xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 2455f0e1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "file-item.h"
36 #include "file.h"
37 #include "dev-replace.h"
38 #include "super.h"
39 
40 static struct kmem_cache *extent_buffer_cache;
41 
42 #ifdef CONFIG_BTRFS_DEBUG
43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44 {
45 	struct btrfs_fs_info *fs_info = eb->fs_info;
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 	list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51 }
52 
53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54 {
55 	struct btrfs_fs_info *fs_info = eb->fs_info;
56 	unsigned long flags;
57 
58 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 	list_del(&eb->leak_list);
60 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61 }
62 
63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 {
65 	struct extent_buffer *eb;
66 	unsigned long flags;
67 
68 	/*
69 	 * If we didn't get into open_ctree our allocated_ebs will not be
70 	 * initialized, so just skip this.
71 	 */
72 	if (!fs_info->allocated_ebs.next)
73 		return;
74 
75 	WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 	while (!list_empty(&fs_info->allocated_ebs)) {
78 		eb = list_first_entry(&fs_info->allocated_ebs,
79 				      struct extent_buffer, leak_list);
80 		pr_err(
81 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 		       btrfs_header_owner(eb));
84 		list_del(&eb->leak_list);
85 		kmem_cache_free(extent_buffer_cache, eb);
86 	}
87 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 }
89 #else
90 #define btrfs_leak_debug_add_eb(eb)			do {} while (0)
91 #define btrfs_leak_debug_del_eb(eb)			do {} while (0)
92 #endif
93 
94 /*
95  * Structure to record info about the bio being assembled, and other info like
96  * how many bytes are there before stripe/ordered extent boundary.
97  */
98 struct btrfs_bio_ctrl {
99 	struct bio *bio;
100 	int mirror_num;
101 	enum btrfs_compression_type compress_type;
102 	u32 len_to_stripe_boundary;
103 	u32 len_to_oe_boundary;
104 	btrfs_bio_end_io_t end_io_func;
105 
106 	/*
107 	 * This is for metadata read, to provide the extra needed verification
108 	 * info.  This has to be provided for submit_one_bio(), as
109 	 * submit_one_bio() can submit a bio if it ends at stripe boundary.  If
110 	 * no such parent_check is provided, the metadata can hit false alert at
111 	 * endio time.
112 	 */
113 	struct btrfs_tree_parent_check *parent_check;
114 
115 	/*
116 	 * Tell writepage not to lock the state bits for this range, it still
117 	 * does the unlocking.
118 	 */
119 	bool extent_locked;
120 
121 	/* Tell the submit_bio code to use REQ_SYNC */
122 	bool sync_io;
123 };
124 
125 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
126 {
127 	struct bio *bio;
128 	struct bio_vec *bv;
129 	struct btrfs_inode *inode;
130 	int mirror_num;
131 
132 	if (!bio_ctrl->bio)
133 		return;
134 
135 	bio = bio_ctrl->bio;
136 	bv = bio_first_bvec_all(bio);
137 	inode = BTRFS_I(bv->bv_page->mapping->host);
138 	mirror_num = bio_ctrl->mirror_num;
139 
140 	/* Caller should ensure the bio has at least some range added */
141 	ASSERT(bio->bi_iter.bi_size);
142 
143 	btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
144 
145 	if (!is_data_inode(&inode->vfs_inode)) {
146 		if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
147 			/*
148 			 * For metadata read, we should have the parent_check,
149 			 * and copy it to bbio for metadata verification.
150 			 */
151 			ASSERT(bio_ctrl->parent_check);
152 			memcpy(&btrfs_bio(bio)->parent_check,
153 			       bio_ctrl->parent_check,
154 			       sizeof(struct btrfs_tree_parent_check));
155 		}
156 		btrfs_submit_metadata_bio(inode, bio, mirror_num);
157 	} else if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
158 		btrfs_submit_data_write_bio(inode, bio, mirror_num);
159 	} else {
160 		btrfs_submit_data_read_bio(inode, bio, mirror_num,
161 					   bio_ctrl->compress_type);
162 	}
163 
164 	/* The bio is owned by the end_io handler now */
165 	bio_ctrl->bio = NULL;
166 }
167 
168 /*
169  * Submit or fail the current bio in the bio_ctrl structure.
170  */
171 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
172 {
173 	struct bio *bio = bio_ctrl->bio;
174 
175 	if (!bio)
176 		return;
177 
178 	if (ret) {
179 		ASSERT(ret < 0);
180 		btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
181 		/* The bio is owned by the end_io handler now */
182 		bio_ctrl->bio = NULL;
183 	} else {
184 		submit_one_bio(bio_ctrl);
185 	}
186 }
187 
188 int __init extent_buffer_init_cachep(void)
189 {
190 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
191 			sizeof(struct extent_buffer), 0,
192 			SLAB_MEM_SPREAD, NULL);
193 	if (!extent_buffer_cache)
194 		return -ENOMEM;
195 
196 	return 0;
197 }
198 
199 void __cold extent_buffer_free_cachep(void)
200 {
201 	/*
202 	 * Make sure all delayed rcu free are flushed before we
203 	 * destroy caches.
204 	 */
205 	rcu_barrier();
206 	kmem_cache_destroy(extent_buffer_cache);
207 }
208 
209 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
210 {
211 	unsigned long index = start >> PAGE_SHIFT;
212 	unsigned long end_index = end >> PAGE_SHIFT;
213 	struct page *page;
214 
215 	while (index <= end_index) {
216 		page = find_get_page(inode->i_mapping, index);
217 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
218 		clear_page_dirty_for_io(page);
219 		put_page(page);
220 		index++;
221 	}
222 }
223 
224 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
225 {
226 	struct address_space *mapping = inode->i_mapping;
227 	unsigned long index = start >> PAGE_SHIFT;
228 	unsigned long end_index = end >> PAGE_SHIFT;
229 	struct folio *folio;
230 
231 	while (index <= end_index) {
232 		folio = filemap_get_folio(mapping, index);
233 		filemap_dirty_folio(mapping, folio);
234 		folio_account_redirty(folio);
235 		index += folio_nr_pages(folio);
236 		folio_put(folio);
237 	}
238 }
239 
240 /*
241  * Process one page for __process_pages_contig().
242  *
243  * Return >0 if we hit @page == @locked_page.
244  * Return 0 if we updated the page status.
245  * Return -EGAIN if the we need to try again.
246  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
247  */
248 static int process_one_page(struct btrfs_fs_info *fs_info,
249 			    struct address_space *mapping,
250 			    struct page *page, struct page *locked_page,
251 			    unsigned long page_ops, u64 start, u64 end)
252 {
253 	u32 len;
254 
255 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
256 	len = end + 1 - start;
257 
258 	if (page_ops & PAGE_SET_ORDERED)
259 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
260 	if (page_ops & PAGE_SET_ERROR)
261 		btrfs_page_clamp_set_error(fs_info, page, start, len);
262 	if (page_ops & PAGE_START_WRITEBACK) {
263 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
264 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
265 	}
266 	if (page_ops & PAGE_END_WRITEBACK)
267 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
268 
269 	if (page == locked_page)
270 		return 1;
271 
272 	if (page_ops & PAGE_LOCK) {
273 		int ret;
274 
275 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
276 		if (ret)
277 			return ret;
278 		if (!PageDirty(page) || page->mapping != mapping) {
279 			btrfs_page_end_writer_lock(fs_info, page, start, len);
280 			return -EAGAIN;
281 		}
282 	}
283 	if (page_ops & PAGE_UNLOCK)
284 		btrfs_page_end_writer_lock(fs_info, page, start, len);
285 	return 0;
286 }
287 
288 static int __process_pages_contig(struct address_space *mapping,
289 				  struct page *locked_page,
290 				  u64 start, u64 end, unsigned long page_ops,
291 				  u64 *processed_end)
292 {
293 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
294 	pgoff_t start_index = start >> PAGE_SHIFT;
295 	pgoff_t end_index = end >> PAGE_SHIFT;
296 	pgoff_t index = start_index;
297 	unsigned long pages_processed = 0;
298 	struct folio_batch fbatch;
299 	int err = 0;
300 	int i;
301 
302 	if (page_ops & PAGE_LOCK) {
303 		ASSERT(page_ops == PAGE_LOCK);
304 		ASSERT(processed_end && *processed_end == start);
305 	}
306 
307 	if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
308 		mapping_set_error(mapping, -EIO);
309 
310 	folio_batch_init(&fbatch);
311 	while (index <= end_index) {
312 		int found_folios;
313 
314 		found_folios = filemap_get_folios_contig(mapping, &index,
315 				end_index, &fbatch);
316 
317 		if (found_folios == 0) {
318 			/*
319 			 * Only if we're going to lock these pages, we can find
320 			 * nothing at @index.
321 			 */
322 			ASSERT(page_ops & PAGE_LOCK);
323 			err = -EAGAIN;
324 			goto out;
325 		}
326 
327 		for (i = 0; i < found_folios; i++) {
328 			int process_ret;
329 			struct folio *folio = fbatch.folios[i];
330 			process_ret = process_one_page(fs_info, mapping,
331 					&folio->page, locked_page, page_ops,
332 					start, end);
333 			if (process_ret < 0) {
334 				err = -EAGAIN;
335 				folio_batch_release(&fbatch);
336 				goto out;
337 			}
338 			pages_processed += folio_nr_pages(folio);
339 		}
340 		folio_batch_release(&fbatch);
341 		cond_resched();
342 	}
343 out:
344 	if (err && processed_end) {
345 		/*
346 		 * Update @processed_end. I know this is awful since it has
347 		 * two different return value patterns (inclusive vs exclusive).
348 		 *
349 		 * But the exclusive pattern is necessary if @start is 0, or we
350 		 * underflow and check against processed_end won't work as
351 		 * expected.
352 		 */
353 		if (pages_processed)
354 			*processed_end = min(end,
355 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
356 		else
357 			*processed_end = start;
358 	}
359 	return err;
360 }
361 
362 static noinline void __unlock_for_delalloc(struct inode *inode,
363 					   struct page *locked_page,
364 					   u64 start, u64 end)
365 {
366 	unsigned long index = start >> PAGE_SHIFT;
367 	unsigned long end_index = end >> PAGE_SHIFT;
368 
369 	ASSERT(locked_page);
370 	if (index == locked_page->index && end_index == index)
371 		return;
372 
373 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
374 			       PAGE_UNLOCK, NULL);
375 }
376 
377 static noinline int lock_delalloc_pages(struct inode *inode,
378 					struct page *locked_page,
379 					u64 delalloc_start,
380 					u64 delalloc_end)
381 {
382 	unsigned long index = delalloc_start >> PAGE_SHIFT;
383 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
384 	u64 processed_end = delalloc_start;
385 	int ret;
386 
387 	ASSERT(locked_page);
388 	if (index == locked_page->index && index == end_index)
389 		return 0;
390 
391 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
392 				     delalloc_end, PAGE_LOCK, &processed_end);
393 	if (ret == -EAGAIN && processed_end > delalloc_start)
394 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
395 				      processed_end);
396 	return ret;
397 }
398 
399 /*
400  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
401  * more than @max_bytes.
402  *
403  * @start:	The original start bytenr to search.
404  *		Will store the extent range start bytenr.
405  * @end:	The original end bytenr of the search range
406  *		Will store the extent range end bytenr.
407  *
408  * Return true if we find a delalloc range which starts inside the original
409  * range, and @start/@end will store the delalloc range start/end.
410  *
411  * Return false if we can't find any delalloc range which starts inside the
412  * original range, and @start/@end will be the non-delalloc range start/end.
413  */
414 EXPORT_FOR_TESTS
415 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
416 				    struct page *locked_page, u64 *start,
417 				    u64 *end)
418 {
419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
421 	const u64 orig_start = *start;
422 	const u64 orig_end = *end;
423 	/* The sanity tests may not set a valid fs_info. */
424 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
425 	u64 delalloc_start;
426 	u64 delalloc_end;
427 	bool found;
428 	struct extent_state *cached_state = NULL;
429 	int ret;
430 	int loops = 0;
431 
432 	/* Caller should pass a valid @end to indicate the search range end */
433 	ASSERT(orig_end > orig_start);
434 
435 	/* The range should at least cover part of the page */
436 	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
437 		 orig_end <= page_offset(locked_page)));
438 again:
439 	/* step one, find a bunch of delalloc bytes starting at start */
440 	delalloc_start = *start;
441 	delalloc_end = 0;
442 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
443 					  max_bytes, &cached_state);
444 	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
445 		*start = delalloc_start;
446 
447 		/* @delalloc_end can be -1, never go beyond @orig_end */
448 		*end = min(delalloc_end, orig_end);
449 		free_extent_state(cached_state);
450 		return false;
451 	}
452 
453 	/*
454 	 * start comes from the offset of locked_page.  We have to lock
455 	 * pages in order, so we can't process delalloc bytes before
456 	 * locked_page
457 	 */
458 	if (delalloc_start < *start)
459 		delalloc_start = *start;
460 
461 	/*
462 	 * make sure to limit the number of pages we try to lock down
463 	 */
464 	if (delalloc_end + 1 - delalloc_start > max_bytes)
465 		delalloc_end = delalloc_start + max_bytes - 1;
466 
467 	/* step two, lock all the pages after the page that has start */
468 	ret = lock_delalloc_pages(inode, locked_page,
469 				  delalloc_start, delalloc_end);
470 	ASSERT(!ret || ret == -EAGAIN);
471 	if (ret == -EAGAIN) {
472 		/* some of the pages are gone, lets avoid looping by
473 		 * shortening the size of the delalloc range we're searching
474 		 */
475 		free_extent_state(cached_state);
476 		cached_state = NULL;
477 		if (!loops) {
478 			max_bytes = PAGE_SIZE;
479 			loops = 1;
480 			goto again;
481 		} else {
482 			found = false;
483 			goto out_failed;
484 		}
485 	}
486 
487 	/* step three, lock the state bits for the whole range */
488 	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
489 
490 	/* then test to make sure it is all still delalloc */
491 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
492 			     EXTENT_DELALLOC, 1, cached_state);
493 	if (!ret) {
494 		unlock_extent(tree, delalloc_start, delalloc_end,
495 			      &cached_state);
496 		__unlock_for_delalloc(inode, locked_page,
497 			      delalloc_start, delalloc_end);
498 		cond_resched();
499 		goto again;
500 	}
501 	free_extent_state(cached_state);
502 	*start = delalloc_start;
503 	*end = delalloc_end;
504 out_failed:
505 	return found;
506 }
507 
508 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
509 				  struct page *locked_page,
510 				  u32 clear_bits, unsigned long page_ops)
511 {
512 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
513 
514 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
515 			       start, end, page_ops, NULL);
516 }
517 
518 static int insert_failrec(struct btrfs_inode *inode,
519 			  struct io_failure_record *failrec)
520 {
521 	struct rb_node *exist;
522 
523 	spin_lock(&inode->io_failure_lock);
524 	exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
525 				 &failrec->rb_node);
526 	spin_unlock(&inode->io_failure_lock);
527 
528 	return (exist == NULL) ? 0 : -EEXIST;
529 }
530 
531 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
532 {
533 	struct rb_node *node;
534 	struct io_failure_record *failrec = ERR_PTR(-ENOENT);
535 
536 	spin_lock(&inode->io_failure_lock);
537 	node = rb_simple_search(&inode->io_failure_tree, start);
538 	if (node)
539 		failrec = rb_entry(node, struct io_failure_record, rb_node);
540 	spin_unlock(&inode->io_failure_lock);
541 	return failrec;
542 }
543 
544 static void free_io_failure(struct btrfs_inode *inode,
545 			    struct io_failure_record *rec)
546 {
547 	spin_lock(&inode->io_failure_lock);
548 	rb_erase(&rec->rb_node, &inode->io_failure_tree);
549 	spin_unlock(&inode->io_failure_lock);
550 
551 	kfree(rec);
552 }
553 
554 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
555 {
556 	if (cur_mirror == failrec->num_copies)
557 		return cur_mirror + 1 - failrec->num_copies;
558 	return cur_mirror + 1;
559 }
560 
561 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
562 {
563 	if (cur_mirror == 1)
564 		return failrec->num_copies;
565 	return cur_mirror - 1;
566 }
567 
568 /*
569  * each time an IO finishes, we do a fast check in the IO failure tree
570  * to see if we need to process or clean up an io_failure_record
571  */
572 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
573 			   struct page *page, unsigned int pg_offset)
574 {
575 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
576 	struct extent_io_tree *io_tree = &inode->io_tree;
577 	u64 ino = btrfs_ino(inode);
578 	u64 locked_start, locked_end;
579 	struct io_failure_record *failrec;
580 	int mirror;
581 	int ret;
582 
583 	failrec = get_failrec(inode, start);
584 	if (IS_ERR(failrec))
585 		return 0;
586 
587 	BUG_ON(!failrec->this_mirror);
588 
589 	if (sb_rdonly(fs_info->sb))
590 		goto out;
591 
592 	ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
593 				    &locked_end, EXTENT_LOCKED, NULL);
594 	if (ret || locked_start > failrec->bytenr ||
595 	    locked_end < failrec->bytenr + failrec->len - 1)
596 		goto out;
597 
598 	mirror = failrec->this_mirror;
599 	do {
600 		mirror = prev_mirror(failrec, mirror);
601 		btrfs_repair_io_failure(fs_info, ino, start, failrec->len,
602 				  failrec->logical, page, pg_offset, mirror);
603 	} while (mirror != failrec->failed_mirror);
604 
605 out:
606 	free_io_failure(inode, failrec);
607 	return 0;
608 }
609 
610 /*
611  * Can be called when
612  * - hold extent lock
613  * - under ordered extent
614  * - the inode is freeing
615  */
616 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
617 {
618 	struct io_failure_record *failrec;
619 	struct rb_node *node, *next;
620 
621 	if (RB_EMPTY_ROOT(&inode->io_failure_tree))
622 		return;
623 
624 	spin_lock(&inode->io_failure_lock);
625 	node = rb_simple_search_first(&inode->io_failure_tree, start);
626 	while (node) {
627 		failrec = rb_entry(node, struct io_failure_record, rb_node);
628 		if (failrec->bytenr > end)
629 			break;
630 
631 		next = rb_next(node);
632 		rb_erase(&failrec->rb_node, &inode->io_failure_tree);
633 		kfree(failrec);
634 
635 		node = next;
636 	}
637 	spin_unlock(&inode->io_failure_lock);
638 }
639 
640 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
641 							     struct btrfs_bio *bbio,
642 							     unsigned int bio_offset)
643 {
644 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
645 	u64 start = bbio->file_offset + bio_offset;
646 	struct io_failure_record *failrec;
647 	const u32 sectorsize = fs_info->sectorsize;
648 	int ret;
649 
650 	failrec = get_failrec(BTRFS_I(inode), start);
651 	if (!IS_ERR(failrec)) {
652 		btrfs_debug(fs_info,
653 	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
654 			failrec->logical, failrec->bytenr, failrec->len);
655 		/*
656 		 * when data can be on disk more than twice, add to failrec here
657 		 * (e.g. with a list for failed_mirror) to make
658 		 * clean_io_failure() clean all those errors at once.
659 		 */
660 		ASSERT(failrec->this_mirror == bbio->mirror_num);
661 		ASSERT(failrec->len == fs_info->sectorsize);
662 		return failrec;
663 	}
664 
665 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
666 	if (!failrec)
667 		return ERR_PTR(-ENOMEM);
668 
669 	RB_CLEAR_NODE(&failrec->rb_node);
670 	failrec->bytenr = start;
671 	failrec->len = sectorsize;
672 	failrec->failed_mirror = bbio->mirror_num;
673 	failrec->this_mirror = bbio->mirror_num;
674 	failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
675 
676 	btrfs_debug(fs_info,
677 		    "new io failure record logical %llu start %llu",
678 		    failrec->logical, start);
679 
680 	failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
681 	if (failrec->num_copies == 1) {
682 		/*
683 		 * We only have a single copy of the data, so don't bother with
684 		 * all the retry and error correction code that follows. No
685 		 * matter what the error is, it is very likely to persist.
686 		 */
687 		btrfs_debug(fs_info,
688 			"cannot repair logical %llu num_copies %d",
689 			failrec->logical, failrec->num_copies);
690 		kfree(failrec);
691 		return ERR_PTR(-EIO);
692 	}
693 
694 	/* Set the bits in the private failure tree */
695 	ret = insert_failrec(BTRFS_I(inode), failrec);
696 	if (ret) {
697 		kfree(failrec);
698 		return ERR_PTR(ret);
699 	}
700 
701 	return failrec;
702 }
703 
704 int btrfs_repair_one_sector(struct btrfs_inode *inode, struct btrfs_bio *failed_bbio,
705 			    u32 bio_offset, struct page *page, unsigned int pgoff,
706 			    bool submit_buffered)
707 {
708 	u64 start = failed_bbio->file_offset + bio_offset;
709 	struct io_failure_record *failrec;
710 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
711 	struct bio *failed_bio = &failed_bbio->bio;
712 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
713 	struct bio *repair_bio;
714 	struct btrfs_bio *repair_bbio;
715 
716 	btrfs_debug(fs_info,
717 		   "repair read error: read error at %llu", start);
718 
719 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
720 
721 	failrec = btrfs_get_io_failure_record(&inode->vfs_inode, failed_bbio, bio_offset);
722 	if (IS_ERR(failrec))
723 		return PTR_ERR(failrec);
724 
725 	/*
726 	 * There are two premises:
727 	 * a) deliver good data to the caller
728 	 * b) correct the bad sectors on disk
729 	 *
730 	 * Since we're only doing repair for one sector, we only need to get
731 	 * a good copy of the failed sector and if we succeed, we have setup
732 	 * everything for btrfs_repair_io_failure to do the rest for us.
733 	 */
734 	failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
735 	if (failrec->this_mirror == failrec->failed_mirror) {
736 		btrfs_debug(fs_info,
737 			"failed to repair num_copies %d this_mirror %d failed_mirror %d",
738 			failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
739 		free_io_failure(inode, failrec);
740 		return -EIO;
741 	}
742 
743 	repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
744 				     failed_bbio->private);
745 	repair_bbio = btrfs_bio(repair_bio);
746 	repair_bbio->file_offset = start;
747 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
748 
749 	if (failed_bbio->csum) {
750 		const u32 csum_size = fs_info->csum_size;
751 
752 		repair_bbio->csum = repair_bbio->csum_inline;
753 		memcpy(repair_bbio->csum,
754 		       failed_bbio->csum + csum_size * icsum, csum_size);
755 	}
756 
757 	bio_add_page(repair_bio, page, failrec->len, pgoff);
758 	repair_bbio->iter = repair_bio->bi_iter;
759 
760 	btrfs_debug(fs_info,
761 		    "repair read error: submitting new read to mirror %d",
762 		    failrec->this_mirror);
763 
764 	/*
765 	 * At this point we have a bio, so any errors from bio submission will
766 	 * be handled by the endio on the repair_bio, so we can't return an
767 	 * error here.
