1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "volumes.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 34 static struct kmem_cache *extent_state_cache; 35 static struct kmem_cache *extent_buffer_cache; 36 static struct bio_set btrfs_bioset; 37 38 static inline bool extent_state_in_tree(const struct extent_state *state) 39 { 40 return !RB_EMPTY_NODE(&state->rb_node); 41 } 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static LIST_HEAD(states); 45 static DEFINE_SPINLOCK(leak_lock); 46 47 static inline void btrfs_leak_debug_add(spinlock_t *lock, 48 struct list_head *new, 49 struct list_head *head) 50 { 51 unsigned long flags; 52 53 spin_lock_irqsave(lock, flags); 54 list_add(new, head); 55 spin_unlock_irqrestore(lock, flags); 56 } 57 58 static inline void btrfs_leak_debug_del(spinlock_t *lock, 59 struct list_head *entry) 60 { 61 unsigned long flags; 62 63 spin_lock_irqsave(lock, flags); 64 list_del(entry); 65 spin_unlock_irqrestore(lock, flags); 66 } 67 68 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 69 { 70 struct extent_buffer *eb; 71 unsigned long flags; 72 73 /* 74 * If we didn't get into open_ctree our allocated_ebs will not be 75 * initialized, so just skip this. 76 */ 77 if (!fs_info->allocated_ebs.next) 78 return; 79 80 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 81 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 82 while (!list_empty(&fs_info->allocated_ebs)) { 83 eb = list_first_entry(&fs_info->allocated_ebs, 84 struct extent_buffer, leak_list); 85 pr_err( 86 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 87 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 88 btrfs_header_owner(eb)); 89 list_del(&eb->leak_list); 90 kmem_cache_free(extent_buffer_cache, eb); 91 } 92 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 93 } 94 95 static inline void btrfs_extent_state_leak_debug_check(void) 96 { 97 struct extent_state *state; 98 99 while (!list_empty(&states)) { 100 state = list_entry(states.next, struct extent_state, leak_list); 101 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n", 102 state->start, state->end, state->state, 103 extent_state_in_tree(state), 104 refcount_read(&state->refs)); 105 list_del(&state->leak_list); 106 kmem_cache_free(extent_state_cache, state); 107 } 108 } 109 110 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 111 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 112 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 113 struct extent_io_tree *tree, u64 start, u64 end) 114 { 115 struct inode *inode = tree->private_data; 116 u64 isize; 117 118 if (!inode || !is_data_inode(inode)) 119 return; 120 121 isize = i_size_read(inode); 122 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 123 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 124 "%s: ino %llu isize %llu odd range [%llu,%llu]", 125 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 126 } 127 } 128 #else 129 #define btrfs_leak_debug_add(lock, new, head) do {} while (0) 130 #define btrfs_leak_debug_del(lock, entry) do {} while (0) 131 #define btrfs_extent_state_leak_debug_check() do {} while (0) 132 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 133 #endif 134 135 struct tree_entry { 136 u64 start; 137 u64 end; 138 struct rb_node rb_node; 139 }; 140 141 /* 142 * Structure to record info about the bio being assembled, and other info like 143 * how many bytes are there before stripe/ordered extent boundary. 144 */ 145 struct btrfs_bio_ctrl { 146 struct bio *bio; 147 enum btrfs_compression_type compress_type; 148 u32 len_to_stripe_boundary; 149 u32 len_to_oe_boundary; 150 }; 151 152 struct extent_page_data { 153 struct btrfs_bio_ctrl bio_ctrl; 154 /* tells writepage not to lock the state bits for this range 155 * it still does the unlocking 156 */ 157 unsigned int extent_locked:1; 158 159 /* tells the submit_bio code to use REQ_SYNC */ 160 unsigned int sync_io:1; 161 }; 162 163 static int add_extent_changeset(struct extent_state *state, u32 bits, 164 struct extent_changeset *changeset, 165 int set) 166 { 167 int ret; 168 169 if (!changeset) 170 return 0; 171 if (set && (state->state & bits) == bits) 172 return 0; 173 if (!set && (state->state & bits) == 0) 174 return 0; 175 changeset->bytes_changed += state->end - state->start + 1; 176 ret = ulist_add(&changeset->range_changed, state->start, state->end, 177 GFP_ATOMIC); 178 return ret; 179 } 180 181 static void submit_one_bio(struct bio *bio, int mirror_num, 182 enum btrfs_compression_type compress_type) 183 { 184 struct extent_io_tree *tree = bio->bi_private; 185 186 bio->bi_private = NULL; 187 188 /* Caller should ensure the bio has at least some range added */ 189 ASSERT(bio->bi_iter.bi_size); 190 191 if (is_data_inode(tree->private_data)) 192 btrfs_submit_data_bio(tree->private_data, bio, mirror_num, 193 compress_type); 194 else 195 btrfs_submit_metadata_bio(tree->private_data, bio, mirror_num); 196 /* 197 * Above submission hooks will handle the error by ending the bio, 198 * which will do the cleanup properly. So here we should not return 199 * any error, or the caller of submit_extent_page() will do cleanup 200 * again, causing problems. 201 */ 202 } 203 204 /* Cleanup unsubmitted bios */ 205 static void end_write_bio(struct extent_page_data *epd, int ret) 206 { 207 struct bio *bio = epd->bio_ctrl.bio; 208 209 if (bio) { 210 bio->bi_status = errno_to_blk_status(ret); 211 bio_endio(bio); 212 epd->bio_ctrl.bio = NULL; 213 } 214 } 215 216 /* 217 * Submit bio from extent page data via submit_one_bio 218 * 219 * Return 0 if everything is OK. 220 * Return <0 for error. 221 */ 222 static void flush_write_bio(struct extent_page_data *epd) 223 { 224 struct bio *bio = epd->bio_ctrl.bio; 225 226 if (bio) { 227 submit_one_bio(bio, 0, 0); 228 /* 229 * Clean up of epd->bio is handled by its endio function. 230 * And endio is either triggered by successful bio execution 231 * or the error handler of submit bio hook. 232 * So at this point, no matter what happened, we don't need 233 * to clean up epd->bio. 234 */ 235 epd->bio_ctrl.bio = NULL; 236 } 237 } 238 239 int __init extent_state_cache_init(void) 240 { 241 extent_state_cache = kmem_cache_create("btrfs_extent_state", 242 sizeof(struct extent_state), 0, 243 SLAB_MEM_SPREAD, NULL); 244 if (!extent_state_cache) 245 return -ENOMEM; 246 return 0; 247 } 248 249 int __init extent_io_init(void) 250 { 251 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 252 sizeof(struct extent_buffer), 0, 253 SLAB_MEM_SPREAD, NULL); 254 if (!extent_buffer_cache) 255 return -ENOMEM; 256 257 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 258 offsetof(struct btrfs_bio, bio), 259 BIOSET_NEED_BVECS)) 260 goto free_buffer_cache; 261 262 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE)) 263 goto free_bioset; 264 265 return 0; 266 267 free_bioset: 268 bioset_exit(&btrfs_bioset); 269 270 free_buffer_cache: 271 kmem_cache_destroy(extent_buffer_cache); 272 extent_buffer_cache = NULL; 273 return -ENOMEM; 274 } 275 276 void __cold extent_state_cache_exit(void) 277 { 278 btrfs_extent_state_leak_debug_check(); 279 kmem_cache_destroy(extent_state_cache); 280 } 281 282 void __cold extent_io_exit(void) 283 { 284 /* 285 * Make sure all delayed rcu free are flushed before we 286 * destroy caches. 287 */ 288 rcu_barrier(); 289 kmem_cache_destroy(extent_buffer_cache); 290 bioset_exit(&btrfs_bioset); 291 } 292 293 /* 294 * For the file_extent_tree, we want to hold the inode lock when we lookup and 295 * update the disk_i_size, but lockdep will complain because our io_tree we hold 296 * the tree lock and get the inode lock when setting delalloc. These two things 297 * are unrelated, so make a class for the file_extent_tree so we don't get the 298 * two locking patterns mixed up. 299 */ 300 static struct lock_class_key file_extent_tree_class; 301 302 void extent_io_tree_init(struct btrfs_fs_info *fs_info, 303 struct extent_io_tree *tree, unsigned int owner, 304 void *private_data) 305 { 306 tree->fs_info = fs_info; 307 tree->state = RB_ROOT; 308 tree->dirty_bytes = 0; 309 spin_lock_init(&tree->lock); 310 tree->private_data = private_data; 311 tree->owner = owner; 312 if (owner == IO_TREE_INODE_FILE_EXTENT) 313 lockdep_set_class(&tree->lock, &file_extent_tree_class); 314 } 315 316 void extent_io_tree_release(struct extent_io_tree *tree) 317 { 318 spin_lock(&tree->lock); 319 /* 320 * Do a single barrier for the waitqueue_active check here, the state 321 * of the waitqueue should not change once extent_io_tree_release is 322 * called. 323 */ 324 smp_mb(); 325 while (!RB_EMPTY_ROOT(&tree->state)) { 326 struct rb_node *node; 327 struct extent_state *state; 328 329 node = rb_first(&tree->state); 330 state = rb_entry(node, struct extent_state, rb_node); 331 rb_erase(&state->rb_node, &tree->state); 332 RB_CLEAR_NODE(&state->rb_node); 333 /* 334 * btree io trees aren't supposed to have tasks waiting for 335 * changes in the flags of extent states ever. 336 */ 337 ASSERT(!waitqueue_active(&state->wq)); 338 free_extent_state(state); 339 340 cond_resched_lock(&tree->lock); 341 } 342 spin_unlock(&tree->lock); 343 } 344 345 static struct extent_state *alloc_extent_state(gfp_t mask) 346 { 347 struct extent_state *state; 348 349 /* 350 * The given mask might be not appropriate for the slab allocator, 351 * drop the unsupported bits 352 */ 353 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM); 354 state = kmem_cache_alloc(extent_state_cache, mask); 355 if (!state) 356 return state; 357 state->state = 0; 358 state->failrec = NULL; 359 RB_CLEAR_NODE(&state->rb_node); 360 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states); 361 refcount_set(&state->refs, 1); 362 init_waitqueue_head(&state->wq); 363 trace_alloc_extent_state(state, mask, _RET_IP_); 364 return state; 365 } 366 367 void free_extent_state(struct extent_state *state) 368 { 369 if (!state) 370 return; 371 if (refcount_dec_and_test(&state->refs)) { 372 WARN_ON(extent_state_in_tree(state)); 373 btrfs_leak_debug_del(&leak_lock, &state->leak_list); 374 trace_free_extent_state(state, _RET_IP_); 375 kmem_cache_free(extent_state_cache, state); 376 } 377 } 378 379 static struct rb_node *tree_insert(struct rb_root *root, 380 struct rb_node *search_start, 381 u64 offset, 382 struct rb_node *node, 383 struct rb_node ***p_in, 384 struct rb_node **parent_in) 385 { 386 struct rb_node **p; 387 struct rb_node *parent = NULL; 388 struct tree_entry *entry; 389 390 if (p_in && parent_in) { 391 p = *p_in; 392 parent = *parent_in; 393 goto do_insert; 394 } 395 396 p = search_start ? &search_start : &root->rb_node; 397 while (*p) { 398 parent = *p; 399 entry = rb_entry(parent, struct tree_entry, rb_node); 400 401 if (offset < entry->start) 402 p = &(*p)->rb_left; 403 else if (offset > entry->end) 404 p = &(*p)->rb_right; 405 else 406 return parent; 407 } 408 409 do_insert: 410 rb_link_node(node, parent, p); 411 rb_insert_color(node, root); 412 return NULL; 413 } 414 415 /** 416 * Search @tree for an entry that contains @offset. Such entry would have 417 * entry->start <= offset && entry->end >= offset. 418 * 419 * @tree: the tree to search 420 * @offset: offset that should fall within an entry in @tree 421 * @next_ret: pointer to the first entry whose range ends after @offset 422 * @prev_ret: pointer to the first entry whose range begins before @offset 423 * @p_ret: pointer where new node should be anchored (used when inserting an 424 * entry in the tree) 425 * @parent_ret: points to entry which would have been the parent of the entry, 426 * containing @offset 427 * 428 * This function returns a pointer to the entry that contains @offset byte 429 * address. If no such entry exists, then NULL is returned and the other 430 * pointer arguments to the function are filled, otherwise the found entry is 431 * returned and other pointers are left untouched. 432 */ 433 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 434 struct rb_node **next_ret, 435 struct rb_node **prev_ret, 436 struct rb_node ***p_ret, 437 struct rb_node **parent_ret) 438 { 439 struct rb_root *root = &tree->state; 440 struct rb_node **n = &root->rb_node; 441 struct rb_node *prev = NULL; 442 struct rb_node *orig_prev = NULL; 443 struct tree_entry *entry; 444 struct tree_entry *prev_entry = NULL; 445 446 while (*n) { 447 prev = *n; 448 entry = rb_entry(prev, struct tree_entry, rb_node); 449 prev_entry = entry; 450 451 if (offset < entry->start) 452 n = &(*n)->rb_left; 453 else if (offset > entry->end) 454 n = &(*n)->rb_right; 455 else 456 return *n; 457 } 458 459 if (p_ret) 460 *p_ret = n; 461 if (parent_ret) 462 *parent_ret = prev; 463 464 if (next_ret) { 465 orig_prev = prev; 466 while (prev && offset > prev_entry->end) { 467 prev = rb_next(prev); 468 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 469 } 470 *next_ret = prev; 471 prev = orig_prev; 472 } 473 474 if (prev_ret) { 475 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 476 while (prev && offset < prev_entry->start) { 477 prev = rb_prev(prev); 478 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 479 } 480 *prev_ret = prev; 481 } 482 return NULL; 483 } 484 485 static inline struct rb_node * 486 tree_search_for_insert(struct extent_io_tree *tree, 487 u64 offset, 488 struct rb_node ***p_ret, 489 struct rb_node **parent_ret) 490 { 491 struct rb_node *next= NULL; 492 struct rb_node *ret; 493 494 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret); 495 if (!ret) 496 return next; 497 return ret; 498 } 499 500 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 501 u64 offset) 502 { 503 return tree_search_for_insert(tree, offset, NULL, NULL); 504 } 505 506 /* 507 * utility function to look for merge candidates inside a given range. 508 * Any extents with matching state are merged together into a single 509 * extent in the tree. Extents with EXTENT_IO in their state field 510 * are not merged because the end_io handlers need to be able to do 511 * operations on them without sleeping (or doing allocations/splits). 512 * 513 * This should be called with the tree lock held. 514 */ 515 static void merge_state(struct extent_io_tree *tree, 516 struct extent_state *state) 517 { 518 struct extent_state *other; 519 struct rb_node *other_node; 520 521 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 522 return; 523 524 other_node = rb_prev(&state->rb_node); 525 if (other_node) { 526 other = rb_entry(other_node, struct extent_state, rb_node); 527 if (other->end == state->start - 1 && 528 other->state == state->state) { 529 if (tree->private_data && 530 is_data_inode(tree->private_data)) 531 btrfs_merge_delalloc_extent(tree->private_data, 532 state, other); 533 state->start = other->start; 534 rb_erase(&other->rb_node, &tree->state); 535 RB_CLEAR_NODE(&other->rb_node); 536 free_extent_state(other); 537 } 538 } 539 other_node = rb_next(&state->rb_node); 540 if (other_node) { 541 other = rb_entry(other_node, struct extent_state, rb_node); 542 if (other->start == state->end + 1 && 543 other->state == state->state) { 544 if (tree->private_data && 545 is_data_inode(tree->private_data)) 546 btrfs_merge_delalloc_extent(tree->private_data, 547 state, other); 548 state->end = other->end; 549 rb_erase(&other->rb_node, &tree->state); 550 RB_CLEAR_NODE(&other->rb_node); 551 free_extent_state(other); 552 } 553 } 554 } 555 556 static void set_state_bits(struct extent_io_tree *tree, 557 struct extent_state *state, u32 *bits, 558 struct extent_changeset *changeset); 559 560 /* 561 * insert an extent_state struct into the tree. 'bits' are set on the 562 * struct before it is inserted. 563 * 564 * This may return -EEXIST if the extent is already there, in which case the 565 * state struct is freed. 566 * 567 * The tree lock is not taken internally. This is a utility function and 568 * probably isn't what you want to call (see set/clear_extent_bit). 569 */ 570 static int insert_state(struct extent_io_tree *tree, 571 struct extent_state *state, u64 start, u64 end, 572 struct rb_node ***p, 573 struct rb_node **parent, 574 u32 *bits, struct extent_changeset *changeset) 575 { 576 struct rb_node *node; 577 578 if (end < start) { 579 btrfs_err(tree->fs_info, 580 "insert state: end < start %llu %llu", end, start); 581 WARN_ON(1); 582 } 583 state->start = start; 584 state->end = end; 585 586 set_state_bits(tree, state, bits, changeset); 587 588 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 589 if (node) { 590 struct extent_state *found; 591 found = rb_entry(node, struct extent_state, rb_node); 592 btrfs_err(tree->fs_info, 593 "found node %llu %llu on insert of %llu %llu", 594 found->start, found->end, start, end); 595 return -EEXIST; 596 } 597 merge_state(tree, state); 598 return 0; 599 } 600 601 /* 602 * split a given extent state struct in two, inserting the preallocated 603 * struct 'prealloc' as the newly created second half. 'split' indicates an 604 * offset inside 'orig' where it should be split. 605 * 606 * Before calling, 607 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 608 * are two extent state structs in the tree: 609 * prealloc: [orig->start, split - 1] 610 * orig: [ split, orig->end ] 611 * 612 * The tree locks are not taken by this function. They need to be held 613 * by the caller. 614 */ 615 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 616 struct extent_state *prealloc, u64 split) 617 { 618 struct rb_node *node; 619 620 if (tree->private_data && is_data_inode(tree->private_data)) 621 btrfs_split_delalloc_extent(tree->private_data, orig, split); 622 623 prealloc->start = orig->start; 624 prealloc->end = split - 1; 625 prealloc->state = orig->state; 626 orig->start = split; 627 628 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 629 &prealloc->rb_node, NULL, NULL); 630 if (node) { 631 free_extent_state(prealloc); 632 return -EEXIST; 633 } 634 return 0; 635 } 636 637 static struct extent_state *next_state(struct extent_state *state) 638 { 639 struct rb_node *next = rb_next(&state->rb_node); 640 if (next) 641 return rb_entry(next, struct extent_state, rb_node); 642 else 643 return NULL; 644 } 645 646 /* 647 * utility function to clear some bits in an extent state struct. 648 * it will optionally wake up anyone waiting on this state (wake == 1). 649 * 650 * If no bits are set on the state struct after clearing things, the 651 * struct is freed and removed from the tree 652 */ 653 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 654 struct extent_state *state, 655 u32 *bits, int wake, 656 struct extent_changeset *changeset) 657 { 658 struct extent_state *next; 659 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS; 660 int ret; 661 662 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 663 u64 range = state->end - state->start + 1; 664 WARN_ON(range > tree->dirty_bytes); 665 tree->dirty_bytes -= range; 666 } 667 668 if (tree->private_data && is_data_inode(tree->private_data)) 669 btrfs_clear_delalloc_extent(tree->private_data, state, bits); 670 671 ret = add_extent_changeset(state, bits_to_clear, changeset, 0); 672 BUG_ON(ret < 0); 673 state->state &= ~bits_to_clear; 674 if (wake) 675 wake_up(&state->wq); 676 if (state->state == 0) { 677 next = next_state(state); 678 if (extent_state_in_tree(state)) { 679 rb_erase(&state->rb_node, &tree->state); 680 RB_CLEAR_NODE(&state->rb_node); 681 free_extent_state(state); 682 } else { 683 WARN_ON(1); 684 } 685 } else { 686 merge_state(tree, state); 687 next = next_state(state); 688 } 689 return next; 690 } 691 692 static struct extent_state * 693 alloc_extent_state_atomic(struct extent_state *prealloc) 694 { 695 if (!prealloc) 696 prealloc = alloc_extent_state(GFP_ATOMIC); 697 698 return prealloc; 699 } 700 701 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 702 { 703 btrfs_panic(tree->fs_info, err, 704 "locking error: extent tree was modified by another thread while locked"); 705 } 706 707 /* 708 * clear some bits on a range in the tree. This may require splitting 709 * or inserting elements in the tree, so the gfp mask is used to 710 * indicate which allocations or sleeping are allowed. 711 * 712 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 713 * the given range from the tree regardless of state (ie for truncate). 714 * 715 * the range [start, end] is inclusive. 716 * 717 * This takes the tree lock, and returns 0 on success and < 0 on error. 718 */ 719 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 720 u32 bits, int wake, int delete, 721 struct extent_state **cached_state, 722 gfp_t mask, struct extent_changeset *changeset) 723 { 724 struct extent_state *state; 725 struct extent_state *cached; 726 struct extent_state *prealloc = NULL; 727 struct rb_node *node; 728 u64 last_end; 729 int err; 730 int clear = 0; 731 732 btrfs_debug_check_extent_io_range(tree, start, end); 733 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits); 734 735 if (bits & EXTENT_DELALLOC) 736 bits |= EXTENT_NORESERVE; 737 738 if (delete) 739 bits |= ~EXTENT_CTLBITS; 740 741 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY)) 742 clear = 1; 743 again: 744 if (!prealloc && gfpflags_allow_blocking(mask)) { 745 /* 746 * Don't care for allocation failure here because we might end 747 * up not needing the pre-allocated extent state at all, which 748 * is the case if we only have in the tree extent states that 749 * cover our input range and don't cover too any other range. 750 * If we end up needing a new extent state we allocate it later. 751 */ 752 prealloc = alloc_extent_state(mask); 753 } 754 755 spin_lock(&tree->lock); 756 if (cached_state) { 757 cached = *cached_state; 758 759 if (clear) { 760 *cached_state = NULL; 761 cached_state = NULL; 762 } 763 764 if (cached && extent_state_in_tree(cached) && 765 cached->start <= start && cached->end > start) { 766 if (clear) 767 refcount_dec(&cached->refs); 768 state = cached; 769 goto hit_next; 770 } 771 if (clear) 772 free_extent_state(cached); 773 } 774 /* 775 * this search will find the extents that end after 776 * our range starts 777 */ 778 node = tree_search(tree, start); 779 if (!node) 780 goto out; 781 state = rb_entry(node, struct extent_state, rb_node); 782 hit_next: 783 if (state->start > end) 784 goto out; 785 WARN_ON(state->end < start); 786 last_end = state->end; 787 788 /* the state doesn't have the wanted bits, go ahead */ 789 if (!(state->state & bits)) { 790 state = next_state(state); 791 goto next; 792 } 793 794 /* 795 * | ---- desired range ---- | 796 * | state | or 797 * | ------------- state -------------- | 798 * 799 * We need to split the extent we found, and may flip 800 * bits on second half. 801 * 802 * If the extent we found extends past our range, we 803 * just split and search again. It'll get split again 804 * the next time though. 805 * 806 * If the extent we found is inside our range, we clear 807 * the desired bit on it. 808 */ 809 810 if (state->start < start) { 811 prealloc = alloc_extent_state_atomic(prealloc); 812 BUG_ON(!prealloc); 813 err = split_state(tree, state, prealloc, start); 814 if (err) 815 extent_io_tree_panic(tree, err); 816 817 prealloc = NULL; 818 if (err) 819 goto out; 820 if (state->end <= end) { 821 state = clear_state_bit(tree, state, &bits, wake, 822 changeset); 823 goto next; 824 } 825 goto search_again; 826 } 827 /* 828 * | ---- desired range ---- | 829 * | state | 830 * We need to split the extent, and clear the bit 831 * on the first half 832 */ 833 if (state->start <= end && state->end > end) { 834 prealloc = alloc_extent_state_atomic(prealloc); 835 BUG_ON(!prealloc); 836 err = split_state(tree, state, prealloc, end + 1); 837 if (err) 838 extent_io_tree_panic(tree, err); 839 840 if (wake) 841 wake_up(&state->wq); 842 843 clear_state_bit(tree, prealloc, &bits, wake, changeset); 844 845 prealloc = NULL; 846 goto out; 847 } 848 849 state = clear_state_bit(tree, state, &bits, wake, changeset); 850 next: 851 if (last_end == (u64)-1) 852 goto out; 853 start = last_end + 1; 854 if (start <= end && state && !need_resched()) 855 goto hit_next; 856 857 search_again: 858 if (start > end) 859 goto out; 860 spin_unlock(&tree->lock); 861 if (gfpflags_allow_blocking(mask)) 862 cond_resched(); 863 goto again; 864 865 out: 866 spin_unlock(&tree->lock); 867 if (prealloc) 868 free_extent_state(prealloc); 869 870 return 0; 871 872 } 873 874 static void wait_on_state(struct extent_io_tree *tree, 875 struct extent_state *state) 876 __releases(tree->lock) 877 __acquires(tree->lock) 878 { 879 DEFINE_WAIT(wait); 880 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 881 spin_unlock(&tree->lock); 882 schedule(); 883 spin_lock(&tree->lock); 884 finish_wait(&state->wq, &wait); 885 } 886 887 /* 888 * waits for one or more bits to clear on a range in the state tree. 889 * The range [start, end] is inclusive. 890 * The tree lock is taken by this function 891 */ 892 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 893 u32 bits) 894 { 895 struct extent_state *state; 896 struct rb_node *node; 897 898 btrfs_debug_check_extent_io_range(tree, start, end); 899 900 spin_lock(&tree->lock); 901 again: 902 while (1) { 903 /* 904 * this search will find all the extents that end after 905 * our range starts 906 */ 907 node = tree_search(tree, start); 908 process_node: 909 if (!node) 910 break; 911 912 state = rb_entry(node, struct extent_state, rb_node); 913 914 if (state->start > end) 915 goto out; 916 917 if (state->state & bits) { 918 start = state->start; 919 refcount_inc(&state->refs); 920 wait_on_state(tree, state); 921 free_extent_state(state); 922 goto again; 923 } 924 start = state->end + 1; 925 926 if (start > end) 927 break; 928 929 if (!cond_resched_lock(&tree->lock)) { 930 node = rb_next(node); 931 goto process_node; 932 } 933 } 934 out: 935 spin_unlock(&tree->lock); 936 } 937 938 static void set_state_bits(struct extent_io_tree *tree, 939 struct extent_state *state, 940 u32 *bits, struct extent_changeset *changeset) 941 { 942 u32 bits_to_set = *bits & ~EXTENT_CTLBITS; 943 int ret; 944 945 if (tree->private_data && is_data_inode(tree->private_data)) 946 btrfs_set_delalloc_extent(tree->private_data, state, bits); 947 948 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 949 u64 range = state->end - state->start + 1; 950 tree->dirty_bytes += range; 951 } 952 ret = add_extent_changeset(state, bits_to_set, changeset, 1); 953 BUG_ON(ret < 0); 954 state->state |= bits_to_set; 955 } 956 957 static void cache_state_if_flags(struct extent_state *state, 958 struct extent_state **cached_ptr, 959 unsigned flags) 960 { 961 if (cached_ptr && !(*cached_ptr)) { 962 if (!flags || (state->state & flags)) { 963 *cached_ptr = state; 964 refcount_inc(&state->refs); 965 } 966 } 967 } 968 969 static void cache_state(struct extent_state *state, 970 struct extent_state **cached_ptr) 971 { 972 return cache_state_if_flags(state, cached_ptr, 973 EXTENT_LOCKED | EXTENT_BOUNDARY); 974 } 975 976 /* 977 * set some bits on a range in the tree. This may require allocations or 978 * sleeping, so the gfp mask is used to indicate what is allowed. 979 * 980 * If any of the exclusive bits are set, this will fail with -EEXIST if some 981 * part of the range already has the desired bits set. The start of the 982 * existing range is returned in failed_start in this case. 983 * 984 * [start, end] is inclusive This takes the tree lock. 985 */ 986 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits, 987 u32 exclusive_bits, u64 *failed_start, 988 struct extent_state **cached_state, gfp_t mask, 989 struct extent_changeset *changeset) 990 { 991 struct extent_state *state; 992 struct extent_state *prealloc = NULL; 993 struct rb_node *node; 994 struct rb_node **p; 995 struct rb_node *parent; 996 int err = 0; 997 u64 last_start; 998 u64 last_end; 999 1000 btrfs_debug_check_extent_io_range(tree, start, end); 1001 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits); 1002 1003 if (exclusive_bits) 1004 ASSERT(failed_start); 1005 else 1006 ASSERT(failed_start == NULL); 1007 again: 1008 if (!prealloc && gfpflags_allow_blocking(mask)) { 1009 /* 1010 * Don't care for allocation failure here because we might end 1011 * up not needing the pre-allocated extent state at all, which 1012 * is the case if we only have in the tree extent states that 1013 * cover our input range and don't cover too any other range. 