xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 171f1bc7)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
24 
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
27 
28 #define LEAK_DEBUG 0
29 #if LEAK_DEBUG
30 static DEFINE_SPINLOCK(leak_lock);
31 #endif
32 
33 #define BUFFER_LRU_MAX 64
34 
35 struct tree_entry {
36 	u64 start;
37 	u64 end;
38 	struct rb_node rb_node;
39 };
40 
41 struct extent_page_data {
42 	struct bio *bio;
43 	struct extent_io_tree *tree;
44 	get_extent_t *get_extent;
45 
46 	/* tells writepage not to lock the state bits for this range
47 	 * it still does the unlocking
48 	 */
49 	unsigned int extent_locked:1;
50 
51 	/* tells the submit_bio code to use a WRITE_SYNC */
52 	unsigned int sync_io:1;
53 };
54 
55 int __init extent_io_init(void)
56 {
57 	extent_state_cache = kmem_cache_create("extent_state",
58 			sizeof(struct extent_state), 0,
59 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
60 	if (!extent_state_cache)
61 		return -ENOMEM;
62 
63 	extent_buffer_cache = kmem_cache_create("extent_buffers",
64 			sizeof(struct extent_buffer), 0,
65 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
66 	if (!extent_buffer_cache)
67 		goto free_state_cache;
68 	return 0;
69 
70 free_state_cache:
71 	kmem_cache_destroy(extent_state_cache);
72 	return -ENOMEM;
73 }
74 
75 void extent_io_exit(void)
76 {
77 	struct extent_state *state;
78 	struct extent_buffer *eb;
79 
80 	while (!list_empty(&states)) {
81 		state = list_entry(states.next, struct extent_state, leak_list);
82 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
83 		       "state %lu in tree %p refs %d\n",
84 		       (unsigned long long)state->start,
85 		       (unsigned long long)state->end,
86 		       state->state, state->tree, atomic_read(&state->refs));
87 		list_del(&state->leak_list);
88 		kmem_cache_free(extent_state_cache, state);
89 
90 	}
91 
92 	while (!list_empty(&buffers)) {
93 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
94 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
95 		       "refs %d\n", (unsigned long long)eb->start,
96 		       eb->len, atomic_read(&eb->refs));
97 		list_del(&eb->leak_list);
98 		kmem_cache_free(extent_buffer_cache, eb);
99 	}
100 	if (extent_state_cache)
101 		kmem_cache_destroy(extent_state_cache);
102 	if (extent_buffer_cache)
103 		kmem_cache_destroy(extent_buffer_cache);
104 }
105 
106 void extent_io_tree_init(struct extent_io_tree *tree,
107 			 struct address_space *mapping)
108 {
109 	tree->state = RB_ROOT;
110 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
111 	tree->ops = NULL;
112 	tree->dirty_bytes = 0;
113 	spin_lock_init(&tree->lock);
114 	spin_lock_init(&tree->buffer_lock);
115 	tree->mapping = mapping;
116 }
117 
118 static struct extent_state *alloc_extent_state(gfp_t mask)
119 {
120 	struct extent_state *state;
121 #if LEAK_DEBUG
122 	unsigned long flags;
123 #endif
124 
125 	state = kmem_cache_alloc(extent_state_cache, mask);
126 	if (!state)
127 		return state;
128 	state->state = 0;
129 	state->private = 0;
130 	state->tree = NULL;
131 #if LEAK_DEBUG
132 	spin_lock_irqsave(&leak_lock, flags);
133 	list_add(&state->leak_list, &states);
134 	spin_unlock_irqrestore(&leak_lock, flags);
135 #endif
136 	atomic_set(&state->refs, 1);
137 	init_waitqueue_head(&state->wq);
138 	return state;
139 }
140 
141 void free_extent_state(struct extent_state *state)
142 {
143 	if (!state)
144 		return;
145 	if (atomic_dec_and_test(&state->refs)) {
146 #if LEAK_DEBUG
147 		unsigned long flags;
148 #endif
149 		WARN_ON(state->tree);
150 #if LEAK_DEBUG
151 		spin_lock_irqsave(&leak_lock, flags);
152 		list_del(&state->leak_list);
153 		spin_unlock_irqrestore(&leak_lock, flags);
154 #endif
155 		kmem_cache_free(extent_state_cache, state);
156 	}
157 }
158 
159 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
160 				   struct rb_node *node)
161 {
162 	struct rb_node **p = &root->rb_node;
163 	struct rb_node *parent = NULL;
164 	struct tree_entry *entry;
165 
166 	while (*p) {
167 		parent = *p;
168 		entry = rb_entry(parent, struct tree_entry, rb_node);
169 
170 		if (offset < entry->start)
171 			p = &(*p)->rb_left;
172 		else if (offset > entry->end)
173 			p = &(*p)->rb_right;
174 		else
175 			return parent;
176 	}
177 
178 	entry = rb_entry(node, struct tree_entry, rb_node);
179 	rb_link_node(node, parent, p);
180 	rb_insert_color(node, root);
181 	return NULL;
182 }
183 
184 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
185 				     struct rb_node **prev_ret,
186 				     struct rb_node **next_ret)
187 {
188 	struct rb_root *root = &tree->state;
189 	struct rb_node *n = root->rb_node;
190 	struct rb_node *prev = NULL;
191 	struct rb_node *orig_prev = NULL;
192 	struct tree_entry *entry;
193 	struct tree_entry *prev_entry = NULL;
194 
195 	while (n) {
196 		entry = rb_entry(n, struct tree_entry, rb_node);
197 		prev = n;
198 		prev_entry = entry;
199 
200 		if (offset < entry->start)
201 			n = n->rb_left;
202 		else if (offset > entry->end)
203 			n = n->rb_right;
204 		else
205 			return n;
206 	}
207 
208 	if (prev_ret) {
209 		orig_prev = prev;
210 		while (prev && offset > prev_entry->end) {
211 			prev = rb_next(prev);
212 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
213 		}
214 		*prev_ret = prev;
215 		prev = orig_prev;
216 	}
217 
218 	if (next_ret) {
219 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 		while (prev && offset < prev_entry->start) {
221 			prev = rb_prev(prev);
222 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 		}
224 		*next_ret = prev;
225 	}
226 	return NULL;
227 }
228 
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 					  u64 offset)
231 {
232 	struct rb_node *prev = NULL;
233 	struct rb_node *ret;
234 
235 	ret = __etree_search(tree, offset, &prev, NULL);
236 	if (!ret)
237 		return prev;
238 	return ret;
239 }
240 
241 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
242 		     struct extent_state *other)
243 {
244 	if (tree->ops && tree->ops->merge_extent_hook)
245 		tree->ops->merge_extent_hook(tree->mapping->host, new,
246 					     other);
247 }
248 
249 /*
250  * utility function to look for merge candidates inside a given range.
251  * Any extents with matching state are merged together into a single
252  * extent in the tree.  Extents with EXTENT_IO in their state field
253  * are not merged because the end_io handlers need to be able to do
254  * operations on them without sleeping (or doing allocations/splits).
255  *
256  * This should be called with the tree lock held.
257  */
258 static void merge_state(struct extent_io_tree *tree,
259 		        struct extent_state *state)
260 {
261 	struct extent_state *other;
262 	struct rb_node *other_node;
263 
264 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
265 		return;
266 
267 	other_node = rb_prev(&state->rb_node);
268 	if (other_node) {
269 		other = rb_entry(other_node, struct extent_state, rb_node);
270 		if (other->end == state->start - 1 &&
271 		    other->state == state->state) {
272 			merge_cb(tree, state, other);
273 			state->start = other->start;
274 			other->tree = NULL;
275 			rb_erase(&other->rb_node, &tree->state);
276 			free_extent_state(other);
277 		}
278 	}
279 	other_node = rb_next(&state->rb_node);
280 	if (other_node) {
281 		other = rb_entry(other_node, struct extent_state, rb_node);
282 		if (other->start == state->end + 1 &&
283 		    other->state == state->state) {
284 			merge_cb(tree, state, other);
285 			state->end = other->end;
286 			other->tree = NULL;
287 			rb_erase(&other->rb_node, &tree->state);
288 			free_extent_state(other);
289 		}
290 	}
291 }
292 
293 static void set_state_cb(struct extent_io_tree *tree,
294 			 struct extent_state *state, int *bits)
295 {
296 	if (tree->ops && tree->ops->set_bit_hook)
297 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
298 }
299 
300 static void clear_state_cb(struct extent_io_tree *tree,
301 			   struct extent_state *state, int *bits)
302 {
303 	if (tree->ops && tree->ops->clear_bit_hook)
304 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
305 }
306 
307 static void set_state_bits(struct extent_io_tree *tree,
308 			   struct extent_state *state, int *bits);
309 
310 /*
311  * insert an extent_state struct into the tree.  'bits' are set on the
312  * struct before it is inserted.
313  *
314  * This may return -EEXIST if the extent is already there, in which case the
315  * state struct is freed.
316  *
317  * The tree lock is not taken internally.  This is a utility function and
318  * probably isn't what you want to call (see set/clear_extent_bit).
319  */
320 static int insert_state(struct extent_io_tree *tree,
321 			struct extent_state *state, u64 start, u64 end,
322 			int *bits)
323 {
324 	struct rb_node *node;
325 
326 	if (end < start) {
327 		printk(KERN_ERR "btrfs end < start %llu %llu\n",
328 		       (unsigned long long)end,
329 		       (unsigned long long)start);
330 		WARN_ON(1);
331 	}
332 	state->start = start;
333 	state->end = end;
334 
335 	set_state_bits(tree, state, bits);
336 
337 	node = tree_insert(&tree->state, end, &state->rb_node);
338 	if (node) {
339 		struct extent_state *found;
340 		found = rb_entry(node, struct extent_state, rb_node);
341 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
342 		       "%llu %llu\n", (unsigned long long)found->start,
343 		       (unsigned long long)found->end,
344 		       (unsigned long long)start, (unsigned long long)end);
345 		return -EEXIST;
346 	}
347 	state->tree = tree;
348 	merge_state(tree, state);
349 	return 0;
350 }
351 
352 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
353 		     u64 split)
354 {
355 	if (tree->ops && tree->ops->split_extent_hook)
356 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
357 }
358 
359 /*
360  * split a given extent state struct in two, inserting the preallocated
361  * struct 'prealloc' as the newly created second half.  'split' indicates an
362  * offset inside 'orig' where it should be split.
363  *
364  * Before calling,
365  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
366  * are two extent state structs in the tree:
367  * prealloc: [orig->start, split - 1]
368  * orig: [ split, orig->end ]
369  *
370  * The tree locks are not taken by this function. They need to be held
371  * by the caller.
372  */
373 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
374 		       struct extent_state *prealloc, u64 split)
375 {
376 	struct rb_node *node;
377 
378 	split_cb(tree, orig, split);
379 
380 	prealloc->start = orig->start;
381 	prealloc->end = split - 1;
382 	prealloc->state = orig->state;
383 	orig->start = split;
384 
385 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
386 	if (node) {
387 		free_extent_state(prealloc);
388 		return -EEXIST;
389 	}
390 	prealloc->tree = tree;
391 	return 0;
392 }
393 
394 /*
395  * utility function to clear some bits in an extent state struct.
396  * it will optionally wake up any one waiting on this state (wake == 1), or
397  * forcibly remove the state from the tree (delete == 1).
398  *
399  * If no bits are set on the state struct after clearing things, the
400  * struct is freed and removed from the tree
401  */
402 static int clear_state_bit(struct extent_io_tree *tree,
403 			    struct extent_state *state,
404 			    int *bits, int wake)
405 {
406 	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
407 	int ret = state->state & bits_to_clear;
408 
409 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
410 		u64 range = state->end - state->start + 1;
411 		WARN_ON(range > tree->dirty_bytes);
412 		tree->dirty_bytes -= range;
413 	}
414 	clear_state_cb(tree, state, bits);
415 	state->state &= ~bits_to_clear;
416 	if (wake)
417 		wake_up(&state->wq);
418 	if (state->state == 0) {
419 		if (state->tree) {
420 			rb_erase(&state->rb_node, &tree->state);
421 			state->tree = NULL;
422 			free_extent_state(state);
423 		} else {
424 			WARN_ON(1);
425 		}
426 	} else {
427 		merge_state(tree, state);
428 	}
429 	return ret;
430 }
431 
432 static struct extent_state *
433 alloc_extent_state_atomic(struct extent_state *prealloc)
434 {
435 	if (!prealloc)
436 		prealloc = alloc_extent_state(GFP_ATOMIC);
437 
438 	return prealloc;
439 }
440 
441 /*
442  * clear some bits on a range in the tree.  This may require splitting
443  * or inserting elements in the tree, so the gfp mask is used to
444  * indicate which allocations or sleeping are allowed.
445  *
446  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447  * the given range from the tree regardless of state (ie for truncate).
448  *
449  * the range [start, end] is inclusive.
450  *
451  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452  * bits were already set, or zero if none of the bits were already set.
453  */
454 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
455 		     int bits, int wake, int delete,
456 		     struct extent_state **cached_state,
457 		     gfp_t mask)
458 {
459 	struct extent_state *state;
460 	struct extent_state *cached;
461 	struct extent_state *prealloc = NULL;
462 	struct rb_node *next_node;
463 	struct rb_node *node;
464 	u64 last_end;
465 	int err;
466 	int set = 0;
467 	int clear = 0;
468 
469 	if (delete)
470 		bits |= ~EXTENT_CTLBITS;
471 	bits |= EXTENT_FIRST_DELALLOC;
472 
473 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
474 		clear = 1;
475 again:
476 	if (!prealloc && (mask & __GFP_WAIT)) {
477 		prealloc = alloc_extent_state(mask);
478 		if (!prealloc)
479 			return -ENOMEM;
480 	}
481 
482 	spin_lock(&tree->lock);
483 	if (cached_state) {
484 		cached = *cached_state;
485 
486 		if (clear) {
487 			*cached_state = NULL;
488 			cached_state = NULL;
489 		}
490 
491 		if (cached && cached->tree && cached->start <= start &&
492 		    cached->end > start) {
493 			if (clear)
494 				atomic_dec(&cached->refs);
495 			state = cached;
496 			goto hit_next;
497 		}
498 		if (clear)
499 			free_extent_state(cached);
500 	}
501 	/*
502 	 * this search will find the extents that end after
503 	 * our range starts
504 	 */
505 	node = tree_search(tree, start);
506 	if (!node)
507 		goto out;
508 	state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 	if (state->start > end)
511 		goto out;
512 	WARN_ON(state->end < start);
513 	last_end = state->end;
514 
515 	/*
516 	 *     | ---- desired range ---- |
517 	 *  | state | or
518 	 *  | ------------- state -------------- |
519 	 *
520 	 * We need to split the extent we found, and may flip
521 	 * bits on second half.
522 	 *
523 	 * If the extent we found extends past our range, we
524 	 * just split and search again.  It'll get split again
525 	 * the next time though.
526 	 *
527 	 * If the extent we found is inside our range, we clear
528 	 * the desired bit on it.
529 	 */
530 
531 	if (state->start < start) {
532 		prealloc = alloc_extent_state_atomic(prealloc);
533 		BUG_ON(!prealloc);
534 		err = split_state(tree, state, prealloc, start);
535 		BUG_ON(err == -EEXIST);
536 		prealloc = NULL;
537 		if (err)
538 			goto out;
539 		if (state->end <= end) {
540 			set |= clear_state_bit(tree, state, &bits, wake);
541 			if (last_end == (u64)-1)
542 				goto out;
543 			start = last_end + 1;
544 		}
545 		goto search_again;
546 	}
547 	/*
548 	 * | ---- desired range ---- |
549 	 *                        | state |
550 	 * We need to split the extent, and clear the bit
551 	 * on the first half
552 	 */
553 	if (state->start <= end && state->end > end) {
554 		prealloc = alloc_extent_state_atomic(prealloc);
555 		BUG_ON(!prealloc);
556 		err = split_state(tree, state, prealloc, end + 1);
557 		BUG_ON(err == -EEXIST);
558 		if (wake)
559 			wake_up(&state->wq);
560 
561 		set |= clear_state_bit(tree, prealloc, &bits, wake);
562 
563 		prealloc = NULL;
564 		goto out;
565 	}
566 
567 	if (state->end < end && prealloc && !need_resched())
568 		next_node = rb_next(&state->rb_node);
569 	else
570 		next_node = NULL;
571 
572 	set |= clear_state_bit(tree, state, &bits, wake);
573 	if (last_end == (u64)-1)
574 		goto out;
575 	start = last_end + 1;
576 	if (start <= end && next_node) {
577 		state = rb_entry(next_node, struct extent_state,
578 				 rb_node);
579 		if (state->start == start)
580 			goto hit_next;
581 	}
582 	goto search_again;
583 
584 out:
585 	spin_unlock(&tree->lock);
586 	if (prealloc)
587 		free_extent_state(prealloc);
588 
589 	return set;
590 
591 search_again:
592 	if (start > end)
593 		goto out;
594 	spin_unlock(&tree->lock);
595 	if (mask & __GFP_WAIT)
596 		cond_resched();
597 	goto again;
598 }
599 
600 static int wait_on_state(struct extent_io_tree *tree,
601 			 struct extent_state *state)
602 		__releases(tree->lock)
603 		__acquires(tree->lock)
604 {
605 	DEFINE_WAIT(wait);
606 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 	spin_unlock(&tree->lock);
608 	schedule();
609 	spin_lock(&tree->lock);
610 	finish_wait(&state->wq, &wait);
611 	return 0;
612 }
613 
614 /*
615  * waits for one or more bits to clear on a range in the state tree.
