xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	struct inode *inode = tree->private_data;
93 	u64 isize;
94 
95 	if (!inode || !is_data_inode(inode))
96 		return;
97 
98 	isize = i_size_read(inode);
99 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 	}
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head)	do {} while (0)
107 #define btrfs_leak_debug_del(entry)	do {} while (0)
108 #define btrfs_leak_debug_check()	do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
110 #endif
111 
112 #define BUFFER_LRU_MAX 64
113 
114 struct tree_entry {
115 	u64 start;
116 	u64 end;
117 	struct rb_node rb_node;
118 };
119 
120 struct extent_page_data {
121 	struct bio *bio;
122 	struct extent_io_tree *tree;
123 	/* tells writepage not to lock the state bits for this range
124 	 * it still does the unlocking
125 	 */
126 	unsigned int extent_locked:1;
127 
128 	/* tells the submit_bio code to use REQ_SYNC */
129 	unsigned int sync_io:1;
130 };
131 
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133 				 struct extent_changeset *changeset,
134 				 int set)
135 {
136 	int ret;
137 
138 	if (!changeset)
139 		return 0;
140 	if (set && (state->state & bits) == bits)
141 		return 0;
142 	if (!set && (state->state & bits) == 0)
143 		return 0;
144 	changeset->bytes_changed += state->end - state->start + 1;
145 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
146 			GFP_ATOMIC);
147 	return ret;
148 }
149 
150 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
151 				       unsigned long bio_flags)
152 {
153 	blk_status_t ret = 0;
154 	struct bio_vec *bvec = bio_last_bvec_all(bio);
155 	struct bio_vec bv;
156 	struct extent_io_tree *tree = bio->bi_private;
157 	u64 start;
158 
159 	mp_bvec_last_segment(bvec, &bv);
160 	start = page_offset(bv.bv_page) + bv.bv_offset;
161 
162 	bio->bi_private = NULL;
163 
164 	if (tree->ops)
165 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
166 					   mirror_num, bio_flags, start);
167 	else
168 		btrfsic_submit_bio(bio);
169 
170 	return blk_status_to_errno(ret);
171 }
172 
173 static void flush_write_bio(struct extent_page_data *epd)
174 {
175 	if (epd->bio) {
176 		int ret;
177 
178 		ret = submit_one_bio(epd->bio, 0, 0);
179 		BUG_ON(ret < 0); /* -ENOMEM */
180 		epd->bio = NULL;
181 	}
182 }
183 
184 int __init extent_io_init(void)
185 {
186 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
187 			sizeof(struct extent_state), 0,
188 			SLAB_MEM_SPREAD, NULL);
189 	if (!extent_state_cache)
190 		return -ENOMEM;
191 
192 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
193 			sizeof(struct extent_buffer), 0,
194 			SLAB_MEM_SPREAD, NULL);
195 	if (!extent_buffer_cache)
196 		goto free_state_cache;
197 
198 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
199 			offsetof(struct btrfs_io_bio, bio),
200 			BIOSET_NEED_BVECS))
201 		goto free_buffer_cache;
202 
203 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
204 		goto free_bioset;
205 
206 	return 0;
207 
208 free_bioset:
209 	bioset_exit(&btrfs_bioset);
210 
211 free_buffer_cache:
212 	kmem_cache_destroy(extent_buffer_cache);
213 	extent_buffer_cache = NULL;
214 
215 free_state_cache:
216 	kmem_cache_destroy(extent_state_cache);
217 	extent_state_cache = NULL;
218 	return -ENOMEM;
219 }
220 
221 void __cold extent_io_exit(void)
222 {
223 	btrfs_leak_debug_check();
224 
225 	/*
226 	 * Make sure all delayed rcu free are flushed before we
227 	 * destroy caches.
228 	 */
229 	rcu_barrier();
230 	kmem_cache_destroy(extent_state_cache);
231 	kmem_cache_destroy(extent_buffer_cache);
232 	bioset_exit(&btrfs_bioset);
233 }
234 
235 void extent_io_tree_init(struct extent_io_tree *tree,
236 			 void *private_data)
237 {
238 	tree->state = RB_ROOT;
239 	tree->ops = NULL;
240 	tree->dirty_bytes = 0;
241 	spin_lock_init(&tree->lock);
242 	tree->private_data = private_data;
243 }
244 
245 static struct extent_state *alloc_extent_state(gfp_t mask)
246 {
247 	struct extent_state *state;
248 
249 	/*
250 	 * The given mask might be not appropriate for the slab allocator,
251 	 * drop the unsupported bits
252 	 */
253 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
254 	state = kmem_cache_alloc(extent_state_cache, mask);
255 	if (!state)
256 		return state;
257 	state->state = 0;
258 	state->failrec = NULL;
259 	RB_CLEAR_NODE(&state->rb_node);
260 	btrfs_leak_debug_add(&state->leak_list, &states);
261 	refcount_set(&state->refs, 1);
262 	init_waitqueue_head(&state->wq);
263 	trace_alloc_extent_state(state, mask, _RET_IP_);
264 	return state;
265 }
266 
267 void free_extent_state(struct extent_state *state)
268 {
269 	if (!state)
270 		return;
271 	if (refcount_dec_and_test(&state->refs)) {
272 		WARN_ON(extent_state_in_tree(state));
273 		btrfs_leak_debug_del(&state->leak_list);
274 		trace_free_extent_state(state, _RET_IP_);
275 		kmem_cache_free(extent_state_cache, state);
276 	}
277 }
278 
279 static struct rb_node *tree_insert(struct rb_root *root,
280 				   struct rb_node *search_start,
281 				   u64 offset,
282 				   struct rb_node *node,
283 				   struct rb_node ***p_in,
284 				   struct rb_node **parent_in)
285 {
286 	struct rb_node **p;
287 	struct rb_node *parent = NULL;
288 	struct tree_entry *entry;
289 
290 	if (p_in && parent_in) {
291 		p = *p_in;
292 		parent = *parent_in;
293 		goto do_insert;
294 	}
295 
296 	p = search_start ? &search_start : &root->rb_node;
297 	while (*p) {
298 		parent = *p;
299 		entry = rb_entry(parent, struct tree_entry, rb_node);
300 
301 		if (offset < entry->start)
302 			p = &(*p)->rb_left;
303 		else if (offset > entry->end)
304 			p = &(*p)->rb_right;
305 		else
306 			return parent;
307 	}
308 
309 do_insert:
310 	rb_link_node(node, parent, p);
311 	rb_insert_color(node, root);
312 	return NULL;
313 }
314 
315 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
316 				      struct rb_node **next_ret,
317 				      struct rb_node **prev_ret,
318 				      struct rb_node ***p_ret,
319 				      struct rb_node **parent_ret)
320 {
321 	struct rb_root *root = &tree->state;
322 	struct rb_node **n = &root->rb_node;
323 	struct rb_node *prev = NULL;
324 	struct rb_node *orig_prev = NULL;
325 	struct tree_entry *entry;
326 	struct tree_entry *prev_entry = NULL;
327 
328 	while (*n) {
329 		prev = *n;
330 		entry = rb_entry(prev, struct tree_entry, rb_node);
331 		prev_entry = entry;
332 
333 		if (offset < entry->start)
334 			n = &(*n)->rb_left;
335 		else if (offset > entry->end)
336 			n = &(*n)->rb_right;
337 		else
338 			return *n;
339 	}
340 
341 	if (p_ret)
342 		*p_ret = n;
343 	if (parent_ret)
344 		*parent_ret = prev;
345 
346 	if (next_ret) {
347 		orig_prev = prev;
348 		while (prev && offset > prev_entry->end) {
349 			prev = rb_next(prev);
350 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
351 		}
352 		*next_ret = prev;
353 		prev = orig_prev;
354 	}
355 
356 	if (prev_ret) {
357 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
358 		while (prev && offset < prev_entry->start) {
359 			prev = rb_prev(prev);
360 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
361 		}
362 		*prev_ret = prev;
363 	}
364 	return NULL;
365 }
366 
367 static inline struct rb_node *
368 tree_search_for_insert(struct extent_io_tree *tree,
369 		       u64 offset,
370 		       struct rb_node ***p_ret,
371 		       struct rb_node **parent_ret)
372 {
373 	struct rb_node *next= NULL;
374 	struct rb_node *ret;
375 
376 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
377 	if (!ret)
378 		return next;
379 	return ret;
380 }
381 
382 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
383 					  u64 offset)
384 {
385 	return tree_search_for_insert(tree, offset, NULL, NULL);
386 }
387 
388 /*
389  * utility function to look for merge candidates inside a given range.
390  * Any extents with matching state are merged together into a single
391  * extent in the tree.  Extents with EXTENT_IO in their state field
392  * are not merged because the end_io handlers need to be able to do
393  * operations on them without sleeping (or doing allocations/splits).
394  *
395  * This should be called with the tree lock held.
396  */
397 static void merge_state(struct extent_io_tree *tree,
398 		        struct extent_state *state)
399 {
400 	struct extent_state *other;
401 	struct rb_node *other_node;
402 
403 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
404 		return;
405 
406 	other_node = rb_prev(&state->rb_node);
407 	if (other_node) {
408 		other = rb_entry(other_node, struct extent_state, rb_node);
409 		if (other->end == state->start - 1 &&
410 		    other->state == state->state) {
411 			if (tree->private_data &&
412 			    is_data_inode(tree->private_data))
413 				btrfs_merge_delalloc_extent(tree->private_data,
414 							    state, other);
415 			state->start = other->start;
416 			rb_erase(&other->rb_node, &tree->state);
417 			RB_CLEAR_NODE(&other->rb_node);
418 			free_extent_state(other);
419 		}
420 	}
421 	other_node = rb_next(&state->rb_node);
422 	if (other_node) {
423 		other = rb_entry(other_node, struct extent_state, rb_node);
424 		if (other->start == state->end + 1 &&
425 		    other->state == state->state) {
426 			if (tree->private_data &&
427 			    is_data_inode(tree->private_data))
428 				btrfs_merge_delalloc_extent(tree->private_data,
429 							    state, other);
430 			state->end = other->end;
431 			rb_erase(&other->rb_node, &tree->state);
432 			RB_CLEAR_NODE(&other->rb_node);
433 			free_extent_state(other);
434 		}
435 	}
436 }
437 
438 static void set_state_bits(struct extent_io_tree *tree,
439 			   struct extent_state *state, unsigned *bits,
440 			   struct extent_changeset *changeset);
441 
442 /*
443  * insert an extent_state struct into the tree.  'bits' are set on the
444  * struct before it is inserted.
445  *
446  * This may return -EEXIST if the extent is already there, in which case the
447  * state struct is freed.
448  *
449  * The tree lock is not taken internally.  This is a utility function and
450  * probably isn't what you want to call (see set/clear_extent_bit).
451  */
452 static int insert_state(struct extent_io_tree *tree,
453 			struct extent_state *state, u64 start, u64 end,
454 			struct rb_node ***p,
455 			struct rb_node **parent,
456 			unsigned *bits, struct extent_changeset *changeset)
457 {
458 	struct rb_node *node;
459 
460 	if (end < start)
461 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
462 		       end, start);
463 	state->start = start;
464 	state->end = end;
465 
466 	set_state_bits(tree, state, bits, changeset);
467 
468 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
469 	if (node) {
470 		struct extent_state *found;
471 		found = rb_entry(node, struct extent_state, rb_node);
472 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
473 		       found->start, found->end, start, end);
474 		return -EEXIST;
475 	}
476 	merge_state(tree, state);
477 	return 0;
478 }
479 
480 /*
481  * split a given extent state struct in two, inserting the preallocated
482  * struct 'prealloc' as the newly created second half.  'split' indicates an
483  * offset inside 'orig' where it should be split.
484  *
485  * Before calling,
486  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
487  * are two extent state structs in the tree:
488  * prealloc: [orig->start, split - 1]
489  * orig: [ split, orig->end ]
490  *
491  * The tree locks are not taken by this function. They need to be held
492  * by the caller.
493  */
494 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
495 		       struct extent_state *prealloc, u64 split)
496 {
497 	struct rb_node *node;
498 
499 	if (tree->private_data && is_data_inode(tree->private_data))
500 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
501 
502 	prealloc->start = orig->start;
503 	prealloc->end = split - 1;
504 	prealloc->state = orig->state;
505 	orig->start = split;
506 
507 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 			   &prealloc->rb_node, NULL, NULL);
509 	if (node) {
510 		free_extent_state(prealloc);
511 		return -EEXIST;
512 	}
513 	return 0;
514 }
515 
516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 	struct rb_node *next = rb_next(&state->rb_node);
519 	if (next)
520 		return rb_entry(next, struct extent_state, rb_node);
521 	else
522 		return NULL;
523 }
524 
525 /*
526  * utility function to clear some bits in an extent state struct.
527  * it will optionally wake up anyone waiting on this state (wake == 1).
528  *
529  * If no bits are set on the state struct after clearing things, the
530  * struct is freed and removed from the tree
531  */
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 					    struct extent_state *state,
534 					    unsigned *bits, int wake,
535 					    struct extent_changeset *changeset)
536 {
537 	struct extent_state *next;
538 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539 	int ret;
540 
541 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
542 		u64 range = state->end - state->start + 1;
543 		WARN_ON(range > tree->dirty_bytes);
544 		tree->dirty_bytes -= range;
545 	}
546 
547 	if (tree->private_data && is_data_inode(tree->private_data))
548 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
549 
550 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
551 	BUG_ON(ret < 0);
552 	state->state &= ~bits_to_clear;
553 	if (wake)
554 		wake_up(&state->wq);
555 	if (state->state == 0) {
556 		next = next_state(state);
557 		if (extent_state_in_tree(state)) {
558 			rb_erase(&state->rb_node, &tree->state);
559 			RB_CLEAR_NODE(&state->rb_node);
560 			free_extent_state(state);
561 		} else {
562 			WARN_ON(1);
563 		}
564 	} else {
565 		merge_state(tree, state);
566 		next = next_state(state);
567 	}
568 	return next;
569 }
570 
571 static struct extent_state *
572 alloc_extent_state_atomic(struct extent_state *prealloc)
573 {
574 	if (!prealloc)
575 		prealloc = alloc_extent_state(GFP_ATOMIC);
576 
577 	return prealloc;
578 }
579 
580 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
581 {
582 	struct inode *inode = tree->private_data;
583 
584 	btrfs_panic(btrfs_sb(inode->i_sb), err,
585 	"locking error: extent tree was modified by another thread while locked");
586 }
587 
588 /*
589  * clear some bits on a range in the tree.  This may require splitting
590  * or inserting elements in the tree, so the gfp mask is used to
591  * indicate which allocations or sleeping are allowed.
592  *
593  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
594  * the given range from the tree regardless of state (ie for truncate).
595  *
596  * the range [start, end] is inclusive.
597  *
598  * This takes the tree lock, and returns 0 on success and < 0 on error.
599  */
600 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
601 			      unsigned bits, int wake, int delete,
602 			      struct extent_state **cached_state,
603 			      gfp_t mask, struct extent_changeset *changeset)
604 {
605 	struct extent_state *state;
606 	struct extent_state *cached;
607 	struct extent_state *prealloc = NULL;
608 	struct rb_node *node;
609 	u64 last_end;
610 	int err;
611 	int clear = 0;
612 
613 	btrfs_debug_check_extent_io_range(tree, start, end);
614 
615 	if (bits & EXTENT_DELALLOC)
616 		bits |= EXTENT_NORESERVE;
617 
618 	if (delete)
619 		bits |= ~EXTENT_CTLBITS;
620 
621 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
622 		clear = 1;
623 again:
624 	if (!prealloc && gfpflags_allow_blocking(mask)) {
625 		/*
626 		 * Don't care for allocation failure here because we might end
627 		 * up not needing the pre-allocated extent state at all, which
628 		 * is the case if we only have in the tree extent states that
629 		 * cover our input range and don't cover too any other range.
630 		 * If we end up needing a new extent state we allocate it later.
631 		 */
632 		prealloc = alloc_extent_state(mask);
633 	}
634 
635 	spin_lock(&tree->lock);
636 	if (cached_state) {
637 		cached = *cached_state;
638 
639 		if (clear) {
640 			*cached_state = NULL;
641 			cached_state = NULL;
642 		}
643 
644 		if (cached && extent_state_in_tree(cached) &&
645 		    cached->start <= start && cached->end > start) {
646 			if (clear)
647 				refcount_dec(&cached->refs);
648 			state = cached;
649 			goto hit_next;
650 		}
651 		if (clear)
652 			free_extent_state(cached);
653 	}
654 	/*
655 	 * this search will find the extents that end after
656 	 * our range starts
657 	 */
658 	node = tree_search(tree, start);
659 	if (!node)
660 		goto out;
661 	state = rb_entry(node, struct extent_state, rb_node);
662 hit_next:
663 	if (state->start > end)
664 		goto out;
665 	WARN_ON(state->end < start);
666 	last_end = state->end;
667 
668 	/* the state doesn't have the wanted bits, go ahead */
669 	if (!(state->state & bits)) {
670 		state = next_state(state);
671 		goto next;
672 	}
673 
674 	/*
675 	 *     | ---- desired range ---- |
676 	 *  | state | or
677 	 *  | ------------- state -------------- |
678 	 *
679 	 * We need to split the extent we found, and may flip
680 	 * bits on second half.
681 	 *
682 	 * If the extent we found extends past our range, we
683 	 * just split and search again.  It'll get split again
684 	 * the next time though.
685 	 *
686 	 * If the extent we found is inside our range, we clear
687 	 * the desired bit on it.
688 	 */
689 
690 	if (state->start < start) {
691 		prealloc = alloc_extent_state_atomic(prealloc);
692 		BUG_ON(!prealloc);
693 		err = split_state(tree, state, prealloc, start);
694 		if (err)
695 			extent_io_tree_panic(tree, err);
696 
697 		prealloc = NULL;
698 		if (err)
699 			goto out;
700 		if (state->end <= end) {
701 			state = clear_state_bit(tree, state, &bits, wake,
702 						changeset);
703 			goto next;
704 		}
705 		goto search_again;
706 	}
707 	/*
708 	 * | ---- desired range ---- |
709 	 *                        | state |
710 	 * We need to split the extent, and clear the bit
711 	 * on the first half
712 	 */
713 	if (state->start <= end && state->end > end) {
714 		prealloc = alloc_extent_state_atomic(prealloc);
715 		BUG_ON(!prealloc);
716 		err = split_state(tree, state, prealloc, end + 1);
717 		if (err)
718 			extent_io_tree_panic(tree, err);
719 
720 		if (wake)
721 			wake_up(&state->wq);
722 
723 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
724 
725 		prealloc = NULL;
726 		goto out;
727 	}
728 
729 	state = clear_state_bit(tree, state, &bits, wake, changeset);
730 next:
731 	if (last_end == (u64)-1)
732 		goto out;
733 	start = last_end + 1;
734 	if (start <= end && state && !need_resched())
735 		goto hit_next;
736 
737 search_again:
738 	if (start > end)
739 		goto out;
740 	spin_unlock(&tree->lock);
741 	if (gfpflags_allow_blocking(mask))
742 		cond_resched();
743 	goto again;
744 
745 out:
746 	spin_unlock(&tree->lock);
747 	if (prealloc)
748 		free_extent_state(prealloc);
749 
750 	return 0;
751 
752 }
753 
754 static void wait_on_state(struct extent_io_tree *tree,
755 			  struct extent_state *state)
756 		__releases(tree->lock)
757 		__acquires(tree->lock)
758 {
759 	DEFINE_WAIT(wait);
760 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
761 	spin_unlock(&tree->lock);
762 	schedule();
763 	spin_lock(&tree->lock);
764 	finish_wait(&state->wq, &wait);
765 }
766 
767 /*
768  * waits for one or more bits to clear on a range in the state tree.
769  * The range [start, end] is inclusive.
770  * The tree lock is taken by this function
771  */
772 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
773 			    unsigned long bits)
774 {
775 	struct extent_state *state;
776 	struct rb_node *node;
777 
778 	btrfs_debug_check_extent_io_range(tree, start, end);
779 
780 	spin_lock(&tree->lock);
781 again:
782 	while (1) {
783 		/*
784 		 * this search will find all the extents that end after
785 		 * our range starts
786 		 */
787 		node = tree_search(tree, start);
788 process_node:
789 		if (!node)
790 			break;
791 
792 		state = rb_entry(node, struct extent_state, rb_node);
793 
794 		if (state->start > end)
795 			goto out;
796 
797 		if (state->state & bits) {
798 			start = state->start;
799 			refcount_inc(&state->refs);
800 			wait_on_state(tree, state);
801 			free_extent_state(state);
802 			goto again;
803 		}
804 		start = state->end + 1;
805 
806 		if (start > end)
807 			break;
808 
809 		if (!cond_resched_lock(&tree->lock)) {
810 			node = rb_next(node);
811 			goto process_node;
812 		}
813 	}
814 out:
815 	spin_unlock(&tree->lock);
816 }
817 
818 static void set_state_bits(struct extent_io_tree *tree,
819 			   struct extent_state *state,
820 			   unsigned *bits, struct extent_changeset *changeset)
821 {
822 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
823 	int ret;
824 
825 	if (tree->private_data && is_data_inode(tree->private_data))
826 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
827 
828 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
829 		u64 range = state->end - state->start + 1;
830 		tree->dirty_bytes += range;
831 	}
832 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
833 	BUG_ON(ret < 0);
834 	state->state |= bits_to_set;
835 }
836 
837 static void cache_state_if_flags(struct extent_state *state,
838 				 struct extent_state **cached_ptr,
839 				 unsigned flags)
840 {
841 	if (cached_ptr && !(*cached_ptr)) {
842 		if (!flags || (state->state & flags)) {
843 			*cached_ptr = state;
844 			refcount_inc(&state->refs);
845 		}
846 	}
847 }
848 
849 static void cache_state(struct extent_state *state,
850 			struct extent_state **cached_ptr)
851 {
852 	return cache_state_if_flags(state, cached_ptr,
853 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
854 }
855 
856 /*
857  * set some bits on a range in the tree.  This may require allocations or
858  * sleeping, so the gfp mask is used to indicate what is allowed.
859  *
860  * If any of the exclusive bits are set, this will fail with -EEXIST if some
861  * part of the range already has the desired bits set.  The start of the
862  * existing range is returned in failed_start in this case.
