 sector, disk_io_size, pg_offset, 3053 bdev, bio, pnr, 3054 end_bio_extent_readpage, mirror_num, 3055 *bio_flags, 3056 this_bio_flag); 3057 if (!ret) { 3058 nr++; 3059 *bio_flags = this_bio_flag; 3060 } else { 3061 SetPageError(page); 3062 if (!parent_locked) 3063 unlock_extent(tree, cur, cur + iosize - 1); 3064 } 3065 cur = cur + iosize; 3066 pg_offset += iosize; 3067 } 3068 out: 3069 if (!nr) { 3070 if (!PageError(page)) 3071 SetPageUptodate(page); 3072 unlock_page(page); 3073 } 3074 return 0; 3075 } 3076 3077 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3078 struct page *pages[], int nr_pages, 3079 u64 start, u64 end, 3080 get_extent_t *get_extent, 3081 struct extent_map **em_cached, 3082 struct bio **bio, int mirror_num, 3083 unsigned long *bio_flags, int rw) 3084 { 3085 struct inode *inode; 3086 struct btrfs_ordered_extent *ordered; 3087 int index; 3088 3089 inode = pages[0]->mapping->host; 3090 while (1) { 3091 lock_extent(tree, start, end); 3092 ordered = btrfs_lookup_ordered_range(inode, start, 3093 end - start + 1); 3094 if (!ordered) 3095 break; 3096 unlock_extent(tree, start, end); 3097 btrfs_start_ordered_extent(inode, ordered, 1); 3098 btrfs_put_ordered_extent(ordered); 3099 } 3100 3101 for (index = 0; index < nr_pages; index++) { 3102 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 3103 mirror_num, bio_flags, rw); 3104 page_cache_release(pages[index]); 3105 } 3106 } 3107 3108 static void __extent_readpages(struct extent_io_tree *tree, 3109 struct page *pages[], 3110 int nr_pages, get_extent_t *get_extent, 3111 struct extent_map **em_cached, 3112 struct bio **bio, int mirror_num, 3113 unsigned long *bio_flags, int rw) 3114 { 3115 u64 start = 0; 3116 u64 end = 0; 3117 u64 page_start; 3118 int index; 3119 int first_index = 0; 3120 3121 for (index = 0; index < nr_pages; index++) { 3122 page_start = page_offset(pages[index]); 3123 if (!end) { 3124 start = page_start; 3125 end = start + PAGE_CACHE_SIZE - 1; 3126 first_index = index; 3127 } else if (end + 1 == page_start) { 3128 end += PAGE_CACHE_SIZE; 3129 } else { 3130 __do_contiguous_readpages(tree, &pages[first_index], 3131 index - first_index, start, 3132 end, get_extent, em_cached, 3133 bio, mirror_num, bio_flags, 3134 rw); 3135 start = page_start; 3136 end = start + PAGE_CACHE_SIZE - 1; 3137 first_index = index; 3138 } 3139 } 3140 3141 if (end) 3142 __do_contiguous_readpages(tree, &pages[first_index], 3143 index - first_index, start, 3144 end, get_extent, em_cached, bio, 3145 mirror_num, bio_flags, rw); 3146 } 3147 3148 static int __extent_read_full_page(struct extent_io_tree *tree, 3149 struct page *page, 3150 get_extent_t *get_extent, 3151 struct bio **bio, int mirror_num, 3152 unsigned long *bio_flags, int rw) 3153 { 3154 struct inode *inode = page->mapping->host; 3155 struct btrfs_ordered_extent *ordered; 3156 u64 start = page_offset(page); 3157 u64 end = start + PAGE_CACHE_SIZE - 1; 3158 int ret; 3159 3160 while (1) { 3161 lock_extent(tree, start, end); 3162 ordered = btrfs_lookup_ordered_extent(inode, start); 3163 if (!ordered) 3164 break; 3165 unlock_extent(tree, start, end); 3166 btrfs_start_ordered_extent(inode, ordered, 1); 3167 btrfs_put_ordered_extent(ordered); 3168 } 3169 3170 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3171 bio_flags, rw); 3172 return ret; 3173 } 3174 3175 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3176 get_extent_t *get_extent, int mirror_num) 3177 { 3178 struct bio *bio = NULL; 3179 unsigned long bio_flags = 0; 3180 int ret; 3181 3182 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3183 &bio_flags, READ); 3184 if (bio) 3185 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3186 return ret; 3187 } 3188 3189 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3190 get_extent_t *get_extent, int mirror_num) 3191 { 3192 struct bio *bio = NULL; 3193 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3194 int ret; 3195 3196 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3197 &bio_flags, READ); 3198 if (bio) 3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3200 return ret; 3201 } 3202 3203 static noinline void update_nr_written(struct page *page, 3204 struct writeback_control *wbc, 3205 unsigned long nr_written) 3206 { 3207 wbc->nr_to_write -= nr_written; 3208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3209 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3210 page->mapping->writeback_index = page->index + nr_written; 3211 } 3212 3213 /* 3214 * helper for __extent_writepage, doing all of the delayed allocation setup. 3215 * 3216 * This returns 1 if our fill_delalloc function did all the work required 3217 * to write the page (copy into inline extent). In this case the IO has 3218 * been started and the page is already unlocked. 3219 * 3220 * This returns 0 if all went well (page still locked) 3221 * This returns < 0 if there were errors (page still locked) 3222 */ 3223 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3224 struct page *page, struct writeback_control *wbc, 3225 struct extent_page_data *epd, 3226 u64 delalloc_start, 3227 unsigned long *nr_written) 3228 { 3229 struct extent_io_tree *tree = epd->tree; 3230 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3231 u64 nr_delalloc; 3232 u64 delalloc_to_write = 0; 3233 u64 delalloc_end = 0; 3234 int ret; 3235 int page_started = 0; 3236 3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3238 return 0; 3239 3240 while (delalloc_end < page_end) { 3241 nr_delalloc = find_lock_delalloc_range(inode, tree, 3242 page, 3243 &delalloc_start, 3244 &delalloc_end, 3245 BTRFS_MAX_EXTENT_SIZE); 3246 if (nr_delalloc == 0) { 3247 delalloc_start = delalloc_end + 1; 3248 continue; 3249 } 3250 ret = tree->ops->fill_delalloc(inode, page, 3251 delalloc_start, 3252 delalloc_end, 3253 &page_started, 3254 nr_written); 3255 /* File system has been set read-only */ 3256 if (ret) { 3257 SetPageError(page); 3258 /* fill_delalloc should be return < 0 for error 3259 * but just in case, we use > 0 here meaning the 3260 * IO is started, so we don't want to return > 0 3261 * unless things are going well. 3262 */ 3263 ret = ret < 0 ? ret : -EIO; 3264 goto done; 3265 } 3266 /* 3267 * delalloc_end is already one less than the total 3268 * length, so we don't subtract one from 3269 * PAGE_CACHE_SIZE 3270 */ 3271 delalloc_to_write += (delalloc_end - delalloc_start + 3272 PAGE_CACHE_SIZE) >> 3273 PAGE_CACHE_SHIFT; 3274 delalloc_start = delalloc_end + 1; 3275 } 3276 if (wbc->nr_to_write < delalloc_to_write) { 3277 int thresh = 8192; 3278 3279 if (delalloc_to_write < thresh * 2) 3280 thresh = delalloc_to_write; 3281 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3282 thresh); 3283 } 3284 3285 /* did the fill delalloc function already unlock and start 3286 * the IO? 3287 */ 3288 if (page_started) { 3289 /* 3290 * we've unlocked the page, so we can't update 3291 * the mapping's writeback index, just update 3292 * nr_to_write. 3293 */ 3294 wbc->nr_to_write -= *nr_written; 3295 return 1; 3296 } 3297 3298 ret = 0; 3299 3300 done: 3301 return ret; 3302 } 3303 3304 /* 3305 * helper for __extent_writepage. This calls the writepage start hooks, 3306 * and does the loop to map the page into extents and bios. 3307 * 3308 * We return 1 if the IO is started and the page is unlocked, 3309 * 0 if all went well (page still locked) 3310 * < 0 if there were errors (page still locked) 3311 */ 3312 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3313 struct page *page, 3314 struct writeback_control *wbc, 3315 struct extent_page_data *epd, 3316 loff_t i_size, 3317 unsigned long nr_written, 3318 int write_flags, int *nr_ret) 3319 { 3320 struct extent_io_tree *tree = epd->tree; 3321 u64 start = page_offset(page); 3322 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3323 u64 end; 3324 u64 cur = start; 3325 u64 extent_offset; 3326 u64 block_start; 3327 u64 iosize; 3328 sector_t sector; 3329 struct extent_state *cached_state = NULL; 3330 struct extent_map *em; 3331 struct block_device *bdev; 3332 size_t pg_offset = 0; 3333 size_t blocksize; 3334 int ret = 0; 3335 int nr = 0; 3336 bool compressed; 3337 3338 if (tree->ops && tree->ops->writepage_start_hook) { 3339 ret = tree->ops->writepage_start_hook(page, start, 3340 page_end); 3341 if (ret) { 3342 /* Fixup worker will requeue */ 3343 if (ret == -EBUSY) 3344 wbc->pages_skipped++; 3345 else 3346 redirty_page_for_writepage(wbc, page); 3347 3348 update_nr_written(page, wbc, nr_written); 3349 unlock_page(page); 3350 ret = 1; 3351 goto done_unlocked; 3352 } 3353 } 3354 3355 /* 3356 * we don't want to touch the inode after unlocking the page, 3357 * so we update the mapping writeback index now 3358 */ 3359 update_nr_written(page, wbc, nr_written + 1); 3360 3361 end = page_end; 3362 if (i_size <= start) { 3363 if (tree->ops && tree->ops->writepage_end_io_hook) 3364 tree->ops->writepage_end_io_hook(page, start, 