xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 2c733bb7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 #include "transaction.h"
40 
41 static struct kmem_cache *extent_buffer_cache;
42 
43 #ifdef CONFIG_BTRFS_DEBUG
44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45 {
46 	struct btrfs_fs_info *fs_info = eb->fs_info;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52 }
53 
54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55 {
56 	struct btrfs_fs_info *fs_info = eb->fs_info;
57 	unsigned long flags;
58 
59 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 	list_del(&eb->leak_list);
61 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
62 }
63 
64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
65 {
66 	struct extent_buffer *eb;
67 	unsigned long flags;
68 
69 	/*
70 	 * If we didn't get into open_ctree our allocated_ebs will not be
71 	 * initialized, so just skip this.
72 	 */
73 	if (!fs_info->allocated_ebs.next)
74 		return;
75 
76 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
77 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 	while (!list_empty(&fs_info->allocated_ebs)) {
79 		eb = list_first_entry(&fs_info->allocated_ebs,
80 				      struct extent_buffer, leak_list);
81 		pr_err(
82 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 		       btrfs_header_owner(eb));
85 		list_del(&eb->leak_list);
86 		kmem_cache_free(extent_buffer_cache, eb);
87 	}
88 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
89 }
90 #else
91 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
92 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
93 #endif
94 
95 /*
96  * Structure to record info about the bio being assembled, and other info like
97  * how many bytes are there before stripe/ordered extent boundary.
98  */
99 struct btrfs_bio_ctrl {
100 	struct btrfs_bio *bbio;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_oe_boundary;
103 	blk_opf_t opf;
104 	btrfs_bio_end_io_t end_io_func;
105 	struct writeback_control *wbc;
106 };
107 
108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
109 {
110 	struct btrfs_bio *bbio = bio_ctrl->bbio;
111 
112 	if (!bbio)
113 		return;
114 
115 	/* Caller should ensure the bio has at least some range added */
116 	ASSERT(bbio->bio.bi_iter.bi_size);
117 
118 	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
119 	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
120 		btrfs_submit_compressed_read(bbio);
121 	else
122 		btrfs_submit_bio(bbio, 0);
123 
124 	/* The bbio is owned by the end_io handler now */
125 	bio_ctrl->bbio = NULL;
126 }
127 
128 /*
129  * Submit or fail the current bio in the bio_ctrl structure.
130  */
131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
132 {
133 	struct btrfs_bio *bbio = bio_ctrl->bbio;
134 
135 	if (!bbio)
136 		return;
137 
138 	if (ret) {
139 		ASSERT(ret < 0);
140 		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
141 		/* The bio is owned by the end_io handler now */
142 		bio_ctrl->bbio = NULL;
143 	} else {
144 		submit_one_bio(bio_ctrl);
145 	}
146 }
147 
148 int __init extent_buffer_init_cachep(void)
149 {
150 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
151 			sizeof(struct extent_buffer), 0,
152 			SLAB_MEM_SPREAD, NULL);
153 	if (!extent_buffer_cache)
154 		return -ENOMEM;
155 
156 	return 0;
157 }
158 
159 void __cold extent_buffer_free_cachep(void)
160 {
161 	/*
162 	 * Make sure all delayed rcu free are flushed before we
163 	 * destroy caches.
164 	 */
165 	rcu_barrier();
166 	kmem_cache_destroy(extent_buffer_cache);
167 }
168 
169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
170 {
171 	unsigned long index = start >> PAGE_SHIFT;
172 	unsigned long end_index = end >> PAGE_SHIFT;
173 	struct page *page;
174 
175 	while (index <= end_index) {
176 		page = find_get_page(inode->i_mapping, index);
177 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 		clear_page_dirty_for_io(page);
179 		put_page(page);
180 		index++;
181 	}
182 }
183 
184 static void process_one_page(struct btrfs_fs_info *fs_info,
185 			     struct page *page, struct page *locked_page,
186 			     unsigned long page_ops, u64 start, u64 end)
187 {
188 	u32 len;
189 
190 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 	len = end + 1 - start;
192 
193 	if (page_ops & PAGE_SET_ORDERED)
194 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
195 	if (page_ops & PAGE_START_WRITEBACK) {
196 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
198 	}
199 	if (page_ops & PAGE_END_WRITEBACK)
200 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
201 
202 	if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 		btrfs_page_end_writer_lock(fs_info, page, start, len);
204 }
205 
206 static void __process_pages_contig(struct address_space *mapping,
207 				   struct page *locked_page, u64 start, u64 end,
208 				   unsigned long page_ops)
209 {
210 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 	pgoff_t start_index = start >> PAGE_SHIFT;
212 	pgoff_t end_index = end >> PAGE_SHIFT;
213 	pgoff_t index = start_index;
214 	struct folio_batch fbatch;
215 	int i;
216 
217 	folio_batch_init(&fbatch);
218 	while (index <= end_index) {
219 		int found_folios;
220 
221 		found_folios = filemap_get_folios_contig(mapping, &index,
222 				end_index, &fbatch);
223 		for (i = 0; i < found_folios; i++) {
224 			struct folio *folio = fbatch.folios[i];
225 
226 			process_one_page(fs_info, &folio->page, locked_page,
227 					 page_ops, start, end);
228 		}
229 		folio_batch_release(&fbatch);
230 		cond_resched();
231 	}
232 }
233 
234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 					   struct page *locked_page,
236 					   u64 start, u64 end)
237 {
238 	unsigned long index = start >> PAGE_SHIFT;
239 	unsigned long end_index = end >> PAGE_SHIFT;
240 
241 	ASSERT(locked_page);
242 	if (index == locked_page->index && end_index == index)
243 		return;
244 
245 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
246 			       PAGE_UNLOCK);
247 }
248 
249 static noinline int lock_delalloc_pages(struct inode *inode,
250 					struct page *locked_page,
251 					u64 start,
252 					u64 end)
253 {
254 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 	struct address_space *mapping = inode->i_mapping;
256 	pgoff_t start_index = start >> PAGE_SHIFT;
257 	pgoff_t end_index = end >> PAGE_SHIFT;
258 	pgoff_t index = start_index;
259 	u64 processed_end = start;
260 	struct folio_batch fbatch;
261 
262 	if (index == locked_page->index && index == end_index)
263 		return 0;
264 
265 	folio_batch_init(&fbatch);
266 	while (index <= end_index) {
267 		unsigned int found_folios, i;
268 
269 		found_folios = filemap_get_folios_contig(mapping, &index,
270 				end_index, &fbatch);
271 		if (found_folios == 0)
272 			goto out;
273 
274 		for (i = 0; i < found_folios; i++) {
275 			struct page *page = &fbatch.folios[i]->page;
276 			u32 len = end + 1 - start;
277 
278 			if (page == locked_page)
279 				continue;
280 
281 			if (btrfs_page_start_writer_lock(fs_info, page, start,
282 							 len))
283 				goto out;
284 
285 			if (!PageDirty(page) || page->mapping != mapping) {
286 				btrfs_page_end_writer_lock(fs_info, page, start,
287 							   len);
288 				goto out;
289 			}
290 
291 			processed_end = page_offset(page) + PAGE_SIZE - 1;
292 		}
293 		folio_batch_release(&fbatch);
294 		cond_resched();
295 	}
296 
297 	return 0;
298 out:
299 	folio_batch_release(&fbatch);
300 	if (processed_end > start)
301 		__unlock_for_delalloc(inode, locked_page, start, processed_end);
302 	return -EAGAIN;
303 }
304 
305 /*
306  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
307  * more than @max_bytes.
308  *
309  * @start:	The original start bytenr to search.
310  *		Will store the extent range start bytenr.
311  * @end:	The original end bytenr of the search range
312  *		Will store the extent range end bytenr.
313  *
314  * Return true if we find a delalloc range which starts inside the original
315  * range, and @start/@end will store the delalloc range start/end.
316  *
317  * Return false if we can't find any delalloc range which starts inside the
318  * original range, and @start/@end will be the non-delalloc range start/end.
319  */
320 EXPORT_FOR_TESTS
321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
322 				    struct page *locked_page, u64 *start,
323 				    u64 *end)
324 {
325 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
326 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
327 	const u64 orig_start = *start;
328 	const u64 orig_end = *end;
329 	/* The sanity tests may not set a valid fs_info. */
330 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
331 	u64 delalloc_start;
332 	u64 delalloc_end;
333 	bool found;
334 	struct extent_state *cached_state = NULL;
335 	int ret;
336 	int loops = 0;
337 
338 	/* Caller should pass a valid @end to indicate the search range end */
339 	ASSERT(orig_end > orig_start);
340 
341 	/* The range should at least cover part of the page */
342 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 		 orig_end <= page_offset(locked_page)));
344 again:
345 	/* step one, find a bunch of delalloc bytes starting at start */
346 	delalloc_start = *start;
347 	delalloc_end = 0;
348 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 					  max_bytes, &cached_state);
350 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
351 		*start = delalloc_start;
352 
353 		/* @delalloc_end can be -1, never go beyond @orig_end */
354 		*end = min(delalloc_end, orig_end);
355 		free_extent_state(cached_state);
356 		return false;
357 	}
358 
359 	/*
360 	 * start comes from the offset of locked_page.  We have to lock
361 	 * pages in order, so we can't process delalloc bytes before
362 	 * locked_page
363 	 */
364 	if (delalloc_start < *start)
365 		delalloc_start = *start;
366 
367 	/*
368 	 * make sure to limit the number of pages we try to lock down
369 	 */
370 	if (delalloc_end + 1 - delalloc_start > max_bytes)
371 		delalloc_end = delalloc_start + max_bytes - 1;
372 
373 	/* step two, lock all the pages after the page that has start */
374 	ret = lock_delalloc_pages(inode, locked_page,
375 				  delalloc_start, delalloc_end);
376 	ASSERT(!ret || ret == -EAGAIN);
377 	if (ret == -EAGAIN) {
378 		/* some of the pages are gone, lets avoid looping by
379 		 * shortening the size of the delalloc range we're searching
380 		 */
381 		free_extent_state(cached_state);
382 		cached_state = NULL;
383 		if (!loops) {
384 			max_bytes = PAGE_SIZE;
385 			loops = 1;
386 			goto again;
387 		} else {
388 			found = false;
389 			goto out_failed;
390 		}
391 	}
392 
393 	/* step three, lock the state bits for the whole range */
394 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
395 
396 	/* then test to make sure it is all still delalloc */
397 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
398 			     EXTENT_DELALLOC, 1, cached_state);
399 	if (!ret) {
400 		unlock_extent(tree, delalloc_start, delalloc_end,
401 			      &cached_state);
402 		__unlock_for_delalloc(inode, locked_page,
403 			      delalloc_start, delalloc_end);
404 		cond_resched();
405 		goto again;
406 	}
407 	free_extent_state(cached_state);
408 	*start = delalloc_start;
409 	*end = delalloc_end;
410 out_failed:
411 	return found;
412 }
413 
414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
415 				  struct page *locked_page,
416 				  u32 clear_bits, unsigned long page_ops)
417 {
418 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
419 
420 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
421 			       start, end, page_ops);
422 }
423 
424 static bool btrfs_verify_page(struct page *page, u64 start)
425 {
426 	if (!fsverity_active(page->mapping->host) ||
427 	    PageUptodate(page) ||
428 	    start >= i_size_read(page->mapping->host))
429 		return true;
430 	return fsverity_verify_page(page);
431 }
432 
433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434 {
435 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436 
437 	ASSERT(page_offset(page) <= start &&
438 	       start + len <= page_offset(page) + PAGE_SIZE);
439 
440 	if (uptodate && btrfs_verify_page(page, start))
441 		btrfs_page_set_uptodate(fs_info, page, start, len);
442 	else
443 		btrfs_page_clear_uptodate(fs_info, page, start, len);
444 
445 	if (!btrfs_is_subpage(fs_info, page))
446 		unlock_page(page);
447 	else
448 		btrfs_subpage_end_reader(fs_info, page, start, len);
449 }
450 
451 /*
452  * after a writepage IO is done, we need to:
453  * clear the uptodate bits on error
454  * clear the writeback bits in the extent tree for this IO
455  * end_page_writeback if the page has no more pending IO
456  *
457  * Scheduling is not allowed, so the extent state tree is expected
458  * to have one and only one object corresponding to this IO.
459  */
460 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
461 {
462 	struct bio *bio = &bbio->bio;
463 	int error = blk_status_to_errno(bio->bi_status);
464 	struct bio_vec *bvec;
465 	struct bvec_iter_all iter_all;
466 
467 	ASSERT(!bio_flagged(bio, BIO_CLONED));
468 	bio_for_each_segment_all(bvec, bio, iter_all) {
469 		struct page *page = bvec->bv_page;
470 		struct inode *inode = page->mapping->host;
471 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 		const u32 sectorsize = fs_info->sectorsize;
473 		u64 start = page_offset(page) + bvec->bv_offset;
474 		u32 len = bvec->bv_len;
475 
476 		/* Our read/write should always be sector aligned. */
477 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 			btrfs_err(fs_info,
479 		"partial page write in btrfs with offset %u and length %u",
480 				  bvec->bv_offset, bvec->bv_len);
481 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 			btrfs_info(fs_info,
483 		"incomplete page write with offset %u and length %u",
484 				   bvec->bv_offset, bvec->bv_len);
485 
486 		btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
487 		if (error)
488 			mapping_set_error(page->mapping, error);
489 		btrfs_page_clear_writeback(fs_info, page, start, len);
490 	}
491 
492 	bio_put(bio);
493 }
494 
495 /*
496  * Record previously processed extent range
497  *
498  * For endio_readpage_release_extent() to handle a full extent range, reducing
499  * the extent io operations.
500  */
501 struct processed_extent {
502 	struct btrfs_inode *inode;
503 	/* Start of the range in @inode */
504 	u64 start;
505 	/* End of the range in @inode */
506 	u64 end;
507 	bool uptodate;
508 };
509 
510 /*
511  * Try to release processed extent range
512  *
513  * May not release the extent range right now if the current range is
514  * contiguous to processed extent.
515  *
516  * Will release processed extent when any of @inode, @uptodate, the range is
517  * no longer contiguous to the processed range.
518  *
519  * Passing @inode == NULL will force processed extent to be released.
520  */
521 static void endio_readpage_release_extent(struct processed_extent *processed,
522 			      struct btrfs_inode *inode, u64 start, u64 end,
523 			      bool uptodate)
524 {
525 	struct extent_state *cached = NULL;
526 	struct extent_io_tree *tree;
527 
528 	/* The first extent, initialize @processed */
529 	if (!processed->inode)
530 		goto update;
531 
532 	/*
533 	 * Contiguous to processed extent, just uptodate the end.
534 	 *
535 	 * Several things to notice:
536 	 *
537 	 * - bio can be merged as long as on-disk bytenr is contiguous
538 	 *   This means we can have page belonging to other inodes, thus need to
539 	 *   check if the inode still matches.
540 	 * - bvec can contain range beyond current page for multi-page bvec
541 	 *   Thus we need to do processed->end + 1 >= start check
542 	 */
543 	if (processed->inode == inode && processed->uptodate == uptodate &&
544 	    processed->end + 1 >= start && end >= processed->end) {
545 		processed->end = end;
546 		return;
547 	}
548 
549 	tree = &processed->inode->io_tree;
550 	/*
551 	 * Now we don't have range contiguous to the processed range, release
552 	 * the processed range now.
553 	 */
554 	unlock_extent(tree, processed->start, processed->end, &cached);
555 
556 update:
557 	/* Update processed to current range */
558 	processed->inode = inode;
559 	processed->start = start;
560 	processed->end = end;
561 	processed->uptodate = uptodate;
562 }
563 
564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
565 {
566 	ASSERT(PageLocked(page));
567 	if (!btrfs_is_subpage(fs_info, page))
568 		return;
569 
570 	ASSERT(PagePrivate(page));
571 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
572 }
573 
574 /*
575  * after a readpage IO is done, we need to:
576  * clear the uptodate bits on error
577  * set the uptodate bits if things worked
578  * set the page up to date if all extents in the tree are uptodate
579  * clear the lock bit in the extent tree
580  * unlock the page if there are no other extents locked for it
581  *
582  * Scheduling is not allowed, so the extent state tree is expected
583  * to have one and only one object corresponding to this IO.
584  */
585 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
586 {
587 	struct bio *bio = &bbio->bio;
588 	struct bio_vec *bvec;
589 	struct processed_extent processed = { 0 };
590 	/*
591 	 * The offset to the beginning of a bio, since one bio can never be
592 	 * larger than UINT_MAX, u32 here is enough.
593 	 */
594 	u32 bio_offset = 0;
595 	struct bvec_iter_all iter_all;
596 
597 	ASSERT(!bio_flagged(bio, BIO_CLONED));
598 	bio_for_each_segment_all(bvec, bio, iter_all) {
599 		bool uptodate = !bio->bi_status;
600 		struct page *page = bvec->bv_page;
601 		struct inode *inode = page->mapping->host;
602 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
603 		const u32 sectorsize = fs_info->sectorsize;
604 		u64 start;
605 		u64 end;
606 		u32 len;
607 
608 		btrfs_debug(fs_info,
609 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
610 			bio->bi_iter.bi_sector, bio->bi_status,
611 			bbio->mirror_num);
612 
613 		/*
614 		 * We always issue full-sector reads, but if some block in a
615 		 * page fails to read, blk_update_request() will advance
616 		 * bv_offset and adjust bv_len to compensate.  Print a warning
617 		 * for unaligned offsets, and an error if they don't add up to
618 		 * a full sector.
619 		 */
620 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
621 			btrfs_err(fs_info,
622 		"partial page read in btrfs with offset %u and length %u",
623 				  bvec->bv_offset, bvec->bv_len);
624 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
625 				     sectorsize))
626 			btrfs_info(fs_info,
627 		"incomplete page read with offset %u and length %u",
628 				   bvec->bv_offset, bvec->bv_len);
629 
630 		start = page_offset(page) + bvec->bv_offset;
631 		end = start + bvec->bv_len - 1;
632 		len = bvec->bv_len;
633 
634 		if (likely(uptodate)) {
635 			loff_t i_size = i_size_read(inode);
636 			pgoff_t end_index = i_size >> PAGE_SHIFT;
637 
638 			/*
639 			 * Zero out the remaining part if this range straddles
640 			 * i_size.
641 			 *
642 			 * Here we should only zero the range inside the bvec,
643 			 * not touch anything else.
644 			 *
645 			 * NOTE: i_size is exclusive while end is inclusive.
646 			 */
647 			if (page->index == end_index && i_size <= end) {
648 				u32 zero_start = max(offset_in_page(i_size),
649 						     offset_in_page(start));
650 
651 				zero_user_segment(page, zero_start,
652 						  offset_in_page(end) + 1);
653 			}
654 		}
655 
656 		/* Update page status and unlock. */
657 		end_page_read(page, uptodate, start, len);
658 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
659 					      start, end, uptodate);
660 
661 		ASSERT(bio_offset + len > bio_offset);
662 		bio_offset += len;
663 
664 	}
665 	/* Release the last extent */
666 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
667 	bio_put(bio);
668 }
669 
670 /*
671  * Populate every free slot in a provided array with pages.
672  *
673  * @nr_pages:   number of pages to allocate
674  * @page_array: the array to fill with pages; any existing non-null entries in
675  * 		the array will be skipped
676  *
677  * Return: 0        if all pages were able to be allocated;
678  *         -ENOMEM  otherwise, the partially allocated pages would be freed and
679  *                  the array slots zeroed
680  */
681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
682 {
683 	unsigned int allocated;
684 
685 	for (allocated = 0; allocated < nr_pages;) {
686 		unsigned int last = allocated;
687 
688 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
689 
690 		if (allocated == nr_pages)
691 			return 0;
692 
693 		/*
694 		 * During this iteration, no page could be allocated, even
695 		 * though alloc_pages_bulk_array() falls back to alloc_page()
696 		 * if  it could not bulk-allocate. So we must be out of memory.
