xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision faffb083)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "extent-tree.h"
42 #include "root-tree.h"
43 #include "file-item.h"
44 #include "orphan.h"
45 #include "tree-checker.h"
46 
47 #undef SCRAMBLE_DELAYED_REFS
48 
49 
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 			       struct btrfs_delayed_ref_node *node, u64 parent,
52 			       u64 root_objectid, u64 owner_objectid,
53 			       u64 owner_offset, int refs_to_drop,
54 			       struct btrfs_delayed_extent_op *extra_op);
55 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
56 				    struct extent_buffer *leaf,
57 				    struct btrfs_extent_item *ei);
58 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
59 				      u64 parent, u64 root_objectid,
60 				      u64 flags, u64 owner, u64 offset,
61 				      struct btrfs_key *ins, int ref_mod);
62 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
63 				     struct btrfs_delayed_ref_node *node,
64 				     struct btrfs_delayed_extent_op *extent_op);
65 static int find_next_key(struct btrfs_path *path, int level,
66 			 struct btrfs_key *key);
67 
68 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
69 {
70 	return (cache->flags & bits) == bits;
71 }
72 
73 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
74 			      u64 start, u64 num_bytes)
75 {
76 	u64 end = start + num_bytes - 1;
77 	set_extent_bits(&fs_info->excluded_extents, start, end,
78 			EXTENT_UPTODATE);
79 	return 0;
80 }
81 
82 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
83 {
84 	struct btrfs_fs_info *fs_info = cache->fs_info;
85 	u64 start, end;
86 
87 	start = cache->start;
88 	end = start + cache->length - 1;
89 
90 	clear_extent_bits(&fs_info->excluded_extents, start, end,
91 			  EXTENT_UPTODATE);
92 }
93 
94 /* simple helper to search for an existing data extent at a given offset */
95 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
96 {
97 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
98 	int ret;
99 	struct btrfs_key key;
100 	struct btrfs_path *path;
101 
102 	path = btrfs_alloc_path();
103 	if (!path)
104 		return -ENOMEM;
105 
106 	key.objectid = start;
107 	key.offset = len;
108 	key.type = BTRFS_EXTENT_ITEM_KEY;
109 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
110 	btrfs_free_path(path);
111 	return ret;
112 }
113 
114 /*
115  * helper function to lookup reference count and flags of a tree block.
116  *
117  * the head node for delayed ref is used to store the sum of all the
118  * reference count modifications queued up in the rbtree. the head
119  * node may also store the extent flags to set. This way you can check
120  * to see what the reference count and extent flags would be if all of
121  * the delayed refs are not processed.
122  */
123 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
124 			     struct btrfs_fs_info *fs_info, u64 bytenr,
125 			     u64 offset, int metadata, u64 *refs, u64 *flags)
126 {
127 	struct btrfs_root *extent_root;
128 	struct btrfs_delayed_ref_head *head;
129 	struct btrfs_delayed_ref_root *delayed_refs;
130 	struct btrfs_path *path;
131 	struct btrfs_extent_item *ei;
132 	struct extent_buffer *leaf;
133 	struct btrfs_key key;
134 	u32 item_size;
135 	u64 num_refs;
136 	u64 extent_flags;
137 	int ret;
138 
139 	/*
140 	 * If we don't have skinny metadata, don't bother doing anything
141 	 * different
142 	 */
143 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
144 		offset = fs_info->nodesize;
145 		metadata = 0;
146 	}
147 
148 	path = btrfs_alloc_path();
149 	if (!path)
150 		return -ENOMEM;
151 
152 	if (!trans) {
153 		path->skip_locking = 1;
154 		path->search_commit_root = 1;
155 	}
156 
157 search_again:
158 	key.objectid = bytenr;
159 	key.offset = offset;
160 	if (metadata)
161 		key.type = BTRFS_METADATA_ITEM_KEY;
162 	else
163 		key.type = BTRFS_EXTENT_ITEM_KEY;
164 
165 	extent_root = btrfs_extent_root(fs_info, bytenr);
166 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
167 	if (ret < 0)
168 		goto out_free;
169 
170 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
171 		if (path->slots[0]) {
172 			path->slots[0]--;
173 			btrfs_item_key_to_cpu(path->nodes[0], &key,
174 					      path->slots[0]);
175 			if (key.objectid == bytenr &&
176 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
177 			    key.offset == fs_info->nodesize)
178 				ret = 0;
179 		}
180 	}
181 
182 	if (ret == 0) {
183 		leaf = path->nodes[0];
184 		item_size = btrfs_item_size(leaf, path->slots[0]);
185 		if (item_size >= sizeof(*ei)) {
186 			ei = btrfs_item_ptr(leaf, path->slots[0],
187 					    struct btrfs_extent_item);
188 			num_refs = btrfs_extent_refs(leaf, ei);
189 			extent_flags = btrfs_extent_flags(leaf, ei);
190 		} else {
191 			ret = -EINVAL;
192 			btrfs_print_v0_err(fs_info);
193 			if (trans)
194 				btrfs_abort_transaction(trans, ret);
195 			else
196 				btrfs_handle_fs_error(fs_info, ret, NULL);
197 
198 			goto out_free;
199 		}
200 
201 		BUG_ON(num_refs == 0);
202 	} else {
203 		num_refs = 0;
204 		extent_flags = 0;
205 		ret = 0;
206 	}
207 
208 	if (!trans)
209 		goto out;
210 
211 	delayed_refs = &trans->transaction->delayed_refs;
212 	spin_lock(&delayed_refs->lock);
213 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
214 	if (head) {
215 		if (!mutex_trylock(&head->mutex)) {
216 			refcount_inc(&head->refs);
217 			spin_unlock(&delayed_refs->lock);
218 
219 			btrfs_release_path(path);
220 
221 			/*
222 			 * Mutex was contended, block until it's released and try
223 			 * again
224 			 */
225 			mutex_lock(&head->mutex);
226 			mutex_unlock(&head->mutex);
227 			btrfs_put_delayed_ref_head(head);
228 			goto search_again;
229 		}
230 		spin_lock(&head->lock);
231 		if (head->extent_op && head->extent_op->update_flags)
232 			extent_flags |= head->extent_op->flags_to_set;
233 		else
234 			BUG_ON(num_refs == 0);
235 
236 		num_refs += head->ref_mod;
237 		spin_unlock(&head->lock);
238 		mutex_unlock(&head->mutex);
239 	}
240 	spin_unlock(&delayed_refs->lock);
241 out:
242 	WARN_ON(num_refs == 0);
243 	if (refs)
244 		*refs = num_refs;
245 	if (flags)
246 		*flags = extent_flags;
247 out_free:
248 	btrfs_free_path(path);
249 	return ret;
250 }
251 
252 /*
253  * Back reference rules.  Back refs have three main goals:
254  *
255  * 1) differentiate between all holders of references to an extent so that
256  *    when a reference is dropped we can make sure it was a valid reference
257  *    before freeing the extent.
258  *
259  * 2) Provide enough information to quickly find the holders of an extent
260  *    if we notice a given block is corrupted or bad.
261  *
262  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
263  *    maintenance.  This is actually the same as #2, but with a slightly
264  *    different use case.
265  *
266  * There are two kinds of back refs. The implicit back refs is optimized
267  * for pointers in non-shared tree blocks. For a given pointer in a block,
268  * back refs of this kind provide information about the block's owner tree
269  * and the pointer's key. These information allow us to find the block by
270  * b-tree searching. The full back refs is for pointers in tree blocks not
271  * referenced by their owner trees. The location of tree block is recorded
272  * in the back refs. Actually the full back refs is generic, and can be
273  * used in all cases the implicit back refs is used. The major shortcoming
274  * of the full back refs is its overhead. Every time a tree block gets
275  * COWed, we have to update back refs entry for all pointers in it.
276  *
277  * For a newly allocated tree block, we use implicit back refs for
278  * pointers in it. This means most tree related operations only involve
279  * implicit back refs. For a tree block created in old transaction, the
280  * only way to drop a reference to it is COW it. So we can detect the
281  * event that tree block loses its owner tree's reference and do the
282  * back refs conversion.
283  *
284  * When a tree block is COWed through a tree, there are four cases:
285  *
286  * The reference count of the block is one and the tree is the block's
287  * owner tree. Nothing to do in this case.
288  *
289  * The reference count of the block is one and the tree is not the
290  * block's owner tree. In this case, full back refs is used for pointers
291  * in the block. Remove these full back refs, add implicit back refs for
292  * every pointers in the new block.
293  *
294  * The reference count of the block is greater than one and the tree is
295  * the block's owner tree. In this case, implicit back refs is used for
296  * pointers in the block. Add full back refs for every pointers in the
297  * block, increase lower level extents' reference counts. The original
298  * implicit back refs are entailed to the new block.
299  *
300  * The reference count of the block is greater than one and the tree is
301  * not the block's owner tree. Add implicit back refs for every pointer in
302  * the new block, increase lower level extents' reference count.
303  *
304  * Back Reference Key composing:
305  *
306  * The key objectid corresponds to the first byte in the extent,
307  * The key type is used to differentiate between types of back refs.
308  * There are different meanings of the key offset for different types
309  * of back refs.
310  *
311  * File extents can be referenced by:
312  *
313  * - multiple snapshots, subvolumes, or different generations in one subvol
314  * - different files inside a single subvolume
315  * - different offsets inside a file (bookend extents in file.c)
316  *
317  * The extent ref structure for the implicit back refs has fields for:
318  *
319  * - Objectid of the subvolume root
320  * - objectid of the file holding the reference
321  * - original offset in the file
322  * - how many bookend extents
323  *
324  * The key offset for the implicit back refs is hash of the first
325  * three fields.
326  *
327  * The extent ref structure for the full back refs has field for:
328  *
329  * - number of pointers in the tree leaf
330  *
331  * The key offset for the implicit back refs is the first byte of
332  * the tree leaf
333  *
334  * When a file extent is allocated, The implicit back refs is used.
335  * the fields are filled in:
336  *
337  *     (root_key.objectid, inode objectid, offset in file, 1)
338  *
339  * When a file extent is removed file truncation, we find the
340  * corresponding implicit back refs and check the following fields:
341  *
342  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
343  *
344  * Btree extents can be referenced by:
345  *
346  * - Different subvolumes
347  *
348  * Both the implicit back refs and the full back refs for tree blocks
349  * only consist of key. The key offset for the implicit back refs is
350  * objectid of block's owner tree. The key offset for the full back refs
351  * is the first byte of parent block.
352  *
353  * When implicit back refs is used, information about the lowest key and
354  * level of the tree block are required. These information are stored in
355  * tree block info structure.
356  */
357 
358 /*
359  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
360  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
361  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
362  */
363 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
364 				     struct btrfs_extent_inline_ref *iref,
365 				     enum btrfs_inline_ref_type is_data)
366 {
367 	int type = btrfs_extent_inline_ref_type(eb, iref);
368 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
369 
370 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
371 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
372 	    type == BTRFS_SHARED_DATA_REF_KEY ||
373 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
374 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
375 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
376 				return type;
377 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
378 				ASSERT(eb->fs_info);
379 				/*
380 				 * Every shared one has parent tree block,
381 				 * which must be aligned to sector size.
382 				 */
383 				if (offset &&
384 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
385 					return type;
386 			}
387 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
388 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
389 				return type;
390 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
391 				ASSERT(eb->fs_info);
392 				/*
393 				 * Every shared one has parent tree block,
394 				 * which must be aligned to sector size.
395 				 */
396 				if (offset &&
397 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
398 					return type;
399 			}
400 		} else {
401 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
402 			return type;
403 		}
404 	}
405 
406 	btrfs_print_leaf((struct extent_buffer *)eb);
407 	btrfs_err(eb->fs_info,
408 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
409 		  eb->start, (unsigned long)iref, type);
410 	WARN_ON(1);
411 
412 	return BTRFS_REF_TYPE_INVALID;
413 }
414 
415 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
416 {
417 	u32 high_crc = ~(u32)0;
418 	u32 low_crc = ~(u32)0;
419 	__le64 lenum;
420 
421 	lenum = cpu_to_le64(root_objectid);
422 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
423 	lenum = cpu_to_le64(owner);
424 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
425 	lenum = cpu_to_le64(offset);
426 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
427 
428 	return ((u64)high_crc << 31) ^ (u64)low_crc;
429 }
430 
431 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
432 				     struct btrfs_extent_data_ref *ref)
433 {
434 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
435 				    btrfs_extent_data_ref_objectid(leaf, ref),
436 				    btrfs_extent_data_ref_offset(leaf, ref));
437 }
438 
439 static int match_extent_data_ref(struct extent_buffer *leaf,
440 				 struct btrfs_extent_data_ref *ref,
441 				 u64 root_objectid, u64 owner, u64 offset)
442 {
443 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
444 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
445 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
446 		return 0;
447 	return 1;
448 }
449 
450 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
451 					   struct btrfs_path *path,
452 					   u64 bytenr, u64 parent,
453 					   u64 root_objectid,
454 					   u64 owner, u64 offset)
455 {
456 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
457 	struct btrfs_key key;
458 	struct btrfs_extent_data_ref *ref;
459 	struct extent_buffer *leaf;
460 	u32 nritems;
461 	int ret;
462 	int recow;
463 	int err = -ENOENT;
464 
465 	key.objectid = bytenr;
466 	if (parent) {
467 		key.type = BTRFS_SHARED_DATA_REF_KEY;
468 		key.offset = parent;
469 	} else {
470 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
471 		key.offset = hash_extent_data_ref(root_objectid,
472 						  owner, offset);
473 	}
474 again:
475 	recow = 0;
476 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
477 	if (ret < 0) {
478 		err = ret;
479 		goto fail;
480 	}
481 
482 	if (parent) {
483 		if (!ret)
484 			return 0;
485 		goto fail;
486 	}
487 
488 	leaf = path->nodes[0];
489 	nritems = btrfs_header_nritems(leaf);
490 	while (1) {
491 		if (path->slots[0] >= nritems) {
492 			ret = btrfs_next_leaf(root, path);
493 			if (ret < 0)
494 				err = ret;
495 			if (ret)
496 				goto fail;
497 
498 			leaf = path->nodes[0];
499 			nritems = btrfs_header_nritems(leaf);
500 			recow = 1;
501 		}
502 
503 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
504 		if (key.objectid != bytenr ||
505 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
506 			goto fail;
507 
508 		ref = btrfs_item_ptr(leaf, path->slots[0],
509 				     struct btrfs_extent_data_ref);
510 
511 		if (match_extent_data_ref(leaf, ref, root_objectid,
512 					  owner, offset)) {
513 			if (recow) {
514 				btrfs_release_path(path);
515 				goto again;
516 			}
517 			err = 0;
518 			break;
519 		}
520 		path->slots[0]++;
521 	}
522 fail:
523 	return err;
524 }
525 
526 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
527 					   struct btrfs_path *path,
528 					   u64 bytenr, u64 parent,
529 					   u64 root_objectid, u64 owner,
530 					   u64 offset, int refs_to_add)
531 {
532 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
533 	struct btrfs_key key;
534 	struct extent_buffer *leaf;
535 	u32 size;
536 	u32 num_refs;
537 	int ret;
538 
539 	key.objectid = bytenr;
540 	if (parent) {
541 		key.type = BTRFS_SHARED_DATA_REF_KEY;
542 		key.offset = parent;
543 		size = sizeof(struct btrfs_shared_data_ref);
544 	} else {
545 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
546 		key.offset = hash_extent_data_ref(root_objectid,
547 						  owner, offset);
548 		size = sizeof(struct btrfs_extent_data_ref);
549 	}
550 
551 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
552 	if (ret && ret != -EEXIST)
553 		goto fail;
554 
555 	leaf = path->nodes[0];
556 	if (parent) {
557 		struct btrfs_shared_data_ref *ref;
558 		ref = btrfs_item_ptr(leaf, path->slots[0],
559 				     struct btrfs_shared_data_ref);
560 		if (ret == 0) {
561 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
562 		} else {
563 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
564 			num_refs += refs_to_add;
565 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
566 		}
567 	} else {
568 		struct btrfs_extent_data_ref *ref;
569 		while (ret == -EEXIST) {
570 			ref = btrfs_item_ptr(leaf, path->slots[0],
571 					     struct btrfs_extent_data_ref);
572 			if (match_extent_data_ref(leaf, ref, root_objectid,
573 						  owner, offset))
574 				break;
575 			btrfs_release_path(path);
576 			key.offset++;
577 			ret = btrfs_insert_empty_item(trans, root, path, &key,
578 						      size);
579 			if (ret && ret != -EEXIST)
580 				goto fail;
581 
582 			leaf = path->nodes[0];
583 		}
584 		ref = btrfs_item_ptr(leaf, path->slots[0],
585 				     struct btrfs_extent_data_ref);
586 		if (ret == 0) {
587 			btrfs_set_extent_data_ref_root(leaf, ref,
588 						       root_objectid);
589 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
590 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
591 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
592 		} else {
593 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
594 			num_refs += refs_to_add;
595 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
596 		}
597 	}
598 	btrfs_mark_buffer_dirty(leaf);
599 	ret = 0;
600 fail:
601 	btrfs_release_path(path);
602 	return ret;
603 }
604 
605 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
606 					   struct btrfs_root *root,
607 					   struct btrfs_path *path,
608 					   int refs_to_drop)
609 {
610 	struct btrfs_key key;
611 	struct btrfs_extent_data_ref *ref1 = NULL;
612 	struct btrfs_shared_data_ref *ref2 = NULL;
613 	struct extent_buffer *leaf;
614 	u32 num_refs = 0;
615 	int ret = 0;
616 
617 	leaf = path->nodes[0];
618 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
619 
620 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
621 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
622 				      struct btrfs_extent_data_ref);
623 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
624 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
625 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
626 				      struct btrfs_shared_data_ref);
627 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
628 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
629 		btrfs_print_v0_err(trans->fs_info);
630 		btrfs_abort_transaction(trans, -EINVAL);
631 		return -EINVAL;
632 	} else {
633 		BUG();
634 	}
635 
636 	BUG_ON(num_refs < refs_to_drop);
637 	num_refs -= refs_to_drop;
638 
639 	if (num_refs == 0) {
640 		ret = btrfs_del_item(trans, root, path);
641 	} else {
642 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
643 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
644 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
645 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
646 		btrfs_mark_buffer_dirty(leaf);
647 	}
648 	return ret;
649 }
650 
651 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
652 					  struct btrfs_extent_inline_ref *iref)
653 {
654 	struct btrfs_key key;
655 	struct extent_buffer *leaf;
656 	struct btrfs_extent_data_ref *ref1;
657 	struct btrfs_shared_data_ref *ref2;
658 	u32 num_refs = 0;
659 	int type;
660 
661 	leaf = path->nodes[0];
662 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
663 
664 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
665 	if (iref) {
666 		/*
667 		 * If type is invalid, we should have bailed out earlier than
668 		 * this call.
