1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 enum btrfs_compression_type compress_type; 102 u32 len_to_oe_boundary; 103 blk_opf_t opf; 104 btrfs_bio_end_io_t end_io_func; 105 struct writeback_control *wbc; 106 }; 107 108 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 109 { 110 struct btrfs_bio *bbio = bio_ctrl->bbio; 111 112 if (!bbio) 113 return; 114 115 /* Caller should ensure the bio has at least some range added */ 116 ASSERT(bbio->bio.bi_iter.bi_size); 117 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 120 btrfs_submit_compressed_read(bbio); 121 else 122 btrfs_submit_bio(bbio, 0); 123 124 /* The bbio is owned by the end_io handler now */ 125 bio_ctrl->bbio = NULL; 126 } 127 128 /* 129 * Submit or fail the current bio in the bio_ctrl structure. 130 */ 131 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 132 { 133 struct btrfs_bio *bbio = bio_ctrl->bbio; 134 135 if (!bbio) 136 return; 137 138 if (ret) { 139 ASSERT(ret < 0); 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 141 /* The bio is owned by the end_io handler now */ 142 bio_ctrl->bbio = NULL; 143 } else { 144 submit_one_bio(bio_ctrl); 145 } 146 } 147 148 int __init extent_buffer_init_cachep(void) 149 { 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 151 sizeof(struct extent_buffer), 0, 152 SLAB_MEM_SPREAD, NULL); 153 if (!extent_buffer_cache) 154 return -ENOMEM; 155 156 return 0; 157 } 158 159 void __cold extent_buffer_free_cachep(void) 160 { 161 /* 162 * Make sure all delayed rcu free are flushed before we 163 * destroy caches. 164 */ 165 rcu_barrier(); 166 kmem_cache_destroy(extent_buffer_cache); 167 } 168 169 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 170 { 171 unsigned long index = start >> PAGE_SHIFT; 172 unsigned long end_index = end >> PAGE_SHIFT; 173 struct page *page; 174 175 while (index <= end_index) { 176 page = find_get_page(inode->i_mapping, index); 177 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 178 clear_page_dirty_for_io(page); 179 put_page(page); 180 index++; 181 } 182 } 183 184 static void process_one_page(struct btrfs_fs_info *fs_info, 185 struct page *page, struct page *locked_page, 186 unsigned long page_ops, u64 start, u64 end) 187 { 188 u32 len; 189 190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 191 len = end + 1 - start; 192 193 if (page_ops & PAGE_SET_ORDERED) 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 195 if (page_ops & PAGE_START_WRITEBACK) { 196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 197 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 198 } 199 if (page_ops & PAGE_END_WRITEBACK) 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 201 202 if (page != locked_page && (page_ops & PAGE_UNLOCK)) 203 btrfs_page_end_writer_lock(fs_info, page, start, len); 204 } 205 206 static void __process_pages_contig(struct address_space *mapping, 207 struct page *locked_page, u64 start, u64 end, 208 unsigned long page_ops) 209 { 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 211 pgoff_t start_index = start >> PAGE_SHIFT; 212 pgoff_t end_index = end >> PAGE_SHIFT; 213 pgoff_t index = start_index; 214 struct folio_batch fbatch; 215 int i; 216 217 folio_batch_init(&fbatch); 218 while (index <= end_index) { 219 int found_folios; 220 221 found_folios = filemap_get_folios_contig(mapping, &index, 222 end_index, &fbatch); 223 for (i = 0; i < found_folios; i++) { 224 struct folio *folio = fbatch.folios[i]; 225 226 process_one_page(fs_info, &folio->page, locked_page, 227 page_ops, start, end); 228 } 229 folio_batch_release(&fbatch); 230 cond_resched(); 231 } 232 } 233 234 static noinline void __unlock_for_delalloc(struct inode *inode, 235 struct page *locked_page, 236 u64 start, u64 end) 237 { 238 unsigned long index = start >> PAGE_SHIFT; 239 unsigned long end_index = end >> PAGE_SHIFT; 240 241 ASSERT(locked_page); 242 if (index == locked_page->index && end_index == index) 243 return; 244 245 __process_pages_contig(inode->i_mapping, locked_page, start, end, 246 PAGE_UNLOCK); 247 } 248 249 static noinline int lock_delalloc_pages(struct inode *inode, 250 struct page *locked_page, 251 u64 start, 252 u64 end) 253 { 254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 255 struct address_space *mapping = inode->i_mapping; 256 pgoff_t start_index = start >> PAGE_SHIFT; 257 pgoff_t end_index = end >> PAGE_SHIFT; 258 pgoff_t index = start_index; 259 u64 processed_end = start; 260 struct folio_batch fbatch; 261 262 if (index == locked_page->index && index == end_index) 263 return 0; 264 265 folio_batch_init(&fbatch); 266 while (index <= end_index) { 267 unsigned int found_folios, i; 268 269 found_folios = filemap_get_folios_contig(mapping, &index, 270 end_index, &fbatch); 271 if (found_folios == 0) 272 goto out; 273 274 for (i = 0; i < found_folios; i++) { 275 struct page *page = &fbatch.folios[i]->page; 276 u32 len = end + 1 - start; 277 278 if (page == locked_page) 279 continue; 280 281 if (btrfs_page_start_writer_lock(fs_info, page, start, 282 len)) 283 goto out; 284 285 if (!PageDirty(page) || page->mapping != mapping) { 286 btrfs_page_end_writer_lock(fs_info, page, start, 287 len); 288 goto out; 289 } 290 291 processed_end = page_offset(page) + PAGE_SIZE - 1; 292 } 293 folio_batch_release(&fbatch); 294 cond_resched(); 295 } 296 297 return 0; 298 out: 299 folio_batch_release(&fbatch); 300 if (processed_end > start) 301 __unlock_for_delalloc(inode, locked_page, start, processed_end); 302 return -EAGAIN; 303 } 304 305 /* 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 307 * more than @max_bytes. 308 * 309 * @start: The original start bytenr to search. 310 * Will store the extent range start bytenr. 311 * @end: The original end bytenr of the search range 312 * Will store the extent range end bytenr. 313 * 314 * Return true if we find a delalloc range which starts inside the original 315 * range, and @start/@end will store the delalloc range start/end. 316 * 317 * Return false if we can't find any delalloc range which starts inside the 318 * original range, and @start/@end will be the non-delalloc range start/end. 319 */ 320 EXPORT_FOR_TESTS 321 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 322 struct page *locked_page, u64 *start, 323 u64 *end) 324 { 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 327 const u64 orig_start = *start; 328 const u64 orig_end = *end; 329 /* The sanity tests may not set a valid fs_info. */ 330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 331 u64 delalloc_start; 332 u64 delalloc_end; 333 bool found; 334 struct extent_state *cached_state = NULL; 335 int ret; 336 int loops = 0; 337 338 /* Caller should pass a valid @end to indicate the search range end */ 339 ASSERT(orig_end > orig_start); 340 341 /* The range should at least cover part of the page */ 342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 343 orig_end <= page_offset(locked_page))); 344 again: 345 /* step one, find a bunch of delalloc bytes starting at start */ 346 delalloc_start = *start; 347 delalloc_end = 0; 348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 349 max_bytes, &cached_state); 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 351 *start = delalloc_start; 352 353 /* @delalloc_end can be -1, never go beyond @orig_end */ 354 *end = min(delalloc_end, orig_end); 355 free_extent_state(cached_state); 356 return false; 357 } 358 359 /* 360 * start comes from the offset of locked_page. We have to lock 361 * pages in order, so we can't process delalloc bytes before 362 * locked_page 363 */ 364 if (delalloc_start < *start) 365 delalloc_start = *start; 366 367 /* 368 * make sure to limit the number of pages we try to lock down 369 */ 370 if (delalloc_end + 1 - delalloc_start > max_bytes) 371 delalloc_end = delalloc_start + max_bytes - 1; 372 373 /* step two, lock all the pages after the page that has start */ 374 ret = lock_delalloc_pages(inode, locked_page, 375 delalloc_start, delalloc_end); 376 ASSERT(!ret || ret == -EAGAIN); 377 if (ret == -EAGAIN) { 378 /* some of the pages are gone, lets avoid looping by 379 * shortening the size of the delalloc range we're searching 380 */ 381 free_extent_state(cached_state); 382 cached_state = NULL; 383 if (!loops) { 384 max_bytes = PAGE_SIZE; 385 loops = 1; 386 goto again; 387 } else { 388 found = false; 389 goto out_failed; 390 } 391 } 392 393 /* step three, lock the state bits for the whole range */ 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 395 396 /* then test to make sure it is all still delalloc */ 397 ret = test_range_bit(tree, delalloc_start, delalloc_end, 398 EXTENT_DELALLOC, 1, cached_state); 399 if (!ret) { 400 unlock_extent(tree, delalloc_start, delalloc_end, 401 &cached_state); 402 __unlock_for_delalloc(inode, locked_page, 403 delalloc_start, delalloc_end); 404 cond_resched(); 405 goto again; 406 } 407 free_extent_state(cached_state); 408 *start = delalloc_start; 409 *end = delalloc_end; 410 out_failed: 411 return found; 412 } 413 414 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 415 struct page *locked_page, 416 u32 clear_bits, unsigned long page_ops) 417 { 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 419 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 421 start, end, page_ops); 422 } 423 424 static bool btrfs_verify_page(struct page *page, u64 start) 425 { 426 if (!fsverity_active(page->mapping->host) || 427 PageUptodate(page) || 428 start >= i_size_read(page->mapping->host)) 429 return true; 430 return fsverity_verify_page(page); 431 } 432 433 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 434 { 435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 436 437 ASSERT(page_offset(page) <= start && 438 start + len <= page_offset(page) + PAGE_SIZE); 439 440 if (uptodate && btrfs_verify_page(page, start)) 441 btrfs_page_set_uptodate(fs_info, page, start, len); 442 else 443 btrfs_page_clear_uptodate(fs_info, page, start, len); 444 445 if (!btrfs_is_subpage(fs_info, page)) 446 unlock_page(page); 447 else 448 btrfs_subpage_end_reader(fs_info, page, start, len); 449 } 450 451 /* 452 * after a writepage IO is done, we need to: 453 * clear the uptodate bits on error 454 * clear the writeback bits in the extent tree for this IO 455 * end_page_writeback if the page has no more pending IO 456 * 457 * Scheduling is not allowed, so the extent state tree is expected 458 * to have one and only one object corresponding to this IO. 459 */ 460 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 461 { 462 struct bio *bio = &bbio->bio; 463 int error = blk_status_to_errno(bio->bi_status); 464 struct bio_vec *bvec; 465 struct bvec_iter_all iter_all; 466 467 ASSERT(!bio_flagged(bio, BIO_CLONED)); 468 bio_for_each_segment_all(bvec, bio, iter_all) { 469 struct page *page = bvec->bv_page; 470 struct inode *inode = page->mapping->host; 471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 472 const u32 sectorsize = fs_info->sectorsize; 473 u64 start = page_offset(page) + bvec->bv_offset; 474 u32 len = bvec->bv_len; 475 476 /* Our read/write should always be sector aligned. */ 477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 478 btrfs_err(fs_info, 479 "partial page write in btrfs with offset %u and length %u", 480 bvec->bv_offset, bvec->bv_len); 481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 482 btrfs_info(fs_info, 483 "incomplete page write with offset %u and length %u", 484 bvec->bv_offset, bvec->bv_len); 485 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error); 487 if (error) 488 mapping_set_error(page->mapping, error); 489 btrfs_page_clear_writeback(fs_info, page, start, len); 490 } 491 492 bio_put(bio); 493 } 494 495 /* 496 * Record previously processed extent range 497 * 498 * For endio_readpage_release_extent() to handle a full extent range, reducing 499 * the extent io operations. 500 */ 501 struct processed_extent { 502 struct btrfs_inode *inode; 503 /* Start of the range in @inode */ 504 u64 start; 505 /* End of the range in @inode */ 506 u64 end; 507 bool uptodate; 508 }; 509 510 /* 511 * Try to release processed extent range 512 * 513 * May not release the extent range right now if the current range is 514 * contiguous to processed extent. 515 * 516 * Will release processed extent when any of @inode, @uptodate, the range is 517 * no longer contiguous to the processed range. 518 * 519 * Passing @inode == NULL will force processed extent to be released. 520 */ 521 static void endio_readpage_release_extent(struct processed_extent *processed, 522 struct btrfs_inode *inode, u64 start, u64 end, 523 bool uptodate) 524 { 525 struct extent_state *cached = NULL; 526 struct extent_io_tree *tree; 527 528 /* The first extent, initialize @processed */ 529 if (!processed->inode) 530 goto update; 531 532 /* 533 * Contiguous to processed extent, just uptodate the end. 534 * 535 * Several things to notice: 536 * 537 * - bio can be merged as long as on-disk bytenr is contiguous 538 * This means we can have page belonging to other inodes, thus need to 539 * check if the inode still matches. 540 * - bvec can contain range beyond current page for multi-page bvec 541 * Thus we need to do processed->end + 1 >= start check 542 */ 543 if (processed->inode == inode && processed->uptodate == uptodate && 544 processed->end + 1 >= start && end >= processed->end) { 545 processed->end = end; 546 return; 547 } 548 549 tree = &processed->inode->io_tree; 550 /* 551 * Now we don't have range contiguous to the processed range, release 552 * the processed range now. 553 */ 554 unlock_extent(tree, processed->start, processed->end, &cached); 555 556 update: 557 /* Update processed to current range */ 558 processed->inode = inode; 559 processed->start = start; 560 processed->end = end; 561 processed->uptodate = uptodate; 562 } 563 564 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 565 { 566 ASSERT(PageLocked(page)); 567 if (!btrfs_is_subpage(fs_info, page)) 568 return; 569 570 ASSERT(PagePrivate(page)); 571 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 572 } 573 574 /* 575 * after a readpage IO is done, we need to: 576 * clear the uptodate bits on error 577 * set the uptodate bits if things worked 578 * set the page up to date if all extents in the tree are uptodate 579 * clear the lock bit in the extent tree 580 * unlock the page if there are no other extents locked for it 581 * 582 * Scheduling is not allowed, so the extent state tree is expected 583 * to have one and only one object corresponding to this IO. 584 */ 585 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 586 { 587 struct bio *bio = &bbio->bio; 588 struct bio_vec *bvec; 589 struct processed_extent processed = { 0 }; 590 /* 591 * The offset to the beginning of a bio, since one bio can never be 592 * larger than UINT_MAX, u32 here is enough. 593 */ 594 u32 bio_offset = 0; 595 struct bvec_iter_all iter_all; 596 597 ASSERT(!bio_flagged(bio, BIO_CLONED)); 598 bio_for_each_segment_all(bvec, bio, iter_all) { 599 bool uptodate = !bio->bi_status; 600 struct page *page = bvec->bv_page; 601 struct inode *inode = page->mapping->host; 602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 603 const u32 sectorsize = fs_info->sectorsize; 604 u64 start; 605 u64 end; 606 u32 len; 607 608 btrfs_debug(fs_info, 609 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 610 bio->bi_iter.bi_sector, bio->bi_status, 611 bbio->mirror_num); 612 613 /* 614 * We always issue full-sector reads, but if some block in a 615 * page fails to read, blk_update_request() will advance 616 * bv_offset and adjust bv_len to compensate. Print a warning 617 * for unaligned offsets, and an error if they don't add up to 618 * a full sector. 619 */ 620 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 621 btrfs_err(fs_info, 622 "partial page read in btrfs with offset %u and length %u", 623 bvec->bv_offset, bvec->bv_len); 624 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 625 sectorsize)) 626 btrfs_info(fs_info, 627 "incomplete page read with offset %u and length %u", 628 bvec->bv_offset, bvec->bv_len); 629 630 start = page_offset(page) + bvec->bv_offset; 631 end = start + bvec->bv_len - 1; 632 len = bvec->bv_len; 633 634 if (likely(uptodate)) { 635 loff_t i_size = i_size_read(inode); 636 pgoff_t end_index = i_size >> PAGE_SHIFT; 637 638 /* 639 * Zero out the remaining part if this range straddles 640 * i_size. 641 * 642 * Here we should only zero the range inside the bvec, 643 * not touch anything else. 644 * 645 * NOTE: i_size is exclusive while end is inclusive. 646 */ 647 if (page->index == end_index && i_size <= end) { 648 u32 zero_start = max(offset_in_page(i_size), 649 offset_in_page(start)); 650 651 zero_user_segment(page, zero_start, 652 offset_in_page(end) + 1); 653 } 654 } 655 656 /* Update page status and unlock. */ 657 end_page_read(page, uptodate, start, len); 658 endio_readpage_release_extent(&processed, BTRFS_I(inode), 659 start, end, uptodate); 660 661 ASSERT(bio_offset + len > bio_offset); 662 bio_offset += len; 663 664 } 665 /* Release the last extent */ 666 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 667 bio_put(bio); 668 } 669 670 /* 671 * Populate every free slot in a provided array with pages. 