1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/spinlock.h> 10 #include <linux/blkdev.h> 11 #include <linux/swap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/prefetch.h> 15 #include <linux/cleancache.h> 16 #include "extent_io.h" 17 #include "extent_map.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 #include "volumes.h" 21 #include "check-integrity.h" 22 #include "locking.h" 23 #include "rcu-string.h" 24 #include "backref.h" 25 #include "disk-io.h" 26 27 static struct kmem_cache *extent_state_cache; 28 static struct kmem_cache *extent_buffer_cache; 29 static struct bio_set btrfs_bioset; 30 31 static inline bool extent_state_in_tree(const struct extent_state *state) 32 { 33 return !RB_EMPTY_NODE(&state->rb_node); 34 } 35 36 #ifdef CONFIG_BTRFS_DEBUG 37 static LIST_HEAD(buffers); 38 static LIST_HEAD(states); 39 40 static DEFINE_SPINLOCK(leak_lock); 41 42 static inline 43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 44 { 45 unsigned long flags; 46 47 spin_lock_irqsave(&leak_lock, flags); 48 list_add(new, head); 49 spin_unlock_irqrestore(&leak_lock, flags); 50 } 51 52 static inline 53 void btrfs_leak_debug_del(struct list_head *entry) 54 { 55 unsigned long flags; 56 57 spin_lock_irqsave(&leak_lock, flags); 58 list_del(entry); 59 spin_unlock_irqrestore(&leak_lock, flags); 60 } 61 62 static inline 63 void btrfs_leak_debug_check(void) 64 { 65 struct extent_state *state; 66 struct extent_buffer *eb; 67 68 while (!list_empty(&states)) { 69 state = list_entry(states.next, struct extent_state, leak_list); 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 71 state->start, state->end, state->state, 72 extent_state_in_tree(state), 73 refcount_read(&state->refs)); 74 list_del(&state->leak_list); 75 kmem_cache_free(extent_state_cache, state); 76 } 77 78 while (!list_empty(&buffers)) { 79 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n", 81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags); 82 list_del(&eb->leak_list); 83 kmem_cache_free(extent_buffer_cache, eb); 84 } 85 } 86 87 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 89 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 90 struct extent_io_tree *tree, u64 start, u64 end) 91 { 92 struct inode *inode = tree->private_data; 93 u64 isize; 94 95 if (!inode || !is_data_inode(inode)) 96 return; 97 98 isize = i_size_read(inode); 99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 101 "%s: ino %llu isize %llu odd range [%llu,%llu]", 102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 103 } 104 } 105 #else 106 #define btrfs_leak_debug_add(new, head) do {} while (0) 107 #define btrfs_leak_debug_del(entry) do {} while (0) 108 #define btrfs_leak_debug_check() do {} while (0) 109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 110 #endif 111 112 #define BUFFER_LRU_MAX 64 113 114 struct tree_entry { 115 u64 start; 116 u64 end; 117 struct rb_node rb_node; 118 }; 119 120 struct extent_page_data { 121 struct bio *bio; 122 struct extent_io_tree *tree; 123 /* tells writepage not to lock the state bits for this range 124 * it still does the unlocking 125 */ 126 unsigned int extent_locked:1; 127 128 /* tells the submit_bio code to use REQ_SYNC */ 129 unsigned int sync_io:1; 130 }; 131 132 static int add_extent_changeset(struct extent_state *state, unsigned bits, 133 struct extent_changeset *changeset, 134 int set) 135 { 136 int ret; 137 138 if (!changeset) 139 return 0; 140 if (set && (state->state & bits) == bits) 141 return 0; 142 if (!set && (state->state & bits) == 0) 143 return 0; 144 changeset->bytes_changed += state->end - state->start + 1; 145 ret = ulist_add(&changeset->range_changed, state->start, state->end, 146 GFP_ATOMIC); 147 return ret; 148 } 149 150 static int __must_check submit_one_bio(struct bio *bio, int mirror_num, 151 unsigned long bio_flags) 152 { 153 blk_status_t ret = 0; 154 struct bio_vec *bvec = bio_last_bvec_all(bio); 155 struct bio_vec bv; 156 struct extent_io_tree *tree = bio->bi_private; 157 u64 start; 158 159 mp_bvec_last_segment(bvec, &bv); 160 start = page_offset(bv.bv_page) + bv.bv_offset; 161 162 bio->bi_private = NULL; 163 164 if (tree->ops) 165 ret = tree->ops->submit_bio_hook(tree->private_data, bio, 166 mirror_num, bio_flags, start); 167 else 168 btrfsic_submit_bio(bio); 169 170 return blk_status_to_errno(ret); 171 } 172 173 static void flush_write_bio(struct extent_page_data *epd) 174 { 175 if (epd->bio) { 176 int ret; 177 178 ret = submit_one_bio(epd->bio, 0, 0); 179 BUG_ON(ret < 0); /* -ENOMEM */ 180 epd->bio = NULL; 181 } 182 } 183 184 int __init extent_io_init(void) 185 { 186 extent_state_cache = kmem_cache_create("btrfs_extent_state", 187 sizeof(struct extent_state), 0, 188 SLAB_MEM_SPREAD, NULL); 189 if (!extent_state_cache) 190 return -ENOMEM; 191 192 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 193 sizeof(struct extent_buffer), 0, 194 SLAB_MEM_SPREAD, NULL); 195 if (!extent_buffer_cache) 196 goto free_state_cache; 197 198 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 199 offsetof(struct btrfs_io_bio, bio), 200 BIOSET_NEED_BVECS)) 201 goto free_buffer_cache; 202 203 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 204 goto free_bioset; 205 206 return 0; 207 208 free_bioset: 209 bioset_exit(&btrfs_bioset); 210 211 free_buffer_cache: 212 kmem_cache_destroy(extent_buffer_cache); 213 extent_buffer_cache = NULL; 214 215 free_state_cache: 216 kmem_cache_destroy(extent_state_cache); 217 extent_state_cache = NULL; 218 return -ENOMEM; 219 } 220 221 void __cold extent_io_exit(void) 222 { 223 btrfs_leak_debug_check(); 224 225 /* 226 * Make sure all delayed rcu free are flushed before we 227 * destroy caches. 228 */ 229 rcu_barrier(); 230 kmem_cache_destroy(extent_state_cache); 231 kmem_cache_destroy(extent_buffer_cache); 232 bioset_exit(&btrfs_bioset); 233 } 234 235 void extent_io_tree_init(struct extent_io_tree *tree, 236 void *private_data) 237 { 238 tree->state = RB_ROOT; 239 tree->ops = NULL; 240 tree->dirty_bytes = 0; 241 spin_lock_init(&tree->lock); 242 tree->private_data = private_data; 243 } 244 245 static struct extent_state *alloc_extent_state(gfp_t mask) 246 { 247 struct extent_state *state; 248 249 /* 250 * The given mask might be not appropriate for the slab allocator, 251 * drop the unsupported bits 252 */ 253 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 254 state = kmem_cache_alloc(extent_state_cache, mask); 255 if (!state) 256 return state; 257 state->state = 0; 258 state->failrec = NULL; 259 RB_CLEAR_NODE(&state->rb_node); 260 btrfs_leak_debug_add(&state->leak_list, &states); 261 refcount_set(&state->refs, 1); 262 init_waitqueue_head(&state->wq); 263 trace_alloc_extent_state(state, mask, _RET_IP_); 264 return state; 265 } 266 267 void free_extent_state(struct extent_state *state) 268 { 269 if (!state) 270 return; 271 if (refcount_dec_and_test(&state->refs)) { 272 WARN_ON(extent_state_in_tree(state)); 273 btrfs_leak_debug_del(&state->leak_list); 274 trace_free_extent_state(state, _RET_IP_); 275 kmem_cache_free(extent_state_cache, state); 276 } 277 } 278 279 static struct rb_node *tree_insert(struct rb_root *root, 280 struct rb_node *search_start, 281 u64 offset, 282 struct rb_node *node, 283 struct rb_node ***p_in, 284 struct rb_node **parent_in) 285 { 286 struct rb_node **p; 287 struct rb_node *parent = NULL; 288 struct tree_entry *entry; 289 290 if (p_in && parent_in) { 291 p = *p_in; 292 parent = *parent_in; 293 goto do_insert; 294 } 295 296 p = search_start ? &search_start : &root->rb_node; 297 while (*p) { 298 parent = *p; 299 entry = rb_entry(parent, struct tree_entry, rb_node); 300 301 if (offset < entry->start) 302 p = &(*p)->rb_left; 303 else if (offset > entry->end) 304 p = &(*p)->rb_right; 305 else 306 return parent; 307 } 308 309 do_insert: 310 rb_link_node(node, parent, p); 311 rb_insert_color(node, root); 312 return NULL; 313 } 314 315 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 316 struct rb_node **next_ret, 317 struct rb_node **prev_ret, 318 struct rb_node ***p_ret, 319 struct rb_node **parent_ret) 320 { 321 struct rb_root *root = &tree->state; 322 struct rb_node **n = &root->rb_node; 323 struct rb_node *prev = NULL; 324 struct rb_node *orig_prev = NULL; 325 struct tree_entry *entry; 326 struct tree_entry *prev_entry = NULL; 327 328 while (*n) { 329 prev = *n; 330 entry = rb_entry(prev, struct tree_entry, rb_node); 331 prev_entry = entry; 332 333 if (offset < entry->start) 334 n = &(*n)->rb_left; 335 else if (offset > entry->end) 336 n = &(*n)->rb_right; 337 else 338 return *n; 339 } 340 341 if (p_ret) 342 *p_ret = n; 343 if (parent_ret) 344 *parent_ret = prev; 345 346 if (next_ret) { 347 orig_prev = prev; 348 while (prev && offset > prev_entry->end) { 349 prev = rb_next(prev); 350 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 351 } 352 *next_ret = prev; 353 prev = orig_prev; 354 } 355 356 if (prev_ret) { 357 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 358 while (prev && offset < prev_entry->start) { 359 prev = rb_prev(prev); 360 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 361 } 362 *prev_ret = prev; 363 } 364 return NULL; 365 } 366 367 static inline struct rb_node * 368 tree_search_for_insert(struct extent_io_tree *tree, 369 u64 offset, 370 struct rb_node ***p_ret, 371 struct rb_node **parent_ret) 372 { 373 struct rb_node *next= NULL; 374 struct rb_node *ret; 375 376 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 377 if (!ret) 378 return next; 379 return ret; 380 } 381 382 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 383 u64 offset) 384 { 385 return tree_search_for_insert(tree, offset, NULL, NULL); 386 } 387 388 /* 389 * utility function to look for merge candidates inside a given range. 390 * Any extents with matching state are merged together into a single 391 * extent in the tree. Extents with EXTENT_IO in their state field 392 * are not merged because the end_io handlers need to be able to do 393 * operations on them without sleeping (or doing allocations/splits). 394 * 395 * This should be called with the tree lock held. 396 */ 397 static void merge_state(struct extent_io_tree *tree, 398 struct extent_state *state) 399 { 400 struct extent_state *other; 401 struct rb_node *other_node; 402 403 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 404 return; 405 406 other_node = rb_prev(&state->rb_node); 407 if (other_node) { 408 other = rb_entry(other_node, struct extent_state, rb_node); 409 if (other->end == state->start - 1 && 410 other->state == state->state) { 411 if (tree->private_data && 412 is_data_inode(tree->private_data)) 413 btrfs_merge_delalloc_extent(tree->private_data, 414 state, other); 415 state->start = other->start; 416 rb_erase(&other->rb_node, &tree->state); 417 RB_CLEAR_NODE(&other->rb_node); 418 free_extent_state(other); 419 } 420 } 421 other_node = rb_next(&state->rb_node); 422 if (other_node) { 423 other = rb_entry(other_node, struct extent_state, rb_node); 424 if (other->start == state->end + 1 && 425 other->state == state->state) { 426 if (tree->private_data && 427 is_data_inode(tree->private_data)) 428 btrfs_merge_delalloc_extent(tree->private_data, 429 state, other); 430 state->end = other->end; 431 rb_erase(&other->rb_node, &tree->state); 432 RB_CLEAR_NODE(&other->rb_node); 433 free_extent_state(other); 434 } 435 } 436 } 437 438 static void set_state_bits(struct extent_io_tree *tree, 439 struct extent_state *state, unsigned *bits, 440 struct extent_changeset *changeset); 441 442 /* 443 * insert an extent_state struct into the tree. 'bits' are set on the 444 * struct before it is inserted. 445 * 446 * This may return -EEXIST if the extent is already there, in which case the 447 * state struct is freed. 448 * 449 * The tree lock is not taken internally. This is a utility function and 450 * probably isn't what you want to call (see set/clear_extent_bit). 451 */ 452 static int insert_state(struct extent_io_tree *tree, 453 struct extent_state *state, u64 start, u64 end, 454 struct rb_node ***p, 455 struct rb_node **parent, 456 unsigned *bits, struct extent_changeset *changeset) 457 { 458 struct rb_node *node; 459 460 if (end < start) 461 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 462 end, start); 463 state->start = start; 464 state->end = end; 465 466 set_state_bits(tree, state, bits, changeset); 467 468 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 469 if (node) { 470 struct extent_state *found; 471 found = rb_entry(node, struct extent_state, rb_node); 472 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n", 473 found->start, found->end, start, end); 474 return -EEXIST; 475 } 476 merge_state(tree, state); 477 return 0; 478 } 479 480 /* 481 * split a given extent state struct in two, inserting the preallocated 482 * struct 'prealloc' as the newly created second half. 'split' indicates an 483 * offset inside 'orig' where it should be split. 484 * 485 * Before calling, 486 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 487 * are two extent state structs in the tree: 488 * prealloc: [orig->start, split - 1] 489 * orig: [ split, orig->end ] 490 * 491 * The tree locks are not taken by this function. They need to be held 492 * by the caller. 493 */ 494 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 495 struct extent_state *prealloc, u64 split) 496 { 497 struct rb_node *node; 498 499 if (tree->private_data && is_data_inode(tree->private_data)) 500 btrfs_split_delalloc_extent(tree->private_data, orig, split); 501 502 prealloc->start = orig->start; 503 prealloc->end = split - 1; 504 prealloc->state = orig->state; 505 orig->start = split; 506 507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 508 &prealloc->rb_node, NULL, NULL); 509 if (node) { 510 free_extent_state(prealloc); 511 return -EEXIST; 512 } 513 return 0; 514 } 515 516 static struct extent_state *next_state(struct extent_state *state) 517 { 518 struct rb_node *next = rb_next(&state->rb_node); 519 if (next) 520 return rb_entry(next, struct extent_state, rb_node); 521 else 522 return NULL; 523 } 524 525 /* 526 * utility function to clear some bits in an extent state struct. 527 * it will optionally wake up anyone waiting on this state (wake == 1). 528 * 529 * If no bits are set on the state struct after clearing things, the 530 * struct is freed and removed from the tree 531 */ 532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 533 struct extent_state *state, 534 unsigned *bits, int wake, 535 struct extent_changeset *changeset) 536 { 537 struct extent_state *next; 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS; 539 int ret; 540 541 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 542 u64 range = state->end - state->start + 1; 543 WARN_ON(range > tree->dirty_bytes); 544 tree->dirty_bytes -= range; 545 } 546 547 if (tree->private_data && is_data_inode(tree->private_data)) 548 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 549 550 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 551 BUG_ON(ret < 0); 552 state->state &= ~bits_to_clear; 553 if (wake) 554 wake_up(&state->wq); 555 if (state->state == 0) { 556 next = next_state(state); 557 if (extent_state_in_tree(state)) { 558 rb_erase(&state->rb_node, &tree->state); 559 RB_CLEAR_NODE(&state->rb_node); 560 free_extent_state(state); 561 } else { 562 WARN_ON(1); 563 } 564 } else { 565 merge_state(tree, state); 566 next = next_state(state); 567 } 568 return next; 569 } 570 571 static struct extent_state * 572 alloc_extent_state_atomic(struct extent_state *prealloc) 573 { 574 if (!prealloc) 575 prealloc = alloc_extent_state(GFP_ATOMIC); 576 577 return prealloc; 578 } 579 580 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 581 { 582 struct inode *inode = tree->private_data; 583 584 btrfs_panic(btrfs_sb(inode->i_sb), err, 585 "locking error: extent tree was modified by another thread while locked"); 586 } 587 588 /* 589 * clear some bits on a range in the tree. This may require splitting 590 * or inserting elements in the tree, so the gfp mask is used to 591 * indicate which allocations or sleeping are allowed. 592 * 593 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 594 * the given range from the tree regardless of state (ie for truncate). 595 * 596 * the range [start, end] is inclusive. 597 * 598 * This takes the tree lock, and returns 0 on success and < 0 on error. 599 */ 600 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 601 unsigned bits, int wake, int delete, 602 struct extent_state **cached_state, 603 gfp_t mask, struct extent_changeset *changeset) 604 { 605 struct extent_state *state; 606 struct extent_state *cached; 607 struct extent_state *prealloc = NULL; 608 struct rb_node *node; 609 u64 last_end; 610 int err; 611 int clear = 0; 612 613 btrfs_debug_check_extent_io_range(tree, start, end); 614 615 if (bits & EXTENT_DELALLOC) 616 bits |= EXTENT_NORESERVE; 617 618 if (delete) 619 bits |= ~EXTENT_CTLBITS; 620 621 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 622 clear = 1; 623 again: 624 if (!prealloc && gfpflags_allow_blocking(mask)) { 625 /* 626 * Don't care for allocation failure here because we might end 627 * up not needing the pre-allocated extent state at all, which 628 * is the case if we only have in the tree extent states that 629 * cover our input range and don't cover too any other range. 630 * If we end up needing a new extent state we allocate it later. 631 */ 632 prealloc = alloc_extent_state(mask); 633 } 634 635 spin_lock(&tree->lock); 636 if (cached_state) { 637 cached = *cached_state; 638 639 if (clear) { 640 *cached_state = NULL; 641 cached_state = NULL; 642 } 643 644 if (cached && extent_state_in_tree(cached) && 645 cached->start <= start && cached->end > start) { 646 if (clear) 647 refcount_dec(&cached->refs); 648 state = cached; 649 goto hit_next; 650 } 651 if (clear) 652 free_extent_state(cached); 653 } 654 /* 655 * this search will find the extents that end after 656 * our range starts 657 */ 658 node = tree_search(tree, start); 659 if (!node) 660 goto out; 661 state = rb_entry(node, struct extent_state, rb_node); 662 hit_next: 663 if (state->start > end) 664 goto out; 665 WARN_ON(state->end < start); 666 last_end = state->end; 667 668 /* the state doesn't have the wanted bits, go ahead */ 669 if (!(state->state & bits)) { 670 state = next_state(state); 671 goto next; 672 } 673 674 /* 675 * | ---- desired range ---- | 676 * | state | or 677 * | ------------- state -------------- | 678 * 679 * We need to split the extent we found, and may flip 680 * bits on second half. 681 * 682 * If the extent we found extends past our range, we 683 * just split and search again. It'll get split again 684 * the next time though. 685 * 686 * If the extent we found is inside our range, we clear 687 * the desired bit on it. 688 */ 689 690 if (state->start < start) { 691 prealloc = alloc_extent_state_atomic(prealloc); 692 BUG_ON(!prealloc); 693 err = split_state(tree, state, prealloc, start); 694 if (err) 695 extent_io_tree_panic(tree, err); 696 697 prealloc = NULL; 698 if (err) 699 goto out; 700 if (state->end <= end) { 701 state = clear_state_bit(tree, state, &bits, wake, 702 changeset); 703 goto next; 704 } 705 goto search_again; 706 } 707 /* 708 * | ---- desired range ---- | 709 * | state | 710 * We need to split the extent, and clear the bit 711 * on the first half 712 */ 713 if (state->start <= end && state->end > end) { 714 prealloc = alloc_extent_state_atomic(prealloc); 715 BUG_ON(!prealloc); 716 err = split_state(tree, state, prealloc, end + 1); 717 if (err) 718 extent_io_tree_panic(tree, err); 719 720 if (wake) 721 wake_up(&state->wq); 722 723 clear_state_bit(tree, prealloc, &bits, wake, changeset); 724 725 prealloc = NULL; 726 goto out; 727 } 728 729 state = clear_state_bit(tree, state, &bits, wake, changeset); 730 next: 731 if (last_end == (u64)-1) 732 goto out; 733 start = last_end + 1; 734 if (start <= end && state && !need_resched()) 735 goto hit_next; 736 737 search_again: 738 if (start > end) 739 goto out; 740 spin_unlock(&tree->lock); 741 if (gfpflags_allow_blocking(mask)) 742 cond_resched(); 743 goto again; 744 745 out: 746 spin_unlock(&tree->lock); 747 if (prealloc) 748 free_extent_state(prealloc); 749 750 return 0; 751 752 } 753 754 static void wait_on_state(struct extent_io_tree *tree, 755 struct extent_state *state) 756 __releases(tree->lock) 757 __acquires(tree->lock) 758 { 759 DEFINE_WAIT(wait); 760 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 761 spin_unlock(&tree->lock); 762 schedule(); 763 spin_lock(&tree->lock); 764 finish_wait(&state->wq, &wait); 765 } 766 767 /* 768 * waits for one or more bits to clear on a range in the state tree. 769 * The range [start, end] is inclusive. 