1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct btrfs_bio *bbio; 101 int mirror_num; 102 enum btrfs_compression_type compress_type; 103 u32 len_to_oe_boundary; 104 blk_opf_t opf; 105 btrfs_bio_end_io_t end_io_func; 106 struct writeback_control *wbc; 107 108 /* 109 * This is for metadata read, to provide the extra needed verification 110 * info. This has to be provided for submit_one_bio(), as 111 * submit_one_bio() can submit a bio if it ends at stripe boundary. If 112 * no such parent_check is provided, the metadata can hit false alert at 113 * endio time. 114 */ 115 struct btrfs_tree_parent_check *parent_check; 116 117 /* 118 * Tell writepage not to lock the state bits for this range, it still 119 * does the unlocking. 120 */ 121 bool extent_locked; 122 }; 123 124 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 125 { 126 struct btrfs_bio *bbio = bio_ctrl->bbio; 127 int mirror_num = bio_ctrl->mirror_num; 128 129 if (!bbio) 130 return; 131 132 /* Caller should ensure the bio has at least some range added */ 133 ASSERT(bbio->bio.bi_iter.bi_size); 134 135 if (!is_data_inode(&bbio->inode->vfs_inode)) { 136 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) { 137 /* 138 * For metadata read, we should have the parent_check, 139 * and copy it to bbio for metadata verification. 140 */ 141 ASSERT(bio_ctrl->parent_check); 142 memcpy(&bbio->parent_check, 143 bio_ctrl->parent_check, 144 sizeof(struct btrfs_tree_parent_check)); 145 } 146 bbio->bio.bi_opf |= REQ_META; 147 } 148 149 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ && 150 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 151 btrfs_submit_compressed_read(bbio, mirror_num); 152 else 153 btrfs_submit_bio(bbio, mirror_num); 154 155 /* The bbio is owned by the end_io handler now */ 156 bio_ctrl->bbio = NULL; 157 } 158 159 /* 160 * Submit or fail the current bio in the bio_ctrl structure. 161 */ 162 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 163 { 164 struct btrfs_bio *bbio = bio_ctrl->bbio; 165 166 if (!bbio) 167 return; 168 169 if (ret) { 170 ASSERT(ret < 0); 171 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 172 /* The bio is owned by the end_io handler now */ 173 bio_ctrl->bbio = NULL; 174 } else { 175 submit_one_bio(bio_ctrl); 176 } 177 } 178 179 int __init extent_buffer_init_cachep(void) 180 { 181 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 182 sizeof(struct extent_buffer), 0, 183 SLAB_MEM_SPREAD, NULL); 184 if (!extent_buffer_cache) 185 return -ENOMEM; 186 187 return 0; 188 } 189 190 void __cold extent_buffer_free_cachep(void) 191 { 192 /* 193 * Make sure all delayed rcu free are flushed before we 194 * destroy caches. 195 */ 196 rcu_barrier(); 197 kmem_cache_destroy(extent_buffer_cache); 198 } 199 200 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 201 { 202 unsigned long index = start >> PAGE_SHIFT; 203 unsigned long end_index = end >> PAGE_SHIFT; 204 struct page *page; 205 206 while (index <= end_index) { 207 page = find_get_page(inode->i_mapping, index); 208 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 209 clear_page_dirty_for_io(page); 210 put_page(page); 211 index++; 212 } 213 } 214 215 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 216 { 217 struct address_space *mapping = inode->i_mapping; 218 unsigned long index = start >> PAGE_SHIFT; 219 unsigned long end_index = end >> PAGE_SHIFT; 220 struct folio *folio; 221 222 while (index <= end_index) { 223 folio = filemap_get_folio(mapping, index); 224 filemap_dirty_folio(mapping, folio); 225 folio_account_redirty(folio); 226 index += folio_nr_pages(folio); 227 folio_put(folio); 228 } 229 } 230 231 /* 232 * Process one page for __process_pages_contig(). 233 * 234 * Return >0 if we hit @page == @locked_page. 235 * Return 0 if we updated the page status. 236 * Return -EGAIN if the we need to try again. 237 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 238 */ 239 static int process_one_page(struct btrfs_fs_info *fs_info, 240 struct address_space *mapping, 241 struct page *page, struct page *locked_page, 242 unsigned long page_ops, u64 start, u64 end) 243 { 244 u32 len; 245 246 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 247 len = end + 1 - start; 248 249 if (page_ops & PAGE_SET_ORDERED) 250 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 251 if (page_ops & PAGE_SET_ERROR) 252 btrfs_page_clamp_set_error(fs_info, page, start, len); 253 if (page_ops & PAGE_START_WRITEBACK) { 254 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 255 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 256 } 257 if (page_ops & PAGE_END_WRITEBACK) 258 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 259 260 if (page == locked_page) 261 return 1; 262 263 if (page_ops & PAGE_LOCK) { 264 int ret; 265 266 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 267 if (ret) 268 return ret; 269 if (!PageDirty(page) || page->mapping != mapping) { 270 btrfs_page_end_writer_lock(fs_info, page, start, len); 271 return -EAGAIN; 272 } 273 } 274 if (page_ops & PAGE_UNLOCK) 275 btrfs_page_end_writer_lock(fs_info, page, start, len); 276 return 0; 277 } 278 279 static int __process_pages_contig(struct address_space *mapping, 280 struct page *locked_page, 281 u64 start, u64 end, unsigned long page_ops, 282 u64 *processed_end) 283 { 284 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 285 pgoff_t start_index = start >> PAGE_SHIFT; 286 pgoff_t end_index = end >> PAGE_SHIFT; 287 pgoff_t index = start_index; 288 unsigned long pages_processed = 0; 289 struct folio_batch fbatch; 290 int err = 0; 291 int i; 292 293 if (page_ops & PAGE_LOCK) { 294 ASSERT(page_ops == PAGE_LOCK); 295 ASSERT(processed_end && *processed_end == start); 296 } 297 298 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 299 mapping_set_error(mapping, -EIO); 300 301 folio_batch_init(&fbatch); 302 while (index <= end_index) { 303 int found_folios; 304 305 found_folios = filemap_get_folios_contig(mapping, &index, 306 end_index, &fbatch); 307 308 if (found_folios == 0) { 309 /* 310 * Only if we're going to lock these pages, we can find 311 * nothing at @index. 312 */ 313 ASSERT(page_ops & PAGE_LOCK); 314 err = -EAGAIN; 315 goto out; 316 } 317 318 for (i = 0; i < found_folios; i++) { 319 int process_ret; 320 struct folio *folio = fbatch.folios[i]; 321 process_ret = process_one_page(fs_info, mapping, 322 &folio->page, locked_page, page_ops, 323 start, end); 324 if (process_ret < 0) { 325 err = -EAGAIN; 326 folio_batch_release(&fbatch); 327 goto out; 328 } 329 pages_processed += folio_nr_pages(folio); 330 } 331 folio_batch_release(&fbatch); 332 cond_resched(); 333 } 334 out: 335 if (err && processed_end) { 336 /* 337 * Update @processed_end. I know this is awful since it has 338 * two different return value patterns (inclusive vs exclusive). 339 * 340 * But the exclusive pattern is necessary if @start is 0, or we 341 * underflow and check against processed_end won't work as 342 * expected. 343 */ 344 if (pages_processed) 345 *processed_end = min(end, 346 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 347 else 348 *processed_end = start; 349 } 350 return err; 351 } 352 353 static noinline void __unlock_for_delalloc(struct inode *inode, 354 struct page *locked_page, 355 u64 start, u64 end) 356 { 357 unsigned long index = start >> PAGE_SHIFT; 358 unsigned long end_index = end >> PAGE_SHIFT; 359 360 ASSERT(locked_page); 361 if (index == locked_page->index && end_index == index) 362 return; 363 364 __process_pages_contig(inode->i_mapping, locked_page, start, end, 365 PAGE_UNLOCK, NULL); 366 } 367 368 static noinline int lock_delalloc_pages(struct inode *inode, 369 struct page *locked_page, 370 u64 delalloc_start, 371 u64 delalloc_end) 372 { 373 unsigned long index = delalloc_start >> PAGE_SHIFT; 374 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 375 u64 processed_end = delalloc_start; 376 int ret; 377 378 ASSERT(locked_page); 379 if (index == locked_page->index && index == end_index) 380 return 0; 381 382 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 383 delalloc_end, PAGE_LOCK, &processed_end); 384 if (ret == -EAGAIN && processed_end > delalloc_start) 385 __unlock_for_delalloc(inode, locked_page, delalloc_start, 386 processed_end); 387 return ret; 388 } 389 390 /* 391 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 392 * more than @max_bytes. 393 * 394 * @start: The original start bytenr to search. 395 * Will store the extent range start bytenr. 396 * @end: The original end bytenr of the search range 397 * Will store the extent range end bytenr. 398 * 399 * Return true if we find a delalloc range which starts inside the original 400 * range, and @start/@end will store the delalloc range start/end. 401 * 402 * Return false if we can't find any delalloc range which starts inside the 403 * original range, and @start/@end will be the non-delalloc range start/end. 404 */ 405 EXPORT_FOR_TESTS 406 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 407 struct page *locked_page, u64 *start, 408 u64 *end) 409 { 410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 411 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 412 const u64 orig_start = *start; 413 const u64 orig_end = *end; 414 /* The sanity tests may not set a valid fs_info. */ 415 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 416 u64 delalloc_start; 417 u64 delalloc_end; 418 bool found; 419 struct extent_state *cached_state = NULL; 420 int ret; 421 int loops = 0; 422 423 /* Caller should pass a valid @end to indicate the search range end */ 424 ASSERT(orig_end > orig_start); 425 426 /* The range should at least cover part of the page */ 427 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 428 orig_end <= page_offset(locked_page))); 429 again: 430 /* step one, find a bunch of delalloc bytes starting at start */ 431 delalloc_start = *start; 432 delalloc_end = 0; 433 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 434 max_bytes, &cached_state); 435 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 436 *start = delalloc_start; 437 438 /* @delalloc_end can be -1, never go beyond @orig_end */ 439 *end = min(delalloc_end, orig_end); 440 free_extent_state(cached_state); 441 return false; 442 } 443 444 /* 445 * start comes from the offset of locked_page. We have to lock 446 * pages in order, so we can't process delalloc bytes before 447 * locked_page 448 */ 449 if (delalloc_start < *start) 450 delalloc_start = *start; 451 452 /* 453 * make sure to limit the number of pages we try to lock down 454 */ 455 if (delalloc_end + 1 - delalloc_start > max_bytes) 456 delalloc_end = delalloc_start + max_bytes - 1; 457 458 /* step two, lock all the pages after the page that has start */ 459 ret = lock_delalloc_pages(inode, locked_page, 460 delalloc_start, delalloc_end); 461 ASSERT(!ret || ret == -EAGAIN); 462 if (ret == -EAGAIN) { 463 /* some of the pages are gone, lets avoid looping by 464 * shortening the size of the delalloc range we're searching 465 */ 466 free_extent_state(cached_state); 467 cached_state = NULL; 468 if (!loops) { 469 max_bytes = PAGE_SIZE; 470 loops = 1; 471 goto again; 472 } else { 473 found = false; 474 goto out_failed; 475 } 476 } 477 478 /* step three, lock the state bits for the whole range */ 479 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 480 481 /* then test to make sure it is all still delalloc */ 482 ret = test_range_bit(tree, delalloc_start, delalloc_end, 483 EXTENT_DELALLOC, 1, cached_state); 484 if (!ret) { 485 unlock_extent(tree, delalloc_start, delalloc_end, 486 &cached_state); 487 __unlock_for_delalloc(inode, locked_page, 488 delalloc_start, delalloc_end); 489 cond_resched(); 490 goto again; 491 } 492 free_extent_state(cached_state); 493 *start = delalloc_start; 494 *end = delalloc_end; 495 out_failed: 496 return found; 497 } 498 499 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 500 struct page *locked_page, 501 u32 clear_bits, unsigned long page_ops) 502 { 503 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 504 505 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 506 start, end, page_ops, NULL); 507 } 508 509 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 510 { 511 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 512 513 ASSERT(page_offset(page) <= start && 514 start + len <= page_offset(page) + PAGE_SIZE); 515 516 if (uptodate) { 517 if (fsverity_active(page->mapping->host) && 518 !PageError(page) && 519 !PageUptodate(page) && 520 start < i_size_read(page->mapping->host) && 521 !fsverity_verify_page(page)) { 522 btrfs_page_set_error(fs_info, page, start, len); 523 } else { 524 btrfs_page_set_uptodate(fs_info, page, start, len); 525 } 526 } else { 527 btrfs_page_clear_uptodate(fs_info, page, start, len); 528 btrfs_page_set_error(fs_info, page, start, len); 529 } 530 531 if (!btrfs_is_subpage(fs_info, page)) 532 unlock_page(page); 533 else 534 btrfs_subpage_end_reader(fs_info, page, start, len); 535 } 536 537 /* lots and lots of room for performance fixes in the end_bio funcs */ 538 539 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 540 { 541 struct btrfs_inode *inode; 542 const bool uptodate = (err == 0); 543 int ret = 0; 544 545 ASSERT(page && page->mapping); 546 inode = BTRFS_I(page->mapping->host); 547 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 548 549 if (!uptodate) { 550 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 551 u32 len; 552 553 ASSERT(end + 1 - start <= U32_MAX); 554 len = end + 1 - start; 555 556 btrfs_page_clear_uptodate(fs_info, page, start, len); 557 btrfs_page_set_error(fs_info, page, start, len); 558 ret = err < 0 ? err : -EIO; 559 mapping_set_error(page->mapping, ret); 560 } 561 } 562 563 /* 564 * after a writepage IO is done, we need to: 565 * clear the uptodate bits on error 566 * clear the writeback bits in the extent tree for this IO 567 * end_page_writeback if the page has no more pending IO 568 * 569 * Scheduling is not allowed, so the extent state tree is expected 570 * to have one and only one object corresponding to this IO. 571 */ 572 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 573 { 574 struct bio *bio = &bbio->bio; 575 int error = blk_status_to_errno(bio->bi_status); 576 struct bio_vec *bvec; 577 u64 start; 578 u64 end; 579 struct bvec_iter_all iter_all; 580 581 ASSERT(!bio_flagged(bio, BIO_CLONED)); 582 bio_for_each_segment_all(bvec, bio, iter_all) { 583 struct page *page = bvec->bv_page; 584 struct inode *inode = page->mapping->host; 585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 586 const u32 sectorsize = fs_info->sectorsize; 587 588 /* Our read/write should always be sector aligned. */ 589 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 590 btrfs_err(fs_info, 591 "partial page write in btrfs with offset %u and length %u", 592 bvec->bv_offset, bvec->bv_len); 593 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 594 btrfs_info(fs_info, 595 "incomplete page write with offset %u and length %u", 596 bvec->bv_offset, bvec->bv_len); 597 598 start = page_offset(page) + bvec->bv_offset; 599 end = start + bvec->bv_len - 1; 600 601 end_extent_writepage(page, error, start, end); 602 603 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 604 } 605 606 bio_put(bio); 607 } 608 609 /* 610 * Record previously processed extent range 611 * 612 * For endio_readpage_release_extent() to handle a full extent range, reducing 613 * the extent io operations. 614 */ 615 struct processed_extent { 616 struct btrfs_inode *inode; 617 /* Start of the range in @inode */ 618 u64 start; 619 /* End of the range in @inode */ 620 u64 end; 621 bool uptodate; 622 }; 623 624 /* 625 * Try to release processed extent range 626 * 627 * May not release the extent range right now if the current range is 628 * contiguous to processed extent. 629 * 630 * Will release processed extent when any of @inode, @uptodate, the range is 631 * no longer contiguous to the processed range. 632 * 633 * Passing @inode == NULL will force processed extent to be released. 634 */ 635 static void endio_readpage_release_extent(struct processed_extent *processed, 636 struct btrfs_inode *inode, u64 start, u64 end, 637 bool uptodate) 638 { 639 struct extent_state *cached = NULL; 640 struct extent_io_tree *tree; 641 642 /* The first extent, initialize @processed */ 643 if (!processed->inode) 644 goto update; 645 646 /* 647 * Contiguous to processed extent, just uptodate the end. 648 * 649 * Several things to notice: 650 * 651 * - bio can be merged as long as on-disk bytenr is contiguous 652 * This means we can have page belonging to other inodes, thus need to 653 * check if the inode still matches. 654 * - bvec can contain range beyond current page for multi-page bvec 655 * Thus we need to do processed->end + 1 >= start check 656 */ 657 if (processed->inode == inode && processed->uptodate == uptodate && 658 processed->end + 1 >= start && end >= processed->end) { 659 processed->end = end; 660 return; 661 } 662 663 tree = &processed->inode->io_tree; 664 /* 665 * Now we don't have range contiguous to the processed range, release 666 * the processed range now. 667 */ 668 unlock_extent(tree, processed->start, processed->end, &cached); 669 670 update: 671 /* Update processed to current range */ 672 processed->inode = inode; 673 processed->start = start; 674 processed->end = end; 675 processed->uptodate = uptodate; 676 } 677 678 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 679 { 680 ASSERT(PageLocked(page)); 681 if (!btrfs_is_subpage(fs_info, page)) 682 return; 683 684 ASSERT(PagePrivate(page)); 685 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 686 } 687 688 /* 689 * Find extent buffer for a givne bytenr. 690 * 691 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 692 * in endio context. 693 */ 694 static struct extent_buffer *find_extent_buffer_readpage( 695 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 696 { 697 struct extent_buffer *eb; 698 699 /* 700 * For regular sectorsize, we can use page->private to grab extent 701 * buffer 702 */ 703 if (fs_info->nodesize >= PAGE_SIZE) { 704 ASSERT(PagePrivate(page) && page->private); 705 return (struct extent_buffer *)page->private; 706 } 707 708 /* For subpage case, we need to lookup buffer radix tree */ 709 rcu_read_lock(); 710 eb = radix_tree_lookup(&fs_info->buffer_radix, 711 bytenr >> fs_info->sectorsize_bits); 712 rcu_read_unlock(); 713 ASSERT(eb); 714 return eb; 715 } 716 717 /* 718 * after a readpage IO is done, we need to: 719 * clear the uptodate bits on error 720 * set the uptodate bits if things worked 721 * set the page up to date if all extents in the tree are uptodate 722 * clear the lock bit in the extent tree 723 * unlock the page if there are no other extents locked for it 724 * 725 * Scheduling is not allowed, so the extent state tree is expected 726 * to have one and only one object corresponding to this IO. 727 */ 728 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 729 { 730 struct bio *bio = &bbio->bio; 731 struct bio_vec *bvec; 732 struct processed_extent processed = { 0 }; 733 /* 734 * The offset to the beginning of a bio, since one bio can never be 735 * larger than UINT_MAX, u32 here is enough. 