xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 1dff4156)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31 
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 	return !RB_EMPTY_NODE(&state->rb_node);
35 }
36 
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(buffers);
39 static LIST_HEAD(states);
40 
41 static DEFINE_SPINLOCK(leak_lock);
42 
43 static inline
44 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 {
46 	unsigned long flags;
47 
48 	spin_lock_irqsave(&leak_lock, flags);
49 	list_add(new, head);
50 	spin_unlock_irqrestore(&leak_lock, flags);
51 }
52 
53 static inline
54 void btrfs_leak_debug_del(struct list_head *entry)
55 {
56 	unsigned long flags;
57 
58 	spin_lock_irqsave(&leak_lock, flags);
59 	list_del(entry);
60 	spin_unlock_irqrestore(&leak_lock, flags);
61 }
62 
63 static inline void btrfs_extent_buffer_leak_debug_check(void)
64 {
65 	struct extent_buffer *eb;
66 
67 	while (!list_empty(&buffers)) {
68 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71 		list_del(&eb->leak_list);
72 		kmem_cache_free(extent_buffer_cache, eb);
73 	}
74 }
75 
76 static inline void btrfs_extent_state_leak_debug_check(void)
77 {
78 	struct extent_state *state;
79 
80 	while (!list_empty(&states)) {
81 		state = list_entry(states.next, struct extent_state, leak_list);
82 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
83 		       state->start, state->end, state->state,
84 		       extent_state_in_tree(state),
85 		       refcount_read(&state->refs));
86 		list_del(&state->leak_list);
87 		kmem_cache_free(extent_state_cache, state);
88 	}
89 }
90 
91 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
92 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
93 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
94 		struct extent_io_tree *tree, u64 start, u64 end)
95 {
96 	struct inode *inode = tree->private_data;
97 	u64 isize;
98 
99 	if (!inode || !is_data_inode(inode))
100 		return;
101 
102 	isize = i_size_read(inode);
103 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107 	}
108 }
109 #else
110 #define btrfs_leak_debug_add(new, head)	do {} while (0)
111 #define btrfs_leak_debug_del(entry)	do {} while (0)
112 #define btrfs_extent_buffer_leak_debug_check()	do {} while (0)
113 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
114 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
115 #endif
116 
117 struct tree_entry {
118 	u64 start;
119 	u64 end;
120 	struct rb_node rb_node;
121 };
122 
123 struct extent_page_data {
124 	struct bio *bio;
125 	struct extent_io_tree *tree;
126 	/* tells writepage not to lock the state bits for this range
127 	 * it still does the unlocking
128 	 */
129 	unsigned int extent_locked:1;
130 
131 	/* tells the submit_bio code to use REQ_SYNC */
132 	unsigned int sync_io:1;
133 };
134 
135 static int add_extent_changeset(struct extent_state *state, unsigned bits,
136 				 struct extent_changeset *changeset,
137 				 int set)
138 {
139 	int ret;
140 
141 	if (!changeset)
142 		return 0;
143 	if (set && (state->state & bits) == bits)
144 		return 0;
145 	if (!set && (state->state & bits) == 0)
146 		return 0;
147 	changeset->bytes_changed += state->end - state->start + 1;
148 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
149 			GFP_ATOMIC);
150 	return ret;
151 }
152 
153 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154 				       unsigned long bio_flags)
155 {
156 	blk_status_t ret = 0;
157 	struct extent_io_tree *tree = bio->bi_private;
158 
159 	bio->bi_private = NULL;
160 
161 	if (tree->ops)
162 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
163 						 mirror_num, bio_flags);
164 	else
165 		btrfsic_submit_bio(bio);
166 
167 	return blk_status_to_errno(ret);
168 }
169 
170 /* Cleanup unsubmitted bios */
171 static void end_write_bio(struct extent_page_data *epd, int ret)
172 {
173 	if (epd->bio) {
174 		epd->bio->bi_status = errno_to_blk_status(ret);
175 		bio_endio(epd->bio);
176 		epd->bio = NULL;
177 	}
178 }
179 
180 /*
181  * Submit bio from extent page data via submit_one_bio
182  *
183  * Return 0 if everything is OK.
184  * Return <0 for error.
185  */
186 static int __must_check flush_write_bio(struct extent_page_data *epd)
187 {
188 	int ret = 0;
189 
190 	if (epd->bio) {
191 		ret = submit_one_bio(epd->bio, 0, 0);
192 		/*
193 		 * Clean up of epd->bio is handled by its endio function.
194 		 * And endio is either triggered by successful bio execution
195 		 * or the error handler of submit bio hook.
196 		 * So at this point, no matter what happened, we don't need
197 		 * to clean up epd->bio.
198 		 */
199 		epd->bio = NULL;
200 	}
201 	return ret;
202 }
203 
204 int __init extent_state_cache_init(void)
205 {
206 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
207 			sizeof(struct extent_state), 0,
208 			SLAB_MEM_SPREAD, NULL);
209 	if (!extent_state_cache)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 int __init extent_io_init(void)
215 {
216 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
217 			sizeof(struct extent_buffer), 0,
218 			SLAB_MEM_SPREAD, NULL);
219 	if (!extent_buffer_cache)
220 		return -ENOMEM;
221 
222 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223 			offsetof(struct btrfs_io_bio, bio),
224 			BIOSET_NEED_BVECS))
225 		goto free_buffer_cache;
226 
227 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
228 		goto free_bioset;
229 
230 	return 0;
231 
232 free_bioset:
233 	bioset_exit(&btrfs_bioset);
234 
235 free_buffer_cache:
236 	kmem_cache_destroy(extent_buffer_cache);
237 	extent_buffer_cache = NULL;
238 	return -ENOMEM;
239 }
240 
241 void __cold extent_state_cache_exit(void)
242 {
243 	btrfs_extent_state_leak_debug_check();
244 	kmem_cache_destroy(extent_state_cache);
245 }
246 
247 void __cold extent_io_exit(void)
248 {
249 	btrfs_extent_buffer_leak_debug_check();
250 
251 	/*
252 	 * Make sure all delayed rcu free are flushed before we
253 	 * destroy caches.
254 	 */
255 	rcu_barrier();
256 	kmem_cache_destroy(extent_buffer_cache);
257 	bioset_exit(&btrfs_bioset);
258 }
259 
260 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
261 			 struct extent_io_tree *tree, unsigned int owner,
262 			 void *private_data)
263 {
264 	tree->fs_info = fs_info;
265 	tree->state = RB_ROOT;
266 	tree->ops = NULL;
267 	tree->dirty_bytes = 0;
268 	spin_lock_init(&tree->lock);
269 	tree->private_data = private_data;
270 	tree->owner = owner;
271 }
272 
273 void extent_io_tree_release(struct extent_io_tree *tree)
274 {
275 	spin_lock(&tree->lock);
276 	/*
277 	 * Do a single barrier for the waitqueue_active check here, the state
278 	 * of the waitqueue should not change once extent_io_tree_release is
279 	 * called.
280 	 */
281 	smp_mb();
282 	while (!RB_EMPTY_ROOT(&tree->state)) {
283 		struct rb_node *node;
284 		struct extent_state *state;
285 
286 		node = rb_first(&tree->state);
287 		state = rb_entry(node, struct extent_state, rb_node);
288 		rb_erase(&state->rb_node, &tree->state);
289 		RB_CLEAR_NODE(&state->rb_node);
290 		/*
291 		 * btree io trees aren't supposed to have tasks waiting for
292 		 * changes in the flags of extent states ever.
293 		 */
294 		ASSERT(!waitqueue_active(&state->wq));
295 		free_extent_state(state);
296 
297 		cond_resched_lock(&tree->lock);
298 	}
299 	spin_unlock(&tree->lock);
300 }
301 
302 static struct extent_state *alloc_extent_state(gfp_t mask)
303 {
304 	struct extent_state *state;
305 
306 	/*
307 	 * The given mask might be not appropriate for the slab allocator,
308 	 * drop the unsupported bits
309 	 */
310 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
311 	state = kmem_cache_alloc(extent_state_cache, mask);
312 	if (!state)
313 		return state;
314 	state->state = 0;
315 	state->failrec = NULL;
316 	RB_CLEAR_NODE(&state->rb_node);
317 	btrfs_leak_debug_add(&state->leak_list, &states);
318 	refcount_set(&state->refs, 1);
319 	init_waitqueue_head(&state->wq);
320 	trace_alloc_extent_state(state, mask, _RET_IP_);
321 	return state;
322 }
323 
324 void free_extent_state(struct extent_state *state)
325 {
326 	if (!state)
327 		return;
328 	if (refcount_dec_and_test(&state->refs)) {
329 		WARN_ON(extent_state_in_tree(state));
330 		btrfs_leak_debug_del(&state->leak_list);
331 		trace_free_extent_state(state, _RET_IP_);
332 		kmem_cache_free(extent_state_cache, state);
333 	}
334 }
335 
336 static struct rb_node *tree_insert(struct rb_root *root,
337 				   struct rb_node *search_start,
338 				   u64 offset,
339 				   struct rb_node *node,
340 				   struct rb_node ***p_in,
341 				   struct rb_node **parent_in)
342 {
343 	struct rb_node **p;
344 	struct rb_node *parent = NULL;
345 	struct tree_entry *entry;
346 
347 	if (p_in && parent_in) {
348 		p = *p_in;
349 		parent = *parent_in;
350 		goto do_insert;
351 	}
352 
353 	p = search_start ? &search_start : &root->rb_node;
354 	while (*p) {
355 		parent = *p;
356 		entry = rb_entry(parent, struct tree_entry, rb_node);
357 
358 		if (offset < entry->start)
359 			p = &(*p)->rb_left;
360 		else if (offset > entry->end)
361 			p = &(*p)->rb_right;
362 		else
363 			return parent;
364 	}
365 
366 do_insert:
367 	rb_link_node(node, parent, p);
368 	rb_insert_color(node, root);
369 	return NULL;
370 }
371 
372 /**
373  * __etree_search - searche @tree for an entry that contains @offset. Such
374  * entry would have entry->start <= offset && entry->end >= offset.
375  *
376  * @tree - the tree to search
377  * @offset - offset that should fall within an entry in @tree
378  * @next_ret - pointer to the first entry whose range ends after @offset
379  * @prev - pointer to the first entry whose range begins before @offset
380  * @p_ret - pointer where new node should be anchored (used when inserting an
381  *	    entry in the tree)
382  * @parent_ret - points to entry which would have been the parent of the entry,
383  *               containing @offset
384  *
385  * This function returns a pointer to the entry that contains @offset byte
386  * address. If no such entry exists, then NULL is returned and the other
387  * pointer arguments to the function are filled, otherwise the found entry is
388  * returned and other pointers are left untouched.
389  */
390 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
391 				      struct rb_node **next_ret,
392 				      struct rb_node **prev_ret,
393 				      struct rb_node ***p_ret,
394 				      struct rb_node **parent_ret)
395 {
396 	struct rb_root *root = &tree->state;
397 	struct rb_node **n = &root->rb_node;
398 	struct rb_node *prev = NULL;
399 	struct rb_node *orig_prev = NULL;
400 	struct tree_entry *entry;
401 	struct tree_entry *prev_entry = NULL;
402 
403 	while (*n) {
404 		prev = *n;
405 		entry = rb_entry(prev, struct tree_entry, rb_node);
406 		prev_entry = entry;
407 
408 		if (offset < entry->start)
409 			n = &(*n)->rb_left;
410 		else if (offset > entry->end)
411 			n = &(*n)->rb_right;
412 		else
413 			return *n;
414 	}
415 
416 	if (p_ret)
417 		*p_ret = n;
418 	if (parent_ret)
419 		*parent_ret = prev;
420 
421 	if (next_ret) {
422 		orig_prev = prev;
423 		while (prev && offset > prev_entry->end) {
424 			prev = rb_next(prev);
425 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 		}
427 		*next_ret = prev;
428 		prev = orig_prev;
429 	}
430 
431 	if (prev_ret) {
432 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
433 		while (prev && offset < prev_entry->start) {
434 			prev = rb_prev(prev);
435 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436 		}
437 		*prev_ret = prev;
438 	}
439 	return NULL;
440 }
441 
442 static inline struct rb_node *
443 tree_search_for_insert(struct extent_io_tree *tree,
444 		       u64 offset,
445 		       struct rb_node ***p_ret,
446 		       struct rb_node **parent_ret)
447 {
448 	struct rb_node *next= NULL;
449 	struct rb_node *ret;
450 
451 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
452 	if (!ret)
453 		return next;
454 	return ret;
455 }
456 
457 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458 					  u64 offset)
459 {
460 	return tree_search_for_insert(tree, offset, NULL, NULL);
461 }
462 
463 /*
464  * utility function to look for merge candidates inside a given range.
465  * Any extents with matching state are merged together into a single
466  * extent in the tree.  Extents with EXTENT_IO in their state field
467  * are not merged because the end_io handlers need to be able to do
468  * operations on them without sleeping (or doing allocations/splits).
469  *
470  * This should be called with the tree lock held.
471  */
472 static void merge_state(struct extent_io_tree *tree,
473 		        struct extent_state *state)
474 {
475 	struct extent_state *other;
476 	struct rb_node *other_node;
477 
478 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
479 		return;
480 
481 	other_node = rb_prev(&state->rb_node);
482 	if (other_node) {
483 		other = rb_entry(other_node, struct extent_state, rb_node);
484 		if (other->end == state->start - 1 &&
485 		    other->state == state->state) {
486 			if (tree->private_data &&
487 			    is_data_inode(tree->private_data))
488 				btrfs_merge_delalloc_extent(tree->private_data,
489 							    state, other);
490 			state->start = other->start;
491 			rb_erase(&other->rb_node, &tree->state);
492 			RB_CLEAR_NODE(&other->rb_node);
493 			free_extent_state(other);
494 		}
495 	}
496 	other_node = rb_next(&state->rb_node);
497 	if (other_node) {
498 		other = rb_entry(other_node, struct extent_state, rb_node);
499 		if (other->start == state->end + 1 &&
500 		    other->state == state->state) {
501 			if (tree->private_data &&
502 			    is_data_inode(tree->private_data))
503 				btrfs_merge_delalloc_extent(tree->private_data,
504 							    state, other);
505 			state->end = other->end;
506 			rb_erase(&other->rb_node, &tree->state);
507 			RB_CLEAR_NODE(&other->rb_node);
508 			free_extent_state(other);
509 		}
510 	}
511 }
512 
513 static void set_state_bits(struct extent_io_tree *tree,
514 			   struct extent_state *state, unsigned *bits,
515 			   struct extent_changeset *changeset);
516 
517 /*
518  * insert an extent_state struct into the tree.  'bits' are set on the
519  * struct before it is inserted.
520  *
521  * This may return -EEXIST if the extent is already there, in which case the
522  * state struct is freed.
523  *
524  * The tree lock is not taken internally.  This is a utility function and
525  * probably isn't what you want to call (see set/clear_extent_bit).
526  */
527 static int insert_state(struct extent_io_tree *tree,
528 			struct extent_state *state, u64 start, u64 end,
529 			struct rb_node ***p,
530 			struct rb_node **parent,
531 			unsigned *bits, struct extent_changeset *changeset)
532 {
533 	struct rb_node *node;
534 
535 	if (end < start) {
536 		btrfs_err(tree->fs_info,
537 			"insert state: end < start %llu %llu", end, start);
538 		WARN_ON(1);
539 	}
540 	state->start = start;
541 	state->end = end;
542 
543 	set_state_bits(tree, state, bits, changeset);
544 
545 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
546 	if (node) {
547 		struct extent_state *found;
548 		found = rb_entry(node, struct extent_state, rb_node);
549 		btrfs_err(tree->fs_info,
550 		       "found node %llu %llu on insert of %llu %llu",
551 		       found->start, found->end, start, end);
552 		return -EEXIST;
553 	}
554 	merge_state(tree, state);
555 	return 0;
556 }
557 
558 /*
559  * split a given extent state struct in two, inserting the preallocated
560  * struct 'prealloc' as the newly created second half.  'split' indicates an
561  * offset inside 'orig' where it should be split.
562  *
563  * Before calling,
564  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
565  * are two extent state structs in the tree:
566  * prealloc: [orig->start, split - 1]
567  * orig: [ split, orig->end ]
568  *
569  * The tree locks are not taken by this function. They need to be held
570  * by the caller.
571  */
572 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573 		       struct extent_state *prealloc, u64 split)
574 {
575 	struct rb_node *node;
576 
577 	if (tree->private_data && is_data_inode(tree->private_data))
578 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
579 
580 	prealloc->start = orig->start;
581 	prealloc->end = split - 1;
582 	prealloc->state = orig->state;
583 	orig->start = split;
584 
585 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586 			   &prealloc->rb_node, NULL, NULL);
587 	if (node) {
588 		free_extent_state(prealloc);
589 		return -EEXIST;
590 	}
591 	return 0;
592 }
593 
594 static struct extent_state *next_state(struct extent_state *state)
595 {
596 	struct rb_node *next = rb_next(&state->rb_node);
597 	if (next)
598 		return rb_entry(next, struct extent_state, rb_node);
599 	else
600 		return NULL;
601 }
602 
603 /*
604  * utility function to clear some bits in an extent state struct.
605  * it will optionally wake up anyone waiting on this state (wake == 1).
606  *
607  * If no bits are set on the state struct after clearing things, the
608  * struct is freed and removed from the tree
609  */
610 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611 					    struct extent_state *state,
612 					    unsigned *bits, int wake,
613 					    struct extent_changeset *changeset)
614 {
615 	struct extent_state *next;
616 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
617 	int ret;
618 
619 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
620 		u64 range = state->end - state->start + 1;
621 		WARN_ON(range > tree->dirty_bytes);
622 		tree->dirty_bytes -= range;
623 	}
624 
625 	if (tree->private_data && is_data_inode(tree->private_data))
626 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627 
628 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629 	BUG_ON(ret < 0);
630 	state->state &= ~bits_to_clear;
631 	if (wake)
632 		wake_up(&state->wq);
633 	if (state->state == 0) {
634 		next = next_state(state);
635 		if (extent_state_in_tree(state)) {
636 			rb_erase(&state->rb_node, &tree->state);
637 			RB_CLEAR_NODE(&state->rb_node);
638 			free_extent_state(state);
639 		} else {
640 			WARN_ON(1);
641 		}
642 	} else {
643 		merge_state(tree, state);
644 		next = next_state(state);
645 	}
646 	return next;
647 }
648 
649 static struct extent_state *
650 alloc_extent_state_atomic(struct extent_state *prealloc)
651 {
652 	if (!prealloc)
653 		prealloc = alloc_extent_state(GFP_ATOMIC);
654 
655 	return prealloc;
656 }
657 
658 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
659 {
660 	struct inode *inode = tree->private_data;
661 
662 	btrfs_panic(btrfs_sb(inode->i_sb), err,
663 	"locking error: extent tree was modified by another thread while locked");
664 }
665 
666 /*
667  * clear some bits on a range in the tree.  This may require splitting
668  * or inserting elements in the tree, so the gfp mask is used to
669  * indicate which allocations or sleeping are allowed.
670  *
671  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672  * the given range from the tree regardless of state (ie for truncate).
673  *
674  * the range [start, end] is inclusive.
675  *
676  * This takes the tree lock, and returns 0 on success and < 0 on error.
677  */
678 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
679 			      unsigned bits, int wake, int delete,
680 			      struct extent_state **cached_state,
681 			      gfp_t mask, struct extent_changeset *changeset)
682 {
683 	struct extent_state *state;
684 	struct extent_state *cached;
685 	struct extent_state *prealloc = NULL;
686 	struct rb_node *node;
687 	u64 last_end;
688 	int err;
689 	int clear = 0;
690 
691 	btrfs_debug_check_extent_io_range(tree, start, end);
692 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
693 
694 	if (bits & EXTENT_DELALLOC)
695 		bits |= EXTENT_NORESERVE;
696 
697 	if (delete)
698 		bits |= ~EXTENT_CTLBITS;
699 
700 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
701 		clear = 1;
702 again:
703 	if (!prealloc && gfpflags_allow_blocking(mask)) {
704 		/*
705 		 * Don't care for allocation failure here because we might end
706 		 * up not needing the pre-allocated extent state at all, which
707 		 * is the case if we only have in the tree extent states that
708 		 * cover our input range and don't cover too any other range.
709 		 * If we end up needing a new extent state we allocate it later.
710 		 */
711 		prealloc = alloc_extent_state(mask);
712 	}
713 
714 	spin_lock(&tree->lock);
715 	if (cached_state) {
716 		cached = *cached_state;
717 
718 		if (clear) {
719 			*cached_state = NULL;
720 			cached_state = NULL;
721 		}
722 
723 		if (cached && extent_state_in_tree(cached) &&
724 		    cached->start <= start && cached->end > start) {
725 			if (clear)
726 				refcount_dec(&cached->refs);
727 			state = cached;
728 			goto hit_next;
729 		}
730 		if (clear)
731 			free_extent_state(cached);
732 	}
733 	/*
734 	 * this search will find the extents that end after
735 	 * our range starts
736 	 */
737 	node = tree_search(tree, start);
738 	if (!node)
739 		goto out;
740 	state = rb_entry(node, struct extent_state, rb_node);
741 hit_next:
742 	if (state->start > end)
743 		goto out;
744 	WARN_ON(state->end < start);
745 	last_end = state->end;
746 
747 	/* the state doesn't have the wanted bits, go ahead */
748 	if (!(state->state & bits)) {
749 		state = next_state(state);
750 		goto next;
751 	}
752 
753 	/*
754 	 *     | ---- desired range ---- |
755 	 *  | state | or
756 	 *  | ------------- state -------------- |
757 	 *
758 	 * We need to split the extent we found, and may flip
759 	 * bits on second half.
760 	 *
761 	 * If the extent we found extends past our range, we
762 	 * just split and search again.  It'll get split again
763 	 * the next time though.
764 	 *
765 	 * If the extent we found is inside our range, we clear
766 	 * the desired bit on it.
767 	 */
768 
769 	if (state->start < start) {
770 		prealloc = alloc_extent_state_atomic(prealloc);
771 		BUG_ON(!prealloc);
772 		err = split_state(tree, state, prealloc, start);
773 		if (err)
774 			extent_io_tree_panic(tree, err);
775 
776 		prealloc = NULL;
777 		if (err)
778 			goto out;
779 		if (state->end <= end) {
780 			state = clear_state_bit(tree, state, &bits, wake,
781 						changeset);
782 			goto next;
783 		}
784 		goto search_again;
785 	}
786 	/*
787 	 * | ---- desired range ---- |
788 	 *                        | state |
789 	 * We need to split the extent, and clear the bit
790 	 * on the first half
791 	 */
792 	if (state->start <= end && state->end > end) {
793 		prealloc = alloc_extent_state_atomic(prealloc);
794 		BUG_ON(!prealloc);
795 		err = split_state(tree, state, prealloc, end + 1);
796 		if (err)
797 			extent_io_tree_panic(tree, err);
798 
799 		if (wake)
800 			wake_up(&state->wq);
801 
802 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
803 
804 		prealloc = NULL;
805 		goto out;
806 	}
807 
808 	state = clear_state_bit(tree, state, &bits, wake, changeset);
809 next:
810 	if (last_end == (u64)-1)
811 		goto out;
812 	start = last_end + 1;
813 	if (start <= end && state && !need_resched())
814 		goto hit_next;
815 
816 search_again:
817 	if (start > end)
818 		goto out;
819 	spin_unlock(&tree->lock);
820 	if (gfpflags_allow_blocking(mask))
821 		cond_resched();
822 	goto again;
823 
824 out:
825 	spin_unlock(&tree->lock);
826 	if (prealloc)
827 		free_extent_state(prealloc);
828 
829 	return 0;
830 
831 }
832 
833 static void wait_on_state(struct extent_io_tree *tree,
834 			  struct extent_state *state)
835 		__releases(tree->lock)
836 		__acquires(tree->lock)
837 {
838 	DEFINE_WAIT(wait);
839 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
840 	spin_unlock(&tree->lock);
841 	schedule();
842 	spin_lock(&tree->lock);
843 	finish_wait(&state->wq, &wait);
844 }
845 
846 /*
847  * waits for one or more bits to clear on a range in the state tree.