770 * The tree lock is taken by this function 771 */ 772 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 773 unsigned long bits) 774 { 775 struct extent_state *state; 776 struct rb_node *node; 777 778 btrfs_debug_check_extent_io_range(tree, start, end); 779 780 spin_lock(&tree->lock); 781 again: 782 while (1) { 783 /* 784 * this search will find all the extents that end after 785 * our range starts 786 */ 787 node = tree_search(tree, start); 788 process_node: 789 if (!node) 790 break; 791 792 state = rb_entry(node, struct extent_state, rb_node); 793 794 if (state->start > end) 795 goto out; 796 797 if (state->state & bits) { 798 start = state->start; 799 refcount_inc(&state->refs); 800 wait_on_state(tree, state); 801 free_extent_state(state); 802 goto again; 803 } 804 start = state->end + 1; 805 806 if (start > end) 807 break; 808 809 if (!cond_resched_lock(&tree->lock)) { 810 node = rb_next(node); 811 goto process_node; 812 } 813 } 814 out: 815 spin_unlock(&tree->lock); 816 } 817 818 static void set_state_bits(struct extent_io_tree *tree, 819 struct extent_state *state, 820 unsigned *bits, struct extent_changeset *changeset) 821 { 822 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS; 823 int ret; 824 825 if (tree->private_data && is_data_inode(tree->private_data)) 826 btrfs_set_delalloc_extent(tree->private_data, state, bits); 827 828 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 829 u64 range = state->end - state->start + 1; 830 tree->dirty_bytes += range; 831 } 832 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 833 BUG_ON(ret < 0); 834 state->state |= bits_to_set; 835 } 836 837 static void cache_state_if_flags(struct extent_state *state, 838 struct extent_state **cached_ptr, 839 unsigned flags) 840 { 841 if (cached_ptr && !(*cached_ptr)) { 842 if (!flags || (state->state & flags)) { 843 *cached_ptr = state; 844 refcount_inc(&state->refs); 845 } 846 } 847 } 848 849 static void cache_state(struct extent_state *state, 850 struct extent_state **cached_ptr) 851 { 852 return cache_state_if_flags(state, cached_ptr, 853 EXTENT_IOBITS | EXTENT_BOUNDARY); 854 } 855 856 /* 857 * set some bits on a range in the tree. This may require allocations or 858 * sleeping, so the gfp mask is used to indicate what is allowed. 859 * 860 * If any of the exclusive bits are set, this will fail with -EEXIST if some 861 * part of the range already has the desired bits set. The start of the 862 * existing range is returned in failed_start in this case. 863 * 864 * [start, end] is inclusive This takes the tree lock. 865 */ 866 867 static int __must_check 868 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 869 unsigned bits, unsigned exclusive_bits, 870 u64 *failed_start, struct extent_state **cached_state, 871 gfp_t mask, struct extent_changeset *changeset) 872 { 873 struct extent_state *state; 874 struct extent_state *prealloc = NULL; 875 struct rb_node *node; 876 struct rb_node **p; 877 struct rb_node *parent; 878 int err = 0; 879 u64 last_start; 880 u64 last_end; 881 882 btrfs_debug_check_extent_io_range(tree, start, end); 883 884 again: 885 if (!prealloc && gfpflags_allow_blocking(mask)) { 886 /* 887 * Don't care for allocation failure here because we might end 888 * up not needing the pre-allocated extent state at all, which 889 * is the case if we only have in the tree extent states that 890 * cover our input range and don't cover too any other range. 891 * If we end up needing a new extent state we allocate it later. 892 */ 893 prealloc = alloc_extent_state(mask); 894 } 895 896 spin_lock(&tree->lock); 897 if (cached_state && *cached_state) { 898 state = *cached_state; 899 if (state->start <= start && state->end > start && 900 extent_state_in_tree(state)) { 901 node = &state->rb_node; 902 goto hit_next; 903 } 904 } 905 /* 906 * this search will find all the extents that end after 907 * our range starts. 908 */ 909 node = tree_search_for_insert(tree, start, &p, &parent); 910 if (!node) { 911 prealloc = alloc_extent_state_atomic(prealloc); 912 BUG_ON(!prealloc); 913 err = insert_state(tree, prealloc, start, end, 914 &p, &parent, &bits, changeset); 915 if (err) 916 extent_io_tree_panic(tree, err); 917 918 cache_state(prealloc, cached_state); 919 prealloc = NULL; 920 goto out; 921 } 922 state = rb_entry(node, struct extent_state, rb_node); 923 hit_next: 924 last_start = state->start; 925 last_end = state->end; 926 927 /* 928 * | ---- desired range ---- | 929 * | state | 930 * 931 * Just lock what we found and keep going 932 */ 933 if (state->start == start && state->end <= end) { 934 if (state->state & exclusive_bits) { 935 *failed_start = state->start; 936 err = -EEXIST; 937 goto out; 938 } 939 940 set_state_bits(tree, state, &bits, changeset); 941 cache_state(state, cached_state); 942 merge_state(tree, state); 943 if (last_end == (u64)-1) 944 goto out; 945 start = last_end + 1; 946 state = next_state(state); 947 if (start < end && state && state->start == start && 948 !need_resched()) 949 goto hit_next; 950 goto search_again; 951 } 952 953 /* 954 * | ---- desired range ---- | 955 * | state | 956 * or 957 * | ------------- state -------------- | 958 * 959 * We need to split the extent we found, and may flip bits on 960 * second half. 961 * 962 * If the extent we found extends past our 963 * range, we just split and search again. It'll get split 964 * again the next time though. 965 * 966 * If the extent we found is inside our range, we set the 967 * desired bit on it. 968 */ 969 if (state->start < start) { 970 if (state->state & exclusive_bits) { 971 *failed_start = start; 972 err = -EEXIST; 973 goto out; 974 } 975 976 prealloc = alloc_extent_state_atomic(prealloc); 977 BUG_ON(!prealloc); 978 err = split_state(tree, state, prealloc, start); 979 if (err) 980 extent_io_tree_panic(tree, err); 981 982 prealloc = NULL; 983 if (err) 984 goto out; 985 if (state->end <= end) { 986 set_state_bits(tree, state, &bits, changeset); 987 cache_state(state, cached_state); 988 merge_state(tree, state); 989 if (last_end == (u64)-1) 990 goto out; 991 start = last_end + 1; 992 state = next_state(state); 993 if (start < end && state && state->start == start && 994 !need_resched()) 995 goto hit_next; 996 } 997 goto search_again; 998 } 999 /* 1000 * | ---- desired range ---- | 1001 * | state | or | state | 1002 * 1003 * There's a hole, we need to insert something in it and 1004 * ignore the extent we found. 1005 */ 1006 if (state->start > start) { 1007 u64 this_end; 1008 if (end < last_start) 1009 this_end = end; 1010 else 1011 this_end = last_start - 1; 1012 1013 prealloc = alloc_extent_state_atomic(prealloc); 1014 BUG_ON(!prealloc); 1015 1016 /* 1017 * Avoid to free 'prealloc' if it can be merged with 1018 * the later extent. 1019 */ 1020 err = insert_state(tree, prealloc, start, this_end, 1021 NULL, NULL, &bits, changeset); 1022 if (err) 1023 extent_io_tree_panic(tree, err); 1024 1025 cache_state(prealloc, cached_state); 1026 prealloc = NULL; 1027 start = this_end + 1; 1028 goto search_again; 1029 } 1030 /* 1031 * | ---- desired range ---- | 1032 * | state | 1033 * We need to split the extent, and set the bit 1034 * on the first half 1035 */ 1036 if (state->start <= end && state->end > end) { 1037 if (state->state & exclusive_bits) { 1038 *failed_start = start; 1039 err = -EEXIST; 1040 goto out; 1041 } 1042 1043 prealloc = alloc_extent_state_atomic(prealloc); 1044 BUG_ON(!prealloc); 1045 err = split_state(tree, state, prealloc, end + 1); 1046 if (err) 1047 extent_io_tree_panic(tree, err); 1048 1049 set_state_bits(tree, prealloc, &bits, changeset); 1050 cache_state(prealloc, cached_state); 1051 merge_state(tree, prealloc); 1052 prealloc = NULL; 1053 goto out; 1054 } 1055 1056 search_again: 1057 if (start > end) 1058 goto out; 1059 spin_unlock(&tree->lock); 1060 if (gfpflags_allow_blocking(mask)) 1061 cond_resched(); 1062 goto again; 1063 1064 out: 1065 spin_unlock(&tree->lock); 1066 if (prealloc) 1067 free_extent_state(prealloc); 1068 1069 return err; 1070 1071 } 1072 1073 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1074 unsigned bits, u64 * failed_start, 1075 struct extent_state **cached_state, gfp_t mask) 1076 { 1077 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1078 cached_state, mask, NULL); 1079 } 1080 1081 1082 /** 1083 * convert_extent_bit - convert all bits in a given range from one bit to 1084 * another 1085 * @tree: the io tree to search 1086 * @start: the start offset in bytes 1087 * @end: the end offset in bytes (inclusive) 1088 * @bits: the bits to set in this range 1089 * @clear_bits: the bits to clear in this range 1090 * @cached_state: state that we're going to cache 1091 * 1092 * This will go through and set bits for the given range. If any states exist 1093 * already in this range they are set with the given bit and cleared of the 1094 * clear_bits. This is only meant to be used by things that are mergeable, ie 1095 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1096 * boundary bits like LOCK. 1097 * 1098 * All allocations are done with GFP_NOFS. 1099 */ 1100 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1101 unsigned bits, unsigned clear_bits, 1102 struct extent_state **cached_state) 1103 { 1104 struct extent_state *state; 1105 struct extent_state *prealloc = NULL; 1106 struct rb_node *node; 1107 struct rb_node **p; 1108 struct rb_node *parent; 1109 int err = 0; 1110 u64 last_start; 1111 u64 last_end; 1112 bool first_iteration = true; 1113 1114 btrfs_debug_check_extent_io_range(tree, start, end); 1115 1116 again: 1117 if (!prealloc) { 1118 /* 1119 * Best effort, don't worry if extent state allocation fails 1120 * here for the first iteration. We might have a cached state 1121 * that matches exactly the target range, in which case no 1122 * extent state allocations are needed. We'll only know this 1123 * after locking the tree. 1124 */ 1125 prealloc = alloc_extent_state(GFP_NOFS); 1126 if (!prealloc && !first_iteration) 1127 return -ENOMEM; 1128 } 1129 1130 spin_lock(&tree->lock); 1131 if (cached_state && *cached_state) { 1132 state = *cached_state; 1133 if (state->start <= start && state->end > start && 1134 extent_state_in_tree(state)) { 1135 node = &state->rb_node; 1136 goto hit_next; 1137 } 1138 } 1139 1140 /* 1141 * this search will find all the extents that end after 1142 * our range starts. 1143 */ 1144 node = tree_search_for_insert(tree, start, &p, &parent); 1145 if (!node) { 1146 prealloc = alloc_extent_state_atomic(prealloc); 1147 if (!prealloc) { 1148 err = -ENOMEM; 1149 goto out; 1150 } 1151 err = insert_state(tree, prealloc, start, end, 1152 &p, &parent, &bits, NULL); 1153 if (err) 1154 extent_io_tree_panic(tree, err); 1155 cache_state(prealloc, cached_state); 1156 prealloc = NULL; 1157 goto out; 1158 } 1159 state = rb_entry(node, struct extent_state, rb_node); 1160 hit_next: 1161 last_start = state->start; 1162 last_end = state->end; 1163 1164 /* 1165 * | ---- desired range ---- | 1166 * | state | 1167 * 1168 * Just lock what we found and keep going 1169 */ 1170 if (state->start == start && state->end <= end) { 1171 set_state_bits(tree, state, &bits, NULL); 1172 cache_state(state, cached_state); 1173 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1174 if (last_end == (u64)-1) 1175 goto out; 1176 start = last_end + 1; 1177 if (start < end && state && state->start == start && 1178 !need_resched()) 1179 goto hit_next; 1180 goto search_again; 1181 } 1182 1183 /* 1184 * | ---- desired range ---- | 1185 * | state | 1186 * or 1187 * | ------------- state -------------- | 1188 * 1189 * We need to split the extent we found, and may flip bits on 1190 * second half. 1191 * 1192 * If the extent we found extends past our 1193 * range, we just split and search again. It'll get split 1194 * again the next time though. 1195 * 1196 * If the extent we found is inside our range, we set the 1197 * desired bit on it. 1198 */ 1199 if (state->start < start) { 1200 prealloc = alloc_extent_state_atomic(prealloc); 1201 if (!prealloc) { 1202 err = -ENOMEM; 1203 goto out; 1204 } 1205 err = split_state(tree, state, prealloc, start); 1206 if (err) 1207 extent_io_tree_panic(tree, err); 1208 prealloc = NULL; 1209 if (err) 1210 goto out; 1211 if (state->end <= end) { 1212 set_state_bits(tree, state, &bits, NULL); 1213 cache_state(state, cached_state); 1214 state = clear_state_bit(tree, state, &clear_bits, 0, 1215 NULL); 1216 if (last_end == (u64)-1) 1217 goto out; 1218 start = last_end + 1; 1219 if (start < end && state && state->start == start && 1220 !need_resched()) 1221 goto hit_next; 1222 } 1223 goto search_again; 1224 } 1225 /* 1226 * | ---- desired range ---- | 1227 * | state | or | state | 1228 * 1229 * There's a hole, we need to insert something in it and 1230 * ignore the extent we found. 1231 */ 1232 if (state->start > start) { 1233 u64 this_end; 1234 if (end < last_start) 1235 this_end = end; 1236 else 1237 this_end = last_start - 1; 1238 1239 prealloc = alloc_extent_state_atomic(prealloc); 1240 if (!prealloc) { 1241 err = -ENOMEM; 1242 goto out; 1243 } 1244 1245 /* 1246 * Avoid to free 'prealloc' if it can be merged with 1247 * the later extent. 1248 */ 1249 err = insert_state(tree, prealloc, start, this_end, 1250 NULL, NULL, &bits, NULL); 1251 if (err) 1252 extent_io_tree_panic(tree, err); 1253 cache_state(prealloc, cached_state); 1254 prealloc = NULL; 1255 start = this_end + 1; 1256 goto search_again; 1257 } 1258 /* 1259 * | ---- desired range ---- | 1260 * | state | 1261 * We need to split the extent, and set the bit 1262 * on the first half 1263 */ 1264 if (state->start <= end && state->end > end) { 1265 prealloc = alloc_extent_state_atomic(prealloc); 1266 if (!prealloc) { 1267 err = -ENOMEM; 1268 goto out; 1269 } 1270 1271 err = split_state(tree, state, prealloc, end + 1); 1272 if (err) 1273 extent_io_tree_panic(tree, err); 1274 1275 set_state_bits(tree, prealloc, &bits, NULL); 1276 cache_state(prealloc, cached_state); 1277 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1278 prealloc = NULL; 1279 goto out; 1280 } 1281 1282 search_again: 1283 if (start > end) 1284 goto out; 1285 spin_unlock(&tree->lock); 1286 cond_resched(); 1287 first_iteration = false; 1288 goto again; 1289 1290 out: 1291 spin_unlock(&tree->lock); 1292 if (prealloc) 1293 free_extent_state(prealloc); 1294 1295 return err; 1296 } 1297 1298 /* wrappers around set/clear extent bit */ 1299 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1300 unsigned bits, struct extent_changeset *changeset) 1301 { 1302 /* 1303 * We don't support EXTENT_LOCKED yet, as current changeset will 1304 * record any bits changed, so for EXTENT_LOCKED case, it will 1305 * either fail with -EEXIST or changeset will record the whole 1306 * range. 1307 */ 1308 BUG_ON(bits & EXTENT_LOCKED); 1309 1310 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1311 changeset); 1312 } 1313 1314 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1315 unsigned bits, int wake, int delete, 1316 struct extent_state **cached) 1317 { 1318 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1319 cached, GFP_NOFS, NULL); 1320 } 1321 1322 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1323 unsigned bits, struct extent_changeset *changeset) 1324 { 1325 /* 1326 * Don't support EXTENT_LOCKED case, same reason as 1327 * set_record_extent_bits(). 1328 */ 1329 BUG_ON(bits & EXTENT_LOCKED); 1330 1331 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1332 changeset); 1333 } 1334 1335 /* 1336 * either insert or lock state struct between start and end use mask to tell 1337 * us if waiting is desired. 1338 */ 1339 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1340 struct extent_state **cached_state) 1341 { 1342 int err; 1343 u64 failed_start; 1344 1345 while (1) { 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, 1347 EXTENT_LOCKED, &failed_start, 1348 cached_state, GFP_NOFS, NULL); 1349 if (err == -EEXIST) { 1350 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1351 start = failed_start; 1352 } else 1353 break; 1354 WARN_ON(start > end); 1355 } 1356 return err; 1357 } 1358 1359 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1360 { 1361 int err; 1362 u64 failed_start; 1363 1364 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1365 &failed_start, NULL, GFP_NOFS, NULL); 1366 if (err == -EEXIST) { 1367 if (failed_start > start) 1368 clear_extent_bit(tree, start, failed_start - 1, 1369 EXTENT_LOCKED, 1, 0, NULL); 1370 return 0; 1371 } 1372 return 1; 1373 } 1374 1375 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1376 { 1377 unsigned long index = start >> PAGE_SHIFT; 1378 unsigned long end_index = end >> PAGE_SHIFT; 1379 struct page *page; 1380 1381 while (index <= end_index) { 1382 page = find_get_page(inode->i_mapping, index); 1383 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1384 clear_page_dirty_for_io(page); 1385 put_page(page); 1386 index++; 1387 } 1388 } 1389 1390 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1391 { 1392 unsigned long index = start >> PAGE_SHIFT; 1393 unsigned long end_index = end >> PAGE_SHIFT; 1394 struct page *page; 1395 1396 while (index <= end_index) { 1397 page = find_get_page(inode->i_mapping, index); 1398 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1399 __set_page_dirty_nobuffers(page); 1400 account_page_redirty(page); 1401 put_page(page); 1402 index++; 1403 } 1404 } 1405 1406 /* find the first state struct with 'bits' set after 'start', and 1407 * return it. tree->lock must be held. NULL will returned if 1408 * nothing was found after 'start' 1409 */ 1410 static struct extent_state * 1411 find_first_extent_bit_state(struct extent_io_tree *tree, 1412 u64 start, unsigned bits) 1413 { 1414 struct rb_node *node; 1415 struct extent_state *state; 1416 1417 /* 1418 * this search will find all the extents that end after 1419 * our range starts. 1420 */ 1421 node = tree_search(tree, start); 1422 if (!node) 1423 goto out; 1424 1425 while (1) { 1426 state = rb_entry(node, struct extent_state, rb_node); 1427 if (state->end >= start && (state->state & bits)) 1428 return state; 1429 1430 node = rb_next(node); 1431 if (!node) 1432 break; 1433 } 1434 out: 1435 return NULL; 1436 } 1437 1438 /* 1439 * find the first offset in the io tree with 'bits' set. zero is 1440 * returned if we find something, and *start_ret and *end_ret are 1441 * set to reflect the state struct that was found. 1442 * 1443 * If nothing was found, 1 is returned. If found something, return 0. 1444 */ 1445 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1446 u64 *start_ret, u64 *end_ret, unsigned bits, 1447 struct extent_state **cached_state) 1448 { 1449 struct extent_state *state; 1450 int ret = 1; 1451 1452 spin_lock(&tree->lock); 1453 if (cached_state && *cached_state) { 1454 state = *cached_state; 1455 if (state->end == start - 1 && extent_state_in_tree(state)) { 1456 while ((state = next_state(state)) != NULL) { 1457 if (state->state & bits) 1458 goto got_it; 1459 } 1460 free_extent_state(*cached_state); 1461 *cached_state = NULL; 1462 goto out; 1463 } 1464 free_extent_state(*cached_state); 1465 *cached_state = NULL; 1466 } 1467 1468 state = find_first_extent_bit_state(tree, start, bits); 1469 got_it: 1470 if (state) { 1471 cache_state_if_flags(state, cached_state, 0); 1472 *start_ret = state->start; 1473 *end_ret = state->end; 1474 ret = 0; 1475 } 1476 out: 1477 spin_unlock(&tree->lock); 1478 return ret; 1479 } 1480 1481 /* 1482 * find a contiguous range of bytes in the file marked as delalloc, not 1483 * more than 'max_bytes'. start and end are used to return the range, 1484 * 1485 * true is returned if we find something, false if nothing was in the tree 1486 */ 1487 static noinline bool find_delalloc_range(struct extent_io_tree *tree, 1488 u64 *start, u64 *end, u64 max_bytes, 1489 struct extent_state **cached_state) 1490 { 1491 struct rb_node *node; 1492 struct extent_state *state; 1493 u64 cur_start = *start; 1494 bool found = false; 1495 u64 total_bytes = 0; 1496 1497 spin_lock(&tree->lock); 1498 1499 /* 1500 * this search will find all the extents that end after 1501 * our range starts. 1502 */ 1503 node = tree_search(tree, cur_start); 1504 if (!node) { 1505 *end = (u64)-1; 1506 goto out; 1507 } 1508 1509 while (1) { 1510 state = rb_entry(node, struct extent_state, rb_node); 1511 if (found && (state->start != cur_start || 1512 (state->state & EXTENT_BOUNDARY))) { 1513 goto out; 1514 } 1515 if (!