xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 3366e358)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/gfp.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 
20 static struct kmem_cache *extent_state_cache;
21 static struct kmem_cache *extent_buffer_cache;
22 
23 static LIST_HEAD(buffers);
24 static LIST_HEAD(states);
25 
26 #define LEAK_DEBUG 0
27 #if LEAK_DEBUG
28 static DEFINE_SPINLOCK(leak_lock);
29 #endif
30 
31 #define BUFFER_LRU_MAX 64
32 
33 struct tree_entry {
34 	u64 start;
35 	u64 end;
36 	struct rb_node rb_node;
37 };
38 
39 struct extent_page_data {
40 	struct bio *bio;
41 	struct extent_io_tree *tree;
42 	get_extent_t *get_extent;
43 
44 	/* tells writepage not to lock the state bits for this range
45 	 * it still does the unlocking
46 	 */
47 	unsigned int extent_locked:1;
48 
49 	/* tells the submit_bio code to use a WRITE_SYNC */
50 	unsigned int sync_io:1;
51 };
52 
53 int __init extent_io_init(void)
54 {
55 	extent_state_cache = kmem_cache_create("extent_state",
56 			sizeof(struct extent_state), 0,
57 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
58 	if (!extent_state_cache)
59 		return -ENOMEM;
60 
61 	extent_buffer_cache = kmem_cache_create("extent_buffers",
62 			sizeof(struct extent_buffer), 0,
63 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
64 	if (!extent_buffer_cache)
65 		goto free_state_cache;
66 	return 0;
67 
68 free_state_cache:
69 	kmem_cache_destroy(extent_state_cache);
70 	return -ENOMEM;
71 }
72 
73 void extent_io_exit(void)
74 {
75 	struct extent_state *state;
76 	struct extent_buffer *eb;
77 
78 	while (!list_empty(&states)) {
79 		state = list_entry(states.next, struct extent_state, leak_list);
80 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
81 		       "state %lu in tree %p refs %d\n",
82 		       (unsigned long long)state->start,
83 		       (unsigned long long)state->end,
84 		       state->state, state->tree, atomic_read(&state->refs));
85 		list_del(&state->leak_list);
86 		kmem_cache_free(extent_state_cache, state);
87 
88 	}
89 
90 	while (!list_empty(&buffers)) {
91 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
93 		       "refs %d\n", (unsigned long long)eb->start,
94 		       eb->len, atomic_read(&eb->refs));
95 		list_del(&eb->leak_list);
96 		kmem_cache_free(extent_buffer_cache, eb);
97 	}
98 	if (extent_state_cache)
99 		kmem_cache_destroy(extent_state_cache);
100 	if (extent_buffer_cache)
101 		kmem_cache_destroy(extent_buffer_cache);
102 }
103 
104 void extent_io_tree_init(struct extent_io_tree *tree,
105 			  struct address_space *mapping, gfp_t mask)
106 {
107 	tree->state = RB_ROOT;
108 	tree->buffer = RB_ROOT;
109 	tree->ops = NULL;
110 	tree->dirty_bytes = 0;
111 	spin_lock_init(&tree->lock);
112 	spin_lock_init(&tree->buffer_lock);
113 	tree->mapping = mapping;
114 }
115 
116 static struct extent_state *alloc_extent_state(gfp_t mask)
117 {
118 	struct extent_state *state;
119 #if LEAK_DEBUG
120 	unsigned long flags;
121 #endif
122 
123 	state = kmem_cache_alloc(extent_state_cache, mask);
124 	if (!state)
125 		return state;
126 	state->state = 0;
127 	state->private = 0;
128 	state->tree = NULL;
129 #if LEAK_DEBUG
130 	spin_lock_irqsave(&leak_lock, flags);
131 	list_add(&state->leak_list, &states);
132 	spin_unlock_irqrestore(&leak_lock, flags);
133 #endif
134 	atomic_set(&state->refs, 1);
135 	init_waitqueue_head(&state->wq);
136 	return state;
137 }
138 
139 static void free_extent_state(struct extent_state *state)
140 {
141 	if (!state)
142 		return;
143 	if (atomic_dec_and_test(&state->refs)) {
144 #if LEAK_DEBUG
145 		unsigned long flags;
146 #endif
147 		WARN_ON(state->tree);
148 #if LEAK_DEBUG
149 		spin_lock_irqsave(&leak_lock, flags);
150 		list_del(&state->leak_list);
151 		spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153 		kmem_cache_free(extent_state_cache, state);
154 	}
155 }
156 
157 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
158 				   struct rb_node *node)
159 {
160 	struct rb_node **p = &root->rb_node;
161 	struct rb_node *parent = NULL;
162 	struct tree_entry *entry;
163 
164 	while (*p) {
165 		parent = *p;
166 		entry = rb_entry(parent, struct tree_entry, rb_node);
167 
168 		if (offset < entry->start)
169 			p = &(*p)->rb_left;
170 		else if (offset > entry->end)
171 			p = &(*p)->rb_right;
172 		else
173 			return parent;
174 	}
175 
176 	entry = rb_entry(node, struct tree_entry, rb_node);
177 	rb_link_node(node, parent, p);
178 	rb_insert_color(node, root);
179 	return NULL;
180 }
181 
182 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
183 				     struct rb_node **prev_ret,
184 				     struct rb_node **next_ret)
185 {
186 	struct rb_root *root = &tree->state;
187 	struct rb_node *n = root->rb_node;
188 	struct rb_node *prev = NULL;
189 	struct rb_node *orig_prev = NULL;
190 	struct tree_entry *entry;
191 	struct tree_entry *prev_entry = NULL;
192 
193 	while (n) {
194 		entry = rb_entry(n, struct tree_entry, rb_node);
195 		prev = n;
196 		prev_entry = entry;
197 
198 		if (offset < entry->start)
199 			n = n->rb_left;
200 		else if (offset > entry->end)
201 			n = n->rb_right;
202 		else
203 			return n;
204 	}
205 
206 	if (prev_ret) {
207 		orig_prev = prev;
208 		while (prev && offset > prev_entry->end) {
209 			prev = rb_next(prev);
210 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
211 		}
212 		*prev_ret = prev;
213 		prev = orig_prev;
214 	}
215 
216 	if (next_ret) {
217 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
218 		while (prev && offset < prev_entry->start) {
219 			prev = rb_prev(prev);
220 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 		}
222 		*next_ret = prev;
223 	}
224 	return NULL;
225 }
226 
227 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
228 					  u64 offset)
229 {
230 	struct rb_node *prev = NULL;
231 	struct rb_node *ret;
232 
233 	ret = __etree_search(tree, offset, &prev, NULL);
234 	if (!ret)
235 		return prev;
236 	return ret;
237 }
238 
239 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
240 					  u64 offset, struct rb_node *node)
241 {
242 	struct rb_root *root = &tree->buffer;
243 	struct rb_node **p = &root->rb_node;
244 	struct rb_node *parent = NULL;
245 	struct extent_buffer *eb;
246 
247 	while (*p) {
248 		parent = *p;
249 		eb = rb_entry(parent, struct extent_buffer, rb_node);
250 
251 		if (offset < eb->start)
252 			p = &(*p)->rb_left;
253 		else if (offset > eb->start)
254 			p = &(*p)->rb_right;
255 		else
256 			return eb;
257 	}
258 
259 	rb_link_node(node, parent, p);
260 	rb_insert_color(node, root);
261 	return NULL;
262 }
263 
264 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
265 					   u64 offset)
266 {
267 	struct rb_root *root = &tree->buffer;
268 	struct rb_node *n = root->rb_node;
269 	struct extent_buffer *eb;
270 
271 	while (n) {
272 		eb = rb_entry(n, struct extent_buffer, rb_node);
273 		if (offset < eb->start)
274 			n = n->rb_left;
275 		else if (offset > eb->start)
276 			n = n->rb_right;
277 		else
278 			return eb;
279 	}
280 	return NULL;
281 }
282 
283 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
284 		     struct extent_state *other)
285 {
286 	if (tree->ops && tree->ops->merge_extent_hook)
287 		tree->ops->merge_extent_hook(tree->mapping->host, new,
288 					     other);
289 }
290 
291 /*
292  * utility function to look for merge candidates inside a given range.
293  * Any extents with matching state are merged together into a single
294  * extent in the tree.  Extents with EXTENT_IO in their state field
295  * are not merged because the end_io handlers need to be able to do
296  * operations on them without sleeping (or doing allocations/splits).
297  *
298  * This should be called with the tree lock held.
299  */
300 static int merge_state(struct extent_io_tree *tree,
301 		       struct extent_state *state)
302 {
303 	struct extent_state *other;
304 	struct rb_node *other_node;
305 
306 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
307 		return 0;
308 
309 	other_node = rb_prev(&state->rb_node);
310 	if (other_node) {
311 		other = rb_entry(other_node, struct extent_state, rb_node);
312 		if (other->end == state->start - 1 &&
313 		    other->state == state->state) {
314 			merge_cb(tree, state, other);
315 			state->start = other->start;
316 			other->tree = NULL;
317 			rb_erase(&other->rb_node, &tree->state);
318 			free_extent_state(other);
319 		}
320 	}
321 	other_node = rb_next(&state->rb_node);
322 	if (other_node) {
323 		other = rb_entry(other_node, struct extent_state, rb_node);
324 		if (other->start == state->end + 1 &&
325 		    other->state == state->state) {
326 			merge_cb(tree, state, other);
327 			other->start = state->start;
328 			state->tree = NULL;
329 			rb_erase(&state->rb_node, &tree->state);
330 			free_extent_state(state);
331 			state = NULL;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 static int set_state_cb(struct extent_io_tree *tree,
339 			 struct extent_state *state,
340 			 unsigned long bits)
341 {
342 	if (tree->ops && tree->ops->set_bit_hook) {
343 		return tree->ops->set_bit_hook(tree->mapping->host,
344 					       state->start, state->end,
345 					       state->state, bits);
346 	}
347 
348 	return 0;
349 }
350 
351 static void clear_state_cb(struct extent_io_tree *tree,
352 			   struct extent_state *state,
353 			   unsigned long bits)
354 {
355 	if (tree->ops && tree->ops->clear_bit_hook)
356 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
357 }
358 
359 /*
360  * insert an extent_state struct into the tree.  'bits' are set on the
361  * struct before it is inserted.
362  *
363  * This may return -EEXIST if the extent is already there, in which case the
364  * state struct is freed.
365  *
366  * The tree lock is not taken internally.  This is a utility function and
367  * probably isn't what you want to call (see set/clear_extent_bit).
368  */
369 static int insert_state(struct extent_io_tree *tree,
370 			struct extent_state *state, u64 start, u64 end,
371 			int bits)
372 {
373 	struct rb_node *node;
374 	int ret;
375 
376 	if (end < start) {
377 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
378 		       (unsigned long long)end,
379 		       (unsigned long long)start);
380 		WARN_ON(1);
381 	}
382 	state->start = start;
383 	state->end = end;
384 	ret = set_state_cb(tree, state, bits);
385 	if (ret)
386 		return ret;
387 
388 	if (bits & EXTENT_DIRTY)
389 		tree->dirty_bytes += end - start + 1;
390 	state->state |= bits;
391 	node = tree_insert(&tree->state, end, &state->rb_node);
392 	if (node) {
393 		struct extent_state *found;
394 		found = rb_entry(node, struct extent_state, rb_node);
395 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
396 		       "%llu %llu\n", (unsigned long long)found->start,
397 		       (unsigned long long)found->end,
398 		       (unsigned long long)start, (unsigned long long)end);
399 		free_extent_state(state);
400 		return -EEXIST;
401 	}
402 	state->tree = tree;
403 	merge_state(tree, state);
404 	return 0;
405 }
406 
407 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
408 		     u64 split)
409 {
410 	if (tree->ops && tree->ops->split_extent_hook)
411 		return tree->ops->split_extent_hook(tree->mapping->host,
412 						    orig, split);
413 	return 0;
414 }
415 
416 /*
417  * split a given extent state struct in two, inserting the preallocated
418  * struct 'prealloc' as the newly created second half.  'split' indicates an
419  * offset inside 'orig' where it should be split.
420  *
421  * Before calling,
422  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
423  * are two extent state structs in the tree:
424  * prealloc: [orig->start, split - 1]
425  * orig: [ split, orig->end ]
426  *
427  * The tree locks are not taken by this function. They need to be held
428  * by the caller.
429  */
430 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
431 		       struct extent_state *prealloc, u64 split)
432 {
433 	struct rb_node *node;
434 
435 	split_cb(tree, orig, split);
436 
437 	prealloc->start = orig->start;
438 	prealloc->end = split - 1;
439 	prealloc->state = orig->state;
440 	orig->start = split;
441 
442 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
443 	if (node) {
444 		free_extent_state(prealloc);
445 		return -EEXIST;
446 	}
447 	prealloc->tree = tree;
448 	return 0;
449 }
450 
451 /*
452  * utility function to clear some bits in an extent state struct.
453  * it will optionally wake up any one waiting on this state (wake == 1), or
454  * forcibly remove the state from the tree (delete == 1).
455  *
456  * If no bits are set on the state struct after clearing things, the
457  * struct is freed and removed from the tree
458  */
459 static int clear_state_bit(struct extent_io_tree *tree,
460 			    struct extent_state *state, int bits, int wake,
461 			    int delete)
462 {
463 	int bits_to_clear = bits & ~EXTENT_DO_ACCOUNTING;
464 	int ret = state->state & bits_to_clear;
465 
466 	if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
467 		u64 range = state->end - state->start + 1;
468 		WARN_ON(range > tree->dirty_bytes);
469 		tree->dirty_bytes -= range;
470 	}
471 	clear_state_cb(tree, state, bits);
472 	state->state &= ~bits_to_clear;
473 	if (wake)
474 		wake_up(&state->wq);
475 	if (delete || state->state == 0) {
476 		if (state->tree) {
477 			clear_state_cb(tree, state, state->state);
478 			rb_erase(&state->rb_node, &tree->state);
479 			state->tree = NULL;
480 			free_extent_state(state);
481 		} else {
482 			WARN_ON(1);
483 		}
484 	} else {
485 		merge_state(tree, state);
486 	}
487 	return ret;
488 }
489 
490 /*
491  * clear some bits on a range in the tree.  This may require splitting
492  * or inserting elements in the tree, so the gfp mask is used to
493  * indicate which allocations or sleeping are allowed.
494  *
495  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
496  * the given range from the tree regardless of state (ie for truncate).
497  *
498  * the range [start, end] is inclusive.
499  *
500  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
501  * bits were already set, or zero if none of the bits were already set.