697 		 */
698 		if (allocated == last) {
699 			for (int i = 0; i < allocated; i++) {
700 				__free_page(page_array[i]);
701 				page_array[i] = NULL;
702 			}
703 			return -ENOMEM;
704 		}
705 
706 		memalloc_retry_wait(GFP_NOFS);
707 	}
708 	return 0;
709 }
710 
711 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
712 				struct page *page, u64 disk_bytenr,
713 				unsigned int pg_offset)
714 {
715 	struct bio *bio = &bio_ctrl->bbio->bio;
716 	struct bio_vec *bvec = bio_last_bvec_all(bio);
717 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
718 
719 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
720 		/*
721 		 * For compression, all IO should have its logical bytenr set
722 		 * to the starting bytenr of the compressed extent.
723 		 */
724 		return bio->bi_iter.bi_sector == sector;
725 	}
726 
727 	/*
728 	 * The contig check requires the following conditions to be met:
729 	 *
730 	 * 1) The pages are belonging to the same inode
731 	 *    This is implied by the call chain.
732 	 *
733 	 * 2) The range has adjacent logical bytenr
734 	 *
735 	 * 3) The range has adjacent file offset
736 	 *    This is required for the usage of btrfs_bio->file_offset.
737 	 */
738 	return bio_end_sector(bio) == sector &&
739 		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
740 		page_offset(page) + pg_offset;
741 }
742 
743 static void alloc_new_bio(struct btrfs_inode *inode,
744 			  struct btrfs_bio_ctrl *bio_ctrl,
745 			  u64 disk_bytenr, u64 file_offset)
746 {
747 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
748 	struct btrfs_bio *bbio;
749 
750 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
751 			       bio_ctrl->end_io_func, NULL);
752 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
753 	bbio->inode = inode;
754 	bbio->file_offset = file_offset;
755 	bio_ctrl->bbio = bbio;
756 	bio_ctrl->len_to_oe_boundary = U32_MAX;
757 
758 	/* Limit data write bios to the ordered boundary. */
759 	if (bio_ctrl->wbc) {
760 		struct btrfs_ordered_extent *ordered;
761 
762 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
763 		if (ordered) {
764 			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
765 					ordered->file_offset +
766 					ordered->disk_num_bytes - file_offset);
767 			bbio->ordered = ordered;
768 		}
769 
770 		/*
771 		 * Pick the last added device to support cgroup writeback.  For
772 		 * multi-device file systems this means blk-cgroup policies have
773 		 * to always be set on the last added/replaced device.
774 		 * This is a bit odd but has been like that for a long time.
775 		 */
776 		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
777 		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
778 	}
779 }
780 
781 /*
782  * @disk_bytenr: logical bytenr where the write will be
783  * @page:	page to add to the bio
784  * @size:	portion of page that we want to write to
785  * @pg_offset:	offset of the new bio or to check whether we are adding
786  *              a contiguous page to the previous one
787  *
788  * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
789  * new one in @bio_ctrl->bbio.
790  * The mirror number for this IO should already be initizlied in
791  * @bio_ctrl->mirror_num.
792  */
793 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
794 			       u64 disk_bytenr, struct page *page,
795 			       size_t size, unsigned long pg_offset)
796 {
797 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
798 
799 	ASSERT(pg_offset + size <= PAGE_SIZE);
800 	ASSERT(bio_ctrl->end_io_func);
801 
802 	if (bio_ctrl->bbio &&
803 	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
804 		submit_one_bio(bio_ctrl);
805 
806 	do {
807 		u32 len = size;
808 
809 		/* Allocate new bio if needed */
810 		if (!bio_ctrl->bbio) {
811 			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
812 				      page_offset(page) + pg_offset);
813 		}
814 
815 		/* Cap to the current ordered extent boundary if there is one. */
816 		if (len > bio_ctrl->len_to_oe_boundary) {
817 			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
818 			ASSERT(is_data_inode(&inode->vfs_inode));
819 			len = bio_ctrl->len_to_oe_boundary;
820 		}
821 
822 		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
823 			/* bio full: move on to a new one */
824 			submit_one_bio(bio_ctrl);
825 			continue;
826 		}
827 
828 		if (bio_ctrl->wbc)
829 			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
830 
831 		size -= len;
832 		pg_offset += len;
833 		disk_bytenr += len;
834 
835 		/*
836 		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
837 		 * sector aligned.  alloc_new_bio() then sets it to the end of
838 		 * our ordered extent for writes into zoned devices.
839 		 *
840 		 * When len_to_oe_boundary is tracking an ordered extent, we
841 		 * trust the ordered extent code to align things properly, and
842 		 * the check above to cap our write to the ordered extent
843 		 * boundary is correct.
844 		 *
845 		 * When len_to_oe_boundary is U32_MAX, the cap above would
846 		 * result in a 4095 byte IO for the last page right before
847 		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
848 		 * the checks required to make sure we don't overflow the bio,
849 		 * and we should just ignore len_to_oe_boundary completely
850 		 * unless we're using it to track an ordered extent.
851 		 *
852 		 * It's pretty hard to make a bio sized U32_MAX, but it can
853 		 * happen when the page cache is able to feed us contiguous
854 		 * pages for large extents.
855 		 */
856 		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
857 			bio_ctrl->len_to_oe_boundary -= len;
858 
859 		/* Ordered extent boundary: move on to a new bio. */
860 		if (bio_ctrl->len_to_oe_boundary == 0)
861 			submit_one_bio(bio_ctrl);
862 	} while (size);
863 }
864 
865 static int attach_extent_buffer_page(struct extent_buffer *eb,
866 				     struct page *page,
867 				     struct btrfs_subpage *prealloc)
868 {
869 	struct btrfs_fs_info *fs_info = eb->fs_info;
870 	int ret = 0;
871 
872 	/*
873 	 * If the page is mapped to btree inode, we should hold the private
874 	 * lock to prevent race.
875 	 * For cloned or dummy extent buffers, their pages are not mapped and
876 	 * will not race with any other ebs.
877 	 */
878 	if (page->mapping)
879 		lockdep_assert_held(&page->mapping->private_lock);
880 
881 	if (fs_info->nodesize >= PAGE_SIZE) {
882 		if (!PagePrivate(page))
883 			attach_page_private(page, eb);
884 		else
885 			WARN_ON(page->private != (unsigned long)eb);
886 		return 0;
887 	}
888 
889 	/* Already mapped, just free prealloc */
890 	if (PagePrivate(page)) {
891 		btrfs_free_subpage(prealloc);
892 		return 0;
893 	}
894 
895 	if (prealloc)
896 		/* Has preallocated memory for subpage */
897 		attach_page_private(page, prealloc);
898 	else
899 		/* Do new allocation to attach subpage */
900 		ret = btrfs_attach_subpage(fs_info, page,
901 					   BTRFS_SUBPAGE_METADATA);
902 	return ret;
903 }
904 
905 int set_page_extent_mapped(struct page *page)
906 {
907 	struct btrfs_fs_info *fs_info;
908 
909 	ASSERT(page->mapping);
910 
911 	if (PagePrivate(page))
912 		return 0;
913 
914 	fs_info = btrfs_sb(page->mapping->host->i_sb);
915 
916 	if (btrfs_is_subpage(fs_info, page))
917 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
918 
919 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
920 	return 0;
921 }
922 
923 void clear_page_extent_mapped(struct page *page)
924 {
925 	struct btrfs_fs_info *fs_info;
926 
927 	ASSERT(page->mapping);
928 
929 	if (!PagePrivate(page))
930 		return;
931 
932 	fs_info = btrfs_sb(page->mapping->host->i_sb);
933 	if (btrfs_is_subpage(fs_info, page))
934 		return btrfs_detach_subpage(fs_info, page);
935 
936 	detach_page_private(page);
937 }
938 
939 static struct extent_map *
940 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
941 		 u64 start, u64 len, struct extent_map **em_cached)
942 {
943 	struct extent_map *em;
944 
945 	if (em_cached && *em_cached) {
946 		em = *em_cached;
947 		if (extent_map_in_tree(em) && start >= em->start &&
948 		    start < extent_map_end(em)) {
949 			refcount_inc(&em->refs);
950 			return em;
951 		}
952 
953 		free_extent_map(em);
954 		*em_cached = NULL;
955 	}
956 
957 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
958 	if (em_cached && !IS_ERR(em)) {
959 		BUG_ON(*em_cached);
960 		refcount_inc(&em->refs);
961 		*em_cached = em;
962 	}
963 	return em;
964 }
965 /*
966  * basic readpage implementation.  Locked extent state structs are inserted
967  * into the tree that are removed when the IO is done (by the end_io
968  * handlers)
969  * XXX JDM: This needs looking at to ensure proper page locking
970  * return 0 on success, otherwise return error
971  */
972 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
973 		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
974 {
975 	struct inode *inode = page->mapping->host;
976 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
977 	u64 start = page_offset(page);
978 	const u64 end = start + PAGE_SIZE - 1;
979 	u64 cur = start;
980 	u64 extent_offset;
981 	u64 last_byte = i_size_read(inode);
982 	u64 block_start;
983 	struct extent_map *em;
984 	int ret = 0;
985 	size_t pg_offset = 0;
986 	size_t iosize;
987 	size_t blocksize = inode->i_sb->s_blocksize;
988 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
989 
990 	ret = set_page_extent_mapped(page);
991 	if (ret < 0) {
992 		unlock_extent(tree, start, end, NULL);
993 		unlock_page(page);
994 		return ret;
995 	}
996 
997 	if (page->index == last_byte >> PAGE_SHIFT) {
998 		size_t zero_offset = offset_in_page(last_byte);
999 
1000 		if (zero_offset) {
1001 			iosize = PAGE_SIZE - zero_offset;
1002 			memzero_page(page, zero_offset, iosize);
1003 		}
1004 	}
1005 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1006 	begin_page_read(fs_info, page);
1007 	while (cur <= end) {
1008 		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1009 		bool force_bio_submit = false;
1010 		u64 disk_bytenr;
1011 
1012 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1013 		if (cur >= last_byte) {
1014 			iosize = PAGE_SIZE - pg_offset;
1015 			memzero_page(page, pg_offset, iosize);
1016 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1017 			end_page_read(page, true, cur, iosize);
1018 			break;
1019 		}
1020 		em = __get_extent_map(inode, page, pg_offset, cur,
1021 				      end - cur + 1, em_cached);
1022 		if (IS_ERR(em)) {
1023 			unlock_extent(tree, cur, end, NULL);
1024 			end_page_read(page, false, cur, end + 1 - cur);
1025 			return PTR_ERR(em);
1026 		}
1027 		extent_offset = cur - em->start;
1028 		BUG_ON(extent_map_end(em) <= cur);
1029 		BUG_ON(end < cur);
1030 
1031 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1032 			compress_type = em->compress_type;
1033 
1034 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1035 		iosize = ALIGN(iosize, blocksize);
1036 		if (compress_type != BTRFS_COMPRESS_NONE)
1037 			disk_bytenr = em->block_start;
1038 		else
1039 			disk_bytenr = em->block_start + extent_offset;
1040 		block_start = em->block_start;
1041 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1042 			block_start = EXTENT_MAP_HOLE;
1043 
1044 		/*
1045 		 * If we have a file range that points to a compressed extent
1046 		 * and it's followed by a consecutive file range that points
1047 		 * to the same compressed extent (possibly with a different
1048 		 * offset and/or length, so it either points to the whole extent
1049 		 * or only part of it), we must make sure we do not submit a
1050 		 * single bio to populate the pages for the 2 ranges because
1051 		 * this makes the compressed extent read zero out the pages
1052 		 * belonging to the 2nd range. Imagine the following scenario:
1053 		 *
1054 		 *  File layout
1055 		 *  [0 - 8K]                     [8K - 24K]
1056 		 *    |                               |
1057 		 *    |                               |
1058 		 * points to extent X,         points to extent X,
1059 		 * offset 4K, length of 8K     offset 0, length 16K
1060 		 *
1061 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1062 		 *
1063 		 * If the bio to read the compressed extent covers both ranges,
1064 		 * it will decompress extent X into the pages belonging to the
1065 		 * first range and then it will stop, zeroing out the remaining
1066 		 * pages that belong to the other range that points to extent X.
1067 		 * So here we make sure we submit 2 bios, one for the first
1068 		 * range and another one for the third range. Both will target
1069 		 * the same physical extent from disk, but we can't currently
1070 		 * make the compressed bio endio callback populate the pages
1071 		 * for both ranges because each compressed bio is tightly
1072 		 * coupled with a single extent map, and each range can have
1073 		 * an extent map with a different offset value relative to the
1074 		 * uncompressed data of our extent and different lengths. This
1075 		 * is a corner case so we prioritize correctness over
1076 		 * non-optimal behavior (submitting 2 bios for the same extent).
1077 		 */
1078 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1079 		    prev_em_start && *prev_em_start != (u64)-1 &&
1080 		    *prev_em_start != em->start)
1081 			force_bio_submit = true;
1082 
1083 		if (prev_em_start)
1084 			*prev_em_start = em->start;
1085 
1086 		free_extent_map(em);
1087 		em = NULL;
1088 
1089 		/* we've found a hole, just zero and go on */
1090 		if (block_start == EXTENT_MAP_HOLE) {
1091 			memzero_page(page, pg_offset, iosize);
1092 
1093 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1094 			end_page_read(page, true, cur, iosize);
1095 			cur = cur + iosize;
1096 			pg_offset += iosize;
1097 			continue;
1098 		}
1099 		/* the get_extent function already copied into the page */
1100 		if (block_start == EXTENT_MAP_INLINE) {
1101 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1102 			end_page_read(page, true, cur, iosize);
1103 			cur = cur + iosize;
1104 			pg_offset += iosize;
1105 			continue;
1106 		}
1107 
1108 		if (bio_ctrl->compress_type != compress_type) {
1109 			submit_one_bio(bio_ctrl);
1110 			bio_ctrl->compress_type = compress_type;
1111 		}
1112 
1113 		if (force_bio_submit)
1114 			submit_one_bio(bio_ctrl);
1115 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1116 				   pg_offset);
1117 		cur = cur + iosize;
1118 		pg_offset += iosize;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 int btrfs_read_folio(struct file *file, struct folio *folio)
1125 {
1126 	struct page *page = &folio->page;
1127 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1128 	u64 start = page_offset(page);
1129 	u64 end = start + PAGE_SIZE - 1;
1130 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1131 	int ret;
1132 
1133 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1134 
1135 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1136 	/*
1137 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1138 	 * bio to do the cleanup.
1139 	 */
1140 	submit_one_bio(&bio_ctrl);
1141 	return ret;
1142 }
1143 
1144 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1145 					u64 start, u64 end,
1146 					struct extent_map **em_cached,
1147 					struct btrfs_bio_ctrl *bio_ctrl,
1148 					u64 *prev_em_start)
1149 {
1150 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1151 	int index;
1152 
1153 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1154 
1155 	for (index = 0; index < nr_pages; index++) {
1156 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1157 				  prev_em_start);
1158 		put_page(pages[index]);
1159 	}
1160 }
1161 
1162 /*
1163  * helper for __extent_writepage, doing all of the delayed allocation setup.
1164  *
1165  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1166  * to write the page (copy into inline extent).  In this case the IO has
1167  * been started and the page is already unlocked.
1168  *
1169  * This returns 0 if all went well (page still locked)
1170  * This returns < 0 if there were errors (page still locked)
1171  */
1172 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1173 		struct page *page, struct writeback_control *wbc)
1174 {
1175 	const u64 page_start = page_offset(page);
1176 	const u64 page_end = page_start + PAGE_SIZE - 1;
1177 	u64 delalloc_start = page_start;
1178 	u64 delalloc_end = page_end;
1179 	u64 delalloc_to_write = 0;
1180 	int ret = 0;
1181 
1182 	while (delalloc_start < page_end) {
1183 		delalloc_end = page_end;
1184 		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1185 					      &delalloc_start, &delalloc_end)) {
1186 			delalloc_start = delalloc_end + 1;
1187 			continue;
1188 		}
1189 
1190 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1191 					       delalloc_end, wbc);
1192 		if (ret < 0)
1193 			return ret;
1194 
1195 		delalloc_start = delalloc_end + 1;
1196 	}
1197 
1198 	/*
1199 	 * delalloc_end is already one less than the total length, so
1200 	 * we don't subtract one from PAGE_SIZE
1201 	 */
1202 	delalloc_to_write +=
1203 		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1204 
1205 	/*
1206 	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1207 	 * the pages, we just need to account for them here.
1208 	 */
1209 	if (ret == 1) {
1210 		wbc->nr_to_write -= delalloc_to_write;
1211 		return 1;
1212 	}
1213 
1214 	if (wbc->nr_to_write < delalloc_to_write) {
1215 		int thresh = 8192;
1216 
1217 		if (delalloc_to_write < thresh * 2)
1218 			thresh = delalloc_to_write;
1219 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1220 					 thresh);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Find the first byte we need to write.
1228  *
1229  * For subpage, one page can contain several sectors, and
1230  * __extent_writepage_io() will just grab all extent maps in the page
1231  * range and try to submit all non-inline/non-compressed extents.
1232  *
1233  * This is a big problem for subpage, we shouldn't re-submit already written
1234  * data at all.
1235  * This function will lookup subpage dirty bit to find which range we really
1236  * need to submit.
1237  *
1238  * Return the next dirty range in [@start, @end).
1239  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1240  */
1241 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1242 				 struct page *page, u64 *start, u64 *end)
1243 {
1244 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1245 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1246 	u64 orig_start = *start;
1247 	/* Declare as unsigned long so we can use bitmap ops */
1248 	unsigned long flags;
1249 	int range_start_bit;
1250 	int range_end_bit;
1251 
1252 	/*
1253 	 * For regular sector size == page size case, since one page only
1254 	 * contains one sector, we return the page offset directly.
1255 	 */
1256 	if (!btrfs_is_subpage(fs_info, page)) {
1257 		*start = page_offset(page);
1258 		*end = page_offset(page) + PAGE_SIZE;
1259 		return;
1260 	}
1261 
1262 	range_start_bit = spi->dirty_offset +
1263 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1264 
1265 	/* We should have the page locked, but just in case */
1266 	spin_lock_irqsave(&subpage->lock, flags);
1267 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1268 			       spi->dirty_offset + spi->bitmap_nr_bits);
1269 	spin_unlock_irqrestore(&subpage->lock, flags);
1270 
1271 	range_start_bit -= spi->dirty_offset;
1272 	range_end_bit -= spi->dirty_offset;
1273 
1274 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1275 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1276 }
1277 
1278 /*
1279  * helper for __extent_writepage.  This calls the writepage start hooks,
1280  * and does the loop to map the page into extents and bios.