(state->state & EXTENT_DELALLOC)) { 1516 if (!found) 1517 *end = state->end; 1518 goto out; 1519 } 1520 if (!found) { 1521 *start = state->start; 1522 *cached_state = state; 1523 refcount_inc(&state->refs); 1524 } 1525 found = true; 1526 *end = state->end; 1527 cur_start = state->end + 1; 1528 node = rb_next(node); 1529 total_bytes += state->end - state->start + 1; 1530 if (total_bytes >= max_bytes) 1531 break; 1532 if (!node) 1533 break; 1534 } 1535 out: 1536 spin_unlock(&tree->lock); 1537 return found; 1538 } 1539 1540 static int __process_pages_contig(struct address_space *mapping, 1541 struct page *locked_page, 1542 pgoff_t start_index, pgoff_t end_index, 1543 unsigned long page_ops, pgoff_t *index_ret); 1544 1545 static noinline void __unlock_for_delalloc(struct inode *inode, 1546 struct page *locked_page, 1547 u64 start, u64 end) 1548 { 1549 unsigned long index = start >> PAGE_SHIFT; 1550 unsigned long end_index = end >> PAGE_SHIFT; 1551 1552 ASSERT(locked_page); 1553 if (index == locked_page->index && end_index == index) 1554 return; 1555 1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index, 1557 PAGE_UNLOCK, NULL); 1558 } 1559 1560 static noinline int lock_delalloc_pages(struct inode *inode, 1561 struct page *locked_page, 1562 u64 delalloc_start, 1563 u64 delalloc_end) 1564 { 1565 unsigned long index = delalloc_start >> PAGE_SHIFT; 1566 unsigned long index_ret = index; 1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1568 int ret; 1569 1570 ASSERT(locked_page); 1571 if (index == locked_page->index && index == end_index) 1572 return 0; 1573 1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index, 1575 end_index, PAGE_LOCK, &index_ret); 1576 if (ret == -EAGAIN) 1577 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1578 (u64)index_ret << PAGE_SHIFT); 1579 return ret; 1580 } 1581 1582 /* 1583 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1584 * more than @max_bytes. @Start and @end are used to return the range, 1585 * 1586 * Return: true if we find something 1587 * false if nothing was in the tree 1588 */ 1589 EXPORT_FOR_TESTS 1590 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 1591 struct extent_io_tree *tree, 1592 struct page *locked_page, u64 *start, 1593 u64 *end) 1594 { 1595 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 1596 u64 delalloc_start; 1597 u64 delalloc_end; 1598 bool found; 1599 struct extent_state *cached_state = NULL; 1600 int ret; 1601 int loops = 0; 1602 1603 again: 1604 /* step one, find a bunch of delalloc bytes starting at start */ 1605 delalloc_start = *start; 1606 delalloc_end = 0; 1607 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1608 max_bytes, &cached_state); 1609 if (!found || delalloc_end <= *start) { 1610 *start = delalloc_start; 1611 *end = delalloc_end; 1612 free_extent_state(cached_state); 1613 return false; 1614 } 1615 1616 /* 1617 * start comes from the offset of locked_page. We have to lock 1618 * pages in order, so we can't process delalloc bytes before 1619 * locked_page 1620 */ 1621 if (delalloc_start < *start) 1622 delalloc_start = *start; 1623 1624 /* 1625 * make sure to limit the number of pages we try to lock down 1626 */ 1627 if (delalloc_end + 1 - delalloc_start > max_bytes) 1628 delalloc_end = delalloc_start + max_bytes - 1; 1629 1630 /* step two, lock all the pages after the page that has start */ 1631 ret = lock_delalloc_pages(inode, locked_page, 1632 delalloc_start, delalloc_end); 1633 ASSERT(!ret || ret == -EAGAIN); 1634 if (ret == -EAGAIN) { 1635 /* some of the pages are gone, lets avoid looping by 1636 * shortening the size of the delalloc range we're searching 1637 */ 1638 free_extent_state(cached_state); 1639 cached_state = NULL; 1640 if (!loops) { 1641 max_bytes = PAGE_SIZE; 1642 loops = 1; 1643 goto again; 1644 } else { 1645 found = false; 1646 goto out_failed; 1647 } 1648 } 1649 1650 /* step three, lock the state bits for the whole range */ 1651 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 1652 1653 /* then test to make sure it is all still delalloc */ 1654 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1655 EXTENT_DELALLOC, 1, cached_state); 1656 if (!ret) { 1657 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1658 &cached_state); 1659 __unlock_for_delalloc(inode, locked_page, 1660 delalloc_start, delalloc_end); 1661 cond_resched(); 1662 goto again; 1663 } 1664 free_extent_state(cached_state); 1665 *start = delalloc_start; 1666 *end = delalloc_end; 1667 out_failed: 1668 return found; 1669 } 1670 1671 static int __process_pages_contig(struct address_space *mapping, 1672 struct page *locked_page, 1673 pgoff_t start_index, pgoff_t end_index, 1674 unsigned long page_ops, pgoff_t *index_ret) 1675 { 1676 unsigned long nr_pages = end_index - start_index + 1; 1677 unsigned long pages_locked = 0; 1678 pgoff_t index = start_index; 1679 struct page *pages[16]; 1680 unsigned ret; 1681 int err = 0; 1682 int i; 1683 1684 if (page_ops & PAGE_LOCK) { 1685 ASSERT(page_ops == PAGE_LOCK); 1686 ASSERT(index_ret && *index_ret == start_index); 1687 } 1688 1689 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1690 mapping_set_error(mapping, -EIO); 1691 1692 while (nr_pages > 0) { 1693 ret = find_get_pages_contig(mapping, index, 1694 min_t(unsigned long, 1695 nr_pages, ARRAY_SIZE(pages)), pages); 1696 if (ret == 0) { 1697 /* 1698 * Only if we're going to lock these pages, 1699 * can we find nothing at @index. 1700 */ 1701 ASSERT(page_ops & PAGE_LOCK); 1702 err = -EAGAIN; 1703 goto out; 1704 } 1705 1706 for (i = 0; i < ret; i++) { 1707 if (page_ops & PAGE_SET_PRIVATE2) 1708 SetPagePrivate2(pages[i]); 1709 1710 if (pages[i] == locked_page) { 1711 put_page(pages[i]); 1712 pages_locked++; 1713 continue; 1714 } 1715 if (page_ops & PAGE_CLEAR_DIRTY) 1716 clear_page_dirty_for_io(pages[i]); 1717 if (page_ops & PAGE_SET_WRITEBACK) 1718 set_page_writeback(pages[i]); 1719 if (page_ops & PAGE_SET_ERROR) 1720 SetPageError(pages[i]); 1721 if (page_ops & PAGE_END_WRITEBACK) 1722 end_page_writeback(pages[i]); 1723 if (page_ops & PAGE_UNLOCK) 1724 unlock_page(pages[i]); 1725 if (page_ops & PAGE_LOCK) { 1726 lock_page(pages[i]); 1727 if (!PageDirty(pages[i]) || 1728 pages[i]->mapping != mapping) { 1729 unlock_page(pages[i]); 1730 put_page(pages[i]); 1731 err = -EAGAIN; 1732 goto out; 1733 } 1734 } 1735 put_page(pages[i]); 1736 pages_locked++; 1737 } 1738 nr_pages -= ret; 1739 index += ret; 1740 cond_resched(); 1741 } 1742 out: 1743 if (err && index_ret) 1744 *index_ret = start_index + pages_locked - 1; 1745 return err; 1746 } 1747 1748 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1749 u64 delalloc_end, struct page *locked_page, 1750 unsigned clear_bits, 1751 unsigned long page_ops) 1752 { 1753 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0, 1754 NULL); 1755 1756 __process_pages_contig(inode->i_mapping, locked_page, 1757 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 1758 page_ops, NULL); 1759 } 1760 1761 /* 1762 * count the number of bytes in the tree that have a given bit(s) 1763 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1764 * cached. The total number found is returned. 1765 */ 1766 u64 count_range_bits(struct extent_io_tree *tree, 1767 u64 *start, u64 search_end, u64 max_bytes, 1768 unsigned bits, int contig) 1769 { 1770 struct rb_node *node; 1771 struct extent_state *state; 1772 u64 cur_start = *start; 1773 u64 total_bytes = 0; 1774 u64 last = 0; 1775 int found = 0; 1776 1777 if (WARN_ON(search_end <= cur_start)) 1778 return 0; 1779 1780 spin_lock(&tree->lock); 1781 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1782 total_bytes = tree->dirty_bytes; 1783 goto out; 1784 } 1785 /* 1786 * this search will find all the extents that end after 1787 * our range starts. 1788 */ 1789 node = tree_search(tree, cur_start); 1790 if (!node) 1791 goto out; 1792 1793 while (1) { 1794 state = rb_entry(node, struct extent_state, rb_node); 1795 if (state->start > search_end) 1796 break; 1797 if (contig && found && state->start > last + 1) 1798 break; 1799 if (state->end >= cur_start && (state->state & bits) == bits) { 1800 total_bytes += min(search_end, state->end) + 1 - 1801 max(cur_start, state->start); 1802 if (total_bytes >= max_bytes) 1803 break; 1804 if (!found) { 1805 *start = max(cur_start, state->start); 1806 found = 1; 1807 } 1808 last = state->end; 1809 } else if (contig && found) { 1810 break; 1811 } 1812 node = rb_next(node); 1813 if (!node) 1814 break; 1815 } 1816 out: 1817 spin_unlock(&tree->lock); 1818 return total_bytes; 1819 } 1820 1821 /* 1822 * set the private field for a given byte offset in the tree. If there isn't 1823 * an extent_state there already, this does nothing. 1824 */ 1825 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start, 1826 struct io_failure_record *failrec) 1827 { 1828 struct rb_node *node; 1829 struct extent_state *state; 1830 int ret = 0; 1831 1832 spin_lock(&tree->lock); 1833 /* 1834 * this search will find all the extents that end after 1835 * our range starts. 1836 */ 1837 node = tree_search(tree, start); 1838 if (!node) { 1839 ret = -ENOENT; 1840 goto out; 1841 } 1842 state = rb_entry(node, struct extent_state, rb_node); 1843 if (state->start != start) { 1844 ret = -ENOENT; 1845 goto out; 1846 } 1847 state->failrec = failrec; 1848 out: 1849 spin_unlock(&tree->lock); 1850 return ret; 1851 } 1852 1853 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start, 1854 struct io_failure_record **failrec) 1855 { 1856 struct rb_node *node; 1857 struct extent_state *state; 1858 int ret = 0; 1859 1860 spin_lock(&tree->lock); 1861 /* 1862 * this search will find all the extents that end after 1863 * our range starts. 1864 */ 1865 node = tree_search(tree, start); 1866 if (!node) { 1867 ret = -ENOENT; 1868 goto out; 1869 } 1870 state = rb_entry(node, struct extent_state, rb_node); 1871 if (state->start != start) { 1872 ret = -ENOENT; 1873 goto out; 1874 } 1875 *failrec = state->failrec; 1876 out: 1877 spin_unlock(&tree->lock); 1878 return ret; 1879 } 1880 1881 /* 1882 * searches a range in the state tree for a given mask. 1883 * If 'filled' == 1, this returns 1 only if every extent in the tree 1884 * has the bits set. Otherwise, 1 is returned if any bit in the 1885 * range is found set. 1886 */ 1887 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1888 unsigned bits, int filled, struct extent_state *cached) 1889 { 1890 struct extent_state *state = NULL; 1891 struct rb_node *node; 1892 int bitset = 0; 1893 1894 spin_lock(&tree->lock); 1895 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1896 cached->end > start) 1897 node = &cached->rb_node; 1898 else 1899 node = tree_search(tree, start); 1900 while (node && start <= end) { 1901 state = rb_entry(node, struct extent_state, rb_node); 1902 1903 if (filled && state->start > start) { 1904 bitset = 0; 1905 break; 1906 } 1907 1908 if (state->start > end) 1909 break; 1910 1911 if (state->state & bits) { 1912 bitset = 1; 1913 if (!filled) 1914 break; 1915 } else if (filled) { 1916 bitset = 0; 1917 break; 1918 } 1919 1920 if (state->end == (u64)-1) 1921 break; 1922 1923 start = state->end + 1; 1924 if (start > end) 1925 break; 1926 node = rb_next(node); 1927 if (!node) { 1928 if (filled) 1929 bitset = 0; 1930 break; 1931 } 1932 } 1933 spin_unlock(&tree->lock); 1934 return bitset; 1935 } 1936 1937 /* 1938 * helper function to set a given page up to date if all the 1939 * extents in the tree for that page are up to date 1940 */ 1941 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1942 { 1943 u64 start = page_offset(page); 1944 u64 end = start + PAGE_SIZE - 1; 1945 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1946 SetPageUptodate(page); 1947 } 1948 1949 int free_io_failure(struct extent_io_tree *failure_tree, 1950 struct extent_io_tree *io_tree, 1951 struct io_failure_record *rec) 1952 { 1953 int ret; 1954 int err = 0; 1955 1956 set_state_failrec(failure_tree, rec->start, NULL); 1957 ret = clear_extent_bits(failure_tree, rec->start, 1958 rec->start + rec->len - 1, 1959 EXTENT_LOCKED | EXTENT_DIRTY); 1960 if (ret) 1961 err = ret; 1962 1963 ret = clear_extent_bits(io_tree, rec->start, 1964 rec->start + rec->len - 1, 1965 EXTENT_DAMAGED); 1966 if (ret && !err) 1967 err = ret; 1968 1969 kfree(rec); 1970 return err; 1971 } 1972 1973 /* 1974 * this bypasses the standard btrfs submit functions deliberately, as 1975 * the standard behavior is to write all copies in a raid setup. here we only 1976 * want to write the one bad copy. so we do the mapping for ourselves and issue 1977 * submit_bio directly. 1978 * to avoid any synchronization issues, wait for the data after writing, which 1979 * actually prevents the read that triggered the error from finishing. 1980 * currently, there can be no more than two copies of every data bit. thus, 1981 * exactly one rewrite is required. 1982 */ 1983 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 1984 u64 length, u64 logical, struct page *page, 1985 unsigned int pg_offset, int mirror_num) 1986 { 1987 struct bio *bio; 1988 struct btrfs_device *dev; 1989 u64 map_length = 0; 1990 u64 sector; 1991 struct btrfs_bio *bbio = NULL; 1992 int ret; 1993 1994 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 1995 BUG_ON(!mirror_num); 1996 1997 bio = btrfs_io_bio_alloc(1); 1998 bio->bi_iter.bi_size = 0; 1999 map_length = length; 2000 2001 /* 2002 * Avoid races with device replace and make sure our bbio has devices 2003 * associated to its stripes that don't go away while we are doing the 2004 * read repair operation. 2005 */ 2006 btrfs_bio_counter_inc_blocked(fs_info); 2007 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2008 /* 2009 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2010 * to update all raid stripes, but here we just want to correct 2011 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2012 * stripe's dev and sector. 2013 */ 2014 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2015 &map_length, &bbio, 0); 2016 if (ret) { 2017 btrfs_bio_counter_dec(fs_info); 2018 bio_put(bio); 2019 return -EIO; 2020 } 2021 ASSERT(bbio->mirror_num == 1); 2022 } else { 2023 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2024 &map_length, &bbio, mirror_num); 2025 if (ret) { 2026 btrfs_bio_counter_dec(fs_info); 2027 bio_put(bio); 2028 return -EIO; 2029 } 2030 BUG_ON(mirror_num != bbio->mirror_num); 2031 } 2032 2033 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9; 2034 bio->bi_iter.bi_sector = sector; 2035 dev = bbio->stripes[bbio->mirror_num - 1].dev; 2036 btrfs_put_bbio(bbio); 2037 if (!dev || !dev->bdev || 2038 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2039 btrfs_bio_counter_dec(fs_info); 2040 bio_put(bio); 2041 return -EIO; 2042 } 2043 bio_set_dev(bio, dev->bdev); 2044 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; 2045 bio_add_page(bio, page, length, pg_offset); 2046 2047 if (btrfsic_submit_bio_wait(bio)) { 2048 /* try to remap that extent elsewhere? */ 2049 btrfs_bio_counter_dec(fs_info); 2050 bio_put(bio); 2051 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2052 return -EIO; 2053 } 2054 2055 btrfs_info_rl_in_rcu(fs_info, 2056 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2057 ino, start, 2058 rcu_str_deref(dev->name), sector); 2059 btrfs_bio_counter_dec(fs_info); 2060 bio_put(bio); 2061 return 0; 2062 } 2063 2064 int repair_eb_io_failure(struct btrfs_fs_info *fs_info, 2065 struct extent_buffer *eb, int mirror_num) 2066 { 2067 u64 start = eb->start; 2068 int i, num_pages = num_extent_pages(eb); 2069 int ret = 0; 2070 2071 if (sb_rdonly(fs_info->sb)) 2072 return -EROFS; 2073 2074 for (i = 0; i < num_pages; i++) { 2075 struct page *p = eb->pages[i]; 2076 2077 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2078 start - page_offset(p), mirror_num); 2079 if (ret) 2080 break; 2081 start += PAGE_SIZE; 2082 } 2083 2084 return ret; 2085 } 2086 2087 /* 2088 * each time an IO finishes, we do a fast check in the IO failure tree 2089 * to see if we need to process or clean up an io_failure_record 2090 */ 2091 int clean_io_failure(struct btrfs_fs_info *fs_info, 2092 struct extent_io_tree *failure_tree, 2093 struct extent_io_tree *io_tree, u64 start, 2094 struct page *page, u64 ino, unsigned int pg_offset) 2095 { 2096 u64 private; 2097 struct io_failure_record *failrec; 2098 struct extent_state *state; 2099 int num_copies; 2100 int ret; 2101 2102 private = 0; 2103 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2104 EXTENT_DIRTY, 0); 2105 if (!ret) 2106 return 0; 2107 2108 ret = get_state_failrec(failure_tree, start, &failrec); 2109 if (ret) 2110 return 0; 2111 2112 BUG_ON(!failrec->this_mirror); 2113 2114 if (failrec->in_validation) { 2115 /* there was no real error, just free the record */ 2116 btrfs_debug(fs_info, 2117 "clean_io_failure: freeing dummy error at %llu", 2118 failrec->start); 2119 goto out; 2120 } 2121 if (sb_rdonly(fs_info->sb)) 2122 goto out; 2123 2124 spin_lock(&io_tree->lock); 2125 state = find_first_extent_bit_state(io_tree, 2126 failrec->start, 2127 EXTENT_LOCKED); 2128 spin_unlock(&io_tree->lock); 2129 2130 if (state && state->start <= failrec->start && 2131 state->end >= failrec->start + failrec->len - 1) { 2132 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2133 failrec->len); 2134 if (num_copies > 1) { 2135 repair_io_failure(fs_info, ino, start, failrec->len, 2136 failrec->logical, page, pg_offset, 2137 failrec->failed_mirror); 2138 } 2139 } 2140 2141 out: 2142 free_io_failure(failure_tree, io_tree, failrec); 2143 2144 return 0; 2145 } 2146 2147 /* 2148 * Can be called when 2149 * - hold extent lock 2150 * - under ordered extent 2151 * - the inode is freeing 2152 */ 2153 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2154 { 2155 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2156 struct io_failure_record *failrec; 2157 struct extent_state *state, *next; 2158 2159 if (RB_EMPTY_ROOT(&failure_tree->state)) 2160 return; 2161 2162 spin_lock(&failure_tree->lock); 2163 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2164 while (state) { 2165 if (state->start > end) 2166 break; 2167 2168 ASSERT(state->end <= end); 2169 2170 next = next_state(state); 2171 2172 failrec = state->failrec; 2173 free_extent_state(state); 2174 kfree(failrec); 2175 2176 state = next; 2177 } 2178 spin_unlock(&failure_tree->lock); 2179 } 2180 2181 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end, 2182 struct io_failure_record **failrec_ret) 2183 { 2184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2185 struct io_failure_record *failrec; 2186 struct extent_map *em; 2187 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2188 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2190 int ret; 2191 u64 logical; 2192 2193 ret = get_state_failrec(failure_tree, start, &failrec); 2194 if (ret) { 2195 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2196 if (!failrec) 2197 return -ENOMEM; 2198 2199 failrec->start = start; 2200 failrec->len = end - start + 1; 2201 failrec->this_mirror = 0; 2202 failrec->bio_flags = 0; 2203 failrec->in_validation = 0; 2204 2205 read_lock(&em_tree->lock); 2206 em = lookup_extent_mapping(em_tree, start, failrec->len); 2207 if (!em) { 2208 read_unlock(&em_tree->lock); 2209 kfree(failrec); 2210 return -EIO; 2211 } 2212 2213 if (em->start > start || em->start + em->len <= start) { 2214 free_extent_map(em); 2215 em = NULL; 2216 } 2217 read_unlock(&em_tree->lock); 2218 if (!em) { 2219 kfree(failrec); 2220 return -EIO; 2221 } 2222 2223 logical = start - em->start; 2224 logical = em->block_start + logical; 2225 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2226 logical = em->block_start; 2227 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2228 extent_set_compress_type(&failrec->bio_flags, 2229 em->compress_type); 2230 } 2231 2232 btrfs_debug(fs_info, 2233 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2234 logical, start, failrec->len); 2235 2236 failrec->logical = logical; 2237 free_extent_map(em); 2238 2239 /* set the bits in the private failure tree */ 2240 ret = set_extent_bits(failure_tree, start, end, 2241 EXTENT_LOCKED | EXTENT_DIRTY); 2242 if (ret >= 0) 2243 ret = set_state_failrec(failure_tree, start, failrec); 2244 /* set the bits in the inode's tree */ 2245 if (ret >= 0) 2246 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED); 2247 if (ret < 0) { 2248 kfree(failrec); 2249 return ret; 2250 } 2251 } else { 2252 btrfs_debug(fs_info, 2253 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d", 2254 failrec->logical, failrec->start, failrec->len, 2255 failrec->in_validation); 2256 /* 2257 * when data can be on disk more than twice, add to failrec here 2258 * (e.g. with a list for failed_mirror) to make 2259 * clean_io_failure() clean all those errors at once. 2260 */ 2261 } 2262 2263 *failrec_ret = failrec; 2264 2265 return 0; 2266 } 2267 2268 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages, 2269 struct io_failure_record *failrec, int failed_mirror) 2270 { 2271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2272 int num_copies; 2273 2274 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2275 if (num_copies == 1) { 2276 /* 2277 * we only have a single copy of the data, so don't bother with 2278 * all the retry and error correction code that follows. no 2279 * matter what the error is, it is very likely to persist. 