848  * The range [start, end] is inclusive.
849  * The tree lock is taken by this function
850  */
851 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852 			    unsigned long bits)
853 {
854 	struct extent_state *state;
855 	struct rb_node *node;
856 
857 	btrfs_debug_check_extent_io_range(tree, start, end);
858 
859 	spin_lock(&tree->lock);
860 again:
861 	while (1) {
862 		/*
863 		 * this search will find all the extents that end after
864 		 * our range starts
865 		 */
866 		node = tree_search(tree, start);
867 process_node:
868 		if (!node)
869 			break;
870 
871 		state = rb_entry(node, struct extent_state, rb_node);
872 
873 		if (state->start > end)
874 			goto out;
875 
876 		if (state->state & bits) {
877 			start = state->start;
878 			refcount_inc(&state->refs);
879 			wait_on_state(tree, state);
880 			free_extent_state(state);
881 			goto again;
882 		}
883 		start = state->end + 1;
884 
885 		if (start > end)
886 			break;
887 
888 		if (!cond_resched_lock(&tree->lock)) {
889 			node = rb_next(node);
890 			goto process_node;
891 		}
892 	}
893 out:
894 	spin_unlock(&tree->lock);
895 }
896 
897 static void set_state_bits(struct extent_io_tree *tree,
898 			   struct extent_state *state,
899 			   unsigned *bits, struct extent_changeset *changeset)
900 {
901 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
902 	int ret;
903 
904 	if (tree->private_data && is_data_inode(tree->private_data))
905 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
906 
907 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
908 		u64 range = state->end - state->start + 1;
909 		tree->dirty_bytes += range;
910 	}
911 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912 	BUG_ON(ret < 0);
913 	state->state |= bits_to_set;
914 }
915 
916 static void cache_state_if_flags(struct extent_state *state,
917 				 struct extent_state **cached_ptr,
918 				 unsigned flags)
919 {
920 	if (cached_ptr && !(*cached_ptr)) {
921 		if (!flags || (state->state & flags)) {
922 			*cached_ptr = state;
923 			refcount_inc(&state->refs);
924 		}
925 	}
926 }
927 
928 static void cache_state(struct extent_state *state,
929 			struct extent_state **cached_ptr)
930 {
931 	return cache_state_if_flags(state, cached_ptr,
932 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
933 }
934 
935 /*
936  * set some bits on a range in the tree.  This may require allocations or
937  * sleeping, so the gfp mask is used to indicate what is allowed.
938  *
939  * If any of the exclusive bits are set, this will fail with -EEXIST if some
940  * part of the range already has the desired bits set.  The start of the
941  * existing range is returned in failed_start in this case.
942  *
943  * [start, end] is inclusive This takes the tree lock.
944  */
945 
946 static int __must_check
947 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 		 unsigned bits, unsigned exclusive_bits,
949 		 u64 *failed_start, struct extent_state **cached_state,
950 		 gfp_t mask, struct extent_changeset *changeset)
951 {
952 	struct extent_state *state;
953 	struct extent_state *prealloc = NULL;
954 	struct rb_node *node;
955 	struct rb_node **p;
956 	struct rb_node *parent;
957 	int err = 0;
958 	u64 last_start;
959 	u64 last_end;
960 
961 	btrfs_debug_check_extent_io_range(tree, start, end);
962 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
963 
964 again:
965 	if (!prealloc && gfpflags_allow_blocking(mask)) {
966 		/*
967 		 * Don't care for allocation failure here because we might end
968 		 * up not needing the pre-allocated extent state at all, which
969 		 * is the case if we only have in the tree extent states that
970 		 * cover our input range and don't cover too any other range.
971 		 * If we end up needing a new extent state we allocate it later.
972 		 */
973 		prealloc = alloc_extent_state(mask);
974 	}
975 
976 	spin_lock(&tree->lock);
977 	if (cached_state && *cached_state) {
978 		state = *cached_state;
979 		if (state->start <= start && state->end > start &&
980 		    extent_state_in_tree(state)) {
981 			node = &state->rb_node;
982 			goto hit_next;
983 		}
984 	}
985 	/*
986 	 * this search will find all the extents that end after
987 	 * our range starts.
988 	 */
989 	node = tree_search_for_insert(tree, start, &p, &parent);
990 	if (!node) {
991 		prealloc = alloc_extent_state_atomic(prealloc);
992 		BUG_ON(!prealloc);
993 		err = insert_state(tree, prealloc, start, end,
994 				   &p, &parent, &bits, changeset);
995 		if (err)
996 			extent_io_tree_panic(tree, err);
997 
998 		cache_state(prealloc, cached_state);
999 		prealloc = NULL;
1000 		goto out;
1001 	}
1002 	state = rb_entry(node, struct extent_state, rb_node);
1003 hit_next:
1004 	last_start = state->start;
1005 	last_end = state->end;
1006 
1007 	/*
1008 	 * | ---- desired range ---- |
1009 	 * | state |
1010 	 *
1011 	 * Just lock what we found and keep going
1012 	 */
1013 	if (state->start == start && state->end <= end) {
1014 		if (state->state & exclusive_bits) {
1015 			*failed_start = state->start;
1016 			err = -EEXIST;
1017 			goto out;
1018 		}
1019 
1020 		set_state_bits(tree, state, &bits, changeset);
1021 		cache_state(state, cached_state);
1022 		merge_state(tree, state);
1023 		if (last_end == (u64)-1)
1024 			goto out;
1025 		start = last_end + 1;
1026 		state = next_state(state);
1027 		if (start < end && state && state->start == start &&
1028 		    !need_resched())
1029 			goto hit_next;
1030 		goto search_again;
1031 	}
1032 
1033 	/*
1034 	 *     | ---- desired range ---- |
1035 	 * | state |
1036 	 *   or
1037 	 * | ------------- state -------------- |
1038 	 *
1039 	 * We need to split the extent we found, and may flip bits on
1040 	 * second half.
1041 	 *
1042 	 * If the extent we found extends past our
1043 	 * range, we just split and search again.  It'll get split
1044 	 * again the next time though.
1045 	 *
1046 	 * If the extent we found is inside our range, we set the
1047 	 * desired bit on it.
1048 	 */
1049 	if (state->start < start) {
1050 		if (state->state & exclusive_bits) {
1051 			*failed_start = start;
1052 			err = -EEXIST;
1053 			goto out;
1054 		}
1055 
1056 		prealloc = alloc_extent_state_atomic(prealloc);
1057 		BUG_ON(!prealloc);
1058 		err = split_state(tree, state, prealloc, start);
1059 		if (err)
1060 			extent_io_tree_panic(tree, err);
1061 
1062 		prealloc = NULL;
1063 		if (err)
1064 			goto out;
1065 		if (state->end <= end) {
1066 			set_state_bits(tree, state, &bits, changeset);
1067 			cache_state(state, cached_state);
1068 			merge_state(tree, state);
1069 			if (last_end == (u64)-1)
1070 				goto out;
1071 			start = last_end + 1;
1072 			state = next_state(state);
1073 			if (start < end && state && state->start == start &&
1074 			    !need_resched())
1075 				goto hit_next;
1076 		}
1077 		goto search_again;
1078 	}
1079 	/*
1080 	 * | ---- desired range ---- |
1081 	 *     | state | or               | state |
1082 	 *
1083 	 * There's a hole, we need to insert something in it and
1084 	 * ignore the extent we found.
1085 	 */
1086 	if (state->start > start) {
1087 		u64 this_end;
1088 		if (end < last_start)
1089 			this_end = end;
1090 		else
1091 			this_end = last_start - 1;
1092 
1093 		prealloc = alloc_extent_state_atomic(prealloc);
1094 		BUG_ON(!prealloc);
1095 
1096 		/*
1097 		 * Avoid to free 'prealloc' if it can be merged with
1098 		 * the later extent.
1099 		 */
1100 		err = insert_state(tree, prealloc, start, this_end,
1101 				   NULL, NULL, &bits, changeset);
1102 		if (err)
1103 			extent_io_tree_panic(tree, err);
1104 
1105 		cache_state(prealloc, cached_state);
1106 		prealloc = NULL;
1107 		start = this_end + 1;
1108 		goto search_again;
1109 	}
1110 	/*
1111 	 * | ---- desired range ---- |
1112 	 *                        | state |
1113 	 * We need to split the extent, and set the bit
1114 	 * on the first half
1115 	 */
1116 	if (state->start <= end && state->end > end) {
1117 		if (state->state & exclusive_bits) {
1118 			*failed_start = start;
1119 			err = -EEXIST;
1120 			goto out;
1121 		}
1122 
1123 		prealloc = alloc_extent_state_atomic(prealloc);
1124 		BUG_ON(!prealloc);
1125 		err = split_state(tree, state, prealloc, end + 1);
1126 		if (err)
1127 			extent_io_tree_panic(tree, err);
1128 
1129 		set_state_bits(tree, prealloc, &bits, changeset);
1130 		cache_state(prealloc, cached_state);
1131 		merge_state(tree, prealloc);
1132 		prealloc = NULL;
1133 		goto out;
1134 	}
1135 
1136 search_again:
1137 	if (start > end)
1138 		goto out;
1139 	spin_unlock(&tree->lock);
1140 	if (gfpflags_allow_blocking(mask))
1141 		cond_resched();
1142 	goto again;
1143 
1144 out:
1145 	spin_unlock(&tree->lock);
1146 	if (prealloc)
1147 		free_extent_state(prealloc);
1148 
1149 	return err;
1150 
1151 }
1152 
1153 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1154 		   unsigned bits, u64 * failed_start,
1155 		   struct extent_state **cached_state, gfp_t mask)
1156 {
1157 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1158 				cached_state, mask, NULL);
1159 }
1160 
1161 
1162 /**
1163  * convert_extent_bit - convert all bits in a given range from one bit to
1164  * 			another
1165  * @tree:	the io tree to search
1166  * @start:	the start offset in bytes
1167  * @end:	the end offset in bytes (inclusive)
1168  * @bits:	the bits to set in this range
1169  * @clear_bits:	the bits to clear in this range
1170  * @cached_state:	state that we're going to cache
1171  *
1172  * This will go through and set bits for the given range.  If any states exist
1173  * already in this range they are set with the given bit and cleared of the
1174  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1175  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1176  * boundary bits like LOCK.
1177  *
1178  * All allocations are done with GFP_NOFS.
1179  */
1180 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181 		       unsigned bits, unsigned clear_bits,
1182 		       struct extent_state **cached_state)
1183 {
1184 	struct extent_state *state;
1185 	struct extent_state *prealloc = NULL;
1186 	struct rb_node *node;
1187 	struct rb_node **p;
1188 	struct rb_node *parent;
1189 	int err = 0;
1190 	u64 last_start;
1191 	u64 last_end;
1192 	bool first_iteration = true;
1193 
1194 	btrfs_debug_check_extent_io_range(tree, start, end);
1195 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196 				       clear_bits);
1197 
1198 again:
1199 	if (!prealloc) {
1200 		/*
1201 		 * Best effort, don't worry if extent state allocation fails
1202 		 * here for the first iteration. We might have a cached state
1203 		 * that matches exactly the target range, in which case no
1204 		 * extent state allocations are needed. We'll only know this
1205 		 * after locking the tree.
1206 		 */
1207 		prealloc = alloc_extent_state(GFP_NOFS);
1208 		if (!prealloc && !first_iteration)
1209 			return -ENOMEM;
1210 	}
1211 
1212 	spin_lock(&tree->lock);
1213 	if (cached_state && *cached_state) {
1214 		state = *cached_state;
1215 		if (state->start <= start && state->end > start &&
1216 		    extent_state_in_tree(state)) {
1217 			node = &state->rb_node;
1218 			goto hit_next;
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * this search will find all the extents that end after
1224 	 * our range starts.
1225 	 */
1226 	node = tree_search_for_insert(tree, start, &p, &parent);
1227 	if (!node) {
1228 		prealloc = alloc_extent_state_atomic(prealloc);
1229 		if (!prealloc) {
1230 			err = -ENOMEM;
1231 			goto out;
1232 		}
1233 		err = insert_state(tree, prealloc, start, end,
1234 				   &p, &parent, &bits, NULL);
1235 		if (err)
1236 			extent_io_tree_panic(tree, err);
1237 		cache_state(prealloc, cached_state);
1238 		prealloc = NULL;
1239 		goto out;
1240 	}
1241 	state = rb_entry(node, struct extent_state, rb_node);
1242 hit_next:
1243 	last_start = state->start;
1244 	last_end = state->end;
1245 
1246 	/*
1247 	 * | ---- desired range ---- |
1248 	 * | state |
1249 	 *
1250 	 * Just lock what we found and keep going
1251 	 */
1252 	if (state->start == start && state->end <= end) {
1253 		set_state_bits(tree, state, &bits, NULL);
1254 		cache_state(state, cached_state);
1255 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1256 		if (last_end == (u64)-1)
1257 			goto out;
1258 		start = last_end + 1;
1259 		if (start < end && state && state->start == start &&
1260 		    !need_resched())
1261 			goto hit_next;
1262 		goto search_again;
1263 	}
1264 
1265 	/*
1266 	 *     | ---- desired range ---- |
1267 	 * | state |
1268 	 *   or
1269 	 * | ------------- state -------------- |
1270 	 *
1271 	 * We need to split the extent we found, and may flip bits on
1272 	 * second half.
1273 	 *
1274 	 * If the extent we found extends past our
1275 	 * range, we just split and search again.  It'll get split
1276 	 * again the next time though.
1277 	 *
1278 	 * If the extent we found is inside our range, we set the
1279 	 * desired bit on it.
1280 	 */
1281 	if (state->start < start) {
1282 		prealloc = alloc_extent_state_atomic(prealloc);
1283 		if (!prealloc) {
1284 			err = -ENOMEM;
1285 			goto out;
1286 		}
1287 		err = split_state(tree, state, prealloc, start);
1288 		if (err)
1289 			extent_io_tree_panic(tree, err);
1290 		prealloc = NULL;
1291 		if (err)
1292 			goto out;
1293 		if (state->end <= end) {
1294 			set_state_bits(tree, state, &bits, NULL);
1295 			cache_state(state, cached_state);
1296 			state = clear_state_bit(tree, state, &clear_bits, 0,
1297 						NULL);
1298 			if (last_end == (u64)-1)
1299 				goto out;
1300 			start = last_end + 1;
1301 			if (start < end && state && state->start == start &&
1302 			    !need_resched())
1303 				goto hit_next;
1304 		}
1305 		goto search_again;
1306 	}
1307 	/*
1308 	 * | ---- desired range ---- |
1309 	 *     | state | or               | state |
1310 	 *
1311 	 * There's a hole, we need to insert something in it and
1312 	 * ignore the extent we found.
1313 	 */
1314 	if (state->start > start) {
1315 		u64 this_end;
1316 		if (end < last_start)
1317 			this_end = end;
1318 		else
1319 			this_end = last_start - 1;
1320 
1321 		prealloc = alloc_extent_state_atomic(prealloc);
1322 		if (!prealloc) {
1323 			err = -ENOMEM;
1324 			goto out;
1325 		}
1326 
1327 		/*
1328 		 * Avoid to free 'prealloc' if it can be merged with
1329 		 * the later extent.
1330 		 */
1331 		err = insert_state(tree, prealloc, start, this_end,
1332 				   NULL, NULL, &bits, NULL);
1333 		if (err)
1334 			extent_io_tree_panic(tree, err);
1335 		cache_state(prealloc, cached_state);
1336 		prealloc = NULL;
1337 		start = this_end + 1;
1338 		goto search_again;
1339 	}
1340 	/*
1341 	 * | ---- desired range ---- |
1342 	 *                        | state |
1343 	 * We need to split the extent, and set the bit
1344 	 * on the first half
1345 	 */
1346 	if (state->start <= end && state->end > end) {
1347 		prealloc = alloc_extent_state_atomic(prealloc);
1348 		if (!prealloc) {
1349 			err = -ENOMEM;
1350 			goto out;
1351 		}
1352 
1353 		err = split_state(tree, state, prealloc, end + 1);
1354 		if (err)
1355 			extent_io_tree_panic(tree, err);
1356 
1357 		set_state_bits(tree, prealloc, &bits, NULL);
1358 		cache_state(prealloc, cached_state);
1359 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1360 		prealloc = NULL;
1361 		goto out;
1362 	}
1363 
1364 search_again:
1365 	if (start > end)
1366 		goto out;
1367 	spin_unlock(&tree->lock);
1368 	cond_resched();
1369 	first_iteration = false;
1370 	goto again;
1371 
1372 out:
1373 	spin_unlock(&tree->lock);
1374 	if (prealloc)
1375 		free_extent_state(prealloc);
1376 
1377 	return err;
1378 }
1379 
1380 /* wrappers around set/clear extent bit */
1381 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1382 			   unsigned bits, struct extent_changeset *changeset)
1383 {
1384 	/*
1385 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 	 * either fail with -EEXIST or changeset will record the whole
1388 	 * range.
1389 	 */
1390 	BUG_ON(bits & EXTENT_LOCKED);
1391 
1392 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1393 				changeset);
1394 }
1395 
1396 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397 			   unsigned bits)
1398 {
1399 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400 				GFP_NOWAIT, NULL);
1401 }
1402 
1403 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404 		     unsigned bits, int wake, int delete,
1405 		     struct extent_state **cached)
1406 {
1407 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1408 				  cached, GFP_NOFS, NULL);
1409 }
1410 
1411 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 		unsigned bits, struct extent_changeset *changeset)
1413 {
1414 	/*
1415 	 * Don't support EXTENT_LOCKED case, same reason as
1416 	 * set_record_extent_bits().
1417 	 */
1418 	BUG_ON(bits & EXTENT_LOCKED);
1419 
1420 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1421 				  changeset);
1422 }
1423 
1424 /*
1425  * either insert or lock state struct between start and end use mask to tell
1426  * us if waiting is desired.
1427  */
1428 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1429 		     struct extent_state **cached_state)
1430 {
1431 	int err;
1432 	u64 failed_start;
1433 
1434 	while (1) {
1435 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1436 				       EXTENT_LOCKED, &failed_start,
1437 				       cached_state, GFP_NOFS, NULL);
1438 		if (err == -EEXIST) {
1439 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440 			start = failed_start;
1441 		} else
1442 			break;
1443 		WARN_ON(start > end);
1444 	}
1445 	return err;
1446 }
1447 
1448 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 	int err;
1451 	u64 failed_start;
1452 
1453 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1454 			       &failed_start, NULL, GFP_NOFS, NULL);
1455 	if (err == -EEXIST) {
1456 		if (failed_start > start)
1457 			clear_extent_bit(tree, start, failed_start - 1,
1458 					 EXTENT_LOCKED, 1, 0, NULL);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1465 {
1466 	unsigned long index = start >> PAGE_SHIFT;
1467 	unsigned long end_index = end >> PAGE_SHIFT;
1468 	struct page *page;
1469 
1470 	while (index <= end_index) {
1471 		page = find_get_page(inode->i_mapping, index);
1472 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473 		clear_page_dirty_for_io(page);
1474 		put_page(page);
1475 		index++;
1476 	}
1477 }
1478 
1479 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1480 {
1481 	unsigned long index = start >> PAGE_SHIFT;
1482 	unsigned long end_index = end >> PAGE_SHIFT;
1483 	struct page *page;
1484 
1485 	while (index <= end_index) {
1486 		page = find_get_page(inode->i_mapping, index);
1487 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1488 		__set_page_dirty_nobuffers(page);
1489 		account_page_redirty(page);
1490 		put_page(page);
1491 		index++;
1492 	}
1493 }
1494 
1495 /* find the first state struct with 'bits' set after 'start', and
1496  * return it.  tree->lock must be held.  NULL will returned if
1497  * nothing was found after 'start'
1498  */
1499 static struct extent_state *
1500 find_first_extent_bit_state(struct extent_io_tree *tree,
1501 			    u64 start, unsigned bits)
1502 {
1503 	struct rb_node *node;
1504 	struct extent_state *state;
1505 
1506 	/*
1507 	 * this search will find all the extents that end after
1508 	 * our range starts.
1509 	 */
1510 	node = tree_search(tree, start);
1511 	if (!node)
1512 		goto out;
1513 
1514 	while (1) {
1515 		state = rb_entry(node, struct extent_state, rb_node);
1516 		if (state->end >= start && (state->state & bits))
1517 			return state;
1518 
1519 		node = rb_next(node);
1520 		if (!node)
1521 			break;
1522 	}
1523 out:
1524 	return NULL;
1525 }
1526 
1527 /*
1528  * find the first offset in the io tree with 'bits' set. zero is
1529  * returned if we find something, and *start_ret and *end_ret are
1530  * set to reflect the state struct that was found.
1531  *
1532  * If nothing was found, 1 is returned. If found something, return 0.
1533  */
1534 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1535 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1536 			  struct extent_state **cached_state)
1537 {
1538 	struct extent_state *state;
1539 	int ret = 1;
1540 
1541 	spin_lock(&tree->lock);
1542 	if (cached_state && *cached_state) {
1543 		state = *cached_state;
1544 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1545 			while ((state = next_state(state)) != NULL) {
1546 				if (state->state & bits)
1547 					goto got_it;
1548 			}
1549 			free_extent_state(*cached_state);
1550 			*cached_state = NULL;
1551 			goto out;
1552 		}
1553 		free_extent_state(*cached_state);
1554 		*cached_state = NULL;
1555 	}
1556 
1557 	state = find_first_extent_bit_state(tree, start, bits);
1558 got_it:
1559 	if (state) {
1560 		cache_state_if_flags(state, cached_state, 0);
1561 		*start_ret = state->start;
1562 		*end_ret = state->end;
1563 		ret = 0;
1564 	}
1565 out:
1566 	spin_unlock(&tree->lock);
1567 	return ret;
1568 }
1569 
1570 /**
1571  * find_first_clear_extent_bit - find the first range that has @bits not set.
1572  * This range could start before @start.
1573  *
1574  * @tree - the tree to search
1575  * @start - the offset at/after which the found extent should start
1576  * @start_ret - records the beginning of the range
1577  * @end_ret - records the end of the range (inclusive)
1578  * @bits - the set of bits which must be unset
1579  *
1580  * Since unallocated range is also considered one which doesn't have the bits
1581  * set it's possible that @end_ret contains -1, this happens in case the range
1582  * spans (last_range_end, end of device]. In this case it's up to the caller to
1583  * trim @end_ret to the appropriate size.
