1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/bio.h> 6 #include <linux/mm.h> 7 #include <linux/pagemap.h> 8 #include <linux/page-flags.h> 9 #include <linux/sched/mm.h> 10 #include <linux/spinlock.h> 11 #include <linux/blkdev.h> 12 #include <linux/swap.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/prefetch.h> 16 #include <linux/fsverity.h> 17 #include "misc.h" 18 #include "extent_io.h" 19 #include "extent-io-tree.h" 20 #include "extent_map.h" 21 #include "ctree.h" 22 #include "btrfs_inode.h" 23 #include "bio.h" 24 #include "check-integrity.h" 25 #include "locking.h" 26 #include "rcu-string.h" 27 #include "backref.h" 28 #include "disk-io.h" 29 #include "subpage.h" 30 #include "zoned.h" 31 #include "block-group.h" 32 #include "compression.h" 33 #include "fs.h" 34 #include "accessors.h" 35 #include "file-item.h" 36 #include "file.h" 37 #include "dev-replace.h" 38 #include "super.h" 39 #include "transaction.h" 40 41 static struct kmem_cache *extent_buffer_cache; 42 43 #ifdef CONFIG_BTRFS_DEBUG 44 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb) 45 { 46 struct btrfs_fs_info *fs_info = eb->fs_info; 47 unsigned long flags; 48 49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 50 list_add(&eb->leak_list, &fs_info->allocated_ebs); 51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 52 } 53 54 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb) 55 { 56 struct btrfs_fs_info *fs_info = eb->fs_info; 57 unsigned long flags; 58 59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 60 list_del(&eb->leak_list); 61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 62 } 63 64 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info) 65 { 66 struct extent_buffer *eb; 67 unsigned long flags; 68 69 /* 70 * If we didn't get into open_ctree our allocated_ebs will not be 71 * initialized, so just skip this. 72 */ 73 if (!fs_info->allocated_ebs.next) 74 return; 75 76 WARN_ON(!list_empty(&fs_info->allocated_ebs)); 77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags); 78 while (!list_empty(&fs_info->allocated_ebs)) { 79 eb = list_first_entry(&fs_info->allocated_ebs, 80 struct extent_buffer, leak_list); 81 pr_err( 82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n", 83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags, 84 btrfs_header_owner(eb)); 85 list_del(&eb->leak_list); 86 kmem_cache_free(extent_buffer_cache, eb); 87 } 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags); 89 } 90 #else 91 #define btrfs_leak_debug_add_eb(eb) do {} while (0) 92 #define btrfs_leak_debug_del_eb(eb) do {} while (0) 93 #endif 94 95 /* 96 * Structure to record info about the bio being assembled, and other info like 97 * how many bytes are there before stripe/ordered extent boundary. 98 */ 99 struct btrfs_bio_ctrl { 100 struct bio *bio; 101 int mirror_num; 102 enum btrfs_compression_type compress_type; 103 u32 len_to_oe_boundary; 104 btrfs_bio_end_io_t end_io_func; 105 106 /* 107 * This is for metadata read, to provide the extra needed verification 108 * info. This has to be provided for submit_one_bio(), as 109 * submit_one_bio() can submit a bio if it ends at stripe boundary. If 110 * no such parent_check is provided, the metadata can hit false alert at 111 * endio time. 112 */ 113 struct btrfs_tree_parent_check *parent_check; 114 115 /* 116 * Tell writepage not to lock the state bits for this range, it still 117 * does the unlocking. 118 */ 119 bool extent_locked; 120 121 /* Tell the submit_bio code to use REQ_SYNC */ 122 bool sync_io; 123 }; 124 125 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl) 126 { 127 struct bio *bio; 128 struct bio_vec *bv; 129 struct inode *inode; 130 int mirror_num; 131 132 if (!bio_ctrl->bio) 133 return; 134 135 bio = bio_ctrl->bio; 136 bv = bio_first_bvec_all(bio); 137 inode = bv->bv_page->mapping->host; 138 mirror_num = bio_ctrl->mirror_num; 139 140 /* Caller should ensure the bio has at least some range added */ 141 ASSERT(bio->bi_iter.bi_size); 142 143 if (!is_data_inode(inode)) { 144 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 145 /* 146 * For metadata read, we should have the parent_check, 147 * and copy it to bbio for metadata verification. 148 */ 149 ASSERT(bio_ctrl->parent_check); 150 memcpy(&btrfs_bio(bio)->parent_check, 151 bio_ctrl->parent_check, 152 sizeof(struct btrfs_tree_parent_check)); 153 } 154 bio->bi_opf |= REQ_META; 155 } 156 157 if (btrfs_op(bio) == BTRFS_MAP_READ && 158 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) 159 btrfs_submit_compressed_read(inode, bio, mirror_num); 160 else 161 btrfs_submit_bio(bio, mirror_num); 162 163 /* The bio is owned by the end_io handler now */ 164 bio_ctrl->bio = NULL; 165 } 166 167 /* 168 * Submit or fail the current bio in the bio_ctrl structure. 169 */ 170 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret) 171 { 172 struct bio *bio = bio_ctrl->bio; 173 174 if (!bio) 175 return; 176 177 if (ret) { 178 ASSERT(ret < 0); 179 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 180 /* The bio is owned by the end_io handler now */ 181 bio_ctrl->bio = NULL; 182 } else { 183 submit_one_bio(bio_ctrl); 184 } 185 } 186 187 int __init extent_buffer_init_cachep(void) 188 { 189 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 190 sizeof(struct extent_buffer), 0, 191 SLAB_MEM_SPREAD, NULL); 192 if (!extent_buffer_cache) 193 return -ENOMEM; 194 195 return 0; 196 } 197 198 void __cold extent_buffer_free_cachep(void) 199 { 200 /* 201 * Make sure all delayed rcu free are flushed before we 202 * destroy caches. 203 */ 204 rcu_barrier(); 205 kmem_cache_destroy(extent_buffer_cache); 206 } 207 208 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 209 { 210 unsigned long index = start >> PAGE_SHIFT; 211 unsigned long end_index = end >> PAGE_SHIFT; 212 struct page *page; 213 214 while (index <= end_index) { 215 page = find_get_page(inode->i_mapping, index); 216 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 217 clear_page_dirty_for_io(page); 218 put_page(page); 219 index++; 220 } 221 } 222 223 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 224 { 225 struct address_space *mapping = inode->i_mapping; 226 unsigned long index = start >> PAGE_SHIFT; 227 unsigned long end_index = end >> PAGE_SHIFT; 228 struct folio *folio; 229 230 while (index <= end_index) { 231 folio = filemap_get_folio(mapping, index); 232 filemap_dirty_folio(mapping, folio); 233 folio_account_redirty(folio); 234 index += folio_nr_pages(folio); 235 folio_put(folio); 236 } 237 } 238 239 /* 240 * Process one page for __process_pages_contig(). 241 * 242 * Return >0 if we hit @page == @locked_page. 243 * Return 0 if we updated the page status. 244 * Return -EGAIN if the we need to try again. 245 * (For PAGE_LOCK case but got dirty page or page not belong to mapping) 246 */ 247 static int process_one_page(struct btrfs_fs_info *fs_info, 248 struct address_space *mapping, 249 struct page *page, struct page *locked_page, 250 unsigned long page_ops, u64 start, u64 end) 251 { 252 u32 len; 253 254 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX); 255 len = end + 1 - start; 256 257 if (page_ops & PAGE_SET_ORDERED) 258 btrfs_page_clamp_set_ordered(fs_info, page, start, len); 259 if (page_ops & PAGE_SET_ERROR) 260 btrfs_page_clamp_set_error(fs_info, page, start, len); 261 if (page_ops & PAGE_START_WRITEBACK) { 262 btrfs_page_clamp_clear_dirty(fs_info, page, start, len); 263 btrfs_page_clamp_set_writeback(fs_info, page, start, len); 264 } 265 if (page_ops & PAGE_END_WRITEBACK) 266 btrfs_page_clamp_clear_writeback(fs_info, page, start, len); 267 268 if (page == locked_page) 269 return 1; 270 271 if (page_ops & PAGE_LOCK) { 272 int ret; 273 274 ret = btrfs_page_start_writer_lock(fs_info, page, start, len); 275 if (ret) 276 return ret; 277 if (!PageDirty(page) || page->mapping != mapping) { 278 btrfs_page_end_writer_lock(fs_info, page, start, len); 279 return -EAGAIN; 280 } 281 } 282 if (page_ops & PAGE_UNLOCK) 283 btrfs_page_end_writer_lock(fs_info, page, start, len); 284 return 0; 285 } 286 287 static int __process_pages_contig(struct address_space *mapping, 288 struct page *locked_page, 289 u64 start, u64 end, unsigned long page_ops, 290 u64 *processed_end) 291 { 292 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 293 pgoff_t start_index = start >> PAGE_SHIFT; 294 pgoff_t end_index = end >> PAGE_SHIFT; 295 pgoff_t index = start_index; 296 unsigned long pages_processed = 0; 297 struct folio_batch fbatch; 298 int err = 0; 299 int i; 300 301 if (page_ops & PAGE_LOCK) { 302 ASSERT(page_ops == PAGE_LOCK); 303 ASSERT(processed_end && *processed_end == start); 304 } 305 306 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index) 307 mapping_set_error(mapping, -EIO); 308 309 folio_batch_init(&fbatch); 310 while (index <= end_index) { 311 int found_folios; 312 313 found_folios = filemap_get_folios_contig(mapping, &index, 314 end_index, &fbatch); 315 316 if (found_folios == 0) { 317 /* 318 * Only if we're going to lock these pages, we can find 319 * nothing at @index. 320 */ 321 ASSERT(page_ops & PAGE_LOCK); 322 err = -EAGAIN; 323 goto out; 324 } 325 326 for (i = 0; i < found_folios; i++) { 327 int process_ret; 328 struct folio *folio = fbatch.folios[i]; 329 process_ret = process_one_page(fs_info, mapping, 330 &folio->page, locked_page, page_ops, 331 start, end); 332 if (process_ret < 0) { 333 err = -EAGAIN; 334 folio_batch_release(&fbatch); 335 goto out; 336 } 337 pages_processed += folio_nr_pages(folio); 338 } 339 folio_batch_release(&fbatch); 340 cond_resched(); 341 } 342 out: 343 if (err && processed_end) { 344 /* 345 * Update @processed_end. I know this is awful since it has 346 * two different return value patterns (inclusive vs exclusive). 347 * 348 * But the exclusive pattern is necessary if @start is 0, or we 349 * underflow and check against processed_end won't work as 350 * expected. 351 */ 352 if (pages_processed) 353 *processed_end = min(end, 354 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1); 355 else 356 *processed_end = start; 357 } 358 return err; 359 } 360 361 static noinline void __unlock_for_delalloc(struct inode *inode, 362 struct page *locked_page, 363 u64 start, u64 end) 364 { 365 unsigned long index = start >> PAGE_SHIFT; 366 unsigned long end_index = end >> PAGE_SHIFT; 367 368 ASSERT(locked_page); 369 if (index == locked_page->index && end_index == index) 370 return; 371 372 __process_pages_contig(inode->i_mapping, locked_page, start, end, 373 PAGE_UNLOCK, NULL); 374 } 375 376 static noinline int lock_delalloc_pages(struct inode *inode, 377 struct page *locked_page, 378 u64 delalloc_start, 379 u64 delalloc_end) 380 { 381 unsigned long index = delalloc_start >> PAGE_SHIFT; 382 unsigned long end_index = delalloc_end >> PAGE_SHIFT; 383 u64 processed_end = delalloc_start; 384 int ret; 385 386 ASSERT(locked_page); 387 if (index == locked_page->index && index == end_index) 388 return 0; 389 390 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start, 391 delalloc_end, PAGE_LOCK, &processed_end); 392 if (ret == -EAGAIN && processed_end > delalloc_start) 393 __unlock_for_delalloc(inode, locked_page, delalloc_start, 394 processed_end); 395 return ret; 396 } 397 398 /* 399 * Find and lock a contiguous range of bytes in the file marked as delalloc, no 400 * more than @max_bytes. 401 * 402 * @start: The original start bytenr to search. 403 * Will store the extent range start bytenr. 404 * @end: The original end bytenr of the search range 405 * Will store the extent range end bytenr. 406 * 407 * Return true if we find a delalloc range which starts inside the original 408 * range, and @start/@end will store the delalloc range start/end. 409 * 410 * Return false if we can't find any delalloc range which starts inside the 411 * original range, and @start/@end will be the non-delalloc range start/end. 412 */ 413 EXPORT_FOR_TESTS 414 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode, 415 struct page *locked_page, u64 *start, 416 u64 *end) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 420 const u64 orig_start = *start; 421 const u64 orig_end = *end; 422 /* The sanity tests may not set a valid fs_info. */ 423 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE; 424 u64 delalloc_start; 425 u64 delalloc_end; 426 bool found; 427 struct extent_state *cached_state = NULL; 428 int ret; 429 int loops = 0; 430 431 /* Caller should pass a valid @end to indicate the search range end */ 432 ASSERT(orig_end > orig_start); 433 434 /* The range should at least cover part of the page */ 435 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE || 436 orig_end <= page_offset(locked_page))); 437 again: 438 /* step one, find a bunch of delalloc bytes starting at start */ 439 delalloc_start = *start; 440 delalloc_end = 0; 441 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end, 442 max_bytes, &cached_state); 443 if (!found || delalloc_end <= *start || delalloc_start > orig_end) { 444 *start = delalloc_start; 445 446 /* @delalloc_end can be -1, never go beyond @orig_end */ 447 *end = min(delalloc_end, orig_end); 448 free_extent_state(cached_state); 449 return false; 450 } 451 452 /* 453 * start comes from the offset of locked_page. We have to lock 454 * pages in order, so we can't process delalloc bytes before 455 * locked_page 456 */ 457 if (delalloc_start < *start) 458 delalloc_start = *start; 459 460 /* 461 * make sure to limit the number of pages we try to lock down 462 */ 463 if (delalloc_end + 1 - delalloc_start > max_bytes) 464 delalloc_end = delalloc_start + max_bytes - 1; 465 466 /* step two, lock all the pages after the page that has start */ 467 ret = lock_delalloc_pages(inode, locked_page, 468 delalloc_start, delalloc_end); 469 ASSERT(!ret || ret == -EAGAIN); 470 if (ret == -EAGAIN) { 471 /* some of the pages are gone, lets avoid looping by 472 * shortening the size of the delalloc range we're searching 473 */ 474 free_extent_state(cached_state); 475 cached_state = NULL; 476 if (!loops) { 477 max_bytes = PAGE_SIZE; 478 loops = 1; 479 goto again; 480 } else { 481 found = false; 482 goto out_failed; 483 } 484 } 485 486 /* step three, lock the state bits for the whole range */ 487 lock_extent(tree, delalloc_start, delalloc_end, &cached_state); 488 489 /* then test to make sure it is all still delalloc */ 490 ret = test_range_bit(tree, delalloc_start, delalloc_end, 491 EXTENT_DELALLOC, 1, cached_state); 492 if (!ret) { 493 unlock_extent(tree, delalloc_start, delalloc_end, 494 &cached_state); 495 __unlock_for_delalloc(inode, locked_page, 496 delalloc_start, delalloc_end); 497 cond_resched(); 498 goto again; 499 } 500 free_extent_state(cached_state); 501 *start = delalloc_start; 502 *end = delalloc_end; 503 out_failed: 504 return found; 505 } 506 507 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 508 struct page *locked_page, 509 u32 clear_bits, unsigned long page_ops) 510 { 511 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL); 512 513 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page, 514 start, end, page_ops, NULL); 515 } 516 517 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len) 518 { 519 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 520 521 ASSERT(page_offset(page) <= start && 522 start + len <= page_offset(page) + PAGE_SIZE); 523 524 if (uptodate) { 525 if (fsverity_active(page->mapping->host) && 526 !PageError(page) && 527 !PageUptodate(page) && 528 start < i_size_read(page->mapping->host) && 529 !fsverity_verify_page(page)) { 530 btrfs_page_set_error(fs_info, page, start, len); 531 } else { 532 btrfs_page_set_uptodate(fs_info, page, start, len); 533 } 534 } else { 535 btrfs_page_clear_uptodate(fs_info, page, start, len); 536 btrfs_page_set_error(fs_info, page, start, len); 537 } 538 539 if (!btrfs_is_subpage(fs_info, page)) 540 unlock_page(page); 541 else 542 btrfs_subpage_end_reader(fs_info, page, start, len); 543 } 544 545 /* lots and lots of room for performance fixes in the end_bio funcs */ 546 547 void end_extent_writepage(struct page *page, int err, u64 start, u64 end) 548 { 549 struct btrfs_inode *inode; 550 const bool uptodate = (err == 0); 551 int ret = 0; 552 553 ASSERT(page && page->mapping); 554 inode = BTRFS_I(page->mapping->host); 555 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate); 556 557 if (!uptodate) { 558 const struct btrfs_fs_info *fs_info = inode->root->fs_info; 559 u32 len; 560 561 ASSERT(end + 1 - start <= U32_MAX); 562 len = end + 1 - start; 563 564 btrfs_page_clear_uptodate(fs_info, page, start, len); 565 btrfs_page_set_error(fs_info, page, start, len); 566 ret = err < 0 ? err : -EIO; 567 mapping_set_error(page->mapping, ret); 568 } 569 } 570 571 /* 572 * after a writepage IO is done, we need to: 573 * clear the uptodate bits on error 574 * clear the writeback bits in the extent tree for this IO 575 * end_page_writeback if the page has no more pending IO 576 * 577 * Scheduling is not allowed, so the extent state tree is expected 578 * to have one and only one object corresponding to this IO. 579 */ 580 static void end_bio_extent_writepage(struct btrfs_bio *bbio) 581 { 582 struct bio *bio = &bbio->bio; 583 int error = blk_status_to_errno(bio->bi_status); 584 struct bio_vec *bvec; 585 u64 start; 586 u64 end; 587 struct bvec_iter_all iter_all; 588 589 ASSERT(!bio_flagged(bio, BIO_CLONED)); 590 bio_for_each_segment_all(bvec, bio, iter_all) { 591 struct page *page = bvec->bv_page; 592 struct inode *inode = page->mapping->host; 593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 594 const u32 sectorsize = fs_info->sectorsize; 595 596 /* Our read/write should always be sector aligned. */ 597 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 598 btrfs_err(fs_info, 599 "partial page write in btrfs with offset %u and length %u", 600 bvec->bv_offset, bvec->bv_len); 601 else if (!IS_ALIGNED(bvec->bv_len, sectorsize)) 602 btrfs_info(fs_info, 603 "incomplete page write with offset %u and length %u", 604 bvec->bv_offset, bvec->bv_len); 605 606 start = page_offset(page) + bvec->bv_offset; 607 end = start + bvec->bv_len - 1; 608 609 end_extent_writepage(page, error, start, end); 610 611 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len); 612 } 613 614 bio_put(bio); 615 } 616 617 /* 618 * Record previously processed extent range 619 * 620 * For endio_readpage_release_extent() to handle a full extent range, reducing 621 * the extent io operations. 622 */ 623 struct processed_extent { 624 struct btrfs_inode *inode; 625 /* Start of the range in @inode */ 626 u64 start; 627 /* End of the range in @inode */ 628 u64 end; 629 bool uptodate; 630 }; 631 632 /* 633 * Try to release processed extent range 634 * 635 * May not release the extent range right now if the current range is 636 * contiguous to processed extent. 637 * 638 * Will release processed extent when any of @inode, @uptodate, the range is 639 * no longer contiguous to the processed range. 640 * 641 * Passing @inode == NULL will force processed extent to be released. 642 */ 643 static void endio_readpage_release_extent(struct processed_extent *processed, 644 struct btrfs_inode *inode, u64 start, u64 end, 645 bool uptodate) 646 { 647 struct extent_state *cached = NULL; 648 struct extent_io_tree *tree; 649 650 /* The first extent, initialize @processed */ 651 if (!processed->inode) 652 goto update; 653 654 /* 655 * Contiguous to processed extent, just uptodate the end. 656 * 657 * Several things to notice: 658 * 659 * - bio can be merged as long as on-disk bytenr is contiguous 660 * This means we can have page belonging to other inodes, thus need to 661 * check if the inode still matches. 662 * - bvec can contain range beyond current page for multi-page bvec 663 * Thus we need to do processed->end + 1 >= start check 664 */ 665 if (processed->inode == inode && processed->uptodate == uptodate && 666 processed->end + 1 >= start && end >= processed->end) { 667 processed->end = end; 668 return; 669 } 670 671 tree = &processed->inode->io_tree; 672 /* 673 * Now we don't have range contiguous to the processed range, release 674 * the processed range now. 675 */ 676 unlock_extent(tree, processed->start, processed->end, &cached); 677 678 update: 679 /* Update processed to current range */ 680 processed->inode = inode; 681 processed->start = start; 682 processed->end = end; 683 processed->uptodate = uptodate; 684 } 685 686 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page) 687 { 688 ASSERT(PageLocked(page)); 689 if (!btrfs_is_subpage(fs_info, page)) 690 return; 691 692 ASSERT(PagePrivate(page)); 693 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE); 694 } 695 696 /* 697 * Find extent buffer for a givne bytenr. 