502  */
503 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
504 		     int bits, int wake, int delete,
505 		     struct extent_state **cached_state,
506 		     gfp_t mask)
507 {
508 	struct extent_state *state;
509 	struct extent_state *cached;
510 	struct extent_state *prealloc = NULL;
511 	struct rb_node *next_node;
512 	struct rb_node *node;
513 	u64 last_end;
514 	int err;
515 	int set = 0;
516 	int clear = 0;
517 
518 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
519 		clear = 1;
520 again:
521 	if (!prealloc && (mask & __GFP_WAIT)) {
522 		prealloc = alloc_extent_state(mask);
523 		if (!prealloc)
524 			return -ENOMEM;
525 	}
526 
527 	spin_lock(&tree->lock);
528 	if (cached_state) {
529 		cached = *cached_state;
530 
531 		if (clear) {
532 			*cached_state = NULL;
533 			cached_state = NULL;
534 		}
535 
536 		if (cached && cached->tree && cached->start == start) {
537 			if (clear)
538 				atomic_dec(&cached->refs);
539 			state = cached;
540 			goto hit_next;
541 		}
542 		if (clear)
543 			free_extent_state(cached);
544 	}
545 	/*
546 	 * this search will find the extents that end after
547 	 * our range starts
548 	 */
549 	node = tree_search(tree, start);
550 	if (!node)
551 		goto out;
552 	state = rb_entry(node, struct extent_state, rb_node);
553 hit_next:
554 	if (state->start > end)
555 		goto out;
556 	WARN_ON(state->end < start);
557 	last_end = state->end;
558 
559 	/*
560 	 *     | ---- desired range ---- |
561 	 *  | state | or
562 	 *  | ------------- state -------------- |
563 	 *
564 	 * We need to split the extent we found, and may flip
565 	 * bits on second half.
566 	 *
567 	 * If the extent we found extends past our range, we
568 	 * just split and search again.  It'll get split again
569 	 * the next time though.
570 	 *
571 	 * If the extent we found is inside our range, we clear
572 	 * the desired bit on it.
573 	 */
574 
575 	if (state->start < start) {
576 		if (!prealloc)
577 			prealloc = alloc_extent_state(GFP_ATOMIC);
578 		err = split_state(tree, state, prealloc, start);
579 		BUG_ON(err == -EEXIST);
580 		prealloc = NULL;
581 		if (err)
582 			goto out;
583 		if (state->end <= end) {
584 			set |= clear_state_bit(tree, state, bits, wake,
585 					       delete);
586 			if (last_end == (u64)-1)
587 				goto out;
588 			start = last_end + 1;
589 		}
590 		goto search_again;
591 	}
592 	/*
593 	 * | ---- desired range ---- |
594 	 *                        | state |
595 	 * We need to split the extent, and clear the bit
596 	 * on the first half
597 	 */
598 	if (state->start <= end && state->end > end) {
599 		if (!prealloc)
600 			prealloc = alloc_extent_state(GFP_ATOMIC);
601 		err = split_state(tree, state, prealloc, end + 1);
602 		BUG_ON(err == -EEXIST);
603 		if (wake)
604 			wake_up(&state->wq);
605 
606 		set |= clear_state_bit(tree, prealloc, bits, wake, delete);
607 
608 		prealloc = NULL;
609 		goto out;
610 	}
611 
612 	if (state->end < end && prealloc && !need_resched())
613 		next_node = rb_next(&state->rb_node);
614 	else
615 		next_node = NULL;
616 
617 	set |= clear_state_bit(tree, state, bits, wake, delete);
618 	if (last_end == (u64)-1)
619 		goto out;
620 	start = last_end + 1;
621 	if (start <= end && next_node) {
622 		state = rb_entry(next_node, struct extent_state,
623 				 rb_node);
624 		if (state->start == start)
625 			goto hit_next;
626 	}
627 	goto search_again;
628 
629 out:
630 	spin_unlock(&tree->lock);
631 	if (prealloc)
632 		free_extent_state(prealloc);
633 
634 	return set;
635 
636 search_again:
637 	if (start > end)
638 		goto out;
639 	spin_unlock(&tree->lock);
640 	if (mask & __GFP_WAIT)
641 		cond_resched();
642 	goto again;
643 }
644 
645 static int wait_on_state(struct extent_io_tree *tree,
646 			 struct extent_state *state)
647 		__releases(tree->lock)
648 		__acquires(tree->lock)
649 {
650 	DEFINE_WAIT(wait);
651 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
652 	spin_unlock(&tree->lock);
653 	schedule();
654 	spin_lock(&tree->lock);
655 	finish_wait(&state->wq, &wait);
656 	return 0;
657 }
658 
659 /*
660  * waits for one or more bits to clear on a range in the state tree.
661  * The range [start, end] is inclusive.
662  * The tree lock is taken by this function
663  */
664 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
665 {
666 	struct extent_state *state;
667 	struct rb_node *node;
668 
669 	spin_lock(&tree->lock);
670 again:
671 	while (1) {
672 		/*
673 		 * this search will find all the extents that end after
674 		 * our range starts
675 		 */
676 		node = tree_search(tree, start);
677 		if (!node)
678 			break;
679 
680 		state = rb_entry(node, struct extent_state, rb_node);
681 
682 		if (state->start > end)
683 			goto out;
684 
685 		if (state->state & bits) {
686 			start = state->start;
687 			atomic_inc(&state->refs);
688 			wait_on_state(tree, state);
689 			free_extent_state(state);
690 			goto again;
691 		}
692 		start = state->end + 1;
693 
694 		if (start > end)
695 			break;
696 
697 		if (need_resched()) {
698 			spin_unlock(&tree->lock);
699 			cond_resched();
700 			spin_lock(&tree->lock);
701 		}
702 	}
703 out:
704 	spin_unlock(&tree->lock);
705 	return 0;
706 }
707 
708 static int set_state_bits(struct extent_io_tree *tree,
709 			   struct extent_state *state,
710 			   int bits)
711 {
712 	int ret;
713 
714 	ret = set_state_cb(tree, state, bits);
715 	if (ret)
716 		return ret;
717 
718 	if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
719 		u64 range = state->end - state->start + 1;
720 		tree->dirty_bytes += range;
721 	}
722 	state->state |= bits;
723 
724 	return 0;
725 }
726 
727 static void cache_state(struct extent_state *state,
728 			struct extent_state **cached_ptr)
729 {
730 	if (cached_ptr && !(*cached_ptr)) {
731 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
732 			*cached_ptr = state;
733 			atomic_inc(&state->refs);
734 		}
735 	}
736 }
737 
738 /*
739  * set some bits on a range in the tree.  This may require allocations or
740  * sleeping, so the gfp mask is used to indicate what is allowed.
741  *
742  * If any of the exclusive bits are set, this will fail with -EEXIST if some
743  * part of the range already has the desired bits set.  The start of the
744  * existing range is returned in failed_start in this case.
745  *
746  * [start, end] is inclusive This takes the tree lock.
747  */
748 
749 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
750 			  int bits, int exclusive_bits, u64 *failed_start,
751 			  struct extent_state **cached_state,
752 			  gfp_t mask)
753 {
754 	struct extent_state *state;
755 	struct extent_state *prealloc = NULL;
756 	struct rb_node *node;
757 	int err = 0;
758 	u64 last_start;
759 	u64 last_end;
760 
761 again:
762 	if (!prealloc && (mask & __GFP_WAIT)) {
763 		prealloc = alloc_extent_state(mask);
764 		if (!prealloc)
765 			return -ENOMEM;
766 	}
767 
768 	spin_lock(&tree->lock);
769 	if (cached_state && *cached_state) {
770 		state = *cached_state;
771 		if (state->start == start && state->tree) {
772 			node = &state->rb_node;
773 			goto hit_next;
774 		}
775 	}
776 	/*
777 	 * this search will find all the extents that end after
778 	 * our range starts.
779 	 */
780 	node = tree_search(tree, start);
781 	if (!node) {
782 		err = insert_state(tree, prealloc, start, end, bits);
783 		prealloc = NULL;
784 		BUG_ON(err == -EEXIST);
785 		goto out;
786 	}
787 	state = rb_entry(node, struct extent_state, rb_node);
788 hit_next:
789 	last_start = state->start;
790 	last_end = state->end;
791 
792 	/*
793 	 * | ---- desired range ---- |
794 	 * | state |
795 	 *
796 	 * Just lock what we found and keep going
797 	 */
798 	if (state->start == start && state->end <= end) {
799 		struct rb_node *next_node;
800 		if (state->state & exclusive_bits) {
801 			*failed_start = state->start;
802 			err = -EEXIST;
803 			goto out;
804 		}
805 
806 		err = set_state_bits(tree, state, bits);
807 		if (err)
808 			goto out;
809 
810 		cache_state(state, cached_state);
811 		merge_state(tree, state);
812 		if (last_end == (u64)-1)
813 			goto out;
814 
815 		start = last_end + 1;
816 		if (start < end && prealloc && !need_resched()) {
817 			next_node = rb_next(node);
818 			if (next_node) {
819 				state = rb_entry(next_node, struct extent_state,
820 						 rb_node);
821 				if (state->start == start)
822 					goto hit_next;
823 			}
824 		}
825 		goto search_again;
826 	}
827 
828 	/*
829 	 *     | ---- desired range ---- |
830 	 * | state |
831 	 *   or
832 	 * | ------------- state -------------- |
833 	 *
834 	 * We need to split the extent we found, and may flip bits on
835 	 * second half.
836 	 *
837 	 * If the extent we found extends past our
838 	 * range, we just split and search again.  It'll get split
839 	 * again the next time though.
840 	 *
841 	 * If the extent we found is inside our range, we set the
842 	 * desired bit on it.
843 	 */
844 	if (state->start < start) {
845 		if (state->state & exclusive_bits) {
846 			*failed_start = start;
847 			err = -EEXIST;
848 			goto out;
849 		}
850 		err = split_state(tree, state, prealloc, start);
851 		BUG_ON(err == -EEXIST);
852 		prealloc = NULL;
853 		if (err)
854 			goto out;
855 		if (state->end <= end) {
856 			err = set_state_bits(tree, state, bits);
857 			if (err)
858 				goto out;
859 			cache_state(state, cached_state);
860 			merge_state(tree, state);
861 			if (last_end == (u64)-1)
862 				goto out;
863 			start = last_end + 1;
864 		}
865 		goto search_again;
866 	}
867 	/*
868 	 * | ---- desired range ---- |
869 	 *     | state | or               | state |
870 	 *
871 	 * There's a hole, we need to insert something in it and
872 	 * ignore the extent we found.
873 	 */
874 	if (state->start > start) {
875 		u64 this_end;
876 		if (end < last_start)
877 			this_end = end;
878 		else
879 			this_end = last_start - 1;
880 		err = insert_state(tree, prealloc, start, this_end,
881 				   bits);
882 		BUG_ON(err == -EEXIST);
883 		if (err) {
884 			prealloc = NULL;
885 			goto out;
886 		}
887 		cache_state(prealloc, cached_state);
888 		prealloc = NULL;
889 		start = this_end + 1;
890 		goto search_again;
891 	}
892 	/*
893 	 * | ---- desired range ---- |
894 	 *                        | state |
895 	 * We need to split the extent, and set the bit
896 	 * on the first half
897 	 */
898 	if (state->start <= end && state->end > end) {
899 		if (state->state & exclusive_bits) {
900 			*failed_start = start;
901 			err = -EEXIST;
902 			goto out;
903 		}
904 		err = split_state(tree, state, prealloc, end + 1);
905 		BUG_ON(err == -EEXIST);
906 
907 		err = set_state_bits(tree, prealloc, bits);
908 		if (err) {
909 			prealloc = NULL;
910 			goto out;
911 		}
912 		cache_state(prealloc, cached_state);
913 		merge_state(tree, prealloc);
914 		prealloc = NULL;
915 		goto out;
916 	}
917 
918 	goto search_again;
919 
920 out:
921 	spin_unlock(&tree->lock);
922 	if (prealloc)
923 		free_extent_state(prealloc);
924 
925 	return err;
926 
927 search_again:
928 	if (start > end)
929 		goto out;
930 	spin_unlock(&tree->lock);
931 	if (mask & __GFP_WAIT)
932 		cond_resched();
933 	goto again;
934 }
935 
936 /* wrappers around set/clear extent bit */
937 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
938 		     gfp_t mask)
939 {
940 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
941 			      NULL, mask);
942 }
943 
944 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
945 		    int bits, gfp_t mask)
946 {
947 	return set_extent_bit(tree, start, end, bits, 0, NULL,
948 			      NULL, mask);
949 }
950 
951 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
952 		      int bits, gfp_t mask)
953 {
954 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
955 }
956 
957 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
958 			struct extent_state **cached_state, gfp_t mask)
959 {
960 	return set_extent_bit(tree, start, end,
961 			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
962 			      0, NULL, cached_state, mask);
963 }
964 
965 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
966 		       gfp_t mask)
967 {
968 	return clear_extent_bit(tree, start, end,
969 				EXTENT_DIRTY | EXTENT_DELALLOC |
970 				EXTENT_DO_ACCOUNTING, 0, 0,
971 				NULL, mask);
972 }
973 
974 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
975 		     gfp_t mask)
976 {
977 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
978 			      NULL, mask);
979 }
980 
981 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
982 		       gfp_t mask)
983 {
984 	return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
985 				NULL, mask);
986 }
987 
988 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
989 			gfp_t mask)
990 {
991 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
992 			      NULL, mask);
993 }
994 
995 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
996 				 u64 end, struct extent_state **cached_state,
997 				 gfp_t mask)
998 {
999 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1000 				cached_state, mask);
1001 }
1002 
1003 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1004 {
1005 	return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
1006 }
1007 
1008 /*
1009  * either insert or lock state struct between start and end use mask to tell
1010  * us if waiting is desired.
1011  */
1012 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1013 		     int bits, struct extent_state **cached_state, gfp_t mask)
1014 {
1015 	int err;
1016 	u64 failed_start;
1017 	while (1) {
1018 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1019 				     EXTENT_LOCKED, &failed_start,
1020 				     cached_state, mask);
1021 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
1022 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1023 			start = failed_start;
1024 		} else {
1025 			break;
1026 		}
1027 		WARN_ON(start > end);
1028 	}
1029 	return err;
1030 }
1031 
1032 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1033 {
1034 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
1035 }
1036 
1037 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1038 		    gfp_t mask)
1039 {
1040 	int err;
1041 	u64 failed_start;
1042 
1043 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1044 			     &failed_start, NULL, mask);
1045 	if (err == -EEXIST) {
1046 		if (failed_start > start)
1047 			clear_extent_bit(tree, start, failed_start - 1,
1048 					 EXTENT_LOCKED, 1, 0, NULL, mask);
1049 		return 0;
1050 	}
1051 	return 1;
1052 }
1053 
1054 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1055 			 struct extent_state **cached, gfp_t mask)
1056 {
1057 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1058 				mask);
1059 }
1060 
1061 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1062 		  gfp_t mask)
1063 {
1064 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1065 				mask);
1066 }
1067 
1068 /*
1069  * helper function to set pages and extents in the tree dirty
1070  */
1071 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1072 {
1073 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1074 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1075 	struct page *page;
1076 
1077 	while (index <= end_index) {
1078 		page = find_get_page(tree->mapping, index);
1079 		BUG_ON(!page);
1080 		__set_page_dirty_nobuffers(page);
1081 		page_cache_release(page);
1082 		index++;
1083 	}
1084 	return 0;
1085 }
1086 
1087 /*
1088  * helper function to set both pages and extents in the tree writeback
1089  */
1090 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1091 {
1092 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1093 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1094 	struct page *page;
1095 
1096 	while (index <= end_index) {
1097 		page = find_get_page(tree->mapping, index);
1098 		BUG_ON(!page);
1099 		set_page_writeback(page);
1100 		page_cache_release(page);
1101 		index++;
1102 	}
1103 	return 0;
1104 }
1105 
1106 /*
1107  * find the first offset in the io tree with 'bits' set. zero is
1108  * returned if we find something, and *start_ret and *end_ret are
1109  * set to reflect the state struct that was found.