1584  */
1585 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1587 {
1588 	struct extent_state *state;
1589 	struct rb_node *node, *prev = NULL, *next;
1590 
1591 	spin_lock(&tree->lock);
1592 
1593 	/* Find first extent with bits cleared */
1594 	while (1) {
1595 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596 		if (!node && !next && !prev) {
1597 			/*
1598 			 * Tree is completely empty, send full range and let
1599 			 * caller deal with it
1600 			 */
1601 			*start_ret = 0;
1602 			*end_ret = -1;
1603 			goto out;
1604 		} else if (!node && !next) {
1605 			/*
1606 			 * We are past the last allocated chunk, set start at
1607 			 * the end of the last extent.
1608 			 */
1609 			state = rb_entry(prev, struct extent_state, rb_node);
1610 			*start_ret = state->end + 1;
1611 			*end_ret = -1;
1612 			goto out;
1613 		} else if (!node) {
1614 			node = next;
1615 		}
1616 		/*
1617 		 * At this point 'node' either contains 'start' or start is
1618 		 * before 'node'
1619 		 */
1620 		state = rb_entry(node, struct extent_state, rb_node);
1621 
1622 		if (in_range(start, state->start, state->end - state->start + 1)) {
1623 			if (state->state & bits) {
1624 				/*
1625 				 * |--range with bits sets--|
1626 				 *    |
1627 				 *    start
1628 				 */
1629 				start = state->end + 1;
1630 			} else {
1631 				/*
1632 				 * 'start' falls within a range that doesn't
1633 				 * have the bits set, so take its start as
1634 				 * the beginning of the desired range
1635 				 *
1636 				 * |--range with bits cleared----|
1637 				 *      |
1638 				 *      start
1639 				 */
1640 				*start_ret = state->start;
1641 				break;
1642 			}
1643 		} else {
1644 			/*
1645 			 * |---prev range---|---hole/unset---|---node range---|
1646 			 *                          |
1647 			 *                        start
1648 			 *
1649 			 *                        or
1650 			 *
1651 			 * |---hole/unset--||--first node--|
1652 			 * 0   |
1653 			 *    start
1654 			 */
1655 			if (prev) {
1656 				state = rb_entry(prev, struct extent_state,
1657 						 rb_node);
1658 				*start_ret = state->end + 1;
1659 			} else {
1660 				*start_ret = 0;
1661 			}
1662 			break;
1663 		}
1664 	}
1665 
1666 	/*
1667 	 * Find the longest stretch from start until an entry which has the
1668 	 * bits set
1669 	 */
1670 	while (1) {
1671 		state = rb_entry(node, struct extent_state, rb_node);
1672 		if (state->end >= start && !(state->state & bits)) {
1673 			*end_ret = state->end;
1674 		} else {
1675 			*end_ret = state->start - 1;
1676 			break;
1677 		}
1678 
1679 		node = rb_next(node);
1680 		if (!node)
1681 			break;
1682 	}
1683 out:
1684 	spin_unlock(&tree->lock);
1685 }
1686 
1687 /*
1688  * find a contiguous range of bytes in the file marked as delalloc, not
1689  * more than 'max_bytes'.  start and end are used to return the range,
1690  *
1691  * true is returned if we find something, false if nothing was in the tree
1692  */
1693 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1694 			       u64 *end, u64 max_bytes,
1695 			       struct extent_state **cached_state)
1696 {
1697 	struct rb_node *node;
1698 	struct extent_state *state;
1699 	u64 cur_start = *start;
1700 	bool found = false;
1701 	u64 total_bytes = 0;
1702 
1703 	spin_lock(&tree->lock);
1704 
1705 	/*
1706 	 * this search will find all the extents that end after
1707 	 * our range starts.
1708 	 */
1709 	node = tree_search(tree, cur_start);
1710 	if (!node) {
1711 		*end = (u64)-1;
1712 		goto out;
1713 	}
1714 
1715 	while (1) {
1716 		state = rb_entry(node, struct extent_state, rb_node);
1717 		if (found && (state->start != cur_start ||
1718 			      (state->state & EXTENT_BOUNDARY))) {
1719 			goto out;
1720 		}
1721 		if (!(state->state & EXTENT_DELALLOC)) {
1722 			if (!found)
1723 				*end = state->end;
1724 			goto out;
1725 		}
1726 		if (!found) {
1727 			*start = state->start;
1728 			*cached_state = state;
1729 			refcount_inc(&state->refs);
1730 		}
1731 		found = true;
1732 		*end = state->end;
1733 		cur_start = state->end + 1;
1734 		node = rb_next(node);
1735 		total_bytes += state->end - state->start + 1;
1736 		if (total_bytes >= max_bytes)
1737 			break;
1738 		if (!node)
1739 			break;
1740 	}
1741 out:
1742 	spin_unlock(&tree->lock);
1743 	return found;
1744 }
1745 
1746 static int __process_pages_contig(struct address_space *mapping,
1747 				  struct page *locked_page,
1748 				  pgoff_t start_index, pgoff_t end_index,
1749 				  unsigned long page_ops, pgoff_t *index_ret);
1750 
1751 static noinline void __unlock_for_delalloc(struct inode *inode,
1752 					   struct page *locked_page,
1753 					   u64 start, u64 end)
1754 {
1755 	unsigned long index = start >> PAGE_SHIFT;
1756 	unsigned long end_index = end >> PAGE_SHIFT;
1757 
1758 	ASSERT(locked_page);
1759 	if (index == locked_page->index && end_index == index)
1760 		return;
1761 
1762 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1763 			       PAGE_UNLOCK, NULL);
1764 }
1765 
1766 static noinline int lock_delalloc_pages(struct inode *inode,
1767 					struct page *locked_page,
1768 					u64 delalloc_start,
1769 					u64 delalloc_end)
1770 {
1771 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1772 	unsigned long index_ret = index;
1773 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1774 	int ret;
1775 
1776 	ASSERT(locked_page);
1777 	if (index == locked_page->index && index == end_index)
1778 		return 0;
1779 
1780 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1781 				     end_index, PAGE_LOCK, &index_ret);
1782 	if (ret == -EAGAIN)
1783 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1784 				      (u64)index_ret << PAGE_SHIFT);
1785 	return ret;
1786 }
1787 
1788 /*
1789  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1790  * more than @max_bytes.  @Start and @end are used to return the range,
1791  *
1792  * Return: true if we find something
1793  *         false if nothing was in the tree
1794  */
1795 EXPORT_FOR_TESTS
1796 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1797 				    struct page *locked_page, u64 *start,
1798 				    u64 *end)
1799 {
1800 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1801 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1802 	u64 delalloc_start;
1803 	u64 delalloc_end;
1804 	bool found;
1805 	struct extent_state *cached_state = NULL;
1806 	int ret;
1807 	int loops = 0;
1808 
1809 again:
1810 	/* step one, find a bunch of delalloc bytes starting at start */
1811 	delalloc_start = *start;
1812 	delalloc_end = 0;
1813 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1814 					  max_bytes, &cached_state);
1815 	if (!found || delalloc_end <= *start) {
1816 		*start = delalloc_start;
1817 		*end = delalloc_end;
1818 		free_extent_state(cached_state);
1819 		return false;
1820 	}
1821 
1822 	/*
1823 	 * start comes from the offset of locked_page.  We have to lock
1824 	 * pages in order, so we can't process delalloc bytes before
1825 	 * locked_page
1826 	 */
1827 	if (delalloc_start < *start)
1828 		delalloc_start = *start;
1829 
1830 	/*
1831 	 * make sure to limit the number of pages we try to lock down
1832 	 */
1833 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1834 		delalloc_end = delalloc_start + max_bytes - 1;
1835 
1836 	/* step two, lock all the pages after the page that has start */
1837 	ret = lock_delalloc_pages(inode, locked_page,
1838 				  delalloc_start, delalloc_end);
1839 	ASSERT(!ret || ret == -EAGAIN);
1840 	if (ret == -EAGAIN) {
1841 		/* some of the pages are gone, lets avoid looping by
1842 		 * shortening the size of the delalloc range we're searching
1843 		 */
1844 		free_extent_state(cached_state);
1845 		cached_state = NULL;
1846 		if (!loops) {
1847 			max_bytes = PAGE_SIZE;
1848 			loops = 1;
1849 			goto again;
1850 		} else {
1851 			found = false;
1852 			goto out_failed;
1853 		}
1854 	}
1855 
1856 	/* step three, lock the state bits for the whole range */
1857 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1858 
1859 	/* then test to make sure it is all still delalloc */
1860 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1861 			     EXTENT_DELALLOC, 1, cached_state);
1862 	if (!ret) {
1863 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1864 				     &cached_state);
1865 		__unlock_for_delalloc(inode, locked_page,
1866 			      delalloc_start, delalloc_end);
1867 		cond_resched();
1868 		goto again;
1869 	}
1870 	free_extent_state(cached_state);
1871 	*start = delalloc_start;
1872 	*end = delalloc_end;
1873 out_failed:
1874 	return found;
1875 }
1876 
1877 static int __process_pages_contig(struct address_space *mapping,
1878 				  struct page *locked_page,
1879 				  pgoff_t start_index, pgoff_t end_index,
1880 				  unsigned long page_ops, pgoff_t *index_ret)
1881 {
1882 	unsigned long nr_pages = end_index - start_index + 1;
1883 	unsigned long pages_locked = 0;
1884 	pgoff_t index = start_index;
1885 	struct page *pages[16];
1886 	unsigned ret;
1887 	int err = 0;
1888 	int i;
1889 
1890 	if (page_ops & PAGE_LOCK) {
1891 		ASSERT(page_ops == PAGE_LOCK);
1892 		ASSERT(index_ret && *index_ret == start_index);
1893 	}
1894 
1895 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1896 		mapping_set_error(mapping, -EIO);
1897 
1898 	while (nr_pages > 0) {
1899 		ret = find_get_pages_contig(mapping, index,
1900 				     min_t(unsigned long,
1901 				     nr_pages, ARRAY_SIZE(pages)), pages);
1902 		if (ret == 0) {
1903 			/*
1904 			 * Only if we're going to lock these pages,
1905 			 * can we find nothing at @index.
1906 			 */
1907 			ASSERT(page_ops & PAGE_LOCK);
1908 			err = -EAGAIN;
1909 			goto out;
1910 		}
1911 
1912 		for (i = 0; i < ret; i++) {
1913 			if (page_ops & PAGE_SET_PRIVATE2)
1914 				SetPagePrivate2(pages[i]);
1915 
1916 			if (locked_page && pages[i] == locked_page) {
1917 				put_page(pages[i]);
1918 				pages_locked++;
1919 				continue;
1920 			}
1921 			if (page_ops & PAGE_CLEAR_DIRTY)
1922 				clear_page_dirty_for_io(pages[i]);
1923 			if (page_ops & PAGE_SET_WRITEBACK)
1924 				set_page_writeback(pages[i]);
1925 			if (page_ops & PAGE_SET_ERROR)
1926 				SetPageError(pages[i]);
1927 			if (page_ops & PAGE_END_WRITEBACK)
1928 				end_page_writeback(pages[i]);
1929 			if (page_ops & PAGE_UNLOCK)
1930 				unlock_page(pages[i]);
1931 			if (page_ops & PAGE_LOCK) {
1932 				lock_page(pages[i]);
1933 				if (!PageDirty(pages[i]) ||
1934 				    pages[i]->mapping != mapping) {
1935 					unlock_page(pages[i]);
1936 					put_page(pages[i]);
1937 					err = -EAGAIN;
1938 					goto out;
1939 				}
1940 			}
1941 			put_page(pages[i]);
1942 			pages_locked++;
1943 		}
1944 		nr_pages -= ret;
1945 		index += ret;
1946 		cond_resched();
1947 	}
1948 out:
1949 	if (err && index_ret)
1950 		*index_ret = start_index + pages_locked - 1;
1951 	return err;
1952 }
1953 
1954 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1955 				  struct page *locked_page,
1956 				  unsigned clear_bits,
1957 				  unsigned long page_ops)
1958 {
1959 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1960 			 NULL);
1961 
1962 	__process_pages_contig(inode->i_mapping, locked_page,
1963 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1964 			       page_ops, NULL);
1965 }
1966 
1967 /*
1968  * count the number of bytes in the tree that have a given bit(s)
1969  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1970  * cached.  The total number found is returned.
1971  */
1972 u64 count_range_bits(struct extent_io_tree *tree,
1973 		     u64 *start, u64 search_end, u64 max_bytes,
1974 		     unsigned bits, int contig)
1975 {
1976 	struct rb_node *node;
1977 	struct extent_state *state;
1978 	u64 cur_start = *start;
1979 	u64 total_bytes = 0;
1980 	u64 last = 0;
1981 	int found = 0;
1982 
1983 	if (WARN_ON(search_end <= cur_start))
1984 		return 0;
1985 
1986 	spin_lock(&tree->lock);
1987 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1988 		total_bytes = tree->dirty_bytes;
1989 		goto out;
1990 	}
1991 	/*
1992 	 * this search will find all the extents that end after
1993 	 * our range starts.
1994 	 */
1995 	node = tree_search(tree, cur_start);
1996 	if (!node)
1997 		goto out;
1998 
1999 	while (1) {
2000 		state = rb_entry(node, struct extent_state, rb_node);
2001 		if (state->start > search_end)
2002 			break;
2003 		if (contig && found && state->start > last + 1)
2004 			break;
2005 		if (state->end >= cur_start && (state->state & bits) == bits) {
2006 			total_bytes += min(search_end, state->end) + 1 -
2007 				       max(cur_start, state->start);
2008 			if (total_bytes >= max_bytes)
2009 				break;
2010 			if (!found) {
2011 				*start = max(cur_start, state->start);
2012 				found = 1;
2013 			}
2014 			last = state->end;
2015 		} else if (contig && found) {
2016 			break;
2017 		}
2018 		node = rb_next(node);
2019 		if (!node)
2020 			break;
2021 	}
2022 out:
2023 	spin_unlock(&tree->lock);
2024 	return total_bytes;
2025 }
2026 
2027 /*
2028  * set the private field for a given byte offset in the tree.  If there isn't
2029  * an extent_state there already, this does nothing.
2030  */
2031 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2032 		      struct io_failure_record *failrec)
2033 {
2034 	struct rb_node *node;
2035 	struct extent_state *state;
2036 	int ret = 0;
2037 
2038 	spin_lock(&tree->lock);
2039 	/*
2040 	 * this search will find all the extents that end after
2041 	 * our range starts.
2042 	 */
2043 	node = tree_search(tree, start);
2044 	if (!node) {
2045 		ret = -ENOENT;
2046 		goto out;
2047 	}
2048 	state = rb_entry(node, struct extent_state, rb_node);
2049 	if (state->start != start) {
2050 		ret = -ENOENT;
2051 		goto out;
2052 	}
2053 	state->failrec = failrec;
2054 out:
2055 	spin_unlock(&tree->lock);
2056 	return ret;
2057 }
2058 
2059 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2060 		      struct io_failure_record **failrec)
2061 {
2062 	struct rb_node *node;
2063 	struct extent_state *state;
2064 	int ret = 0;
2065 
2066 	spin_lock(&tree->lock);
2067 	/*
2068 	 * this search will find all the extents that end after
2069 	 * our range starts.
2070 	 */
2071 	node = tree_search(tree, start);
2072 	if (!node) {
2073 		ret = -ENOENT;
2074 		goto out;
2075 	}
2076 	state = rb_entry(node, struct extent_state, rb_node);
2077 	if (state->start != start) {
2078 		ret = -ENOENT;
2079 		goto out;
2080 	}
2081 	*failrec = state->failrec;
2082 out:
2083 	spin_unlock(&tree->lock);
2084 	return ret;
2085 }
2086 
2087 /*
2088  * searches a range in the state tree for a given mask.
2089  * If 'filled' == 1, this returns 1 only if every extent in the tree
2090  * has the bits set.  Otherwise, 1 is returned if any bit in the
2091  * range is found set.
2092  */
2093 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2094 		   unsigned bits, int filled, struct extent_state *cached)
2095 {
2096 	struct extent_state *state = NULL;
2097 	struct rb_node *node;
2098 	int bitset = 0;
2099 
2100 	spin_lock(&tree->lock);
2101 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2102 	    cached->end > start)
2103 		node = &cached->rb_node;
2104 	else
2105 		node = tree_search(tree, start);
2106 	while (node && start <= end) {
2107 		state = rb_entry(node, struct extent_state, rb_node);
2108 
2109 		if (filled && state->start > start) {
2110 			bitset = 0;
2111 			break;
2112 		}
2113 
2114 		if (state->start > end)
2115 			break;
2116 
2117 		if (state->state & bits) {
2118 			bitset = 1;
2119 			if (!filled)
2120 				break;
2121 		} else if (filled) {
2122 			bitset = 0;
2123 			break;
2124 		}
2125 
2126 		if (state->end == (u64)-1)
2127 			break;
2128 
2129 		start = state->end + 1;
2130 		if (start > end)
2131 			break;
2132 		node = rb_next(node);
2133 		if (!node) {
2134 			if (filled)
2135 				bitset = 0;
2136 			break;
2137 		}
2138 	}
2139 	spin_unlock(&tree->lock);
2140 	return bitset;
2141 }
2142 
2143 /*
2144  * helper function to set a given page up to date if all the
2145  * extents in the tree for that page are up to date
2146  */
2147 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2148 {
2149 	u64 start = page_offset(page);
2150 	u64 end = start + PAGE_SIZE - 1;
2151 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2152 		SetPageUptodate(page);
2153 }
2154 
2155 int free_io_failure(struct extent_io_tree *failure_tree,
2156 		    struct extent_io_tree *io_tree,
2157 		    struct io_failure_record *rec)
2158 {
2159 	int ret;
2160 	int err = 0;
2161 
2162 	set_state_failrec(failure_tree, rec->start, NULL);
2163 	ret = clear_extent_bits(failure_tree, rec->start,
2164 				rec->start + rec->len - 1,
2165 				EXTENT_LOCKED | EXTENT_DIRTY);
2166 	if (ret)
2167 		err = ret;
2168 
2169 	ret = clear_extent_bits(io_tree, rec->start,
2170 				rec->start + rec->len - 1,
2171 				EXTENT_DAMAGED);
2172 	if (ret && !err)
2173 		err = ret;
2174 
2175 	kfree(rec);
2176 	return err;
2177 }
2178 
2179 /*
2180  * this bypasses the standard btrfs submit functions deliberately, as
2181  * the standard behavior is to write all copies in a raid setup. here we only
2182  * want to write the one bad copy. so we do the mapping for ourselves and issue
2183  * submit_bio directly.
2184  * to avoid any synchronization issues, wait for the data after writing, which
2185  * actually prevents the read that triggered the error from finishing.
2186  * currently, there can be no more than two copies of every data bit. thus,
2187  * exactly one rewrite is required.
2188  */
2189 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2190 		      u64 length, u64 logical, struct page *page,
2191 		      unsigned int pg_offset, int mirror_num)
2192 {
2193 	struct bio *bio;
2194 	struct btrfs_device *dev;
2195 	u64 map_length = 0;
2196 	u64 sector;
2197 	struct btrfs_bio *bbio = NULL;
2198 	int ret;
2199 
2200 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2201 	BUG_ON(!mirror_num);
2202 
2203 	bio = btrfs_io_bio_alloc(1);
2204 	bio->bi_iter.bi_size = 0;
2205 	map_length = length;
2206 
2207 	/*
2208 	 * Avoid races with device replace and make sure our bbio has devices
2209 	 * associated to its stripes that don't go away while we are doing the
2210 	 * read repair operation.
2211 	 */
2212 	btrfs_bio_counter_inc_blocked(fs_info);
2213 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2214 		/*
2215 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2216 		 * to update all raid stripes, but here we just want to correct
2217 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2218 		 * stripe's dev and sector.