736 */ 737 u32 bio_offset = 0; 738 int mirror; 739 struct bvec_iter_all iter_all; 740 741 ASSERT(!bio_flagged(bio, BIO_CLONED)); 742 bio_for_each_segment_all(bvec, bio, iter_all) { 743 bool uptodate = !bio->bi_status; 744 struct page *page = bvec->bv_page; 745 struct inode *inode = page->mapping->host; 746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 747 const u32 sectorsize = fs_info->sectorsize; 748 u64 start; 749 u64 end; 750 u32 len; 751 752 btrfs_debug(fs_info, 753 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 754 bio->bi_iter.bi_sector, bio->bi_status, 755 bbio->mirror_num); 756 757 /* 758 * We always issue full-sector reads, but if some block in a 759 * page fails to read, blk_update_request() will advance 760 * bv_offset and adjust bv_len to compensate. Print a warning 761 * for unaligned offsets, and an error if they don't add up to 762 * a full sector. 763 */ 764 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 765 btrfs_err(fs_info, 766 "partial page read in btrfs with offset %u and length %u", 767 bvec->bv_offset, bvec->bv_len); 768 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 769 sectorsize)) 770 btrfs_info(fs_info, 771 "incomplete page read with offset %u and length %u", 772 bvec->bv_offset, bvec->bv_len); 773 774 start = page_offset(page) + bvec->bv_offset; 775 end = start + bvec->bv_len - 1; 776 len = bvec->bv_len; 777 778 mirror = bbio->mirror_num; 779 if (uptodate && !is_data_inode(inode) && 780 btrfs_validate_metadata_buffer(bbio, page, start, end, mirror)) 781 uptodate = false; 782 783 if (likely(uptodate)) { 784 loff_t i_size = i_size_read(inode); 785 pgoff_t end_index = i_size >> PAGE_SHIFT; 786 787 /* 788 * Zero out the remaining part if this range straddles 789 * i_size. 790 * 791 * Here we should only zero the range inside the bvec, 792 * not touch anything else. 793 * 794 * NOTE: i_size is exclusive while end is inclusive. 795 */ 796 if (page->index == end_index && i_size <= end) { 797 u32 zero_start = max(offset_in_page(i_size), 798 offset_in_page(start)); 799 800 zero_user_segment(page, zero_start, 801 offset_in_page(end) + 1); 802 } 803 } else if (!is_data_inode(inode)) { 804 struct extent_buffer *eb; 805 806 eb = find_extent_buffer_readpage(fs_info, page, start); 807 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 808 eb->read_mirror = mirror; 809 atomic_dec(&eb->io_pages); 810 } 811 812 /* Update page status and unlock. */ 813 end_page_read(page, uptodate, start, len); 814 endio_readpage_release_extent(&processed, BTRFS_I(inode), 815 start, end, PageUptodate(page)); 816 817 ASSERT(bio_offset + len > bio_offset); 818 bio_offset += len; 819 820 } 821 /* Release the last extent */ 822 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 823 bio_put(bio); 824 } 825 826 /* 827 * Populate every free slot in a provided array with pages. 828 * 829 * @nr_pages: number of pages to allocate 830 * @page_array: the array to fill with pages; any existing non-null entries in 831 * the array will be skipped 832 * 833 * Return: 0 if all pages were able to be allocated; 834 * -ENOMEM otherwise, and the caller is responsible for freeing all 835 * non-null page pointers in the array. 836 */ 837 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 838 { 839 unsigned int allocated; 840 841 for (allocated = 0; allocated < nr_pages;) { 842 unsigned int last = allocated; 843 844 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 845 846 if (allocated == nr_pages) 847 return 0; 848 849 /* 850 * During this iteration, no page could be allocated, even 851 * though alloc_pages_bulk_array() falls back to alloc_page() 852 * if it could not bulk-allocate. So we must be out of memory. 853 */ 854 if (allocated == last) 855 return -ENOMEM; 856 857 memalloc_retry_wait(GFP_NOFS); 858 } 859 return 0; 860 } 861 862 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl, 863 struct page *page, u64 disk_bytenr, 864 unsigned int pg_offset) 865 { 866 struct bio *bio = &bio_ctrl->bbio->bio; 867 struct bio_vec *bvec = bio_last_bvec_all(bio); 868 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 869 870 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) { 871 /* 872 * For compression, all IO should have its logical bytenr set 873 * to the starting bytenr of the compressed extent. 874 */ 875 return bio->bi_iter.bi_sector == sector; 876 } 877 878 /* 879 * The contig check requires the following conditions to be met: 880 * 881 * 1) The pages are belonging to the same inode 882 * This is implied by the call chain. 883 * 884 * 2) The range has adjacent logical bytenr 885 * 886 * 3) The range has adjacent file offset 887 * This is required for the usage of btrfs_bio->file_offset. 888 */ 889 return bio_end_sector(bio) == sector && 890 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len == 891 page_offset(page) + pg_offset; 892 } 893 894 static void alloc_new_bio(struct btrfs_inode *inode, 895 struct btrfs_bio_ctrl *bio_ctrl, 896 u64 disk_bytenr, u64 file_offset) 897 { 898 struct btrfs_fs_info *fs_info = inode->root->fs_info; 899 struct btrfs_bio *bbio; 900 901 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info, 902 bio_ctrl->end_io_func, NULL); 903 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 904 bbio->inode = inode; 905 bbio->file_offset = file_offset; 906 bio_ctrl->bbio = bbio; 907 bio_ctrl->len_to_oe_boundary = U32_MAX; 908 909 /* 910 * Limit the extent to the ordered boundary for Zone Append. 911 * Compressed bios aren't submitted directly, so it doesn't apply to 912 * them. 913 */ 914 if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE && 915 btrfs_use_zone_append(bbio)) { 916 struct btrfs_ordered_extent *ordered; 917 918 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 919 if (ordered) { 920 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 921 ordered->file_offset + 922 ordered->disk_num_bytes - file_offset); 923 btrfs_put_ordered_extent(ordered); 924 } 925 } 926 927 if (bio_ctrl->wbc) { 928 /* 929 * Pick the last added device to support cgroup writeback. For 930 * multi-device file systems this means blk-cgroup policies have 931 * to always be set on the last added/replaced device. 932 * This is a bit odd but has been like that for a long time. 933 */ 934 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev); 935 wbc_init_bio(bio_ctrl->wbc, &bbio->bio); 936 } 937 } 938 939 /* 940 * @disk_bytenr: logical bytenr where the write will be 941 * @page: page to add to the bio 942 * @size: portion of page that we want to write to 943 * @pg_offset: offset of the new bio or to check whether we are adding 944 * a contiguous page to the previous one 945 * 946 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a 947 * new one in @bio_ctrl->bbio. 948 * The mirror number for this IO should already be initizlied in 949 * @bio_ctrl->mirror_num. 950 */ 951 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl, 952 u64 disk_bytenr, struct page *page, 953 size_t size, unsigned long pg_offset) 954 { 955 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 956 957 ASSERT(pg_offset + size <= PAGE_SIZE); 958 ASSERT(bio_ctrl->end_io_func); 959 960 if (bio_ctrl->bbio && 961 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset)) 962 submit_one_bio(bio_ctrl); 963 964 do { 965 u32 len = size; 966 967 /* Allocate new bio if needed */ 968 if (!bio_ctrl->bbio) { 969 alloc_new_bio(inode, bio_ctrl, disk_bytenr, 970 page_offset(page) + pg_offset); 971 } 972 973 /* Cap to the current ordered extent boundary if there is one. */ 974 if (len > bio_ctrl->len_to_oe_boundary) { 975 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE); 976 ASSERT(is_data_inode(&inode->vfs_inode)); 977 len = bio_ctrl->len_to_oe_boundary; 978 } 979 980 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) { 981 /* bio full: move on to a new one */ 982 submit_one_bio(bio_ctrl); 983 continue; 984 } 985 986 if (bio_ctrl->wbc) 987 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len); 988 989 size -= len; 990 pg_offset += len; 991 disk_bytenr += len; 992 bio_ctrl->len_to_oe_boundary -= len; 993 994 /* Ordered extent boundary: move on to a new bio. */ 995 if (bio_ctrl->len_to_oe_boundary == 0) 996 submit_one_bio(bio_ctrl); 997 } while (size); 998 } 999 1000 static int attach_extent_buffer_page(struct extent_buffer *eb, 1001 struct page *page, 1002 struct btrfs_subpage *prealloc) 1003 { 1004 struct btrfs_fs_info *fs_info = eb->fs_info; 1005 int ret = 0; 1006 1007 /* 1008 * If the page is mapped to btree inode, we should hold the private 1009 * lock to prevent race. 1010 * For cloned or dummy extent buffers, their pages are not mapped and 1011 * will not race with any other ebs. 1012 */ 1013 if (page->mapping) 1014 lockdep_assert_held(&page->mapping->private_lock); 1015 1016 if (fs_info->nodesize >= PAGE_SIZE) { 1017 if (!PagePrivate(page)) 1018 attach_page_private(page, eb); 1019 else 1020 WARN_ON(page->private != (unsigned long)eb); 1021 return 0; 1022 } 1023 1024 /* Already mapped, just free prealloc */ 1025 if (PagePrivate(page)) { 1026 btrfs_free_subpage(prealloc); 1027 return 0; 1028 } 1029 1030 if (prealloc) 1031 /* Has preallocated memory for subpage */ 1032 attach_page_private(page, prealloc); 1033 else 1034 /* Do new allocation to attach subpage */ 1035 ret = btrfs_attach_subpage(fs_info, page, 1036 BTRFS_SUBPAGE_METADATA); 1037 return ret; 1038 } 1039 1040 int set_page_extent_mapped(struct page *page) 1041 { 1042 struct btrfs_fs_info *fs_info; 1043 1044 ASSERT(page->mapping); 1045 1046 if (PagePrivate(page)) 1047 return 0; 1048 1049 fs_info = btrfs_sb(page->mapping->host->i_sb); 1050 1051 if (btrfs_is_subpage(fs_info, page)) 1052 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1053 1054 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1055 return 0; 1056 } 1057 1058 void clear_page_extent_mapped(struct page *page) 1059 { 1060 struct btrfs_fs_info *fs_info; 1061 1062 ASSERT(page->mapping); 1063 1064 if (!PagePrivate(page)) 1065 return; 1066 1067 fs_info = btrfs_sb(page->mapping->host->i_sb); 1068 if (btrfs_is_subpage(fs_info, page)) 1069 return btrfs_detach_subpage(fs_info, page); 1070 1071 detach_page_private(page); 1072 } 1073 1074 static struct extent_map * 1075 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1076 u64 start, u64 len, struct extent_map **em_cached) 1077 { 1078 struct extent_map *em; 1079 1080 if (em_cached && *em_cached) { 1081 em = *em_cached; 1082 if (extent_map_in_tree(em) && start >= em->start && 1083 start < extent_map_end(em)) { 1084 refcount_inc(&em->refs); 1085 return em; 1086 } 1087 1088 free_extent_map(em); 1089 *em_cached = NULL; 1090 } 1091 1092 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1093 if (em_cached && !IS_ERR(em)) { 1094 BUG_ON(*em_cached); 1095 refcount_inc(&em->refs); 1096 *em_cached = em; 1097 } 1098 return em; 1099 } 1100 /* 1101 * basic readpage implementation. Locked extent state structs are inserted 1102 * into the tree that are removed when the IO is done (by the end_io 1103 * handlers) 1104 * XXX JDM: This needs looking at to ensure proper page locking 1105 * return 0 on success, otherwise return error 1106 */ 1107 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1108 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start) 1109 { 1110 struct inode *inode = page->mapping->host; 1111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1112 u64 start = page_offset(page); 1113 const u64 end = start + PAGE_SIZE - 1; 1114 u64 cur = start; 1115 u64 extent_offset; 1116 u64 last_byte = i_size_read(inode); 1117 u64 block_start; 1118 struct extent_map *em; 1119 int ret = 0; 1120 size_t pg_offset = 0; 1121 size_t iosize; 1122 size_t blocksize = inode->i_sb->s_blocksize; 1123 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1124 1125 ret = set_page_extent_mapped(page); 1126 if (ret < 0) { 1127 unlock_extent(tree, start, end, NULL); 1128 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1129 unlock_page(page); 1130 return ret; 1131 } 1132 1133 if (page->index == last_byte >> PAGE_SHIFT) { 1134 size_t zero_offset = offset_in_page(last_byte); 1135 1136 if (zero_offset) { 1137 iosize = PAGE_SIZE - zero_offset; 1138 memzero_page(page, zero_offset, iosize); 1139 } 1140 } 1141 bio_ctrl->end_io_func = end_bio_extent_readpage; 1142 begin_page_read(fs_info, page); 1143 while (cur <= end) { 1144 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE; 1145 bool force_bio_submit = false; 1146 u64 disk_bytenr; 1147 1148 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1149 if (cur >= last_byte) { 1150 iosize = PAGE_SIZE - pg_offset; 1151 memzero_page(page, pg_offset, iosize); 1152 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1153 end_page_read(page, true, cur, iosize); 1154 break; 1155 } 1156 em = __get_extent_map(inode, page, pg_offset, cur, 1157 end - cur + 1, em_cached); 1158 if (IS_ERR(em)) { 1159 unlock_extent(tree, cur, end, NULL); 1160 end_page_read(page, false, cur, end + 1 - cur); 1161 return PTR_ERR(em); 1162 } 1163 extent_offset = cur - em->start; 1164 BUG_ON(extent_map_end(em) <= cur); 1165 BUG_ON(end < cur); 1166 1167 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1168 compress_type = em->compress_type; 1169 1170 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1171 iosize = ALIGN(iosize, blocksize); 1172 if (compress_type != BTRFS_COMPRESS_NONE) 1173 disk_bytenr = em->block_start; 1174 else 1175 disk_bytenr = em->block_start + extent_offset; 1176 block_start = em->block_start; 1177 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1178 block_start = EXTENT_MAP_HOLE; 1179 1180 /* 1181 * If we have a file range that points to a compressed extent 1182 * and it's followed by a consecutive file range that points 1183 * to the same compressed extent (possibly with a different 1184 * offset and/or length, so it either points to the whole extent 1185 * or only part of it), we must make sure we do not submit a 1186 * single bio to populate the pages for the 2 ranges because 1187 * this makes the compressed extent read zero out the pages 1188 * belonging to the 2nd range. Imagine the following scenario: 1189 * 1190 * File layout 1191 * [0 - 8K] [8K - 24K] 1192 * | | 1193 * | | 1194 * points to extent X, points to extent X, 1195 * offset 4K, length of 8K offset 0, length 16K 1196 * 1197 * [extent X, compressed length = 4K uncompressed length = 16K] 1198 * 1199 * If the bio to read the compressed extent covers both ranges, 1200 * it will decompress extent X into the pages belonging to the 1201 * first range and then it will stop, zeroing out the remaining 1202 * pages that belong to the other range that points to extent X. 1203 * So here we make sure we submit 2 bios, one for the first 1204 * range and another one for the third range. Both will target 1205 * the same physical extent from disk, but we can't currently 1206 * make the compressed bio endio callback populate the pages 1207 * for both ranges because each compressed bio is tightly 1208 * coupled with a single extent map, and each range can have 1209 * an extent map with a different offset value relative to the 1210 * uncompressed data of our extent and different lengths. This 1211 * is a corner case so we prioritize correctness over 1212 * non-optimal behavior (submitting 2 bios for the same extent). 1213 */ 1214 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1215 prev_em_start && *prev_em_start != (u64)-1 && 1216 *prev_em_start != em->start) 1217 force_bio_submit = true; 1218 1219 if (prev_em_start) 1220 *prev_em_start = em->start; 1221 1222 free_extent_map(em); 1223 em = NULL; 1224 1225 /* we've found a hole, just zero and go on */ 1226 if (block_start == EXTENT_MAP_HOLE) { 1227 memzero_page(page, pg_offset, iosize); 1228 1229 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1230 end_page_read(page, true, cur, iosize); 1231 cur = cur + iosize; 1232 pg_offset += iosize; 1233 continue; 1234 } 1235 /* the get_extent function already copied into the page */ 1236 if (block_start == EXTENT_MAP_INLINE) { 1237 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1238 end_page_read(page, true, cur, iosize); 1239 cur = cur + iosize; 1240 pg_offset += iosize; 1241 continue; 1242 } 1243 1244 if (bio_ctrl->compress_type != compress_type) { 1245 submit_one_bio(bio_ctrl); 1246 bio_ctrl->compress_type = compress_type; 1247 } 1248 1249 if (force_bio_submit) 1250 submit_one_bio(bio_ctrl); 1251 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1252 pg_offset); 1253 cur = cur + iosize; 1254 pg_offset += iosize; 1255 } 1256 1257 return 0; 1258 } 1259 1260 int btrfs_read_folio(struct file *file, struct folio *folio) 1261 { 1262 struct page *page = &folio->page; 1263 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1264 u64 start = page_offset(page); 1265 u64 end = start + PAGE_SIZE - 1; 1266 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ }; 1267 int ret; 1268 1269 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1270 1271 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL); 1272 /* 1273 * If btrfs_do_readpage() failed we will want to submit the assembled 1274 * bio to do the cleanup. 1275 */ 1276 submit_one_bio(&bio_ctrl); 1277 return ret; 1278 } 1279 1280 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1281 u64 start, u64 end, 1282 struct extent_map **em_cached, 1283 struct btrfs_bio_ctrl *bio_ctrl, 1284 u64 *prev_em_start) 1285 { 1286 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1287 int index; 1288 1289 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1290 1291 for (index = 0; index < nr_pages; index++) { 1292 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1293 prev_em_start); 1294 put_page(pages[index]); 1295 } 1296 } 1297 1298 /* 1299 * helper for __extent_writepage, doing all of the delayed allocation setup. 1300 * 1301 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1302 * to write the page (copy into inline extent). In this case the IO has 1303 * been started and the page is already unlocked. 1304 * 1305 * This returns 0 if all went well (page still locked) 1306 * This returns < 0 if there were errors (page still locked) 1307 */ 1308 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1309 struct page *page, struct writeback_control *wbc) 1310 { 1311 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1312 u64 delalloc_start = page_offset(page); 1313 u64 delalloc_to_write = 0; 1314 /* How many pages are started by btrfs_run_delalloc_range() */ 1315 unsigned long nr_written = 0; 1316 int ret; 1317 int page_started = 0; 1318 1319 while (delalloc_start < page_end) { 1320 u64 delalloc_end = page_end; 1321 bool found; 1322 1323 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1324 &delalloc_start, 1325 &delalloc_end); 1326 if (!found) { 1327 delalloc_start = delalloc_end + 1; 1328 continue; 1329 } 1330 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1331 delalloc_end, &page_started, &nr_written, wbc); 1332 if (ret) { 1333 btrfs_page_set_error(inode->root->fs_info, page, 1334 page_offset(page), PAGE_SIZE); 1335 return ret; 1336 } 1337 /* 1338 * delalloc_end is already one less than the total length, so 1339 * we don't subtract one from PAGE_SIZE 1340 */ 1341 delalloc_to_write += (delalloc_end - delalloc_start + 1342 PAGE_SIZE) >> PAGE_SHIFT; 1343 delalloc_start = delalloc_end + 1; 1344 } 1345 if (wbc->nr_to_write < delalloc_to_write) { 1346 int thresh = 8192; 1347 1348 if (delalloc_to_write < thresh * 2) 1349 thresh = delalloc_to_write; 1350 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1351 thresh); 1352 } 1353 1354 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1355 if (page_started) { 1356 /* 1357 * We've unlocked the page, so we can't update the mapping's 1358 * writeback index, just update nr_to_write. 