xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 110e6f26)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	kmem_cache_destroy(extent_state_cache);
210 	kmem_cache_destroy(extent_buffer_cache);
211 	if (btrfs_bioset)
212 		bioset_free(btrfs_bioset);
213 }
214 
215 void extent_io_tree_init(struct extent_io_tree *tree,
216 			 struct address_space *mapping)
217 {
218 	tree->state = RB_ROOT;
219 	tree->ops = NULL;
220 	tree->dirty_bytes = 0;
221 	spin_lock_init(&tree->lock);
222 	tree->mapping = mapping;
223 }
224 
225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 	struct extent_state *state;
228 
229 	state = kmem_cache_alloc(extent_state_cache, mask);
230 	if (!state)
231 		return state;
232 	state->state = 0;
233 	state->failrec = NULL;
234 	RB_CLEAR_NODE(&state->rb_node);
235 	btrfs_leak_debug_add(&state->leak_list, &states);
236 	atomic_set(&state->refs, 1);
237 	init_waitqueue_head(&state->wq);
238 	trace_alloc_extent_state(state, mask, _RET_IP_);
239 	return state;
240 }
241 
242 void free_extent_state(struct extent_state *state)
243 {
244 	if (!state)
245 		return;
246 	if (atomic_dec_and_test(&state->refs)) {
247 		WARN_ON(extent_state_in_tree(state));
248 		btrfs_leak_debug_del(&state->leak_list);
249 		trace_free_extent_state(state, _RET_IP_);
250 		kmem_cache_free(extent_state_cache, state);
251 	}
252 }
253 
254 static struct rb_node *tree_insert(struct rb_root *root,
255 				   struct rb_node *search_start,
256 				   u64 offset,
257 				   struct rb_node *node,
258 				   struct rb_node ***p_in,
259 				   struct rb_node **parent_in)
260 {
261 	struct rb_node **p;
262 	struct rb_node *parent = NULL;
263 	struct tree_entry *entry;
264 
265 	if (p_in && parent_in) {
266 		p = *p_in;
267 		parent = *parent_in;
268 		goto do_insert;
269 	}
270 
271 	p = search_start ? &search_start : &root->rb_node;
272 	while (*p) {
273 		parent = *p;
274 		entry = rb_entry(parent, struct tree_entry, rb_node);
275 
276 		if (offset < entry->start)
277 			p = &(*p)->rb_left;
278 		else if (offset > entry->end)
279 			p = &(*p)->rb_right;
280 		else
281 			return parent;
282 	}
283 
284 do_insert:
285 	rb_link_node(node, parent, p);
286 	rb_insert_color(node, root);
287 	return NULL;
288 }
289 
290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 				      struct rb_node **prev_ret,
292 				      struct rb_node **next_ret,
293 				      struct rb_node ***p_ret,
294 				      struct rb_node **parent_ret)
295 {
296 	struct rb_root *root = &tree->state;
297 	struct rb_node **n = &root->rb_node;
298 	struct rb_node *prev = NULL;
299 	struct rb_node *orig_prev = NULL;
300 	struct tree_entry *entry;
301 	struct tree_entry *prev_entry = NULL;
302 
303 	while (*n) {
304 		prev = *n;
305 		entry = rb_entry(prev, struct tree_entry, rb_node);
306 		prev_entry = entry;
307 
308 		if (offset < entry->start)
309 			n = &(*n)->rb_left;
310 		else if (offset > entry->end)
311 			n = &(*n)->rb_right;
312 		else
313 			return *n;
314 	}
315 
316 	if (p_ret)
317 		*p_ret = n;
318 	if (parent_ret)
319 		*parent_ret = prev;
320 
321 	if (prev_ret) {
322 		orig_prev = prev;
323 		while (prev && offset > prev_entry->end) {
324 			prev = rb_next(prev);
325 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 		}
327 		*prev_ret = prev;
328 		prev = orig_prev;
329 	}
330 
331 	if (next_ret) {
332 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 		while (prev && offset < prev_entry->start) {
334 			prev = rb_prev(prev);
335 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 		}
337 		*next_ret = prev;
338 	}
339 	return NULL;
340 }
341 
342 static inline struct rb_node *
343 tree_search_for_insert(struct extent_io_tree *tree,
344 		       u64 offset,
345 		       struct rb_node ***p_ret,
346 		       struct rb_node **parent_ret)
347 {
348 	struct rb_node *prev = NULL;
349 	struct rb_node *ret;
350 
351 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 	if (!ret)
353 		return prev;
354 	return ret;
355 }
356 
357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 					  u64 offset)
359 {
360 	return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362 
363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 		     struct extent_state *other)
365 {
366 	if (tree->ops && tree->ops->merge_extent_hook)
367 		tree->ops->merge_extent_hook(tree->mapping->host, new,
368 					     other);
369 }
370 
371 /*
372  * utility function to look for merge candidates inside a given range.
373  * Any extents with matching state are merged together into a single
374  * extent in the tree.  Extents with EXTENT_IO in their state field
375  * are not merged because the end_io handlers need to be able to do
376  * operations on them without sleeping (or doing allocations/splits).
377  *
378  * This should be called with the tree lock held.
379  */
380 static void merge_state(struct extent_io_tree *tree,
381 		        struct extent_state *state)
382 {
383 	struct extent_state *other;
384 	struct rb_node *other_node;
385 
386 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 		return;
388 
389 	other_node = rb_prev(&state->rb_node);
390 	if (other_node) {
391 		other = rb_entry(other_node, struct extent_state, rb_node);
392 		if (other->end == state->start - 1 &&
393 		    other->state == state->state) {
394 			merge_cb(tree, state, other);
395 			state->start = other->start;
396 			rb_erase(&other->rb_node, &tree->state);
397 			RB_CLEAR_NODE(&other->rb_node);
398 			free_extent_state(other);
399 		}
400 	}
401 	other_node = rb_next(&state->rb_node);
402 	if (other_node) {
403 		other = rb_entry(other_node, struct extent_state, rb_node);
404 		if (other->start == state->end + 1 &&
405 		    other->state == state->state) {
406 			merge_cb(tree, state, other);
407 			state->end = other->end;
408 			rb_erase(&other->rb_node, &tree->state);
409 			RB_CLEAR_NODE(&other->rb_node);
410 			free_extent_state(other);
411 		}
412 	}
413 }
414 
415 static void set_state_cb(struct extent_io_tree *tree,
416 			 struct extent_state *state, unsigned *bits)
417 {
418 	if (tree->ops && tree->ops->set_bit_hook)
419 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421 
422 static void clear_state_cb(struct extent_io_tree *tree,
423 			   struct extent_state *state, unsigned *bits)
424 {
425 	if (tree->ops && tree->ops->clear_bit_hook)
426 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428 
429 static void set_state_bits(struct extent_io_tree *tree,
430 			   struct extent_state *state, unsigned *bits,
431 			   struct extent_changeset *changeset);
432 
433 /*
434  * insert an extent_state struct into the tree.  'bits' are set on the
435  * struct before it is inserted.
436  *
437  * This may return -EEXIST if the extent is already there, in which case the
438  * state struct is freed.
439  *
440  * The tree lock is not taken internally.  This is a utility function and
441  * probably isn't what you want to call (see set/clear_extent_bit).
442  */
443 static int insert_state(struct extent_io_tree *tree,
444 			struct extent_state *state, u64 start, u64 end,
445 			struct rb_node ***p,
446 			struct rb_node **parent,
447 			unsigned *bits, struct extent_changeset *changeset)
448 {
449 	struct rb_node *node;
450 
451 	if (end < start)
452 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 		       end, start);
454 	state->start = start;
455 	state->end = end;
456 
457 	set_state_bits(tree, state, bits, changeset);
458 
459 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 	if (node) {
461 		struct extent_state *found;
462 		found = rb_entry(node, struct extent_state, rb_node);
463 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
464 		       "%llu %llu\n",
465 		       found->start, found->end, start, end);
466 		return -EEXIST;
467 	}
468 	merge_state(tree, state);
469 	return 0;
470 }
471 
472 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
473 		     u64 split)
474 {
475 	if (tree->ops && tree->ops->split_extent_hook)
476 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
477 }
478 
479 /*
480  * split a given extent state struct in two, inserting the preallocated
481  * struct 'prealloc' as the newly created second half.  'split' indicates an
482  * offset inside 'orig' where it should be split.
483  *
484  * Before calling,
485  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
486  * are two extent state structs in the tree:
487  * prealloc: [orig->start, split - 1]
488  * orig: [ split, orig->end ]
489  *
490  * The tree locks are not taken by this function. They need to be held
491  * by the caller.
492  */
493 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 		       struct extent_state *prealloc, u64 split)
495 {
496 	struct rb_node *node;
497 
498 	split_cb(tree, orig, split);
499 
500 	prealloc->start = orig->start;
501 	prealloc->end = split - 1;
502 	prealloc->state = orig->state;
503 	orig->start = split;
504 
505 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 			   &prealloc->rb_node, NULL, NULL);
507 	if (node) {
508 		free_extent_state(prealloc);
509 		return -EEXIST;
510 	}
511 	return 0;
512 }
513 
514 static struct extent_state *next_state(struct extent_state *state)
515 {
516 	struct rb_node *next = rb_next(&state->rb_node);
517 	if (next)
518 		return rb_entry(next, struct extent_state, rb_node);
519 	else
520 		return NULL;
521 }
522 
523 /*
524  * utility function to clear some bits in an extent state struct.
525  * it will optionally wake up any one waiting on this state (wake == 1).
526  *
527  * If no bits are set on the state struct after clearing things, the
528  * struct is freed and removed from the tree
529  */
530 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 					    struct extent_state *state,
532 					    unsigned *bits, int wake,
533 					    struct extent_changeset *changeset)
534 {
535 	struct extent_state *next;
536 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
537 
538 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
539 		u64 range = state->end - state->start + 1;
540 		WARN_ON(range > tree->dirty_bytes);
541 		tree->dirty_bytes -= range;
542 	}
543 	clear_state_cb(tree, state, bits);
544 	add_extent_changeset(state, bits_to_clear, changeset, 0);
545 	state->state &= ~bits_to_clear;
546 	if (wake)
547 		wake_up(&state->wq);
548 	if (state->state == 0) {
549 		next = next_state(state);
550 		if (extent_state_in_tree(state)) {
551 			rb_erase(&state->rb_node, &tree->state);
552 			RB_CLEAR_NODE(&state->rb_node);
553 			free_extent_state(state);
554 		} else {
555 			WARN_ON(1);
556 		}
557 	} else {
558 		merge_state(tree, state);
559 		next = next_state(state);
560 	}
561 	return next;
562 }
563 
564 static struct extent_state *
565 alloc_extent_state_atomic(struct extent_state *prealloc)
566 {
567 	if (!prealloc)
568 		prealloc = alloc_extent_state(GFP_ATOMIC);
569 
570 	return prealloc;
571 }
572 
573 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
574 {
575 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 		    "Extent tree was modified by another "
577 		    "thread while locked.");
578 }
579 
580 /*
581  * clear some bits on a range in the tree.  This may require splitting
582  * or inserting elements in the tree, so the gfp mask is used to
583  * indicate which allocations or sleeping are allowed.
584  *
585  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586  * the given range from the tree regardless of state (ie for truncate).
587  *
588  * the range [start, end] is inclusive.
589  *
590  * This takes the tree lock, and returns 0 on success and < 0 on error.
591  */
592 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 			      unsigned bits, int wake, int delete,
594 			      struct extent_state **cached_state,
595 			      gfp_t mask, struct extent_changeset *changeset)
596 {
597 	struct extent_state *state;
598 	struct extent_state *cached;
599 	struct extent_state *prealloc = NULL;
600 	struct rb_node *node;
601 	u64 last_end;
602 	int err;
603 	int clear = 0;
604 
605 	btrfs_debug_check_extent_io_range(tree, start, end);
606 
607 	if (bits & EXTENT_DELALLOC)
608 		bits |= EXTENT_NORESERVE;
609 
610 	if (delete)
611 		bits |= ~EXTENT_CTLBITS;
612 	bits |= EXTENT_FIRST_DELALLOC;
613 
614 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 		clear = 1;
616 again:
617 	if (!prealloc && gfpflags_allow_blocking(mask)) {
618 		/*
619 		 * Don't care for allocation failure here because we might end
620 		 * up not needing the pre-allocated extent state at all, which
621 		 * is the case if we only have in the tree extent states that
622 		 * cover our input range and don't cover too any other range.
623 		 * If we end up needing a new extent state we allocate it later.
624 		 */
625 		prealloc = alloc_extent_state(mask);
626 	}
627 
628 	spin_lock(&tree->lock);
629 	if (cached_state) {
630 		cached = *cached_state;
631 
632 		if (clear) {
633 			*cached_state = NULL;
634 			cached_state = NULL;
635 		}
636 
637 		if (cached && extent_state_in_tree(cached) &&
638 		    cached->start <= start && cached->end > start) {
639 			if (clear)
640 				atomic_dec(&cached->refs);
641 			state = cached;
642 			goto hit_next;
643 		}
644 		if (clear)
645 			free_extent_state(cached);
646 	}
647 	/*
648 	 * this search will find the extents that end after
649 	 * our range starts
650 	 */
651 	node = tree_search(tree, start);
652 	if (!node)
653 		goto out;
654 	state = rb_entry(node, struct extent_state, rb_node);
655 hit_next:
656 	if (state->start > end)
657 		goto out;
658 	WARN_ON(state->end < start);
659 	last_end = state->end;
660 
661 	/* the state doesn't have the wanted bits, go ahead */
662 	if (!(state->state & bits)) {
663 		state = next_state(state);
664 		goto next;
665 	}
666 
667 	/*
668 	 *     | ---- desired range ---- |
669 	 *  | state | or
670 	 *  | ------------- state -------------- |
671 	 *
672 	 * We need to split the extent we found, and may flip
673 	 * bits on second half.
674 	 *
675 	 * If the extent we found extends past our range, we
676 	 * just split and search again.  It'll get split again
677 	 * the next time though.
678 	 *
679 	 * If the extent we found is inside our range, we clear
680 	 * the desired bit on it.
681 	 */
682 
683 	if (state->start < start) {
684 		prealloc = alloc_extent_state_atomic(prealloc);
685 		BUG_ON(!prealloc);
686 		err = split_state(tree, state, prealloc, start);
687 		if (err)
688 			extent_io_tree_panic(tree, err);
689 
690 		prealloc = NULL;
691 		if (err)
692 			goto out;
693 		if (state->end <= end) {
694 			state = clear_state_bit(tree, state, &bits, wake,
695 						changeset);
696 			goto next;
697 		}
698 		goto search_again;
699 	}
700 	/*
701 	 * | ---- desired range ---- |
702 	 *                        | state |
703 	 * We need to split the extent, and clear the bit
704 	 * on the first half
705 	 */
706 	if (state->start <= end && state->end > end) {
707 		prealloc = alloc_extent_state_atomic(prealloc);
708 		BUG_ON(!prealloc);
709 		err = split_state(tree, state, prealloc, end + 1);
710 		if (err)
711 			extent_io_tree_panic(tree, err);
712 
713 		if (wake)
714 			wake_up(&state->wq);
715 
716 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
717 
718 		prealloc = NULL;
719 		goto out;
720 	}
721 
722 	state = clear_state_bit(tree, state, &bits, wake, changeset);
723 next:
724 	if (last_end == (u64)-1)
725 		goto out;
726 	start = last_end + 1;
727 	if (start <= end && state && !need_resched())
728 		goto hit_next;
729 	goto search_again;
730 
731 out:
732 	spin_unlock(&tree->lock);
733 	if (prealloc)
734 		free_extent_state(prealloc);
735 
736 	return 0;
737 
738 search_again:
739 	if (start > end)
740 		goto out;
741 	spin_unlock(&tree->lock);
742 	if (gfpflags_allow_blocking(mask))
743 		cond_resched();
744 	goto again;
745 }
746 
747 static void wait_on_state(struct extent_io_tree *tree,
748 			  struct extent_state *state)
749 		__releases(tree->lock)
750 		__acquires(tree->lock)
751 {
752 	DEFINE_WAIT(wait);
753 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
754 	spin_unlock(&tree->lock);
755 	schedule();
756 	spin_lock(&tree->lock);
757 	finish_wait(&state->wq, &wait);
758 }
759 
760 /*
761  * waits for one or more bits to clear on a range in the state tree.
762  * The range [start, end] is inclusive.
763  * The tree lock is taken by this function
764  */
765 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 			    unsigned long bits)
767 {
768 	struct extent_state *state;
769 	struct rb_node *node;
770 
771 	btrfs_debug_check_extent_io_range(tree, start, end);
772 
773 	spin_lock(&tree->lock);
774 again:
775 	while (1) {
776 		/*
777 		 * this search will find all the extents that end after
778 		 * our range starts
779 		 */
780 		node = tree_search(tree, start);
781 process_node:
782 		if (!node)
783 			break;
784 
785 		state = rb_entry(node, struct extent_state, rb_node);
786 
787 		if (state->start > end)
788 			goto out;
789 
790 		if (state->state & bits) {
791 			start = state->start;
792 			atomic_inc(&state->refs);
793 			wait_on_state(tree, state);
794 			free_extent_state(state);
795 			goto again;
796 		}
797 		start = state->end + 1;
798 
799 		if (start > end)
800 			break;
801 
802 		if (!cond_resched_lock(&tree->lock)) {
803 			node = rb_next(node);
804 			goto process_node;
805 		}
806 	}
807 out:
808 	spin_unlock(&tree->lock);
809 }
810 
811 static void set_state_bits(struct extent_io_tree *tree,
812 			   struct extent_state *state,
813 			   unsigned *bits, struct extent_changeset *changeset)
814 {
815 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
816 
817 	set_state_cb(tree, state, bits);
818 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
819 		u64 range = state->end - state->start + 1;
820 		tree->dirty_bytes += range;
821 	}
822 	add_extent_changeset(state, bits_to_set, changeset, 1);
823 	state->state |= bits_to_set;
824 }
825 
826 static void cache_state_if_flags(struct extent_state *state,
827 				 struct extent_state **cached_ptr,
828 				 unsigned flags)
829 {
830 	if (cached_ptr && !(*cached_ptr)) {
831 		if (!flags || (state->state & flags)) {
832 			*cached_ptr = state;
833 			atomic_inc(&state->refs);
834 		}
835 	}
836 }
837 
838 static void cache_state(struct extent_state *state,
839 			struct extent_state **cached_ptr)
840 {
841 	return cache_state_if_flags(state, cached_ptr,
842 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
843 }
844 
845 /*
846  * set some bits on a range in the tree.  This may require allocations or
847  * sleeping, so the gfp mask is used to indicate what is allowed.
848  *
849  * If any of the exclusive bits are set, this will fail with -EEXIST if some
850  * part of the range already has the desired bits set.  The start of the
851  * existing range is returned in failed_start in this case.
852  *
853  * [start, end] is inclusive This takes the tree lock.
854  */
855 
856 static int __must_check
857 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
858 		 unsigned bits, unsigned exclusive_bits,
859 		 u64 *failed_start, struct extent_state **cached_state,
860 		 gfp_t mask, struct extent_changeset *changeset)
861 {
862 	struct extent_state *state;
863 	struct extent_state *prealloc = NULL;
864 	struct rb_node *node;
865 	struct rb_node **p;
866 	struct rb_node *parent;
867 	int err = 0;
868 	u64 last_start;
869 	u64 last_end;
870 
871 	btrfs_debug_check_extent_io_range(tree, start, end);
872 
873 	bits |= EXTENT_FIRST_DELALLOC;
874 again:
875 	if (!prealloc && gfpflags_allow_blocking(mask)) {
876 		prealloc = alloc_extent_state(mask);
877 		BUG_ON(!prealloc);
878 	}
879 
880 	spin_lock(&tree->lock);
881 	if (cached_state && *cached_state) {
882 		state = *cached_state;
883 		if (state->start <= start && state->end > start &&
884 		    extent_state_in_tree(state)) {
885 			node = &state->rb_node;
886 			goto hit_next;
887 		}
888 	}
889 	/*
890 	 * this search will find all the extents that end after
891 	 * our range starts.
892 	 */
893 	node = tree_search_for_insert(tree, start, &p, &parent);
894 	if (!node) {
895 		prealloc = alloc_extent_state_atomic(prealloc);
896 		BUG_ON(!prealloc);
897 		err = insert_state(tree, prealloc, start, end,
898 				   &p, &parent, &bits, changeset);
899 		if (err)
900 			extent_io_tree_panic(tree, err);
901 
902 		cache_state(prealloc, cached_state);
903 		prealloc = NULL;
904 		goto out;
905 	}
906 	state = rb_entry(node, struct extent_state, rb_node);
907 hit_next:
908 	last_start = state->start;
909 	last_end = state->end;
910 
911 	/*
912 	 * | ---- desired range ---- |
913 	 * | state |
914 	 *
915 	 * Just lock what we found and keep going
916 	 */
917 	if (state->start == start && state->end <= end) {
918 		if (state->state & exclusive_bits) {
919 			*failed_start = state->start;
920 			err = -EEXIST;
921 			goto out;
922 		}
923 
924 		set_state_bits(tree, state, &bits, changeset);
925 		cache_state(state, cached_state);
926 		merge_state(tree, state);
927 		if (last_end == (u64)-1)
928 			goto out;
929 		start = last_end + 1;
930 		state = next_state(state);
931 		if (start < end && state && state->start == start &&
932 		    !need_resched())
933 			goto hit_next;
934 		goto search_again;
935 	}
936 
937 	/*
938 	 *     | ---- desired range ---- |
939 	 * | state |
940 	 *   or
941 	 * | ------------- state -------------- |
942 	 *
943 	 * We need to split the extent we found, and may flip bits on
944 	 * second half.