1014 * If we end up needing a new extent state we allocate it later. 1015 */ 1016 prealloc = alloc_extent_state(mask); 1017 } 1018 1019 spin_lock(&tree->lock); 1020 if (cached_state && *cached_state) { 1021 state = *cached_state; 1022 if (state->start <= start && state->end > start && 1023 extent_state_in_tree(state)) { 1024 node = &state->rb_node; 1025 goto hit_next; 1026 } 1027 } 1028 /* 1029 * this search will find all the extents that end after 1030 * our range starts. 1031 */ 1032 node = tree_search_for_insert(tree, start, &p, &parent); 1033 if (!node) { 1034 prealloc = alloc_extent_state_atomic(prealloc); 1035 BUG_ON(!prealloc); 1036 err = insert_state(tree, prealloc, start, end, 1037 &p, &parent, &bits, changeset); 1038 if (err) 1039 extent_io_tree_panic(tree, err); 1040 1041 cache_state(prealloc, cached_state); 1042 prealloc = NULL; 1043 goto out; 1044 } 1045 state = rb_entry(node, struct extent_state, rb_node); 1046 hit_next: 1047 last_start = state->start; 1048 last_end = state->end; 1049 1050 /* 1051 * | ---- desired range ---- | 1052 * | state | 1053 * 1054 * Just lock what we found and keep going 1055 */ 1056 if (state->start == start && state->end <= end) { 1057 if (state->state & exclusive_bits) { 1058 *failed_start = state->start; 1059 err = -EEXIST; 1060 goto out; 1061 } 1062 1063 set_state_bits(tree, state, &bits, changeset); 1064 cache_state(state, cached_state); 1065 merge_state(tree, state); 1066 if (last_end == (u64)-1) 1067 goto out; 1068 start = last_end + 1; 1069 state = next_state(state); 1070 if (start < end && state && state->start == start && 1071 !need_resched()) 1072 goto hit_next; 1073 goto search_again; 1074 } 1075 1076 /* 1077 * | ---- desired range ---- | 1078 * | state | 1079 * or 1080 * | ------------- state -------------- | 1081 * 1082 * We need to split the extent we found, and may flip bits on 1083 * second half. 1084 * 1085 * If the extent we found extends past our 1086 * range, we just split and search again. It'll get split 1087 * again the next time though. 1088 * 1089 * If the extent we found is inside our range, we set the 1090 * desired bit on it. 1091 */ 1092 if (state->start < start) { 1093 if (state->state & exclusive_bits) { 1094 *failed_start = start; 1095 err = -EEXIST; 1096 goto out; 1097 } 1098 1099 /* 1100 * If this extent already has all the bits we want set, then 1101 * skip it, not necessary to split it or do anything with it. 1102 */ 1103 if ((state->state & bits) == bits) { 1104 start = state->end + 1; 1105 cache_state(state, cached_state); 1106 goto search_again; 1107 } 1108 1109 prealloc = alloc_extent_state_atomic(prealloc); 1110 BUG_ON(!prealloc); 1111 err = split_state(tree, state, prealloc, start); 1112 if (err) 1113 extent_io_tree_panic(tree, err); 1114 1115 prealloc = NULL; 1116 if (err) 1117 goto out; 1118 if (state->end <= end) { 1119 set_state_bits(tree, state, &bits, changeset); 1120 cache_state(state, cached_state); 1121 merge_state(tree, state); 1122 if (last_end == (u64)-1) 1123 goto out; 1124 start = last_end + 1; 1125 state = next_state(state); 1126 if (start < end && state && state->start == start && 1127 !need_resched()) 1128 goto hit_next; 1129 } 1130 goto search_again; 1131 } 1132 /* 1133 * | ---- desired range ---- | 1134 * | state | or | state | 1135 * 1136 * There's a hole, we need to insert something in it and 1137 * ignore the extent we found. 1138 */ 1139 if (state->start > start) { 1140 u64 this_end; 1141 if (end < last_start) 1142 this_end = end; 1143 else 1144 this_end = last_start - 1; 1145 1146 prealloc = alloc_extent_state_atomic(prealloc); 1147 BUG_ON(!prealloc); 1148 1149 /* 1150 * Avoid to free 'prealloc' if it can be merged with 1151 * the later extent. 1152 */ 1153 err = insert_state(tree, prealloc, start, this_end, 1154 NULL, NULL, &bits, changeset); 1155 if (err) 1156 extent_io_tree_panic(tree, err); 1157 1158 cache_state(prealloc, cached_state); 1159 prealloc = NULL; 1160 start = this_end + 1; 1161 goto search_again; 1162 } 1163 /* 1164 * | ---- desired range ---- | 1165 * | state | 1166 * We need to split the extent, and set the bit 1167 * on the first half 1168 */ 1169 if (state->start <= end && state->end > end) { 1170 if (state->state & exclusive_bits) { 1171 *failed_start = start; 1172 err = -EEXIST; 1173 goto out; 1174 } 1175 1176 prealloc = alloc_extent_state_atomic(prealloc); 1177 BUG_ON(!prealloc); 1178 err = split_state(tree, state, prealloc, end + 1); 1179 if (err) 1180 extent_io_tree_panic(tree, err); 1181 1182 set_state_bits(tree, prealloc, &bits, changeset); 1183 cache_state(prealloc, cached_state); 1184 merge_state(tree, prealloc); 1185 prealloc = NULL; 1186 goto out; 1187 } 1188 1189 search_again: 1190 if (start > end) 1191 goto out; 1192 spin_unlock(&tree->lock); 1193 if (gfpflags_allow_blocking(mask)) 1194 cond_resched(); 1195 goto again; 1196 1197 out: 1198 spin_unlock(&tree->lock); 1199 if (prealloc) 1200 free_extent_state(prealloc); 1201 1202 return err; 1203 1204 } 1205 1206 /** 1207 * convert_extent_bit - convert all bits in a given range from one bit to 1208 * another 1209 * @tree: the io tree to search 1210 * @start: the start offset in bytes 1211 * @end: the end offset in bytes (inclusive) 1212 * @bits: the bits to set in this range 1213 * @clear_bits: the bits to clear in this range 1214 * @cached_state: state that we're going to cache 1215 * 1216 * This will go through and set bits for the given range. If any states exist 1217 * already in this range they are set with the given bit and cleared of the 1218 * clear_bits. This is only meant to be used by things that are mergeable, ie 1219 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1220 * boundary bits like LOCK. 1221 * 1222 * All allocations are done with GFP_NOFS. 1223 */ 1224 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1225 u32 bits, u32 clear_bits, 1226 struct extent_state **cached_state) 1227 { 1228 struct extent_state *state; 1229 struct extent_state *prealloc = NULL; 1230 struct rb_node *node; 1231 struct rb_node **p; 1232 struct rb_node *parent; 1233 int err = 0; 1234 u64 last_start; 1235 u64 last_end; 1236 bool first_iteration = true; 1237 1238 btrfs_debug_check_extent_io_range(tree, start, end); 1239 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits, 1240 clear_bits); 1241 1242 again: 1243 if (!prealloc) { 1244 /* 1245 * Best effort, don't worry if extent state allocation fails 1246 * here for the first iteration. We might have a cached state 1247 * that matches exactly the target range, in which case no 1248 * extent state allocations are needed. We'll only know this 1249 * after locking the tree. 1250 */ 1251 prealloc = alloc_extent_state(GFP_NOFS); 1252 if (!prealloc && !first_iteration) 1253 return -ENOMEM; 1254 } 1255 1256 spin_lock(&tree->lock); 1257 if (cached_state && *cached_state) { 1258 state = *cached_state; 1259 if (state->start <= start && state->end > start && 1260 extent_state_in_tree(state)) { 1261 node = &state->rb_node; 1262 goto hit_next; 1263 } 1264 } 1265 1266 /* 1267 * this search will find all the extents that end after 1268 * our range starts. 1269 */ 1270 node = tree_search_for_insert(tree, start, &p, &parent); 1271 if (!node) { 1272 prealloc = alloc_extent_state_atomic(prealloc); 1273 if (!prealloc) { 1274 err = -ENOMEM; 1275 goto out; 1276 } 1277 err = insert_state(tree, prealloc, start, end, 1278 &p, &parent, &bits, NULL); 1279 if (err) 1280 extent_io_tree_panic(tree, err); 1281 cache_state(prealloc, cached_state); 1282 prealloc = NULL; 1283 goto out; 1284 } 1285 state = rb_entry(node, struct extent_state, rb_node); 1286 hit_next: 1287 last_start = state->start; 1288 last_end = state->end; 1289 1290 /* 1291 * | ---- desired range ---- | 1292 * | state | 1293 * 1294 * Just lock what we found and keep going 1295 */ 1296 if (state->start == start && state->end <= end) { 1297 set_state_bits(tree, state, &bits, NULL); 1298 cache_state(state, cached_state); 1299 state = clear_state_bit(tree, state, &clear_bits, 0, NULL); 1300 if (last_end == (u64)-1) 1301 goto out; 1302 start = last_end + 1; 1303 if (start < end && state && state->start == start && 1304 !need_resched()) 1305 goto hit_next; 1306 goto search_again; 1307 } 1308 1309 /* 1310 * | ---- desired range ---- | 1311 * | state | 1312 * or 1313 * | ------------- state -------------- | 1314 * 1315 * We need to split the extent we found, and may flip bits on 1316 * second half. 1317 * 1318 * If the extent we found extends past our 1319 * range, we just split and search again. It'll get split 1320 * again the next time though. 1321 * 1322 * If the extent we found is inside our range, we set the 1323 * desired bit on it. 1324 */ 1325 if (state->start < start) { 1326 prealloc = alloc_extent_state_atomic(prealloc); 1327 if (!prealloc) { 1328 err = -ENOMEM; 1329 goto out; 1330 } 1331 err = split_state(tree, state, prealloc, start); 1332 if (err) 1333 extent_io_tree_panic(tree, err); 1334 prealloc = NULL; 1335 if (err) 1336 goto out; 1337 if (state->end <= end) { 1338 set_state_bits(tree, state, &bits, NULL); 1339 cache_state(state, cached_state); 1340 state = clear_state_bit(tree, state, &clear_bits, 0, 1341 NULL); 1342 if (last_end == (u64)-1) 1343 goto out; 1344 start = last_end + 1; 1345 if (start < end && state && state->start == start && 1346 !need_resched()) 1347 goto hit_next; 1348 } 1349 goto search_again; 1350 } 1351 /* 1352 * | ---- desired range ---- | 1353 * | state | or | state | 1354 * 1355 * There's a hole, we need to insert something in it and 1356 * ignore the extent we found. 1357 */ 1358 if (state->start > start) { 1359 u64 this_end; 1360 if (end < last_start) 1361 this_end = end; 1362 else 1363 this_end = last_start - 1; 1364 1365 prealloc = alloc_extent_state_atomic(prealloc); 1366 if (!prealloc) { 1367 err = -ENOMEM; 1368 goto out; 1369 } 1370 1371 /* 1372 * Avoid to free 'prealloc' if it can be merged with 1373 * the later extent. 1374 */ 1375 err = insert_state(tree, prealloc, start, this_end, 1376 NULL, NULL, &bits, NULL); 1377 if (err) 1378 extent_io_tree_panic(tree, err); 1379 cache_state(prealloc, cached_state); 1380 prealloc = NULL; 1381 start = this_end + 1; 1382 goto search_again; 1383 } 1384 /* 1385 * | ---- desired range ---- | 1386 * | state | 1387 * We need to split the extent, and set the bit 1388 * on the first half 1389 */ 1390 if (state->start <= end && state->end > end) { 1391 prealloc = alloc_extent_state_atomic(prealloc); 1392 if (!prealloc) { 1393 err = -ENOMEM; 1394 goto out; 1395 } 1396 1397 err = split_state(tree, state, prealloc, end + 1); 1398 if (err) 1399 extent_io_tree_panic(tree, err); 1400 1401 set_state_bits(tree, prealloc, &bits, NULL); 1402 cache_state(prealloc, cached_state); 1403 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL); 1404 prealloc = NULL; 1405 goto out; 1406 } 1407 1408 search_again: 1409 if (start > end) 1410 goto out; 1411 spin_unlock(&tree->lock); 1412 cond_resched(); 1413 first_iteration = false; 1414 goto again; 1415 1416 out: 1417 spin_unlock(&tree->lock); 1418 if (prealloc) 1419 free_extent_state(prealloc); 1420 1421 return err; 1422 } 1423 1424 /* wrappers around set/clear extent bit */ 1425 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1426 u32 bits, struct extent_changeset *changeset) 1427 { 1428 /* 1429 * We don't support EXTENT_LOCKED yet, as current changeset will 1430 * record any bits changed, so for EXTENT_LOCKED case, it will 1431 * either fail with -EEXIST or changeset will record the whole 1432 * range. 1433 */ 1434 BUG_ON(bits & EXTENT_LOCKED); 1435 1436 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS, 1437 changeset); 1438 } 1439 1440 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end, 1441 u32 bits) 1442 { 1443 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, 1444 GFP_NOWAIT, NULL); 1445 } 1446 1447 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1448 u32 bits, int wake, int delete, 1449 struct extent_state **cached) 1450 { 1451 return __clear_extent_bit(tree, start, end, bits, wake, delete, 1452 cached, GFP_NOFS, NULL); 1453 } 1454 1455 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1456 u32 bits, struct extent_changeset *changeset) 1457 { 1458 /* 1459 * Don't support EXTENT_LOCKED case, same reason as 1460 * set_record_extent_bits(). 1461 */ 1462 BUG_ON(bits & EXTENT_LOCKED); 1463 1464 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS, 1465 changeset); 1466 } 1467 1468 /* 1469 * either insert or lock state struct between start and end use mask to tell 1470 * us if waiting is desired. 1471 */ 1472 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1473 struct extent_state **cached_state) 1474 { 1475 int err; 1476 u64 failed_start; 1477 1478 while (1) { 1479 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1480 EXTENT_LOCKED, &failed_start, 1481 cached_state, GFP_NOFS, NULL); 1482 if (err == -EEXIST) { 1483 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1484 start = failed_start; 1485 } else 1486 break; 1487 WARN_ON(start > end); 1488 } 1489 return err; 1490 } 1491 1492 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1493 { 1494 int err; 1495 u64 failed_start; 1496 1497 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1498 &failed_start, NULL, GFP_NOFS, NULL); 1499 if (err == -EEXIST) { 1500 if (failed_start > start) 1501 clear_extent_bit(tree, start, failed_start - 1, 1502 EXTENT_LOCKED, 1, 0, NULL); 1503 return 0; 1504 } 1505 return 1; 1506 } 1507 1508 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1509 { 1510 unsigned long index = start >> PAGE_SHIFT; 1511 unsigned long end_index = end >> PAGE_SHIFT; 1512 struct page *page; 1513 1514 while (index <= end_index) { 1515 page = find_get_page(inode->i_mapping, index); 1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1517 clear_page_dirty_for_io(page); 1518 put_page(page); 1519 index++; 1520 } 1521 } 1522 1523 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1524 { 1525 struct address_space *mapping = inode->i_mapping; 1526 unsigned long index = start >> PAGE_SHIFT; 1527 unsigned long end_index = end >> PAGE_SHIFT; 1528 struct folio *folio; 1529 1530 while (index <= end_index) { 1531 folio = filemap_get_folio(mapping, index); 1532 filemap_dirty_folio(mapping, folio); 1533 folio_account_redirty(folio); 1534 index += folio_nr_pages(folio); 1535 folio_put(folio); 1536 } 1537 } 1538 1539 /* find the first state struct with 'bits' set after 'start', and 1540 * return it. tree->lock must be held. NULL will returned if 1541 * nothing was found after 'start' 1542 */ 1543 static struct extent_state * 1544 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits) 1545 { 1546 struct rb_node *node; 1547 struct extent_state *state; 1548 1549 /* 1550 * this search will find all the extents that end after 1551 * our range starts. 1552 */ 1553 node = tree_search(tree, start); 1554 if (!node) 1555 goto out; 1556 1557 while (1) { 1558 state = rb_entry(node, struct extent_state, rb_node); 1559 if (state->end >= start && (state->state & bits)) 1560 return state; 1561 1562 node = rb_next(node); 1563 if (!node) 1564 break; 1565 } 1566 out: 1567 return NULL; 1568 } 1569 1570 /* 1571 * Find the first offset in the io tree with one or more @bits set. 1572 * 1573 * Note: If there are multiple bits set in @bits, any of them will match. 1574 * 1575 * Return 0 if we find something, and update @start_ret and @end_ret. 1576 * Return 1 if we found nothing. 1577 */ 1578 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1579 u64 *start_ret, u64 *end_ret, u32 bits, 1580 struct extent_state **cached_state) 1581 { 1582 struct extent_state *state; 1583 int ret = 1; 1584 1585 spin_lock(&tree->lock); 1586 if (cached_state && *cached_state) { 1587 state = *cached_state; 1588 if (state->end == start - 1 && extent_state_in_tree(state)) { 1589 while ((state = next_state(state)) != NULL) { 1590 if (state->state & bits) 1591 goto got_it; 1592 } 1593 free_extent_state(*cached_state); 1594 *cached_state = NULL; 1595 goto out; 1596 } 1597 free_extent_state(*cached_state); 1598 *cached_state = NULL; 1599 } 1600 1601 state = find_first_extent_bit_state(tree, start, bits); 1602 got_it: 1603 if (state) { 1604 cache_state_if_flags(state, cached_state, 0); 1605 *start_ret = state->start; 1606 *end_ret = state->end; 1607 ret = 0; 1608 } 1609 out: 1610 spin_unlock(&tree->lock); 1611 return ret; 1612 } 1613 1614 /** 1615 * Find a contiguous area of bits 1616 * 1617 * @tree: io tree to check 1618 * @start: offset to start the search from 1619 * @start_ret: the first offset we found with the bits set 1620 * @end_ret: the final contiguous range of the bits that were set 1621 * @bits: bits to look for 1622 * 1623 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges 1624 * to set bits appropriately, and then merge them again. During this time it 1625 * will drop the tree->lock, so use this helper if you want to find the actual 1626 * contiguous area for given bits. We will search to the first bit we find, and 1627 * then walk down the tree until we find a non-contiguous area. The area 1628 * returned will be the full contiguous area with the bits set. 1629 */ 1630 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start, 1631 u64 *start_ret, u64 *end_ret, u32 bits) 1632 { 1633 struct extent_state *state; 1634 int ret = 1; 1635 1636 spin_lock(&tree->lock); 1637 state = find_first_extent_bit_state(tree, start, bits); 1638 if (state) { 1639 *start_ret = state->start; 1640 *end_ret = state->end; 1641 while ((state = next_state(state)) != NULL) { 1642 if (state->start > (*end_ret + 1)) 1643 break; 1644 *end_ret = state->end; 1645 } 1646 ret = 0; 1647 } 1648 spin_unlock(&tree->lock); 1649 return ret; 1650 } 1651 1652 /** 1653 * Find the first range that has @bits not set. This range could start before 1654 * @start. 1655 * 1656 * @tree: the tree to search 1657 * @start: offset at/after which the found extent should start 1658 * @start_ret: records the beginning of the range 1659 * @end_ret: records the end of the range (inclusive) 1660 * @bits: the set of bits which must be unset 1661 * 1662 * Since unallocated range is also considered one which doesn't have the bits 1663 * set it's possible that @end_ret contains -1, this happens in case the range 1664 * spans (last_range_end, end of device]. In this case it's up to the caller to 1665 * trim @end_ret to the appropriate size. 1666 */ 1667 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start, 1668 u64 *start_ret, u64 *end_ret, u32 bits) 1669 { 1670 struct extent_state *state; 1671 struct rb_node *node, *prev = NULL, *next; 1672 1673 spin_lock(&tree->lock); 1674 1675 /* Find first extent with bits cleared */ 1676 while (1) { 1677 node = __etree_search(tree, start, &next, &prev, NULL, NULL); 1678 if (!node && !next && !prev) { 1679 /* 1680 * Tree is completely empty, send full range and let 1681 * caller deal with it 1682 */ 1683 *start_ret = 0; 1684 *end_ret = -1; 1685 goto out; 1686 } else if (!node && !next) { 1687 /* 1688 * We are past the last allocated chunk, set start at 1689 * the end of the last extent. 1690 */ 1691 state = rb_entry(prev, struct extent_state, rb_node); 1692 *start_ret = state->end + 1; 1693 *end_ret = -1; 1694 goto out; 1695 } else if (!node) { 1696 node = next; 1697 } 1698 /* 1699 * At this point 'node' either contains 'start' or start is 1700 * before 'node' 1701 */ 1702 state = rb_entry(node, struct extent_state, rb_node); 1703 1704 if (in_range(start, state->start, state->end - state->start + 1)) { 1705 if (state->state & bits) { 1706 /* 1707 * |--range with bits sets--| 1708 * | 1709 * start 1710 */ 1711 start = state->end + 1; 1712 } else { 1713 /* 1714 * 'start' falls within a range that doesn't 1715 * have the bits set, so take its start as 1716 * the beginning of the desired range 1717 * 1718 * |--range with bits cleared----| 1719 * | 1720 * start 1721 */ 1722 *start_ret = state->start; 1723 break; 1724 } 1725 } else { 1726 /* 1727 * |---prev range---|---hole/unset---|---node range---| 1728 * | 1729 * start 1730 * 1731 * or 1732 * 1733 * |---hole/unset--||--first node--| 1734 * 0 | 1735 * start 1736 */ 1737 if (prev) { 1738 state = rb_entry(prev, struct extent_state, 1739 rb_node); 1740 *start_ret = state->end + 1; 1741 } else { 1742 *start_ret = 0; 1743 } 1744 break; 1745 } 1746 } 1747 1748 /* 1749 * Find the longest stretch from start until an entry which has the 1750 * bits set 1751 */ 1752 while (1) { 1753 state = rb_entry(node, struct extent_state, rb_node); 1754 if (state->end >= start && !(state->state & bits)) { 1755 *end_ret = state->end; 1756 } else { 1757 *end_ret = state->start - 1; 1758 break; 1759 } 1760 1761 node = rb_next(node); 1762 if (!node) 1763 break; 1764 } 1765 out: 1766 spin_unlock(&tree->lock); 1767 } 1768 1769 /* 1770 * find a contiguous range of bytes in the file marked as delalloc, not 1771 * more than 'max_bytes'. start and end are used to return the range, 1772 * 1773 * true is returned if we find something, false if nothing was in the tree 1774 */ 1775 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start, 1776 u64 *end, u64 max_bytes, 1777 struct extent_state **cached_state) 1778 { 1779 struct rb_node *node; 1780 struct extent_state *state; 1781 u64 cur_start = *start; 1782 bool found = false; 1783 u64 total_bytes = 0; 1784 1785 spin_lock(&tree->lock); 1786 1787 /* 1788 * this search will find all the extents that end after 1789 * our range starts. 1790 */ 1791 node = tree_search(tree, cur_start); 1792 if (!node) { 1793 *end = (u64)-1; 1794 goto out; 1795 } 1796 1797 while (1) { 1798 state = rb_entry(node, struct extent_state, rb_node); 1799 if (found && (state->start != cur_start || 1800 (state->state & EXTENT_BOUNDARY))) { 1801 goto out; 1802 } 1803 if (!(state->state & EXTENT_DELALLOC)) { 1804 if (!found) 1805 *end = state->end; 1806 goto out; 1807 } 1808 if (!found) { 1809 *start = state->start; 1810 *cached_state = state; 1811 refcount_inc(&state->refs); 1812 } 1813 found = true; 1814 *end = state->end; 1815 cur_start = state->end + 1; 1816 node = rb_next(node); 1817 total_bytes += state->end - state->start + 1; 1818 if (total_bytes >= max_bytes) 1819 break; 1820 if (!node) 1821 break; 1822 } 1823 out: 1824 spin_unlock(&tree->lock); 1825 return found; 1826 } 1827 1828 /* 1829 * Process one page for __process_pages_contig(). 1830 * 1831 * Return >0 if we hit @page == @locked_page. 1832 * Return 0 if we updated the page status. 1833 * Return -EGAIN if the we need to try again. 1834 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 1835 */ 1836 static int process_one_page(struct btrfs_fs_info *fs_info, 1837 struct address_space *mapping, 1838 struct page *page, struct page *locked_page, 1839 unsigned long page_ops, u64 start, u64 end) 1840 { 1841 u32 len; 1842 1843 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 1844 len = end + 1 - start; 1845 1846 if (page_ops & PAGE_SET_ORDERED) 1847 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 1848 if (page_ops & PAGE_SET_ERROR) 1849 btrfs_page_clamp_set_error(fs_info, page, start, len); 1850 if (page_ops & PAGE_START_WRITEBACK) { 1851 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 1852 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 1853 } 1854 if (page_ops & PAGE_END_WRITEBACK) 1855 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 1856 1857 if (page == locked_page) 1858 return 1; 1859 1860 if (page_ops & PAGE_LOCK) { 1861 int ret; 1862 1863 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 1864 if (ret) 1865 return ret; 1866 if (!PageDirty(page) || page->mapping != mapping) { 1867 btrfs_page_end_writer_lock(fs_info, page, start, len); 1868 return -EAGAIN; 1869 } 1870 } 1871 if (page_ops & PAGE_UNLOCK) 1872 btrfs_page_end_writer_lock(fs_info, page, start, len); 1873 return 0; 1874 } 1875 1876 static int __process_pages_contig(struct address_space *mapping, 1877 struct page *locked_page, 1878 u64 start, u64 end, unsigned long page_ops, 1879 u64 *processed_end) 1880 { 1881 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 1882 pgoff_t start_index = start >> PAGE_SHIFT; 1883 pgoff_t end_index = end >> PAGE_SHIFT; 1884 pgoff_t index = start_index; 1885 unsigned long nr_pages = end_index - start_index + 1; 1886 unsigned long pages_processed = 0; 1887 struct page *pages[16]; 1888 int err = 0; 1889 int i; 1890 1891 if (page_ops & PAGE_LOCK) { 1892 ASSERT(page_ops == PAGE_LOCK); 1893 ASSERT(processed_end && *processed_end == start); 1894 } 1895 1896 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0) 1897 mapping_set_error(mapping, -EIO); 1898 1899 while (nr_pages > 0) { 1900 int found_pages; 1901 1902 found_pages = find_get_pages_contig(mapping, index, 1903 min_t(unsigned long, 1904 nr_pages, ARRAY_SIZE(pages)), pages); 1905 if (found_pages == 0) { 1906 /* 1907 * Only if we're going to lock these pages, we can find 1908 * nothing at @index. 1909 */ 1910 ASSERT(page_ops & PAGE_LOCK); 1911 err = -EAGAIN; 1912 goto out; 1913 } 1914 1915 for (i = 0; i < found_pages; i++) { 1916 int process_ret; 1917 1918 process_ret = process_one_page(fs_info, mapping, 1919 pages[i], locked_page, page_ops, 1920 start, end); 1921 if (process_ret < 0) { 1922 for (; i < found_pages; i++) 1923 put_page(pages[i]); 1924 err = -EAGAIN; 1925 goto out; 1926 } 1927 put_page(pages[i]); 1928 pages_processed++; 1929 } 1930 nr_pages -= found_pages; 1931 index += found_pages; 1932 cond_resched(); 1933 } 1934 out: 1935 if (err && processed_end) { 1936 /* 1937 * Update @processed_end. I know this is awful since it has 1938 * two different return value patterns (inclusive vs exclusive). 1939 * 1940 * But the exclusive pattern is necessary if @start is 0, or we 1941 * underflow and check against processed_end won't work as 1942 * expected. 1943 */ 1944 if (pages_processed) 1945 *processed_end = min(end, 1946 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 1947 else 1948 *processed_end = start; 1949 } 1950 return err; 1951 } 1952 1953 static noinline void __unlock_for_delalloc(struct inode *inode, 1954 struct page *locked_page, 1955 u64 start, u64 end) 1956 { 1957 unsigned long index = start >> PAGE_SHIFT; 1958 unsigned long end_index = end >> PAGE_SHIFT; 1959 1960 ASSERT(locked_page); 1961 if (index == locked_page->index && end_index == index) 1962 return; 1963 1964 __process_pages_contig(inode->i_mapping, locked_page, start, end, 1965 PAGE_UNLOCK, NULL); 1966 } 1967 1968 static noinline int lock_delalloc_pages(struct inode *inode, 1969 struct page *locked_page, 1970 u64 delalloc_start, 1971 u64 delalloc_end) 1972 { 1973 unsigned long index = delalloc_start >> PAGE_SHIFT; 1974 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 1975 u64 processed_end = delalloc_start; 1976 int ret; 1977 1978 ASSERT(locked_page); 1979 if (index == locked_page->index && index == end_index) 1980 return 0; 1981 1982 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 1983 delalloc_end, PAGE_LOCK, &processed_end); 1984 if (ret == -EAGAIN && processed_end > delalloc_start) 1985 __unlock_for_delalloc(inode, locked_page, delalloc_start, 1986 processed_end); 1987 return ret; 1988 } 1989 1990 /* 1991 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 1992 * more than @max_bytes. 