1359 */ 1360 wbc->nr_to_write -= nr_written; 1361 return 1; 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * Find the first byte we need to write. 1369 * 1370 * For subpage, one page can contain several sectors, and 1371 * __extent_writepage_io() will just grab all extent maps in the page 1372 * range and try to submit all non-inline/non-compressed extents. 1373 * 1374 * This is a big problem for subpage, we shouldn't re-submit already written 1375 * data at all. 1376 * This function will lookup subpage dirty bit to find which range we really 1377 * need to submit. 1378 * 1379 * Return the next dirty range in [@start, @end). 1380 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1381 */ 1382 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1383 struct page *page, u64 *start, u64 *end) 1384 { 1385 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1386 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1387 u64 orig_start = *start; 1388 /* Declare as unsigned long so we can use bitmap ops */ 1389 unsigned long flags; 1390 int range_start_bit; 1391 int range_end_bit; 1392 1393 /* 1394 * For regular sector size == page size case, since one page only 1395 * contains one sector, we return the page offset directly. 1396 */ 1397 if (!btrfs_is_subpage(fs_info, page)) { 1398 *start = page_offset(page); 1399 *end = page_offset(page) + PAGE_SIZE; 1400 return; 1401 } 1402 1403 range_start_bit = spi->dirty_offset + 1404 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1405 1406 /* We should have the page locked, but just in case */ 1407 spin_lock_irqsave(&subpage->lock, flags); 1408 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1409 spi->dirty_offset + spi->bitmap_nr_bits); 1410 spin_unlock_irqrestore(&subpage->lock, flags); 1411 1412 range_start_bit -= spi->dirty_offset; 1413 range_end_bit -= spi->dirty_offset; 1414 1415 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1416 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1417 } 1418 1419 /* 1420 * helper for __extent_writepage. This calls the writepage start hooks, 1421 * and does the loop to map the page into extents and bios. 1422 * 1423 * We return 1 if the IO is started and the page is unlocked, 1424 * 0 if all went well (page still locked) 1425 * < 0 if there were errors (page still locked) 1426 */ 1427 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1428 struct page *page, 1429 struct btrfs_bio_ctrl *bio_ctrl, 1430 loff_t i_size, 1431 int *nr_ret) 1432 { 1433 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1434 u64 cur = page_offset(page); 1435 u64 end = cur + PAGE_SIZE - 1; 1436 u64 extent_offset; 1437 u64 block_start; 1438 struct extent_map *em; 1439 int ret = 0; 1440 int nr = 0; 1441 bool compressed; 1442 1443 ret = btrfs_writepage_cow_fixup(page); 1444 if (ret) { 1445 /* Fixup worker will requeue */ 1446 redirty_page_for_writepage(bio_ctrl->wbc, page); 1447 unlock_page(page); 1448 return 1; 1449 } 1450 1451 /* 1452 * we don't want to touch the inode after unlocking the page, 1453 * so we update the mapping writeback index now 1454 */ 1455 bio_ctrl->wbc->nr_to_write--; 1456 1457 bio_ctrl->end_io_func = end_bio_extent_writepage; 1458 while (cur <= end) { 1459 u64 disk_bytenr; 1460 u64 em_end; 1461 u64 dirty_range_start = cur; 1462 u64 dirty_range_end; 1463 u32 iosize; 1464 1465 if (cur >= i_size) { 1466 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1467 end, true); 1468 /* 1469 * This range is beyond i_size, thus we don't need to 1470 * bother writing back. 1471 * But we still need to clear the dirty subpage bit, or 1472 * the next time the page gets dirtied, we will try to 1473 * writeback the sectors with subpage dirty bits, 1474 * causing writeback without ordered extent. 1475 */ 1476 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 1477 break; 1478 } 1479 1480 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1481 &dirty_range_end); 1482 if (cur < dirty_range_start) { 1483 cur = dirty_range_start; 1484 continue; 1485 } 1486 1487 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 1488 if (IS_ERR(em)) { 1489 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 1490 ret = PTR_ERR_OR_ZERO(em); 1491 goto out_error; 1492 } 1493 1494 extent_offset = cur - em->start; 1495 em_end = extent_map_end(em); 1496 ASSERT(cur <= em_end); 1497 ASSERT(cur < end); 1498 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1499 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1500 block_start = em->block_start; 1501 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1502 disk_bytenr = em->block_start + extent_offset; 1503 1504 /* 1505 * Note that em_end from extent_map_end() and dirty_range_end from 1506 * find_next_dirty_byte() are all exclusive 1507 */ 1508 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1509 free_extent_map(em); 1510 em = NULL; 1511 1512 /* 1513 * compressed and inline extents are written through other 1514 * paths in the FS 1515 */ 1516 if (compressed || block_start == EXTENT_MAP_HOLE || 1517 block_start == EXTENT_MAP_INLINE) { 1518 if (compressed) 1519 nr++; 1520 else 1521 btrfs_writepage_endio_finish_ordered(inode, 1522 page, cur, cur + iosize - 1, true); 1523 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1524 cur += iosize; 1525 continue; 1526 } 1527 1528 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1529 if (!PageWriteback(page)) { 1530 btrfs_err(inode->root->fs_info, 1531 "page %lu not writeback, cur %llu end %llu", 1532 page->index, cur, end); 1533 } 1534 1535 /* 1536 * Although the PageDirty bit is cleared before entering this 1537 * function, subpage dirty bit is not cleared. 1538 * So clear subpage dirty bit here so next time we won't submit 1539 * page for range already written to disk. 1540 */ 1541 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1542 1543 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize, 1544 cur - page_offset(page)); 1545 cur += iosize; 1546 nr++; 1547 } 1548 1549 btrfs_page_assert_not_dirty(fs_info, page); 1550 *nr_ret = nr; 1551 return 0; 1552 1553 out_error: 1554 /* 1555 * If we finish without problem, we should not only clear page dirty, 1556 * but also empty subpage dirty bits 1557 */ 1558 *nr_ret = nr; 1559 return ret; 1560 } 1561 1562 /* 1563 * the writepage semantics are similar to regular writepage. extent 1564 * records are inserted to lock ranges in the tree, and as dirty areas 1565 * are found, they are marked writeback. Then the lock bits are removed 1566 * and the end_io handler clears the writeback ranges 1567 * 1568 * Return 0 if everything goes well. 1569 * Return <0 for error. 1570 */ 1571 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 1572 { 1573 struct folio *folio = page_folio(page); 1574 struct inode *inode = page->mapping->host; 1575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1576 const u64 page_start = page_offset(page); 1577 const u64 page_end = page_start + PAGE_SIZE - 1; 1578 int ret; 1579 int nr = 0; 1580 size_t pg_offset; 1581 loff_t i_size = i_size_read(inode); 1582 unsigned long end_index = i_size >> PAGE_SHIFT; 1583 1584 trace___extent_writepage(page, inode, bio_ctrl->wbc); 1585 1586 WARN_ON(!PageLocked(page)); 1587 1588 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 1589 page_offset(page), PAGE_SIZE); 1590 1591 pg_offset = offset_in_page(i_size); 1592 if (page->index > end_index || 1593 (page->index == end_index && !pg_offset)) { 1594 folio_invalidate(folio, 0, folio_size(folio)); 1595 folio_unlock(folio); 1596 return 0; 1597 } 1598 1599 if (page->index == end_index) 1600 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1601 1602 ret = set_page_extent_mapped(page); 1603 if (ret < 0) { 1604 SetPageError(page); 1605 goto done; 1606 } 1607 1608 if (!bio_ctrl->extent_locked) { 1609 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc); 1610 if (ret == 1) 1611 return 0; 1612 if (ret) 1613 goto done; 1614 } 1615 1616 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr); 1617 if (ret == 1) 1618 return 0; 1619 1620 done: 1621 if (nr == 0) { 1622 /* make sure the mapping tag for page dirty gets cleared */ 1623 set_page_writeback(page); 1624 end_page_writeback(page); 1625 } 1626 /* 1627 * Here we used to have a check for PageError() and then set @ret and 1628 * call end_extent_writepage(). 1629 * 1630 * But in fact setting @ret here will cause different error paths 1631 * between subpage and regular sectorsize. 1632 * 1633 * For regular page size, we never submit current page, but only add 1634 * current page to current bio. 1635 * The bio submission can only happen in next page. 1636 * Thus if we hit the PageError() branch, @ret is already set to 1637 * non-zero value and will not get updated for regular sectorsize. 1638 * 1639 * But for subpage case, it's possible we submit part of current page, 1640 * thus can get PageError() set by submitted bio of the same page, 1641 * while our @ret is still 0. 1642 * 1643 * So here we unify the behavior and don't set @ret. 1644 * Error can still be properly passed to higher layer as page will 1645 * be set error, here we just don't handle the IO failure. 1646 * 1647 * NOTE: This is just a hotfix for subpage. 1648 * The root fix will be properly ending ordered extent when we hit 1649 * an error during writeback. 1650 * 1651 * But that needs a bigger refactoring, as we not only need to grab the 1652 * submitted OE, but also need to know exactly at which bytenr we hit 1653 * the error. 1654 * Currently the full page based __extent_writepage_io() is not 1655 * capable of that. 1656 */ 1657 if (PageError(page)) 1658 end_extent_writepage(page, ret, page_start, page_end); 1659 if (bio_ctrl->extent_locked) { 1660 struct writeback_control *wbc = bio_ctrl->wbc; 1661 1662 /* 1663 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(), 1664 * the page can either be locked by lock_page() or 1665 * process_one_page(). 1666 * Let btrfs_page_unlock_writer() handle both cases. 1667 */ 1668 ASSERT(wbc); 1669 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 1670 wbc->range_end + 1 - wbc->range_start); 1671 } else { 1672 unlock_page(page); 1673 } 1674 ASSERT(ret <= 0); 1675 return ret; 1676 } 1677 1678 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1679 { 1680 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1681 TASK_UNINTERRUPTIBLE); 1682 } 1683 1684 static void end_extent_buffer_writeback(struct extent_buffer *eb) 1685 { 1686 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1687 smp_mb__after_atomic(); 1688 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1689 } 1690 1691 /* 1692 * Lock extent buffer status and pages for writeback. 1693 * 1694 * May try to flush write bio if we can't get the lock. 1695 * 1696 * Return 0 if the extent buffer doesn't need to be submitted. 1697 * (E.g. the extent buffer is not dirty) 1698 * Return >0 is the extent buffer is submitted to bio. 1699 * Return <0 if something went wrong, no page is locked. 1700 */ 1701 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 1702 struct btrfs_bio_ctrl *bio_ctrl) 1703 { 1704 struct btrfs_fs_info *fs_info = eb->fs_info; 1705 int i, num_pages; 1706 int flush = 0; 1707 int ret = 0; 1708 1709 if (!btrfs_try_tree_write_lock(eb)) { 1710 submit_write_bio(bio_ctrl, 0); 1711 flush = 1; 1712 btrfs_tree_lock(eb); 1713 } 1714 1715 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1716 btrfs_tree_unlock(eb); 1717 if (bio_ctrl->wbc->sync_mode != WB_SYNC_ALL) 1718 return 0; 1719 if (!flush) { 1720 submit_write_bio(bio_ctrl, 0); 1721 flush = 1; 1722 } 1723 while (1) { 1724 wait_on_extent_buffer_writeback(eb); 1725 btrfs_tree_lock(eb); 1726 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 1727 break; 1728 btrfs_tree_unlock(eb); 1729 } 1730 } 1731 1732 /* 1733 * We need to do this to prevent races in people who check if the eb is 1734 * under IO since we can end up having no IO bits set for a short period 1735 * of time. 1736 */ 1737 spin_lock(&eb->refs_lock); 1738 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1739 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1740 spin_unlock(&eb->refs_lock); 1741 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1742 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1743 -eb->len, 1744 fs_info->dirty_metadata_batch); 1745 ret = 1; 1746 } else { 1747 spin_unlock(&eb->refs_lock); 1748 } 1749 1750 btrfs_tree_unlock(eb); 1751 1752 /* 1753 * Either we don't need to submit any tree block, or we're submitting 1754 * subpage eb. 1755 * Subpage metadata doesn't use page locking at all, so we can skip 1756 * the page locking. 1757 */ 1758 if (!ret || fs_info->nodesize < PAGE_SIZE) 1759 return ret; 1760 1761 num_pages = num_extent_pages(eb); 1762 for (i = 0; i < num_pages; i++) { 1763 struct page *p = eb->pages[i]; 1764 1765 if (!trylock_page(p)) { 1766 if (!flush) { 1767 submit_write_bio(bio_ctrl, 0); 1768 flush = 1; 1769 } 1770 lock_page(p); 1771 } 1772 } 1773 1774 return ret; 1775 } 1776 1777 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 1778 { 1779 struct btrfs_fs_info *fs_info = eb->fs_info; 1780 1781 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 1782 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 1783 return; 1784 1785 /* 1786 * A read may stumble upon this buffer later, make sure that it gets an 1787 * error and knows there was an error. 1788 */ 1789 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1790 1791 /* 1792 * We need to set the mapping with the io error as well because a write 1793 * error will flip the file system readonly, and then syncfs() will 1794 * return a 0 because we are readonly if we don't modify the err seq for 1795 * the superblock. 1796 */ 1797 mapping_set_error(page->mapping, -EIO); 1798 1799 /* 1800 * If writeback for a btree extent that doesn't belong to a log tree 1801 * failed, increment the counter transaction->eb_write_errors. 1802 * We do this because while the transaction is running and before it's 1803 * committing (when we call filemap_fdata[write|wait]_range against 1804 * the btree inode), we might have 1805 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1806 * returns an error or an error happens during writeback, when we're 1807 * committing the transaction we wouldn't know about it, since the pages 1808 * can be no longer dirty nor marked anymore for writeback (if a 1809 * subsequent modification to the extent buffer didn't happen before the 1810 * transaction commit), which makes filemap_fdata[write|wait]_range not 1811 * able to find the pages tagged with SetPageError at transaction 1812 * commit time. So if this happens we must abort the transaction, 1813 * otherwise we commit a super block with btree roots that point to 1814 * btree nodes/leafs whose content on disk is invalid - either garbage 1815 * or the content of some node/leaf from a past generation that got 1816 * cowed or deleted and is no longer valid. 1817 * 1818 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1819 * not be enough - we need to distinguish between log tree extents vs 1820 * non-log tree extents, and the next filemap_fdatawait_range() call 1821 * will catch and clear such errors in the mapping - and that call might 1822 * be from a log sync and not from a transaction commit. Also, checking 1823 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1824 * not done and would not be reliable - the eb might have been released 1825 * from memory and reading it back again means that flag would not be 1826 * set (since it's a runtime flag, not persisted on disk). 1827 * 1828 * Using the flags below in the btree inode also makes us achieve the 1829 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1830 * writeback for all dirty pages and before filemap_fdatawait_range() 1831 * is called, the writeback for all dirty pages had already finished 1832 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1833 * filemap_fdatawait_range() would return success, as it could not know 1834 * that writeback errors happened (the pages were no longer tagged for 1835 * writeback). 1836 */ 1837 switch (eb->log_index) { 1838 case -1: 1839 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1840 break; 1841 case 0: 1842 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1843 break; 1844 case 1: 1845 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1846 break; 1847 default: 1848 BUG(); /* unexpected, logic error */ 1849 } 1850 } 1851 1852 /* 1853 * The endio specific version which won't touch any unsafe spinlock in endio 1854 * context. 1855 */ 1856 static struct extent_buffer *find_extent_buffer_nolock( 1857 struct btrfs_fs_info *fs_info, u64 start) 1858 { 1859 struct extent_buffer *eb; 1860 1861 rcu_read_lock(); 1862 eb = radix_tree_lookup(&fs_info->buffer_radix, 1863 start >> fs_info->sectorsize_bits); 1864 if (eb && atomic_inc_not_zero(&eb->refs)) { 1865 rcu_read_unlock(); 1866 return eb; 1867 } 1868 rcu_read_unlock(); 1869 return NULL; 1870 } 1871 1872 /* 1873 * The endio function for subpage extent buffer write. 1874 * 1875 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 1876 * after all extent buffers in the page has finished their writeback. 1877 */ 1878 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 1879 { 1880 struct bio *bio = &bbio->bio; 1881 struct btrfs_fs_info *fs_info; 1882 struct bio_vec *bvec; 1883 struct bvec_iter_all iter_all; 1884 1885 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 1886 ASSERT(fs_info->nodesize < PAGE_SIZE); 1887 1888 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1889 bio_for_each_segment_all(bvec, bio, iter_all) { 1890 struct page *page = bvec->bv_page; 1891 u64 bvec_start = page_offset(page) + bvec->bv_offset; 1892 u64 bvec_end = bvec_start + bvec->bv_len - 1; 1893 u64 cur_bytenr = bvec_start; 1894 1895 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 1896 1897 /* Iterate through all extent buffers in the range */ 1898 while (cur_bytenr <= bvec_end) { 1899 struct extent_buffer *eb; 1900 int done; 1901 1902 /* 1903 * Here we can't use find_extent_buffer(), as it may 1904 * try to lock eb->refs_lock, which is not safe in endio 1905 * context. 