698 * 699 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking 700 * in endio context. 701 */ 702 static struct extent_buffer *find_extent_buffer_readpage( 703 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 704 { 705 struct extent_buffer *eb; 706 707 /* 708 * For regular sectorsize, we can use page->private to grab extent 709 * buffer 710 */ 711 if (fs_info->nodesize >= PAGE_SIZE) { 712 ASSERT(PagePrivate(page) && page->private); 713 return (struct extent_buffer *)page->private; 714 } 715 716 /* For subpage case, we need to lookup buffer radix tree */ 717 rcu_read_lock(); 718 eb = radix_tree_lookup(&fs_info->buffer_radix, 719 bytenr >> fs_info->sectorsize_bits); 720 rcu_read_unlock(); 721 ASSERT(eb); 722 return eb; 723 } 724 725 /* 726 * after a readpage IO is done, we need to: 727 * clear the uptodate bits on error 728 * set the uptodate bits if things worked 729 * set the page up to date if all extents in the tree are uptodate 730 * clear the lock bit in the extent tree 731 * unlock the page if there are no other extents locked for it 732 * 733 * Scheduling is not allowed, so the extent state tree is expected 734 * to have one and only one object corresponding to this IO. 735 */ 736 static void end_bio_extent_readpage(struct btrfs_bio *bbio) 737 { 738 struct bio *bio = &bbio->bio; 739 struct bio_vec *bvec; 740 struct processed_extent processed = { 0 }; 741 /* 742 * The offset to the beginning of a bio, since one bio can never be 743 * larger than UINT_MAX, u32 here is enough. 744 */ 745 u32 bio_offset = 0; 746 int mirror; 747 struct bvec_iter_all iter_all; 748 749 ASSERT(!bio_flagged(bio, BIO_CLONED)); 750 bio_for_each_segment_all(bvec, bio, iter_all) { 751 bool uptodate = !bio->bi_status; 752 struct page *page = bvec->bv_page; 753 struct inode *inode = page->mapping->host; 754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 755 const u32 sectorsize = fs_info->sectorsize; 756 u64 start; 757 u64 end; 758 u32 len; 759 760 btrfs_debug(fs_info, 761 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u", 762 bio->bi_iter.bi_sector, bio->bi_status, 763 bbio->mirror_num); 764 765 /* 766 * We always issue full-sector reads, but if some block in a 767 * page fails to read, blk_update_request() will advance 768 * bv_offset and adjust bv_len to compensate. Print a warning 769 * for unaligned offsets, and an error if they don't add up to 770 * a full sector. 771 */ 772 if (!IS_ALIGNED(bvec->bv_offset, sectorsize)) 773 btrfs_err(fs_info, 774 "partial page read in btrfs with offset %u and length %u", 775 bvec->bv_offset, bvec->bv_len); 776 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len, 777 sectorsize)) 778 btrfs_info(fs_info, 779 "incomplete page read with offset %u and length %u", 780 bvec->bv_offset, bvec->bv_len); 781 782 start = page_offset(page) + bvec->bv_offset; 783 end = start + bvec->bv_len - 1; 784 len = bvec->bv_len; 785 786 mirror = bbio->mirror_num; 787 if (uptodate && !is_data_inode(inode) && 788 btrfs_validate_metadata_buffer(bbio, page, start, end, mirror)) 789 uptodate = false; 790 791 if (likely(uptodate)) { 792 loff_t i_size = i_size_read(inode); 793 pgoff_t end_index = i_size >> PAGE_SHIFT; 794 795 /* 796 * Zero out the remaining part if this range straddles 797 * i_size. 798 * 799 * Here we should only zero the range inside the bvec, 800 * not touch anything else. 801 * 802 * NOTE: i_size is exclusive while end is inclusive. 803 */ 804 if (page->index == end_index && i_size <= end) { 805 u32 zero_start = max(offset_in_page(i_size), 806 offset_in_page(start)); 807 808 zero_user_segment(page, zero_start, 809 offset_in_page(end) + 1); 810 } 811 } else if (!is_data_inode(inode)) { 812 struct extent_buffer *eb; 813 814 eb = find_extent_buffer_readpage(fs_info, page, start); 815 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 816 eb->read_mirror = mirror; 817 atomic_dec(&eb->io_pages); 818 } 819 820 /* Update page status and unlock. */ 821 end_page_read(page, uptodate, start, len); 822 endio_readpage_release_extent(&processed, BTRFS_I(inode), 823 start, end, PageUptodate(page)); 824 825 ASSERT(bio_offset + len > bio_offset); 826 bio_offset += len; 827 828 } 829 /* Release the last extent */ 830 endio_readpage_release_extent(&processed, NULL, 0, 0, false); 831 bio_put(bio); 832 } 833 834 /* 835 * Populate every free slot in a provided array with pages. 836 * 837 * @nr_pages: number of pages to allocate 838 * @page_array: the array to fill with pages; any existing non-null entries in 839 * the array will be skipped 840 * 841 * Return: 0 if all pages were able to be allocated; 842 * -ENOMEM otherwise, and the caller is responsible for freeing all 843 * non-null page pointers in the array. 844 */ 845 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array) 846 { 847 unsigned int allocated; 848 849 for (allocated = 0; allocated < nr_pages;) { 850 unsigned int last = allocated; 851 852 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array); 853 854 if (allocated == nr_pages) 855 return 0; 856 857 /* 858 * During this iteration, no page could be allocated, even 859 * though alloc_pages_bulk_array() falls back to alloc_page() 860 * if it could not bulk-allocate. So we must be out of memory. 861 */ 862 if (allocated == last) 863 return -ENOMEM; 864 865 memalloc_retry_wait(GFP_NOFS); 866 } 867 return 0; 868 } 869 870 /* 871 * Attempt to add a page to bio. 872 * 873 * @bio_ctrl: record both the bio, and its bio_flags 874 * @page: page to add to the bio 875 * @disk_bytenr: offset of the new bio or to check whether we are adding 876 * a contiguous page to the previous one 877 * @size: portion of page that we want to write 878 * @pg_offset: starting offset in the page 879 * @compress_type: compression type of the current bio to see if we can merge them 880 * 881 * Attempt to add a page to bio considering stripe alignment etc. 882 * 883 * Return >= 0 for the number of bytes added to the bio. 884 * Can return 0 if the current bio is already at stripe/zone boundary. 885 * Return <0 for error. 886 */ 887 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl, 888 struct page *page, 889 u64 disk_bytenr, unsigned int size, 890 unsigned int pg_offset, 891 enum btrfs_compression_type compress_type) 892 { 893 struct bio *bio = bio_ctrl->bio; 894 u32 bio_size = bio->bi_iter.bi_size; 895 u32 real_size; 896 const sector_t sector = disk_bytenr >> SECTOR_SHIFT; 897 bool contig = false; 898 899 ASSERT(bio); 900 /* The limit should be calculated when bio_ctrl->bio is allocated */ 901 ASSERT(bio_ctrl->len_to_oe_boundary); 902 if (bio_ctrl->compress_type != compress_type) 903 return 0; 904 905 906 if (bio->bi_iter.bi_size == 0) { 907 /* We can always add a page into an empty bio. */ 908 contig = true; 909 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) { 910 struct bio_vec *bvec = bio_last_bvec_all(bio); 911 912 /* 913 * The contig check requires the following conditions to be met: 914 * 1) The pages are belonging to the same inode 915 * This is implied by the call chain. 916 * 917 * 2) The range has adjacent logical bytenr 918 * 919 * 3) The range has adjacent file offset 920 * This is required for the usage of btrfs_bio->file_offset. 921 */ 922 if (bio_end_sector(bio) == sector && 923 page_offset(bvec->bv_page) + bvec->bv_offset + 924 bvec->bv_len == page_offset(page) + pg_offset) 925 contig = true; 926 } else { 927 /* 928 * For compression, all IO should have its logical bytenr 929 * set to the starting bytenr of the compressed extent. 930 */ 931 contig = bio->bi_iter.bi_sector == sector; 932 } 933 934 if (!contig) 935 return 0; 936 937 real_size = min(bio_ctrl->len_to_oe_boundary - bio_size, size); 938 939 /* 940 * If real_size is 0, never call bio_add_*_page(), as even size is 0, 941 * bio will still execute its endio function on the page! 942 */ 943 if (real_size == 0) 944 return 0; 945 946 return bio_add_page(bio, page, real_size, pg_offset); 947 } 948 949 static void calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl, 950 struct btrfs_inode *inode, u64 file_offset) 951 { 952 struct btrfs_ordered_extent *ordered; 953 954 /* 955 * Limit the extent to the ordered boundary for Zone Append. 956 * Compressed bios aren't submitted directly, so it doesn't apply to 957 * them. 958 */ 959 if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE && 960 btrfs_use_zone_append(btrfs_bio(bio_ctrl->bio))) { 961 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 962 if (ordered) { 963 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX, 964 ordered->file_offset + 965 ordered->disk_num_bytes - file_offset); 966 btrfs_put_ordered_extent(ordered); 967 return; 968 } 969 } 970 971 bio_ctrl->len_to_oe_boundary = U32_MAX; 972 } 973 974 static void alloc_new_bio(struct btrfs_inode *inode, 975 struct btrfs_bio_ctrl *bio_ctrl, 976 struct writeback_control *wbc, blk_opf_t opf, 977 u64 disk_bytenr, u32 offset, u64 file_offset, 978 enum btrfs_compression_type compress_type) 979 { 980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 981 struct bio *bio; 982 983 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, inode, bio_ctrl->end_io_func, 984 NULL); 985 /* 986 * For compressed page range, its disk_bytenr is always @disk_bytenr 987 * passed in, no matter if we have added any range into previous bio. 988 */ 989 if (compress_type != BTRFS_COMPRESS_NONE) 990 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 991 else 992 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT; 993 btrfs_bio(bio)->file_offset = file_offset; 994 bio_ctrl->bio = bio; 995 bio_ctrl->compress_type = compress_type; 996 calc_bio_boundaries(bio_ctrl, inode, file_offset); 997 998 if (wbc) { 999 /* 1000 * Pick the last added device to support cgroup writeback. For 1001 * multi-device file systems this means blk-cgroup policies have 1002 * to always be set on the last added/replaced device. 1003 * This is a bit odd but has been like that for a long time. 1004 */ 1005 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev); 1006 wbc_init_bio(wbc, bio); 1007 } 1008 } 1009 1010 /* 1011 * @opf: bio REQ_OP_* and REQ_* flags as one value 1012 * @wbc: optional writeback control for io accounting 1013 * @disk_bytenr: logical bytenr where the write will be 1014 * @page: page to add to the bio 1015 * @size: portion of page that we want to write to 1016 * @pg_offset: offset of the new bio or to check whether we are adding 1017 * a contiguous page to the previous one 1018 * @compress_type: compress type for current bio 1019 * 1020 * The will either add the page into the existing @bio_ctrl->bio, or allocate a 1021 * new one in @bio_ctrl->bio. 1022 * The mirror number for this IO should already be initizlied in 1023 * @bio_ctrl->mirror_num. 1024 */ 1025 static int submit_extent_page(blk_opf_t opf, 1026 struct writeback_control *wbc, 1027 struct btrfs_bio_ctrl *bio_ctrl, 1028 u64 disk_bytenr, struct page *page, 1029 size_t size, unsigned long pg_offset, 1030 enum btrfs_compression_type compress_type, 1031 bool force_bio_submit) 1032 { 1033 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1034 unsigned int cur = pg_offset; 1035 1036 ASSERT(bio_ctrl); 1037 1038 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE && 1039 pg_offset + size <= PAGE_SIZE); 1040 1041 ASSERT(bio_ctrl->end_io_func); 1042 1043 if (force_bio_submit) 1044 submit_one_bio(bio_ctrl); 1045 1046 while (cur < pg_offset + size) { 1047 u32 offset = cur - pg_offset; 1048 int added; 1049 1050 /* Allocate new bio if needed */ 1051 if (!bio_ctrl->bio) { 1052 alloc_new_bio(inode, bio_ctrl, wbc, opf, disk_bytenr, 1053 offset, page_offset(page) + cur, 1054 compress_type); 1055 } 1056 /* 1057 * We must go through btrfs_bio_add_page() to ensure each 1058 * page range won't cross various boundaries. 1059 */ 1060 if (compress_type != BTRFS_COMPRESS_NONE) 1061 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, 1062 size - offset, pg_offset + offset, 1063 compress_type); 1064 else 1065 added = btrfs_bio_add_page(bio_ctrl, page, 1066 disk_bytenr + offset, size - offset, 1067 pg_offset + offset, compress_type); 1068 1069 /* Metadata page range should never be split */ 1070 if (!is_data_inode(&inode->vfs_inode)) 1071 ASSERT(added == 0 || added == size - offset); 1072 1073 /* At least we added some page, update the account */ 1074 if (wbc && added) 1075 wbc_account_cgroup_owner(wbc, page, added); 1076 1077 /* We have reached boundary, submit right now */ 1078 if (added < size - offset) { 1079 /* The bio should contain some page(s) */ 1080 ASSERT(bio_ctrl->bio->bi_iter.bi_size); 1081 submit_one_bio(bio_ctrl); 1082 } 1083 cur += added; 1084 } 1085 return 0; 1086 } 1087 1088 static int attach_extent_buffer_page(struct extent_buffer *eb, 1089 struct page *page, 1090 struct btrfs_subpage *prealloc) 1091 { 1092 struct btrfs_fs_info *fs_info = eb->fs_info; 1093 int ret = 0; 1094 1095 /* 1096 * If the page is mapped to btree inode, we should hold the private 1097 * lock to prevent race. 1098 * For cloned or dummy extent buffers, their pages are not mapped and 1099 * will not race with any other ebs. 1100 */ 1101 if (page->mapping) 1102 lockdep_assert_held(&page->mapping->private_lock); 1103 1104 if (fs_info->nodesize >= PAGE_SIZE) { 1105 if (!PagePrivate(page)) 1106 attach_page_private(page, eb); 1107 else 1108 WARN_ON(page->private != (unsigned long)eb); 1109 return 0; 1110 } 1111 1112 /* Already mapped, just free prealloc */ 1113 if (PagePrivate(page)) { 1114 btrfs_free_subpage(prealloc); 1115 return 0; 1116 } 1117 1118 if (prealloc) 1119 /* Has preallocated memory for subpage */ 1120 attach_page_private(page, prealloc); 1121 else 1122 /* Do new allocation to attach subpage */ 1123 ret = btrfs_attach_subpage(fs_info, page, 1124 BTRFS_SUBPAGE_METADATA); 1125 return ret; 1126 } 1127 1128 int set_page_extent_mapped(struct page *page) 1129 { 1130 struct btrfs_fs_info *fs_info; 1131 1132 ASSERT(page->mapping); 1133 1134 if (PagePrivate(page)) 1135 return 0; 1136 1137 fs_info = btrfs_sb(page->mapping->host->i_sb); 1138 1139 if (btrfs_is_subpage(fs_info, page)) 1140 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA); 1141 1142 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE); 1143 return 0; 1144 } 1145 1146 void clear_page_extent_mapped(struct page *page) 1147 { 1148 struct btrfs_fs_info *fs_info; 1149 1150 ASSERT(page->mapping); 1151 1152 if (!PagePrivate(page)) 1153 return; 1154 1155 fs_info = btrfs_sb(page->mapping->host->i_sb); 1156 if (btrfs_is_subpage(fs_info, page)) 1157 return btrfs_detach_subpage(fs_info, page); 1158 1159 detach_page_private(page); 1160 } 1161 1162 static struct extent_map * 1163 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 1164 u64 start, u64 len, struct extent_map **em_cached) 1165 { 1166 struct extent_map *em; 1167 1168 if (em_cached && *em_cached) { 1169 em = *em_cached; 1170 if (extent_map_in_tree(em) && start >= em->start && 1171 start < extent_map_end(em)) { 1172 refcount_inc(&em->refs); 1173 return em; 1174 } 1175 1176 free_extent_map(em); 1177 *em_cached = NULL; 1178 } 1179 1180 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len); 1181 if (em_cached && !IS_ERR(em)) { 1182 BUG_ON(*em_cached); 1183 refcount_inc(&em->refs); 1184 *em_cached = em; 1185 } 1186 return em; 1187 } 1188 /* 1189 * basic readpage implementation. Locked extent state structs are inserted 1190 * into the tree that are removed when the IO is done (by the end_io 1191 * handlers) 1192 * XXX JDM: This needs looking at to ensure proper page locking 1193 * return 0 on success, otherwise return error 1194 */ 1195 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached, 1196 struct btrfs_bio_ctrl *bio_ctrl, 1197 blk_opf_t read_flags, u64 *prev_em_start) 1198 { 1199 struct inode *inode = page->mapping->host; 1200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1201 u64 start = page_offset(page); 1202 const u64 end = start + PAGE_SIZE - 1; 1203 u64 cur = start; 1204 u64 extent_offset; 1205 u64 last_byte = i_size_read(inode); 1206 u64 block_start; 1207 struct extent_map *em; 1208 int ret = 0; 1209 size_t pg_offset = 0; 1210 size_t iosize; 1211 size_t blocksize = inode->i_sb->s_blocksize; 1212 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1213 1214 ret = set_page_extent_mapped(page); 1215 if (ret < 0) { 1216 unlock_extent(tree, start, end, NULL); 1217 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE); 1218 unlock_page(page); 1219 goto out; 1220 } 1221 1222 if (page->index == last_byte >> PAGE_SHIFT) { 1223 size_t zero_offset = offset_in_page(last_byte); 1224 1225 if (zero_offset) { 1226 iosize = PAGE_SIZE - zero_offset; 1227 memzero_page(page, zero_offset, iosize); 1228 } 1229 } 1230 bio_ctrl->end_io_func = end_bio_extent_readpage; 1231 begin_page_read(fs_info, page); 1232 while (cur <= end) { 1233 unsigned long this_bio_flag = 0; 1234 bool force_bio_submit = false; 1235 u64 disk_bytenr; 1236 1237 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize)); 1238 if (cur >= last_byte) { 1239 iosize = PAGE_SIZE - pg_offset; 1240 memzero_page(page, pg_offset, iosize); 1241 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1242 end_page_read(page, true, cur, iosize); 1243 break; 1244 } 1245 em = __get_extent_map(inode, page, pg_offset, cur, 1246 end - cur + 1, em_cached); 1247 if (IS_ERR(em)) { 1248 unlock_extent(tree, cur, end, NULL); 1249 end_page_read(page, false, cur, end + 1 - cur); 1250 ret = PTR_ERR(em); 1251 break; 1252 } 1253 extent_offset = cur - em->start; 1254 BUG_ON(extent_map_end(em) <= cur); 1255 BUG_ON(end < cur); 1256 1257 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1258 this_bio_flag = em->compress_type; 1259 1260 iosize = min(extent_map_end(em) - cur, end - cur + 1); 1261 iosize = ALIGN(iosize, blocksize); 1262 if (this_bio_flag != BTRFS_COMPRESS_NONE) 1263 disk_bytenr = em->block_start; 1264 else 1265 disk_bytenr = em->block_start + extent_offset; 1266 block_start = em->block_start; 1267 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1268 block_start = EXTENT_MAP_HOLE; 1269 1270 /* 1271 * If we have a file range that points to a compressed extent 1272 * and it's followed by a consecutive file range that points 1273 * to the same compressed extent (possibly with a different 1274 * offset and/or length, so it either points to the whole extent 1275 * or only part of it), we must make sure we do not submit a 1276 * single bio to populate the pages for the 2 ranges because 1277 * this makes the compressed extent read zero out the pages 1278 * belonging to the 2nd range. Imagine the following scenario: 1279 * 1280 * File layout 1281 * [0 - 8K] [8K - 24K] 1282 * | | 1283 * | | 1284 * points to extent X, points to extent X, 1285 * offset 4K, length of 8K offset 0, length 16K 1286 * 1287 * [extent X, compressed length = 4K uncompressed length = 16K] 1288 * 1289 * If the bio to read the compressed extent covers both ranges, 1290 * it will decompress extent X into the pages belonging to the 1291 * first range and then it will stop, zeroing out the remaining 1292 * pages that belong to the other range that points to extent X. 1293 * So here we make sure we submit 2 bios, one for the first 1294 * range and another one for the third range. Both will target 1295 * the same physical extent from disk, but we can't currently 1296 * make the compressed bio endio callback populate the pages 1297 * for both ranges because each compressed bio is tightly 1298 * coupled with a single extent map, and each range can have 1299 * an extent map with a different offset value relative to the 1300 * uncompressed data of our extent and different lengths. This 1301 * is a corner case so we prioritize correctness over 1302 * non-optimal behavior (submitting 2 bios for the same extent). 