672 * 673 * @nr_pages: number of pages to allocate 674 * @page_array: the array to fill with pages; any existing non-null entries in 675 * the array will be skipped 676 * 677 * Return: 0 if all pages were able to be allocated; 678 * -ENOMEM otherwise, and the caller is responsible for freeing all 679 * non-null page pointers in the array. 680 */ 681 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 682 { 683 unsigned int allocated; 684 685 for (allocated = 0; allocated < nr_pages;) { 686 unsigned int last = allocated; 687 688 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 689 690 if (allocated == nr_pages) 691 return 0; 692 693 /* 694 * During this iteration, no page could be allocated, even 695 * though alloc_pages_bulk_array() falls back to alloc_page() 696 * if it could not bulk-allocate. So we must be out of memory. 697 */ 698 if (allocated == last) 699 return -ENOMEM; 700 701 memalloc_retry_wait(GFP_NOFS); 702 } 703 return 0; 704 } 705 706 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 707 struct page *page, u64 disk_bytenr, 708 unsigned int pg_offset) 709 { 710 struct bio *bio = &bio_ctrl->bbio->bio; 711 struct bio_vec *bvec = bio_last_bvec_all(bio); 712 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 713 714 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 715 /* 716 * For compression, all IO should have its logical bytenr set 717 * to the starting bytenr of the compressed extent. 718 */ 719 return bio->bi_iter.bi_sector == sector; 720 } 721 722 /* 723 * The contig check requires the following conditions to be met: 724 * 725 * 1) The pages are belonging to the same inode 726 * This is implied by the call chain. 727 * 728 * 2) The range has adjacent logical bytenr 729 * 730 * 3) The range has adjacent file offset 731 * This is required for the usage of btrfs_bio->file_offset. 732 */ 733 return bio_end_sector(bio) == sector && 734 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 735 page_offset(page) + pg_offset; 736 } 737 738 static void alloc_new_bio(struct btrfs_inode *inode, 739 struct btrfs_bio_ctrl *bio_ctrl, 740 u64 disk_bytenr, u64 file_offset) 741 { 742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 743 struct btrfs_bio *bbio; 744 745 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 746 bio_ctrl->end_io_func, NULL); 747 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 748 bbio->inode = inode; 749 bbio->file_offset = file_offset; 750 bio_ctrl->bbio = bbio; 751 bio_ctrl->len_to_oe_boundary = U32_MAX; 752 753 /* Limit data write bios to the ordered boundary. */ 754 if (bio_ctrl->wbc) { 755 struct btrfs_ordered_extent *ordered; 756 757 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 758 if (ordered) { 759 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 760 ordered->file_offset + 761 ordered->disk_num_bytes - file_offset); 762 bbio->ordered = ordered; 763 } 764 765 /* 766 * Pick the last added device to support cgroup writeback. For 767 * multi-device file systems this means blk-cgroup policies have 768 * to always be set on the last added/replaced device. 769 * This is a bit odd but has been like that for a long time. 770 */ 771 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 772 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 773 } 774 } 775 776 /* 777 * @disk_bytenr: logical bytenr where the write will be 778 * @page: page to add to the bio 779 * @size: portion of page that we want to write to 780 * @pg_offset: offset of the new bio or to check whether we are adding 781 * a contiguous page to the previous one 782 * 783 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 784 * new one in @bio_ctrl->bbio. 785 * The mirror number for this IO should already be initizlied in 786 * @bio_ctrl->mirror_num. 787 */ 788 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 789 u64 disk_bytenr, struct page *page, 790 size_t size, unsigned long pg_offset) 791 { 792 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 793 794 ASSERT(pg_offset + size <= PAGE_SIZE); 795 ASSERT(bio_ctrl->end_io_func); 796 797 if (bio_ctrl->bbio && 798 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 799 submit_one_bio(bio_ctrl); 800 801 do { 802 u32 len = size; 803 804 /* Allocate new bio if needed */ 805 if (!bio_ctrl->bbio) { 806 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 807 page_offset(page) + pg_offset); 808 } 809 810 /* Cap to the current ordered extent boundary if there is one. */ 811 if (len > bio_ctrl->len_to_oe_boundary) { 812 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 813 ASSERT(is_data_inode(&inode->vfs_inode)); 814 len = bio_ctrl->len_to_oe_boundary; 815 } 816 817 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 818 /* bio full: move on to a new one */ 819 submit_one_bio(bio_ctrl); 820 continue; 821 } 822 823 if (bio_ctrl->wbc) 824 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 825 826 size -= len; 827 pg_offset += len; 828 disk_bytenr += len; 829 830 /* 831 * len_to_oe_boundary defaults to U32_MAX, which isn't page or 832 * sector aligned. alloc_new_bio() then sets it to the end of 833 * our ordered extent for writes into zoned devices. 834 * 835 * When len_to_oe_boundary is tracking an ordered extent, we 836 * trust the ordered extent code to align things properly, and 837 * the check above to cap our write to the ordered extent 838 * boundary is correct. 839 * 840 * When len_to_oe_boundary is U32_MAX, the cap above would 841 * result in a 4095 byte IO for the last page right before 842 * we hit the bio limit of UINT_MAX. bio_add_page() has all 843 * the checks required to make sure we don't overflow the bio, 844 * and we should just ignore len_to_oe_boundary completely 845 * unless we're using it to track an ordered extent. 846 * 847 * It's pretty hard to make a bio sized U32_MAX, but it can 848 * happen when the page cache is able to feed us contiguous 849 * pages for large extents. 850 */ 851 if (bio_ctrl->len_to_oe_boundary != U32_MAX) 852 bio_ctrl->len_to_oe_boundary -= len; 853 854 /* Ordered extent boundary: move on to a new bio. */ 855 if (bio_ctrl->len_to_oe_boundary == 0) 856 submit_one_bio(bio_ctrl); 857 } while (size); 858 } 859 860 static int attach_extent_buffer_page(struct extent_buffer *eb, 861 struct page *page, 862 struct btrfs_subpage *prealloc) 863 { 864 struct btrfs_fs_info *fs_info = eb->fs_info; 865 int ret = 0; 866 867 /* 868 * If the page is mapped to btree inode, we should hold the private 869 * lock to prevent race. 870 * For cloned or dummy extent buffers, their pages are not mapped and 871 * will not race with any other ebs. 872 */ 873 if (page->mapping) 874 lockdep_assert_held(&page->mapping->private_lock); 875 876 if (fs_info->nodesize >= PAGE_SIZE) { 877 if (!PagePrivate(page)) 878 attach_page_private(page, eb); 879 else 880 WARN_ON(page->private != (unsigned long)eb); 881 return 0; 882 } 883 884 /* Already mapped, just free prealloc */ 885 if (PagePrivate(page)) { 886 btrfs_free_subpage(prealloc); 887 return 0; 888 } 889 890 if (prealloc) 891 /* Has preallocated memory for subpage */ 892 attach_page_private(page, prealloc); 893 else 894 /* Do new allocation to attach subpage */ 895 ret = btrfs_attach_subpage(fs_info, page, 896 BTRFS_SUBPAGE_METADATA); 897 return ret; 898 } 899 900 int set_page_extent_mapped(struct page *page) 901 { 902 struct btrfs_fs_info *fs_info; 903 904 ASSERT(page->mapping); 905 906 if (PagePrivate(page)) 907 return 0; 908 909 fs_info = btrfs_sb(page->mapping->host->i_sb); 910 911 if (btrfs_is_subpage(fs_info, page)) 912 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 913 914 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 915 return 0; 916 } 917 918 void clear_page_extent_mapped(struct page *page) 919 { 920 struct btrfs_fs_info *fs_info; 921 922 ASSERT(page->mapping); 923 924 if (!PagePrivate(page)) 925 return; 926 927 fs_info = btrfs_sb(page->mapping->host->i_sb); 928 if (btrfs_is_subpage(fs_info, page)) 929 return btrfs_detach_subpage(fs_info, page); 930 931 detach_page_private(page); 932 } 933 934 static struct extent_map * 935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 936 u64 start, u64 len, struct extent_map **em_cached) 937 { 938 struct extent_map *em; 939 940 if (em_cached && *em_cached) { 941 em = *em_cached; 942 if (extent_map_in_tree(em) && start >= em->start && 943 start < extent_map_end(em)) { 944 refcount_inc(&em->refs); 945 return em; 946 } 947 948 free_extent_map(em); 949 *em_cached = NULL; 950 } 951 952 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 953 if (em_cached && !IS_ERR(em)) { 954 BUG_ON(*em_cached); 955 refcount_inc(&em->refs); 956 *em_cached = em; 957 } 958 return em; 959 } 960 /* 961 * basic readpage implementation. Locked extent state structs are inserted 962 * into the tree that are removed when the IO is done (by the end_io 963 * handlers) 964 * XXX JDM: This needs looking at to ensure proper page locking 965 * return 0 on success, otherwise return error 966 */ 967 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 968 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 969 { 970 struct inode *inode = page->mapping->host; 971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 972 u64 start = page_offset(page); 973 const u64 end = start + PAGE_SIZE - 1; 974 u64 cur = start; 975 u64 extent_offset; 976 u64 last_byte = i_size_read(inode); 977 u64 block_start; 978 struct extent_map *em; 979 int ret = 0; 980 size_t pg_offset = 0; 981 size_t iosize; 982 size_t blocksize = inode->i_sb->s_blocksize; 983 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 984 985 ret = set_page_extent_mapped(page); 986 if (ret < 0) { 987 unlock_extent(tree, start, end, NULL); 988 unlock_page(page); 989 return ret; 990 } 991 992 if (page->index == last_byte >> PAGE_SHIFT) { 993 size_t zero_offset = offset_in_page(last_byte); 994 995 if (zero_offset) { 996 iosize = PAGE_SIZE - zero_offset; 997 memzero_page(page, zero_offset, iosize); 998 } 999 } 1000 bio_ctrl->end_io_func = end_bio_extent_readpage; 1001 begin_page_read(fs_info, page); 1002 while (cur <= end) { 1003 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1004 bool force_bio_submit = false; 1005 u64 disk_bytenr; 1006 1007 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1008 if (cur >= last_byte) { 1009 iosize = PAGE_SIZE - pg_offset; 1010 memzero_page(page, pg_offset, iosize); 1011 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1012 end_page_read(page, true, cur, iosize); 1013 break; 1014 } 1015 em = __get_extent_map(inode, page, pg_offset, cur, 1016 end - cur + 1, em_cached); 1017 if (IS_ERR(em)) { 1018 unlock_extent(tree, cur, end, NULL); 1019 end_page_read(page, false, cur, end + 1 - cur); 1020 return PTR_ERR(em); 1021 } 1022 extent_offset = cur - em->start; 1023 BUG_ON(extent_map_end(em) <= cur); 1024 BUG_ON(end < cur); 1025 1026 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1027 compress_type = em->compress_type; 1028 1029 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1030 iosize = ALIGN(iosize, blocksize); 1031 if (compress_type != BTRFS_COMPRESS_NONE) 1032 disk_bytenr = em->block_start; 1033 else 1034 disk_bytenr = em->block_start + extent_offset; 1035 block_start = em->block_start; 1036 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1037 block_start = EXTENT_MAP_HOLE; 1038 1039 /* 1040 * If we have a file range that points to a compressed extent 1041 * and it's followed by a consecutive file range that points 1042 * to the same compressed extent (possibly with a different 1043 * offset and/or length, so it either points to the whole extent 1044 * or only part of it), we must make sure we do not submit a 1045 * single bio to populate the pages for the 2 ranges because 1046 * this makes the compressed extent read zero out the pages 1047 * belonging to the 2nd range. Imagine the following scenario: 1048 * 1049 * File layout 1050 * [0 - 8K] [8K - 24K] 1051 * | | 1052 * | | 1053 * points to extent X, points to extent X, 1054 * offset 4K, length of 8K offset 0, length 16K 1055 * 1056 * [extent X, compressed length = 4K uncompressed length = 16K] 1057 * 1058 * If the bio to read the compressed extent covers both ranges, 1059 * it will decompress extent X into the pages belonging to the 1060 * first range and then it will stop, zeroing out the remaining 1061 * pages that belong to the other range that points to extent X. 1062 * So here we make sure we submit 2 bios, one for the first 1063 * range and another one for the third range. Both will target 1064 * the same physical extent from disk, but we can't currently 1065 * make the compressed bio endio callback populate the pages 1066 * for both ranges because each compressed bio is tightly 1067 * coupled with a single extent map, and each range can have 1068 * an extent map with a different offset value relative to the 1069 * uncompressed data of our extent and different lengths. This 1070 * is a corner case so we prioritize correctness over 1071 * non-optimal behavior (submitting 2 bios for the same extent). 1072 */ 1073 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1074 prev_em_start && *prev_em_start != (u64)-1 && 1075 *prev_em_start != em->start) 1076 force_bio_submit = true; 1077 1078 if (prev_em_start) 1079 *prev_em_start = em->start; 1080 1081 free_extent_map(em); 1082 em = NULL; 1083 1084 /* we've found a hole, just zero and go on */ 1085 if (block_start == EXTENT_MAP_HOLE) { 1086 memzero_page(page, pg_offset, iosize); 1087 1088 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1089 end_page_read(page, true, cur, iosize); 1090 cur = cur + iosize; 1091 pg_offset += iosize; 1092 continue; 1093 } 1094 /* the get_extent function already copied into the page */ 1095 if (block_start == EXTENT_MAP_INLINE) { 1096 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1097 end_page_read(page, true, cur, iosize); 1098 cur = cur + iosize; 1099 pg_offset += iosize; 1100 continue; 1101 } 1102 1103 if (bio_ctrl->compress_type != compress_type) { 1104 submit_one_bio(bio_ctrl); 1105 bio_ctrl->compress_type = compress_type; 1106 } 1107 1108 if (force_bio_submit) 1109 submit_one_bio(bio_ctrl); 1110 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1111 pg_offset); 1112 cur = cur + iosize; 1113 pg_offset += iosize; 1114 } 1115 1116 return 0; 1117 } 1118 1119 int btrfs_read_folio(struct file *file, struct folio *folio) 1120 { 1121 struct page *page = &folio->page; 1122 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1123 u64 start = page_offset(page); 1124 u64 end = start + PAGE_SIZE - 1; 1125 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1126 int ret; 1127 1128 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1129 1130 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1131 /* 1132 * If btrfs_do_readpage() failed we will want to submit the assembled 1133 * bio to do the cleanup. 1134 */ 1135 submit_one_bio(&bio_ctrl); 1136 return ret; 1137 } 1138 1139 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1140 u64 start, u64 end, 1141 struct extent_map **em_cached, 1142 struct btrfs_bio_ctrl *bio_ctrl, 1143 u64 *prev_em_start) 1144 { 1145 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1146 int index; 1147 1148 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1149 1150 for (index = 0; index < nr_pages; index++) { 1151 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1152 prev_em_start); 1153 put_page(pages[index]); 1154 } 1155 } 1156 1157 /* 1158 * helper for __extent_writepage, doing all of the delayed allocation setup. 1159 * 1160 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1161 * to write the page (copy into inline extent). In this case the IO has 1162 * been started and the page is already unlocked. 1163 * 1164 * This returns 0 if all went well (page still locked) 1165 * This returns < 0 if there were errors (page still locked) 1166 */ 1167 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1168 struct page *page, struct writeback_control *wbc) 1169 { 1170 const u64 page_start = page_offset(page); 1171 const u64 page_end = page_start + PAGE_SIZE - 1; 1172 u64 delalloc_start = page_start; 1173 u64 delalloc_end = page_end; 1174 u64 delalloc_to_write = 0; 1175 int ret = 0; 1176 1177 while (delalloc_start < page_end) { 1178 delalloc_end = page_end; 1179 if (!find_lock_delalloc_range(&inode->vfs_inode, page, 1180 &delalloc_start, &delalloc_end)) { 1181 delalloc_start = delalloc_end + 1; 1182 continue; 1183 } 1184 1185 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1186 delalloc_end, wbc); 1187 if (ret < 0) 1188 return ret; 1189 1190 delalloc_start = delalloc_end + 1; 1191 } 1192 1193 /* 1194 * delalloc_end is already one less than the total length, so 1195 * we don't subtract one from PAGE_SIZE 1196 */ 1197 delalloc_to_write += 1198 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE); 1199 1200 /* 1201 * If btrfs_run_dealloc_range() already started I/O and unlocked 1202 * the pages, we just need to account for them here. 1203 */ 1204 if (ret == 1) { 1205 wbc->nr_to_write -= delalloc_to_write; 1206 return 1; 1207 } 1208 1209 if (wbc->nr_to_write < delalloc_to_write) { 1210 int thresh = 8192; 1211 1212 if (delalloc_to_write < thresh * 2) 1213 thresh = delalloc_to_write; 1214 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1215 thresh); 1216 } 1217 1218 return 0; 1219 } 1220 1221 /* 1222 * Find the first byte we need to write. 1223 * 1224 * For subpage, one page can contain several sectors, and 1225 * __extent_writepage_io() will just grab all extent maps in the page 1226 * range and try to submit all non-inline/non-compressed extents. 