945 	 *
946 	 * If the extent we found extends past our
947 	 * range, we just split and search again.  It'll get split
948 	 * again the next time though.
949 	 *
950 	 * If the extent we found is inside our range, we set the
951 	 * desired bit on it.
952 	 */
953 	if (state->start < start) {
954 		if (state->state & exclusive_bits) {
955 			*failed_start = start;
956 			err = -EEXIST;
957 			goto out;
958 		}
959 
960 		prealloc = alloc_extent_state_atomic(prealloc);
961 		BUG_ON(!prealloc);
962 		err = split_state(tree, state, prealloc, start);
963 		if (err)
964 			extent_io_tree_panic(tree, err);
965 
966 		prealloc = NULL;
967 		if (err)
968 			goto out;
969 		if (state->end <= end) {
970 			set_state_bits(tree, state, &bits, changeset);
971 			cache_state(state, cached_state);
972 			merge_state(tree, state);
973 			if (last_end == (u64)-1)
974 				goto out;
975 			start = last_end + 1;
976 			state = next_state(state);
977 			if (start < end && state && state->start == start &&
978 			    !need_resched())
979 				goto hit_next;
980 		}
981 		goto search_again;
982 	}
983 	/*
984 	 * | ---- desired range ---- |
985 	 *     | state | or               | state |
986 	 *
987 	 * There's a hole, we need to insert something in it and
988 	 * ignore the extent we found.
989 	 */
990 	if (state->start > start) {
991 		u64 this_end;
992 		if (end < last_start)
993 			this_end = end;
994 		else
995 			this_end = last_start - 1;
996 
997 		prealloc = alloc_extent_state_atomic(prealloc);
998 		BUG_ON(!prealloc);
999 
1000 		/*
1001 		 * Avoid to free 'prealloc' if it can be merged with
1002 		 * the later extent.
1003 		 */
1004 		err = insert_state(tree, prealloc, start, this_end,
1005 				   NULL, NULL, &bits, changeset);
1006 		if (err)
1007 			extent_io_tree_panic(tree, err);
1008 
1009 		cache_state(prealloc, cached_state);
1010 		prealloc = NULL;
1011 		start = this_end + 1;
1012 		goto search_again;
1013 	}
1014 	/*
1015 	 * | ---- desired range ---- |
1016 	 *                        | state |
1017 	 * We need to split the extent, and set the bit
1018 	 * on the first half
1019 	 */
1020 	if (state->start <= end && state->end > end) {
1021 		if (state->state & exclusive_bits) {
1022 			*failed_start = start;
1023 			err = -EEXIST;
1024 			goto out;
1025 		}
1026 
1027 		prealloc = alloc_extent_state_atomic(prealloc);
1028 		BUG_ON(!prealloc);
1029 		err = split_state(tree, state, prealloc, end + 1);
1030 		if (err)
1031 			extent_io_tree_panic(tree, err);
1032 
1033 		set_state_bits(tree, prealloc, &bits, changeset);
1034 		cache_state(prealloc, cached_state);
1035 		merge_state(tree, prealloc);
1036 		prealloc = NULL;
1037 		goto out;
1038 	}
1039 
1040 	goto search_again;
1041 
1042 out:
1043 	spin_unlock(&tree->lock);
1044 	if (prealloc)
1045 		free_extent_state(prealloc);
1046 
1047 	return err;
1048 
1049 search_again:
1050 	if (start > end)
1051 		goto out;
1052 	spin_unlock(&tree->lock);
1053 	if (gfpflags_allow_blocking(mask))
1054 		cond_resched();
1055 	goto again;
1056 }
1057 
1058 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1059 		   unsigned bits, u64 * failed_start,
1060 		   struct extent_state **cached_state, gfp_t mask)
1061 {
1062 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1063 				cached_state, mask, NULL);
1064 }
1065 
1066 
1067 /**
1068  * convert_extent_bit - convert all bits in a given range from one bit to
1069  * 			another
1070  * @tree:	the io tree to search
1071  * @start:	the start offset in bytes
1072  * @end:	the end offset in bytes (inclusive)
1073  * @bits:	the bits to set in this range
1074  * @clear_bits:	the bits to clear in this range
1075  * @cached_state:	state that we're going to cache
1076  * @mask:	the allocation mask
1077  *
1078  * This will go through and set bits for the given range.  If any states exist
1079  * already in this range they are set with the given bit and cleared of the
1080  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1081  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1082  * boundary bits like LOCK.
1083  */
1084 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1085 		       unsigned bits, unsigned clear_bits,
1086 		       struct extent_state **cached_state, gfp_t mask)
1087 {
1088 	struct extent_state *state;
1089 	struct extent_state *prealloc = NULL;
1090 	struct rb_node *node;
1091 	struct rb_node **p;
1092 	struct rb_node *parent;
1093 	int err = 0;
1094 	u64 last_start;
1095 	u64 last_end;
1096 	bool first_iteration = true;
1097 
1098 	btrfs_debug_check_extent_io_range(tree, start, end);
1099 
1100 again:
1101 	if (!prealloc && gfpflags_allow_blocking(mask)) {
1102 		/*
1103 		 * Best effort, don't worry if extent state allocation fails
1104 		 * here for the first iteration. We might have a cached state
1105 		 * that matches exactly the target range, in which case no
1106 		 * extent state allocations are needed. We'll only know this
1107 		 * after locking the tree.
1108 		 */
1109 		prealloc = alloc_extent_state(mask);
1110 		if (!prealloc && !first_iteration)
1111 			return -ENOMEM;
1112 	}
1113 
1114 	spin_lock(&tree->lock);
1115 	if (cached_state && *cached_state) {
1116 		state = *cached_state;
1117 		if (state->start <= start && state->end > start &&
1118 		    extent_state_in_tree(state)) {
1119 			node = &state->rb_node;
1120 			goto hit_next;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * this search will find all the extents that end after
1126 	 * our range starts.
1127 	 */
1128 	node = tree_search_for_insert(tree, start, &p, &parent);
1129 	if (!node) {
1130 		prealloc = alloc_extent_state_atomic(prealloc);
1131 		if (!prealloc) {
1132 			err = -ENOMEM;
1133 			goto out;
1134 		}
1135 		err = insert_state(tree, prealloc, start, end,
1136 				   &p, &parent, &bits, NULL);
1137 		if (err)
1138 			extent_io_tree_panic(tree, err);
1139 		cache_state(prealloc, cached_state);
1140 		prealloc = NULL;
1141 		goto out;
1142 	}
1143 	state = rb_entry(node, struct extent_state, rb_node);
1144 hit_next:
1145 	last_start = state->start;
1146 	last_end = state->end;
1147 
1148 	/*
1149 	 * | ---- desired range ---- |
1150 	 * | state |
1151 	 *
1152 	 * Just lock what we found and keep going
1153 	 */
1154 	if (state->start == start && state->end <= end) {
1155 		set_state_bits(tree, state, &bits, NULL);
1156 		cache_state(state, cached_state);
1157 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1158 		if (last_end == (u64)-1)
1159 			goto out;
1160 		start = last_end + 1;
1161 		if (start < end && state && state->start == start &&
1162 		    !need_resched())
1163 			goto hit_next;
1164 		goto search_again;
1165 	}
1166 
1167 	/*
1168 	 *     | ---- desired range ---- |
1169 	 * | state |
1170 	 *   or
1171 	 * | ------------- state -------------- |
1172 	 *
1173 	 * We need to split the extent we found, and may flip bits on
1174 	 * second half.
1175 	 *
1176 	 * If the extent we found extends past our
1177 	 * range, we just split and search again.  It'll get split
1178 	 * again the next time though.
1179 	 *
1180 	 * If the extent we found is inside our range, we set the
1181 	 * desired bit on it.
1182 	 */
1183 	if (state->start < start) {
1184 		prealloc = alloc_extent_state_atomic(prealloc);
1185 		if (!prealloc) {
1186 			err = -ENOMEM;
1187 			goto out;
1188 		}
1189 		err = split_state(tree, state, prealloc, start);
1190 		if (err)
1191 			extent_io_tree_panic(tree, err);
1192 		prealloc = NULL;
1193 		if (err)
1194 			goto out;
1195 		if (state->end <= end) {
1196 			set_state_bits(tree, state, &bits, NULL);
1197 			cache_state(state, cached_state);
1198 			state = clear_state_bit(tree, state, &clear_bits, 0,
1199 						NULL);
1200 			if (last_end == (u64)-1)
1201 				goto out;
1202 			start = last_end + 1;
1203 			if (start < end && state && state->start == start &&
1204 			    !need_resched())
1205 				goto hit_next;
1206 		}
1207 		goto search_again;
1208 	}
1209 	/*
1210 	 * | ---- desired range ---- |
1211 	 *     | state | or               | state |
1212 	 *
1213 	 * There's a hole, we need to insert something in it and
1214 	 * ignore the extent we found.
1215 	 */
1216 	if (state->start > start) {
1217 		u64 this_end;
1218 		if (end < last_start)
1219 			this_end = end;
1220 		else
1221 			this_end = last_start - 1;
1222 
1223 		prealloc = alloc_extent_state_atomic(prealloc);
1224 		if (!prealloc) {
1225 			err = -ENOMEM;
1226 			goto out;
1227 		}
1228 
1229 		/*
1230 		 * Avoid to free 'prealloc' if it can be merged with
1231 		 * the later extent.
1232 		 */
1233 		err = insert_state(tree, prealloc, start, this_end,
1234 				   NULL, NULL, &bits, NULL);
1235 		if (err)
1236 			extent_io_tree_panic(tree, err);
1237 		cache_state(prealloc, cached_state);
1238 		prealloc = NULL;
1239 		start = this_end + 1;
1240 		goto search_again;
1241 	}
1242 	/*
1243 	 * | ---- desired range ---- |
1244 	 *                        | state |
1245 	 * We need to split the extent, and set the bit
1246 	 * on the first half
1247 	 */
1248 	if (state->start <= end && state->end > end) {
1249 		prealloc = alloc_extent_state_atomic(prealloc);
1250 		if (!prealloc) {
1251 			err = -ENOMEM;
1252 			goto out;
1253 		}
1254 
1255 		err = split_state(tree, state, prealloc, end + 1);
1256 		if (err)
1257 			extent_io_tree_panic(tree, err);
1258 
1259 		set_state_bits(tree, prealloc, &bits, NULL);
1260 		cache_state(prealloc, cached_state);
1261 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1262 		prealloc = NULL;
1263 		goto out;
1264 	}
1265 
1266 	goto search_again;
1267 
1268 out:
1269 	spin_unlock(&tree->lock);
1270 	if (prealloc)
1271 		free_extent_state(prealloc);
1272 
1273 	return err;
1274 
1275 search_again:
1276 	if (start > end)
1277 		goto out;
1278 	spin_unlock(&tree->lock);
1279 	if (gfpflags_allow_blocking(mask))
1280 		cond_resched();
1281 	first_iteration = false;
1282 	goto again;
1283 }
1284 
1285 /* wrappers around set/clear extent bit */
1286 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287 			   unsigned bits, gfp_t mask,
1288 			   struct extent_changeset *changeset)
1289 {
1290 	/*
1291 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 	 * either fail with -EEXIST or changeset will record the whole
1294 	 * range.
1295 	 */
1296 	BUG_ON(bits & EXTENT_LOCKED);
1297 
1298 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299 				changeset);
1300 }
1301 
1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 		     unsigned bits, int wake, int delete,
1304 		     struct extent_state **cached, gfp_t mask)
1305 {
1306 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 				  cached, mask, NULL);
1308 }
1309 
1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 			     unsigned bits, gfp_t mask,
1312 			     struct extent_changeset *changeset)
1313 {
1314 	/*
1315 	 * Don't support EXTENT_LOCKED case, same reason as
1316 	 * set_record_extent_bits().
1317 	 */
1318 	BUG_ON(bits & EXTENT_LOCKED);
1319 
1320 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321 				  changeset);
1322 }
1323 
1324 /*
1325  * either insert or lock state struct between start and end use mask to tell
1326  * us if waiting is desired.
1327  */
1328 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1329 		     struct extent_state **cached_state)
1330 {
1331 	int err;
1332 	u64 failed_start;
1333 
1334 	while (1) {
1335 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1336 				       EXTENT_LOCKED, &failed_start,
1337 				       cached_state, GFP_NOFS, NULL);
1338 		if (err == -EEXIST) {
1339 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340 			start = failed_start;
1341 		} else
1342 			break;
1343 		WARN_ON(start > end);
1344 	}
1345 	return err;
1346 }
1347 
1348 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1349 {
1350 	int err;
1351 	u64 failed_start;
1352 
1353 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1354 			       &failed_start, NULL, GFP_NOFS, NULL);
1355 	if (err == -EEXIST) {
1356 		if (failed_start > start)
1357 			clear_extent_bit(tree, start, failed_start - 1,
1358 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1359 		return 0;
1360 	}
1361 	return 1;
1362 }
1363 
1364 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1365 {
1366 	unsigned long index = start >> PAGE_SHIFT;
1367 	unsigned long end_index = end >> PAGE_SHIFT;
1368 	struct page *page;
1369 
1370 	while (index <= end_index) {
1371 		page = find_get_page(inode->i_mapping, index);
1372 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373 		clear_page_dirty_for_io(page);
1374 		put_page(page);
1375 		index++;
1376 	}
1377 }
1378 
1379 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381 	unsigned long index = start >> PAGE_SHIFT;
1382 	unsigned long end_index = end >> PAGE_SHIFT;
1383 	struct page *page;
1384 
1385 	while (index <= end_index) {
1386 		page = find_get_page(inode->i_mapping, index);
1387 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 		__set_page_dirty_nobuffers(page);
1389 		account_page_redirty(page);
1390 		put_page(page);
1391 		index++;
1392 	}
1393 }
1394 
1395 /*
1396  * helper function to set both pages and extents in the tree writeback
1397  */
1398 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1399 {
1400 	unsigned long index = start >> PAGE_SHIFT;
1401 	unsigned long end_index = end >> PAGE_SHIFT;
1402 	struct page *page;
1403 
1404 	while (index <= end_index) {
1405 		page = find_get_page(tree->mapping, index);
1406 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1407 		set_page_writeback(page);
1408 		put_page(page);
1409 		index++;
1410 	}
1411 }
1412 
1413 /* find the first state struct with 'bits' set after 'start', and
1414  * return it.  tree->lock must be held.  NULL will returned if
1415  * nothing was found after 'start'
1416  */
1417 static struct extent_state *
1418 find_first_extent_bit_state(struct extent_io_tree *tree,
1419 			    u64 start, unsigned bits)
1420 {
1421 	struct rb_node *node;
1422 	struct extent_state *state;
1423 
1424 	/*
1425 	 * this search will find all the extents that end after
1426 	 * our range starts.
1427 	 */
1428 	node = tree_search(tree, start);
1429 	if (!node)
1430 		goto out;
1431 
1432 	while (1) {
1433 		state = rb_entry(node, struct extent_state, rb_node);
1434 		if (state->end >= start && (state->state & bits))
1435 			return state;
1436 
1437 		node = rb_next(node);
1438 		if (!node)
1439 			break;
1440 	}
1441 out:
1442 	return NULL;
1443 }
1444 
1445 /*
1446  * find the first offset in the io tree with 'bits' set. zero is
1447  * returned if we find something, and *start_ret and *end_ret are
1448  * set to reflect the state struct that was found.
1449  *
1450  * If nothing was found, 1 is returned. If found something, return 0.
1451  */
1452 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1453 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1454 			  struct extent_state **cached_state)
1455 {
1456 	struct extent_state *state;
1457 	struct rb_node *n;
1458 	int ret = 1;
1459 
1460 	spin_lock(&tree->lock);
1461 	if (cached_state && *cached_state) {
1462 		state = *cached_state;
1463 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1464 			n = rb_next(&state->rb_node);
1465 			while (n) {
1466 				state = rb_entry(n, struct extent_state,
1467 						 rb_node);
1468 				if (state->state & bits)
1469 					goto got_it;
1470 				n = rb_next(n);
1471 			}
1472 			free_extent_state(*cached_state);
1473 			*cached_state = NULL;
1474 			goto out;
1475 		}
1476 		free_extent_state(*cached_state);
1477 		*cached_state = NULL;
1478 	}
1479 
1480 	state = find_first_extent_bit_state(tree, start, bits);
1481 got_it:
1482 	if (state) {
1483 		cache_state_if_flags(state, cached_state, 0);
1484 		*start_ret = state->start;
1485 		*end_ret = state->end;
1486 		ret = 0;
1487 	}
1488 out:
1489 	spin_unlock(&tree->lock);
1490 	return ret;
1491 }
1492 
1493 /*
1494  * find a contiguous range of bytes in the file marked as delalloc, not
1495  * more than 'max_bytes'.  start and end are used to return the range,
1496  *
1497  * 1 is returned if we find something, 0 if nothing was in the tree
1498  */
1499 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1500 					u64 *start, u64 *end, u64 max_bytes,
1501 					struct extent_state **cached_state)
1502 {
1503 	struct rb_node *node;
1504 	struct extent_state *state;
1505 	u64 cur_start = *start;
1506 	u64 found = 0;
1507 	u64 total_bytes = 0;
1508 
1509 	spin_lock(&tree->lock);
1510 
1511 	/*
1512 	 * this search will find all the extents that end after
1513 	 * our range starts.