768 	 */
769 	if (submit_buffered)
770 		btrfs_submit_data_read_bio(inode, repair_bio,
771 					   failrec->this_mirror, 0);
772 	else
773 		btrfs_submit_dio_repair_bio(inode, repair_bio, failrec->this_mirror);
774 
775 	return BLK_STS_OK;
776 }
777 
778 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
779 {
780 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
781 
782 	ASSERT(page_offset(page) <= start &&
783 	       start + len <= page_offset(page) + PAGE_SIZE);
784 
785 	if (uptodate) {
786 		if (fsverity_active(page->mapping->host) &&
787 		    !PageError(page) &&
788 		    !PageUptodate(page) &&
789 		    start < i_size_read(page->mapping->host) &&
790 		    !fsverity_verify_page(page)) {
791 			btrfs_page_set_error(fs_info, page, start, len);
792 		} else {
793 			btrfs_page_set_uptodate(fs_info, page, start, len);
794 		}
795 	} else {
796 		btrfs_page_clear_uptodate(fs_info, page, start, len);
797 		btrfs_page_set_error(fs_info, page, start, len);
798 	}
799 
800 	if (!btrfs_is_subpage(fs_info, page))
801 		unlock_page(page);
802 	else
803 		btrfs_subpage_end_reader(fs_info, page, start, len);
804 }
805 
806 static void end_sector_io(struct page *page, u64 offset, bool uptodate)
807 {
808 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
809 	const u32 sectorsize = inode->root->fs_info->sectorsize;
810 
811 	end_page_read(page, uptodate, offset, sectorsize);
812 	unlock_extent(&inode->io_tree, offset, offset + sectorsize - 1, NULL);
813 }
814 
815 static void submit_data_read_repair(struct inode *inode,
816 				    struct btrfs_bio *failed_bbio,
817 				    u32 bio_offset, const struct bio_vec *bvec,
818 				    unsigned int error_bitmap)
819 {
820 	const unsigned int pgoff = bvec->bv_offset;
821 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
822 	struct page *page = bvec->bv_page;
823 	const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
824 	const u64 end = start + bvec->bv_len - 1;
825 	const u32 sectorsize = fs_info->sectorsize;
826 	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
827 	int i;
828 
829 	BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
830 
831 	/* This repair is only for data */
832 	ASSERT(is_data_inode(inode));
833 
834 	/* We're here because we had some read errors or csum mismatch */
835 	ASSERT(error_bitmap);
836 
837 	/*
838 	 * We only get called on buffered IO, thus page must be mapped and bio
839 	 * must not be cloned.
840 	 */
841 	ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
842 
843 	/* Iterate through all the sectors in the range */
844 	for (i = 0; i < nr_bits; i++) {
845 		const unsigned int offset = i * sectorsize;
846 		bool uptodate = false;
847 		int ret;
848 
849 		if (!(error_bitmap & (1U << i))) {
850 			/*
851 			 * This sector has no error, just end the page read
852 			 * and unlock the range.
853 			 */
854 			uptodate = true;
855 			goto next;
856 		}
857 
858 		ret = btrfs_repair_one_sector(BTRFS_I(inode), failed_bbio,
859 				bio_offset + offset, page, pgoff + offset,
860 				true);
861 		if (!ret) {
862 			/*
863 			 * We have submitted the read repair, the page release
864 			 * will be handled by the endio function of the
865 			 * submitted repair bio.
866 			 * Thus we don't need to do any thing here.
867 			 */
868 			continue;
869 		}
870 		/*
871 		 * Continue on failed repair, otherwise the remaining sectors
872 		 * will not be properly unlocked.
873 		 */
874 next:
875 		end_sector_io(page, start + offset, uptodate);
876 	}
877 }
878 
879 /* lots and lots of room for performance fixes in the end_bio funcs */
880 
881 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
882 {
883 	struct btrfs_inode *inode;
884 	const bool uptodate = (err == 0);
885 	int ret = 0;
886 
887 	ASSERT(page && page->mapping);
888 	inode = BTRFS_I(page->mapping->host);
889 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
890 
891 	if (!uptodate) {
892 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
893 		u32 len;
894 
895 		ASSERT(end + 1 - start <= U32_MAX);
896 		len = end + 1 - start;
897 
898 		btrfs_page_clear_uptodate(fs_info, page, start, len);
899 		btrfs_page_set_error(fs_info, page, start, len);
900 		ret = err < 0 ? err : -EIO;
901 		mapping_set_error(page->mapping, ret);
902 	}
903 }
904 
905 /*
906  * after a writepage IO is done, we need to:
907  * clear the uptodate bits on error
908  * clear the writeback bits in the extent tree for this IO
909  * end_page_writeback if the page has no more pending IO
910  *
911  * Scheduling is not allowed, so the extent state tree is expected
912  * to have one and only one object corresponding to this IO.
913  */
914 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
915 {
916 	struct bio *bio = &bbio->bio;
917 	int error = blk_status_to_errno(bio->bi_status);
918 	struct bio_vec *bvec;
919 	u64 start;
920 	u64 end;
921 	struct bvec_iter_all iter_all;
922 	bool first_bvec = true;
923 
924 	ASSERT(!bio_flagged(bio, BIO_CLONED));
925 	bio_for_each_segment_all(bvec, bio, iter_all) {
926 		struct page *page = bvec->bv_page;
927 		struct inode *inode = page->mapping->host;
928 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
929 		const u32 sectorsize = fs_info->sectorsize;
930 
931 		/* Our read/write should always be sector aligned. */
932 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
933 			btrfs_err(fs_info,
934 		"partial page write in btrfs with offset %u and length %u",
935 				  bvec->bv_offset, bvec->bv_len);
936 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
937 			btrfs_info(fs_info,
938 		"incomplete page write with offset %u and length %u",
939 				   bvec->bv_offset, bvec->bv_len);
940 
941 		start = page_offset(page) + bvec->bv_offset;
942 		end = start + bvec->bv_len - 1;
943 
944 		if (first_bvec) {
945 			btrfs_record_physical_zoned(inode, start, bio);
946 			first_bvec = false;
947 		}
948 
949 		end_extent_writepage(page, error, start, end);
950 
951 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
952 	}
953 
954 	bio_put(bio);
955 }
956 
957 /*
958  * Record previously processed extent range
959  *
960  * For endio_readpage_release_extent() to handle a full extent range, reducing
961  * the extent io operations.
962  */
963 struct processed_extent {
964 	struct btrfs_inode *inode;
965 	/* Start of the range in @inode */
966 	u64 start;
967 	/* End of the range in @inode */
968 	u64 end;
969 	bool uptodate;
970 };
971 
972 /*
973  * Try to release processed extent range
974  *
975  * May not release the extent range right now if the current range is
976  * contiguous to processed extent.
977  *
978  * Will release processed extent when any of @inode, @uptodate, the range is
979  * no longer contiguous to the processed range.
980  *
981  * Passing @inode == NULL will force processed extent to be released.
982  */
983 static void endio_readpage_release_extent(struct processed_extent *processed,
984 			      struct btrfs_inode *inode, u64 start, u64 end,
985 			      bool uptodate)
986 {
987 	struct extent_state *cached = NULL;
988 	struct extent_io_tree *tree;
989 
990 	/* The first extent, initialize @processed */
991 	if (!processed->inode)
992 		goto update;
993 
994 	/*
995 	 * Contiguous to processed extent, just uptodate the end.
996 	 *
997 	 * Several things to notice:
998 	 *
999 	 * - bio can be merged as long as on-disk bytenr is contiguous
1000 	 *   This means we can have page belonging to other inodes, thus need to
1001 	 *   check if the inode still matches.
1002 	 * - bvec can contain range beyond current page for multi-page bvec
1003 	 *   Thus we need to do processed->end + 1 >= start check
1004 	 */
1005 	if (processed->inode == inode && processed->uptodate == uptodate &&
1006 	    processed->end + 1 >= start && end >= processed->end) {
1007 		processed->end = end;
1008 		return;
1009 	}
1010 
1011 	tree = &processed->inode->io_tree;
1012 	/*
1013 	 * Now we don't have range contiguous to the processed range, release
1014 	 * the processed range now.
1015 	 */
1016 	unlock_extent(tree, processed->start, processed->end, &cached);
1017 
1018 update:
1019 	/* Update processed to current range */
1020 	processed->inode = inode;
1021 	processed->start = start;
1022 	processed->end = end;
1023 	processed->uptodate = uptodate;
1024 }
1025 
1026 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1027 {
1028 	ASSERT(PageLocked(page));
1029 	if (!btrfs_is_subpage(fs_info, page))
1030 		return;
1031 
1032 	ASSERT(PagePrivate(page));
1033 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1034 }
1035 
1036 /*
1037  * Find extent buffer for a givne bytenr.
1038  *
1039  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1040  * in endio context.
1041  */
1042 static struct extent_buffer *find_extent_buffer_readpage(
1043 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1044 {
1045 	struct extent_buffer *eb;
1046 
1047 	/*
1048 	 * For regular sectorsize, we can use page->private to grab extent
1049 	 * buffer
1050 	 */
1051 	if (fs_info->nodesize >= PAGE_SIZE) {
1052 		ASSERT(PagePrivate(page) && page->private);
1053 		return (struct extent_buffer *)page->private;
1054 	}
1055 
1056 	/* For subpage case, we need to lookup buffer radix tree */
1057 	rcu_read_lock();
1058 	eb = radix_tree_lookup(&fs_info->buffer_radix,
1059 			       bytenr >> fs_info->sectorsize_bits);
1060 	rcu_read_unlock();
1061 	ASSERT(eb);
1062 	return eb;
1063 }
1064 
1065 /*
1066  * after a readpage IO is done, we need to:
1067  * clear the uptodate bits on error
1068  * set the uptodate bits if things worked
1069  * set the page up to date if all extents in the tree are uptodate
1070  * clear the lock bit in the extent tree
1071  * unlock the page if there are no other extents locked for it
1072  *
1073  * Scheduling is not allowed, so the extent state tree is expected
1074  * to have one and only one object corresponding to this IO.
1075  */
1076 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1077 {
1078 	struct bio *bio = &bbio->bio;
1079 	struct bio_vec *bvec;
1080 	struct processed_extent processed = { 0 };
1081 	/*
1082 	 * The offset to the beginning of a bio, since one bio can never be
1083 	 * larger than UINT_MAX, u32 here is enough.
1084 	 */
1085 	u32 bio_offset = 0;
1086 	int mirror;
1087 	struct bvec_iter_all iter_all;
1088 
1089 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1090 	bio_for_each_segment_all(bvec, bio, iter_all) {
1091 		bool uptodate = !bio->bi_status;
1092 		struct page *page = bvec->bv_page;
1093 		struct inode *inode = page->mapping->host;
1094 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095 		const u32 sectorsize = fs_info->sectorsize;
1096 		unsigned int error_bitmap = (unsigned int)-1;
1097 		bool repair = false;
1098 		u64 start;
1099 		u64 end;
1100 		u32 len;
1101 
1102 		btrfs_debug(fs_info,
1103 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1104 			bio->bi_iter.bi_sector, bio->bi_status,
1105 			bbio->mirror_num);
1106 
1107 		/*
1108 		 * We always issue full-sector reads, but if some block in a
1109 		 * page fails to read, blk_update_request() will advance
1110 		 * bv_offset and adjust bv_len to compensate.  Print a warning
1111 		 * for unaligned offsets, and an error if they don't add up to
1112 		 * a full sector.
1113 		 */
1114 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1115 			btrfs_err(fs_info,
1116 		"partial page read in btrfs with offset %u and length %u",
1117 				  bvec->bv_offset, bvec->bv_len);
1118 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1119 				     sectorsize))
1120 			btrfs_info(fs_info,
1121 		"incomplete page read with offset %u and length %u",
1122 				   bvec->bv_offset, bvec->bv_len);
1123 
1124 		start = page_offset(page) + bvec->bv_offset;
1125 		end = start + bvec->bv_len - 1;
1126 		len = bvec->bv_len;
1127 
1128 		mirror = bbio->mirror_num;
1129 		if (likely(uptodate)) {
1130 			if (is_data_inode(inode)) {
1131 				error_bitmap = btrfs_verify_data_csum(bbio,
1132 						bio_offset, page, start, end);
1133 				if (error_bitmap)
1134 					uptodate = false;
1135 			} else {
1136 				if (btrfs_validate_metadata_buffer(bbio,
1137 						page, start, end, mirror))
1138 					uptodate = false;
1139 			}
1140 		}
1141 
1142 		if (likely(uptodate)) {
1143 			loff_t i_size = i_size_read(inode);
1144 			pgoff_t end_index = i_size >> PAGE_SHIFT;
1145 
1146 			btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1147 
1148 			/*
1149 			 * Zero out the remaining part if this range straddles
1150 			 * i_size.
1151 			 *
1152 			 * Here we should only zero the range inside the bvec,
1153 			 * not touch anything else.
1154 			 *
1155 			 * NOTE: i_size is exclusive while end is inclusive.
1156 			 */
1157 			if (page->index == end_index && i_size <= end) {
1158 				u32 zero_start = max(offset_in_page(i_size),
1159 						     offset_in_page(start));
1160 
1161 				zero_user_segment(page, zero_start,
1162 						  offset_in_page(end) + 1);
1163 			}
1164 		} else if (is_data_inode(inode)) {
1165 			/*
1166 			 * Only try to repair bios that actually made it to a
1167 			 * device.  If the bio failed to be submitted mirror
1168 			 * is 0 and we need to fail it without retrying.
1169 			 *
1170 			 * This also includes the high level bios for compressed
1171 			 * extents - these never make it to a device and repair
1172 			 * is already handled on the lower compressed bio.
1173 			 */
1174 			if (mirror > 0)
1175 				repair = true;
1176 		} else {
1177 			struct extent_buffer *eb;
1178 
1179 			eb = find_extent_buffer_readpage(fs_info, page, start);
1180 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1181 			eb->read_mirror = mirror;
1182 			atomic_dec(&eb->io_pages);
1183 		}
1184 
1185 		if (repair) {
1186 			/*
1187 			 * submit_data_read_repair() will handle all the good
1188 			 * and bad sectors, we just continue to the next bvec.
1189 			 */
1190 			submit_data_read_repair(inode, bbio, bio_offset, bvec,
1191 						error_bitmap);
1192 		} else {
1193 			/* Update page status and unlock */
1194 			end_page_read(page, uptodate, start, len);
1195 			endio_readpage_release_extent(&processed, BTRFS_I(inode),
1196 					start, end, PageUptodate(page));
1197 		}
1198 
1199 		ASSERT(bio_offset + len > bio_offset);
1200 		bio_offset += len;
1201 
1202 	}
1203 	/* Release the last extent */
1204 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1205 	btrfs_bio_free_csum(bbio);
1206 	bio_put(bio);
1207 }
1208 
1209 /*
1210  * Populate every free slot in a provided array with pages.
1211  *
1212  * @nr_pages:   number of pages to allocate
1213  * @page_array: the array to fill with pages; any existing non-null entries in
1214  * 		the array will be skipped
1215  *
1216  * Return: 0        if all pages were able to be allocated;
1217  *         -ENOMEM  otherwise, and the caller is responsible for freeing all
1218  *                  non-null page pointers in the array.
1219  */
1220 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1221 {
1222 	unsigned int allocated;
1223 
1224 	for (allocated = 0; allocated < nr_pages;) {
1225 		unsigned int last = allocated;
1226 
1227 		allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1228 
1229 		if (allocated == nr_pages)
1230 			return 0;
1231 
1232 		/*
1233 		 * During this iteration, no page could be allocated, even
1234 		 * though alloc_pages_bulk_array() falls back to alloc_page()
1235 		 * if  it could not bulk-allocate. So we must be out of memory.
1236 		 */
1237 		if (allocated == last)
1238 			return -ENOMEM;
1239 
1240 		memalloc_retry_wait(GFP_NOFS);
1241 	}
1242 	return 0;
1243 }
1244 
1245 /*
1246  * Attempt to add a page to bio.
1247  *
1248  * @bio_ctrl:       record both the bio, and its bio_flags
1249  * @page:	    page to add to the bio
1250  * @disk_bytenr:    offset of the new bio or to check whether we are adding
1251  *                  a contiguous page to the previous one
1252  * @size:	    portion of page that we want to write
1253  * @pg_offset:	    starting offset in the page
1254  * @compress_type:  compression type of the current bio to see if we can merge them
1255  *
1256  * Attempt to add a page to bio considering stripe alignment etc.
1257  *
1258  * Return >= 0 for the number of bytes added to the bio.
1259  * Can return 0 if the current bio is already at stripe/zone boundary.
1260  * Return <0 for error.
1261  */
1262 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1263 			      struct page *page,
1264 			      u64 disk_bytenr, unsigned int size,
1265 			      unsigned int pg_offset,
1266 			      enum btrfs_compression_type compress_type)
1267 {
1268 	struct bio *bio = bio_ctrl->bio;
1269 	u32 bio_size = bio->bi_iter.bi_size;
1270 	u32 real_size;
1271 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1272 	bool contig = false;
1273 	int ret;
1274 
1275 	ASSERT(bio);
1276 	/* The limit should be calculated when bio_ctrl->bio is allocated */
1277 	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1278 	if (bio_ctrl->compress_type != compress_type)
1279 		return 0;
1280 
1281 
1282 	if (bio->bi_iter.bi_size == 0) {
1283 		/* We can always add a page into an empty bio. */
1284 		contig = true;
1285 	} else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1286 		struct bio_vec *bvec = bio_last_bvec_all(bio);
1287 
1288 		/*
1289 		 * The contig check requires the following conditions to be met:
1290 		 * 1) The pages are belonging to the same inode
1291 		 *    This is implied by the call chain.
1292 		 *
1293 		 * 2) The range has adjacent logical bytenr
1294 		 *
1295 		 * 3) The range has adjacent file offset
1296 		 *    This is required for the usage of btrfs_bio->file_offset.
1297 		 */
1298 		if (bio_end_sector(bio) == sector &&
1299 		    page_offset(bvec->bv_page) + bvec->bv_offset +
1300 		    bvec->bv_len == page_offset(page) + pg_offset)
1301 			contig = true;
1302 	} else {
1303 		/*
1304 		 * For compression, all IO should have its logical bytenr
1305 		 * set to the starting bytenr of the compressed extent.
1306 		 */
1307 		contig = bio->bi_iter.bi_sector == sector;
1308 	}
1309 
1310 	if (!contig)
1311 		return 0;
1312 
1313 	real_size = min(bio_ctrl->len_to_oe_boundary,
1314 			bio_ctrl->len_to_stripe_boundary) - bio_size;
1315 	real_size = min(real_size, size);
1316 
1317 	/*
1318 	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1319 	 * bio will still execute its endio function on the page!
1320 	 */
1321 	if (real_size == 0)
1322 		return 0;
1323 
1324 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1325 		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1326 	else
1327 		ret = bio_add_page(bio, page, real_size, pg_offset);
1328 
1329 	return ret;
1330 }
1331 
1332 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1333 			       struct btrfs_inode *inode, u64 file_offset)
1334 {
1335 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1336 	struct btrfs_io_geometry geom;
1337 	struct btrfs_ordered_extent *ordered;
1338 	struct extent_map *em;
1339 	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1340 	int ret;
1341 
1342 	/*
1343 	 * Pages for compressed extent are never submitted to disk directly,
1344 	 * thus it has no real boundary, just set them to U32_MAX.
1345 	 *
1346 	 * The split happens for real compressed bio, which happens in
1347 	 * btrfs_submit_compressed_read/write().
1348 	 */
1349 	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1350 		bio_ctrl->len_to_oe_boundary = U32_MAX;
1351 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
1352 		return 0;
1353 	}
1354 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1355 	if (IS_ERR(em))
1356 		return PTR_ERR(em);
1357 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1358 				    logical, &geom);
1359 	free_extent_map(em);
1360 	if (ret < 0) {
1361 		return ret;
1362 	}
1363 	if (geom.len > U32_MAX)
1364 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
1365 	else
1366 		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1367 
1368 	if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1369 		bio_ctrl->len_to_oe_boundary = U32_MAX;
1370 		return 0;
1371 	}
1372 
1373 	/* Ordered extent not yet created, so we're good */
1374 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1375 	if (!ordered) {
1376 		bio_ctrl->len_to_oe_boundary = U32_MAX;
1377 		return 0;
1378 	}
1379 
1380 	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1381 		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1382 	btrfs_put_ordered_extent(ordered);
1383 	return 0;
1384 }
1385 
1386 static int alloc_new_bio(struct btrfs_inode *inode,
1387 			 struct btrfs_bio_ctrl *bio_ctrl,
1388 			 struct writeback_control *wbc,
1389 			 blk_opf_t opf,
1390 			 u64 disk_bytenr, u32 offset, u64 file_offset,
1391 			 enum btrfs_compression_type compress_type)
1392 {
1393 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1394 	struct bio *bio;
1395 	int ret;
1396 
1397 	ASSERT(bio_ctrl->end_io_func);
1398 
1399 	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1400 	/*
1401 	 * For compressed page range, its disk_bytenr is always @disk_bytenr
1402 	 * passed in, no matter if we have added any range into previous bio.
1403 	 */
1404 	if (compress_type != BTRFS_COMPRESS_NONE)
1405 		bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1406 	else
1407 		bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1408 	bio_ctrl->bio = bio;
1409 	bio_ctrl->compress_type = compress_type;
1410 	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1411 	if (ret < 0)
1412 		goto error;
1413 
1414 	if (wbc) {
1415 		/*
1416 		 * For Zone append we need the correct block_device that we are
1417 		 * going to write to set in the bio to be able to respect the
1418 		 * hardware limitation.  Look it up here:
1419 		 */
1420 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1421 			struct btrfs_device *dev;
1422 
1423 			dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1424 						     fs_info->sectorsize);
1425 			if (IS_ERR(dev)) {
1426 				ret = PTR_ERR(dev);
1427 				goto error;
1428 			}
1429 
1430 			bio_set_dev(bio, dev->bdev);
1431 		} else {
1432 			/*
1433 			 * Otherwise pick the last added device to support
1434 			 * cgroup writeback.  For multi-device file systems this
1435 			 * means blk-cgroup policies have to always be set on the
1436 			 * last added/replaced device.  This is a bit odd but has
1437 			 * been like that for a long time.
1438 			 */
1439 			bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1440 		}
1441 		wbc_init_bio(wbc, bio);
1442 	} else {
1443 		ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1444 	}
1445 	return 0;
1446 error:
1447 	bio_ctrl->bio = NULL;
1448 	btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1449 	return ret;
1450 }
1451 
1452 /*
1453  * @opf:	bio REQ_OP_* and REQ_* flags as one value
1454  * @wbc:	optional writeback control for io accounting
1455  * @disk_bytenr: logical bytenr where the write will be
1456  * @page:	page to add to the bio
1457  * @size:	portion of page that we want to write to
1458  * @pg_offset:	offset of the new bio or to check whether we are adding
1459  *              a contiguous page to the previous one
1460  * @compress_type:   compress type for current bio
1461  *
1462  * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1463  * new one in @bio_ctrl->bio.
1464  * The mirror number for this IO should already be initizlied in
1465  * @bio_ctrl->mirror_num.
1466  */
1467 static int submit_extent_page(blk_opf_t opf,
1468 			      struct writeback_control *wbc,
1469 			      struct btrfs_bio_ctrl *bio_ctrl,
1470 			      u64 disk_bytenr, struct page *page,
1471 			      size_t size, unsigned long pg_offset,
1472 			      enum btrfs_compression_type compress_type,
1473 			      bool force_bio_submit)
1474 {
1475 	int ret = 0;
1476 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1477 	unsigned int cur = pg_offset;
1478 
1479 	ASSERT(bio_ctrl);
1480 
1481 	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1482 	       pg_offset + size <= PAGE_SIZE);
1483 
1484 	ASSERT(bio_ctrl->end_io_func);
1485 
1486 	if (force_bio_submit)
1487 		submit_one_bio(bio_ctrl);
1488 
1489 	while (cur < pg_offset + size) {
1490 		u32 offset = cur - pg_offset;
1491 		int added;
1492 
1493 		/* Allocate new bio if needed */
1494 		if (!bio_ctrl->bio) {
1495 			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1496 					    disk_bytenr, offset,
1497 					    page_offset(page) + cur,
1498 					    compress_type);
1499 			if (ret < 0)
1500 				return ret;
1501 		}
1502 		/*
1503 		 * We must go through btrfs_bio_add_page() to ensure each
1504 		 * page range won't cross various boundaries.