669 		 */
670 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
671 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
672 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
673 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
674 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 		} else {
676 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
677 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
678 		}
679 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
680 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
681 				      struct btrfs_extent_data_ref);
682 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
683 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
684 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
685 				      struct btrfs_shared_data_ref);
686 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
687 	} else {
688 		WARN_ON(1);
689 	}
690 	return num_refs;
691 }
692 
693 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
694 					  struct btrfs_path *path,
695 					  u64 bytenr, u64 parent,
696 					  u64 root_objectid)
697 {
698 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
699 	struct btrfs_key key;
700 	int ret;
701 
702 	key.objectid = bytenr;
703 	if (parent) {
704 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
705 		key.offset = parent;
706 	} else {
707 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
708 		key.offset = root_objectid;
709 	}
710 
711 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
712 	if (ret > 0)
713 		ret = -ENOENT;
714 	return ret;
715 }
716 
717 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
718 					  struct btrfs_path *path,
719 					  u64 bytenr, u64 parent,
720 					  u64 root_objectid)
721 {
722 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
723 	struct btrfs_key key;
724 	int ret;
725 
726 	key.objectid = bytenr;
727 	if (parent) {
728 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
729 		key.offset = parent;
730 	} else {
731 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
732 		key.offset = root_objectid;
733 	}
734 
735 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
736 	btrfs_release_path(path);
737 	return ret;
738 }
739 
740 static inline int extent_ref_type(u64 parent, u64 owner)
741 {
742 	int type;
743 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
744 		if (parent > 0)
745 			type = BTRFS_SHARED_BLOCK_REF_KEY;
746 		else
747 			type = BTRFS_TREE_BLOCK_REF_KEY;
748 	} else {
749 		if (parent > 0)
750 			type = BTRFS_SHARED_DATA_REF_KEY;
751 		else
752 			type = BTRFS_EXTENT_DATA_REF_KEY;
753 	}
754 	return type;
755 }
756 
757 static int find_next_key(struct btrfs_path *path, int level,
758 			 struct btrfs_key *key)
759 
760 {
761 	for (; level < BTRFS_MAX_LEVEL; level++) {
762 		if (!path->nodes[level])
763 			break;
764 		if (path->slots[level] + 1 >=
765 		    btrfs_header_nritems(path->nodes[level]))
766 			continue;
767 		if (level == 0)
768 			btrfs_item_key_to_cpu(path->nodes[level], key,
769 					      path->slots[level] + 1);
770 		else
771 			btrfs_node_key_to_cpu(path->nodes[level], key,
772 					      path->slots[level] + 1);
773 		return 0;
774 	}
775 	return 1;
776 }
777 
778 /*
779  * look for inline back ref. if back ref is found, *ref_ret is set
780  * to the address of inline back ref, and 0 is returned.
781  *
782  * if back ref isn't found, *ref_ret is set to the address where it
783  * should be inserted, and -ENOENT is returned.
784  *
785  * if insert is true and there are too many inline back refs, the path
786  * points to the extent item, and -EAGAIN is returned.
787  *
788  * NOTE: inline back refs are ordered in the same way that back ref
789  *	 items in the tree are ordered.
790  */
791 static noinline_for_stack
792 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
793 				 struct btrfs_path *path,
794 				 struct btrfs_extent_inline_ref **ref_ret,
795 				 u64 bytenr, u64 num_bytes,
796 				 u64 parent, u64 root_objectid,
797 				 u64 owner, u64 offset, int insert)
798 {
799 	struct btrfs_fs_info *fs_info = trans->fs_info;
800 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
801 	struct btrfs_key key;
802 	struct extent_buffer *leaf;
803 	struct btrfs_extent_item *ei;
804 	struct btrfs_extent_inline_ref *iref;
805 	u64 flags;
806 	u64 item_size;
807 	unsigned long ptr;
808 	unsigned long end;
809 	int extra_size;
810 	int type;
811 	int want;
812 	int ret;
813 	int err = 0;
814 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
815 	int needed;
816 
817 	key.objectid = bytenr;
818 	key.type = BTRFS_EXTENT_ITEM_KEY;
819 	key.offset = num_bytes;
820 
821 	want = extent_ref_type(parent, owner);
822 	if (insert) {
823 		extra_size = btrfs_extent_inline_ref_size(want);
824 		path->search_for_extension = 1;
825 		path->keep_locks = 1;
826 	} else
827 		extra_size = -1;
828 
829 	/*
830 	 * Owner is our level, so we can just add one to get the level for the
831 	 * block we are interested in.
832 	 */
833 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
834 		key.type = BTRFS_METADATA_ITEM_KEY;
835 		key.offset = owner;
836 	}
837 
838 again:
839 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
840 	if (ret < 0) {
841 		err = ret;
842 		goto out;
843 	}
844 
845 	/*
846 	 * We may be a newly converted file system which still has the old fat
847 	 * extent entries for metadata, so try and see if we have one of those.
848 	 */
849 	if (ret > 0 && skinny_metadata) {
850 		skinny_metadata = false;
851 		if (path->slots[0]) {
852 			path->slots[0]--;
853 			btrfs_item_key_to_cpu(path->nodes[0], &key,
854 					      path->slots[0]);
855 			if (key.objectid == bytenr &&
856 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
857 			    key.offset == num_bytes)
858 				ret = 0;
859 		}
860 		if (ret) {
861 			key.objectid = bytenr;
862 			key.type = BTRFS_EXTENT_ITEM_KEY;
863 			key.offset = num_bytes;
864 			btrfs_release_path(path);
865 			goto again;
866 		}
867 	}
868 
869 	if (ret && !insert) {
870 		err = -ENOENT;
871 		goto out;
872 	} else if (WARN_ON(ret)) {
873 		err = -EIO;
874 		goto out;
875 	}
876 
877 	leaf = path->nodes[0];
878 	item_size = btrfs_item_size(leaf, path->slots[0]);
879 	if (unlikely(item_size < sizeof(*ei))) {
880 		err = -EINVAL;
881 		btrfs_print_v0_err(fs_info);
882 		btrfs_abort_transaction(trans, err);
883 		goto out;
884 	}
885 
886 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
887 	flags = btrfs_extent_flags(leaf, ei);
888 
889 	ptr = (unsigned long)(ei + 1);
890 	end = (unsigned long)ei + item_size;
891 
892 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
893 		ptr += sizeof(struct btrfs_tree_block_info);
894 		BUG_ON(ptr > end);
895 	}
896 
897 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
898 		needed = BTRFS_REF_TYPE_DATA;
899 	else
900 		needed = BTRFS_REF_TYPE_BLOCK;
901 
902 	err = -ENOENT;
903 	while (1) {
904 		if (ptr >= end) {
905 			if (ptr > end) {
906 				err = -EUCLEAN;
907 				btrfs_print_leaf(path->nodes[0]);
908 				btrfs_crit(fs_info,
909 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
910 					path->slots[0], root_objectid, owner, offset, parent);
911 			}
912 			break;
913 		}
914 		iref = (struct btrfs_extent_inline_ref *)ptr;
915 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
916 		if (type == BTRFS_REF_TYPE_INVALID) {
917 			err = -EUCLEAN;
918 			goto out;
919 		}
920 
921 		if (want < type)
922 			break;
923 		if (want > type) {
924 			ptr += btrfs_extent_inline_ref_size(type);
925 			continue;
926 		}
927 
928 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
929 			struct btrfs_extent_data_ref *dref;
930 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
931 			if (match_extent_data_ref(leaf, dref, root_objectid,
932 						  owner, offset)) {
933 				err = 0;
934 				break;
935 			}
936 			if (hash_extent_data_ref_item(leaf, dref) <
937 			    hash_extent_data_ref(root_objectid, owner, offset))
938 				break;
939 		} else {
940 			u64 ref_offset;
941 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
942 			if (parent > 0) {
943 				if (parent == ref_offset) {
944 					err = 0;
945 					break;
946 				}
947 				if (ref_offset < parent)
948 					break;
949 			} else {
950 				if (root_objectid == ref_offset) {
951 					err = 0;
952 					break;
953 				}
954 				if (ref_offset < root_objectid)
955 					break;
956 			}
957 		}
958 		ptr += btrfs_extent_inline_ref_size(type);
959 	}
960 	if (err == -ENOENT && insert) {
961 		if (item_size + extra_size >=
962 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
963 			err = -EAGAIN;
964 			goto out;
965 		}
966 		/*
967 		 * To add new inline back ref, we have to make sure
968 		 * there is no corresponding back ref item.
969 		 * For simplicity, we just do not add new inline back
970 		 * ref if there is any kind of item for this block
971 		 */
972 		if (find_next_key(path, 0, &key) == 0 &&
973 		    key.objectid == bytenr &&
974 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
975 			err = -EAGAIN;
976 			goto out;
977 		}
978 	}
979 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
980 out:
981 	if (insert) {
982 		path->keep_locks = 0;
983 		path->search_for_extension = 0;
984 		btrfs_unlock_up_safe(path, 1);
985 	}
986 	return err;
987 }
988 
989 /*
990  * helper to add new inline back ref
991  */
992 static noinline_for_stack
993 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
994 				 struct btrfs_path *path,
995 				 struct btrfs_extent_inline_ref *iref,
996 				 u64 parent, u64 root_objectid,
997 				 u64 owner, u64 offset, int refs_to_add,
998 				 struct btrfs_delayed_extent_op *extent_op)
999 {
1000 	struct extent_buffer *leaf;
1001 	struct btrfs_extent_item *ei;
1002 	unsigned long ptr;
1003 	unsigned long end;
1004 	unsigned long item_offset;
1005 	u64 refs;
1006 	int size;
1007 	int type;
1008 
1009 	leaf = path->nodes[0];
1010 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1011 	item_offset = (unsigned long)iref - (unsigned long)ei;
1012 
1013 	type = extent_ref_type(parent, owner);
1014 	size = btrfs_extent_inline_ref_size(type);
1015 
1016 	btrfs_extend_item(path, size);
1017 
1018 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1019 	refs = btrfs_extent_refs(leaf, ei);
1020 	refs += refs_to_add;
1021 	btrfs_set_extent_refs(leaf, ei, refs);
1022 	if (extent_op)
1023 		__run_delayed_extent_op(extent_op, leaf, ei);
1024 
1025 	ptr = (unsigned long)ei + item_offset;
1026 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1027 	if (ptr < end - size)
1028 		memmove_extent_buffer(leaf, ptr + size, ptr,
1029 				      end - size - ptr);
1030 
1031 	iref = (struct btrfs_extent_inline_ref *)ptr;
1032 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1033 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1034 		struct btrfs_extent_data_ref *dref;
1035 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1036 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1037 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1038 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1039 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1040 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1041 		struct btrfs_shared_data_ref *sref;
1042 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1043 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1046 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1047 	} else {
1048 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1049 	}
1050 	btrfs_mark_buffer_dirty(leaf);
1051 }
1052 
1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1054 				 struct btrfs_path *path,
1055 				 struct btrfs_extent_inline_ref **ref_ret,
1056 				 u64 bytenr, u64 num_bytes, u64 parent,
1057 				 u64 root_objectid, u64 owner, u64 offset)
1058 {
1059 	int ret;
1060 
1061 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1062 					   num_bytes, parent, root_objectid,
1063 					   owner, offset, 0);
1064 	if (ret != -ENOENT)
1065 		return ret;
1066 
1067 	btrfs_release_path(path);
1068 	*ref_ret = NULL;
1069 
1070 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1071 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1072 					    root_objectid);
1073 	} else {
1074 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1075 					     root_objectid, owner, offset);
1076 	}
1077 	return ret;
1078 }
1079 
1080 /*
1081  * helper to update/remove inline back ref
1082  */
1083 static noinline_for_stack
1084 void update_inline_extent_backref(struct btrfs_path *path,
1085 				  struct btrfs_extent_inline_ref *iref,
1086 				  int refs_to_mod,
1087 				  struct btrfs_delayed_extent_op *extent_op)
1088 {
1089 	struct extent_buffer *leaf = path->nodes[0];
1090 	struct btrfs_extent_item *ei;
1091 	struct btrfs_extent_data_ref *dref = NULL;
1092 	struct btrfs_shared_data_ref *sref = NULL;
1093 	unsigned long ptr;
1094 	unsigned long end;
1095 	u32 item_size;
1096 	int size;
1097 	int type;
1098 	u64 refs;
1099 
1100 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 	refs = btrfs_extent_refs(leaf, ei);
1102 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1103 	refs += refs_to_mod;
1104 	btrfs_set_extent_refs(leaf, ei, refs);
1105 	if (extent_op)
1106 		__run_delayed_extent_op(extent_op, leaf, ei);
1107 
1108 	/*
1109 	 * If type is invalid, we should have bailed out after
1110 	 * lookup_inline_extent_backref().
1111 	 */
1112 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1113 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1114 
1115 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1116 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1117 		refs = btrfs_extent_data_ref_count(leaf, dref);
1118 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1119 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1120 		refs = btrfs_shared_data_ref_count(leaf, sref);
1121 	} else {
1122 		refs = 1;
1123 		BUG_ON(refs_to_mod != -1);
1124 	}
1125 
1126 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1127 	refs += refs_to_mod;
1128 
1129 	if (refs > 0) {
1130 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1131 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1132 		else
1133 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1134 	} else {
1135 		size =  btrfs_extent_inline_ref_size(type);
1136 		item_size = btrfs_item_size(leaf, path->slots[0]);
1137 		ptr = (unsigned long)iref;
1138 		end = (unsigned long)ei + item_size;
1139 		if (ptr + size < end)
1140 			memmove_extent_buffer(leaf, ptr, ptr + size,
1141 					      end - ptr - size);
1142 		item_size -= size;
1143 		btrfs_truncate_item(path, item_size, 1);
1144 	}
1145 	btrfs_mark_buffer_dirty(leaf);
1146 }
1147 
1148 static noinline_for_stack
1149 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1150 				 struct btrfs_path *path,
1151 				 u64 bytenr, u64 num_bytes, u64 parent,
1152 				 u64 root_objectid, u64 owner,
1153 				 u64 offset, int refs_to_add,
1154 				 struct btrfs_delayed_extent_op *extent_op)
1155 {
1156 	struct btrfs_extent_inline_ref *iref;
1157 	int ret;
1158 
1159 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1160 					   num_bytes, parent, root_objectid,
1161 					   owner, offset, 1);
1162 	if (ret == 0) {
1163 		/*
1164 		 * We're adding refs to a tree block we already own, this
1165 		 * should not happen at all.
1166 		 */
1167 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1168 			btrfs_crit(trans->fs_info,
1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1170 				   bytenr, num_bytes, root_objectid);
1171 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1172 				WARN_ON(1);
1173 				btrfs_crit(trans->fs_info,
1174 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1175 				btrfs_print_leaf(path->nodes[0]);
1176 			}
1177 			return -EUCLEAN;
1178 		}
1179 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1180 	} else if (ret == -ENOENT) {
1181 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1182 					    root_objectid, owner, offset,
1183 					    refs_to_add, extent_op);
1184 		ret = 0;
1185 	}
1186 	return ret;
1187 }
1188 
1189 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1190 				 struct btrfs_root *root,
1191 				 struct btrfs_path *path,
1192 				 struct btrfs_extent_inline_ref *iref,
1193 				 int refs_to_drop, int is_data)
1194 {
1195 	int ret = 0;
1196 
1197 	BUG_ON(!is_data && refs_to_drop != 1);
1198 	if (iref)
1199 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1200 	else if (is_data)
1201 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1202 	else
1203 		ret = btrfs_del_item(trans, root, path);
1204 	return ret;
1205 }
1206 
1207 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1208 			       u64 *discarded_bytes)
1209 {
1210 	int j, ret = 0;
1211 	u64 bytes_left, end;
1212 	u64 aligned_start = ALIGN(start, 1 << 9);
1213 
1214 	if (WARN_ON(start != aligned_start)) {
1215 		len -= aligned_start - start;
1216 		len = round_down(len, 1 << 9);
1217 		start = aligned_start;
1218 	}
1219 
1220 	*discarded_bytes = 0;
1221 
1222 	if (!len)
1223 		return 0;
1224 
1225 	end = start + len;
1226 	bytes_left = len;
1227 
1228 	/* Skip any superblocks on this device. */
1229 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1230 		u64 sb_start = btrfs_sb_offset(j);
1231 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1232 		u64 size = sb_start - start;
1233 
1234 		if (!in_range(sb_start, start, bytes_left) &&
1235 		    !in_range(sb_end, start, bytes_left) &&
1236 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1237 			continue;
1238 
1239 		/*
1240 		 * Superblock spans beginning of range.  Adjust start and
1241 		 * try again.
1242 		 */
1243 		if (sb_start <= start) {
1244 			start += sb_end - start;
1245 			if (start > end) {
1246 				bytes_left = 0;
1247 				break;
1248 			}
1249 			bytes_left = end - start;
1250 			continue;
1251 		}
1252 
1253 		if (size) {
1254 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1255 						   GFP_NOFS);
1256 			if (!ret)
1257 				*discarded_bytes += size;
1258 			else if (ret != -EOPNOTSUPP)
1259 				return ret;
1260 		}
1261 
1262 		start = sb_end;
1263 		if (start > end) {
1264 			bytes_left = 0;
1265 			break;
1266 		}
1267 		bytes_left = end - start;
1268 	}
1269 
1270 	if (bytes_left) {
1271 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1272 					   GFP_NOFS);
1273 		if (!ret)
1274 			*discarded_bytes += bytes_left;
1275 	}
1276 	return ret;
1277 }
1278 
1279 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1280 {
1281 	struct btrfs_device *dev = stripe->dev;
1282 	struct btrfs_fs_info *fs_info = dev->fs_info;
1283 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1284 	u64 phys = stripe->physical;
1285 	u64 len = stripe->length;
1286 	u64 discarded = 0;
1287 	int ret = 0;
1288 
1289 	/* Zone reset on a zoned filesystem */
1290 	if (btrfs_can_zone_reset(dev, phys, len)) {
1291 		u64 src_disc;
1292 
1293 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1294 		if (ret)
1295 			goto out;
1296 
1297 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1298 		    dev != dev_replace->srcdev)
1299 			goto out;
1300 
1301 		src_disc = discarded;
1302 
1303 		/* Send to replace target as well */
1304 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1305 					      &discarded);
1306 		discarded += src_disc;
1307 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1308 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1309 	} else {
1310 		ret = 0;
1311 		*bytes = 0;
1312 	}
1313 
1314 out:
1315 	*bytes = discarded;
1316 	return ret;
1317 }
1318 
1319 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1320 			 u64 num_bytes, u64 *actual_bytes)
1321 {
1322 	int ret = 0;
1323 	u64 discarded_bytes = 0;
1324 	u64 end = bytenr + num_bytes;
1325 	u64 cur = bytenr;
1326 
1327 	/*
1328 	 * Avoid races with device replace and make sure the devices in the
1329 	 * stripes don't go away while we are discarding.
1330 	 */
1331 	btrfs_bio_counter_inc_blocked(fs_info);
1332 	while (cur < end) {
1333 		struct btrfs_discard_stripe *stripes;
1334 		unsigned int num_stripes;
1335 		int i;
1336 
1337 		num_bytes = end - cur;
1338 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1339 		if (IS_ERR(stripes)) {
1340 			ret = PTR_ERR(stripes);
1341 			if (ret == -EOPNOTSUPP)
1342 				ret = 0;
1343 			break;
1344 		}
1345 
1346 		for (i = 0; i < num_stripes; i++) {
1347 			struct btrfs_discard_stripe *stripe = stripes + i;
1348 			u64 bytes;
1349 
1350 			if (!stripe->dev->bdev) {
1351 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1352 				continue;
1353 			}
1354 
1355 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1356 					&stripe->dev->dev_state))
1357 				continue;
1358 
1359 			ret = do_discard_extent(stripe, &bytes);
1360 			if (ret) {
1361 				/*
1362 				 * Keep going if discard is not supported by the
1363 				 * device.