1227 * 1228 * This is a big problem for subpage, we shouldn't re-submit already written 1229 * data at all. 1230 * This function will lookup subpage dirty bit to find which range we really 1231 * need to submit. 1232 * 1233 * Return the next dirty range in [@start, @end). 1234 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1235 */ 1236 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1237 struct page *page, u64 *start, u64 *end) 1238 { 1239 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1240 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1241 u64 orig_start = *start; 1242 /* Declare as unsigned long so we can use bitmap ops */ 1243 unsigned long flags; 1244 int range_start_bit; 1245 int range_end_bit; 1246 1247 /* 1248 * For regular sector size == page size case, since one page only 1249 * contains one sector, we return the page offset directly. 1250 */ 1251 if (!btrfs_is_subpage(fs_info, page)) { 1252 *start = page_offset(page); 1253 *end = page_offset(page) + PAGE_SIZE; 1254 return; 1255 } 1256 1257 range_start_bit = spi->dirty_offset + 1258 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1259 1260 /* We should have the page locked, but just in case */ 1261 spin_lock_irqsave(&subpage->lock, flags); 1262 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1263 spi->dirty_offset + spi->bitmap_nr_bits); 1264 spin_unlock_irqrestore(&subpage->lock, flags); 1265 1266 range_start_bit -= spi->dirty_offset; 1267 range_end_bit -= spi->dirty_offset; 1268 1269 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1270 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1271 } 1272 1273 /* 1274 * helper for __extent_writepage. This calls the writepage start hooks, 1275 * and does the loop to map the page into extents and bios. 1276 * 1277 * We return 1 if the IO is started and the page is unlocked, 1278 * 0 if all went well (page still locked) 1279 * < 0 if there were errors (page still locked) 1280 */ 1281 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1282 struct page *page, 1283 struct btrfs_bio_ctrl *bio_ctrl, 1284 loff_t i_size, 1285 int *nr_ret) 1286 { 1287 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1288 u64 cur = page_offset(page); 1289 u64 end = cur + PAGE_SIZE - 1; 1290 u64 extent_offset; 1291 u64 block_start; 1292 struct extent_map *em; 1293 int ret = 0; 1294 int nr = 0; 1295 1296 ret = btrfs_writepage_cow_fixup(page); 1297 if (ret) { 1298 /* Fixup worker will requeue */ 1299 redirty_page_for_writepage(bio_ctrl->wbc, page); 1300 unlock_page(page); 1301 return 1; 1302 } 1303 1304 bio_ctrl->end_io_func = end_bio_extent_writepage; 1305 while (cur <= end) { 1306 u32 len = end - cur + 1; 1307 u64 disk_bytenr; 1308 u64 em_end; 1309 u64 dirty_range_start = cur; 1310 u64 dirty_range_end; 1311 u32 iosize; 1312 1313 if (cur >= i_size) { 1314 btrfs_mark_ordered_io_finished(inode, page, cur, len, 1315 true); 1316 /* 1317 * This range is beyond i_size, thus we don't need to 1318 * bother writing back. 1319 * But we still need to clear the dirty subpage bit, or 1320 * the next time the page gets dirtied, we will try to 1321 * writeback the sectors with subpage dirty bits, 1322 * causing writeback without ordered extent. 1323 */ 1324 btrfs_page_clear_dirty(fs_info, page, cur, len); 1325 break; 1326 } 1327 1328 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1329 &dirty_range_end); 1330 if (cur < dirty_range_start) { 1331 cur = dirty_range_start; 1332 continue; 1333 } 1334 1335 em = btrfs_get_extent(inode, NULL, 0, cur, len); 1336 if (IS_ERR(em)) { 1337 ret = PTR_ERR_OR_ZERO(em); 1338 goto out_error; 1339 } 1340 1341 extent_offset = cur - em->start; 1342 em_end = extent_map_end(em); 1343 ASSERT(cur <= em_end); 1344 ASSERT(cur < end); 1345 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1346 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1347 1348 block_start = em->block_start; 1349 disk_bytenr = em->block_start + extent_offset; 1350 1351 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 1352 ASSERT(block_start != EXTENT_MAP_HOLE); 1353 ASSERT(block_start != EXTENT_MAP_INLINE); 1354 1355 /* 1356 * Note that em_end from extent_map_end() and dirty_range_end from 1357 * find_next_dirty_byte() are all exclusive 1358 */ 1359 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1360 free_extent_map(em); 1361 em = NULL; 1362 1363 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1364 if (!PageWriteback(page)) { 1365 btrfs_err(inode->root->fs_info, 1366 "page %lu not writeback, cur %llu end %llu", 1367 page->index, cur, end); 1368 } 1369 1370 /* 1371 * Although the PageDirty bit is cleared before entering this 1372 * function, subpage dirty bit is not cleared. 1373 * So clear subpage dirty bit here so next time we won't submit 1374 * page for range already written to disk. 1375 */ 1376 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1377 1378 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1379 cur - page_offset(page)); 1380 cur += iosize; 1381 nr++; 1382 } 1383 1384 btrfs_page_assert_not_dirty(fs_info, page); 1385 *nr_ret = nr; 1386 return 0; 1387 1388 out_error: 1389 /* 1390 * If we finish without problem, we should not only clear page dirty, 1391 * but also empty subpage dirty bits 1392 */ 1393 *nr_ret = nr; 1394 return ret; 1395 } 1396 1397 /* 1398 * the writepage semantics are similar to regular writepage. extent 1399 * records are inserted to lock ranges in the tree, and as dirty areas 1400 * are found, they are marked writeback. Then the lock bits are removed 1401 * and the end_io handler clears the writeback ranges 1402 * 1403 * Return 0 if everything goes well. 1404 * Return <0 for error. 1405 */ 1406 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1407 { 1408 struct folio *folio = page_folio(page); 1409 struct inode *inode = page->mapping->host; 1410 const u64 page_start = page_offset(page); 1411 int ret; 1412 int nr = 0; 1413 size_t pg_offset; 1414 loff_t i_size = i_size_read(inode); 1415 unsigned long end_index = i_size >> PAGE_SHIFT; 1416 1417 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1418 1419 WARN_ON(!PageLocked(page)); 1420 1421 pg_offset = offset_in_page(i_size); 1422 if (page->index > end_index || 1423 (page->index == end_index && !pg_offset)) { 1424 folio_invalidate(folio, 0, folio_size(folio)); 1425 folio_unlock(folio); 1426 return 0; 1427 } 1428 1429 if (page->index == end_index) 1430 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1431 1432 ret = set_page_extent_mapped(page); 1433 if (ret < 0) 1434 goto done; 1435 1436 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1437 if (ret == 1) 1438 return 0; 1439 if (ret) 1440 goto done; 1441 1442 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1443 if (ret == 1) 1444 return 0; 1445 1446 bio_ctrl->wbc->nr_to_write--; 1447 1448 done: 1449 if (nr == 0) { 1450 /* make sure the mapping tag for page dirty gets cleared */ 1451 set_page_writeback(page); 1452 end_page_writeback(page); 1453 } 1454 if (ret) { 1455 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start, 1456 PAGE_SIZE, !ret); 1457 mapping_set_error(page->mapping, ret); 1458 } 1459 unlock_page(page); 1460 ASSERT(ret <= 0); 1461 return ret; 1462 } 1463 1464 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1465 { 1466 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1467 TASK_UNINTERRUPTIBLE); 1468 } 1469 1470 /* 1471 * Lock extent buffer status and pages for writeback. 1472 * 1473 * Return %false if the extent buffer doesn't need to be submitted (e.g. the 1474 * extent buffer is not dirty) 1475 * Return %true is the extent buffer is submitted to bio. 1476 */ 1477 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb, 1478 struct writeback_control *wbc) 1479 { 1480 struct btrfs_fs_info *fs_info = eb->fs_info; 1481 bool ret = false; 1482 1483 btrfs_tree_lock(eb); 1484 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1485 btrfs_tree_unlock(eb); 1486 if (wbc->sync_mode != WB_SYNC_ALL) 1487 return false; 1488 wait_on_extent_buffer_writeback(eb); 1489 btrfs_tree_lock(eb); 1490 } 1491 1492 /* 1493 * We need to do this to prevent races in people who check if the eb is 1494 * under IO since we can end up having no IO bits set for a short period 1495 * of time. 1496 */ 1497 spin_lock(&eb->refs_lock); 1498 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1499 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1500 spin_unlock(&eb->refs_lock); 1501 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1502 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1503 -eb->len, 1504 fs_info->dirty_metadata_batch); 1505 ret = true; 1506 } else { 1507 spin_unlock(&eb->refs_lock); 1508 } 1509 btrfs_tree_unlock(eb); 1510 return ret; 1511 } 1512 1513 static void set_btree_ioerr(struct extent_buffer *eb) 1514 { 1515 struct btrfs_fs_info *fs_info = eb->fs_info; 1516 1517 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1518 1519 /* 1520 * A read may stumble upon this buffer later, make sure that it gets an 1521 * error and knows there was an error. 1522 */ 1523 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1524 1525 /* 1526 * We need to set the mapping with the io error as well because a write 1527 * error will flip the file system readonly, and then syncfs() will 1528 * return a 0 because we are readonly if we don't modify the err seq for 1529 * the superblock. 1530 */ 1531 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO); 1532 1533 /* 1534 * If writeback for a btree extent that doesn't belong to a log tree 1535 * failed, increment the counter transaction->eb_write_errors. 1536 * We do this because while the transaction is running and before it's 1537 * committing (when we call filemap_fdata[write|wait]_range against 1538 * the btree inode), we might have 1539 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1540 * returns an error or an error happens during writeback, when we're 1541 * committing the transaction we wouldn't know about it, since the pages 1542 * can be no longer dirty nor marked anymore for writeback (if a 1543 * subsequent modification to the extent buffer didn't happen before the 1544 * transaction commit), which makes filemap_fdata[write|wait]_range not 1545 * able to find the pages tagged with SetPageError at transaction 1546 * commit time. So if this happens we must abort the transaction, 1547 * otherwise we commit a super block with btree roots that point to 1548 * btree nodes/leafs whose content on disk is invalid - either garbage 1549 * or the content of some node/leaf from a past generation that got 1550 * cowed or deleted and is no longer valid. 1551 * 1552 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1553 * not be enough - we need to distinguish between log tree extents vs 1554 * non-log tree extents, and the next filemap_fdatawait_range() call 1555 * will catch and clear such errors in the mapping - and that call might 1556 * be from a log sync and not from a transaction commit. Also, checking 1557 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1558 * not done and would not be reliable - the eb might have been released 1559 * from memory and reading it back again means that flag would not be 1560 * set (since it's a runtime flag, not persisted on disk). 1561 * 1562 * Using the flags below in the btree inode also makes us achieve the 1563 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1564 * writeback for all dirty pages and before filemap_fdatawait_range() 1565 * is called, the writeback for all dirty pages had already finished 1566 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1567 * filemap_fdatawait_range() would return success, as it could not know 1568 * that writeback errors happened (the pages were no longer tagged for 1569 * writeback). 1570 */ 1571 switch (eb->log_index) { 1572 case -1: 1573 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1574 break; 1575 case 0: 1576 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1577 break; 1578 case 1: 1579 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1580 break; 1581 default: 1582 BUG(); /* unexpected, logic error */ 1583 } 1584 } 1585 1586 /* 1587 * The endio specific version which won't touch any unsafe spinlock in endio 1588 * context. 1589 */ 1590 static struct extent_buffer *find_extent_buffer_nolock( 1591 struct btrfs_fs_info *fs_info, u64 start) 1592 { 1593 struct extent_buffer *eb; 1594 1595 rcu_read_lock(); 1596 eb = radix_tree_lookup(&fs_info->buffer_radix, 1597 start >> fs_info->sectorsize_bits); 1598 if (eb && atomic_inc_not_zero(&eb->refs)) { 1599 rcu_read_unlock(); 1600 return eb; 1601 } 1602 rcu_read_unlock(); 1603 return NULL; 1604 } 1605 1606 static void extent_buffer_write_end_io(struct btrfs_bio *bbio) 1607 { 1608 struct extent_buffer *eb = bbio->private; 1609 struct btrfs_fs_info *fs_info = eb->fs_info; 1610 bool uptodate = !bbio->bio.bi_status; 1611 struct bvec_iter_all iter_all; 1612 struct bio_vec *bvec; 1613 u32 bio_offset = 0; 1614 1615 if (!uptodate) 1616 set_btree_ioerr(eb); 1617 1618 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 1619 u64 start = eb->start + bio_offset; 1620 struct page *page = bvec->bv_page; 1621 u32 len = bvec->bv_len; 1622 1623 btrfs_page_clear_writeback(fs_info, page, start, len); 1624 bio_offset += len; 1625 } 1626 1627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1628 smp_mb__after_atomic(); 1629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1630 1631 bio_put(&bbio->bio); 1632 } 1633 1634 static void prepare_eb_write(struct extent_buffer *eb) 1635 { 1636 u32 nritems; 1637 unsigned long start; 1638 unsigned long end; 1639 1640 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1641 1642 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1643 nritems = btrfs_header_nritems(eb); 1644 if (btrfs_header_level(eb) > 0) { 1645 end = btrfs_node_key_ptr_offset(eb, nritems); 1646 memzero_extent_buffer(eb, end, eb->len - end); 1647 } else { 1648 /* 1649 * Leaf: 1650 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1651 */ 1652 start = btrfs_item_nr_offset(eb, nritems); 1653 end = btrfs_item_nr_offset(eb, 0); 1654 if (nritems == 0) 1655 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1656 else 1657 end += btrfs_item_offset(eb, nritems - 1); 1658 memzero_extent_buffer(eb, start, end - start); 1659 } 1660 } 1661 1662 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 1663 struct writeback_control *wbc) 1664 { 1665 struct btrfs_fs_info *fs_info = eb->fs_info; 1666 struct btrfs_bio *bbio; 1667 1668 prepare_eb_write(eb); 1669 1670 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 1671 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc), 1672 eb->fs_info, extent_buffer_write_end_io, eb); 1673 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 1674 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 1675 wbc_init_bio(wbc, &bbio->bio); 1676 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 1677 bbio->file_offset = eb->start; 1678 if (fs_info->nodesize < PAGE_SIZE) { 1679 struct page *p = eb->pages[0]; 1680 1681 lock_page(p); 1682 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len); 1683 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start, 1684 eb->len)) { 1685 clear_page_dirty_for_io(p); 1686 wbc->nr_to_write--; 1687 } 1688 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p)); 1689 wbc_account_cgroup_owner(wbc, p, eb->len); 1690 unlock_page(p); 1691 } else { 1692 for (int i = 0; i < num_extent_pages(eb); i++) { 1693 struct page *p = eb->pages[i]; 1694 1695 lock_page(p); 1696 clear_page_dirty_for_io(p); 1697 set_page_writeback(p); 1698 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0); 1699 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE); 1700 wbc->nr_to_write--; 1701 unlock_page(p); 1702 } 1703 } 1704 btrfs_submit_bio(bbio, 0); 1705 } 1706 1707 /* 1708 * Submit one subpage btree page. 1709 * 1710 * The main difference to submit_eb_page() is: 1711 * - Page locking 1712 * For subpage, we don't rely on page locking at all. 1713 * 1714 * - Flush write bio 1715 * We only flush bio if we may be unable to fit current extent buffers into 1716 * current bio. 1717 * 1718 * Return >=0 for the number of submitted extent buffers. 1719 * Return <0 for fatal error. 1720 */ 1721 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc) 1722 { 1723 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 1724 int submitted = 0; 1725 u64 page_start = page_offset(page); 1726 int bit_start = 0; 1727 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 1728 1729 /* Lock and write each dirty extent buffers in the range */ 1730 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 1731 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1732 struct extent_buffer *eb; 1733 unsigned long flags; 1734 u64 start; 1735 1736 /* 1737 * Take private lock to ensure the subpage won't be detached 1738 * in the meantime. 1739 */ 1740 spin_lock(&page->mapping->private_lock); 1741 if (!PagePrivate(page)) { 1742 spin_unlock(&page->mapping->private_lock); 1743 break; 1744 } 1745 spin_lock_irqsave(&subpage->lock, flags); 1746 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 1747 subpage->bitmaps)) { 1748 spin_unlock_irqrestore(&subpage->lock, flags); 1749 spin_unlock(&page->mapping->private_lock); 1750 bit_start++; 1751 continue; 1752 } 1753 1754 start = page_start + bit_start * fs_info->sectorsize; 1755 bit_start += sectors_per_node; 1756 1757 /* 1758 * Here we just want to grab the eb without touching extra 1759 * spin locks, so call find_extent_buffer_nolock(). 