1993 * 1994 * @start: The original start bytenr to search. 1995 * Will store the extent range start bytenr. 1996 * @end: The original end bytenr of the search range 1997 * Will store the extent range end bytenr. 1998 * 1999 * Return true if we find a delalloc range which starts inside the original 2000 * range, and @start/@end will store the delalloc range start/end. 2001 * 2002 * Return false if we can't find any delalloc range which starts inside the 2003 * original range, and @start/@end will be the non-delalloc range start/end. 2004 */ 2005 EXPORT_FOR_TESTS 2006 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 2007 struct page *locked_page, u64 *start, 2008 u64 *end) 2009 { 2010 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2011 const u64 orig_start = *start; 2012 const u64 orig_end = *end; 2013 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE; 2014 u64 delalloc_start; 2015 u64 delalloc_end; 2016 bool found; 2017 struct extent_state *cached_state = NULL; 2018 int ret; 2019 int loops = 0; 2020 2021 /* Caller should pass a valid @end to indicate the search range end */ 2022 ASSERT(orig_end > orig_start); 2023 2024 /* The range should at least cover part of the page */ 2025 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 2026 orig_end <= page_offset(locked_page))); 2027 again: 2028 /* step one, find a bunch of delalloc bytes starting at start */ 2029 delalloc_start = *start; 2030 delalloc_end = 0; 2031 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 2032 max_bytes, &cached_state); 2033 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 2034 *start = delalloc_start; 2035 2036 /* @delalloc_end can be -1, never go beyond @orig_end */ 2037 *end = min(delalloc_end, orig_end); 2038 free_extent_state(cached_state); 2039 return false; 2040 } 2041 2042 /* 2043 * start comes from the offset of locked_page. We have to lock 2044 * pages in order, so we can't process delalloc bytes before 2045 * locked_page 2046 */ 2047 if (delalloc_start < *start) 2048 delalloc_start = *start; 2049 2050 /* 2051 * make sure to limit the number of pages we try to lock down 2052 */ 2053 if (delalloc_end + 1 - delalloc_start > max_bytes) 2054 delalloc_end = delalloc_start + max_bytes - 1; 2055 2056 /* step two, lock all the pages after the page that has start */ 2057 ret = lock_delalloc_pages(inode, locked_page, 2058 delalloc_start, delalloc_end); 2059 ASSERT(!ret || ret == -EAGAIN); 2060 if (ret == -EAGAIN) { 2061 /* some of the pages are gone, lets avoid looping by 2062 * shortening the size of the delalloc range we're searching 2063 */ 2064 free_extent_state(cached_state); 2065 cached_state = NULL; 2066 if (!loops) { 2067 max_bytes = PAGE_SIZE; 2068 loops = 1; 2069 goto again; 2070 } else { 2071 found = false; 2072 goto out_failed; 2073 } 2074 } 2075 2076 /* step three, lock the state bits for the whole range */ 2077 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state); 2078 2079 /* then test to make sure it is all still delalloc */ 2080 ret = test_range_bit(tree, delalloc_start, delalloc_end, 2081 EXTENT_DELALLOC, 1, cached_state); 2082 if (!ret) { 2083 unlock_extent_cached(tree, delalloc_start, delalloc_end, 2084 &cached_state); 2085 __unlock_for_delalloc(inode, locked_page, 2086 delalloc_start, delalloc_end); 2087 cond_resched(); 2088 goto again; 2089 } 2090 free_extent_state(cached_state); 2091 *start = delalloc_start; 2092 *end = delalloc_end; 2093 out_failed: 2094 return found; 2095 } 2096 2097 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2098 struct page *locked_page, 2099 u32 clear_bits, unsigned long page_ops) 2100 { 2101 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL); 2102 2103 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 2104 start, end, page_ops, NULL); 2105 } 2106 2107 /* 2108 * count the number of bytes in the tree that have a given bit(s) 2109 * set. This can be fairly slow, except for EXTENT_DIRTY which is 2110 * cached. The total number found is returned. 2111 */ 2112 u64 count_range_bits(struct extent_io_tree *tree, 2113 u64 *start, u64 search_end, u64 max_bytes, 2114 u32 bits, int contig) 2115 { 2116 struct rb_node *node; 2117 struct extent_state *state; 2118 u64 cur_start = *start; 2119 u64 total_bytes = 0; 2120 u64 last = 0; 2121 int found = 0; 2122 2123 if (WARN_ON(search_end <= cur_start)) 2124 return 0; 2125 2126 spin_lock(&tree->lock); 2127 if (cur_start == 0 && bits == EXTENT_DIRTY) { 2128 total_bytes = tree->dirty_bytes; 2129 goto out; 2130 } 2131 /* 2132 * this search will find all the extents that end after 2133 * our range starts. 2134 */ 2135 node = tree_search(tree, cur_start); 2136 if (!node) 2137 goto out; 2138 2139 while (1) { 2140 state = rb_entry(node, struct extent_state, rb_node); 2141 if (state->start > search_end) 2142 break; 2143 if (contig && found && state->start > last + 1) 2144 break; 2145 if (state->end >= cur_start && (state->state & bits) == bits) { 2146 total_bytes += min(search_end, state->end) + 1 - 2147 max(cur_start, state->start); 2148 if (total_bytes >= max_bytes) 2149 break; 2150 if (!found) { 2151 *start = max(cur_start, state->start); 2152 found = 1; 2153 } 2154 last = state->end; 2155 } else if (contig && found) { 2156 break; 2157 } 2158 node = rb_next(node); 2159 if (!node) 2160 break; 2161 } 2162 out: 2163 spin_unlock(&tree->lock); 2164 return total_bytes; 2165 } 2166 2167 /* 2168 * set the private field for a given byte offset in the tree. If there isn't 2169 * an extent_state there already, this does nothing. 2170 */ 2171 int set_state_failrec(struct extent_io_tree *tree, u64 start, 2172 struct io_failure_record *failrec) 2173 { 2174 struct rb_node *node; 2175 struct extent_state *state; 2176 int ret = 0; 2177 2178 spin_lock(&tree->lock); 2179 /* 2180 * this search will find all the extents that end after 2181 * our range starts. 2182 */ 2183 node = tree_search(tree, start); 2184 if (!node) { 2185 ret = -ENOENT; 2186 goto out; 2187 } 2188 state = rb_entry(node, struct extent_state, rb_node); 2189 if (state->start != start) { 2190 ret = -ENOENT; 2191 goto out; 2192 } 2193 state->failrec = failrec; 2194 out: 2195 spin_unlock(&tree->lock); 2196 return ret; 2197 } 2198 2199 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start) 2200 { 2201 struct rb_node *node; 2202 struct extent_state *state; 2203 struct io_failure_record *failrec; 2204 2205 spin_lock(&tree->lock); 2206 /* 2207 * this search will find all the extents that end after 2208 * our range starts. 2209 */ 2210 node = tree_search(tree, start); 2211 if (!node) { 2212 failrec = ERR_PTR(-ENOENT); 2213 goto out; 2214 } 2215 state = rb_entry(node, struct extent_state, rb_node); 2216 if (state->start != start) { 2217 failrec = ERR_PTR(-ENOENT); 2218 goto out; 2219 } 2220 2221 failrec = state->failrec; 2222 out: 2223 spin_unlock(&tree->lock); 2224 return failrec; 2225 } 2226 2227 /* 2228 * searches a range in the state tree for a given mask. 2229 * If 'filled' == 1, this returns 1 only if every extent in the tree 2230 * has the bits set. Otherwise, 1 is returned if any bit in the 2231 * range is found set. 2232 */ 2233 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 2234 u32 bits, int filled, struct extent_state *cached) 2235 { 2236 struct extent_state *state = NULL; 2237 struct rb_node *node; 2238 int bitset = 0; 2239 2240 spin_lock(&tree->lock); 2241 if (cached && extent_state_in_tree(cached) && cached->start <= start && 2242 cached->end > start) 2243 node = &cached->rb_node; 2244 else 2245 node = tree_search(tree, start); 2246 while (node && start <= end) { 2247 state = rb_entry(node, struct extent_state, rb_node); 2248 2249 if (filled && state->start > start) { 2250 bitset = 0; 2251 break; 2252 } 2253 2254 if (state->start > end) 2255 break; 2256 2257 if (state->state & bits) { 2258 bitset = 1; 2259 if (!filled) 2260 break; 2261 } else if (filled) { 2262 bitset = 0; 2263 break; 2264 } 2265 2266 if (state->end == (u64)-1) 2267 break; 2268 2269 start = state->end + 1; 2270 if (start > end) 2271 break; 2272 node = rb_next(node); 2273 if (!node) { 2274 if (filled) 2275 bitset = 0; 2276 break; 2277 } 2278 } 2279 spin_unlock(&tree->lock); 2280 return bitset; 2281 } 2282 2283 int free_io_failure(struct extent_io_tree *failure_tree, 2284 struct extent_io_tree *io_tree, 2285 struct io_failure_record *rec) 2286 { 2287 int ret; 2288 int err = 0; 2289 2290 set_state_failrec(failure_tree, rec->start, NULL); 2291 ret = clear_extent_bits(failure_tree, rec->start, 2292 rec->start + rec->len - 1, 2293 EXTENT_LOCKED | EXTENT_DIRTY); 2294 if (ret) 2295 err = ret; 2296 2297 ret = clear_extent_bits(io_tree, rec->start, 2298 rec->start + rec->len - 1, 2299 EXTENT_DAMAGED); 2300 if (ret && !err) 2301 err = ret; 2302 2303 kfree(rec); 2304 return err; 2305 } 2306 2307 /* 2308 * this bypasses the standard btrfs submit functions deliberately, as 2309 * the standard behavior is to write all copies in a raid setup. here we only 2310 * want to write the one bad copy. so we do the mapping for ourselves and issue 2311 * submit_bio directly. 2312 * to avoid any synchronization issues, wait for the data after writing, which 2313 * actually prevents the read that triggered the error from finishing. 2314 * currently, there can be no more than two copies of every data bit. thus, 2315 * exactly one rewrite is required. 2316 */ 2317 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 2318 u64 length, u64 logical, struct page *page, 2319 unsigned int pg_offset, int mirror_num) 2320 { 2321 struct btrfs_device *dev; 2322 struct bio_vec bvec; 2323 struct bio bio; 2324 u64 map_length = 0; 2325 u64 sector; 2326 struct btrfs_io_context *bioc = NULL; 2327 int ret = 0; 2328 2329 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 2330 BUG_ON(!mirror_num); 2331 2332 if (btrfs_repair_one_zone(fs_info, logical)) 2333 return 0; 2334 2335 map_length = length; 2336 2337 /* 2338 * Avoid races with device replace and make sure our bioc has devices 2339 * associated to its stripes that don't go away while we are doing the 2340 * read repair operation. 2341 */ 2342 btrfs_bio_counter_inc_blocked(fs_info); 2343 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 2344 /* 2345 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 2346 * to update all raid stripes, but here we just want to correct 2347 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 2348 * stripe's dev and sector. 2349 */ 2350 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 2351 &map_length, &bioc, 0); 2352 if (ret) 2353 goto out_counter_dec; 2354 ASSERT(bioc->mirror_num == 1); 2355 } else { 2356 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 2357 &map_length, &bioc, mirror_num); 2358 if (ret) 2359 goto out_counter_dec; 2360 BUG_ON(mirror_num != bioc->mirror_num); 2361 } 2362 2363 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 2364 dev = bioc->stripes[bioc->mirror_num - 1].dev; 2365 btrfs_put_bioc(bioc); 2366 2367 if (!dev || !dev->bdev || 2368 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 2369 ret = -EIO; 2370 goto out_counter_dec; 2371 } 2372 2373 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 2374 bio.bi_iter.bi_sector = sector; 2375 __bio_add_page(&bio, page, length, pg_offset); 2376 2377 btrfsic_check_bio(&bio); 2378 ret = submit_bio_wait(&bio); 2379 if (ret) { 2380 /* try to remap that extent elsewhere? */ 2381 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2382 goto out_bio_uninit; 2383 } 2384 2385 btrfs_info_rl_in_rcu(fs_info, 2386 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 2387 ino, start, 2388 rcu_str_deref(dev->name), sector); 2389 ret = 0; 2390 2391 out_bio_uninit: 2392 bio_uninit(&bio); 2393 out_counter_dec: 2394 btrfs_bio_counter_dec(fs_info); 2395 return ret; 2396 } 2397 2398 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num) 2399 { 2400 struct btrfs_fs_info *fs_info = eb->fs_info; 2401 u64 start = eb->start; 2402 int i, num_pages = num_extent_pages(eb); 2403 int ret = 0; 2404 2405 if (sb_rdonly(fs_info->sb)) 2406 return -EROFS; 2407 2408 for (i = 0; i < num_pages; i++) { 2409 struct page *p = eb->pages[i]; 2410 2411 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p, 2412 start - page_offset(p), mirror_num); 2413 if (ret) 2414 break; 2415 start += PAGE_SIZE; 2416 } 2417 2418 return ret; 2419 } 2420 2421 /* 2422 * each time an IO finishes, we do a fast check in the IO failure tree 2423 * to see if we need to process or clean up an io_failure_record 2424 */ 2425 int clean_io_failure(struct btrfs_fs_info *fs_info, 2426 struct extent_io_tree *failure_tree, 2427 struct extent_io_tree *io_tree, u64 start, 2428 struct page *page, u64 ino, unsigned int pg_offset) 2429 { 2430 u64 private; 2431 struct io_failure_record *failrec; 2432 struct extent_state *state; 2433 int num_copies; 2434 int ret; 2435 2436 private = 0; 2437 ret = count_range_bits(failure_tree, &private, (u64)-1, 1, 2438 EXTENT_DIRTY, 0); 2439 if (!ret) 2440 return 0; 2441 2442 failrec = get_state_failrec(failure_tree, start); 2443 if (IS_ERR(failrec)) 2444 return 0; 2445 2446 BUG_ON(!failrec->this_mirror); 2447 2448 if (sb_rdonly(fs_info->sb)) 2449 goto out; 2450 2451 spin_lock(&io_tree->lock); 2452 state = find_first_extent_bit_state(io_tree, 2453 failrec->start, 2454 EXTENT_LOCKED); 2455 spin_unlock(&io_tree->lock); 2456 2457 if (state && state->start <= failrec->start && 2458 state->end >= failrec->start + failrec->len - 1) { 2459 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2460 failrec->len); 2461 if (num_copies > 1) { 2462 repair_io_failure(fs_info, ino, start, failrec->len, 2463 failrec->logical, page, pg_offset, 2464 failrec->failed_mirror); 2465 } 2466 } 2467 2468 out: 2469 free_io_failure(failure_tree, io_tree, failrec); 2470 2471 return 0; 2472 } 2473 2474 /* 2475 * Can be called when 2476 * - hold extent lock 2477 * - under ordered extent 2478 * - the inode is freeing 2479 */ 2480 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end) 2481 { 2482 struct extent_io_tree *failure_tree = &inode->io_failure_tree; 2483 struct io_failure_record *failrec; 2484 struct extent_state *state, *next; 2485 2486 if (RB_EMPTY_ROOT(&failure_tree->state)) 2487 return; 2488 2489 spin_lock(&failure_tree->lock); 2490 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY); 2491 while (state) { 2492 if (state->start > end) 2493 break; 2494 2495 ASSERT(state->end <= end); 2496 2497 next = next_state(state); 2498 2499 failrec = state->failrec; 2500 free_extent_state(state); 2501 kfree(failrec); 2502 2503 state = next; 2504 } 2505 spin_unlock(&failure_tree->lock); 2506 } 2507 2508 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode, 2509 u64 start) 2510 { 2511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2512 struct io_failure_record *failrec; 2513 struct extent_map *em; 2514 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2515 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2516 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2517 const u32 sectorsize = fs_info->sectorsize; 2518 int ret; 2519 u64 logical; 2520 2521 failrec = get_state_failrec(failure_tree, start); 2522 if (!IS_ERR(failrec)) { 2523 btrfs_debug(fs_info, 2524 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu", 2525 failrec->logical, failrec->start, failrec->len); 2526 /* 2527 * when data can be on disk more than twice, add to failrec here 2528 * (e.g. with a list for failed_mirror) to make 2529 * clean_io_failure() clean all those errors at once. 2530 */ 2531 2532 return failrec; 2533 } 2534 2535 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2536 if (!failrec) 2537 return ERR_PTR(-ENOMEM); 2538 2539 failrec->start = start; 2540 failrec->len = sectorsize; 2541 failrec->this_mirror = 0; 2542 failrec->compress_type = BTRFS_COMPRESS_NONE; 2543 2544 read_lock(&em_tree->lock); 2545 em = lookup_extent_mapping(em_tree, start, failrec->len); 2546 if (!em) { 2547 read_unlock(&em_tree->lock); 2548 kfree(failrec); 2549 return ERR_PTR(-EIO); 2550 } 2551 2552 if (em->start > start || em->start + em->len <= start) { 2553 free_extent_map(em); 2554 em = NULL; 2555 } 2556 read_unlock(&em_tree->lock); 2557 if (!em) { 2558 kfree(failrec); 2559 return ERR_PTR(-EIO); 2560 } 2561 2562 logical = start - em->start; 2563 logical = em->block_start + logical; 2564 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2565 logical = em->block_start; 2566 failrec->compress_type = em->compress_type; 2567 } 2568 2569 btrfs_debug(fs_info, 2570 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu", 2571 logical, start, failrec->len); 2572 2573 failrec->logical = logical; 2574 free_extent_map(em); 2575 2576 /* Set the bits in the private failure tree */ 2577 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1, 2578 EXTENT_LOCKED | EXTENT_DIRTY); 2579 if (ret >= 0) { 2580 ret = set_state_failrec(failure_tree, start, failrec); 2581 /* Set the bits in the inode's tree */ 2582 ret = set_extent_bits(tree, start, start + sectorsize - 1, 2583 EXTENT_DAMAGED); 2584 } else if (ret < 0) { 2585 kfree(failrec); 2586 return ERR_PTR(ret); 2587 } 2588 2589 return failrec; 2590 } 2591 2592 static bool btrfs_check_repairable(struct inode *inode, 2593 struct io_failure_record *failrec, 2594 int failed_mirror) 2595 { 2596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2597 int num_copies; 2598 2599 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 2600 if (num_copies == 1) { 2601 /* 2602 * we only have a single copy of the data, so don't bother with 2603 * all the retry and error correction code that follows. no 2604 * matter what the error is, it is very likely to persist. 2605 */ 2606 btrfs_debug(fs_info, 2607 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 2608 num_copies, failrec->this_mirror, failed_mirror); 2609 return false; 2610 } 2611 2612 /* The failure record should only contain one sector */ 2613 ASSERT(failrec->len == fs_info->sectorsize); 2614 2615 /* 2616 * There are two premises: 2617 * a) deliver good data to the caller 2618 * b) correct the bad sectors on disk 2619 * 2620 * Since we're only doing repair for one sector, we only need to get 2621 * a good copy of the failed sector and if we succeed, we have setup 2622 * everything for repair_io_failure to do the rest for us. 2623 */ 2624 ASSERT(failed_mirror); 2625 failrec->failed_mirror = failed_mirror; 2626 failrec->this_mirror++; 2627 if (failrec->this_mirror == failed_mirror) 2628 failrec->this_mirror++; 2629 2630 if (failrec->this_mirror > num_copies) { 2631 btrfs_debug(fs_info, 2632 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 2633 num_copies, failrec->this_mirror, failed_mirror); 2634 return false; 2635 } 2636 2637 return true; 2638 } 2639 2640 int btrfs_repair_one_sector(struct inode *inode, 2641 struct bio *failed_bio, u32 bio_offset, 2642 struct page *page, unsigned int pgoff, 2643 u64 start, int failed_mirror, 2644 submit_bio_hook_t *submit_bio_hook) 2645 { 2646 struct io_failure_record *failrec; 2647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2648 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2649 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2650 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio); 2651 const int icsum = bio_offset >> fs_info->sectorsize_bits; 2652 struct bio *repair_bio; 2653 struct btrfs_bio *repair_bbio; 2654 2655 btrfs_debug(fs_info, 2656 "repair read error: read error at %llu", start); 2657 2658 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2659 2660 failrec = btrfs_get_io_failure_record(inode, start); 2661 if (IS_ERR(failrec)) 2662 return PTR_ERR(failrec); 2663 2664 2665 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) { 2666 free_io_failure(failure_tree, tree, failrec); 2667 return -EIO; 2668 } 2669 2670 repair_bio = btrfs_bio_alloc(1); 2671 repair_bbio = btrfs_bio(repair_bio); 2672 repair_bbio->file_offset = start; 2673 repair_bio->bi_opf = REQ_OP_READ; 2674 repair_bio->bi_end_io = failed_bio->bi_end_io; 2675 repair_bio->bi_iter.bi_sector = failrec->logical >> 9; 2676 repair_bio->bi_private = failed_bio->bi_private; 2677 2678 if (failed_bbio->csum) { 2679 const u32 csum_size = fs_info->csum_size; 2680 2681 repair_bbio->csum = repair_bbio->csum_inline; 2682 memcpy(repair_bbio->csum, 2683 failed_bbio->csum + csum_size * icsum, csum_size); 2684 } 2685 2686 bio_add_page(repair_bio, page, failrec->len, pgoff); 2687 repair_bbio->iter = repair_bio->bi_iter; 2688 2689 btrfs_debug(btrfs_sb(inode->i_sb), 2690 "repair read error: submitting new read to mirror %d", 2691 failrec->this_mirror); 2692 2693 /* 2694 * At this point we have a bio, so any errors from submit_bio_hook() 2695 * will be handled by the endio on the repair_bio, so we can't return an 2696 * error here. 2697 */ 2698 submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type); 2699 return BLK_STS_OK; 2700 } 2701 2702 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 2703 { 2704 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2705 2706 ASSERT(page_offset(page) <= start && 2707 start + len <= page_offset(page) + PAGE_SIZE); 2708 2709 if (uptodate) { 2710 if (fsverity_active(page->mapping->host) && 2711 !PageError(page) && 2712 !PageUptodate(page) && 2713 start < i_size_read(page->mapping->host) && 2714 !fsverity_verify_page(page)) { 2715 btrfs_page_set_error(fs_info, page, start, len); 2716 } else { 2717 btrfs_page_set_uptodate(fs_info, page, start, len); 2718 } 2719 } else { 2720 btrfs_page_clear_uptodate(fs_info, page, start, len); 2721 btrfs_page_set_error(fs_info, page, start, len); 2722 } 2723 2724 if (!btrfs_is_subpage(fs_info, page)) 2725 unlock_page(page); 2726 else 2727 btrfs_subpage_end_reader(fs_info, page, start, len); 2728 } 2729 2730 static blk_status_t submit_data_read_repair(struct inode *inode, 2731 struct bio *failed_bio, 2732 u32 bio_offset, struct page *page, 2733 unsigned int pgoff, 2734 u64 start, u64 end, 2735 int failed_mirror, 2736 unsigned int error_bitmap) 2737 { 2738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2739 const u32 sectorsize = fs_info->sectorsize; 2740 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits; 2741 int error = 0; 2742 int i; 2743 2744 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 2745 2746 /* This repair is only for data */ 2747 ASSERT(is_data_inode(inode)); 2748 2749 /* We're here because we had some read errors or csum mismatch */ 2750 ASSERT(error_bitmap); 2751 2752 /* 2753 * We only get called on buffered IO, thus page must be mapped and bio 2754 * must not be cloned. 2755 */ 2756 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED)); 2757 2758 /* Iterate through all the sectors in the range */ 2759 for (i = 0; i < nr_bits; i++) { 2760 const unsigned int offset = i * sectorsize; 2761 struct extent_state *cached = NULL; 2762 bool uptodate = false; 2763 int ret; 2764 2765 if (!(error_bitmap & (1U << i))) { 2766 /* 2767 * This sector has no error, just end the page read 2768 * and unlock the range. 2769 */ 2770 uptodate = true; 2771 goto next; 2772 } 2773 2774 ret = btrfs_repair_one_sector(inode, failed_bio, 2775 bio_offset + offset, 2776 page, pgoff + offset, start + offset, 2777 failed_mirror, btrfs_submit_data_bio); 2778 if (!ret) { 2779 /* 2780 * We have submitted the read repair, the page release 2781 * will be handled by the endio function of the 2782 * submitted repair bio. 2783 * Thus we don't need to do any thing here. 2784 */ 2785 continue; 2786 } 2787 /* 2788 * Repair failed, just record the error but still continue. 2789 * Or the remaining sectors will not be properly unlocked. 2790 */ 2791 if (!error) 2792 error = ret; 2793 next: 2794 end_page_read(page, uptodate, start + offset, sectorsize); 2795 if (uptodate) 2796 set_extent_uptodate(&BTRFS_I(inode)->io_tree, 2797 start + offset, 2798 start + offset + sectorsize - 1, 2799 &cached, GFP_ATOMIC); 2800 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree, 2801 start + offset, 2802 start + offset + sectorsize - 1, 2803 &cached); 2804 } 2805 return errno_to_blk_status(error); 2806 } 2807 2808 /* lots and lots of room for performance fixes in the end_bio funcs */ 2809 2810 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2811 { 2812 struct btrfs_inode *inode; 2813 const bool uptodate = (err == 0); 2814 int ret = 0; 2815 2816 ASSERT(page && page->mapping); 2817 inode = BTRFS_I(page->mapping->host); 2818 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 2819 2820 if (!uptodate) { 2821 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 2822 u32 len; 2823 2824 ASSERT(end + 1 - start <= U32_MAX); 2825 len = end + 1 - start; 2826 2827 btrfs_page_clear_uptodate(fs_info, page, start, len); 2828 btrfs_page_set_error(fs_info, page, start, len); 2829 ret = err < 0 ? err : -EIO; 2830 mapping_set_error(page->mapping, ret); 2831 } 2832 } 2833 2834 /* 2835 * after a writepage IO is done, we need to: 2836 * clear the uptodate bits on error 2837 * clear the writeback bits in the extent tree for this IO 2838 * end_page_writeback if the page has no more pending IO 2839 * 2840 * Scheduling is not allowed, so the extent state tree is expected 2841 * to have one and only one object corresponding to this IO. 2842 */ 2843 static void end_bio_extent_writepage(struct bio *bio) 2844 { 2845 int error = blk_status_to_errno(bio->bi_status); 2846 struct bio_vec *bvec; 2847 u64 start; 2848 u64 end; 2849 struct bvec_iter_all iter_all; 2850 bool first_bvec = true; 2851 2852 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2853 bio_for_each_segment_all(bvec, bio, iter_all) { 2854 struct page *page = bvec->bv_page; 2855 struct inode *inode = page->mapping->host; 2856 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2857 const u32 sectorsize = fs_info->sectorsize; 2858 2859 /* Our read/write should always be sector aligned. */ 2860 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 2861 btrfs_err(fs_info, 2862 "partial page write in btrfs with offset %u and length %u", 2863 bvec->bv_offset, bvec->bv_len); 2864 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 2865 btrfs_info(fs_info, 2866 "incomplete page write with offset %u and length %u", 2867 bvec->bv_offset, bvec->bv_len); 2868 2869 start = page_offset(page) + bvec->bv_offset; 2870 end = start + bvec->bv_len - 1; 2871 2872 if (first_bvec) { 2873 btrfs_record_physical_zoned(inode, start, bio); 2874 first_bvec = false; 2875 } 2876 2877 end_extent_writepage(page, error, start, end); 2878 2879 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 2880 } 2881 2882 bio_put(bio); 2883 } 2884 2885 /* 2886 * Record previously processed extent range 2887 * 2888 * For endio_readpage_release_extent() to handle a full extent range, reducing 2889 * the extent io operations. 2890 */ 2891 struct processed_extent { 2892 struct btrfs_inode *inode; 2893 /* Start of the range in @inode */ 2894 u64 start; 2895 /* End of the range in @inode */ 2896 u64 end; 2897 bool uptodate; 2898 }; 2899 2900 /* 2901 * Try to release processed extent range 2902 * 2903 * May not release the extent range right now if the current range is 2904 * contiguous to processed extent. 2905 * 2906 * Will release processed extent when any of @inode, @uptodate, the range is 2907 * no longer contiguous to the processed range. 2908 * 2909 * Passing @inode == NULL will force processed extent to be released. 2910 */ 2911 static void endio_readpage_release_extent(struct processed_extent *processed, 2912 struct btrfs_inode *inode, u64 start, u64 end, 2913 bool uptodate) 2914 { 2915 struct extent_state *cached = NULL; 2916 struct extent_io_tree *tree; 2917 2918 /* The first extent, initialize @processed */ 2919 if (!processed->inode) 2920 goto update; 2921 2922 /* 2923 * Contiguous to processed extent, just uptodate the end. 2924 * 2925 * Several things to notice: 2926 * 2927 * - bio can be merged as long as on-disk bytenr is contiguous 2928 * This means we can have page belonging to other inodes, thus need to 2929 * check if the inode still matches. 