1303 */ 1304 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) && 1305 prev_em_start && *prev_em_start != (u64)-1 && 1306 *prev_em_start != em->start) 1307 force_bio_submit = true; 1308 1309 if (prev_em_start) 1310 *prev_em_start = em->start; 1311 1312 free_extent_map(em); 1313 em = NULL; 1314 1315 /* we've found a hole, just zero and go on */ 1316 if (block_start == EXTENT_MAP_HOLE) { 1317 memzero_page(page, pg_offset, iosize); 1318 1319 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1320 end_page_read(page, true, cur, iosize); 1321 cur = cur + iosize; 1322 pg_offset += iosize; 1323 continue; 1324 } 1325 /* the get_extent function already copied into the page */ 1326 if (block_start == EXTENT_MAP_INLINE) { 1327 unlock_extent(tree, cur, cur + iosize - 1, NULL); 1328 end_page_read(page, true, cur, iosize); 1329 cur = cur + iosize; 1330 pg_offset += iosize; 1331 continue; 1332 } 1333 1334 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL, 1335 bio_ctrl, disk_bytenr, page, iosize, 1336 pg_offset, this_bio_flag, 1337 force_bio_submit); 1338 if (ret) { 1339 /* 1340 * We have to unlock the remaining range, or the page 1341 * will never be unlocked. 1342 */ 1343 unlock_extent(tree, cur, end, NULL); 1344 end_page_read(page, false, cur, end + 1 - cur); 1345 goto out; 1346 } 1347 cur = cur + iosize; 1348 pg_offset += iosize; 1349 } 1350 out: 1351 return ret; 1352 } 1353 1354 int btrfs_read_folio(struct file *file, struct folio *folio) 1355 { 1356 struct page *page = &folio->page; 1357 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 1358 u64 start = page_offset(page); 1359 u64 end = start + PAGE_SIZE - 1; 1360 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 1361 int ret; 1362 1363 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1364 1365 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 1366 /* 1367 * If btrfs_do_readpage() failed we will want to submit the assembled 1368 * bio to do the cleanup. 1369 */ 1370 submit_one_bio(&bio_ctrl); 1371 return ret; 1372 } 1373 1374 static inline void contiguous_readpages(struct page *pages[], int nr_pages, 1375 u64 start, u64 end, 1376 struct extent_map **em_cached, 1377 struct btrfs_bio_ctrl *bio_ctrl, 1378 u64 *prev_em_start) 1379 { 1380 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host); 1381 int index; 1382 1383 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 1384 1385 for (index = 0; index < nr_pages; index++) { 1386 btrfs_do_readpage(pages[index], em_cached, bio_ctrl, 1387 REQ_RAHEAD, prev_em_start); 1388 put_page(pages[index]); 1389 } 1390 } 1391 1392 /* 1393 * helper for __extent_writepage, doing all of the delayed allocation setup. 1394 * 1395 * This returns 1 if btrfs_run_delalloc_range function did all the work required 1396 * to write the page (copy into inline extent). In this case the IO has 1397 * been started and the page is already unlocked. 1398 * 1399 * This returns 0 if all went well (page still locked) 1400 * This returns < 0 if there were errors (page still locked) 1401 */ 1402 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode, 1403 struct page *page, struct writeback_control *wbc) 1404 { 1405 const u64 page_end = page_offset(page) + PAGE_SIZE - 1; 1406 u64 delalloc_start = page_offset(page); 1407 u64 delalloc_to_write = 0; 1408 /* How many pages are started by btrfs_run_delalloc_range() */ 1409 unsigned long nr_written = 0; 1410 int ret; 1411 int page_started = 0; 1412 1413 while (delalloc_start < page_end) { 1414 u64 delalloc_end = page_end; 1415 bool found; 1416 1417 found = find_lock_delalloc_range(&inode->vfs_inode, page, 1418 &delalloc_start, 1419 &delalloc_end); 1420 if (!found) { 1421 delalloc_start = delalloc_end + 1; 1422 continue; 1423 } 1424 ret = btrfs_run_delalloc_range(inode, page, delalloc_start, 1425 delalloc_end, &page_started, &nr_written, wbc); 1426 if (ret) { 1427 btrfs_page_set_error(inode->root->fs_info, page, 1428 page_offset(page), PAGE_SIZE); 1429 return ret; 1430 } 1431 /* 1432 * delalloc_end is already one less than the total length, so 1433 * we don't subtract one from PAGE_SIZE 1434 */ 1435 delalloc_to_write += (delalloc_end - delalloc_start + 1436 PAGE_SIZE) >> PAGE_SHIFT; 1437 delalloc_start = delalloc_end + 1; 1438 } 1439 if (wbc->nr_to_write < delalloc_to_write) { 1440 int thresh = 8192; 1441 1442 if (delalloc_to_write < thresh * 2) 1443 thresh = delalloc_to_write; 1444 wbc->nr_to_write = min_t(u64, delalloc_to_write, 1445 thresh); 1446 } 1447 1448 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */ 1449 if (page_started) { 1450 /* 1451 * We've unlocked the page, so we can't update the mapping's 1452 * writeback index, just update nr_to_write. 1453 */ 1454 wbc->nr_to_write -= nr_written; 1455 return 1; 1456 } 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Find the first byte we need to write. 1463 * 1464 * For subpage, one page can contain several sectors, and 1465 * __extent_writepage_io() will just grab all extent maps in the page 1466 * range and try to submit all non-inline/non-compressed extents. 1467 * 1468 * This is a big problem for subpage, we shouldn't re-submit already written 1469 * data at all. 1470 * This function will lookup subpage dirty bit to find which range we really 1471 * need to submit. 1472 * 1473 * Return the next dirty range in [@start, @end). 1474 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE. 1475 */ 1476 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info, 1477 struct page *page, u64 *start, u64 *end) 1478 { 1479 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 1480 struct btrfs_subpage_info *spi = fs_info->subpage_info; 1481 u64 orig_start = *start; 1482 /* Declare as unsigned long so we can use bitmap ops */ 1483 unsigned long flags; 1484 int range_start_bit; 1485 int range_end_bit; 1486 1487 /* 1488 * For regular sector size == page size case, since one page only 1489 * contains one sector, we return the page offset directly. 1490 */ 1491 if (!btrfs_is_subpage(fs_info, page)) { 1492 *start = page_offset(page); 1493 *end = page_offset(page) + PAGE_SIZE; 1494 return; 1495 } 1496 1497 range_start_bit = spi->dirty_offset + 1498 (offset_in_page(orig_start) >> fs_info->sectorsize_bits); 1499 1500 /* We should have the page locked, but just in case */ 1501 spin_lock_irqsave(&subpage->lock, flags); 1502 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit, 1503 spi->dirty_offset + spi->bitmap_nr_bits); 1504 spin_unlock_irqrestore(&subpage->lock, flags); 1505 1506 range_start_bit -= spi->dirty_offset; 1507 range_end_bit -= spi->dirty_offset; 1508 1509 *start = page_offset(page) + range_start_bit * fs_info->sectorsize; 1510 *end = page_offset(page) + range_end_bit * fs_info->sectorsize; 1511 } 1512 1513 /* 1514 * helper for __extent_writepage. This calls the writepage start hooks, 1515 * and does the loop to map the page into extents and bios. 1516 * 1517 * We return 1 if the IO is started and the page is unlocked, 1518 * 0 if all went well (page still locked) 1519 * < 0 if there were errors (page still locked) 1520 */ 1521 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode, 1522 struct page *page, 1523 struct writeback_control *wbc, 1524 struct btrfs_bio_ctrl *bio_ctrl, 1525 loff_t i_size, 1526 int *nr_ret) 1527 { 1528 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1529 u64 cur = page_offset(page); 1530 u64 end = cur + PAGE_SIZE - 1; 1531 u64 extent_offset; 1532 u64 block_start; 1533 struct extent_map *em; 1534 int saved_ret = 0; 1535 int ret = 0; 1536 int nr = 0; 1537 enum req_op op = REQ_OP_WRITE; 1538 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1539 bool has_error = false; 1540 bool compressed; 1541 1542 ret = btrfs_writepage_cow_fixup(page); 1543 if (ret) { 1544 /* Fixup worker will requeue */ 1545 redirty_page_for_writepage(wbc, page); 1546 unlock_page(page); 1547 return 1; 1548 } 1549 1550 /* 1551 * we don't want to touch the inode after unlocking the page, 1552 * so we update the mapping writeback index now 1553 */ 1554 wbc->nr_to_write--; 1555 1556 bio_ctrl->end_io_func = end_bio_extent_writepage; 1557 while (cur <= end) { 1558 u64 disk_bytenr; 1559 u64 em_end; 1560 u64 dirty_range_start = cur; 1561 u64 dirty_range_end; 1562 u32 iosize; 1563 1564 if (cur >= i_size) { 1565 btrfs_writepage_endio_finish_ordered(inode, page, cur, 1566 end, true); 1567 /* 1568 * This range is beyond i_size, thus we don't need to 1569 * bother writing back. 1570 * But we still need to clear the dirty subpage bit, or 1571 * the next time the page gets dirtied, we will try to 1572 * writeback the sectors with subpage dirty bits, 1573 * causing writeback without ordered extent. 1574 */ 1575 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur); 1576 break; 1577 } 1578 1579 find_next_dirty_byte(fs_info, page, &dirty_range_start, 1580 &dirty_range_end); 1581 if (cur < dirty_range_start) { 1582 cur = dirty_range_start; 1583 continue; 1584 } 1585 1586 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1); 1587 if (IS_ERR(em)) { 1588 btrfs_page_set_error(fs_info, page, cur, end - cur + 1); 1589 ret = PTR_ERR_OR_ZERO(em); 1590 has_error = true; 1591 if (!saved_ret) 1592 saved_ret = ret; 1593 break; 1594 } 1595 1596 extent_offset = cur - em->start; 1597 em_end = extent_map_end(em); 1598 ASSERT(cur <= em_end); 1599 ASSERT(cur < end); 1600 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize)); 1601 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize)); 1602 block_start = em->block_start; 1603 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 1604 disk_bytenr = em->block_start + extent_offset; 1605 1606 /* 1607 * Note that em_end from extent_map_end() and dirty_range_end from 1608 * find_next_dirty_byte() are all exclusive 1609 */ 1610 iosize = min(min(em_end, end + 1), dirty_range_end) - cur; 1611 free_extent_map(em); 1612 em = NULL; 1613 1614 /* 1615 * compressed and inline extents are written through other 1616 * paths in the FS 1617 */ 1618 if (compressed || block_start == EXTENT_MAP_HOLE || 1619 block_start == EXTENT_MAP_INLINE) { 1620 if (compressed) 1621 nr++; 1622 else 1623 btrfs_writepage_endio_finish_ordered(inode, 1624 page, cur, cur + iosize - 1, true); 1625 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1626 cur += iosize; 1627 continue; 1628 } 1629 1630 btrfs_set_range_writeback(inode, cur, cur + iosize - 1); 1631 if (!PageWriteback(page)) { 1632 btrfs_err(inode->root->fs_info, 1633 "page %lu not writeback, cur %llu end %llu", 1634 page->index, cur, end); 1635 } 1636 1637 /* 1638 * Although the PageDirty bit is cleared before entering this 1639 * function, subpage dirty bit is not cleared. 1640 * So clear subpage dirty bit here so next time we won't submit 1641 * page for range already written to disk. 1642 */ 1643 btrfs_page_clear_dirty(fs_info, page, cur, iosize); 1644 1645 ret = submit_extent_page(op | write_flags, wbc, 1646 bio_ctrl, disk_bytenr, 1647 page, iosize, 1648 cur - page_offset(page), 1649 0, false); 1650 if (ret) { 1651 has_error = true; 1652 if (!saved_ret) 1653 saved_ret = ret; 1654 1655 btrfs_page_set_error(fs_info, page, cur, iosize); 1656 if (PageWriteback(page)) 1657 btrfs_page_clear_writeback(fs_info, page, cur, 1658 iosize); 1659 } 1660 1661 cur += iosize; 1662 nr++; 1663 } 1664 /* 1665 * If we finish without problem, we should not only clear page dirty, 1666 * but also empty subpage dirty bits 1667 */ 1668 if (!has_error) 1669 btrfs_page_assert_not_dirty(fs_info, page); 1670 else 1671 ret = saved_ret; 1672 *nr_ret = nr; 1673 return ret; 1674 } 1675 1676 /* 1677 * the writepage semantics are similar to regular writepage. extent 1678 * records are inserted to lock ranges in the tree, and as dirty areas 1679 * are found, they are marked writeback. Then the lock bits are removed 1680 * and the end_io handler clears the writeback ranges 1681 * 1682 * Return 0 if everything goes well. 1683 * Return <0 for error. 1684 */ 1685 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 1686 struct btrfs_bio_ctrl *bio_ctrl) 1687 { 1688 struct folio *folio = page_folio(page); 1689 struct inode *inode = page->mapping->host; 1690 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1691 const u64 page_start = page_offset(page); 1692 const u64 page_end = page_start + PAGE_SIZE - 1; 1693 int ret; 1694 int nr = 0; 1695 size_t pg_offset; 1696 loff_t i_size = i_size_read(inode); 1697 unsigned long end_index = i_size >> PAGE_SHIFT; 1698 1699 trace___extent_writepage(page, inode, wbc); 1700 1701 WARN_ON(!PageLocked(page)); 1702 1703 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page, 1704 page_offset(page), PAGE_SIZE); 1705 1706 pg_offset = offset_in_page(i_size); 1707 if (page->index > end_index || 1708 (page->index == end_index && !pg_offset)) { 1709 folio_invalidate(folio, 0, folio_size(folio)); 1710 folio_unlock(folio); 1711 return 0; 1712 } 1713 1714 if (page->index == end_index) 1715 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset); 1716 1717 ret = set_page_extent_mapped(page); 1718 if (ret < 0) { 1719 SetPageError(page); 1720 goto done; 1721 } 1722 1723 if (!bio_ctrl->extent_locked) { 1724 ret = writepage_delalloc(BTRFS_I(inode), page, wbc); 1725 if (ret == 1) 1726 return 0; 1727 if (ret) 1728 goto done; 1729 } 1730 1731 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, bio_ctrl, i_size, 1732 &nr); 1733 if (ret == 1) 1734 return 0; 1735 1736 done: 1737 if (nr == 0) { 1738 /* make sure the mapping tag for page dirty gets cleared */ 1739 set_page_writeback(page); 1740 end_page_writeback(page); 1741 } 1742 /* 1743 * Here we used to have a check for PageError() and then set @ret and 1744 * call end_extent_writepage(). 1745 * 1746 * But in fact setting @ret here will cause different error paths 1747 * between subpage and regular sectorsize. 1748 * 1749 * For regular page size, we never submit current page, but only add 1750 * current page to current bio. 1751 * The bio submission can only happen in next page. 1752 * Thus if we hit the PageError() branch, @ret is already set to 1753 * non-zero value and will not get updated for regular sectorsize. 1754 * 1755 * But for subpage case, it's possible we submit part of current page, 1756 * thus can get PageError() set by submitted bio of the same page, 1757 * while our @ret is still 0. 1758 * 1759 * So here we unify the behavior and don't set @ret. 1760 * Error can still be properly passed to higher layer as page will 1761 * be set error, here we just don't handle the IO failure. 1762 * 1763 * NOTE: This is just a hotfix for subpage. 1764 * The root fix will be properly ending ordered extent when we hit 1765 * an error during writeback. 1766 * 1767 * But that needs a bigger refactoring, as we not only need to grab the 1768 * submitted OE, but also need to know exactly at which bytenr we hit 1769 * the error. 1770 * Currently the full page based __extent_writepage_io() is not 1771 * capable of that. 1772 */ 1773 if (PageError(page)) 1774 end_extent_writepage(page, ret, page_start, page_end); 1775 if (bio_ctrl->extent_locked) { 1776 /* 1777 * If bio_ctrl->extent_locked, it's from extent_write_locked_range(), 1778 * the page can either be locked by lock_page() or 1779 * process_one_page(). 1780 * Let btrfs_page_unlock_writer() handle both cases. 1781 */ 1782 ASSERT(wbc); 1783 btrfs_page_unlock_writer(fs_info, page, wbc->range_start, 1784 wbc->range_end + 1 - wbc->range_start); 1785 } else { 1786 unlock_page(page); 1787 } 1788 ASSERT(ret <= 0); 1789 return ret; 1790 } 1791 1792 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 1793 { 1794 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 1795 TASK_UNINTERRUPTIBLE); 1796 } 1797 1798 static void end_extent_buffer_writeback(struct extent_buffer *eb) 1799 { 1800 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1801 smp_mb__after_atomic(); 1802 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 1803 } 1804 1805 /* 1806 * Lock extent buffer status and pages for writeback. 1807 * 1808 * May try to flush write bio if we can't get the lock. 1809 * 1810 * Return 0 if the extent buffer doesn't need to be submitted. 1811 * (E.g. the extent buffer is not dirty) 1812 * Return >0 is the extent buffer is submitted to bio. 1813 * Return <0 if something went wrong, no page is locked. 1814 */ 1815 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb, 1816 struct btrfs_bio_ctrl *bio_ctrl) 1817 { 1818 struct btrfs_fs_info *fs_info = eb->fs_info; 1819 int i, num_pages; 1820 int flush = 0; 1821 int ret = 0; 1822 1823 if (!btrfs_try_tree_write_lock(eb)) { 1824 submit_write_bio(bio_ctrl, 0); 1825 flush = 1; 1826 btrfs_tree_lock(eb); 1827 } 1828 1829 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 1830 btrfs_tree_unlock(eb); 1831 if (!bio_ctrl->sync_io) 1832 return 0; 1833 if (!flush) { 1834 submit_write_bio(bio_ctrl, 0); 1835 flush = 1; 1836 } 1837 while (1) { 1838 wait_on_extent_buffer_writeback(eb); 1839 btrfs_tree_lock(eb); 1840 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 1841 break; 1842 btrfs_tree_unlock(eb); 1843 } 1844 } 1845 1846 /* 1847 * We need to do this to prevent races in people who check if the eb is 1848 * under IO since we can end up having no IO bits set for a short period 1849 * of time. 1850 */ 1851 spin_lock(&eb->refs_lock); 1852 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 1853 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 1854 spin_unlock(&eb->refs_lock); 1855 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 1856 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1857 -eb->len, 1858 fs_info->dirty_metadata_batch); 1859 ret = 1; 1860 } else { 1861 spin_unlock(&eb->refs_lock); 1862 } 1863 1864 btrfs_tree_unlock(eb); 1865 1866 /* 1867 * Either we don't need to submit any tree block, or we're submitting 1868 * subpage eb. 1869 * Subpage metadata doesn't use page locking at all, so we can skip 1870 * the page locking. 1871 */ 1872 if (!ret || fs_info->nodesize < PAGE_SIZE) 1873 return ret; 1874 1875 num_pages = num_extent_pages(eb); 1876 for (i = 0; i < num_pages; i++) { 1877 struct page *p = eb->pages[i]; 1878 1879 if (!trylock_page(p)) { 1880 if (!flush) { 1881 submit_write_bio(bio_ctrl, 0); 1882 flush = 1; 1883 } 1884 lock_page(p); 1885 } 1886 } 1887 1888 return ret; 1889 } 1890 1891 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb) 1892 { 1893 struct btrfs_fs_info *fs_info = eb->fs_info; 1894 1895 btrfs_page_set_error(fs_info, page, eb->start, eb->len); 1896 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) 1897 return; 1898 1899 /* 1900 * A read may stumble upon this buffer later, make sure that it gets an 1901 * error and knows there was an error. 1902 */ 1903 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 1904 1905 /* 1906 * We need to set the mapping with the io error as well because a write 1907 * error will flip the file system readonly, and then syncfs() will 1908 * return a 0 because we are readonly if we don't modify the err seq for 1909 * the superblock. 1910 */ 1911 mapping_set_error(page->mapping, -EIO); 1912 1913 /* 1914 * If writeback for a btree extent that doesn't belong to a log tree 1915 * failed, increment the counter transaction->eb_write_errors. 1916 * We do this because while the transaction is running and before it's 1917 * committing (when we call filemap_fdata[write|wait]_range against 1918 * the btree inode), we might have 1919 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it 1920 * returns an error or an error happens during writeback, when we're 1921 * committing the transaction we wouldn't know about it, since the pages 1922 * can be no longer dirty nor marked anymore for writeback (if a 1923 * subsequent modification to the extent buffer didn't happen before the 1924 * transaction commit), which makes filemap_fdata[write|wait]_range not 1925 * able to find the pages tagged with SetPageError at transaction 1926 * commit time. So if this happens we must abort the transaction, 1927 * otherwise we commit a super block with btree roots that point to 1928 * btree nodes/leafs whose content on disk is invalid - either garbage 1929 * or the content of some node/leaf from a past generation that got 1930 * cowed or deleted and is no longer valid. 