xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_fs_info *fs_info,
56 				struct btrfs_delayed_ref_node *node, u64 parent,
57 				u64 root_objectid, u64 owner_objectid,
58 				u64 owner_offset, int refs_to_drop,
59 				struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 				    struct extent_buffer *leaf,
62 				    struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 				      struct btrfs_fs_info *fs_info,
65 				      u64 parent, u64 root_objectid,
66 				      u64 flags, u64 owner, u64 offset,
67 				      struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 				     struct btrfs_fs_info *fs_info,
70 				     u64 parent, u64 root_objectid,
71 				     u64 flags, struct btrfs_disk_key *key,
72 				     int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 			  struct btrfs_fs_info *fs_info, u64 flags,
75 			  int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77 			 struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79 			    struct btrfs_space_info *info, u64 bytes,
80 			    int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 			       u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 				     struct btrfs_space_info *space_info,
85 				     u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 				     struct btrfs_space_info *space_info,
88 				     u64 num_bytes);
89 
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93 	smp_mb();
94 	return cache->cached == BTRFS_CACHE_FINISHED ||
95 		cache->cached == BTRFS_CACHE_ERROR;
96 }
97 
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100 	return (cache->flags & bits) == bits;
101 }
102 
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	atomic_inc(&cache->count);
106 }
107 
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110 	if (atomic_dec_and_test(&cache->count)) {
111 		WARN_ON(cache->pinned > 0);
112 		WARN_ON(cache->reserved > 0);
113 
114 		/*
115 		 * If not empty, someone is still holding mutex of
116 		 * full_stripe_lock, which can only be released by caller.
117 		 * And it will definitely cause use-after-free when caller
118 		 * tries to release full stripe lock.
119 		 *
120 		 * No better way to resolve, but only to warn.
121 		 */
122 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 		kfree(cache->free_space_ctl);
124 		kfree(cache);
125 	}
126 }
127 
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 				struct btrfs_block_group_cache *block_group)
134 {
135 	struct rb_node **p;
136 	struct rb_node *parent = NULL;
137 	struct btrfs_block_group_cache *cache;
138 
139 	spin_lock(&info->block_group_cache_lock);
140 	p = &info->block_group_cache_tree.rb_node;
141 
142 	while (*p) {
143 		parent = *p;
144 		cache = rb_entry(parent, struct btrfs_block_group_cache,
145 				 cache_node);
146 		if (block_group->key.objectid < cache->key.objectid) {
147 			p = &(*p)->rb_left;
148 		} else if (block_group->key.objectid > cache->key.objectid) {
149 			p = &(*p)->rb_right;
150 		} else {
151 			spin_unlock(&info->block_group_cache_lock);
152 			return -EEXIST;
153 		}
154 	}
155 
156 	rb_link_node(&block_group->cache_node, parent, p);
157 	rb_insert_color(&block_group->cache_node,
158 			&info->block_group_cache_tree);
159 
160 	if (info->first_logical_byte > block_group->key.objectid)
161 		info->first_logical_byte = block_group->key.objectid;
162 
163 	spin_unlock(&info->block_group_cache_lock);
164 
165 	return 0;
166 }
167 
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 			      int contains)
175 {
176 	struct btrfs_block_group_cache *cache, *ret = NULL;
177 	struct rb_node *n;
178 	u64 end, start;
179 
180 	spin_lock(&info->block_group_cache_lock);
181 	n = info->block_group_cache_tree.rb_node;
182 
183 	while (n) {
184 		cache = rb_entry(n, struct btrfs_block_group_cache,
185 				 cache_node);
186 		end = cache->key.objectid + cache->key.offset - 1;
187 		start = cache->key.objectid;
188 
189 		if (bytenr < start) {
190 			if (!contains && (!ret || start < ret->key.objectid))
191 				ret = cache;
192 			n = n->rb_left;
193 		} else if (bytenr > start) {
194 			if (contains && bytenr <= end) {
195 				ret = cache;
196 				break;
197 			}
198 			n = n->rb_right;
199 		} else {
200 			ret = cache;
201 			break;
202 		}
203 	}
204 	if (ret) {
205 		btrfs_get_block_group(ret);
206 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 			info->first_logical_byte = ret->key.objectid;
208 	}
209 	spin_unlock(&info->block_group_cache_lock);
210 
211 	return ret;
212 }
213 
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 			       u64 start, u64 num_bytes)
216 {
217 	u64 end = start + num_bytes - 1;
218 	set_extent_bits(&fs_info->freed_extents[0],
219 			start, end, EXTENT_UPTODATE);
220 	set_extent_bits(&fs_info->freed_extents[1],
221 			start, end, EXTENT_UPTODATE);
222 	return 0;
223 }
224 
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 				  struct btrfs_block_group_cache *cache)
227 {
228 	u64 start, end;
229 
230 	start = cache->key.objectid;
231 	end = start + cache->key.offset - 1;
232 
233 	clear_extent_bits(&fs_info->freed_extents[0],
234 			  start, end, EXTENT_UPTODATE);
235 	clear_extent_bits(&fs_info->freed_extents[1],
236 			  start, end, EXTENT_UPTODATE);
237 }
238 
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 				 struct btrfs_block_group_cache *cache)
241 {
242 	u64 bytenr;
243 	u64 *logical;
244 	int stripe_len;
245 	int i, nr, ret;
246 
247 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 		cache->bytes_super += stripe_len;
250 		ret = add_excluded_extent(fs_info, cache->key.objectid,
251 					  stripe_len);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 		bytenr = btrfs_sb_offset(i);
258 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 				       bytenr, 0, &logical, &nr, &stripe_len);
260 		if (ret)
261 			return ret;
262 
263 		while (nr--) {
264 			u64 start, len;
265 
266 			if (logical[nr] > cache->key.objectid +
267 			    cache->key.offset)
268 				continue;
269 
270 			if (logical[nr] + stripe_len <= cache->key.objectid)
271 				continue;
272 
273 			start = logical[nr];
274 			if (start < cache->key.objectid) {
275 				start = cache->key.objectid;
276 				len = (logical[nr] + stripe_len) - start;
277 			} else {
278 				len = min_t(u64, stripe_len,
279 					    cache->key.objectid +
280 					    cache->key.offset - start);
281 			}
282 
283 			cache->bytes_super += len;
284 			ret = add_excluded_extent(fs_info, start, len);
285 			if (ret) {
286 				kfree(logical);
287 				return ret;
288 			}
289 		}
290 
291 		kfree(logical);
292 	}
293 	return 0;
294 }
295 
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299 	struct btrfs_caching_control *ctl;
300 
301 	spin_lock(&cache->lock);
302 	if (!cache->caching_ctl) {
303 		spin_unlock(&cache->lock);
304 		return NULL;
305 	}
306 
307 	ctl = cache->caching_ctl;
308 	refcount_inc(&ctl->count);
309 	spin_unlock(&cache->lock);
310 	return ctl;
311 }
312 
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315 	if (refcount_dec_and_test(&ctl->count))
316 		kfree(ctl);
317 }
318 
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322 	struct btrfs_fs_info *fs_info = block_group->fs_info;
323 	u64 start = block_group->key.objectid;
324 	u64 len = block_group->key.offset;
325 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 		fs_info->nodesize : fs_info->sectorsize;
327 	u64 step = chunk << 1;
328 
329 	while (len > chunk) {
330 		btrfs_remove_free_space(block_group, start, chunk);
331 		start += step;
332 		if (len < step)
333 			len = 0;
334 		else
335 			len -= step;
336 	}
337 }
338 #endif
339 
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 		       struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348 	u64 extent_start, extent_end, size, total_added = 0;
349 	int ret;
350 
351 	while (start < end) {
352 		ret = find_first_extent_bit(info->pinned_extents, start,
353 					    &extent_start, &extent_end,
354 					    EXTENT_DIRTY | EXTENT_UPTODATE,
355 					    NULL);
356 		if (ret)
357 			break;
358 
359 		if (extent_start <= start) {
360 			start = extent_end + 1;
361 		} else if (extent_start > start && extent_start < end) {
362 			size = extent_start - start;
363 			total_added += size;
364 			ret = btrfs_add_free_space(block_group, start,
365 						   size);
366 			BUG_ON(ret); /* -ENOMEM or logic error */
367 			start = extent_end + 1;
368 		} else {
369 			break;
370 		}
371 	}
372 
373 	if (start < end) {
374 		size = end - start;
375 		total_added += size;
376 		ret = btrfs_add_free_space(block_group, start, size);
377 		BUG_ON(ret); /* -ENOMEM or logic error */
378 	}
379 
380 	return total_added;
381 }
382 
383 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
384 {
385 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 	struct btrfs_fs_info *fs_info = block_group->fs_info;
387 	struct btrfs_root *extent_root = fs_info->extent_root;
388 	struct btrfs_path *path;
389 	struct extent_buffer *leaf;
390 	struct btrfs_key key;
391 	u64 total_found = 0;
392 	u64 last = 0;
393 	u32 nritems;
394 	int ret;
395 	bool wakeup = true;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		return -ENOMEM;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 #ifdef CONFIG_BTRFS_DEBUG
404 	/*
405 	 * If we're fragmenting we don't want to make anybody think we can
406 	 * allocate from this block group until we've had a chance to fragment
407 	 * the free space.
408 	 */
409 	if (btrfs_should_fragment_free_space(block_group))
410 		wakeup = false;
411 #endif
412 	/*
413 	 * We don't want to deadlock with somebody trying to allocate a new
414 	 * extent for the extent root while also trying to search the extent
415 	 * root to add free space.  So we skip locking and search the commit
416 	 * root, since its read-only
417 	 */
418 	path->skip_locking = 1;
419 	path->search_commit_root = 1;
420 	path->reada = READA_FORWARD;
421 
422 	key.objectid = last;
423 	key.offset = 0;
424 	key.type = BTRFS_EXTENT_ITEM_KEY;
425 
426 next:
427 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428 	if (ret < 0)
429 		goto out;
430 
431 	leaf = path->nodes[0];
432 	nritems = btrfs_header_nritems(leaf);
433 
434 	while (1) {
435 		if (btrfs_fs_closing(fs_info) > 1) {
436 			last = (u64)-1;
437 			break;
438 		}
439 
440 		if (path->slots[0] < nritems) {
441 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 		} else {
443 			ret = find_next_key(path, 0, &key);
444 			if (ret)
445 				break;
446 
447 			if (need_resched() ||
448 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
449 				if (wakeup)
450 					caching_ctl->progress = last;
451 				btrfs_release_path(path);
452 				up_read(&fs_info->commit_root_sem);
453 				mutex_unlock(&caching_ctl->mutex);
454 				cond_resched();
455 				mutex_lock(&caching_ctl->mutex);
456 				down_read(&fs_info->commit_root_sem);
457 				goto next;
458 			}
459 
460 			ret = btrfs_next_leaf(extent_root, path);
461 			if (ret < 0)
462 				goto out;
463 			if (ret)
464 				break;
465 			leaf = path->nodes[0];
466 			nritems = btrfs_header_nritems(leaf);
467 			continue;
468 		}
469 
470 		if (key.objectid < last) {
471 			key.objectid = last;
472 			key.offset = 0;
473 			key.type = BTRFS_EXTENT_ITEM_KEY;
474 
475 			if (wakeup)
476 				caching_ctl->progress = last;
477 			btrfs_release_path(path);
478 			goto next;
479 		}
480 
481 		if (key.objectid < block_group->key.objectid) {
482 			path->slots[0]++;
483 			continue;
484 		}
485 
486 		if (key.objectid >= block_group->key.objectid +
487 		    block_group->key.offset)
488 			break;
489 
490 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 		    key.type == BTRFS_METADATA_ITEM_KEY) {
492 			total_found += add_new_free_space(block_group,
493 							  fs_info, last,
494 							  key.objectid);
495 			if (key.type == BTRFS_METADATA_ITEM_KEY)
496 				last = key.objectid +
497 					fs_info->nodesize;
498 			else
499 				last = key.objectid + key.offset;
500 
501 			if (total_found > CACHING_CTL_WAKE_UP) {
502 				total_found = 0;
503 				if (wakeup)
504 					wake_up(&caching_ctl->wait);
505 			}
506 		}
507 		path->slots[0]++;
508 	}
509 	ret = 0;
510 
511 	total_found += add_new_free_space(block_group, fs_info, last,
512 					  block_group->key.objectid +
513 					  block_group->key.offset);
514 	caching_ctl->progress = (u64)-1;
515 
516 out:
517 	btrfs_free_path(path);
518 	return ret;
519 }
520 
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523 	struct btrfs_block_group_cache *block_group;
524 	struct btrfs_fs_info *fs_info;
525 	struct btrfs_caching_control *caching_ctl;
526 	int ret;
527 
528 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 	block_group = caching_ctl->block_group;
530 	fs_info = block_group->fs_info;
531 
532 	mutex_lock(&caching_ctl->mutex);
533 	down_read(&fs_info->commit_root_sem);
534 
535 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 		ret = load_free_space_tree(caching_ctl);
537 	else
538 		ret = load_extent_tree_free(caching_ctl);
539 
540 	spin_lock(&block_group->lock);
541 	block_group->caching_ctl = NULL;
542 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 	spin_unlock(&block_group->lock);
544 
545 #ifdef CONFIG_BTRFS_DEBUG
546 	if (btrfs_should_fragment_free_space(block_group)) {
547 		u64 bytes_used;
548 
549 		spin_lock(&block_group->space_info->lock);
550 		spin_lock(&block_group->lock);
551 		bytes_used = block_group->key.offset -
552 			btrfs_block_group_used(&block_group->item);
553 		block_group->space_info->bytes_used += bytes_used >> 1;
554 		spin_unlock(&block_group->lock);
555 		spin_unlock(&block_group->space_info->lock);
556 		fragment_free_space(block_group);
557 	}
558 #endif
559 
560 	caching_ctl->progress = (u64)-1;
561 
562 	up_read(&fs_info->commit_root_sem);
563 	free_excluded_extents(fs_info, block_group);
564 	mutex_unlock(&caching_ctl->mutex);
565 
566 	wake_up(&caching_ctl->wait);
567 
568 	put_caching_control(caching_ctl);
569 	btrfs_put_block_group(block_group);
570 }
571 
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573 			     int load_cache_only)
574 {
575 	DEFINE_WAIT(wait);
576 	struct btrfs_fs_info *fs_info = cache->fs_info;
577 	struct btrfs_caching_control *caching_ctl;
578 	int ret = 0;
579 
580 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581 	if (!caching_ctl)
582 		return -ENOMEM;
583 
584 	INIT_LIST_HEAD(&caching_ctl->list);
585 	mutex_init(&caching_ctl->mutex);
586 	init_waitqueue_head(&caching_ctl->wait);
587 	caching_ctl->block_group = cache;
588 	caching_ctl->progress = cache->key.objectid;
589 	refcount_set(&caching_ctl->count, 1);
590 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 			caching_thread, NULL, NULL);
592 
593 	spin_lock(&cache->lock);
594 	/*
595 	 * This should be a rare occasion, but this could happen I think in the
596 	 * case where one thread starts to load the space cache info, and then
597 	 * some other thread starts a transaction commit which tries to do an
598 	 * allocation while the other thread is still loading the space cache
599 	 * info.  The previous loop should have kept us from choosing this block
600 	 * group, but if we've moved to the state where we will wait on caching
601 	 * block groups we need to first check if we're doing a fast load here,
602 	 * so we can wait for it to finish, otherwise we could end up allocating
603 	 * from a block group who's cache gets evicted for one reason or
604 	 * another.
605 	 */
606 	while (cache->cached == BTRFS_CACHE_FAST) {
607 		struct btrfs_caching_control *ctl;
608 
609 		ctl = cache->caching_ctl;
610 		refcount_inc(&ctl->count);
611 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 		spin_unlock(&cache->lock);
613 
614 		schedule();
615 
616 		finish_wait(&ctl->wait, &wait);
617 		put_caching_control(ctl);
618 		spin_lock(&cache->lock);
619 	}
620 
621 	if (cache->cached != BTRFS_CACHE_NO) {
622 		spin_unlock(&cache->lock);
623 		kfree(caching_ctl);
624 		return 0;
625 	}
626 	WARN_ON(cache->caching_ctl);
627 	cache->caching_ctl = caching_ctl;
628 	cache->cached = BTRFS_CACHE_FAST;
629 	spin_unlock(&cache->lock);
630 
631 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 		mutex_lock(&caching_ctl->mutex);
633 		ret = load_free_space_cache(fs_info, cache);
634 
635 		spin_lock(&cache->lock);
636 		if (ret == 1) {
637 			cache->caching_ctl = NULL;
638 			cache->cached = BTRFS_CACHE_FINISHED;
639 			cache->last_byte_to_unpin = (u64)-1;
640 			caching_ctl->progress = (u64)-1;
641 		} else {
642 			if (load_cache_only) {
643 				cache->caching_ctl = NULL;
644 				cache->cached = BTRFS_CACHE_NO;
645 			} else {
646 				cache->cached = BTRFS_CACHE_STARTED;
647 				cache->has_caching_ctl = 1;
648 			}
649 		}
650 		spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652 		if (ret == 1 &&
653 		    btrfs_should_fragment_free_space(cache)) {
654 			u64 bytes_used;
655 
656 			spin_lock(&cache->space_info->lock);
657 			spin_lock(&cache->lock);
658 			bytes_used = cache->key.offset -
659 				btrfs_block_group_used(&cache->item);
660 			cache->space_info->bytes_used += bytes_used >> 1;
661 			spin_unlock(&cache->lock);
662 			spin_unlock(&cache->space_info->lock);
663 			fragment_free_space(cache);
664 		}
665 #endif
666 		mutex_unlock(&caching_ctl->mutex);
667 
668 		wake_up(&caching_ctl->wait);
669 		if (ret == 1) {
670 			put_caching_control(caching_ctl);
671 			free_excluded_extents(fs_info, cache);
672 			return 0;
673 		}
674 	} else {
675 		/*
676 		 * We're either using the free space tree or no caching at all.
677 		 * Set cached to the appropriate value and wakeup any waiters.
678 		 */
679 		spin_lock(&cache->lock);
680 		if (load_cache_only) {
681 			cache->caching_ctl = NULL;
682 			cache->cached = BTRFS_CACHE_NO;
683 		} else {
684 			cache->cached = BTRFS_CACHE_STARTED;
685 			cache->has_caching_ctl = 1;
686 		}
687 		spin_unlock(&cache->lock);
688 		wake_up(&caching_ctl->wait);
689 	}
690 
691 	if (load_cache_only) {
692 		put_caching_control(caching_ctl);
693 		return 0;
694 	}
695 
696 	down_write(&fs_info->commit_root_sem);
697 	refcount_inc(&caching_ctl->count);
698 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 	up_write(&fs_info->commit_root_sem);
700 
701 	btrfs_get_block_group(cache);
702 
703 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 
705 	return ret;
706 }
707 
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714 	return block_group_cache_tree_search(info, bytenr, 0);
715 }
716 
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 						 struct btrfs_fs_info *info,
722 						 u64 bytenr)
723 {
724 	return block_group_cache_tree_search(info, bytenr, 1);
725 }
726 
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 						  u64 flags)
729 {
730 	struct list_head *head = &info->space_info;
731 	struct btrfs_space_info *found;
732 
733 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734 
735 	rcu_read_lock();
736 	list_for_each_entry_rcu(found, head, list) {
737 		if (found->flags & flags) {
738 			rcu_read_unlock();
739 			return found;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return NULL;
744 }
745 
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 			     u64 owner, u64 root_objectid)
748 {
749 	struct btrfs_space_info *space_info;
750 	u64 flags;
751 
752 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
753 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 		else
756 			flags = BTRFS_BLOCK_GROUP_METADATA;
757 	} else {
758 		flags = BTRFS_BLOCK_GROUP_DATA;
759 	}
760 
761 	space_info = __find_space_info(fs_info, flags);
762 	ASSERT(space_info);
763 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765 
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772 	struct list_head *head = &info->space_info;
773 	struct btrfs_space_info *found;
774 
775 	rcu_read_lock();
776 	list_for_each_entry_rcu(found, head, list)
777 		found->full = 0;
778 	rcu_read_unlock();
779 }
780 
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784 	int ret;
785 	struct btrfs_key key;
786 	struct btrfs_path *path;
787 
788 	path = btrfs_alloc_path();
789 	if (!path)
790 		return -ENOMEM;
791 
792 	key.objectid = start;
793 	key.offset = len;
794 	key.type = BTRFS_EXTENT_ITEM_KEY;
795 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_fs_info *fs_info, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 		offset = fs_info->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851 	if (ret < 0)
852 		goto out_free;
853 
854 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 		if (path->slots[0]) {
856 			path->slots[0]--;
857 			btrfs_item_key_to_cpu(path->nodes[0], &key,
858 					      path->slots[0]);
859 			if (key.objectid == bytenr &&
860 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
861 			    key.offset == fs_info->nodesize)
862 				ret = 0;
863 		}
864 	}
865 
866 	if (ret == 0) {
867 		leaf = path->nodes[0];
868 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 		if (item_size >= sizeof(*ei)) {
870 			ei = btrfs_item_ptr(leaf, path->slots[0],
871 					    struct btrfs_extent_item);
872 			num_refs = btrfs_extent_refs(leaf, ei);
873 			extent_flags = btrfs_extent_flags(leaf, ei);
874 		} else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 			struct btrfs_extent_item_v0 *ei0;
877 			BUG_ON(item_size != sizeof(*ei0));
878 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 					     struct btrfs_extent_item_v0);
880 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 			/* FIXME: this isn't correct for data */
882 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884 			BUG();
885 #endif
886 		}
887 		BUG_ON(num_refs == 0);
888 	} else {
889 		num_refs = 0;
890 		extent_flags = 0;
891 		ret = 0;
892 	}
893 
894 	if (!trans)
895 		goto out;
896 
897 	delayed_refs = &trans->transaction->delayed_refs;
898 	spin_lock(&delayed_refs->lock);
899 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900 	if (head) {
901 		if (!mutex_trylock(&head->mutex)) {
902 			refcount_inc(&head->refs);
903 			spin_unlock(&delayed_refs->lock);
904 
905 			btrfs_release_path(path);
906 
907 			/*
908 			 * Mutex was contended, block until it's released and try
909 			 * again
910 			 */
911 			mutex_lock(&head->mutex);
912 			mutex_unlock(&head->mutex);
913 			btrfs_put_delayed_ref_head(head);
914 			goto search_again;
915 		}
916 		spin_lock(&head->lock);
917 		if (head->extent_op && head->extent_op->update_flags)
918 			extent_flags |= head->extent_op->flags_to_set;
919 		else
920 			BUG_ON(num_refs == 0);
921 
922 		num_refs += head->ref_mod;
923 		spin_unlock(&head->lock);
924 		mutex_unlock(&head->mutex);
925 	}
926 	spin_unlock(&delayed_refs->lock);
927 out:
928 	WARN_ON(num_refs == 0);
929 	if (refs)
930 		*refs = num_refs;
931 	if (flags)
932 		*flags = extent_flags;
933 out_free:
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043 
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 				  struct btrfs_fs_info *fs_info,
1047 				  struct btrfs_path *path,
1048 				  u64 owner, u32 extra_size)
1049 {
1050 	struct btrfs_root *root = fs_info->extent_root;
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(fs_info, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 				     struct btrfs_extent_inline_ref *iref,
1134 				     enum btrfs_inline_ref_type is_data)
1135 {
1136 	int type = btrfs_extent_inline_ref_type(eb, iref);
1137 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138 
1139 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1142 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145 				return type;
1146 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 				ASSERT(eb->fs_info);
1148 				/*
1149 				 * Every shared one has parent tree
1150 				 * block, which must be aligned to
1151 				 * nodesize.
1152 				 */
1153 				if (offset &&
1154 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 					return type;
1156 			}
1157 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else {
1172 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 			return type;
1174 		}
1175 	}
1176 
1177 	btrfs_print_leaf((struct extent_buffer *)eb);
1178 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 		  eb->start, type);
1180 	WARN_ON(1);
1181 
1182 	return BTRFS_REF_TYPE_INVALID;
1183 }
1184 
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187 	u32 high_crc = ~(u32)0;
1188 	u32 low_crc = ~(u32)0;
1189 	__le64 lenum;
1190 
1191 	lenum = cpu_to_le64(root_objectid);
1192 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 	lenum = cpu_to_le64(owner);
1194 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 	lenum = cpu_to_le64(offset);
1196 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197 
1198 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200 
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 				     struct btrfs_extent_data_ref *ref)
1203 {
1204 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 				    btrfs_extent_data_ref_objectid(leaf, ref),
1206 				    btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208 
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210 				 struct btrfs_extent_data_ref *ref,
1211 				 u64 root_objectid, u64 owner, u64 offset)
1212 {
1213 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 		return 0;
1217 	return 1;
1218 }
1219 
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 					   struct btrfs_fs_info *fs_info,
1222 					   struct btrfs_path *path,
1223 					   u64 bytenr, u64 parent,
1224 					   u64 root_objectid,
1225 					   u64 owner, u64 offset)
1226 {
1227 	struct btrfs_root *root = fs_info->extent_root;
1228 	struct btrfs_key key;
1229 	struct btrfs_extent_data_ref *ref;
1230 	struct extent_buffer *leaf;
1231 	u32 nritems;
1232 	int ret;
1233 	int recow;
1234 	int err = -ENOENT;
1235 
1236 	key.objectid = bytenr;
1237 	if (parent) {
1238 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 		key.offset = parent;
1240 	} else {
1241 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 		key.offset = hash_extent_data_ref(root_objectid,
1243 						  owner, offset);
1244 	}
1245 again:
1246 	recow = 0;
1247 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 	if (ret < 0) {
1249 		err = ret;
1250 		goto fail;
1251 	}
1252 
1253 	if (parent) {
1254 		if (!ret)
1255 			return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 		btrfs_release_path(path);
1259 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 		if (ret < 0) {
1261 			err = ret;
1262 			goto fail;
1263 		}
1264 		if (!ret)
1265 			return 0;
1266 #endif
1267 		goto fail;
1268 	}
1269 
1270 	leaf = path->nodes[0];
1271 	nritems = btrfs_header_nritems(leaf);
1272 	while (1) {
1273 		if (path->slots[0] >= nritems) {
1274 			ret = btrfs_next_leaf(root, path);
1275 			if (ret < 0)
1276 				err = ret;
1277 			if (ret)
1278 				goto fail;
1279 
1280 			leaf = path->nodes[0];
1281 			nritems = btrfs_header_nritems(leaf);
1282 			recow = 1;
1283 		}
1284 
1285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 		if (key.objectid != bytenr ||
1287 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 			goto fail;
1289 
1290 		ref = btrfs_item_ptr(leaf, path->slots[0],
1291 				     struct btrfs_extent_data_ref);
1292 
1293 		if (match_extent_data_ref(leaf, ref, root_objectid,
1294 					  owner, offset)) {
1295 			if (recow) {
1296 				btrfs_release_path(path);
1297 				goto again;
1298 			}
1299 			err = 0;
1300 			break;
1301 		}
1302 		path->slots[0]++;
1303 	}
1304 fail:
1305 	return err;
1306 }
1307 
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 					   struct btrfs_fs_info *fs_info,
1310 					   struct btrfs_path *path,
1311 					   u64 bytenr, u64 parent,
1312 					   u64 root_objectid, u64 owner,
1313 					   u64 offset, int refs_to_add)
1314 {
1315 	struct btrfs_root *root = fs_info->extent_root;
1316 	struct btrfs_key key;
1317 	struct extent_buffer *leaf;
1318 	u32 size;
1319 	u32 num_refs;
1320 	int ret;
1321 
1322 	key.objectid = bytenr;
1323 	if (parent) {
1324 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 		key.offset = parent;
1326 		size = sizeof(struct btrfs_shared_data_ref);
1327 	} else {
1328 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 		key.offset = hash_extent_data_ref(root_objectid,
1330 						  owner, offset);
1331 		size = sizeof(struct btrfs_extent_data_ref);
1332 	}
1333 
1334 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 	if (ret && ret != -EEXIST)
1336 		goto fail;
1337 
1338 	leaf = path->nodes[0];
1339 	if (parent) {
1340 		struct btrfs_shared_data_ref *ref;
1341 		ref = btrfs_item_ptr(leaf, path->slots[0],
1342 				     struct btrfs_shared_data_ref);
1343 		if (ret == 0) {
1344 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 		} else {
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 			num_refs += refs_to_add;
1348 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349 		}
1350 	} else {
1351 		struct btrfs_extent_data_ref *ref;
1352 		while (ret == -EEXIST) {
1353 			ref = btrfs_item_ptr(leaf, path->slots[0],
1354 					     struct btrfs_extent_data_ref);
1355 			if (match_extent_data_ref(leaf, ref, root_objectid,
1356 						  owner, offset))
1357 				break;
1358 			btrfs_release_path(path);
1359 			key.offset++;
1360 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 						      size);
1362 			if (ret && ret != -EEXIST)
1363 				goto fail;
1364 
1365 			leaf = path->nodes[0];
1366 		}
1367 		ref = btrfs_item_ptr(leaf, path->slots[0],
1368 				     struct btrfs_extent_data_ref);
1369 		if (ret == 0) {
1370 			btrfs_set_extent_data_ref_root(leaf, ref,
1371 						       root_objectid);
1372 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 		} else {
1376 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 			num_refs += refs_to_add;
1378 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379 		}
1380 	}
1381 	btrfs_mark_buffer_dirty(leaf);
1382 	ret = 0;
1383 fail:
1384 	btrfs_release_path(path);
1385 	return ret;
1386 }
1387 
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 					   struct btrfs_fs_info *fs_info,
1390 					   struct btrfs_path *path,
1391 					   int refs_to_drop, int *last_ref)
1392 {
1393 	struct btrfs_key key;
1394 	struct btrfs_extent_data_ref *ref1 = NULL;
1395 	struct btrfs_shared_data_ref *ref2 = NULL;
1396 	struct extent_buffer *leaf;
1397 	u32 num_refs = 0;
1398 	int ret = 0;
1399 
1400 	leaf = path->nodes[0];
1401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 
1403 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 				      struct btrfs_extent_data_ref);
1406 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 				      struct btrfs_shared_data_ref);
1410 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 		struct btrfs_extent_ref_v0 *ref0;
1414 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 				      struct btrfs_extent_ref_v0);
1416 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418 	} else {
1419 		BUG();
1420 	}
1421 
1422 	BUG_ON(num_refs < refs_to_drop);
1423 	num_refs -= refs_to_drop;
1424 
1425 	if (num_refs == 0) {
1426 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427 		*last_ref = 1;
1428 	} else {
1429 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 		else {
1435 			struct btrfs_extent_ref_v0 *ref0;
1436 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 					struct btrfs_extent_ref_v0);
1438 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 		}
1440 #endif
1441 		btrfs_mark_buffer_dirty(leaf);
1442 	}
1443 	return ret;
1444 }
1445 
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 					  struct btrfs_extent_inline_ref *iref)
1448 {
1449 	struct btrfs_key key;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_extent_data_ref *ref1;
1452 	struct btrfs_shared_data_ref *ref2;
1453 	u32 num_refs = 0;
1454 	int type;
1455 
1456 	leaf = path->nodes[0];
1457 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 	if (iref) {
1459 		/*
1460 		 * If type is invalid, we should have bailed out earlier than
1461 		 * this call.
1462 		 */
1463 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 		} else {
1469 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 		}
1472 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 				      struct btrfs_extent_data_ref);
1475 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 				      struct btrfs_shared_data_ref);
1479 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 		struct btrfs_extent_ref_v0 *ref0;
1483 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 				      struct btrfs_extent_ref_v0);
1485 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487 	} else {
1488 		WARN_ON(1);
1489 	}
1490 	return num_refs;
1491 }
1492 
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 					  struct btrfs_fs_info *fs_info,
1495 					  struct btrfs_path *path,
1496 					  u64 bytenr, u64 parent,
1497 					  u64 root_objectid)
1498 {
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	int ret;
1502 
1503 	key.objectid = bytenr;
1504 	if (parent) {
1505 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 		key.offset = parent;
1507 	} else {
1508 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 		key.offset = root_objectid;
1510 	}
1511 
1512 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 	if (ret > 0)
1514 		ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 	if (ret == -ENOENT && parent) {
1517 		btrfs_release_path(path);
1518 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 		if (ret > 0)
1521 			ret = -ENOENT;
1522 	}
1523 #endif
1524 	return ret;
1525 }
1526 
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 					  struct btrfs_fs_info *fs_info,
1529 					  struct btrfs_path *path,
1530 					  u64 bytenr, u64 parent,
1531 					  u64 root_objectid)
1532 {
1533 	struct btrfs_key key;
1534 	int ret;
1535 
1536 	key.objectid = bytenr;
1537 	if (parent) {
1538 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 		key.offset = parent;
1540 	} else {
1541 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 		key.offset = root_objectid;
1543 	}
1544 
1545 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 				      path, &key, 0);
1547 	btrfs_release_path(path);
1548 	return ret;
1549 }
1550 
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553 	int type;
1554 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 		if (parent > 0)
1556 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 		else
1558 			type = BTRFS_TREE_BLOCK_REF_KEY;
1559 	} else {
1560 		if (parent > 0)
1561 			type = BTRFS_SHARED_DATA_REF_KEY;
1562 		else
1563 			type = BTRFS_EXTENT_DATA_REF_KEY;
1564 	}
1565 	return type;
1566 }
1567 
1568 static int find_next_key(struct btrfs_path *path, int level,
1569 			 struct btrfs_key *key)
1570 
1571 {
1572 	for (; level < BTRFS_MAX_LEVEL; level++) {
1573 		if (!path->nodes[level])
1574 			break;
1575 		if (path->slots[level] + 1 >=
1576 		    btrfs_header_nritems(path->nodes[level]))
1577 			continue;
1578 		if (level == 0)
1579 			btrfs_item_key_to_cpu(path->nodes[level], key,
1580 					      path->slots[level] + 1);
1581 		else
1582 			btrfs_node_key_to_cpu(path->nodes[level], key,
1583 					      path->slots[level] + 1);
1584 		return 0;
1585 	}
1586 	return 1;
1587 }
1588 
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *	 items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 				 struct btrfs_fs_info *fs_info,
1605 				 struct btrfs_path *path,
1606 				 struct btrfs_extent_inline_ref **ref_ret,
1607 				 u64 bytenr, u64 num_bytes,
1608 				 u64 parent, u64 root_objectid,
1609 				 u64 owner, u64 offset, int insert)
1610 {
1611 	struct btrfs_root *root = fs_info->extent_root;
1612 	struct btrfs_key key;
1613 	struct extent_buffer *leaf;
1614 	struct btrfs_extent_item *ei;
1615 	struct btrfs_extent_inline_ref *iref;
1616 	u64 flags;
1617 	u64 item_size;
1618 	unsigned long ptr;
1619 	unsigned long end;
1620 	int extra_size;
1621 	int type;
1622 	int want;
1623 	int ret;
1624 	int err = 0;
1625 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626 	int needed;
1627 
1628 	key.objectid = bytenr;
1629 	key.type = BTRFS_EXTENT_ITEM_KEY;
1630 	key.offset = num_bytes;
1631 
1632 	want = extent_ref_type(parent, owner);
1633 	if (insert) {
1634 		extra_size = btrfs_extent_inline_ref_size(want);
1635 		path->keep_locks = 1;
1636 	} else
1637 		extra_size = -1;
1638 
1639 	/*
1640 	 * Owner is our parent level, so we can just add one to get the level
1641 	 * for the block we are interested in.
1642 	 */
1643 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 		key.type = BTRFS_METADATA_ITEM_KEY;
1645 		key.offset = owner;
1646 	}
1647 
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650 	if (ret < 0) {
1651 		err = ret;
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * We may be a newly converted file system which still has the old fat
1657 	 * extent entries for metadata, so try and see if we have one of those.
1658 	 */
1659 	if (ret > 0 && skinny_metadata) {
1660 		skinny_metadata = false;
1661 		if (path->slots[0]) {
1662 			path->slots[0]--;
1663 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 					      path->slots[0]);
1665 			if (key.objectid == bytenr &&
1666 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 			    key.offset == num_bytes)
1668 				ret = 0;
1669 		}
1670 		if (ret) {
1671 			key.objectid = bytenr;
1672 			key.type = BTRFS_EXTENT_ITEM_KEY;
1673 			key.offset = num_bytes;
1674 			btrfs_release_path(path);
1675 			goto again;
1676 		}
1677 	}
1678 
1679 	if (ret && !insert) {
1680 		err = -ENOENT;
1681 		goto out;
1682 	} else if (WARN_ON(ret)) {
1683 		err = -EIO;
1684 		goto out;
1685 	}
1686 
1687 	leaf = path->nodes[0];
1688 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 	if (item_size < sizeof(*ei)) {
1691 		if (!insert) {
1692 			err = -ENOENT;
1693 			goto out;
1694 		}
1695 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696 					     extra_size);
1697 		if (ret < 0) {
1698 			err = ret;
1699 			goto out;
1700 		}
1701 		leaf = path->nodes[0];
1702 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 	}
1704 #endif
1705 	BUG_ON(item_size < sizeof(*ei));
1706 
1707 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 	flags = btrfs_extent_flags(leaf, ei);
1709 
1710 	ptr = (unsigned long)(ei + 1);
1711 	end = (unsigned long)ei + item_size;
1712 
1713 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 		ptr += sizeof(struct btrfs_tree_block_info);
1715 		BUG_ON(ptr > end);
1716 	}
1717 
1718 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 		needed = BTRFS_REF_TYPE_DATA;
1720 	else
1721 		needed = BTRFS_REF_TYPE_BLOCK;
1722 
1723 	err = -ENOENT;
1724 	while (1) {
1725 		if (ptr >= end) {
1726 			WARN_ON(ptr > end);
1727 			break;
1728 		}
1729 		iref = (struct btrfs_extent_inline_ref *)ptr;
1730 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 		if (type == BTRFS_REF_TYPE_INVALID) {
1732 			err = -EINVAL;
1733 			goto out;
1734 		}
1735 
1736 		if (want < type)
1737 			break;
1738 		if (want > type) {
1739 			ptr += btrfs_extent_inline_ref_size(type);
1740 			continue;
1741 		}
1742 
1743 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 			struct btrfs_extent_data_ref *dref;
1745 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 			if (match_extent_data_ref(leaf, dref, root_objectid,
1747 						  owner, offset)) {
1748 				err = 0;
1749 				break;
1750 			}
1751 			if (hash_extent_data_ref_item(leaf, dref) <
1752 			    hash_extent_data_ref(root_objectid, owner, offset))
1753 				break;
1754 		} else {
1755 			u64 ref_offset;
1756 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 			if (parent > 0) {
1758 				if (parent == ref_offset) {
1759 					err = 0;
1760 					break;
1761 				}
1762 				if (ref_offset < parent)
1763 					break;
1764 			} else {
1765 				if (root_objectid == ref_offset) {
1766 					err = 0;
1767 					break;
1768 				}
1769 				if (ref_offset < root_objectid)
1770 					break;
1771 			}
1772 		}
1773 		ptr += btrfs_extent_inline_ref_size(type);
1774 	}
1775 	if (err == -ENOENT && insert) {
1776 		if (item_size + extra_size >=
1777 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 			err = -EAGAIN;
1779 			goto out;
1780 		}
1781 		/*
1782 		 * To add new inline back ref, we have to make sure
1783 		 * there is no corresponding back ref item.
1784 		 * For simplicity, we just do not add new inline back
1785 		 * ref if there is any kind of item for this block
1786 		 */
1787 		if (find_next_key(path, 0, &key) == 0 &&
1788 		    key.objectid == bytenr &&
1789 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 			err = -EAGAIN;
1791 			goto out;
1792 		}
1793 	}
1794 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796 	if (insert) {
1797 		path->keep_locks = 0;
1798 		btrfs_unlock_up_safe(path, 1);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 				 struct btrfs_path *path,
1809 				 struct btrfs_extent_inline_ref *iref,
1810 				 u64 parent, u64 root_objectid,
1811 				 u64 owner, u64 offset, int refs_to_add,
1812 				 struct btrfs_delayed_extent_op *extent_op)
1813 {
1814 	struct extent_buffer *leaf;
1815 	struct btrfs_extent_item *ei;
1816 	unsigned long ptr;
1817 	unsigned long end;
1818 	unsigned long item_offset;
1819 	u64 refs;
1820 	int size;
1821 	int type;
1822 
1823 	leaf = path->nodes[0];
1824 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 	item_offset = (unsigned long)iref - (unsigned long)ei;
1826 
1827 	type = extent_ref_type(parent, owner);
1828 	size = btrfs_extent_inline_ref_size(type);
1829 
1830 	btrfs_extend_item(fs_info, path, size);
1831 
1832 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 	refs = btrfs_extent_refs(leaf, ei);
1834 	refs += refs_to_add;
1835 	btrfs_set_extent_refs(leaf, ei, refs);
1836 	if (extent_op)
1837 		__run_delayed_extent_op(extent_op, leaf, ei);
1838 
1839 	ptr = (unsigned long)ei + item_offset;
1840 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 	if (ptr < end - size)
1842 		memmove_extent_buffer(leaf, ptr + size, ptr,
1843 				      end - size - ptr);
1844 
1845 	iref = (struct btrfs_extent_inline_ref *)ptr;
1846 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 		struct btrfs_extent_data_ref *dref;
1849 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 		struct btrfs_shared_data_ref *sref;
1856 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 	} else {
1862 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 	}
1864 	btrfs_mark_buffer_dirty(leaf);
1865 }
1866 
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 				 struct btrfs_fs_info *fs_info,
1869 				 struct btrfs_path *path,
1870 				 struct btrfs_extent_inline_ref **ref_ret,
1871 				 u64 bytenr, u64 num_bytes, u64 parent,
1872 				 u64 root_objectid, u64 owner, u64 offset)
1873 {
1874 	int ret;
1875 
1876 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 					   bytenr, num_bytes, parent,
1878 					   root_objectid, owner, offset, 0);
1879 	if (ret != -ENOENT)
1880 		return ret;
1881 
1882 	btrfs_release_path(path);
1883 	*ref_ret = NULL;
1884 
1885 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 					    parent, root_objectid);
1888 	} else {
1889 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 					     parent, root_objectid, owner,
1891 					     offset);
1892 	}
1893 	return ret;
1894 }
1895 
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 				  struct btrfs_path *path,
1902 				  struct btrfs_extent_inline_ref *iref,
1903 				  int refs_to_mod,
1904 				  struct btrfs_delayed_extent_op *extent_op,
1905 				  int *last_ref)
1906 {
1907 	struct extent_buffer *leaf;
1908 	struct btrfs_extent_item *ei;
1909 	struct btrfs_extent_data_ref *dref = NULL;
1910 	struct btrfs_shared_data_ref *sref = NULL;
1911 	unsigned long ptr;
1912 	unsigned long end;
1913 	u32 item_size;
1914 	int size;
1915 	int type;
1916 	u64 refs;
1917 
1918 	leaf = path->nodes[0];
1919 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 	refs = btrfs_extent_refs(leaf, ei);
1921 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 	refs += refs_to_mod;
1923 	btrfs_set_extent_refs(leaf, ei, refs);
1924 	if (extent_op)
1925 		__run_delayed_extent_op(extent_op, leaf, ei);
1926 
1927 	/*
1928 	 * If type is invalid, we should have bailed out after
1929 	 * lookup_inline_extent_backref().