2930 * - bvec can contain range beyond current page for multi-page bvec 2931 * Thus we need to do processed->end + 1 >= start check 2932 */ 2933 if (processed->inode == inode && processed->uptodate == uptodate && 2934 processed->end + 1 >= start && end >= processed->end) { 2935 processed->end = end; 2936 return; 2937 } 2938 2939 tree = &processed->inode->io_tree; 2940 /* 2941 * Now we don't have range contiguous to the processed range, release 2942 * the processed range now. 2943 */ 2944 if (processed->uptodate && tree->track_uptodate) 2945 set_extent_uptodate(tree, processed->start, processed->end, 2946 &cached, GFP_ATOMIC); 2947 unlock_extent_cached_atomic(tree, processed->start, processed->end, 2948 &cached); 2949 2950 update: 2951 /* Update processed to current range */ 2952 processed->inode = inode; 2953 processed->start = start; 2954 processed->end = end; 2955 processed->uptodate = uptodate; 2956 } 2957 2958 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 2959 { 2960 ASSERT(PageLocked(page)); 2961 if (!btrfs_is_subpage(fs_info, page)) 2962 return; 2963 2964 ASSERT(PagePrivate(page)); 2965 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 2966 } 2967 2968 /* 2969 * Find extent buffer for a givne bytenr. 2970 * 2971 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 2972 * in endio context. 2973 */ 2974 static struct extent_buffer *find_extent_buffer_readpage( 2975 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 2976 { 2977 struct extent_buffer *eb; 2978 2979 /* 2980 * For regular sectorsize, we can use page->private to grab extent 2981 * buffer 2982 */ 2983 if (fs_info->nodesize >= PAGE_SIZE) { 2984 ASSERT(PagePrivate(page) && page->private); 2985 return (struct extent_buffer *)page->private; 2986 } 2987 2988 /* For subpage case, we need to lookup buffer radix tree */ 2989 rcu_read_lock(); 2990 eb = radix_tree_lookup(&fs_info->buffer_radix, 2991 bytenr >> fs_info->sectorsize_bits); 2992 rcu_read_unlock(); 2993 ASSERT(eb); 2994 return eb; 2995 } 2996 2997 /* 2998 * after a readpage IO is done, we need to: 2999 * clear the uptodate bits on error 3000 * set the uptodate bits if things worked 3001 * set the page up to date if all extents in the tree are uptodate 3002 * clear the lock bit in the extent tree 3003 * unlock the page if there are no other extents locked for it 3004 * 3005 * Scheduling is not allowed, so the extent state tree is expected 3006 * to have one and only one object corresponding to this IO. 3007 */ 3008 static void end_bio_extent_readpage(struct bio *bio) 3009 { 3010 struct bio_vec *bvec; 3011 struct btrfs_bio *bbio = btrfs_bio(bio); 3012 struct extent_io_tree *tree, *failure_tree; 3013 struct processed_extent processed = { 0 }; 3014 /* 3015 * The offset to the beginning of a bio, since one bio can never be 3016 * larger than UINT_MAX, u32 here is enough. 3017 */ 3018 u32 bio_offset = 0; 3019 int mirror; 3020 int ret; 3021 struct bvec_iter_all iter_all; 3022 3023 ASSERT(!bio_flagged(bio, BIO_CLONED)); 3024 bio_for_each_segment_all(bvec, bio, iter_all) { 3025 bool uptodate = !bio->bi_status; 3026 struct page *page = bvec->bv_page; 3027 struct inode *inode = page->mapping->host; 3028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3029 const u32 sectorsize = fs_info->sectorsize; 3030 unsigned int error_bitmap = (unsigned int)-1; 3031 u64 start; 3032 u64 end; 3033 u32 len; 3034 3035 btrfs_debug(fs_info, 3036 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 3037 bio->bi_iter.bi_sector, bio->bi_status, 3038 bbio->mirror_num); 3039 tree = &BTRFS_I(inode)->io_tree; 3040 failure_tree = &BTRFS_I(inode)->io_failure_tree; 3041 3042 /* 3043 * We always issue full-sector reads, but if some block in a 3044 * page fails to read, blk_update_request() will advance 3045 * bv_offset and adjust bv_len to compensate. Print a warning 3046 * for unaligned offsets, and an error if they don't add up to 3047 * a full sector. 3048 */ 3049 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 3050 btrfs_err(fs_info, 3051 "partial page read in btrfs with offset %u and length %u", 3052 bvec->bv_offset, bvec->bv_len); 3053 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 3054 sectorsize)) 3055 btrfs_info(fs_info, 3056 "incomplete page read with offset %u and length %u", 3057 bvec->bv_offset, bvec->bv_len); 3058 3059 start = page_offset(page) + bvec->bv_offset; 3060 end = start + bvec->bv_len - 1; 3061 len = bvec->bv_len; 3062 3063 mirror = bbio->mirror_num; 3064 if (likely(uptodate)) { 3065 if (is_data_inode(inode)) { 3066 error_bitmap = btrfs_verify_data_csum(bbio, 3067 bio_offset, page, start, end); 3068 ret = error_bitmap; 3069 } else { 3070 ret = btrfs_validate_metadata_buffer(bbio, 3071 page, start, end, mirror); 3072 } 3073 if (ret) 3074 uptodate = false; 3075 else 3076 clean_io_failure(BTRFS_I(inode)->root->fs_info, 3077 failure_tree, tree, start, 3078 page, 3079 btrfs_ino(BTRFS_I(inode)), 0); 3080 } 3081 3082 if (likely(uptodate)) 3083 goto readpage_ok; 3084 3085 if (is_data_inode(inode)) { 3086 /* 3087 * If we failed to submit the IO at all we'll have a 3088 * mirror_num == 0, in which case we need to just mark 3089 * the page with an error and unlock it and carry on. 3090 */ 3091 if (mirror == 0) 3092 goto readpage_ok; 3093 3094 /* 3095 * submit_data_read_repair() will handle all the good 3096 * and bad sectors, we just continue to the next bvec. 3097 */ 3098 submit_data_read_repair(inode, bio, bio_offset, page, 3099 start - page_offset(page), 3100 start, end, mirror, 3101 error_bitmap); 3102 3103 ASSERT(bio_offset + len > bio_offset); 3104 bio_offset += len; 3105 continue; 3106 } else { 3107 struct extent_buffer *eb; 3108 3109 eb = find_extent_buffer_readpage(fs_info, page, start); 3110 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 3111 eb->read_mirror = mirror; 3112 atomic_dec(&eb->io_pages); 3113 } 3114 readpage_ok: 3115 if (likely(uptodate)) { 3116 loff_t i_size = i_size_read(inode); 3117 pgoff_t end_index = i_size >> PAGE_SHIFT; 3118 3119 /* 3120 * Zero out the remaining part if this range straddles 3121 * i_size. 3122 * 3123 * Here we should only zero the range inside the bvec, 3124 * not touch anything else. 3125 * 3126 * NOTE: i_size is exclusive while end is inclusive. 3127 */ 3128 if (page->index == end_index && i_size <= end) { 3129 u32 zero_start = max(offset_in_page(i_size), 3130 offset_in_page(start)); 3131 3132 zero_user_segment(page, zero_start, 3133 offset_in_page(end) + 1); 3134 } 3135 } 3136 ASSERT(bio_offset + len > bio_offset); 3137 bio_offset += len; 3138 3139 /* Update page status and unlock */ 3140 end_page_read(page, uptodate, start, len); 3141 endio_readpage_release_extent(&processed, BTRFS_I(inode), 3142 start, end, PageUptodate(page)); 3143 } 3144 /* Release the last extent */ 3145 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 3146 btrfs_bio_free_csum(bbio); 3147 bio_put(bio); 3148 } 3149 3150 /** 3151 * Populate every free slot in a provided array with pages. 3152 * 3153 * @nr_pages: number of pages to allocate 3154 * @page_array: the array to fill with pages; any existing non-null entries in 3155 * the array will be skipped 3156 * 3157 * Return: 0 if all pages were able to be allocated; 3158 * -ENOMEM otherwise, and the caller is responsible for freeing all 3159 * non-null page pointers in the array. 3160 */ 3161 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 3162 { 3163 unsigned int allocated; 3164 3165 for (allocated = 0; allocated < nr_pages;) { 3166 unsigned int last = allocated; 3167 3168 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 3169 3170 if (allocated == nr_pages) 3171 return 0; 3172 3173 /* 3174 * During this iteration, no page could be allocated, even 3175 * though alloc_pages_bulk_array() falls back to alloc_page() 3176 * if it could not bulk-allocate. So we must be out of memory. 3177 */ 3178 if (allocated == last) 3179 return -ENOMEM; 3180 3181 memalloc_retry_wait(GFP_NOFS); 3182 } 3183 return 0; 3184 } 3185 3186 /* 3187 * Initialize the members up to but not including 'bio'. Use after allocating a 3188 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of 3189 * 'bio' because use of __GFP_ZERO is not supported. 3190 */ 3191 static inline void btrfs_bio_init(struct btrfs_bio *bbio) 3192 { 3193 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 3194 } 3195 3196 /* 3197 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs. 3198 * 3199 * The bio allocation is backed by bioset and does not fail. 3200 */ 3201 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs) 3202 { 3203 struct bio *bio; 3204 3205 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS); 3206 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset); 3207 btrfs_bio_init(btrfs_bio(bio)); 3208 return bio; 3209 } 3210 3211 struct bio *btrfs_bio_clone(struct block_device *bdev, struct bio *bio) 3212 { 3213 struct btrfs_bio *bbio; 3214 struct bio *new; 3215 3216 /* Bio allocation backed by a bioset does not fail */ 3217 new = bio_alloc_clone(bdev, bio, GFP_NOFS, &btrfs_bioset); 3218 bbio = btrfs_bio(new); 3219 btrfs_bio_init(bbio); 3220 bbio->iter = bio->bi_iter; 3221 return new; 3222 } 3223 3224 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size) 3225 { 3226 struct bio *bio; 3227 struct btrfs_bio *bbio; 3228 3229 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 3230 3231 /* this will never fail when it's backed by a bioset */ 3232 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 3233 ASSERT(bio); 3234 3235 bbio = btrfs_bio(bio); 3236 btrfs_bio_init(bbio); 3237 3238 bio_trim(bio, offset >> 9, size >> 9); 3239 bbio->iter = bio->bi_iter; 3240 return bio; 3241 } 3242 3243 /** 3244 * Attempt to add a page to bio 3245 * 3246 * @bio_ctrl: record both the bio, and its bio_flags 3247 * @page: page to add to the bio 3248 * @disk_bytenr: offset of the new bio or to check whether we are adding 3249 * a contiguous page to the previous one 3250 * @size: portion of page that we want to write 3251 * @pg_offset: starting offset in the page 3252 * @compress_type: compression type of the current bio to see if we can merge them 3253 * 3254 * Attempt to add a page to bio considering stripe alignment etc. 3255 * 3256 * Return >= 0 for the number of bytes added to the bio. 3257 * Can return 0 if the current bio is already at stripe/zone boundary. 3258 * Return <0 for error. 3259 */ 3260 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 3261 struct page *page, 3262 u64 disk_bytenr, unsigned int size, 3263 unsigned int pg_offset, 3264 enum btrfs_compression_type compress_type) 3265 { 3266 struct bio *bio = bio_ctrl->bio; 3267 u32 bio_size = bio->bi_iter.bi_size; 3268 u32 real_size; 3269 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 3270 bool contig; 3271 int ret; 3272 3273 ASSERT(bio); 3274 /* The limit should be calculated when bio_ctrl->bio is allocated */ 3275 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary); 3276 if (bio_ctrl->compress_type != compress_type) 3277 return 0; 3278 3279 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 3280 contig = bio->bi_iter.bi_sector == sector; 3281 else 3282 contig = bio_end_sector(bio) == sector; 3283 if (!contig) 3284 return 0; 3285 3286 real_size = min(bio_ctrl->len_to_oe_boundary, 3287 bio_ctrl->len_to_stripe_boundary) - bio_size; 3288 real_size = min(real_size, size); 3289 3290 /* 3291 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 3292 * bio will still execute its endio function on the page! 3293 */ 3294 if (real_size == 0) 3295 return 0; 3296 3297 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 3298 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset); 3299 else 3300 ret = bio_add_page(bio, page, real_size, pg_offset); 3301 3302 return ret; 3303 } 3304 3305 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 3306 struct btrfs_inode *inode, u64 file_offset) 3307 { 3308 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3309 struct btrfs_io_geometry geom; 3310 struct btrfs_ordered_extent *ordered; 3311 struct extent_map *em; 3312 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT); 3313 int ret; 3314 3315 /* 3316 * Pages for compressed extent are never submitted to disk directly, 3317 * thus it has no real boundary, just set them to U32_MAX. 3318 * 3319 * The split happens for real compressed bio, which happens in 3320 * btrfs_submit_compressed_read/write(). 3321 */ 3322 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 3323 bio_ctrl->len_to_oe_boundary = U32_MAX; 3324 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3325 return 0; 3326 } 3327 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 3328 if (IS_ERR(em)) 3329 return PTR_ERR(em); 3330 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio), 3331 logical, &geom); 3332 free_extent_map(em); 3333 if (ret < 0) { 3334 return ret; 3335 } 3336 if (geom.len > U32_MAX) 3337 bio_ctrl->len_to_stripe_boundary = U32_MAX; 3338 else 3339 bio_ctrl->len_to_stripe_boundary = (u32)geom.len; 3340 3341 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) { 3342 bio_ctrl->len_to_oe_boundary = U32_MAX; 3343 return 0; 3344 } 3345 3346 /* Ordered extent not yet created, so we're good */ 3347 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 3348 if (!ordered) { 3349 bio_ctrl->len_to_oe_boundary = U32_MAX; 3350 return 0; 3351 } 3352 3353 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 3354 ordered->disk_bytenr + ordered->disk_num_bytes - logical); 3355 btrfs_put_ordered_extent(ordered); 3356 return 0; 3357 } 3358 3359 static int alloc_new_bio(struct btrfs_inode *inode, 3360 struct btrfs_bio_ctrl *bio_ctrl, 3361 struct writeback_control *wbc, 3362 unsigned int opf, 3363 bio_end_io_t end_io_func, 3364 u64 disk_bytenr, u32 offset, u64 file_offset, 3365 enum btrfs_compression_type compress_type) 3366 { 3367 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3368 struct bio *bio; 3369 int ret; 3370 3371 bio = btrfs_bio_alloc(BIO_MAX_VECS); 3372 /* 3373 * For compressed page range, its disk_bytenr is always @disk_bytenr 3374 * passed in, no matter if we have added any range into previous bio. 3375 */ 3376 if (compress_type != BTRFS_COMPRESS_NONE) 3377 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 3378 else 3379 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 3380 bio_ctrl->bio = bio; 3381 bio_ctrl->compress_type = compress_type; 3382 bio->bi_end_io = end_io_func; 3383 bio->bi_private = &inode->io_tree; 3384 bio->bi_opf = opf; 3385 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset); 3386 if (ret < 0) 3387 goto error; 3388 3389 if (wbc) { 3390 /* 3391 * For Zone append we need the correct block_device that we are 3392 * going to write to set in the bio to be able to respect the 3393 * hardware limitation. Look it up here: 3394 */ 3395 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 3396 struct btrfs_device *dev; 3397 3398 dev = btrfs_zoned_get_device(fs_info, disk_bytenr, 3399 fs_info->sectorsize); 3400 if (IS_ERR(dev)) { 3401 ret = PTR_ERR(dev); 3402 goto error; 3403 } 3404 3405 bio_set_dev(bio, dev->bdev); 3406 } else { 3407 /* 3408 * Otherwise pick the last added device to support 3409 * cgroup writeback. For multi-device file systems this 3410 * means blk-cgroup policies have to always be set on the 3411 * last added/replaced device. This is a bit odd but has 3412 * been like that for a long time. 3413 */ 3414 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 3415 } 3416 wbc_init_bio(wbc, bio); 3417 } else { 3418 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND); 3419 } 3420 return 0; 3421 error: 3422 bio_ctrl->bio = NULL; 3423 bio->bi_status = errno_to_blk_status(ret); 3424 bio_endio(bio); 3425 return ret; 3426 } 3427 3428 /* 3429 * @opf: bio REQ_OP_* and REQ_* flags as one value 3430 * @wbc: optional writeback control for io accounting 3431 * @page: page to add to the bio 3432 * @disk_bytenr: logical bytenr where the write will be 3433 * @size: portion of page that we want to write to 3434 * @pg_offset: offset of the new bio or to check whether we are adding 3435 * a contiguous page to the previous one 3436 * @bio_ret: must be valid pointer, newly allocated bio will be stored there 3437 * @end_io_func: end_io callback for new bio 3438 * @mirror_num: desired mirror to read/write 3439 * @prev_bio_flags: flags of previous bio to see if we can merge the current one 3440 * @compress_type: compress type for current bio 3441 */ 3442 static int submit_extent_page(unsigned int opf, 3443 struct writeback_control *wbc, 3444 struct btrfs_bio_ctrl *bio_ctrl, 3445 struct page *page, u64 disk_bytenr, 3446 size_t size, unsigned long pg_offset, 3447 bio_end_io_t end_io_func, 3448 int mirror_num, 3449 enum btrfs_compression_type compress_type, 3450 bool force_bio_submit) 3451 { 3452 int ret = 0; 3453 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3454 unsigned int cur = pg_offset; 3455 3456 ASSERT(bio_ctrl); 3457 3458 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 3459 pg_offset + size <= PAGE_SIZE); 3460 if (force_bio_submit && bio_ctrl->bio) { 3461 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type); 3462 bio_ctrl->bio = NULL; 3463 } 3464 3465 while (cur < pg_offset + size) { 3466 u32 offset = cur - pg_offset; 3467 int added; 3468 3469 /* Allocate new bio if needed */ 3470 if (!bio_ctrl->bio) { 3471 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf, 3472 end_io_func, disk_bytenr, offset, 3473 page_offset(page) + cur, 3474 compress_type); 3475 if (ret < 0) 3476 return ret; 3477 } 3478 /* 3479 * We must go through btrfs_bio_add_page() to ensure each 3480 * page range won't cross various boundaries. 3481 */ 3482 if (compress_type != BTRFS_COMPRESS_NONE) 3483 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 3484 size - offset, pg_offset + offset, 3485 compress_type); 3486 else 3487 added = btrfs_bio_add_page(bio_ctrl, page, 3488 disk_bytenr + offset, size - offset, 3489 pg_offset + offset, compress_type); 3490 3491 /* Metadata page range should never be split */ 3492 if (!is_data_inode(&inode->vfs_inode)) 3493 ASSERT(added == 0 || added == size - offset); 3494 3495 /* At least we added some page, update the account */ 3496 if (wbc && added) 3497 wbc_account_cgroup_owner(wbc, page, added); 3498 3499 /* We have reached boundary, submit right now */ 3500 if (added < size - offset) { 3501 /* The bio should contain some page(s) */ 3502 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 3503 submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->compress_type); 3504 bio_ctrl->bio = NULL; 3505 } 3506 cur += added; 3507 } 3508 return 0; 3509 } 3510 3511 static int attach_extent_buffer_page(struct extent_buffer *eb, 3512 struct page *page, 3513 struct btrfs_subpage *prealloc) 3514 { 3515 struct btrfs_fs_info *fs_info = eb->fs_info; 3516 int ret = 0; 3517 3518 /* 3519 * If the page is mapped to btree inode, we should hold the private 3520 * lock to prevent race. 3521 * For cloned or dummy extent buffers, their pages are not mapped and 3522 * will not race with any other ebs. 3523 */ 3524 if (page->mapping) 3525 lockdep_assert_held(&page->mapping->private_lock); 3526 3527 if (fs_info->nodesize >= PAGE_SIZE) { 3528 if (!PagePrivate(page)) 3529 attach_page_private(page, eb); 3530 else 3531 WARN_ON(page->private != (unsigned long)eb); 3532 return 0; 3533 } 3534 3535 /* Already mapped, just free prealloc */ 3536 if (PagePrivate(page)) { 3537 btrfs_free_subpage(prealloc); 3538 return 0; 3539 } 3540 3541 if (prealloc) 3542 /* Has preallocated memory for subpage */ 3543 attach_page_private(page, prealloc); 3544 else 3545 /* Do new allocation to attach subpage */ 3546 ret = btrfs_attach_subpage(fs_info, page, 3547 BTRFS_SUBPAGE_METADATA); 3548 return ret; 3549 } 3550 3551 int set_page_extent_mapped(struct page *page) 3552 { 3553 struct btrfs_fs_info *fs_info; 3554 3555 ASSERT(page->mapping); 3556 3557 if (PagePrivate(page)) 3558 return 0; 3559 3560 fs_info = btrfs_sb(page->mapping->host->i_sb); 3561 3562 if (btrfs_is_subpage(fs_info, page)) 3563 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 3564 3565 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 3566 return 0; 3567 } 3568 3569 void clear_page_extent_mapped(struct page *page) 3570 { 3571 struct btrfs_fs_info *fs_info; 3572 3573 ASSERT(page->mapping); 3574 3575 if (!PagePrivate(page)) 3576 return; 3577 3578 fs_info = btrfs_sb(page->mapping->host->i_sb); 3579 if (btrfs_is_subpage(fs_info, page)) 3580 return btrfs_detach_subpage(fs_info, page); 3581 3582 detach_page_private(page); 3583 } 3584 3585 static struct extent_map * 3586 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 3587 u64 start, u64 len, struct extent_map **em_cached) 3588 { 3589 struct extent_map *em; 3590 3591 if (em_cached && *em_cached) { 3592 em = *em_cached; 3593 if (extent_map_in_tree(em) && start >= em->start && 3594 start < extent_map_end(em)) { 3595 refcount_inc(&em->refs); 3596 return em; 3597 } 3598 3599 free_extent_map(em); 3600 *em_cached = NULL; 3601 } 3602 3603 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 3604 if (em_cached && !IS_ERR(em)) { 3605 BUG_ON(*em_cached); 3606 refcount_inc(&em->refs); 3607 *em_cached = em; 3608 } 3609 return em; 3610 } 3611 /* 3612 * basic readpage implementation. Locked extent state structs are inserted 3613 * into the tree that are removed when the IO is done (by the end_io 3614 * handlers) 3615 * XXX JDM: This needs looking at to ensure proper page locking 3616 * return 0 on success, otherwise return error 3617 */ 3618 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 3619 struct btrfs_bio_ctrl *bio_ctrl, 3620 unsigned int read_flags, u64 *prev_em_start) 3621 { 3622 struct inode *inode = page->mapping->host; 3623 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3624 u64 start = page_offset(page); 3625 const u64 end = start + PAGE_SIZE - 1; 3626 u64 cur = start; 3627 u64 extent_offset; 3628 u64 last_byte = i_size_read(inode); 3629 u64 block_start; 3630 u64 cur_end; 3631 struct extent_map *em; 3632 int ret = 0; 3633 size_t pg_offset = 0; 3634 size_t iosize; 3635 size_t blocksize = inode->i_sb->s_blocksize; 3636 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 3637 3638 ret = set_page_extent_mapped(page); 3639 if (ret < 0) { 3640 unlock_extent(tree, start, end); 3641 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 3642 unlock_page(page); 3643 goto out; 3644 } 3645 3646 if (page->index == last_byte >> PAGE_SHIFT) { 3647 size_t zero_offset = offset_in_page(last_byte); 3648 3649 if (zero_offset) { 3650 iosize = PAGE_SIZE - zero_offset; 3651 memzero_page(page, zero_offset, iosize); 3652 flush_dcache_page(page); 3653 } 3654 } 3655 begin_page_read(fs_info, page); 3656 while (cur <= end) { 3657 unsigned long this_bio_flag = 0; 3658 bool force_bio_submit = false; 3659 u64 disk_bytenr; 3660 3661 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 3662 if (cur >= last_byte) { 3663 struct extent_state *cached = NULL; 3664 3665 iosize = PAGE_SIZE - pg_offset; 3666 memzero_page(page, pg_offset, iosize); 3667 flush_dcache_page(page); 3668 set_extent_uptodate(tree, cur, cur + iosize - 1, 3669 &cached, GFP_NOFS); 3670 unlock_extent_cached(tree, cur, 3671 cur + iosize - 1, &cached); 3672 end_page_read(page, true, cur, iosize); 3673 break; 3674 } 3675 em = __get_extent_map(inode, page, pg_offset, cur, 3676 end - cur + 1, em_cached); 3677 if (IS_ERR(em)) { 3678 unlock_extent(tree, cur, end); 3679 end_page_read(page, false, cur, end + 1 - cur); 3680 ret = PTR_ERR(em); 3681 break; 3682 } 3683 extent_offset = cur - em->start; 3684 BUG_ON(extent_map_end(em) <= cur); 3685 BUG_ON(end < cur); 3686 3687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 3688 this_bio_flag = em->compress_type; 3689 3690 iosize = min(extent_map_end(em) - cur, end - cur + 1); 3691 cur_end = min(extent_map_end(em) - 1, end); 3692 iosize = ALIGN(iosize, blocksize); 3693 if (this_bio_flag != BTRFS_COMPRESS_NONE) 3694 disk_bytenr = em->block_start; 3695 else 3696 disk_bytenr = em->block_start + extent_offset; 3697 block_start = em->block_start; 3698 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3699 block_start = EXTENT_MAP_HOLE; 3700 3701 /* 3702 * If we have a file range that points to a compressed extent 3703 * and it's followed by a consecutive file range that points 3704 * to the same compressed extent (possibly with a different 3705 * offset and/or length, so it either points to the whole extent 3706 * or only part of it), we must make sure we do not submit a 3707 * single bio to populate the pages for the 2 ranges because 3708 * this makes the compressed extent read zero out the pages 3709 * belonging to the 2nd range. Imagine the following scenario: 3710 * 3711 * File layout 3712 * [0 - 8K] [8K - 24K] 3713 * | | 3714 * | | 3715 * points to extent X, points to extent X, 3716 * offset 4K, length of 8K offset 0, length 16K 3717 * 3718 * [extent X, compressed length = 4K uncompressed length = 16K] 3719 * 3720 * If the bio to read the compressed extent covers both ranges, 3721 * it will decompress extent X into the pages belonging to the 3722 * first range and then it will stop, zeroing out the remaining 3723 * pages that belong to the other range that points to extent X. 3724 * So here we make sure we submit 2 bios, one for the first 3725 * range and another one for the third range. Both will target 3726 * the same physical extent from disk, but we can't currently 3727 * make the compressed bio endio callback populate the pages 3728 * for both ranges because each compressed bio is tightly 3729 * coupled with a single extent map, and each range can have 3730 * an extent map with a different offset value relative to the 3731 * uncompressed data of our extent and different lengths. This 3732 * is a corner case so we prioritize correctness over 3733 * non-optimal behavior (submitting 2 bios for the same extent). 3734 */ 3735 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 3736 prev_em_start && *prev_em_start != (u64)-1 && 3737 *prev_em_start != em->start) 3738 force_bio_submit = true; 3739 3740 if (prev_em_start) 3741 *prev_em_start = em->start; 3742 3743 free_extent_map(em); 3744 em = NULL; 3745 3746 /* we've found a hole, just zero and go on */ 3747 if (block_start == EXTENT_MAP_HOLE) { 3748 struct extent_state *cached = NULL; 3749 3750 memzero_page(page, pg_offset, iosize); 3751 flush_dcache_page(page); 3752 3753 set_extent_uptodate(tree, cur, cur + iosize - 1, 3754 &cached, GFP_NOFS); 3755 unlock_extent_cached(tree, cur, 3756 cur + iosize - 1, &cached); 3757 end_page_read(page, true, cur, iosize); 3758 cur = cur + iosize; 3759 pg_offset += iosize; 3760 continue; 3761 } 3762 /* the get_extent function already copied into the page */ 3763 if (test_range_bit(tree, cur, cur_end, 3764 EXTENT_UPTODATE, 1, NULL)) { 3765 unlock_extent(tree, cur, cur + iosize - 1); 3766 end_page_read(page, true, cur, iosize); 3767 cur = cur + iosize; 3768 pg_offset += iosize; 3769 continue; 3770 } 3771 /* we have an inline extent but it didn't get marked up 3772 * to date. Error out 3773 */ 3774 if (block_start == EXTENT_MAP_INLINE) { 3775 unlock_extent(tree, cur, cur + iosize - 1); 3776 end_page_read(page, false, cur, iosize); 3777 cur = cur + iosize; 3778 pg_offset += iosize; 3779 continue; 3780 } 3781 3782 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 3783 bio_ctrl, page, disk_bytenr, iosize, 3784 pg_offset, 3785 end_bio_extent_readpage, 0, 3786 this_bio_flag, 3787 force_bio_submit); 3788 if (ret) { 3789 /* 3790 * We have to unlock the remaining range, or the page 3791 * will never be unlocked. 