2219 		 */
2220 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2221 				      &map_length, &bbio, 0);
2222 		if (ret) {
2223 			btrfs_bio_counter_dec(fs_info);
2224 			bio_put(bio);
2225 			return -EIO;
2226 		}
2227 		ASSERT(bbio->mirror_num == 1);
2228 	} else {
2229 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2230 				      &map_length, &bbio, mirror_num);
2231 		if (ret) {
2232 			btrfs_bio_counter_dec(fs_info);
2233 			bio_put(bio);
2234 			return -EIO;
2235 		}
2236 		BUG_ON(mirror_num != bbio->mirror_num);
2237 	}
2238 
2239 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2240 	bio->bi_iter.bi_sector = sector;
2241 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2242 	btrfs_put_bbio(bbio);
2243 	if (!dev || !dev->bdev ||
2244 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2245 		btrfs_bio_counter_dec(fs_info);
2246 		bio_put(bio);
2247 		return -EIO;
2248 	}
2249 	bio_set_dev(bio, dev->bdev);
2250 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2251 	bio_add_page(bio, page, length, pg_offset);
2252 
2253 	if (btrfsic_submit_bio_wait(bio)) {
2254 		/* try to remap that extent elsewhere? */
2255 		btrfs_bio_counter_dec(fs_info);
2256 		bio_put(bio);
2257 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2258 		return -EIO;
2259 	}
2260 
2261 	btrfs_info_rl_in_rcu(fs_info,
2262 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2263 				  ino, start,
2264 				  rcu_str_deref(dev->name), sector);
2265 	btrfs_bio_counter_dec(fs_info);
2266 	bio_put(bio);
2267 	return 0;
2268 }
2269 
2270 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2271 {
2272 	struct btrfs_fs_info *fs_info = eb->fs_info;
2273 	u64 start = eb->start;
2274 	int i, num_pages = num_extent_pages(eb);
2275 	int ret = 0;
2276 
2277 	if (sb_rdonly(fs_info->sb))
2278 		return -EROFS;
2279 
2280 	for (i = 0; i < num_pages; i++) {
2281 		struct page *p = eb->pages[i];
2282 
2283 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2284 					start - page_offset(p), mirror_num);
2285 		if (ret)
2286 			break;
2287 		start += PAGE_SIZE;
2288 	}
2289 
2290 	return ret;
2291 }
2292 
2293 /*
2294  * each time an IO finishes, we do a fast check in the IO failure tree
2295  * to see if we need to process or clean up an io_failure_record
2296  */
2297 int clean_io_failure(struct btrfs_fs_info *fs_info,
2298 		     struct extent_io_tree *failure_tree,
2299 		     struct extent_io_tree *io_tree, u64 start,
2300 		     struct page *page, u64 ino, unsigned int pg_offset)
2301 {
2302 	u64 private;
2303 	struct io_failure_record *failrec;
2304 	struct extent_state *state;
2305 	int num_copies;
2306 	int ret;
2307 
2308 	private = 0;
2309 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2310 			       EXTENT_DIRTY, 0);
2311 	if (!ret)
2312 		return 0;
2313 
2314 	ret = get_state_failrec(failure_tree, start, &failrec);
2315 	if (ret)
2316 		return 0;
2317 
2318 	BUG_ON(!failrec->this_mirror);
2319 
2320 	if (failrec->in_validation) {
2321 		/* there was no real error, just free the record */
2322 		btrfs_debug(fs_info,
2323 			"clean_io_failure: freeing dummy error at %llu",
2324 			failrec->start);
2325 		goto out;
2326 	}
2327 	if (sb_rdonly(fs_info->sb))
2328 		goto out;
2329 
2330 	spin_lock(&io_tree->lock);
2331 	state = find_first_extent_bit_state(io_tree,
2332 					    failrec->start,
2333 					    EXTENT_LOCKED);
2334 	spin_unlock(&io_tree->lock);
2335 
2336 	if (state && state->start <= failrec->start &&
2337 	    state->end >= failrec->start + failrec->len - 1) {
2338 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2339 					      failrec->len);
2340 		if (num_copies > 1)  {
2341 			repair_io_failure(fs_info, ino, start, failrec->len,
2342 					  failrec->logical, page, pg_offset,
2343 					  failrec->failed_mirror);
2344 		}
2345 	}
2346 
2347 out:
2348 	free_io_failure(failure_tree, io_tree, failrec);
2349 
2350 	return 0;
2351 }
2352 
2353 /*
2354  * Can be called when
2355  * - hold extent lock
2356  * - under ordered extent
2357  * - the inode is freeing
2358  */
2359 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2360 {
2361 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2362 	struct io_failure_record *failrec;
2363 	struct extent_state *state, *next;
2364 
2365 	if (RB_EMPTY_ROOT(&failure_tree->state))
2366 		return;
2367 
2368 	spin_lock(&failure_tree->lock);
2369 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2370 	while (state) {
2371 		if (state->start > end)
2372 			break;
2373 
2374 		ASSERT(state->end <= end);
2375 
2376 		next = next_state(state);
2377 
2378 		failrec = state->failrec;
2379 		free_extent_state(state);
2380 		kfree(failrec);
2381 
2382 		state = next;
2383 	}
2384 	spin_unlock(&failure_tree->lock);
2385 }
2386 
2387 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2388 		struct io_failure_record **failrec_ret)
2389 {
2390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2391 	struct io_failure_record *failrec;
2392 	struct extent_map *em;
2393 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2394 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2395 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2396 	int ret;
2397 	u64 logical;
2398 
2399 	ret = get_state_failrec(failure_tree, start, &failrec);
2400 	if (ret) {
2401 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2402 		if (!failrec)
2403 			return -ENOMEM;
2404 
2405 		failrec->start = start;
2406 		failrec->len = end - start + 1;
2407 		failrec->this_mirror = 0;
2408 		failrec->bio_flags = 0;
2409 		failrec->in_validation = 0;
2410 
2411 		read_lock(&em_tree->lock);
2412 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2413 		if (!em) {
2414 			read_unlock(&em_tree->lock);
2415 			kfree(failrec);
2416 			return -EIO;
2417 		}
2418 
2419 		if (em->start > start || em->start + em->len <= start) {
2420 			free_extent_map(em);
2421 			em = NULL;
2422 		}
2423 		read_unlock(&em_tree->lock);
2424 		if (!em) {
2425 			kfree(failrec);
2426 			return -EIO;
2427 		}
2428 
2429 		logical = start - em->start;
2430 		logical = em->block_start + logical;
2431 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2432 			logical = em->block_start;
2433 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2434 			extent_set_compress_type(&failrec->bio_flags,
2435 						 em->compress_type);
2436 		}
2437 
2438 		btrfs_debug(fs_info,
2439 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2440 			logical, start, failrec->len);
2441 
2442 		failrec->logical = logical;
2443 		free_extent_map(em);
2444 
2445 		/* set the bits in the private failure tree */
2446 		ret = set_extent_bits(failure_tree, start, end,
2447 					EXTENT_LOCKED | EXTENT_DIRTY);
2448 		if (ret >= 0)
2449 			ret = set_state_failrec(failure_tree, start, failrec);
2450 		/* set the bits in the inode's tree */
2451 		if (ret >= 0)
2452 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2453 		if (ret < 0) {
2454 			kfree(failrec);
2455 			return ret;
2456 		}
2457 	} else {
2458 		btrfs_debug(fs_info,
2459 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2460 			failrec->logical, failrec->start, failrec->len,
2461 			failrec->in_validation);
2462 		/*
2463 		 * when data can be on disk more than twice, add to failrec here
2464 		 * (e.g. with a list for failed_mirror) to make
2465 		 * clean_io_failure() clean all those errors at once.
2466 		 */
2467 	}
2468 
2469 	*failrec_ret = failrec;
2470 
2471 	return 0;
2472 }
2473 
2474 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2475 			   struct io_failure_record *failrec, int failed_mirror)
2476 {
2477 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2478 	int num_copies;
2479 
2480 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2481 	if (num_copies == 1) {
2482 		/*
2483 		 * we only have a single copy of the data, so don't bother with
2484 		 * all the retry and error correction code that follows. no
2485 		 * matter what the error is, it is very likely to persist.
2486 		 */
2487 		btrfs_debug(fs_info,
2488 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2489 			num_copies, failrec->this_mirror, failed_mirror);
2490 		return false;
2491 	}
2492 
2493 	/*
2494 	 * there are two premises:
2495 	 *	a) deliver good data to the caller
2496 	 *	b) correct the bad sectors on disk
2497 	 */
2498 	if (failed_bio_pages > 1) {
2499 		/*
2500 		 * to fulfill b), we need to know the exact failing sectors, as
2501 		 * we don't want to rewrite any more than the failed ones. thus,
2502 		 * we need separate read requests for the failed bio
2503 		 *
2504 		 * if the following BUG_ON triggers, our validation request got
2505 		 * merged. we need separate requests for our algorithm to work.
2506 		 */
2507 		BUG_ON(failrec->in_validation);
2508 		failrec->in_validation = 1;
2509 		failrec->this_mirror = failed_mirror;
2510 	} else {
2511 		/*
2512 		 * we're ready to fulfill a) and b) alongside. get a good copy
2513 		 * of the failed sector and if we succeed, we have setup
2514 		 * everything for repair_io_failure to do the rest for us.
2515 		 */
2516 		if (failrec->in_validation) {
2517 			BUG_ON(failrec->this_mirror != failed_mirror);
2518 			failrec->in_validation = 0;
2519 			failrec->this_mirror = 0;
2520 		}
2521 		failrec->failed_mirror = failed_mirror;
2522 		failrec->this_mirror++;
2523 		if (failrec->this_mirror == failed_mirror)
2524 			failrec->this_mirror++;
2525 	}
2526 
2527 	if (failrec->this_mirror > num_copies) {
2528 		btrfs_debug(fs_info,
2529 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2530 			num_copies, failrec->this_mirror, failed_mirror);
2531 		return false;
2532 	}
2533 
2534 	return true;
2535 }
2536 
2537 
2538 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2539 				    struct io_failure_record *failrec,
2540 				    struct page *page, int pg_offset, int icsum,
2541 				    bio_end_io_t *endio_func, void *data)
2542 {
2543 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2544 	struct bio *bio;
2545 	struct btrfs_io_bio *btrfs_failed_bio;
2546 	struct btrfs_io_bio *btrfs_bio;
2547 
2548 	bio = btrfs_io_bio_alloc(1);
2549 	bio->bi_end_io = endio_func;
2550 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2551 	bio->bi_iter.bi_size = 0;
2552 	bio->bi_private = data;
2553 
2554 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2555 	if (btrfs_failed_bio->csum) {
2556 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2557 
2558 		btrfs_bio = btrfs_io_bio(bio);
2559 		btrfs_bio->csum = btrfs_bio->csum_inline;
2560 		icsum *= csum_size;
2561 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2562 		       csum_size);
2563 	}
2564 
2565 	bio_add_page(bio, page, failrec->len, pg_offset);
2566 
2567 	return bio;
2568 }
2569 
2570 /*
2571  * This is a generic handler for readpage errors. If other copies exist, read
2572  * those and write back good data to the failed position. Does not investigate
2573  * in remapping the failed extent elsewhere, hoping the device will be smart
2574  * enough to do this as needed
2575  */
2576 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2577 			      struct page *page, u64 start, u64 end,
2578 			      int failed_mirror)
2579 {
2580 	struct io_failure_record *failrec;
2581 	struct inode *inode = page->mapping->host;
2582 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2583 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2584 	struct bio *bio;
2585 	int read_mode = 0;
2586 	blk_status_t status;
2587 	int ret;
2588 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2589 
2590 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2591 
2592 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2593 	if (ret)
2594 		return ret;
2595 
2596 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2597 				    failed_mirror)) {
2598 		free_io_failure(failure_tree, tree, failrec);
2599 		return -EIO;
2600 	}
2601 
2602 	if (failed_bio_pages > 1)
2603 		read_mode |= REQ_FAILFAST_DEV;
2604 
2605 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2606 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2607 				      start - page_offset(page),
2608 				      (int)phy_offset, failed_bio->bi_end_io,
2609 				      NULL);
2610 	bio->bi_opf = REQ_OP_READ | read_mode;
2611 
2612 	btrfs_debug(btrfs_sb(inode->i_sb),
2613 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2614 		read_mode, failrec->this_mirror, failrec->in_validation);
2615 
2616 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2617 					 failrec->bio_flags);
2618 	if (status) {
2619 		free_io_failure(failure_tree, tree, failrec);
2620 		bio_put(bio);
2621 		ret = blk_status_to_errno(status);
2622 	}
2623 
2624 	return ret;
2625 }
2626 
2627 /* lots and lots of room for performance fixes in the end_bio funcs */
2628 
2629 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2630 {
2631 	int uptodate = (err == 0);
2632 	int ret = 0;
2633 
2634 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2635 
2636 	if (!uptodate) {
2637 		ClearPageUptodate(page);
2638 		SetPageError(page);
2639 		ret = err < 0 ? err : -EIO;
2640 		mapping_set_error(page->mapping, ret);
2641 	}
2642 }
2643 
2644 /*
2645  * after a writepage IO is done, we need to:
2646  * clear the uptodate bits on error
2647  * clear the writeback bits in the extent tree for this IO
2648  * end_page_writeback if the page has no more pending IO
2649  *
2650  * Scheduling is not allowed, so the extent state tree is expected
2651  * to have one and only one object corresponding to this IO.
2652  */
2653 static void end_bio_extent_writepage(struct bio *bio)
2654 {
2655 	int error = blk_status_to_errno(bio->bi_status);
2656 	struct bio_vec *bvec;
2657 	u64 start;
2658 	u64 end;
2659 	struct bvec_iter_all iter_all;
2660 
2661 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2662 	bio_for_each_segment_all(bvec, bio, iter_all) {
2663 		struct page *page = bvec->bv_page;
2664 		struct inode *inode = page->mapping->host;
2665 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2666 
2667 		/* We always issue full-page reads, but if some block
2668 		 * in a page fails to read, blk_update_request() will
2669 		 * advance bv_offset and adjust bv_len to compensate.
2670 		 * Print a warning for nonzero offsets, and an error
2671 		 * if they don't add up to a full page.  */
2672 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2673 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2674 				btrfs_err(fs_info,
2675 				   "partial page write in btrfs with offset %u and length %u",
2676 					bvec->bv_offset, bvec->bv_len);
2677 			else
2678 				btrfs_info(fs_info,
2679 				   "incomplete page write in btrfs with offset %u and length %u",
2680 					bvec->bv_offset, bvec->bv_len);
2681 		}
2682 
2683 		start = page_offset(page);
2684 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2685 
2686 		end_extent_writepage(page, error, start, end);
2687 		end_page_writeback(page);
2688 	}
2689 
2690 	bio_put(bio);
2691 }
2692 
2693 static void
2694 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2695 			      int uptodate)
2696 {
2697 	struct extent_state *cached = NULL;
2698 	u64 end = start + len - 1;
2699 
2700 	if (uptodate && tree->track_uptodate)
2701 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2702 	unlock_extent_cached_atomic(tree, start, end, &cached);
2703 }
2704 
2705 /*
2706  * after a readpage IO is done, we need to:
2707  * clear the uptodate bits on error
2708  * set the uptodate bits if things worked
2709  * set the page up to date if all extents in the tree are uptodate
2710  * clear the lock bit in the extent tree
2711  * unlock the page if there are no other extents locked for it
2712  *
2713  * Scheduling is not allowed, so the extent state tree is expected
2714  * to have one and only one object corresponding to this IO.
2715  */
2716 static void end_bio_extent_readpage(struct bio *bio)
2717 {
2718 	struct bio_vec *bvec;
2719 	int uptodate = !bio->bi_status;
2720 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2721 	struct extent_io_tree *tree, *failure_tree;
2722 	u64 offset = 0;
2723 	u64 start;
2724 	u64 end;
2725 	u64 len;
2726 	u64 extent_start = 0;
2727 	u64 extent_len = 0;
2728 	int mirror;
2729 	int ret;
2730 	struct bvec_iter_all iter_all;
2731 
2732 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2733 	bio_for_each_segment_all(bvec, bio, iter_all) {
2734 		struct page *page = bvec->bv_page;
2735 		struct inode *inode = page->mapping->host;
2736 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2737 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2738 			!= BTRFS_BTREE_INODE_OBJECTID;
2739 
2740 		btrfs_debug(fs_info,
2741 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2742 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2743 			io_bio->mirror_num);
2744 		tree = &BTRFS_I(inode)->io_tree;
2745 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2746 
2747 		/* We always issue full-page reads, but if some block
2748 		 * in a page fails to read, blk_update_request() will
2749 		 * advance bv_offset and adjust bv_len to compensate.
2750 		 * Print a warning for nonzero offsets, and an error
2751 		 * if they don't add up to a full page.  */
2752 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2753 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2754 				btrfs_err(fs_info,
2755 					"partial page read in btrfs with offset %u and length %u",
2756 					bvec->bv_offset, bvec->bv_len);
2757 			else
2758 				btrfs_info(fs_info,
2759 					"incomplete page read in btrfs with offset %u and length %u",
2760 					bvec->bv_offset, bvec->bv_len);
2761 		}
2762 
2763 		start = page_offset(page);
2764 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2765 		len = bvec->bv_len;
2766 
2767 		mirror = io_bio->mirror_num;
2768 		if (likely(uptodate)) {
2769 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2770 							      page, start, end,
2771 							      mirror);
2772 			if (ret)
2773 				uptodate = 0;
2774 			else
2775 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2776 						 failure_tree, tree, start,
2777 						 page,
2778 						 btrfs_ino(BTRFS_I(inode)), 0);
2779 		}
2780 
2781 		if (likely(uptodate))
2782 			goto readpage_ok;
2783 
2784 		if (data_inode) {
2785 
2786 			/*
2787 			 * The generic bio_readpage_error handles errors the
2788 			 * following way: If possible, new read requests are
2789 			 * created and submitted and will end up in
2790 			 * end_bio_extent_readpage as well (if we're lucky,
2791 			 * not in the !uptodate case). In that case it returns
2792 			 * 0 and we just go on with the next page in our bio.
2793 			 * If it can't handle the error it will return -EIO and
2794 			 * we remain responsible for that page.
2795 			 */
2796 			ret = bio_readpage_error(bio, offset, page, start, end,
2797 						 mirror);
2798 			if (ret == 0) {
2799 				uptodate = !bio->bi_status;
2800 				offset += len;
2801 				continue;
2802 			}
2803 		} else {
2804 			struct extent_buffer *eb;
2805 
2806 			eb = (struct extent_buffer *)page->private;
2807 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2808 			eb->read_mirror = mirror;
2809 			atomic_dec(&eb->io_pages);
2810 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2811 					       &eb->bflags))
2812 				btree_readahead_hook(eb, -EIO);
2813 		}
2814 readpage_ok:
2815 		if (likely(uptodate)) {
2816 			loff_t i_size = i_size_read(inode);
2817 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2818 			unsigned off;
2819 
2820 			/* Zero out the end if this page straddles i_size */
2821 			off = offset_in_page(i_size);
2822 			if (page->index == end_index && off)
2823 				zero_user_segment(page, off, PAGE_SIZE);
2824 			SetPageUptodate(page);
2825 		} else {
2826 			ClearPageUptodate(page);
2827 			SetPageError(page);
2828 		}
2829 		unlock_page(page);
2830 		offset += len;
2831 
2832 		if (unlikely(!uptodate)) {
2833 			if (extent_len) {
2834 				endio_readpage_release_extent(tree,
2835 							      extent_start,
2836 							      extent_len, 1);
2837 				extent_start = 0;
2838 				extent_len = 0;
2839 			}
2840 			endio_readpage_release_extent(tree, start,
2841 						      end - start + 1, 0);
2842 		} else if (!extent_len) {
2843 			extent_start = start;
2844 			extent_len = end + 1 - start;
2845 		} else if (extent_start + extent_len == start) {
2846 			extent_len += end + 1 - start;
2847 		} else {
2848 			endio_readpage_release_extent(tree, extent_start,
2849 						      extent_len, uptodate);
2850 			extent_start = start;
2851 			extent_len = end + 1 - start;
2852 		}
2853 	}
2854 
2855 	if (extent_len)
2856 		endio_readpage_release_extent(tree, extent_start, extent_len,
2857 					      uptodate);
2858 	btrfs_io_bio_free_csum(io_bio);
2859 	bio_put(bio);
2860 }
2861 
2862 /*
2863  * Initialize the members up to but not including 'bio'. Use after allocating a
2864  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2865  * 'bio' because use of __GFP_ZERO is not supported.
2866  */
2867 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2868 {
2869 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2870 }
2871 
2872 /*
2873  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2874  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2875  * for the appropriate container_of magic
2876  */
2877 struct bio *btrfs_bio_alloc(u64 first_byte)
2878 {
2879 	struct bio *bio;
2880 
2881 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2882 	bio->bi_iter.bi_sector = first_byte >> 9;
2883 	btrfs_io_bio_init(btrfs_io_bio(bio));
2884 	return bio;
2885 }
2886 
2887 struct bio *btrfs_bio_clone(struct bio *bio)
2888 {
2889 	struct btrfs_io_bio *btrfs_bio;
2890 	struct bio *new;
2891 
2892 	/* Bio allocation backed by a bioset does not fail */
2893 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2894 	btrfs_bio = btrfs_io_bio(new);
2895 	btrfs_io_bio_init(btrfs_bio);
2896 	btrfs_bio->iter = bio->bi_iter;
2897 	return new;
2898 }
2899 
2900 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2901 {
2902 	struct bio *bio;
2903 
2904 	/* Bio allocation backed by a bioset does not fail */
2905 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2906 	btrfs_io_bio_init(btrfs_io_bio(bio));
2907 	return bio;
2908 }
2909 
2910 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2911 {
2912 	struct bio *bio;
2913 	struct btrfs_io_bio *btrfs_bio;
2914 
2915 	/* this will never fail when it's backed by a bioset */
2916 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2917 	ASSERT(bio);
2918 
2919 	btrfs_bio = btrfs_io_bio(bio);
2920 	btrfs_io_bio_init(btrfs_bio);
2921 
2922 	bio_trim(bio, offset >> 9, size >> 9);
2923 	btrfs_bio->iter = bio->bi_iter;
2924 	return bio;
2925 }
2926 
2927 /*
2928  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2929  * @tree:	tree so we can call our merge_bio hook
2930  * @wbc:	optional writeback control for io accounting
2931  * @page:	page to add to the bio
2932  * @pg_offset:	offset of the new bio or to check whether we are adding
2933  *              a contiguous page to the previous one
2934  * @size:	portion of page that we want to write
2935  * @offset:	starting offset in the page
2936  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2937  * @end_io_func:     end_io callback for new bio
2938  * @mirror_num:	     desired mirror to read/write
2939  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2940  * @bio_flags:	flags of the current bio to see if we can merge them
2941  */
2942 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2943 			      struct writeback_control *wbc,
2944 			      struct page *page, u64 offset,
2945 			      size_t size, unsigned long pg_offset,
2946 			      struct bio **bio_ret,
2947 			      bio_end_io_t end_io_func,
2948 			      int mirror_num,
2949 			      unsigned long prev_bio_flags,
2950 			      unsigned long bio_flags,
2951 			      bool force_bio_submit)
2952 {
2953 	int ret = 0;
2954 	struct bio *bio;
2955 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2956 	sector_t sector = offset >> 9;
2957 
2958 	ASSERT(bio_ret);
2959 
2960 	if (*bio_ret) {
2961 		bool contig;
2962 		bool can_merge = true;
2963 
2964 		bio = *bio_ret;
2965 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2966 			contig = bio->bi_iter.bi_sector == sector;
2967 		else
2968 			contig = bio_end_sector(bio) == sector;
2969 
2970 		ASSERT(tree->ops);
2971 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2972 			can_merge = false;
2973 
2974 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2975 		    force_bio_submit ||
2976 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2977 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2978 			if (ret < 0) {
2979 				*bio_ret = NULL;
2980 				return ret;
2981 			}
2982 			bio = NULL;
2983 		} else {
2984 			if (wbc)
2985 				wbc_account_cgroup_owner(wbc, page, page_size);
2986 			return 0;
2987 		}
2988 	}
2989 
2990 	bio = btrfs_bio_alloc(offset);
2991 	bio_add_page(bio, page, page_size, pg_offset);
2992 	bio->bi_end_io = end_io_func;
2993 	bio->bi_private = tree;
2994 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2995 	bio->bi_opf = opf;
2996 	if (wbc) {
2997 		struct block_device *bdev;
2998 
2999 		bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3000 		bio_set_dev(bio, bdev);
3001 		wbc_init_bio(wbc, bio);
3002 		wbc_account_cgroup_owner(wbc, page, page_size);
3003 	}
3004 
3005 	*bio_ret = bio;
3006 
3007 	return ret;
3008 }
3009 
3010 static void attach_extent_buffer_page(struct extent_buffer *eb,
3011 				      struct page *page)
3012 {
3013 	if (!PagePrivate(page)) {
3014 		SetPagePrivate(page);
3015 		get_page(page);
3016 		set_page_private(page, (unsigned long)eb);
3017 	} else {
3018 		WARN_ON(page->private != (unsigned long)eb);
3019 	}
3020 }
3021 
3022 void set_page_extent_mapped(struct page *page)
3023 {
3024 	if (!PagePrivate(page)) {
3025 		SetPagePrivate(page);
3026 		get_page(page);
3027 		set_page_private(page, EXTENT_PAGE_PRIVATE);
3028 	}
3029 }
3030 
3031 static struct extent_map *
3032 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3033 		 u64 start, u64 len, get_extent_t *get_extent,
3034 		 struct extent_map **em_cached)
3035 {
3036 	struct extent_map *em;
3037 
3038 	if (em_cached && *em_cached) {
3039 		em = *em_cached;
3040 		if (extent_map_in_tree(em) && start >= em->start &&
3041 		    start < extent_map_end(em)) {
3042 			refcount_inc(&em->refs);
3043 			return em;
3044 		}
3045 
3046 		free_extent_map(em);
3047 		*em_cached = NULL;
3048 	}
3049 
3050 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3051 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3052 		BUG_ON(*em_cached);
3053 		refcount_inc(&em->refs);
3054 		*em_cached = em;
3055 	}
3056 	return em;
3057 }
3058 /*
3059  * basic readpage implementation.  Locked extent state structs are inserted
3060  * into the tree that are removed when the IO is done (by the end_io
3061  * handlers)
3062  * XXX JDM: This needs looking at to ensure proper page locking
3063  * return 0 on success, otherwise return error
3064  */
3065 static int __do_readpage(struct extent_io_tree *tree,
3066 			 struct page *page,
3067 			 get_extent_t *get_extent,
3068 			 struct extent_map **em_cached,
3069 			 struct bio **bio, int mirror_num,
3070 			 unsigned long *bio_flags, unsigned int read_flags,
3071 			 u64 *prev_em_start)
3072 {
3073 	struct inode *inode = page->mapping->host;
3074 	u64 start = page_offset(page);
3075 	const u64 end = start + PAGE_SIZE - 1;
3076 	u64 cur = start;
3077 	u64 extent_offset;
3078 	u64 last_byte = i_size_read(inode);
3079 	u64 block_start;
3080 	u64 cur_end;
3081 	struct extent_map *em;
3082 	int ret = 0;
3083 	int nr = 0;
3084 	size_t pg_offset = 0;
3085 	size_t iosize;
3086 	size_t disk_io_size;
3087 	size_t blocksize = inode->i_sb->s_blocksize;
3088 	unsigned long this_bio_flag = 0;
3089 
3090 	set_page_extent_mapped(page);
3091 
3092 	if (!PageUptodate(page)) {
3093 		if (cleancache_get_page(page) == 0) {
3094 			BUG_ON(blocksize != PAGE_SIZE);
3095 			unlock_extent(tree, start, end);
3096 			goto out;
3097 		}
3098 	}
3099 
3100 	if (page->index == last_byte >> PAGE_SHIFT) {
3101 		char *userpage;
3102 		size_t zero_offset = offset_in_page(last_byte);
3103 
3104 		if (zero_offset) {
3105 			iosize = PAGE_SIZE - zero_offset;
3106 			userpage = kmap_atomic(page);
3107 			memset(userpage + zero_offset, 0, iosize);
3108 			flush_dcache_page(page);
3109 			kunmap_atomic(userpage);
3110 		}
3111 	}
3112 	while (cur <= end) {
3113 		bool force_bio_submit = false;
3114 		u64 offset;
3115 
3116 		if (cur >= last_byte) {
3117 			char *userpage;
3118 			struct extent_state *cached = NULL;
3119 
3120 			iosize = PAGE_SIZE - pg_offset;
3121 			userpage = kmap_atomic(page);
3122 			memset(userpage + pg_offset, 0, iosize);
3123 			flush_dcache_page(page);
3124 			kunmap_atomic(userpage);
3125 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3126 					    &cached, GFP_NOFS);
3127 			unlock_extent_cached(tree, cur,
3128 					     cur + iosize - 1, &cached);
3129 			break;
3130 		}
3131 		em = __get_extent_map(inode, page, pg_offset, cur,
3132 				      end - cur + 1, get_extent, em_cached);
3133 		if (IS_ERR_OR_NULL(em)) {
3134 			SetPageError(page);
3135 			unlock_extent(tree, cur, end);
3136 			break;
3137 		}
3138 		extent_offset = cur - em->start;
3139 		BUG_ON(extent_map_end(em) <= cur);
3140 		BUG_ON(end < cur);
3141 
3142 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3143 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3144 			extent_set_compress_type(&this_bio_flag,
3145 						 em->compress_type);
3146 		}
3147 
3148 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3149 		cur_end = min(extent_map_end(em) - 1, end);
3150 		iosize = ALIGN(iosize, blocksize);
3151 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3152 			disk_io_size = em->block_len;
3153 			offset = em->block_start;
3154 		} else {
3155 			offset = em->block_start + extent_offset;
3156 			disk_io_size = iosize;
3157 		}
3158 		block_start = em->block_start;
3159 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3160 			block_start = EXTENT_MAP_HOLE;
3161 
3162 		/*
3163 		 * If we have a file range that points to a compressed extent
3164 		 * and it's followed by a consecutive file range that points to
3165 		 * to the same compressed extent (possibly with a different
3166 		 * offset and/or length, so it either points to the whole extent
3167 		 * or only part of it), we must make sure we do not submit a
3168 		 * single bio to populate the pages for the 2 ranges because
3169 		 * this makes the compressed extent read zero out the pages
3170 		 * belonging to the 2nd range. Imagine the following scenario:
3171 		 *
3172 		 *  File layout
3173 		 *  [0 - 8K]                     [8K - 24K]
3174 		 *    |                               |
3175 		 *    |                               |
3176 		 * points to extent X,         points to extent X,
3177 		 * offset 4K, length of 8K     offset 0, length 16K
3178 		 *
3179 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3180 		 *
3181 		 * If the bio to read the compressed extent covers both ranges,
3182 		 * it will decompress extent X into the pages belonging to the
3183 		 * first range and then it will stop, zeroing out the remaining
3184 		 * pages that belong to the other range that points to extent X.