3365 page_end, NULL, 1); 3366 goto done; 3367 } 3368 3369 blocksize = inode->i_sb->s_blocksize; 3370 3371 while (cur <= end) { 3372 u64 em_end; 3373 if (cur >= i_size) { 3374 if (tree->ops && tree->ops->writepage_end_io_hook) 3375 tree->ops->writepage_end_io_hook(page, cur, 3376 page_end, NULL, 1); 3377 break; 3378 } 3379 em = epd->get_extent(inode, page, pg_offset, cur, 3380 end - cur + 1, 1); 3381 if (IS_ERR_OR_NULL(em)) { 3382 SetPageError(page); 3383 ret = PTR_ERR_OR_ZERO(em); 3384 break; 3385 } 3386 3387 extent_offset = cur - em->start; 3388 em_end = extent_map_end(em); 3389 BUG_ON(em_end <= cur); 3390 BUG_ON(end < cur); 3391 iosize = min(em_end - cur, end - cur + 1); 3392 iosize = ALIGN(iosize, blocksize); 3393 sector = (em->block_start + extent_offset) >> 9; 3394 bdev = em->bdev; 3395 block_start = em->block_start; 3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3397 free_extent_map(em); 3398 em = NULL; 3399 3400 /* 3401 * compressed and inline extents are written through other 3402 * paths in the FS 3403 */ 3404 if (compressed || block_start == EXTENT_MAP_HOLE || 3405 block_start == EXTENT_MAP_INLINE) { 3406 /* 3407 * end_io notification does not happen here for 3408 * compressed extents 3409 */ 3410 if (!compressed && tree->ops && 3411 tree->ops->writepage_end_io_hook) 3412 tree->ops->writepage_end_io_hook(page, cur, 3413 cur + iosize - 1, 3414 NULL, 1); 3415 else if (compressed) { 3416 /* we don't want to end_page_writeback on 3417 * a compressed extent. this happens 3418 * elsewhere 3419 */ 3420 nr++; 3421 } 3422 3423 cur += iosize; 3424 pg_offset += iosize; 3425 continue; 3426 } 3427 3428 if (tree->ops && tree->ops->writepage_io_hook) { 3429 ret = tree->ops->writepage_io_hook(page, cur, 3430 cur + iosize - 1); 3431 } else { 3432 ret = 0; 3433 } 3434 if (ret) { 3435 SetPageError(page); 3436 } else { 3437 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3438 3439 set_range_writeback(tree, cur, cur + iosize - 1); 3440 if (!PageWriteback(page)) { 3441 btrfs_err(BTRFS_I(inode)->root->fs_info, 3442 "page %lu not writeback, cur %llu end %llu", 3443 page->index, cur, end); 3444 } 3445 3446 ret = submit_extent_page(write_flags, tree, page, 3447 sector, iosize, pg_offset, 3448 bdev, &epd->bio, max_nr, 3449 end_bio_extent_writepage, 3450 0, 0, 0); 3451 if (ret) 3452 SetPageError(page); 3453 } 3454 cur = cur + iosize; 3455 pg_offset += iosize; 3456 nr++; 3457 } 3458 done: 3459 *nr_ret = nr; 3460 3461 done_unlocked: 3462 3463 /* drop our reference on any cached states */ 3464 free_extent_state(cached_state); 3465 return ret; 3466 } 3467 3468 /* 3469 * the writepage semantics are similar to regular writepage. extent 3470 * records are inserted to lock ranges in the tree, and as dirty areas 3471 * are found, they are marked writeback. Then the lock bits are removed 3472 * and the end_io handler clears the writeback ranges 3473 */ 3474 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3475 void *data) 3476 { 3477 struct inode *inode = page->mapping->host; 3478 struct extent_page_data *epd = data; 3479 u64 start = page_offset(page); 3480 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3481 int ret; 3482 int nr = 0; 3483 size_t pg_offset = 0; 3484 loff_t i_size = i_size_read(inode); 3485 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3486 int write_flags; 3487 unsigned long nr_written = 0; 3488 3489 if (wbc->sync_mode == WB_SYNC_ALL) 3490 write_flags = WRITE_SYNC; 3491 else 3492 write_flags = WRITE; 3493 3494 trace___extent_writepage(page, inode, wbc); 3495 3496 WARN_ON(!PageLocked(page)); 3497 3498 ClearPageError(page); 3499 3500 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3501 if (page->index > end_index || 3502 (page->index == end_index && !pg_offset)) { 3503 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3504 unlock_page(page); 3505 return 0; 3506 } 3507 3508 if (page->index == end_index) { 3509 char *userpage; 3510 3511 userpage = kmap_atomic(page); 3512 memset(userpage + pg_offset, 0, 3513 PAGE_CACHE_SIZE - pg_offset); 3514 kunmap_atomic(userpage); 3515 flush_dcache_page(page); 3516 } 3517 3518 pg_offset = 0; 3519 3520 set_page_extent_mapped(page); 3521 3522 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3523 if (ret == 1) 3524 goto done_unlocked; 3525 if (ret) 3526 goto done; 3527 3528 ret = __extent_writepage_io(inode, page, wbc, epd, 3529 i_size, nr_written, write_flags, &nr); 3530 if (ret == 1) 3531 goto done_unlocked; 3532 3533 done: 3534 if (nr == 0) { 3535 /* make sure the mapping tag for page dirty gets cleared */ 3536 set_page_writeback(page); 3537 end_page_writeback(page); 3538 } 3539 if (PageError(page)) { 3540 ret = ret < 0 ? ret : -EIO; 3541 end_extent_writepage(page, ret, start, page_end); 3542 } 3543 unlock_page(page); 3544 return ret; 3545 3546 done_unlocked: 3547 return 0; 3548 } 3549 3550 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3551 { 3552 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3553 TASK_UNINTERRUPTIBLE); 3554 } 3555 3556 static noinline_for_stack int 3557 lock_extent_buffer_for_io(struct extent_buffer *eb, 3558 struct btrfs_fs_info *fs_info, 3559 struct extent_page_data *epd) 3560 { 3561 unsigned long i, num_pages; 3562 int flush = 0; 3563 int ret = 0; 3564 3565 if (!btrfs_try_tree_write_lock(eb)) { 3566 flush = 1; 3567 flush_write_bio(epd); 3568 btrfs_tree_lock(eb); 3569 } 3570 3571 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3572 btrfs_tree_unlock(eb); 3573 if (!epd->sync_io) 3574 return 0; 3575 if (!flush) { 3576 flush_write_bio(epd); 3577 flush = 1; 3578 } 3579 while (1) { 3580 wait_on_extent_buffer_writeback(eb); 3581 btrfs_tree_lock(eb); 3582 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3583 break; 3584 btrfs_tree_unlock(eb); 3585 } 3586 } 3587 3588 /* 3589 * We need to do this to prevent races in people who check if the eb is 3590 * under IO since we can end up having no IO bits set for a short period 3591 * of time. 3592 */ 3593 spin_lock(&eb->refs_lock); 3594 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3595 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3596 spin_unlock(&eb->refs_lock); 3597 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3598 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3599 -eb->len, 3600 fs_info->dirty_metadata_batch); 3601 ret = 1; 3602 } else { 3603 spin_unlock(&eb->refs_lock); 3604 } 3605 3606 btrfs_tree_unlock(eb); 3607 3608 if (!ret) 3609 return ret; 3610 3611 num_pages = num_extent_pages(eb->start, eb->len); 3612 for (i = 0; i < num_pages; i++) { 3613 struct page *p = eb->pages[i]; 3614 3615 if (!trylock_page(p)) { 3616 if (!flush) { 3617 flush_write_bio(epd); 3618 flush = 1; 3619 } 3620 lock_page(p); 3621 } 3622 } 3623 3624 return ret; 3625 } 3626 3627 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3628 { 3629 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3630 smp_mb__after_atomic(); 3631 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3632 } 3633 3634 static void set_btree_ioerr(struct page *page) 3635 { 3636 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3637 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode); 3638 3639 SetPageError(page); 3640 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3641 return; 3642 3643 /* 3644 * If writeback for a btree extent that doesn't belong to a log tree 3645 * failed, increment the counter transaction->eb_write_errors. 3646 * We do this because while the transaction is running and before it's 3647 * committing (when we call filemap_fdata[write|wait]_range against 3648 * the btree inode), we might have 3649 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3650 * returns an error or an error happens during writeback, when we're 3651 * committing the transaction we wouldn't know about it, since the pages 3652 * can be no longer dirty nor marked anymore for writeback (if a 3653 * subsequent modification to the extent buffer didn't happen before the 3654 * transaction commit), which makes filemap_fdata[write|wait]_range not 3655 * able to find the pages tagged with SetPageError at transaction 3656 * commit time. So if this happens we must abort the transaction, 3657 * otherwise we commit a super block with btree roots that point to 3658 * btree nodes/leafs whose content on disk is invalid - either garbage 3659 * or the content of some node/leaf from a past generation that got 3660 * cowed or deleted and is no longer valid. 3661 * 3662 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3663 * not be enough - we need to distinguish between log tree extents vs 3664 * non-log tree extents, and the next filemap_fdatawait_range() call 3665 * will catch and clear such errors in the mapping - and that call might 3666 * be from a log sync and not from a transaction commit. Also, checking 3667 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3668 * not done and would not be reliable - the eb might have been released 3669 * from memory and reading it back again means that flag would not be 3670 * set (since it's a runtime flag, not persisted on disk). 