3792 */ 3793 unlock_extent(tree, cur, end); 3794 end_page_read(page, false, cur, end + 1 - cur); 3795 goto out; 3796 } 3797 cur = cur + iosize; 3798 pg_offset += iosize; 3799 } 3800 out: 3801 return ret; 3802 } 3803 3804 int btrfs_read_folio(struct file *file, struct folio *folio) 3805 { 3806 struct page *page = &folio->page; 3807 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3808 u64 start = page_offset(page); 3809 u64 end = start + PAGE_SIZE - 1; 3810 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 3811 int ret; 3812 3813 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3814 3815 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 3816 /* 3817 * If btrfs_do_readpage() failed we will want to submit the assembled 3818 * bio to do the cleanup. 3819 */ 3820 if (bio_ctrl.bio) 3821 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type); 3822 return ret; 3823 } 3824 3825 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 3826 u64 start, u64 end, 3827 struct extent_map **em_cached, 3828 struct btrfs_bio_ctrl *bio_ctrl, 3829 u64 *prev_em_start) 3830 { 3831 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 3832 int index; 3833 3834 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 3835 3836 for (index = 0; index < nr_pages; index++) { 3837 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 3838 REQ_RAHEAD, prev_em_start); 3839 put_page(pages[index]); 3840 } 3841 } 3842 3843 /* 3844 * helper for __extent_writepage, doing all of the delayed allocation setup. 3845 * 3846 * This returns 1 if btrfs_run_delalloc_range function did all the work required 3847 * to write the page (copy into inline extent). In this case the IO has 3848 * been started and the page is already unlocked. 3849 * 3850 * This returns 0 if all went well (page still locked) 3851 * This returns < 0 if there were errors (page still locked) 3852 */ 3853 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 3854 struct page *page, struct writeback_control *wbc) 3855 { 3856 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 3857 u64 delalloc_start = page_offset(page); 3858 u64 delalloc_to_write = 0; 3859 /* How many pages are started by btrfs_run_delalloc_range() */ 3860 unsigned long nr_written = 0; 3861 int ret; 3862 int page_started = 0; 3863 3864 while (delalloc_start < page_end) { 3865 u64 delalloc_end = page_end; 3866 bool found; 3867 3868 found = find_lock_delalloc_range(&inode->vfs_inode, page, 3869 &delalloc_start, 3870 &delalloc_end); 3871 if (!found) { 3872 delalloc_start = delalloc_end + 1; 3873 continue; 3874 } 3875 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 3876 delalloc_end, &page_started, &nr_written, wbc); 3877 if (ret) { 3878 btrfs_page_set_error(inode->root->fs_info, page, 3879 page_offset(page), PAGE_SIZE); 3880 return ret; 3881 } 3882 /* 3883 * delalloc_end is already one less than the total length, so 3884 * we don't subtract one from PAGE_SIZE 3885 */ 3886 delalloc_to_write += (delalloc_end - delalloc_start + 3887 PAGE_SIZE) >> PAGE_SHIFT; 3888 delalloc_start = delalloc_end + 1; 3889 } 3890 if (wbc->nr_to_write < delalloc_to_write) { 3891 int thresh = 8192; 3892 3893 if (delalloc_to_write < thresh * 2) 3894 thresh = delalloc_to_write; 3895 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3896 thresh); 3897 } 3898 3899 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 3900 if (page_started) { 3901 /* 3902 * We've unlocked the page, so we can't update the mapping's 3903 * writeback index, just update nr_to_write. 3904 */ 3905 wbc->nr_to_write -= nr_written; 3906 return 1; 3907 } 3908 3909 return 0; 3910 } 3911 3912 /* 3913 * Find the first byte we need to write. 3914 * 3915 * For subpage, one page can contain several sectors, and 3916 * __extent_writepage_io() will just grab all extent maps in the page 3917 * range and try to submit all non-inline/non-compressed extents. 3918 * 3919 * This is a big problem for subpage, we shouldn't re-submit already written 3920 * data at all. 3921 * This function will lookup subpage dirty bit to find which range we really 3922 * need to submit. 3923 * 3924 * Return the next dirty range in [@start, @end). 3925 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 3926 */ 3927 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 3928 struct page *page, u64 *start, u64 *end) 3929 { 3930 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 3931 struct btrfs_subpage_info *spi = fs_info->subpage_info; 3932 u64 orig_start = *start; 3933 /* Declare as unsigned long so we can use bitmap ops */ 3934 unsigned long flags; 3935 int range_start_bit; 3936 int range_end_bit; 3937 3938 /* 3939 * For regular sector size == page size case, since one page only 3940 * contains one sector, we return the page offset directly. 3941 */ 3942 if (!btrfs_is_subpage(fs_info, page)) { 3943 *start = page_offset(page); 3944 *end = page_offset(page) + PAGE_SIZE; 3945 return; 3946 } 3947 3948 range_start_bit = spi->dirty_offset + 3949 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 3950 3951 /* We should have the page locked, but just in case */ 3952 spin_lock_irqsave(&subpage->lock, flags); 3953 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 3954 spi->dirty_offset + spi->bitmap_nr_bits); 3955 spin_unlock_irqrestore(&subpage->lock, flags); 3956 3957 range_start_bit -= spi->dirty_offset; 3958 range_end_bit -= spi->dirty_offset; 3959 3960 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 3961 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 3962 } 3963 3964 /* 3965 * helper for __extent_writepage. This calls the writepage start hooks, 3966 * and does the loop to map the page into extents and bios. 3967 * 3968 * We return 1 if the IO is started and the page is unlocked, 3969 * 0 if all went well (page still locked) 3970 * < 0 if there were errors (page still locked) 3971 */ 3972 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 3973 struct page *page, 3974 struct writeback_control *wbc, 3975 struct extent_page_data *epd, 3976 loff_t i_size, 3977 int *nr_ret) 3978 { 3979 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3980 u64 cur = page_offset(page); 3981 u64 end = cur + PAGE_SIZE - 1; 3982 u64 extent_offset; 3983 u64 block_start; 3984 struct extent_map *em; 3985 int saved_ret = 0; 3986 int ret = 0; 3987 int nr = 0; 3988 u32 opf = REQ_OP_WRITE; 3989 const unsigned int write_flags = wbc_to_write_flags(wbc); 3990 bool has_error = false; 3991 bool compressed; 3992 3993 ret = btrfs_writepage_cow_fixup(page); 3994 if (ret) { 3995 /* Fixup worker will requeue */ 3996 redirty_page_for_writepage(wbc, page); 3997 unlock_page(page); 3998 return 1; 3999 } 4000 4001 /* 4002 * we don't want to touch the inode after unlocking the page, 4003 * so we update the mapping writeback index now 4004 */ 4005 wbc->nr_to_write--; 4006 4007 while (cur <= end) { 4008 u64 disk_bytenr; 4009 u64 em_end; 4010 u64 dirty_range_start = cur; 4011 u64 dirty_range_end; 4012 u32 iosize; 4013 4014 if (cur >= i_size) { 4015 btrfs_writepage_endio_finish_ordered(inode, page, cur, 4016 end, true); 4017 /* 4018 * This range is beyond i_size, thus we don't need to 4019 * bother writing back. 4020 * But we still need to clear the dirty subpage bit, or 4021 * the next time the page gets dirtied, we will try to 4022 * writeback the sectors with subpage dirty bits, 4023 * causing writeback without ordered extent. 4024 */ 4025 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 4026 break; 4027 } 4028 4029 find_next_dirty_byte(fs_info, page, &dirty_range_start, 4030 &dirty_range_end); 4031 if (cur < dirty_range_start) { 4032 cur = dirty_range_start; 4033 continue; 4034 } 4035 4036 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 4037 if (IS_ERR(em)) { 4038 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 4039 ret = PTR_ERR_OR_ZERO(em); 4040 has_error = true; 4041 if (!saved_ret) 4042 saved_ret = ret; 4043 break; 4044 } 4045 4046 extent_offset = cur - em->start; 4047 em_end = extent_map_end(em); 4048 ASSERT(cur <= em_end); 4049 ASSERT(cur < end); 4050 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 4051 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 4052 block_start = em->block_start; 4053 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4054 disk_bytenr = em->block_start + extent_offset; 4055 4056 /* 4057 * Note that em_end from extent_map_end() and dirty_range_end from 4058 * find_next_dirty_byte() are all exclusive 4059 */ 4060 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 4061 4062 if (btrfs_use_zone_append(inode, em->block_start)) 4063 opf = REQ_OP_ZONE_APPEND; 4064 4065 free_extent_map(em); 4066 em = NULL; 4067 4068 /* 4069 * compressed and inline extents are written through other 4070 * paths in the FS 4071 */ 4072 if (compressed || block_start == EXTENT_MAP_HOLE || 4073 block_start == EXTENT_MAP_INLINE) { 4074 if (compressed) 4075 nr++; 4076 else 4077 btrfs_writepage_endio_finish_ordered(inode, 4078 page, cur, cur + iosize - 1, true); 4079 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4080 cur += iosize; 4081 continue; 4082 } 4083 4084 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 4085 if (!PageWriteback(page)) { 4086 btrfs_err(inode->root->fs_info, 4087 "page %lu not writeback, cur %llu end %llu", 4088 page->index, cur, end); 4089 } 4090 4091 /* 4092 * Although the PageDirty bit is cleared before entering this 4093 * function, subpage dirty bit is not cleared. 4094 * So clear subpage dirty bit here so next time we won't submit 4095 * page for range already written to disk. 4096 */ 4097 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 4098 4099 ret = submit_extent_page(opf | write_flags, wbc, 4100 &epd->bio_ctrl, page, 4101 disk_bytenr, iosize, 4102 cur - page_offset(page), 4103 end_bio_extent_writepage, 4104 0, 0, false); 4105 if (ret) { 4106 has_error = true; 4107 if (!saved_ret) 4108 saved_ret = ret; 4109 4110 btrfs_page_set_error(fs_info, page, cur, iosize); 4111 if (PageWriteback(page)) 4112 btrfs_page_clear_writeback(fs_info, page, cur, 4113 iosize); 4114 } 4115 4116 cur += iosize; 4117 nr++; 4118 } 4119 /* 4120 * If we finish without problem, we should not only clear page dirty, 4121 * but also empty subpage dirty bits 4122 */ 4123 if (!has_error) 4124 btrfs_page_assert_not_dirty(fs_info, page); 4125 else 4126 ret = saved_ret; 4127 *nr_ret = nr; 4128 return ret; 4129 } 4130 4131 /* 4132 * the writepage semantics are similar to regular writepage. extent 4133 * records are inserted to lock ranges in the tree, and as dirty areas 4134 * are found, they are marked writeback. Then the lock bits are removed 4135 * and the end_io handler clears the writeback ranges 4136 * 4137 * Return 0 if everything goes well. 4138 * Return <0 for error. 4139 */ 4140 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 4141 struct extent_page_data *epd) 4142 { 4143 struct folio *folio = page_folio(page); 4144 struct inode *inode = page->mapping->host; 4145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4146 const u64 page_start = page_offset(page); 4147 const u64 page_end = page_start + PAGE_SIZE - 1; 4148 int ret; 4149 int nr = 0; 4150 size_t pg_offset; 4151 loff_t i_size = i_size_read(inode); 4152 unsigned long end_index = i_size >> PAGE_SHIFT; 4153 4154 trace___extent_writepage(page, inode, wbc); 4155 4156 WARN_ON(!PageLocked(page)); 4157 4158 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 4159 page_offset(page), PAGE_SIZE); 4160 4161 pg_offset = offset_in_page(i_size); 4162 if (page->index > end_index || 4163 (page->index == end_index && !pg_offset)) { 4164 folio_invalidate(folio, 0, folio_size(folio)); 4165 folio_unlock(folio); 4166 return 0; 4167 } 4168 4169 if (page->index == end_index) { 4170 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 4171 flush_dcache_page(page); 4172 } 4173 4174 ret = set_page_extent_mapped(page); 4175 if (ret < 0) { 4176 SetPageError(page); 4177 goto done; 4178 } 4179 4180 if (!epd->extent_locked) { 4181 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 4182 if (ret == 1) 4183 return 0; 4184 if (ret) 4185 goto done; 4186 } 4187 4188 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size, 4189 &nr); 4190 if (ret == 1) 4191 return 0; 4192 4193 done: 4194 if (nr == 0) { 4195 /* make sure the mapping tag for page dirty gets cleared */ 4196 set_page_writeback(page); 4197 end_page_writeback(page); 4198 } 4199 /* 4200 * Here we used to have a check for PageError() and then set @ret and 4201 * call end_extent_writepage(). 4202 * 4203 * But in fact setting @ret here will cause different error paths 4204 * between subpage and regular sectorsize. 4205 * 4206 * For regular page size, we never submit current page, but only add 4207 * current page to current bio. 4208 * The bio submission can only happen in next page. 4209 * Thus if we hit the PageError() branch, @ret is already set to 4210 * non-zero value and will not get updated for regular sectorsize. 4211 * 4212 * But for subpage case, it's possible we submit part of current page, 4213 * thus can get PageError() set by submitted bio of the same page, 4214 * while our @ret is still 0. 4215 * 4216 * So here we unify the behavior and don't set @ret. 4217 * Error can still be properly passed to higher layer as page will 4218 * be set error, here we just don't handle the IO failure. 4219 * 4220 * NOTE: This is just a hotfix for subpage. 4221 * The root fix will be properly ending ordered extent when we hit 4222 * an error during writeback. 4223 * 4224 * But that needs a bigger refactoring, as we not only need to grab the 4225 * submitted OE, but also need to know exactly at which bytenr we hit 4226 * the error. 4227 * Currently the full page based __extent_writepage_io() is not 4228 * capable of that. 4229 */ 4230 if (PageError(page)) 4231 end_extent_writepage(page, ret, page_start, page_end); 4232 if (epd->extent_locked) { 4233 /* 4234 * If epd->extent_locked, it's from extent_write_locked_range(), 4235 * the page can either be locked by lock_page() or 4236 * process_one_page(). 4237 * Let btrfs_page_unlock_writer() handle both cases. 4238 */ 4239 ASSERT(wbc); 4240 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 4241 wbc->range_end + 1 - wbc->range_start); 4242 } else { 4243 unlock_page(page); 4244 } 4245 ASSERT(ret <= 0); 4246 return ret; 4247 } 4248 4249 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 4250 { 4251 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 4252 TASK_UNINTERRUPTIBLE); 4253 } 4254 4255 static void end_extent_buffer_writeback(struct extent_buffer *eb) 4256 { 4257 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4258 smp_mb__after_atomic(); 4259 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 4260 } 4261 4262 /* 4263 * Lock extent buffer status and pages for writeback. 4264 * 4265 * May try to flush write bio if we can't get the lock. 4266 * 4267 * Return 0 if the extent buffer doesn't need to be submitted. 4268 * (E.g. the extent buffer is not dirty) 4269 * Return >0 is the extent buffer is submitted to bio. 4270 * Return <0 if something went wrong, no page is locked. 4271 */ 4272 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 4273 struct extent_page_data *epd) 4274 { 4275 struct btrfs_fs_info *fs_info = eb->fs_info; 4276 int i, num_pages; 4277 int flush = 0; 4278 int ret = 0; 4279 4280 if (!btrfs_try_tree_write_lock(eb)) { 4281 flush_write_bio(epd); 4282 flush = 1; 4283 btrfs_tree_lock(eb); 4284 } 4285 4286 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 4287 btrfs_tree_unlock(eb); 4288 if (!epd->sync_io) 4289 return 0; 4290 if (!flush) { 4291 flush_write_bio(epd); 4292 flush = 1; 4293 } 4294 while (1) { 4295 wait_on_extent_buffer_writeback(eb); 4296 btrfs_tree_lock(eb); 4297 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 4298 break; 4299 btrfs_tree_unlock(eb); 4300 } 4301 } 4302 4303 /* 4304 * We need to do this to prevent races in people who check if the eb is 4305 * under IO since we can end up having no IO bits set for a short period 4306 * of time. 4307 */ 4308 spin_lock(&eb->refs_lock); 4309 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 4310 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 4311 spin_unlock(&eb->refs_lock); 4312 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 4313 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4314 -eb->len, 4315 fs_info->dirty_metadata_batch); 4316 ret = 1; 4317 } else { 4318 spin_unlock(&eb->refs_lock); 4319 } 4320 4321 btrfs_tree_unlock(eb); 4322 4323 /* 4324 * Either we don't need to submit any tree block, or we're submitting 4325 * subpage eb. 4326 * Subpage metadata doesn't use page locking at all, so we can skip 4327 * the page locking. 4328 */ 4329 if (!ret || fs_info->nodesize < PAGE_SIZE) 4330 return ret; 4331 4332 num_pages = num_extent_pages(eb); 4333 for (i = 0; i < num_pages; i++) { 4334 struct page *p = eb->pages[i]; 4335 4336 if (!trylock_page(p)) { 4337 if (!flush) { 4338 flush_write_bio(epd); 4339 flush = 1; 4340 } 4341 lock_page(p); 4342 } 4343 } 4344 4345 return ret; 4346 } 4347 4348 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 4349 { 4350 struct btrfs_fs_info *fs_info = eb->fs_info; 4351 4352 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 4353 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 4354 return; 4355 4356 /* 4357 * A read may stumble upon this buffer later, make sure that it gets an 4358 * error and knows there was an error. 4359 */ 4360 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4361 4362 /* 4363 * We need to set the mapping with the io error as well because a write 4364 * error will flip the file system readonly, and then syncfs() will 4365 * return a 0 because we are readonly if we don't modify the err seq for 4366 * the superblock. 4367 */ 4368 mapping_set_error(page->mapping, -EIO); 4369 4370 /* 4371 * If we error out, we should add back the dirty_metadata_bytes 4372 * to make it consistent. 4373 */ 4374 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4375 eb->len, fs_info->dirty_metadata_batch); 4376 4377 /* 4378 * If writeback for a btree extent that doesn't belong to a log tree 4379 * failed, increment the counter transaction->eb_write_errors. 4380 * We do this because while the transaction is running and before it's 4381 * committing (when we call filemap_fdata[write|wait]_range against 4382 * the btree inode), we might have 4383 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 4384 * returns an error or an error happens during writeback, when we're 4385 * committing the transaction we wouldn't know about it, since the pages 4386 * can be no longer dirty nor marked anymore for writeback (if a 4387 * subsequent modification to the extent buffer didn't happen before the 4388 * transaction commit), which makes filemap_fdata[write|wait]_range not 4389 * able to find the pages tagged with SetPageError at transaction 4390 * commit time. So if this happens we must abort the transaction, 4391 * otherwise we commit a super block with btree roots that point to 4392 * btree nodes/leafs whose content on disk is invalid - either garbage 4393 * or the content of some node/leaf from a past generation that got 4394 * cowed or deleted and is no longer valid. 4395 * 4396 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 4397 * not be enough - we need to distinguish between log tree extents vs 4398 * non-log tree extents, and the next filemap_fdatawait_range() call 4399 * will catch and clear such errors in the mapping - and that call might 4400 * be from a log sync and not from a transaction commit. Also, checking 4401 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 4402 * not done and would not be reliable - the eb might have been released 4403 * from memory and reading it back again means that flag would not be 4404 * set (since it's a runtime flag, not persisted on disk). 4405 * 4406 * Using the flags below in the btree inode also makes us achieve the 4407 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 4408 * writeback for all dirty pages and before filemap_fdatawait_range() 4409 * is called, the writeback for all dirty pages had already finished 4410 * with errors - because we were not using AS_EIO/AS_ENOSPC, 4411 * filemap_fdatawait_range() would return success, as it could not know 4412 * that writeback errors happened (the pages were no longer tagged for 4413 * writeback). 4414 */ 4415 switch (eb->log_index) { 4416 case -1: 4417 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 4418 break; 4419 case 0: 4420 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 4421 break; 4422 case 1: 4423 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 4424 break; 4425 default: 4426 BUG(); /* unexpected, logic error */ 4427 } 4428 } 4429 4430 /* 4431 * The endio specific version which won't touch any unsafe spinlock in endio 4432 * context. 4433 */ 4434 static struct extent_buffer *find_extent_buffer_nolock( 4435 struct btrfs_fs_info *fs_info, u64 start) 4436 { 4437 struct extent_buffer *eb; 4438 4439 rcu_read_lock(); 4440 eb = radix_tree_lookup(&fs_info->buffer_radix, 4441 start >> fs_info->sectorsize_bits); 4442 if (eb && atomic_inc_not_zero(&eb->refs)) { 4443 rcu_read_unlock(); 4444 return eb; 4445 } 4446 rcu_read_unlock(); 4447 return NULL; 4448 } 4449 4450 /* 4451 * The endio function for subpage extent buffer write. 4452 * 4453 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 4454 * after all extent buffers in the page has finished their writeback. 4455 */ 4456 static void end_bio_subpage_eb_writepage(struct bio *bio) 4457 { 4458 struct btrfs_fs_info *fs_info; 4459 struct bio_vec *bvec; 4460 struct bvec_iter_all iter_all; 4461 4462 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 4463 ASSERT(fs_info->nodesize < PAGE_SIZE); 4464 4465 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4466 bio_for_each_segment_all(bvec, bio, iter_all) { 4467 struct page *page = bvec->bv_page; 4468 u64 bvec_start = page_offset(page) + bvec->bv_offset; 4469 u64 bvec_end = bvec_start + bvec->bv_len - 1; 4470 u64 cur_bytenr = bvec_start; 4471 4472 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 4473 4474 /* Iterate through all extent buffers in the range */ 4475 while (cur_bytenr <= bvec_end) { 4476 struct extent_buffer *eb; 4477 int done; 4478 4479 /* 4480 * Here we can't use find_extent_buffer(), as it may 4481 * try to lock eb->refs_lock, which is not safe in endio 4482 * context. 4483 */ 4484 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 4485 ASSERT(eb); 4486 4487 cur_bytenr = eb->start + eb->len; 4488 4489 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 4490 done = atomic_dec_and_test(&eb->io_pages); 4491 ASSERT(done); 4492 4493 if (bio->bi_status || 4494 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4495 ClearPageUptodate(page); 4496 set_btree_ioerr(page, eb); 4497 } 4498 4499 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 4500 eb->len); 4501 end_extent_buffer_writeback(eb); 4502 /* 4503 * free_extent_buffer() will grab spinlock which is not 4504 * safe in endio context. Thus here we manually dec 4505 * the ref. 4506 */ 4507 atomic_dec(&eb->refs); 4508 } 4509 } 4510 bio_put(bio); 4511 } 4512 4513 static void end_bio_extent_buffer_writepage(struct bio *bio) 4514 { 4515 struct bio_vec *bvec; 4516 struct extent_buffer *eb; 4517 int done; 4518 struct bvec_iter_all iter_all; 4519 4520 ASSERT(!bio_flagged(bio, BIO_CLONED)); 4521 bio_for_each_segment_all(bvec, bio, iter_all) { 4522 struct page *page = bvec->bv_page; 4523 4524 eb = (struct extent_buffer *)page->private; 4525 BUG_ON(!eb); 4526 done = atomic_dec_and_test(&eb->io_pages); 4527 4528 if (bio->bi_status || 4529 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 4530 ClearPageUptodate(page); 4531 set_btree_ioerr(page, eb); 4532 } 4533 4534 end_page_writeback(page); 4535 4536 if (!done) 4537 continue; 4538 4539 end_extent_buffer_writeback(eb); 4540 } 4541 4542 bio_put(bio); 4543 } 4544 4545 static void prepare_eb_write(struct extent_buffer *eb) 4546 { 4547 u32 nritems; 4548 unsigned long start; 4549 unsigned long end; 4550 4551 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 4552 atomic_set(&eb->io_pages, num_extent_pages(eb)); 4553 4554 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 4555 nritems = btrfs_header_nritems(eb); 4556 if (btrfs_header_level(eb) > 0) { 4557 end = btrfs_node_key_ptr_offset(nritems); 4558 memzero_extent_buffer(eb, end, eb->len - end); 4559 } else { 4560 /* 4561 * Leaf: 4562 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 4563 */ 4564 start = btrfs_item_nr_offset(nritems); 4565 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb); 4566 memzero_extent_buffer(eb, start, end - start); 4567 } 4568 } 4569 4570 /* 4571 * Unlike the work in write_one_eb(), we rely completely on extent locking. 4572 * Page locking is only utilized at minimum to keep the VMM code happy. 4573 */ 4574 static int write_one_subpage_eb(struct extent_buffer *eb, 4575 struct writeback_control *wbc, 4576 struct extent_page_data *epd) 4577 { 4578 struct btrfs_fs_info *fs_info = eb->fs_info; 4579 struct page *page = eb->pages[0]; 4580 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4581 bool no_dirty_ebs = false; 4582 int ret; 4583 4584 prepare_eb_write(eb); 4585 4586 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 4587 lock_page(page); 4588 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 4589 4590 /* Check if this is the last dirty bit to update nr_written */ 4591 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 4592 eb->start, eb->len); 4593 if (no_dirty_ebs) 4594 clear_page_dirty_for_io(page); 4595 4596 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4597 &epd->bio_ctrl, page, eb->start, eb->len, 4598 eb->start - page_offset(page), 4599 end_bio_subpage_eb_writepage, 0, 0, false); 4600 if (ret) { 4601 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 4602 set_btree_ioerr(page, eb); 4603 unlock_page(page); 4604 4605 if (atomic_dec_and_test(&eb->io_pages)) 4606 end_extent_buffer_writeback(eb); 4607 return -EIO; 4608 } 4609 unlock_page(page); 4610 /* 4611 * Submission finished without problem, if no range of the page is 4612 * dirty anymore, we have submitted a page. Update nr_written in wbc. 4613 */ 4614 if (no_dirty_ebs) 4615 wbc->nr_to_write--; 4616 return ret; 4617 } 4618 4619 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 4620 struct writeback_control *wbc, 4621 struct extent_page_data *epd) 4622 { 4623 u64 disk_bytenr = eb->start; 4624 int i, num_pages; 4625 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META; 4626 int ret = 0; 4627 4628 prepare_eb_write(eb); 4629 4630 num_pages = num_extent_pages(eb); 4631 for (i = 0; i < num_pages; i++) { 4632 struct page *p = eb->pages[i]; 4633 4634 clear_page_dirty_for_io(p); 4635 set_page_writeback(p); 4636 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 4637 &epd->bio_ctrl, p, disk_bytenr, 4638 PAGE_SIZE, 0, 4639 end_bio_extent_buffer_writepage, 4640 0, 0, false); 4641 if (ret) { 4642 set_btree_ioerr(p, eb); 4643 if (PageWriteback(p)) 4644 end_page_writeback(p); 4645 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 4646 end_extent_buffer_writeback(eb); 4647 ret = -EIO; 4648 break; 4649 } 4650 disk_bytenr += PAGE_SIZE; 4651 wbc->nr_to_write--; 4652 unlock_page(p); 4653 } 4654 4655 if (unlikely(ret)) { 4656 for (; i < num_pages; i++) { 4657 struct page *p = eb->pages[i]; 4658 clear_page_dirty_for_io(p); 4659 unlock_page(p); 4660 } 4661 } 4662 4663 return ret; 4664 } 4665 4666 /* 4667 * Submit one subpage btree page. 4668 * 4669 * The main difference to submit_eb_page() is: 4670 * - Page locking 4671 * For subpage, we don't rely on page locking at all. 4672 * 4673 * - Flush write bio 4674 * We only flush bio if we may be unable to fit current extent buffers into 4675 * current bio. 4676 * 4677 * Return >=0 for the number of submitted extent buffers. 