1110  *
1111  * If nothing was found, 1 is returned, < 0 on error
1112  */
1113 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1114 			  u64 *start_ret, u64 *end_ret, int bits)
1115 {
1116 	struct rb_node *node;
1117 	struct extent_state *state;
1118 	int ret = 1;
1119 
1120 	spin_lock(&tree->lock);
1121 	/*
1122 	 * this search will find all the extents that end after
1123 	 * our range starts.
1124 	 */
1125 	node = tree_search(tree, start);
1126 	if (!node)
1127 		goto out;
1128 
1129 	while (1) {
1130 		state = rb_entry(node, struct extent_state, rb_node);
1131 		if (state->end >= start && (state->state & bits)) {
1132 			*start_ret = state->start;
1133 			*end_ret = state->end;
1134 			ret = 0;
1135 			break;
1136 		}
1137 		node = rb_next(node);
1138 		if (!node)
1139 			break;
1140 	}
1141 out:
1142 	spin_unlock(&tree->lock);
1143 	return ret;
1144 }
1145 
1146 /* find the first state struct with 'bits' set after 'start', and
1147  * return it.  tree->lock must be held.  NULL will returned if
1148  * nothing was found after 'start'
1149  */
1150 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1151 						 u64 start, int bits)
1152 {
1153 	struct rb_node *node;
1154 	struct extent_state *state;
1155 
1156 	/*
1157 	 * this search will find all the extents that end after
1158 	 * our range starts.
1159 	 */
1160 	node = tree_search(tree, start);
1161 	if (!node)
1162 		goto out;
1163 
1164 	while (1) {
1165 		state = rb_entry(node, struct extent_state, rb_node);
1166 		if (state->end >= start && (state->state & bits))
1167 			return state;
1168 
1169 		node = rb_next(node);
1170 		if (!node)
1171 			break;
1172 	}
1173 out:
1174 	return NULL;
1175 }
1176 
1177 /*
1178  * find a contiguous range of bytes in the file marked as delalloc, not
1179  * more than 'max_bytes'.  start and end are used to return the range,
1180  *
1181  * 1 is returned if we find something, 0 if nothing was in the tree
1182  */
1183 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1184 					u64 *start, u64 *end, u64 max_bytes,
1185 					struct extent_state **cached_state)
1186 {
1187 	struct rb_node *node;
1188 	struct extent_state *state;
1189 	u64 cur_start = *start;
1190 	u64 found = 0;
1191 	u64 total_bytes = 0;
1192 
1193 	spin_lock(&tree->lock);
1194 
1195 	/*
1196 	 * this search will find all the extents that end after
1197 	 * our range starts.
1198 	 */
1199 	node = tree_search(tree, cur_start);
1200 	if (!node) {
1201 		if (!found)
1202 			*end = (u64)-1;
1203 		goto out;
1204 	}
1205 
1206 	while (1) {
1207 		state = rb_entry(node, struct extent_state, rb_node);
1208 		if (found && (state->start != cur_start ||
1209 			      (state->state & EXTENT_BOUNDARY))) {
1210 			goto out;
1211 		}
1212 		if (!(state->state & EXTENT_DELALLOC)) {
1213 			if (!found)
1214 				*end = state->end;
1215 			goto out;
1216 		}
1217 		if (!found) {
1218 			*start = state->start;
1219 			*cached_state = state;
1220 			atomic_inc(&state->refs);
1221 		}
1222 		found++;
1223 		*end = state->end;
1224 		cur_start = state->end + 1;
1225 		node = rb_next(node);
1226 		if (!node)
1227 			break;
1228 		total_bytes += state->end - state->start + 1;
1229 		if (total_bytes >= max_bytes)
1230 			break;
1231 	}
1232 out:
1233 	spin_unlock(&tree->lock);
1234 	return found;
1235 }
1236 
1237 static noinline int __unlock_for_delalloc(struct inode *inode,
1238 					  struct page *locked_page,
1239 					  u64 start, u64 end)
1240 {
1241 	int ret;
1242 	struct page *pages[16];
1243 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1244 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1245 	unsigned long nr_pages = end_index - index + 1;
1246 	int i;
1247 
1248 	if (index == locked_page->index && end_index == index)
1249 		return 0;
1250 
1251 	while (nr_pages > 0) {
1252 		ret = find_get_pages_contig(inode->i_mapping, index,
1253 				     min_t(unsigned long, nr_pages,
1254 				     ARRAY_SIZE(pages)), pages);
1255 		for (i = 0; i < ret; i++) {
1256 			if (pages[i] != locked_page)
1257 				unlock_page(pages[i]);
1258 			page_cache_release(pages[i]);
1259 		}
1260 		nr_pages -= ret;
1261 		index += ret;
1262 		cond_resched();
1263 	}
1264 	return 0;
1265 }
1266 
1267 static noinline int lock_delalloc_pages(struct inode *inode,
1268 					struct page *locked_page,
1269 					u64 delalloc_start,
1270 					u64 delalloc_end)
1271 {
1272 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1273 	unsigned long start_index = index;
1274 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1275 	unsigned long pages_locked = 0;
1276 	struct page *pages[16];
1277 	unsigned long nrpages;
1278 	int ret;
1279 	int i;
1280 
1281 	/* the caller is responsible for locking the start index */
1282 	if (index == locked_page->index && index == end_index)
1283 		return 0;
1284 
1285 	/* skip the page at the start index */
1286 	nrpages = end_index - index + 1;
1287 	while (nrpages > 0) {
1288 		ret = find_get_pages_contig(inode->i_mapping, index,
1289 				     min_t(unsigned long,
1290 				     nrpages, ARRAY_SIZE(pages)), pages);
1291 		if (ret == 0) {
1292 			ret = -EAGAIN;
1293 			goto done;
1294 		}
1295 		/* now we have an array of pages, lock them all */
1296 		for (i = 0; i < ret; i++) {
1297 			/*
1298 			 * the caller is taking responsibility for
1299 			 * locked_page
1300 			 */
1301 			if (pages[i] != locked_page) {
1302 				lock_page(pages[i]);
1303 				if (!PageDirty(pages[i]) ||
1304 				    pages[i]->mapping != inode->i_mapping) {
1305 					ret = -EAGAIN;
1306 					unlock_page(pages[i]);
1307 					page_cache_release(pages[i]);
1308 					goto done;
1309 				}
1310 			}
1311 			page_cache_release(pages[i]);
1312 			pages_locked++;
1313 		}
1314 		nrpages -= ret;
1315 		index += ret;
1316 		cond_resched();
1317 	}
1318 	ret = 0;
1319 done:
1320 	if (ret && pages_locked) {
1321 		__unlock_for_delalloc(inode, locked_page,
1322 			      delalloc_start,
1323 			      ((u64)(start_index + pages_locked - 1)) <<
1324 			      PAGE_CACHE_SHIFT);
1325 	}
1326 	return ret;
1327 }
1328 
1329 /*
1330  * find a contiguous range of bytes in the file marked as delalloc, not
1331  * more than 'max_bytes'.  start and end are used to return the range,
1332  *
1333  * 1 is returned if we find something, 0 if nothing was in the tree
1334  */
1335 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1336 					     struct extent_io_tree *tree,
1337 					     struct page *locked_page,
1338 					     u64 *start, u64 *end,
1339 					     u64 max_bytes)
1340 {
1341 	u64 delalloc_start;
1342 	u64 delalloc_end;
1343 	u64 found;
1344 	struct extent_state *cached_state = NULL;
1345 	int ret;
1346 	int loops = 0;
1347 
1348 again:
1349 	/* step one, find a bunch of delalloc bytes starting at start */
1350 	delalloc_start = *start;
1351 	delalloc_end = 0;
1352 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1353 				    max_bytes, &cached_state);
1354 	if (!found || delalloc_end <= *start) {
1355 		*start = delalloc_start;
1356 		*end = delalloc_end;
1357 		free_extent_state(cached_state);
1358 		return found;
1359 	}
1360 
1361 	/*
1362 	 * start comes from the offset of locked_page.  We have to lock
1363 	 * pages in order, so we can't process delalloc bytes before
1364 	 * locked_page
1365 	 */
1366 	if (delalloc_start < *start)
1367 		delalloc_start = *start;
1368 
1369 	/*
1370 	 * make sure to limit the number of pages we try to lock down
1371 	 * if we're looping.
1372 	 */
1373 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1374 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1375 
1376 	/* step two, lock all the pages after the page that has start */
1377 	ret = lock_delalloc_pages(inode, locked_page,
1378 				  delalloc_start, delalloc_end);
1379 	if (ret == -EAGAIN) {
1380 		/* some of the pages are gone, lets avoid looping by
1381 		 * shortening the size of the delalloc range we're searching
1382 		 */
1383 		free_extent_state(cached_state);
1384 		if (!loops) {
1385 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1386 			max_bytes = PAGE_CACHE_SIZE - offset;
1387 			loops = 1;
1388 			goto again;
1389 		} else {
1390 			found = 0;
1391 			goto out_failed;
1392 		}
1393 	}
1394 	BUG_ON(ret);
1395 
1396 	/* step three, lock the state bits for the whole range */
1397 	lock_extent_bits(tree, delalloc_start, delalloc_end,
1398 			 0, &cached_state, GFP_NOFS);
1399 
1400 	/* then test to make sure it is all still delalloc */
1401 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1402 			     EXTENT_DELALLOC, 1, cached_state);
1403 	if (!ret) {
1404 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1405 				     &cached_state, GFP_NOFS);
1406 		__unlock_for_delalloc(inode, locked_page,
1407 			      delalloc_start, delalloc_end);
1408 		cond_resched();
1409 		goto again;
1410 	}
1411 	free_extent_state(cached_state);
1412 	*start = delalloc_start;
1413 	*end = delalloc_end;
1414 out_failed:
1415 	return found;
1416 }
1417 
1418 int extent_clear_unlock_delalloc(struct inode *inode,
1419 				struct extent_io_tree *tree,
1420 				u64 start, u64 end, struct page *locked_page,
1421 				unsigned long op)
1422 {
1423 	int ret;
1424 	struct page *pages[16];
1425 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1426 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1427 	unsigned long nr_pages = end_index - index + 1;
1428 	int i;
1429 	int clear_bits = 0;
1430 
1431 	if (op & EXTENT_CLEAR_UNLOCK)
1432 		clear_bits |= EXTENT_LOCKED;
1433 	if (op & EXTENT_CLEAR_DIRTY)
1434 		clear_bits |= EXTENT_DIRTY;
1435 
1436 	if (op & EXTENT_CLEAR_DELALLOC)
1437 		clear_bits |= EXTENT_DELALLOC;
1438 
1439 	if (op & EXTENT_CLEAR_ACCOUNTING)
1440 		clear_bits |= EXTENT_DO_ACCOUNTING;
1441 
1442 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1443 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1444 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1445 		    EXTENT_SET_PRIVATE2)))
1446 		return 0;
1447 
1448 	while (nr_pages > 0) {
1449 		ret = find_get_pages_contig(inode->i_mapping, index,
1450 				     min_t(unsigned long,
1451 				     nr_pages, ARRAY_SIZE(pages)), pages);
1452 		for (i = 0; i < ret; i++) {
1453 
1454 			if (op & EXTENT_SET_PRIVATE2)
1455 				SetPagePrivate2(pages[i]);
1456 
1457 			if (pages[i] == locked_page) {
1458 				page_cache_release(pages[i]);
1459 				continue;
1460 			}
1461 			if (op & EXTENT_CLEAR_DIRTY)
1462 				clear_page_dirty_for_io(pages[i]);
1463 			if (op & EXTENT_SET_WRITEBACK)
1464 				set_page_writeback(pages[i]);
1465 			if (op & EXTENT_END_WRITEBACK)
1466 				end_page_writeback(pages[i]);
1467 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1468 				unlock_page(pages[i]);
1469 			page_cache_release(pages[i]);
1470 		}
1471 		nr_pages -= ret;
1472 		index += ret;
1473 		cond_resched();
1474 	}
1475 	return 0;
1476 }
1477 
1478 /*
1479  * count the number of bytes in the tree that have a given bit(s)
1480  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1481  * cached.  The total number found is returned.
1482  */
1483 u64 count_range_bits(struct extent_io_tree *tree,
1484 		     u64 *start, u64 search_end, u64 max_bytes,
1485 		     unsigned long bits)
1486 {
1487 	struct rb_node *node;
1488 	struct extent_state *state;
1489 	u64 cur_start = *start;
1490 	u64 total_bytes = 0;
1491 	int found = 0;
1492 
1493 	if (search_end <= cur_start) {
1494 		WARN_ON(1);
1495 		return 0;
1496 	}
1497 
1498 	spin_lock(&tree->lock);
1499 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1500 		total_bytes = tree->dirty_bytes;
1501 		goto out;
1502 	}
1503 	/*
1504 	 * this search will find all the extents that end after
1505 	 * our range starts.
1506 	 */
1507 	node = tree_search(tree, cur_start);
1508 	if (!node)
1509 		goto out;
1510 
1511 	while (1) {
1512 		state = rb_entry(node, struct extent_state, rb_node);
1513 		if (state->start > search_end)
1514 			break;
1515 		if (state->end >= cur_start && (state->state & bits)) {
1516 			total_bytes += min(search_end, state->end) + 1 -
1517 				       max(cur_start, state->start);
1518 			if (total_bytes >= max_bytes)
1519 				break;
1520 			if (!found) {
1521 				*start = state->start;
1522 				found = 1;
1523 			}
1524 		}
1525 		node = rb_next(node);
1526 		if (!node)
1527 			break;
1528 	}
1529 out:
1530 	spin_unlock(&tree->lock);
1531 	return total_bytes;
1532 }
1533 
1534 /*
1535  * set the private field for a given byte offset in the tree.  If there isn't
1536  * an extent_state there already, this does nothing.