1930 	 */
1931 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933 
1934 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 		refs = btrfs_extent_data_ref_count(leaf, dref);
1937 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 		refs = btrfs_shared_data_ref_count(leaf, sref);
1940 	} else {
1941 		refs = 1;
1942 		BUG_ON(refs_to_mod != -1);
1943 	}
1944 
1945 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 	refs += refs_to_mod;
1947 
1948 	if (refs > 0) {
1949 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 		else
1952 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 	} else {
1954 		*last_ref = 1;
1955 		size =  btrfs_extent_inline_ref_size(type);
1956 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 		ptr = (unsigned long)iref;
1958 		end = (unsigned long)ei + item_size;
1959 		if (ptr + size < end)
1960 			memmove_extent_buffer(leaf, ptr, ptr + size,
1961 					      end - ptr - size);
1962 		item_size -= size;
1963 		btrfs_truncate_item(fs_info, path, item_size, 1);
1964 	}
1965 	btrfs_mark_buffer_dirty(leaf);
1966 }
1967 
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 				 struct btrfs_fs_info *fs_info,
1971 				 struct btrfs_path *path,
1972 				 u64 bytenr, u64 num_bytes, u64 parent,
1973 				 u64 root_objectid, u64 owner,
1974 				 u64 offset, int refs_to_add,
1975 				 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_extent_inline_ref *iref;
1978 	int ret;
1979 
1980 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 					   bytenr, num_bytes, parent,
1982 					   root_objectid, owner, offset, 1);
1983 	if (ret == 0) {
1984 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 		update_inline_extent_backref(fs_info, path, iref,
1986 					     refs_to_add, extent_op, NULL);
1987 	} else if (ret == -ENOENT) {
1988 		setup_inline_extent_backref(fs_info, path, iref, parent,
1989 					    root_objectid, owner, offset,
1990 					    refs_to_add, extent_op);
1991 		ret = 0;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 				 struct btrfs_fs_info *fs_info,
1998 				 struct btrfs_path *path,
1999 				 u64 bytenr, u64 parent, u64 root_objectid,
2000 				 u64 owner, u64 offset, int refs_to_add)
2001 {
2002 	int ret;
2003 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 		BUG_ON(refs_to_add != 1);
2005 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 					    parent, root_objectid);
2007 	} else {
2008 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 					     parent, root_objectid,
2010 					     owner, offset, refs_to_add);
2011 	}
2012 	return ret;
2013 }
2014 
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 				 struct btrfs_fs_info *fs_info,
2017 				 struct btrfs_path *path,
2018 				 struct btrfs_extent_inline_ref *iref,
2019 				 int refs_to_drop, int is_data, int *last_ref)
2020 {
2021 	int ret = 0;
2022 
2023 	BUG_ON(!is_data && refs_to_drop != 1);
2024 	if (iref) {
2025 		update_inline_extent_backref(fs_info, path, iref,
2026 					     -refs_to_drop, NULL, last_ref);
2027 	} else if (is_data) {
2028 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029 					     last_ref);
2030 	} else {
2031 		*last_ref = 1;
2032 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 	}
2034 	return ret;
2035 }
2036 
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 			       u64 *discarded_bytes)
2040 {
2041 	int j, ret = 0;
2042 	u64 bytes_left, end;
2043 	u64 aligned_start = ALIGN(start, 1 << 9);
2044 
2045 	if (WARN_ON(start != aligned_start)) {
2046 		len -= aligned_start - start;
2047 		len = round_down(len, 1 << 9);
2048 		start = aligned_start;
2049 	}
2050 
2051 	*discarded_bytes = 0;
2052 
2053 	if (!len)
2054 		return 0;
2055 
2056 	end = start + len;
2057 	bytes_left = len;
2058 
2059 	/* Skip any superblocks on this device. */
2060 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 		u64 sb_start = btrfs_sb_offset(j);
2062 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 		u64 size = sb_start - start;
2064 
2065 		if (!in_range(sb_start, start, bytes_left) &&
2066 		    !in_range(sb_end, start, bytes_left) &&
2067 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 			continue;
2069 
2070 		/*
2071 		 * Superblock spans beginning of range.  Adjust start and
2072 		 * try again.
2073 		 */
2074 		if (sb_start <= start) {
2075 			start += sb_end - start;
2076 			if (start > end) {
2077 				bytes_left = 0;
2078 				break;
2079 			}
2080 			bytes_left = end - start;
2081 			continue;
2082 		}
2083 
2084 		if (size) {
2085 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 						   GFP_NOFS, 0);
2087 			if (!ret)
2088 				*discarded_bytes += size;
2089 			else if (ret != -EOPNOTSUPP)
2090 				return ret;
2091 		}
2092 
2093 		start = sb_end;
2094 		if (start > end) {
2095 			bytes_left = 0;
2096 			break;
2097 		}
2098 		bytes_left = end - start;
2099 	}
2100 
2101 	if (bytes_left) {
2102 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103 					   GFP_NOFS, 0);
2104 		if (!ret)
2105 			*discarded_bytes += bytes_left;
2106 	}
2107 	return ret;
2108 }
2109 
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 			 u64 num_bytes, u64 *actual_bytes)
2112 {
2113 	int ret;
2114 	u64 discarded_bytes = 0;
2115 	struct btrfs_bio *bbio = NULL;
2116 
2117 
2118 	/*
2119 	 * Avoid races with device replace and make sure our bbio has devices
2120 	 * associated to its stripes that don't go away while we are discarding.
2121 	 */
2122 	btrfs_bio_counter_inc_blocked(fs_info);
2123 	/* Tell the block device(s) that the sectors can be discarded */
2124 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 			      &bbio, 0);
2126 	/* Error condition is -ENOMEM */
2127 	if (!ret) {
2128 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2129 		int i;
2130 
2131 
2132 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133 			u64 bytes;
2134 			struct request_queue *req_q;
2135 
2136 			if (!stripe->dev->bdev) {
2137 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 				continue;
2139 			}
2140 			req_q = bdev_get_queue(stripe->dev->bdev);
2141 			if (!blk_queue_discard(req_q))
2142 				continue;
2143 
2144 			ret = btrfs_issue_discard(stripe->dev->bdev,
2145 						  stripe->physical,
2146 						  stripe->length,
2147 						  &bytes);
2148 			if (!ret)
2149 				discarded_bytes += bytes;
2150 			else if (ret != -EOPNOTSUPP)
2151 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152 
2153 			/*
2154 			 * Just in case we get back EOPNOTSUPP for some reason,
2155 			 * just ignore the return value so we don't screw up
2156 			 * people calling discard_extent.
2157 			 */
2158 			ret = 0;
2159 		}
2160 		btrfs_put_bbio(bbio);
2161 	}
2162 	btrfs_bio_counter_dec(fs_info);
2163 
2164 	if (actual_bytes)
2165 		*actual_bytes = discarded_bytes;
2166 
2167 
2168 	if (ret == -EOPNOTSUPP)
2169 		ret = 0;
2170 	return ret;
2171 }
2172 
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 			 struct btrfs_root *root,
2176 			 u64 bytenr, u64 num_bytes, u64 parent,
2177 			 u64 root_objectid, u64 owner, u64 offset)
2178 {
2179 	struct btrfs_fs_info *fs_info = root->fs_info;
2180 	int old_ref_mod, new_ref_mod;
2181 	int ret;
2182 
2183 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185 
2186 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2188 
2189 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191 						 num_bytes, parent,
2192 						 root_objectid, (int)owner,
2193 						 BTRFS_ADD_DELAYED_REF, NULL,
2194 						 &old_ref_mod, &new_ref_mod);
2195 	} else {
2196 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197 						 num_bytes, parent,
2198 						 root_objectid, owner, offset,
2199 						 0, BTRFS_ADD_DELAYED_REF,
2200 						 &old_ref_mod, &new_ref_mod);
2201 	}
2202 
2203 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2204 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2205 
2206 	return ret;
2207 }
2208 
2209 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2210 				  struct btrfs_fs_info *fs_info,
2211 				  struct btrfs_delayed_ref_node *node,
2212 				  u64 parent, u64 root_objectid,
2213 				  u64 owner, u64 offset, int refs_to_add,
2214 				  struct btrfs_delayed_extent_op *extent_op)
2215 {
2216 	struct btrfs_path *path;
2217 	struct extent_buffer *leaf;
2218 	struct btrfs_extent_item *item;
2219 	struct btrfs_key key;
2220 	u64 bytenr = node->bytenr;
2221 	u64 num_bytes = node->num_bytes;
2222 	u64 refs;
2223 	int ret;
2224 
2225 	path = btrfs_alloc_path();
2226 	if (!path)
2227 		return -ENOMEM;
2228 
2229 	path->reada = READA_FORWARD;
2230 	path->leave_spinning = 1;
2231 	/* this will setup the path even if it fails to insert the back ref */
2232 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2233 					   num_bytes, parent, root_objectid,
2234 					   owner, offset,
2235 					   refs_to_add, extent_op);
2236 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2237 		goto out;
2238 
2239 	/*
2240 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2241 	 * inline extent ref, so just update the reference count and add a
2242 	 * normal backref.
2243 	 */
2244 	leaf = path->nodes[0];
2245 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2246 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2247 	refs = btrfs_extent_refs(leaf, item);
2248 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2249 	if (extent_op)
2250 		__run_delayed_extent_op(extent_op, leaf, item);
2251 
2252 	btrfs_mark_buffer_dirty(leaf);
2253 	btrfs_release_path(path);
2254 
2255 	path->reada = READA_FORWARD;
2256 	path->leave_spinning = 1;
2257 	/* now insert the actual backref */
2258 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2259 				    root_objectid, owner, offset, refs_to_add);
2260 	if (ret)
2261 		btrfs_abort_transaction(trans, ret);
2262 out:
2263 	btrfs_free_path(path);
2264 	return ret;
2265 }
2266 
2267 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2268 				struct btrfs_fs_info *fs_info,
2269 				struct btrfs_delayed_ref_node *node,
2270 				struct btrfs_delayed_extent_op *extent_op,
2271 				int insert_reserved)
2272 {
2273 	int ret = 0;
2274 	struct btrfs_delayed_data_ref *ref;
2275 	struct btrfs_key ins;
2276 	u64 parent = 0;
2277 	u64 ref_root = 0;
2278 	u64 flags = 0;
2279 
2280 	ins.objectid = node->bytenr;
2281 	ins.offset = node->num_bytes;
2282 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2283 
2284 	ref = btrfs_delayed_node_to_data_ref(node);
2285 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2286 
2287 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2288 		parent = ref->parent;
2289 	ref_root = ref->root;
2290 
2291 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2292 		if (extent_op)
2293 			flags |= extent_op->flags_to_set;
2294 		ret = alloc_reserved_file_extent(trans, fs_info,
2295 						 parent, ref_root, flags,
2296 						 ref->objectid, ref->offset,
2297 						 &ins, node->ref_mod);
2298 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2299 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2300 					     ref_root, ref->objectid,
2301 					     ref->offset, node->ref_mod,
2302 					     extent_op);
2303 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2304 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2305 					  ref_root, ref->objectid,
2306 					  ref->offset, node->ref_mod,
2307 					  extent_op);
2308 	} else {
2309 		BUG();
2310 	}
2311 	return ret;
2312 }
2313 
2314 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2315 				    struct extent_buffer *leaf,
2316 				    struct btrfs_extent_item *ei)
2317 {
2318 	u64 flags = btrfs_extent_flags(leaf, ei);
2319 	if (extent_op->update_flags) {
2320 		flags |= extent_op->flags_to_set;
2321 		btrfs_set_extent_flags(leaf, ei, flags);
2322 	}
2323 
2324 	if (extent_op->update_key) {
2325 		struct btrfs_tree_block_info *bi;
2326 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2327 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2328 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2329 	}
2330 }
2331 
2332 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2333 				 struct btrfs_fs_info *fs_info,
2334 				 struct btrfs_delayed_ref_head *head,
2335 				 struct btrfs_delayed_extent_op *extent_op)
2336 {
2337 	struct btrfs_key key;
2338 	struct btrfs_path *path;
2339 	struct btrfs_extent_item *ei;
2340 	struct extent_buffer *leaf;
2341 	u32 item_size;
2342 	int ret;
2343 	int err = 0;
2344 	int metadata = !extent_op->is_data;
2345 
2346 	if (trans->aborted)
2347 		return 0;
2348 
2349 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2350 		metadata = 0;
2351 
2352 	path = btrfs_alloc_path();
2353 	if (!path)
2354 		return -ENOMEM;
2355 
2356 	key.objectid = head->bytenr;
2357 
2358 	if (metadata) {
2359 		key.type = BTRFS_METADATA_ITEM_KEY;
2360 		key.offset = extent_op->level;
2361 	} else {
2362 		key.type = BTRFS_EXTENT_ITEM_KEY;
2363 		key.offset = head->num_bytes;
2364 	}
2365 
2366 again:
2367 	path->reada = READA_FORWARD;
2368 	path->leave_spinning = 1;
2369 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2370 	if (ret < 0) {
2371 		err = ret;
2372 		goto out;
2373 	}
2374 	if (ret > 0) {
2375 		if (metadata) {
2376 			if (path->slots[0] > 0) {
2377 				path->slots[0]--;
2378 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2379 						      path->slots[0]);
2380 				if (key.objectid == head->bytenr &&
2381 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2382 				    key.offset == head->num_bytes)
2383 					ret = 0;
2384 			}
2385 			if (ret > 0) {
2386 				btrfs_release_path(path);
2387 				metadata = 0;
2388 
2389 				key.objectid = head->bytenr;
2390 				key.offset = head->num_bytes;
2391 				key.type = BTRFS_EXTENT_ITEM_KEY;
2392 				goto again;
2393 			}
2394 		} else {
2395 			err = -EIO;
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	leaf = path->nodes[0];
2401 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2402 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2403 	if (item_size < sizeof(*ei)) {
2404 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2405 		if (ret < 0) {
2406 			err = ret;
2407 			goto out;
2408 		}
2409 		leaf = path->nodes[0];
2410 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2411 	}
2412 #endif
2413 	BUG_ON(item_size < sizeof(*ei));
2414 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2415 	__run_delayed_extent_op(extent_op, leaf, ei);
2416 
2417 	btrfs_mark_buffer_dirty(leaf);
2418 out:
2419 	btrfs_free_path(path);
2420 	return err;
2421 }
2422 
2423 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2424 				struct btrfs_fs_info *fs_info,
2425 				struct btrfs_delayed_ref_node *node,
2426 				struct btrfs_delayed_extent_op *extent_op,
2427 				int insert_reserved)
2428 {
2429 	int ret = 0;
2430 	struct btrfs_delayed_tree_ref *ref;
2431 	struct btrfs_key ins;
2432 	u64 parent = 0;
2433 	u64 ref_root = 0;
2434 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2435 
2436 	ref = btrfs_delayed_node_to_tree_ref(node);
2437 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2438 
2439 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2440 		parent = ref->parent;
2441 	ref_root = ref->root;
2442 
2443 	ins.objectid = node->bytenr;
2444 	if (skinny_metadata) {
2445 		ins.offset = ref->level;
2446 		ins.type = BTRFS_METADATA_ITEM_KEY;
2447 	} else {
2448 		ins.offset = node->num_bytes;
2449 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2450 	}
2451 
2452 	if (node->ref_mod != 1) {
2453 		btrfs_err(fs_info,
2454 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2455 			  node->bytenr, node->ref_mod, node->action, ref_root,
2456 			  parent);
2457 		return -EIO;
2458 	}
2459 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2460 		BUG_ON(!extent_op || !extent_op->update_flags);
2461 		ret = alloc_reserved_tree_block(trans, fs_info,
2462 						parent, ref_root,
2463 						extent_op->flags_to_set,
2464 						&extent_op->key,
2465 						ref->level, &ins);
2466 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2467 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2468 					     parent, ref_root,
2469 					     ref->level, 0, 1,
2470 					     extent_op);
2471 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2472 		ret = __btrfs_free_extent(trans, fs_info, node,
2473 					  parent, ref_root,
2474 					  ref->level, 0, 1, extent_op);
2475 	} else {
2476 		BUG();
2477 	}
2478 	return ret;
2479 }
2480 
2481 /* helper function to actually process a single delayed ref entry */
2482 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2483 			       struct btrfs_fs_info *fs_info,
2484 			       struct btrfs_delayed_ref_node *node,
2485 			       struct btrfs_delayed_extent_op *extent_op,
2486 			       int insert_reserved)
2487 {
2488 	int ret = 0;
2489 
2490 	if (trans->aborted) {
2491 		if (insert_reserved)
2492 			btrfs_pin_extent(fs_info, node->bytenr,
2493 					 node->num_bytes, 1);
2494 		return 0;
2495 	}
2496 
2497 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2498 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2499 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2500 					   insert_reserved);
2501 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2502 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2503 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2504 					   insert_reserved);
2505 	else
2506 		BUG();
2507 	return ret;
2508 }
2509 
2510 static inline struct btrfs_delayed_ref_node *
2511 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2512 {
2513 	struct btrfs_delayed_ref_node *ref;
2514 
2515 	if (RB_EMPTY_ROOT(&head->ref_tree))
2516 		return NULL;
2517 
2518 	/*
2519 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2520 	 * This is to prevent a ref count from going down to zero, which deletes
2521 	 * the extent item from the extent tree, when there still are references
2522 	 * to add, which would fail because they would not find the extent item.
2523 	 */
2524 	if (!list_empty(&head->ref_add_list))
2525 		return list_first_entry(&head->ref_add_list,
2526 				struct btrfs_delayed_ref_node, add_list);
2527 
2528 	ref = rb_entry(rb_first(&head->ref_tree),
2529 		       struct btrfs_delayed_ref_node, ref_node);
2530 	ASSERT(list_empty(&ref->add_list));
2531 	return ref;
2532 }
2533 
2534 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2535 				      struct btrfs_delayed_ref_head *head)
2536 {
2537 	spin_lock(&delayed_refs->lock);
2538 	head->processing = 0;
2539 	delayed_refs->num_heads_ready++;
2540 	spin_unlock(&delayed_refs->lock);
2541 	btrfs_delayed_ref_unlock(head);
2542 }
2543 
2544 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2545 			     struct btrfs_fs_info *fs_info,
2546 			     struct btrfs_delayed_ref_head *head)
2547 {
2548 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 	int ret;
2550 
2551 	if (!extent_op)
2552 		return 0;
2553 	head->extent_op = NULL;
2554 	if (head->must_insert_reserved) {
2555 		btrfs_free_delayed_extent_op(extent_op);
2556 		return 0;
2557 	}
2558 	spin_unlock(&head->lock);
2559 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2560 	btrfs_free_delayed_extent_op(extent_op);
2561 	return ret ? ret : 1;
2562 }
2563 
2564 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2565 			    struct btrfs_fs_info *fs_info,
2566 			    struct btrfs_delayed_ref_head *head)
2567 {
2568 	struct btrfs_delayed_ref_root *delayed_refs;
2569 	int ret;
2570 
2571 	delayed_refs = &trans->transaction->delayed_refs;
2572 
2573 	ret = cleanup_extent_op(trans, fs_info, head);
2574 	if (ret < 0) {
2575 		unselect_delayed_ref_head(delayed_refs, head);
2576 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2577 		return ret;
2578 	} else if (ret) {
2579 		return ret;
2580 	}
2581 
2582 	/*
2583 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2584 	 * and then re-check to make sure nobody got added.
2585 	 */
2586 	spin_unlock(&head->lock);
2587 	spin_lock(&delayed_refs->lock);
2588 	spin_lock(&head->lock);
2589 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2590 		spin_unlock(&head->lock);
2591 		spin_unlock(&delayed_refs->lock);
2592 		return 1;
2593 	}
2594 	delayed_refs->num_heads--;
2595 	rb_erase(&head->href_node, &delayed_refs->href_root);
2596 	RB_CLEAR_NODE(&head->href_node);
2597 	spin_unlock(&delayed_refs->lock);
2598 	spin_unlock(&head->lock);
2599 	atomic_dec(&delayed_refs->num_entries);
2600 
2601 	trace_run_delayed_ref_head(fs_info, head, 0);
2602 
2603 	if (head->total_ref_mod < 0) {
2604 		struct btrfs_space_info *space_info;
2605 		u64 flags;
2606 
2607 		if (head->is_data)
2608 			flags = BTRFS_BLOCK_GROUP_DATA;
2609 		else if (head->is_system)
2610 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2611 		else
2612 			flags = BTRFS_BLOCK_GROUP_METADATA;
2613 		space_info = __find_space_info(fs_info, flags);
2614 		ASSERT(space_info);
2615 		percpu_counter_add(&space_info->total_bytes_pinned,
2616 				   -head->num_bytes);
2617 
2618 		if (head->is_data) {
2619 			spin_lock(&delayed_refs->lock);
2620 			delayed_refs->pending_csums -= head->num_bytes;
2621 			spin_unlock(&delayed_refs->lock);
2622 		}
2623 	}
2624 
2625 	if (head->must_insert_reserved) {
2626 		btrfs_pin_extent(fs_info, head->bytenr,
2627 				 head->num_bytes, 1);
2628 		if (head->is_data) {
2629 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2630 					      head->num_bytes);
2631 		}
2632 	}
2633 
2634 	/* Also free its reserved qgroup space */
2635 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2636 				      head->qgroup_reserved);
2637 	btrfs_delayed_ref_unlock(head);
2638 	btrfs_put_delayed_ref_head(head);
2639 	return 0;
2640 }
2641 
2642 /*
2643  * Returns 0 on success or if called with an already aborted transaction.
2644  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2645  */
2646 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2647 					     unsigned long nr)
2648 {
2649 	struct btrfs_fs_info *fs_info = trans->fs_info;
2650 	struct btrfs_delayed_ref_root *delayed_refs;
2651 	struct btrfs_delayed_ref_node *ref;
2652 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2653 	struct btrfs_delayed_extent_op *extent_op;
2654 	ktime_t start = ktime_get();
2655 	int ret;
2656 	unsigned long count = 0;
2657 	unsigned long actual_count = 0;
2658 	int must_insert_reserved = 0;
2659 
2660 	delayed_refs = &trans->transaction->delayed_refs;
2661 	while (1) {
2662 		if (!locked_ref) {
2663 			if (count >= nr)
2664 				break;
2665 
2666 			spin_lock(&delayed_refs->lock);
2667 			locked_ref = btrfs_select_ref_head(trans);
2668 			if (!locked_ref) {
2669 				spin_unlock(&delayed_refs->lock);
2670 				break;
2671 			}
2672 
2673 			/* grab the lock that says we are going to process
2674 			 * all the refs for this head */
2675 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2676 			spin_unlock(&delayed_refs->lock);
2677 			/*
2678 			 * we may have dropped the spin lock to get the head
2679 			 * mutex lock, and that might have given someone else
2680 			 * time to free the head.  If that's true, it has been
2681 			 * removed from our list and we can move on.
2682 			 */
2683 			if (ret == -EAGAIN) {
2684 				locked_ref = NULL;
2685 				count++;
2686 				continue;
2687 			}
2688 		}
2689 
2690 		/*
2691 		 * We need to try and merge add/drops of the same ref since we
2692 		 * can run into issues with relocate dropping the implicit ref
2693 		 * and then it being added back again before the drop can
2694 		 * finish.  If we merged anything we need to re-loop so we can
2695 		 * get a good ref.
2696 		 * Or we can get node references of the same type that weren't
2697 		 * merged when created due to bumps in the tree mod seq, and
2698 		 * we need to merge them to prevent adding an inline extent
2699 		 * backref before dropping it (triggering a BUG_ON at
2700 		 * insert_inline_extent_backref()).
2701 		 */
2702 		spin_lock(&locked_ref->lock);
2703 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2704 					 locked_ref);
2705 
2706 		/*
2707 		 * locked_ref is the head node, so we have to go one
2708 		 * node back for any delayed ref updates
2709 		 */
2710 		ref = select_delayed_ref(locked_ref);
2711 
2712 		if (ref && ref->seq &&
2713 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2714 			spin_unlock(&locked_ref->lock);
2715 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2716 			locked_ref = NULL;
2717 			cond_resched();
2718 			count++;
2719 			continue;
2720 		}
2721 
2722 		/*
2723 		 * We're done processing refs in this ref_head, clean everything
2724 		 * up and move on to the next ref_head.
2725 		 */
2726 		if (!ref) {
2727 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2728 			if (ret > 0 ) {
2729 				/* We dropped our lock, we need to loop. */
2730 				ret = 0;
2731 				continue;
2732 			} else if (ret) {
2733 				return ret;
2734 			}
2735 			locked_ref = NULL;
2736 			count++;
2737 			continue;
2738 		}
2739 
2740 		actual_count++;
2741 		ref->in_tree = 0;
2742 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2743 		RB_CLEAR_NODE(&ref->ref_node);
2744 		if (!list_empty(&ref->add_list))
2745 			list_del(&ref->add_list);
2746 		/*
2747 		 * When we play the delayed ref, also correct the ref_mod on
2748 		 * head
2749 		 */
2750 		switch (ref->action) {
2751 		case BTRFS_ADD_DELAYED_REF:
2752 		case BTRFS_ADD_DELAYED_EXTENT:
2753 			locked_ref->ref_mod -= ref->ref_mod;
2754 			break;
2755 		case BTRFS_DROP_DELAYED_REF:
2756 			locked_ref->ref_mod += ref->ref_mod;
2757 			break;
2758 		default:
2759 			WARN_ON(1);
2760 		}
2761 		atomic_dec(&delayed_refs->num_entries);
2762 
2763 		/*
2764 		 * Record the must-insert_reserved flag before we drop the spin
2765 		 * lock.
2766 		 */
2767 		must_insert_reserved = locked_ref->must_insert_reserved;
2768 		locked_ref->must_insert_reserved = 0;
2769 
2770 		extent_op = locked_ref->extent_op;
2771 		locked_ref->extent_op = NULL;
2772 		spin_unlock(&locked_ref->lock);
2773 
2774 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2775 					  must_insert_reserved);
2776 
2777 		btrfs_free_delayed_extent_op(extent_op);
2778 		if (ret) {
2779 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2780 			btrfs_put_delayed_ref(ref);
2781 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2782 				    ret);
2783 			return ret;
2784 		}
2785 
2786 		btrfs_put_delayed_ref(ref);
2787 		count++;
2788 		cond_resched();
2789 	}
2790 
2791 	/*
2792 	 * We don't want to include ref heads since we can have empty ref heads
2793 	 * and those will drastically skew our runtime down since we just do
2794 	 * accounting, no actual extent tree updates.
2795 	 */
2796 	if (actual_count > 0) {
2797 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2798 		u64 avg;
2799 
2800 		/*
2801 		 * We weigh the current average higher than our current runtime
2802 		 * to avoid large swings in the average.
2803 		 */
2804 		spin_lock(&delayed_refs->lock);
2805 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2806 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2807 		spin_unlock(&delayed_refs->lock);
2808 	}
2809 	return 0;
2810 }
2811 
2812 #ifdef SCRAMBLE_DELAYED_REFS
2813 /*
2814  * Normally delayed refs get processed in ascending bytenr order. This
2815  * correlates in most cases to the order added. To expose dependencies on this
2816  * order, we start to process the tree in the middle instead of the beginning
2817  */
2818 static u64 find_middle(struct rb_root *root)
2819 {
2820 	struct rb_node *n = root->rb_node;
2821 	struct btrfs_delayed_ref_node *entry;
2822 	int alt = 1;
2823 	u64 middle;
2824 	u64 first = 0, last = 0;
2825 
2826 	n = rb_first(root);
2827 	if (n) {
2828 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2829 		first = entry->bytenr;
2830 	}
2831 	n = rb_last(root);
2832 	if (n) {
2833 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2834 		last = entry->bytenr;
2835 	}
2836 	n = root->rb_node;
2837 
2838 	while (n) {
2839 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 		WARN_ON(!entry->in_tree);
2841 
2842 		middle = entry->bytenr;
2843 
2844 		if (alt)
2845 			n = n->rb_left;
2846 		else
2847 			n = n->rb_right;
2848 
2849 		alt = 1 - alt;
2850 	}
2851 	return middle;
2852 }
2853 #endif
2854 
2855 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2856 {
2857 	u64 num_bytes;
2858 
2859 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2860 			     sizeof(struct btrfs_extent_inline_ref));
2861 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2863 
2864 	/*
2865 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2866 	 * closer to what we're really going to want to use.
2867 	 */
2868 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2869 }
2870 
2871 /*
2872  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2873  * would require to store the csums for that many bytes.
2874  */
2875 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2876 {
2877 	u64 csum_size;
2878 	u64 num_csums_per_leaf;
2879 	u64 num_csums;
2880 
2881 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2882 	num_csums_per_leaf = div64_u64(csum_size,
2883 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2884 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2885 	num_csums += num_csums_per_leaf - 1;
2886 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2887 	return num_csums;
2888 }
2889 
2890 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2891 				       struct btrfs_fs_info *fs_info)
2892 {
2893 	struct btrfs_block_rsv *global_rsv;
2894 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2895 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2896 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2897 	u64 num_bytes, num_dirty_bgs_bytes;
2898 	int ret = 0;
2899 
2900 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2901 	num_heads = heads_to_leaves(fs_info, num_heads);
2902 	if (num_heads > 1)
2903 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2904 	num_bytes <<= 1;
2905 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2906 							fs_info->nodesize;
2907 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2908 							     num_dirty_bgs);
2909 	global_rsv = &fs_info->global_block_rsv;
2910 
2911 	/*
2912 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2913 	 * wiggle room since running delayed refs can create more delayed refs.
2914 	 */
2915 	if (global_rsv->space_info->full) {
2916 		num_dirty_bgs_bytes <<= 1;
2917 		num_bytes <<= 1;
2918 	}
2919 
2920 	spin_lock(&global_rsv->lock);
2921 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2922 		ret = 1;
2923 	spin_unlock(&global_rsv->lock);
2924 	return ret;
2925 }
2926 
2927 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2928 				       struct btrfs_fs_info *fs_info)
2929 {
2930 	u64 num_entries =
2931 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2932 	u64 avg_runtime;
2933 	u64 val;
2934 
2935 	smp_mb();
2936 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2937 	val = num_entries * avg_runtime;
2938 	if (val >= NSEC_PER_SEC)
2939 		return 1;
2940 	if (val >= NSEC_PER_SEC / 2)
2941 		return 2;
2942 
2943 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2944 }
2945 
2946 struct async_delayed_refs {
2947 	struct btrfs_root *root;
2948 	u64 transid;
2949 	int count;
2950 	int error;
2951 	int sync;
2952 	struct completion wait;
2953 	struct btrfs_work work;
2954 };
2955 
2956 static inline struct async_delayed_refs *
2957 to_async_delayed_refs(struct btrfs_work *work)
2958 {
2959 	return container_of(work, struct async_delayed_refs, work);
2960 }
2961 
2962 static void delayed_ref_async_start(struct btrfs_work *work)
2963 {
2964 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2965 	struct btrfs_trans_handle *trans;
2966 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2967 	int ret;
2968 
2969 	/* if the commit is already started, we don't need to wait here */
2970 	if (btrfs_transaction_blocked(fs_info))
2971 		goto done;
2972 
2973 	trans = btrfs_join_transaction(async->root);
2974 	if (IS_ERR(trans)) {
2975 		async->error = PTR_ERR(trans);
2976 		goto done;
2977 	}
2978 
2979 	/*
2980 	 * trans->sync means that when we call end_transaction, we won't
2981 	 * wait on delayed refs
2982 	 */
2983 	trans->sync = true;
2984 
2985 	/* Don't bother flushing if we got into a different transaction */
2986 	if (trans->transid > async->transid)
2987 		goto end;
2988 
2989 	ret = btrfs_run_delayed_refs(trans, async->count);
2990 	if (ret)
2991 		async->error = ret;
2992 end:
2993 	ret = btrfs_end_transaction(trans);
2994 	if (ret && !async->error)
2995 		async->error = ret;
2996 done:
2997 	if (async->sync)
2998 		complete(&async->wait);
2999 	else
3000 		kfree(async);
3001 }
3002 
3003 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3004 				 unsigned long count, u64 transid, int wait)
3005 {
3006 	struct async_delayed_refs *async;
3007 	int ret;
3008 
3009 	async = kmalloc(sizeof(*async), GFP_NOFS);
3010 	if (!async)
3011 		return -ENOMEM;
3012 
3013 	async->root = fs_info->tree_root;
3014 	async->count = count;
3015 	async->error = 0;
3016 	async->transid = transid;
3017 	if (wait)
3018 		async->sync = 1;
3019 	else
3020 		async->sync = 0;
3021 	init_completion(&async->wait);
3022 
3023 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3024 			delayed_ref_async_start, NULL, NULL);
3025 
3026 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3027 
3028 	if (wait) {
3029 		wait_for_completion(&async->wait);
3030 		ret = async->error;
3031 		kfree(async);
3032 		return ret;
3033 	}
3034 	return 0;
3035 }
3036 
3037 /*
3038  * this starts processing the delayed reference count updates and
3039  * extent insertions we have queued up so far.  count can be
3040  * 0, which means to process everything in the tree at the start
3041  * of the run (but not newly added entries), or it can be some target
3042  * number you'd like to process.
3043  *
3044  * Returns 0 on success or if called with an aborted transaction
3045  * Returns <0 on error and aborts the transaction
3046  */
3047 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3048 			   unsigned long count)
3049 {
3050 	struct btrfs_fs_info *fs_info = trans->fs_info;
3051 	struct rb_node *node;
3052 	struct btrfs_delayed_ref_root *delayed_refs;
3053 	struct btrfs_delayed_ref_head *head;
3054 	int ret;
3055 	int run_all = count == (unsigned long)-1;
3056 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057 
3058 	/* We'll clean this up in btrfs_cleanup_transaction */
3059 	if (trans->aborted)
3060 		return 0;
3061 
3062 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063 		return 0;
3064 
3065 	delayed_refs = &trans->transaction->delayed_refs;
3066 	if (count == 0)
3067 		count = atomic_read(&delayed_refs->num_entries) * 2;
3068 
3069 again:
3070 #ifdef SCRAMBLE_DELAYED_REFS
3071 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072 #endif
3073 	trans->can_flush_pending_bgs = false;
3074 	ret = __btrfs_run_delayed_refs(trans, count);
3075 	if (ret < 0) {
3076 		btrfs_abort_transaction(trans, ret);
3077 		return ret;
3078 	}
3079 
3080 	if (run_all) {
3081 		if (!list_empty(&trans->new_bgs))
3082 			btrfs_create_pending_block_groups(trans);
3083 
3084 		spin_lock(&delayed_refs->lock);
3085 		node = rb_first(&delayed_refs->href_root);
3086 		if (!node) {
3087 			spin_unlock(&delayed_refs->lock);
3088 			goto out;
3089 		}
3090 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 				href_node);
3092 		refcount_inc(&head->refs);
3093 		spin_unlock(&delayed_refs->lock);
3094 
3095 		/* Mutex was contended, block until it's released and retry. */
3096 		mutex_lock(&head->mutex);
3097 		mutex_unlock(&head->mutex);
3098 
3099 		btrfs_put_delayed_ref_head(head);
3100 		cond_resched();
3101 		goto again;
3102 	}
3103 out:
3104 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105 	return 0;
3106 }
3107 
3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109 				struct btrfs_fs_info *fs_info,
3110 				u64 bytenr, u64 num_bytes, u64 flags,
3111 				int level, int is_data)
3112 {
3113 	struct btrfs_delayed_extent_op *extent_op;
3114 	int ret;
3115 
3116 	extent_op = btrfs_alloc_delayed_extent_op();
3117 	if (!extent_op)
3118 		return -ENOMEM;
3119 
3120 	extent_op->flags_to_set = flags;
3121 	extent_op->update_flags = true;
3122 	extent_op->update_key = false;
3123 	extent_op->is_data = is_data ? true : false;
3124 	extent_op->level = level;
3125 
3126 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127 					  num_bytes, extent_op);
3128 	if (ret)
3129 		btrfs_free_delayed_extent_op(extent_op);
3130 	return ret;
3131 }
3132 
3133 static noinline int check_delayed_ref(struct btrfs_root *root,
3134 				      struct btrfs_path *path,
3135 				      u64 objectid, u64 offset, u64 bytenr)
3136 {
3137 	struct btrfs_delayed_ref_head *head;
3138 	struct btrfs_delayed_ref_node *ref;
3139 	struct btrfs_delayed_data_ref *data_ref;
3140 	struct btrfs_delayed_ref_root *delayed_refs;
3141 	struct btrfs_transaction *cur_trans;
3142 	struct rb_node *node;
3143 	int ret = 0;
3144 
3145 	cur_trans = root->fs_info->running_transaction;
3146 	if (!cur_trans)
3147 		return 0;
3148 
3149 	delayed_refs = &cur_trans->delayed_refs;
3150 	spin_lock(&delayed_refs->lock);
3151 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3152 	if (!head) {
3153 		spin_unlock(&delayed_refs->lock);
3154 		return 0;
3155 	}
3156 
3157 	if (!mutex_trylock(&head->mutex)) {
3158 		refcount_inc(&head->refs);
3159 		spin_unlock(&delayed_refs->lock);
3160 
3161 		btrfs_release_path(path);
3162 
3163 		/*
3164 		 * Mutex was contended, block until it's released and let
3165 		 * caller try again
3166 		 */
3167 		mutex_lock(&head->mutex);
3168 		mutex_unlock(&head->mutex);
3169 		btrfs_put_delayed_ref_head(head);
3170 		return -EAGAIN;
3171 	}
3172 	spin_unlock(&delayed_refs->lock);
3173 
3174 	spin_lock(&head->lock);
3175 	/*
3176 	 * XXX: We should replace this with a proper search function in the
3177 	 * future.
3178 	 */
3179 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3181 		/* If it's a shared ref we know a cross reference exists */
3182 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183 			ret = 1;
3184 			break;
3185 		}
3186 
3187 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3188 
3189 		/*
3190 		 * If our ref doesn't match the one we're currently looking at
3191 		 * then we have a cross reference.