1760 */ 1761 eb = find_extent_buffer_nolock(fs_info, start); 1762 spin_unlock_irqrestore(&subpage->lock, flags); 1763 spin_unlock(&page->mapping->private_lock); 1764 1765 /* 1766 * The eb has already reached 0 refs thus find_extent_buffer() 1767 * doesn't return it. We don't need to write back such eb 1768 * anyway. 1769 */ 1770 if (!eb) 1771 continue; 1772 1773 if (lock_extent_buffer_for_io(eb, wbc)) { 1774 write_one_eb(eb, wbc); 1775 submitted++; 1776 } 1777 free_extent_buffer(eb); 1778 } 1779 return submitted; 1780 } 1781 1782 /* 1783 * Submit all page(s) of one extent buffer. 1784 * 1785 * @page: the page of one extent buffer 1786 * @eb_context: to determine if we need to submit this page, if current page 1787 * belongs to this eb, we don't need to submit 1788 * 1789 * The caller should pass each page in their bytenr order, and here we use 1790 * @eb_context to determine if we have submitted pages of one extent buffer. 1791 * 1792 * If we have, we just skip until we hit a new page that doesn't belong to 1793 * current @eb_context. 1794 * 1795 * If not, we submit all the page(s) of the extent buffer. 1796 * 1797 * Return >0 if we have submitted the extent buffer successfully. 1798 * Return 0 if we don't need to submit the page, as it's already submitted by 1799 * previous call. 1800 * Return <0 for fatal error. 1801 */ 1802 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx) 1803 { 1804 struct writeback_control *wbc = ctx->wbc; 1805 struct address_space *mapping = page->mapping; 1806 struct extent_buffer *eb; 1807 int ret; 1808 1809 if (!PagePrivate(page)) 1810 return 0; 1811 1812 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 1813 return submit_eb_subpage(page, wbc); 1814 1815 spin_lock(&mapping->private_lock); 1816 if (!PagePrivate(page)) { 1817 spin_unlock(&mapping->private_lock); 1818 return 0; 1819 } 1820 1821 eb = (struct extent_buffer *)page->private; 1822 1823 /* 1824 * Shouldn't happen and normally this would be a BUG_ON but no point 1825 * crashing the machine for something we can survive anyway. 1826 */ 1827 if (WARN_ON(!eb)) { 1828 spin_unlock(&mapping->private_lock); 1829 return 0; 1830 } 1831 1832 if (eb == ctx->eb) { 1833 spin_unlock(&mapping->private_lock); 1834 return 0; 1835 } 1836 ret = atomic_inc_not_zero(&eb->refs); 1837 spin_unlock(&mapping->private_lock); 1838 if (!ret) 1839 return 0; 1840 1841 ctx->eb = eb; 1842 1843 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx); 1844 if (ret) { 1845 if (ret == -EBUSY) 1846 ret = 0; 1847 free_extent_buffer(eb); 1848 return ret; 1849 } 1850 1851 if (!lock_extent_buffer_for_io(eb, wbc)) { 1852 free_extent_buffer(eb); 1853 return 0; 1854 } 1855 /* Implies write in zoned mode. */ 1856 if (ctx->zoned_bg) { 1857 /* Mark the last eb in the block group. */ 1858 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb); 1859 ctx->zoned_bg->meta_write_pointer += eb->len; 1860 } 1861 write_one_eb(eb, wbc); 1862 free_extent_buffer(eb); 1863 return 1; 1864 } 1865 1866 int btree_write_cache_pages(struct address_space *mapping, 1867 struct writeback_control *wbc) 1868 { 1869 struct btrfs_eb_write_context ctx = { .wbc = wbc }; 1870 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 1871 int ret = 0; 1872 int done = 0; 1873 int nr_to_write_done = 0; 1874 struct folio_batch fbatch; 1875 unsigned int nr_folios; 1876 pgoff_t index; 1877 pgoff_t end; /* Inclusive */ 1878 int scanned = 0; 1879 xa_mark_t tag; 1880 1881 folio_batch_init(&fbatch); 1882 if (wbc->range_cyclic) { 1883 index = mapping->writeback_index; /* Start from prev offset */ 1884 end = -1; 1885 /* 1886 * Start from the beginning does not need to cycle over the 1887 * range, mark it as scanned. 1888 */ 1889 scanned = (index == 0); 1890 } else { 1891 index = wbc->range_start >> PAGE_SHIFT; 1892 end = wbc->range_end >> PAGE_SHIFT; 1893 scanned = 1; 1894 } 1895 if (wbc->sync_mode == WB_SYNC_ALL) 1896 tag = PAGECACHE_TAG_TOWRITE; 1897 else 1898 tag = PAGECACHE_TAG_DIRTY; 1899 btrfs_zoned_meta_io_lock(fs_info); 1900 retry: 1901 if (wbc->sync_mode == WB_SYNC_ALL) 1902 tag_pages_for_writeback(mapping, index, end); 1903 while (!done && !nr_to_write_done && (index <= end) && 1904 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 1905 tag, &fbatch))) { 1906 unsigned i; 1907 1908 for (i = 0; i < nr_folios; i++) { 1909 struct folio *folio = fbatch.folios[i]; 1910 1911 ret = submit_eb_page(&folio->page, &ctx); 1912 if (ret == 0) 1913 continue; 1914 if (ret < 0) { 1915 done = 1; 1916 break; 1917 } 1918 1919 /* 1920 * the filesystem may choose to bump up nr_to_write. 1921 * We have to make sure to honor the new nr_to_write 1922 * at any time 1923 */ 1924 nr_to_write_done = wbc->nr_to_write <= 0; 1925 } 1926 folio_batch_release(&fbatch); 1927 cond_resched(); 1928 } 1929 if (!scanned && !done) { 1930 /* 1931 * We hit the last page and there is more work to be done: wrap 1932 * back to the start of the file 1933 */ 1934 scanned = 1; 1935 index = 0; 1936 goto retry; 1937 } 1938 /* 1939 * If something went wrong, don't allow any metadata write bio to be 1940 * submitted. 1941 * 1942 * This would prevent use-after-free if we had dirty pages not 1943 * cleaned up, which can still happen by fuzzed images. 1944 * 1945 * - Bad extent tree 1946 * Allowing existing tree block to be allocated for other trees. 1947 * 1948 * - Log tree operations 1949 * Exiting tree blocks get allocated to log tree, bumps its 1950 * generation, then get cleaned in tree re-balance. 1951 * Such tree block will not be written back, since it's clean, 1952 * thus no WRITTEN flag set. 1953 * And after log writes back, this tree block is not traced by 1954 * any dirty extent_io_tree. 1955 * 1956 * - Offending tree block gets re-dirtied from its original owner 1957 * Since it has bumped generation, no WRITTEN flag, it can be 1958 * reused without COWing. This tree block will not be traced 1959 * by btrfs_transaction::dirty_pages. 1960 * 1961 * Now such dirty tree block will not be cleaned by any dirty 1962 * extent io tree. Thus we don't want to submit such wild eb 1963 * if the fs already has error. 1964 * 1965 * We can get ret > 0 from submit_extent_page() indicating how many ebs 1966 * were submitted. Reset it to 0 to avoid false alerts for the caller. 1967 */ 1968 if (ret > 0) 1969 ret = 0; 1970 if (!ret && BTRFS_FS_ERROR(fs_info)) 1971 ret = -EROFS; 1972 1973 if (ctx.zoned_bg) 1974 btrfs_put_block_group(ctx.zoned_bg); 1975 btrfs_zoned_meta_io_unlock(fs_info); 1976 return ret; 1977 } 1978 1979 /* 1980 * Walk the list of dirty pages of the given address space and write all of them. 1981 * 1982 * @mapping: address space structure to write 1983 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1984 * @bio_ctrl: holds context for the write, namely the bio 1985 * 1986 * If a page is already under I/O, write_cache_pages() skips it, even 1987 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1988 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1989 * and msync() need to guarantee that all the data which was dirty at the time 1990 * the call was made get new I/O started against them. If wbc->sync_mode is 1991 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1992 * existing IO to complete. 1993 */ 1994 static int extent_write_cache_pages(struct address_space *mapping, 1995 struct btrfs_bio_ctrl *bio_ctrl) 1996 { 1997 struct writeback_control *wbc = bio_ctrl->wbc; 1998 struct inode *inode = mapping->host; 1999 int ret = 0; 2000 int done = 0; 2001 int nr_to_write_done = 0; 2002 struct folio_batch fbatch; 2003 unsigned int nr_folios; 2004 pgoff_t index; 2005 pgoff_t end; /* Inclusive */ 2006 pgoff_t done_index; 2007 int range_whole = 0; 2008 int scanned = 0; 2009 xa_mark_t tag; 2010 2011 /* 2012 * We have to hold onto the inode so that ordered extents can do their 2013 * work when the IO finishes. The alternative to this is failing to add 2014 * an ordered extent if the igrab() fails there and that is a huge pain 2015 * to deal with, so instead just hold onto the inode throughout the 2016 * writepages operation. If it fails here we are freeing up the inode 2017 * anyway and we'd rather not waste our time writing out stuff that is 2018 * going to be truncated anyway. 2019 */ 2020 if (!igrab(inode)) 2021 return 0; 2022 2023 folio_batch_init(&fbatch); 2024 if (wbc->range_cyclic) { 2025 index = mapping->writeback_index; /* Start from prev offset */ 2026 end = -1; 2027 /* 2028 * Start from the beginning does not need to cycle over the 2029 * range, mark it as scanned. 2030 */ 2031 scanned = (index == 0); 2032 } else { 2033 index = wbc->range_start >> PAGE_SHIFT; 2034 end = wbc->range_end >> PAGE_SHIFT; 2035 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2036 range_whole = 1; 2037 scanned = 1; 2038 } 2039 2040 /* 2041 * We do the tagged writepage as long as the snapshot flush bit is set 2042 * and we are the first one who do the filemap_flush() on this inode. 2043 * 2044 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2045 * not race in and drop the bit. 2046 */ 2047 if (range_whole && wbc->nr_to_write == LONG_MAX && 2048 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2049 &BTRFS_I(inode)->runtime_flags)) 2050 wbc->tagged_writepages = 1; 2051 2052 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2053 tag = PAGECACHE_TAG_TOWRITE; 2054 else 2055 tag = PAGECACHE_TAG_DIRTY; 2056 retry: 2057 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2058 tag_pages_for_writeback(mapping, index, end); 2059 done_index = index; 2060 while (!done && !nr_to_write_done && (index <= end) && 2061 (nr_folios = filemap_get_folios_tag(mapping, &index, 2062 end, tag, &fbatch))) { 2063 unsigned i; 2064 2065 for (i = 0; i < nr_folios; i++) { 2066 struct folio *folio = fbatch.folios[i]; 2067 2068 done_index = folio_next_index(folio); 2069 /* 2070 * At this point we hold neither the i_pages lock nor 2071 * the page lock: the page may be truncated or 2072 * invalidated (changing page->mapping to NULL), 2073 * or even swizzled back from swapper_space to 2074 * tmpfs file mapping 2075 */ 2076 if (!folio_trylock(folio)) { 2077 submit_write_bio(bio_ctrl, 0); 2078 folio_lock(folio); 2079 } 2080 2081 if (unlikely(folio->mapping != mapping)) { 2082 folio_unlock(folio); 2083 continue; 2084 } 2085 2086 if (!folio_test_dirty(folio)) { 2087 /* Someone wrote it for us. */ 2088 folio_unlock(folio); 2089 continue; 2090 } 2091 2092 if (wbc->sync_mode != WB_SYNC_NONE) { 2093 if (folio_test_writeback(folio)) 2094 submit_write_bio(bio_ctrl, 0); 2095 folio_wait_writeback(folio); 2096 } 2097 2098 if (folio_test_writeback(folio) || 2099 !folio_clear_dirty_for_io(folio)) { 2100 folio_unlock(folio); 2101 continue; 2102 } 2103 2104 ret = __extent_writepage(&folio->page, bio_ctrl); 2105 if (ret < 0) { 2106 done = 1; 2107 break; 2108 } 2109 2110 /* 2111 * The filesystem may choose to bump up nr_to_write. 2112 * We have to make sure to honor the new nr_to_write 2113 * at any time. 2114 */ 2115 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE && 2116 wbc->nr_to_write <= 0); 2117 } 2118 folio_batch_release(&fbatch); 2119 cond_resched(); 2120 } 2121 if (!scanned && !done) { 2122 /* 2123 * We hit the last page and there is more work to be done: wrap 2124 * back to the start of the file 2125 */ 2126 scanned = 1; 2127 index = 0; 2128 2129 /* 2130 * If we're looping we could run into a page that is locked by a 2131 * writer and that writer could be waiting on writeback for a 2132 * page in our current bio, and thus deadlock, so flush the 2133 * write bio here. 2134 */ 2135 submit_write_bio(bio_ctrl, 0); 2136 goto retry; 2137 } 2138 2139 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2140 mapping->writeback_index = done_index; 2141 2142 btrfs_add_delayed_iput(BTRFS_I(inode)); 2143 return ret; 2144 } 2145 2146 /* 2147 * Submit the pages in the range to bio for call sites which delalloc range has 2148 * already been ran (aka, ordered extent inserted) and all pages are still 2149 * locked. 2150 */ 2151 void extent_write_locked_range(struct inode *inode, struct page *locked_page, 2152 u64 start, u64 end, struct writeback_control *wbc, 2153 bool pages_dirty) 2154 { 2155 bool found_error = false; 2156 int ret = 0; 2157 struct address_space *mapping = inode->i_mapping; 2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2159 const u32 sectorsize = fs_info->sectorsize; 2160 loff_t i_size = i_size_read(inode); 2161 u64 cur = start; 2162 struct btrfs_bio_ctrl bio_ctrl = { 2163 .wbc = wbc, 2164 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2165 }; 2166 2167 if (wbc->no_cgroup_owner) 2168 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT; 2169 2170 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2171 2172 while (cur <= end) { 2173 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2174 u32 cur_len = cur_end + 1 - cur; 2175 struct page *page; 2176 int nr = 0; 2177 2178 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2179 ASSERT(PageLocked(page)); 2180 if (pages_dirty && page != locked_page) { 2181 ASSERT(PageDirty(page)); 2182 clear_page_dirty_for_io(page); 2183 } 2184 2185 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl, 2186 i_size, &nr); 2187 if (ret == 1) 2188 goto next_page; 2189 2190 /* Make sure the mapping tag for page dirty gets cleared. */ 2191 if (nr == 0) { 2192 set_page_writeback(page); 2193 end_page_writeback(page); 2194 } 2195 if (ret) { 2196 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, 2197 cur, cur_len, !ret); 2198 mapping_set_error(page->mapping, ret); 2199 } 2200 btrfs_page_unlock_writer(fs_info, page, cur, cur_len); 2201 if (ret < 0) 2202 found_error = true; 2203 next_page: 2204 put_page(page); 2205 cur = cur_end + 1; 2206 } 2207 2208 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2209 } 2210 2211 int extent_writepages(struct address_space *mapping, 2212 struct writeback_control *wbc) 2213 { 2214 struct inode *inode = mapping->host; 2215 int ret = 0; 2216 struct btrfs_bio_ctrl bio_ctrl = { 2217 .wbc = wbc, 2218 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2219 }; 2220 2221 /* 2222 * Allow only a single thread to do the reloc work in zoned mode to 2223 * protect the write pointer updates. 2224 */ 2225 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2226 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2227 submit_write_bio(&bio_ctrl, ret); 2228 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2229 return ret; 2230 } 2231 2232 void extent_readahead(struct readahead_control *rac) 2233 { 2234 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2235 struct page *pagepool[16]; 2236 struct extent_map *em_cached = NULL; 2237 u64 prev_em_start = (u64)-1; 2238 int nr; 2239 2240 while ((nr = readahead_page_batch(rac, pagepool))) { 2241 u64 contig_start = readahead_pos(rac); 2242 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2243 2244 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2245 &em_cached, &bio_ctrl, &prev_em_start); 2246 } 2247 2248 if (em_cached) 2249 free_extent_map(em_cached); 2250 submit_one_bio(&bio_ctrl); 2251 } 2252 2253 /* 2254 * basic invalidate_folio code, this waits on any locked or writeback 2255 * ranges corresponding to the folio, and then deletes any extent state 2256 * records from the tree 2257 */ 2258 int extent_invalidate_folio(struct extent_io_tree *tree, 2259 struct folio *folio, size_t offset) 2260 { 2261 struct extent_state *cached_state = NULL; 2262 u64 start = folio_pos(folio); 2263 u64 end = start + folio_size(folio) - 1; 2264 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2265 2266 /* This function is only called for the btree inode */ 2267 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2268 2269 start += ALIGN(offset, blocksize); 2270 if (start > end) 2271 return 0; 2272 2273 lock_extent(tree, start, end, &cached_state); 2274 folio_wait_writeback(folio); 2275 2276 /* 2277 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2278 * so here we only need to unlock the extent range to free any 2279 * existing extent state. 2280 */ 2281 unlock_extent(tree, start, end, &cached_state); 2282 return 0; 2283 } 2284 2285 /* 2286 * a helper for release_folio, this tests for areas of the page that 2287 * are locked or under IO and drops the related state bits if it is safe 2288 * to drop the page. 2289 */ 2290 static int try_release_extent_state(struct extent_io_tree *tree, 2291 struct page *page, gfp_t mask) 2292 { 2293 u64 start = page_offset(page); 2294 u64 end = start + PAGE_SIZE - 1; 2295 int ret = 1; 2296 2297 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2298 ret = 0; 2299 } else { 2300 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2301 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2302 2303 /* 2304 * At this point we can safely clear everything except the 2305 * locked bit, the nodatasum bit and the delalloc new bit. 2306 * The delalloc new bit will be cleared by ordered extent 2307 * completion. 2308 */ 2309 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL); 2310 2311 /* if clear_extent_bit failed for enomem reasons, 2312 * we can't allow the release to continue. 