1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 33 static struct kmem_cache *extent_state_cache; 34 static struct kmem_cache *extent_buffer_cache; 35 static struct bio_set btrfs_bioset; 36 37 static inline bool extent_state_in_tree(const struct extent_state *state) 38 { 39 return !RB_EMPTY_NODE(&state->rb_node); 40 } 41 42 #ifdef CONFIG_BTRFS_DEBUG 43 static LIST_HEAD(states); 44 static DEFINE_SPINLOCK(leak_lock); 45 46 static inline void btrfs_leak_debug_add(spinlock_t *lock, 47 struct list_head *new, 48 struct list_head *head) 49 { 50 unsigned long flags; 51 52 spin_lock_irqsave(lock, flags); 53 list_add(new, head); 54 spin_unlock_irqrestore(lock, flags); 55 } 56 57 static inline void btrfs_leak_debug_del(spinlock_t *lock, 58 struct list_head *entry) 59 { 60 unsigned long flags; 61 62 spin_lock_irqsave(lock, flags); 63 list_del(entry); 64 spin_unlock_irqrestore(lock, flags); 65 } 66 67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 68 { 69 struct extent_buffer *eb; 70 unsigned long flags; 71 72 /* 73 * If we didn't get into open_ctree our allocated_ebs will not be 74 * initialized, so just skip this. 75 */ 76 if (!fs_info->allocated_ebs.next) 77 return; 78 79 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 80 while (!list_empty(&fs_info->allocated_ebs)) { 81 eb = list_first_entry(&fs_info->allocated_ebs, 82 struct extent_buffer, leak_list); 83 pr_err( 84 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 85 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 86 btrfs_header_owner(eb)); 87 list_del(&eb->leak_list); 88 kmem_cache_free(extent_buffer_cache, eb); 89 } 90 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 91 } 92 93 static inline void btrfs_extent_state_leak_debug_check(void) 94 { 95 struct extent_state *state; 96 97 while (!list_empty(&states)) { 98 state = list_entry(states.next, struct extent_state, leak_list); 99 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 100 state->start, state->end, state->state, 101 extent_state_in_tree(state), 102 refcount_read(&state->refs)); 103 list_del(&state->leak_list); 104 kmem_cache_free(extent_state_cache, state); 105 } 106 } 107 108 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 109 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 110 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 111 struct extent_io_tree *tree, u64 start, u64 end) 112 { 113 struct inode *inode = tree->private_data; 114 u64 isize; 115 116 if (!inode || !is_data_inode(inode)) 117 return; 118 119 isize = i_size_read(inode); 120 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 121 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 122 "%s: ino %llu isize %llu odd range [%llu,%llu]", 123 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 124 } 125 } 126 #else 127 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 128 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 129 #define btrfs_extent_state_leak_debug_check() do {} while (0) 130 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 131 #endif 132 133 struct tree_entry { 134 u64 start; 135 u64 end; 136 struct rb_node rb_node; 137 }; 138 139 struct extent_page_data { 140 struct btrfs_bio_ctrl bio_ctrl; 141 /* tells writepage not to lock the state bits for this range 142 * it still does the unlocking 143 */ 144 unsigned int extent_locked:1; 145 146 /* tells the submit_bio code to use REQ_SYNC */ 147 unsigned int sync_io:1; 148 }; 149 150 static int add_extent_changeset(struct extent_state *state, u32 bits, 151 struct extent_changeset *changeset, 152 int set) 153 { 154 int ret; 155 156 if (!changeset) 157 return 0; 158 if (set && (state->state & bits) == bits) 159 return 0; 160 if (!set && (state->state & bits) == 0) 161 return 0; 162 changeset->bytes_changed += state->end - state->start + 1; 163 ret = ulist_add(&changeset->range_changed, state->start, state->end, 164 GFP_ATOMIC); 165 return ret; 166 } 167 168 int __must_check submit_one_bio(struct bio *bio, int mirror_num, 169 unsigned long bio_flags) 170 { 171 blk_status_t ret = 0; 172 struct extent_io_tree *tree = bio->bi_private; 173 174 bio->bi_private = NULL; 175 176 /* Caller should ensure the bio has at least some range added */ 177 ASSERT(bio->bi_iter.bi_size); 178 if (is_data_inode(tree->private_data)) 179 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 180 bio_flags); 181 else 182 ret = btrfs_submit_metadata_bio(tree->private_data, bio, 183 mirror_num, bio_flags); 184 185 return blk_status_to_errno(ret); 186 } 187 188 /* Cleanup unsubmitted bios */ 189 static void end_write_bio(struct extent_page_data *epd, int ret) 190 { 191 struct bio *bio = epd->bio_ctrl.bio; 192 193 if (bio) { 194 bio->bi_status = errno_to_blk_status(ret); 195 bio_endio(bio); 196 epd->bio_ctrl.bio = NULL; 197 } 198 } 199 200 /* 201 * Submit bio from extent page data via submit_one_bio 202 * 203 * Return 0 if everything is OK. 204 * Return <0 for error. 205 */ 206 static int __must_check flush_write_bio(struct extent_page_data *epd) 207 { 208 int ret = 0; 209 struct bio *bio = epd->bio_ctrl.bio; 210 211 if (bio) { 212 ret = submit_one_bio(bio, 0, 0); 213 /* 214 * Clean up of epd->bio is handled by its endio function. 215 * And endio is either triggered by successful bio execution 216 * or the error handler of submit bio hook. 217 * So at this point, no matter what happened, we don't need 218 * to clean up epd->bio. 219 */ 220 epd->bio_ctrl.bio = NULL; 221 } 222 return ret; 223 } 224 225 int __init extent_state_cache_init(void) 226 { 227 extent_state_cache = kmem_cache_create("btrfs_extent_state", 228 sizeof(struct extent_state), 0, 229 SLAB_MEM_SPREAD, NULL); 230 if (!extent_state_cache) 231 return -ENOMEM; 232 return 0; 233 } 234 235 int __init extent_io_init(void) 236 { 237 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 238 sizeof(struct extent_buffer), 0, 239 SLAB_MEM_SPREAD, NULL); 240 if (!extent_buffer_cache) 241 return -ENOMEM; 242 243 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 244 offsetof(struct btrfs_bio, bio), 245 BIOSET_NEED_BVECS)) 246 goto free_buffer_cache; 247 248 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 249 goto free_bioset; 250 251 return 0; 252 253 free_bioset: 254 bioset_exit(&btrfs_bioset); 255 256 free_buffer_cache: 257 kmem_cache_destroy(extent_buffer_cache); 258 extent_buffer_cache = NULL; 259 return -ENOMEM; 260 } 261 262 void __cold extent_state_cache_exit(void) 263 { 264 btrfs_extent_state_leak_debug_check(); 265 kmem_cache_destroy(extent_state_cache); 266 } 267 268 void __cold extent_io_exit(void) 269 { 270 /* 271 * Make sure all delayed rcu free are flushed before we 272 * destroy caches. 273 */ 274 rcu_barrier(); 275 kmem_cache_destroy(extent_buffer_cache); 276 bioset_exit(&btrfs_bioset); 277 } 278 279 /* 280 * For the file_extent_tree, we want to hold the inode lock when we lookup and 281 * update the disk_i_size, but lockdep will complain because our io_tree we hold 282 * the tree lock and get the inode lock when setting delalloc. These two things 283 * are unrelated, so make a class for the file_extent_tree so we don't get the 284 * two locking patterns mixed up. 285 */ 286 static struct lock_class_key file_extent_tree_class; 287 288 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 289 struct extent_io_tree *tree, unsigned int owner, 290 void *private_data) 291 { 292 tree->fs_info = fs_info; 293 tree->state = RB_ROOT; 294 tree->dirty_bytes = 0; 295 spin_lock_init(&tree->lock); 296 tree->private_data = private_data; 297 tree->owner = owner; 298 if (owner == IO_TREE_INODE_FILE_EXTENT) 299 lockdep_set_class(&tree->lock, &file_extent_tree_class); 300 } 301 302 void extent_io_tree_release(struct extent_io_tree *tree) 303 { 304 spin_lock(&tree->lock); 305 /* 306 * Do a single barrier for the waitqueue_active check here, the state 307 * of the waitqueue should not change once extent_io_tree_release is 308 * called. 309 */ 310 smp_mb(); 311 while (!RB_EMPTY_ROOT(&tree->state)) { 312 struct rb_node *node; 313 struct extent_state *state; 314 315 node = rb_first(&tree->state); 316 state = rb_entry(node, struct extent_state, rb_node); 317 rb_erase(&state->rb_node, &tree->state); 318 RB_CLEAR_NODE(&state->rb_node); 319 /* 320 * btree io trees aren't supposed to have tasks waiting for 321 * changes in the flags of extent states ever. 322 */ 323 ASSERT(!waitqueue_active(&state->wq)); 324 free_extent_state(state); 325 326 cond_resched_lock(&tree->lock); 327 } 328 spin_unlock(&tree->lock); 329 } 330 331 static struct extent_state *alloc_extent_state(gfp_t mask) 332 { 333 struct extent_state *state; 334 335 /* 336 * The given mask might be not appropriate for the slab allocator, 337 * drop the unsupported bits 338 */ 339 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 340 state = kmem_cache_alloc(extent_state_cache, mask); 341 if (!state) 342 return state; 343 state->state = 0; 344 state->failrec = NULL; 345 RB_CLEAR_NODE(&state->rb_node); 346 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 347 refcount_set(&state->refs, 1); 348 init_waitqueue_head(&state->wq); 349 trace_alloc_extent_state(state, mask, _RET_IP_); 350 return state; 351 } 352 353 void free_extent_state(struct extent_state *state) 354 { 355 if (!state) 356 return; 357 if (refcount_dec_and_test(&state->refs)) { 358 WARN_ON(extent_state_in_tree(state)); 359 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 360 trace_free_extent_state(state, _RET_IP_); 361 kmem_cache_free(extent_state_cache, state); 362 } 363 } 364 365 static struct rb_node *tree_insert(struct rb_root *root, 366 struct rb_node *search_start, 367 u64 offset, 368 struct rb_node *node, 369 struct rb_node ***p_in, 370 struct rb_node **parent_in) 371 { 372 struct rb_node **p; 373 struct rb_node *parent = NULL; 374 struct tree_entry *entry; 375 376 if (p_in && parent_in) { 377 p = *p_in; 378 parent = *parent_in; 379 goto do_insert; 380 } 381 382 p = search_start ? &search_start : &root->rb_node; 383 while (*p) { 384 parent = *p; 385 entry = rb_entry(parent, struct tree_entry, rb_node); 386 387 if (offset < entry->start) 388 p = &(*p)->rb_left; 389 else if (offset > entry->end) 390 p = &(*p)->rb_right; 391 else 392 return parent; 393 } 394 395 do_insert: 396 rb_link_node(node, parent, p); 397 rb_insert_color(node, root); 398 return NULL; 399 } 400 401 /** 402 * Search @tree for an entry that contains @offset. Such entry would have 403 * entry->start <= offset && entry->end >= offset. 404 * 405 * @tree: the tree to search 406 * @offset: offset that should fall within an entry in @tree 407 * @next_ret: pointer to the first entry whose range ends after @offset 408 * @prev_ret: pointer to the first entry whose range begins before @offset 409 * @p_ret: pointer where new node should be anchored (used when inserting an 410 * entry in the tree) 411 * @parent_ret: points to entry which would have been the parent of the entry, 412 * containing @offset 413 * 414 * This function returns a pointer to the entry that contains @offset byte 415 * address. If no such entry exists, then NULL is returned and the other 416 * pointer arguments to the function are filled, otherwise the found entry is 417 * returned and other pointers are left untouched. 418 */ 419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 420 struct rb_node **next_ret, 421 struct rb_node **prev_ret, 422 struct rb_node ***p_ret, 423 struct rb_node **parent_ret) 424 { 425 struct rb_root *root = &tree->state; 426 struct rb_node **n = &root->rb_node; 427 struct rb_node *prev = NULL; 428 struct rb_node *orig_prev = NULL; 429 struct tree_entry *entry; 430 struct tree_entry *prev_entry = NULL; 431 432 while (*n) { 433 prev = *n; 434 entry = rb_entry(prev, struct tree_entry, rb_node); 435 prev_entry = entry; 436 437 if (offset < entry->start) 438 n = &(*n)->rb_left; 439 else if (offset > entry->end) 440 n = &(*n)->rb_right; 441 else 442 return *n; 443 } 444 445 if (p_ret) 446 *p_ret = n; 447 if (parent_ret) 448 *parent_ret = prev; 449 450 if (next_ret) { 451 orig_prev = prev; 452 while (prev && offset > prev_entry->end) { 453 prev = rb_next(prev); 454 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 455 } 456 *next_ret = prev; 457 prev = orig_prev; 458 } 459 460 if (prev_ret) { 461 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 462 while (prev && offset < prev_entry->start) { 463 prev = rb_prev(prev); 464 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 465 } 466 *prev_ret = prev; 467 } 468 return NULL; 469 } 470 471 static inline struct rb_node * 472 tree_search_for_insert(struct extent_io_tree *tree, 473 u64 offset, 474 struct rb_node ***p_ret, 475 struct rb_node **parent_ret) 476 { 477 struct rb_node *next= NULL; 478 struct rb_node *ret; 479 480 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 481 if (!ret) 482 return next; 483 return ret; 484 } 485 486 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 487 u64 offset) 488 { 489 return tree_search_for_insert(tree, offset, NULL, NULL); 490 } 491 492 /* 493 * utility function to look for merge candidates inside a given range. 494 * Any extents with matching state are merged together into a single 495 * extent in the tree. Extents with EXTENT_IO in their state field 496 * are not merged because the end_io handlers need to be able to do 497 * operations on them without sleeping (or doing allocations/splits). 498 * 499 * This should be called with the tree lock held. 500 */ 501 static void merge_state(struct extent_io_tree *tree, 502 struct extent_state *state) 503 { 504 struct extent_state *other; 505 struct rb_node *other_node; 506 507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 508 return; 509 510 other_node = rb_prev(&state->rb_node); 511 if (other_node) { 512 other = rb_entry(other_node, struct extent_state, rb_node); 513 if (other->end == state->start - 1 && 514 other->state == state->state) { 515 if (tree->private_data && 516 is_data_inode(tree->private_data)) 517 btrfs_merge_delalloc_extent(tree->private_data, 518 state, other); 519 state->start = other->start; 520 rb_erase(&other->rb_node, &tree->state); 521 RB_CLEAR_NODE(&other->rb_node); 522 free_extent_state(other); 523 } 524 } 525 other_node = rb_next(&state->rb_node); 526 if (other_node) { 527 other = rb_entry(other_node, struct extent_state, rb_node); 528 if (other->start == state->end + 1 && 529 other->state == state->state) { 530 if (tree->private_data && 531 is_data_inode(tree->private_data)) 532 btrfs_merge_delalloc_extent(tree->private_data, 533 state, other); 534 state->end = other->end; 535 rb_erase(&other->rb_node, &tree->state); 536 RB_CLEAR_NODE(&other->rb_node); 537 free_extent_state(other); 538 } 539 } 540 } 541 542 static void set_state_bits(struct extent_io_tree *tree, 543 struct extent_state *state, u32 *bits, 544 struct extent_changeset *changeset); 545 546 /* 547 * insert an extent_state struct into the tree. 'bits' are set on the 548 * struct before it is inserted. 549 * 550 * This may return -EEXIST if the extent is already there, in which case the 551 * state struct is freed. 552 * 553 * The tree lock is not taken internally. This is a utility function and 554 * probably isn't what you want to call (see set/clear_extent_bit). 555 */ 556 static int insert_state(struct extent_io_tree *tree, 557 struct extent_state *state, u64 start, u64 end, 558 struct rb_node ***p, 559 struct rb_node **parent, 560 u32 *bits, struct extent_changeset *changeset) 561 { 562 struct rb_node *node; 563 564 if (end < start) { 565 btrfs_err(tree->fs_info, 566 "insert state: end < start %llu %llu", end, start); 567 WARN_ON(1); 568 } 569 state->start = start; 570 state->end = end; 571 572 set_state_bits(tree, state, bits, changeset); 573 574 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 575 if (node) { 576 struct extent_state *found; 577 found = rb_entry(node, struct extent_state, rb_node); 578 btrfs_err(tree->fs_info, 579 "found node %llu %llu on insert of %llu %llu", 580 found->start, found->end, start, end); 581 return -EEXIST; 582 } 583 merge_state(tree, state); 584 return 0; 585 } 586 587 /* 588 * split a given extent state struct in two, inserting the preallocated 589 * struct 'prealloc' as the newly created second half. 'split' indicates an 590 * offset inside 'orig' where it should be split. 591 * 592 * Before calling, 593 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 594 * are two extent state structs in the tree: 595 * prealloc: [orig->start, split - 1] 596 * orig: [ split, orig->end ] 597 * 598 * The tree locks are not taken by this function. They need to be held 599 * by the caller. 600 */ 601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 602 struct extent_state *prealloc, u64 split) 603 { 604 struct rb_node *node; 605 606 if (tree->private_data && is_data_inode(tree->private_data)) 607 btrfs_split_delalloc_extent(tree->private_data, orig, split); 608 609 prealloc->start = orig->start; 610 prealloc->end = split - 1; 611 prealloc->state = orig->state; 612 orig->start = split; 613 614 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 615 &prealloc->rb_node, NULL, NULL); 616 if (node) { 617 free_extent_state(prealloc); 618 return -EEXIST; 619 } 620 return 0; 621 } 622 623 static struct extent_state *next_state(struct extent_state *state) 624 { 625 struct rb_node *next = rb_next(&state->rb_node); 626 if (next) 627 return rb_entry(next, struct extent_state, rb_node); 628 else 629 return NULL; 630 } 631 632 /* 633 * utility function to clear some bits in an extent state struct. 634 * it will optionally wake up anyone waiting on this state (wake == 1). 635 * 636 * If no bits are set on the state struct after clearing things, the 637 * struct is freed and removed from the tree 638 */ 639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 640 struct extent_state *state, 641 u32 *bits, int wake, 642 struct extent_changeset *changeset) 643 { 644 struct extent_state *next; 645 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 646 int ret; 647 648 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 649 u64 range = state->end - state->start + 1; 650 WARN_ON(range > tree->dirty_bytes); 651 tree->dirty_bytes -= range; 652 } 653 654 if (tree->private_data && is_data_inode(tree->private_data)) 655 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 656 657 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 658 BUG_ON(ret < 0); 659 state->state &= ~bits_to_clear; 660 if (wake) 661 wake_up(&state->wq); 662 if (state->state == 0) { 663 next = next_state(state); 664 if (extent_state_in_tree(state)) { 665 rb_erase(&state->rb_node, &tree->state); 666 RB_CLEAR_NODE(&state->rb_node); 667 free_extent_state(state); 668 } else { 669 WARN_ON(1); 670 } 671 } else { 672 merge_state(tree, state); 673 next = next_state(state); 674 } 675 return next; 676 } 677 678 static struct extent_state * 679 alloc_extent_state_atomic(struct extent_state *prealloc) 680 { 681 if (!prealloc) 682 prealloc = alloc_extent_state(GFP_ATOMIC); 683 684 return prealloc; 685 } 686 687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 688 { 689 btrfs_panic(tree->fs_info, err, 690 "locking error: extent tree was modified by another thread while locked"); 691 } 692 693 /* 694 * clear some bits on a range in the tree. This may require splitting 695 * or inserting elements in the tree, so the gfp mask is used to 696 * indicate which allocations or sleeping are allowed. 697 * 698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 699 * the given range from the tree regardless of state (ie for truncate). 700 * 701 * the range [start, end] is inclusive. 702 * 703 * This takes the tree lock, and returns 0 on success and < 0 on error. 704 */ 705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 706 u32 bits, int wake, int delete, 707 struct extent_state **cached_state, 708 gfp_t mask, struct extent_changeset *changeset) 709 { 710 struct extent_state *state; 711 struct extent_state *cached; 712 struct extent_state *prealloc = NULL; 713 struct rb_node *node; 714 u64 last_end; 715 int err; 716 int clear = 0; 717 718 btrfs_debug_check_extent_io_range(tree, start, end); 719 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 720 721 if (bits & EXTENT_DELALLOC) 722 bits |= EXTENT_NORESERVE; 723 724 if (delete) 725 bits |= ~EXTENT_CTLBITS; 726 727 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 728 clear = 1; 729 again: 730 if (!prealloc && gfpflags_allow_blocking(mask)) { 731 /* 732 * Don't care for allocation failure here because we might end 733 * up not needing the pre-allocated extent state at all, which 734 * is the case if we only have in the tree extent states that 735 * cover our input range and don't cover too any other range. 736 * If we end up needing a new extent state we allocate it later. 737 */ 738 prealloc = alloc_extent_state(mask); 739 } 740 741 spin_lock(&tree->lock); 742 if (cached_state) { 743 cached = *cached_state; 744 745 if (clear) { 746 *cached_state = NULL; 747 cached_state = NULL; 748 } 749 750 if (cached && extent_state_in_tree(cached) && 751 cached->start <= start && cached->end > start) { 752 if (clear) 753 refcount_dec(&cached->refs); 754 state = cached; 755 goto hit_next; 756 } 757 if (clear) 758 free_extent_state(cached); 759 } 760 /* 761 * this search will find the extents that end after 762 * our range starts 763 */ 764 node = tree_search(tree, start); 765 if (!node) 766 goto out; 767 state = rb_entry(node, struct extent_state, rb_node); 768 hit_next: 769 if (state->start > end) 770 goto out; 771 WARN_ON(state->end < start); 772 last_end = state->end; 773 774 /* the state doesn't have the wanted bits, go ahead */ 775 if (!(state->state & bits)) { 776 state = next_state(state); 777 goto next; 778 } 779 780 /* 781 * | ---- desired range ---- | 782 * | state | or 783 * | ------------- state -------------- | 784 * 785 * We need to split the extent we found, and may flip 786 * bits on second half. 787 * 788 * If the extent we found extends past our range, we 789 * just split and search again. It'll get split again 790 * the next time though. 791 * 792 * If the extent we found is inside our range, we clear 793 * the desired bit on it. 794 */ 795 796 if (state->start < start) { 797 prealloc = alloc_extent_state_atomic(prealloc); 798 BUG_ON(!prealloc); 799 err = split_state(tree, state, prealloc, start); 800 if (err) 801 extent_io_tree_panic(tree, err); 802 803 prealloc = NULL; 804 if (err) 805 goto out; 806 if (state->end <= end) { 807 state = clear_state_bit(tree, state, &bits, wake, 808 changeset); 809 goto next; 810 } 811 goto search_again; 812 } 813 /* 814 * | ---- desired range ---- | 815 * | state | 816 * We need to split the extent, and clear the bit 817 * on the first half 818 */ 819 if (state->start <= end && state->end > end) { 820 prealloc = alloc_extent_state_atomic(prealloc); 821 BUG_ON(!prealloc); 822 err = split_state(tree, state, prealloc, end + 1); 823 if (err) 824 extent_io_tree_panic(tree, err); 825 826 if (wake) 827 wake_up(&state->wq); 828 829 clear_state_bit(tree, prealloc, &bits, wake, changeset); 830 831 prealloc = NULL; 832 goto out; 833 } 834 835 state = clear_state_bit(tree, state, &bits, wake, changeset); 836 next: 837 if (last_end == (u64)-1) 838 goto out; 839 start = last_end + 1; 840 if (start <= end && state && !need_resched()) 841 goto hit_next; 842 843 search_again: 844 if (start > end) 845 goto out; 846 spin_unlock(&tree->lock); 847 if (gfpflags_allow_blocking(mask)) 848 cond_resched(); 849 goto again; 850 851 out: 852 spin_unlock(&tree->lock); 853 if (prealloc) 854 free_extent_state(prealloc); 855 856 return 0; 857 858 } 859 860 static void wait_on_state(struct extent_io_tree *tree, 861 struct extent_state *state) 862 __releases(tree->lock) 863 __acquires(tree->lock) 864 { 865 DEFINE_WAIT(wait); 866 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 867 spin_unlock(&tree->lock); 868 schedule(); 869 spin_lock(&tree->lock); 870 finish_wait(&state->wq, &wait); 871 } 872 873 /* 874 * waits for one or more bits to clear on a range in the state tree. 875 * The range [start, end] is inclusive. 876 * The tree lock is taken by this function 877 */ 878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 879 u32 bits) 880 { 881 struct extent_state *state; 882 struct rb_node *node; 883 884 btrfs_debug_check_extent_io_range(tree, start, end); 885 886 spin_lock(&tree->lock); 887 again: 888 while (1) { 889 /* 890 * this search will find all the extents that end after 891 * our range starts 892 */ 893 node = tree_search(tree, start); 894 process_node: 895 if (!node) 896 break; 897 898 state = rb_entry(node, struct extent_state, rb_node); 899 900 if (state->start > end) 901 goto out; 902 903 if (state->state & bits) { 904 start = state->start; 905 refcount_inc(&state->refs); 906 wait_on_state(tree, state); 907 free_extent_state(state); 908 goto again; 909 } 910 start = state->end + 1; 911 912 if (start > end) 913 break; 914 915 if (!cond_resched_lock(&tree->lock)) { 916 node = rb_next(node); 917 goto process_node; 918 } 919 } 920 out: 921 spin_unlock(&tree->lock); 922 } 923 924 static void set_state_bits(struct extent_io_tree *tree, 925 struct extent_state *state, 926 u32 *bits, struct extent_changeset *changeset) 927 { 928 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 929 int ret; 930 931 if (tree->private_data && is_data_inode(tree->private_data)) 932 btrfs_set_delalloc_extent(tree->private_data, state, bits); 933 934 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 935 u64 range = state->end - state->start + 1; 936 tree->dirty_bytes += range; 937 } 938 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 939 BUG_ON(ret < 0); 940 state->state |= bits_to_set; 941 } 942 943 static void cache_state_if_flags(struct extent_state *state, 944 struct extent_state **cached_ptr, 945 unsigned flags) 946 { 947 if (cached_ptr && !(*cached_ptr)) { 948 if (!flags || (state->state & flags)) { 949 *cached_ptr = state; 950 refcount_inc(&state->refs); 951 } 952 } 953 } 954 955 static void cache_state(struct extent_state *state, 956 struct extent_state **cached_ptr) 957 { 958 return cache_state_if_flags(state, cached_ptr, 959 EXTENT_LOCKED | EXTENT_BOUNDARY); 960 } 961 962 /* 963 * set some bits on a range in the tree. This may require allocations or 964 * sleeping, so the gfp mask is used to indicate what is allowed. 965 * 966 * If any of the exclusive bits are set, this will fail with -EEXIST if some 967 * part of the range already has the desired bits set. The start of the 968 * existing range is returned in failed_start in this case. 969 * 970 * [start, end] is inclusive This takes the tree lock. 971 */ 972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 973 u32 exclusive_bits, u64 *failed_start, 974 struct extent_state **cached_state, gfp_t mask, 975 struct extent_changeset *changeset) 976 { 977 struct extent_state *state; 978 struct extent_state *prealloc = NULL; 979 struct rb_node *node; 980 struct rb_node **p; 981 struct rb_node *parent; 982 int err = 0; 983 u64 last_start; 984 u64 last_end; 985 986 btrfs_debug_check_extent_io_range(tree, start, end); 987 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 988 989 if (exclusive_bits) 990 ASSERT(failed_start); 991 else 992 ASSERT(failed_start == NULL); 993 again: 994 if (!prealloc && gfpflags_allow_blocking(mask)) { 995 /* 996 * Don't care for allocation failure here because we might end 997 * up not needing the pre-allocated extent state at all, which 998 * is the case if we only have in the tree extent states that 999 * cover our input range and don't cover too any other range. 