3185 		 * So here we make sure we submit 2 bios, one for the first
3186 		 * range and another one for the third range. Both will target
3187 		 * the same physical extent from disk, but we can't currently
3188 		 * make the compressed bio endio callback populate the pages
3189 		 * for both ranges because each compressed bio is tightly
3190 		 * coupled with a single extent map, and each range can have
3191 		 * an extent map with a different offset value relative to the
3192 		 * uncompressed data of our extent and different lengths. This
3193 		 * is a corner case so we prioritize correctness over
3194 		 * non-optimal behavior (submitting 2 bios for the same extent).
3195 		 */
3196 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3197 		    prev_em_start && *prev_em_start != (u64)-1 &&
3198 		    *prev_em_start != em->start)
3199 			force_bio_submit = true;
3200 
3201 		if (prev_em_start)
3202 			*prev_em_start = em->start;
3203 
3204 		free_extent_map(em);
3205 		em = NULL;
3206 
3207 		/* we've found a hole, just zero and go on */
3208 		if (block_start == EXTENT_MAP_HOLE) {
3209 			char *userpage;
3210 			struct extent_state *cached = NULL;
3211 
3212 			userpage = kmap_atomic(page);
3213 			memset(userpage + pg_offset, 0, iosize);
3214 			flush_dcache_page(page);
3215 			kunmap_atomic(userpage);
3216 
3217 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3218 					    &cached, GFP_NOFS);
3219 			unlock_extent_cached(tree, cur,
3220 					     cur + iosize - 1, &cached);
3221 			cur = cur + iosize;
3222 			pg_offset += iosize;
3223 			continue;
3224 		}
3225 		/* the get_extent function already copied into the page */
3226 		if (test_range_bit(tree, cur, cur_end,
3227 				   EXTENT_UPTODATE, 1, NULL)) {
3228 			check_page_uptodate(tree, page);
3229 			unlock_extent(tree, cur, cur + iosize - 1);
3230 			cur = cur + iosize;
3231 			pg_offset += iosize;
3232 			continue;
3233 		}
3234 		/* we have an inline extent but it didn't get marked up
3235 		 * to date.  Error out
3236 		 */
3237 		if (block_start == EXTENT_MAP_INLINE) {
3238 			SetPageError(page);
3239 			unlock_extent(tree, cur, cur + iosize - 1);
3240 			cur = cur + iosize;
3241 			pg_offset += iosize;
3242 			continue;
3243 		}
3244 
3245 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3246 					 page, offset, disk_io_size,
3247 					 pg_offset, bio,
3248 					 end_bio_extent_readpage, mirror_num,
3249 					 *bio_flags,
3250 					 this_bio_flag,
3251 					 force_bio_submit);
3252 		if (!ret) {
3253 			nr++;
3254 			*bio_flags = this_bio_flag;
3255 		} else {
3256 			SetPageError(page);
3257 			unlock_extent(tree, cur, cur + iosize - 1);
3258 			goto out;
3259 		}
3260 		cur = cur + iosize;
3261 		pg_offset += iosize;
3262 	}
3263 out:
3264 	if (!nr) {
3265 		if (!PageError(page))
3266 			SetPageUptodate(page);
3267 		unlock_page(page);
3268 	}
3269 	return ret;
3270 }
3271 
3272 static inline void contiguous_readpages(struct extent_io_tree *tree,
3273 					     struct page *pages[], int nr_pages,
3274 					     u64 start, u64 end,
3275 					     struct extent_map **em_cached,
3276 					     struct bio **bio,
3277 					     unsigned long *bio_flags,
3278 					     u64 *prev_em_start)
3279 {
3280 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3281 	int index;
3282 
3283 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3284 
3285 	for (index = 0; index < nr_pages; index++) {
3286 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3287 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3288 		put_page(pages[index]);
3289 	}
3290 }
3291 
3292 static int __extent_read_full_page(struct extent_io_tree *tree,
3293 				   struct page *page,
3294 				   get_extent_t *get_extent,
3295 				   struct bio **bio, int mirror_num,
3296 				   unsigned long *bio_flags,
3297 				   unsigned int read_flags)
3298 {
3299 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3300 	u64 start = page_offset(page);
3301 	u64 end = start + PAGE_SIZE - 1;
3302 	int ret;
3303 
3304 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3305 
3306 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3307 			    bio_flags, read_flags, NULL);
3308 	return ret;
3309 }
3310 
3311 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3312 			    get_extent_t *get_extent, int mirror_num)
3313 {
3314 	struct bio *bio = NULL;
3315 	unsigned long bio_flags = 0;
3316 	int ret;
3317 
3318 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3319 				      &bio_flags, 0);
3320 	if (bio)
3321 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3322 	return ret;
3323 }
3324 
3325 static void update_nr_written(struct writeback_control *wbc,
3326 			      unsigned long nr_written)
3327 {
3328 	wbc->nr_to_write -= nr_written;
3329 }
3330 
3331 /*
3332  * helper for __extent_writepage, doing all of the delayed allocation setup.
3333  *
3334  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3335  * to write the page (copy into inline extent).  In this case the IO has
3336  * been started and the page is already unlocked.
3337  *
3338  * This returns 0 if all went well (page still locked)
3339  * This returns < 0 if there were errors (page still locked)
3340  */
3341 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3342 		struct page *page, struct writeback_control *wbc,
3343 		u64 delalloc_start, unsigned long *nr_written)
3344 {
3345 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3346 	bool found;
3347 	u64 delalloc_to_write = 0;
3348 	u64 delalloc_end = 0;
3349 	int ret;
3350 	int page_started = 0;
3351 
3352 
3353 	while (delalloc_end < page_end) {
3354 		found = find_lock_delalloc_range(inode, page,
3355 					       &delalloc_start,
3356 					       &delalloc_end);
3357 		if (!found) {
3358 			delalloc_start = delalloc_end + 1;
3359 			continue;
3360 		}
3361 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3362 				delalloc_end, &page_started, nr_written, wbc);
3363 		if (ret) {
3364 			SetPageError(page);
3365 			/*
3366 			 * btrfs_run_delalloc_range should return < 0 for error
3367 			 * but just in case, we use > 0 here meaning the IO is
3368 			 * started, so we don't want to return > 0 unless
3369 			 * things are going well.
3370 			 */
3371 			ret = ret < 0 ? ret : -EIO;
3372 			goto done;
3373 		}
3374 		/*
3375 		 * delalloc_end is already one less than the total length, so
3376 		 * we don't subtract one from PAGE_SIZE
3377 		 */
3378 		delalloc_to_write += (delalloc_end - delalloc_start +
3379 				      PAGE_SIZE) >> PAGE_SHIFT;
3380 		delalloc_start = delalloc_end + 1;
3381 	}
3382 	if (wbc->nr_to_write < delalloc_to_write) {
3383 		int thresh = 8192;
3384 
3385 		if (delalloc_to_write < thresh * 2)
3386 			thresh = delalloc_to_write;
3387 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3388 					 thresh);
3389 	}
3390 
3391 	/* did the fill delalloc function already unlock and start
3392 	 * the IO?
3393 	 */
3394 	if (page_started) {
3395 		/*
3396 		 * we've unlocked the page, so we can't update
3397 		 * the mapping's writeback index, just update
3398 		 * nr_to_write.
3399 		 */
3400 		wbc->nr_to_write -= *nr_written;
3401 		return 1;
3402 	}
3403 
3404 	ret = 0;
3405 
3406 done:
3407 	return ret;
3408 }
3409 
3410 /*
3411  * helper for __extent_writepage.  This calls the writepage start hooks,
3412  * and does the loop to map the page into extents and bios.
3413  *
3414  * We return 1 if the IO is started and the page is unlocked,
3415  * 0 if all went well (page still locked)
3416  * < 0 if there were errors (page still locked)
3417  */
3418 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3419 				 struct page *page,
3420 				 struct writeback_control *wbc,
3421 				 struct extent_page_data *epd,
3422 				 loff_t i_size,
3423 				 unsigned long nr_written,
3424 				 int *nr_ret)
3425 {
3426 	struct extent_io_tree *tree = epd->tree;
3427 	u64 start = page_offset(page);
3428 	u64 page_end = start + PAGE_SIZE - 1;
3429 	u64 end;
3430 	u64 cur = start;
3431 	u64 extent_offset;
3432 	u64 block_start;
3433 	u64 iosize;
3434 	struct extent_map *em;
3435 	size_t pg_offset = 0;
3436 	size_t blocksize;
3437 	int ret = 0;
3438 	int nr = 0;
3439 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3440 	bool compressed;
3441 
3442 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3443 	if (ret) {
3444 		/* Fixup worker will requeue */
3445 		redirty_page_for_writepage(wbc, page);
3446 		update_nr_written(wbc, nr_written);
3447 		unlock_page(page);
3448 		return 1;
3449 	}
3450 
3451 	/*
3452 	 * we don't want to touch the inode after unlocking the page,
3453 	 * so we update the mapping writeback index now
3454 	 */
3455 	update_nr_written(wbc, nr_written + 1);
3456 
3457 	end = page_end;
3458 	blocksize = inode->i_sb->s_blocksize;
3459 
3460 	while (cur <= end) {
3461 		u64 em_end;
3462 		u64 offset;
3463 
3464 		if (cur >= i_size) {
3465 			btrfs_writepage_endio_finish_ordered(page, cur,
3466 							     page_end, 1);
3467 			break;
3468 		}
3469 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3470 				      end - cur + 1);
3471 		if (IS_ERR_OR_NULL(em)) {
3472 			SetPageError(page);
3473 			ret = PTR_ERR_OR_ZERO(em);
3474 			break;
3475 		}
3476 
3477 		extent_offset = cur - em->start;
3478 		em_end = extent_map_end(em);
3479 		BUG_ON(em_end <= cur);
3480 		BUG_ON(end < cur);
3481 		iosize = min(em_end - cur, end - cur + 1);
3482 		iosize = ALIGN(iosize, blocksize);
3483 		offset = em->block_start + extent_offset;
3484 		block_start = em->block_start;
3485 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3486 		free_extent_map(em);
3487 		em = NULL;
3488 
3489 		/*
3490 		 * compressed and inline extents are written through other
3491 		 * paths in the FS
3492 		 */
3493 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3494 		    block_start == EXTENT_MAP_INLINE) {
3495 			if (compressed)
3496 				nr++;
3497 			else
3498 				btrfs_writepage_endio_finish_ordered(page, cur,
3499 							cur + iosize - 1, 1);
3500 			cur += iosize;
3501 			pg_offset += iosize;
3502 			continue;
3503 		}
3504 
3505 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3506 		if (!PageWriteback(page)) {
3507 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3508 				   "page %lu not writeback, cur %llu end %llu",
3509 			       page->index, cur, end);
3510 		}
3511 
3512 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3513 					 page, offset, iosize, pg_offset,
3514 					 &epd->bio,
3515 					 end_bio_extent_writepage,
3516 					 0, 0, 0, false);
3517 		if (ret) {
3518 			SetPageError(page);
3519 			if (PageWriteback(page))
3520 				end_page_writeback(page);
3521 		}
3522 
3523 		cur = cur + iosize;
3524 		pg_offset += iosize;
3525 		nr++;
3526 	}
3527 	*nr_ret = nr;
3528 	return ret;
3529 }
3530 
3531 /*
3532  * the writepage semantics are similar to regular writepage.  extent
3533  * records are inserted to lock ranges in the tree, and as dirty areas
3534  * are found, they are marked writeback.  Then the lock bits are removed
3535  * and the end_io handler clears the writeback ranges
3536  *
3537  * Return 0 if everything goes well.
3538  * Return <0 for error.
3539  */
3540 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3541 			      struct extent_page_data *epd)
3542 {
3543 	struct inode *inode = page->mapping->host;
3544 	u64 start = page_offset(page);
3545 	u64 page_end = start + PAGE_SIZE - 1;
3546 	int ret;
3547 	int nr = 0;
3548 	size_t pg_offset;
3549 	loff_t i_size = i_size_read(inode);
3550 	unsigned long end_index = i_size >> PAGE_SHIFT;
3551 	unsigned long nr_written = 0;
3552 
3553 	trace___extent_writepage(page, inode, wbc);
3554 
3555 	WARN_ON(!PageLocked(page));
3556 
3557 	ClearPageError(page);
3558 
3559 	pg_offset = offset_in_page(i_size);
3560 	if (page->index > end_index ||
3561 	   (page->index == end_index && !pg_offset)) {
3562 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3563 		unlock_page(page);
3564 		return 0;
3565 	}
3566 
3567 	if (page->index == end_index) {
3568 		char *userpage;
3569 
3570 		userpage = kmap_atomic(page);
3571 		memset(userpage + pg_offset, 0,
3572 		       PAGE_SIZE - pg_offset);
3573 		kunmap_atomic(userpage);
3574 		flush_dcache_page(page);
3575 	}
3576 
3577 	set_page_extent_mapped(page);
3578 
3579 	if (!epd->extent_locked) {
3580 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3581 		if (ret == 1)
3582 			return 0;
3583 		if (ret)
3584 			goto done;
3585 	}
3586 
3587 	ret = __extent_writepage_io(inode, page, wbc, epd,
3588 				    i_size, nr_written, &nr);
3589 	if (ret == 1)
3590 		return 0;
3591 
3592 done:
3593 	if (nr == 0) {
3594 		/* make sure the mapping tag for page dirty gets cleared */
3595 		set_page_writeback(page);
3596 		end_page_writeback(page);
3597 	}
3598 	if (PageError(page)) {
3599 		ret = ret < 0 ? ret : -EIO;
3600 		end_extent_writepage(page, ret, start, page_end);
3601 	}
3602 	unlock_page(page);
3603 	ASSERT(ret <= 0);
3604 	return ret;
3605 }
3606 
3607 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3608 {
3609 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3610 		       TASK_UNINTERRUPTIBLE);
3611 }
3612 
3613 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3614 {
3615 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3616 	smp_mb__after_atomic();
3617 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3618 }
3619 
3620 /*
3621  * Lock eb pages and flush the bio if we can't the locks
3622  *
3623  * Return  0 if nothing went wrong
3624  * Return >0 is same as 0, except bio is not submitted
3625  * Return <0 if something went wrong, no page is locked
3626  */
3627 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3628 			  struct extent_page_data *epd)
3629 {
3630 	struct btrfs_fs_info *fs_info = eb->fs_info;
3631 	int i, num_pages, failed_page_nr;
3632 	int flush = 0;
3633 	int ret = 0;
3634 
3635 	if (!btrfs_try_tree_write_lock(eb)) {
3636 		ret = flush_write_bio(epd);
3637 		if (ret < 0)
3638 			return ret;
3639 		flush = 1;
3640 		btrfs_tree_lock(eb);
3641 	}
3642 
3643 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3644 		btrfs_tree_unlock(eb);
3645 		if (!epd->sync_io)
3646 			return 0;
3647 		if (!flush) {
3648 			ret = flush_write_bio(epd);
3649 			if (ret < 0)
3650 				return ret;
3651 			flush = 1;
3652 		}
3653 		while (1) {
3654 			wait_on_extent_buffer_writeback(eb);
3655 			btrfs_tree_lock(eb);
3656 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3657 				break;
3658 			btrfs_tree_unlock(eb);
3659 		}
3660 	}
3661 
3662 	/*
3663 	 * We need to do this to prevent races in people who check if the eb is
3664 	 * under IO since we can end up having no IO bits set for a short period
3665 	 * of time.
3666 	 */
3667 	spin_lock(&eb->refs_lock);
3668 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3669 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3670 		spin_unlock(&eb->refs_lock);
3671 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3672 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3673 					 -eb->len,
3674 					 fs_info->dirty_metadata_batch);
3675 		ret = 1;
3676 	} else {
3677 		spin_unlock(&eb->refs_lock);
3678 	}
3679 
3680 	btrfs_tree_unlock(eb);
3681 
3682 	if (!ret)
3683 		return ret;
3684 
3685 	num_pages = num_extent_pages(eb);
3686 	for (i = 0; i < num_pages; i++) {
3687 		struct page *p = eb->pages[i];
3688 
3689 		if (!trylock_page(p)) {
3690 			if (!flush) {
3691 				int err;
3692 
3693 				err = flush_write_bio(epd);
3694 				if (err < 0) {
3695 					ret = err;
3696 					failed_page_nr = i;
3697 					goto err_unlock;
3698 				}
3699 				flush = 1;
3700 			}
3701 			lock_page(p);
3702 		}
3703 	}
3704 
3705 	return ret;
3706 err_unlock:
3707 	/* Unlock already locked pages */
3708 	for (i = 0; i < failed_page_nr; i++)
3709 		unlock_page(eb->pages[i]);
3710 	/*
3711 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3712 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3713 	 * be made and undo everything done before.
3714 	 */
3715 	btrfs_tree_lock(eb);
3716 	spin_lock(&eb->refs_lock);
3717 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3718 	end_extent_buffer_writeback(eb);
3719 	spin_unlock(&eb->refs_lock);
3720 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3721 				 fs_info->dirty_metadata_batch);
3722 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3723 	btrfs_tree_unlock(eb);
3724 	return ret;
3725 }
3726 
3727 static void set_btree_ioerr(struct page *page)
3728 {
3729 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3730 	struct btrfs_fs_info *fs_info;
3731 
3732 	SetPageError(page);
3733 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3734 		return;
3735 
3736 	/*
3737 	 * If we error out, we should add back the dirty_metadata_bytes
3738 	 * to make it consistent.
3739 	 */
3740 	fs_info = eb->fs_info;
3741 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3742 				 eb->len, fs_info->dirty_metadata_batch);
3743 
3744 	/*
3745 	 * If writeback for a btree extent that doesn't belong to a log tree
3746 	 * failed, increment the counter transaction->eb_write_errors.
3747 	 * We do this because while the transaction is running and before it's
3748 	 * committing (when we call filemap_fdata[write|wait]_range against
3749 	 * the btree inode), we might have
3750 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3751 	 * returns an error or an error happens during writeback, when we're
3752 	 * committing the transaction we wouldn't know about it, since the pages
3753 	 * can be no longer dirty nor marked anymore for writeback (if a
3754 	 * subsequent modification to the extent buffer didn't happen before the
3755 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3756 	 * able to find the pages tagged with SetPageError at transaction
3757 	 * commit time. So if this happens we must abort the transaction,
3758 	 * otherwise we commit a super block with btree roots that point to
3759 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3760 	 * or the content of some node/leaf from a past generation that got
3761 	 * cowed or deleted and is no longer valid.
3762 	 *
3763 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3764 	 * not be enough - we need to distinguish between log tree extents vs
3765 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3766 	 * will catch and clear such errors in the mapping - and that call might
3767 	 * be from a log sync and not from a transaction commit. Also, checking
3768 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3769 	 * not done and would not be reliable - the eb might have been released
3770 	 * from memory and reading it back again means that flag would not be
3771 	 * set (since it's a runtime flag, not persisted on disk).
3772 	 *
3773 	 * Using the flags below in the btree inode also makes us achieve the
3774 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3775 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3776 	 * is called, the writeback for all dirty pages had already finished
3777 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3778 	 * filemap_fdatawait_range() would return success, as it could not know
3779 	 * that writeback errors happened (the pages were no longer tagged for
3780 	 * writeback).