2280 */ 2281 btrfs_debug(fs_info, 2282 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2283 num_copies, failrec->this_mirror, failed_mirror); 2284 return false; 2285 } 2286 2287 /* 2288 * there are two premises: 2289 * a) deliver good data to the caller 2290 * b) correct the bad sectors on disk 2291 */ 2292 if (failed_bio_pages > 1) { 2293 /* 2294 * to fulfill b), we need to know the exact failing sectors, as 2295 * we don't want to rewrite any more than the failed ones. thus, 2296 * we need separate read requests for the failed bio 2297 * 2298 * if the following BUG_ON triggers, our validation request got 2299 * merged. we need separate requests for our algorithm to work. 2300 */ 2301 BUG_ON(failrec->in_validation); 2302 failrec->in_validation = 1; 2303 failrec->this_mirror = failed_mirror; 2304 } else { 2305 /* 2306 * we're ready to fulfill a) and b) alongside. get a good copy 2307 * of the failed sector and if we succeed, we have setup 2308 * everything for repair_io_failure to do the rest for us. 2309 */ 2310 if (failrec->in_validation) { 2311 BUG_ON(failrec->this_mirror != failed_mirror); 2312 failrec->in_validation = 0; 2313 failrec->this_mirror = 0; 2314 } 2315 failrec->failed_mirror = failed_mirror; 2316 failrec->this_mirror++; 2317 if (failrec->this_mirror == failed_mirror) 2318 failrec->this_mirror++; 2319 } 2320 2321 if (failrec->this_mirror > num_copies) { 2322 btrfs_debug(fs_info, 2323 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2324 num_copies, failrec->this_mirror, failed_mirror); 2325 return false; 2326 } 2327 2328 return true; 2329 } 2330 2331 2332 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio, 2333 struct io_failure_record *failrec, 2334 struct page *page, int pg_offset, int icsum, 2335 bio_end_io_t *endio_func, void *data) 2336 { 2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2338 struct bio *bio; 2339 struct btrfs_io_bio *btrfs_failed_bio; 2340 struct btrfs_io_bio *btrfs_bio; 2341 2342 bio = btrfs_io_bio_alloc(1); 2343 bio->bi_end_io = endio_func; 2344 bio->bi_iter.bi_sector = failrec->logical >> 9; 2345 bio_set_dev(bio, fs_info->fs_devices->latest_bdev); 2346 bio->bi_iter.bi_size = 0; 2347 bio->bi_private = data; 2348 2349 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2350 if (btrfs_failed_bio->csum) { 2351 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2352 2353 btrfs_bio = btrfs_io_bio(bio); 2354 btrfs_bio->csum = btrfs_bio->csum_inline; 2355 icsum *= csum_size; 2356 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum, 2357 csum_size); 2358 } 2359 2360 bio_add_page(bio, page, failrec->len, pg_offset); 2361 2362 return bio; 2363 } 2364 2365 /* 2366 * This is a generic handler for readpage errors. If other copies exist, read 2367 * those and write back good data to the failed position. Does not investigate 2368 * in remapping the failed extent elsewhere, hoping the device will be smart 2369 * enough to do this as needed 2370 */ 2371 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2372 struct page *page, u64 start, u64 end, 2373 int failed_mirror) 2374 { 2375 struct io_failure_record *failrec; 2376 struct inode *inode = page->mapping->host; 2377 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2378 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2379 struct bio *bio; 2380 int read_mode = 0; 2381 blk_status_t status; 2382 int ret; 2383 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT; 2384 2385 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2386 2387 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 2388 if (ret) 2389 return ret; 2390 2391 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec, 2392 failed_mirror)) { 2393 free_io_failure(failure_tree, tree, failrec); 2394 return -EIO; 2395 } 2396 2397 if (failed_bio_pages > 1) 2398 read_mode |= REQ_FAILFAST_DEV; 2399 2400 phy_offset >>= inode->i_sb->s_blocksize_bits; 2401 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 2402 start - page_offset(page), 2403 (int)phy_offset, failed_bio->bi_end_io, 2404 NULL); 2405 bio->bi_opf = REQ_OP_READ | read_mode; 2406 2407 btrfs_debug(btrfs_sb(inode->i_sb), 2408 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d", 2409 read_mode, failrec->this_mirror, failrec->in_validation); 2410 2411 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror, 2412 failrec->bio_flags, 0); 2413 if (status) { 2414 free_io_failure(failure_tree, tree, failrec); 2415 bio_put(bio); 2416 ret = blk_status_to_errno(status); 2417 } 2418 2419 return ret; 2420 } 2421 2422 /* lots and lots of room for performance fixes in the end_bio funcs */ 2423 2424 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2425 { 2426 int uptodate = (err == 0); 2427 int ret = 0; 2428 2429 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate); 2430 2431 if (!uptodate) { 2432 ClearPageUptodate(page); 2433 SetPageError(page); 2434 ret = err < 0 ? err : -EIO; 2435 mapping_set_error(page->mapping, ret); 2436 } 2437 } 2438 2439 /* 2440 * after a writepage IO is done, we need to: 2441 * clear the uptodate bits on error 2442 * clear the writeback bits in the extent tree for this IO 2443 * end_page_writeback if the page has no more pending IO 2444 * 2445 * Scheduling is not allowed, so the extent state tree is expected 2446 * to have one and only one object corresponding to this IO. 2447 */ 2448 static void end_bio_extent_writepage(struct bio *bio) 2449 { 2450 int error = blk_status_to_errno(bio->bi_status); 2451 struct bio_vec *bvec; 2452 u64 start; 2453 u64 end; 2454 int i; 2455 struct bvec_iter_all iter_all; 2456 2457 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2458 bio_for_each_segment_all(bvec, bio, i, iter_all) { 2459 struct page *page = bvec->bv_page; 2460 struct inode *inode = page->mapping->host; 2461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2462 2463 /* We always issue full-page reads, but if some block 2464 * in a page fails to read, blk_update_request() will 2465 * advance bv_offset and adjust bv_len to compensate. 2466 * Print a warning for nonzero offsets, and an error 2467 * if they don't add up to a full page. */ 2468 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2469 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2470 btrfs_err(fs_info, 2471 "partial page write in btrfs with offset %u and length %u", 2472 bvec->bv_offset, bvec->bv_len); 2473 else 2474 btrfs_info(fs_info, 2475 "incomplete page write in btrfs with offset %u and length %u", 2476 bvec->bv_offset, bvec->bv_len); 2477 } 2478 2479 start = page_offset(page); 2480 end = start + bvec->bv_offset + bvec->bv_len - 1; 2481 2482 end_extent_writepage(page, error, start, end); 2483 end_page_writeback(page); 2484 } 2485 2486 bio_put(bio); 2487 } 2488 2489 static void 2490 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2491 int uptodate) 2492 { 2493 struct extent_state *cached = NULL; 2494 u64 end = start + len - 1; 2495 2496 if (uptodate && tree->track_uptodate) 2497 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2498 unlock_extent_cached_atomic(tree, start, end, &cached); 2499 } 2500 2501 /* 2502 * after a readpage IO is done, we need to: 2503 * clear the uptodate bits on error 2504 * set the uptodate bits if things worked 2505 * set the page up to date if all extents in the tree are uptodate 2506 * clear the lock bit in the extent tree 2507 * unlock the page if there are no other extents locked for it 2508 * 2509 * Scheduling is not allowed, so the extent state tree is expected 2510 * to have one and only one object corresponding to this IO. 2511 */ 2512 static void end_bio_extent_readpage(struct bio *bio) 2513 { 2514 struct bio_vec *bvec; 2515 int uptodate = !bio->bi_status; 2516 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2517 struct extent_io_tree *tree, *failure_tree; 2518 u64 offset = 0; 2519 u64 start; 2520 u64 end; 2521 u64 len; 2522 u64 extent_start = 0; 2523 u64 extent_len = 0; 2524 int mirror; 2525 int ret; 2526 int i; 2527 struct bvec_iter_all iter_all; 2528 2529 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2530 bio_for_each_segment_all(bvec, bio, i, iter_all) { 2531 struct page *page = bvec->bv_page; 2532 struct inode *inode = page->mapping->host; 2533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2534 bool data_inode = btrfs_ino(BTRFS_I(inode)) 2535 != BTRFS_BTREE_INODE_OBJECTID; 2536 2537 btrfs_debug(fs_info, 2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 2539 (u64)bio->bi_iter.bi_sector, bio->bi_status, 2540 io_bio->mirror_num); 2541 tree = &BTRFS_I(inode)->io_tree; 2542 failure_tree = &BTRFS_I(inode)->io_failure_tree; 2543 2544 /* We always issue full-page reads, but if some block 2545 * in a page fails to read, blk_update_request() will 2546 * advance bv_offset and adjust bv_len to compensate. 2547 * Print a warning for nonzero offsets, and an error 2548 * if they don't add up to a full page. */ 2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) { 2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE) 2551 btrfs_err(fs_info, 2552 "partial page read in btrfs with offset %u and length %u", 2553 bvec->bv_offset, bvec->bv_len); 2554 else 2555 btrfs_info(fs_info, 2556 "incomplete page read in btrfs with offset %u and length %u", 2557 bvec->bv_offset, bvec->bv_len); 2558 } 2559 2560 start = page_offset(page); 2561 end = start + bvec->bv_offset + bvec->bv_len - 1; 2562 len = bvec->bv_len; 2563 2564 mirror = io_bio->mirror_num; 2565 if (likely(uptodate)) { 2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2567 page, start, end, 2568 mirror); 2569 if (ret) 2570 uptodate = 0; 2571 else 2572 clean_io_failure(BTRFS_I(inode)->root->fs_info, 2573 failure_tree, tree, start, 2574 page, 2575 btrfs_ino(BTRFS_I(inode)), 0); 2576 } 2577 2578 if (likely(uptodate)) 2579 goto readpage_ok; 2580 2581 if (data_inode) { 2582 2583 /* 2584 * The generic bio_readpage_error handles errors the 2585 * following way: If possible, new read requests are 2586 * created and submitted and will end up in 2587 * end_bio_extent_readpage as well (if we're lucky, 2588 * not in the !uptodate case). In that case it returns 2589 * 0 and we just go on with the next page in our bio. 2590 * If it can't handle the error it will return -EIO and 2591 * we remain responsible for that page. 2592 */ 2593 ret = bio_readpage_error(bio, offset, page, start, end, 2594 mirror); 2595 if (ret == 0) { 2596 uptodate = !bio->bi_status; 2597 offset += len; 2598 continue; 2599 } 2600 } else { 2601 struct extent_buffer *eb; 2602 2603 eb = (struct extent_buffer *)page->private; 2604 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 2605 eb->read_mirror = mirror; 2606 atomic_dec(&eb->io_pages); 2607 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, 2608 &eb->bflags)) 2609 btree_readahead_hook(eb, -EIO); 2610 2611 ret = -EIO; 2612 } 2613 readpage_ok: 2614 if (likely(uptodate)) { 2615 loff_t i_size = i_size_read(inode); 2616 pgoff_t end_index = i_size >> PAGE_SHIFT; 2617 unsigned off; 2618 2619 /* Zero out the end if this page straddles i_size */ 2620 off = offset_in_page(i_size); 2621 if (page->index == end_index && off) 2622 zero_user_segment(page, off, PAGE_SIZE); 2623 SetPageUptodate(page); 2624 } else { 2625 ClearPageUptodate(page); 2626 SetPageError(page); 2627 } 2628 unlock_page(page); 2629 offset += len; 2630 2631 if (unlikely(!uptodate)) { 2632 if (extent_len) { 2633 endio_readpage_release_extent(tree, 2634 extent_start, 2635 extent_len, 1); 2636 extent_start = 0; 2637 extent_len = 0; 2638 } 2639 endio_readpage_release_extent(tree, start, 2640 end - start + 1, 0); 2641 } else if (!extent_len) { 2642 extent_start = start; 2643 extent_len = end + 1 - start; 2644 } else if (extent_start + extent_len == start) { 2645 extent_len += end + 1 - start; 2646 } else { 2647 endio_readpage_release_extent(tree, extent_start, 2648 extent_len, uptodate); 2649 extent_start = start; 2650 extent_len = end + 1 - start; 2651 } 2652 } 2653 2654 if (extent_len) 2655 endio_readpage_release_extent(tree, extent_start, extent_len, 2656 uptodate); 2657 btrfs_io_bio_free_csum(io_bio); 2658 bio_put(bio); 2659 } 2660 2661 /* 2662 * Initialize the members up to but not including 'bio'. Use after allocating a 2663 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 2664 * 'bio' because use of __GFP_ZERO is not supported. 2665 */ 2666 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio) 2667 { 2668 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio)); 2669 } 2670 2671 /* 2672 * The following helpers allocate a bio. As it's backed by a bioset, it'll 2673 * never fail. We're returning a bio right now but you can call btrfs_io_bio 2674 * for the appropriate container_of magic 2675 */ 2676 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte) 2677 { 2678 struct bio *bio; 2679 2680 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset); 2681 bio_set_dev(bio, bdev); 2682 bio->bi_iter.bi_sector = first_byte >> 9; 2683 btrfs_io_bio_init(btrfs_io_bio(bio)); 2684 return bio; 2685 } 2686 2687 struct bio *btrfs_bio_clone(struct bio *bio) 2688 { 2689 struct btrfs_io_bio *btrfs_bio; 2690 struct bio *new; 2691 2692 /* Bio allocation backed by a bioset does not fail */ 2693 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset); 2694 btrfs_bio = btrfs_io_bio(new); 2695 btrfs_io_bio_init(btrfs_bio); 2696 btrfs_bio->iter = bio->bi_iter; 2697 return new; 2698 } 2699 2700 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs) 2701 { 2702 struct bio *bio; 2703 2704 /* Bio allocation backed by a bioset does not fail */ 2705 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset); 2706 btrfs_io_bio_init(btrfs_io_bio(bio)); 2707 return bio; 2708 } 2709 2710 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size) 2711 { 2712 struct bio *bio; 2713 struct btrfs_io_bio *btrfs_bio; 2714 2715 /* this will never fail when it's backed by a bioset */ 2716 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset); 2717 ASSERT(bio); 2718 2719 btrfs_bio = btrfs_io_bio(bio); 2720 btrfs_io_bio_init(btrfs_bio); 2721 2722 bio_trim(bio, offset >> 9, size >> 9); 2723 btrfs_bio->iter = bio->bi_iter; 2724 return bio; 2725 } 2726 2727 /* 2728 * @opf: bio REQ_OP_* and REQ_* flags as one value 2729 * @tree: tree so we can call our merge_bio hook 2730 * @wbc: optional writeback control for io accounting 2731 * @page: page to add to the bio 2732 * @pg_offset: offset of the new bio or to check whether we are adding 2733 * a contiguous page to the previous one 2734 * @size: portion of page that we want to write 2735 * @offset: starting offset in the page 2736 * @bdev: attach newly created bios to this bdev 2737 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 2738 * @end_io_func: end_io callback for new bio 2739 * @mirror_num: desired mirror to read/write 2740 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 2741 * @bio_flags: flags of the current bio to see if we can merge them 2742 */ 2743 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree, 2744 struct writeback_control *wbc, 2745 struct page *page, u64 offset, 2746 size_t size, unsigned long pg_offset, 2747 struct block_device *bdev, 2748 struct bio **bio_ret, 2749 bio_end_io_t end_io_func, 2750 int mirror_num, 2751 unsigned long prev_bio_flags, 2752 unsigned long bio_flags, 2753 bool force_bio_submit) 2754 { 2755 int ret = 0; 2756 struct bio *bio; 2757 size_t page_size = min_t(size_t, size, PAGE_SIZE); 2758 sector_t sector = offset >> 9; 2759 2760 ASSERT(bio_ret); 2761 2762 if (*bio_ret) { 2763 bool contig; 2764 bool can_merge = true; 2765 2766 bio = *bio_ret; 2767 if (prev_bio_flags & EXTENT_BIO_COMPRESSED) 2768 contig = bio->bi_iter.bi_sector == sector; 2769 else 2770 contig = bio_end_sector(bio) == sector; 2771 2772 ASSERT(tree->ops); 2773 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags)) 2774 can_merge = false; 2775 2776 if (prev_bio_flags != bio_flags || !contig || !can_merge || 2777 force_bio_submit || 2778 bio_add_page(bio, page, page_size, pg_offset) < page_size) { 2779 ret = submit_one_bio(bio, mirror_num, prev_bio_flags); 2780 if (ret < 0) { 2781 *bio_ret = NULL; 2782 return ret; 2783 } 2784 bio = NULL; 2785 } else { 2786 if (wbc) 2787 wbc_account_io(wbc, page, page_size); 2788 return 0; 2789 } 2790 } 2791 2792 bio = btrfs_bio_alloc(bdev, offset); 2793 bio_add_page(bio, page, page_size, pg_offset); 2794 bio->bi_end_io = end_io_func; 2795 bio->bi_private = tree; 2796 bio->bi_write_hint = page->mapping->host->i_write_hint; 2797 bio->bi_opf = opf; 2798 if (wbc) { 2799 wbc_init_bio(wbc, bio); 2800 wbc_account_io(wbc, page, page_size); 2801 } 2802 2803 *bio_ret = bio; 2804 2805 return ret; 2806 } 2807 2808 static void attach_extent_buffer_page(struct extent_buffer *eb, 2809 struct page *page) 2810 { 2811 if (!PagePrivate(page)) { 2812 SetPagePrivate(page); 2813 get_page(page); 2814 set_page_private(page, (unsigned long)eb); 2815 } else { 2816 WARN_ON(page->private != (unsigned long)eb); 2817 } 2818 } 2819 2820 void set_page_extent_mapped(struct page *page) 2821 { 2822 if (!PagePrivate(page)) { 2823 SetPagePrivate(page); 2824 get_page(page); 2825 set_page_private(page, EXTENT_PAGE_PRIVATE); 2826 } 2827 } 2828 2829 static struct extent_map * 2830 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2831 u64 start, u64 len, get_extent_t *get_extent, 2832 struct extent_map **em_cached) 2833 { 2834 struct extent_map *em; 2835 2836 if (em_cached && *em_cached) { 2837 em = *em_cached; 2838 if (extent_map_in_tree(em) && start >= em->start && 2839 start < extent_map_end(em)) { 2840 refcount_inc(&em->refs); 2841 return em; 2842 } 2843 2844 free_extent_map(em); 2845 *em_cached = NULL; 2846 } 2847 2848 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0); 2849 if (em_cached && !IS_ERR_OR_NULL(em)) { 2850 BUG_ON(*em_cached); 2851 refcount_inc(&em->refs); 2852 *em_cached = em; 2853 } 2854 return em; 2855 } 2856 /* 2857 * basic readpage implementation. Locked extent state structs are inserted 2858 * into the tree that are removed when the IO is done (by the end_io 2859 * handlers) 2860 * XXX JDM: This needs looking at to ensure proper page locking 2861 * return 0 on success, otherwise return error 2862 */ 2863 static int __do_readpage(struct extent_io_tree *tree, 2864 struct page *page, 2865 get_extent_t *get_extent, 2866 struct extent_map **em_cached, 2867 struct bio **bio, int mirror_num, 2868 unsigned long *bio_flags, unsigned int read_flags, 2869 u64 *prev_em_start) 2870 { 2871 struct inode *inode = page->mapping->host; 2872 u64 start = page_offset(page); 2873 const u64 end = start + PAGE_SIZE - 1; 2874 u64 cur = start; 2875 u64 extent_offset; 2876 u64 last_byte = i_size_read(inode); 2877 u64 block_start; 2878 u64 cur_end; 2879 struct extent_map *em; 2880 struct block_device *bdev; 2881 int ret = 0; 2882 int nr = 0; 2883 size_t pg_offset = 0; 2884 size_t iosize; 2885 size_t disk_io_size; 2886 size_t blocksize = inode->i_sb->s_blocksize; 2887 unsigned long this_bio_flag = 0; 2888 2889 set_page_extent_mapped(page); 2890 2891 if (!PageUptodate(page)) { 2892 if (cleancache_get_page(page) == 0) { 2893 BUG_ON(blocksize != PAGE_SIZE); 2894 unlock_extent(tree, start, end); 2895 goto out; 2896 } 2897 } 2898 2899 if (page->index == last_byte >> PAGE_SHIFT) { 2900 char *userpage; 2901 size_t zero_offset = offset_in_page(last_byte); 2902 2903 if (zero_offset) { 2904 iosize = PAGE_SIZE - zero_offset; 2905 userpage = kmap_atomic(page); 2906 memset(userpage + zero_offset, 0, iosize); 2907 flush_dcache_page(page); 2908 kunmap_atomic(userpage); 2909 } 2910 } 2911 while (cur <= end) { 2912 bool force_bio_submit = false; 2913 u64 offset; 2914 2915 if (cur >= last_byte) { 2916 char *userpage; 2917 struct extent_state *cached = NULL; 2918 2919 iosize = PAGE_SIZE - pg_offset; 2920 userpage = kmap_atomic(page); 2921 memset(userpage + pg_offset, 0, iosize); 2922 flush_dcache_page(page); 2923 kunmap_atomic(userpage); 2924 set_extent_uptodate(tree, cur, cur + iosize - 1, 2925 &cached, GFP_NOFS); 2926 unlock_extent_cached(tree, cur, 2927 cur + iosize - 1, &cached); 2928 break; 2929 } 2930 em = __get_extent_map(inode, page, pg_offset, cur, 2931 end - cur + 1, get_extent, em_cached); 2932 if (IS_ERR_OR_NULL(em)) { 2933 SetPageError(page); 2934 unlock_extent(tree, cur, end); 2935 break; 2936 } 2937 extent_offset = cur - em->start; 2938 BUG_ON(extent_map_end(em) <= cur); 2939 BUG_ON(end < cur); 2940 2941 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2942 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2943 extent_set_compress_type(&this_bio_flag, 2944 em->compress_type); 2945 } 2946 2947 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2948 cur_end = min(extent_map_end(em) - 1, end); 2949 iosize = ALIGN(iosize, blocksize); 2950 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2951 disk_io_size = em->block_len; 2952 offset = em->block_start; 2953 } else { 2954 offset = em->block_start + extent_offset; 2955 disk_io_size = iosize; 2956 } 2957 bdev = em->bdev; 2958 block_start = em->block_start; 2959 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2960 block_start = EXTENT_MAP_HOLE; 2961 2962 /* 2963 * If we have a file range that points to a compressed extent 2964 * and it's followed by a consecutive file range that points to 2965 * to the same compressed extent (possibly with a different 2966 * offset and/or length, so it either points to the whole extent 2967 * or only part of it), we must make sure we do not submit a 2968 * single bio to populate the pages for the 2 ranges because 2969 * this makes the compressed extent read zero out the pages 2970 * belonging to the 2nd range. Imagine the following scenario: 2971 * 2972 * File layout 2973 * [0 - 8K] [8K - 24K] 2974 * | | 2975 * | | 2976 * points to extent X, points to extent X, 2977 * offset 4K, length of 8K offset 0, length 16K 2978 * 2979 * [extent X, compressed length = 4K uncompressed length = 16K] 2980 * 2981 * If the bio to read the compressed extent covers both ranges, 2982 * it will decompress extent X into the pages belonging to the 2983 * first range and then it will stop, zeroing out the remaining 2984 * pages that belong to the other range that points to extent X. 2985 * So here we make sure we submit 2 bios, one for the first 2986 * range and another one for the third range. Both will target 2987 * the same physical extent from disk, but we can't currently 2988 * make the compressed bio endio callback populate the pages 2989 * for both ranges because each compressed bio is tightly 2990 * coupled with a single extent map, and each range can have 2991 * an extent map with a different offset value relative to the 2992 * uncompressed data of our extent and different lengths. This 2993 * is a corner case so we prioritize correctness over 2994 * non-optimal behavior (submitting 2 bios for the same extent). 