1505 		 */
1506 		if (compress_type != BTRFS_COMPRESS_NONE)
1507 			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1508 					size - offset, pg_offset + offset,
1509 					compress_type);
1510 		else
1511 			added = btrfs_bio_add_page(bio_ctrl, page,
1512 					disk_bytenr + offset, size - offset,
1513 					pg_offset + offset, compress_type);
1514 
1515 		/* Metadata page range should never be split */
1516 		if (!is_data_inode(&inode->vfs_inode))
1517 			ASSERT(added == 0 || added == size - offset);
1518 
1519 		/* At least we added some page, update the account */
1520 		if (wbc && added)
1521 			wbc_account_cgroup_owner(wbc, page, added);
1522 
1523 		/* We have reached boundary, submit right now */
1524 		if (added < size - offset) {
1525 			/* The bio should contain some page(s) */
1526 			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1527 			submit_one_bio(bio_ctrl);
1528 		}
1529 		cur += added;
1530 	}
1531 	return 0;
1532 }
1533 
1534 static int attach_extent_buffer_page(struct extent_buffer *eb,
1535 				     struct page *page,
1536 				     struct btrfs_subpage *prealloc)
1537 {
1538 	struct btrfs_fs_info *fs_info = eb->fs_info;
1539 	int ret = 0;
1540 
1541 	/*
1542 	 * If the page is mapped to btree inode, we should hold the private
1543 	 * lock to prevent race.
1544 	 * For cloned or dummy extent buffers, their pages are not mapped and
1545 	 * will not race with any other ebs.
1546 	 */
1547 	if (page->mapping)
1548 		lockdep_assert_held(&page->mapping->private_lock);
1549 
1550 	if (fs_info->nodesize >= PAGE_SIZE) {
1551 		if (!PagePrivate(page))
1552 			attach_page_private(page, eb);
1553 		else
1554 			WARN_ON(page->private != (unsigned long)eb);
1555 		return 0;
1556 	}
1557 
1558 	/* Already mapped, just free prealloc */
1559 	if (PagePrivate(page)) {
1560 		btrfs_free_subpage(prealloc);
1561 		return 0;
1562 	}
1563 
1564 	if (prealloc)
1565 		/* Has preallocated memory for subpage */
1566 		attach_page_private(page, prealloc);
1567 	else
1568 		/* Do new allocation to attach subpage */
1569 		ret = btrfs_attach_subpage(fs_info, page,
1570 					   BTRFS_SUBPAGE_METADATA);
1571 	return ret;
1572 }
1573 
1574 int set_page_extent_mapped(struct page *page)
1575 {
1576 	struct btrfs_fs_info *fs_info;
1577 
1578 	ASSERT(page->mapping);
1579 
1580 	if (PagePrivate(page))
1581 		return 0;
1582 
1583 	fs_info = btrfs_sb(page->mapping->host->i_sb);
1584 
1585 	if (btrfs_is_subpage(fs_info, page))
1586 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1587 
1588 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1589 	return 0;
1590 }
1591 
1592 void clear_page_extent_mapped(struct page *page)
1593 {
1594 	struct btrfs_fs_info *fs_info;
1595 
1596 	ASSERT(page->mapping);
1597 
1598 	if (!PagePrivate(page))
1599 		return;
1600 
1601 	fs_info = btrfs_sb(page->mapping->host->i_sb);
1602 	if (btrfs_is_subpage(fs_info, page))
1603 		return btrfs_detach_subpage(fs_info, page);
1604 
1605 	detach_page_private(page);
1606 }
1607 
1608 static struct extent_map *
1609 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1610 		 u64 start, u64 len, struct extent_map **em_cached)
1611 {
1612 	struct extent_map *em;
1613 
1614 	if (em_cached && *em_cached) {
1615 		em = *em_cached;
1616 		if (extent_map_in_tree(em) && start >= em->start &&
1617 		    start < extent_map_end(em)) {
1618 			refcount_inc(&em->refs);
1619 			return em;
1620 		}
1621 
1622 		free_extent_map(em);
1623 		*em_cached = NULL;
1624 	}
1625 
1626 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1627 	if (em_cached && !IS_ERR(em)) {
1628 		BUG_ON(*em_cached);
1629 		refcount_inc(&em->refs);
1630 		*em_cached = em;
1631 	}
1632 	return em;
1633 }
1634 /*
1635  * basic readpage implementation.  Locked extent state structs are inserted
1636  * into the tree that are removed when the IO is done (by the end_io
1637  * handlers)
1638  * XXX JDM: This needs looking at to ensure proper page locking
1639  * return 0 on success, otherwise return error
1640  */
1641 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1642 		      struct btrfs_bio_ctrl *bio_ctrl,
1643 		      blk_opf_t read_flags, u64 *prev_em_start)
1644 {
1645 	struct inode *inode = page->mapping->host;
1646 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1647 	u64 start = page_offset(page);
1648 	const u64 end = start + PAGE_SIZE - 1;
1649 	u64 cur = start;
1650 	u64 extent_offset;
1651 	u64 last_byte = i_size_read(inode);
1652 	u64 block_start;
1653 	struct extent_map *em;
1654 	int ret = 0;
1655 	size_t pg_offset = 0;
1656 	size_t iosize;
1657 	size_t blocksize = inode->i_sb->s_blocksize;
1658 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1659 
1660 	ret = set_page_extent_mapped(page);
1661 	if (ret < 0) {
1662 		unlock_extent(tree, start, end, NULL);
1663 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1664 		unlock_page(page);
1665 		goto out;
1666 	}
1667 
1668 	if (page->index == last_byte >> PAGE_SHIFT) {
1669 		size_t zero_offset = offset_in_page(last_byte);
1670 
1671 		if (zero_offset) {
1672 			iosize = PAGE_SIZE - zero_offset;
1673 			memzero_page(page, zero_offset, iosize);
1674 		}
1675 	}
1676 	bio_ctrl->end_io_func = end_bio_extent_readpage;
1677 	begin_page_read(fs_info, page);
1678 	while (cur <= end) {
1679 		unsigned long this_bio_flag = 0;
1680 		bool force_bio_submit = false;
1681 		u64 disk_bytenr;
1682 
1683 		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1684 		if (cur >= last_byte) {
1685 			iosize = PAGE_SIZE - pg_offset;
1686 			memzero_page(page, pg_offset, iosize);
1687 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1688 			end_page_read(page, true, cur, iosize);
1689 			break;
1690 		}
1691 		em = __get_extent_map(inode, page, pg_offset, cur,
1692 				      end - cur + 1, em_cached);
1693 		if (IS_ERR(em)) {
1694 			unlock_extent(tree, cur, end, NULL);
1695 			end_page_read(page, false, cur, end + 1 - cur);
1696 			ret = PTR_ERR(em);
1697 			break;
1698 		}
1699 		extent_offset = cur - em->start;
1700 		BUG_ON(extent_map_end(em) <= cur);
1701 		BUG_ON(end < cur);
1702 
1703 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1704 			this_bio_flag = em->compress_type;
1705 
1706 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1707 		iosize = ALIGN(iosize, blocksize);
1708 		if (this_bio_flag != BTRFS_COMPRESS_NONE)
1709 			disk_bytenr = em->block_start;
1710 		else
1711 			disk_bytenr = em->block_start + extent_offset;
1712 		block_start = em->block_start;
1713 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1714 			block_start = EXTENT_MAP_HOLE;
1715 
1716 		/*
1717 		 * If we have a file range that points to a compressed extent
1718 		 * and it's followed by a consecutive file range that points
1719 		 * to the same compressed extent (possibly with a different
1720 		 * offset and/or length, so it either points to the whole extent
1721 		 * or only part of it), we must make sure we do not submit a
1722 		 * single bio to populate the pages for the 2 ranges because
1723 		 * this makes the compressed extent read zero out the pages
1724 		 * belonging to the 2nd range. Imagine the following scenario:
1725 		 *
1726 		 *  File layout
1727 		 *  [0 - 8K]                     [8K - 24K]
1728 		 *    |                               |
1729 		 *    |                               |
1730 		 * points to extent X,         points to extent X,
1731 		 * offset 4K, length of 8K     offset 0, length 16K
1732 		 *
1733 		 * [extent X, compressed length = 4K uncompressed length = 16K]
1734 		 *
1735 		 * If the bio to read the compressed extent covers both ranges,
1736 		 * it will decompress extent X into the pages belonging to the
1737 		 * first range and then it will stop, zeroing out the remaining
1738 		 * pages that belong to the other range that points to extent X.
1739 		 * So here we make sure we submit 2 bios, one for the first
1740 		 * range and another one for the third range. Both will target
1741 		 * the same physical extent from disk, but we can't currently
1742 		 * make the compressed bio endio callback populate the pages
1743 		 * for both ranges because each compressed bio is tightly
1744 		 * coupled with a single extent map, and each range can have
1745 		 * an extent map with a different offset value relative to the
1746 		 * uncompressed data of our extent and different lengths. This
1747 		 * is a corner case so we prioritize correctness over
1748 		 * non-optimal behavior (submitting 2 bios for the same extent).
1749 		 */
1750 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1751 		    prev_em_start && *prev_em_start != (u64)-1 &&
1752 		    *prev_em_start != em->start)
1753 			force_bio_submit = true;
1754 
1755 		if (prev_em_start)
1756 			*prev_em_start = em->start;
1757 
1758 		free_extent_map(em);
1759 		em = NULL;
1760 
1761 		/* we've found a hole, just zero and go on */
1762 		if (block_start == EXTENT_MAP_HOLE) {
1763 			memzero_page(page, pg_offset, iosize);
1764 
1765 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1766 			end_page_read(page, true, cur, iosize);
1767 			cur = cur + iosize;
1768 			pg_offset += iosize;
1769 			continue;
1770 		}
1771 		/* the get_extent function already copied into the page */
1772 		if (block_start == EXTENT_MAP_INLINE) {
1773 			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1774 			end_page_read(page, true, cur, iosize);
1775 			cur = cur + iosize;
1776 			pg_offset += iosize;
1777 			continue;
1778 		}
1779 
1780 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1781 					 bio_ctrl, disk_bytenr, page, iosize,
1782 					 pg_offset, this_bio_flag,
1783 					 force_bio_submit);
1784 		if (ret) {
1785 			/*
1786 			 * We have to unlock the remaining range, or the page
1787 			 * will never be unlocked.
1788 			 */
1789 			unlock_extent(tree, cur, end, NULL);
1790 			end_page_read(page, false, cur, end + 1 - cur);
1791 			goto out;
1792 		}
1793 		cur = cur + iosize;
1794 		pg_offset += iosize;
1795 	}
1796 out:
1797 	return ret;
1798 }
1799 
1800 int btrfs_read_folio(struct file *file, struct folio *folio)
1801 {
1802 	struct page *page = &folio->page;
1803 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1804 	u64 start = page_offset(page);
1805 	u64 end = start + PAGE_SIZE - 1;
1806 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
1807 	int ret;
1808 
1809 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1810 
1811 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1812 	/*
1813 	 * If btrfs_do_readpage() failed we will want to submit the assembled
1814 	 * bio to do the cleanup.
1815 	 */
1816 	submit_one_bio(&bio_ctrl);
1817 	return ret;
1818 }
1819 
1820 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1821 					u64 start, u64 end,
1822 					struct extent_map **em_cached,
1823 					struct btrfs_bio_ctrl *bio_ctrl,
1824 					u64 *prev_em_start)
1825 {
1826 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1827 	int index;
1828 
1829 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1830 
1831 	for (index = 0; index < nr_pages; index++) {
1832 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1833 				  REQ_RAHEAD, prev_em_start);
1834 		put_page(pages[index]);
1835 	}
1836 }
1837 
1838 /*
1839  * helper for __extent_writepage, doing all of the delayed allocation setup.
1840  *
1841  * This returns 1 if btrfs_run_delalloc_range function did all the work required
1842  * to write the page (copy into inline extent).  In this case the IO has
1843  * been started and the page is already unlocked.
1844  *
1845  * This returns 0 if all went well (page still locked)
1846  * This returns < 0 if there were errors (page still locked)
1847  */
1848 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1849 		struct page *page, struct writeback_control *wbc)
1850 {
1851 	const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1852 	u64 delalloc_start = page_offset(page);
1853 	u64 delalloc_to_write = 0;
1854 	/* How many pages are started by btrfs_run_delalloc_range() */
1855 	unsigned long nr_written = 0;
1856 	int ret;
1857 	int page_started = 0;
1858 
1859 	while (delalloc_start < page_end) {
1860 		u64 delalloc_end = page_end;
1861 		bool found;
1862 
1863 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
1864 					       &delalloc_start,
1865 					       &delalloc_end);
1866 		if (!found) {
1867 			delalloc_start = delalloc_end + 1;
1868 			continue;
1869 		}
1870 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1871 				delalloc_end, &page_started, &nr_written, wbc);
1872 		if (ret) {
1873 			btrfs_page_set_error(inode->root->fs_info, page,
1874 					     page_offset(page), PAGE_SIZE);
1875 			return ret;
1876 		}
1877 		/*
1878 		 * delalloc_end is already one less than the total length, so
1879 		 * we don't subtract one from PAGE_SIZE
1880 		 */
1881 		delalloc_to_write += (delalloc_end - delalloc_start +
1882 				      PAGE_SIZE) >> PAGE_SHIFT;
1883 		delalloc_start = delalloc_end + 1;
1884 	}
1885 	if (wbc->nr_to_write < delalloc_to_write) {
1886 		int thresh = 8192;
1887 
1888 		if (delalloc_to_write < thresh * 2)
1889 			thresh = delalloc_to_write;
1890 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1891 					 thresh);
1892 	}
1893 
1894 	/* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1895 	if (page_started) {
1896 		/*
1897 		 * We've unlocked the page, so we can't update the mapping's
1898 		 * writeback index, just update nr_to_write.
1899 		 */
1900 		wbc->nr_to_write -= nr_written;
1901 		return 1;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Find the first byte we need to write.
1909  *
1910  * For subpage, one page can contain several sectors, and
1911  * __extent_writepage_io() will just grab all extent maps in the page
1912  * range and try to submit all non-inline/non-compressed extents.
1913  *
1914  * This is a big problem for subpage, we shouldn't re-submit already written
1915  * data at all.
1916  * This function will lookup subpage dirty bit to find which range we really
1917  * need to submit.
1918  *
1919  * Return the next dirty range in [@start, @end).
1920  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1921  */
1922 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1923 				 struct page *page, u64 *start, u64 *end)
1924 {
1925 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1926 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1927 	u64 orig_start = *start;
1928 	/* Declare as unsigned long so we can use bitmap ops */
1929 	unsigned long flags;
1930 	int range_start_bit;
1931 	int range_end_bit;
1932 
1933 	/*
1934 	 * For regular sector size == page size case, since one page only
1935 	 * contains one sector, we return the page offset directly.
1936 	 */
1937 	if (!btrfs_is_subpage(fs_info, page)) {
1938 		*start = page_offset(page);
1939 		*end = page_offset(page) + PAGE_SIZE;
1940 		return;
1941 	}
1942 
1943 	range_start_bit = spi->dirty_offset +
1944 			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1945 
1946 	/* We should have the page locked, but just in case */
1947 	spin_lock_irqsave(&subpage->lock, flags);
1948 	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1949 			       spi->dirty_offset + spi->bitmap_nr_bits);
1950 	spin_unlock_irqrestore(&subpage->lock, flags);
1951 
1952 	range_start_bit -= spi->dirty_offset;
1953 	range_end_bit -= spi->dirty_offset;
1954 
1955 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1956 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1957 }
1958 
1959 /*
1960  * helper for __extent_writepage.  This calls the writepage start hooks,
1961  * and does the loop to map the page into extents and bios.
1962  *
1963  * We return 1 if the IO is started and the page is unlocked,
1964  * 0 if all went well (page still locked)
1965  * < 0 if there were errors (page still locked)
1966  */
1967 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1968 				 struct page *page,
1969 				 struct writeback_control *wbc,
1970 				 struct btrfs_bio_ctrl *bio_ctrl,
1971 				 loff_t i_size,
1972 				 int *nr_ret)
1973 {
1974 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1975 	u64 cur = page_offset(page);
1976 	u64 end = cur + PAGE_SIZE - 1;
1977 	u64 extent_offset;
1978 	u64 block_start;
1979 	struct extent_map *em;
1980 	int saved_ret = 0;
1981 	int ret = 0;
1982 	int nr = 0;
1983 	enum req_op op = REQ_OP_WRITE;
1984 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1985 	bool has_error = false;
1986 	bool compressed;
1987 
1988 	ret = btrfs_writepage_cow_fixup(page);
1989 	if (ret) {
1990 		/* Fixup worker will requeue */
1991 		redirty_page_for_writepage(wbc, page);
1992 		unlock_page(page);
1993 		return 1;
1994 	}
1995 
1996 	/*
1997 	 * we don't want to touch the inode after unlocking the page,
1998 	 * so we update the mapping writeback index now
1999 	 */
2000 	wbc->nr_to_write--;
2001 
2002 	bio_ctrl->end_io_func = end_bio_extent_writepage;
2003 	while (cur <= end) {
2004 		u64 disk_bytenr;
2005 		u64 em_end;
2006 		u64 dirty_range_start = cur;
2007 		u64 dirty_range_end;
2008 		u32 iosize;
2009 
2010 		if (cur >= i_size) {
2011 			btrfs_writepage_endio_finish_ordered(inode, page, cur,
2012 							     end, true);
2013 			/*
2014 			 * This range is beyond i_size, thus we don't need to
2015 			 * bother writing back.
2016 			 * But we still need to clear the dirty subpage bit, or
2017 			 * the next time the page gets dirtied, we will try to
2018 			 * writeback the sectors with subpage dirty bits,
2019 			 * causing writeback without ordered extent.
2020 			 */
2021 			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2022 			break;
2023 		}
2024 
2025 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
2026 				     &dirty_range_end);
2027 		if (cur < dirty_range_start) {
2028 			cur = dirty_range_start;
2029 			continue;
2030 		}
2031 
2032 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2033 		if (IS_ERR(em)) {
2034 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2035 			ret = PTR_ERR_OR_ZERO(em);
2036 			has_error = true;
2037 			if (!saved_ret)
2038 				saved_ret = ret;
2039 			break;
2040 		}
2041 
2042 		extent_offset = cur - em->start;
2043 		em_end = extent_map_end(em);
2044 		ASSERT(cur <= em_end);
2045 		ASSERT(cur < end);
2046 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2047 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2048 		block_start = em->block_start;
2049 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2050 		disk_bytenr = em->block_start + extent_offset;
2051 
2052 		/*
2053 		 * Note that em_end from extent_map_end() and dirty_range_end from
2054 		 * find_next_dirty_byte() are all exclusive
2055 		 */
2056 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2057 
2058 		if (btrfs_use_zone_append(inode, em->block_start))
2059 			op = REQ_OP_ZONE_APPEND;
2060 
2061 		free_extent_map(em);
2062 		em = NULL;
2063 
2064 		/*
2065 		 * compressed and inline extents are written through other
2066 		 * paths in the FS
2067 		 */
2068 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2069 		    block_start == EXTENT_MAP_INLINE) {
2070 			if (compressed)
2071 				nr++;
2072 			else
2073 				btrfs_writepage_endio_finish_ordered(inode,
2074 						page, cur, cur + iosize - 1, true);
2075 			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2076 			cur += iosize;
2077 			continue;
2078 		}
2079 
2080 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2081 		if (!PageWriteback(page)) {
2082 			btrfs_err(inode->root->fs_info,
2083 				   "page %lu not writeback, cur %llu end %llu",
2084 			       page->index, cur, end);
2085 		}
2086 
2087 		/*
2088 		 * Although the PageDirty bit is cleared before entering this
2089 		 * function, subpage dirty bit is not cleared.
2090 		 * So clear subpage dirty bit here so next time we won't submit
2091 		 * page for range already written to disk.
2092 		 */
2093 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2094 
2095 		ret = submit_extent_page(op | write_flags, wbc,
2096 					 bio_ctrl, disk_bytenr,
2097 					 page, iosize,
2098 					 cur - page_offset(page),
2099 					 0, false);
2100 		if (ret) {
2101 			has_error = true;
2102 			if (!saved_ret)
2103 				saved_ret = ret;
2104 
2105 			btrfs_page_set_error(fs_info, page, cur, iosize);
2106 			if (PageWriteback(page))
2107 				btrfs_page_clear_writeback(fs_info, page, cur,
2108 							   iosize);
2109 		}
2110 
2111 		cur += iosize;
2112 		nr++;
2113 	}
2114 	/*
2115 	 * If we finish without problem, we should not only clear page dirty,
2116 	 * but also empty subpage dirty bits
2117 	 */
2118 	if (!has_error)
2119 		btrfs_page_assert_not_dirty(fs_info, page);
2120 	else
2121 		ret = saved_ret;
2122 	*nr_ret = nr;
2123 	return ret;
2124 }
2125 
2126 /*
2127  * the writepage semantics are similar to regular writepage.  extent
2128  * records are inserted to lock ranges in the tree, and as dirty areas
2129  * are found, they are marked writeback.  Then the lock bits are removed
2130  * and the end_io handler clears the writeback ranges
2131  *
2132  * Return 0 if everything goes well.
2133  * Return <0 for error.
2134  */
2135 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2136 			      struct btrfs_bio_ctrl *bio_ctrl)
2137 {
2138 	struct folio *folio = page_folio(page);
2139 	struct inode *inode = page->mapping->host;
2140 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2141 	const u64 page_start = page_offset(page);
2142 	const u64 page_end = page_start + PAGE_SIZE - 1;
2143 	int ret;
2144 	int nr = 0;
2145 	size_t pg_offset;
2146 	loff_t i_size = i_size_read(inode);
2147 	unsigned long end_index = i_size >> PAGE_SHIFT;
2148 
2149 	trace___extent_writepage(page, inode, wbc);
2150 
2151 	WARN_ON(!PageLocked(page));
2152 
2153 	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2154 			       page_offset(page), PAGE_SIZE);
2155 
2156 	pg_offset = offset_in_page(i_size);
2157 	if (page->index > end_index ||
2158 	   (page->index == end_index && !pg_offset)) {
2159 		folio_invalidate(folio, 0, folio_size(folio));
2160 		folio_unlock(folio);
2161 		return 0;
2162 	}
2163 
2164 	if (page->index == end_index)
2165 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2166 
2167 	ret = set_page_extent_mapped(page);
2168 	if (ret < 0) {
2169 		SetPageError(page);
2170 		goto done;
2171 	}
2172 
2173 	if (!bio_ctrl->extent_locked) {
2174 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2175 		if (ret == 1)
2176 			return 0;
2177 		if (ret)
2178 			goto done;
2179 	}
2180 
2181 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size,
2182 				    &nr);
2183 	if (ret == 1)
2184 		return 0;
2185 
2186 done:
2187 	if (nr == 0) {
2188 		/* make sure the mapping tag for page dirty gets cleared */
2189 		set_page_writeback(page);
2190 		end_page_writeback(page);
2191 	}
2192 	/*
2193 	 * Here we used to have a check for PageError() and then set @ret and
2194 	 * call end_extent_writepage().