1514 	 */
1515 	node = tree_search(tree, cur_start);
1516 	if (!node) {
1517 		if (!found)
1518 			*end = (u64)-1;
1519 		goto out;
1520 	}
1521 
1522 	while (1) {
1523 		state = rb_entry(node, struct extent_state, rb_node);
1524 		if (found && (state->start != cur_start ||
1525 			      (state->state & EXTENT_BOUNDARY))) {
1526 			goto out;
1527 		}
1528 		if (!(state->state & EXTENT_DELALLOC)) {
1529 			if (!found)
1530 				*end = state->end;
1531 			goto out;
1532 		}
1533 		if (!found) {
1534 			*start = state->start;
1535 			*cached_state = state;
1536 			atomic_inc(&state->refs);
1537 		}
1538 		found++;
1539 		*end = state->end;
1540 		cur_start = state->end + 1;
1541 		node = rb_next(node);
1542 		total_bytes += state->end - state->start + 1;
1543 		if (total_bytes >= max_bytes)
1544 			break;
1545 		if (!node)
1546 			break;
1547 	}
1548 out:
1549 	spin_unlock(&tree->lock);
1550 	return found;
1551 }
1552 
1553 static noinline void __unlock_for_delalloc(struct inode *inode,
1554 					   struct page *locked_page,
1555 					   u64 start, u64 end)
1556 {
1557 	int ret;
1558 	struct page *pages[16];
1559 	unsigned long index = start >> PAGE_SHIFT;
1560 	unsigned long end_index = end >> PAGE_SHIFT;
1561 	unsigned long nr_pages = end_index - index + 1;
1562 	int i;
1563 
1564 	if (index == locked_page->index && end_index == index)
1565 		return;
1566 
1567 	while (nr_pages > 0) {
1568 		ret = find_get_pages_contig(inode->i_mapping, index,
1569 				     min_t(unsigned long, nr_pages,
1570 				     ARRAY_SIZE(pages)), pages);
1571 		for (i = 0; i < ret; i++) {
1572 			if (pages[i] != locked_page)
1573 				unlock_page(pages[i]);
1574 			put_page(pages[i]);
1575 		}
1576 		nr_pages -= ret;
1577 		index += ret;
1578 		cond_resched();
1579 	}
1580 }
1581 
1582 static noinline int lock_delalloc_pages(struct inode *inode,
1583 					struct page *locked_page,
1584 					u64 delalloc_start,
1585 					u64 delalloc_end)
1586 {
1587 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1588 	unsigned long start_index = index;
1589 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1590 	unsigned long pages_locked = 0;
1591 	struct page *pages[16];
1592 	unsigned long nrpages;
1593 	int ret;
1594 	int i;
1595 
1596 	/* the caller is responsible for locking the start index */
1597 	if (index == locked_page->index && index == end_index)
1598 		return 0;
1599 
1600 	/* skip the page at the start index */
1601 	nrpages = end_index - index + 1;
1602 	while (nrpages > 0) {
1603 		ret = find_get_pages_contig(inode->i_mapping, index,
1604 				     min_t(unsigned long,
1605 				     nrpages, ARRAY_SIZE(pages)), pages);
1606 		if (ret == 0) {
1607 			ret = -EAGAIN;
1608 			goto done;
1609 		}
1610 		/* now we have an array of pages, lock them all */
1611 		for (i = 0; i < ret; i++) {
1612 			/*
1613 			 * the caller is taking responsibility for
1614 			 * locked_page
1615 			 */
1616 			if (pages[i] != locked_page) {
1617 				lock_page(pages[i]);
1618 				if (!PageDirty(pages[i]) ||
1619 				    pages[i]->mapping != inode->i_mapping) {
1620 					ret = -EAGAIN;
1621 					unlock_page(pages[i]);
1622 					put_page(pages[i]);
1623 					goto done;
1624 				}
1625 			}
1626 			put_page(pages[i]);
1627 			pages_locked++;
1628 		}
1629 		nrpages -= ret;
1630 		index += ret;
1631 		cond_resched();
1632 	}
1633 	ret = 0;
1634 done:
1635 	if (ret && pages_locked) {
1636 		__unlock_for_delalloc(inode, locked_page,
1637 			      delalloc_start,
1638 			      ((u64)(start_index + pages_locked - 1)) <<
1639 			      PAGE_SHIFT);
1640 	}
1641 	return ret;
1642 }
1643 
1644 /*
1645  * find a contiguous range of bytes in the file marked as delalloc, not
1646  * more than 'max_bytes'.  start and end are used to return the range,
1647  *
1648  * 1 is returned if we find something, 0 if nothing was in the tree
1649  */
1650 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651 				    struct extent_io_tree *tree,
1652 				    struct page *locked_page, u64 *start,
1653 				    u64 *end, u64 max_bytes)
1654 {
1655 	u64 delalloc_start;
1656 	u64 delalloc_end;
1657 	u64 found;
1658 	struct extent_state *cached_state = NULL;
1659 	int ret;
1660 	int loops = 0;
1661 
1662 again:
1663 	/* step one, find a bunch of delalloc bytes starting at start */
1664 	delalloc_start = *start;
1665 	delalloc_end = 0;
1666 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1667 				    max_bytes, &cached_state);
1668 	if (!found || delalloc_end <= *start) {
1669 		*start = delalloc_start;
1670 		*end = delalloc_end;
1671 		free_extent_state(cached_state);
1672 		return 0;
1673 	}
1674 
1675 	/*
1676 	 * start comes from the offset of locked_page.  We have to lock
1677 	 * pages in order, so we can't process delalloc bytes before
1678 	 * locked_page
1679 	 */
1680 	if (delalloc_start < *start)
1681 		delalloc_start = *start;
1682 
1683 	/*
1684 	 * make sure to limit the number of pages we try to lock down
1685 	 */
1686 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1687 		delalloc_end = delalloc_start + max_bytes - 1;
1688 
1689 	/* step two, lock all the pages after the page that has start */
1690 	ret = lock_delalloc_pages(inode, locked_page,
1691 				  delalloc_start, delalloc_end);
1692 	if (ret == -EAGAIN) {
1693 		/* some of the pages are gone, lets avoid looping by
1694 		 * shortening the size of the delalloc range we're searching
1695 		 */
1696 		free_extent_state(cached_state);
1697 		cached_state = NULL;
1698 		if (!loops) {
1699 			max_bytes = PAGE_SIZE;
1700 			loops = 1;
1701 			goto again;
1702 		} else {
1703 			found = 0;
1704 			goto out_failed;
1705 		}
1706 	}
1707 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1708 
1709 	/* step three, lock the state bits for the whole range */
1710 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1711 
1712 	/* then test to make sure it is all still delalloc */
1713 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1714 			     EXTENT_DELALLOC, 1, cached_state);
1715 	if (!ret) {
1716 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717 				     &cached_state, GFP_NOFS);
1718 		__unlock_for_delalloc(inode, locked_page,
1719 			      delalloc_start, delalloc_end);
1720 		cond_resched();
1721 		goto again;
1722 	}
1723 	free_extent_state(cached_state);
1724 	*start = delalloc_start;
1725 	*end = delalloc_end;
1726 out_failed:
1727 	return found;
1728 }
1729 
1730 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1731 				 struct page *locked_page,
1732 				 unsigned clear_bits,
1733 				 unsigned long page_ops)
1734 {
1735 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1736 	int ret;
1737 	struct page *pages[16];
1738 	unsigned long index = start >> PAGE_SHIFT;
1739 	unsigned long end_index = end >> PAGE_SHIFT;
1740 	unsigned long nr_pages = end_index - index + 1;
1741 	int i;
1742 
1743 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1744 	if (page_ops == 0)
1745 		return;
1746 
1747 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748 		mapping_set_error(inode->i_mapping, -EIO);
1749 
1750 	while (nr_pages > 0) {
1751 		ret = find_get_pages_contig(inode->i_mapping, index,
1752 				     min_t(unsigned long,
1753 				     nr_pages, ARRAY_SIZE(pages)), pages);
1754 		for (i = 0; i < ret; i++) {
1755 
1756 			if (page_ops & PAGE_SET_PRIVATE2)
1757 				SetPagePrivate2(pages[i]);
1758 
1759 			if (pages[i] == locked_page) {
1760 				put_page(pages[i]);
1761 				continue;
1762 			}
1763 			if (page_ops & PAGE_CLEAR_DIRTY)
1764 				clear_page_dirty_for_io(pages[i]);
1765 			if (page_ops & PAGE_SET_WRITEBACK)
1766 				set_page_writeback(pages[i]);
1767 			if (page_ops & PAGE_SET_ERROR)
1768 				SetPageError(pages[i]);
1769 			if (page_ops & PAGE_END_WRITEBACK)
1770 				end_page_writeback(pages[i]);
1771 			if (page_ops & PAGE_UNLOCK)
1772 				unlock_page(pages[i]);
1773 			put_page(pages[i]);
1774 		}
1775 		nr_pages -= ret;
1776 		index += ret;
1777 		cond_resched();
1778 	}
1779 }
1780 
1781 /*
1782  * count the number of bytes in the tree that have a given bit(s)
1783  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1784  * cached.  The total number found is returned.
1785  */
1786 u64 count_range_bits(struct extent_io_tree *tree,
1787 		     u64 *start, u64 search_end, u64 max_bytes,
1788 		     unsigned bits, int contig)
1789 {
1790 	struct rb_node *node;
1791 	struct extent_state *state;
1792 	u64 cur_start = *start;
1793 	u64 total_bytes = 0;
1794 	u64 last = 0;
1795 	int found = 0;
1796 
1797 	if (WARN_ON(search_end <= cur_start))
1798 		return 0;
1799 
1800 	spin_lock(&tree->lock);
1801 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802 		total_bytes = tree->dirty_bytes;
1803 		goto out;
1804 	}
1805 	/*
1806 	 * this search will find all the extents that end after
1807 	 * our range starts.
1808 	 */
1809 	node = tree_search(tree, cur_start);
1810 	if (!node)
1811 		goto out;
1812 
1813 	while (1) {
1814 		state = rb_entry(node, struct extent_state, rb_node);
1815 		if (state->start > search_end)
1816 			break;
1817 		if (contig && found && state->start > last + 1)
1818 			break;
1819 		if (state->end >= cur_start && (state->state & bits) == bits) {
1820 			total_bytes += min(search_end, state->end) + 1 -
1821 				       max(cur_start, state->start);
1822 			if (total_bytes >= max_bytes)
1823 				break;
1824 			if (!found) {
1825 				*start = max(cur_start, state->start);
1826 				found = 1;
1827 			}
1828 			last = state->end;
1829 		} else if (contig && found) {
1830 			break;
1831 		}
1832 		node = rb_next(node);
1833 		if (!node)
1834 			break;
1835 	}
1836 out:
1837 	spin_unlock(&tree->lock);
1838 	return total_bytes;
1839 }
1840 
1841 /*
1842  * set the private field for a given byte offset in the tree.  If there isn't
1843  * an extent_state there already, this does nothing.
1844  */
1845 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1846 		struct io_failure_record *failrec)
1847 {
1848 	struct rb_node *node;
1849 	struct extent_state *state;
1850 	int ret = 0;
1851 
1852 	spin_lock(&tree->lock);
1853 	/*
1854 	 * this search will find all the extents that end after
1855 	 * our range starts.
1856 	 */
1857 	node = tree_search(tree, start);
1858 	if (!node) {
1859 		ret = -ENOENT;
1860 		goto out;
1861 	}
1862 	state = rb_entry(node, struct extent_state, rb_node);
1863 	if (state->start != start) {
1864 		ret = -ENOENT;
1865 		goto out;
1866 	}
1867 	state->failrec = failrec;
1868 out:
1869 	spin_unlock(&tree->lock);
1870 	return ret;
1871 }
1872 
1873 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1874 		struct io_failure_record **failrec)
1875 {
1876 	struct rb_node *node;
1877 	struct extent_state *state;
1878 	int ret = 0;
1879 
1880 	spin_lock(&tree->lock);
1881 	/*
1882 	 * this search will find all the extents that end after
1883 	 * our range starts.
1884 	 */
1885 	node = tree_search(tree, start);
1886 	if (!node) {
1887 		ret = -ENOENT;
1888 		goto out;
1889 	}
1890 	state = rb_entry(node, struct extent_state, rb_node);
1891 	if (state->start != start) {
1892 		ret = -ENOENT;
1893 		goto out;
1894 	}
1895 	*failrec = state->failrec;
1896 out:
1897 	spin_unlock(&tree->lock);
1898 	return ret;
1899 }
1900 
1901 /*
1902  * searches a range in the state tree for a given mask.
1903  * If 'filled' == 1, this returns 1 only if every extent in the tree
1904  * has the bits set.  Otherwise, 1 is returned if any bit in the
1905  * range is found set.
1906  */
1907 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1908 		   unsigned bits, int filled, struct extent_state *cached)
1909 {
1910 	struct extent_state *state = NULL;
1911 	struct rb_node *node;
1912 	int bitset = 0;
1913 
1914 	spin_lock(&tree->lock);
1915 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1916 	    cached->end > start)
1917 		node = &cached->rb_node;
1918 	else
1919 		node = tree_search(tree, start);
1920 	while (node && start <= end) {
1921 		state = rb_entry(node, struct extent_state, rb_node);
1922 
1923 		if (filled && state->start > start) {
1924 			bitset = 0;
1925 			break;
1926 		}
1927 
1928 		if (state->start > end)
1929 			break;
1930 
1931 		if (state->state & bits) {
1932 			bitset = 1;
1933 			if (!filled)
1934 				break;
1935 		} else if (filled) {
1936 			bitset = 0;
1937 			break;
1938 		}
1939 
1940 		if (state->end == (u64)-1)
1941 			break;
1942 
1943 		start = state->end + 1;
1944 		if (start > end)
1945 			break;
1946 		node = rb_next(node);
1947 		if (!node) {
1948 			if (filled)
1949 				bitset = 0;
1950 			break;
1951 		}
1952 	}
1953 	spin_unlock(&tree->lock);
1954 	return bitset;
1955 }
1956 
1957 /*
1958  * helper function to set a given page up to date if all the
1959  * extents in the tree for that page are up to date
1960  */
1961 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1962 {
1963 	u64 start = page_offset(page);
1964 	u64 end = start + PAGE_SIZE - 1;
1965 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1966 		SetPageUptodate(page);
1967 }
1968 
1969 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1970 {
1971 	int ret;
1972 	int err = 0;
1973 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974 
1975 	set_state_failrec(failure_tree, rec->start, NULL);
1976 	ret = clear_extent_bits(failure_tree, rec->start,
1977 				rec->start + rec->len - 1,
1978 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 	if (ret)
1980 		err = ret;
1981 
1982 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 				rec->start + rec->len - 1,
1984 				EXTENT_DAMAGED, GFP_NOFS);
1985 	if (ret && !err)
1986 		err = ret;
1987 
1988 	kfree(rec);
1989 	return err;
1990 }
1991 
1992 /*
1993  * this bypasses the standard btrfs submit functions deliberately, as
1994  * the standard behavior is to write all copies in a raid setup. here we only
1995  * want to write the one bad copy. so we do the mapping for ourselves and issue
1996  * submit_bio directly.
1997  * to avoid any synchronization issues, wait for the data after writing, which
1998  * actually prevents the read that triggered the error from finishing.
1999  * currently, there can be no more than two copies of every data bit. thus,
2000  * exactly one rewrite is required.
2001  */
2002 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 		      struct page *page, unsigned int pg_offset, int mirror_num)
2004 {
2005 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2006 	struct bio *bio;
2007 	struct btrfs_device *dev;
2008 	u64 map_length = 0;
2009 	u64 sector;
2010 	struct btrfs_bio *bbio = NULL;
2011 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2012 	int ret;
2013 
2014 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2015 	BUG_ON(!mirror_num);
2016 
2017 	/* we can't repair anything in raid56 yet */
2018 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 		return 0;
2020 
2021 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2022 	if (!bio)
2023 		return -EIO;
2024 	bio->bi_iter.bi_size = 0;
2025 	map_length = length;
2026 
2027 	ret = btrfs_map_block(fs_info, WRITE, logical,
2028 			      &map_length, &bbio, mirror_num);
2029 	if (ret) {
2030 		bio_put(bio);
2031 		return -EIO;
2032 	}
2033 	BUG_ON(mirror_num != bbio->mirror_num);
2034 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2035 	bio->bi_iter.bi_sector = sector;
2036 	dev = bbio->stripes[mirror_num-1].dev;
2037 	btrfs_put_bbio(bbio);
2038 	if (!dev || !dev->bdev || !dev->writeable) {
2039 		bio_put(bio);
2040 		return -EIO;
2041 	}
2042 	bio->bi_bdev = dev->bdev;
2043 	bio_add_page(bio, page, length, pg_offset);
2044 
2045 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2046 		/* try to remap that extent elsewhere? */
2047 		bio_put(bio);
2048 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 		return -EIO;
2050 	}
2051 
2052 	btrfs_info_rl_in_rcu(fs_info,
2053 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 				  btrfs_ino(inode), start,
2055 				  rcu_str_deref(dev->name), sector);
2056 	bio_put(bio);
2057 	return 0;
2058 }
2059 
2060 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 			 int mirror_num)
2062 {
2063 	u64 start = eb->start;
2064 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2065 	int ret = 0;
2066 
2067 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 		return -EROFS;
2069 
2070 	for (i = 0; i < num_pages; i++) {
2071 		struct page *p = eb->pages[i];
2072 
2073 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 					PAGE_SIZE, start, p,
2075 					start - page_offset(p), mirror_num);
2076 		if (ret)
2077 			break;
2078 		start += PAGE_SIZE;
2079 	}
2080 
2081 	return ret;
2082 }
2083 
2084 /*
2085  * each time an IO finishes, we do a fast check in the IO failure tree
2086  * to see if we need to process or clean up an io_failure_record
2087  */
2088 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 		     unsigned int pg_offset)
2090 {
2091 	u64 private;
2092 	struct io_failure_record *failrec;
2093 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094 	struct extent_state *state;
2095 	int num_copies;
2096 	int ret;
2097 
2098 	private = 0;
2099 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100 				(u64)-1, 1, EXTENT_DIRTY, 0);
2101 	if (!ret)
2102 		return 0;
2103 
2104 	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105 			&failrec);
2106 	if (ret)
2107 		return 0;
2108 
2109 	BUG_ON(!failrec->this_mirror);
2110 
2111 	if (failrec->in_validation) {
2112 		/* there was no real error, just free the record */
2113 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114 			 failrec->start);
2115 		goto out;
2116 	}
2117 	if (fs_info->sb->s_flags & MS_RDONLY)
2118 		goto out;
2119 
2120 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122 					    failrec->start,
2123 					    EXTENT_LOCKED);
2124 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125 
2126 	if (state && state->start <= failrec->start &&
2127 	    state->end >= failrec->start + failrec->len - 1) {
2128 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129 					      failrec->len);
2130 		if (num_copies > 1)  {
2131 			repair_io_failure(inode, start, failrec->len,
2132 					  failrec->logical, page,
2133 					  pg_offset, failrec->failed_mirror);
2134 		}
2135 	}
2136 
2137 out:
2138 	free_io_failure(inode, failrec);
2139 
2140 	return 0;
2141 }
2142 
2143 /*
2144  * Can be called when
2145  * - hold extent lock
2146  * - under ordered extent
2147  * - the inode is freeing
2148  */
2149 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150 {
2151 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152 	struct io_failure_record *failrec;
2153 	struct extent_state *state, *next;
2154 
2155 	if (RB_EMPTY_ROOT(&failure_tree->state))
2156 		return;
2157 
2158 	spin_lock(&failure_tree->lock);
2159 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160 	while (state) {
2161 		if (state->start > end)
2162 			break;
2163 
2164 		ASSERT(state->end <= end);
2165 
2166 		next = next_state(state);
2167 
2168 		failrec = state->failrec;
2169 		free_extent_state(state);
2170 		kfree(failrec);
2171 
2172 		state = next;
2173 	}
2174 	spin_unlock(&failure_tree->lock);
2175 }
2176 
2177 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2178 		struct io_failure_record **failrec_ret)
2179 {
2180 	struct io_failure_record *failrec;
2181 	struct extent_map *em;
2182 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 	int ret;
2186 	u64 logical;
2187 
2188 	ret = get_state_failrec(failure_tree, start, &failrec);
2189 	if (ret) {
2190 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 		if (!failrec)
2192 			return -ENOMEM;
2193 
2194 		failrec->start = start;
2195 		failrec->len = end - start + 1;
2196 		failrec->this_mirror = 0;
2197 		failrec->bio_flags = 0;
2198 		failrec->in_validation = 0;
2199 
2200 		read_lock(&em_tree->lock);
2201 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2202 		if (!em) {
2203 			read_unlock(&em_tree->lock);
2204 			kfree(failrec);
2205 			return -EIO;
2206 		}
2207 
2208 		if (em->start > start || em->start + em->len <= start) {
2209 			free_extent_map(em);
2210 			em = NULL;
2211 		}
2212 		read_unlock(&em_tree->lock);
2213 		if (!em) {
2214 			kfree(failrec);
2215 			return -EIO;
2216 		}
2217 
2218 		logical = start - em->start;
2219 		logical = em->block_start + logical;
2220 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221 			logical = em->block_start;
2222 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223 			extent_set_compress_type(&failrec->bio_flags,
2224 						 em->compress_type);
2225 		}
2226 
2227 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228 			 logical, start, failrec->len);
2229 
2230 		failrec->logical = logical;
2231 		free_extent_map(em);
2232 
2233 		/* set the bits in the private failure tree */
2234 		ret = set_extent_bits(failure_tree, start, end,
2235 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 		if (ret >= 0)
2237 			ret = set_state_failrec(failure_tree, start, failrec);
2238 		/* set the bits in the inode's tree */
2239 		if (ret >= 0)
2240 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 						GFP_NOFS);
2242 		if (ret < 0) {
2243 			kfree(failrec);
2244 			return ret;
2245 		}
2246 	} else {
2247 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2248 			 failrec->logical, failrec->start, failrec->len,
2249 			 failrec->in_validation);
2250 		/*
2251 		 * when data can be on disk more than twice, add to failrec here
2252 		 * (e.g. with a list for failed_mirror) to make
2253 		 * clean_io_failure() clean all those errors at once.
2254 		 */
2255 	}
2256 
2257 	*failrec_ret = failrec;
2258 
2259 	return 0;
2260 }
2261 
2262 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 			   struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 	int num_copies;
2266 
2267 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 				      failrec->logical, failrec->len);
2269 	if (num_copies == 1) {
2270 		/*
2271 		 * we only have a single copy of the data, so don't bother with
2272 		 * all the retry and error correction code that follows. no
2273 		 * matter what the error is, it is very likely to persist.
2274 		 */
2275 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2276 			 num_copies, failrec->this_mirror, failed_mirror);
2277 		return 0;
2278 	}
2279 
2280 	/*
2281 	 * there are two premises:
2282 	 *	a) deliver good data to the caller
2283 	 *	b) correct the bad sectors on disk
2284 	 */
2285 	if (failed_bio->bi_vcnt > 1) {
2286 		/*
2287 		 * to fulfill b), we need to know the exact failing sectors, as
2288 		 * we don't want to rewrite any more than the failed ones. thus,
2289 		 * we need separate read requests for the failed bio
2290 		 *
2291 		 * if the following BUG_ON triggers, our validation request got
2292 		 * merged. we need separate requests for our algorithm to work.
2293 		 */
2294 		BUG_ON(failrec->in_validation);
2295 		failrec->in_validation = 1;
2296 		failrec->this_mirror = failed_mirror;
2297 	} else {
2298 		/*
2299 		 * we're ready to fulfill a) and b) alongside. get a good copy
2300 		 * of the failed sector and if we succeed, we have setup
2301 		 * everything for repair_io_failure to do the rest for us.