1931 * 1932 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would 1933 * not be enough - we need to distinguish between log tree extents vs 1934 * non-log tree extents, and the next filemap_fdatawait_range() call 1935 * will catch and clear such errors in the mapping - and that call might 1936 * be from a log sync and not from a transaction commit. Also, checking 1937 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is 1938 * not done and would not be reliable - the eb might have been released 1939 * from memory and reading it back again means that flag would not be 1940 * set (since it's a runtime flag, not persisted on disk). 1941 * 1942 * Using the flags below in the btree inode also makes us achieve the 1943 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started 1944 * writeback for all dirty pages and before filemap_fdatawait_range() 1945 * is called, the writeback for all dirty pages had already finished 1946 * with errors - because we were not using AS_EIO/AS_ENOSPC, 1947 * filemap_fdatawait_range() would return success, as it could not know 1948 * that writeback errors happened (the pages were no longer tagged for 1949 * writeback). 1950 */ 1951 switch (eb->log_index) { 1952 case -1: 1953 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags); 1954 break; 1955 case 0: 1956 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 1957 break; 1958 case 1: 1959 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 1960 break; 1961 default: 1962 BUG(); /* unexpected, logic error */ 1963 } 1964 } 1965 1966 /* 1967 * The endio specific version which won't touch any unsafe spinlock in endio 1968 * context. 1969 */ 1970 static struct extent_buffer *find_extent_buffer_nolock( 1971 struct btrfs_fs_info *fs_info, u64 start) 1972 { 1973 struct extent_buffer *eb; 1974 1975 rcu_read_lock(); 1976 eb = radix_tree_lookup(&fs_info->buffer_radix, 1977 start >> fs_info->sectorsize_bits); 1978 if (eb && atomic_inc_not_zero(&eb->refs)) { 1979 rcu_read_unlock(); 1980 return eb; 1981 } 1982 rcu_read_unlock(); 1983 return NULL; 1984 } 1985 1986 /* 1987 * The endio function for subpage extent buffer write. 1988 * 1989 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback() 1990 * after all extent buffers in the page has finished their writeback. 1991 */ 1992 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio) 1993 { 1994 struct bio *bio = &bbio->bio; 1995 struct btrfs_fs_info *fs_info; 1996 struct bio_vec *bvec; 1997 struct bvec_iter_all iter_all; 1998 1999 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb); 2000 ASSERT(fs_info->nodesize < PAGE_SIZE); 2001 2002 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2003 bio_for_each_segment_all(bvec, bio, iter_all) { 2004 struct page *page = bvec->bv_page; 2005 u64 bvec_start = page_offset(page) + bvec->bv_offset; 2006 u64 bvec_end = bvec_start + bvec->bv_len - 1; 2007 u64 cur_bytenr = bvec_start; 2008 2009 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize)); 2010 2011 /* Iterate through all extent buffers in the range */ 2012 while (cur_bytenr <= bvec_end) { 2013 struct extent_buffer *eb; 2014 int done; 2015 2016 /* 2017 * Here we can't use find_extent_buffer(), as it may 2018 * try to lock eb->refs_lock, which is not safe in endio 2019 * context. 2020 */ 2021 eb = find_extent_buffer_nolock(fs_info, cur_bytenr); 2022 ASSERT(eb); 2023 2024 cur_bytenr = eb->start + eb->len; 2025 2026 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)); 2027 done = atomic_dec_and_test(&eb->io_pages); 2028 ASSERT(done); 2029 2030 if (bio->bi_status || 2031 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2032 ClearPageUptodate(page); 2033 set_btree_ioerr(page, eb); 2034 } 2035 2036 btrfs_subpage_clear_writeback(fs_info, page, eb->start, 2037 eb->len); 2038 end_extent_buffer_writeback(eb); 2039 /* 2040 * free_extent_buffer() will grab spinlock which is not 2041 * safe in endio context. Thus here we manually dec 2042 * the ref. 2043 */ 2044 atomic_dec(&eb->refs); 2045 } 2046 } 2047 bio_put(bio); 2048 } 2049 2050 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio) 2051 { 2052 struct bio *bio = &bbio->bio; 2053 struct bio_vec *bvec; 2054 struct extent_buffer *eb; 2055 int done; 2056 struct bvec_iter_all iter_all; 2057 2058 ASSERT(!bio_flagged(bio, BIO_CLONED)); 2059 bio_for_each_segment_all(bvec, bio, iter_all) { 2060 struct page *page = bvec->bv_page; 2061 2062 eb = (struct extent_buffer *)page->private; 2063 BUG_ON(!eb); 2064 done = atomic_dec_and_test(&eb->io_pages); 2065 2066 if (bio->bi_status || 2067 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) { 2068 ClearPageUptodate(page); 2069 set_btree_ioerr(page, eb); 2070 } 2071 2072 end_page_writeback(page); 2073 2074 if (!done) 2075 continue; 2076 2077 end_extent_buffer_writeback(eb); 2078 } 2079 2080 bio_put(bio); 2081 } 2082 2083 static void prepare_eb_write(struct extent_buffer *eb) 2084 { 2085 u32 nritems; 2086 unsigned long start; 2087 unsigned long end; 2088 2089 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags); 2090 atomic_set(&eb->io_pages, num_extent_pages(eb)); 2091 2092 /* Set btree blocks beyond nritems with 0 to avoid stale content */ 2093 nritems = btrfs_header_nritems(eb); 2094 if (btrfs_header_level(eb) > 0) { 2095 end = btrfs_node_key_ptr_offset(eb, nritems); 2096 memzero_extent_buffer(eb, end, eb->len - end); 2097 } else { 2098 /* 2099 * Leaf: 2100 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0 2101 */ 2102 start = btrfs_item_nr_offset(eb, nritems); 2103 end = btrfs_item_nr_offset(eb, 0); 2104 if (nritems == 0) 2105 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info); 2106 else 2107 end += btrfs_item_offset(eb, nritems - 1); 2108 memzero_extent_buffer(eb, start, end - start); 2109 } 2110 } 2111 2112 /* 2113 * Unlike the work in write_one_eb(), we rely completely on extent locking. 2114 * Page locking is only utilized at minimum to keep the VMM code happy. 2115 */ 2116 static int write_one_subpage_eb(struct extent_buffer *eb, 2117 struct writeback_control *wbc, 2118 struct btrfs_bio_ctrl *bio_ctrl) 2119 { 2120 struct btrfs_fs_info *fs_info = eb->fs_info; 2121 struct page *page = eb->pages[0]; 2122 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2123 bool no_dirty_ebs = false; 2124 int ret; 2125 2126 prepare_eb_write(eb); 2127 2128 /* clear_page_dirty_for_io() in subpage helper needs page locked */ 2129 lock_page(page); 2130 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len); 2131 2132 /* Check if this is the last dirty bit to update nr_written */ 2133 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page, 2134 eb->start, eb->len); 2135 if (no_dirty_ebs) 2136 clear_page_dirty_for_io(page); 2137 2138 bio_ctrl->end_io_func = end_bio_subpage_eb_writepage; 2139 2140 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2141 bio_ctrl, eb->start, page, eb->len, 2142 eb->start - page_offset(page), 0, false); 2143 if (ret) { 2144 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len); 2145 set_btree_ioerr(page, eb); 2146 unlock_page(page); 2147 2148 if (atomic_dec_and_test(&eb->io_pages)) 2149 end_extent_buffer_writeback(eb); 2150 return -EIO; 2151 } 2152 unlock_page(page); 2153 /* 2154 * Submission finished without problem, if no range of the page is 2155 * dirty anymore, we have submitted a page. Update nr_written in wbc. 2156 */ 2157 if (no_dirty_ebs) 2158 wbc->nr_to_write--; 2159 return ret; 2160 } 2161 2162 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 2163 struct writeback_control *wbc, 2164 struct btrfs_bio_ctrl *bio_ctrl) 2165 { 2166 u64 disk_bytenr = eb->start; 2167 int i, num_pages; 2168 blk_opf_t write_flags = wbc_to_write_flags(wbc); 2169 int ret = 0; 2170 2171 prepare_eb_write(eb); 2172 2173 bio_ctrl->end_io_func = end_bio_extent_buffer_writepage; 2174 2175 num_pages = num_extent_pages(eb); 2176 for (i = 0; i < num_pages; i++) { 2177 struct page *p = eb->pages[i]; 2178 2179 clear_page_dirty_for_io(p); 2180 set_page_writeback(p); 2181 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc, 2182 bio_ctrl, disk_bytenr, p, 2183 PAGE_SIZE, 0, 0, false); 2184 if (ret) { 2185 set_btree_ioerr(p, eb); 2186 if (PageWriteback(p)) 2187 end_page_writeback(p); 2188 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 2189 end_extent_buffer_writeback(eb); 2190 ret = -EIO; 2191 break; 2192 } 2193 disk_bytenr += PAGE_SIZE; 2194 wbc->nr_to_write--; 2195 unlock_page(p); 2196 } 2197 2198 if (unlikely(ret)) { 2199 for (; i < num_pages; i++) { 2200 struct page *p = eb->pages[i]; 2201 clear_page_dirty_for_io(p); 2202 unlock_page(p); 2203 } 2204 } 2205 2206 return ret; 2207 } 2208 2209 /* 2210 * Submit one subpage btree page. 2211 * 2212 * The main difference to submit_eb_page() is: 2213 * - Page locking 2214 * For subpage, we don't rely on page locking at all. 2215 * 2216 * - Flush write bio 2217 * We only flush bio if we may be unable to fit current extent buffers into 2218 * current bio. 2219 * 2220 * Return >=0 for the number of submitted extent buffers. 2221 * Return <0 for fatal error. 2222 */ 2223 static int submit_eb_subpage(struct page *page, 2224 struct writeback_control *wbc, 2225 struct btrfs_bio_ctrl *bio_ctrl) 2226 { 2227 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 2228 int submitted = 0; 2229 u64 page_start = page_offset(page); 2230 int bit_start = 0; 2231 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits; 2232 int ret; 2233 2234 /* Lock and write each dirty extent buffers in the range */ 2235 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) { 2236 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; 2237 struct extent_buffer *eb; 2238 unsigned long flags; 2239 u64 start; 2240 2241 /* 2242 * Take private lock to ensure the subpage won't be detached 2243 * in the meantime. 2244 */ 2245 spin_lock(&page->mapping->private_lock); 2246 if (!PagePrivate(page)) { 2247 spin_unlock(&page->mapping->private_lock); 2248 break; 2249 } 2250 spin_lock_irqsave(&subpage->lock, flags); 2251 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset, 2252 subpage->bitmaps)) { 2253 spin_unlock_irqrestore(&subpage->lock, flags); 2254 spin_unlock(&page->mapping->private_lock); 2255 bit_start++; 2256 continue; 2257 } 2258 2259 start = page_start + bit_start * fs_info->sectorsize; 2260 bit_start += sectors_per_node; 2261 2262 /* 2263 * Here we just want to grab the eb without touching extra 2264 * spin locks, so call find_extent_buffer_nolock(). 2265 */ 2266 eb = find_extent_buffer_nolock(fs_info, start); 2267 spin_unlock_irqrestore(&subpage->lock, flags); 2268 spin_unlock(&page->mapping->private_lock); 2269 2270 /* 2271 * The eb has already reached 0 refs thus find_extent_buffer() 2272 * doesn't return it. We don't need to write back such eb 2273 * anyway. 2274 */ 2275 if (!eb) 2276 continue; 2277 2278 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2279 if (ret == 0) { 2280 free_extent_buffer(eb); 2281 continue; 2282 } 2283 if (ret < 0) { 2284 free_extent_buffer(eb); 2285 goto cleanup; 2286 } 2287 ret = write_one_subpage_eb(eb, wbc, bio_ctrl); 2288 free_extent_buffer(eb); 2289 if (ret < 0) 2290 goto cleanup; 2291 submitted++; 2292 } 2293 return submitted; 2294 2295 cleanup: 2296 /* We hit error, end bio for the submitted extent buffers */ 2297 submit_write_bio(bio_ctrl, ret); 2298 return ret; 2299 } 2300 2301 /* 2302 * Submit all page(s) of one extent buffer. 2303 * 2304 * @page: the page of one extent buffer 2305 * @eb_context: to determine if we need to submit this page, if current page 2306 * belongs to this eb, we don't need to submit 2307 * 2308 * The caller should pass each page in their bytenr order, and here we use 2309 * @eb_context to determine if we have submitted pages of one extent buffer. 2310 * 2311 * If we have, we just skip until we hit a new page that doesn't belong to 2312 * current @eb_context. 2313 * 2314 * If not, we submit all the page(s) of the extent buffer. 2315 * 2316 * Return >0 if we have submitted the extent buffer successfully. 2317 * Return 0 if we don't need to submit the page, as it's already submitted by 2318 * previous call. 2319 * Return <0 for fatal error. 2320 */ 2321 static int submit_eb_page(struct page *page, struct writeback_control *wbc, 2322 struct btrfs_bio_ctrl *bio_ctrl, 2323 struct extent_buffer **eb_context) 2324 { 2325 struct address_space *mapping = page->mapping; 2326 struct btrfs_block_group *cache = NULL; 2327 struct extent_buffer *eb; 2328 int ret; 2329 2330 if (!PagePrivate(page)) 2331 return 0; 2332 2333 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 2334 return submit_eb_subpage(page, wbc, bio_ctrl); 2335 2336 spin_lock(&mapping->private_lock); 2337 if (!PagePrivate(page)) { 2338 spin_unlock(&mapping->private_lock); 2339 return 0; 2340 } 2341 2342 eb = (struct extent_buffer *)page->private; 2343 2344 /* 2345 * Shouldn't happen and normally this would be a BUG_ON but no point 2346 * crashing the machine for something we can survive anyway. 2347 */ 2348 if (WARN_ON(!eb)) { 2349 spin_unlock(&mapping->private_lock); 2350 return 0; 2351 } 2352 2353 if (eb == *eb_context) { 2354 spin_unlock(&mapping->private_lock); 2355 return 0; 2356 } 2357 ret = atomic_inc_not_zero(&eb->refs); 2358 spin_unlock(&mapping->private_lock); 2359 if (!ret) 2360 return 0; 2361 2362 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) { 2363 /* 2364 * If for_sync, this hole will be filled with 2365 * trasnsaction commit. 2366 */ 2367 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 2368 ret = -EAGAIN; 2369 else 2370 ret = 0; 2371 free_extent_buffer(eb); 2372 return ret; 2373 } 2374 2375 *eb_context = eb; 2376 2377 ret = lock_extent_buffer_for_io(eb, bio_ctrl); 2378 if (ret <= 0) { 2379 btrfs_revert_meta_write_pointer(cache, eb); 2380 if (cache) 2381 btrfs_put_block_group(cache); 2382 free_extent_buffer(eb); 2383 return ret; 2384 } 2385 if (cache) { 2386 /* 2387 * Implies write in zoned mode. Mark the last eb in a block group. 2388 */ 2389 btrfs_schedule_zone_finish_bg(cache, eb); 2390 btrfs_put_block_group(cache); 2391 } 2392 ret = write_one_eb(eb, wbc, bio_ctrl); 2393 free_extent_buffer(eb); 2394 if (ret < 0) 2395 return ret; 2396 return 1; 2397 } 2398 2399 int btree_write_cache_pages(struct address_space *mapping, 2400 struct writeback_control *wbc) 2401 { 2402 struct extent_buffer *eb_context = NULL; 2403 struct btrfs_bio_ctrl bio_ctrl = { 2404 .extent_locked = 0, 2405 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2406 }; 2407 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 2408 int ret = 0; 2409 int done = 0; 2410 int nr_to_write_done = 0; 2411 struct folio_batch fbatch; 2412 unsigned int nr_folios; 2413 pgoff_t index; 2414 pgoff_t end; /* Inclusive */ 2415 int scanned = 0; 2416 xa_mark_t tag; 2417 2418 folio_batch_init(&fbatch); 2419 if (wbc->range_cyclic) { 2420 index = mapping->writeback_index; /* Start from prev offset */ 2421 end = -1; 2422 /* 2423 * Start from the beginning does not need to cycle over the 2424 * range, mark it as scanned. 2425 */ 2426 scanned = (index == 0); 2427 } else { 2428 index = wbc->range_start >> PAGE_SHIFT; 2429 end = wbc->range_end >> PAGE_SHIFT; 2430 scanned = 1; 2431 } 2432 if (wbc->sync_mode == WB_SYNC_ALL) 2433 tag = PAGECACHE_TAG_TOWRITE; 2434 else 2435 tag = PAGECACHE_TAG_DIRTY; 2436 btrfs_zoned_meta_io_lock(fs_info); 2437 retry: 2438 if (wbc->sync_mode == WB_SYNC_ALL) 2439 tag_pages_for_writeback(mapping, index, end); 2440 while (!done && !nr_to_write_done && (index <= end) && 2441 (nr_folios = filemap_get_folios_tag(mapping, &index, end, 2442 tag, &fbatch))) { 2443 unsigned i; 2444 2445 for (i = 0; i < nr_folios; i++) { 2446 struct folio *folio = fbatch.folios[i]; 2447 2448 ret = submit_eb_page(&folio->page, wbc, &bio_ctrl, 2449 &eb_context); 2450 if (ret == 0) 2451 continue; 2452 if (ret < 0) { 2453 done = 1; 2454 break; 2455 } 2456 2457 /* 2458 * the filesystem may choose to bump up nr_to_write. 2459 * We have to make sure to honor the new nr_to_write 2460 * at any time 2461 */ 2462 nr_to_write_done = wbc->nr_to_write <= 0; 2463 } 2464 folio_batch_release(&fbatch); 2465 cond_resched(); 2466 } 2467 if (!scanned && !done) { 2468 /* 2469 * We hit the last page and there is more work to be done: wrap 2470 * back to the start of the file 2471 */ 2472 scanned = 1; 2473 index = 0; 2474 goto retry; 2475 } 2476 /* 2477 * If something went wrong, don't allow any metadata write bio to be 2478 * submitted. 2479 * 2480 * This would prevent use-after-free if we had dirty pages not 2481 * cleaned up, which can still happen by fuzzed images. 2482 * 2483 * - Bad extent tree 2484 * Allowing existing tree block to be allocated for other trees. 2485 * 2486 * - Log tree operations 2487 * Exiting tree blocks get allocated to log tree, bumps its 2488 * generation, then get cleaned in tree re-balance. 2489 * Such tree block will not be written back, since it's clean, 2490 * thus no WRITTEN flag set. 2491 * And after log writes back, this tree block is not traced by 2492 * any dirty extent_io_tree. 2493 * 2494 * - Offending tree block gets re-dirtied from its original owner 2495 * Since it has bumped generation, no WRITTEN flag, it can be 2496 * reused without COWing. This tree block will not be traced 2497 * by btrfs_transaction::dirty_pages. 2498 * 2499 * Now such dirty tree block will not be cleaned by any dirty 2500 * extent io tree. Thus we don't want to submit such wild eb 2501 * if the fs already has error. 2502 * 2503 * We can get ret > 0 from submit_extent_page() indicating how many ebs 2504 * were submitted. Reset it to 0 to avoid false alerts for the caller. 2505 */ 2506 if (ret > 0) 2507 ret = 0; 2508 if (!ret && BTRFS_FS_ERROR(fs_info)) 2509 ret = -EROFS; 2510 submit_write_bio(&bio_ctrl, ret); 2511 2512 btrfs_zoned_meta_io_unlock(fs_info); 2513 return ret; 2514 } 2515 2516 /* 2517 * Walk the list of dirty pages of the given address space and write all of them. 2518 * 2519 * @mapping: address space structure to write 2520 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2521 * @bio_ctrl: holds context for the write, namely the bio 2522 * 2523 * If a page is already under I/O, write_cache_pages() skips it, even 2524 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2525 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2526 * and msync() need to guarantee that all the data which was dirty at the time 2527 * the call was made get new I/O started against them. If wbc->sync_mode is 2528 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2529 * existing IO to complete. 2530 */ 2531 static int extent_write_cache_pages(struct address_space *mapping, 2532 struct writeback_control *wbc, 2533 struct btrfs_bio_ctrl *bio_ctrl) 2534 { 2535 struct inode *inode = mapping->host; 2536 int ret = 0; 2537 int done = 0; 2538 int nr_to_write_done = 0; 2539 struct folio_batch fbatch; 2540 unsigned int nr_folios; 2541 pgoff_t index; 2542 pgoff_t end; /* Inclusive */ 2543 pgoff_t done_index; 2544 int range_whole = 0; 2545 int scanned = 0; 2546 xa_mark_t tag; 2547 2548 /* 2549 * We have to hold onto the inode so that ordered extents can do their 2550 * work when the IO finishes. The alternative to this is failing to add 2551 * an ordered extent if the igrab() fails there and that is a huge pain 2552 * to deal with, so instead just hold onto the inode throughout the 2553 * writepages operation. If it fails here we are freeing up the inode 2554 * anyway and we'd rather not waste our time writing out stuff that is 2555 * going to be truncated anyway. 2556 */ 2557 if (!igrab(inode)) 2558 return 0; 2559 2560 folio_batch_init(&fbatch); 2561 if (wbc->range_cyclic) { 2562 index = mapping->writeback_index; /* Start from prev offset */ 2563 end = -1; 2564 /* 2565 * Start from the beginning does not need to cycle over the 2566 * range, mark it as scanned. 2567 */ 2568 scanned = (index == 0); 2569 } else { 2570 index = wbc->range_start >> PAGE_SHIFT; 2571 end = wbc->range_end >> PAGE_SHIFT; 2572 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2573 range_whole = 1; 2574 scanned = 1; 2575 } 2576 2577 /* 2578 * We do the tagged writepage as long as the snapshot flush bit is set 2579 * and we are the first one who do the filemap_flush() on this inode. 