1537  */
1538 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1539 {
1540 	struct rb_node *node;
1541 	struct extent_state *state;
1542 	int ret = 0;
1543 
1544 	spin_lock(&tree->lock);
1545 	/*
1546 	 * this search will find all the extents that end after
1547 	 * our range starts.
1548 	 */
1549 	node = tree_search(tree, start);
1550 	if (!node) {
1551 		ret = -ENOENT;
1552 		goto out;
1553 	}
1554 	state = rb_entry(node, struct extent_state, rb_node);
1555 	if (state->start != start) {
1556 		ret = -ENOENT;
1557 		goto out;
1558 	}
1559 	state->private = private;
1560 out:
1561 	spin_unlock(&tree->lock);
1562 	return ret;
1563 }
1564 
1565 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1566 {
1567 	struct rb_node *node;
1568 	struct extent_state *state;
1569 	int ret = 0;
1570 
1571 	spin_lock(&tree->lock);
1572 	/*
1573 	 * this search will find all the extents that end after
1574 	 * our range starts.
1575 	 */
1576 	node = tree_search(tree, start);
1577 	if (!node) {
1578 		ret = -ENOENT;
1579 		goto out;
1580 	}
1581 	state = rb_entry(node, struct extent_state, rb_node);
1582 	if (state->start != start) {
1583 		ret = -ENOENT;
1584 		goto out;
1585 	}
1586 	*private = state->private;
1587 out:
1588 	spin_unlock(&tree->lock);
1589 	return ret;
1590 }
1591 
1592 /*
1593  * searches a range in the state tree for a given mask.
1594  * If 'filled' == 1, this returns 1 only if every extent in the tree
1595  * has the bits set.  Otherwise, 1 is returned if any bit in the
1596  * range is found set.
1597  */
1598 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1599 		   int bits, int filled, struct extent_state *cached)
1600 {
1601 	struct extent_state *state = NULL;
1602 	struct rb_node *node;
1603 	int bitset = 0;
1604 
1605 	spin_lock(&tree->lock);
1606 	if (cached && cached->tree && cached->start == start)
1607 		node = &cached->rb_node;
1608 	else
1609 		node = tree_search(tree, start);
1610 	while (node && start <= end) {
1611 		state = rb_entry(node, struct extent_state, rb_node);
1612 
1613 		if (filled && state->start > start) {
1614 			bitset = 0;
1615 			break;
1616 		}
1617 
1618 		if (state->start > end)
1619 			break;
1620 
1621 		if (state->state & bits) {
1622 			bitset = 1;
1623 			if (!filled)
1624 				break;
1625 		} else if (filled) {
1626 			bitset = 0;
1627 			break;
1628 		}
1629 
1630 		if (state->end == (u64)-1)
1631 			break;
1632 
1633 		start = state->end + 1;
1634 		if (start > end)
1635 			break;
1636 		node = rb_next(node);
1637 		if (!node) {
1638 			if (filled)
1639 				bitset = 0;
1640 			break;
1641 		}
1642 	}
1643 	spin_unlock(&tree->lock);
1644 	return bitset;
1645 }
1646 
1647 /*
1648  * helper function to set a given page up to date if all the
1649  * extents in the tree for that page are up to date
1650  */
1651 static int check_page_uptodate(struct extent_io_tree *tree,
1652 			       struct page *page)
1653 {
1654 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1655 	u64 end = start + PAGE_CACHE_SIZE - 1;
1656 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1657 		SetPageUptodate(page);
1658 	return 0;
1659 }
1660 
1661 /*
1662  * helper function to unlock a page if all the extents in the tree
1663  * for that page are unlocked
1664  */
1665 static int check_page_locked(struct extent_io_tree *tree,
1666 			     struct page *page)
1667 {
1668 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1669 	u64 end = start + PAGE_CACHE_SIZE - 1;
1670 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1671 		unlock_page(page);
1672 	return 0;
1673 }
1674 
1675 /*
1676  * helper function to end page writeback if all the extents
1677  * in the tree for that page are done with writeback
1678  */
1679 static int check_page_writeback(struct extent_io_tree *tree,
1680 			     struct page *page)
1681 {
1682 	end_page_writeback(page);
1683 	return 0;
1684 }
1685 
1686 /* lots and lots of room for performance fixes in the end_bio funcs */
1687 
1688 /*
1689  * after a writepage IO is done, we need to:
1690  * clear the uptodate bits on error
1691  * clear the writeback bits in the extent tree for this IO
1692  * end_page_writeback if the page has no more pending IO
1693  *
1694  * Scheduling is not allowed, so the extent state tree is expected
1695  * to have one and only one object corresponding to this IO.
1696  */
1697 static void end_bio_extent_writepage(struct bio *bio, int err)
1698 {
1699 	int uptodate = err == 0;
1700 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1701 	struct extent_io_tree *tree;
1702 	u64 start;
1703 	u64 end;
1704 	int whole_page;
1705 	int ret;
1706 
1707 	do {
1708 		struct page *page = bvec->bv_page;
1709 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1710 
1711 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1712 			 bvec->bv_offset;
1713 		end = start + bvec->bv_len - 1;
1714 
1715 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1716 			whole_page = 1;
1717 		else
1718 			whole_page = 0;
1719 
1720 		if (--bvec >= bio->bi_io_vec)
1721 			prefetchw(&bvec->bv_page->flags);
1722 		if (tree->ops && tree->ops->writepage_end_io_hook) {
1723 			ret = tree->ops->writepage_end_io_hook(page, start,
1724 						       end, NULL, uptodate);
1725 			if (ret)
1726 				uptodate = 0;
1727 		}
1728 
1729 		if (!uptodate && tree->ops &&
1730 		    tree->ops->writepage_io_failed_hook) {
1731 			ret = tree->ops->writepage_io_failed_hook(bio, page,
1732 							 start, end, NULL);
1733 			if (ret == 0) {
1734 				uptodate = (err == 0);
1735 				continue;
1736 			}
1737 		}
1738 
1739 		if (!uptodate) {
1740 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1741 			ClearPageUptodate(page);
1742 			SetPageError(page);
1743 		}
1744 
1745 		if (whole_page)
1746 			end_page_writeback(page);
1747 		else
1748 			check_page_writeback(tree, page);
1749 	} while (bvec >= bio->bi_io_vec);
1750 
1751 	bio_put(bio);
1752 }
1753 
1754 /*
1755  * after a readpage IO is done, we need to:
1756  * clear the uptodate bits on error
1757  * set the uptodate bits if things worked
1758  * set the page up to date if all extents in the tree are uptodate
1759  * clear the lock bit in the extent tree
1760  * unlock the page if there are no other extents locked for it
1761  *
1762  * Scheduling is not allowed, so the extent state tree is expected
1763  * to have one and only one object corresponding to this IO.
1764  */
1765 static void end_bio_extent_readpage(struct bio *bio, int err)
1766 {
1767 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1768 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1769 	struct bio_vec *bvec = bio->bi_io_vec;
1770 	struct extent_io_tree *tree;
1771 	u64 start;
1772 	u64 end;
1773 	int whole_page;
1774 	int ret;
1775 
1776 	if (err)
1777 		uptodate = 0;
1778 
1779 	do {
1780 		struct page *page = bvec->bv_page;
1781 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1782 
1783 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1784 			bvec->bv_offset;
1785 		end = start + bvec->bv_len - 1;
1786 
1787 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1788 			whole_page = 1;
1789 		else
1790 			whole_page = 0;
1791 
1792 		if (++bvec <= bvec_end)
1793 			prefetchw(&bvec->bv_page->flags);
1794 
1795 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1796 			ret = tree->ops->readpage_end_io_hook(page, start, end,
1797 							      NULL);
1798 			if (ret)
1799 				uptodate = 0;
1800 		}
1801 		if (!uptodate && tree->ops &&
1802 		    tree->ops->readpage_io_failed_hook) {
1803 			ret = tree->ops->readpage_io_failed_hook(bio, page,
1804 							 start, end, NULL);
1805 			if (ret == 0) {
1806 				uptodate =
1807 					test_bit(BIO_UPTODATE, &bio->bi_flags);
1808 				if (err)
1809 					uptodate = 0;
1810 				continue;
1811 			}
1812 		}
1813 
1814 		if (uptodate) {
1815 			set_extent_uptodate(tree, start, end,
1816 					    GFP_ATOMIC);
1817 		}
1818 		unlock_extent(tree, start, end, GFP_ATOMIC);
1819 
1820 		if (whole_page) {
1821 			if (uptodate) {
1822 				SetPageUptodate(page);
1823 			} else {
1824 				ClearPageUptodate(page);
1825 				SetPageError(page);
1826 			}
1827 			unlock_page(page);
1828 		} else {
1829 			if (uptodate) {
1830 				check_page_uptodate(tree, page);
1831 			} else {
1832 				ClearPageUptodate(page);
1833 				SetPageError(page);
1834 			}
1835 			check_page_locked(tree, page);
1836 		}
1837 	} while (bvec <= bvec_end);
1838 
1839 	bio_put(bio);
1840 }
1841 
1842 /*
1843  * IO done from prepare_write is pretty simple, we just unlock
1844  * the structs in the extent tree when done, and set the uptodate bits
1845  * as appropriate.
1846  */
1847 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1848 {
1849 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1850 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1851 	struct extent_io_tree *tree;
1852 	u64 start;
1853 	u64 end;
1854 
1855 	do {
1856 		struct page *page = bvec->bv_page;
1857 		tree = &BTRFS_I(page->mapping->host)->io_tree;
1858 
1859 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1860 			bvec->bv_offset;
1861 		end = start + bvec->bv_len - 1;
1862 
1863 		if (--bvec >= bio->bi_io_vec)
1864 			prefetchw(&bvec->bv_page->flags);
1865 
1866 		if (uptodate) {
1867 			set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1868 		} else {
1869 			ClearPageUptodate(page);
1870 			SetPageError(page);
1871 		}
1872 
1873 		unlock_extent(tree, start, end, GFP_ATOMIC);
1874 
1875 	} while (bvec >= bio->bi_io_vec);
1876 
1877 	bio_put(bio);
1878 }
1879 
1880 static struct bio *
1881 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1882 		 gfp_t gfp_flags)
1883 {
1884 	struct bio *bio;
1885 
1886 	bio = bio_alloc(gfp_flags, nr_vecs);
1887 
1888 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1889 		while (!bio && (nr_vecs /= 2))
1890 			bio = bio_alloc(gfp_flags, nr_vecs);
1891 	}
1892 
1893 	if (bio) {
1894 		bio->bi_size = 0;
1895 		bio->bi_bdev = bdev;
1896 		bio->bi_sector = first_sector;
1897 	}
1898 	return bio;
1899 }
1900 
1901 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1902 			  unsigned long bio_flags)
1903 {
1904 	int ret = 0;
1905 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1906 	struct page *page = bvec->bv_page;
1907 	struct extent_io_tree *tree = bio->bi_private;
1908 	u64 start;
1909 	u64 end;
1910 
1911 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1912 	end = start + bvec->bv_len - 1;
1913 
1914 	bio->bi_private = NULL;
1915 
1916 	bio_get(bio);
1917 
1918 	if (tree->ops && tree->ops->submit_bio_hook)
1919 		tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1920 					   mirror_num, bio_flags);
1921 	else
1922 		submit_bio(rw, bio);
1923 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1924 		ret = -EOPNOTSUPP;
1925 	bio_put(bio);
1926 	return ret;
1927 }
1928 
1929 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1930 			      struct page *page, sector_t sector,
1931 			      size_t size, unsigned long offset,
1932 			      struct block_device *bdev,
1933 			      struct bio **bio_ret,
1934 			      unsigned long max_pages,
1935 			      bio_end_io_t end_io_func,
1936 			      int mirror_num,
1937 			      unsigned long prev_bio_flags,
1938 			      unsigned long bio_flags)
1939 {
1940 	int ret = 0;
1941 	struct bio *bio;
1942 	int nr;
1943 	int contig = 0;
1944 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1945 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1946 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1947 
1948 	if (bio_ret && *bio_ret) {
1949 		bio = *bio_ret;
1950 		if (old_compressed)
1951 			contig = bio->bi_sector == sector;
1952 		else
1953 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1954 				sector;
1955 
1956 		if (prev_bio_flags != bio_flags || !contig ||
1957 		    (tree->ops && tree->ops->merge_bio_hook &&
1958 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1959 					       bio_flags)) ||
1960 		    bio_add_page(bio, page, page_size, offset) < page_size) {
1961 			ret = submit_one_bio(rw, bio, mirror_num,
1962 					     prev_bio_flags);
1963 			bio = NULL;
1964 		} else {
1965 			return 0;
1966 		}
1967 	}
1968 	if (this_compressed)
1969 		nr = BIO_MAX_PAGES;
1970 	else
1971 		nr = bio_get_nr_vecs(bdev);
1972 
1973 	bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1974 
1975 	bio_add_page(bio, page, page_size, offset);
1976 	bio->bi_end_io = end_io_func;
1977 	bio->bi_private = tree;
1978 
1979 	if (bio_ret)
1980 		*bio_ret = bio;
1981 	else
1982 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1983 
1984 	return ret;
1985 }
1986 
1987 void set_page_extent_mapped(struct page *page)
1988 {
1989 	if (!PagePrivate(page)) {
1990 		SetPagePrivate(page);
1991 		page_cache_get(page);
1992 		set_page_private(page, EXTENT_PAGE_PRIVATE);
1993 	}
1994 }
1995 
1996 static void set_page_extent_head(struct page *page, unsigned long len)
1997 {
1998 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1999 }
2000 
2001 /*
2002  * basic readpage implementation.  Locked extent state structs are inserted
2003  * into the tree that are removed when the IO is done (by the end_io
2004  * handlers)
2005  */
2006 static int __extent_read_full_page(struct extent_io_tree *tree,
2007 				   struct page *page,
2008 				   get_extent_t *get_extent,
2009 				   struct bio **bio, int mirror_num,
2010 				   unsigned long *bio_flags)
2011 {
2012 	struct inode *inode = page->mapping->host;
2013 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2014 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2015 	u64 end;
2016 	u64 cur = start;
2017 	u64 extent_offset;
2018 	u64 last_byte = i_size_read(inode);
2019 	u64 block_start;
2020 	u64 cur_end;
2021 	sector_t sector;
2022 	struct extent_map *em;