3781 	 */
3782 	switch (eb->log_index) {
3783 	case -1:
3784 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3785 		break;
3786 	case 0:
3787 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3788 		break;
3789 	case 1:
3790 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3791 		break;
3792 	default:
3793 		BUG(); /* unexpected, logic error */
3794 	}
3795 }
3796 
3797 static void end_bio_extent_buffer_writepage(struct bio *bio)
3798 {
3799 	struct bio_vec *bvec;
3800 	struct extent_buffer *eb;
3801 	int done;
3802 	struct bvec_iter_all iter_all;
3803 
3804 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3805 	bio_for_each_segment_all(bvec, bio, iter_all) {
3806 		struct page *page = bvec->bv_page;
3807 
3808 		eb = (struct extent_buffer *)page->private;
3809 		BUG_ON(!eb);
3810 		done = atomic_dec_and_test(&eb->io_pages);
3811 
3812 		if (bio->bi_status ||
3813 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3814 			ClearPageUptodate(page);
3815 			set_btree_ioerr(page);
3816 		}
3817 
3818 		end_page_writeback(page);
3819 
3820 		if (!done)
3821 			continue;
3822 
3823 		end_extent_buffer_writeback(eb);
3824 	}
3825 
3826 	bio_put(bio);
3827 }
3828 
3829 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3830 			struct writeback_control *wbc,
3831 			struct extent_page_data *epd)
3832 {
3833 	struct btrfs_fs_info *fs_info = eb->fs_info;
3834 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3835 	u64 offset = eb->start;
3836 	u32 nritems;
3837 	int i, num_pages;
3838 	unsigned long start, end;
3839 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3840 	int ret = 0;
3841 
3842 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3843 	num_pages = num_extent_pages(eb);
3844 	atomic_set(&eb->io_pages, num_pages);
3845 
3846 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3847 	nritems = btrfs_header_nritems(eb);
3848 	if (btrfs_header_level(eb) > 0) {
3849 		end = btrfs_node_key_ptr_offset(nritems);
3850 
3851 		memzero_extent_buffer(eb, end, eb->len - end);
3852 	} else {
3853 		/*
3854 		 * leaf:
3855 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3856 		 */
3857 		start = btrfs_item_nr_offset(nritems);
3858 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3859 		memzero_extent_buffer(eb, start, end - start);
3860 	}
3861 
3862 	for (i = 0; i < num_pages; i++) {
3863 		struct page *p = eb->pages[i];
3864 
3865 		clear_page_dirty_for_io(p);
3866 		set_page_writeback(p);
3867 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3868 					 p, offset, PAGE_SIZE, 0,
3869 					 &epd->bio,
3870 					 end_bio_extent_buffer_writepage,
3871 					 0, 0, 0, false);
3872 		if (ret) {
3873 			set_btree_ioerr(p);
3874 			if (PageWriteback(p))
3875 				end_page_writeback(p);
3876 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3877 				end_extent_buffer_writeback(eb);
3878 			ret = -EIO;
3879 			break;
3880 		}
3881 		offset += PAGE_SIZE;
3882 		update_nr_written(wbc, 1);
3883 		unlock_page(p);
3884 	}
3885 
3886 	if (unlikely(ret)) {
3887 		for (; i < num_pages; i++) {
3888 			struct page *p = eb->pages[i];
3889 			clear_page_dirty_for_io(p);
3890 			unlock_page(p);
3891 		}
3892 	}
3893 
3894 	return ret;
3895 }
3896 
3897 int btree_write_cache_pages(struct address_space *mapping,
3898 				   struct writeback_control *wbc)
3899 {
3900 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3901 	struct extent_buffer *eb, *prev_eb = NULL;
3902 	struct extent_page_data epd = {
3903 		.bio = NULL,
3904 		.tree = tree,
3905 		.extent_locked = 0,
3906 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3907 	};
3908 	int ret = 0;
3909 	int done = 0;
3910 	int nr_to_write_done = 0;
3911 	struct pagevec pvec;
3912 	int nr_pages;
3913 	pgoff_t index;
3914 	pgoff_t end;		/* Inclusive */
3915 	int scanned = 0;
3916 	xa_mark_t tag;
3917 
3918 	pagevec_init(&pvec);
3919 	if (wbc->range_cyclic) {
3920 		index = mapping->writeback_index; /* Start from prev offset */
3921 		end = -1;
3922 		/*
3923 		 * Start from the beginning does not need to cycle over the
3924 		 * range, mark it as scanned.
3925 		 */
3926 		scanned = (index == 0);
3927 	} else {
3928 		index = wbc->range_start >> PAGE_SHIFT;
3929 		end = wbc->range_end >> PAGE_SHIFT;
3930 		scanned = 1;
3931 	}
3932 	if (wbc->sync_mode == WB_SYNC_ALL)
3933 		tag = PAGECACHE_TAG_TOWRITE;
3934 	else
3935 		tag = PAGECACHE_TAG_DIRTY;
3936 retry:
3937 	if (wbc->sync_mode == WB_SYNC_ALL)
3938 		tag_pages_for_writeback(mapping, index, end);
3939 	while (!done && !nr_to_write_done && (index <= end) &&
3940 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3941 			tag))) {
3942 		unsigned i;
3943 
3944 		for (i = 0; i < nr_pages; i++) {
3945 			struct page *page = pvec.pages[i];
3946 
3947 			if (!PagePrivate(page))
3948 				continue;
3949 
3950 			spin_lock(&mapping->private_lock);
3951 			if (!PagePrivate(page)) {
3952 				spin_unlock(&mapping->private_lock);
3953 				continue;
3954 			}
3955 
3956 			eb = (struct extent_buffer *)page->private;
3957 
3958 			/*
3959 			 * Shouldn't happen and normally this would be a BUG_ON
3960 			 * but no sense in crashing the users box for something
3961 			 * we can survive anyway.
3962 			 */
3963 			if (WARN_ON(!eb)) {
3964 				spin_unlock(&mapping->private_lock);
3965 				continue;
3966 			}
3967 
3968 			if (eb == prev_eb) {
3969 				spin_unlock(&mapping->private_lock);
3970 				continue;
3971 			}
3972 
3973 			ret = atomic_inc_not_zero(&eb->refs);
3974 			spin_unlock(&mapping->private_lock);
3975 			if (!ret)
3976 				continue;
3977 
3978 			prev_eb = eb;
3979 			ret = lock_extent_buffer_for_io(eb, &epd);
3980 			if (!ret) {
3981 				free_extent_buffer(eb);
3982 				continue;
3983 			} else if (ret < 0) {
3984 				done = 1;
3985 				free_extent_buffer(eb);
3986 				break;
3987 			}
3988 
3989 			ret = write_one_eb(eb, wbc, &epd);
3990 			if (ret) {
3991 				done = 1;
3992 				free_extent_buffer(eb);
3993 				break;
3994 			}
3995 			free_extent_buffer(eb);
3996 
3997 			/*
3998 			 * the filesystem may choose to bump up nr_to_write.
3999 			 * We have to make sure to honor the new nr_to_write
4000 			 * at any time
4001 			 */
4002 			nr_to_write_done = wbc->nr_to_write <= 0;
4003 		}
4004 		pagevec_release(&pvec);
4005 		cond_resched();
4006 	}
4007 	if (!scanned && !done) {
4008 		/*
4009 		 * We hit the last page and there is more work to be done: wrap
4010 		 * back to the start of the file
4011 		 */
4012 		scanned = 1;
4013 		index = 0;
4014 		goto retry;
4015 	}
4016 	ASSERT(ret <= 0);
4017 	if (ret < 0) {
4018 		end_write_bio(&epd, ret);
4019 		return ret;
4020 	}
4021 	ret = flush_write_bio(&epd);
4022 	return ret;
4023 }
4024 
4025 /**
4026  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4027  * @mapping: address space structure to write
4028  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4029  * @data: data passed to __extent_writepage function
4030  *
4031  * If a page is already under I/O, write_cache_pages() skips it, even
4032  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4033  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4034  * and msync() need to guarantee that all the data which was dirty at the time
4035  * the call was made get new I/O started against them.  If wbc->sync_mode is
4036  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4037  * existing IO to complete.
4038  */
4039 static int extent_write_cache_pages(struct address_space *mapping,
4040 			     struct writeback_control *wbc,
4041 			     struct extent_page_data *epd)
4042 {
4043 	struct inode *inode = mapping->host;
4044 	int ret = 0;
4045 	int done = 0;
4046 	int nr_to_write_done = 0;
4047 	struct pagevec pvec;
4048 	int nr_pages;
4049 	pgoff_t index;
4050 	pgoff_t end;		/* Inclusive */
4051 	pgoff_t done_index;
4052 	int range_whole = 0;
4053 	int scanned = 0;
4054 	xa_mark_t tag;
4055 
4056 	/*
4057 	 * We have to hold onto the inode so that ordered extents can do their
4058 	 * work when the IO finishes.  The alternative to this is failing to add
4059 	 * an ordered extent if the igrab() fails there and that is a huge pain
4060 	 * to deal with, so instead just hold onto the inode throughout the
4061 	 * writepages operation.  If it fails here we are freeing up the inode
4062 	 * anyway and we'd rather not waste our time writing out stuff that is
4063 	 * going to be truncated anyway.
4064 	 */
4065 	if (!igrab(inode))
4066 		return 0;
4067 
4068 	pagevec_init(&pvec);
4069 	if (wbc->range_cyclic) {
4070 		index = mapping->writeback_index; /* Start from prev offset */
4071 		end = -1;
4072 		/*
4073 		 * Start from the beginning does not need to cycle over the
4074 		 * range, mark it as scanned.
4075 		 */
4076 		scanned = (index == 0);
4077 	} else {
4078 		index = wbc->range_start >> PAGE_SHIFT;
4079 		end = wbc->range_end >> PAGE_SHIFT;
4080 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4081 			range_whole = 1;
4082 		scanned = 1;
4083 	}
4084 
4085 	/*
4086 	 * We do the tagged writepage as long as the snapshot flush bit is set
4087 	 * and we are the first one who do the filemap_flush() on this inode.
4088 	 *
4089 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4090 	 * not race in and drop the bit.
4091 	 */
4092 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4093 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4094 			       &BTRFS_I(inode)->runtime_flags))
4095 		wbc->tagged_writepages = 1;
4096 
4097 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4098 		tag = PAGECACHE_TAG_TOWRITE;
4099 	else
4100 		tag = PAGECACHE_TAG_DIRTY;
4101 retry:
4102 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4103 		tag_pages_for_writeback(mapping, index, end);
4104 	done_index = index;
4105 	while (!done && !nr_to_write_done && (index <= end) &&
4106 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4107 						&index, end, tag))) {
4108 		unsigned i;
4109 
4110 		for (i = 0; i < nr_pages; i++) {
4111 			struct page *page = pvec.pages[i];
4112 
4113 			done_index = page->index + 1;
4114 			/*
4115 			 * At this point we hold neither the i_pages lock nor
4116 			 * the page lock: the page may be truncated or
4117 			 * invalidated (changing page->mapping to NULL),
4118 			 * or even swizzled back from swapper_space to
4119 			 * tmpfs file mapping
4120 			 */
4121 			if (!trylock_page(page)) {
4122 				ret = flush_write_bio(epd);
4123 				BUG_ON(ret < 0);
4124 				lock_page(page);
4125 			}
4126 
4127 			if (unlikely(page->mapping != mapping)) {
4128 				unlock_page(page);
4129 				continue;
4130 			}
4131 
4132 			if (wbc->sync_mode != WB_SYNC_NONE) {
4133 				if (PageWriteback(page)) {
4134 					ret = flush_write_bio(epd);
4135 					BUG_ON(ret < 0);
4136 				}
4137 				wait_on_page_writeback(page);
4138 			}
4139 
4140 			if (PageWriteback(page) ||
4141 			    !clear_page_dirty_for_io(page)) {
4142 				unlock_page(page);
4143 				continue;
4144 			}
4145 
4146 			ret = __extent_writepage(page, wbc, epd);
4147 			if (ret < 0) {
4148 				done = 1;
4149 				break;
4150 			}
4151 
4152 			/*
4153 			 * the filesystem may choose to bump up nr_to_write.
4154 			 * We have to make sure to honor the new nr_to_write
4155 			 * at any time
4156 			 */
4157 			nr_to_write_done = wbc->nr_to_write <= 0;
4158 		}
4159 		pagevec_release(&pvec);
4160 		cond_resched();
4161 	}
4162 	if (!scanned && !done) {
4163 		/*
4164 		 * We hit the last page and there is more work to be done: wrap
4165 		 * back to the start of the file
4166 		 */
4167 		scanned = 1;
4168 		index = 0;
4169 
4170 		/*
4171 		 * If we're looping we could run into a page that is locked by a
4172 		 * writer and that writer could be waiting on writeback for a
4173 		 * page in our current bio, and thus deadlock, so flush the
4174 		 * write bio here.
4175 		 */
4176 		ret = flush_write_bio(epd);
4177 		if (!ret)
4178 			goto retry;
4179 	}
4180 
4181 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4182 		mapping->writeback_index = done_index;
4183 
4184 	btrfs_add_delayed_iput(inode);
4185 	return ret;
4186 }
4187 
4188 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4189 {
4190 	int ret;
4191 	struct extent_page_data epd = {
4192 		.bio = NULL,
4193 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4194 		.extent_locked = 0,
4195 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4196 	};
4197 
4198 	ret = __extent_writepage(page, wbc, &epd);
4199 	ASSERT(ret <= 0);
4200 	if (ret < 0) {
4201 		end_write_bio(&epd, ret);
4202 		return ret;
4203 	}
4204 
4205 	ret = flush_write_bio(&epd);
4206 	ASSERT(ret <= 0);
4207 	return ret;
4208 }
4209 
4210 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4211 			      int mode)
4212 {
4213 	int ret = 0;
4214 	struct address_space *mapping = inode->i_mapping;
4215 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4216 	struct page *page;
4217 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4218 		PAGE_SHIFT;
4219 
4220 	struct extent_page_data epd = {
4221 		.bio = NULL,
4222 		.tree = tree,
4223 		.extent_locked = 1,
4224 		.sync_io = mode == WB_SYNC_ALL,
4225 	};
4226 	struct writeback_control wbc_writepages = {
4227 		.sync_mode	= mode,
4228 		.nr_to_write	= nr_pages * 2,
4229 		.range_start	= start,
4230 		.range_end	= end + 1,
4231 		/* We're called from an async helper function */
4232 		.punt_to_cgroup	= 1,
4233 		.no_cgroup_owner = 1,
4234 	};
4235 
4236 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4237 	while (start <= end) {
4238 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4239 		if (clear_page_dirty_for_io(page))
4240 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4241 		else {
4242 			btrfs_writepage_endio_finish_ordered(page, start,
4243 						    start + PAGE_SIZE - 1, 1);
4244 			unlock_page(page);
4245 		}
4246 		put_page(page);
4247 		start += PAGE_SIZE;
4248 	}
4249 
4250 	ASSERT(ret <= 0);
4251 	if (ret == 0)
4252 		ret = flush_write_bio(&epd);
4253 	else
4254 		end_write_bio(&epd, ret);
4255 
4256 	wbc_detach_inode(&wbc_writepages);
4257 	return ret;
4258 }
4259 
4260 int extent_writepages(struct address_space *mapping,
4261 		      struct writeback_control *wbc)
4262 {
4263 	int ret = 0;
4264 	struct extent_page_data epd = {
4265 		.bio = NULL,
4266 		.tree = &BTRFS_I(mapping->host)->io_tree,
4267 		.extent_locked = 0,
4268 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4269 	};
4270 
4271 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4272 	ASSERT(ret <= 0);
4273 	if (ret < 0) {
4274 		end_write_bio(&epd, ret);
4275 		return ret;
4276 	}
4277 	ret = flush_write_bio(&epd);
4278 	return ret;
4279 }
4280 
4281 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4282 		     unsigned nr_pages)
4283 {
4284 	struct bio *bio = NULL;
4285 	unsigned long bio_flags = 0;
4286 	struct page *pagepool[16];
4287 	struct extent_map *em_cached = NULL;
4288 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4289 	int nr = 0;
4290 	u64 prev_em_start = (u64)-1;
4291 
4292 	while (!list_empty(pages)) {
4293 		u64 contig_end = 0;
4294 
4295 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4296 			struct page *page = lru_to_page(pages);
4297 
4298 			prefetchw(&page->flags);
4299 			list_del(&page->lru);
4300 			if (add_to_page_cache_lru(page, mapping, page->index,
4301 						readahead_gfp_mask(mapping))) {
4302 				put_page(page);
4303 				break;
4304 			}
4305 
4306 			pagepool[nr++] = page;
4307 			contig_end = page_offset(page) + PAGE_SIZE - 1;
4308 		}
4309 
4310 		if (nr) {
4311 			u64 contig_start = page_offset(pagepool[0]);
4312 
4313 			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4314 
4315 			contiguous_readpages(tree, pagepool, nr, contig_start,
4316 				     contig_end, &em_cached, &bio, &bio_flags,
4317 				     &prev_em_start);
4318 		}
4319 	}
4320 
4321 	if (em_cached)
4322 		free_extent_map(em_cached);
4323 
4324 	if (bio)
4325 		return submit_one_bio(bio, 0, bio_flags);
4326 	return 0;
4327 }
4328 
4329 /*
4330  * basic invalidatepage code, this waits on any locked or writeback
4331  * ranges corresponding to the page, and then deletes any extent state
4332  * records from the tree
4333  */
4334 int extent_invalidatepage(struct extent_io_tree *tree,
4335 			  struct page *page, unsigned long offset)
4336 {
4337 	struct extent_state *cached_state = NULL;
4338 	u64 start = page_offset(page);
4339 	u64 end = start + PAGE_SIZE - 1;
4340 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4341 
4342 	start += ALIGN(offset, blocksize);
4343 	if (start > end)
4344 		return 0;
4345 
4346 	lock_extent_bits(tree, start, end, &cached_state);
4347 	wait_on_page_writeback(page);
4348 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4349 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4350 	return 0;
4351 }
4352 
4353 /*
4354  * a helper for releasepage, this tests for areas of the page that
4355  * are locked or under IO and drops the related state bits if it is safe
4356  * to drop the page.
4357  */
4358 static int try_release_extent_state(struct extent_io_tree *tree,
4359 				    struct page *page, gfp_t mask)
4360 {
4361 	u64 start = page_offset(page);
4362 	u64 end = start + PAGE_SIZE - 1;
4363 	int ret = 1;
4364 
4365 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4366 		ret = 0;
4367 	} else {
4368 		/*
4369 		 * at this point we can safely clear everything except the
4370 		 * locked bit and the nodatasum bit
4371 		 */
4372 		ret = __clear_extent_bit(tree, start, end,
4373 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4374 				 0, 0, NULL, mask, NULL);
4375 
4376 		/* if clear_extent_bit failed for enomem reasons,
4377 		 * we can't allow the release to continue.
4378 		 */
4379 		if (ret < 0)
4380 			ret = 0;
4381 		else
4382 			ret = 1;
4383 	}
4384 	return ret;
4385 }
4386 
4387 /*
4388  * a helper for releasepage.  As long as there are no locked extents
4389  * in the range corresponding to the page, both state records and extent
4390  * map records are removed
4391  */
4392 int try_release_extent_mapping(struct page *page, gfp_t mask)
4393 {
4394 	struct extent_map *em;
4395 	u64 start = page_offset(page);
4396 	u64 end = start + PAGE_SIZE - 1;
4397 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4398 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4399 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4400 
4401 	if (gfpflags_allow_blocking(mask) &&
4402 	    page->mapping->host->i_size > SZ_16M) {
4403 		u64 len;
4404 		while (start <= end) {
4405 			len = end - start + 1;
4406 			write_lock(&map->lock);
4407 			em = lookup_extent_mapping(map, start, len);
4408 			if (!em) {
4409 				write_unlock(&map->lock);
4410 				break;
4411 			}
4412 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4413 			    em->start != start) {
4414 				write_unlock(&map->lock);
4415 				free_extent_map(em);
4416 				break;
4417 			}
4418 			if (!test_range_bit(tree, em->start,
4419 					    extent_map_end(em) - 1,
4420 					    EXTENT_LOCKED, 0, NULL)) {
4421 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4422 					&btrfs_inode->runtime_flags);
4423 				remove_extent_mapping(map, em);
4424 				/* once for the rb tree */
4425 				free_extent_map(em);
4426 			}
4427 			start = extent_map_end(em);
4428 			write_unlock(&map->lock);
4429 
4430 			/* once for us */
4431 			free_extent_map(em);
4432 		}
4433 	}
4434 	return try_release_extent_state(tree, page, mask);
4435 }
4436 
4437 /*
4438  * helper function for fiemap, which doesn't want to see any holes.
4439  * This maps until we find something past 'last'
4440  */
4441 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4442 						u64 offset, u64 last)
4443 {
4444 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4445 	struct extent_map *em;
4446 	u64 len;
4447 
4448 	if (offset >= last)
4449 		return NULL;
4450 
4451 	while (1) {
4452 		len = last - offset;
4453 		if (len == 0)
4454 			break;
4455 		len = ALIGN(len, sectorsize);
4456 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4457 		if (IS_ERR_OR_NULL(em))
4458 			return em;
4459 
4460 		/* if this isn't a hole return it */
4461 		if (em->block_start != EXTENT_MAP_HOLE)
4462 			return em;
4463 
4464 		/* this is a hole, advance to the next extent */
4465 		offset = extent_map_end(em);
4466 		free_extent_map(em);
4467 		if (offset >= last)
4468 			break;
4469 	}
4470 	return NULL;
4471 }
4472 
4473 /*
4474  * To cache previous fiemap extent
4475  *
4476  * Will be used for merging fiemap extent
4477  */
4478 struct fiemap_cache {
4479 	u64 offset;
4480 	u64 phys;
4481 	u64 len;
4482 	u32 flags;
4483 	bool cached;
4484 };
4485 
4486 /*
4487  * Helper to submit fiemap extent.
4488  *
4489  * Will try to merge current fiemap extent specified by @offset, @phys,
4490  * @len and @flags with cached one.
4491  * And only when we fails to merge, cached one will be submitted as
4492  * fiemap extent.
4493  *
4494  * Return value is the same as fiemap_fill_next_extent().
4495  */
4496 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4497 				struct fiemap_cache *cache,
4498 				u64 offset, u64 phys, u64 len, u32 flags)
4499 {
4500 	int ret = 0;
4501 
4502 	if (!cache->cached)
4503 		goto assign;
4504 
4505 	/*
4506 	 * Sanity check, extent_fiemap() should have ensured that new
4507 	 * fiemap extent won't overlap with cached one.
4508 	 * Not recoverable.