863  *
864  * [start, end] is inclusive This takes the tree lock.
865  */
866 
867 static int __must_check
868 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869 		 unsigned bits, unsigned exclusive_bits,
870 		 u64 *failed_start, struct extent_state **cached_state,
871 		 gfp_t mask, struct extent_changeset *changeset)
872 {
873 	struct extent_state *state;
874 	struct extent_state *prealloc = NULL;
875 	struct rb_node *node;
876 	struct rb_node **p;
877 	struct rb_node *parent;
878 	int err = 0;
879 	u64 last_start;
880 	u64 last_end;
881 
882 	btrfs_debug_check_extent_io_range(tree, start, end);
883 
884 again:
885 	if (!prealloc && gfpflags_allow_blocking(mask)) {
886 		/*
887 		 * Don't care for allocation failure here because we might end
888 		 * up not needing the pre-allocated extent state at all, which
889 		 * is the case if we only have in the tree extent states that
890 		 * cover our input range and don't cover too any other range.
891 		 * If we end up needing a new extent state we allocate it later.
892 		 */
893 		prealloc = alloc_extent_state(mask);
894 	}
895 
896 	spin_lock(&tree->lock);
897 	if (cached_state && *cached_state) {
898 		state = *cached_state;
899 		if (state->start <= start && state->end > start &&
900 		    extent_state_in_tree(state)) {
901 			node = &state->rb_node;
902 			goto hit_next;
903 		}
904 	}
905 	/*
906 	 * this search will find all the extents that end after
907 	 * our range starts.
908 	 */
909 	node = tree_search_for_insert(tree, start, &p, &parent);
910 	if (!node) {
911 		prealloc = alloc_extent_state_atomic(prealloc);
912 		BUG_ON(!prealloc);
913 		err = insert_state(tree, prealloc, start, end,
914 				   &p, &parent, &bits, changeset);
915 		if (err)
916 			extent_io_tree_panic(tree, err);
917 
918 		cache_state(prealloc, cached_state);
919 		prealloc = NULL;
920 		goto out;
921 	}
922 	state = rb_entry(node, struct extent_state, rb_node);
923 hit_next:
924 	last_start = state->start;
925 	last_end = state->end;
926 
927 	/*
928 	 * | ---- desired range ---- |
929 	 * | state |
930 	 *
931 	 * Just lock what we found and keep going
932 	 */
933 	if (state->start == start && state->end <= end) {
934 		if (state->state & exclusive_bits) {
935 			*failed_start = state->start;
936 			err = -EEXIST;
937 			goto out;
938 		}
939 
940 		set_state_bits(tree, state, &bits, changeset);
941 		cache_state(state, cached_state);
942 		merge_state(tree, state);
943 		if (last_end == (u64)-1)
944 			goto out;
945 		start = last_end + 1;
946 		state = next_state(state);
947 		if (start < end && state && state->start == start &&
948 		    !need_resched())
949 			goto hit_next;
950 		goto search_again;
951 	}
952 
953 	/*
954 	 *     | ---- desired range ---- |
955 	 * | state |
956 	 *   or
957 	 * | ------------- state -------------- |
958 	 *
959 	 * We need to split the extent we found, and may flip bits on
960 	 * second half.
961 	 *
962 	 * If the extent we found extends past our
963 	 * range, we just split and search again.  It'll get split
964 	 * again the next time though.
965 	 *
966 	 * If the extent we found is inside our range, we set the
967 	 * desired bit on it.
968 	 */
969 	if (state->start < start) {
970 		if (state->state & exclusive_bits) {
971 			*failed_start = start;
972 			err = -EEXIST;
973 			goto out;
974 		}
975 
976 		prealloc = alloc_extent_state_atomic(prealloc);
977 		BUG_ON(!prealloc);
978 		err = split_state(tree, state, prealloc, start);
979 		if (err)
980 			extent_io_tree_panic(tree, err);
981 
982 		prealloc = NULL;
983 		if (err)
984 			goto out;
985 		if (state->end <= end) {
986 			set_state_bits(tree, state, &bits, changeset);
987 			cache_state(state, cached_state);
988 			merge_state(tree, state);
989 			if (last_end == (u64)-1)
990 				goto out;
991 			start = last_end + 1;
992 			state = next_state(state);
993 			if (start < end && state && state->start == start &&
994 			    !need_resched())
995 				goto hit_next;
996 		}
997 		goto search_again;
998 	}
999 	/*
1000 	 * | ---- desired range ---- |
1001 	 *     | state | or               | state |
1002 	 *
1003 	 * There's a hole, we need to insert something in it and
1004 	 * ignore the extent we found.
1005 	 */
1006 	if (state->start > start) {
1007 		u64 this_end;
1008 		if (end < last_start)
1009 			this_end = end;
1010 		else
1011 			this_end = last_start - 1;
1012 
1013 		prealloc = alloc_extent_state_atomic(prealloc);
1014 		BUG_ON(!prealloc);
1015 
1016 		/*
1017 		 * Avoid to free 'prealloc' if it can be merged with
1018 		 * the later extent.
1019 		 */
1020 		err = insert_state(tree, prealloc, start, this_end,
1021 				   NULL, NULL, &bits, changeset);
1022 		if (err)
1023 			extent_io_tree_panic(tree, err);
1024 
1025 		cache_state(prealloc, cached_state);
1026 		prealloc = NULL;
1027 		start = this_end + 1;
1028 		goto search_again;
1029 	}
1030 	/*
1031 	 * | ---- desired range ---- |
1032 	 *                        | state |
1033 	 * We need to split the extent, and set the bit
1034 	 * on the first half
1035 	 */
1036 	if (state->start <= end && state->end > end) {
1037 		if (state->state & exclusive_bits) {
1038 			*failed_start = start;
1039 			err = -EEXIST;
1040 			goto out;
1041 		}
1042 
1043 		prealloc = alloc_extent_state_atomic(prealloc);
1044 		BUG_ON(!prealloc);
1045 		err = split_state(tree, state, prealloc, end + 1);
1046 		if (err)
1047 			extent_io_tree_panic(tree, err);
1048 
1049 		set_state_bits(tree, prealloc, &bits, changeset);
1050 		cache_state(prealloc, cached_state);
1051 		merge_state(tree, prealloc);
1052 		prealloc = NULL;
1053 		goto out;
1054 	}
1055 
1056 search_again:
1057 	if (start > end)
1058 		goto out;
1059 	spin_unlock(&tree->lock);
1060 	if (gfpflags_allow_blocking(mask))
1061 		cond_resched();
1062 	goto again;
1063 
1064 out:
1065 	spin_unlock(&tree->lock);
1066 	if (prealloc)
1067 		free_extent_state(prealloc);
1068 
1069 	return err;
1070 
1071 }
1072 
1073 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1074 		   unsigned bits, u64 * failed_start,
1075 		   struct extent_state **cached_state, gfp_t mask)
1076 {
1077 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1078 				cached_state, mask, NULL);
1079 }
1080 
1081 
1082 /**
1083  * convert_extent_bit - convert all bits in a given range from one bit to
1084  * 			another
1085  * @tree:	the io tree to search
1086  * @start:	the start offset in bytes
1087  * @end:	the end offset in bytes (inclusive)
1088  * @bits:	the bits to set in this range
1089  * @clear_bits:	the bits to clear in this range
1090  * @cached_state:	state that we're going to cache
1091  *
1092  * This will go through and set bits for the given range.  If any states exist
1093  * already in this range they are set with the given bit and cleared of the
1094  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1095  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1096  * boundary bits like LOCK.
1097  *
1098  * All allocations are done with GFP_NOFS.
1099  */
1100 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1101 		       unsigned bits, unsigned clear_bits,
1102 		       struct extent_state **cached_state)
1103 {
1104 	struct extent_state *state;
1105 	struct extent_state *prealloc = NULL;
1106 	struct rb_node *node;
1107 	struct rb_node **p;
1108 	struct rb_node *parent;
1109 	int err = 0;
1110 	u64 last_start;
1111 	u64 last_end;
1112 	bool first_iteration = true;
1113 
1114 	btrfs_debug_check_extent_io_range(tree, start, end);
1115 
1116 again:
1117 	if (!prealloc) {
1118 		/*
1119 		 * Best effort, don't worry if extent state allocation fails
1120 		 * here for the first iteration. We might have a cached state
1121 		 * that matches exactly the target range, in which case no
1122 		 * extent state allocations are needed. We'll only know this
1123 		 * after locking the tree.
1124 		 */
1125 		prealloc = alloc_extent_state(GFP_NOFS);
1126 		if (!prealloc && !first_iteration)
1127 			return -ENOMEM;
1128 	}
1129 
1130 	spin_lock(&tree->lock);
1131 	if (cached_state && *cached_state) {
1132 		state = *cached_state;
1133 		if (state->start <= start && state->end > start &&
1134 		    extent_state_in_tree(state)) {
1135 			node = &state->rb_node;
1136 			goto hit_next;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * this search will find all the extents that end after
1142 	 * our range starts.
1143 	 */
1144 	node = tree_search_for_insert(tree, start, &p, &parent);
1145 	if (!node) {
1146 		prealloc = alloc_extent_state_atomic(prealloc);
1147 		if (!prealloc) {
1148 			err = -ENOMEM;
1149 			goto out;
1150 		}
1151 		err = insert_state(tree, prealloc, start, end,
1152 				   &p, &parent, &bits, NULL);
1153 		if (err)
1154 			extent_io_tree_panic(tree, err);
1155 		cache_state(prealloc, cached_state);
1156 		prealloc = NULL;
1157 		goto out;
1158 	}
1159 	state = rb_entry(node, struct extent_state, rb_node);
1160 hit_next:
1161 	last_start = state->start;
1162 	last_end = state->end;
1163 
1164 	/*
1165 	 * | ---- desired range ---- |
1166 	 * | state |
1167 	 *
1168 	 * Just lock what we found and keep going
1169 	 */
1170 	if (state->start == start && state->end <= end) {
1171 		set_state_bits(tree, state, &bits, NULL);
1172 		cache_state(state, cached_state);
1173 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1174 		if (last_end == (u64)-1)
1175 			goto out;
1176 		start = last_end + 1;
1177 		if (start < end && state && state->start == start &&
1178 		    !need_resched())
1179 			goto hit_next;
1180 		goto search_again;
1181 	}
1182 
1183 	/*
1184 	 *     | ---- desired range ---- |
1185 	 * | state |
1186 	 *   or
1187 	 * | ------------- state -------------- |
1188 	 *
1189 	 * We need to split the extent we found, and may flip bits on
1190 	 * second half.
1191 	 *
1192 	 * If the extent we found extends past our
1193 	 * range, we just split and search again.  It'll get split
1194 	 * again the next time though.
1195 	 *
1196 	 * If the extent we found is inside our range, we set the
1197 	 * desired bit on it.
1198 	 */
1199 	if (state->start < start) {
1200 		prealloc = alloc_extent_state_atomic(prealloc);
1201 		if (!prealloc) {
1202 			err = -ENOMEM;
1203 			goto out;
1204 		}
1205 		err = split_state(tree, state, prealloc, start);
1206 		if (err)
1207 			extent_io_tree_panic(tree, err);
1208 		prealloc = NULL;
1209 		if (err)
1210 			goto out;
1211 		if (state->end <= end) {
1212 			set_state_bits(tree, state, &bits, NULL);
1213 			cache_state(state, cached_state);
1214 			state = clear_state_bit(tree, state, &clear_bits, 0,
1215 						NULL);
1216 			if (last_end == (u64)-1)
1217 				goto out;
1218 			start = last_end + 1;
1219 			if (start < end && state && state->start == start &&
1220 			    !need_resched())
1221 				goto hit_next;
1222 		}
1223 		goto search_again;
1224 	}
1225 	/*
1226 	 * | ---- desired range ---- |
1227 	 *     | state | or               | state |
1228 	 *
1229 	 * There's a hole, we need to insert something in it and
1230 	 * ignore the extent we found.
1231 	 */
1232 	if (state->start > start) {
1233 		u64 this_end;
1234 		if (end < last_start)
1235 			this_end = end;
1236 		else
1237 			this_end = last_start - 1;
1238 
1239 		prealloc = alloc_extent_state_atomic(prealloc);
1240 		if (!prealloc) {
1241 			err = -ENOMEM;
1242 			goto out;
1243 		}
1244 
1245 		/*
1246 		 * Avoid to free 'prealloc' if it can be merged with
1247 		 * the later extent.
1248 		 */
1249 		err = insert_state(tree, prealloc, start, this_end,
1250 				   NULL, NULL, &bits, NULL);
1251 		if (err)
1252 			extent_io_tree_panic(tree, err);
1253 		cache_state(prealloc, cached_state);
1254 		prealloc = NULL;
1255 		start = this_end + 1;
1256 		goto search_again;
1257 	}
1258 	/*
1259 	 * | ---- desired range ---- |
1260 	 *                        | state |
1261 	 * We need to split the extent, and set the bit
1262 	 * on the first half
1263 	 */
1264 	if (state->start <= end && state->end > end) {
1265 		prealloc = alloc_extent_state_atomic(prealloc);
1266 		if (!prealloc) {
1267 			err = -ENOMEM;
1268 			goto out;
1269 		}
1270 
1271 		err = split_state(tree, state, prealloc, end + 1);
1272 		if (err)
1273 			extent_io_tree_panic(tree, err);
1274 
1275 		set_state_bits(tree, prealloc, &bits, NULL);
1276 		cache_state(prealloc, cached_state);
1277 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1278 		prealloc = NULL;
1279 		goto out;
1280 	}
1281 
1282 search_again:
1283 	if (start > end)
1284 		goto out;
1285 	spin_unlock(&tree->lock);
1286 	cond_resched();
1287 	first_iteration = false;
1288 	goto again;
1289 
1290 out:
1291 	spin_unlock(&tree->lock);
1292 	if (prealloc)
1293 		free_extent_state(prealloc);
1294 
1295 	return err;
1296 }
1297 
1298 /* wrappers around set/clear extent bit */
1299 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300 			   unsigned bits, struct extent_changeset *changeset)
1301 {
1302 	/*
1303 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1304 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1305 	 * either fail with -EEXIST or changeset will record the whole
1306 	 * range.
1307 	 */
1308 	BUG_ON(bits & EXTENT_LOCKED);
1309 
1310 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1311 				changeset);
1312 }
1313 
1314 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1315 		     unsigned bits, int wake, int delete,
1316 		     struct extent_state **cached)
1317 {
1318 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1319 				  cached, GFP_NOFS, NULL);
1320 }
1321 
1322 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 		unsigned bits, struct extent_changeset *changeset)
1324 {
1325 	/*
1326 	 * Don't support EXTENT_LOCKED case, same reason as
1327 	 * set_record_extent_bits().
1328 	 */
1329 	BUG_ON(bits & EXTENT_LOCKED);
1330 
1331 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1332 				  changeset);
1333 }
1334 
1335 /*
1336  * either insert or lock state struct between start and end use mask to tell
1337  * us if waiting is desired.
1338  */
1339 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1340 		     struct extent_state **cached_state)
1341 {
1342 	int err;
1343 	u64 failed_start;
1344 
1345 	while (1) {
1346 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1347 				       EXTENT_LOCKED, &failed_start,
1348 				       cached_state, GFP_NOFS, NULL);
1349 		if (err == -EEXIST) {
1350 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1351 			start = failed_start;
1352 		} else
1353 			break;
1354 		WARN_ON(start > end);
1355 	}
1356 	return err;
1357 }
1358 
1359 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1360 {
1361 	int err;
1362 	u64 failed_start;
1363 
1364 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1365 			       &failed_start, NULL, GFP_NOFS, NULL);
1366 	if (err == -EEXIST) {
1367 		if (failed_start > start)
1368 			clear_extent_bit(tree, start, failed_start - 1,
1369 					 EXTENT_LOCKED, 1, 0, NULL);
1370 		return 0;
1371 	}
1372 	return 1;
1373 }
1374 
1375 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1376 {
1377 	unsigned long index = start >> PAGE_SHIFT;
1378 	unsigned long end_index = end >> PAGE_SHIFT;
1379 	struct page *page;
1380 
1381 	while (index <= end_index) {
1382 		page = find_get_page(inode->i_mapping, index);
1383 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1384 		clear_page_dirty_for_io(page);
1385 		put_page(page);
1386 		index++;
1387 	}
1388 }
1389 
1390 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1391 {
1392 	unsigned long index = start >> PAGE_SHIFT;
1393 	unsigned long end_index = end >> PAGE_SHIFT;
1394 	struct page *page;
1395 
1396 	while (index <= end_index) {
1397 		page = find_get_page(inode->i_mapping, index);
1398 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1399 		__set_page_dirty_nobuffers(page);
1400 		account_page_redirty(page);
1401 		put_page(page);
1402 		index++;
1403 	}
1404 }
1405 
1406 /* find the first state struct with 'bits' set after 'start', and
1407  * return it.  tree->lock must be held.  NULL will returned if
1408  * nothing was found after 'start'
1409  */
1410 static struct extent_state *
1411 find_first_extent_bit_state(struct extent_io_tree *tree,
1412 			    u64 start, unsigned bits)
1413 {
1414 	struct rb_node *node;
1415 	struct extent_state *state;
1416 
1417 	/*
1418 	 * this search will find all the extents that end after
1419 	 * our range starts.
1420 	 */
1421 	node = tree_search(tree, start);
1422 	if (!node)
1423 		goto out;
1424 
1425 	while (1) {
1426 		state = rb_entry(node, struct extent_state, rb_node);
1427 		if (state->end >= start && (state->state & bits))
1428 			return state;
1429 
1430 		node = rb_next(node);
1431 		if (!node)
1432 			break;
1433 	}
1434 out:
1435 	return NULL;
1436 }
1437 
1438 /*
1439  * find the first offset in the io tree with 'bits' set. zero is
1440  * returned if we find something, and *start_ret and *end_ret are
1441  * set to reflect the state struct that was found.
1442  *
1443  * If nothing was found, 1 is returned. If found something, return 0.
1444  */
1445 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1446 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1447 			  struct extent_state **cached_state)
1448 {
1449 	struct extent_state *state;
1450 	int ret = 1;
1451 
1452 	spin_lock(&tree->lock);
1453 	if (cached_state && *cached_state) {
1454 		state = *cached_state;
1455 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1456 			while ((state = next_state(state)) != NULL) {
1457 				if (state->state & bits)
1458 					goto got_it;
1459 			}
1460 			free_extent_state(*cached_state);
1461 			*cached_state = NULL;
1462 			goto out;
1463 		}
1464 		free_extent_state(*cached_state);
1465 		*cached_state = NULL;
1466 	}
1467 
1468 	state = find_first_extent_bit_state(tree, start, bits);
1469 got_it:
1470 	if (state) {
1471 		cache_state_if_flags(state, cached_state, 0);
1472 		*start_ret = state->start;
1473 		*end_ret = state->end;
1474 		ret = 0;
1475 	}
1476 out:
1477 	spin_unlock(&tree->lock);
1478 	return ret;
1479 }
1480 
1481 /*
1482  * find a contiguous range of bytes in the file marked as delalloc, not
1483  * more than 'max_bytes'.  start and end are used to return the range,
1484  *
1485  * true is returned if we find something, false if nothing was in the tree
1486  */
1487 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1488 					u64 *start, u64 *end, u64 max_bytes,
1489 					struct extent_state **cached_state)
1490 {
1491 	struct rb_node *node;
1492 	struct extent_state *state;
1493 	u64 cur_start = *start;
1494 	bool found = false;
1495 	u64 total_bytes = 0;
1496 
1497 	spin_lock(&tree->lock);
1498 
1499 	/*
1500 	 * this search will find all the extents that end after
1501 	 * our range starts.