2023 	struct block_device *bdev;
2024 	int ret;
2025 	int nr = 0;
2026 	size_t page_offset = 0;
2027 	size_t iosize;
2028 	size_t disk_io_size;
2029 	size_t blocksize = inode->i_sb->s_blocksize;
2030 	unsigned long this_bio_flag = 0;
2031 
2032 	set_page_extent_mapped(page);
2033 
2034 	end = page_end;
2035 	lock_extent(tree, start, end, GFP_NOFS);
2036 
2037 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2038 		char *userpage;
2039 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2040 
2041 		if (zero_offset) {
2042 			iosize = PAGE_CACHE_SIZE - zero_offset;
2043 			userpage = kmap_atomic(page, KM_USER0);
2044 			memset(userpage + zero_offset, 0, iosize);
2045 			flush_dcache_page(page);
2046 			kunmap_atomic(userpage, KM_USER0);
2047 		}
2048 	}
2049 	while (cur <= end) {
2050 		if (cur >= last_byte) {
2051 			char *userpage;
2052 			iosize = PAGE_CACHE_SIZE - page_offset;
2053 			userpage = kmap_atomic(page, KM_USER0);
2054 			memset(userpage + page_offset, 0, iosize);
2055 			flush_dcache_page(page);
2056 			kunmap_atomic(userpage, KM_USER0);
2057 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2058 					    GFP_NOFS);
2059 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2060 			break;
2061 		}
2062 		em = get_extent(inode, page, page_offset, cur,
2063 				end - cur + 1, 0);
2064 		if (IS_ERR(em) || !em) {
2065 			SetPageError(page);
2066 			unlock_extent(tree, cur, end, GFP_NOFS);
2067 			break;
2068 		}
2069 		extent_offset = cur - em->start;
2070 		BUG_ON(extent_map_end(em) <= cur);
2071 		BUG_ON(end < cur);
2072 
2073 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2074 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2075 
2076 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2077 		cur_end = min(extent_map_end(em) - 1, end);
2078 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2079 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2080 			disk_io_size = em->block_len;
2081 			sector = em->block_start >> 9;
2082 		} else {
2083 			sector = (em->block_start + extent_offset) >> 9;
2084 			disk_io_size = iosize;
2085 		}
2086 		bdev = em->bdev;
2087 		block_start = em->block_start;
2088 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2089 			block_start = EXTENT_MAP_HOLE;
2090 		free_extent_map(em);
2091 		em = NULL;
2092 
2093 		/* we've found a hole, just zero and go on */
2094 		if (block_start == EXTENT_MAP_HOLE) {
2095 			char *userpage;
2096 			userpage = kmap_atomic(page, KM_USER0);
2097 			memset(userpage + page_offset, 0, iosize);
2098 			flush_dcache_page(page);
2099 			kunmap_atomic(userpage, KM_USER0);
2100 
2101 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2102 					    GFP_NOFS);
2103 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2104 			cur = cur + iosize;
2105 			page_offset += iosize;
2106 			continue;
2107 		}
2108 		/* the get_extent function already copied into the page */
2109 		if (test_range_bit(tree, cur, cur_end,
2110 				   EXTENT_UPTODATE, 1, NULL)) {
2111 			check_page_uptodate(tree, page);
2112 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2113 			cur = cur + iosize;
2114 			page_offset += iosize;
2115 			continue;
2116 		}
2117 		/* we have an inline extent but it didn't get marked up
2118 		 * to date.  Error out
2119 		 */
2120 		if (block_start == EXTENT_MAP_INLINE) {
2121 			SetPageError(page);
2122 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2123 			cur = cur + iosize;
2124 			page_offset += iosize;
2125 			continue;
2126 		}
2127 
2128 		ret = 0;
2129 		if (tree->ops && tree->ops->readpage_io_hook) {
2130 			ret = tree->ops->readpage_io_hook(page, cur,
2131 							  cur + iosize - 1);
2132 		}
2133 		if (!ret) {
2134 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2135 			pnr -= page->index;
2136 			ret = submit_extent_page(READ, tree, page,
2137 					 sector, disk_io_size, page_offset,
2138 					 bdev, bio, pnr,
2139 					 end_bio_extent_readpage, mirror_num,
2140 					 *bio_flags,
2141 					 this_bio_flag);
2142 			nr++;
2143 			*bio_flags = this_bio_flag;
2144 		}
2145 		if (ret)
2146 			SetPageError(page);
2147 		cur = cur + iosize;
2148 		page_offset += iosize;
2149 	}
2150 	if (!nr) {
2151 		if (!PageError(page))
2152 			SetPageUptodate(page);
2153 		unlock_page(page);
2154 	}
2155 	return 0;
2156 }
2157 
2158 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2159 			    get_extent_t *get_extent)
2160 {
2161 	struct bio *bio = NULL;
2162 	unsigned long bio_flags = 0;
2163 	int ret;
2164 
2165 	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2166 				      &bio_flags);
2167 	if (bio)
2168 		submit_one_bio(READ, bio, 0, bio_flags);
2169 	return ret;
2170 }
2171 
2172 static noinline void update_nr_written(struct page *page,
2173 				      struct writeback_control *wbc,
2174 				      unsigned long nr_written)
2175 {
2176 	wbc->nr_to_write -= nr_written;
2177 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2178 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2179 		page->mapping->writeback_index = page->index + nr_written;
2180 }
2181 
2182 /*
2183  * the writepage semantics are similar to regular writepage.  extent
2184  * records are inserted to lock ranges in the tree, and as dirty areas
2185  * are found, they are marked writeback.  Then the lock bits are removed
2186  * and the end_io handler clears the writeback ranges
2187  */
2188 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2189 			      void *data)
2190 {
2191 	struct inode *inode = page->mapping->host;
2192 	struct extent_page_data *epd = data;
2193 	struct extent_io_tree *tree = epd->tree;
2194 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2195 	u64 delalloc_start;
2196 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2197 	u64 end;
2198 	u64 cur = start;
2199 	u64 extent_offset;
2200 	u64 last_byte = i_size_read(inode);
2201 	u64 block_start;
2202 	u64 iosize;
2203 	u64 unlock_start;
2204 	sector_t sector;
2205 	struct extent_state *cached_state = NULL;
2206 	struct extent_map *em;
2207 	struct block_device *bdev;
2208 	int ret;
2209 	int nr = 0;
2210 	size_t pg_offset = 0;
2211 	size_t blocksize;
2212 	loff_t i_size = i_size_read(inode);
2213 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2214 	u64 nr_delalloc;
2215 	u64 delalloc_end;
2216 	int page_started;
2217 	int compressed;
2218 	int write_flags;
2219 	unsigned long nr_written = 0;
2220 
2221 	if (wbc->sync_mode == WB_SYNC_ALL)
2222 		write_flags = WRITE_SYNC_PLUG;
2223 	else
2224 		write_flags = WRITE;
2225 
2226 	WARN_ON(!PageLocked(page));
2227 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2228 	if (page->index > end_index ||
2229 	   (page->index == end_index && !pg_offset)) {
2230 		page->mapping->a_ops->invalidatepage(page, 0);
2231 		unlock_page(page);
2232 		return 0;
2233 	}
2234 
2235 	if (page->index == end_index) {
2236 		char *userpage;
2237 
2238 		userpage = kmap_atomic(page, KM_USER0);
2239 		memset(userpage + pg_offset, 0,
2240 		       PAGE_CACHE_SIZE - pg_offset);
2241 		kunmap_atomic(userpage, KM_USER0);
2242 		flush_dcache_page(page);
2243 	}
2244 	pg_offset = 0;
2245 
2246 	set_page_extent_mapped(page);
2247 
2248 	delalloc_start = start;
2249 	delalloc_end = 0;
2250 	page_started = 0;
2251 	if (!epd->extent_locked) {
2252 		u64 delalloc_to_write = 0;
2253 		/*
2254 		 * make sure the wbc mapping index is at least updated
2255 		 * to this page.
2256 		 */
2257 		update_nr_written(page, wbc, 0);
2258 
2259 		while (delalloc_end < page_end) {
2260 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2261 						       page,
2262 						       &delalloc_start,
2263 						       &delalloc_end,
2264 						       128 * 1024 * 1024);
2265 			if (nr_delalloc == 0) {
2266 				delalloc_start = delalloc_end + 1;
2267 				continue;
2268 			}
2269 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2270 						 delalloc_end, &page_started,
2271 						 &nr_written);
2272 			/*
2273 			 * delalloc_end is already one less than the total
2274 			 * length, so we don't subtract one from
2275 			 * PAGE_CACHE_SIZE
2276 			 */
2277 			delalloc_to_write += (delalloc_end - delalloc_start +
2278 					      PAGE_CACHE_SIZE) >>
2279 					      PAGE_CACHE_SHIFT;
2280 			delalloc_start = delalloc_end + 1;
2281 		}
2282 		if (wbc->nr_to_write < delalloc_to_write) {
2283 			int thresh = 8192;
2284 
2285 			if (delalloc_to_write < thresh * 2)
2286 				thresh = delalloc_to_write;
2287 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2288 						 thresh);
2289 		}
2290 
2291 		/* did the fill delalloc function already unlock and start
2292 		 * the IO?
2293 		 */
2294 		if (page_started) {
2295 			ret = 0;
2296 			/*
2297 			 * we've unlocked the page, so we can't update
2298 			 * the mapping's writeback index, just update
2299 			 * nr_to_write.
2300 			 */
2301 			wbc->nr_to_write -= nr_written;
2302 			goto done_unlocked;
2303 		}
2304 	}
2305 	if (tree->ops && tree->ops->writepage_start_hook) {
2306 		ret = tree->ops->writepage_start_hook(page, start,
2307 						      page_end);
2308 		if (ret == -EAGAIN) {
2309 			redirty_page_for_writepage(wbc, page);
2310 			update_nr_written(page, wbc, nr_written);
2311 			unlock_page(page);
2312 			ret = 0;
2313 			goto done_unlocked;
2314 		}
2315 	}
2316 
2317 	/*
2318 	 * we don't want to touch the inode after unlocking the page,
2319 	 * so we update the mapping writeback index now
2320 	 */
2321 	update_nr_written(page, wbc, nr_written + 1);
2322 
2323 	end = page_end;
2324 	if (last_byte <= start) {
2325 		if (tree->ops && tree->ops->writepage_end_io_hook)
2326 			tree->ops->writepage_end_io_hook(page, start,
2327 							 page_end, NULL, 1);
2328 		unlock_start = page_end + 1;
2329 		goto done;
2330 	}
2331 
2332 	blocksize = inode->i_sb->s_blocksize;
2333 
2334 	while (cur <= end) {
2335 		if (cur >= last_byte) {
2336 			if (tree->ops && tree->ops->writepage_end_io_hook)
2337 				tree->ops->writepage_end_io_hook(page, cur,
2338 							 page_end, NULL, 1);
2339 			unlock_start = page_end + 1;
2340 			break;
2341 		}
2342 		em = epd->get_extent(inode, page, pg_offset, cur,
2343 				     end - cur + 1, 1);
2344 		if (IS_ERR(em) || !em) {
2345 			SetPageError(page);
2346 			break;
2347 		}
2348 
2349 		extent_offset = cur - em->start;
2350 		BUG_ON(extent_map_end(em) <= cur);
2351 		BUG_ON(end < cur);
2352 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2353 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2354 		sector = (em->block_start + extent_offset) >> 9;
2355 		bdev = em->bdev;
2356 		block_start = em->block_start;
2357 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2358 		free_extent_map(em);
2359 		em = NULL;
2360 
2361 		/*
2362 		 * compressed and inline extents are written through other
2363 		 * paths in the FS
2364 		 */
2365 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2366 		    block_start == EXTENT_MAP_INLINE) {
2367 			/*
2368 			 * end_io notification does not happen here for
2369 			 * compressed extents
2370 			 */
2371 			if (!compressed && tree->ops &&
2372 			    tree->ops->writepage_end_io_hook)
2373 				tree->ops->writepage_end_io_hook(page, cur,
2374 							 cur + iosize - 1,
2375 							 NULL, 1);
2376 			else if (compressed) {
2377 				/* we don't want to end_page_writeback on
2378 				 * a compressed extent.  this happens
2379 				 * elsewhere
2380 				 */
2381 				nr++;
2382 			}
2383 
2384 			cur += iosize;
2385 			pg_offset += iosize;
2386 			unlock_start = cur;
2387 			continue;
2388 		}
2389 		/* leave this out until we have a page_mkwrite call */
2390 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2391 				   EXTENT_DIRTY, 0, NULL)) {
2392 			cur = cur + iosize;
2393 			pg_offset += iosize;
2394 			continue;
2395 		}
2396 
2397 		if (tree->ops && tree->ops->writepage_io_hook) {
2398 			ret = tree->ops->writepage_io_hook(page, cur,
2399 						cur + iosize - 1);
2400 		} else {
2401 			ret = 0;
2402 		}
2403 		if (ret) {
2404 			SetPageError(page);
2405 		} else {
2406 			unsigned long max_nr = end_index + 1;
2407 
2408 			set_range_writeback(tree, cur, cur + iosize - 1);
2409 			if (!PageWriteback(page)) {
2410 				printk(KERN_ERR "btrfs warning page %lu not "
2411 				       "writeback, cur %llu end %llu\n",
2412 				       page->index, (unsigned long long)cur,
2413 				       (unsigned long long)end);
2414 			}
2415 
2416 			ret = submit_extent_page(write_flags, tree, page,
2417 						 sector, iosize, pg_offset,
2418 						 bdev, &epd->bio, max_nr,
2419 						 end_bio_extent_writepage,
2420 						 0, 0, 0);
2421 			if (ret)
2422 				SetPageError(page);
2423 		}
2424 		cur = cur + iosize;
2425 		pg_offset += iosize;
2426 		nr++;
2427 	}
2428 done:
2429 	if (nr == 0) {
2430 		/* make sure the mapping tag for page dirty gets cleared */
2431 		set_page_writeback(page);
2432 		end_page_writeback(page);
2433 	}
2434 	unlock_page(page);
2435 
2436 done_unlocked:
2437 
2438 	/* drop our reference on any cached states */
2439 	free_extent_state(cached_state);
2440 	return 0;
2441 }
2442 
2443 /**
2444  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2445  * @mapping: address space structure to write
2446  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2447  * @writepage: function called for each page
2448  * @data: data passed to writepage function
2449  *
2450  * If a page is already under I/O, write_cache_pages() skips it, even
2451  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2452  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2453  * and msync() need to guarantee that all the data which was dirty at the time
2454  * the call was made get new I/O started against them.  If wbc->sync_mode is
2455  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2456  * existing IO to complete.