3192 		 */
3193 		if (data_ref->root != root->root_key.objectid ||
3194 		    data_ref->objectid != objectid ||
3195 		    data_ref->offset != offset) {
3196 			ret = 1;
3197 			break;
3198 		}
3199 	}
3200 	spin_unlock(&head->lock);
3201 	mutex_unlock(&head->mutex);
3202 	return ret;
3203 }
3204 
3205 static noinline int check_committed_ref(struct btrfs_root *root,
3206 					struct btrfs_path *path,
3207 					u64 objectid, u64 offset, u64 bytenr)
3208 {
3209 	struct btrfs_fs_info *fs_info = root->fs_info;
3210 	struct btrfs_root *extent_root = fs_info->extent_root;
3211 	struct extent_buffer *leaf;
3212 	struct btrfs_extent_data_ref *ref;
3213 	struct btrfs_extent_inline_ref *iref;
3214 	struct btrfs_extent_item *ei;
3215 	struct btrfs_key key;
3216 	u32 item_size;
3217 	int type;
3218 	int ret;
3219 
3220 	key.objectid = bytenr;
3221 	key.offset = (u64)-1;
3222 	key.type = BTRFS_EXTENT_ITEM_KEY;
3223 
3224 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225 	if (ret < 0)
3226 		goto out;
3227 	BUG_ON(ret == 0); /* Corruption */
3228 
3229 	ret = -ENOENT;
3230 	if (path->slots[0] == 0)
3231 		goto out;
3232 
3233 	path->slots[0]--;
3234 	leaf = path->nodes[0];
3235 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236 
3237 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3238 		goto out;
3239 
3240 	ret = 1;
3241 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243 	if (item_size < sizeof(*ei)) {
3244 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245 		goto out;
3246 	}
3247 #endif
3248 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249 
3250 	if (item_size != sizeof(*ei) +
3251 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252 		goto out;
3253 
3254 	if (btrfs_extent_generation(leaf, ei) <=
3255 	    btrfs_root_last_snapshot(&root->root_item))
3256 		goto out;
3257 
3258 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259 
3260 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3262 		goto out;
3263 
3264 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265 	if (btrfs_extent_refs(leaf, ei) !=
3266 	    btrfs_extent_data_ref_count(leaf, ref) ||
3267 	    btrfs_extent_data_ref_root(leaf, ref) !=
3268 	    root->root_key.objectid ||
3269 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271 		goto out;
3272 
3273 	ret = 0;
3274 out:
3275 	return ret;
3276 }
3277 
3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279 			  u64 bytenr)
3280 {
3281 	struct btrfs_path *path;
3282 	int ret;
3283 	int ret2;
3284 
3285 	path = btrfs_alloc_path();
3286 	if (!path)
3287 		return -ENOENT;
3288 
3289 	do {
3290 		ret = check_committed_ref(root, path, objectid,
3291 					  offset, bytenr);
3292 		if (ret && ret != -ENOENT)
3293 			goto out;
3294 
3295 		ret2 = check_delayed_ref(root, path, objectid,
3296 					 offset, bytenr);
3297 	} while (ret2 == -EAGAIN);
3298 
3299 	if (ret2 && ret2 != -ENOENT) {
3300 		ret = ret2;
3301 		goto out;
3302 	}
3303 
3304 	if (ret != -ENOENT || ret2 != -ENOENT)
3305 		ret = 0;
3306 out:
3307 	btrfs_free_path(path);
3308 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309 		WARN_ON(ret > 0);
3310 	return ret;
3311 }
3312 
3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3314 			   struct btrfs_root *root,
3315 			   struct extent_buffer *buf,
3316 			   int full_backref, int inc)
3317 {
3318 	struct btrfs_fs_info *fs_info = root->fs_info;
3319 	u64 bytenr;
3320 	u64 num_bytes;
3321 	u64 parent;
3322 	u64 ref_root;
3323 	u32 nritems;
3324 	struct btrfs_key key;
3325 	struct btrfs_file_extent_item *fi;
3326 	int i;
3327 	int level;
3328 	int ret = 0;
3329 	int (*process_func)(struct btrfs_trans_handle *,
3330 			    struct btrfs_root *,
3331 			    u64, u64, u64, u64, u64, u64);
3332 
3333 
3334 	if (btrfs_is_testing(fs_info))
3335 		return 0;
3336 
3337 	ref_root = btrfs_header_owner(buf);
3338 	nritems = btrfs_header_nritems(buf);
3339 	level = btrfs_header_level(buf);
3340 
3341 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3342 		return 0;
3343 
3344 	if (inc)
3345 		process_func = btrfs_inc_extent_ref;
3346 	else
3347 		process_func = btrfs_free_extent;
3348 
3349 	if (full_backref)
3350 		parent = buf->start;
3351 	else
3352 		parent = 0;
3353 
3354 	for (i = 0; i < nritems; i++) {
3355 		if (level == 0) {
3356 			btrfs_item_key_to_cpu(buf, &key, i);
3357 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3358 				continue;
3359 			fi = btrfs_item_ptr(buf, i,
3360 					    struct btrfs_file_extent_item);
3361 			if (btrfs_file_extent_type(buf, fi) ==
3362 			    BTRFS_FILE_EXTENT_INLINE)
3363 				continue;
3364 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365 			if (bytenr == 0)
3366 				continue;
3367 
3368 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369 			key.offset -= btrfs_file_extent_offset(buf, fi);
3370 			ret = process_func(trans, root, bytenr, num_bytes,
3371 					   parent, ref_root, key.objectid,
3372 					   key.offset);
3373 			if (ret)
3374 				goto fail;
3375 		} else {
3376 			bytenr = btrfs_node_blockptr(buf, i);
3377 			num_bytes = fs_info->nodesize;
3378 			ret = process_func(trans, root, bytenr, num_bytes,
3379 					   parent, ref_root, level - 1, 0);
3380 			if (ret)
3381 				goto fail;
3382 		}
3383 	}
3384 	return 0;
3385 fail:
3386 	return ret;
3387 }
3388 
3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390 		  struct extent_buffer *buf, int full_backref)
3391 {
3392 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3393 }
3394 
3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 		  struct extent_buffer *buf, int full_backref)
3397 {
3398 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3399 }
3400 
3401 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3402 				 struct btrfs_fs_info *fs_info,
3403 				 struct btrfs_path *path,
3404 				 struct btrfs_block_group_cache *cache)
3405 {
3406 	int ret;
3407 	struct btrfs_root *extent_root = fs_info->extent_root;
3408 	unsigned long bi;
3409 	struct extent_buffer *leaf;
3410 
3411 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3412 	if (ret) {
3413 		if (ret > 0)
3414 			ret = -ENOENT;
3415 		goto fail;
3416 	}
3417 
3418 	leaf = path->nodes[0];
3419 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421 	btrfs_mark_buffer_dirty(leaf);
3422 fail:
3423 	btrfs_release_path(path);
3424 	return ret;
3425 
3426 }
3427 
3428 static struct btrfs_block_group_cache *
3429 next_block_group(struct btrfs_fs_info *fs_info,
3430 		 struct btrfs_block_group_cache *cache)
3431 {
3432 	struct rb_node *node;
3433 
3434 	spin_lock(&fs_info->block_group_cache_lock);
3435 
3436 	/* If our block group was removed, we need a full search. */
3437 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3438 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439 
3440 		spin_unlock(&fs_info->block_group_cache_lock);
3441 		btrfs_put_block_group(cache);
3442 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443 	}
3444 	node = rb_next(&cache->cache_node);
3445 	btrfs_put_block_group(cache);
3446 	if (node) {
3447 		cache = rb_entry(node, struct btrfs_block_group_cache,
3448 				 cache_node);
3449 		btrfs_get_block_group(cache);
3450 	} else
3451 		cache = NULL;
3452 	spin_unlock(&fs_info->block_group_cache_lock);
3453 	return cache;
3454 }
3455 
3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457 			    struct btrfs_trans_handle *trans,
3458 			    struct btrfs_path *path)
3459 {
3460 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3461 	struct btrfs_root *root = fs_info->tree_root;
3462 	struct inode *inode = NULL;
3463 	struct extent_changeset *data_reserved = NULL;
3464 	u64 alloc_hint = 0;
3465 	int dcs = BTRFS_DC_ERROR;
3466 	u64 num_pages = 0;
3467 	int retries = 0;
3468 	int ret = 0;
3469 
3470 	/*
3471 	 * If this block group is smaller than 100 megs don't bother caching the
3472 	 * block group.
3473 	 */
3474 	if (block_group->key.offset < (100 * SZ_1M)) {
3475 		spin_lock(&block_group->lock);
3476 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477 		spin_unlock(&block_group->lock);
3478 		return 0;
3479 	}
3480 
3481 	if (trans->aborted)
3482 		return 0;
3483 again:
3484 	inode = lookup_free_space_inode(fs_info, block_group, path);
3485 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486 		ret = PTR_ERR(inode);
3487 		btrfs_release_path(path);
3488 		goto out;
3489 	}
3490 
3491 	if (IS_ERR(inode)) {
3492 		BUG_ON(retries);
3493 		retries++;
3494 
3495 		if (block_group->ro)
3496 			goto out_free;
3497 
3498 		ret = create_free_space_inode(fs_info, trans, block_group,
3499 					      path);
3500 		if (ret)
3501 			goto out_free;
3502 		goto again;
3503 	}
3504 
3505 	/*
3506 	 * We want to set the generation to 0, that way if anything goes wrong
3507 	 * from here on out we know not to trust this cache when we load up next
3508 	 * time.
3509 	 */
3510 	BTRFS_I(inode)->generation = 0;
3511 	ret = btrfs_update_inode(trans, root, inode);
3512 	if (ret) {
3513 		/*
3514 		 * So theoretically we could recover from this, simply set the
3515 		 * super cache generation to 0 so we know to invalidate the
3516 		 * cache, but then we'd have to keep track of the block groups
3517 		 * that fail this way so we know we _have_ to reset this cache
3518 		 * before the next commit or risk reading stale cache.  So to
3519 		 * limit our exposure to horrible edge cases lets just abort the
3520 		 * transaction, this only happens in really bad situations
3521 		 * anyway.
3522 		 */
3523 		btrfs_abort_transaction(trans, ret);
3524 		goto out_put;
3525 	}
3526 	WARN_ON(ret);
3527 
3528 	/* We've already setup this transaction, go ahead and exit */
3529 	if (block_group->cache_generation == trans->transid &&
3530 	    i_size_read(inode)) {
3531 		dcs = BTRFS_DC_SETUP;
3532 		goto out_put;
3533 	}
3534 
3535 	if (i_size_read(inode) > 0) {
3536 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3537 					&fs_info->global_block_rsv);
3538 		if (ret)
3539 			goto out_put;
3540 
3541 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3542 		if (ret)
3543 			goto out_put;
3544 	}
3545 
3546 	spin_lock(&block_group->lock);
3547 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3548 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549 		/*
3550 		 * don't bother trying to write stuff out _if_
3551 		 * a) we're not cached,
3552 		 * b) we're with nospace_cache mount option,
3553 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554 		 */
3555 		dcs = BTRFS_DC_WRITTEN;
3556 		spin_unlock(&block_group->lock);
3557 		goto out_put;
3558 	}
3559 	spin_unlock(&block_group->lock);
3560 
3561 	/*
3562 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3563 	 * skip doing the setup, we've already cleared the cache so we're safe.
3564 	 */
3565 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566 		ret = -ENOSPC;
3567 		goto out_put;
3568 	}
3569 
3570 	/*
3571 	 * Try to preallocate enough space based on how big the block group is.
3572 	 * Keep in mind this has to include any pinned space which could end up
3573 	 * taking up quite a bit since it's not folded into the other space
3574 	 * cache.
3575 	 */
3576 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3577 	if (!num_pages)
3578 		num_pages = 1;
3579 
3580 	num_pages *= 16;
3581 	num_pages *= PAGE_SIZE;
3582 
3583 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3584 	if (ret)
3585 		goto out_put;
3586 
3587 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588 					      num_pages, num_pages,
3589 					      &alloc_hint);
3590 	/*
3591 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3592 	 * of metadata or split extents when writing the cache out, which means
3593 	 * we can enospc if we are heavily fragmented in addition to just normal
3594 	 * out of space conditions.  So if we hit this just skip setting up any
3595 	 * other block groups for this transaction, maybe we'll unpin enough
3596 	 * space the next time around.
3597 	 */
3598 	if (!ret)
3599 		dcs = BTRFS_DC_SETUP;
3600 	else if (ret == -ENOSPC)
3601 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3602 
3603 out_put:
3604 	iput(inode);
3605 out_free:
3606 	btrfs_release_path(path);
3607 out:
3608 	spin_lock(&block_group->lock);
3609 	if (!ret && dcs == BTRFS_DC_SETUP)
3610 		block_group->cache_generation = trans->transid;
3611 	block_group->disk_cache_state = dcs;
3612 	spin_unlock(&block_group->lock);
3613 
3614 	extent_changeset_free(data_reserved);
3615 	return ret;
3616 }
3617 
3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3619 			    struct btrfs_fs_info *fs_info)
3620 {
3621 	struct btrfs_block_group_cache *cache, *tmp;
3622 	struct btrfs_transaction *cur_trans = trans->transaction;
3623 	struct btrfs_path *path;
3624 
3625 	if (list_empty(&cur_trans->dirty_bgs) ||
3626 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3627 		return 0;
3628 
3629 	path = btrfs_alloc_path();
3630 	if (!path)
3631 		return -ENOMEM;
3632 
3633 	/* Could add new block groups, use _safe just in case */
3634 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635 				 dirty_list) {
3636 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637 			cache_save_setup(cache, trans, path);
3638 	}
3639 
3640 	btrfs_free_path(path);
3641 	return 0;
3642 }
3643 
3644 /*
3645  * transaction commit does final block group cache writeback during a
3646  * critical section where nothing is allowed to change the FS.  This is
3647  * required in order for the cache to actually match the block group,
3648  * but can introduce a lot of latency into the commit.
3649  *
3650  * So, btrfs_start_dirty_block_groups is here to kick off block group
3651  * cache IO.  There's a chance we'll have to redo some of it if the
3652  * block group changes again during the commit, but it greatly reduces
3653  * the commit latency by getting rid of the easy block groups while
3654  * we're still allowing others to join the commit.
3655  */
3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3657 {
3658 	struct btrfs_fs_info *fs_info = trans->fs_info;
3659 	struct btrfs_block_group_cache *cache;
3660 	struct btrfs_transaction *cur_trans = trans->transaction;
3661 	int ret = 0;
3662 	int should_put;
3663 	struct btrfs_path *path = NULL;
3664 	LIST_HEAD(dirty);
3665 	struct list_head *io = &cur_trans->io_bgs;
3666 	int num_started = 0;
3667 	int loops = 0;
3668 
3669 	spin_lock(&cur_trans->dirty_bgs_lock);
3670 	if (list_empty(&cur_trans->dirty_bgs)) {
3671 		spin_unlock(&cur_trans->dirty_bgs_lock);
3672 		return 0;
3673 	}
3674 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 	spin_unlock(&cur_trans->dirty_bgs_lock);
3676 
3677 again:
3678 	/*
3679 	 * make sure all the block groups on our dirty list actually
3680 	 * exist
3681 	 */
3682 	btrfs_create_pending_block_groups(trans);
3683 
3684 	if (!path) {
3685 		path = btrfs_alloc_path();
3686 		if (!path)
3687 			return -ENOMEM;
3688 	}
3689 
3690 	/*
3691 	 * cache_write_mutex is here only to save us from balance or automatic
3692 	 * removal of empty block groups deleting this block group while we are
3693 	 * writing out the cache
3694 	 */
3695 	mutex_lock(&trans->transaction->cache_write_mutex);
3696 	while (!list_empty(&dirty)) {
3697 		cache = list_first_entry(&dirty,
3698 					 struct btrfs_block_group_cache,
3699 					 dirty_list);
3700 		/*
3701 		 * this can happen if something re-dirties a block
3702 		 * group that is already under IO.  Just wait for it to
3703 		 * finish and then do it all again
3704 		 */
3705 		if (!list_empty(&cache->io_list)) {
3706 			list_del_init(&cache->io_list);
3707 			btrfs_wait_cache_io(trans, cache, path);
3708 			btrfs_put_block_group(cache);
3709 		}
3710 
3711 
3712 		/*
3713 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714 		 * if it should update the cache_state.  Don't delete
3715 		 * until after we wait.
3716 		 *
3717 		 * Since we're not running in the commit critical section
3718 		 * we need the dirty_bgs_lock to protect from update_block_group
3719 		 */
3720 		spin_lock(&cur_trans->dirty_bgs_lock);
3721 		list_del_init(&cache->dirty_list);
3722 		spin_unlock(&cur_trans->dirty_bgs_lock);
3723 
3724 		should_put = 1;
3725 
3726 		cache_save_setup(cache, trans, path);
3727 
3728 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729 			cache->io_ctl.inode = NULL;
3730 			ret = btrfs_write_out_cache(fs_info, trans,
3731 						    cache, path);
3732 			if (ret == 0 && cache->io_ctl.inode) {
3733 				num_started++;
3734 				should_put = 0;
3735 
3736 				/*
3737 				 * The cache_write_mutex is protecting the
3738 				 * io_list, also refer to the definition of
3739 				 * btrfs_transaction::io_bgs for more details
3740 				 */
3741 				list_add_tail(&cache->io_list, io);
3742 			} else {
3743 				/*
3744 				 * if we failed to write the cache, the
3745 				 * generation will be bad and life goes on
3746 				 */
3747 				ret = 0;
3748 			}
3749 		}
3750 		if (!ret) {
3751 			ret = write_one_cache_group(trans, fs_info,
3752 						    path, cache);
3753 			/*
3754 			 * Our block group might still be attached to the list
3755 			 * of new block groups in the transaction handle of some
3756 			 * other task (struct btrfs_trans_handle->new_bgs). This
3757 			 * means its block group item isn't yet in the extent
3758 			 * tree. If this happens ignore the error, as we will
3759 			 * try again later in the critical section of the
3760 			 * transaction commit.
3761 			 */
3762 			if (ret == -ENOENT) {
3763 				ret = 0;
3764 				spin_lock(&cur_trans->dirty_bgs_lock);
3765 				if (list_empty(&cache->dirty_list)) {
3766 					list_add_tail(&cache->dirty_list,
3767 						      &cur_trans->dirty_bgs);
3768 					btrfs_get_block_group(cache);
3769 				}
3770 				spin_unlock(&cur_trans->dirty_bgs_lock);
3771 			} else if (ret) {
3772 				btrfs_abort_transaction(trans, ret);
3773 			}
3774 		}
3775 
3776 		/* if its not on the io list, we need to put the block group */
3777 		if (should_put)
3778 			btrfs_put_block_group(cache);
3779 
3780 		if (ret)
3781 			break;
3782 
3783 		/*
3784 		 * Avoid blocking other tasks for too long. It might even save
3785 		 * us from writing caches for block groups that are going to be
3786 		 * removed.
3787 		 */
3788 		mutex_unlock(&trans->transaction->cache_write_mutex);
3789 		mutex_lock(&trans->transaction->cache_write_mutex);
3790 	}
3791 	mutex_unlock(&trans->transaction->cache_write_mutex);
3792 
3793 	/*
3794 	 * go through delayed refs for all the stuff we've just kicked off
3795 	 * and then loop back (just once)
3796 	 */
3797 	ret = btrfs_run_delayed_refs(trans, 0);
3798 	if (!ret && loops == 0) {
3799 		loops++;
3800 		spin_lock(&cur_trans->dirty_bgs_lock);
3801 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3802 		/*
3803 		 * dirty_bgs_lock protects us from concurrent block group
3804 		 * deletes too (not just cache_write_mutex).
3805 		 */
3806 		if (!list_empty(&dirty)) {
3807 			spin_unlock(&cur_trans->dirty_bgs_lock);
3808 			goto again;
3809 		}
3810 		spin_unlock(&cur_trans->dirty_bgs_lock);
3811 	} else if (ret < 0) {
3812 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3813 	}
3814 
3815 	btrfs_free_path(path);
3816 	return ret;
3817 }
3818 
3819 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3820 				   struct btrfs_fs_info *fs_info)
3821 {
3822 	struct btrfs_block_group_cache *cache;
3823 	struct btrfs_transaction *cur_trans = trans->transaction;
3824 	int ret = 0;
3825 	int should_put;
3826 	struct btrfs_path *path;
3827 	struct list_head *io = &cur_trans->io_bgs;
3828 	int num_started = 0;
3829 
3830 	path = btrfs_alloc_path();
3831 	if (!path)
3832 		return -ENOMEM;
3833 
3834 	/*
3835 	 * Even though we are in the critical section of the transaction commit,
3836 	 * we can still have concurrent tasks adding elements to this
3837 	 * transaction's list of dirty block groups. These tasks correspond to
3838 	 * endio free space workers started when writeback finishes for a
3839 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3840 	 * allocate new block groups as a result of COWing nodes of the root
3841 	 * tree when updating the free space inode. The writeback for the space
3842 	 * caches is triggered by an earlier call to
3843 	 * btrfs_start_dirty_block_groups() and iterations of the following
3844 	 * loop.
3845 	 * Also we want to do the cache_save_setup first and then run the
3846 	 * delayed refs to make sure we have the best chance at doing this all
3847 	 * in one shot.
3848 	 */
3849 	spin_lock(&cur_trans->dirty_bgs_lock);
3850 	while (!list_empty(&cur_trans->dirty_bgs)) {
3851 		cache = list_first_entry(&cur_trans->dirty_bgs,
3852 					 struct btrfs_block_group_cache,
3853 					 dirty_list);
3854 
3855 		/*
3856 		 * this can happen if cache_save_setup re-dirties a block
3857 		 * group that is already under IO.  Just wait for it to
3858 		 * finish and then do it all again
3859 		 */
3860 		if (!list_empty(&cache->io_list)) {
3861 			spin_unlock(&cur_trans->dirty_bgs_lock);
3862 			list_del_init(&cache->io_list);
3863 			btrfs_wait_cache_io(trans, cache, path);
3864 			btrfs_put_block_group(cache);
3865 			spin_lock(&cur_trans->dirty_bgs_lock);
3866 		}
3867 
3868 		/*
3869 		 * don't remove from the dirty list until after we've waited
3870 		 * on any pending IO
3871 		 */
3872 		list_del_init(&cache->dirty_list);
3873 		spin_unlock(&cur_trans->dirty_bgs_lock);
3874 		should_put = 1;
3875 
3876 		cache_save_setup(cache, trans, path);
3877 
3878 		if (!ret)
3879 			ret = btrfs_run_delayed_refs(trans,
3880 						     (unsigned long) -1);
3881 
3882 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3883 			cache->io_ctl.inode = NULL;
3884 			ret = btrfs_write_out_cache(fs_info, trans,
3885 						    cache, path);
3886 			if (ret == 0 && cache->io_ctl.inode) {
3887 				num_started++;
3888 				should_put = 0;
3889 				list_add_tail(&cache->io_list, io);
3890 			} else {
3891 				/*
3892 				 * if we failed to write the cache, the
3893 				 * generation will be bad and life goes on
3894 				 */
3895 				ret = 0;
3896 			}
3897 		}
3898 		if (!ret) {
3899 			ret = write_one_cache_group(trans, fs_info,
3900 						    path, cache);
3901 			/*
3902 			 * One of the free space endio workers might have
3903 			 * created a new block group while updating a free space
3904 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3905 			 * and hasn't released its transaction handle yet, in
3906 			 * which case the new block group is still attached to
3907 			 * its transaction handle and its creation has not
3908 			 * finished yet (no block group item in the extent tree
3909 			 * yet, etc). If this is the case, wait for all free
3910 			 * space endio workers to finish and retry. This is a
3911 			 * a very rare case so no need for a more efficient and
3912 			 * complex approach.
3913 			 */
3914 			if (ret == -ENOENT) {
3915 				wait_event(cur_trans->writer_wait,
3916 				   atomic_read(&cur_trans->num_writers) == 1);
3917 				ret = write_one_cache_group(trans, fs_info,
3918 							    path, cache);
3919 			}
3920 			if (ret)
3921 				btrfs_abort_transaction(trans, ret);
3922 		}
3923 
3924 		/* if its not on the io list, we need to put the block group */
3925 		if (should_put)
3926 			btrfs_put_block_group(cache);
3927 		spin_lock(&cur_trans->dirty_bgs_lock);
3928 	}
3929 	spin_unlock(&cur_trans->dirty_bgs_lock);
3930 
3931 	/*
3932 	 * Refer to the definition of io_bgs member for details why it's safe
3933 	 * to use it without any locking
3934 	 */
3935 	while (!list_empty(io)) {
3936 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3937 					 io_list);
3938 		list_del_init(&cache->io_list);
3939 		btrfs_wait_cache_io(trans, cache, path);
3940 		btrfs_put_block_group(cache);
3941 	}
3942 
3943 	btrfs_free_path(path);
3944 	return ret;
3945 }
3946 
3947 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3948 {
3949 	struct btrfs_block_group_cache *block_group;
3950 	int readonly = 0;
3951 
3952 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3953 	if (!block_group || block_group->ro)
3954 		readonly = 1;
3955 	if (block_group)
3956 		btrfs_put_block_group(block_group);
3957 	return readonly;
3958 }
3959 
3960 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3961 {
3962 	struct btrfs_block_group_cache *bg;
3963 	bool ret = true;
3964 
3965 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3966 	if (!bg)
3967 		return false;
3968 
3969 	spin_lock(&bg->lock);
3970 	if (bg->ro)
3971 		ret = false;
3972 	else
3973 		atomic_inc(&bg->nocow_writers);
3974 	spin_unlock(&bg->lock);
3975 
3976 	/* no put on block group, done by btrfs_dec_nocow_writers */
3977 	if (!ret)
3978 		btrfs_put_block_group(bg);
3979 
3980 	return ret;
3981 
3982 }
3983 
3984 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3985 {
3986 	struct btrfs_block_group_cache *bg;
3987 
3988 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3989 	ASSERT(bg);
3990 	if (atomic_dec_and_test(&bg->nocow_writers))
3991 		wake_up_var(&bg->nocow_writers);
3992 	/*
3993 	 * Once for our lookup and once for the lookup done by a previous call
3994 	 * to btrfs_inc_nocow_writers()
3995 	 */
3996 	btrfs_put_block_group(bg);
3997 	btrfs_put_block_group(bg);
3998 }
3999 
4000 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4001 {
4002 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4003 }
4004 
4005 static const char *alloc_name(u64 flags)
4006 {
4007 	switch (flags) {
4008 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4009 		return "mixed";
4010 	case BTRFS_BLOCK_GROUP_METADATA:
4011 		return "metadata";
4012 	case BTRFS_BLOCK_GROUP_DATA:
4013 		return "data";
4014 	case BTRFS_BLOCK_GROUP_SYSTEM:
4015 		return "system";
4016 	default:
4017 		WARN_ON(1);
4018 		return "invalid-combination";
4019 	};
4020 }
4021 
4022 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4023 			     struct btrfs_space_info **new)
4024 {
4025 
4026 	struct btrfs_space_info *space_info;
4027 	int i;
4028 	int ret;
4029 
4030 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4031 	if (!space_info)
4032 		return -ENOMEM;
4033 
4034 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4035 				 GFP_KERNEL);
4036 	if (ret) {
4037 		kfree(space_info);
4038 		return ret;
4039 	}
4040 
4041 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4042 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4043 	init_rwsem(&space_info->groups_sem);
4044 	spin_lock_init(&space_info->lock);
4045 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4046 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4047 	init_waitqueue_head(&space_info->wait);
4048 	INIT_LIST_HEAD(&space_info->ro_bgs);
4049 	INIT_LIST_HEAD(&space_info->tickets);
4050 	INIT_LIST_HEAD(&space_info->priority_tickets);
4051 
4052 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4053 				    info->space_info_kobj, "%s",
4054 				    alloc_name(space_info->flags));
4055 	if (ret) {
4056 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4057 		kfree(space_info);
4058 		return ret;
4059 	}
4060 
4061 	*new = space_info;
4062 	list_add_rcu(&space_info->list, &info->space_info);
4063 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4064 		info->data_sinfo = space_info;
4065 
4066 	return ret;
4067 }
4068 
4069 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4070 			     u64 total_bytes, u64 bytes_used,
4071 			     u64 bytes_readonly,
4072 			     struct btrfs_space_info **space_info)
4073 {
4074 	struct btrfs_space_info *found;
4075 	int factor;
4076 
4077 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4078 		     BTRFS_BLOCK_GROUP_RAID10))
4079 		factor = 2;
4080 	else
4081 		factor = 1;
4082 
4083 	found = __find_space_info(info, flags);
4084 	ASSERT(found);
4085 	spin_lock(&found->lock);
4086 	found->total_bytes += total_bytes;
4087 	found->disk_total += total_bytes * factor;
4088 	found->bytes_used += bytes_used;
4089 	found->disk_used += bytes_used * factor;
4090 	found->bytes_readonly += bytes_readonly;
4091 	if (total_bytes > 0)
4092 		found->full = 0;
4093 	space_info_add_new_bytes(info, found, total_bytes -
4094 				 bytes_used - bytes_readonly);
4095 	spin_unlock(&found->lock);
4096 	*space_info = found;
4097 }
4098 
4099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4100 {
4101 	u64 extra_flags = chunk_to_extended(flags) &
4102 				BTRFS_EXTENDED_PROFILE_MASK;
4103 
4104 	write_seqlock(&fs_info->profiles_lock);
4105 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4106 		fs_info->avail_data_alloc_bits |= extra_flags;
4107 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4108 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4109 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4110 		fs_info->avail_system_alloc_bits |= extra_flags;
4111 	write_sequnlock(&fs_info->profiles_lock);
4112 }
4113 
4114 /*
4115  * returns target flags in extended format or 0 if restripe for this
4116  * chunk_type is not in progress
4117  *
4118  * should be called with either volume_mutex or balance_lock held
4119  */
4120 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4121 {
4122 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4123 	u64 target = 0;
4124 
4125 	if (!bctl)
4126 		return 0;
4127 
4128 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4129 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4130 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4131 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4132 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4134 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4135 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4137 	}
4138 
4139 	return target;
4140 }
4141 
4142 /*
4143  * @flags: available profiles in extended format (see ctree.h)
4144  *
4145  * Returns reduced profile in chunk format.  If profile changing is in
4146  * progress (either running or paused) picks the target profile (if it's
4147  * already available), otherwise falls back to plain reducing.
4148  */
4149 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4150 {
4151 	u64 num_devices = fs_info->fs_devices->rw_devices;
4152 	u64 target;
4153 	u64 raid_type;
4154 	u64 allowed = 0;
4155 
4156 	/*
4157 	 * see if restripe for this chunk_type is in progress, if so
4158 	 * try to reduce to the target profile
4159 	 */
4160 	spin_lock(&fs_info->balance_lock);
4161 	target = get_restripe_target(fs_info, flags);
4162 	if (target) {
4163 		/* pick target profile only if it's already available */
4164 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4165 			spin_unlock(&fs_info->balance_lock);
4166 			return extended_to_chunk(target);
4167 		}
4168 	}
4169 	spin_unlock(&fs_info->balance_lock);
4170 
4171 	/* First, mask out the RAID levels which aren't possible */
4172 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4173 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4174 			allowed |= btrfs_raid_group[raid_type];
4175 	}
4176 	allowed &= flags;
4177 
4178 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4179 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4180 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4181 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4182 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4183 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4184 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4185 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4186 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4187 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4188 
4189 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4190 
4191 	return extended_to_chunk(flags | allowed);
4192 }
4193 
4194 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4195 {
4196 	unsigned seq;
4197 	u64 flags;
4198 
4199 	do {
4200 		flags = orig_flags;
4201 		seq = read_seqbegin(&fs_info->profiles_lock);
4202 
4203 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4204 			flags |= fs_info->avail_data_alloc_bits;
4205 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4206 			flags |= fs_info->avail_system_alloc_bits;
4207 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4208 			flags |= fs_info->avail_metadata_alloc_bits;
4209 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4210 
4211 	return btrfs_reduce_alloc_profile(fs_info, flags);
4212 }
4213 
4214 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4215 {
4216 	struct btrfs_fs_info *fs_info = root->fs_info;
4217 	u64 flags;
4218 	u64 ret;
4219 
4220 	if (data)
4221 		flags = BTRFS_BLOCK_GROUP_DATA;
4222 	else if (root == fs_info->chunk_root)
4223 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4224 	else
4225 		flags = BTRFS_BLOCK_GROUP_METADATA;
4226 
4227 	ret = get_alloc_profile(fs_info, flags);
4228 	return ret;
4229 }
4230 
4231 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4232 {
4233 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4234 }
4235 
4236 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4237 {
4238 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4239 }
4240 
4241 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4242 {
4243 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4244 }
4245 
4246 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4247 				 bool may_use_included)
4248 {
4249 	ASSERT(s_info);
4250 	return s_info->bytes_used + s_info->bytes_reserved +
4251 		s_info->bytes_pinned + s_info->bytes_readonly +
4252 		(may_use_included ? s_info->bytes_may_use : 0);
4253 }
4254 
4255 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4256 {
4257 	struct btrfs_root *root = inode->root;
4258 	struct btrfs_fs_info *fs_info = root->fs_info;
4259 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4260 	u64 used;
4261 	int ret = 0;
4262 	int need_commit = 2;
4263 	int have_pinned_space;
4264 
4265 	/* make sure bytes are sectorsize aligned */
4266 	bytes = ALIGN(bytes, fs_info->sectorsize);
4267 
4268 	if (btrfs_is_free_space_inode(inode)) {
4269 		need_commit = 0;
4270 		ASSERT(current->journal_info);
4271 	}
4272 
4273 again:
4274 	/* make sure we have enough space to handle the data first */
4275 	spin_lock(&data_sinfo->lock);
4276 	used = btrfs_space_info_used(data_sinfo, true);
4277 
4278 	if (used + bytes > data_sinfo->total_bytes) {
4279 		struct btrfs_trans_handle *trans;
4280 
4281 		/*
4282 		 * if we don't have enough free bytes in this space then we need
4283 		 * to alloc a new chunk.
4284 		 */
4285 		if (!data_sinfo->full) {
4286 			u64 alloc_target;
4287 
4288 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4289 			spin_unlock(&data_sinfo->lock);
4290 
4291 			alloc_target = btrfs_data_alloc_profile(fs_info);
4292 			/*
4293 			 * It is ugly that we don't call nolock join
4294 			 * transaction for the free space inode case here.
4295 			 * But it is safe because we only do the data space
4296 			 * reservation for the free space cache in the
4297 			 * transaction context, the common join transaction
4298 			 * just increase the counter of the current transaction
4299 			 * handler, doesn't try to acquire the trans_lock of
4300 			 * the fs.
4301 			 */
4302 			trans = btrfs_join_transaction(root);
4303 			if (IS_ERR(trans))
4304 				return PTR_ERR(trans);
4305 
4306 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4307 					     CHUNK_ALLOC_NO_FORCE);
4308 			btrfs_end_transaction(trans);
4309 			if (ret < 0) {
4310 				if (ret != -ENOSPC)
4311 					return ret;
4312 				else {
4313 					have_pinned_space = 1;
4314 					goto commit_trans;
4315 				}
4316 			}
4317 
4318 			goto again;
4319 		}
4320 
4321 		/*
4322 		 * If we don't have enough pinned space to deal with this
4323 		 * allocation, and no removed chunk in current transaction,
4324 		 * don't bother committing the transaction.
4325 		 */
4326 		have_pinned_space = percpu_counter_compare(
4327 			&data_sinfo->total_bytes_pinned,
4328 			used + bytes - data_sinfo->total_bytes);
4329 		spin_unlock(&data_sinfo->lock);
4330 
4331 		/* commit the current transaction and try again */
4332 commit_trans:
4333 		if (need_commit) {
4334 			need_commit--;
4335 
4336 			if (need_commit > 0) {
4337 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4338 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4339 							 (u64)-1);
4340 			}
4341 
4342 			trans = btrfs_join_transaction(root);
4343 			if (IS_ERR(trans))
4344 				return PTR_ERR(trans);
4345 			if (have_pinned_space >= 0 ||
4346 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4347 				     &trans->transaction->flags) ||
4348 			    need_commit > 0) {
4349 				ret = btrfs_commit_transaction(trans);
4350 				if (ret)
4351 					return ret;
4352 				/*
4353 				 * The cleaner kthread might still be doing iput
4354 				 * operations. Wait for it to finish so that
4355 				 * more space is released.
4356 				 */
4357 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4358 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4359 				goto again;
4360 			} else {
4361 				btrfs_end_transaction(trans);
4362 			}
4363 		}
4364 
4365 		trace_btrfs_space_reservation(fs_info,
4366 					      "space_info:enospc",
4367 					      data_sinfo->flags, bytes, 1);
4368 		return -ENOSPC;
4369 	}
4370 	data_sinfo->bytes_may_use += bytes;
4371 	trace_btrfs_space_reservation(fs_info, "space_info",
4372 				      data_sinfo->flags, bytes, 1);
4373 	spin_unlock(&data_sinfo->lock);
4374 
4375 	return ret;
4376 }
4377 
4378 int btrfs_check_data_free_space(struct inode *inode,
4379 			struct extent_changeset **reserved, u64 start, u64 len)
4380 {
4381 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4382 	int ret;
4383 
4384 	/* align the range */
4385 	len = round_up(start + len, fs_info->sectorsize) -
4386 	      round_down(start, fs_info->sectorsize);
4387 	start = round_down(start, fs_info->sectorsize);
4388 
4389 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4390 	if (ret < 0)
4391 		return ret;
4392 
4393 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4394 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4395 	if (ret < 0)
4396 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4397 	else
4398 		ret = 0;
4399 	return ret;
4400 }
4401 
4402 /*
4403  * Called if we need to clear a data reservation for this inode
4404  * Normally in a error case.
4405  *
4406  * This one will *NOT* use accurate qgroup reserved space API, just for case
4407  * which we can't sleep and is sure it won't affect qgroup reserved space.
4408  * Like clear_bit_hook().
4409  */
4410 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4411 					    u64 len)
4412 {
4413 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4414 	struct btrfs_space_info *data_sinfo;
4415 
4416 	/* Make sure the range is aligned to sectorsize */
4417 	len = round_up(start + len, fs_info->sectorsize) -
4418 	      round_down(start, fs_info->sectorsize);
4419 	start = round_down(start, fs_info->sectorsize);
4420 
4421 	data_sinfo = fs_info->data_sinfo;
4422 	spin_lock(&data_sinfo->lock);
4423 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4424 		data_sinfo->bytes_may_use = 0;
4425 	else
4426 		data_sinfo->bytes_may_use -= len;
4427 	trace_btrfs_space_reservation(fs_info, "space_info",
4428 				      data_sinfo->flags, len, 0);
4429 	spin_unlock(&data_sinfo->lock);
4430 }
4431 
4432 /*
4433  * Called if we need to clear a data reservation for this inode
4434  * Normally in a error case.
4435  *
4436  * This one will handle the per-inode data rsv map for accurate reserved
4437  * space framework.
4438  */
4439 void btrfs_free_reserved_data_space(struct inode *inode,
4440 			struct extent_changeset *reserved, u64 start, u64 len)
4441 {
4442 	struct btrfs_root *root = BTRFS_I(inode)->root;
4443 
4444 	/* Make sure the range is aligned to sectorsize */
4445 	len = round_up(start + len, root->fs_info->sectorsize) -
4446 	      round_down(start, root->fs_info->sectorsize);
4447 	start = round_down(start, root->fs_info->sectorsize);
4448 
4449 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4450 	btrfs_qgroup_free_data(inode, reserved, start, len);
4451 }
4452 
4453 static void force_metadata_allocation(struct btrfs_fs_info *info)
4454 {
4455 	struct list_head *head = &info->space_info;
4456 	struct btrfs_space_info *found;
4457 
4458 	rcu_read_lock();
4459 	list_for_each_entry_rcu(found, head, list) {
4460 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4461 			found->force_alloc = CHUNK_ALLOC_FORCE;
4462 	}
4463 	rcu_read_unlock();
4464 }
4465 
4466 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4467 {
4468 	return (global->size << 1);
4469 }
4470 
4471 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4472 			      struct btrfs_space_info *sinfo, int force)
4473 {
4474 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4475 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4476 	u64 thresh;
4477 
4478 	if (force == CHUNK_ALLOC_FORCE)
4479 		return 1;
4480 
4481 	/*
4482 	 * We need to take into account the global rsv because for all intents
4483 	 * and purposes it's used space.  Don't worry about locking the
4484 	 * global_rsv, it doesn't change except when the transaction commits.
4485 	 */
4486 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4487 		bytes_used += calc_global_rsv_need_space(global_rsv);
4488 
4489 	/*
4490 	 * in limited mode, we want to have some free space up to
4491 	 * about 1% of the FS size.
4492 	 */
4493 	if (force == CHUNK_ALLOC_LIMITED) {
4494 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4495 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4496 
4497 		if (sinfo->total_bytes - bytes_used < thresh)
4498 			return 1;
4499 	}
4500 
4501 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4502 		return 0;
4503 	return 1;
4504 }
4505 
4506 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4507 {
4508 	u64 num_dev;
4509 
4510 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4511 		    BTRFS_BLOCK_GROUP_RAID0 |
4512 		    BTRFS_BLOCK_GROUP_RAID5 |
4513 		    BTRFS_BLOCK_GROUP_RAID6))
4514 		num_dev = fs_info->fs_devices->rw_devices;
4515 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4516 		num_dev = 2;
4517 	else
4518 		num_dev = 1;	/* DUP or single */
4519 
4520 	return num_dev;
4521 }
4522 
4523 /*
4524  * If @is_allocation is true, reserve space in the system space info necessary
4525  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4526  * removing a chunk.
4527  */
4528 void check_system_chunk(struct btrfs_trans_handle *trans,
4529 			struct btrfs_fs_info *fs_info, u64 type)
4530 {
4531 	struct btrfs_space_info *info;
4532 	u64 left;
4533 	u64 thresh;
4534 	int ret = 0;
4535 	u64 num_devs;
4536 
4537 	/*
4538 	 * Needed because we can end up allocating a system chunk and for an
4539 	 * atomic and race free space reservation in the chunk block reserve.
4540 	 */
4541 	lockdep_assert_held(&fs_info->chunk_mutex);
4542 
4543 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4544 	spin_lock(&info->lock);
4545 	left = info->total_bytes - btrfs_space_info_used(info, true);
4546 	spin_unlock(&info->lock);
4547 
4548 	num_devs = get_profile_num_devs(fs_info, type);
4549 
4550 	/* num_devs device items to update and 1 chunk item to add or remove */
4551 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4552 		btrfs_calc_trans_metadata_size(fs_info, 1);
4553 
4554 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4555 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4556 			   left, thresh, type);
4557 		dump_space_info(fs_info, info, 0, 0);
4558 	}
4559 
4560 	if (left < thresh) {
4561 		u64 flags = btrfs_system_alloc_profile(fs_info);
4562 
4563 		/*
4564 		 * Ignore failure to create system chunk. We might end up not
4565 		 * needing it, as we might not need to COW all nodes/leafs from
4566 		 * the paths we visit in the chunk tree (they were already COWed
4567 		 * or created in the current transaction for example).
4568 		 */
4569 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4570 	}
4571 
4572 	if (!ret) {
4573 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4574 					  &fs_info->chunk_block_rsv,
4575 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4576 		if (!ret)
4577 			trans->chunk_bytes_reserved += thresh;
4578 	}
4579 }
4580 
4581 /*
4582  * If force is CHUNK_ALLOC_FORCE:
4583  *    - return 1 if it successfully allocates a chunk,
4584  *    - return errors including -ENOSPC otherwise.
4585  * If force is NOT CHUNK_ALLOC_FORCE:
4586  *    - return 0 if it doesn't need to allocate a new chunk,
4587  *    - return 1 if it successfully allocates a chunk,
4588  *    - return errors including -ENOSPC otherwise.