2302 		 */
2303 		if (failrec->in_validation) {
2304 			BUG_ON(failrec->this_mirror != failed_mirror);
2305 			failrec->in_validation = 0;
2306 			failrec->this_mirror = 0;
2307 		}
2308 		failrec->failed_mirror = failed_mirror;
2309 		failrec->this_mirror++;
2310 		if (failrec->this_mirror == failed_mirror)
2311 			failrec->this_mirror++;
2312 	}
2313 
2314 	if (failrec->this_mirror > num_copies) {
2315 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2316 			 num_copies, failrec->this_mirror, failed_mirror);
2317 		return 0;
2318 	}
2319 
2320 	return 1;
2321 }
2322 
2323 
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 				    struct io_failure_record *failrec,
2326 				    struct page *page, int pg_offset, int icsum,
2327 				    bio_end_io_t *endio_func, void *data)
2328 {
2329 	struct bio *bio;
2330 	struct btrfs_io_bio *btrfs_failed_bio;
2331 	struct btrfs_io_bio *btrfs_bio;
2332 
2333 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2334 	if (!bio)
2335 		return NULL;
2336 
2337 	bio->bi_end_io = endio_func;
2338 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2340 	bio->bi_iter.bi_size = 0;
2341 	bio->bi_private = data;
2342 
2343 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 	if (btrfs_failed_bio->csum) {
2345 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347 
2348 		btrfs_bio = btrfs_io_bio(bio);
2349 		btrfs_bio->csum = btrfs_bio->csum_inline;
2350 		icsum *= csum_size;
2351 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2352 		       csum_size);
2353 	}
2354 
2355 	bio_add_page(bio, page, failrec->len, pg_offset);
2356 
2357 	return bio;
2358 }
2359 
2360 /*
2361  * this is a generic handler for readpage errors (default
2362  * readpage_io_failed_hook). if other copies exist, read those and write back
2363  * good data to the failed position. does not investigate in remapping the
2364  * failed extent elsewhere, hoping the device will be smart enough to do this as
2365  * needed
2366  */
2367 
2368 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 			      struct page *page, u64 start, u64 end,
2370 			      int failed_mirror)
2371 {
2372 	struct io_failure_record *failrec;
2373 	struct inode *inode = page->mapping->host;
2374 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 	struct bio *bio;
2376 	int read_mode;
2377 	int ret;
2378 
2379 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380 
2381 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 	if (!ret) {
2387 		free_io_failure(inode, failrec);
2388 		return -EIO;
2389 	}
2390 
2391 	if (failed_bio->bi_vcnt > 1)
2392 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 	else
2394 		read_mode = READ_SYNC;
2395 
2396 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 				      start - page_offset(page),
2399 				      (int)phy_offset, failed_bio->bi_end_io,
2400 				      NULL);
2401 	if (!bio) {
2402 		free_io_failure(inode, failrec);
2403 		return -EIO;
2404 	}
2405 
2406 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 		 read_mode, failrec->this_mirror, failrec->in_validation);
2408 
2409 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 					 failrec->this_mirror,
2411 					 failrec->bio_flags, 0);
2412 	if (ret) {
2413 		free_io_failure(inode, failrec);
2414 		bio_put(bio);
2415 	}
2416 
2417 	return ret;
2418 }
2419 
2420 /* lots and lots of room for performance fixes in the end_bio funcs */
2421 
2422 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2423 {
2424 	int uptodate = (err == 0);
2425 	struct extent_io_tree *tree;
2426 	int ret = 0;
2427 
2428 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2429 
2430 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 		ret = tree->ops->writepage_end_io_hook(page, start,
2432 					       end, NULL, uptodate);
2433 		if (ret)
2434 			uptodate = 0;
2435 	}
2436 
2437 	if (!uptodate) {
2438 		ClearPageUptodate(page);
2439 		SetPageError(page);
2440 		ret = ret < 0 ? ret : -EIO;
2441 		mapping_set_error(page->mapping, ret);
2442 	}
2443 }
2444 
2445 /*
2446  * after a writepage IO is done, we need to:
2447  * clear the uptodate bits on error
2448  * clear the writeback bits in the extent tree for this IO
2449  * end_page_writeback if the page has no more pending IO
2450  *
2451  * Scheduling is not allowed, so the extent state tree is expected
2452  * to have one and only one object corresponding to this IO.
2453  */
2454 static void end_bio_extent_writepage(struct bio *bio)
2455 {
2456 	struct bio_vec *bvec;
2457 	u64 start;
2458 	u64 end;
2459 	int i;
2460 
2461 	bio_for_each_segment_all(bvec, bio, i) {
2462 		struct page *page = bvec->bv_page;
2463 
2464 		/* We always issue full-page reads, but if some block
2465 		 * in a page fails to read, blk_update_request() will
2466 		 * advance bv_offset and adjust bv_len to compensate.
2467 		 * Print a warning for nonzero offsets, and an error
2468 		 * if they don't add up to a full page.  */
2469 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2471 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 				   "partial page write in btrfs with offset %u and length %u",
2473 					bvec->bv_offset, bvec->bv_len);
2474 			else
2475 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 				   "incomplete page write in btrfs with offset %u and "
2477 				   "length %u",
2478 					bvec->bv_offset, bvec->bv_len);
2479 		}
2480 
2481 		start = page_offset(page);
2482 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2483 
2484 		end_extent_writepage(page, bio->bi_error, start, end);
2485 		end_page_writeback(page);
2486 	}
2487 
2488 	bio_put(bio);
2489 }
2490 
2491 static void
2492 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 			      int uptodate)
2494 {
2495 	struct extent_state *cached = NULL;
2496 	u64 end = start + len - 1;
2497 
2498 	if (uptodate && tree->track_uptodate)
2499 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501 }
2502 
2503 /*
2504  * after a readpage IO is done, we need to:
2505  * clear the uptodate bits on error
2506  * set the uptodate bits if things worked
2507  * set the page up to date if all extents in the tree are uptodate
2508  * clear the lock bit in the extent tree
2509  * unlock the page if there are no other extents locked for it
2510  *
2511  * Scheduling is not allowed, so the extent state tree is expected
2512  * to have one and only one object corresponding to this IO.
2513  */
2514 static void end_bio_extent_readpage(struct bio *bio)
2515 {
2516 	struct bio_vec *bvec;
2517 	int uptodate = !bio->bi_error;
2518 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2519 	struct extent_io_tree *tree;
2520 	u64 offset = 0;
2521 	u64 start;
2522 	u64 end;
2523 	u64 len;
2524 	u64 extent_start = 0;
2525 	u64 extent_len = 0;
2526 	int mirror;
2527 	int ret;
2528 	int i;
2529 
2530 	bio_for_each_segment_all(bvec, bio, i) {
2531 		struct page *page = bvec->bv_page;
2532 		struct inode *inode = page->mapping->host;
2533 
2534 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2535 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 			 bio->bi_error, io_bio->mirror_num);
2537 		tree = &BTRFS_I(inode)->io_tree;
2538 
2539 		/* We always issue full-page reads, but if some block
2540 		 * in a page fails to read, blk_update_request() will
2541 		 * advance bv_offset and adjust bv_len to compensate.
2542 		 * Print a warning for nonzero offsets, and an error
2543 		 * if they don't add up to a full page.  */
2544 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2546 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 				   "partial page read in btrfs with offset %u and length %u",
2548 					bvec->bv_offset, bvec->bv_len);
2549 			else
2550 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 				   "incomplete page read in btrfs with offset %u and "
2552 				   "length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 		}
2555 
2556 		start = page_offset(page);
2557 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 		len = bvec->bv_len;
2559 
2560 		mirror = io_bio->mirror_num;
2561 		if (likely(uptodate && tree->ops &&
2562 			   tree->ops->readpage_end_io_hook)) {
2563 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 							      page, start, end,
2565 							      mirror);
2566 			if (ret)
2567 				uptodate = 0;
2568 			else
2569 				clean_io_failure(inode, start, page, 0);
2570 		}
2571 
2572 		if (likely(uptodate))
2573 			goto readpage_ok;
2574 
2575 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2576 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2577 			if (!ret && !bio->bi_error)
2578 				uptodate = 1;
2579 		} else {
2580 			/*
2581 			 * The generic bio_readpage_error handles errors the
2582 			 * following way: If possible, new read requests are
2583 			 * created and submitted and will end up in
2584 			 * end_bio_extent_readpage as well (if we're lucky, not
2585 			 * in the !uptodate case). In that case it returns 0 and
2586 			 * we just go on with the next page in our bio. If it
2587 			 * can't handle the error it will return -EIO and we
2588 			 * remain responsible for that page.
2589 			 */
2590 			ret = bio_readpage_error(bio, offset, page, start, end,
2591 						 mirror);
2592 			if (ret == 0) {
2593 				uptodate = !bio->bi_error;
2594 				offset += len;
2595 				continue;
2596 			}
2597 		}
2598 readpage_ok:
2599 		if (likely(uptodate)) {
2600 			loff_t i_size = i_size_read(inode);
2601 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2602 			unsigned off;
2603 
2604 			/* Zero out the end if this page straddles i_size */
2605 			off = i_size & (PAGE_SIZE-1);
2606 			if (page->index == end_index && off)
2607 				zero_user_segment(page, off, PAGE_SIZE);
2608 			SetPageUptodate(page);
2609 		} else {
2610 			ClearPageUptodate(page);
2611 			SetPageError(page);
2612 		}
2613 		unlock_page(page);
2614 		offset += len;
2615 
2616 		if (unlikely(!uptodate)) {
2617 			if (extent_len) {
2618 				endio_readpage_release_extent(tree,
2619 							      extent_start,
2620 							      extent_len, 1);
2621 				extent_start = 0;
2622 				extent_len = 0;
2623 			}
2624 			endio_readpage_release_extent(tree, start,
2625 						      end - start + 1, 0);
2626 		} else if (!extent_len) {
2627 			extent_start = start;
2628 			extent_len = end + 1 - start;
2629 		} else if (extent_start + extent_len == start) {
2630 			extent_len += end + 1 - start;
2631 		} else {
2632 			endio_readpage_release_extent(tree, extent_start,
2633 						      extent_len, uptodate);
2634 			extent_start = start;
2635 			extent_len = end + 1 - start;
2636 		}
2637 	}
2638 
2639 	if (extent_len)
2640 		endio_readpage_release_extent(tree, extent_start, extent_len,
2641 					      uptodate);
2642 	if (io_bio->end_io)
2643 		io_bio->end_io(io_bio, bio->bi_error);
2644 	bio_put(bio);
2645 }
2646 
2647 /*
2648  * this allocates from the btrfs_bioset.  We're returning a bio right now
2649  * but you can call btrfs_io_bio for the appropriate container_of magic
2650  */
2651 struct bio *
2652 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 		gfp_t gfp_flags)
2654 {
2655 	struct btrfs_io_bio *btrfs_bio;
2656 	struct bio *bio;
2657 
2658 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2659 
2660 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2661 		while (!bio && (nr_vecs /= 2)) {
2662 			bio = bio_alloc_bioset(gfp_flags,
2663 					       nr_vecs, btrfs_bioset);
2664 		}
2665 	}
2666 
2667 	if (bio) {
2668 		bio->bi_bdev = bdev;
2669 		bio->bi_iter.bi_sector = first_sector;
2670 		btrfs_bio = btrfs_io_bio(bio);
2671 		btrfs_bio->csum = NULL;
2672 		btrfs_bio->csum_allocated = NULL;
2673 		btrfs_bio->end_io = NULL;
2674 	}
2675 	return bio;
2676 }
2677 
2678 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679 {
2680 	struct btrfs_io_bio *btrfs_bio;
2681 	struct bio *new;
2682 
2683 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 	if (new) {
2685 		btrfs_bio = btrfs_io_bio(new);
2686 		btrfs_bio->csum = NULL;
2687 		btrfs_bio->csum_allocated = NULL;
2688 		btrfs_bio->end_io = NULL;
2689 
2690 #ifdef CONFIG_BLK_CGROUP
2691 		/* FIXME, put this into bio_clone_bioset */
2692 		if (bio->bi_css)
2693 			bio_associate_blkcg(new, bio->bi_css);
2694 #endif
2695 	}
2696 	return new;
2697 }
2698 
2699 /* this also allocates from the btrfs_bioset */
2700 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701 {
2702 	struct btrfs_io_bio *btrfs_bio;
2703 	struct bio *bio;
2704 
2705 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 	if (bio) {
2707 		btrfs_bio = btrfs_io_bio(bio);
2708 		btrfs_bio->csum = NULL;
2709 		btrfs_bio->csum_allocated = NULL;
2710 		btrfs_bio->end_io = NULL;
2711 	}
2712 	return bio;
2713 }
2714 
2715 
2716 static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 				       int mirror_num, unsigned long bio_flags)
2718 {
2719 	int ret = 0;
2720 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 	struct page *page = bvec->bv_page;
2722 	struct extent_io_tree *tree = bio->bi_private;
2723 	u64 start;
2724 
2725 	start = page_offset(page) + bvec->bv_offset;
2726 
2727 	bio->bi_private = NULL;
2728 
2729 	bio_get(bio);
2730 
2731 	if (tree->ops && tree->ops->submit_bio_hook)
2732 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2733 					   mirror_num, bio_flags, start);
2734 	else
2735 		btrfsic_submit_bio(rw, bio);
2736 
2737 	bio_put(bio);
2738 	return ret;
2739 }
2740 
2741 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2742 		     unsigned long offset, size_t size, struct bio *bio,
2743 		     unsigned long bio_flags)
2744 {
2745 	int ret = 0;
2746 	if (tree->ops && tree->ops->merge_bio_hook)
2747 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2748 						bio_flags);
2749 	BUG_ON(ret < 0);
2750 	return ret;
2751 
2752 }
2753 
2754 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2755 			      struct writeback_control *wbc,
2756 			      struct page *page, sector_t sector,
2757 			      size_t size, unsigned long offset,
2758 			      struct block_device *bdev,
2759 			      struct bio **bio_ret,
2760 			      unsigned long max_pages,
2761 			      bio_end_io_t end_io_func,
2762 			      int mirror_num,
2763 			      unsigned long prev_bio_flags,
2764 			      unsigned long bio_flags,
2765 			      bool force_bio_submit)
2766 {
2767 	int ret = 0;
2768 	struct bio *bio;
2769 	int contig = 0;
2770 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2771 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2772 
2773 	if (bio_ret && *bio_ret) {
2774 		bio = *bio_ret;
2775 		if (old_compressed)
2776 			contig = bio->bi_iter.bi_sector == sector;
2777 		else
2778 			contig = bio_end_sector(bio) == sector;
2779 
2780 		if (prev_bio_flags != bio_flags || !contig ||
2781 		    force_bio_submit ||
2782 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2783 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2784 			ret = submit_one_bio(rw, bio, mirror_num,
2785 					     prev_bio_flags);
2786 			if (ret < 0) {
2787 				*bio_ret = NULL;
2788 				return ret;
2789 			}
2790 			bio = NULL;
2791 		} else {
2792 			if (wbc)
2793 				wbc_account_io(wbc, page, page_size);
2794 			return 0;
2795 		}
2796 	}
2797 
2798 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 			GFP_NOFS | __GFP_HIGH);
2800 	if (!bio)
2801 		return -ENOMEM;
2802 
2803 	bio_add_page(bio, page, page_size, offset);
2804 	bio->bi_end_io = end_io_func;
2805 	bio->bi_private = tree;
2806 	if (wbc) {
2807 		wbc_init_bio(wbc, bio);
2808 		wbc_account_io(wbc, page, page_size);
2809 	}
2810 
2811 	if (bio_ret)
2812 		*bio_ret = bio;
2813 	else
2814 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2815 
2816 	return ret;
2817 }
2818 
2819 static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 				      struct page *page)
2821 {
2822 	if (!PagePrivate(page)) {
2823 		SetPagePrivate(page);
2824 		get_page(page);
2825 		set_page_private(page, (unsigned long)eb);
2826 	} else {
2827 		WARN_ON(page->private != (unsigned long)eb);
2828 	}
2829 }
2830 
2831 void set_page_extent_mapped(struct page *page)
2832 {
2833 	if (!PagePrivate(page)) {
2834 		SetPagePrivate(page);
2835 		get_page(page);
2836 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 	}
2838 }
2839 
2840 static struct extent_map *
2841 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 		 u64 start, u64 len, get_extent_t *get_extent,
2843 		 struct extent_map **em_cached)
2844 {
2845 	struct extent_map *em;
2846 
2847 	if (em_cached && *em_cached) {
2848 		em = *em_cached;
2849 		if (extent_map_in_tree(em) && start >= em->start &&
2850 		    start < extent_map_end(em)) {
2851 			atomic_inc(&em->refs);
2852 			return em;
2853 		}
2854 
2855 		free_extent_map(em);
2856 		*em_cached = NULL;
2857 	}
2858 
2859 	em = get_extent(inode, page, pg_offset, start, len, 0);
2860 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 		BUG_ON(*em_cached);
2862 		atomic_inc(&em->refs);
2863 		*em_cached = em;
2864 	}
2865 	return em;
2866 }
2867 /*
2868  * basic readpage implementation.  Locked extent state structs are inserted
2869  * into the tree that are removed when the IO is done (by the end_io
2870  * handlers)
2871  * XXX JDM: This needs looking at to ensure proper page locking
2872  */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874 			 struct page *page,
2875 			 get_extent_t *get_extent,
2876 			 struct extent_map **em_cached,
2877 			 struct bio **bio, int mirror_num,
2878 			 unsigned long *bio_flags, int rw,
2879 			 u64 *prev_em_start)
2880 {
2881 	struct inode *inode = page->mapping->host;
2882 	u64 start = page_offset(page);
2883 	u64 page_end = start + PAGE_SIZE - 1;
2884 	u64 end;
2885 	u64 cur = start;
2886 	u64 extent_offset;
2887 	u64 last_byte = i_size_read(inode);
2888 	u64 block_start;
2889 	u64 cur_end;
2890 	sector_t sector;
2891 	struct extent_map *em;
2892 	struct block_device *bdev;
2893 	int ret;
2894 	int nr = 0;
2895 	size_t pg_offset = 0;
2896 	size_t iosize;
2897 	size_t disk_io_size;
2898 	size_t blocksize = inode->i_sb->s_blocksize;
2899 	unsigned long this_bio_flag = 0;
2900 
2901 	set_page_extent_mapped(page);
2902 
2903 	end = page_end;
2904 	if (!PageUptodate(page)) {
2905 		if (cleancache_get_page(page) == 0) {
2906 			BUG_ON(blocksize != PAGE_SIZE);
2907 			unlock_extent(tree, start, end);
2908 			goto out;
2909 		}
2910 	}
2911 
2912 	if (page->index == last_byte >> PAGE_SHIFT) {
2913 		char *userpage;
2914 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915 
2916 		if (zero_offset) {
2917 			iosize = PAGE_SIZE - zero_offset;
2918 			userpage = kmap_atomic(page);
2919 			memset(userpage + zero_offset, 0, iosize);
2920 			flush_dcache_page(page);
2921 			kunmap_atomic(userpage);
2922 		}
2923 	}
2924 	while (cur <= end) {
2925 		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2926 		bool force_bio_submit = false;
2927 
2928 		if (cur >= last_byte) {
2929 			char *userpage;
2930 			struct extent_state *cached = NULL;
2931 
2932 			iosize = PAGE_SIZE - pg_offset;
2933 			userpage = kmap_atomic(page);
2934 			memset(userpage + pg_offset, 0, iosize);
2935 			flush_dcache_page(page);
2936 			kunmap_atomic(userpage);
2937 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 					    &cached, GFP_NOFS);
2939 			unlock_extent_cached(tree, cur,
2940 					     cur + iosize - 1,
2941 					     &cached, GFP_NOFS);
2942 			break;
2943 		}
2944 		em = __get_extent_map(inode, page, pg_offset, cur,
2945 				      end - cur + 1, get_extent, em_cached);
2946 		if (IS_ERR_OR_NULL(em)) {
2947 			SetPageError(page);
2948 			unlock_extent(tree, cur, end);
2949 			break;
2950 		}
2951 		extent_offset = cur - em->start;
2952 		BUG_ON(extent_map_end(em) <= cur);
2953 		BUG_ON(end < cur);
2954 
2955 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2956 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2957 			extent_set_compress_type(&this_bio_flag,
2958 						 em->compress_type);
2959 		}
2960 
2961 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 		cur_end = min(extent_map_end(em) - 1, end);
2963 		iosize = ALIGN(iosize, blocksize);
2964 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 			disk_io_size = em->block_len;
2966 			sector = em->block_start >> 9;
2967 		} else {
2968 			sector = (em->block_start + extent_offset) >> 9;
2969 			disk_io_size = iosize;
2970 		}
2971 		bdev = em->bdev;
2972 		block_start = em->block_start;
2973 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 			block_start = EXTENT_MAP_HOLE;
2975 
2976 		/*
2977 		 * If we have a file range that points to a compressed extent
2978 		 * and it's followed by a consecutive file range that points to
2979 		 * to the same compressed extent (possibly with a different
2980 		 * offset and/or length, so it either points to the whole extent
2981 		 * or only part of it), we must make sure we do not submit a
2982 		 * single bio to populate the pages for the 2 ranges because
2983 		 * this makes the compressed extent read zero out the pages
2984 		 * belonging to the 2nd range. Imagine the following scenario:
2985 		 *
2986 		 *  File layout
2987 		 *  [0 - 8K]                     [8K - 24K]
2988 		 *    |                               |
2989 		 *    |                               |
2990 		 * points to extent X,         points to extent X,
2991 		 * offset 4K, length of 8K     offset 0, length 16K
2992 		 *
2993 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 		 *
2995 		 * If the bio to read the compressed extent covers both ranges,
2996 		 * it will decompress extent X into the pages belonging to the
2997 		 * first range and then it will stop, zeroing out the remaining
2998 		 * pages that belong to the other range that points to extent X.
2999 		 * So here we make sure we submit 2 bios, one for the first
3000 		 * range and another one for the third range. Both will target
3001 		 * the same physical extent from disk, but we can't currently
3002 		 * make the compressed bio endio callback populate the pages
3003 		 * for both ranges because each compressed bio is tightly
3004 		 * coupled with a single extent map, and each range can have
3005 		 * an extent map with a different offset value relative to the
3006 		 * uncompressed data of our extent and different lengths. This
3007 		 * is a corner case so we prioritize correctness over
3008 		 * non-optimal behavior (submitting 2 bios for the same extent).