2457  */
2458 static int extent_write_cache_pages(struct extent_io_tree *tree,
2459 			     struct address_space *mapping,
2460 			     struct writeback_control *wbc,
2461 			     writepage_t writepage, void *data,
2462 			     void (*flush_fn)(void *))
2463 {
2464 	int ret = 0;
2465 	int done = 0;
2466 	int nr_to_write_done = 0;
2467 	struct pagevec pvec;
2468 	int nr_pages;
2469 	pgoff_t index;
2470 	pgoff_t end;		/* Inclusive */
2471 	int scanned = 0;
2472 	int range_whole = 0;
2473 
2474 	pagevec_init(&pvec, 0);
2475 	if (wbc->range_cyclic) {
2476 		index = mapping->writeback_index; /* Start from prev offset */
2477 		end = -1;
2478 	} else {
2479 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2480 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2481 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2482 			range_whole = 1;
2483 		scanned = 1;
2484 	}
2485 retry:
2486 	while (!done && !nr_to_write_done && (index <= end) &&
2487 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2488 			      PAGECACHE_TAG_DIRTY, min(end - index,
2489 				  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2490 		unsigned i;
2491 
2492 		scanned = 1;
2493 		for (i = 0; i < nr_pages; i++) {
2494 			struct page *page = pvec.pages[i];
2495 
2496 			/*
2497 			 * At this point we hold neither mapping->tree_lock nor
2498 			 * lock on the page itself: the page may be truncated or
2499 			 * invalidated (changing page->mapping to NULL), or even
2500 			 * swizzled back from swapper_space to tmpfs file
2501 			 * mapping
2502 			 */
2503 			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2504 				tree->ops->write_cache_pages_lock_hook(page);
2505 			else
2506 				lock_page(page);
2507 
2508 			if (unlikely(page->mapping != mapping)) {
2509 				unlock_page(page);
2510 				continue;
2511 			}
2512 
2513 			if (!wbc->range_cyclic && page->index > end) {
2514 				done = 1;
2515 				unlock_page(page);
2516 				continue;
2517 			}
2518 
2519 			if (wbc->sync_mode != WB_SYNC_NONE) {
2520 				if (PageWriteback(page))
2521 					flush_fn(data);
2522 				wait_on_page_writeback(page);
2523 			}
2524 
2525 			if (PageWriteback(page) ||
2526 			    !clear_page_dirty_for_io(page)) {
2527 				unlock_page(page);
2528 				continue;
2529 			}
2530 
2531 			ret = (*writepage)(page, wbc, data);
2532 
2533 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2534 				unlock_page(page);
2535 				ret = 0;
2536 			}
2537 			if (ret)
2538 				done = 1;
2539 
2540 			/*
2541 			 * the filesystem may choose to bump up nr_to_write.
2542 			 * We have to make sure to honor the new nr_to_write
2543 			 * at any time
2544 			 */
2545 			nr_to_write_done = wbc->nr_to_write <= 0;
2546 		}
2547 		pagevec_release(&pvec);
2548 		cond_resched();
2549 	}
2550 	if (!scanned && !done) {
2551 		/*
2552 		 * We hit the last page and there is more work to be done: wrap
2553 		 * back to the start of the file
2554 		 */
2555 		scanned = 1;
2556 		index = 0;
2557 		goto retry;
2558 	}
2559 	return ret;
2560 }
2561 
2562 static void flush_epd_write_bio(struct extent_page_data *epd)
2563 {
2564 	if (epd->bio) {
2565 		if (epd->sync_io)
2566 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2567 		else
2568 			submit_one_bio(WRITE, epd->bio, 0, 0);
2569 		epd->bio = NULL;
2570 	}
2571 }
2572 
2573 static noinline void flush_write_bio(void *data)
2574 {
2575 	struct extent_page_data *epd = data;
2576 	flush_epd_write_bio(epd);
2577 }
2578 
2579 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2580 			  get_extent_t *get_extent,
2581 			  struct writeback_control *wbc)
2582 {
2583 	int ret;
2584 	struct address_space *mapping = page->mapping;
2585 	struct extent_page_data epd = {
2586 		.bio = NULL,
2587 		.tree = tree,
2588 		.get_extent = get_extent,
2589 		.extent_locked = 0,
2590 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2591 	};
2592 	struct writeback_control wbc_writepages = {
2593 		.bdi		= wbc->bdi,
2594 		.sync_mode	= wbc->sync_mode,
2595 		.older_than_this = NULL,
2596 		.nr_to_write	= 64,
2597 		.range_start	= page_offset(page) + PAGE_CACHE_SIZE,
2598 		.range_end	= (loff_t)-1,
2599 	};
2600 
2601 	ret = __extent_writepage(page, wbc, &epd);
2602 
2603 	extent_write_cache_pages(tree, mapping, &wbc_writepages,
2604 				 __extent_writepage, &epd, flush_write_bio);
2605 	flush_epd_write_bio(&epd);
2606 	return ret;
2607 }
2608 
2609 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2610 			      u64 start, u64 end, get_extent_t *get_extent,
2611 			      int mode)
2612 {
2613 	int ret = 0;
2614 	struct address_space *mapping = inode->i_mapping;
2615 	struct page *page;
2616 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2617 		PAGE_CACHE_SHIFT;
2618 
2619 	struct extent_page_data epd = {
2620 		.bio = NULL,
2621 		.tree = tree,
2622 		.get_extent = get_extent,
2623 		.extent_locked = 1,
2624 		.sync_io = mode == WB_SYNC_ALL,
2625 	};
2626 	struct writeback_control wbc_writepages = {
2627 		.bdi		= inode->i_mapping->backing_dev_info,
2628 		.sync_mode	= mode,
2629 		.older_than_this = NULL,
2630 		.nr_to_write	= nr_pages * 2,
2631 		.range_start	= start,
2632 		.range_end	= end + 1,
2633 	};
2634 
2635 	while (start <= end) {
2636 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2637 		if (clear_page_dirty_for_io(page))
2638 			ret = __extent_writepage(page, &wbc_writepages, &epd);
2639 		else {
2640 			if (tree->ops && tree->ops->writepage_end_io_hook)
2641 				tree->ops->writepage_end_io_hook(page, start,
2642 						 start + PAGE_CACHE_SIZE - 1,
2643 						 NULL, 1);
2644 			unlock_page(page);
2645 		}
2646 		page_cache_release(page);
2647 		start += PAGE_CACHE_SIZE;
2648 	}
2649 
2650 	flush_epd_write_bio(&epd);
2651 	return ret;
2652 }
2653 
2654 int extent_writepages(struct extent_io_tree *tree,
2655 		      struct address_space *mapping,
2656 		      get_extent_t *get_extent,
2657 		      struct writeback_control *wbc)
2658 {
2659 	int ret = 0;
2660 	struct extent_page_data epd = {
2661 		.bio = NULL,
2662 		.tree = tree,
2663 		.get_extent = get_extent,
2664 		.extent_locked = 0,
2665 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2666 	};
2667 
2668 	ret = extent_write_cache_pages(tree, mapping, wbc,
2669 				       __extent_writepage, &epd,
2670 				       flush_write_bio);
2671 	flush_epd_write_bio(&epd);
2672 	return ret;
2673 }
2674 
2675 int extent_readpages(struct extent_io_tree *tree,
2676 		     struct address_space *mapping,
2677 		     struct list_head *pages, unsigned nr_pages,
2678 		     get_extent_t get_extent)
2679 {
2680 	struct bio *bio = NULL;
2681 	unsigned page_idx;
2682 	struct pagevec pvec;
2683 	unsigned long bio_flags = 0;
2684 
2685 	pagevec_init(&pvec, 0);
2686 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2687 		struct page *page = list_entry(pages->prev, struct page, lru);
2688 
2689 		prefetchw(&page->flags);
2690 		list_del(&page->lru);
2691 		/*
2692 		 * what we want to do here is call add_to_page_cache_lru,
2693 		 * but that isn't exported, so we reproduce it here
2694 		 */
2695 		if (!add_to_page_cache(page, mapping,
2696 					page->index, GFP_KERNEL)) {
2697 
2698 			/* open coding of lru_cache_add, also not exported */
2699 			page_cache_get(page);
2700 			if (!pagevec_add(&pvec, page))
2701 				__pagevec_lru_add_file(&pvec);
2702 			__extent_read_full_page(tree, page, get_extent,
2703 						&bio, 0, &bio_flags);
2704 		}
2705 		page_cache_release(page);
2706 	}
2707 	if (pagevec_count(&pvec))
2708 		__pagevec_lru_add_file(&pvec);
2709 	BUG_ON(!list_empty(pages));
2710 	if (bio)
2711 		submit_one_bio(READ, bio, 0, bio_flags);
2712 	return 0;
2713 }
2714 
2715 /*
2716  * basic invalidatepage code, this waits on any locked or writeback
2717  * ranges corresponding to the page, and then deletes any extent state
2718  * records from the tree
2719  */
2720 int extent_invalidatepage(struct extent_io_tree *tree,
2721 			  struct page *page, unsigned long offset)
2722 {
2723 	struct extent_state *cached_state = NULL;
2724 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2725 	u64 end = start + PAGE_CACHE_SIZE - 1;
2726 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2727 
2728 	start += (offset + blocksize - 1) & ~(blocksize - 1);
2729 	if (start > end)
2730 		return 0;
2731 
2732 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2733 	wait_on_page_writeback(page);
2734 	clear_extent_bit(tree, start, end,
2735 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2736 			 EXTENT_DO_ACCOUNTING,
2737 			 1, 1, &cached_state, GFP_NOFS);
2738 	return 0;
2739 }
2740 
2741 /*
2742  * simple commit_write call, set_range_dirty is used to mark both
2743  * the pages and the extent records as dirty
2744  */
2745 int extent_commit_write(struct extent_io_tree *tree,
2746 			struct inode *inode, struct page *page,
2747 			unsigned from, unsigned to)
2748 {
2749 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2750 
2751 	set_page_extent_mapped(page);
2752 	set_page_dirty(page);
2753 
2754 	if (pos > inode->i_size) {
2755 		i_size_write(inode, pos);
2756 		mark_inode_dirty(inode);
2757 	}
2758 	return 0;
2759 }
2760 
2761 int extent_prepare_write(struct extent_io_tree *tree,
2762 			 struct inode *inode, struct page *page,
2763 			 unsigned from, unsigned to, get_extent_t *get_extent)
2764 {
2765 	u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2766 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2767 	u64 block_start;
2768 	u64 orig_block_start;
2769 	u64 block_end;
2770 	u64 cur_end;
2771 	struct extent_map *em;
2772 	unsigned blocksize = 1 << inode->i_blkbits;
2773 	size_t page_offset = 0;
2774 	size_t block_off_start;
2775 	size_t block_off_end;
2776 	int err = 0;
2777 	int iocount = 0;
2778 	int ret = 0;
2779 	int isnew;
2780 
2781 	set_page_extent_mapped(page);
2782 
2783 	block_start = (page_start + from) & ~((u64)blocksize - 1);
2784 	block_end = (page_start + to - 1) | (blocksize - 1);
2785 	orig_block_start = block_start;
2786 
2787 	lock_extent(tree, page_start, page_end, GFP_NOFS);
2788 	while (block_start <= block_end) {
2789 		em = get_extent(inode, page, page_offset, block_start,
2790 				block_end - block_start + 1, 1);
2791 		if (IS_ERR(em) || !em)
2792 			goto err;
2793 
2794 		cur_end = min(block_end, extent_map_end(em) - 1);
2795 		block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2796 		block_off_end = block_off_start + blocksize;
2797 		isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2798 
2799 		if (!PageUptodate(page) && isnew &&
2800 		    (block_off_end > to || block_off_start < from)) {
2801 			void *kaddr;
2802 
2803 			kaddr = kmap_atomic(page, KM_USER0);
2804 			if (block_off_end > to)
2805 				memset(kaddr + to, 0, block_off_end - to);
2806 			if (block_off_start < from)
2807 				memset(kaddr + block_off_start, 0,
2808 				       from - block_off_start);
2809 			flush_dcache_page(page);
2810 			kunmap_atomic(kaddr, KM_USER0);
2811 		}
2812 		if ((em->block_start != EXTENT_MAP_HOLE &&
2813 		     em->block_start != EXTENT_MAP_INLINE) &&
2814 		    !isnew && !PageUptodate(page) &&
2815 		    (block_off_end > to || block_off_start < from) &&
2816 		    !test_range_bit(tree, block_start, cur_end,
2817 				    EXTENT_UPTODATE, 1, NULL)) {
2818 			u64 sector;
2819 			u64 extent_offset = block_start - em->start;
2820 			size_t iosize;
2821 			sector = (em->block_start + extent_offset) >> 9;
2822 			iosize = (cur_end - block_start + blocksize) &
2823 				~((u64)blocksize - 1);
2824 			/*
2825 			 * we've already got the extent locked, but we
2826 			 * need to split the state such that our end_bio
2827 			 * handler can clear the lock.
2828 			 */
2829 			set_extent_bit(tree, block_start,
2830 				       block_start + iosize - 1,
2831 				       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2832 			ret = submit_extent_page(READ, tree, page,
2833 					 sector, iosize, page_offset, em->bdev,
2834 					 NULL, 1,
2835 					 end_bio_extent_preparewrite, 0,
2836 					 0, 0);
2837 			iocount++;
2838 			block_start = block_start + iosize;
2839 		} else {
2840 			set_extent_uptodate(tree, block_start, cur_end,
2841 					    GFP_NOFS);
2842 			unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2843 			block_start = cur_end + 1;
2844 		}
2845 		page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2846 		free_extent_map(em);
2847 	}
2848 	if (iocount) {
2849 		wait_extent_bit(tree, orig_block_start,
2850 				block_end, EXTENT_LOCKED);
2851 	}
2852 	check_page_uptodate(tree, page);
2853 err:
2854 	/* FIXME, zero out newly allocated blocks on error */
2855 	return err;
2856 }
2857 
2858 /*
2859  * a helper for releasepage, this tests for areas of the page that
2860  * are locked or under IO and drops the related state bits if it is safe
2861  * to drop the page.