2580 * 2581 * The nr_to_write == LONG_MAX is needed to make sure other flushers do 2582 * not race in and drop the bit. 2583 */ 2584 if (range_whole && wbc->nr_to_write == LONG_MAX && 2585 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 2586 &BTRFS_I(inode)->runtime_flags)) 2587 wbc->tagged_writepages = 1; 2588 2589 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2590 tag = PAGECACHE_TAG_TOWRITE; 2591 else 2592 tag = PAGECACHE_TAG_DIRTY; 2593 retry: 2594 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2595 tag_pages_for_writeback(mapping, index, end); 2596 done_index = index; 2597 while (!done && !nr_to_write_done && (index <= end) && 2598 (nr_folios = filemap_get_folios_tag(mapping, &index, 2599 end, tag, &fbatch))) { 2600 unsigned i; 2601 2602 for (i = 0; i < nr_folios; i++) { 2603 struct folio *folio = fbatch.folios[i]; 2604 2605 done_index = folio->index + folio_nr_pages(folio); 2606 /* 2607 * At this point we hold neither the i_pages lock nor 2608 * the page lock: the page may be truncated or 2609 * invalidated (changing page->mapping to NULL), 2610 * or even swizzled back from swapper_space to 2611 * tmpfs file mapping 2612 */ 2613 if (!folio_trylock(folio)) { 2614 submit_write_bio(bio_ctrl, 0); 2615 folio_lock(folio); 2616 } 2617 2618 if (unlikely(folio->mapping != mapping)) { 2619 folio_unlock(folio); 2620 continue; 2621 } 2622 2623 if (wbc->sync_mode != WB_SYNC_NONE) { 2624 if (folio_test_writeback(folio)) 2625 submit_write_bio(bio_ctrl, 0); 2626 folio_wait_writeback(folio); 2627 } 2628 2629 if (folio_test_writeback(folio) || 2630 !folio_clear_dirty_for_io(folio)) { 2631 folio_unlock(folio); 2632 continue; 2633 } 2634 2635 ret = __extent_writepage(&folio->page, wbc, bio_ctrl); 2636 if (ret < 0) { 2637 done = 1; 2638 break; 2639 } 2640 2641 /* 2642 * the filesystem may choose to bump up nr_to_write. 2643 * We have to make sure to honor the new nr_to_write 2644 * at any time 2645 */ 2646 nr_to_write_done = wbc->nr_to_write <= 0; 2647 } 2648 folio_batch_release(&fbatch); 2649 cond_resched(); 2650 } 2651 if (!scanned && !done) { 2652 /* 2653 * We hit the last page and there is more work to be done: wrap 2654 * back to the start of the file 2655 */ 2656 scanned = 1; 2657 index = 0; 2658 2659 /* 2660 * If we're looping we could run into a page that is locked by a 2661 * writer and that writer could be waiting on writeback for a 2662 * page in our current bio, and thus deadlock, so flush the 2663 * write bio here. 2664 */ 2665 submit_write_bio(bio_ctrl, 0); 2666 goto retry; 2667 } 2668 2669 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole)) 2670 mapping->writeback_index = done_index; 2671 2672 btrfs_add_delayed_iput(BTRFS_I(inode)); 2673 return ret; 2674 } 2675 2676 /* 2677 * Submit the pages in the range to bio for call sites which delalloc range has 2678 * already been ran (aka, ordered extent inserted) and all pages are still 2679 * locked. 2680 */ 2681 int extent_write_locked_range(struct inode *inode, u64 start, u64 end) 2682 { 2683 bool found_error = false; 2684 int first_error = 0; 2685 int ret = 0; 2686 struct address_space *mapping = inode->i_mapping; 2687 struct page *page; 2688 u64 cur = start; 2689 unsigned long nr_pages; 2690 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize; 2691 struct btrfs_bio_ctrl bio_ctrl = { 2692 .extent_locked = 1, 2693 .sync_io = 1, 2694 }; 2695 struct writeback_control wbc_writepages = { 2696 .sync_mode = WB_SYNC_ALL, 2697 .range_start = start, 2698 .range_end = end + 1, 2699 /* We're called from an async helper function */ 2700 .punt_to_cgroup = 1, 2701 .no_cgroup_owner = 1, 2702 }; 2703 2704 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize)); 2705 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >> 2706 PAGE_SHIFT; 2707 wbc_writepages.nr_to_write = nr_pages * 2; 2708 2709 wbc_attach_fdatawrite_inode(&wbc_writepages, inode); 2710 while (cur <= end) { 2711 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end); 2712 2713 page = find_get_page(mapping, cur >> PAGE_SHIFT); 2714 /* 2715 * All pages in the range are locked since 2716 * btrfs_run_delalloc_range(), thus there is no way to clear 2717 * the page dirty flag. 2718 */ 2719 ASSERT(PageLocked(page)); 2720 ASSERT(PageDirty(page)); 2721 clear_page_dirty_for_io(page); 2722 ret = __extent_writepage(page, &wbc_writepages, &bio_ctrl); 2723 ASSERT(ret <= 0); 2724 if (ret < 0) { 2725 found_error = true; 2726 first_error = ret; 2727 } 2728 put_page(page); 2729 cur = cur_end + 1; 2730 } 2731 2732 submit_write_bio(&bio_ctrl, found_error ? ret : 0); 2733 2734 wbc_detach_inode(&wbc_writepages); 2735 if (found_error) 2736 return first_error; 2737 return ret; 2738 } 2739 2740 int extent_writepages(struct address_space *mapping, 2741 struct writeback_control *wbc) 2742 { 2743 struct inode *inode = mapping->host; 2744 int ret = 0; 2745 struct btrfs_bio_ctrl bio_ctrl = { 2746 .extent_locked = 0, 2747 .sync_io = (wbc->sync_mode == WB_SYNC_ALL), 2748 }; 2749 2750 /* 2751 * Allow only a single thread to do the reloc work in zoned mode to 2752 * protect the write pointer updates. 2753 */ 2754 btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); 2755 ret = extent_write_cache_pages(mapping, wbc, &bio_ctrl); 2756 submit_write_bio(&bio_ctrl, ret); 2757 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode)); 2758 return ret; 2759 } 2760 2761 void extent_readahead(struct readahead_control *rac) 2762 { 2763 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 2764 struct page *pagepool[16]; 2765 struct extent_map *em_cached = NULL; 2766 u64 prev_em_start = (u64)-1; 2767 int nr; 2768 2769 while ((nr = readahead_page_batch(rac, pagepool))) { 2770 u64 contig_start = readahead_pos(rac); 2771 u64 contig_end = contig_start + readahead_batch_length(rac) - 1; 2772 2773 contiguous_readpages(pagepool, nr, contig_start, contig_end, 2774 &em_cached, &bio_ctrl, &prev_em_start); 2775 } 2776 2777 if (em_cached) 2778 free_extent_map(em_cached); 2779 submit_one_bio(&bio_ctrl); 2780 } 2781 2782 /* 2783 * basic invalidate_folio code, this waits on any locked or writeback 2784 * ranges corresponding to the folio, and then deletes any extent state 2785 * records from the tree 2786 */ 2787 int extent_invalidate_folio(struct extent_io_tree *tree, 2788 struct folio *folio, size_t offset) 2789 { 2790 struct extent_state *cached_state = NULL; 2791 u64 start = folio_pos(folio); 2792 u64 end = start + folio_size(folio) - 1; 2793 size_t blocksize = folio->mapping->host->i_sb->s_blocksize; 2794 2795 /* This function is only called for the btree inode */ 2796 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO); 2797 2798 start += ALIGN(offset, blocksize); 2799 if (start > end) 2800 return 0; 2801 2802 lock_extent(tree, start, end, &cached_state); 2803 folio_wait_writeback(folio); 2804 2805 /* 2806 * Currently for btree io tree, only EXTENT_LOCKED is utilized, 2807 * so here we only need to unlock the extent range to free any 2808 * existing extent state. 2809 */ 2810 unlock_extent(tree, start, end, &cached_state); 2811 return 0; 2812 } 2813 2814 /* 2815 * a helper for release_folio, this tests for areas of the page that 2816 * are locked or under IO and drops the related state bits if it is safe 2817 * to drop the page. 2818 */ 2819 static int try_release_extent_state(struct extent_io_tree *tree, 2820 struct page *page, gfp_t mask) 2821 { 2822 u64 start = page_offset(page); 2823 u64 end = start + PAGE_SIZE - 1; 2824 int ret = 1; 2825 2826 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) { 2827 ret = 0; 2828 } else { 2829 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | 2830 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS); 2831 2832 /* 2833 * At this point we can safely clear everything except the 2834 * locked bit, the nodatasum bit and the delalloc new bit. 2835 * The delalloc new bit will be cleared by ordered extent 2836 * completion. 2837 */ 2838 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, 2839 mask, NULL); 2840 2841 /* if clear_extent_bit failed for enomem reasons, 2842 * we can't allow the release to continue. 2843 */ 2844 if (ret < 0) 2845 ret = 0; 2846 else 2847 ret = 1; 2848 } 2849 return ret; 2850 } 2851 2852 /* 2853 * a helper for release_folio. As long as there are no locked extents 2854 * in the range corresponding to the page, both state records and extent 2855 * map records are removed 2856 */ 2857 int try_release_extent_mapping(struct page *page, gfp_t mask) 2858 { 2859 struct extent_map *em; 2860 u64 start = page_offset(page); 2861 u64 end = start + PAGE_SIZE - 1; 2862 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host); 2863 struct extent_io_tree *tree = &btrfs_inode->io_tree; 2864 struct extent_map_tree *map = &btrfs_inode->extent_tree; 2865 2866 if (gfpflags_allow_blocking(mask) && 2867 page->mapping->host->i_size > SZ_16M) { 2868 u64 len; 2869 while (start <= end) { 2870 struct btrfs_fs_info *fs_info; 2871 u64 cur_gen; 2872 2873 len = end - start + 1; 2874 write_lock(&map->lock); 2875 em = lookup_extent_mapping(map, start, len); 2876 if (!em) { 2877 write_unlock(&map->lock); 2878 break; 2879 } 2880 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2881 em->start != start) { 2882 write_unlock(&map->lock); 2883 free_extent_map(em); 2884 break; 2885 } 2886 if (test_range_bit(tree, em->start, 2887 extent_map_end(em) - 1, 2888 EXTENT_LOCKED, 0, NULL)) 2889 goto next; 2890 /* 2891 * If it's not in the list of modified extents, used 2892 * by a fast fsync, we can remove it. If it's being 2893 * logged we can safely remove it since fsync took an 2894 * extra reference on the em. 2895 */ 2896 if (list_empty(&em->list) || 2897 test_bit(EXTENT_FLAG_LOGGING, &em->flags)) 2898 goto remove_em; 2899 /* 2900 * If it's in the list of modified extents, remove it 2901 * only if its generation is older then the current one, 2902 * in which case we don't need it for a fast fsync. 2903 * Otherwise don't remove it, we could be racing with an 2904 * ongoing fast fsync that could miss the new extent. 2905 */ 2906 fs_info = btrfs_inode->root->fs_info; 2907 spin_lock(&fs_info->trans_lock); 2908 cur_gen = fs_info->generation; 2909 spin_unlock(&fs_info->trans_lock); 2910 if (em->generation >= cur_gen) 2911 goto next; 2912 remove_em: 2913 /* 2914 * We only remove extent maps that are not in the list of 2915 * modified extents or that are in the list but with a 2916 * generation lower then the current generation, so there 2917 * is no need to set the full fsync flag on the inode (it 2918 * hurts the fsync performance for workloads with a data 2919 * size that exceeds or is close to the system's memory). 2920 */ 2921 remove_extent_mapping(map, em); 2922 /* once for the rb tree */ 2923 free_extent_map(em); 2924 next: 2925 start = extent_map_end(em); 2926 write_unlock(&map->lock); 2927 2928 /* once for us */ 2929 free_extent_map(em); 2930 2931 cond_resched(); /* Allow large-extent preemption. */ 2932 } 2933 } 2934 return try_release_extent_state(tree, page, mask); 2935 } 2936 2937 /* 2938 * To cache previous fiemap extent 2939 * 2940 * Will be used for merging fiemap extent 2941 */ 2942 struct fiemap_cache { 2943 u64 offset; 2944 u64 phys; 2945 u64 len; 2946 u32 flags; 2947 bool cached; 2948 }; 2949 2950 /* 2951 * Helper to submit fiemap extent. 2952 * 2953 * Will try to merge current fiemap extent specified by @offset, @phys, 2954 * @len and @flags with cached one. 2955 * And only when we fails to merge, cached one will be submitted as 2956 * fiemap extent. 2957 * 2958 * Return value is the same as fiemap_fill_next_extent(). 2959 */ 2960 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo, 2961 struct fiemap_cache *cache, 2962 u64 offset, u64 phys, u64 len, u32 flags) 2963 { 2964 int ret = 0; 2965 2966 /* Set at the end of extent_fiemap(). */ 2967 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0); 2968 2969 if (!cache->cached) 2970 goto assign; 2971 2972 /* 2973 * Sanity check, extent_fiemap() should have ensured that new 2974 * fiemap extent won't overlap with cached one. 2975 * Not recoverable. 2976 * 2977 * NOTE: Physical address can overlap, due to compression 2978 */ 2979 if (cache->offset + cache->len > offset) { 2980 WARN_ON(1); 2981 return -EINVAL; 2982 } 2983 2984 /* 2985 * Only merges fiemap extents if 2986 * 1) Their logical addresses are continuous 2987 * 2988 * 2) Their physical addresses are continuous 2989 * So truly compressed (physical size smaller than logical size) 2990 * extents won't get merged with each other 2991 * 2992 * 3) Share same flags 2993 */ 2994 if (cache->offset + cache->len == offset && 2995 cache->phys + cache->len == phys && 2996 cache->flags == flags) { 2997 cache->len += len; 2998 return 0; 2999 } 3000 3001 /* Not mergeable, need to submit cached one */ 3002 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3003 cache->len, cache->flags); 3004 cache->cached = false; 3005 if (ret) 3006 return ret; 3007 assign: 3008 cache->cached = true; 3009 cache->offset = offset; 3010 cache->phys = phys; 3011 cache->len = len; 3012 cache->flags = flags; 3013 3014 return 0; 3015 } 3016 3017 /* 3018 * Emit last fiemap cache 3019 * 3020 * The last fiemap cache may still be cached in the following case: 3021 * 0 4k 8k 3022 * |<- Fiemap range ->| 3023 * |<------------ First extent ----------->| 3024 * 3025 * In this case, the first extent range will be cached but not emitted. 3026 * So we must emit it before ending extent_fiemap(). 3027 */ 3028 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo, 3029 struct fiemap_cache *cache) 3030 { 3031 int ret; 3032 3033 if (!cache->cached) 3034 return 0; 3035 3036 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys, 3037 cache->len, cache->flags); 3038 cache->cached = false; 3039 if (ret > 0) 3040 ret = 0; 3041 return ret; 3042 } 3043 3044 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path) 3045 { 3046 struct extent_buffer *clone; 3047 struct btrfs_key key; 3048 int slot; 3049 int ret; 3050 3051 path->slots[0]++; 3052 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) 3053 return 0; 3054 3055 ret = btrfs_next_leaf(inode->root, path); 3056 if (ret != 0) 3057 return ret; 3058 3059 /* 3060 * Don't bother with cloning if there are no more file extent items for 3061 * our inode. 3062 */ 3063 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3064 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY) 3065 return 1; 3066 3067 /* See the comment at fiemap_search_slot() about why we clone. */ 3068 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3069 if (!clone) 3070 return -ENOMEM; 3071 3072 slot = path->slots[0]; 3073 btrfs_release_path(path); 3074 path->nodes[0] = clone; 3075 path->slots[0] = slot; 3076 3077 return 0; 3078 } 3079 3080 /* 3081 * Search for the first file extent item that starts at a given file offset or 3082 * the one that starts immediately before that offset. 3083 * Returns: 0 on success, < 0 on error, 1 if not found. 3084 */ 3085 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path, 3086 u64 file_offset) 3087 { 3088 const u64 ino = btrfs_ino(inode); 3089 struct btrfs_root *root = inode->root; 3090 struct extent_buffer *clone; 3091 struct btrfs_key key; 3092 int slot; 3093 int ret; 3094 3095 key.objectid = ino; 3096 key.type = BTRFS_EXTENT_DATA_KEY; 3097 key.offset = file_offset; 3098 3099 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3100 if (ret < 0) 3101 return ret; 3102 3103 if (ret > 0 && path->slots[0] > 0) { 3104 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3105 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 3106 path->slots[0]--; 3107 } 3108 3109 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3110 ret = btrfs_next_leaf(root, path); 3111 if (ret != 0) 3112 return ret; 3113 3114 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3115 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3116 return 1; 3117 } 3118 3119 /* 3120 * We clone the leaf and use it during fiemap. This is because while 3121 * using the leaf we do expensive things like checking if an extent is 3122 * shared, which can take a long time. In order to prevent blocking 3123 * other tasks for too long, we use a clone of the leaf. We have locked 3124 * the file range in the inode's io tree, so we know none of our file 3125 * extent items can change. This way we avoid blocking other tasks that 3126 * want to insert items for other inodes in the same leaf or b+tree 3127 * rebalance operations (triggered for example when someone is trying 3128 * to push items into this leaf when trying to insert an item in a 3129 * neighbour leaf). 3130 * We also need the private clone because holding a read lock on an 3131 * extent buffer of the subvolume's b+tree will make lockdep unhappy 3132 * when we call fiemap_fill_next_extent(), because that may cause a page 3133 * fault when filling the user space buffer with fiemap data. 3134 */ 3135 clone = btrfs_clone_extent_buffer(path->nodes[0]); 3136 if (!clone) 3137 return -ENOMEM; 3138 3139 slot = path->slots[0]; 3140 btrfs_release_path(path); 3141 path->nodes[0] = clone; 3142 path->slots[0] = slot; 3143 3144 return 0; 3145 } 3146 3147 /* 3148 * Process a range which is a hole or a prealloc extent in the inode's subvolume 3149 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc 3150 * extent. The end offset (@end) is inclusive. 3151 */ 3152 static int fiemap_process_hole(struct btrfs_inode *inode, 3153 struct fiemap_extent_info *fieinfo, 3154 struct fiemap_cache *cache, 3155 struct extent_state **delalloc_cached_state, 3156 struct btrfs_backref_share_check_ctx *backref_ctx, 3157 u64 disk_bytenr, u64 extent_offset, 3158 u64 extent_gen, 3159 u64 start, u64 end) 3160 { 3161 const u64 i_size = i_size_read(&inode->vfs_inode); 3162 u64 cur_offset = start; 3163 u64 last_delalloc_end = 0; 3164 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN; 3165 bool checked_extent_shared = false; 3166 int ret; 3167 3168 /* 3169 * There can be no delalloc past i_size, so don't waste time looking for 3170 * it beyond i_size. 3171 */ 3172 while (cur_offset < end && cur_offset < i_size) { 3173 u64 delalloc_start; 3174 u64 delalloc_end; 3175 u64 prealloc_start; 3176 u64 prealloc_len = 0; 3177 bool delalloc; 3178 3179 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end, 3180 delalloc_cached_state, 3181 &delalloc_start, 3182 &delalloc_end); 3183 if (!delalloc) 3184 break; 3185 3186 /* 3187 * If this is a prealloc extent we have to report every section 3188 * of it that has no delalloc. 3189 */ 3190 if (disk_bytenr != 0) { 3191 if (last_delalloc_end == 0) { 3192 prealloc_start = start; 3193 prealloc_len = delalloc_start - start; 3194 } else { 3195 prealloc_start = last_delalloc_end + 1; 3196 prealloc_len = delalloc_start - prealloc_start; 3197 } 3198 } 3199 3200 if (prealloc_len > 0) { 3201 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3202 ret = btrfs_is_data_extent_shared(inode, 3203 disk_bytenr, 3204 extent_gen, 3205 backref_ctx); 3206 if (ret < 0) 3207 return ret; 3208 else if (ret > 0) 3209 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3210 3211 checked_extent_shared = true; 3212 } 3213 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3214 disk_bytenr + extent_offset, 3215 prealloc_len, prealloc_flags); 3216 if (ret) 3217 return ret; 3218 extent_offset += prealloc_len; 3219 } 3220 3221 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0, 3222 delalloc_end + 1 - delalloc_start, 3223 FIEMAP_EXTENT_DELALLOC | 3224 FIEMAP_EXTENT_UNKNOWN); 3225 if (ret) 3226 return ret; 3227 3228 last_delalloc_end = delalloc_end; 3229 cur_offset = delalloc_end + 1; 3230 extent_offset += cur_offset - delalloc_start; 3231 cond_resched(); 3232 } 3233 3234 /* 3235 * Either we found no delalloc for the whole prealloc extent or we have 3236 * a prealloc extent that spans i_size or starts at or after i_size. 3237 */ 3238 if (disk_bytenr != 0 && last_delalloc_end < end) { 3239 u64 prealloc_start; 3240 u64 prealloc_len; 3241 3242 if (last_delalloc_end == 0) { 3243 prealloc_start = start; 3244 prealloc_len = end + 1 - start; 3245 } else { 3246 prealloc_start = last_delalloc_end + 1; 3247 prealloc_len = end + 1 - prealloc_start; 3248 } 3249 3250 if (!checked_extent_shared && fieinfo->fi_extents_max) { 3251 ret = btrfs_is_data_extent_shared(inode, 3252 disk_bytenr, 3253 extent_gen, 3254 backref_ctx); 3255 if (ret < 0) 3256 return ret; 3257 else if (ret > 0) 3258 prealloc_flags |= FIEMAP_EXTENT_SHARED; 3259 } 3260 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start, 3261 disk_bytenr + extent_offset, 3262 prealloc_len, prealloc_flags); 3263 if (ret) 3264 return ret; 3265 } 3266 3267 return 0; 3268 } 3269 3270 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode, 3271 struct btrfs_path *path, 3272 u64 *last_extent_end_ret) 3273 { 3274 const u64 ino = btrfs_ino(inode); 3275 struct btrfs_root *root = inode->root; 3276 struct extent_buffer *leaf; 3277 struct btrfs_file_extent_item *ei; 3278 struct btrfs_key key; 3279 u64 disk_bytenr; 3280 int ret; 3281 3282 /* 3283 * Lookup the last file extent. We're not using i_size here because 3284 * there might be preallocation past i_size. 3285 */ 3286 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0); 3287 /* There can't be a file extent item at offset (u64)-1 */ 3288 ASSERT(ret != 0); 3289 if (ret < 0) 3290 return ret; 3291 3292 /* 3293 * For a non-existing key, btrfs_search_slot() always leaves us at a 3294 * slot > 0, except if the btree is empty, which is impossible because 3295 * at least it has the inode item for this inode and all the items for 3296 * the root inode 256. 