3009 		 */
3010 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 		    prev_em_start && *prev_em_start != (u64)-1 &&
3012 		    *prev_em_start != em->orig_start)
3013 			force_bio_submit = true;
3014 
3015 		if (prev_em_start)
3016 			*prev_em_start = em->orig_start;
3017 
3018 		free_extent_map(em);
3019 		em = NULL;
3020 
3021 		/* we've found a hole, just zero and go on */
3022 		if (block_start == EXTENT_MAP_HOLE) {
3023 			char *userpage;
3024 			struct extent_state *cached = NULL;
3025 
3026 			userpage = kmap_atomic(page);
3027 			memset(userpage + pg_offset, 0, iosize);
3028 			flush_dcache_page(page);
3029 			kunmap_atomic(userpage);
3030 
3031 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3032 					    &cached, GFP_NOFS);
3033 			unlock_extent_cached(tree, cur,
3034 					     cur + iosize - 1,
3035 					     &cached, GFP_NOFS);
3036 			cur = cur + iosize;
3037 			pg_offset += iosize;
3038 			continue;
3039 		}
3040 		/* the get_extent function already copied into the page */
3041 		if (test_range_bit(tree, cur, cur_end,
3042 				   EXTENT_UPTODATE, 1, NULL)) {
3043 			check_page_uptodate(tree, page);
3044 			unlock_extent(tree, cur, cur + iosize - 1);
3045 			cur = cur + iosize;
3046 			pg_offset += iosize;
3047 			continue;
3048 		}
3049 		/* we have an inline extent but it didn't get marked up
3050 		 * to date.  Error out
3051 		 */
3052 		if (block_start == EXTENT_MAP_INLINE) {
3053 			SetPageError(page);
3054 			unlock_extent(tree, cur, cur + iosize - 1);
3055 			cur = cur + iosize;
3056 			pg_offset += iosize;
3057 			continue;
3058 		}
3059 
3060 		pnr -= page->index;
3061 		ret = submit_extent_page(rw, tree, NULL, page,
3062 					 sector, disk_io_size, pg_offset,
3063 					 bdev, bio, pnr,
3064 					 end_bio_extent_readpage, mirror_num,
3065 					 *bio_flags,
3066 					 this_bio_flag,
3067 					 force_bio_submit);
3068 		if (!ret) {
3069 			nr++;
3070 			*bio_flags = this_bio_flag;
3071 		} else {
3072 			SetPageError(page);
3073 			unlock_extent(tree, cur, cur + iosize - 1);
3074 		}
3075 		cur = cur + iosize;
3076 		pg_offset += iosize;
3077 	}
3078 out:
3079 	if (!nr) {
3080 		if (!PageError(page))
3081 			SetPageUptodate(page);
3082 		unlock_page(page);
3083 	}
3084 	return 0;
3085 }
3086 
3087 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 					     struct page *pages[], int nr_pages,
3089 					     u64 start, u64 end,
3090 					     get_extent_t *get_extent,
3091 					     struct extent_map **em_cached,
3092 					     struct bio **bio, int mirror_num,
3093 					     unsigned long *bio_flags, int rw,
3094 					     u64 *prev_em_start)
3095 {
3096 	struct inode *inode;
3097 	struct btrfs_ordered_extent *ordered;
3098 	int index;
3099 
3100 	inode = pages[0]->mapping->host;
3101 	while (1) {
3102 		lock_extent(tree, start, end);
3103 		ordered = btrfs_lookup_ordered_range(inode, start,
3104 						     end - start + 1);
3105 		if (!ordered)
3106 			break;
3107 		unlock_extent(tree, start, end);
3108 		btrfs_start_ordered_extent(inode, ordered, 1);
3109 		btrfs_put_ordered_extent(ordered);
3110 	}
3111 
3112 	for (index = 0; index < nr_pages; index++) {
3113 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3114 			      mirror_num, bio_flags, rw, prev_em_start);
3115 		put_page(pages[index]);
3116 	}
3117 }
3118 
3119 static void __extent_readpages(struct extent_io_tree *tree,
3120 			       struct page *pages[],
3121 			       int nr_pages, get_extent_t *get_extent,
3122 			       struct extent_map **em_cached,
3123 			       struct bio **bio, int mirror_num,
3124 			       unsigned long *bio_flags, int rw,
3125 			       u64 *prev_em_start)
3126 {
3127 	u64 start = 0;
3128 	u64 end = 0;
3129 	u64 page_start;
3130 	int index;
3131 	int first_index = 0;
3132 
3133 	for (index = 0; index < nr_pages; index++) {
3134 		page_start = page_offset(pages[index]);
3135 		if (!end) {
3136 			start = page_start;
3137 			end = start + PAGE_SIZE - 1;
3138 			first_index = index;
3139 		} else if (end + 1 == page_start) {
3140 			end += PAGE_SIZE;
3141 		} else {
3142 			__do_contiguous_readpages(tree, &pages[first_index],
3143 						  index - first_index, start,
3144 						  end, get_extent, em_cached,
3145 						  bio, mirror_num, bio_flags,
3146 						  rw, prev_em_start);
3147 			start = page_start;
3148 			end = start + PAGE_SIZE - 1;
3149 			first_index = index;
3150 		}
3151 	}
3152 
3153 	if (end)
3154 		__do_contiguous_readpages(tree, &pages[first_index],
3155 					  index - first_index, start,
3156 					  end, get_extent, em_cached, bio,
3157 					  mirror_num, bio_flags, rw,
3158 					  prev_em_start);
3159 }
3160 
3161 static int __extent_read_full_page(struct extent_io_tree *tree,
3162 				   struct page *page,
3163 				   get_extent_t *get_extent,
3164 				   struct bio **bio, int mirror_num,
3165 				   unsigned long *bio_flags, int rw)
3166 {
3167 	struct inode *inode = page->mapping->host;
3168 	struct btrfs_ordered_extent *ordered;
3169 	u64 start = page_offset(page);
3170 	u64 end = start + PAGE_SIZE - 1;
3171 	int ret;
3172 
3173 	while (1) {
3174 		lock_extent(tree, start, end);
3175 		ordered = btrfs_lookup_ordered_range(inode, start,
3176 						PAGE_SIZE);
3177 		if (!ordered)
3178 			break;
3179 		unlock_extent(tree, start, end);
3180 		btrfs_start_ordered_extent(inode, ordered, 1);
3181 		btrfs_put_ordered_extent(ordered);
3182 	}
3183 
3184 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3185 			    bio_flags, rw, NULL);
3186 	return ret;
3187 }
3188 
3189 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3190 			    get_extent_t *get_extent, int mirror_num)
3191 {
3192 	struct bio *bio = NULL;
3193 	unsigned long bio_flags = 0;
3194 	int ret;
3195 
3196 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3197 				      &bio_flags, READ);
3198 	if (bio)
3199 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3200 	return ret;
3201 }
3202 
3203 static noinline void update_nr_written(struct page *page,
3204 				      struct writeback_control *wbc,
3205 				      unsigned long nr_written)
3206 {
3207 	wbc->nr_to_write -= nr_written;
3208 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210 		page->mapping->writeback_index = page->index + nr_written;
3211 }
3212 
3213 /*
3214  * helper for __extent_writepage, doing all of the delayed allocation setup.
3215  *
3216  * This returns 1 if our fill_delalloc function did all the work required
3217  * to write the page (copy into inline extent).  In this case the IO has
3218  * been started and the page is already unlocked.
3219  *
3220  * This returns 0 if all went well (page still locked)
3221  * This returns < 0 if there were errors (page still locked)
3222  */
3223 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 			      struct page *page, struct writeback_control *wbc,
3225 			      struct extent_page_data *epd,
3226 			      u64 delalloc_start,
3227 			      unsigned long *nr_written)
3228 {
3229 	struct extent_io_tree *tree = epd->tree;
3230 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 	u64 nr_delalloc;
3232 	u64 delalloc_to_write = 0;
3233 	u64 delalloc_end = 0;
3234 	int ret;
3235 	int page_started = 0;
3236 
3237 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 		return 0;
3239 
3240 	while (delalloc_end < page_end) {
3241 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 					       page,
3243 					       &delalloc_start,
3244 					       &delalloc_end,
3245 					       BTRFS_MAX_EXTENT_SIZE);
3246 		if (nr_delalloc == 0) {
3247 			delalloc_start = delalloc_end + 1;
3248 			continue;
3249 		}
3250 		ret = tree->ops->fill_delalloc(inode, page,
3251 					       delalloc_start,
3252 					       delalloc_end,
3253 					       &page_started,
3254 					       nr_written);
3255 		/* File system has been set read-only */
3256 		if (ret) {
3257 			SetPageError(page);
3258 			/* fill_delalloc should be return < 0 for error
3259 			 * but just in case, we use > 0 here meaning the
3260 			 * IO is started, so we don't want to return > 0
3261 			 * unless things are going well.
3262 			 */
3263 			ret = ret < 0 ? ret : -EIO;
3264 			goto done;
3265 		}
3266 		/*
3267 		 * delalloc_end is already one less than the total length, so
3268 		 * we don't subtract one from PAGE_SIZE
3269 		 */
3270 		delalloc_to_write += (delalloc_end - delalloc_start +
3271 				      PAGE_SIZE) >> PAGE_SHIFT;
3272 		delalloc_start = delalloc_end + 1;
3273 	}
3274 	if (wbc->nr_to_write < delalloc_to_write) {
3275 		int thresh = 8192;
3276 
3277 		if (delalloc_to_write < thresh * 2)
3278 			thresh = delalloc_to_write;
3279 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 					 thresh);
3281 	}
3282 
3283 	/* did the fill delalloc function already unlock and start
3284 	 * the IO?
3285 	 */
3286 	if (page_started) {
3287 		/*
3288 		 * we've unlocked the page, so we can't update
3289 		 * the mapping's writeback index, just update
3290 		 * nr_to_write.
3291 		 */
3292 		wbc->nr_to_write -= *nr_written;
3293 		return 1;
3294 	}
3295 
3296 	ret = 0;
3297 
3298 done:
3299 	return ret;
3300 }
3301 
3302 /*
3303  * helper for __extent_writepage.  This calls the writepage start hooks,
3304  * and does the loop to map the page into extents and bios.
3305  *
3306  * We return 1 if the IO is started and the page is unlocked,
3307  * 0 if all went well (page still locked)
3308  * < 0 if there were errors (page still locked)
3309  */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 				 struct page *page,
3312 				 struct writeback_control *wbc,
3313 				 struct extent_page_data *epd,
3314 				 loff_t i_size,
3315 				 unsigned long nr_written,
3316 				 int write_flags, int *nr_ret)
3317 {
3318 	struct extent_io_tree *tree = epd->tree;
3319 	u64 start = page_offset(page);
3320 	u64 page_end = start + PAGE_SIZE - 1;
3321 	u64 end;
3322 	u64 cur = start;
3323 	u64 extent_offset;
3324 	u64 block_start;
3325 	u64 iosize;
3326 	sector_t sector;
3327 	struct extent_state *cached_state = NULL;
3328 	struct extent_map *em;
3329 	struct block_device *bdev;
3330 	size_t pg_offset = 0;
3331 	size_t blocksize;
3332 	int ret = 0;
3333 	int nr = 0;
3334 	bool compressed;
3335 
3336 	if (tree->ops && tree->ops->writepage_start_hook) {
3337 		ret = tree->ops->writepage_start_hook(page, start,
3338 						      page_end);
3339 		if (ret) {
3340 			/* Fixup worker will requeue */
3341 			if (ret == -EBUSY)
3342 				wbc->pages_skipped++;
3343 			else
3344 				redirty_page_for_writepage(wbc, page);
3345 
3346 			update_nr_written(page, wbc, nr_written);
3347 			unlock_page(page);
3348 			ret = 1;
3349 			goto done_unlocked;
3350 		}
3351 	}
3352 
3353 	/*
3354 	 * we don't want to touch the inode after unlocking the page,
3355 	 * so we update the mapping writeback index now
3356 	 */
3357 	update_nr_written(page, wbc, nr_written + 1);
3358 
3359 	end = page_end;
3360 	if (i_size <= start) {
3361 		if (tree->ops && tree->ops->writepage_end_io_hook)
3362 			tree->ops->writepage_end_io_hook(page, start,
3363 							 page_end, NULL, 1);
3364 		goto done;
3365 	}
3366 
3367 	blocksize = inode->i_sb->s_blocksize;
3368 
3369 	while (cur <= end) {
3370 		u64 em_end;
3371 		if (cur >= i_size) {
3372 			if (tree->ops && tree->ops->writepage_end_io_hook)
3373 				tree->ops->writepage_end_io_hook(page, cur,
3374 							 page_end, NULL, 1);
3375 			break;
3376 		}
3377 		em = epd->get_extent(inode, page, pg_offset, cur,
3378 				     end - cur + 1, 1);
3379 		if (IS_ERR_OR_NULL(em)) {
3380 			SetPageError(page);
3381 			ret = PTR_ERR_OR_ZERO(em);
3382 			break;
3383 		}
3384 
3385 		extent_offset = cur - em->start;
3386 		em_end = extent_map_end(em);
3387 		BUG_ON(em_end <= cur);
3388 		BUG_ON(end < cur);
3389 		iosize = min(em_end - cur, end - cur + 1);
3390 		iosize = ALIGN(iosize, blocksize);
3391 		sector = (em->block_start + extent_offset) >> 9;
3392 		bdev = em->bdev;
3393 		block_start = em->block_start;
3394 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3395 		free_extent_map(em);
3396 		em = NULL;
3397 
3398 		/*
3399 		 * compressed and inline extents are written through other
3400 		 * paths in the FS
3401 		 */
3402 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3403 		    block_start == EXTENT_MAP_INLINE) {
3404 			/*
3405 			 * end_io notification does not happen here for
3406 			 * compressed extents
3407 			 */
3408 			if (!compressed && tree->ops &&
3409 			    tree->ops->writepage_end_io_hook)
3410 				tree->ops->writepage_end_io_hook(page, cur,
3411 							 cur + iosize - 1,
3412 							 NULL, 1);
3413 			else if (compressed) {
3414 				/* we don't want to end_page_writeback on
3415 				 * a compressed extent.  this happens
3416 				 * elsewhere
3417 				 */
3418 				nr++;
3419 			}
3420 
3421 			cur += iosize;
3422 			pg_offset += iosize;
3423 			continue;
3424 		}
3425 
3426 		if (tree->ops && tree->ops->writepage_io_hook) {
3427 			ret = tree->ops->writepage_io_hook(page, cur,
3428 						cur + iosize - 1);
3429 		} else {
3430 			ret = 0;
3431 		}
3432 		if (ret) {
3433 			SetPageError(page);
3434 		} else {
3435 			unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
3436 
3437 			set_range_writeback(tree, cur, cur + iosize - 1);
3438 			if (!PageWriteback(page)) {
3439 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3440 					   "page %lu not writeback, cur %llu end %llu",
3441 				       page->index, cur, end);
3442 			}
3443 
3444 			ret = submit_extent_page(write_flags, tree, wbc, page,
3445 						 sector, iosize, pg_offset,
3446 						 bdev, &epd->bio, max_nr,
3447 						 end_bio_extent_writepage,
3448 						 0, 0, 0, false);
3449 			if (ret)
3450 				SetPageError(page);
3451 		}
3452 		cur = cur + iosize;
3453 		pg_offset += iosize;
3454 		nr++;
3455 	}
3456 done:
3457 	*nr_ret = nr;
3458 
3459 done_unlocked:
3460 
3461 	/* drop our reference on any cached states */
3462 	free_extent_state(cached_state);
3463 	return ret;
3464 }
3465 
3466 /*
3467  * the writepage semantics are similar to regular writepage.  extent
3468  * records are inserted to lock ranges in the tree, and as dirty areas
3469  * are found, they are marked writeback.  Then the lock bits are removed
3470  * and the end_io handler clears the writeback ranges
3471  */
3472 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473 			      void *data)
3474 {
3475 	struct inode *inode = page->mapping->host;
3476 	struct extent_page_data *epd = data;
3477 	u64 start = page_offset(page);
3478 	u64 page_end = start + PAGE_SIZE - 1;
3479 	int ret;
3480 	int nr = 0;
3481 	size_t pg_offset = 0;
3482 	loff_t i_size = i_size_read(inode);
3483 	unsigned long end_index = i_size >> PAGE_SHIFT;
3484 	int write_flags;
3485 	unsigned long nr_written = 0;
3486 
3487 	if (wbc->sync_mode == WB_SYNC_ALL)
3488 		write_flags = WRITE_SYNC;
3489 	else
3490 		write_flags = WRITE;
3491 
3492 	trace___extent_writepage(page, inode, wbc);
3493 
3494 	WARN_ON(!PageLocked(page));
3495 
3496 	ClearPageError(page);
3497 
3498 	pg_offset = i_size & (PAGE_SIZE - 1);
3499 	if (page->index > end_index ||
3500 	   (page->index == end_index && !pg_offset)) {
3501 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3502 		unlock_page(page);
3503 		return 0;
3504 	}
3505 
3506 	if (page->index == end_index) {
3507 		char *userpage;
3508 
3509 		userpage = kmap_atomic(page);
3510 		memset(userpage + pg_offset, 0,
3511 		       PAGE_SIZE - pg_offset);
3512 		kunmap_atomic(userpage);
3513 		flush_dcache_page(page);
3514 	}
3515 
3516 	pg_offset = 0;
3517 
3518 	set_page_extent_mapped(page);
3519 
3520 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521 	if (ret == 1)
3522 		goto done_unlocked;
3523 	if (ret)
3524 		goto done;
3525 
3526 	ret = __extent_writepage_io(inode, page, wbc, epd,
3527 				    i_size, nr_written, write_flags, &nr);
3528 	if (ret == 1)
3529 		goto done_unlocked;
3530 
3531 done:
3532 	if (nr == 0) {
3533 		/* make sure the mapping tag for page dirty gets cleared */
3534 		set_page_writeback(page);
3535 		end_page_writeback(page);
3536 	}
3537 	if (PageError(page)) {
3538 		ret = ret < 0 ? ret : -EIO;
3539 		end_extent_writepage(page, ret, start, page_end);
3540 	}
3541 	unlock_page(page);
3542 	return ret;
3543 
3544 done_unlocked:
3545 	return 0;
3546 }
3547 
3548 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3549 {
3550 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551 		       TASK_UNINTERRUPTIBLE);
3552 }
3553 
3554 static noinline_for_stack int
3555 lock_extent_buffer_for_io(struct extent_buffer *eb,
3556 			  struct btrfs_fs_info *fs_info,
3557 			  struct extent_page_data *epd)
3558 {
3559 	unsigned long i, num_pages;
3560 	int flush = 0;
3561 	int ret = 0;
3562 
3563 	if (!btrfs_try_tree_write_lock(eb)) {
3564 		flush = 1;
3565 		flush_write_bio(epd);
3566 		btrfs_tree_lock(eb);
3567 	}
3568 
3569 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570 		btrfs_tree_unlock(eb);
3571 		if (!epd->sync_io)
3572 			return 0;
3573 		if (!flush) {
3574 			flush_write_bio(epd);
3575 			flush = 1;
3576 		}
3577 		while (1) {
3578 			wait_on_extent_buffer_writeback(eb);
3579 			btrfs_tree_lock(eb);
3580 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581 				break;
3582 			btrfs_tree_unlock(eb);
3583 		}
3584 	}
3585 
3586 	/*
3587 	 * We need to do this to prevent races in people who check if the eb is
3588 	 * under IO since we can end up having no IO bits set for a short period
3589 	 * of time.
3590 	 */
3591 	spin_lock(&eb->refs_lock);
3592 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3594 		spin_unlock(&eb->refs_lock);
3595 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3596 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597 				     -eb->len,
3598 				     fs_info->dirty_metadata_batch);
3599 		ret = 1;
3600 	} else {
3601 		spin_unlock(&eb->refs_lock);
3602 	}
3603 
3604 	btrfs_tree_unlock(eb);
3605 
3606 	if (!ret)
3607 		return ret;
3608 
3609 	num_pages = num_extent_pages(eb->start, eb->len);
3610 	for (i = 0; i < num_pages; i++) {
3611 		struct page *p = eb->pages[i];
3612 
3613 		if (!trylock_page(p)) {
3614 			if (!flush) {
3615 				flush_write_bio(epd);
3616 				flush = 1;
3617 			}
3618 			lock_page(p);
3619 		}
3620 	}
3621 
3622 	return ret;
3623 }
3624 
3625 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626 {
3627 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3628 	smp_mb__after_atomic();
3629 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630 }
3631 
3632 static void set_btree_ioerr(struct page *page)
3633 {
3634 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636 
3637 	SetPageError(page);
3638 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639 		return;
3640 
3641 	/*
3642 	 * If writeback for a btree extent that doesn't belong to a log tree
3643 	 * failed, increment the counter transaction->eb_write_errors.
3644 	 * We do this because while the transaction is running and before it's
3645 	 * committing (when we call filemap_fdata[write|wait]_range against
3646 	 * the btree inode), we might have
3647 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648 	 * returns an error or an error happens during writeback, when we're
3649 	 * committing the transaction we wouldn't know about it, since the pages
3650 	 * can be no longer dirty nor marked anymore for writeback (if a
3651 	 * subsequent modification to the extent buffer didn't happen before the
3652 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3653 	 * able to find the pages tagged with SetPageError at transaction
3654 	 * commit time. So if this happens we must abort the transaction,
3655 	 * otherwise we commit a super block with btree roots that point to
3656 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3657 	 * or the content of some node/leaf from a past generation that got
3658 	 * cowed or deleted and is no longer valid.
3659 	 *
3660 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661 	 * not be enough - we need to distinguish between log tree extents vs
3662 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3663 	 * will catch and clear such errors in the mapping - and that call might
3664 	 * be from a log sync and not from a transaction commit. Also, checking
3665 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666 	 * not done and would not be reliable - the eb might have been released
3667 	 * from memory and reading it back again means that flag would not be
3668 	 * set (since it's a runtime flag, not persisted on disk).
3669 	 *
3670 	 * Using the flags below in the btree inode also makes us achieve the
3671 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3673 	 * is called, the writeback for all dirty pages had already finished
3674 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675 	 * filemap_fdatawait_range() would return success, as it could not know
3676 	 * that writeback errors happened (the pages were no longer tagged for
3677 	 * writeback).