616  * The range [start, end] is inclusive.
617  * The tree lock is taken by this function
618  */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 	struct extent_state *state;
622 	struct rb_node *node;
623 
624 	spin_lock(&tree->lock);
625 again:
626 	while (1) {
627 		/*
628 		 * this search will find all the extents that end after
629 		 * our range starts
630 		 */
631 		node = tree_search(tree, start);
632 		if (!node)
633 			break;
634 
635 		state = rb_entry(node, struct extent_state, rb_node);
636 
637 		if (state->start > end)
638 			goto out;
639 
640 		if (state->state & bits) {
641 			start = state->start;
642 			atomic_inc(&state->refs);
643 			wait_on_state(tree, state);
644 			free_extent_state(state);
645 			goto again;
646 		}
647 		start = state->end + 1;
648 
649 		if (start > end)
650 			break;
651 
652 		cond_resched_lock(&tree->lock);
653 	}
654 out:
655 	spin_unlock(&tree->lock);
656 	return 0;
657 }
658 
659 static void set_state_bits(struct extent_io_tree *tree,
660 			   struct extent_state *state,
661 			   int *bits)
662 {
663 	int bits_to_set = *bits & ~EXTENT_CTLBITS;
664 
665 	set_state_cb(tree, state, bits);
666 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
667 		u64 range = state->end - state->start + 1;
668 		tree->dirty_bytes += range;
669 	}
670 	state->state |= bits_to_set;
671 }
672 
673 static void cache_state(struct extent_state *state,
674 			struct extent_state **cached_ptr)
675 {
676 	if (cached_ptr && !(*cached_ptr)) {
677 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
678 			*cached_ptr = state;
679 			atomic_inc(&state->refs);
680 		}
681 	}
682 }
683 
684 static void uncache_state(struct extent_state **cached_ptr)
685 {
686 	if (cached_ptr && (*cached_ptr)) {
687 		struct extent_state *state = *cached_ptr;
688 		*cached_ptr = NULL;
689 		free_extent_state(state);
690 	}
691 }
692 
693 /*
694  * set some bits on a range in the tree.  This may require allocations or
695  * sleeping, so the gfp mask is used to indicate what is allowed.
696  *
697  * If any of the exclusive bits are set, this will fail with -EEXIST if some
698  * part of the range already has the desired bits set.  The start of the
699  * existing range is returned in failed_start in this case.
700  *
701  * [start, end] is inclusive This takes the tree lock.
702  */
703 
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 		   int bits, int exclusive_bits, u64 *failed_start,
706 		   struct extent_state **cached_state, gfp_t mask)
707 {
708 	struct extent_state *state;
709 	struct extent_state *prealloc = NULL;
710 	struct rb_node *node;
711 	int err = 0;
712 	u64 last_start;
713 	u64 last_end;
714 
715 	bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 	if (!prealloc && (mask & __GFP_WAIT)) {
718 		prealloc = alloc_extent_state(mask);
719 		BUG_ON(!prealloc);
720 	}
721 
722 	spin_lock(&tree->lock);
723 	if (cached_state && *cached_state) {
724 		state = *cached_state;
725 		if (state->start <= start && state->end > start &&
726 		    state->tree) {
727 			node = &state->rb_node;
728 			goto hit_next;
729 		}
730 	}
731 	/*
732 	 * this search will find all the extents that end after
733 	 * our range starts.
734 	 */
735 	node = tree_search(tree, start);
736 	if (!node) {
737 		prealloc = alloc_extent_state_atomic(prealloc);
738 		BUG_ON(!prealloc);
739 		err = insert_state(tree, prealloc, start, end, &bits);
740 		prealloc = NULL;
741 		BUG_ON(err == -EEXIST);
742 		goto out;
743 	}
744 	state = rb_entry(node, struct extent_state, rb_node);
745 hit_next:
746 	last_start = state->start;
747 	last_end = state->end;
748 
749 	/*
750 	 * | ---- desired range ---- |
751 	 * | state |
752 	 *
753 	 * Just lock what we found and keep going
754 	 */
755 	if (state->start == start && state->end <= end) {
756 		struct rb_node *next_node;
757 		if (state->state & exclusive_bits) {
758 			*failed_start = state->start;
759 			err = -EEXIST;
760 			goto out;
761 		}
762 
763 		set_state_bits(tree, state, &bits);
764 
765 		cache_state(state, cached_state);
766 		merge_state(tree, state);
767 		if (last_end == (u64)-1)
768 			goto out;
769 
770 		start = last_end + 1;
771 		next_node = rb_next(&state->rb_node);
772 		if (next_node && start < end && prealloc && !need_resched()) {
773 			state = rb_entry(next_node, struct extent_state,
774 					 rb_node);
775 			if (state->start == start)
776 				goto hit_next;
777 		}
778 		goto search_again;
779 	}
780 
781 	/*
782 	 *     | ---- desired range ---- |
783 	 * | state |
784 	 *   or
785 	 * | ------------- state -------------- |
786 	 *
787 	 * We need to split the extent we found, and may flip bits on
788 	 * second half.
789 	 *
790 	 * If the extent we found extends past our
791 	 * range, we just split and search again.  It'll get split
792 	 * again the next time though.
793 	 *
794 	 * If the extent we found is inside our range, we set the
795 	 * desired bit on it.
796 	 */
797 	if (state->start < start) {
798 		if (state->state & exclusive_bits) {
799 			*failed_start = start;
800 			err = -EEXIST;
801 			goto out;
802 		}
803 
804 		prealloc = alloc_extent_state_atomic(prealloc);
805 		BUG_ON(!prealloc);
806 		err = split_state(tree, state, prealloc, start);
807 		BUG_ON(err == -EEXIST);
808 		prealloc = NULL;
809 		if (err)
810 			goto out;
811 		if (state->end <= end) {
812 			set_state_bits(tree, state, &bits);
813 			cache_state(state, cached_state);
814 			merge_state(tree, state);
815 			if (last_end == (u64)-1)
816 				goto out;
817 			start = last_end + 1;
818 		}
819 		goto search_again;
820 	}
821 	/*
822 	 * | ---- desired range ---- |
823 	 *     | state | or               | state |
824 	 *
825 	 * There's a hole, we need to insert something in it and
826 	 * ignore the extent we found.
827 	 */
828 	if (state->start > start) {
829 		u64 this_end;
830 		if (end < last_start)
831 			this_end = end;
832 		else
833 			this_end = last_start - 1;
834 
835 		prealloc = alloc_extent_state_atomic(prealloc);
836 		BUG_ON(!prealloc);
837 
838 		/*
839 		 * Avoid to free 'prealloc' if it can be merged with
840 		 * the later extent.
841 		 */
842 		err = insert_state(tree, prealloc, start, this_end,
843 				   &bits);
844 		BUG_ON(err == -EEXIST);
845 		if (err) {
846 			free_extent_state(prealloc);
847 			prealloc = NULL;
848 			goto out;
849 		}
850 		cache_state(prealloc, cached_state);
851 		prealloc = NULL;
852 		start = this_end + 1;
853 		goto search_again;
854 	}
855 	/*
856 	 * | ---- desired range ---- |
857 	 *                        | state |
858 	 * We need to split the extent, and set the bit
859 	 * on the first half
860 	 */
861 	if (state->start <= end && state->end > end) {
862 		if (state->state & exclusive_bits) {
863 			*failed_start = start;
864 			err = -EEXIST;
865 			goto out;
866 		}
867 
868 		prealloc = alloc_extent_state_atomic(prealloc);
869 		BUG_ON(!prealloc);
870 		err = split_state(tree, state, prealloc, end + 1);
871 		BUG_ON(err == -EEXIST);
872 
873 		set_state_bits(tree, prealloc, &bits);
874 		cache_state(prealloc, cached_state);
875 		merge_state(tree, prealloc);
876 		prealloc = NULL;
877 		goto out;
878 	}
879 
880 	goto search_again;
881 
882 out:
883 	spin_unlock(&tree->lock);
884 	if (prealloc)
885 		free_extent_state(prealloc);
886 
887 	return err;
888 
889 search_again:
890 	if (start > end)
891 		goto out;
892 	spin_unlock(&tree->lock);
893 	if (mask & __GFP_WAIT)
894 		cond_resched();
895 	goto again;
896 }
897 
898 /**
899  * convert_extent - convert all bits in a given range from one bit to another
900  * @tree:	the io tree to search
901  * @start:	the start offset in bytes
902  * @end:	the end offset in bytes (inclusive)
903  * @bits:	the bits to set in this range
904  * @clear_bits:	the bits to clear in this range
905  * @mask:	the allocation mask
906  *
907  * This will go through and set bits for the given range.  If any states exist
908  * already in this range they are set with the given bit and cleared of the
909  * clear_bits.  This is only meant to be used by things that are mergeable, ie
910  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
911  * boundary bits like LOCK.
912  */
913 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
914 		       int bits, int clear_bits, gfp_t mask)
915 {
916 	struct extent_state *state;
917 	struct extent_state *prealloc = NULL;
918 	struct rb_node *node;
919 	int err = 0;
920 	u64 last_start;
921 	u64 last_end;
922 
923 again:
924 	if (!prealloc && (mask & __GFP_WAIT)) {
925 		prealloc = alloc_extent_state(mask);
926 		if (!prealloc)
927 			return -ENOMEM;
928 	}
929 
930 	spin_lock(&tree->lock);
931 	/*
932 	 * this search will find all the extents that end after
933 	 * our range starts.
934 	 */
935 	node = tree_search(tree, start);
936 	if (!node) {
937 		prealloc = alloc_extent_state_atomic(prealloc);
938 		if (!prealloc)
939 			return -ENOMEM;
940 		err = insert_state(tree, prealloc, start, end, &bits);
941 		prealloc = NULL;
942 		BUG_ON(err == -EEXIST);
943 		goto out;
944 	}
945 	state = rb_entry(node, struct extent_state, rb_node);
946 hit_next:
947 	last_start = state->start;
948 	last_end = state->end;
949 
950 	/*
951 	 * | ---- desired range ---- |
952 	 * | state |
953 	 *
954 	 * Just lock what we found and keep going
955 	 */
956 	if (state->start == start && state->end <= end) {
957 		struct rb_node *next_node;
958 
959 		set_state_bits(tree, state, &bits);
960 		clear_state_bit(tree, state, &clear_bits, 0);
961 
962 		merge_state(tree, state);
963 		if (last_end == (u64)-1)
964 			goto out;
965 
966 		start = last_end + 1;
967 		next_node = rb_next(&state->rb_node);
968 		if (next_node && start < end && prealloc && !need_resched()) {
969 			state = rb_entry(next_node, struct extent_state,
970 					 rb_node);
971 			if (state->start == start)
972 				goto hit_next;
973 		}
974 		goto search_again;
975 	}
976 
977 	/*
978 	 *     | ---- desired range ---- |
979 	 * | state |
980 	 *   or
981 	 * | ------------- state -------------- |
982 	 *
983 	 * We need to split the extent we found, and may flip bits on
984 	 * second half.
985 	 *
986 	 * If the extent we found extends past our
987 	 * range, we just split and search again.  It'll get split
988 	 * again the next time though.
989 	 *
990 	 * If the extent we found is inside our range, we set the
991 	 * desired bit on it.
992 	 */
993 	if (state->start < start) {
994 		prealloc = alloc_extent_state_atomic(prealloc);
995 		if (!prealloc)
996 			return -ENOMEM;
997 		err = split_state(tree, state, prealloc, start);
998 		BUG_ON(err == -EEXIST);
999 		prealloc = NULL;
1000 		if (err)
1001 			goto out;
1002 		if (state->end <= end) {
1003 			set_state_bits(tree, state, &bits);
1004 			clear_state_bit(tree, state, &clear_bits, 0);
1005 			merge_state(tree, state);
1006 			if (last_end == (u64)-1)
1007 				goto out;
1008 			start = last_end + 1;
1009 		}
1010 		goto search_again;
1011 	}
1012 	/*
1013 	 * | ---- desired range ---- |
1014 	 *     | state | or               | state |
1015 	 *
1016 	 * There's a hole, we need to insert something in it and
1017 	 * ignore the extent we found.
1018 	 */
1019 	if (state->start > start) {
1020 		u64 this_end;
1021 		if (end < last_start)
1022 			this_end = end;
1023 		else
1024 			this_end = last_start - 1;
1025 
1026 		prealloc = alloc_extent_state_atomic(prealloc);
1027 		if (!prealloc)
1028 			return -ENOMEM;
1029 
1030 		/*
1031 		 * Avoid to free 'prealloc' if it can be merged with
1032 		 * the later extent.
1033 		 */
1034 		err = insert_state(tree, prealloc, start, this_end,
1035 				   &bits);
1036 		BUG_ON(err == -EEXIST);
1037 		if (err) {
1038 			free_extent_state(prealloc);
1039 			prealloc = NULL;
1040 			goto out;
1041 		}
1042 		prealloc = NULL;
1043 		start = this_end + 1;
1044 		goto search_again;
1045 	}
1046 	/*
1047 	 * | ---- desired range ---- |
1048 	 *                        | state |
1049 	 * We need to split the extent, and set the bit
1050 	 * on the first half
1051 	 */
1052 	if (state->start <= end && state->end > end) {
1053 		prealloc = alloc_extent_state_atomic(prealloc);
1054 		if (!prealloc)
1055 			return -ENOMEM;
1056 
1057 		err = split_state(tree, state, prealloc, end + 1);
1058 		BUG_ON(err == -EEXIST);
1059 
1060 		set_state_bits(tree, prealloc, &bits);
1061 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1062 
1063 		merge_state(tree, prealloc);
1064 		prealloc = NULL;
1065 		goto out;
1066 	}
1067 
1068 	goto search_again;
1069 
1070 out:
1071 	spin_unlock(&tree->lock);
1072 	if (prealloc)
1073 		free_extent_state(prealloc);
1074 
1075 	return err;
1076 
1077 search_again:
1078 	if (start > end)
1079 		goto out;
1080 	spin_unlock(&tree->lock);
1081 	if (mask & __GFP_WAIT)
1082 		cond_resched();
1083 	goto again;
1084 }
1085 
1086 /* wrappers around set/clear extent bit */
1087 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1088 		     gfp_t mask)
1089 {
1090 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1091 			      NULL, mask);
1092 }
1093 
1094 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1095 		    int bits, gfp_t mask)
1096 {
1097 	return set_extent_bit(tree, start, end, bits, 0, NULL,
1098 			      NULL, mask);
1099 }
1100 
1101 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1102 		      int bits, gfp_t mask)
1103 {
1104 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1105 }
1106 
1107 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1108 			struct extent_state **cached_state, gfp_t mask)
1109 {
1110 	return set_extent_bit(tree, start, end,
1111 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1112 			      0, NULL, cached_state, mask);
1113 }
1114 
1115 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1116 		       gfp_t mask)
1117 {
1118 	return clear_extent_bit(tree, start, end,
1119 				EXTENT_DIRTY | EXTENT_DELALLOC |
1120 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1121 }
1122 
1123 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1124 		     gfp_t mask)
1125 {
1126 	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1127 			      NULL, mask);
1128 }
1129 
1130 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1131 			struct extent_state **cached_state, gfp_t mask)
1132 {
1133 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1134 			      NULL, cached_state, mask);
1135 }
1136 
1137 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1138 				 u64 end, struct extent_state **cached_state,
1139 				 gfp_t mask)
1140 {
1141 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1142 				cached_state, mask);
1143 }
1144 
1145 /*
1146  * either insert or lock state struct between start and end use mask to tell
1147  * us if waiting is desired.