1281  *
1282  * We return 1 if the IO is started and the page is unlocked,
1283  * 0 if all went well (page still locked)
1284  * < 0 if there were errors (page still locked)
1285  */
1286 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1287 				 struct page *page,
1288 				 struct btrfs_bio_ctrl *bio_ctrl,
1289 				 loff_t i_size,
1290 				 int *nr_ret)
1291 {
1292 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1293 	u64 cur = page_offset(page);
1294 	u64 end = cur + PAGE_SIZE - 1;
1295 	u64 extent_offset;
1296 	u64 block_start;
1297 	struct extent_map *em;
1298 	int ret = 0;
1299 	int nr = 0;
1300 
1301 	ret = btrfs_writepage_cow_fixup(page);
1302 	if (ret) {
1303 		/* Fixup worker will requeue */
1304 		redirty_page_for_writepage(bio_ctrl->wbc, page);
1305 		unlock_page(page);
1306 		return 1;
1307 	}
1308 
1309 	bio_ctrl->end_io_func = end_bio_extent_writepage;
1310 	while (cur <= end) {
1311 		u32 len = end - cur + 1;
1312 		u64 disk_bytenr;
1313 		u64 em_end;
1314 		u64 dirty_range_start = cur;
1315 		u64 dirty_range_end;
1316 		u32 iosize;
1317 
1318 		if (cur >= i_size) {
1319 			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1320 						       true);
1321 			/*
1322 			 * This range is beyond i_size, thus we don't need to
1323 			 * bother writing back.
1324 			 * But we still need to clear the dirty subpage bit, or
1325 			 * the next time the page gets dirtied, we will try to
1326 			 * writeback the sectors with subpage dirty bits,
1327 			 * causing writeback without ordered extent.
1328 			 */
1329 			btrfs_page_clear_dirty(fs_info, page, cur, len);
1330 			break;
1331 		}
1332 
1333 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1334 				     &dirty_range_end);
1335 		if (cur < dirty_range_start) {
1336 			cur = dirty_range_start;
1337 			continue;
1338 		}
1339 
1340 		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1341 		if (IS_ERR(em)) {
1342 			ret = PTR_ERR_OR_ZERO(em);
1343 			goto out_error;
1344 		}
1345 
1346 		extent_offset = cur - em->start;
1347 		em_end = extent_map_end(em);
1348 		ASSERT(cur <= em_end);
1349 		ASSERT(cur < end);
1350 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1351 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1352 
1353 		block_start = em->block_start;
1354 		disk_bytenr = em->block_start + extent_offset;
1355 
1356 		ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1357 		ASSERT(block_start != EXTENT_MAP_HOLE);
1358 		ASSERT(block_start != EXTENT_MAP_INLINE);
1359 
1360 		/*
1361 		 * Note that em_end from extent_map_end() and dirty_range_end from
1362 		 * find_next_dirty_byte() are all exclusive
1363 		 */
1364 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1365 		free_extent_map(em);
1366 		em = NULL;
1367 
1368 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1369 		if (!PageWriteback(page)) {
1370 			btrfs_err(inode->root->fs_info,
1371 				   "page %lu not writeback, cur %llu end %llu",
1372 			       page->index, cur, end);
1373 		}
1374 
1375 		/*
1376 		 * Although the PageDirty bit is cleared before entering this
1377 		 * function, subpage dirty bit is not cleared.
1378 		 * So clear subpage dirty bit here so next time we won't submit
1379 		 * page for range already written to disk.
1380 		 */
1381 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1382 
1383 		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1384 				   cur - page_offset(page));
1385 		cur += iosize;
1386 		nr++;
1387 	}
1388 
1389 	btrfs_page_assert_not_dirty(fs_info, page);
1390 	*nr_ret = nr;
1391 	return 0;
1392 
1393 out_error:
1394 	/*
1395 	 * If we finish without problem, we should not only clear page dirty,
1396 	 * but also empty subpage dirty bits
1397 	 */
1398 	*nr_ret = nr;
1399 	return ret;
1400 }
1401 
1402 /*
1403  * the writepage semantics are similar to regular writepage.  extent
1404  * records are inserted to lock ranges in the tree, and as dirty areas
1405  * are found, they are marked writeback.  Then the lock bits are removed
1406  * and the end_io handler clears the writeback ranges
1407  *
1408  * Return 0 if everything goes well.
1409  * Return <0 for error.
1410  */
1411 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1412 {
1413 	struct folio *folio = page_folio(page);
1414 	struct inode *inode = page->mapping->host;
1415 	const u64 page_start = page_offset(page);
1416 	int ret;
1417 	int nr = 0;
1418 	size_t pg_offset;
1419 	loff_t i_size = i_size_read(inode);
1420 	unsigned long end_index = i_size >> PAGE_SHIFT;
1421 
1422 	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1423 
1424 	WARN_ON(!PageLocked(page));
1425 
1426 	pg_offset = offset_in_page(i_size);
1427 	if (page->index > end_index ||
1428 	   (page->index == end_index && !pg_offset)) {
1429 		folio_invalidate(folio, 0, folio_size(folio));
1430 		folio_unlock(folio);
1431 		return 0;
1432 	}
1433 
1434 	if (page->index == end_index)
1435 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1436 
1437 	ret = set_page_extent_mapped(page);
1438 	if (ret < 0)
1439 		goto done;
1440 
1441 	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1442 	if (ret == 1)
1443 		return 0;
1444 	if (ret)
1445 		goto done;
1446 
1447 	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1448 	if (ret == 1)
1449 		return 0;
1450 
1451 	bio_ctrl->wbc->nr_to_write--;
1452 
1453 done:
1454 	if (nr == 0) {
1455 		/* make sure the mapping tag for page dirty gets cleared */
1456 		set_page_writeback(page);
1457 		end_page_writeback(page);
1458 	}
1459 	if (ret) {
1460 		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1461 					       PAGE_SIZE, !ret);
1462 		mapping_set_error(page->mapping, ret);
1463 	}
1464 	unlock_page(page);
1465 	ASSERT(ret <= 0);
1466 	return ret;
1467 }
1468 
1469 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1470 {
1471 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1472 		       TASK_UNINTERRUPTIBLE);
1473 }
1474 
1475 /*
1476  * Lock extent buffer status and pages for writeback.
1477  *
1478  * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1479  * extent buffer is not dirty)
1480  * Return %true is the extent buffer is submitted to bio.
1481  */
1482 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1483 			  struct writeback_control *wbc)
1484 {
1485 	struct btrfs_fs_info *fs_info = eb->fs_info;
1486 	bool ret = false;
1487 
1488 	btrfs_tree_lock(eb);
1489 	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1490 		btrfs_tree_unlock(eb);
1491 		if (wbc->sync_mode != WB_SYNC_ALL)
1492 			return false;
1493 		wait_on_extent_buffer_writeback(eb);
1494 		btrfs_tree_lock(eb);
1495 	}
1496 
1497 	/*
1498 	 * We need to do this to prevent races in people who check if the eb is
1499 	 * under IO since we can end up having no IO bits set for a short period
1500 	 * of time.
1501 	 */
1502 	spin_lock(&eb->refs_lock);
1503 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1504 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1505 		spin_unlock(&eb->refs_lock);
1506 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1507 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1508 					 -eb->len,
1509 					 fs_info->dirty_metadata_batch);
1510 		ret = true;
1511 	} else {
1512 		spin_unlock(&eb->refs_lock);
1513 	}
1514 	btrfs_tree_unlock(eb);
1515 	return ret;
1516 }
1517 
1518 static void set_btree_ioerr(struct extent_buffer *eb)
1519 {
1520 	struct btrfs_fs_info *fs_info = eb->fs_info;
1521 
1522 	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1523 
1524 	/*
1525 	 * A read may stumble upon this buffer later, make sure that it gets an
1526 	 * error and knows there was an error.
1527 	 */
1528 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1529 
1530 	/*
1531 	 * We need to set the mapping with the io error as well because a write
1532 	 * error will flip the file system readonly, and then syncfs() will
1533 	 * return a 0 because we are readonly if we don't modify the err seq for
1534 	 * the superblock.
1535 	 */
1536 	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1537 
1538 	/*
1539 	 * If writeback for a btree extent that doesn't belong to a log tree
1540 	 * failed, increment the counter transaction->eb_write_errors.
1541 	 * We do this because while the transaction is running and before it's
1542 	 * committing (when we call filemap_fdata[write|wait]_range against
1543 	 * the btree inode), we might have
1544 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1545 	 * returns an error or an error happens during writeback, when we're
1546 	 * committing the transaction we wouldn't know about it, since the pages
1547 	 * can be no longer dirty nor marked anymore for writeback (if a
1548 	 * subsequent modification to the extent buffer didn't happen before the
1549 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1550 	 * able to find the pages tagged with SetPageError at transaction
1551 	 * commit time. So if this happens we must abort the transaction,
1552 	 * otherwise we commit a super block with btree roots that point to
1553 	 * btree nodes/leafs whose content on disk is invalid - either garbage
1554 	 * or the content of some node/leaf from a past generation that got
1555 	 * cowed or deleted and is no longer valid.
1556 	 *
1557 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1558 	 * not be enough - we need to distinguish between log tree extents vs
1559 	 * non-log tree extents, and the next filemap_fdatawait_range() call
1560 	 * will catch and clear such errors in the mapping - and that call might
1561 	 * be from a log sync and not from a transaction commit. Also, checking
1562 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1563 	 * not done and would not be reliable - the eb might have been released
1564 	 * from memory and reading it back again means that flag would not be
1565 	 * set (since it's a runtime flag, not persisted on disk).
1566 	 *
1567 	 * Using the flags below in the btree inode also makes us achieve the
1568 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1569 	 * writeback for all dirty pages and before filemap_fdatawait_range()
1570 	 * is called, the writeback for all dirty pages had already finished
1571 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1572 	 * filemap_fdatawait_range() would return success, as it could not know
1573 	 * that writeback errors happened (the pages were no longer tagged for
1574 	 * writeback).
1575 	 */
1576 	switch (eb->log_index) {
1577 	case -1:
1578 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1579 		break;
1580 	case 0:
1581 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1582 		break;
1583 	case 1:
1584 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1585 		break;
1586 	default:
1587 		BUG(); /* unexpected, logic error */
1588 	}
1589 }
1590 
1591 /*
1592  * The endio specific version which won't touch any unsafe spinlock in endio
1593  * context.
1594  */
1595 static struct extent_buffer *find_extent_buffer_nolock(
1596 		struct btrfs_fs_info *fs_info, u64 start)
1597 {
1598 	struct extent_buffer *eb;
1599 
1600 	rcu_read_lock();
1601 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1602 			       start >> fs_info->sectorsize_bits);
1603 	if (eb && atomic_inc_not_zero(&eb->refs)) {
1604 		rcu_read_unlock();
1605 		return eb;
1606 	}
1607 	rcu_read_unlock();
1608 	return NULL;
1609 }
1610 
1611 static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
1612 {
1613 	struct extent_buffer *eb = bbio->private;
1614 	struct btrfs_fs_info *fs_info = eb->fs_info;
1615 	bool uptodate = !bbio->bio.bi_status;
1616 	struct bvec_iter_all iter_all;
1617 	struct bio_vec *bvec;
1618 	u32 bio_offset = 0;
1619 
1620 	if (!uptodate)
1621 		set_btree_ioerr(eb);
1622 
1623 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1624 		u64 start = eb->start + bio_offset;
1625 		struct page *page = bvec->bv_page;
1626 		u32 len = bvec->bv_len;
1627 
1628 		btrfs_page_clear_writeback(fs_info, page, start, len);
1629 		bio_offset += len;
1630 	}
1631 
1632 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1633 	smp_mb__after_atomic();
1634 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1635 
1636 	bio_put(&bbio->bio);
1637 }
1638 
1639 static void prepare_eb_write(struct extent_buffer *eb)
1640 {
1641 	u32 nritems;
1642 	unsigned long start;
1643 	unsigned long end;
1644 
1645 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1646 
1647 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1648 	nritems = btrfs_header_nritems(eb);
1649 	if (btrfs_header_level(eb) > 0) {
1650 		end = btrfs_node_key_ptr_offset(eb, nritems);
1651 		memzero_extent_buffer(eb, end, eb->len - end);
1652 	} else {
1653 		/*
1654 		 * Leaf:
1655 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1656 		 */
1657 		start = btrfs_item_nr_offset(eb, nritems);
1658 		end = btrfs_item_nr_offset(eb, 0);
1659 		if (nritems == 0)
1660 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1661 		else
1662 			end += btrfs_item_offset(eb, nritems - 1);
1663 		memzero_extent_buffer(eb, start, end - start);
1664 	}
1665 }
1666 
1667 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1668 					    struct writeback_control *wbc)
1669 {
1670 	struct btrfs_fs_info *fs_info = eb->fs_info;
1671 	struct btrfs_bio *bbio;
1672 
1673 	prepare_eb_write(eb);
1674 
1675 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1676 			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1677 			       eb->fs_info, extent_buffer_write_end_io, eb);
1678 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1679 	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1680 	wbc_init_bio(wbc, &bbio->bio);
1681 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1682 	bbio->file_offset = eb->start;
1683 	if (fs_info->nodesize < PAGE_SIZE) {
1684 		struct page *p = eb->pages[0];
1685 
1686 		lock_page(p);
1687 		btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1688 		if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1689 						       eb->len)) {
1690 			clear_page_dirty_for_io(p);
1691 			wbc->nr_to_write--;
1692 		}
1693 		__bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1694 		wbc_account_cgroup_owner(wbc, p, eb->len);
1695 		unlock_page(p);
1696 	} else {
1697 		for (int i = 0; i < num_extent_pages(eb); i++) {
1698 			struct page *p = eb->pages[i];
1699 
1700 			lock_page(p);
1701 			clear_page_dirty_for_io(p);
1702 			set_page_writeback(p);
1703 			__bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1704 			wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1705 			wbc->nr_to_write--;
1706 			unlock_page(p);
1707 		}
1708 	}
1709 	btrfs_submit_bio(bbio, 0);
1710 }
1711 
1712 /*
1713  * Submit one subpage btree page.
1714  *
1715  * The main difference to submit_eb_page() is:
1716  * - Page locking
1717  *   For subpage, we don't rely on page locking at all.
1718  *
1719  * - Flush write bio
1720  *   We only flush bio if we may be unable to fit current extent buffers into
1721  *   current bio.
1722  *
1723  * Return >=0 for the number of submitted extent buffers.
1724  * Return <0 for fatal error.
1725  */
1726 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1727 {
1728 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1729 	int submitted = 0;
1730 	u64 page_start = page_offset(page);
1731 	int bit_start = 0;
1732 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1733 
1734 	/* Lock and write each dirty extent buffers in the range */
1735 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1736 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1737 		struct extent_buffer *eb;
1738 		unsigned long flags;
1739 		u64 start;
1740 
1741 		/*
1742 		 * Take private lock to ensure the subpage won't be detached
1743 		 * in the meantime.
1744 		 */
1745 		spin_lock(&page->mapping->private_lock);
1746 		if (!PagePrivate(page)) {
1747 			spin_unlock(&page->mapping->private_lock);
1748 			break;
1749 		}
1750 		spin_lock_irqsave(&subpage->lock, flags);
1751 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1752 			      subpage->bitmaps)) {
1753 			spin_unlock_irqrestore(&subpage->lock, flags);
1754 			spin_unlock(&page->mapping->private_lock);
1755 			bit_start++;
1756 			continue;
1757 		}
1758 
1759 		start = page_start + bit_start * fs_info->sectorsize;
1760 		bit_start += sectors_per_node;
1761 
1762 		/*
1763 		 * Here we just want to grab the eb without touching extra
1764 		 * spin locks, so call find_extent_buffer_nolock().
1765 		 */
1766 		eb = find_extent_buffer_nolock(fs_info, start);
1767 		spin_unlock_irqrestore(&subpage->lock, flags);
1768 		spin_unlock(&page->mapping->private_lock);
1769 
1770 		/*
1771 		 * The eb has already reached 0 refs thus find_extent_buffer()
1772 		 * doesn't return it. We don't need to write back such eb
1773 		 * anyway.
1774 		 */
1775 		if (!eb)
1776 			continue;
1777 
1778 		if (lock_extent_buffer_for_io(eb, wbc)) {
1779 			write_one_eb(eb, wbc);
1780 			submitted++;
1781 		}
1782 		free_extent_buffer(eb);
1783 	}
1784 	return submitted;
1785 }
1786 
1787 /*
1788  * Submit all page(s) of one extent buffer.
1789  *
1790  * @page:	the page of one extent buffer
1791  * @eb_context:	to determine if we need to submit this page, if current page
1792  *		belongs to this eb, we don't need to submit
1793  *
1794  * The caller should pass each page in their bytenr order, and here we use
1795  * @eb_context to determine if we have submitted pages of one extent buffer.
1796  *
1797  * If we have, we just skip until we hit a new page that doesn't belong to
1798  * current @eb_context.
1799  *
1800  * If not, we submit all the page(s) of the extent buffer.
1801  *
1802  * Return >0 if we have submitted the extent buffer successfully.
1803  * Return 0 if we don't need to submit the page, as it's already submitted by
1804  * previous call.
1805  * Return <0 for fatal error.
1806  */
1807 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1808 {
1809 	struct writeback_control *wbc = ctx->wbc;
1810 	struct address_space *mapping = page->mapping;
1811 	struct extent_buffer *eb;
1812 	int ret;
1813 
1814 	if (!PagePrivate(page))
1815 		return 0;
1816 
1817 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1818 		return submit_eb_subpage(page, wbc);
1819 
1820 	spin_lock(&mapping->private_lock);
1821 	if (!PagePrivate(page)) {
1822 		spin_unlock(&mapping->private_lock);
1823 		return 0;
1824 	}
1825 
1826 	eb = (struct extent_buffer *)page->private;
1827 
1828 	/*
1829 	 * Shouldn't happen and normally this would be a BUG_ON but no point
1830 	 * crashing the machine for something we can survive anyway.
1831 	 */
1832 	if (WARN_ON(!eb)) {
1833 		spin_unlock(&mapping->private_lock);
1834 		return 0;
1835 	}
1836 
1837 	if (eb == ctx->eb) {
1838 		spin_unlock(&mapping->private_lock);
1839 		return 0;
1840 	}
1841 	ret = atomic_inc_not_zero(&eb->refs);
1842 	spin_unlock(&mapping->private_lock);
1843 	if (!ret)
1844 		return 0;
1845 
1846 	ctx->eb = eb;
1847 
1848 	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1849 	if (ret) {
1850 		if (ret == -EBUSY)
1851 			ret = 0;
1852 		free_extent_buffer(eb);
1853 		return ret;
1854 	}
1855 
1856 	if (!lock_extent_buffer_for_io(eb, wbc)) {
1857 		free_extent_buffer(eb);
1858 		return 0;
1859 	}
1860 	/* Implies write in zoned mode. */
1861 	if (ctx->zoned_bg) {
1862 		/* Mark the last eb in the block group. */
1863 		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1864 		ctx->zoned_bg->meta_write_pointer += eb->len;
1865 	}
1866 	write_one_eb(eb, wbc);
1867 	free_extent_buffer(eb);
1868 	return 1;
1869 }
1870 
1871 int btree_write_cache_pages(struct address_space *mapping,
1872 				   struct writeback_control *wbc)
1873 {
1874 	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1875 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1876 	int ret = 0;
1877 	int done = 0;
1878 	int nr_to_write_done = 0;
1879 	struct folio_batch fbatch;
1880 	unsigned int nr_folios;
1881 	pgoff_t index;
1882 	pgoff_t end;		/* Inclusive */
1883 	int scanned = 0;
1884 	xa_mark_t tag;
1885 
1886 	folio_batch_init(&fbatch);
1887 	if (wbc->range_cyclic) {
1888 		index = mapping->writeback_index; /* Start from prev offset */
1889 		end = -1;
1890 		/*
1891 		 * Start from the beginning does not need to cycle over the
1892 		 * range, mark it as scanned.