2995 */ 2996 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 2997 prev_em_start && *prev_em_start != (u64)-1 && 2998 *prev_em_start != em->start) 2999 force_bio_submit = true; 3000 3001 if (prev_em_start) 3002 *prev_em_start = em->start; 3003 3004 free_extent_map(em); 3005 em = NULL; 3006 3007 /* we've found a hole, just zero and go on */ 3008 if (block_start == EXTENT_MAP_HOLE) { 3009 char *userpage; 3010 struct extent_state *cached = NULL; 3011 3012 userpage = kmap_atomic(page); 3013 memset(userpage + pg_offset, 0, iosize); 3014 flush_dcache_page(page); 3015 kunmap_atomic(userpage); 3016 3017 set_extent_uptodate(tree, cur, cur + iosize - 1, 3018 &cached, GFP_NOFS); 3019 unlock_extent_cached(tree, cur, 3020 cur + iosize - 1, &cached); 3021 cur = cur + iosize; 3022 pg_offset += iosize; 3023 continue; 3024 } 3025 /* the get_extent function already copied into the page */ 3026 if (test_range_bit(tree, cur, cur_end, 3027 EXTENT_UPTODATE, 1, NULL)) { 3028 check_page_uptodate(tree, page); 3029 unlock_extent(tree, cur, cur + iosize - 1); 3030 cur = cur + iosize; 3031 pg_offset += iosize; 3032 continue; 3033 } 3034 /* we have an inline extent but it didn't get marked up 3035 * to date. Error out 3036 */ 3037 if (block_start == EXTENT_MAP_INLINE) { 3038 SetPageError(page); 3039 unlock_extent(tree, cur, cur + iosize - 1); 3040 cur = cur + iosize; 3041 pg_offset += iosize; 3042 continue; 3043 } 3044 3045 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL, 3046 page, offset, disk_io_size, 3047 pg_offset, bdev, bio, 3048 end_bio_extent_readpage, mirror_num, 3049 *bio_flags, 3050 this_bio_flag, 3051 force_bio_submit); 3052 if (!ret) { 3053 nr++; 3054 *bio_flags = this_bio_flag; 3055 } else { 3056 SetPageError(page); 3057 unlock_extent(tree, cur, cur + iosize - 1); 3058 goto out; 3059 } 3060 cur = cur + iosize; 3061 pg_offset += iosize; 3062 } 3063 out: 3064 if (!nr) { 3065 if (!PageError(page)) 3066 SetPageUptodate(page); 3067 unlock_page(page); 3068 } 3069 return ret; 3070 } 3071 3072 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 3073 struct page *pages[], int nr_pages, 3074 u64 start, u64 end, 3075 struct extent_map **em_cached, 3076 struct bio **bio, 3077 unsigned long *bio_flags, 3078 u64 *prev_em_start) 3079 { 3080 struct inode *inode; 3081 struct btrfs_ordered_extent *ordered; 3082 int index; 3083 3084 inode = pages[0]->mapping->host; 3085 while (1) { 3086 lock_extent(tree, start, end); 3087 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3088 end - start + 1); 3089 if (!ordered) 3090 break; 3091 unlock_extent(tree, start, end); 3092 btrfs_start_ordered_extent(inode, ordered, 1); 3093 btrfs_put_ordered_extent(ordered); 3094 } 3095 3096 for (index = 0; index < nr_pages; index++) { 3097 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached, 3098 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start); 3099 put_page(pages[index]); 3100 } 3101 } 3102 3103 static void __extent_readpages(struct extent_io_tree *tree, 3104 struct page *pages[], 3105 int nr_pages, 3106 struct extent_map **em_cached, 3107 struct bio **bio, unsigned long *bio_flags, 3108 u64 *prev_em_start) 3109 { 3110 u64 start = 0; 3111 u64 end = 0; 3112 u64 page_start; 3113 int index; 3114 int first_index = 0; 3115 3116 for (index = 0; index < nr_pages; index++) { 3117 page_start = page_offset(pages[index]); 3118 if (!end) { 3119 start = page_start; 3120 end = start + PAGE_SIZE - 1; 3121 first_index = index; 3122 } else if (end + 1 == page_start) { 3123 end += PAGE_SIZE; 3124 } else { 3125 __do_contiguous_readpages(tree, &pages[first_index], 3126 index - first_index, start, 3127 end, em_cached, 3128 bio, bio_flags, 3129 prev_em_start); 3130 start = page_start; 3131 end = start + PAGE_SIZE - 1; 3132 first_index = index; 3133 } 3134 } 3135 3136 if (end) 3137 __do_contiguous_readpages(tree, &pages[first_index], 3138 index - first_index, start, 3139 end, em_cached, bio, 3140 bio_flags, prev_em_start); 3141 } 3142 3143 static int __extent_read_full_page(struct extent_io_tree *tree, 3144 struct page *page, 3145 get_extent_t *get_extent, 3146 struct bio **bio, int mirror_num, 3147 unsigned long *bio_flags, 3148 unsigned int read_flags) 3149 { 3150 struct inode *inode = page->mapping->host; 3151 struct btrfs_ordered_extent *ordered; 3152 u64 start = page_offset(page); 3153 u64 end = start + PAGE_SIZE - 1; 3154 int ret; 3155 3156 while (1) { 3157 lock_extent(tree, start, end); 3158 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 3159 PAGE_SIZE); 3160 if (!ordered) 3161 break; 3162 unlock_extent(tree, start, end); 3163 btrfs_start_ordered_extent(inode, ordered, 1); 3164 btrfs_put_ordered_extent(ordered); 3165 } 3166 3167 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3168 bio_flags, read_flags, NULL); 3169 return ret; 3170 } 3171 3172 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3173 get_extent_t *get_extent, int mirror_num) 3174 { 3175 struct bio *bio = NULL; 3176 unsigned long bio_flags = 0; 3177 int ret; 3178 3179 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3180 &bio_flags, 0); 3181 if (bio) 3182 ret = submit_one_bio(bio, mirror_num, bio_flags); 3183 return ret; 3184 } 3185 3186 static void update_nr_written(struct writeback_control *wbc, 3187 unsigned long nr_written) 3188 { 3189 wbc->nr_to_write -= nr_written; 3190 } 3191 3192 /* 3193 * helper for __extent_writepage, doing all of the delayed allocation setup. 3194 * 3195 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3196 * to write the page (copy into inline extent). In this case the IO has 3197 * been started and the page is already unlocked. 3198 * 3199 * This returns 0 if all went well (page still locked) 3200 * This returns < 0 if there were errors (page still locked) 3201 */ 3202 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3203 struct page *page, struct writeback_control *wbc, 3204 u64 delalloc_start, unsigned long *nr_written) 3205 { 3206 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3207 u64 page_end = delalloc_start + PAGE_SIZE - 1; 3208 bool found; 3209 u64 delalloc_to_write = 0; 3210 u64 delalloc_end = 0; 3211 int ret; 3212 int page_started = 0; 3213 3214 3215 while (delalloc_end < page_end) { 3216 found = find_lock_delalloc_range(inode, tree, 3217 page, 3218 &delalloc_start, 3219 &delalloc_end); 3220 if (!found) { 3221 delalloc_start = delalloc_end + 1; 3222 continue; 3223 } 3224 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3225 delalloc_end, &page_started, nr_written, wbc); 3226 /* File system has been set read-only */ 3227 if (ret) { 3228 SetPageError(page); 3229 /* 3230 * btrfs_run_delalloc_range should return < 0 for error 3231 * but just in case, we use > 0 here meaning the IO is 3232 * started, so we don't want to return > 0 unless 3233 * things are going well. 3234 */ 3235 ret = ret < 0 ? ret : -EIO; 3236 goto done; 3237 } 3238 /* 3239 * delalloc_end is already one less than the total length, so 3240 * we don't subtract one from PAGE_SIZE 3241 */ 3242 delalloc_to_write += (delalloc_end - delalloc_start + 3243 PAGE_SIZE) >> PAGE_SHIFT; 3244 delalloc_start = delalloc_end + 1; 3245 } 3246 if (wbc->nr_to_write < delalloc_to_write) { 3247 int thresh = 8192; 3248 3249 if (delalloc_to_write < thresh * 2) 3250 thresh = delalloc_to_write; 3251 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3252 thresh); 3253 } 3254 3255 /* did the fill delalloc function already unlock and start 3256 * the IO? 3257 */ 3258 if (page_started) { 3259 /* 3260 * we've unlocked the page, so we can't update 3261 * the mapping's writeback index, just update 3262 * nr_to_write. 3263 */ 3264 wbc->nr_to_write -= *nr_written; 3265 return 1; 3266 } 3267 3268 ret = 0; 3269 3270 done: 3271 return ret; 3272 } 3273 3274 /* 3275 * helper for __extent_writepage. This calls the writepage start hooks, 3276 * and does the loop to map the page into extents and bios. 3277 * 3278 * We return 1 if the IO is started and the page is unlocked, 3279 * 0 if all went well (page still locked) 3280 * < 0 if there were errors (page still locked) 3281 */ 3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3283 struct page *page, 3284 struct writeback_control *wbc, 3285 struct extent_page_data *epd, 3286 loff_t i_size, 3287 unsigned long nr_written, 3288 unsigned int write_flags, int *nr_ret) 3289 { 3290 struct extent_io_tree *tree = epd->tree; 3291 u64 start = page_offset(page); 3292 u64 page_end = start + PAGE_SIZE - 1; 3293 u64 end; 3294 u64 cur = start; 3295 u64 extent_offset; 3296 u64 block_start; 3297 u64 iosize; 3298 struct extent_map *em; 3299 struct block_device *bdev; 3300 size_t pg_offset = 0; 3301 size_t blocksize; 3302 int ret = 0; 3303 int nr = 0; 3304 bool compressed; 3305 3306 ret = btrfs_writepage_cow_fixup(page, start, page_end); 3307 if (ret) { 3308 /* Fixup worker will requeue */ 3309 if (ret == -EBUSY) 3310 wbc->pages_skipped++; 3311 else 3312 redirty_page_for_writepage(wbc, page); 3313 3314 update_nr_written(wbc, nr_written); 3315 unlock_page(page); 3316 return 1; 3317 } 3318 3319 /* 3320 * we don't want to touch the inode after unlocking the page, 3321 * so we update the mapping writeback index now 3322 */ 3323 update_nr_written(wbc, nr_written + 1); 3324 3325 end = page_end; 3326 if (i_size <= start) { 3327 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1); 3328 goto done; 3329 } 3330 3331 blocksize = inode->i_sb->s_blocksize; 3332 3333 while (cur <= end) { 3334 u64 em_end; 3335 u64 offset; 3336 3337 if (cur >= i_size) { 3338 btrfs_writepage_endio_finish_ordered(page, cur, 3339 page_end, 1); 3340 break; 3341 } 3342 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur, 3343 end - cur + 1, 1); 3344 if (IS_ERR_OR_NULL(em)) { 3345 SetPageError(page); 3346 ret = PTR_ERR_OR_ZERO(em); 3347 break; 3348 } 3349 3350 extent_offset = cur - em->start; 3351 em_end = extent_map_end(em); 3352 BUG_ON(em_end <= cur); 3353 BUG_ON(end < cur); 3354 iosize = min(em_end - cur, end - cur + 1); 3355 iosize = ALIGN(iosize, blocksize); 3356 offset = em->block_start + extent_offset; 3357 bdev = em->bdev; 3358 block_start = em->block_start; 3359 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3360 free_extent_map(em); 3361 em = NULL; 3362 3363 /* 3364 * compressed and inline extents are written through other 3365 * paths in the FS 3366 */ 3367 if (compressed || block_start == EXTENT_MAP_HOLE || 3368 block_start == EXTENT_MAP_INLINE) { 3369 /* 3370 * end_io notification does not happen here for 3371 * compressed extents 3372 */ 3373 if (!compressed) 3374 btrfs_writepage_endio_finish_ordered(page, cur, 3375 cur + iosize - 1, 3376 1); 3377 else if (compressed) { 3378 /* we don't want to end_page_writeback on 3379 * a compressed extent. this happens 3380 * elsewhere 3381 */ 3382 nr++; 3383 } 3384 3385 cur += iosize; 3386 pg_offset += iosize; 3387 continue; 3388 } 3389 3390 btrfs_set_range_writeback(tree, cur, cur + iosize - 1); 3391 if (!PageWriteback(page)) { 3392 btrfs_err(BTRFS_I(inode)->root->fs_info, 3393 "page %lu not writeback, cur %llu end %llu", 3394 page->index, cur, end); 3395 } 3396 3397 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3398 page, offset, iosize, pg_offset, 3399 bdev, &epd->bio, 3400 end_bio_extent_writepage, 3401 0, 0, 0, false); 3402 if (ret) { 3403 SetPageError(page); 3404 if (PageWriteback(page)) 3405 end_page_writeback(page); 3406 } 3407 3408 cur = cur + iosize; 3409 pg_offset += iosize; 3410 nr++; 3411 } 3412 done: 3413 *nr_ret = nr; 3414 return ret; 3415 } 3416 3417 /* 3418 * the writepage semantics are similar to regular writepage. extent 3419 * records are inserted to lock ranges in the tree, and as dirty areas 3420 * are found, they are marked writeback. Then the lock bits are removed 3421 * and the end_io handler clears the writeback ranges 3422 */ 3423 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3424 struct extent_page_data *epd) 3425 { 3426 struct inode *inode = page->mapping->host; 3427 u64 start = page_offset(page); 3428 u64 page_end = start + PAGE_SIZE - 1; 3429 int ret; 3430 int nr = 0; 3431 size_t pg_offset = 0; 3432 loff_t i_size = i_size_read(inode); 3433 unsigned long end_index = i_size >> PAGE_SHIFT; 3434 unsigned int write_flags = 0; 3435 unsigned long nr_written = 0; 3436 3437 write_flags = wbc_to_write_flags(wbc); 3438 3439 trace___extent_writepage(page, inode, wbc); 3440 3441 WARN_ON(!PageLocked(page)); 3442 3443 ClearPageError(page); 3444 3445 pg_offset = offset_in_page(i_size); 3446 if (page->index > end_index || 3447 (page->index == end_index && !pg_offset)) { 3448 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 3449 unlock_page(page); 3450 return 0; 3451 } 3452 3453 if (page->index == end_index) { 3454 char *userpage; 3455 3456 userpage = kmap_atomic(page); 3457 memset(userpage + pg_offset, 0, 3458 PAGE_SIZE - pg_offset); 3459 kunmap_atomic(userpage); 3460 flush_dcache_page(page); 3461 } 3462 3463 pg_offset = 0; 3464 3465 set_page_extent_mapped(page); 3466 3467 if (!epd->extent_locked) { 3468 ret = writepage_delalloc(inode, page, wbc, start, &nr_written); 3469 if (ret == 1) 3470 goto done_unlocked; 3471 if (ret) 3472 goto done; 3473 } 3474 3475 ret = __extent_writepage_io(inode, page, wbc, epd, 3476 i_size, nr_written, write_flags, &nr); 3477 if (ret == 1) 3478 goto done_unlocked; 3479 3480 done: 3481 if (nr == 0) { 3482 /* make sure the mapping tag for page dirty gets cleared */ 3483 set_page_writeback(page); 3484 end_page_writeback(page); 3485 } 3486 if (PageError(page)) { 3487 ret = ret < 0 ? ret : -EIO; 3488 end_extent_writepage(page, ret, start, page_end); 3489 } 3490 unlock_page(page); 3491 return ret; 3492 3493 done_unlocked: 3494 return 0; 3495 } 3496 3497 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3498 { 3499 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3500 TASK_UNINTERRUPTIBLE); 3501 } 3502 3503 static noinline_for_stack int 3504 lock_extent_buffer_for_io(struct extent_buffer *eb, 3505 struct btrfs_fs_info *fs_info, 3506 struct extent_page_data *epd) 3507 { 3508 int i, num_pages; 3509 int flush = 0; 3510 int ret = 0; 3511 3512 if (!btrfs_try_tree_write_lock(eb)) { 3513 flush = 1; 3514 flush_write_bio(epd); 3515 btrfs_tree_lock(eb); 3516 } 3517 3518 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3519 btrfs_tree_unlock(eb); 3520 if (!epd->sync_io) 3521 return 0; 3522 if (!flush) { 3523 flush_write_bio(epd); 3524 flush = 1; 3525 } 3526 while (1) { 3527 wait_on_extent_buffer_writeback(eb); 3528 btrfs_tree_lock(eb); 3529 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3530 break; 3531 btrfs_tree_unlock(eb); 3532 } 3533 } 3534 3535 /* 3536 * We need to do this to prevent races in people who check if the eb is 3537 * under IO since we can end up having no IO bits set for a short period 3538 * of time. 3539 */ 3540 spin_lock(&eb->refs_lock); 3541 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3542 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3543 spin_unlock(&eb->refs_lock); 3544 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3545 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3546 -eb->len, 3547 fs_info->dirty_metadata_batch); 3548 ret = 1; 3549 } else { 3550 spin_unlock(&eb->refs_lock); 3551 } 3552 3553 btrfs_tree_unlock(eb); 3554 3555 if (!ret) 3556 return ret; 3557 3558 num_pages = num_extent_pages(eb); 3559 for (i = 0; i < num_pages; i++) { 3560 struct page *p = eb->pages[i]; 3561 3562 if (!trylock_page(p)) { 3563 if (!flush) { 3564 flush_write_bio(epd); 3565 flush = 1; 3566 } 3567 lock_page(p); 3568 } 3569 } 3570 3571 return ret; 3572 } 3573 3574 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3575 { 3576 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3577 smp_mb__after_atomic(); 3578 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3579 } 3580 3581 static void set_btree_ioerr(struct page *page) 3582 { 3583 struct extent_buffer *eb = (struct extent_buffer *)page->private; 3584 3585 SetPageError(page); 3586 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 3587 return; 3588 3589 /* 3590 * If writeback for a btree extent that doesn't belong to a log tree 3591 * failed, increment the counter transaction->eb_write_errors. 3592 * We do this because while the transaction is running and before it's 3593 * committing (when we call filemap_fdata[write|wait]_range against 3594 * the btree inode), we might have 3595 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 3596 * returns an error or an error happens during writeback, when we're 3597 * committing the transaction we wouldn't know about it, since the pages 3598 * can be no longer dirty nor marked anymore for writeback (if a 3599 * subsequent modification to the extent buffer didn't happen before the 3600 * transaction commit), which makes filemap_fdata[write|wait]_range not 3601 * able to find the pages tagged with SetPageError at transaction 3602 * commit time. So if this happens we must abort the transaction, 3603 * otherwise we commit a super block with btree roots that point to 3604 * btree nodes/leafs whose content on disk is invalid - either garbage 3605 * or the content of some node/leaf from a past generation that got 3606 * cowed or deleted and is no longer valid. 3607 * 3608 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 3609 * not be enough - we need to distinguish between log tree extents vs 3610 * non-log tree extents, and the next filemap_fdatawait_range() call 3611 * will catch and clear such errors in the mapping - and that call might 3612 * be from a log sync and not from a transaction commit. Also, checking 3613 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 3614 * not done and would not be reliable - the eb might have been released 3615 * from memory and reading it back again means that flag would not be 3616 * set (since it's a runtime flag, not persisted on disk). 3617 * 3618 * Using the flags below in the btree inode also makes us achieve the 3619 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 3620 * writeback for all dirty pages and before filemap_fdatawait_range() 3621 * is called, the writeback for all dirty pages had already finished 3622 * with errors - because we were not using AS_EIO/AS_ENOSPC, 3623 * filemap_fdatawait_range() would return success, as it could not know 3624 * that writeback errors happened (the pages were no longer tagged for 3625 * writeback). 