1148  */
1149 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1150 		     int bits, struct extent_state **cached_state, gfp_t mask)
1151 {
1152 	int err;
1153 	u64 failed_start;
1154 	while (1) {
1155 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1156 				     EXTENT_LOCKED, &failed_start,
1157 				     cached_state, mask);
1158 		if (err == -EEXIST && (mask & __GFP_WAIT)) {
1159 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1160 			start = failed_start;
1161 		} else {
1162 			break;
1163 		}
1164 		WARN_ON(start > end);
1165 	}
1166 	return err;
1167 }
1168 
1169 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1170 {
1171 	return lock_extent_bits(tree, start, end, 0, NULL, mask);
1172 }
1173 
1174 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1175 		    gfp_t mask)
1176 {
1177 	int err;
1178 	u64 failed_start;
1179 
1180 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1181 			     &failed_start, NULL, mask);
1182 	if (err == -EEXIST) {
1183 		if (failed_start > start)
1184 			clear_extent_bit(tree, start, failed_start - 1,
1185 					 EXTENT_LOCKED, 1, 0, NULL, mask);
1186 		return 0;
1187 	}
1188 	return 1;
1189 }
1190 
1191 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1192 			 struct extent_state **cached, gfp_t mask)
1193 {
1194 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1195 				mask);
1196 }
1197 
1198 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1199 {
1200 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1201 				mask);
1202 }
1203 
1204 /*
1205  * helper function to set both pages and extents in the tree writeback
1206  */
1207 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1208 {
1209 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1210 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1211 	struct page *page;
1212 
1213 	while (index <= end_index) {
1214 		page = find_get_page(tree->mapping, index);
1215 		BUG_ON(!page);
1216 		set_page_writeback(page);
1217 		page_cache_release(page);
1218 		index++;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /* find the first state struct with 'bits' set after 'start', and
1224  * return it.  tree->lock must be held.  NULL will returned if
1225  * nothing was found after 'start'
1226  */
1227 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1228 						 u64 start, int bits)
1229 {
1230 	struct rb_node *node;
1231 	struct extent_state *state;
1232 
1233 	/*
1234 	 * this search will find all the extents that end after
1235 	 * our range starts.
1236 	 */
1237 	node = tree_search(tree, start);
1238 	if (!node)
1239 		goto out;
1240 
1241 	while (1) {
1242 		state = rb_entry(node, struct extent_state, rb_node);
1243 		if (state->end >= start && (state->state & bits))
1244 			return state;
1245 
1246 		node = rb_next(node);
1247 		if (!node)
1248 			break;
1249 	}
1250 out:
1251 	return NULL;
1252 }
1253 
1254 /*
1255  * find the first offset in the io tree with 'bits' set. zero is
1256  * returned if we find something, and *start_ret and *end_ret are
1257  * set to reflect the state struct that was found.
1258  *
1259  * If nothing was found, 1 is returned, < 0 on error
1260  */
1261 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1262 			  u64 *start_ret, u64 *end_ret, int bits)
1263 {
1264 	struct extent_state *state;
1265 	int ret = 1;
1266 
1267 	spin_lock(&tree->lock);
1268 	state = find_first_extent_bit_state(tree, start, bits);
1269 	if (state) {
1270 		*start_ret = state->start;
1271 		*end_ret = state->end;
1272 		ret = 0;
1273 	}
1274 	spin_unlock(&tree->lock);
1275 	return ret;
1276 }
1277 
1278 /*
1279  * find a contiguous range of bytes in the file marked as delalloc, not
1280  * more than 'max_bytes'.  start and end are used to return the range,
1281  *
1282  * 1 is returned if we find something, 0 if nothing was in the tree
1283  */
1284 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1285 					u64 *start, u64 *end, u64 max_bytes,
1286 					struct extent_state **cached_state)
1287 {
1288 	struct rb_node *node;
1289 	struct extent_state *state;
1290 	u64 cur_start = *start;
1291 	u64 found = 0;
1292 	u64 total_bytes = 0;
1293 
1294 	spin_lock(&tree->lock);
1295 
1296 	/*
1297 	 * this search will find all the extents that end after
1298 	 * our range starts.
1299 	 */
1300 	node = tree_search(tree, cur_start);
1301 	if (!node) {
1302 		if (!found)
1303 			*end = (u64)-1;
1304 		goto out;
1305 	}
1306 
1307 	while (1) {
1308 		state = rb_entry(node, struct extent_state, rb_node);
1309 		if (found && (state->start != cur_start ||
1310 			      (state->state & EXTENT_BOUNDARY))) {
1311 			goto out;
1312 		}
1313 		if (!(state->state & EXTENT_DELALLOC)) {
1314 			if (!found)
1315 				*end = state->end;
1316 			goto out;
1317 		}
1318 		if (!found) {
1319 			*start = state->start;
1320 			*cached_state = state;
1321 			atomic_inc(&state->refs);
1322 		}
1323 		found++;
1324 		*end = state->end;
1325 		cur_start = state->end + 1;
1326 		node = rb_next(node);
1327 		if (!node)
1328 			break;
1329 		total_bytes += state->end - state->start + 1;
1330 		if (total_bytes >= max_bytes)
1331 			break;
1332 	}
1333 out:
1334 	spin_unlock(&tree->lock);
1335 	return found;
1336 }
1337 
1338 static noinline int __unlock_for_delalloc(struct inode *inode,
1339 					  struct page *locked_page,
1340 					  u64 start, u64 end)
1341 {
1342 	int ret;
1343 	struct page *pages[16];
1344 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1345 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1346 	unsigned long nr_pages = end_index - index + 1;
1347 	int i;
1348 
1349 	if (index == locked_page->index && end_index == index)
1350 		return 0;
1351 
1352 	while (nr_pages > 0) {
1353 		ret = find_get_pages_contig(inode->i_mapping, index,
1354 				     min_t(unsigned long, nr_pages,
1355 				     ARRAY_SIZE(pages)), pages);
1356 		for (i = 0; i < ret; i++) {
1357 			if (pages[i] != locked_page)
1358 				unlock_page(pages[i]);
1359 			page_cache_release(pages[i]);
1360 		}
1361 		nr_pages -= ret;
1362 		index += ret;
1363 		cond_resched();
1364 	}
1365 	return 0;
1366 }
1367 
1368 static noinline int lock_delalloc_pages(struct inode *inode,
1369 					struct page *locked_page,
1370 					u64 delalloc_start,
1371 					u64 delalloc_end)
1372 {
1373 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1374 	unsigned long start_index = index;
1375 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1376 	unsigned long pages_locked = 0;
1377 	struct page *pages[16];
1378 	unsigned long nrpages;
1379 	int ret;
1380 	int i;
1381 
1382 	/* the caller is responsible for locking the start index */
1383 	if (index == locked_page->index && index == end_index)
1384 		return 0;
1385 
1386 	/* skip the page at the start index */
1387 	nrpages = end_index - index + 1;
1388 	while (nrpages > 0) {
1389 		ret = find_get_pages_contig(inode->i_mapping, index,
1390 				     min_t(unsigned long,
1391 				     nrpages, ARRAY_SIZE(pages)), pages);
1392 		if (ret == 0) {
1393 			ret = -EAGAIN;
1394 			goto done;
1395 		}
1396 		/* now we have an array of pages, lock them all */
1397 		for (i = 0; i < ret; i++) {
1398 			/*
1399 			 * the caller is taking responsibility for
1400 			 * locked_page
1401 			 */
1402 			if (pages[i] != locked_page) {
1403 				lock_page(pages[i]);
1404 				if (!PageDirty(pages[i]) ||
1405 				    pages[i]->mapping != inode->i_mapping) {
1406 					ret = -EAGAIN;
1407 					unlock_page(pages[i]);
1408 					page_cache_release(pages[i]);
1409 					goto done;
1410 				}
1411 			}
1412 			page_cache_release(pages[i]);
1413 			pages_locked++;
1414 		}
1415 		nrpages -= ret;
1416 		index += ret;
1417 		cond_resched();
1418 	}
1419 	ret = 0;
1420 done:
1421 	if (ret && pages_locked) {
1422 		__unlock_for_delalloc(inode, locked_page,
1423 			      delalloc_start,
1424 			      ((u64)(start_index + pages_locked - 1)) <<
1425 			      PAGE_CACHE_SHIFT);
1426 	}
1427 	return ret;
1428 }
1429 
1430 /*
1431  * find a contiguous range of bytes in the file marked as delalloc, not
1432  * more than 'max_bytes'.  start and end are used to return the range,
1433  *
1434  * 1 is returned if we find something, 0 if nothing was in the tree
1435  */
1436 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1437 					     struct extent_io_tree *tree,
1438 					     struct page *locked_page,
1439 					     u64 *start, u64 *end,
1440 					     u64 max_bytes)
1441 {
1442 	u64 delalloc_start;
1443 	u64 delalloc_end;
1444 	u64 found;
1445 	struct extent_state *cached_state = NULL;
1446 	int ret;
1447 	int loops = 0;
1448 
1449 again:
1450 	/* step one, find a bunch of delalloc bytes starting at start */
1451 	delalloc_start = *start;
1452 	delalloc_end = 0;
1453 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1454 				    max_bytes, &cached_state);
1455 	if (!found || delalloc_end <= *start) {
1456 		*start = delalloc_start;
1457 		*end = delalloc_end;
1458 		free_extent_state(cached_state);
1459 		return found;
1460 	}
1461 
1462 	/*
1463 	 * start comes from the offset of locked_page.  We have to lock
1464 	 * pages in order, so we can't process delalloc bytes before
1465 	 * locked_page
1466 	 */
1467 	if (delalloc_start < *start)
1468 		delalloc_start = *start;
1469 
1470 	/*
1471 	 * make sure to limit the number of pages we try to lock down
1472 	 * if we're looping.
1473 	 */
1474 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1475 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1476 
1477 	/* step two, lock all the pages after the page that has start */
1478 	ret = lock_delalloc_pages(inode, locked_page,
1479 				  delalloc_start, delalloc_end);
1480 	if (ret == -EAGAIN) {
1481 		/* some of the pages are gone, lets avoid looping by
1482 		 * shortening the size of the delalloc range we're searching
1483 		 */
1484 		free_extent_state(cached_state);
1485 		if (!loops) {
1486 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1487 			max_bytes = PAGE_CACHE_SIZE - offset;
1488 			loops = 1;
1489 			goto again;
1490 		} else {
1491 			found = 0;
1492 			goto out_failed;
1493 		}
1494 	}
1495 	BUG_ON(ret);
1496 
1497 	/* step three, lock the state bits for the whole range */
1498 	lock_extent_bits(tree, delalloc_start, delalloc_end,
1499 			 0, &cached_state, GFP_NOFS);
1500 
1501 	/* then test to make sure it is all still delalloc */
1502 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1503 			     EXTENT_DELALLOC, 1, cached_state);
1504 	if (!ret) {
1505 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1506 				     &cached_state, GFP_NOFS);
1507 		__unlock_for_delalloc(inode, locked_page,
1508 			      delalloc_start, delalloc_end);
1509 		cond_resched();
1510 		goto again;
1511 	}
1512 	free_extent_state(cached_state);
1513 	*start = delalloc_start;
1514 	*end = delalloc_end;
1515 out_failed:
1516 	return found;
1517 }
1518 
1519 int extent_clear_unlock_delalloc(struct inode *inode,
1520 				struct extent_io_tree *tree,
1521 				u64 start, u64 end, struct page *locked_page,
1522 				unsigned long op)
1523 {
1524 	int ret;
1525 	struct page *pages[16];
1526 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1527 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1528 	unsigned long nr_pages = end_index - index + 1;
1529 	int i;
1530 	int clear_bits = 0;
1531 
1532 	if (op & EXTENT_CLEAR_UNLOCK)
1533 		clear_bits |= EXTENT_LOCKED;
1534 	if (op & EXTENT_CLEAR_DIRTY)
1535 		clear_bits |= EXTENT_DIRTY;
1536 
1537 	if (op & EXTENT_CLEAR_DELALLOC)
1538 		clear_bits |= EXTENT_DELALLOC;
1539 
1540 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1541 	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1542 		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1543 		    EXTENT_SET_PRIVATE2)))
1544 		return 0;
1545 
1546 	while (nr_pages > 0) {
1547 		ret = find_get_pages_contig(inode->i_mapping, index,
1548 				     min_t(unsigned long,
1549 				     nr_pages, ARRAY_SIZE(pages)), pages);
1550 		for (i = 0; i < ret; i++) {
1551 
1552 			if (op & EXTENT_SET_PRIVATE2)
1553 				SetPagePrivate2(pages[i]);
1554 
1555 			if (pages[i] == locked_page) {
1556 				page_cache_release(pages[i]);
1557 				continue;
1558 			}
1559 			if (op & EXTENT_CLEAR_DIRTY)
1560 				clear_page_dirty_for_io(pages[i]);
1561 			if (op & EXTENT_SET_WRITEBACK)
1562 				set_page_writeback(pages[i]);
1563 			if (op & EXTENT_END_WRITEBACK)
1564 				end_page_writeback(pages[i]);
1565 			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1566 				unlock_page(pages[i]);
1567 			page_cache_release(pages[i]);
1568 		}
1569 		nr_pages -= ret;
1570 		index += ret;
1571 		cond_resched();
1572 	}
1573 	return 0;
1574 }
1575 
1576 /*
1577  * count the number of bytes in the tree that have a given bit(s)
1578  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1579  * cached.  The total number found is returned.
1580  */
1581 u64 count_range_bits(struct extent_io_tree *tree,
1582 		     u64 *start, u64 search_end, u64 max_bytes,
1583 		     unsigned long bits, int contig)
1584 {
1585 	struct rb_node *node;
1586 	struct extent_state *state;
1587 	u64 cur_start = *start;
1588 	u64 total_bytes = 0;
1589 	u64 last = 0;
1590 	int found = 0;
1591 
1592 	if (search_end <= cur_start) {
1593 		WARN_ON(1);
1594 		return 0;
1595 	}
1596 
1597 	spin_lock(&tree->lock);
1598 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1599 		total_bytes = tree->dirty_bytes;
1600 		goto out;
1601 	}
1602 	/*
1603 	 * this search will find all the extents that end after
1604 	 * our range starts.
1605 	 */
1606 	node = tree_search(tree, cur_start);
1607 	if (!node)
1608 		goto out;
1609 
1610 	while (1) {
1611 		state = rb_entry(node, struct extent_state, rb_node);
1612 		if (state->start > search_end)
1613 			break;
1614 		if (contig && found && state->start > last + 1)
1615 			break;
1616 		if (state->end >= cur_start && (state->state & bits) == bits) {
1617 			total_bytes += min(search_end, state->end) + 1 -
1618 				       max(cur_start, state->start);
1619 			if (total_bytes >= max_bytes)
1620 				break;
1621 			if (!found) {
1622 				*start = max(cur_start, state->start);
1623 				found = 1;
1624 			}
1625 			last = state->end;
1626 		} else if (contig && found) {
1627 			break;
1628 		}
1629 		node = rb_next(node);
1630 		if (!node)
1631 			break;
1632 	}
1633 out:
1634 	spin_unlock(&tree->lock);
1635 	return total_bytes;
1636 }
1637 
1638 /*
1639  * set the private field for a given byte offset in the tree.  If there isn't
1640  * an extent_state there already, this does nothing.
1641  */
1642 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1643 {
1644 	struct rb_node *node;
1645 	struct extent_state *state;
1646 	int ret = 0;
1647 
1648 	spin_lock(&tree->lock);
1649 	/*
1650 	 * this search will find all the extents that end after
1651 	 * our range starts.
1652 	 */
1653 	node = tree_search(tree, start);
1654 	if (!node) {
1655 		ret = -ENOENT;
1656 		goto out;
1657 	}
1658 	state = rb_entry(node, struct extent_state, rb_node);
1659 	if (state->start != start) {
1660 		ret = -ENOENT;
1661 		goto out;
1662 	}
1663 	state->private = private;
1664 out:
1665 	spin_unlock(&tree->lock);
1666 	return ret;
1667 }
1668 
1669 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1670 {
1671 	struct rb_node *node;
1672 	struct extent_state *state;
1673 	int ret = 0;
1674 
1675 	spin_lock(&tree->lock);
1676 	/*
1677 	 * this search will find all the extents that end after
1678 	 * our range starts.
1679 	 */
1680 	node = tree_search(tree, start);
1681 	if (!node) {
1682 		ret = -ENOENT;
1683 		goto out;
1684 	}
1685 	state = rb_entry(node, struct extent_state, rb_node);
1686 	if (state->start != start) {
1687 		ret = -ENOENT;
1688 		goto out;
1689 	}
1690 	*private = state->private;
1691 out:
1692 	spin_unlock(&tree->lock);
1693 	return ret;
1694 }
1695 
1696 /*
1697  * searches a range in the state tree for a given mask.
1698  * If 'filled' == 1, this returns 1 only if every extent in the tree
1699  * has the bits set.  Otherwise, 1 is returned if any bit in the
1700  * range is found set.