1893 		 */
1894 		scanned = (index == 0);
1895 	} else {
1896 		index = wbc->range_start >> PAGE_SHIFT;
1897 		end = wbc->range_end >> PAGE_SHIFT;
1898 		scanned = 1;
1899 	}
1900 	if (wbc->sync_mode == WB_SYNC_ALL)
1901 		tag = PAGECACHE_TAG_TOWRITE;
1902 	else
1903 		tag = PAGECACHE_TAG_DIRTY;
1904 	btrfs_zoned_meta_io_lock(fs_info);
1905 retry:
1906 	if (wbc->sync_mode == WB_SYNC_ALL)
1907 		tag_pages_for_writeback(mapping, index, end);
1908 	while (!done && !nr_to_write_done && (index <= end) &&
1909 	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1910 					    tag, &fbatch))) {
1911 		unsigned i;
1912 
1913 		for (i = 0; i < nr_folios; i++) {
1914 			struct folio *folio = fbatch.folios[i];
1915 
1916 			ret = submit_eb_page(&folio->page, &ctx);
1917 			if (ret == 0)
1918 				continue;
1919 			if (ret < 0) {
1920 				done = 1;
1921 				break;
1922 			}
1923 
1924 			/*
1925 			 * the filesystem may choose to bump up nr_to_write.
1926 			 * We have to make sure to honor the new nr_to_write
1927 			 * at any time
1928 			 */
1929 			nr_to_write_done = wbc->nr_to_write <= 0;
1930 		}
1931 		folio_batch_release(&fbatch);
1932 		cond_resched();
1933 	}
1934 	if (!scanned && !done) {
1935 		/*
1936 		 * We hit the last page and there is more work to be done: wrap
1937 		 * back to the start of the file
1938 		 */
1939 		scanned = 1;
1940 		index = 0;
1941 		goto retry;
1942 	}
1943 	/*
1944 	 * If something went wrong, don't allow any metadata write bio to be
1945 	 * submitted.
1946 	 *
1947 	 * This would prevent use-after-free if we had dirty pages not
1948 	 * cleaned up, which can still happen by fuzzed images.
1949 	 *
1950 	 * - Bad extent tree
1951 	 *   Allowing existing tree block to be allocated for other trees.
1952 	 *
1953 	 * - Log tree operations
1954 	 *   Exiting tree blocks get allocated to log tree, bumps its
1955 	 *   generation, then get cleaned in tree re-balance.
1956 	 *   Such tree block will not be written back, since it's clean,
1957 	 *   thus no WRITTEN flag set.
1958 	 *   And after log writes back, this tree block is not traced by
1959 	 *   any dirty extent_io_tree.
1960 	 *
1961 	 * - Offending tree block gets re-dirtied from its original owner
1962 	 *   Since it has bumped generation, no WRITTEN flag, it can be
1963 	 *   reused without COWing. This tree block will not be traced
1964 	 *   by btrfs_transaction::dirty_pages.
1965 	 *
1966 	 *   Now such dirty tree block will not be cleaned by any dirty
1967 	 *   extent io tree. Thus we don't want to submit such wild eb
1968 	 *   if the fs already has error.
1969 	 *
1970 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1971 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1972 	 */
1973 	if (ret > 0)
1974 		ret = 0;
1975 	if (!ret && BTRFS_FS_ERROR(fs_info))
1976 		ret = -EROFS;
1977 
1978 	if (ctx.zoned_bg)
1979 		btrfs_put_block_group(ctx.zoned_bg);
1980 	btrfs_zoned_meta_io_unlock(fs_info);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * Walk the list of dirty pages of the given address space and write all of them.
1986  *
1987  * @mapping:   address space structure to write
1988  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
1989  * @bio_ctrl:  holds context for the write, namely the bio
1990  *
1991  * If a page is already under I/O, write_cache_pages() skips it, even
1992  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1993  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1994  * and msync() need to guarantee that all the data which was dirty at the time
1995  * the call was made get new I/O started against them.  If wbc->sync_mode is
1996  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1997  * existing IO to complete.
1998  */
1999 static int extent_write_cache_pages(struct address_space *mapping,
2000 			     struct btrfs_bio_ctrl *bio_ctrl)
2001 {
2002 	struct writeback_control *wbc = bio_ctrl->wbc;
2003 	struct inode *inode = mapping->host;
2004 	int ret = 0;
2005 	int done = 0;
2006 	int nr_to_write_done = 0;
2007 	struct folio_batch fbatch;
2008 	unsigned int nr_folios;
2009 	pgoff_t index;
2010 	pgoff_t end;		/* Inclusive */
2011 	pgoff_t done_index;
2012 	int range_whole = 0;
2013 	int scanned = 0;
2014 	xa_mark_t tag;
2015 
2016 	/*
2017 	 * We have to hold onto the inode so that ordered extents can do their
2018 	 * work when the IO finishes.  The alternative to this is failing to add
2019 	 * an ordered extent if the igrab() fails there and that is a huge pain
2020 	 * to deal with, so instead just hold onto the inode throughout the
2021 	 * writepages operation.  If it fails here we are freeing up the inode
2022 	 * anyway and we'd rather not waste our time writing out stuff that is
2023 	 * going to be truncated anyway.
2024 	 */
2025 	if (!igrab(inode))
2026 		return 0;
2027 
2028 	folio_batch_init(&fbatch);
2029 	if (wbc->range_cyclic) {
2030 		index = mapping->writeback_index; /* Start from prev offset */
2031 		end = -1;
2032 		/*
2033 		 * Start from the beginning does not need to cycle over the
2034 		 * range, mark it as scanned.
2035 		 */
2036 		scanned = (index == 0);
2037 	} else {
2038 		index = wbc->range_start >> PAGE_SHIFT;
2039 		end = wbc->range_end >> PAGE_SHIFT;
2040 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2041 			range_whole = 1;
2042 		scanned = 1;
2043 	}
2044 
2045 	/*
2046 	 * We do the tagged writepage as long as the snapshot flush bit is set
2047 	 * and we are the first one who do the filemap_flush() on this inode.
2048 	 *
2049 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2050 	 * not race in and drop the bit.
2051 	 */
2052 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2053 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2054 			       &BTRFS_I(inode)->runtime_flags))
2055 		wbc->tagged_writepages = 1;
2056 
2057 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2058 		tag = PAGECACHE_TAG_TOWRITE;
2059 	else
2060 		tag = PAGECACHE_TAG_DIRTY;
2061 retry:
2062 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063 		tag_pages_for_writeback(mapping, index, end);
2064 	done_index = index;
2065 	while (!done && !nr_to_write_done && (index <= end) &&
2066 			(nr_folios = filemap_get_folios_tag(mapping, &index,
2067 							end, tag, &fbatch))) {
2068 		unsigned i;
2069 
2070 		for (i = 0; i < nr_folios; i++) {
2071 			struct folio *folio = fbatch.folios[i];
2072 
2073 			done_index = folio_next_index(folio);
2074 			/*
2075 			 * At this point we hold neither the i_pages lock nor
2076 			 * the page lock: the page may be truncated or
2077 			 * invalidated (changing page->mapping to NULL),
2078 			 * or even swizzled back from swapper_space to
2079 			 * tmpfs file mapping
2080 			 */
2081 			if (!folio_trylock(folio)) {
2082 				submit_write_bio(bio_ctrl, 0);
2083 				folio_lock(folio);
2084 			}
2085 
2086 			if (unlikely(folio->mapping != mapping)) {
2087 				folio_unlock(folio);
2088 				continue;
2089 			}
2090 
2091 			if (!folio_test_dirty(folio)) {
2092 				/* Someone wrote it for us. */
2093 				folio_unlock(folio);
2094 				continue;
2095 			}
2096 
2097 			if (wbc->sync_mode != WB_SYNC_NONE) {
2098 				if (folio_test_writeback(folio))
2099 					submit_write_bio(bio_ctrl, 0);
2100 				folio_wait_writeback(folio);
2101 			}
2102 
2103 			if (folio_test_writeback(folio) ||
2104 			    !folio_clear_dirty_for_io(folio)) {
2105 				folio_unlock(folio);
2106 				continue;
2107 			}
2108 
2109 			ret = __extent_writepage(&folio->page, bio_ctrl);
2110 			if (ret < 0) {
2111 				done = 1;
2112 				break;
2113 			}
2114 
2115 			/*
2116 			 * The filesystem may choose to bump up nr_to_write.
2117 			 * We have to make sure to honor the new nr_to_write
2118 			 * at any time.
2119 			 */
2120 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2121 					    wbc->nr_to_write <= 0);
2122 		}
2123 		folio_batch_release(&fbatch);
2124 		cond_resched();
2125 	}
2126 	if (!scanned && !done) {
2127 		/*
2128 		 * We hit the last page and there is more work to be done: wrap
2129 		 * back to the start of the file
2130 		 */
2131 		scanned = 1;
2132 		index = 0;
2133 
2134 		/*
2135 		 * If we're looping we could run into a page that is locked by a
2136 		 * writer and that writer could be waiting on writeback for a
2137 		 * page in our current bio, and thus deadlock, so flush the
2138 		 * write bio here.
2139 		 */
2140 		submit_write_bio(bio_ctrl, 0);
2141 		goto retry;
2142 	}
2143 
2144 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2145 		mapping->writeback_index = done_index;
2146 
2147 	btrfs_add_delayed_iput(BTRFS_I(inode));
2148 	return ret;
2149 }
2150 
2151 /*
2152  * Submit the pages in the range to bio for call sites which delalloc range has
2153  * already been ran (aka, ordered extent inserted) and all pages are still
2154  * locked.
2155  */
2156 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2157 			       u64 start, u64 end, struct writeback_control *wbc,
2158 			       bool pages_dirty)
2159 {
2160 	bool found_error = false;
2161 	int ret = 0;
2162 	struct address_space *mapping = inode->i_mapping;
2163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2164 	const u32 sectorsize = fs_info->sectorsize;
2165 	loff_t i_size = i_size_read(inode);
2166 	u64 cur = start;
2167 	struct btrfs_bio_ctrl bio_ctrl = {
2168 		.wbc = wbc,
2169 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2170 	};
2171 
2172 	if (wbc->no_cgroup_owner)
2173 		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2174 
2175 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2176 
2177 	while (cur <= end) {
2178 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2179 		u32 cur_len = cur_end + 1 - cur;
2180 		struct page *page;
2181 		int nr = 0;
2182 
2183 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2184 		ASSERT(PageLocked(page));
2185 		if (pages_dirty && page != locked_page) {
2186 			ASSERT(PageDirty(page));
2187 			clear_page_dirty_for_io(page);
2188 		}
2189 
2190 		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2191 					    i_size, &nr);
2192 		if (ret == 1)
2193 			goto next_page;
2194 
2195 		/* Make sure the mapping tag for page dirty gets cleared. */
2196 		if (nr == 0) {
2197 			set_page_writeback(page);
2198 			end_page_writeback(page);
2199 		}
2200 		if (ret) {
2201 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2202 						       cur, cur_len, !ret);
2203 			mapping_set_error(page->mapping, ret);
2204 		}
2205 		btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2206 		if (ret < 0)
2207 			found_error = true;
2208 next_page:
2209 		put_page(page);
2210 		cur = cur_end + 1;
2211 	}
2212 
2213 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2214 }
2215 
2216 int extent_writepages(struct address_space *mapping,
2217 		      struct writeback_control *wbc)
2218 {
2219 	struct inode *inode = mapping->host;
2220 	int ret = 0;
2221 	struct btrfs_bio_ctrl bio_ctrl = {
2222 		.wbc = wbc,
2223 		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2224 	};
2225 
2226 	/*
2227 	 * Allow only a single thread to do the reloc work in zoned mode to
2228 	 * protect the write pointer updates.
2229 	 */
2230 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2231 	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2232 	submit_write_bio(&bio_ctrl, ret);
2233 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2234 	return ret;
2235 }
2236 
2237 void extent_readahead(struct readahead_control *rac)
2238 {
2239 	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2240 	struct page *pagepool[16];
2241 	struct extent_map *em_cached = NULL;
2242 	u64 prev_em_start = (u64)-1;
2243 	int nr;
2244 
2245 	while ((nr = readahead_page_batch(rac, pagepool))) {
2246 		u64 contig_start = readahead_pos(rac);
2247 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2248 
2249 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2250 				&em_cached, &bio_ctrl, &prev_em_start);
2251 	}
2252 
2253 	if (em_cached)
2254 		free_extent_map(em_cached);
2255 	submit_one_bio(&bio_ctrl);
2256 }
2257 
2258 /*
2259  * basic invalidate_folio code, this waits on any locked or writeback
2260  * ranges corresponding to the folio, and then deletes any extent state
2261  * records from the tree
2262  */
2263 int extent_invalidate_folio(struct extent_io_tree *tree,
2264 			  struct folio *folio, size_t offset)
2265 {
2266 	struct extent_state *cached_state = NULL;
2267 	u64 start = folio_pos(folio);
2268 	u64 end = start + folio_size(folio) - 1;
2269 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2270 
2271 	/* This function is only called for the btree inode */
2272 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2273 
2274 	start += ALIGN(offset, blocksize);
2275 	if (start > end)
2276 		return 0;
2277 
2278 	lock_extent(tree, start, end, &cached_state);
2279 	folio_wait_writeback(folio);
2280 
2281 	/*
2282 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2283 	 * so here we only need to unlock the extent range to free any
2284 	 * existing extent state.
2285 	 */
2286 	unlock_extent(tree, start, end, &cached_state);
2287 	return 0;
2288 }
2289 
2290 /*
2291  * a helper for release_folio, this tests for areas of the page that
2292  * are locked or under IO and drops the related state bits if it is safe
2293  * to drop the page.
2294  */
2295 static int try_release_extent_state(struct extent_io_tree *tree,
2296 				    struct page *page, gfp_t mask)
2297 {
2298 	u64 start = page_offset(page);
2299 	u64 end = start + PAGE_SIZE - 1;
2300 	int ret = 1;
2301 
2302 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
2303 		ret = 0;
2304 	} else {
2305 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2306 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2307 				   EXTENT_QGROUP_RESERVED);
2308 
2309 		/*
2310 		 * At this point we can safely clear everything except the
2311 		 * locked bit, the nodatasum bit and the delalloc new bit.
2312 		 * The delalloc new bit will be cleared by ordered extent
2313 		 * completion.
2314 		 */
2315 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2316 
2317 		/* if clear_extent_bit failed for enomem reasons,
2318 		 * we can't allow the release to continue.
2319 		 */
2320 		if (ret < 0)
2321 			ret = 0;
2322 		else
2323 			ret = 1;
2324 	}
2325 	return ret;
2326 }
2327 
2328 /*
2329  * a helper for release_folio.  As long as there are no locked extents
2330  * in the range corresponding to the page, both state records and extent
2331  * map records are removed
2332  */
2333 int try_release_extent_mapping(struct page *page, gfp_t mask)
2334 {
2335 	struct extent_map *em;
2336 	u64 start = page_offset(page);
2337 	u64 end = start + PAGE_SIZE - 1;
2338 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2339 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2340 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2341 
2342 	if (gfpflags_allow_blocking(mask) &&
2343 	    page->mapping->host->i_size > SZ_16M) {
2344 		u64 len;
2345 		while (start <= end) {
2346 			struct btrfs_fs_info *fs_info;
2347 			u64 cur_gen;
2348 
2349 			len = end - start + 1;
2350 			write_lock(&map->lock);
2351 			em = lookup_extent_mapping(map, start, len);
2352 			if (!em) {
2353 				write_unlock(&map->lock);
2354 				break;
2355 			}
2356 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2357 			    em->start != start) {
2358 				write_unlock(&map->lock);
2359 				free_extent_map(em);
2360 				break;
2361 			}
2362 			if (test_range_bit(tree, em->start,
2363 					   extent_map_end(em) - 1,
2364 					   EXTENT_LOCKED, 0, NULL))
2365 				goto next;
2366 			/*
2367 			 * If it's not in the list of modified extents, used
2368 			 * by a fast fsync, we can remove it. If it's being
2369 			 * logged we can safely remove it since fsync took an
2370 			 * extra reference on the em.
2371 			 */
2372 			if (list_empty(&em->list) ||
2373 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2374 				goto remove_em;
2375 			/*
2376 			 * If it's in the list of modified extents, remove it
2377 			 * only if its generation is older then the current one,
2378 			 * in which case we don't need it for a fast fsync.
2379 			 * Otherwise don't remove it, we could be racing with an
2380 			 * ongoing fast fsync that could miss the new extent.
2381 			 */
2382 			fs_info = btrfs_inode->root->fs_info;
2383 			spin_lock(&fs_info->trans_lock);
2384 			cur_gen = fs_info->generation;
2385 			spin_unlock(&fs_info->trans_lock);
2386 			if (em->generation >= cur_gen)
2387 				goto next;
2388 remove_em:
2389 			/*
2390 			 * We only remove extent maps that are not in the list of
2391 			 * modified extents or that are in the list but with a
2392 			 * generation lower then the current generation, so there
2393 			 * is no need to set the full fsync flag on the inode (it
2394 			 * hurts the fsync performance for workloads with a data
2395 			 * size that exceeds or is close to the system's memory).
2396 			 */
2397 			remove_extent_mapping(map, em);
2398 			/* once for the rb tree */
2399 			free_extent_map(em);
2400 next:
2401 			start = extent_map_end(em);
2402 			write_unlock(&map->lock);
2403 
2404 			/* once for us */
2405 			free_extent_map(em);
2406 
2407 			cond_resched(); /* Allow large-extent preemption. */
2408 		}
2409 	}
2410 	return try_release_extent_state(tree, page, mask);
2411 }
2412 
2413 struct btrfs_fiemap_entry {
2414 	u64 offset;
2415 	u64 phys;
2416 	u64 len;
2417 	u32 flags;
2418 };
2419 
2420 /*
2421  * Indicate the caller of emit_fiemap_extent() that it needs to unlock the file
2422  * range from the inode's io tree, unlock the subvolume tree search path, flush
2423  * the fiemap cache and relock the file range and research the subvolume tree.
2424  * The value here is something negative that can't be confused with a valid
2425  * errno value and different from 1 because that's also a return value from
2426  * fiemap_fill_next_extent() and also it's often used to mean some btree search
2427  * did not find a key, so make it some distinct negative value.
2428  */
2429 #define BTRFS_FIEMAP_FLUSH_CACHE (-(MAX_ERRNO + 1))
2430 
2431 /*
2432  * Used to:
2433  *
2434  * - Cache the next entry to be emitted to the fiemap buffer, so that we can
2435  *   merge extents that are contiguous and can be grouped as a single one;
2436  *
2437  * - Store extents ready to be written to the fiemap buffer in an intermediary
2438  *   buffer. This intermediary buffer is to ensure that in case the fiemap
2439  *   buffer is memory mapped to the fiemap target file, we don't deadlock
2440  *   during btrfs_page_mkwrite(). This is because during fiemap we are locking
2441  *   an extent range in order to prevent races with delalloc flushing and
2442  *   ordered extent completion, which is needed in order to reliably detect
2443  *   delalloc in holes and prealloc extents. And this can lead to a deadlock
2444  *   if the fiemap buffer is memory mapped to the file we are running fiemap
2445  *   against (a silly, useless in practice scenario, but possible) because
2446  *   btrfs_page_mkwrite() will try to lock the same extent range.
2447  */
2448 struct fiemap_cache {
2449 	/* An array of ready fiemap entries. */
2450 	struct btrfs_fiemap_entry *entries;
2451 	/* Number of entries in the entries array. */
2452 	int entries_size;
2453 	/* Index of the next entry in the entries array to write to. */
2454 	int entries_pos;
2455 	/*
2456 	 * Once the entries array is full, this indicates what's the offset for
2457 	 * the next file extent item we must search for in the inode's subvolume
2458 	 * tree after unlocking the extent range in the inode's io tree and
2459 	 * releasing the search path.