3671 * 3672 * Using the flags below in the btree inode also makes us achieve the 3673 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3674 * writeback for all dirty pages and before filemap_fdatawait_range() 3675 * is called, the writeback for all dirty pages had already finished 3676 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3677 * filemap_fdatawait_range() would return success, as it could not know 3678 * that writeback errors happened (the pages were no longer tagged for 3679 * writeback). 3680 */ 3681 switch (eb->log_index) { 3682 case -1: 3683 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags); 3684 break; 3685 case 0: 3686 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 3687 break; 3688 case 1: 3689 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 3690 break; 3691 default: 3692 BUG(); /* unexpected, logic error */ 3693 } 3694 } 3695 3696 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3697 { 3698 struct bio_vec *bvec; 3699 struct extent_buffer *eb; 3700 int i, done; 3701 3702 bio_for_each_segment_all(bvec, bio, i) { 3703 struct page *page = bvec->bv_page; 3704 3705 eb = (struct extent_buffer *)page->private; 3706 BUG_ON(!eb); 3707 done = atomic_dec_and_test(&eb->io_pages); 3708 3709 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3710 ClearPageUptodate(page); 3711 set_btree_ioerr(page); 3712 } 3713 3714 end_page_writeback(page); 3715 3716 if (!done) 3717 continue; 3718 3719 end_extent_buffer_writeback(eb); 3720 } 3721 3722 bio_put(bio); 3723 } 3724 3725 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3726 struct btrfs_fs_info *fs_info, 3727 struct writeback_control *wbc, 3728 struct extent_page_data *epd) 3729 { 3730 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3731 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3732 u64 offset = eb->start; 3733 unsigned long i, num_pages; 3734 unsigned long bio_flags = 0; 3735 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3736 int ret = 0; 3737 3738 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3739 num_pages = num_extent_pages(eb->start, eb->len); 3740 atomic_set(&eb->io_pages, num_pages); 3741 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3742 bio_flags = EXTENT_BIO_TREE_LOG; 3743 3744 for (i = 0; i < num_pages; i++) { 3745 struct page *p = eb->pages[i]; 3746 3747 clear_page_dirty_for_io(p); 3748 set_page_writeback(p); 3749 ret = submit_extent_page(rw, tree, p, offset >> 9, 3750 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3751 -1, end_bio_extent_buffer_writepage, 3752 0, epd->bio_flags, bio_flags); 3753 epd->bio_flags = bio_flags; 3754 if (ret) { 3755 set_btree_ioerr(p); 3756 end_page_writeback(p); 3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3758 end_extent_buffer_writeback(eb); 3759 ret = -EIO; 3760 break; 3761 } 3762 offset += PAGE_CACHE_SIZE; 3763 update_nr_written(p, wbc, 1); 3764 unlock_page(p); 3765 } 3766 3767 if (unlikely(ret)) { 3768 for (; i < num_pages; i++) { 3769 struct page *p = eb->pages[i]; 3770 clear_page_dirty_for_io(p); 3771 unlock_page(p); 3772 } 3773 } 3774 3775 return ret; 3776 } 3777 3778 int btree_write_cache_pages(struct address_space *mapping, 3779 struct writeback_control *wbc) 3780 { 3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3783 struct extent_buffer *eb, *prev_eb = NULL; 3784 struct extent_page_data epd = { 3785 .bio = NULL, 3786 .tree = tree, 3787 .extent_locked = 0, 3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3789 .bio_flags = 0, 3790 }; 3791 int ret = 0; 3792 int done = 0; 3793 int nr_to_write_done = 0; 3794 struct pagevec pvec; 3795 int nr_pages; 3796 pgoff_t index; 3797 pgoff_t end; /* Inclusive */ 3798 int scanned = 0; 3799 int tag; 3800 3801 pagevec_init(&pvec, 0); 3802 if (wbc->range_cyclic) { 3803 index = mapping->writeback_index; /* Start from prev offset */ 3804 end = -1; 3805 } else { 3806 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3807 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3808 scanned = 1; 3809 } 3810 if (wbc->sync_mode == WB_SYNC_ALL) 3811 tag = PAGECACHE_TAG_TOWRITE; 3812 else 3813 tag = PAGECACHE_TAG_DIRTY; 3814 retry: 3815 if (wbc->sync_mode == WB_SYNC_ALL) 3816 tag_pages_for_writeback(mapping, index, end); 3817 while (!done && !nr_to_write_done && (index <= end) && 3818 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3819 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3820 unsigned i; 3821 3822 scanned = 1; 3823 for (i = 0; i < nr_pages; i++) { 3824 struct page *page = pvec.pages[i]; 3825 3826 if (!PagePrivate(page)) 3827 continue; 3828 3829 if (!wbc->range_cyclic && page->index > end) { 3830 done = 1; 3831 break; 3832 } 3833 3834 spin_lock(&mapping->private_lock); 3835 if (!PagePrivate(page)) { 3836 spin_unlock(&mapping->private_lock); 3837 continue; 3838 } 3839 3840 eb = (struct extent_buffer *)page->private; 3841 3842 /* 3843 * Shouldn't happen and normally this would be a BUG_ON 3844 * but no sense in crashing the users box for something 3845 * we can survive anyway. 3846 */ 3847 if (WARN_ON(!eb)) { 3848 spin_unlock(&mapping->private_lock); 3849 continue; 3850 } 3851 3852 if (eb == prev_eb) { 3853 spin_unlock(&mapping->private_lock); 3854 continue; 3855 } 3856 3857 ret = atomic_inc_not_zero(&eb->refs); 3858 spin_unlock(&mapping->private_lock); 3859 if (!ret) 3860 continue; 3861 3862 prev_eb = eb; 3863 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3864 if (!ret) { 3865 free_extent_buffer(eb); 3866 continue; 3867 } 3868 3869 ret = write_one_eb(eb, fs_info, wbc, &epd); 3870 if (ret) { 3871 done = 1; 3872 free_extent_buffer(eb); 3873 break; 3874 } 3875 free_extent_buffer(eb); 3876 3877 /* 3878 * the filesystem may choose to bump up nr_to_write. 3879 * We have to make sure to honor the new nr_to_write 3880 * at any time 3881 */ 3882 nr_to_write_done = wbc->nr_to_write <= 0; 3883 } 3884 pagevec_release(&pvec); 3885 cond_resched(); 3886 } 3887 if (!scanned && !done) { 3888 /* 3889 * We hit the last page and there is more work to be done: wrap 3890 * back to the start of the file 3891 */ 3892 scanned = 1; 3893 index = 0; 3894 goto retry; 3895 } 3896 flush_write_bio(&epd); 3897 return ret; 3898 } 3899 3900 /** 3901 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3902 * @mapping: address space structure to write 3903 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3904 * @writepage: function called for each page 3905 * @data: data passed to writepage function 3906 * 3907 * If a page is already under I/O, write_cache_pages() skips it, even 3908 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3909 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3910 * and msync() need to guarantee that all the data which was dirty at the time 3911 * the call was made get new I/O started against them. If wbc->sync_mode is 3912 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3913 * existing IO to complete. 3914 */ 3915 static int extent_write_cache_pages(struct extent_io_tree *tree, 3916 struct address_space *mapping, 3917 struct writeback_control *wbc, 3918 writepage_t writepage, void *data, 3919 void (*flush_fn)(void *)) 3920 { 3921 struct inode *inode = mapping->host; 3922 int ret = 0; 3923 int done = 0; 3924 int err = 0; 3925 int nr_to_write_done = 0; 3926 struct pagevec pvec; 3927 int nr_pages; 3928 pgoff_t index; 3929 pgoff_t end; /* Inclusive */ 3930 int scanned = 0; 3931 int tag; 3932 3933 /* 3934 * We have to hold onto the inode so that ordered extents can do their 3935 * work when the IO finishes. The alternative to this is failing to add 3936 * an ordered extent if the igrab() fails there and that is a huge pain 3937 * to deal with, so instead just hold onto the inode throughout the 3938 * writepages operation. If it fails here we are freeing up the inode 3939 * anyway and we'd rather not waste our time writing out stuff that is 3940 * going to be truncated anyway. 