4678 * Return <0 for fatal error. 4679 */ 4680 static int submit_eb_subpage(struct page *page, 4681 struct writeback_control *wbc, 4682 struct extent_page_data *epd) 4683 { 4684 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 4685 int submitted = 0; 4686 u64 page_start = page_offset(page); 4687 int bit_start = 0; 4688 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 4689 int ret; 4690 4691 /* Lock and write each dirty extent buffers in the range */ 4692 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 4693 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 4694 struct extent_buffer *eb; 4695 unsigned long flags; 4696 u64 start; 4697 4698 /* 4699 * Take private lock to ensure the subpage won't be detached 4700 * in the meantime. 4701 */ 4702 spin_lock(&page->mapping->private_lock); 4703 if (!PagePrivate(page)) { 4704 spin_unlock(&page->mapping->private_lock); 4705 break; 4706 } 4707 spin_lock_irqsave(&subpage->lock, flags); 4708 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 4709 subpage->bitmaps)) { 4710 spin_unlock_irqrestore(&subpage->lock, flags); 4711 spin_unlock(&page->mapping->private_lock); 4712 bit_start++; 4713 continue; 4714 } 4715 4716 start = page_start + bit_start * fs_info->sectorsize; 4717 bit_start += sectors_per_node; 4718 4719 /* 4720 * Here we just want to grab the eb without touching extra 4721 * spin locks, so call find_extent_buffer_nolock(). 4722 */ 4723 eb = find_extent_buffer_nolock(fs_info, start); 4724 spin_unlock_irqrestore(&subpage->lock, flags); 4725 spin_unlock(&page->mapping->private_lock); 4726 4727 /* 4728 * The eb has already reached 0 refs thus find_extent_buffer() 4729 * doesn't return it. We don't need to write back such eb 4730 * anyway. 4731 */ 4732 if (!eb) 4733 continue; 4734 4735 ret = lock_extent_buffer_for_io(eb, epd); 4736 if (ret == 0) { 4737 free_extent_buffer(eb); 4738 continue; 4739 } 4740 if (ret < 0) { 4741 free_extent_buffer(eb); 4742 goto cleanup; 4743 } 4744 ret = write_one_subpage_eb(eb, wbc, epd); 4745 free_extent_buffer(eb); 4746 if (ret < 0) 4747 goto cleanup; 4748 submitted++; 4749 } 4750 return submitted; 4751 4752 cleanup: 4753 /* We hit error, end bio for the submitted extent buffers */ 4754 end_write_bio(epd, ret); 4755 return ret; 4756 } 4757 4758 /* 4759 * Submit all page(s) of one extent buffer. 4760 * 4761 * @page: the page of one extent buffer 4762 * @eb_context: to determine if we need to submit this page, if current page 4763 * belongs to this eb, we don't need to submit 4764 * 4765 * The caller should pass each page in their bytenr order, and here we use 4766 * @eb_context to determine if we have submitted pages of one extent buffer. 4767 * 4768 * If we have, we just skip until we hit a new page that doesn't belong to 4769 * current @eb_context. 4770 * 4771 * If not, we submit all the page(s) of the extent buffer. 4772 * 4773 * Return >0 if we have submitted the extent buffer successfully. 4774 * Return 0 if we don't need to submit the page, as it's already submitted by 4775 * previous call. 4776 * Return <0 for fatal error. 4777 */ 4778 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 4779 struct extent_page_data *epd, 4780 struct extent_buffer **eb_context) 4781 { 4782 struct address_space *mapping = page->mapping; 4783 struct btrfs_block_group *cache = NULL; 4784 struct extent_buffer *eb; 4785 int ret; 4786 4787 if (!PagePrivate(page)) 4788 return 0; 4789 4790 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 4791 return submit_eb_subpage(page, wbc, epd); 4792 4793 spin_lock(&mapping->private_lock); 4794 if (!PagePrivate(page)) { 4795 spin_unlock(&mapping->private_lock); 4796 return 0; 4797 } 4798 4799 eb = (struct extent_buffer *)page->private; 4800 4801 /* 4802 * Shouldn't happen and normally this would be a BUG_ON but no point 4803 * crashing the machine for something we can survive anyway. 4804 */ 4805 if (WARN_ON(!eb)) { 4806 spin_unlock(&mapping->private_lock); 4807 return 0; 4808 } 4809 4810 if (eb == *eb_context) { 4811 spin_unlock(&mapping->private_lock); 4812 return 0; 4813 } 4814 ret = atomic_inc_not_zero(&eb->refs); 4815 spin_unlock(&mapping->private_lock); 4816 if (!ret) 4817 return 0; 4818 4819 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 4820 /* 4821 * If for_sync, this hole will be filled with 4822 * trasnsaction commit. 4823 */ 4824 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4825 ret = -EAGAIN; 4826 else 4827 ret = 0; 4828 free_extent_buffer(eb); 4829 return ret; 4830 } 4831 4832 *eb_context = eb; 4833 4834 ret = lock_extent_buffer_for_io(eb, epd); 4835 if (ret <= 0) { 4836 btrfs_revert_meta_write_pointer(cache, eb); 4837 if (cache) 4838 btrfs_put_block_group(cache); 4839 free_extent_buffer(eb); 4840 return ret; 4841 } 4842 if (cache) { 4843 /* 4844 * Implies write in zoned mode. Mark the last eb in a block group. 4845 */ 4846 btrfs_schedule_zone_finish_bg(cache, eb); 4847 btrfs_put_block_group(cache); 4848 } 4849 ret = write_one_eb(eb, wbc, epd); 4850 free_extent_buffer(eb); 4851 if (ret < 0) 4852 return ret; 4853 return 1; 4854 } 4855 4856 int btree_write_cache_pages(struct address_space *mapping, 4857 struct writeback_control *wbc) 4858 { 4859 struct extent_buffer *eb_context = NULL; 4860 struct extent_page_data epd = { 4861 .bio_ctrl = { 0 }, 4862 .extent_locked = 0, 4863 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 4864 }; 4865 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 4866 int ret = 0; 4867 int done = 0; 4868 int nr_to_write_done = 0; 4869 struct pagevec pvec; 4870 int nr_pages; 4871 pgoff_t index; 4872 pgoff_t end; /* Inclusive */ 4873 int scanned = 0; 4874 xa_mark_t tag; 4875 4876 pagevec_init(&pvec); 4877 if (wbc->range_cyclic) { 4878 index = mapping->writeback_index; /* Start from prev offset */ 4879 end = -1; 4880 /* 4881 * Start from the beginning does not need to cycle over the 4882 * range, mark it as scanned. 4883 */ 4884 scanned = (index == 0); 4885 } else { 4886 index = wbc->range_start >> PAGE_SHIFT; 4887 end = wbc->range_end >> PAGE_SHIFT; 4888 scanned = 1; 4889 } 4890 if (wbc->sync_mode == WB_SYNC_ALL) 4891 tag = PAGECACHE_TAG_TOWRITE; 4892 else 4893 tag = PAGECACHE_TAG_DIRTY; 4894 btrfs_zoned_meta_io_lock(fs_info); 4895 retry: 4896 if (wbc->sync_mode == WB_SYNC_ALL) 4897 tag_pages_for_writeback(mapping, index, end); 4898 while (!done && !nr_to_write_done && (index <= end) && 4899 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 4900 tag))) { 4901 unsigned i; 4902 4903 for (i = 0; i < nr_pages; i++) { 4904 struct page *page = pvec.pages[i]; 4905 4906 ret = submit_eb_page(page, wbc, &epd, &eb_context); 4907 if (ret == 0) 4908 continue; 4909 if (ret < 0) { 4910 done = 1; 4911 break; 4912 } 4913 4914 /* 4915 * the filesystem may choose to bump up nr_to_write. 4916 * We have to make sure to honor the new nr_to_write 4917 * at any time 4918 */ 4919 nr_to_write_done = wbc->nr_to_write <= 0; 4920 } 4921 pagevec_release(&pvec); 4922 cond_resched(); 4923 } 4924 if (!scanned && !done) { 4925 /* 4926 * We hit the last page and there is more work to be done: wrap 4927 * back to the start of the file 4928 */ 4929 scanned = 1; 4930 index = 0; 4931 goto retry; 4932 } 4933 if (ret < 0) { 4934 end_write_bio(&epd, ret); 4935 goto out; 4936 } 4937 /* 4938 * If something went wrong, don't allow any metadata write bio to be 4939 * submitted. 4940 * 4941 * This would prevent use-after-free if we had dirty pages not 4942 * cleaned up, which can still happen by fuzzed images. 4943 * 4944 * - Bad extent tree 4945 * Allowing existing tree block to be allocated for other trees. 4946 * 4947 * - Log tree operations 4948 * Exiting tree blocks get allocated to log tree, bumps its 4949 * generation, then get cleaned in tree re-balance. 4950 * Such tree block will not be written back, since it's clean, 4951 * thus no WRITTEN flag set. 4952 * And after log writes back, this tree block is not traced by 4953 * any dirty extent_io_tree. 4954 * 4955 * - Offending tree block gets re-dirtied from its original owner 4956 * Since it has bumped generation, no WRITTEN flag, it can be 4957 * reused without COWing. This tree block will not be traced 4958 * by btrfs_transaction::dirty_pages. 4959 * 4960 * Now such dirty tree block will not be cleaned by any dirty 4961 * extent io tree. Thus we don't want to submit such wild eb 4962 * if the fs already has error. 4963 */ 4964 if (!BTRFS_FS_ERROR(fs_info)) { 4965 flush_write_bio(&epd); 4966 } else { 4967 ret = -EROFS; 4968 end_write_bio(&epd, ret); 4969 } 4970 out: 4971 btrfs_zoned_meta_io_unlock(fs_info); 4972 /* 4973 * We can get ret > 0 from submit_extent_page() indicating how many ebs 4974 * were submitted. Reset it to 0 to avoid false alerts for the caller. 4975 */ 4976 if (ret > 0) 4977 ret = 0; 4978 return ret; 4979 } 4980 4981 /** 4982 * Walk the list of dirty pages of the given address space and write all of them. 4983 * 4984 * @mapping: address space structure to write 4985 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 4986 * @epd: holds context for the write, namely the bio 4987 * 4988 * If a page is already under I/O, write_cache_pages() skips it, even 4989 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 4990 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 4991 * and msync() need to guarantee that all the data which was dirty at the time 4992 * the call was made get new I/O started against them. If wbc->sync_mode is 4993 * WB_SYNC_ALL then we were called for data integrity and we must wait for 4994 * existing IO to complete. 4995 */ 4996 static int extent_write_cache_pages(struct address_space *mapping, 4997 struct writeback_control *wbc, 4998 struct extent_page_data *epd) 4999 { 5000 struct inode *inode = mapping->host; 5001 int ret = 0; 5002 int done = 0; 5003 int nr_to_write_done = 0; 5004 struct pagevec pvec; 5005 int nr_pages; 5006 pgoff_t index; 5007 pgoff_t end; /* Inclusive */ 5008 pgoff_t done_index; 5009 int range_whole = 0; 5010 int scanned = 0; 5011 xa_mark_t tag; 5012 5013 /* 5014 * We have to hold onto the inode so that ordered extents can do their 5015 * work when the IO finishes. The alternative to this is failing to add 5016 * an ordered extent if the igrab() fails there and that is a huge pain 5017 * to deal with, so instead just hold onto the inode throughout the 5018 * writepages operation. If it fails here we are freeing up the inode 5019 * anyway and we'd rather not waste our time writing out stuff that is 5020 * going to be truncated anyway. 5021 */ 5022 if (!igrab(inode)) 5023 return 0; 5024 5025 pagevec_init(&pvec); 5026 if (wbc->range_cyclic) { 5027 index = mapping->writeback_index; /* Start from prev offset */ 5028 end = -1; 5029 /* 5030 * Start from the beginning does not need to cycle over the 5031 * range, mark it as scanned. 5032 */ 5033 scanned = (index == 0); 5034 } else { 5035 index = wbc->range_start >> PAGE_SHIFT; 5036 end = wbc->range_end >> PAGE_SHIFT; 5037 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 5038 range_whole = 1; 5039 scanned = 1; 5040 } 5041 5042 /* 5043 * We do the tagged writepage as long as the snapshot flush bit is set 5044 * and we are the first one who do the filemap_flush() on this inode. 5045 * 5046 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 5047 * not race in and drop the bit. 5048 */ 5049 if (range_whole && wbc->nr_to_write == LONG_MAX && 5050 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 5051 &BTRFS_I(inode)->runtime_flags)) 5052 wbc->tagged_writepages = 1; 5053 5054 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5055 tag = PAGECACHE_TAG_TOWRITE; 5056 else 5057 tag = PAGECACHE_TAG_DIRTY; 5058 retry: 5059 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 5060 tag_pages_for_writeback(mapping, index, end); 5061 done_index = index; 5062 while (!done && !nr_to_write_done && (index <= end) && 5063 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, 5064 &index, end, tag))) { 5065 unsigned i; 5066 5067 for (i = 0; i < nr_pages; i++) { 5068 struct page *page = pvec.pages[i]; 5069 5070 done_index = page->index + 1; 5071 /* 5072 * At this point we hold neither the i_pages lock nor 5073 * the page lock: the page may be truncated or 5074 * invalidated (changing page->mapping to NULL), 5075 * or even swizzled back from swapper_space to 5076 * tmpfs file mapping 5077 */ 5078 if (!trylock_page(page)) { 5079 flush_write_bio(epd); 5080 lock_page(page); 5081 } 5082 5083 if (unlikely(page->mapping != mapping)) { 5084 unlock_page(page); 5085 continue; 5086 } 5087 5088 if (wbc->sync_mode != WB_SYNC_NONE) { 5089 if (PageWriteback(page)) 5090 flush_write_bio(epd); 5091 wait_on_page_writeback(page); 5092 } 5093 5094 if (PageWriteback(page) || 5095 !clear_page_dirty_for_io(page)) { 5096 unlock_page(page); 5097 continue; 5098 } 5099 5100 ret = __extent_writepage(page, wbc, epd); 5101 if (ret < 0) { 5102 done = 1; 5103 break; 5104 } 5105 5106 /* 5107 * the filesystem may choose to bump up nr_to_write. 5108 * We have to make sure to honor the new nr_to_write 5109 * at any time 5110 */ 5111 nr_to_write_done = wbc->nr_to_write <= 0; 5112 } 5113 pagevec_release(&pvec); 5114 cond_resched(); 5115 } 5116 if (!scanned && !done) { 5117 /* 5118 * We hit the last page and there is more work to be done: wrap 5119 * back to the start of the file 5120 */ 5121 scanned = 1; 5122 index = 0; 5123 5124 /* 5125 * If we're looping we could run into a page that is locked by a 5126 * writer and that writer could be waiting on writeback for a 5127 * page in our current bio, and thus deadlock, so flush the 5128 * write bio here. 5129 */ 5130 flush_write_bio(epd); 5131 goto retry; 5132 } 5133 5134 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 5135 mapping->writeback_index = done_index; 5136 5137 btrfs_add_delayed_iput(inode); 5138 return ret; 5139 } 5140 5141 int extent_write_full_page(struct page *page, struct writeback_control *wbc) 5142 { 5143 int ret; 5144 struct extent_page_data epd = { 5145 .bio_ctrl = { 0 }, 5146 .extent_locked = 0, 5147 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5148 }; 5149 5150 ret = __extent_writepage(page, wbc, &epd); 5151 ASSERT(ret <= 0); 5152 if (ret < 0) { 5153 end_write_bio(&epd, ret); 5154 return ret; 5155 } 5156 5157 flush_write_bio(&epd); 5158 return ret; 5159 } 5160 5161 /* 5162 * Submit the pages in the range to bio for call sites which delalloc range has 5163 * already been ran (aka, ordered extent inserted) and all pages are still 5164 * locked. 5165 */ 5166 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 5167 { 5168 bool found_error = false; 5169 int first_error = 0; 5170 int ret = 0; 5171 struct address_space *mapping = inode->i_mapping; 5172 struct page *page; 5173 u64 cur = start; 5174 unsigned long nr_pages; 5175 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 5176 struct extent_page_data epd = { 5177 .bio_ctrl = { 0 }, 5178 .extent_locked = 1, 5179 .sync_io = 1, 5180 }; 5181 struct writeback_control wbc_writepages = { 5182 .sync_mode = WB_SYNC_ALL, 5183 .range_start = start, 5184 .range_end = end + 1, 5185 /* We're called from an async helper function */ 5186 .punt_to_cgroup = 1, 5187 .no_cgroup_owner = 1, 5188 }; 5189 5190 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 5191 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 5192 PAGE_SHIFT; 5193 wbc_writepages.nr_to_write = nr_pages * 2; 5194 5195 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 5196 while (cur <= end) { 5197 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 5198 5199 page = find_get_page(mapping, cur >> PAGE_SHIFT); 5200 /* 5201 * All pages in the range are locked since 5202 * btrfs_run_delalloc_range(), thus there is no way to clear 5203 * the page dirty flag. 5204 */ 5205 ASSERT(PageLocked(page)); 5206 ASSERT(PageDirty(page)); 5207 clear_page_dirty_for_io(page); 5208 ret = __extent_writepage(page, &wbc_writepages, &epd); 5209 ASSERT(ret <= 0); 5210 if (ret < 0) { 5211 found_error = true; 5212 first_error = ret; 5213 } 5214 put_page(page); 5215 cur = cur_end + 1; 5216 } 5217 5218 if (!found_error) 5219 flush_write_bio(&epd); 5220 else 5221 end_write_bio(&epd, ret); 5222 5223 wbc_detach_inode(&wbc_writepages); 5224 if (found_error) 5225 return first_error; 5226 return ret; 5227 } 5228 5229 int extent_writepages(struct address_space *mapping, 5230 struct writeback_control *wbc) 5231 { 5232 struct inode *inode = mapping->host; 5233 int ret = 0; 5234 struct extent_page_data epd = { 5235 .bio_ctrl = { 0 }, 5236 .extent_locked = 0, 5237 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 5238 }; 5239 5240 /* 5241 * Allow only a single thread to do the reloc work in zoned mode to 5242 * protect the write pointer updates. 5243 */ 5244 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 5245 ret = extent_write_cache_pages(mapping, wbc, &epd); 5246 ASSERT(ret <= 0); 5247 if (ret < 0) { 5248 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5249 end_write_bio(&epd, ret); 5250 return ret; 5251 } 5252 flush_write_bio(&epd); 5253 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 5254 return ret; 5255 } 5256 5257 void extent_readahead(struct readahead_control *rac) 5258 { 5259 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 5260 struct page *pagepool[16]; 5261 struct extent_map *em_cached = NULL; 5262 u64 prev_em_start = (u64)-1; 5263 int nr; 5264 5265 while ((nr = readahead_page_batch(rac, pagepool))) { 5266 u64 contig_start = readahead_pos(rac); 5267 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 5268 5269 contiguous_readpages(pagepool, nr, contig_start, contig_end, 5270 &em_cached, &bio_ctrl, &prev_em_start); 5271 } 5272 5273 if (em_cached) 5274 free_extent_map(em_cached); 5275 5276 if (bio_ctrl.bio) 5277 submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.compress_type); 5278 } 5279 5280 /* 5281 * basic invalidate_folio code, this waits on any locked or writeback 5282 * ranges corresponding to the folio, and then deletes any extent state 5283 * records from the tree 5284 */ 5285 int extent_invalidate_folio(struct extent_io_tree *tree, 5286 struct folio *folio, size_t offset) 5287 { 5288 struct extent_state *cached_state = NULL; 5289 u64 start = folio_pos(folio); 5290 u64 end = start + folio_size(folio) - 1; 5291 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 5292 5293 /* This function is only called for the btree inode */ 5294 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 5295 5296 start += ALIGN(offset, blocksize); 5297 if (start > end) 5298 return 0; 5299 5300 lock_extent_bits(tree, start, end, &cached_state); 5301 folio_wait_writeback(folio); 5302 5303 /* 5304 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 5305 * so here we only need to unlock the extent range to free any 5306 * existing extent state. 5307 */ 5308 unlock_extent_cached(tree, start, end, &cached_state); 5309 return 0; 5310 } 5311 5312 /* 5313 * a helper for release_folio, this tests for areas of the page that 5314 * are locked or under IO and drops the related state bits if it is safe 5315 * to drop the page. 5316 */ 5317 static int try_release_extent_state(struct extent_io_tree *tree, 5318 struct page *page, gfp_t mask) 5319 { 5320 u64 start = page_offset(page); 5321 u64 end = start + PAGE_SIZE - 1; 5322 int ret = 1; 5323 5324 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 5325 ret = 0; 5326 } else { 5327 /* 5328 * At this point we can safely clear everything except the 5329 * locked bit, the nodatasum bit and the delalloc new bit. 5330 * The delalloc new bit will be cleared by ordered extent 5331 * completion. 5332 */ 5333 ret = __clear_extent_bit(tree, start, end, 5334 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW), 5335 0, 0, NULL, mask, NULL); 5336 5337 /* if clear_extent_bit failed for enomem reasons, 5338 * we can't allow the release to continue. 5339 */ 5340 if (ret < 0) 5341 ret = 0; 5342 else 5343 ret = 1; 5344 } 5345 return ret; 5346 } 5347 5348 /* 5349 * a helper for release_folio. As long as there are no locked extents 5350 * in the range corresponding to the page, both state records and extent 5351 * map records are removed 5352 */ 5353 int try_release_extent_mapping(struct page *page, gfp_t mask) 5354 { 5355 struct extent_map *em; 5356 u64 start = page_offset(page); 5357 u64 end = start + PAGE_SIZE - 1; 5358 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 5359 struct extent_io_tree *tree = &btrfs_inode->io_tree; 5360 struct extent_map_tree *map = &btrfs_inode->extent_tree; 5361 5362 if (gfpflags_allow_blocking(mask) && 5363 page->mapping->host->i_size > SZ_16M) { 5364 u64 len; 5365 while (start <= end) { 5366 struct btrfs_fs_info *fs_info; 5367 u64 cur_gen; 5368 5369 len = end - start + 1; 5370 write_lock(&map->lock); 5371 em = lookup_extent_mapping(map, start, len); 5372 if (!em) { 5373 write_unlock(&map->lock); 5374 break; 5375 } 5376 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 5377 em->start != start) { 5378 write_unlock(&map->lock); 5379 free_extent_map(em); 5380 break; 5381 } 5382 if (test_range_bit(tree, em->start, 5383 extent_map_end(em) - 1, 5384 EXTENT_LOCKED, 0, NULL)) 5385 goto next; 5386 /* 5387 * If it's not in the list of modified extents, used 5388 * by a fast fsync, we can remove it. If it's being 5389 * logged we can safely remove it since fsync took an 5390 * extra reference on the em. 5391 */ 5392 if (list_empty(&em->list) || 5393 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 5394 goto remove_em; 5395 /* 5396 * If it's in the list of modified extents, remove it 5397 * only if its generation is older then the current one, 5398 * in which case we don't need it for a fast fsync. 5399 * Otherwise don't remove it, we could be racing with an 5400 * ongoing fast fsync that could miss the new extent. 5401 */ 5402 fs_info = btrfs_inode->root->fs_info; 5403 spin_lock(&fs_info->trans_lock); 5404 cur_gen = fs_info->generation; 5405 spin_unlock(&fs_info->trans_lock); 5406 if (em->generation >= cur_gen) 5407 goto next; 5408 remove_em: 5409 /* 5410 * We only remove extent maps that are not in the list of 5411 * modified extents or that are in the list but with a 5412 * generation lower then the current generation, so there 5413 * is no need to set the full fsync flag on the inode (it 5414 * hurts the fsync performance for workloads with a data 5415 * size that exceeds or is close to the system's memory). 5416 */ 5417 remove_extent_mapping(map, em); 5418 /* once for the rb tree */ 5419 free_extent_map(em); 5420 next: 5421 start = extent_map_end(em); 5422 write_unlock(&map->lock); 5423 5424 /* once for us */ 5425 free_extent_map(em); 5426 5427 cond_resched(); /* Allow large-extent preemption. */ 5428 } 5429 } 5430 return try_release_extent_state(tree, page, mask); 5431 } 5432 5433 /* 5434 * helper function for fiemap, which doesn't want to see any holes. 5435 * This maps until we find something past 'last' 5436 */ 5437 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode, 5438 u64 offset, u64 last) 5439 { 5440 u64 sectorsize = btrfs_inode_sectorsize(inode); 5441 struct extent_map *em; 5442 u64 len; 5443 5444 if (offset >= last) 5445 return NULL; 5446 5447 while (1) { 5448 len = last - offset; 5449 if (len == 0) 5450 break; 5451 len = ALIGN(len, sectorsize); 5452 em = btrfs_get_extent_fiemap(inode, offset, len); 5453 if (IS_ERR(em)) 5454 return em; 5455 5456 /* if this isn't a hole return it */ 5457 if (em->block_start != EXTENT_MAP_HOLE) 5458 return em; 5459 5460 /* this is a hole, advance to the next extent */ 5461 offset = extent_map_end(em); 5462 free_extent_map(em); 5463 if (offset >= last) 5464 break; 5465 } 5466 return NULL; 5467 } 5468 5469 /* 5470 * To cache previous fiemap extent 5471 * 5472 * Will be used for merging fiemap extent 5473 */ 5474 struct fiemap_cache { 5475 u64 offset; 5476 u64 phys; 5477 u64 len; 5478 u32 flags; 5479 bool cached; 5480 }; 5481 5482 /* 5483 * Helper to submit fiemap extent. 5484 * 5485 * Will try to merge current fiemap extent specified by @offset, @phys, 5486 * @len and @flags with cached one. 5487 * And only when we fails to merge, cached one will be submitted as 5488 * fiemap extent. 5489 * 5490 * Return value is the same as fiemap_fill_next_extent(). 5491 */ 5492 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 5493 struct fiemap_cache *cache, 5494 u64 offset, u64 phys, u64 len, u32 flags) 5495 { 5496 int ret = 0; 5497 5498 if (!cache->cached) 5499 goto assign; 5500 5501 /* 5502 * Sanity check, extent_fiemap() should have ensured that new 5503 * fiemap extent won't overlap with cached one. 5504 * Not recoverable. 5505 * 5506 * NOTE: Physical address can overlap, due to compression 5507 */ 5508 if (cache->offset + cache->len > offset) { 5509 WARN_ON(1); 5510 return -EINVAL; 5511 } 5512 5513 /* 5514 * Only merges fiemap extents if 5515 * 1) Their logical addresses are continuous 5516 * 5517 * 2) Their physical addresses are continuous 5518 * So truly compressed (physical size smaller than logical size) 5519 * extents won't get merged with each other 5520 * 5521 * 3) Share same flags except FIEMAP_EXTENT_LAST 5522 * So regular extent won't get merged with prealloc extent 5523 */ 5524 if (cache->offset + cache->len == offset && 5525 cache->phys + cache->len == phys && 5526 (cache->flags & ~FIEMAP_EXTENT_LAST) == 5527 (flags & ~FIEMAP_EXTENT_LAST)) { 5528 cache->len += len; 5529 cache->flags |= flags; 5530 goto try_submit_last; 5531 } 5532 5533 /* Not mergeable, need to submit cached one */ 5534 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5535 cache->len, cache->flags); 5536 cache->cached = false; 5537 if (ret) 5538 return ret; 5539 assign: 5540 cache->cached = true; 5541 cache->offset = offset; 5542 cache->phys = phys; 5543 cache->len = len; 5544 cache->flags = flags; 5545 try_submit_last: 5546 if (cache->flags & FIEMAP_EXTENT_LAST) { 5547 ret = fiemap_fill_next_extent(fieinfo, cache->offset, 5548 cache->phys, cache->len, cache->flags); 5549 cache->cached = false; 5550 } 5551 return ret; 5552 } 5553 5554 /* 5555 * Emit last fiemap cache 5556 * 5557 * The last fiemap cache may still be cached in the following case: 5558 * 0 4k 8k 5559 * |<- Fiemap range ->| 5560 * |<------------ First extent ----------->| 5561 * 5562 * In this case, the first extent range will be cached but not emitted. 5563 * So we must emit it before ending extent_fiemap(). 