1000 * If we end up needing a new extent state we allocate it later. 1001 */ 1002 prealloc = alloc_extent_state(mask); 1003 } 1004 1005 spin_lock(&tree->lock); 1006 if (cached_state && *cached_state) { 1007 state = *cached_state; 1008 if (state->start <= start && state->end > start && 1009 extent_state_in_tree(state)) { 1010 node = &state->rb_node; 1011 goto hit_next; 1012 } 1013 } 1014 /* 1015 * this search will find all the extents that end after 1016 * our range starts. 1017 */ 1018 node = tree_search_for_insert(tree, start, &p, &parent); 1019 if (!node) { 1020 prealloc = alloc_extent_state_atomic(prealloc); 1021 BUG_ON(!prealloc); 1022 err = insert_state(tree, prealloc, start, end, 1023 &p, &parent, &bits, changeset); 1024 if (err) 1025 extent_io_tree_panic(tree, err); 1026 1027 cache_state(prealloc, cached_state); 1028 prealloc = NULL; 1029 goto out; 1030 } 1031 state = rb_entry(node, struct extent_state, rb_node); 1032 hit_next: 1033 last_start = state->start; 1034 last_end = state->end; 1035 1036 /* 1037 * | ---- desired range ---- | 1038 * | state | 1039 * 1040 * Just lock what we found and keep going 1041 */ 1042 if (state->start == start && state->end <= end) { 1043 if (state->state & exclusive_bits) { 1044 *failed_start = state->start; 1045 err = -EEXIST; 1046 goto out; 1047 } 1048 1049 set_state_bits(tree, state, &bits, changeset); 1050 cache_state(state, cached_state); 1051 merge_state(tree, state); 1052 if (last_end == (u64)-1) 1053 goto out; 1054 start = last_end + 1; 1055 state = next_state(state); 1056 if (start < end && state && state->start == start && 1057 !need_resched()) 1058 goto hit_next; 1059 goto search_again; 1060 } 1061 1062 /* 1063 * | ---- desired range ---- | 1064 * | state | 1065 * or 1066 * | ------------- state -------------- | 1067 * 1068 * We need to split the extent we found, and may flip bits on 1069 * second half. 1070 * 1071 * If the extent we found extends past our 1072 * range, we just split and search again. It'll get split 1073 * again the next time though. 1074 * 1075 * If the extent we found is inside our range, we set the 1076 * desired bit on it. 1077 */ 1078 if (state->start < start) { 1079 if (state->state & exclusive_bits) { 1080 *failed_start = start; 1081 err = -EEXIST; 1082 goto out; 1083 } 1084 1085 /* 1086 * If this extent already has all the bits we want set, then 1087 * skip it, not necessary to split it or do anything with it. 1088 */ 1089 if ((state->state & bits) == bits) { 1090 start = state->end + 1; 1091 cache_state(state, cached_state); 1092 goto search_again; 1093 } 1094 1095 prealloc = alloc_extent_state_atomic(prealloc); 1096 BUG_ON(!prealloc); 1097 err = split_state(tree, state, prealloc, start); 1098 if (err) 1099 extent_io_tree_panic(tree, err); 1100 1101 prealloc = NULL; 1102 if (err) 1103 goto out; 1104 if (state->end <= end) { 1105 set_state_bits(tree, state, &bits, changeset); 1106 cache_state(state, cached_state); 1107 merge_state(tree, state); 1108 if (last_end == (u64)-1) 1109 goto out; 1110 start = last_end + 1; 1111 state = next_state(state); 1112 if (start < end && state && state->start == start && 1113 !need_resched()) 1114 goto hit_next; 1115 } 1116 goto search_again; 1117 } 1118 /* 1119 * | ---- desired range ---- | 1120 * | state | or | state | 1121 * 1122 * There's a hole, we need to insert something in it and 1123 * ignore the extent we found. 1124 */ 1125 if (state->start > start) { 1126 u64 this_end; 1127 if (end < last_start) 1128 this_end = end; 1129 else 1130 this_end = last_start - 1; 1131 1132 prealloc = alloc_extent_state_atomic(prealloc); 1133 BUG_ON(!prealloc); 1134 1135 /* 1136 * Avoid to free 'prealloc' if it can be merged with 1137 * the later extent. 1138 */ 1139 err = insert_state(tree, prealloc, start, this_end, 1140 NULL, NULL, &bits, changeset); 1141 if (err) 1142 extent_io_tree_panic(tree, err); 1143 1144 cache_state(prealloc, cached_state); 1145 prealloc = NULL; 1146 start = this_end + 1; 1147 goto search_again; 1148 } 1149 /* 1150 * | ---- desired range ---- | 1151 * | state | 1152 * We need to split the extent, and set the bit 1153 * on the first half 1154 */ 1155 if (state->start <= end && state->end > end) { 1156 if (state->state & exclusive_bits) { 1157 *failed_start = start; 1158 err = -EEXIST; 1159 goto out; 1160 } 1161 1162 prealloc = alloc_extent_state_atomic(prealloc); 1163 BUG_ON(!prealloc); 1164 err = split_state(tree, state, prealloc, end + 1); 1165 if (err) 1166 extent_io_tree_panic(tree, err); 1167 1168 set_state_bits(tree, prealloc, &bits, changeset); 1169 cache_state(prealloc, cached_state); 1170 merge_state(tree, prealloc); 1171 prealloc = NULL; 1172 goto out; 1173 } 1174 1175 search_again: 1176 if (start > end) 1177 goto out; 1178 spin_unlock(&tree->lock); 1179 if (gfpflags_allow_blocking(mask)) 1180 cond_resched(); 1181 goto again; 1182 1183 out: 1184 spin_unlock(&tree->lock); 1185 if (prealloc) 1186 free_extent_state(prealloc); 1187 1188 return err; 1189 1190 } 1191 1192 /** 1193 * convert_extent_bit - convert all bits in a given range from one bit to 1194 * another 1195 * @tree: the io tree to search 1196 * @start: the start offset in bytes 1197 * @end: the end offset in bytes (inclusive) 1198 * @bits: the bits to set in this range 1199 * @clear_bits: the bits to clear in this range 1200 * @cached_state: state that we're going to cache 1201 * 1202 * This will go through and set bits for the given range. If any states exist 1203 * already in this range they are set with the given bit and cleared of the 1204 * clear_bits. This is only meant to be used by things that are mergeable, ie 1205 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1206 * boundary bits like LOCK. 1207 * 1208 * All allocations are done with GFP_NOFS. 1209 */ 1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1211 u32 bits, u32 clear_bits, 1212 struct extent_state **cached_state) 1213 { 1214 struct extent_state *state; 1215 struct extent_state *prealloc = NULL; 1216 struct rb_node *node; 1217 struct rb_node **p; 1218 struct rb_node *parent; 1219 int err = 0; 1220 u64 last_start; 1221 u64 last_end; 1222 bool first_iteration = true; 1223 1224 btrfs_debug_check_extent_io_range(tree, start, end); 1225 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1226 clear_bits); 1227 1228 again: 1229 if (!prealloc) { 1230 /* 1231 * Best effort, don't worry if extent state allocation fails 1232 * here for the first iteration. We might have a cached state 1233 * that matches exactly the target range, in which case no 1234 * extent state allocations are needed. We'll only know this 1235 * after locking the tree. 1236 */ 1237 prealloc = alloc_extent_state(GFP_NOFS); 1238 if (!prealloc && !first_iteration) 1239 return -ENOMEM; 1240 } 1241 1242 spin_lock(&tree->lock); 1243 if (cached_state && *cached_state) { 1244 state = *cached_state; 1245 if (state->start <= start && state->end > start && 1246 extent_state_in_tree(state)) { 1247 node = &state->rb_node; 1248 goto hit_next; 1249 } 1250 } 1251 1252 /* 1253 * this search will find all the extents that end after 1254 * our range starts. 1255 */ 1256 node = tree_search_for_insert(tree, start, &p, &parent); 1257 if (!node) { 1258 prealloc = alloc_extent_state_atomic(prealloc); 1259 if (!prealloc) { 1260 err = -ENOMEM; 1261 goto out; 1262 } 1263 err = insert_state(tree, prealloc, start, end, 1264 &p, &parent, &bits, NULL); 1265 if (err) 1266 extent_io_tree_panic(tree, err); 1267 cache_state(prealloc, cached_state); 1268 prealloc = NULL; 1269 goto out; 1270 } 1271 state = rb_entry(node, struct extent_state, rb_node); 1272 hit_next: 1273 last_start = state->start; 1274 last_end = state->end; 1275 1276 /* 1277 * | ---- desired range ---- | 1278 * | state | 1279 * 1280 * Just lock what we found and keep going 1281 */ 1282 if (state->start == start && state->end <= end) { 1283 set_state_bits(tree, state, &bits, NULL); 1284 cache_state(state, cached_state); 1285 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1286 if (last_end == (u64)-1) 1287 goto out; 1288 start = last_end + 1; 1289 if (start < end && state && state->start == start && 1290 !need_resched()) 1291 goto hit_next; 1292 goto search_again; 1293 } 1294 1295 /* 1296 * | ---- desired range ---- | 1297 * | state | 1298 * or 1299 * | ------------- state -------------- | 1300 * 1301 * We need to split the extent we found, and may flip bits on 1302 * second half. 1303 * 1304 * If the extent we found extends past our 1305 * range, we just split and search again. It'll get split 1306 * again the next time though. 1307 * 1308 * If the extent we found is inside our range, we set the 1309 * desired bit on it. 1310 */ 1311 if (state->start < start) { 1312 prealloc = alloc_extent_state_atomic(prealloc); 1313 if (!prealloc) { 1314 err = -ENOMEM; 1315 goto out; 1316 } 1317 err = split_state(tree, state, prealloc, start); 1318 if (err) 1319 extent_io_tree_panic(tree, err); 1320 prealloc = NULL; 1321 if (err) 1322 goto out; 1323 if (state->end <= end) { 1324 set_state_bits(tree, state, &bits, NULL); 1325 cache_state(state, cached_state); 1326 state = clear_state_bit(tree, state, &clear_bits, 0, 1327 NULL); 1328 if (last_end == (u64)-1) 1329 goto out; 1330 start = last_end + 1; 1331 if (start < end && state && state->start == start && 1332 !need_resched()) 1333 goto hit_next; 1334 } 1335 goto search_again; 1336 } 1337 /* 1338 * | ---- desired range ---- | 1339 * | state | or | state | 1340 * 1341 * There's a hole, we need to insert something in it and 1342 * ignore the extent we found. 1343 */ 1344 if (state->start > start) { 1345 u64 this_end; 1346 if (end < last_start) 1347 this_end = end; 1348 else 1349 this_end = last_start - 1; 1350 1351 prealloc = alloc_extent_state_atomic(prealloc); 1352 if (!prealloc) { 1353 err = -ENOMEM; 1354 goto out; 1355 } 1356 1357 /* 1358 * Avoid to free 'prealloc' if it can be merged with 1359 * the later extent. 1360 */ 1361 err = insert_state(tree, prealloc, start, this_end, 1362 NULL, NULL, &bits, NULL); 1363 if (err) 1364 extent_io_tree_panic(tree, err); 1365 cache_state(prealloc, cached_state); 1366 prealloc = NULL; 1367 start = this_end + 1; 1368 goto search_again; 1369 } 1370 /* 1371 * | ---- desired range ---- | 1372 * | state | 1373 * We need to split the extent, and set the bit 1374 * on the first half 1375 */ 1376 if (state->start <= end && state->end > end) { 1377 prealloc = alloc_extent_state_atomic(prealloc); 1378 if (!prealloc) { 1379 err = -ENOMEM; 1380 goto out; 1381 } 1382 1383 err = split_state(tree, state, prealloc, end + 1); 1384 if (err) 1385 extent_io_tree_panic(tree, err); 1386 1387 set_state_bits(tree, prealloc, &bits, NULL); 1388 cache_state(prealloc, cached_state); 1389 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1390 prealloc = NULL; 1391 goto out; 1392 } 1393 1394 search_again: 1395 if (start > end) 1396 goto out; 1397 spin_unlock(&tree->lock); 1398 cond_resched(); 1399 first_iteration = false; 1400 goto again; 1401 1402 out: 1403 spin_unlock(&tree->lock); 1404 if (prealloc) 1405 free_extent_state(prealloc); 1406 1407 return err; 1408 } 1409 1410 /* wrappers around set/clear extent bit */ 1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1412 u32 bits, struct extent_changeset *changeset) 1413 { 1414 /* 1415 * We don't support EXTENT_LOCKED yet, as current changeset will 1416 * record any bits changed, so for EXTENT_LOCKED case, it will 1417 * either fail with -EEXIST or changeset will record the whole 1418 * range. 1419 */ 1420 BUG_ON(bits & EXTENT_LOCKED); 1421 1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1423 changeset); 1424 } 1425 1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1427 u32 bits) 1428 { 1429 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1430 GFP_NOWAIT, NULL); 1431 } 1432 1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1434 u32 bits, int wake, int delete, 1435 struct extent_state **cached) 1436 { 1437 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1438 cached, GFP_NOFS, NULL); 1439 } 1440 1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1442 u32 bits, struct extent_changeset *changeset) 1443 { 1444 /* 1445 * Don't support EXTENT_LOCKED case, same reason as 1446 * set_record_extent_bits(). 1447 */ 1448 BUG_ON(bits & EXTENT_LOCKED); 1449 1450 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1451 changeset); 1452 } 1453 1454 /* 1455 * either insert or lock state struct between start and end use mask to tell 1456 * us if waiting is desired. 1457 */ 1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1459 struct extent_state **cached_state) 1460 { 1461 int err; 1462 u64 failed_start; 1463 1464 while (1) { 1465 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1466 EXTENT_LOCKED, &failed_start, 1467 cached_state, GFP_NOFS, NULL); 1468 if (err == -EEXIST) { 1469 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1470 start = failed_start; 1471 } else 1472 break; 1473 WARN_ON(start > end); 1474 } 1475 return err; 1476 } 1477 1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1479 { 1480 int err; 1481 u64 failed_start; 1482 1483 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1484 &failed_start, NULL, GFP_NOFS, NULL); 1485 if (err == -EEXIST) { 1486 if (failed_start > start) 1487 clear_extent_bit(tree, start, failed_start - 1, 1488 EXTENT_LOCKED, 1, 0, NULL); 1489 return 0; 1490 } 1491 return 1; 1492 } 1493 1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1495 { 1496 unsigned long index = start >> PAGE_SHIFT; 1497 unsigned long end_index = end >> PAGE_SHIFT; 1498 struct page *page; 1499 1500 while (index <= end_index) { 1501 page = find_get_page(inode->i_mapping, index); 1502 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1503 clear_page_dirty_for_io(page); 1504 put_page(page); 1505 index++; 1506 } 1507 } 1508 1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1510 { 1511 unsigned long index = start >> PAGE_SHIFT; 1512 unsigned long end_index = end >> PAGE_SHIFT; 1513 struct page *page; 1514 1515 while (index <= end_index) { 1516 page = find_get_page(inode->i_mapping, index); 1517 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1518 __set_page_dirty_nobuffers(page); 1519 account_page_redirty(page); 1520 put_page(page); 1521 index++; 1522 } 1523 } 1524 1525 /* find the first state struct with 'bits' set after 'start', and 1526 * return it. tree->lock must be held. NULL will returned if 1527 * nothing was found after 'start' 1528 */ 1529 static struct extent_state * 1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1531 { 1532 struct rb_node *node; 1533 struct extent_state *state; 1534 1535 /* 1536 * this search will find all the extents that end after 1537 * our range starts. 1538 */ 1539 node = tree_search(tree, start); 1540 if (!node) 1541 goto out; 1542 1543 while (1) { 1544 state = rb_entry(node, struct extent_state, rb_node); 1545 if (state->end >= start && (state->state & bits)) 1546 return state; 1547 1548 node = rb_next(node); 1549 if (!node) 1550 break; 1551 } 1552 out: 1553 return NULL; 1554 } 1555 1556 /* 1557 * Find the first offset in the io tree with one or more @bits set. 1558 * 1559 * Note: If there are multiple bits set in @bits, any of them will match. 1560 * 1561 * Return 0 if we find something, and update @start_ret and @end_ret. 1562 * Return 1 if we found nothing. 1563 */ 1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1565 u64 *start_ret, u64 *end_ret, u32 bits, 1566 struct extent_state **cached_state) 1567 { 1568 struct extent_state *state; 1569 int ret = 1; 1570 1571 spin_lock(&tree->lock); 1572 if (cached_state && *cached_state) { 1573 state = *cached_state; 1574 if (state->end == start - 1 && extent_state_in_tree(state)) { 1575 while ((state = next_state(state)) != NULL) { 1576 if (state->state & bits) 1577 goto got_it; 1578 } 1579 free_extent_state(*cached_state); 1580 *cached_state = NULL; 1581 goto out; 1582 } 1583 free_extent_state(*cached_state); 1584 *cached_state = NULL; 1585 } 1586 1587 state = find_first_extent_bit_state(tree, start, bits); 1588 got_it: 1589 if (state) { 1590 cache_state_if_flags(state, cached_state, 0); 1591 *start_ret = state->start; 1592 *end_ret = state->end; 1593 ret = 0; 1594 } 1595 out: 1596 spin_unlock(&tree->lock); 1597 return ret; 1598 } 1599 1600 /** 1601 * Find a contiguous area of bits 1602 * 1603 * @tree: io tree to check 1604 * @start: offset to start the search from 1605 * @start_ret: the first offset we found with the bits set 1606 * @end_ret: the final contiguous range of the bits that were set 1607 * @bits: bits to look for 1608 * 1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1610 * to set bits appropriately, and then merge them again. During this time it 1611 * will drop the tree->lock, so use this helper if you want to find the actual 1612 * contiguous area for given bits. We will search to the first bit we find, and 1613 * then walk down the tree until we find a non-contiguous area. The area 1614 * returned will be the full contiguous area with the bits set. 1615 */ 1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1617 u64 *start_ret, u64 *end_ret, u32 bits) 1618 { 1619 struct extent_state *state; 1620 int ret = 1; 1621 1622 spin_lock(&tree->lock); 1623 state = find_first_extent_bit_state(tree, start, bits); 1624 if (state) { 1625 *start_ret = state->start; 1626 *end_ret = state->end; 1627 while ((state = next_state(state)) != NULL) { 1628 if (state->start > (*end_ret + 1)) 1629 break; 1630 *end_ret = state->end; 1631 } 1632 ret = 0; 1633 } 1634 spin_unlock(&tree->lock); 1635 return ret; 1636 } 1637 1638 /** 1639 * Find the first range that has @bits not set. This range could start before 1640 * @start. 1641 * 1642 * @tree: the tree to search 1643 * @start: offset at/after which the found extent should start 1644 * @start_ret: records the beginning of the range 1645 * @end_ret: records the end of the range (inclusive) 1646 * @bits: the set of bits which must be unset 1647 * 1648 * Since unallocated range is also considered one which doesn't have the bits 1649 * set it's possible that @end_ret contains -1, this happens in case the range 1650 * spans (last_range_end, end of device]. In this case it's up to the caller to 1651 * trim @end_ret to the appropriate size. 1652 */ 1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1654 u64 *start_ret, u64 *end_ret, u32 bits) 1655 { 1656 struct extent_state *state; 1657 struct rb_node *node, *prev = NULL, *next; 1658 1659 spin_lock(&tree->lock); 1660 1661 /* Find first extent with bits cleared */ 1662 while (1) { 1663 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1664 if (!node && !next && !prev) { 1665 /* 1666 * Tree is completely empty, send full range and let 1667 * caller deal with it 1668 */ 1669 *start_ret = 0; 1670 *end_ret = -1; 1671 goto out; 1672 } else if (!node && !next) { 1673 /* 1674 * We are past the last allocated chunk, set start at 1675 * the end of the last extent. 1676 */ 1677 state = rb_entry(prev, struct extent_state, rb_node); 1678 *start_ret = state->end + 1; 1679 *end_ret = -1; 1680 goto out; 1681 } else if (!node) { 1682 node = next; 1683 } 1684 /* 1685 * At this point 'node' either contains 'start' or start is 1686 * before 'node' 1687 */ 1688 state = rb_entry(node, struct extent_state, rb_node); 1689 1690 if (in_range(start, state->start, state->end - state->start + 1)) { 1691 if (state->state & bits) { 1692 /* 1693 * |--range with bits sets--| 1694 * | 1695 * start 1696 */ 1697 start = state->end + 1; 1698 } else { 1699 /* 1700 * 'start' falls within a range that doesn't 1701 * have the bits set, so take its start as 1702 * the beginning of the desired range 1703 * 1704 * |--range with bits cleared----| 1705 * | 1706 * start 1707 */ 1708 *start_ret = state->start; 1709 break; 1710 } 1711 } else { 1712 /* 1713 * |---prev range---|---hole/unset---|---node range---| 1714 * | 1715 * start 1716 * 1717 * or 1718 * 1719 * |---hole/unset--||--first node--| 1720 * 0 | 1721 * start 1722 */ 1723 if (prev) { 1724 state = rb_entry(prev, struct extent_state, 1725 rb_node); 1726 *start_ret = state->end + 1; 1727 } else { 1728 *start_ret = 0; 1729 } 1730 break; 1731 } 1732 } 1733 1734 /* 1735 * Find the longest stretch from start until an entry which has the 1736 * bits set 1737 */ 1738 while (1) { 1739 state = rb_entry(node, struct extent_state, rb_node); 1740 if (state->end >= start && !(state->state & bits)) { 1741 *end_ret = state->end; 1742 } else { 1743 *end_ret = state->start - 1; 1744 break; 1745 } 1746 1747 node = rb_next(node); 1748 if (!node) 1749 break; 1750 } 1751 out: 1752 spin_unlock(&tree->lock); 1753 } 1754 1755 /* 1756 * find a contiguous range of bytes in the file marked as delalloc, not 1757 * more than 'max_bytes'. start and end are used to return the range, 1758 * 1759 * true is returned if we find something, false if nothing was in the tree 1760 */ 1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1762 u64 *end, u64 max_bytes, 1763 struct extent_state **cached_state) 1764 { 1765 struct rb_node *node; 1766 struct extent_state *state; 1767 u64 cur_start = *start; 1768 bool found = false; 1769 u64 total_bytes = 0; 1770 1771 spin_lock(&tree->lock); 1772 1773 /* 1774 * this search will find all the extents that end after 1775 * our range starts. 1776 */ 1777 node = tree_search(tree, cur_start); 1778 if (!node) { 1779 *end = (u64)-1; 1780 goto out; 1781 } 1782 1783 while (1) { 1784 state = rb_entry(node, struct extent_state, rb_node); 1785 if (found && (state->start != cur_start || 1786 (state->state & EXTENT_BOUNDARY))) { 1787 goto out; 1788 } 1789 if (!(state->state & EXTENT_DELALLOC)) { 1790 if (!found) 1791 *end = state->end; 1792 goto out; 1793 } 1794 if (!found) { 1795 *start = state->start; 1796 *cached_state = state; 1797 refcount_inc(&state->refs); 1798 } 1799 found = true; 1800 *end = state->end; 1801 cur_start = state->end + 1; 1802 node = rb_next(node); 1803 total_bytes += state->end - state->start + 1; 1804 if (total_bytes >= max_bytes) 1805 break; 1806 if (!node) 1807 break; 1808 } 1809 out: 1810 spin_unlock(&tree->lock); 1811 return found; 1812 } 1813 1814 /* 1815 * Process one page for __process_pages_contig(). 1816 * 1817 * Return >0 if we hit @page == @locked_page. 1818 * Return 0 if we updated the page status. 1819 * Return -EGAIN if the we need to try again. 1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1821 */ 1822 static int process_one_page(struct btrfs_fs_info *fs_info, 1823 struct address_space *mapping, 1824 struct page *page, struct page *locked_page, 1825 unsigned long page_ops, u64 start, u64 end) 1826 { 1827 u32 len; 1828 1829 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1830 len = end + 1 - start; 1831 1832 if (page_ops & PAGE_SET_ORDERED) 1833 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1834 if (page_ops & PAGE_SET_ERROR) 1835 btrfs_page_clamp_set_error(fs_info, page, start, len); 1836 if (page_ops & PAGE_START_WRITEBACK) { 1837 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1838 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1839 } 1840 if (page_ops & PAGE_END_WRITEBACK) 1841 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1842 1843 if (page == locked_page) 1844 return 1; 1845 1846 if (page_ops & PAGE_LOCK) { 1847 int ret; 1848 1849 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1850 if (ret) 1851 return ret; 1852 if (!PageDirty(page) || page->mapping != mapping) { 1853 btrfs_page_end_writer_lock(fs_info, page, start, len); 1854 return -EAGAIN; 1855 } 1856 } 1857 if (page_ops & PAGE_UNLOCK) 1858 btrfs_page_end_writer_lock(fs_info, page, start, len); 1859 return 0; 1860 } 1861 1862 static int __process_pages_contig(struct address_space *mapping, 1863 struct page *locked_page, 1864 u64 start, u64 end, unsigned long page_ops, 1865 u64 *processed_end) 1866 { 1867 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1868 pgoff_t start_index = start >> PAGE_SHIFT; 1869 pgoff_t end_index = end >> PAGE_SHIFT; 1870 pgoff_t index = start_index; 1871 unsigned long nr_pages = end_index - start_index + 1; 1872 unsigned long pages_processed = 0; 1873 struct page *pages[16]; 1874 int err = 0; 1875 int i; 1876 1877 if (page_ops & PAGE_LOCK) { 1878 ASSERT(page_ops == PAGE_LOCK); 1879 ASSERT(processed_end && *processed_end == start); 1880 } 1881 1882 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1883 mapping_set_error(mapping, -EIO); 1884 1885 while (nr_pages > 0) { 1886 int found_pages; 1887 1888 found_pages = find_get_pages_contig(mapping, index, 1889 min_t(unsigned long, 1890 nr_pages, ARRAY_SIZE(pages)), pages); 1891 if (found_pages == 0) { 1892 /* 1893 * Only if we're going to lock these pages, we can find 1894 * nothing at @index. 1895 */ 1896 ASSERT(page_ops & PAGE_LOCK); 1897 err = -EAGAIN; 1898 goto out; 1899 } 1900 1901 for (i = 0; i < found_pages; i++) { 1902 int process_ret; 1903 1904 process_ret = process_one_page(fs_info, mapping, 1905 pages[i], locked_page, page_ops, 1906 start, end); 1907 if (process_ret < 0) { 1908 for (; i < found_pages; i++) 1909 put_page(pages[i]); 1910 err = -EAGAIN; 1911 goto out; 1912 } 1913 put_page(pages[i]); 1914 pages_processed++; 1915 } 1916 nr_pages -= found_pages; 1917 index += found_pages; 1918 cond_resched(); 1919 } 1920 out: 1921 if (err && processed_end) { 1922 /* 1923 * Update @processed_end. I know this is awful since it has 1924 * two different return value patterns (inclusive vs exclusive). 1925 * 1926 * But the exclusive pattern is necessary if @start is 0, or we 1927 * underflow and check against processed_end won't work as 1928 * expected. 1929 */ 1930 if (pages_processed) 1931 *processed_end = min(end, 1932 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1933 else 1934 *processed_end = start; 1935 } 1936 return err; 1937 } 1938 1939 static noinline void __unlock_for_delalloc(struct inode *inode, 1940 struct page *locked_page, 1941 u64 start, u64 end) 1942 { 1943 unsigned long index = start >> PAGE_SHIFT; 1944 unsigned long end_index = end >> PAGE_SHIFT; 1945 1946 ASSERT(locked_page); 1947 if (index == locked_page->index && end_index == index) 1948 return; 1949 1950 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1951 PAGE_UNLOCK, NULL); 1952 } 1953 1954 static noinline int lock_delalloc_pages(struct inode *inode, 1955 struct page *locked_page, 1956 u64 delalloc_start, 1957 u64 delalloc_end) 1958 { 1959 unsigned long index = delalloc_start >> PAGE_SHIFT; 1960 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1961 u64 processed_end = delalloc_start; 1962 int ret; 1963 1964 ASSERT(locked_page); 1965 if (index == locked_page->index && index == end_index) 1966 return 0; 1967 1968 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1969 delalloc_end, PAGE_LOCK, &processed_end); 1970 if (ret == -EAGAIN && processed_end > delalloc_start) 1971 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1972 processed_end); 1973 return ret; 1974 } 1975 1976 /* 1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1978 * more than @max_bytes. 