3941 */ 3942 if (!igrab(inode)) 3943 return 0; 3944 3945 pagevec_init(&pvec, 0); 3946 if (wbc->range_cyclic) { 3947 index = mapping->writeback_index; /* Start from prev offset */ 3948 end = -1; 3949 } else { 3950 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3951 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3952 scanned = 1; 3953 } 3954 if (wbc->sync_mode == WB_SYNC_ALL) 3955 tag = PAGECACHE_TAG_TOWRITE; 3956 else 3957 tag = PAGECACHE_TAG_DIRTY; 3958 retry: 3959 if (wbc->sync_mode == WB_SYNC_ALL) 3960 tag_pages_for_writeback(mapping, index, end); 3961 while (!done && !nr_to_write_done && (index <= end) && 3962 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3963 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3964 unsigned i; 3965 3966 scanned = 1; 3967 for (i = 0; i < nr_pages; i++) { 3968 struct page *page = pvec.pages[i]; 3969 3970 /* 3971 * At this point we hold neither mapping->tree_lock nor 3972 * lock on the page itself: the page may be truncated or 3973 * invalidated (changing page->mapping to NULL), or even 3974 * swizzled back from swapper_space to tmpfs file 3975 * mapping 3976 */ 3977 if (!trylock_page(page)) { 3978 flush_fn(data); 3979 lock_page(page); 3980 } 3981 3982 if (unlikely(page->mapping != mapping)) { 3983 unlock_page(page); 3984 continue; 3985 } 3986 3987 if (!wbc->range_cyclic && page->index > end) { 3988 done = 1; 3989 unlock_page(page); 3990 continue; 3991 } 3992 3993 if (wbc->sync_mode != WB_SYNC_NONE) { 3994 if (PageWriteback(page)) 3995 flush_fn(data); 3996 wait_on_page_writeback(page); 3997 } 3998 3999 if (PageWriteback(page) || 4000 !clear_page_dirty_for_io(page)) { 4001 unlock_page(page); 4002 continue; 4003 } 4004 4005 ret = (*writepage)(page, wbc, data); 4006 4007 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 4008 unlock_page(page); 4009 ret = 0; 4010 } 4011 if (!err && ret < 0) 4012 err = ret; 4013 4014 /* 4015 * the filesystem may choose to bump up nr_to_write. 4016 * We have to make sure to honor the new nr_to_write 4017 * at any time 4018 */ 4019 nr_to_write_done = wbc->nr_to_write <= 0; 4020 } 4021 pagevec_release(&pvec); 4022 cond_resched(); 4023 } 4024 if (!scanned && !done && !err) { 4025 /* 4026 * We hit the last page and there is more work to be done: wrap 4027 * back to the start of the file 4028 */ 4029 scanned = 1; 4030 index = 0; 4031 goto retry; 4032 } 4033 btrfs_add_delayed_iput(inode); 4034 return err; 4035 } 4036 4037 static void flush_epd_write_bio(struct extent_page_data *epd) 4038 { 4039 if (epd->bio) { 4040 int rw = WRITE; 4041 int ret; 4042 4043 if (epd->sync_io) 4044 rw = WRITE_SYNC; 4045 4046 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 4047 BUG_ON(ret < 0); /* -ENOMEM */ 4048 epd->bio = NULL; 4049 } 4050 } 4051 4052 static noinline void flush_write_bio(void *data) 4053 { 4054 struct extent_page_data *epd = data; 4055 flush_epd_write_bio(epd); 4056 } 4057 4058 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 4059 get_extent_t *get_extent, 4060 struct writeback_control *wbc) 4061 { 4062 int ret; 4063 struct extent_page_data epd = { 4064 .bio = NULL, 4065 .tree = tree, 4066 .get_extent = get_extent, 4067 .extent_locked = 0, 4068 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4069 .bio_flags = 0, 4070 }; 4071 4072 ret = __extent_writepage(page, wbc, &epd); 4073 4074 flush_epd_write_bio(&epd); 4075 return ret; 4076 } 4077 4078 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 4079 u64 start, u64 end, get_extent_t *get_extent, 4080 int mode) 4081 { 4082 int ret = 0; 4083 struct address_space *mapping = inode->i_mapping; 4084 struct page *page; 4085 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 4086 PAGE_CACHE_SHIFT; 4087 4088 struct extent_page_data epd = { 4089 .bio = NULL, 4090 .tree = tree, 4091 .get_extent = get_extent, 4092 .extent_locked = 1, 4093 .sync_io = mode == WB_SYNC_ALL, 4094 .bio_flags = 0, 4095 }; 4096 struct writeback_control wbc_writepages = { 4097 .sync_mode = mode, 4098 .nr_to_write = nr_pages * 2, 4099 .range_start = start, 4100 .range_end = end + 1, 4101 }; 4102 4103 while (start <= end) { 4104 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 4105 if (clear_page_dirty_for_io(page)) 4106 ret = __extent_writepage(page, &wbc_writepages, &epd); 4107 else { 4108 if (tree->ops && tree->ops->writepage_end_io_hook) 4109 tree->ops->writepage_end_io_hook(page, start, 4110 start + PAGE_CACHE_SIZE - 1, 4111 NULL, 1); 4112 unlock_page(page); 4113 } 4114 page_cache_release(page); 4115 start += PAGE_CACHE_SIZE; 4116 } 4117 4118 flush_epd_write_bio(&epd); 4119 return ret; 4120 } 4121 4122 int extent_writepages(struct extent_io_tree *tree, 4123 struct address_space *mapping, 4124 get_extent_t *get_extent, 4125 struct writeback_control *wbc) 4126 { 4127 int ret = 0; 4128 struct extent_page_data epd = { 4129 .bio = NULL, 4130 .tree = tree, 4131 .get_extent = get_extent, 4132 .extent_locked = 0, 4133 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4134 .bio_flags = 0, 4135 }; 4136 4137 ret = extent_write_cache_pages(tree, mapping, wbc, 4138 __extent_writepage, &epd, 4139 flush_write_bio); 4140 flush_epd_write_bio(&epd); 4141 return ret; 4142 } 4143 4144 int extent_readpages(struct extent_io_tree *tree, 4145 struct address_space *mapping, 4146 struct list_head *pages, unsigned nr_pages, 4147 get_extent_t get_extent) 4148 { 4149 struct bio *bio = NULL; 4150 unsigned page_idx; 4151 unsigned long bio_flags = 0; 4152 struct page *pagepool[16]; 4153 struct page *page; 4154 struct extent_map *em_cached = NULL; 4155 int nr = 0; 4156 4157 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 4158 page = list_entry(pages->prev, struct page, lru); 4159 4160 prefetchw(&page->flags); 4161 list_del(&page->lru); 4162 if (add_to_page_cache_lru(page, mapping, 4163 page->index, GFP_NOFS)) { 4164 page_cache_release(page); 4165 continue; 4166 } 4167 4168 pagepool[nr++] = page; 4169 if (nr < ARRAY_SIZE(pagepool)) 4170 continue; 4171 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4172 &bio, 0, &bio_flags, READ); 4173 nr = 0; 4174 } 4175 if (nr) 4176 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4177 &bio, 0, &bio_flags, READ); 4178 4179 if (em_cached) 4180 free_extent_map(em_cached); 4181 4182 BUG_ON(!list_empty(pages)); 4183 if (bio) 4184 return submit_one_bio(READ, bio, 0, bio_flags); 4185 return 0; 4186 } 4187 4188 /* 4189 * basic invalidatepage code, this waits on any locked or writeback 4190 * ranges corresponding to the page, and then deletes any extent state 4191 * records from the tree 4192 */ 4193 int extent_invalidatepage(struct extent_io_tree *tree, 4194 struct page *page, unsigned long offset) 4195 { 4196 struct extent_state *cached_state = NULL; 4197 u64 start = page_offset(page); 4198 u64 end = start + PAGE_CACHE_SIZE - 1; 4199 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4200 4201 start += ALIGN(offset, blocksize); 4202 if (start > end) 4203 return 0; 4204 4205 lock_extent_bits(tree, start, end, 0, &cached_state); 4206 wait_on_page_writeback(page); 4207 clear_extent_bit(tree, start, end, 4208 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4209 EXTENT_DO_ACCOUNTING, 4210 1, 1, &cached_state, GFP_NOFS); 4211 return 0; 4212 } 4213 4214 /* 4215 * a helper for releasepage, this tests for areas of the page that 4216 * are locked or under IO and drops the related state bits if it is safe 4217 * to drop the page. 4218 */ 4219 static int try_release_extent_state(struct extent_map_tree *map, 4220 struct extent_io_tree *tree, 4221 struct page *page, gfp_t mask) 4222 { 4223 u64 start = page_offset(page); 4224 u64 end = start + PAGE_CACHE_SIZE - 1; 4225 int ret = 1; 4226 4227 if (test_range_bit(tree, start, end, 4228 EXTENT_IOBITS, 0, NULL)) 4229 ret = 0; 4230 else { 4231 if ((mask & GFP_NOFS) == GFP_NOFS) 4232 mask = GFP_NOFS; 4233 /* 4234 * at this point we can safely clear everything except the 4235 * locked bit and the nodatasum bit 4236 */ 4237 ret = clear_extent_bit(tree, start, end, 4238 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4239 0, 0, NULL, mask); 4240 4241 /* if clear_extent_bit failed for enomem reasons, 4242 * we can't allow the release to continue. 4243 */ 4244 if (ret < 0) 4245 ret = 0; 4246 else 4247 ret = 1; 4248 } 4249 return ret; 4250 } 4251 4252 /* 4253 * a helper for releasepage. As long as there are no locked extents 4254 * in the range corresponding to the page, both state records and extent 4255 * map records are removed 4256 */ 4257 int try_release_extent_mapping(struct extent_map_tree *map, 4258 struct extent_io_tree *tree, struct page *page, 4259 gfp_t mask) 4260 { 4261 struct extent_map *em; 4262 u64 start = page_offset(page); 4263 u64 end = start + PAGE_CACHE_SIZE - 1; 4264 4265 if ((mask & __GFP_WAIT) && 4266 page->mapping->host->i_size > 16 * 1024 * 1024) { 4267 u64 len; 4268 while (start <= end) { 4269 len = end - start + 1; 4270 write_lock(&map->lock); 4271 em = lookup_extent_mapping(map, start, len); 4272 if (!em) { 4273 write_unlock(&map->lock); 4274 break; 4275 } 4276 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4277 em->start != start) { 4278 write_unlock(&map->lock); 4279 free_extent_map(em); 4280 break; 4281 } 4282 if (!test_range_bit(tree, em->start, 4283 extent_map_end(em) - 1, 4284 EXTENT_LOCKED | EXTENT_WRITEBACK, 4285 0, NULL)) { 4286 remove_extent_mapping(map, em); 4287 /* once for the rb tree */ 4288 free_extent_map(em); 4289 } 4290 start = extent_map_end(em); 4291 write_unlock(&map->lock); 4292 4293 /* once for us */ 4294 free_extent_map(em); 4295 } 4296 } 4297 return try_release_extent_state(map, tree, page, mask); 4298 } 4299 4300 /* 4301 * helper function for fiemap, which doesn't want to see any holes. 