2313 */ 2314 if (ret < 0) 2315 ret = 0; 2316 else 2317 ret = 1; 2318 } 2319 return ret; 2320 } 2321 2322 /* 2323 * a helper for release_folio. As long as there are no locked extents 2324 * in the range corresponding to the page, both state records and extent 2325 * map records are removed 2326 */ 2327 int try_release_extent_mapping(struct page *page, gfp_t mask) 2328 { 2329 struct extent_map *em; 2330 u64 start = page_offset(page); 2331 u64 end = start + PAGE_SIZE - 1; 2332 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2333 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2334 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2335 2336 if (gfpflags_allow_blocking(mask) && 2337 page->mapping->host->i_size > SZ_16M) { 2338 u64 len; 2339 while (start <= end) { 2340 struct btrfs_fs_info *fs_info; 2341 u64 cur_gen; 2342 2343 len = end - start + 1; 2344 write_lock(&map->lock); 2345 em = lookup_extent_mapping(map, start, len); 2346 if (!em) { 2347 write_unlock(&map->lock); 2348 break; 2349 } 2350 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2351 em->start != start) { 2352 write_unlock(&map->lock); 2353 free_extent_map(em); 2354 break; 2355 } 2356 if (test_range_bit(tree, em->start, 2357 extent_map_end(em) - 1, 2358 EXTENT_LOCKED, 0, NULL)) 2359 goto next; 2360 /* 2361 * If it's not in the list of modified extents, used 2362 * by a fast fsync, we can remove it. If it's being 2363 * logged we can safely remove it since fsync took an 2364 * extra reference on the em. 2365 */ 2366 if (list_empty(&em->list) || 2367 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2368 goto remove_em; 2369 /* 2370 * If it's in the list of modified extents, remove it 2371 * only if its generation is older then the current one, 2372 * in which case we don't need it for a fast fsync. 2373 * Otherwise don't remove it, we could be racing with an 2374 * ongoing fast fsync that could miss the new extent. 2375 */ 2376 fs_info = btrfs_inode->root->fs_info; 2377 spin_lock(&fs_info->trans_lock); 2378 cur_gen = fs_info->generation; 2379 spin_unlock(&fs_info->trans_lock); 2380 if (em->generation >= cur_gen) 2381 goto next; 2382 remove_em: 2383 /* 2384 * We only remove extent maps that are not in the list of 2385 * modified extents or that are in the list but with a 2386 * generation lower then the current generation, so there 2387 * is no need to set the full fsync flag on the inode (it 2388 * hurts the fsync performance for workloads with a data 2389 * size that exceeds or is close to the system's memory). 2390 */ 2391 remove_extent_mapping(map, em); 2392 /* once for the rb tree */ 2393 free_extent_map(em); 2394 next: 2395 start = extent_map_end(em); 2396 write_unlock(&map->lock); 2397 2398 /* once for us */ 2399 free_extent_map(em); 2400 2401 cond_resched(); /* Allow large-extent preemption. */ 2402 } 2403 } 2404 return try_release_extent_state(tree, page, mask); 2405 } 2406 2407 /* 2408 * To cache previous fiemap extent 2409 * 2410 * Will be used for merging fiemap extent 2411 */ 2412 struct fiemap_cache { 2413 u64 offset; 2414 u64 phys; 2415 u64 len; 2416 u32 flags; 2417 bool cached; 2418 }; 2419 2420 /* 2421 * Helper to submit fiemap extent. 2422 * 2423 * Will try to merge current fiemap extent specified by @offset, @phys, 2424 * @len and @flags with cached one. 2425 * And only when we fails to merge, cached one will be submitted as 2426 * fiemap extent. 2427 * 2428 * Return value is the same as fiemap_fill_next_extent(). 2429 */ 2430 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2431 struct fiemap_cache *cache, 2432 u64 offset, u64 phys, u64 len, u32 flags) 2433 { 2434 int ret = 0; 2435 2436 /* Set at the end of extent_fiemap(). */ 2437 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2438 2439 if (!cache->cached) 2440 goto assign; 2441 2442 /* 2443 * Sanity check, extent_fiemap() should have ensured that new 2444 * fiemap extent won't overlap with cached one. 2445 * Not recoverable. 2446 * 2447 * NOTE: Physical address can overlap, due to compression 2448 */ 2449 if (cache->offset + cache->len > offset) { 2450 WARN_ON(1); 2451 return -EINVAL; 2452 } 2453 2454 /* 2455 * Only merges fiemap extents if 2456 * 1) Their logical addresses are continuous 2457 * 2458 * 2) Their physical addresses are continuous 2459 * So truly compressed (physical size smaller than logical size) 2460 * extents won't get merged with each other 2461 * 2462 * 3) Share same flags 2463 */ 2464 if (cache->offset + cache->len == offset && 2465 cache->phys + cache->len == phys && 2466 cache->flags == flags) { 2467 cache->len += len; 2468 return 0; 2469 } 2470 2471 /* Not mergeable, need to submit cached one */ 2472 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2473 cache->len, cache->flags); 2474 cache->cached = false; 2475 if (ret) 2476 return ret; 2477 assign: 2478 cache->cached = true; 2479 cache->offset = offset; 2480 cache->phys = phys; 2481 cache->len = len; 2482 cache->flags = flags; 2483 2484 return 0; 2485 } 2486 2487 /* 2488 * Emit last fiemap cache 2489 * 2490 * The last fiemap cache may still be cached in the following case: 2491 * 0 4k 8k 2492 * |<- Fiemap range ->| 2493 * |<------------ First extent ----------->| 2494 * 2495 * In this case, the first extent range will be cached but not emitted. 2496 * So we must emit it before ending extent_fiemap(). 2497 */ 2498 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2499 struct fiemap_cache *cache) 2500 { 2501 int ret; 2502 2503 if (!cache->cached) 2504 return 0; 2505 2506 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2507 cache->len, cache->flags); 2508 cache->cached = false; 2509 if (ret > 0) 2510 ret = 0; 2511 return ret; 2512 } 2513 2514 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2515 { 2516 struct extent_buffer *clone; 2517 struct btrfs_key key; 2518 int slot; 2519 int ret; 2520 2521 path->slots[0]++; 2522 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2523 return 0; 2524 2525 ret = btrfs_next_leaf(inode->root, path); 2526 if (ret != 0) 2527 return ret; 2528 2529 /* 2530 * Don't bother with cloning if there are no more file extent items for 2531 * our inode. 2532 */ 2533 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2534 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2535 return 1; 2536 2537 /* See the comment at fiemap_search_slot() about why we clone. */ 2538 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2539 if (!clone) 2540 return -ENOMEM; 2541 2542 slot = path->slots[0]; 2543 btrfs_release_path(path); 2544 path->nodes[0] = clone; 2545 path->slots[0] = slot; 2546 2547 return 0; 2548 } 2549 2550 /* 2551 * Search for the first file extent item that starts at a given file offset or 2552 * the one that starts immediately before that offset. 2553 * Returns: 0 on success, < 0 on error, 1 if not found. 2554 */ 2555 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2556 u64 file_offset) 2557 { 2558 const u64 ino = btrfs_ino(inode); 2559 struct btrfs_root *root = inode->root; 2560 struct extent_buffer *clone; 2561 struct btrfs_key key; 2562 int slot; 2563 int ret; 2564 2565 key.objectid = ino; 2566 key.type = BTRFS_EXTENT_DATA_KEY; 2567 key.offset = file_offset; 2568 2569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2570 if (ret < 0) 2571 return ret; 2572 2573 if (ret > 0 && path->slots[0] > 0) { 2574 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2575 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2576 path->slots[0]--; 2577 } 2578 2579 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2580 ret = btrfs_next_leaf(root, path); 2581 if (ret != 0) 2582 return ret; 2583 2584 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2585 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2586 return 1; 2587 } 2588 2589 /* 2590 * We clone the leaf and use it during fiemap. This is because while 2591 * using the leaf we do expensive things like checking if an extent is 2592 * shared, which can take a long time. In order to prevent blocking 2593 * other tasks for too long, we use a clone of the leaf. We have locked 2594 * the file range in the inode's io tree, so we know none of our file 2595 * extent items can change. This way we avoid blocking other tasks that 2596 * want to insert items for other inodes in the same leaf or b+tree 2597 * rebalance operations (triggered for example when someone is trying 2598 * to push items into this leaf when trying to insert an item in a 2599 * neighbour leaf). 2600 * We also need the private clone because holding a read lock on an 2601 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2602 * when we call fiemap_fill_next_extent(), because that may cause a page 2603 * fault when filling the user space buffer with fiemap data. 2604 */ 2605 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2606 if (!clone) 2607 return -ENOMEM; 2608 2609 slot = path->slots[0]; 2610 btrfs_release_path(path); 2611 path->nodes[0] = clone; 2612 path->slots[0] = slot; 2613 2614 return 0; 2615 } 2616 2617 /* 2618 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2619 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2620 * extent. The end offset (@end) is inclusive. 2621 */ 2622 static int fiemap_process_hole(struct btrfs_inode *inode, 2623 struct fiemap_extent_info *fieinfo, 2624 struct fiemap_cache *cache, 2625 struct extent_state **delalloc_cached_state, 2626 struct btrfs_backref_share_check_ctx *backref_ctx, 2627 u64 disk_bytenr, u64 extent_offset, 2628 u64 extent_gen, 2629 u64 start, u64 end) 2630 { 2631 const u64 i_size = i_size_read(&inode->vfs_inode); 2632 u64 cur_offset = start; 2633 u64 last_delalloc_end = 0; 2634 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 2635 bool checked_extent_shared = false; 2636 int ret; 2637 2638 /* 2639 * There can be no delalloc past i_size, so don't waste time looking for 2640 * it beyond i_size. 2641 */ 2642 while (cur_offset < end && cur_offset < i_size) { 2643 u64 delalloc_start; 2644 u64 delalloc_end; 2645 u64 prealloc_start; 2646 u64 prealloc_len = 0; 2647 bool delalloc; 2648 2649 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 2650 delalloc_cached_state, 2651 &delalloc_start, 2652 &delalloc_end); 2653 if (!delalloc) 2654 break; 2655 2656 /* 2657 * If this is a prealloc extent we have to report every section 2658 * of it that has no delalloc. 2659 */ 2660 if (disk_bytenr != 0) { 2661 if (last_delalloc_end == 0) { 2662 prealloc_start = start; 2663 prealloc_len = delalloc_start - start; 2664 } else { 2665 prealloc_start = last_delalloc_end + 1; 2666 prealloc_len = delalloc_start - prealloc_start; 2667 } 2668 } 2669 2670 if (prealloc_len > 0) { 2671 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2672 ret = btrfs_is_data_extent_shared(inode, 2673 disk_bytenr, 2674 extent_gen, 2675 backref_ctx); 2676 if (ret < 0) 2677 return ret; 2678 else if (ret > 0) 2679 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2680 2681 checked_extent_shared = true; 2682 } 2683 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2684 disk_bytenr + extent_offset, 2685 prealloc_len, prealloc_flags); 2686 if (ret) 2687 return ret; 2688 extent_offset += prealloc_len; 2689 } 2690 2691 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 2692 delalloc_end + 1 - delalloc_start, 2693 FIEMAP_EXTENT_DELALLOC | 2694 FIEMAP_EXTENT_UNKNOWN); 2695 if (ret) 2696 return ret; 2697 2698 last_delalloc_end = delalloc_end; 2699 cur_offset = delalloc_end + 1; 2700 extent_offset += cur_offset - delalloc_start; 2701 cond_resched(); 2702 } 2703 2704 /* 2705 * Either we found no delalloc for the whole prealloc extent or we have 2706 * a prealloc extent that spans i_size or starts at or after i_size. 2707 */ 2708 if (disk_bytenr != 0 && last_delalloc_end < end) { 2709 u64 prealloc_start; 2710 u64 prealloc_len; 2711 2712 if (last_delalloc_end == 0) { 2713 prealloc_start = start; 2714 prealloc_len = end + 1 - start; 2715 } else { 2716 prealloc_start = last_delalloc_end + 1; 2717 prealloc_len = end + 1 - prealloc_start; 2718 } 2719 2720 if (!checked_extent_shared && fieinfo->fi_extents_max) { 2721 ret = btrfs_is_data_extent_shared(inode, 2722 disk_bytenr, 2723 extent_gen, 2724 backref_ctx); 2725 if (ret < 0) 2726 return ret; 2727 else if (ret > 0) 2728 prealloc_flags |= FIEMAP_EXTENT_SHARED; 2729 } 2730 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 2731 disk_bytenr + extent_offset, 2732 prealloc_len, prealloc_flags); 2733 if (ret) 2734 return ret; 2735 } 2736 2737 return 0; 2738 } 2739 2740 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 2741 struct btrfs_path *path, 2742 u64 *last_extent_end_ret) 2743 { 2744 const u64 ino = btrfs_ino(inode); 2745 struct btrfs_root *root = inode->root; 2746 struct extent_buffer *leaf; 2747 struct btrfs_file_extent_item *ei; 2748 struct btrfs_key key; 2749 u64 disk_bytenr; 2750 int ret; 2751 2752 /* 2753 * Lookup the last file extent. We're not using i_size here because 2754 * there might be preallocation past i_size. 2755 */ 2756 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 2757 /* There can't be a file extent item at offset (u64)-1 */ 2758 ASSERT(ret != 0); 2759 if (ret < 0) 2760 return ret; 2761 2762 /* 2763 * For a non-existing key, btrfs_search_slot() always leaves us at a 2764 * slot > 0, except if the btree is empty, which is impossible because 2765 * at least it has the inode item for this inode and all the items for 2766 * the root inode 256. 2767 */ 2768 ASSERT(path->slots[0] > 0); 2769 path->slots[0]--; 2770 leaf = path->nodes[0]; 2771 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2772 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 2773 /* No file extent items in the subvolume tree. */ 2774 *last_extent_end_ret = 0; 2775 return 0; 2776 } 2777 2778 /* 2779 * For an inline extent, the disk_bytenr is where inline data starts at, 2780 * so first check if we have an inline extent item before checking if we 2781 * have an implicit hole (disk_bytenr == 0). 2782 */ 2783 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 2784 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 2785 *last_extent_end_ret = btrfs_file_extent_end(path); 2786 return 0; 2787 } 2788 2789 /* 2790 * Find the last file extent item that is not a hole (when NO_HOLES is 2791 * not enabled). This should take at most 2 iterations in the worst 2792 * case: we have one hole file extent item at slot 0 of a leaf and 2793 * another hole file extent item as the last item in the previous leaf. 2794 * This is because we merge file extent items that represent holes. 2795 */ 2796 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2797 while (disk_bytenr == 0) { 2798 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 2799 if (ret < 0) { 2800 return ret; 2801 } else if (ret > 0) { 2802 /* No file extent items that are not holes. */ 2803 *last_extent_end_ret = 0; 2804 return 0; 2805 } 2806 leaf = path->nodes[0]; 2807 ei = btrfs_item_ptr(leaf, path->slots[0], 2808 struct btrfs_file_extent_item); 2809 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2810 } 2811 2812 *last_extent_end_ret = btrfs_file_extent_end(path); 2813 return 0; 2814 } 2815 2816 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 2817 u64 start, u64 len) 2818 { 2819 const u64 ino = btrfs_ino(inode); 2820 struct extent_state *cached_state = NULL; 2821 struct extent_state *delalloc_cached_state = NULL; 2822 struct btrfs_path *path; 2823 struct fiemap_cache cache = { 0 }; 2824 struct btrfs_backref_share_check_ctx *backref_ctx; 2825 u64 last_extent_end; 2826 u64 prev_extent_end; 2827 u64 lockstart; 2828 u64 lockend; 2829 bool stopped = false; 2830 int ret; 2831 2832 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 2833 path = btrfs_alloc_path(); 2834 if (!backref_ctx || !path) { 2835 ret = -ENOMEM; 2836 goto out; 2837 } 2838 2839 lockstart = round_down(start, inode->root->fs_info->sectorsize); 2840 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 2841 prev_extent_end = lockstart; 2842 2843 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 2844 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 2845 2846 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 2847 if (ret < 0) 2848 goto out_unlock; 2849 btrfs_release_path(path); 2850 2851 path->reada = READA_FORWARD; 2852 ret = fiemap_search_slot(inode, path, lockstart); 2853 if (ret < 0) { 2854 goto out_unlock; 2855 } else if (ret > 0) { 2856 /* 2857 * No file extent item found, but we may have delalloc between 2858 * the current offset and i_size. So check for that. 2859 */ 2860 ret = 0; 2861 goto check_eof_delalloc; 2862 } 2863 2864 while (prev_extent_end < lockend) { 2865 struct extent_buffer *leaf = path->nodes[0]; 2866 struct btrfs_file_extent_item *ei; 2867 struct btrfs_key key; 2868 u64 extent_end; 2869 u64 extent_len; 2870 u64 extent_offset = 0; 2871 u64 extent_gen; 2872 u64 disk_bytenr = 0; 2873 u64 flags = 0; 2874 int extent_type; 2875 u8 compression; 2876 2877 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2878 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2879 break; 2880 2881 extent_end = btrfs_file_extent_end(path); 2882 2883 /* 2884 * The first iteration can leave us at an extent item that ends 2885 * before our range's start. Move to the next item. 2886 */ 2887 if (extent_end <= lockstart) 2888 goto next_item; 2889 2890 backref_ctx->curr_leaf_bytenr = leaf->start; 2891 2892 /* We have in implicit hole (NO_HOLES feature enabled). */ 2893 if (prev_extent_end < key.offset) { 2894 const u64 range_end = min(key.offset, lockend) - 1; 2895 2896 ret = fiemap_process_hole(inode, fieinfo, &cache, 2897 &delalloc_cached_state, 2898 backref_ctx, 0, 0, 0, 2899 prev_extent_end, range_end); 2900 if (ret < 0) { 2901 goto out_unlock; 2902 } else if (ret > 0) { 2903 /* fiemap_fill_next_extent() told us to stop. */ 2904 stopped = true; 2905 break; 2906 } 2907 2908 /* We've reached the end of the fiemap range, stop. */ 2909 if (key.offset >= lockend) { 2910 stopped = true; 2911 break; 2912 } 2913 } 2914 2915 extent_len = extent_end - key.offset; 2916 ei = btrfs_item_ptr(leaf, path->slots[0], 2917 struct btrfs_file_extent_item); 2918 compression = btrfs_file_extent_compression(leaf, ei); 2919 extent_type = btrfs_file_extent_type(leaf, ei); 2920 extent_gen = btrfs_file_extent_generation(leaf, ei); 2921 2922 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2923 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 2924 if (compression == BTRFS_COMPRESS_NONE) 2925 extent_offset = btrfs_file_extent_offset(leaf, ei); 2926 } 2927 2928 if (compression != BTRFS_COMPRESS_NONE) 2929 flags |= FIEMAP_EXTENT_ENCODED; 2930 2931 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2932 flags |= FIEMAP_EXTENT_DATA_INLINE; 2933 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 2934 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 2935 extent_len, flags); 2936 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 2937 ret = fiemap_process_hole(inode, fieinfo, &cache, 2938 &delalloc_cached_state, 2939 backref_ctx, 2940 disk_bytenr, extent_offset, 2941 extent_gen, key.offset, 2942 extent_end - 1); 2943 } else if (disk_bytenr == 0) { 2944 /* We have an explicit hole. */ 2945 ret = fiemap_process_hole(inode, fieinfo, &cache, 2946 &delalloc_cached_state, 2947 backref_ctx, 0, 0, 0, 2948 key.offset, extent_end - 1); 2949 } else { 2950 /* We have a regular extent. */ 2951 if (fieinfo->fi_extents_max) { 2952 ret = btrfs_is_data_extent_shared(inode, 2953 disk_bytenr, 2954 extent_gen, 2955 backref_ctx); 2956 if (ret < 0) 2957 goto out_unlock; 2958 else if (ret > 0) 2959 flags |= FIEMAP_EXTENT_SHARED; 2960 } 2961 2962 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 2963 disk_bytenr + extent_offset, 2964 extent_len, flags); 2965 } 2966 2967 if (ret < 0) { 2968 goto out_unlock; 2969 } else if (ret > 0) { 2970 /* fiemap_fill_next_extent() told us to stop. */ 2971 stopped = true; 2972 break; 2973 } 2974 2975 prev_extent_end = extent_end; 2976 next_item: 2977 if (fatal_signal_pending(current)) { 2978 ret = -EINTR; 2979 goto out_unlock; 2980 } 2981 2982 ret = fiemap_next_leaf_item(inode, path); 2983 if (ret < 0) { 2984 goto out_unlock; 2985 } else if (ret > 0) { 2986 /* No more file extent items for this inode. */ 2987 break; 2988 } 2989 cond_resched(); 2990 } 2991 2992 check_eof_delalloc: 2993 /* 2994 * Release (and free) the path before emitting any final entries to 2995 * fiemap_fill_next_extent() to keep lockdep happy. This is because 2996 * once we find no more file extent items exist, we may have a 2997 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 2998 * faults when copying data to the user space buffer. 2999 */ 3000 btrfs_free_path(path); 3001 path = NULL; 3002 3003 if (!stopped && prev_extent_end < lockend) { 3004 ret = fiemap_process_hole(inode, fieinfo, &cache, 3005 &delalloc_cached_state, backref_ctx, 3006 0, 0, 0, prev_extent_end, lockend - 1); 3007 if (ret < 0) 3008 goto out_unlock; 3009 prev_extent_end = lockend; 3010 } 3011 3012 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3013 const u64 i_size = i_size_read(&inode->vfs_inode); 3014 3015 if (prev_extent_end < i_size) { 3016 u64 delalloc_start; 3017 u64 delalloc_end; 3018 bool delalloc; 3019 3020 delalloc = btrfs_find_delalloc_in_range(inode, 3021 prev_extent_end, 3022 i_size - 1, 3023 &delalloc_cached_state, 3024 &delalloc_start, 3025 &delalloc_end); 3026 if (!delalloc) 3027 cache.flags |= FIEMAP_EXTENT_LAST; 3028 } else { 3029 cache.flags |= FIEMAP_EXTENT_LAST; 3030 } 3031 } 3032 3033 ret = emit_last_fiemap_cache(fieinfo, &cache); 3034 3035 out_unlock: 3036 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3037 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3038 out: 3039 free_extent_state(delalloc_cached_state); 3040 btrfs_free_backref_share_ctx(backref_ctx); 3041 btrfs_free_path(path); 3042 return ret; 3043 } 3044 3045 static void __free_extent_buffer(struct extent_buffer *eb) 3046 { 3047 kmem_cache_free(extent_buffer_cache, eb); 3048 } 3049 3050 static int extent_buffer_under_io(const struct extent_buffer *eb) 3051 { 3052 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3053 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3054 } 3055 3056 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3057 { 3058 struct btrfs_subpage *subpage; 3059 3060 lockdep_assert_held(&page->mapping->private_lock); 3061 3062 if (PagePrivate(page)) { 3063 subpage = (struct btrfs_subpage *)page->private; 3064 if (atomic_read(&subpage->eb_refs)) 3065 return true; 3066 /* 3067 * Even there is no eb refs here, we may still have 3068 * end_page_read() call relying on page::private. 3069 */ 3070 if (atomic_read(&subpage->readers)) 3071 return true; 3072 } 3073 return false; 3074 } 3075 3076 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3077 { 3078 struct btrfs_fs_info *fs_info = eb->fs_info; 3079 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3080 3081 /* 3082 * For mapped eb, we're going to change the page private, which should 3083 * be done under the private_lock. 3084 */ 3085 if (mapped) 3086 spin_lock(&page->mapping->private_lock); 3087 3088 if (!PagePrivate(page)) { 3089 if (mapped) 3090 spin_unlock(&page->mapping->private_lock); 3091 return; 3092 } 3093 3094 if (fs_info->nodesize >= PAGE_SIZE) { 3095 /* 3096 * We do this since we'll remove the pages after we've 3097 * removed the eb from the radix tree, so we could race 3098 * and have this page now attached to the new eb. So 3099 * only clear page_private if it's still connected to 3100 * this eb. 3101 */ 3102 if (PagePrivate(page) && 3103 page->private == (unsigned long)eb) { 3104 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3105 BUG_ON(PageDirty(page)); 3106 BUG_ON(PageWriteback(page)); 3107 /* 3108 * We need to make sure we haven't be attached 3109 * to a new eb. 3110 */ 3111 detach_page_private(page); 3112 } 3113 if (mapped) 3114 spin_unlock(&page->mapping->private_lock); 3115 return; 3116 } 3117 3118 /* 3119 * For subpage, we can have dummy eb with page private. In this case, 3120 * we can directly detach the private as such page is only attached to 3121 * one dummy eb, no sharing. 3122 */ 3123 if (!mapped) { 3124 btrfs_detach_subpage(fs_info, page); 3125 return; 3126 } 3127 3128 btrfs_page_dec_eb_refs(fs_info, page); 3129 3130 /* 3131 * We can only detach the page private if there are no other ebs in the 3132 * page range and no unfinished IO. 3133 */ 3134 if (!page_range_has_eb(fs_info, page)) 3135 btrfs_detach_subpage(fs_info, page); 3136 3137 spin_unlock(&page->mapping->private_lock); 3138 } 3139 3140 /* Release all pages attached to the extent buffer */ 3141 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3142 { 3143 int i; 3144 int num_pages; 3145 3146 ASSERT(!extent_buffer_under_io(eb)); 3147 3148 num_pages = num_extent_pages(eb); 3149 for (i = 0; i < num_pages; i++) { 3150 struct page *page = eb->pages[i]; 3151 3152 if (!page) 3153 continue; 3154 3155 detach_extent_buffer_page(eb, page); 3156 3157 /* One for when we allocated the page */ 3158 put_page(page); 3159 } 3160 } 3161 3162 /* 3163 * Helper for releasing the extent buffer. 3164 */ 3165 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3166 { 3167 btrfs_release_extent_buffer_pages(eb); 3168 btrfs_leak_debug_del_eb(eb); 3169 __free_extent_buffer(eb); 3170 } 3171 3172 static struct extent_buffer * 3173 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3174 unsigned long len) 3175 { 3176 struct extent_buffer *eb = NULL; 3177 3178 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3179 eb->start = start; 3180 eb->len = len; 3181 eb->fs_info = fs_info; 3182 init_rwsem(&eb->lock); 3183 3184 btrfs_leak_debug_add_eb(eb); 3185 3186 spin_lock_init(&eb->refs_lock); 3187 atomic_set(&eb->refs, 1); 3188 3189 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3190 3191 return eb; 3192 } 3193 3194 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3195 { 3196 int i; 3197 struct extent_buffer *new; 3198 int num_pages = num_extent_pages(src); 3199 int ret; 3200 3201 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3202 if (new == NULL) 3203 return NULL; 3204 3205 /* 3206 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3207 * btrfs_release_extent_buffer() have different behavior for 3208 * UNMAPPED subpage extent buffer. 3209 */ 3210 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3211 3212 ret = btrfs_alloc_page_array(num_pages, new->pages); 3213 if (ret) { 3214 btrfs_release_extent_buffer(new); 3215 return NULL; 3216 } 3217 3218 for (i = 0; i < num_pages; i++) { 3219 int ret; 3220 struct page *p = new->pages[i]; 3221 3222 ret = attach_extent_buffer_page(new, p, NULL); 3223 if (ret < 0) { 3224 btrfs_release_extent_buffer(new); 3225 return NULL; 3226 } 3227 WARN_ON(PageDirty(p)); 3228 } 3229 copy_extent_buffer_full(new, src); 3230 set_extent_buffer_uptodate(new); 3231 3232 return new; 3233 } 3234 3235 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3236 u64 start, unsigned long len) 3237 { 3238 struct extent_buffer *eb; 3239 int num_pages; 3240 int i; 3241 int ret; 3242 3243 eb = __alloc_extent_buffer(fs_info, start, len); 3244 if (!eb) 3245 return NULL; 3246 3247 num_pages = num_extent_pages(eb); 3248 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3249 if (ret) 3250 goto err; 3251 3252 for (i = 0; i < num_pages; i++) { 3253 struct page *p = eb->pages[i]; 3254 3255 ret = attach_extent_buffer_page(eb, p, NULL); 3256 if (ret < 0) 3257 goto err; 3258 } 3259 3260 set_extent_buffer_uptodate(eb); 3261 btrfs_set_header_nritems(eb, 0); 3262 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3263 3264 return eb; 3265 err: 3266 for (i = 0; i < num_pages; i++) { 3267 if (eb->pages[i]) { 3268 detach_extent_buffer_page(eb, eb->pages[i]); 3269 __free_page(eb->pages[i]); 3270 } 3271 } 3272 __free_extent_buffer(eb); 3273 return NULL; 3274 } 3275 3276 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3277 u64 start) 3278 { 3279 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3280 } 3281 3282 static void check_buffer_tree_ref(struct extent_buffer *eb) 3283 { 3284 int refs; 3285 /* 3286 * The TREE_REF bit is first set when the extent_buffer is added 3287 * to the radix tree. It is also reset, if unset, when a new reference 3288 * is created by find_extent_buffer. 3289 * 3290 * It is only cleared in two cases: freeing the last non-tree 3291 * reference to the extent_buffer when its STALE bit is set or 3292 * calling release_folio when the tree reference is the only reference. 3293 * 3294 * In both cases, care is taken to ensure that the extent_buffer's 3295 * pages are not under io. However, release_folio can be concurrently 3296 * called with creating new references, which is prone to race 3297 * conditions between the calls to check_buffer_tree_ref in those 3298 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3299 * 3300 * The actual lifetime of the extent_buffer in the radix tree is 3301 * adequately protected by the refcount, but the TREE_REF bit and 3302 * its corresponding reference are not. To protect against this 3303 * class of races, we call check_buffer_tree_ref from the codepaths 3304 * which trigger io. Note that once io is initiated, TREE_REF can no 3305 * longer be cleared, so that is the moment at which any such race is 3306 * best fixed. 3307 */ 3308 refs = atomic_read(&eb->refs); 3309 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3310 return; 3311 3312 spin_lock(&eb->refs_lock); 3313 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3314 atomic_inc(&eb->refs); 3315 spin_unlock(&eb->refs_lock); 3316 } 3317 3318 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3319 struct page *accessed) 3320 { 3321 int num_pages, i; 3322 3323 check_buffer_tree_ref(eb); 3324 3325 num_pages = num_extent_pages(eb); 3326 for (i = 0; i < num_pages; i++) { 3327 struct page *p = eb->pages[i]; 3328 3329 if (p != accessed) 3330 mark_page_accessed(p); 3331 } 3332 } 3333 3334 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3335 u64 start) 3336 { 3337 struct extent_buffer *eb; 3338 3339 eb = find_extent_buffer_nolock(fs_info, start); 3340 if (!eb) 3341 return NULL; 3342 /* 3343 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3344 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3345 * another task running free_extent_buffer() might have seen that flag 3346 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3347 * writeback flags not set) and it's still in the tree (flag 3348 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3349 * decrementing the extent buffer's reference count twice. So here we 3350 * could race and increment the eb's reference count, clear its stale 3351 * flag, mark it as dirty and drop our reference before the other task 3352 * finishes executing free_extent_buffer, which would later result in 3353 * an attempt to free an extent buffer that is dirty. 3354 */ 3355 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3356 spin_lock(&eb->refs_lock); 3357 spin_unlock(&eb->refs_lock); 3358 } 3359 mark_extent_buffer_accessed(eb, NULL); 3360 return eb; 3361 } 3362 3363 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3364 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3365 u64 start) 3366 { 3367 struct extent_buffer *eb, *exists = NULL; 3368 int ret; 3369 3370 eb = find_extent_buffer(fs_info, start); 3371 if (eb) 3372 return eb; 3373 eb = alloc_dummy_extent_buffer(fs_info, start); 3374 if (!eb) 3375 return ERR_PTR(-ENOMEM); 3376 eb->fs_info = fs_info; 3377 again: 3378 ret = radix_tree_preload(GFP_NOFS); 3379 if (ret) { 3380 exists = ERR_PTR(ret); 3381 goto free_eb; 3382 } 3383 spin_lock(&fs_info->buffer_lock); 3384 ret = radix_tree_insert(&fs_info->buffer_radix, 3385 start >> fs_info->sectorsize_bits, eb); 3386 spin_unlock(&fs_info->buffer_lock); 3387 radix_tree_preload_end(); 3388 if (ret == -EEXIST) { 3389 exists = find_extent_buffer(fs_info, start); 3390 if (exists) 3391 goto free_eb; 3392 else 3393 goto again; 3394 } 3395 check_buffer_tree_ref(eb); 3396 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3397 3398 return eb; 3399 free_eb: 3400 btrfs_release_extent_buffer(eb); 3401 return exists; 3402 } 3403 #endif 3404 3405 static struct extent_buffer *grab_extent_buffer( 3406 struct btrfs_fs_info *fs_info, struct page *page) 3407 { 3408 struct extent_buffer *exists; 3409 3410 /* 3411 * For subpage case, we completely rely on radix tree to ensure we 3412 * don't try to insert two ebs for the same bytenr. So here we always 3413 * return NULL and just continue. 3414 */ 3415 if (fs_info->nodesize < PAGE_SIZE) 3416 return NULL; 3417 3418 /* Page not yet attached to an extent buffer */ 3419 if (!PagePrivate(page)) 3420 return NULL; 3421 3422 /* 3423 * We could have already allocated an eb for this page and attached one 3424 * so lets see if we can get a ref on the existing eb, and if we can we 3425 * know it's good and we can just return that one, else we know we can 3426 * just overwrite page->private. 3427 */ 3428 exists = (struct extent_buffer *)page->private; 3429 if (atomic_inc_not_zero(&exists->refs)) 3430 return exists; 3431 3432 WARN_ON(PageDirty(page)); 3433 detach_page_private(page); 3434 return NULL; 3435 } 3436 3437 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3438 { 3439 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3440 btrfs_err(fs_info, "bad tree block start %llu", start); 3441 return -EINVAL; 3442 } 3443 3444 if (fs_info->nodesize < PAGE_SIZE && 3445 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3446 btrfs_err(fs_info, 3447 "tree block crosses page boundary, start %llu nodesize %u", 3448 start, fs_info->nodesize); 3449 return -EINVAL; 3450 } 3451 if (fs_info->nodesize >= PAGE_SIZE && 3452 !PAGE_ALIGNED(start)) { 3453 btrfs_err(fs_info, 3454 "tree block is not page aligned, start %llu nodesize %u", 3455 start, fs_info->nodesize); 3456 return -EINVAL; 3457 } 3458 return 0; 3459 } 3460 3461 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3462 u64 start, u64 owner_root, int level) 3463 { 3464 unsigned long len = fs_info->nodesize; 3465 int num_pages; 3466 int i; 3467 unsigned long index = start >> PAGE_SHIFT; 3468 struct extent_buffer *eb; 3469 struct extent_buffer *exists = NULL; 3470 struct page *p; 3471 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3472 struct btrfs_subpage *prealloc = NULL; 3473 u64 lockdep_owner = owner_root; 3474 int uptodate = 1; 3475 int ret; 3476 3477 if (check_eb_alignment(fs_info, start)) 3478 return ERR_PTR(-EINVAL); 3479 3480 #if BITS_PER_LONG == 32 3481 if (start >= MAX_LFS_FILESIZE) { 3482 btrfs_err_rl(fs_info, 3483 "extent buffer %llu is beyond 32bit page cache limit", start); 3484 btrfs_err_32bit_limit(fs_info); 3485 return ERR_PTR(-EOVERFLOW); 3486 } 3487 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3488 btrfs_warn_32bit_limit(fs_info); 3489 #endif 3490 3491 eb = find_extent_buffer(fs_info, start); 3492 if (eb) 3493 return eb; 3494 3495 eb = __alloc_extent_buffer(fs_info, start, len); 3496 if (!eb) 3497 return ERR_PTR(-ENOMEM); 3498 3499 /* 3500 * The reloc trees are just snapshots, so we need them to appear to be 3501 * just like any other fs tree WRT lockdep. 