2460 	 */
2461 	u64 next_search_offset;
2462 	/*
2463 	 * This matches struct fiemap_extent_info::fi_mapped_extents, we use it
2464 	 * to count ourselves emitted extents and stop instead of relying on
2465 	 * fiemap_fill_next_extent() because we buffer ready fiemap entries at
2466 	 * the @entries array, and we want to stop as soon as we hit the max
2467 	 * amount of extents to map, not just to save time but also to make the
2468 	 * logic at extent_fiemap() simpler.
2469 	 */
2470 	unsigned int extents_mapped;
2471 	/* Fields for the cached extent (unsubmitted, not ready, extent). */
2472 	u64 offset;
2473 	u64 phys;
2474 	u64 len;
2475 	u32 flags;
2476 	bool cached;
2477 };
2478 
2479 static int flush_fiemap_cache(struct fiemap_extent_info *fieinfo,
2480 			      struct fiemap_cache *cache)
2481 {
2482 	for (int i = 0; i < cache->entries_pos; i++) {
2483 		struct btrfs_fiemap_entry *entry = &cache->entries[i];
2484 		int ret;
2485 
2486 		ret = fiemap_fill_next_extent(fieinfo, entry->offset,
2487 					      entry->phys, entry->len,
2488 					      entry->flags);
2489 		/*
2490 		 * Ignore 1 (reached max entries) because we keep track of that
2491 		 * ourselves in emit_fiemap_extent().
2492 		 */
2493 		if (ret < 0)
2494 			return ret;
2495 	}
2496 	cache->entries_pos = 0;
2497 
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Helper to submit fiemap extent.
2503  *
2504  * Will try to merge current fiemap extent specified by @offset, @phys,
2505  * @len and @flags with cached one.
2506  * And only when we fails to merge, cached one will be submitted as
2507  * fiemap extent.
2508  *
2509  * Return value is the same as fiemap_fill_next_extent().
2510  */
2511 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2512 				struct fiemap_cache *cache,
2513 				u64 offset, u64 phys, u64 len, u32 flags)
2514 {
2515 	struct btrfs_fiemap_entry *entry;
2516 	u64 cache_end;
2517 
2518 	/* Set at the end of extent_fiemap(). */
2519 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2520 
2521 	if (!cache->cached)
2522 		goto assign;
2523 
2524 	/*
2525 	 * When iterating the extents of the inode, at extent_fiemap(), we may
2526 	 * find an extent that starts at an offset behind the end offset of the
2527 	 * previous extent we processed. This happens if fiemap is called
2528 	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2529 	 * after we had to unlock the file range, release the search path, emit
2530 	 * the fiemap extents stored in the buffer (cache->entries array) and
2531 	 * the lock the remainder of the range and re-search the btree.
2532 	 *
2533 	 * For example we are in leaf X processing its last item, which is the
2534 	 * file extent item for file range [512K, 1M[, and after
2535 	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2536 	 * completes for the file range [768K, 2M[, and that results in trimming
2537 	 * the file extent item so that it now corresponds to the file range
2538 	 * [512K, 768K[ and a new file extent item is inserted for the file
2539 	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2540 	 * the first item of the next leaf - in either case btrfs_next_leaf()
2541 	 * will leave us with a path pointing to the new extent item, for the
2542 	 * file range [768K, 2M[, since that's the first key that follows the
2543 	 * last one we processed. So in order not to report overlapping extents
2544 	 * to user space, we trim the length of the previously cached extent and
2545 	 * emit it.
2546 	 *
2547 	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2548 	 * offset smaller than or equals to cache->offset, and this happens
2549 	 * when we had a hole or prealloc extent with several delalloc ranges in
2550 	 * it, but after btrfs_next_leaf() released the path, delalloc was
2551 	 * flushed and the resulting ordered extents were completed, so we can
2552 	 * now have found a file extent item for an offset that is smaller than
2553 	 * or equals to what we have in cache->offset. We deal with this as
2554 	 * described below.
2555 	 */
2556 	cache_end = cache->offset + cache->len;
2557 	if (cache_end > offset) {
2558 		if (offset == cache->offset) {
2559 			/*
2560 			 * We cached a dealloc range (found in the io tree) for
2561 			 * a hole or prealloc extent and we have now found a
2562 			 * file extent item for the same offset. What we have
2563 			 * now is more recent and up to date, so discard what
2564 			 * we had in the cache and use what we have just found.
2565 			 */
2566 			goto assign;
2567 		} else if (offset > cache->offset) {
2568 			/*
2569 			 * The extent range we previously found ends after the
2570 			 * offset of the file extent item we found and that
2571 			 * offset falls somewhere in the middle of that previous
2572 			 * extent range. So adjust the range we previously found
2573 			 * to end at the offset of the file extent item we have
2574 			 * just found, since this extent is more up to date.
2575 			 * Emit that adjusted range and cache the file extent
2576 			 * item we have just found. This corresponds to the case
2577 			 * where a previously found file extent item was split
2578 			 * due to an ordered extent completing.
2579 			 */
2580 			cache->len = offset - cache->offset;
2581 			goto emit;
2582 		} else {
2583 			const u64 range_end = offset + len;
2584 
2585 			/*
2586 			 * The offset of the file extent item we have just found
2587 			 * is behind the cached offset. This means we were
2588 			 * processing a hole or prealloc extent for which we
2589 			 * have found delalloc ranges (in the io tree), so what
2590 			 * we have in the cache is the last delalloc range we
2591 			 * found while the file extent item we found can be
2592 			 * either for a whole delalloc range we previously
2593 			 * emmitted or only a part of that range.
2594 			 *
2595 			 * We have two cases here:
2596 			 *
2597 			 * 1) The file extent item's range ends at or behind the
2598 			 *    cached extent's end. In this case just ignore the
2599 			 *    current file extent item because we don't want to
2600 			 *    overlap with previous ranges that may have been
2601 			 *    emmitted already;
2602 			 *
2603 			 * 2) The file extent item starts behind the currently
2604 			 *    cached extent but its end offset goes beyond the
2605 			 *    end offset of the cached extent. We don't want to
2606 			 *    overlap with a previous range that may have been
2607 			 *    emmitted already, so we emit the currently cached
2608 			 *    extent and then partially store the current file
2609 			 *    extent item's range in the cache, for the subrange
2610 			 *    going the cached extent's end to the end of the
2611 			 *    file extent item.
2612 			 */
2613 			if (range_end <= cache_end)
2614 				return 0;
2615 
2616 			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2617 				phys += cache_end - offset;
2618 
2619 			offset = cache_end;
2620 			len = range_end - cache_end;
2621 			goto emit;
2622 		}
2623 	}
2624 
2625 	/*
2626 	 * Only merges fiemap extents if
2627 	 * 1) Their logical addresses are continuous
2628 	 *
2629 	 * 2) Their physical addresses are continuous
2630 	 *    So truly compressed (physical size smaller than logical size)
2631 	 *    extents won't get merged with each other
2632 	 *
2633 	 * 3) Share same flags
2634 	 */
2635 	if (cache->offset + cache->len  == offset &&
2636 	    cache->phys + cache->len == phys  &&
2637 	    cache->flags == flags) {
2638 		cache->len += len;
2639 		return 0;
2640 	}
2641 
2642 emit:
2643 	/* Not mergeable, need to submit cached one */
2644 
2645 	if (cache->entries_pos == cache->entries_size) {
2646 		/*
2647 		 * We will need to research for the end offset of the last
2648 		 * stored extent and not from the current offset, because after
2649 		 * unlocking the range and releasing the path, if there's a hole
2650 		 * between that end offset and this current offset, a new extent
2651 		 * may have been inserted due to a new write, so we don't want
2652 		 * to miss it.
2653 		 */
2654 		entry = &cache->entries[cache->entries_size - 1];
2655 		cache->next_search_offset = entry->offset + entry->len;
2656 		cache->cached = false;
2657 
2658 		return BTRFS_FIEMAP_FLUSH_CACHE;
2659 	}
2660 
2661 	entry = &cache->entries[cache->entries_pos];
2662 	entry->offset = cache->offset;
2663 	entry->phys = cache->phys;
2664 	entry->len = cache->len;
2665 	entry->flags = cache->flags;
2666 	cache->entries_pos++;
2667 	cache->extents_mapped++;
2668 
2669 	if (cache->extents_mapped == fieinfo->fi_extents_max) {
2670 		cache->cached = false;
2671 		return 1;
2672 	}
2673 assign:
2674 	cache->cached = true;
2675 	cache->offset = offset;
2676 	cache->phys = phys;
2677 	cache->len = len;
2678 	cache->flags = flags;
2679 
2680 	return 0;
2681 }
2682 
2683 /*
2684  * Emit last fiemap cache
2685  *
2686  * The last fiemap cache may still be cached in the following case:
2687  * 0		      4k		    8k
2688  * |<- Fiemap range ->|
2689  * |<------------  First extent ----------->|
2690  *
2691  * In this case, the first extent range will be cached but not emitted.
2692  * So we must emit it before ending extent_fiemap().
2693  */
2694 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2695 				  struct fiemap_cache *cache)
2696 {
2697 	int ret;
2698 
2699 	if (!cache->cached)
2700 		return 0;
2701 
2702 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2703 				      cache->len, cache->flags);
2704 	cache->cached = false;
2705 	if (ret > 0)
2706 		ret = 0;
2707 	return ret;
2708 }
2709 
2710 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2711 {
2712 	struct extent_buffer *clone;
2713 	struct btrfs_key key;
2714 	int slot;
2715 	int ret;
2716 
2717 	path->slots[0]++;
2718 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2719 		return 0;
2720 
2721 	ret = btrfs_next_leaf(inode->root, path);
2722 	if (ret != 0)
2723 		return ret;
2724 
2725 	/*
2726 	 * Don't bother with cloning if there are no more file extent items for
2727 	 * our inode.
2728 	 */
2729 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2730 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2731 		return 1;
2732 
2733 	/* See the comment at fiemap_search_slot() about why we clone. */
2734 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2735 	if (!clone)
2736 		return -ENOMEM;
2737 
2738 	slot = path->slots[0];
2739 	btrfs_release_path(path);
2740 	path->nodes[0] = clone;
2741 	path->slots[0] = slot;
2742 
2743 	return 0;
2744 }
2745 
2746 /*
2747  * Search for the first file extent item that starts at a given file offset or
2748  * the one that starts immediately before that offset.
2749  * Returns: 0 on success, < 0 on error, 1 if not found.
2750  */
2751 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2752 			      u64 file_offset)
2753 {
2754 	const u64 ino = btrfs_ino(inode);
2755 	struct btrfs_root *root = inode->root;
2756 	struct extent_buffer *clone;
2757 	struct btrfs_key key;
2758 	int slot;
2759 	int ret;
2760 
2761 	key.objectid = ino;
2762 	key.type = BTRFS_EXTENT_DATA_KEY;
2763 	key.offset = file_offset;
2764 
2765 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2766 	if (ret < 0)
2767 		return ret;
2768 
2769 	if (ret > 0 && path->slots[0] > 0) {
2770 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2771 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2772 			path->slots[0]--;
2773 	}
2774 
2775 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2776 		ret = btrfs_next_leaf(root, path);
2777 		if (ret != 0)
2778 			return ret;
2779 
2780 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2781 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2782 			return 1;
2783 	}
2784 
2785 	/*
2786 	 * We clone the leaf and use it during fiemap. This is because while
2787 	 * using the leaf we do expensive things like checking if an extent is
2788 	 * shared, which can take a long time. In order to prevent blocking
2789 	 * other tasks for too long, we use a clone of the leaf. We have locked
2790 	 * the file range in the inode's io tree, so we know none of our file
2791 	 * extent items can change. This way we avoid blocking other tasks that
2792 	 * want to insert items for other inodes in the same leaf or b+tree
2793 	 * rebalance operations (triggered for example when someone is trying
2794 	 * to push items into this leaf when trying to insert an item in a
2795 	 * neighbour leaf).
2796 	 * We also need the private clone because holding a read lock on an
2797 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2798 	 * when we check if extents are shared, as backref walking may need to
2799 	 * lock the same leaf we are processing.
2800 	 */
2801 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2802 	if (!clone)
2803 		return -ENOMEM;
2804 
2805 	slot = path->slots[0];
2806 	btrfs_release_path(path);
2807 	path->nodes[0] = clone;
2808 	path->slots[0] = slot;
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * Process a range which is a hole or a prealloc extent in the inode's subvolume
2815  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2816  * extent. The end offset (@end) is inclusive.
2817  */
2818 static int fiemap_process_hole(struct btrfs_inode *inode,
2819 			       struct fiemap_extent_info *fieinfo,
2820 			       struct fiemap_cache *cache,
2821 			       struct extent_state **delalloc_cached_state,
2822 			       struct btrfs_backref_share_check_ctx *backref_ctx,
2823 			       u64 disk_bytenr, u64 extent_offset,
2824 			       u64 extent_gen,
2825 			       u64 start, u64 end)
2826 {
2827 	const u64 i_size = i_size_read(&inode->vfs_inode);
2828 	u64 cur_offset = start;
2829 	u64 last_delalloc_end = 0;
2830 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2831 	bool checked_extent_shared = false;
2832 	int ret;
2833 
2834 	/*
2835 	 * There can be no delalloc past i_size, so don't waste time looking for
2836 	 * it beyond i_size.
2837 	 */
2838 	while (cur_offset < end && cur_offset < i_size) {
2839 		u64 delalloc_start;
2840 		u64 delalloc_end;
2841 		u64 prealloc_start;
2842 		u64 prealloc_len = 0;
2843 		bool delalloc;
2844 
2845 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2846 							delalloc_cached_state,
2847 							&delalloc_start,
2848 							&delalloc_end);
2849 		if (!delalloc)
2850 			break;
2851 
2852 		/*
2853 		 * If this is a prealloc extent we have to report every section
2854 		 * of it that has no delalloc.
2855 		 */
2856 		if (disk_bytenr != 0) {
2857 			if (last_delalloc_end == 0) {
2858 				prealloc_start = start;
2859 				prealloc_len = delalloc_start - start;
2860 			} else {
2861 				prealloc_start = last_delalloc_end + 1;
2862 				prealloc_len = delalloc_start - prealloc_start;
2863 			}
2864 		}
2865 
2866 		if (prealloc_len > 0) {
2867 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2868 				ret = btrfs_is_data_extent_shared(inode,
2869 								  disk_bytenr,
2870 								  extent_gen,
2871 								  backref_ctx);
2872 				if (ret < 0)
2873 					return ret;
2874 				else if (ret > 0)
2875 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2876 
2877 				checked_extent_shared = true;
2878 			}
2879 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2880 						 disk_bytenr + extent_offset,
2881 						 prealloc_len, prealloc_flags);
2882 			if (ret)
2883 				return ret;
2884 			extent_offset += prealloc_len;
2885 		}
2886 
2887 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2888 					 delalloc_end + 1 - delalloc_start,
2889 					 FIEMAP_EXTENT_DELALLOC |
2890 					 FIEMAP_EXTENT_UNKNOWN);
2891 		if (ret)
2892 			return ret;
2893 
2894 		last_delalloc_end = delalloc_end;
2895 		cur_offset = delalloc_end + 1;
2896 		extent_offset += cur_offset - delalloc_start;
2897 		cond_resched();
2898 	}
2899 
2900 	/*
2901 	 * Either we found no delalloc for the whole prealloc extent or we have
2902 	 * a prealloc extent that spans i_size or starts at or after i_size.
2903 	 */
2904 	if (disk_bytenr != 0 && last_delalloc_end < end) {
2905 		u64 prealloc_start;
2906 		u64 prealloc_len;
2907 
2908 		if (last_delalloc_end == 0) {
2909 			prealloc_start = start;
2910 			prealloc_len = end + 1 - start;
2911 		} else {
2912 			prealloc_start = last_delalloc_end + 1;
2913 			prealloc_len = end + 1 - prealloc_start;
2914 		}
2915 
2916 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2917 			ret = btrfs_is_data_extent_shared(inode,
2918 							  disk_bytenr,
2919 							  extent_gen,
2920 							  backref_ctx);
2921 			if (ret < 0)
2922 				return ret;
2923 			else if (ret > 0)
2924 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2925 		}
2926 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2927 					 disk_bytenr + extent_offset,
2928 					 prealloc_len, prealloc_flags);
2929 		if (ret)
2930 			return ret;
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2937 					  struct btrfs_path *path,
2938 					  u64 *last_extent_end_ret)
2939 {
2940 	const u64 ino = btrfs_ino(inode);
2941 	struct btrfs_root *root = inode->root;
2942 	struct extent_buffer *leaf;
2943 	struct btrfs_file_extent_item *ei;
2944 	struct btrfs_key key;
2945 	u64 disk_bytenr;
2946 	int ret;
2947 
2948 	/*
2949 	 * Lookup the last file extent. We're not using i_size here because
2950 	 * there might be preallocation past i_size.
2951 	 */
2952 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2953 	/* There can't be a file extent item at offset (u64)-1 */
2954 	ASSERT(ret != 0);
2955 	if (ret < 0)
2956 		return ret;
2957 
2958 	/*
2959 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2960 	 * slot > 0, except if the btree is empty, which is impossible because
2961 	 * at least it has the inode item for this inode and all the items for
2962 	 * the root inode 256.
2963 	 */
2964 	ASSERT(path->slots[0] > 0);
2965 	path->slots[0]--;
2966 	leaf = path->nodes[0];
2967 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2968 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2969 		/* No file extent items in the subvolume tree. */
2970 		*last_extent_end_ret = 0;
2971 		return 0;
2972 	}
2973 
2974 	/*
2975 	 * For an inline extent, the disk_bytenr is where inline data starts at,
2976 	 * so first check if we have an inline extent item before checking if we
2977 	 * have an implicit hole (disk_bytenr == 0).
2978 	 */
2979 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2980 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2981 		*last_extent_end_ret = btrfs_file_extent_end(path);
2982 		return 0;
2983 	}
2984 
2985 	/*
2986 	 * Find the last file extent item that is not a hole (when NO_HOLES is
2987 	 * not enabled). This should take at most 2 iterations in the worst
2988 	 * case: we have one hole file extent item at slot 0 of a leaf and
2989 	 * another hole file extent item as the last item in the previous leaf.
2990 	 * This is because we merge file extent items that represent holes.
2991 	 */
2992 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2993 	while (disk_bytenr == 0) {
2994 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2995 		if (ret < 0) {
2996 			return ret;
2997 		} else if (ret > 0) {
2998 			/* No file extent items that are not holes. */
2999 			*last_extent_end_ret = 0;
3000 			return 0;
3001 		}
3002 		leaf = path->nodes[0];
3003 		ei = btrfs_item_ptr(leaf, path->slots[0],
3004 				    struct btrfs_file_extent_item);
3005 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3006 	}
3007 
3008 	*last_extent_end_ret = btrfs_file_extent_end(path);
3009 	return 0;
3010 }
3011 
3012 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3013 		  u64 start, u64 len)
3014 {
3015 	const u64 ino = btrfs_ino(inode);
3016 	struct extent_state *cached_state = NULL;
3017 	struct extent_state *delalloc_cached_state = NULL;
3018 	struct btrfs_path *path;
3019 	struct fiemap_cache cache = { 0 };
3020 	struct btrfs_backref_share_check_ctx *backref_ctx;
3021 	u64 last_extent_end;
3022 	u64 prev_extent_end;
3023 	u64 range_start;
3024 	u64 range_end;
3025 	const u64 sectorsize = inode->root->fs_info->sectorsize;
3026 	bool stopped = false;
3027 	int ret;
3028 
3029 	cache.entries_size = PAGE_SIZE / sizeof(struct btrfs_fiemap_entry);
3030 	cache.entries = kmalloc_array(cache.entries_size,
3031 				      sizeof(struct btrfs_fiemap_entry),
3032 				      GFP_KERNEL);
3033 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3034 	path = btrfs_alloc_path();
3035 	if (!cache.entries || !backref_ctx || !path) {
3036 		ret = -ENOMEM;
3037 		goto out;
3038 	}
3039 
3040 restart:
3041 	range_start = round_down(start, sectorsize);
3042 	range_end = round_up(start + len, sectorsize);
3043 	prev_extent_end = range_start;
3044 
3045 	lock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3046 
3047 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3048 	if (ret < 0)
3049 		goto out_unlock;
3050 	btrfs_release_path(path);
3051 
3052 	path->reada = READA_FORWARD;
3053 	ret = fiemap_search_slot(inode, path, range_start);
3054 	if (ret < 0) {
3055 		goto out_unlock;
3056 	} else if (ret > 0) {
3057 		/*
3058 		 * No file extent item found, but we may have delalloc between
3059 		 * the current offset and i_size. So check for that.