2195 	 *
2196 	 * But in fact setting @ret here will cause different error paths
2197 	 * between subpage and regular sectorsize.
2198 	 *
2199 	 * For regular page size, we never submit current page, but only add
2200 	 * current page to current bio.
2201 	 * The bio submission can only happen in next page.
2202 	 * Thus if we hit the PageError() branch, @ret is already set to
2203 	 * non-zero value and will not get updated for regular sectorsize.
2204 	 *
2205 	 * But for subpage case, it's possible we submit part of current page,
2206 	 * thus can get PageError() set by submitted bio of the same page,
2207 	 * while our @ret is still 0.
2208 	 *
2209 	 * So here we unify the behavior and don't set @ret.
2210 	 * Error can still be properly passed to higher layer as page will
2211 	 * be set error, here we just don't handle the IO failure.
2212 	 *
2213 	 * NOTE: This is just a hotfix for subpage.
2214 	 * The root fix will be properly ending ordered extent when we hit
2215 	 * an error during writeback.
2216 	 *
2217 	 * But that needs a bigger refactoring, as we not only need to grab the
2218 	 * submitted OE, but also need to know exactly at which bytenr we hit
2219 	 * the error.
2220 	 * Currently the full page based __extent_writepage_io() is not
2221 	 * capable of that.
2222 	 */
2223 	if (PageError(page))
2224 		end_extent_writepage(page, ret, page_start, page_end);
2225 	if (bio_ctrl->extent_locked) {
2226 		/*
2227 		 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(),
2228 		 * the page can either be locked by lock_page() or
2229 		 * process_one_page().
2230 		 * Let btrfs_page_unlock_writer() handle both cases.
2231 		 */
2232 		ASSERT(wbc);
2233 		btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2234 					 wbc->range_end + 1 - wbc->range_start);
2235 	} else {
2236 		unlock_page(page);
2237 	}
2238 	ASSERT(ret <= 0);
2239 	return ret;
2240 }
2241 
2242 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2243 {
2244 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2245 		       TASK_UNINTERRUPTIBLE);
2246 }
2247 
2248 static void end_extent_buffer_writeback(struct extent_buffer *eb)
2249 {
2250 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2251 	smp_mb__after_atomic();
2252 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2253 }
2254 
2255 /*
2256  * Lock extent buffer status and pages for writeback.
2257  *
2258  * May try to flush write bio if we can't get the lock.
2259  *
2260  * Return  0 if the extent buffer doesn't need to be submitted.
2261  *           (E.g. the extent buffer is not dirty)
2262  * Return >0 is the extent buffer is submitted to bio.
2263  * Return <0 if something went wrong, no page is locked.
2264  */
2265 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2266 			  struct btrfs_bio_ctrl *bio_ctrl)
2267 {
2268 	struct btrfs_fs_info *fs_info = eb->fs_info;
2269 	int i, num_pages;
2270 	int flush = 0;
2271 	int ret = 0;
2272 
2273 	if (!btrfs_try_tree_write_lock(eb)) {
2274 		submit_write_bio(bio_ctrl, 0);
2275 		flush = 1;
2276 		btrfs_tree_lock(eb);
2277 	}
2278 
2279 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2280 		btrfs_tree_unlock(eb);
2281 		if (!bio_ctrl->sync_io)
2282 			return 0;
2283 		if (!flush) {
2284 			submit_write_bio(bio_ctrl, 0);
2285 			flush = 1;
2286 		}
2287 		while (1) {
2288 			wait_on_extent_buffer_writeback(eb);
2289 			btrfs_tree_lock(eb);
2290 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2291 				break;
2292 			btrfs_tree_unlock(eb);
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * We need to do this to prevent races in people who check if the eb is
2298 	 * under IO since we can end up having no IO bits set for a short period
2299 	 * of time.
2300 	 */
2301 	spin_lock(&eb->refs_lock);
2302 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2303 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2304 		spin_unlock(&eb->refs_lock);
2305 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2306 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2307 					 -eb->len,
2308 					 fs_info->dirty_metadata_batch);
2309 		ret = 1;
2310 	} else {
2311 		spin_unlock(&eb->refs_lock);
2312 	}
2313 
2314 	btrfs_tree_unlock(eb);
2315 
2316 	/*
2317 	 * Either we don't need to submit any tree block, or we're submitting
2318 	 * subpage eb.
2319 	 * Subpage metadata doesn't use page locking at all, so we can skip
2320 	 * the page locking.
2321 	 */
2322 	if (!ret || fs_info->nodesize < PAGE_SIZE)
2323 		return ret;
2324 
2325 	num_pages = num_extent_pages(eb);
2326 	for (i = 0; i < num_pages; i++) {
2327 		struct page *p = eb->pages[i];
2328 
2329 		if (!trylock_page(p)) {
2330 			if (!flush) {
2331 				submit_write_bio(bio_ctrl, 0);
2332 				flush = 1;
2333 			}
2334 			lock_page(p);
2335 		}
2336 	}
2337 
2338 	return ret;
2339 }
2340 
2341 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2342 {
2343 	struct btrfs_fs_info *fs_info = eb->fs_info;
2344 
2345 	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2346 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2347 		return;
2348 
2349 	/*
2350 	 * A read may stumble upon this buffer later, make sure that it gets an
2351 	 * error and knows there was an error.
2352 	 */
2353 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2354 
2355 	/*
2356 	 * We need to set the mapping with the io error as well because a write
2357 	 * error will flip the file system readonly, and then syncfs() will
2358 	 * return a 0 because we are readonly if we don't modify the err seq for
2359 	 * the superblock.
2360 	 */
2361 	mapping_set_error(page->mapping, -EIO);
2362 
2363 	/*
2364 	 * If we error out, we should add back the dirty_metadata_bytes
2365 	 * to make it consistent.
2366 	 */
2367 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2368 				 eb->len, fs_info->dirty_metadata_batch);
2369 
2370 	/*
2371 	 * If writeback for a btree extent that doesn't belong to a log tree
2372 	 * failed, increment the counter transaction->eb_write_errors.
2373 	 * We do this because while the transaction is running and before it's
2374 	 * committing (when we call filemap_fdata[write|wait]_range against
2375 	 * the btree inode), we might have
2376 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2377 	 * returns an error or an error happens during writeback, when we're
2378 	 * committing the transaction we wouldn't know about it, since the pages
2379 	 * can be no longer dirty nor marked anymore for writeback (if a
2380 	 * subsequent modification to the extent buffer didn't happen before the
2381 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
2382 	 * able to find the pages tagged with SetPageError at transaction
2383 	 * commit time. So if this happens we must abort the transaction,
2384 	 * otherwise we commit a super block with btree roots that point to
2385 	 * btree nodes/leafs whose content on disk is invalid - either garbage
2386 	 * or the content of some node/leaf from a past generation that got
2387 	 * cowed or deleted and is no longer valid.
2388 	 *
2389 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2390 	 * not be enough - we need to distinguish between log tree extents vs
2391 	 * non-log tree extents, and the next filemap_fdatawait_range() call
2392 	 * will catch and clear such errors in the mapping - and that call might
2393 	 * be from a log sync and not from a transaction commit. Also, checking
2394 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2395 	 * not done and would not be reliable - the eb might have been released
2396 	 * from memory and reading it back again means that flag would not be
2397 	 * set (since it's a runtime flag, not persisted on disk).
2398 	 *
2399 	 * Using the flags below in the btree inode also makes us achieve the
2400 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2401 	 * writeback for all dirty pages and before filemap_fdatawait_range()
2402 	 * is called, the writeback for all dirty pages had already finished
2403 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2404 	 * filemap_fdatawait_range() would return success, as it could not know
2405 	 * that writeback errors happened (the pages were no longer tagged for
2406 	 * writeback).
2407 	 */
2408 	switch (eb->log_index) {
2409 	case -1:
2410 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2411 		break;
2412 	case 0:
2413 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2414 		break;
2415 	case 1:
2416 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2417 		break;
2418 	default:
2419 		BUG(); /* unexpected, logic error */
2420 	}
2421 }
2422 
2423 /*
2424  * The endio specific version which won't touch any unsafe spinlock in endio
2425  * context.
2426  */
2427 static struct extent_buffer *find_extent_buffer_nolock(
2428 		struct btrfs_fs_info *fs_info, u64 start)
2429 {
2430 	struct extent_buffer *eb;
2431 
2432 	rcu_read_lock();
2433 	eb = radix_tree_lookup(&fs_info->buffer_radix,
2434 			       start >> fs_info->sectorsize_bits);
2435 	if (eb && atomic_inc_not_zero(&eb->refs)) {
2436 		rcu_read_unlock();
2437 		return eb;
2438 	}
2439 	rcu_read_unlock();
2440 	return NULL;
2441 }
2442 
2443 /*
2444  * The endio function for subpage extent buffer write.
2445  *
2446  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2447  * after all extent buffers in the page has finished their writeback.
2448  */
2449 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2450 {
2451 	struct bio *bio = &bbio->bio;
2452 	struct btrfs_fs_info *fs_info;
2453 	struct bio_vec *bvec;
2454 	struct bvec_iter_all iter_all;
2455 
2456 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2457 	ASSERT(fs_info->nodesize < PAGE_SIZE);
2458 
2459 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2460 	bio_for_each_segment_all(bvec, bio, iter_all) {
2461 		struct page *page = bvec->bv_page;
2462 		u64 bvec_start = page_offset(page) + bvec->bv_offset;
2463 		u64 bvec_end = bvec_start + bvec->bv_len - 1;
2464 		u64 cur_bytenr = bvec_start;
2465 
2466 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2467 
2468 		/* Iterate through all extent buffers in the range */
2469 		while (cur_bytenr <= bvec_end) {
2470 			struct extent_buffer *eb;
2471 			int done;
2472 
2473 			/*
2474 			 * Here we can't use find_extent_buffer(), as it may
2475 			 * try to lock eb->refs_lock, which is not safe in endio
2476 			 * context.
2477 			 */
2478 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2479 			ASSERT(eb);
2480 
2481 			cur_bytenr = eb->start + eb->len;
2482 
2483 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2484 			done = atomic_dec_and_test(&eb->io_pages);
2485 			ASSERT(done);
2486 
2487 			if (bio->bi_status ||
2488 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2489 				ClearPageUptodate(page);
2490 				set_btree_ioerr(page, eb);
2491 			}
2492 
2493 			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2494 						      eb->len);
2495 			end_extent_buffer_writeback(eb);
2496 			/*
2497 			 * free_extent_buffer() will grab spinlock which is not
2498 			 * safe in endio context. Thus here we manually dec
2499 			 * the ref.
2500 			 */
2501 			atomic_dec(&eb->refs);
2502 		}
2503 	}
2504 	bio_put(bio);
2505 }
2506 
2507 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2508 {
2509 	struct bio *bio = &bbio->bio;
2510 	struct bio_vec *bvec;
2511 	struct extent_buffer *eb;
2512 	int done;
2513 	struct bvec_iter_all iter_all;
2514 
2515 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2516 	bio_for_each_segment_all(bvec, bio, iter_all) {
2517 		struct page *page = bvec->bv_page;
2518 
2519 		eb = (struct extent_buffer *)page->private;
2520 		BUG_ON(!eb);
2521 		done = atomic_dec_and_test(&eb->io_pages);
2522 
2523 		if (bio->bi_status ||
2524 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2525 			ClearPageUptodate(page);
2526 			set_btree_ioerr(page, eb);
2527 		}
2528 
2529 		end_page_writeback(page);
2530 
2531 		if (!done)
2532 			continue;
2533 
2534 		end_extent_buffer_writeback(eb);
2535 	}
2536 
2537 	bio_put(bio);
2538 }
2539 
2540 static void prepare_eb_write(struct extent_buffer *eb)
2541 {
2542 	u32 nritems;
2543 	unsigned long start;
2544 	unsigned long end;
2545 
2546 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2547 	atomic_set(&eb->io_pages, num_extent_pages(eb));
2548 
2549 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
2550 	nritems = btrfs_header_nritems(eb);
2551 	if (btrfs_header_level(eb) > 0) {
2552 		end = btrfs_node_key_ptr_offset(eb, nritems);
2553 		memzero_extent_buffer(eb, end, eb->len - end);
2554 	} else {
2555 		/*
2556 		 * Leaf:
2557 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2558 		 */
2559 		start = btrfs_item_nr_offset(eb, nritems);
2560 		end = btrfs_item_nr_offset(eb, 0);
2561 		if (nritems == 0)
2562 			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2563 		else
2564 			end += btrfs_item_offset(eb, nritems - 1);
2565 		memzero_extent_buffer(eb, start, end - start);
2566 	}
2567 }
2568 
2569 /*
2570  * Unlike the work in write_one_eb(), we rely completely on extent locking.
2571  * Page locking is only utilized at minimum to keep the VMM code happy.
2572  */
2573 static int write_one_subpage_eb(struct extent_buffer *eb,
2574 				struct writeback_control *wbc,
2575 				struct btrfs_bio_ctrl *bio_ctrl)
2576 {
2577 	struct btrfs_fs_info *fs_info = eb->fs_info;
2578 	struct page *page = eb->pages[0];
2579 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
2580 	bool no_dirty_ebs = false;
2581 	int ret;
2582 
2583 	prepare_eb_write(eb);
2584 
2585 	/* clear_page_dirty_for_io() in subpage helper needs page locked */
2586 	lock_page(page);
2587 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2588 
2589 	/* Check if this is the last dirty bit to update nr_written */
2590 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2591 							  eb->start, eb->len);
2592 	if (no_dirty_ebs)
2593 		clear_page_dirty_for_io(page);
2594 
2595 	bio_ctrl->end_io_func = end_bio_subpage_eb_writepage;
2596 
2597 	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2598 			bio_ctrl, eb->start, page, eb->len,
2599 			eb->start - page_offset(page), 0, false);
2600 	if (ret) {
2601 		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2602 		set_btree_ioerr(page, eb);
2603 		unlock_page(page);
2604 
2605 		if (atomic_dec_and_test(&eb->io_pages))
2606 			end_extent_buffer_writeback(eb);
2607 		return -EIO;
2608 	}
2609 	unlock_page(page);
2610 	/*
2611 	 * Submission finished without problem, if no range of the page is
2612 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
2613 	 */
2614 	if (no_dirty_ebs)
2615 		wbc->nr_to_write--;
2616 	return ret;
2617 }
2618 
2619 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2620 			struct writeback_control *wbc,
2621 			struct btrfs_bio_ctrl *bio_ctrl)
2622 {
2623 	u64 disk_bytenr = eb->start;
2624 	int i, num_pages;
2625 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
2626 	int ret = 0;
2627 
2628 	prepare_eb_write(eb);
2629 
2630 	bio_ctrl->end_io_func = end_bio_extent_buffer_writepage;
2631 
2632 	num_pages = num_extent_pages(eb);
2633 	for (i = 0; i < num_pages; i++) {
2634 		struct page *p = eb->pages[i];
2635 
2636 		clear_page_dirty_for_io(p);
2637 		set_page_writeback(p);
2638 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2639 					 bio_ctrl, disk_bytenr, p,
2640 					 PAGE_SIZE, 0, 0, false);
2641 		if (ret) {
2642 			set_btree_ioerr(p, eb);
2643 			if (PageWriteback(p))
2644 				end_page_writeback(p);
2645 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2646 				end_extent_buffer_writeback(eb);
2647 			ret = -EIO;
2648 			break;
2649 		}
2650 		disk_bytenr += PAGE_SIZE;
2651 		wbc->nr_to_write--;
2652 		unlock_page(p);
2653 	}
2654 
2655 	if (unlikely(ret)) {
2656 		for (; i < num_pages; i++) {
2657 			struct page *p = eb->pages[i];
2658 			clear_page_dirty_for_io(p);
2659 			unlock_page(p);
2660 		}
2661 	}
2662 
2663 	return ret;
2664 }
2665 
2666 /*
2667  * Submit one subpage btree page.
2668  *
2669  * The main difference to submit_eb_page() is:
2670  * - Page locking
2671  *   For subpage, we don't rely on page locking at all.
2672  *
2673  * - Flush write bio
2674  *   We only flush bio if we may be unable to fit current extent buffers into
2675  *   current bio.
2676  *
2677  * Return >=0 for the number of submitted extent buffers.
2678  * Return <0 for fatal error.
2679  */
2680 static int submit_eb_subpage(struct page *page,
2681 			     struct writeback_control *wbc,
2682 			     struct btrfs_bio_ctrl *bio_ctrl)
2683 {
2684 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2685 	int submitted = 0;
2686 	u64 page_start = page_offset(page);
2687 	int bit_start = 0;
2688 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2689 	int ret;
2690 
2691 	/* Lock and write each dirty extent buffers in the range */
2692 	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2693 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2694 		struct extent_buffer *eb;
2695 		unsigned long flags;
2696 		u64 start;
2697 
2698 		/*
2699 		 * Take private lock to ensure the subpage won't be detached
2700 		 * in the meantime.
2701 		 */
2702 		spin_lock(&page->mapping->private_lock);
2703 		if (!PagePrivate(page)) {
2704 			spin_unlock(&page->mapping->private_lock);
2705 			break;
2706 		}
2707 		spin_lock_irqsave(&subpage->lock, flags);
2708 		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2709 			      subpage->bitmaps)) {
2710 			spin_unlock_irqrestore(&subpage->lock, flags);
2711 			spin_unlock(&page->mapping->private_lock);
2712 			bit_start++;
2713 			continue;
2714 		}
2715 
2716 		start = page_start + bit_start * fs_info->sectorsize;
2717 		bit_start += sectors_per_node;
2718 
2719 		/*
2720 		 * Here we just want to grab the eb without touching extra
2721 		 * spin locks, so call find_extent_buffer_nolock().
2722 		 */
2723 		eb = find_extent_buffer_nolock(fs_info, start);
2724 		spin_unlock_irqrestore(&subpage->lock, flags);
2725 		spin_unlock(&page->mapping->private_lock);
2726 
2727 		/*
2728 		 * The eb has already reached 0 refs thus find_extent_buffer()
2729 		 * doesn't return it. We don't need to write back such eb
2730 		 * anyway.
2731 		 */
2732 		if (!eb)
2733 			continue;
2734 
2735 		ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2736 		if (ret == 0) {
2737 			free_extent_buffer(eb);
2738 			continue;
2739 		}
2740 		if (ret < 0) {
2741 			free_extent_buffer(eb);
2742 			goto cleanup;
2743 		}
2744 		ret = write_one_subpage_eb(eb, wbc, bio_ctrl);
2745 		free_extent_buffer(eb);
2746 		if (ret < 0)
2747 			goto cleanup;
2748 		submitted++;
2749 	}
2750 	return submitted;
2751 
2752 cleanup:
2753 	/* We hit error, end bio for the submitted extent buffers */
2754 	submit_write_bio(bio_ctrl, ret);
2755 	return ret;
2756 }
2757 
2758 /*
2759  * Submit all page(s) of one extent buffer.
2760  *
2761  * @page:	the page of one extent buffer
2762  * @eb_context:	to determine if we need to submit this page, if current page
2763  *		belongs to this eb, we don't need to submit
2764  *
2765  * The caller should pass each page in their bytenr order, and here we use
2766  * @eb_context to determine if we have submitted pages of one extent buffer.
2767  *
2768  * If we have, we just skip until we hit a new page that doesn't belong to
2769  * current @eb_context.
2770  *
2771  * If not, we submit all the page(s) of the extent buffer.
2772  *
2773  * Return >0 if we have submitted the extent buffer successfully.
2774  * Return 0 if we don't need to submit the page, as it's already submitted by
2775  * previous call.
2776  * Return <0 for fatal error.
2777  */
2778 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2779 			  struct btrfs_bio_ctrl *bio_ctrl,
2780 			  struct extent_buffer **eb_context)
2781 {
2782 	struct address_space *mapping = page->mapping;
2783 	struct btrfs_block_group *cache = NULL;
2784 	struct extent_buffer *eb;
2785 	int ret;
2786 
2787 	if (!PagePrivate(page))
2788 		return 0;
2789 
2790 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2791 		return submit_eb_subpage(page, wbc, bio_ctrl);
2792 
2793 	spin_lock(&mapping->private_lock);
2794 	if (!PagePrivate(page)) {
2795 		spin_unlock(&mapping->private_lock);
2796 		return 0;
2797 	}
2798 
2799 	eb = (struct extent_buffer *)page->private;
2800 
2801 	/*
2802 	 * Shouldn't happen and normally this would be a BUG_ON but no point
2803 	 * crashing the machine for something we can survive anyway.
2804 	 */
2805 	if (WARN_ON(!eb)) {
2806 		spin_unlock(&mapping->private_lock);
2807 		return 0;
2808 	}
2809 
2810 	if (eb == *eb_context) {
2811 		spin_unlock(&mapping->private_lock);
2812 		return 0;
2813 	}
2814 	ret = atomic_inc_not_zero(&eb->refs);
2815 	spin_unlock(&mapping->private_lock);
2816 	if (!ret)
2817 		return 0;
2818 
2819 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2820 		/*
2821 		 * If for_sync, this hole will be filled with
2822 		 * trasnsaction commit.
2823 		 */
2824 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2825 			ret = -EAGAIN;
2826 		else
2827 			ret = 0;
2828 		free_extent_buffer(eb);
2829 		return ret;
2830 	}
2831 
2832 	*eb_context = eb;
2833 
2834 	ret = lock_extent_buffer_for_io(eb, bio_ctrl);
2835 	if (ret <= 0) {
2836 		btrfs_revert_meta_write_pointer(cache, eb);
2837 		if (cache)
2838 			btrfs_put_block_group(cache);
2839 		free_extent_buffer(eb);
2840 		return ret;
2841 	}
2842 	if (cache) {
2843 		/*
2844 		 * Implies write in zoned mode. Mark the last eb in a block group.
2845 		 */
2846 		btrfs_schedule_zone_finish_bg(cache, eb);
2847 		btrfs_put_block_group(cache);
2848 	}
2849 	ret = write_one_eb(eb, wbc, bio_ctrl);
2850 	free_extent_buffer(eb);
2851 	if (ret < 0)
2852 		return ret;
2853 	return 1;
2854 }
2855 
2856 int btree_write_cache_pages(struct address_space *mapping,
2857 				   struct writeback_control *wbc)
2858 {
2859 	struct extent_buffer *eb_context = NULL;
2860 	struct btrfs_bio_ctrl bio_ctrl = {
2861 		.extent_locked = 0,
2862 		.sync_io = (wbc->sync_mode == WB_SYNC_ALL),
2863 	};
2864 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2865 	int ret = 0;
2866 	int done = 0;
2867 	int nr_to_write_done = 0;
2868 	struct pagevec pvec;
2869 	int nr_pages;
2870 	pgoff_t index;
2871 	pgoff_t end;		/* Inclusive */
2872 	int scanned = 0;
2873 	xa_mark_t tag;
2874 
2875 	pagevec_init(&pvec);
2876 	if (wbc->range_cyclic) {
2877 		index = mapping->writeback_index; /* Start from prev offset */
2878 		end = -1;
2879 		/*
2880 		 * Start from the beginning does not need to cycle over the
2881 		 * range, mark it as scanned.