1502 	 */
1503 	node = tree_search(tree, cur_start);
1504 	if (!node) {
1505 		*end = (u64)-1;
1506 		goto out;
1507 	}
1508 
1509 	while (1) {
1510 		state = rb_entry(node, struct extent_state, rb_node);
1511 		if (found && (state->start != cur_start ||
1512 			      (state->state & EXTENT_BOUNDARY))) {
1513 			goto out;
1514 		}
1515 		if (!(state->state & EXTENT_DELALLOC)) {
1516 			if (!found)
1517 				*end = state->end;
1518 			goto out;
1519 		}
1520 		if (!found) {
1521 			*start = state->start;
1522 			*cached_state = state;
1523 			refcount_inc(&state->refs);
1524 		}
1525 		found = true;
1526 		*end = state->end;
1527 		cur_start = state->end + 1;
1528 		node = rb_next(node);
1529 		total_bytes += state->end - state->start + 1;
1530 		if (total_bytes >= max_bytes)
1531 			break;
1532 		if (!node)
1533 			break;
1534 	}
1535 out:
1536 	spin_unlock(&tree->lock);
1537 	return found;
1538 }
1539 
1540 static int __process_pages_contig(struct address_space *mapping,
1541 				  struct page *locked_page,
1542 				  pgoff_t start_index, pgoff_t end_index,
1543 				  unsigned long page_ops, pgoff_t *index_ret);
1544 
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546 					   struct page *locked_page,
1547 					   u64 start, u64 end)
1548 {
1549 	unsigned long index = start >> PAGE_SHIFT;
1550 	unsigned long end_index = end >> PAGE_SHIFT;
1551 
1552 	ASSERT(locked_page);
1553 	if (index == locked_page->index && end_index == index)
1554 		return;
1555 
1556 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 			       PAGE_UNLOCK, NULL);
1558 }
1559 
1560 static noinline int lock_delalloc_pages(struct inode *inode,
1561 					struct page *locked_page,
1562 					u64 delalloc_start,
1563 					u64 delalloc_end)
1564 {
1565 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 	unsigned long index_ret = index;
1567 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 	int ret;
1569 
1570 	ASSERT(locked_page);
1571 	if (index == locked_page->index && index == end_index)
1572 		return 0;
1573 
1574 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 				     end_index, PAGE_LOCK, &index_ret);
1576 	if (ret == -EAGAIN)
1577 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 				      (u64)index_ret << PAGE_SHIFT);
1579 	return ret;
1580 }
1581 
1582 /*
1583  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1584  * more than @max_bytes.  @Start and @end are used to return the range,
1585  *
1586  * Return: true if we find something
1587  *         false if nothing was in the tree
1588  */
1589 EXPORT_FOR_TESTS
1590 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1591 				    struct extent_io_tree *tree,
1592 				    struct page *locked_page, u64 *start,
1593 				    u64 *end)
1594 {
1595 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1596 	u64 delalloc_start;
1597 	u64 delalloc_end;
1598 	bool found;
1599 	struct extent_state *cached_state = NULL;
1600 	int ret;
1601 	int loops = 0;
1602 
1603 again:
1604 	/* step one, find a bunch of delalloc bytes starting at start */
1605 	delalloc_start = *start;
1606 	delalloc_end = 0;
1607 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1608 				    max_bytes, &cached_state);
1609 	if (!found || delalloc_end <= *start) {
1610 		*start = delalloc_start;
1611 		*end = delalloc_end;
1612 		free_extent_state(cached_state);
1613 		return false;
1614 	}
1615 
1616 	/*
1617 	 * start comes from the offset of locked_page.  We have to lock
1618 	 * pages in order, so we can't process delalloc bytes before
1619 	 * locked_page
1620 	 */
1621 	if (delalloc_start < *start)
1622 		delalloc_start = *start;
1623 
1624 	/*
1625 	 * make sure to limit the number of pages we try to lock down
1626 	 */
1627 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1628 		delalloc_end = delalloc_start + max_bytes - 1;
1629 
1630 	/* step two, lock all the pages after the page that has start */
1631 	ret = lock_delalloc_pages(inode, locked_page,
1632 				  delalloc_start, delalloc_end);
1633 	ASSERT(!ret || ret == -EAGAIN);
1634 	if (ret == -EAGAIN) {
1635 		/* some of the pages are gone, lets avoid looping by
1636 		 * shortening the size of the delalloc range we're searching
1637 		 */
1638 		free_extent_state(cached_state);
1639 		cached_state = NULL;
1640 		if (!loops) {
1641 			max_bytes = PAGE_SIZE;
1642 			loops = 1;
1643 			goto again;
1644 		} else {
1645 			found = false;
1646 			goto out_failed;
1647 		}
1648 	}
1649 
1650 	/* step three, lock the state bits for the whole range */
1651 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1652 
1653 	/* then test to make sure it is all still delalloc */
1654 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1655 			     EXTENT_DELALLOC, 1, cached_state);
1656 	if (!ret) {
1657 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1658 				     &cached_state);
1659 		__unlock_for_delalloc(inode, locked_page,
1660 			      delalloc_start, delalloc_end);
1661 		cond_resched();
1662 		goto again;
1663 	}
1664 	free_extent_state(cached_state);
1665 	*start = delalloc_start;
1666 	*end = delalloc_end;
1667 out_failed:
1668 	return found;
1669 }
1670 
1671 static int __process_pages_contig(struct address_space *mapping,
1672 				  struct page *locked_page,
1673 				  pgoff_t start_index, pgoff_t end_index,
1674 				  unsigned long page_ops, pgoff_t *index_ret)
1675 {
1676 	unsigned long nr_pages = end_index - start_index + 1;
1677 	unsigned long pages_locked = 0;
1678 	pgoff_t index = start_index;
1679 	struct page *pages[16];
1680 	unsigned ret;
1681 	int err = 0;
1682 	int i;
1683 
1684 	if (page_ops & PAGE_LOCK) {
1685 		ASSERT(page_ops == PAGE_LOCK);
1686 		ASSERT(index_ret && *index_ret == start_index);
1687 	}
1688 
1689 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1690 		mapping_set_error(mapping, -EIO);
1691 
1692 	while (nr_pages > 0) {
1693 		ret = find_get_pages_contig(mapping, index,
1694 				     min_t(unsigned long,
1695 				     nr_pages, ARRAY_SIZE(pages)), pages);
1696 		if (ret == 0) {
1697 			/*
1698 			 * Only if we're going to lock these pages,
1699 			 * can we find nothing at @index.
1700 			 */
1701 			ASSERT(page_ops & PAGE_LOCK);
1702 			err = -EAGAIN;
1703 			goto out;
1704 		}
1705 
1706 		for (i = 0; i < ret; i++) {
1707 			if (page_ops & PAGE_SET_PRIVATE2)
1708 				SetPagePrivate2(pages[i]);
1709 
1710 			if (pages[i] == locked_page) {
1711 				put_page(pages[i]);
1712 				pages_locked++;
1713 				continue;
1714 			}
1715 			if (page_ops & PAGE_CLEAR_DIRTY)
1716 				clear_page_dirty_for_io(pages[i]);
1717 			if (page_ops & PAGE_SET_WRITEBACK)
1718 				set_page_writeback(pages[i]);
1719 			if (page_ops & PAGE_SET_ERROR)
1720 				SetPageError(pages[i]);
1721 			if (page_ops & PAGE_END_WRITEBACK)
1722 				end_page_writeback(pages[i]);
1723 			if (page_ops & PAGE_UNLOCK)
1724 				unlock_page(pages[i]);
1725 			if (page_ops & PAGE_LOCK) {
1726 				lock_page(pages[i]);
1727 				if (!PageDirty(pages[i]) ||
1728 				    pages[i]->mapping != mapping) {
1729 					unlock_page(pages[i]);
1730 					put_page(pages[i]);
1731 					err = -EAGAIN;
1732 					goto out;
1733 				}
1734 			}
1735 			put_page(pages[i]);
1736 			pages_locked++;
1737 		}
1738 		nr_pages -= ret;
1739 		index += ret;
1740 		cond_resched();
1741 	}
1742 out:
1743 	if (err && index_ret)
1744 		*index_ret = start_index + pages_locked - 1;
1745 	return err;
1746 }
1747 
1748 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1749 				 u64 delalloc_end, struct page *locked_page,
1750 				 unsigned clear_bits,
1751 				 unsigned long page_ops)
1752 {
1753 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1754 			 NULL);
1755 
1756 	__process_pages_contig(inode->i_mapping, locked_page,
1757 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1758 			       page_ops, NULL);
1759 }
1760 
1761 /*
1762  * count the number of bytes in the tree that have a given bit(s)
1763  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1764  * cached.  The total number found is returned.
1765  */
1766 u64 count_range_bits(struct extent_io_tree *tree,
1767 		     u64 *start, u64 search_end, u64 max_bytes,
1768 		     unsigned bits, int contig)
1769 {
1770 	struct rb_node *node;
1771 	struct extent_state *state;
1772 	u64 cur_start = *start;
1773 	u64 total_bytes = 0;
1774 	u64 last = 0;
1775 	int found = 0;
1776 
1777 	if (WARN_ON(search_end <= cur_start))
1778 		return 0;
1779 
1780 	spin_lock(&tree->lock);
1781 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1782 		total_bytes = tree->dirty_bytes;
1783 		goto out;
1784 	}
1785 	/*
1786 	 * this search will find all the extents that end after
1787 	 * our range starts.
1788 	 */
1789 	node = tree_search(tree, cur_start);
1790 	if (!node)
1791 		goto out;
1792 
1793 	while (1) {
1794 		state = rb_entry(node, struct extent_state, rb_node);
1795 		if (state->start > search_end)
1796 			break;
1797 		if (contig && found && state->start > last + 1)
1798 			break;
1799 		if (state->end >= cur_start && (state->state & bits) == bits) {
1800 			total_bytes += min(search_end, state->end) + 1 -
1801 				       max(cur_start, state->start);
1802 			if (total_bytes >= max_bytes)
1803 				break;
1804 			if (!found) {
1805 				*start = max(cur_start, state->start);
1806 				found = 1;
1807 			}
1808 			last = state->end;
1809 		} else if (contig && found) {
1810 			break;
1811 		}
1812 		node = rb_next(node);
1813 		if (!node)
1814 			break;
1815 	}
1816 out:
1817 	spin_unlock(&tree->lock);
1818 	return total_bytes;
1819 }
1820 
1821 /*
1822  * set the private field for a given byte offset in the tree.  If there isn't
1823  * an extent_state there already, this does nothing.
1824  */
1825 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1826 		struct io_failure_record *failrec)
1827 {
1828 	struct rb_node *node;
1829 	struct extent_state *state;
1830 	int ret = 0;
1831 
1832 	spin_lock(&tree->lock);
1833 	/*
1834 	 * this search will find all the extents that end after
1835 	 * our range starts.
1836 	 */
1837 	node = tree_search(tree, start);
1838 	if (!node) {
1839 		ret = -ENOENT;
1840 		goto out;
1841 	}
1842 	state = rb_entry(node, struct extent_state, rb_node);
1843 	if (state->start != start) {
1844 		ret = -ENOENT;
1845 		goto out;
1846 	}
1847 	state->failrec = failrec;
1848 out:
1849 	spin_unlock(&tree->lock);
1850 	return ret;
1851 }
1852 
1853 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1854 		struct io_failure_record **failrec)
1855 {
1856 	struct rb_node *node;
1857 	struct extent_state *state;
1858 	int ret = 0;
1859 
1860 	spin_lock(&tree->lock);
1861 	/*
1862 	 * this search will find all the extents that end after
1863 	 * our range starts.
1864 	 */
1865 	node = tree_search(tree, start);
1866 	if (!node) {
1867 		ret = -ENOENT;
1868 		goto out;
1869 	}
1870 	state = rb_entry(node, struct extent_state, rb_node);
1871 	if (state->start != start) {
1872 		ret = -ENOENT;
1873 		goto out;
1874 	}
1875 	*failrec = state->failrec;
1876 out:
1877 	spin_unlock(&tree->lock);
1878 	return ret;
1879 }
1880 
1881 /*
1882  * searches a range in the state tree for a given mask.
1883  * If 'filled' == 1, this returns 1 only if every extent in the tree
1884  * has the bits set.  Otherwise, 1 is returned if any bit in the
1885  * range is found set.
1886  */
1887 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1888 		   unsigned bits, int filled, struct extent_state *cached)
1889 {
1890 	struct extent_state *state = NULL;
1891 	struct rb_node *node;
1892 	int bitset = 0;
1893 
1894 	spin_lock(&tree->lock);
1895 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1896 	    cached->end > start)
1897 		node = &cached->rb_node;
1898 	else
1899 		node = tree_search(tree, start);
1900 	while (node && start <= end) {
1901 		state = rb_entry(node, struct extent_state, rb_node);
1902 
1903 		if (filled && state->start > start) {
1904 			bitset = 0;
1905 			break;
1906 		}
1907 
1908 		if (state->start > end)
1909 			break;
1910 
1911 		if (state->state & bits) {
1912 			bitset = 1;
1913 			if (!filled)
1914 				break;
1915 		} else if (filled) {
1916 			bitset = 0;
1917 			break;
1918 		}
1919 
1920 		if (state->end == (u64)-1)
1921 			break;
1922 
1923 		start = state->end + 1;
1924 		if (start > end)
1925 			break;
1926 		node = rb_next(node);
1927 		if (!node) {
1928 			if (filled)
1929 				bitset = 0;
1930 			break;
1931 		}
1932 	}
1933 	spin_unlock(&tree->lock);
1934 	return bitset;
1935 }
1936 
1937 /*
1938  * helper function to set a given page up to date if all the
1939  * extents in the tree for that page are up to date
1940  */
1941 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1942 {
1943 	u64 start = page_offset(page);
1944 	u64 end = start + PAGE_SIZE - 1;
1945 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1946 		SetPageUptodate(page);
1947 }
1948 
1949 int free_io_failure(struct extent_io_tree *failure_tree,
1950 		    struct extent_io_tree *io_tree,
1951 		    struct io_failure_record *rec)
1952 {
1953 	int ret;
1954 	int err = 0;
1955 
1956 	set_state_failrec(failure_tree, rec->start, NULL);
1957 	ret = clear_extent_bits(failure_tree, rec->start,
1958 				rec->start + rec->len - 1,
1959 				EXTENT_LOCKED | EXTENT_DIRTY);
1960 	if (ret)
1961 		err = ret;
1962 
1963 	ret = clear_extent_bits(io_tree, rec->start,
1964 				rec->start + rec->len - 1,
1965 				EXTENT_DAMAGED);
1966 	if (ret && !err)
1967 		err = ret;
1968 
1969 	kfree(rec);
1970 	return err;
1971 }
1972 
1973 /*
1974  * this bypasses the standard btrfs submit functions deliberately, as
1975  * the standard behavior is to write all copies in a raid setup. here we only
1976  * want to write the one bad copy. so we do the mapping for ourselves and issue
1977  * submit_bio directly.
1978  * to avoid any synchronization issues, wait for the data after writing, which
1979  * actually prevents the read that triggered the error from finishing.
1980  * currently, there can be no more than two copies of every data bit. thus,
1981  * exactly one rewrite is required.
1982  */
1983 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1984 		      u64 length, u64 logical, struct page *page,
1985 		      unsigned int pg_offset, int mirror_num)
1986 {
1987 	struct bio *bio;
1988 	struct btrfs_device *dev;
1989 	u64 map_length = 0;
1990 	u64 sector;
1991 	struct btrfs_bio *bbio = NULL;
1992 	int ret;
1993 
1994 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1995 	BUG_ON(!mirror_num);
1996 
1997 	bio = btrfs_io_bio_alloc(1);
1998 	bio->bi_iter.bi_size = 0;
1999 	map_length = length;
2000 
2001 	/*
2002 	 * Avoid races with device replace and make sure our bbio has devices
2003 	 * associated to its stripes that don't go away while we are doing the
2004 	 * read repair operation.
2005 	 */
2006 	btrfs_bio_counter_inc_blocked(fs_info);
2007 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2008 		/*
2009 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2010 		 * to update all raid stripes, but here we just want to correct
2011 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2012 		 * stripe's dev and sector.
2013 		 */
2014 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2015 				      &map_length, &bbio, 0);
2016 		if (ret) {
2017 			btrfs_bio_counter_dec(fs_info);
2018 			bio_put(bio);
2019 			return -EIO;
2020 		}
2021 		ASSERT(bbio->mirror_num == 1);
2022 	} else {
2023 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2024 				      &map_length, &bbio, mirror_num);
2025 		if (ret) {
2026 			btrfs_bio_counter_dec(fs_info);
2027 			bio_put(bio);
2028 			return -EIO;
2029 		}
2030 		BUG_ON(mirror_num != bbio->mirror_num);
2031 	}
2032 
2033 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2034 	bio->bi_iter.bi_sector = sector;
2035 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2036 	btrfs_put_bbio(bbio);
2037 	if (!dev || !dev->bdev ||
2038 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2039 		btrfs_bio_counter_dec(fs_info);
2040 		bio_put(bio);
2041 		return -EIO;
2042 	}
2043 	bio_set_dev(bio, dev->bdev);
2044 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2045 	bio_add_page(bio, page, length, pg_offset);
2046 
2047 	if (btrfsic_submit_bio_wait(bio)) {
2048 		/* try to remap that extent elsewhere? */
2049 		btrfs_bio_counter_dec(fs_info);
2050 		bio_put(bio);
2051 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2052 		return -EIO;
2053 	}
2054 
2055 	btrfs_info_rl_in_rcu(fs_info,
2056 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2057 				  ino, start,
2058 				  rcu_str_deref(dev->name), sector);
2059 	btrfs_bio_counter_dec(fs_info);
2060 	bio_put(bio);
2061 	return 0;
2062 }
2063 
2064 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2065 			 struct extent_buffer *eb, int mirror_num)
2066 {
2067 	u64 start = eb->start;
2068 	int i, num_pages = num_extent_pages(eb);
2069 	int ret = 0;
2070 
2071 	if (sb_rdonly(fs_info->sb))
2072 		return -EROFS;
2073 
2074 	for (i = 0; i < num_pages; i++) {
2075 		struct page *p = eb->pages[i];
2076 
2077 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2078 					start - page_offset(p), mirror_num);
2079 		if (ret)
2080 			break;
2081 		start += PAGE_SIZE;
2082 	}
2083 
2084 	return ret;
2085 }
2086 
2087 /*
2088  * each time an IO finishes, we do a fast check in the IO failure tree
2089  * to see if we need to process or clean up an io_failure_record
2090  */
2091 int clean_io_failure(struct btrfs_fs_info *fs_info,
2092 		     struct extent_io_tree *failure_tree,
2093 		     struct extent_io_tree *io_tree, u64 start,
2094 		     struct page *page, u64 ino, unsigned int pg_offset)
2095 {
2096 	u64 private;
2097 	struct io_failure_record *failrec;
2098 	struct extent_state *state;
2099 	int num_copies;
2100 	int ret;
2101 
2102 	private = 0;
2103 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2104 			       EXTENT_DIRTY, 0);
2105 	if (!ret)
2106 		return 0;
2107 
2108 	ret = get_state_failrec(failure_tree, start, &failrec);
2109 	if (ret)
2110 		return 0;
2111 
2112 	BUG_ON(!failrec->this_mirror);
2113 
2114 	if (failrec->in_validation) {
2115 		/* there was no real error, just free the record */
2116 		btrfs_debug(fs_info,
2117 			"clean_io_failure: freeing dummy error at %llu",
2118 			failrec->start);
2119 		goto out;
2120 	}
2121 	if (sb_rdonly(fs_info->sb))
2122 		goto out;
2123 
2124 	spin_lock(&io_tree->lock);
2125 	state = find_first_extent_bit_state(io_tree,
2126 					    failrec->start,
2127 					    EXTENT_LOCKED);
2128 	spin_unlock(&io_tree->lock);
2129 
2130 	if (state && state->start <= failrec->start &&
2131 	    state->end >= failrec->start + failrec->len - 1) {
2132 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2133 					      failrec->len);
2134 		if (num_copies > 1)  {
2135 			repair_io_failure(fs_info, ino, start, failrec->len,
2136 					  failrec->logical, page, pg_offset,
2137 					  failrec->failed_mirror);
2138 		}
2139 	}
2140 
2141 out:
2142 	free_io_failure(failure_tree, io_tree, failrec);
2143 
2144 	return 0;
2145 }
2146 
2147 /*
2148  * Can be called when
2149  * - hold extent lock
2150  * - under ordered extent
2151  * - the inode is freeing
2152  */
2153 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2154 {
2155 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2156 	struct io_failure_record *failrec;
2157 	struct extent_state *state, *next;
2158 
2159 	if (RB_EMPTY_ROOT(&failure_tree->state))
2160 		return;
2161 
2162 	spin_lock(&failure_tree->lock);
2163 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2164 	while (state) {
2165 		if (state->start > end)
2166 			break;
2167 
2168 		ASSERT(state->end <= end);
2169 
2170 		next = next_state(state);
2171 
2172 		failrec = state->failrec;
2173 		free_extent_state(state);
2174 		kfree(failrec);
2175 
2176 		state = next;
2177 	}
2178 	spin_unlock(&failure_tree->lock);
2179 }
2180 
2181 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2182 		struct io_failure_record **failrec_ret)
2183 {
2184 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2185 	struct io_failure_record *failrec;
2186 	struct extent_map *em;
2187 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2188 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2189 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2190 	int ret;
2191 	u64 logical;
2192 
2193 	ret = get_state_failrec(failure_tree, start, &failrec);
2194 	if (ret) {
2195 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196 		if (!failrec)
2197 			return -ENOMEM;
2198 
2199 		failrec->start = start;
2200 		failrec->len = end - start + 1;
2201 		failrec->this_mirror = 0;
2202 		failrec->bio_flags = 0;
2203 		failrec->in_validation = 0;
2204 
2205 		read_lock(&em_tree->lock);
2206 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2207 		if (!em) {
2208 			read_unlock(&em_tree->lock);
2209 			kfree(failrec);
2210 			return -EIO;
2211 		}
2212 
2213 		if (em->start > start || em->start + em->len <= start) {
2214 			free_extent_map(em);
2215 			em = NULL;
2216 		}
2217 		read_unlock(&em_tree->lock);
2218 		if (!em) {
2219 			kfree(failrec);
2220 			return -EIO;
2221 		}
2222 
2223 		logical = start - em->start;
2224 		logical = em->block_start + logical;
2225 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2226 			logical = em->block_start;
2227 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2228 			extent_set_compress_type(&failrec->bio_flags,
2229 						 em->compress_type);
2230 		}
2231 
2232 		btrfs_debug(fs_info,
2233 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2234 			logical, start, failrec->len);
2235 
2236 		failrec->logical = logical;
2237 		free_extent_map(em);
2238 
2239 		/* set the bits in the private failure tree */
2240 		ret = set_extent_bits(failure_tree, start, end,
2241 					EXTENT_LOCKED | EXTENT_DIRTY);
2242 		if (ret >= 0)
2243 			ret = set_state_failrec(failure_tree, start, failrec);
2244 		/* set the bits in the inode's tree */
2245 		if (ret >= 0)
2246 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2247 		if (ret < 0) {
2248 			kfree(failrec);
2249 			return ret;
2250 		}
2251 	} else {
2252 		btrfs_debug(fs_info,
2253 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2254 			failrec->logical, failrec->start, failrec->len,
2255 			failrec->in_validation);
2256 		/*
2257 		 * when data can be on disk more than twice, add to failrec here
2258 		 * (e.g. with a list for failed_mirror) to make
2259 		 * clean_io_failure() clean all those errors at once.
2260 		 */
2261 	}
2262 
2263 	*failrec_ret = failrec;
2264 
2265 	return 0;
2266 }
2267 
2268 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2269 			   struct io_failure_record *failrec, int failed_mirror)
2270 {
2271 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2272 	int num_copies;
2273 
2274 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2275 	if (num_copies == 1) {
2276 		/*
2277 		 * we only have a single copy of the data, so don't bother with
2278 		 * all the retry and error correction code that follows. no
2279 		 * matter what the error is, it is very likely to persist.
2280 		 */
2281 		btrfs_debug(fs_info,
2282 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2283 			num_copies, failrec->this_mirror, failed_mirror);
2284 		return false;
2285 	}
2286 
2287 	/*
2288 	 * there are two premises:
2289 	 *	a) deliver good data to the caller
2290 	 *	b) correct the bad sectors on disk
2291 	 */
2292 	if (failed_bio_pages > 1) {
2293 		/*
2294 		 * to fulfill b), we need to know the exact failing sectors, as
2295 		 * we don't want to rewrite any more than the failed ones. thus,
2296 		 * we need separate read requests for the failed bio
2297 		 *
2298 		 * if the following BUG_ON triggers, our validation request got
2299 		 * merged. we need separate requests for our algorithm to work.