3060 		 */
3061 		ret = 0;
3062 		goto check_eof_delalloc;
3063 	}
3064 
3065 	while (prev_extent_end < range_end) {
3066 		struct extent_buffer *leaf = path->nodes[0];
3067 		struct btrfs_file_extent_item *ei;
3068 		struct btrfs_key key;
3069 		u64 extent_end;
3070 		u64 extent_len;
3071 		u64 extent_offset = 0;
3072 		u64 extent_gen;
3073 		u64 disk_bytenr = 0;
3074 		u64 flags = 0;
3075 		int extent_type;
3076 		u8 compression;
3077 
3078 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3079 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3080 			break;
3081 
3082 		extent_end = btrfs_file_extent_end(path);
3083 
3084 		/*
3085 		 * The first iteration can leave us at an extent item that ends
3086 		 * before our range's start. Move to the next item.
3087 		 */
3088 		if (extent_end <= range_start)
3089 			goto next_item;
3090 
3091 		backref_ctx->curr_leaf_bytenr = leaf->start;
3092 
3093 		/* We have in implicit hole (NO_HOLES feature enabled). */
3094 		if (prev_extent_end < key.offset) {
3095 			const u64 hole_end = min(key.offset, range_end) - 1;
3096 
3097 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3098 						  &delalloc_cached_state,
3099 						  backref_ctx, 0, 0, 0,
3100 						  prev_extent_end, hole_end);
3101 			if (ret < 0) {
3102 				goto out_unlock;
3103 			} else if (ret > 0) {
3104 				/* fiemap_fill_next_extent() told us to stop. */
3105 				stopped = true;
3106 				break;
3107 			}
3108 
3109 			/* We've reached the end of the fiemap range, stop. */
3110 			if (key.offset >= range_end) {
3111 				stopped = true;
3112 				break;
3113 			}
3114 		}
3115 
3116 		extent_len = extent_end - key.offset;
3117 		ei = btrfs_item_ptr(leaf, path->slots[0],
3118 				    struct btrfs_file_extent_item);
3119 		compression = btrfs_file_extent_compression(leaf, ei);
3120 		extent_type = btrfs_file_extent_type(leaf, ei);
3121 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3122 
3123 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3124 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3125 			if (compression == BTRFS_COMPRESS_NONE)
3126 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3127 		}
3128 
3129 		if (compression != BTRFS_COMPRESS_NONE)
3130 			flags |= FIEMAP_EXTENT_ENCODED;
3131 
3132 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3133 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3134 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3135 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3136 						 extent_len, flags);
3137 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3138 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3139 						  &delalloc_cached_state,
3140 						  backref_ctx,
3141 						  disk_bytenr, extent_offset,
3142 						  extent_gen, key.offset,
3143 						  extent_end - 1);
3144 		} else if (disk_bytenr == 0) {
3145 			/* We have an explicit hole. */
3146 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3147 						  &delalloc_cached_state,
3148 						  backref_ctx, 0, 0, 0,
3149 						  key.offset, extent_end - 1);
3150 		} else {
3151 			/* We have a regular extent. */
3152 			if (fieinfo->fi_extents_max) {
3153 				ret = btrfs_is_data_extent_shared(inode,
3154 								  disk_bytenr,
3155 								  extent_gen,
3156 								  backref_ctx);
3157 				if (ret < 0)
3158 					goto out_unlock;
3159 				else if (ret > 0)
3160 					flags |= FIEMAP_EXTENT_SHARED;
3161 			}
3162 
3163 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3164 						 disk_bytenr + extent_offset,
3165 						 extent_len, flags);
3166 		}
3167 
3168 		if (ret < 0) {
3169 			goto out_unlock;
3170 		} else if (ret > 0) {
3171 			/* emit_fiemap_extent() told us to stop. */
3172 			stopped = true;
3173 			break;
3174 		}
3175 
3176 		prev_extent_end = extent_end;
3177 next_item:
3178 		if (fatal_signal_pending(current)) {
3179 			ret = -EINTR;
3180 			goto out_unlock;
3181 		}
3182 
3183 		ret = fiemap_next_leaf_item(inode, path);
3184 		if (ret < 0) {
3185 			goto out_unlock;
3186 		} else if (ret > 0) {
3187 			/* No more file extent items for this inode. */
3188 			break;
3189 		}
3190 		cond_resched();
3191 	}
3192 
3193 check_eof_delalloc:
3194 	if (!stopped && prev_extent_end < range_end) {
3195 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3196 					  &delalloc_cached_state, backref_ctx,
3197 					  0, 0, 0, prev_extent_end, range_end - 1);
3198 		if (ret < 0)
3199 			goto out_unlock;
3200 		prev_extent_end = range_end;
3201 	}
3202 
3203 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3204 		const u64 i_size = i_size_read(&inode->vfs_inode);
3205 
3206 		if (prev_extent_end < i_size) {
3207 			u64 delalloc_start;
3208 			u64 delalloc_end;
3209 			bool delalloc;
3210 
3211 			delalloc = btrfs_find_delalloc_in_range(inode,
3212 								prev_extent_end,
3213 								i_size - 1,
3214 								&delalloc_cached_state,
3215 								&delalloc_start,
3216 								&delalloc_end);
3217 			if (!delalloc)
3218 				cache.flags |= FIEMAP_EXTENT_LAST;
3219 		} else {
3220 			cache.flags |= FIEMAP_EXTENT_LAST;
3221 		}
3222 	}
3223 
3224 out_unlock:
3225 	unlock_extent(&inode->io_tree, range_start, range_end, &cached_state);
3226 
3227 	if (ret == BTRFS_FIEMAP_FLUSH_CACHE) {
3228 		btrfs_release_path(path);
3229 		ret = flush_fiemap_cache(fieinfo, &cache);
3230 		if (ret)
3231 			goto out;
3232 		len -= cache.next_search_offset - start;
3233 		start = cache.next_search_offset;
3234 		goto restart;
3235 	} else if (ret < 0) {
3236 		goto out;
3237 	}
3238 
3239 	/*
3240 	 * Must free the path before emitting to the fiemap buffer because we
3241 	 * may have a non-cloned leaf and if the fiemap buffer is memory mapped
3242 	 * to a file, a write into it (through btrfs_page_mkwrite()) may trigger
3243 	 * waiting for an ordered extent that in order to complete needs to
3244 	 * modify that leaf, therefore leading to a deadlock.
3245 	 */
3246 	btrfs_free_path(path);
3247 	path = NULL;
3248 
3249 	ret = flush_fiemap_cache(fieinfo, &cache);
3250 	if (ret)
3251 		goto out;
3252 
3253 	ret = emit_last_fiemap_cache(fieinfo, &cache);
3254 out:
3255 	free_extent_state(delalloc_cached_state);
3256 	kfree(cache.entries);
3257 	btrfs_free_backref_share_ctx(backref_ctx);
3258 	btrfs_free_path(path);
3259 	return ret;
3260 }
3261 
3262 static void __free_extent_buffer(struct extent_buffer *eb)
3263 {
3264 	kmem_cache_free(extent_buffer_cache, eb);
3265 }
3266 
3267 static int extent_buffer_under_io(const struct extent_buffer *eb)
3268 {
3269 	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3270 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3271 }
3272 
3273 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
3274 {
3275 	struct btrfs_subpage *subpage;
3276 
3277 	lockdep_assert_held(&page->mapping->private_lock);
3278 
3279 	if (PagePrivate(page)) {
3280 		subpage = (struct btrfs_subpage *)page->private;
3281 		if (atomic_read(&subpage->eb_refs))
3282 			return true;
3283 		/*
3284 		 * Even there is no eb refs here, we may still have
3285 		 * end_page_read() call relying on page::private.
3286 		 */
3287 		if (atomic_read(&subpage->readers))
3288 			return true;
3289 	}
3290 	return false;
3291 }
3292 
3293 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3294 {
3295 	struct btrfs_fs_info *fs_info = eb->fs_info;
3296 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3297 
3298 	/*
3299 	 * For mapped eb, we're going to change the page private, which should
3300 	 * be done under the private_lock.
3301 	 */
3302 	if (mapped)
3303 		spin_lock(&page->mapping->private_lock);
3304 
3305 	if (!PagePrivate(page)) {
3306 		if (mapped)
3307 			spin_unlock(&page->mapping->private_lock);
3308 		return;
3309 	}
3310 
3311 	if (fs_info->nodesize >= PAGE_SIZE) {
3312 		/*
3313 		 * We do this since we'll remove the pages after we've
3314 		 * removed the eb from the radix tree, so we could race
3315 		 * and have this page now attached to the new eb.  So
3316 		 * only clear page_private if it's still connected to
3317 		 * this eb.
3318 		 */
3319 		if (PagePrivate(page) &&
3320 		    page->private == (unsigned long)eb) {
3321 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3322 			BUG_ON(PageDirty(page));
3323 			BUG_ON(PageWriteback(page));
3324 			/*
3325 			 * We need to make sure we haven't be attached
3326 			 * to a new eb.
3327 			 */
3328 			detach_page_private(page);
3329 		}
3330 		if (mapped)
3331 			spin_unlock(&page->mapping->private_lock);
3332 		return;
3333 	}
3334 
3335 	/*
3336 	 * For subpage, we can have dummy eb with page private.  In this case,
3337 	 * we can directly detach the private as such page is only attached to
3338 	 * one dummy eb, no sharing.
3339 	 */
3340 	if (!mapped) {
3341 		btrfs_detach_subpage(fs_info, page);
3342 		return;
3343 	}
3344 
3345 	btrfs_page_dec_eb_refs(fs_info, page);
3346 
3347 	/*
3348 	 * We can only detach the page private if there are no other ebs in the
3349 	 * page range and no unfinished IO.
3350 	 */
3351 	if (!page_range_has_eb(fs_info, page))
3352 		btrfs_detach_subpage(fs_info, page);
3353 
3354 	spin_unlock(&page->mapping->private_lock);
3355 }
3356 
3357 /* Release all pages attached to the extent buffer */
3358 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3359 {
3360 	int i;
3361 	int num_pages;
3362 
3363 	ASSERT(!extent_buffer_under_io(eb));
3364 
3365 	num_pages = num_extent_pages(eb);
3366 	for (i = 0; i < num_pages; i++) {
3367 		struct page *page = eb->pages[i];
3368 
3369 		if (!page)
3370 			continue;
3371 
3372 		detach_extent_buffer_page(eb, page);
3373 
3374 		/* One for when we allocated the page */
3375 		put_page(page);
3376 	}
3377 }
3378 
3379 /*
3380  * Helper for releasing the extent buffer.
3381  */
3382 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3383 {
3384 	btrfs_release_extent_buffer_pages(eb);
3385 	btrfs_leak_debug_del_eb(eb);
3386 	__free_extent_buffer(eb);
3387 }
3388 
3389 static struct extent_buffer *
3390 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3391 		      unsigned long len)
3392 {
3393 	struct extent_buffer *eb = NULL;
3394 
3395 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3396 	eb->start = start;
3397 	eb->len = len;
3398 	eb->fs_info = fs_info;
3399 	init_rwsem(&eb->lock);
3400 
3401 	btrfs_leak_debug_add_eb(eb);
3402 
3403 	spin_lock_init(&eb->refs_lock);
3404 	atomic_set(&eb->refs, 1);
3405 
3406 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3407 
3408 	return eb;
3409 }
3410 
3411 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3412 {
3413 	int i;
3414 	struct extent_buffer *new;
3415 	int num_pages = num_extent_pages(src);
3416 	int ret;
3417 
3418 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3419 	if (new == NULL)
3420 		return NULL;
3421 
3422 	/*
3423 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3424 	 * btrfs_release_extent_buffer() have different behavior for
3425 	 * UNMAPPED subpage extent buffer.
3426 	 */
3427 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3428 
3429 	ret = btrfs_alloc_page_array(num_pages, new->pages);
3430 	if (ret) {
3431 		btrfs_release_extent_buffer(new);
3432 		return NULL;
3433 	}
3434 
3435 	for (i = 0; i < num_pages; i++) {
3436 		int ret;
3437 		struct page *p = new->pages[i];
3438 
3439 		ret = attach_extent_buffer_page(new, p, NULL);
3440 		if (ret < 0) {
3441 			btrfs_release_extent_buffer(new);
3442 			return NULL;
3443 		}
3444 		WARN_ON(PageDirty(p));
3445 	}
3446 	copy_extent_buffer_full(new, src);
3447 	set_extent_buffer_uptodate(new);
3448 
3449 	return new;
3450 }
3451 
3452 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3453 						  u64 start, unsigned long len)
3454 {
3455 	struct extent_buffer *eb;
3456 	int num_pages;
3457 	int i;
3458 	int ret;
3459 
3460 	eb = __alloc_extent_buffer(fs_info, start, len);
3461 	if (!eb)
3462 		return NULL;
3463 
3464 	num_pages = num_extent_pages(eb);
3465 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
3466 	if (ret)
3467 		goto err;
3468 
3469 	for (i = 0; i < num_pages; i++) {
3470 		struct page *p = eb->pages[i];
3471 
3472 		ret = attach_extent_buffer_page(eb, p, NULL);
3473 		if (ret < 0)
3474 			goto err;
3475 	}
3476 
3477 	set_extent_buffer_uptodate(eb);
3478 	btrfs_set_header_nritems(eb, 0);
3479 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3480 
3481 	return eb;
3482 err:
3483 	for (i = 0; i < num_pages; i++) {
3484 		if (eb->pages[i]) {
3485 			detach_extent_buffer_page(eb, eb->pages[i]);
3486 			__free_page(eb->pages[i]);
3487 		}
3488 	}
3489 	__free_extent_buffer(eb);
3490 	return NULL;
3491 }
3492 
3493 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3494 						u64 start)
3495 {
3496 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3497 }
3498 
3499 static void check_buffer_tree_ref(struct extent_buffer *eb)
3500 {
3501 	int refs;
3502 	/*
3503 	 * The TREE_REF bit is first set when the extent_buffer is added
3504 	 * to the radix tree. It is also reset, if unset, when a new reference
3505 	 * is created by find_extent_buffer.
3506 	 *
3507 	 * It is only cleared in two cases: freeing the last non-tree
3508 	 * reference to the extent_buffer when its STALE bit is set or
3509 	 * calling release_folio when the tree reference is the only reference.
3510 	 *
3511 	 * In both cases, care is taken to ensure that the extent_buffer's
3512 	 * pages are not under io. However, release_folio can be concurrently
3513 	 * called with creating new references, which is prone to race
3514 	 * conditions between the calls to check_buffer_tree_ref in those
3515 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3516 	 *
3517 	 * The actual lifetime of the extent_buffer in the radix tree is
3518 	 * adequately protected by the refcount, but the TREE_REF bit and
3519 	 * its corresponding reference are not. To protect against this
3520 	 * class of races, we call check_buffer_tree_ref from the codepaths
3521 	 * which trigger io. Note that once io is initiated, TREE_REF can no
3522 	 * longer be cleared, so that is the moment at which any such race is
3523 	 * best fixed.
3524 	 */
3525 	refs = atomic_read(&eb->refs);
3526 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3527 		return;
3528 
3529 	spin_lock(&eb->refs_lock);
3530 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3531 		atomic_inc(&eb->refs);
3532 	spin_unlock(&eb->refs_lock);
3533 }
3534 
3535 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3536 		struct page *accessed)
3537 {
3538 	int num_pages, i;
3539 
3540 	check_buffer_tree_ref(eb);
3541 
3542 	num_pages = num_extent_pages(eb);
3543 	for (i = 0; i < num_pages; i++) {
3544 		struct page *p = eb->pages[i];
3545 
3546 		if (p != accessed)
3547 			mark_page_accessed(p);
3548 	}
3549 }
3550 
3551 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3552 					 u64 start)
3553 {
3554 	struct extent_buffer *eb;
3555 
3556 	eb = find_extent_buffer_nolock(fs_info, start);
3557 	if (!eb)
3558 		return NULL;
3559 	/*
3560 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3561 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3562 	 * another task running free_extent_buffer() might have seen that flag
3563 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3564 	 * writeback flags not set) and it's still in the tree (flag
3565 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3566 	 * decrementing the extent buffer's reference count twice.  So here we
3567 	 * could race and increment the eb's reference count, clear its stale
3568 	 * flag, mark it as dirty and drop our reference before the other task
3569 	 * finishes executing free_extent_buffer, which would later result in
3570 	 * an attempt to free an extent buffer that is dirty.
3571 	 */
3572 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3573 		spin_lock(&eb->refs_lock);
3574 		spin_unlock(&eb->refs_lock);
3575 	}
3576 	mark_extent_buffer_accessed(eb, NULL);
3577 	return eb;
3578 }
3579 
3580 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3581 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3582 					u64 start)
3583 {
3584 	struct extent_buffer *eb, *exists = NULL;
3585 	int ret;
3586 
3587 	eb = find_extent_buffer(fs_info, start);
3588 	if (eb)
3589 		return eb;
3590 	eb = alloc_dummy_extent_buffer(fs_info, start);
3591 	if (!eb)
3592 		return ERR_PTR(-ENOMEM);
3593 	eb->fs_info = fs_info;
3594 again:
3595 	ret = radix_tree_preload(GFP_NOFS);
3596 	if (ret) {
3597 		exists = ERR_PTR(ret);
3598 		goto free_eb;
3599 	}
3600 	spin_lock(&fs_info->buffer_lock);
3601 	ret = radix_tree_insert(&fs_info->buffer_radix,
3602 				start >> fs_info->sectorsize_bits, eb);
3603 	spin_unlock(&fs_info->buffer_lock);
3604 	radix_tree_preload_end();
3605 	if (ret == -EEXIST) {
3606 		exists = find_extent_buffer(fs_info, start);
3607 		if (exists)
3608 			goto free_eb;
3609 		else
3610 			goto again;
3611 	}
3612 	check_buffer_tree_ref(eb);
3613 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3614 
3615 	return eb;
3616 free_eb:
3617 	btrfs_release_extent_buffer(eb);
3618 	return exists;
3619 }
3620 #endif
3621 
3622 static struct extent_buffer *grab_extent_buffer(
3623 		struct btrfs_fs_info *fs_info, struct page *page)
3624 {
3625 	struct extent_buffer *exists;
3626 
3627 	/*
3628 	 * For subpage case, we completely rely on radix tree to ensure we
3629 	 * don't try to insert two ebs for the same bytenr.  So here we always
3630 	 * return NULL and just continue.