2882 		 */
2883 		scanned = (index == 0);
2884 	} else {
2885 		index = wbc->range_start >> PAGE_SHIFT;
2886 		end = wbc->range_end >> PAGE_SHIFT;
2887 		scanned = 1;
2888 	}
2889 	if (wbc->sync_mode == WB_SYNC_ALL)
2890 		tag = PAGECACHE_TAG_TOWRITE;
2891 	else
2892 		tag = PAGECACHE_TAG_DIRTY;
2893 	btrfs_zoned_meta_io_lock(fs_info);
2894 retry:
2895 	if (wbc->sync_mode == WB_SYNC_ALL)
2896 		tag_pages_for_writeback(mapping, index, end);
2897 	while (!done && !nr_to_write_done && (index <= end) &&
2898 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2899 			tag))) {
2900 		unsigned i;
2901 
2902 		for (i = 0; i < nr_pages; i++) {
2903 			struct page *page = pvec.pages[i];
2904 
2905 			ret = submit_eb_page(page, wbc, &bio_ctrl, &eb_context);
2906 			if (ret == 0)
2907 				continue;
2908 			if (ret < 0) {
2909 				done = 1;
2910 				break;
2911 			}
2912 
2913 			/*
2914 			 * the filesystem may choose to bump up nr_to_write.
2915 			 * We have to make sure to honor the new nr_to_write
2916 			 * at any time
2917 			 */
2918 			nr_to_write_done = wbc->nr_to_write <= 0;
2919 		}
2920 		pagevec_release(&pvec);
2921 		cond_resched();
2922 	}
2923 	if (!scanned && !done) {
2924 		/*
2925 		 * We hit the last page and there is more work to be done: wrap
2926 		 * back to the start of the file
2927 		 */
2928 		scanned = 1;
2929 		index = 0;
2930 		goto retry;
2931 	}
2932 	/*
2933 	 * If something went wrong, don't allow any metadata write bio to be
2934 	 * submitted.
2935 	 *
2936 	 * This would prevent use-after-free if we had dirty pages not
2937 	 * cleaned up, which can still happen by fuzzed images.
2938 	 *
2939 	 * - Bad extent tree
2940 	 *   Allowing existing tree block to be allocated for other trees.
2941 	 *
2942 	 * - Log tree operations
2943 	 *   Exiting tree blocks get allocated to log tree, bumps its
2944 	 *   generation, then get cleaned in tree re-balance.
2945 	 *   Such tree block will not be written back, since it's clean,
2946 	 *   thus no WRITTEN flag set.
2947 	 *   And after log writes back, this tree block is not traced by
2948 	 *   any dirty extent_io_tree.
2949 	 *
2950 	 * - Offending tree block gets re-dirtied from its original owner
2951 	 *   Since it has bumped generation, no WRITTEN flag, it can be
2952 	 *   reused without COWing. This tree block will not be traced
2953 	 *   by btrfs_transaction::dirty_pages.
2954 	 *
2955 	 *   Now such dirty tree block will not be cleaned by any dirty
2956 	 *   extent io tree. Thus we don't want to submit such wild eb
2957 	 *   if the fs already has error.
2958 	 *
2959 	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2960 	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2961 	 */
2962 	if (ret > 0)
2963 		ret = 0;
2964 	if (!ret && BTRFS_FS_ERROR(fs_info))
2965 		ret = -EROFS;
2966 	submit_write_bio(&bio_ctrl, ret);
2967 
2968 	btrfs_zoned_meta_io_unlock(fs_info);
2969 	return ret;
2970 }
2971 
2972 /*
2973  * Walk the list of dirty pages of the given address space and write all of them.
2974  *
2975  * @mapping:   address space structure to write
2976  * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2977  * @bio_ctrl:  holds context for the write, namely the bio
2978  *
2979  * If a page is already under I/O, write_cache_pages() skips it, even
2980  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2981  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2982  * and msync() need to guarantee that all the data which was dirty at the time
2983  * the call was made get new I/O started against them.  If wbc->sync_mode is
2984  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2985  * existing IO to complete.
2986  */
2987 static int extent_write_cache_pages(struct address_space *mapping,
2988 			     struct writeback_control *wbc,
2989 			     struct btrfs_bio_ctrl *bio_ctrl)
2990 {
2991 	struct inode *inode = mapping->host;
2992 	int ret = 0;
2993 	int done = 0;
2994 	int nr_to_write_done = 0;
2995 	struct pagevec pvec;
2996 	int nr_pages;
2997 	pgoff_t index;
2998 	pgoff_t end;		/* Inclusive */
2999 	pgoff_t done_index;
3000 	int range_whole = 0;
3001 	int scanned = 0;
3002 	xa_mark_t tag;
3003 
3004 	/*
3005 	 * We have to hold onto the inode so that ordered extents can do their
3006 	 * work when the IO finishes.  The alternative to this is failing to add
3007 	 * an ordered extent if the igrab() fails there and that is a huge pain
3008 	 * to deal with, so instead just hold onto the inode throughout the
3009 	 * writepages operation.  If it fails here we are freeing up the inode
3010 	 * anyway and we'd rather not waste our time writing out stuff that is
3011 	 * going to be truncated anyway.
3012 	 */
3013 	if (!igrab(inode))
3014 		return 0;
3015 
3016 	pagevec_init(&pvec);
3017 	if (wbc->range_cyclic) {
3018 		index = mapping->writeback_index; /* Start from prev offset */
3019 		end = -1;
3020 		/*
3021 		 * Start from the beginning does not need to cycle over the
3022 		 * range, mark it as scanned.
3023 		 */
3024 		scanned = (index == 0);
3025 	} else {
3026 		index = wbc->range_start >> PAGE_SHIFT;
3027 		end = wbc->range_end >> PAGE_SHIFT;
3028 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3029 			range_whole = 1;
3030 		scanned = 1;
3031 	}
3032 
3033 	/*
3034 	 * We do the tagged writepage as long as the snapshot flush bit is set
3035 	 * and we are the first one who do the filemap_flush() on this inode.
3036 	 *
3037 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3038 	 * not race in and drop the bit.
3039 	 */
3040 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
3041 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3042 			       &BTRFS_I(inode)->runtime_flags))
3043 		wbc->tagged_writepages = 1;
3044 
3045 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3046 		tag = PAGECACHE_TAG_TOWRITE;
3047 	else
3048 		tag = PAGECACHE_TAG_DIRTY;
3049 retry:
3050 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3051 		tag_pages_for_writeback(mapping, index, end);
3052 	done_index = index;
3053 	while (!done && !nr_to_write_done && (index <= end) &&
3054 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3055 						&index, end, tag))) {
3056 		unsigned i;
3057 
3058 		for (i = 0; i < nr_pages; i++) {
3059 			struct page *page = pvec.pages[i];
3060 
3061 			done_index = page->index + 1;
3062 			/*
3063 			 * At this point we hold neither the i_pages lock nor
3064 			 * the page lock: the page may be truncated or
3065 			 * invalidated (changing page->mapping to NULL),
3066 			 * or even swizzled back from swapper_space to
3067 			 * tmpfs file mapping
3068 			 */
3069 			if (!trylock_page(page)) {
3070 				submit_write_bio(bio_ctrl, 0);
3071 				lock_page(page);
3072 			}
3073 
3074 			if (unlikely(page->mapping != mapping)) {
3075 				unlock_page(page);
3076 				continue;
3077 			}
3078 
3079 			if (wbc->sync_mode != WB_SYNC_NONE) {
3080 				if (PageWriteback(page))
3081 					submit_write_bio(bio_ctrl, 0);
3082 				wait_on_page_writeback(page);
3083 			}
3084 
3085 			if (PageWriteback(page) ||
3086 			    !clear_page_dirty_for_io(page)) {
3087 				unlock_page(page);
3088 				continue;
3089 			}
3090 
3091 			ret = __extent_writepage(page, wbc, bio_ctrl);
3092 			if (ret < 0) {
3093 				done = 1;
3094 				break;
3095 			}
3096 
3097 			/*
3098 			 * the filesystem may choose to bump up nr_to_write.
3099 			 * We have to make sure to honor the new nr_to_write
3100 			 * at any time
3101 			 */
3102 			nr_to_write_done = wbc->nr_to_write <= 0;
3103 		}
3104 		pagevec_release(&pvec);
3105 		cond_resched();
3106 	}
3107 	if (!scanned && !done) {
3108 		/*
3109 		 * We hit the last page and there is more work to be done: wrap
3110 		 * back to the start of the file
3111 		 */
3112 		scanned = 1;
3113 		index = 0;
3114 
3115 		/*
3116 		 * If we're looping we could run into a page that is locked by a
3117 		 * writer and that writer could be waiting on writeback for a
3118 		 * page in our current bio, and thus deadlock, so flush the
3119 		 * write bio here.
3120 		 */
3121 		submit_write_bio(bio_ctrl, 0);
3122 		goto retry;
3123 	}
3124 
3125 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3126 		mapping->writeback_index = done_index;
3127 
3128 	btrfs_add_delayed_iput(BTRFS_I(inode));
3129 	return ret;
3130 }
3131 
3132 /*
3133  * Submit the pages in the range to bio for call sites which delalloc range has
3134  * already been ran (aka, ordered extent inserted) and all pages are still
3135  * locked.
3136  */
3137 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3138 {
3139 	bool found_error = false;
3140 	int first_error = 0;
3141 	int ret = 0;
3142 	struct address_space *mapping = inode->i_mapping;
3143 	struct page *page;
3144 	u64 cur = start;
3145 	unsigned long nr_pages;
3146 	const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3147 	struct btrfs_bio_ctrl bio_ctrl = {
3148 		.extent_locked = 1,
3149 		.sync_io = 1,
3150 	};
3151 	struct writeback_control wbc_writepages = {
3152 		.sync_mode	= WB_SYNC_ALL,
3153 		.range_start	= start,
3154 		.range_end	= end + 1,
3155 		/* We're called from an async helper function */
3156 		.punt_to_cgroup	= 1,
3157 		.no_cgroup_owner = 1,
3158 	};
3159 
3160 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3161 	nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3162 		   PAGE_SHIFT;
3163 	wbc_writepages.nr_to_write = nr_pages * 2;
3164 
3165 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3166 	while (cur <= end) {
3167 		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3168 
3169 		page = find_get_page(mapping, cur >> PAGE_SHIFT);
3170 		/*
3171 		 * All pages in the range are locked since
3172 		 * btrfs_run_delalloc_range(), thus there is no way to clear
3173 		 * the page dirty flag.
3174 		 */
3175 		ASSERT(PageLocked(page));
3176 		ASSERT(PageDirty(page));
3177 		clear_page_dirty_for_io(page);
3178 		ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl);
3179 		ASSERT(ret <= 0);
3180 		if (ret < 0) {
3181 			found_error = true;
3182 			first_error = ret;
3183 		}
3184 		put_page(page);
3185 		cur = cur_end + 1;
3186 	}
3187 
3188 	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
3189 
3190 	wbc_detach_inode(&wbc_writepages);
3191 	if (found_error)
3192 		return first_error;
3193 	return ret;
3194 }
3195 
3196 int extent_writepages(struct address_space *mapping,
3197 		      struct writeback_control *wbc)
3198 {
3199 	struct inode *inode = mapping->host;
3200 	int ret = 0;
3201 	struct btrfs_bio_ctrl bio_ctrl = {
3202 		.extent_locked = 0,
3203 		.sync_io = (wbc->sync_mode == WB_SYNC_ALL),
3204 	};
3205 
3206 	/*
3207 	 * Allow only a single thread to do the reloc work in zoned mode to
3208 	 * protect the write pointer updates.
3209 	 */
3210 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3211 	ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl);
3212 	submit_write_bio(&bio_ctrl, ret);
3213 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3214 	return ret;
3215 }
3216 
3217 void extent_readahead(struct readahead_control *rac)
3218 {
3219 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
3220 	struct page *pagepool[16];
3221 	struct extent_map *em_cached = NULL;
3222 	u64 prev_em_start = (u64)-1;
3223 	int nr;
3224 
3225 	while ((nr = readahead_page_batch(rac, pagepool))) {
3226 		u64 contig_start = readahead_pos(rac);
3227 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3228 
3229 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
3230 				&em_cached, &bio_ctrl, &prev_em_start);
3231 	}
3232 
3233 	if (em_cached)
3234 		free_extent_map(em_cached);
3235 	submit_one_bio(&bio_ctrl);
3236 }
3237 
3238 /*
3239  * basic invalidate_folio code, this waits on any locked or writeback
3240  * ranges corresponding to the folio, and then deletes any extent state
3241  * records from the tree
3242  */
3243 int extent_invalidate_folio(struct extent_io_tree *tree,
3244 			  struct folio *folio, size_t offset)
3245 {
3246 	struct extent_state *cached_state = NULL;
3247 	u64 start = folio_pos(folio);
3248 	u64 end = start + folio_size(folio) - 1;
3249 	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3250 
3251 	/* This function is only called for the btree inode */
3252 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3253 
3254 	start += ALIGN(offset, blocksize);
3255 	if (start > end)
3256 		return 0;
3257 
3258 	lock_extent(tree, start, end, &cached_state);
3259 	folio_wait_writeback(folio);
3260 
3261 	/*
3262 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3263 	 * so here we only need to unlock the extent range to free any
3264 	 * existing extent state.
3265 	 */
3266 	unlock_extent(tree, start, end, &cached_state);
3267 	return 0;
3268 }
3269 
3270 /*
3271  * a helper for release_folio, this tests for areas of the page that
3272  * are locked or under IO and drops the related state bits if it is safe
3273  * to drop the page.
3274  */
3275 static int try_release_extent_state(struct extent_io_tree *tree,
3276 				    struct page *page, gfp_t mask)
3277 {
3278 	u64 start = page_offset(page);
3279 	u64 end = start + PAGE_SIZE - 1;
3280 	int ret = 1;
3281 
3282 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3283 		ret = 0;
3284 	} else {
3285 		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3286 				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3287 
3288 		/*
3289 		 * At this point we can safely clear everything except the
3290 		 * locked bit, the nodatasum bit and the delalloc new bit.
3291 		 * The delalloc new bit will be cleared by ordered extent
3292 		 * completion.
3293 		 */
3294 		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3295 					 mask, NULL);
3296 
3297 		/* if clear_extent_bit failed for enomem reasons,
3298 		 * we can't allow the release to continue.
3299 		 */
3300 		if (ret < 0)
3301 			ret = 0;
3302 		else
3303 			ret = 1;
3304 	}
3305 	return ret;
3306 }
3307 
3308 /*
3309  * a helper for release_folio.  As long as there are no locked extents
3310  * in the range corresponding to the page, both state records and extent
3311  * map records are removed
3312  */
3313 int try_release_extent_mapping(struct page *page, gfp_t mask)
3314 {
3315 	struct extent_map *em;
3316 	u64 start = page_offset(page);
3317 	u64 end = start + PAGE_SIZE - 1;
3318 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3319 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
3320 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
3321 
3322 	if (gfpflags_allow_blocking(mask) &&
3323 	    page->mapping->host->i_size > SZ_16M) {
3324 		u64 len;
3325 		while (start <= end) {
3326 			struct btrfs_fs_info *fs_info;
3327 			u64 cur_gen;
3328 
3329 			len = end - start + 1;
3330 			write_lock(&map->lock);
3331 			em = lookup_extent_mapping(map, start, len);
3332 			if (!em) {
3333 				write_unlock(&map->lock);
3334 				break;
3335 			}
3336 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3337 			    em->start != start) {
3338 				write_unlock(&map->lock);
3339 				free_extent_map(em);
3340 				break;
3341 			}
3342 			if (test_range_bit(tree, em->start,
3343 					   extent_map_end(em) - 1,
3344 					   EXTENT_LOCKED, 0, NULL))
3345 				goto next;
3346 			/*
3347 			 * If it's not in the list of modified extents, used
3348 			 * by a fast fsync, we can remove it. If it's being
3349 			 * logged we can safely remove it since fsync took an
3350 			 * extra reference on the em.
3351 			 */
3352 			if (list_empty(&em->list) ||
3353 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3354 				goto remove_em;
3355 			/*
3356 			 * If it's in the list of modified extents, remove it
3357 			 * only if its generation is older then the current one,
3358 			 * in which case we don't need it for a fast fsync.
3359 			 * Otherwise don't remove it, we could be racing with an
3360 			 * ongoing fast fsync that could miss the new extent.
3361 			 */
3362 			fs_info = btrfs_inode->root->fs_info;
3363 			spin_lock(&fs_info->trans_lock);
3364 			cur_gen = fs_info->generation;
3365 			spin_unlock(&fs_info->trans_lock);
3366 			if (em->generation >= cur_gen)
3367 				goto next;
3368 remove_em:
3369 			/*
3370 			 * We only remove extent maps that are not in the list of
3371 			 * modified extents or that are in the list but with a
3372 			 * generation lower then the current generation, so there
3373 			 * is no need to set the full fsync flag on the inode (it
3374 			 * hurts the fsync performance for workloads with a data
3375 			 * size that exceeds or is close to the system's memory).
3376 			 */
3377 			remove_extent_mapping(map, em);
3378 			/* once for the rb tree */
3379 			free_extent_map(em);
3380 next:
3381 			start = extent_map_end(em);
3382 			write_unlock(&map->lock);
3383 
3384 			/* once for us */
3385 			free_extent_map(em);
3386 
3387 			cond_resched(); /* Allow large-extent preemption. */
3388 		}
3389 	}
3390 	return try_release_extent_state(tree, page, mask);
3391 }
3392 
3393 /*
3394  * To cache previous fiemap extent
3395  *
3396  * Will be used for merging fiemap extent
3397  */
3398 struct fiemap_cache {
3399 	u64 offset;
3400 	u64 phys;
3401 	u64 len;
3402 	u32 flags;
3403 	bool cached;
3404 };
3405 
3406 /*
3407  * Helper to submit fiemap extent.
3408  *
3409  * Will try to merge current fiemap extent specified by @offset, @phys,
3410  * @len and @flags with cached one.
3411  * And only when we fails to merge, cached one will be submitted as
3412  * fiemap extent.
3413  *
3414  * Return value is the same as fiemap_fill_next_extent().
3415  */
3416 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3417 				struct fiemap_cache *cache,
3418 				u64 offset, u64 phys, u64 len, u32 flags)
3419 {
3420 	int ret = 0;
3421 
3422 	/* Set at the end of extent_fiemap(). */
3423 	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3424 
3425 	if (!cache->cached)
3426 		goto assign;
3427 
3428 	/*
3429 	 * Sanity check, extent_fiemap() should have ensured that new
3430 	 * fiemap extent won't overlap with cached one.
3431 	 * Not recoverable.
3432 	 *
3433 	 * NOTE: Physical address can overlap, due to compression
3434 	 */
3435 	if (cache->offset + cache->len > offset) {
3436 		WARN_ON(1);
3437 		return -EINVAL;
3438 	}
3439 
3440 	/*
3441 	 * Only merges fiemap extents if
3442 	 * 1) Their logical addresses are continuous
3443 	 *
3444 	 * 2) Their physical addresses are continuous
3445 	 *    So truly compressed (physical size smaller than logical size)
3446 	 *    extents won't get merged with each other
3447 	 *
3448 	 * 3) Share same flags
3449 	 */
3450 	if (cache->offset + cache->len  == offset &&
3451 	    cache->phys + cache->len == phys  &&
3452 	    cache->flags == flags) {
3453 		cache->len += len;
3454 		return 0;
3455 	}
3456 
3457 	/* Not mergeable, need to submit cached one */
3458 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3459 				      cache->len, cache->flags);
3460 	cache->cached = false;
3461 	if (ret)
3462 		return ret;
3463 assign:
3464 	cache->cached = true;
3465 	cache->offset = offset;
3466 	cache->phys = phys;
3467 	cache->len = len;
3468 	cache->flags = flags;
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * Emit last fiemap cache
3475  *
3476  * The last fiemap cache may still be cached in the following case:
3477  * 0		      4k		    8k
3478  * |<- Fiemap range ->|
3479  * |<------------  First extent ----------->|
3480  *
3481  * In this case, the first extent range will be cached but not emitted.
3482  * So we must emit it before ending extent_fiemap().
3483  */
3484 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3485 				  struct fiemap_cache *cache)
3486 {
3487 	int ret;
3488 
3489 	if (!cache->cached)
3490 		return 0;
3491 
3492 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3493 				      cache->len, cache->flags);
3494 	cache->cached = false;
3495 	if (ret > 0)
3496 		ret = 0;
3497 	return ret;
3498 }
3499 
3500 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3501 {
3502 	struct extent_buffer *clone;
3503 	struct btrfs_key key;
3504 	int slot;
3505 	int ret;
3506 
3507 	path->slots[0]++;
3508 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3509 		return 0;
3510 
3511 	ret = btrfs_next_leaf(inode->root, path);
3512 	if (ret != 0)
3513 		return ret;
3514 
3515 	/*
3516 	 * Don't bother with cloning if there are no more file extent items for
3517 	 * our inode.
3518 	 */
3519 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3520 	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3521 		return 1;
3522 
3523 	/* See the comment at fiemap_search_slot() about why we clone. */
3524 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
3525 	if (!clone)
3526 		return -ENOMEM;
3527 
3528 	slot = path->slots[0];
3529 	btrfs_release_path(path);
3530 	path->nodes[0] = clone;
3531 	path->slots[0] = slot;
3532 
3533 	return 0;
3534 }
3535 
3536 /*
3537  * Search for the first file extent item that starts at a given file offset or
3538  * the one that starts immediately before that offset.
3539  * Returns: 0 on success, < 0 on error, 1 if not found.
3540  */
3541 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3542 			      u64 file_offset)
3543 {
3544 	const u64 ino = btrfs_ino(inode);
3545 	struct btrfs_root *root = inode->root;
3546 	struct extent_buffer *clone;
3547 	struct btrfs_key key;
3548 	int slot;
3549 	int ret;
3550 
3551 	key.objectid = ino;
3552 	key.type = BTRFS_EXTENT_DATA_KEY;
3553 	key.offset = file_offset;
3554 
3555 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556 	if (ret < 0)
3557 		return ret;
3558 
3559 	if (ret > 0 && path->slots[0] > 0) {
3560 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3561 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3562 			path->slots[0]--;
3563 	}
3564 
3565 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3566 		ret = btrfs_next_leaf(root, path);
3567 		if (ret != 0)
3568 			return ret;
3569 
3570 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3571 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3572 			return 1;
3573 	}
3574 
3575 	/*
3576 	 * We clone the leaf and use it during fiemap. This is because while
3577 	 * using the leaf we do expensive things like checking if an extent is
3578 	 * shared, which can take a long time. In order to prevent blocking
3579 	 * other tasks for too long, we use a clone of the leaf. We have locked
3580 	 * the file range in the inode's io tree, so we know none of our file
3581 	 * extent items can change. This way we avoid blocking other tasks that
3582 	 * want to insert items for other inodes in the same leaf or b+tree
3583 	 * rebalance operations (triggered for example when someone is trying
3584 	 * to push items into this leaf when trying to insert an item in a
3585 	 * neighbour leaf).
3586 	 * We also need the private clone because holding a read lock on an
3587 	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3588 	 * when we call fiemap_fill_next_extent(), because that may cause a page
3589 	 * fault when filling the user space buffer with fiemap data.