1364 				 */
1365 				if (ret != -EOPNOTSUPP)
1366 					break;
1367 				ret = 0;
1368 			} else {
1369 				discarded_bytes += bytes;
1370 			}
1371 		}
1372 		kfree(stripes);
1373 		if (ret)
1374 			break;
1375 		cur += num_bytes;
1376 	}
1377 	btrfs_bio_counter_dec(fs_info);
1378 	if (actual_bytes)
1379 		*actual_bytes = discarded_bytes;
1380 	return ret;
1381 }
1382 
1383 /* Can return -ENOMEM */
1384 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1385 			 struct btrfs_ref *generic_ref)
1386 {
1387 	struct btrfs_fs_info *fs_info = trans->fs_info;
1388 	int ret;
1389 
1390 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1391 	       generic_ref->action);
1392 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1393 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1394 
1395 	if (generic_ref->type == BTRFS_REF_METADATA)
1396 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1397 	else
1398 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1399 
1400 	btrfs_ref_tree_mod(fs_info, generic_ref);
1401 
1402 	return ret;
1403 }
1404 
1405 /*
1406  * __btrfs_inc_extent_ref - insert backreference for a given extent
1407  *
1408  * The counterpart is in __btrfs_free_extent(), with examples and more details
1409  * how it works.
1410  *
1411  * @trans:	    Handle of transaction
1412  *
1413  * @node:	    The delayed ref node used to get the bytenr/length for
1414  *		    extent whose references are incremented.
1415  *
1416  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1417  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1418  *		    bytenr of the parent block. Since new extents are always
1419  *		    created with indirect references, this will only be the case
1420  *		    when relocating a shared extent. In that case, root_objectid
1421  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1422  *		    be 0
1423  *
1424  * @root_objectid:  The id of the root where this modification has originated,
1425  *		    this can be either one of the well-known metadata trees or
1426  *		    the subvolume id which references this extent.
1427  *
1428  * @owner:	    For data extents it is the inode number of the owning file.
1429  *		    For metadata extents this parameter holds the level in the
1430  *		    tree of the extent.
1431  *
1432  * @offset:	    For metadata extents the offset is ignored and is currently
1433  *		    always passed as 0. For data extents it is the fileoffset
1434  *		    this extent belongs to.
1435  *
1436  * @refs_to_add     Number of references to add
1437  *
1438  * @extent_op       Pointer to a structure, holding information necessary when
1439  *                  updating a tree block's flags
1440  *
1441  */
1442 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1443 				  struct btrfs_delayed_ref_node *node,
1444 				  u64 parent, u64 root_objectid,
1445 				  u64 owner, u64 offset, int refs_to_add,
1446 				  struct btrfs_delayed_extent_op *extent_op)
1447 {
1448 	struct btrfs_path *path;
1449 	struct extent_buffer *leaf;
1450 	struct btrfs_extent_item *item;
1451 	struct btrfs_key key;
1452 	u64 bytenr = node->bytenr;
1453 	u64 num_bytes = node->num_bytes;
1454 	u64 refs;
1455 	int ret;
1456 
1457 	path = btrfs_alloc_path();
1458 	if (!path)
1459 		return -ENOMEM;
1460 
1461 	/* this will setup the path even if it fails to insert the back ref */
1462 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1463 					   parent, root_objectid, owner,
1464 					   offset, refs_to_add, extent_op);
1465 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1466 		goto out;
1467 
1468 	/*
1469 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1470 	 * inline extent ref, so just update the reference count and add a
1471 	 * normal backref.
1472 	 */
1473 	leaf = path->nodes[0];
1474 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1475 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1476 	refs = btrfs_extent_refs(leaf, item);
1477 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1478 	if (extent_op)
1479 		__run_delayed_extent_op(extent_op, leaf, item);
1480 
1481 	btrfs_mark_buffer_dirty(leaf);
1482 	btrfs_release_path(path);
1483 
1484 	/* now insert the actual backref */
1485 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1486 		BUG_ON(refs_to_add != 1);
1487 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1488 					    root_objectid);
1489 	} else {
1490 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1491 					     root_objectid, owner, offset,
1492 					     refs_to_add);
1493 	}
1494 	if (ret)
1495 		btrfs_abort_transaction(trans, ret);
1496 out:
1497 	btrfs_free_path(path);
1498 	return ret;
1499 }
1500 
1501 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1502 				struct btrfs_delayed_ref_node *node,
1503 				struct btrfs_delayed_extent_op *extent_op,
1504 				int insert_reserved)
1505 {
1506 	int ret = 0;
1507 	struct btrfs_delayed_data_ref *ref;
1508 	struct btrfs_key ins;
1509 	u64 parent = 0;
1510 	u64 ref_root = 0;
1511 	u64 flags = 0;
1512 
1513 	ins.objectid = node->bytenr;
1514 	ins.offset = node->num_bytes;
1515 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1516 
1517 	ref = btrfs_delayed_node_to_data_ref(node);
1518 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1519 
1520 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1521 		parent = ref->parent;
1522 	ref_root = ref->root;
1523 
1524 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1525 		if (extent_op)
1526 			flags |= extent_op->flags_to_set;
1527 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1528 						 flags, ref->objectid,
1529 						 ref->offset, &ins,
1530 						 node->ref_mod);
1531 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1532 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1533 					     ref->objectid, ref->offset,
1534 					     node->ref_mod, extent_op);
1535 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1536 		ret = __btrfs_free_extent(trans, node, parent,
1537 					  ref_root, ref->objectid,
1538 					  ref->offset, node->ref_mod,
1539 					  extent_op);
1540 	} else {
1541 		BUG();
1542 	}
1543 	return ret;
1544 }
1545 
1546 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1547 				    struct extent_buffer *leaf,
1548 				    struct btrfs_extent_item *ei)
1549 {
1550 	u64 flags = btrfs_extent_flags(leaf, ei);
1551 	if (extent_op->update_flags) {
1552 		flags |= extent_op->flags_to_set;
1553 		btrfs_set_extent_flags(leaf, ei, flags);
1554 	}
1555 
1556 	if (extent_op->update_key) {
1557 		struct btrfs_tree_block_info *bi;
1558 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1559 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1560 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1561 	}
1562 }
1563 
1564 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1565 				 struct btrfs_delayed_ref_head *head,
1566 				 struct btrfs_delayed_extent_op *extent_op)
1567 {
1568 	struct btrfs_fs_info *fs_info = trans->fs_info;
1569 	struct btrfs_root *root;
1570 	struct btrfs_key key;
1571 	struct btrfs_path *path;
1572 	struct btrfs_extent_item *ei;
1573 	struct extent_buffer *leaf;
1574 	u32 item_size;
1575 	int ret;
1576 	int err = 0;
1577 	int metadata = 1;
1578 
1579 	if (TRANS_ABORTED(trans))
1580 		return 0;
1581 
1582 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1583 		metadata = 0;
1584 
1585 	path = btrfs_alloc_path();
1586 	if (!path)
1587 		return -ENOMEM;
1588 
1589 	key.objectid = head->bytenr;
1590 
1591 	if (metadata) {
1592 		key.type = BTRFS_METADATA_ITEM_KEY;
1593 		key.offset = extent_op->level;
1594 	} else {
1595 		key.type = BTRFS_EXTENT_ITEM_KEY;
1596 		key.offset = head->num_bytes;
1597 	}
1598 
1599 	root = btrfs_extent_root(fs_info, key.objectid);
1600 again:
1601 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1602 	if (ret < 0) {
1603 		err = ret;
1604 		goto out;
1605 	}
1606 	if (ret > 0) {
1607 		if (metadata) {
1608 			if (path->slots[0] > 0) {
1609 				path->slots[0]--;
1610 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1611 						      path->slots[0]);
1612 				if (key.objectid == head->bytenr &&
1613 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1614 				    key.offset == head->num_bytes)
1615 					ret = 0;
1616 			}
1617 			if (ret > 0) {
1618 				btrfs_release_path(path);
1619 				metadata = 0;
1620 
1621 				key.objectid = head->bytenr;
1622 				key.offset = head->num_bytes;
1623 				key.type = BTRFS_EXTENT_ITEM_KEY;
1624 				goto again;
1625 			}
1626 		} else {
1627 			err = -EIO;
1628 			goto out;
1629 		}
1630 	}
1631 
1632 	leaf = path->nodes[0];
1633 	item_size = btrfs_item_size(leaf, path->slots[0]);
1634 
1635 	if (unlikely(item_size < sizeof(*ei))) {
1636 		err = -EINVAL;
1637 		btrfs_print_v0_err(fs_info);
1638 		btrfs_abort_transaction(trans, err);
1639 		goto out;
1640 	}
1641 
1642 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1643 	__run_delayed_extent_op(extent_op, leaf, ei);
1644 
1645 	btrfs_mark_buffer_dirty(leaf);
1646 out:
1647 	btrfs_free_path(path);
1648 	return err;
1649 }
1650 
1651 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1652 				struct btrfs_delayed_ref_node *node,
1653 				struct btrfs_delayed_extent_op *extent_op,
1654 				int insert_reserved)
1655 {
1656 	int ret = 0;
1657 	struct btrfs_delayed_tree_ref *ref;
1658 	u64 parent = 0;
1659 	u64 ref_root = 0;
1660 
1661 	ref = btrfs_delayed_node_to_tree_ref(node);
1662 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1663 
1664 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1665 		parent = ref->parent;
1666 	ref_root = ref->root;
1667 
1668 	if (node->ref_mod != 1) {
1669 		btrfs_err(trans->fs_info,
1670 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1671 			  node->bytenr, node->ref_mod, node->action, ref_root,
1672 			  parent);
1673 		return -EIO;
1674 	}
1675 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1676 		BUG_ON(!extent_op || !extent_op->update_flags);
1677 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1678 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1679 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1680 					     ref->level, 0, 1, extent_op);
1681 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1682 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1683 					  ref->level, 0, 1, extent_op);
1684 	} else {
1685 		BUG();
1686 	}
1687 	return ret;
1688 }
1689 
1690 /* helper function to actually process a single delayed ref entry */
1691 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1692 			       struct btrfs_delayed_ref_node *node,
1693 			       struct btrfs_delayed_extent_op *extent_op,
1694 			       int insert_reserved)
1695 {
1696 	int ret = 0;
1697 
1698 	if (TRANS_ABORTED(trans)) {
1699 		if (insert_reserved)
1700 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1701 		return 0;
1702 	}
1703 
1704 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1705 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706 		ret = run_delayed_tree_ref(trans, node, extent_op,
1707 					   insert_reserved);
1708 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1709 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1710 		ret = run_delayed_data_ref(trans, node, extent_op,
1711 					   insert_reserved);
1712 	else
1713 		BUG();
1714 	if (ret && insert_reserved)
1715 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1716 	if (ret < 0)
1717 		btrfs_err(trans->fs_info,
1718 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1719 			  node->bytenr, node->num_bytes, node->type,
1720 			  node->action, node->ref_mod, ret);
1721 	return ret;
1722 }
1723 
1724 static inline struct btrfs_delayed_ref_node *
1725 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1726 {
1727 	struct btrfs_delayed_ref_node *ref;
1728 
1729 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1730 		return NULL;
1731 
1732 	/*
1733 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1734 	 * This is to prevent a ref count from going down to zero, which deletes
1735 	 * the extent item from the extent tree, when there still are references
1736 	 * to add, which would fail because they would not find the extent item.
1737 	 */
1738 	if (!list_empty(&head->ref_add_list))
1739 		return list_first_entry(&head->ref_add_list,
1740 				struct btrfs_delayed_ref_node, add_list);
1741 
1742 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1743 		       struct btrfs_delayed_ref_node, ref_node);
1744 	ASSERT(list_empty(&ref->add_list));
1745 	return ref;
1746 }
1747 
1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1749 				      struct btrfs_delayed_ref_head *head)
1750 {
1751 	spin_lock(&delayed_refs->lock);
1752 	head->processing = 0;
1753 	delayed_refs->num_heads_ready++;
1754 	spin_unlock(&delayed_refs->lock);
1755 	btrfs_delayed_ref_unlock(head);
1756 }
1757 
1758 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1759 				struct btrfs_delayed_ref_head *head)
1760 {
1761 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1762 
1763 	if (!extent_op)
1764 		return NULL;
1765 
1766 	if (head->must_insert_reserved) {
1767 		head->extent_op = NULL;
1768 		btrfs_free_delayed_extent_op(extent_op);
1769 		return NULL;
1770 	}
1771 	return extent_op;
1772 }
1773 
1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1775 				     struct btrfs_delayed_ref_head *head)
1776 {
1777 	struct btrfs_delayed_extent_op *extent_op;
1778 	int ret;
1779 
1780 	extent_op = cleanup_extent_op(head);
1781 	if (!extent_op)
1782 		return 0;
1783 	head->extent_op = NULL;
1784 	spin_unlock(&head->lock);
1785 	ret = run_delayed_extent_op(trans, head, extent_op);
1786 	btrfs_free_delayed_extent_op(extent_op);
1787 	return ret ? ret : 1;
1788 }
1789 
1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1791 				  struct btrfs_delayed_ref_root *delayed_refs,
1792 				  struct btrfs_delayed_ref_head *head)
1793 {
1794 	int nr_items = 1;	/* Dropping this ref head update. */
1795 
1796 	/*
1797 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1798 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1799 	 */
1800 	if (head->total_ref_mod < 0 && head->is_data) {
1801 		spin_lock(&delayed_refs->lock);
1802 		delayed_refs->pending_csums -= head->num_bytes;
1803 		spin_unlock(&delayed_refs->lock);
1804 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1805 	}
1806 
1807 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1808 }
1809 
1810 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1811 			    struct btrfs_delayed_ref_head *head)
1812 {
1813 
1814 	struct btrfs_fs_info *fs_info = trans->fs_info;
1815 	struct btrfs_delayed_ref_root *delayed_refs;
1816 	int ret;
1817 
1818 	delayed_refs = &trans->transaction->delayed_refs;
1819 
1820 	ret = run_and_cleanup_extent_op(trans, head);
1821 	if (ret < 0) {
1822 		unselect_delayed_ref_head(delayed_refs, head);
1823 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1824 		return ret;
1825 	} else if (ret) {
1826 		return ret;
1827 	}
1828 
1829 	/*
1830 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1831 	 * and then re-check to make sure nobody got added.
1832 	 */
1833 	spin_unlock(&head->lock);
1834 	spin_lock(&delayed_refs->lock);
1835 	spin_lock(&head->lock);
1836 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1837 		spin_unlock(&head->lock);
1838 		spin_unlock(&delayed_refs->lock);
1839 		return 1;
1840 	}
1841 	btrfs_delete_ref_head(delayed_refs, head);
1842 	spin_unlock(&head->lock);
1843 	spin_unlock(&delayed_refs->lock);
1844 
1845 	if (head->must_insert_reserved) {
1846 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1847 		if (head->is_data) {
1848 			struct btrfs_root *csum_root;
1849 
1850 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1851 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1852 					      head->num_bytes);
1853 		}
1854 	}
1855 
1856 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1857 
1858 	trace_run_delayed_ref_head(fs_info, head, 0);
1859 	btrfs_delayed_ref_unlock(head);
1860 	btrfs_put_delayed_ref_head(head);
1861 	return ret;
1862 }
1863 
1864 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865 					struct btrfs_trans_handle *trans)
1866 {
1867 	struct btrfs_delayed_ref_root *delayed_refs =
1868 		&trans->transaction->delayed_refs;
1869 	struct btrfs_delayed_ref_head *head = NULL;
1870 	int ret;
1871 
1872 	spin_lock(&delayed_refs->lock);
1873 	head = btrfs_select_ref_head(delayed_refs);
1874 	if (!head) {
1875 		spin_unlock(&delayed_refs->lock);
1876 		return head;
1877 	}
1878 
1879 	/*
1880 	 * Grab the lock that says we are going to process all the refs for
1881 	 * this head
1882 	 */
1883 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884 	spin_unlock(&delayed_refs->lock);
1885 
1886 	/*
1887 	 * We may have dropped the spin lock to get the head mutex lock, and
1888 	 * that might have given someone else time to free the head.  If that's
1889 	 * true, it has been removed from our list and we can move on.
1890 	 */
1891 	if (ret == -EAGAIN)
1892 		head = ERR_PTR(-EAGAIN);
1893 
1894 	return head;
1895 }
1896 
1897 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898 				    struct btrfs_delayed_ref_head *locked_ref,
1899 				    unsigned long *run_refs)
1900 {
1901 	struct btrfs_fs_info *fs_info = trans->fs_info;
1902 	struct btrfs_delayed_ref_root *delayed_refs;
1903 	struct btrfs_delayed_extent_op *extent_op;
1904 	struct btrfs_delayed_ref_node *ref;
1905 	int must_insert_reserved = 0;
1906 	int ret;
1907 
1908 	delayed_refs = &trans->transaction->delayed_refs;
1909 
1910 	lockdep_assert_held(&locked_ref->mutex);
1911 	lockdep_assert_held(&locked_ref->lock);
1912 
1913 	while ((ref = select_delayed_ref(locked_ref))) {
1914 		if (ref->seq &&
1915 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916 			spin_unlock(&locked_ref->lock);
1917 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1918 			return -EAGAIN;
1919 		}
1920 
1921 		(*run_refs)++;
1922 		ref->in_tree = 0;
1923 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924 		RB_CLEAR_NODE(&ref->ref_node);
1925 		if (!list_empty(&ref->add_list))
1926 			list_del(&ref->add_list);
1927 		/*
1928 		 * When we play the delayed ref, also correct the ref_mod on
1929 		 * head
1930 		 */
1931 		switch (ref->action) {
1932 		case BTRFS_ADD_DELAYED_REF:
1933 		case BTRFS_ADD_DELAYED_EXTENT:
1934 			locked_ref->ref_mod -= ref->ref_mod;
1935 			break;
1936 		case BTRFS_DROP_DELAYED_REF:
1937 			locked_ref->ref_mod += ref->ref_mod;
1938 			break;
1939 		default:
1940 			WARN_ON(1);
1941 		}
1942 		atomic_dec(&delayed_refs->num_entries);
1943 
1944 		/*
1945 		 * Record the must_insert_reserved flag before we drop the
1946 		 * spin lock.
1947 		 */
1948 		must_insert_reserved = locked_ref->must_insert_reserved;
1949 		locked_ref->must_insert_reserved = 0;
1950 
1951 		extent_op = locked_ref->extent_op;
1952 		locked_ref->extent_op = NULL;
1953 		spin_unlock(&locked_ref->lock);
1954 
1955 		ret = run_one_delayed_ref(trans, ref, extent_op,
1956 					  must_insert_reserved);
1957 
1958 		btrfs_free_delayed_extent_op(extent_op);
1959 		if (ret) {
1960 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1961 			btrfs_put_delayed_ref(ref);
1962 			return ret;
1963 		}
1964 
1965 		btrfs_put_delayed_ref(ref);
1966 		cond_resched();
1967 
1968 		spin_lock(&locked_ref->lock);
1969 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 /*
1976  * Returns 0 on success or if called with an already aborted transaction.