1979 * 1980 * @start: The original start bytenr to search. 1981 * Will store the extent range start bytenr. 1982 * @end: The original end bytenr of the search range 1983 * Will store the extent range end bytenr. 1984 * 1985 * Return true if we find a delalloc range which starts inside the original 1986 * range, and @start/@end will store the delalloc range start/end. 1987 * 1988 * Return false if we can't find any delalloc range which starts inside the 1989 * original range, and @start/@end will be the non-delalloc range start/end. 1990 */ 1991 EXPORT_FOR_TESTS 1992 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1993 struct page *locked_page, u64 *start, 1994 u64 *end) 1995 { 1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1997 const u64 orig_start = *start; 1998 const u64 orig_end = *end; 1999 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 2000 u64 delalloc_start; 2001 u64 delalloc_end; 2002 bool found; 2003 struct extent_state *cached_state = NULL; 2004 int ret; 2005 int loops = 0; 2006 2007 /* Caller should pass a valid @end to indicate the search range end */ 2008 ASSERT(orig_end > orig_start); 2009 2010 /* The range should at least cover part of the page */ 2011 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2012 orig_end <= page_offset(locked_page))); 2013 again: 2014 /* step one, find a bunch of delalloc bytes starting at start */ 2015 delalloc_start = *start; 2016 delalloc_end = 0; 2017 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2018 max_bytes, &cached_state); 2019 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2020 *start = delalloc_start; 2021 2022 /* @delalloc_end can be -1, never go beyond @orig_end */ 2023 *end = min(delalloc_end, orig_end); 2024 free_extent_state(cached_state); 2025 return false; 2026 } 2027 2028 /* 2029 * start comes from the offset of locked_page. We have to lock 2030 * pages in order, so we can't process delalloc bytes before 2031 * locked_page 2032 */ 2033 if (delalloc_start < *start) 2034 delalloc_start = *start; 2035 2036 /* 2037 * make sure to limit the number of pages we try to lock down 2038 */ 2039 if (delalloc_end + 1 - delalloc_start > max_bytes) 2040 delalloc_end = delalloc_start + max_bytes - 1; 2041 2042 /* step two, lock all the pages after the page that has start */ 2043 ret = lock_delalloc_pages(inode, locked_page, 2044 delalloc_start, delalloc_end); 2045 ASSERT(!ret || ret == -EAGAIN); 2046 if (ret == -EAGAIN) { 2047 /* some of the pages are gone, lets avoid looping by 2048 * shortening the size of the delalloc range we're searching 2049 */ 2050 free_extent_state(cached_state); 2051 cached_state = NULL; 2052 if (!loops) { 2053 max_bytes = PAGE_SIZE; 2054 loops = 1; 2055 goto again; 2056 } else { 2057 found = false; 2058 goto out_failed; 2059 } 2060 } 2061 2062 /* step three, lock the state bits for the whole range */ 2063 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2064 2065 /* then test to make sure it is all still delalloc */ 2066 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2067 EXTENT_DELALLOC, 1, cached_state); 2068 if (!ret) { 2069 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2070 &cached_state); 2071 __unlock_for_delalloc(inode, locked_page, 2072 delalloc_start, delalloc_end); 2073 cond_resched(); 2074 goto again; 2075 } 2076 free_extent_state(cached_state); 2077 *start = delalloc_start; 2078 *end = delalloc_end; 2079 out_failed: 2080 return found; 2081 } 2082 2083 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2084 struct page *locked_page, 2085 u32 clear_bits, unsigned long page_ops) 2086 { 2087 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2088 2089 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2090 start, end, page_ops, NULL); 2091 } 2092 2093 /* 2094 * count the number of bytes in the tree that have a given bit(s) 2095 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2096 * cached. The total number found is returned. 2097 */ 2098 u64 count_range_bits(struct extent_io_tree *tree, 2099 u64 *start, u64 search_end, u64 max_bytes, 2100 u32 bits, int contig) 2101 { 2102 struct rb_node *node; 2103 struct extent_state *state; 2104 u64 cur_start = *start; 2105 u64 total_bytes = 0; 2106 u64 last = 0; 2107 int found = 0; 2108 2109 if (WARN_ON(search_end <= cur_start)) 2110 return 0; 2111 2112 spin_lock(&tree->lock); 2113 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2114 total_bytes = tree->dirty_bytes; 2115 goto out; 2116 } 2117 /* 2118 * this search will find all the extents that end after 2119 * our range starts. 2120 */ 2121 node = tree_search(tree, cur_start); 2122 if (!node) 2123 goto out; 2124 2125 while (1) { 2126 state = rb_entry(node, struct extent_state, rb_node); 2127 if (state->start > search_end) 2128 break; 2129 if (contig && found && state->start > last + 1) 2130 break; 2131 if (state->end >= cur_start && (state->state & bits) == bits) { 2132 total_bytes += min(search_end, state->end) + 1 - 2133 max(cur_start, state->start); 2134 if (total_bytes >= max_bytes) 2135 break; 2136 if (!found) { 2137 *start = max(cur_start, state->start); 2138 found = 1; 2139 } 2140 last = state->end; 2141 } else if (contig && found) { 2142 break; 2143 } 2144 node = rb_next(node); 2145 if (!node) 2146 break; 2147 } 2148 out: 2149 spin_unlock(&tree->lock); 2150 return total_bytes; 2151 } 2152 2153 /* 2154 * set the private field for a given byte offset in the tree. If there isn't 2155 * an extent_state there already, this does nothing. 2156 */ 2157 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2158 struct io_failure_record *failrec) 2159 { 2160 struct rb_node *node; 2161 struct extent_state *state; 2162 int ret = 0; 2163 2164 spin_lock(&tree->lock); 2165 /* 2166 * this search will find all the extents that end after 2167 * our range starts. 2168 */ 2169 node = tree_search(tree, start); 2170 if (!node) { 2171 ret = -ENOENT; 2172 goto out; 2173 } 2174 state = rb_entry(node, struct extent_state, rb_node); 2175 if (state->start != start) { 2176 ret = -ENOENT; 2177 goto out; 2178 } 2179 state->failrec = failrec; 2180 out: 2181 spin_unlock(&tree->lock); 2182 return ret; 2183 } 2184 2185 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2186 { 2187 struct rb_node *node; 2188 struct extent_state *state; 2189 struct io_failure_record *failrec; 2190 2191 spin_lock(&tree->lock); 2192 /* 2193 * this search will find all the extents that end after 2194 * our range starts. 2195 */ 2196 node = tree_search(tree, start); 2197 if (!node) { 2198 failrec = ERR_PTR(-ENOENT); 2199 goto out; 2200 } 2201 state = rb_entry(node, struct extent_state, rb_node); 2202 if (state->start != start) { 2203 failrec = ERR_PTR(-ENOENT); 2204 goto out; 2205 } 2206 2207 failrec = state->failrec; 2208 out: 2209 spin_unlock(&tree->lock); 2210 return failrec; 2211 } 2212 2213 /* 2214 * searches a range in the state tree for a given mask. 2215 * If 'filled' == 1, this returns 1 only if every extent in the tree 2216 * has the bits set. Otherwise, 1 is returned if any bit in the 2217 * range is found set. 2218 */ 2219 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2220 u32 bits, int filled, struct extent_state *cached) 2221 { 2222 struct extent_state *state = NULL; 2223 struct rb_node *node; 2224 int bitset = 0; 2225 2226 spin_lock(&tree->lock); 2227 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2228 cached->end > start) 2229 node = &cached->rb_node; 2230 else 2231 node = tree_search(tree, start); 2232 while (node && start <= end) { 2233 state = rb_entry(node, struct extent_state, rb_node); 2234 2235 if (filled && state->start > start) { 2236 bitset = 0; 2237 break; 2238 } 2239 2240 if (state->start > end) 2241 break; 2242 2243 if (state->state & bits) { 2244 bitset = 1; 2245 if (!filled) 2246 break; 2247 } else if (filled) { 2248 bitset = 0; 2249 break; 2250 } 2251 2252 if (state->end == (u64)-1) 2253 break; 2254 2255 start = state->end + 1; 2256 if (start > end) 2257 break; 2258 node = rb_next(node); 2259 if (!node) { 2260 if (filled) 2261 bitset = 0; 2262 break; 2263 } 2264 } 2265 spin_unlock(&tree->lock); 2266 return bitset; 2267 } 2268 2269 int free_io_failure(struct extent_io_tree *failure_tree, 2270 struct extent_io_tree *io_tree, 2271 struct io_failure_record *rec) 2272 { 2273 int ret; 2274 int err = 0; 2275 2276 set_state_failrec(failure_tree, rec->start, NULL); 2277 ret = clear_extent_bits(failure_tree, rec->start, 2278 rec->start + rec->len - 1, 2279 EXTENT_LOCKED | EXTENT_DIRTY); 2280 if (ret) 2281 err = ret; 2282 2283 ret = clear_extent_bits(io_tree, rec->start, 2284 rec->start + rec->len - 1, 2285 EXTENT_DAMAGED); 2286 if (ret && !err) 2287 err = ret; 2288 2289 kfree(rec); 2290 return err; 2291 } 2292 2293 /* 2294 * this bypasses the standard btrfs submit functions deliberately, as 2295 * the standard behavior is to write all copies in a raid setup. here we only 2296 * want to write the one bad copy. so we do the mapping for ourselves and issue 2297 * submit_bio directly. 2298 * to avoid any synchronization issues, wait for the data after writing, which 2299 * actually prevents the read that triggered the error from finishing. 2300 * currently, there can be no more than two copies of every data bit. thus, 2301 * exactly one rewrite is required. 2302 */ 2303 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2304 u64 length, u64 logical, struct page *page, 2305 unsigned int pg_offset, int mirror_num) 2306 { 2307 struct bio *bio; 2308 struct btrfs_device *dev; 2309 u64 map_length = 0; 2310 u64 sector; 2311 struct btrfs_io_context *bioc = NULL; 2312 int ret; 2313 2314 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2315 BUG_ON(!mirror_num); 2316 2317 if (btrfs_repair_one_zone(fs_info, logical)) 2318 return 0; 2319 2320 bio = btrfs_bio_alloc(1); 2321 bio->bi_iter.bi_size = 0; 2322 map_length = length; 2323 2324 /* 2325 * Avoid races with device replace and make sure our bioc has devices 2326 * associated to its stripes that don't go away while we are doing the 2327 * read repair operation. 2328 */ 2329 btrfs_bio_counter_inc_blocked(fs_info); 2330 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2331 /* 2332 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2333 * to update all raid stripes, but here we just want to correct 2334 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2335 * stripe's dev and sector. 2336 */ 2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2338 &map_length, &bioc, 0); 2339 if (ret) { 2340 btrfs_bio_counter_dec(fs_info); 2341 bio_put(bio); 2342 return -EIO; 2343 } 2344 ASSERT(bioc->mirror_num == 1); 2345 } else { 2346 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2347 &map_length, &bioc, mirror_num); 2348 if (ret) { 2349 btrfs_bio_counter_dec(fs_info); 2350 bio_put(bio); 2351 return -EIO; 2352 } 2353 BUG_ON(mirror_num != bioc->mirror_num); 2354 } 2355 2356 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2357 bio->bi_iter.bi_sector = sector; 2358 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2359 btrfs_put_bioc(bioc); 2360 if (!dev || !dev->bdev || 2361 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2362 btrfs_bio_counter_dec(fs_info); 2363 bio_put(bio); 2364 return -EIO; 2365 } 2366 bio_set_dev(bio, dev->bdev); 2367 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2368 bio_add_page(bio, page, length, pg_offset); 2369 2370 if (btrfsic_submit_bio_wait(bio)) { 2371 /* try to remap that extent elsewhere? */ 2372 btrfs_bio_counter_dec(fs_info); 2373 bio_put(bio); 2374 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2375 return -EIO; 2376 } 2377 2378 btrfs_info_rl_in_rcu(fs_info, 2379 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2380 ino, start, 2381 rcu_str_deref(dev->name), sector); 2382 btrfs_bio_counter_dec(fs_info); 2383 bio_put(bio); 2384 return 0; 2385 } 2386 2387 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2388 { 2389 struct btrfs_fs_info *fs_info = eb->fs_info; 2390 u64 start = eb->start; 2391 int i, num_pages = num_extent_pages(eb); 2392 int ret = 0; 2393 2394 if (sb_rdonly(fs_info->sb)) 2395 return -EROFS; 2396 2397 for (i = 0; i < num_pages; i++) { 2398 struct page *p = eb->pages[i]; 2399 2400 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2401 start - page_offset(p), mirror_num); 2402 if (ret) 2403 break; 2404 start += PAGE_SIZE; 2405 } 2406 2407 return ret; 2408 } 2409 2410 /* 2411 * each time an IO finishes, we do a fast check in the IO failure tree 2412 * to see if we need to process or clean up an io_failure_record 2413 */ 2414 int clean_io_failure(struct btrfs_fs_info *fs_info, 2415 struct extent_io_tree *failure_tree, 2416 struct extent_io_tree *io_tree, u64 start, 2417 struct page *page, u64 ino, unsigned int pg_offset) 2418 { 2419 u64 private; 2420 struct io_failure_record *failrec; 2421 struct extent_state *state; 2422 int num_copies; 2423 int ret; 2424 2425 private = 0; 2426 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2427 EXTENT_DIRTY, 0); 2428 if (!ret) 2429 return 0; 2430 2431 failrec = get_state_failrec(failure_tree, start); 2432 if (IS_ERR(failrec)) 2433 return 0; 2434 2435 BUG_ON(!failrec->this_mirror); 2436 2437 if (sb_rdonly(fs_info->sb)) 2438 goto out; 2439 2440 spin_lock(&io_tree->lock); 2441 state = find_first_extent_bit_state(io_tree, 2442 failrec->start, 2443 EXTENT_LOCKED); 2444 spin_unlock(&io_tree->lock); 2445 2446 if (state && state->start <= failrec->start && 2447 state->end >= failrec->start + failrec->len - 1) { 2448 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2449 failrec->len); 2450 if (num_copies > 1) { 2451 repair_io_failure(fs_info, ino, start, failrec->len, 2452 failrec->logical, page, pg_offset, 2453 failrec->failed_mirror); 2454 } 2455 } 2456 2457 out: 2458 free_io_failure(failure_tree, io_tree, failrec); 2459 2460 return 0; 2461 } 2462 2463 /* 2464 * Can be called when 2465 * - hold extent lock 2466 * - under ordered extent 2467 * - the inode is freeing 2468 */ 2469 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2470 { 2471 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2472 struct io_failure_record *failrec; 2473 struct extent_state *state, *next; 2474 2475 if (RB_EMPTY_ROOT(&failure_tree->state)) 2476 return; 2477 2478 spin_lock(&failure_tree->lock); 2479 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2480 while (state) { 2481 if (state->start > end) 2482 break; 2483 2484 ASSERT(state->end <= end); 2485 2486 next = next_state(state); 2487 2488 failrec = state->failrec; 2489 free_extent_state(state); 2490 kfree(failrec); 2491 2492 state = next; 2493 } 2494 spin_unlock(&failure_tree->lock); 2495 } 2496 2497 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2498 u64 start) 2499 { 2500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2501 struct io_failure_record *failrec; 2502 struct extent_map *em; 2503 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2504 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2505 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2506 const u32 sectorsize = fs_info->sectorsize; 2507 int ret; 2508 u64 logical; 2509 2510 failrec = get_state_failrec(failure_tree, start); 2511 if (!IS_ERR(failrec)) { 2512 btrfs_debug(fs_info, 2513 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2514 failrec->logical, failrec->start, failrec->len); 2515 /* 2516 * when data can be on disk more than twice, add to failrec here 2517 * (e.g. with a list for failed_mirror) to make 2518 * clean_io_failure() clean all those errors at once. 2519 */ 2520 2521 return failrec; 2522 } 2523 2524 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2525 if (!failrec) 2526 return ERR_PTR(-ENOMEM); 2527 2528 failrec->start = start; 2529 failrec->len = sectorsize; 2530 failrec->this_mirror = 0; 2531 failrec->bio_flags = 0; 2532 2533 read_lock(&em_tree->lock); 2534 em = lookup_extent_mapping(em_tree, start, failrec->len); 2535 if (!em) { 2536 read_unlock(&em_tree->lock); 2537 kfree(failrec); 2538 return ERR_PTR(-EIO); 2539 } 2540 2541 if (em->start > start || em->start + em->len <= start) { 2542 free_extent_map(em); 2543 em = NULL; 2544 } 2545 read_unlock(&em_tree->lock); 2546 if (!em) { 2547 kfree(failrec); 2548 return ERR_PTR(-EIO); 2549 } 2550 2551 logical = start - em->start; 2552 logical = em->block_start + logical; 2553 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2554 logical = em->block_start; 2555 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2556 extent_set_compress_type(&failrec->bio_flags, em->compress_type); 2557 } 2558 2559 btrfs_debug(fs_info, 2560 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2561 logical, start, failrec->len); 2562 2563 failrec->logical = logical; 2564 free_extent_map(em); 2565 2566 /* Set the bits in the private failure tree */ 2567 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2568 EXTENT_LOCKED | EXTENT_DIRTY); 2569 if (ret >= 0) { 2570 ret = set_state_failrec(failure_tree, start, failrec); 2571 /* Set the bits in the inode's tree */ 2572 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2573 EXTENT_DAMAGED); 2574 } else if (ret < 0) { 2575 kfree(failrec); 2576 return ERR_PTR(ret); 2577 } 2578 2579 return failrec; 2580 } 2581 2582 static bool btrfs_check_repairable(struct inode *inode, 2583 struct io_failure_record *failrec, 2584 int failed_mirror) 2585 { 2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2587 int num_copies; 2588 2589 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2590 if (num_copies == 1) { 2591 /* 2592 * we only have a single copy of the data, so don't bother with 2593 * all the retry and error correction code that follows. no 2594 * matter what the error is, it is very likely to persist. 2595 */ 2596 btrfs_debug(fs_info, 2597 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2598 num_copies, failrec->this_mirror, failed_mirror); 2599 return false; 2600 } 2601 2602 /* The failure record should only contain one sector */ 2603 ASSERT(failrec->len == fs_info->sectorsize); 2604 2605 /* 2606 * There are two premises: 2607 * a) deliver good data to the caller 2608 * b) correct the bad sectors on disk 2609 * 2610 * Since we're only doing repair for one sector, we only need to get 2611 * a good copy of the failed sector and if we succeed, we have setup 2612 * everything for repair_io_failure to do the rest for us. 2613 */ 2614 failrec->failed_mirror = failed_mirror; 2615 failrec->this_mirror++; 2616 if (failrec->this_mirror == failed_mirror) 2617 failrec->this_mirror++; 2618 2619 if (failrec->this_mirror > num_copies) { 2620 btrfs_debug(fs_info, 2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2622 num_copies, failrec->this_mirror, failed_mirror); 2623 return false; 2624 } 2625 2626 return true; 2627 } 2628 2629 int btrfs_repair_one_sector(struct inode *inode, 2630 struct bio *failed_bio, u32 bio_offset, 2631 struct page *page, unsigned int pgoff, 2632 u64 start, int failed_mirror, 2633 submit_bio_hook_t *submit_bio_hook) 2634 { 2635 struct io_failure_record *failrec; 2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2640 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2641 struct bio *repair_bio; 2642 struct btrfs_bio *repair_bbio; 2643 blk_status_t status; 2644 2645 btrfs_debug(fs_info, 2646 "repair read error: read error at %llu", start); 2647 2648 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2649 2650 failrec = btrfs_get_io_failure_record(inode, start); 2651 if (IS_ERR(failrec)) 2652 return PTR_ERR(failrec); 2653 2654 2655 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2656 free_io_failure(failure_tree, tree, failrec); 2657 return -EIO; 2658 } 2659 2660 repair_bio = btrfs_bio_alloc(1); 2661 repair_bbio = btrfs_bio(repair_bio); 2662 repair_bio->bi_opf = REQ_OP_READ; 2663 repair_bio->bi_end_io = failed_bio->bi_end_io; 2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2665 repair_bio->bi_private = failed_bio->bi_private; 2666 2667 if (failed_bbio->csum) { 2668 const u32 csum_size = fs_info->csum_size; 2669 2670 repair_bbio->csum = repair_bbio->csum_inline; 2671 memcpy(repair_bbio->csum, 2672 failed_bbio->csum + csum_size * icsum, csum_size); 2673 } 2674 2675 bio_add_page(repair_bio, page, failrec->len, pgoff); 2676 repair_bbio->iter = repair_bio->bi_iter; 2677 2678 btrfs_debug(btrfs_sb(inode->i_sb), 2679 "repair read error: submitting new read to mirror %d", 2680 failrec->this_mirror); 2681 2682 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror, 2683 failrec->bio_flags); 2684 if (status) { 2685 free_io_failure(failure_tree, tree, failrec); 2686 bio_put(repair_bio); 2687 } 2688 return blk_status_to_errno(status); 2689 } 2690 2691 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2692 { 2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2694 2695 ASSERT(page_offset(page) <= start && 2696 start + len <= page_offset(page) + PAGE_SIZE); 2697 2698 if (uptodate) { 2699 if (fsverity_active(page->mapping->host) && 2700 !PageError(page) && 2701 !PageUptodate(page) && 2702 start < i_size_read(page->mapping->host) && 2703 !fsverity_verify_page(page)) { 2704 btrfs_page_set_error(fs_info, page, start, len); 2705 } else { 2706 btrfs_page_set_uptodate(fs_info, page, start, len); 2707 } 2708 } else { 2709 btrfs_page_clear_uptodate(fs_info, page, start, len); 2710 btrfs_page_set_error(fs_info, page, start, len); 2711 } 2712 2713 if (fs_info->sectorsize == PAGE_SIZE) 2714 unlock_page(page); 2715 else 2716 btrfs_subpage_end_reader(fs_info, page, start, len); 2717 } 2718 2719 static blk_status_t submit_read_repair(struct inode *inode, 2720 struct bio *failed_bio, u32 bio_offset, 2721 struct page *page, unsigned int pgoff, 2722 u64 start, u64 end, int failed_mirror, 2723 unsigned int error_bitmap, 2724 submit_bio_hook_t *submit_bio_hook) 2725 { 2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2727 const u32 sectorsize = fs_info->sectorsize; 2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2729 int error = 0; 2730 int i; 2731 2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2733 2734 /* We're here because we had some read errors or csum mismatch */ 2735 ASSERT(error_bitmap); 2736 2737 /* 2738 * We only get called on buffered IO, thus page must be mapped and bio 2739 * must not be cloned. 2740 */ 2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2742 2743 /* Iterate through all the sectors in the range */ 2744 for (i = 0; i < nr_bits; i++) { 2745 const unsigned int offset = i * sectorsize; 2746 struct extent_state *cached = NULL; 2747 bool uptodate = false; 2748 int ret; 2749 2750 if (!(error_bitmap & (1U << i))) { 2751 /* 2752 * This sector has no error, just end the page read 2753 * and unlock the range. 2754 */ 2755 uptodate = true; 2756 goto next; 2757 } 2758 2759 ret = btrfs_repair_one_sector(inode, failed_bio, 2760 bio_offset + offset, 2761 page, pgoff + offset, start + offset, 2762 failed_mirror, submit_bio_hook); 2763 if (!ret) { 2764 /* 2765 * We have submitted the read repair, the page release 2766 * will be handled by the endio function of the 2767 * submitted repair bio. 2768 * Thus we don't need to do any thing here. 2769 */ 2770 continue; 2771 } 2772 /* 2773 * Repair failed, just record the error but still continue. 2774 * Or the remaining sectors will not be properly unlocked. 2775 */ 2776 if (!error) 2777 error = ret; 2778 next: 2779 end_page_read(page, uptodate, start + offset, sectorsize); 2780 if (uptodate) 2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2782 start + offset, 2783 start + offset + sectorsize - 1, 2784 &cached, GFP_ATOMIC); 2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2786 start + offset, 2787 start + offset + sectorsize - 1, 2788 &cached); 2789 } 2790 return errno_to_blk_status(error); 2791 } 2792 2793 /* lots and lots of room for performance fixes in the end_bio funcs */ 2794 2795 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2796 { 2797 struct btrfs_inode *inode; 2798 const bool uptodate = (err == 0); 2799 int ret = 0; 2800 2801 ASSERT(page && page->mapping); 2802 inode = BTRFS_I(page->mapping->host); 2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2804 2805 if (!uptodate) { 2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2807 u32 len; 2808 2809 ASSERT(end + 1 - start <= U32_MAX); 2810 len = end + 1 - start; 2811 2812 btrfs_page_clear_uptodate(fs_info, page, start, len); 2813 btrfs_page_set_error(fs_info, page, start, len); 2814 ret = err < 0 ? err : -EIO; 2815 mapping_set_error(page->mapping, ret); 2816 } 2817 } 2818 2819 /* 2820 * after a writepage IO is done, we need to: 2821 * clear the uptodate bits on error 2822 * clear the writeback bits in the extent tree for this IO 2823 * end_page_writeback if the page has no more pending IO 2824 * 2825 * Scheduling is not allowed, so the extent state tree is expected 2826 * to have one and only one object corresponding to this IO. 2827 */ 2828 static void end_bio_extent_writepage(struct bio *bio) 2829 { 2830 int error = blk_status_to_errno(bio->bi_status); 2831 struct bio_vec *bvec; 2832 u64 start; 2833 u64 end; 2834 struct bvec_iter_all iter_all; 2835 bool first_bvec = true; 2836 2837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2838 bio_for_each_segment_all(bvec, bio, iter_all) { 2839 struct page *page = bvec->bv_page; 2840 struct inode *inode = page->mapping->host; 2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2842 const u32 sectorsize = fs_info->sectorsize; 2843 2844 /* Our read/write should always be sector aligned. */ 2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2846 btrfs_err(fs_info, 2847 "partial page write in btrfs with offset %u and length %u", 2848 bvec->bv_offset, bvec->bv_len); 2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2850 btrfs_info(fs_info, 2851 "incomplete page write with offset %u and length %u", 2852 bvec->bv_offset, bvec->bv_len); 2853 2854 start = page_offset(page) + bvec->bv_offset; 2855 end = start + bvec->bv_len - 1; 2856 2857 if (first_bvec) { 2858 btrfs_record_physical_zoned(inode, start, bio); 2859 first_bvec = false; 2860 } 2861 2862 end_extent_writepage(page, error, start, end); 2863 2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2865 } 2866 2867 bio_put(bio); 2868 } 2869 2870 /* 2871 * Record previously processed extent range 2872 * 2873 * For endio_readpage_release_extent() to handle a full extent range, reducing 2874 * the extent io operations. 2875 */ 2876 struct processed_extent { 2877 struct btrfs_inode *inode; 2878 /* Start of the range in @inode */ 2879 u64 start; 2880 /* End of the range in @inode */ 2881 u64 end; 2882 bool uptodate; 2883 }; 2884 2885 /* 2886 * Try to release processed extent range 2887 * 2888 * May not release the extent range right now if the current range is 2889 * contiguous to processed extent. 2890 * 2891 * Will release processed extent when any of @inode, @uptodate, the range is 2892 * no longer contiguous to the processed range. 