4589  */
4590 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4591 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4592 {
4593 	struct btrfs_space_info *space_info;
4594 	int wait_for_alloc = 0;
4595 	int ret = 0;
4596 
4597 	/* Don't re-enter if we're already allocating a chunk */
4598 	if (trans->allocating_chunk)
4599 		return -ENOSPC;
4600 
4601 	space_info = __find_space_info(fs_info, flags);
4602 	ASSERT(space_info);
4603 
4604 again:
4605 	spin_lock(&space_info->lock);
4606 	if (force < space_info->force_alloc)
4607 		force = space_info->force_alloc;
4608 	if (space_info->full) {
4609 		if (should_alloc_chunk(fs_info, space_info, force))
4610 			ret = -ENOSPC;
4611 		else
4612 			ret = 0;
4613 		spin_unlock(&space_info->lock);
4614 		return ret;
4615 	}
4616 
4617 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4618 		spin_unlock(&space_info->lock);
4619 		return 0;
4620 	} else if (space_info->chunk_alloc) {
4621 		wait_for_alloc = 1;
4622 	} else {
4623 		space_info->chunk_alloc = 1;
4624 	}
4625 
4626 	spin_unlock(&space_info->lock);
4627 
4628 	mutex_lock(&fs_info->chunk_mutex);
4629 
4630 	/*
4631 	 * The chunk_mutex is held throughout the entirety of a chunk
4632 	 * allocation, so once we've acquired the chunk_mutex we know that the
4633 	 * other guy is done and we need to recheck and see if we should
4634 	 * allocate.
4635 	 */
4636 	if (wait_for_alloc) {
4637 		mutex_unlock(&fs_info->chunk_mutex);
4638 		wait_for_alloc = 0;
4639 		cond_resched();
4640 		goto again;
4641 	}
4642 
4643 	trans->allocating_chunk = true;
4644 
4645 	/*
4646 	 * If we have mixed data/metadata chunks we want to make sure we keep
4647 	 * allocating mixed chunks instead of individual chunks.
4648 	 */
4649 	if (btrfs_mixed_space_info(space_info))
4650 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4651 
4652 	/*
4653 	 * if we're doing a data chunk, go ahead and make sure that
4654 	 * we keep a reasonable number of metadata chunks allocated in the
4655 	 * FS as well.
4656 	 */
4657 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4658 		fs_info->data_chunk_allocations++;
4659 		if (!(fs_info->data_chunk_allocations %
4660 		      fs_info->metadata_ratio))
4661 			force_metadata_allocation(fs_info);
4662 	}
4663 
4664 	/*
4665 	 * Check if we have enough space in SYSTEM chunk because we may need
4666 	 * to update devices.
4667 	 */
4668 	check_system_chunk(trans, fs_info, flags);
4669 
4670 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4671 	trans->allocating_chunk = false;
4672 
4673 	spin_lock(&space_info->lock);
4674 	if (ret < 0 && ret != -ENOSPC)
4675 		goto out;
4676 	if (ret)
4677 		space_info->full = 1;
4678 	else
4679 		ret = 1;
4680 
4681 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4682 out:
4683 	space_info->chunk_alloc = 0;
4684 	spin_unlock(&space_info->lock);
4685 	mutex_unlock(&fs_info->chunk_mutex);
4686 	/*
4687 	 * When we allocate a new chunk we reserve space in the chunk block
4688 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4689 	 * add new nodes/leafs to it if we end up needing to do it when
4690 	 * inserting the chunk item and updating device items as part of the
4691 	 * second phase of chunk allocation, performed by
4692 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4693 	 * large number of new block groups to create in our transaction
4694 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4695 	 * in extreme cases - like having a single transaction create many new
4696 	 * block groups when starting to write out the free space caches of all
4697 	 * the block groups that were made dirty during the lifetime of the
4698 	 * transaction.
4699 	 */
4700 	if (trans->can_flush_pending_bgs &&
4701 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4702 		btrfs_create_pending_block_groups(trans);
4703 		btrfs_trans_release_chunk_metadata(trans);
4704 	}
4705 	return ret;
4706 }
4707 
4708 static int can_overcommit(struct btrfs_fs_info *fs_info,
4709 			  struct btrfs_space_info *space_info, u64 bytes,
4710 			  enum btrfs_reserve_flush_enum flush,
4711 			  bool system_chunk)
4712 {
4713 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4714 	u64 profile;
4715 	u64 space_size;
4716 	u64 avail;
4717 	u64 used;
4718 
4719 	/* Don't overcommit when in mixed mode. */
4720 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4721 		return 0;
4722 
4723 	if (system_chunk)
4724 		profile = btrfs_system_alloc_profile(fs_info);
4725 	else
4726 		profile = btrfs_metadata_alloc_profile(fs_info);
4727 
4728 	used = btrfs_space_info_used(space_info, false);
4729 
4730 	/*
4731 	 * We only want to allow over committing if we have lots of actual space
4732 	 * free, but if we don't have enough space to handle the global reserve
4733 	 * space then we could end up having a real enospc problem when trying
4734 	 * to allocate a chunk or some other such important allocation.
4735 	 */
4736 	spin_lock(&global_rsv->lock);
4737 	space_size = calc_global_rsv_need_space(global_rsv);
4738 	spin_unlock(&global_rsv->lock);
4739 	if (used + space_size >= space_info->total_bytes)
4740 		return 0;
4741 
4742 	used += space_info->bytes_may_use;
4743 
4744 	avail = atomic64_read(&fs_info->free_chunk_space);
4745 
4746 	/*
4747 	 * If we have dup, raid1 or raid10 then only half of the free
4748 	 * space is actually useable.  For raid56, the space info used
4749 	 * doesn't include the parity drive, so we don't have to
4750 	 * change the math
4751 	 */
4752 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4753 		       BTRFS_BLOCK_GROUP_RAID1 |
4754 		       BTRFS_BLOCK_GROUP_RAID10))
4755 		avail >>= 1;
4756 
4757 	/*
4758 	 * If we aren't flushing all things, let us overcommit up to
4759 	 * 1/2th of the space. If we can flush, don't let us overcommit
4760 	 * too much, let it overcommit up to 1/8 of the space.
4761 	 */
4762 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4763 		avail >>= 3;
4764 	else
4765 		avail >>= 1;
4766 
4767 	if (used + bytes < space_info->total_bytes + avail)
4768 		return 1;
4769 	return 0;
4770 }
4771 
4772 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4773 					 unsigned long nr_pages, int nr_items)
4774 {
4775 	struct super_block *sb = fs_info->sb;
4776 
4777 	if (down_read_trylock(&sb->s_umount)) {
4778 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4779 		up_read(&sb->s_umount);
4780 	} else {
4781 		/*
4782 		 * We needn't worry the filesystem going from r/w to r/o though
4783 		 * we don't acquire ->s_umount mutex, because the filesystem
4784 		 * should guarantee the delalloc inodes list be empty after
4785 		 * the filesystem is readonly(all dirty pages are written to
4786 		 * the disk).
4787 		 */
4788 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4789 		if (!current->journal_info)
4790 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4791 	}
4792 }
4793 
4794 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4795 					u64 to_reclaim)
4796 {
4797 	u64 bytes;
4798 	u64 nr;
4799 
4800 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4801 	nr = div64_u64(to_reclaim, bytes);
4802 	if (!nr)
4803 		nr = 1;
4804 	return nr;
4805 }
4806 
4807 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4808 
4809 /*
4810  * shrink metadata reservation for delalloc
4811  */
4812 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4813 			    u64 orig, bool wait_ordered)
4814 {
4815 	struct btrfs_space_info *space_info;
4816 	struct btrfs_trans_handle *trans;
4817 	u64 delalloc_bytes;
4818 	u64 max_reclaim;
4819 	u64 items;
4820 	long time_left;
4821 	unsigned long nr_pages;
4822 	int loops;
4823 
4824 	/* Calc the number of the pages we need flush for space reservation */
4825 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4826 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4827 
4828 	trans = (struct btrfs_trans_handle *)current->journal_info;
4829 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4830 
4831 	delalloc_bytes = percpu_counter_sum_positive(
4832 						&fs_info->delalloc_bytes);
4833 	if (delalloc_bytes == 0) {
4834 		if (trans)
4835 			return;
4836 		if (wait_ordered)
4837 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4838 		return;
4839 	}
4840 
4841 	loops = 0;
4842 	while (delalloc_bytes && loops < 3) {
4843 		max_reclaim = min(delalloc_bytes, to_reclaim);
4844 		nr_pages = max_reclaim >> PAGE_SHIFT;
4845 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4846 		/*
4847 		 * We need to wait for the async pages to actually start before
4848 		 * we do anything.
4849 		 */
4850 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4851 		if (!max_reclaim)
4852 			goto skip_async;
4853 
4854 		if (max_reclaim <= nr_pages)
4855 			max_reclaim = 0;
4856 		else
4857 			max_reclaim -= nr_pages;
4858 
4859 		wait_event(fs_info->async_submit_wait,
4860 			   atomic_read(&fs_info->async_delalloc_pages) <=
4861 			   (int)max_reclaim);
4862 skip_async:
4863 		spin_lock(&space_info->lock);
4864 		if (list_empty(&space_info->tickets) &&
4865 		    list_empty(&space_info->priority_tickets)) {
4866 			spin_unlock(&space_info->lock);
4867 			break;
4868 		}
4869 		spin_unlock(&space_info->lock);
4870 
4871 		loops++;
4872 		if (wait_ordered && !trans) {
4873 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4874 		} else {
4875 			time_left = schedule_timeout_killable(1);
4876 			if (time_left)
4877 				break;
4878 		}
4879 		delalloc_bytes = percpu_counter_sum_positive(
4880 						&fs_info->delalloc_bytes);
4881 	}
4882 }
4883 
4884 struct reserve_ticket {
4885 	u64 bytes;
4886 	int error;
4887 	struct list_head list;
4888 	wait_queue_head_t wait;
4889 };
4890 
4891 /**
4892  * maybe_commit_transaction - possibly commit the transaction if its ok to
4893  * @root - the root we're allocating for
4894  * @bytes - the number of bytes we want to reserve
4895  * @force - force the commit
4896  *
4897  * This will check to make sure that committing the transaction will actually
4898  * get us somewhere and then commit the transaction if it does.  Otherwise it
4899  * will return -ENOSPC.
4900  */
4901 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4902 				  struct btrfs_space_info *space_info)
4903 {
4904 	struct reserve_ticket *ticket = NULL;
4905 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4906 	struct btrfs_trans_handle *trans;
4907 	u64 bytes;
4908 
4909 	trans = (struct btrfs_trans_handle *)current->journal_info;
4910 	if (trans)
4911 		return -EAGAIN;
4912 
4913 	spin_lock(&space_info->lock);
4914 	if (!list_empty(&space_info->priority_tickets))
4915 		ticket = list_first_entry(&space_info->priority_tickets,
4916 					  struct reserve_ticket, list);
4917 	else if (!list_empty(&space_info->tickets))
4918 		ticket = list_first_entry(&space_info->tickets,
4919 					  struct reserve_ticket, list);
4920 	bytes = (ticket) ? ticket->bytes : 0;
4921 	spin_unlock(&space_info->lock);
4922 
4923 	if (!bytes)
4924 		return 0;
4925 
4926 	/* See if there is enough pinned space to make this reservation */
4927 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4928 				   bytes) >= 0)
4929 		goto commit;
4930 
4931 	/*
4932 	 * See if there is some space in the delayed insertion reservation for
4933 	 * this reservation.
4934 	 */
4935 	if (space_info != delayed_rsv->space_info)
4936 		return -ENOSPC;
4937 
4938 	spin_lock(&delayed_rsv->lock);
4939 	if (delayed_rsv->size > bytes)
4940 		bytes = 0;
4941 	else
4942 		bytes -= delayed_rsv->size;
4943 	spin_unlock(&delayed_rsv->lock);
4944 
4945 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4946 				   bytes) < 0) {
4947 		return -ENOSPC;
4948 	}
4949 
4950 commit:
4951 	trans = btrfs_join_transaction(fs_info->extent_root);
4952 	if (IS_ERR(trans))
4953 		return -ENOSPC;
4954 
4955 	return btrfs_commit_transaction(trans);
4956 }
4957 
4958 /*
4959  * Try to flush some data based on policy set by @state. This is only advisory
4960  * and may fail for various reasons. The caller is supposed to examine the
4961  * state of @space_info to detect the outcome.
4962  */
4963 static void flush_space(struct btrfs_fs_info *fs_info,
4964 		       struct btrfs_space_info *space_info, u64 num_bytes,
4965 		       int state)
4966 {
4967 	struct btrfs_root *root = fs_info->extent_root;
4968 	struct btrfs_trans_handle *trans;
4969 	int nr;
4970 	int ret = 0;
4971 
4972 	switch (state) {
4973 	case FLUSH_DELAYED_ITEMS_NR:
4974 	case FLUSH_DELAYED_ITEMS:
4975 		if (state == FLUSH_DELAYED_ITEMS_NR)
4976 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4977 		else
4978 			nr = -1;
4979 
4980 		trans = btrfs_join_transaction(root);
4981 		if (IS_ERR(trans)) {
4982 			ret = PTR_ERR(trans);
4983 			break;
4984 		}
4985 		ret = btrfs_run_delayed_items_nr(trans, nr);
4986 		btrfs_end_transaction(trans);
4987 		break;
4988 	case FLUSH_DELALLOC:
4989 	case FLUSH_DELALLOC_WAIT:
4990 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4991 				state == FLUSH_DELALLOC_WAIT);
4992 		break;
4993 	case ALLOC_CHUNK:
4994 		trans = btrfs_join_transaction(root);
4995 		if (IS_ERR(trans)) {
4996 			ret = PTR_ERR(trans);
4997 			break;
4998 		}
4999 		ret = do_chunk_alloc(trans, fs_info,
5000 				     btrfs_metadata_alloc_profile(fs_info),
5001 				     CHUNK_ALLOC_NO_FORCE);
5002 		btrfs_end_transaction(trans);
5003 		if (ret > 0 || ret == -ENOSPC)
5004 			ret = 0;
5005 		break;
5006 	case COMMIT_TRANS:
5007 		ret = may_commit_transaction(fs_info, space_info);
5008 		break;
5009 	default:
5010 		ret = -ENOSPC;
5011 		break;
5012 	}
5013 
5014 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5015 				ret);
5016 	return;
5017 }
5018 
5019 static inline u64
5020 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5021 				 struct btrfs_space_info *space_info,
5022 				 bool system_chunk)
5023 {
5024 	struct reserve_ticket *ticket;
5025 	u64 used;
5026 	u64 expected;
5027 	u64 to_reclaim = 0;
5028 
5029 	list_for_each_entry(ticket, &space_info->tickets, list)
5030 		to_reclaim += ticket->bytes;
5031 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5032 		to_reclaim += ticket->bytes;
5033 	if (to_reclaim)
5034 		return to_reclaim;
5035 
5036 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5037 	if (can_overcommit(fs_info, space_info, to_reclaim,
5038 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5039 		return 0;
5040 
5041 	used = btrfs_space_info_used(space_info, true);
5042 
5043 	if (can_overcommit(fs_info, space_info, SZ_1M,
5044 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5045 		expected = div_factor_fine(space_info->total_bytes, 95);
5046 	else
5047 		expected = div_factor_fine(space_info->total_bytes, 90);
5048 
5049 	if (used > expected)
5050 		to_reclaim = used - expected;
5051 	else
5052 		to_reclaim = 0;
5053 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5054 				     space_info->bytes_reserved);
5055 	return to_reclaim;
5056 }
5057 
5058 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5059 					struct btrfs_space_info *space_info,
5060 					u64 used, bool system_chunk)
5061 {
5062 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5063 
5064 	/* If we're just plain full then async reclaim just slows us down. */
5065 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5066 		return 0;
5067 
5068 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5069 					      system_chunk))
5070 		return 0;
5071 
5072 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5073 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5074 }
5075 
5076 static void wake_all_tickets(struct list_head *head)
5077 {
5078 	struct reserve_ticket *ticket;
5079 
5080 	while (!list_empty(head)) {
5081 		ticket = list_first_entry(head, struct reserve_ticket, list);
5082 		list_del_init(&ticket->list);
5083 		ticket->error = -ENOSPC;
5084 		wake_up(&ticket->wait);
5085 	}
5086 }
5087 
5088 /*
5089  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5090  * will loop and continuously try to flush as long as we are making progress.
5091  * We count progress as clearing off tickets each time we have to loop.
5092  */
5093 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5094 {
5095 	struct btrfs_fs_info *fs_info;
5096 	struct btrfs_space_info *space_info;
5097 	u64 to_reclaim;
5098 	int flush_state;
5099 	int commit_cycles = 0;
5100 	u64 last_tickets_id;
5101 
5102 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5103 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5104 
5105 	spin_lock(&space_info->lock);
5106 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5107 						      false);
5108 	if (!to_reclaim) {
5109 		space_info->flush = 0;
5110 		spin_unlock(&space_info->lock);
5111 		return;
5112 	}
5113 	last_tickets_id = space_info->tickets_id;
5114 	spin_unlock(&space_info->lock);
5115 
5116 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5117 	do {
5118 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5119 		spin_lock(&space_info->lock);
5120 		if (list_empty(&space_info->tickets)) {
5121 			space_info->flush = 0;
5122 			spin_unlock(&space_info->lock);
5123 			return;
5124 		}
5125 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5126 							      space_info,
5127 							      false);
5128 		if (last_tickets_id == space_info->tickets_id) {
5129 			flush_state++;
5130 		} else {
5131 			last_tickets_id = space_info->tickets_id;
5132 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5133 			if (commit_cycles)
5134 				commit_cycles--;
5135 		}
5136 
5137 		if (flush_state > COMMIT_TRANS) {
5138 			commit_cycles++;
5139 			if (commit_cycles > 2) {
5140 				wake_all_tickets(&space_info->tickets);
5141 				space_info->flush = 0;
5142 			} else {
5143 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5144 			}
5145 		}
5146 		spin_unlock(&space_info->lock);
5147 	} while (flush_state <= COMMIT_TRANS);
5148 }
5149 
5150 void btrfs_init_async_reclaim_work(struct work_struct *work)
5151 {
5152 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5153 }
5154 
5155 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5156 					    struct btrfs_space_info *space_info,
5157 					    struct reserve_ticket *ticket)
5158 {
5159 	u64 to_reclaim;
5160 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5161 
5162 	spin_lock(&space_info->lock);
5163 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5164 						      false);
5165 	if (!to_reclaim) {
5166 		spin_unlock(&space_info->lock);
5167 		return;
5168 	}
5169 	spin_unlock(&space_info->lock);
5170 
5171 	do {
5172 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5173 		flush_state++;
5174 		spin_lock(&space_info->lock);
5175 		if (ticket->bytes == 0) {
5176 			spin_unlock(&space_info->lock);
5177 			return;
5178 		}
5179 		spin_unlock(&space_info->lock);
5180 
5181 		/*
5182 		 * Priority flushers can't wait on delalloc without
5183 		 * deadlocking.
5184 		 */
5185 		if (flush_state == FLUSH_DELALLOC ||
5186 		    flush_state == FLUSH_DELALLOC_WAIT)
5187 			flush_state = ALLOC_CHUNK;
5188 	} while (flush_state < COMMIT_TRANS);
5189 }
5190 
5191 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5192 			       struct btrfs_space_info *space_info,
5193 			       struct reserve_ticket *ticket, u64 orig_bytes)
5194 
5195 {
5196 	DEFINE_WAIT(wait);
5197 	int ret = 0;
5198 
5199 	spin_lock(&space_info->lock);
5200 	while (ticket->bytes > 0 && ticket->error == 0) {
5201 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5202 		if (ret) {
5203 			ret = -EINTR;
5204 			break;
5205 		}
5206 		spin_unlock(&space_info->lock);
5207 
5208 		schedule();
5209 
5210 		finish_wait(&ticket->wait, &wait);
5211 		spin_lock(&space_info->lock);
5212 	}
5213 	if (!ret)
5214 		ret = ticket->error;
5215 	if (!list_empty(&ticket->list))
5216 		list_del_init(&ticket->list);
5217 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5218 		u64 num_bytes = orig_bytes - ticket->bytes;
5219 		space_info->bytes_may_use -= num_bytes;
5220 		trace_btrfs_space_reservation(fs_info, "space_info",
5221 					      space_info->flags, num_bytes, 0);
5222 	}
5223 	spin_unlock(&space_info->lock);
5224 
5225 	return ret;
5226 }
5227 
5228 /**
5229  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5230  * @root - the root we're allocating for
5231  * @space_info - the space info we want to allocate from
5232  * @orig_bytes - the number of bytes we want
5233  * @flush - whether or not we can flush to make our reservation
5234  *
5235  * This will reserve orig_bytes number of bytes from the space info associated
5236  * with the block_rsv.  If there is not enough space it will make an attempt to
5237  * flush out space to make room.  It will do this by flushing delalloc if
5238  * possible or committing the transaction.  If flush is 0 then no attempts to
5239  * regain reservations will be made and this will fail if there is not enough
5240  * space already.
5241  */
5242 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5243 				    struct btrfs_space_info *space_info,
5244 				    u64 orig_bytes,
5245 				    enum btrfs_reserve_flush_enum flush,
5246 				    bool system_chunk)
5247 {
5248 	struct reserve_ticket ticket;
5249 	u64 used;
5250 	int ret = 0;
5251 
5252 	ASSERT(orig_bytes);
5253 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5254 
5255 	spin_lock(&space_info->lock);
5256 	ret = -ENOSPC;
5257 	used = btrfs_space_info_used(space_info, true);
5258 
5259 	/*
5260 	 * If we have enough space then hooray, make our reservation and carry
5261 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5262 	 * If not things get more complicated.
5263 	 */
5264 	if (used + orig_bytes <= space_info->total_bytes) {
5265 		space_info->bytes_may_use += orig_bytes;
5266 		trace_btrfs_space_reservation(fs_info, "space_info",
5267 					      space_info->flags, orig_bytes, 1);
5268 		ret = 0;
5269 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5270 				  system_chunk)) {
5271 		space_info->bytes_may_use += orig_bytes;
5272 		trace_btrfs_space_reservation(fs_info, "space_info",
5273 					      space_info->flags, orig_bytes, 1);
5274 		ret = 0;
5275 	}
5276 
5277 	/*
5278 	 * If we couldn't make a reservation then setup our reservation ticket
5279 	 * and kick the async worker if it's not already running.
5280 	 *
5281 	 * If we are a priority flusher then we just need to add our ticket to
5282 	 * the list and we will do our own flushing further down.
5283 	 */
5284 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5285 		ticket.bytes = orig_bytes;
5286 		ticket.error = 0;
5287 		init_waitqueue_head(&ticket.wait);
5288 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5289 			list_add_tail(&ticket.list, &space_info->tickets);
5290 			if (!space_info->flush) {
5291 				space_info->flush = 1;
5292 				trace_btrfs_trigger_flush(fs_info,
5293 							  space_info->flags,
5294 							  orig_bytes, flush,
5295 							  "enospc");
5296 				queue_work(system_unbound_wq,
5297 					   &fs_info->async_reclaim_work);
5298 			}
5299 		} else {
5300 			list_add_tail(&ticket.list,
5301 				      &space_info->priority_tickets);
5302 		}
5303 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5304 		used += orig_bytes;
5305 		/*
5306 		 * We will do the space reservation dance during log replay,
5307 		 * which means we won't have fs_info->fs_root set, so don't do
5308 		 * the async reclaim as we will panic.
5309 		 */
5310 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5311 		    need_do_async_reclaim(fs_info, space_info,
5312 					  used, system_chunk) &&
5313 		    !work_busy(&fs_info->async_reclaim_work)) {
5314 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5315 						  orig_bytes, flush, "preempt");
5316 			queue_work(system_unbound_wq,
5317 				   &fs_info->async_reclaim_work);
5318 		}
5319 	}
5320 	spin_unlock(&space_info->lock);
5321 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5322 		return ret;
5323 
5324 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5325 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5326 					   orig_bytes);
5327 
5328 	ret = 0;
5329 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5330 	spin_lock(&space_info->lock);
5331 	if (ticket.bytes) {
5332 		if (ticket.bytes < orig_bytes) {
5333 			u64 num_bytes = orig_bytes - ticket.bytes;
5334 			space_info->bytes_may_use -= num_bytes;
5335 			trace_btrfs_space_reservation(fs_info, "space_info",
5336 						      space_info->flags,
5337 						      num_bytes, 0);
5338 
5339 		}
5340 		list_del_init(&ticket.list);
5341 		ret = -ENOSPC;
5342 	}
5343 	spin_unlock(&space_info->lock);
5344 	ASSERT(list_empty(&ticket.list));
5345 	return ret;
5346 }
5347 
5348 /**
5349  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5350  * @root - the root we're allocating for
5351  * @block_rsv - the block_rsv we're allocating for
5352  * @orig_bytes - the number of bytes we want
5353  * @flush - whether or not we can flush to make our reservation
5354  *
5355  * This will reserve orgi_bytes number of bytes from the space info associated
5356  * with the block_rsv.  If there is not enough space it will make an attempt to
5357  * flush out space to make room.  It will do this by flushing delalloc if
5358  * possible or committing the transaction.  If flush is 0 then no attempts to
5359  * regain reservations will be made and this will fail if there is not enough
5360  * space already.
5361  */
5362 static int reserve_metadata_bytes(struct btrfs_root *root,
5363 				  struct btrfs_block_rsv *block_rsv,
5364 				  u64 orig_bytes,
5365 				  enum btrfs_reserve_flush_enum flush)
5366 {
5367 	struct btrfs_fs_info *fs_info = root->fs_info;
5368 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5369 	int ret;
5370 	bool system_chunk = (root == fs_info->chunk_root);
5371 
5372 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5373 				       orig_bytes, flush, system_chunk);
5374 	if (ret == -ENOSPC &&
5375 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5376 		if (block_rsv != global_rsv &&
5377 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5378 			ret = 0;
5379 	}
5380 	if (ret == -ENOSPC) {
5381 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5382 					      block_rsv->space_info->flags,
5383 					      orig_bytes, 1);
5384 
5385 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5386 			dump_space_info(fs_info, block_rsv->space_info,
5387 					orig_bytes, 0);
5388 	}
5389 	return ret;
5390 }
5391 
5392 static struct btrfs_block_rsv *get_block_rsv(
5393 					const struct btrfs_trans_handle *trans,
5394 					const struct btrfs_root *root)
5395 {
5396 	struct btrfs_fs_info *fs_info = root->fs_info;
5397 	struct btrfs_block_rsv *block_rsv = NULL;
5398 
5399 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5400 	    (root == fs_info->csum_root && trans->adding_csums) ||
5401 	    (root == fs_info->uuid_root))
5402 		block_rsv = trans->block_rsv;
5403 
5404 	if (!block_rsv)
5405 		block_rsv = root->block_rsv;
5406 
5407 	if (!block_rsv)
5408 		block_rsv = &fs_info->empty_block_rsv;
5409 
5410 	return block_rsv;
5411 }
5412 
5413 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5414 			       u64 num_bytes)
5415 {
5416 	int ret = -ENOSPC;
5417 	spin_lock(&block_rsv->lock);
5418 	if (block_rsv->reserved >= num_bytes) {
5419 		block_rsv->reserved -= num_bytes;
5420 		if (block_rsv->reserved < block_rsv->size)
5421 			block_rsv->full = 0;
5422 		ret = 0;
5423 	}
5424 	spin_unlock(&block_rsv->lock);
5425 	return ret;
5426 }
5427 
5428 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5429 				u64 num_bytes, int update_size)
5430 {
5431 	spin_lock(&block_rsv->lock);
5432 	block_rsv->reserved += num_bytes;
5433 	if (update_size)
5434 		block_rsv->size += num_bytes;
5435 	else if (block_rsv->reserved >= block_rsv->size)
5436 		block_rsv->full = 1;
5437 	spin_unlock(&block_rsv->lock);
5438 }
5439 
5440 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5441 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5442 			     int min_factor)
5443 {
5444 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5445 	u64 min_bytes;
5446 
5447 	if (global_rsv->space_info != dest->space_info)
5448 		return -ENOSPC;
5449 
5450 	spin_lock(&global_rsv->lock);
5451 	min_bytes = div_factor(global_rsv->size, min_factor);
5452 	if (global_rsv->reserved < min_bytes + num_bytes) {
5453 		spin_unlock(&global_rsv->lock);
5454 		return -ENOSPC;
5455 	}
5456 	global_rsv->reserved -= num_bytes;
5457 	if (global_rsv->reserved < global_rsv->size)
5458 		global_rsv->full = 0;
5459 	spin_unlock(&global_rsv->lock);
5460 
5461 	block_rsv_add_bytes(dest, num_bytes, 1);
5462 	return 0;
5463 }
5464 
5465 /*
5466  * This is for space we already have accounted in space_info->bytes_may_use, so
5467  * basically when we're returning space from block_rsv's.
5468  */
5469 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5470 				     struct btrfs_space_info *space_info,
5471 				     u64 num_bytes)
5472 {
5473 	struct reserve_ticket *ticket;
5474 	struct list_head *head;
5475 	u64 used;
5476 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5477 	bool check_overcommit = false;
5478 
5479 	spin_lock(&space_info->lock);
5480 	head = &space_info->priority_tickets;
5481 
5482 	/*
5483 	 * If we are over our limit then we need to check and see if we can
5484 	 * overcommit, and if we can't then we just need to free up our space
5485 	 * and not satisfy any requests.
5486 	 */
5487 	used = btrfs_space_info_used(space_info, true);
5488 	if (used - num_bytes >= space_info->total_bytes)
5489 		check_overcommit = true;
5490 again:
5491 	while (!list_empty(head) && num_bytes) {
5492 		ticket = list_first_entry(head, struct reserve_ticket,
5493 					  list);
5494 		/*
5495 		 * We use 0 bytes because this space is already reserved, so
5496 		 * adding the ticket space would be a double count.
5497 		 */
5498 		if (check_overcommit &&
5499 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5500 			break;
5501 		if (num_bytes >= ticket->bytes) {
5502 			list_del_init(&ticket->list);
5503 			num_bytes -= ticket->bytes;
5504 			ticket->bytes = 0;
5505 			space_info->tickets_id++;
5506 			wake_up(&ticket->wait);
5507 		} else {
5508 			ticket->bytes -= num_bytes;
5509 			num_bytes = 0;
5510 		}
5511 	}
5512 
5513 	if (num_bytes && head == &space_info->priority_tickets) {
5514 		head = &space_info->tickets;
5515 		flush = BTRFS_RESERVE_FLUSH_ALL;
5516 		goto again;
5517 	}
5518 	space_info->bytes_may_use -= num_bytes;
5519 	trace_btrfs_space_reservation(fs_info, "space_info",
5520 				      space_info->flags, num_bytes, 0);
5521 	spin_unlock(&space_info->lock);
5522 }
5523 
5524 /*
5525  * This is for newly allocated space that isn't accounted in
5526  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5527  * we use this helper.
5528  */
5529 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5530 				     struct btrfs_space_info *space_info,
5531 				     u64 num_bytes)
5532 {
5533 	struct reserve_ticket *ticket;
5534 	struct list_head *head = &space_info->priority_tickets;
5535 
5536 again:
5537 	while (!list_empty(head) && num_bytes) {
5538 		ticket = list_first_entry(head, struct reserve_ticket,
5539 					  list);
5540 		if (num_bytes >= ticket->bytes) {
5541 			trace_btrfs_space_reservation(fs_info, "space_info",
5542 						      space_info->flags,
5543 						      ticket->bytes, 1);
5544 			list_del_init(&ticket->list);
5545 			num_bytes -= ticket->bytes;
5546 			space_info->bytes_may_use += ticket->bytes;
5547 			ticket->bytes = 0;
5548 			space_info->tickets_id++;
5549 			wake_up(&ticket->wait);
5550 		} else {
5551 			trace_btrfs_space_reservation(fs_info, "space_info",
5552 						      space_info->flags,
5553 						      num_bytes, 1);
5554 			space_info->bytes_may_use += num_bytes;
5555 			ticket->bytes -= num_bytes;
5556 			num_bytes = 0;
5557 		}
5558 	}
5559 
5560 	if (num_bytes && head == &space_info->priority_tickets) {
5561 		head = &space_info->tickets;
5562 		goto again;
5563 	}
5564 }
5565 
5566 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5567 				    struct btrfs_block_rsv *block_rsv,
5568 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5569 				    u64 *qgroup_to_release_ret)
5570 {
5571 	struct btrfs_space_info *space_info = block_rsv->space_info;
5572 	u64 qgroup_to_release = 0;
5573 	u64 ret;
5574 
5575 	spin_lock(&block_rsv->lock);
5576 	if (num_bytes == (u64)-1) {
5577 		num_bytes = block_rsv->size;
5578 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5579 	}
5580 	block_rsv->size -= num_bytes;
5581 	if (block_rsv->reserved >= block_rsv->size) {
5582 		num_bytes = block_rsv->reserved - block_rsv->size;
5583 		block_rsv->reserved = block_rsv->size;
5584 		block_rsv->full = 1;
5585 	} else {
5586 		num_bytes = 0;
5587 	}
5588 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5589 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5590 				    block_rsv->qgroup_rsv_size;
5591 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5592 	} else {
5593 		qgroup_to_release = 0;
5594 	}
5595 	spin_unlock(&block_rsv->lock);
5596 
5597 	ret = num_bytes;
5598 	if (num_bytes > 0) {
5599 		if (dest) {
5600 			spin_lock(&dest->lock);
5601 			if (!dest->full) {
5602 				u64 bytes_to_add;
5603 
5604 				bytes_to_add = dest->size - dest->reserved;
5605 				bytes_to_add = min(num_bytes, bytes_to_add);
5606 				dest->reserved += bytes_to_add;
5607 				if (dest->reserved >= dest->size)
5608 					dest->full = 1;
5609 				num_bytes -= bytes_to_add;
5610 			}
5611 			spin_unlock(&dest->lock);
5612 		}
5613 		if (num_bytes)
5614 			space_info_add_old_bytes(fs_info, space_info,
5615 						 num_bytes);
5616 	}
5617 	if (qgroup_to_release_ret)
5618 		*qgroup_to_release_ret = qgroup_to_release;
5619 	return ret;
5620 }
5621 
5622 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5623 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5624 			    int update_size)
5625 {
5626 	int ret;
5627 
5628 	ret = block_rsv_use_bytes(src, num_bytes);
5629 	if (ret)
5630 		return ret;
5631 
5632 	block_rsv_add_bytes(dst, num_bytes, update_size);
5633 	return 0;
5634 }
5635 
5636 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5637 {
5638 	memset(rsv, 0, sizeof(*rsv));
5639 	spin_lock_init(&rsv->lock);
5640 	rsv->type = type;
5641 }
5642 
5643 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5644 				   struct btrfs_block_rsv *rsv,
5645 				   unsigned short type)
5646 {
5647 	btrfs_init_block_rsv(rsv, type);
5648 	rsv->space_info = __find_space_info(fs_info,
5649 					    BTRFS_BLOCK_GROUP_METADATA);
5650 }
5651 
5652 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5653 					      unsigned short type)
5654 {
5655 	struct btrfs_block_rsv *block_rsv;
5656 
5657 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5658 	if (!block_rsv)
5659 		return NULL;
5660 
5661 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5662 	return block_rsv;
5663 }
5664 
5665 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5666 			  struct btrfs_block_rsv *rsv)
5667 {
5668 	if (!rsv)
5669 		return;
5670 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5671 	kfree(rsv);
5672 }
5673 
5674 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5675 {
5676 	kfree(rsv);
5677 }
5678 
5679 int btrfs_block_rsv_add(struct btrfs_root *root,
5680 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5681 			enum btrfs_reserve_flush_enum flush)
5682 {
5683 	int ret;
5684 
5685 	if (num_bytes == 0)
5686 		return 0;
5687 
5688 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5689 	if (!ret) {
5690 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5691 		return 0;
5692 	}
5693 
5694 	return ret;
5695 }
5696 
5697 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5698 {
5699 	u64 num_bytes = 0;
5700 	int ret = -ENOSPC;
5701 
5702 	if (!block_rsv)
5703 		return 0;
5704 
5705 	spin_lock(&block_rsv->lock);
5706 	num_bytes = div_factor(block_rsv->size, min_factor);
5707 	if (block_rsv->reserved >= num_bytes)
5708 		ret = 0;
5709 	spin_unlock(&block_rsv->lock);
5710 
5711 	return ret;
5712 }
5713 
5714 int btrfs_block_rsv_refill(struct btrfs_root *root,
5715 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5716 			   enum btrfs_reserve_flush_enum flush)
5717 {
5718 	u64 num_bytes = 0;
5719 	int ret = -ENOSPC;
5720 
5721 	if (!block_rsv)
5722 		return 0;
5723 
5724 	spin_lock(&block_rsv->lock);
5725 	num_bytes = min_reserved;
5726 	if (block_rsv->reserved >= num_bytes)
5727 		ret = 0;
5728 	else
5729 		num_bytes -= block_rsv->reserved;
5730 	spin_unlock(&block_rsv->lock);
5731 
5732 	if (!ret)
5733 		return 0;
5734 
5735 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5736 	if (!ret) {
5737 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5738 		return 0;
5739 	}
5740 
5741 	return ret;
5742 }
5743 
5744 /**
5745  * btrfs_inode_rsv_refill - refill the inode block rsv.
5746  * @inode - the inode we are refilling.
5747  * @flush - the flusing restriction.
5748  *
5749  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5750  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5751  * or return if we already have enough space.  This will also handle the resreve
5752  * tracepoint for the reserved amount.
5753  */
5754 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5755 				  enum btrfs_reserve_flush_enum flush)
5756 {
5757 	struct btrfs_root *root = inode->root;
5758 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5759 	u64 num_bytes = 0;
5760 	u64 qgroup_num_bytes = 0;
5761 	int ret = -ENOSPC;
5762 
5763 	spin_lock(&block_rsv->lock);
5764 	if (block_rsv->reserved < block_rsv->size)
5765 		num_bytes = block_rsv->size - block_rsv->reserved;
5766 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5767 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5768 				   block_rsv->qgroup_rsv_reserved;
5769 	spin_unlock(&block_rsv->lock);
5770 
5771 	if (num_bytes == 0)
5772 		return 0;
5773 
5774 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5775 	if (ret)
5776 		return ret;
5777 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5778 	if (!ret) {
5779 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5780 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5781 					      btrfs_ino(inode), num_bytes, 1);
5782 
5783 		/* Don't forget to increase qgroup_rsv_reserved */
5784 		spin_lock(&block_rsv->lock);
5785 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5786 		spin_unlock(&block_rsv->lock);
5787 	} else
5788 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5789 	return ret;
5790 }
5791 
5792 /**
5793  * btrfs_inode_rsv_release - release any excessive reservation.
5794  * @inode - the inode we need to release from.
5795  * @qgroup_free - free or convert qgroup meta.
5796  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5797  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5798  *   @qgroup_free is true for error handling, and false for normal release.
5799  *
5800  * This is the same as btrfs_block_rsv_release, except that it handles the
5801  * tracepoint for the reservation.
5802  */
5803 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5804 {
5805 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5806 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5807 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5808 	u64 released = 0;
5809 	u64 qgroup_to_release = 0;
5810 
5811 	/*
5812 	 * Since we statically set the block_rsv->size we just want to say we
5813 	 * are releasing 0 bytes, and then we'll just get the reservation over
5814 	 * the size free'd.
5815 	 */
5816 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5817 					   &qgroup_to_release);
5818 	if (released > 0)
5819 		trace_btrfs_space_reservation(fs_info, "delalloc",
5820 					      btrfs_ino(inode), released, 0);
5821 	if (qgroup_free)
5822 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5823 	else
5824 		btrfs_qgroup_convert_reserved_meta(inode->root,
5825 						   qgroup_to_release);
5826 }
5827 
5828 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5829 			     struct btrfs_block_rsv *block_rsv,
5830 			     u64 num_bytes)
5831 {
5832 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5833 
5834 	if (global_rsv == block_rsv ||
5835 	    block_rsv->space_info != global_rsv->space_info)
5836 		global_rsv = NULL;
5837 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5838 }
5839 
5840 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5841 {
5842 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5843 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5844 	u64 num_bytes;
5845 
5846 	/*
5847 	 * The global block rsv is based on the size of the extent tree, the
5848 	 * checksum tree and the root tree.  If the fs is empty we want to set
5849 	 * it to a minimal amount for safety.
5850 	 */
5851 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5852 		btrfs_root_used(&fs_info->csum_root->root_item) +
5853 		btrfs_root_used(&fs_info->tree_root->root_item);
5854 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5855 
5856 	spin_lock(&sinfo->lock);
5857 	spin_lock(&block_rsv->lock);
5858 
5859 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5860 
5861 	if (block_rsv->reserved < block_rsv->size) {
5862 		num_bytes = btrfs_space_info_used(sinfo, true);
5863 		if (sinfo->total_bytes > num_bytes) {
5864 			num_bytes = sinfo->total_bytes - num_bytes;
5865 			num_bytes = min(num_bytes,
5866 					block_rsv->size - block_rsv->reserved);
5867 			block_rsv->reserved += num_bytes;
5868 			sinfo->bytes_may_use += num_bytes;
5869 			trace_btrfs_space_reservation(fs_info, "space_info",
5870 						      sinfo->flags, num_bytes,
5871 						      1);
5872 		}
5873 	} else if (block_rsv->reserved > block_rsv->size) {
5874 		num_bytes = block_rsv->reserved - block_rsv->size;
5875 		sinfo->bytes_may_use -= num_bytes;
5876 		trace_btrfs_space_reservation(fs_info, "space_info",
5877 				      sinfo->flags, num_bytes, 0);
5878 		block_rsv->reserved = block_rsv->size;
5879 	}
5880 
5881 	if (block_rsv->reserved == block_rsv->size)
5882 		block_rsv->full = 1;
5883 	else
5884 		block_rsv->full = 0;
5885 
5886 	spin_unlock(&block_rsv->lock);
5887 	spin_unlock(&sinfo->lock);
5888 }
5889 
5890 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5891 {
5892 	struct btrfs_space_info *space_info;
5893 
5894 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5895 	fs_info->chunk_block_rsv.space_info = space_info;
5896 
5897 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5898 	fs_info->global_block_rsv.space_info = space_info;
5899 	fs_info->trans_block_rsv.space_info = space_info;
5900 	fs_info->empty_block_rsv.space_info = space_info;
5901 	fs_info->delayed_block_rsv.space_info = space_info;
5902 
5903 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5904 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5905 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5906 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5907 	if (fs_info->quota_root)
5908 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5909 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5910 
5911 	update_global_block_rsv(fs_info);
5912 }
5913 
5914 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5915 {
5916 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5917 				(u64)-1, NULL);
5918 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5919 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5920 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5921 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5922 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5923 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5924 }
5925 
5926 
5927 /*
5928  * To be called after all the new block groups attached to the transaction
5929  * handle have been created (btrfs_create_pending_block_groups()).