1906 */ 1907 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 1908 ASSERT(eb); 1909 1910 cur_bytenr = eb->start + eb->len; 1911 1912 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 1913 done = atomic_dec_and_test(&eb->io_pages); 1914 ASSERT(done); 1915 1916 if (bio->bi_status || 1917 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 1918 ClearPageUptodate(page); 1919 set_btree_ioerr(page, eb); 1920 } 1921 1922 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 1923 eb->len); 1924 end_extent_buffer_writeback(eb); 1925 /* 1926 * free_extent_buffer() will grab spinlock which is not 1927 * safe in endio context. Thus here we manually dec 1928 * the ref. 1929 */ 1930 atomic_dec(&eb->refs); 1931 } 1932 } 1933 bio_put(bio); 1934 } 1935 1936 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 1937 { 1938 struct bio *bio = &bbio->bio; 1939 struct bio_vec *bvec; 1940 struct extent_buffer *eb; 1941 int done; 1942 struct bvec_iter_all iter_all; 1943 1944 ASSERT(!bio_flagged(bio, BIO_CLONED)); 1945 bio_for_each_segment_all(bvec, bio, iter_all) { 1946 struct page *page = bvec->bv_page; 1947 1948 eb = (struct extent_buffer *)page->private; 1949 BUG_ON(!eb); 1950 done = atomic_dec_and_test(&eb->io_pages); 1951 1952 if (bio->bi_status || 1953 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 1954 ClearPageUptodate(page); 1955 set_btree_ioerr(page, eb); 1956 } 1957 1958 end_page_writeback(page); 1959 1960 if (!done) 1961 continue; 1962 1963 end_extent_buffer_writeback(eb); 1964 } 1965 1966 bio_put(bio); 1967 } 1968 1969 static void prepare_eb_write(struct extent_buffer *eb) 1970 { 1971 u32 nritems; 1972 unsigned long start; 1973 unsigned long end; 1974 1975 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 1976 atomic_set(&eb->io_pages, num_extent_pages(eb)); 1977 1978 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 1979 nritems = btrfs_header_nritems(eb); 1980 if (btrfs_header_level(eb) > 0) { 1981 end = btrfs_node_key_ptr_offset(eb, nritems); 1982 memzero_extent_buffer(eb, end, eb->len - end); 1983 } else { 1984 /* 1985 * Leaf: 1986 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 1987 */ 1988 start = btrfs_item_nr_offset(eb, nritems); 1989 end = btrfs_item_nr_offset(eb, 0); 1990 if (nritems == 0) 1991 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 1992 else 1993 end += btrfs_item_offset(eb, nritems - 1); 1994 memzero_extent_buffer(eb, start, end - start); 1995 } 1996 } 1997 1998 /* 1999 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2000 * Page locking is only utilized at minimum to keep the VMM code happy. 2001 */ 2002 static void write_one_subpage_eb(struct extent_buffer *eb, 2003 struct btrfs_bio_ctrl *bio_ctrl) 2004 { 2005 struct btrfs_fs_info *fs_info = eb->fs_info; 2006 struct page *page = eb->pages[0]; 2007 bool no_dirty_ebs = false; 2008 2009 prepare_eb_write(eb); 2010 2011 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2012 lock_page(page); 2013 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2014 2015 /* Check if this is the last dirty bit to update nr_written */ 2016 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2017 eb->start, eb->len); 2018 if (no_dirty_ebs) 2019 clear_page_dirty_for_io(page); 2020 2021 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage; 2022 2023 submit_extent_page(bio_ctrl, eb->start, page, eb->len, 2024 eb->start - page_offset(page)); 2025 unlock_page(page); 2026 /* 2027 * Submission finished without problem, if no range of the page is 2028 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2029 */ 2030 if (no_dirty_ebs) 2031 bio_ctrl->wbc->nr_to_write--; 2032 } 2033 2034 static noinline_for_stack void write_one_eb(struct extent_buffer *eb, 2035 struct btrfs_bio_ctrl *bio_ctrl) 2036 { 2037 u64 disk_bytenr = eb->start; 2038 int i, num_pages; 2039 2040 prepare_eb_write(eb); 2041 2042 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage; 2043 2044 num_pages = num_extent_pages(eb); 2045 for (i = 0; i < num_pages; i++) { 2046 struct page *p = eb->pages[i]; 2047 2048 clear_page_dirty_for_io(p); 2049 set_page_writeback(p); 2050 submit_extent_page(bio_ctrl, disk_bytenr, p, PAGE_SIZE, 0); 2051 disk_bytenr += PAGE_SIZE; 2052 bio_ctrl->wbc->nr_to_write--; 2053 unlock_page(p); 2054 } 2055 } 2056 2057 /* 2058 * Submit one subpage btree page. 2059 * 2060 * The main difference to submit_eb_page() is: 2061 * - Page locking 2062 * For subpage, we don't rely on page locking at all. 2063 * 2064 * - Flush write bio 2065 * We only flush bio if we may be unable to fit current extent buffers into 2066 * current bio. 2067 * 2068 * Return >=0 for the number of submitted extent buffers. 2069 * Return <0 for fatal error. 2070 */ 2071 static int submit_eb_subpage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl) 2072 { 2073 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2074 int submitted = 0; 2075 u64 page_start = page_offset(page); 2076 int bit_start = 0; 2077 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2078 int ret; 2079 2080 /* Lock and write each dirty extent buffers in the range */ 2081 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2082 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2083 struct extent_buffer *eb; 2084 unsigned long flags; 2085 u64 start; 2086 2087 /* 2088 * Take private lock to ensure the subpage won't be detached 2089 * in the meantime. 2090 */ 2091 spin_lock(&page->mapping->private_lock); 2092 if (!PagePrivate(page)) { 2093 spin_unlock(&page->mapping->private_lock); 2094 break; 2095 } 2096 spin_lock_irqsave(&subpage->lock, flags); 2097 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2098 subpage->bitmaps)) { 2099 spin_unlock_irqrestore(&subpage->lock, flags); 2100 spin_unlock(&page->mapping->private_lock); 2101 bit_start++; 2102 continue; 2103 } 2104 2105 start = page_start + bit_start * fs_info->sectorsize; 2106 bit_start += sectors_per_node; 2107 2108 /* 2109 * Here we just want to grab the eb without touching extra 2110 * spin locks, so call find_extent_buffer_nolock(). 2111 */ 2112 eb = find_extent_buffer_nolock(fs_info, start); 2113 spin_unlock_irqrestore(&subpage->lock, flags); 2114 spin_unlock(&page->mapping->private_lock); 2115 2116 /* 2117 * The eb has already reached 0 refs thus find_extent_buffer() 2118 * doesn't return it. We don't need to write back such eb 2119 * anyway. 2120 */ 2121 if (!eb) 2122 continue; 2123 2124 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2125 if (ret == 0) { 2126 free_extent_buffer(eb); 2127 continue; 2128 } 2129 if (ret < 0) { 2130 free_extent_buffer(eb); 2131 goto cleanup; 2132 } 2133 write_one_subpage_eb(eb, bio_ctrl); 2134 free_extent_buffer(eb); 2135 submitted++; 2136 } 2137 return submitted; 2138 2139 cleanup: 2140 /* We hit error, end bio for the submitted extent buffers */ 2141 submit_write_bio(bio_ctrl, ret); 2142 return ret; 2143 } 2144 2145 /* 2146 * Submit all page(s) of one extent buffer. 2147 * 2148 * @page: the page of one extent buffer 2149 * @eb_context: to determine if we need to submit this page, if current page 2150 * belongs to this eb, we don't need to submit 2151 * 2152 * The caller should pass each page in their bytenr order, and here we use 2153 * @eb_context to determine if we have submitted pages of one extent buffer. 2154 * 2155 * If we have, we just skip until we hit a new page that doesn't belong to 2156 * current @eb_context. 2157 * 2158 * If not, we submit all the page(s) of the extent buffer. 2159 * 2160 * Return >0 if we have submitted the extent buffer successfully. 2161 * Return 0 if we don't need to submit the page, as it's already submitted by 2162 * previous call. 2163 * Return <0 for fatal error. 2164 */ 2165 static int submit_eb_page(struct page *page, struct btrfs_bio_ctrl *bio_ctrl, 2166 struct extent_buffer **eb_context) 2167 { 2168 struct address_space *mapping = page->mapping; 2169 struct btrfs_block_group *cache = NULL; 2170 struct extent_buffer *eb; 2171 int ret; 2172 2173 if (!PagePrivate(page)) 2174 return 0; 2175 2176 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2177 return submit_eb_subpage(page, bio_ctrl); 2178 2179 spin_lock(&mapping->private_lock); 2180 if (!PagePrivate(page)) { 2181 spin_unlock(&mapping->private_lock); 2182 return 0; 2183 } 2184 2185 eb = (struct extent_buffer *)page->private; 2186 2187 /* 2188 * Shouldn't happen and normally this would be a BUG_ON but no point 2189 * crashing the machine for something we can survive anyway. 2190 */ 2191 if (WARN_ON(!eb)) { 2192 spin_unlock(&mapping->private_lock); 2193 return 0; 2194 } 2195 2196 if (eb == *eb_context) { 2197 spin_unlock(&mapping->private_lock); 2198 return 0; 2199 } 2200 ret = atomic_inc_not_zero(&eb->refs); 2201 spin_unlock(&mapping->private_lock); 2202 if (!ret) 2203 return 0; 2204 2205 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2206 /* 2207 * If for_sync, this hole will be filled with 2208 * trasnsaction commit. 2209 */ 2210 if (bio_ctrl->wbc->sync_mode == WB_SYNC_ALL && 2211 !bio_ctrl->wbc->for_sync) 2212 ret = -EAGAIN; 2213 else 2214 ret = 0; 2215 free_extent_buffer(eb); 2216 return ret; 2217 } 2218 2219 *eb_context = eb; 2220 2221 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2222 if (ret <= 0) { 2223 btrfs_revert_meta_write_pointer(cache, eb); 2224 if (cache) 2225 btrfs_put_block_group(cache); 2226 free_extent_buffer(eb); 2227 return ret; 2228 } 2229 if (cache) { 2230 /* 2231 * Implies write in zoned mode. Mark the last eb in a block group. 2232 */ 2233 btrfs_schedule_zone_finish_bg(cache, eb); 2234 btrfs_put_block_group(cache); 2235 } 2236 write_one_eb(eb, bio_ctrl); 2237 free_extent_buffer(eb); 2238 return 1; 2239 } 2240 2241 int btree_write_cache_pages(struct address_space *mapping, 2242 struct writeback_control *wbc) 2243 { 2244 struct extent_buffer *eb_context = NULL; 2245 struct btrfs_bio_ctrl bio_ctrl = { 2246 .wbc = wbc, 2247 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2248 .extent_locked = 0, 2249 }; 2250 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2251 int ret = 0; 2252 int done = 0; 2253 int nr_to_write_done = 0; 2254 struct folio_batch fbatch; 2255 unsigned int nr_folios; 2256 pgoff_t index; 2257 pgoff_t end; /* Inclusive */ 2258 int scanned = 0; 2259 xa_mark_t tag; 2260 2261 folio_batch_init(&fbatch); 2262 if (wbc->range_cyclic) { 2263 index = mapping->writeback_index; /* Start from prev offset */ 2264 end = -1; 2265 /* 2266 * Start from the beginning does not need to cycle over the 2267 * range, mark it as scanned. 2268 */ 2269 scanned = (index == 0); 2270 } else { 2271 index = wbc->range_start >> PAGE_SHIFT; 2272 end = wbc->range_end >> PAGE_SHIFT; 2273 scanned = 1; 2274 } 2275 if (wbc->sync_mode == WB_SYNC_ALL) 2276 tag = PAGECACHE_TAG_TOWRITE; 2277 else 2278 tag = PAGECACHE_TAG_DIRTY; 2279 btrfs_zoned_meta_io_lock(fs_info); 2280 retry: 2281 if (wbc->sync_mode == WB_SYNC_ALL) 2282 tag_pages_for_writeback(mapping, index, end); 2283 while (!done && !nr_to_write_done && (index <= end) && 2284 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 2285 tag, &fbatch))) { 2286 unsigned i; 2287 2288 for (i = 0; i < nr_folios; i++) { 2289 struct folio *folio = fbatch.folios[i]; 2290 2291 ret = submit_eb_page(&folio->page, &bio_ctrl, &eb_context); 2292 if (ret == 0) 2293 continue; 2294 if (ret < 0) { 2295 done = 1; 2296 break; 2297 } 2298 2299 /* 2300 * the filesystem may choose to bump up nr_to_write. 2301 * We have to make sure to honor the new nr_to_write 2302 * at any time 2303 */ 2304 nr_to_write_done = wbc->nr_to_write <= 0; 2305 } 2306 folio_batch_release(&fbatch); 2307 cond_resched(); 2308 } 2309 if (!scanned && !done) { 2310 /* 2311 * We hit the last page and there is more work to be done: wrap 2312 * back to the start of the file 2313 */ 2314 scanned = 1; 2315 index = 0; 2316 goto retry; 2317 } 2318 /* 2319 * If something went wrong, don't allow any metadata write bio to be 2320 * submitted. 2321 * 2322 * This would prevent use-after-free if we had dirty pages not 2323 * cleaned up, which can still happen by fuzzed images. 2324 * 2325 * - Bad extent tree 2326 * Allowing existing tree block to be allocated for other trees. 2327 * 2328 * - Log tree operations 2329 * Exiting tree blocks get allocated to log tree, bumps its 2330 * generation, then get cleaned in tree re-balance. 2331 * Such tree block will not be written back, since it's clean, 2332 * thus no WRITTEN flag set. 2333 * And after log writes back, this tree block is not traced by 2334 * any dirty extent_io_tree. 2335 * 2336 * - Offending tree block gets re-dirtied from its original owner 2337 * Since it has bumped generation, no WRITTEN flag, it can be 2338 * reused without COWing. This tree block will not be traced 2339 * by btrfs_transaction::dirty_pages. 2340 * 2341 * Now such dirty tree block will not be cleaned by any dirty 2342 * extent io tree. Thus we don't want to submit such wild eb 2343 * if the fs already has error. 2344 * 2345 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2346 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2347 */ 2348 if (ret > 0) 2349 ret = 0; 2350 if (!ret && BTRFS_FS_ERROR(fs_info)) 2351 ret = -EROFS; 2352 submit_write_bio(&bio_ctrl, ret); 2353 2354 btrfs_zoned_meta_io_unlock(fs_info); 2355 return ret; 2356 } 2357 2358 /* 2359 * Walk the list of dirty pages of the given address space and write all of them. 2360 * 2361 * @mapping: address space structure to write 2362 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2363 * @bio_ctrl: holds context for the write, namely the bio 2364 * 2365 * If a page is already under I/O, write_cache_pages() skips it, even 2366 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2367 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2368 * and msync() need to guarantee that all the data which was dirty at the time 2369 * the call was made get new I/O started against them. If wbc->sync_mode is 2370 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2371 * existing IO to complete. 2372 */ 2373 static int extent_write_cache_pages(struct address_space *mapping, 2374 struct btrfs_bio_ctrl *bio_ctrl) 2375 { 2376 struct writeback_control *wbc = bio_ctrl->wbc; 2377 struct inode *inode = mapping->host; 2378 int ret = 0; 2379 int done = 0; 2380 int nr_to_write_done = 0; 2381 struct folio_batch fbatch; 2382 unsigned int nr_folios; 2383 pgoff_t index; 2384 pgoff_t end; /* Inclusive */ 2385 pgoff_t done_index; 2386 int range_whole = 0; 2387 int scanned = 0; 2388 xa_mark_t tag; 2389 2390 /* 2391 * We have to hold onto the inode so that ordered extents can do their 2392 * work when the IO finishes. The alternative to this is failing to add 2393 * an ordered extent if the igrab() fails there and that is a huge pain 2394 * to deal with, so instead just hold onto the inode throughout the 2395 * writepages operation. If it fails here we are freeing up the inode 2396 * anyway and we'd rather not waste our time writing out stuff that is 2397 * going to be truncated anyway. 2398 */ 2399 if (!igrab(inode)) 2400 return 0; 2401 2402 folio_batch_init(&fbatch); 2403 if (wbc->range_cyclic) { 2404 index = mapping->writeback_index; /* Start from prev offset */ 2405 end = -1; 2406 /* 2407 * Start from the beginning does not need to cycle over the 2408 * range, mark it as scanned. 2409 */ 2410 scanned = (index == 0); 2411 } else { 2412 index = wbc->range_start >> PAGE_SHIFT; 2413 end = wbc->range_end >> PAGE_SHIFT; 2414 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2415 range_whole = 1; 2416 scanned = 1; 2417 } 2418 2419 /* 2420 * We do the tagged writepage as long as the snapshot flush bit is set 2421 * and we are the first one who do the filemap_flush() on this inode. 2422 * 2423 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2424 * not race in and drop the bit. 2425 */ 2426 if (range_whole && wbc->nr_to_write == LONG_MAX && 2427 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2428 &BTRFS_I(inode)->runtime_flags)) 2429 wbc->tagged_writepages = 1; 2430 2431 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2432 tag = PAGECACHE_TAG_TOWRITE; 2433 else 2434 tag = PAGECACHE_TAG_DIRTY; 2435 retry: 2436 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2437 tag_pages_for_writeback(mapping, index, end); 2438 done_index = index; 2439 while (!done && !nr_to_write_done && (index <= end) && 2440 (nr_folios = filemap_get_folios_tag(mapping, &index, 2441 end, tag, &fbatch))) { 2442 unsigned i; 2443 2444 for (i = 0; i < nr_folios; i++) { 2445 struct folio *folio = fbatch.folios[i]; 2446 2447 done_index = folio->index + folio_nr_pages(folio); 2448 /* 2449 * At this point we hold neither the i_pages lock nor 2450 * the page lock: the page may be truncated or 2451 * invalidated (changing page->mapping to NULL), 2452 * or even swizzled back from swapper_space to 2453 * tmpfs file mapping 2454 */ 2455 if (!folio_trylock(folio)) { 2456 submit_write_bio(bio_ctrl, 0); 2457 folio_lock(folio); 2458 } 2459 2460 if (unlikely(folio->mapping != mapping)) { 2461 folio_unlock(folio); 2462 continue; 2463 } 2464 2465 if (wbc->sync_mode != WB_SYNC_NONE) { 2466 if (folio_test_writeback(folio)) 2467 submit_write_bio(bio_ctrl, 0); 2468 folio_wait_writeback(folio); 2469 } 2470 2471 if (folio_test_writeback(folio) || 2472 !folio_clear_dirty_for_io(folio)) { 2473 folio_unlock(folio); 2474 continue; 2475 } 2476 2477 ret = __extent_writepage(&folio->page, bio_ctrl); 2478 if (ret < 0) { 2479 done = 1; 2480 break; 2481 } 2482 2483 /* 2484 * the filesystem may choose to bump up nr_to_write. 2485 * We have to make sure to honor the new nr_to_write 2486 * at any time 2487 */ 2488 nr_to_write_done = wbc->nr_to_write <= 0; 2489 } 2490 folio_batch_release(&fbatch); 2491 cond_resched(); 2492 } 2493 if (!scanned && !done) { 2494 /* 2495 * We hit the last page and there is more work to be done: wrap 2496 * back to the start of the file 2497 */ 2498 scanned = 1; 2499 index = 0; 2500 2501 /* 2502 * If we're looping we could run into a page that is locked by a 2503 * writer and that writer could be waiting on writeback for a 2504 * page in our current bio, and thus deadlock, so flush the 2505 * write bio here. 2506 */ 2507 submit_write_bio(bio_ctrl, 0); 2508 goto retry; 2509 } 2510 2511 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2512 mapping->writeback_index = done_index; 2513 2514 btrfs_add_delayed_iput(BTRFS_I(inode)); 2515 return ret; 2516 } 2517 2518 /* 2519 * Submit the pages in the range to bio for call sites which delalloc range has 2520 * already been ran (aka, ordered extent inserted) and all pages are still 2521 * locked. 