1977  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1978  */
1979 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1980 					     unsigned long nr)
1981 {
1982 	struct btrfs_fs_info *fs_info = trans->fs_info;
1983 	struct btrfs_delayed_ref_root *delayed_refs;
1984 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1985 	ktime_t start = ktime_get();
1986 	int ret;
1987 	unsigned long count = 0;
1988 	unsigned long actual_count = 0;
1989 
1990 	delayed_refs = &trans->transaction->delayed_refs;
1991 	do {
1992 		if (!locked_ref) {
1993 			locked_ref = btrfs_obtain_ref_head(trans);
1994 			if (IS_ERR_OR_NULL(locked_ref)) {
1995 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1996 					continue;
1997 				} else {
1998 					break;
1999 				}
2000 			}
2001 			count++;
2002 		}
2003 		/*
2004 		 * We need to try and merge add/drops of the same ref since we
2005 		 * can run into issues with relocate dropping the implicit ref
2006 		 * and then it being added back again before the drop can
2007 		 * finish.  If we merged anything we need to re-loop so we can
2008 		 * get a good ref.
2009 		 * Or we can get node references of the same type that weren't
2010 		 * merged when created due to bumps in the tree mod seq, and
2011 		 * we need to merge them to prevent adding an inline extent
2012 		 * backref before dropping it (triggering a BUG_ON at
2013 		 * insert_inline_extent_backref()).
2014 		 */
2015 		spin_lock(&locked_ref->lock);
2016 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2017 
2018 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2019 						      &actual_count);
2020 		if (ret < 0 && ret != -EAGAIN) {
2021 			/*
2022 			 * Error, btrfs_run_delayed_refs_for_head already
2023 			 * unlocked everything so just bail out
2024 			 */
2025 			return ret;
2026 		} else if (!ret) {
2027 			/*
2028 			 * Success, perform the usual cleanup of a processed
2029 			 * head
2030 			 */
2031 			ret = cleanup_ref_head(trans, locked_ref);
2032 			if (ret > 0 ) {
2033 				/* We dropped our lock, we need to loop. */
2034 				ret = 0;
2035 				continue;
2036 			} else if (ret) {
2037 				return ret;
2038 			}
2039 		}
2040 
2041 		/*
2042 		 * Either success case or btrfs_run_delayed_refs_for_head
2043 		 * returned -EAGAIN, meaning we need to select another head
2044 		 */
2045 
2046 		locked_ref = NULL;
2047 		cond_resched();
2048 	} while ((nr != -1 && count < nr) || locked_ref);
2049 
2050 	/*
2051 	 * We don't want to include ref heads since we can have empty ref heads
2052 	 * and those will drastically skew our runtime down since we just do
2053 	 * accounting, no actual extent tree updates.
2054 	 */
2055 	if (actual_count > 0) {
2056 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2057 		u64 avg;
2058 
2059 		/*
2060 		 * We weigh the current average higher than our current runtime
2061 		 * to avoid large swings in the average.
2062 		 */
2063 		spin_lock(&delayed_refs->lock);
2064 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2065 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2066 		spin_unlock(&delayed_refs->lock);
2067 	}
2068 	return 0;
2069 }
2070 
2071 #ifdef SCRAMBLE_DELAYED_REFS
2072 /*
2073  * Normally delayed refs get processed in ascending bytenr order. This
2074  * correlates in most cases to the order added. To expose dependencies on this
2075  * order, we start to process the tree in the middle instead of the beginning
2076  */
2077 static u64 find_middle(struct rb_root *root)
2078 {
2079 	struct rb_node *n = root->rb_node;
2080 	struct btrfs_delayed_ref_node *entry;
2081 	int alt = 1;
2082 	u64 middle;
2083 	u64 first = 0, last = 0;
2084 
2085 	n = rb_first(root);
2086 	if (n) {
2087 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2088 		first = entry->bytenr;
2089 	}
2090 	n = rb_last(root);
2091 	if (n) {
2092 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2093 		last = entry->bytenr;
2094 	}
2095 	n = root->rb_node;
2096 
2097 	while (n) {
2098 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2099 		WARN_ON(!entry->in_tree);
2100 
2101 		middle = entry->bytenr;
2102 
2103 		if (alt)
2104 			n = n->rb_left;
2105 		else
2106 			n = n->rb_right;
2107 
2108 		alt = 1 - alt;
2109 	}
2110 	return middle;
2111 }
2112 #endif
2113 
2114 /*
2115  * this starts processing the delayed reference count updates and
2116  * extent insertions we have queued up so far.  count can be
2117  * 0, which means to process everything in the tree at the start
2118  * of the run (but not newly added entries), or it can be some target
2119  * number you'd like to process.
2120  *
2121  * Returns 0 on success or if called with an aborted transaction
2122  * Returns <0 on error and aborts the transaction
2123  */
2124 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2125 			   unsigned long count)
2126 {
2127 	struct btrfs_fs_info *fs_info = trans->fs_info;
2128 	struct rb_node *node;
2129 	struct btrfs_delayed_ref_root *delayed_refs;
2130 	struct btrfs_delayed_ref_head *head;
2131 	int ret;
2132 	int run_all = count == (unsigned long)-1;
2133 
2134 	/* We'll clean this up in btrfs_cleanup_transaction */
2135 	if (TRANS_ABORTED(trans))
2136 		return 0;
2137 
2138 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2139 		return 0;
2140 
2141 	delayed_refs = &trans->transaction->delayed_refs;
2142 	if (count == 0)
2143 		count = delayed_refs->num_heads_ready;
2144 
2145 again:
2146 #ifdef SCRAMBLE_DELAYED_REFS
2147 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2148 #endif
2149 	ret = __btrfs_run_delayed_refs(trans, count);
2150 	if (ret < 0) {
2151 		btrfs_abort_transaction(trans, ret);
2152 		return ret;
2153 	}
2154 
2155 	if (run_all) {
2156 		btrfs_create_pending_block_groups(trans);
2157 
2158 		spin_lock(&delayed_refs->lock);
2159 		node = rb_first_cached(&delayed_refs->href_root);
2160 		if (!node) {
2161 			spin_unlock(&delayed_refs->lock);
2162 			goto out;
2163 		}
2164 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2165 				href_node);
2166 		refcount_inc(&head->refs);
2167 		spin_unlock(&delayed_refs->lock);
2168 
2169 		/* Mutex was contended, block until it's released and retry. */
2170 		mutex_lock(&head->mutex);
2171 		mutex_unlock(&head->mutex);
2172 
2173 		btrfs_put_delayed_ref_head(head);
2174 		cond_resched();
2175 		goto again;
2176 	}
2177 out:
2178 	return 0;
2179 }
2180 
2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2182 				struct extent_buffer *eb, u64 flags,
2183 				int level)
2184 {
2185 	struct btrfs_delayed_extent_op *extent_op;
2186 	int ret;
2187 
2188 	extent_op = btrfs_alloc_delayed_extent_op();
2189 	if (!extent_op)
2190 		return -ENOMEM;
2191 
2192 	extent_op->flags_to_set = flags;
2193 	extent_op->update_flags = true;
2194 	extent_op->update_key = false;
2195 	extent_op->level = level;
2196 
2197 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2198 	if (ret)
2199 		btrfs_free_delayed_extent_op(extent_op);
2200 	return ret;
2201 }
2202 
2203 static noinline int check_delayed_ref(struct btrfs_root *root,
2204 				      struct btrfs_path *path,
2205 				      u64 objectid, u64 offset, u64 bytenr)
2206 {
2207 	struct btrfs_delayed_ref_head *head;
2208 	struct btrfs_delayed_ref_node *ref;
2209 	struct btrfs_delayed_data_ref *data_ref;
2210 	struct btrfs_delayed_ref_root *delayed_refs;
2211 	struct btrfs_transaction *cur_trans;
2212 	struct rb_node *node;
2213 	int ret = 0;
2214 
2215 	spin_lock(&root->fs_info->trans_lock);
2216 	cur_trans = root->fs_info->running_transaction;
2217 	if (cur_trans)
2218 		refcount_inc(&cur_trans->use_count);
2219 	spin_unlock(&root->fs_info->trans_lock);
2220 	if (!cur_trans)
2221 		return 0;
2222 
2223 	delayed_refs = &cur_trans->delayed_refs;
2224 	spin_lock(&delayed_refs->lock);
2225 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2226 	if (!head) {
2227 		spin_unlock(&delayed_refs->lock);
2228 		btrfs_put_transaction(cur_trans);
2229 		return 0;
2230 	}
2231 
2232 	if (!mutex_trylock(&head->mutex)) {
2233 		if (path->nowait) {
2234 			spin_unlock(&delayed_refs->lock);
2235 			btrfs_put_transaction(cur_trans);
2236 			return -EAGAIN;
2237 		}
2238 
2239 		refcount_inc(&head->refs);
2240 		spin_unlock(&delayed_refs->lock);
2241 
2242 		btrfs_release_path(path);
2243 
2244 		/*
2245 		 * Mutex was contended, block until it's released and let
2246 		 * caller try again
2247 		 */
2248 		mutex_lock(&head->mutex);
2249 		mutex_unlock(&head->mutex);
2250 		btrfs_put_delayed_ref_head(head);
2251 		btrfs_put_transaction(cur_trans);
2252 		return -EAGAIN;
2253 	}
2254 	spin_unlock(&delayed_refs->lock);
2255 
2256 	spin_lock(&head->lock);
2257 	/*
2258 	 * XXX: We should replace this with a proper search function in the
2259 	 * future.
2260 	 */
2261 	for (node = rb_first_cached(&head->ref_tree); node;
2262 	     node = rb_next(node)) {
2263 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2264 		/* If it's a shared ref we know a cross reference exists */
2265 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2266 			ret = 1;
2267 			break;
2268 		}
2269 
2270 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2271 
2272 		/*
2273 		 * If our ref doesn't match the one we're currently looking at
2274 		 * then we have a cross reference.
2275 		 */
2276 		if (data_ref->root != root->root_key.objectid ||
2277 		    data_ref->objectid != objectid ||
2278 		    data_ref->offset != offset) {
2279 			ret = 1;
2280 			break;
2281 		}
2282 	}
2283 	spin_unlock(&head->lock);
2284 	mutex_unlock(&head->mutex);
2285 	btrfs_put_transaction(cur_trans);
2286 	return ret;
2287 }
2288 
2289 static noinline int check_committed_ref(struct btrfs_root *root,
2290 					struct btrfs_path *path,
2291 					u64 objectid, u64 offset, u64 bytenr,
2292 					bool strict)
2293 {
2294 	struct btrfs_fs_info *fs_info = root->fs_info;
2295 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2296 	struct extent_buffer *leaf;
2297 	struct btrfs_extent_data_ref *ref;
2298 	struct btrfs_extent_inline_ref *iref;
2299 	struct btrfs_extent_item *ei;
2300 	struct btrfs_key key;
2301 	u32 item_size;
2302 	int type;
2303 	int ret;
2304 
2305 	key.objectid = bytenr;
2306 	key.offset = (u64)-1;
2307 	key.type = BTRFS_EXTENT_ITEM_KEY;
2308 
2309 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2310 	if (ret < 0)
2311 		goto out;
2312 	BUG_ON(ret == 0); /* Corruption */
2313 
2314 	ret = -ENOENT;
2315 	if (path->slots[0] == 0)
2316 		goto out;
2317 
2318 	path->slots[0]--;
2319 	leaf = path->nodes[0];
2320 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2321 
2322 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2323 		goto out;
2324 
2325 	ret = 1;
2326 	item_size = btrfs_item_size(leaf, path->slots[0]);
2327 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2328 
2329 	/* If extent item has more than 1 inline ref then it's shared */
2330 	if (item_size != sizeof(*ei) +
2331 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2332 		goto out;
2333 
2334 	/*
2335 	 * If extent created before last snapshot => it's shared unless the
2336 	 * snapshot has been deleted. Use the heuristic if strict is false.
2337 	 */
2338 	if (!strict &&
2339 	    (btrfs_extent_generation(leaf, ei) <=
2340 	     btrfs_root_last_snapshot(&root->root_item)))
2341 		goto out;
2342 
2343 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2344 
2345 	/* If this extent has SHARED_DATA_REF then it's shared */
2346 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2347 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2348 		goto out;
2349 
2350 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2351 	if (btrfs_extent_refs(leaf, ei) !=
2352 	    btrfs_extent_data_ref_count(leaf, ref) ||
2353 	    btrfs_extent_data_ref_root(leaf, ref) !=
2354 	    root->root_key.objectid ||
2355 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2356 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2357 		goto out;
2358 
2359 	ret = 0;
2360 out:
2361 	return ret;
2362 }
2363 
2364 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2365 			  u64 bytenr, bool strict, struct btrfs_path *path)
2366 {
2367 	int ret;
2368 
2369 	do {
2370 		ret = check_committed_ref(root, path, objectid,
2371 					  offset, bytenr, strict);
2372 		if (ret && ret != -ENOENT)
2373 			goto out;
2374 
2375 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2376 	} while (ret == -EAGAIN);
2377 
2378 out:
2379 	btrfs_release_path(path);
2380 	if (btrfs_is_data_reloc_root(root))
2381 		WARN_ON(ret > 0);
2382 	return ret;
2383 }
2384 
2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2386 			   struct btrfs_root *root,
2387 			   struct extent_buffer *buf,
2388 			   int full_backref, int inc)
2389 {
2390 	struct btrfs_fs_info *fs_info = root->fs_info;
2391 	u64 bytenr;
2392 	u64 num_bytes;
2393 	u64 parent;
2394 	u64 ref_root;
2395 	u32 nritems;
2396 	struct btrfs_key key;
2397 	struct btrfs_file_extent_item *fi;
2398 	struct btrfs_ref generic_ref = { 0 };
2399 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2400 	int i;
2401 	int action;
2402 	int level;
2403 	int ret = 0;
2404 
2405 	if (btrfs_is_testing(fs_info))
2406 		return 0;
2407 
2408 	ref_root = btrfs_header_owner(buf);
2409 	nritems = btrfs_header_nritems(buf);
2410 	level = btrfs_header_level(buf);
2411 
2412 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2413 		return 0;
2414 
2415 	if (full_backref)
2416 		parent = buf->start;
2417 	else
2418 		parent = 0;
2419 	if (inc)
2420 		action = BTRFS_ADD_DELAYED_REF;
2421 	else
2422 		action = BTRFS_DROP_DELAYED_REF;
2423 
2424 	for (i = 0; i < nritems; i++) {
2425 		if (level == 0) {
2426 			btrfs_item_key_to_cpu(buf, &key, i);
2427 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2428 				continue;
2429 			fi = btrfs_item_ptr(buf, i,
2430 					    struct btrfs_file_extent_item);
2431 			if (btrfs_file_extent_type(buf, fi) ==
2432 			    BTRFS_FILE_EXTENT_INLINE)
2433 				continue;
2434 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2435 			if (bytenr == 0)
2436 				continue;
2437 
2438 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2439 			key.offset -= btrfs_file_extent_offset(buf, fi);
2440 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2441 					       num_bytes, parent);
2442 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2443 					    key.offset, root->root_key.objectid,
2444 					    for_reloc);
2445 			if (inc)
2446 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2447 			else
2448 				ret = btrfs_free_extent(trans, &generic_ref);
2449 			if (ret)
2450 				goto fail;
2451 		} else {
2452 			bytenr = btrfs_node_blockptr(buf, i);
2453 			num_bytes = fs_info->nodesize;
2454 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2455 					       num_bytes, parent);
2456 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2457 					    root->root_key.objectid, for_reloc);
2458 			if (inc)
2459 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2460 			else
2461 				ret = btrfs_free_extent(trans, &generic_ref);
2462 			if (ret)
2463 				goto fail;
2464 		}
2465 	}
2466 	return 0;
2467 fail:
2468 	return ret;
2469 }
2470 
2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2472 		  struct extent_buffer *buf, int full_backref)
2473 {
2474 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2475 }
2476 
2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2478 		  struct extent_buffer *buf, int full_backref)
2479 {
2480 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2481 }
2482 
2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2484 {
2485 	struct btrfs_fs_info *fs_info = root->fs_info;
2486 	u64 flags;
2487 	u64 ret;
2488 
2489 	if (data)
2490 		flags = BTRFS_BLOCK_GROUP_DATA;
2491 	else if (root == fs_info->chunk_root)
2492 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2493 	else
2494 		flags = BTRFS_BLOCK_GROUP_METADATA;
2495 
2496 	ret = btrfs_get_alloc_profile(fs_info, flags);
2497 	return ret;
2498 }
2499 
2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2501 {
2502 	struct rb_node *leftmost;
2503 	u64 bytenr = 0;
2504 
2505 	read_lock(&fs_info->block_group_cache_lock);
2506 	/* Get the block group with the lowest logical start address. */
2507 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2508 	if (leftmost) {
2509 		struct btrfs_block_group *bg;
2510 
2511 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2512 		bytenr = bg->start;
2513 	}
2514 	read_unlock(&fs_info->block_group_cache_lock);
2515 
2516 	return bytenr;
2517 }
2518 
2519 static int pin_down_extent(struct btrfs_trans_handle *trans,
2520 			   struct btrfs_block_group *cache,
2521 			   u64 bytenr, u64 num_bytes, int reserved)
2522 {
2523 	struct btrfs_fs_info *fs_info = cache->fs_info;
2524 
2525 	spin_lock(&cache->space_info->lock);
2526 	spin_lock(&cache->lock);
2527 	cache->pinned += num_bytes;
2528 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2529 					     num_bytes);
2530 	if (reserved) {
2531 		cache->reserved -= num_bytes;
2532 		cache->space_info->bytes_reserved -= num_bytes;
2533 	}
2534 	spin_unlock(&cache->lock);
2535 	spin_unlock(&cache->space_info->lock);
2536 
2537 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2538 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2539 	return 0;
2540 }
2541 
2542 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2543 		     u64 bytenr, u64 num_bytes, int reserved)
2544 {
2545 	struct btrfs_block_group *cache;
2546 
2547 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2548 	BUG_ON(!cache); /* Logic error */
2549 
2550 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2551 
2552 	btrfs_put_block_group(cache);
2553 	return 0;
2554 }
2555 
2556 /*
2557  * this function must be called within transaction
2558  */
2559 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2560 				    u64 bytenr, u64 num_bytes)
2561 {
2562 	struct btrfs_block_group *cache;
2563 	int ret;
2564 
2565 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2566 	if (!cache)
2567 		return -EINVAL;
2568 
2569 	/*
2570 	 * Fully cache the free space first so that our pin removes the free space
2571 	 * from the cache.
2572 	 */
2573 	ret = btrfs_cache_block_group(cache, true);
2574 	if (ret)
2575 		goto out;
2576 
2577 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2578 
2579 	/* remove us from the free space cache (if we're there at all) */
2580 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2581 out:
2582 	btrfs_put_block_group(cache);
2583 	return ret;
2584 }
2585 
2586 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2587 				   u64 start, u64 num_bytes)
2588 {
2589 	int ret;
2590 	struct btrfs_block_group *block_group;
2591 
2592 	block_group = btrfs_lookup_block_group(fs_info, start);
2593 	if (!block_group)
2594 		return -EINVAL;
2595 
2596 	ret = btrfs_cache_block_group(block_group, true);
2597 	if (ret)
2598 		goto out;
2599 
2600 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2601 out:
2602 	btrfs_put_block_group(block_group);
2603 	return ret;
2604 }
2605 
2606 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2607 {
2608 	struct btrfs_fs_info *fs_info = eb->fs_info;
2609 	struct btrfs_file_extent_item *item;
2610 	struct btrfs_key key;
2611 	int found_type;
2612 	int i;
2613 	int ret = 0;
2614 
2615 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2616 		return 0;
2617 
2618 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2619 		btrfs_item_key_to_cpu(eb, &key, i);
2620 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2621 			continue;
2622 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2623 		found_type = btrfs_file_extent_type(eb, item);
2624 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2625 			continue;
2626 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2627 			continue;
2628 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2629 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2630 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2631 		if (ret)
2632 			break;
2633 	}
2634 
2635 	return ret;
2636 }
2637 
2638 static void
2639 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2640 {
2641 	atomic_inc(&bg->reservations);
2642 }
2643 
2644 /*
2645  * Returns the free cluster for the given space info and sets empty_cluster to
2646  * what it should be based on the mount options.