3590 	 */
3591 	clone = btrfs_clone_extent_buffer(path->nodes[0]);
3592 	if (!clone)
3593 		return -ENOMEM;
3594 
3595 	slot = path->slots[0];
3596 	btrfs_release_path(path);
3597 	path->nodes[0] = clone;
3598 	path->slots[0] = slot;
3599 
3600 	return 0;
3601 }
3602 
3603 /*
3604  * Process a range which is a hole or a prealloc extent in the inode's subvolume
3605  * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3606  * extent. The end offset (@end) is inclusive.
3607  */
3608 static int fiemap_process_hole(struct btrfs_inode *inode,
3609 			       struct fiemap_extent_info *fieinfo,
3610 			       struct fiemap_cache *cache,
3611 			       struct extent_state **delalloc_cached_state,
3612 			       struct btrfs_backref_share_check_ctx *backref_ctx,
3613 			       u64 disk_bytenr, u64 extent_offset,
3614 			       u64 extent_gen,
3615 			       u64 start, u64 end)
3616 {
3617 	const u64 i_size = i_size_read(&inode->vfs_inode);
3618 	u64 cur_offset = start;
3619 	u64 last_delalloc_end = 0;
3620 	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3621 	bool checked_extent_shared = false;
3622 	int ret;
3623 
3624 	/*
3625 	 * There can be no delalloc past i_size, so don't waste time looking for
3626 	 * it beyond i_size.
3627 	 */
3628 	while (cur_offset < end && cur_offset < i_size) {
3629 		u64 delalloc_start;
3630 		u64 delalloc_end;
3631 		u64 prealloc_start;
3632 		u64 prealloc_len = 0;
3633 		bool delalloc;
3634 
3635 		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3636 							delalloc_cached_state,
3637 							&delalloc_start,
3638 							&delalloc_end);
3639 		if (!delalloc)
3640 			break;
3641 
3642 		/*
3643 		 * If this is a prealloc extent we have to report every section
3644 		 * of it that has no delalloc.
3645 		 */
3646 		if (disk_bytenr != 0) {
3647 			if (last_delalloc_end == 0) {
3648 				prealloc_start = start;
3649 				prealloc_len = delalloc_start - start;
3650 			} else {
3651 				prealloc_start = last_delalloc_end + 1;
3652 				prealloc_len = delalloc_start - prealloc_start;
3653 			}
3654 		}
3655 
3656 		if (prealloc_len > 0) {
3657 			if (!checked_extent_shared && fieinfo->fi_extents_max) {
3658 				ret = btrfs_is_data_extent_shared(inode,
3659 								  disk_bytenr,
3660 								  extent_gen,
3661 								  backref_ctx);
3662 				if (ret < 0)
3663 					return ret;
3664 				else if (ret > 0)
3665 					prealloc_flags |= FIEMAP_EXTENT_SHARED;
3666 
3667 				checked_extent_shared = true;
3668 			}
3669 			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3670 						 disk_bytenr + extent_offset,
3671 						 prealloc_len, prealloc_flags);
3672 			if (ret)
3673 				return ret;
3674 			extent_offset += prealloc_len;
3675 		}
3676 
3677 		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3678 					 delalloc_end + 1 - delalloc_start,
3679 					 FIEMAP_EXTENT_DELALLOC |
3680 					 FIEMAP_EXTENT_UNKNOWN);
3681 		if (ret)
3682 			return ret;
3683 
3684 		last_delalloc_end = delalloc_end;
3685 		cur_offset = delalloc_end + 1;
3686 		extent_offset += cur_offset - delalloc_start;
3687 		cond_resched();
3688 	}
3689 
3690 	/*
3691 	 * Either we found no delalloc for the whole prealloc extent or we have
3692 	 * a prealloc extent that spans i_size or starts at or after i_size.
3693 	 */
3694 	if (disk_bytenr != 0 && last_delalloc_end < end) {
3695 		u64 prealloc_start;
3696 		u64 prealloc_len;
3697 
3698 		if (last_delalloc_end == 0) {
3699 			prealloc_start = start;
3700 			prealloc_len = end + 1 - start;
3701 		} else {
3702 			prealloc_start = last_delalloc_end + 1;
3703 			prealloc_len = end + 1 - prealloc_start;
3704 		}
3705 
3706 		if (!checked_extent_shared && fieinfo->fi_extents_max) {
3707 			ret = btrfs_is_data_extent_shared(inode,
3708 							  disk_bytenr,
3709 							  extent_gen,
3710 							  backref_ctx);
3711 			if (ret < 0)
3712 				return ret;
3713 			else if (ret > 0)
3714 				prealloc_flags |= FIEMAP_EXTENT_SHARED;
3715 		}
3716 		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3717 					 disk_bytenr + extent_offset,
3718 					 prealloc_len, prealloc_flags);
3719 		if (ret)
3720 			return ret;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3727 					  struct btrfs_path *path,
3728 					  u64 *last_extent_end_ret)
3729 {
3730 	const u64 ino = btrfs_ino(inode);
3731 	struct btrfs_root *root = inode->root;
3732 	struct extent_buffer *leaf;
3733 	struct btrfs_file_extent_item *ei;
3734 	struct btrfs_key key;
3735 	u64 disk_bytenr;
3736 	int ret;
3737 
3738 	/*
3739 	 * Lookup the last file extent. We're not using i_size here because
3740 	 * there might be preallocation past i_size.
3741 	 */
3742 	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3743 	/* There can't be a file extent item at offset (u64)-1 */
3744 	ASSERT(ret != 0);
3745 	if (ret < 0)
3746 		return ret;
3747 
3748 	/*
3749 	 * For a non-existing key, btrfs_search_slot() always leaves us at a
3750 	 * slot > 0, except if the btree is empty, which is impossible because
3751 	 * at least it has the inode item for this inode and all the items for
3752 	 * the root inode 256.
3753 	 */
3754 	ASSERT(path->slots[0] > 0);
3755 	path->slots[0]--;
3756 	leaf = path->nodes[0];
3757 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3758 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3759 		/* No file extent items in the subvolume tree. */
3760 		*last_extent_end_ret = 0;
3761 		return 0;
3762 	}
3763 
3764 	/*
3765 	 * For an inline extent, the disk_bytenr is where inline data starts at,
3766 	 * so first check if we have an inline extent item before checking if we
3767 	 * have an implicit hole (disk_bytenr == 0).
3768 	 */
3769 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3770 	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3771 		*last_extent_end_ret = btrfs_file_extent_end(path);
3772 		return 0;
3773 	}
3774 
3775 	/*
3776 	 * Find the last file extent item that is not a hole (when NO_HOLES is
3777 	 * not enabled). This should take at most 2 iterations in the worst
3778 	 * case: we have one hole file extent item at slot 0 of a leaf and
3779 	 * another hole file extent item as the last item in the previous leaf.
3780 	 * This is because we merge file extent items that represent holes.
3781 	 */
3782 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3783 	while (disk_bytenr == 0) {
3784 		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3785 		if (ret < 0) {
3786 			return ret;
3787 		} else if (ret > 0) {
3788 			/* No file extent items that are not holes. */
3789 			*last_extent_end_ret = 0;
3790 			return 0;
3791 		}
3792 		leaf = path->nodes[0];
3793 		ei = btrfs_item_ptr(leaf, path->slots[0],
3794 				    struct btrfs_file_extent_item);
3795 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3796 	}
3797 
3798 	*last_extent_end_ret = btrfs_file_extent_end(path);
3799 	return 0;
3800 }
3801 
3802 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3803 		  u64 start, u64 len)
3804 {
3805 	const u64 ino = btrfs_ino(inode);
3806 	struct extent_state *cached_state = NULL;
3807 	struct extent_state *delalloc_cached_state = NULL;
3808 	struct btrfs_path *path;
3809 	struct fiemap_cache cache = { 0 };
3810 	struct btrfs_backref_share_check_ctx *backref_ctx;
3811 	u64 last_extent_end;
3812 	u64 prev_extent_end;
3813 	u64 lockstart;
3814 	u64 lockend;
3815 	bool stopped = false;
3816 	int ret;
3817 
3818 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
3819 	path = btrfs_alloc_path();
3820 	if (!backref_ctx || !path) {
3821 		ret = -ENOMEM;
3822 		goto out;
3823 	}
3824 
3825 	lockstart = round_down(start, inode->root->fs_info->sectorsize);
3826 	lockend = round_up(start + len, inode->root->fs_info->sectorsize);
3827 	prev_extent_end = lockstart;
3828 
3829 	lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3830 
3831 	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3832 	if (ret < 0)
3833 		goto out_unlock;
3834 	btrfs_release_path(path);
3835 
3836 	path->reada = READA_FORWARD;
3837 	ret = fiemap_search_slot(inode, path, lockstart);
3838 	if (ret < 0) {
3839 		goto out_unlock;
3840 	} else if (ret > 0) {
3841 		/*
3842 		 * No file extent item found, but we may have delalloc between
3843 		 * the current offset and i_size. So check for that.
3844 		 */
3845 		ret = 0;
3846 		goto check_eof_delalloc;
3847 	}
3848 
3849 	while (prev_extent_end < lockend) {
3850 		struct extent_buffer *leaf = path->nodes[0];
3851 		struct btrfs_file_extent_item *ei;
3852 		struct btrfs_key key;
3853 		u64 extent_end;
3854 		u64 extent_len;
3855 		u64 extent_offset = 0;
3856 		u64 extent_gen;
3857 		u64 disk_bytenr = 0;
3858 		u64 flags = 0;
3859 		int extent_type;
3860 		u8 compression;
3861 
3862 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3863 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3864 			break;
3865 
3866 		extent_end = btrfs_file_extent_end(path);
3867 
3868 		/*
3869 		 * The first iteration can leave us at an extent item that ends
3870 		 * before our range's start. Move to the next item.
3871 		 */
3872 		if (extent_end <= lockstart)
3873 			goto next_item;
3874 
3875 		backref_ctx->curr_leaf_bytenr = leaf->start;
3876 
3877 		/* We have in implicit hole (NO_HOLES feature enabled). */
3878 		if (prev_extent_end < key.offset) {
3879 			const u64 range_end = min(key.offset, lockend) - 1;
3880 
3881 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3882 						  &delalloc_cached_state,
3883 						  backref_ctx, 0, 0, 0,
3884 						  prev_extent_end, range_end);
3885 			if (ret < 0) {
3886 				goto out_unlock;
3887 			} else if (ret > 0) {
3888 				/* fiemap_fill_next_extent() told us to stop. */
3889 				stopped = true;
3890 				break;
3891 			}
3892 
3893 			/* We've reached the end of the fiemap range, stop. */
3894 			if (key.offset >= lockend) {
3895 				stopped = true;
3896 				break;
3897 			}
3898 		}
3899 
3900 		extent_len = extent_end - key.offset;
3901 		ei = btrfs_item_ptr(leaf, path->slots[0],
3902 				    struct btrfs_file_extent_item);
3903 		compression = btrfs_file_extent_compression(leaf, ei);
3904 		extent_type = btrfs_file_extent_type(leaf, ei);
3905 		extent_gen = btrfs_file_extent_generation(leaf, ei);
3906 
3907 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3908 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3909 			if (compression == BTRFS_COMPRESS_NONE)
3910 				extent_offset = btrfs_file_extent_offset(leaf, ei);
3911 		}
3912 
3913 		if (compression != BTRFS_COMPRESS_NONE)
3914 			flags |= FIEMAP_EXTENT_ENCODED;
3915 
3916 		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3917 			flags |= FIEMAP_EXTENT_DATA_INLINE;
3918 			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3919 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3920 						 extent_len, flags);
3921 		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3922 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3923 						  &delalloc_cached_state,
3924 						  backref_ctx,
3925 						  disk_bytenr, extent_offset,
3926 						  extent_gen, key.offset,
3927 						  extent_end - 1);
3928 		} else if (disk_bytenr == 0) {
3929 			/* We have an explicit hole. */
3930 			ret = fiemap_process_hole(inode, fieinfo, &cache,
3931 						  &delalloc_cached_state,
3932 						  backref_ctx, 0, 0, 0,
3933 						  key.offset, extent_end - 1);
3934 		} else {
3935 			/* We have a regular extent. */
3936 			if (fieinfo->fi_extents_max) {
3937 				ret = btrfs_is_data_extent_shared(inode,
3938 								  disk_bytenr,
3939 								  extent_gen,
3940 								  backref_ctx);
3941 				if (ret < 0)
3942 					goto out_unlock;
3943 				else if (ret > 0)
3944 					flags |= FIEMAP_EXTENT_SHARED;
3945 			}
3946 
3947 			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3948 						 disk_bytenr + extent_offset,
3949 						 extent_len, flags);
3950 		}
3951 
3952 		if (ret < 0) {
3953 			goto out_unlock;
3954 		} else if (ret > 0) {
3955 			/* fiemap_fill_next_extent() told us to stop. */
3956 			stopped = true;
3957 			break;
3958 		}
3959 
3960 		prev_extent_end = extent_end;
3961 next_item:
3962 		if (fatal_signal_pending(current)) {
3963 			ret = -EINTR;
3964 			goto out_unlock;
3965 		}
3966 
3967 		ret = fiemap_next_leaf_item(inode, path);
3968 		if (ret < 0) {
3969 			goto out_unlock;
3970 		} else if (ret > 0) {
3971 			/* No more file extent items for this inode. */
3972 			break;
3973 		}
3974 		cond_resched();
3975 	}
3976 
3977 check_eof_delalloc:
3978 	/*
3979 	 * Release (and free) the path before emitting any final entries to
3980 	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3981 	 * once we find no more file extent items exist, we may have a
3982 	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3983 	 * faults when copying data to the user space buffer.
3984 	 */
3985 	btrfs_free_path(path);
3986 	path = NULL;
3987 
3988 	if (!stopped && prev_extent_end < lockend) {
3989 		ret = fiemap_process_hole(inode, fieinfo, &cache,
3990 					  &delalloc_cached_state, backref_ctx,
3991 					  0, 0, 0, prev_extent_end, lockend - 1);
3992 		if (ret < 0)
3993 			goto out_unlock;
3994 		prev_extent_end = lockend;
3995 	}
3996 
3997 	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3998 		const u64 i_size = i_size_read(&inode->vfs_inode);
3999 
4000 		if (prev_extent_end < i_size) {
4001 			u64 delalloc_start;
4002 			u64 delalloc_end;
4003 			bool delalloc;
4004 
4005 			delalloc = btrfs_find_delalloc_in_range(inode,
4006 								prev_extent_end,
4007 								i_size - 1,
4008 								&delalloc_cached_state,
4009 								&delalloc_start,
4010 								&delalloc_end);
4011 			if (!delalloc)
4012 				cache.flags |= FIEMAP_EXTENT_LAST;
4013 		} else {
4014 			cache.flags |= FIEMAP_EXTENT_LAST;
4015 		}
4016 	}
4017 
4018 	ret = emit_last_fiemap_cache(fieinfo, &cache);
4019 
4020 out_unlock:
4021 	unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4022 out:
4023 	free_extent_state(delalloc_cached_state);
4024 	btrfs_free_backref_share_ctx(backref_ctx);
4025 	btrfs_free_path(path);
4026 	return ret;
4027 }
4028 
4029 static void __free_extent_buffer(struct extent_buffer *eb)
4030 {
4031 	kmem_cache_free(extent_buffer_cache, eb);
4032 }
4033 
4034 int extent_buffer_under_io(const struct extent_buffer *eb)
4035 {
4036 	return (atomic_read(&eb->io_pages) ||
4037 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4038 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4039 }
4040 
4041 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4042 {
4043 	struct btrfs_subpage *subpage;
4044 
4045 	lockdep_assert_held(&page->mapping->private_lock);
4046 
4047 	if (PagePrivate(page)) {
4048 		subpage = (struct btrfs_subpage *)page->private;
4049 		if (atomic_read(&subpage->eb_refs))
4050 			return true;
4051 		/*
4052 		 * Even there is no eb refs here, we may still have
4053 		 * end_page_read() call relying on page::private.
4054 		 */
4055 		if (atomic_read(&subpage->readers))
4056 			return true;
4057 	}
4058 	return false;
4059 }
4060 
4061 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4062 {
4063 	struct btrfs_fs_info *fs_info = eb->fs_info;
4064 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4065 
4066 	/*
4067 	 * For mapped eb, we're going to change the page private, which should
4068 	 * be done under the private_lock.
4069 	 */
4070 	if (mapped)
4071 		spin_lock(&page->mapping->private_lock);
4072 
4073 	if (!PagePrivate(page)) {
4074 		if (mapped)
4075 			spin_unlock(&page->mapping->private_lock);
4076 		return;
4077 	}
4078 
4079 	if (fs_info->nodesize >= PAGE_SIZE) {
4080 		/*
4081 		 * We do this since we'll remove the pages after we've
4082 		 * removed the eb from the radix tree, so we could race
4083 		 * and have this page now attached to the new eb.  So
4084 		 * only clear page_private if it's still connected to
4085 		 * this eb.
4086 		 */
4087 		if (PagePrivate(page) &&
4088 		    page->private == (unsigned long)eb) {
4089 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4090 			BUG_ON(PageDirty(page));
4091 			BUG_ON(PageWriteback(page));
4092 			/*
4093 			 * We need to make sure we haven't be attached
4094 			 * to a new eb.
4095 			 */
4096 			detach_page_private(page);
4097 		}
4098 		if (mapped)
4099 			spin_unlock(&page->mapping->private_lock);
4100 		return;
4101 	}
4102 
4103 	/*
4104 	 * For subpage, we can have dummy eb with page private.  In this case,
4105 	 * we can directly detach the private as such page is only attached to
4106 	 * one dummy eb, no sharing.
4107 	 */
4108 	if (!mapped) {
4109 		btrfs_detach_subpage(fs_info, page);
4110 		return;
4111 	}
4112 
4113 	btrfs_page_dec_eb_refs(fs_info, page);
4114 
4115 	/*
4116 	 * We can only detach the page private if there are no other ebs in the
4117 	 * page range and no unfinished IO.
4118 	 */
4119 	if (!page_range_has_eb(fs_info, page))
4120 		btrfs_detach_subpage(fs_info, page);
4121 
4122 	spin_unlock(&page->mapping->private_lock);
4123 }
4124 
4125 /* Release all pages attached to the extent buffer */
4126 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4127 {
4128 	int i;
4129 	int num_pages;
4130 
4131 	ASSERT(!extent_buffer_under_io(eb));
4132 
4133 	num_pages = num_extent_pages(eb);
4134 	for (i = 0; i < num_pages; i++) {
4135 		struct page *page = eb->pages[i];
4136 
4137 		if (!page)
4138 			continue;
4139 
4140 		detach_extent_buffer_page(eb, page);
4141 
4142 		/* One for when we allocated the page */
4143 		put_page(page);
4144 	}
4145 }
4146 
4147 /*
4148  * Helper for releasing the extent buffer.
4149  */
4150 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4151 {
4152 	btrfs_release_extent_buffer_pages(eb);
4153 	btrfs_leak_debug_del_eb(eb);
4154 	__free_extent_buffer(eb);
4155 }
4156 
4157 static struct extent_buffer *
4158 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4159 		      unsigned long len)
4160 {
4161 	struct extent_buffer *eb = NULL;
4162 
4163 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4164 	eb->start = start;
4165 	eb->len = len;
4166 	eb->fs_info = fs_info;
4167 	init_rwsem(&eb->lock);
4168 
4169 	btrfs_leak_debug_add_eb(eb);
4170 	INIT_LIST_HEAD(&eb->release_list);
4171 
4172 	spin_lock_init(&eb->refs_lock);
4173 	atomic_set(&eb->refs, 1);
4174 	atomic_set(&eb->io_pages, 0);
4175 
4176 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4177 
4178 	return eb;
4179 }
4180 
4181 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4182 {
4183 	int i;
4184 	struct extent_buffer *new;
4185 	int num_pages = num_extent_pages(src);
4186 	int ret;
4187 
4188 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4189 	if (new == NULL)
4190 		return NULL;
4191 
4192 	/*
4193 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4194 	 * btrfs_release_extent_buffer() have different behavior for
4195 	 * UNMAPPED subpage extent buffer.
4196 	 */
4197 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4198 
4199 	ret = btrfs_alloc_page_array(num_pages, new->pages);
4200 	if (ret) {
4201 		btrfs_release_extent_buffer(new);
4202 		return NULL;
4203 	}
4204 
4205 	for (i = 0; i < num_pages; i++) {
4206 		int ret;
4207 		struct page *p = new->pages[i];
4208 
4209 		ret = attach_extent_buffer_page(new, p, NULL);
4210 		if (ret < 0) {
4211 			btrfs_release_extent_buffer(new);
4212 			return NULL;
4213 		}
4214 		WARN_ON(PageDirty(p));
4215 		copy_page(page_address(p), page_address(src->pages[i]));
4216 	}
4217 	set_extent_buffer_uptodate(new);
4218 
4219 	return new;
4220 }
4221 
4222 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4223 						  u64 start, unsigned long len)
4224 {
4225 	struct extent_buffer *eb;
4226 	int num_pages;
4227 	int i;
4228 	int ret;
4229 
4230 	eb = __alloc_extent_buffer(fs_info, start, len);
4231 	if (!eb)
4232 		return NULL;
4233 
4234 	num_pages = num_extent_pages(eb);
4235 	ret = btrfs_alloc_page_array(num_pages, eb->pages);
4236 	if (ret)
4237 		goto err;
4238 
4239 	for (i = 0; i < num_pages; i++) {
4240 		struct page *p = eb->pages[i];
4241 
4242 		ret = attach_extent_buffer_page(eb, p, NULL);
4243 		if (ret < 0)
4244 			goto err;
4245 	}
4246 
4247 	set_extent_buffer_uptodate(eb);
4248 	btrfs_set_header_nritems(eb, 0);
4249 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4250 
4251 	return eb;
4252 err:
4253 	for (i = 0; i < num_pages; i++) {
4254 		if (eb->pages[i]) {
4255 			detach_extent_buffer_page(eb, eb->pages[i]);
4256 			__free_page(eb->pages[i]);
4257 		}
4258 	}
4259 	__free_extent_buffer(eb);
4260 	return NULL;
4261 }
4262 
4263 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4264 						u64 start)
4265 {
4266 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4267 }
4268 
4269 static void check_buffer_tree_ref(struct extent_buffer *eb)
4270 {
4271 	int refs;
4272 	/*
4273 	 * The TREE_REF bit is first set when the extent_buffer is added
4274 	 * to the radix tree. It is also reset, if unset, when a new reference
4275 	 * is created by find_extent_buffer.
4276 	 *
4277 	 * It is only cleared in two cases: freeing the last non-tree
4278 	 * reference to the extent_buffer when its STALE bit is set or
4279 	 * calling release_folio when the tree reference is the only reference.
4280 	 *
4281 	 * In both cases, care is taken to ensure that the extent_buffer's
4282 	 * pages are not under io. However, release_folio can be concurrently
4283 	 * called with creating new references, which is prone to race
4284 	 * conditions between the calls to check_buffer_tree_ref in those
4285 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4286 	 *
4287 	 * The actual lifetime of the extent_buffer in the radix tree is
4288 	 * adequately protected by the refcount, but the TREE_REF bit and
4289 	 * its corresponding reference are not. To protect against this
4290 	 * class of races, we call check_buffer_tree_ref from the codepaths
4291 	 * which trigger io after they set eb->io_pages. Note that once io is
4292 	 * initiated, TREE_REF can no longer be cleared, so that is the
4293 	 * moment at which any such race is best fixed.