5930  */
5931 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5932 {
5933 	struct btrfs_fs_info *fs_info = trans->fs_info;
5934 
5935 	if (!trans->chunk_bytes_reserved)
5936 		return;
5937 
5938 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5939 
5940 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5941 				trans->chunk_bytes_reserved, NULL);
5942 	trans->chunk_bytes_reserved = 0;
5943 }
5944 
5945 /* Can only return 0 or -ENOSPC */
5946 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5947 				  struct btrfs_inode *inode)
5948 {
5949 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5950 	struct btrfs_root *root = inode->root;
5951 	/*
5952 	 * We always use trans->block_rsv here as we will have reserved space
5953 	 * for our orphan when starting the transaction, using get_block_rsv()
5954 	 * here will sometimes make us choose the wrong block rsv as we could be
5955 	 * doing a reloc inode for a non refcounted root.
5956 	 */
5957 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5958 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5959 
5960 	/*
5961 	 * We need to hold space in order to delete our orphan item once we've
5962 	 * added it, so this takes the reservation so we can release it later
5963 	 * when we are truly done with the orphan item.
5964 	 */
5965 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5966 
5967 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5968 			num_bytes, 1);
5969 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5970 }
5971 
5972 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5973 {
5974 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5975 	struct btrfs_root *root = inode->root;
5976 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5977 
5978 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5979 			num_bytes, 0);
5980 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5981 }
5982 
5983 /*
5984  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5985  * root: the root of the parent directory
5986  * rsv: block reservation
5987  * items: the number of items that we need do reservation
5988  * qgroup_reserved: used to return the reserved size in qgroup
5989  *
5990  * This function is used to reserve the space for snapshot/subvolume
5991  * creation and deletion. Those operations are different with the
5992  * common file/directory operations, they change two fs/file trees
5993  * and root tree, the number of items that the qgroup reserves is
5994  * different with the free space reservation. So we can not use
5995  * the space reservation mechanism in start_transaction().
5996  */
5997 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5998 				     struct btrfs_block_rsv *rsv,
5999 				     int items,
6000 				     u64 *qgroup_reserved,
6001 				     bool use_global_rsv)
6002 {
6003 	u64 num_bytes;
6004 	int ret;
6005 	struct btrfs_fs_info *fs_info = root->fs_info;
6006 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6007 
6008 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6009 		/* One for parent inode, two for dir entries */
6010 		num_bytes = 3 * fs_info->nodesize;
6011 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6012 		if (ret)
6013 			return ret;
6014 	} else {
6015 		num_bytes = 0;
6016 	}
6017 
6018 	*qgroup_reserved = num_bytes;
6019 
6020 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6021 	rsv->space_info = __find_space_info(fs_info,
6022 					    BTRFS_BLOCK_GROUP_METADATA);
6023 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6024 				  BTRFS_RESERVE_FLUSH_ALL);
6025 
6026 	if (ret == -ENOSPC && use_global_rsv)
6027 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6028 
6029 	if (ret && *qgroup_reserved)
6030 		btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6031 
6032 	return ret;
6033 }
6034 
6035 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6036 				      struct btrfs_block_rsv *rsv)
6037 {
6038 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6039 }
6040 
6041 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6042 						 struct btrfs_inode *inode)
6043 {
6044 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6045 	u64 reserve_size = 0;
6046 	u64 qgroup_rsv_size = 0;
6047 	u64 csum_leaves;
6048 	unsigned outstanding_extents;
6049 
6050 	lockdep_assert_held(&inode->lock);
6051 	outstanding_extents = inode->outstanding_extents;
6052 	if (outstanding_extents)
6053 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6054 						outstanding_extents + 1);
6055 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6056 						 inode->csum_bytes);
6057 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6058 						       csum_leaves);
6059 	/*
6060 	 * For qgroup rsv, the calculation is very simple:
6061 	 * account one nodesize for each outstanding extent
6062 	 *
6063 	 * This is overestimating in most cases.
6064 	 */
6065 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6066 
6067 	spin_lock(&block_rsv->lock);
6068 	block_rsv->size = reserve_size;
6069 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6070 	spin_unlock(&block_rsv->lock);
6071 }
6072 
6073 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6074 {
6075 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6076 	unsigned nr_extents;
6077 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6078 	int ret = 0;
6079 	bool delalloc_lock = true;
6080 
6081 	/* If we are a free space inode we need to not flush since we will be in
6082 	 * the middle of a transaction commit.  We also don't need the delalloc
6083 	 * mutex since we won't race with anybody.  We need this mostly to make
6084 	 * lockdep shut its filthy mouth.
6085 	 *
6086 	 * If we have a transaction open (can happen if we call truncate_block
6087 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6088 	 */
6089 	if (btrfs_is_free_space_inode(inode)) {
6090 		flush = BTRFS_RESERVE_NO_FLUSH;
6091 		delalloc_lock = false;
6092 	} else {
6093 		if (current->journal_info)
6094 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6095 
6096 		if (btrfs_transaction_in_commit(fs_info))
6097 			schedule_timeout(1);
6098 	}
6099 
6100 	if (delalloc_lock)
6101 		mutex_lock(&inode->delalloc_mutex);
6102 
6103 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6104 
6105 	/* Add our new extents and calculate the new rsv size. */
6106 	spin_lock(&inode->lock);
6107 	nr_extents = count_max_extents(num_bytes);
6108 	btrfs_mod_outstanding_extents(inode, nr_extents);
6109 	inode->csum_bytes += num_bytes;
6110 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6111 	spin_unlock(&inode->lock);
6112 
6113 	ret = btrfs_inode_rsv_refill(inode, flush);
6114 	if (unlikely(ret))
6115 		goto out_fail;
6116 
6117 	if (delalloc_lock)
6118 		mutex_unlock(&inode->delalloc_mutex);
6119 	return 0;
6120 
6121 out_fail:
6122 	spin_lock(&inode->lock);
6123 	nr_extents = count_max_extents(num_bytes);
6124 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6125 	inode->csum_bytes -= num_bytes;
6126 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6127 	spin_unlock(&inode->lock);
6128 
6129 	btrfs_inode_rsv_release(inode, true);
6130 	if (delalloc_lock)
6131 		mutex_unlock(&inode->delalloc_mutex);
6132 	return ret;
6133 }
6134 
6135 /**
6136  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6137  * @inode: the inode to release the reservation for.
6138  * @num_bytes: the number of bytes we are releasing.
6139  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6140  *
6141  * This will release the metadata reservation for an inode.  This can be called
6142  * once we complete IO for a given set of bytes to release their metadata
6143  * reservations, or on error for the same reason.
6144  */
6145 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6146 				     bool qgroup_free)
6147 {
6148 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6149 
6150 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6151 	spin_lock(&inode->lock);
6152 	inode->csum_bytes -= num_bytes;
6153 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6154 	spin_unlock(&inode->lock);
6155 
6156 	if (btrfs_is_testing(fs_info))
6157 		return;
6158 
6159 	btrfs_inode_rsv_release(inode, qgroup_free);
6160 }
6161 
6162 /**
6163  * btrfs_delalloc_release_extents - release our outstanding_extents
6164  * @inode: the inode to balance the reservation for.
6165  * @num_bytes: the number of bytes we originally reserved with
6166  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6167  *
6168  * When we reserve space we increase outstanding_extents for the extents we may
6169  * add.  Once we've set the range as delalloc or created our ordered extents we
6170  * have outstanding_extents to track the real usage, so we use this to free our
6171  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6172  * with btrfs_delalloc_reserve_metadata.
6173  */
6174 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6175 				    bool qgroup_free)
6176 {
6177 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6178 	unsigned num_extents;
6179 
6180 	spin_lock(&inode->lock);
6181 	num_extents = count_max_extents(num_bytes);
6182 	btrfs_mod_outstanding_extents(inode, -num_extents);
6183 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6184 	spin_unlock(&inode->lock);
6185 
6186 	if (btrfs_is_testing(fs_info))
6187 		return;
6188 
6189 	btrfs_inode_rsv_release(inode, qgroup_free);
6190 }
6191 
6192 /**
6193  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6194  * delalloc
6195  * @inode: inode we're writing to
6196  * @start: start range we are writing to
6197  * @len: how long the range we are writing to
6198  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6199  * 	      current reservation.
6200  *
6201  * This will do the following things
6202  *
6203  * o reserve space in data space info for num bytes
6204  *   and reserve precious corresponding qgroup space
6205  *   (Done in check_data_free_space)
6206  *
6207  * o reserve space for metadata space, based on the number of outstanding
6208  *   extents and how much csums will be needed
6209  *   also reserve metadata space in a per root over-reserve method.
6210  * o add to the inodes->delalloc_bytes
6211  * o add it to the fs_info's delalloc inodes list.
6212  *   (Above 3 all done in delalloc_reserve_metadata)
6213  *
6214  * Return 0 for success
6215  * Return <0 for error(-ENOSPC or -EQUOT)
6216  */
6217 int btrfs_delalloc_reserve_space(struct inode *inode,
6218 			struct extent_changeset **reserved, u64 start, u64 len)
6219 {
6220 	int ret;
6221 
6222 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6223 	if (ret < 0)
6224 		return ret;
6225 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6226 	if (ret < 0)
6227 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6228 	return ret;
6229 }
6230 
6231 /**
6232  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6233  * @inode: inode we're releasing space for
6234  * @start: start position of the space already reserved
6235  * @len: the len of the space already reserved
6236  * @release_bytes: the len of the space we consumed or didn't use
6237  *
6238  * This function will release the metadata space that was not used and will
6239  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6240  * list if there are no delalloc bytes left.
6241  * Also it will handle the qgroup reserved space.
6242  */
6243 void btrfs_delalloc_release_space(struct inode *inode,
6244 				  struct extent_changeset *reserved,
6245 				  u64 start, u64 len, bool qgroup_free)
6246 {
6247 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6248 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6249 }
6250 
6251 static int update_block_group(struct btrfs_trans_handle *trans,
6252 			      struct btrfs_fs_info *info, u64 bytenr,
6253 			      u64 num_bytes, int alloc)
6254 {
6255 	struct btrfs_block_group_cache *cache = NULL;
6256 	u64 total = num_bytes;
6257 	u64 old_val;
6258 	u64 byte_in_group;
6259 	int factor;
6260 
6261 	/* block accounting for super block */
6262 	spin_lock(&info->delalloc_root_lock);
6263 	old_val = btrfs_super_bytes_used(info->super_copy);
6264 	if (alloc)
6265 		old_val += num_bytes;
6266 	else
6267 		old_val -= num_bytes;
6268 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6269 	spin_unlock(&info->delalloc_root_lock);
6270 
6271 	while (total) {
6272 		cache = btrfs_lookup_block_group(info, bytenr);
6273 		if (!cache)
6274 			return -ENOENT;
6275 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6276 				    BTRFS_BLOCK_GROUP_RAID1 |
6277 				    BTRFS_BLOCK_GROUP_RAID10))
6278 			factor = 2;
6279 		else
6280 			factor = 1;
6281 		/*
6282 		 * If this block group has free space cache written out, we
6283 		 * need to make sure to load it if we are removing space.  This
6284 		 * is because we need the unpinning stage to actually add the
6285 		 * space back to the block group, otherwise we will leak space.
6286 		 */
6287 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6288 			cache_block_group(cache, 1);
6289 
6290 		byte_in_group = bytenr - cache->key.objectid;
6291 		WARN_ON(byte_in_group > cache->key.offset);
6292 
6293 		spin_lock(&cache->space_info->lock);
6294 		spin_lock(&cache->lock);
6295 
6296 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6297 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6298 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6299 
6300 		old_val = btrfs_block_group_used(&cache->item);
6301 		num_bytes = min(total, cache->key.offset - byte_in_group);
6302 		if (alloc) {
6303 			old_val += num_bytes;
6304 			btrfs_set_block_group_used(&cache->item, old_val);
6305 			cache->reserved -= num_bytes;
6306 			cache->space_info->bytes_reserved -= num_bytes;
6307 			cache->space_info->bytes_used += num_bytes;
6308 			cache->space_info->disk_used += num_bytes * factor;
6309 			spin_unlock(&cache->lock);
6310 			spin_unlock(&cache->space_info->lock);
6311 		} else {
6312 			old_val -= num_bytes;
6313 			btrfs_set_block_group_used(&cache->item, old_val);
6314 			cache->pinned += num_bytes;
6315 			cache->space_info->bytes_pinned += num_bytes;
6316 			cache->space_info->bytes_used -= num_bytes;
6317 			cache->space_info->disk_used -= num_bytes * factor;
6318 			spin_unlock(&cache->lock);
6319 			spin_unlock(&cache->space_info->lock);
6320 
6321 			trace_btrfs_space_reservation(info, "pinned",
6322 						      cache->space_info->flags,
6323 						      num_bytes, 1);
6324 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6325 					   num_bytes);
6326 			set_extent_dirty(info->pinned_extents,
6327 					 bytenr, bytenr + num_bytes - 1,
6328 					 GFP_NOFS | __GFP_NOFAIL);
6329 		}
6330 
6331 		spin_lock(&trans->transaction->dirty_bgs_lock);
6332 		if (list_empty(&cache->dirty_list)) {
6333 			list_add_tail(&cache->dirty_list,
6334 				      &trans->transaction->dirty_bgs);
6335 				trans->transaction->num_dirty_bgs++;
6336 			btrfs_get_block_group(cache);
6337 		}
6338 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6339 
6340 		/*
6341 		 * No longer have used bytes in this block group, queue it for
6342 		 * deletion. We do this after adding the block group to the
6343 		 * dirty list to avoid races between cleaner kthread and space
6344 		 * cache writeout.
6345 		 */
6346 		if (!alloc && old_val == 0) {
6347 			spin_lock(&info->unused_bgs_lock);
6348 			if (list_empty(&cache->bg_list)) {
6349 				btrfs_get_block_group(cache);
6350 				list_add_tail(&cache->bg_list,
6351 					      &info->unused_bgs);
6352 			}
6353 			spin_unlock(&info->unused_bgs_lock);
6354 		}
6355 
6356 		btrfs_put_block_group(cache);
6357 		total -= num_bytes;
6358 		bytenr += num_bytes;
6359 	}
6360 	return 0;
6361 }
6362 
6363 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6364 {
6365 	struct btrfs_block_group_cache *cache;
6366 	u64 bytenr;
6367 
6368 	spin_lock(&fs_info->block_group_cache_lock);
6369 	bytenr = fs_info->first_logical_byte;
6370 	spin_unlock(&fs_info->block_group_cache_lock);
6371 
6372 	if (bytenr < (u64)-1)
6373 		return bytenr;
6374 
6375 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6376 	if (!cache)
6377 		return 0;
6378 
6379 	bytenr = cache->key.objectid;
6380 	btrfs_put_block_group(cache);
6381 
6382 	return bytenr;
6383 }
6384 
6385 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6386 			   struct btrfs_block_group_cache *cache,
6387 			   u64 bytenr, u64 num_bytes, int reserved)
6388 {
6389 	spin_lock(&cache->space_info->lock);
6390 	spin_lock(&cache->lock);
6391 	cache->pinned += num_bytes;
6392 	cache->space_info->bytes_pinned += num_bytes;
6393 	if (reserved) {
6394 		cache->reserved -= num_bytes;
6395 		cache->space_info->bytes_reserved -= num_bytes;
6396 	}
6397 	spin_unlock(&cache->lock);
6398 	spin_unlock(&cache->space_info->lock);
6399 
6400 	trace_btrfs_space_reservation(fs_info, "pinned",
6401 				      cache->space_info->flags, num_bytes, 1);
6402 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6403 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6404 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6405 	return 0;
6406 }
6407 
6408 /*
6409  * this function must be called within transaction
6410  */
6411 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6412 		     u64 bytenr, u64 num_bytes, int reserved)
6413 {
6414 	struct btrfs_block_group_cache *cache;
6415 
6416 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6417 	BUG_ON(!cache); /* Logic error */
6418 
6419 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6420 
6421 	btrfs_put_block_group(cache);
6422 	return 0;
6423 }
6424 
6425 /*
6426  * this function must be called within transaction
6427  */
6428 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6429 				    u64 bytenr, u64 num_bytes)
6430 {
6431 	struct btrfs_block_group_cache *cache;
6432 	int ret;
6433 
6434 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6435 	if (!cache)
6436 		return -EINVAL;
6437 
6438 	/*
6439 	 * pull in the free space cache (if any) so that our pin
6440 	 * removes the free space from the cache.  We have load_only set
6441 	 * to one because the slow code to read in the free extents does check
6442 	 * the pinned extents.
6443 	 */
6444 	cache_block_group(cache, 1);
6445 
6446 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6447 
6448 	/* remove us from the free space cache (if we're there at all) */
6449 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6450 	btrfs_put_block_group(cache);
6451 	return ret;
6452 }
6453 
6454 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6455 				   u64 start, u64 num_bytes)
6456 {
6457 	int ret;
6458 	struct btrfs_block_group_cache *block_group;
6459 	struct btrfs_caching_control *caching_ctl;
6460 
6461 	block_group = btrfs_lookup_block_group(fs_info, start);
6462 	if (!block_group)
6463 		return -EINVAL;
6464 
6465 	cache_block_group(block_group, 0);
6466 	caching_ctl = get_caching_control(block_group);
6467 
6468 	if (!caching_ctl) {
6469 		/* Logic error */
6470 		BUG_ON(!block_group_cache_done(block_group));
6471 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6472 	} else {
6473 		mutex_lock(&caching_ctl->mutex);
6474 
6475 		if (start >= caching_ctl->progress) {
6476 			ret = add_excluded_extent(fs_info, start, num_bytes);
6477 		} else if (start + num_bytes <= caching_ctl->progress) {
6478 			ret = btrfs_remove_free_space(block_group,
6479 						      start, num_bytes);
6480 		} else {
6481 			num_bytes = caching_ctl->progress - start;
6482 			ret = btrfs_remove_free_space(block_group,
6483 						      start, num_bytes);
6484 			if (ret)
6485 				goto out_lock;
6486 
6487 			num_bytes = (start + num_bytes) -
6488 				caching_ctl->progress;
6489 			start = caching_ctl->progress;
6490 			ret = add_excluded_extent(fs_info, start, num_bytes);
6491 		}
6492 out_lock:
6493 		mutex_unlock(&caching_ctl->mutex);
6494 		put_caching_control(caching_ctl);
6495 	}
6496 	btrfs_put_block_group(block_group);
6497 	return ret;
6498 }
6499 
6500 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6501 				 struct extent_buffer *eb)
6502 {
6503 	struct btrfs_file_extent_item *item;
6504 	struct btrfs_key key;
6505 	int found_type;
6506 	int i;
6507 
6508 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6509 		return 0;
6510 
6511 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6512 		btrfs_item_key_to_cpu(eb, &key, i);
6513 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6514 			continue;
6515 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6516 		found_type = btrfs_file_extent_type(eb, item);
6517 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6518 			continue;
6519 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6520 			continue;
6521 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6522 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6523 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6524 	}
6525 
6526 	return 0;
6527 }
6528 
6529 static void
6530 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6531 {
6532 	atomic_inc(&bg->reservations);
6533 }
6534 
6535 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6536 					const u64 start)
6537 {
6538 	struct btrfs_block_group_cache *bg;
6539 
6540 	bg = btrfs_lookup_block_group(fs_info, start);
6541 	ASSERT(bg);
6542 	if (atomic_dec_and_test(&bg->reservations))
6543 		wake_up_var(&bg->reservations);
6544 	btrfs_put_block_group(bg);
6545 }
6546 
6547 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6548 {
6549 	struct btrfs_space_info *space_info = bg->space_info;
6550 
6551 	ASSERT(bg->ro);
6552 
6553 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6554 		return;
6555 
6556 	/*
6557 	 * Our block group is read only but before we set it to read only,
6558 	 * some task might have had allocated an extent from it already, but it
6559 	 * has not yet created a respective ordered extent (and added it to a
6560 	 * root's list of ordered extents).
6561 	 * Therefore wait for any task currently allocating extents, since the
6562 	 * block group's reservations counter is incremented while a read lock
6563 	 * on the groups' semaphore is held and decremented after releasing
6564 	 * the read access on that semaphore and creating the ordered extent.
6565 	 */
6566 	down_write(&space_info->groups_sem);
6567 	up_write(&space_info->groups_sem);
6568 
6569 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6570 }
6571 
6572 /**
6573  * btrfs_add_reserved_bytes - update the block_group and space info counters
6574  * @cache:	The cache we are manipulating
6575  * @ram_bytes:  The number of bytes of file content, and will be same to
6576  *              @num_bytes except for the compress path.
6577  * @num_bytes:	The number of bytes in question
6578  * @delalloc:   The blocks are allocated for the delalloc write
6579  *
6580  * This is called by the allocator when it reserves space. If this is a
6581  * reservation and the block group has become read only we cannot make the
6582  * reservation and return -EAGAIN, otherwise this function always succeeds.
6583  */
6584 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6585 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6586 {
6587 	struct btrfs_space_info *space_info = cache->space_info;
6588 	int ret = 0;
6589 
6590 	spin_lock(&space_info->lock);
6591 	spin_lock(&cache->lock);
6592 	if (cache->ro) {
6593 		ret = -EAGAIN;
6594 	} else {
6595 		cache->reserved += num_bytes;
6596 		space_info->bytes_reserved += num_bytes;
6597 
6598 		trace_btrfs_space_reservation(cache->fs_info,
6599 				"space_info", space_info->flags,
6600 				ram_bytes, 0);
6601 		space_info->bytes_may_use -= ram_bytes;
6602 		if (delalloc)
6603 			cache->delalloc_bytes += num_bytes;
6604 	}
6605 	spin_unlock(&cache->lock);
6606 	spin_unlock(&space_info->lock);
6607 	return ret;
6608 }
6609 
6610 /**
6611  * btrfs_free_reserved_bytes - update the block_group and space info counters
6612  * @cache:      The cache we are manipulating
6613  * @num_bytes:  The number of bytes in question
6614  * @delalloc:   The blocks are allocated for the delalloc write
6615  *
6616  * This is called by somebody who is freeing space that was never actually used
6617  * on disk.  For example if you reserve some space for a new leaf in transaction
6618  * A and before transaction A commits you free that leaf, you call this with
6619  * reserve set to 0 in order to clear the reservation.
6620  */
6621 
6622 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6623 				     u64 num_bytes, int delalloc)
6624 {
6625 	struct btrfs_space_info *space_info = cache->space_info;
6626 	int ret = 0;
6627 
6628 	spin_lock(&space_info->lock);
6629 	spin_lock(&cache->lock);
6630 	if (cache->ro)
6631 		space_info->bytes_readonly += num_bytes;
6632 	cache->reserved -= num_bytes;
6633 	space_info->bytes_reserved -= num_bytes;
6634 
6635 	if (delalloc)
6636 		cache->delalloc_bytes -= num_bytes;
6637 	spin_unlock(&cache->lock);
6638 	spin_unlock(&space_info->lock);
6639 	return ret;
6640 }
6641 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6642 {
6643 	struct btrfs_caching_control *next;
6644 	struct btrfs_caching_control *caching_ctl;
6645 	struct btrfs_block_group_cache *cache;
6646 
6647 	down_write(&fs_info->commit_root_sem);
6648 
6649 	list_for_each_entry_safe(caching_ctl, next,
6650 				 &fs_info->caching_block_groups, list) {
6651 		cache = caching_ctl->block_group;
6652 		if (block_group_cache_done(cache)) {
6653 			cache->last_byte_to_unpin = (u64)-1;
6654 			list_del_init(&caching_ctl->list);
6655 			put_caching_control(caching_ctl);
6656 		} else {
6657 			cache->last_byte_to_unpin = caching_ctl->progress;
6658 		}
6659 	}
6660 
6661 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6662 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6663 	else
6664 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6665 
6666 	up_write(&fs_info->commit_root_sem);
6667 
6668 	update_global_block_rsv(fs_info);
6669 }
6670 
6671 /*
6672  * Returns the free cluster for the given space info and sets empty_cluster to
6673  * what it should be based on the mount options.
6674  */
6675 static struct btrfs_free_cluster *
6676 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6677 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6678 {
6679 	struct btrfs_free_cluster *ret = NULL;
6680 
6681 	*empty_cluster = 0;
6682 	if (btrfs_mixed_space_info(space_info))
6683 		return ret;
6684 
6685 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6686 		ret = &fs_info->meta_alloc_cluster;
6687 		if (btrfs_test_opt(fs_info, SSD))
6688 			*empty_cluster = SZ_2M;
6689 		else
6690 			*empty_cluster = SZ_64K;
6691 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6692 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6693 		*empty_cluster = SZ_2M;
6694 		ret = &fs_info->data_alloc_cluster;
6695 	}
6696 
6697 	return ret;
6698 }
6699 
6700 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6701 			      u64 start, u64 end,
6702 			      const bool return_free_space)
6703 {
6704 	struct btrfs_block_group_cache *cache = NULL;
6705 	struct btrfs_space_info *space_info;
6706 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6707 	struct btrfs_free_cluster *cluster = NULL;
6708 	u64 len;
6709 	u64 total_unpinned = 0;
6710 	u64 empty_cluster = 0;
6711 	bool readonly;
6712 
6713 	while (start <= end) {
6714 		readonly = false;
6715 		if (!cache ||
6716 		    start >= cache->key.objectid + cache->key.offset) {
6717 			if (cache)
6718 				btrfs_put_block_group(cache);
6719 			total_unpinned = 0;
6720 			cache = btrfs_lookup_block_group(fs_info, start);
6721 			BUG_ON(!cache); /* Logic error */
6722 
6723 			cluster = fetch_cluster_info(fs_info,
6724 						     cache->space_info,
6725 						     &empty_cluster);
6726 			empty_cluster <<= 1;
6727 		}
6728 
6729 		len = cache->key.objectid + cache->key.offset - start;
6730 		len = min(len, end + 1 - start);
6731 
6732 		if (start < cache->last_byte_to_unpin) {
6733 			len = min(len, cache->last_byte_to_unpin - start);
6734 			if (return_free_space)
6735 				btrfs_add_free_space(cache, start, len);
6736 		}
6737 
6738 		start += len;
6739 		total_unpinned += len;
6740 		space_info = cache->space_info;
6741 
6742 		/*
6743 		 * If this space cluster has been marked as fragmented and we've
6744 		 * unpinned enough in this block group to potentially allow a
6745 		 * cluster to be created inside of it go ahead and clear the
6746 		 * fragmented check.
6747 		 */
6748 		if (cluster && cluster->fragmented &&
6749 		    total_unpinned > empty_cluster) {
6750 			spin_lock(&cluster->lock);
6751 			cluster->fragmented = 0;
6752 			spin_unlock(&cluster->lock);
6753 		}
6754 
6755 		spin_lock(&space_info->lock);
6756 		spin_lock(&cache->lock);
6757 		cache->pinned -= len;
6758 		space_info->bytes_pinned -= len;
6759 
6760 		trace_btrfs_space_reservation(fs_info, "pinned",
6761 					      space_info->flags, len, 0);
6762 		space_info->max_extent_size = 0;
6763 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6764 		if (cache->ro) {
6765 			space_info->bytes_readonly += len;
6766 			readonly = true;
6767 		}
6768 		spin_unlock(&cache->lock);
6769 		if (!readonly && return_free_space &&
6770 		    global_rsv->space_info == space_info) {
6771 			u64 to_add = len;
6772 
6773 			spin_lock(&global_rsv->lock);
6774 			if (!global_rsv->full) {
6775 				to_add = min(len, global_rsv->size -
6776 					     global_rsv->reserved);
6777 				global_rsv->reserved += to_add;
6778 				space_info->bytes_may_use += to_add;
6779 				if (global_rsv->reserved >= global_rsv->size)
6780 					global_rsv->full = 1;
6781 				trace_btrfs_space_reservation(fs_info,
6782 							      "space_info",
6783 							      space_info->flags,
6784 							      to_add, 1);
6785 				len -= to_add;
6786 			}
6787 			spin_unlock(&global_rsv->lock);
6788 			/* Add to any tickets we may have */
6789 			if (len)
6790 				space_info_add_new_bytes(fs_info, space_info,
6791 							 len);
6792 		}
6793 		spin_unlock(&space_info->lock);
6794 	}
6795 
6796 	if (cache)
6797 		btrfs_put_block_group(cache);
6798 	return 0;
6799 }
6800 
6801 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6802 {
6803 	struct btrfs_fs_info *fs_info = trans->fs_info;
6804 	struct btrfs_block_group_cache *block_group, *tmp;
6805 	struct list_head *deleted_bgs;
6806 	struct extent_io_tree *unpin;
6807 	u64 start;
6808 	u64 end;
6809 	int ret;
6810 
6811 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6812 		unpin = &fs_info->freed_extents[1];
6813 	else
6814 		unpin = &fs_info->freed_extents[0];
6815 
6816 	while (!trans->aborted) {
6817 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6818 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6819 					    EXTENT_DIRTY, NULL);
6820 		if (ret) {
6821 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6822 			break;
6823 		}
6824 
6825 		if (btrfs_test_opt(fs_info, DISCARD))
6826 			ret = btrfs_discard_extent(fs_info, start,
6827 						   end + 1 - start, NULL);
6828 
6829 		clear_extent_dirty(unpin, start, end);
6830 		unpin_extent_range(fs_info, start, end, true);
6831 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6832 		cond_resched();
6833 	}
6834 
6835 	/*
6836 	 * Transaction is finished.  We don't need the lock anymore.  We
6837 	 * do need to clean up the block groups in case of a transaction
6838 	 * abort.
6839 	 */
6840 	deleted_bgs = &trans->transaction->deleted_bgs;
6841 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6842 		u64 trimmed = 0;
6843 
6844 		ret = -EROFS;
6845 		if (!trans->aborted)
6846 			ret = btrfs_discard_extent(fs_info,
6847 						   block_group->key.objectid,
6848 						   block_group->key.offset,
6849 						   &trimmed);
6850 
6851 		list_del_init(&block_group->bg_list);
6852 		btrfs_put_block_group_trimming(block_group);
6853 		btrfs_put_block_group(block_group);
6854 
6855 		if (ret) {
6856 			const char *errstr = btrfs_decode_error(ret);
6857 			btrfs_warn(fs_info,
6858 			   "discard failed while removing blockgroup: errno=%d %s",
6859 				   ret, errstr);
6860 		}
6861 	}
6862 
6863 	return 0;
6864 }
6865 
6866 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6867 				struct btrfs_fs_info *info,
6868 				struct btrfs_delayed_ref_node *node, u64 parent,
6869 				u64 root_objectid, u64 owner_objectid,
6870 				u64 owner_offset, int refs_to_drop,
6871 				struct btrfs_delayed_extent_op *extent_op)
6872 {
6873 	struct btrfs_key key;
6874 	struct btrfs_path *path;
6875 	struct btrfs_root *extent_root = info->extent_root;
6876 	struct extent_buffer *leaf;
6877 	struct btrfs_extent_item *ei;
6878 	struct btrfs_extent_inline_ref *iref;
6879 	int ret;
6880 	int is_data;
6881 	int extent_slot = 0;
6882 	int found_extent = 0;
6883 	int num_to_del = 1;
6884 	u32 item_size;
6885 	u64 refs;
6886 	u64 bytenr = node->bytenr;
6887 	u64 num_bytes = node->num_bytes;
6888 	int last_ref = 0;
6889 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6890 
6891 	path = btrfs_alloc_path();
6892 	if (!path)
6893 		return -ENOMEM;
6894 
6895 	path->reada = READA_FORWARD;
6896 	path->leave_spinning = 1;
6897 
6898 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6899 	BUG_ON(!is_data && refs_to_drop != 1);
6900 
6901 	if (is_data)
6902 		skinny_metadata = false;
6903 
6904 	ret = lookup_extent_backref(trans, info, path, &iref,
6905 				    bytenr, num_bytes, parent,
6906 				    root_objectid, owner_objectid,
6907 				    owner_offset);
6908 	if (ret == 0) {
6909 		extent_slot = path->slots[0];
6910 		while (extent_slot >= 0) {
6911 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6912 					      extent_slot);
6913 			if (key.objectid != bytenr)
6914 				break;
6915 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6916 			    key.offset == num_bytes) {
6917 				found_extent = 1;
6918 				break;
6919 			}
6920 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6921 			    key.offset == owner_objectid) {
6922 				found_extent = 1;
6923 				break;
6924 			}
6925 			if (path->slots[0] - extent_slot > 5)
6926 				break;
6927 			extent_slot--;
6928 		}
6929 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6930 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6931 		if (found_extent && item_size < sizeof(*ei))
6932 			found_extent = 0;
6933 #endif
6934 		if (!found_extent) {
6935 			BUG_ON(iref);
6936 			ret = remove_extent_backref(trans, info, path, NULL,
6937 						    refs_to_drop,
6938 						    is_data, &last_ref);
6939 			if (ret) {
6940 				btrfs_abort_transaction(trans, ret);
6941 				goto out;
6942 			}
6943 			btrfs_release_path(path);
6944 			path->leave_spinning = 1;
6945 
6946 			key.objectid = bytenr;
6947 			key.type = BTRFS_EXTENT_ITEM_KEY;
6948 			key.offset = num_bytes;
6949 
6950 			if (!is_data && skinny_metadata) {
6951 				key.type = BTRFS_METADATA_ITEM_KEY;
6952 				key.offset = owner_objectid;
6953 			}
6954 
6955 			ret = btrfs_search_slot(trans, extent_root,
6956 						&key, path, -1, 1);
6957 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6958 				/*
6959 				 * Couldn't find our skinny metadata item,
6960 				 * see if we have ye olde extent item.
6961 				 */
6962 				path->slots[0]--;
6963 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6964 						      path->slots[0]);
6965 				if (key.objectid == bytenr &&
6966 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6967 				    key.offset == num_bytes)
6968 					ret = 0;
6969 			}
6970 
6971 			if (ret > 0 && skinny_metadata) {
6972 				skinny_metadata = false;
6973 				key.objectid = bytenr;
6974 				key.type = BTRFS_EXTENT_ITEM_KEY;
6975 				key.offset = num_bytes;
6976 				btrfs_release_path(path);
6977 				ret = btrfs_search_slot(trans, extent_root,
6978 							&key, path, -1, 1);
6979 			}
6980 
6981 			if (ret) {
6982 				btrfs_err(info,
6983 					  "umm, got %d back from search, was looking for %llu",
6984 					  ret, bytenr);
6985 				if (ret > 0)
6986 					btrfs_print_leaf(path->nodes[0]);
6987 			}
6988 			if (ret < 0) {
6989 				btrfs_abort_transaction(trans, ret);
6990 				goto out;
6991 			}
6992 			extent_slot = path->slots[0];
6993 		}
6994 	} else if (WARN_ON(ret == -ENOENT)) {
6995 		btrfs_print_leaf(path->nodes[0]);
6996 		btrfs_err(info,
6997 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6998 			bytenr, parent, root_objectid, owner_objectid,
6999 			owner_offset);
7000 		btrfs_abort_transaction(trans, ret);
7001 		goto out;
7002 	} else {
7003 		btrfs_abort_transaction(trans, ret);
7004 		goto out;
7005 	}
7006 
7007 	leaf = path->nodes[0];
7008 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7009 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7010 	if (item_size < sizeof(*ei)) {
7011 		BUG_ON(found_extent || extent_slot != path->slots[0]);
7012 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7013 					     0);
7014 		if (ret < 0) {
7015 			btrfs_abort_transaction(trans, ret);
7016 			goto out;
7017 		}
7018 
7019 		btrfs_release_path(path);
7020 		path->leave_spinning = 1;
7021 
7022 		key.objectid = bytenr;
7023 		key.type = BTRFS_EXTENT_ITEM_KEY;
7024 		key.offset = num_bytes;
7025 
7026 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7027 					-1, 1);
7028 		if (ret) {
7029 			btrfs_err(info,
7030 				  "umm, got %d back from search, was looking for %llu",
7031 				ret, bytenr);
7032 			btrfs_print_leaf(path->nodes[0]);
7033 		}
7034 		if (ret < 0) {
7035 			btrfs_abort_transaction(trans, ret);
7036 			goto out;
7037 		}
7038 
7039 		extent_slot = path->slots[0];
7040 		leaf = path->nodes[0];
7041 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7042 	}
7043 #endif
7044 	BUG_ON(item_size < sizeof(*ei));
7045 	ei = btrfs_item_ptr(leaf, extent_slot,
7046 			    struct btrfs_extent_item);
7047 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7048 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7049 		struct btrfs_tree_block_info *bi;
7050 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7051 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7052 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7053 	}
7054 
7055 	refs = btrfs_extent_refs(leaf, ei);
7056 	if (refs < refs_to_drop) {
7057 		btrfs_err(info,
7058 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7059 			  refs_to_drop, refs, bytenr);
7060 		ret = -EINVAL;
7061 		btrfs_abort_transaction(trans, ret);
7062 		goto out;
7063 	}
7064 	refs -= refs_to_drop;
7065 
7066 	if (refs > 0) {
7067 		if (extent_op)
7068 			__run_delayed_extent_op(extent_op, leaf, ei);
7069 		/*
7070 		 * In the case of inline back ref, reference count will
7071 		 * be updated by remove_extent_backref
7072 		 */
7073 		if (iref) {
7074 			BUG_ON(!found_extent);
7075 		} else {
7076 			btrfs_set_extent_refs(leaf, ei, refs);
7077 			btrfs_mark_buffer_dirty(leaf);
7078 		}
7079 		if (found_extent) {
7080 			ret = remove_extent_backref(trans, info, path,
7081 						    iref, refs_to_drop,
7082 						    is_data, &last_ref);
7083 			if (ret) {
7084 				btrfs_abort_transaction(trans, ret);
7085 				goto out;
7086 			}
7087 		}
7088 	} else {
7089 		if (found_extent) {
7090 			BUG_ON(is_data && refs_to_drop !=
7091 			       extent_data_ref_count(path, iref));
7092 			if (iref) {
7093 				BUG_ON(path->slots[0] != extent_slot);
7094 			} else {
7095 				BUG_ON(path->slots[0] != extent_slot + 1);
7096 				path->slots[0] = extent_slot;
7097 				num_to_del = 2;
7098 			}
7099 		}
7100 
7101 		last_ref = 1;
7102 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7103 				      num_to_del);
7104 		if (ret) {
7105 			btrfs_abort_transaction(trans, ret);
7106 			goto out;
7107 		}
7108 		btrfs_release_path(path);
7109 
7110 		if (is_data) {
7111 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7112 			if (ret) {
7113 				btrfs_abort_transaction(trans, ret);
7114 				goto out;
7115 			}
7116 		}
7117 
7118 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7119 		if (ret) {
7120 			btrfs_abort_transaction(trans, ret);
7121 			goto out;
7122 		}
7123 
7124 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7125 		if (ret) {
7126 			btrfs_abort_transaction(trans, ret);
7127 			goto out;
7128 		}
7129 	}
7130 	btrfs_release_path(path);
7131 
7132 out:
7133 	btrfs_free_path(path);
7134 	return ret;
7135 }
7136 
7137 /*
7138  * when we free an block, it is possible (and likely) that we free the last
7139  * delayed ref for that extent as well.  This searches the delayed ref tree for
7140  * a given extent, and if there are no other delayed refs to be processed, it
7141  * removes it from the tree.
7142  */
7143 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7144 				      u64 bytenr)
7145 {
7146 	struct btrfs_delayed_ref_head *head;
7147 	struct btrfs_delayed_ref_root *delayed_refs;
7148 	int ret = 0;
7149 
7150 	delayed_refs = &trans->transaction->delayed_refs;
7151 	spin_lock(&delayed_refs->lock);
7152 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7153 	if (!head)
7154 		goto out_delayed_unlock;
7155 
7156 	spin_lock(&head->lock);
7157 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7158 		goto out;
7159 
7160 	if (head->extent_op) {
7161 		if (!head->must_insert_reserved)
7162 			goto out;
7163 		btrfs_free_delayed_extent_op(head->extent_op);
7164 		head->extent_op = NULL;
7165 	}
7166 
7167 	/*
7168 	 * waiting for the lock here would deadlock.  If someone else has it
7169 	 * locked they are already in the process of dropping it anyway
7170 	 */
7171 	if (!mutex_trylock(&head->mutex))
7172 		goto out;
7173 
7174 	/*
7175 	 * at this point we have a head with no other entries.  Go
7176 	 * ahead and process it.
7177 	 */
7178 	rb_erase(&head->href_node, &delayed_refs->href_root);
7179 	RB_CLEAR_NODE(&head->href_node);
7180 	atomic_dec(&delayed_refs->num_entries);
7181 
7182 	/*
7183 	 * we don't take a ref on the node because we're removing it from the
7184 	 * tree, so we just steal the ref the tree was holding.