3678 	 */
3679 	switch (eb->log_index) {
3680 	case -1:
3681 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682 		break;
3683 	case 0:
3684 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685 		break;
3686 	case 1:
3687 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688 		break;
3689 	default:
3690 		BUG(); /* unexpected, logic error */
3691 	}
3692 }
3693 
3694 static void end_bio_extent_buffer_writepage(struct bio *bio)
3695 {
3696 	struct bio_vec *bvec;
3697 	struct extent_buffer *eb;
3698 	int i, done;
3699 
3700 	bio_for_each_segment_all(bvec, bio, i) {
3701 		struct page *page = bvec->bv_page;
3702 
3703 		eb = (struct extent_buffer *)page->private;
3704 		BUG_ON(!eb);
3705 		done = atomic_dec_and_test(&eb->io_pages);
3706 
3707 		if (bio->bi_error ||
3708 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3709 			ClearPageUptodate(page);
3710 			set_btree_ioerr(page);
3711 		}
3712 
3713 		end_page_writeback(page);
3714 
3715 		if (!done)
3716 			continue;
3717 
3718 		end_extent_buffer_writeback(eb);
3719 	}
3720 
3721 	bio_put(bio);
3722 }
3723 
3724 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3725 			struct btrfs_fs_info *fs_info,
3726 			struct writeback_control *wbc,
3727 			struct extent_page_data *epd)
3728 {
3729 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3730 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3731 	u64 offset = eb->start;
3732 	unsigned long i, num_pages;
3733 	unsigned long bio_flags = 0;
3734 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3735 	int ret = 0;
3736 
3737 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3738 	num_pages = num_extent_pages(eb->start, eb->len);
3739 	atomic_set(&eb->io_pages, num_pages);
3740 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3741 		bio_flags = EXTENT_BIO_TREE_LOG;
3742 
3743 	for (i = 0; i < num_pages; i++) {
3744 		struct page *p = eb->pages[i];
3745 
3746 		clear_page_dirty_for_io(p);
3747 		set_page_writeback(p);
3748 		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3749 					 PAGE_SIZE, 0, bdev, &epd->bio,
3750 					 -1, end_bio_extent_buffer_writepage,
3751 					 0, epd->bio_flags, bio_flags, false);
3752 		epd->bio_flags = bio_flags;
3753 		if (ret) {
3754 			set_btree_ioerr(p);
3755 			end_page_writeback(p);
3756 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 				end_extent_buffer_writeback(eb);
3758 			ret = -EIO;
3759 			break;
3760 		}
3761 		offset += PAGE_SIZE;
3762 		update_nr_written(p, wbc, 1);
3763 		unlock_page(p);
3764 	}
3765 
3766 	if (unlikely(ret)) {
3767 		for (; i < num_pages; i++) {
3768 			struct page *p = eb->pages[i];
3769 			clear_page_dirty_for_io(p);
3770 			unlock_page(p);
3771 		}
3772 	}
3773 
3774 	return ret;
3775 }
3776 
3777 int btree_write_cache_pages(struct address_space *mapping,
3778 				   struct writeback_control *wbc)
3779 {
3780 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 	struct extent_buffer *eb, *prev_eb = NULL;
3783 	struct extent_page_data epd = {
3784 		.bio = NULL,
3785 		.tree = tree,
3786 		.extent_locked = 0,
3787 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3788 		.bio_flags = 0,
3789 	};
3790 	int ret = 0;
3791 	int done = 0;
3792 	int nr_to_write_done = 0;
3793 	struct pagevec pvec;
3794 	int nr_pages;
3795 	pgoff_t index;
3796 	pgoff_t end;		/* Inclusive */
3797 	int scanned = 0;
3798 	int tag;
3799 
3800 	pagevec_init(&pvec, 0);
3801 	if (wbc->range_cyclic) {
3802 		index = mapping->writeback_index; /* Start from prev offset */
3803 		end = -1;
3804 	} else {
3805 		index = wbc->range_start >> PAGE_SHIFT;
3806 		end = wbc->range_end >> PAGE_SHIFT;
3807 		scanned = 1;
3808 	}
3809 	if (wbc->sync_mode == WB_SYNC_ALL)
3810 		tag = PAGECACHE_TAG_TOWRITE;
3811 	else
3812 		tag = PAGECACHE_TAG_DIRTY;
3813 retry:
3814 	if (wbc->sync_mode == WB_SYNC_ALL)
3815 		tag_pages_for_writeback(mapping, index, end);
3816 	while (!done && !nr_to_write_done && (index <= end) &&
3817 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 		unsigned i;
3820 
3821 		scanned = 1;
3822 		for (i = 0; i < nr_pages; i++) {
3823 			struct page *page = pvec.pages[i];
3824 
3825 			if (!PagePrivate(page))
3826 				continue;
3827 
3828 			if (!wbc->range_cyclic && page->index > end) {
3829 				done = 1;
3830 				break;
3831 			}
3832 
3833 			spin_lock(&mapping->private_lock);
3834 			if (!PagePrivate(page)) {
3835 				spin_unlock(&mapping->private_lock);
3836 				continue;
3837 			}
3838 
3839 			eb = (struct extent_buffer *)page->private;
3840 
3841 			/*
3842 			 * Shouldn't happen and normally this would be a BUG_ON
3843 			 * but no sense in crashing the users box for something
3844 			 * we can survive anyway.
3845 			 */
3846 			if (WARN_ON(!eb)) {
3847 				spin_unlock(&mapping->private_lock);
3848 				continue;
3849 			}
3850 
3851 			if (eb == prev_eb) {
3852 				spin_unlock(&mapping->private_lock);
3853 				continue;
3854 			}
3855 
3856 			ret = atomic_inc_not_zero(&eb->refs);
3857 			spin_unlock(&mapping->private_lock);
3858 			if (!ret)
3859 				continue;
3860 
3861 			prev_eb = eb;
3862 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 			if (!ret) {
3864 				free_extent_buffer(eb);
3865 				continue;
3866 			}
3867 
3868 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 			if (ret) {
3870 				done = 1;
3871 				free_extent_buffer(eb);
3872 				break;
3873 			}
3874 			free_extent_buffer(eb);
3875 
3876 			/*
3877 			 * the filesystem may choose to bump up nr_to_write.
3878 			 * We have to make sure to honor the new nr_to_write
3879 			 * at any time
3880 			 */
3881 			nr_to_write_done = wbc->nr_to_write <= 0;
3882 		}
3883 		pagevec_release(&pvec);
3884 		cond_resched();
3885 	}
3886 	if (!scanned && !done) {
3887 		/*
3888 		 * We hit the last page and there is more work to be done: wrap
3889 		 * back to the start of the file
3890 		 */
3891 		scanned = 1;
3892 		index = 0;
3893 		goto retry;
3894 	}
3895 	flush_write_bio(&epd);
3896 	return ret;
3897 }
3898 
3899 /**
3900  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3901  * @mapping: address space structure to write
3902  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903  * @writepage: function called for each page
3904  * @data: data passed to writepage function
3905  *
3906  * If a page is already under I/O, write_cache_pages() skips it, even
3907  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3908  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3909  * and msync() need to guarantee that all the data which was dirty at the time
3910  * the call was made get new I/O started against them.  If wbc->sync_mode is
3911  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912  * existing IO to complete.
3913  */
3914 static int extent_write_cache_pages(struct extent_io_tree *tree,
3915 			     struct address_space *mapping,
3916 			     struct writeback_control *wbc,
3917 			     writepage_t writepage, void *data,
3918 			     void (*flush_fn)(void *))
3919 {
3920 	struct inode *inode = mapping->host;
3921 	int ret = 0;
3922 	int done = 0;
3923 	int err = 0;
3924 	int nr_to_write_done = 0;
3925 	struct pagevec pvec;
3926 	int nr_pages;
3927 	pgoff_t index;
3928 	pgoff_t end;		/* Inclusive */
3929 	int scanned = 0;
3930 	int tag;
3931 
3932 	/*
3933 	 * We have to hold onto the inode so that ordered extents can do their
3934 	 * work when the IO finishes.  The alternative to this is failing to add
3935 	 * an ordered extent if the igrab() fails there and that is a huge pain
3936 	 * to deal with, so instead just hold onto the inode throughout the
3937 	 * writepages operation.  If it fails here we are freeing up the inode
3938 	 * anyway and we'd rather not waste our time writing out stuff that is
3939 	 * going to be truncated anyway.
3940 	 */
3941 	if (!igrab(inode))
3942 		return 0;
3943 
3944 	pagevec_init(&pvec, 0);
3945 	if (wbc->range_cyclic) {
3946 		index = mapping->writeback_index; /* Start from prev offset */
3947 		end = -1;
3948 	} else {
3949 		index = wbc->range_start >> PAGE_SHIFT;
3950 		end = wbc->range_end >> PAGE_SHIFT;
3951 		scanned = 1;
3952 	}
3953 	if (wbc->sync_mode == WB_SYNC_ALL)
3954 		tag = PAGECACHE_TAG_TOWRITE;
3955 	else
3956 		tag = PAGECACHE_TAG_DIRTY;
3957 retry:
3958 	if (wbc->sync_mode == WB_SYNC_ALL)
3959 		tag_pages_for_writeback(mapping, index, end);
3960 	while (!done && !nr_to_write_done && (index <= end) &&
3961 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3962 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3963 		unsigned i;
3964 
3965 		scanned = 1;
3966 		for (i = 0; i < nr_pages; i++) {
3967 			struct page *page = pvec.pages[i];
3968 
3969 			/*
3970 			 * At this point we hold neither mapping->tree_lock nor
3971 			 * lock on the page itself: the page may be truncated or
3972 			 * invalidated (changing page->mapping to NULL), or even
3973 			 * swizzled back from swapper_space to tmpfs file
3974 			 * mapping
3975 			 */
3976 			if (!trylock_page(page)) {
3977 				flush_fn(data);
3978 				lock_page(page);
3979 			}
3980 
3981 			if (unlikely(page->mapping != mapping)) {
3982 				unlock_page(page);
3983 				continue;
3984 			}
3985 
3986 			if (!wbc->range_cyclic && page->index > end) {
3987 				done = 1;
3988 				unlock_page(page);
3989 				continue;
3990 			}
3991 
3992 			if (wbc->sync_mode != WB_SYNC_NONE) {
3993 				if (PageWriteback(page))
3994 					flush_fn(data);
3995 				wait_on_page_writeback(page);
3996 			}
3997 
3998 			if (PageWriteback(page) ||
3999 			    !clear_page_dirty_for_io(page)) {
4000 				unlock_page(page);
4001 				continue;
4002 			}
4003 
4004 			ret = (*writepage)(page, wbc, data);
4005 
4006 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4007 				unlock_page(page);
4008 				ret = 0;
4009 			}
4010 			if (!err && ret < 0)
4011 				err = ret;
4012 
4013 			/*
4014 			 * the filesystem may choose to bump up nr_to_write.
4015 			 * We have to make sure to honor the new nr_to_write
4016 			 * at any time
4017 			 */
4018 			nr_to_write_done = wbc->nr_to_write <= 0;
4019 		}
4020 		pagevec_release(&pvec);
4021 		cond_resched();
4022 	}
4023 	if (!scanned && !done && !err) {
4024 		/*
4025 		 * We hit the last page and there is more work to be done: wrap
4026 		 * back to the start of the file
4027 		 */
4028 		scanned = 1;
4029 		index = 0;
4030 		goto retry;
4031 	}
4032 	btrfs_add_delayed_iput(inode);
4033 	return err;
4034 }
4035 
4036 static void flush_epd_write_bio(struct extent_page_data *epd)
4037 {
4038 	if (epd->bio) {
4039 		int rw = WRITE;
4040 		int ret;
4041 
4042 		if (epd->sync_io)
4043 			rw = WRITE_SYNC;
4044 
4045 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4046 		BUG_ON(ret < 0); /* -ENOMEM */
4047 		epd->bio = NULL;
4048 	}
4049 }
4050 
4051 static noinline void flush_write_bio(void *data)
4052 {
4053 	struct extent_page_data *epd = data;
4054 	flush_epd_write_bio(epd);
4055 }
4056 
4057 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4058 			  get_extent_t *get_extent,
4059 			  struct writeback_control *wbc)
4060 {
4061 	int ret;
4062 	struct extent_page_data epd = {
4063 		.bio = NULL,
4064 		.tree = tree,
4065 		.get_extent = get_extent,
4066 		.extent_locked = 0,
4067 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4068 		.bio_flags = 0,
4069 	};
4070 
4071 	ret = __extent_writepage(page, wbc, &epd);
4072 
4073 	flush_epd_write_bio(&epd);
4074 	return ret;
4075 }
4076 
4077 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4078 			      u64 start, u64 end, get_extent_t *get_extent,
4079 			      int mode)
4080 {
4081 	int ret = 0;
4082 	struct address_space *mapping = inode->i_mapping;
4083 	struct page *page;
4084 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4085 		PAGE_SHIFT;
4086 
4087 	struct extent_page_data epd = {
4088 		.bio = NULL,
4089 		.tree = tree,
4090 		.get_extent = get_extent,
4091 		.extent_locked = 1,
4092 		.sync_io = mode == WB_SYNC_ALL,
4093 		.bio_flags = 0,
4094 	};
4095 	struct writeback_control wbc_writepages = {
4096 		.sync_mode	= mode,
4097 		.nr_to_write	= nr_pages * 2,
4098 		.range_start	= start,
4099 		.range_end	= end + 1,
4100 	};
4101 
4102 	while (start <= end) {
4103 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4104 		if (clear_page_dirty_for_io(page))
4105 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4106 		else {
4107 			if (tree->ops && tree->ops->writepage_end_io_hook)
4108 				tree->ops->writepage_end_io_hook(page, start,
4109 						 start + PAGE_SIZE - 1,
4110 						 NULL, 1);
4111 			unlock_page(page);
4112 		}
4113 		put_page(page);
4114 		start += PAGE_SIZE;
4115 	}
4116 
4117 	flush_epd_write_bio(&epd);
4118 	return ret;
4119 }
4120 
4121 int extent_writepages(struct extent_io_tree *tree,
4122 		      struct address_space *mapping,
4123 		      get_extent_t *get_extent,
4124 		      struct writeback_control *wbc)
4125 {
4126 	int ret = 0;
4127 	struct extent_page_data epd = {
4128 		.bio = NULL,
4129 		.tree = tree,
4130 		.get_extent = get_extent,
4131 		.extent_locked = 0,
4132 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4133 		.bio_flags = 0,
4134 	};
4135 
4136 	ret = extent_write_cache_pages(tree, mapping, wbc,
4137 				       __extent_writepage, &epd,
4138 				       flush_write_bio);
4139 	flush_epd_write_bio(&epd);
4140 	return ret;
4141 }
4142 
4143 int extent_readpages(struct extent_io_tree *tree,
4144 		     struct address_space *mapping,
4145 		     struct list_head *pages, unsigned nr_pages,
4146 		     get_extent_t get_extent)
4147 {
4148 	struct bio *bio = NULL;
4149 	unsigned page_idx;
4150 	unsigned long bio_flags = 0;
4151 	struct page *pagepool[16];
4152 	struct page *page;
4153 	struct extent_map *em_cached = NULL;
4154 	int nr = 0;
4155 	u64 prev_em_start = (u64)-1;
4156 
4157 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4158 		page = list_entry(pages->prev, struct page, lru);
4159 
4160 		prefetchw(&page->flags);
4161 		list_del(&page->lru);
4162 		if (add_to_page_cache_lru(page, mapping,
4163 					page->index, GFP_NOFS)) {
4164 			put_page(page);
4165 			continue;
4166 		}
4167 
4168 		pagepool[nr++] = page;
4169 		if (nr < ARRAY_SIZE(pagepool))
4170 			continue;
4171 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4172 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4173 		nr = 0;
4174 	}
4175 	if (nr)
4176 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4177 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4178 
4179 	if (em_cached)
4180 		free_extent_map(em_cached);
4181 
4182 	BUG_ON(!list_empty(pages));
4183 	if (bio)
4184 		return submit_one_bio(READ, bio, 0, bio_flags);
4185 	return 0;
4186 }
4187 
4188 /*
4189  * basic invalidatepage code, this waits on any locked or writeback
4190  * ranges corresponding to the page, and then deletes any extent state
4191  * records from the tree
4192  */
4193 int extent_invalidatepage(struct extent_io_tree *tree,
4194 			  struct page *page, unsigned long offset)
4195 {
4196 	struct extent_state *cached_state = NULL;
4197 	u64 start = page_offset(page);
4198 	u64 end = start + PAGE_SIZE - 1;
4199 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4200 
4201 	start += ALIGN(offset, blocksize);
4202 	if (start > end)
4203 		return 0;
4204 
4205 	lock_extent_bits(tree, start, end, &cached_state);
4206 	wait_on_page_writeback(page);
4207 	clear_extent_bit(tree, start, end,
4208 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4209 			 EXTENT_DO_ACCOUNTING,
4210 			 1, 1, &cached_state, GFP_NOFS);
4211 	return 0;
4212 }
4213 
4214 /*
4215  * a helper for releasepage, this tests for areas of the page that
4216  * are locked or under IO and drops the related state bits if it is safe
4217  * to drop the page.
4218  */
4219 static int try_release_extent_state(struct extent_map_tree *map,
4220 				    struct extent_io_tree *tree,
4221 				    struct page *page, gfp_t mask)
4222 {
4223 	u64 start = page_offset(page);
4224 	u64 end = start + PAGE_SIZE - 1;
4225 	int ret = 1;
4226 
4227 	if (test_range_bit(tree, start, end,
4228 			   EXTENT_IOBITS, 0, NULL))
4229 		ret = 0;
4230 	else {
4231 		if ((mask & GFP_NOFS) == GFP_NOFS)
4232 			mask = GFP_NOFS;
4233 		/*
4234 		 * at this point we can safely clear everything except the
4235 		 * locked bit and the nodatasum bit
4236 		 */
4237 		ret = clear_extent_bit(tree, start, end,
4238 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239 				 0, 0, NULL, mask);
4240 
4241 		/* if clear_extent_bit failed for enomem reasons,
4242 		 * we can't allow the release to continue.
4243 		 */
4244 		if (ret < 0)
4245 			ret = 0;
4246 		else
4247 			ret = 1;
4248 	}
4249 	return ret;
4250 }
4251 
4252 /*
4253  * a helper for releasepage.  As long as there are no locked extents
4254  * in the range corresponding to the page, both state records and extent
4255  * map records are removed
4256  */
4257 int try_release_extent_mapping(struct extent_map_tree *map,
4258 			       struct extent_io_tree *tree, struct page *page,
4259 			       gfp_t mask)
4260 {
4261 	struct extent_map *em;
4262 	u64 start = page_offset(page);
4263 	u64 end = start + PAGE_SIZE - 1;
4264 
4265 	if (gfpflags_allow_blocking(mask) &&
4266 	    page->mapping->host->i_size > SZ_16M) {
4267 		u64 len;
4268 		while (start <= end) {
4269 			len = end - start + 1;
4270 			write_lock(&map->lock);
4271 			em = lookup_extent_mapping(map, start, len);
4272 			if (!em) {
4273 				write_unlock(&map->lock);
4274 				break;
4275 			}
4276 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277 			    em->start != start) {
4278 				write_unlock(&map->lock);
4279 				free_extent_map(em);
4280 				break;
4281 			}
4282 			if (!test_range_bit(tree, em->start,
4283 					    extent_map_end(em) - 1,
4284 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4285 					    0, NULL)) {
4286 				remove_extent_mapping(map, em);
4287 				/* once for the rb tree */
4288 				free_extent_map(em);
4289 			}
4290 			start = extent_map_end(em);
4291 			write_unlock(&map->lock);
4292 
4293 			/* once for us */
4294 			free_extent_map(em);
4295 		}
4296 	}
4297 	return try_release_extent_state(map, tree, page, mask);
4298 }
4299 
4300 /*
4301  * helper function for fiemap, which doesn't want to see any holes.