4294 	 */
4295 	refs = atomic_read(&eb->refs);
4296 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4297 		return;
4298 
4299 	spin_lock(&eb->refs_lock);
4300 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4301 		atomic_inc(&eb->refs);
4302 	spin_unlock(&eb->refs_lock);
4303 }
4304 
4305 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4306 		struct page *accessed)
4307 {
4308 	int num_pages, i;
4309 
4310 	check_buffer_tree_ref(eb);
4311 
4312 	num_pages = num_extent_pages(eb);
4313 	for (i = 0; i < num_pages; i++) {
4314 		struct page *p = eb->pages[i];
4315 
4316 		if (p != accessed)
4317 			mark_page_accessed(p);
4318 	}
4319 }
4320 
4321 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4322 					 u64 start)
4323 {
4324 	struct extent_buffer *eb;
4325 
4326 	eb = find_extent_buffer_nolock(fs_info, start);
4327 	if (!eb)
4328 		return NULL;
4329 	/*
4330 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4331 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4332 	 * another task running free_extent_buffer() might have seen that flag
4333 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4334 	 * writeback flags not set) and it's still in the tree (flag
4335 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4336 	 * decrementing the extent buffer's reference count twice.  So here we
4337 	 * could race and increment the eb's reference count, clear its stale
4338 	 * flag, mark it as dirty and drop our reference before the other task
4339 	 * finishes executing free_extent_buffer, which would later result in
4340 	 * an attempt to free an extent buffer that is dirty.
4341 	 */
4342 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4343 		spin_lock(&eb->refs_lock);
4344 		spin_unlock(&eb->refs_lock);
4345 	}
4346 	mark_extent_buffer_accessed(eb, NULL);
4347 	return eb;
4348 }
4349 
4350 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4351 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4352 					u64 start)
4353 {
4354 	struct extent_buffer *eb, *exists = NULL;
4355 	int ret;
4356 
4357 	eb = find_extent_buffer(fs_info, start);
4358 	if (eb)
4359 		return eb;
4360 	eb = alloc_dummy_extent_buffer(fs_info, start);
4361 	if (!eb)
4362 		return ERR_PTR(-ENOMEM);
4363 	eb->fs_info = fs_info;
4364 again:
4365 	ret = radix_tree_preload(GFP_NOFS);
4366 	if (ret) {
4367 		exists = ERR_PTR(ret);
4368 		goto free_eb;
4369 	}
4370 	spin_lock(&fs_info->buffer_lock);
4371 	ret = radix_tree_insert(&fs_info->buffer_radix,
4372 				start >> fs_info->sectorsize_bits, eb);
4373 	spin_unlock(&fs_info->buffer_lock);
4374 	radix_tree_preload_end();
4375 	if (ret == -EEXIST) {
4376 		exists = find_extent_buffer(fs_info, start);
4377 		if (exists)
4378 			goto free_eb;
4379 		else
4380 			goto again;
4381 	}
4382 	check_buffer_tree_ref(eb);
4383 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4384 
4385 	return eb;
4386 free_eb:
4387 	btrfs_release_extent_buffer(eb);
4388 	return exists;
4389 }
4390 #endif
4391 
4392 static struct extent_buffer *grab_extent_buffer(
4393 		struct btrfs_fs_info *fs_info, struct page *page)
4394 {
4395 	struct extent_buffer *exists;
4396 
4397 	/*
4398 	 * For subpage case, we completely rely on radix tree to ensure we
4399 	 * don't try to insert two ebs for the same bytenr.  So here we always
4400 	 * return NULL and just continue.
4401 	 */
4402 	if (fs_info->nodesize < PAGE_SIZE)
4403 		return NULL;
4404 
4405 	/* Page not yet attached to an extent buffer */
4406 	if (!PagePrivate(page))
4407 		return NULL;
4408 
4409 	/*
4410 	 * We could have already allocated an eb for this page and attached one
4411 	 * so lets see if we can get a ref on the existing eb, and if we can we
4412 	 * know it's good and we can just return that one, else we know we can
4413 	 * just overwrite page->private.
4414 	 */
4415 	exists = (struct extent_buffer *)page->private;
4416 	if (atomic_inc_not_zero(&exists->refs))
4417 		return exists;
4418 
4419 	WARN_ON(PageDirty(page));
4420 	detach_page_private(page);
4421 	return NULL;
4422 }
4423 
4424 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4425 {
4426 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4427 		btrfs_err(fs_info, "bad tree block start %llu", start);
4428 		return -EINVAL;
4429 	}
4430 
4431 	if (fs_info->nodesize < PAGE_SIZE &&
4432 	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4433 		btrfs_err(fs_info,
4434 		"tree block crosses page boundary, start %llu nodesize %u",
4435 			  start, fs_info->nodesize);
4436 		return -EINVAL;
4437 	}
4438 	if (fs_info->nodesize >= PAGE_SIZE &&
4439 	    !PAGE_ALIGNED(start)) {
4440 		btrfs_err(fs_info,
4441 		"tree block is not page aligned, start %llu nodesize %u",
4442 			  start, fs_info->nodesize);
4443 		return -EINVAL;
4444 	}
4445 	return 0;
4446 }
4447 
4448 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4449 					  u64 start, u64 owner_root, int level)
4450 {
4451 	unsigned long len = fs_info->nodesize;
4452 	int num_pages;
4453 	int i;
4454 	unsigned long index = start >> PAGE_SHIFT;
4455 	struct extent_buffer *eb;
4456 	struct extent_buffer *exists = NULL;
4457 	struct page *p;
4458 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4459 	u64 lockdep_owner = owner_root;
4460 	int uptodate = 1;
4461 	int ret;
4462 
4463 	if (check_eb_alignment(fs_info, start))
4464 		return ERR_PTR(-EINVAL);
4465 
4466 #if BITS_PER_LONG == 32
4467 	if (start >= MAX_LFS_FILESIZE) {
4468 		btrfs_err_rl(fs_info,
4469 		"extent buffer %llu is beyond 32bit page cache limit", start);
4470 		btrfs_err_32bit_limit(fs_info);
4471 		return ERR_PTR(-EOVERFLOW);
4472 	}
4473 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4474 		btrfs_warn_32bit_limit(fs_info);
4475 #endif
4476 
4477 	eb = find_extent_buffer(fs_info, start);
4478 	if (eb)
4479 		return eb;
4480 
4481 	eb = __alloc_extent_buffer(fs_info, start, len);
4482 	if (!eb)
4483 		return ERR_PTR(-ENOMEM);
4484 
4485 	/*
4486 	 * The reloc trees are just snapshots, so we need them to appear to be
4487 	 * just like any other fs tree WRT lockdep.
4488 	 */
4489 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4490 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4491 
4492 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4493 
4494 	num_pages = num_extent_pages(eb);
4495 	for (i = 0; i < num_pages; i++, index++) {
4496 		struct btrfs_subpage *prealloc = NULL;
4497 
4498 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4499 		if (!p) {
4500 			exists = ERR_PTR(-ENOMEM);
4501 			goto free_eb;
4502 		}
4503 
4504 		/*
4505 		 * Preallocate page->private for subpage case, so that we won't
4506 		 * allocate memory with private_lock hold.  The memory will be
4507 		 * freed by attach_extent_buffer_page() or freed manually if
4508 		 * we exit earlier.
4509 		 *
4510 		 * Although we have ensured one subpage eb can only have one
4511 		 * page, but it may change in the future for 16K page size
4512 		 * support, so we still preallocate the memory in the loop.
4513 		 */
4514 		if (fs_info->nodesize < PAGE_SIZE) {
4515 			prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4516 			if (IS_ERR(prealloc)) {
4517 				ret = PTR_ERR(prealloc);
4518 				unlock_page(p);
4519 				put_page(p);
4520 				exists = ERR_PTR(ret);
4521 				goto free_eb;
4522 			}
4523 		}
4524 
4525 		spin_lock(&mapping->private_lock);
4526 		exists = grab_extent_buffer(fs_info, p);
4527 		if (exists) {
4528 			spin_unlock(&mapping->private_lock);
4529 			unlock_page(p);
4530 			put_page(p);
4531 			mark_extent_buffer_accessed(exists, p);
4532 			btrfs_free_subpage(prealloc);
4533 			goto free_eb;
4534 		}
4535 		/* Should not fail, as we have preallocated the memory */
4536 		ret = attach_extent_buffer_page(eb, p, prealloc);
4537 		ASSERT(!ret);
4538 		/*
4539 		 * To inform we have extra eb under allocation, so that
4540 		 * detach_extent_buffer_page() won't release the page private
4541 		 * when the eb hasn't yet been inserted into radix tree.
4542 		 *
4543 		 * The ref will be decreased when the eb released the page, in
4544 		 * detach_extent_buffer_page().
4545 		 * Thus needs no special handling in error path.
4546 		 */
4547 		btrfs_page_inc_eb_refs(fs_info, p);
4548 		spin_unlock(&mapping->private_lock);
4549 
4550 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4551 		eb->pages[i] = p;
4552 		if (!PageUptodate(p))
4553 			uptodate = 0;
4554 
4555 		/*
4556 		 * We can't unlock the pages just yet since the extent buffer
4557 		 * hasn't been properly inserted in the radix tree, this
4558 		 * opens a race with btree_release_folio which can free a page
4559 		 * while we are still filling in all pages for the buffer and
4560 		 * we could crash.
4561 		 */
4562 	}
4563 	if (uptodate)
4564 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4565 again:
4566 	ret = radix_tree_preload(GFP_NOFS);
4567 	if (ret) {
4568 		exists = ERR_PTR(ret);
4569 		goto free_eb;
4570 	}
4571 
4572 	spin_lock(&fs_info->buffer_lock);
4573 	ret = radix_tree_insert(&fs_info->buffer_radix,
4574 				start >> fs_info->sectorsize_bits, eb);
4575 	spin_unlock(&fs_info->buffer_lock);
4576 	radix_tree_preload_end();
4577 	if (ret == -EEXIST) {
4578 		exists = find_extent_buffer(fs_info, start);
4579 		if (exists)
4580 			goto free_eb;
4581 		else
4582 			goto again;
4583 	}
4584 	/* add one reference for the tree */
4585 	check_buffer_tree_ref(eb);
4586 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4587 
4588 	/*
4589 	 * Now it's safe to unlock the pages because any calls to
4590 	 * btree_release_folio will correctly detect that a page belongs to a
4591 	 * live buffer and won't free them prematurely.
4592 	 */
4593 	for (i = 0; i < num_pages; i++)
4594 		unlock_page(eb->pages[i]);
4595 	return eb;
4596 
4597 free_eb:
4598 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4599 	for (i = 0; i < num_pages; i++) {
4600 		if (eb->pages[i])
4601 			unlock_page(eb->pages[i]);
4602 	}
4603 
4604 	btrfs_release_extent_buffer(eb);
4605 	return exists;
4606 }
4607 
4608 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4609 {
4610 	struct extent_buffer *eb =
4611 			container_of(head, struct extent_buffer, rcu_head);
4612 
4613 	__free_extent_buffer(eb);
4614 }
4615 
4616 static int release_extent_buffer(struct extent_buffer *eb)
4617 	__releases(&eb->refs_lock)
4618 {
4619 	lockdep_assert_held(&eb->refs_lock);
4620 
4621 	WARN_ON(atomic_read(&eb->refs) == 0);
4622 	if (atomic_dec_and_test(&eb->refs)) {
4623 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4624 			struct btrfs_fs_info *fs_info = eb->fs_info;
4625 
4626 			spin_unlock(&eb->refs_lock);
4627 
4628 			spin_lock(&fs_info->buffer_lock);
4629 			radix_tree_delete(&fs_info->buffer_radix,
4630 					  eb->start >> fs_info->sectorsize_bits);
4631 			spin_unlock(&fs_info->buffer_lock);
4632 		} else {
4633 			spin_unlock(&eb->refs_lock);
4634 		}
4635 
4636 		btrfs_leak_debug_del_eb(eb);
4637 		/* Should be safe to release our pages at this point */
4638 		btrfs_release_extent_buffer_pages(eb);
4639 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4640 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4641 			__free_extent_buffer(eb);
4642 			return 1;
4643 		}
4644 #endif
4645 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4646 		return 1;
4647 	}
4648 	spin_unlock(&eb->refs_lock);
4649 
4650 	return 0;
4651 }
4652 
4653 void free_extent_buffer(struct extent_buffer *eb)
4654 {
4655 	int refs;
4656 	if (!eb)
4657 		return;
4658 
4659 	refs = atomic_read(&eb->refs);
4660 	while (1) {
4661 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4662 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4663 			refs == 1))
4664 			break;
4665 		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4666 			return;
4667 	}
4668 
4669 	spin_lock(&eb->refs_lock);
4670 	if (atomic_read(&eb->refs) == 2 &&
4671 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4672 	    !extent_buffer_under_io(eb) &&
4673 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4674 		atomic_dec(&eb->refs);
4675 
4676 	/*
4677 	 * I know this is terrible, but it's temporary until we stop tracking
4678 	 * the uptodate bits and such for the extent buffers.
4679 	 */
4680 	release_extent_buffer(eb);
4681 }
4682 
4683 void free_extent_buffer_stale(struct extent_buffer *eb)
4684 {
4685 	if (!eb)
4686 		return;
4687 
4688 	spin_lock(&eb->refs_lock);
4689 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4690 
4691 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4692 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4693 		atomic_dec(&eb->refs);
4694 	release_extent_buffer(eb);
4695 }
4696 
4697 static void btree_clear_page_dirty(struct page *page)
4698 {
4699 	ASSERT(PageDirty(page));
4700 	ASSERT(PageLocked(page));
4701 	clear_page_dirty_for_io(page);
4702 	xa_lock_irq(&page->mapping->i_pages);
4703 	if (!PageDirty(page))
4704 		__xa_clear_mark(&page->mapping->i_pages,
4705 				page_index(page), PAGECACHE_TAG_DIRTY);
4706 	xa_unlock_irq(&page->mapping->i_pages);
4707 }
4708 
4709 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4710 {
4711 	struct btrfs_fs_info *fs_info = eb->fs_info;
4712 	struct page *page = eb->pages[0];
4713 	bool last;
4714 
4715 	/* btree_clear_page_dirty() needs page locked */
4716 	lock_page(page);
4717 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4718 						  eb->len);
4719 	if (last)
4720 		btree_clear_page_dirty(page);
4721 	unlock_page(page);
4722 	WARN_ON(atomic_read(&eb->refs) == 0);
4723 }
4724 
4725 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4726 {
4727 	int i;
4728 	int num_pages;
4729 	struct page *page;
4730 
4731 	if (eb->fs_info->nodesize < PAGE_SIZE)
4732 		return clear_subpage_extent_buffer_dirty(eb);
4733 
4734 	num_pages = num_extent_pages(eb);
4735 
4736 	for (i = 0; i < num_pages; i++) {
4737 		page = eb->pages[i];
4738 		if (!PageDirty(page))
4739 			continue;
4740 		lock_page(page);
4741 		btree_clear_page_dirty(page);
4742 		ClearPageError(page);
4743 		unlock_page(page);
4744 	}
4745 	WARN_ON(atomic_read(&eb->refs) == 0);
4746 }
4747 
4748 bool set_extent_buffer_dirty(struct extent_buffer *eb)
4749 {
4750 	int i;
4751 	int num_pages;
4752 	bool was_dirty;
4753 
4754 	check_buffer_tree_ref(eb);
4755 
4756 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4757 
4758 	num_pages = num_extent_pages(eb);
4759 	WARN_ON(atomic_read(&eb->refs) == 0);
4760 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4761 
4762 	if (!was_dirty) {
4763 		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4764 
4765 		/*
4766 		 * For subpage case, we can have other extent buffers in the
4767 		 * same page, and in clear_subpage_extent_buffer_dirty() we
4768 		 * have to clear page dirty without subpage lock held.
4769 		 * This can cause race where our page gets dirty cleared after
4770 		 * we just set it.
4771 		 *
4772 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4773 		 * its page for other reasons, we can use page lock to prevent
4774 		 * the above race.
4775 		 */
4776 		if (subpage)
4777 			lock_page(eb->pages[0]);
4778 		for (i = 0; i < num_pages; i++)
4779 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4780 					     eb->start, eb->len);
4781 		if (subpage)
4782 			unlock_page(eb->pages[0]);
4783 	}
4784 #ifdef CONFIG_BTRFS_DEBUG
4785 	for (i = 0; i < num_pages; i++)
4786 		ASSERT(PageDirty(eb->pages[i]));
4787 #endif
4788 
4789 	return was_dirty;
4790 }
4791 
4792 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4793 {
4794 	struct btrfs_fs_info *fs_info = eb->fs_info;
4795 	struct page *page;
4796 	int num_pages;
4797 	int i;
4798 
4799 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4800 	num_pages = num_extent_pages(eb);
4801 	for (i = 0; i < num_pages; i++) {
4802 		page = eb->pages[i];
4803 		if (!page)
4804 			continue;
4805 
4806 		/*
4807 		 * This is special handling for metadata subpage, as regular
4808 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4809 		 */
4810 		if (fs_info->nodesize >= PAGE_SIZE)
4811 			ClearPageUptodate(page);
4812 		else
4813 			btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4814 						     eb->len);
4815 	}
4816 }
4817 
4818 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4819 {
4820 	struct btrfs_fs_info *fs_info = eb->fs_info;
4821 	struct page *page;
4822 	int num_pages;
4823 	int i;
4824 
4825 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4826 	num_pages = num_extent_pages(eb);
4827 	for (i = 0; i < num_pages; i++) {
4828 		page = eb->pages[i];
4829 
4830 		/*
4831 		 * This is special handling for metadata subpage, as regular
4832 		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4833 		 */
4834 		if (fs_info->nodesize >= PAGE_SIZE)
4835 			SetPageUptodate(page);
4836 		else
4837 			btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4838 						   eb->len);
4839 	}
4840 }
4841 
4842 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4843 				      int mirror_num,
4844 				      struct btrfs_tree_parent_check *check)
4845 {
4846 	struct btrfs_fs_info *fs_info = eb->fs_info;
4847 	struct extent_io_tree *io_tree;
4848 	struct page *page = eb->pages[0];
4849 	struct extent_state *cached_state = NULL;
4850 	struct btrfs_bio_ctrl bio_ctrl = {
4851 		.mirror_num = mirror_num,
4852 		.parent_check = check,
4853 	};
4854 	int ret = 0;
4855 
4856 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4857 	ASSERT(PagePrivate(page));
4858 	ASSERT(check);
4859 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4860 
4861 	if (wait == WAIT_NONE) {
4862 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4863 				     &cached_state))
4864 			return -EAGAIN;
4865 	} else {
4866 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4867 				  &cached_state);
4868 		if (ret < 0)
4869 			return ret;
4870 	}
4871 
4872 	ret = 0;
4873 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4874 	    PageUptodate(page) ||
4875 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4876 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4877 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4878 			      &cached_state);
4879 		return ret;
4880 	}
4881 
4882 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4883 	eb->read_mirror = 0;
4884 	atomic_set(&eb->io_pages, 1);
4885 	check_buffer_tree_ref(eb);
4886 	bio_ctrl.end_io_func = end_bio_extent_readpage;
4887 
4888 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4889 
4890 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4891 	ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4892 				 eb->start, page, eb->len,
4893 				 eb->start - page_offset(page), 0, true);
4894 	if (ret) {
4895 		/*
4896 		 * In the endio function, if we hit something wrong we will
4897 		 * increase the io_pages, so here we need to decrease it for
4898 		 * error path.
4899 		 */
4900 		atomic_dec(&eb->io_pages);
4901 	}
4902 	submit_one_bio(&bio_ctrl);
4903 	if (ret || wait != WAIT_COMPLETE) {
4904 		free_extent_state(cached_state);
4905 		return ret;
4906 	}
4907 
4908 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
4909 			EXTENT_LOCKED, &cached_state);
4910 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4911 		ret = -EIO;
4912 	return ret;
4913 }
4914 
4915 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4916 			     struct btrfs_tree_parent_check *check)
4917 {
4918 	int i;
4919 	struct page *page;
4920 	int err;
4921 	int ret = 0;
4922 	int locked_pages = 0;
4923 	int all_uptodate = 1;
4924 	int num_pages;
4925 	unsigned long num_reads = 0;
4926 	struct btrfs_bio_ctrl bio_ctrl = {
4927 		.mirror_num = mirror_num,
4928 		.parent_check = check,
4929 	};
4930 
4931 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4932 		return 0;
4933 
4934 	/*
4935 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4936 	 * operation, which could potentially still be in flight.  In this case
4937 	 * we simply want to return an error.
4938 	 */
4939 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4940 		return -EIO;
4941 
4942 	if (eb->fs_info->nodesize < PAGE_SIZE)
4943 		return read_extent_buffer_subpage(eb, wait, mirror_num, check);
4944 
4945 	num_pages = num_extent_pages(eb);
4946 	for (i = 0; i < num_pages; i++) {
4947 		page = eb->pages[i];
4948 		if (wait == WAIT_NONE) {
4949 			/*
4950 			 * WAIT_NONE is only utilized by readahead. If we can't
4951 			 * acquire the lock atomically it means either the eb
4952 			 * is being read out or under modification.
4953 			 * Either way the eb will be or has been cached,
4954 			 * readahead can exit safely.
4955 			 */
4956 			if (!trylock_page(page))
4957 				goto unlock_exit;
4958 		} else {
4959 			lock_page(page);
4960 		}
4961 		locked_pages++;
4962 	}
4963 	/*
4964 	 * We need to firstly lock all pages to make sure that
4965 	 * the uptodate bit of our pages won't be affected by
4966 	 * clear_extent_buffer_uptodate().
4967 	 */
4968 	for (i = 0; i < num_pages; i++) {
4969 		page = eb->pages[i];
4970 		if (!PageUptodate(page)) {
4971 			num_reads++;
4972 			all_uptodate = 0;
4973 		}
4974 	}
4975 
4976 	if (all_uptodate) {
4977 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4978 		goto unlock_exit;
4979 	}
4980 
4981 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4982 	eb->read_mirror = 0;
4983 	atomic_set(&eb->io_pages, num_reads);
4984 	/*
4985 	 * It is possible for release_folio to clear the TREE_REF bit before we
4986 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
4987 	 */
4988 	check_buffer_tree_ref(eb);
4989 	bio_ctrl.end_io_func = end_bio_extent_readpage;
4990 	for (i = 0; i < num_pages; i++) {
4991 		page = eb->pages[i];
4992 
4993 		if (!PageUptodate(page)) {
4994 			if (ret) {
4995 				atomic_dec(&eb->io_pages);
4996 				unlock_page(page);
4997 				continue;
4998 			}
4999 
5000 			ClearPageError(page);
5001 			err = submit_extent_page(REQ_OP_READ, NULL,
5002 					 &bio_ctrl, page_offset(page), page,
5003 					 PAGE_SIZE, 0, 0, false);
5004 			if (err) {
5005 				/*
5006 				 * We failed to submit the bio so it's the
5007 				 * caller's responsibility to perform cleanup
5008 				 * i.e unlock page/set error bit.