2893 * 2894 * Passing @inode == NULL will force processed extent to be released. 2895 */ 2896 static void endio_readpage_release_extent(struct processed_extent *processed, 2897 struct btrfs_inode *inode, u64 start, u64 end, 2898 bool uptodate) 2899 { 2900 struct extent_state *cached = NULL; 2901 struct extent_io_tree *tree; 2902 2903 /* The first extent, initialize @processed */ 2904 if (!processed->inode) 2905 goto update; 2906 2907 /* 2908 * Contiguous to processed extent, just uptodate the end. 2909 * 2910 * Several things to notice: 2911 * 2912 * - bio can be merged as long as on-disk bytenr is contiguous 2913 * This means we can have page belonging to other inodes, thus need to 2914 * check if the inode still matches. 2915 * - bvec can contain range beyond current page for multi-page bvec 2916 * Thus we need to do processed->end + 1 >= start check 2917 */ 2918 if (processed->inode == inode && processed->uptodate == uptodate && 2919 processed->end + 1 >= start && end >= processed->end) { 2920 processed->end = end; 2921 return; 2922 } 2923 2924 tree = &processed->inode->io_tree; 2925 /* 2926 * Now we don't have range contiguous to the processed range, release 2927 * the processed range now. 2928 */ 2929 if (processed->uptodate && tree->track_uptodate) 2930 set_extent_uptodate(tree, processed->start, processed->end, 2931 &cached, GFP_ATOMIC); 2932 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2933 &cached); 2934 2935 update: 2936 /* Update processed to current range */ 2937 processed->inode = inode; 2938 processed->start = start; 2939 processed->end = end; 2940 processed->uptodate = uptodate; 2941 } 2942 2943 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2944 { 2945 ASSERT(PageLocked(page)); 2946 if (fs_info->sectorsize == PAGE_SIZE) 2947 return; 2948 2949 ASSERT(PagePrivate(page)); 2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2951 } 2952 2953 /* 2954 * Find extent buffer for a givne bytenr. 2955 * 2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2957 * in endio context. 2958 */ 2959 static struct extent_buffer *find_extent_buffer_readpage( 2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2961 { 2962 struct extent_buffer *eb; 2963 2964 /* 2965 * For regular sectorsize, we can use page->private to grab extent 2966 * buffer 2967 */ 2968 if (fs_info->sectorsize == PAGE_SIZE) { 2969 ASSERT(PagePrivate(page) && page->private); 2970 return (struct extent_buffer *)page->private; 2971 } 2972 2973 /* For subpage case, we need to lookup buffer radix tree */ 2974 rcu_read_lock(); 2975 eb = radix_tree_lookup(&fs_info->buffer_radix, 2976 bytenr >> fs_info->sectorsize_bits); 2977 rcu_read_unlock(); 2978 ASSERT(eb); 2979 return eb; 2980 } 2981 2982 /* 2983 * after a readpage IO is done, we need to: 2984 * clear the uptodate bits on error 2985 * set the uptodate bits if things worked 2986 * set the page up to date if all extents in the tree are uptodate 2987 * clear the lock bit in the extent tree 2988 * unlock the page if there are no other extents locked for it 2989 * 2990 * Scheduling is not allowed, so the extent state tree is expected 2991 * to have one and only one object corresponding to this IO. 2992 */ 2993 static void end_bio_extent_readpage(struct bio *bio) 2994 { 2995 struct bio_vec *bvec; 2996 struct btrfs_bio *bbio = btrfs_bio(bio); 2997 struct extent_io_tree *tree, *failure_tree; 2998 struct processed_extent processed = { 0 }; 2999 /* 3000 * The offset to the beginning of a bio, since one bio can never be 3001 * larger than UINT_MAX, u32 here is enough. 3002 */ 3003 u32 bio_offset = 0; 3004 int mirror; 3005 int ret; 3006 struct bvec_iter_all iter_all; 3007 3008 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3009 bio_for_each_segment_all(bvec, bio, iter_all) { 3010 bool uptodate = !bio->bi_status; 3011 struct page *page = bvec->bv_page; 3012 struct inode *inode = page->mapping->host; 3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3014 const u32 sectorsize = fs_info->sectorsize; 3015 unsigned int error_bitmap = (unsigned int)-1; 3016 u64 start; 3017 u64 end; 3018 u32 len; 3019 3020 btrfs_debug(fs_info, 3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3022 bio->bi_iter.bi_sector, bio->bi_status, 3023 bbio->mirror_num); 3024 tree = &BTRFS_I(inode)->io_tree; 3025 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3026 3027 /* 3028 * We always issue full-sector reads, but if some block in a 3029 * page fails to read, blk_update_request() will advance 3030 * bv_offset and adjust bv_len to compensate. Print a warning 3031 * for unaligned offsets, and an error if they don't add up to 3032 * a full sector. 3033 */ 3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3035 btrfs_err(fs_info, 3036 "partial page read in btrfs with offset %u and length %u", 3037 bvec->bv_offset, bvec->bv_len); 3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3039 sectorsize)) 3040 btrfs_info(fs_info, 3041 "incomplete page read with offset %u and length %u", 3042 bvec->bv_offset, bvec->bv_len); 3043 3044 start = page_offset(page) + bvec->bv_offset; 3045 end = start + bvec->bv_len - 1; 3046 len = bvec->bv_len; 3047 3048 mirror = bbio->mirror_num; 3049 if (likely(uptodate)) { 3050 if (is_data_inode(inode)) { 3051 error_bitmap = btrfs_verify_data_csum(bbio, 3052 bio_offset, page, start, end); 3053 ret = error_bitmap; 3054 } else { 3055 ret = btrfs_validate_metadata_buffer(bbio, 3056 page, start, end, mirror); 3057 } 3058 if (ret) 3059 uptodate = false; 3060 else 3061 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3062 failure_tree, tree, start, 3063 page, 3064 btrfs_ino(BTRFS_I(inode)), 0); 3065 } 3066 3067 if (likely(uptodate)) 3068 goto readpage_ok; 3069 3070 if (is_data_inode(inode)) { 3071 /* 3072 * btrfs_submit_read_repair() will handle all the good 3073 * and bad sectors, we just continue to the next bvec. 3074 */ 3075 submit_read_repair(inode, bio, bio_offset, page, 3076 start - page_offset(page), start, 3077 end, mirror, error_bitmap, 3078 btrfs_submit_data_bio); 3079 3080 ASSERT(bio_offset + len > bio_offset); 3081 bio_offset += len; 3082 continue; 3083 } else { 3084 struct extent_buffer *eb; 3085 3086 eb = find_extent_buffer_readpage(fs_info, page, start); 3087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3088 eb->read_mirror = mirror; 3089 atomic_dec(&eb->io_pages); 3090 } 3091 readpage_ok: 3092 if (likely(uptodate)) { 3093 loff_t i_size = i_size_read(inode); 3094 pgoff_t end_index = i_size >> PAGE_SHIFT; 3095 3096 /* 3097 * Zero out the remaining part if this range straddles 3098 * i_size. 3099 * 3100 * Here we should only zero the range inside the bvec, 3101 * not touch anything else. 3102 * 3103 * NOTE: i_size is exclusive while end is inclusive. 3104 */ 3105 if (page->index == end_index && i_size <= end) { 3106 u32 zero_start = max(offset_in_page(i_size), 3107 offset_in_page(start)); 3108 3109 zero_user_segment(page, zero_start, 3110 offset_in_page(end) + 1); 3111 } 3112 } 3113 ASSERT(bio_offset + len > bio_offset); 3114 bio_offset += len; 3115 3116 /* Update page status and unlock */ 3117 end_page_read(page, uptodate, start, len); 3118 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3119 start, end, PageUptodate(page)); 3120 } 3121 /* Release the last extent */ 3122 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3123 btrfs_bio_free_csum(bbio); 3124 bio_put(bio); 3125 } 3126 3127 /* 3128 * Initialize the members up to but not including 'bio'. Use after allocating a 3129 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3130 * 'bio' because use of __GFP_ZERO is not supported. 3131 */ 3132 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3133 { 3134 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3135 } 3136 3137 /* 3138 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3139 * 3140 * The bio allocation is backed by bioset and does not fail. 3141 */ 3142 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3143 { 3144 struct bio *bio; 3145 3146 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3147 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 3148 btrfs_bio_init(btrfs_bio(bio)); 3149 return bio; 3150 } 3151 3152 struct bio *btrfs_bio_clone(struct bio *bio) 3153 { 3154 struct btrfs_bio *bbio; 3155 struct bio *new; 3156 3157 /* Bio allocation backed by a bioset does not fail */ 3158 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 3159 bbio = btrfs_bio(new); 3160 btrfs_bio_init(bbio); 3161 bbio->iter = bio->bi_iter; 3162 return new; 3163 } 3164 3165 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3166 { 3167 struct bio *bio; 3168 struct btrfs_bio *bbio; 3169 3170 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3171 3172 /* this will never fail when it's backed by a bioset */ 3173 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 3174 ASSERT(bio); 3175 3176 bbio = btrfs_bio(bio); 3177 btrfs_bio_init(bbio); 3178 3179 bio_trim(bio, offset >> 9, size >> 9); 3180 bbio->iter = bio->bi_iter; 3181 return bio; 3182 } 3183 3184 /** 3185 * Attempt to add a page to bio 3186 * 3187 * @bio_ctrl: record both the bio, and its bio_flags 3188 * @page: page to add to the bio 3189 * @disk_bytenr: offset of the new bio or to check whether we are adding 3190 * a contiguous page to the previous one 3191 * @size: portion of page that we want to write 3192 * @pg_offset: starting offset in the page 3193 * @bio_flags: flags of the current bio to see if we can merge them 3194 * 3195 * Attempt to add a page to bio considering stripe alignment etc. 3196 * 3197 * Return >= 0 for the number of bytes added to the bio. 3198 * Can return 0 if the current bio is already at stripe/zone boundary. 3199 * Return <0 for error. 3200 */ 3201 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3202 struct page *page, 3203 u64 disk_bytenr, unsigned int size, 3204 unsigned int pg_offset, 3205 unsigned long bio_flags) 3206 { 3207 struct bio *bio = bio_ctrl->bio; 3208 u32 bio_size = bio->bi_iter.bi_size; 3209 u32 real_size; 3210 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3211 bool contig; 3212 int ret; 3213 3214 ASSERT(bio); 3215 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3216 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3217 if (bio_ctrl->bio_flags != bio_flags) 3218 return 0; 3219 3220 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) 3221 contig = bio->bi_iter.bi_sector == sector; 3222 else 3223 contig = bio_end_sector(bio) == sector; 3224 if (!contig) 3225 return 0; 3226 3227 real_size = min(bio_ctrl->len_to_oe_boundary, 3228 bio_ctrl->len_to_stripe_boundary) - bio_size; 3229 real_size = min(real_size, size); 3230 3231 /* 3232 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3233 * bio will still execute its endio function on the page! 3234 */ 3235 if (real_size == 0) 3236 return 0; 3237 3238 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3239 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3240 else 3241 ret = bio_add_page(bio, page, real_size, pg_offset); 3242 3243 return ret; 3244 } 3245 3246 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3247 struct btrfs_inode *inode, u64 file_offset) 3248 { 3249 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3250 struct btrfs_io_geometry geom; 3251 struct btrfs_ordered_extent *ordered; 3252 struct extent_map *em; 3253 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3254 int ret; 3255 3256 /* 3257 * Pages for compressed extent are never submitted to disk directly, 3258 * thus it has no real boundary, just set them to U32_MAX. 3259 * 3260 * The split happens for real compressed bio, which happens in 3261 * btrfs_submit_compressed_read/write(). 3262 */ 3263 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) { 3264 bio_ctrl->len_to_oe_boundary = U32_MAX; 3265 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3266 return 0; 3267 } 3268 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3269 if (IS_ERR(em)) 3270 return PTR_ERR(em); 3271 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3272 logical, &geom); 3273 free_extent_map(em); 3274 if (ret < 0) { 3275 return ret; 3276 } 3277 if (geom.len > U32_MAX) 3278 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3279 else 3280 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3281 3282 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3283 bio_ctrl->len_to_oe_boundary = U32_MAX; 3284 return 0; 3285 } 3286 3287 /* Ordered extent not yet created, so we're good */ 3288 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3289 if (!ordered) { 3290 bio_ctrl->len_to_oe_boundary = U32_MAX; 3291 return 0; 3292 } 3293 3294 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3295 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3296 btrfs_put_ordered_extent(ordered); 3297 return 0; 3298 } 3299 3300 static int alloc_new_bio(struct btrfs_inode *inode, 3301 struct btrfs_bio_ctrl *bio_ctrl, 3302 struct writeback_control *wbc, 3303 unsigned int opf, 3304 bio_end_io_t end_io_func, 3305 u64 disk_bytenr, u32 offset, u64 file_offset, 3306 unsigned long bio_flags) 3307 { 3308 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3309 struct bio *bio; 3310 int ret; 3311 3312 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3313 /* 3314 * For compressed page range, its disk_bytenr is always @disk_bytenr 3315 * passed in, no matter if we have added any range into previous bio. 3316 */ 3317 if (bio_flags & EXTENT_BIO_COMPRESSED) 3318 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3319 else 3320 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3321 bio_ctrl->bio = bio; 3322 bio_ctrl->bio_flags = bio_flags; 3323 bio->bi_end_io = end_io_func; 3324 bio->bi_private = &inode->io_tree; 3325 bio->bi_write_hint = inode->vfs_inode.i_write_hint; 3326 bio->bi_opf = opf; 3327 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3328 if (ret < 0) 3329 goto error; 3330 if (wbc) { 3331 struct block_device *bdev; 3332 3333 bdev = fs_info->fs_devices->latest_dev->bdev; 3334 bio_set_dev(bio, bdev); 3335 wbc_init_bio(wbc, bio); 3336 } 3337 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3338 struct btrfs_device *device; 3339 3340 device = btrfs_zoned_get_device(fs_info, disk_bytenr, 3341 fs_info->sectorsize); 3342 if (IS_ERR(device)) { 3343 ret = PTR_ERR(device); 3344 goto error; 3345 } 3346 3347 btrfs_bio(bio)->device = device; 3348 } 3349 return 0; 3350 error: 3351 bio_ctrl->bio = NULL; 3352 bio->bi_status = errno_to_blk_status(ret); 3353 bio_endio(bio); 3354 return ret; 3355 } 3356 3357 /* 3358 * @opf: bio REQ_OP_* and REQ_* flags as one value 3359 * @wbc: optional writeback control for io accounting 3360 * @page: page to add to the bio 3361 * @disk_bytenr: logical bytenr where the write will be 3362 * @size: portion of page that we want to write to 3363 * @pg_offset: offset of the new bio or to check whether we are adding 3364 * a contiguous page to the previous one 3365 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3366 * @end_io_func: end_io callback for new bio 3367 * @mirror_num: desired mirror to read/write 3368 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3369 * @bio_flags: flags of the current bio to see if we can merge them 3370 */ 3371 static int submit_extent_page(unsigned int opf, 3372 struct writeback_control *wbc, 3373 struct btrfs_bio_ctrl *bio_ctrl, 3374 struct page *page, u64 disk_bytenr, 3375 size_t size, unsigned long pg_offset, 3376 bio_end_io_t end_io_func, 3377 int mirror_num, 3378 unsigned long bio_flags, 3379 bool force_bio_submit) 3380 { 3381 int ret = 0; 3382 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3383 unsigned int cur = pg_offset; 3384 3385 ASSERT(bio_ctrl); 3386 3387 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3388 pg_offset + size <= PAGE_SIZE); 3389 if (force_bio_submit && bio_ctrl->bio) { 3390 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags); 3391 bio_ctrl->bio = NULL; 3392 if (ret < 0) 3393 return ret; 3394 } 3395 3396 while (cur < pg_offset + size) { 3397 u32 offset = cur - pg_offset; 3398 int added; 3399 3400 /* Allocate new bio if needed */ 3401 if (!bio_ctrl->bio) { 3402 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3403 end_io_func, disk_bytenr, offset, 3404 page_offset(page) + cur, 3405 bio_flags); 3406 if (ret < 0) 3407 return ret; 3408 } 3409 /* 3410 * We must go through btrfs_bio_add_page() to ensure each 3411 * page range won't cross various boundaries. 3412 */ 3413 if (bio_flags & EXTENT_BIO_COMPRESSED) 3414 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3415 size - offset, pg_offset + offset, 3416 bio_flags); 3417 else 3418 added = btrfs_bio_add_page(bio_ctrl, page, 3419 disk_bytenr + offset, size - offset, 3420 pg_offset + offset, bio_flags); 3421 3422 /* Metadata page range should never be split */ 3423 if (!is_data_inode(&inode->vfs_inode)) 3424 ASSERT(added == 0 || added == size - offset); 3425 3426 /* At least we added some page, update the account */ 3427 if (wbc && added) 3428 wbc_account_cgroup_owner(wbc, page, added); 3429 3430 /* We have reached boundary, submit right now */ 3431 if (added < size - offset) { 3432 /* The bio should contain some page(s) */ 3433 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3434 ret = submit_one_bio(bio_ctrl->bio, mirror_num, 3435 bio_ctrl->bio_flags); 3436 bio_ctrl->bio = NULL; 3437 if (ret < 0) 3438 return ret; 3439 } 3440 cur += added; 3441 } 3442 return 0; 3443 } 3444 3445 static int attach_extent_buffer_page(struct extent_buffer *eb, 3446 struct page *page, 3447 struct btrfs_subpage *prealloc) 3448 { 3449 struct btrfs_fs_info *fs_info = eb->fs_info; 3450 int ret = 0; 3451 3452 /* 3453 * If the page is mapped to btree inode, we should hold the private 3454 * lock to prevent race. 3455 * For cloned or dummy extent buffers, their pages are not mapped and 3456 * will not race with any other ebs. 3457 */ 3458 if (page->mapping) 3459 lockdep_assert_held(&page->mapping->private_lock); 3460 3461 if (fs_info->sectorsize == PAGE_SIZE) { 3462 if (!PagePrivate(page)) 3463 attach_page_private(page, eb); 3464 else 3465 WARN_ON(page->private != (unsigned long)eb); 3466 return 0; 3467 } 3468 3469 /* Already mapped, just free prealloc */ 3470 if (PagePrivate(page)) { 3471 btrfs_free_subpage(prealloc); 3472 return 0; 3473 } 3474 3475 if (prealloc) 3476 /* Has preallocated memory for subpage */ 3477 attach_page_private(page, prealloc); 3478 else 3479 /* Do new allocation to attach subpage */ 3480 ret = btrfs_attach_subpage(fs_info, page, 3481 BTRFS_SUBPAGE_METADATA); 3482 return ret; 3483 } 3484 3485 int set_page_extent_mapped(struct page *page) 3486 { 3487 struct btrfs_fs_info *fs_info; 3488 3489 ASSERT(page->mapping); 3490 3491 if (PagePrivate(page)) 3492 return 0; 3493 3494 fs_info = btrfs_sb(page->mapping->host->i_sb); 3495 3496 if (fs_info->sectorsize < PAGE_SIZE) 3497 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3498 3499 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3500 return 0; 3501 } 3502 3503 void clear_page_extent_mapped(struct page *page) 3504 { 3505 struct btrfs_fs_info *fs_info; 3506 3507 ASSERT(page->mapping); 3508 3509 if (!PagePrivate(page)) 3510 return; 3511 3512 fs_info = btrfs_sb(page->mapping->host->i_sb); 3513 if (fs_info->sectorsize < PAGE_SIZE) 3514 return btrfs_detach_subpage(fs_info, page); 3515 3516 detach_page_private(page); 3517 } 3518 3519 static struct extent_map * 3520 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3521 u64 start, u64 len, struct extent_map **em_cached) 3522 { 3523 struct extent_map *em; 3524 3525 if (em_cached && *em_cached) { 3526 em = *em_cached; 3527 if (extent_map_in_tree(em) && start >= em->start && 3528 start < extent_map_end(em)) { 3529 refcount_inc(&em->refs); 3530 return em; 3531 } 3532 3533 free_extent_map(em); 3534 *em_cached = NULL; 3535 } 3536 3537 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3538 if (em_cached && !IS_ERR_OR_NULL(em)) { 3539 BUG_ON(*em_cached); 3540 refcount_inc(&em->refs); 3541 *em_cached = em; 3542 } 3543 return em; 3544 } 3545 /* 3546 * basic readpage implementation. Locked extent state structs are inserted 3547 * into the tree that are removed when the IO is done (by the end_io 3548 * handlers) 3549 * XXX JDM: This needs looking at to ensure proper page locking 3550 * return 0 on success, otherwise return error 3551 */ 3552 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3553 struct btrfs_bio_ctrl *bio_ctrl, 3554 unsigned int read_flags, u64 *prev_em_start) 3555 { 3556 struct inode *inode = page->mapping->host; 3557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3558 u64 start = page_offset(page); 3559 const u64 end = start + PAGE_SIZE - 1; 3560 u64 cur = start; 3561 u64 extent_offset; 3562 u64 last_byte = i_size_read(inode); 3563 u64 block_start; 3564 u64 cur_end; 3565 struct extent_map *em; 3566 int ret = 0; 3567 int nr = 0; 3568 size_t pg_offset = 0; 3569 size_t iosize; 3570 size_t blocksize = inode->i_sb->s_blocksize; 3571 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3572 3573 ret = set_page_extent_mapped(page); 3574 if (ret < 0) { 3575 unlock_extent(tree, start, end); 3576 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3577 unlock_page(page); 3578 goto out; 3579 } 3580 3581 if (!PageUptodate(page)) { 3582 if (cleancache_get_page(page) == 0) { 3583 BUG_ON(blocksize != PAGE_SIZE); 3584 unlock_extent(tree, start, end); 3585 unlock_page(page); 3586 goto out; 3587 } 3588 } 3589 3590 if (page->index == last_byte >> PAGE_SHIFT) { 3591 size_t zero_offset = offset_in_page(last_byte); 3592 3593 if (zero_offset) { 3594 iosize = PAGE_SIZE - zero_offset; 3595 memzero_page(page, zero_offset, iosize); 3596 flush_dcache_page(page); 3597 } 3598 } 3599 begin_page_read(fs_info, page); 3600 while (cur <= end) { 3601 unsigned long this_bio_flag = 0; 3602 bool force_bio_submit = false; 3603 u64 disk_bytenr; 3604 3605 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3606 if (cur >= last_byte) { 3607 struct extent_state *cached = NULL; 3608 3609 iosize = PAGE_SIZE - pg_offset; 3610 memzero_page(page, pg_offset, iosize); 3611 flush_dcache_page(page); 3612 set_extent_uptodate(tree, cur, cur + iosize - 1, 3613 &cached, GFP_NOFS); 3614 unlock_extent_cached(tree, cur, 3615 cur + iosize - 1, &cached); 3616 end_page_read(page, true, cur, iosize); 3617 break; 3618 } 3619 em = __get_extent_map(inode, page, pg_offset, cur, 3620 end - cur + 1, em_cached); 3621 if (IS_ERR_OR_NULL(em)) { 3622 unlock_extent(tree, cur, end); 3623 end_page_read(page, false, cur, end + 1 - cur); 3624 break; 3625 } 3626 extent_offset = cur - em->start; 3627 BUG_ON(extent_map_end(em) <= cur); 3628 BUG_ON(end < cur); 3629 3630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3631 this_bio_flag |= EXTENT_BIO_COMPRESSED; 3632 extent_set_compress_type(&this_bio_flag, 3633 em->compress_type); 3634 } 3635 3636 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3637 cur_end = min(extent_map_end(em) - 1, end); 3638 iosize = ALIGN(iosize, blocksize); 3639 if (this_bio_flag & EXTENT_BIO_COMPRESSED) 3640 disk_bytenr = em->block_start; 3641 else 3642 disk_bytenr = em->block_start + extent_offset; 3643 block_start = em->block_start; 3644 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3645 block_start = EXTENT_MAP_HOLE; 3646 3647 /* 3648 * If we have a file range that points to a compressed extent 3649 * and it's followed by a consecutive file range that points 3650 * to the same compressed extent (possibly with a different 3651 * offset and/or length, so it either points to the whole extent 3652 * or only part of it), we must make sure we do not submit a 3653 * single bio to populate the pages for the 2 ranges because 3654 * this makes the compressed extent read zero out the pages 3655 * belonging to the 2nd range. Imagine the following scenario: 3656 * 3657 * File layout 3658 * [0 - 8K] [8K - 24K] 3659 * | | 3660 * | | 3661 * points to extent X, points to extent X, 3662 * offset 4K, length of 8K offset 0, length 16K 3663 * 3664 * [extent X, compressed length = 4K uncompressed length = 16K] 3665 * 3666 * If the bio to read the compressed extent covers both ranges, 3667 * it will decompress extent X into the pages belonging to the 3668 * first range and then it will stop, zeroing out the remaining 3669 * pages that belong to the other range that points to extent X. 3670 * So here we make sure we submit 2 bios, one for the first 3671 * range and another one for the third range. Both will target 3672 * the same physical extent from disk, but we can't currently 3673 * make the compressed bio endio callback populate the pages 3674 * for both ranges because each compressed bio is tightly 3675 * coupled with a single extent map, and each range can have 3676 * an extent map with a different offset value relative to the 3677 * uncompressed data of our extent and different lengths. This 3678 * is a corner case so we prioritize correctness over 3679 * non-optimal behavior (submitting 2 bios for the same extent). 3680 */ 3681 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3682 prev_em_start && *prev_em_start != (u64)-1 && 3683 *prev_em_start != em->start) 3684 force_bio_submit = true; 3685 3686 if (prev_em_start) 3687 *prev_em_start = em->start; 3688 3689 free_extent_map(em); 3690 em = NULL; 3691 3692 /* we've found a hole, just zero and go on */ 3693 if (block_start == EXTENT_MAP_HOLE) { 3694 struct extent_state *cached = NULL; 3695 3696 memzero_page(page, pg_offset, iosize); 3697 flush_dcache_page(page); 3698 3699 set_extent_uptodate(tree, cur, cur + iosize - 1, 3700 &cached, GFP_NOFS); 3701 unlock_extent_cached(tree, cur, 3702 cur + iosize - 1, &cached); 3703 end_page_read(page, true, cur, iosize); 3704 cur = cur + iosize; 3705 pg_offset += iosize; 3706 continue; 3707 } 3708 /* the get_extent function already copied into the page */ 3709 if (test_range_bit(tree, cur, cur_end, 3710 EXTENT_UPTODATE, 1, NULL)) { 3711 unlock_extent(tree, cur, cur + iosize - 1); 3712 end_page_read(page, true, cur, iosize); 3713 cur = cur + iosize; 3714 pg_offset += iosize; 3715 continue; 3716 } 3717 /* we have an inline extent but it didn't get marked up 3718 * to date. Error out 3719 */ 3720 if (block_start == EXTENT_MAP_INLINE) { 3721 unlock_extent(tree, cur, cur + iosize - 1); 3722 end_page_read(page, false, cur, iosize); 3723 cur = cur + iosize; 3724 pg_offset += iosize; 3725 continue; 3726 } 3727 3728 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3729 bio_ctrl, page, disk_bytenr, iosize, 3730 pg_offset, 3731 end_bio_extent_readpage, 0, 3732 this_bio_flag, 3733 force_bio_submit); 3734 if (!ret) { 3735 nr++; 3736 } else { 3737 unlock_extent(tree, cur, cur + iosize - 1); 3738 end_page_read(page, false, cur, iosize); 3739 goto out; 3740 } 3741 cur = cur + iosize; 3742 pg_offset += iosize; 3743 } 3744 out: 3745 return ret; 3746 } 3747 3748 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3749 u64 start, u64 end, 3750 struct extent_map **em_cached, 3751 struct btrfs_bio_ctrl *bio_ctrl, 3752 u64 *prev_em_start) 3753 { 3754 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3755 int index; 3756 3757 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3758 3759 for (index = 0; index < nr_pages; index++) { 3760 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3761 REQ_RAHEAD, prev_em_start); 3762 put_page(pages[index]); 3763 } 3764 } 3765 3766 static void update_nr_written(struct writeback_control *wbc, 3767 unsigned long nr_written) 3768 { 3769 wbc->nr_to_write -= nr_written; 3770 } 3771 3772 /* 3773 * helper for __extent_writepage, doing all of the delayed allocation setup. 