2300 		 */
2301 		BUG_ON(failrec->in_validation);
2302 		failrec->in_validation = 1;
2303 		failrec->this_mirror = failed_mirror;
2304 	} else {
2305 		/*
2306 		 * we're ready to fulfill a) and b) alongside. get a good copy
2307 		 * of the failed sector and if we succeed, we have setup
2308 		 * everything for repair_io_failure to do the rest for us.
2309 		 */
2310 		if (failrec->in_validation) {
2311 			BUG_ON(failrec->this_mirror != failed_mirror);
2312 			failrec->in_validation = 0;
2313 			failrec->this_mirror = 0;
2314 		}
2315 		failrec->failed_mirror = failed_mirror;
2316 		failrec->this_mirror++;
2317 		if (failrec->this_mirror == failed_mirror)
2318 			failrec->this_mirror++;
2319 	}
2320 
2321 	if (failrec->this_mirror > num_copies) {
2322 		btrfs_debug(fs_info,
2323 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2324 			num_copies, failrec->this_mirror, failed_mirror);
2325 		return false;
2326 	}
2327 
2328 	return true;
2329 }
2330 
2331 
2332 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2333 				    struct io_failure_record *failrec,
2334 				    struct page *page, int pg_offset, int icsum,
2335 				    bio_end_io_t *endio_func, void *data)
2336 {
2337 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2338 	struct bio *bio;
2339 	struct btrfs_io_bio *btrfs_failed_bio;
2340 	struct btrfs_io_bio *btrfs_bio;
2341 
2342 	bio = btrfs_io_bio_alloc(1);
2343 	bio->bi_end_io = endio_func;
2344 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2345 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2346 	bio->bi_iter.bi_size = 0;
2347 	bio->bi_private = data;
2348 
2349 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2350 	if (btrfs_failed_bio->csum) {
2351 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352 
2353 		btrfs_bio = btrfs_io_bio(bio);
2354 		btrfs_bio->csum = btrfs_bio->csum_inline;
2355 		icsum *= csum_size;
2356 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2357 		       csum_size);
2358 	}
2359 
2360 	bio_add_page(bio, page, failrec->len, pg_offset);
2361 
2362 	return bio;
2363 }
2364 
2365 /*
2366  * This is a generic handler for readpage errors. If other copies exist, read
2367  * those and write back good data to the failed position. Does not investigate
2368  * in remapping the failed extent elsewhere, hoping the device will be smart
2369  * enough to do this as needed
2370  */
2371 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2372 			      struct page *page, u64 start, u64 end,
2373 			      int failed_mirror)
2374 {
2375 	struct io_failure_record *failrec;
2376 	struct inode *inode = page->mapping->host;
2377 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2378 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2379 	struct bio *bio;
2380 	int read_mode = 0;
2381 	blk_status_t status;
2382 	int ret;
2383 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2384 
2385 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2386 
2387 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2388 	if (ret)
2389 		return ret;
2390 
2391 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2392 				    failed_mirror)) {
2393 		free_io_failure(failure_tree, tree, failrec);
2394 		return -EIO;
2395 	}
2396 
2397 	if (failed_bio_pages > 1)
2398 		read_mode |= REQ_FAILFAST_DEV;
2399 
2400 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2401 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2402 				      start - page_offset(page),
2403 				      (int)phy_offset, failed_bio->bi_end_io,
2404 				      NULL);
2405 	bio->bi_opf = REQ_OP_READ | read_mode;
2406 
2407 	btrfs_debug(btrfs_sb(inode->i_sb),
2408 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2409 		read_mode, failrec->this_mirror, failrec->in_validation);
2410 
2411 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2412 					 failrec->bio_flags, 0);
2413 	if (status) {
2414 		free_io_failure(failure_tree, tree, failrec);
2415 		bio_put(bio);
2416 		ret = blk_status_to_errno(status);
2417 	}
2418 
2419 	return ret;
2420 }
2421 
2422 /* lots and lots of room for performance fixes in the end_bio funcs */
2423 
2424 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2425 {
2426 	int uptodate = (err == 0);
2427 	int ret = 0;
2428 
2429 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2430 
2431 	if (!uptodate) {
2432 		ClearPageUptodate(page);
2433 		SetPageError(page);
2434 		ret = err < 0 ? err : -EIO;
2435 		mapping_set_error(page->mapping, ret);
2436 	}
2437 }
2438 
2439 /*
2440  * after a writepage IO is done, we need to:
2441  * clear the uptodate bits on error
2442  * clear the writeback bits in the extent tree for this IO
2443  * end_page_writeback if the page has no more pending IO
2444  *
2445  * Scheduling is not allowed, so the extent state tree is expected
2446  * to have one and only one object corresponding to this IO.
2447  */
2448 static void end_bio_extent_writepage(struct bio *bio)
2449 {
2450 	int error = blk_status_to_errno(bio->bi_status);
2451 	struct bio_vec *bvec;
2452 	u64 start;
2453 	u64 end;
2454 	int i;
2455 	struct bvec_iter_all iter_all;
2456 
2457 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2458 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
2459 		struct page *page = bvec->bv_page;
2460 		struct inode *inode = page->mapping->host;
2461 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2462 
2463 		/* We always issue full-page reads, but if some block
2464 		 * in a page fails to read, blk_update_request() will
2465 		 * advance bv_offset and adjust bv_len to compensate.
2466 		 * Print a warning for nonzero offsets, and an error
2467 		 * if they don't add up to a full page.  */
2468 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2470 				btrfs_err(fs_info,
2471 				   "partial page write in btrfs with offset %u and length %u",
2472 					bvec->bv_offset, bvec->bv_len);
2473 			else
2474 				btrfs_info(fs_info,
2475 				   "incomplete page write in btrfs with offset %u and length %u",
2476 					bvec->bv_offset, bvec->bv_len);
2477 		}
2478 
2479 		start = page_offset(page);
2480 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2481 
2482 		end_extent_writepage(page, error, start, end);
2483 		end_page_writeback(page);
2484 	}
2485 
2486 	bio_put(bio);
2487 }
2488 
2489 static void
2490 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 			      int uptodate)
2492 {
2493 	struct extent_state *cached = NULL;
2494 	u64 end = start + len - 1;
2495 
2496 	if (uptodate && tree->track_uptodate)
2497 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 	unlock_extent_cached_atomic(tree, start, end, &cached);
2499 }
2500 
2501 /*
2502  * after a readpage IO is done, we need to:
2503  * clear the uptodate bits on error
2504  * set the uptodate bits if things worked
2505  * set the page up to date if all extents in the tree are uptodate
2506  * clear the lock bit in the extent tree
2507  * unlock the page if there are no other extents locked for it
2508  *
2509  * Scheduling is not allowed, so the extent state tree is expected
2510  * to have one and only one object corresponding to this IO.
2511  */
2512 static void end_bio_extent_readpage(struct bio *bio)
2513 {
2514 	struct bio_vec *bvec;
2515 	int uptodate = !bio->bi_status;
2516 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2517 	struct extent_io_tree *tree, *failure_tree;
2518 	u64 offset = 0;
2519 	u64 start;
2520 	u64 end;
2521 	u64 len;
2522 	u64 extent_start = 0;
2523 	u64 extent_len = 0;
2524 	int mirror;
2525 	int ret;
2526 	int i;
2527 	struct bvec_iter_all iter_all;
2528 
2529 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2530 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
2531 		struct page *page = bvec->bv_page;
2532 		struct inode *inode = page->mapping->host;
2533 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2534 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2535 			!= BTRFS_BTREE_INODE_OBJECTID;
2536 
2537 		btrfs_debug(fs_info,
2538 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 			io_bio->mirror_num);
2541 		tree = &BTRFS_I(inode)->io_tree;
2542 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543 
2544 		/* We always issue full-page reads, but if some block
2545 		 * in a page fails to read, blk_update_request() will
2546 		 * advance bv_offset and adjust bv_len to compensate.
2547 		 * Print a warning for nonzero offsets, and an error
2548 		 * if they don't add up to a full page.  */
2549 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 				btrfs_err(fs_info,
2552 					"partial page read in btrfs with offset %u and length %u",
2553 					bvec->bv_offset, bvec->bv_len);
2554 			else
2555 				btrfs_info(fs_info,
2556 					"incomplete page read in btrfs with offset %u and length %u",
2557 					bvec->bv_offset, bvec->bv_len);
2558 		}
2559 
2560 		start = page_offset(page);
2561 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 		len = bvec->bv_len;
2563 
2564 		mirror = io_bio->mirror_num;
2565 		if (likely(uptodate)) {
2566 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 							      page, start, end,
2568 							      mirror);
2569 			if (ret)
2570 				uptodate = 0;
2571 			else
2572 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 						 failure_tree, tree, start,
2574 						 page,
2575 						 btrfs_ino(BTRFS_I(inode)), 0);
2576 		}
2577 
2578 		if (likely(uptodate))
2579 			goto readpage_ok;
2580 
2581 		if (data_inode) {
2582 
2583 			/*
2584 			 * The generic bio_readpage_error handles errors the
2585 			 * following way: If possible, new read requests are
2586 			 * created and submitted and will end up in
2587 			 * end_bio_extent_readpage as well (if we're lucky,
2588 			 * not in the !uptodate case). In that case it returns
2589 			 * 0 and we just go on with the next page in our bio.
2590 			 * If it can't handle the error it will return -EIO and
2591 			 * we remain responsible for that page.
2592 			 */
2593 			ret = bio_readpage_error(bio, offset, page, start, end,
2594 						 mirror);
2595 			if (ret == 0) {
2596 				uptodate = !bio->bi_status;
2597 				offset += len;
2598 				continue;
2599 			}
2600 		} else {
2601 			struct extent_buffer *eb;
2602 
2603 			eb = (struct extent_buffer *)page->private;
2604 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2605 			eb->read_mirror = mirror;
2606 			atomic_dec(&eb->io_pages);
2607 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2608 					       &eb->bflags))
2609 				btree_readahead_hook(eb, -EIO);
2610 
2611 			ret = -EIO;
2612 		}
2613 readpage_ok:
2614 		if (likely(uptodate)) {
2615 			loff_t i_size = i_size_read(inode);
2616 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2617 			unsigned off;
2618 
2619 			/* Zero out the end if this page straddles i_size */
2620 			off = offset_in_page(i_size);
2621 			if (page->index == end_index && off)
2622 				zero_user_segment(page, off, PAGE_SIZE);
2623 			SetPageUptodate(page);
2624 		} else {
2625 			ClearPageUptodate(page);
2626 			SetPageError(page);
2627 		}
2628 		unlock_page(page);
2629 		offset += len;
2630 
2631 		if (unlikely(!uptodate)) {
2632 			if (extent_len) {
2633 				endio_readpage_release_extent(tree,
2634 							      extent_start,
2635 							      extent_len, 1);
2636 				extent_start = 0;
2637 				extent_len = 0;
2638 			}
2639 			endio_readpage_release_extent(tree, start,
2640 						      end - start + 1, 0);
2641 		} else if (!extent_len) {
2642 			extent_start = start;
2643 			extent_len = end + 1 - start;
2644 		} else if (extent_start + extent_len == start) {
2645 			extent_len += end + 1 - start;
2646 		} else {
2647 			endio_readpage_release_extent(tree, extent_start,
2648 						      extent_len, uptodate);
2649 			extent_start = start;
2650 			extent_len = end + 1 - start;
2651 		}
2652 	}
2653 
2654 	if (extent_len)
2655 		endio_readpage_release_extent(tree, extent_start, extent_len,
2656 					      uptodate);
2657 	btrfs_io_bio_free_csum(io_bio);
2658 	bio_put(bio);
2659 }
2660 
2661 /*
2662  * Initialize the members up to but not including 'bio'. Use after allocating a
2663  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2664  * 'bio' because use of __GFP_ZERO is not supported.
2665  */
2666 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2667 {
2668 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2669 }
2670 
2671 /*
2672  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2673  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2674  * for the appropriate container_of magic
2675  */
2676 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2677 {
2678 	struct bio *bio;
2679 
2680 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2681 	bio_set_dev(bio, bdev);
2682 	bio->bi_iter.bi_sector = first_byte >> 9;
2683 	btrfs_io_bio_init(btrfs_io_bio(bio));
2684 	return bio;
2685 }
2686 
2687 struct bio *btrfs_bio_clone(struct bio *bio)
2688 {
2689 	struct btrfs_io_bio *btrfs_bio;
2690 	struct bio *new;
2691 
2692 	/* Bio allocation backed by a bioset does not fail */
2693 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2694 	btrfs_bio = btrfs_io_bio(new);
2695 	btrfs_io_bio_init(btrfs_bio);
2696 	btrfs_bio->iter = bio->bi_iter;
2697 	return new;
2698 }
2699 
2700 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2701 {
2702 	struct bio *bio;
2703 
2704 	/* Bio allocation backed by a bioset does not fail */
2705 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2706 	btrfs_io_bio_init(btrfs_io_bio(bio));
2707 	return bio;
2708 }
2709 
2710 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2711 {
2712 	struct bio *bio;
2713 	struct btrfs_io_bio *btrfs_bio;
2714 
2715 	/* this will never fail when it's backed by a bioset */
2716 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2717 	ASSERT(bio);
2718 
2719 	btrfs_bio = btrfs_io_bio(bio);
2720 	btrfs_io_bio_init(btrfs_bio);
2721 
2722 	bio_trim(bio, offset >> 9, size >> 9);
2723 	btrfs_bio->iter = bio->bi_iter;
2724 	return bio;
2725 }
2726 
2727 /*
2728  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2729  * @tree:	tree so we can call our merge_bio hook
2730  * @wbc:	optional writeback control for io accounting
2731  * @page:	page to add to the bio
2732  * @pg_offset:	offset of the new bio or to check whether we are adding
2733  *              a contiguous page to the previous one
2734  * @size:	portion of page that we want to write
2735  * @offset:	starting offset in the page
2736  * @bdev:	attach newly created bios to this bdev
2737  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2738  * @end_io_func:     end_io callback for new bio
2739  * @mirror_num:	     desired mirror to read/write
2740  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2741  * @bio_flags:	flags of the current bio to see if we can merge them
2742  */
2743 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2744 			      struct writeback_control *wbc,
2745 			      struct page *page, u64 offset,
2746 			      size_t size, unsigned long pg_offset,
2747 			      struct block_device *bdev,
2748 			      struct bio **bio_ret,
2749 			      bio_end_io_t end_io_func,
2750 			      int mirror_num,
2751 			      unsigned long prev_bio_flags,
2752 			      unsigned long bio_flags,
2753 			      bool force_bio_submit)
2754 {
2755 	int ret = 0;
2756 	struct bio *bio;
2757 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2758 	sector_t sector = offset >> 9;
2759 
2760 	ASSERT(bio_ret);
2761 
2762 	if (*bio_ret) {
2763 		bool contig;
2764 		bool can_merge = true;
2765 
2766 		bio = *bio_ret;
2767 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2768 			contig = bio->bi_iter.bi_sector == sector;
2769 		else
2770 			contig = bio_end_sector(bio) == sector;
2771 
2772 		ASSERT(tree->ops);
2773 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2774 			can_merge = false;
2775 
2776 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2777 		    force_bio_submit ||
2778 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2779 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2780 			if (ret < 0) {
2781 				*bio_ret = NULL;
2782 				return ret;
2783 			}
2784 			bio = NULL;
2785 		} else {
2786 			if (wbc)
2787 				wbc_account_io(wbc, page, page_size);
2788 			return 0;
2789 		}
2790 	}
2791 
2792 	bio = btrfs_bio_alloc(bdev, offset);
2793 	bio_add_page(bio, page, page_size, pg_offset);
2794 	bio->bi_end_io = end_io_func;
2795 	bio->bi_private = tree;
2796 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2797 	bio->bi_opf = opf;
2798 	if (wbc) {
2799 		wbc_init_bio(wbc, bio);
2800 		wbc_account_io(wbc, page, page_size);
2801 	}
2802 
2803 	*bio_ret = bio;
2804 
2805 	return ret;
2806 }
2807 
2808 static void attach_extent_buffer_page(struct extent_buffer *eb,
2809 				      struct page *page)
2810 {
2811 	if (!PagePrivate(page)) {
2812 		SetPagePrivate(page);
2813 		get_page(page);
2814 		set_page_private(page, (unsigned long)eb);
2815 	} else {
2816 		WARN_ON(page->private != (unsigned long)eb);
2817 	}
2818 }
2819 
2820 void set_page_extent_mapped(struct page *page)
2821 {
2822 	if (!PagePrivate(page)) {
2823 		SetPagePrivate(page);
2824 		get_page(page);
2825 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2826 	}
2827 }
2828 
2829 static struct extent_map *
2830 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2831 		 u64 start, u64 len, get_extent_t *get_extent,
2832 		 struct extent_map **em_cached)
2833 {
2834 	struct extent_map *em;
2835 
2836 	if (em_cached && *em_cached) {
2837 		em = *em_cached;
2838 		if (extent_map_in_tree(em) && start >= em->start &&
2839 		    start < extent_map_end(em)) {
2840 			refcount_inc(&em->refs);
2841 			return em;
2842 		}
2843 
2844 		free_extent_map(em);
2845 		*em_cached = NULL;
2846 	}
2847 
2848 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2849 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2850 		BUG_ON(*em_cached);
2851 		refcount_inc(&em->refs);
2852 		*em_cached = em;
2853 	}
2854 	return em;
2855 }
2856 /*
2857  * basic readpage implementation.  Locked extent state structs are inserted
2858  * into the tree that are removed when the IO is done (by the end_io
2859  * handlers)
2860  * XXX JDM: This needs looking at to ensure proper page locking
2861  * return 0 on success, otherwise return error
2862  */
2863 static int __do_readpage(struct extent_io_tree *tree,
2864 			 struct page *page,
2865 			 get_extent_t *get_extent,
2866 			 struct extent_map **em_cached,
2867 			 struct bio **bio, int mirror_num,
2868 			 unsigned long *bio_flags, unsigned int read_flags,
2869 			 u64 *prev_em_start)
2870 {
2871 	struct inode *inode = page->mapping->host;
2872 	u64 start = page_offset(page);
2873 	const u64 end = start + PAGE_SIZE - 1;
2874 	u64 cur = start;
2875 	u64 extent_offset;
2876 	u64 last_byte = i_size_read(inode);
2877 	u64 block_start;
2878 	u64 cur_end;
2879 	struct extent_map *em;
2880 	struct block_device *bdev;
2881 	int ret = 0;
2882 	int nr = 0;
2883 	size_t pg_offset = 0;
2884 	size_t iosize;
2885 	size_t disk_io_size;
2886 	size_t blocksize = inode->i_sb->s_blocksize;
2887 	unsigned long this_bio_flag = 0;
2888 
2889 	set_page_extent_mapped(page);
2890 
2891 	if (!PageUptodate(page)) {
2892 		if (cleancache_get_page(page) == 0) {
2893 			BUG_ON(blocksize != PAGE_SIZE);
2894 			unlock_extent(tree, start, end);
2895 			goto out;
2896 		}
2897 	}
2898 
2899 	if (page->index == last_byte >> PAGE_SHIFT) {
2900 		char *userpage;
2901 		size_t zero_offset = offset_in_page(last_byte);
2902 
2903 		if (zero_offset) {
2904 			iosize = PAGE_SIZE - zero_offset;
2905 			userpage = kmap_atomic(page);
2906 			memset(userpage + zero_offset, 0, iosize);
2907 			flush_dcache_page(page);
2908 			kunmap_atomic(userpage);
2909 		}
2910 	}
2911 	while (cur <= end) {
2912 		bool force_bio_submit = false;
2913 		u64 offset;
2914 
2915 		if (cur >= last_byte) {
2916 			char *userpage;
2917 			struct extent_state *cached = NULL;
2918 
2919 			iosize = PAGE_SIZE - pg_offset;
2920 			userpage = kmap_atomic(page);
2921 			memset(userpage + pg_offset, 0, iosize);
2922 			flush_dcache_page(page);
2923 			kunmap_atomic(userpage);
2924 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2925 					    &cached, GFP_NOFS);
2926 			unlock_extent_cached(tree, cur,
2927 					     cur + iosize - 1, &cached);
2928 			break;
2929 		}
2930 		em = __get_extent_map(inode, page, pg_offset, cur,
2931 				      end - cur + 1, get_extent, em_cached);
2932 		if (IS_ERR_OR_NULL(em)) {
2933 			SetPageError(page);
2934 			unlock_extent(tree, cur, end);
2935 			break;
2936 		}
2937 		extent_offset = cur - em->start;
2938 		BUG_ON(extent_map_end(em) <= cur);
2939 		BUG_ON(end < cur);
2940 
2941 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2942 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2943 			extent_set_compress_type(&this_bio_flag,
2944 						 em->compress_type);
2945 		}
2946 
2947 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2948 		cur_end = min(extent_map_end(em) - 1, end);
2949 		iosize = ALIGN(iosize, blocksize);
2950 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2951 			disk_io_size = em->block_len;
2952 			offset = em->block_start;
2953 		} else {
2954 			offset = em->block_start + extent_offset;
2955 			disk_io_size = iosize;
2956 		}
2957 		bdev = em->bdev;
2958 		block_start = em->block_start;
2959 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2960 			block_start = EXTENT_MAP_HOLE;
2961 
2962 		/*
2963 		 * If we have a file range that points to a compressed extent
2964 		 * and it's followed by a consecutive file range that points to
2965 		 * to the same compressed extent (possibly with a different
2966 		 * offset and/or length, so it either points to the whole extent
2967 		 * or only part of it), we must make sure we do not submit a
2968 		 * single bio to populate the pages for the 2 ranges because
2969 		 * this makes the compressed extent read zero out the pages
2970 		 * belonging to the 2nd range. Imagine the following scenario:
2971 		 *
2972 		 *  File layout
2973 		 *  [0 - 8K]                     [8K - 24K]
2974 		 *    |                               |
2975 		 *    |                               |
2976 		 * points to extent X,         points to extent X,
2977 		 * offset 4K, length of 8K     offset 0, length 16K
2978 		 *
2979 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2980 		 *
2981 		 * If the bio to read the compressed extent covers both ranges,
2982 		 * it will decompress extent X into the pages belonging to the
2983 		 * first range and then it will stop, zeroing out the remaining
2984 		 * pages that belong to the other range that points to extent X.