7185 	 */
7186 	delayed_refs->num_heads--;
7187 	if (head->processing == 0)
7188 		delayed_refs->num_heads_ready--;
7189 	head->processing = 0;
7190 	spin_unlock(&head->lock);
7191 	spin_unlock(&delayed_refs->lock);
7192 
7193 	BUG_ON(head->extent_op);
7194 	if (head->must_insert_reserved)
7195 		ret = 1;
7196 
7197 	mutex_unlock(&head->mutex);
7198 	btrfs_put_delayed_ref_head(head);
7199 	return ret;
7200 out:
7201 	spin_unlock(&head->lock);
7202 
7203 out_delayed_unlock:
7204 	spin_unlock(&delayed_refs->lock);
7205 	return 0;
7206 }
7207 
7208 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7209 			   struct btrfs_root *root,
7210 			   struct extent_buffer *buf,
7211 			   u64 parent, int last_ref)
7212 {
7213 	struct btrfs_fs_info *fs_info = root->fs_info;
7214 	int pin = 1;
7215 	int ret;
7216 
7217 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7218 		int old_ref_mod, new_ref_mod;
7219 
7220 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7221 				   root->root_key.objectid,
7222 				   btrfs_header_level(buf), 0,
7223 				   BTRFS_DROP_DELAYED_REF);
7224 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7225 						 buf->len, parent,
7226 						 root->root_key.objectid,
7227 						 btrfs_header_level(buf),
7228 						 BTRFS_DROP_DELAYED_REF, NULL,
7229 						 &old_ref_mod, &new_ref_mod);
7230 		BUG_ON(ret); /* -ENOMEM */
7231 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7232 	}
7233 
7234 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7235 		struct btrfs_block_group_cache *cache;
7236 
7237 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7238 			ret = check_ref_cleanup(trans, buf->start);
7239 			if (!ret)
7240 				goto out;
7241 		}
7242 
7243 		pin = 0;
7244 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7245 
7246 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7247 			pin_down_extent(fs_info, cache, buf->start,
7248 					buf->len, 1);
7249 			btrfs_put_block_group(cache);
7250 			goto out;
7251 		}
7252 
7253 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7254 
7255 		btrfs_add_free_space(cache, buf->start, buf->len);
7256 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7257 		btrfs_put_block_group(cache);
7258 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7259 	}
7260 out:
7261 	if (pin)
7262 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7263 				 root->root_key.objectid);
7264 
7265 	if (last_ref) {
7266 		/*
7267 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7268 		 * matter anymore.
7269 		 */
7270 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7271 	}
7272 }
7273 
7274 /* Can return -ENOMEM */
7275 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7276 		      struct btrfs_root *root,
7277 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7278 		      u64 owner, u64 offset)
7279 {
7280 	struct btrfs_fs_info *fs_info = root->fs_info;
7281 	int old_ref_mod, new_ref_mod;
7282 	int ret;
7283 
7284 	if (btrfs_is_testing(fs_info))
7285 		return 0;
7286 
7287 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7288 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7289 				   root_objectid, owner, offset,
7290 				   BTRFS_DROP_DELAYED_REF);
7291 
7292 	/*
7293 	 * tree log blocks never actually go into the extent allocation
7294 	 * tree, just update pinning info and exit early.
7295 	 */
7296 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7297 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7298 		/* unlocks the pinned mutex */
7299 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7300 		old_ref_mod = new_ref_mod = 0;
7301 		ret = 0;
7302 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7303 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7304 						 num_bytes, parent,
7305 						 root_objectid, (int)owner,
7306 						 BTRFS_DROP_DELAYED_REF, NULL,
7307 						 &old_ref_mod, &new_ref_mod);
7308 	} else {
7309 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7310 						 num_bytes, parent,
7311 						 root_objectid, owner, offset,
7312 						 0, BTRFS_DROP_DELAYED_REF,
7313 						 &old_ref_mod, &new_ref_mod);
7314 	}
7315 
7316 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7317 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7318 
7319 	return ret;
7320 }
7321 
7322 /*
7323  * when we wait for progress in the block group caching, its because
7324  * our allocation attempt failed at least once.  So, we must sleep
7325  * and let some progress happen before we try again.
7326  *
7327  * This function will sleep at least once waiting for new free space to
7328  * show up, and then it will check the block group free space numbers
7329  * for our min num_bytes.  Another option is to have it go ahead
7330  * and look in the rbtree for a free extent of a given size, but this
7331  * is a good start.
7332  *
7333  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7334  * any of the information in this block group.
7335  */
7336 static noinline void
7337 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7338 				u64 num_bytes)
7339 {
7340 	struct btrfs_caching_control *caching_ctl;
7341 
7342 	caching_ctl = get_caching_control(cache);
7343 	if (!caching_ctl)
7344 		return;
7345 
7346 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7347 		   (cache->free_space_ctl->free_space >= num_bytes));
7348 
7349 	put_caching_control(caching_ctl);
7350 }
7351 
7352 static noinline int
7353 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7354 {
7355 	struct btrfs_caching_control *caching_ctl;
7356 	int ret = 0;
7357 
7358 	caching_ctl = get_caching_control(cache);
7359 	if (!caching_ctl)
7360 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7361 
7362 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7363 	if (cache->cached == BTRFS_CACHE_ERROR)
7364 		ret = -EIO;
7365 	put_caching_control(caching_ctl);
7366 	return ret;
7367 }
7368 
7369 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7370 	[BTRFS_RAID_RAID10]	= "raid10",
7371 	[BTRFS_RAID_RAID1]	= "raid1",
7372 	[BTRFS_RAID_DUP]	= "dup",
7373 	[BTRFS_RAID_RAID0]	= "raid0",
7374 	[BTRFS_RAID_SINGLE]	= "single",
7375 	[BTRFS_RAID_RAID5]	= "raid5",
7376 	[BTRFS_RAID_RAID6]	= "raid6",
7377 };
7378 
7379 static const char *get_raid_name(enum btrfs_raid_types type)
7380 {
7381 	if (type >= BTRFS_NR_RAID_TYPES)
7382 		return NULL;
7383 
7384 	return btrfs_raid_type_names[type];
7385 }
7386 
7387 enum btrfs_loop_type {
7388 	LOOP_CACHING_NOWAIT = 0,
7389 	LOOP_CACHING_WAIT = 1,
7390 	LOOP_ALLOC_CHUNK = 2,
7391 	LOOP_NO_EMPTY_SIZE = 3,
7392 };
7393 
7394 static inline void
7395 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7396 		       int delalloc)
7397 {
7398 	if (delalloc)
7399 		down_read(&cache->data_rwsem);
7400 }
7401 
7402 static inline void
7403 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7404 		       int delalloc)
7405 {
7406 	btrfs_get_block_group(cache);
7407 	if (delalloc)
7408 		down_read(&cache->data_rwsem);
7409 }
7410 
7411 static struct btrfs_block_group_cache *
7412 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7413 		   struct btrfs_free_cluster *cluster,
7414 		   int delalloc)
7415 {
7416 	struct btrfs_block_group_cache *used_bg = NULL;
7417 
7418 	spin_lock(&cluster->refill_lock);
7419 	while (1) {
7420 		used_bg = cluster->block_group;
7421 		if (!used_bg)
7422 			return NULL;
7423 
7424 		if (used_bg == block_group)
7425 			return used_bg;
7426 
7427 		btrfs_get_block_group(used_bg);
7428 
7429 		if (!delalloc)
7430 			return used_bg;
7431 
7432 		if (down_read_trylock(&used_bg->data_rwsem))
7433 			return used_bg;
7434 
7435 		spin_unlock(&cluster->refill_lock);
7436 
7437 		/* We should only have one-level nested. */
7438 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7439 
7440 		spin_lock(&cluster->refill_lock);
7441 		if (used_bg == cluster->block_group)
7442 			return used_bg;
7443 
7444 		up_read(&used_bg->data_rwsem);
7445 		btrfs_put_block_group(used_bg);
7446 	}
7447 }
7448 
7449 static inline void
7450 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7451 			 int delalloc)
7452 {
7453 	if (delalloc)
7454 		up_read(&cache->data_rwsem);
7455 	btrfs_put_block_group(cache);
7456 }
7457 
7458 /*
7459  * walks the btree of allocated extents and find a hole of a given size.
7460  * The key ins is changed to record the hole:
7461  * ins->objectid == start position
7462  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7463  * ins->offset == the size of the hole.
7464  * Any available blocks before search_start are skipped.
7465  *
7466  * If there is no suitable free space, we will record the max size of
7467  * the free space extent currently.
7468  */
7469 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7470 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7471 				u64 hint_byte, struct btrfs_key *ins,
7472 				u64 flags, int delalloc)
7473 {
7474 	int ret = 0;
7475 	struct btrfs_root *root = fs_info->extent_root;
7476 	struct btrfs_free_cluster *last_ptr = NULL;
7477 	struct btrfs_block_group_cache *block_group = NULL;
7478 	u64 search_start = 0;
7479 	u64 max_extent_size = 0;
7480 	u64 empty_cluster = 0;
7481 	struct btrfs_space_info *space_info;
7482 	int loop = 0;
7483 	int index = btrfs_bg_flags_to_raid_index(flags);
7484 	bool failed_cluster_refill = false;
7485 	bool failed_alloc = false;
7486 	bool use_cluster = true;
7487 	bool have_caching_bg = false;
7488 	bool orig_have_caching_bg = false;
7489 	bool full_search = false;
7490 
7491 	WARN_ON(num_bytes < fs_info->sectorsize);
7492 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7493 	ins->objectid = 0;
7494 	ins->offset = 0;
7495 
7496 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7497 
7498 	space_info = __find_space_info(fs_info, flags);
7499 	if (!space_info) {
7500 		btrfs_err(fs_info, "No space info for %llu", flags);
7501 		return -ENOSPC;
7502 	}
7503 
7504 	/*
7505 	 * If our free space is heavily fragmented we may not be able to make
7506 	 * big contiguous allocations, so instead of doing the expensive search
7507 	 * for free space, simply return ENOSPC with our max_extent_size so we
7508 	 * can go ahead and search for a more manageable chunk.
7509 	 *
7510 	 * If our max_extent_size is large enough for our allocation simply
7511 	 * disable clustering since we will likely not be able to find enough
7512 	 * space to create a cluster and induce latency trying.
7513 	 */
7514 	if (unlikely(space_info->max_extent_size)) {
7515 		spin_lock(&space_info->lock);
7516 		if (space_info->max_extent_size &&
7517 		    num_bytes > space_info->max_extent_size) {
7518 			ins->offset = space_info->max_extent_size;
7519 			spin_unlock(&space_info->lock);
7520 			return -ENOSPC;
7521 		} else if (space_info->max_extent_size) {
7522 			use_cluster = false;
7523 		}
7524 		spin_unlock(&space_info->lock);
7525 	}
7526 
7527 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7528 	if (last_ptr) {
7529 		spin_lock(&last_ptr->lock);
7530 		if (last_ptr->block_group)
7531 			hint_byte = last_ptr->window_start;
7532 		if (last_ptr->fragmented) {
7533 			/*
7534 			 * We still set window_start so we can keep track of the
7535 			 * last place we found an allocation to try and save
7536 			 * some time.
7537 			 */
7538 			hint_byte = last_ptr->window_start;
7539 			use_cluster = false;
7540 		}
7541 		spin_unlock(&last_ptr->lock);
7542 	}
7543 
7544 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7545 	search_start = max(search_start, hint_byte);
7546 	if (search_start == hint_byte) {
7547 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7548 		/*
7549 		 * we don't want to use the block group if it doesn't match our
7550 		 * allocation bits, or if its not cached.
7551 		 *
7552 		 * However if we are re-searching with an ideal block group
7553 		 * picked out then we don't care that the block group is cached.
7554 		 */
7555 		if (block_group && block_group_bits(block_group, flags) &&
7556 		    block_group->cached != BTRFS_CACHE_NO) {
7557 			down_read(&space_info->groups_sem);
7558 			if (list_empty(&block_group->list) ||
7559 			    block_group->ro) {
7560 				/*
7561 				 * someone is removing this block group,
7562 				 * we can't jump into the have_block_group
7563 				 * target because our list pointers are not
7564 				 * valid
7565 				 */
7566 				btrfs_put_block_group(block_group);
7567 				up_read(&space_info->groups_sem);
7568 			} else {
7569 				index = btrfs_bg_flags_to_raid_index(
7570 						block_group->flags);
7571 				btrfs_lock_block_group(block_group, delalloc);
7572 				goto have_block_group;
7573 			}
7574 		} else if (block_group) {
7575 			btrfs_put_block_group(block_group);
7576 		}
7577 	}
7578 search:
7579 	have_caching_bg = false;
7580 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7581 		full_search = true;
7582 	down_read(&space_info->groups_sem);
7583 	list_for_each_entry(block_group, &space_info->block_groups[index],
7584 			    list) {
7585 		u64 offset;
7586 		int cached;
7587 
7588 		/* If the block group is read-only, we can skip it entirely. */
7589 		if (unlikely(block_group->ro))
7590 			continue;
7591 
7592 		btrfs_grab_block_group(block_group, delalloc);
7593 		search_start = block_group->key.objectid;
7594 
7595 		/*
7596 		 * this can happen if we end up cycling through all the
7597 		 * raid types, but we want to make sure we only allocate
7598 		 * for the proper type.
7599 		 */
7600 		if (!block_group_bits(block_group, flags)) {
7601 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7602 				BTRFS_BLOCK_GROUP_RAID1 |
7603 				BTRFS_BLOCK_GROUP_RAID5 |
7604 				BTRFS_BLOCK_GROUP_RAID6 |
7605 				BTRFS_BLOCK_GROUP_RAID10;
7606 
7607 			/*
7608 			 * if they asked for extra copies and this block group
7609 			 * doesn't provide them, bail.  This does allow us to
7610 			 * fill raid0 from raid1.
7611 			 */
7612 			if ((flags & extra) && !(block_group->flags & extra))
7613 				goto loop;
7614 		}
7615 
7616 have_block_group:
7617 		cached = block_group_cache_done(block_group);
7618 		if (unlikely(!cached)) {
7619 			have_caching_bg = true;
7620 			ret = cache_block_group(block_group, 0);
7621 			BUG_ON(ret < 0);
7622 			ret = 0;
7623 		}
7624 
7625 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7626 			goto loop;
7627 
7628 		/*
7629 		 * Ok we want to try and use the cluster allocator, so
7630 		 * lets look there
7631 		 */
7632 		if (last_ptr && use_cluster) {
7633 			struct btrfs_block_group_cache *used_block_group;
7634 			unsigned long aligned_cluster;
7635 			/*
7636 			 * the refill lock keeps out other
7637 			 * people trying to start a new cluster
7638 			 */
7639 			used_block_group = btrfs_lock_cluster(block_group,
7640 							      last_ptr,
7641 							      delalloc);
7642 			if (!used_block_group)
7643 				goto refill_cluster;
7644 
7645 			if (used_block_group != block_group &&
7646 			    (used_block_group->ro ||
7647 			     !block_group_bits(used_block_group, flags)))
7648 				goto release_cluster;
7649 
7650 			offset = btrfs_alloc_from_cluster(used_block_group,
7651 						last_ptr,
7652 						num_bytes,
7653 						used_block_group->key.objectid,
7654 						&max_extent_size);
7655 			if (offset) {
7656 				/* we have a block, we're done */
7657 				spin_unlock(&last_ptr->refill_lock);
7658 				trace_btrfs_reserve_extent_cluster(fs_info,
7659 						used_block_group,
7660 						search_start, num_bytes);
7661 				if (used_block_group != block_group) {
7662 					btrfs_release_block_group(block_group,
7663 								  delalloc);
7664 					block_group = used_block_group;
7665 				}
7666 				goto checks;
7667 			}
7668 
7669 			WARN_ON(last_ptr->block_group != used_block_group);
7670 release_cluster:
7671 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7672 			 * set up a new clusters, so lets just skip it
7673 			 * and let the allocator find whatever block
7674 			 * it can find.  If we reach this point, we
7675 			 * will have tried the cluster allocator
7676 			 * plenty of times and not have found
7677 			 * anything, so we are likely way too
7678 			 * fragmented for the clustering stuff to find
7679 			 * anything.
7680 			 *
7681 			 * However, if the cluster is taken from the
7682 			 * current block group, release the cluster
7683 			 * first, so that we stand a better chance of
7684 			 * succeeding in the unclustered
7685 			 * allocation.  */
7686 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7687 			    used_block_group != block_group) {
7688 				spin_unlock(&last_ptr->refill_lock);
7689 				btrfs_release_block_group(used_block_group,
7690 							  delalloc);
7691 				goto unclustered_alloc;
7692 			}
7693 
7694 			/*
7695 			 * this cluster didn't work out, free it and
7696 			 * start over
7697 			 */
7698 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7699 
7700 			if (used_block_group != block_group)
7701 				btrfs_release_block_group(used_block_group,
7702 							  delalloc);
7703 refill_cluster:
7704 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7705 				spin_unlock(&last_ptr->refill_lock);
7706 				goto unclustered_alloc;
7707 			}
7708 
7709 			aligned_cluster = max_t(unsigned long,
7710 						empty_cluster + empty_size,
7711 					      block_group->full_stripe_len);
7712 
7713 			/* allocate a cluster in this block group */
7714 			ret = btrfs_find_space_cluster(fs_info, block_group,
7715 						       last_ptr, search_start,
7716 						       num_bytes,
7717 						       aligned_cluster);
7718 			if (ret == 0) {
7719 				/*
7720 				 * now pull our allocation out of this
7721 				 * cluster
7722 				 */
7723 				offset = btrfs_alloc_from_cluster(block_group,
7724 							last_ptr,
7725 							num_bytes,
7726 							search_start,
7727 							&max_extent_size);
7728 				if (offset) {
7729 					/* we found one, proceed */
7730 					spin_unlock(&last_ptr->refill_lock);
7731 					trace_btrfs_reserve_extent_cluster(fs_info,
7732 						block_group, search_start,
7733 						num_bytes);
7734 					goto checks;
7735 				}
7736 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7737 				   && !failed_cluster_refill) {
7738 				spin_unlock(&last_ptr->refill_lock);
7739 
7740 				failed_cluster_refill = true;
7741 				wait_block_group_cache_progress(block_group,
7742 				       num_bytes + empty_cluster + empty_size);
7743 				goto have_block_group;
7744 			}
7745 
7746 			/*
7747 			 * at this point we either didn't find a cluster
7748 			 * or we weren't able to allocate a block from our
7749 			 * cluster.  Free the cluster we've been trying
7750 			 * to use, and go to the next block group
7751 			 */
7752 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7753 			spin_unlock(&last_ptr->refill_lock);
7754 			goto loop;
7755 		}
7756 
7757 unclustered_alloc:
7758 		/*
7759 		 * We are doing an unclustered alloc, set the fragmented flag so
7760 		 * we don't bother trying to setup a cluster again until we get
7761 		 * more space.
7762 		 */
7763 		if (unlikely(last_ptr)) {
7764 			spin_lock(&last_ptr->lock);
7765 			last_ptr->fragmented = 1;
7766 			spin_unlock(&last_ptr->lock);
7767 		}
7768 		if (cached) {
7769 			struct btrfs_free_space_ctl *ctl =
7770 				block_group->free_space_ctl;
7771 
7772 			spin_lock(&ctl->tree_lock);
7773 			if (ctl->free_space <
7774 			    num_bytes + empty_cluster + empty_size) {
7775 				if (ctl->free_space > max_extent_size)
7776 					max_extent_size = ctl->free_space;
7777 				spin_unlock(&ctl->tree_lock);
7778 				goto loop;
7779 			}
7780 			spin_unlock(&ctl->tree_lock);
7781 		}
7782 
7783 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7784 						    num_bytes, empty_size,
7785 						    &max_extent_size);
7786 		/*
7787 		 * If we didn't find a chunk, and we haven't failed on this
7788 		 * block group before, and this block group is in the middle of
7789 		 * caching and we are ok with waiting, then go ahead and wait
7790 		 * for progress to be made, and set failed_alloc to true.
7791 		 *
7792 		 * If failed_alloc is true then we've already waited on this
7793 		 * block group once and should move on to the next block group.
7794 		 */
7795 		if (!offset && !failed_alloc && !cached &&
7796 		    loop > LOOP_CACHING_NOWAIT) {
7797 			wait_block_group_cache_progress(block_group,
7798 						num_bytes + empty_size);
7799 			failed_alloc = true;
7800 			goto have_block_group;
7801 		} else if (!offset) {
7802 			goto loop;
7803 		}
7804 checks:
7805 		search_start = ALIGN(offset, fs_info->stripesize);
7806 
7807 		/* move on to the next group */
7808 		if (search_start + num_bytes >
7809 		    block_group->key.objectid + block_group->key.offset) {
7810 			btrfs_add_free_space(block_group, offset, num_bytes);
7811 			goto loop;
7812 		}
7813 
7814 		if (offset < search_start)
7815 			btrfs_add_free_space(block_group, offset,
7816 					     search_start - offset);
7817 		BUG_ON(offset > search_start);
7818 
7819 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7820 				num_bytes, delalloc);
7821 		if (ret == -EAGAIN) {
7822 			btrfs_add_free_space(block_group, offset, num_bytes);
7823 			goto loop;
7824 		}
7825 		btrfs_inc_block_group_reservations(block_group);
7826 
7827 		/* we are all good, lets return */
7828 		ins->objectid = search_start;
7829 		ins->offset = num_bytes;
7830 
7831 		trace_btrfs_reserve_extent(fs_info, block_group,
7832 					   search_start, num_bytes);
7833 		btrfs_release_block_group(block_group, delalloc);
7834 		break;
7835 loop:
7836 		failed_cluster_refill = false;
7837 		failed_alloc = false;
7838 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7839 		       index);
7840 		btrfs_release_block_group(block_group, delalloc);
7841 		cond_resched();
7842 	}
7843 	up_read(&space_info->groups_sem);
7844 
7845 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7846 		&& !orig_have_caching_bg)
7847 		orig_have_caching_bg = true;
7848 
7849 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7850 		goto search;
7851 
7852 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7853 		goto search;
7854 
7855 	/*
7856 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7857 	 *			caching kthreads as we move along
7858 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7859 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7860 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7861 	 *			again
7862 	 */
7863 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7864 		index = 0;
7865 		if (loop == LOOP_CACHING_NOWAIT) {
7866 			/*
7867 			 * We want to skip the LOOP_CACHING_WAIT step if we
7868 			 * don't have any uncached bgs and we've already done a
7869 			 * full search through.
7870 			 */
7871 			if (orig_have_caching_bg || !full_search)
7872 				loop = LOOP_CACHING_WAIT;
7873 			else
7874 				loop = LOOP_ALLOC_CHUNK;
7875 		} else {
7876 			loop++;
7877 		}
7878 
7879 		if (loop == LOOP_ALLOC_CHUNK) {
7880 			struct btrfs_trans_handle *trans;
7881 			int exist = 0;
7882 
7883 			trans = current->journal_info;
7884 			if (trans)
7885 				exist = 1;
7886 			else
7887 				trans = btrfs_join_transaction(root);
7888 
7889 			if (IS_ERR(trans)) {
7890 				ret = PTR_ERR(trans);
7891 				goto out;
7892 			}
7893 
7894 			ret = do_chunk_alloc(trans, fs_info, flags,
7895 					     CHUNK_ALLOC_FORCE);
7896 
7897 			/*
7898 			 * If we can't allocate a new chunk we've already looped
7899 			 * through at least once, move on to the NO_EMPTY_SIZE
7900 			 * case.
7901 			 */
7902 			if (ret == -ENOSPC)
7903 				loop = LOOP_NO_EMPTY_SIZE;
7904 
7905 			/*
7906 			 * Do not bail out on ENOSPC since we
7907 			 * can do more things.
7908 			 */
7909 			if (ret < 0 && ret != -ENOSPC)
7910 				btrfs_abort_transaction(trans, ret);
7911 			else
7912 				ret = 0;
7913 			if (!exist)
7914 				btrfs_end_transaction(trans);
7915 			if (ret)
7916 				goto out;
7917 		}
7918 
7919 		if (loop == LOOP_NO_EMPTY_SIZE) {
7920 			/*
7921 			 * Don't loop again if we already have no empty_size and
7922 			 * no empty_cluster.
7923 			 */
7924 			if (empty_size == 0 &&
7925 			    empty_cluster == 0) {
7926 				ret = -ENOSPC;
7927 				goto out;
7928 			}
7929 			empty_size = 0;
7930 			empty_cluster = 0;
7931 		}
7932 
7933 		goto search;
7934 	} else if (!ins->objectid) {
7935 		ret = -ENOSPC;
7936 	} else if (ins->objectid) {
7937 		if (!use_cluster && last_ptr) {
7938 			spin_lock(&last_ptr->lock);
7939 			last_ptr->window_start = ins->objectid;
7940 			spin_unlock(&last_ptr->lock);
7941 		}
7942 		ret = 0;
7943 	}
7944 out:
7945 	if (ret == -ENOSPC) {
7946 		spin_lock(&space_info->lock);
7947 		space_info->max_extent_size = max_extent_size;
7948 		spin_unlock(&space_info->lock);
7949 		ins->offset = max_extent_size;
7950 	}
7951 	return ret;
7952 }
7953 
7954 static void dump_space_info(struct btrfs_fs_info *fs_info,
7955 			    struct btrfs_space_info *info, u64 bytes,
7956 			    int dump_block_groups)
7957 {
7958 	struct btrfs_block_group_cache *cache;
7959 	int index = 0;
7960 
7961 	spin_lock(&info->lock);
7962 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7963 		   info->flags,
7964 		   info->total_bytes - btrfs_space_info_used(info, true),
7965 		   info->full ? "" : "not ");
7966 	btrfs_info(fs_info,
7967 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7968 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7969 		info->bytes_reserved, info->bytes_may_use,
7970 		info->bytes_readonly);
7971 	spin_unlock(&info->lock);
7972 
7973 	if (!dump_block_groups)
7974 		return;
7975 
7976 	down_read(&info->groups_sem);
7977 again:
7978 	list_for_each_entry(cache, &info->block_groups[index], list) {
7979 		spin_lock(&cache->lock);
7980 		btrfs_info(fs_info,
7981 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7982 			cache->key.objectid, cache->key.offset,
7983 			btrfs_block_group_used(&cache->item), cache->pinned,
7984 			cache->reserved, cache->ro ? "[readonly]" : "");
7985 		btrfs_dump_free_space(cache, bytes);
7986 		spin_unlock(&cache->lock);
7987 	}
7988 	if (++index < BTRFS_NR_RAID_TYPES)
7989 		goto again;
7990 	up_read(&info->groups_sem);
7991 }
7992 
7993 /*
7994  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7995  *			  hole that is at least as big as @num_bytes.
7996  *
7997  * @root           -	The root that will contain this extent
7998  *
7999  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
8000  *			is used for accounting purposes. This value differs
8001  *			from @num_bytes only in the case of compressed extents.
8002  *
8003  * @num_bytes      -	Number of bytes to allocate on-disk.
8004  *
8005  * @min_alloc_size -	Indicates the minimum amount of space that the
8006  *			allocator should try to satisfy. In some cases
8007  *			@num_bytes may be larger than what is required and if
8008  *			the filesystem is fragmented then allocation fails.
8009  *			However, the presence of @min_alloc_size gives a
8010  *			chance to try and satisfy the smaller allocation.
8011  *
8012  * @empty_size     -	A hint that you plan on doing more COW. This is the
8013  *			size in bytes the allocator should try to find free
8014  *			next to the block it returns.  This is just a hint and
8015  *			may be ignored by the allocator.
8016  *
8017  * @hint_byte      -	Hint to the allocator to start searching above the byte
8018  *			address passed. It might be ignored.
8019  *
8020  * @ins            -	This key is modified to record the found hole. It will
8021  *			have the following values:
8022  *			ins->objectid == start position
8023  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8024  *			ins->offset == the size of the hole.
8025  *
8026  * @is_data        -	Boolean flag indicating whether an extent is
8027  *			allocated for data (true) or metadata (false)
8028  *
8029  * @delalloc       -	Boolean flag indicating whether this allocation is for
8030  *			delalloc or not. If 'true' data_rwsem of block groups
8031  *			is going to be acquired.
8032  *
8033  *
8034  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8035  * case -ENOSPC is returned then @ins->offset will contain the size of the
8036  * largest available hole the allocator managed to find.
8037  */
8038 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8039 			 u64 num_bytes, u64 min_alloc_size,
8040 			 u64 empty_size, u64 hint_byte,
8041 			 struct btrfs_key *ins, int is_data, int delalloc)
8042 {
8043 	struct btrfs_fs_info *fs_info = root->fs_info;
8044 	bool final_tried = num_bytes == min_alloc_size;
8045 	u64 flags;
8046 	int ret;
8047 
8048 	flags = get_alloc_profile_by_root(root, is_data);
8049 again:
8050 	WARN_ON(num_bytes < fs_info->sectorsize);
8051 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8052 			       hint_byte, ins, flags, delalloc);
8053 	if (!ret && !is_data) {
8054 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8055 	} else if (ret == -ENOSPC) {
8056 		if (!final_tried && ins->offset) {
8057 			num_bytes = min(num_bytes >> 1, ins->offset);
8058 			num_bytes = round_down(num_bytes,
8059 					       fs_info->sectorsize);
8060 			num_bytes = max(num_bytes, min_alloc_size);
8061 			ram_bytes = num_bytes;
8062 			if (num_bytes == min_alloc_size)
8063 				final_tried = true;
8064 			goto again;
8065 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8066 			struct btrfs_space_info *sinfo;
8067 
8068 			sinfo = __find_space_info(fs_info, flags);
8069 			btrfs_err(fs_info,
8070 				  "allocation failed flags %llu, wanted %llu",
8071 				  flags, num_bytes);
8072 			if (sinfo)
8073 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8074 		}
8075 	}
8076 
8077 	return ret;
8078 }
8079 
8080 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8081 					u64 start, u64 len,
8082 					int pin, int delalloc)
8083 {
8084 	struct btrfs_block_group_cache *cache;
8085 	int ret = 0;
8086 
8087 	cache = btrfs_lookup_block_group(fs_info, start);
8088 	if (!cache) {
8089 		btrfs_err(fs_info, "Unable to find block group for %llu",
8090 			  start);
8091 		return -ENOSPC;
8092 	}
8093 
8094 	if (pin)
8095 		pin_down_extent(fs_info, cache, start, len, 1);
8096 	else {
8097 		if (btrfs_test_opt(fs_info, DISCARD))
8098 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8099 		btrfs_add_free_space(cache, start, len);
8100 		btrfs_free_reserved_bytes(cache, len, delalloc);
8101 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8102 	}
8103 
8104 	btrfs_put_block_group(cache);
8105 	return ret;
8106 }
8107 
8108 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8109 			       u64 start, u64 len, int delalloc)
8110 {
8111 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8112 }
8113 
8114 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8115 				       u64 start, u64 len)
8116 {
8117 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8118 }
8119 
8120 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8121 				      struct btrfs_fs_info *fs_info,
8122 				      u64 parent, u64 root_objectid,
8123 				      u64 flags, u64 owner, u64 offset,
8124 				      struct btrfs_key *ins, int ref_mod)
8125 {
8126 	int ret;
8127 	struct btrfs_extent_item *extent_item;
8128 	struct btrfs_extent_inline_ref *iref;
8129 	struct btrfs_path *path;
8130 	struct extent_buffer *leaf;
8131 	int type;
8132 	u32 size;
8133 
8134 	if (parent > 0)
8135 		type = BTRFS_SHARED_DATA_REF_KEY;
8136 	else
8137 		type = BTRFS_EXTENT_DATA_REF_KEY;
8138 
8139 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8140 
8141 	path = btrfs_alloc_path();
8142 	if (!path)
8143 		return -ENOMEM;
8144 
8145 	path->leave_spinning = 1;
8146 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8147 				      ins, size);
8148 	if (ret) {
8149 		btrfs_free_path(path);
8150 		return ret;
8151 	}
8152 
8153 	leaf = path->nodes[0];
8154 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8155 				     struct btrfs_extent_item);
8156 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8157 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8158 	btrfs_set_extent_flags(leaf, extent_item,
8159 			       flags | BTRFS_EXTENT_FLAG_DATA);
8160 
8161 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8162 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8163 	if (parent > 0) {
8164 		struct btrfs_shared_data_ref *ref;
8165 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8166 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8167 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8168 	} else {
8169 		struct btrfs_extent_data_ref *ref;
8170 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8171 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8172 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8173 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8174 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8175 	}
8176 
8177 	btrfs_mark_buffer_dirty(path->nodes[0]);
8178 	btrfs_free_path(path);
8179 
8180 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8181 					  ins->offset);
8182 	if (ret)
8183 		return ret;
8184 
8185 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8186 	if (ret) { /* -ENOENT, logic error */
8187 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8188 			ins->objectid, ins->offset);
8189 		BUG();
8190 	}
8191 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8192 	return ret;
8193 }
8194 
8195 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8196 				     struct btrfs_fs_info *fs_info,
8197 				     u64 parent, u64 root_objectid,
8198 				     u64 flags, struct btrfs_disk_key *key,
8199 				     int level, struct btrfs_key *ins)
8200 {
8201 	int ret;
8202 	struct btrfs_extent_item *extent_item;
8203 	struct btrfs_tree_block_info *block_info;
8204 	struct btrfs_extent_inline_ref *iref;
8205 	struct btrfs_path *path;
8206 	struct extent_buffer *leaf;
8207 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8208 	u64 num_bytes = ins->offset;
8209 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8210 
8211 	if (!skinny_metadata)
8212 		size += sizeof(*block_info);
8213 
8214 	path = btrfs_alloc_path();
8215 	if (!path) {
8216 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8217 						   fs_info->nodesize);
8218 		return -ENOMEM;
8219 	}
8220 
8221 	path->leave_spinning = 1;
8222 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8223 				      ins, size);
8224 	if (ret) {
8225 		btrfs_free_path(path);
8226 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8227 						   fs_info->nodesize);
8228 		return ret;
8229 	}
8230 
8231 	leaf = path->nodes[0];
8232 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8233 				     struct btrfs_extent_item);
8234 	btrfs_set_extent_refs(leaf, extent_item, 1);
8235 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8236 	btrfs_set_extent_flags(leaf, extent_item,
8237 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8238 
8239 	if (skinny_metadata) {
8240 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8241 		num_bytes = fs_info->nodesize;
8242 	} else {
8243 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8244 		btrfs_set_tree_block_key(leaf, block_info, key);
8245 		btrfs_set_tree_block_level(leaf, block_info, level);
8246 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8247 	}
8248 
8249 	if (parent > 0) {
8250 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8251 		btrfs_set_extent_inline_ref_type(leaf, iref,
8252 						 BTRFS_SHARED_BLOCK_REF_KEY);
8253 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8254 	} else {
8255 		btrfs_set_extent_inline_ref_type(leaf, iref,
8256 						 BTRFS_TREE_BLOCK_REF_KEY);
8257 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8258 	}
8259 
8260 	btrfs_mark_buffer_dirty(leaf);
8261 	btrfs_free_path(path);
8262 
8263 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8264 					  num_bytes);
8265 	if (ret)
8266 		return ret;
8267 
8268 	ret = update_block_group(trans, fs_info, ins->objectid,
8269 				 fs_info->nodesize, 1);
8270 	if (ret) { /* -ENOENT, logic error */
8271 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8272 			ins->objectid, ins->offset);
8273 		BUG();
8274 	}
8275 
8276 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8277 					  fs_info->nodesize);
8278 	return ret;
8279 }
8280 
8281 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8282 				     struct btrfs_root *root, u64 owner,
8283 				     u64 offset, u64 ram_bytes,
8284 				     struct btrfs_key *ins)
8285 {
8286 	struct btrfs_fs_info *fs_info = root->fs_info;
8287 	int ret;
8288 
8289 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8290 
8291 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8292 			   root->root_key.objectid, owner, offset,
8293 			   BTRFS_ADD_DELAYED_EXTENT);
8294 
8295 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8296 					 ins->offset, 0,
8297 					 root->root_key.objectid, owner,
8298 					 offset, ram_bytes,
8299 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8300 	return ret;
8301 }
8302 
8303 /*
8304  * this is used by the tree logging recovery code.  It records that
8305  * an extent has been allocated and makes sure to clear the free
8306  * space cache bits as well
8307  */
8308 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8309 				   struct btrfs_fs_info *fs_info,
8310 				   u64 root_objectid, u64 owner, u64 offset,
8311 				   struct btrfs_key *ins)
8312 {
8313 	int ret;
8314 	struct btrfs_block_group_cache *block_group;
8315 	struct btrfs_space_info *space_info;
8316 
8317 	/*
8318 	 * Mixed block groups will exclude before processing the log so we only
8319 	 * need to do the exclude dance if this fs isn't mixed.
8320 	 */
8321 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8322 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8323 					      ins->offset);
8324 		if (ret)
8325 			return ret;
8326 	}
8327 
8328 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8329 	if (!block_group)
8330 		return -EINVAL;
8331 
8332 	space_info = block_group->space_info;
8333 	spin_lock(&space_info->lock);
8334 	spin_lock(&block_group->lock);
8335 	space_info->bytes_reserved += ins->offset;
8336 	block_group->reserved += ins->offset;
8337 	spin_unlock(&block_group->lock);
8338 	spin_unlock(&space_info->lock);
8339 
8340 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8341 					 0, owner, offset, ins, 1);
8342 	btrfs_put_block_group(block_group);
8343 	return ret;
8344 }
8345 
8346 static struct extent_buffer *
8347 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8348 		      u64 bytenr, int level)
8349 {
8350 	struct btrfs_fs_info *fs_info = root->fs_info;
8351 	struct extent_buffer *buf;
8352 
8353 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8354 	if (IS_ERR(buf))
8355 		return buf;
8356 
8357 	btrfs_set_header_generation(buf, trans->transid);
8358 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8359 	btrfs_tree_lock(buf);
8360 	clean_tree_block(fs_info, buf);
8361 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8362 
8363 	btrfs_set_lock_blocking(buf);
8364 	set_extent_buffer_uptodate(buf);
8365 
8366 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8367 		buf->log_index = root->log_transid % 2;
8368 		/*
8369 		 * we allow two log transactions at a time, use different
8370 		 * EXENT bit to differentiate dirty pages.
8371 		 */
8372 		if (buf->log_index == 0)
8373 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8374 					buf->start + buf->len - 1, GFP_NOFS);
8375 		else
8376 			set_extent_new(&root->dirty_log_pages, buf->start,
8377 					buf->start + buf->len - 1);
8378 	} else {
8379 		buf->log_index = -1;
8380 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8381 			 buf->start + buf->len - 1, GFP_NOFS);
8382 	}
8383 	trans->dirty = true;
8384 	/* this returns a buffer locked for blocking */
8385 	return buf;
8386 }
8387 
8388 static struct btrfs_block_rsv *
8389 use_block_rsv(struct btrfs_trans_handle *trans,
8390 	      struct btrfs_root *root, u32 blocksize)
8391 {
8392 	struct btrfs_fs_info *fs_info = root->fs_info;
8393 	struct btrfs_block_rsv *block_rsv;
8394 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8395 	int ret;
8396 	bool global_updated = false;
8397 
8398 	block_rsv = get_block_rsv(trans, root);
8399 
8400 	if (unlikely(block_rsv->size == 0))
8401 		goto try_reserve;
8402 again:
8403 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8404 	if (!ret)
8405 		return block_rsv;
8406 
8407 	if (block_rsv->failfast)
8408 		return ERR_PTR(ret);
8409 
8410 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8411 		global_updated = true;
8412 		update_global_block_rsv(fs_info);
8413 		goto again;
8414 	}
8415 
8416 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8417 		static DEFINE_RATELIMIT_STATE(_rs,
8418 				DEFAULT_RATELIMIT_INTERVAL * 10,
8419 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8420 		if (__ratelimit(&_rs))
8421 			WARN(1, KERN_DEBUG
8422 				"BTRFS: block rsv returned %d\n", ret);
8423 	}
8424 try_reserve:
8425 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8426 				     BTRFS_RESERVE_NO_FLUSH);
8427 	if (!ret)
8428 		return block_rsv;
8429 	/*
8430 	 * If we couldn't reserve metadata bytes try and use some from
8431 	 * the global reserve if its space type is the same as the global
8432 	 * reservation.
8433 	 */
8434 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8435 	    block_rsv->space_info == global_rsv->space_info) {
8436 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8437 		if (!ret)
8438 			return global_rsv;
8439 	}
8440 	return ERR_PTR(ret);
8441 }
8442 
8443 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8444 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8445 {
8446 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8447 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8448 }
8449 
8450 /*
8451  * finds a free extent and does all the dirty work required for allocation
8452  * returns the tree buffer or an ERR_PTR on error.