3297 */ 3298 ASSERT(path->slots[0] > 0); 3299 path->slots[0]--; 3300 leaf = path->nodes[0]; 3301 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3302 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 3303 /* No file extent items in the subvolume tree. */ 3304 *last_extent_end_ret = 0; 3305 return 0; 3306 } 3307 3308 /* 3309 * For an inline extent, the disk_bytenr is where inline data starts at, 3310 * so first check if we have an inline extent item before checking if we 3311 * have an implicit hole (disk_bytenr == 0). 3312 */ 3313 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 3314 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 3315 *last_extent_end_ret = btrfs_file_extent_end(path); 3316 return 0; 3317 } 3318 3319 /* 3320 * Find the last file extent item that is not a hole (when NO_HOLES is 3321 * not enabled). This should take at most 2 iterations in the worst 3322 * case: we have one hole file extent item at slot 0 of a leaf and 3323 * another hole file extent item as the last item in the previous leaf. 3324 * This is because we merge file extent items that represent holes. 3325 */ 3326 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3327 while (disk_bytenr == 0) { 3328 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 3329 if (ret < 0) { 3330 return ret; 3331 } else if (ret > 0) { 3332 /* No file extent items that are not holes. */ 3333 *last_extent_end_ret = 0; 3334 return 0; 3335 } 3336 leaf = path->nodes[0]; 3337 ei = btrfs_item_ptr(leaf, path->slots[0], 3338 struct btrfs_file_extent_item); 3339 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3340 } 3341 3342 *last_extent_end_ret = btrfs_file_extent_end(path); 3343 return 0; 3344 } 3345 3346 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo, 3347 u64 start, u64 len) 3348 { 3349 const u64 ino = btrfs_ino(inode); 3350 struct extent_state *cached_state = NULL; 3351 struct extent_state *delalloc_cached_state = NULL; 3352 struct btrfs_path *path; 3353 struct fiemap_cache cache = { 0 }; 3354 struct btrfs_backref_share_check_ctx *backref_ctx; 3355 u64 last_extent_end; 3356 u64 prev_extent_end; 3357 u64 lockstart; 3358 u64 lockend; 3359 bool stopped = false; 3360 int ret; 3361 3362 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 3363 path = btrfs_alloc_path(); 3364 if (!backref_ctx || !path) { 3365 ret = -ENOMEM; 3366 goto out; 3367 } 3368 3369 lockstart = round_down(start, inode->root->fs_info->sectorsize); 3370 lockend = round_up(start + len, inode->root->fs_info->sectorsize); 3371 prev_extent_end = lockstart; 3372 3373 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 3374 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3375 3376 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end); 3377 if (ret < 0) 3378 goto out_unlock; 3379 btrfs_release_path(path); 3380 3381 path->reada = READA_FORWARD; 3382 ret = fiemap_search_slot(inode, path, lockstart); 3383 if (ret < 0) { 3384 goto out_unlock; 3385 } else if (ret > 0) { 3386 /* 3387 * No file extent item found, but we may have delalloc between 3388 * the current offset and i_size. So check for that. 3389 */ 3390 ret = 0; 3391 goto check_eof_delalloc; 3392 } 3393 3394 while (prev_extent_end < lockend) { 3395 struct extent_buffer *leaf = path->nodes[0]; 3396 struct btrfs_file_extent_item *ei; 3397 struct btrfs_key key; 3398 u64 extent_end; 3399 u64 extent_len; 3400 u64 extent_offset = 0; 3401 u64 extent_gen; 3402 u64 disk_bytenr = 0; 3403 u64 flags = 0; 3404 int extent_type; 3405 u8 compression; 3406 3407 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3408 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 3409 break; 3410 3411 extent_end = btrfs_file_extent_end(path); 3412 3413 /* 3414 * The first iteration can leave us at an extent item that ends 3415 * before our range's start. Move to the next item. 3416 */ 3417 if (extent_end <= lockstart) 3418 goto next_item; 3419 3420 backref_ctx->curr_leaf_bytenr = leaf->start; 3421 3422 /* We have in implicit hole (NO_HOLES feature enabled). */ 3423 if (prev_extent_end < key.offset) { 3424 const u64 range_end = min(key.offset, lockend) - 1; 3425 3426 ret = fiemap_process_hole(inode, fieinfo, &cache, 3427 &delalloc_cached_state, 3428 backref_ctx, 0, 0, 0, 3429 prev_extent_end, range_end); 3430 if (ret < 0) { 3431 goto out_unlock; 3432 } else if (ret > 0) { 3433 /* fiemap_fill_next_extent() told us to stop. */ 3434 stopped = true; 3435 break; 3436 } 3437 3438 /* We've reached the end of the fiemap range, stop. */ 3439 if (key.offset >= lockend) { 3440 stopped = true; 3441 break; 3442 } 3443 } 3444 3445 extent_len = extent_end - key.offset; 3446 ei = btrfs_item_ptr(leaf, path->slots[0], 3447 struct btrfs_file_extent_item); 3448 compression = btrfs_file_extent_compression(leaf, ei); 3449 extent_type = btrfs_file_extent_type(leaf, ei); 3450 extent_gen = btrfs_file_extent_generation(leaf, ei); 3451 3452 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3453 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 3454 if (compression == BTRFS_COMPRESS_NONE) 3455 extent_offset = btrfs_file_extent_offset(leaf, ei); 3456 } 3457 3458 if (compression != BTRFS_COMPRESS_NONE) 3459 flags |= FIEMAP_EXTENT_ENCODED; 3460 3461 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3462 flags |= FIEMAP_EXTENT_DATA_INLINE; 3463 flags |= FIEMAP_EXTENT_NOT_ALIGNED; 3464 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0, 3465 extent_len, flags); 3466 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 3467 ret = fiemap_process_hole(inode, fieinfo, &cache, 3468 &delalloc_cached_state, 3469 backref_ctx, 3470 disk_bytenr, extent_offset, 3471 extent_gen, key.offset, 3472 extent_end - 1); 3473 } else if (disk_bytenr == 0) { 3474 /* We have an explicit hole. */ 3475 ret = fiemap_process_hole(inode, fieinfo, &cache, 3476 &delalloc_cached_state, 3477 backref_ctx, 0, 0, 0, 3478 key.offset, extent_end - 1); 3479 } else { 3480 /* We have a regular extent. */ 3481 if (fieinfo->fi_extents_max) { 3482 ret = btrfs_is_data_extent_shared(inode, 3483 disk_bytenr, 3484 extent_gen, 3485 backref_ctx); 3486 if (ret < 0) 3487 goto out_unlock; 3488 else if (ret > 0) 3489 flags |= FIEMAP_EXTENT_SHARED; 3490 } 3491 3492 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 3493 disk_bytenr + extent_offset, 3494 extent_len, flags); 3495 } 3496 3497 if (ret < 0) { 3498 goto out_unlock; 3499 } else if (ret > 0) { 3500 /* fiemap_fill_next_extent() told us to stop. */ 3501 stopped = true; 3502 break; 3503 } 3504 3505 prev_extent_end = extent_end; 3506 next_item: 3507 if (fatal_signal_pending(current)) { 3508 ret = -EINTR; 3509 goto out_unlock; 3510 } 3511 3512 ret = fiemap_next_leaf_item(inode, path); 3513 if (ret < 0) { 3514 goto out_unlock; 3515 } else if (ret > 0) { 3516 /* No more file extent items for this inode. */ 3517 break; 3518 } 3519 cond_resched(); 3520 } 3521 3522 check_eof_delalloc: 3523 /* 3524 * Release (and free) the path before emitting any final entries to 3525 * fiemap_fill_next_extent() to keep lockdep happy. This is because 3526 * once we find no more file extent items exist, we may have a 3527 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page 3528 * faults when copying data to the user space buffer. 3529 */ 3530 btrfs_free_path(path); 3531 path = NULL; 3532 3533 if (!stopped && prev_extent_end < lockend) { 3534 ret = fiemap_process_hole(inode, fieinfo, &cache, 3535 &delalloc_cached_state, backref_ctx, 3536 0, 0, 0, prev_extent_end, lockend - 1); 3537 if (ret < 0) 3538 goto out_unlock; 3539 prev_extent_end = lockend; 3540 } 3541 3542 if (cache.cached && cache.offset + cache.len >= last_extent_end) { 3543 const u64 i_size = i_size_read(&inode->vfs_inode); 3544 3545 if (prev_extent_end < i_size) { 3546 u64 delalloc_start; 3547 u64 delalloc_end; 3548 bool delalloc; 3549 3550 delalloc = btrfs_find_delalloc_in_range(inode, 3551 prev_extent_end, 3552 i_size - 1, 3553 &delalloc_cached_state, 3554 &delalloc_start, 3555 &delalloc_end); 3556 if (!delalloc) 3557 cache.flags |= FIEMAP_EXTENT_LAST; 3558 } else { 3559 cache.flags |= FIEMAP_EXTENT_LAST; 3560 } 3561 } 3562 3563 ret = emit_last_fiemap_cache(fieinfo, &cache); 3564 3565 out_unlock: 3566 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state); 3567 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 3568 out: 3569 free_extent_state(delalloc_cached_state); 3570 btrfs_free_backref_share_ctx(backref_ctx); 3571 btrfs_free_path(path); 3572 return ret; 3573 } 3574 3575 static void __free_extent_buffer(struct extent_buffer *eb) 3576 { 3577 kmem_cache_free(extent_buffer_cache, eb); 3578 } 3579 3580 int extent_buffer_under_io(const struct extent_buffer *eb) 3581 { 3582 return (atomic_read(&eb->io_pages) || 3583 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 3584 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3585 } 3586 3587 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page) 3588 { 3589 struct btrfs_subpage *subpage; 3590 3591 lockdep_assert_held(&page->mapping->private_lock); 3592 3593 if (PagePrivate(page)) { 3594 subpage = (struct btrfs_subpage *)page->private; 3595 if (atomic_read(&subpage->eb_refs)) 3596 return true; 3597 /* 3598 * Even there is no eb refs here, we may still have 3599 * end_page_read() call relying on page::private. 3600 */ 3601 if (atomic_read(&subpage->readers)) 3602 return true; 3603 } 3604 return false; 3605 } 3606 3607 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page) 3608 { 3609 struct btrfs_fs_info *fs_info = eb->fs_info; 3610 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3611 3612 /* 3613 * For mapped eb, we're going to change the page private, which should 3614 * be done under the private_lock. 3615 */ 3616 if (mapped) 3617 spin_lock(&page->mapping->private_lock); 3618 3619 if (!PagePrivate(page)) { 3620 if (mapped) 3621 spin_unlock(&page->mapping->private_lock); 3622 return; 3623 } 3624 3625 if (fs_info->nodesize >= PAGE_SIZE) { 3626 /* 3627 * We do this since we'll remove the pages after we've 3628 * removed the eb from the radix tree, so we could race 3629 * and have this page now attached to the new eb. So 3630 * only clear page_private if it's still connected to 3631 * this eb. 3632 */ 3633 if (PagePrivate(page) && 3634 page->private == (unsigned long)eb) { 3635 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 3636 BUG_ON(PageDirty(page)); 3637 BUG_ON(PageWriteback(page)); 3638 /* 3639 * We need to make sure we haven't be attached 3640 * to a new eb. 3641 */ 3642 detach_page_private(page); 3643 } 3644 if (mapped) 3645 spin_unlock(&page->mapping->private_lock); 3646 return; 3647 } 3648 3649 /* 3650 * For subpage, we can have dummy eb with page private. In this case, 3651 * we can directly detach the private as such page is only attached to 3652 * one dummy eb, no sharing. 3653 */ 3654 if (!mapped) { 3655 btrfs_detach_subpage(fs_info, page); 3656 return; 3657 } 3658 3659 btrfs_page_dec_eb_refs(fs_info, page); 3660 3661 /* 3662 * We can only detach the page private if there are no other ebs in the 3663 * page range and no unfinished IO. 3664 */ 3665 if (!page_range_has_eb(fs_info, page)) 3666 btrfs_detach_subpage(fs_info, page); 3667 3668 spin_unlock(&page->mapping->private_lock); 3669 } 3670 3671 /* Release all pages attached to the extent buffer */ 3672 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb) 3673 { 3674 int i; 3675 int num_pages; 3676 3677 ASSERT(!extent_buffer_under_io(eb)); 3678 3679 num_pages = num_extent_pages(eb); 3680 for (i = 0; i < num_pages; i++) { 3681 struct page *page = eb->pages[i]; 3682 3683 if (!page) 3684 continue; 3685 3686 detach_extent_buffer_page(eb, page); 3687 3688 /* One for when we allocated the page */ 3689 put_page(page); 3690 } 3691 } 3692 3693 /* 3694 * Helper for releasing the extent buffer. 3695 */ 3696 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3697 { 3698 btrfs_release_extent_buffer_pages(eb); 3699 btrfs_leak_debug_del_eb(eb); 3700 __free_extent_buffer(eb); 3701 } 3702 3703 static struct extent_buffer * 3704 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 3705 unsigned long len) 3706 { 3707 struct extent_buffer *eb = NULL; 3708 3709 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL); 3710 eb->start = start; 3711 eb->len = len; 3712 eb->fs_info = fs_info; 3713 init_rwsem(&eb->lock); 3714 3715 btrfs_leak_debug_add_eb(eb); 3716 INIT_LIST_HEAD(&eb->release_list); 3717 3718 spin_lock_init(&eb->refs_lock); 3719 atomic_set(&eb->refs, 1); 3720 atomic_set(&eb->io_pages, 0); 3721 3722 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE); 3723 3724 return eb; 3725 } 3726 3727 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src) 3728 { 3729 int i; 3730 struct extent_buffer *new; 3731 int num_pages = num_extent_pages(src); 3732 int ret; 3733 3734 new = __alloc_extent_buffer(src->fs_info, src->start, src->len); 3735 if (new == NULL) 3736 return NULL; 3737 3738 /* 3739 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as 3740 * btrfs_release_extent_buffer() have different behavior for 3741 * UNMAPPED subpage extent buffer. 3742 */ 3743 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags); 3744 3745 ret = btrfs_alloc_page_array(num_pages, new->pages); 3746 if (ret) { 3747 btrfs_release_extent_buffer(new); 3748 return NULL; 3749 } 3750 3751 for (i = 0; i < num_pages; i++) { 3752 int ret; 3753 struct page *p = new->pages[i]; 3754 3755 ret = attach_extent_buffer_page(new, p, NULL); 3756 if (ret < 0) { 3757 btrfs_release_extent_buffer(new); 3758 return NULL; 3759 } 3760 WARN_ON(PageDirty(p)); 3761 copy_page(page_address(p), page_address(src->pages[i])); 3762 } 3763 set_extent_buffer_uptodate(new); 3764 3765 return new; 3766 } 3767 3768 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3769 u64 start, unsigned long len) 3770 { 3771 struct extent_buffer *eb; 3772 int num_pages; 3773 int i; 3774 int ret; 3775 3776 eb = __alloc_extent_buffer(fs_info, start, len); 3777 if (!eb) 3778 return NULL; 3779 3780 num_pages = num_extent_pages(eb); 3781 ret = btrfs_alloc_page_array(num_pages, eb->pages); 3782 if (ret) 3783 goto err; 3784 3785 for (i = 0; i < num_pages; i++) { 3786 struct page *p = eb->pages[i]; 3787 3788 ret = attach_extent_buffer_page(eb, p, NULL); 3789 if (ret < 0) 3790 goto err; 3791 } 3792 3793 set_extent_buffer_uptodate(eb); 3794 btrfs_set_header_nritems(eb, 0); 3795 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags); 3796 3797 return eb; 3798 err: 3799 for (i = 0; i < num_pages; i++) { 3800 if (eb->pages[i]) { 3801 detach_extent_buffer_page(eb, eb->pages[i]); 3802 __free_page(eb->pages[i]); 3803 } 3804 } 3805 __free_extent_buffer(eb); 3806 return NULL; 3807 } 3808 3809 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, 3810 u64 start) 3811 { 3812 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize); 3813 } 3814 3815 static void check_buffer_tree_ref(struct extent_buffer *eb) 3816 { 3817 int refs; 3818 /* 3819 * The TREE_REF bit is first set when the extent_buffer is added 3820 * to the radix tree. It is also reset, if unset, when a new reference 3821 * is created by find_extent_buffer. 3822 * 3823 * It is only cleared in two cases: freeing the last non-tree 3824 * reference to the extent_buffer when its STALE bit is set or 3825 * calling release_folio when the tree reference is the only reference. 3826 * 3827 * In both cases, care is taken to ensure that the extent_buffer's 3828 * pages are not under io. However, release_folio can be concurrently 3829 * called with creating new references, which is prone to race 3830 * conditions between the calls to check_buffer_tree_ref in those 3831 * codepaths and clearing TREE_REF in try_release_extent_buffer. 3832 * 3833 * The actual lifetime of the extent_buffer in the radix tree is 3834 * adequately protected by the refcount, but the TREE_REF bit and 3835 * its corresponding reference are not. To protect against this 3836 * class of races, we call check_buffer_tree_ref from the codepaths 3837 * which trigger io after they set eb->io_pages. Note that once io is 3838 * initiated, TREE_REF can no longer be cleared, so that is the 3839 * moment at which any such race is best fixed. 3840 */ 3841 refs = atomic_read(&eb->refs); 3842 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3843 return; 3844 3845 spin_lock(&eb->refs_lock); 3846 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 3847 atomic_inc(&eb->refs); 3848 spin_unlock(&eb->refs_lock); 3849 } 3850 3851 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 3852 struct page *accessed) 3853 { 3854 int num_pages, i; 3855 3856 check_buffer_tree_ref(eb); 3857 3858 num_pages = num_extent_pages(eb); 3859 for (i = 0; i < num_pages; i++) { 3860 struct page *p = eb->pages[i]; 3861 3862 if (p != accessed) 3863 mark_page_accessed(p); 3864 } 3865 } 3866 3867 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 3868 u64 start) 3869 { 3870 struct extent_buffer *eb; 3871 3872 eb = find_extent_buffer_nolock(fs_info, start); 3873 if (!eb) 3874 return NULL; 3875 /* 3876 * Lock our eb's refs_lock to avoid races with free_extent_buffer(). 3877 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and 3878 * another task running free_extent_buffer() might have seen that flag 3879 * set, eb->refs == 2, that the buffer isn't under IO (dirty and 3880 * writeback flags not set) and it's still in the tree (flag 3881 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of 3882 * decrementing the extent buffer's reference count twice. So here we 3883 * could race and increment the eb's reference count, clear its stale 3884 * flag, mark it as dirty and drop our reference before the other task 3885 * finishes executing free_extent_buffer, which would later result in 3886 * an attempt to free an extent buffer that is dirty. 3887 */ 3888 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) { 3889 spin_lock(&eb->refs_lock); 3890 spin_unlock(&eb->refs_lock); 3891 } 3892 mark_extent_buffer_accessed(eb, NULL); 3893 return eb; 3894 } 3895 3896 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3897 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 3898 u64 start) 3899 { 3900 struct extent_buffer *eb, *exists = NULL; 3901 int ret; 3902 3903 eb = find_extent_buffer(fs_info, start); 3904 if (eb) 3905 return eb; 3906 eb = alloc_dummy_extent_buffer(fs_info, start); 3907 if (!eb) 3908 return ERR_PTR(-ENOMEM); 3909 eb->fs_info = fs_info; 3910 again: 3911 ret = radix_tree_preload(GFP_NOFS); 3912 if (ret) { 3913 exists = ERR_PTR(ret); 3914 goto free_eb; 3915 } 3916 spin_lock(&fs_info->buffer_lock); 3917 ret = radix_tree_insert(&fs_info->buffer_radix, 3918 start >> fs_info->sectorsize_bits, eb); 3919 spin_unlock(&fs_info->buffer_lock); 3920 radix_tree_preload_end(); 3921 if (ret == -EEXIST) { 3922 exists = find_extent_buffer(fs_info, start); 3923 if (exists) 3924 goto free_eb; 3925 else 3926 goto again; 3927 } 3928 check_buffer_tree_ref(eb); 3929 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 3930 3931 return eb; 3932 free_eb: 3933 btrfs_release_extent_buffer(eb); 3934 return exists; 3935 } 3936 #endif 3937 3938 static struct extent_buffer *grab_extent_buffer( 3939 struct btrfs_fs_info *fs_info, struct page *page) 3940 { 3941 struct extent_buffer *exists; 3942 3943 /* 3944 * For subpage case, we completely rely on radix tree to ensure we 3945 * don't try to insert two ebs for the same bytenr. So here we always 3946 * return NULL and just continue. 