2985 		 * So here we make sure we submit 2 bios, one for the first
2986 		 * range and another one for the third range. Both will target
2987 		 * the same physical extent from disk, but we can't currently
2988 		 * make the compressed bio endio callback populate the pages
2989 		 * for both ranges because each compressed bio is tightly
2990 		 * coupled with a single extent map, and each range can have
2991 		 * an extent map with a different offset value relative to the
2992 		 * uncompressed data of our extent and different lengths. This
2993 		 * is a corner case so we prioritize correctness over
2994 		 * non-optimal behavior (submitting 2 bios for the same extent).
2995 		 */
2996 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2997 		    prev_em_start && *prev_em_start != (u64)-1 &&
2998 		    *prev_em_start != em->start)
2999 			force_bio_submit = true;
3000 
3001 		if (prev_em_start)
3002 			*prev_em_start = em->start;
3003 
3004 		free_extent_map(em);
3005 		em = NULL;
3006 
3007 		/* we've found a hole, just zero and go on */
3008 		if (block_start == EXTENT_MAP_HOLE) {
3009 			char *userpage;
3010 			struct extent_state *cached = NULL;
3011 
3012 			userpage = kmap_atomic(page);
3013 			memset(userpage + pg_offset, 0, iosize);
3014 			flush_dcache_page(page);
3015 			kunmap_atomic(userpage);
3016 
3017 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3018 					    &cached, GFP_NOFS);
3019 			unlock_extent_cached(tree, cur,
3020 					     cur + iosize - 1, &cached);
3021 			cur = cur + iosize;
3022 			pg_offset += iosize;
3023 			continue;
3024 		}
3025 		/* the get_extent function already copied into the page */
3026 		if (test_range_bit(tree, cur, cur_end,
3027 				   EXTENT_UPTODATE, 1, NULL)) {
3028 			check_page_uptodate(tree, page);
3029 			unlock_extent(tree, cur, cur + iosize - 1);
3030 			cur = cur + iosize;
3031 			pg_offset += iosize;
3032 			continue;
3033 		}
3034 		/* we have an inline extent but it didn't get marked up
3035 		 * to date.  Error out
3036 		 */
3037 		if (block_start == EXTENT_MAP_INLINE) {
3038 			SetPageError(page);
3039 			unlock_extent(tree, cur, cur + iosize - 1);
3040 			cur = cur + iosize;
3041 			pg_offset += iosize;
3042 			continue;
3043 		}
3044 
3045 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3046 					 page, offset, disk_io_size,
3047 					 pg_offset, bdev, bio,
3048 					 end_bio_extent_readpage, mirror_num,
3049 					 *bio_flags,
3050 					 this_bio_flag,
3051 					 force_bio_submit);
3052 		if (!ret) {
3053 			nr++;
3054 			*bio_flags = this_bio_flag;
3055 		} else {
3056 			SetPageError(page);
3057 			unlock_extent(tree, cur, cur + iosize - 1);
3058 			goto out;
3059 		}
3060 		cur = cur + iosize;
3061 		pg_offset += iosize;
3062 	}
3063 out:
3064 	if (!nr) {
3065 		if (!PageError(page))
3066 			SetPageUptodate(page);
3067 		unlock_page(page);
3068 	}
3069 	return ret;
3070 }
3071 
3072 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3073 					     struct page *pages[], int nr_pages,
3074 					     u64 start, u64 end,
3075 					     struct extent_map **em_cached,
3076 					     struct bio **bio,
3077 					     unsigned long *bio_flags,
3078 					     u64 *prev_em_start)
3079 {
3080 	struct inode *inode;
3081 	struct btrfs_ordered_extent *ordered;
3082 	int index;
3083 
3084 	inode = pages[0]->mapping->host;
3085 	while (1) {
3086 		lock_extent(tree, start, end);
3087 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3088 						     end - start + 1);
3089 		if (!ordered)
3090 			break;
3091 		unlock_extent(tree, start, end);
3092 		btrfs_start_ordered_extent(inode, ordered, 1);
3093 		btrfs_put_ordered_extent(ordered);
3094 	}
3095 
3096 	for (index = 0; index < nr_pages; index++) {
3097 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3098 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3099 		put_page(pages[index]);
3100 	}
3101 }
3102 
3103 static void __extent_readpages(struct extent_io_tree *tree,
3104 			       struct page *pages[],
3105 			       int nr_pages,
3106 			       struct extent_map **em_cached,
3107 			       struct bio **bio, unsigned long *bio_flags,
3108 			       u64 *prev_em_start)
3109 {
3110 	u64 start = 0;
3111 	u64 end = 0;
3112 	u64 page_start;
3113 	int index;
3114 	int first_index = 0;
3115 
3116 	for (index = 0; index < nr_pages; index++) {
3117 		page_start = page_offset(pages[index]);
3118 		if (!end) {
3119 			start = page_start;
3120 			end = start + PAGE_SIZE - 1;
3121 			first_index = index;
3122 		} else if (end + 1 == page_start) {
3123 			end += PAGE_SIZE;
3124 		} else {
3125 			__do_contiguous_readpages(tree, &pages[first_index],
3126 						  index - first_index, start,
3127 						  end, em_cached,
3128 						  bio, bio_flags,
3129 						  prev_em_start);
3130 			start = page_start;
3131 			end = start + PAGE_SIZE - 1;
3132 			first_index = index;
3133 		}
3134 	}
3135 
3136 	if (end)
3137 		__do_contiguous_readpages(tree, &pages[first_index],
3138 					  index - first_index, start,
3139 					  end, em_cached, bio,
3140 					  bio_flags, prev_em_start);
3141 }
3142 
3143 static int __extent_read_full_page(struct extent_io_tree *tree,
3144 				   struct page *page,
3145 				   get_extent_t *get_extent,
3146 				   struct bio **bio, int mirror_num,
3147 				   unsigned long *bio_flags,
3148 				   unsigned int read_flags)
3149 {
3150 	struct inode *inode = page->mapping->host;
3151 	struct btrfs_ordered_extent *ordered;
3152 	u64 start = page_offset(page);
3153 	u64 end = start + PAGE_SIZE - 1;
3154 	int ret;
3155 
3156 	while (1) {
3157 		lock_extent(tree, start, end);
3158 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3159 						PAGE_SIZE);
3160 		if (!ordered)
3161 			break;
3162 		unlock_extent(tree, start, end);
3163 		btrfs_start_ordered_extent(inode, ordered, 1);
3164 		btrfs_put_ordered_extent(ordered);
3165 	}
3166 
3167 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3168 			    bio_flags, read_flags, NULL);
3169 	return ret;
3170 }
3171 
3172 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3173 			    get_extent_t *get_extent, int mirror_num)
3174 {
3175 	struct bio *bio = NULL;
3176 	unsigned long bio_flags = 0;
3177 	int ret;
3178 
3179 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3180 				      &bio_flags, 0);
3181 	if (bio)
3182 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3183 	return ret;
3184 }
3185 
3186 static void update_nr_written(struct writeback_control *wbc,
3187 			      unsigned long nr_written)
3188 {
3189 	wbc->nr_to_write -= nr_written;
3190 }
3191 
3192 /*
3193  * helper for __extent_writepage, doing all of the delayed allocation setup.
3194  *
3195  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3196  * to write the page (copy into inline extent).  In this case the IO has
3197  * been started and the page is already unlocked.
3198  *
3199  * This returns 0 if all went well (page still locked)
3200  * This returns < 0 if there were errors (page still locked)
3201  */
3202 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3203 		struct page *page, struct writeback_control *wbc,
3204 		u64 delalloc_start, unsigned long *nr_written)
3205 {
3206 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3207 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3208 	bool found;
3209 	u64 delalloc_to_write = 0;
3210 	u64 delalloc_end = 0;
3211 	int ret;
3212 	int page_started = 0;
3213 
3214 
3215 	while (delalloc_end < page_end) {
3216 		found = find_lock_delalloc_range(inode, tree,
3217 					       page,
3218 					       &delalloc_start,
3219 					       &delalloc_end);
3220 		if (!found) {
3221 			delalloc_start = delalloc_end + 1;
3222 			continue;
3223 		}
3224 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3225 				delalloc_end, &page_started, nr_written, wbc);
3226 		/* File system has been set read-only */
3227 		if (ret) {
3228 			SetPageError(page);
3229 			/*
3230 			 * btrfs_run_delalloc_range should return < 0 for error
3231 			 * but just in case, we use > 0 here meaning the IO is
3232 			 * started, so we don't want to return > 0 unless
3233 			 * things are going well.
3234 			 */
3235 			ret = ret < 0 ? ret : -EIO;
3236 			goto done;
3237 		}
3238 		/*
3239 		 * delalloc_end is already one less than the total length, so
3240 		 * we don't subtract one from PAGE_SIZE
3241 		 */
3242 		delalloc_to_write += (delalloc_end - delalloc_start +
3243 				      PAGE_SIZE) >> PAGE_SHIFT;
3244 		delalloc_start = delalloc_end + 1;
3245 	}
3246 	if (wbc->nr_to_write < delalloc_to_write) {
3247 		int thresh = 8192;
3248 
3249 		if (delalloc_to_write < thresh * 2)
3250 			thresh = delalloc_to_write;
3251 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3252 					 thresh);
3253 	}
3254 
3255 	/* did the fill delalloc function already unlock and start
3256 	 * the IO?
3257 	 */
3258 	if (page_started) {
3259 		/*
3260 		 * we've unlocked the page, so we can't update
3261 		 * the mapping's writeback index, just update
3262 		 * nr_to_write.
3263 		 */
3264 		wbc->nr_to_write -= *nr_written;
3265 		return 1;
3266 	}
3267 
3268 	ret = 0;
3269 
3270 done:
3271 	return ret;
3272 }
3273 
3274 /*
3275  * helper for __extent_writepage.  This calls the writepage start hooks,
3276  * and does the loop to map the page into extents and bios.
3277  *
3278  * We return 1 if the IO is started and the page is unlocked,
3279  * 0 if all went well (page still locked)
3280  * < 0 if there were errors (page still locked)
3281  */
3282 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3283 				 struct page *page,
3284 				 struct writeback_control *wbc,
3285 				 struct extent_page_data *epd,
3286 				 loff_t i_size,
3287 				 unsigned long nr_written,
3288 				 unsigned int write_flags, int *nr_ret)
3289 {
3290 	struct extent_io_tree *tree = epd->tree;
3291 	u64 start = page_offset(page);
3292 	u64 page_end = start + PAGE_SIZE - 1;
3293 	u64 end;
3294 	u64 cur = start;
3295 	u64 extent_offset;
3296 	u64 block_start;
3297 	u64 iosize;
3298 	struct extent_map *em;
3299 	struct block_device *bdev;
3300 	size_t pg_offset = 0;
3301 	size_t blocksize;
3302 	int ret = 0;
3303 	int nr = 0;
3304 	bool compressed;
3305 
3306 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3307 	if (ret) {
3308 		/* Fixup worker will requeue */
3309 		if (ret == -EBUSY)
3310 			wbc->pages_skipped++;
3311 		else
3312 			redirty_page_for_writepage(wbc, page);
3313 
3314 		update_nr_written(wbc, nr_written);
3315 		unlock_page(page);
3316 		return 1;
3317 	}
3318 
3319 	/*
3320 	 * we don't want to touch the inode after unlocking the page,
3321 	 * so we update the mapping writeback index now
3322 	 */
3323 	update_nr_written(wbc, nr_written + 1);
3324 
3325 	end = page_end;
3326 	if (i_size <= start) {
3327 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3328 		goto done;
3329 	}
3330 
3331 	blocksize = inode->i_sb->s_blocksize;
3332 
3333 	while (cur <= end) {
3334 		u64 em_end;
3335 		u64 offset;
3336 
3337 		if (cur >= i_size) {
3338 			btrfs_writepage_endio_finish_ordered(page, cur,
3339 							     page_end, 1);
3340 			break;
3341 		}
3342 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3343 				     end - cur + 1, 1);
3344 		if (IS_ERR_OR_NULL(em)) {
3345 			SetPageError(page);
3346 			ret = PTR_ERR_OR_ZERO(em);
3347 			break;
3348 		}
3349 
3350 		extent_offset = cur - em->start;
3351 		em_end = extent_map_end(em);
3352 		BUG_ON(em_end <= cur);
3353 		BUG_ON(end < cur);
3354 		iosize = min(em_end - cur, end - cur + 1);
3355 		iosize = ALIGN(iosize, blocksize);
3356 		offset = em->block_start + extent_offset;
3357 		bdev = em->bdev;
3358 		block_start = em->block_start;
3359 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3360 		free_extent_map(em);
3361 		em = NULL;
3362 
3363 		/*
3364 		 * compressed and inline extents are written through other
3365 		 * paths in the FS
3366 		 */
3367 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3368 		    block_start == EXTENT_MAP_INLINE) {
3369 			/*
3370 			 * end_io notification does not happen here for
3371 			 * compressed extents
3372 			 */
3373 			if (!compressed)
3374 				btrfs_writepage_endio_finish_ordered(page, cur,
3375 							    cur + iosize - 1,
3376 							    1);
3377 			else if (compressed) {
3378 				/* we don't want to end_page_writeback on
3379 				 * a compressed extent.  this happens
3380 				 * elsewhere
3381 				 */
3382 				nr++;
3383 			}
3384 
3385 			cur += iosize;
3386 			pg_offset += iosize;
3387 			continue;
3388 		}
3389 
3390 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3391 		if (!PageWriteback(page)) {
3392 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3393 				   "page %lu not writeback, cur %llu end %llu",
3394 			       page->index, cur, end);
3395 		}
3396 
3397 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3398 					 page, offset, iosize, pg_offset,
3399 					 bdev, &epd->bio,
3400 					 end_bio_extent_writepage,
3401 					 0, 0, 0, false);
3402 		if (ret) {
3403 			SetPageError(page);
3404 			if (PageWriteback(page))
3405 				end_page_writeback(page);
3406 		}
3407 
3408 		cur = cur + iosize;
3409 		pg_offset += iosize;
3410 		nr++;
3411 	}
3412 done:
3413 	*nr_ret = nr;
3414 	return ret;
3415 }
3416 
3417 /*
3418  * the writepage semantics are similar to regular writepage.  extent
3419  * records are inserted to lock ranges in the tree, and as dirty areas
3420  * are found, they are marked writeback.  Then the lock bits are removed
3421  * and the end_io handler clears the writeback ranges
3422  */
3423 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3424 			      struct extent_page_data *epd)
3425 {
3426 	struct inode *inode = page->mapping->host;
3427 	u64 start = page_offset(page);
3428 	u64 page_end = start + PAGE_SIZE - 1;
3429 	int ret;
3430 	int nr = 0;
3431 	size_t pg_offset = 0;
3432 	loff_t i_size = i_size_read(inode);
3433 	unsigned long end_index = i_size >> PAGE_SHIFT;
3434 	unsigned int write_flags = 0;
3435 	unsigned long nr_written = 0;
3436 
3437 	write_flags = wbc_to_write_flags(wbc);
3438 
3439 	trace___extent_writepage(page, inode, wbc);
3440 
3441 	WARN_ON(!PageLocked(page));
3442 
3443 	ClearPageError(page);
3444 
3445 	pg_offset = offset_in_page(i_size);
3446 	if (page->index > end_index ||
3447 	   (page->index == end_index && !pg_offset)) {
3448 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3449 		unlock_page(page);
3450 		return 0;
3451 	}
3452 
3453 	if (page->index == end_index) {
3454 		char *userpage;
3455 
3456 		userpage = kmap_atomic(page);
3457 		memset(userpage + pg_offset, 0,
3458 		       PAGE_SIZE - pg_offset);
3459 		kunmap_atomic(userpage);
3460 		flush_dcache_page(page);
3461 	}
3462 
3463 	pg_offset = 0;
3464 
3465 	set_page_extent_mapped(page);
3466 
3467 	if (!epd->extent_locked) {
3468 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3469 		if (ret == 1)
3470 			goto done_unlocked;
3471 		if (ret)
3472 			goto done;
3473 	}
3474 
3475 	ret = __extent_writepage_io(inode, page, wbc, epd,
3476 				    i_size, nr_written, write_flags, &nr);
3477 	if (ret == 1)
3478 		goto done_unlocked;
3479 
3480 done:
3481 	if (nr == 0) {
3482 		/* make sure the mapping tag for page dirty gets cleared */
3483 		set_page_writeback(page);
3484 		end_page_writeback(page);
3485 	}
3486 	if (PageError(page)) {
3487 		ret = ret < 0 ? ret : -EIO;
3488 		end_extent_writepage(page, ret, start, page_end);
3489 	}
3490 	unlock_page(page);
3491 	return ret;
3492 
3493 done_unlocked:
3494 	return 0;
3495 }
3496 
3497 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3498 {
3499 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3500 		       TASK_UNINTERRUPTIBLE);
3501 }
3502 
3503 static noinline_for_stack int
3504 lock_extent_buffer_for_io(struct extent_buffer *eb,
3505 			  struct btrfs_fs_info *fs_info,
3506 			  struct extent_page_data *epd)
3507 {
3508 	int i, num_pages;
3509 	int flush = 0;
3510 	int ret = 0;
3511 
3512 	if (!btrfs_try_tree_write_lock(eb)) {
3513 		flush = 1;
3514 		flush_write_bio(epd);
3515 		btrfs_tree_lock(eb);
3516 	}
3517 
3518 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3519 		btrfs_tree_unlock(eb);
3520 		if (!epd->sync_io)
3521 			return 0;
3522 		if (!flush) {
3523 			flush_write_bio(epd);
3524 			flush = 1;
3525 		}
3526 		while (1) {
3527 			wait_on_extent_buffer_writeback(eb);
3528 			btrfs_tree_lock(eb);
3529 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3530 				break;
3531 			btrfs_tree_unlock(eb);
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * We need to do this to prevent races in people who check if the eb is
3537 	 * under IO since we can end up having no IO bits set for a short period
3538 	 * of time.
3539 	 */
3540 	spin_lock(&eb->refs_lock);
3541 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3542 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3543 		spin_unlock(&eb->refs_lock);
3544 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3545 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3546 					 -eb->len,
3547 					 fs_info->dirty_metadata_batch);
3548 		ret = 1;
3549 	} else {
3550 		spin_unlock(&eb->refs_lock);
3551 	}
3552 
3553 	btrfs_tree_unlock(eb);
3554 
3555 	if (!ret)
3556 		return ret;
3557 
3558 	num_pages = num_extent_pages(eb);
3559 	for (i = 0; i < num_pages; i++) {
3560 		struct page *p = eb->pages[i];
3561 
3562 		if (!trylock_page(p)) {
3563 			if (!flush) {
3564 				flush_write_bio(epd);
3565 				flush = 1;
3566 			}
3567 			lock_page(p);
3568 		}
3569 	}
3570 
3571 	return ret;
3572 }
3573 
3574 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3575 {
3576 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3577 	smp_mb__after_atomic();
3578 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3579 }
3580 
3581 static void set_btree_ioerr(struct page *page)
3582 {
3583 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3584 
3585 	SetPageError(page);
3586 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3587 		return;
3588 
3589 	/*
3590 	 * If writeback for a btree extent that doesn't belong to a log tree
3591 	 * failed, increment the counter transaction->eb_write_errors.
3592 	 * We do this because while the transaction is running and before it's
3593 	 * committing (when we call filemap_fdata[write|wait]_range against
3594 	 * the btree inode), we might have
3595 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3596 	 * returns an error or an error happens during writeback, when we're
3597 	 * committing the transaction we wouldn't know about it, since the pages
3598 	 * can be no longer dirty nor marked anymore for writeback (if a
3599 	 * subsequent modification to the extent buffer didn't happen before the
3600 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3601 	 * able to find the pages tagged with SetPageError at transaction
3602 	 * commit time. So if this happens we must abort the transaction,
3603 	 * otherwise we commit a super block with btree roots that point to
3604 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3605 	 * or the content of some node/leaf from a past generation that got
3606 	 * cowed or deleted and is no longer valid.
3607 	 *
3608 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3609 	 * not be enough - we need to distinguish between log tree extents vs
3610 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3611 	 * will catch and clear such errors in the mapping - and that call might
3612 	 * be from a log sync and not from a transaction commit. Also, checking
3613 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3614 	 * not done and would not be reliable - the eb might have been released
3615 	 * from memory and reading it back again means that flag would not be
3616 	 * set (since it's a runtime flag, not persisted on disk).
3617 	 *
3618 	 * Using the flags below in the btree inode also makes us achieve the
3619 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3620 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3621 	 * is called, the writeback for all dirty pages had already finished
3622 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3623 	 * filemap_fdatawait_range() would return success, as it could not know
3624 	 * that writeback errors happened (the pages were no longer tagged for
3625 	 * writeback).