2647  */
2648 static struct btrfs_free_cluster *
2649 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2650 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2651 {
2652 	struct btrfs_free_cluster *ret = NULL;
2653 
2654 	*empty_cluster = 0;
2655 	if (btrfs_mixed_space_info(space_info))
2656 		return ret;
2657 
2658 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2659 		ret = &fs_info->meta_alloc_cluster;
2660 		if (btrfs_test_opt(fs_info, SSD))
2661 			*empty_cluster = SZ_2M;
2662 		else
2663 			*empty_cluster = SZ_64K;
2664 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2665 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2666 		*empty_cluster = SZ_2M;
2667 		ret = &fs_info->data_alloc_cluster;
2668 	}
2669 
2670 	return ret;
2671 }
2672 
2673 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2674 			      u64 start, u64 end,
2675 			      const bool return_free_space)
2676 {
2677 	struct btrfs_block_group *cache = NULL;
2678 	struct btrfs_space_info *space_info;
2679 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2680 	struct btrfs_free_cluster *cluster = NULL;
2681 	u64 len;
2682 	u64 total_unpinned = 0;
2683 	u64 empty_cluster = 0;
2684 	bool readonly;
2685 
2686 	while (start <= end) {
2687 		readonly = false;
2688 		if (!cache ||
2689 		    start >= cache->start + cache->length) {
2690 			if (cache)
2691 				btrfs_put_block_group(cache);
2692 			total_unpinned = 0;
2693 			cache = btrfs_lookup_block_group(fs_info, start);
2694 			BUG_ON(!cache); /* Logic error */
2695 
2696 			cluster = fetch_cluster_info(fs_info,
2697 						     cache->space_info,
2698 						     &empty_cluster);
2699 			empty_cluster <<= 1;
2700 		}
2701 
2702 		len = cache->start + cache->length - start;
2703 		len = min(len, end + 1 - start);
2704 
2705 		if (return_free_space)
2706 			btrfs_add_free_space(cache, start, len);
2707 
2708 		start += len;
2709 		total_unpinned += len;
2710 		space_info = cache->space_info;
2711 
2712 		/*
2713 		 * If this space cluster has been marked as fragmented and we've
2714 		 * unpinned enough in this block group to potentially allow a
2715 		 * cluster to be created inside of it go ahead and clear the
2716 		 * fragmented check.
2717 		 */
2718 		if (cluster && cluster->fragmented &&
2719 		    total_unpinned > empty_cluster) {
2720 			spin_lock(&cluster->lock);
2721 			cluster->fragmented = 0;
2722 			spin_unlock(&cluster->lock);
2723 		}
2724 
2725 		spin_lock(&space_info->lock);
2726 		spin_lock(&cache->lock);
2727 		cache->pinned -= len;
2728 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2729 		space_info->max_extent_size = 0;
2730 		if (cache->ro) {
2731 			space_info->bytes_readonly += len;
2732 			readonly = true;
2733 		} else if (btrfs_is_zoned(fs_info)) {
2734 			/* Need reset before reusing in a zoned block group */
2735 			space_info->bytes_zone_unusable += len;
2736 			readonly = true;
2737 		}
2738 		spin_unlock(&cache->lock);
2739 		if (!readonly && return_free_space &&
2740 		    global_rsv->space_info == space_info) {
2741 			spin_lock(&global_rsv->lock);
2742 			if (!global_rsv->full) {
2743 				u64 to_add = min(len, global_rsv->size -
2744 						      global_rsv->reserved);
2745 
2746 				global_rsv->reserved += to_add;
2747 				btrfs_space_info_update_bytes_may_use(fs_info,
2748 						space_info, to_add);
2749 				if (global_rsv->reserved >= global_rsv->size)
2750 					global_rsv->full = 1;
2751 				len -= to_add;
2752 			}
2753 			spin_unlock(&global_rsv->lock);
2754 		}
2755 		/* Add to any tickets we may have */
2756 		if (!readonly && return_free_space && len)
2757 			btrfs_try_granting_tickets(fs_info, space_info);
2758 		spin_unlock(&space_info->lock);
2759 	}
2760 
2761 	if (cache)
2762 		btrfs_put_block_group(cache);
2763 	return 0;
2764 }
2765 
2766 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2767 {
2768 	struct btrfs_fs_info *fs_info = trans->fs_info;
2769 	struct btrfs_block_group *block_group, *tmp;
2770 	struct list_head *deleted_bgs;
2771 	struct extent_io_tree *unpin;
2772 	u64 start;
2773 	u64 end;
2774 	int ret;
2775 
2776 	unpin = &trans->transaction->pinned_extents;
2777 
2778 	while (!TRANS_ABORTED(trans)) {
2779 		struct extent_state *cached_state = NULL;
2780 
2781 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2782 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2783 					    EXTENT_DIRTY, &cached_state);
2784 		if (ret) {
2785 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2786 			break;
2787 		}
2788 
2789 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2790 			ret = btrfs_discard_extent(fs_info, start,
2791 						   end + 1 - start, NULL);
2792 
2793 		clear_extent_dirty(unpin, start, end, &cached_state);
2794 		unpin_extent_range(fs_info, start, end, true);
2795 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2796 		free_extent_state(cached_state);
2797 		cond_resched();
2798 	}
2799 
2800 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2801 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2802 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2803 	}
2804 
2805 	/*
2806 	 * Transaction is finished.  We don't need the lock anymore.  We
2807 	 * do need to clean up the block groups in case of a transaction
2808 	 * abort.
2809 	 */
2810 	deleted_bgs = &trans->transaction->deleted_bgs;
2811 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2812 		u64 trimmed = 0;
2813 
2814 		ret = -EROFS;
2815 		if (!TRANS_ABORTED(trans))
2816 			ret = btrfs_discard_extent(fs_info,
2817 						   block_group->start,
2818 						   block_group->length,
2819 						   &trimmed);
2820 
2821 		list_del_init(&block_group->bg_list);
2822 		btrfs_unfreeze_block_group(block_group);
2823 		btrfs_put_block_group(block_group);
2824 
2825 		if (ret) {
2826 			const char *errstr = btrfs_decode_error(ret);
2827 			btrfs_warn(fs_info,
2828 			   "discard failed while removing blockgroup: errno=%d %s",
2829 				   ret, errstr);
2830 		}
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2837 				     u64 bytenr, u64 num_bytes, bool is_data)
2838 {
2839 	int ret;
2840 
2841 	if (is_data) {
2842 		struct btrfs_root *csum_root;
2843 
2844 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2845 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2846 		if (ret) {
2847 			btrfs_abort_transaction(trans, ret);
2848 			return ret;
2849 		}
2850 	}
2851 
2852 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2853 	if (ret) {
2854 		btrfs_abort_transaction(trans, ret);
2855 		return ret;
2856 	}
2857 
2858 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2859 	if (ret)
2860 		btrfs_abort_transaction(trans, ret);
2861 
2862 	return ret;
2863 }
2864 
2865 /*
2866  * Drop one or more refs of @node.
2867  *
2868  * 1. Locate the extent refs.
2869  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2870  *    Locate it, then reduce the refs number or remove the ref line completely.
2871  *
2872  * 2. Update the refs count in EXTENT/METADATA_ITEM
2873  *
2874  * Inline backref case:
2875  *
2876  * in extent tree we have:
2877  *
2878  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2879  *		refs 2 gen 6 flags DATA
2880  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2881  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2882  *
2883  * This function gets called with:
2884  *
2885  *    node->bytenr = 13631488
2886  *    node->num_bytes = 1048576
2887  *    root_objectid = FS_TREE
2888  *    owner_objectid = 257
2889  *    owner_offset = 0
2890  *    refs_to_drop = 1
2891  *
2892  * Then we should get some like:
2893  *
2894  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2895  *		refs 1 gen 6 flags DATA
2896  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2897  *
2898  * Keyed backref case:
2899  *
2900  * in extent tree we have:
2901  *
2902  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2903  *		refs 754 gen 6 flags DATA
2904  *	[...]
2905  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2906  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2907  *
2908  * This function get called with:
2909  *
2910  *    node->bytenr = 13631488
2911  *    node->num_bytes = 1048576
2912  *    root_objectid = FS_TREE
2913  *    owner_objectid = 866
2914  *    owner_offset = 0
2915  *    refs_to_drop = 1
2916  *
2917  * Then we should get some like:
2918  *
2919  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2920  *		refs 753 gen 6 flags DATA
2921  *
2922  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2923  */
2924 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2925 			       struct btrfs_delayed_ref_node *node, u64 parent,
2926 			       u64 root_objectid, u64 owner_objectid,
2927 			       u64 owner_offset, int refs_to_drop,
2928 			       struct btrfs_delayed_extent_op *extent_op)
2929 {
2930 	struct btrfs_fs_info *info = trans->fs_info;
2931 	struct btrfs_key key;
2932 	struct btrfs_path *path;
2933 	struct btrfs_root *extent_root;
2934 	struct extent_buffer *leaf;
2935 	struct btrfs_extent_item *ei;
2936 	struct btrfs_extent_inline_ref *iref;
2937 	int ret;
2938 	int is_data;
2939 	int extent_slot = 0;
2940 	int found_extent = 0;
2941 	int num_to_del = 1;
2942 	u32 item_size;
2943 	u64 refs;
2944 	u64 bytenr = node->bytenr;
2945 	u64 num_bytes = node->num_bytes;
2946 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2947 
2948 	extent_root = btrfs_extent_root(info, bytenr);
2949 	ASSERT(extent_root);
2950 
2951 	path = btrfs_alloc_path();
2952 	if (!path)
2953 		return -ENOMEM;
2954 
2955 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2956 
2957 	if (!is_data && refs_to_drop != 1) {
2958 		btrfs_crit(info,
2959 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2960 			   node->bytenr, refs_to_drop);
2961 		ret = -EINVAL;
2962 		btrfs_abort_transaction(trans, ret);
2963 		goto out;
2964 	}
2965 
2966 	if (is_data)
2967 		skinny_metadata = false;
2968 
2969 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2970 				    parent, root_objectid, owner_objectid,
2971 				    owner_offset);
2972 	if (ret == 0) {
2973 		/*
2974 		 * Either the inline backref or the SHARED_DATA_REF/
2975 		 * SHARED_BLOCK_REF is found
2976 		 *
2977 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2978 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2979 		 */
2980 		extent_slot = path->slots[0];
2981 		while (extent_slot >= 0) {
2982 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2983 					      extent_slot);
2984 			if (key.objectid != bytenr)
2985 				break;
2986 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2987 			    key.offset == num_bytes) {
2988 				found_extent = 1;
2989 				break;
2990 			}
2991 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2992 			    key.offset == owner_objectid) {
2993 				found_extent = 1;
2994 				break;
2995 			}
2996 
2997 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2998 			if (path->slots[0] - extent_slot > 5)
2999 				break;
3000 			extent_slot--;
3001 		}
3002 
3003 		if (!found_extent) {
3004 			if (iref) {
3005 				btrfs_crit(info,
3006 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3007 				btrfs_abort_transaction(trans, -EUCLEAN);
3008 				goto err_dump;
3009 			}
3010 			/* Must be SHARED_* item, remove the backref first */
3011 			ret = remove_extent_backref(trans, extent_root, path,
3012 						    NULL, refs_to_drop, is_data);
3013 			if (ret) {
3014 				btrfs_abort_transaction(trans, ret);
3015 				goto out;
3016 			}
3017 			btrfs_release_path(path);
3018 
3019 			/* Slow path to locate EXTENT/METADATA_ITEM */
3020 			key.objectid = bytenr;
3021 			key.type = BTRFS_EXTENT_ITEM_KEY;
3022 			key.offset = num_bytes;
3023 
3024 			if (!is_data && skinny_metadata) {
3025 				key.type = BTRFS_METADATA_ITEM_KEY;
3026 				key.offset = owner_objectid;
3027 			}
3028 
3029 			ret = btrfs_search_slot(trans, extent_root,
3030 						&key, path, -1, 1);
3031 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3032 				/*
3033 				 * Couldn't find our skinny metadata item,
3034 				 * see if we have ye olde extent item.
3035 				 */
3036 				path->slots[0]--;
3037 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3038 						      path->slots[0]);
3039 				if (key.objectid == bytenr &&
3040 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3041 				    key.offset == num_bytes)
3042 					ret = 0;
3043 			}
3044 
3045 			if (ret > 0 && skinny_metadata) {
3046 				skinny_metadata = false;
3047 				key.objectid = bytenr;
3048 				key.type = BTRFS_EXTENT_ITEM_KEY;
3049 				key.offset = num_bytes;
3050 				btrfs_release_path(path);
3051 				ret = btrfs_search_slot(trans, extent_root,
3052 							&key, path, -1, 1);
3053 			}
3054 
3055 			if (ret) {
3056 				btrfs_err(info,
3057 					  "umm, got %d back from search, was looking for %llu",
3058 					  ret, bytenr);
3059 				if (ret > 0)
3060 					btrfs_print_leaf(path->nodes[0]);
3061 			}
3062 			if (ret < 0) {
3063 				btrfs_abort_transaction(trans, ret);
3064 				goto out;
3065 			}
3066 			extent_slot = path->slots[0];
3067 		}
3068 	} else if (WARN_ON(ret == -ENOENT)) {
3069 		btrfs_print_leaf(path->nodes[0]);
3070 		btrfs_err(info,
3071 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3072 			bytenr, parent, root_objectid, owner_objectid,
3073 			owner_offset);
3074 		btrfs_abort_transaction(trans, ret);
3075 		goto out;
3076 	} else {
3077 		btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	}
3080 
3081 	leaf = path->nodes[0];
3082 	item_size = btrfs_item_size(leaf, extent_slot);
3083 	if (unlikely(item_size < sizeof(*ei))) {
3084 		ret = -EINVAL;
3085 		btrfs_print_v0_err(info);
3086 		btrfs_abort_transaction(trans, ret);
3087 		goto out;
3088 	}
3089 	ei = btrfs_item_ptr(leaf, extent_slot,
3090 			    struct btrfs_extent_item);
3091 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3092 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3093 		struct btrfs_tree_block_info *bi;
3094 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3095 			btrfs_crit(info,
3096 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3097 				   key.objectid, key.type, key.offset,
3098 				   owner_objectid, item_size,
3099 				   sizeof(*ei) + sizeof(*bi));
3100 			btrfs_abort_transaction(trans, -EUCLEAN);
3101 			goto err_dump;
3102 		}
3103 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3104 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3105 	}
3106 
3107 	refs = btrfs_extent_refs(leaf, ei);
3108 	if (refs < refs_to_drop) {
3109 		btrfs_crit(info,
3110 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3111 			  refs_to_drop, refs, bytenr);
3112 		btrfs_abort_transaction(trans, -EUCLEAN);
3113 		goto err_dump;
3114 	}
3115 	refs -= refs_to_drop;
3116 
3117 	if (refs > 0) {
3118 		if (extent_op)
3119 			__run_delayed_extent_op(extent_op, leaf, ei);
3120 		/*
3121 		 * In the case of inline back ref, reference count will
3122 		 * be updated by remove_extent_backref
3123 		 */
3124 		if (iref) {
3125 			if (!found_extent) {
3126 				btrfs_crit(info,
3127 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3128 				btrfs_abort_transaction(trans, -EUCLEAN);
3129 				goto err_dump;
3130 			}
3131 		} else {
3132 			btrfs_set_extent_refs(leaf, ei, refs);
3133 			btrfs_mark_buffer_dirty(leaf);
3134 		}
3135 		if (found_extent) {
3136 			ret = remove_extent_backref(trans, extent_root, path,
3137 						    iref, refs_to_drop, is_data);
3138 			if (ret) {
3139 				btrfs_abort_transaction(trans, ret);
3140 				goto out;
3141 			}
3142 		}
3143 	} else {
3144 		/* In this branch refs == 1 */
3145 		if (found_extent) {
3146 			if (is_data && refs_to_drop !=
3147 			    extent_data_ref_count(path, iref)) {
3148 				btrfs_crit(info,
3149 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3150 					   extent_data_ref_count(path, iref),
3151 					   refs_to_drop);
3152 				btrfs_abort_transaction(trans, -EUCLEAN);
3153 				goto err_dump;
3154 			}
3155 			if (iref) {
3156 				if (path->slots[0] != extent_slot) {
3157 					btrfs_crit(info,
3158 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3159 						   key.objectid, key.type,
3160 						   key.offset);
3161 					btrfs_abort_transaction(trans, -EUCLEAN);
3162 					goto err_dump;
3163 				}
3164 			} else {
3165 				/*
3166 				 * No inline ref, we must be at SHARED_* item,
3167 				 * And it's single ref, it must be:
3168 				 * |	extent_slot	  ||extent_slot + 1|
3169 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3170 				 */
3171 				if (path->slots[0] != extent_slot + 1) {
3172 					btrfs_crit(info,
3173 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3174 					btrfs_abort_transaction(trans, -EUCLEAN);
3175 					goto err_dump;
3176 				}
3177 				path->slots[0] = extent_slot;
3178 				num_to_del = 2;
3179 			}
3180 		}
3181 
3182 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3183 				      num_to_del);
3184 		if (ret) {
3185 			btrfs_abort_transaction(trans, ret);
3186 			goto out;
3187 		}
3188 		btrfs_release_path(path);
3189 
3190 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3191 	}
3192 	btrfs_release_path(path);
3193 
3194 out:
3195 	btrfs_free_path(path);
3196 	return ret;
3197 err_dump:
3198 	/*
3199 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3200 	 * dump for debug build.
3201 	 */
3202 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3203 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3204 			   path->slots[0], extent_slot);
3205 		btrfs_print_leaf(path->nodes[0]);
3206 	}
3207 
3208 	btrfs_free_path(path);
3209 	return -EUCLEAN;
3210 }
3211 
3212 /*
3213  * when we free an block, it is possible (and likely) that we free the last
3214  * delayed ref for that extent as well.  This searches the delayed ref tree for
3215  * a given extent, and if there are no other delayed refs to be processed, it
3216  * removes it from the tree.