3774 * 3775 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3776 * to write the page (copy into inline extent). In this case the IO has 3777 * been started and the page is already unlocked. 3778 * 3779 * This returns 0 if all went well (page still locked) 3780 * This returns < 0 if there were errors (page still locked) 3781 */ 3782 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3783 struct page *page, struct writeback_control *wbc) 3784 { 3785 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3786 u64 delalloc_start = page_offset(page); 3787 u64 delalloc_to_write = 0; 3788 /* How many pages are started by btrfs_run_delalloc_range() */ 3789 unsigned long nr_written = 0; 3790 int ret; 3791 int page_started = 0; 3792 3793 while (delalloc_start < page_end) { 3794 u64 delalloc_end = page_end; 3795 bool found; 3796 3797 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3798 &delalloc_start, 3799 &delalloc_end); 3800 if (!found) { 3801 delalloc_start = delalloc_end + 1; 3802 continue; 3803 } 3804 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3805 delalloc_end, &page_started, &nr_written, wbc); 3806 if (ret) { 3807 btrfs_page_set_error(inode->root->fs_info, page, 3808 page_offset(page), PAGE_SIZE); 3809 return ret; 3810 } 3811 /* 3812 * delalloc_end is already one less than the total length, so 3813 * we don't subtract one from PAGE_SIZE 3814 */ 3815 delalloc_to_write += (delalloc_end - delalloc_start + 3816 PAGE_SIZE) >> PAGE_SHIFT; 3817 delalloc_start = delalloc_end + 1; 3818 } 3819 if (wbc->nr_to_write < delalloc_to_write) { 3820 int thresh = 8192; 3821 3822 if (delalloc_to_write < thresh * 2) 3823 thresh = delalloc_to_write; 3824 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3825 thresh); 3826 } 3827 3828 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3829 if (page_started) { 3830 /* 3831 * We've unlocked the page, so we can't update the mapping's 3832 * writeback index, just update nr_to_write. 3833 */ 3834 wbc->nr_to_write -= nr_written; 3835 return 1; 3836 } 3837 3838 return 0; 3839 } 3840 3841 /* 3842 * Find the first byte we need to write. 3843 * 3844 * For subpage, one page can contain several sectors, and 3845 * __extent_writepage_io() will just grab all extent maps in the page 3846 * range and try to submit all non-inline/non-compressed extents. 3847 * 3848 * This is a big problem for subpage, we shouldn't re-submit already written 3849 * data at all. 3850 * This function will lookup subpage dirty bit to find which range we really 3851 * need to submit. 3852 * 3853 * Return the next dirty range in [@start, @end). 3854 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3855 */ 3856 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3857 struct page *page, u64 *start, u64 *end) 3858 { 3859 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3860 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3861 u64 orig_start = *start; 3862 /* Declare as unsigned long so we can use bitmap ops */ 3863 unsigned long flags; 3864 int range_start_bit; 3865 int range_end_bit; 3866 3867 /* 3868 * For regular sector size == page size case, since one page only 3869 * contains one sector, we return the page offset directly. 3870 */ 3871 if (fs_info->sectorsize == PAGE_SIZE) { 3872 *start = page_offset(page); 3873 *end = page_offset(page) + PAGE_SIZE; 3874 return; 3875 } 3876 3877 range_start_bit = spi->dirty_offset + 3878 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3879 3880 /* We should have the page locked, but just in case */ 3881 spin_lock_irqsave(&subpage->lock, flags); 3882 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3883 spi->dirty_offset + spi->bitmap_nr_bits); 3884 spin_unlock_irqrestore(&subpage->lock, flags); 3885 3886 range_start_bit -= spi->dirty_offset; 3887 range_end_bit -= spi->dirty_offset; 3888 3889 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3890 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3891 } 3892 3893 /* 3894 * helper for __extent_writepage. This calls the writepage start hooks, 3895 * and does the loop to map the page into extents and bios. 3896 * 3897 * We return 1 if the IO is started and the page is unlocked, 3898 * 0 if all went well (page still locked) 3899 * < 0 if there were errors (page still locked) 3900 */ 3901 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3902 struct page *page, 3903 struct writeback_control *wbc, 3904 struct extent_page_data *epd, 3905 loff_t i_size, 3906 int *nr_ret) 3907 { 3908 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3909 u64 cur = page_offset(page); 3910 u64 end = cur + PAGE_SIZE - 1; 3911 u64 extent_offset; 3912 u64 block_start; 3913 struct extent_map *em; 3914 int ret = 0; 3915 int nr = 0; 3916 u32 opf = REQ_OP_WRITE; 3917 const unsigned int write_flags = wbc_to_write_flags(wbc); 3918 bool compressed; 3919 3920 ret = btrfs_writepage_cow_fixup(page); 3921 if (ret) { 3922 /* Fixup worker will requeue */ 3923 redirty_page_for_writepage(wbc, page); 3924 unlock_page(page); 3925 return 1; 3926 } 3927 3928 /* 3929 * we don't want to touch the inode after unlocking the page, 3930 * so we update the mapping writeback index now 3931 */ 3932 update_nr_written(wbc, 1); 3933 3934 while (cur <= end) { 3935 u64 disk_bytenr; 3936 u64 em_end; 3937 u64 dirty_range_start = cur; 3938 u64 dirty_range_end; 3939 u32 iosize; 3940 3941 if (cur >= i_size) { 3942 btrfs_writepage_endio_finish_ordered(inode, page, cur, 3943 end, true); 3944 /* 3945 * This range is beyond i_size, thus we don't need to 3946 * bother writing back. 3947 * But we still need to clear the dirty subpage bit, or 3948 * the next time the page gets dirtied, we will try to 3949 * writeback the sectors with subpage dirty bits, 3950 * causing writeback without ordered extent. 3951 */ 3952 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 3953 break; 3954 } 3955 3956 find_next_dirty_byte(fs_info, page, &dirty_range_start, 3957 &dirty_range_end); 3958 if (cur < dirty_range_start) { 3959 cur = dirty_range_start; 3960 continue; 3961 } 3962 3963 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 3964 if (IS_ERR_OR_NULL(em)) { 3965 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 3966 ret = PTR_ERR_OR_ZERO(em); 3967 break; 3968 } 3969 3970 extent_offset = cur - em->start; 3971 em_end = extent_map_end(em); 3972 ASSERT(cur <= em_end); 3973 ASSERT(cur < end); 3974 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 3975 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 3976 block_start = em->block_start; 3977 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3978 disk_bytenr = em->block_start + extent_offset; 3979 3980 /* 3981 * Note that em_end from extent_map_end() and dirty_range_end from 3982 * find_next_dirty_byte() are all exclusive 3983 */ 3984 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 3985 3986 if (btrfs_use_zone_append(inode, em->block_start)) 3987 opf = REQ_OP_ZONE_APPEND; 3988 3989 free_extent_map(em); 3990 em = NULL; 3991 3992 /* 3993 * compressed and inline extents are written through other 3994 * paths in the FS 3995 */ 3996 if (compressed || block_start == EXTENT_MAP_HOLE || 3997 block_start == EXTENT_MAP_INLINE) { 3998 if (compressed) 3999 nr++; 4000 else 4001 btrfs_writepage_endio_finish_ordered(inode, 4002 page, cur, cur + iosize - 1, true); 4003 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4004 cur += iosize; 4005 continue; 4006 } 4007 4008 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4009 if (!PageWriteback(page)) { 4010 btrfs_err(inode->root->fs_info, 4011 "page %lu not writeback, cur %llu end %llu", 4012 page->index, cur, end); 4013 } 4014 4015 /* 4016 * Although the PageDirty bit is cleared before entering this 4017 * function, subpage dirty bit is not cleared. 4018 * So clear subpage dirty bit here so next time we won't submit 4019 * page for range already written to disk. 4020 */ 4021 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4022 4023 ret = submit_extent_page(opf | write_flags, wbc, 4024 &epd->bio_ctrl, page, 4025 disk_bytenr, iosize, 4026 cur - page_offset(page), 4027 end_bio_extent_writepage, 4028 0, 0, false); 4029 if (ret) { 4030 btrfs_page_set_error(fs_info, page, cur, iosize); 4031 if (PageWriteback(page)) 4032 btrfs_page_clear_writeback(fs_info, page, cur, 4033 iosize); 4034 } 4035 4036 cur += iosize; 4037 nr++; 4038 } 4039 /* 4040 * If we finish without problem, we should not only clear page dirty, 4041 * but also empty subpage dirty bits 4042 */ 4043 if (!ret) 4044 btrfs_page_assert_not_dirty(fs_info, page); 4045 *nr_ret = nr; 4046 return ret; 4047 } 4048 4049 /* 4050 * the writepage semantics are similar to regular writepage. extent 4051 * records are inserted to lock ranges in the tree, and as dirty areas 4052 * are found, they are marked writeback. Then the lock bits are removed 4053 * and the end_io handler clears the writeback ranges 4054 * 4055 * Return 0 if everything goes well. 4056 * Return <0 for error. 4057 */ 4058 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4059 struct extent_page_data *epd) 4060 { 4061 struct inode *inode = page->mapping->host; 4062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4063 const u64 page_start = page_offset(page); 4064 const u64 page_end = page_start + PAGE_SIZE - 1; 4065 int ret; 4066 int nr = 0; 4067 size_t pg_offset; 4068 loff_t i_size = i_size_read(inode); 4069 unsigned long end_index = i_size >> PAGE_SHIFT; 4070 4071 trace___extent_writepage(page, inode, wbc); 4072 4073 WARN_ON(!PageLocked(page)); 4074 4075 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4076 page_offset(page), PAGE_SIZE); 4077 4078 pg_offset = offset_in_page(i_size); 4079 if (page->index > end_index || 4080 (page->index == end_index && !pg_offset)) { 4081 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 4082 unlock_page(page); 4083 return 0; 4084 } 4085 4086 if (page->index == end_index) { 4087 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4088 flush_dcache_page(page); 4089 } 4090 4091 ret = set_page_extent_mapped(page); 4092 if (ret < 0) { 4093 SetPageError(page); 4094 goto done; 4095 } 4096 4097 if (!epd->extent_locked) { 4098 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4099 if (ret == 1) 4100 return 0; 4101 if (ret) 4102 goto done; 4103 } 4104 4105 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4106 &nr); 4107 if (ret == 1) 4108 return 0; 4109 4110 done: 4111 if (nr == 0) { 4112 /* make sure the mapping tag for page dirty gets cleared */ 4113 set_page_writeback(page); 4114 end_page_writeback(page); 4115 } 4116 /* 4117 * Here we used to have a check for PageError() and then set @ret and 4118 * call end_extent_writepage(). 4119 * 4120 * But in fact setting @ret here will cause different error paths 4121 * between subpage and regular sectorsize. 4122 * 4123 * For regular page size, we never submit current page, but only add 4124 * current page to current bio. 4125 * The bio submission can only happen in next page. 4126 * Thus if we hit the PageError() branch, @ret is already set to 4127 * non-zero value and will not get updated for regular sectorsize. 4128 * 4129 * But for subpage case, it's possible we submit part of current page, 4130 * thus can get PageError() set by submitted bio of the same page, 4131 * while our @ret is still 0. 4132 * 4133 * So here we unify the behavior and don't set @ret. 4134 * Error can still be properly passed to higher layer as page will 4135 * be set error, here we just don't handle the IO failure. 4136 * 4137 * NOTE: This is just a hotfix for subpage. 4138 * The root fix will be properly ending ordered extent when we hit 4139 * an error during writeback. 4140 * 4141 * But that needs a bigger refactoring, as we not only need to grab the 4142 * submitted OE, but also need to know exactly at which bytenr we hit 4143 * the error. 4144 * Currently the full page based __extent_writepage_io() is not 4145 * capable of that. 4146 */ 4147 if (PageError(page)) 4148 end_extent_writepage(page, ret, page_start, page_end); 4149 if (epd->extent_locked) { 4150 /* 4151 * If epd->extent_locked, it's from extent_write_locked_range(), 4152 * the page can either be locked by lock_page() or 4153 * process_one_page(). 4154 * Let btrfs_page_unlock_writer() handle both cases. 4155 */ 4156 ASSERT(wbc); 4157 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4158 wbc->range_end + 1 - wbc->range_start); 4159 } else { 4160 unlock_page(page); 4161 } 4162 ASSERT(ret <= 0); 4163 return ret; 4164 } 4165 4166 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4167 { 4168 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4169 TASK_UNINTERRUPTIBLE); 4170 } 4171 4172 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4173 { 4174 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags)) 4175 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len); 4176 4177 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4178 smp_mb__after_atomic(); 4179 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4180 } 4181 4182 /* 4183 * Lock extent buffer status and pages for writeback. 4184 * 4185 * May try to flush write bio if we can't get the lock. 4186 * 4187 * Return 0 if the extent buffer doesn't need to be submitted. 4188 * (E.g. the extent buffer is not dirty) 4189 * Return >0 is the extent buffer is submitted to bio. 4190 * Return <0 if something went wrong, no page is locked. 4191 */ 4192 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4193 struct extent_page_data *epd) 4194 { 4195 struct btrfs_fs_info *fs_info = eb->fs_info; 4196 int i, num_pages, failed_page_nr; 4197 int flush = 0; 4198 int ret = 0; 4199 4200 if (!btrfs_try_tree_write_lock(eb)) { 4201 ret = flush_write_bio(epd); 4202 if (ret < 0) 4203 return ret; 4204 flush = 1; 4205 btrfs_tree_lock(eb); 4206 } 4207 4208 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4209 btrfs_tree_unlock(eb); 4210 if (!epd->sync_io) 4211 return 0; 4212 if (!flush) { 4213 ret = flush_write_bio(epd); 4214 if (ret < 0) 4215 return ret; 4216 flush = 1; 4217 } 4218 while (1) { 4219 wait_on_extent_buffer_writeback(eb); 4220 btrfs_tree_lock(eb); 4221 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4222 break; 4223 btrfs_tree_unlock(eb); 4224 } 4225 } 4226 4227 /* 4228 * We need to do this to prevent races in people who check if the eb is 4229 * under IO since we can end up having no IO bits set for a short period 4230 * of time. 4231 */ 4232 spin_lock(&eb->refs_lock); 4233 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4234 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4235 spin_unlock(&eb->refs_lock); 4236 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4237 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4238 -eb->len, 4239 fs_info->dirty_metadata_batch); 4240 ret = 1; 4241 } else { 4242 spin_unlock(&eb->refs_lock); 4243 } 4244 4245 btrfs_tree_unlock(eb); 4246 4247 /* 4248 * Either we don't need to submit any tree block, or we're submitting 4249 * subpage eb. 4250 * Subpage metadata doesn't use page locking at all, so we can skip 4251 * the page locking. 4252 */ 4253 if (!ret || fs_info->sectorsize < PAGE_SIZE) 4254 return ret; 4255 4256 num_pages = num_extent_pages(eb); 4257 for (i = 0; i < num_pages; i++) { 4258 struct page *p = eb->pages[i]; 4259 4260 if (!trylock_page(p)) { 4261 if (!flush) { 4262 int err; 4263 4264 err = flush_write_bio(epd); 4265 if (err < 0) { 4266 ret = err; 4267 failed_page_nr = i; 4268 goto err_unlock; 4269 } 4270 flush = 1; 4271 } 4272 lock_page(p); 4273 } 4274 } 4275 4276 return ret; 4277 err_unlock: 4278 /* Unlock already locked pages */ 4279 for (i = 0; i < failed_page_nr; i++) 4280 unlock_page(eb->pages[i]); 4281 /* 4282 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it. 4283 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can 4284 * be made and undo everything done before. 4285 */ 4286 btrfs_tree_lock(eb); 4287 spin_lock(&eb->refs_lock); 4288 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4289 end_extent_buffer_writeback(eb); 4290 spin_unlock(&eb->refs_lock); 4291 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len, 4292 fs_info->dirty_metadata_batch); 4293 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4294 btrfs_tree_unlock(eb); 4295 return ret; 4296 } 4297 4298 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4299 { 4300 struct btrfs_fs_info *fs_info = eb->fs_info; 4301 4302 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4303 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4304 return; 4305 4306 /* 4307 * A read may stumble upon this buffer later, make sure that it gets an 4308 * error and knows there was an error. 4309 */ 4310 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4311 4312 /* 4313 * We need to set the mapping with the io error as well because a write 4314 * error will flip the file system readonly, and then syncfs() will 4315 * return a 0 because we are readonly if we don't modify the err seq for 4316 * the superblock. 4317 */ 4318 mapping_set_error(page->mapping, -EIO); 4319 4320 /* 4321 * If we error out, we should add back the dirty_metadata_bytes 4322 * to make it consistent. 4323 */ 4324 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4325 eb->len, fs_info->dirty_metadata_batch); 4326 4327 /* 4328 * If writeback for a btree extent that doesn't belong to a log tree 4329 * failed, increment the counter transaction->eb_write_errors. 4330 * We do this because while the transaction is running and before it's 4331 * committing (when we call filemap_fdata[write|wait]_range against 4332 * the btree inode), we might have 4333 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4334 * returns an error or an error happens during writeback, when we're 4335 * committing the transaction we wouldn't know about it, since the pages 4336 * can be no longer dirty nor marked anymore for writeback (if a 4337 * subsequent modification to the extent buffer didn't happen before the 4338 * transaction commit), which makes filemap_fdata[write|wait]_range not 4339 * able to find the pages tagged with SetPageError at transaction 4340 * commit time. So if this happens we must abort the transaction, 4341 * otherwise we commit a super block with btree roots that point to 4342 * btree nodes/leafs whose content on disk is invalid - either garbage 4343 * or the content of some node/leaf from a past generation that got 4344 * cowed or deleted and is no longer valid. 4345 * 4346 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4347 * not be enough - we need to distinguish between log tree extents vs 4348 * non-log tree extents, and the next filemap_fdatawait_range() call 4349 * will catch and clear such errors in the mapping - and that call might 4350 * be from a log sync and not from a transaction commit. Also, checking 4351 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4352 * not done and would not be reliable - the eb might have been released 4353 * from memory and reading it back again means that flag would not be 4354 * set (since it's a runtime flag, not persisted on disk). 4355 * 4356 * Using the flags below in the btree inode also makes us achieve the 4357 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4358 * writeback for all dirty pages and before filemap_fdatawait_range() 4359 * is called, the writeback for all dirty pages had already finished 4360 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4361 * filemap_fdatawait_range() would return success, as it could not know 4362 * that writeback errors happened (the pages were no longer tagged for 4363 * writeback). 4364 */ 4365 switch (eb->log_index) { 4366 case -1: 4367 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4368 break; 4369 case 0: 4370 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4371 break; 4372 case 1: 4373 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4374 break; 4375 default: 4376 BUG(); /* unexpected, logic error */ 4377 } 4378 } 4379 4380 /* 4381 * The endio specific version which won't touch any unsafe spinlock in endio 4382 * context. 4383 */ 4384 static struct extent_buffer *find_extent_buffer_nolock( 4385 struct btrfs_fs_info *fs_info, u64 start) 4386 { 4387 struct extent_buffer *eb; 4388 4389 rcu_read_lock(); 4390 eb = radix_tree_lookup(&fs_info->buffer_radix, 4391 start >> fs_info->sectorsize_bits); 4392 if (eb && atomic_inc_not_zero(&eb->refs)) { 4393 rcu_read_unlock(); 4394 return eb; 4395 } 4396 rcu_read_unlock(); 4397 return NULL; 4398 } 4399 4400 /* 4401 * The endio function for subpage extent buffer write. 4402 * 4403 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4404 * after all extent buffers in the page has finished their writeback. 4405 */ 4406 static void end_bio_subpage_eb_writepage(struct bio *bio) 4407 { 4408 struct btrfs_fs_info *fs_info; 4409 struct bio_vec *bvec; 4410 struct bvec_iter_all iter_all; 4411 4412 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4413 ASSERT(fs_info->sectorsize < PAGE_SIZE); 4414 4415 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4416 bio_for_each_segment_all(bvec, bio, iter_all) { 4417 struct page *page = bvec->bv_page; 4418 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4419 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4420 u64 cur_bytenr = bvec_start; 4421 4422 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4423 4424 /* Iterate through all extent buffers in the range */ 4425 while (cur_bytenr <= bvec_end) { 4426 struct extent_buffer *eb; 4427 int done; 4428 4429 /* 4430 * Here we can't use find_extent_buffer(), as it may 4431 * try to lock eb->refs_lock, which is not safe in endio 4432 * context. 4433 */ 4434 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4435 ASSERT(eb); 4436 4437 cur_bytenr = eb->start + eb->len; 4438 4439 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4440 done = atomic_dec_and_test(&eb->io_pages); 4441 ASSERT(done); 4442 4443 if (bio->bi_status || 4444 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4445 ClearPageUptodate(page); 4446 set_btree_ioerr(page, eb); 4447 } 4448 4449 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4450 eb->len); 4451 end_extent_buffer_writeback(eb); 4452 /* 4453 * free_extent_buffer() will grab spinlock which is not 4454 * safe in endio context. Thus here we manually dec 4455 * the ref. 4456 */ 4457 atomic_dec(&eb->refs); 4458 } 4459 } 4460 bio_put(bio); 4461 } 4462 4463 static void end_bio_extent_buffer_writepage(struct bio *bio) 4464 { 4465 struct bio_vec *bvec; 4466 struct extent_buffer *eb; 4467 int done; 4468 struct bvec_iter_all iter_all; 4469 4470 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4471 bio_for_each_segment_all(bvec, bio, iter_all) { 4472 struct page *page = bvec->bv_page; 4473 4474 eb = (struct extent_buffer *)page->private; 4475 BUG_ON(!eb); 4476 done = atomic_dec_and_test(&eb->io_pages); 4477 4478 if (bio->bi_status || 4479 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4480 ClearPageUptodate(page); 4481 set_btree_ioerr(page, eb); 4482 } 4483 4484 end_page_writeback(page); 4485 4486 if (!done) 4487 continue; 4488 4489 end_extent_buffer_writeback(eb); 4490 } 4491 4492 bio_put(bio); 4493 } 4494 4495 static void prepare_eb_write(struct extent_buffer *eb) 4496 { 4497 u32 nritems; 4498 unsigned long start; 4499 unsigned long end; 4500 4501 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4502 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4503 4504 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4505 nritems = btrfs_header_nritems(eb); 4506 if (btrfs_header_level(eb) > 0) { 4507 end = btrfs_node_key_ptr_offset(nritems); 4508 memzero_extent_buffer(eb, end, eb->len - end); 4509 } else { 4510 /* 4511 * Leaf: 4512 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4513 */ 4514 start = btrfs_item_nr_offset(nritems); 4515 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4516 memzero_extent_buffer(eb, start, end - start); 4517 } 4518 } 4519 4520 /* 4521 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4522 * Page locking is only utilized at minimum to keep the VMM code happy. 4523 */ 4524 static int write_one_subpage_eb(struct extent_buffer *eb, 4525 struct writeback_control *wbc, 4526 struct extent_page_data *epd) 4527 { 4528 struct btrfs_fs_info *fs_info = eb->fs_info; 4529 struct page *page = eb->pages[0]; 4530 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4531 bool no_dirty_ebs = false; 4532 int ret; 4533 4534 prepare_eb_write(eb); 4535 4536 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4537 lock_page(page); 4538 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4539 4540 /* Check if this is the last dirty bit to update nr_written */ 4541 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4542 eb->start, eb->len); 4543 if (no_dirty_ebs) 4544 clear_page_dirty_for_io(page); 4545 4546 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4547 &epd->bio_ctrl, page, eb->start, eb->len, 4548 eb->start - page_offset(page), 4549 end_bio_subpage_eb_writepage, 0, 0, false); 4550 if (ret) { 4551 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4552 set_btree_ioerr(page, eb); 4553 unlock_page(page); 4554 4555 if (atomic_dec_and_test(&eb->io_pages)) 4556 end_extent_buffer_writeback(eb); 4557 return -EIO; 4558 } 4559 unlock_page(page); 4560 /* 4561 * Submission finished without problem, if no range of the page is 4562 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4563 */ 4564 if (no_dirty_ebs) 4565 update_nr_written(wbc, 1); 4566 return ret; 4567 } 4568 4569 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4570 struct writeback_control *wbc, 4571 struct extent_page_data *epd) 4572 { 4573 u64 disk_bytenr = eb->start; 4574 int i, num_pages; 4575 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4576 int ret = 0; 4577 4578 prepare_eb_write(eb); 4579 4580 num_pages = num_extent_pages(eb); 4581 for (i = 0; i < num_pages; i++) { 4582 struct page *p = eb->pages[i]; 4583 4584 clear_page_dirty_for_io(p); 4585 set_page_writeback(p); 4586 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4587 &epd->bio_ctrl, p, disk_bytenr, 4588 PAGE_SIZE, 0, 4589 end_bio_extent_buffer_writepage, 4590 0, 0, false); 4591 if (ret) { 4592 set_btree_ioerr(p, eb); 4593 if (PageWriteback(p)) 4594 end_page_writeback(p); 4595 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4596 end_extent_buffer_writeback(eb); 4597 ret = -EIO; 4598 break; 4599 } 4600 disk_bytenr += PAGE_SIZE; 4601 update_nr_written(wbc, 1); 4602 unlock_page(p); 4603 } 4604 4605 if (unlikely(ret)) { 4606 for (; i < num_pages; i++) { 4607 struct page *p = eb->pages[i]; 4608 clear_page_dirty_for_io(p); 4609 unlock_page(p); 4610 } 4611 } 4612 4613 return ret; 4614 } 4615 4616 /* 4617 * Submit one subpage btree page. 4618 * 4619 * The main difference to submit_eb_page() is: 4620 * - Page locking 4621 * For subpage, we don't rely on page locking at all. 4622 * 4623 * - Flush write bio 4624 * We only flush bio if we may be unable to fit current extent buffers into 4625 * current bio. 4626 * 4627 * Return >=0 for the number of submitted extent buffers. 