3631 	 */
3632 	if (fs_info->nodesize < PAGE_SIZE)
3633 		return NULL;
3634 
3635 	/* Page not yet attached to an extent buffer */
3636 	if (!PagePrivate(page))
3637 		return NULL;
3638 
3639 	/*
3640 	 * We could have already allocated an eb for this page and attached one
3641 	 * so lets see if we can get a ref on the existing eb, and if we can we
3642 	 * know it's good and we can just return that one, else we know we can
3643 	 * just overwrite page->private.
3644 	 */
3645 	exists = (struct extent_buffer *)page->private;
3646 	if (atomic_inc_not_zero(&exists->refs))
3647 		return exists;
3648 
3649 	WARN_ON(PageDirty(page));
3650 	detach_page_private(page);
3651 	return NULL;
3652 }
3653 
3654 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3655 {
3656 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3657 		btrfs_err(fs_info, "bad tree block start %llu", start);
3658 		return -EINVAL;
3659 	}
3660 
3661 	if (fs_info->nodesize < PAGE_SIZE &&
3662 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3663 		btrfs_err(fs_info,
3664 		"tree block crosses page boundary, start %llu nodesize %u",
3665 			  start, fs_info->nodesize);
3666 		return -EINVAL;
3667 	}
3668 	if (fs_info->nodesize >= PAGE_SIZE &&
3669 	    !PAGE_ALIGNED(start)) {
3670 		btrfs_err(fs_info,
3671 		"tree block is not page aligned, start %llu nodesize %u",
3672 			  start, fs_info->nodesize);
3673 		return -EINVAL;
3674 	}
3675 	return 0;
3676 }
3677 
3678 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3679 					  u64 start, u64 owner_root, int level)
3680 {
3681 	unsigned long len = fs_info->nodesize;
3682 	int num_pages;
3683 	int i;
3684 	unsigned long index = start >> PAGE_SHIFT;
3685 	struct extent_buffer *eb;
3686 	struct extent_buffer *exists = NULL;
3687 	struct page *p;
3688 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3689 	struct btrfs_subpage *prealloc = NULL;
3690 	u64 lockdep_owner = owner_root;
3691 	int uptodate = 1;
3692 	int ret;
3693 
3694 	if (check_eb_alignment(fs_info, start))
3695 		return ERR_PTR(-EINVAL);
3696 
3697 #if BITS_PER_LONG == 32
3698 	if (start >= MAX_LFS_FILESIZE) {
3699 		btrfs_err_rl(fs_info,
3700 		"extent buffer %llu is beyond 32bit page cache limit", start);
3701 		btrfs_err_32bit_limit(fs_info);
3702 		return ERR_PTR(-EOVERFLOW);
3703 	}
3704 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3705 		btrfs_warn_32bit_limit(fs_info);
3706 #endif
3707 
3708 	eb = find_extent_buffer(fs_info, start);
3709 	if (eb)
3710 		return eb;
3711 
3712 	eb = __alloc_extent_buffer(fs_info, start, len);
3713 	if (!eb)
3714 		return ERR_PTR(-ENOMEM);
3715 
3716 	/*
3717 	 * The reloc trees are just snapshots, so we need them to appear to be
3718 	 * just like any other fs tree WRT lockdep.
3719 	 */
3720 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3721 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3722 
3723 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3724 
3725 	num_pages = num_extent_pages(eb);
3726 
3727 	/*
3728 	 * Preallocate page->private for subpage case, so that we won't
3729 	 * allocate memory with private_lock nor page lock hold.
3730 	 *
3731 	 * The memory will be freed by attach_extent_buffer_page() or freed
3732 	 * manually if we exit earlier.
3733 	 */
3734 	if (fs_info->nodesize < PAGE_SIZE) {
3735 		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3736 		if (IS_ERR(prealloc)) {
3737 			exists = ERR_CAST(prealloc);
3738 			goto free_eb;
3739 		}
3740 	}
3741 
3742 	for (i = 0; i < num_pages; i++, index++) {
3743 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
3744 		if (!p) {
3745 			exists = ERR_PTR(-ENOMEM);
3746 			btrfs_free_subpage(prealloc);
3747 			goto free_eb;
3748 		}
3749 
3750 		spin_lock(&mapping->private_lock);
3751 		exists = grab_extent_buffer(fs_info, p);
3752 		if (exists) {
3753 			spin_unlock(&mapping->private_lock);
3754 			unlock_page(p);
3755 			put_page(p);
3756 			mark_extent_buffer_accessed(exists, p);
3757 			btrfs_free_subpage(prealloc);
3758 			goto free_eb;
3759 		}
3760 		/* Should not fail, as we have preallocated the memory */
3761 		ret = attach_extent_buffer_page(eb, p, prealloc);
3762 		ASSERT(!ret);
3763 		/*
3764 		 * To inform we have extra eb under allocation, so that
3765 		 * detach_extent_buffer_page() won't release the page private
3766 		 * when the eb hasn't yet been inserted into radix tree.
3767 		 *
3768 		 * The ref will be decreased when the eb released the page, in
3769 		 * detach_extent_buffer_page().
3770 		 * Thus needs no special handling in error path.
3771 		 */
3772 		btrfs_page_inc_eb_refs(fs_info, p);
3773 		spin_unlock(&mapping->private_lock);
3774 
3775 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
3776 		eb->pages[i] = p;
3777 		if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
3778 			uptodate = 0;
3779 
3780 		/*
3781 		 * We can't unlock the pages just yet since the extent buffer
3782 		 * hasn't been properly inserted in the radix tree, this
3783 		 * opens a race with btree_release_folio which can free a page
3784 		 * while we are still filling in all pages for the buffer and
3785 		 * we could crash.
3786 		 */
3787 	}
3788 	if (uptodate)
3789 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3790 again:
3791 	ret = radix_tree_preload(GFP_NOFS);
3792 	if (ret) {
3793 		exists = ERR_PTR(ret);
3794 		goto free_eb;
3795 	}
3796 
3797 	spin_lock(&fs_info->buffer_lock);
3798 	ret = radix_tree_insert(&fs_info->buffer_radix,
3799 				start >> fs_info->sectorsize_bits, eb);
3800 	spin_unlock(&fs_info->buffer_lock);
3801 	radix_tree_preload_end();
3802 	if (ret == -EEXIST) {
3803 		exists = find_extent_buffer(fs_info, start);
3804 		if (exists)
3805 			goto free_eb;
3806 		else
3807 			goto again;
3808 	}
3809 	/* add one reference for the tree */
3810 	check_buffer_tree_ref(eb);
3811 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3812 
3813 	/*
3814 	 * Now it's safe to unlock the pages because any calls to
3815 	 * btree_release_folio will correctly detect that a page belongs to a
3816 	 * live buffer and won't free them prematurely.
3817 	 */
3818 	for (i = 0; i < num_pages; i++)
3819 		unlock_page(eb->pages[i]);
3820 	return eb;
3821 
3822 free_eb:
3823 	WARN_ON(!atomic_dec_and_test(&eb->refs));
3824 	for (i = 0; i < num_pages; i++) {
3825 		if (eb->pages[i])
3826 			unlock_page(eb->pages[i]);
3827 	}
3828 
3829 	btrfs_release_extent_buffer(eb);
3830 	return exists;
3831 }
3832 
3833 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3834 {
3835 	struct extent_buffer *eb =
3836 			container_of(head, struct extent_buffer, rcu_head);
3837 
3838 	__free_extent_buffer(eb);
3839 }
3840 
3841 static int release_extent_buffer(struct extent_buffer *eb)
3842 	__releases(&eb->refs_lock)
3843 {
3844 	lockdep_assert_held(&eb->refs_lock);
3845 
3846 	WARN_ON(atomic_read(&eb->refs) == 0);
3847 	if (atomic_dec_and_test(&eb->refs)) {
3848 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3849 			struct btrfs_fs_info *fs_info = eb->fs_info;
3850 
3851 			spin_unlock(&eb->refs_lock);
3852 
3853 			spin_lock(&fs_info->buffer_lock);
3854 			radix_tree_delete(&fs_info->buffer_radix,
3855 					  eb->start >> fs_info->sectorsize_bits);
3856 			spin_unlock(&fs_info->buffer_lock);
3857 		} else {
3858 			spin_unlock(&eb->refs_lock);
3859 		}
3860 
3861 		btrfs_leak_debug_del_eb(eb);
3862 		/* Should be safe to release our pages at this point */
3863 		btrfs_release_extent_buffer_pages(eb);
3864 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3865 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3866 			__free_extent_buffer(eb);
3867 			return 1;
3868 		}
3869 #endif
3870 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3871 		return 1;
3872 	}
3873 	spin_unlock(&eb->refs_lock);
3874 
3875 	return 0;
3876 }
3877 
3878 void free_extent_buffer(struct extent_buffer *eb)
3879 {
3880 	int refs;
3881 	if (!eb)
3882 		return;
3883 
3884 	refs = atomic_read(&eb->refs);
3885 	while (1) {
3886 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3887 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3888 			refs == 1))
3889 			break;
3890 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3891 			return;
3892 	}
3893 
3894 	spin_lock(&eb->refs_lock);
3895 	if (atomic_read(&eb->refs) == 2 &&
3896 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3897 	    !extent_buffer_under_io(eb) &&
3898 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3899 		atomic_dec(&eb->refs);
3900 
3901 	/*
3902 	 * I know this is terrible, but it's temporary until we stop tracking
3903 	 * the uptodate bits and such for the extent buffers.
3904 	 */
3905 	release_extent_buffer(eb);
3906 }
3907 
3908 void free_extent_buffer_stale(struct extent_buffer *eb)
3909 {
3910 	if (!eb)
3911 		return;
3912 
3913 	spin_lock(&eb->refs_lock);
3914 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3915 
3916 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3917 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3918 		atomic_dec(&eb->refs);
3919 	release_extent_buffer(eb);
3920 }
3921 
3922 static void btree_clear_page_dirty(struct page *page)
3923 {
3924 	ASSERT(PageDirty(page));
3925 	ASSERT(PageLocked(page));
3926 	clear_page_dirty_for_io(page);
3927 	xa_lock_irq(&page->mapping->i_pages);
3928 	if (!PageDirty(page))
3929 		__xa_clear_mark(&page->mapping->i_pages,
3930 				page_index(page), PAGECACHE_TAG_DIRTY);
3931 	xa_unlock_irq(&page->mapping->i_pages);
3932 }
3933 
3934 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3935 {
3936 	struct btrfs_fs_info *fs_info = eb->fs_info;
3937 	struct page *page = eb->pages[0];
3938 	bool last;
3939 
3940 	/* btree_clear_page_dirty() needs page locked */
3941 	lock_page(page);
3942 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3943 						  eb->len);
3944 	if (last)
3945 		btree_clear_page_dirty(page);
3946 	unlock_page(page);
3947 	WARN_ON(atomic_read(&eb->refs) == 0);
3948 }
3949 
3950 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3951 			      struct extent_buffer *eb)
3952 {
3953 	struct btrfs_fs_info *fs_info = eb->fs_info;
3954 	int i;
3955 	int num_pages;
3956 	struct page *page;
3957 
3958 	btrfs_assert_tree_write_locked(eb);
3959 
3960 	if (trans && btrfs_header_generation(eb) != trans->transid)
3961 		return;
3962 
3963 	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3964 		return;
3965 
3966 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3967 				 fs_info->dirty_metadata_batch);
3968 
3969 	if (eb->fs_info->nodesize < PAGE_SIZE)
3970 		return clear_subpage_extent_buffer_dirty(eb);
3971 
3972 	num_pages = num_extent_pages(eb);
3973 
3974 	for (i = 0; i < num_pages; i++) {
3975 		page = eb->pages[i];
3976 		if (!PageDirty(page))
3977 			continue;
3978 		lock_page(page);
3979 		btree_clear_page_dirty(page);
3980 		unlock_page(page);
3981 	}
3982 	WARN_ON(atomic_read(&eb->refs) == 0);
3983 }
3984 
3985 void set_extent_buffer_dirty(struct extent_buffer *eb)
3986 {
3987 	int i;
3988 	int num_pages;
3989 	bool was_dirty;
3990 
3991 	check_buffer_tree_ref(eb);
3992 
3993 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3994 
3995 	num_pages = num_extent_pages(eb);
3996 	WARN_ON(atomic_read(&eb->refs) == 0);
3997 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3998 
3999 	if (!was_dirty) {
4000 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4001 
4002 		/*
4003 		 * For subpage case, we can have other extent buffers in the
4004 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4005 		 * have to clear page dirty without subpage lock held.
4006 		 * This can cause race where our page gets dirty cleared after
4007 		 * we just set it.
4008 		 *
4009 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4010 		 * its page for other reasons, we can use page lock to prevent
4011 		 * the above race.
4012 		 */
4013 		if (subpage)
4014 			lock_page(eb->pages[0]);
4015 		for (i = 0; i < num_pages; i++)
4016 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4017 					     eb->start, eb->len);
4018 		if (subpage)
4019 			unlock_page(eb->pages[0]);
4020 		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4021 					 eb->len,
4022 					 eb->fs_info->dirty_metadata_batch);
4023 	}
4024 #ifdef CONFIG_BTRFS_DEBUG
4025 	for (i = 0; i < num_pages; i++)
4026 		ASSERT(PageDirty(eb->pages[i]));
4027 #endif
4028 }
4029 
4030 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4031 {
4032 	struct btrfs_fs_info *fs_info = eb->fs_info;
4033 	struct page *page;
4034 	int num_pages;
4035 	int i;
4036 
4037 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4038 	num_pages = num_extent_pages(eb);
4039 	for (i = 0; i < num_pages; i++) {
4040 		page = eb->pages[i];
4041 		if (!page)
4042 			continue;
4043 
4044 		/*
4045 		 * This is special handling for metadata subpage, as regular
4046 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4047 		 */
4048 		if (fs_info->nodesize >= PAGE_SIZE)
4049 			ClearPageUptodate(page);
4050 		else
4051 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4052 						     eb->len);
4053 	}
4054 }
4055 
4056 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4057 {
4058 	struct btrfs_fs_info *fs_info = eb->fs_info;
4059 	struct page *page;
4060 	int num_pages;
4061 	int i;
4062 
4063 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4064 	num_pages = num_extent_pages(eb);
4065 	for (i = 0; i < num_pages; i++) {
4066 		page = eb->pages[i];
4067 
4068 		/*
4069 		 * This is special handling for metadata subpage, as regular
4070 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4071 		 */
4072 		if (fs_info->nodesize >= PAGE_SIZE)
4073 			SetPageUptodate(page);
4074 		else
4075 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4076 						   eb->len);
4077 	}
4078 }
4079 
4080 static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
4081 {
4082 	struct extent_buffer *eb = bbio->private;
4083 	struct btrfs_fs_info *fs_info = eb->fs_info;
4084 	bool uptodate = !bbio->bio.bi_status;
4085 	struct bvec_iter_all iter_all;
4086 	struct bio_vec *bvec;
4087 	u32 bio_offset = 0;
4088 
4089 	eb->read_mirror = bbio->mirror_num;
4090 
4091 	if (uptodate &&
4092 	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4093 		uptodate = false;
4094 
4095 	if (uptodate) {
4096 		set_extent_buffer_uptodate(eb);
4097 	} else {
4098 		clear_extent_buffer_uptodate(eb);
4099 		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4100 	}
4101 
4102 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
4103 		u64 start = eb->start + bio_offset;
4104 		struct page *page = bvec->bv_page;
4105 		u32 len = bvec->bv_len;
4106 
4107 		if (uptodate)
4108 			btrfs_page_set_uptodate(fs_info, page, start, len);
4109 		else
4110 			btrfs_page_clear_uptodate(fs_info, page, start, len);
4111 
4112 		bio_offset += len;
4113 	}
4114 
4115 	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4116 	smp_mb__after_atomic();
4117 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4118 	free_extent_buffer(eb);
4119 
4120 	bio_put(&bbio->bio);
4121 }
4122 
4123 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4124 			     struct btrfs_tree_parent_check *check)
4125 {
4126 	int num_pages = num_extent_pages(eb), i;
4127 	struct btrfs_bio *bbio;
4128 
4129 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4130 		return 0;
4131 
4132 	/*
4133 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4134 	 * operation, which could potentially still be in flight.  In this case
4135 	 * we simply want to return an error.
4136 	 */
4137 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4138 		return -EIO;
4139 
4140 	/* Someone else is already reading the buffer, just wait for it. */
4141 	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4142 		goto done;
4143 
4144 	/*
4145 	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
4146 	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
4147 	 * started and finished reading the same eb.  In this case, UPTODATE
4148 	 * will now be set, and we shouldn't read it in again.
4149 	 */
4150 	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
4151 		clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4152 		smp_mb__after_atomic();
4153 		wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4154 		return 0;
4155 	}
4156 
4157 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4158 	eb->read_mirror = 0;
4159 	check_buffer_tree_ref(eb);
4160 	atomic_inc(&eb->refs);
4161 
4162 	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4163 			       REQ_OP_READ | REQ_META, eb->fs_info,
4164 			       extent_buffer_read_end_io, eb);
4165 	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4166 	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4167 	bbio->file_offset = eb->start;
4168 	memcpy(&bbio->parent_check, check, sizeof(*check));
4169 	if (eb->fs_info->nodesize < PAGE_SIZE) {
4170 		__bio_add_page(&bbio->bio, eb->pages[0], eb->len,
4171 			       eb->start - page_offset(eb->pages[0]));
4172 	} else {
4173 		for (i = 0; i < num_pages; i++)
4174 			__bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
4175 	}
4176 	btrfs_submit_bio(bbio, mirror_num);
4177 
4178 done:
4179 	if (wait == WAIT_COMPLETE) {
4180 		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4181 		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4182 			return -EIO;
4183 	}
4184 
4185 	return 0;
4186 }
4187 
4188 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4189 			    unsigned long len)
4190 {
4191 	btrfs_warn(eb->fs_info,
4192 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4193 		eb->start, eb->len, start, len);
4194 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4195 
4196 	return true;
4197 }
4198 
4199 /*
4200  * Check if the [start, start + len) range is valid before reading/writing
4201  * the eb.
4202  * NOTE: @start and @len are offset inside the eb, not logical address.
4203  *
4204  * Caller should not touch the dst/src memory if this function returns error.
4205  */
4206 static inline int check_eb_range(const struct extent_buffer *eb,
4207 				 unsigned long start, unsigned long len)
4208 {
4209 	unsigned long offset;
4210 
4211 	/* start, start + len should not go beyond eb->len nor overflow */
4212 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4213 		return report_eb_range(eb, start, len);
4214 
4215 	return false;
4216 }
4217 
4218 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4219 			unsigned long start, unsigned long len)
4220 {
4221 	size_t cur;
4222 	size_t offset;
4223 	struct page *page;
4224 	char *kaddr;
4225 	char *dst = (char *)dstv;
4226 	unsigned long i = get_eb_page_index(start);
4227 
4228 	if (check_eb_range(eb, start, len)) {
4229 		/*
4230 		 * Invalid range hit, reset the memory, so callers won't get
4231 		 * some random garbage for their uninitialzed memory.