2862  */
2863 int try_release_extent_state(struct extent_map_tree *map,
2864 			     struct extent_io_tree *tree, struct page *page,
2865 			     gfp_t mask)
2866 {
2867 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2868 	u64 end = start + PAGE_CACHE_SIZE - 1;
2869 	int ret = 1;
2870 
2871 	if (test_range_bit(tree, start, end,
2872 			   EXTENT_IOBITS, 0, NULL))
2873 		ret = 0;
2874 	else {
2875 		if ((mask & GFP_NOFS) == GFP_NOFS)
2876 			mask = GFP_NOFS;
2877 		/*
2878 		 * at this point we can safely clear everything except the
2879 		 * locked bit and the nodatasum bit
2880 		 */
2881 		clear_extent_bit(tree, start, end,
2882 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2883 				 0, 0, NULL, mask);
2884 	}
2885 	return ret;
2886 }
2887 
2888 /*
2889  * a helper for releasepage.  As long as there are no locked extents
2890  * in the range corresponding to the page, both state records and extent
2891  * map records are removed
2892  */
2893 int try_release_extent_mapping(struct extent_map_tree *map,
2894 			       struct extent_io_tree *tree, struct page *page,
2895 			       gfp_t mask)
2896 {
2897 	struct extent_map *em;
2898 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2899 	u64 end = start + PAGE_CACHE_SIZE - 1;
2900 
2901 	if ((mask & __GFP_WAIT) &&
2902 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2903 		u64 len;
2904 		while (start <= end) {
2905 			len = end - start + 1;
2906 			write_lock(&map->lock);
2907 			em = lookup_extent_mapping(map, start, len);
2908 			if (!em || IS_ERR(em)) {
2909 				write_unlock(&map->lock);
2910 				break;
2911 			}
2912 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2913 			    em->start != start) {
2914 				write_unlock(&map->lock);
2915 				free_extent_map(em);
2916 				break;
2917 			}
2918 			if (!test_range_bit(tree, em->start,
2919 					    extent_map_end(em) - 1,
2920 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2921 					    0, NULL)) {
2922 				remove_extent_mapping(map, em);
2923 				/* once for the rb tree */
2924 				free_extent_map(em);
2925 			}
2926 			start = extent_map_end(em);
2927 			write_unlock(&map->lock);
2928 
2929 			/* once for us */
2930 			free_extent_map(em);
2931 		}
2932 	}
2933 	return try_release_extent_state(map, tree, page, mask);
2934 }
2935 
2936 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2937 		get_extent_t *get_extent)
2938 {
2939 	struct inode *inode = mapping->host;
2940 	struct extent_state *cached_state = NULL;
2941 	u64 start = iblock << inode->i_blkbits;
2942 	sector_t sector = 0;
2943 	size_t blksize = (1 << inode->i_blkbits);
2944 	struct extent_map *em;
2945 
2946 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2947 			 0, &cached_state, GFP_NOFS);
2948 	em = get_extent(inode, NULL, 0, start, blksize, 0);
2949 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2950 			     start + blksize - 1, &cached_state, GFP_NOFS);
2951 	if (!em || IS_ERR(em))
2952 		return 0;
2953 
2954 	if (em->block_start > EXTENT_MAP_LAST_BYTE)
2955 		goto out;
2956 
2957 	sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2958 out:
2959 	free_extent_map(em);
2960 	return sector;
2961 }
2962 
2963 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2964 		__u64 start, __u64 len, get_extent_t *get_extent)
2965 {
2966 	int ret;
2967 	u64 off = start;
2968 	u64 max = start + len;
2969 	u32 flags = 0;
2970 	u64 disko = 0;
2971 	struct extent_map *em = NULL;
2972 	struct extent_state *cached_state = NULL;
2973 	int end = 0;
2974 	u64 em_start = 0, em_len = 0;
2975 	unsigned long emflags;
2976 	ret = 0;
2977 
2978 	if (len == 0)
2979 		return -EINVAL;
2980 
2981 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2982 			 &cached_state, GFP_NOFS);
2983 	em = get_extent(inode, NULL, 0, off, max - off, 0);
2984 	if (!em)
2985 		goto out;
2986 	if (IS_ERR(em)) {
2987 		ret = PTR_ERR(em);
2988 		goto out;
2989 	}
2990 	while (!end) {
2991 		off = em->start + em->len;
2992 		if (off >= max)
2993 			end = 1;
2994 
2995 		em_start = em->start;
2996 		em_len = em->len;
2997 
2998 		disko = 0;
2999 		flags = 0;
3000 
3001 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3002 			end = 1;
3003 			flags |= FIEMAP_EXTENT_LAST;
3004 		} else if (em->block_start == EXTENT_MAP_HOLE) {
3005 			flags |= FIEMAP_EXTENT_UNWRITTEN;
3006 		} else if (em->block_start == EXTENT_MAP_INLINE) {
3007 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3008 				  FIEMAP_EXTENT_NOT_ALIGNED);
3009 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3010 			flags |= (FIEMAP_EXTENT_DELALLOC |
3011 				  FIEMAP_EXTENT_UNKNOWN);
3012 		} else {
3013 			disko = em->block_start;
3014 		}
3015 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3016 			flags |= FIEMAP_EXTENT_ENCODED;
3017 
3018 		emflags = em->flags;
3019 		free_extent_map(em);
3020 		em = NULL;
3021 
3022 		if (!end) {
3023 			em = get_extent(inode, NULL, 0, off, max - off, 0);
3024 			if (!em)
3025 				goto out;
3026 			if (IS_ERR(em)) {
3027 				ret = PTR_ERR(em);
3028 				goto out;
3029 			}
3030 			emflags = em->flags;
3031 		}
3032 		if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3033 			flags |= FIEMAP_EXTENT_LAST;
3034 			end = 1;
3035 		}
3036 
3037 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3038 					em_len, flags);
3039 		if (ret)
3040 			goto out_free;
3041 	}
3042 out_free:
3043 	free_extent_map(em);
3044 out:
3045 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3046 			     &cached_state, GFP_NOFS);
3047 	return ret;
3048 }
3049 
3050 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3051 					      unsigned long i)
3052 {
3053 	struct page *p;
3054 	struct address_space *mapping;
3055 
3056 	if (i == 0)
3057 		return eb->first_page;
3058 	i += eb->start >> PAGE_CACHE_SHIFT;
3059 	mapping = eb->first_page->mapping;
3060 	if (!mapping)
3061 		return NULL;
3062 
3063 	/*
3064 	 * extent_buffer_page is only called after pinning the page
3065 	 * by increasing the reference count.  So we know the page must
3066 	 * be in the radix tree.
3067 	 */
3068 	rcu_read_lock();
3069 	p = radix_tree_lookup(&mapping->page_tree, i);
3070 	rcu_read_unlock();
3071 
3072 	return p;
3073 }
3074 
3075 static inline unsigned long num_extent_pages(u64 start, u64 len)
3076 {
3077 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3078 		(start >> PAGE_CACHE_SHIFT);
3079 }
3080 
3081 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3082 						   u64 start,
3083 						   unsigned long len,
3084 						   gfp_t mask)
3085 {
3086 	struct extent_buffer *eb = NULL;
3087 #if LEAK_DEBUG
3088 	unsigned long flags;
3089 #endif
3090 
3091 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3092 	eb->start = start;
3093 	eb->len = len;
3094 	spin_lock_init(&eb->lock);
3095 	init_waitqueue_head(&eb->lock_wq);
3096 
3097 #if LEAK_DEBUG
3098 	spin_lock_irqsave(&leak_lock, flags);
3099 	list_add(&eb->leak_list, &buffers);
3100 	spin_unlock_irqrestore(&leak_lock, flags);
3101 #endif
3102 	atomic_set(&eb->refs, 1);
3103 
3104 	return eb;
3105 }
3106 
3107 static void __free_extent_buffer(struct extent_buffer *eb)
3108 {
3109 #if LEAK_DEBUG
3110 	unsigned long flags;
3111 	spin_lock_irqsave(&leak_lock, flags);
3112 	list_del(&eb->leak_list);
3113 	spin_unlock_irqrestore(&leak_lock, flags);
3114 #endif
3115 	kmem_cache_free(extent_buffer_cache, eb);
3116 }
3117 
3118 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3119 					  u64 start, unsigned long len,
3120 					  struct page *page0,
3121 					  gfp_t mask)
3122 {
3123 	unsigned long num_pages = num_extent_pages(start, len);
3124 	unsigned long i;
3125 	unsigned long index = start >> PAGE_CACHE_SHIFT;
3126 	struct extent_buffer *eb;
3127 	struct extent_buffer *exists = NULL;
3128 	struct page *p;
3129 	struct address_space *mapping = tree->mapping;
3130 	int uptodate = 1;
3131 
3132 	spin_lock(&tree->buffer_lock);
3133 	eb = buffer_search(tree, start);
3134 	if (eb) {
3135 		atomic_inc(&eb->refs);
3136 		spin_unlock(&tree->buffer_lock);
3137 		mark_page_accessed(eb->first_page);
3138 		return eb;
3139 	}
3140 	spin_unlock(&tree->buffer_lock);
3141 
3142 	eb = __alloc_extent_buffer(tree, start, len, mask);
3143 	if (!eb)
3144 		return NULL;
3145 
3146 	if (page0) {
3147 		eb->first_page = page0;
3148 		i = 1;
3149 		index++;
3150 		page_cache_get(page0);
3151 		mark_page_accessed(page0);
3152 		set_page_extent_mapped(page0);
3153 		set_page_extent_head(page0, len);
3154 		uptodate = PageUptodate(page0);
3155 	} else {
3156 		i = 0;
3157 	}
3158 	for (; i < num_pages; i++, index++) {
3159 		p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3160 		if (!p) {
3161 			WARN_ON(1);
3162 			goto free_eb;
3163 		}
3164 		set_page_extent_mapped(p);
3165 		mark_page_accessed(p);
3166 		if (i == 0) {
3167 			eb->first_page = p;
3168 			set_page_extent_head(p, len);
3169 		} else {
3170 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3171 		}
3172 		if (!PageUptodate(p))
3173 			uptodate = 0;
3174 		unlock_page(p);
3175 	}
3176 	if (uptodate)
3177 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3178 
3179 	spin_lock(&tree->buffer_lock);
3180 	exists = buffer_tree_insert(tree, start, &eb->rb_node);
3181 	if (exists) {
3182 		/* add one reference for the caller */
3183 		atomic_inc(&exists->refs);
3184 		spin_unlock(&tree->buffer_lock);
3185 		goto free_eb;
3186 	}
3187 	/* add one reference for the tree */
3188 	atomic_inc(&eb->refs);
3189 	spin_unlock(&tree->buffer_lock);
3190 	return eb;
3191 
3192 free_eb:
3193 	if (!atomic_dec_and_test(&eb->refs))
3194 		return exists;
3195 	for (index = 1; index < i; index++)
3196 		page_cache_release(extent_buffer_page(eb, index));
3197 	page_cache_release(extent_buffer_page(eb, 0));
3198 	__free_extent_buffer(eb);
3199 	return exists;
3200 }
3201 
3202 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3203 					 u64 start, unsigned long len,
3204 					  gfp_t mask)
3205 {
3206 	struct extent_buffer *eb;
3207 
3208 	spin_lock(&tree->buffer_lock);
3209 	eb = buffer_search(tree, start);
3210 	if (eb)
3211 		atomic_inc(&eb->refs);
3212 	spin_unlock(&tree->buffer_lock);
3213 
3214 	if (eb)
3215 		mark_page_accessed(eb->first_page);
3216 
3217 	return eb;
3218 }
3219 
3220 void free_extent_buffer(struct extent_buffer *eb)
3221 {
3222 	if (!eb)
3223 		return;
3224 
3225 	if (!atomic_dec_and_test(&eb->refs))
3226 		return;
3227 
3228 	WARN_ON(1);
3229 }
3230 
3231 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3232 			      struct extent_buffer *eb)
3233 {
3234 	unsigned long i;
3235 	unsigned long num_pages;
3236 	struct page *page;
3237 
3238 	num_pages = num_extent_pages(eb->start, eb->len);
3239 
3240 	for (i = 0; i < num_pages; i++) {
3241 		page = extent_buffer_page(eb, i);
3242 		if (!PageDirty(page))
3243 			continue;
3244 
3245 		lock_page(page);
3246 		if (i == 0)
3247 			set_page_extent_head(page, eb->len);
3248 		else
3249 			set_page_private(page, EXTENT_PAGE_PRIVATE);
3250 
3251 		clear_page_dirty_for_io(page);
3252 		spin_lock_irq(&page->mapping->tree_lock);
3253 		if (!PageDirty(page)) {
3254 			radix_tree_tag_clear(&page->mapping->page_tree,
3255 						page_index(page),
3256 						PAGECACHE_TAG_DIRTY);
3257 		}
3258 		spin_unlock_irq(&page->mapping->tree_lock);
3259 		unlock_page(page);
3260 	}
3261 	return 0;
3262 }
3263 
3264 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3265 				    struct extent_buffer *eb)
3266 {
3267 	return wait_on_extent_writeback(tree, eb->start,
3268 					eb->start + eb->len - 1);
3269 }
3270 
3271 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3272 			     struct extent_buffer *eb)
3273 {
3274 	unsigned long i;
3275 	unsigned long num_pages;
3276 	int was_dirty = 0;
3277 
3278 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3279 	num_pages = num_extent_pages(eb->start, eb->len);
3280 	for (i = 0; i < num_pages; i++)
3281 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3282 	return was_dirty;
3283 }
3284 
3285 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3286 				struct extent_buffer *eb,
3287 				struct extent_state **cached_state)
3288 {
3289 	unsigned long i;
3290 	struct page *page;
3291 	unsigned long num_pages;
3292 
3293 	num_pages = num_extent_pages(eb->start, eb->len);
3294 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3295 
3296 	clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3297 			      cached_state, GFP_NOFS);
3298 	for (i = 0; i < num_pages; i++) {
3299 		page = extent_buffer_page(eb, i);
3300 		if (page)
3301 			ClearPageUptodate(page);
3302 	}
3303 	return 0;
3304 }
3305 
3306 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3307 				struct extent_buffer *eb)
3308 {
3309 	unsigned long i;
3310 	struct page *page;
3311 	unsigned long num_pages;
3312 
3313 	num_pages = num_extent_pages(eb->start, eb->len);
3314 
3315 	set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3316 			    GFP_NOFS);
3317 	for (i = 0; i < num_pages; i++) {
3318 		page = extent_buffer_page(eb, i);
3319 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3320 		    ((i == num_pages - 1) &&
3321 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3322 			check_page_uptodate(tree, page);
3323 			continue;
3324 		}
3325 		SetPageUptodate(page);
3326 	}
3327 	return 0;
3328 }
3329 
3330 int extent_range_uptodate(struct extent_io_tree *tree,
3331 			  u64 start, u64 end)
3332 {
3333 	struct page *page;
3334 	int ret;
3335 	int pg_uptodate = 1;
3336 	int uptodate;
3337 	unsigned long index;
3338 
3339 	ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3340 	if (ret)
3341 		return 1;
3342 	while (start <= end) {
3343 		index = start >> PAGE_CACHE_SHIFT;
3344 		page = find_get_page(tree->mapping, index);
3345 		uptodate = PageUptodate(page);
3346 		page_cache_release(page);
3347 		if (!uptodate) {
3348 			pg_uptodate = 0;
3349 			break;
3350 		}
3351 		start += PAGE_CACHE_SIZE;
3352 	}
3353 	return pg_uptodate;
3354 }
3355 
3356 int extent_buffer_uptodate(struct extent_io_tree *tree,
3357 			   struct extent_buffer *eb,
3358 			   struct extent_state *cached_state)
3359 {
3360 	int ret = 0;
3361 	unsigned long num_pages;
3362 	unsigned long i;
3363 	struct page *page;
3364 	int pg_uptodate = 1;
3365 
3366 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3367 		return 1;
3368 
3369 	ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3370 			   EXTENT_UPTODATE, 1, cached_state);
3371 	if (ret)
3372 		return ret;
3373 