3502 */ 3503 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3504 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3505 3506 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3507 3508 num_pages = num_extent_pages(eb); 3509 3510 /* 3511 * Preallocate page->private for subpage case, so that we won't 3512 * allocate memory with private_lock nor page lock hold. 3513 * 3514 * The memory will be freed by attach_extent_buffer_page() or freed 3515 * manually if we exit earlier. 3516 */ 3517 if (fs_info->nodesize < PAGE_SIZE) { 3518 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3519 if (IS_ERR(prealloc)) { 3520 exists = ERR_CAST(prealloc); 3521 goto free_eb; 3522 } 3523 } 3524 3525 for (i = 0; i < num_pages; i++, index++) { 3526 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3527 if (!p) { 3528 exists = ERR_PTR(-ENOMEM); 3529 btrfs_free_subpage(prealloc); 3530 goto free_eb; 3531 } 3532 3533 spin_lock(&mapping->private_lock); 3534 exists = grab_extent_buffer(fs_info, p); 3535 if (exists) { 3536 spin_unlock(&mapping->private_lock); 3537 unlock_page(p); 3538 put_page(p); 3539 mark_extent_buffer_accessed(exists, p); 3540 btrfs_free_subpage(prealloc); 3541 goto free_eb; 3542 } 3543 /* Should not fail, as we have preallocated the memory */ 3544 ret = attach_extent_buffer_page(eb, p, prealloc); 3545 ASSERT(!ret); 3546 /* 3547 * To inform we have extra eb under allocation, so that 3548 * detach_extent_buffer_page() won't release the page private 3549 * when the eb hasn't yet been inserted into radix tree. 3550 * 3551 * The ref will be decreased when the eb released the page, in 3552 * detach_extent_buffer_page(). 3553 * Thus needs no special handling in error path. 3554 */ 3555 btrfs_page_inc_eb_refs(fs_info, p); 3556 spin_unlock(&mapping->private_lock); 3557 3558 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3559 eb->pages[i] = p; 3560 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len)) 3561 uptodate = 0; 3562 3563 /* 3564 * We can't unlock the pages just yet since the extent buffer 3565 * hasn't been properly inserted in the radix tree, this 3566 * opens a race with btree_release_folio which can free a page 3567 * while we are still filling in all pages for the buffer and 3568 * we could crash. 3569 */ 3570 } 3571 if (uptodate) 3572 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3573 again: 3574 ret = radix_tree_preload(GFP_NOFS); 3575 if (ret) { 3576 exists = ERR_PTR(ret); 3577 goto free_eb; 3578 } 3579 3580 spin_lock(&fs_info->buffer_lock); 3581 ret = radix_tree_insert(&fs_info->buffer_radix, 3582 start >> fs_info->sectorsize_bits, eb); 3583 spin_unlock(&fs_info->buffer_lock); 3584 radix_tree_preload_end(); 3585 if (ret == -EEXIST) { 3586 exists = find_extent_buffer(fs_info, start); 3587 if (exists) 3588 goto free_eb; 3589 else 3590 goto again; 3591 } 3592 /* add one reference for the tree */ 3593 check_buffer_tree_ref(eb); 3594 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3595 3596 /* 3597 * Now it's safe to unlock the pages because any calls to 3598 * btree_release_folio will correctly detect that a page belongs to a 3599 * live buffer and won't free them prematurely. 3600 */ 3601 for (i = 0; i < num_pages; i++) 3602 unlock_page(eb->pages[i]); 3603 return eb; 3604 3605 free_eb: 3606 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3607 for (i = 0; i < num_pages; i++) { 3608 if (eb->pages[i]) 3609 unlock_page(eb->pages[i]); 3610 } 3611 3612 btrfs_release_extent_buffer(eb); 3613 return exists; 3614 } 3615 3616 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3617 { 3618 struct extent_buffer *eb = 3619 container_of(head, struct extent_buffer, rcu_head); 3620 3621 __free_extent_buffer(eb); 3622 } 3623 3624 static int release_extent_buffer(struct extent_buffer *eb) 3625 __releases(&eb->refs_lock) 3626 { 3627 lockdep_assert_held(&eb->refs_lock); 3628 3629 WARN_ON(atomic_read(&eb->refs) == 0); 3630 if (atomic_dec_and_test(&eb->refs)) { 3631 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 3632 struct btrfs_fs_info *fs_info = eb->fs_info; 3633 3634 spin_unlock(&eb->refs_lock); 3635 3636 spin_lock(&fs_info->buffer_lock); 3637 radix_tree_delete(&fs_info->buffer_radix, 3638 eb->start >> fs_info->sectorsize_bits); 3639 spin_unlock(&fs_info->buffer_lock); 3640 } else { 3641 spin_unlock(&eb->refs_lock); 3642 } 3643 3644 btrfs_leak_debug_del_eb(eb); 3645 /* Should be safe to release our pages at this point */ 3646 btrfs_release_extent_buffer_pages(eb); 3647 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3648 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 3649 __free_extent_buffer(eb); 3650 return 1; 3651 } 3652 #endif 3653 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3654 return 1; 3655 } 3656 spin_unlock(&eb->refs_lock); 3657 3658 return 0; 3659 } 3660 3661 void free_extent_buffer(struct extent_buffer *eb) 3662 { 3663 int refs; 3664 if (!eb) 3665 return; 3666 3667 refs = atomic_read(&eb->refs); 3668 while (1) { 3669 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 3670 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 3671 refs == 1)) 3672 break; 3673 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 3674 return; 3675 } 3676 3677 spin_lock(&eb->refs_lock); 3678 if (atomic_read(&eb->refs) == 2 && 3679 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 3680 !extent_buffer_under_io(eb) && 3681 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3682 atomic_dec(&eb->refs); 3683 3684 /* 3685 * I know this is terrible, but it's temporary until we stop tracking 3686 * the uptodate bits and such for the extent buffers. 3687 */ 3688 release_extent_buffer(eb); 3689 } 3690 3691 void free_extent_buffer_stale(struct extent_buffer *eb) 3692 { 3693 if (!eb) 3694 return; 3695 3696 spin_lock(&eb->refs_lock); 3697 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 3698 3699 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 3700 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3701 atomic_dec(&eb->refs); 3702 release_extent_buffer(eb); 3703 } 3704 3705 static void btree_clear_page_dirty(struct page *page) 3706 { 3707 ASSERT(PageDirty(page)); 3708 ASSERT(PageLocked(page)); 3709 clear_page_dirty_for_io(page); 3710 xa_lock_irq(&page->mapping->i_pages); 3711 if (!PageDirty(page)) 3712 __xa_clear_mark(&page->mapping->i_pages, 3713 page_index(page), PAGECACHE_TAG_DIRTY); 3714 xa_unlock_irq(&page->mapping->i_pages); 3715 } 3716 3717 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 3718 { 3719 struct btrfs_fs_info *fs_info = eb->fs_info; 3720 struct page *page = eb->pages[0]; 3721 bool last; 3722 3723 /* btree_clear_page_dirty() needs page locked */ 3724 lock_page(page); 3725 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 3726 eb->len); 3727 if (last) 3728 btree_clear_page_dirty(page); 3729 unlock_page(page); 3730 WARN_ON(atomic_read(&eb->refs) == 0); 3731 } 3732 3733 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 3734 struct extent_buffer *eb) 3735 { 3736 struct btrfs_fs_info *fs_info = eb->fs_info; 3737 int i; 3738 int num_pages; 3739 struct page *page; 3740 3741 btrfs_assert_tree_write_locked(eb); 3742 3743 if (trans && btrfs_header_generation(eb) != trans->transid) 3744 return; 3745 3746 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 3747 return; 3748 3749 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 3750 fs_info->dirty_metadata_batch); 3751 3752 if (eb->fs_info->nodesize < PAGE_SIZE) 3753 return clear_subpage_extent_buffer_dirty(eb); 3754 3755 num_pages = num_extent_pages(eb); 3756 3757 for (i = 0; i < num_pages; i++) { 3758 page = eb->pages[i]; 3759 if (!PageDirty(page)) 3760 continue; 3761 lock_page(page); 3762 btree_clear_page_dirty(page); 3763 unlock_page(page); 3764 } 3765 WARN_ON(atomic_read(&eb->refs) == 0); 3766 } 3767 3768 void set_extent_buffer_dirty(struct extent_buffer *eb) 3769 { 3770 int i; 3771 int num_pages; 3772 bool was_dirty; 3773 3774 check_buffer_tree_ref(eb); 3775 3776 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3777 3778 num_pages = num_extent_pages(eb); 3779 WARN_ON(atomic_read(&eb->refs) == 0); 3780 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 3781 3782 if (!was_dirty) { 3783 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 3784 3785 /* 3786 * For subpage case, we can have other extent buffers in the 3787 * same page, and in clear_subpage_extent_buffer_dirty() we 3788 * have to clear page dirty without subpage lock held. 3789 * This can cause race where our page gets dirty cleared after 3790 * we just set it. 3791 * 3792 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 3793 * its page for other reasons, we can use page lock to prevent 3794 * the above race. 3795 */ 3796 if (subpage) 3797 lock_page(eb->pages[0]); 3798 for (i = 0; i < num_pages; i++) 3799 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 3800 eb->start, eb->len); 3801 if (subpage) 3802 unlock_page(eb->pages[0]); 3803 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes, 3804 eb->len, 3805 eb->fs_info->dirty_metadata_batch); 3806 } 3807 #ifdef CONFIG_BTRFS_DEBUG 3808 for (i = 0; i < num_pages; i++) 3809 ASSERT(PageDirty(eb->pages[i])); 3810 #endif 3811 } 3812 3813 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 3814 { 3815 struct btrfs_fs_info *fs_info = eb->fs_info; 3816 struct page *page; 3817 int num_pages; 3818 int i; 3819 3820 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3821 num_pages = num_extent_pages(eb); 3822 for (i = 0; i < num_pages; i++) { 3823 page = eb->pages[i]; 3824 if (!page) 3825 continue; 3826 3827 /* 3828 * This is special handling for metadata subpage, as regular 3829 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3830 */ 3831 if (fs_info->nodesize >= PAGE_SIZE) 3832 ClearPageUptodate(page); 3833 else 3834 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 3835 eb->len); 3836 } 3837 } 3838 3839 void set_extent_buffer_uptodate(struct extent_buffer *eb) 3840 { 3841 struct btrfs_fs_info *fs_info = eb->fs_info; 3842 struct page *page; 3843 int num_pages; 3844 int i; 3845 3846 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3847 num_pages = num_extent_pages(eb); 3848 for (i = 0; i < num_pages; i++) { 3849 page = eb->pages[i]; 3850 3851 /* 3852 * This is special handling for metadata subpage, as regular 3853 * btrfs_is_subpage() can not handle cloned/dummy metadata. 3854 */ 3855 if (fs_info->nodesize >= PAGE_SIZE) 3856 SetPageUptodate(page); 3857 else 3858 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 3859 eb->len); 3860 } 3861 } 3862 3863 static void extent_buffer_read_end_io(struct btrfs_bio *bbio) 3864 { 3865 struct extent_buffer *eb = bbio->private; 3866 struct btrfs_fs_info *fs_info = eb->fs_info; 3867 bool uptodate = !bbio->bio.bi_status; 3868 struct bvec_iter_all iter_all; 3869 struct bio_vec *bvec; 3870 u32 bio_offset = 0; 3871 3872 eb->read_mirror = bbio->mirror_num; 3873 3874 if (uptodate && 3875 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0) 3876 uptodate = false; 3877 3878 if (uptodate) { 3879 set_extent_buffer_uptodate(eb); 3880 } else { 3881 clear_extent_buffer_uptodate(eb); 3882 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3883 } 3884 3885 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 3886 u64 start = eb->start + bio_offset; 3887 struct page *page = bvec->bv_page; 3888 u32 len = bvec->bv_len; 3889 3890 if (uptodate) 3891 btrfs_page_set_uptodate(fs_info, page, start, len); 3892 else 3893 btrfs_page_clear_uptodate(fs_info, page, start, len); 3894 3895 bio_offset += len; 3896 } 3897 3898 clear_bit(EXTENT_BUFFER_READING, &eb->bflags); 3899 smp_mb__after_atomic(); 3900 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING); 3901 free_extent_buffer(eb); 3902 3903 bio_put(&bbio->bio); 3904 } 3905 3906 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 3907 struct btrfs_tree_parent_check *check) 3908 { 3909 int num_pages = num_extent_pages(eb), i; 3910 struct btrfs_bio *bbio; 3911 3912 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3913 return 0; 3914 3915 /* 3916 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 3917 * operation, which could potentially still be in flight. In this case 3918 * we simply want to return an error. 3919 */ 3920 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 3921 return -EIO; 3922 3923 /* Someone else is already reading the buffer, just wait for it. */ 3924 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) 3925 goto done; 3926 3927 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3928 eb->read_mirror = 0; 3929 check_buffer_tree_ref(eb); 3930 atomic_inc(&eb->refs); 3931 3932 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES, 3933 REQ_OP_READ | REQ_META, eb->fs_info, 3934 extent_buffer_read_end_io, eb); 3935 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT; 3936 bbio->inode = BTRFS_I(eb->fs_info->btree_inode); 3937 bbio->file_offset = eb->start; 3938 memcpy(&bbio->parent_check, check, sizeof(*check)); 3939 if (eb->fs_info->nodesize < PAGE_SIZE) { 3940 __bio_add_page(&bbio->bio, eb->pages[0], eb->len, 3941 eb->start - page_offset(eb->pages[0])); 3942 } else { 3943 for (i = 0; i < num_pages; i++) 3944 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0); 3945 } 3946 btrfs_submit_bio(bbio, mirror_num); 3947 3948 done: 3949 if (wait == WAIT_COMPLETE) { 3950 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE); 3951 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3952 return -EIO; 3953 } 3954 3955 return 0; 3956 } 3957 3958 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 3959 unsigned long len) 3960 { 3961 btrfs_warn(eb->fs_info, 3962 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 3963 eb->start, eb->len, start, len); 3964 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 3965 3966 return true; 3967 } 3968 3969 /* 3970 * Check if the [start, start + len) range is valid before reading/writing 3971 * the eb. 3972 * NOTE: @start and @len are offset inside the eb, not logical address. 3973 * 3974 * Caller should not touch the dst/src memory if this function returns error. 3975 */ 3976 static inline int check_eb_range(const struct extent_buffer *eb, 3977 unsigned long start, unsigned long len) 3978 { 3979 unsigned long offset; 3980 3981 /* start, start + len should not go beyond eb->len nor overflow */ 3982 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 3983 return report_eb_range(eb, start, len); 3984 3985 return false; 3986 } 3987 3988 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 3989 unsigned long start, unsigned long len) 3990 { 3991 size_t cur; 3992 size_t offset; 3993 struct page *page; 3994 char *kaddr; 3995 char *dst = (char *)dstv; 3996 unsigned long i = get_eb_page_index(start); 3997 3998 if (check_eb_range(eb, start, len)) { 3999 /* 4000 * Invalid range hit, reset the memory, so callers won't get 4001 * some random garbage for their uninitialzed memory. 4002 */ 4003 memset(dstv, 0, len); 4004 return; 4005 } 4006 4007 offset = get_eb_offset_in_page(eb, start); 4008 4009 while (len > 0) { 4010 page = eb->pages[i]; 4011 4012 cur = min(len, (PAGE_SIZE - offset)); 4013 kaddr = page_address(page); 4014 memcpy(dst, kaddr + offset, cur); 4015 4016 dst += cur; 4017 len -= cur; 4018 offset = 0; 4019 i++; 4020 } 4021 } 4022 4023 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4024 void __user *dstv, 4025 unsigned long start, unsigned long len) 4026 { 4027 size_t cur; 4028 size_t offset; 4029 struct page *page; 4030 char *kaddr; 4031 char __user *dst = (char __user *)dstv; 4032 unsigned long i = get_eb_page_index(start); 4033 int ret = 0; 4034 4035 WARN_ON(start > eb->len); 4036 WARN_ON(start + len > eb->start + eb->len); 4037 4038 offset = get_eb_offset_in_page(eb, start); 4039 4040 while (len > 0) { 4041 page = eb->pages[i]; 4042 4043 cur = min(len, (PAGE_SIZE - offset)); 4044 kaddr = page_address(page); 4045 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4046 ret = -EFAULT; 4047 break; 4048 } 4049 4050 dst += cur; 4051 len -= cur; 4052 offset = 0; 4053 i++; 4054 } 4055 4056 return ret; 4057 } 4058 4059 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4060 unsigned long start, unsigned long len) 4061 { 4062 size_t cur; 4063 size_t offset; 4064 struct page *page; 4065 char *kaddr; 4066 char *ptr = (char *)ptrv; 4067 unsigned long i = get_eb_page_index(start); 4068 int ret = 0; 4069 4070 if (check_eb_range(eb, start, len)) 4071 return -EINVAL; 4072 4073 offset = get_eb_offset_in_page(eb, start); 4074 4075 while (len > 0) { 4076 page = eb->pages[i]; 4077 4078 cur = min(len, (PAGE_SIZE - offset)); 4079 4080 kaddr = page_address(page); 4081 ret = memcmp(ptr, kaddr + offset, cur); 4082 if (ret) 4083 break; 4084 4085 ptr += cur; 4086 len -= cur; 4087 offset = 0; 4088 i++; 4089 } 4090 return ret; 4091 } 4092 4093 /* 4094 * Check that the extent buffer is uptodate. 