2522 */ 2523 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 2524 { 2525 bool found_error = false; 2526 int first_error = 0; 2527 int ret = 0; 2528 struct address_space *mapping = inode->i_mapping; 2529 struct page *page; 2530 u64 cur = start; 2531 unsigned long nr_pages; 2532 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 2533 struct writeback_control wbc_writepages = { 2534 .sync_mode = WB_SYNC_ALL, 2535 .range_start = start, 2536 .range_end = end + 1, 2537 .no_cgroup_owner = 1, 2538 }; 2539 struct btrfs_bio_ctrl bio_ctrl = { 2540 .wbc = &wbc_writepages, 2541 /* We're called from an async helper function */ 2542 .opf = REQ_OP_WRITE | REQ_BTRFS_CGROUP_PUNT | 2543 wbc_to_write_flags(&wbc_writepages), 2544 .extent_locked = 1, 2545 }; 2546 2547 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2548 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 2549 PAGE_SHIFT; 2550 wbc_writepages.nr_to_write = nr_pages * 2; 2551 2552 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 2553 while (cur <= end) { 2554 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2555 2556 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2557 /* 2558 * All pages in the range are locked since 2559 * btrfs_run_delalloc_range(), thus there is no way to clear 2560 * the page dirty flag. 2561 */ 2562 ASSERT(PageLocked(page)); 2563 ASSERT(PageDirty(page)); 2564 clear_page_dirty_for_io(page); 2565 ret = __extent_writepage(page, &bio_ctrl); 2566 ASSERT(ret <= 0); 2567 if (ret < 0) { 2568 found_error = true; 2569 first_error = ret; 2570 } 2571 put_page(page); 2572 cur = cur_end + 1; 2573 } 2574 2575 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2576 2577 wbc_detach_inode(&wbc_writepages); 2578 if (found_error) 2579 return first_error; 2580 return ret; 2581 } 2582 2583 int extent_writepages(struct address_space *mapping, 2584 struct writeback_control *wbc) 2585 { 2586 struct inode *inode = mapping->host; 2587 int ret = 0; 2588 struct btrfs_bio_ctrl bio_ctrl = { 2589 .wbc = wbc, 2590 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc), 2591 .extent_locked = 0, 2592 }; 2593 2594 /* 2595 * Allow only a single thread to do the reloc work in zoned mode to 2596 * protect the write pointer updates. 2597 */ 2598 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2599 ret = extent_write_cache_pages(mapping, &bio_ctrl); 2600 submit_write_bio(&bio_ctrl, ret); 2601 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2602 return ret; 2603 } 2604 2605 void extent_readahead(struct readahead_control *rac) 2606 { 2607 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD }; 2608 struct page *pagepool[16]; 2609 struct extent_map *em_cached = NULL; 2610 u64 prev_em_start = (u64)-1; 2611 int nr; 2612 2613 while ((nr = readahead_page_batch(rac, pagepool))) { 2614 u64 contig_start = readahead_pos(rac); 2615 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2616 2617 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2618 &em_cached, &bio_ctrl, &prev_em_start); 2619 } 2620 2621 if (em_cached) 2622 free_extent_map(em_cached); 2623 submit_one_bio(&bio_ctrl); 2624 } 2625 2626 /* 2627 * basic invalidate_folio code, this waits on any locked or writeback 2628 * ranges corresponding to the folio, and then deletes any extent state 2629 * records from the tree 2630 */ 2631 int extent_invalidate_folio(struct extent_io_tree *tree, 2632 struct folio *folio, size_t offset) 2633 { 2634 struct extent_state *cached_state = NULL; 2635 u64 start = folio_pos(folio); 2636 u64 end = start + folio_size(folio) - 1; 2637 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2638 2639 /* This function is only called for the btree inode */ 2640 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2641 2642 start += ALIGN(offset, blocksize); 2643 if (start > end) 2644 return 0; 2645 2646 lock_extent(tree, start, end, &cached_state); 2647 folio_wait_writeback(folio); 2648 2649 /* 2650 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2651 * so here we only need to unlock the extent range to free any 2652 * existing extent state. 2653 */ 2654 unlock_extent(tree, start, end, &cached_state); 2655 return 0; 2656 } 2657 2658 /* 2659 * a helper for release_folio, this tests for areas of the page that 2660 * are locked or under IO and drops the related state bits if it is safe 2661 * to drop the page. 2662 */ 2663 static int try_release_extent_state(struct extent_io_tree *tree, 2664 struct page *page, gfp_t mask) 2665 { 2666 u64 start = page_offset(page); 2667 u64 end = start + PAGE_SIZE - 1; 2668 int ret = 1; 2669 2670 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2671 ret = 0; 2672 } else { 2673 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2674 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2675 2676 /* 2677 * At this point we can safely clear everything except the 2678 * locked bit, the nodatasum bit and the delalloc new bit. 2679 * The delalloc new bit will be cleared by ordered extent 2680 * completion. 2681 */ 2682 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 2683 mask, NULL); 2684 2685 /* if clear_extent_bit failed for enomem reasons, 2686 * we can't allow the release to continue. 2687 */ 2688 if (ret < 0) 2689 ret = 0; 2690 else 2691 ret = 1; 2692 } 2693 return ret; 2694 } 2695 2696 /* 2697 * a helper for release_folio. As long as there are no locked extents 2698 * in the range corresponding to the page, both state records and extent 2699 * map records are removed 2700 */ 2701 int try_release_extent_mapping(struct page *page, gfp_t mask) 2702 { 2703 struct extent_map *em; 2704 u64 start = page_offset(page); 2705 u64 end = start + PAGE_SIZE - 1; 2706 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2707 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2708 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2709 2710 if (gfpflags_allow_blocking(mask) && 2711 page->mapping->host->i_size > SZ_16M) { 2712 u64 len; 2713 while (start <= end) { 2714 struct btrfs_fs_info *fs_info; 2715 u64 cur_gen; 2716 2717 len = end - start + 1; 2718 write_lock(&map->lock); 2719 em = lookup_extent_mapping(map, start, len); 2720 if (!em) { 2721 write_unlock(&map->lock); 2722 break; 2723 } 2724 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2725 em->start != start) { 2726 write_unlock(&map->lock); 2727 free_extent_map(em); 2728 break; 2729 } 2730 if (test_range_bit(tree, em->start, 2731 extent_map_end(em) - 1, 2732 EXTENT_LOCKED, 0, NULL)) 2733 goto next; 2734 /* 2735 * If it's not in the list of modified extents, used 2736 * by a fast fsync, we can remove it. If it's being 2737 * logged we can safely remove it since fsync took an 2738 * extra reference on the em. 2739 */ 2740 if (list_empty(&em->list) || 2741 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2742 goto remove_em; 2743 /* 2744 * If it's in the list of modified extents, remove it 2745 * only if its generation is older then the current one, 2746 * in which case we don't need it for a fast fsync. 2747 * Otherwise don't remove it, we could be racing with an 2748 * ongoing fast fsync that could miss the new extent. 2749 */ 2750 fs_info = btrfs_inode->root->fs_info; 2751 spin_lock(&fs_info->trans_lock); 2752 cur_gen = fs_info->generation; 2753 spin_unlock(&fs_info->trans_lock); 2754 if (em->generation >= cur_gen) 2755 goto next; 2756 remove_em: 2757 /* 2758 * We only remove extent maps that are not in the list of 2759 * modified extents or that are in the list but with a 2760 * generation lower then the current generation, so there 2761 * is no need to set the full fsync flag on the inode (it 2762 * hurts the fsync performance for workloads with a data 2763 * size that exceeds or is close to the system's memory). 2764 */ 2765 remove_extent_mapping(map, em); 2766 /* once for the rb tree */ 2767 free_extent_map(em); 2768 next: 2769 start = extent_map_end(em); 2770 write_unlock(&map->lock); 2771 2772 /* once for us */ 2773 free_extent_map(em); 2774 2775 cond_resched(); /* Allow large-extent preemption. */ 2776 } 2777 } 2778 return try_release_extent_state(tree, page, mask); 2779 } 2780 2781 /* 2782 * To cache previous fiemap extent 2783 * 2784 * Will be used for merging fiemap extent 2785 */ 2786 struct fiemap_cache { 2787 u64 offset; 2788 u64 phys; 2789 u64 len; 2790 u32 flags; 2791 bool cached; 2792 }; 2793 2794 /* 2795 * Helper to submit fiemap extent. 2796 * 2797 * Will try to merge current fiemap extent specified by @offset, @phys, 2798 * @len and @flags with cached one. 2799 * And only when we fails to merge, cached one will be submitted as 2800 * fiemap extent. 2801 * 2802 * Return value is the same as fiemap_fill_next_extent(). 2803 */ 2804 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2805 struct fiemap_cache *cache, 2806 u64 offset, u64 phys, u64 len, u32 flags) 2807 { 2808 int ret = 0; 2809 2810 /* Set at the end of extent_fiemap(). */ 2811 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2812 2813 if (!cache->cached) 2814 goto assign; 2815 2816 /* 2817 * Sanity check, extent_fiemap() should have ensured that new 2818 * fiemap extent won't overlap with cached one. 2819 * Not recoverable. 2820 * 2821 * NOTE: Physical address can overlap, due to compression 2822 */ 2823 if (cache->offset + cache->len > offset) { 2824 WARN_ON(1); 2825 return -EINVAL; 2826 } 2827 2828 /* 2829 * Only merges fiemap extents if 2830 * 1) Their logical addresses are continuous 2831 * 2832 * 2) Their physical addresses are continuous 2833 * So truly compressed (physical size smaller than logical size) 2834 * extents won't get merged with each other 2835 * 2836 * 3) Share same flags 2837 */ 2838 if (cache->offset + cache->len == offset && 2839 cache->phys + cache->len == phys && 2840 cache->flags == flags) { 2841 cache->len += len; 2842 return 0; 2843 } 2844 2845 /* Not mergeable, need to submit cached one */ 2846 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2847 cache->len, cache->flags); 2848 cache->cached = false; 2849 if (ret) 2850 return ret; 2851 assign: 2852 cache->cached = true; 2853 cache->offset = offset; 2854 cache->phys = phys; 2855 cache->len = len; 2856 cache->flags = flags; 2857 2858 return 0; 2859 } 2860 2861 /* 2862 * Emit last fiemap cache 2863 * 2864 * The last fiemap cache may still be cached in the following case: 2865 * 0 4k 8k 2866 * |<- Fiemap range ->| 2867 * |<------------ First extent ----------->| 2868 * 2869 * In this case, the first extent range will be cached but not emitted. 2870 * So we must emit it before ending extent_fiemap(). 2871 */ 2872 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 2873 struct fiemap_cache *cache) 2874 { 2875 int ret; 2876 2877 if (!cache->cached) 2878 return 0; 2879 2880 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 2881 cache->len, cache->flags); 2882 cache->cached = false; 2883 if (ret > 0) 2884 ret = 0; 2885 return ret; 2886 } 2887 2888 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 2889 { 2890 struct extent_buffer *clone; 2891 struct btrfs_key key; 2892 int slot; 2893 int ret; 2894 2895 path->slots[0]++; 2896 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 2897 return 0; 2898 2899 ret = btrfs_next_leaf(inode->root, path); 2900 if (ret != 0) 2901 return ret; 2902 2903 /* 2904 * Don't bother with cloning if there are no more file extent items for 2905 * our inode. 2906 */ 2907 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2908 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 2909 return 1; 2910 2911 /* See the comment at fiemap_search_slot() about why we clone. */ 2912 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2913 if (!clone) 2914 return -ENOMEM; 2915 2916 slot = path->slots[0]; 2917 btrfs_release_path(path); 2918 path->nodes[0] = clone; 2919 path->slots[0] = slot; 2920 2921 return 0; 2922 } 2923 2924 /* 2925 * Search for the first file extent item that starts at a given file offset or 2926 * the one that starts immediately before that offset. 2927 * Returns: 0 on success, < 0 on error, 1 if not found. 2928 */ 2929 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 2930 u64 file_offset) 2931 { 2932 const u64 ino = btrfs_ino(inode); 2933 struct btrfs_root *root = inode->root; 2934 struct extent_buffer *clone; 2935 struct btrfs_key key; 2936 int slot; 2937 int ret; 2938 2939 key.objectid = ino; 2940 key.type = BTRFS_EXTENT_DATA_KEY; 2941 key.offset = file_offset; 2942 2943 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2944 if (ret < 0) 2945 return ret; 2946 2947 if (ret > 0 && path->slots[0] > 0) { 2948 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 2949 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 2950 path->slots[0]--; 2951 } 2952 2953 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2954 ret = btrfs_next_leaf(root, path); 2955 if (ret != 0) 2956 return ret; 2957 2958 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2959 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 2960 return 1; 2961 } 2962 2963 /* 2964 * We clone the leaf and use it during fiemap. This is because while 2965 * using the leaf we do expensive things like checking if an extent is 2966 * shared, which can take a long time. In order to prevent blocking 2967 * other tasks for too long, we use a clone of the leaf. We have locked 2968 * the file range in the inode's io tree, so we know none of our file 2969 * extent items can change. This way we avoid blocking other tasks that 2970 * want to insert items for other inodes in the same leaf or b+tree 2971 * rebalance operations (triggered for example when someone is trying 2972 * to push items into this leaf when trying to insert an item in a 2973 * neighbour leaf). 2974 * We also need the private clone because holding a read lock on an 2975 * extent buffer of the subvolume's b+tree will make lockdep unhappy 2976 * when we call fiemap_fill_next_extent(), because that may cause a page 2977 * fault when filling the user space buffer with fiemap data. 2978 */ 2979 clone = btrfs_clone_extent_buffer(path->nodes[0]); 2980 if (!clone) 2981 return -ENOMEM; 2982 2983 slot = path->slots[0]; 2984 btrfs_release_path(path); 2985 path->nodes[0] = clone; 2986 path->slots[0] = slot; 2987 2988 return 0; 2989 } 2990 2991 /* 2992 * Process a range which is a hole or a prealloc extent in the inode's subvolume 2993 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 2994 * extent. The end offset (@end) is inclusive. 2995 */ 2996 static int fiemap_process_hole(struct btrfs_inode *inode, 2997 struct fiemap_extent_info *fieinfo, 2998 struct fiemap_cache *cache, 2999 struct extent_state **delalloc_cached_state, 3000 struct btrfs_backref_share_check_ctx *backref_ctx, 3001 u64 disk_bytenr, u64 extent_offset, 3002 u64 extent_gen, 3003 u64 start, u64 end) 3004 { 3005 const u64 i_size = i_size_read(&inode->vfs_inode); 3006 u64 cur_offset = start; 3007 u64 last_delalloc_end = 0; 3008 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3009 bool checked_extent_shared = false; 3010 int ret; 3011 3012 /* 3013 * There can be no delalloc past i_size, so don't waste time looking for 3014 * it beyond i_size. 3015 */ 3016 while (cur_offset < end && cur_offset < i_size) { 3017 u64 delalloc_start; 3018 u64 delalloc_end; 3019 u64 prealloc_start; 3020 u64 prealloc_len = 0; 3021 bool delalloc; 3022 3023 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3024 delalloc_cached_state, 3025 &delalloc_start, 3026 &delalloc_end); 3027 if (!delalloc) 3028 break; 3029 3030 /* 3031 * If this is a prealloc extent we have to report every section 3032 * of it that has no delalloc. 3033 */ 3034 if (disk_bytenr != 0) { 3035 if (last_delalloc_end == 0) { 3036 prealloc_start = start; 3037 prealloc_len = delalloc_start - start; 3038 } else { 3039 prealloc_start = last_delalloc_end + 1; 3040 prealloc_len = delalloc_start - prealloc_start; 3041 } 3042 } 3043 3044 if (prealloc_len > 0) { 3045 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3046 ret = btrfs_is_data_extent_shared(inode, 3047 disk_bytenr, 3048 extent_gen, 3049 backref_ctx); 3050 if (ret < 0) 3051 return ret; 3052 else if (ret > 0) 3053 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3054 3055 checked_extent_shared = true; 3056 } 3057 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3058 disk_bytenr + extent_offset, 3059 prealloc_len, prealloc_flags); 3060 if (ret) 3061 return ret; 3062 extent_offset += prealloc_len; 3063 } 3064 3065 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3066 delalloc_end + 1 - delalloc_start, 3067 FIEMAP_EXTENT_DELALLOC | 3068 FIEMAP_EXTENT_UNKNOWN); 3069 if (ret) 3070 return ret; 3071 3072 last_delalloc_end = delalloc_end; 3073 cur_offset = delalloc_end + 1; 3074 extent_offset += cur_offset - delalloc_start; 3075 cond_resched(); 3076 } 3077 3078 /* 3079 * Either we found no delalloc for the whole prealloc extent or we have 3080 * a prealloc extent that spans i_size or starts at or after i_size. 3081 */ 3082 if (disk_bytenr != 0 && last_delalloc_end < end) { 3083 u64 prealloc_start; 3084 u64 prealloc_len; 3085 3086 if (last_delalloc_end == 0) { 3087 prealloc_start = start; 3088 prealloc_len = end + 1 - start; 3089 } else { 3090 prealloc_start = last_delalloc_end + 1; 3091 prealloc_len = end + 1 - prealloc_start; 3092 } 3093 3094 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3095 ret = btrfs_is_data_extent_shared(inode, 3096 disk_bytenr, 3097 extent_gen, 3098 backref_ctx); 3099 if (ret < 0) 3100 return ret; 3101 else if (ret > 0) 3102 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3103 } 3104 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3105 disk_bytenr + extent_offset, 3106 prealloc_len, prealloc_flags); 3107 if (ret) 3108 return ret; 3109 } 3110 3111 return 0; 3112 } 3113 3114 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3115 struct btrfs_path *path, 3116 u64 *last_extent_end_ret) 3117 { 3118 const u64 ino = btrfs_ino(inode); 3119 struct btrfs_root *root = inode->root; 3120 struct extent_buffer *leaf; 3121 struct btrfs_file_extent_item *ei; 3122 struct btrfs_key key; 3123 u64 disk_bytenr; 3124 int ret; 3125 3126 /* 3127 * Lookup the last file extent. We're not using i_size here because 3128 * there might be preallocation past i_size. 3129 */ 3130 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3131 /* There can't be a file extent item at offset (u64)-1 */ 3132 ASSERT(ret != 0); 3133 if (ret < 0) 3134 return ret; 3135 3136 /* 3137 * For a non-existing key, btrfs_search_slot() always leaves us at a 3138 * slot > 0, except if the btree is empty, which is impossible because 3139 * at least it has the inode item for this inode and all the items for 3140 * the root inode 256. 3141 */ 3142 ASSERT(path->slots[0] > 0); 3143 path->slots[0]--; 3144 leaf = path->nodes[0]; 3145 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3146 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3147 /* No file extent items in the subvolume tree. */ 3148 *last_extent_end_ret = 0; 3149 return 0; 3150 } 3151 3152 /* 3153 * For an inline extent, the disk_bytenr is where inline data starts at, 3154 * so first check if we have an inline extent item before checking if we 3155 * have an implicit hole (disk_bytenr == 0). 3156 */ 3157 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3158 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3159 *last_extent_end_ret = btrfs_file_extent_end(path); 3160 return 0; 3161 } 3162 3163 /* 3164 * Find the last file extent item that is not a hole (when NO_HOLES is 3165 * not enabled). This should take at most 2 iterations in the worst 3166 * case: we have one hole file extent item at slot 0 of a leaf and 3167 * another hole file extent item as the last item in the previous leaf. 3168 * This is because we merge file extent items that represent holes. 