3374 	num_pages = num_extent_pages(eb->start, eb->len);
3375 	for (i = 0; i < num_pages; i++) {
3376 		page = extent_buffer_page(eb, i);
3377 		if (!PageUptodate(page)) {
3378 			pg_uptodate = 0;
3379 			break;
3380 		}
3381 	}
3382 	return pg_uptodate;
3383 }
3384 
3385 int read_extent_buffer_pages(struct extent_io_tree *tree,
3386 			     struct extent_buffer *eb,
3387 			     u64 start, int wait,
3388 			     get_extent_t *get_extent, int mirror_num)
3389 {
3390 	unsigned long i;
3391 	unsigned long start_i;
3392 	struct page *page;
3393 	int err;
3394 	int ret = 0;
3395 	int locked_pages = 0;
3396 	int all_uptodate = 1;
3397 	int inc_all_pages = 0;
3398 	unsigned long num_pages;
3399 	struct bio *bio = NULL;
3400 	unsigned long bio_flags = 0;
3401 
3402 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3403 		return 0;
3404 
3405 	if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3406 			   EXTENT_UPTODATE, 1, NULL)) {
3407 		return 0;
3408 	}
3409 
3410 	if (start) {
3411 		WARN_ON(start < eb->start);
3412 		start_i = (start >> PAGE_CACHE_SHIFT) -
3413 			(eb->start >> PAGE_CACHE_SHIFT);
3414 	} else {
3415 		start_i = 0;
3416 	}
3417 
3418 	num_pages = num_extent_pages(eb->start, eb->len);
3419 	for (i = start_i; i < num_pages; i++) {
3420 		page = extent_buffer_page(eb, i);
3421 		if (!wait) {
3422 			if (!trylock_page(page))
3423 				goto unlock_exit;
3424 		} else {
3425 			lock_page(page);
3426 		}
3427 		locked_pages++;
3428 		if (!PageUptodate(page))
3429 			all_uptodate = 0;
3430 	}
3431 	if (all_uptodate) {
3432 		if (start_i == 0)
3433 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3434 		goto unlock_exit;
3435 	}
3436 
3437 	for (i = start_i; i < num_pages; i++) {
3438 		page = extent_buffer_page(eb, i);
3439 		if (inc_all_pages)
3440 			page_cache_get(page);
3441 		if (!PageUptodate(page)) {
3442 			if (start_i == 0)
3443 				inc_all_pages = 1;
3444 			ClearPageError(page);
3445 			err = __extent_read_full_page(tree, page,
3446 						      get_extent, &bio,
3447 						      mirror_num, &bio_flags);
3448 			if (err)
3449 				ret = err;
3450 		} else {
3451 			unlock_page(page);
3452 		}
3453 	}
3454 
3455 	if (bio)
3456 		submit_one_bio(READ, bio, mirror_num, bio_flags);
3457 
3458 	if (ret || !wait)
3459 		return ret;
3460 
3461 	for (i = start_i; i < num_pages; i++) {
3462 		page = extent_buffer_page(eb, i);
3463 		wait_on_page_locked(page);
3464 		if (!PageUptodate(page))
3465 			ret = -EIO;
3466 	}
3467 
3468 	if (!ret)
3469 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3470 	return ret;
3471 
3472 unlock_exit:
3473 	i = start_i;
3474 	while (locked_pages > 0) {
3475 		page = extent_buffer_page(eb, i);
3476 		i++;
3477 		unlock_page(page);
3478 		locked_pages--;
3479 	}
3480 	return ret;
3481 }
3482 
3483 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3484 			unsigned long start,
3485 			unsigned long len)
3486 {
3487 	size_t cur;
3488 	size_t offset;
3489 	struct page *page;
3490 	char *kaddr;
3491 	char *dst = (char *)dstv;
3492 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3493 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3494 
3495 	WARN_ON(start > eb->len);
3496 	WARN_ON(start + len > eb->start + eb->len);
3497 
3498 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3499 
3500 	while (len > 0) {
3501 		page = extent_buffer_page(eb, i);
3502 
3503 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3504 		kaddr = kmap_atomic(page, KM_USER1);
3505 		memcpy(dst, kaddr + offset, cur);
3506 		kunmap_atomic(kaddr, KM_USER1);
3507 
3508 		dst += cur;
3509 		len -= cur;
3510 		offset = 0;
3511 		i++;
3512 	}
3513 }
3514 
3515 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3516 			       unsigned long min_len, char **token, char **map,
3517 			       unsigned long *map_start,
3518 			       unsigned long *map_len, int km)
3519 {
3520 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3521 	char *kaddr;
3522 	struct page *p;
3523 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3524 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3525 	unsigned long end_i = (start_offset + start + min_len - 1) >>
3526 		PAGE_CACHE_SHIFT;
3527 
3528 	if (i != end_i)
3529 		return -EINVAL;
3530 
3531 	if (i == 0) {
3532 		offset = start_offset;
3533 		*map_start = 0;
3534 	} else {
3535 		offset = 0;
3536 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3537 	}
3538 
3539 	if (start + min_len > eb->len) {
3540 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3541 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3542 		       eb->len, start, min_len);
3543 		WARN_ON(1);
3544 	}
3545 
3546 	p = extent_buffer_page(eb, i);
3547 	kaddr = kmap_atomic(p, km);
3548 	*token = kaddr;
3549 	*map = kaddr + offset;
3550 	*map_len = PAGE_CACHE_SIZE - offset;
3551 	return 0;
3552 }
3553 
3554 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3555 		      unsigned long min_len,
3556 		      char **token, char **map,
3557 		      unsigned long *map_start,
3558 		      unsigned long *map_len, int km)
3559 {
3560 	int err;
3561 	int save = 0;
3562 	if (eb->map_token) {
3563 		unmap_extent_buffer(eb, eb->map_token, km);
3564 		eb->map_token = NULL;
3565 		save = 1;
3566 	}
3567 	err = map_private_extent_buffer(eb, start, min_len, token, map,
3568 				       map_start, map_len, km);
3569 	if (!err && save) {
3570 		eb->map_token = *token;
3571 		eb->kaddr = *map;
3572 		eb->map_start = *map_start;
3573 		eb->map_len = *map_len;
3574 	}
3575 	return err;
3576 }
3577 
3578 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3579 {
3580 	kunmap_atomic(token, km);
3581 }
3582 
3583 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3584 			  unsigned long start,
3585 			  unsigned long len)
3586 {
3587 	size_t cur;
3588 	size_t offset;
3589 	struct page *page;
3590 	char *kaddr;
3591 	char *ptr = (char *)ptrv;
3592 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3593 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3594 	int ret = 0;
3595 
3596 	WARN_ON(start > eb->len);
3597 	WARN_ON(start + len > eb->start + eb->len);
3598 
3599 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3600 
3601 	while (len > 0) {
3602 		page = extent_buffer_page(eb, i);
3603 
3604 		cur = min(len, (PAGE_CACHE_SIZE - offset));
3605 
3606 		kaddr = kmap_atomic(page, KM_USER0);
3607 		ret = memcmp(ptr, kaddr + offset, cur);
3608 		kunmap_atomic(kaddr, KM_USER0);
3609 		if (ret)
3610 			break;
3611 
3612 		ptr += cur;
3613 		len -= cur;
3614 		offset = 0;
3615 		i++;
3616 	}
3617 	return ret;
3618 }
3619 
3620 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3621 			 unsigned long start, unsigned long len)
3622 {
3623 	size_t cur;
3624 	size_t offset;
3625 	struct page *page;
3626 	char *kaddr;
3627 	char *src = (char *)srcv;
3628 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3629 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3630 
3631 	WARN_ON(start > eb->len);
3632 	WARN_ON(start + len > eb->start + eb->len);
3633 
3634 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3635 
3636 	while (len > 0) {
3637 		page = extent_buffer_page(eb, i);
3638 		WARN_ON(!PageUptodate(page));
3639 
3640 		cur = min(len, PAGE_CACHE_SIZE - offset);
3641 		kaddr = kmap_atomic(page, KM_USER1);
3642 		memcpy(kaddr + offset, src, cur);
3643 		kunmap_atomic(kaddr, KM_USER1);
3644 
3645 		src += cur;
3646 		len -= cur;
3647 		offset = 0;
3648 		i++;
3649 	}
3650 }
3651 
3652 void memset_extent_buffer(struct extent_buffer *eb, char c,
3653 			  unsigned long start, unsigned long len)
3654 {
3655 	size_t cur;
3656 	size_t offset;
3657 	struct page *page;
3658 	char *kaddr;
3659 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3660 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3661 
3662 	WARN_ON(start > eb->len);
3663 	WARN_ON(start + len > eb->start + eb->len);
3664 
3665 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3666 
3667 	while (len > 0) {
3668 		page = extent_buffer_page(eb, i);
3669 		WARN_ON(!PageUptodate(page));
3670 
3671 		cur = min(len, PAGE_CACHE_SIZE - offset);
3672 		kaddr = kmap_atomic(page, KM_USER0);
3673 		memset(kaddr + offset, c, cur);
3674 		kunmap_atomic(kaddr, KM_USER0);
3675 
3676 		len -= cur;
3677 		offset = 0;
3678 		i++;
3679 	}
3680 }
3681 
3682 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3683 			unsigned long dst_offset, unsigned long src_offset,
3684 			unsigned long len)
3685 {
3686 	u64 dst_len = dst->len;
3687 	size_t cur;
3688 	size_t offset;
3689 	struct page *page;
3690 	char *kaddr;
3691 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3692 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3693 
3694 	WARN_ON(src->len != dst_len);
3695 
3696 	offset = (start_offset + dst_offset) &
3697 		((unsigned long)PAGE_CACHE_SIZE - 1);
3698 
3699 	while (len > 0) {
3700 		page = extent_buffer_page(dst, i);
3701 		WARN_ON(!PageUptodate(page));
3702 
3703 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3704 
3705 		kaddr = kmap_atomic(page, KM_USER0);
3706 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3707 		kunmap_atomic(kaddr, KM_USER0);
3708 
3709 		src_offset += cur;
3710 		len -= cur;
3711 		offset = 0;
3712 		i++;
3713 	}
3714 }
3715 
3716 static void move_pages(struct page *dst_page, struct page *src_page,
3717 		       unsigned long dst_off, unsigned long src_off,
3718 		       unsigned long len)
3719 {
3720 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3721 	if (dst_page == src_page) {
3722 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3723 	} else {
3724 		char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3725 		char *p = dst_kaddr + dst_off + len;
3726 		char *s = src_kaddr + src_off + len;
3727 
3728 		while (len--)
3729 			*--p = *--s;
3730 
3731 		kunmap_atomic(src_kaddr, KM_USER1);
3732 	}
3733 	kunmap_atomic(dst_kaddr, KM_USER0);
3734 }
3735 
3736 static void copy_pages(struct page *dst_page, struct page *src_page,
3737 		       unsigned long dst_off, unsigned long src_off,
3738 		       unsigned long len)
3739 {
3740 	char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3741 	char *src_kaddr;
3742 
3743 	if (dst_page != src_page)
3744 		src_kaddr = kmap_atomic(src_page, KM_USER1);
3745 	else
3746 		src_kaddr = dst_kaddr;
3747 
3748 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3749 	kunmap_atomic(dst_kaddr, KM_USER0);
3750 	if (dst_page != src_page)
3751 		kunmap_atomic(src_kaddr, KM_USER1);
3752 }
3753 
3754 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3755 			   unsigned long src_offset, unsigned long len)
3756 {
3757 	size_t cur;
3758 	size_t dst_off_in_page;
3759 	size_t src_off_in_page;
3760 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3761 	unsigned long dst_i;
3762 	unsigned long src_i;
3763 
3764 	if (src_offset + len > dst->len) {
3765 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3766 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3767 		BUG_ON(1);
3768 	}
3769 	if (dst_offset + len > dst->len) {
3770 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3771 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3772 		BUG_ON(1);
3773 	}
3774 
3775 	while (len > 0) {
3776 		dst_off_in_page = (start_offset + dst_offset) &
3777 			((unsigned long)PAGE_CACHE_SIZE - 1);
3778 		src_off_in_page = (start_offset + src_offset) &
3779 			((unsigned long)PAGE_CACHE_SIZE - 1);
3780 
3781 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3782 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3783 
3784 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3785 					       src_off_in_page));
3786 		cur = min_t(unsigned long, cur,
3787 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3788 
3789 		copy_pages(extent_buffer_page(dst, dst_i),
3790 			   extent_buffer_page(dst, src_i),
3791 			   dst_off_in_page, src_off_in_page, cur);
3792 
3793 		src_offset += cur;
3794 		dst_offset += cur;
3795 		len -= cur;
3796 	}
3797 }
3798 
3799 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3800 			   unsigned long src_offset, unsigned long len)
3801 {
3802 	size_t cur;
3803 	size_t dst_off_in_page;
3804 	size_t src_off_in_page;
3805 	unsigned long dst_end = dst_offset + len - 1;
3806 	unsigned long src_end = src_offset + len - 1;
3807 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3808 	unsigned long dst_i;
3809 	unsigned long src_i;
3810 
3811 	if (src_offset + len > dst->len) {
3812 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3813 		       "len %lu len %lu\n", src_offset, len, dst->len);
3814 		BUG_ON(1);
3815 	}
3816 	if (dst_offset + len > dst->len) {
3817 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3818 		       "len %lu len %lu\n", dst_offset, len, dst->len);
3819 		BUG_ON(1);
3820 	}
3821 	if (dst_offset < src_offset) {
3822 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3823 		return;
3824 	}
3825 	while (len > 0) {
3826 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3827 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3828 
3829 		dst_off_in_page = (start_offset + dst_end) &
3830 			((unsigned long)PAGE_CACHE_SIZE - 1);
3831 		src_off_in_page = (start_offset + src_end) &
3832 			((unsigned long)PAGE_CACHE_SIZE - 1);
3833 
3834 		cur = min_t(unsigned long, len, src_off_in_page + 1);
3835 		cur = min(cur, dst_off_in_page + 1);
3836 		move_pages(extent_buffer_page(dst, dst_i),
3837 			   extent_buffer_page(dst, src_i),
3838 			   dst_off_in_page - cur + 1,
3839 			   src_off_in_page - cur + 1, cur);
3840 
3841 		dst_end -= cur;
3842 		src_end -= cur;
3843 		len -= cur;
3844 	}
3845 }
3846 
3847 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3848 {
3849 	u64 start = page_offset(page);
3850 	struct extent_buffer *eb;
3851 	int ret = 1;
3852 	unsigned long i;
3853 	unsigned long num_pages;
3854 
3855 	spin_lock(&tree->buffer_lock);
3856 	eb = buffer_search(tree, start);
3857 	if (!eb)
3858 		goto out;
3859 
3860 	if (atomic_read(&eb->refs) > 1) {
3861 		ret = 0;
3862 		goto out;
3863 	}
3864 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3865 		ret = 0;
3866 		goto out;
3867 	}
3868 	/* at this point we can safely release the extent buffer */
3869 	num_pages = num_extent_pages(eb->start, eb->len);
3870 	for (i = 0; i < num_pages; i++)
3871 		page_cache_release(extent_buffer_page(eb, i));
3872 	rb_erase(&eb->rb_node, &tree->buffer);
3873 	__free_extent_buffer(eb);
3874 out:
3875 	spin_unlock(&tree->buffer_lock);
3876 	return ret;
3877 }
3878