5564 */ 5565 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 5566 struct fiemap_cache *cache) 5567 { 5568 int ret; 5569 5570 if (!cache->cached) 5571 return 0; 5572 5573 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 5574 cache->len, cache->flags); 5575 cache->cached = false; 5576 if (ret > 0) 5577 ret = 0; 5578 return ret; 5579 } 5580 5581 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 5582 u64 start, u64 len) 5583 { 5584 int ret = 0; 5585 u64 off; 5586 u64 max = start + len; 5587 u32 flags = 0; 5588 u32 found_type; 5589 u64 last; 5590 u64 last_for_get_extent = 0; 5591 u64 disko = 0; 5592 u64 isize = i_size_read(&inode->vfs_inode); 5593 struct btrfs_key found_key; 5594 struct extent_map *em = NULL; 5595 struct extent_state *cached_state = NULL; 5596 struct btrfs_path *path; 5597 struct btrfs_root *root = inode->root; 5598 struct fiemap_cache cache = { 0 }; 5599 struct ulist *roots; 5600 struct ulist *tmp_ulist; 5601 int end = 0; 5602 u64 em_start = 0; 5603 u64 em_len = 0; 5604 u64 em_end = 0; 5605 5606 if (len == 0) 5607 return -EINVAL; 5608 5609 path = btrfs_alloc_path(); 5610 if (!path) 5611 return -ENOMEM; 5612 5613 roots = ulist_alloc(GFP_KERNEL); 5614 tmp_ulist = ulist_alloc(GFP_KERNEL); 5615 if (!roots || !tmp_ulist) { 5616 ret = -ENOMEM; 5617 goto out_free_ulist; 5618 } 5619 5620 /* 5621 * We can't initialize that to 'start' as this could miss extents due 5622 * to extent item merging 5623 */ 5624 off = 0; 5625 start = round_down(start, btrfs_inode_sectorsize(inode)); 5626 len = round_up(max, btrfs_inode_sectorsize(inode)) - start; 5627 5628 /* 5629 * lookup the last file extent. We're not using i_size here 5630 * because there might be preallocation past i_size 5631 */ 5632 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1, 5633 0); 5634 if (ret < 0) { 5635 goto out_free_ulist; 5636 } else { 5637 WARN_ON(!ret); 5638 if (ret == 1) 5639 ret = 0; 5640 } 5641 5642 path->slots[0]--; 5643 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5644 found_type = found_key.type; 5645 5646 /* No extents, but there might be delalloc bits */ 5647 if (found_key.objectid != btrfs_ino(inode) || 5648 found_type != BTRFS_EXTENT_DATA_KEY) { 5649 /* have to trust i_size as the end */ 5650 last = (u64)-1; 5651 last_for_get_extent = isize; 5652 } else { 5653 /* 5654 * remember the start of the last extent. There are a 5655 * bunch of different factors that go into the length of the 5656 * extent, so its much less complex to remember where it started 5657 */ 5658 last = found_key.offset; 5659 last_for_get_extent = last + 1; 5660 } 5661 btrfs_release_path(path); 5662 5663 /* 5664 * we might have some extents allocated but more delalloc past those 5665 * extents. so, we trust isize unless the start of the last extent is 5666 * beyond isize 5667 */ 5668 if (last < isize) { 5669 last = (u64)-1; 5670 last_for_get_extent = isize; 5671 } 5672 5673 lock_extent_bits(&inode->io_tree, start, start + len - 1, 5674 &cached_state); 5675 5676 em = get_extent_skip_holes(inode, start, last_for_get_extent); 5677 if (!em) 5678 goto out; 5679 if (IS_ERR(em)) { 5680 ret = PTR_ERR(em); 5681 goto out; 5682 } 5683 5684 while (!end) { 5685 u64 offset_in_extent = 0; 5686 5687 /* break if the extent we found is outside the range */ 5688 if (em->start >= max || extent_map_end(em) < off) 5689 break; 5690 5691 /* 5692 * get_extent may return an extent that starts before our 5693 * requested range. We have to make sure the ranges 5694 * we return to fiemap always move forward and don't 5695 * overlap, so adjust the offsets here 5696 */ 5697 em_start = max(em->start, off); 5698 5699 /* 5700 * record the offset from the start of the extent 5701 * for adjusting the disk offset below. Only do this if the 5702 * extent isn't compressed since our in ram offset may be past 5703 * what we have actually allocated on disk. 5704 */ 5705 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5706 offset_in_extent = em_start - em->start; 5707 em_end = extent_map_end(em); 5708 em_len = em_end - em_start; 5709 flags = 0; 5710 if (em->block_start < EXTENT_MAP_LAST_BYTE) 5711 disko = em->block_start + offset_in_extent; 5712 else 5713 disko = 0; 5714 5715 /* 5716 * bump off for our next call to get_extent 5717 */ 5718 off = extent_map_end(em); 5719 if (off >= max) 5720 end = 1; 5721 5722 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 5723 end = 1; 5724 flags |= FIEMAP_EXTENT_LAST; 5725 } else if (em->block_start == EXTENT_MAP_INLINE) { 5726 flags |= (FIEMAP_EXTENT_DATA_INLINE | 5727 FIEMAP_EXTENT_NOT_ALIGNED); 5728 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 5729 flags |= (FIEMAP_EXTENT_DELALLOC | 5730 FIEMAP_EXTENT_UNKNOWN); 5731 } else if (fieinfo->fi_extents_max) { 5732 u64 bytenr = em->block_start - 5733 (em->start - em->orig_start); 5734 5735 /* 5736 * As btrfs supports shared space, this information 5737 * can be exported to userspace tools via 5738 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0 5739 * then we're just getting a count and we can skip the 5740 * lookup stuff. 5741 */ 5742 ret = btrfs_check_shared(root, btrfs_ino(inode), 5743 bytenr, roots, tmp_ulist); 5744 if (ret < 0) 5745 goto out_free; 5746 if (ret) 5747 flags |= FIEMAP_EXTENT_SHARED; 5748 ret = 0; 5749 } 5750 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 5751 flags |= FIEMAP_EXTENT_ENCODED; 5752 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5753 flags |= FIEMAP_EXTENT_UNWRITTEN; 5754 5755 free_extent_map(em); 5756 em = NULL; 5757 if ((em_start >= last) || em_len == (u64)-1 || 5758 (last == (u64)-1 && isize <= em_end)) { 5759 flags |= FIEMAP_EXTENT_LAST; 5760 end = 1; 5761 } 5762 5763 /* now scan forward to see if this is really the last extent. */ 5764 em = get_extent_skip_holes(inode, off, last_for_get_extent); 5765 if (IS_ERR(em)) { 5766 ret = PTR_ERR(em); 5767 goto out; 5768 } 5769 if (!em) { 5770 flags |= FIEMAP_EXTENT_LAST; 5771 end = 1; 5772 } 5773 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko, 5774 em_len, flags); 5775 if (ret) { 5776 if (ret == 1) 5777 ret = 0; 5778 goto out_free; 5779 } 5780 } 5781 out_free: 5782 if (!ret) 5783 ret = emit_last_fiemap_cache(fieinfo, &cache); 5784 free_extent_map(em); 5785 out: 5786 unlock_extent_cached(&inode->io_tree, start, start + len - 1, 5787 &cached_state); 5788 5789 out_free_ulist: 5790 btrfs_free_path(path); 5791 ulist_free(roots); 5792 ulist_free(tmp_ulist); 5793 return ret; 5794 } 5795 5796 static void __free_extent_buffer(struct extent_buffer *eb) 5797 { 5798 kmem_cache_free(extent_buffer_cache, eb); 5799 } 5800 5801 int extent_buffer_under_io(const struct extent_buffer *eb) 5802 { 5803 return (atomic_read(&eb->io_pages) || 5804 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 5805 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5806 } 5807 5808 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 5809 { 5810 struct btrfs_subpage *subpage; 5811 5812 lockdep_assert_held(&page->mapping->private_lock); 5813 5814 if (PagePrivate(page)) { 5815 subpage = (struct btrfs_subpage *)page->private; 5816 if (atomic_read(&subpage->eb_refs)) 5817 return true; 5818 /* 5819 * Even there is no eb refs here, we may still have 5820 * end_page_read() call relying on page::private. 5821 */ 5822 if (atomic_read(&subpage->readers)) 5823 return true; 5824 } 5825 return false; 5826 } 5827 5828 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 5829 { 5830 struct btrfs_fs_info *fs_info = eb->fs_info; 5831 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 5832 5833 /* 5834 * For mapped eb, we're going to change the page private, which should 5835 * be done under the private_lock. 5836 */ 5837 if (mapped) 5838 spin_lock(&page->mapping->private_lock); 5839 5840 if (!PagePrivate(page)) { 5841 if (mapped) 5842 spin_unlock(&page->mapping->private_lock); 5843 return; 5844 } 5845 5846 if (fs_info->nodesize >= PAGE_SIZE) { 5847 /* 5848 * We do this since we'll remove the pages after we've 5849 * removed the eb from the radix tree, so we could race 5850 * and have this page now attached to the new eb. So 5851 * only clear page_private if it's still connected to 5852 * this eb. 5853 */ 5854 if (PagePrivate(page) && 5855 page->private == (unsigned long)eb) { 5856 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 5857 BUG_ON(PageDirty(page)); 5858 BUG_ON(PageWriteback(page)); 5859 /* 5860 * We need to make sure we haven't be attached 5861 * to a new eb. 5862 */ 5863 detach_page_private(page); 5864 } 5865 if (mapped) 5866 spin_unlock(&page->mapping->private_lock); 5867 return; 5868 } 5869 5870 /* 5871 * For subpage, we can have dummy eb with page private. In this case, 5872 * we can directly detach the private as such page is only attached to 5873 * one dummy eb, no sharing. 5874 */ 5875 if (!mapped) { 5876 btrfs_detach_subpage(fs_info, page); 5877 return; 5878 } 5879 5880 btrfs_page_dec_eb_refs(fs_info, page); 5881 5882 /* 5883 * We can only detach the page private if there are no other ebs in the 5884 * page range and no unfinished IO. 5885 */ 5886 if (!page_range_has_eb(fs_info, page)) 5887 btrfs_detach_subpage(fs_info, page); 5888 5889 spin_unlock(&page->mapping->private_lock); 5890 } 5891 5892 /* Release all pages attached to the extent buffer */ 5893 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 5894 { 5895 int i; 5896 int num_pages; 5897 5898 ASSERT(!extent_buffer_under_io(eb)); 5899 5900 num_pages = num_extent_pages(eb); 5901 for (i = 0; i < num_pages; i++) { 5902 struct page *page = eb->pages[i]; 5903 5904 if (!page) 5905 continue; 5906 5907 detach_extent_buffer_page(eb, page); 5908 5909 /* One for when we allocated the page */ 5910 put_page(page); 5911 } 5912 } 5913 5914 /* 5915 * Helper for releasing the extent buffer. 5916 */ 5917 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 5918 { 5919 btrfs_release_extent_buffer_pages(eb); 5920 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 5921 __free_extent_buffer(eb); 5922 } 5923 5924 static struct extent_buffer * 5925 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 5926 unsigned long len) 5927 { 5928 struct extent_buffer *eb = NULL; 5929 5930 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 5931 eb->start = start; 5932 eb->len = len; 5933 eb->fs_info = fs_info; 5934 eb->bflags = 0; 5935 init_rwsem(&eb->lock); 5936 5937 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list, 5938 &fs_info->allocated_ebs); 5939 INIT_LIST_HEAD(&eb->release_list); 5940 5941 spin_lock_init(&eb->refs_lock); 5942 atomic_set(&eb->refs, 1); 5943 atomic_set(&eb->io_pages, 0); 5944 5945 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 5946 5947 return eb; 5948 } 5949 5950 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 5951 { 5952 int i; 5953 struct extent_buffer *new; 5954 int num_pages = num_extent_pages(src); 5955 int ret; 5956 5957 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 5958 if (new == NULL) 5959 return NULL; 5960 5961 /* 5962 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 5963 * btrfs_release_extent_buffer() have different behavior for 5964 * UNMAPPED subpage extent buffer. 5965 */ 5966 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 5967 5968 memset(new->pages, 0, sizeof(*new->pages) * num_pages); 5969 ret = btrfs_alloc_page_array(num_pages, new->pages); 5970 if (ret) { 5971 btrfs_release_extent_buffer(new); 5972 return NULL; 5973 } 5974 5975 for (i = 0; i < num_pages; i++) { 5976 int ret; 5977 struct page *p = new->pages[i]; 5978 5979 ret = attach_extent_buffer_page(new, p, NULL); 5980 if (ret < 0) { 5981 btrfs_release_extent_buffer(new); 5982 return NULL; 5983 } 5984 WARN_ON(PageDirty(p)); 5985 copy_page(page_address(p), page_address(src->pages[i])); 5986 } 5987 set_extent_buffer_uptodate(new); 5988 5989 return new; 5990 } 5991 5992 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 5993 u64 start, unsigned long len) 5994 { 5995 struct extent_buffer *eb; 5996 int num_pages; 5997 int i; 5998 int ret; 5999 6000 eb = __alloc_extent_buffer(fs_info, start, len); 6001 if (!eb) 6002 return NULL; 6003 6004 num_pages = num_extent_pages(eb); 6005 ret = btrfs_alloc_page_array(num_pages, eb->pages); 6006 if (ret) 6007 goto err; 6008 6009 for (i = 0; i < num_pages; i++) { 6010 struct page *p = eb->pages[i]; 6011 6012 ret = attach_extent_buffer_page(eb, p, NULL); 6013 if (ret < 0) 6014 goto err; 6015 } 6016 6017 set_extent_buffer_uptodate(eb); 6018 btrfs_set_header_nritems(eb, 0); 6019 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 6020 6021 return eb; 6022 err: 6023 for (i = 0; i < num_pages; i++) { 6024 if (eb->pages[i]) { 6025 detach_extent_buffer_page(eb, eb->pages[i]); 6026 __free_page(eb->pages[i]); 6027 } 6028 } 6029 __free_extent_buffer(eb); 6030 return NULL; 6031 } 6032 6033 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 6034 u64 start) 6035 { 6036 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 6037 } 6038 6039 static void check_buffer_tree_ref(struct extent_buffer *eb) 6040 { 6041 int refs; 6042 /* 6043 * The TREE_REF bit is first set when the extent_buffer is added 6044 * to the radix tree. It is also reset, if unset, when a new reference 6045 * is created by find_extent_buffer. 6046 * 6047 * It is only cleared in two cases: freeing the last non-tree 6048 * reference to the extent_buffer when its STALE bit is set or 6049 * calling release_folio when the tree reference is the only reference. 6050 * 6051 * In both cases, care is taken to ensure that the extent_buffer's 6052 * pages are not under io. However, release_folio can be concurrently 6053 * called with creating new references, which is prone to race 6054 * conditions between the calls to check_buffer_tree_ref in those 6055 * codepaths and clearing TREE_REF in try_release_extent_buffer. 6056 * 6057 * The actual lifetime of the extent_buffer in the radix tree is 6058 * adequately protected by the refcount, but the TREE_REF bit and 6059 * its corresponding reference are not. To protect against this 6060 * class of races, we call check_buffer_tree_ref from the codepaths 6061 * which trigger io after they set eb->io_pages. Note that once io is 6062 * initiated, TREE_REF can no longer be cleared, so that is the 6063 * moment at which any such race is best fixed. 6064 */ 6065 refs = atomic_read(&eb->refs); 6066 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6067 return; 6068 6069 spin_lock(&eb->refs_lock); 6070 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6071 atomic_inc(&eb->refs); 6072 spin_unlock(&eb->refs_lock); 6073 } 6074 6075 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 6076 struct page *accessed) 6077 { 6078 int num_pages, i; 6079 6080 check_buffer_tree_ref(eb); 6081 6082 num_pages = num_extent_pages(eb); 6083 for (i = 0; i < num_pages; i++) { 6084 struct page *p = eb->pages[i]; 6085 6086 if (p != accessed) 6087 mark_page_accessed(p); 6088 } 6089 } 6090 6091 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 6092 u64 start) 6093 { 6094 struct extent_buffer *eb; 6095 6096 eb = find_extent_buffer_nolock(fs_info, start); 6097 if (!eb) 6098 return NULL; 6099 /* 6100 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 6101 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 6102 * another task running free_extent_buffer() might have seen that flag 6103 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 6104 * writeback flags not set) and it's still in the tree (flag 6105 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 6106 * decrementing the extent buffer's reference count twice. So here we 6107 * could race and increment the eb's reference count, clear its stale 6108 * flag, mark it as dirty and drop our reference before the other task 6109 * finishes executing free_extent_buffer, which would later result in 6110 * an attempt to free an extent buffer that is dirty. 6111 */ 6112 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 6113 spin_lock(&eb->refs_lock); 6114 spin_unlock(&eb->refs_lock); 6115 } 6116 mark_extent_buffer_accessed(eb, NULL); 6117 return eb; 6118 } 6119 6120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6121 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 6122 u64 start) 6123 { 6124 struct extent_buffer *eb, *exists = NULL; 6125 int ret; 6126 6127 eb = find_extent_buffer(fs_info, start); 6128 if (eb) 6129 return eb; 6130 eb = alloc_dummy_extent_buffer(fs_info, start); 6131 if (!eb) 6132 return ERR_PTR(-ENOMEM); 6133 eb->fs_info = fs_info; 6134 again: 6135 ret = radix_tree_preload(GFP_NOFS); 6136 if (ret) { 6137 exists = ERR_PTR(ret); 6138 goto free_eb; 6139 } 6140 spin_lock(&fs_info->buffer_lock); 6141 ret = radix_tree_insert(&fs_info->buffer_radix, 6142 start >> fs_info->sectorsize_bits, eb); 6143 spin_unlock(&fs_info->buffer_lock); 6144 radix_tree_preload_end(); 6145 if (ret == -EEXIST) { 6146 exists = find_extent_buffer(fs_info, start); 6147 if (exists) 6148 goto free_eb; 6149 else 6150 goto again; 6151 } 6152 check_buffer_tree_ref(eb); 6153 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6154 6155 return eb; 6156 free_eb: 6157 btrfs_release_extent_buffer(eb); 6158 return exists; 6159 } 6160 #endif 6161 6162 static struct extent_buffer *grab_extent_buffer( 6163 struct btrfs_fs_info *fs_info, struct page *page) 6164 { 6165 struct extent_buffer *exists; 6166 6167 /* 6168 * For subpage case, we completely rely on radix tree to ensure we 6169 * don't try to insert two ebs for the same bytenr. So here we always 6170 * return NULL and just continue. 6171 */ 6172 if (fs_info->nodesize < PAGE_SIZE) 6173 return NULL; 6174 6175 /* Page not yet attached to an extent buffer */ 6176 if (!PagePrivate(page)) 6177 return NULL; 6178 6179 /* 6180 * We could have already allocated an eb for this page and attached one 6181 * so lets see if we can get a ref on the existing eb, and if we can we 6182 * know it's good and we can just return that one, else we know we can 6183 * just overwrite page->private. 6184 */ 6185 exists = (struct extent_buffer *)page->private; 6186 if (atomic_inc_not_zero(&exists->refs)) 6187 return exists; 6188 6189 WARN_ON(PageDirty(page)); 6190 detach_page_private(page); 6191 return NULL; 6192 } 6193 6194 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 6195 { 6196 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 6197 btrfs_err(fs_info, "bad tree block start %llu", start); 6198 return -EINVAL; 6199 } 6200 6201 if (fs_info->nodesize < PAGE_SIZE && 6202 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 6203 btrfs_err(fs_info, 6204 "tree block crosses page boundary, start %llu nodesize %u", 6205 start, fs_info->nodesize); 6206 return -EINVAL; 6207 } 6208 if (fs_info->nodesize >= PAGE_SIZE && 6209 !IS_ALIGNED(start, PAGE_SIZE)) { 6210 btrfs_err(fs_info, 6211 "tree block is not page aligned, start %llu nodesize %u", 6212 start, fs_info->nodesize); 6213 return -EINVAL; 6214 } 6215 return 0; 6216 } 6217 6218 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 6219 u64 start, u64 owner_root, int level) 6220 { 6221 unsigned long len = fs_info->nodesize; 6222 int num_pages; 6223 int i; 6224 unsigned long index = start >> PAGE_SHIFT; 6225 struct extent_buffer *eb; 6226 struct extent_buffer *exists = NULL; 6227 struct page *p; 6228 struct address_space *mapping = fs_info->btree_inode->i_mapping; 6229 int uptodate = 1; 6230 int ret; 6231 6232 if (check_eb_alignment(fs_info, start)) 6233 return ERR_PTR(-EINVAL); 6234 6235 #if BITS_PER_LONG == 32 6236 if (start >= MAX_LFS_FILESIZE) { 6237 btrfs_err_rl(fs_info, 6238 "extent buffer %llu is beyond 32bit page cache limit", start); 6239 btrfs_err_32bit_limit(fs_info); 6240 return ERR_PTR(-EOVERFLOW); 6241 } 6242 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6243 btrfs_warn_32bit_limit(fs_info); 6244 #endif 6245 6246 eb = find_extent_buffer(fs_info, start); 6247 if (eb) 6248 return eb; 6249 6250 eb = __alloc_extent_buffer(fs_info, start, len); 6251 if (!eb) 6252 return ERR_PTR(-ENOMEM); 6253 btrfs_set_buffer_lockdep_class(owner_root, eb, level); 6254 6255 num_pages = num_extent_pages(eb); 6256 for (i = 0; i < num_pages; i++, index++) { 6257 struct btrfs_subpage *prealloc = NULL; 6258 6259 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 6260 if (!p) { 6261 exists = ERR_PTR(-ENOMEM); 6262 goto free_eb; 6263 } 6264 6265 /* 6266 * Preallocate page->private for subpage case, so that we won't 6267 * allocate memory with private_lock hold. The memory will be 6268 * freed by attach_extent_buffer_page() or freed manually if 6269 * we exit earlier. 6270 * 6271 * Although we have ensured one subpage eb can only have one 6272 * page, but it may change in the future for 16K page size 6273 * support, so we still preallocate the memory in the loop. 6274 */ 6275 if (fs_info->nodesize < PAGE_SIZE) { 6276 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 6277 if (IS_ERR(prealloc)) { 6278 ret = PTR_ERR(prealloc); 6279 unlock_page(p); 6280 put_page(p); 6281 exists = ERR_PTR(ret); 6282 goto free_eb; 6283 } 6284 } 6285 6286 spin_lock(&mapping->private_lock); 6287 exists = grab_extent_buffer(fs_info, p); 6288 if (exists) { 6289 spin_unlock(&mapping->private_lock); 6290 unlock_page(p); 6291 put_page(p); 6292 mark_extent_buffer_accessed(exists, p); 6293 btrfs_free_subpage(prealloc); 6294 goto free_eb; 6295 } 6296 /* Should not fail, as we have preallocated the memory */ 6297 ret = attach_extent_buffer_page(eb, p, prealloc); 6298 ASSERT(!ret); 6299 /* 6300 * To inform we have extra eb under allocation, so that 6301 * detach_extent_buffer_page() won't release the page private 6302 * when the eb hasn't yet been inserted into radix tree. 6303 * 6304 * The ref will be decreased when the eb released the page, in 6305 * detach_extent_buffer_page(). 6306 * Thus needs no special handling in error path. 6307 */ 6308 btrfs_page_inc_eb_refs(fs_info, p); 6309 spin_unlock(&mapping->private_lock); 6310 6311 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 6312 eb->pages[i] = p; 6313 if (!PageUptodate(p)) 6314 uptodate = 0; 6315 6316 /* 6317 * We can't unlock the pages just yet since the extent buffer 6318 * hasn't been properly inserted in the radix tree, this 6319 * opens a race with btree_release_folio which can free a page 6320 * while we are still filling in all pages for the buffer and 6321 * we could crash. 6322 */ 6323 } 6324 if (uptodate) 6325 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6326 again: 6327 ret = radix_tree_preload(GFP_NOFS); 6328 if (ret) { 6329 exists = ERR_PTR(ret); 6330 goto free_eb; 6331 } 6332 6333 spin_lock(&fs_info->buffer_lock); 6334 ret = radix_tree_insert(&fs_info->buffer_radix, 6335 start >> fs_info->sectorsize_bits, eb); 6336 spin_unlock(&fs_info->buffer_lock); 6337 radix_tree_preload_end(); 6338 if (ret == -EEXIST) { 6339 exists = find_extent_buffer(fs_info, start); 6340 if (exists) 6341 goto free_eb; 6342 else 6343 goto again; 6344 } 6345 /* add one reference for the tree */ 6346 check_buffer_tree_ref(eb); 6347 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 6348 6349 /* 6350 * Now it's safe to unlock the pages because any calls to 6351 * btree_release_folio will correctly detect that a page belongs to a 6352 * live buffer and won't free them prematurely. 6353 */ 6354 for (i = 0; i < num_pages; i++) 6355 unlock_page(eb->pages[i]); 6356 return eb; 6357 6358 free_eb: 6359 WARN_ON(!atomic_dec_and_test(&eb->refs)); 6360 for (i = 0; i < num_pages; i++) { 6361 if (eb->pages[i]) 6362 unlock_page(eb->pages[i]); 6363 } 6364 6365 btrfs_release_extent_buffer(eb); 6366 return exists; 6367 } 6368 6369 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 6370 { 6371 struct extent_buffer *eb = 6372 container_of(head, struct extent_buffer, rcu_head); 6373 6374 __free_extent_buffer(eb); 6375 } 6376 6377 static int release_extent_buffer(struct extent_buffer *eb) 6378 __releases(&eb->refs_lock) 6379 { 6380 lockdep_assert_held(&eb->refs_lock); 6381 6382 WARN_ON(atomic_read(&eb->refs) == 0); 6383 if (atomic_dec_and_test(&eb->refs)) { 6384 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 6385 struct btrfs_fs_info *fs_info = eb->fs_info; 6386 6387 spin_unlock(&eb->refs_lock); 6388 6389 spin_lock(&fs_info->buffer_lock); 6390 radix_tree_delete(&fs_info->buffer_radix, 6391 eb->start >> fs_info->sectorsize_bits); 6392 spin_unlock(&fs_info->buffer_lock); 6393 } else { 6394 spin_unlock(&eb->refs_lock); 6395 } 6396 6397 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list); 6398 /* Should be safe to release our pages at this point */ 6399 btrfs_release_extent_buffer_pages(eb); 6400 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 6401 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 6402 __free_extent_buffer(eb); 6403 return 1; 6404 } 6405 #endif 6406 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 6407 return 1; 6408 } 6409 spin_unlock(&eb->refs_lock); 6410 6411 return 0; 6412 } 6413 6414 void free_extent_buffer(struct extent_buffer *eb) 6415 { 6416 int refs; 6417 int old; 6418 if (!eb) 6419 return; 6420 6421 while (1) { 6422 refs = atomic_read(&eb->refs); 6423 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 6424 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 6425 refs == 1)) 6426 break; 6427 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 6428 if (old == refs) 6429 return; 6430 } 6431 6432 spin_lock(&eb->refs_lock); 6433 if (atomic_read(&eb->refs) == 2 && 6434 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 6435 !extent_buffer_under_io(eb) && 6436 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6437 atomic_dec(&eb->refs); 6438 6439 /* 6440 * I know this is terrible, but it's temporary until we stop tracking 6441 * the uptodate bits and such for the extent buffers. 6442 */ 6443 release_extent_buffer(eb); 6444 } 6445 6446 void free_extent_buffer_stale(struct extent_buffer *eb) 6447 { 6448 if (!eb) 6449 return; 6450 6451 spin_lock(&eb->refs_lock); 6452 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 6453 6454 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 6455 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 6456 atomic_dec(&eb->refs); 6457 release_extent_buffer(eb); 6458 } 6459 6460 static void btree_clear_page_dirty(struct page *page) 6461 { 6462 ASSERT(PageDirty(page)); 6463 ASSERT(PageLocked(page)); 6464 clear_page_dirty_for_io(page); 6465 xa_lock_irq(&page->mapping->i_pages); 6466 if (!PageDirty(page)) 6467 __xa_clear_mark(&page->mapping->i_pages, 6468 page_index(page), PAGECACHE_TAG_DIRTY); 6469 xa_unlock_irq(&page->mapping->i_pages); 6470 } 6471 6472 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 6473 { 6474 struct btrfs_fs_info *fs_info = eb->fs_info; 6475 struct page *page = eb->pages[0]; 6476 bool last; 6477 6478 /* btree_clear_page_dirty() needs page locked */ 6479 lock_page(page); 6480 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 6481 eb->len); 6482 if (last) 6483 btree_clear_page_dirty(page); 6484 unlock_page(page); 6485 WARN_ON(atomic_read(&eb->refs) == 0); 6486 } 6487 6488 void clear_extent_buffer_dirty(const struct extent_buffer *eb) 6489 { 6490 int i; 6491 int num_pages; 6492 struct page *page; 6493 6494 if (eb->fs_info->nodesize < PAGE_SIZE) 6495 return clear_subpage_extent_buffer_dirty(eb); 6496 6497 num_pages = num_extent_pages(eb); 6498 6499 for (i = 0; i < num_pages; i++) { 6500 page = eb->pages[i]; 6501 if (!PageDirty(page)) 6502 continue; 6503 lock_page(page); 6504 btree_clear_page_dirty(page); 6505 ClearPageError(page); 6506 unlock_page(page); 6507 } 6508 WARN_ON(atomic_read(&eb->refs) == 0); 6509 } 6510 6511 bool set_extent_buffer_dirty(struct extent_buffer *eb) 6512 { 6513 int i; 6514 int num_pages; 6515 bool was_dirty; 6516 6517 check_buffer_tree_ref(eb); 6518 6519 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 6520 6521 num_pages = num_extent_pages(eb); 6522 WARN_ON(atomic_read(&eb->refs) == 0); 6523 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 6524 6525 if (!was_dirty) { 6526 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 6527 6528 /* 6529 * For subpage case, we can have other extent buffers in the 6530 * same page, and in clear_subpage_extent_buffer_dirty() we 6531 * have to clear page dirty without subpage lock held. 6532 * This can cause race where our page gets dirty cleared after 6533 * we just set it. 6534 * 6535 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 6536 * its page for other reasons, we can use page lock to prevent 6537 * the above race. 6538 */ 6539 if (subpage) 6540 lock_page(eb->pages[0]); 6541 for (i = 0; i < num_pages; i++) 6542 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 6543 eb->start, eb->len); 6544 if (subpage) 6545 unlock_page(eb->pages[0]); 6546 } 6547 #ifdef CONFIG_BTRFS_DEBUG 6548 for (i = 0; i < num_pages; i++) 6549 ASSERT(PageDirty(eb->pages[i])); 6550 #endif 6551 6552 return was_dirty; 6553 } 6554 6555 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 6556 { 6557 struct btrfs_fs_info *fs_info = eb->fs_info; 6558 struct page *page; 6559 int num_pages; 6560 int i; 6561 6562 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6563 num_pages = num_extent_pages(eb); 6564 for (i = 0; i < num_pages; i++) { 6565 page = eb->pages[i]; 6566 if (!page) 6567 continue; 6568 6569 /* 6570 * This is special handling for metadata subpage, as regular 6571 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6572 */ 6573 if (fs_info->nodesize >= PAGE_SIZE) 6574 ClearPageUptodate(page); 6575 else 6576 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 6577 eb->len); 6578 } 6579 } 6580 6581 void set_extent_buffer_uptodate(struct extent_buffer *eb) 6582 { 6583 struct btrfs_fs_info *fs_info = eb->fs_info; 6584 struct page *page; 6585 int num_pages; 6586 int i; 6587 6588 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6589 num_pages = num_extent_pages(eb); 6590 for (i = 0; i < num_pages; i++) { 6591 page = eb->pages[i]; 6592 6593 /* 6594 * This is special handling for metadata subpage, as regular 6595 * btrfs_is_subpage() can not handle cloned/dummy metadata. 