3626 */ 3627 switch (eb->log_index) { 3628 case -1: 3629 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags); 3630 break; 3631 case 0: 3632 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags); 3633 break; 3634 case 1: 3635 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags); 3636 break; 3637 default: 3638 BUG(); /* unexpected, logic error */ 3639 } 3640 } 3641 3642 static void end_bio_extent_buffer_writepage(struct bio *bio) 3643 { 3644 struct bio_vec *bvec; 3645 struct extent_buffer *eb; 3646 int i, done; 3647 struct bvec_iter_all iter_all; 3648 3649 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3650 bio_for_each_segment_all(bvec, bio, i, iter_all) { 3651 struct page *page = bvec->bv_page; 3652 3653 eb = (struct extent_buffer *)page->private; 3654 BUG_ON(!eb); 3655 done = atomic_dec_and_test(&eb->io_pages); 3656 3657 if (bio->bi_status || 3658 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 3659 ClearPageUptodate(page); 3660 set_btree_ioerr(page); 3661 } 3662 3663 end_page_writeback(page); 3664 3665 if (!done) 3666 continue; 3667 3668 end_extent_buffer_writeback(eb); 3669 } 3670 3671 bio_put(bio); 3672 } 3673 3674 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3675 struct btrfs_fs_info *fs_info, 3676 struct writeback_control *wbc, 3677 struct extent_page_data *epd) 3678 { 3679 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3680 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3681 u64 offset = eb->start; 3682 u32 nritems; 3683 int i, num_pages; 3684 unsigned long start, end; 3685 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 3686 int ret = 0; 3687 3688 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 3689 num_pages = num_extent_pages(eb); 3690 atomic_set(&eb->io_pages, num_pages); 3691 3692 /* set btree blocks beyond nritems with 0 to avoid stale content. */ 3693 nritems = btrfs_header_nritems(eb); 3694 if (btrfs_header_level(eb) > 0) { 3695 end = btrfs_node_key_ptr_offset(nritems); 3696 3697 memzero_extent_buffer(eb, end, eb->len - end); 3698 } else { 3699 /* 3700 * leaf: 3701 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 3702 */ 3703 start = btrfs_item_nr_offset(nritems); 3704 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb); 3705 memzero_extent_buffer(eb, start, end - start); 3706 } 3707 3708 for (i = 0; i < num_pages; i++) { 3709 struct page *p = eb->pages[i]; 3710 3711 clear_page_dirty_for_io(p); 3712 set_page_writeback(p); 3713 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc, 3714 p, offset, PAGE_SIZE, 0, bdev, 3715 &epd->bio, 3716 end_bio_extent_buffer_writepage, 3717 0, 0, 0, false); 3718 if (ret) { 3719 set_btree_ioerr(p); 3720 if (PageWriteback(p)) 3721 end_page_writeback(p); 3722 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3723 end_extent_buffer_writeback(eb); 3724 ret = -EIO; 3725 break; 3726 } 3727 offset += PAGE_SIZE; 3728 update_nr_written(wbc, 1); 3729 unlock_page(p); 3730 } 3731 3732 if (unlikely(ret)) { 3733 for (; i < num_pages; i++) { 3734 struct page *p = eb->pages[i]; 3735 clear_page_dirty_for_io(p); 3736 unlock_page(p); 3737 } 3738 } 3739 3740 return ret; 3741 } 3742 3743 int btree_write_cache_pages(struct address_space *mapping, 3744 struct writeback_control *wbc) 3745 { 3746 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3747 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3748 struct extent_buffer *eb, *prev_eb = NULL; 3749 struct extent_page_data epd = { 3750 .bio = NULL, 3751 .tree = tree, 3752 .extent_locked = 0, 3753 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3754 }; 3755 int ret = 0; 3756 int done = 0; 3757 int nr_to_write_done = 0; 3758 struct pagevec pvec; 3759 int nr_pages; 3760 pgoff_t index; 3761 pgoff_t end; /* Inclusive */ 3762 int scanned = 0; 3763 xa_mark_t tag; 3764 3765 pagevec_init(&pvec); 3766 if (wbc->range_cyclic) { 3767 index = mapping->writeback_index; /* Start from prev offset */ 3768 end = -1; 3769 } else { 3770 index = wbc->range_start >> PAGE_SHIFT; 3771 end = wbc->range_end >> PAGE_SHIFT; 3772 scanned = 1; 3773 } 3774 if (wbc->sync_mode == WB_SYNC_ALL) 3775 tag = PAGECACHE_TAG_TOWRITE; 3776 else 3777 tag = PAGECACHE_TAG_DIRTY; 3778 retry: 3779 if (wbc->sync_mode == WB_SYNC_ALL) 3780 tag_pages_for_writeback(mapping, index, end); 3781 while (!done && !nr_to_write_done && (index <= end) && 3782 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 3783 tag))) { 3784 unsigned i; 3785 3786 scanned = 1; 3787 for (i = 0; i < nr_pages; i++) { 3788 struct page *page = pvec.pages[i]; 3789 3790 if (!PagePrivate(page)) 3791 continue; 3792 3793 spin_lock(&mapping->private_lock); 3794 if (!PagePrivate(page)) { 3795 spin_unlock(&mapping->private_lock); 3796 continue; 3797 } 3798 3799 eb = (struct extent_buffer *)page->private; 3800 3801 /* 3802 * Shouldn't happen and normally this would be a BUG_ON 3803 * but no sense in crashing the users box for something 3804 * we can survive anyway. 3805 */ 3806 if (WARN_ON(!eb)) { 3807 spin_unlock(&mapping->private_lock); 3808 continue; 3809 } 3810 3811 if (eb == prev_eb) { 3812 spin_unlock(&mapping->private_lock); 3813 continue; 3814 } 3815 3816 ret = atomic_inc_not_zero(&eb->refs); 3817 spin_unlock(&mapping->private_lock); 3818 if (!ret) 3819 continue; 3820 3821 prev_eb = eb; 3822 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3823 if (!ret) { 3824 free_extent_buffer(eb); 3825 continue; 3826 } 3827 3828 ret = write_one_eb(eb, fs_info, wbc, &epd); 3829 if (ret) { 3830 done = 1; 3831 free_extent_buffer(eb); 3832 break; 3833 } 3834 free_extent_buffer(eb); 3835 3836 /* 3837 * the filesystem may choose to bump up nr_to_write. 3838 * We have to make sure to honor the new nr_to_write 3839 * at any time 3840 */ 3841 nr_to_write_done = wbc->nr_to_write <= 0; 3842 } 3843 pagevec_release(&pvec); 3844 cond_resched(); 3845 } 3846 if (!scanned && !done) { 3847 /* 3848 * We hit the last page and there is more work to be done: wrap 3849 * back to the start of the file 3850 */ 3851 scanned = 1; 3852 index = 0; 3853 goto retry; 3854 } 3855 flush_write_bio(&epd); 3856 return ret; 3857 } 3858 3859 /** 3860 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3861 * @mapping: address space structure to write 3862 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3863 * @data: data passed to __extent_writepage function 3864 * 3865 * If a page is already under I/O, write_cache_pages() skips it, even 3866 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3867 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3868 * and msync() need to guarantee that all the data which was dirty at the time 3869 * the call was made get new I/O started against them. If wbc->sync_mode is 3870 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3871 * existing IO to complete. 3872 */ 3873 static int extent_write_cache_pages(struct address_space *mapping, 3874 struct writeback_control *wbc, 3875 struct extent_page_data *epd) 3876 { 3877 struct inode *inode = mapping->host; 3878 int ret = 0; 3879 int done = 0; 3880 int nr_to_write_done = 0; 3881 struct pagevec pvec; 3882 int nr_pages; 3883 pgoff_t index; 3884 pgoff_t end; /* Inclusive */ 3885 pgoff_t done_index; 3886 int range_whole = 0; 3887 int scanned = 0; 3888 xa_mark_t tag; 3889 3890 /* 3891 * We have to hold onto the inode so that ordered extents can do their 3892 * work when the IO finishes. The alternative to this is failing to add 3893 * an ordered extent if the igrab() fails there and that is a huge pain 3894 * to deal with, so instead just hold onto the inode throughout the 3895 * writepages operation. If it fails here we are freeing up the inode 3896 * anyway and we'd rather not waste our time writing out stuff that is 3897 * going to be truncated anyway. 3898 */ 3899 if (!igrab(inode)) 3900 return 0; 3901 3902 pagevec_init(&pvec); 3903 if (wbc->range_cyclic) { 3904 index = mapping->writeback_index; /* Start from prev offset */ 3905 end = -1; 3906 } else { 3907 index = wbc->range_start >> PAGE_SHIFT; 3908 end = wbc->range_end >> PAGE_SHIFT; 3909 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3910 range_whole = 1; 3911 scanned = 1; 3912 } 3913 3914 /* 3915 * We do the tagged writepage as long as the snapshot flush bit is set 3916 * and we are the first one who do the filemap_flush() on this inode. 3917 * 3918 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 3919 * not race in and drop the bit. 3920 */ 3921 if (range_whole && wbc->nr_to_write == LONG_MAX && 3922 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 3923 &BTRFS_I(inode)->runtime_flags)) 3924 wbc->tagged_writepages = 1; 3925 3926 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3927 tag = PAGECACHE_TAG_TOWRITE; 3928 else 3929 tag = PAGECACHE_TAG_DIRTY; 3930 retry: 3931 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3932 tag_pages_for_writeback(mapping, index, end); 3933 done_index = index; 3934 while (!done && !nr_to_write_done && (index <= end) && 3935 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 3936 &index, end, tag))) { 3937 unsigned i; 3938 3939 scanned = 1; 3940 for (i = 0; i < nr_pages; i++) { 3941 struct page *page = pvec.pages[i]; 3942 3943 done_index = page->index; 3944 /* 3945 * At this point we hold neither the i_pages lock nor 3946 * the page lock: the page may be truncated or 3947 * invalidated (changing page->mapping to NULL), 3948 * or even swizzled back from swapper_space to 3949 * tmpfs file mapping 3950 */ 3951 if (!trylock_page(page)) { 3952 flush_write_bio(epd); 3953 lock_page(page); 3954 } 3955 3956 if (unlikely(page->mapping != mapping)) { 3957 unlock_page(page); 3958 continue; 3959 } 3960 3961 if (wbc->sync_mode != WB_SYNC_NONE) { 3962 if (PageWriteback(page)) 3963 flush_write_bio(epd); 3964 wait_on_page_writeback(page); 3965 } 3966 3967 if (PageWriteback(page) || 3968 !clear_page_dirty_for_io(page)) { 3969 unlock_page(page); 3970 continue; 3971 } 3972 3973 ret = __extent_writepage(page, wbc, epd); 3974 3975 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3976 unlock_page(page); 3977 ret = 0; 3978 } 3979 if (ret < 0) { 3980 /* 3981 * done_index is set past this page, 3982 * so media errors will not choke 3983 * background writeout for the entire 3984 * file. This has consequences for 3985 * range_cyclic semantics (ie. it may 3986 * not be suitable for data integrity 3987 * writeout). 3988 */ 3989 done_index = page->index + 1; 3990 done = 1; 3991 break; 3992 } 3993 3994 /* 3995 * the filesystem may choose to bump up nr_to_write. 3996 * We have to make sure to honor the new nr_to_write 3997 * at any time 3998 */ 3999 nr_to_write_done = wbc->nr_to_write <= 0; 4000 } 4001 pagevec_release(&pvec); 4002 cond_resched(); 4003 } 4004 if (!scanned && !done) { 4005 /* 4006 * We hit the last page and there is more work to be done: wrap 4007 * back to the start of the file 4008 */ 4009 scanned = 1; 4010 index = 0; 4011 goto retry; 4012 } 4013 4014 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 4015 mapping->writeback_index = done_index; 4016 4017 btrfs_add_delayed_iput(inode); 4018 return ret; 4019 } 4020 4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 4022 { 4023 int ret; 4024 struct extent_page_data epd = { 4025 .bio = NULL, 4026 .tree = &BTRFS_I(page->mapping->host)->io_tree, 4027 .extent_locked = 0, 4028 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4029 }; 4030 4031 ret = __extent_writepage(page, wbc, &epd); 4032 4033 flush_write_bio(&epd); 4034 return ret; 4035 } 4036 4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end, 4038 int mode) 4039 { 4040 int ret = 0; 4041 struct address_space *mapping = inode->i_mapping; 4042 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 4043 struct page *page; 4044 unsigned long nr_pages = (end - start + PAGE_SIZE) >> 4045 PAGE_SHIFT; 4046 4047 struct extent_page_data epd = { 4048 .bio = NULL, 4049 .tree = tree, 4050 .extent_locked = 1, 4051 .sync_io = mode == WB_SYNC_ALL, 4052 }; 4053 struct writeback_control wbc_writepages = { 4054 .sync_mode = mode, 4055 .nr_to_write = nr_pages * 2, 4056 .range_start = start, 4057 .range_end = end + 1, 4058 }; 4059 4060 while (start <= end) { 4061 page = find_get_page(mapping, start >> PAGE_SHIFT); 4062 if (clear_page_dirty_for_io(page)) 4063 ret = __extent_writepage(page, &wbc_writepages, &epd); 4064 else { 4065 btrfs_writepage_endio_finish_ordered(page, start, 4066 start + PAGE_SIZE - 1, 1); 4067 unlock_page(page); 4068 } 4069 put_page(page); 4070 start += PAGE_SIZE; 4071 } 4072 4073 flush_write_bio(&epd); 4074 return ret; 4075 } 4076 4077 int extent_writepages(struct address_space *mapping, 4078 struct writeback_control *wbc) 4079 { 4080 int ret = 0; 4081 struct extent_page_data epd = { 4082 .bio = NULL, 4083 .tree = &BTRFS_I(mapping->host)->io_tree, 4084 .extent_locked = 0, 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4086 }; 4087 4088 ret = extent_write_cache_pages(mapping, wbc, &epd); 4089 flush_write_bio(&epd); 4090 return ret; 4091 } 4092 4093 int extent_readpages(struct address_space *mapping, struct list_head *pages, 4094 unsigned nr_pages) 4095 { 4096 struct bio *bio = NULL; 4097 unsigned long bio_flags = 0; 4098 struct page *pagepool[16]; 4099 struct extent_map *em_cached = NULL; 4100 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 4101 int nr = 0; 4102 u64 prev_em_start = (u64)-1; 4103 4104 while (!list_empty(pages)) { 4105 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) { 4106 struct page *page = lru_to_page(pages); 4107 4108 prefetchw(&page->flags); 4109 list_del(&page->lru); 4110 if (add_to_page_cache_lru(page, mapping, page->index, 4111 readahead_gfp_mask(mapping))) { 4112 put_page(page); 4113 continue; 4114 } 4115 4116 pagepool[nr++] = page; 4117 } 4118 4119 __extent_readpages(tree, pagepool, nr, &em_cached, &bio, 4120 &bio_flags, &prev_em_start); 4121 } 4122 4123 if (em_cached) 4124 free_extent_map(em_cached); 4125 4126 if (bio) 4127 return submit_one_bio(bio, 0, bio_flags); 4128 return 0; 4129 } 4130 4131 /* 4132 * basic invalidatepage code, this waits on any locked or writeback 4133 * ranges corresponding to the page, and then deletes any extent state 4134 * records from the tree 4135 */ 4136 int extent_invalidatepage(struct extent_io_tree *tree, 4137 struct page *page, unsigned long offset) 4138 { 4139 struct extent_state *cached_state = NULL; 4140 u64 start = page_offset(page); 4141 u64 end = start + PAGE_SIZE - 1; 4142 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4143 4144 start += ALIGN(offset, blocksize); 4145 if (start > end) 4146 return 0; 4147 4148 lock_extent_bits(tree, start, end, &cached_state); 4149 wait_on_page_writeback(page); 4150 clear_extent_bit(tree, start, end, 4151 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4152 EXTENT_DO_ACCOUNTING, 4153 1, 1, &cached_state); 4154 return 0; 4155 } 4156 4157 /* 4158 * a helper for releasepage, this tests for areas of the page that 4159 * are locked or under IO and drops the related state bits if it is safe 4160 * to drop the page. 4161 */ 4162 static int try_release_extent_state(struct extent_io_tree *tree, 4163 struct page *page, gfp_t mask) 4164 { 4165 u64 start = page_offset(page); 4166 u64 end = start + PAGE_SIZE - 1; 4167 int ret = 1; 4168 4169 if (test_range_bit(tree, start, end, 4170 EXTENT_IOBITS, 0, NULL)) 4171 ret = 0; 4172 else { 4173 /* 4174 * at this point we can safely clear everything except the 4175 * locked bit and the nodatasum bit 4176 */ 4177 ret = __clear_extent_bit(tree, start, end, 4178 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4179 0, 0, NULL, mask, NULL); 4180 4181 /* if clear_extent_bit failed for enomem reasons, 4182 * we can't allow the release to continue. 4183 */ 4184 if (ret < 0) 4185 ret = 0; 4186 else 4187 ret = 1; 4188 } 4189 return ret; 4190 } 4191 4192 /* 4193 * a helper for releasepage. As long as there are no locked extents 4194 * in the range corresponding to the page, both state records and extent 4195 * map records are removed 4196 */ 4197 int try_release_extent_mapping(struct page *page, gfp_t mask) 4198 { 4199 struct extent_map *em; 4200 u64 start = page_offset(page); 4201 u64 end = start + PAGE_SIZE - 1; 4202 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 4203 struct extent_io_tree *tree = &btrfs_inode->io_tree; 4204 struct extent_map_tree *map = &btrfs_inode->extent_tree; 4205 4206 if (gfpflags_allow_blocking(mask) && 4207 page->mapping->host->i_size > SZ_16M) { 4208 u64 len; 4209 while (start <= end) { 4210 len = end - start + 1; 4211 write_lock(&map->lock); 4212 em = lookup_extent_mapping(map, start, len); 4213 if (!em) { 4214 write_unlock(&map->lock); 4215 break; 4216 } 4217 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4218 em->start != start) { 4219 write_unlock(&map->lock); 4220 free_extent_map(em); 4221 break; 4222 } 4223 if (!test_range_bit(tree, em->start, 4224 extent_map_end(em) - 1, 4225 EXTENT_LOCKED | EXTENT_WRITEBACK, 4226 0, NULL)) { 4227 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4228 &btrfs_inode->runtime_flags); 4229 remove_extent_mapping(map, em); 4230 /* once for the rb tree */ 4231 free_extent_map(em); 4232 } 4233 start = extent_map_end(em); 4234 write_unlock(&map->lock); 4235 4236 /* once for us */ 4237 free_extent_map(em); 4238 } 4239 } 4240 return try_release_extent_state(tree, page, mask); 4241 } 4242 4243 /* 4244 * helper function for fiemap, which doesn't want to see any holes. 4245 * This maps until we find something past 'last' 4246 */ 4247 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4248 u64 offset, u64 last) 4249 { 4250 u64 sectorsize = btrfs_inode_sectorsize(inode); 4251 struct extent_map *em; 4252 u64 len; 4253 4254 if (offset >= last) 4255 return NULL; 4256 4257 while (1) { 4258 len = last - offset; 4259 if (len == 0) 4260 break; 4261 len = ALIGN(len, sectorsize); 4262 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len); 4263 if (IS_ERR_OR_NULL(em)) 4264 return em; 4265 4266 /* if this isn't a hole return it */ 4267 if (em->block_start != EXTENT_MAP_HOLE) 4268 return em; 4269 4270 /* this is a hole, advance to the next extent */ 4271 offset = extent_map_end(em); 4272 free_extent_map(em); 4273 if (offset >= last) 4274 break; 4275 } 4276 return NULL; 4277 } 4278 4279 /* 4280 * To cache previous fiemap extent 4281 * 4282 * Will be used for merging fiemap extent 4283 */ 4284 struct fiemap_cache { 4285 u64 offset; 4286 u64 phys; 4287 u64 len; 4288 u32 flags; 4289 bool cached; 4290 }; 4291 4292 /* 4293 * Helper to submit fiemap extent. 4294 * 4295 * Will try to merge current fiemap extent specified by @offset, @phys, 4296 * @len and @flags with cached one. 4297 * And only when we fails to merge, cached one will be submitted as 4298 * fiemap extent. 4299 * 4300 * Return value is the same as fiemap_fill_next_extent(). 4301 */ 4302 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 4303 struct fiemap_cache *cache, 4304 u64 offset, u64 phys, u64 len, u32 flags) 4305 { 4306 int ret = 0; 4307 4308 if (!cache->cached) 4309 goto assign; 4310 4311 /* 4312 * Sanity check, extent_fiemap() should have ensured that new 4313 * fiemap extent won't overlap with cached one. 4314 * Not recoverable. 4315 * 4316 * NOTE: Physical address can overlap, due to compression 4317 */ 4318 if (cache->offset + cache->len > offset) { 4319 WARN_ON(1); 4320 return -EINVAL; 4321 } 4322 4323 /* 4324 * Only merges fiemap extents if 4325 * 1) Their logical addresses are continuous 4326 * 4327 * 2) Their physical addresses are continuous 4328 * So truly compressed (physical size smaller than logical size) 4329 * extents won't get merged with each other 4330 * 4331 * 3) Share same flags except FIEMAP_EXTENT_LAST 4332 * So regular extent won't get merged with prealloc extent 4333 */ 4334 if (cache->offset + cache->len == offset && 4335 cache->phys + cache->len == phys && 4336 (cache->flags & ~FIEMAP_EXTENT_LAST) == 4337 (flags & ~FIEMAP_EXTENT_LAST)) { 4338 cache->len += len; 4339 cache->flags |= flags; 4340 goto try_submit_last; 4341 } 4342 4343 /* Not mergeable, need to submit cached one */ 4344 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4345 cache->len, cache->flags); 4346 cache->cached = false; 4347 if (ret) 4348 return ret; 4349 assign: 4350 cache->cached = true; 4351 cache->offset = offset; 4352 cache->phys = phys; 4353 cache->len = len; 4354 cache->flags = flags; 4355 try_submit_last: 4356 if (cache->flags & FIEMAP_EXTENT_LAST) { 4357 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 4358 cache->phys, cache->len, cache->flags); 4359 cache->cached = false; 4360 } 4361 return ret; 4362 } 4363 4364 /* 4365 * Emit last fiemap cache 4366 * 4367 * The last fiemap cache may still be cached in the following case: 4368 * 0 4k 8k 4369 * |<- Fiemap range ->| 4370 * |<------------ First extent ----------->| 4371 * 4372 * In this case, the first extent range will be cached but not emitted. 