3169 */ 3170 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3171 while (disk_bytenr == 0) { 3172 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3173 if (ret < 0) { 3174 return ret; 3175 } else if (ret > 0) { 3176 /* No file extent items that are not holes. */ 3177 *last_extent_end_ret = 0; 3178 return 0; 3179 } 3180 leaf = path->nodes[0]; 3181 ei = btrfs_item_ptr(leaf, path->slots[0], 3182 struct btrfs_file_extent_item); 3183 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3184 } 3185 3186 *last_extent_end_ret = btrfs_file_extent_end(path); 3187 return 0; 3188 } 3189 3190 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3191 u64 start, u64 len) 3192 { 3193 const u64 ino = btrfs_ino(inode); 3194 struct extent_state *cached_state = NULL; 3195 struct extent_state *delalloc_cached_state = NULL; 3196 struct btrfs_path *path; 3197 struct fiemap_cache cache = { 0 }; 3198 struct btrfs_backref_share_check_ctx *backref_ctx; 3199 u64 last_extent_end; 3200 u64 prev_extent_end; 3201 u64 lockstart; 3202 u64 lockend; 3203 bool stopped = false; 3204 int ret; 3205 3206 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3207 path = btrfs_alloc_path(); 3208 if (!backref_ctx || !path) { 3209 ret = -ENOMEM; 3210 goto out; 3211 } 3212 3213 lockstart = round_down(start, inode->root->fs_info->sectorsize); 3214 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 3215 prev_extent_end = lockstart; 3216 3217 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3218 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3219 3220 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3221 if (ret < 0) 3222 goto out_unlock; 3223 btrfs_release_path(path); 3224 3225 path->reada = READA_FORWARD; 3226 ret = fiemap_search_slot(inode, path, lockstart); 3227 if (ret < 0) { 3228 goto out_unlock; 3229 } else if (ret > 0) { 3230 /* 3231 * No file extent item found, but we may have delalloc between 3232 * the current offset and i_size. So check for that. 3233 */ 3234 ret = 0; 3235 goto check_eof_delalloc; 3236 } 3237 3238 while (prev_extent_end < lockend) { 3239 struct extent_buffer *leaf = path->nodes[0]; 3240 struct btrfs_file_extent_item *ei; 3241 struct btrfs_key key; 3242 u64 extent_end; 3243 u64 extent_len; 3244 u64 extent_offset = 0; 3245 u64 extent_gen; 3246 u64 disk_bytenr = 0; 3247 u64 flags = 0; 3248 int extent_type; 3249 u8 compression; 3250 3251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3252 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3253 break; 3254 3255 extent_end = btrfs_file_extent_end(path); 3256 3257 /* 3258 * The first iteration can leave us at an extent item that ends 3259 * before our range's start. Move to the next item. 3260 */ 3261 if (extent_end <= lockstart) 3262 goto next_item; 3263 3264 backref_ctx->curr_leaf_bytenr = leaf->start; 3265 3266 /* We have in implicit hole (NO_HOLES feature enabled). */ 3267 if (prev_extent_end < key.offset) { 3268 const u64 range_end = min(key.offset, lockend) - 1; 3269 3270 ret = fiemap_process_hole(inode, fieinfo, &cache, 3271 &delalloc_cached_state, 3272 backref_ctx, 0, 0, 0, 3273 prev_extent_end, range_end); 3274 if (ret < 0) { 3275 goto out_unlock; 3276 } else if (ret > 0) { 3277 /* fiemap_fill_next_extent() told us to stop. */ 3278 stopped = true; 3279 break; 3280 } 3281 3282 /* We've reached the end of the fiemap range, stop. */ 3283 if (key.offset >= lockend) { 3284 stopped = true; 3285 break; 3286 } 3287 } 3288 3289 extent_len = extent_end - key.offset; 3290 ei = btrfs_item_ptr(leaf, path->slots[0], 3291 struct btrfs_file_extent_item); 3292 compression = btrfs_file_extent_compression(leaf, ei); 3293 extent_type = btrfs_file_extent_type(leaf, ei); 3294 extent_gen = btrfs_file_extent_generation(leaf, ei); 3295 3296 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3298 if (compression == BTRFS_COMPRESS_NONE) 3299 extent_offset = btrfs_file_extent_offset(leaf, ei); 3300 } 3301 3302 if (compression != BTRFS_COMPRESS_NONE) 3303 flags |= FIEMAP_EXTENT_ENCODED; 3304 3305 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3306 flags |= FIEMAP_EXTENT_DATA_INLINE; 3307 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3308 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3309 extent_len, flags); 3310 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3311 ret = fiemap_process_hole(inode, fieinfo, &cache, 3312 &delalloc_cached_state, 3313 backref_ctx, 3314 disk_bytenr, extent_offset, 3315 extent_gen, key.offset, 3316 extent_end - 1); 3317 } else if (disk_bytenr == 0) { 3318 /* We have an explicit hole. */ 3319 ret = fiemap_process_hole(inode, fieinfo, &cache, 3320 &delalloc_cached_state, 3321 backref_ctx, 0, 0, 0, 3322 key.offset, extent_end - 1); 3323 } else { 3324 /* We have a regular extent. */ 3325 if (fieinfo->fi_extents_max) { 3326 ret = btrfs_is_data_extent_shared(inode, 3327 disk_bytenr, 3328 extent_gen, 3329 backref_ctx); 3330 if (ret < 0) 3331 goto out_unlock; 3332 else if (ret > 0) 3333 flags |= FIEMAP_EXTENT_SHARED; 3334 } 3335 3336 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3337 disk_bytenr + extent_offset, 3338 extent_len, flags); 3339 } 3340 3341 if (ret < 0) { 3342 goto out_unlock; 3343 } else if (ret > 0) { 3344 /* fiemap_fill_next_extent() told us to stop. */ 3345 stopped = true; 3346 break; 3347 } 3348 3349 prev_extent_end = extent_end; 3350 next_item: 3351 if (fatal_signal_pending(current)) { 3352 ret = -EINTR; 3353 goto out_unlock; 3354 } 3355 3356 ret = fiemap_next_leaf_item(inode, path); 3357 if (ret < 0) { 3358 goto out_unlock; 3359 } else if (ret > 0) { 3360 /* No more file extent items for this inode. */ 3361 break; 3362 } 3363 cond_resched(); 3364 } 3365 3366 check_eof_delalloc: 3367 /* 3368 * Release (and free) the path before emitting any final entries to 3369 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3370 * once we find no more file extent items exist, we may have a 3371 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3372 * faults when copying data to the user space buffer. 3373 */ 3374 btrfs_free_path(path); 3375 path = NULL; 3376 3377 if (!stopped && prev_extent_end < lockend) { 3378 ret = fiemap_process_hole(inode, fieinfo, &cache, 3379 &delalloc_cached_state, backref_ctx, 3380 0, 0, 0, prev_extent_end, lockend - 1); 3381 if (ret < 0) 3382 goto out_unlock; 3383 prev_extent_end = lockend; 3384 } 3385 3386 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3387 const u64 i_size = i_size_read(&inode->vfs_inode); 3388 3389 if (prev_extent_end < i_size) { 3390 u64 delalloc_start; 3391 u64 delalloc_end; 3392 bool delalloc; 3393 3394 delalloc = btrfs_find_delalloc_in_range(inode, 3395 prev_extent_end, 3396 i_size - 1, 3397 &delalloc_cached_state, 3398 &delalloc_start, 3399 &delalloc_end); 3400 if (!delalloc) 3401 cache.flags |= FIEMAP_EXTENT_LAST; 3402 } else { 3403 cache.flags |= FIEMAP_EXTENT_LAST; 3404 } 3405 } 3406 3407 ret = emit_last_fiemap_cache(fieinfo, &cache); 3408 3409 out_unlock: 3410 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3411 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3412 out: 3413 free_extent_state(delalloc_cached_state); 3414 btrfs_free_backref_share_ctx(backref_ctx); 3415 btrfs_free_path(path); 3416 return ret; 3417 } 3418 3419 static void __free_extent_buffer(struct extent_buffer *eb) 3420 { 3421 kmem_cache_free(extent_buffer_cache, eb); 3422 } 3423 3424 int extent_buffer_under_io(const struct extent_buffer *eb) 3425 { 3426 return (atomic_read(&eb->io_pages) || 3427 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3428 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3429 } 3430 3431 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3432 { 3433 struct btrfs_subpage *subpage; 3434 3435 lockdep_assert_held(&page->mapping->private_lock); 3436 3437 if (PagePrivate(page)) { 3438 subpage = (struct btrfs_subpage *)page->private; 3439 if (atomic_read(&subpage->eb_refs)) 3440 return true; 3441 /* 3442 * Even there is no eb refs here, we may still have 3443 * end_page_read() call relying on page::private. 3444 */ 3445 if (atomic_read(&subpage->readers)) 3446 return true; 3447 } 3448 return false; 3449 } 3450 3451 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3452 { 3453 struct btrfs_fs_info *fs_info = eb->fs_info; 3454 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3455 3456 /* 3457 * For mapped eb, we're going to change the page private, which should 3458 * be done under the private_lock. 3459 */ 3460 if (mapped) 3461 spin_lock(&page->mapping->private_lock); 3462 3463 if (!PagePrivate(page)) { 3464 if (mapped) 3465 spin_unlock(&page->mapping->private_lock); 3466 return; 3467 } 3468 3469 if (fs_info->nodesize >= PAGE_SIZE) { 3470 /* 3471 * We do this since we'll remove the pages after we've 3472 * removed the eb from the radix tree, so we could race 3473 * and have this page now attached to the new eb. So 3474 * only clear page_private if it's still connected to 3475 * this eb. 3476 */ 3477 if (PagePrivate(page) && 3478 page->private == (unsigned long)eb) { 3479 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3480 BUG_ON(PageDirty(page)); 3481 BUG_ON(PageWriteback(page)); 3482 /* 3483 * We need to make sure we haven't be attached 3484 * to a new eb. 3485 */ 3486 detach_page_private(page); 3487 } 3488 if (mapped) 3489 spin_unlock(&page->mapping->private_lock); 3490 return; 3491 } 3492 3493 /* 3494 * For subpage, we can have dummy eb with page private. In this case, 3495 * we can directly detach the private as such page is only attached to 3496 * one dummy eb, no sharing. 3497 */ 3498 if (!mapped) { 3499 btrfs_detach_subpage(fs_info, page); 3500 return; 3501 } 3502 3503 btrfs_page_dec_eb_refs(fs_info, page); 3504 3505 /* 3506 * We can only detach the page private if there are no other ebs in the 3507 * page range and no unfinished IO. 3508 */ 3509 if (!page_range_has_eb(fs_info, page)) 3510 btrfs_detach_subpage(fs_info, page); 3511 3512 spin_unlock(&page->mapping->private_lock); 3513 } 3514 3515 /* Release all pages attached to the extent buffer */ 3516 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3517 { 3518 int i; 3519 int num_pages; 3520 3521 ASSERT(!extent_buffer_under_io(eb)); 3522 3523 num_pages = num_extent_pages(eb); 3524 for (i = 0; i < num_pages; i++) { 3525 struct page *page = eb->pages[i]; 3526 3527 if (!page) 3528 continue; 3529 3530 detach_extent_buffer_page(eb, page); 3531 3532 /* One for when we allocated the page */ 3533 put_page(page); 3534 } 3535 } 3536 3537 /* 3538 * Helper for releasing the extent buffer. 3539 */ 3540 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3541 { 3542 btrfs_release_extent_buffer_pages(eb); 3543 btrfs_leak_debug_del_eb(eb); 3544 __free_extent_buffer(eb); 3545 } 3546 3547 static struct extent_buffer * 3548 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3549 unsigned long len) 3550 { 3551 struct extent_buffer *eb = NULL; 3552 3553 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3554 eb->start = start; 3555 eb->len = len; 3556 eb->fs_info = fs_info; 3557 init_rwsem(&eb->lock); 3558 3559 btrfs_leak_debug_add_eb(eb); 3560 INIT_LIST_HEAD(&eb->release_list); 3561 3562 spin_lock_init(&eb->refs_lock); 3563 atomic_set(&eb->refs, 1); 3564 atomic_set(&eb->io_pages, 0); 3565 3566 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3567 3568 return eb; 3569 } 3570 3571 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3572 { 3573 int i; 3574 struct extent_buffer *new; 3575 int num_pages = num_extent_pages(src); 3576 int ret; 3577 3578 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3579 if (new == NULL) 3580 return NULL; 3581 3582 /* 3583 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3584 * btrfs_release_extent_buffer() have different behavior for 3585 * UNMAPPED subpage extent buffer. 3586 */ 3587 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3588 3589 ret = btrfs_alloc_page_array(num_pages, new->pages); 3590 if (ret) { 3591 btrfs_release_extent_buffer(new); 3592 return NULL; 3593 } 3594 3595 for (i = 0; i < num_pages; i++) { 3596 int ret; 3597 struct page *p = new->pages[i]; 3598 3599 ret = attach_extent_buffer_page(new, p, NULL); 3600 if (ret < 0) { 3601 btrfs_release_extent_buffer(new); 3602 return NULL; 3603 } 3604 WARN_ON(PageDirty(p)); 3605 copy_page(page_address(p), page_address(src->pages[i])); 3606 } 3607 set_extent_buffer_uptodate(new); 3608 3609 return new; 3610 } 3611 3612 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3613 u64 start, unsigned long len) 3614 { 3615 struct extent_buffer *eb; 3616 int num_pages; 3617 int i; 3618 int ret; 3619 3620 eb = __alloc_extent_buffer(fs_info, start, len); 3621 if (!eb) 3622 return NULL; 3623 3624 num_pages = num_extent_pages(eb); 3625 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3626 if (ret) 3627 goto err; 3628 3629 for (i = 0; i < num_pages; i++) { 3630 struct page *p = eb->pages[i]; 3631 3632 ret = attach_extent_buffer_page(eb, p, NULL); 3633 if (ret < 0) 3634 goto err; 3635 } 3636 3637 set_extent_buffer_uptodate(eb); 3638 btrfs_set_header_nritems(eb, 0); 3639 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3640 3641 return eb; 3642 err: 3643 for (i = 0; i < num_pages; i++) { 3644 if (eb->pages[i]) { 3645 detach_extent_buffer_page(eb, eb->pages[i]); 3646 __free_page(eb->pages[i]); 3647 } 3648 } 3649 __free_extent_buffer(eb); 3650 return NULL; 3651 } 3652 3653 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3654 u64 start) 3655 { 3656 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3657 } 3658 3659 static void check_buffer_tree_ref(struct extent_buffer *eb) 3660 { 3661 int refs; 3662 /* 3663 * The TREE_REF bit is first set when the extent_buffer is added 3664 * to the radix tree. It is also reset, if unset, when a new reference 3665 * is created by find_extent_buffer. 3666 * 3667 * It is only cleared in two cases: freeing the last non-tree 3668 * reference to the extent_buffer when its STALE bit is set or 3669 * calling release_folio when the tree reference is the only reference. 3670 * 3671 * In both cases, care is taken to ensure that the extent_buffer's 3672 * pages are not under io. However, release_folio can be concurrently 3673 * called with creating new references, which is prone to race 3674 * conditions between the calls to check_buffer_tree_ref in those 3675 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3676 * 3677 * The actual lifetime of the extent_buffer in the radix tree is 3678 * adequately protected by the refcount, but the TREE_REF bit and 3679 * its corresponding reference are not. To protect against this 3680 * class of races, we call check_buffer_tree_ref from the codepaths 3681 * which trigger io after they set eb->io_pages. Note that once io is 3682 * initiated, TREE_REF can no longer be cleared, so that is the 3683 * moment at which any such race is best fixed. 3684 */ 3685 refs = atomic_read(&eb->refs); 3686 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3687 return; 3688 3689 spin_lock(&eb->refs_lock); 3690 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3691 atomic_inc(&eb->refs); 3692 spin_unlock(&eb->refs_lock); 3693 } 3694 3695 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3696 struct page *accessed) 3697 { 3698 int num_pages, i; 3699 3700 check_buffer_tree_ref(eb); 3701 3702 num_pages = num_extent_pages(eb); 3703 for (i = 0; i < num_pages; i++) { 3704 struct page *p = eb->pages[i]; 3705 3706 if (p != accessed) 3707 mark_page_accessed(p); 3708 } 3709 } 3710 3711 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3712 u64 start) 3713 { 3714 struct extent_buffer *eb; 3715 3716 eb = find_extent_buffer_nolock(fs_info, start); 3717 if (!eb) 3718 return NULL; 3719 /* 3720 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3721 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3722 * another task running free_extent_buffer() might have seen that flag 3723 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3724 * writeback flags not set) and it's still in the tree (flag 3725 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3726 * decrementing the extent buffer's reference count twice. So here we 3727 * could race and increment the eb's reference count, clear its stale 3728 * flag, mark it as dirty and drop our reference before the other task 3729 * finishes executing free_extent_buffer, which would later result in 3730 * an attempt to free an extent buffer that is dirty. 3731 */ 3732 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3733 spin_lock(&eb->refs_lock); 3734 spin_unlock(&eb->refs_lock); 3735 } 3736 mark_extent_buffer_accessed(eb, NULL); 3737 return eb; 3738 } 3739 3740 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3741 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3742 u64 start) 3743 { 3744 struct extent_buffer *eb, *exists = NULL; 3745 int ret; 3746 3747 eb = find_extent_buffer(fs_info, start); 3748 if (eb) 3749 return eb; 3750 eb = alloc_dummy_extent_buffer(fs_info, start); 3751 if (!eb) 3752 return ERR_PTR(-ENOMEM); 3753 eb->fs_info = fs_info; 3754 again: 3755 ret = radix_tree_preload(GFP_NOFS); 3756 if (ret) { 3757 exists = ERR_PTR(ret); 3758 goto free_eb; 3759 } 3760 spin_lock(&fs_info->buffer_lock); 3761 ret = radix_tree_insert(&fs_info->buffer_radix, 3762 start >> fs_info->sectorsize_bits, eb); 3763 spin_unlock(&fs_info->buffer_lock); 3764 radix_tree_preload_end(); 3765 if (ret == -EEXIST) { 3766 exists = find_extent_buffer(fs_info, start); 3767 if (exists) 3768 goto free_eb; 3769 else 3770 goto again; 3771 } 3772 check_buffer_tree_ref(eb); 3773 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3774 3775 return eb; 3776 free_eb: 3777 btrfs_release_extent_buffer(eb); 3778 return exists; 3779 } 3780 #endif 3781 3782 static struct extent_buffer *grab_extent_buffer( 3783 struct btrfs_fs_info *fs_info, struct page *page) 3784 { 3785 struct extent_buffer *exists; 3786 3787 /* 3788 * For subpage case, we completely rely on radix tree to ensure we 3789 * don't try to insert two ebs for the same bytenr. So here we always 3790 * return NULL and just continue. 3791 */ 3792 if (fs_info->nodesize < PAGE_SIZE) 3793 return NULL; 3794 3795 /* Page not yet attached to an extent buffer */ 3796 if (!PagePrivate(page)) 3797 return NULL; 3798 3799 /* 3800 * We could have already allocated an eb for this page and attached one 3801 * so lets see if we can get a ref on the existing eb, and if we can we 3802 * know it's good and we can just return that one, else we know we can 3803 * just overwrite page->private. 