4302  * This maps until we find something past 'last'
4303  */
4304 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305 						u64 offset,
4306 						u64 last,
4307 						get_extent_t *get_extent)
4308 {
4309 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4310 	struct extent_map *em;
4311 	u64 len;
4312 
4313 	if (offset >= last)
4314 		return NULL;
4315 
4316 	while (1) {
4317 		len = last - offset;
4318 		if (len == 0)
4319 			break;
4320 		len = ALIGN(len, sectorsize);
4321 		em = get_extent(inode, NULL, 0, offset, len, 0);
4322 		if (IS_ERR_OR_NULL(em))
4323 			return em;
4324 
4325 		/* if this isn't a hole return it */
4326 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327 		    em->block_start != EXTENT_MAP_HOLE) {
4328 			return em;
4329 		}
4330 
4331 		/* this is a hole, advance to the next extent */
4332 		offset = extent_map_end(em);
4333 		free_extent_map(em);
4334 		if (offset >= last)
4335 			break;
4336 	}
4337 	return NULL;
4338 }
4339 
4340 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4341 		__u64 start, __u64 len, get_extent_t *get_extent)
4342 {
4343 	int ret = 0;
4344 	u64 off = start;
4345 	u64 max = start + len;
4346 	u32 flags = 0;
4347 	u32 found_type;
4348 	u64 last;
4349 	u64 last_for_get_extent = 0;
4350 	u64 disko = 0;
4351 	u64 isize = i_size_read(inode);
4352 	struct btrfs_key found_key;
4353 	struct extent_map *em = NULL;
4354 	struct extent_state *cached_state = NULL;
4355 	struct btrfs_path *path;
4356 	struct btrfs_root *root = BTRFS_I(inode)->root;
4357 	int end = 0;
4358 	u64 em_start = 0;
4359 	u64 em_len = 0;
4360 	u64 em_end = 0;
4361 
4362 	if (len == 0)
4363 		return -EINVAL;
4364 
4365 	path = btrfs_alloc_path();
4366 	if (!path)
4367 		return -ENOMEM;
4368 	path->leave_spinning = 1;
4369 
4370 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4371 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4372 
4373 	/*
4374 	 * lookup the last file extent.  We're not using i_size here
4375 	 * because there might be preallocation past i_size
4376 	 */
4377 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4378 				       0);
4379 	if (ret < 0) {
4380 		btrfs_free_path(path);
4381 		return ret;
4382 	}
4383 	WARN_ON(!ret);
4384 	path->slots[0]--;
4385 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4386 	found_type = found_key.type;
4387 
4388 	/* No extents, but there might be delalloc bits */
4389 	if (found_key.objectid != btrfs_ino(inode) ||
4390 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4391 		/* have to trust i_size as the end */
4392 		last = (u64)-1;
4393 		last_for_get_extent = isize;
4394 	} else {
4395 		/*
4396 		 * remember the start of the last extent.  There are a
4397 		 * bunch of different factors that go into the length of the
4398 		 * extent, so its much less complex to remember where it started
4399 		 */
4400 		last = found_key.offset;
4401 		last_for_get_extent = last + 1;
4402 	}
4403 	btrfs_release_path(path);
4404 
4405 	/*
4406 	 * we might have some extents allocated but more delalloc past those
4407 	 * extents.  so, we trust isize unless the start of the last extent is
4408 	 * beyond isize
4409 	 */
4410 	if (last < isize) {
4411 		last = (u64)-1;
4412 		last_for_get_extent = isize;
4413 	}
4414 
4415 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4416 			 &cached_state);
4417 
4418 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4419 				   get_extent);
4420 	if (!em)
4421 		goto out;
4422 	if (IS_ERR(em)) {
4423 		ret = PTR_ERR(em);
4424 		goto out;
4425 	}
4426 
4427 	while (!end) {
4428 		u64 offset_in_extent = 0;
4429 
4430 		/* break if the extent we found is outside the range */
4431 		if (em->start >= max || extent_map_end(em) < off)
4432 			break;
4433 
4434 		/*
4435 		 * get_extent may return an extent that starts before our
4436 		 * requested range.  We have to make sure the ranges
4437 		 * we return to fiemap always move forward and don't
4438 		 * overlap, so adjust the offsets here
4439 		 */
4440 		em_start = max(em->start, off);
4441 
4442 		/*
4443 		 * record the offset from the start of the extent
4444 		 * for adjusting the disk offset below.  Only do this if the
4445 		 * extent isn't compressed since our in ram offset may be past
4446 		 * what we have actually allocated on disk.
4447 		 */
4448 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4449 			offset_in_extent = em_start - em->start;
4450 		em_end = extent_map_end(em);
4451 		em_len = em_end - em_start;
4452 		disko = 0;
4453 		flags = 0;
4454 
4455 		/*
4456 		 * bump off for our next call to get_extent
4457 		 */
4458 		off = extent_map_end(em);
4459 		if (off >= max)
4460 			end = 1;
4461 
4462 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4463 			end = 1;
4464 			flags |= FIEMAP_EXTENT_LAST;
4465 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4466 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4467 				  FIEMAP_EXTENT_NOT_ALIGNED);
4468 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4469 			flags |= (FIEMAP_EXTENT_DELALLOC |
4470 				  FIEMAP_EXTENT_UNKNOWN);
4471 		} else if (fieinfo->fi_extents_max) {
4472 			u64 bytenr = em->block_start -
4473 				(em->start - em->orig_start);
4474 
4475 			disko = em->block_start + offset_in_extent;
4476 
4477 			/*
4478 			 * As btrfs supports shared space, this information
4479 			 * can be exported to userspace tools via
4480 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4481 			 * then we're just getting a count and we can skip the
4482 			 * lookup stuff.
4483 			 */
4484 			ret = btrfs_check_shared(NULL, root->fs_info,
4485 						 root->objectid,
4486 						 btrfs_ino(inode), bytenr);
4487 			if (ret < 0)
4488 				goto out_free;
4489 			if (ret)
4490 				flags |= FIEMAP_EXTENT_SHARED;
4491 			ret = 0;
4492 		}
4493 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4494 			flags |= FIEMAP_EXTENT_ENCODED;
4495 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4496 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4497 
4498 		free_extent_map(em);
4499 		em = NULL;
4500 		if ((em_start >= last) || em_len == (u64)-1 ||
4501 		   (last == (u64)-1 && isize <= em_end)) {
4502 			flags |= FIEMAP_EXTENT_LAST;
4503 			end = 1;
4504 		}
4505 
4506 		/* now scan forward to see if this is really the last extent. */
4507 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4508 					   get_extent);
4509 		if (IS_ERR(em)) {
4510 			ret = PTR_ERR(em);
4511 			goto out;
4512 		}
4513 		if (!em) {
4514 			flags |= FIEMAP_EXTENT_LAST;
4515 			end = 1;
4516 		}
4517 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4518 					      em_len, flags);
4519 		if (ret) {
4520 			if (ret == 1)
4521 				ret = 0;
4522 			goto out_free;
4523 		}
4524 	}
4525 out_free:
4526 	free_extent_map(em);
4527 out:
4528 	btrfs_free_path(path);
4529 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4530 			     &cached_state, GFP_NOFS);
4531 	return ret;
4532 }
4533 
4534 static void __free_extent_buffer(struct extent_buffer *eb)
4535 {
4536 	btrfs_leak_debug_del(&eb->leak_list);
4537 	kmem_cache_free(extent_buffer_cache, eb);
4538 }
4539 
4540 int extent_buffer_under_io(struct extent_buffer *eb)
4541 {
4542 	return (atomic_read(&eb->io_pages) ||
4543 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4544 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4545 }
4546 
4547 /*
4548  * Helper for releasing extent buffer page.
4549  */
4550 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4551 {
4552 	unsigned long index;
4553 	struct page *page;
4554 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4555 
4556 	BUG_ON(extent_buffer_under_io(eb));
4557 
4558 	index = num_extent_pages(eb->start, eb->len);
4559 	if (index == 0)
4560 		return;
4561 
4562 	do {
4563 		index--;
4564 		page = eb->pages[index];
4565 		if (!page)
4566 			continue;
4567 		if (mapped)
4568 			spin_lock(&page->mapping->private_lock);
4569 		/*
4570 		 * We do this since we'll remove the pages after we've
4571 		 * removed the eb from the radix tree, so we could race
4572 		 * and have this page now attached to the new eb.  So
4573 		 * only clear page_private if it's still connected to
4574 		 * this eb.
4575 		 */
4576 		if (PagePrivate(page) &&
4577 		    page->private == (unsigned long)eb) {
4578 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4579 			BUG_ON(PageDirty(page));
4580 			BUG_ON(PageWriteback(page));
4581 			/*
4582 			 * We need to make sure we haven't be attached
4583 			 * to a new eb.
4584 			 */
4585 			ClearPagePrivate(page);
4586 			set_page_private(page, 0);
4587 			/* One for the page private */
4588 			put_page(page);
4589 		}
4590 
4591 		if (mapped)
4592 			spin_unlock(&page->mapping->private_lock);
4593 
4594 		/* One for when we alloced the page */
4595 		put_page(page);
4596 	} while (index != 0);
4597 }
4598 
4599 /*
4600  * Helper for releasing the extent buffer.
4601  */
4602 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4603 {
4604 	btrfs_release_extent_buffer_page(eb);
4605 	__free_extent_buffer(eb);
4606 }
4607 
4608 static struct extent_buffer *
4609 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4610 		      unsigned long len)
4611 {
4612 	struct extent_buffer *eb = NULL;
4613 
4614 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4615 	eb->start = start;
4616 	eb->len = len;
4617 	eb->fs_info = fs_info;
4618 	eb->bflags = 0;
4619 	rwlock_init(&eb->lock);
4620 	atomic_set(&eb->write_locks, 0);
4621 	atomic_set(&eb->read_locks, 0);
4622 	atomic_set(&eb->blocking_readers, 0);
4623 	atomic_set(&eb->blocking_writers, 0);
4624 	atomic_set(&eb->spinning_readers, 0);
4625 	atomic_set(&eb->spinning_writers, 0);
4626 	eb->lock_nested = 0;
4627 	init_waitqueue_head(&eb->write_lock_wq);
4628 	init_waitqueue_head(&eb->read_lock_wq);
4629 
4630 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4631 
4632 	spin_lock_init(&eb->refs_lock);
4633 	atomic_set(&eb->refs, 1);
4634 	atomic_set(&eb->io_pages, 0);
4635 
4636 	/*
4637 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4638 	 */
4639 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4640 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4641 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4642 
4643 	return eb;
4644 }
4645 
4646 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4647 {
4648 	unsigned long i;
4649 	struct page *p;
4650 	struct extent_buffer *new;
4651 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4652 
4653 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4654 	if (new == NULL)
4655 		return NULL;
4656 
4657 	for (i = 0; i < num_pages; i++) {
4658 		p = alloc_page(GFP_NOFS);
4659 		if (!p) {
4660 			btrfs_release_extent_buffer(new);
4661 			return NULL;
4662 		}
4663 		attach_extent_buffer_page(new, p);
4664 		WARN_ON(PageDirty(p));
4665 		SetPageUptodate(p);
4666 		new->pages[i] = p;
4667 	}
4668 
4669 	copy_extent_buffer(new, src, 0, 0, src->len);
4670 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4671 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4672 
4673 	return new;
4674 }
4675 
4676 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4677 						  u64 start, unsigned long len)
4678 {
4679 	struct extent_buffer *eb;
4680 	unsigned long num_pages;
4681 	unsigned long i;
4682 
4683 	num_pages = num_extent_pages(start, len);
4684 
4685 	eb = __alloc_extent_buffer(fs_info, start, len);
4686 	if (!eb)
4687 		return NULL;
4688 
4689 	for (i = 0; i < num_pages; i++) {
4690 		eb->pages[i] = alloc_page(GFP_NOFS);
4691 		if (!eb->pages[i])
4692 			goto err;
4693 	}
4694 	set_extent_buffer_uptodate(eb);
4695 	btrfs_set_header_nritems(eb, 0);
4696 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4697 
4698 	return eb;
4699 err:
4700 	for (; i > 0; i--)
4701 		__free_page(eb->pages[i - 1]);
4702 	__free_extent_buffer(eb);
4703 	return NULL;
4704 }
4705 
4706 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4707 						u64 start)
4708 {
4709 	unsigned long len;
4710 
4711 	if (!fs_info) {
4712 		/*
4713 		 * Called only from tests that don't always have a fs_info
4714 		 * available, but we know that nodesize is 4096
4715 		 */
4716 		len = 4096;
4717 	} else {
4718 		len = fs_info->tree_root->nodesize;
4719 	}
4720 
4721 	return __alloc_dummy_extent_buffer(fs_info, start, len);
4722 }
4723 
4724 static void check_buffer_tree_ref(struct extent_buffer *eb)
4725 {
4726 	int refs;
4727 	/* the ref bit is tricky.  We have to make sure it is set
4728 	 * if we have the buffer dirty.   Otherwise the
4729 	 * code to free a buffer can end up dropping a dirty
4730 	 * page
4731 	 *
4732 	 * Once the ref bit is set, it won't go away while the
4733 	 * buffer is dirty or in writeback, and it also won't
4734 	 * go away while we have the reference count on the
4735 	 * eb bumped.
4736 	 *
4737 	 * We can't just set the ref bit without bumping the
4738 	 * ref on the eb because free_extent_buffer might
4739 	 * see the ref bit and try to clear it.  If this happens
4740 	 * free_extent_buffer might end up dropping our original
4741 	 * ref by mistake and freeing the page before we are able
4742 	 * to add one more ref.
4743 	 *
4744 	 * So bump the ref count first, then set the bit.  If someone
4745 	 * beat us to it, drop the ref we added.
4746 	 */
4747 	refs = atomic_read(&eb->refs);
4748 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4749 		return;
4750 
4751 	spin_lock(&eb->refs_lock);
4752 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4753 		atomic_inc(&eb->refs);
4754 	spin_unlock(&eb->refs_lock);
4755 }
4756 
4757 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4758 		struct page *accessed)
4759 {
4760 	unsigned long num_pages, i;
4761 
4762 	check_buffer_tree_ref(eb);
4763 
4764 	num_pages = num_extent_pages(eb->start, eb->len);
4765 	for (i = 0; i < num_pages; i++) {
4766 		struct page *p = eb->pages[i];
4767 
4768 		if (p != accessed)
4769 			mark_page_accessed(p);
4770 	}
4771 }
4772 
4773 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4774 					 u64 start)
4775 {
4776 	struct extent_buffer *eb;
4777 
4778 	rcu_read_lock();
4779 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4780 			       start >> PAGE_SHIFT);
4781 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4782 		rcu_read_unlock();
4783 		/*
4784 		 * Lock our eb's refs_lock to avoid races with
4785 		 * free_extent_buffer. When we get our eb it might be flagged
4786 		 * with EXTENT_BUFFER_STALE and another task running
4787 		 * free_extent_buffer might have seen that flag set,
4788 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4789 		 * writeback flags not set) and it's still in the tree (flag
4790 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4791 		 * of decrementing the extent buffer's reference count twice.
4792 		 * So here we could race and increment the eb's reference count,
4793 		 * clear its stale flag, mark it as dirty and drop our reference
4794 		 * before the other task finishes executing free_extent_buffer,
4795 		 * which would later result in an attempt to free an extent
4796 		 * buffer that is dirty.
4797 		 */
4798 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4799 			spin_lock(&eb->refs_lock);
4800 			spin_unlock(&eb->refs_lock);
4801 		}
4802 		mark_extent_buffer_accessed(eb, NULL);
4803 		return eb;
4804 	}
4805 	rcu_read_unlock();
4806 
4807 	return NULL;
4808 }
4809 
4810 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4811 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4812 					       u64 start)
4813 {
4814 	struct extent_buffer *eb, *exists = NULL;
4815 	int ret;
4816 
4817 	eb = find_extent_buffer(fs_info, start);
4818 	if (eb)
4819 		return eb;
4820 	eb = alloc_dummy_extent_buffer(fs_info, start);
4821 	if (!eb)
4822 		return NULL;
4823 	eb->fs_info = fs_info;
4824 again:
4825 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4826 	if (ret)
4827 		goto free_eb;
4828 	spin_lock(&fs_info->buffer_lock);
4829 	ret = radix_tree_insert(&fs_info->buffer_radix,
4830 				start >> PAGE_SHIFT, eb);
4831 	spin_unlock(&fs_info->buffer_lock);
4832 	radix_tree_preload_end();
4833 	if (ret == -EEXIST) {
4834 		exists = find_extent_buffer(fs_info, start);
4835 		if (exists)
4836 			goto free_eb;
4837 		else
4838 			goto again;
4839 	}
4840 	check_buffer_tree_ref(eb);
4841 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4842 
4843 	/*
4844 	 * We will free dummy extent buffer's if they come into
4845 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4846 	 * want the buffers to stay in memory until we're done with them, so
4847 	 * bump the ref count again.
4848 	 */
4849 	atomic_inc(&eb->refs);
4850 	return eb;
4851 free_eb:
4852 	btrfs_release_extent_buffer(eb);
4853 	return exists;
4854 }
4855 #endif
4856 
4857 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4858 					  u64 start)
4859 {
4860 	unsigned long len = fs_info->tree_root->nodesize;
4861 	unsigned long num_pages = num_extent_pages(start, len);
4862 	unsigned long i;
4863 	unsigned long index = start >> PAGE_SHIFT;
4864 	struct extent_buffer *eb;
4865 	struct extent_buffer *exists = NULL;
4866 	struct page *p;
4867 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4868 	int uptodate = 1;
4869 	int ret;
4870 
4871 	eb = find_extent_buffer(fs_info, start);
4872 	if (eb)
4873 		return eb;
4874 
4875 	eb = __alloc_extent_buffer(fs_info, start, len);
4876 	if (!eb)
4877 		return NULL;
4878 
4879 	for (i = 0; i < num_pages; i++, index++) {
4880 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4881 		if (!p)
4882 			goto free_eb;
4883 
4884 		spin_lock(&mapping->private_lock);
4885 		if (PagePrivate(p)) {
4886 			/*
4887 			 * We could have already allocated an eb for this page
4888 			 * and attached one so lets see if we can get a ref on
4889 			 * the existing eb, and if we can we know it's good and
4890 			 * we can just return that one, else we know we can just
4891 			 * overwrite page->private.
4892 			 */
4893 			exists = (struct extent_buffer *)p->private;
4894 			if (atomic_inc_not_zero(&exists->refs)) {
4895 				spin_unlock(&mapping->private_lock);
4896 				unlock_page(p);
4897 				put_page(p);
4898 				mark_extent_buffer_accessed(exists, p);
4899 				goto free_eb;
4900 			}
4901 			exists = NULL;
4902 
4903 			/*
4904 			 * Do this so attach doesn't complain and we need to
4905 			 * drop the ref the old guy had.
4906 			 */
4907 			ClearPagePrivate(p);
4908 			WARN_ON(PageDirty(p));
4909 			put_page(p);
4910 		}
4911 		attach_extent_buffer_page(eb, p);
4912 		spin_unlock(&mapping->private_lock);
4913 		WARN_ON(PageDirty(p));
4914 		eb->pages[i] = p;
4915 		if (!PageUptodate(p))
4916 			uptodate = 0;
4917 
4918 		/*
4919 		 * see below about how we avoid a nasty race with release page
4920 		 * and why we unlock later
4921 		 */
4922 	}
4923 	if (uptodate)
4924 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4925 again:
4926 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4927 	if (ret)
4928 		goto free_eb;
4929 
4930 	spin_lock(&fs_info->buffer_lock);
4931 	ret = radix_tree_insert(&fs_info->buffer_radix,
4932 				start >> PAGE_SHIFT, eb);
4933 	spin_unlock(&fs_info->buffer_lock);
4934 	radix_tree_preload_end();
4935 	if (ret == -EEXIST) {
4936 		exists = find_extent_buffer(fs_info, start);
4937 		if (exists)
4938 			goto free_eb;
4939 		else
4940 			goto again;
4941 	}
4942 	/* add one reference for the tree */
4943 	check_buffer_tree_ref(eb);
4944 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4945 
4946 	/*
4947 	 * there is a race where release page may have
4948 	 * tried to find this extent buffer in the radix
4949 	 * but failed.  It will tell the VM it is safe to
4950 	 * reclaim the, and it will clear the page private bit.
4951 	 * We must make sure to set the page private bit properly
4952 	 * after the extent buffer is in the radix tree so
4953 	 * it doesn't get lost
4954 	 */
4955 	SetPageChecked(eb->pages[0]);
4956 	for (i = 1; i < num_pages; i++) {
4957 		p = eb->pages[i];
4958 		ClearPageChecked(p);
4959 		unlock_page(p);
4960 	}
4961 	unlock_page(eb->pages[0]);
4962 	return eb;
4963 
4964 free_eb:
4965 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4966 	for (i = 0; i < num_pages; i++) {
4967 		if (eb->pages[i])
4968 			unlock_page(eb->pages[i]);
4969 	}
4970 
4971 	btrfs_release_extent_buffer(eb);
4972 	return exists;
4973 }
4974 
4975 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4976 {
4977 	struct extent_buffer *eb =
4978 			container_of(head, struct extent_buffer, rcu_head);
4979 
4980 	__free_extent_buffer(eb);
4981 }
4982 
4983 /* Expects to have eb->eb_lock already held */
4984 static int release_extent_buffer(struct extent_buffer *eb)
4985 {
4986 	WARN_ON(atomic_read(&eb->refs) == 0);
4987 	if (atomic_dec_and_test(&eb->refs)) {
4988 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4989 			struct btrfs_fs_info *fs_info = eb->fs_info;
4990 
4991 			spin_unlock(&eb->refs_lock);
4992 
4993 			spin_lock(&fs_info->buffer_lock);
4994 			radix_tree_delete(&fs_info->buffer_radix,
4995 					  eb->start >> PAGE_SHIFT);
4996 			spin_unlock(&fs_info->buffer_lock);
4997 		} else {
4998 			spin_unlock(&eb->refs_lock);
4999 		}
5000 
5001 		/* Should be safe to release our pages at this point */
5002 		btrfs_release_extent_buffer_page(eb);
5003 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5004 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5005 			__free_extent_buffer(eb);
5006 			return 1;
5007 		}
5008 #endif
5009 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5010 		return 1;
5011 	}
5012 	spin_unlock(&eb->refs_lock);
5013 
5014 	return 0;
5015 }
5016 
5017 void free_extent_buffer(struct extent_buffer *eb)
5018 {
5019 	int refs;
5020 	int old;
5021 	if (!eb)
5022 		return;
5023 
5024 	while (1) {
5025 		refs = atomic_read(&eb->refs);
5026 		if (refs <= 3)
5027 			break;
5028 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5029 		if (old == refs)
5030 			return;
5031 	}
5032 
5033 	spin_lock(&eb->refs_lock);
5034 	if (atomic_read(&eb->refs) == 2 &&
5035 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5036 		atomic_dec(&eb->refs);
5037 
5038 	if (atomic_read(&eb->refs) == 2 &&
5039 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5040 	    !extent_buffer_under_io(eb) &&
5041 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5042 		atomic_dec(&eb->refs);
5043 
5044 	/*
5045 	 * I know this is terrible, but it's temporary until we stop tracking
5046 	 * the uptodate bits and such for the extent buffers.