3626 	 */
3627 	switch (eb->log_index) {
3628 	case -1:
3629 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3630 		break;
3631 	case 0:
3632 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3633 		break;
3634 	case 1:
3635 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3636 		break;
3637 	default:
3638 		BUG(); /* unexpected, logic error */
3639 	}
3640 }
3641 
3642 static void end_bio_extent_buffer_writepage(struct bio *bio)
3643 {
3644 	struct bio_vec *bvec;
3645 	struct extent_buffer *eb;
3646 	int i, done;
3647 	struct bvec_iter_all iter_all;
3648 
3649 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3650 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
3651 		struct page *page = bvec->bv_page;
3652 
3653 		eb = (struct extent_buffer *)page->private;
3654 		BUG_ON(!eb);
3655 		done = atomic_dec_and_test(&eb->io_pages);
3656 
3657 		if (bio->bi_status ||
3658 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3659 			ClearPageUptodate(page);
3660 			set_btree_ioerr(page);
3661 		}
3662 
3663 		end_page_writeback(page);
3664 
3665 		if (!done)
3666 			continue;
3667 
3668 		end_extent_buffer_writeback(eb);
3669 	}
3670 
3671 	bio_put(bio);
3672 }
3673 
3674 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3675 			struct btrfs_fs_info *fs_info,
3676 			struct writeback_control *wbc,
3677 			struct extent_page_data *epd)
3678 {
3679 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3680 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3681 	u64 offset = eb->start;
3682 	u32 nritems;
3683 	int i, num_pages;
3684 	unsigned long start, end;
3685 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3686 	int ret = 0;
3687 
3688 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3689 	num_pages = num_extent_pages(eb);
3690 	atomic_set(&eb->io_pages, num_pages);
3691 
3692 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3693 	nritems = btrfs_header_nritems(eb);
3694 	if (btrfs_header_level(eb) > 0) {
3695 		end = btrfs_node_key_ptr_offset(nritems);
3696 
3697 		memzero_extent_buffer(eb, end, eb->len - end);
3698 	} else {
3699 		/*
3700 		 * leaf:
3701 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3702 		 */
3703 		start = btrfs_item_nr_offset(nritems);
3704 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3705 		memzero_extent_buffer(eb, start, end - start);
3706 	}
3707 
3708 	for (i = 0; i < num_pages; i++) {
3709 		struct page *p = eb->pages[i];
3710 
3711 		clear_page_dirty_for_io(p);
3712 		set_page_writeback(p);
3713 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3714 					 p, offset, PAGE_SIZE, 0, bdev,
3715 					 &epd->bio,
3716 					 end_bio_extent_buffer_writepage,
3717 					 0, 0, 0, false);
3718 		if (ret) {
3719 			set_btree_ioerr(p);
3720 			if (PageWriteback(p))
3721 				end_page_writeback(p);
3722 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3723 				end_extent_buffer_writeback(eb);
3724 			ret = -EIO;
3725 			break;
3726 		}
3727 		offset += PAGE_SIZE;
3728 		update_nr_written(wbc, 1);
3729 		unlock_page(p);
3730 	}
3731 
3732 	if (unlikely(ret)) {
3733 		for (; i < num_pages; i++) {
3734 			struct page *p = eb->pages[i];
3735 			clear_page_dirty_for_io(p);
3736 			unlock_page(p);
3737 		}
3738 	}
3739 
3740 	return ret;
3741 }
3742 
3743 int btree_write_cache_pages(struct address_space *mapping,
3744 				   struct writeback_control *wbc)
3745 {
3746 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3747 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3748 	struct extent_buffer *eb, *prev_eb = NULL;
3749 	struct extent_page_data epd = {
3750 		.bio = NULL,
3751 		.tree = tree,
3752 		.extent_locked = 0,
3753 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3754 	};
3755 	int ret = 0;
3756 	int done = 0;
3757 	int nr_to_write_done = 0;
3758 	struct pagevec pvec;
3759 	int nr_pages;
3760 	pgoff_t index;
3761 	pgoff_t end;		/* Inclusive */
3762 	int scanned = 0;
3763 	xa_mark_t tag;
3764 
3765 	pagevec_init(&pvec);
3766 	if (wbc->range_cyclic) {
3767 		index = mapping->writeback_index; /* Start from prev offset */
3768 		end = -1;
3769 	} else {
3770 		index = wbc->range_start >> PAGE_SHIFT;
3771 		end = wbc->range_end >> PAGE_SHIFT;
3772 		scanned = 1;
3773 	}
3774 	if (wbc->sync_mode == WB_SYNC_ALL)
3775 		tag = PAGECACHE_TAG_TOWRITE;
3776 	else
3777 		tag = PAGECACHE_TAG_DIRTY;
3778 retry:
3779 	if (wbc->sync_mode == WB_SYNC_ALL)
3780 		tag_pages_for_writeback(mapping, index, end);
3781 	while (!done && !nr_to_write_done && (index <= end) &&
3782 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3783 			tag))) {
3784 		unsigned i;
3785 
3786 		scanned = 1;
3787 		for (i = 0; i < nr_pages; i++) {
3788 			struct page *page = pvec.pages[i];
3789 
3790 			if (!PagePrivate(page))
3791 				continue;
3792 
3793 			spin_lock(&mapping->private_lock);
3794 			if (!PagePrivate(page)) {
3795 				spin_unlock(&mapping->private_lock);
3796 				continue;
3797 			}
3798 
3799 			eb = (struct extent_buffer *)page->private;
3800 
3801 			/*
3802 			 * Shouldn't happen and normally this would be a BUG_ON
3803 			 * but no sense in crashing the users box for something
3804 			 * we can survive anyway.
3805 			 */
3806 			if (WARN_ON(!eb)) {
3807 				spin_unlock(&mapping->private_lock);
3808 				continue;
3809 			}
3810 
3811 			if (eb == prev_eb) {
3812 				spin_unlock(&mapping->private_lock);
3813 				continue;
3814 			}
3815 
3816 			ret = atomic_inc_not_zero(&eb->refs);
3817 			spin_unlock(&mapping->private_lock);
3818 			if (!ret)
3819 				continue;
3820 
3821 			prev_eb = eb;
3822 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3823 			if (!ret) {
3824 				free_extent_buffer(eb);
3825 				continue;
3826 			}
3827 
3828 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3829 			if (ret) {
3830 				done = 1;
3831 				free_extent_buffer(eb);
3832 				break;
3833 			}
3834 			free_extent_buffer(eb);
3835 
3836 			/*
3837 			 * the filesystem may choose to bump up nr_to_write.
3838 			 * We have to make sure to honor the new nr_to_write
3839 			 * at any time
3840 			 */
3841 			nr_to_write_done = wbc->nr_to_write <= 0;
3842 		}
3843 		pagevec_release(&pvec);
3844 		cond_resched();
3845 	}
3846 	if (!scanned && !done) {
3847 		/*
3848 		 * We hit the last page and there is more work to be done: wrap
3849 		 * back to the start of the file
3850 		 */
3851 		scanned = 1;
3852 		index = 0;
3853 		goto retry;
3854 	}
3855 	flush_write_bio(&epd);
3856 	return ret;
3857 }
3858 
3859 /**
3860  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3861  * @mapping: address space structure to write
3862  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3863  * @data: data passed to __extent_writepage function
3864  *
3865  * If a page is already under I/O, write_cache_pages() skips it, even
3866  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3867  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3868  * and msync() need to guarantee that all the data which was dirty at the time
3869  * the call was made get new I/O started against them.  If wbc->sync_mode is
3870  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3871  * existing IO to complete.
3872  */
3873 static int extent_write_cache_pages(struct address_space *mapping,
3874 			     struct writeback_control *wbc,
3875 			     struct extent_page_data *epd)
3876 {
3877 	struct inode *inode = mapping->host;
3878 	int ret = 0;
3879 	int done = 0;
3880 	int nr_to_write_done = 0;
3881 	struct pagevec pvec;
3882 	int nr_pages;
3883 	pgoff_t index;
3884 	pgoff_t end;		/* Inclusive */
3885 	pgoff_t done_index;
3886 	int range_whole = 0;
3887 	int scanned = 0;
3888 	xa_mark_t tag;
3889 
3890 	/*
3891 	 * We have to hold onto the inode so that ordered extents can do their
3892 	 * work when the IO finishes.  The alternative to this is failing to add
3893 	 * an ordered extent if the igrab() fails there and that is a huge pain
3894 	 * to deal with, so instead just hold onto the inode throughout the
3895 	 * writepages operation.  If it fails here we are freeing up the inode
3896 	 * anyway and we'd rather not waste our time writing out stuff that is
3897 	 * going to be truncated anyway.
3898 	 */
3899 	if (!igrab(inode))
3900 		return 0;
3901 
3902 	pagevec_init(&pvec);
3903 	if (wbc->range_cyclic) {
3904 		index = mapping->writeback_index; /* Start from prev offset */
3905 		end = -1;
3906 	} else {
3907 		index = wbc->range_start >> PAGE_SHIFT;
3908 		end = wbc->range_end >> PAGE_SHIFT;
3909 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3910 			range_whole = 1;
3911 		scanned = 1;
3912 	}
3913 
3914 	/*
3915 	 * We do the tagged writepage as long as the snapshot flush bit is set
3916 	 * and we are the first one who do the filemap_flush() on this inode.
3917 	 *
3918 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3919 	 * not race in and drop the bit.
3920 	 */
3921 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
3922 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3923 			       &BTRFS_I(inode)->runtime_flags))
3924 		wbc->tagged_writepages = 1;
3925 
3926 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3927 		tag = PAGECACHE_TAG_TOWRITE;
3928 	else
3929 		tag = PAGECACHE_TAG_DIRTY;
3930 retry:
3931 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3932 		tag_pages_for_writeback(mapping, index, end);
3933 	done_index = index;
3934 	while (!done && !nr_to_write_done && (index <= end) &&
3935 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3936 						&index, end, tag))) {
3937 		unsigned i;
3938 
3939 		scanned = 1;
3940 		for (i = 0; i < nr_pages; i++) {
3941 			struct page *page = pvec.pages[i];
3942 
3943 			done_index = page->index;
3944 			/*
3945 			 * At this point we hold neither the i_pages lock nor
3946 			 * the page lock: the page may be truncated or
3947 			 * invalidated (changing page->mapping to NULL),
3948 			 * or even swizzled back from swapper_space to
3949 			 * tmpfs file mapping
3950 			 */
3951 			if (!trylock_page(page)) {
3952 				flush_write_bio(epd);
3953 				lock_page(page);
3954 			}
3955 
3956 			if (unlikely(page->mapping != mapping)) {
3957 				unlock_page(page);
3958 				continue;
3959 			}
3960 
3961 			if (wbc->sync_mode != WB_SYNC_NONE) {
3962 				if (PageWriteback(page))
3963 					flush_write_bio(epd);
3964 				wait_on_page_writeback(page);
3965 			}
3966 
3967 			if (PageWriteback(page) ||
3968 			    !clear_page_dirty_for_io(page)) {
3969 				unlock_page(page);
3970 				continue;
3971 			}
3972 
3973 			ret = __extent_writepage(page, wbc, epd);
3974 
3975 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3976 				unlock_page(page);
3977 				ret = 0;
3978 			}
3979 			if (ret < 0) {
3980 				/*
3981 				 * done_index is set past this page,
3982 				 * so media errors will not choke
3983 				 * background writeout for the entire
3984 				 * file. This has consequences for
3985 				 * range_cyclic semantics (ie. it may
3986 				 * not be suitable for data integrity
3987 				 * writeout).
3988 				 */
3989 				done_index = page->index + 1;
3990 				done = 1;
3991 				break;
3992 			}
3993 
3994 			/*
3995 			 * the filesystem may choose to bump up nr_to_write.
3996 			 * We have to make sure to honor the new nr_to_write
3997 			 * at any time
3998 			 */
3999 			nr_to_write_done = wbc->nr_to_write <= 0;
4000 		}
4001 		pagevec_release(&pvec);
4002 		cond_resched();
4003 	}
4004 	if (!scanned && !done) {
4005 		/*
4006 		 * We hit the last page and there is more work to be done: wrap
4007 		 * back to the start of the file
4008 		 */
4009 		scanned = 1;
4010 		index = 0;
4011 		goto retry;
4012 	}
4013 
4014 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4015 		mapping->writeback_index = done_index;
4016 
4017 	btrfs_add_delayed_iput(inode);
4018 	return ret;
4019 }
4020 
4021 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4022 {
4023 	int ret;
4024 	struct extent_page_data epd = {
4025 		.bio = NULL,
4026 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4027 		.extent_locked = 0,
4028 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4029 	};
4030 
4031 	ret = __extent_writepage(page, wbc, &epd);
4032 
4033 	flush_write_bio(&epd);
4034 	return ret;
4035 }
4036 
4037 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4038 			      int mode)
4039 {
4040 	int ret = 0;
4041 	struct address_space *mapping = inode->i_mapping;
4042 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4043 	struct page *page;
4044 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045 		PAGE_SHIFT;
4046 
4047 	struct extent_page_data epd = {
4048 		.bio = NULL,
4049 		.tree = tree,
4050 		.extent_locked = 1,
4051 		.sync_io = mode == WB_SYNC_ALL,
4052 	};
4053 	struct writeback_control wbc_writepages = {
4054 		.sync_mode	= mode,
4055 		.nr_to_write	= nr_pages * 2,
4056 		.range_start	= start,
4057 		.range_end	= end + 1,
4058 	};
4059 
4060 	while (start <= end) {
4061 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4062 		if (clear_page_dirty_for_io(page))
4063 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4064 		else {
4065 			btrfs_writepage_endio_finish_ordered(page, start,
4066 						    start + PAGE_SIZE - 1, 1);
4067 			unlock_page(page);
4068 		}
4069 		put_page(page);
4070 		start += PAGE_SIZE;
4071 	}
4072 
4073 	flush_write_bio(&epd);
4074 	return ret;
4075 }
4076 
4077 int extent_writepages(struct address_space *mapping,
4078 		      struct writeback_control *wbc)
4079 {
4080 	int ret = 0;
4081 	struct extent_page_data epd = {
4082 		.bio = NULL,
4083 		.tree = &BTRFS_I(mapping->host)->io_tree,
4084 		.extent_locked = 0,
4085 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4086 	};
4087 
4088 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4089 	flush_write_bio(&epd);
4090 	return ret;
4091 }
4092 
4093 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094 		     unsigned nr_pages)
4095 {
4096 	struct bio *bio = NULL;
4097 	unsigned long bio_flags = 0;
4098 	struct page *pagepool[16];
4099 	struct extent_map *em_cached = NULL;
4100 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4101 	int nr = 0;
4102 	u64 prev_em_start = (u64)-1;
4103 
4104 	while (!list_empty(pages)) {
4105 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106 			struct page *page = lru_to_page(pages);
4107 
4108 			prefetchw(&page->flags);
4109 			list_del(&page->lru);
4110 			if (add_to_page_cache_lru(page, mapping, page->index,
4111 						readahead_gfp_mask(mapping))) {
4112 				put_page(page);
4113 				continue;
4114 			}
4115 
4116 			pagepool[nr++] = page;
4117 		}
4118 
4119 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4120 				   &bio_flags, &prev_em_start);
4121 	}
4122 
4123 	if (em_cached)
4124 		free_extent_map(em_cached);
4125 
4126 	if (bio)
4127 		return submit_one_bio(bio, 0, bio_flags);
4128 	return 0;
4129 }
4130 
4131 /*
4132  * basic invalidatepage code, this waits on any locked or writeback
4133  * ranges corresponding to the page, and then deletes any extent state
4134  * records from the tree
4135  */
4136 int extent_invalidatepage(struct extent_io_tree *tree,
4137 			  struct page *page, unsigned long offset)
4138 {
4139 	struct extent_state *cached_state = NULL;
4140 	u64 start = page_offset(page);
4141 	u64 end = start + PAGE_SIZE - 1;
4142 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4143 
4144 	start += ALIGN(offset, blocksize);
4145 	if (start > end)
4146 		return 0;
4147 
4148 	lock_extent_bits(tree, start, end, &cached_state);
4149 	wait_on_page_writeback(page);
4150 	clear_extent_bit(tree, start, end,
4151 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4152 			 EXTENT_DO_ACCOUNTING,
4153 			 1, 1, &cached_state);
4154 	return 0;
4155 }
4156 
4157 /*
4158  * a helper for releasepage, this tests for areas of the page that
4159  * are locked or under IO and drops the related state bits if it is safe
4160  * to drop the page.
4161  */
4162 static int try_release_extent_state(struct extent_io_tree *tree,
4163 				    struct page *page, gfp_t mask)
4164 {
4165 	u64 start = page_offset(page);
4166 	u64 end = start + PAGE_SIZE - 1;
4167 	int ret = 1;
4168 
4169 	if (test_range_bit(tree, start, end,
4170 			   EXTENT_IOBITS, 0, NULL))
4171 		ret = 0;
4172 	else {
4173 		/*
4174 		 * at this point we can safely clear everything except the
4175 		 * locked bit and the nodatasum bit
4176 		 */
4177 		ret = __clear_extent_bit(tree, start, end,
4178 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4179 				 0, 0, NULL, mask, NULL);
4180 
4181 		/* if clear_extent_bit failed for enomem reasons,
4182 		 * we can't allow the release to continue.
4183 		 */
4184 		if (ret < 0)
4185 			ret = 0;
4186 		else
4187 			ret = 1;
4188 	}
4189 	return ret;
4190 }
4191 
4192 /*
4193  * a helper for releasepage.  As long as there are no locked extents
4194  * in the range corresponding to the page, both state records and extent
4195  * map records are removed
4196  */
4197 int try_release_extent_mapping(struct page *page, gfp_t mask)
4198 {
4199 	struct extent_map *em;
4200 	u64 start = page_offset(page);
4201 	u64 end = start + PAGE_SIZE - 1;
4202 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4203 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4204 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4205 
4206 	if (gfpflags_allow_blocking(mask) &&
4207 	    page->mapping->host->i_size > SZ_16M) {
4208 		u64 len;
4209 		while (start <= end) {
4210 			len = end - start + 1;
4211 			write_lock(&map->lock);
4212 			em = lookup_extent_mapping(map, start, len);
4213 			if (!em) {
4214 				write_unlock(&map->lock);
4215 				break;
4216 			}
4217 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4218 			    em->start != start) {
4219 				write_unlock(&map->lock);
4220 				free_extent_map(em);
4221 				break;
4222 			}
4223 			if (!test_range_bit(tree, em->start,
4224 					    extent_map_end(em) - 1,
4225 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4226 					    0, NULL)) {
4227 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4228 					&btrfs_inode->runtime_flags);
4229 				remove_extent_mapping(map, em);
4230 				/* once for the rb tree */
4231 				free_extent_map(em);
4232 			}
4233 			start = extent_map_end(em);
4234 			write_unlock(&map->lock);
4235 
4236 			/* once for us */
4237 			free_extent_map(em);
4238 		}
4239 	}
4240 	return try_release_extent_state(tree, page, mask);
4241 }
4242 
4243 /*
4244  * helper function for fiemap, which doesn't want to see any holes.
4245  * This maps until we find something past 'last'
4246  */
4247 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4248 						u64 offset, u64 last)
4249 {
4250 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4251 	struct extent_map *em;
4252 	u64 len;
4253 
4254 	if (offset >= last)
4255 		return NULL;
4256 
4257 	while (1) {
4258 		len = last - offset;
4259 		if (len == 0)
4260 			break;
4261 		len = ALIGN(len, sectorsize);
4262 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4263 		if (IS_ERR_OR_NULL(em))
4264 			return em;
4265 
4266 		/* if this isn't a hole return it */
4267 		if (em->block_start != EXTENT_MAP_HOLE)
4268 			return em;
4269 
4270 		/* this is a hole, advance to the next extent */
4271 		offset = extent_map_end(em);
4272 		free_extent_map(em);
4273 		if (offset >= last)
4274 			break;
4275 	}
4276 	return NULL;
4277 }
4278 
4279 /*
4280  * To cache previous fiemap extent
4281  *
4282  * Will be used for merging fiemap extent
4283  */
4284 struct fiemap_cache {
4285 	u64 offset;
4286 	u64 phys;
4287 	u64 len;
4288 	u32 flags;
4289 	bool cached;
4290 };
4291 
4292 /*
4293  * Helper to submit fiemap extent.
4294  *
4295  * Will try to merge current fiemap extent specified by @offset, @phys,
4296  * @len and @flags with cached one.
4297  * And only when we fails to merge, cached one will be submitted as
4298  * fiemap extent.
4299  *
4300  * Return value is the same as fiemap_fill_next_extent().
4301  */
4302 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4303 				struct fiemap_cache *cache,
4304 				u64 offset, u64 phys, u64 len, u32 flags)
4305 {
4306 	int ret = 0;
4307 
4308 	if (!cache->cached)
4309 		goto assign;
4310 
4311 	/*
4312 	 * Sanity check, extent_fiemap() should have ensured that new
4313 	 * fiemap extent won't overlap with cached one.
4314 	 * Not recoverable.
4315 	 *
4316 	 * NOTE: Physical address can overlap, due to compression
4317 	 */
4318 	if (cache->offset + cache->len > offset) {
4319 		WARN_ON(1);
4320 		return -EINVAL;
4321 	}
4322 
4323 	/*
4324 	 * Only merges fiemap extents if
4325 	 * 1) Their logical addresses are continuous
4326 	 *
4327 	 * 2) Their physical addresses are continuous
4328 	 *    So truly compressed (physical size smaller than logical size)
4329 	 *    extents won't get merged with each other
4330 	 *
4331 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4332 	 *    So regular extent won't get merged with prealloc extent
4333 	 */
4334 	if (cache->offset + cache->len  == offset &&
4335 	    cache->phys + cache->len == phys  &&
4336 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4337 			(flags & ~FIEMAP_EXTENT_LAST)) {
4338 		cache->len += len;
4339 		cache->flags |= flags;
4340 		goto try_submit_last;
4341 	}
4342 
4343 	/* Not mergeable, need to submit cached one */
4344 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4345 				      cache->len, cache->flags);
4346 	cache->cached = false;
4347 	if (ret)
4348 		return ret;
4349 assign:
4350 	cache->cached = true;
4351 	cache->offset = offset;
4352 	cache->phys = phys;
4353 	cache->len = len;
4354 	cache->flags = flags;
4355 try_submit_last:
4356 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4357 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4358 				cache->phys, cache->len, cache->flags);
4359 		cache->cached = false;
4360 	}
4361 	return ret;
4362 }
4363 
4364 /*
4365  * Emit last fiemap cache
4366  *
4367  * The last fiemap cache may still be cached in the following case:
4368  * 0		      4k		    8k
4369  * |<- Fiemap range ->|
4370  * |<------------  First extent ----------->|
4371  *
4372  * In this case, the first extent range will be cached but not emitted.
4373  * So we must emit it before ending extent_fiemap().