1701  */
1702 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1703 		   int bits, int filled, struct extent_state *cached)
1704 {
1705 	struct extent_state *state = NULL;
1706 	struct rb_node *node;
1707 	int bitset = 0;
1708 
1709 	spin_lock(&tree->lock);
1710 	if (cached && cached->tree && cached->start <= start &&
1711 	    cached->end > start)
1712 		node = &cached->rb_node;
1713 	else
1714 		node = tree_search(tree, start);
1715 	while (node && start <= end) {
1716 		state = rb_entry(node, struct extent_state, rb_node);
1717 
1718 		if (filled && state->start > start) {
1719 			bitset = 0;
1720 			break;
1721 		}
1722 
1723 		if (state->start > end)
1724 			break;
1725 
1726 		if (state->state & bits) {
1727 			bitset = 1;
1728 			if (!filled)
1729 				break;
1730 		} else if (filled) {
1731 			bitset = 0;
1732 			break;
1733 		}
1734 
1735 		if (state->end == (u64)-1)
1736 			break;
1737 
1738 		start = state->end + 1;
1739 		if (start > end)
1740 			break;
1741 		node = rb_next(node);
1742 		if (!node) {
1743 			if (filled)
1744 				bitset = 0;
1745 			break;
1746 		}
1747 	}
1748 	spin_unlock(&tree->lock);
1749 	return bitset;
1750 }
1751 
1752 /*
1753  * helper function to set a given page up to date if all the
1754  * extents in the tree for that page are up to date
1755  */
1756 static int check_page_uptodate(struct extent_io_tree *tree,
1757 			       struct page *page)
1758 {
1759 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1760 	u64 end = start + PAGE_CACHE_SIZE - 1;
1761 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1762 		SetPageUptodate(page);
1763 	return 0;
1764 }
1765 
1766 /*
1767  * helper function to unlock a page if all the extents in the tree
1768  * for that page are unlocked
1769  */
1770 static int check_page_locked(struct extent_io_tree *tree,
1771 			     struct page *page)
1772 {
1773 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1774 	u64 end = start + PAGE_CACHE_SIZE - 1;
1775 	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1776 		unlock_page(page);
1777 	return 0;
1778 }
1779 
1780 /*
1781  * helper function to end page writeback if all the extents
1782  * in the tree for that page are done with writeback
1783  */
1784 static int check_page_writeback(struct extent_io_tree *tree,
1785 			     struct page *page)
1786 {
1787 	end_page_writeback(page);
1788 	return 0;
1789 }
1790 
1791 /*
1792  * When IO fails, either with EIO or csum verification fails, we
1793  * try other mirrors that might have a good copy of the data.  This
1794  * io_failure_record is used to record state as we go through all the
1795  * mirrors.  If another mirror has good data, the page is set up to date
1796  * and things continue.  If a good mirror can't be found, the original
1797  * bio end_io callback is called to indicate things have failed.
1798  */
1799 struct io_failure_record {
1800 	struct page *page;
1801 	u64 start;
1802 	u64 len;
1803 	u64 logical;
1804 	unsigned long bio_flags;
1805 	int this_mirror;
1806 	int failed_mirror;
1807 	int in_validation;
1808 };
1809 
1810 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1811 				int did_repair)
1812 {
1813 	int ret;
1814 	int err = 0;
1815 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1816 
1817 	set_state_private(failure_tree, rec->start, 0);
1818 	ret = clear_extent_bits(failure_tree, rec->start,
1819 				rec->start + rec->len - 1,
1820 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1821 	if (ret)
1822 		err = ret;
1823 
1824 	if (did_repair) {
1825 		ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1826 					rec->start + rec->len - 1,
1827 					EXTENT_DAMAGED, GFP_NOFS);
1828 		if (ret && !err)
1829 			err = ret;
1830 	}
1831 
1832 	kfree(rec);
1833 	return err;
1834 }
1835 
1836 static void repair_io_failure_callback(struct bio *bio, int err)
1837 {
1838 	complete(bio->bi_private);
1839 }
1840 
1841 /*
1842  * this bypasses the standard btrfs submit functions deliberately, as
1843  * the standard behavior is to write all copies in a raid setup. here we only
1844  * want to write the one bad copy. so we do the mapping for ourselves and issue
1845  * submit_bio directly.
1846  * to avoid any synchonization issues, wait for the data after writing, which
1847  * actually prevents the read that triggered the error from finishing.
1848  * currently, there can be no more than two copies of every data bit. thus,
1849  * exactly one rewrite is required.
1850  */
1851 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1852 			u64 length, u64 logical, struct page *page,
1853 			int mirror_num)
1854 {
1855 	struct bio *bio;
1856 	struct btrfs_device *dev;
1857 	DECLARE_COMPLETION_ONSTACK(compl);
1858 	u64 map_length = 0;
1859 	u64 sector;
1860 	struct btrfs_bio *bbio = NULL;
1861 	int ret;
1862 
1863 	BUG_ON(!mirror_num);
1864 
1865 	bio = bio_alloc(GFP_NOFS, 1);
1866 	if (!bio)
1867 		return -EIO;
1868 	bio->bi_private = &compl;
1869 	bio->bi_end_io = repair_io_failure_callback;
1870 	bio->bi_size = 0;
1871 	map_length = length;
1872 
1873 	ret = btrfs_map_block(map_tree, WRITE, logical,
1874 			      &map_length, &bbio, mirror_num);
1875 	if (ret) {
1876 		bio_put(bio);
1877 		return -EIO;
1878 	}
1879 	BUG_ON(mirror_num != bbio->mirror_num);
1880 	sector = bbio->stripes[mirror_num-1].physical >> 9;
1881 	bio->bi_sector = sector;
1882 	dev = bbio->stripes[mirror_num-1].dev;
1883 	kfree(bbio);
1884 	if (!dev || !dev->bdev || !dev->writeable) {
1885 		bio_put(bio);
1886 		return -EIO;
1887 	}
1888 	bio->bi_bdev = dev->bdev;
1889 	bio_add_page(bio, page, length, start-page_offset(page));
1890 	submit_bio(WRITE_SYNC, bio);
1891 	wait_for_completion(&compl);
1892 
1893 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1894 		/* try to remap that extent elsewhere? */
1895 		bio_put(bio);
1896 		return -EIO;
1897 	}
1898 
1899 	printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1900 			"sector %llu)\n", page->mapping->host->i_ino, start,
1901 			dev->name, sector);
1902 
1903 	bio_put(bio);
1904 	return 0;
1905 }
1906 
1907 /*
1908  * each time an IO finishes, we do a fast check in the IO failure tree
1909  * to see if we need to process or clean up an io_failure_record
1910  */
1911 static int clean_io_failure(u64 start, struct page *page)
1912 {
1913 	u64 private;
1914 	u64 private_failure;
1915 	struct io_failure_record *failrec;
1916 	struct btrfs_mapping_tree *map_tree;
1917 	struct extent_state *state;
1918 	int num_copies;
1919 	int did_repair = 0;
1920 	int ret;
1921 	struct inode *inode = page->mapping->host;
1922 
1923 	private = 0;
1924 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1925 				(u64)-1, 1, EXTENT_DIRTY, 0);
1926 	if (!ret)
1927 		return 0;
1928 
1929 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1930 				&private_failure);
1931 	if (ret)
1932 		return 0;
1933 
1934 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
1935 	BUG_ON(!failrec->this_mirror);
1936 
1937 	if (failrec->in_validation) {
1938 		/* there was no real error, just free the record */
1939 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1940 			 failrec->start);
1941 		did_repair = 1;
1942 		goto out;
1943 	}
1944 
1945 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
1946 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1947 					    failrec->start,
1948 					    EXTENT_LOCKED);
1949 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1950 
1951 	if (state && state->start == failrec->start) {
1952 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1953 		num_copies = btrfs_num_copies(map_tree, failrec->logical,
1954 						failrec->len);
1955 		if (num_copies > 1)  {
1956 			ret = repair_io_failure(map_tree, start, failrec->len,
1957 						failrec->logical, page,
1958 						failrec->failed_mirror);
1959 			did_repair = !ret;
1960 		}
1961 	}
1962 
1963 out:
1964 	if (!ret)
1965 		ret = free_io_failure(inode, failrec, did_repair);
1966 
1967 	return ret;
1968 }
1969 
1970 /*
1971  * this is a generic handler for readpage errors (default
1972  * readpage_io_failed_hook). if other copies exist, read those and write back
1973  * good data to the failed position. does not investigate in remapping the
1974  * failed extent elsewhere, hoping the device will be smart enough to do this as
1975  * needed
1976  */
1977 
1978 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1979 				u64 start, u64 end, int failed_mirror,
1980 				struct extent_state *state)
1981 {
1982 	struct io_failure_record *failrec = NULL;
1983 	u64 private;
1984 	struct extent_map *em;
1985 	struct inode *inode = page->mapping->host;
1986 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1987 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1988 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1989 	struct bio *bio;
1990 	int num_copies;
1991 	int ret;
1992 	int read_mode;
1993 	u64 logical;
1994 
1995 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
1996 
1997 	ret = get_state_private(failure_tree, start, &private);
1998 	if (ret) {
1999 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2000 		if (!failrec)
2001 			return -ENOMEM;
2002 		failrec->start = start;
2003 		failrec->len = end - start + 1;
2004 		failrec->this_mirror = 0;
2005 		failrec->bio_flags = 0;
2006 		failrec->in_validation = 0;
2007 
2008 		read_lock(&em_tree->lock);
2009 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2010 		if (!em) {
2011 			read_unlock(&em_tree->lock);
2012 			kfree(failrec);
2013 			return -EIO;
2014 		}
2015 
2016 		if (em->start > start || em->start + em->len < start) {
2017 			free_extent_map(em);
2018 			em = NULL;
2019 		}
2020 		read_unlock(&em_tree->lock);
2021 
2022 		if (!em || IS_ERR(em)) {
2023 			kfree(failrec);
2024 			return -EIO;
2025 		}
2026 		logical = start - em->start;
2027 		logical = em->block_start + logical;
2028 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2029 			logical = em->block_start;
2030 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2031 			extent_set_compress_type(&failrec->bio_flags,
2032 						 em->compress_type);
2033 		}
2034 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2035 			 "len=%llu\n", logical, start, failrec->len);
2036 		failrec->logical = logical;
2037 		free_extent_map(em);
2038 
2039 		/* set the bits in the private failure tree */
2040 		ret = set_extent_bits(failure_tree, start, end,
2041 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2042 		if (ret >= 0)
2043 			ret = set_state_private(failure_tree, start,
2044 						(u64)(unsigned long)failrec);
2045 		/* set the bits in the inode's tree */
2046 		if (ret >= 0)
2047 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2048 						GFP_NOFS);
2049 		if (ret < 0) {
2050 			kfree(failrec);
2051 			return ret;
2052 		}
2053 	} else {
2054 		failrec = (struct io_failure_record *)(unsigned long)private;
2055 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2056 			 "start=%llu, len=%llu, validation=%d\n",
2057 			 failrec->logical, failrec->start, failrec->len,
2058 			 failrec->in_validation);
2059 		/*
2060 		 * when data can be on disk more than twice, add to failrec here
2061 		 * (e.g. with a list for failed_mirror) to make
2062 		 * clean_io_failure() clean all those errors at once.
2063 		 */
2064 	}
2065 	num_copies = btrfs_num_copies(
2066 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
2067 			      failrec->logical, failrec->len);
2068 	if (num_copies == 1) {
2069 		/*
2070 		 * we only have a single copy of the data, so don't bother with
2071 		 * all the retry and error correction code that follows. no
2072 		 * matter what the error is, it is very likely to persist.
2073 		 */
2074 		pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2075 			 "state=%p, num_copies=%d, next_mirror %d, "
2076 			 "failed_mirror %d\n", state, num_copies,
2077 			 failrec->this_mirror, failed_mirror);
2078 		free_io_failure(inode, failrec, 0);
2079 		return -EIO;
2080 	}
2081 
2082 	if (!state) {
2083 		spin_lock(&tree->lock);
2084 		state = find_first_extent_bit_state(tree, failrec->start,
2085 						    EXTENT_LOCKED);
2086 		if (state && state->start != failrec->start)
2087 			state = NULL;
2088 		spin_unlock(&tree->lock);
2089 	}
2090 
2091 	/*
2092 	 * there are two premises:
2093 	 *	a) deliver good data to the caller
2094 	 *	b) correct the bad sectors on disk
2095 	 */
2096 	if (failed_bio->bi_vcnt > 1) {
2097 		/*
2098 		 * to fulfill b), we need to know the exact failing sectors, as
2099 		 * we don't want to rewrite any more than the failed ones. thus,
2100 		 * we need separate read requests for the failed bio
2101 		 *
2102 		 * if the following BUG_ON triggers, our validation request got
2103 		 * merged. we need separate requests for our algorithm to work.
2104 		 */
2105 		BUG_ON(failrec->in_validation);
2106 		failrec->in_validation = 1;
2107 		failrec->this_mirror = failed_mirror;
2108 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2109 	} else {
2110 		/*
2111 		 * we're ready to fulfill a) and b) alongside. get a good copy
2112 		 * of the failed sector and if we succeed, we have setup
2113 		 * everything for repair_io_failure to do the rest for us.
2114 		 */
2115 		if (failrec->in_validation) {
2116 			BUG_ON(failrec->this_mirror != failed_mirror);
2117 			failrec->in_validation = 0;
2118 			failrec->this_mirror = 0;
2119 		}
2120 		failrec->failed_mirror = failed_mirror;
2121 		failrec->this_mirror++;
2122 		if (failrec->this_mirror == failed_mirror)
2123 			failrec->this_mirror++;
2124 		read_mode = READ_SYNC;
2125 	}
2126 
2127 	if (!state || failrec->this_mirror > num_copies) {
2128 		pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2129 			 "next_mirror %d, failed_mirror %d\n", state,
2130 			 num_copies, failrec->this_mirror, failed_mirror);
2131 		free_io_failure(inode, failrec, 0);
2132 		return -EIO;
2133 	}
2134 
2135 	bio = bio_alloc(GFP_NOFS, 1);
2136 	bio->bi_private = state;
2137 	bio->bi_end_io = failed_bio->bi_end_io;
2138 	bio->bi_sector = failrec->logical >> 9;
2139 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2140 	bio->bi_size = 0;
2141 
2142 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2143 
2144 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2145 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2146 		 failrec->this_mirror, num_copies, failrec->in_validation);
2147 
2148 	tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2149 					failrec->bio_flags, 0);
2150 	return 0;
2151 }
2152 
2153 /* lots and lots of room for performance fixes in the end_bio funcs */
2154 
2155 /*
2156  * after a writepage IO is done, we need to:
2157  * clear the uptodate bits on error
2158  * clear the writeback bits in the extent tree for this IO
2159  * end_page_writeback if the page has no more pending IO
2160  *
2161  * Scheduling is not allowed, so the extent state tree is expected
2162  * to have one and only one object corresponding to this IO.
2163  */
2164 static void end_bio_extent_writepage(struct bio *bio, int err)
2165 {
2166 	int uptodate = err == 0;
2167 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2168 	struct extent_io_tree *tree;
2169 	u64 start;
2170 	u64 end;
2171 	int whole_page;
2172 	int ret;
2173 
2174 	do {
2175 		struct page *page = bvec->bv_page;
2176 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2177 
2178 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2179 			 bvec->bv_offset;
2180 		end = start + bvec->bv_len - 1;
2181 
2182 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2183 			whole_page = 1;
2184 		else
2185 			whole_page = 0;
2186 
2187 		if (--bvec >= bio->bi_io_vec)
2188 			prefetchw(&bvec->bv_page->flags);
2189 		if (tree->ops && tree->ops->writepage_end_io_hook) {
2190 			ret = tree->ops->writepage_end_io_hook(page, start,
2191 						       end, NULL, uptodate);
2192 			if (ret)
2193 				uptodate = 0;
2194 		}
2195 
2196 		if (!uptodate && tree->ops &&
2197 		    tree->ops->writepage_io_failed_hook) {
2198 			ret = tree->ops->writepage_io_failed_hook(bio, page,
2199 							 start, end, NULL);
2200 			if (ret == 0) {
2201 				uptodate = (err == 0);
2202 				continue;
2203 			}
2204 		}
2205 
2206 		if (!uptodate) {
2207 			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2208 			ClearPageUptodate(page);
2209 			SetPageError(page);
2210 		}
2211 
2212 		if (whole_page)
2213 			end_page_writeback(page);
2214 		else
2215 			check_page_writeback(tree, page);
2216 	} while (bvec >= bio->bi_io_vec);
2217 
2218 	bio_put(bio);
2219 }
2220 
2221 /*
2222  * after a readpage IO is done, we need to:
2223  * clear the uptodate bits on error
2224  * set the uptodate bits if things worked
2225  * set the page up to date if all extents in the tree are uptodate
2226  * clear the lock bit in the extent tree
2227  * unlock the page if there are no other extents locked for it
2228  *
2229  * Scheduling is not allowed, so the extent state tree is expected
2230  * to have one and only one object corresponding to this IO.