4628 * Return <0 for fatal error. 4629 */ 4630 static int submit_eb_subpage(struct page *page, 4631 struct writeback_control *wbc, 4632 struct extent_page_data *epd) 4633 { 4634 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4635 int submitted = 0; 4636 u64 page_start = page_offset(page); 4637 int bit_start = 0; 4638 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4639 int ret; 4640 4641 /* Lock and write each dirty extent buffers in the range */ 4642 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4643 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4644 struct extent_buffer *eb; 4645 unsigned long flags; 4646 u64 start; 4647 4648 /* 4649 * Take private lock to ensure the subpage won't be detached 4650 * in the meantime. 4651 */ 4652 spin_lock(&page->mapping->private_lock); 4653 if (!PagePrivate(page)) { 4654 spin_unlock(&page->mapping->private_lock); 4655 break; 4656 } 4657 spin_lock_irqsave(&subpage->lock, flags); 4658 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4659 subpage->bitmaps)) { 4660 spin_unlock_irqrestore(&subpage->lock, flags); 4661 spin_unlock(&page->mapping->private_lock); 4662 bit_start++; 4663 continue; 4664 } 4665 4666 start = page_start + bit_start * fs_info->sectorsize; 4667 bit_start += sectors_per_node; 4668 4669 /* 4670 * Here we just want to grab the eb without touching extra 4671 * spin locks, so call find_extent_buffer_nolock(). 4672 */ 4673 eb = find_extent_buffer_nolock(fs_info, start); 4674 spin_unlock_irqrestore(&subpage->lock, flags); 4675 spin_unlock(&page->mapping->private_lock); 4676 4677 /* 4678 * The eb has already reached 0 refs thus find_extent_buffer() 4679 * doesn't return it. We don't need to write back such eb 4680 * anyway. 4681 */ 4682 if (!eb) 4683 continue; 4684 4685 ret = lock_extent_buffer_for_io(eb, epd); 4686 if (ret == 0) { 4687 free_extent_buffer(eb); 4688 continue; 4689 } 4690 if (ret < 0) { 4691 free_extent_buffer(eb); 4692 goto cleanup; 4693 } 4694 ret = write_one_subpage_eb(eb, wbc, epd); 4695 free_extent_buffer(eb); 4696 if (ret < 0) 4697 goto cleanup; 4698 submitted++; 4699 } 4700 return submitted; 4701 4702 cleanup: 4703 /* We hit error, end bio for the submitted extent buffers */ 4704 end_write_bio(epd, ret); 4705 return ret; 4706 } 4707 4708 /* 4709 * Submit all page(s) of one extent buffer. 4710 * 4711 * @page: the page of one extent buffer 4712 * @eb_context: to determine if we need to submit this page, if current page 4713 * belongs to this eb, we don't need to submit 4714 * 4715 * The caller should pass each page in their bytenr order, and here we use 4716 * @eb_context to determine if we have submitted pages of one extent buffer. 4717 * 4718 * If we have, we just skip until we hit a new page that doesn't belong to 4719 * current @eb_context. 4720 * 4721 * If not, we submit all the page(s) of the extent buffer. 4722 * 4723 * Return >0 if we have submitted the extent buffer successfully. 4724 * Return 0 if we don't need to submit the page, as it's already submitted by 4725 * previous call. 4726 * Return <0 for fatal error. 4727 */ 4728 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4729 struct extent_page_data *epd, 4730 struct extent_buffer **eb_context) 4731 { 4732 struct address_space *mapping = page->mapping; 4733 struct btrfs_block_group *cache = NULL; 4734 struct extent_buffer *eb; 4735 int ret; 4736 4737 if (!PagePrivate(page)) 4738 return 0; 4739 4740 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 4741 return submit_eb_subpage(page, wbc, epd); 4742 4743 spin_lock(&mapping->private_lock); 4744 if (!PagePrivate(page)) { 4745 spin_unlock(&mapping->private_lock); 4746 return 0; 4747 } 4748 4749 eb = (struct extent_buffer *)page->private; 4750 4751 /* 4752 * Shouldn't happen and normally this would be a BUG_ON but no point 4753 * crashing the machine for something we can survive anyway. 4754 */ 4755 if (WARN_ON(!eb)) { 4756 spin_unlock(&mapping->private_lock); 4757 return 0; 4758 } 4759 4760 if (eb == *eb_context) { 4761 spin_unlock(&mapping->private_lock); 4762 return 0; 4763 } 4764 ret = atomic_inc_not_zero(&eb->refs); 4765 spin_unlock(&mapping->private_lock); 4766 if (!ret) 4767 return 0; 4768 4769 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4770 /* 4771 * If for_sync, this hole will be filled with 4772 * trasnsaction commit. 4773 */ 4774 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4775 ret = -EAGAIN; 4776 else 4777 ret = 0; 4778 free_extent_buffer(eb); 4779 return ret; 4780 } 4781 4782 *eb_context = eb; 4783 4784 ret = lock_extent_buffer_for_io(eb, epd); 4785 if (ret <= 0) { 4786 btrfs_revert_meta_write_pointer(cache, eb); 4787 if (cache) 4788 btrfs_put_block_group(cache); 4789 free_extent_buffer(eb); 4790 return ret; 4791 } 4792 if (cache) { 4793 /* Impiles write in zoned mode */ 4794 btrfs_put_block_group(cache); 4795 /* Mark the last eb in a block group */ 4796 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity) 4797 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags); 4798 } 4799 ret = write_one_eb(eb, wbc, epd); 4800 free_extent_buffer(eb); 4801 if (ret < 0) 4802 return ret; 4803 return 1; 4804 } 4805 4806 int btree_write_cache_pages(struct address_space *mapping, 4807 struct writeback_control *wbc) 4808 { 4809 struct extent_buffer *eb_context = NULL; 4810 struct extent_page_data epd = { 4811 .bio_ctrl = { 0 }, 4812 .extent_locked = 0, 4813 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4814 }; 4815 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4816 int ret = 0; 4817 int done = 0; 4818 int nr_to_write_done = 0; 4819 struct pagevec pvec; 4820 int nr_pages; 4821 pgoff_t index; 4822 pgoff_t end; /* Inclusive */ 4823 int scanned = 0; 4824 xa_mark_t tag; 4825 4826 pagevec_init(&pvec); 4827 if (wbc->range_cyclic) { 4828 index = mapping->writeback_index; /* Start from prev offset */ 4829 end = -1; 4830 /* 4831 * Start from the beginning does not need to cycle over the 4832 * range, mark it as scanned. 4833 */ 4834 scanned = (index == 0); 4835 } else { 4836 index = wbc->range_start >> PAGE_SHIFT; 4837 end = wbc->range_end >> PAGE_SHIFT; 4838 scanned = 1; 4839 } 4840 if (wbc->sync_mode == WB_SYNC_ALL) 4841 tag = PAGECACHE_TAG_TOWRITE; 4842 else 4843 tag = PAGECACHE_TAG_DIRTY; 4844 btrfs_zoned_meta_io_lock(fs_info); 4845 retry: 4846 if (wbc->sync_mode == WB_SYNC_ALL) 4847 tag_pages_for_writeback(mapping, index, end); 4848 while (!done && !nr_to_write_done && (index <= end) && 4849 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4850 tag))) { 4851 unsigned i; 4852 4853 for (i = 0; i < nr_pages; i++) { 4854 struct page *page = pvec.pages[i]; 4855 4856 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4857 if (ret == 0) 4858 continue; 4859 if (ret < 0) { 4860 done = 1; 4861 break; 4862 } 4863 4864 /* 4865 * the filesystem may choose to bump up nr_to_write. 4866 * We have to make sure to honor the new nr_to_write 4867 * at any time 4868 */ 4869 nr_to_write_done = wbc->nr_to_write <= 0; 4870 } 4871 pagevec_release(&pvec); 4872 cond_resched(); 4873 } 4874 if (!scanned && !done) { 4875 /* 4876 * We hit the last page and there is more work to be done: wrap 4877 * back to the start of the file 4878 */ 4879 scanned = 1; 4880 index = 0; 4881 goto retry; 4882 } 4883 if (ret < 0) { 4884 end_write_bio(&epd, ret); 4885 goto out; 4886 } 4887 /* 4888 * If something went wrong, don't allow any metadata write bio to be 4889 * submitted. 4890 * 4891 * This would prevent use-after-free if we had dirty pages not 4892 * cleaned up, which can still happen by fuzzed images. 4893 * 4894 * - Bad extent tree 4895 * Allowing existing tree block to be allocated for other trees. 4896 * 4897 * - Log tree operations 4898 * Exiting tree blocks get allocated to log tree, bumps its 4899 * generation, then get cleaned in tree re-balance. 4900 * Such tree block will not be written back, since it's clean, 4901 * thus no WRITTEN flag set. 4902 * And after log writes back, this tree block is not traced by 4903 * any dirty extent_io_tree. 4904 * 4905 * - Offending tree block gets re-dirtied from its original owner 4906 * Since it has bumped generation, no WRITTEN flag, it can be 4907 * reused without COWing. This tree block will not be traced 4908 * by btrfs_transaction::dirty_pages. 4909 * 4910 * Now such dirty tree block will not be cleaned by any dirty 4911 * extent io tree. Thus we don't want to submit such wild eb 4912 * if the fs already has error. 4913 */ 4914 if (!BTRFS_FS_ERROR(fs_info)) { 4915 ret = flush_write_bio(&epd); 4916 } else { 4917 ret = -EROFS; 4918 end_write_bio(&epd, ret); 4919 } 4920 out: 4921 btrfs_zoned_meta_io_unlock(fs_info); 4922 return ret; 4923 } 4924 4925 /** 4926 * Walk the list of dirty pages of the given address space and write all of them. 4927 * 4928 * @mapping: address space structure to write 4929 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4930 * @epd: holds context for the write, namely the bio 4931 * 4932 * If a page is already under I/O, write_cache_pages() skips it, even 4933 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4934 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4935 * and msync() need to guarantee that all the data which was dirty at the time 4936 * the call was made get new I/O started against them. If wbc->sync_mode is 4937 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4938 * existing IO to complete. 4939 */ 4940 static int extent_write_cache_pages(struct address_space *mapping, 4941 struct writeback_control *wbc, 4942 struct extent_page_data *epd) 4943 { 4944 struct inode *inode = mapping->host; 4945 int ret = 0; 4946 int done = 0; 4947 int nr_to_write_done = 0; 4948 struct pagevec pvec; 4949 int nr_pages; 4950 pgoff_t index; 4951 pgoff_t end; /* Inclusive */ 4952 pgoff_t done_index; 4953 int range_whole = 0; 4954 int scanned = 0; 4955 xa_mark_t tag; 4956 4957 /* 4958 * We have to hold onto the inode so that ordered extents can do their 4959 * work when the IO finishes. The alternative to this is failing to add 4960 * an ordered extent if the igrab() fails there and that is a huge pain 4961 * to deal with, so instead just hold onto the inode throughout the 4962 * writepages operation. If it fails here we are freeing up the inode 4963 * anyway and we'd rather not waste our time writing out stuff that is 4964 * going to be truncated anyway. 4965 */ 4966 if (!igrab(inode)) 4967 return 0; 4968 4969 pagevec_init(&pvec); 4970 if (wbc->range_cyclic) { 4971 index = mapping->writeback_index; /* Start from prev offset */ 4972 end = -1; 4973 /* 4974 * Start from the beginning does not need to cycle over the 4975 * range, mark it as scanned. 4976 */ 4977 scanned = (index == 0); 4978 } else { 4979 index = wbc->range_start >> PAGE_SHIFT; 4980 end = wbc->range_end >> PAGE_SHIFT; 4981 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 4982 range_whole = 1; 4983 scanned = 1; 4984 } 4985 4986 /* 4987 * We do the tagged writepage as long as the snapshot flush bit is set 4988 * and we are the first one who do the filemap_flush() on this inode. 4989 * 4990 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 4991 * not race in and drop the bit. 4992 */ 4993 if (range_whole && wbc->nr_to_write == LONG_MAX && 4994 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 4995 &BTRFS_I(inode)->runtime_flags)) 4996 wbc->tagged_writepages = 1; 4997 4998 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 4999 tag = PAGECACHE_TAG_TOWRITE; 5000 else 5001 tag = PAGECACHE_TAG_DIRTY; 5002 retry: 5003 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5004 tag_pages_for_writeback(mapping, index, end); 5005 done_index = index; 5006 while (!done && !nr_to_write_done && (index <= end) && 5007 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5008 &index, end, tag))) { 5009 unsigned i; 5010 5011 for (i = 0; i < nr_pages; i++) { 5012 struct page *page = pvec.pages[i]; 5013 5014 done_index = page->index + 1; 5015 /* 5016 * At this point we hold neither the i_pages lock nor 5017 * the page lock: the page may be truncated or 5018 * invalidated (changing page->mapping to NULL), 5019 * or even swizzled back from swapper_space to 5020 * tmpfs file mapping 5021 */ 5022 if (!trylock_page(page)) { 5023 ret = flush_write_bio(epd); 5024 BUG_ON(ret < 0); 5025 lock_page(page); 5026 } 5027 5028 if (unlikely(page->mapping != mapping)) { 5029 unlock_page(page); 5030 continue; 5031 } 5032 5033 if (wbc->sync_mode != WB_SYNC_NONE) { 5034 if (PageWriteback(page)) { 5035 ret = flush_write_bio(epd); 5036 BUG_ON(ret < 0); 5037 } 5038 wait_on_page_writeback(page); 5039 } 5040 5041 if (PageWriteback(page) || 5042 !clear_page_dirty_for_io(page)) { 5043 unlock_page(page); 5044 continue; 5045 } 5046 5047 ret = __extent_writepage(page, wbc, epd); 5048 if (ret < 0) { 5049 done = 1; 5050 break; 5051 } 5052 5053 /* 5054 * the filesystem may choose to bump up nr_to_write. 5055 * We have to make sure to honor the new nr_to_write 5056 * at any time 5057 */ 5058 nr_to_write_done = wbc->nr_to_write <= 0; 5059 } 5060 pagevec_release(&pvec); 5061 cond_resched(); 5062 } 5063 if (!scanned && !done) { 5064 /* 5065 * We hit the last page and there is more work to be done: wrap 5066 * back to the start of the file 5067 */ 5068 scanned = 1; 5069 index = 0; 5070 5071 /* 5072 * If we're looping we could run into a page that is locked by a 5073 * writer and that writer could be waiting on writeback for a 5074 * page in our current bio, and thus deadlock, so flush the 5075 * write bio here. 5076 */ 5077 ret = flush_write_bio(epd); 5078 if (!ret) 5079 goto retry; 5080 } 5081 5082 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5083 mapping->writeback_index = done_index; 5084 5085 btrfs_add_delayed_iput(inode); 5086 return ret; 5087 } 5088 5089 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5090 { 5091 int ret; 5092 struct extent_page_data epd = { 5093 .bio_ctrl = { 0 }, 5094 .extent_locked = 0, 5095 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5096 }; 5097 5098 ret = __extent_writepage(page, wbc, &epd); 5099 ASSERT(ret <= 0); 5100 if (ret < 0) { 5101 end_write_bio(&epd, ret); 5102 return ret; 5103 } 5104 5105 ret = flush_write_bio(&epd); 5106 ASSERT(ret <= 0); 5107 return ret; 5108 } 5109 5110 /* 5111 * Submit the pages in the range to bio for call sites which delalloc range has 5112 * already been ran (aka, ordered extent inserted) and all pages are still 5113 * locked. 5114 */ 5115 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5116 { 5117 bool found_error = false; 5118 int first_error = 0; 5119 int ret = 0; 5120 struct address_space *mapping = inode->i_mapping; 5121 struct page *page; 5122 u64 cur = start; 5123 unsigned long nr_pages; 5124 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5125 struct extent_page_data epd = { 5126 .bio_ctrl = { 0 }, 5127 .extent_locked = 1, 5128 .sync_io = 1, 5129 }; 5130 struct writeback_control wbc_writepages = { 5131 .sync_mode = WB_SYNC_ALL, 5132 .range_start = start, 5133 .range_end = end + 1, 5134 /* We're called from an async helper function */ 5135 .punt_to_cgroup = 1, 5136 .no_cgroup_owner = 1, 5137 }; 5138 5139 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5140 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5141 PAGE_SHIFT; 5142 wbc_writepages.nr_to_write = nr_pages * 2; 5143 5144 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5145 while (cur <= end) { 5146 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5147 5148 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5149 /* 5150 * All pages in the range are locked since 5151 * btrfs_run_delalloc_range(), thus there is no way to clear 5152 * the page dirty flag. 5153 */ 5154 ASSERT(PageLocked(page)); 5155 ASSERT(PageDirty(page)); 5156 clear_page_dirty_for_io(page); 5157 ret = __extent_writepage(page, &wbc_writepages, &epd); 5158 ASSERT(ret <= 0); 5159 if (ret < 0) { 5160 found_error = true; 5161 first_error = ret; 5162 } 5163 put_page(page); 5164 cur = cur_end + 1; 5165 } 5166 5167 if (!found_error) 5168 ret = flush_write_bio(&epd); 5169 else 5170 end_write_bio(&epd, ret); 5171 5172 wbc_detach_inode(&wbc_writepages); 5173 if (found_error) 5174 return first_error; 5175 return ret; 5176 } 5177 5178 int extent_writepages(struct address_space *mapping, 5179 struct writeback_control *wbc) 5180 { 5181 struct inode *inode = mapping->host; 5182 int ret = 0; 5183 struct extent_page_data epd = { 5184 .bio_ctrl = { 0 }, 5185 .extent_locked = 0, 5186 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5187 }; 5188 5189 /* 5190 * Allow only a single thread to do the reloc work in zoned mode to 5191 * protect the write pointer updates. 5192 */ 5193 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5194 ret = extent_write_cache_pages(mapping, wbc, &epd); 5195 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5196 ASSERT(ret <= 0); 5197 if (ret < 0) { 5198 end_write_bio(&epd, ret); 5199 return ret; 5200 } 5201 ret = flush_write_bio(&epd); 5202 return ret; 5203 } 5204 5205 void extent_readahead(struct readahead_control *rac) 5206 { 5207 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5208 struct page *pagepool[16]; 5209 struct extent_map *em_cached = NULL; 5210 u64 prev_em_start = (u64)-1; 5211 int nr; 5212 5213 while ((nr = readahead_page_batch(rac, pagepool))) { 5214 u64 contig_start = readahead_pos(rac); 5215 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5216 5217 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5218 &em_cached, &bio_ctrl, &prev_em_start); 5219 } 5220 5221 if (em_cached) 5222 free_extent_map(em_cached); 5223 5224 if (bio_ctrl.bio) { 5225 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags)) 5226 return; 5227 } 5228 } 5229 5230 /* 5231 * basic invalidatepage code, this waits on any locked or writeback 5232 * ranges corresponding to the page, and then deletes any extent state 5233 * records from the tree 5234 */ 5235 int extent_invalidatepage(struct extent_io_tree *tree, 5236 struct page *page, unsigned long offset) 5237 { 5238 struct extent_state *cached_state = NULL; 5239 u64 start = page_offset(page); 5240 u64 end = start + PAGE_SIZE - 1; 5241 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 5242 5243 /* This function is only called for the btree inode */ 5244 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5245 5246 start += ALIGN(offset, blocksize); 5247 if (start > end) 5248 return 0; 5249 5250 lock_extent_bits(tree, start, end, &cached_state); 5251 wait_on_page_writeback(page); 5252 5253 /* 5254 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5255 * so here we only need to unlock the extent range to free any 5256 * existing extent state. 5257 */ 5258 unlock_extent_cached(tree, start, end, &cached_state); 5259 return 0; 5260 } 5261 5262 /* 5263 * a helper for releasepage, this tests for areas of the page that 5264 * are locked or under IO and drops the related state bits if it is safe 5265 * to drop the page. 5266 */ 5267 static int try_release_extent_state(struct extent_io_tree *tree, 5268 struct page *page, gfp_t mask) 5269 { 5270 u64 start = page_offset(page); 5271 u64 end = start + PAGE_SIZE - 1; 5272 int ret = 1; 5273 5274 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5275 ret = 0; 5276 } else { 5277 /* 5278 * At this point we can safely clear everything except the 5279 * locked bit, the nodatasum bit and the delalloc new bit. 5280 * The delalloc new bit will be cleared by ordered extent 5281 * completion. 5282 */ 5283 ret = __clear_extent_bit(tree, start, end, 5284 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5285 0, 0, NULL, mask, NULL); 5286 5287 /* if clear_extent_bit failed for enomem reasons, 5288 * we can't allow the release to continue. 5289 */ 5290 if (ret < 0) 5291 ret = 0; 5292 else 5293 ret = 1; 5294 } 5295 return ret; 5296 } 5297 5298 /* 5299 * a helper for releasepage. As long as there are no locked extents 5300 * in the range corresponding to the page, both state records and extent 5301 * map records are removed 5302 */ 5303 int try_release_extent_mapping(struct page *page, gfp_t mask) 5304 { 5305 struct extent_map *em; 5306 u64 start = page_offset(page); 5307 u64 end = start + PAGE_SIZE - 1; 5308 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5309 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5310 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5311 5312 if (gfpflags_allow_blocking(mask) && 5313 page->mapping->host->i_size > SZ_16M) { 5314 u64 len; 5315 while (start <= end) { 5316 struct btrfs_fs_info *fs_info; 5317 u64 cur_gen; 5318 5319 len = end - start + 1; 5320 write_lock(&map->lock); 5321 em = lookup_extent_mapping(map, start, len); 5322 if (!em) { 5323 write_unlock(&map->lock); 5324 break; 5325 } 5326 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5327 em->start != start) { 5328 write_unlock(&map->lock); 5329 free_extent_map(em); 5330 break; 5331 } 5332 if (test_range_bit(tree, em->start, 5333 extent_map_end(em) - 1, 5334 EXTENT_LOCKED, 0, NULL)) 5335 goto next; 5336 /* 5337 * If it's not in the list of modified extents, used 5338 * by a fast fsync, we can remove it. If it's being 5339 * logged we can safely remove it since fsync took an 5340 * extra reference on the em. 5341 */ 5342 if (list_empty(&em->list) || 5343 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5344 goto remove_em; 5345 /* 5346 * If it's in the list of modified extents, remove it 5347 * only if its generation is older then the current one, 5348 * in which case we don't need it for a fast fsync. 5349 * Otherwise don't remove it, we could be racing with an 5350 * ongoing fast fsync that could miss the new extent. 5351 */ 5352 fs_info = btrfs_inode->root->fs_info; 5353 spin_lock(&fs_info->trans_lock); 5354 cur_gen = fs_info->generation; 5355 spin_unlock(&fs_info->trans_lock); 5356 if (em->generation >= cur_gen) 5357 goto next; 5358 remove_em: 5359 /* 5360 * We only remove extent maps that are not in the list of 5361 * modified extents or that are in the list but with a 5362 * generation lower then the current generation, so there 5363 * is no need to set the full fsync flag on the inode (it 5364 * hurts the fsync performance for workloads with a data 5365 * size that exceeds or is close to the system's memory). 5366 */ 5367 remove_extent_mapping(map, em); 5368 /* once for the rb tree */ 5369 free_extent_map(em); 5370 next: 5371 start = extent_map_end(em); 5372 write_unlock(&map->lock); 5373 5374 /* once for us */ 5375 free_extent_map(em); 5376 5377 cond_resched(); /* Allow large-extent preemption. */ 5378 } 5379 } 5380 return try_release_extent_state(tree, page, mask); 5381 } 5382 5383 /* 5384 * helper function for fiemap, which doesn't want to see any holes. 5385 * This maps until we find something past 'last' 5386 */ 5387 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5388 u64 offset, u64 last) 5389 { 5390 u64 sectorsize = btrfs_inode_sectorsize(inode); 5391 struct extent_map *em; 5392 u64 len; 5393 5394 if (offset >= last) 5395 return NULL; 5396 5397 while (1) { 5398 len = last - offset; 5399 if (len == 0) 5400 break; 5401 len = ALIGN(len, sectorsize); 5402 em = btrfs_get_extent_fiemap(inode, offset, len); 5403 if (IS_ERR_OR_NULL(em)) 5404 return em; 5405 5406 /* if this isn't a hole return it */ 5407 if (em->block_start != EXTENT_MAP_HOLE) 5408 return em; 5409 5410 /* this is a hole, advance to the next extent */ 5411 offset = extent_map_end(em); 5412 free_extent_map(em); 5413 if (offset >= last) 5414 break; 5415 } 5416 return NULL; 5417 } 5418 5419 /* 5420 * To cache previous fiemap extent 5421 * 5422 * Will be used for merging fiemap extent 5423 */ 5424 struct fiemap_cache { 5425 u64 offset; 5426 u64 phys; 5427 u64 len; 5428 u32 flags; 5429 bool cached; 5430 }; 5431 5432 /* 5433 * Helper to submit fiemap extent. 5434 * 5435 * Will try to merge current fiemap extent specified by @offset, @phys, 5436 * @len and @flags with cached one. 5437 * And only when we fails to merge, cached one will be submitted as 5438 * fiemap extent. 5439 * 5440 * Return value is the same as fiemap_fill_next_extent(). 5441 */ 5442 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5443 struct fiemap_cache *cache, 5444 u64 offset, u64 phys, u64 len, u32 flags) 5445 { 5446 int ret = 0; 5447 5448 if (!cache->cached) 5449 goto assign; 5450 5451 /* 5452 * Sanity check, extent_fiemap() should have ensured that new 5453 * fiemap extent won't overlap with cached one. 5454 * Not recoverable. 5455 * 5456 * NOTE: Physical address can overlap, due to compression 5457 */ 5458 if (cache->offset + cache->len > offset) { 5459 WARN_ON(1); 5460 return -EINVAL; 5461 } 5462 5463 /* 5464 * Only merges fiemap extents if 5465 * 1) Their logical addresses are continuous 5466 * 5467 * 2) Their physical addresses are continuous 5468 * So truly compressed (physical size smaller than logical size) 5469 * extents won't get merged with each other 5470 * 5471 * 3) Share same flags except FIEMAP_EXTENT_LAST 5472 * So regular extent won't get merged with prealloc extent 5473 */ 5474 if (cache->offset + cache->len == offset && 5475 cache->phys + cache->len == phys && 5476 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5477 (flags & ~FIEMAP_EXTENT_LAST)) { 5478 cache->len += len; 5479 cache->flags |= flags; 5480 goto try_submit_last; 5481 } 5482 5483 /* Not mergeable, need to submit cached one */ 5484 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5485 cache->len, cache->flags); 5486 cache->cached = false; 5487 if (ret) 5488 return ret; 5489 assign: 5490 cache->cached = true; 5491 cache->offset = offset; 5492 cache->phys = phys; 5493 cache->len = len; 5494 cache->flags = flags; 5495 try_submit_last: 5496 if (cache->flags & FIEMAP_EXTENT_LAST) { 5497 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5498 cache->phys, cache->len, cache->flags); 5499 cache->cached = false; 5500 } 5501 return ret; 5502 } 5503 5504 /* 5505 * Emit last fiemap cache 5506 * 5507 * The last fiemap cache may still be cached in the following case: 5508 * 0 4k 8k 5509 * |<- Fiemap range ->| 5510 * |<------------ First extent ----------->| 5511 * 5512 * In this case, the first extent range will be cached but not emitted. 5513 * So we must emit it before ending extent_fiemap(). 