4374  */
4375 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4376 				  struct fiemap_extent_info *fieinfo,
4377 				  struct fiemap_cache *cache)
4378 {
4379 	int ret;
4380 
4381 	if (!cache->cached)
4382 		return 0;
4383 
4384 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4385 				      cache->len, cache->flags);
4386 	cache->cached = false;
4387 	if (ret > 0)
4388 		ret = 0;
4389 	return ret;
4390 }
4391 
4392 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4393 		__u64 start, __u64 len)
4394 {
4395 	int ret = 0;
4396 	u64 off = start;
4397 	u64 max = start + len;
4398 	u32 flags = 0;
4399 	u32 found_type;
4400 	u64 last;
4401 	u64 last_for_get_extent = 0;
4402 	u64 disko = 0;
4403 	u64 isize = i_size_read(inode);
4404 	struct btrfs_key found_key;
4405 	struct extent_map *em = NULL;
4406 	struct extent_state *cached_state = NULL;
4407 	struct btrfs_path *path;
4408 	struct btrfs_root *root = BTRFS_I(inode)->root;
4409 	struct fiemap_cache cache = { 0 };
4410 	int end = 0;
4411 	u64 em_start = 0;
4412 	u64 em_len = 0;
4413 	u64 em_end = 0;
4414 
4415 	if (len == 0)
4416 		return -EINVAL;
4417 
4418 	path = btrfs_alloc_path();
4419 	if (!path)
4420 		return -ENOMEM;
4421 	path->leave_spinning = 1;
4422 
4423 	start = round_down(start, btrfs_inode_sectorsize(inode));
4424 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4425 
4426 	/*
4427 	 * lookup the last file extent.  We're not using i_size here
4428 	 * because there might be preallocation past i_size
4429 	 */
4430 	ret = btrfs_lookup_file_extent(NULL, root, path,
4431 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4432 	if (ret < 0) {
4433 		btrfs_free_path(path);
4434 		return ret;
4435 	} else {
4436 		WARN_ON(!ret);
4437 		if (ret == 1)
4438 			ret = 0;
4439 	}
4440 
4441 	path->slots[0]--;
4442 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4443 	found_type = found_key.type;
4444 
4445 	/* No extents, but there might be delalloc bits */
4446 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4447 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4448 		/* have to trust i_size as the end */
4449 		last = (u64)-1;
4450 		last_for_get_extent = isize;
4451 	} else {
4452 		/*
4453 		 * remember the start of the last extent.  There are a
4454 		 * bunch of different factors that go into the length of the
4455 		 * extent, so its much less complex to remember where it started
4456 		 */
4457 		last = found_key.offset;
4458 		last_for_get_extent = last + 1;
4459 	}
4460 	btrfs_release_path(path);
4461 
4462 	/*
4463 	 * we might have some extents allocated but more delalloc past those
4464 	 * extents.  so, we trust isize unless the start of the last extent is
4465 	 * beyond isize
4466 	 */
4467 	if (last < isize) {
4468 		last = (u64)-1;
4469 		last_for_get_extent = isize;
4470 	}
4471 
4472 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4473 			 &cached_state);
4474 
4475 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4476 	if (!em)
4477 		goto out;
4478 	if (IS_ERR(em)) {
4479 		ret = PTR_ERR(em);
4480 		goto out;
4481 	}
4482 
4483 	while (!end) {
4484 		u64 offset_in_extent = 0;
4485 
4486 		/* break if the extent we found is outside the range */
4487 		if (em->start >= max || extent_map_end(em) < off)
4488 			break;
4489 
4490 		/*
4491 		 * get_extent may return an extent that starts before our
4492 		 * requested range.  We have to make sure the ranges
4493 		 * we return to fiemap always move forward and don't
4494 		 * overlap, so adjust the offsets here
4495 		 */
4496 		em_start = max(em->start, off);
4497 
4498 		/*
4499 		 * record the offset from the start of the extent
4500 		 * for adjusting the disk offset below.  Only do this if the
4501 		 * extent isn't compressed since our in ram offset may be past
4502 		 * what we have actually allocated on disk.
4503 		 */
4504 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4505 			offset_in_extent = em_start - em->start;
4506 		em_end = extent_map_end(em);
4507 		em_len = em_end - em_start;
4508 		flags = 0;
4509 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4510 			disko = em->block_start + offset_in_extent;
4511 		else
4512 			disko = 0;
4513 
4514 		/*
4515 		 * bump off for our next call to get_extent
4516 		 */
4517 		off = extent_map_end(em);
4518 		if (off >= max)
4519 			end = 1;
4520 
4521 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4522 			end = 1;
4523 			flags |= FIEMAP_EXTENT_LAST;
4524 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4525 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4526 				  FIEMAP_EXTENT_NOT_ALIGNED);
4527 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4528 			flags |= (FIEMAP_EXTENT_DELALLOC |
4529 				  FIEMAP_EXTENT_UNKNOWN);
4530 		} else if (fieinfo->fi_extents_max) {
4531 			u64 bytenr = em->block_start -
4532 				(em->start - em->orig_start);
4533 
4534 			/*
4535 			 * As btrfs supports shared space, this information
4536 			 * can be exported to userspace tools via
4537 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4538 			 * then we're just getting a count and we can skip the
4539 			 * lookup stuff.
4540 			 */
4541 			ret = btrfs_check_shared(root,
4542 						 btrfs_ino(BTRFS_I(inode)),
4543 						 bytenr);
4544 			if (ret < 0)
4545 				goto out_free;
4546 			if (ret)
4547 				flags |= FIEMAP_EXTENT_SHARED;
4548 			ret = 0;
4549 		}
4550 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4551 			flags |= FIEMAP_EXTENT_ENCODED;
4552 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4553 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4554 
4555 		free_extent_map(em);
4556 		em = NULL;
4557 		if ((em_start >= last) || em_len == (u64)-1 ||
4558 		   (last == (u64)-1 && isize <= em_end)) {
4559 			flags |= FIEMAP_EXTENT_LAST;
4560 			end = 1;
4561 		}
4562 
4563 		/* now scan forward to see if this is really the last extent. */
4564 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4565 		if (IS_ERR(em)) {
4566 			ret = PTR_ERR(em);
4567 			goto out;
4568 		}
4569 		if (!em) {
4570 			flags |= FIEMAP_EXTENT_LAST;
4571 			end = 1;
4572 		}
4573 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4574 					   em_len, flags);
4575 		if (ret) {
4576 			if (ret == 1)
4577 				ret = 0;
4578 			goto out_free;
4579 		}
4580 	}
4581 out_free:
4582 	if (!ret)
4583 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4584 	free_extent_map(em);
4585 out:
4586 	btrfs_free_path(path);
4587 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4588 			     &cached_state);
4589 	return ret;
4590 }
4591 
4592 static void __free_extent_buffer(struct extent_buffer *eb)
4593 {
4594 	btrfs_leak_debug_del(&eb->leak_list);
4595 	kmem_cache_free(extent_buffer_cache, eb);
4596 }
4597 
4598 int extent_buffer_under_io(struct extent_buffer *eb)
4599 {
4600 	return (atomic_read(&eb->io_pages) ||
4601 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4602 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603 }
4604 
4605 /*
4606  * Release all pages attached to the extent buffer.
4607  */
4608 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4609 {
4610 	int i;
4611 	int num_pages;
4612 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4613 
4614 	BUG_ON(extent_buffer_under_io(eb));
4615 
4616 	num_pages = num_extent_pages(eb);
4617 	for (i = 0; i < num_pages; i++) {
4618 		struct page *page = eb->pages[i];
4619 
4620 		if (!page)
4621 			continue;
4622 		if (mapped)
4623 			spin_lock(&page->mapping->private_lock);
4624 		/*
4625 		 * We do this since we'll remove the pages after we've
4626 		 * removed the eb from the radix tree, so we could race
4627 		 * and have this page now attached to the new eb.  So
4628 		 * only clear page_private if it's still connected to
4629 		 * this eb.
4630 		 */
4631 		if (PagePrivate(page) &&
4632 		    page->private == (unsigned long)eb) {
4633 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634 			BUG_ON(PageDirty(page));
4635 			BUG_ON(PageWriteback(page));
4636 			/*
4637 			 * We need to make sure we haven't be attached
4638 			 * to a new eb.
4639 			 */
4640 			ClearPagePrivate(page);
4641 			set_page_private(page, 0);
4642 			/* One for the page private */
4643 			put_page(page);
4644 		}
4645 
4646 		if (mapped)
4647 			spin_unlock(&page->mapping->private_lock);
4648 
4649 		/* One for when we allocated the page */
4650 		put_page(page);
4651 	}
4652 }
4653 
4654 /*
4655  * Helper for releasing the extent buffer.
4656  */
4657 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658 {
4659 	btrfs_release_extent_buffer_pages(eb);
4660 	__free_extent_buffer(eb);
4661 }
4662 
4663 static struct extent_buffer *
4664 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665 		      unsigned long len)
4666 {
4667 	struct extent_buffer *eb = NULL;
4668 
4669 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670 	eb->start = start;
4671 	eb->len = len;
4672 	eb->fs_info = fs_info;
4673 	eb->bflags = 0;
4674 	rwlock_init(&eb->lock);
4675 	atomic_set(&eb->write_locks, 0);
4676 	atomic_set(&eb->read_locks, 0);
4677 	atomic_set(&eb->blocking_readers, 0);
4678 	atomic_set(&eb->blocking_writers, 0);
4679 	atomic_set(&eb->spinning_readers, 0);
4680 	atomic_set(&eb->spinning_writers, 0);
4681 	eb->lock_nested = 0;
4682 	init_waitqueue_head(&eb->write_lock_wq);
4683 	init_waitqueue_head(&eb->read_lock_wq);
4684 
4685 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686 
4687 	spin_lock_init(&eb->refs_lock);
4688 	atomic_set(&eb->refs, 1);
4689 	atomic_set(&eb->io_pages, 0);
4690 
4691 	/*
4692 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693 	 */
4694 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4696 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697 
4698 	return eb;
4699 }
4700 
4701 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702 {
4703 	int i;
4704 	struct page *p;
4705 	struct extent_buffer *new;
4706 	int num_pages = num_extent_pages(src);
4707 
4708 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709 	if (new == NULL)
4710 		return NULL;
4711 
4712 	for (i = 0; i < num_pages; i++) {
4713 		p = alloc_page(GFP_NOFS);
4714 		if (!p) {
4715 			btrfs_release_extent_buffer(new);
4716 			return NULL;
4717 		}
4718 		attach_extent_buffer_page(new, p);
4719 		WARN_ON(PageDirty(p));
4720 		SetPageUptodate(p);
4721 		new->pages[i] = p;
4722 		copy_page(page_address(p), page_address(src->pages[i]));
4723 	}
4724 
4725 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4727 
4728 	return new;
4729 }
4730 
4731 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 						  u64 start, unsigned long len)
4733 {
4734 	struct extent_buffer *eb;
4735 	int num_pages;
4736 	int i;
4737 
4738 	eb = __alloc_extent_buffer(fs_info, start, len);
4739 	if (!eb)
4740 		return NULL;
4741 
4742 	num_pages = num_extent_pages(eb);
4743 	for (i = 0; i < num_pages; i++) {
4744 		eb->pages[i] = alloc_page(GFP_NOFS);
4745 		if (!eb->pages[i])
4746 			goto err;
4747 	}
4748 	set_extent_buffer_uptodate(eb);
4749 	btrfs_set_header_nritems(eb, 0);
4750 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4751 
4752 	return eb;
4753 err:
4754 	for (; i > 0; i--)
4755 		__free_page(eb->pages[i - 1]);
4756 	__free_extent_buffer(eb);
4757 	return NULL;
4758 }
4759 
4760 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4761 						u64 start)
4762 {
4763 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4764 }
4765 
4766 static void check_buffer_tree_ref(struct extent_buffer *eb)
4767 {
4768 	int refs;
4769 	/* the ref bit is tricky.  We have to make sure it is set
4770 	 * if we have the buffer dirty.   Otherwise the
4771 	 * code to free a buffer can end up dropping a dirty
4772 	 * page
4773 	 *
4774 	 * Once the ref bit is set, it won't go away while the
4775 	 * buffer is dirty or in writeback, and it also won't
4776 	 * go away while we have the reference count on the
4777 	 * eb bumped.
4778 	 *
4779 	 * We can't just set the ref bit without bumping the
4780 	 * ref on the eb because free_extent_buffer might
4781 	 * see the ref bit and try to clear it.  If this happens
4782 	 * free_extent_buffer might end up dropping our original
4783 	 * ref by mistake and freeing the page before we are able
4784 	 * to add one more ref.
4785 	 *
4786 	 * So bump the ref count first, then set the bit.  If someone
4787 	 * beat us to it, drop the ref we added.
4788 	 */
4789 	refs = atomic_read(&eb->refs);
4790 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4791 		return;
4792 
4793 	spin_lock(&eb->refs_lock);
4794 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4795 		atomic_inc(&eb->refs);
4796 	spin_unlock(&eb->refs_lock);
4797 }
4798 
4799 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4800 		struct page *accessed)
4801 {
4802 	int num_pages, i;
4803 
4804 	check_buffer_tree_ref(eb);
4805 
4806 	num_pages = num_extent_pages(eb);
4807 	for (i = 0; i < num_pages; i++) {
4808 		struct page *p = eb->pages[i];
4809 
4810 		if (p != accessed)
4811 			mark_page_accessed(p);
4812 	}
4813 }
4814 
4815 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4816 					 u64 start)
4817 {
4818 	struct extent_buffer *eb;
4819 
4820 	rcu_read_lock();
4821 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4822 			       start >> PAGE_SHIFT);
4823 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4824 		rcu_read_unlock();
4825 		/*
4826 		 * Lock our eb's refs_lock to avoid races with
4827 		 * free_extent_buffer. When we get our eb it might be flagged
4828 		 * with EXTENT_BUFFER_STALE and another task running
4829 		 * free_extent_buffer might have seen that flag set,
4830 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4831 		 * writeback flags not set) and it's still in the tree (flag
4832 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4833 		 * of decrementing the extent buffer's reference count twice.
4834 		 * So here we could race and increment the eb's reference count,
4835 		 * clear its stale flag, mark it as dirty and drop our reference
4836 		 * before the other task finishes executing free_extent_buffer,
4837 		 * which would later result in an attempt to free an extent
4838 		 * buffer that is dirty.
4839 		 */
4840 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4841 			spin_lock(&eb->refs_lock);
4842 			spin_unlock(&eb->refs_lock);
4843 		}
4844 		mark_extent_buffer_accessed(eb, NULL);
4845 		return eb;
4846 	}
4847 	rcu_read_unlock();
4848 
4849 	return NULL;
4850 }
4851 
4852 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4853 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4854 					u64 start)
4855 {
4856 	struct extent_buffer *eb, *exists = NULL;
4857 	int ret;
4858 
4859 	eb = find_extent_buffer(fs_info, start);
4860 	if (eb)
4861 		return eb;
4862 	eb = alloc_dummy_extent_buffer(fs_info, start);
4863 	if (!eb)
4864 		return NULL;
4865 	eb->fs_info = fs_info;
4866 again:
4867 	ret = radix_tree_preload(GFP_NOFS);
4868 	if (ret)
4869 		goto free_eb;
4870 	spin_lock(&fs_info->buffer_lock);
4871 	ret = radix_tree_insert(&fs_info->buffer_radix,
4872 				start >> PAGE_SHIFT, eb);
4873 	spin_unlock(&fs_info->buffer_lock);
4874 	radix_tree_preload_end();
4875 	if (ret == -EEXIST) {
4876 		exists = find_extent_buffer(fs_info, start);
4877 		if (exists)
4878 			goto free_eb;
4879 		else
4880 			goto again;
4881 	}
4882 	check_buffer_tree_ref(eb);
4883 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4884 
4885 	return eb;
4886 free_eb:
4887 	btrfs_release_extent_buffer(eb);
4888 	return exists;
4889 }
4890 #endif
4891 
4892 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4893 					  u64 start)
4894 {
4895 	unsigned long len = fs_info->nodesize;
4896 	int num_pages;
4897 	int i;
4898 	unsigned long index = start >> PAGE_SHIFT;
4899 	struct extent_buffer *eb;
4900 	struct extent_buffer *exists = NULL;
4901 	struct page *p;
4902 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4903 	int uptodate = 1;
4904 	int ret;
4905 
4906 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4907 		btrfs_err(fs_info, "bad tree block start %llu", start);
4908 		return ERR_PTR(-EINVAL);
4909 	}
4910 
4911 	eb = find_extent_buffer(fs_info, start);
4912 	if (eb)
4913 		return eb;
4914 
4915 	eb = __alloc_extent_buffer(fs_info, start, len);
4916 	if (!eb)
4917 		return ERR_PTR(-ENOMEM);
4918 
4919 	num_pages = num_extent_pages(eb);
4920 	for (i = 0; i < num_pages; i++, index++) {
4921 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4922 		if (!p) {
4923 			exists = ERR_PTR(-ENOMEM);
4924 			goto free_eb;
4925 		}
4926 
4927 		spin_lock(&mapping->private_lock);
4928 		if (PagePrivate(p)) {
4929 			/*
4930 			 * We could have already allocated an eb for this page
4931 			 * and attached one so lets see if we can get a ref on
4932 			 * the existing eb, and if we can we know it's good and
4933 			 * we can just return that one, else we know we can just
4934 			 * overwrite page->private.
4935 			 */
4936 			exists = (struct extent_buffer *)p->private;
4937 			if (atomic_inc_not_zero(&exists->refs)) {
4938 				spin_unlock(&mapping->private_lock);
4939 				unlock_page(p);
4940 				put_page(p);
4941 				mark_extent_buffer_accessed(exists, p);
4942 				goto free_eb;
4943 			}
4944 			exists = NULL;
4945 
4946 			/*
4947 			 * Do this so attach doesn't complain and we need to
4948 			 * drop the ref the old guy had.
4949 			 */
4950 			ClearPagePrivate(p);
4951 			WARN_ON(PageDirty(p));
4952 			put_page(p);
4953 		}
4954 		attach_extent_buffer_page(eb, p);
4955 		spin_unlock(&mapping->private_lock);
4956 		WARN_ON(PageDirty(p));
4957 		eb->pages[i] = p;
4958 		if (!PageUptodate(p))
4959 			uptodate = 0;
4960 
4961 		/*
4962 		 * We can't unlock the pages just yet since the extent buffer
4963 		 * hasn't been properly inserted in the radix tree, this
4964 		 * opens a race with btree_releasepage which can free a page
4965 		 * while we are still filling in all pages for the buffer and
4966 		 * we could crash.
4967 		 */
4968 	}
4969 	if (uptodate)
4970 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4971 again:
4972 	ret = radix_tree_preload(GFP_NOFS);
4973 	if (ret) {
4974 		exists = ERR_PTR(ret);
4975 		goto free_eb;
4976 	}
4977 
4978 	spin_lock(&fs_info->buffer_lock);
4979 	ret = radix_tree_insert(&fs_info->buffer_radix,
4980 				start >> PAGE_SHIFT, eb);
4981 	spin_unlock(&fs_info->buffer_lock);
4982 	radix_tree_preload_end();
4983 	if (ret == -EEXIST) {
4984 		exists = find_extent_buffer(fs_info, start);
4985 		if (exists)
4986 			goto free_eb;
4987 		else
4988 			goto again;
4989 	}
4990 	/* add one reference for the tree */
4991 	check_buffer_tree_ref(eb);
4992 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4993 
4994 	/*
4995 	 * Now it's safe to unlock the pages because any calls to
4996 	 * btree_releasepage will correctly detect that a page belongs to a
4997 	 * live buffer and won't free them prematurely.
4998 	 */
4999 	for (i = 0; i < num_pages; i++)
5000 		unlock_page(eb->pages[i]);
5001 	return eb;
5002 
5003 free_eb:
5004 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5005 	for (i = 0; i < num_pages; i++) {
5006 		if (eb->pages[i])
5007 			unlock_page(eb->pages[i]);
5008 	}
5009 
5010 	btrfs_release_extent_buffer(eb);
5011 	return exists;
5012 }
5013 
5014 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5015 {
5016 	struct extent_buffer *eb =
5017 			container_of(head, struct extent_buffer, rcu_head);
5018 
5019 	__free_extent_buffer(eb);
5020 }
5021 
5022 static int release_extent_buffer(struct extent_buffer *eb)
5023 {
5024 	lockdep_assert_held(&eb->refs_lock);
5025 
5026 	WARN_ON(atomic_read(&eb->refs) == 0);
5027 	if (atomic_dec_and_test(&eb->refs)) {
5028 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5029 			struct btrfs_fs_info *fs_info = eb->fs_info;
5030 
5031 			spin_unlock(&eb->refs_lock);
5032 
5033 			spin_lock(&fs_info->buffer_lock);
5034 			radix_tree_delete(&fs_info->buffer_radix,
5035 					  eb->start >> PAGE_SHIFT);
5036 			spin_unlock(&fs_info->buffer_lock);
5037 		} else {
5038 			spin_unlock(&eb->refs_lock);
5039 		}
5040 
5041 		/* Should be safe to release our pages at this point */
5042 		btrfs_release_extent_buffer_pages(eb);
5043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5044 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5045 			__free_extent_buffer(eb);
5046 			return 1;
5047 		}
5048 #endif
5049 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5050 		return 1;
5051 	}
5052 	spin_unlock(&eb->refs_lock);
5053 
5054 	return 0;
5055 }
5056 
5057 void free_extent_buffer(struct extent_buffer *eb)
5058 {
5059 	int refs;
5060 	int old;
5061 	if (!eb)
5062 		return;
5063 
5064 	while (1) {
5065 		refs = atomic_read(&eb->refs);
5066 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5067 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5068 			refs == 1))
5069 			break;
5070 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5071 		if (old == refs)
5072 			return;
5073 	}
5074 
5075 	spin_lock(&eb->refs_lock);
5076 	if (atomic_read(&eb->refs) == 2 &&
5077 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5078 	    !extent_buffer_under_io(eb) &&
5079 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5080 		atomic_dec(&eb->refs);
5081 
5082 	/*
5083 	 * I know this is terrible, but it's temporary until we stop tracking
5084 	 * the uptodate bits and such for the extent buffers.