4302 * This maps until we find something past 'last' 4303 */ 4304 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4305 u64 offset, 4306 u64 last, 4307 get_extent_t *get_extent) 4308 { 4309 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4310 struct extent_map *em; 4311 u64 len; 4312 4313 if (offset >= last) 4314 return NULL; 4315 4316 while (1) { 4317 len = last - offset; 4318 if (len == 0) 4319 break; 4320 len = ALIGN(len, sectorsize); 4321 em = get_extent(inode, NULL, 0, offset, len, 0); 4322 if (IS_ERR_OR_NULL(em)) 4323 return em; 4324 4325 /* if this isn't a hole return it */ 4326 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4327 em->block_start != EXTENT_MAP_HOLE) { 4328 return em; 4329 } 4330 4331 /* this is a hole, advance to the next extent */ 4332 offset = extent_map_end(em); 4333 free_extent_map(em); 4334 if (offset >= last) 4335 break; 4336 } 4337 return NULL; 4338 } 4339 4340 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4341 __u64 start, __u64 len, get_extent_t *get_extent) 4342 { 4343 int ret = 0; 4344 u64 off = start; 4345 u64 max = start + len; 4346 u32 flags = 0; 4347 u32 found_type; 4348 u64 last; 4349 u64 last_for_get_extent = 0; 4350 u64 disko = 0; 4351 u64 isize = i_size_read(inode); 4352 struct btrfs_key found_key; 4353 struct extent_map *em = NULL; 4354 struct extent_state *cached_state = NULL; 4355 struct btrfs_path *path; 4356 struct btrfs_root *root = BTRFS_I(inode)->root; 4357 int end = 0; 4358 u64 em_start = 0; 4359 u64 em_len = 0; 4360 u64 em_end = 0; 4361 4362 if (len == 0) 4363 return -EINVAL; 4364 4365 path = btrfs_alloc_path(); 4366 if (!path) 4367 return -ENOMEM; 4368 path->leave_spinning = 1; 4369 4370 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4371 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4372 4373 /* 4374 * lookup the last file extent. We're not using i_size here 4375 * because there might be preallocation past i_size 4376 */ 4377 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 4378 0); 4379 if (ret < 0) { 4380 btrfs_free_path(path); 4381 return ret; 4382 } 4383 WARN_ON(!ret); 4384 path->slots[0]--; 4385 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4386 found_type = found_key.type; 4387 4388 /* No extents, but there might be delalloc bits */ 4389 if (found_key.objectid != btrfs_ino(inode) || 4390 found_type != BTRFS_EXTENT_DATA_KEY) { 4391 /* have to trust i_size as the end */ 4392 last = (u64)-1; 4393 last_for_get_extent = isize; 4394 } else { 4395 /* 4396 * remember the start of the last extent. There are a 4397 * bunch of different factors that go into the length of the 4398 * extent, so its much less complex to remember where it started 4399 */ 4400 last = found_key.offset; 4401 last_for_get_extent = last + 1; 4402 } 4403 btrfs_release_path(path); 4404 4405 /* 4406 * we might have some extents allocated but more delalloc past those 4407 * extents. so, we trust isize unless the start of the last extent is 4408 * beyond isize 4409 */ 4410 if (last < isize) { 4411 last = (u64)-1; 4412 last_for_get_extent = isize; 4413 } 4414 4415 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4416 &cached_state); 4417 4418 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4419 get_extent); 4420 if (!em) 4421 goto out; 4422 if (IS_ERR(em)) { 4423 ret = PTR_ERR(em); 4424 goto out; 4425 } 4426 4427 while (!end) { 4428 u64 offset_in_extent = 0; 4429 4430 /* break if the extent we found is outside the range */ 4431 if (em->start >= max || extent_map_end(em) < off) 4432 break; 4433 4434 /* 4435 * get_extent may return an extent that starts before our 4436 * requested range. We have to make sure the ranges 4437 * we return to fiemap always move forward and don't 4438 * overlap, so adjust the offsets here 4439 */ 4440 em_start = max(em->start, off); 4441 4442 /* 4443 * record the offset from the start of the extent 4444 * for adjusting the disk offset below. Only do this if the 4445 * extent isn't compressed since our in ram offset may be past 4446 * what we have actually allocated on disk. 4447 */ 4448 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4449 offset_in_extent = em_start - em->start; 4450 em_end = extent_map_end(em); 4451 em_len = em_end - em_start; 4452 disko = 0; 4453 flags = 0; 4454 4455 /* 4456 * bump off for our next call to get_extent 4457 */ 4458 off = extent_map_end(em); 4459 if (off >= max) 4460 end = 1; 4461 4462 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4463 end = 1; 4464 flags |= FIEMAP_EXTENT_LAST; 4465 } else if (em->block_start == EXTENT_MAP_INLINE) { 4466 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4467 FIEMAP_EXTENT_NOT_ALIGNED); 4468 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4469 flags |= (FIEMAP_EXTENT_DELALLOC | 4470 FIEMAP_EXTENT_UNKNOWN); 4471 } else if (fieinfo->fi_extents_max) { 4472 u64 bytenr = em->block_start - 4473 (em->start - em->orig_start); 4474 4475 disko = em->block_start + offset_in_extent; 4476 4477 /* 4478 * As btrfs supports shared space, this information 4479 * can be exported to userspace tools via 4480 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4481 * then we're just getting a count and we can skip the 4482 * lookup stuff. 4483 */ 4484 ret = btrfs_check_shared(NULL, root->fs_info, 4485 root->objectid, 4486 btrfs_ino(inode), bytenr); 4487 if (ret < 0) 4488 goto out_free; 4489 if (ret) 4490 flags |= FIEMAP_EXTENT_SHARED; 4491 ret = 0; 4492 } 4493 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4494 flags |= FIEMAP_EXTENT_ENCODED; 4495 4496 free_extent_map(em); 4497 em = NULL; 4498 if ((em_start >= last) || em_len == (u64)-1 || 4499 (last == (u64)-1 && isize <= em_end)) { 4500 flags |= FIEMAP_EXTENT_LAST; 4501 end = 1; 4502 } 4503 4504 /* now scan forward to see if this is really the last extent. */ 4505 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4506 get_extent); 4507 if (IS_ERR(em)) { 4508 ret = PTR_ERR(em); 4509 goto out; 4510 } 4511 if (!em) { 4512 flags |= FIEMAP_EXTENT_LAST; 4513 end = 1; 4514 } 4515 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4516 em_len, flags); 4517 if (ret) 4518 goto out_free; 4519 } 4520 out_free: 4521 free_extent_map(em); 4522 out: 4523 btrfs_free_path(path); 4524 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4525 &cached_state, GFP_NOFS); 4526 return ret; 4527 } 4528 4529 static void __free_extent_buffer(struct extent_buffer *eb) 4530 { 4531 btrfs_leak_debug_del(&eb->leak_list); 4532 kmem_cache_free(extent_buffer_cache, eb); 4533 } 4534 4535 int extent_buffer_under_io(struct extent_buffer *eb) 4536 { 4537 return (atomic_read(&eb->io_pages) || 4538 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4539 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4540 } 4541 4542 /* 4543 * Helper for releasing extent buffer page. 4544 */ 4545 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb) 4546 { 4547 unsigned long index; 4548 struct page *page; 4549 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4550 4551 BUG_ON(extent_buffer_under_io(eb)); 4552 4553 index = num_extent_pages(eb->start, eb->len); 4554 if (index == 0) 4555 return; 4556 4557 do { 4558 index--; 4559 page = eb->pages[index]; 4560 if (page && mapped) { 4561 spin_lock(&page->mapping->private_lock); 4562 /* 4563 * We do this since we'll remove the pages after we've 4564 * removed the eb from the radix tree, so we could race 4565 * and have this page now attached to the new eb. So 4566 * only clear page_private if it's still connected to 4567 * this eb. 4568 */ 4569 if (PagePrivate(page) && 4570 page->private == (unsigned long)eb) { 4571 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4572 BUG_ON(PageDirty(page)); 4573 BUG_ON(PageWriteback(page)); 4574 /* 4575 * We need to make sure we haven't be attached 4576 * to a new eb. 4577 */ 4578 ClearPagePrivate(page); 4579 set_page_private(page, 0); 4580 /* One for the page private */ 4581 page_cache_release(page); 4582 } 4583 spin_unlock(&page->mapping->private_lock); 4584 4585 } 4586 if (page) { 4587 /* One for when we alloced the page */ 4588 page_cache_release(page); 4589 } 4590 } while (index != 0); 4591 } 4592 4593 /* 4594 * Helper for releasing the extent buffer. 