5514 */ 5515 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5516 struct fiemap_cache *cache) 5517 { 5518 int ret; 5519 5520 if (!cache->cached) 5521 return 0; 5522 5523 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5524 cache->len, cache->flags); 5525 cache->cached = false; 5526 if (ret > 0) 5527 ret = 0; 5528 return ret; 5529 } 5530 5531 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5532 u64 start, u64 len) 5533 { 5534 int ret = 0; 5535 u64 off; 5536 u64 max = start + len; 5537 u32 flags = 0; 5538 u32 found_type; 5539 u64 last; 5540 u64 last_for_get_extent = 0; 5541 u64 disko = 0; 5542 u64 isize = i_size_read(&inode->vfs_inode); 5543 struct btrfs_key found_key; 5544 struct extent_map *em = NULL; 5545 struct extent_state *cached_state = NULL; 5546 struct btrfs_path *path; 5547 struct btrfs_root *root = inode->root; 5548 struct fiemap_cache cache = { 0 }; 5549 struct ulist *roots; 5550 struct ulist *tmp_ulist; 5551 int end = 0; 5552 u64 em_start = 0; 5553 u64 em_len = 0; 5554 u64 em_end = 0; 5555 5556 if (len == 0) 5557 return -EINVAL; 5558 5559 path = btrfs_alloc_path(); 5560 if (!path) 5561 return -ENOMEM; 5562 5563 roots = ulist_alloc(GFP_KERNEL); 5564 tmp_ulist = ulist_alloc(GFP_KERNEL); 5565 if (!roots || !tmp_ulist) { 5566 ret = -ENOMEM; 5567 goto out_free_ulist; 5568 } 5569 5570 /* 5571 * We can't initialize that to 'start' as this could miss extents due 5572 * to extent item merging 5573 */ 5574 off = 0; 5575 start = round_down(start, btrfs_inode_sectorsize(inode)); 5576 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5577 5578 /* 5579 * lookup the last file extent. We're not using i_size here 5580 * because there might be preallocation past i_size 5581 */ 5582 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5583 0); 5584 if (ret < 0) { 5585 goto out_free_ulist; 5586 } else { 5587 WARN_ON(!ret); 5588 if (ret == 1) 5589 ret = 0; 5590 } 5591 5592 path->slots[0]--; 5593 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5594 found_type = found_key.type; 5595 5596 /* No extents, but there might be delalloc bits */ 5597 if (found_key.objectid != btrfs_ino(inode) || 5598 found_type != BTRFS_EXTENT_DATA_KEY) { 5599 /* have to trust i_size as the end */ 5600 last = (u64)-1; 5601 last_for_get_extent = isize; 5602 } else { 5603 /* 5604 * remember the start of the last extent. There are a 5605 * bunch of different factors that go into the length of the 5606 * extent, so its much less complex to remember where it started 5607 */ 5608 last = found_key.offset; 5609 last_for_get_extent = last + 1; 5610 } 5611 btrfs_release_path(path); 5612 5613 /* 5614 * we might have some extents allocated but more delalloc past those 5615 * extents. so, we trust isize unless the start of the last extent is 5616 * beyond isize 5617 */ 5618 if (last < isize) { 5619 last = (u64)-1; 5620 last_for_get_extent = isize; 5621 } 5622 5623 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5624 &cached_state); 5625 5626 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5627 if (!em) 5628 goto out; 5629 if (IS_ERR(em)) { 5630 ret = PTR_ERR(em); 5631 goto out; 5632 } 5633 5634 while (!end) { 5635 u64 offset_in_extent = 0; 5636 5637 /* break if the extent we found is outside the range */ 5638 if (em->start >= max || extent_map_end(em) < off) 5639 break; 5640 5641 /* 5642 * get_extent may return an extent that starts before our 5643 * requested range. We have to make sure the ranges 5644 * we return to fiemap always move forward and don't 5645 * overlap, so adjust the offsets here 5646 */ 5647 em_start = max(em->start, off); 5648 5649 /* 5650 * record the offset from the start of the extent 5651 * for adjusting the disk offset below. Only do this if the 5652 * extent isn't compressed since our in ram offset may be past 5653 * what we have actually allocated on disk. 5654 */ 5655 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5656 offset_in_extent = em_start - em->start; 5657 em_end = extent_map_end(em); 5658 em_len = em_end - em_start; 5659 flags = 0; 5660 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5661 disko = em->block_start + offset_in_extent; 5662 else 5663 disko = 0; 5664 5665 /* 5666 * bump off for our next call to get_extent 5667 */ 5668 off = extent_map_end(em); 5669 if (off >= max) 5670 end = 1; 5671 5672 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5673 end = 1; 5674 flags |= FIEMAP_EXTENT_LAST; 5675 } else if (em->block_start == EXTENT_MAP_INLINE) { 5676 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5677 FIEMAP_EXTENT_NOT_ALIGNED); 5678 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5679 flags |= (FIEMAP_EXTENT_DELALLOC | 5680 FIEMAP_EXTENT_UNKNOWN); 5681 } else if (fieinfo->fi_extents_max) { 5682 u64 bytenr = em->block_start - 5683 (em->start - em->orig_start); 5684 5685 /* 5686 * As btrfs supports shared space, this information 5687 * can be exported to userspace tools via 5688 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5689 * then we're just getting a count and we can skip the 5690 * lookup stuff. 5691 */ 5692 ret = btrfs_check_shared(root, btrfs_ino(inode), 5693 bytenr, roots, tmp_ulist); 5694 if (ret < 0) 5695 goto out_free; 5696 if (ret) 5697 flags |= FIEMAP_EXTENT_SHARED; 5698 ret = 0; 5699 } 5700 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5701 flags |= FIEMAP_EXTENT_ENCODED; 5702 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5703 flags |= FIEMAP_EXTENT_UNWRITTEN; 5704 5705 free_extent_map(em); 5706 em = NULL; 5707 if ((em_start >= last) || em_len == (u64)-1 || 5708 (last == (u64)-1 && isize <= em_end)) { 5709 flags |= FIEMAP_EXTENT_LAST; 5710 end = 1; 5711 } 5712 5713 /* now scan forward to see if this is really the last extent. */ 5714 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5715 if (IS_ERR(em)) { 5716 ret = PTR_ERR(em); 5717 goto out; 5718 } 5719 if (!em) { 5720 flags |= FIEMAP_EXTENT_LAST; 5721 end = 1; 5722 } 5723 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5724 em_len, flags); 5725 if (ret) { 5726 if (ret == 1) 5727 ret = 0; 5728 goto out_free; 5729 } 5730 } 5731 out_free: 5732 if (!ret) 5733 ret = emit_last_fiemap_cache(fieinfo, &cache); 5734 free_extent_map(em); 5735 out: 5736 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5737 &cached_state); 5738 5739 out_free_ulist: 5740 btrfs_free_path(path); 5741 ulist_free(roots); 5742 ulist_free(tmp_ulist); 5743 return ret; 5744 } 5745 5746 static void __free_extent_buffer(struct extent_buffer *eb) 5747 { 5748 kmem_cache_free(extent_buffer_cache, eb); 5749 } 5750 5751 int extent_buffer_under_io(const struct extent_buffer *eb) 5752 { 5753 return (atomic_read(&eb->io_pages) || 5754 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5755 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5756 } 5757 5758 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5759 { 5760 struct btrfs_subpage *subpage; 5761 5762 lockdep_assert_held(&page->mapping->private_lock); 5763 5764 if (PagePrivate(page)) { 5765 subpage = (struct btrfs_subpage *)page->private; 5766 if (atomic_read(&subpage->eb_refs)) 5767 return true; 5768 /* 5769 * Even there is no eb refs here, we may still have 5770 * end_page_read() call relying on page::private. 5771 */ 5772 if (atomic_read(&subpage->readers)) 5773 return true; 5774 } 5775 return false; 5776 } 5777 5778 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5779 { 5780 struct btrfs_fs_info *fs_info = eb->fs_info; 5781 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5782 5783 /* 5784 * For mapped eb, we're going to change the page private, which should 5785 * be done under the private_lock. 5786 */ 5787 if (mapped) 5788 spin_lock(&page->mapping->private_lock); 5789 5790 if (!PagePrivate(page)) { 5791 if (mapped) 5792 spin_unlock(&page->mapping->private_lock); 5793 return; 5794 } 5795 5796 if (fs_info->sectorsize == PAGE_SIZE) { 5797 /* 5798 * We do this since we'll remove the pages after we've 5799 * removed the eb from the radix tree, so we could race 5800 * and have this page now attached to the new eb. So 5801 * only clear page_private if it's still connected to 5802 * this eb. 5803 */ 5804 if (PagePrivate(page) && 5805 page->private == (unsigned long)eb) { 5806 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5807 BUG_ON(PageDirty(page)); 5808 BUG_ON(PageWriteback(page)); 5809 /* 5810 * We need to make sure we haven't be attached 5811 * to a new eb. 5812 */ 5813 detach_page_private(page); 5814 } 5815 if (mapped) 5816 spin_unlock(&page->mapping->private_lock); 5817 return; 5818 } 5819 5820 /* 5821 * For subpage, we can have dummy eb with page private. In this case, 5822 * we can directly detach the private as such page is only attached to 5823 * one dummy eb, no sharing. 5824 */ 5825 if (!mapped) { 5826 btrfs_detach_subpage(fs_info, page); 5827 return; 5828 } 5829 5830 btrfs_page_dec_eb_refs(fs_info, page); 5831 5832 /* 5833 * We can only detach the page private if there are no other ebs in the 5834 * page range and no unfinished IO. 5835 */ 5836 if (!page_range_has_eb(fs_info, page)) 5837 btrfs_detach_subpage(fs_info, page); 5838 5839 spin_unlock(&page->mapping->private_lock); 5840 } 5841 5842 /* Release all pages attached to the extent buffer */ 5843 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5844 { 5845 int i; 5846 int num_pages; 5847 5848 ASSERT(!extent_buffer_under_io(eb)); 5849 5850 num_pages = num_extent_pages(eb); 5851 for (i = 0; i < num_pages; i++) { 5852 struct page *page = eb->pages[i]; 5853 5854 if (!page) 5855 continue; 5856 5857 detach_extent_buffer_page(eb, page); 5858 5859 /* One for when we allocated the page */ 5860 put_page(page); 5861 } 5862 } 5863 5864 /* 5865 * Helper for releasing the extent buffer. 5866 */ 5867 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5868 { 5869 btrfs_release_extent_buffer_pages(eb); 5870 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5871 __free_extent_buffer(eb); 5872 } 5873 5874 static struct extent_buffer * 5875 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5876 unsigned long len) 5877 { 5878 struct extent_buffer *eb = NULL; 5879 5880 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5881 eb->start = start; 5882 eb->len = len; 5883 eb->fs_info = fs_info; 5884 eb->bflags = 0; 5885 init_rwsem(&eb->lock); 5886 5887 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5888 &fs_info->allocated_ebs); 5889 INIT_LIST_HEAD(&eb->release_list); 5890 5891 spin_lock_init(&eb->refs_lock); 5892 atomic_set(&eb->refs, 1); 5893 atomic_set(&eb->io_pages, 0); 5894 5895 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5896 5897 return eb; 5898 } 5899 5900 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5901 { 5902 int i; 5903 struct page *p; 5904 struct extent_buffer *new; 5905 int num_pages = num_extent_pages(src); 5906 5907 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5908 if (new == NULL) 5909 return NULL; 5910 5911 /* 5912 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5913 * btrfs_release_extent_buffer() have different behavior for 5914 * UNMAPPED subpage extent buffer. 5915 */ 5916 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5917 5918 for (i = 0; i < num_pages; i++) { 5919 int ret; 5920 5921 p = alloc_page(GFP_NOFS); 5922 if (!p) { 5923 btrfs_release_extent_buffer(new); 5924 return NULL; 5925 } 5926 ret = attach_extent_buffer_page(new, p, NULL); 5927 if (ret < 0) { 5928 put_page(p); 5929 btrfs_release_extent_buffer(new); 5930 return NULL; 5931 } 5932 WARN_ON(PageDirty(p)); 5933 new->pages[i] = p; 5934 copy_page(page_address(p), page_address(src->pages[i])); 5935 } 5936 set_extent_buffer_uptodate(new); 5937 5938 return new; 5939 } 5940 5941 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5942 u64 start, unsigned long len) 5943 { 5944 struct extent_buffer *eb; 5945 int num_pages; 5946 int i; 5947 5948 eb = __alloc_extent_buffer(fs_info, start, len); 5949 if (!eb) 5950 return NULL; 5951 5952 num_pages = num_extent_pages(eb); 5953 for (i = 0; i < num_pages; i++) { 5954 int ret; 5955 5956 eb->pages[i] = alloc_page(GFP_NOFS); 5957 if (!eb->pages[i]) 5958 goto err; 5959 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL); 5960 if (ret < 0) 5961 goto err; 5962 } 5963 set_extent_buffer_uptodate(eb); 5964 btrfs_set_header_nritems(eb, 0); 5965 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5966 5967 return eb; 5968 err: 5969 for (; i > 0; i--) { 5970 detach_extent_buffer_page(eb, eb->pages[i - 1]); 5971 __free_page(eb->pages[i - 1]); 5972 } 5973 __free_extent_buffer(eb); 5974 return NULL; 5975 } 5976 5977 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5978 u64 start) 5979 { 5980 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 5981 } 5982 5983 static void check_buffer_tree_ref(struct extent_buffer *eb) 5984 { 5985 int refs; 5986 /* 5987 * The TREE_REF bit is first set when the extent_buffer is added 5988 * to the radix tree. It is also reset, if unset, when a new reference 5989 * is created by find_extent_buffer. 5990 * 5991 * It is only cleared in two cases: freeing the last non-tree 5992 * reference to the extent_buffer when its STALE bit is set or 5993 * calling releasepage when the tree reference is the only reference. 5994 * 5995 * In both cases, care is taken to ensure that the extent_buffer's 5996 * pages are not under io. However, releasepage can be concurrently 5997 * called with creating new references, which is prone to race 5998 * conditions between the calls to check_buffer_tree_ref in those 5999 * codepaths and clearing TREE_REF in try_release_extent_buffer. 6000 * 6001 * The actual lifetime of the extent_buffer in the radix tree is 6002 * adequately protected by the refcount, but the TREE_REF bit and 6003 * its corresponding reference are not. To protect against this 6004 * class of races, we call check_buffer_tree_ref from the codepaths 6005 * which trigger io after they set eb->io_pages. Note that once io is 6006 * initiated, TREE_REF can no longer be cleared, so that is the 6007 * moment at which any such race is best fixed. 6008 */ 6009 refs = atomic_read(&eb->refs); 6010 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6011 return; 6012 6013 spin_lock(&eb->refs_lock); 6014 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6015 atomic_inc(&eb->refs); 6016 spin_unlock(&eb->refs_lock); 6017 } 6018 6019 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6020 struct page *accessed) 6021 { 6022 int num_pages, i; 6023 6024 check_buffer_tree_ref(eb); 6025 6026 num_pages = num_extent_pages(eb); 6027 for (i = 0; i < num_pages; i++) { 6028 struct page *p = eb->pages[i]; 6029 6030 if (p != accessed) 6031 mark_page_accessed(p); 6032 } 6033 } 6034 6035 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6036 u64 start) 6037 { 6038 struct extent_buffer *eb; 6039 6040 eb = find_extent_buffer_nolock(fs_info, start); 6041 if (!eb) 6042 return NULL; 6043 /* 6044 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6045 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6046 * another task running free_extent_buffer() might have seen that flag 6047 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6048 * writeback flags not set) and it's still in the tree (flag 6049 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6050 * decrementing the extent buffer's reference count twice. So here we 6051 * could race and increment the eb's reference count, clear its stale 6052 * flag, mark it as dirty and drop our reference before the other task 6053 * finishes executing free_extent_buffer, which would later result in 6054 * an attempt to free an extent buffer that is dirty. 6055 */ 6056 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6057 spin_lock(&eb->refs_lock); 6058 spin_unlock(&eb->refs_lock); 6059 } 6060 mark_extent_buffer_accessed(eb, NULL); 6061 return eb; 6062 } 6063 6064 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6065 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6066 u64 start) 6067 { 6068 struct extent_buffer *eb, *exists = NULL; 6069 int ret; 6070 6071 eb = find_extent_buffer(fs_info, start); 6072 if (eb) 6073 return eb; 6074 eb = alloc_dummy_extent_buffer(fs_info, start); 6075 if (!eb) 6076 return ERR_PTR(-ENOMEM); 6077 eb->fs_info = fs_info; 6078 again: 6079 ret = radix_tree_preload(GFP_NOFS); 6080 if (ret) { 6081 exists = ERR_PTR(ret); 6082 goto free_eb; 6083 } 6084 spin_lock(&fs_info->buffer_lock); 6085 ret = radix_tree_insert(&fs_info->buffer_radix, 6086 start >> fs_info->sectorsize_bits, eb); 6087 spin_unlock(&fs_info->buffer_lock); 6088 radix_tree_preload_end(); 6089 if (ret == -EEXIST) { 6090 exists = find_extent_buffer(fs_info, start); 6091 if (exists) 6092 goto free_eb; 6093 else 6094 goto again; 6095 } 6096 check_buffer_tree_ref(eb); 6097 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6098 6099 return eb; 6100 free_eb: 6101 btrfs_release_extent_buffer(eb); 6102 return exists; 6103 } 6104 #endif 6105 6106 static struct extent_buffer *grab_extent_buffer( 6107 struct btrfs_fs_info *fs_info, struct page *page) 6108 { 6109 struct extent_buffer *exists; 6110 6111 /* 6112 * For subpage case, we completely rely on radix tree to ensure we 6113 * don't try to insert two ebs for the same bytenr. So here we always 6114 * return NULL and just continue. 6115 */ 6116 if (fs_info->sectorsize < PAGE_SIZE) 6117 return NULL; 6118 6119 /* Page not yet attached to an extent buffer */ 6120 if (!PagePrivate(page)) 6121 return NULL; 6122 6123 /* 6124 * We could have already allocated an eb for this page and attached one 6125 * so lets see if we can get a ref on the existing eb, and if we can we 6126 * know it's good and we can just return that one, else we know we can 6127 * just overwrite page->private. 6128 */ 6129 exists = (struct extent_buffer *)page->private; 6130 if (atomic_inc_not_zero(&exists->refs)) 6131 return exists; 6132 6133 WARN_ON(PageDirty(page)); 6134 detach_page_private(page); 6135 return NULL; 6136 } 6137 6138 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6139 u64 start, u64 owner_root, int level) 6140 { 6141 unsigned long len = fs_info->nodesize; 6142 int num_pages; 6143 int i; 6144 unsigned long index = start >> PAGE_SHIFT; 6145 struct extent_buffer *eb; 6146 struct extent_buffer *exists = NULL; 6147 struct page *p; 6148 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6149 int uptodate = 1; 6150 int ret; 6151 6152 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6153 btrfs_err(fs_info, "bad tree block start %llu", start); 6154 return ERR_PTR(-EINVAL); 6155 } 6156 6157 #if BITS_PER_LONG == 32 6158 if (start >= MAX_LFS_FILESIZE) { 6159 btrfs_err_rl(fs_info, 6160 "extent buffer %llu is beyond 32bit page cache limit", start); 6161 btrfs_err_32bit_limit(fs_info); 6162 return ERR_PTR(-EOVERFLOW); 6163 } 6164 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6165 btrfs_warn_32bit_limit(fs_info); 6166 #endif 6167 6168 if (fs_info->sectorsize < PAGE_SIZE && 6169 offset_in_page(start) + len > PAGE_SIZE) { 6170 btrfs_err(fs_info, 6171 "tree block crosses page boundary, start %llu nodesize %lu", 6172 start, len); 6173 return ERR_PTR(-EINVAL); 6174 } 6175 6176 eb = find_extent_buffer(fs_info, start); 6177 if (eb) 6178 return eb; 6179 6180 eb = __alloc_extent_buffer(fs_info, start, len); 6181 if (!eb) 6182 return ERR_PTR(-ENOMEM); 6183 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6184 6185 num_pages = num_extent_pages(eb); 6186 for (i = 0; i < num_pages; i++, index++) { 6187 struct btrfs_subpage *prealloc = NULL; 6188 6189 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6190 if (!p) { 6191 exists = ERR_PTR(-ENOMEM); 6192 goto free_eb; 6193 } 6194 6195 /* 6196 * Preallocate page->private for subpage case, so that we won't 6197 * allocate memory with private_lock hold. The memory will be 6198 * freed by attach_extent_buffer_page() or freed manually if 6199 * we exit earlier. 6200 * 6201 * Although we have ensured one subpage eb can only have one 6202 * page, but it may change in the future for 16K page size 6203 * support, so we still preallocate the memory in the loop. 6204 */ 6205 if (fs_info->sectorsize < PAGE_SIZE) { 6206 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6207 if (IS_ERR(prealloc)) { 6208 ret = PTR_ERR(prealloc); 6209 unlock_page(p); 6210 put_page(p); 6211 exists = ERR_PTR(ret); 6212 goto free_eb; 6213 } 6214 } 6215 6216 spin_lock(&mapping->private_lock); 6217 exists = grab_extent_buffer(fs_info, p); 6218 if (exists) { 6219 spin_unlock(&mapping->private_lock); 6220 unlock_page(p); 6221 put_page(p); 6222 mark_extent_buffer_accessed(exists, p); 6223 btrfs_free_subpage(prealloc); 6224 goto free_eb; 6225 } 6226 /* Should not fail, as we have preallocated the memory */ 6227 ret = attach_extent_buffer_page(eb, p, prealloc); 6228 ASSERT(!ret); 6229 /* 6230 * To inform we have extra eb under allocation, so that 6231 * detach_extent_buffer_page() won't release the page private 6232 * when the eb hasn't yet been inserted into radix tree. 6233 * 6234 * The ref will be decreased when the eb released the page, in 6235 * detach_extent_buffer_page(). 6236 * Thus needs no special handling in error path. 6237 */ 6238 btrfs_page_inc_eb_refs(fs_info, p); 6239 spin_unlock(&mapping->private_lock); 6240 6241 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6242 eb->pages[i] = p; 6243 if (!PageUptodate(p)) 6244 uptodate = 0; 6245 6246 /* 6247 * We can't unlock the pages just yet since the extent buffer 6248 * hasn't been properly inserted in the radix tree, this 6249 * opens a race with btree_releasepage which can free a page 6250 * while we are still filling in all pages for the buffer and 6251 * we could crash. 6252 */ 6253 } 6254 if (uptodate) 6255 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6256 again: 6257 ret = radix_tree_preload(GFP_NOFS); 6258 if (ret) { 6259 exists = ERR_PTR(ret); 6260 goto free_eb; 6261 } 6262 6263 spin_lock(&fs_info->buffer_lock); 6264 ret = radix_tree_insert(&fs_info->buffer_radix, 6265 start >> fs_info->sectorsize_bits, eb); 6266 spin_unlock(&fs_info->buffer_lock); 6267 radix_tree_preload_end(); 6268 if (ret == -EEXIST) { 6269 exists = find_extent_buffer(fs_info, start); 6270 if (exists) 6271 goto free_eb; 6272 else 6273 goto again; 6274 } 6275 /* add one reference for the tree */ 6276 check_buffer_tree_ref(eb); 6277 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6278 6279 /* 6280 * Now it's safe to unlock the pages because any calls to 6281 * btree_releasepage will correctly detect that a page belongs to a 6282 * live buffer and won't free them prematurely. 6283 */ 6284 for (i = 0; i < num_pages; i++) 6285 unlock_page(eb->pages[i]); 6286 return eb; 6287 6288 free_eb: 6289 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6290 for (i = 0; i < num_pages; i++) { 6291 if (eb->pages[i]) 6292 unlock_page(eb->pages[i]); 6293 } 6294 6295 btrfs_release_extent_buffer(eb); 6296 return exists; 6297 } 6298 6299 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6300 { 6301 struct extent_buffer *eb = 6302 container_of(head, struct extent_buffer, rcu_head); 6303 6304 __free_extent_buffer(eb); 6305 } 6306 6307 static int release_extent_buffer(struct extent_buffer *eb) 6308 __releases(&eb->refs_lock) 6309 { 6310 lockdep_assert_held(&eb->refs_lock); 6311 6312 WARN_ON(atomic_read(&eb->refs) == 0); 6313 if (atomic_dec_and_test(&eb->refs)) { 6314 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6315 struct btrfs_fs_info *fs_info = eb->fs_info; 6316 6317 spin_unlock(&eb->refs_lock); 6318 6319 spin_lock(&fs_info->buffer_lock); 6320 radix_tree_delete(&fs_info->buffer_radix, 6321 eb->start >> fs_info->sectorsize_bits); 6322 spin_unlock(&fs_info->buffer_lock); 6323 } else { 6324 spin_unlock(&eb->refs_lock); 6325 } 6326 6327 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6328 /* Should be safe to release our pages at this point */ 6329 btrfs_release_extent_buffer_pages(eb); 6330 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6331 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6332 __free_extent_buffer(eb); 6333 return 1; 6334 } 6335 #endif 6336 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6337 return 1; 6338 } 6339 spin_unlock(&eb->refs_lock); 6340 6341 return 0; 6342 } 6343 6344 void free_extent_buffer(struct extent_buffer *eb) 6345 { 6346 int refs; 6347 int old; 6348 if (!eb) 6349 return; 6350 6351 while (1) { 6352 refs = atomic_read(&eb->refs); 6353 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6354 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6355 refs == 1)) 6356 break; 6357 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6358 if (old == refs) 6359 return; 6360 } 6361 6362 spin_lock(&eb->refs_lock); 6363 if (atomic_read(&eb->refs) == 2 && 6364 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6365 !extent_buffer_under_io(eb) && 6366 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6367 atomic_dec(&eb->refs); 6368 6369 /* 6370 * I know this is terrible, but it's temporary until we stop tracking 6371 * the uptodate bits and such for the extent buffers. 