5047 	 */
5048 	release_extent_buffer(eb);
5049 }
5050 
5051 void free_extent_buffer_stale(struct extent_buffer *eb)
5052 {
5053 	if (!eb)
5054 		return;
5055 
5056 	spin_lock(&eb->refs_lock);
5057 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5058 
5059 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5060 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5061 		atomic_dec(&eb->refs);
5062 	release_extent_buffer(eb);
5063 }
5064 
5065 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5066 {
5067 	unsigned long i;
5068 	unsigned long num_pages;
5069 	struct page *page;
5070 
5071 	num_pages = num_extent_pages(eb->start, eb->len);
5072 
5073 	for (i = 0; i < num_pages; i++) {
5074 		page = eb->pages[i];
5075 		if (!PageDirty(page))
5076 			continue;
5077 
5078 		lock_page(page);
5079 		WARN_ON(!PagePrivate(page));
5080 
5081 		clear_page_dirty_for_io(page);
5082 		spin_lock_irq(&page->mapping->tree_lock);
5083 		if (!PageDirty(page)) {
5084 			radix_tree_tag_clear(&page->mapping->page_tree,
5085 						page_index(page),
5086 						PAGECACHE_TAG_DIRTY);
5087 		}
5088 		spin_unlock_irq(&page->mapping->tree_lock);
5089 		ClearPageError(page);
5090 		unlock_page(page);
5091 	}
5092 	WARN_ON(atomic_read(&eb->refs) == 0);
5093 }
5094 
5095 int set_extent_buffer_dirty(struct extent_buffer *eb)
5096 {
5097 	unsigned long i;
5098 	unsigned long num_pages;
5099 	int was_dirty = 0;
5100 
5101 	check_buffer_tree_ref(eb);
5102 
5103 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5104 
5105 	num_pages = num_extent_pages(eb->start, eb->len);
5106 	WARN_ON(atomic_read(&eb->refs) == 0);
5107 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5108 
5109 	for (i = 0; i < num_pages; i++)
5110 		set_page_dirty(eb->pages[i]);
5111 	return was_dirty;
5112 }
5113 
5114 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5115 {
5116 	unsigned long i;
5117 	struct page *page;
5118 	unsigned long num_pages;
5119 
5120 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5121 	num_pages = num_extent_pages(eb->start, eb->len);
5122 	for (i = 0; i < num_pages; i++) {
5123 		page = eb->pages[i];
5124 		if (page)
5125 			ClearPageUptodate(page);
5126 	}
5127 }
5128 
5129 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5130 {
5131 	unsigned long i;
5132 	struct page *page;
5133 	unsigned long num_pages;
5134 
5135 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5136 	num_pages = num_extent_pages(eb->start, eb->len);
5137 	for (i = 0; i < num_pages; i++) {
5138 		page = eb->pages[i];
5139 		SetPageUptodate(page);
5140 	}
5141 }
5142 
5143 int extent_buffer_uptodate(struct extent_buffer *eb)
5144 {
5145 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5146 }
5147 
5148 int read_extent_buffer_pages(struct extent_io_tree *tree,
5149 			     struct extent_buffer *eb, u64 start, int wait,
5150 			     get_extent_t *get_extent, int mirror_num)
5151 {
5152 	unsigned long i;
5153 	unsigned long start_i;
5154 	struct page *page;
5155 	int err;
5156 	int ret = 0;
5157 	int locked_pages = 0;
5158 	int all_uptodate = 1;
5159 	unsigned long num_pages;
5160 	unsigned long num_reads = 0;
5161 	struct bio *bio = NULL;
5162 	unsigned long bio_flags = 0;
5163 
5164 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5165 		return 0;
5166 
5167 	if (start) {
5168 		WARN_ON(start < eb->start);
5169 		start_i = (start >> PAGE_SHIFT) -
5170 			(eb->start >> PAGE_SHIFT);
5171 	} else {
5172 		start_i = 0;
5173 	}
5174 
5175 	num_pages = num_extent_pages(eb->start, eb->len);
5176 	for (i = start_i; i < num_pages; i++) {
5177 		page = eb->pages[i];
5178 		if (wait == WAIT_NONE) {
5179 			if (!trylock_page(page))
5180 				goto unlock_exit;
5181 		} else {
5182 			lock_page(page);
5183 		}
5184 		locked_pages++;
5185 		if (!PageUptodate(page)) {
5186 			num_reads++;
5187 			all_uptodate = 0;
5188 		}
5189 	}
5190 	if (all_uptodate) {
5191 		if (start_i == 0)
5192 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5193 		goto unlock_exit;
5194 	}
5195 
5196 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5197 	eb->read_mirror = 0;
5198 	atomic_set(&eb->io_pages, num_reads);
5199 	for (i = start_i; i < num_pages; i++) {
5200 		page = eb->pages[i];
5201 		if (!PageUptodate(page)) {
5202 			ClearPageError(page);
5203 			err = __extent_read_full_page(tree, page,
5204 						      get_extent, &bio,
5205 						      mirror_num, &bio_flags,
5206 						      READ | REQ_META);
5207 			if (err)
5208 				ret = err;
5209 		} else {
5210 			unlock_page(page);
5211 		}
5212 	}
5213 
5214 	if (bio) {
5215 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5216 				     bio_flags);
5217 		if (err)
5218 			return err;
5219 	}
5220 
5221 	if (ret || wait != WAIT_COMPLETE)
5222 		return ret;
5223 
5224 	for (i = start_i; i < num_pages; i++) {
5225 		page = eb->pages[i];
5226 		wait_on_page_locked(page);
5227 		if (!PageUptodate(page))
5228 			ret = -EIO;
5229 	}
5230 
5231 	return ret;
5232 
5233 unlock_exit:
5234 	i = start_i;
5235 	while (locked_pages > 0) {
5236 		page = eb->pages[i];
5237 		i++;
5238 		unlock_page(page);
5239 		locked_pages--;
5240 	}
5241 	return ret;
5242 }
5243 
5244 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5245 			unsigned long start,
5246 			unsigned long len)
5247 {
5248 	size_t cur;
5249 	size_t offset;
5250 	struct page *page;
5251 	char *kaddr;
5252 	char *dst = (char *)dstv;
5253 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5254 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5255 
5256 	WARN_ON(start > eb->len);
5257 	WARN_ON(start + len > eb->start + eb->len);
5258 
5259 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5260 
5261 	while (len > 0) {
5262 		page = eb->pages[i];
5263 
5264 		cur = min(len, (PAGE_SIZE - offset));
5265 		kaddr = page_address(page);
5266 		memcpy(dst, kaddr + offset, cur);
5267 
5268 		dst += cur;
5269 		len -= cur;
5270 		offset = 0;
5271 		i++;
5272 	}
5273 }
5274 
5275 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5276 			unsigned long start,
5277 			unsigned long len)
5278 {
5279 	size_t cur;
5280 	size_t offset;
5281 	struct page *page;
5282 	char *kaddr;
5283 	char __user *dst = (char __user *)dstv;
5284 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5285 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5286 	int ret = 0;
5287 
5288 	WARN_ON(start > eb->len);
5289 	WARN_ON(start + len > eb->start + eb->len);
5290 
5291 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5292 
5293 	while (len > 0) {
5294 		page = eb->pages[i];
5295 
5296 		cur = min(len, (PAGE_SIZE - offset));
5297 		kaddr = page_address(page);
5298 		if (copy_to_user(dst, kaddr + offset, cur)) {
5299 			ret = -EFAULT;
5300 			break;
5301 		}
5302 
5303 		dst += cur;
5304 		len -= cur;
5305 		offset = 0;
5306 		i++;
5307 	}
5308 
5309 	return ret;
5310 }
5311 
5312 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5313 			       unsigned long min_len, char **map,
5314 			       unsigned long *map_start,
5315 			       unsigned long *map_len)
5316 {
5317 	size_t offset = start & (PAGE_SIZE - 1);
5318 	char *kaddr;
5319 	struct page *p;
5320 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5321 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5322 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5323 		PAGE_SHIFT;
5324 
5325 	if (i != end_i)
5326 		return -EINVAL;
5327 
5328 	if (i == 0) {
5329 		offset = start_offset;
5330 		*map_start = 0;
5331 	} else {
5332 		offset = 0;
5333 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5334 	}
5335 
5336 	if (start + min_len > eb->len) {
5337 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5338 		       "wanted %lu %lu\n",
5339 		       eb->start, eb->len, start, min_len);
5340 		return -EINVAL;
5341 	}
5342 
5343 	p = eb->pages[i];
5344 	kaddr = page_address(p);
5345 	*map = kaddr + offset;
5346 	*map_len = PAGE_SIZE - offset;
5347 	return 0;
5348 }
5349 
5350 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5351 			  unsigned long start,
5352 			  unsigned long len)
5353 {
5354 	size_t cur;
5355 	size_t offset;
5356 	struct page *page;
5357 	char *kaddr;
5358 	char *ptr = (char *)ptrv;
5359 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5360 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5361 	int ret = 0;
5362 
5363 	WARN_ON(start > eb->len);
5364 	WARN_ON(start + len > eb->start + eb->len);
5365 
5366 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5367 
5368 	while (len > 0) {
5369 		page = eb->pages[i];
5370 
5371 		cur = min(len, (PAGE_SIZE - offset));
5372 
5373 		kaddr = page_address(page);
5374 		ret = memcmp(ptr, kaddr + offset, cur);
5375 		if (ret)
5376 			break;
5377 
5378 		ptr += cur;
5379 		len -= cur;
5380 		offset = 0;
5381 		i++;
5382 	}
5383 	return ret;
5384 }
5385 
5386 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5387 			 unsigned long start, unsigned long len)
5388 {
5389 	size_t cur;
5390 	size_t offset;
5391 	struct page *page;
5392 	char *kaddr;
5393 	char *src = (char *)srcv;
5394 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5395 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5396 
5397 	WARN_ON(start > eb->len);
5398 	WARN_ON(start + len > eb->start + eb->len);
5399 
5400 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5401 
5402 	while (len > 0) {
5403 		page = eb->pages[i];
5404 		WARN_ON(!PageUptodate(page));
5405 
5406 		cur = min(len, PAGE_SIZE - offset);
5407 		kaddr = page_address(page);
5408 		memcpy(kaddr + offset, src, cur);
5409 
5410 		src += cur;
5411 		len -= cur;
5412 		offset = 0;
5413 		i++;
5414 	}
5415 }
5416 
5417 void memset_extent_buffer(struct extent_buffer *eb, char c,
5418 			  unsigned long start, unsigned long len)
5419 {
5420 	size_t cur;
5421 	size_t offset;
5422 	struct page *page;
5423 	char *kaddr;
5424 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5425 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5426 
5427 	WARN_ON(start > eb->len);
5428 	WARN_ON(start + len > eb->start + eb->len);
5429 
5430 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5431 
5432 	while (len > 0) {
5433 		page = eb->pages[i];
5434 		WARN_ON(!PageUptodate(page));
5435 
5436 		cur = min(len, PAGE_SIZE - offset);
5437 		kaddr = page_address(page);
5438 		memset(kaddr + offset, c, cur);
5439 
5440 		len -= cur;
5441 		offset = 0;
5442 		i++;
5443 	}
5444 }
5445 
5446 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5447 			unsigned long dst_offset, unsigned long src_offset,
5448 			unsigned long len)
5449 {
5450 	u64 dst_len = dst->len;
5451 	size_t cur;
5452 	size_t offset;
5453 	struct page *page;
5454 	char *kaddr;
5455 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5456 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5457 
5458 	WARN_ON(src->len != dst_len);
5459 
5460 	offset = (start_offset + dst_offset) &
5461 		(PAGE_SIZE - 1);
5462 
5463 	while (len > 0) {
5464 		page = dst->pages[i];
5465 		WARN_ON(!PageUptodate(page));
5466 
5467 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5468 
5469 		kaddr = page_address(page);
5470 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5471 
5472 		src_offset += cur;
5473 		len -= cur;
5474 		offset = 0;
5475 		i++;
5476 	}
5477 }
5478 
5479 /*
5480  * The extent buffer bitmap operations are done with byte granularity because
5481  * bitmap items are not guaranteed to be aligned to a word and therefore a
5482  * single word in a bitmap may straddle two pages in the extent buffer.
5483  */
5484 #define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5485 #define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5486 #define BITMAP_FIRST_BYTE_MASK(start) \
5487 	((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5488 #define BITMAP_LAST_BYTE_MASK(nbits) \
5489 	(BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5490 
5491 /*
5492  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5493  * given bit number
5494  * @eb: the extent buffer
5495  * @start: offset of the bitmap item in the extent buffer
5496  * @nr: bit number
5497  * @page_index: return index of the page in the extent buffer that contains the
5498  * given bit number
5499  * @page_offset: return offset into the page given by page_index
5500  *
5501  * This helper hides the ugliness of finding the byte in an extent buffer which
5502  * contains a given bit.
5503  */
5504 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5505 				    unsigned long start, unsigned long nr,
5506 				    unsigned long *page_index,
5507 				    size_t *page_offset)
5508 {
5509 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5510 	size_t byte_offset = BIT_BYTE(nr);
5511 	size_t offset;
5512 
5513 	/*
5514 	 * The byte we want is the offset of the extent buffer + the offset of
5515 	 * the bitmap item in the extent buffer + the offset of the byte in the
5516 	 * bitmap item.
5517 	 */
5518 	offset = start_offset + start + byte_offset;
5519 
5520 	*page_index = offset >> PAGE_SHIFT;
5521 	*page_offset = offset & (PAGE_SIZE - 1);
5522 }
5523 
5524 /**
5525  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5526  * @eb: the extent buffer
5527  * @start: offset of the bitmap item in the extent buffer
5528  * @nr: bit number to test
5529  */
5530 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5531 			   unsigned long nr)
5532 {
5533 	char *kaddr;
5534 	struct page *page;
5535 	unsigned long i;
5536 	size_t offset;
5537 
5538 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5539 	page = eb->pages[i];
5540 	WARN_ON(!PageUptodate(page));
5541 	kaddr = page_address(page);
5542 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5543 }
5544 
5545 /**
5546  * extent_buffer_bitmap_set - set an area of a bitmap
5547  * @eb: the extent buffer
5548  * @start: offset of the bitmap item in the extent buffer
5549  * @pos: bit number of the first bit
5550  * @len: number of bits to set
5551  */
5552 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5553 			      unsigned long pos, unsigned long len)
5554 {
5555 	char *kaddr;
5556 	struct page *page;
5557 	unsigned long i;
5558 	size_t offset;
5559 	const unsigned int size = pos + len;
5560 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5561 	unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5562 
5563 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5564 	page = eb->pages[i];
5565 	WARN_ON(!PageUptodate(page));
5566 	kaddr = page_address(page);
5567 
5568 	while (len >= bits_to_set) {
5569 		kaddr[offset] |= mask_to_set;
5570 		len -= bits_to_set;
5571 		bits_to_set = BITS_PER_BYTE;
5572 		mask_to_set = ~0U;
5573 		if (++offset >= PAGE_SIZE && len > 0) {
5574 			offset = 0;
5575 			page = eb->pages[++i];
5576 			WARN_ON(!PageUptodate(page));
5577 			kaddr = page_address(page);
5578 		}
5579 	}
5580 	if (len) {
5581 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5582 		kaddr[offset] |= mask_to_set;
5583 	}
5584 }
5585 
5586 
5587 /**
5588  * extent_buffer_bitmap_clear - clear an area of a bitmap
5589  * @eb: the extent buffer
5590  * @start: offset of the bitmap item in the extent buffer
5591  * @pos: bit number of the first bit
5592  * @len: number of bits to clear
5593  */
5594 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5595 				unsigned long pos, unsigned long len)
5596 {
5597 	char *kaddr;
5598 	struct page *page;
5599 	unsigned long i;
5600 	size_t offset;
5601 	const unsigned int size = pos + len;
5602 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5603 	unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5604 
5605 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5606 	page = eb->pages[i];
5607 	WARN_ON(!PageUptodate(page));
5608 	kaddr = page_address(page);
5609 
5610 	while (len >= bits_to_clear) {
5611 		kaddr[offset] &= ~mask_to_clear;
5612 		len -= bits_to_clear;
5613 		bits_to_clear = BITS_PER_BYTE;
5614 		mask_to_clear = ~0U;
5615 		if (++offset >= PAGE_SIZE && len > 0) {
5616 			offset = 0;
5617 			page = eb->pages[++i];
5618 			WARN_ON(!PageUptodate(page));
5619 			kaddr = page_address(page);
5620 		}
5621 	}
5622 	if (len) {
5623 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5624 		kaddr[offset] &= ~mask_to_clear;
5625 	}
5626 }
5627 
5628 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5629 {
5630 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5631 	return distance < len;
5632 }
5633 
5634 static void copy_pages(struct page *dst_page, struct page *src_page,
5635 		       unsigned long dst_off, unsigned long src_off,
5636 		       unsigned long len)
5637 {
5638 	char *dst_kaddr = page_address(dst_page);
5639 	char *src_kaddr;
5640 	int must_memmove = 0;
5641 
5642 	if (dst_page != src_page) {
5643 		src_kaddr = page_address(src_page);
5644 	} else {
5645 		src_kaddr = dst_kaddr;
5646 		if (areas_overlap(src_off, dst_off, len))
5647 			must_memmove = 1;
5648 	}
5649 
5650 	if (must_memmove)
5651 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5652 	else
5653 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5654 }
5655 
5656 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5657 			   unsigned long src_offset, unsigned long len)
5658 {
5659 	size_t cur;
5660 	size_t dst_off_in_page;
5661 	size_t src_off_in_page;
5662 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5663 	unsigned long dst_i;
5664 	unsigned long src_i;
5665 
5666 	if (src_offset + len > dst->len) {
5667 		btrfs_err(dst->fs_info,
5668 			"memmove bogus src_offset %lu move "
5669 		       "len %lu dst len %lu", src_offset, len, dst->len);
5670 		BUG_ON(1);
5671 	}
5672 	if (dst_offset + len > dst->len) {
5673 		btrfs_err(dst->fs_info,
5674 			"memmove bogus dst_offset %lu move "
5675 		       "len %lu dst len %lu", dst_offset, len, dst->len);
5676 		BUG_ON(1);
5677 	}
5678 
5679 	while (len > 0) {
5680 		dst_off_in_page = (start_offset + dst_offset) &
5681 			(PAGE_SIZE - 1);
5682 		src_off_in_page = (start_offset + src_offset) &
5683 			(PAGE_SIZE - 1);
5684 
5685 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5686 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5687 
5688 		cur = min(len, (unsigned long)(PAGE_SIZE -
5689 					       src_off_in_page));
5690 		cur = min_t(unsigned long, cur,
5691 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5692 
5693 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5694 			   dst_off_in_page, src_off_in_page, cur);
5695 
5696 		src_offset += cur;
5697 		dst_offset += cur;
5698 		len -= cur;
5699 	}
5700 }
5701 
5702 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5703 			   unsigned long src_offset, unsigned long len)
5704 {
5705 	size_t cur;
5706 	size_t dst_off_in_page;
5707 	size_t src_off_in_page;
5708 	unsigned long dst_end = dst_offset + len - 1;
5709 	unsigned long src_end = src_offset + len - 1;
5710 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5711 	unsigned long dst_i;
5712 	unsigned long src_i;
5713 
5714 	if (src_offset + len > dst->len) {
5715 		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5716 		       "len %lu len %lu", src_offset, len, dst->len);
5717 		BUG_ON(1);
5718 	}
5719 	if (dst_offset + len > dst->len) {
5720 		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5721 		       "len %lu len %lu", dst_offset, len, dst->len);
5722 		BUG_ON(1);
5723 	}
5724 	if (dst_offset < src_offset) {
5725 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5726 		return;
5727 	}
5728 	while (len > 0) {
5729 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5730 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5731 
5732 		dst_off_in_page = (start_offset + dst_end) &
5733 			(PAGE_SIZE - 1);
5734 		src_off_in_page = (start_offset + src_end) &
5735 			(PAGE_SIZE - 1);
5736 
5737 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5738 		cur = min(cur, dst_off_in_page + 1);
5739 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5740 			   dst_off_in_page - cur + 1,
5741 			   src_off_in_page - cur + 1, cur);
5742 
5743 		dst_end -= cur;
5744 		src_end -= cur;
5745 		len -= cur;
5746 	}
5747 }
5748 
5749 int try_release_extent_buffer(struct page *page)
5750 {
5751 	struct extent_buffer *eb;
5752 
5753 	/*
5754 	 * We need to make sure noboody is attaching this page to an eb right
5755 	 * now.
5756 	 */
5757 	spin_lock(&page->mapping->private_lock);
5758 	if (!PagePrivate(page)) {
5759 		spin_unlock(&page->mapping->private_lock);
5760 		return 1;
5761 	}
5762 
5763 	eb = (struct extent_buffer *)page->private;
5764 	BUG_ON(!eb);
5765 
5766 	/*
5767 	 * This is a little awful but should be ok, we need to make sure that
5768 	 * the eb doesn't disappear out from under us while we're looking at
5769 	 * this page.
5770 	 */
5771 	spin_lock(&eb->refs_lock);
5772 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5773 		spin_unlock(&eb->refs_lock);
5774 		spin_unlock(&page->mapping->private_lock);
5775 		return 0;
5776 	}
5777 	spin_unlock(&page->mapping->private_lock);
5778 
5779 	/*
5780 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5781 	 * so just return, this page will likely be freed soon anyway.
5782 	 */
5783 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5784 		spin_unlock(&eb->refs_lock);
5785 		return 0;
5786 	}
5787 
5788 	return release_extent_buffer(eb);
5789 }
5790