3947 */ 3948 if (fs_info->nodesize < PAGE_SIZE) 3949 return NULL; 3950 3951 /* Page not yet attached to an extent buffer */ 3952 if (!PagePrivate(page)) 3953 return NULL; 3954 3955 /* 3956 * We could have already allocated an eb for this page and attached one 3957 * so lets see if we can get a ref on the existing eb, and if we can we 3958 * know it's good and we can just return that one, else we know we can 3959 * just overwrite page->private. 3960 */ 3961 exists = (struct extent_buffer *)page->private; 3962 if (atomic_inc_not_zero(&exists->refs)) 3963 return exists; 3964 3965 WARN_ON(PageDirty(page)); 3966 detach_page_private(page); 3967 return NULL; 3968 } 3969 3970 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start) 3971 { 3972 if (!IS_ALIGNED(start, fs_info->sectorsize)) { 3973 btrfs_err(fs_info, "bad tree block start %llu", start); 3974 return -EINVAL; 3975 } 3976 3977 if (fs_info->nodesize < PAGE_SIZE && 3978 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) { 3979 btrfs_err(fs_info, 3980 "tree block crosses page boundary, start %llu nodesize %u", 3981 start, fs_info->nodesize); 3982 return -EINVAL; 3983 } 3984 if (fs_info->nodesize >= PAGE_SIZE && 3985 !PAGE_ALIGNED(start)) { 3986 btrfs_err(fs_info, 3987 "tree block is not page aligned, start %llu nodesize %u", 3988 start, fs_info->nodesize); 3989 return -EINVAL; 3990 } 3991 return 0; 3992 } 3993 3994 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 3995 u64 start, u64 owner_root, int level) 3996 { 3997 unsigned long len = fs_info->nodesize; 3998 int num_pages; 3999 int i; 4000 unsigned long index = start >> PAGE_SHIFT; 4001 struct extent_buffer *eb; 4002 struct extent_buffer *exists = NULL; 4003 struct page *p; 4004 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4005 u64 lockdep_owner = owner_root; 4006 int uptodate = 1; 4007 int ret; 4008 4009 if (check_eb_alignment(fs_info, start)) 4010 return ERR_PTR(-EINVAL); 4011 4012 #if BITS_PER_LONG == 32 4013 if (start >= MAX_LFS_FILESIZE) { 4014 btrfs_err_rl(fs_info, 4015 "extent buffer %llu is beyond 32bit page cache limit", start); 4016 btrfs_err_32bit_limit(fs_info); 4017 return ERR_PTR(-EOVERFLOW); 4018 } 4019 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD) 4020 btrfs_warn_32bit_limit(fs_info); 4021 #endif 4022 4023 eb = find_extent_buffer(fs_info, start); 4024 if (eb) 4025 return eb; 4026 4027 eb = __alloc_extent_buffer(fs_info, start, len); 4028 if (!eb) 4029 return ERR_PTR(-ENOMEM); 4030 4031 /* 4032 * The reloc trees are just snapshots, so we need them to appear to be 4033 * just like any other fs tree WRT lockdep. 4034 */ 4035 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID) 4036 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4037 4038 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level); 4039 4040 num_pages = num_extent_pages(eb); 4041 for (i = 0; i < num_pages; i++, index++) { 4042 struct btrfs_subpage *prealloc = NULL; 4043 4044 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL); 4045 if (!p) { 4046 exists = ERR_PTR(-ENOMEM); 4047 goto free_eb; 4048 } 4049 4050 /* 4051 * Preallocate page->private for subpage case, so that we won't 4052 * allocate memory with private_lock hold. The memory will be 4053 * freed by attach_extent_buffer_page() or freed manually if 4054 * we exit earlier. 4055 * 4056 * Although we have ensured one subpage eb can only have one 4057 * page, but it may change in the future for 16K page size 4058 * support, so we still preallocate the memory in the loop. 4059 */ 4060 if (fs_info->nodesize < PAGE_SIZE) { 4061 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA); 4062 if (IS_ERR(prealloc)) { 4063 ret = PTR_ERR(prealloc); 4064 unlock_page(p); 4065 put_page(p); 4066 exists = ERR_PTR(ret); 4067 goto free_eb; 4068 } 4069 } 4070 4071 spin_lock(&mapping->private_lock); 4072 exists = grab_extent_buffer(fs_info, p); 4073 if (exists) { 4074 spin_unlock(&mapping->private_lock); 4075 unlock_page(p); 4076 put_page(p); 4077 mark_extent_buffer_accessed(exists, p); 4078 btrfs_free_subpage(prealloc); 4079 goto free_eb; 4080 } 4081 /* Should not fail, as we have preallocated the memory */ 4082 ret = attach_extent_buffer_page(eb, p, prealloc); 4083 ASSERT(!ret); 4084 /* 4085 * To inform we have extra eb under allocation, so that 4086 * detach_extent_buffer_page() won't release the page private 4087 * when the eb hasn't yet been inserted into radix tree. 4088 * 4089 * The ref will be decreased when the eb released the page, in 4090 * detach_extent_buffer_page(). 4091 * Thus needs no special handling in error path. 4092 */ 4093 btrfs_page_inc_eb_refs(fs_info, p); 4094 spin_unlock(&mapping->private_lock); 4095 4096 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len)); 4097 eb->pages[i] = p; 4098 if (!PageUptodate(p)) 4099 uptodate = 0; 4100 4101 /* 4102 * We can't unlock the pages just yet since the extent buffer 4103 * hasn't been properly inserted in the radix tree, this 4104 * opens a race with btree_release_folio which can free a page 4105 * while we are still filling in all pages for the buffer and 4106 * we could crash. 4107 */ 4108 } 4109 if (uptodate) 4110 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4111 again: 4112 ret = radix_tree_preload(GFP_NOFS); 4113 if (ret) { 4114 exists = ERR_PTR(ret); 4115 goto free_eb; 4116 } 4117 4118 spin_lock(&fs_info->buffer_lock); 4119 ret = radix_tree_insert(&fs_info->buffer_radix, 4120 start >> fs_info->sectorsize_bits, eb); 4121 spin_unlock(&fs_info->buffer_lock); 4122 radix_tree_preload_end(); 4123 if (ret == -EEXIST) { 4124 exists = find_extent_buffer(fs_info, start); 4125 if (exists) 4126 goto free_eb; 4127 else 4128 goto again; 4129 } 4130 /* add one reference for the tree */ 4131 check_buffer_tree_ref(eb); 4132 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4133 4134 /* 4135 * Now it's safe to unlock the pages because any calls to 4136 * btree_release_folio will correctly detect that a page belongs to a 4137 * live buffer and won't free them prematurely. 4138 */ 4139 for (i = 0; i < num_pages; i++) 4140 unlock_page(eb->pages[i]); 4141 return eb; 4142 4143 free_eb: 4144 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4145 for (i = 0; i < num_pages; i++) { 4146 if (eb->pages[i]) 4147 unlock_page(eb->pages[i]); 4148 } 4149 4150 btrfs_release_extent_buffer(eb); 4151 return exists; 4152 } 4153 4154 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4155 { 4156 struct extent_buffer *eb = 4157 container_of(head, struct extent_buffer, rcu_head); 4158 4159 __free_extent_buffer(eb); 4160 } 4161 4162 static int release_extent_buffer(struct extent_buffer *eb) 4163 __releases(&eb->refs_lock) 4164 { 4165 lockdep_assert_held(&eb->refs_lock); 4166 4167 WARN_ON(atomic_read(&eb->refs) == 0); 4168 if (atomic_dec_and_test(&eb->refs)) { 4169 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4170 struct btrfs_fs_info *fs_info = eb->fs_info; 4171 4172 spin_unlock(&eb->refs_lock); 4173 4174 spin_lock(&fs_info->buffer_lock); 4175 radix_tree_delete(&fs_info->buffer_radix, 4176 eb->start >> fs_info->sectorsize_bits); 4177 spin_unlock(&fs_info->buffer_lock); 4178 } else { 4179 spin_unlock(&eb->refs_lock); 4180 } 4181 4182 btrfs_leak_debug_del_eb(eb); 4183 /* Should be safe to release our pages at this point */ 4184 btrfs_release_extent_buffer_pages(eb); 4185 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4186 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) { 4187 __free_extent_buffer(eb); 4188 return 1; 4189 } 4190 #endif 4191 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4192 return 1; 4193 } 4194 spin_unlock(&eb->refs_lock); 4195 4196 return 0; 4197 } 4198 4199 void free_extent_buffer(struct extent_buffer *eb) 4200 { 4201 int refs; 4202 if (!eb) 4203 return; 4204 4205 refs = atomic_read(&eb->refs); 4206 while (1) { 4207 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3) 4208 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && 4209 refs == 1)) 4210 break; 4211 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1)) 4212 return; 4213 } 4214 4215 spin_lock(&eb->refs_lock); 4216 if (atomic_read(&eb->refs) == 2 && 4217 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4218 !extent_buffer_under_io(eb) && 4219 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4220 atomic_dec(&eb->refs); 4221 4222 /* 4223 * I know this is terrible, but it's temporary until we stop tracking 4224 * the uptodate bits and such for the extent buffers. 4225 */ 4226 release_extent_buffer(eb); 4227 } 4228 4229 void free_extent_buffer_stale(struct extent_buffer *eb) 4230 { 4231 if (!eb) 4232 return; 4233 4234 spin_lock(&eb->refs_lock); 4235 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4236 4237 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4238 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4239 atomic_dec(&eb->refs); 4240 release_extent_buffer(eb); 4241 } 4242 4243 static void btree_clear_page_dirty(struct page *page) 4244 { 4245 ASSERT(PageDirty(page)); 4246 ASSERT(PageLocked(page)); 4247 clear_page_dirty_for_io(page); 4248 xa_lock_irq(&page->mapping->i_pages); 4249 if (!PageDirty(page)) 4250 __xa_clear_mark(&page->mapping->i_pages, 4251 page_index(page), PAGECACHE_TAG_DIRTY); 4252 xa_unlock_irq(&page->mapping->i_pages); 4253 } 4254 4255 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb) 4256 { 4257 struct btrfs_fs_info *fs_info = eb->fs_info; 4258 struct page *page = eb->pages[0]; 4259 bool last; 4260 4261 /* btree_clear_page_dirty() needs page locked */ 4262 lock_page(page); 4263 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start, 4264 eb->len); 4265 if (last) 4266 btree_clear_page_dirty(page); 4267 unlock_page(page); 4268 WARN_ON(atomic_read(&eb->refs) == 0); 4269 } 4270 4271 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans, 4272 struct extent_buffer *eb) 4273 { 4274 struct btrfs_fs_info *fs_info = eb->fs_info; 4275 int i; 4276 int num_pages; 4277 struct page *page; 4278 4279 btrfs_assert_tree_write_locked(eb); 4280 4281 if (trans && btrfs_header_generation(eb) != trans->transid) 4282 return; 4283 4284 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) 4285 return; 4286 4287 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len, 4288 fs_info->dirty_metadata_batch); 4289 4290 if (eb->fs_info->nodesize < PAGE_SIZE) 4291 return clear_subpage_extent_buffer_dirty(eb); 4292 4293 num_pages = num_extent_pages(eb); 4294 4295 for (i = 0; i < num_pages; i++) { 4296 page = eb->pages[i]; 4297 if (!PageDirty(page)) 4298 continue; 4299 lock_page(page); 4300 btree_clear_page_dirty(page); 4301 ClearPageError(page); 4302 unlock_page(page); 4303 } 4304 WARN_ON(atomic_read(&eb->refs) == 0); 4305 } 4306 4307 bool set_extent_buffer_dirty(struct extent_buffer *eb) 4308 { 4309 int i; 4310 int num_pages; 4311 bool was_dirty; 4312 4313 check_buffer_tree_ref(eb); 4314 4315 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4316 4317 num_pages = num_extent_pages(eb); 4318 WARN_ON(atomic_read(&eb->refs) == 0); 4319 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4320 4321 if (!was_dirty) { 4322 bool subpage = eb->fs_info->nodesize < PAGE_SIZE; 4323 4324 /* 4325 * For subpage case, we can have other extent buffers in the 4326 * same page, and in clear_subpage_extent_buffer_dirty() we 4327 * have to clear page dirty without subpage lock held. 4328 * This can cause race where our page gets dirty cleared after 4329 * we just set it. 4330 * 4331 * Thankfully, clear_subpage_extent_buffer_dirty() has locked 4332 * its page for other reasons, we can use page lock to prevent 4333 * the above race. 4334 */ 4335 if (subpage) 4336 lock_page(eb->pages[0]); 4337 for (i = 0; i < num_pages; i++) 4338 btrfs_page_set_dirty(eb->fs_info, eb->pages[i], 4339 eb->start, eb->len); 4340 if (subpage) 4341 unlock_page(eb->pages[0]); 4342 } 4343 #ifdef CONFIG_BTRFS_DEBUG 4344 for (i = 0; i < num_pages; i++) 4345 ASSERT(PageDirty(eb->pages[i])); 4346 #endif 4347 4348 return was_dirty; 4349 } 4350 4351 void clear_extent_buffer_uptodate(struct extent_buffer *eb) 4352 { 4353 struct btrfs_fs_info *fs_info = eb->fs_info; 4354 struct page *page; 4355 int num_pages; 4356 int i; 4357 4358 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4359 num_pages = num_extent_pages(eb); 4360 for (i = 0; i < num_pages; i++) { 4361 page = eb->pages[i]; 4362 if (!page) 4363 continue; 4364 4365 /* 4366 * This is special handling for metadata subpage, as regular 4367 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4368 */ 4369 if (fs_info->nodesize >= PAGE_SIZE) 4370 ClearPageUptodate(page); 4371 else 4372 btrfs_subpage_clear_uptodate(fs_info, page, eb->start, 4373 eb->len); 4374 } 4375 } 4376 4377 void set_extent_buffer_uptodate(struct extent_buffer *eb) 4378 { 4379 struct btrfs_fs_info *fs_info = eb->fs_info; 4380 struct page *page; 4381 int num_pages; 4382 int i; 4383 4384 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4385 num_pages = num_extent_pages(eb); 4386 for (i = 0; i < num_pages; i++) { 4387 page = eb->pages[i]; 4388 4389 /* 4390 * This is special handling for metadata subpage, as regular 4391 * btrfs_is_subpage() can not handle cloned/dummy metadata. 4392 */ 4393 if (fs_info->nodesize >= PAGE_SIZE) 4394 SetPageUptodate(page); 4395 else 4396 btrfs_subpage_set_uptodate(fs_info, page, eb->start, 4397 eb->len); 4398 } 4399 } 4400 4401 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait, 4402 int mirror_num, 4403 struct btrfs_tree_parent_check *check) 4404 { 4405 struct btrfs_fs_info *fs_info = eb->fs_info; 4406 struct extent_io_tree *io_tree; 4407 struct page *page = eb->pages[0]; 4408 struct extent_state *cached_state = NULL; 4409 struct btrfs_bio_ctrl bio_ctrl = { 4410 .mirror_num = mirror_num, 4411 .parent_check = check, 4412 }; 4413 int ret = 0; 4414 4415 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)); 4416 ASSERT(PagePrivate(page)); 4417 ASSERT(check); 4418 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 4419 4420 if (wait == WAIT_NONE) { 4421 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4422 &cached_state)) 4423 return -EAGAIN; 4424 } else { 4425 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4426 &cached_state); 4427 if (ret < 0) 4428 return ret; 4429 } 4430 4431 ret = 0; 4432 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) || 4433 PageUptodate(page) || 4434 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) { 4435 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4436 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 4437 &cached_state); 4438 return ret; 4439 } 4440 4441 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4442 eb->read_mirror = 0; 4443 atomic_set(&eb->io_pages, 1); 4444 check_buffer_tree_ref(eb); 4445 bio_ctrl.end_io_func = end_bio_extent_readpage; 4446 4447 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len); 4448 4449 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len); 4450 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl, 4451 eb->start, page, eb->len, 4452 eb->start - page_offset(page), 0, true); 4453 if (ret) { 4454 /* 4455 * In the endio function, if we hit something wrong we will 4456 * increase the io_pages, so here we need to decrease it for 4457 * error path. 4458 */ 4459 atomic_dec(&eb->io_pages); 4460 } 4461 submit_one_bio(&bio_ctrl); 4462 if (ret || wait != WAIT_COMPLETE) { 4463 free_extent_state(cached_state); 4464 return ret; 4465 } 4466 4467 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, 4468 EXTENT_LOCKED, &cached_state); 4469 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4470 ret = -EIO; 4471 return ret; 4472 } 4473 4474 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num, 4475 struct btrfs_tree_parent_check *check) 4476 { 4477 int i; 4478 struct page *page; 4479 int err; 4480 int ret = 0; 4481 int locked_pages = 0; 4482 int all_uptodate = 1; 4483 int num_pages; 4484 unsigned long num_reads = 0; 4485 struct btrfs_bio_ctrl bio_ctrl = { 4486 .mirror_num = mirror_num, 4487 .parent_check = check, 4488 }; 4489 4490 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4491 return 0; 4492 4493 /* 4494 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write 4495 * operation, which could potentially still be in flight. In this case 4496 * we simply want to return an error. 4497 */ 4498 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))) 4499 return -EIO; 4500 4501 if (eb->fs_info->nodesize < PAGE_SIZE) 4502 return read_extent_buffer_subpage(eb, wait, mirror_num, check); 4503 4504 num_pages = num_extent_pages(eb); 4505 for (i = 0; i < num_pages; i++) { 4506 page = eb->pages[i]; 4507 if (wait == WAIT_NONE) { 4508 /* 4509 * WAIT_NONE is only utilized by readahead. If we can't 4510 * acquire the lock atomically it means either the eb 4511 * is being read out or under modification. 4512 * Either way the eb will be or has been cached, 4513 * readahead can exit safely. 4514 */ 4515 if (!trylock_page(page)) 4516 goto unlock_exit; 4517 } else { 4518 lock_page(page); 4519 } 4520 locked_pages++; 4521 } 4522 /* 4523 * We need to firstly lock all pages to make sure that 4524 * the uptodate bit of our pages won't be affected by 4525 * clear_extent_buffer_uptodate(). 4526 */ 4527 for (i = 0; i < num_pages; i++) { 4528 page = eb->pages[i]; 4529 if (!PageUptodate(page)) { 4530 num_reads++; 4531 all_uptodate = 0; 4532 } 4533 } 4534 4535 if (all_uptodate) { 4536 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4537 goto unlock_exit; 4538 } 4539 4540 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 4541 eb->read_mirror = 0; 4542 atomic_set(&eb->io_pages, num_reads); 4543 /* 4544 * It is possible for release_folio to clear the TREE_REF bit before we 4545 * set io_pages. See check_buffer_tree_ref for a more detailed comment. 4546 */ 4547 check_buffer_tree_ref(eb); 4548 bio_ctrl.end_io_func = end_bio_extent_readpage; 4549 for (i = 0; i < num_pages; i++) { 4550 page = eb->pages[i]; 4551 4552 if (!PageUptodate(page)) { 4553 if (ret) { 4554 atomic_dec(&eb->io_pages); 4555 unlock_page(page); 4556 continue; 4557 } 4558 4559 ClearPageError(page); 4560 err = submit_extent_page(REQ_OP_READ, NULL, 4561 &bio_ctrl, page_offset(page), page, 4562 PAGE_SIZE, 0, 0, false); 4563 if (err) { 4564 /* 4565 * We failed to submit the bio so it's the 4566 * caller's responsibility to perform cleanup 4567 * i.e unlock page/set error bit. 4568 */ 4569 ret = err; 4570 SetPageError(page); 4571 unlock_page(page); 4572 atomic_dec(&eb->io_pages); 4573 } 4574 } else { 4575 unlock_page(page); 4576 } 4577 } 4578 4579 submit_one_bio(&bio_ctrl); 4580 4581 if (ret || wait != WAIT_COMPLETE) 4582 return ret; 4583 4584 for (i = 0; i < num_pages; i++) { 4585 page = eb->pages[i]; 4586 wait_on_page_locked(page); 4587 if (!PageUptodate(page)) 4588 ret = -EIO; 4589 } 4590 4591 return ret; 4592 4593 unlock_exit: 4594 while (locked_pages > 0) { 4595 locked_pages--; 4596 page = eb->pages[locked_pages]; 4597 unlock_page(page); 4598 } 4599 return ret; 4600 } 4601 4602 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start, 4603 unsigned long len) 4604 { 4605 btrfs_warn(eb->fs_info, 4606 "access to eb bytenr %llu len %lu out of range start %lu len %lu", 4607 eb->start, eb->len, start, len); 4608 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4609 4610 return true; 4611 } 4612 4613 /* 4614 * Check if the [start, start + len) range is valid before reading/writing 4615 * the eb. 4616 * NOTE: @start and @len are offset inside the eb, not logical address. 4617 * 4618 * Caller should not touch the dst/src memory if this function returns error. 