5009 				 */
5010 				ret = err;
5011 				SetPageError(page);
5012 				unlock_page(page);
5013 				atomic_dec(&eb->io_pages);
5014 			}
5015 		} else {
5016 			unlock_page(page);
5017 		}
5018 	}
5019 
5020 	submit_one_bio(&bio_ctrl);
5021 
5022 	if (ret || wait != WAIT_COMPLETE)
5023 		return ret;
5024 
5025 	for (i = 0; i < num_pages; i++) {
5026 		page = eb->pages[i];
5027 		wait_on_page_locked(page);
5028 		if (!PageUptodate(page))
5029 			ret = -EIO;
5030 	}
5031 
5032 	return ret;
5033 
5034 unlock_exit:
5035 	while (locked_pages > 0) {
5036 		locked_pages--;
5037 		page = eb->pages[locked_pages];
5038 		unlock_page(page);
5039 	}
5040 	return ret;
5041 }
5042 
5043 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5044 			    unsigned long len)
5045 {
5046 	btrfs_warn(eb->fs_info,
5047 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
5048 		eb->start, eb->len, start, len);
5049 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5050 
5051 	return true;
5052 }
5053 
5054 /*
5055  * Check if the [start, start + len) range is valid before reading/writing
5056  * the eb.
5057  * NOTE: @start and @len are offset inside the eb, not logical address.
5058  *
5059  * Caller should not touch the dst/src memory if this function returns error.
5060  */
5061 static inline int check_eb_range(const struct extent_buffer *eb,
5062 				 unsigned long start, unsigned long len)
5063 {
5064 	unsigned long offset;
5065 
5066 	/* start, start + len should not go beyond eb->len nor overflow */
5067 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5068 		return report_eb_range(eb, start, len);
5069 
5070 	return false;
5071 }
5072 
5073 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5074 			unsigned long start, unsigned long len)
5075 {
5076 	size_t cur;
5077 	size_t offset;
5078 	struct page *page;
5079 	char *kaddr;
5080 	char *dst = (char *)dstv;
5081 	unsigned long i = get_eb_page_index(start);
5082 
5083 	if (check_eb_range(eb, start, len))
5084 		return;
5085 
5086 	offset = get_eb_offset_in_page(eb, start);
5087 
5088 	while (len > 0) {
5089 		page = eb->pages[i];
5090 
5091 		cur = min(len, (PAGE_SIZE - offset));
5092 		kaddr = page_address(page);
5093 		memcpy(dst, kaddr + offset, cur);
5094 
5095 		dst += cur;
5096 		len -= cur;
5097 		offset = 0;
5098 		i++;
5099 	}
5100 }
5101 
5102 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5103 				       void __user *dstv,
5104 				       unsigned long start, unsigned long len)
5105 {
5106 	size_t cur;
5107 	size_t offset;
5108 	struct page *page;
5109 	char *kaddr;
5110 	char __user *dst = (char __user *)dstv;
5111 	unsigned long i = get_eb_page_index(start);
5112 	int ret = 0;
5113 
5114 	WARN_ON(start > eb->len);
5115 	WARN_ON(start + len > eb->start + eb->len);
5116 
5117 	offset = get_eb_offset_in_page(eb, start);
5118 
5119 	while (len > 0) {
5120 		page = eb->pages[i];
5121 
5122 		cur = min(len, (PAGE_SIZE - offset));
5123 		kaddr = page_address(page);
5124 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5125 			ret = -EFAULT;
5126 			break;
5127 		}
5128 
5129 		dst += cur;
5130 		len -= cur;
5131 		offset = 0;
5132 		i++;
5133 	}
5134 
5135 	return ret;
5136 }
5137 
5138 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5139 			 unsigned long start, unsigned long len)
5140 {
5141 	size_t cur;
5142 	size_t offset;
5143 	struct page *page;
5144 	char *kaddr;
5145 	char *ptr = (char *)ptrv;
5146 	unsigned long i = get_eb_page_index(start);
5147 	int ret = 0;
5148 
5149 	if (check_eb_range(eb, start, len))
5150 		return -EINVAL;
5151 
5152 	offset = get_eb_offset_in_page(eb, start);
5153 
5154 	while (len > 0) {
5155 		page = eb->pages[i];
5156 
5157 		cur = min(len, (PAGE_SIZE - offset));
5158 
5159 		kaddr = page_address(page);
5160 		ret = memcmp(ptr, kaddr + offset, cur);
5161 		if (ret)
5162 			break;
5163 
5164 		ptr += cur;
5165 		len -= cur;
5166 		offset = 0;
5167 		i++;
5168 	}
5169 	return ret;
5170 }
5171 
5172 /*
5173  * Check that the extent buffer is uptodate.
5174  *
5175  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5176  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5177  */
5178 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5179 				    struct page *page)
5180 {
5181 	struct btrfs_fs_info *fs_info = eb->fs_info;
5182 
5183 	/*
5184 	 * If we are using the commit root we could potentially clear a page
5185 	 * Uptodate while we're using the extent buffer that we've previously
5186 	 * looked up.  We don't want to complain in this case, as the page was
5187 	 * valid before, we just didn't write it out.  Instead we want to catch
5188 	 * the case where we didn't actually read the block properly, which
5189 	 * would have !PageUptodate && !PageError, as we clear PageError before
5190 	 * reading.
5191 	 */
5192 	if (fs_info->nodesize < PAGE_SIZE) {
5193 		bool uptodate, error;
5194 
5195 		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5196 						       eb->start, eb->len);
5197 		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5198 		WARN_ON(!uptodate && !error);
5199 	} else {
5200 		WARN_ON(!PageUptodate(page) && !PageError(page));
5201 	}
5202 }
5203 
5204 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5205 		const void *srcv)
5206 {
5207 	char *kaddr;
5208 
5209 	assert_eb_page_uptodate(eb, eb->pages[0]);
5210 	kaddr = page_address(eb->pages[0]) +
5211 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5212 						   chunk_tree_uuid));
5213 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5214 }
5215 
5216 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5217 {
5218 	char *kaddr;
5219 
5220 	assert_eb_page_uptodate(eb, eb->pages[0]);
5221 	kaddr = page_address(eb->pages[0]) +
5222 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5223 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5224 }
5225 
5226 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5227 			 unsigned long start, unsigned long len)
5228 {
5229 	size_t cur;
5230 	size_t offset;
5231 	struct page *page;
5232 	char *kaddr;
5233 	char *src = (char *)srcv;
5234 	unsigned long i = get_eb_page_index(start);
5235 
5236 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5237 
5238 	if (check_eb_range(eb, start, len))
5239 		return;
5240 
5241 	offset = get_eb_offset_in_page(eb, start);
5242 
5243 	while (len > 0) {
5244 		page = eb->pages[i];
5245 		assert_eb_page_uptodate(eb, page);
5246 
5247 		cur = min(len, PAGE_SIZE - offset);
5248 		kaddr = page_address(page);
5249 		memcpy(kaddr + offset, src, cur);
5250 
5251 		src += cur;
5252 		len -= cur;
5253 		offset = 0;
5254 		i++;
5255 	}
5256 }
5257 
5258 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5259 		unsigned long len)
5260 {
5261 	size_t cur;
5262 	size_t offset;
5263 	struct page *page;
5264 	char *kaddr;
5265 	unsigned long i = get_eb_page_index(start);
5266 
5267 	if (check_eb_range(eb, start, len))
5268 		return;
5269 
5270 	offset = get_eb_offset_in_page(eb, start);
5271 
5272 	while (len > 0) {
5273 		page = eb->pages[i];
5274 		assert_eb_page_uptodate(eb, page);
5275 
5276 		cur = min(len, PAGE_SIZE - offset);
5277 		kaddr = page_address(page);
5278 		memset(kaddr + offset, 0, cur);
5279 
5280 		len -= cur;
5281 		offset = 0;
5282 		i++;
5283 	}
5284 }
5285 
5286 void copy_extent_buffer_full(const struct extent_buffer *dst,
5287 			     const struct extent_buffer *src)
5288 {
5289 	int i;
5290 	int num_pages;
5291 
5292 	ASSERT(dst->len == src->len);
5293 
5294 	if (dst->fs_info->nodesize >= PAGE_SIZE) {
5295 		num_pages = num_extent_pages(dst);
5296 		for (i = 0; i < num_pages; i++)
5297 			copy_page(page_address(dst->pages[i]),
5298 				  page_address(src->pages[i]));
5299 	} else {
5300 		size_t src_offset = get_eb_offset_in_page(src, 0);
5301 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
5302 
5303 		ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5304 		memcpy(page_address(dst->pages[0]) + dst_offset,
5305 		       page_address(src->pages[0]) + src_offset,
5306 		       src->len);
5307 	}
5308 }
5309 
5310 void copy_extent_buffer(const struct extent_buffer *dst,
5311 			const struct extent_buffer *src,
5312 			unsigned long dst_offset, unsigned long src_offset,
5313 			unsigned long len)
5314 {
5315 	u64 dst_len = dst->len;
5316 	size_t cur;
5317 	size_t offset;
5318 	struct page *page;
5319 	char *kaddr;
5320 	unsigned long i = get_eb_page_index(dst_offset);
5321 
5322 	if (check_eb_range(dst, dst_offset, len) ||
5323 	    check_eb_range(src, src_offset, len))
5324 		return;
5325 
5326 	WARN_ON(src->len != dst_len);
5327 
5328 	offset = get_eb_offset_in_page(dst, dst_offset);
5329 
5330 	while (len > 0) {
5331 		page = dst->pages[i];
5332 		assert_eb_page_uptodate(dst, page);
5333 
5334 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5335 
5336 		kaddr = page_address(page);
5337 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5338 
5339 		src_offset += cur;
5340 		len -= cur;
5341 		offset = 0;
5342 		i++;
5343 	}
5344 }
5345 
5346 /*
5347  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5348  * given bit number
5349  * @eb: the extent buffer
5350  * @start: offset of the bitmap item in the extent buffer
5351  * @nr: bit number
5352  * @page_index: return index of the page in the extent buffer that contains the
5353  * given bit number
5354  * @page_offset: return offset into the page given by page_index
5355  *
5356  * This helper hides the ugliness of finding the byte in an extent buffer which
5357  * contains a given bit.
5358  */
5359 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5360 				    unsigned long start, unsigned long nr,
5361 				    unsigned long *page_index,
5362 				    size_t *page_offset)
5363 {
5364 	size_t byte_offset = BIT_BYTE(nr);
5365 	size_t offset;
5366 
5367 	/*
5368 	 * The byte we want is the offset of the extent buffer + the offset of
5369 	 * the bitmap item in the extent buffer + the offset of the byte in the
5370 	 * bitmap item.
5371 	 */
5372 	offset = start + offset_in_page(eb->start) + byte_offset;
5373 
5374 	*page_index = offset >> PAGE_SHIFT;
5375 	*page_offset = offset_in_page(offset);
5376 }
5377 
5378 /*
5379  * Determine whether a bit in a bitmap item is set.
5380  *
5381  * @eb:     the extent buffer
5382  * @start:  offset of the bitmap item in the extent buffer
5383  * @nr:     bit number to test
5384  */
5385 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5386 			   unsigned long nr)
5387 {
5388 	u8 *kaddr;
5389 	struct page *page;
5390 	unsigned long i;
5391 	size_t offset;
5392 
5393 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5394 	page = eb->pages[i];
5395 	assert_eb_page_uptodate(eb, page);
5396 	kaddr = page_address(page);
5397 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5398 }
5399 
5400 /*
5401  * Set an area of a bitmap to 1.
5402  *
5403  * @eb:     the extent buffer
5404  * @start:  offset of the bitmap item in the extent buffer
5405  * @pos:    bit number of the first bit
5406  * @len:    number of bits to set
5407  */
5408 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5409 			      unsigned long pos, unsigned long len)
5410 {
5411 	u8 *kaddr;
5412 	struct page *page;
5413 	unsigned long i;
5414 	size_t offset;
5415 	const unsigned int size = pos + len;
5416 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5417 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5418 
5419 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5420 	page = eb->pages[i];
5421 	assert_eb_page_uptodate(eb, page);
5422 	kaddr = page_address(page);
5423 
5424 	while (len >= bits_to_set) {
5425 		kaddr[offset] |= mask_to_set;
5426 		len -= bits_to_set;
5427 		bits_to_set = BITS_PER_BYTE;
5428 		mask_to_set = ~0;
5429 		if (++offset >= PAGE_SIZE && len > 0) {
5430 			offset = 0;
5431 			page = eb->pages[++i];
5432 			assert_eb_page_uptodate(eb, page);
5433 			kaddr = page_address(page);
5434 		}
5435 	}
5436 	if (len) {
5437 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5438 		kaddr[offset] |= mask_to_set;
5439 	}
5440 }
5441 
5442 
5443 /*
5444  * Clear an area of a bitmap.
5445  *
5446  * @eb:     the extent buffer
5447  * @start:  offset of the bitmap item in the extent buffer
5448  * @pos:    bit number of the first bit
5449  * @len:    number of bits to clear
5450  */
5451 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5452 				unsigned long start, unsigned long pos,
5453 				unsigned long len)
5454 {
5455 	u8 *kaddr;
5456 	struct page *page;
5457 	unsigned long i;
5458 	size_t offset;
5459 	const unsigned int size = pos + len;
5460 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5461 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5462 
5463 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5464 	page = eb->pages[i];
5465 	assert_eb_page_uptodate(eb, page);
5466 	kaddr = page_address(page);
5467 
5468 	while (len >= bits_to_clear) {
5469 		kaddr[offset] &= ~mask_to_clear;
5470 		len -= bits_to_clear;
5471 		bits_to_clear = BITS_PER_BYTE;
5472 		mask_to_clear = ~0;
5473 		if (++offset >= PAGE_SIZE && len > 0) {
5474 			offset = 0;
5475 			page = eb->pages[++i];
5476 			assert_eb_page_uptodate(eb, page);
5477 			kaddr = page_address(page);
5478 		}
5479 	}
5480 	if (len) {
5481 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5482 		kaddr[offset] &= ~mask_to_clear;
5483 	}
5484 }
5485 
5486 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5487 {
5488 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5489 	return distance < len;
5490 }
5491 
5492 static void copy_pages(struct page *dst_page, struct page *src_page,
5493 		       unsigned long dst_off, unsigned long src_off,
5494 		       unsigned long len)
5495 {
5496 	char *dst_kaddr = page_address(dst_page);
5497 	char *src_kaddr;
5498 	int must_memmove = 0;
5499 
5500 	if (dst_page != src_page) {
5501 		src_kaddr = page_address(src_page);
5502 	} else {
5503 		src_kaddr = dst_kaddr;
5504 		if (areas_overlap(src_off, dst_off, len))
5505 			must_memmove = 1;
5506 	}
5507 
5508 	if (must_memmove)
5509 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5510 	else
5511 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5512 }
5513 
5514 void memcpy_extent_buffer(const struct extent_buffer *dst,
5515 			  unsigned long dst_offset, unsigned long src_offset,
5516 			  unsigned long len)
5517 {
5518 	size_t cur;
5519 	size_t dst_off_in_page;
5520 	size_t src_off_in_page;
5521 	unsigned long dst_i;
5522 	unsigned long src_i;
5523 
5524 	if (check_eb_range(dst, dst_offset, len) ||
5525 	    check_eb_range(dst, src_offset, len))
5526 		return;
5527 
5528 	while (len > 0) {
5529 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5530 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5531 
5532 		dst_i = get_eb_page_index(dst_offset);
5533 		src_i = get_eb_page_index(src_offset);
5534 
5535 		cur = min(len, (unsigned long)(PAGE_SIZE -
5536 					       src_off_in_page));
5537 		cur = min_t(unsigned long, cur,
5538 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5539 
5540 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5541 			   dst_off_in_page, src_off_in_page, cur);
5542 
5543 		src_offset += cur;
5544 		dst_offset += cur;
5545 		len -= cur;
5546 	}
5547 }
5548 
5549 void memmove_extent_buffer(const struct extent_buffer *dst,
5550 			   unsigned long dst_offset, unsigned long src_offset,
5551 			   unsigned long len)
5552 {
5553 	size_t cur;
5554 	size_t dst_off_in_page;
5555 	size_t src_off_in_page;
5556 	unsigned long dst_end = dst_offset + len - 1;
5557 	unsigned long src_end = src_offset + len - 1;
5558 	unsigned long dst_i;
5559 	unsigned long src_i;
5560 
5561 	if (check_eb_range(dst, dst_offset, len) ||
5562 	    check_eb_range(dst, src_offset, len))
5563 		return;
5564 	if (dst_offset < src_offset) {
5565 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5566 		return;
5567 	}
5568 	while (len > 0) {
5569 		dst_i = get_eb_page_index(dst_end);
5570 		src_i = get_eb_page_index(src_end);
5571 
5572 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5573 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
5574 
5575 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5576 		cur = min(cur, dst_off_in_page + 1);
5577 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5578 			   dst_off_in_page - cur + 1,
5579 			   src_off_in_page - cur + 1, cur);
5580 
5581 		dst_end -= cur;
5582 		src_end -= cur;
5583 		len -= cur;
5584 	}
5585 }
5586 
5587 #define GANG_LOOKUP_SIZE	16
5588 static struct extent_buffer *get_next_extent_buffer(
5589 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5590 {
5591 	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5592 	struct extent_buffer *found = NULL;
5593 	u64 page_start = page_offset(page);
5594 	u64 cur = page_start;
5595 
5596 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5597 	lockdep_assert_held(&fs_info->buffer_lock);
5598 
5599 	while (cur < page_start + PAGE_SIZE) {
5600 		int ret;
5601 		int i;
5602 
5603 		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5604 				(void **)gang, cur >> fs_info->sectorsize_bits,
5605 				min_t(unsigned int, GANG_LOOKUP_SIZE,
5606 				      PAGE_SIZE / fs_info->nodesize));
5607 		if (ret == 0)
5608 			goto out;
5609 		for (i = 0; i < ret; i++) {
5610 			/* Already beyond page end */
5611 			if (gang[i]->start >= page_start + PAGE_SIZE)
5612 				goto out;
5613 			/* Found one */
5614 			if (gang[i]->start >= bytenr) {
5615 				found = gang[i];
5616 				goto out;
5617 			}
5618 		}
5619 		cur = gang[ret - 1]->start + gang[ret - 1]->len;
5620 	}
5621 out:
5622 	return found;
5623 }
5624 
5625 static int try_release_subpage_extent_buffer(struct page *page)
5626 {
5627 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5628 	u64 cur = page_offset(page);
5629 	const u64 end = page_offset(page) + PAGE_SIZE;
5630 	int ret;
5631 
5632 	while (cur < end) {
5633 		struct extent_buffer *eb = NULL;
5634 
5635 		/*
5636 		 * Unlike try_release_extent_buffer() which uses page->private
5637 		 * to grab buffer, for subpage case we rely on radix tree, thus
5638 		 * we need to ensure radix tree consistency.
5639 		 *
5640 		 * We also want an atomic snapshot of the radix tree, thus go
5641 		 * with spinlock rather than RCU.
5642 		 */
5643 		spin_lock(&fs_info->buffer_lock);
5644 		eb = get_next_extent_buffer(fs_info, page, cur);
5645 		if (!eb) {
5646 			/* No more eb in the page range after or at cur */
5647 			spin_unlock(&fs_info->buffer_lock);
5648 			break;
5649 		}
5650 		cur = eb->start + eb->len;
5651 
5652 		/*
5653 		 * The same as try_release_extent_buffer(), to ensure the eb
5654 		 * won't disappear out from under us.
5655 		 */
5656 		spin_lock(&eb->refs_lock);
5657 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5658 			spin_unlock(&eb->refs_lock);
5659 			spin_unlock(&fs_info->buffer_lock);
5660 			break;
5661 		}
5662 		spin_unlock(&fs_info->buffer_lock);
5663 
5664 		/*
5665 		 * If tree ref isn't set then we know the ref on this eb is a
5666 		 * real ref, so just return, this eb will likely be freed soon
5667 		 * anyway.
5668 		 */
5669 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5670 			spin_unlock(&eb->refs_lock);
5671 			break;
5672 		}
5673 
5674 		/*
5675 		 * Here we don't care about the return value, we will always
5676 		 * check the page private at the end.  And
5677 		 * release_extent_buffer() will release the refs_lock.
5678 		 */
5679 		release_extent_buffer(eb);
5680 	}
5681 	/*
5682 	 * Finally to check if we have cleared page private, as if we have
5683 	 * released all ebs in the page, the page private should be cleared now.
5684 	 */
5685 	spin_lock(&page->mapping->private_lock);
5686 	if (!PagePrivate(page))
5687 		ret = 1;
5688 	else
5689 		ret = 0;
5690 	spin_unlock(&page->mapping->private_lock);
5691 	return ret;
5692 
5693 }
5694 
5695 int try_release_extent_buffer(struct page *page)
5696 {
5697 	struct extent_buffer *eb;
5698 
5699 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5700 		return try_release_subpage_extent_buffer(page);
5701 
5702 	/*
5703 	 * We need to make sure nobody is changing page->private, as we rely on
5704 	 * page->private as the pointer to extent buffer.
5705 	 */
5706 	spin_lock(&page->mapping->private_lock);
5707 	if (!PagePrivate(page)) {
5708 		spin_unlock(&page->mapping->private_lock);
5709 		return 1;
5710 	}
5711 
5712 	eb = (struct extent_buffer *)page->private;
5713 	BUG_ON(!eb);
5714 
5715 	/*
5716 	 * This is a little awful but should be ok, we need to make sure that
5717 	 * the eb doesn't disappear out from under us while we're looking at
5718 	 * this page.
5719 	 */
5720 	spin_lock(&eb->refs_lock);
5721 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5722 		spin_unlock(&eb->refs_lock);
5723 		spin_unlock(&page->mapping->private_lock);
5724 		return 0;
5725 	}
5726 	spin_unlock(&page->mapping->private_lock);
5727 
5728 	/*
5729 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5730 	 * so just return, this page will likely be freed soon anyway.
5731 	 */
5732 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5733 		spin_unlock(&eb->refs_lock);
5734 		return 0;
5735 	}
5736 
5737 	return release_extent_buffer(eb);
5738 }
5739 
5740 /*
5741  * btrfs_readahead_tree_block - attempt to readahead a child block
5742  * @fs_info:	the fs_info
5743  * @bytenr:	bytenr to read
5744  * @owner_root: objectid of the root that owns this eb
5745  * @gen:	generation for the uptodate check, can be 0
5746  * @level:	level for the eb
5747  *
5748  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
5749  * normal uptodate check of the eb, without checking the generation.  If we have
5750  * to read the block we will not block on anything.
5751  */
5752 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5753 				u64 bytenr, u64 owner_root, u64 gen, int level)
5754 {
5755 	struct btrfs_tree_parent_check check = {
5756 		.has_first_key = 0,
5757 		.level = level,
5758 		.transid = gen
5759 	};
5760 	struct extent_buffer *eb;
5761 	int ret;
5762 
5763 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5764 	if (IS_ERR(eb))
5765 		return;
5766 
5767 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
5768 		free_extent_buffer(eb);
5769 		return;
5770 	}
5771 
5772 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
5773 	if (ret < 0)
5774 		free_extent_buffer_stale(eb);
5775 	else
5776 		free_extent_buffer(eb);
5777 }
5778 
5779 /*
5780  * btrfs_readahead_node_child - readahead a node's child block
5781  * @node:	parent node we're reading from
5782  * @slot:	slot in the parent node for the child we want to read
5783  *
5784  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5785  * the slot in the node provided.
5786  */
5787 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5788 {
5789 	btrfs_readahead_tree_block(node->fs_info,
5790 				   btrfs_node_blockptr(node, slot),
5791 				   btrfs_header_owner(node),
5792 				   btrfs_node_ptr_generation(node, slot),
5793 				   btrfs_header_level(node) - 1);
5794 }
5795