2231  */
2232 static void end_bio_extent_readpage(struct bio *bio, int err)
2233 {
2234 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2235 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2236 	struct bio_vec *bvec = bio->bi_io_vec;
2237 	struct extent_io_tree *tree;
2238 	u64 start;
2239 	u64 end;
2240 	int whole_page;
2241 	int ret;
2242 
2243 	if (err)
2244 		uptodate = 0;
2245 
2246 	do {
2247 		struct page *page = bvec->bv_page;
2248 		struct extent_state *cached = NULL;
2249 		struct extent_state *state;
2250 
2251 		pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2252 			 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2253 			 (long int)bio->bi_bdev);
2254 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2255 
2256 		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2257 			bvec->bv_offset;
2258 		end = start + bvec->bv_len - 1;
2259 
2260 		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2261 			whole_page = 1;
2262 		else
2263 			whole_page = 0;
2264 
2265 		if (++bvec <= bvec_end)
2266 			prefetchw(&bvec->bv_page->flags);
2267 
2268 		spin_lock(&tree->lock);
2269 		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2270 		if (state && state->start == start) {
2271 			/*
2272 			 * take a reference on the state, unlock will drop
2273 			 * the ref
2274 			 */
2275 			cache_state(state, &cached);
2276 		}
2277 		spin_unlock(&tree->lock);
2278 
2279 		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2280 			ret = tree->ops->readpage_end_io_hook(page, start, end,
2281 							      state);
2282 			if (ret)
2283 				uptodate = 0;
2284 			else
2285 				clean_io_failure(start, page);
2286 		}
2287 		if (!uptodate) {
2288 			u64 failed_mirror;
2289 			failed_mirror = (u64)bio->bi_bdev;
2290 			if (tree->ops && tree->ops->readpage_io_failed_hook)
2291 				ret = tree->ops->readpage_io_failed_hook(
2292 						bio, page, start, end,
2293 						failed_mirror, state);
2294 			else
2295 				ret = bio_readpage_error(bio, page, start, end,
2296 							 failed_mirror, NULL);
2297 			if (ret == 0) {
2298 				uptodate =
2299 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2300 				if (err)
2301 					uptodate = 0;
2302 				uncache_state(&cached);
2303 				continue;
2304 			}
2305 		}
2306 
2307 		if (uptodate) {
2308 			set_extent_uptodate(tree, start, end, &cached,
2309 					    GFP_ATOMIC);
2310 		}
2311 		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2312 
2313 		if (whole_page) {
2314 			if (uptodate) {
2315 				SetPageUptodate(page);
2316 			} else {
2317 				ClearPageUptodate(page);
2318 				SetPageError(page);
2319 			}
2320 			unlock_page(page);
2321 		} else {
2322 			if (uptodate) {
2323 				check_page_uptodate(tree, page);
2324 			} else {
2325 				ClearPageUptodate(page);
2326 				SetPageError(page);
2327 			}
2328 			check_page_locked(tree, page);
2329 		}
2330 	} while (bvec <= bvec_end);
2331 
2332 	bio_put(bio);
2333 }
2334 
2335 struct bio *
2336 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2337 		gfp_t gfp_flags)
2338 {
2339 	struct bio *bio;
2340 
2341 	bio = bio_alloc(gfp_flags, nr_vecs);
2342 
2343 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2344 		while (!bio && (nr_vecs /= 2))
2345 			bio = bio_alloc(gfp_flags, nr_vecs);
2346 	}
2347 
2348 	if (bio) {
2349 		bio->bi_size = 0;
2350 		bio->bi_bdev = bdev;
2351 		bio->bi_sector = first_sector;
2352 	}
2353 	return bio;
2354 }
2355 
2356 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2357 			  unsigned long bio_flags)
2358 {
2359 	int ret = 0;
2360 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2361 	struct page *page = bvec->bv_page;
2362 	struct extent_io_tree *tree = bio->bi_private;
2363 	u64 start;
2364 
2365 	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2366 
2367 	bio->bi_private = NULL;
2368 
2369 	bio_get(bio);
2370 
2371 	if (tree->ops && tree->ops->submit_bio_hook)
2372 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2373 					   mirror_num, bio_flags, start);
2374 	else
2375 		submit_bio(rw, bio);
2376 
2377 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2378 		ret = -EOPNOTSUPP;
2379 	bio_put(bio);
2380 	return ret;
2381 }
2382 
2383 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2384 			      struct page *page, sector_t sector,
2385 			      size_t size, unsigned long offset,
2386 			      struct block_device *bdev,
2387 			      struct bio **bio_ret,
2388 			      unsigned long max_pages,
2389 			      bio_end_io_t end_io_func,
2390 			      int mirror_num,
2391 			      unsigned long prev_bio_flags,
2392 			      unsigned long bio_flags)
2393 {
2394 	int ret = 0;
2395 	struct bio *bio;
2396 	int nr;
2397 	int contig = 0;
2398 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2399 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2400 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2401 
2402 	if (bio_ret && *bio_ret) {
2403 		bio = *bio_ret;
2404 		if (old_compressed)
2405 			contig = bio->bi_sector == sector;
2406 		else
2407 			contig = bio->bi_sector + (bio->bi_size >> 9) ==
2408 				sector;
2409 
2410 		if (prev_bio_flags != bio_flags || !contig ||
2411 		    (tree->ops && tree->ops->merge_bio_hook &&
2412 		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
2413 					       bio_flags)) ||
2414 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2415 			ret = submit_one_bio(rw, bio, mirror_num,
2416 					     prev_bio_flags);
2417 			bio = NULL;
2418 		} else {
2419 			return 0;
2420 		}
2421 	}
2422 	if (this_compressed)
2423 		nr = BIO_MAX_PAGES;
2424 	else
2425 		nr = bio_get_nr_vecs(bdev);
2426 
2427 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2428 	if (!bio)
2429 		return -ENOMEM;
2430 
2431 	bio_add_page(bio, page, page_size, offset);
2432 	bio->bi_end_io = end_io_func;
2433 	bio->bi_private = tree;
2434 
2435 	if (bio_ret)
2436 		*bio_ret = bio;
2437 	else
2438 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2439 
2440 	return ret;
2441 }
2442 
2443 void set_page_extent_mapped(struct page *page)
2444 {
2445 	if (!PagePrivate(page)) {
2446 		SetPagePrivate(page);
2447 		page_cache_get(page);
2448 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2449 	}
2450 }
2451 
2452 static void set_page_extent_head(struct page *page, unsigned long len)
2453 {
2454 	WARN_ON(!PagePrivate(page));
2455 	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2456 }
2457 
2458 /*
2459  * basic readpage implementation.  Locked extent state structs are inserted
2460  * into the tree that are removed when the IO is done (by the end_io
2461  * handlers)
2462  */
2463 static int __extent_read_full_page(struct extent_io_tree *tree,
2464 				   struct page *page,
2465 				   get_extent_t *get_extent,
2466 				   struct bio **bio, int mirror_num,
2467 				   unsigned long *bio_flags)
2468 {
2469 	struct inode *inode = page->mapping->host;
2470 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2471 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2472 	u64 end;
2473 	u64 cur = start;
2474 	u64 extent_offset;
2475 	u64 last_byte = i_size_read(inode);
2476 	u64 block_start;
2477 	u64 cur_end;
2478 	sector_t sector;
2479 	struct extent_map *em;
2480 	struct block_device *bdev;
2481 	struct btrfs_ordered_extent *ordered;
2482 	int ret;
2483 	int nr = 0;
2484 	size_t pg_offset = 0;
2485 	size_t iosize;
2486 	size_t disk_io_size;
2487 	size_t blocksize = inode->i_sb->s_blocksize;
2488 	unsigned long this_bio_flag = 0;
2489 
2490 	set_page_extent_mapped(page);
2491 
2492 	if (!PageUptodate(page)) {
2493 		if (cleancache_get_page(page) == 0) {
2494 			BUG_ON(blocksize != PAGE_SIZE);
2495 			goto out;
2496 		}
2497 	}
2498 
2499 	end = page_end;
2500 	while (1) {
2501 		lock_extent(tree, start, end, GFP_NOFS);
2502 		ordered = btrfs_lookup_ordered_extent(inode, start);
2503 		if (!ordered)
2504 			break;
2505 		unlock_extent(tree, start, end, GFP_NOFS);
2506 		btrfs_start_ordered_extent(inode, ordered, 1);
2507 		btrfs_put_ordered_extent(ordered);
2508 	}
2509 
2510 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2511 		char *userpage;
2512 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2513 
2514 		if (zero_offset) {
2515 			iosize = PAGE_CACHE_SIZE - zero_offset;
2516 			userpage = kmap_atomic(page, KM_USER0);
2517 			memset(userpage + zero_offset, 0, iosize);
2518 			flush_dcache_page(page);
2519 			kunmap_atomic(userpage, KM_USER0);
2520 		}
2521 	}
2522 	while (cur <= end) {
2523 		if (cur >= last_byte) {
2524 			char *userpage;
2525 			struct extent_state *cached = NULL;
2526 
2527 			iosize = PAGE_CACHE_SIZE - pg_offset;
2528 			userpage = kmap_atomic(page, KM_USER0);
2529 			memset(userpage + pg_offset, 0, iosize);
2530 			flush_dcache_page(page);
2531 			kunmap_atomic(userpage, KM_USER0);
2532 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2533 					    &cached, GFP_NOFS);
2534 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2535 					     &cached, GFP_NOFS);
2536 			break;
2537 		}
2538 		em = get_extent(inode, page, pg_offset, cur,
2539 				end - cur + 1, 0);
2540 		if (IS_ERR_OR_NULL(em)) {
2541 			SetPageError(page);
2542 			unlock_extent(tree, cur, end, GFP_NOFS);
2543 			break;
2544 		}
2545 		extent_offset = cur - em->start;
2546 		BUG_ON(extent_map_end(em) <= cur);
2547 		BUG_ON(end < cur);
2548 
2549 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2550 			this_bio_flag = EXTENT_BIO_COMPRESSED;
2551 			extent_set_compress_type(&this_bio_flag,
2552 						 em->compress_type);
2553 		}
2554 
2555 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2556 		cur_end = min(extent_map_end(em) - 1, end);
2557 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2558 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2559 			disk_io_size = em->block_len;
2560 			sector = em->block_start >> 9;
2561 		} else {
2562 			sector = (em->block_start + extent_offset) >> 9;
2563 			disk_io_size = iosize;
2564 		}
2565 		bdev = em->bdev;
2566 		block_start = em->block_start;
2567 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2568 			block_start = EXTENT_MAP_HOLE;
2569 		free_extent_map(em);
2570 		em = NULL;
2571 
2572 		/* we've found a hole, just zero and go on */
2573 		if (block_start == EXTENT_MAP_HOLE) {
2574 			char *userpage;
2575 			struct extent_state *cached = NULL;
2576 
2577 			userpage = kmap_atomic(page, KM_USER0);
2578 			memset(userpage + pg_offset, 0, iosize);
2579 			flush_dcache_page(page);
2580 			kunmap_atomic(userpage, KM_USER0);
2581 
2582 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2583 					    &cached, GFP_NOFS);
2584 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2585 			                     &cached, GFP_NOFS);
2586 			cur = cur + iosize;
2587 			pg_offset += iosize;
2588 			continue;
2589 		}
2590 		/* the get_extent function already copied into the page */
2591 		if (test_range_bit(tree, cur, cur_end,
2592 				   EXTENT_UPTODATE, 1, NULL)) {
2593 			check_page_uptodate(tree, page);
2594 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2595 			cur = cur + iosize;
2596 			pg_offset += iosize;
2597 			continue;
2598 		}
2599 		/* we have an inline extent but it didn't get marked up
2600 		 * to date.  Error out
2601 		 */
2602 		if (block_start == EXTENT_MAP_INLINE) {
2603 			SetPageError(page);
2604 			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2605 			cur = cur + iosize;
2606 			pg_offset += iosize;
2607 			continue;
2608 		}
2609 
2610 		ret = 0;
2611 		if (tree->ops && tree->ops->readpage_io_hook) {
2612 			ret = tree->ops->readpage_io_hook(page, cur,
2613 							  cur + iosize - 1);
2614 		}
2615 		if (!ret) {
2616 			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2617 			pnr -= page->index;
2618 			ret = submit_extent_page(READ, tree, page,
2619 					 sector, disk_io_size, pg_offset,
2620 					 bdev, bio, pnr,
2621 					 end_bio_extent_readpage, mirror_num,
2622 					 *bio_flags,
2623 					 this_bio_flag);
2624 			nr++;
2625 			*bio_flags = this_bio_flag;
2626 		}
2627 		if (ret)
2628 			SetPageError(page);
2629 		cur = cur + iosize;
2630 		pg_offset += iosize;
2631 	}
2632 out:
2633 	if (!nr) {
2634 		if (!PageError(page))
2635 			SetPageUptodate(page);
2636 		unlock_page(page);
2637 	}
2638 	return 0;
2639 }
2640 
2641 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2642 			    get_extent_t *get_extent, int mirror_num)
2643 {
2644 	struct bio *bio = NULL;
2645 	unsigned long bio_flags = 0;
2646 	int ret;
2647 
2648 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2649 				      &bio_flags);
2650 	if (bio)
2651 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2652 	return ret;
2653 }
2654 
2655 static noinline void update_nr_written(struct page *page,
2656 				      struct writeback_control *wbc,
2657 				      unsigned long nr_written)
2658 {
2659 	wbc->nr_to_write -= nr_written;
2660 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2661 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2662 		page->mapping->writeback_index = page->index + nr_written;
2663 }
2664 
2665 /*
2666  * the writepage semantics are similar to regular writepage.  extent
2667  * records are inserted to lock ranges in the tree, and as dirty areas
2668  * are found, they are marked writeback.  Then the lock bits are removed
2669  * and the end_io handler clears the writeback ranges
2670  */
2671 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2672 			      void *data)
2673 {
2674 	struct inode *inode = page->mapping->host;
2675 	struct extent_page_data *epd = data;
2676 	struct extent_io_tree *tree = epd->tree;
2677 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2678 	u64 delalloc_start;
2679 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2680 	u64 end;
2681 	u64 cur = start;
2682 	u64 extent_offset;
2683 	u64 last_byte = i_size_read(inode);
2684 	u64 block_start;
2685 	u64 iosize;
2686 	sector_t sector;
2687 	struct extent_state *cached_state = NULL;
2688 	struct extent_map *em;
2689 	struct block_device *bdev;
2690 	int ret;
2691 	int nr = 0;
2692 	size_t pg_offset = 0;
2693 	size_t blocksize;
2694 	loff_t i_size = i_size_read(inode);
2695 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2696 	u64 nr_delalloc;
2697 	u64 delalloc_end;
2698 	int page_started;
2699 	int compressed;
2700 	int write_flags;
2701 	unsigned long nr_written = 0;
2702 	bool fill_delalloc = true;
2703 
2704 	if (wbc->sync_mode == WB_SYNC_ALL)
2705 		write_flags = WRITE_SYNC;
2706 	else
2707 		write_flags = WRITE;
2708 
2709 	trace___extent_writepage(page, inode, wbc);
2710 
2711 	WARN_ON(!PageLocked(page));
2712 
2713 	ClearPageError(page);
2714 
2715 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2716 	if (page->index > end_index ||
2717 	   (page->index == end_index && !pg_offset)) {
2718 		page->mapping->a_ops->invalidatepage(page, 0);
2719 		unlock_page(page);
2720 		return 0;
2721 	}
2722 
2723 	if (page->index == end_index) {
2724 		char *userpage;
2725 
2726 		userpage = kmap_atomic(page, KM_USER0);
2727 		memset(userpage + pg_offset, 0,
2728 		       PAGE_CACHE_SIZE - pg_offset);
2729 		kunmap_atomic(userpage, KM_USER0);
2730 		flush_dcache_page(page);
2731 	}
2732 	pg_offset = 0;
2733 
2734 	set_page_extent_mapped(page);
2735 
2736 	if (!tree->ops || !tree->ops->fill_delalloc)
2737 		fill_delalloc = false;
2738 
2739 	delalloc_start = start;
2740 	delalloc_end = 0;
2741 	page_started = 0;
2742 	if (!epd->extent_locked && fill_delalloc) {
2743 		u64 delalloc_to_write = 0;
2744 		/*
2745 		 * make sure the wbc mapping index is at least updated
2746 		 * to this page.
2747 		 */
2748 		update_nr_written(page, wbc, 0);
2749 
2750 		while (delalloc_end < page_end) {
2751 			nr_delalloc = find_lock_delalloc_range(inode, tree,
2752 						       page,
2753 						       &delalloc_start,
2754 						       &delalloc_end,
2755 						       128 * 1024 * 1024);
2756 			if (nr_delalloc == 0) {
2757 				delalloc_start = delalloc_end + 1;
2758 				continue;
2759 			}
2760 			tree->ops->fill_delalloc(inode, page, delalloc_start,
2761 						 delalloc_end, &page_started,
2762 						 &nr_written);
2763 			/*
2764 			 * delalloc_end is already one less than the total
2765 			 * length, so we don't subtract one from
2766 			 * PAGE_CACHE_SIZE
2767 			 */
2768 			delalloc_to_write += (delalloc_end - delalloc_start +
2769 					      PAGE_CACHE_SIZE) >>
2770 					      PAGE_CACHE_SHIFT;
2771 			delalloc_start = delalloc_end + 1;
2772 		}
2773 		if (wbc->nr_to_write < delalloc_to_write) {
2774 			int thresh = 8192;
2775 
2776 			if (delalloc_to_write < thresh * 2)
2777 				thresh = delalloc_to_write;
2778 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2779 						 thresh);
2780 		}
2781 
2782 		/* did the fill delalloc function already unlock and start
2783 		 * the IO?