8453  */
8454 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8455 					     struct btrfs_root *root,
8456 					     u64 parent, u64 root_objectid,
8457 					     const struct btrfs_disk_key *key,
8458 					     int level, u64 hint,
8459 					     u64 empty_size)
8460 {
8461 	struct btrfs_fs_info *fs_info = root->fs_info;
8462 	struct btrfs_key ins;
8463 	struct btrfs_block_rsv *block_rsv;
8464 	struct extent_buffer *buf;
8465 	struct btrfs_delayed_extent_op *extent_op;
8466 	u64 flags = 0;
8467 	int ret;
8468 	u32 blocksize = fs_info->nodesize;
8469 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8470 
8471 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8472 	if (btrfs_is_testing(fs_info)) {
8473 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8474 					    level);
8475 		if (!IS_ERR(buf))
8476 			root->alloc_bytenr += blocksize;
8477 		return buf;
8478 	}
8479 #endif
8480 
8481 	block_rsv = use_block_rsv(trans, root, blocksize);
8482 	if (IS_ERR(block_rsv))
8483 		return ERR_CAST(block_rsv);
8484 
8485 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8486 				   empty_size, hint, &ins, 0, 0);
8487 	if (ret)
8488 		goto out_unuse;
8489 
8490 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8491 	if (IS_ERR(buf)) {
8492 		ret = PTR_ERR(buf);
8493 		goto out_free_reserved;
8494 	}
8495 
8496 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8497 		if (parent == 0)
8498 			parent = ins.objectid;
8499 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8500 	} else
8501 		BUG_ON(parent > 0);
8502 
8503 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8504 		extent_op = btrfs_alloc_delayed_extent_op();
8505 		if (!extent_op) {
8506 			ret = -ENOMEM;
8507 			goto out_free_buf;
8508 		}
8509 		if (key)
8510 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8511 		else
8512 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8513 		extent_op->flags_to_set = flags;
8514 		extent_op->update_key = skinny_metadata ? false : true;
8515 		extent_op->update_flags = true;
8516 		extent_op->is_data = false;
8517 		extent_op->level = level;
8518 
8519 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8520 				   root_objectid, level, 0,
8521 				   BTRFS_ADD_DELAYED_EXTENT);
8522 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8523 						 ins.offset, parent,
8524 						 root_objectid, level,
8525 						 BTRFS_ADD_DELAYED_EXTENT,
8526 						 extent_op, NULL, NULL);
8527 		if (ret)
8528 			goto out_free_delayed;
8529 	}
8530 	return buf;
8531 
8532 out_free_delayed:
8533 	btrfs_free_delayed_extent_op(extent_op);
8534 out_free_buf:
8535 	free_extent_buffer(buf);
8536 out_free_reserved:
8537 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8538 out_unuse:
8539 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8540 	return ERR_PTR(ret);
8541 }
8542 
8543 struct walk_control {
8544 	u64 refs[BTRFS_MAX_LEVEL];
8545 	u64 flags[BTRFS_MAX_LEVEL];
8546 	struct btrfs_key update_progress;
8547 	int stage;
8548 	int level;
8549 	int shared_level;
8550 	int update_ref;
8551 	int keep_locks;
8552 	int reada_slot;
8553 	int reada_count;
8554 	int for_reloc;
8555 };
8556 
8557 #define DROP_REFERENCE	1
8558 #define UPDATE_BACKREF	2
8559 
8560 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8561 				     struct btrfs_root *root,
8562 				     struct walk_control *wc,
8563 				     struct btrfs_path *path)
8564 {
8565 	struct btrfs_fs_info *fs_info = root->fs_info;
8566 	u64 bytenr;
8567 	u64 generation;
8568 	u64 refs;
8569 	u64 flags;
8570 	u32 nritems;
8571 	struct btrfs_key key;
8572 	struct extent_buffer *eb;
8573 	int ret;
8574 	int slot;
8575 	int nread = 0;
8576 
8577 	if (path->slots[wc->level] < wc->reada_slot) {
8578 		wc->reada_count = wc->reada_count * 2 / 3;
8579 		wc->reada_count = max(wc->reada_count, 2);
8580 	} else {
8581 		wc->reada_count = wc->reada_count * 3 / 2;
8582 		wc->reada_count = min_t(int, wc->reada_count,
8583 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8584 	}
8585 
8586 	eb = path->nodes[wc->level];
8587 	nritems = btrfs_header_nritems(eb);
8588 
8589 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8590 		if (nread >= wc->reada_count)
8591 			break;
8592 
8593 		cond_resched();
8594 		bytenr = btrfs_node_blockptr(eb, slot);
8595 		generation = btrfs_node_ptr_generation(eb, slot);
8596 
8597 		if (slot == path->slots[wc->level])
8598 			goto reada;
8599 
8600 		if (wc->stage == UPDATE_BACKREF &&
8601 		    generation <= root->root_key.offset)
8602 			continue;
8603 
8604 		/* We don't lock the tree block, it's OK to be racy here */
8605 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8606 					       wc->level - 1, 1, &refs,
8607 					       &flags);
8608 		/* We don't care about errors in readahead. */
8609 		if (ret < 0)
8610 			continue;
8611 		BUG_ON(refs == 0);
8612 
8613 		if (wc->stage == DROP_REFERENCE) {
8614 			if (refs == 1)
8615 				goto reada;
8616 
8617 			if (wc->level == 1 &&
8618 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8619 				continue;
8620 			if (!wc->update_ref ||
8621 			    generation <= root->root_key.offset)
8622 				continue;
8623 			btrfs_node_key_to_cpu(eb, &key, slot);
8624 			ret = btrfs_comp_cpu_keys(&key,
8625 						  &wc->update_progress);
8626 			if (ret < 0)
8627 				continue;
8628 		} else {
8629 			if (wc->level == 1 &&
8630 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8631 				continue;
8632 		}
8633 reada:
8634 		readahead_tree_block(fs_info, bytenr);
8635 		nread++;
8636 	}
8637 	wc->reada_slot = slot;
8638 }
8639 
8640 /*
8641  * helper to process tree block while walking down the tree.
8642  *
8643  * when wc->stage == UPDATE_BACKREF, this function updates
8644  * back refs for pointers in the block.
8645  *
8646  * NOTE: return value 1 means we should stop walking down.
8647  */
8648 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8649 				   struct btrfs_root *root,
8650 				   struct btrfs_path *path,
8651 				   struct walk_control *wc, int lookup_info)
8652 {
8653 	struct btrfs_fs_info *fs_info = root->fs_info;
8654 	int level = wc->level;
8655 	struct extent_buffer *eb = path->nodes[level];
8656 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8657 	int ret;
8658 
8659 	if (wc->stage == UPDATE_BACKREF &&
8660 	    btrfs_header_owner(eb) != root->root_key.objectid)
8661 		return 1;
8662 
8663 	/*
8664 	 * when reference count of tree block is 1, it won't increase
8665 	 * again. once full backref flag is set, we never clear it.
8666 	 */
8667 	if (lookup_info &&
8668 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8669 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8670 		BUG_ON(!path->locks[level]);
8671 		ret = btrfs_lookup_extent_info(trans, fs_info,
8672 					       eb->start, level, 1,
8673 					       &wc->refs[level],
8674 					       &wc->flags[level]);
8675 		BUG_ON(ret == -ENOMEM);
8676 		if (ret)
8677 			return ret;
8678 		BUG_ON(wc->refs[level] == 0);
8679 	}
8680 
8681 	if (wc->stage == DROP_REFERENCE) {
8682 		if (wc->refs[level] > 1)
8683 			return 1;
8684 
8685 		if (path->locks[level] && !wc->keep_locks) {
8686 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8687 			path->locks[level] = 0;
8688 		}
8689 		return 0;
8690 	}
8691 
8692 	/* wc->stage == UPDATE_BACKREF */
8693 	if (!(wc->flags[level] & flag)) {
8694 		BUG_ON(!path->locks[level]);
8695 		ret = btrfs_inc_ref(trans, root, eb, 1);
8696 		BUG_ON(ret); /* -ENOMEM */
8697 		ret = btrfs_dec_ref(trans, root, eb, 0);
8698 		BUG_ON(ret); /* -ENOMEM */
8699 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8700 						  eb->len, flag,
8701 						  btrfs_header_level(eb), 0);
8702 		BUG_ON(ret); /* -ENOMEM */
8703 		wc->flags[level] |= flag;
8704 	}
8705 
8706 	/*
8707 	 * the block is shared by multiple trees, so it's not good to
8708 	 * keep the tree lock
8709 	 */
8710 	if (path->locks[level] && level > 0) {
8711 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8712 		path->locks[level] = 0;
8713 	}
8714 	return 0;
8715 }
8716 
8717 /*
8718  * helper to process tree block pointer.
8719  *
8720  * when wc->stage == DROP_REFERENCE, this function checks
8721  * reference count of the block pointed to. if the block
8722  * is shared and we need update back refs for the subtree
8723  * rooted at the block, this function changes wc->stage to
8724  * UPDATE_BACKREF. if the block is shared and there is no
8725  * need to update back, this function drops the reference
8726  * to the block.
8727  *
8728  * NOTE: return value 1 means we should stop walking down.
8729  */
8730 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8731 				 struct btrfs_root *root,
8732 				 struct btrfs_path *path,
8733 				 struct walk_control *wc, int *lookup_info)
8734 {
8735 	struct btrfs_fs_info *fs_info = root->fs_info;
8736 	u64 bytenr;
8737 	u64 generation;
8738 	u64 parent;
8739 	u32 blocksize;
8740 	struct btrfs_key key;
8741 	struct btrfs_key first_key;
8742 	struct extent_buffer *next;
8743 	int level = wc->level;
8744 	int reada = 0;
8745 	int ret = 0;
8746 	bool need_account = false;
8747 
8748 	generation = btrfs_node_ptr_generation(path->nodes[level],
8749 					       path->slots[level]);
8750 	/*
8751 	 * if the lower level block was created before the snapshot
8752 	 * was created, we know there is no need to update back refs
8753 	 * for the subtree
8754 	 */
8755 	if (wc->stage == UPDATE_BACKREF &&
8756 	    generation <= root->root_key.offset) {
8757 		*lookup_info = 1;
8758 		return 1;
8759 	}
8760 
8761 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8762 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8763 			      path->slots[level]);
8764 	blocksize = fs_info->nodesize;
8765 
8766 	next = find_extent_buffer(fs_info, bytenr);
8767 	if (!next) {
8768 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8769 		if (IS_ERR(next))
8770 			return PTR_ERR(next);
8771 
8772 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8773 					       level - 1);
8774 		reada = 1;
8775 	}
8776 	btrfs_tree_lock(next);
8777 	btrfs_set_lock_blocking(next);
8778 
8779 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8780 				       &wc->refs[level - 1],
8781 				       &wc->flags[level - 1]);
8782 	if (ret < 0)
8783 		goto out_unlock;
8784 
8785 	if (unlikely(wc->refs[level - 1] == 0)) {
8786 		btrfs_err(fs_info, "Missing references.");
8787 		ret = -EIO;
8788 		goto out_unlock;
8789 	}
8790 	*lookup_info = 0;
8791 
8792 	if (wc->stage == DROP_REFERENCE) {
8793 		if (wc->refs[level - 1] > 1) {
8794 			need_account = true;
8795 			if (level == 1 &&
8796 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8797 				goto skip;
8798 
8799 			if (!wc->update_ref ||
8800 			    generation <= root->root_key.offset)
8801 				goto skip;
8802 
8803 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8804 					      path->slots[level]);
8805 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8806 			if (ret < 0)
8807 				goto skip;
8808 
8809 			wc->stage = UPDATE_BACKREF;
8810 			wc->shared_level = level - 1;
8811 		}
8812 	} else {
8813 		if (level == 1 &&
8814 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8815 			goto skip;
8816 	}
8817 
8818 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8819 		btrfs_tree_unlock(next);
8820 		free_extent_buffer(next);
8821 		next = NULL;
8822 		*lookup_info = 1;
8823 	}
8824 
8825 	if (!next) {
8826 		if (reada && level == 1)
8827 			reada_walk_down(trans, root, wc, path);
8828 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8829 				       &first_key);
8830 		if (IS_ERR(next)) {
8831 			return PTR_ERR(next);
8832 		} else if (!extent_buffer_uptodate(next)) {
8833 			free_extent_buffer(next);
8834 			return -EIO;
8835 		}
8836 		btrfs_tree_lock(next);
8837 		btrfs_set_lock_blocking(next);
8838 	}
8839 
8840 	level--;
8841 	ASSERT(level == btrfs_header_level(next));
8842 	if (level != btrfs_header_level(next)) {
8843 		btrfs_err(root->fs_info, "mismatched level");
8844 		ret = -EIO;
8845 		goto out_unlock;
8846 	}
8847 	path->nodes[level] = next;
8848 	path->slots[level] = 0;
8849 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8850 	wc->level = level;
8851 	if (wc->level == 1)
8852 		wc->reada_slot = 0;
8853 	return 0;
8854 skip:
8855 	wc->refs[level - 1] = 0;
8856 	wc->flags[level - 1] = 0;
8857 	if (wc->stage == DROP_REFERENCE) {
8858 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8859 			parent = path->nodes[level]->start;
8860 		} else {
8861 			ASSERT(root->root_key.objectid ==
8862 			       btrfs_header_owner(path->nodes[level]));
8863 			if (root->root_key.objectid !=
8864 			    btrfs_header_owner(path->nodes[level])) {
8865 				btrfs_err(root->fs_info,
8866 						"mismatched block owner");
8867 				ret = -EIO;
8868 				goto out_unlock;
8869 			}
8870 			parent = 0;
8871 		}
8872 
8873 		if (need_account) {
8874 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8875 							 generation, level - 1);
8876 			if (ret) {
8877 				btrfs_err_rl(fs_info,
8878 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8879 					     ret);
8880 			}
8881 		}
8882 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8883 					parent, root->root_key.objectid,
8884 					level - 1, 0);
8885 		if (ret)
8886 			goto out_unlock;
8887 	}
8888 
8889 	*lookup_info = 1;
8890 	ret = 1;
8891 
8892 out_unlock:
8893 	btrfs_tree_unlock(next);
8894 	free_extent_buffer(next);
8895 
8896 	return ret;
8897 }
8898 
8899 /*
8900  * helper to process tree block while walking up the tree.
8901  *
8902  * when wc->stage == DROP_REFERENCE, this function drops
8903  * reference count on the block.
8904  *
8905  * when wc->stage == UPDATE_BACKREF, this function changes
8906  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8907  * to UPDATE_BACKREF previously while processing the block.
8908  *
8909  * NOTE: return value 1 means we should stop walking up.
8910  */
8911 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8912 				 struct btrfs_root *root,
8913 				 struct btrfs_path *path,
8914 				 struct walk_control *wc)
8915 {
8916 	struct btrfs_fs_info *fs_info = root->fs_info;
8917 	int ret;
8918 	int level = wc->level;
8919 	struct extent_buffer *eb = path->nodes[level];
8920 	u64 parent = 0;
8921 
8922 	if (wc->stage == UPDATE_BACKREF) {
8923 		BUG_ON(wc->shared_level < level);
8924 		if (level < wc->shared_level)
8925 			goto out;
8926 
8927 		ret = find_next_key(path, level + 1, &wc->update_progress);
8928 		if (ret > 0)
8929 			wc->update_ref = 0;
8930 
8931 		wc->stage = DROP_REFERENCE;
8932 		wc->shared_level = -1;
8933 		path->slots[level] = 0;
8934 
8935 		/*
8936 		 * check reference count again if the block isn't locked.
8937 		 * we should start walking down the tree again if reference
8938 		 * count is one.
8939 		 */
8940 		if (!path->locks[level]) {
8941 			BUG_ON(level == 0);
8942 			btrfs_tree_lock(eb);
8943 			btrfs_set_lock_blocking(eb);
8944 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8945 
8946 			ret = btrfs_lookup_extent_info(trans, fs_info,
8947 						       eb->start, level, 1,
8948 						       &wc->refs[level],
8949 						       &wc->flags[level]);
8950 			if (ret < 0) {
8951 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8952 				path->locks[level] = 0;
8953 				return ret;
8954 			}
8955 			BUG_ON(wc->refs[level] == 0);
8956 			if (wc->refs[level] == 1) {
8957 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8958 				path->locks[level] = 0;
8959 				return 1;
8960 			}
8961 		}
8962 	}
8963 
8964 	/* wc->stage == DROP_REFERENCE */
8965 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8966 
8967 	if (wc->refs[level] == 1) {
8968 		if (level == 0) {
8969 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8970 				ret = btrfs_dec_ref(trans, root, eb, 1);
8971 			else
8972 				ret = btrfs_dec_ref(trans, root, eb, 0);
8973 			BUG_ON(ret); /* -ENOMEM */
8974 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8975 			if (ret) {
8976 				btrfs_err_rl(fs_info,
8977 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8978 					     ret);
8979 			}
8980 		}
8981 		/* make block locked assertion in clean_tree_block happy */
8982 		if (!path->locks[level] &&
8983 		    btrfs_header_generation(eb) == trans->transid) {
8984 			btrfs_tree_lock(eb);
8985 			btrfs_set_lock_blocking(eb);
8986 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8987 		}
8988 		clean_tree_block(fs_info, eb);
8989 	}
8990 
8991 	if (eb == root->node) {
8992 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8993 			parent = eb->start;
8994 		else
8995 			BUG_ON(root->root_key.objectid !=
8996 			       btrfs_header_owner(eb));
8997 	} else {
8998 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8999 			parent = path->nodes[level + 1]->start;
9000 		else
9001 			BUG_ON(root->root_key.objectid !=
9002 			       btrfs_header_owner(path->nodes[level + 1]));
9003 	}
9004 
9005 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9006 out:
9007 	wc->refs[level] = 0;
9008 	wc->flags[level] = 0;
9009 	return 0;
9010 }
9011 
9012 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9013 				   struct btrfs_root *root,
9014 				   struct btrfs_path *path,
9015 				   struct walk_control *wc)
9016 {
9017 	int level = wc->level;
9018 	int lookup_info = 1;
9019 	int ret;
9020 
9021 	while (level >= 0) {
9022 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9023 		if (ret > 0)
9024 			break;
9025 
9026 		if (level == 0)
9027 			break;
9028 
9029 		if (path->slots[level] >=
9030 		    btrfs_header_nritems(path->nodes[level]))
9031 			break;
9032 
9033 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9034 		if (ret > 0) {
9035 			path->slots[level]++;
9036 			continue;
9037 		} else if (ret < 0)
9038 			return ret;
9039 		level = wc->level;
9040 	}
9041 	return 0;
9042 }
9043 
9044 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9045 				 struct btrfs_root *root,
9046 				 struct btrfs_path *path,
9047 				 struct walk_control *wc, int max_level)
9048 {
9049 	int level = wc->level;
9050 	int ret;
9051 
9052 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9053 	while (level < max_level && path->nodes[level]) {
9054 		wc->level = level;
9055 		if (path->slots[level] + 1 <
9056 		    btrfs_header_nritems(path->nodes[level])) {
9057 			path->slots[level]++;
9058 			return 0;
9059 		} else {
9060 			ret = walk_up_proc(trans, root, path, wc);
9061 			if (ret > 0)
9062 				return 0;
9063 
9064 			if (path->locks[level]) {
9065 				btrfs_tree_unlock_rw(path->nodes[level],
9066 						     path->locks[level]);
9067 				path->locks[level] = 0;
9068 			}
9069 			free_extent_buffer(path->nodes[level]);
9070 			path->nodes[level] = NULL;
9071 			level++;
9072 		}
9073 	}
9074 	return 1;
9075 }
9076 
9077 /*
9078  * drop a subvolume tree.
9079  *
9080  * this function traverses the tree freeing any blocks that only
9081  * referenced by the tree.
9082  *
9083  * when a shared tree block is found. this function decreases its
9084  * reference count by one. if update_ref is true, this function
9085  * also make sure backrefs for the shared block and all lower level
9086  * blocks are properly updated.
9087  *
9088  * If called with for_reloc == 0, may exit early with -EAGAIN
9089  */
9090 int btrfs_drop_snapshot(struct btrfs_root *root,
9091 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9092 			 int for_reloc)
9093 {
9094 	struct btrfs_fs_info *fs_info = root->fs_info;
9095 	struct btrfs_path *path;
9096 	struct btrfs_trans_handle *trans;
9097 	struct btrfs_root *tree_root = fs_info->tree_root;
9098 	struct btrfs_root_item *root_item = &root->root_item;
9099 	struct walk_control *wc;
9100 	struct btrfs_key key;
9101 	int err = 0;
9102 	int ret;
9103 	int level;
9104 	bool root_dropped = false;
9105 
9106 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9107 
9108 	path = btrfs_alloc_path();
9109 	if (!path) {
9110 		err = -ENOMEM;
9111 		goto out;
9112 	}
9113 
9114 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9115 	if (!wc) {
9116 		btrfs_free_path(path);
9117 		err = -ENOMEM;
9118 		goto out;
9119 	}
9120 
9121 	trans = btrfs_start_transaction(tree_root, 0);
9122 	if (IS_ERR(trans)) {
9123 		err = PTR_ERR(trans);
9124 		goto out_free;
9125 	}
9126 
9127 	if (block_rsv)
9128 		trans->block_rsv = block_rsv;
9129 
9130 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9131 		level = btrfs_header_level(root->node);
9132 		path->nodes[level] = btrfs_lock_root_node(root);
9133 		btrfs_set_lock_blocking(path->nodes[level]);
9134 		path->slots[level] = 0;
9135 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9136 		memset(&wc->update_progress, 0,
9137 		       sizeof(wc->update_progress));
9138 	} else {
9139 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9140 		memcpy(&wc->update_progress, &key,
9141 		       sizeof(wc->update_progress));
9142 
9143 		level = root_item->drop_level;
9144 		BUG_ON(level == 0);
9145 		path->lowest_level = level;
9146 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9147 		path->lowest_level = 0;
9148 		if (ret < 0) {
9149 			err = ret;
9150 			goto out_end_trans;
9151 		}
9152 		WARN_ON(ret > 0);
9153 
9154 		/*
9155 		 * unlock our path, this is safe because only this
9156 		 * function is allowed to delete this snapshot
9157 		 */
9158 		btrfs_unlock_up_safe(path, 0);
9159 
9160 		level = btrfs_header_level(root->node);
9161 		while (1) {
9162 			btrfs_tree_lock(path->nodes[level]);
9163 			btrfs_set_lock_blocking(path->nodes[level]);
9164 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9165 
9166 			ret = btrfs_lookup_extent_info(trans, fs_info,
9167 						path->nodes[level]->start,
9168 						level, 1, &wc->refs[level],
9169 						&wc->flags[level]);
9170 			if (ret < 0) {
9171 				err = ret;
9172 				goto out_end_trans;
9173 			}
9174 			BUG_ON(wc->refs[level] == 0);
9175 
9176 			if (level == root_item->drop_level)
9177 				break;
9178 
9179 			btrfs_tree_unlock(path->nodes[level]);
9180 			path->locks[level] = 0;
9181 			WARN_ON(wc->refs[level] != 1);
9182 			level--;
9183 		}
9184 	}
9185 
9186 	wc->level = level;
9187 	wc->shared_level = -1;
9188 	wc->stage = DROP_REFERENCE;
9189 	wc->update_ref = update_ref;
9190 	wc->keep_locks = 0;
9191 	wc->for_reloc = for_reloc;
9192 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9193 
9194 	while (1) {
9195 
9196 		ret = walk_down_tree(trans, root, path, wc);
9197 		if (ret < 0) {
9198 			err = ret;
9199 			break;
9200 		}
9201 
9202 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9203 		if (ret < 0) {
9204 			err = ret;
9205 			break;
9206 		}
9207 
9208 		if (ret > 0) {
9209 			BUG_ON(wc->stage != DROP_REFERENCE);
9210 			break;
9211 		}
9212 
9213 		if (wc->stage == DROP_REFERENCE) {
9214 			level = wc->level;
9215 			btrfs_node_key(path->nodes[level],
9216 				       &root_item->drop_progress,
9217 				       path->slots[level]);
9218 			root_item->drop_level = level;
9219 		}
9220 
9221 		BUG_ON(wc->level == 0);
9222 		if (btrfs_should_end_transaction(trans) ||
9223 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9224 			ret = btrfs_update_root(trans, tree_root,
9225 						&root->root_key,
9226 						root_item);
9227 			if (ret) {
9228 				btrfs_abort_transaction(trans, ret);
9229 				err = ret;
9230 				goto out_end_trans;
9231 			}
9232 
9233 			btrfs_end_transaction_throttle(trans);
9234 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9235 				btrfs_debug(fs_info,
9236 					    "drop snapshot early exit");
9237 				err = -EAGAIN;
9238 				goto out_free;
9239 			}
9240 
9241 			trans = btrfs_start_transaction(tree_root, 0);
9242 			if (IS_ERR(trans)) {
9243 				err = PTR_ERR(trans);
9244 				goto out_free;
9245 			}
9246 			if (block_rsv)
9247 				trans->block_rsv = block_rsv;
9248 		}
9249 	}
9250 	btrfs_release_path(path);
9251 	if (err)
9252 		goto out_end_trans;
9253 
9254 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9255 	if (ret) {
9256 		btrfs_abort_transaction(trans, ret);
9257 		err = ret;
9258 		goto out_end_trans;
9259 	}
9260 
9261 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9262 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9263 				      NULL, NULL);
9264 		if (ret < 0) {
9265 			btrfs_abort_transaction(trans, ret);
9266 			err = ret;
9267 			goto out_end_trans;
9268 		} else if (ret > 0) {
9269 			/* if we fail to delete the orphan item this time
9270 			 * around, it'll get picked up the next time.
9271 			 *
9272 			 * The most common failure here is just -ENOENT.
9273 			 */
9274 			btrfs_del_orphan_item(trans, tree_root,
9275 					      root->root_key.objectid);
9276 		}
9277 	}
9278 
9279 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9280 		btrfs_add_dropped_root(trans, root);
9281 	} else {
9282 		free_extent_buffer(root->node);
9283 		free_extent_buffer(root->commit_root);
9284 		btrfs_put_fs_root(root);
9285 	}
9286 	root_dropped = true;
9287 out_end_trans:
9288 	btrfs_end_transaction_throttle(trans);
9289 out_free:
9290 	kfree(wc);
9291 	btrfs_free_path(path);
9292 out:
9293 	/*
9294 	 * So if we need to stop dropping the snapshot for whatever reason we
9295 	 * need to make sure to add it back to the dead root list so that we
9296 	 * keep trying to do the work later.  This also cleans up roots if we
9297 	 * don't have it in the radix (like when we recover after a power fail
9298 	 * or unmount) so we don't leak memory.
9299 	 */
9300 	if (!for_reloc && !root_dropped)
9301 		btrfs_add_dead_root(root);
9302 	if (err && err != -EAGAIN)
9303 		btrfs_handle_fs_error(fs_info, err, NULL);
9304 	return err;
9305 }
9306 
9307 /*
9308  * drop subtree rooted at tree block 'node'.
9309  *
9310  * NOTE: this function will unlock and release tree block 'node'
9311  * only used by relocation code
9312  */
9313 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9314 			struct btrfs_root *root,
9315 			struct extent_buffer *node,
9316 			struct extent_buffer *parent)
9317 {
9318 	struct btrfs_fs_info *fs_info = root->fs_info;
9319 	struct btrfs_path *path;
9320 	struct walk_control *wc;
9321 	int level;
9322 	int parent_level;
9323 	int ret = 0;
9324 	int wret;
9325 
9326 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9327 
9328 	path = btrfs_alloc_path();
9329 	if (!path)
9330 		return -ENOMEM;
9331 
9332 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9333 	if (!wc) {
9334 		btrfs_free_path(path);
9335 		return -ENOMEM;
9336 	}
9337 
9338 	btrfs_assert_tree_locked(parent);
9339 	parent_level = btrfs_header_level(parent);
9340 	extent_buffer_get(parent);
9341 	path->nodes[parent_level] = parent;
9342 	path->slots[parent_level] = btrfs_header_nritems(parent);
9343 
9344 	btrfs_assert_tree_locked(node);
9345 	level = btrfs_header_level(node);
9346 	path->nodes[level] = node;
9347 	path->slots[level] = 0;
9348 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9349 
9350 	wc->refs[parent_level] = 1;
9351 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9352 	wc->level = level;
9353 	wc->shared_level = -1;
9354 	wc->stage = DROP_REFERENCE;
9355 	wc->update_ref = 0;
9356 	wc->keep_locks = 1;
9357 	wc->for_reloc = 1;
9358 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9359 
9360 	while (1) {
9361 		wret = walk_down_tree(trans, root, path, wc);
9362 		if (wret < 0) {
9363 			ret = wret;
9364 			break;
9365 		}
9366 
9367 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9368 		if (wret < 0)
9369 			ret = wret;
9370 		if (wret != 0)
9371 			break;
9372 	}
9373 
9374 	kfree(wc);
9375 	btrfs_free_path(path);
9376 	return ret;
9377 }
9378 
9379 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9380 {
9381 	u64 num_devices;
9382 	u64 stripped;
9383 
9384 	/*
9385 	 * if restripe for this chunk_type is on pick target profile and
9386 	 * return, otherwise do the usual balance
9387 	 */
9388 	stripped = get_restripe_target(fs_info, flags);
9389 	if (stripped)
9390 		return extended_to_chunk(stripped);
9391 
9392 	num_devices = fs_info->fs_devices->rw_devices;
9393 
9394 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9395 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9396 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9397 
9398 	if (num_devices == 1) {
9399 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9400 		stripped = flags & ~stripped;
9401 
9402 		/* turn raid0 into single device chunks */
9403 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9404 			return stripped;
9405 
9406 		/* turn mirroring into duplication */
9407 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9408 			     BTRFS_BLOCK_GROUP_RAID10))
9409 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9410 	} else {
9411 		/* they already had raid on here, just return */
9412 		if (flags & stripped)
9413 			return flags;
9414 
9415 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9416 		stripped = flags & ~stripped;
9417 
9418 		/* switch duplicated blocks with raid1 */
9419 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9420 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9421 
9422 		/* this is drive concat, leave it alone */
9423 	}
9424 
9425 	return flags;
9426 }
9427 
9428 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9429 {
9430 	struct btrfs_space_info *sinfo = cache->space_info;
9431 	u64 num_bytes;
9432 	u64 min_allocable_bytes;
9433 	int ret = -ENOSPC;
9434 
9435 	/*
9436 	 * We need some metadata space and system metadata space for
9437 	 * allocating chunks in some corner cases until we force to set
9438 	 * it to be readonly.
9439 	 */
9440 	if ((sinfo->flags &
9441 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9442 	    !force)
9443 		min_allocable_bytes = SZ_1M;
9444 	else
9445 		min_allocable_bytes = 0;
9446 
9447 	spin_lock(&sinfo->lock);
9448 	spin_lock(&cache->lock);
9449 
9450 	if (cache->ro) {
9451 		cache->ro++;
9452 		ret = 0;
9453 		goto out;
9454 	}
9455 
9456 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9457 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9458 
9459 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9460 	    min_allocable_bytes <= sinfo->total_bytes) {
9461 		sinfo->bytes_readonly += num_bytes;
9462 		cache->ro++;
9463 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9464 		ret = 0;
9465 	}
9466 out:
9467 	spin_unlock(&cache->lock);
9468 	spin_unlock(&sinfo->lock);
9469 	return ret;
9470 }
9471 
9472 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9473 			     struct btrfs_block_group_cache *cache)
9474 
9475 {
9476 	struct btrfs_trans_handle *trans;
9477 	u64 alloc_flags;
9478 	int ret;
9479 
9480 again:
9481 	trans = btrfs_join_transaction(fs_info->extent_root);
9482 	if (IS_ERR(trans))
9483 		return PTR_ERR(trans);
9484 
9485 	/*
9486 	 * we're not allowed to set block groups readonly after the dirty
9487 	 * block groups cache has started writing.  If it already started,
9488 	 * back off and let this transaction commit
9489 	 */
9490 	mutex_lock(&fs_info->ro_block_group_mutex);
9491 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9492 		u64 transid = trans->transid;
9493 
9494 		mutex_unlock(&fs_info->ro_block_group_mutex);
9495 		btrfs_end_transaction(trans);
9496 
9497 		ret = btrfs_wait_for_commit(fs_info, transid);
9498 		if (ret)
9499 			return ret;
9500 		goto again;
9501 	}
9502 
9503 	/*
9504 	 * if we are changing raid levels, try to allocate a corresponding
9505 	 * block group with the new raid level.
9506 	 */
9507 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9508 	if (alloc_flags != cache->flags) {
9509 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9510 				     CHUNK_ALLOC_FORCE);
9511 		/*
9512 		 * ENOSPC is allowed here, we may have enough space
9513 		 * already allocated at the new raid level to
9514 		 * carry on
9515 		 */
9516 		if (ret == -ENOSPC)
9517 			ret = 0;
9518 		if (ret < 0)
9519 			goto out;
9520 	}
9521 
9522 	ret = inc_block_group_ro(cache, 0);
9523 	if (!ret)
9524 		goto out;
9525 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9526 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9527 			     CHUNK_ALLOC_FORCE);
9528 	if (ret < 0)
9529 		goto out;
9530 	ret = inc_block_group_ro(cache, 0);
9531 out:
9532 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9533 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9534 		mutex_lock(&fs_info->chunk_mutex);
9535 		check_system_chunk(trans, fs_info, alloc_flags);
9536 		mutex_unlock(&fs_info->chunk_mutex);
9537 	}
9538 	mutex_unlock(&fs_info->ro_block_group_mutex);
9539 
9540 	btrfs_end_transaction(trans);
9541 	return ret;
9542 }
9543 
9544 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9545 			    struct btrfs_fs_info *fs_info, u64 type)
9546 {
9547 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9548 
9549 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9550 }
9551 
9552 /*
9553  * helper to account the unused space of all the readonly block group in the
9554  * space_info. takes mirrors into account.
9555  */
9556 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9557 {
9558 	struct btrfs_block_group_cache *block_group;
9559 	u64 free_bytes = 0;
9560 	int factor;
9561 
9562 	/* It's df, we don't care if it's racy */
9563 	if (list_empty(&sinfo->ro_bgs))
9564 		return 0;
9565 
9566 	spin_lock(&sinfo->lock);
9567 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9568 		spin_lock(&block_group->lock);
9569 
9570 		if (!block_group->ro) {
9571 			spin_unlock(&block_group->lock);
9572 			continue;
9573 		}
9574 
9575 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9576 					  BTRFS_BLOCK_GROUP_RAID10 |
9577 					  BTRFS_BLOCK_GROUP_DUP))
9578 			factor = 2;
9579 		else
9580 			factor = 1;
9581 
9582 		free_bytes += (block_group->key.offset -
9583 			       btrfs_block_group_used(&block_group->item)) *
9584 			       factor;
9585 
9586 		spin_unlock(&block_group->lock);
9587 	}
9588 	spin_unlock(&sinfo->lock);
9589 
9590 	return free_bytes;
9591 }
9592 
9593 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9594 {
9595 	struct btrfs_space_info *sinfo = cache->space_info;
9596 	u64 num_bytes;
9597 
9598 	BUG_ON(!cache->ro);
9599 
9600 	spin_lock(&sinfo->lock);
9601 	spin_lock(&cache->lock);
9602 	if (!--cache->ro) {
9603 		num_bytes = cache->key.offset - cache->reserved -
9604 			    cache->pinned - cache->bytes_super -
9605 			    btrfs_block_group_used(&cache->item);
9606 		sinfo->bytes_readonly -= num_bytes;
9607 		list_del_init(&cache->ro_list);
9608 	}
9609 	spin_unlock(&cache->lock);
9610 	spin_unlock(&sinfo->lock);
9611 }
9612 
9613 /*
9614  * checks to see if its even possible to relocate this block group.
9615  *
9616  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9617  * ok to go ahead and try.
9618  */
9619 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9620 {
9621 	struct btrfs_root *root = fs_info->extent_root;
9622 	struct btrfs_block_group_cache *block_group;
9623 	struct btrfs_space_info *space_info;
9624 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9625 	struct btrfs_device *device;
9626 	struct btrfs_trans_handle *trans;
9627 	u64 min_free;
9628 	u64 dev_min = 1;
9629 	u64 dev_nr = 0;
9630 	u64 target;
9631 	int debug;
9632 	int index;
9633 	int full = 0;
9634 	int ret = 0;
9635 
9636 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9637 
9638 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9639 
9640 	/* odd, couldn't find the block group, leave it alone */
9641 	if (!block_group) {
9642 		if (debug)
9643 			btrfs_warn(fs_info,
9644 				   "can't find block group for bytenr %llu",
9645 				   bytenr);
9646 		return -1;
9647 	}
9648 
9649 	min_free = btrfs_block_group_used(&block_group->item);
9650 
9651 	/* no bytes used, we're good */
9652 	if (!min_free)
9653 		goto out;
9654 
9655 	space_info = block_group->space_info;
9656 	spin_lock(&space_info->lock);
9657 
9658 	full = space_info->full;
9659 
9660 	/*
9661 	 * if this is the last block group we have in this space, we can't
9662 	 * relocate it unless we're able to allocate a new chunk below.
9663 	 *
9664 	 * Otherwise, we need to make sure we have room in the space to handle
9665 	 * all of the extents from this block group.  If we can, we're good
9666 	 */
9667 	if ((space_info->total_bytes != block_group->key.offset) &&
9668 	    (btrfs_space_info_used(space_info, false) + min_free <
9669 	     space_info->total_bytes)) {
9670 		spin_unlock(&space_info->lock);
9671 		goto out;
9672 	}
9673 	spin_unlock(&space_info->lock);
9674 
9675 	/*
9676 	 * ok we don't have enough space, but maybe we have free space on our
9677 	 * devices to allocate new chunks for relocation, so loop through our
9678 	 * alloc devices and guess if we have enough space.  if this block
9679 	 * group is going to be restriped, run checks against the target
9680 	 * profile instead of the current one.
9681 	 */
9682 	ret = -1;
9683 
9684 	/*
9685 	 * index:
9686 	 *      0: raid10
9687 	 *      1: raid1
9688 	 *      2: dup
9689 	 *      3: raid0
9690 	 *      4: single
9691 	 */
9692 	target = get_restripe_target(fs_info, block_group->flags);
9693 	if (target) {
9694 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9695 	} else {
9696 		/*
9697 		 * this is just a balance, so if we were marked as full
9698 		 * we know there is no space for a new chunk
9699 		 */
9700 		if (full) {
9701 			if (debug)
9702 				btrfs_warn(fs_info,
9703 					   "no space to alloc new chunk for block group %llu",
9704 					   block_group->key.objectid);
9705 			goto out;
9706 		}
9707 
9708 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9709 	}
9710 
9711 	if (index == BTRFS_RAID_RAID10) {
9712 		dev_min = 4;
9713 		/* Divide by 2 */
9714 		min_free >>= 1;
9715 	} else if (index == BTRFS_RAID_RAID1) {
9716 		dev_min = 2;
9717 	} else if (index == BTRFS_RAID_DUP) {
9718 		/* Multiply by 2 */
9719 		min_free <<= 1;
9720 	} else if (index == BTRFS_RAID_RAID0) {
9721 		dev_min = fs_devices->rw_devices;
9722 		min_free = div64_u64(min_free, dev_min);
9723 	}
9724 
9725 	/* We need to do this so that we can look at pending chunks */
9726 	trans = btrfs_join_transaction(root);
9727 	if (IS_ERR(trans)) {
9728 		ret = PTR_ERR(trans);
9729 		goto out;
9730 	}
9731 
9732 	mutex_lock(&fs_info->chunk_mutex);
9733 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9734 		u64 dev_offset;
9735 
9736 		/*
9737 		 * check to make sure we can actually find a chunk with enough
9738 		 * space to fit our block group in.
9739 		 */
9740 		if (device->total_bytes > device->bytes_used + min_free &&
9741 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9742 			ret = find_free_dev_extent(trans, device, min_free,
9743 						   &dev_offset, NULL);
9744 			if (!ret)
9745 				dev_nr++;
9746 
9747 			if (dev_nr >= dev_min)
9748 				break;
9749 
9750 			ret = -1;
9751 		}
9752 	}
9753 	if (debug && ret == -1)
9754 		btrfs_warn(fs_info,
9755 			   "no space to allocate a new chunk for block group %llu",
9756 			   block_group->key.objectid);
9757 	mutex_unlock(&fs_info->chunk_mutex);
9758 	btrfs_end_transaction(trans);
9759 out:
9760 	btrfs_put_block_group(block_group);
9761 	return ret;
9762 }
9763 
9764 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9765 				  struct btrfs_path *path,
9766 				  struct btrfs_key *key)
9767 {
9768 	struct btrfs_root *root = fs_info->extent_root;
9769 	int ret = 0;
9770 	struct btrfs_key found_key;
9771 	struct extent_buffer *leaf;
9772 	int slot;
9773 
9774 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9775 	if (ret < 0)
9776 		goto out;
9777 
9778 	while (1) {
9779 		slot = path->slots[0];
9780 		leaf = path->nodes[0];
9781 		if (slot >= btrfs_header_nritems(leaf)) {
9782 			ret = btrfs_next_leaf(root, path);
9783 			if (ret == 0)
9784 				continue;
9785 			if (ret < 0)
9786 				goto out;
9787 			break;
9788 		}
9789 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9790 
9791 		if (found_key.objectid >= key->objectid &&
9792 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9793 			struct extent_map_tree *em_tree;
9794 			struct extent_map *em;
9795 
9796 			em_tree = &root->fs_info->mapping_tree.map_tree;
9797 			read_lock(&em_tree->lock);
9798 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9799 						   found_key.offset);
9800 			read_unlock(&em_tree->lock);
9801 			if (!em) {
9802 				btrfs_err(fs_info,
9803 			"logical %llu len %llu found bg but no related chunk",
9804 					  found_key.objectid, found_key.offset);
9805 				ret = -ENOENT;
9806 			} else {
9807 				ret = 0;
9808 			}
9809 			free_extent_map(em);
9810 			goto out;
9811 		}
9812 		path->slots[0]++;
9813 	}
9814 out:
9815 	return ret;
9816 }
9817 
9818 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9819 {
9820 	struct btrfs_block_group_cache *block_group;
9821 	u64 last = 0;
9822 
9823 	while (1) {
9824 		struct inode *inode;
9825 
9826 		block_group = btrfs_lookup_first_block_group(info, last);
9827 		while (block_group) {
9828 			spin_lock(&block_group->lock);
9829 			if (block_group->iref)
9830 				break;
9831 			spin_unlock(&block_group->lock);
9832 			block_group = next_block_group(info, block_group);
9833 		}
9834 		if (!block_group) {
9835 			if (last == 0)
9836 				break;
9837 			last = 0;
9838 			continue;
9839 		}
9840 
9841 		inode = block_group->inode;
9842 		block_group->iref = 0;
9843 		block_group->inode = NULL;
9844 		spin_unlock(&block_group->lock);
9845 		ASSERT(block_group->io_ctl.inode == NULL);
9846 		iput(inode);
9847 		last = block_group->key.objectid + block_group->key.offset;
9848 		btrfs_put_block_group(block_group);
9849 	}
9850 }
9851 
9852 /*
9853  * Must be called only after stopping all workers, since we could have block
9854  * group caching kthreads running, and therefore they could race with us if we
9855  * freed the block groups before stopping them.
9856  */
9857 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9858 {
9859 	struct btrfs_block_group_cache *block_group;
9860 	struct btrfs_space_info *space_info;
9861 	struct btrfs_caching_control *caching_ctl;
9862 	struct rb_node *n;
9863 
9864 	down_write(&info->commit_root_sem);
9865 	while (!list_empty(&info->caching_block_groups)) {
9866 		caching_ctl = list_entry(info->caching_block_groups.next,
9867 					 struct btrfs_caching_control, list);
9868 		list_del(&caching_ctl->list);
9869 		put_caching_control(caching_ctl);
9870 	}
9871 	up_write(&info->commit_root_sem);
9872 
9873 	spin_lock(&info->unused_bgs_lock);
9874 	while (!list_empty(&info->unused_bgs)) {
9875 		block_group = list_first_entry(&info->unused_bgs,
9876 					       struct btrfs_block_group_cache,
9877 					       bg_list);
9878 		list_del_init(&block_group->bg_list);
9879 		btrfs_put_block_group(block_group);
9880 	}
9881 	spin_unlock(&info->unused_bgs_lock);
9882 
9883 	spin_lock(&info->block_group_cache_lock);
9884 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9885 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9886 				       cache_node);
9887 		rb_erase(&block_group->cache_node,
9888 			 &info->block_group_cache_tree);
9889 		RB_CLEAR_NODE(&block_group->cache_node);
9890 		spin_unlock(&info->block_group_cache_lock);
9891 
9892 		down_write(&block_group->space_info->groups_sem);
9893 		list_del(&block_group->list);
9894 		up_write(&block_group->space_info->groups_sem);
9895 
9896 		/*
9897 		 * We haven't cached this block group, which means we could
9898 		 * possibly have excluded extents on this block group.