4373 * So we must emit it before ending extent_fiemap(). 4374 */ 4375 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info, 4376 struct fiemap_extent_info *fieinfo, 4377 struct fiemap_cache *cache) 4378 { 4379 int ret; 4380 4381 if (!cache->cached) 4382 return 0; 4383 4384 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 4385 cache->len, cache->flags); 4386 cache->cached = false; 4387 if (ret > 0) 4388 ret = 0; 4389 return ret; 4390 } 4391 4392 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4393 __u64 start, __u64 len) 4394 { 4395 int ret = 0; 4396 u64 off = start; 4397 u64 max = start + len; 4398 u32 flags = 0; 4399 u32 found_type; 4400 u64 last; 4401 u64 last_for_get_extent = 0; 4402 u64 disko = 0; 4403 u64 isize = i_size_read(inode); 4404 struct btrfs_key found_key; 4405 struct extent_map *em = NULL; 4406 struct extent_state *cached_state = NULL; 4407 struct btrfs_path *path; 4408 struct btrfs_root *root = BTRFS_I(inode)->root; 4409 struct fiemap_cache cache = { 0 }; 4410 int end = 0; 4411 u64 em_start = 0; 4412 u64 em_len = 0; 4413 u64 em_end = 0; 4414 4415 if (len == 0) 4416 return -EINVAL; 4417 4418 path = btrfs_alloc_path(); 4419 if (!path) 4420 return -ENOMEM; 4421 path->leave_spinning = 1; 4422 4423 start = round_down(start, btrfs_inode_sectorsize(inode)); 4424 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 4425 4426 /* 4427 * lookup the last file extent. We're not using i_size here 4428 * because there might be preallocation past i_size 4429 */ 4430 ret = btrfs_lookup_file_extent(NULL, root, path, 4431 btrfs_ino(BTRFS_I(inode)), -1, 0); 4432 if (ret < 0) { 4433 btrfs_free_path(path); 4434 return ret; 4435 } else { 4436 WARN_ON(!ret); 4437 if (ret == 1) 4438 ret = 0; 4439 } 4440 4441 path->slots[0]--; 4442 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4443 found_type = found_key.type; 4444 4445 /* No extents, but there might be delalloc bits */ 4446 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) || 4447 found_type != BTRFS_EXTENT_DATA_KEY) { 4448 /* have to trust i_size as the end */ 4449 last = (u64)-1; 4450 last_for_get_extent = isize; 4451 } else { 4452 /* 4453 * remember the start of the last extent. There are a 4454 * bunch of different factors that go into the length of the 4455 * extent, so its much less complex to remember where it started 4456 */ 4457 last = found_key.offset; 4458 last_for_get_extent = last + 1; 4459 } 4460 btrfs_release_path(path); 4461 4462 /* 4463 * we might have some extents allocated but more delalloc past those 4464 * extents. so, we trust isize unless the start of the last extent is 4465 * beyond isize 4466 */ 4467 if (last < isize) { 4468 last = (u64)-1; 4469 last_for_get_extent = isize; 4470 } 4471 4472 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4473 &cached_state); 4474 4475 em = get_extent_skip_holes(inode, start, last_for_get_extent); 4476 if (!em) 4477 goto out; 4478 if (IS_ERR(em)) { 4479 ret = PTR_ERR(em); 4480 goto out; 4481 } 4482 4483 while (!end) { 4484 u64 offset_in_extent = 0; 4485 4486 /* break if the extent we found is outside the range */ 4487 if (em->start >= max || extent_map_end(em) < off) 4488 break; 4489 4490 /* 4491 * get_extent may return an extent that starts before our 4492 * requested range. We have to make sure the ranges 4493 * we return to fiemap always move forward and don't 4494 * overlap, so adjust the offsets here 4495 */ 4496 em_start = max(em->start, off); 4497 4498 /* 4499 * record the offset from the start of the extent 4500 * for adjusting the disk offset below. Only do this if the 4501 * extent isn't compressed since our in ram offset may be past 4502 * what we have actually allocated on disk. 4503 */ 4504 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4505 offset_in_extent = em_start - em->start; 4506 em_end = extent_map_end(em); 4507 em_len = em_end - em_start; 4508 flags = 0; 4509 if (em->block_start < EXTENT_MAP_LAST_BYTE) 4510 disko = em->block_start + offset_in_extent; 4511 else 4512 disko = 0; 4513 4514 /* 4515 * bump off for our next call to get_extent 4516 */ 4517 off = extent_map_end(em); 4518 if (off >= max) 4519 end = 1; 4520 4521 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4522 end = 1; 4523 flags |= FIEMAP_EXTENT_LAST; 4524 } else if (em->block_start == EXTENT_MAP_INLINE) { 4525 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4526 FIEMAP_EXTENT_NOT_ALIGNED); 4527 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4528 flags |= (FIEMAP_EXTENT_DELALLOC | 4529 FIEMAP_EXTENT_UNKNOWN); 4530 } else if (fieinfo->fi_extents_max) { 4531 u64 bytenr = em->block_start - 4532 (em->start - em->orig_start); 4533 4534 /* 4535 * As btrfs supports shared space, this information 4536 * can be exported to userspace tools via 4537 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 4538 * then we're just getting a count and we can skip the 4539 * lookup stuff. 4540 */ 4541 ret = btrfs_check_shared(root, 4542 btrfs_ino(BTRFS_I(inode)), 4543 bytenr); 4544 if (ret < 0) 4545 goto out_free; 4546 if (ret) 4547 flags |= FIEMAP_EXTENT_SHARED; 4548 ret = 0; 4549 } 4550 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4551 flags |= FIEMAP_EXTENT_ENCODED; 4552 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4553 flags |= FIEMAP_EXTENT_UNWRITTEN; 4554 4555 free_extent_map(em); 4556 em = NULL; 4557 if ((em_start >= last) || em_len == (u64)-1 || 4558 (last == (u64)-1 && isize <= em_end)) { 4559 flags |= FIEMAP_EXTENT_LAST; 4560 end = 1; 4561 } 4562 4563 /* now scan forward to see if this is really the last extent. */ 4564 em = get_extent_skip_holes(inode, off, last_for_get_extent); 4565 if (IS_ERR(em)) { 4566 ret = PTR_ERR(em); 4567 goto out; 4568 } 4569 if (!em) { 4570 flags |= FIEMAP_EXTENT_LAST; 4571 end = 1; 4572 } 4573 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 4574 em_len, flags); 4575 if (ret) { 4576 if (ret == 1) 4577 ret = 0; 4578 goto out_free; 4579 } 4580 } 4581 out_free: 4582 if (!ret) 4583 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache); 4584 free_extent_map(em); 4585 out: 4586 btrfs_free_path(path); 4587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4588 &cached_state); 4589 return ret; 4590 } 4591 4592 static void __free_extent_buffer(struct extent_buffer *eb) 4593 { 4594 btrfs_leak_debug_del(&eb->leak_list); 4595 kmem_cache_free(extent_buffer_cache, eb); 4596 } 4597 4598 int extent_buffer_under_io(struct extent_buffer *eb) 4599 { 4600 return (atomic_read(&eb->io_pages) || 4601 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4602 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4603 } 4604 4605 /* 4606 * Release all pages attached to the extent buffer. 4607 */ 4608 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 4609 { 4610 int i; 4611 int num_pages; 4612 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4613 4614 BUG_ON(extent_buffer_under_io(eb)); 4615 4616 num_pages = num_extent_pages(eb); 4617 for (i = 0; i < num_pages; i++) { 4618 struct page *page = eb->pages[i]; 4619 4620 if (!page) 4621 continue; 4622 if (mapped) 4623 spin_lock(&page->mapping->private_lock); 4624 /* 4625 * We do this since we'll remove the pages after we've 4626 * removed the eb from the radix tree, so we could race 4627 * and have this page now attached to the new eb. So 4628 * only clear page_private if it's still connected to 4629 * this eb. 4630 */ 4631 if (PagePrivate(page) && 4632 page->private == (unsigned long)eb) { 4633 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4634 BUG_ON(PageDirty(page)); 4635 BUG_ON(PageWriteback(page)); 4636 /* 4637 * We need to make sure we haven't be attached 4638 * to a new eb. 4639 */ 4640 ClearPagePrivate(page); 4641 set_page_private(page, 0); 4642 /* One for the page private */ 4643 put_page(page); 4644 } 4645 4646 if (mapped) 4647 spin_unlock(&page->mapping->private_lock); 4648 4649 /* One for when we allocated the page */ 4650 put_page(page); 4651 } 4652 } 4653 4654 /* 4655 * Helper for releasing the extent buffer. 4656 */ 4657 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4658 { 4659 btrfs_release_extent_buffer_pages(eb); 4660 __free_extent_buffer(eb); 4661 } 4662 4663 static struct extent_buffer * 4664 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4665 unsigned long len) 4666 { 4667 struct extent_buffer *eb = NULL; 4668 4669 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 4670 eb->start = start; 4671 eb->len = len; 4672 eb->fs_info = fs_info; 4673 eb->bflags = 0; 4674 rwlock_init(&eb->lock); 4675 atomic_set(&eb->write_locks, 0); 4676 atomic_set(&eb->read_locks, 0); 4677 atomic_set(&eb->blocking_readers, 0); 4678 atomic_set(&eb->blocking_writers, 0); 4679 atomic_set(&eb->spinning_readers, 0); 4680 atomic_set(&eb->spinning_writers, 0); 4681 eb->lock_nested = 0; 4682 init_waitqueue_head(&eb->write_lock_wq); 4683 init_waitqueue_head(&eb->read_lock_wq); 4684 4685 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4686 4687 spin_lock_init(&eb->refs_lock); 4688 atomic_set(&eb->refs, 1); 4689 atomic_set(&eb->io_pages, 0); 4690 4691 /* 4692 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4693 */ 4694 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4695 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4696 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4697 4698 return eb; 4699 } 4700 4701 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4702 { 4703 int i; 4704 struct page *p; 4705 struct extent_buffer *new; 4706 int num_pages = num_extent_pages(src); 4707 4708 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 4709 if (new == NULL) 4710 return NULL; 4711 4712 for (i = 0; i < num_pages; i++) { 4713 p = alloc_page(GFP_NOFS); 4714 if (!p) { 4715 btrfs_release_extent_buffer(new); 4716 return NULL; 4717 } 4718 attach_extent_buffer_page(new, p); 4719 WARN_ON(PageDirty(p)); 4720 SetPageUptodate(p); 4721 new->pages[i] = p; 4722 copy_page(page_address(p), page_address(src->pages[i])); 4723 } 4724 4725 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4726 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 4727 4728 return new; 4729 } 4730 4731 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4732 u64 start, unsigned long len) 4733 { 4734 struct extent_buffer *eb; 4735 int num_pages; 4736 int i; 4737 4738 eb = __alloc_extent_buffer(fs_info, start, len); 4739 if (!eb) 4740 return NULL; 4741 4742 num_pages = num_extent_pages(eb); 4743 for (i = 0; i < num_pages; i++) { 4744 eb->pages[i] = alloc_page(GFP_NOFS); 4745 if (!eb->pages[i]) 4746 goto err; 4747 } 4748 set_extent_buffer_uptodate(eb); 4749 btrfs_set_header_nritems(eb, 0); 4750 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4751 4752 return eb; 4753 err: 4754 for (; i > 0; i--) 4755 __free_page(eb->pages[i - 1]); 4756 __free_extent_buffer(eb); 4757 return NULL; 4758 } 4759 4760 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 4761 u64 start) 4762 { 4763 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 4764 } 4765 4766 static void check_buffer_tree_ref(struct extent_buffer *eb) 4767 { 4768 int refs; 4769 /* the ref bit is tricky. We have to make sure it is set 4770 * if we have the buffer dirty. Otherwise the 4771 * code to free a buffer can end up dropping a dirty 4772 * page 4773 * 4774 * Once the ref bit is set, it won't go away while the 4775 * buffer is dirty or in writeback, and it also won't 4776 * go away while we have the reference count on the 4777 * eb bumped. 4778 * 4779 * We can't just set the ref bit without bumping the 4780 * ref on the eb because free_extent_buffer might 4781 * see the ref bit and try to clear it. If this happens 4782 * free_extent_buffer might end up dropping our original 4783 * ref by mistake and freeing the page before we are able 4784 * to add one more ref. 4785 * 4786 * So bump the ref count first, then set the bit. If someone 4787 * beat us to it, drop the ref we added. 4788 */ 4789 refs = atomic_read(&eb->refs); 4790 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4791 return; 4792 4793 spin_lock(&eb->refs_lock); 4794 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4795 atomic_inc(&eb->refs); 4796 spin_unlock(&eb->refs_lock); 4797 } 4798 4799 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4800 struct page *accessed) 4801 { 4802 int num_pages, i; 4803 4804 check_buffer_tree_ref(eb); 4805 4806 num_pages = num_extent_pages(eb); 4807 for (i = 0; i < num_pages; i++) { 4808 struct page *p = eb->pages[i]; 4809 4810 if (p != accessed) 4811 mark_page_accessed(p); 4812 } 4813 } 4814 4815 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4816 u64 start) 4817 { 4818 struct extent_buffer *eb; 4819 4820 rcu_read_lock(); 4821 eb = radix_tree_lookup(&fs_info->buffer_radix, 4822 start >> PAGE_SHIFT); 4823 if (eb && atomic_inc_not_zero(&eb->refs)) { 4824 rcu_read_unlock(); 4825 /* 4826 * Lock our eb's refs_lock to avoid races with 4827 * free_extent_buffer. When we get our eb it might be flagged 4828 * with EXTENT_BUFFER_STALE and another task running 4829 * free_extent_buffer might have seen that flag set, 4830 * eb->refs == 2, that the buffer isn't under IO (dirty and 4831 * writeback flags not set) and it's still in the tree (flag 4832 * EXTENT_BUFFER_TREE_REF set), therefore being in the process 4833 * of decrementing the extent buffer's reference count twice. 4834 * So here we could race and increment the eb's reference count, 4835 * clear its stale flag, mark it as dirty and drop our reference 4836 * before the other task finishes executing free_extent_buffer, 4837 * which would later result in an attempt to free an extent 4838 * buffer that is dirty. 4839 */ 4840 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 4841 spin_lock(&eb->refs_lock); 4842 spin_unlock(&eb->refs_lock); 4843 } 4844 mark_extent_buffer_accessed(eb, NULL); 4845 return eb; 4846 } 4847 rcu_read_unlock(); 4848 4849 return NULL; 4850 } 4851 4852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4853 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4854 u64 start) 4855 { 4856 struct extent_buffer *eb, *exists = NULL; 4857 int ret; 4858 4859 eb = find_extent_buffer(fs_info, start); 4860 if (eb) 4861 return eb; 4862 eb = alloc_dummy_extent_buffer(fs_info, start); 4863 if (!eb) 4864 return NULL; 4865 eb->fs_info = fs_info; 4866 again: 4867 ret = radix_tree_preload(GFP_NOFS); 4868 if (ret) 4869 goto free_eb; 4870 spin_lock(&fs_info->buffer_lock); 4871 ret = radix_tree_insert(&fs_info->buffer_radix, 4872 start >> PAGE_SHIFT, eb); 4873 spin_unlock(&fs_info->buffer_lock); 4874 radix_tree_preload_end(); 4875 if (ret == -EEXIST) { 4876 exists = find_extent_buffer(fs_info, start); 4877 if (exists) 4878 goto free_eb; 4879 else 4880 goto again; 4881 } 4882 check_buffer_tree_ref(eb); 4883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4884 4885 return eb; 4886 free_eb: 4887 btrfs_release_extent_buffer(eb); 4888 return exists; 4889 } 4890 #endif 4891 4892 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4893 u64 start) 4894 { 4895 unsigned long len = fs_info->nodesize; 4896 int num_pages; 4897 int i; 4898 unsigned long index = start >> PAGE_SHIFT; 4899 struct extent_buffer *eb; 4900 struct extent_buffer *exists = NULL; 4901 struct page *p; 4902 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4903 int uptodate = 1; 4904 int ret; 4905 4906 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 4907 btrfs_err(fs_info, "bad tree block start %llu", start); 4908 return ERR_PTR(-EINVAL); 4909 } 4910 4911 eb = find_extent_buffer(fs_info, start); 4912 if (eb) 4913 return eb; 4914 4915 eb = __alloc_extent_buffer(fs_info, start, len); 4916 if (!eb) 4917 return ERR_PTR(-ENOMEM); 4918 4919 num_pages = num_extent_pages(eb); 4920 for (i = 0; i < num_pages; i++, index++) { 4921 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4922 if (!p) { 4923 exists = ERR_PTR(-ENOMEM); 4924 goto free_eb; 4925 } 4926 4927 spin_lock(&mapping->private_lock); 4928 if (PagePrivate(p)) { 4929 /* 4930 * We could have already allocated an eb for this page 4931 * and attached one so lets see if we can get a ref on 4932 * the existing eb, and if we can we know it's good and 4933 * we can just return that one, else we know we can just 4934 * overwrite page->private. 4935 */ 4936 exists = (struct extent_buffer *)p->private; 4937 if (atomic_inc_not_zero(&exists->refs)) { 4938 spin_unlock(&mapping->private_lock); 4939 unlock_page(p); 4940 put_page(p); 4941 mark_extent_buffer_accessed(exists, p); 4942 goto free_eb; 4943 } 4944 exists = NULL; 4945 4946 /* 4947 * Do this so attach doesn't complain and we need to 4948 * drop the ref the old guy had. 4949 */ 4950 ClearPagePrivate(p); 4951 WARN_ON(PageDirty(p)); 4952 put_page(p); 4953 } 4954 attach_extent_buffer_page(eb, p); 4955 spin_unlock(&mapping->private_lock); 4956 WARN_ON(PageDirty(p)); 4957 eb->pages[i] = p; 4958 if (!PageUptodate(p)) 4959 uptodate = 0; 4960 4961 /* 4962 * We can't unlock the pages just yet since the extent buffer 4963 * hasn't been properly inserted in the radix tree, this 4964 * opens a race with btree_releasepage which can free a page 4965 * while we are still filling in all pages for the buffer and 4966 * we could crash. 4967 */ 4968 } 4969 if (uptodate) 4970 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4971 again: 4972 ret = radix_tree_preload(GFP_NOFS); 4973 if (ret) { 4974 exists = ERR_PTR(ret); 4975 goto free_eb; 4976 } 4977 4978 spin_lock(&fs_info->buffer_lock); 4979 ret = radix_tree_insert(&fs_info->buffer_radix, 4980 start >> PAGE_SHIFT, eb); 4981 spin_unlock(&fs_info->buffer_lock); 4982 radix_tree_preload_end(); 4983 if (ret == -EEXIST) { 4984 exists = find_extent_buffer(fs_info, start); 4985 if (exists) 4986 goto free_eb; 4987 else 4988 goto again; 4989 } 4990 /* add one reference for the tree */ 4991 check_buffer_tree_ref(eb); 4992 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4993 4994 /* 4995 * Now it's safe to unlock the pages because any calls to 4996 * btree_releasepage will correctly detect that a page belongs to a 4997 * live buffer and won't free them prematurely. 4998 */ 4999 for (i = 0; i < num_pages; i++) 5000 unlock_page(eb->pages[i]); 5001 return eb; 5002 5003 free_eb: 5004 WARN_ON(!atomic_dec_and_test(&eb->refs)); 5005 for (i = 0; i < num_pages; i++) { 5006 if (eb->pages[i]) 5007 unlock_page(eb->pages[i]); 5008 } 5009 5010 btrfs_release_extent_buffer(eb); 5011 return exists; 5012 } 5013 5014 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 5015 { 5016 struct extent_buffer *eb = 5017 container_of(head, struct extent_buffer, rcu_head); 5018 5019 __free_extent_buffer(eb); 5020 } 5021 5022 static int release_extent_buffer(struct extent_buffer *eb) 5023 { 5024 lockdep_assert_held(&eb->refs_lock); 5025 5026 WARN_ON(atomic_read(&eb->refs) == 0); 5027 if (atomic_dec_and_test(&eb->refs)) { 5028 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 5029 struct btrfs_fs_info *fs_info = eb->fs_info; 5030 5031 spin_unlock(&eb->refs_lock); 5032 5033 spin_lock(&fs_info->buffer_lock); 5034 radix_tree_delete(&fs_info->buffer_radix, 5035 eb->start >> PAGE_SHIFT); 5036 spin_unlock(&fs_info->buffer_lock); 5037 } else { 5038 spin_unlock(&eb->refs_lock); 5039 } 5040 5041 /* Should be safe to release our pages at this point */ 5042 btrfs_release_extent_buffer_pages(eb); 5043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5044 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 5045 __free_extent_buffer(eb); 5046 return 1; 5047 } 5048 #endif 5049 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 5050 return 1; 5051 } 5052 spin_unlock(&eb->refs_lock); 5053 5054 return 0; 5055 } 5056 5057 void free_extent_buffer(struct extent_buffer *eb) 5058 { 5059 int refs; 5060 int old; 5061 if (!eb) 5062 return; 5063 5064 while (1) { 5065 refs = atomic_read(&eb->refs); 5066 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 5067 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 5068 refs == 1)) 5069 break; 5070 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 5071 if (old == refs) 5072 return; 5073 } 5074 5075 spin_lock(&eb->refs_lock); 5076 if (atomic_read(&eb->refs) == 2 && 5077 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 5078 !extent_buffer_under_io(eb) && 5079 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5080 atomic_dec(&eb->refs); 5081 5082 /* 5083 * I know this is terrible, but it's temporary until we stop tracking 5084 * the uptodate bits and such for the extent buffers. 