4595 */ 4596 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4597 { 4598 btrfs_release_extent_buffer_page(eb); 4599 __free_extent_buffer(eb); 4600 } 4601 4602 static struct extent_buffer * 4603 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4604 unsigned long len) 4605 { 4606 struct extent_buffer *eb = NULL; 4607 4608 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS); 4609 if (eb == NULL) 4610 return NULL; 4611 eb->start = start; 4612 eb->len = len; 4613 eb->fs_info = fs_info; 4614 eb->bflags = 0; 4615 rwlock_init(&eb->lock); 4616 atomic_set(&eb->write_locks, 0); 4617 atomic_set(&eb->read_locks, 0); 4618 atomic_set(&eb->blocking_readers, 0); 4619 atomic_set(&eb->blocking_writers, 0); 4620 atomic_set(&eb->spinning_readers, 0); 4621 atomic_set(&eb->spinning_writers, 0); 4622 eb->lock_nested = 0; 4623 init_waitqueue_head(&eb->write_lock_wq); 4624 init_waitqueue_head(&eb->read_lock_wq); 4625 4626 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4627 4628 spin_lock_init(&eb->refs_lock); 4629 atomic_set(&eb->refs, 1); 4630 atomic_set(&eb->io_pages, 0); 4631 4632 /* 4633 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4634 */ 4635 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4636 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4637 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4638 4639 return eb; 4640 } 4641 4642 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4643 { 4644 unsigned long i; 4645 struct page *p; 4646 struct extent_buffer *new; 4647 unsigned long num_pages = num_extent_pages(src->start, src->len); 4648 4649 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4650 if (new == NULL) 4651 return NULL; 4652 4653 for (i = 0; i < num_pages; i++) { 4654 p = alloc_page(GFP_NOFS); 4655 if (!p) { 4656 btrfs_release_extent_buffer(new); 4657 return NULL; 4658 } 4659 attach_extent_buffer_page(new, p); 4660 WARN_ON(PageDirty(p)); 4661 SetPageUptodate(p); 4662 new->pages[i] = p; 4663 } 4664 4665 copy_extent_buffer(new, src, 0, 0, src->len); 4666 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4667 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4668 4669 return new; 4670 } 4671 4672 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4673 u64 start) 4674 { 4675 struct extent_buffer *eb; 4676 unsigned long len; 4677 unsigned long num_pages; 4678 unsigned long i; 4679 4680 if (!fs_info) { 4681 /* 4682 * Called only from tests that don't always have a fs_info 4683 * available, but we know that nodesize is 4096 4684 */ 4685 len = 4096; 4686 } else { 4687 len = fs_info->tree_root->nodesize; 4688 } 4689 num_pages = num_extent_pages(0, len); 4690 4691 eb = __alloc_extent_buffer(fs_info, start, len); 4692 if (!eb) 4693 return NULL; 4694 4695 for (i = 0; i < num_pages; i++) { 4696 eb->pages[i] = alloc_page(GFP_NOFS); 4697 if (!eb->pages[i]) 4698 goto err; 4699 } 4700 set_extent_buffer_uptodate(eb); 4701 btrfs_set_header_nritems(eb, 0); 4702 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4703 4704 return eb; 4705 err: 4706 for (; i > 0; i--) 4707 __free_page(eb->pages[i - 1]); 4708 __free_extent_buffer(eb); 4709 return NULL; 4710 } 4711 4712 static void check_buffer_tree_ref(struct extent_buffer *eb) 4713 { 4714 int refs; 4715 /* the ref bit is tricky. We have to make sure it is set 4716 * if we have the buffer dirty. Otherwise the 4717 * code to free a buffer can end up dropping a dirty 4718 * page 4719 * 4720 * Once the ref bit is set, it won't go away while the 4721 * buffer is dirty or in writeback, and it also won't 4722 * go away while we have the reference count on the 4723 * eb bumped. 4724 * 4725 * We can't just set the ref bit without bumping the 4726 * ref on the eb because free_extent_buffer might 4727 * see the ref bit and try to clear it. If this happens 4728 * free_extent_buffer might end up dropping our original 4729 * ref by mistake and freeing the page before we are able 4730 * to add one more ref. 4731 * 4732 * So bump the ref count first, then set the bit. If someone 4733 * beat us to it, drop the ref we added. 4734 */ 4735 refs = atomic_read(&eb->refs); 4736 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4737 return; 4738 4739 spin_lock(&eb->refs_lock); 4740 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4741 atomic_inc(&eb->refs); 4742 spin_unlock(&eb->refs_lock); 4743 } 4744 4745 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4746 struct page *accessed) 4747 { 4748 unsigned long num_pages, i; 4749 4750 check_buffer_tree_ref(eb); 4751 4752 num_pages = num_extent_pages(eb->start, eb->len); 4753 for (i = 0; i < num_pages; i++) { 4754 struct page *p = eb->pages[i]; 4755 4756 if (p != accessed) 4757 mark_page_accessed(p); 4758 } 4759 } 4760 4761 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4762 u64 start) 4763 { 4764 struct extent_buffer *eb; 4765 4766 rcu_read_lock(); 4767 eb = radix_tree_lookup(&fs_info->buffer_radix, 4768 start >> PAGE_CACHE_SHIFT); 4769 if (eb && atomic_inc_not_zero(&eb->refs)) { 4770 rcu_read_unlock(); 4771 mark_extent_buffer_accessed(eb, NULL); 4772 return eb; 4773 } 4774 rcu_read_unlock(); 4775 4776 return NULL; 4777 } 4778 4779 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4780 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4781 u64 start) 4782 { 4783 struct extent_buffer *eb, *exists = NULL; 4784 int ret; 4785 4786 eb = find_extent_buffer(fs_info, start); 4787 if (eb) 4788 return eb; 4789 eb = alloc_dummy_extent_buffer(fs_info, start); 4790 if (!eb) 4791 return NULL; 4792 eb->fs_info = fs_info; 4793 again: 4794 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4795 if (ret) 4796 goto free_eb; 4797 spin_lock(&fs_info->buffer_lock); 4798 ret = radix_tree_insert(&fs_info->buffer_radix, 4799 start >> PAGE_CACHE_SHIFT, eb); 4800 spin_unlock(&fs_info->buffer_lock); 4801 radix_tree_preload_end(); 4802 if (ret == -EEXIST) { 4803 exists = find_extent_buffer(fs_info, start); 4804 if (exists) 4805 goto free_eb; 4806 else 4807 goto again; 4808 } 4809 check_buffer_tree_ref(eb); 4810 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4811 4812 /* 4813 * We will free dummy extent buffer's if they come into 4814 * free_extent_buffer with a ref count of 2, but if we are using this we 4815 * want the buffers to stay in memory until we're done with them, so 4816 * bump the ref count again. 4817 */ 4818 atomic_inc(&eb->refs); 4819 return eb; 4820 free_eb: 4821 btrfs_release_extent_buffer(eb); 4822 return exists; 4823 } 4824 #endif 4825 4826 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4827 u64 start) 4828 { 4829 unsigned long len = fs_info->tree_root->nodesize; 4830 unsigned long num_pages = num_extent_pages(start, len); 4831 unsigned long i; 4832 unsigned long index = start >> PAGE_CACHE_SHIFT; 4833 struct extent_buffer *eb; 4834 struct extent_buffer *exists = NULL; 4835 struct page *p; 4836 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4837 int uptodate = 1; 4838 int ret; 4839 4840 eb = find_extent_buffer(fs_info, start); 4841 if (eb) 4842 return eb; 4843 4844 eb = __alloc_extent_buffer(fs_info, start, len); 4845 if (!eb) 4846 return NULL; 4847 4848 for (i = 0; i < num_pages; i++, index++) { 4849 p = find_or_create_page(mapping, index, GFP_NOFS); 4850 if (!p) 4851 goto free_eb; 4852 4853 spin_lock(&mapping->private_lock); 4854 if (PagePrivate(p)) { 4855 /* 4856 * We could have already allocated an eb for this page 4857 * and attached one so lets see if we can get a ref on 4858 * the existing eb, and if we can we know it's good and 4859 * we can just return that one, else we know we can just 4860 * overwrite page->private. 4861 */ 4862 exists = (struct extent_buffer *)p->private; 4863 if (atomic_inc_not_zero(&exists->refs)) { 4864 spin_unlock(&mapping->private_lock); 4865 unlock_page(p); 4866 page_cache_release(p); 4867 mark_extent_buffer_accessed(exists, p); 4868 goto free_eb; 4869 } 4870 4871 /* 4872 * Do this so attach doesn't complain and we need to 4873 * drop the ref the old guy had. 4874 */ 4875 ClearPagePrivate(p); 4876 WARN_ON(PageDirty(p)); 4877 page_cache_release(p); 4878 } 4879 attach_extent_buffer_page(eb, p); 4880 spin_unlock(&mapping->private_lock); 4881 WARN_ON(PageDirty(p)); 4882 eb->pages[i] = p; 4883 if (!PageUptodate(p)) 4884 uptodate = 0; 4885 4886 /* 4887 * see below about how we avoid a nasty race with release page 4888 * and why we unlock later 4889 */ 4890 } 4891 if (uptodate) 4892 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4893 again: 4894 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4895 if (ret) 4896 goto free_eb; 4897 4898 spin_lock(&fs_info->buffer_lock); 4899 ret = radix_tree_insert(&fs_info->buffer_radix, 4900 start >> PAGE_CACHE_SHIFT, eb); 4901 spin_unlock(&fs_info->buffer_lock); 4902 radix_tree_preload_end(); 4903 if (ret == -EEXIST) { 4904 exists = find_extent_buffer(fs_info, start); 4905 if (exists) 4906 goto free_eb; 4907 else 4908 goto again; 4909 } 4910 /* add one reference for the tree */ 4911 check_buffer_tree_ref(eb); 4912 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4913 4914 /* 4915 * there is a race where release page may have 4916 * tried to find this extent buffer in the radix 4917 * but failed. It will tell the VM it is safe to 4918 * reclaim the, and it will clear the page private bit. 4919 * We must make sure to set the page private bit properly 4920 * after the extent buffer is in the radix tree so 4921 * it doesn't get lost 4922 */ 4923 SetPageChecked(eb->pages[0]); 4924 for (i = 1; i < num_pages; i++) { 4925 p = eb->pages[i]; 4926 ClearPageChecked(p); 4927 