2784 		 */
2785 		if (page_started) {
2786 			ret = 0;
2787 			/*
2788 			 * we've unlocked the page, so we can't update
2789 			 * the mapping's writeback index, just update
2790 			 * nr_to_write.
2791 			 */
2792 			wbc->nr_to_write -= nr_written;
2793 			goto done_unlocked;
2794 		}
2795 	}
2796 	if (tree->ops && tree->ops->writepage_start_hook) {
2797 		ret = tree->ops->writepage_start_hook(page, start,
2798 						      page_end);
2799 		if (ret == -EAGAIN) {
2800 			redirty_page_for_writepage(wbc, page);
2801 			update_nr_written(page, wbc, nr_written);
2802 			unlock_page(page);
2803 			ret = 0;
2804 			goto done_unlocked;
2805 		}
2806 	}
2807 
2808 	/*
2809 	 * we don't want to touch the inode after unlocking the page,
2810 	 * so we update the mapping writeback index now
2811 	 */
2812 	update_nr_written(page, wbc, nr_written + 1);
2813 
2814 	end = page_end;
2815 	if (last_byte <= start) {
2816 		if (tree->ops && tree->ops->writepage_end_io_hook)
2817 			tree->ops->writepage_end_io_hook(page, start,
2818 							 page_end, NULL, 1);
2819 		goto done;
2820 	}
2821 
2822 	blocksize = inode->i_sb->s_blocksize;
2823 
2824 	while (cur <= end) {
2825 		if (cur >= last_byte) {
2826 			if (tree->ops && tree->ops->writepage_end_io_hook)
2827 				tree->ops->writepage_end_io_hook(page, cur,
2828 							 page_end, NULL, 1);
2829 			break;
2830 		}
2831 		em = epd->get_extent(inode, page, pg_offset, cur,
2832 				     end - cur + 1, 1);
2833 		if (IS_ERR_OR_NULL(em)) {
2834 			SetPageError(page);
2835 			break;
2836 		}
2837 
2838 		extent_offset = cur - em->start;
2839 		BUG_ON(extent_map_end(em) <= cur);
2840 		BUG_ON(end < cur);
2841 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2842 		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2843 		sector = (em->block_start + extent_offset) >> 9;
2844 		bdev = em->bdev;
2845 		block_start = em->block_start;
2846 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2847 		free_extent_map(em);
2848 		em = NULL;
2849 
2850 		/*
2851 		 * compressed and inline extents are written through other
2852 		 * paths in the FS
2853 		 */
2854 		if (compressed || block_start == EXTENT_MAP_HOLE ||
2855 		    block_start == EXTENT_MAP_INLINE) {
2856 			/*
2857 			 * end_io notification does not happen here for
2858 			 * compressed extents
2859 			 */
2860 			if (!compressed && tree->ops &&
2861 			    tree->ops->writepage_end_io_hook)
2862 				tree->ops->writepage_end_io_hook(page, cur,
2863 							 cur + iosize - 1,
2864 							 NULL, 1);
2865 			else if (compressed) {
2866 				/* we don't want to end_page_writeback on
2867 				 * a compressed extent.  this happens
2868 				 * elsewhere
2869 				 */
2870 				nr++;
2871 			}
2872 
2873 			cur += iosize;
2874 			pg_offset += iosize;
2875 			continue;
2876 		}
2877 		/* leave this out until we have a page_mkwrite call */
2878 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2879 				   EXTENT_DIRTY, 0, NULL)) {
2880 			cur = cur + iosize;
2881 			pg_offset += iosize;
2882 			continue;
2883 		}
2884 
2885 		if (tree->ops && tree->ops->writepage_io_hook) {
2886 			ret = tree->ops->writepage_io_hook(page, cur,
2887 						cur + iosize - 1);
2888 		} else {
2889 			ret = 0;
2890 		}
2891 		if (ret) {
2892 			SetPageError(page);
2893 		} else {
2894 			unsigned long max_nr = end_index + 1;
2895 
2896 			set_range_writeback(tree, cur, cur + iosize - 1);
2897 			if (!PageWriteback(page)) {
2898 				printk(KERN_ERR "btrfs warning page %lu not "
2899 				       "writeback, cur %llu end %llu\n",
2900 				       page->index, (unsigned long long)cur,
2901 				       (unsigned long long)end);
2902 			}
2903 
2904 			ret = submit_extent_page(write_flags, tree, page,
2905 						 sector, iosize, pg_offset,
2906 						 bdev, &epd->bio, max_nr,
2907 						 end_bio_extent_writepage,
2908 						 0, 0, 0);
2909 			if (ret)
2910 				SetPageError(page);
2911 		}
2912 		cur = cur + iosize;
2913 		pg_offset += iosize;
2914 		nr++;
2915 	}
2916 done:
2917 	if (nr == 0) {
2918 		/* make sure the mapping tag for page dirty gets cleared */
2919 		set_page_writeback(page);
2920 		end_page_writeback(page);
2921 	}
2922 	unlock_page(page);
2923 
2924 done_unlocked:
2925 
2926 	/* drop our reference on any cached states */
2927 	free_extent_state(cached_state);
2928 	return 0;
2929 }
2930 
2931 /**
2932  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2933  * @mapping: address space structure to write
2934  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2935  * @writepage: function called for each page
2936  * @data: data passed to writepage function
2937  *
2938  * If a page is already under I/O, write_cache_pages() skips it, even
2939  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2940  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2941  * and msync() need to guarantee that all the data which was dirty at the time
2942  * the call was made get new I/O started against them.  If wbc->sync_mode is
2943  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2944  * existing IO to complete.
2945  */
2946 static int extent_write_cache_pages(struct extent_io_tree *tree,
2947 			     struct address_space *mapping,
2948 			     struct writeback_control *wbc,
2949 			     writepage_t writepage, void *data,
2950 			     void (*flush_fn)(void *))
2951 {
2952 	int ret = 0;
2953 	int done = 0;
2954 	int nr_to_write_done = 0;
2955 	struct pagevec pvec;
2956 	int nr_pages;
2957 	pgoff_t index;
2958 	pgoff_t end;		/* Inclusive */
2959 	int scanned = 0;
2960 	int tag;
2961 
2962 	pagevec_init(&pvec, 0);
2963 	if (wbc->range_cyclic) {
2964 		index = mapping->writeback_index; /* Start from prev offset */
2965 		end = -1;
2966 	} else {
2967 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2968 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2969 		scanned = 1;
2970 	}
2971 	if (wbc->sync_mode == WB_SYNC_ALL)
2972 		tag = PAGECACHE_TAG_TOWRITE;
2973 	else
2974 		tag = PAGECACHE_TAG_DIRTY;
2975 retry:
2976 	if (wbc->sync_mode == WB_SYNC_ALL)
2977 		tag_pages_for_writeback(mapping, index, end);
2978 	while (!done && !nr_to_write_done && (index <= end) &&
2979 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2980 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2981 		unsigned i;
2982 
2983 		scanned = 1;
2984 		for (i = 0; i < nr_pages; i++) {
2985 			struct page *page = pvec.pages[i];
2986 
2987 			/*
2988 			 * At this point we hold neither mapping->tree_lock nor
2989 			 * lock on the page itself: the page may be truncated or
2990 			 * invalidated (changing page->mapping to NULL), or even
2991 			 * swizzled back from swapper_space to tmpfs file
2992 			 * mapping
2993 			 */
2994 			if (tree->ops &&
2995 			    tree->ops->write_cache_pages_lock_hook) {
2996 				tree->ops->write_cache_pages_lock_hook(page,
2997 							       data, flush_fn);
2998 			} else {
2999 				if (!trylock_page(page)) {
3000 					flush_fn(data);
3001 					lock_page(page);
3002 				}
3003 			}
3004 
3005 			if (unlikely(page->mapping != mapping)) {
3006 				unlock_page(page);
3007 				continue;
3008 			}
3009 
3010 			if (!wbc->range_cyclic && page->index > end) {
3011 				done = 1;
3012 				unlock_page(page);
3013 				continue;
3014 			}
3015 
3016 			if (wbc->sync_mode != WB_SYNC_NONE) {
3017 				if (PageWriteback(page))
3018 					flush_fn(data);
3019 				wait_on_page_writeback(page);
3020 			}
3021 
3022 			if (PageWriteback(page) ||
3023 			    !clear_page_dirty_for_io(page)) {
3024 				unlock_page(page);
3025 				continue;
3026 			}
3027 
3028 			ret = (*writepage)(page, wbc, data);
3029 
3030 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3031 				unlock_page(page);
3032 				ret = 0;
3033 			}
3034 			if (ret)
3035 				done = 1;
3036 
3037 			/*
3038 			 * the filesystem may choose to bump up nr_to_write.
3039 			 * We have to make sure to honor the new nr_to_write
3040 			 * at any time
3041 			 */
3042 			nr_to_write_done = wbc->nr_to_write <= 0;
3043 		}
3044 		pagevec_release(&pvec);
3045 		cond_resched();
3046 	}
3047 	if (!scanned && !done) {
3048 		/*
3049 		 * We hit the last page and there is more work to be done: wrap
3050 		 * back to the start of the file
3051 		 */
3052 		scanned = 1;
3053 		index = 0;
3054 		goto retry;
3055 	}
3056 	return ret;
3057 }
3058 
3059 static void flush_epd_write_bio(struct extent_page_data *epd)
3060 {
3061 	if (epd->bio) {
3062 		if (epd->sync_io)
3063 			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3064 		else
3065 			submit_one_bio(WRITE, epd->bio, 0, 0);
3066 		epd->bio = NULL;
3067 	}
3068 }
3069 
3070 static noinline void flush_write_bio(void *data)
3071 {
3072 	struct extent_page_data *epd = data;
3073 	flush_epd_write_bio(epd);
3074 }
3075 
3076 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3077 			  get_extent_t *get_extent,
3078 			  struct writeback_control *wbc)
3079 {
3080 	int ret;
3081 	struct extent_page_data epd = {
3082 		.bio = NULL,
3083 		.tree = tree,
3084 		.get_extent = get_extent,
3085 		.extent_locked = 0,
3086 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3087 	};
3088 
3089 	ret = __extent_writepage(page, wbc, &epd);
3090 
3091 	flush_epd_write_bio(&epd);
3092 	return ret;
3093 }
3094 
3095 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3096 			      u64 start, u64 end, get_extent_t *get_extent,
3097 			      int mode)
3098 {
3099 	int ret = 0;
3100 	struct address_space *mapping = inode->i_mapping;
3101 	struct page *page;
3102 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3103 		PAGE_CACHE_SHIFT;
3104 
3105 	struct extent_page_data epd = {
3106 		.bio = NULL,
3107 		.tree = tree,
3108 		.get_extent = get_extent,
3109 		.extent_locked = 1,
3110 		.sync_io = mode == WB_SYNC_ALL,
3111 	};
3112 	struct writeback_control wbc_writepages = {
3113 		.sync_mode	= mode,
3114 		.nr_to_write	= nr_pages * 2,
3115 		.range_start	= start,
3116 		.range_end	= end + 1,
3117 	};
3118 
3119 	while (start <= end) {
3120 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3121 		if (clear_page_dirty_for_io(page))
3122 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3123 		else {
3124 			if (tree->ops && tree->ops->writepage_end_io_hook)
3125 				tree->ops->writepage_end_io_hook(page, start,
3126 						 start + PAGE_CACHE_SIZE - 1,
3127 						 NULL, 1);
3128 			unlock_page(page);
3129 		}
3130 		page_cache_release(page);
3131 		start += PAGE_CACHE_SIZE;
3132 	}
3133 
3134 	flush_epd_write_bio(&epd);
3135 	return ret;
3136 }
3137 
3138 int extent_writepages(struct extent_io_tree *tree,
3139 		      struct address_space *mapping,
3140 		      get_extent_t *get_extent,
3141 		      struct writeback_control *wbc)
3142 {
3143 	int ret = 0;
3144 	struct extent_page_data epd = {
3145 		.bio = NULL,
3146 		.tree = tree,
3147 		.get_extent = get_extent,
3148 		.extent_locked = 0,
3149 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3150 	};
3151 
3152 	ret = extent_write_cache_pages(tree, mapping, wbc,
3153 				       __extent_writepage, &epd,
3154 				       flush_write_bio);
3155 	flush_epd_write_bio(&epd);
3156 	return ret;
3157 }
3158 
3159 int extent_readpages(struct extent_io_tree *tree,
3160 		     struct address_space *mapping,
3161 		     struct list_head *pages, unsigned nr_pages,
3162 		     get_extent_t get_extent)
3163 {
3164 	struct bio *bio = NULL;
3165 	unsigned page_idx;
3166 	unsigned long bio_flags = 0;
3167 
3168 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3169 		struct page *page = list_entry(pages->prev, struct page, lru);
3170 
3171 		prefetchw(&page->flags);
3172 		list_del(&page->lru);
3173 		if (!add_to_page_cache_lru(page, mapping,
3174 					page->index, GFP_NOFS)) {
3175 			__extent_read_full_page(tree, page, get_extent,
3176 						&bio, 0, &bio_flags);
3177 		}
3178 		page_cache_release(page);
3179 	}
3180 	BUG_ON(!list_empty(pages));
3181 	if (bio)
3182 		submit_one_bio(READ, bio, 0, bio_flags);
3183 	return 0;
3184 }
3185 
3186 /*
3187  * basic invalidatepage code, this waits on any locked or writeback
3188  * ranges corresponding to the page, and then deletes any extent state
3189  * records from the tree
3190  */
3191 int extent_invalidatepage(struct extent_io_tree *tree,
3192 			  struct page *page, unsigned long offset)
3193 {
3194 	struct extent_state *cached_state = NULL;
3195 	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3196 	u64 end = start + PAGE_CACHE_SIZE - 1;
3197 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3198 
3199 	start += (offset + blocksize - 1) & ~(blocksize - 1);
3200 	if (start > end)
3201 		return 0;
3202 
3203 	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3204 	wait_on_page_writeback(page);
3205 	clear_extent_bit(tree, start, end,
3206 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3207 			 EXTENT_DO_ACCOUNTING,
3208 			 1, 1, &cached_state, GFP_NOFS);
3209 	return 0;
3210 }
3211 
3212 /*
3213  * a helper for releasepage, this tests for areas of the page that
3214  * are locked or under IO and drops the related state bits if it is safe
3215  * to drop the page.
3216  */
3217 int try_release_extent_state(struct extent_map_tree *map,
3218 			     struct extent_io_tree *tree, struct page *page,
3219 			     gfp_t mask)
3220 {
3221 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3222 	u64 end = start + PAGE_CACHE_SIZE - 1;
3223 	int ret = 1;
3224 
3225 	if (test_range_bit(tree, start, end,
3226 			   EXTENT_IOBITS, 0, NULL))
3227 		ret = 0;
3228 	else {
3229 		if ((mask & GFP_NOFS) == GFP_NOFS)
3230 			mask = GFP_NOFS;
3231 		/*
3232 		 * at this point we can safely clear everything except the
3233 		 * locked bit and the nodatasum bit
3234 		 */
3235 		ret = clear_extent_bit(tree, start, end,
3236 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3237 				 0, 0, NULL, mask);
3238 
3239 		/* if clear_extent_bit failed for enomem reasons,
3240 		 * we can't allow the release to continue.
3241 		 */
3242 		if (ret < 0)
3243 			ret = 0;
3244 		else
3245 			ret = 1;
3246 	}
3247 	return ret;
3248 }
3249 
3250 /*
3251  * a helper for releasepage.  As long as there are no locked extents
3252  * in the range corresponding to the page, both state records and extent
3253  * map records are removed
3254  */
3255 int try_release_extent_mapping(struct extent_map_tree *map,
3256 			       struct extent_io_tree *tree, struct page *page,
3257 			       gfp_t mask)
3258 {
3259 	struct extent_map *em;
3260 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3261 	u64 end = start + PAGE_CACHE_SIZE - 1;
3262 
3263 	if ((mask & __GFP_WAIT) &&
3264 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3265 		u64 len;
3266 		while (start <= end) {
3267 			len = end - start + 1;
3268 			write_lock(&map->lock);
3269 			em = lookup_extent_mapping(map, start, len);
3270 			if (IS_ERR_OR_NULL(em)) {
3271 				write_unlock(&map->lock);
3272 				break;
3273 			}
3274 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3275 			    em->start != start) {
3276 				write_unlock(&map->lock);
3277 				free_extent_map(em);
3278 				break;
3279 			}
3280 			if (!test_range_bit(tree, em->start,
3281 					    extent_map_end(em) - 1,
3282 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
3283 					    0, NULL)) {
3284 				remove_extent_mapping(map, em);
3285 				/* once for the rb tree */
3286 				free_extent_map(em);
3287 			}
3288 			start = extent_map_end(em);
3289 			write_unlock(&map->lock);
3290 
3291 			/* once for us */
3292 			free_extent_map(em);
3293 		}
3294 	}
3295 	return try_release_extent_state(map, tree, page, mask);
3296 }
3297 
3298 /*
3299  * helper function for fiemap, which doesn't want to see any holes.