5085 */ 5086 release_extent_buffer(eb); 5087 } 5088 5089 void free_extent_buffer_stale(struct extent_buffer *eb) 5090 { 5091 if (!eb) 5092 return; 5093 5094 spin_lock(&eb->refs_lock); 5095 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 5096 5097 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 5098 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 5099 atomic_dec(&eb->refs); 5100 release_extent_buffer(eb); 5101 } 5102 5103 void clear_extent_buffer_dirty(struct extent_buffer *eb) 5104 { 5105 int i; 5106 int num_pages; 5107 struct page *page; 5108 5109 num_pages = num_extent_pages(eb); 5110 5111 for (i = 0; i < num_pages; i++) { 5112 page = eb->pages[i]; 5113 if (!PageDirty(page)) 5114 continue; 5115 5116 lock_page(page); 5117 WARN_ON(!PagePrivate(page)); 5118 5119 clear_page_dirty_for_io(page); 5120 xa_lock_irq(&page->mapping->i_pages); 5121 if (!PageDirty(page)) 5122 __xa_clear_mark(&page->mapping->i_pages, 5123 page_index(page), PAGECACHE_TAG_DIRTY); 5124 xa_unlock_irq(&page->mapping->i_pages); 5125 ClearPageError(page); 5126 unlock_page(page); 5127 } 5128 WARN_ON(atomic_read(&eb->refs) == 0); 5129 } 5130 5131 bool set_extent_buffer_dirty(struct extent_buffer *eb) 5132 { 5133 int i; 5134 int num_pages; 5135 bool was_dirty; 5136 5137 check_buffer_tree_ref(eb); 5138 5139 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 5140 5141 num_pages = num_extent_pages(eb); 5142 WARN_ON(atomic_read(&eb->refs) == 0); 5143 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 5144 5145 if (!was_dirty) 5146 for (i = 0; i < num_pages; i++) 5147 set_page_dirty(eb->pages[i]); 5148 5149 #ifdef CONFIG_BTRFS_DEBUG 5150 for (i = 0; i < num_pages; i++) 5151 ASSERT(PageDirty(eb->pages[i])); 5152 #endif 5153 5154 return was_dirty; 5155 } 5156 5157 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 5158 { 5159 int i; 5160 struct page *page; 5161 int num_pages; 5162 5163 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5164 num_pages = num_extent_pages(eb); 5165 for (i = 0; i < num_pages; i++) { 5166 page = eb->pages[i]; 5167 if (page) 5168 ClearPageUptodate(page); 5169 } 5170 } 5171 5172 void set_extent_buffer_uptodate(struct extent_buffer *eb) 5173 { 5174 int i; 5175 struct page *page; 5176 int num_pages; 5177 5178 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5179 num_pages = num_extent_pages(eb); 5180 for (i = 0; i < num_pages; i++) { 5181 page = eb->pages[i]; 5182 SetPageUptodate(page); 5183 } 5184 } 5185 5186 int read_extent_buffer_pages(struct extent_io_tree *tree, 5187 struct extent_buffer *eb, int wait, int mirror_num) 5188 { 5189 int i; 5190 struct page *page; 5191 int err; 5192 int ret = 0; 5193 int locked_pages = 0; 5194 int all_uptodate = 1; 5195 int num_pages; 5196 unsigned long num_reads = 0; 5197 struct bio *bio = NULL; 5198 unsigned long bio_flags = 0; 5199 5200 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 5201 return 0; 5202 5203 num_pages = num_extent_pages(eb); 5204 for (i = 0; i < num_pages; i++) { 5205 page = eb->pages[i]; 5206 if (wait == WAIT_NONE) { 5207 if (!trylock_page(page)) 5208 goto unlock_exit; 5209 } else { 5210 lock_page(page); 5211 } 5212 locked_pages++; 5213 } 5214 /* 5215 * We need to firstly lock all pages to make sure that 5216 * the uptodate bit of our pages won't be affected by 5217 * clear_extent_buffer_uptodate(). 5218 */ 5219 for (i = 0; i < num_pages; i++) { 5220 page = eb->pages[i]; 5221 if (!PageUptodate(page)) { 5222 num_reads++; 5223 all_uptodate = 0; 5224 } 5225 } 5226 5227 if (all_uptodate) { 5228 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 5229 goto unlock_exit; 5230 } 5231 5232 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 5233 eb->read_mirror = 0; 5234 atomic_set(&eb->io_pages, num_reads); 5235 for (i = 0; i < num_pages; i++) { 5236 page = eb->pages[i]; 5237 5238 if (!PageUptodate(page)) { 5239 if (ret) { 5240 atomic_dec(&eb->io_pages); 5241 unlock_page(page); 5242 continue; 5243 } 5244 5245 ClearPageError(page); 5246 err = __extent_read_full_page(tree, page, 5247 btree_get_extent, &bio, 5248 mirror_num, &bio_flags, 5249 REQ_META); 5250 if (err) { 5251 ret = err; 5252 /* 5253 * We use &bio in above __extent_read_full_page, 5254 * so we ensure that if it returns error, the 5255 * current page fails to add itself to bio and 5256 * it's been unlocked. 5257 * 5258 * We must dec io_pages by ourselves. 5259 */ 5260 atomic_dec(&eb->io_pages); 5261 } 5262 } else { 5263 unlock_page(page); 5264 } 5265 } 5266 5267 if (bio) { 5268 err = submit_one_bio(bio, mirror_num, bio_flags); 5269 if (err) 5270 return err; 5271 } 5272 5273 if (ret || wait != WAIT_COMPLETE) 5274 return ret; 5275 5276 for (i = 0; i < num_pages; i++) { 5277 page = eb->pages[i]; 5278 wait_on_page_locked(page); 5279 if (!PageUptodate(page)) 5280 ret = -EIO; 5281 } 5282 5283 return ret; 5284 5285 unlock_exit: 5286 while (locked_pages > 0) { 5287 locked_pages--; 5288 page = eb->pages[locked_pages]; 5289 unlock_page(page); 5290 } 5291 return ret; 5292 } 5293 5294 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 5295 unsigned long start, unsigned long len) 5296 { 5297 size_t cur; 5298 size_t offset; 5299 struct page *page; 5300 char *kaddr; 5301 char *dst = (char *)dstv; 5302 size_t start_offset = offset_in_page(eb->start); 5303 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5304 5305 if (start + len > eb->len) { 5306 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5307 eb->start, eb->len, start, len); 5308 memset(dst, 0, len); 5309 return; 5310 } 5311 5312 offset = offset_in_page(start_offset + start); 5313 5314 while (len > 0) { 5315 page = eb->pages[i]; 5316 5317 cur = min(len, (PAGE_SIZE - offset)); 5318 kaddr = page_address(page); 5319 memcpy(dst, kaddr + offset, cur); 5320 5321 dst += cur; 5322 len -= cur; 5323 offset = 0; 5324 i++; 5325 } 5326 } 5327 5328 int read_extent_buffer_to_user(const struct extent_buffer *eb, 5329 void __user *dstv, 5330 unsigned long start, unsigned long len) 5331 { 5332 size_t cur; 5333 size_t offset; 5334 struct page *page; 5335 char *kaddr; 5336 char __user *dst = (char __user *)dstv; 5337 size_t start_offset = offset_in_page(eb->start); 5338 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5339 int ret = 0; 5340 5341 WARN_ON(start > eb->len); 5342 WARN_ON(start + len > eb->start + eb->len); 5343 5344 offset = offset_in_page(start_offset + start); 5345 5346 while (len > 0) { 5347 page = eb->pages[i]; 5348 5349 cur = min(len, (PAGE_SIZE - offset)); 5350 kaddr = page_address(page); 5351 if (copy_to_user(dst, kaddr + offset, cur)) { 5352 ret = -EFAULT; 5353 break; 5354 } 5355 5356 dst += cur; 5357 len -= cur; 5358 offset = 0; 5359 i++; 5360 } 5361 5362 return ret; 5363 } 5364 5365 /* 5366 * return 0 if the item is found within a page. 5367 * return 1 if the item spans two pages. 5368 * return -EINVAL otherwise. 5369 */ 5370 int map_private_extent_buffer(const struct extent_buffer *eb, 5371 unsigned long start, unsigned long min_len, 5372 char **map, unsigned long *map_start, 5373 unsigned long *map_len) 5374 { 5375 size_t offset; 5376 char *kaddr; 5377 struct page *p; 5378 size_t start_offset = offset_in_page(eb->start); 5379 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5380 unsigned long end_i = (start_offset + start + min_len - 1) >> 5381 PAGE_SHIFT; 5382 5383 if (start + min_len > eb->len) { 5384 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n", 5385 eb->start, eb->len, start, min_len); 5386 return -EINVAL; 5387 } 5388 5389 if (i != end_i) 5390 return 1; 5391 5392 if (i == 0) { 5393 offset = start_offset; 5394 *map_start = 0; 5395 } else { 5396 offset = 0; 5397 *map_start = ((u64)i << PAGE_SHIFT) - start_offset; 5398 } 5399 5400 p = eb->pages[i]; 5401 kaddr = page_address(p); 5402 *map = kaddr + offset; 5403 *map_len = PAGE_SIZE - offset; 5404 return 0; 5405 } 5406 5407 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 5408 unsigned long start, unsigned long len) 5409 { 5410 size_t cur; 5411 size_t offset; 5412 struct page *page; 5413 char *kaddr; 5414 char *ptr = (char *)ptrv; 5415 size_t start_offset = offset_in_page(eb->start); 5416 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5417 int ret = 0; 5418 5419 WARN_ON(start > eb->len); 5420 WARN_ON(start + len > eb->start + eb->len); 5421 5422 offset = offset_in_page(start_offset + start); 5423 5424 while (len > 0) { 5425 page = eb->pages[i]; 5426 5427 cur = min(len, (PAGE_SIZE - offset)); 5428 5429 kaddr = page_address(page); 5430 ret = memcmp(ptr, kaddr + offset, cur); 5431 if (ret) 5432 break; 5433 5434 ptr += cur; 5435 len -= cur; 5436 offset = 0; 5437 i++; 5438 } 5439 return ret; 5440 } 5441 5442 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb, 5443 const void *srcv) 5444 { 5445 char *kaddr; 5446 5447 WARN_ON(!PageUptodate(eb->pages[0])); 5448 kaddr = page_address(eb->pages[0]); 5449 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv, 5450 BTRFS_FSID_SIZE); 5451 } 5452 5453 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv) 5454 { 5455 char *kaddr; 5456 5457 WARN_ON(!PageUptodate(eb->pages[0])); 5458 kaddr = page_address(eb->pages[0]); 5459 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv, 5460 BTRFS_FSID_SIZE); 5461 } 5462 5463 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5464 unsigned long start, unsigned long len) 5465 { 5466 size_t cur; 5467 size_t offset; 5468 struct page *page; 5469 char *kaddr; 5470 char *src = (char *)srcv; 5471 size_t start_offset = offset_in_page(eb->start); 5472 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5473 5474 WARN_ON(start > eb->len); 5475 WARN_ON(start + len > eb->start + eb->len); 5476 5477 offset = offset_in_page(start_offset + start); 5478 5479 while (len > 0) { 5480 page = eb->pages[i]; 5481 WARN_ON(!PageUptodate(page)); 5482 5483 cur = min(len, PAGE_SIZE - offset); 5484 kaddr = page_address(page); 5485 memcpy(kaddr + offset, src, cur); 5486 5487 src += cur; 5488 len -= cur; 5489 offset = 0; 5490 i++; 5491 } 5492 } 5493 5494 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start, 5495 unsigned long len) 5496 { 5497 size_t cur; 5498 size_t offset; 5499 struct page *page; 5500 char *kaddr; 5501 size_t start_offset = offset_in_page(eb->start); 5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT; 5503 5504 WARN_ON(start > eb->len); 5505 WARN_ON(start + len > eb->start + eb->len); 5506 5507 offset = offset_in_page(start_offset + start); 5508 5509 while (len > 0) { 5510 page = eb->pages[i]; 5511 WARN_ON(!PageUptodate(page)); 5512 5513 cur = min(len, PAGE_SIZE - offset); 5514 kaddr = page_address(page); 5515 memset(kaddr + offset, 0, cur); 5516 5517 len -= cur; 5518 offset = 0; 5519 i++; 5520 } 5521 } 5522 5523 void copy_extent_buffer_full(struct extent_buffer *dst, 5524 struct extent_buffer *src) 5525 { 5526 int i; 5527 int num_pages; 5528 5529 ASSERT(dst->len == src->len); 5530 5531 num_pages = num_extent_pages(dst); 5532 for (i = 0; i < num_pages; i++) 5533 copy_page(page_address(dst->pages[i]), 5534 page_address(src->pages[i])); 5535 } 5536 5537 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5538 unsigned long dst_offset, unsigned long src_offset, 5539 unsigned long len) 5540 { 5541 u64 dst_len = dst->len; 5542 size_t cur; 5543 size_t offset; 5544 struct page *page; 5545 char *kaddr; 5546 size_t start_offset = offset_in_page(dst->start); 5547 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT; 5548 5549 WARN_ON(src->len != dst_len); 5550 5551 offset = offset_in_page(start_offset + dst_offset); 5552 5553 while (len > 0) { 5554 page = dst->pages[i]; 5555 WARN_ON(!PageUptodate(page)); 5556 5557 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 5558 5559 kaddr = page_address(page); 5560 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5561 5562 src_offset += cur; 5563 len -= cur; 5564 offset = 0; 5565 i++; 5566 } 5567 } 5568 5569 /* 5570 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 5571 * given bit number 5572 * @eb: the extent buffer 5573 * @start: offset of the bitmap item in the extent buffer 5574 * @nr: bit number 5575 * @page_index: return index of the page in the extent buffer that contains the 5576 * given bit number 5577 * @page_offset: return offset into the page given by page_index 5578 * 5579 * This helper hides the ugliness of finding the byte in an extent buffer which 5580 * contains a given bit. 5581 */ 5582 static inline void eb_bitmap_offset(struct extent_buffer *eb, 5583 unsigned long start, unsigned long nr, 5584 unsigned long *page_index, 5585 size_t *page_offset) 5586 { 5587 size_t start_offset = offset_in_page(eb->start); 5588 size_t byte_offset = BIT_BYTE(nr); 5589 size_t offset; 5590 5591 /* 5592 * The byte we want is the offset of the extent buffer + the offset of 5593 * the bitmap item in the extent buffer + the offset of the byte in the 5594 * bitmap item. 5595 */ 5596 offset = start_offset + start + byte_offset; 5597 5598 *page_index = offset >> PAGE_SHIFT; 5599 *page_offset = offset_in_page(offset); 5600 } 5601 5602 /** 5603 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 5604 * @eb: the extent buffer 5605 * @start: offset of the bitmap item in the extent buffer 5606 * @nr: bit number to test 5607 */ 5608 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start, 5609 unsigned long nr) 5610 { 5611 u8 *kaddr; 5612 struct page *page; 5613 unsigned long i; 5614 size_t offset; 5615 5616 eb_bitmap_offset(eb, start, nr, &i, &offset); 5617 page = eb->pages[i]; 5618 WARN_ON(!PageUptodate(page)); 5619 kaddr = page_address(page); 5620 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 5621 } 5622 5623 /** 5624 * extent_buffer_bitmap_set - set an area of a bitmap 5625 * @eb: the extent buffer 5626 * @start: offset of the bitmap item in the extent buffer 5627 * @pos: bit number of the first bit 5628 * @len: number of bits to set 5629 */ 5630 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start, 5631 unsigned long pos, unsigned long len) 5632 { 5633 u8 *kaddr; 5634 struct page *page; 5635 unsigned long i; 5636 size_t offset; 5637 const unsigned int size = pos + len; 5638 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5639 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 5640 5641 eb_bitmap_offset(eb, start, pos, &i, &offset); 5642 page = eb->pages[i]; 5643 WARN_ON(!PageUptodate(page)); 5644 kaddr = page_address(page); 5645 5646 while (len >= bits_to_set) { 5647 kaddr[offset] |= mask_to_set; 5648 len -= bits_to_set; 5649 bits_to_set = BITS_PER_BYTE; 5650 mask_to_set = ~0; 5651 if (++offset >= PAGE_SIZE && len > 0) { 5652 offset = 0; 5653 page = eb->pages[++i]; 5654 WARN_ON(!PageUptodate(page)); 5655 kaddr = page_address(page); 5656 } 5657 } 5658 if (len) { 5659 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 5660 kaddr[offset] |= mask_to_set; 5661 } 5662 } 5663 5664 5665 /** 5666 * extent_buffer_bitmap_clear - clear an area of a bitmap 5667 * @eb: the extent buffer 5668 * @start: offset of the bitmap item in the extent buffer 5669 * @pos: bit number of the first bit 5670 * @len: number of bits to clear 5671 */ 5672 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start, 5673 unsigned long pos, unsigned long len) 5674 { 5675 u8 *kaddr; 5676 struct page *page; 5677 unsigned long i; 5678 size_t offset; 5679 const unsigned int size = pos + len; 5680 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5681 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5682 5683 eb_bitmap_offset(eb, start, pos, &i, &offset); 5684 page = eb->pages[i]; 5685 WARN_ON(!PageUptodate(page)); 5686 kaddr = page_address(page); 5687 5688 while (len >= bits_to_clear) { 5689 kaddr[offset] &= ~mask_to_clear; 5690 len -= bits_to_clear; 5691 bits_to_clear = BITS_PER_BYTE; 5692 mask_to_clear = ~0; 5693 if (++offset >= PAGE_SIZE && len > 0) { 5694 offset = 0; 5695 page = eb->pages[++i]; 5696 WARN_ON(!PageUptodate(page)); 5697 kaddr = page_address(page); 5698 } 5699 } 5700 if (len) { 5701 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5702 kaddr[offset] &= ~mask_to_clear; 5703 } 5704 } 5705 5706 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5707 { 5708 unsigned long distance = (src > dst) ? src - dst : dst - src; 5709 return distance < len; 5710 } 5711 5712 static void copy_pages(struct page *dst_page, struct page *src_page, 5713 unsigned long dst_off, unsigned long src_off, 5714 unsigned long len) 5715 { 5716 char *dst_kaddr = page_address(dst_page); 5717 char *src_kaddr; 5718 int must_memmove = 0; 5719 5720 if (dst_page != src_page) { 5721 src_kaddr = page_address(src_page); 5722 } else { 5723 src_kaddr = dst_kaddr; 5724 if (areas_overlap(src_off, dst_off, len)) 5725 must_memmove = 1; 5726 } 5727 5728 if (must_memmove) 5729 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5730 else 5731 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5732 } 5733 5734 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5735 unsigned long src_offset, unsigned long len) 5736 { 5737 struct btrfs_fs_info *fs_info = dst->fs_info; 5738 size_t cur; 5739 size_t dst_off_in_page; 5740 size_t src_off_in_page; 5741 size_t start_offset = offset_in_page(dst->start); 5742 unsigned long dst_i; 5743 unsigned long src_i; 5744 5745 if (src_offset + len > dst->len) { 5746 btrfs_err(fs_info, 5747 "memmove bogus src_offset %lu move len %lu dst len %lu", 5748 src_offset, len, dst->len); 5749 BUG_ON(1); 5750 } 5751 if (dst_offset + len > dst->len) { 5752 btrfs_err(fs_info, 5753 "memmove bogus dst_offset %lu move len %lu dst len %lu", 5754 dst_offset, len, dst->len); 5755 BUG_ON(1); 5756 } 5757 5758 while (len > 0) { 5759 dst_off_in_page = offset_in_page(start_offset + dst_offset); 5760 src_off_in_page = offset_in_page(start_offset + src_offset); 5761 5762 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT; 5763 src_i = (start_offset + src_offset) >> PAGE_SHIFT; 5764 5765 cur = min(len, (unsigned long)(PAGE_SIZE - 5766 src_off_in_page)); 5767 cur = min_t(unsigned long, cur, 5768 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5769 5770 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5771 dst_off_in_page, src_off_in_page, cur); 5772 5773 src_offset += cur; 5774 dst_offset += cur; 5775 len -= cur; 5776 } 5777 } 5778 5779 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5780 unsigned long src_offset, unsigned long len) 5781 { 5782 struct btrfs_fs_info *fs_info = dst->fs_info; 5783 size_t cur; 5784 size_t dst_off_in_page; 5785 size_t src_off_in_page; 5786 unsigned long dst_end = dst_offset + len - 1; 5787 unsigned long src_end = src_offset + len - 1; 5788 size_t start_offset = offset_in_page(dst->start); 5789 unsigned long dst_i; 5790 unsigned long src_i; 5791 5792 if (src_offset + len > dst->len) { 5793 btrfs_err(fs_info, 5794 "memmove bogus src_offset %lu move len %lu len %lu", 5795 src_offset, len, dst->len); 5796 BUG_ON(1); 5797 } 5798 if (dst_offset + len > dst->len) { 5799 btrfs_err(fs_info, 5800 "memmove bogus dst_offset %lu move len %lu len %lu", 5801 dst_offset, len, dst->len); 5802 BUG_ON(1); 5803 } 5804 if (dst_offset < src_offset) { 5805 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5806 return; 5807 } 5808 while (len > 0) { 5809 dst_i = (start_offset + dst_end) >> PAGE_SHIFT; 5810 src_i = (start_offset + src_end) >> PAGE_SHIFT; 5811 5812 dst_off_in_page = offset_in_page(start_offset + dst_end); 5813 src_off_in_page = offset_in_page(start_offset + src_end); 5814 5815 cur = min_t(unsigned long, len, src_off_in_page + 1); 5816 cur = min(cur, dst_off_in_page + 1); 5817 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5818 dst_off_in_page - cur + 1, 5819 src_off_in_page - cur + 1, cur); 5820 5821 dst_end -= cur; 5822 src_end -= cur; 5823 len -= cur; 5824 } 5825 } 5826 5827 int try_release_extent_buffer(struct page *page) 5828 { 5829 struct extent_buffer *eb; 5830 5831 /* 5832 * We need to make sure nobody is attaching this page to an eb right 5833 * now. 5834 */ 5835 spin_lock(&page->mapping->private_lock); 5836 if (!PagePrivate(page)) { 5837 spin_unlock(&page->mapping->private_lock); 5838 return 1; 5839 } 5840 5841 eb = (struct extent_buffer *)page->private; 5842 BUG_ON(!eb); 5843 5844 /* 5845 * This is a little awful but should be ok, we need to make sure that 5846 * the eb doesn't disappear out from under us while we're looking at 5847 * this page. 5848 */ 5849 spin_lock(&eb->refs_lock); 5850 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5851 spin_unlock(&eb->refs_lock); 5852 spin_unlock(&page->mapping->private_lock); 5853 return 0; 5854 } 5855 spin_unlock(&page->mapping->private_lock); 5856 5857 /* 5858 * If tree ref isn't set then we know the ref on this eb is a real ref, 5859 * so just return, this page will likely be freed soon anyway. 5860 */ 5861 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5862 spin_unlock(&eb->refs_lock); 5863 return 0; 5864 } 5865 5866 return release_extent_buffer(eb); 5867 } 5868