6596 */ 6597 if (fs_info->nodesize >= PAGE_SIZE) 6598 SetPageUptodate(page); 6599 else 6600 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 6601 eb->len); 6602 } 6603 } 6604 6605 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 6606 int mirror_num) 6607 { 6608 struct btrfs_fs_info *fs_info = eb->fs_info; 6609 struct extent_io_tree *io_tree; 6610 struct page *page = eb->pages[0]; 6611 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6612 int ret = 0; 6613 6614 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 6615 ASSERT(PagePrivate(page)); 6616 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 6617 6618 if (wait == WAIT_NONE) { 6619 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1)) 6620 return -EAGAIN; 6621 } else { 6622 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6623 if (ret < 0) 6624 return ret; 6625 } 6626 6627 ret = 0; 6628 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 6629 PageUptodate(page) || 6630 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 6631 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6632 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1); 6633 return ret; 6634 } 6635 6636 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6637 eb->read_mirror = 0; 6638 atomic_set(&eb->io_pages, 1); 6639 check_buffer_tree_ref(eb); 6640 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 6641 6642 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 6643 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl, 6644 page, eb->start, eb->len, 6645 eb->start - page_offset(page), 6646 end_bio_extent_readpage, mirror_num, 0, 6647 true); 6648 if (ret) { 6649 /* 6650 * In the endio function, if we hit something wrong we will 6651 * increase the io_pages, so here we need to decrease it for 6652 * error path. 6653 */ 6654 atomic_dec(&eb->io_pages); 6655 } 6656 if (bio_ctrl.bio) { 6657 submit_one_bio(bio_ctrl.bio, mirror_num, 0); 6658 bio_ctrl.bio = NULL; 6659 } 6660 if (ret || wait != WAIT_COMPLETE) 6661 return ret; 6662 6663 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED); 6664 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6665 ret = -EIO; 6666 return ret; 6667 } 6668 6669 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num) 6670 { 6671 int i; 6672 struct page *page; 6673 int err; 6674 int ret = 0; 6675 int locked_pages = 0; 6676 int all_uptodate = 1; 6677 int num_pages; 6678 unsigned long num_reads = 0; 6679 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 6680 6681 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 6682 return 0; 6683 6684 /* 6685 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 6686 * operation, which could potentially still be in flight. In this case 6687 * we simply want to return an error. 6688 */ 6689 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 6690 return -EIO; 6691 6692 if (eb->fs_info->nodesize < PAGE_SIZE) 6693 return read_extent_buffer_subpage(eb, wait, mirror_num); 6694 6695 num_pages = num_extent_pages(eb); 6696 for (i = 0; i < num_pages; i++) { 6697 page = eb->pages[i]; 6698 if (wait == WAIT_NONE) { 6699 /* 6700 * WAIT_NONE is only utilized by readahead. If we can't 6701 * acquire the lock atomically it means either the eb 6702 * is being read out or under modification. 6703 * Either way the eb will be or has been cached, 6704 * readahead can exit safely. 6705 */ 6706 if (!trylock_page(page)) 6707 goto unlock_exit; 6708 } else { 6709 lock_page(page); 6710 } 6711 locked_pages++; 6712 } 6713 /* 6714 * We need to firstly lock all pages to make sure that 6715 * the uptodate bit of our pages won't be affected by 6716 * clear_extent_buffer_uptodate(). 6717 */ 6718 for (i = 0; i < num_pages; i++) { 6719 page = eb->pages[i]; 6720 if (!PageUptodate(page)) { 6721 num_reads++; 6722 all_uptodate = 0; 6723 } 6724 } 6725 6726 if (all_uptodate) { 6727 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 6728 goto unlock_exit; 6729 } 6730 6731 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 6732 eb->read_mirror = 0; 6733 atomic_set(&eb->io_pages, num_reads); 6734 /* 6735 * It is possible for release_folio to clear the TREE_REF bit before we 6736 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 6737 */ 6738 check_buffer_tree_ref(eb); 6739 for (i = 0; i < num_pages; i++) { 6740 page = eb->pages[i]; 6741 6742 if (!PageUptodate(page)) { 6743 if (ret) { 6744 atomic_dec(&eb->io_pages); 6745 unlock_page(page); 6746 continue; 6747 } 6748 6749 ClearPageError(page); 6750 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL, 6751 &bio_ctrl, page, page_offset(page), 6752 PAGE_SIZE, 0, end_bio_extent_readpage, 6753 mirror_num, 0, false); 6754 if (err) { 6755 /* 6756 * We failed to submit the bio so it's the 6757 * caller's responsibility to perform cleanup 6758 * i.e unlock page/set error bit. 6759 */ 6760 ret = err; 6761 SetPageError(page); 6762 unlock_page(page); 6763 atomic_dec(&eb->io_pages); 6764 } 6765 } else { 6766 unlock_page(page); 6767 } 6768 } 6769 6770 if (bio_ctrl.bio) { 6771 submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.compress_type); 6772 bio_ctrl.bio = NULL; 6773 } 6774 6775 if (ret || wait != WAIT_COMPLETE) 6776 return ret; 6777 6778 for (i = 0; i < num_pages; i++) { 6779 page = eb->pages[i]; 6780 wait_on_page_locked(page); 6781 if (!PageUptodate(page)) 6782 ret = -EIO; 6783 } 6784 6785 return ret; 6786 6787 unlock_exit: 6788 while (locked_pages > 0) { 6789 locked_pages--; 6790 page = eb->pages[locked_pages]; 6791 unlock_page(page); 6792 } 6793 return ret; 6794 } 6795 6796 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 6797 unsigned long len) 6798 { 6799 btrfs_warn(eb->fs_info, 6800 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 6801 eb->start, eb->len, start, len); 6802 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6803 6804 return true; 6805 } 6806 6807 /* 6808 * Check if the [start, start + len) range is valid before reading/writing 6809 * the eb. 6810 * NOTE: @start and @len are offset inside the eb, not logical address. 6811 * 6812 * Caller should not touch the dst/src memory if this function returns error. 6813 */ 6814 static inline int check_eb_range(const struct extent_buffer *eb, 6815 unsigned long start, unsigned long len) 6816 { 6817 unsigned long offset; 6818 6819 /* start, start + len should not go beyond eb->len nor overflow */ 6820 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 6821 return report_eb_range(eb, start, len); 6822 6823 return false; 6824 } 6825 6826 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 6827 unsigned long start, unsigned long len) 6828 { 6829 size_t cur; 6830 size_t offset; 6831 struct page *page; 6832 char *kaddr; 6833 char *dst = (char *)dstv; 6834 unsigned long i = get_eb_page_index(start); 6835 6836 if (check_eb_range(eb, start, len)) 6837 return; 6838 6839 offset = get_eb_offset_in_page(eb, start); 6840 6841 while (len > 0) { 6842 page = eb->pages[i]; 6843 6844 cur = min(len, (PAGE_SIZE - offset)); 6845 kaddr = page_address(page); 6846 memcpy(dst, kaddr + offset, cur); 6847 6848 dst += cur; 6849 len -= cur; 6850 offset = 0; 6851 i++; 6852 } 6853 } 6854 6855 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 6856 void __user *dstv, 6857 unsigned long start, unsigned long len) 6858 { 6859 size_t cur; 6860 size_t offset; 6861 struct page *page; 6862 char *kaddr; 6863 char __user *dst = (char __user *)dstv; 6864 unsigned long i = get_eb_page_index(start); 6865 int ret = 0; 6866 6867 WARN_ON(start > eb->len); 6868 WARN_ON(start + len > eb->start + eb->len); 6869 6870 offset = get_eb_offset_in_page(eb, start); 6871 6872 while (len > 0) { 6873 page = eb->pages[i]; 6874 6875 cur = min(len, (PAGE_SIZE - offset)); 6876 kaddr = page_address(page); 6877 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 6878 ret = -EFAULT; 6879 break; 6880 } 6881 6882 dst += cur; 6883 len -= cur; 6884 offset = 0; 6885 i++; 6886 } 6887 6888 return ret; 6889 } 6890 6891 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 6892 unsigned long start, unsigned long len) 6893 { 6894 size_t cur; 6895 size_t offset; 6896 struct page *page; 6897 char *kaddr; 6898 char *ptr = (char *)ptrv; 6899 unsigned long i = get_eb_page_index(start); 6900 int ret = 0; 6901 6902 if (check_eb_range(eb, start, len)) 6903 return -EINVAL; 6904 6905 offset = get_eb_offset_in_page(eb, start); 6906 6907 while (len > 0) { 6908 page = eb->pages[i]; 6909 6910 cur = min(len, (PAGE_SIZE - offset)); 6911 6912 kaddr = page_address(page); 6913 ret = memcmp(ptr, kaddr + offset, cur); 6914 if (ret) 6915 break; 6916 6917 ptr += cur; 6918 len -= cur; 6919 offset = 0; 6920 i++; 6921 } 6922 return ret; 6923 } 6924 6925 /* 6926 * Check that the extent buffer is uptodate. 6927 * 6928 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 6929 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 6930 */ 6931 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 6932 struct page *page) 6933 { 6934 struct btrfs_fs_info *fs_info = eb->fs_info; 6935 6936 /* 6937 * If we are using the commit root we could potentially clear a page 6938 * Uptodate while we're using the extent buffer that we've previously 6939 * looked up. We don't want to complain in this case, as the page was 6940 * valid before, we just didn't write it out. Instead we want to catch 6941 * the case where we didn't actually read the block properly, which 6942 * would have !PageUptodate && !PageError, as we clear PageError before 6943 * reading. 6944 */ 6945 if (fs_info->nodesize < PAGE_SIZE) { 6946 bool uptodate, error; 6947 6948 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 6949 eb->start, eb->len); 6950 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 6951 WARN_ON(!uptodate && !error); 6952 } else { 6953 WARN_ON(!PageUptodate(page) && !PageError(page)); 6954 } 6955 } 6956 6957 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 6958 const void *srcv) 6959 { 6960 char *kaddr; 6961 6962 assert_eb_page_uptodate(eb, eb->pages[0]); 6963 kaddr = page_address(eb->pages[0]) + 6964 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 6965 chunk_tree_uuid)); 6966 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6967 } 6968 6969 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 6970 { 6971 char *kaddr; 6972 6973 assert_eb_page_uptodate(eb, eb->pages[0]); 6974 kaddr = page_address(eb->pages[0]) + 6975 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 6976 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 6977 } 6978 6979 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 6980 unsigned long start, unsigned long len) 6981 { 6982 size_t cur; 6983 size_t offset; 6984 struct page *page; 6985 char *kaddr; 6986 char *src = (char *)srcv; 6987 unsigned long i = get_eb_page_index(start); 6988 6989 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 6990 6991 if (check_eb_range(eb, start, len)) 6992 return; 6993 6994 offset = get_eb_offset_in_page(eb, start); 6995 6996 while (len > 0) { 6997 page = eb->pages[i]; 6998 assert_eb_page_uptodate(eb, page); 6999 7000 cur = min(len, PAGE_SIZE - offset); 7001 kaddr = page_address(page); 7002 memcpy(kaddr + offset, src, cur); 7003 7004 src += cur; 7005 len -= cur; 7006 offset = 0; 7007 i++; 7008 } 7009 } 7010 7011 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 7012 unsigned long len) 7013 { 7014 size_t cur; 7015 size_t offset; 7016 struct page *page; 7017 char *kaddr; 7018 unsigned long i = get_eb_page_index(start); 7019 7020 if (check_eb_range(eb, start, len)) 7021 return; 7022 7023 offset = get_eb_offset_in_page(eb, start); 7024 7025 while (len > 0) { 7026 page = eb->pages[i]; 7027 assert_eb_page_uptodate(eb, page); 7028 7029 cur = min(len, PAGE_SIZE - offset); 7030 kaddr = page_address(page); 7031 memset(kaddr + offset, 0, cur); 7032 7033 len -= cur; 7034 offset = 0; 7035 i++; 7036 } 7037 } 7038 7039 void copy_extent_buffer_full(const struct extent_buffer *dst, 7040 const struct extent_buffer *src) 7041 { 7042 int i; 7043 int num_pages; 7044 7045 ASSERT(dst->len == src->len); 7046 7047 if (dst->fs_info->nodesize >= PAGE_SIZE) { 7048 num_pages = num_extent_pages(dst); 7049 for (i = 0; i < num_pages; i++) 7050 copy_page(page_address(dst->pages[i]), 7051 page_address(src->pages[i])); 7052 } else { 7053 size_t src_offset = get_eb_offset_in_page(src, 0); 7054 size_t dst_offset = get_eb_offset_in_page(dst, 0); 7055 7056 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 7057 memcpy(page_address(dst->pages[0]) + dst_offset, 7058 page_address(src->pages[0]) + src_offset, 7059 src->len); 7060 } 7061 } 7062 7063 void copy_extent_buffer(const struct extent_buffer *dst, 7064 const struct extent_buffer *src, 7065 unsigned long dst_offset, unsigned long src_offset, 7066 unsigned long len) 7067 { 7068 u64 dst_len = dst->len; 7069 size_t cur; 7070 size_t offset; 7071 struct page *page; 7072 char *kaddr; 7073 unsigned long i = get_eb_page_index(dst_offset); 7074 7075 if (check_eb_range(dst, dst_offset, len) || 7076 check_eb_range(src, src_offset, len)) 7077 return; 7078 7079 WARN_ON(src->len != dst_len); 7080 7081 offset = get_eb_offset_in_page(dst, dst_offset); 7082 7083 while (len > 0) { 7084 page = dst->pages[i]; 7085 assert_eb_page_uptodate(dst, page); 7086 7087 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 7088 7089 kaddr = page_address(page); 7090 read_extent_buffer(src, kaddr + offset, src_offset, cur); 7091 7092 src_offset += cur; 7093 len -= cur; 7094 offset = 0; 7095 i++; 7096 } 7097 } 7098 7099 /* 7100 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 7101 * given bit number 7102 * @eb: the extent buffer 7103 * @start: offset of the bitmap item in the extent buffer 7104 * @nr: bit number 7105 * @page_index: return index of the page in the extent buffer that contains the 7106 * given bit number 7107 * @page_offset: return offset into the page given by page_index 7108 * 7109 * This helper hides the ugliness of finding the byte in an extent buffer which 7110 * contains a given bit. 7111 */ 7112 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 7113 unsigned long start, unsigned long nr, 7114 unsigned long *page_index, 7115 size_t *page_offset) 7116 { 7117 size_t byte_offset = BIT_BYTE(nr); 7118 size_t offset; 7119 7120 /* 7121 * The byte we want is the offset of the extent buffer + the offset of 7122 * the bitmap item in the extent buffer + the offset of the byte in the 7123 * bitmap item. 7124 */ 7125 offset = start + offset_in_page(eb->start) + byte_offset; 7126 7127 *page_index = offset >> PAGE_SHIFT; 7128 *page_offset = offset_in_page(offset); 7129 } 7130 7131 /** 7132 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set 7133 * @eb: the extent buffer 7134 * @start: offset of the bitmap item in the extent buffer 7135 * @nr: bit number to test 7136 */ 7137 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 7138 unsigned long nr) 7139 { 7140 u8 *kaddr; 7141 struct page *page; 7142 unsigned long i; 7143 size_t offset; 7144 7145 eb_bitmap_offset(eb, start, nr, &i, &offset); 7146 page = eb->pages[i]; 7147 assert_eb_page_uptodate(eb, page); 7148 kaddr = page_address(page); 7149 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 7150 } 7151 7152 /** 7153 * extent_buffer_bitmap_set - set an area of a bitmap 7154 * @eb: the extent buffer 7155 * @start: offset of the bitmap item in the extent buffer 7156 * @pos: bit number of the first bit 7157 * @len: number of bits to set 7158 */ 7159 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 7160 unsigned long pos, unsigned long len) 7161 { 7162 u8 *kaddr; 7163 struct page *page; 7164 unsigned long i; 7165 size_t offset; 7166 const unsigned int size = pos + len; 7167 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7168 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 7169 7170 eb_bitmap_offset(eb, start, pos, &i, &offset); 7171 page = eb->pages[i]; 7172 assert_eb_page_uptodate(eb, page); 7173 kaddr = page_address(page); 7174 7175 while (len >= bits_to_set) { 7176 kaddr[offset] |= mask_to_set; 7177 len -= bits_to_set; 7178 bits_to_set = BITS_PER_BYTE; 7179 mask_to_set = ~0; 7180 if (++offset >= PAGE_SIZE && len > 0) { 7181 offset = 0; 7182 page = eb->pages[++i]; 7183 assert_eb_page_uptodate(eb, page); 7184 kaddr = page_address(page); 7185 } 7186 } 7187 if (len) { 7188 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 7189 kaddr[offset] |= mask_to_set; 7190 } 7191 } 7192 7193 7194 /** 7195 * extent_buffer_bitmap_clear - clear an area of a bitmap 7196 * @eb: the extent buffer 7197 * @start: offset of the bitmap item in the extent buffer 7198 * @pos: bit number of the first bit 7199 * @len: number of bits to clear 7200 */ 7201 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 7202 unsigned long start, unsigned long pos, 7203 unsigned long len) 7204 { 7205 u8 *kaddr; 7206 struct page *page; 7207 unsigned long i; 7208 size_t offset; 7209 const unsigned int size = pos + len; 7210 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 7211 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 7212 7213 eb_bitmap_offset(eb, start, pos, &i, &offset); 7214 page = eb->pages[i]; 7215 assert_eb_page_uptodate(eb, page); 7216 kaddr = page_address(page); 7217 7218 while (len >= bits_to_clear) { 7219 kaddr[offset] &= ~mask_to_clear; 7220 len -= bits_to_clear; 7221 bits_to_clear = BITS_PER_BYTE; 7222 mask_to_clear = ~0; 7223 if (++offset >= PAGE_SIZE && len > 0) { 7224 offset = 0; 7225 page = eb->pages[++i]; 7226 assert_eb_page_uptodate(eb, page); 7227 kaddr = page_address(page); 7228 } 7229 } 7230 if (len) { 7231 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 7232 kaddr[offset] &= ~mask_to_clear; 7233 } 7234 } 7235 7236 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 7237 { 7238 unsigned long distance = (src > dst) ? src - dst : dst - src; 7239 return distance < len; 7240 } 7241 7242 static void copy_pages(struct page *dst_page, struct page *src_page, 7243 unsigned long dst_off, unsigned long src_off, 7244 unsigned long len) 7245 { 7246 char *dst_kaddr = page_address(dst_page); 7247 char *src_kaddr; 7248 int must_memmove = 0; 7249 7250 if (dst_page != src_page) { 7251 src_kaddr = page_address(src_page); 7252 } else { 7253 src_kaddr = dst_kaddr; 7254 if (areas_overlap(src_off, dst_off, len)) 7255 must_memmove = 1; 7256 } 7257 7258 if (must_memmove) 7259 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 7260 else 7261 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 7262 } 7263 7264 void memcpy_extent_buffer(const struct extent_buffer *dst, 7265 unsigned long dst_offset, unsigned long src_offset, 7266 unsigned long len) 7267 { 7268 size_t cur; 7269 size_t dst_off_in_page; 7270 size_t src_off_in_page; 7271 unsigned long dst_i; 7272 unsigned long src_i; 7273 7274 if (check_eb_range(dst, dst_offset, len) || 7275 check_eb_range(dst, src_offset, len)) 7276 return; 7277 7278 while (len > 0) { 7279 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 7280 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 7281 7282 dst_i = get_eb_page_index(dst_offset); 7283 src_i = get_eb_page_index(src_offset); 7284 7285 cur = min(len, (unsigned long)(PAGE_SIZE - 7286 src_off_in_page)); 7287 cur = min_t(unsigned long, cur, 7288 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 7289 7290 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7291 dst_off_in_page, src_off_in_page, cur); 7292 7293 src_offset += cur; 7294 dst_offset += cur; 7295 len -= cur; 7296 } 7297 } 7298 7299 void memmove_extent_buffer(const struct extent_buffer *dst, 7300 unsigned long dst_offset, unsigned long src_offset, 7301 unsigned long len) 7302 { 7303 size_t cur; 7304 size_t dst_off_in_page; 7305 size_t src_off_in_page; 7306 unsigned long dst_end = dst_offset + len - 1; 7307 unsigned long src_end = src_offset + len - 1; 7308 unsigned long dst_i; 7309 unsigned long src_i; 7310 7311 if (check_eb_range(dst, dst_offset, len) || 7312 check_eb_range(dst, src_offset, len)) 7313 return; 7314 if (dst_offset < src_offset) { 7315 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 7316 return; 7317 } 7318 while (len > 0) { 7319 dst_i = get_eb_page_index(dst_end); 7320 src_i = get_eb_page_index(src_end); 7321 7322 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 7323 src_off_in_page = get_eb_offset_in_page(dst, src_end); 7324 7325 cur = min_t(unsigned long, len, src_off_in_page + 1); 7326 cur = min(cur, dst_off_in_page + 1); 7327 copy_pages(dst->pages[dst_i], dst->pages[src_i], 7328 dst_off_in_page - cur + 1, 7329 src_off_in_page - cur + 1, cur); 7330 7331 dst_end -= cur; 7332 src_end -= cur; 7333 len -= cur; 7334 } 7335 } 7336 7337 #define GANG_LOOKUP_SIZE 16 7338 static struct extent_buffer *get_next_extent_buffer( 7339 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 7340 { 7341 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 7342 struct extent_buffer *found = NULL; 7343 u64 page_start = page_offset(page); 7344 u64 cur = page_start; 7345 7346 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 7347 lockdep_assert_held(&fs_info->buffer_lock); 7348 7349 while (cur < page_start + PAGE_SIZE) { 7350 int ret; 7351 int i; 7352 7353 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 7354 (void **)gang, cur >> fs_info->sectorsize_bits, 7355 min_t(unsigned int, GANG_LOOKUP_SIZE, 7356 PAGE_SIZE / fs_info->nodesize)); 7357 if (ret == 0) 7358 goto out; 7359 for (i = 0; i < ret; i++) { 7360 /* Already beyond page end */ 7361 if (gang[i]->start >= page_start + PAGE_SIZE) 7362 goto out; 7363 /* Found one */ 7364 if (gang[i]->start >= bytenr) { 7365 found = gang[i]; 7366 goto out; 7367 } 7368 } 7369 cur = gang[ret - 1]->start + gang[ret - 1]->len; 7370 } 7371 out: 7372 return found; 7373 } 7374 7375 static int try_release_subpage_extent_buffer(struct page *page) 7376 { 7377 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7378 u64 cur = page_offset(page); 7379 const u64 end = page_offset(page) + PAGE_SIZE; 7380 int ret; 7381 7382 while (cur < end) { 7383 struct extent_buffer *eb = NULL; 7384 7385 /* 7386 * Unlike try_release_extent_buffer() which uses page->private 7387 * to grab buffer, for subpage case we rely on radix tree, thus 7388 * we need to ensure radix tree consistency. 7389 * 7390 * We also want an atomic snapshot of the radix tree, thus go 7391 * with spinlock rather than RCU. 7392 */ 7393 spin_lock(&fs_info->buffer_lock); 7394 eb = get_next_extent_buffer(fs_info, page, cur); 7395 if (!eb) { 7396 /* No more eb in the page range after or at cur */ 7397 spin_unlock(&fs_info->buffer_lock); 7398 break; 7399 } 7400 cur = eb->start + eb->len; 7401 7402 /* 7403 * The same as try_release_extent_buffer(), to ensure the eb 7404 * won't disappear out from under us. 7405 */ 7406 spin_lock(&eb->refs_lock); 7407 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7408 spin_unlock(&eb->refs_lock); 7409 spin_unlock(&fs_info->buffer_lock); 7410 break; 7411 } 7412 spin_unlock(&fs_info->buffer_lock); 7413 7414 /* 7415 * If tree ref isn't set then we know the ref on this eb is a 7416 * real ref, so just return, this eb will likely be freed soon 7417 * anyway. 7418 */ 7419 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7420 spin_unlock(&eb->refs_lock); 7421 break; 7422 } 7423 7424 /* 7425 * Here we don't care about the return value, we will always 7426 * check the page private at the end. And 7427 * release_extent_buffer() will release the refs_lock. 7428 */ 7429 release_extent_buffer(eb); 7430 } 7431 /* 7432 * Finally to check if we have cleared page private, as if we have 7433 * released all ebs in the page, the page private should be cleared now. 7434 */ 7435 spin_lock(&page->mapping->private_lock); 7436 if (!PagePrivate(page)) 7437 ret = 1; 7438 else 7439 ret = 0; 7440 spin_unlock(&page->mapping->private_lock); 7441 return ret; 7442 7443 } 7444 7445 int try_release_extent_buffer(struct page *page) 7446 { 7447 struct extent_buffer *eb; 7448 7449 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 7450 return try_release_subpage_extent_buffer(page); 7451 7452 /* 7453 * We need to make sure nobody is changing page->private, as we rely on 7454 * page->private as the pointer to extent buffer. 7455 */ 7456 spin_lock(&page->mapping->private_lock); 7457 if (!PagePrivate(page)) { 7458 spin_unlock(&page->mapping->private_lock); 7459 return 1; 7460 } 7461 7462 eb = (struct extent_buffer *)page->private; 7463 BUG_ON(!eb); 7464 7465 /* 7466 * This is a little awful but should be ok, we need to make sure that 7467 * the eb doesn't disappear out from under us while we're looking at 7468 * this page. 7469 */ 7470 spin_lock(&eb->refs_lock); 7471 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 7472 spin_unlock(&eb->refs_lock); 7473 spin_unlock(&page->mapping->private_lock); 7474 return 0; 7475 } 7476 spin_unlock(&page->mapping->private_lock); 7477 7478 /* 7479 * If tree ref isn't set then we know the ref on this eb is a real ref, 7480 * so just return, this page will likely be freed soon anyway. 7481 */ 7482 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 7483 spin_unlock(&eb->refs_lock); 7484 return 0; 7485 } 7486 7487 return release_extent_buffer(eb); 7488 } 7489 7490 /* 7491 * btrfs_readahead_tree_block - attempt to readahead a child block 7492 * @fs_info: the fs_info 7493 * @bytenr: bytenr to read 7494 * @owner_root: objectid of the root that owns this eb 7495 * @gen: generation for the uptodate check, can be 0 7496 * @level: level for the eb 7497 * 7498 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 7499 * normal uptodate check of the eb, without checking the generation. If we have 7500 * to read the block we will not block on anything. 7501 */ 7502 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 7503 u64 bytenr, u64 owner_root, u64 gen, int level) 7504 { 7505 struct extent_buffer *eb; 7506 int ret; 7507 7508 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 7509 if (IS_ERR(eb)) 7510 return; 7511 7512 if (btrfs_buffer_uptodate(eb, gen, 1)) { 7513 free_extent_buffer(eb); 7514 return; 7515 } 7516 7517 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0); 7518 if (ret < 0) 7519 free_extent_buffer_stale(eb); 7520 else 7521 free_extent_buffer(eb); 7522 } 7523 7524 /* 7525 * btrfs_readahead_node_child - readahead a node's child block 7526 * @node: parent node we're reading from 7527 * @slot: slot in the parent node for the child we want to read 7528 * 7529 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 7530 * the slot in the node provided. 7531 */ 7532 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 7533 { 7534 btrfs_readahead_tree_block(node->fs_info, 7535 btrfs_node_blockptr(node, slot), 7536 btrfs_header_owner(node), 7537 btrfs_node_ptr_generation(node, slot), 7538 btrfs_header_level(node) - 1); 7539 } 7540