3217  */
3218 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3219 				      u64 bytenr)
3220 {
3221 	struct btrfs_delayed_ref_head *head;
3222 	struct btrfs_delayed_ref_root *delayed_refs;
3223 	int ret = 0;
3224 
3225 	delayed_refs = &trans->transaction->delayed_refs;
3226 	spin_lock(&delayed_refs->lock);
3227 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3228 	if (!head)
3229 		goto out_delayed_unlock;
3230 
3231 	spin_lock(&head->lock);
3232 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3233 		goto out;
3234 
3235 	if (cleanup_extent_op(head) != NULL)
3236 		goto out;
3237 
3238 	/*
3239 	 * waiting for the lock here would deadlock.  If someone else has it
3240 	 * locked they are already in the process of dropping it anyway
3241 	 */
3242 	if (!mutex_trylock(&head->mutex))
3243 		goto out;
3244 
3245 	btrfs_delete_ref_head(delayed_refs, head);
3246 	head->processing = 0;
3247 
3248 	spin_unlock(&head->lock);
3249 	spin_unlock(&delayed_refs->lock);
3250 
3251 	BUG_ON(head->extent_op);
3252 	if (head->must_insert_reserved)
3253 		ret = 1;
3254 
3255 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3256 	mutex_unlock(&head->mutex);
3257 	btrfs_put_delayed_ref_head(head);
3258 	return ret;
3259 out:
3260 	spin_unlock(&head->lock);
3261 
3262 out_delayed_unlock:
3263 	spin_unlock(&delayed_refs->lock);
3264 	return 0;
3265 }
3266 
3267 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3268 			   u64 root_id,
3269 			   struct extent_buffer *buf,
3270 			   u64 parent, int last_ref)
3271 {
3272 	struct btrfs_fs_info *fs_info = trans->fs_info;
3273 	struct btrfs_ref generic_ref = { 0 };
3274 	int ret;
3275 
3276 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3277 			       buf->start, buf->len, parent);
3278 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3279 			    root_id, 0, false);
3280 
3281 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3282 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3283 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3284 		BUG_ON(ret); /* -ENOMEM */
3285 	}
3286 
3287 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3288 		struct btrfs_block_group *cache;
3289 		bool must_pin = false;
3290 
3291 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3292 			ret = check_ref_cleanup(trans, buf->start);
3293 			if (!ret) {
3294 				btrfs_redirty_list_add(trans->transaction, buf);
3295 				goto out;
3296 			}
3297 		}
3298 
3299 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3300 
3301 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3302 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3303 			btrfs_put_block_group(cache);
3304 			goto out;
3305 		}
3306 
3307 		/*
3308 		 * If there are tree mod log users we may have recorded mod log
3309 		 * operations for this node.  If we re-allocate this node we
3310 		 * could replay operations on this node that happened when it
3311 		 * existed in a completely different root.  For example if it
3312 		 * was part of root A, then was reallocated to root B, and we
3313 		 * are doing a btrfs_old_search_slot(root b), we could replay
3314 		 * operations that happened when the block was part of root A,
3315 		 * giving us an inconsistent view of the btree.
3316 		 *
3317 		 * We are safe from races here because at this point no other
3318 		 * node or root points to this extent buffer, so if after this
3319 		 * check a new tree mod log user joins we will not have an
3320 		 * existing log of operations on this node that we have to
3321 		 * contend with.
3322 		 */
3323 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3324 			must_pin = true;
3325 
3326 		if (must_pin || btrfs_is_zoned(fs_info)) {
3327 			btrfs_redirty_list_add(trans->transaction, buf);
3328 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3329 			btrfs_put_block_group(cache);
3330 			goto out;
3331 		}
3332 
3333 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3334 
3335 		btrfs_add_free_space(cache, buf->start, buf->len);
3336 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3337 		btrfs_put_block_group(cache);
3338 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3339 	}
3340 out:
3341 	if (last_ref) {
3342 		/*
3343 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3344 		 * matter anymore.
3345 		 */
3346 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3347 	}
3348 }
3349 
3350 /* Can return -ENOMEM */
3351 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3352 {
3353 	struct btrfs_fs_info *fs_info = trans->fs_info;
3354 	int ret;
3355 
3356 	if (btrfs_is_testing(fs_info))
3357 		return 0;
3358 
3359 	/*
3360 	 * tree log blocks never actually go into the extent allocation
3361 	 * tree, just update pinning info and exit early.
3362 	 */
3363 	if ((ref->type == BTRFS_REF_METADATA &&
3364 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3365 	    (ref->type == BTRFS_REF_DATA &&
3366 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3367 		/* unlocks the pinned mutex */
3368 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3369 		ret = 0;
3370 	} else if (ref->type == BTRFS_REF_METADATA) {
3371 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3372 	} else {
3373 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3374 	}
3375 
3376 	if (!((ref->type == BTRFS_REF_METADATA &&
3377 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3378 	      (ref->type == BTRFS_REF_DATA &&
3379 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3380 		btrfs_ref_tree_mod(fs_info, ref);
3381 
3382 	return ret;
3383 }
3384 
3385 enum btrfs_loop_type {
3386 	LOOP_CACHING_NOWAIT,
3387 	LOOP_CACHING_WAIT,
3388 	LOOP_ALLOC_CHUNK,
3389 	LOOP_NO_EMPTY_SIZE,
3390 };
3391 
3392 static inline void
3393 btrfs_lock_block_group(struct btrfs_block_group *cache,
3394 		       int delalloc)
3395 {
3396 	if (delalloc)
3397 		down_read(&cache->data_rwsem);
3398 }
3399 
3400 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3401 		       int delalloc)
3402 {
3403 	btrfs_get_block_group(cache);
3404 	if (delalloc)
3405 		down_read(&cache->data_rwsem);
3406 }
3407 
3408 static struct btrfs_block_group *btrfs_lock_cluster(
3409 		   struct btrfs_block_group *block_group,
3410 		   struct btrfs_free_cluster *cluster,
3411 		   int delalloc)
3412 	__acquires(&cluster->refill_lock)
3413 {
3414 	struct btrfs_block_group *used_bg = NULL;
3415 
3416 	spin_lock(&cluster->refill_lock);
3417 	while (1) {
3418 		used_bg = cluster->block_group;
3419 		if (!used_bg)
3420 			return NULL;
3421 
3422 		if (used_bg == block_group)
3423 			return used_bg;
3424 
3425 		btrfs_get_block_group(used_bg);
3426 
3427 		if (!delalloc)
3428 			return used_bg;
3429 
3430 		if (down_read_trylock(&used_bg->data_rwsem))
3431 			return used_bg;
3432 
3433 		spin_unlock(&cluster->refill_lock);
3434 
3435 		/* We should only have one-level nested. */
3436 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3437 
3438 		spin_lock(&cluster->refill_lock);
3439 		if (used_bg == cluster->block_group)
3440 			return used_bg;
3441 
3442 		up_read(&used_bg->data_rwsem);
3443 		btrfs_put_block_group(used_bg);
3444 	}
3445 }
3446 
3447 static inline void
3448 btrfs_release_block_group(struct btrfs_block_group *cache,
3449 			 int delalloc)
3450 {
3451 	if (delalloc)
3452 		up_read(&cache->data_rwsem);
3453 	btrfs_put_block_group(cache);
3454 }
3455 
3456 enum btrfs_extent_allocation_policy {
3457 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3458 	BTRFS_EXTENT_ALLOC_ZONED,
3459 };
3460 
3461 /*
3462  * Structure used internally for find_free_extent() function.  Wraps needed
3463  * parameters.
3464  */
3465 struct find_free_extent_ctl {
3466 	/* Basic allocation info */
3467 	u64 ram_bytes;
3468 	u64 num_bytes;
3469 	u64 min_alloc_size;
3470 	u64 empty_size;
3471 	u64 flags;
3472 	int delalloc;
3473 
3474 	/* Where to start the search inside the bg */
3475 	u64 search_start;
3476 
3477 	/* For clustered allocation */
3478 	u64 empty_cluster;
3479 	struct btrfs_free_cluster *last_ptr;
3480 	bool use_cluster;
3481 
3482 	bool have_caching_bg;
3483 	bool orig_have_caching_bg;
3484 
3485 	/* Allocation is called for tree-log */
3486 	bool for_treelog;
3487 
3488 	/* Allocation is called for data relocation */
3489 	bool for_data_reloc;
3490 
3491 	/* RAID index, converted from flags */
3492 	int index;
3493 
3494 	/*
3495 	 * Current loop number, check find_free_extent_update_loop() for details
3496 	 */
3497 	int loop;
3498 
3499 	/*
3500 	 * Whether we're refilling a cluster, if true we need to re-search
3501 	 * current block group but don't try to refill the cluster again.
3502 	 */
3503 	bool retry_clustered;
3504 
3505 	/*
3506 	 * Whether we're updating free space cache, if true we need to re-search
3507 	 * current block group but don't try updating free space cache again.
3508 	 */
3509 	bool retry_unclustered;
3510 
3511 	/* If current block group is cached */
3512 	int cached;
3513 
3514 	/* Max contiguous hole found */
3515 	u64 max_extent_size;
3516 
3517 	/* Total free space from free space cache, not always contiguous */
3518 	u64 total_free_space;
3519 
3520 	/* Found result */
3521 	u64 found_offset;
3522 
3523 	/* Hint where to start looking for an empty space */
3524 	u64 hint_byte;
3525 
3526 	/* Allocation policy */
3527 	enum btrfs_extent_allocation_policy policy;
3528 };
3529 
3530 
3531 /*
3532  * Helper function for find_free_extent().
3533  *
3534  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3535  * Return -EAGAIN to inform caller that we need to re-search this block group
3536  * Return >0 to inform caller that we find nothing
3537  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3538  */
3539 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3540 				      struct find_free_extent_ctl *ffe_ctl,
3541 				      struct btrfs_block_group **cluster_bg_ret)
3542 {
3543 	struct btrfs_block_group *cluster_bg;
3544 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3545 	u64 aligned_cluster;
3546 	u64 offset;
3547 	int ret;
3548 
3549 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3550 	if (!cluster_bg)
3551 		goto refill_cluster;
3552 	if (cluster_bg != bg && (cluster_bg->ro ||
3553 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3554 		goto release_cluster;
3555 
3556 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3557 			ffe_ctl->num_bytes, cluster_bg->start,
3558 			&ffe_ctl->max_extent_size);
3559 	if (offset) {
3560 		/* We have a block, we're done */
3561 		spin_unlock(&last_ptr->refill_lock);
3562 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3563 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3564 		*cluster_bg_ret = cluster_bg;
3565 		ffe_ctl->found_offset = offset;
3566 		return 0;
3567 	}
3568 	WARN_ON(last_ptr->block_group != cluster_bg);
3569 
3570 release_cluster:
3571 	/*
3572 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3573 	 * lets just skip it and let the allocator find whatever block it can
3574 	 * find. If we reach this point, we will have tried the cluster
3575 	 * allocator plenty of times and not have found anything, so we are
3576 	 * likely way too fragmented for the clustering stuff to find anything.
3577 	 *
3578 	 * However, if the cluster is taken from the current block group,
3579 	 * release the cluster first, so that we stand a better chance of
3580 	 * succeeding in the unclustered allocation.
3581 	 */
3582 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3583 		spin_unlock(&last_ptr->refill_lock);
3584 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3585 		return -ENOENT;
3586 	}
3587 
3588 	/* This cluster didn't work out, free it and start over */
3589 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590 
3591 	if (cluster_bg != bg)
3592 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3593 
3594 refill_cluster:
3595 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3596 		spin_unlock(&last_ptr->refill_lock);
3597 		return -ENOENT;
3598 	}
3599 
3600 	aligned_cluster = max_t(u64,
3601 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3602 			bg->full_stripe_len);
3603 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3604 			ffe_ctl->num_bytes, aligned_cluster);
3605 	if (ret == 0) {
3606 		/* Now pull our allocation out of this cluster */
3607 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3608 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3609 				&ffe_ctl->max_extent_size);
3610 		if (offset) {
3611 			/* We found one, proceed */
3612 			spin_unlock(&last_ptr->refill_lock);
3613 			trace_btrfs_reserve_extent_cluster(bg,
3614 					ffe_ctl->search_start,
3615 					ffe_ctl->num_bytes);
3616 			ffe_ctl->found_offset = offset;
3617 			return 0;
3618 		}
3619 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3620 		   !ffe_ctl->retry_clustered) {
3621 		spin_unlock(&last_ptr->refill_lock);
3622 
3623 		ffe_ctl->retry_clustered = true;
3624 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3625 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3626 		return -EAGAIN;
3627 	}
3628 	/*
3629 	 * At this point we either didn't find a cluster or we weren't able to
3630 	 * allocate a block from our cluster.  Free the cluster we've been
3631 	 * trying to use, and go to the next block group.
3632 	 */
3633 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3634 	spin_unlock(&last_ptr->refill_lock);
3635 	return 1;
3636 }
3637 
3638 /*
3639  * Return >0 to inform caller that we find nothing
3640  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3641  * Return -EAGAIN to inform caller that we need to re-search this block group
3642  */
3643 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3644 					struct find_free_extent_ctl *ffe_ctl)
3645 {
3646 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3647 	u64 offset;
3648 
3649 	/*
3650 	 * We are doing an unclustered allocation, set the fragmented flag so
3651 	 * we don't bother trying to setup a cluster again until we get more
3652 	 * space.
3653 	 */
3654 	if (unlikely(last_ptr)) {
3655 		spin_lock(&last_ptr->lock);
3656 		last_ptr->fragmented = 1;
3657 		spin_unlock(&last_ptr->lock);
3658 	}
3659 	if (ffe_ctl->cached) {
3660 		struct btrfs_free_space_ctl *free_space_ctl;
3661 
3662 		free_space_ctl = bg->free_space_ctl;
3663 		spin_lock(&free_space_ctl->tree_lock);
3664 		if (free_space_ctl->free_space <
3665 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3666 		    ffe_ctl->empty_size) {
3667 			ffe_ctl->total_free_space = max_t(u64,
3668 					ffe_ctl->total_free_space,
3669 					free_space_ctl->free_space);
3670 			spin_unlock(&free_space_ctl->tree_lock);
3671 			return 1;
3672 		}
3673 		spin_unlock(&free_space_ctl->tree_lock);
3674 	}
3675 
3676 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3677 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3678 			&ffe_ctl->max_extent_size);
3679 
3680 	/*
3681 	 * If we didn't find a chunk, and we haven't failed on this block group
3682 	 * before, and this block group is in the middle of caching and we are
3683 	 * ok with waiting, then go ahead and wait for progress to be made, and
3684 	 * set @retry_unclustered to true.
3685 	 *
3686 	 * If @retry_unclustered is true then we've already waited on this
3687 	 * block group once and should move on to the next block group.
3688 	 */
3689 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3690 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3691 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3692 						      ffe_ctl->empty_size);
3693 		ffe_ctl->retry_unclustered = true;
3694 		return -EAGAIN;
3695 	} else if (!offset) {
3696 		return 1;
3697 	}
3698 	ffe_ctl->found_offset = offset;
3699 	return 0;
3700 }
3701 
3702 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3703 				   struct find_free_extent_ctl *ffe_ctl,
3704 				   struct btrfs_block_group **bg_ret)
3705 {
3706 	int ret;
3707 
3708 	/* We want to try and use the cluster allocator, so lets look there */
3709 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3710 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3711 		if (ret >= 0 || ret == -EAGAIN)
3712 			return ret;
3713 		/* ret == -ENOENT case falls through */
3714 	}
3715 
3716 	return find_free_extent_unclustered(block_group, ffe_ctl);
3717 }
3718 
3719 /*
3720  * Tree-log block group locking
3721  * ============================
3722  *
3723  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3724  * indicates the starting address of a block group, which is reserved only
3725  * for tree-log metadata.
3726  *
3727  * Lock nesting
3728  * ============
3729  *
3730  * space_info::lock
3731  *   block_group::lock
3732  *     fs_info::treelog_bg_lock
3733  */
3734 
3735 /*
3736  * Simple allocator for sequential-only block group. It only allows sequential
3737  * allocation. No need to play with trees. This function also reserves the
3738  * bytes as in btrfs_add_reserved_bytes.
3739  */
3740 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3741 			       struct find_free_extent_ctl *ffe_ctl,
3742 			       struct btrfs_block_group **bg_ret)
3743 {
3744 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3745 	struct btrfs_space_info *space_info = block_group->space_info;
3746 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3747 	u64 start = block_group->start;
3748 	u64 num_bytes = ffe_ctl->num_bytes;
3749 	u64 avail;
3750 	u64 bytenr = block_group->start;
3751 	u64 log_bytenr;
3752 	u64 data_reloc_bytenr;
3753 	int ret = 0;
3754 	bool skip = false;
3755 
3756 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3757 
3758 	/*
3759 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3760 	 * group, and vice versa.
3761 	 */
3762 	spin_lock(&fs_info->treelog_bg_lock);
3763 	log_bytenr = fs_info->treelog_bg;
3764 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3765 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3766 		skip = true;
3767 	spin_unlock(&fs_info->treelog_bg_lock);
3768 	if (skip)
3769 		return 1;
3770 
3771 	/*
3772 	 * Do not allow non-relocation blocks in the dedicated relocation block
3773 	 * group, and vice versa.
3774 	 */
3775 	spin_lock(&fs_info->relocation_bg_lock);
3776 	data_reloc_bytenr = fs_info->data_reloc_bg;
3777 	if (data_reloc_bytenr &&
3778 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3779 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3780 		skip = true;
3781 	spin_unlock(&fs_info->relocation_bg_lock);
3782 	if (skip)
3783 		return 1;
3784 
3785 	/* Check RO and no space case before trying to activate it */
3786 	spin_lock(&block_group->lock);
3787 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3788 		ret = 1;
3789 		/*
3790 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3791 		 * Return the error after taking the locks.
3792 		 */
3793 	}
3794 	spin_unlock(&block_group->lock);
3795 
3796 	if (!ret && !btrfs_zone_activate(block_group)) {
3797 		ret = 1;
3798 		/*
3799 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3800 		 * Return the error after taking the locks.
3801 		 */
3802 	}
3803 
3804 	spin_lock(&space_info->lock);
3805 	spin_lock(&block_group->lock);
3806 	spin_lock(&fs_info->treelog_bg_lock);
3807 	spin_lock(&fs_info->relocation_bg_lock);
3808 
3809 	if (ret)
3810 		goto out;
3811 
3812 	ASSERT(!ffe_ctl->for_treelog ||
3813 	       block_group->start == fs_info->treelog_bg ||
3814 	       fs_info->treelog_bg == 0);
3815 	ASSERT(!ffe_ctl->for_data_reloc ||
3816 	       block_group->start == fs_info->data_reloc_bg ||
3817 	       fs_info->data_reloc_bg == 0);
3818 
3819 	if (block_group->ro ||
3820 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3821 		ret = 1;
3822 		goto out;
3823 	}
3824 
3825 	/*
3826 	 * Do not allow currently using block group to be tree-log dedicated
3827 	 * block group.
3828 	 */
3829 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3830 	    (block_group->used || block_group->reserved)) {
3831 		ret = 1;
3832 		goto out;
3833 	}
3834 
3835 	/*
3836 	 * Do not allow currently used block group to be the data relocation
3837 	 * dedicated block group.
3838 	 */
3839 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3840 	    (block_group->used || block_group->reserved)) {
3841 		ret = 1;
3842 		goto out;
3843 	}
3844 
3845 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3846 	avail = block_group->zone_capacity - block_group->alloc_offset;
3847 	if (avail < num_bytes) {
3848 		if (ffe_ctl->max_extent_size < avail) {
3849 			/*
3850 			 * With sequential allocator, free space is always
3851 			 * contiguous
3852 			 */
3853 			ffe_ctl->max_extent_size = avail;
3854 			ffe_ctl->total_free_space = avail;
3855 		}
3856 		ret = 1;
3857 		goto out;
3858 	}
3859 
3860 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3861 		fs_info->treelog_bg = block_group->start;
3862 
3863 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3864 		fs_info->data_reloc_bg = block_group->start;
3865 
3866 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3867 	block_group->alloc_offset += num_bytes;
3868 	spin_lock(&ctl->tree_lock);
3869 	ctl->free_space -= num_bytes;
3870 	spin_unlock(&ctl->tree_lock);
3871 
3872 	/*
3873 	 * We do not check if found_offset is aligned to stripesize. The
3874 	 * address is anyway rewritten when using zone append writing.