6372 */ 6373 release_extent_buffer(eb); 6374 } 6375 6376 void free_extent_buffer_stale(struct extent_buffer *eb) 6377 { 6378 if (!eb) 6379 return; 6380 6381 spin_lock(&eb->refs_lock); 6382 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6383 6384 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6385 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6386 atomic_dec(&eb->refs); 6387 release_extent_buffer(eb); 6388 } 6389 6390 static void btree_clear_page_dirty(struct page *page) 6391 { 6392 ASSERT(PageDirty(page)); 6393 ASSERT(PageLocked(page)); 6394 clear_page_dirty_for_io(page); 6395 xa_lock_irq(&page->mapping->i_pages); 6396 if (!PageDirty(page)) 6397 __xa_clear_mark(&page->mapping->i_pages, 6398 page_index(page), PAGECACHE_TAG_DIRTY); 6399 xa_unlock_irq(&page->mapping->i_pages); 6400 } 6401 6402 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6403 { 6404 struct btrfs_fs_info *fs_info = eb->fs_info; 6405 struct page *page = eb->pages[0]; 6406 bool last; 6407 6408 /* btree_clear_page_dirty() needs page locked */ 6409 lock_page(page); 6410 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6411 eb->len); 6412 if (last) 6413 btree_clear_page_dirty(page); 6414 unlock_page(page); 6415 WARN_ON(atomic_read(&eb->refs) == 0); 6416 } 6417 6418 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6419 { 6420 int i; 6421 int num_pages; 6422 struct page *page; 6423 6424 if (eb->fs_info->sectorsize < PAGE_SIZE) 6425 return clear_subpage_extent_buffer_dirty(eb); 6426 6427 num_pages = num_extent_pages(eb); 6428 6429 for (i = 0; i < num_pages; i++) { 6430 page = eb->pages[i]; 6431 if (!PageDirty(page)) 6432 continue; 6433 lock_page(page); 6434 btree_clear_page_dirty(page); 6435 ClearPageError(page); 6436 unlock_page(page); 6437 } 6438 WARN_ON(atomic_read(&eb->refs) == 0); 6439 } 6440 6441 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6442 { 6443 int i; 6444 int num_pages; 6445 bool was_dirty; 6446 6447 check_buffer_tree_ref(eb); 6448 6449 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6450 6451 num_pages = num_extent_pages(eb); 6452 WARN_ON(atomic_read(&eb->refs) == 0); 6453 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6454 6455 if (!was_dirty) { 6456 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE; 6457 6458 /* 6459 * For subpage case, we can have other extent buffers in the 6460 * same page, and in clear_subpage_extent_buffer_dirty() we 6461 * have to clear page dirty without subpage lock held. 6462 * This can cause race where our page gets dirty cleared after 6463 * we just set it. 6464 * 6465 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6466 * its page for other reasons, we can use page lock to prevent 6467 * the above race. 6468 */ 6469 if (subpage) 6470 lock_page(eb->pages[0]); 6471 for (i = 0; i < num_pages; i++) 6472 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6473 eb->start, eb->len); 6474 if (subpage) 6475 unlock_page(eb->pages[0]); 6476 } 6477 #ifdef CONFIG_BTRFS_DEBUG 6478 for (i = 0; i < num_pages; i++) 6479 ASSERT(PageDirty(eb->pages[i])); 6480 #endif 6481 6482 return was_dirty; 6483 } 6484 6485 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6486 { 6487 struct btrfs_fs_info *fs_info = eb->fs_info; 6488 struct page *page; 6489 int num_pages; 6490 int i; 6491 6492 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6493 num_pages = num_extent_pages(eb); 6494 for (i = 0; i < num_pages; i++) { 6495 page = eb->pages[i]; 6496 if (page) 6497 btrfs_page_clear_uptodate(fs_info, page, 6498 eb->start, eb->len); 6499 } 6500 } 6501 6502 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6503 { 6504 struct btrfs_fs_info *fs_info = eb->fs_info; 6505 struct page *page; 6506 int num_pages; 6507 int i; 6508 6509 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6510 num_pages = num_extent_pages(eb); 6511 for (i = 0; i < num_pages; i++) { 6512 page = eb->pages[i]; 6513 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len); 6514 } 6515 } 6516 6517 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6518 int mirror_num) 6519 { 6520 struct btrfs_fs_info *fs_info = eb->fs_info; 6521 struct extent_io_tree *io_tree; 6522 struct page *page = eb->pages[0]; 6523 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6524 int ret = 0; 6525 6526 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6527 ASSERT(PagePrivate(page)); 6528 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6529 6530 if (wait == WAIT_NONE) { 6531 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6532 return -EAGAIN; 6533 } else { 6534 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6535 if (ret < 0) 6536 return ret; 6537 } 6538 6539 ret = 0; 6540 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6541 PageUptodate(page) || 6542 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6543 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6544 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6545 return ret; 6546 } 6547 6548 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6549 eb->read_mirror = 0; 6550 atomic_set(&eb->io_pages, 1); 6551 check_buffer_tree_ref(eb); 6552 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6553 6554 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6555 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6556 page, eb->start, eb->len, 6557 eb->start - page_offset(page), 6558 end_bio_extent_readpage, mirror_num, 0, 6559 true); 6560 if (ret) { 6561 /* 6562 * In the endio function, if we hit something wrong we will 6563 * increase the io_pages, so here we need to decrease it for 6564 * error path. 6565 */ 6566 atomic_dec(&eb->io_pages); 6567 } 6568 if (bio_ctrl.bio) { 6569 int tmp; 6570 6571 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6572 bio_ctrl.bio = NULL; 6573 if (tmp < 0) 6574 return tmp; 6575 } 6576 if (ret || wait != WAIT_COMPLETE) 6577 return ret; 6578 6579 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6580 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6581 ret = -EIO; 6582 return ret; 6583 } 6584 6585 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6586 { 6587 int i; 6588 struct page *page; 6589 int err; 6590 int ret = 0; 6591 int locked_pages = 0; 6592 int all_uptodate = 1; 6593 int num_pages; 6594 unsigned long num_reads = 0; 6595 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6596 6597 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6598 return 0; 6599 6600 /* 6601 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6602 * operation, which could potentially still be in flight. In this case 6603 * we simply want to return an error. 6604 */ 6605 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6606 return -EIO; 6607 6608 if (eb->fs_info->sectorsize < PAGE_SIZE) 6609 return read_extent_buffer_subpage(eb, wait, mirror_num); 6610 6611 num_pages = num_extent_pages(eb); 6612 for (i = 0; i < num_pages; i++) { 6613 page = eb->pages[i]; 6614 if (wait == WAIT_NONE) { 6615 /* 6616 * WAIT_NONE is only utilized by readahead. If we can't 6617 * acquire the lock atomically it means either the eb 6618 * is being read out or under modification. 6619 * Either way the eb will be or has been cached, 6620 * readahead can exit safely. 6621 */ 6622 if (!trylock_page(page)) 6623 goto unlock_exit; 6624 } else { 6625 lock_page(page); 6626 } 6627 locked_pages++; 6628 } 6629 /* 6630 * We need to firstly lock all pages to make sure that 6631 * the uptodate bit of our pages won't be affected by 6632 * clear_extent_buffer_uptodate(). 6633 */ 6634 for (i = 0; i < num_pages; i++) { 6635 page = eb->pages[i]; 6636 if (!PageUptodate(page)) { 6637 num_reads++; 6638 all_uptodate = 0; 6639 } 6640 } 6641 6642 if (all_uptodate) { 6643 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6644 goto unlock_exit; 6645 } 6646 6647 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6648 eb->read_mirror = 0; 6649 atomic_set(&eb->io_pages, num_reads); 6650 /* 6651 * It is possible for releasepage to clear the TREE_REF bit before we 6652 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6653 */ 6654 check_buffer_tree_ref(eb); 6655 for (i = 0; i < num_pages; i++) { 6656 page = eb->pages[i]; 6657 6658 if (!PageUptodate(page)) { 6659 if (ret) { 6660 atomic_dec(&eb->io_pages); 6661 unlock_page(page); 6662 continue; 6663 } 6664 6665 ClearPageError(page); 6666 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6667 &bio_ctrl, page, page_offset(page), 6668 PAGE_SIZE, 0, end_bio_extent_readpage, 6669 mirror_num, 0, false); 6670 if (err) { 6671 /* 6672 * We failed to submit the bio so it's the 6673 * caller's responsibility to perform cleanup 6674 * i.e unlock page/set error bit. 6675 */ 6676 ret = err; 6677 SetPageError(page); 6678 unlock_page(page); 6679 atomic_dec(&eb->io_pages); 6680 } 6681 } else { 6682 unlock_page(page); 6683 } 6684 } 6685 6686 if (bio_ctrl.bio) { 6687 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags); 6688 bio_ctrl.bio = NULL; 6689 if (err) 6690 return err; 6691 } 6692 6693 if (ret || wait != WAIT_COMPLETE) 6694 return ret; 6695 6696 for (i = 0; i < num_pages; i++) { 6697 page = eb->pages[i]; 6698 wait_on_page_locked(page); 6699 if (!PageUptodate(page)) 6700 ret = -EIO; 6701 } 6702 6703 return ret; 6704 6705 unlock_exit: 6706 while (locked_pages > 0) { 6707 locked_pages--; 6708 page = eb->pages[locked_pages]; 6709 unlock_page(page); 6710 } 6711 return ret; 6712 } 6713 6714 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6715 unsigned long len) 6716 { 6717 btrfs_warn(eb->fs_info, 6718 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6719 eb->start, eb->len, start, len); 6720 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6721 6722 return true; 6723 } 6724 6725 /* 6726 * Check if the [start, start + len) range is valid before reading/writing 6727 * the eb. 6728 * NOTE: @start and @len are offset inside the eb, not logical address. 6729 * 6730 * Caller should not touch the dst/src memory if this function returns error. 6731 */ 6732 static inline int check_eb_range(const struct extent_buffer *eb, 6733 unsigned long start, unsigned long len) 6734 { 6735 unsigned long offset; 6736 6737 /* start, start + len should not go beyond eb->len nor overflow */ 6738 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6739 return report_eb_range(eb, start, len); 6740 6741 return false; 6742 } 6743 6744 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6745 unsigned long start, unsigned long len) 6746 { 6747 size_t cur; 6748 size_t offset; 6749 struct page *page; 6750 char *kaddr; 6751 char *dst = (char *)dstv; 6752 unsigned long i = get_eb_page_index(start); 6753 6754 if (check_eb_range(eb, start, len)) 6755 return; 6756 6757 offset = get_eb_offset_in_page(eb, start); 6758 6759 while (len > 0) { 6760 page = eb->pages[i]; 6761 6762 cur = min(len, (PAGE_SIZE - offset)); 6763 kaddr = page_address(page); 6764 memcpy(dst, kaddr + offset, cur); 6765 6766 dst += cur; 6767 len -= cur; 6768 offset = 0; 6769 i++; 6770 } 6771 } 6772 6773 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6774 void __user *dstv, 6775 unsigned long start, unsigned long len) 6776 { 6777 size_t cur; 6778 size_t offset; 6779 struct page *page; 6780 char *kaddr; 6781 char __user *dst = (char __user *)dstv; 6782 unsigned long i = get_eb_page_index(start); 6783 int ret = 0; 6784 6785 WARN_ON(start > eb->len); 6786 WARN_ON(start + len > eb->start + eb->len); 6787 6788 offset = get_eb_offset_in_page(eb, start); 6789 6790 while (len > 0) { 6791 page = eb->pages[i]; 6792 6793 cur = min(len, (PAGE_SIZE - offset)); 6794 kaddr = page_address(page); 6795 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6796 ret = -EFAULT; 6797 break; 6798 } 6799 6800 dst += cur; 6801 len -= cur; 6802 offset = 0; 6803 i++; 6804 } 6805 6806 return ret; 6807 } 6808 6809 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6810 unsigned long start, unsigned long len) 6811 { 6812 size_t cur; 6813 size_t offset; 6814 struct page *page; 6815 char *kaddr; 6816 char *ptr = (char *)ptrv; 6817 unsigned long i = get_eb_page_index(start); 6818 int ret = 0; 6819 6820 if (check_eb_range(eb, start, len)) 6821 return -EINVAL; 6822 6823 offset = get_eb_offset_in_page(eb, start); 6824 6825 while (len > 0) { 6826 page = eb->pages[i]; 6827 6828 cur = min(len, (PAGE_SIZE - offset)); 6829 6830 kaddr = page_address(page); 6831 ret = memcmp(ptr, kaddr + offset, cur); 6832 if (ret) 6833 break; 6834 6835 ptr += cur; 6836 len -= cur; 6837 offset = 0; 6838 i++; 6839 } 6840 return ret; 6841 } 6842 6843 /* 6844 * Check that the extent buffer is uptodate. 6845 * 6846 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6847 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6848 */ 6849 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6850 struct page *page) 6851 { 6852 struct btrfs_fs_info *fs_info = eb->fs_info; 6853 6854 if (fs_info->sectorsize < PAGE_SIZE) { 6855 bool uptodate; 6856 6857 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6858 eb->start, eb->len); 6859 WARN_ON(!uptodate); 6860 } else { 6861 WARN_ON(!PageUptodate(page)); 6862 } 6863 } 6864 6865 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6866 const void *srcv) 6867 { 6868 char *kaddr; 6869 6870 assert_eb_page_uptodate(eb, eb->pages[0]); 6871 kaddr = page_address(eb->pages[0]) + 6872 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6873 chunk_tree_uuid)); 6874 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6875 } 6876 6877 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6878 { 6879 char *kaddr; 6880 6881 assert_eb_page_uptodate(eb, eb->pages[0]); 6882 kaddr = page_address(eb->pages[0]) + 6883 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6884 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6885 } 6886 6887 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6888 unsigned long start, unsigned long len) 6889 { 6890 size_t cur; 6891 size_t offset; 6892 struct page *page; 6893 char *kaddr; 6894 char *src = (char *)srcv; 6895 unsigned long i = get_eb_page_index(start); 6896 6897 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6898 6899 if (check_eb_range(eb, start, len)) 6900 return; 6901 6902 offset = get_eb_offset_in_page(eb, start); 6903 6904 while (len > 0) { 6905 page = eb->pages[i]; 6906 assert_eb_page_uptodate(eb, page); 6907 6908 cur = min(len, PAGE_SIZE - offset); 6909 kaddr = page_address(page); 6910 memcpy(kaddr + offset, src, cur); 6911 6912 src += cur; 6913 len -= cur; 6914 offset = 0; 6915 i++; 6916 } 6917 } 6918 6919 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 6920 unsigned long len) 6921 { 6922 size_t cur; 6923 size_t offset; 6924 struct page *page; 6925 char *kaddr; 6926 unsigned long i = get_eb_page_index(start); 6927 6928 if (check_eb_range(eb, start, len)) 6929 return; 6930 6931 offset = get_eb_offset_in_page(eb, start); 6932 6933 while (len > 0) { 6934 page = eb->pages[i]; 6935 assert_eb_page_uptodate(eb, page); 6936 6937 cur = min(len, PAGE_SIZE - offset); 6938 kaddr = page_address(page); 6939 memset(kaddr + offset, 0, cur); 6940 6941 len -= cur; 6942 offset = 0; 6943 i++; 6944 } 6945 } 6946 6947 void copy_extent_buffer_full(const struct extent_buffer *dst, 6948 const struct extent_buffer *src) 6949 { 6950 int i; 6951 int num_pages; 6952 6953 ASSERT(dst->len == src->len); 6954 6955 if (dst->fs_info->sectorsize == PAGE_SIZE) { 6956 num_pages = num_extent_pages(dst); 6957 for (i = 0; i < num_pages; i++) 6958 copy_page(page_address(dst->pages[i]), 6959 page_address(src->pages[i])); 6960 } else { 6961 size_t src_offset = get_eb_offset_in_page(src, 0); 6962 size_t dst_offset = get_eb_offset_in_page(dst, 0); 6963 6964 ASSERT(src->fs_info->sectorsize < PAGE_SIZE); 6965 memcpy(page_address(dst->pages[0]) + dst_offset, 6966 page_address(src->pages[0]) + src_offset, 6967 src->len); 6968 } 6969 } 6970 6971 void copy_extent_buffer(const struct extent_buffer *dst, 6972 const struct extent_buffer *src, 6973 unsigned long dst_offset, unsigned long src_offset, 6974 unsigned long len) 6975 { 6976 u64 dst_len = dst->len; 6977 size_t cur; 6978 size_t offset; 6979 struct page *page; 6980 char *kaddr; 6981 unsigned long i = get_eb_page_index(dst_offset); 6982 6983 if (check_eb_range(dst, dst_offset, len) || 6984 check_eb_range(src, src_offset, len)) 6985 return; 6986 6987 WARN_ON(src->len != dst_len); 6988 6989 offset = get_eb_offset_in_page(dst, dst_offset); 6990 6991 while (len > 0) { 6992 page = dst->pages[i]; 6993 assert_eb_page_uptodate(dst, page); 6994 6995 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 6996 6997 kaddr = page_address(page); 6998 read_extent_buffer(src, kaddr + offset, src_offset, cur); 6999 7000 src_offset += cur; 7001 len -= cur; 7002 offset = 0; 7003 i++; 7004 } 7005 } 7006 7007 /* 7008 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7009 * given bit number 7010 * @eb: the extent buffer 7011 * @start: offset of the bitmap item in the extent buffer 7012 * @nr: bit number 7013 * @page_index: return index of the page in the extent buffer that contains the 7014 * given bit number 7015 * @page_offset: return offset into the page given by page_index 7016 * 7017 * This helper hides the ugliness of finding the byte in an extent buffer which 7018 * contains a given bit. 7019 */ 7020 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7021 unsigned long start, unsigned long nr, 7022 unsigned long *page_index, 7023 size_t *page_offset) 7024 { 7025 size_t byte_offset = BIT_BYTE(nr); 7026 size_t offset; 7027 7028 /* 7029 * The byte we want is the offset of the extent buffer + the offset of 7030 * the bitmap item in the extent buffer + the offset of the byte in the 7031 * bitmap item. 7032 */ 7033 offset = start + offset_in_page(eb->start) + byte_offset; 7034 7035 *page_index = offset >> PAGE_SHIFT; 7036 *page_offset = offset_in_page(offset); 7037 } 7038 7039 /** 7040 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7041 * @eb: the extent buffer 7042 * @start: offset of the bitmap item in the extent buffer 7043 * @nr: bit number to test 7044 */ 7045 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7046 unsigned long nr) 7047 { 7048 u8 *kaddr; 7049 struct page *page; 7050 unsigned long i; 7051 size_t offset; 7052 7053 eb_bitmap_offset(eb, start, nr, &i, &offset); 7054 page = eb->pages[i]; 7055 assert_eb_page_uptodate(eb, page); 7056 kaddr = page_address(page); 7057 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7058 } 7059 7060 /** 7061 * extent_buffer_bitmap_set - set an area of a bitmap 7062 * @eb: the extent buffer 7063 * @start: offset of the bitmap item in the extent buffer 7064 * @pos: bit number of the first bit 7065 * @len: number of bits to set 7066 */ 7067 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7068 unsigned long pos, unsigned long len) 7069 { 7070 u8 *kaddr; 7071 struct page *page; 7072 unsigned long i; 7073 size_t offset; 7074 const unsigned int size = pos + len; 7075 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7076 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7077 7078 eb_bitmap_offset(eb, start, pos, &i, &offset); 7079 page = eb->pages[i]; 7080 assert_eb_page_uptodate(eb, page); 7081 kaddr = page_address(page); 7082 7083 while (len >= bits_to_set) { 7084 kaddr[offset] |= mask_to_set; 7085 len -= bits_to_set; 7086 bits_to_set = BITS_PER_BYTE; 7087 mask_to_set = ~0; 7088 if (++offset >= PAGE_SIZE && len > 0) { 7089 offset = 0; 7090 page = eb->pages[++i]; 7091 assert_eb_page_uptodate(eb, page); 7092 kaddr = page_address(page); 7093 } 7094 } 7095 if (len) { 7096 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7097 kaddr[offset] |= mask_to_set; 7098 } 7099 } 7100 7101 7102 /** 7103 * extent_buffer_bitmap_clear - clear an area of a bitmap 7104 * @eb: the extent buffer 7105 * @start: offset of the bitmap item in the extent buffer 7106 * @pos: bit number of the first bit 7107 * @len: number of bits to clear 7108 */ 7109 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7110 unsigned long start, unsigned long pos, 7111 unsigned long len) 7112 { 7113 u8 *kaddr; 7114 struct page *page; 7115 unsigned long i; 7116 size_t offset; 7117 const unsigned int size = pos + len; 7118 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7119 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7120 7121 eb_bitmap_offset(eb, start, pos, &i, &offset); 7122 page = eb->pages[i]; 7123 assert_eb_page_uptodate(eb, page); 7124 kaddr = page_address(page); 7125 7126 while (len >= bits_to_clear) { 7127 kaddr[offset] &= ~mask_to_clear; 7128 len -= bits_to_clear; 7129 bits_to_clear = BITS_PER_BYTE; 7130 mask_to_clear = ~0; 7131 if (++offset >= PAGE_SIZE && len > 0) { 7132 offset = 0; 7133 page = eb->pages[++i]; 7134 assert_eb_page_uptodate(eb, page); 7135 kaddr = page_address(page); 7136 } 7137 } 7138 if (len) { 7139 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7140 kaddr[offset] &= ~mask_to_clear; 7141 } 7142 } 7143 7144 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7145 { 7146 unsigned long distance = (src > dst) ? src - dst : dst - src; 7147 return distance < len; 7148 } 7149 7150 static void copy_pages(struct page *dst_page, struct page *src_page, 7151 unsigned long dst_off, unsigned long src_off, 7152 unsigned long len) 7153 { 7154 char *dst_kaddr = page_address(dst_page); 7155 char *src_kaddr; 7156 int must_memmove = 0; 7157 7158 if (dst_page != src_page) { 7159 src_kaddr = page_address(src_page); 7160 } else { 7161 src_kaddr = dst_kaddr; 7162 if (areas_overlap(src_off, dst_off, len)) 7163 must_memmove = 1; 7164 } 7165 7166 if (must_memmove) 7167 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7168 else 7169 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7170 } 7171 7172 void memcpy_extent_buffer(const struct extent_buffer *dst, 7173 unsigned long dst_offset, unsigned long src_offset, 7174 unsigned long len) 7175 { 7176 size_t cur; 7177 size_t dst_off_in_page; 7178 size_t src_off_in_page; 7179 unsigned long dst_i; 7180 unsigned long src_i; 7181 7182 if (check_eb_range(dst, dst_offset, len) || 7183 check_eb_range(dst, src_offset, len)) 7184 return; 7185 7186 while (len > 0) { 7187 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7188 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7189 7190 dst_i = get_eb_page_index(dst_offset); 7191 src_i = get_eb_page_index(src_offset); 7192 7193 cur = min(len, (unsigned long)(PAGE_SIZE - 7194 src_off_in_page)); 7195 cur = min_t(unsigned long, cur, 7196 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7197 7198 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7199 dst_off_in_page, src_off_in_page, cur); 7200 7201 src_offset += cur; 7202 dst_offset += cur; 7203 len -= cur; 7204 } 7205 } 7206 7207 void memmove_extent_buffer(const struct extent_buffer *dst, 7208 unsigned long dst_offset, unsigned long src_offset, 7209 unsigned long len) 7210 { 7211 size_t cur; 7212 size_t dst_off_in_page; 7213 size_t src_off_in_page; 7214 unsigned long dst_end = dst_offset + len - 1; 7215 unsigned long src_end = src_offset + len - 1; 7216 unsigned long dst_i; 7217 unsigned long src_i; 7218 7219 if (check_eb_range(dst, dst_offset, len) || 7220 check_eb_range(dst, src_offset, len)) 7221 return; 7222 if (dst_offset < src_offset) { 7223 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7224 return; 7225 } 7226 while (len > 0) { 7227 dst_i = get_eb_page_index(dst_end); 7228 src_i = get_eb_page_index(src_end); 7229 7230 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7231 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7232 7233 cur = min_t(unsigned long, len, src_off_in_page + 1); 7234 cur = min(cur, dst_off_in_page + 1); 7235 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7236 dst_off_in_page - cur + 1, 7237 src_off_in_page - cur + 1, cur); 7238 7239 dst_end -= cur; 7240 src_end -= cur; 7241 len -= cur; 7242 } 7243 } 7244 7245 #define GANG_LOOKUP_SIZE 16 7246 static struct extent_buffer *get_next_extent_buffer( 7247 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7248 { 7249 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7250 struct extent_buffer *found = NULL; 7251 u64 page_start = page_offset(page); 7252 u64 cur = page_start; 7253 7254 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7255 lockdep_assert_held(&fs_info->buffer_lock); 7256 7257 while (cur < page_start + PAGE_SIZE) { 7258 int ret; 7259 int i; 7260 7261 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7262 (void **)gang, cur >> fs_info->sectorsize_bits, 7263 min_t(unsigned int, GANG_LOOKUP_SIZE, 7264 PAGE_SIZE / fs_info->nodesize)); 7265 if (ret == 0) 7266 goto out; 7267 for (i = 0; i < ret; i++) { 7268 /* Already beyond page end */ 7269 if (gang[i]->start >= page_start + PAGE_SIZE) 7270 goto out; 7271 /* Found one */ 7272 if (gang[i]->start >= bytenr) { 7273 found = gang[i]; 7274 goto out; 7275 } 7276 } 7277 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7278 } 7279 out: 7280 return found; 7281 } 7282 7283 static int try_release_subpage_extent_buffer(struct page *page) 7284 { 7285 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7286 u64 cur = page_offset(page); 7287 const u64 end = page_offset(page) + PAGE_SIZE; 7288 int ret; 7289 7290 while (cur < end) { 7291 struct extent_buffer *eb = NULL; 7292 7293 /* 7294 * Unlike try_release_extent_buffer() which uses page->private 7295 * to grab buffer, for subpage case we rely on radix tree, thus 7296 * we need to ensure radix tree consistency. 7297 * 7298 * We also want an atomic snapshot of the radix tree, thus go 7299 * with spinlock rather than RCU. 7300 */ 7301 spin_lock(&fs_info->buffer_lock); 7302 eb = get_next_extent_buffer(fs_info, page, cur); 7303 if (!eb) { 7304 /* No more eb in the page range after or at cur */ 7305 spin_unlock(&fs_info->buffer_lock); 7306 break; 7307 } 7308 cur = eb->start + eb->len; 7309 7310 /* 7311 * The same as try_release_extent_buffer(), to ensure the eb 7312 * won't disappear out from under us. 7313 */ 7314 spin_lock(&eb->refs_lock); 7315 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7316 spin_unlock(&eb->refs_lock); 7317 spin_unlock(&fs_info->buffer_lock); 7318 break; 7319 } 7320 spin_unlock(&fs_info->buffer_lock); 7321 7322 /* 7323 * If tree ref isn't set then we know the ref on this eb is a 7324 * real ref, so just return, this eb will likely be freed soon 7325 * anyway. 7326 */ 7327 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7328 spin_unlock(&eb->refs_lock); 7329 break; 7330 } 7331 7332 /* 7333 * Here we don't care about the return value, we will always 7334 * check the page private at the end. And 7335 * release_extent_buffer() will release the refs_lock. 7336 */ 7337 release_extent_buffer(eb); 7338 } 7339 /* 7340 * Finally to check if we have cleared page private, as if we have 7341 * released all ebs in the page, the page private should be cleared now. 7342 */ 7343 spin_lock(&page->mapping->private_lock); 7344 if (!PagePrivate(page)) 7345 ret = 1; 7346 else 7347 ret = 0; 7348 spin_unlock(&page->mapping->private_lock); 7349 return ret; 7350 7351 } 7352 7353 int try_release_extent_buffer(struct page *page) 7354 { 7355 struct extent_buffer *eb; 7356 7357 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 7358 return try_release_subpage_extent_buffer(page); 7359 7360 /* 7361 * We need to make sure nobody is changing page->private, as we rely on 7362 * page->private as the pointer to extent buffer. 7363 */ 7364 spin_lock(&page->mapping->private_lock); 7365 if (!PagePrivate(page)) { 7366 spin_unlock(&page->mapping->private_lock); 7367 return 1; 7368 } 7369 7370 eb = (struct extent_buffer *)page->private; 7371 BUG_ON(!eb); 7372 7373 /* 7374 * This is a little awful but should be ok, we need to make sure that 7375 * the eb doesn't disappear out from under us while we're looking at 7376 * this page. 7377 */ 7378 spin_lock(&eb->refs_lock); 7379 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7380 spin_unlock(&eb->refs_lock); 7381 spin_unlock(&page->mapping->private_lock); 7382 return 0; 7383 } 7384 spin_unlock(&page->mapping->private_lock); 7385 7386 /* 7387 * If tree ref isn't set then we know the ref on this eb is a real ref, 7388 * so just return, this page will likely be freed soon anyway. 7389 */ 7390 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7391 spin_unlock(&eb->refs_lock); 7392 return 0; 7393 } 7394 7395 return release_extent_buffer(eb); 7396 } 7397 7398 /* 7399 * btrfs_readahead_tree_block - attempt to readahead a child block 7400 * @fs_info: the fs_info 7401 * @bytenr: bytenr to read 7402 * @owner_root: objectid of the root that owns this eb 7403 * @gen: generation for the uptodate check, can be 0 7404 * @level: level for the eb 7405 * 7406 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7407 * normal uptodate check of the eb, without checking the generation. If we have 7408 * to read the block we will not block on anything. 7409 */ 7410 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7411 u64 bytenr, u64 owner_root, u64 gen, int level) 7412 { 7413 struct extent_buffer *eb; 7414 int ret; 7415 7416 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7417 if (IS_ERR(eb)) 7418 return; 7419 7420 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7421 free_extent_buffer(eb); 7422 return; 7423 } 7424 7425 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7426 if (ret < 0) 7427 free_extent_buffer_stale(eb); 7428 else 7429 free_extent_buffer(eb); 7430 } 7431 7432 /* 7433 * btrfs_readahead_node_child - readahead a node's child block 7434 * @node: parent node we're reading from 7435 * @slot: slot in the parent node for the child we want to read 7436 * 7437 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7438 * the slot in the node provided. 7439 */ 7440 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7441 { 7442 btrfs_readahead_tree_block(node->fs_info, 7443 btrfs_node_blockptr(node, slot), 7444 btrfs_header_owner(node), 7445 btrfs_node_ptr_generation(node, slot), 7446 btrfs_header_level(node) - 1); 7447 } 7448