4095 * 4096 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4097 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4098 */ 4099 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4100 struct page *page) 4101 { 4102 struct btrfs_fs_info *fs_info = eb->fs_info; 4103 4104 /* 4105 * If we are using the commit root we could potentially clear a page 4106 * Uptodate while we're using the extent buffer that we've previously 4107 * looked up. We don't want to complain in this case, as the page was 4108 * valid before, we just didn't write it out. Instead we want to catch 4109 * the case where we didn't actually read the block properly, which 4110 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR. 4111 */ 4112 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4113 return; 4114 4115 if (fs_info->nodesize < PAGE_SIZE) { 4116 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page, 4117 eb->start, eb->len))) 4118 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len); 4119 } else { 4120 WARN_ON(!PageUptodate(page)); 4121 } 4122 } 4123 4124 static void __write_extent_buffer(const struct extent_buffer *eb, 4125 const void *srcv, unsigned long start, 4126 unsigned long len, bool use_memmove) 4127 { 4128 size_t cur; 4129 size_t offset; 4130 struct page *page; 4131 char *kaddr; 4132 char *src = (char *)srcv; 4133 unsigned long i = get_eb_page_index(start); 4134 /* For unmapped (dummy) ebs, no need to check their uptodate status. */ 4135 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 4136 4137 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4138 4139 if (check_eb_range(eb, start, len)) 4140 return; 4141 4142 offset = get_eb_offset_in_page(eb, start); 4143 4144 while (len > 0) { 4145 page = eb->pages[i]; 4146 if (check_uptodate) 4147 assert_eb_page_uptodate(eb, page); 4148 4149 cur = min(len, PAGE_SIZE - offset); 4150 kaddr = page_address(page); 4151 if (use_memmove) 4152 memmove(kaddr + offset, src, cur); 4153 else 4154 memcpy(kaddr + offset, src, cur); 4155 4156 src += cur; 4157 len -= cur; 4158 offset = 0; 4159 i++; 4160 } 4161 } 4162 4163 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4164 unsigned long start, unsigned long len) 4165 { 4166 return __write_extent_buffer(eb, srcv, start, len, false); 4167 } 4168 4169 static void memset_extent_buffer(const struct extent_buffer *eb, int c, 4170 unsigned long start, unsigned long len) 4171 { 4172 unsigned long cur = start; 4173 4174 while (cur < start + len) { 4175 unsigned long index = get_eb_page_index(cur); 4176 unsigned int offset = get_eb_offset_in_page(eb, cur); 4177 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset); 4178 struct page *page = eb->pages[index]; 4179 4180 assert_eb_page_uptodate(eb, page); 4181 memset(page_address(page) + offset, c, cur_len); 4182 4183 cur += cur_len; 4184 } 4185 } 4186 4187 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4188 unsigned long len) 4189 { 4190 if (check_eb_range(eb, start, len)) 4191 return; 4192 return memset_extent_buffer(eb, 0, start, len); 4193 } 4194 4195 void copy_extent_buffer_full(const struct extent_buffer *dst, 4196 const struct extent_buffer *src) 4197 { 4198 unsigned long cur = 0; 4199 4200 ASSERT(dst->len == src->len); 4201 4202 while (cur < src->len) { 4203 unsigned long index = get_eb_page_index(cur); 4204 unsigned long offset = get_eb_offset_in_page(src, cur); 4205 unsigned long cur_len = min(src->len, PAGE_SIZE - offset); 4206 void *addr = page_address(src->pages[index]) + offset; 4207 4208 write_extent_buffer(dst, addr, cur, cur_len); 4209 4210 cur += cur_len; 4211 } 4212 } 4213 4214 void copy_extent_buffer(const struct extent_buffer *dst, 4215 const struct extent_buffer *src, 4216 unsigned long dst_offset, unsigned long src_offset, 4217 unsigned long len) 4218 { 4219 u64 dst_len = dst->len; 4220 size_t cur; 4221 size_t offset; 4222 struct page *page; 4223 char *kaddr; 4224 unsigned long i = get_eb_page_index(dst_offset); 4225 4226 if (check_eb_range(dst, dst_offset, len) || 4227 check_eb_range(src, src_offset, len)) 4228 return; 4229 4230 WARN_ON(src->len != dst_len); 4231 4232 offset = get_eb_offset_in_page(dst, dst_offset); 4233 4234 while (len > 0) { 4235 page = dst->pages[i]; 4236 assert_eb_page_uptodate(dst, page); 4237 4238 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4239 4240 kaddr = page_address(page); 4241 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4242 4243 src_offset += cur; 4244 len -= cur; 4245 offset = 0; 4246 i++; 4247 } 4248 } 4249 4250 /* 4251 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4252 * given bit number 4253 * @eb: the extent buffer 4254 * @start: offset of the bitmap item in the extent buffer 4255 * @nr: bit number 4256 * @page_index: return index of the page in the extent buffer that contains the 4257 * given bit number 4258 * @page_offset: return offset into the page given by page_index 4259 * 4260 * This helper hides the ugliness of finding the byte in an extent buffer which 4261 * contains a given bit. 4262 */ 4263 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4264 unsigned long start, unsigned long nr, 4265 unsigned long *page_index, 4266 size_t *page_offset) 4267 { 4268 size_t byte_offset = BIT_BYTE(nr); 4269 size_t offset; 4270 4271 /* 4272 * The byte we want is the offset of the extent buffer + the offset of 4273 * the bitmap item in the extent buffer + the offset of the byte in the 4274 * bitmap item. 4275 */ 4276 offset = start + offset_in_page(eb->start) + byte_offset; 4277 4278 *page_index = offset >> PAGE_SHIFT; 4279 *page_offset = offset_in_page(offset); 4280 } 4281 4282 /* 4283 * Determine whether a bit in a bitmap item is set. 4284 * 4285 * @eb: the extent buffer 4286 * @start: offset of the bitmap item in the extent buffer 4287 * @nr: bit number to test 4288 */ 4289 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4290 unsigned long nr) 4291 { 4292 u8 *kaddr; 4293 struct page *page; 4294 unsigned long i; 4295 size_t offset; 4296 4297 eb_bitmap_offset(eb, start, nr, &i, &offset); 4298 page = eb->pages[i]; 4299 assert_eb_page_uptodate(eb, page); 4300 kaddr = page_address(page); 4301 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4302 } 4303 4304 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr) 4305 { 4306 unsigned long index = get_eb_page_index(bytenr); 4307 4308 if (check_eb_range(eb, bytenr, 1)) 4309 return NULL; 4310 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr); 4311 } 4312 4313 /* 4314 * Set an area of a bitmap to 1. 4315 * 4316 * @eb: the extent buffer 4317 * @start: offset of the bitmap item in the extent buffer 4318 * @pos: bit number of the first bit 4319 * @len: number of bits to set 4320 */ 4321 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4322 unsigned long pos, unsigned long len) 4323 { 4324 unsigned int first_byte = start + BIT_BYTE(pos); 4325 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4326 const bool same_byte = (first_byte == last_byte); 4327 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4328 u8 *kaddr; 4329 4330 if (same_byte) 4331 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4332 4333 /* Handle the first byte. */ 4334 kaddr = extent_buffer_get_byte(eb, first_byte); 4335 *kaddr |= mask; 4336 if (same_byte) 4337 return; 4338 4339 /* Handle the byte aligned part. */ 4340 ASSERT(first_byte + 1 <= last_byte); 4341 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1); 4342 4343 /* Handle the last byte. */ 4344 kaddr = extent_buffer_get_byte(eb, last_byte); 4345 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len); 4346 } 4347 4348 4349 /* 4350 * Clear an area of a bitmap. 4351 * 4352 * @eb: the extent buffer 4353 * @start: offset of the bitmap item in the extent buffer 4354 * @pos: bit number of the first bit 4355 * @len: number of bits to clear 4356 */ 4357 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4358 unsigned long start, unsigned long pos, 4359 unsigned long len) 4360 { 4361 unsigned int first_byte = start + BIT_BYTE(pos); 4362 unsigned int last_byte = start + BIT_BYTE(pos + len - 1); 4363 const bool same_byte = (first_byte == last_byte); 4364 u8 mask = BITMAP_FIRST_BYTE_MASK(pos); 4365 u8 *kaddr; 4366 4367 if (same_byte) 4368 mask &= BITMAP_LAST_BYTE_MASK(pos + len); 4369 4370 /* Handle the first byte. */ 4371 kaddr = extent_buffer_get_byte(eb, first_byte); 4372 *kaddr &= ~mask; 4373 if (same_byte) 4374 return; 4375 4376 /* Handle the byte aligned part. */ 4377 ASSERT(first_byte + 1 <= last_byte); 4378 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1); 4379 4380 /* Handle the last byte. */ 4381 kaddr = extent_buffer_get_byte(eb, last_byte); 4382 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len); 4383 } 4384 4385 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4386 { 4387 unsigned long distance = (src > dst) ? src - dst : dst - src; 4388 return distance < len; 4389 } 4390 4391 void memcpy_extent_buffer(const struct extent_buffer *dst, 4392 unsigned long dst_offset, unsigned long src_offset, 4393 unsigned long len) 4394 { 4395 unsigned long cur_off = 0; 4396 4397 if (check_eb_range(dst, dst_offset, len) || 4398 check_eb_range(dst, src_offset, len)) 4399 return; 4400 4401 while (cur_off < len) { 4402 unsigned long cur_src = cur_off + src_offset; 4403 unsigned long pg_index = get_eb_page_index(cur_src); 4404 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src); 4405 unsigned long cur_len = min(src_offset + len - cur_src, 4406 PAGE_SIZE - pg_off); 4407 void *src_addr = page_address(dst->pages[pg_index]) + pg_off; 4408 const bool use_memmove = areas_overlap(src_offset + cur_off, 4409 dst_offset + cur_off, cur_len); 4410 4411 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len, 4412 use_memmove); 4413 cur_off += cur_len; 4414 } 4415 } 4416 4417 void memmove_extent_buffer(const struct extent_buffer *dst, 4418 unsigned long dst_offset, unsigned long src_offset, 4419 unsigned long len) 4420 { 4421 unsigned long dst_end = dst_offset + len - 1; 4422 unsigned long src_end = src_offset + len - 1; 4423 4424 if (check_eb_range(dst, dst_offset, len) || 4425 check_eb_range(dst, src_offset, len)) 4426 return; 4427 4428 if (dst_offset < src_offset) { 4429 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4430 return; 4431 } 4432 4433 while (len > 0) { 4434 unsigned long src_i; 4435 size_t cur; 4436 size_t dst_off_in_page; 4437 size_t src_off_in_page; 4438 void *src_addr; 4439 bool use_memmove; 4440 4441 src_i = get_eb_page_index(src_end); 4442 4443 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4444 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4445 4446 cur = min_t(unsigned long, len, src_off_in_page + 1); 4447 cur = min(cur, dst_off_in_page + 1); 4448 4449 src_addr = page_address(dst->pages[src_i]) + src_off_in_page - 4450 cur + 1; 4451 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1, 4452 cur); 4453 4454 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur, 4455 use_memmove); 4456 4457 dst_end -= cur; 4458 src_end -= cur; 4459 len -= cur; 4460 } 4461 } 4462 4463 #define GANG_LOOKUP_SIZE 16 4464 static struct extent_buffer *get_next_extent_buffer( 4465 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4466 { 4467 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4468 struct extent_buffer *found = NULL; 4469 u64 page_start = page_offset(page); 4470 u64 cur = page_start; 4471 4472 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4473 lockdep_assert_held(&fs_info->buffer_lock); 4474 4475 while (cur < page_start + PAGE_SIZE) { 4476 int ret; 4477 int i; 4478 4479 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4480 (void **)gang, cur >> fs_info->sectorsize_bits, 4481 min_t(unsigned int, GANG_LOOKUP_SIZE, 4482 PAGE_SIZE / fs_info->nodesize)); 4483 if (ret == 0) 4484 goto out; 4485 for (i = 0; i < ret; i++) { 4486 /* Already beyond page end */ 4487 if (gang[i]->start >= page_start + PAGE_SIZE) 4488 goto out; 4489 /* Found one */ 4490 if (gang[i]->start >= bytenr) { 4491 found = gang[i]; 4492 goto out; 4493 } 4494 } 4495 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4496 } 4497 out: 4498 return found; 4499 } 4500 4501 static int try_release_subpage_extent_buffer(struct page *page) 4502 { 4503 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4504 u64 cur = page_offset(page); 4505 const u64 end = page_offset(page) + PAGE_SIZE; 4506 int ret; 4507 4508 while (cur < end) { 4509 struct extent_buffer *eb = NULL; 4510 4511 /* 4512 * Unlike try_release_extent_buffer() which uses page->private 4513 * to grab buffer, for subpage case we rely on radix tree, thus 4514 * we need to ensure radix tree consistency. 4515 * 4516 * We also want an atomic snapshot of the radix tree, thus go 4517 * with spinlock rather than RCU. 4518 */ 4519 spin_lock(&fs_info->buffer_lock); 4520 eb = get_next_extent_buffer(fs_info, page, cur); 4521 if (!eb) { 4522 /* No more eb in the page range after or at cur */ 4523 spin_unlock(&fs_info->buffer_lock); 4524 break; 4525 } 4526 cur = eb->start + eb->len; 4527 4528 /* 4529 * The same as try_release_extent_buffer(), to ensure the eb 4530 * won't disappear out from under us. 4531 */ 4532 spin_lock(&eb->refs_lock); 4533 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4534 spin_unlock(&eb->refs_lock); 4535 spin_unlock(&fs_info->buffer_lock); 4536 break; 4537 } 4538 spin_unlock(&fs_info->buffer_lock); 4539 4540 /* 4541 * If tree ref isn't set then we know the ref on this eb is a 4542 * real ref, so just return, this eb will likely be freed soon 4543 * anyway. 4544 */ 4545 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4546 spin_unlock(&eb->refs_lock); 4547 break; 4548 } 4549 4550 /* 4551 * Here we don't care about the return value, we will always 4552 * check the page private at the end. And 4553 * release_extent_buffer() will release the refs_lock. 4554 */ 4555 release_extent_buffer(eb); 4556 } 4557 /* 4558 * Finally to check if we have cleared page private, as if we have 4559 * released all ebs in the page, the page private should be cleared now. 4560 */ 4561 spin_lock(&page->mapping->private_lock); 4562 if (!PagePrivate(page)) 4563 ret = 1; 4564 else 4565 ret = 0; 4566 spin_unlock(&page->mapping->private_lock); 4567 return ret; 4568 4569 } 4570 4571 int try_release_extent_buffer(struct page *page) 4572 { 4573 struct extent_buffer *eb; 4574 4575 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4576 return try_release_subpage_extent_buffer(page); 4577 4578 /* 4579 * We need to make sure nobody is changing page->private, as we rely on 4580 * page->private as the pointer to extent buffer. 4581 */ 4582 spin_lock(&page->mapping->private_lock); 4583 if (!PagePrivate(page)) { 4584 spin_unlock(&page->mapping->private_lock); 4585 return 1; 4586 } 4587 4588 eb = (struct extent_buffer *)page->private; 4589 BUG_ON(!eb); 4590 4591 /* 4592 * This is a little awful but should be ok, we need to make sure that 4593 * the eb doesn't disappear out from under us while we're looking at 4594 * this page. 4595 */ 4596 spin_lock(&eb->refs_lock); 4597 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 4598 spin_unlock(&eb->refs_lock); 4599 spin_unlock(&page->mapping->private_lock); 4600 return 0; 4601 } 4602 spin_unlock(&page->mapping->private_lock); 4603 4604 /* 4605 * If tree ref isn't set then we know the ref on this eb is a real ref, 4606 * so just return, this page will likely be freed soon anyway. 4607 */ 4608 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 4609 spin_unlock(&eb->refs_lock); 4610 return 0; 4611 } 4612 4613 return release_extent_buffer(eb); 4614 } 4615 4616 /* 4617 * btrfs_readahead_tree_block - attempt to readahead a child block 4618 * @fs_info: the fs_info 4619 * @bytenr: bytenr to read 4620 * @owner_root: objectid of the root that owns this eb 4621 * @gen: generation for the uptodate check, can be 0 4622 * @level: level for the eb 4623 * 4624 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 4625 * normal uptodate check of the eb, without checking the generation. If we have 4626 * to read the block we will not block on anything. 4627 */ 4628 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 4629 u64 bytenr, u64 owner_root, u64 gen, int level) 4630 { 4631 struct btrfs_tree_parent_check check = { 4632 .has_first_key = 0, 4633 .level = level, 4634 .transid = gen 4635 }; 4636 struct extent_buffer *eb; 4637 int ret; 4638 4639 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 4640 if (IS_ERR(eb)) 4641 return; 4642 4643 if (btrfs_buffer_uptodate(eb, gen, 1)) { 4644 free_extent_buffer(eb); 4645 return; 4646 } 4647 4648 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 4649 if (ret < 0) 4650 free_extent_buffer_stale(eb); 4651 else 4652 free_extent_buffer(eb); 4653 } 4654 4655 /* 4656 * btrfs_readahead_node_child - readahead a node's child block 4657 * @node: parent node we're reading from 4658 * @slot: slot in the parent node for the child we want to read 4659 * 4660 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 4661 * the slot in the node provided. 4662 */ 4663 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 4664 { 4665 btrfs_readahead_tree_block(node->fs_info, 4666 btrfs_node_blockptr(node, slot), 4667 btrfs_header_owner(node), 4668 btrfs_node_ptr_generation(node, slot), 4669 btrfs_header_level(node) - 1); 4670 } 4671