4232 		 */
4233 		memset(dstv, 0, len);
4234 		return;
4235 	}
4236 
4237 	offset = get_eb_offset_in_page(eb, start);
4238 
4239 	while (len > 0) {
4240 		page = eb->pages[i];
4241 
4242 		cur = min(len, (PAGE_SIZE - offset));
4243 		kaddr = page_address(page);
4244 		memcpy(dst, kaddr + offset, cur);
4245 
4246 		dst += cur;
4247 		len -= cur;
4248 		offset = 0;
4249 		i++;
4250 	}
4251 }
4252 
4253 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4254 				       void __user *dstv,
4255 				       unsigned long start, unsigned long len)
4256 {
4257 	size_t cur;
4258 	size_t offset;
4259 	struct page *page;
4260 	char *kaddr;
4261 	char __user *dst = (char __user *)dstv;
4262 	unsigned long i = get_eb_page_index(start);
4263 	int ret = 0;
4264 
4265 	WARN_ON(start > eb->len);
4266 	WARN_ON(start + len > eb->start + eb->len);
4267 
4268 	offset = get_eb_offset_in_page(eb, start);
4269 
4270 	while (len > 0) {
4271 		page = eb->pages[i];
4272 
4273 		cur = min(len, (PAGE_SIZE - offset));
4274 		kaddr = page_address(page);
4275 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4276 			ret = -EFAULT;
4277 			break;
4278 		}
4279 
4280 		dst += cur;
4281 		len -= cur;
4282 		offset = 0;
4283 		i++;
4284 	}
4285 
4286 	return ret;
4287 }
4288 
4289 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4290 			 unsigned long start, unsigned long len)
4291 {
4292 	size_t cur;
4293 	size_t offset;
4294 	struct page *page;
4295 	char *kaddr;
4296 	char *ptr = (char *)ptrv;
4297 	unsigned long i = get_eb_page_index(start);
4298 	int ret = 0;
4299 
4300 	if (check_eb_range(eb, start, len))
4301 		return -EINVAL;
4302 
4303 	offset = get_eb_offset_in_page(eb, start);
4304 
4305 	while (len > 0) {
4306 		page = eb->pages[i];
4307 
4308 		cur = min(len, (PAGE_SIZE - offset));
4309 
4310 		kaddr = page_address(page);
4311 		ret = memcmp(ptr, kaddr + offset, cur);
4312 		if (ret)
4313 			break;
4314 
4315 		ptr += cur;
4316 		len -= cur;
4317 		offset = 0;
4318 		i++;
4319 	}
4320 	return ret;
4321 }
4322 
4323 /*
4324  * Check that the extent buffer is uptodate.
4325  *
4326  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4327  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4328  */
4329 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4330 				    struct page *page)
4331 {
4332 	struct btrfs_fs_info *fs_info = eb->fs_info;
4333 
4334 	/*
4335 	 * If we are using the commit root we could potentially clear a page
4336 	 * Uptodate while we're using the extent buffer that we've previously
4337 	 * looked up.  We don't want to complain in this case, as the page was
4338 	 * valid before, we just didn't write it out.  Instead we want to catch
4339 	 * the case where we didn't actually read the block properly, which
4340 	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4341 	 */
4342 	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4343 		return;
4344 
4345 	if (fs_info->nodesize < PAGE_SIZE) {
4346 		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4347 							 eb->start, eb->len)))
4348 			btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
4349 	} else {
4350 		WARN_ON(!PageUptodate(page));
4351 	}
4352 }
4353 
4354 static void __write_extent_buffer(const struct extent_buffer *eb,
4355 				  const void *srcv, unsigned long start,
4356 				  unsigned long len, bool use_memmove)
4357 {
4358 	size_t cur;
4359 	size_t offset;
4360 	struct page *page;
4361 	char *kaddr;
4362 	char *src = (char *)srcv;
4363 	unsigned long i = get_eb_page_index(start);
4364 	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4365 	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4366 
4367 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4368 
4369 	if (check_eb_range(eb, start, len))
4370 		return;
4371 
4372 	offset = get_eb_offset_in_page(eb, start);
4373 
4374 	while (len > 0) {
4375 		page = eb->pages[i];
4376 		if (check_uptodate)
4377 			assert_eb_page_uptodate(eb, page);
4378 
4379 		cur = min(len, PAGE_SIZE - offset);
4380 		kaddr = page_address(page);
4381 		if (use_memmove)
4382 			memmove(kaddr + offset, src, cur);
4383 		else
4384 			memcpy(kaddr + offset, src, cur);
4385 
4386 		src += cur;
4387 		len -= cur;
4388 		offset = 0;
4389 		i++;
4390 	}
4391 }
4392 
4393 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4394 			 unsigned long start, unsigned long len)
4395 {
4396 	return __write_extent_buffer(eb, srcv, start, len, false);
4397 }
4398 
4399 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4400 				 unsigned long start, unsigned long len)
4401 {
4402 	unsigned long cur = start;
4403 
4404 	while (cur < start + len) {
4405 		unsigned long index = get_eb_page_index(cur);
4406 		unsigned int offset = get_eb_offset_in_page(eb, cur);
4407 		unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4408 		struct page *page = eb->pages[index];
4409 
4410 		assert_eb_page_uptodate(eb, page);
4411 		memset(page_address(page) + offset, c, cur_len);
4412 
4413 		cur += cur_len;
4414 	}
4415 }
4416 
4417 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4418 			   unsigned long len)
4419 {
4420 	if (check_eb_range(eb, start, len))
4421 		return;
4422 	return memset_extent_buffer(eb, 0, start, len);
4423 }
4424 
4425 void copy_extent_buffer_full(const struct extent_buffer *dst,
4426 			     const struct extent_buffer *src)
4427 {
4428 	unsigned long cur = 0;
4429 
4430 	ASSERT(dst->len == src->len);
4431 
4432 	while (cur < src->len) {
4433 		unsigned long index = get_eb_page_index(cur);
4434 		unsigned long offset = get_eb_offset_in_page(src, cur);
4435 		unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4436 		void *addr = page_address(src->pages[index]) + offset;
4437 
4438 		write_extent_buffer(dst, addr, cur, cur_len);
4439 
4440 		cur += cur_len;
4441 	}
4442 }
4443 
4444 void copy_extent_buffer(const struct extent_buffer *dst,
4445 			const struct extent_buffer *src,
4446 			unsigned long dst_offset, unsigned long src_offset,
4447 			unsigned long len)
4448 {
4449 	u64 dst_len = dst->len;
4450 	size_t cur;
4451 	size_t offset;
4452 	struct page *page;
4453 	char *kaddr;
4454 	unsigned long i = get_eb_page_index(dst_offset);
4455 
4456 	if (check_eb_range(dst, dst_offset, len) ||
4457 	    check_eb_range(src, src_offset, len))
4458 		return;
4459 
4460 	WARN_ON(src->len != dst_len);
4461 
4462 	offset = get_eb_offset_in_page(dst, dst_offset);
4463 
4464 	while (len > 0) {
4465 		page = dst->pages[i];
4466 		assert_eb_page_uptodate(dst, page);
4467 
4468 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
4469 
4470 		kaddr = page_address(page);
4471 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4472 
4473 		src_offset += cur;
4474 		len -= cur;
4475 		offset = 0;
4476 		i++;
4477 	}
4478 }
4479 
4480 /*
4481  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4482  * given bit number
4483  * @eb: the extent buffer
4484  * @start: offset of the bitmap item in the extent buffer
4485  * @nr: bit number
4486  * @page_index: return index of the page in the extent buffer that contains the
4487  * given bit number
4488  * @page_offset: return offset into the page given by page_index
4489  *
4490  * This helper hides the ugliness of finding the byte in an extent buffer which
4491  * contains a given bit.
4492  */
4493 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4494 				    unsigned long start, unsigned long nr,
4495 				    unsigned long *page_index,
4496 				    size_t *page_offset)
4497 {
4498 	size_t byte_offset = BIT_BYTE(nr);
4499 	size_t offset;
4500 
4501 	/*
4502 	 * The byte we want is the offset of the extent buffer + the offset of
4503 	 * the bitmap item in the extent buffer + the offset of the byte in the
4504 	 * bitmap item.
4505 	 */
4506 	offset = start + offset_in_page(eb->start) + byte_offset;
4507 
4508 	*page_index = offset >> PAGE_SHIFT;
4509 	*page_offset = offset_in_page(offset);
4510 }
4511 
4512 /*
4513  * Determine whether a bit in a bitmap item is set.
4514  *
4515  * @eb:     the extent buffer
4516  * @start:  offset of the bitmap item in the extent buffer
4517  * @nr:     bit number to test
4518  */
4519 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4520 			   unsigned long nr)
4521 {
4522 	u8 *kaddr;
4523 	struct page *page;
4524 	unsigned long i;
4525 	size_t offset;
4526 
4527 	eb_bitmap_offset(eb, start, nr, &i, &offset);
4528 	page = eb->pages[i];
4529 	assert_eb_page_uptodate(eb, page);
4530 	kaddr = page_address(page);
4531 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4532 }
4533 
4534 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4535 {
4536 	unsigned long index = get_eb_page_index(bytenr);
4537 
4538 	if (check_eb_range(eb, bytenr, 1))
4539 		return NULL;
4540 	return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4541 }
4542 
4543 /*
4544  * Set an area of a bitmap to 1.
4545  *
4546  * @eb:     the extent buffer
4547  * @start:  offset of the bitmap item in the extent buffer
4548  * @pos:    bit number of the first bit
4549  * @len:    number of bits to set
4550  */
4551 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4552 			      unsigned long pos, unsigned long len)
4553 {
4554 	unsigned int first_byte = start + BIT_BYTE(pos);
4555 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4556 	const bool same_byte = (first_byte == last_byte);
4557 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4558 	u8 *kaddr;
4559 
4560 	if (same_byte)
4561 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4562 
4563 	/* Handle the first byte. */
4564 	kaddr = extent_buffer_get_byte(eb, first_byte);
4565 	*kaddr |= mask;
4566 	if (same_byte)
4567 		return;
4568 
4569 	/* Handle the byte aligned part. */
4570 	ASSERT(first_byte + 1 <= last_byte);
4571 	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4572 
4573 	/* Handle the last byte. */
4574 	kaddr = extent_buffer_get_byte(eb, last_byte);
4575 	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4576 }
4577 
4578 
4579 /*
4580  * Clear an area of a bitmap.
4581  *
4582  * @eb:     the extent buffer
4583  * @start:  offset of the bitmap item in the extent buffer
4584  * @pos:    bit number of the first bit
4585  * @len:    number of bits to clear
4586  */
4587 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4588 				unsigned long start, unsigned long pos,
4589 				unsigned long len)
4590 {
4591 	unsigned int first_byte = start + BIT_BYTE(pos);
4592 	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4593 	const bool same_byte = (first_byte == last_byte);
4594 	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4595 	u8 *kaddr;
4596 
4597 	if (same_byte)
4598 		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4599 
4600 	/* Handle the first byte. */
4601 	kaddr = extent_buffer_get_byte(eb, first_byte);
4602 	*kaddr &= ~mask;
4603 	if (same_byte)
4604 		return;
4605 
4606 	/* Handle the byte aligned part. */
4607 	ASSERT(first_byte + 1 <= last_byte);
4608 	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4609 
4610 	/* Handle the last byte. */
4611 	kaddr = extent_buffer_get_byte(eb, last_byte);
4612 	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4613 }
4614 
4615 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4616 {
4617 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4618 	return distance < len;
4619 }
4620 
4621 void memcpy_extent_buffer(const struct extent_buffer *dst,
4622 			  unsigned long dst_offset, unsigned long src_offset,
4623 			  unsigned long len)
4624 {
4625 	unsigned long cur_off = 0;
4626 
4627 	if (check_eb_range(dst, dst_offset, len) ||
4628 	    check_eb_range(dst, src_offset, len))
4629 		return;
4630 
4631 	while (cur_off < len) {
4632 		unsigned long cur_src = cur_off + src_offset;
4633 		unsigned long pg_index = get_eb_page_index(cur_src);
4634 		unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4635 		unsigned long cur_len = min(src_offset + len - cur_src,
4636 					    PAGE_SIZE - pg_off);
4637 		void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4638 		const bool use_memmove = areas_overlap(src_offset + cur_off,
4639 						       dst_offset + cur_off, cur_len);
4640 
4641 		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4642 				      use_memmove);
4643 		cur_off += cur_len;
4644 	}
4645 }
4646 
4647 void memmove_extent_buffer(const struct extent_buffer *dst,
4648 			   unsigned long dst_offset, unsigned long src_offset,
4649 			   unsigned long len)
4650 {
4651 	unsigned long dst_end = dst_offset + len - 1;
4652 	unsigned long src_end = src_offset + len - 1;
4653 
4654 	if (check_eb_range(dst, dst_offset, len) ||
4655 	    check_eb_range(dst, src_offset, len))
4656 		return;
4657 
4658 	if (dst_offset < src_offset) {
4659 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4660 		return;
4661 	}
4662 
4663 	while (len > 0) {
4664 		unsigned long src_i;
4665 		size_t cur;
4666 		size_t dst_off_in_page;
4667 		size_t src_off_in_page;
4668 		void *src_addr;
4669 		bool use_memmove;
4670 
4671 		src_i = get_eb_page_index(src_end);
4672 
4673 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4674 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
4675 
4676 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4677 		cur = min(cur, dst_off_in_page + 1);
4678 
4679 		src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4680 					cur + 1;
4681 		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4682 					    cur);
4683 
4684 		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4685 				      use_memmove);
4686 
4687 		dst_end -= cur;
4688 		src_end -= cur;
4689 		len -= cur;
4690 	}
4691 }
4692 
4693 #define GANG_LOOKUP_SIZE	16
4694 static struct extent_buffer *get_next_extent_buffer(
4695 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4696 {
4697 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4698 	struct extent_buffer *found = NULL;
4699 	u64 page_start = page_offset(page);
4700 	u64 cur = page_start;
4701 
4702 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4703 	lockdep_assert_held(&fs_info->buffer_lock);
4704 
4705 	while (cur < page_start + PAGE_SIZE) {
4706 		int ret;
4707 		int i;
4708 
4709 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4710 				(void **)gang, cur >> fs_info->sectorsize_bits,
4711 				min_t(unsigned int, GANG_LOOKUP_SIZE,
4712 				      PAGE_SIZE / fs_info->nodesize));
4713 		if (ret == 0)
4714 			goto out;
4715 		for (i = 0; i < ret; i++) {
4716 			/* Already beyond page end */
4717 			if (gang[i]->start >= page_start + PAGE_SIZE)
4718 				goto out;
4719 			/* Found one */
4720 			if (gang[i]->start >= bytenr) {
4721 				found = gang[i];
4722 				goto out;
4723 			}
4724 		}
4725 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4726 	}
4727 out:
4728 	return found;
4729 }
4730 
4731 static int try_release_subpage_extent_buffer(struct page *page)
4732 {
4733 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4734 	u64 cur = page_offset(page);
4735 	const u64 end = page_offset(page) + PAGE_SIZE;
4736 	int ret;
4737 
4738 	while (cur < end) {
4739 		struct extent_buffer *eb = NULL;
4740 
4741 		/*
4742 		 * Unlike try_release_extent_buffer() which uses page->private
4743 		 * to grab buffer, for subpage case we rely on radix tree, thus
4744 		 * we need to ensure radix tree consistency.
4745 		 *
4746 		 * We also want an atomic snapshot of the radix tree, thus go
4747 		 * with spinlock rather than RCU.
4748 		 */
4749 		spin_lock(&fs_info->buffer_lock);
4750 		eb = get_next_extent_buffer(fs_info, page, cur);
4751 		if (!eb) {
4752 			/* No more eb in the page range after or at cur */
4753 			spin_unlock(&fs_info->buffer_lock);
4754 			break;
4755 		}
4756 		cur = eb->start + eb->len;
4757 
4758 		/*
4759 		 * The same as try_release_extent_buffer(), to ensure the eb
4760 		 * won't disappear out from under us.
4761 		 */
4762 		spin_lock(&eb->refs_lock);
4763 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4764 			spin_unlock(&eb->refs_lock);
4765 			spin_unlock(&fs_info->buffer_lock);
4766 			break;
4767 		}
4768 		spin_unlock(&fs_info->buffer_lock);
4769 
4770 		/*
4771 		 * If tree ref isn't set then we know the ref on this eb is a
4772 		 * real ref, so just return, this eb will likely be freed soon
4773 		 * anyway.
4774 		 */
4775 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4776 			spin_unlock(&eb->refs_lock);
4777 			break;
4778 		}
4779 
4780 		/*
4781 		 * Here we don't care about the return value, we will always
4782 		 * check the page private at the end.  And
4783 		 * release_extent_buffer() will release the refs_lock.
4784 		 */
4785 		release_extent_buffer(eb);
4786 	}
4787 	/*
4788 	 * Finally to check if we have cleared page private, as if we have
4789 	 * released all ebs in the page, the page private should be cleared now.
4790 	 */
4791 	spin_lock(&page->mapping->private_lock);
4792 	if (!PagePrivate(page))
4793 		ret = 1;
4794 	else
4795 		ret = 0;
4796 	spin_unlock(&page->mapping->private_lock);
4797 	return ret;
4798 
4799 }
4800 
4801 int try_release_extent_buffer(struct page *page)
4802 {
4803 	struct extent_buffer *eb;
4804 
4805 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4806 		return try_release_subpage_extent_buffer(page);
4807 
4808 	/*
4809 	 * We need to make sure nobody is changing page->private, as we rely on
4810 	 * page->private as the pointer to extent buffer.
4811 	 */
4812 	spin_lock(&page->mapping->private_lock);
4813 	if (!PagePrivate(page)) {
4814 		spin_unlock(&page->mapping->private_lock);
4815 		return 1;
4816 	}
4817 
4818 	eb = (struct extent_buffer *)page->private;
4819 	BUG_ON(!eb);
4820 
4821 	/*
4822 	 * This is a little awful but should be ok, we need to make sure that
4823 	 * the eb doesn't disappear out from under us while we're looking at
4824 	 * this page.
4825 	 */
4826 	spin_lock(&eb->refs_lock);
4827 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4828 		spin_unlock(&eb->refs_lock);
4829 		spin_unlock(&page->mapping->private_lock);
4830 		return 0;
4831 	}
4832 	spin_unlock(&page->mapping->private_lock);
4833 
4834 	/*
4835 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4836 	 * so just return, this page will likely be freed soon anyway.
4837 	 */
4838 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4839 		spin_unlock(&eb->refs_lock);
4840 		return 0;
4841 	}
4842 
4843 	return release_extent_buffer(eb);
4844 }
4845 
4846 /*
4847  * btrfs_readahead_tree_block - attempt to readahead a child block
4848  * @fs_info:	the fs_info
4849  * @bytenr:	bytenr to read
4850  * @owner_root: objectid of the root that owns this eb
4851  * @gen:	generation for the uptodate check, can be 0
4852  * @level:	level for the eb
4853  *
4854  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4855  * normal uptodate check of the eb, without checking the generation.  If we have
4856  * to read the block we will not block on anything.
4857  */
4858 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4859 				u64 bytenr, u64 owner_root, u64 gen, int level)
4860 {
4861 	struct btrfs_tree_parent_check check = {
4862 		.has_first_key = 0,
4863 		.level = level,
4864 		.transid = gen
4865 	};
4866 	struct extent_buffer *eb;
4867 	int ret;
4868 
4869 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4870 	if (IS_ERR(eb))
4871 		return;
4872 
4873 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4874 		free_extent_buffer(eb);
4875 		return;
4876 	}
4877 
4878 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4879 	if (ret < 0)
4880 		free_extent_buffer_stale(eb);
4881 	else
4882 		free_extent_buffer(eb);
4883 }
4884 
4885 /*
4886  * btrfs_readahead_node_child - readahead a node's child block
4887  * @node:	parent node we're reading from
4888  * @slot:	slot in the parent node for the child we want to read
4889  *
4890  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4891  * the slot in the node provided.
4892  */
4893 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4894 {
4895 	btrfs_readahead_tree_block(node->fs_info,
4896 				   btrfs_node_blockptr(node, slot),
4897 				   btrfs_header_owner(node),
4898 				   btrfs_node_ptr_generation(node, slot),
4899 				   btrfs_header_level(node) - 1);
4900 }
4901