4619 */ 4620 static inline int check_eb_range(const struct extent_buffer *eb, 4621 unsigned long start, unsigned long len) 4622 { 4623 unsigned long offset; 4624 4625 /* start, start + len should not go beyond eb->len nor overflow */ 4626 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len)) 4627 return report_eb_range(eb, start, len); 4628 4629 return false; 4630 } 4631 4632 void read_extent_buffer(const struct extent_buffer *eb, void *dstv, 4633 unsigned long start, unsigned long len) 4634 { 4635 size_t cur; 4636 size_t offset; 4637 struct page *page; 4638 char *kaddr; 4639 char *dst = (char *)dstv; 4640 unsigned long i = get_eb_page_index(start); 4641 4642 if (check_eb_range(eb, start, len)) 4643 return; 4644 4645 offset = get_eb_offset_in_page(eb, start); 4646 4647 while (len > 0) { 4648 page = eb->pages[i]; 4649 4650 cur = min(len, (PAGE_SIZE - offset)); 4651 kaddr = page_address(page); 4652 memcpy(dst, kaddr + offset, cur); 4653 4654 dst += cur; 4655 len -= cur; 4656 offset = 0; 4657 i++; 4658 } 4659 } 4660 4661 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb, 4662 void __user *dstv, 4663 unsigned long start, unsigned long len) 4664 { 4665 size_t cur; 4666 size_t offset; 4667 struct page *page; 4668 char *kaddr; 4669 char __user *dst = (char __user *)dstv; 4670 unsigned long i = get_eb_page_index(start); 4671 int ret = 0; 4672 4673 WARN_ON(start > eb->len); 4674 WARN_ON(start + len > eb->start + eb->len); 4675 4676 offset = get_eb_offset_in_page(eb, start); 4677 4678 while (len > 0) { 4679 page = eb->pages[i]; 4680 4681 cur = min(len, (PAGE_SIZE - offset)); 4682 kaddr = page_address(page); 4683 if (copy_to_user_nofault(dst, kaddr + offset, cur)) { 4684 ret = -EFAULT; 4685 break; 4686 } 4687 4688 dst += cur; 4689 len -= cur; 4690 offset = 0; 4691 i++; 4692 } 4693 4694 return ret; 4695 } 4696 4697 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv, 4698 unsigned long start, unsigned long len) 4699 { 4700 size_t cur; 4701 size_t offset; 4702 struct page *page; 4703 char *kaddr; 4704 char *ptr = (char *)ptrv; 4705 unsigned long i = get_eb_page_index(start); 4706 int ret = 0; 4707 4708 if (check_eb_range(eb, start, len)) 4709 return -EINVAL; 4710 4711 offset = get_eb_offset_in_page(eb, start); 4712 4713 while (len > 0) { 4714 page = eb->pages[i]; 4715 4716 cur = min(len, (PAGE_SIZE - offset)); 4717 4718 kaddr = page_address(page); 4719 ret = memcmp(ptr, kaddr + offset, cur); 4720 if (ret) 4721 break; 4722 4723 ptr += cur; 4724 len -= cur; 4725 offset = 0; 4726 i++; 4727 } 4728 return ret; 4729 } 4730 4731 /* 4732 * Check that the extent buffer is uptodate. 4733 * 4734 * For regular sector size == PAGE_SIZE case, check if @page is uptodate. 4735 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE. 4736 */ 4737 static void assert_eb_page_uptodate(const struct extent_buffer *eb, 4738 struct page *page) 4739 { 4740 struct btrfs_fs_info *fs_info = eb->fs_info; 4741 4742 /* 4743 * If we are using the commit root we could potentially clear a page 4744 * Uptodate while we're using the extent buffer that we've previously 4745 * looked up. We don't want to complain in this case, as the page was 4746 * valid before, we just didn't write it out. Instead we want to catch 4747 * the case where we didn't actually read the block properly, which 4748 * would have !PageUptodate && !PageError, as we clear PageError before 4749 * reading. 4750 */ 4751 if (fs_info->nodesize < PAGE_SIZE) { 4752 bool uptodate, error; 4753 4754 uptodate = btrfs_subpage_test_uptodate(fs_info, page, 4755 eb->start, eb->len); 4756 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len); 4757 WARN_ON(!uptodate && !error); 4758 } else { 4759 WARN_ON(!PageUptodate(page) && !PageError(page)); 4760 } 4761 } 4762 4763 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb, 4764 const void *srcv) 4765 { 4766 char *kaddr; 4767 4768 assert_eb_page_uptodate(eb, eb->pages[0]); 4769 kaddr = page_address(eb->pages[0]) + 4770 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, 4771 chunk_tree_uuid)); 4772 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4773 } 4774 4775 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv) 4776 { 4777 char *kaddr; 4778 4779 assert_eb_page_uptodate(eb, eb->pages[0]); 4780 kaddr = page_address(eb->pages[0]) + 4781 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid)); 4782 memcpy(kaddr, srcv, BTRFS_FSID_SIZE); 4783 } 4784 4785 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv, 4786 unsigned long start, unsigned long len) 4787 { 4788 size_t cur; 4789 size_t offset; 4790 struct page *page; 4791 char *kaddr; 4792 char *src = (char *)srcv; 4793 unsigned long i = get_eb_page_index(start); 4794 4795 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)); 4796 4797 if (check_eb_range(eb, start, len)) 4798 return; 4799 4800 offset = get_eb_offset_in_page(eb, start); 4801 4802 while (len > 0) { 4803 page = eb->pages[i]; 4804 assert_eb_page_uptodate(eb, page); 4805 4806 cur = min(len, PAGE_SIZE - offset); 4807 kaddr = page_address(page); 4808 memcpy(kaddr + offset, src, cur); 4809 4810 src += cur; 4811 len -= cur; 4812 offset = 0; 4813 i++; 4814 } 4815 } 4816 4817 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start, 4818 unsigned long len) 4819 { 4820 size_t cur; 4821 size_t offset; 4822 struct page *page; 4823 char *kaddr; 4824 unsigned long i = get_eb_page_index(start); 4825 4826 if (check_eb_range(eb, start, len)) 4827 return; 4828 4829 offset = get_eb_offset_in_page(eb, start); 4830 4831 while (len > 0) { 4832 page = eb->pages[i]; 4833 assert_eb_page_uptodate(eb, page); 4834 4835 cur = min(len, PAGE_SIZE - offset); 4836 kaddr = page_address(page); 4837 memset(kaddr + offset, 0, cur); 4838 4839 len -= cur; 4840 offset = 0; 4841 i++; 4842 } 4843 } 4844 4845 void copy_extent_buffer_full(const struct extent_buffer *dst, 4846 const struct extent_buffer *src) 4847 { 4848 int i; 4849 int num_pages; 4850 4851 ASSERT(dst->len == src->len); 4852 4853 if (dst->fs_info->nodesize >= PAGE_SIZE) { 4854 num_pages = num_extent_pages(dst); 4855 for (i = 0; i < num_pages; i++) 4856 copy_page(page_address(dst->pages[i]), 4857 page_address(src->pages[i])); 4858 } else { 4859 size_t src_offset = get_eb_offset_in_page(src, 0); 4860 size_t dst_offset = get_eb_offset_in_page(dst, 0); 4861 4862 ASSERT(src->fs_info->nodesize < PAGE_SIZE); 4863 memcpy(page_address(dst->pages[0]) + dst_offset, 4864 page_address(src->pages[0]) + src_offset, 4865 src->len); 4866 } 4867 } 4868 4869 void copy_extent_buffer(const struct extent_buffer *dst, 4870 const struct extent_buffer *src, 4871 unsigned long dst_offset, unsigned long src_offset, 4872 unsigned long len) 4873 { 4874 u64 dst_len = dst->len; 4875 size_t cur; 4876 size_t offset; 4877 struct page *page; 4878 char *kaddr; 4879 unsigned long i = get_eb_page_index(dst_offset); 4880 4881 if (check_eb_range(dst, dst_offset, len) || 4882 check_eb_range(src, src_offset, len)) 4883 return; 4884 4885 WARN_ON(src->len != dst_len); 4886 4887 offset = get_eb_offset_in_page(dst, dst_offset); 4888 4889 while (len > 0) { 4890 page = dst->pages[i]; 4891 assert_eb_page_uptodate(dst, page); 4892 4893 cur = min(len, (unsigned long)(PAGE_SIZE - offset)); 4894 4895 kaddr = page_address(page); 4896 read_extent_buffer(src, kaddr + offset, src_offset, cur); 4897 4898 src_offset += cur; 4899 len -= cur; 4900 offset = 0; 4901 i++; 4902 } 4903 } 4904 4905 /* 4906 * eb_bitmap_offset() - calculate the page and offset of the byte containing the 4907 * given bit number 4908 * @eb: the extent buffer 4909 * @start: offset of the bitmap item in the extent buffer 4910 * @nr: bit number 4911 * @page_index: return index of the page in the extent buffer that contains the 4912 * given bit number 4913 * @page_offset: return offset into the page given by page_index 4914 * 4915 * This helper hides the ugliness of finding the byte in an extent buffer which 4916 * contains a given bit. 4917 */ 4918 static inline void eb_bitmap_offset(const struct extent_buffer *eb, 4919 unsigned long start, unsigned long nr, 4920 unsigned long *page_index, 4921 size_t *page_offset) 4922 { 4923 size_t byte_offset = BIT_BYTE(nr); 4924 size_t offset; 4925 4926 /* 4927 * The byte we want is the offset of the extent buffer + the offset of 4928 * the bitmap item in the extent buffer + the offset of the byte in the 4929 * bitmap item. 4930 */ 4931 offset = start + offset_in_page(eb->start) + byte_offset; 4932 4933 *page_index = offset >> PAGE_SHIFT; 4934 *page_offset = offset_in_page(offset); 4935 } 4936 4937 /* 4938 * Determine whether a bit in a bitmap item is set. 4939 * 4940 * @eb: the extent buffer 4941 * @start: offset of the bitmap item in the extent buffer 4942 * @nr: bit number to test 4943 */ 4944 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start, 4945 unsigned long nr) 4946 { 4947 u8 *kaddr; 4948 struct page *page; 4949 unsigned long i; 4950 size_t offset; 4951 4952 eb_bitmap_offset(eb, start, nr, &i, &offset); 4953 page = eb->pages[i]; 4954 assert_eb_page_uptodate(eb, page); 4955 kaddr = page_address(page); 4956 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1))); 4957 } 4958 4959 /* 4960 * Set an area of a bitmap to 1. 4961 * 4962 * @eb: the extent buffer 4963 * @start: offset of the bitmap item in the extent buffer 4964 * @pos: bit number of the first bit 4965 * @len: number of bits to set 4966 */ 4967 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start, 4968 unsigned long pos, unsigned long len) 4969 { 4970 u8 *kaddr; 4971 struct page *page; 4972 unsigned long i; 4973 size_t offset; 4974 const unsigned int size = pos + len; 4975 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 4976 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos); 4977 4978 eb_bitmap_offset(eb, start, pos, &i, &offset); 4979 page = eb->pages[i]; 4980 assert_eb_page_uptodate(eb, page); 4981 kaddr = page_address(page); 4982 4983 while (len >= bits_to_set) { 4984 kaddr[offset] |= mask_to_set; 4985 len -= bits_to_set; 4986 bits_to_set = BITS_PER_BYTE; 4987 mask_to_set = ~0; 4988 if (++offset >= PAGE_SIZE && len > 0) { 4989 offset = 0; 4990 page = eb->pages[++i]; 4991 assert_eb_page_uptodate(eb, page); 4992 kaddr = page_address(page); 4993 } 4994 } 4995 if (len) { 4996 mask_to_set &= BITMAP_LAST_BYTE_MASK(size); 4997 kaddr[offset] |= mask_to_set; 4998 } 4999 } 5000 5001 5002 /* 5003 * Clear an area of a bitmap. 5004 * 5005 * @eb: the extent buffer 5006 * @start: offset of the bitmap item in the extent buffer 5007 * @pos: bit number of the first bit 5008 * @len: number of bits to clear 5009 */ 5010 void extent_buffer_bitmap_clear(const struct extent_buffer *eb, 5011 unsigned long start, unsigned long pos, 5012 unsigned long len) 5013 { 5014 u8 *kaddr; 5015 struct page *page; 5016 unsigned long i; 5017 size_t offset; 5018 const unsigned int size = pos + len; 5019 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE); 5020 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos); 5021 5022 eb_bitmap_offset(eb, start, pos, &i, &offset); 5023 page = eb->pages[i]; 5024 assert_eb_page_uptodate(eb, page); 5025 kaddr = page_address(page); 5026 5027 while (len >= bits_to_clear) { 5028 kaddr[offset] &= ~mask_to_clear; 5029 len -= bits_to_clear; 5030 bits_to_clear = BITS_PER_BYTE; 5031 mask_to_clear = ~0; 5032 if (++offset >= PAGE_SIZE && len > 0) { 5033 offset = 0; 5034 page = eb->pages[++i]; 5035 assert_eb_page_uptodate(eb, page); 5036 kaddr = page_address(page); 5037 } 5038 } 5039 if (len) { 5040 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size); 5041 kaddr[offset] &= ~mask_to_clear; 5042 } 5043 } 5044 5045 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5046 { 5047 unsigned long distance = (src > dst) ? src - dst : dst - src; 5048 return distance < len; 5049 } 5050 5051 static void copy_pages(struct page *dst_page, struct page *src_page, 5052 unsigned long dst_off, unsigned long src_off, 5053 unsigned long len) 5054 { 5055 char *dst_kaddr = page_address(dst_page); 5056 char *src_kaddr; 5057 int must_memmove = 0; 5058 5059 if (dst_page != src_page) { 5060 src_kaddr = page_address(src_page); 5061 } else { 5062 src_kaddr = dst_kaddr; 5063 if (areas_overlap(src_off, dst_off, len)) 5064 must_memmove = 1; 5065 } 5066 5067 if (must_memmove) 5068 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5069 else 5070 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5071 } 5072 5073 void memcpy_extent_buffer(const struct extent_buffer *dst, 5074 unsigned long dst_offset, unsigned long src_offset, 5075 unsigned long len) 5076 { 5077 size_t cur; 5078 size_t dst_off_in_page; 5079 size_t src_off_in_page; 5080 unsigned long dst_i; 5081 unsigned long src_i; 5082 5083 if (check_eb_range(dst, dst_offset, len) || 5084 check_eb_range(dst, src_offset, len)) 5085 return; 5086 5087 while (len > 0) { 5088 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset); 5089 src_off_in_page = get_eb_offset_in_page(dst, src_offset); 5090 5091 dst_i = get_eb_page_index(dst_offset); 5092 src_i = get_eb_page_index(src_offset); 5093 5094 cur = min(len, (unsigned long)(PAGE_SIZE - 5095 src_off_in_page)); 5096 cur = min_t(unsigned long, cur, 5097 (unsigned long)(PAGE_SIZE - dst_off_in_page)); 5098 5099 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5100 dst_off_in_page, src_off_in_page, cur); 5101 5102 src_offset += cur; 5103 dst_offset += cur; 5104 len -= cur; 5105 } 5106 } 5107 5108 void memmove_extent_buffer(const struct extent_buffer *dst, 5109 unsigned long dst_offset, unsigned long src_offset, 5110 unsigned long len) 5111 { 5112 size_t cur; 5113 size_t dst_off_in_page; 5114 size_t src_off_in_page; 5115 unsigned long dst_end = dst_offset + len - 1; 5116 unsigned long src_end = src_offset + len - 1; 5117 unsigned long dst_i; 5118 unsigned long src_i; 5119 5120 if (check_eb_range(dst, dst_offset, len) || 5121 check_eb_range(dst, src_offset, len)) 5122 return; 5123 if (dst_offset < src_offset) { 5124 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5125 return; 5126 } 5127 while (len > 0) { 5128 dst_i = get_eb_page_index(dst_end); 5129 src_i = get_eb_page_index(src_end); 5130 5131 dst_off_in_page = get_eb_offset_in_page(dst, dst_end); 5132 src_off_in_page = get_eb_offset_in_page(dst, src_end); 5133 5134 cur = min_t(unsigned long, len, src_off_in_page + 1); 5135 cur = min(cur, dst_off_in_page + 1); 5136 copy_pages(dst->pages[dst_i], dst->pages[src_i], 5137 dst_off_in_page - cur + 1, 5138 src_off_in_page - cur + 1, cur); 5139 5140 dst_end -= cur; 5141 src_end -= cur; 5142 len -= cur; 5143 } 5144 } 5145 5146 #define GANG_LOOKUP_SIZE 16 5147 static struct extent_buffer *get_next_extent_buffer( 5148 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr) 5149 { 5150 struct extent_buffer *gang[GANG_LOOKUP_SIZE]; 5151 struct extent_buffer *found = NULL; 5152 u64 page_start = page_offset(page); 5153 u64 cur = page_start; 5154 5155 ASSERT(in_range(bytenr, page_start, PAGE_SIZE)); 5156 lockdep_assert_held(&fs_info->buffer_lock); 5157 5158 while (cur < page_start + PAGE_SIZE) { 5159 int ret; 5160 int i; 5161 5162 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, 5163 (void **)gang, cur >> fs_info->sectorsize_bits, 5164 min_t(unsigned int, GANG_LOOKUP_SIZE, 5165 PAGE_SIZE / fs_info->nodesize)); 5166 if (ret == 0) 5167 goto out; 5168 for (i = 0; i < ret; i++) { 5169 /* Already beyond page end */ 5170 if (gang[i]->start >= page_start + PAGE_SIZE) 5171 goto out; 5172 /* Found one */ 5173 if (gang[i]->start >= bytenr) { 5174 found = gang[i]; 5175 goto out; 5176 } 5177 } 5178 cur = gang[ret - 1]->start + gang[ret - 1]->len; 5179 } 5180 out: 5181 return found; 5182 } 5183 5184 static int try_release_subpage_extent_buffer(struct page *page) 5185 { 5186 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 5187 u64 cur = page_offset(page); 5188 const u64 end = page_offset(page) + PAGE_SIZE; 5189 int ret; 5190 5191 while (cur < end) { 5192 struct extent_buffer *eb = NULL; 5193 5194 /* 5195 * Unlike try_release_extent_buffer() which uses page->private 5196 * to grab buffer, for subpage case we rely on radix tree, thus 5197 * we need to ensure radix tree consistency. 5198 * 5199 * We also want an atomic snapshot of the radix tree, thus go 5200 * with spinlock rather than RCU. 5201 */ 5202 spin_lock(&fs_info->buffer_lock); 5203 eb = get_next_extent_buffer(fs_info, page, cur); 5204 if (!eb) { 5205 /* No more eb in the page range after or at cur */ 5206 spin_unlock(&fs_info->buffer_lock); 5207 break; 5208 } 5209 cur = eb->start + eb->len; 5210 5211 /* 5212 * The same as try_release_extent_buffer(), to ensure the eb 5213 * won't disappear out from under us. 5214 */ 5215 spin_lock(&eb->refs_lock); 5216 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5217 spin_unlock(&eb->refs_lock); 5218 spin_unlock(&fs_info->buffer_lock); 5219 break; 5220 } 5221 spin_unlock(&fs_info->buffer_lock); 5222 5223 /* 5224 * If tree ref isn't set then we know the ref on this eb is a 5225 * real ref, so just return, this eb will likely be freed soon 5226 * anyway. 5227 */ 5228 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5229 spin_unlock(&eb->refs_lock); 5230 break; 5231 } 5232 5233 /* 5234 * Here we don't care about the return value, we will always 5235 * check the page private at the end. And 5236 * release_extent_buffer() will release the refs_lock. 5237 */ 5238 release_extent_buffer(eb); 5239 } 5240 /* 5241 * Finally to check if we have cleared page private, as if we have 5242 * released all ebs in the page, the page private should be cleared now. 5243 */ 5244 spin_lock(&page->mapping->private_lock); 5245 if (!PagePrivate(page)) 5246 ret = 1; 5247 else 5248 ret = 0; 5249 spin_unlock(&page->mapping->private_lock); 5250 return ret; 5251 5252 } 5253 5254 int try_release_extent_buffer(struct page *page) 5255 { 5256 struct extent_buffer *eb; 5257 5258 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 5259 return try_release_subpage_extent_buffer(page); 5260 5261 /* 5262 * We need to make sure nobody is changing page->private, as we rely on 5263 * page->private as the pointer to extent buffer. 5264 */ 5265 spin_lock(&page->mapping->private_lock); 5266 if (!PagePrivate(page)) { 5267 spin_unlock(&page->mapping->private_lock); 5268 return 1; 5269 } 5270 5271 eb = (struct extent_buffer *)page->private; 5272 BUG_ON(!eb); 5273 5274 /* 5275 * This is a little awful but should be ok, we need to make sure that 5276 * the eb doesn't disappear out from under us while we're looking at 5277 * this page. 5278 */ 5279 spin_lock(&eb->refs_lock); 5280 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5281 spin_unlock(&eb->refs_lock); 5282 spin_unlock(&page->mapping->private_lock); 5283 return 0; 5284 } 5285 spin_unlock(&page->mapping->private_lock); 5286 5287 /* 5288 * If tree ref isn't set then we know the ref on this eb is a real ref, 5289 * so just return, this page will likely be freed soon anyway. 5290 */ 5291 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5292 spin_unlock(&eb->refs_lock); 5293 return 0; 5294 } 5295 5296 return release_extent_buffer(eb); 5297 } 5298 5299 /* 5300 * btrfs_readahead_tree_block - attempt to readahead a child block 5301 * @fs_info: the fs_info 5302 * @bytenr: bytenr to read 5303 * @owner_root: objectid of the root that owns this eb 5304 * @gen: generation for the uptodate check, can be 0 5305 * @level: level for the eb 5306 * 5307 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a 5308 * normal uptodate check of the eb, without checking the generation. If we have 5309 * to read the block we will not block on anything. 5310 */ 5311 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info, 5312 u64 bytenr, u64 owner_root, u64 gen, int level) 5313 { 5314 struct btrfs_tree_parent_check check = { 5315 .has_first_key = 0, 5316 .level = level, 5317 .transid = gen 5318 }; 5319 struct extent_buffer *eb; 5320 int ret; 5321 5322 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 5323 if (IS_ERR(eb)) 5324 return; 5325 5326 if (btrfs_buffer_uptodate(eb, gen, 1)) { 5327 free_extent_buffer(eb); 5328 return; 5329 } 5330 5331 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check); 5332 if (ret < 0) 5333 free_extent_buffer_stale(eb); 5334 else 5335 free_extent_buffer(eb); 5336 } 5337 5338 /* 5339 * btrfs_readahead_node_child - readahead a node's child block 5340 * @node: parent node we're reading from 5341 * @slot: slot in the parent node for the child we want to read 5342 * 5343 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at 5344 * the slot in the node provided. 5345 */ 5346 void btrfs_readahead_node_child(struct extent_buffer *node, int slot) 5347 { 5348 btrfs_readahead_tree_block(node->fs_info, 5349 btrfs_node_blockptr(node, slot), 5350 btrfs_header_owner(node), 5351 btrfs_node_ptr_generation(node, slot), 5352 btrfs_header_level(node) - 1); 5353 } 5354