5085 	 */
5086 	release_extent_buffer(eb);
5087 }
5088 
5089 void free_extent_buffer_stale(struct extent_buffer *eb)
5090 {
5091 	if (!eb)
5092 		return;
5093 
5094 	spin_lock(&eb->refs_lock);
5095 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5096 
5097 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5098 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5099 		atomic_dec(&eb->refs);
5100 	release_extent_buffer(eb);
5101 }
5102 
5103 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5104 {
5105 	int i;
5106 	int num_pages;
5107 	struct page *page;
5108 
5109 	num_pages = num_extent_pages(eb);
5110 
5111 	for (i = 0; i < num_pages; i++) {
5112 		page = eb->pages[i];
5113 		if (!PageDirty(page))
5114 			continue;
5115 
5116 		lock_page(page);
5117 		WARN_ON(!PagePrivate(page));
5118 
5119 		clear_page_dirty_for_io(page);
5120 		xa_lock_irq(&page->mapping->i_pages);
5121 		if (!PageDirty(page))
5122 			__xa_clear_mark(&page->mapping->i_pages,
5123 					page_index(page), PAGECACHE_TAG_DIRTY);
5124 		xa_unlock_irq(&page->mapping->i_pages);
5125 		ClearPageError(page);
5126 		unlock_page(page);
5127 	}
5128 	WARN_ON(atomic_read(&eb->refs) == 0);
5129 }
5130 
5131 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5132 {
5133 	int i;
5134 	int num_pages;
5135 	bool was_dirty;
5136 
5137 	check_buffer_tree_ref(eb);
5138 
5139 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5140 
5141 	num_pages = num_extent_pages(eb);
5142 	WARN_ON(atomic_read(&eb->refs) == 0);
5143 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5144 
5145 	if (!was_dirty)
5146 		for (i = 0; i < num_pages; i++)
5147 			set_page_dirty(eb->pages[i]);
5148 
5149 #ifdef CONFIG_BTRFS_DEBUG
5150 	for (i = 0; i < num_pages; i++)
5151 		ASSERT(PageDirty(eb->pages[i]));
5152 #endif
5153 
5154 	return was_dirty;
5155 }
5156 
5157 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5158 {
5159 	int i;
5160 	struct page *page;
5161 	int num_pages;
5162 
5163 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5164 	num_pages = num_extent_pages(eb);
5165 	for (i = 0; i < num_pages; i++) {
5166 		page = eb->pages[i];
5167 		if (page)
5168 			ClearPageUptodate(page);
5169 	}
5170 }
5171 
5172 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5173 {
5174 	int i;
5175 	struct page *page;
5176 	int num_pages;
5177 
5178 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179 	num_pages = num_extent_pages(eb);
5180 	for (i = 0; i < num_pages; i++) {
5181 		page = eb->pages[i];
5182 		SetPageUptodate(page);
5183 	}
5184 }
5185 
5186 int read_extent_buffer_pages(struct extent_io_tree *tree,
5187 			     struct extent_buffer *eb, int wait, int mirror_num)
5188 {
5189 	int i;
5190 	struct page *page;
5191 	int err;
5192 	int ret = 0;
5193 	int locked_pages = 0;
5194 	int all_uptodate = 1;
5195 	int num_pages;
5196 	unsigned long num_reads = 0;
5197 	struct bio *bio = NULL;
5198 	unsigned long bio_flags = 0;
5199 
5200 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5201 		return 0;
5202 
5203 	num_pages = num_extent_pages(eb);
5204 	for (i = 0; i < num_pages; i++) {
5205 		page = eb->pages[i];
5206 		if (wait == WAIT_NONE) {
5207 			if (!trylock_page(page))
5208 				goto unlock_exit;
5209 		} else {
5210 			lock_page(page);
5211 		}
5212 		locked_pages++;
5213 	}
5214 	/*
5215 	 * We need to firstly lock all pages to make sure that
5216 	 * the uptodate bit of our pages won't be affected by
5217 	 * clear_extent_buffer_uptodate().
5218 	 */
5219 	for (i = 0; i < num_pages; i++) {
5220 		page = eb->pages[i];
5221 		if (!PageUptodate(page)) {
5222 			num_reads++;
5223 			all_uptodate = 0;
5224 		}
5225 	}
5226 
5227 	if (all_uptodate) {
5228 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5229 		goto unlock_exit;
5230 	}
5231 
5232 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5233 	eb->read_mirror = 0;
5234 	atomic_set(&eb->io_pages, num_reads);
5235 	for (i = 0; i < num_pages; i++) {
5236 		page = eb->pages[i];
5237 
5238 		if (!PageUptodate(page)) {
5239 			if (ret) {
5240 				atomic_dec(&eb->io_pages);
5241 				unlock_page(page);
5242 				continue;
5243 			}
5244 
5245 			ClearPageError(page);
5246 			err = __extent_read_full_page(tree, page,
5247 						      btree_get_extent, &bio,
5248 						      mirror_num, &bio_flags,
5249 						      REQ_META);
5250 			if (err) {
5251 				ret = err;
5252 				/*
5253 				 * We use &bio in above __extent_read_full_page,
5254 				 * so we ensure that if it returns error, the
5255 				 * current page fails to add itself to bio and
5256 				 * it's been unlocked.
5257 				 *
5258 				 * We must dec io_pages by ourselves.
5259 				 */
5260 				atomic_dec(&eb->io_pages);
5261 			}
5262 		} else {
5263 			unlock_page(page);
5264 		}
5265 	}
5266 
5267 	if (bio) {
5268 		err = submit_one_bio(bio, mirror_num, bio_flags);
5269 		if (err)
5270 			return err;
5271 	}
5272 
5273 	if (ret || wait != WAIT_COMPLETE)
5274 		return ret;
5275 
5276 	for (i = 0; i < num_pages; i++) {
5277 		page = eb->pages[i];
5278 		wait_on_page_locked(page);
5279 		if (!PageUptodate(page))
5280 			ret = -EIO;
5281 	}
5282 
5283 	return ret;
5284 
5285 unlock_exit:
5286 	while (locked_pages > 0) {
5287 		locked_pages--;
5288 		page = eb->pages[locked_pages];
5289 		unlock_page(page);
5290 	}
5291 	return ret;
5292 }
5293 
5294 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5295 			unsigned long start, unsigned long len)
5296 {
5297 	size_t cur;
5298 	size_t offset;
5299 	struct page *page;
5300 	char *kaddr;
5301 	char *dst = (char *)dstv;
5302 	size_t start_offset = offset_in_page(eb->start);
5303 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5304 
5305 	if (start + len > eb->len) {
5306 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5307 		     eb->start, eb->len, start, len);
5308 		memset(dst, 0, len);
5309 		return;
5310 	}
5311 
5312 	offset = offset_in_page(start_offset + start);
5313 
5314 	while (len > 0) {
5315 		page = eb->pages[i];
5316 
5317 		cur = min(len, (PAGE_SIZE - offset));
5318 		kaddr = page_address(page);
5319 		memcpy(dst, kaddr + offset, cur);
5320 
5321 		dst += cur;
5322 		len -= cur;
5323 		offset = 0;
5324 		i++;
5325 	}
5326 }
5327 
5328 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5329 			       void __user *dstv,
5330 			       unsigned long start, unsigned long len)
5331 {
5332 	size_t cur;
5333 	size_t offset;
5334 	struct page *page;
5335 	char *kaddr;
5336 	char __user *dst = (char __user *)dstv;
5337 	size_t start_offset = offset_in_page(eb->start);
5338 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5339 	int ret = 0;
5340 
5341 	WARN_ON(start > eb->len);
5342 	WARN_ON(start + len > eb->start + eb->len);
5343 
5344 	offset = offset_in_page(start_offset + start);
5345 
5346 	while (len > 0) {
5347 		page = eb->pages[i];
5348 
5349 		cur = min(len, (PAGE_SIZE - offset));
5350 		kaddr = page_address(page);
5351 		if (copy_to_user(dst, kaddr + offset, cur)) {
5352 			ret = -EFAULT;
5353 			break;
5354 		}
5355 
5356 		dst += cur;
5357 		len -= cur;
5358 		offset = 0;
5359 		i++;
5360 	}
5361 
5362 	return ret;
5363 }
5364 
5365 /*
5366  * return 0 if the item is found within a page.
5367  * return 1 if the item spans two pages.
5368  * return -EINVAL otherwise.
5369  */
5370 int map_private_extent_buffer(const struct extent_buffer *eb,
5371 			      unsigned long start, unsigned long min_len,
5372 			      char **map, unsigned long *map_start,
5373 			      unsigned long *map_len)
5374 {
5375 	size_t offset;
5376 	char *kaddr;
5377 	struct page *p;
5378 	size_t start_offset = offset_in_page(eb->start);
5379 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5380 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5381 		PAGE_SHIFT;
5382 
5383 	if (start + min_len > eb->len) {
5384 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5385 		       eb->start, eb->len, start, min_len);
5386 		return -EINVAL;
5387 	}
5388 
5389 	if (i != end_i)
5390 		return 1;
5391 
5392 	if (i == 0) {
5393 		offset = start_offset;
5394 		*map_start = 0;
5395 	} else {
5396 		offset = 0;
5397 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5398 	}
5399 
5400 	p = eb->pages[i];
5401 	kaddr = page_address(p);
5402 	*map = kaddr + offset;
5403 	*map_len = PAGE_SIZE - offset;
5404 	return 0;
5405 }
5406 
5407 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5408 			 unsigned long start, unsigned long len)
5409 {
5410 	size_t cur;
5411 	size_t offset;
5412 	struct page *page;
5413 	char *kaddr;
5414 	char *ptr = (char *)ptrv;
5415 	size_t start_offset = offset_in_page(eb->start);
5416 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5417 	int ret = 0;
5418 
5419 	WARN_ON(start > eb->len);
5420 	WARN_ON(start + len > eb->start + eb->len);
5421 
5422 	offset = offset_in_page(start_offset + start);
5423 
5424 	while (len > 0) {
5425 		page = eb->pages[i];
5426 
5427 		cur = min(len, (PAGE_SIZE - offset));
5428 
5429 		kaddr = page_address(page);
5430 		ret = memcmp(ptr, kaddr + offset, cur);
5431 		if (ret)
5432 			break;
5433 
5434 		ptr += cur;
5435 		len -= cur;
5436 		offset = 0;
5437 		i++;
5438 	}
5439 	return ret;
5440 }
5441 
5442 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5443 		const void *srcv)
5444 {
5445 	char *kaddr;
5446 
5447 	WARN_ON(!PageUptodate(eb->pages[0]));
5448 	kaddr = page_address(eb->pages[0]);
5449 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5450 			BTRFS_FSID_SIZE);
5451 }
5452 
5453 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5454 {
5455 	char *kaddr;
5456 
5457 	WARN_ON(!PageUptodate(eb->pages[0]));
5458 	kaddr = page_address(eb->pages[0]);
5459 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5460 			BTRFS_FSID_SIZE);
5461 }
5462 
5463 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5464 			 unsigned long start, unsigned long len)
5465 {
5466 	size_t cur;
5467 	size_t offset;
5468 	struct page *page;
5469 	char *kaddr;
5470 	char *src = (char *)srcv;
5471 	size_t start_offset = offset_in_page(eb->start);
5472 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5473 
5474 	WARN_ON(start > eb->len);
5475 	WARN_ON(start + len > eb->start + eb->len);
5476 
5477 	offset = offset_in_page(start_offset + start);
5478 
5479 	while (len > 0) {
5480 		page = eb->pages[i];
5481 		WARN_ON(!PageUptodate(page));
5482 
5483 		cur = min(len, PAGE_SIZE - offset);
5484 		kaddr = page_address(page);
5485 		memcpy(kaddr + offset, src, cur);
5486 
5487 		src += cur;
5488 		len -= cur;
5489 		offset = 0;
5490 		i++;
5491 	}
5492 }
5493 
5494 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5495 		unsigned long len)
5496 {
5497 	size_t cur;
5498 	size_t offset;
5499 	struct page *page;
5500 	char *kaddr;
5501 	size_t start_offset = offset_in_page(eb->start);
5502 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503 
5504 	WARN_ON(start > eb->len);
5505 	WARN_ON(start + len > eb->start + eb->len);
5506 
5507 	offset = offset_in_page(start_offset + start);
5508 
5509 	while (len > 0) {
5510 		page = eb->pages[i];
5511 		WARN_ON(!PageUptodate(page));
5512 
5513 		cur = min(len, PAGE_SIZE - offset);
5514 		kaddr = page_address(page);
5515 		memset(kaddr + offset, 0, cur);
5516 
5517 		len -= cur;
5518 		offset = 0;
5519 		i++;
5520 	}
5521 }
5522 
5523 void copy_extent_buffer_full(struct extent_buffer *dst,
5524 			     struct extent_buffer *src)
5525 {
5526 	int i;
5527 	int num_pages;
5528 
5529 	ASSERT(dst->len == src->len);
5530 
5531 	num_pages = num_extent_pages(dst);
5532 	for (i = 0; i < num_pages; i++)
5533 		copy_page(page_address(dst->pages[i]),
5534 				page_address(src->pages[i]));
5535 }
5536 
5537 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5538 			unsigned long dst_offset, unsigned long src_offset,
5539 			unsigned long len)
5540 {
5541 	u64 dst_len = dst->len;
5542 	size_t cur;
5543 	size_t offset;
5544 	struct page *page;
5545 	char *kaddr;
5546 	size_t start_offset = offset_in_page(dst->start);
5547 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5548 
5549 	WARN_ON(src->len != dst_len);
5550 
5551 	offset = offset_in_page(start_offset + dst_offset);
5552 
5553 	while (len > 0) {
5554 		page = dst->pages[i];
5555 		WARN_ON(!PageUptodate(page));
5556 
5557 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5558 
5559 		kaddr = page_address(page);
5560 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5561 
5562 		src_offset += cur;
5563 		len -= cur;
5564 		offset = 0;
5565 		i++;
5566 	}
5567 }
5568 
5569 /*
5570  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5571  * given bit number
5572  * @eb: the extent buffer
5573  * @start: offset of the bitmap item in the extent buffer
5574  * @nr: bit number
5575  * @page_index: return index of the page in the extent buffer that contains the
5576  * given bit number
5577  * @page_offset: return offset into the page given by page_index
5578  *
5579  * This helper hides the ugliness of finding the byte in an extent buffer which
5580  * contains a given bit.
5581  */
5582 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5583 				    unsigned long start, unsigned long nr,
5584 				    unsigned long *page_index,
5585 				    size_t *page_offset)
5586 {
5587 	size_t start_offset = offset_in_page(eb->start);
5588 	size_t byte_offset = BIT_BYTE(nr);
5589 	size_t offset;
5590 
5591 	/*
5592 	 * The byte we want is the offset of the extent buffer + the offset of
5593 	 * the bitmap item in the extent buffer + the offset of the byte in the
5594 	 * bitmap item.
5595 	 */
5596 	offset = start_offset + start + byte_offset;
5597 
5598 	*page_index = offset >> PAGE_SHIFT;
5599 	*page_offset = offset_in_page(offset);
5600 }
5601 
5602 /**
5603  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5604  * @eb: the extent buffer
5605  * @start: offset of the bitmap item in the extent buffer
5606  * @nr: bit number to test
5607  */
5608 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5609 			   unsigned long nr)
5610 {
5611 	u8 *kaddr;
5612 	struct page *page;
5613 	unsigned long i;
5614 	size_t offset;
5615 
5616 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5617 	page = eb->pages[i];
5618 	WARN_ON(!PageUptodate(page));
5619 	kaddr = page_address(page);
5620 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5621 }
5622 
5623 /**
5624  * extent_buffer_bitmap_set - set an area of a bitmap
5625  * @eb: the extent buffer
5626  * @start: offset of the bitmap item in the extent buffer
5627  * @pos: bit number of the first bit
5628  * @len: number of bits to set
5629  */
5630 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5631 			      unsigned long pos, unsigned long len)
5632 {
5633 	u8 *kaddr;
5634 	struct page *page;
5635 	unsigned long i;
5636 	size_t offset;
5637 	const unsigned int size = pos + len;
5638 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5639 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5640 
5641 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5642 	page = eb->pages[i];
5643 	WARN_ON(!PageUptodate(page));
5644 	kaddr = page_address(page);
5645 
5646 	while (len >= bits_to_set) {
5647 		kaddr[offset] |= mask_to_set;
5648 		len -= bits_to_set;
5649 		bits_to_set = BITS_PER_BYTE;
5650 		mask_to_set = ~0;
5651 		if (++offset >= PAGE_SIZE && len > 0) {
5652 			offset = 0;
5653 			page = eb->pages[++i];
5654 			WARN_ON(!PageUptodate(page));
5655 			kaddr = page_address(page);
5656 		}
5657 	}
5658 	if (len) {
5659 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5660 		kaddr[offset] |= mask_to_set;
5661 	}
5662 }
5663 
5664 
5665 /**
5666  * extent_buffer_bitmap_clear - clear an area of a bitmap
5667  * @eb: the extent buffer
5668  * @start: offset of the bitmap item in the extent buffer
5669  * @pos: bit number of the first bit
5670  * @len: number of bits to clear
5671  */
5672 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5673 				unsigned long pos, unsigned long len)
5674 {
5675 	u8 *kaddr;
5676 	struct page *page;
5677 	unsigned long i;
5678 	size_t offset;
5679 	const unsigned int size = pos + len;
5680 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5681 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5682 
5683 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5684 	page = eb->pages[i];
5685 	WARN_ON(!PageUptodate(page));
5686 	kaddr = page_address(page);
5687 
5688 	while (len >= bits_to_clear) {
5689 		kaddr[offset] &= ~mask_to_clear;
5690 		len -= bits_to_clear;
5691 		bits_to_clear = BITS_PER_BYTE;
5692 		mask_to_clear = ~0;
5693 		if (++offset >= PAGE_SIZE && len > 0) {
5694 			offset = 0;
5695 			page = eb->pages[++i];
5696 			WARN_ON(!PageUptodate(page));
5697 			kaddr = page_address(page);
5698 		}
5699 	}
5700 	if (len) {
5701 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5702 		kaddr[offset] &= ~mask_to_clear;
5703 	}
5704 }
5705 
5706 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5707 {
5708 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5709 	return distance < len;
5710 }
5711 
5712 static void copy_pages(struct page *dst_page, struct page *src_page,
5713 		       unsigned long dst_off, unsigned long src_off,
5714 		       unsigned long len)
5715 {
5716 	char *dst_kaddr = page_address(dst_page);
5717 	char *src_kaddr;
5718 	int must_memmove = 0;
5719 
5720 	if (dst_page != src_page) {
5721 		src_kaddr = page_address(src_page);
5722 	} else {
5723 		src_kaddr = dst_kaddr;
5724 		if (areas_overlap(src_off, dst_off, len))
5725 			must_memmove = 1;
5726 	}
5727 
5728 	if (must_memmove)
5729 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5730 	else
5731 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732 }
5733 
5734 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5735 			   unsigned long src_offset, unsigned long len)
5736 {
5737 	struct btrfs_fs_info *fs_info = dst->fs_info;
5738 	size_t cur;
5739 	size_t dst_off_in_page;
5740 	size_t src_off_in_page;
5741 	size_t start_offset = offset_in_page(dst->start);
5742 	unsigned long dst_i;
5743 	unsigned long src_i;
5744 
5745 	if (src_offset + len > dst->len) {
5746 		btrfs_err(fs_info,
5747 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5748 			 src_offset, len, dst->len);
5749 		BUG_ON(1);
5750 	}
5751 	if (dst_offset + len > dst->len) {
5752 		btrfs_err(fs_info,
5753 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5754 			 dst_offset, len, dst->len);
5755 		BUG_ON(1);
5756 	}
5757 
5758 	while (len > 0) {
5759 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
5760 		src_off_in_page = offset_in_page(start_offset + src_offset);
5761 
5762 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5763 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5764 
5765 		cur = min(len, (unsigned long)(PAGE_SIZE -
5766 					       src_off_in_page));
5767 		cur = min_t(unsigned long, cur,
5768 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5769 
5770 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5771 			   dst_off_in_page, src_off_in_page, cur);
5772 
5773 		src_offset += cur;
5774 		dst_offset += cur;
5775 		len -= cur;
5776 	}
5777 }
5778 
5779 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5780 			   unsigned long src_offset, unsigned long len)
5781 {
5782 	struct btrfs_fs_info *fs_info = dst->fs_info;
5783 	size_t cur;
5784 	size_t dst_off_in_page;
5785 	size_t src_off_in_page;
5786 	unsigned long dst_end = dst_offset + len - 1;
5787 	unsigned long src_end = src_offset + len - 1;
5788 	size_t start_offset = offset_in_page(dst->start);
5789 	unsigned long dst_i;
5790 	unsigned long src_i;
5791 
5792 	if (src_offset + len > dst->len) {
5793 		btrfs_err(fs_info,
5794 			  "memmove bogus src_offset %lu move len %lu len %lu",
5795 			  src_offset, len, dst->len);
5796 		BUG_ON(1);
5797 	}
5798 	if (dst_offset + len > dst->len) {
5799 		btrfs_err(fs_info,
5800 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5801 			  dst_offset, len, dst->len);
5802 		BUG_ON(1);
5803 	}
5804 	if (dst_offset < src_offset) {
5805 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5806 		return;
5807 	}
5808 	while (len > 0) {
5809 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5810 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5811 
5812 		dst_off_in_page = offset_in_page(start_offset + dst_end);
5813 		src_off_in_page = offset_in_page(start_offset + src_end);
5814 
5815 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5816 		cur = min(cur, dst_off_in_page + 1);
5817 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5818 			   dst_off_in_page - cur + 1,
5819 			   src_off_in_page - cur + 1, cur);
5820 
5821 		dst_end -= cur;
5822 		src_end -= cur;
5823 		len -= cur;
5824 	}
5825 }
5826 
5827 int try_release_extent_buffer(struct page *page)
5828 {
5829 	struct extent_buffer *eb;
5830 
5831 	/*
5832 	 * We need to make sure nobody is attaching this page to an eb right
5833 	 * now.
5834 	 */
5835 	spin_lock(&page->mapping->private_lock);
5836 	if (!PagePrivate(page)) {
5837 		spin_unlock(&page->mapping->private_lock);
5838 		return 1;
5839 	}
5840 
5841 	eb = (struct extent_buffer *)page->private;
5842 	BUG_ON(!eb);
5843 
5844 	/*
5845 	 * This is a little awful but should be ok, we need to make sure that
5846 	 * the eb doesn't disappear out from under us while we're looking at
5847 	 * this page.
5848 	 */
5849 	spin_lock(&eb->refs_lock);
5850 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5851 		spin_unlock(&eb->refs_lock);
5852 		spin_unlock(&page->mapping->private_lock);
5853 		return 0;
5854 	}
5855 	spin_unlock(&page->mapping->private_lock);
5856 
5857 	/*
5858 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5859 	 * so just return, this page will likely be freed soon anyway.
5860 	 */
5861 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5862 		spin_unlock(&eb->refs_lock);
5863 		return 0;
5864 	}
5865 
5866 	return release_extent_buffer(eb);
5867 }
5868