3875 	 */
3876 
3877 	ffe_ctl->search_start = ffe_ctl->found_offset;
3878 
3879 out:
3880 	if (ret && ffe_ctl->for_treelog)
3881 		fs_info->treelog_bg = 0;
3882 	if (ret && ffe_ctl->for_data_reloc &&
3883 	    fs_info->data_reloc_bg == block_group->start) {
3884 		/*
3885 		 * Do not allow further allocations from this block group.
3886 		 * Compared to increasing the ->ro, setting the
3887 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3888 		 *  writers to come in. See btrfs_inc_nocow_writers().
3889 		 *
3890 		 * We need to disable an allocation to avoid an allocation of
3891 		 * regular (non-relocation data) extent. With mix of relocation
3892 		 * extents and regular extents, we can dispatch WRITE commands
3893 		 * (for relocation extents) and ZONE APPEND commands (for
3894 		 * regular extents) at the same time to the same zone, which
3895 		 * easily break the write pointer.
3896 		 */
3897 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3898 		fs_info->data_reloc_bg = 0;
3899 	}
3900 	spin_unlock(&fs_info->relocation_bg_lock);
3901 	spin_unlock(&fs_info->treelog_bg_lock);
3902 	spin_unlock(&block_group->lock);
3903 	spin_unlock(&space_info->lock);
3904 	return ret;
3905 }
3906 
3907 static int do_allocation(struct btrfs_block_group *block_group,
3908 			 struct find_free_extent_ctl *ffe_ctl,
3909 			 struct btrfs_block_group **bg_ret)
3910 {
3911 	switch (ffe_ctl->policy) {
3912 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3913 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3914 	case BTRFS_EXTENT_ALLOC_ZONED:
3915 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3916 	default:
3917 		BUG();
3918 	}
3919 }
3920 
3921 static void release_block_group(struct btrfs_block_group *block_group,
3922 				struct find_free_extent_ctl *ffe_ctl,
3923 				int delalloc)
3924 {
3925 	switch (ffe_ctl->policy) {
3926 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3927 		ffe_ctl->retry_clustered = false;
3928 		ffe_ctl->retry_unclustered = false;
3929 		break;
3930 	case BTRFS_EXTENT_ALLOC_ZONED:
3931 		/* Nothing to do */
3932 		break;
3933 	default:
3934 		BUG();
3935 	}
3936 
3937 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3938 	       ffe_ctl->index);
3939 	btrfs_release_block_group(block_group, delalloc);
3940 }
3941 
3942 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3943 				   struct btrfs_key *ins)
3944 {
3945 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3946 
3947 	if (!ffe_ctl->use_cluster && last_ptr) {
3948 		spin_lock(&last_ptr->lock);
3949 		last_ptr->window_start = ins->objectid;
3950 		spin_unlock(&last_ptr->lock);
3951 	}
3952 }
3953 
3954 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3955 			 struct btrfs_key *ins)
3956 {
3957 	switch (ffe_ctl->policy) {
3958 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3959 		found_extent_clustered(ffe_ctl, ins);
3960 		break;
3961 	case BTRFS_EXTENT_ALLOC_ZONED:
3962 		/* Nothing to do */
3963 		break;
3964 	default:
3965 		BUG();
3966 	}
3967 }
3968 
3969 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3970 				    struct find_free_extent_ctl *ffe_ctl)
3971 {
3972 	/* If we can activate new zone, just allocate a chunk and use it */
3973 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3974 		return 0;
3975 
3976 	/*
3977 	 * We already reached the max active zones. Try to finish one block
3978 	 * group to make a room for a new block group. This is only possible
3979 	 * for a data block group because btrfs_zone_finish() may need to wait
3980 	 * for a running transaction which can cause a deadlock for metadata
3981 	 * allocation.
3982 	 */
3983 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3984 		int ret = btrfs_zone_finish_one_bg(fs_info);
3985 
3986 		if (ret == 1)
3987 			return 0;
3988 		else if (ret < 0)
3989 			return ret;
3990 	}
3991 
3992 	/*
3993 	 * If we have enough free space left in an already active block group
3994 	 * and we can't activate any other zone now, do not allow allocating a
3995 	 * new chunk and let find_free_extent() retry with a smaller size.
3996 	 */
3997 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3998 		return -ENOSPC;
3999 
4000 	/*
4001 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4002 	 * activate a new block group, allocating it may not help. Let's tell a
4003 	 * caller to try again and hope it progress something by writing some
4004 	 * parts of the region. That is only possible for data block groups,
4005 	 * where a part of the region can be written.
4006 	 */
4007 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4008 		return -EAGAIN;
4009 
4010 	/*
4011 	 * We cannot activate a new block group and no enough space left in any
4012 	 * block groups. So, allocating a new block group may not help. But,
4013 	 * there is nothing to do anyway, so let's go with it.
4014 	 */
4015 	return 0;
4016 }
4017 
4018 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4019 			      struct find_free_extent_ctl *ffe_ctl)
4020 {
4021 	switch (ffe_ctl->policy) {
4022 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4023 		return 0;
4024 	case BTRFS_EXTENT_ALLOC_ZONED:
4025 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4026 	default:
4027 		BUG();
4028 	}
4029 }
4030 
4031 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4032 {
4033 	switch (ffe_ctl->policy) {
4034 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4035 		/*
4036 		 * If we can't allocate a new chunk we've already looped through
4037 		 * at least once, move on to the NO_EMPTY_SIZE case.
4038 		 */
4039 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4040 		return 0;
4041 	case BTRFS_EXTENT_ALLOC_ZONED:
4042 		/* Give up here */
4043 		return -ENOSPC;
4044 	default:
4045 		BUG();
4046 	}
4047 }
4048 
4049 /*
4050  * Return >0 means caller needs to re-search for free extent
4051  * Return 0 means we have the needed free extent.
4052  * Return <0 means we failed to locate any free extent.
4053  */
4054 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4055 					struct btrfs_key *ins,
4056 					struct find_free_extent_ctl *ffe_ctl,
4057 					bool full_search)
4058 {
4059 	struct btrfs_root *root = fs_info->chunk_root;
4060 	int ret;
4061 
4062 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4063 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4064 		ffe_ctl->orig_have_caching_bg = true;
4065 
4066 	if (ins->objectid) {
4067 		found_extent(ffe_ctl, ins);
4068 		return 0;
4069 	}
4070 
4071 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4072 		return 1;
4073 
4074 	ffe_ctl->index++;
4075 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4076 		return 1;
4077 
4078 	/*
4079 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4080 	 *			caching kthreads as we move along
4081 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4082 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4083 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4084 	 *		       again
4085 	 */
4086 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4087 		ffe_ctl->index = 0;
4088 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4089 			/*
4090 			 * We want to skip the LOOP_CACHING_WAIT step if we
4091 			 * don't have any uncached bgs and we've already done a
4092 			 * full search through.
4093 			 */
4094 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4095 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4096 			else
4097 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4098 		} else {
4099 			ffe_ctl->loop++;
4100 		}
4101 
4102 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4103 			struct btrfs_trans_handle *trans;
4104 			int exist = 0;
4105 
4106 			/*Check if allocation policy allows to create a new chunk */
4107 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4108 			if (ret)
4109 				return ret;
4110 
4111 			trans = current->journal_info;
4112 			if (trans)
4113 				exist = 1;
4114 			else
4115 				trans = btrfs_join_transaction(root);
4116 
4117 			if (IS_ERR(trans)) {
4118 				ret = PTR_ERR(trans);
4119 				return ret;
4120 			}
4121 
4122 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4123 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4124 
4125 			/* Do not bail out on ENOSPC since we can do more. */
4126 			if (ret == -ENOSPC)
4127 				ret = chunk_allocation_failed(ffe_ctl);
4128 			else if (ret < 0)
4129 				btrfs_abort_transaction(trans, ret);
4130 			else
4131 				ret = 0;
4132 			if (!exist)
4133 				btrfs_end_transaction(trans);
4134 			if (ret)
4135 				return ret;
4136 		}
4137 
4138 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4139 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4140 				return -ENOSPC;
4141 
4142 			/*
4143 			 * Don't loop again if we already have no empty_size and
4144 			 * no empty_cluster.
4145 			 */
4146 			if (ffe_ctl->empty_size == 0 &&
4147 			    ffe_ctl->empty_cluster == 0)
4148 				return -ENOSPC;
4149 			ffe_ctl->empty_size = 0;
4150 			ffe_ctl->empty_cluster = 0;
4151 		}
4152 		return 1;
4153 	}
4154 	return -ENOSPC;
4155 }
4156 
4157 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4158 					struct find_free_extent_ctl *ffe_ctl,
4159 					struct btrfs_space_info *space_info,
4160 					struct btrfs_key *ins)
4161 {
4162 	/*
4163 	 * If our free space is heavily fragmented we may not be able to make
4164 	 * big contiguous allocations, so instead of doing the expensive search
4165 	 * for free space, simply return ENOSPC with our max_extent_size so we
4166 	 * can go ahead and search for a more manageable chunk.
4167 	 *
4168 	 * If our max_extent_size is large enough for our allocation simply
4169 	 * disable clustering since we will likely not be able to find enough
4170 	 * space to create a cluster and induce latency trying.
4171 	 */
4172 	if (space_info->max_extent_size) {
4173 		spin_lock(&space_info->lock);
4174 		if (space_info->max_extent_size &&
4175 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4176 			ins->offset = space_info->max_extent_size;
4177 			spin_unlock(&space_info->lock);
4178 			return -ENOSPC;
4179 		} else if (space_info->max_extent_size) {
4180 			ffe_ctl->use_cluster = false;
4181 		}
4182 		spin_unlock(&space_info->lock);
4183 	}
4184 
4185 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4186 					       &ffe_ctl->empty_cluster);
4187 	if (ffe_ctl->last_ptr) {
4188 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4189 
4190 		spin_lock(&last_ptr->lock);
4191 		if (last_ptr->block_group)
4192 			ffe_ctl->hint_byte = last_ptr->window_start;
4193 		if (last_ptr->fragmented) {
4194 			/*
4195 			 * We still set window_start so we can keep track of the
4196 			 * last place we found an allocation to try and save
4197 			 * some time.
4198 			 */
4199 			ffe_ctl->hint_byte = last_ptr->window_start;
4200 			ffe_ctl->use_cluster = false;
4201 		}
4202 		spin_unlock(&last_ptr->lock);
4203 	}
4204 
4205 	return 0;
4206 }
4207 
4208 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4209 			      struct find_free_extent_ctl *ffe_ctl,
4210 			      struct btrfs_space_info *space_info,
4211 			      struct btrfs_key *ins)
4212 {
4213 	switch (ffe_ctl->policy) {
4214 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4215 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4216 						    space_info, ins);
4217 	case BTRFS_EXTENT_ALLOC_ZONED:
4218 		if (ffe_ctl->for_treelog) {
4219 			spin_lock(&fs_info->treelog_bg_lock);
4220 			if (fs_info->treelog_bg)
4221 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4222 			spin_unlock(&fs_info->treelog_bg_lock);
4223 		}
4224 		if (ffe_ctl->for_data_reloc) {
4225 			spin_lock(&fs_info->relocation_bg_lock);
4226 			if (fs_info->data_reloc_bg)
4227 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4228 			spin_unlock(&fs_info->relocation_bg_lock);
4229 		}
4230 		return 0;
4231 	default:
4232 		BUG();
4233 	}
4234 }
4235 
4236 /*
4237  * walks the btree of allocated extents and find a hole of a given size.
4238  * The key ins is changed to record the hole:
4239  * ins->objectid == start position
4240  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4241  * ins->offset == the size of the hole.
4242  * Any available blocks before search_start are skipped.
4243  *
4244  * If there is no suitable free space, we will record the max size of
4245  * the free space extent currently.
4246  *
4247  * The overall logic and call chain:
4248  *
4249  * find_free_extent()
4250  * |- Iterate through all block groups
4251  * |  |- Get a valid block group
4252  * |  |- Try to do clustered allocation in that block group
4253  * |  |- Try to do unclustered allocation in that block group
4254  * |  |- Check if the result is valid
4255  * |  |  |- If valid, then exit
4256  * |  |- Jump to next block group
4257  * |
4258  * |- Push harder to find free extents
4259  *    |- If not found, re-iterate all block groups
4260  */
4261 static noinline int find_free_extent(struct btrfs_root *root,
4262 				     struct btrfs_key *ins,
4263 				     struct find_free_extent_ctl *ffe_ctl)
4264 {
4265 	struct btrfs_fs_info *fs_info = root->fs_info;
4266 	int ret = 0;
4267 	int cache_block_group_error = 0;
4268 	struct btrfs_block_group *block_group = NULL;
4269 	struct btrfs_space_info *space_info;
4270 	bool full_search = false;
4271 
4272 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4273 
4274 	ffe_ctl->search_start = 0;
4275 	/* For clustered allocation */
4276 	ffe_ctl->empty_cluster = 0;
4277 	ffe_ctl->last_ptr = NULL;
4278 	ffe_ctl->use_cluster = true;
4279 	ffe_ctl->have_caching_bg = false;
4280 	ffe_ctl->orig_have_caching_bg = false;
4281 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4282 	ffe_ctl->loop = 0;
4283 	/* For clustered allocation */
4284 	ffe_ctl->retry_clustered = false;
4285 	ffe_ctl->retry_unclustered = false;
4286 	ffe_ctl->cached = 0;
4287 	ffe_ctl->max_extent_size = 0;
4288 	ffe_ctl->total_free_space = 0;
4289 	ffe_ctl->found_offset = 0;
4290 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4291 
4292 	if (btrfs_is_zoned(fs_info))
4293 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4294 
4295 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4296 	ins->objectid = 0;
4297 	ins->offset = 0;
4298 
4299 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4300 			       ffe_ctl->flags);
4301 
4302 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4303 	if (!space_info) {
4304 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4305 		return -ENOSPC;
4306 	}
4307 
4308 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4309 	if (ret < 0)
4310 		return ret;
4311 
4312 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4313 				    first_logical_byte(fs_info));
4314 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4315 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4316 		block_group = btrfs_lookup_block_group(fs_info,
4317 						       ffe_ctl->search_start);
4318 		/*
4319 		 * we don't want to use the block group if it doesn't match our
4320 		 * allocation bits, or if its not cached.
4321 		 *
4322 		 * However if we are re-searching with an ideal block group
4323 		 * picked out then we don't care that the block group is cached.
4324 		 */
4325 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4326 		    block_group->cached != BTRFS_CACHE_NO) {
4327 			down_read(&space_info->groups_sem);
4328 			if (list_empty(&block_group->list) ||
4329 			    block_group->ro) {
4330 				/*
4331 				 * someone is removing this block group,
4332 				 * we can't jump into the have_block_group
4333 				 * target because our list pointers are not
4334 				 * valid
4335 				 */
4336 				btrfs_put_block_group(block_group);
4337 				up_read(&space_info->groups_sem);
4338 			} else {
4339 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4340 							block_group->flags);
4341 				btrfs_lock_block_group(block_group,
4342 						       ffe_ctl->delalloc);
4343 				goto have_block_group;
4344 			}
4345 		} else if (block_group) {
4346 			btrfs_put_block_group(block_group);
4347 		}
4348 	}
4349 search:
4350 	ffe_ctl->have_caching_bg = false;
4351 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4352 	    ffe_ctl->index == 0)
4353 		full_search = true;
4354 	down_read(&space_info->groups_sem);
4355 	list_for_each_entry(block_group,
4356 			    &space_info->block_groups[ffe_ctl->index], list) {
4357 		struct btrfs_block_group *bg_ret;
4358 
4359 		/* If the block group is read-only, we can skip it entirely. */
4360 		if (unlikely(block_group->ro)) {
4361 			if (ffe_ctl->for_treelog)
4362 				btrfs_clear_treelog_bg(block_group);
4363 			if (ffe_ctl->for_data_reloc)
4364 				btrfs_clear_data_reloc_bg(block_group);
4365 			continue;
4366 		}
4367 
4368 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4369 		ffe_ctl->search_start = block_group->start;
4370 
4371 		/*
4372 		 * this can happen if we end up cycling through all the
4373 		 * raid types, but we want to make sure we only allocate
4374 		 * for the proper type.
4375 		 */
4376 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4377 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4378 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4379 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4380 				BTRFS_BLOCK_GROUP_RAID10;
4381 
4382 			/*
4383 			 * if they asked for extra copies and this block group
4384 			 * doesn't provide them, bail.  This does allow us to
4385 			 * fill raid0 from raid1.
4386 			 */
4387 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4388 				goto loop;
4389 
4390 			/*
4391 			 * This block group has different flags than we want.
4392 			 * It's possible that we have MIXED_GROUP flag but no
4393 			 * block group is mixed.  Just skip such block group.
4394 			 */
4395 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4396 			continue;
4397 		}
4398 
4399 have_block_group:
4400 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4401 		if (unlikely(!ffe_ctl->cached)) {
4402 			ffe_ctl->have_caching_bg = true;
4403 			ret = btrfs_cache_block_group(block_group, false);
4404 
4405 			/*
4406 			 * If we get ENOMEM here or something else we want to
4407 			 * try other block groups, because it may not be fatal.
4408 			 * However if we can't find anything else we need to
4409 			 * save our return here so that we return the actual
4410 			 * error that caused problems, not ENOSPC.
4411 			 */
4412 			if (ret < 0) {
4413 				if (!cache_block_group_error)
4414 					cache_block_group_error = ret;
4415 				ret = 0;
4416 				goto loop;
4417 			}
4418 			ret = 0;
4419 		}
4420 
4421 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4422 			goto loop;
4423 
4424 		bg_ret = NULL;
4425 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4426 		if (ret == 0) {
4427 			if (bg_ret && bg_ret != block_group) {
4428 				btrfs_release_block_group(block_group,
4429 							  ffe_ctl->delalloc);
4430 				block_group = bg_ret;
4431 			}
4432 		} else if (ret == -EAGAIN) {
4433 			goto have_block_group;
4434 		} else if (ret > 0) {
4435 			goto loop;
4436 		}
4437 
4438 		/* Checks */
4439 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4440 						 fs_info->stripesize);
4441 
4442 		/* move on to the next group */
4443 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4444 		    block_group->start + block_group->length) {
4445 			btrfs_add_free_space_unused(block_group,
4446 					    ffe_ctl->found_offset,
4447 					    ffe_ctl->num_bytes);
4448 			goto loop;
4449 		}
4450 
4451 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4452 			btrfs_add_free_space_unused(block_group,
4453 					ffe_ctl->found_offset,
4454 					ffe_ctl->search_start - ffe_ctl->found_offset);
4455 
4456 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4457 					       ffe_ctl->num_bytes,
4458 					       ffe_ctl->delalloc);
4459 		if (ret == -EAGAIN) {
4460 			btrfs_add_free_space_unused(block_group,
4461 					ffe_ctl->found_offset,
4462 					ffe_ctl->num_bytes);
4463 			goto loop;
4464 		}
4465 		btrfs_inc_block_group_reservations(block_group);
4466 
4467 		/* we are all good, lets return */
4468 		ins->objectid = ffe_ctl->search_start;
4469 		ins->offset = ffe_ctl->num_bytes;
4470 
4471 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4472 					   ffe_ctl->num_bytes);
4473 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4474 		break;
4475 loop:
4476 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4477 		cond_resched();
4478 	}
4479 	up_read(&space_info->groups_sem);
4480 
4481 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4482 	if (ret > 0)
4483 		goto search;
4484 
4485 	if (ret == -ENOSPC && !cache_block_group_error) {
4486 		/*
4487 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4488 		 * any contiguous hole.