3300  * This maps until we find something past 'last'
3301  */
3302 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3303 						u64 offset,
3304 						u64 last,
3305 						get_extent_t *get_extent)
3306 {
3307 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3308 	struct extent_map *em;
3309 	u64 len;
3310 
3311 	if (offset >= last)
3312 		return NULL;
3313 
3314 	while(1) {
3315 		len = last - offset;
3316 		if (len == 0)
3317 			break;
3318 		len = (len + sectorsize - 1) & ~(sectorsize - 1);
3319 		em = get_extent(inode, NULL, 0, offset, len, 0);
3320 		if (IS_ERR_OR_NULL(em))
3321 			return em;
3322 
3323 		/* if this isn't a hole return it */
3324 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3325 		    em->block_start != EXTENT_MAP_HOLE) {
3326 			return em;
3327 		}
3328 
3329 		/* this is a hole, advance to the next extent */
3330 		offset = extent_map_end(em);
3331 		free_extent_map(em);
3332 		if (offset >= last)
3333 			break;
3334 	}
3335 	return NULL;
3336 }
3337 
3338 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3339 		__u64 start, __u64 len, get_extent_t *get_extent)
3340 {
3341 	int ret = 0;
3342 	u64 off = start;
3343 	u64 max = start + len;
3344 	u32 flags = 0;
3345 	u32 found_type;
3346 	u64 last;
3347 	u64 last_for_get_extent = 0;
3348 	u64 disko = 0;
3349 	u64 isize = i_size_read(inode);
3350 	struct btrfs_key found_key;
3351 	struct extent_map *em = NULL;
3352 	struct extent_state *cached_state = NULL;
3353 	struct btrfs_path *path;
3354 	struct btrfs_file_extent_item *item;
3355 	int end = 0;
3356 	u64 em_start = 0;
3357 	u64 em_len = 0;
3358 	u64 em_end = 0;
3359 	unsigned long emflags;
3360 
3361 	if (len == 0)
3362 		return -EINVAL;
3363 
3364 	path = btrfs_alloc_path();
3365 	if (!path)
3366 		return -ENOMEM;
3367 	path->leave_spinning = 1;
3368 
3369 	/*
3370 	 * lookup the last file extent.  We're not using i_size here
3371 	 * because there might be preallocation past i_size
3372 	 */
3373 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3374 				       path, btrfs_ino(inode), -1, 0);
3375 	if (ret < 0) {
3376 		btrfs_free_path(path);
3377 		return ret;
3378 	}
3379 	WARN_ON(!ret);
3380 	path->slots[0]--;
3381 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3382 			      struct btrfs_file_extent_item);
3383 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3384 	found_type = btrfs_key_type(&found_key);
3385 
3386 	/* No extents, but there might be delalloc bits */
3387 	if (found_key.objectid != btrfs_ino(inode) ||
3388 	    found_type != BTRFS_EXTENT_DATA_KEY) {
3389 		/* have to trust i_size as the end */
3390 		last = (u64)-1;
3391 		last_for_get_extent = isize;
3392 	} else {
3393 		/*
3394 		 * remember the start of the last extent.  There are a
3395 		 * bunch of different factors that go into the length of the
3396 		 * extent, so its much less complex to remember where it started
3397 		 */
3398 		last = found_key.offset;
3399 		last_for_get_extent = last + 1;
3400 	}
3401 	btrfs_free_path(path);
3402 
3403 	/*
3404 	 * we might have some extents allocated but more delalloc past those
3405 	 * extents.  so, we trust isize unless the start of the last extent is
3406 	 * beyond isize
3407 	 */
3408 	if (last < isize) {
3409 		last = (u64)-1;
3410 		last_for_get_extent = isize;
3411 	}
3412 
3413 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3414 			 &cached_state, GFP_NOFS);
3415 
3416 	em = get_extent_skip_holes(inode, off, last_for_get_extent,
3417 				   get_extent);
3418 	if (!em)
3419 		goto out;
3420 	if (IS_ERR(em)) {
3421 		ret = PTR_ERR(em);
3422 		goto out;
3423 	}
3424 
3425 	while (!end) {
3426 		u64 offset_in_extent;
3427 
3428 		/* break if the extent we found is outside the range */
3429 		if (em->start >= max || extent_map_end(em) < off)
3430 			break;
3431 
3432 		/*
3433 		 * get_extent may return an extent that starts before our
3434 		 * requested range.  We have to make sure the ranges
3435 		 * we return to fiemap always move forward and don't
3436 		 * overlap, so adjust the offsets here
3437 		 */
3438 		em_start = max(em->start, off);
3439 
3440 		/*
3441 		 * record the offset from the start of the extent
3442 		 * for adjusting the disk offset below
3443 		 */
3444 		offset_in_extent = em_start - em->start;
3445 		em_end = extent_map_end(em);
3446 		em_len = em_end - em_start;
3447 		emflags = em->flags;
3448 		disko = 0;
3449 		flags = 0;
3450 
3451 		/*
3452 		 * bump off for our next call to get_extent
3453 		 */
3454 		off = extent_map_end(em);
3455 		if (off >= max)
3456 			end = 1;
3457 
3458 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3459 			end = 1;
3460 			flags |= FIEMAP_EXTENT_LAST;
3461 		} else if (em->block_start == EXTENT_MAP_INLINE) {
3462 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
3463 				  FIEMAP_EXTENT_NOT_ALIGNED);
3464 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
3465 			flags |= (FIEMAP_EXTENT_DELALLOC |
3466 				  FIEMAP_EXTENT_UNKNOWN);
3467 		} else {
3468 			disko = em->block_start + offset_in_extent;
3469 		}
3470 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3471 			flags |= FIEMAP_EXTENT_ENCODED;
3472 
3473 		free_extent_map(em);
3474 		em = NULL;
3475 		if ((em_start >= last) || em_len == (u64)-1 ||
3476 		   (last == (u64)-1 && isize <= em_end)) {
3477 			flags |= FIEMAP_EXTENT_LAST;
3478 			end = 1;
3479 		}
3480 
3481 		/* now scan forward to see if this is really the last extent. */
3482 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
3483 					   get_extent);
3484 		if (IS_ERR(em)) {
3485 			ret = PTR_ERR(em);
3486 			goto out;
3487 		}
3488 		if (!em) {
3489 			flags |= FIEMAP_EXTENT_LAST;
3490 			end = 1;
3491 		}
3492 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3493 					      em_len, flags);
3494 		if (ret)
3495 			goto out_free;
3496 	}
3497 out_free:
3498 	free_extent_map(em);
3499 out:
3500 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3501 			     &cached_state, GFP_NOFS);
3502 	return ret;
3503 }
3504 
3505 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3506 					      unsigned long i)
3507 {
3508 	struct page *p;
3509 	struct address_space *mapping;
3510 
3511 	if (i == 0)
3512 		return eb->first_page;
3513 	i += eb->start >> PAGE_CACHE_SHIFT;
3514 	mapping = eb->first_page->mapping;
3515 	if (!mapping)
3516 		return NULL;
3517 
3518 	/*
3519 	 * extent_buffer_page is only called after pinning the page
3520 	 * by increasing the reference count.  So we know the page must
3521 	 * be in the radix tree.
3522 	 */
3523 	rcu_read_lock();
3524 	p = radix_tree_lookup(&mapping->page_tree, i);
3525 	rcu_read_unlock();
3526 
3527 	return p;
3528 }
3529 
3530 inline unsigned long num_extent_pages(u64 start, u64 len)
3531 {
3532 	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3533 		(start >> PAGE_CACHE_SHIFT);
3534 }
3535 
3536 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3537 						   u64 start,
3538 						   unsigned long len,
3539 						   gfp_t mask)
3540 {
3541 	struct extent_buffer *eb = NULL;
3542 #if LEAK_DEBUG
3543 	unsigned long flags;
3544 #endif
3545 
3546 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3547 	if (eb == NULL)
3548 		return NULL;
3549 	eb->start = start;
3550 	eb->len = len;
3551 	rwlock_init(&eb->lock);
3552 	atomic_set(&eb->write_locks, 0);
3553 	atomic_set(&eb->read_locks, 0);
3554 	atomic_set(&eb->blocking_readers, 0);
3555 	atomic_set(&eb->blocking_writers, 0);
3556 	atomic_set(&eb->spinning_readers, 0);
3557 	atomic_set(&eb->spinning_writers, 0);
3558 	init_waitqueue_head(&eb->write_lock_wq);
3559 	init_waitqueue_head(&eb->read_lock_wq);
3560 
3561 #if LEAK_DEBUG
3562 	spin_lock_irqsave(&leak_lock, flags);
3563 	list_add(&eb->leak_list, &buffers);
3564 	spin_unlock_irqrestore(&leak_lock, flags);
3565 #endif
3566 	atomic_set(&eb->refs, 1);
3567 
3568 	return eb;
3569 }
3570 
3571 static void __free_extent_buffer(struct extent_buffer *eb)
3572 {
3573 #if LEAK_DEBUG
3574 	unsigned long flags;
3575 	spin_lock_irqsave(&leak_lock, flags);
3576 	list_del(&eb->leak_list);
3577 	spin_unlock_irqrestore(&leak_lock, flags);
3578 #endif
3579 	kmem_cache_free(extent_buffer_cache, eb);
3580 }
3581 
3582 /*
3583  * Helper for releasing extent buffer page.
3584  */
3585 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3586 						unsigned long start_idx)
3587 {
3588 	unsigned long index;
3589 	struct page *page;
3590 
3591 	if (!eb->first_page)
3592 		return;
3593 
3594 	index = num_extent_pages(eb->start, eb->len);
3595 	if (start_idx >= index)
3596 		return;
3597 
3598 	do {
3599 		index--;
3600 		page = extent_buffer_page(eb, index);
3601 		if (page)
3602 			page_cache_release(page);
3603 	} while (index != start_idx);
3604 }
3605 
3606 /*
3607  * Helper for releasing the extent buffer.
3608  */
3609 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3610 {
3611 	btrfs_release_extent_buffer_page(eb, 0);
3612 	__free_extent_buffer(eb);
3613 }
3614 
3615 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3616 					  u64 start, unsigned long len,
3617 					  struct page *page0)
3618 {
3619 	unsigned long num_pages = num_extent_pages(start, len);
3620 	unsigned long i;
3621 	unsigned long index = start >> PAGE_CACHE_SHIFT;
3622 	struct extent_buffer *eb;
3623 	struct extent_buffer *exists = NULL;
3624 	struct page *p;
3625 	struct address_space *mapping = tree->mapping;
3626 	int uptodate = 1;
3627 	int ret;
3628 
3629 	rcu_read_lock();
3630 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3631 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3632 		rcu_read_unlock();
3633 		mark_page_accessed(eb->first_page);
3634 		return eb;
3635 	}
3636 	rcu_read_unlock();
3637 
3638 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3639 	if (!eb)
3640 		return NULL;
3641 
3642 	if (page0) {
3643 		eb->first_page = page0;
3644 		i = 1;
3645 		index++;
3646 		page_cache_get(page0);
3647 		mark_page_accessed(page0);
3648 		set_page_extent_mapped(page0);
3649 		set_page_extent_head(page0, len);
3650 		uptodate = PageUptodate(page0);
3651 	} else {
3652 		i = 0;
3653 	}
3654 	for (; i < num_pages; i++, index++) {
3655 		p = find_or_create_page(mapping, index, GFP_NOFS);
3656 		if (!p) {
3657 			WARN_ON(1);
3658 			goto free_eb;
3659 		}
3660 		set_page_extent_mapped(p);
3661 		mark_page_accessed(p);
3662 		if (i == 0) {
3663 			eb->first_page = p;
3664 			set_page_extent_head(p, len);
3665 		} else {
3666 			set_page_private(p, EXTENT_PAGE_PRIVATE);
3667 		}
3668 		if (!PageUptodate(p))
3669 			uptodate = 0;
3670 
3671 		/*
3672 		 * see below about how we avoid a nasty race with release page
3673 		 * and why we unlock later
3674 		 */
3675 		if (i != 0)
3676 			unlock_page(p);
3677 	}
3678 	if (uptodate)
3679 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3680 
3681 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3682 	if (ret)
3683 		goto free_eb;
3684 
3685 	spin_lock(&tree->buffer_lock);
3686 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3687 	if (ret == -EEXIST) {
3688 		exists = radix_tree_lookup(&tree->buffer,
3689 						start >> PAGE_CACHE_SHIFT);
3690 		/* add one reference for the caller */
3691 		atomic_inc(&exists->refs);
3692 		spin_unlock(&tree->buffer_lock);
3693 		radix_tree_preload_end();
3694 		goto free_eb;
3695 	}
3696 	/* add one reference for the tree */
3697 	atomic_inc(&eb->refs);
3698 	spin_unlock(&tree->buffer_lock);
3699 	radix_tree_preload_end();
3700 
3701 	/*
3702 	 * there is a race where release page may have
3703 	 * tried to find this extent buffer in the radix
3704 	 * but failed.  It will tell the VM it is safe to
3705 	 * reclaim the, and it will clear the page private bit.