9899 		 */
9900 		if (block_group->cached == BTRFS_CACHE_NO ||
9901 		    block_group->cached == BTRFS_CACHE_ERROR)
9902 			free_excluded_extents(info, block_group);
9903 
9904 		btrfs_remove_free_space_cache(block_group);
9905 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9906 		ASSERT(list_empty(&block_group->dirty_list));
9907 		ASSERT(list_empty(&block_group->io_list));
9908 		ASSERT(list_empty(&block_group->bg_list));
9909 		ASSERT(atomic_read(&block_group->count) == 1);
9910 		btrfs_put_block_group(block_group);
9911 
9912 		spin_lock(&info->block_group_cache_lock);
9913 	}
9914 	spin_unlock(&info->block_group_cache_lock);
9915 
9916 	/* now that all the block groups are freed, go through and
9917 	 * free all the space_info structs.  This is only called during
9918 	 * the final stages of unmount, and so we know nobody is
9919 	 * using them.  We call synchronize_rcu() once before we start,
9920 	 * just to be on the safe side.
9921 	 */
9922 	synchronize_rcu();
9923 
9924 	release_global_block_rsv(info);
9925 
9926 	while (!list_empty(&info->space_info)) {
9927 		int i;
9928 
9929 		space_info = list_entry(info->space_info.next,
9930 					struct btrfs_space_info,
9931 					list);
9932 
9933 		/*
9934 		 * Do not hide this behind enospc_debug, this is actually
9935 		 * important and indicates a real bug if this happens.
9936 		 */
9937 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9938 			    space_info->bytes_reserved > 0 ||
9939 			    space_info->bytes_may_use > 0))
9940 			dump_space_info(info, space_info, 0, 0);
9941 		list_del(&space_info->list);
9942 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9943 			struct kobject *kobj;
9944 			kobj = space_info->block_group_kobjs[i];
9945 			space_info->block_group_kobjs[i] = NULL;
9946 			if (kobj) {
9947 				kobject_del(kobj);
9948 				kobject_put(kobj);
9949 			}
9950 		}
9951 		kobject_del(&space_info->kobj);
9952 		kobject_put(&space_info->kobj);
9953 	}
9954 	return 0;
9955 }
9956 
9957 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9958 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9959 {
9960 	struct btrfs_space_info *space_info;
9961 	struct raid_kobject *rkobj;
9962 	LIST_HEAD(list);
9963 	int index;
9964 	int ret = 0;
9965 
9966 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9967 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9968 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9969 
9970 	list_for_each_entry(rkobj, &list, list) {
9971 		space_info = __find_space_info(fs_info, rkobj->flags);
9972 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9973 
9974 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9975 				  "%s", get_raid_name(index));
9976 		if (ret) {
9977 			kobject_put(&rkobj->kobj);
9978 			break;
9979 		}
9980 	}
9981 	if (ret)
9982 		btrfs_warn(fs_info,
9983 			   "failed to add kobject for block cache, ignoring");
9984 }
9985 
9986 static void link_block_group(struct btrfs_block_group_cache *cache)
9987 {
9988 	struct btrfs_space_info *space_info = cache->space_info;
9989 	struct btrfs_fs_info *fs_info = cache->fs_info;
9990 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9991 	bool first = false;
9992 
9993 	down_write(&space_info->groups_sem);
9994 	if (list_empty(&space_info->block_groups[index]))
9995 		first = true;
9996 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9997 	up_write(&space_info->groups_sem);
9998 
9999 	if (first) {
10000 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10001 		if (!rkobj) {
10002 			btrfs_warn(cache->fs_info,
10003 				"couldn't alloc memory for raid level kobject");
10004 			return;
10005 		}
10006 		rkobj->flags = cache->flags;
10007 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10008 
10009 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10010 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10011 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10012 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10013 	}
10014 }
10015 
10016 static struct btrfs_block_group_cache *
10017 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10018 			       u64 start, u64 size)
10019 {
10020 	struct btrfs_block_group_cache *cache;
10021 
10022 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10023 	if (!cache)
10024 		return NULL;
10025 
10026 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10027 					GFP_NOFS);
10028 	if (!cache->free_space_ctl) {
10029 		kfree(cache);
10030 		return NULL;
10031 	}
10032 
10033 	cache->key.objectid = start;
10034 	cache->key.offset = size;
10035 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10036 
10037 	cache->fs_info = fs_info;
10038 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10039 	set_free_space_tree_thresholds(cache);
10040 
10041 	atomic_set(&cache->count, 1);
10042 	spin_lock_init(&cache->lock);
10043 	init_rwsem(&cache->data_rwsem);
10044 	INIT_LIST_HEAD(&cache->list);
10045 	INIT_LIST_HEAD(&cache->cluster_list);
10046 	INIT_LIST_HEAD(&cache->bg_list);
10047 	INIT_LIST_HEAD(&cache->ro_list);
10048 	INIT_LIST_HEAD(&cache->dirty_list);
10049 	INIT_LIST_HEAD(&cache->io_list);
10050 	btrfs_init_free_space_ctl(cache);
10051 	atomic_set(&cache->trimming, 0);
10052 	mutex_init(&cache->free_space_lock);
10053 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10054 
10055 	return cache;
10056 }
10057 
10058 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10059 {
10060 	struct btrfs_path *path;
10061 	int ret;
10062 	struct btrfs_block_group_cache *cache;
10063 	struct btrfs_space_info *space_info;
10064 	struct btrfs_key key;
10065 	struct btrfs_key found_key;
10066 	struct extent_buffer *leaf;
10067 	int need_clear = 0;
10068 	u64 cache_gen;
10069 	u64 feature;
10070 	int mixed;
10071 
10072 	feature = btrfs_super_incompat_flags(info->super_copy);
10073 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10074 
10075 	key.objectid = 0;
10076 	key.offset = 0;
10077 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10078 	path = btrfs_alloc_path();
10079 	if (!path)
10080 		return -ENOMEM;
10081 	path->reada = READA_FORWARD;
10082 
10083 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10084 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10085 	    btrfs_super_generation(info->super_copy) != cache_gen)
10086 		need_clear = 1;
10087 	if (btrfs_test_opt(info, CLEAR_CACHE))
10088 		need_clear = 1;
10089 
10090 	while (1) {
10091 		ret = find_first_block_group(info, path, &key);
10092 		if (ret > 0)
10093 			break;
10094 		if (ret != 0)
10095 			goto error;
10096 
10097 		leaf = path->nodes[0];
10098 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10099 
10100 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10101 						       found_key.offset);
10102 		if (!cache) {
10103 			ret = -ENOMEM;
10104 			goto error;
10105 		}
10106 
10107 		if (need_clear) {
10108 			/*
10109 			 * When we mount with old space cache, we need to
10110 			 * set BTRFS_DC_CLEAR and set dirty flag.
10111 			 *
10112 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10113 			 *    truncate the old free space cache inode and
10114 			 *    setup a new one.
10115 			 * b) Setting 'dirty flag' makes sure that we flush
10116 			 *    the new space cache info onto disk.
10117 			 */
10118 			if (btrfs_test_opt(info, SPACE_CACHE))
10119 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10120 		}
10121 
10122 		read_extent_buffer(leaf, &cache->item,
10123 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10124 				   sizeof(cache->item));
10125 		cache->flags = btrfs_block_group_flags(&cache->item);
10126 		if (!mixed &&
10127 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10128 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10129 			btrfs_err(info,
10130 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10131 				  cache->key.objectid);
10132 			ret = -EINVAL;
10133 			goto error;
10134 		}
10135 
10136 		key.objectid = found_key.objectid + found_key.offset;
10137 		btrfs_release_path(path);
10138 
10139 		/*
10140 		 * We need to exclude the super stripes now so that the space
10141 		 * info has super bytes accounted for, otherwise we'll think
10142 		 * we have more space than we actually do.
10143 		 */
10144 		ret = exclude_super_stripes(info, cache);
10145 		if (ret) {
10146 			/*
10147 			 * We may have excluded something, so call this just in
10148 			 * case.
10149 			 */
10150 			free_excluded_extents(info, cache);
10151 			btrfs_put_block_group(cache);
10152 			goto error;
10153 		}
10154 
10155 		/*
10156 		 * check for two cases, either we are full, and therefore
10157 		 * don't need to bother with the caching work since we won't
10158 		 * find any space, or we are empty, and we can just add all
10159 		 * the space in and be done with it.  This saves us _alot_ of
10160 		 * time, particularly in the full case.
10161 		 */
10162 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10163 			cache->last_byte_to_unpin = (u64)-1;
10164 			cache->cached = BTRFS_CACHE_FINISHED;
10165 			free_excluded_extents(info, cache);
10166 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10167 			cache->last_byte_to_unpin = (u64)-1;
10168 			cache->cached = BTRFS_CACHE_FINISHED;
10169 			add_new_free_space(cache, info,
10170 					   found_key.objectid,
10171 					   found_key.objectid +
10172 					   found_key.offset);
10173 			free_excluded_extents(info, cache);
10174 		}
10175 
10176 		ret = btrfs_add_block_group_cache(info, cache);
10177 		if (ret) {
10178 			btrfs_remove_free_space_cache(cache);
10179 			btrfs_put_block_group(cache);
10180 			goto error;
10181 		}
10182 
10183 		trace_btrfs_add_block_group(info, cache, 0);
10184 		update_space_info(info, cache->flags, found_key.offset,
10185 				  btrfs_block_group_used(&cache->item),
10186 				  cache->bytes_super, &space_info);
10187 
10188 		cache->space_info = space_info;
10189 
10190 		link_block_group(cache);
10191 
10192 		set_avail_alloc_bits(info, cache->flags);
10193 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10194 			inc_block_group_ro(cache, 1);
10195 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10196 			spin_lock(&info->unused_bgs_lock);
10197 			/* Should always be true but just in case. */
10198 			if (list_empty(&cache->bg_list)) {
10199 				btrfs_get_block_group(cache);
10200 				list_add_tail(&cache->bg_list,
10201 					      &info->unused_bgs);
10202 			}
10203 			spin_unlock(&info->unused_bgs_lock);
10204 		}
10205 	}
10206 
10207 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10208 		if (!(get_alloc_profile(info, space_info->flags) &
10209 		      (BTRFS_BLOCK_GROUP_RAID10 |
10210 		       BTRFS_BLOCK_GROUP_RAID1 |
10211 		       BTRFS_BLOCK_GROUP_RAID5 |
10212 		       BTRFS_BLOCK_GROUP_RAID6 |
10213 		       BTRFS_BLOCK_GROUP_DUP)))
10214 			continue;
10215 		/*
10216 		 * avoid allocating from un-mirrored block group if there are
10217 		 * mirrored block groups.
10218 		 */
10219 		list_for_each_entry(cache,
10220 				&space_info->block_groups[BTRFS_RAID_RAID0],
10221 				list)
10222 			inc_block_group_ro(cache, 1);
10223 		list_for_each_entry(cache,
10224 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10225 				list)
10226 			inc_block_group_ro(cache, 1);
10227 	}
10228 
10229 	btrfs_add_raid_kobjects(info);
10230 	init_global_block_rsv(info);
10231 	ret = 0;
10232 error:
10233 	btrfs_free_path(path);
10234 	return ret;
10235 }
10236 
10237 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10238 {
10239 	struct btrfs_fs_info *fs_info = trans->fs_info;
10240 	struct btrfs_block_group_cache *block_group, *tmp;
10241 	struct btrfs_root *extent_root = fs_info->extent_root;
10242 	struct btrfs_block_group_item item;
10243 	struct btrfs_key key;
10244 	int ret = 0;
10245 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10246 
10247 	trans->can_flush_pending_bgs = false;
10248 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10249 		if (ret)
10250 			goto next;
10251 
10252 		spin_lock(&block_group->lock);
10253 		memcpy(&item, &block_group->item, sizeof(item));
10254 		memcpy(&key, &block_group->key, sizeof(key));
10255 		spin_unlock(&block_group->lock);
10256 
10257 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10258 					sizeof(item));
10259 		if (ret)
10260 			btrfs_abort_transaction(trans, ret);
10261 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10262 					       key.offset);
10263 		if (ret)
10264 			btrfs_abort_transaction(trans, ret);
10265 		add_block_group_free_space(trans, fs_info, block_group);
10266 		/* already aborted the transaction if it failed. */
10267 next:
10268 		list_del_init(&block_group->bg_list);
10269 	}
10270 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10271 }
10272 
10273 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10274 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10275 			   u64 type, u64 chunk_offset, u64 size)
10276 {
10277 	struct btrfs_block_group_cache *cache;
10278 	int ret;
10279 
10280 	btrfs_set_log_full_commit(fs_info, trans);
10281 
10282 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10283 	if (!cache)
10284 		return -ENOMEM;
10285 
10286 	btrfs_set_block_group_used(&cache->item, bytes_used);
10287 	btrfs_set_block_group_chunk_objectid(&cache->item,
10288 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10289 	btrfs_set_block_group_flags(&cache->item, type);
10290 
10291 	cache->flags = type;
10292 	cache->last_byte_to_unpin = (u64)-1;
10293 	cache->cached = BTRFS_CACHE_FINISHED;
10294 	cache->needs_free_space = 1;
10295 	ret = exclude_super_stripes(fs_info, cache);
10296 	if (ret) {
10297 		/*
10298 		 * We may have excluded something, so call this just in
10299 		 * case.
10300 		 */
10301 		free_excluded_extents(fs_info, cache);
10302 		btrfs_put_block_group(cache);
10303 		return ret;
10304 	}
10305 
10306 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10307 
10308 	free_excluded_extents(fs_info, cache);
10309 
10310 #ifdef CONFIG_BTRFS_DEBUG
10311 	if (btrfs_should_fragment_free_space(cache)) {
10312 		u64 new_bytes_used = size - bytes_used;
10313 
10314 		bytes_used += new_bytes_used >> 1;
10315 		fragment_free_space(cache);
10316 	}
10317 #endif
10318 	/*
10319 	 * Ensure the corresponding space_info object is created and
10320 	 * assigned to our block group. We want our bg to be added to the rbtree
10321 	 * with its ->space_info set.
10322 	 */
10323 	cache->space_info = __find_space_info(fs_info, cache->flags);
10324 	ASSERT(cache->space_info);
10325 
10326 	ret = btrfs_add_block_group_cache(fs_info, cache);
10327 	if (ret) {
10328 		btrfs_remove_free_space_cache(cache);
10329 		btrfs_put_block_group(cache);
10330 		return ret;
10331 	}
10332 
10333 	/*
10334 	 * Now that our block group has its ->space_info set and is inserted in
10335 	 * the rbtree, update the space info's counters.
10336 	 */
10337 	trace_btrfs_add_block_group(fs_info, cache, 1);
10338 	update_space_info(fs_info, cache->flags, size, bytes_used,
10339 				cache->bytes_super, &cache->space_info);
10340 	update_global_block_rsv(fs_info);
10341 
10342 	link_block_group(cache);
10343 
10344 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10345 
10346 	set_avail_alloc_bits(fs_info, type);
10347 	return 0;
10348 }
10349 
10350 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10351 {
10352 	u64 extra_flags = chunk_to_extended(flags) &
10353 				BTRFS_EXTENDED_PROFILE_MASK;
10354 
10355 	write_seqlock(&fs_info->profiles_lock);
10356 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10357 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10358 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10359 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10360 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10361 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10362 	write_sequnlock(&fs_info->profiles_lock);
10363 }
10364 
10365 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10366 			     struct btrfs_fs_info *fs_info, u64 group_start,
10367 			     struct extent_map *em)
10368 {
10369 	struct btrfs_root *root = fs_info->extent_root;
10370 	struct btrfs_path *path;
10371 	struct btrfs_block_group_cache *block_group;
10372 	struct btrfs_free_cluster *cluster;
10373 	struct btrfs_root *tree_root = fs_info->tree_root;
10374 	struct btrfs_key key;
10375 	struct inode *inode;
10376 	struct kobject *kobj = NULL;
10377 	int ret;
10378 	int index;
10379 	int factor;
10380 	struct btrfs_caching_control *caching_ctl = NULL;
10381 	bool remove_em;
10382 
10383 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10384 	BUG_ON(!block_group);
10385 	BUG_ON(!block_group->ro);
10386 
10387 	/*
10388 	 * Free the reserved super bytes from this block group before
10389 	 * remove it.
10390 	 */
10391 	free_excluded_extents(fs_info, block_group);
10392 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10393 				  block_group->key.offset);
10394 
10395 	memcpy(&key, &block_group->key, sizeof(key));
10396 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10397 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10398 				  BTRFS_BLOCK_GROUP_RAID1 |
10399 				  BTRFS_BLOCK_GROUP_RAID10))
10400 		factor = 2;
10401 	else
10402 		factor = 1;
10403 
10404 	/* make sure this block group isn't part of an allocation cluster */
10405 	cluster = &fs_info->data_alloc_cluster;
10406 	spin_lock(&cluster->refill_lock);
10407 	btrfs_return_cluster_to_free_space(block_group, cluster);
10408 	spin_unlock(&cluster->refill_lock);
10409 
10410 	/*
10411 	 * make sure this block group isn't part of a metadata
10412 	 * allocation cluster
10413 	 */
10414 	cluster = &fs_info->meta_alloc_cluster;
10415 	spin_lock(&cluster->refill_lock);
10416 	btrfs_return_cluster_to_free_space(block_group, cluster);
10417 	spin_unlock(&cluster->refill_lock);
10418 
10419 	path = btrfs_alloc_path();
10420 	if (!path) {
10421 		ret = -ENOMEM;
10422 		goto out;
10423 	}
10424 
10425 	/*
10426 	 * get the inode first so any iput calls done for the io_list
10427 	 * aren't the final iput (no unlinks allowed now)
10428 	 */
10429 	inode = lookup_free_space_inode(fs_info, block_group, path);
10430 
10431 	mutex_lock(&trans->transaction->cache_write_mutex);
10432 	/*
10433 	 * make sure our free spache cache IO is done before remove the
10434 	 * free space inode
10435 	 */
10436 	spin_lock(&trans->transaction->dirty_bgs_lock);
10437 	if (!list_empty(&block_group->io_list)) {
10438 		list_del_init(&block_group->io_list);
10439 
10440 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10441 
10442 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10443 		btrfs_wait_cache_io(trans, block_group, path);
10444 		btrfs_put_block_group(block_group);
10445 		spin_lock(&trans->transaction->dirty_bgs_lock);
10446 	}
10447 
10448 	if (!list_empty(&block_group->dirty_list)) {
10449 		list_del_init(&block_group->dirty_list);
10450 		btrfs_put_block_group(block_group);
10451 	}
10452 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10453 	mutex_unlock(&trans->transaction->cache_write_mutex);
10454 
10455 	if (!IS_ERR(inode)) {
10456 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10457 		if (ret) {
10458 			btrfs_add_delayed_iput(inode);
10459 			goto out;
10460 		}
10461 		clear_nlink(inode);
10462 		/* One for the block groups ref */
10463 		spin_lock(&block_group->lock);
10464 		if (block_group->iref) {
10465 			block_group->iref = 0;
10466 			block_group->inode = NULL;
10467 			spin_unlock(&block_group->lock);
10468 			iput(inode);
10469 		} else {
10470 			spin_unlock(&block_group->lock);
10471 		}
10472 		/* One for our lookup ref */
10473 		btrfs_add_delayed_iput(inode);
10474 	}
10475 
10476 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10477 	key.offset = block_group->key.objectid;
10478 	key.type = 0;
10479 
10480 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10481 	if (ret < 0)
10482 		goto out;
10483 	if (ret > 0)
10484 		btrfs_release_path(path);
10485 	if (ret == 0) {
10486 		ret = btrfs_del_item(trans, tree_root, path);
10487 		if (ret)
10488 			goto out;
10489 		btrfs_release_path(path);
10490 	}
10491 
10492 	spin_lock(&fs_info->block_group_cache_lock);
10493 	rb_erase(&block_group->cache_node,
10494 		 &fs_info->block_group_cache_tree);
10495 	RB_CLEAR_NODE(&block_group->cache_node);
10496 
10497 	if (fs_info->first_logical_byte == block_group->key.objectid)
10498 		fs_info->first_logical_byte = (u64)-1;
10499 	spin_unlock(&fs_info->block_group_cache_lock);
10500 
10501 	down_write(&block_group->space_info->groups_sem);
10502 	/*
10503 	 * we must use list_del_init so people can check to see if they
10504 	 * are still on the list after taking the semaphore
10505 	 */
10506 	list_del_init(&block_group->list);
10507 	if (list_empty(&block_group->space_info->block_groups[index])) {
10508 		kobj = block_group->space_info->block_group_kobjs[index];
10509 		block_group->space_info->block_group_kobjs[index] = NULL;
10510 		clear_avail_alloc_bits(fs_info, block_group->flags);
10511 	}
10512 	up_write(&block_group->space_info->groups_sem);
10513 	if (kobj) {
10514 		kobject_del(kobj);
10515 		kobject_put(kobj);
10516 	}
10517 
10518 	if (block_group->has_caching_ctl)
10519 		caching_ctl = get_caching_control(block_group);
10520 	if (block_group->cached == BTRFS_CACHE_STARTED)
10521 		wait_block_group_cache_done(block_group);
10522 	if (block_group->has_caching_ctl) {
10523 		down_write(&fs_info->commit_root_sem);
10524 		if (!caching_ctl) {
10525 			struct btrfs_caching_control *ctl;
10526 
10527 			list_for_each_entry(ctl,
10528 				    &fs_info->caching_block_groups, list)
10529 				if (ctl->block_group == block_group) {
10530 					caching_ctl = ctl;
10531 					refcount_inc(&caching_ctl->count);
10532 					break;
10533 				}
10534 		}
10535 		if (caching_ctl)
10536 			list_del_init(&caching_ctl->list);
10537 		up_write(&fs_info->commit_root_sem);
10538 		if (caching_ctl) {
10539 			/* Once for the caching bgs list and once for us. */
10540 			put_caching_control(caching_ctl);
10541 			put_caching_control(caching_ctl);
10542 		}
10543 	}
10544 
10545 	spin_lock(&trans->transaction->dirty_bgs_lock);
10546 	if (!list_empty(&block_group->dirty_list)) {
10547 		WARN_ON(1);
10548 	}
10549 	if (!list_empty(&block_group->io_list)) {
10550 		WARN_ON(1);
10551 	}
10552 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10553 	btrfs_remove_free_space_cache(block_group);
10554 
10555 	spin_lock(&block_group->space_info->lock);
10556 	list_del_init(&block_group->ro_list);
10557 
10558 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10559 		WARN_ON(block_group->space_info->total_bytes
10560 			< block_group->key.offset);
10561 		WARN_ON(block_group->space_info->bytes_readonly
10562 			< block_group->key.offset);
10563 		WARN_ON(block_group->space_info->disk_total
10564 			< block_group->key.offset * factor);
10565 	}
10566 	block_group->space_info->total_bytes -= block_group->key.offset;
10567 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10568 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10569 
10570 	spin_unlock(&block_group->space_info->lock);
10571 
10572 	memcpy(&key, &block_group->key, sizeof(key));
10573 
10574 	mutex_lock(&fs_info->chunk_mutex);
10575 	if (!list_empty(&em->list)) {
10576 		/* We're in the transaction->pending_chunks list. */
10577 		free_extent_map(em);
10578 	}
10579 	spin_lock(&block_group->lock);
10580 	block_group->removed = 1;
10581 	/*
10582 	 * At this point trimming can't start on this block group, because we
10583 	 * removed the block group from the tree fs_info->block_group_cache_tree
10584 	 * so no one can't find it anymore and even if someone already got this
10585 	 * block group before we removed it from the rbtree, they have already
10586 	 * incremented block_group->trimming - if they didn't, they won't find
10587 	 * any free space entries because we already removed them all when we
10588 	 * called btrfs_remove_free_space_cache().
10589 	 *
10590 	 * And we must not remove the extent map from the fs_info->mapping_tree
10591 	 * to prevent the same logical address range and physical device space
10592 	 * ranges from being reused for a new block group. This is because our
10593 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10594 	 * completely transactionless, so while it is trimming a range the
10595 	 * currently running transaction might finish and a new one start,
10596 	 * allowing for new block groups to be created that can reuse the same
10597 	 * physical device locations unless we take this special care.
10598 	 *
10599 	 * There may also be an implicit trim operation if the file system
10600 	 * is mounted with -odiscard. The same protections must remain
10601 	 * in place until the extents have been discarded completely when
10602 	 * the transaction commit has completed.
10603 	 */
10604 	remove_em = (atomic_read(&block_group->trimming) == 0);
10605 	/*
10606 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10607 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10608 	 * before checking block_group->removed).
10609 	 */
10610 	if (!remove_em) {
10611 		/*
10612 		 * Our em might be in trans->transaction->pending_chunks which
10613 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10614 		 * and so is the fs_info->pinned_chunks list.
10615 		 *
10616 		 * So at this point we must be holding the chunk_mutex to avoid
10617 		 * any races with chunk allocation (more specifically at
10618 		 * volumes.c:contains_pending_extent()), to ensure it always
10619 		 * sees the em, either in the pending_chunks list or in the
10620 		 * pinned_chunks list.
10621 		 */
10622 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10623 	}
10624 	spin_unlock(&block_group->lock);
10625 
10626 	if (remove_em) {
10627 		struct extent_map_tree *em_tree;
10628 
10629 		em_tree = &fs_info->mapping_tree.map_tree;
10630 		write_lock(&em_tree->lock);
10631 		/*
10632 		 * The em might be in the pending_chunks list, so make sure the
10633 		 * chunk mutex is locked, since remove_extent_mapping() will
10634 		 * delete us from that list.
10635 		 */
10636 		remove_extent_mapping(em_tree, em);
10637 		write_unlock(&em_tree->lock);
10638 		/* once for the tree */
10639 		free_extent_map(em);
10640 	}
10641 
10642 	mutex_unlock(&fs_info->chunk_mutex);
10643 
10644 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10645 	if (ret)
10646 		goto out;
10647 
10648 	btrfs_put_block_group(block_group);
10649 	btrfs_put_block_group(block_group);
10650 
10651 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10652 	if (ret > 0)
10653 		ret = -EIO;
10654 	if (ret < 0)
10655 		goto out;
10656 
10657 	ret = btrfs_del_item(trans, root, path);
10658 out:
10659 	btrfs_free_path(path);
10660 	return ret;
10661 }
10662 
10663 struct btrfs_trans_handle *
10664 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10665 				     const u64 chunk_offset)
10666 {
10667 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10668 	struct extent_map *em;
10669 	struct map_lookup *map;
10670 	unsigned int num_items;
10671 
10672 	read_lock(&em_tree->lock);
10673 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10674 	read_unlock(&em_tree->lock);
10675 	ASSERT(em && em->start == chunk_offset);
10676 
10677 	/*
10678 	 * We need to reserve 3 + N units from the metadata space info in order
10679 	 * to remove a block group (done at btrfs_remove_chunk() and at
10680 	 * btrfs_remove_block_group()), which are used for:
10681 	 *
10682 	 * 1 unit for adding the free space inode's orphan (located in the tree
10683 	 * of tree roots).
10684 	 * 1 unit for deleting the block group item (located in the extent
10685 	 * tree).
10686 	 * 1 unit for deleting the free space item (located in tree of tree
10687 	 * roots).
10688 	 * N units for deleting N device extent items corresponding to each
10689 	 * stripe (located in the device tree).
10690 	 *
10691 	 * In order to remove a block group we also need to reserve units in the
10692 	 * system space info in order to update the chunk tree (update one or
10693 	 * more device items and remove one chunk item), but this is done at
10694 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10695 	 */
10696 	map = em->map_lookup;
10697 	num_items = 3 + map->num_stripes;
10698 	free_extent_map(em);
10699 
10700 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10701 							   num_items, 1);
10702 }
10703 
10704 /*
10705  * Process the unused_bgs list and remove any that don't have any allocated
10706  * space inside of them.
10707  */
10708 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10709 {
10710 	struct btrfs_block_group_cache *block_group;
10711 	struct btrfs_space_info *space_info;
10712 	struct btrfs_trans_handle *trans;
10713 	int ret = 0;
10714 
10715 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10716 		return;
10717 
10718 	spin_lock(&fs_info->unused_bgs_lock);
10719 	while (!list_empty(&fs_info->unused_bgs)) {
10720 		u64 start, end;
10721 		int trimming;
10722 
10723 		block_group = list_first_entry(&fs_info->unused_bgs,
10724 					       struct btrfs_block_group_cache,
10725 					       bg_list);
10726 		list_del_init(&block_group->bg_list);
10727 
10728 		space_info = block_group->space_info;
10729 
10730 		if (ret || btrfs_mixed_space_info(space_info)) {
10731 			btrfs_put_block_group(block_group);
10732 			continue;
10733 		}
10734 		spin_unlock(&fs_info->unused_bgs_lock);
10735 
10736 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10737 
10738 		/* Don't want to race with allocators so take the groups_sem */
10739 		down_write(&space_info->groups_sem);
10740 		spin_lock(&block_group->lock);
10741 		if (block_group->reserved ||
10742 		    btrfs_block_group_used(&block_group->item) ||
10743 		    block_group->ro ||
10744 		    list_is_singular(&block_group->list)) {
10745 			/*
10746 			 * We want to bail if we made new allocations or have
10747 			 * outstanding allocations in this block group.  We do
10748 			 * the ro check in case balance is currently acting on
10749 			 * this block group.
10750 			 */
10751 			spin_unlock(&block_group->lock);
10752 			up_write(&space_info->groups_sem);
10753 			goto next;
10754 		}
10755 		spin_unlock(&block_group->lock);
10756 
10757 		/* We don't want to force the issue, only flip if it's ok. */
10758 		ret = inc_block_group_ro(block_group, 0);
10759 		up_write(&space_info->groups_sem);
10760 		if (ret < 0) {
10761 			ret = 0;
10762 			goto next;
10763 		}
10764 
10765 		/*
10766 		 * Want to do this before we do anything else so we can recover
10767 		 * properly if we fail to join the transaction.
10768 		 */
10769 		trans = btrfs_start_trans_remove_block_group(fs_info,
10770 						     block_group->key.objectid);
10771 		if (IS_ERR(trans)) {
10772 			btrfs_dec_block_group_ro(block_group);
10773 			ret = PTR_ERR(trans);
10774 			goto next;
10775 		}
10776 
10777 		/*
10778 		 * We could have pending pinned extents for this block group,
10779 		 * just delete them, we don't care about them anymore.
10780 		 */
10781 		start = block_group->key.objectid;
10782 		end = start + block_group->key.offset - 1;
10783 		/*
10784 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10785 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10786 		 * another task might be running finish_extent_commit() for the
10787 		 * previous transaction N - 1, and have seen a range belonging
10788 		 * to the block group in freed_extents[] before we were able to
10789 		 * clear the whole block group range from freed_extents[]. This
10790 		 * means that task can lookup for the block group after we
10791 		 * unpinned it from freed_extents[] and removed it, leading to
10792 		 * a BUG_ON() at btrfs_unpin_extent_range().
10793 		 */
10794 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10795 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10796 				  EXTENT_DIRTY);
10797 		if (ret) {
10798 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10799 			btrfs_dec_block_group_ro(block_group);
10800 			goto end_trans;
10801 		}
10802 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10803 				  EXTENT_DIRTY);
10804 		if (ret) {
10805 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10806 			btrfs_dec_block_group_ro(block_group);
10807 			goto end_trans;
10808 		}
10809 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10810 
10811 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10812 		spin_lock(&space_info->lock);
10813 		spin_lock(&block_group->lock);
10814 
10815 		space_info->bytes_pinned -= block_group->pinned;
10816 		space_info->bytes_readonly += block_group->pinned;
10817 		percpu_counter_add(&space_info->total_bytes_pinned,
10818 				   -block_group->pinned);
10819 		block_group->pinned = 0;
10820 
10821 		spin_unlock(&block_group->lock);
10822 		spin_unlock(&space_info->lock);
10823 
10824 		/* DISCARD can flip during remount */
10825 		trimming = btrfs_test_opt(fs_info, DISCARD);
10826 
10827 		/* Implicit trim during transaction commit. */
10828 		if (trimming)
10829 			btrfs_get_block_group_trimming(block_group);
10830 
10831 		/*
10832 		 * Btrfs_remove_chunk will abort the transaction if things go
10833 		 * horribly wrong.
10834 		 */
10835 		ret = btrfs_remove_chunk(trans, fs_info,
10836 					 block_group->key.objectid);
10837 
10838 		if (ret) {
10839 			if (trimming)
10840 				btrfs_put_block_group_trimming(block_group);
10841 			goto end_trans;
10842 		}
10843 
10844 		/*
10845 		 * If we're not mounted with -odiscard, we can just forget
10846 		 * about this block group. Otherwise we'll need to wait
10847 		 * until transaction commit to do the actual discard.
10848 		 */
10849 		if (trimming) {
10850 			spin_lock(&fs_info->unused_bgs_lock);
10851 			/*
10852 			 * A concurrent scrub might have added us to the list
10853 			 * fs_info->unused_bgs, so use a list_move operation
10854 			 * to add the block group to the deleted_bgs list.
10855 			 */
10856 			list_move(&block_group->bg_list,
10857 				  &trans->transaction->deleted_bgs);
10858 			spin_unlock(&fs_info->unused_bgs_lock);
10859 			btrfs_get_block_group(block_group);
10860 		}
10861 end_trans:
10862 		btrfs_end_transaction(trans);
10863 next:
10864 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10865 		btrfs_put_block_group(block_group);
10866 		spin_lock(&fs_info->unused_bgs_lock);
10867 	}
10868 	spin_unlock(&fs_info->unused_bgs_lock);
10869 }
10870 
10871 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10872 {
10873 	struct btrfs_space_info *space_info;
10874 	struct btrfs_super_block *disk_super;
10875 	u64 features;
10876 	u64 flags;
10877 	int mixed = 0;
10878 	int ret;
10879 
10880 	disk_super = fs_info->super_copy;
10881 	if (!btrfs_super_root(disk_super))
10882 		return -EINVAL;
10883 
10884 	features = btrfs_super_incompat_flags(disk_super);
10885 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10886 		mixed = 1;
10887 
10888 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10889 	ret = create_space_info(fs_info, flags, &space_info);
10890 	if (ret)
10891 		goto out;
10892 
10893 	if (mixed) {
10894 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10895 		ret = create_space_info(fs_info, flags, &space_info);
10896 	} else {
10897 		flags = BTRFS_BLOCK_GROUP_METADATA;
10898 		ret = create_space_info(fs_info, flags, &space_info);
10899 		if (ret)
10900 			goto out;
10901 
10902 		flags = BTRFS_BLOCK_GROUP_DATA;
10903 		ret = create_space_info(fs_info, flags, &space_info);
10904 	}
10905 out:
10906 	return ret;
10907 }
10908 
10909 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10910 				   u64 start, u64 end)
10911 {
10912 	return unpin_extent_range(fs_info, start, end, false);
10913 }
10914 
10915 /*
10916  * It used to be that old block groups would be left around forever.
10917  * Iterating over them would be enough to trim unused space.  Since we
10918  * now automatically remove them, we also need to iterate over unallocated
10919  * space.
10920  *
10921  * We don't want a transaction for this since the discard may take a
10922  * substantial amount of time.  We don't require that a transaction be
10923  * running, but we do need to take a running transaction into account
10924  * to ensure that we're not discarding chunks that were released in
10925  * the current transaction.
10926  *
10927  * Holding the chunks lock will prevent other threads from allocating
10928  * or releasing chunks, but it won't prevent a running transaction
10929  * from committing and releasing the memory that the pending chunks
10930  * list head uses.  For that, we need to take a reference to the
10931  * transaction.
10932  */
10933 static int btrfs_trim_free_extents(struct btrfs_device *device,
10934 				   u64 minlen, u64 *trimmed)
10935 {
10936 	u64 start = 0, len = 0;
10937 	int ret;
10938 
10939 	*trimmed = 0;
10940 
10941 	/* Not writeable = nothing to do. */
10942 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10943 		return 0;
10944 
10945 	/* No free space = nothing to do. */
10946 	if (device->total_bytes <= device->bytes_used)
10947 		return 0;
10948 
10949 	ret = 0;
10950 
10951 	while (1) {
10952 		struct btrfs_fs_info *fs_info = device->fs_info;
10953 		struct btrfs_transaction *trans;
10954 		u64 bytes;
10955 
10956 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10957 		if (ret)
10958 			return ret;
10959 
10960 		down_read(&fs_info->commit_root_sem);
10961 
10962 		spin_lock(&fs_info->trans_lock);
10963 		trans = fs_info->running_transaction;
10964 		if (trans)
10965 			refcount_inc(&trans->use_count);
10966 		spin_unlock(&fs_info->trans_lock);
10967 
10968 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10969 						 &start, &len);
10970 		if (trans)
10971 			btrfs_put_transaction(trans);
10972 
10973 		if (ret) {
10974 			up_read(&fs_info->commit_root_sem);
10975 			mutex_unlock(&fs_info->chunk_mutex);
10976 			if (ret == -ENOSPC)
10977 				ret = 0;
10978 			break;
10979 		}
10980 
10981 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10982 		up_read(&fs_info->commit_root_sem);
10983 		mutex_unlock(&fs_info->chunk_mutex);
10984 
10985 		if (ret)
10986 			break;
10987 
10988 		start += len;
10989 		*trimmed += bytes;
10990 
10991 		if (fatal_signal_pending(current)) {
10992 			ret = -ERESTARTSYS;
10993 			break;
10994 		}
10995 
10996 		cond_resched();
10997 	}
10998 
10999 	return ret;
11000 }
11001 
11002 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11003 {
11004 	struct btrfs_block_group_cache *cache = NULL;
11005 	struct btrfs_device *device;
11006 	struct list_head *devices;
11007 	u64 group_trimmed;
11008 	u64 start;
11009 	u64 end;
11010 	u64 trimmed = 0;
11011 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11012 	int ret = 0;
11013 
11014 	/*
11015 	 * try to trim all FS space, our block group may start from non-zero.
11016 	 */
11017 	if (range->len == total_bytes)
11018 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11019 	else
11020 		cache = btrfs_lookup_block_group(fs_info, range->start);
11021 
11022 	while (cache) {
11023 		if (cache->key.objectid >= (range->start + range->len)) {
11024 			btrfs_put_block_group(cache);
11025 			break;
11026 		}
11027 
11028 		start = max(range->start, cache->key.objectid);
11029 		end = min(range->start + range->len,
11030 				cache->key.objectid + cache->key.offset);
11031 
11032 		if (end - start >= range->minlen) {
11033 			if (!block_group_cache_done(cache)) {
11034 				ret = cache_block_group(cache, 0);
11035 				if (ret) {
11036 					btrfs_put_block_group(cache);
11037 					break;
11038 				}
11039 				ret = wait_block_group_cache_done(cache);
11040 				if (ret) {
11041 					btrfs_put_block_group(cache);
11042 					break;
11043 				}
11044 			}
11045 			ret = btrfs_trim_block_group(cache,
11046 						     &group_trimmed,
11047 						     start,
11048 						     end,
11049 						     range->minlen);
11050 
11051 			trimmed += group_trimmed;
11052 			if (ret) {
11053 				btrfs_put_block_group(cache);
11054 				break;
11055 			}
11056 		}
11057 
11058 		cache = next_block_group(fs_info, cache);
11059 	}
11060 
11061 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11062 	devices = &fs_info->fs_devices->alloc_list;
11063 	list_for_each_entry(device, devices, dev_alloc_list) {
11064 		ret = btrfs_trim_free_extents(device, range->minlen,
11065 					      &group_trimmed);
11066 		if (ret)
11067 			break;
11068 
11069 		trimmed += group_trimmed;
11070 	}
11071 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11072 
11073 	range->len = trimmed;
11074 	return ret;
11075 }
11076 
11077 /*
11078  * btrfs_{start,end}_write_no_snapshotting() are similar to
11079  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11080  * data into the page cache through nocow before the subvolume is snapshoted,
11081  * but flush the data into disk after the snapshot creation, or to prevent
11082  * operations while snapshotting is ongoing and that cause the snapshot to be
11083  * inconsistent (writes followed by expanding truncates for example).
11084  */
11085 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11086 {
11087 	percpu_counter_dec(&root->subv_writers->counter);
11088 	/*
11089 	 * Make sure counter is updated before we wake up waiters.
11090 	 */
11091 	smp_mb();
11092 	if (waitqueue_active(&root->subv_writers->wait))
11093 		wake_up(&root->subv_writers->wait);
11094 }
11095 
11096 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11097 {
11098 	if (atomic_read(&root->will_be_snapshotted))
11099 		return 0;
11100 
11101 	percpu_counter_inc(&root->subv_writers->counter);
11102 	/*
11103 	 * Make sure counter is updated before we check for snapshot creation.
11104 	 */
11105 	smp_mb();
11106 	if (atomic_read(&root->will_be_snapshotted)) {
11107 		btrfs_end_write_no_snapshotting(root);
11108 		return 0;
11109 	}
11110 	return 1;
11111 }
11112 
11113 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11114 {
11115 	while (true) {
11116 		int ret;
11117 
11118 		ret = btrfs_start_write_no_snapshotting(root);
11119 		if (ret)
11120 			break;
11121 		wait_var_event(&root->will_be_snapshotted,
11122 			       !atomic_read(&root->will_be_snapshotted));
11123 	}
11124 }
11125