4509 	 *
4510 	 * NOTE: Physical address can overlap, due to compression
4511 	 */
4512 	if (cache->offset + cache->len > offset) {
4513 		WARN_ON(1);
4514 		return -EINVAL;
4515 	}
4516 
4517 	/*
4518 	 * Only merges fiemap extents if
4519 	 * 1) Their logical addresses are continuous
4520 	 *
4521 	 * 2) Their physical addresses are continuous
4522 	 *    So truly compressed (physical size smaller than logical size)
4523 	 *    extents won't get merged with each other
4524 	 *
4525 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4526 	 *    So regular extent won't get merged with prealloc extent
4527 	 */
4528 	if (cache->offset + cache->len  == offset &&
4529 	    cache->phys + cache->len == phys  &&
4530 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4531 			(flags & ~FIEMAP_EXTENT_LAST)) {
4532 		cache->len += len;
4533 		cache->flags |= flags;
4534 		goto try_submit_last;
4535 	}
4536 
4537 	/* Not mergeable, need to submit cached one */
4538 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4539 				      cache->len, cache->flags);
4540 	cache->cached = false;
4541 	if (ret)
4542 		return ret;
4543 assign:
4544 	cache->cached = true;
4545 	cache->offset = offset;
4546 	cache->phys = phys;
4547 	cache->len = len;
4548 	cache->flags = flags;
4549 try_submit_last:
4550 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4551 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4552 				cache->phys, cache->len, cache->flags);
4553 		cache->cached = false;
4554 	}
4555 	return ret;
4556 }
4557 
4558 /*
4559  * Emit last fiemap cache
4560  *
4561  * The last fiemap cache may still be cached in the following case:
4562  * 0		      4k		    8k
4563  * |<- Fiemap range ->|
4564  * |<------------  First extent ----------->|
4565  *
4566  * In this case, the first extent range will be cached but not emitted.
4567  * So we must emit it before ending extent_fiemap().
4568  */
4569 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4570 				  struct fiemap_cache *cache)
4571 {
4572 	int ret;
4573 
4574 	if (!cache->cached)
4575 		return 0;
4576 
4577 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4578 				      cache->len, cache->flags);
4579 	cache->cached = false;
4580 	if (ret > 0)
4581 		ret = 0;
4582 	return ret;
4583 }
4584 
4585 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4586 		__u64 start, __u64 len)
4587 {
4588 	int ret = 0;
4589 	u64 off = start;
4590 	u64 max = start + len;
4591 	u32 flags = 0;
4592 	u32 found_type;
4593 	u64 last;
4594 	u64 last_for_get_extent = 0;
4595 	u64 disko = 0;
4596 	u64 isize = i_size_read(inode);
4597 	struct btrfs_key found_key;
4598 	struct extent_map *em = NULL;
4599 	struct extent_state *cached_state = NULL;
4600 	struct btrfs_path *path;
4601 	struct btrfs_root *root = BTRFS_I(inode)->root;
4602 	struct fiemap_cache cache = { 0 };
4603 	struct ulist *roots;
4604 	struct ulist *tmp_ulist;
4605 	int end = 0;
4606 	u64 em_start = 0;
4607 	u64 em_len = 0;
4608 	u64 em_end = 0;
4609 
4610 	if (len == 0)
4611 		return -EINVAL;
4612 
4613 	path = btrfs_alloc_path();
4614 	if (!path)
4615 		return -ENOMEM;
4616 	path->leave_spinning = 1;
4617 
4618 	roots = ulist_alloc(GFP_KERNEL);
4619 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4620 	if (!roots || !tmp_ulist) {
4621 		ret = -ENOMEM;
4622 		goto out_free_ulist;
4623 	}
4624 
4625 	start = round_down(start, btrfs_inode_sectorsize(inode));
4626 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4627 
4628 	/*
4629 	 * lookup the last file extent.  We're not using i_size here
4630 	 * because there might be preallocation past i_size
4631 	 */
4632 	ret = btrfs_lookup_file_extent(NULL, root, path,
4633 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4634 	if (ret < 0) {
4635 		goto out_free_ulist;
4636 	} else {
4637 		WARN_ON(!ret);
4638 		if (ret == 1)
4639 			ret = 0;
4640 	}
4641 
4642 	path->slots[0]--;
4643 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4644 	found_type = found_key.type;
4645 
4646 	/* No extents, but there might be delalloc bits */
4647 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4648 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4649 		/* have to trust i_size as the end */
4650 		last = (u64)-1;
4651 		last_for_get_extent = isize;
4652 	} else {
4653 		/*
4654 		 * remember the start of the last extent.  There are a
4655 		 * bunch of different factors that go into the length of the
4656 		 * extent, so its much less complex to remember where it started
4657 		 */
4658 		last = found_key.offset;
4659 		last_for_get_extent = last + 1;
4660 	}
4661 	btrfs_release_path(path);
4662 
4663 	/*
4664 	 * we might have some extents allocated but more delalloc past those
4665 	 * extents.  so, we trust isize unless the start of the last extent is
4666 	 * beyond isize
4667 	 */
4668 	if (last < isize) {
4669 		last = (u64)-1;
4670 		last_for_get_extent = isize;
4671 	}
4672 
4673 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4674 			 &cached_state);
4675 
4676 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4677 	if (!em)
4678 		goto out;
4679 	if (IS_ERR(em)) {
4680 		ret = PTR_ERR(em);
4681 		goto out;
4682 	}
4683 
4684 	while (!end) {
4685 		u64 offset_in_extent = 0;
4686 
4687 		/* break if the extent we found is outside the range */
4688 		if (em->start >= max || extent_map_end(em) < off)
4689 			break;
4690 
4691 		/*
4692 		 * get_extent may return an extent that starts before our
4693 		 * requested range.  We have to make sure the ranges
4694 		 * we return to fiemap always move forward and don't
4695 		 * overlap, so adjust the offsets here
4696 		 */
4697 		em_start = max(em->start, off);
4698 
4699 		/*
4700 		 * record the offset from the start of the extent
4701 		 * for adjusting the disk offset below.  Only do this if the
4702 		 * extent isn't compressed since our in ram offset may be past
4703 		 * what we have actually allocated on disk.
4704 		 */
4705 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4706 			offset_in_extent = em_start - em->start;
4707 		em_end = extent_map_end(em);
4708 		em_len = em_end - em_start;
4709 		flags = 0;
4710 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4711 			disko = em->block_start + offset_in_extent;
4712 		else
4713 			disko = 0;
4714 
4715 		/*
4716 		 * bump off for our next call to get_extent
4717 		 */
4718 		off = extent_map_end(em);
4719 		if (off >= max)
4720 			end = 1;
4721 
4722 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4723 			end = 1;
4724 			flags |= FIEMAP_EXTENT_LAST;
4725 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4726 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4727 				  FIEMAP_EXTENT_NOT_ALIGNED);
4728 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4729 			flags |= (FIEMAP_EXTENT_DELALLOC |
4730 				  FIEMAP_EXTENT_UNKNOWN);
4731 		} else if (fieinfo->fi_extents_max) {
4732 			u64 bytenr = em->block_start -
4733 				(em->start - em->orig_start);
4734 
4735 			/*
4736 			 * As btrfs supports shared space, this information
4737 			 * can be exported to userspace tools via
4738 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4739 			 * then we're just getting a count and we can skip the
4740 			 * lookup stuff.
4741 			 */
4742 			ret = btrfs_check_shared(root,
4743 						 btrfs_ino(BTRFS_I(inode)),
4744 						 bytenr, roots, tmp_ulist);
4745 			if (ret < 0)
4746 				goto out_free;
4747 			if (ret)
4748 				flags |= FIEMAP_EXTENT_SHARED;
4749 			ret = 0;
4750 		}
4751 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4752 			flags |= FIEMAP_EXTENT_ENCODED;
4753 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4754 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4755 
4756 		free_extent_map(em);
4757 		em = NULL;
4758 		if ((em_start >= last) || em_len == (u64)-1 ||
4759 		   (last == (u64)-1 && isize <= em_end)) {
4760 			flags |= FIEMAP_EXTENT_LAST;
4761 			end = 1;
4762 		}
4763 
4764 		/* now scan forward to see if this is really the last extent. */
4765 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4766 		if (IS_ERR(em)) {
4767 			ret = PTR_ERR(em);
4768 			goto out;
4769 		}
4770 		if (!em) {
4771 			flags |= FIEMAP_EXTENT_LAST;
4772 			end = 1;
4773 		}
4774 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4775 					   em_len, flags);
4776 		if (ret) {
4777 			if (ret == 1)
4778 				ret = 0;
4779 			goto out_free;
4780 		}
4781 	}
4782 out_free:
4783 	if (!ret)
4784 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4785 	free_extent_map(em);
4786 out:
4787 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4788 			     &cached_state);
4789 
4790 out_free_ulist:
4791 	btrfs_free_path(path);
4792 	ulist_free(roots);
4793 	ulist_free(tmp_ulist);
4794 	return ret;
4795 }
4796 
4797 static void __free_extent_buffer(struct extent_buffer *eb)
4798 {
4799 	btrfs_leak_debug_del(&eb->leak_list);
4800 	kmem_cache_free(extent_buffer_cache, eb);
4801 }
4802 
4803 int extent_buffer_under_io(struct extent_buffer *eb)
4804 {
4805 	return (atomic_read(&eb->io_pages) ||
4806 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4807 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4808 }
4809 
4810 /*
4811  * Release all pages attached to the extent buffer.
4812  */
4813 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4814 {
4815 	int i;
4816 	int num_pages;
4817 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4818 
4819 	BUG_ON(extent_buffer_under_io(eb));
4820 
4821 	num_pages = num_extent_pages(eb);
4822 	for (i = 0; i < num_pages; i++) {
4823 		struct page *page = eb->pages[i];
4824 
4825 		if (!page)
4826 			continue;
4827 		if (mapped)
4828 			spin_lock(&page->mapping->private_lock);
4829 		/*
4830 		 * We do this since we'll remove the pages after we've
4831 		 * removed the eb from the radix tree, so we could race
4832 		 * and have this page now attached to the new eb.  So
4833 		 * only clear page_private if it's still connected to
4834 		 * this eb.
4835 		 */
4836 		if (PagePrivate(page) &&
4837 		    page->private == (unsigned long)eb) {
4838 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4839 			BUG_ON(PageDirty(page));
4840 			BUG_ON(PageWriteback(page));
4841 			/*
4842 			 * We need to make sure we haven't be attached
4843 			 * to a new eb.
4844 			 */
4845 			ClearPagePrivate(page);
4846 			set_page_private(page, 0);
4847 			/* One for the page private */
4848 			put_page(page);
4849 		}
4850 
4851 		if (mapped)
4852 			spin_unlock(&page->mapping->private_lock);
4853 
4854 		/* One for when we allocated the page */
4855 		put_page(page);
4856 	}
4857 }
4858 
4859 /*
4860  * Helper for releasing the extent buffer.
4861  */
4862 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4863 {
4864 	btrfs_release_extent_buffer_pages(eb);
4865 	__free_extent_buffer(eb);
4866 }
4867 
4868 static struct extent_buffer *
4869 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4870 		      unsigned long len)
4871 {
4872 	struct extent_buffer *eb = NULL;
4873 
4874 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4875 	eb->start = start;
4876 	eb->len = len;
4877 	eb->fs_info = fs_info;
4878 	eb->bflags = 0;
4879 	rwlock_init(&eb->lock);
4880 	atomic_set(&eb->blocking_readers, 0);
4881 	eb->blocking_writers = 0;
4882 	eb->lock_nested = false;
4883 	init_waitqueue_head(&eb->write_lock_wq);
4884 	init_waitqueue_head(&eb->read_lock_wq);
4885 
4886 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4887 
4888 	spin_lock_init(&eb->refs_lock);
4889 	atomic_set(&eb->refs, 1);
4890 	atomic_set(&eb->io_pages, 0);
4891 
4892 	/*
4893 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4894 	 */
4895 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4896 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4897 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4898 
4899 #ifdef CONFIG_BTRFS_DEBUG
4900 	eb->spinning_writers = 0;
4901 	atomic_set(&eb->spinning_readers, 0);
4902 	atomic_set(&eb->read_locks, 0);
4903 	eb->write_locks = 0;
4904 #endif
4905 
4906 	return eb;
4907 }
4908 
4909 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4910 {
4911 	int i;
4912 	struct page *p;
4913 	struct extent_buffer *new;
4914 	int num_pages = num_extent_pages(src);
4915 
4916 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4917 	if (new == NULL)
4918 		return NULL;
4919 
4920 	for (i = 0; i < num_pages; i++) {
4921 		p = alloc_page(GFP_NOFS);
4922 		if (!p) {
4923 			btrfs_release_extent_buffer(new);
4924 			return NULL;
4925 		}
4926 		attach_extent_buffer_page(new, p);
4927 		WARN_ON(PageDirty(p));
4928 		SetPageUptodate(p);
4929 		new->pages[i] = p;
4930 		copy_page(page_address(p), page_address(src->pages[i]));
4931 	}
4932 
4933 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4934 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4935 
4936 	return new;
4937 }
4938 
4939 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4940 						  u64 start, unsigned long len)
4941 {
4942 	struct extent_buffer *eb;
4943 	int num_pages;
4944 	int i;
4945 
4946 	eb = __alloc_extent_buffer(fs_info, start, len);
4947 	if (!eb)
4948 		return NULL;
4949 
4950 	num_pages = num_extent_pages(eb);
4951 	for (i = 0; i < num_pages; i++) {
4952 		eb->pages[i] = alloc_page(GFP_NOFS);
4953 		if (!eb->pages[i])
4954 			goto err;
4955 	}
4956 	set_extent_buffer_uptodate(eb);
4957 	btrfs_set_header_nritems(eb, 0);
4958 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4959 
4960 	return eb;
4961 err:
4962 	for (; i > 0; i--)
4963 		__free_page(eb->pages[i - 1]);
4964 	__free_extent_buffer(eb);
4965 	return NULL;
4966 }
4967 
4968 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4969 						u64 start)
4970 {
4971 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4972 }
4973 
4974 static void check_buffer_tree_ref(struct extent_buffer *eb)
4975 {
4976 	int refs;
4977 	/* the ref bit is tricky.  We have to make sure it is set
4978 	 * if we have the buffer dirty.   Otherwise the
4979 	 * code to free a buffer can end up dropping a dirty
4980 	 * page
4981 	 *
4982 	 * Once the ref bit is set, it won't go away while the
4983 	 * buffer is dirty or in writeback, and it also won't
4984 	 * go away while we have the reference count on the
4985 	 * eb bumped.
4986 	 *
4987 	 * We can't just set the ref bit without bumping the
4988 	 * ref on the eb because free_extent_buffer might
4989 	 * see the ref bit and try to clear it.  If this happens
4990 	 * free_extent_buffer might end up dropping our original
4991 	 * ref by mistake and freeing the page before we are able
4992 	 * to add one more ref.
4993 	 *
4994 	 * So bump the ref count first, then set the bit.  If someone
4995 	 * beat us to it, drop the ref we added.
4996 	 */
4997 	refs = atomic_read(&eb->refs);
4998 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4999 		return;
5000 
5001 	spin_lock(&eb->refs_lock);
5002 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5003 		atomic_inc(&eb->refs);
5004 	spin_unlock(&eb->refs_lock);
5005 }
5006 
5007 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5008 		struct page *accessed)
5009 {
5010 	int num_pages, i;
5011 
5012 	check_buffer_tree_ref(eb);
5013 
5014 	num_pages = num_extent_pages(eb);
5015 	for (i = 0; i < num_pages; i++) {
5016 		struct page *p = eb->pages[i];
5017 
5018 		if (p != accessed)
5019 			mark_page_accessed(p);
5020 	}
5021 }
5022 
5023 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5024 					 u64 start)
5025 {
5026 	struct extent_buffer *eb;
5027 
5028 	rcu_read_lock();
5029 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5030 			       start >> PAGE_SHIFT);
5031 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5032 		rcu_read_unlock();
5033 		/*
5034 		 * Lock our eb's refs_lock to avoid races with
5035 		 * free_extent_buffer. When we get our eb it might be flagged
5036 		 * with EXTENT_BUFFER_STALE and another task running
5037 		 * free_extent_buffer might have seen that flag set,
5038 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5039 		 * writeback flags not set) and it's still in the tree (flag
5040 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5041 		 * of decrementing the extent buffer's reference count twice.
5042 		 * So here we could race and increment the eb's reference count,
5043 		 * clear its stale flag, mark it as dirty and drop our reference
5044 		 * before the other task finishes executing free_extent_buffer,
5045 		 * which would later result in an attempt to free an extent
5046 		 * buffer that is dirty.
5047 		 */
5048 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5049 			spin_lock(&eb->refs_lock);
5050 			spin_unlock(&eb->refs_lock);
5051 		}
5052 		mark_extent_buffer_accessed(eb, NULL);
5053 		return eb;
5054 	}
5055 	rcu_read_unlock();
5056 
5057 	return NULL;
5058 }
5059 
5060 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5061 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5062 					u64 start)
5063 {
5064 	struct extent_buffer *eb, *exists = NULL;
5065 	int ret;
5066 
5067 	eb = find_extent_buffer(fs_info, start);
5068 	if (eb)
5069 		return eb;
5070 	eb = alloc_dummy_extent_buffer(fs_info, start);
5071 	if (!eb)
5072 		return ERR_PTR(-ENOMEM);
5073 	eb->fs_info = fs_info;
5074 again:
5075 	ret = radix_tree_preload(GFP_NOFS);
5076 	if (ret) {
5077 		exists = ERR_PTR(ret);
5078 		goto free_eb;
5079 	}
5080 	spin_lock(&fs_info->buffer_lock);
5081 	ret = radix_tree_insert(&fs_info->buffer_radix,
5082 				start >> PAGE_SHIFT, eb);
5083 	spin_unlock(&fs_info->buffer_lock);
5084 	radix_tree_preload_end();
5085 	if (ret == -EEXIST) {
5086 		exists = find_extent_buffer(fs_info, start);
5087 		if (exists)
5088 			goto free_eb;
5089 		else
5090 			goto again;
5091 	}
5092 	check_buffer_tree_ref(eb);
5093 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5094 
5095 	return eb;
5096 free_eb:
5097 	btrfs_release_extent_buffer(eb);
5098 	return exists;
5099 }
5100 #endif
5101 
5102 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5103 					  u64 start)
5104 {
5105 	unsigned long len = fs_info->nodesize;
5106 	int num_pages;
5107 	int i;
5108 	unsigned long index = start >> PAGE_SHIFT;
5109 	struct extent_buffer *eb;
5110 	struct extent_buffer *exists = NULL;
5111 	struct page *p;
5112 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5113 	int uptodate = 1;
5114 	int ret;
5115 
5116 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5117 		btrfs_err(fs_info, "bad tree block start %llu", start);
5118 		return ERR_PTR(-EINVAL);
5119 	}
5120 
5121 	eb = find_extent_buffer(fs_info, start);
5122 	if (eb)
5123 		return eb;
5124 
5125 	eb = __alloc_extent_buffer(fs_info, start, len);
5126 	if (!eb)
5127 		return ERR_PTR(-ENOMEM);
5128 
5129 	num_pages = num_extent_pages(eb);
5130 	for (i = 0; i < num_pages; i++, index++) {
5131 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5132 		if (!p) {
5133 			exists = ERR_PTR(-ENOMEM);
5134 			goto free_eb;
5135 		}
5136 
5137 		spin_lock(&mapping->private_lock);
5138 		if (PagePrivate(p)) {
5139 			/*
5140 			 * We could have already allocated an eb for this page
5141 			 * and attached one so lets see if we can get a ref on
5142 			 * the existing eb, and if we can we know it's good and
5143 			 * we can just return that one, else we know we can just
5144 			 * overwrite page->private.
5145 			 */
5146 			exists = (struct extent_buffer *)p->private;
5147 			if (atomic_inc_not_zero(&exists->refs)) {
5148 				spin_unlock(&mapping->private_lock);
5149 				unlock_page(p);
5150 				put_page(p);
5151 				mark_extent_buffer_accessed(exists, p);
5152 				goto free_eb;
5153 			}
5154 			exists = NULL;
5155 
5156 			/*
5157 			 * Do this so attach doesn't complain and we need to
5158 			 * drop the ref the old guy had.
5159 			 */
5160 			ClearPagePrivate(p);
5161 			WARN_ON(PageDirty(p));
5162 			put_page(p);
5163 		}
5164 		attach_extent_buffer_page(eb, p);
5165 		spin_unlock(&mapping->private_lock);
5166 		WARN_ON(PageDirty(p));
5167 		eb->pages[i] = p;
5168 		if (!PageUptodate(p))
5169 			uptodate = 0;
5170 
5171 		/*
5172 		 * We can't unlock the pages just yet since the extent buffer
5173 		 * hasn't been properly inserted in the radix tree, this
5174 		 * opens a race with btree_releasepage which can free a page
5175 		 * while we are still filling in all pages for the buffer and
5176 		 * we could crash.
5177 		 */
5178 	}
5179 	if (uptodate)
5180 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5181 again:
5182 	ret = radix_tree_preload(GFP_NOFS);
5183 	if (ret) {
5184 		exists = ERR_PTR(ret);
5185 		goto free_eb;
5186 	}
5187 
5188 	spin_lock(&fs_info->buffer_lock);
5189 	ret = radix_tree_insert(&fs_info->buffer_radix,
5190 				start >> PAGE_SHIFT, eb);
5191 	spin_unlock(&fs_info->buffer_lock);
5192 	radix_tree_preload_end();
5193 	if (ret == -EEXIST) {
5194 		exists = find_extent_buffer(fs_info, start);
5195 		if (exists)
5196 			goto free_eb;
5197 		else
5198 			goto again;
5199 	}
5200 	/* add one reference for the tree */
5201 	check_buffer_tree_ref(eb);
5202 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5203 
5204 	/*
5205 	 * Now it's safe to unlock the pages because any calls to
5206 	 * btree_releasepage will correctly detect that a page belongs to a
5207 	 * live buffer and won't free them prematurely.
5208 	 */
5209 	for (i = 0; i < num_pages; i++)
5210 		unlock_page(eb->pages[i]);
5211 	return eb;
5212 
5213 free_eb:
5214 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5215 	for (i = 0; i < num_pages; i++) {
5216 		if (eb->pages[i])
5217 			unlock_page(eb->pages[i]);
5218 	}
5219 
5220 	btrfs_release_extent_buffer(eb);
5221 	return exists;
5222 }
5223 
5224 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5225 {
5226 	struct extent_buffer *eb =
5227 			container_of(head, struct extent_buffer, rcu_head);
5228 
5229 	__free_extent_buffer(eb);
5230 }
5231 
5232 static int release_extent_buffer(struct extent_buffer *eb)
5233 {
5234 	lockdep_assert_held(&eb->refs_lock);
5235 
5236 	WARN_ON(atomic_read(&eb->refs) == 0);
5237 	if (atomic_dec_and_test(&eb->refs)) {
5238 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5239 			struct btrfs_fs_info *fs_info = eb->fs_info;
5240 
5241 			spin_unlock(&eb->refs_lock);
5242 
5243 			spin_lock(&fs_info->buffer_lock);
5244 			radix_tree_delete(&fs_info->buffer_radix,
5245 					  eb->start >> PAGE_SHIFT);
5246 			spin_unlock(&fs_info->buffer_lock);
5247 		} else {
5248 			spin_unlock(&eb->refs_lock);
5249 		}
5250 
5251 		/* Should be safe to release our pages at this point */
5252 		btrfs_release_extent_buffer_pages(eb);
5253 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5254 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5255 			__free_extent_buffer(eb);
5256 			return 1;
5257 		}
5258 #endif
5259 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5260 		return 1;
5261 	}
5262 	spin_unlock(&eb->refs_lock);
5263 
5264 	return 0;
5265 }
5266 
5267 void free_extent_buffer(struct extent_buffer *eb)
5268 {
5269 	int refs;
5270 	int old;
5271 	if (!eb)
5272 		return;
5273 
5274 	while (1) {
5275 		refs = atomic_read(&eb->refs);
5276 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5277 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5278 			refs == 1))
5279 			break;
5280 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5281 		if (old == refs)
5282 			return;
5283 	}
5284 
5285 	spin_lock(&eb->refs_lock);
5286 	if (atomic_read(&eb->refs) == 2 &&
5287 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5288 	    !extent_buffer_under_io(eb) &&
5289 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5290 		atomic_dec(&eb->refs);
5291 
5292 	/*
5293 	 * I know this is terrible, but it's temporary until we stop tracking
5294 	 * the uptodate bits and such for the extent buffers.