3706 	 * We must make sure to set the page private bit properly
3707 	 * after the extent buffer is in the radix tree so
3708 	 * it doesn't get lost
3709 	 */
3710 	set_page_extent_mapped(eb->first_page);
3711 	set_page_extent_head(eb->first_page, eb->len);
3712 	if (!page0)
3713 		unlock_page(eb->first_page);
3714 	return eb;
3715 
3716 free_eb:
3717 	if (eb->first_page && !page0)
3718 		unlock_page(eb->first_page);
3719 
3720 	if (!atomic_dec_and_test(&eb->refs))
3721 		return exists;
3722 	btrfs_release_extent_buffer(eb);
3723 	return exists;
3724 }
3725 
3726 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3727 					 u64 start, unsigned long len)
3728 {
3729 	struct extent_buffer *eb;
3730 
3731 	rcu_read_lock();
3732 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3733 	if (eb && atomic_inc_not_zero(&eb->refs)) {
3734 		rcu_read_unlock();
3735 		mark_page_accessed(eb->first_page);
3736 		return eb;
3737 	}
3738 	rcu_read_unlock();
3739 
3740 	return NULL;
3741 }
3742 
3743 void free_extent_buffer(struct extent_buffer *eb)
3744 {
3745 	if (!eb)
3746 		return;
3747 
3748 	if (!atomic_dec_and_test(&eb->refs))
3749 		return;
3750 
3751 	WARN_ON(1);
3752 }
3753 
3754 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3755 			      struct extent_buffer *eb)
3756 {
3757 	unsigned long i;
3758 	unsigned long num_pages;
3759 	struct page *page;
3760 
3761 	num_pages = num_extent_pages(eb->start, eb->len);
3762 
3763 	for (i = 0; i < num_pages; i++) {
3764 		page = extent_buffer_page(eb, i);
3765 		if (!PageDirty(page))
3766 			continue;
3767 
3768 		lock_page(page);
3769 		WARN_ON(!PagePrivate(page));
3770 
3771 		set_page_extent_mapped(page);
3772 		if (i == 0)
3773 			set_page_extent_head(page, eb->len);
3774 
3775 		clear_page_dirty_for_io(page);
3776 		spin_lock_irq(&page->mapping->tree_lock);
3777 		if (!PageDirty(page)) {
3778 			radix_tree_tag_clear(&page->mapping->page_tree,
3779 						page_index(page),
3780 						PAGECACHE_TAG_DIRTY);
3781 		}
3782 		spin_unlock_irq(&page->mapping->tree_lock);
3783 		ClearPageError(page);
3784 		unlock_page(page);
3785 	}
3786 	return 0;
3787 }
3788 
3789 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3790 			     struct extent_buffer *eb)
3791 {
3792 	unsigned long i;
3793 	unsigned long num_pages;
3794 	int was_dirty = 0;
3795 
3796 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3797 	num_pages = num_extent_pages(eb->start, eb->len);
3798 	for (i = 0; i < num_pages; i++)
3799 		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3800 	return was_dirty;
3801 }
3802 
3803 static int __eb_straddles_pages(u64 start, u64 len)
3804 {
3805 	if (len < PAGE_CACHE_SIZE)
3806 		return 1;
3807 	if (start & (PAGE_CACHE_SIZE - 1))
3808 		return 1;
3809 	if ((start + len) & (PAGE_CACHE_SIZE - 1))
3810 		return 1;
3811 	return 0;
3812 }
3813 
3814 static int eb_straddles_pages(struct extent_buffer *eb)
3815 {
3816 	return __eb_straddles_pages(eb->start, eb->len);
3817 }
3818 
3819 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3820 				struct extent_buffer *eb,
3821 				struct extent_state **cached_state)
3822 {
3823 	unsigned long i;
3824 	struct page *page;
3825 	unsigned long num_pages;
3826 
3827 	num_pages = num_extent_pages(eb->start, eb->len);
3828 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3829 
3830 	if (eb_straddles_pages(eb)) {
3831 		clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3832 				      cached_state, GFP_NOFS);
3833 	}
3834 	for (i = 0; i < num_pages; i++) {
3835 		page = extent_buffer_page(eb, i);
3836 		if (page)
3837 			ClearPageUptodate(page);
3838 	}
3839 	return 0;
3840 }
3841 
3842 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3843 				struct extent_buffer *eb)
3844 {
3845 	unsigned long i;
3846 	struct page *page;
3847 	unsigned long num_pages;
3848 
3849 	num_pages = num_extent_pages(eb->start, eb->len);
3850 
3851 	if (eb_straddles_pages(eb)) {
3852 		set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3853 				    NULL, GFP_NOFS);
3854 	}
3855 	for (i = 0; i < num_pages; i++) {
3856 		page = extent_buffer_page(eb, i);
3857 		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3858 		    ((i == num_pages - 1) &&
3859 		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3860 			check_page_uptodate(tree, page);
3861 			continue;
3862 		}
3863 		SetPageUptodate(page);
3864 	}
3865 	return 0;
3866 }
3867 
3868 int extent_range_uptodate(struct extent_io_tree *tree,
3869 			  u64 start, u64 end)
3870 {
3871 	struct page *page;
3872 	int ret;
3873 	int pg_uptodate = 1;
3874 	int uptodate;
3875 	unsigned long index;
3876 
3877 	if (__eb_straddles_pages(start, end - start + 1)) {
3878 		ret = test_range_bit(tree, start, end,
3879 				     EXTENT_UPTODATE, 1, NULL);
3880 		if (ret)
3881 			return 1;
3882 	}
3883 	while (start <= end) {
3884 		index = start >> PAGE_CACHE_SHIFT;
3885 		page = find_get_page(tree->mapping, index);
3886 		uptodate = PageUptodate(page);
3887 		page_cache_release(page);
3888 		if (!uptodate) {
3889 			pg_uptodate = 0;
3890 			break;
3891 		}
3892 		start += PAGE_CACHE_SIZE;
3893 	}
3894 	return pg_uptodate;
3895 }
3896 
3897 int extent_buffer_uptodate(struct extent_io_tree *tree,
3898 			   struct extent_buffer *eb,
3899 			   struct extent_state *cached_state)
3900 {
3901 	int ret = 0;
3902 	unsigned long num_pages;
3903 	unsigned long i;
3904 	struct page *page;
3905 	int pg_uptodate = 1;
3906 
3907 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3908 		return 1;
3909 
3910 	if (eb_straddles_pages(eb)) {
3911 		ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3912 				   EXTENT_UPTODATE, 1, cached_state);
3913 		if (ret)
3914 			return ret;
3915 	}
3916 
3917 	num_pages = num_extent_pages(eb->start, eb->len);
3918 	for (i = 0; i < num_pages; i++) {
3919 		page = extent_buffer_page(eb, i);
3920 		if (!PageUptodate(page)) {
3921 			pg_uptodate = 0;
3922 			break;
3923 		}
3924 	}
3925 	return pg_uptodate;
3926 }
3927 
3928 int read_extent_buffer_pages(struct extent_io_tree *tree,
3929 			     struct extent_buffer *eb, u64 start, int wait,
3930 			     get_extent_t *get_extent, int mirror_num)
3931 {
3932 	unsigned long i;
3933 	unsigned long start_i;
3934 	struct page *page;
3935 	int err;
3936 	int ret = 0;
3937 	int locked_pages = 0;
3938 	int all_uptodate = 1;
3939 	int inc_all_pages = 0;
3940 	unsigned long num_pages;
3941 	struct bio *bio = NULL;
3942 	unsigned long bio_flags = 0;
3943 
3944 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3945 		return 0;
3946 
3947 	if (eb_straddles_pages(eb)) {
3948 		if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3949 				   EXTENT_UPTODATE, 1, NULL)) {
3950 			return 0;
3951 		}
3952 	}
3953 
3954 	if (start) {
3955 		WARN_ON(start < eb->start);
3956 		start_i = (start >> PAGE_CACHE_SHIFT) -
3957 			(eb->start >> PAGE_CACHE_SHIFT);
3958 	} else {
3959 		start_i = 0;
3960 	}
3961 
3962 	num_pages = num_extent_pages(eb->start, eb->len);
3963 	for (i = start_i; i < num_pages; i++) {
3964 		page = extent_buffer_page(eb, i);
3965 		if (wait == WAIT_NONE) {
3966 			if (!trylock_page(page))
3967 				goto unlock_exit;
3968 		} else {
3969 			lock_page(page);
3970 		}
3971 		locked_pages++;
3972 		if (!PageUptodate(page))
3973 			all_uptodate = 0;
3974 	}
3975 	if (all_uptodate) {
3976 		if (start_i == 0)
3977 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3978 		goto unlock_exit;
3979 	}
3980 
3981 	for (i = start_i; i < num_pages; i++) {
3982 		page = extent_buffer_page(eb, i);
3983 
3984 		WARN_ON(!PagePrivate(page));
3985 
3986 		set_page_extent_mapped(page);
3987 		if (i == 0)
3988 			set_page_extent_head(page, eb->len);
3989 
3990 		if (inc_all_pages)
3991 			page_cache_get(page);
3992 		if (!PageUptodate(page)) {
3993 			if (start_i == 0)
3994 				inc_all_pages = 1;
3995 			ClearPageError(page);
3996 			err = __extent_read_full_page(tree, page,
3997 						      get_extent, &bio,
3998 						      mirror_num, &bio_flags);
3999 			if (err)
4000 				ret = err;
4001 		} else {
4002 			unlock_page(page);
4003 		}
4004 	}
4005 
4006 	if (bio)
4007 		submit_one_bio(READ, bio, mirror_num, bio_flags);
4008 
4009 	if (ret || wait != WAIT_COMPLETE)
4010 		return ret;
4011 
4012 	for (i = start_i; i < num_pages; i++) {
4013 		page = extent_buffer_page(eb, i);
4014 		wait_on_page_locked(page);
4015 		if (!PageUptodate(page))
4016 			ret = -EIO;
4017 	}
4018 
4019 	if (!ret)
4020 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4021 	return ret;
4022 
4023 unlock_exit:
4024 	i = start_i;
4025 	while (locked_pages > 0) {
4026 		page = extent_buffer_page(eb, i);
4027 		i++;
4028 		unlock_page(page);
4029 		locked_pages--;
4030 	}
4031 	return ret;
4032 }
4033 
4034 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4035 			unsigned long start,
4036 			unsigned long len)
4037 {
4038 	size_t cur;
4039 	size_t offset;
4040 	struct page *page;
4041 	char *kaddr;
4042 	char *dst = (char *)dstv;
4043 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4044 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4045 
4046 	WARN_ON(start > eb->len);
4047 	WARN_ON(start + len > eb->start + eb->len);
4048 
4049 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4050 
4051 	while (len > 0) {
4052 		page = extent_buffer_page(eb, i);
4053 
4054 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4055 		kaddr = page_address(page);
4056 		memcpy(dst, kaddr + offset, cur);
4057 
4058 		dst += cur;
4059 		len -= cur;
4060 		offset = 0;
4061 		i++;
4062 	}
4063 }
4064 
4065 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4066 			       unsigned long min_len, char **map,
4067 			       unsigned long *map_start,
4068 			       unsigned long *map_len)
4069 {
4070 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4071 	char *kaddr;
4072 	struct page *p;
4073 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4074 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4075 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4076 		PAGE_CACHE_SHIFT;
4077 
4078 	if (i != end_i)
4079 		return -EINVAL;
4080 
4081 	if (i == 0) {
4082 		offset = start_offset;
4083 		*map_start = 0;
4084 	} else {
4085 		offset = 0;
4086 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4087 	}
4088 
4089 	if (start + min_len > eb->len) {
4090 		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4091 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4092 		       eb->len, start, min_len);
4093 		WARN_ON(1);
4094 		return -EINVAL;
4095 	}
4096 
4097 	p = extent_buffer_page(eb, i);
4098 	kaddr = page_address(p);
4099 	*map = kaddr + offset;
4100 	*map_len = PAGE_CACHE_SIZE - offset;
4101 	return 0;
4102 }
4103 
4104 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4105 			  unsigned long start,
4106 			  unsigned long len)
4107 {
4108 	size_t cur;
4109 	size_t offset;
4110 	struct page *page;
4111 	char *kaddr;
4112 	char *ptr = (char *)ptrv;
4113 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4114 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4115 	int ret = 0;
4116 
4117 	WARN_ON(start > eb->len);
4118 	WARN_ON(start + len > eb->start + eb->len);
4119 
4120 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4121 
4122 	while (len > 0) {
4123 		page = extent_buffer_page(eb, i);
4124 
4125 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4126 
4127 		kaddr = page_address(page);
4128 		ret = memcmp(ptr, kaddr + offset, cur);
4129 		if (ret)
4130 			break;
4131 
4132 		ptr += cur;
4133 		len -= cur;
4134 		offset = 0;
4135 		i++;
4136 	}
4137 	return ret;
4138 }
4139 
4140 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4141 			 unsigned long start, unsigned long len)
4142 {
4143 	size_t cur;
4144 	size_t offset;
4145 	struct page *page;
4146 	char *kaddr;
4147 	char *src = (char *)srcv;
4148 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4149 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4150 
4151 	WARN_ON(start > eb->len);
4152 	WARN_ON(start + len > eb->start + eb->len);
4153 
4154 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4155 
4156 	while (len > 0) {
4157 		page = extent_buffer_page(eb, i);
4158 		WARN_ON(!PageUptodate(page));
4159 
4160 		cur = min(len, PAGE_CACHE_SIZE - offset);
4161 		kaddr = page_address(page);
4162 		memcpy(kaddr + offset, src, cur);
4163 
4164 		src += cur;
4165 		len -= cur;
4166 		offset = 0;
4167 		i++;
4168 	}
4169 }
4170 
4171 void memset_extent_buffer(struct extent_buffer *eb, char c,
4172 			  unsigned long start, unsigned long len)
4173 {
4174 	size_t cur;
4175 	size_t offset;
4176 	struct page *page;
4177 	char *kaddr;
4178 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4179 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4180 
4181 	WARN_ON(start > eb->len);
4182 	WARN_ON(start + len > eb->start + eb->len);
4183 
4184 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4185 
4186 	while (len > 0) {
4187 		page = extent_buffer_page(eb, i);
4188 		WARN_ON(!PageUptodate(page));
4189 
4190 		cur = min(len, PAGE_CACHE_SIZE - offset);
4191 		kaddr = page_address(page);
4192 		memset(kaddr + offset, c, cur);
4193 
4194 		len -= cur;
4195 		offset = 0;
4196 		i++;
4197 	}
4198 }
4199 
4200 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4201 			unsigned long dst_offset, unsigned long src_offset,
4202 			unsigned long len)
4203 {
4204 	u64 dst_len = dst->len;
4205 	size_t cur;
4206 	size_t offset;
4207 	struct page *page;
4208 	char *kaddr;
4209 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4210 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4211 
4212 	WARN_ON(src->len != dst_len);
4213 
4214 	offset = (start_offset + dst_offset) &
4215 		((unsigned long)PAGE_CACHE_SIZE - 1);
4216 
4217 	while (len > 0) {
4218 		page = extent_buffer_page(dst, i);
4219 		WARN_ON(!PageUptodate(page));
4220 
4221 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4222 
4223 		kaddr = page_address(page);
4224 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4225 
4226 		src_offset += cur;
4227 		len -= cur;
4228 		offset = 0;
4229 		i++;
4230 	}
4231 }
4232 
4233 static void move_pages(struct page *dst_page, struct page *src_page,
4234 		       unsigned long dst_off, unsigned long src_off,
4235 		       unsigned long len)
4236 {
4237 	char *dst_kaddr = page_address(dst_page);
4238 	if (dst_page == src_page) {
4239 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4240 	} else {
4241 		char *src_kaddr = page_address(src_page);
4242 		char *p = dst_kaddr + dst_off + len;
4243 		char *s = src_kaddr + src_off + len;
4244 
4245 		while (len--)
4246 			*--p = *--s;
4247 	}
4248 }
4249 
4250 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4251 {
4252 	unsigned long distance = (src > dst) ? src - dst : dst - src;
4253 	return distance < len;
4254 }
4255 
4256 static void copy_pages(struct page *dst_page, struct page *src_page,
4257 		       unsigned long dst_off, unsigned long src_off,
4258 		       unsigned long len)
4259 {
4260 	char *dst_kaddr = page_address(dst_page);
4261 	char *src_kaddr;
4262 
4263 	if (dst_page != src_page) {
4264 		src_kaddr = page_address(src_page);
4265 	} else {
4266 		src_kaddr = dst_kaddr;
4267 		BUG_ON(areas_overlap(src_off, dst_off, len));
4268 	}
4269 
4270 	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4271 }
4272 
4273 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4274 			   unsigned long src_offset, unsigned long len)
4275 {
4276 	size_t cur;
4277 	size_t dst_off_in_page;
4278 	size_t src_off_in_page;
4279 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4280 	unsigned long dst_i;
4281 	unsigned long src_i;
4282 
4283 	if (src_offset + len > dst->len) {
4284 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4285 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
4286 		BUG_ON(1);
4287 	}
4288 	if (dst_offset + len > dst->len) {
4289 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4290 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4291 		BUG_ON(1);
4292 	}
4293 
4294 	while (len > 0) {
4295 		dst_off_in_page = (start_offset + dst_offset) &
4296 			((unsigned long)PAGE_CACHE_SIZE - 1);
4297 		src_off_in_page = (start_offset + src_offset) &
4298 			((unsigned long)PAGE_CACHE_SIZE - 1);
4299 
4300 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4301 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4302 
4303 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4304 					       src_off_in_page));
4305 		cur = min_t(unsigned long, cur,
4306 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4307 
4308 		copy_pages(extent_buffer_page(dst, dst_i),
4309 			   extent_buffer_page(dst, src_i),
4310 			   dst_off_in_page, src_off_in_page, cur);
4311 
4312 		src_offset += cur;
4313 		dst_offset += cur;
4314 		len -= cur;
4315 	}
4316 }
4317 
4318 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4319 			   unsigned long src_offset, unsigned long len)
4320 {
4321 	size_t cur;
4322 	size_t dst_off_in_page;
4323 	size_t src_off_in_page;
4324 	unsigned long dst_end = dst_offset + len - 1;
4325 	unsigned long src_end = src_offset + len - 1;
4326 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4327 	unsigned long dst_i;
4328 	unsigned long src_i;
4329 
4330 	if (src_offset + len > dst->len) {
4331 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4332 		       "len %lu len %lu\n", src_offset, len, dst->len);
4333 		BUG_ON(1);
4334 	}
4335 	if (dst_offset + len > dst->len) {
4336 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4337 		       "len %lu len %lu\n", dst_offset, len, dst->len);
4338 		BUG_ON(1);
4339 	}
4340 	if (!areas_overlap(src_offset, dst_offset, len)) {
4341 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4342 		return;
4343 	}
4344 	while (len > 0) {
4345 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4346 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4347 
4348 		dst_off_in_page = (start_offset + dst_end) &
4349 			((unsigned long)PAGE_CACHE_SIZE - 1);
4350 		src_off_in_page = (start_offset + src_end) &
4351 			((unsigned long)PAGE_CACHE_SIZE - 1);
4352 
4353 		cur = min_t(unsigned long, len, src_off_in_page + 1);
4354 		cur = min(cur, dst_off_in_page + 1);
4355 		move_pages(extent_buffer_page(dst, dst_i),
4356 			   extent_buffer_page(dst, src_i),
4357 			   dst_off_in_page - cur + 1,
4358 			   src_off_in_page - cur + 1, cur);
4359 
4360 		dst_end -= cur;
4361 		src_end -= cur;
4362 		len -= cur;
4363 	}
4364 }
4365 
4366 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4367 {
4368 	struct extent_buffer *eb =
4369 			container_of(head, struct extent_buffer, rcu_head);
4370 
4371 	btrfs_release_extent_buffer(eb);
4372 }
4373 
4374 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4375 {
4376 	u64 start = page_offset(page);
4377 	struct extent_buffer *eb;
4378 	int ret = 1;
4379 
4380 	spin_lock(&tree->buffer_lock);
4381 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4382 	if (!eb) {
4383 		spin_unlock(&tree->buffer_lock);
4384 		return ret;
4385 	}
4386 
4387 	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4388 		ret = 0;
4389 		goto out;
4390 	}
4391 
4392 	/*
4393 	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4394 	 * Or go back.
4395 	 */
4396 	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4397 		ret = 0;
4398 		goto out;
4399 	}
4400 
4401 	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4402 out:
4403 	spin_unlock(&tree->buffer_lock);
4404 
4405 	/* at this point we can safely release the extent buffer */
4406 	if (atomic_read(&eb->refs) == 0)
4407 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4408 	return ret;
4409 }
4410