3804 */ 3805 exists = (struct extent_buffer *)page->private; 3806 if (atomic_inc_not_zero(&exists->refs)) 3807 return exists; 3808 3809 WARN_ON(PageDirty(page)); 3810 detach_page_private(page); 3811 return NULL; 3812 } 3813 3814 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3815 { 3816 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3817 btrfs_err(fs_info, "bad tree block start %llu", start); 3818 return -EINVAL; 3819 } 3820 3821 if (fs_info->nodesize < PAGE_SIZE && 3822 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3823 btrfs_err(fs_info, 3824 "tree block crosses page boundary, start %llu nodesize %u", 3825 start, fs_info->nodesize); 3826 return -EINVAL; 3827 } 3828 if (fs_info->nodesize >= PAGE_SIZE && 3829 !PAGE_ALIGNED(start)) { 3830 btrfs_err(fs_info, 3831 "tree block is not page aligned, start %llu nodesize %u", 3832 start, fs_info->nodesize); 3833 return -EINVAL; 3834 } 3835 return 0; 3836 } 3837 3838 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3839 u64 start, u64 owner_root, int level) 3840 { 3841 unsigned long len = fs_info->nodesize; 3842 int num_pages; 3843 int i; 3844 unsigned long index = start >> PAGE_SHIFT; 3845 struct extent_buffer *eb; 3846 struct extent_buffer *exists = NULL; 3847 struct page *p; 3848 struct address_space *mapping = fs_info->btree_inode->i_mapping; 3849 u64 lockdep_owner = owner_root; 3850 int uptodate = 1; 3851 int ret; 3852 3853 if (check_eb_alignment(fs_info, start)) 3854 return ERR_PTR(-EINVAL); 3855 3856 #if BITS_PER_LONG == 32 3857 if (start >= MAX_LFS_FILESIZE) { 3858 btrfs_err_rl(fs_info, 3859 "extent buffer %llu is beyond 32bit page cache limit", start); 3860 btrfs_err_32bit_limit(fs_info); 3861 return ERR_PTR(-EOVERFLOW); 3862 } 3863 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 3864 btrfs_warn_32bit_limit(fs_info); 3865 #endif 3866 3867 eb = find_extent_buffer(fs_info, start); 3868 if (eb) 3869 return eb; 3870 3871 eb = __alloc_extent_buffer(fs_info, start, len); 3872 if (!eb) 3873 return ERR_PTR(-ENOMEM); 3874 3875 /* 3876 * The reloc trees are just snapshots, so we need them to appear to be 3877 * just like any other fs tree WRT lockdep. 3878 */ 3879 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 3880 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 3881 3882 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 3883 3884 num_pages = num_extent_pages(eb); 3885 for (i = 0; i < num_pages; i++, index++) { 3886 struct btrfs_subpage *prealloc = NULL; 3887 3888 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 3889 if (!p) { 3890 exists = ERR_PTR(-ENOMEM); 3891 goto free_eb; 3892 } 3893 3894 /* 3895 * Preallocate page->private for subpage case, so that we won't 3896 * allocate memory with private_lock hold. The memory will be 3897 * freed by attach_extent_buffer_page() or freed manually if 3898 * we exit earlier. 3899 * 3900 * Although we have ensured one subpage eb can only have one 3901 * page, but it may change in the future for 16K page size 3902 * support, so we still preallocate the memory in the loop. 3903 */ 3904 if (fs_info->nodesize < PAGE_SIZE) { 3905 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 3906 if (IS_ERR(prealloc)) { 3907 ret = PTR_ERR(prealloc); 3908 unlock_page(p); 3909 put_page(p); 3910 exists = ERR_PTR(ret); 3911 goto free_eb; 3912 } 3913 } 3914 3915 spin_lock(&mapping->private_lock); 3916 exists = grab_extent_buffer(fs_info, p); 3917 if (exists) { 3918 spin_unlock(&mapping->private_lock); 3919 unlock_page(p); 3920 put_page(p); 3921 mark_extent_buffer_accessed(exists, p); 3922 btrfs_free_subpage(prealloc); 3923 goto free_eb; 3924 } 3925 /* Should not fail, as we have preallocated the memory */ 3926 ret = attach_extent_buffer_page(eb, p, prealloc); 3927 ASSERT(!ret); 3928 /* 3929 * To inform we have extra eb under allocation, so that 3930 * detach_extent_buffer_page() won't release the page private 3931 * when the eb hasn't yet been inserted into radix tree. 3932 * 3933 * The ref will be decreased when the eb released the page, in 3934 * detach_extent_buffer_page(). 3935 * Thus needs no special handling in error path. 3936 */ 3937 btrfs_page_inc_eb_refs(fs_info, p); 3938 spin_unlock(&mapping->private_lock); 3939 3940 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 3941 eb->pages[i] = p; 3942 if (!PageUptodate(p)) 3943 uptodate = 0; 3944 3945 /* 3946 * We can't unlock the pages just yet since the extent buffer 3947 * hasn't been properly inserted in the radix tree, this 3948 * opens a race with btree_release_folio which can free a page 3949 * while we are still filling in all pages for the buffer and 3950 * we could crash. 3951 */ 3952 } 3953 if (uptodate) 3954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3955 again: 3956 ret = radix_tree_preload(GFP_NOFS); 3957 if (ret) { 3958 exists = ERR_PTR(ret); 3959 goto free_eb; 3960 } 3961 3962 spin_lock(&fs_info->buffer_lock); 3963 ret = radix_tree_insert(&fs_info->buffer_radix, 3964 start >> fs_info->sectorsize_bits, eb); 3965 spin_unlock(&fs_info->buffer_lock); 3966 radix_tree_preload_end(); 3967 if (ret == -EEXIST) { 3968 exists = find_extent_buffer(fs_info, start); 3969 if (exists) 3970 goto free_eb; 3971 else 3972 goto again; 3973 } 3974 /* add one reference for the tree */ 3975 check_buffer_tree_ref(eb); 3976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3977 3978 /* 3979 * Now it's safe to unlock the pages because any calls to 3980 * btree_release_folio will correctly detect that a page belongs to a 3981 * live buffer and won't free them prematurely. 3982 */ 3983 for (i = 0; i < num_pages; i++) 3984 unlock_page(eb->pages[i]); 3985 return eb; 3986 3987 free_eb: 3988 WARN_ON(!atomic_dec_and_test(&eb->refs)); 3989 for (i = 0; i < num_pages; i++) { 3990 if (eb->pages[i]) 3991 unlock_page(eb->pages[i]); 3992 } 3993 3994 btrfs_release_extent_buffer(eb); 3995 return exists; 3996 } 3997 3998 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3999 { 4000 struct extent_buffer *eb = 4001 container_of(head, struct extent_buffer, rcu_head); 4002 4003 __free_extent_buffer(eb); 4004 } 4005 4006 static int release_extent_buffer(struct extent_buffer *eb) 4007 __releases(&eb->refs_lock) 4008 { 4009 lockdep_assert_held(&eb->refs_lock); 4010 4011 WARN_ON(atomic_read(&eb->refs) == 0); 4012 if (atomic_dec_and_test(&eb->refs)) { 4013 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4014 struct btrfs_fs_info *fs_info = eb->fs_info; 4015 4016 spin_unlock(&eb->refs_lock); 4017 4018 spin_lock(&fs_info->buffer_lock); 4019 radix_tree_delete(&fs_info->buffer_radix, 4020 eb->start >> fs_info->sectorsize_bits); 4021 spin_unlock(&fs_info->buffer_lock); 4022 } else { 4023 spin_unlock(&eb->refs_lock); 4024 } 4025 4026 btrfs_leak_debug_del_eb(eb); 4027 /* Should be safe to release our pages at this point */ 4028 btrfs_release_extent_buffer_pages(eb); 4029 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4030 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4031 __free_extent_buffer(eb); 4032 return 1; 4033 } 4034 #endif 4035 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4036 return 1; 4037 } 4038 spin_unlock(&eb->refs_lock); 4039 4040 return 0; 4041 } 4042 4043 void free_extent_buffer(struct extent_buffer *eb) 4044 { 4045 int refs; 4046 if (!eb) 4047 return; 4048 4049 refs = atomic_read(&eb->refs); 4050 while (1) { 4051 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4052 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4053 refs == 1)) 4054 break; 4055 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4056 return; 4057 } 4058 4059 spin_lock(&eb->refs_lock); 4060 if (atomic_read(&eb->refs) == 2 && 4061 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4062 !extent_buffer_under_io(eb) && 4063 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4064 atomic_dec(&eb->refs); 4065 4066 /* 4067 * I know this is terrible, but it's temporary until we stop tracking 4068 * the uptodate bits and such for the extent buffers. 4069 */ 4070 release_extent_buffer(eb); 4071 } 4072 4073 void free_extent_buffer_stale(struct extent_buffer *eb) 4074 { 4075 if (!eb) 4076 return; 4077 4078 spin_lock(&eb->refs_lock); 4079 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4080 4081 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4082 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4083 atomic_dec(&eb->refs); 4084 release_extent_buffer(eb); 4085 } 4086 4087 static void btree_clear_page_dirty(struct page *page) 4088 { 4089 ASSERT(PageDirty(page)); 4090 ASSERT(PageLocked(page)); 4091 clear_page_dirty_for_io(page); 4092 xa_lock_irq(&page->mapping->i_pages); 4093 if (!PageDirty(page)) 4094 __xa_clear_mark(&page->mapping->i_pages, 4095 page_index(page), PAGECACHE_TAG_DIRTY); 4096 xa_unlock_irq(&page->mapping->i_pages); 4097 } 4098 4099 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4100 { 4101 struct btrfs_fs_info *fs_info = eb->fs_info; 4102 struct page *page = eb->pages[0]; 4103 bool last; 4104 4105 /* btree_clear_page_dirty() needs page locked */ 4106 lock_page(page); 4107 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4108 eb->len); 4109 if (last) 4110 btree_clear_page_dirty(page); 4111 unlock_page(page); 4112 WARN_ON(atomic_read(&eb->refs) == 0); 4113 } 4114 4115 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4116 struct extent_buffer *eb) 4117 { 4118 struct btrfs_fs_info *fs_info = eb->fs_info; 4119 int i; 4120 int num_pages; 4121 struct page *page; 4122 4123 btrfs_assert_tree_write_locked(eb); 4124 4125 if (trans && btrfs_header_generation(eb) != trans->transid) 4126 return; 4127 4128 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4129 return; 4130 4131 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4132 fs_info->dirty_metadata_batch); 4133 4134 if (eb->fs_info->nodesize < PAGE_SIZE) 4135 return clear_subpage_extent_buffer_dirty(eb); 4136 4137 num_pages = num_extent_pages(eb); 4138 4139 for (i = 0; i < num_pages; i++) { 4140 page = eb->pages[i]; 4141 if (!PageDirty(page)) 4142 continue; 4143 lock_page(page); 4144 btree_clear_page_dirty(page); 4145 ClearPageError(page); 4146 unlock_page(page); 4147 } 4148 WARN_ON(atomic_read(&eb->refs) == 0); 4149 } 4150 4151 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4152 { 4153 int i; 4154 int num_pages; 4155 bool was_dirty; 4156 4157 check_buffer_tree_ref(eb); 4158 4159 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4160 4161 num_pages = num_extent_pages(eb); 4162 WARN_ON(atomic_read(&eb->refs) == 0); 4163 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4164 4165 if (!was_dirty) { 4166 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4167 4168 /* 4169 * For subpage case, we can have other extent buffers in the 4170 * same page, and in clear_subpage_extent_buffer_dirty() we 4171 * have to clear page dirty without subpage lock held. 4172 * This can cause race where our page gets dirty cleared after 4173 * we just set it. 4174 * 4175 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4176 * its page for other reasons, we can use page lock to prevent 4177 * the above race. 4178 */ 4179 if (subpage) 4180 lock_page(eb->pages[0]); 4181 for (i = 0; i < num_pages; i++) 4182 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4183 eb->start, eb->len); 4184 if (subpage) 4185 unlock_page(eb->pages[0]); 4186 } 4187 #ifdef CONFIG_BTRFS_DEBUG 4188 for (i = 0; i < num_pages; i++) 4189 ASSERT(PageDirty(eb->pages[i])); 4190 #endif 4191 4192 return was_dirty; 4193 } 4194 4195 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4196 { 4197 struct btrfs_fs_info *fs_info = eb->fs_info; 4198 struct page *page; 4199 int num_pages; 4200 int i; 4201 4202 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4203 num_pages = num_extent_pages(eb); 4204 for (i = 0; i < num_pages; i++) { 4205 page = eb->pages[i]; 4206 if (!page) 4207 continue; 4208 4209 /* 4210 * This is special handling for metadata subpage, as regular 4211 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4212 */ 4213 if (fs_info->nodesize >= PAGE_SIZE) 4214 ClearPageUptodate(page); 4215 else 4216 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4217 eb->len); 4218 } 4219 } 4220 4221 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4222 { 4223 struct btrfs_fs_info *fs_info = eb->fs_info; 4224 struct page *page; 4225 int num_pages; 4226 int i; 4227 4228 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4229 num_pages = num_extent_pages(eb); 4230 for (i = 0; i < num_pages; i++) { 4231 page = eb->pages[i]; 4232 4233 /* 4234 * This is special handling for metadata subpage, as regular 4235 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4236 */ 4237 if (fs_info->nodesize >= PAGE_SIZE) 4238 SetPageUptodate(page); 4239 else 4240 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4241 eb->len); 4242 } 4243 } 4244 4245 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4246 int mirror_num, 4247 struct btrfs_tree_parent_check *check) 4248 { 4249 struct btrfs_fs_info *fs_info = eb->fs_info; 4250 struct extent_io_tree *io_tree; 4251 struct page *page = eb->pages[0]; 4252 struct extent_state *cached_state = NULL; 4253 struct btrfs_bio_ctrl bio_ctrl = { 4254 .opf = REQ_OP_READ, 4255 .mirror_num = mirror_num, 4256 .parent_check = check, 4257 }; 4258 int ret; 4259 4260 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4261 ASSERT(PagePrivate(page)); 4262 ASSERT(check); 4263 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4264 4265 if (wait == WAIT_NONE) { 4266 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4267 &cached_state)) 4268 return -EAGAIN; 4269 } else { 4270 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4271 &cached_state); 4272 if (ret < 0) 4273 return ret; 4274 } 4275 4276 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4277 PageUptodate(page) || 4278 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4279 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4280 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4281 &cached_state); 4282 return 0; 4283 } 4284 4285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4286 eb->read_mirror = 0; 4287 atomic_set(&eb->io_pages, 1); 4288 check_buffer_tree_ref(eb); 4289 bio_ctrl.end_io_func = end_bio_extent_readpage; 4290 4291 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4292 4293 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4294 submit_extent_page(&bio_ctrl, eb->start, page, eb->len, 4295 eb->start - page_offset(page)); 4296 submit_one_bio(&bio_ctrl); 4297 if (wait != WAIT_COMPLETE) { 4298 free_extent_state(cached_state); 4299 return 0; 4300 } 4301 4302 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, 4303 EXTENT_LOCKED, &cached_state); 4304 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4305 return -EIO; 4306 return 0; 4307 } 4308 4309 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4310 struct btrfs_tree_parent_check *check) 4311 { 4312 int i; 4313 struct page *page; 4314 int locked_pages = 0; 4315 int all_uptodate = 1; 4316 int num_pages; 4317 unsigned long num_reads = 0; 4318 struct btrfs_bio_ctrl bio_ctrl = { 4319 .opf = REQ_OP_READ, 4320 .mirror_num = mirror_num, 4321 .parent_check = check, 4322 }; 4323 4324 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4325 return 0; 4326 4327 /* 4328 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4329 * operation, which could potentially still be in flight. In this case 4330 * we simply want to return an error. 4331 */ 4332 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4333 return -EIO; 4334 4335 if (eb->fs_info->nodesize < PAGE_SIZE) 4336 return read_extent_buffer_subpage(eb, wait, mirror_num, check); 4337 4338 num_pages = num_extent_pages(eb); 4339 for (i = 0; i < num_pages; i++) { 4340 page = eb->pages[i]; 4341 if (wait == WAIT_NONE) { 4342 /* 4343 * WAIT_NONE is only utilized by readahead. If we can't 4344 * acquire the lock atomically it means either the eb 4345 * is being read out or under modification. 4346 * Either way the eb will be or has been cached, 4347 * readahead can exit safely. 4348 */ 4349 if (!trylock_page(page)) 4350 goto unlock_exit; 4351 } else { 4352 lock_page(page); 4353 } 4354 locked_pages++; 4355 } 4356 /* 4357 * We need to firstly lock all pages to make sure that 4358 * the uptodate bit of our pages won't be affected by 4359 * clear_extent_buffer_uptodate(). 4360 */ 4361 for (i = 0; i < num_pages; i++) { 4362 page = eb->pages[i]; 4363 if (!PageUptodate(page)) { 4364 num_reads++; 4365 all_uptodate = 0; 4366 } 4367 } 4368 4369 if (all_uptodate) { 4370 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4371 goto unlock_exit; 4372 } 4373 4374 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4375 eb->read_mirror = 0; 4376 atomic_set(&eb->io_pages, num_reads); 4377 /* 4378 * It is possible for release_folio to clear the TREE_REF bit before we 4379 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 4380 */ 4381 check_buffer_tree_ref(eb); 4382 bio_ctrl.end_io_func = end_bio_extent_readpage; 4383 for (i = 0; i < num_pages; i++) { 4384 page = eb->pages[i]; 4385 4386 if (!PageUptodate(page)) { 4387 ClearPageError(page); 4388 submit_extent_page(&bio_ctrl, page_offset(page), page, 4389 PAGE_SIZE, 0); 4390 } else { 4391 unlock_page(page); 4392 } 4393 } 4394 4395 submit_one_bio(&bio_ctrl); 4396 4397 if (wait != WAIT_COMPLETE) 4398 return 0; 4399 4400 for (i = 0; i < num_pages; i++) { 4401 page = eb->pages[i]; 4402 wait_on_page_locked(page); 4403 if (!PageUptodate(page)) 4404 return -EIO; 4405 } 4406 4407 return 0; 4408 4409 unlock_exit: 4410 while (locked_pages > 0) { 4411 locked_pages--; 4412 page = eb->pages[locked_pages]; 4413 unlock_page(page); 4414 } 4415 return 0; 4416 } 4417 4418 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4419 unsigned long len) 4420 { 4421 btrfs_warn(eb->fs_info, 4422 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4423 eb->start, eb->len, start, len); 4424 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4425 4426 return true; 4427 } 4428 4429 /* 4430 * Check if the [start, start + len) range is valid before reading/writing 4431 * the eb. 4432 * NOTE: @start and @len are offset inside the eb, not logical address. 4433 * 4434 * Caller should not touch the dst/src memory if this function returns error. 4435 */ 4436 static inline int check_eb_range(const struct extent_buffer *eb, 4437 unsigned long start, unsigned long len) 4438 { 4439 unsigned long offset; 4440 4441 /* start, start + len should not go beyond eb->len nor overflow */ 4442 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4443 return report_eb_range(eb, start, len); 4444 4445 return false; 4446 } 4447 4448 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4449 unsigned long start, unsigned long len) 4450 { 4451 size_t cur; 4452 size_t offset; 4453 struct page *page; 4454 char *kaddr; 4455 char *dst = (char *)dstv; 4456 unsigned long i = get_eb_page_index(start); 4457 4458 if (check_eb_range(eb, start, len)) 4459 return; 4460 4461 offset = get_eb_offset_in_page(eb, start); 4462 4463 while (len > 0) { 4464 page = eb->pages[i]; 4465 4466 cur = min(len, (PAGE_SIZE - offset)); 4467 kaddr = page_address(page); 4468 memcpy(dst, kaddr + offset, cur); 4469 4470 dst += cur; 4471 len -= cur; 4472 offset = 0; 4473 i++; 4474 } 4475 } 4476 4477 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4478 void __user *dstv, 4479 unsigned long start, unsigned long len) 4480 { 4481 size_t cur; 4482 size_t offset; 4483 struct page *page; 4484 char *kaddr; 4485 char __user *dst = (char __user *)dstv; 4486 unsigned long i = get_eb_page_index(start); 4487 int ret = 0; 4488 4489 WARN_ON(start > eb->len); 4490 WARN_ON(start + len > eb->start + eb->len); 4491 4492 offset = get_eb_offset_in_page(eb, start); 4493 4494 while (len > 0) { 4495 page = eb->pages[i]; 4496 4497 cur = min(len, (PAGE_SIZE - offset)); 4498 kaddr = page_address(page); 4499 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4500 ret = -EFAULT; 4501 break; 4502 } 4503 4504 dst += cur; 4505 len -= cur; 4506 offset = 0; 4507 i++; 4508 } 4509 4510 return ret; 4511 } 4512 4513 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4514 unsigned long start, unsigned long len) 4515 { 4516 size_t cur; 4517 size_t offset; 4518 struct page *page; 4519 char *kaddr; 4520 char *ptr = (char *)ptrv; 4521 unsigned long i = get_eb_page_index(start); 4522 int ret = 0; 4523 4524 if (check_eb_range(eb, start, len)) 4525 return -EINVAL; 4526 4527 offset = get_eb_offset_in_page(eb, start); 4528 4529 while (len > 0) { 4530 page = eb->pages[i]; 4531 4532 cur = min(len, (PAGE_SIZE - offset)); 4533 4534 kaddr = page_address(page); 4535 ret = memcmp(ptr, kaddr + offset, cur); 4536 if (ret) 4537 break; 4538 4539 ptr += cur; 4540 len -= cur; 4541 offset = 0; 4542 i++; 4543 } 4544 return ret; 4545 } 4546 4547 /* 4548 * Check that the extent buffer is uptodate. 