unlock_page(p); 4928 } 4929 unlock_page(eb->pages[0]); 4930 return eb; 4931 4932 free_eb: 4933 for (i = 0; i < num_pages; i++) { 4934 if (eb->pages[i]) 4935 unlock_page(eb->pages[i]); 4936 } 4937 4938 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4939 btrfs_release_extent_buffer(eb); 4940 return exists; 4941 } 4942 4943 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4944 { 4945 struct extent_buffer *eb = 4946 container_of(head, struct extent_buffer, rcu_head); 4947 4948 __free_extent_buffer(eb); 4949 } 4950 4951 /* Expects to have eb->eb_lock already held */ 4952 static int release_extent_buffer(struct extent_buffer *eb) 4953 { 4954 WARN_ON(atomic_read(&eb->refs) == 0); 4955 if (atomic_dec_and_test(&eb->refs)) { 4956 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4957 struct btrfs_fs_info *fs_info = eb->fs_info; 4958 4959 spin_unlock(&eb->refs_lock); 4960 4961 spin_lock(&fs_info->buffer_lock); 4962 radix_tree_delete(&fs_info->buffer_radix, 4963 eb->start >> PAGE_CACHE_SHIFT); 4964 spin_unlock(&fs_info->buffer_lock); 4965 } else { 4966 spin_unlock(&eb->refs_lock); 4967 } 4968 4969 /* Should be safe to release our pages at this point */ 4970 btrfs_release_extent_buffer_page(eb); 4971 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4972 return 1; 4973 } 4974 spin_unlock(&eb->refs_lock); 4975 4976 return 0; 4977 } 4978 4979 void free_extent_buffer(struct extent_buffer *eb) 4980 { 4981 int refs; 4982 int old; 4983 if (!eb) 4984 return; 4985 4986 while (1) { 4987 refs = atomic_read(&eb->refs); 4988 if (refs <= 3) 4989 break; 4990 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4991 if (old == refs) 4992 return; 4993 } 4994 4995 spin_lock(&eb->refs_lock); 4996 if (atomic_read(&eb->refs) == 2 && 4997 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4998 atomic_dec(&eb->refs); 4999 5000 if (atomic_read(&eb->refs) == 2 && 5001 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5002 !extent_buffer_under_io(eb) && 5003 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5004 atomic_dec(&eb->refs); 5005 5006 /* 5007 * I know this is terrible, but it's temporary until we stop tracking 5008 * the uptodate bits and such for the extent buffers. 5009 */ 5010 release_extent_buffer(eb); 5011 } 5012 5013 void free_extent_buffer_stale(struct extent_buffer *eb) 5014 { 5015 if (!eb) 5016 return; 5017 5018 spin_lock(&eb->refs_lock); 5019 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5020 5021 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5022 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5023 atomic_dec(&eb->refs); 5024 release_extent_buffer(eb); 5025 } 5026 5027 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5028 { 5029 unsigned long i; 5030 unsigned long num_pages; 5031 struct page *page; 5032 5033 num_pages = num_extent_pages(eb->start, eb->len); 5034 5035 for (i = 0; i < num_pages; i++) { 5036 page = eb->pages[i]; 5037 if (!PageDirty(page)) 5038 continue; 5039 5040 lock_page(page); 5041 WARN_ON(!PagePrivate(page)); 5042 5043 clear_page_dirty_for_io(page); 5044 spin_lock_irq(&page->mapping->tree_lock); 5045 if (!PageDirty(page)) { 5046 radix_tree_tag_clear(&page->mapping->page_tree, 5047 page_index(page), 5048 PAGECACHE_TAG_DIRTY); 5049 } 5050 spin_unlock_irq(&page->mapping->tree_lock); 5051 ClearPageError(page); 5052 unlock_page(page); 5053 } 5054 WARN_ON(atomic_read(&eb->refs) == 0); 5055 } 5056 5057 int set_extent_buffer_dirty(struct extent_buffer *eb) 5058 { 5059 unsigned long i; 5060 unsigned long num_pages; 5061 int was_dirty = 0; 5062 5063 check_buffer_tree_ref(eb); 5064 5065 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5066 5067 num_pages = num_extent_pages(eb->start, eb->len); 5068 WARN_ON(atomic_read(&eb->refs) == 0); 5069 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5070 5071 for (i = 0; i < num_pages; i++) 5072 set_page_dirty(eb->pages[i]); 5073 return was_dirty; 5074 } 5075 5076 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 5077 { 5078 unsigned long i; 5079 struct page *page; 5080 unsigned long num_pages; 5081 5082 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5083 num_pages = num_extent_pages(eb->start, eb->len); 5084 for (i = 0; i < num_pages; i++) { 5085 page = eb->pages[i]; 5086 if (page) 5087 ClearPageUptodate(page); 5088 } 5089 return 0; 5090 } 5091 5092 int set_extent_buffer_uptodate(struct extent_buffer *eb) 5093 { 5094 unsigned long i; 5095 struct page *page; 5096 unsigned long num_pages; 5097 5098 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5099 num_pages = num_extent_pages(eb->start, eb->len); 5100 for (i = 0; i < num_pages; i++) { 5101 page = eb->pages[i]; 5102 SetPageUptodate(page); 5103 } 5104 return 0; 5105 } 5106 5107 int extent_buffer_uptodate(struct extent_buffer *eb) 5108 { 5109 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5110 } 5111 5112 int read_extent_buffer_pages(struct extent_io_tree *tree, 5113 struct extent_buffer *eb, u64 start, int wait, 5114 get_extent_t *get_extent, int mirror_num) 5115 { 5116 unsigned long i; 5117 unsigned long start_i; 5118 struct page *page; 5119 int err; 5120 int ret = 0; 5121 int locked_pages = 0; 5122 int all_uptodate = 1; 5123 unsigned long num_pages; 5124 unsigned long num_reads = 0; 5125 struct bio *bio = NULL; 5126 unsigned long bio_flags = 0; 5127 5128 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5129 return 0; 5130 5131 if (start) { 5132 WARN_ON(start < eb->start); 5133 start_i = (start >> PAGE_CACHE_SHIFT) - 5134 (eb->start >> PAGE_CACHE_SHIFT); 5135 } else { 5136 start_i = 0; 5137 } 5138 5139 num_pages = num_extent_pages(eb->start, eb->len); 5140 for (i = start_i; i < num_pages; i++) { 5141 page = eb->pages[i]; 5142 if (wait == WAIT_NONE) { 5143 if (!trylock_page(page)) 5144 goto unlock_exit; 5145 } else { 5146 lock_page(page); 5147 } 5148 locked_pages++; 5149 if (!PageUptodate(page)) { 5150 num_reads++; 5151 all_uptodate = 0; 5152 } 5153 } 5154 if (all_uptodate) { 5155 if (start_i == 0) 5156 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5157 goto unlock_exit; 5158 } 5159 5160 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5161 eb->read_mirror = 0; 5162 atomic_set(&eb->io_pages, num_reads); 5163 for (i = start_i; i < num_pages; i++) { 5164 page = eb->pages[i]; 5165 if (!PageUptodate(page)) { 5166 ClearPageError(page); 5167 err = __extent_read_full_page(tree, page, 5168 get_extent, &bio, 5169 mirror_num, &bio_flags, 5170 READ | REQ_META); 5171 if (err) 5172 ret = err; 5173 } else { 5174 unlock_page(page); 5175 } 5176 } 5177 5178 if (bio) { 5179 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5180 bio_flags); 5181 if (err) 5182 return err; 5183 } 5184 5185 if (ret || wait != WAIT_COMPLETE) 5186 return ret; 5187 5188 for (i = start_i; i < num_pages; i++) { 5189 page = eb->pages[i]; 5190 wait_on_page_locked(page); 5191 if (!PageUptodate(page)) 5192 ret = -EIO; 5193 } 5194 5195 return ret; 5196 5197 unlock_exit: 5198 i = start_i; 5199 while (locked_pages > 0) { 5200 page = eb->pages[i]; 5201 i++; 5202 unlock_page(page); 5203 locked_pages--; 5204 } 5205 return ret; 5206 } 5207 5208 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5209 unsigned long start, 5210 unsigned long len) 5211 { 5212 size_t cur; 5213 size_t offset; 5214 struct page *page; 5215 char *kaddr; 5216 char *dst = (char *)dstv; 5217 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5218 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5219 5220 WARN_ON(start > eb->len); 5221 WARN_ON(start + len > eb->start + eb->len); 5222 5223 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5224 5225 while (len > 0) { 5226 page = eb->pages[i]; 5227 5228 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5229 kaddr = page_address(page); 5230 memcpy(dst, kaddr + offset, cur); 5231 5232 dst += cur; 5233 len -= cur; 5234 offset = 0; 5235 i++; 5236 } 5237 } 5238 5239 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5240 unsigned long start, 5241 unsigned long len) 5242 { 5243 size_t cur; 5244 size_t offset; 5245 struct page *page; 5246 char *kaddr; 5247 char __user *dst = (char __user *)dstv; 5248 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5249 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5250 int ret = 0; 5251 5252 WARN_ON(start > eb->len); 5253 WARN_ON(start + len > eb->start + eb->len); 5254 5255 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5256 5257 while (len > 0) { 5258 page = eb->pages[i]; 5259 5260 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5261 kaddr = page_address(page); 5262 if (copy_to_user(dst, kaddr + offset, cur)) { 5263 ret = -EFAULT; 5264 break; 5265 } 5266 5267 dst += cur; 5268 len -= cur; 5269 offset = 0; 5270 i++; 5271 } 5272 5273 return ret; 5274 } 5275 5276 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5277 unsigned long min_len, char **map, 5278 unsigned long *map_start, 5279 unsigned long *map_len) 5280 { 5281 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5282 char *kaddr; 5283 struct page *p; 5284 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5285 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5286 unsigned long end_i = (start_offset + start + min_len - 1) >> 5287 PAGE_CACHE_SHIFT; 5288 5289 if (i != end_i) 5290 return -EINVAL; 5291 5292 if (i == 0) { 5293 offset = start_offset; 5294 *map_start = 0; 5295 } else { 5296 offset = 0; 5297 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5298 } 5299 5300 if (start + min_len > eb->len) { 5301 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5302 "wanted %lu %lu\n", 5303 eb->start, eb->len, start, min_len); 5304 return -EINVAL; 5305 } 5306 5307 p = eb->pages[i]; 5308 kaddr = page_address(p); 5309 *map = kaddr + offset; 5310 *map_len = PAGE_CACHE_SIZE - offset; 5311 return 0; 5312 } 5313 5314 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5315 unsigned long start, 5316 unsigned long len) 5317 { 5318 size_t cur; 5319 size_t offset; 5320 struct page *page; 5321 char *kaddr; 5322 char *ptr = (char *)ptrv; 5323 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5324 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5325 int ret = 0; 5326 5327 WARN_ON(start > eb->len); 5328 WARN_ON(start + len > eb->start + eb->len); 5329 5330 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5331 5332 while (len > 0) { 5333 page = eb->pages[i]; 5334 5335 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5336 5337 kaddr = page_address(page); 5338 ret = memcmp(ptr, kaddr + offset, cur); 5339 if (ret) 5340 break; 5341 5342 ptr += cur; 5343 len -= cur; 5344 offset = 0; 5345 i++; 5346 } 5347 return ret; 5348 } 5349 5350 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5351 unsigned long start, unsigned long len) 5352 { 5353 size_t cur; 5354 size_t offset; 5355 struct page *page; 5356 char *kaddr; 5357 char *src = (char *)srcv; 5358 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5359 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5360 5361 WARN_ON(start > eb->len); 5362 WARN_ON(start + len > eb->start + eb->len); 5363 5364 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5365 5366 while (len > 0) { 5367 page = eb->pages[i]; 5368 WARN_ON(!PageUptodate(page)); 5369 5370 cur = min(len, PAGE_CACHE_SIZE - offset); 5371 kaddr = page_address(page); 5372 memcpy(kaddr + offset, src, cur); 5373 5374 src += cur; 5375 len -= cur; 5376 offset = 0; 5377 i++; 5378 } 5379 } 5380 5381 void memset_extent_buffer(struct extent_buffer *eb, char c, 5382 unsigned long start, unsigned long len) 5383 { 5384 size_t cur; 5385 size_t offset; 5386 struct page *page; 5387 char *kaddr; 5388 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5389 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5390 5391 WARN_ON(start > eb->len); 5392 WARN_ON(start + len > eb->start + eb->len); 5393 5394 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5395 5396 while (len > 0) { 5397 page = eb->pages[i]; 5398 WARN_ON(!PageUptodate(page)); 5399 5400 cur = min(len, PAGE_CACHE_SIZE - offset); 5401 kaddr = page_address(page); 5402 memset(kaddr + offset, c, cur); 5403 5404 len -= cur; 5405 offset = 0; 5406 i++; 5407 } 5408 } 5409 5410 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5411 unsigned long dst_offset, unsigned long src_offset, 5412 unsigned long len) 5413 { 5414 u64 dst_len = dst->len; 5415 size_t cur; 5416 size_t offset; 5417 struct page *page; 5418 char *kaddr; 5419 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5420 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5421 5422 WARN_ON(src->len != dst_len); 5423 5424 offset = (start_offset + dst_offset) & 5425 (PAGE_CACHE_SIZE - 1); 5426 5427 while (len > 0) { 5428 page = dst->pages[i]; 5429 WARN_ON(!PageUptodate(page)); 5430 5431 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5432 5433 kaddr = page_address(page); 5434 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5435 5436 src_offset += cur; 5437 len -= cur; 5438 offset = 0; 5439 i++; 5440 } 5441 } 5442 5443 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5444 { 5445 unsigned long distance = (src > dst) ? src - dst : dst - src; 5446 return distance < len; 5447 } 5448 5449 static void copy_pages(struct page *dst_page, struct page *src_page, 5450 unsigned long dst_off, unsigned long src_off, 5451 unsigned long len) 5452 { 5453 char *dst_kaddr = page_address(dst_page); 5454 char *src_kaddr; 5455 int must_memmove = 0; 5456 5457 if (dst_page != src_page) { 5458 src_kaddr = page_address(src_page); 5459 } else { 5460 src_kaddr = dst_kaddr; 5461 if (areas_overlap(src_off, dst_off, len)) 5462 must_memmove = 1; 5463 } 5464 5465 if (must_memmove) 5466 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5467 else 5468 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5469 } 5470 5471 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5472 unsigned long src_offset, unsigned long len) 5473 { 5474 size_t cur; 5475 size_t dst_off_in_page; 5476 size_t src_off_in_page; 5477 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5478 unsigned long dst_i; 5479 unsigned long src_i; 5480 5481 if (src_offset + len > dst->len) { 5482 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5483 "len %lu dst len %lu\n", src_offset, len, dst->len); 5484 BUG_ON(1); 5485 } 5486 if (dst_offset + len > dst->len) { 5487 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5488 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5489 BUG_ON(1); 5490 } 5491 5492 while (len > 0) { 5493 dst_off_in_page = (start_offset + dst_offset) & 5494 (PAGE_CACHE_SIZE - 1); 5495 src_off_in_page = (start_offset + src_offset) & 5496 (PAGE_CACHE_SIZE - 1); 5497 5498 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5499 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5500 5501 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5502 src_off_in_page)); 5503 cur = min_t(unsigned long, cur, 5504 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5505 5506 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5507 dst_off_in_page, src_off_in_page, cur); 5508 5509 src_offset += cur; 5510 dst_offset += cur; 5511 len -= cur; 5512 } 5513 } 5514 5515 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5516 unsigned long src_offset, unsigned long len) 5517 { 5518 size_t cur; 5519 size_t dst_off_in_page; 5520 size_t src_off_in_page; 5521 unsigned long dst_end = dst_offset + len - 1; 5522 unsigned long src_end = src_offset + len - 1; 5523 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5524 unsigned long dst_i; 5525 unsigned long src_i; 5526 5527 if (src_offset + len > dst->len) { 5528 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5529 "len %lu len %lu\n", src_offset, len, dst->len); 5530 BUG_ON(1); 5531 } 5532 if (dst_offset + len > dst->len) { 5533 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5534 "len %lu len %lu\n", dst_offset, len, dst->len); 5535 BUG_ON(1); 5536 } 5537 if (dst_offset < src_offset) { 5538 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5539 return; 5540 } 5541 while (len > 0) { 5542 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5543 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5544 5545 dst_off_in_page = (start_offset + dst_end) & 5546 (PAGE_CACHE_SIZE - 1); 5547 src_off_in_page = (start_offset + src_end) & 5548 (PAGE_CACHE_SIZE - 1); 5549 5550 cur = min_t(unsigned long, len, src_off_in_page + 1); 5551 cur = min(cur, dst_off_in_page + 1); 5552 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5553 dst_off_in_page - cur + 1, 5554 src_off_in_page - cur + 1, cur); 5555 5556 dst_end -= cur; 5557 src_end -= cur; 5558 len -= cur; 5559 } 5560 } 5561 5562 int try_release_extent_buffer(struct page *page) 5563 { 5564 struct extent_buffer *eb; 5565 5566 /* 5567 * We need to make sure noboody is attaching this page to an eb right 5568 * now. 5569 */ 5570 spin_lock(&page->mapping->private_lock); 5571 if (!PagePrivate(page)) { 5572 spin_unlock(&page->mapping->private_lock); 5573 return 1; 5574 } 5575 5576 eb = (struct extent_buffer *)page->private; 5577 BUG_ON(!eb); 5578 5579 /* 5580 * This is a little awful but should be ok, we need to make sure that 5581 * the eb doesn't disappear out from under us while we're looking at 5582 * this page. 5583 */ 5584 spin_lock(&eb->refs_lock); 5585 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5586 spin_unlock(&eb->refs_lock); 5587 spin_unlock(&page->mapping->private_lock); 5588 return 0; 5589 } 5590 spin_unlock(&page->mapping->private_lock); 5591 5592 /* 5593 * If tree ref isn't set then we know the ref on this eb is a real ref, 5594 * so just return, this page will likely be freed soon anyway. 5595 */ 5596 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5597 spin_unlock(&eb->refs_lock); 5598 return 0; 5599 } 5600 5601 return release_extent_buffer(eb); 5602 } 5603