5295 	 */
5296 	release_extent_buffer(eb);
5297 }
5298 
5299 void free_extent_buffer_stale(struct extent_buffer *eb)
5300 {
5301 	if (!eb)
5302 		return;
5303 
5304 	spin_lock(&eb->refs_lock);
5305 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5306 
5307 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5308 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5309 		atomic_dec(&eb->refs);
5310 	release_extent_buffer(eb);
5311 }
5312 
5313 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5314 {
5315 	int i;
5316 	int num_pages;
5317 	struct page *page;
5318 
5319 	num_pages = num_extent_pages(eb);
5320 
5321 	for (i = 0; i < num_pages; i++) {
5322 		page = eb->pages[i];
5323 		if (!PageDirty(page))
5324 			continue;
5325 
5326 		lock_page(page);
5327 		WARN_ON(!PagePrivate(page));
5328 
5329 		clear_page_dirty_for_io(page);
5330 		xa_lock_irq(&page->mapping->i_pages);
5331 		if (!PageDirty(page))
5332 			__xa_clear_mark(&page->mapping->i_pages,
5333 					page_index(page), PAGECACHE_TAG_DIRTY);
5334 		xa_unlock_irq(&page->mapping->i_pages);
5335 		ClearPageError(page);
5336 		unlock_page(page);
5337 	}
5338 	WARN_ON(atomic_read(&eb->refs) == 0);
5339 }
5340 
5341 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5342 {
5343 	int i;
5344 	int num_pages;
5345 	bool was_dirty;
5346 
5347 	check_buffer_tree_ref(eb);
5348 
5349 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5350 
5351 	num_pages = num_extent_pages(eb);
5352 	WARN_ON(atomic_read(&eb->refs) == 0);
5353 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5354 
5355 	if (!was_dirty)
5356 		for (i = 0; i < num_pages; i++)
5357 			set_page_dirty(eb->pages[i]);
5358 
5359 #ifdef CONFIG_BTRFS_DEBUG
5360 	for (i = 0; i < num_pages; i++)
5361 		ASSERT(PageDirty(eb->pages[i]));
5362 #endif
5363 
5364 	return was_dirty;
5365 }
5366 
5367 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5368 {
5369 	int i;
5370 	struct page *page;
5371 	int num_pages;
5372 
5373 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5374 	num_pages = num_extent_pages(eb);
5375 	for (i = 0; i < num_pages; i++) {
5376 		page = eb->pages[i];
5377 		if (page)
5378 			ClearPageUptodate(page);
5379 	}
5380 }
5381 
5382 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5383 {
5384 	int i;
5385 	struct page *page;
5386 	int num_pages;
5387 
5388 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5389 	num_pages = num_extent_pages(eb);
5390 	for (i = 0; i < num_pages; i++) {
5391 		page = eb->pages[i];
5392 		SetPageUptodate(page);
5393 	}
5394 }
5395 
5396 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5397 {
5398 	int i;
5399 	struct page *page;
5400 	int err;
5401 	int ret = 0;
5402 	int locked_pages = 0;
5403 	int all_uptodate = 1;
5404 	int num_pages;
5405 	unsigned long num_reads = 0;
5406 	struct bio *bio = NULL;
5407 	unsigned long bio_flags = 0;
5408 	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5409 
5410 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5411 		return 0;
5412 
5413 	num_pages = num_extent_pages(eb);
5414 	for (i = 0; i < num_pages; i++) {
5415 		page = eb->pages[i];
5416 		if (wait == WAIT_NONE) {
5417 			if (!trylock_page(page))
5418 				goto unlock_exit;
5419 		} else {
5420 			lock_page(page);
5421 		}
5422 		locked_pages++;
5423 	}
5424 	/*
5425 	 * We need to firstly lock all pages to make sure that
5426 	 * the uptodate bit of our pages won't be affected by
5427 	 * clear_extent_buffer_uptodate().
5428 	 */
5429 	for (i = 0; i < num_pages; i++) {
5430 		page = eb->pages[i];
5431 		if (!PageUptodate(page)) {
5432 			num_reads++;
5433 			all_uptodate = 0;
5434 		}
5435 	}
5436 
5437 	if (all_uptodate) {
5438 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5439 		goto unlock_exit;
5440 	}
5441 
5442 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5443 	eb->read_mirror = 0;
5444 	atomic_set(&eb->io_pages, num_reads);
5445 	for (i = 0; i < num_pages; i++) {
5446 		page = eb->pages[i];
5447 
5448 		if (!PageUptodate(page)) {
5449 			if (ret) {
5450 				atomic_dec(&eb->io_pages);
5451 				unlock_page(page);
5452 				continue;
5453 			}
5454 
5455 			ClearPageError(page);
5456 			err = __extent_read_full_page(tree, page,
5457 						      btree_get_extent, &bio,
5458 						      mirror_num, &bio_flags,
5459 						      REQ_META);
5460 			if (err) {
5461 				ret = err;
5462 				/*
5463 				 * We use &bio in above __extent_read_full_page,
5464 				 * so we ensure that if it returns error, the
5465 				 * current page fails to add itself to bio and
5466 				 * it's been unlocked.
5467 				 *
5468 				 * We must dec io_pages by ourselves.
5469 				 */
5470 				atomic_dec(&eb->io_pages);
5471 			}
5472 		} else {
5473 			unlock_page(page);
5474 		}
5475 	}
5476 
5477 	if (bio) {
5478 		err = submit_one_bio(bio, mirror_num, bio_flags);
5479 		if (err)
5480 			return err;
5481 	}
5482 
5483 	if (ret || wait != WAIT_COMPLETE)
5484 		return ret;
5485 
5486 	for (i = 0; i < num_pages; i++) {
5487 		page = eb->pages[i];
5488 		wait_on_page_locked(page);
5489 		if (!PageUptodate(page))
5490 			ret = -EIO;
5491 	}
5492 
5493 	return ret;
5494 
5495 unlock_exit:
5496 	while (locked_pages > 0) {
5497 		locked_pages--;
5498 		page = eb->pages[locked_pages];
5499 		unlock_page(page);
5500 	}
5501 	return ret;
5502 }
5503 
5504 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5505 			unsigned long start, unsigned long len)
5506 {
5507 	size_t cur;
5508 	size_t offset;
5509 	struct page *page;
5510 	char *kaddr;
5511 	char *dst = (char *)dstv;
5512 	size_t start_offset = offset_in_page(eb->start);
5513 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5514 
5515 	if (start + len > eb->len) {
5516 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5517 		     eb->start, eb->len, start, len);
5518 		memset(dst, 0, len);
5519 		return;
5520 	}
5521 
5522 	offset = offset_in_page(start_offset + start);
5523 
5524 	while (len > 0) {
5525 		page = eb->pages[i];
5526 
5527 		cur = min(len, (PAGE_SIZE - offset));
5528 		kaddr = page_address(page);
5529 		memcpy(dst, kaddr + offset, cur);
5530 
5531 		dst += cur;
5532 		len -= cur;
5533 		offset = 0;
5534 		i++;
5535 	}
5536 }
5537 
5538 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5539 			       void __user *dstv,
5540 			       unsigned long start, unsigned long len)
5541 {
5542 	size_t cur;
5543 	size_t offset;
5544 	struct page *page;
5545 	char *kaddr;
5546 	char __user *dst = (char __user *)dstv;
5547 	size_t start_offset = offset_in_page(eb->start);
5548 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5549 	int ret = 0;
5550 
5551 	WARN_ON(start > eb->len);
5552 	WARN_ON(start + len > eb->start + eb->len);
5553 
5554 	offset = offset_in_page(start_offset + start);
5555 
5556 	while (len > 0) {
5557 		page = eb->pages[i];
5558 
5559 		cur = min(len, (PAGE_SIZE - offset));
5560 		kaddr = page_address(page);
5561 		if (copy_to_user(dst, kaddr + offset, cur)) {
5562 			ret = -EFAULT;
5563 			break;
5564 		}
5565 
5566 		dst += cur;
5567 		len -= cur;
5568 		offset = 0;
5569 		i++;
5570 	}
5571 
5572 	return ret;
5573 }
5574 
5575 /*
5576  * return 0 if the item is found within a page.
5577  * return 1 if the item spans two pages.
5578  * return -EINVAL otherwise.
5579  */
5580 int map_private_extent_buffer(const struct extent_buffer *eb,
5581 			      unsigned long start, unsigned long min_len,
5582 			      char **map, unsigned long *map_start,
5583 			      unsigned long *map_len)
5584 {
5585 	size_t offset;
5586 	char *kaddr;
5587 	struct page *p;
5588 	size_t start_offset = offset_in_page(eb->start);
5589 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5590 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5591 		PAGE_SHIFT;
5592 
5593 	if (start + min_len > eb->len) {
5594 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5595 		       eb->start, eb->len, start, min_len);
5596 		return -EINVAL;
5597 	}
5598 
5599 	if (i != end_i)
5600 		return 1;
5601 
5602 	if (i == 0) {
5603 		offset = start_offset;
5604 		*map_start = 0;
5605 	} else {
5606 		offset = 0;
5607 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5608 	}
5609 
5610 	p = eb->pages[i];
5611 	kaddr = page_address(p);
5612 	*map = kaddr + offset;
5613 	*map_len = PAGE_SIZE - offset;
5614 	return 0;
5615 }
5616 
5617 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5618 			 unsigned long start, unsigned long len)
5619 {
5620 	size_t cur;
5621 	size_t offset;
5622 	struct page *page;
5623 	char *kaddr;
5624 	char *ptr = (char *)ptrv;
5625 	size_t start_offset = offset_in_page(eb->start);
5626 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5627 	int ret = 0;
5628 
5629 	WARN_ON(start > eb->len);
5630 	WARN_ON(start + len > eb->start + eb->len);
5631 
5632 	offset = offset_in_page(start_offset + start);
5633 
5634 	while (len > 0) {
5635 		page = eb->pages[i];
5636 
5637 		cur = min(len, (PAGE_SIZE - offset));
5638 
5639 		kaddr = page_address(page);
5640 		ret = memcmp(ptr, kaddr + offset, cur);
5641 		if (ret)
5642 			break;
5643 
5644 		ptr += cur;
5645 		len -= cur;
5646 		offset = 0;
5647 		i++;
5648 	}
5649 	return ret;
5650 }
5651 
5652 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5653 		const void *srcv)
5654 {
5655 	char *kaddr;
5656 
5657 	WARN_ON(!PageUptodate(eb->pages[0]));
5658 	kaddr = page_address(eb->pages[0]);
5659 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5660 			BTRFS_FSID_SIZE);
5661 }
5662 
5663 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5664 {
5665 	char *kaddr;
5666 
5667 	WARN_ON(!PageUptodate(eb->pages[0]));
5668 	kaddr = page_address(eb->pages[0]);
5669 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5670 			BTRFS_FSID_SIZE);
5671 }
5672 
5673 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5674 			 unsigned long start, unsigned long len)
5675 {
5676 	size_t cur;
5677 	size_t offset;
5678 	struct page *page;
5679 	char *kaddr;
5680 	char *src = (char *)srcv;
5681 	size_t start_offset = offset_in_page(eb->start);
5682 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5683 
5684 	WARN_ON(start > eb->len);
5685 	WARN_ON(start + len > eb->start + eb->len);
5686 
5687 	offset = offset_in_page(start_offset + start);
5688 
5689 	while (len > 0) {
5690 		page = eb->pages[i];
5691 		WARN_ON(!PageUptodate(page));
5692 
5693 		cur = min(len, PAGE_SIZE - offset);
5694 		kaddr = page_address(page);
5695 		memcpy(kaddr + offset, src, cur);
5696 
5697 		src += cur;
5698 		len -= cur;
5699 		offset = 0;
5700 		i++;
5701 	}
5702 }
5703 
5704 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5705 		unsigned long len)
5706 {
5707 	size_t cur;
5708 	size_t offset;
5709 	struct page *page;
5710 	char *kaddr;
5711 	size_t start_offset = offset_in_page(eb->start);
5712 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5713 
5714 	WARN_ON(start > eb->len);
5715 	WARN_ON(start + len > eb->start + eb->len);
5716 
5717 	offset = offset_in_page(start_offset + start);
5718 
5719 	while (len > 0) {
5720 		page = eb->pages[i];
5721 		WARN_ON(!PageUptodate(page));
5722 
5723 		cur = min(len, PAGE_SIZE - offset);
5724 		kaddr = page_address(page);
5725 		memset(kaddr + offset, 0, cur);
5726 
5727 		len -= cur;
5728 		offset = 0;
5729 		i++;
5730 	}
5731 }
5732 
5733 void copy_extent_buffer_full(struct extent_buffer *dst,
5734 			     struct extent_buffer *src)
5735 {
5736 	int i;
5737 	int num_pages;
5738 
5739 	ASSERT(dst->len == src->len);
5740 
5741 	num_pages = num_extent_pages(dst);
5742 	for (i = 0; i < num_pages; i++)
5743 		copy_page(page_address(dst->pages[i]),
5744 				page_address(src->pages[i]));
5745 }
5746 
5747 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5748 			unsigned long dst_offset, unsigned long src_offset,
5749 			unsigned long len)
5750 {
5751 	u64 dst_len = dst->len;
5752 	size_t cur;
5753 	size_t offset;
5754 	struct page *page;
5755 	char *kaddr;
5756 	size_t start_offset = offset_in_page(dst->start);
5757 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5758 
5759 	WARN_ON(src->len != dst_len);
5760 
5761 	offset = offset_in_page(start_offset + dst_offset);
5762 
5763 	while (len > 0) {
5764 		page = dst->pages[i];
5765 		WARN_ON(!PageUptodate(page));
5766 
5767 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5768 
5769 		kaddr = page_address(page);
5770 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5771 
5772 		src_offset += cur;
5773 		len -= cur;
5774 		offset = 0;
5775 		i++;
5776 	}
5777 }
5778 
5779 /*
5780  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5781  * given bit number
5782  * @eb: the extent buffer
5783  * @start: offset of the bitmap item in the extent buffer
5784  * @nr: bit number
5785  * @page_index: return index of the page in the extent buffer that contains the
5786  * given bit number
5787  * @page_offset: return offset into the page given by page_index
5788  *
5789  * This helper hides the ugliness of finding the byte in an extent buffer which
5790  * contains a given bit.
5791  */
5792 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5793 				    unsigned long start, unsigned long nr,
5794 				    unsigned long *page_index,
5795 				    size_t *page_offset)
5796 {
5797 	size_t start_offset = offset_in_page(eb->start);
5798 	size_t byte_offset = BIT_BYTE(nr);
5799 	size_t offset;
5800 
5801 	/*
5802 	 * The byte we want is the offset of the extent buffer + the offset of
5803 	 * the bitmap item in the extent buffer + the offset of the byte in the
5804 	 * bitmap item.
5805 	 */
5806 	offset = start_offset + start + byte_offset;
5807 
5808 	*page_index = offset >> PAGE_SHIFT;
5809 	*page_offset = offset_in_page(offset);
5810 }
5811 
5812 /**
5813  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5814  * @eb: the extent buffer
5815  * @start: offset of the bitmap item in the extent buffer
5816  * @nr: bit number to test
5817  */
5818 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5819 			   unsigned long nr)
5820 {
5821 	u8 *kaddr;
5822 	struct page *page;
5823 	unsigned long i;
5824 	size_t offset;
5825 
5826 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5827 	page = eb->pages[i];
5828 	WARN_ON(!PageUptodate(page));
5829 	kaddr = page_address(page);
5830 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5831 }
5832 
5833 /**
5834  * extent_buffer_bitmap_set - set an area of a bitmap
5835  * @eb: the extent buffer
5836  * @start: offset of the bitmap item in the extent buffer
5837  * @pos: bit number of the first bit
5838  * @len: number of bits to set
5839  */
5840 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5841 			      unsigned long pos, unsigned long len)
5842 {
5843 	u8 *kaddr;
5844 	struct page *page;
5845 	unsigned long i;
5846 	size_t offset;
5847 	const unsigned int size = pos + len;
5848 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5849 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5850 
5851 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5852 	page = eb->pages[i];
5853 	WARN_ON(!PageUptodate(page));
5854 	kaddr = page_address(page);
5855 
5856 	while (len >= bits_to_set) {
5857 		kaddr[offset] |= mask_to_set;
5858 		len -= bits_to_set;
5859 		bits_to_set = BITS_PER_BYTE;
5860 		mask_to_set = ~0;
5861 		if (++offset >= PAGE_SIZE && len > 0) {
5862 			offset = 0;
5863 			page = eb->pages[++i];
5864 			WARN_ON(!PageUptodate(page));
5865 			kaddr = page_address(page);
5866 		}
5867 	}
5868 	if (len) {
5869 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5870 		kaddr[offset] |= mask_to_set;
5871 	}
5872 }
5873 
5874 
5875 /**
5876  * extent_buffer_bitmap_clear - clear an area of a bitmap
5877  * @eb: the extent buffer
5878  * @start: offset of the bitmap item in the extent buffer
5879  * @pos: bit number of the first bit
5880  * @len: number of bits to clear
5881  */
5882 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5883 				unsigned long pos, unsigned long len)
5884 {
5885 	u8 *kaddr;
5886 	struct page *page;
5887 	unsigned long i;
5888 	size_t offset;
5889 	const unsigned int size = pos + len;
5890 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5891 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5892 
5893 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5894 	page = eb->pages[i];
5895 	WARN_ON(!PageUptodate(page));
5896 	kaddr = page_address(page);
5897 
5898 	while (len >= bits_to_clear) {
5899 		kaddr[offset] &= ~mask_to_clear;
5900 		len -= bits_to_clear;
5901 		bits_to_clear = BITS_PER_BYTE;
5902 		mask_to_clear = ~0;
5903 		if (++offset >= PAGE_SIZE && len > 0) {
5904 			offset = 0;
5905 			page = eb->pages[++i];
5906 			WARN_ON(!PageUptodate(page));
5907 			kaddr = page_address(page);
5908 		}
5909 	}
5910 	if (len) {
5911 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5912 		kaddr[offset] &= ~mask_to_clear;
5913 	}
5914 }
5915 
5916 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5917 {
5918 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5919 	return distance < len;
5920 }
5921 
5922 static void copy_pages(struct page *dst_page, struct page *src_page,
5923 		       unsigned long dst_off, unsigned long src_off,
5924 		       unsigned long len)
5925 {
5926 	char *dst_kaddr = page_address(dst_page);
5927 	char *src_kaddr;
5928 	int must_memmove = 0;
5929 
5930 	if (dst_page != src_page) {
5931 		src_kaddr = page_address(src_page);
5932 	} else {
5933 		src_kaddr = dst_kaddr;
5934 		if (areas_overlap(src_off, dst_off, len))
5935 			must_memmove = 1;
5936 	}
5937 
5938 	if (must_memmove)
5939 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5940 	else
5941 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5942 }
5943 
5944 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5945 			   unsigned long src_offset, unsigned long len)
5946 {
5947 	struct btrfs_fs_info *fs_info = dst->fs_info;
5948 	size_t cur;
5949 	size_t dst_off_in_page;
5950 	size_t src_off_in_page;
5951 	size_t start_offset = offset_in_page(dst->start);
5952 	unsigned long dst_i;
5953 	unsigned long src_i;
5954 
5955 	if (src_offset + len > dst->len) {
5956 		btrfs_err(fs_info,
5957 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5958 			 src_offset, len, dst->len);
5959 		BUG();
5960 	}
5961 	if (dst_offset + len > dst->len) {
5962 		btrfs_err(fs_info,
5963 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5964 			 dst_offset, len, dst->len);
5965 		BUG();
5966 	}
5967 
5968 	while (len > 0) {
5969 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5970 		src_off_in_page = offset_in_page(start_offset + src_offset);
5971 
5972 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5973 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5974 
5975 		cur = min(len, (unsigned long)(PAGE_SIZE -
5976 					       src_off_in_page));
5977 		cur = min_t(unsigned long, cur,
5978 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5979 
5980 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5981 			   dst_off_in_page, src_off_in_page, cur);
5982 
5983 		src_offset += cur;
5984 		dst_offset += cur;
5985 		len -= cur;
5986 	}
5987 }
5988 
5989 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5990 			   unsigned long src_offset, unsigned long len)
5991 {
5992 	struct btrfs_fs_info *fs_info = dst->fs_info;
5993 	size_t cur;
5994 	size_t dst_off_in_page;
5995 	size_t src_off_in_page;
5996 	unsigned long dst_end = dst_offset + len - 1;
5997 	unsigned long src_end = src_offset + len - 1;
5998 	size_t start_offset = offset_in_page(dst->start);
5999 	unsigned long dst_i;
6000 	unsigned long src_i;
6001 
6002 	if (src_offset + len > dst->len) {
6003 		btrfs_err(fs_info,
6004 			  "memmove bogus src_offset %lu move len %lu len %lu",
6005 			  src_offset, len, dst->len);
6006 		BUG();
6007 	}
6008 	if (dst_offset + len > dst->len) {
6009 		btrfs_err(fs_info,
6010 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6011 			  dst_offset, len, dst->len);
6012 		BUG();
6013 	}
6014 	if (dst_offset < src_offset) {
6015 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6016 		return;
6017 	}
6018 	while (len > 0) {
6019 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6020 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6021 
6022 		dst_off_in_page = offset_in_page(start_offset + dst_end);
6023 		src_off_in_page = offset_in_page(start_offset + src_end);
6024 
6025 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6026 		cur = min(cur, dst_off_in_page + 1);
6027 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6028 			   dst_off_in_page - cur + 1,
6029 			   src_off_in_page - cur + 1, cur);
6030 
6031 		dst_end -= cur;
6032 		src_end -= cur;
6033 		len -= cur;
6034 	}
6035 }
6036 
6037 int try_release_extent_buffer(struct page *page)
6038 {
6039 	struct extent_buffer *eb;
6040 
6041 	/*
6042 	 * We need to make sure nobody is attaching this page to an eb right
6043 	 * now.
6044 	 */
6045 	spin_lock(&page->mapping->private_lock);
6046 	if (!PagePrivate(page)) {
6047 		spin_unlock(&page->mapping->private_lock);
6048 		return 1;
6049 	}
6050 
6051 	eb = (struct extent_buffer *)page->private;
6052 	BUG_ON(!eb);
6053 
6054 	/*
6055 	 * This is a little awful but should be ok, we need to make sure that
6056 	 * the eb doesn't disappear out from under us while we're looking at
6057 	 * this page.
6058 	 */
6059 	spin_lock(&eb->refs_lock);
6060 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6061 		spin_unlock(&eb->refs_lock);
6062 		spin_unlock(&page->mapping->private_lock);
6063 		return 0;
6064 	}
6065 	spin_unlock(&page->mapping->private_lock);
6066 
6067 	/*
6068 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6069 	 * so just return, this page will likely be freed soon anyway.
6070 	 */
6071 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6072 		spin_unlock(&eb->refs_lock);
6073 		return 0;
6074 	}
6075 
6076 	return release_extent_buffer(eb);
6077 }
6078