4549 * 4550 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4551 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4552 */ 4553 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4554 struct page *page) 4555 { 4556 struct btrfs_fs_info *fs_info = eb->fs_info; 4557 4558 /* 4559 * If we are using the commit root we could potentially clear a page 4560 * Uptodate while we're using the extent buffer that we've previously 4561 * looked up. We don't want to complain in this case, as the page was 4562 * valid before, we just didn't write it out. Instead we want to catch 4563 * the case where we didn't actually read the block properly, which 4564 * would have !PageUptodate && !PageError, as we clear PageError before 4565 * reading. 4566 */ 4567 if (fs_info->nodesize < PAGE_SIZE) { 4568 bool uptodate, error; 4569 4570 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 4571 eb->start, eb->len); 4572 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 4573 WARN_ON(!uptodate && !error); 4574 } else { 4575 WARN_ON(!PageUptodate(page) && !PageError(page)); 4576 } 4577 } 4578 4579 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 4580 const void *srcv) 4581 { 4582 char *kaddr; 4583 4584 assert_eb_page_uptodate(eb, eb->pages[0]); 4585 kaddr = page_address(eb->pages[0]) + 4586 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 4587 chunk_tree_uuid)); 4588 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4589 } 4590 4591 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 4592 { 4593 char *kaddr; 4594 4595 assert_eb_page_uptodate(eb, eb->pages[0]); 4596 kaddr = page_address(eb->pages[0]) + 4597 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 4598 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4599 } 4600 4601 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4602 unsigned long start, unsigned long len) 4603 { 4604 size_t cur; 4605 size_t offset; 4606 struct page *page; 4607 char *kaddr; 4608 char *src = (char *)srcv; 4609 unsigned long i = get_eb_page_index(start); 4610 4611 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4612 4613 if (check_eb_range(eb, start, len)) 4614 return; 4615 4616 offset = get_eb_offset_in_page(eb, start); 4617 4618 while (len > 0) { 4619 page = eb->pages[i]; 4620 assert_eb_page_uptodate(eb, page); 4621 4622 cur = min(len, PAGE_SIZE - offset); 4623 kaddr = page_address(page); 4624 memcpy(kaddr + offset, src, cur); 4625 4626 src += cur; 4627 len -= cur; 4628 offset = 0; 4629 i++; 4630 } 4631 } 4632 4633 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4634 unsigned long len) 4635 { 4636 size_t cur; 4637 size_t offset; 4638 struct page *page; 4639 char *kaddr; 4640 unsigned long i = get_eb_page_index(start); 4641 4642 if (check_eb_range(eb, start, len)) 4643 return; 4644 4645 offset = get_eb_offset_in_page(eb, start); 4646 4647 while (len > 0) { 4648 page = eb->pages[i]; 4649 assert_eb_page_uptodate(eb, page); 4650 4651 cur = min(len, PAGE_SIZE - offset); 4652 kaddr = page_address(page); 4653 memset(kaddr + offset, 0, cur); 4654 4655 len -= cur; 4656 offset = 0; 4657 i++; 4658 } 4659 } 4660 4661 void copy_extent_buffer_full(const struct extent_buffer *dst, 4662 const struct extent_buffer *src) 4663 { 4664 int i; 4665 int num_pages; 4666 4667 ASSERT(dst->len == src->len); 4668 4669 if (dst->fs_info->nodesize >= PAGE_SIZE) { 4670 num_pages = num_extent_pages(dst); 4671 for (i = 0; i < num_pages; i++) 4672 copy_page(page_address(dst->pages[i]), 4673 page_address(src->pages[i])); 4674 } else { 4675 size_t src_offset = get_eb_offset_in_page(src, 0); 4676 size_t dst_offset = get_eb_offset_in_page(dst, 0); 4677 4678 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 4679 memcpy(page_address(dst->pages[0]) + dst_offset, 4680 page_address(src->pages[0]) + src_offset, 4681 src->len); 4682 } 4683 } 4684 4685 void copy_extent_buffer(const struct extent_buffer *dst, 4686 const struct extent_buffer *src, 4687 unsigned long dst_offset, unsigned long src_offset, 4688 unsigned long len) 4689 { 4690 u64 dst_len = dst->len; 4691 size_t cur; 4692 size_t offset; 4693 struct page *page; 4694 char *kaddr; 4695 unsigned long i = get_eb_page_index(dst_offset); 4696 4697 if (check_eb_range(dst, dst_offset, len) || 4698 check_eb_range(src, src_offset, len)) 4699 return; 4700 4701 WARN_ON(src->len != dst_len); 4702 4703 offset = get_eb_offset_in_page(dst, dst_offset); 4704 4705 while (len > 0) { 4706 page = dst->pages[i]; 4707 assert_eb_page_uptodate(dst, page); 4708 4709 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4710 4711 kaddr = page_address(page); 4712 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4713 4714 src_offset += cur; 4715 len -= cur; 4716 offset = 0; 4717 i++; 4718 } 4719 } 4720 4721 /* 4722 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4723 * given bit number 4724 * @eb: the extent buffer 4725 * @start: offset of the bitmap item in the extent buffer 4726 * @nr: bit number 4727 * @page_index: return index of the page in the extent buffer that contains the 4728 * given bit number 4729 * @page_offset: return offset into the page given by page_index 4730 * 4731 * This helper hides the ugliness of finding the byte in an extent buffer which 4732 * contains a given bit. 4733 */ 4734 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4735 unsigned long start, unsigned long nr, 4736 unsigned long *page_index, 4737 size_t *page_offset) 4738 { 4739 size_t byte_offset = BIT_BYTE(nr); 4740 size_t offset; 4741 4742 /* 4743 * The byte we want is the offset of the extent buffer + the offset of 4744 * the bitmap item in the extent buffer + the offset of the byte in the 4745 * bitmap item. 4746 */ 4747 offset = start + offset_in_page(eb->start) + byte_offset; 4748 4749 *page_index = offset >> PAGE_SHIFT; 4750 *page_offset = offset_in_page(offset); 4751 } 4752 4753 /* 4754 * Determine whether a bit in a bitmap item is set. 4755 * 4756 * @eb: the extent buffer 4757 * @start: offset of the bitmap item in the extent buffer 4758 * @nr: bit number to test 4759 */ 4760 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4761 unsigned long nr) 4762 { 4763 u8 *kaddr; 4764 struct page *page; 4765 unsigned long i; 4766 size_t offset; 4767 4768 eb_bitmap_offset(eb, start, nr, &i, &offset); 4769 page = eb->pages[i]; 4770 assert_eb_page_uptodate(eb, page); 4771 kaddr = page_address(page); 4772 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4773 } 4774 4775 /* 4776 * Set an area of a bitmap to 1. 4777 * 4778 * @eb: the extent buffer 4779 * @start: offset of the bitmap item in the extent buffer 4780 * @pos: bit number of the first bit 4781 * @len: number of bits to set 4782 */ 4783 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4784 unsigned long pos, unsigned long len) 4785 { 4786 u8 *kaddr; 4787 struct page *page; 4788 unsigned long i; 4789 size_t offset; 4790 const unsigned int size = pos + len; 4791 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4792 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 4793 4794 eb_bitmap_offset(eb, start, pos, &i, &offset); 4795 page = eb->pages[i]; 4796 assert_eb_page_uptodate(eb, page); 4797 kaddr = page_address(page); 4798 4799 while (len >= bits_to_set) { 4800 kaddr[offset] |= mask_to_set; 4801 len -= bits_to_set; 4802 bits_to_set = BITS_PER_BYTE; 4803 mask_to_set = ~0; 4804 if (++offset >= PAGE_SIZE && len > 0) { 4805 offset = 0; 4806 page = eb->pages[++i]; 4807 assert_eb_page_uptodate(eb, page); 4808 kaddr = page_address(page); 4809 } 4810 } 4811 if (len) { 4812 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 4813 kaddr[offset] |= mask_to_set; 4814 } 4815 } 4816 4817 4818 /* 4819 * Clear an area of a bitmap. 4820 * 4821 * @eb: the extent buffer 4822 * @start: offset of the bitmap item in the extent buffer 4823 * @pos: bit number of the first bit 4824 * @len: number of bits to clear 4825 */ 4826 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 4827 unsigned long start, unsigned long pos, 4828 unsigned long len) 4829 { 4830 u8 *kaddr; 4831 struct page *page; 4832 unsigned long i; 4833 size_t offset; 4834 const unsigned int size = pos + len; 4835 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4836 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 4837 4838 eb_bitmap_offset(eb, start, pos, &i, &offset); 4839 page = eb->pages[i]; 4840 assert_eb_page_uptodate(eb, page); 4841 kaddr = page_address(page); 4842 4843 while (len >= bits_to_clear) { 4844 kaddr[offset] &= ~mask_to_clear; 4845 len -= bits_to_clear; 4846 bits_to_clear = BITS_PER_BYTE; 4847 mask_to_clear = ~0; 4848 if (++offset >= PAGE_SIZE && len > 0) { 4849 offset = 0; 4850 page = eb->pages[++i]; 4851 assert_eb_page_uptodate(eb, page); 4852 kaddr = page_address(page); 4853 } 4854 } 4855 if (len) { 4856 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 4857 kaddr[offset] &= ~mask_to_clear; 4858 } 4859 } 4860 4861 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 4862 { 4863 unsigned long distance = (src > dst) ? src - dst : dst - src; 4864 return distance < len; 4865 } 4866 4867 static void copy_pages(struct page *dst_page, struct page *src_page, 4868 unsigned long dst_off, unsigned long src_off, 4869 unsigned long len) 4870 { 4871 char *dst_kaddr = page_address(dst_page); 4872 char *src_kaddr; 4873 int must_memmove = 0; 4874 4875 if (dst_page != src_page) { 4876 src_kaddr = page_address(src_page); 4877 } else { 4878 src_kaddr = dst_kaddr; 4879 if (areas_overlap(src_off, dst_off, len)) 4880 must_memmove = 1; 4881 } 4882 4883 if (must_memmove) 4884 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 4885 else 4886 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 4887 } 4888 4889 void memcpy_extent_buffer(const struct extent_buffer *dst, 4890 unsigned long dst_offset, unsigned long src_offset, 4891 unsigned long len) 4892 { 4893 size_t cur; 4894 size_t dst_off_in_page; 4895 size_t src_off_in_page; 4896 unsigned long dst_i; 4897 unsigned long src_i; 4898 4899 if (check_eb_range(dst, dst_offset, len) || 4900 check_eb_range(dst, src_offset, len)) 4901 return; 4902 4903 while (len > 0) { 4904 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 4905 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 4906 4907 dst_i = get_eb_page_index(dst_offset); 4908 src_i = get_eb_page_index(src_offset); 4909 4910 cur = min(len, (unsigned long)(PAGE_SIZE - 4911 src_off_in_page)); 4912 cur = min_t(unsigned long, cur, 4913 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 4914 4915 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4916 dst_off_in_page, src_off_in_page, cur); 4917 4918 src_offset += cur; 4919 dst_offset += cur; 4920 len -= cur; 4921 } 4922 } 4923 4924 void memmove_extent_buffer(const struct extent_buffer *dst, 4925 unsigned long dst_offset, unsigned long src_offset, 4926 unsigned long len) 4927 { 4928 size_t cur; 4929 size_t dst_off_in_page; 4930 size_t src_off_in_page; 4931 unsigned long dst_end = dst_offset + len - 1; 4932 unsigned long src_end = src_offset + len - 1; 4933 unsigned long dst_i; 4934 unsigned long src_i; 4935 4936 if (check_eb_range(dst, dst_offset, len) || 4937 check_eb_range(dst, src_offset, len)) 4938 return; 4939 if (dst_offset < src_offset) { 4940 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 4941 return; 4942 } 4943 while (len > 0) { 4944 dst_i = get_eb_page_index(dst_end); 4945 src_i = get_eb_page_index(src_end); 4946 4947 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 4948 src_off_in_page = get_eb_offset_in_page(dst, src_end); 4949 4950 cur = min_t(unsigned long, len, src_off_in_page + 1); 4951 cur = min(cur, dst_off_in_page + 1); 4952 copy_pages(dst->pages[dst_i], dst->pages[src_i], 4953 dst_off_in_page - cur + 1, 4954 src_off_in_page - cur + 1, cur); 4955 4956 dst_end -= cur; 4957 src_end -= cur; 4958 len -= cur; 4959 } 4960 } 4961 4962 #define GANG_LOOKUP_SIZE 16 4963 static struct extent_buffer *get_next_extent_buffer( 4964 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 4965 { 4966 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 4967 struct extent_buffer *found = NULL; 4968 u64 page_start = page_offset(page); 4969 u64 cur = page_start; 4970 4971 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 4972 lockdep_assert_held(&fs_info->buffer_lock); 4973 4974 while (cur < page_start + PAGE_SIZE) { 4975 int ret; 4976 int i; 4977 4978 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 4979 (void **)gang, cur >> fs_info->sectorsize_bits, 4980 min_t(unsigned int, GANG_LOOKUP_SIZE, 4981 PAGE_SIZE / fs_info->nodesize)); 4982 if (ret == 0) 4983 goto out; 4984 for (i = 0; i < ret; i++) { 4985 /* Already beyond page end */ 4986 if (gang[i]->start >= page_start + PAGE_SIZE) 4987 goto out; 4988 /* Found one */ 4989 if (gang[i]->start >= bytenr) { 4990 found = gang[i]; 4991 goto out; 4992 } 4993 } 4994 cur = gang[ret - 1]->start + gang[ret - 1]->len; 4995 } 4996 out: 4997 return found; 4998 } 4999 5000 static int try_release_subpage_extent_buffer(struct page *page) 5001 { 5002 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5003 u64 cur = page_offset(page); 5004 const u64 end = page_offset(page) + PAGE_SIZE; 5005 int ret; 5006 5007 while (cur < end) { 5008 struct extent_buffer *eb = NULL; 5009 5010 /* 5011 * Unlike try_release_extent_buffer() which uses page->private 5012 * to grab buffer, for subpage case we rely on radix tree, thus 5013 * we need to ensure radix tree consistency. 5014 * 5015 * We also want an atomic snapshot of the radix tree, thus go 5016 * with spinlock rather than RCU. 5017 */ 5018 spin_lock(&fs_info->buffer_lock); 5019 eb = get_next_extent_buffer(fs_info, page, cur); 5020 if (!eb) { 5021 /* No more eb in the page range after or at cur */ 5022 spin_unlock(&fs_info->buffer_lock); 5023 break; 5024 } 5025 cur = eb->start + eb->len; 5026 5027 /* 5028 * The same as try_release_extent_buffer(), to ensure the eb 5029 * won't disappear out from under us. 5030 */ 5031 spin_lock(&eb->refs_lock); 5032 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5033 spin_unlock(&eb->refs_lock); 5034 spin_unlock(&fs_info->buffer_lock); 5035 break; 5036 } 5037 spin_unlock(&fs_info->buffer_lock); 5038 5039 /* 5040 * If tree ref isn't set then we know the ref on this eb is a 5041 * real ref, so just return, this eb will likely be freed soon 5042 * anyway. 5043 */ 5044 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5045 spin_unlock(&eb->refs_lock); 5046 break; 5047 } 5048 5049 /* 5050 * Here we don't care about the return value, we will always 5051 * check the page private at the end. And 5052 * release_extent_buffer() will release the refs_lock. 5053 */ 5054 release_extent_buffer(eb); 5055 } 5056 /* 5057 * Finally to check if we have cleared page private, as if we have 5058 * released all ebs in the page, the page private should be cleared now. 5059 */ 5060 spin_lock(&page->mapping->private_lock); 5061 if (!PagePrivate(page)) 5062 ret = 1; 5063 else 5064 ret = 0; 5065 spin_unlock(&page->mapping->private_lock); 5066 return ret; 5067 5068 } 5069 5070 int try_release_extent_buffer(struct page *page) 5071 { 5072 struct extent_buffer *eb; 5073 5074 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5075 return try_release_subpage_extent_buffer(page); 5076 5077 /* 5078 * We need to make sure nobody is changing page->private, as we rely on 5079 * page->private as the pointer to extent buffer. 5080 */ 5081 spin_lock(&page->mapping->private_lock); 5082 if (!PagePrivate(page)) { 5083 spin_unlock(&page->mapping->private_lock); 5084 return 1; 5085 } 5086 5087 eb = (struct extent_buffer *)page->private; 5088 BUG_ON(!eb); 5089 5090 /* 5091 * This is a little awful but should be ok, we need to make sure that 5092 * the eb doesn't disappear out from under us while we're looking at 5093 * this page. 5094 */ 5095 spin_lock(&eb->refs_lock); 5096 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5097 spin_unlock(&eb->refs_lock); 5098 spin_unlock(&page->mapping->private_lock); 5099 return 0; 5100 } 5101 spin_unlock(&page->mapping->private_lock); 5102 5103 /* 5104 * If tree ref isn't set then we know the ref on this eb is a real ref, 5105 * so just return, this page will likely be freed soon anyway. 5106 */ 5107 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5108 spin_unlock(&eb->refs_lock); 5109 return 0; 5110 } 5111 5112 return release_extent_buffer(eb); 5113 } 5114 5115 /* 5116 * btrfs_readahead_tree_block - attempt to readahead a child block 5117 * @fs_info: the fs_info 5118 * @bytenr: bytenr to read 5119 * @owner_root: objectid of the root that owns this eb 5120 * @gen: generation for the uptodate check, can be 0 5121 * @level: level for the eb 5122 * 5123 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5124 * normal uptodate check of the eb, without checking the generation. If we have 5125 * to read the block we will not block on anything. 5126 */ 5127 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5128 u64 bytenr, u64 owner_root, u64 gen, int level) 5129 { 5130 struct btrfs_tree_parent_check check = { 5131 .has_first_key = 0, 5132 .level = level, 5133 .transid = gen 5134 }; 5135 struct extent_buffer *eb; 5136 int ret; 5137 5138 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5139 if (IS_ERR(eb)) 5140 return; 5141 5142 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5143 free_extent_buffer(eb); 5144 return; 5145 } 5146 5147 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5148 if (ret < 0) 5149 free_extent_buffer_stale(eb); 5150 else 5151 free_extent_buffer(eb); 5152 } 5153 5154 /* 5155 * btrfs_readahead_node_child - readahead a node's child block 5156 * @node: parent node we're reading from 5157 * @slot: slot in the parent node for the child we want to read 5158 * 5159 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5160 * the slot in the node provided. 5161 */ 5162 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5163 { 5164 btrfs_readahead_tree_block(node->fs_info, 5165 btrfs_node_blockptr(node, slot), 5166 btrfs_header_owner(node), 5167 btrfs_node_ptr_generation(node, slot), 5168 btrfs_header_level(node) - 1); 5169 } 5170