4489 		 */
4490 		if (!ffe_ctl->max_extent_size)
4491 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4492 		spin_lock(&space_info->lock);
4493 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4494 		spin_unlock(&space_info->lock);
4495 		ins->offset = ffe_ctl->max_extent_size;
4496 	} else if (ret == -ENOSPC) {
4497 		ret = cache_block_group_error;
4498 	}
4499 	return ret;
4500 }
4501 
4502 /*
4503  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4504  *			  hole that is at least as big as @num_bytes.
4505  *
4506  * @root           -	The root that will contain this extent
4507  *
4508  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4509  *			is used for accounting purposes. This value differs
4510  *			from @num_bytes only in the case of compressed extents.
4511  *
4512  * @num_bytes      -	Number of bytes to allocate on-disk.
4513  *
4514  * @min_alloc_size -	Indicates the minimum amount of space that the
4515  *			allocator should try to satisfy. In some cases
4516  *			@num_bytes may be larger than what is required and if
4517  *			the filesystem is fragmented then allocation fails.
4518  *			However, the presence of @min_alloc_size gives a
4519  *			chance to try and satisfy the smaller allocation.
4520  *
4521  * @empty_size     -	A hint that you plan on doing more COW. This is the
4522  *			size in bytes the allocator should try to find free
4523  *			next to the block it returns.  This is just a hint and
4524  *			may be ignored by the allocator.
4525  *
4526  * @hint_byte      -	Hint to the allocator to start searching above the byte
4527  *			address passed. It might be ignored.
4528  *
4529  * @ins            -	This key is modified to record the found hole. It will
4530  *			have the following values:
4531  *			ins->objectid == start position
4532  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4533  *			ins->offset == the size of the hole.
4534  *
4535  * @is_data        -	Boolean flag indicating whether an extent is
4536  *			allocated for data (true) or metadata (false)
4537  *
4538  * @delalloc       -	Boolean flag indicating whether this allocation is for
4539  *			delalloc or not. If 'true' data_rwsem of block groups
4540  *			is going to be acquired.
4541  *
4542  *
4543  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4544  * case -ENOSPC is returned then @ins->offset will contain the size of the
4545  * largest available hole the allocator managed to find.
4546  */
4547 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4548 			 u64 num_bytes, u64 min_alloc_size,
4549 			 u64 empty_size, u64 hint_byte,
4550 			 struct btrfs_key *ins, int is_data, int delalloc)
4551 {
4552 	struct btrfs_fs_info *fs_info = root->fs_info;
4553 	struct find_free_extent_ctl ffe_ctl = {};
4554 	bool final_tried = num_bytes == min_alloc_size;
4555 	u64 flags;
4556 	int ret;
4557 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4558 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4559 
4560 	flags = get_alloc_profile_by_root(root, is_data);
4561 again:
4562 	WARN_ON(num_bytes < fs_info->sectorsize);
4563 
4564 	ffe_ctl.ram_bytes = ram_bytes;
4565 	ffe_ctl.num_bytes = num_bytes;
4566 	ffe_ctl.min_alloc_size = min_alloc_size;
4567 	ffe_ctl.empty_size = empty_size;
4568 	ffe_ctl.flags = flags;
4569 	ffe_ctl.delalloc = delalloc;
4570 	ffe_ctl.hint_byte = hint_byte;
4571 	ffe_ctl.for_treelog = for_treelog;
4572 	ffe_ctl.for_data_reloc = for_data_reloc;
4573 
4574 	ret = find_free_extent(root, ins, &ffe_ctl);
4575 	if (!ret && !is_data) {
4576 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4577 	} else if (ret == -ENOSPC) {
4578 		if (!final_tried && ins->offset) {
4579 			num_bytes = min(num_bytes >> 1, ins->offset);
4580 			num_bytes = round_down(num_bytes,
4581 					       fs_info->sectorsize);
4582 			num_bytes = max(num_bytes, min_alloc_size);
4583 			ram_bytes = num_bytes;
4584 			if (num_bytes == min_alloc_size)
4585 				final_tried = true;
4586 			goto again;
4587 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4588 			struct btrfs_space_info *sinfo;
4589 
4590 			sinfo = btrfs_find_space_info(fs_info, flags);
4591 			btrfs_err(fs_info,
4592 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4593 				  flags, num_bytes, for_treelog, for_data_reloc);
4594 			if (sinfo)
4595 				btrfs_dump_space_info(fs_info, sinfo,
4596 						      num_bytes, 1);
4597 		}
4598 	}
4599 
4600 	return ret;
4601 }
4602 
4603 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4604 			       u64 start, u64 len, int delalloc)
4605 {
4606 	struct btrfs_block_group *cache;
4607 
4608 	cache = btrfs_lookup_block_group(fs_info, start);
4609 	if (!cache) {
4610 		btrfs_err(fs_info, "Unable to find block group for %llu",
4611 			  start);
4612 		return -ENOSPC;
4613 	}
4614 
4615 	btrfs_add_free_space(cache, start, len);
4616 	btrfs_free_reserved_bytes(cache, len, delalloc);
4617 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4618 
4619 	btrfs_put_block_group(cache);
4620 	return 0;
4621 }
4622 
4623 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4624 			      u64 len)
4625 {
4626 	struct btrfs_block_group *cache;
4627 	int ret = 0;
4628 
4629 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4630 	if (!cache) {
4631 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4632 			  start);
4633 		return -ENOSPC;
4634 	}
4635 
4636 	ret = pin_down_extent(trans, cache, start, len, 1);
4637 	btrfs_put_block_group(cache);
4638 	return ret;
4639 }
4640 
4641 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4642 				 u64 num_bytes)
4643 {
4644 	struct btrfs_fs_info *fs_info = trans->fs_info;
4645 	int ret;
4646 
4647 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4648 	if (ret)
4649 		return ret;
4650 
4651 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4652 	if (ret) {
4653 		ASSERT(!ret);
4654 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4655 			  bytenr, num_bytes);
4656 		return ret;
4657 	}
4658 
4659 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4660 	return 0;
4661 }
4662 
4663 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4664 				      u64 parent, u64 root_objectid,
4665 				      u64 flags, u64 owner, u64 offset,
4666 				      struct btrfs_key *ins, int ref_mod)
4667 {
4668 	struct btrfs_fs_info *fs_info = trans->fs_info;
4669 	struct btrfs_root *extent_root;
4670 	int ret;
4671 	struct btrfs_extent_item *extent_item;
4672 	struct btrfs_extent_inline_ref *iref;
4673 	struct btrfs_path *path;
4674 	struct extent_buffer *leaf;
4675 	int type;
4676 	u32 size;
4677 
4678 	if (parent > 0)
4679 		type = BTRFS_SHARED_DATA_REF_KEY;
4680 	else
4681 		type = BTRFS_EXTENT_DATA_REF_KEY;
4682 
4683 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4684 
4685 	path = btrfs_alloc_path();
4686 	if (!path)
4687 		return -ENOMEM;
4688 
4689 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4690 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4691 	if (ret) {
4692 		btrfs_free_path(path);
4693 		return ret;
4694 	}
4695 
4696 	leaf = path->nodes[0];
4697 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4698 				     struct btrfs_extent_item);
4699 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4700 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4701 	btrfs_set_extent_flags(leaf, extent_item,
4702 			       flags | BTRFS_EXTENT_FLAG_DATA);
4703 
4704 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4705 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4706 	if (parent > 0) {
4707 		struct btrfs_shared_data_ref *ref;
4708 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4709 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4710 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4711 	} else {
4712 		struct btrfs_extent_data_ref *ref;
4713 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4714 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4715 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4716 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4717 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4718 	}
4719 
4720 	btrfs_mark_buffer_dirty(path->nodes[0]);
4721 	btrfs_free_path(path);
4722 
4723 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4724 }
4725 
4726 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4727 				     struct btrfs_delayed_ref_node *node,
4728 				     struct btrfs_delayed_extent_op *extent_op)
4729 {
4730 	struct btrfs_fs_info *fs_info = trans->fs_info;
4731 	struct btrfs_root *extent_root;
4732 	int ret;
4733 	struct btrfs_extent_item *extent_item;
4734 	struct btrfs_key extent_key;
4735 	struct btrfs_tree_block_info *block_info;
4736 	struct btrfs_extent_inline_ref *iref;
4737 	struct btrfs_path *path;
4738 	struct extent_buffer *leaf;
4739 	struct btrfs_delayed_tree_ref *ref;
4740 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4741 	u64 flags = extent_op->flags_to_set;
4742 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4743 
4744 	ref = btrfs_delayed_node_to_tree_ref(node);
4745 
4746 	extent_key.objectid = node->bytenr;
4747 	if (skinny_metadata) {
4748 		extent_key.offset = ref->level;
4749 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4750 	} else {
4751 		extent_key.offset = node->num_bytes;
4752 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4753 		size += sizeof(*block_info);
4754 	}
4755 
4756 	path = btrfs_alloc_path();
4757 	if (!path)
4758 		return -ENOMEM;
4759 
4760 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4761 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4762 				      size);
4763 	if (ret) {
4764 		btrfs_free_path(path);
4765 		return ret;
4766 	}
4767 
4768 	leaf = path->nodes[0];
4769 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4770 				     struct btrfs_extent_item);
4771 	btrfs_set_extent_refs(leaf, extent_item, 1);
4772 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4773 	btrfs_set_extent_flags(leaf, extent_item,
4774 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4775 
4776 	if (skinny_metadata) {
4777 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4778 	} else {
4779 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4780 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4781 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4782 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4783 	}
4784 
4785 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4786 		btrfs_set_extent_inline_ref_type(leaf, iref,
4787 						 BTRFS_SHARED_BLOCK_REF_KEY);
4788 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4789 	} else {
4790 		btrfs_set_extent_inline_ref_type(leaf, iref,
4791 						 BTRFS_TREE_BLOCK_REF_KEY);
4792 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4793 	}
4794 
4795 	btrfs_mark_buffer_dirty(leaf);
4796 	btrfs_free_path(path);
4797 
4798 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4799 }
4800 
4801 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4802 				     struct btrfs_root *root, u64 owner,
4803 				     u64 offset, u64 ram_bytes,
4804 				     struct btrfs_key *ins)
4805 {
4806 	struct btrfs_ref generic_ref = { 0 };
4807 
4808 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4809 
4810 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4811 			       ins->objectid, ins->offset, 0);
4812 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4813 			    offset, 0, false);
4814 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4815 
4816 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4817 }
4818 
4819 /*
4820  * this is used by the tree logging recovery code.  It records that
4821  * an extent has been allocated and makes sure to clear the free
4822  * space cache bits as well
4823  */
4824 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4825 				   u64 root_objectid, u64 owner, u64 offset,
4826 				   struct btrfs_key *ins)
4827 {
4828 	struct btrfs_fs_info *fs_info = trans->fs_info;
4829 	int ret;
4830 	struct btrfs_block_group *block_group;
4831 	struct btrfs_space_info *space_info;
4832 
4833 	/*
4834 	 * Mixed block groups will exclude before processing the log so we only
4835 	 * need to do the exclude dance if this fs isn't mixed.
4836 	 */
4837 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4838 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4839 					      ins->offset);
4840 		if (ret)
4841 			return ret;
4842 	}
4843 
4844 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4845 	if (!block_group)
4846 		return -EINVAL;
4847 
4848 	space_info = block_group->space_info;
4849 	spin_lock(&space_info->lock);
4850 	spin_lock(&block_group->lock);
4851 	space_info->bytes_reserved += ins->offset;
4852 	block_group->reserved += ins->offset;
4853 	spin_unlock(&block_group->lock);
4854 	spin_unlock(&space_info->lock);
4855 
4856 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4857 					 offset, ins, 1);
4858 	if (ret)
4859 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4860 	btrfs_put_block_group(block_group);
4861 	return ret;
4862 }
4863 
4864 static struct extent_buffer *
4865 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4866 		      u64 bytenr, int level, u64 owner,
4867 		      enum btrfs_lock_nesting nest)
4868 {
4869 	struct btrfs_fs_info *fs_info = root->fs_info;
4870 	struct extent_buffer *buf;
4871 	u64 lockdep_owner = owner;
4872 
4873 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4874 	if (IS_ERR(buf))
4875 		return buf;
4876 
4877 	/*
4878 	 * Extra safety check in case the extent tree is corrupted and extent
4879 	 * allocator chooses to use a tree block which is already used and
4880 	 * locked.
4881 	 */
4882 	if (buf->lock_owner == current->pid) {
4883 		btrfs_err_rl(fs_info,
4884 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4885 			buf->start, btrfs_header_owner(buf), current->pid);
4886 		free_extent_buffer(buf);
4887 		return ERR_PTR(-EUCLEAN);
4888 	}
4889 
4890 	/*
4891 	 * The reloc trees are just snapshots, so we need them to appear to be
4892 	 * just like any other fs tree WRT lockdep.
4893 	 *
4894 	 * The exception however is in replace_path() in relocation, where we
4895 	 * hold the lock on the original fs root and then search for the reloc
4896 	 * root.  At that point we need to make sure any reloc root buffers are
4897 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4898 	 * lockdep happy.
4899 	 */
4900 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4901 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4902 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4903 
4904 	/* btrfs_clean_tree_block() accesses generation field. */
4905 	btrfs_set_header_generation(buf, trans->transid);
4906 
4907 	/*
4908 	 * This needs to stay, because we could allocate a freed block from an
4909 	 * old tree into a new tree, so we need to make sure this new block is
4910 	 * set to the appropriate level and owner.
4911 	 */
4912 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4913 
4914 	__btrfs_tree_lock(buf, nest);
4915 	btrfs_clean_tree_block(buf);
4916 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4917 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4918 
4919 	set_extent_buffer_uptodate(buf);
4920 
4921 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4922 	btrfs_set_header_level(buf, level);
4923 	btrfs_set_header_bytenr(buf, buf->start);
4924 	btrfs_set_header_generation(buf, trans->transid);
4925 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4926 	btrfs_set_header_owner(buf, owner);
4927 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4928 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4929 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4930 		buf->log_index = root->log_transid % 2;
4931 		/*
4932 		 * we allow two log transactions at a time, use different
4933 		 * EXTENT bit to differentiate dirty pages.
4934 		 */
4935 		if (buf->log_index == 0)
4936 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4937 					buf->start + buf->len - 1, GFP_NOFS);
4938 		else
4939 			set_extent_new(&root->dirty_log_pages, buf->start,
4940 					buf->start + buf->len - 1);
4941 	} else {
4942 		buf->log_index = -1;
4943 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4944 			 buf->start + buf->len - 1, GFP_NOFS);
4945 	}
4946 	/* this returns a buffer locked for blocking */
4947 	return buf;
4948 }
4949 
4950 /*
4951  * finds a free extent and does all the dirty work required for allocation
4952  * returns the tree buffer or an ERR_PTR on error.
4953  */
4954 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4955 					     struct btrfs_root *root,
4956 					     u64 parent, u64 root_objectid,
4957 					     const struct btrfs_disk_key *key,
4958 					     int level, u64 hint,
4959 					     u64 empty_size,
4960 					     enum btrfs_lock_nesting nest)
4961 {
4962 	struct btrfs_fs_info *fs_info = root->fs_info;
4963 	struct btrfs_key ins;
4964 	struct btrfs_block_rsv *block_rsv;
4965 	struct extent_buffer *buf;
4966 	struct btrfs_delayed_extent_op *extent_op;
4967 	struct btrfs_ref generic_ref = { 0 };
4968 	u64 flags = 0;
4969 	int ret;
4970 	u32 blocksize = fs_info->nodesize;
4971 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4972 
4973 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4974 	if (btrfs_is_testing(fs_info)) {
4975 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4976 					    level, root_objectid, nest);
4977 		if (!IS_ERR(buf))
4978 			root->alloc_bytenr += blocksize;
4979 		return buf;
4980 	}
4981 #endif
4982 
4983 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4984 	if (IS_ERR(block_rsv))
4985 		return ERR_CAST(block_rsv);
4986 
4987 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4988 				   empty_size, hint, &ins, 0, 0);
4989 	if (ret)
4990 		goto out_unuse;
4991 
4992 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4993 				    root_objectid, nest);
4994 	if (IS_ERR(buf)) {
4995 		ret = PTR_ERR(buf);
4996 		goto out_free_reserved;
4997 	}
4998 
4999 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5000 		if (parent == 0)
5001 			parent = ins.objectid;
5002 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5003 	} else
5004 		BUG_ON(parent > 0);
5005 
5006 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5007 		extent_op = btrfs_alloc_delayed_extent_op();
5008 		if (!extent_op) {
5009 			ret = -ENOMEM;
5010 			goto out_free_buf;
5011 		}
5012 		if (key)
5013 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5014 		else
5015 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5016 		extent_op->flags_to_set = flags;
5017 		extent_op->update_key = skinny_metadata ? false : true;
5018 		extent_op->update_flags = true;
5019 		extent_op->level = level;
5020 
5021 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5022 				       ins.objectid, ins.offset, parent);
5023 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5024 				    root->root_key.objectid, false);
5025 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5026 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5027 		if (ret)
5028 			goto out_free_delayed;
5029 	}
5030 	return buf;
5031 
5032 out_free_delayed:
5033 	btrfs_free_delayed_extent_op(extent_op);
5034 out_free_buf:
5035 	btrfs_tree_unlock(buf);
5036 	free_extent_buffer(buf);
5037 out_free_reserved:
5038 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5039 out_unuse:
5040 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5041 	return ERR_PTR(ret);
5042 }
5043 
5044 struct walk_control {
5045 	u64 refs[BTRFS_MAX_LEVEL];
5046 	u64 flags[BTRFS_MAX_LEVEL];
5047 	struct btrfs_key update_progress;
5048 	struct btrfs_key drop_progress;
5049 	int drop_level;
5050 	int stage;
5051 	int level;
5052 	int shared_level;
5053 	int update_ref;
5054 	int keep_locks;
5055 	int reada_slot;
5056 	int reada_count;
5057 	int restarted;
5058 };
5059 
5060 #define DROP_REFERENCE	1
5061 #define UPDATE_BACKREF	2
5062 
5063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5064 				     struct btrfs_root *root,
5065 				     struct walk_control *wc,
5066 				     struct btrfs_path *path)
5067 {
5068 	struct btrfs_fs_info *fs_info = root->fs_info;
5069 	u64 bytenr;
5070 	u64 generation;
5071 	u64 refs;
5072 	u64 flags;
5073 	u32 nritems;
5074 	struct btrfs_key key;
5075 	struct extent_buffer *eb;
5076 	int ret;
5077 	int slot;
5078 	int nread = 0;
5079 
5080 	if (path->slots[wc->level] < wc->reada_slot) {
5081 		wc->reada_count = wc->reada_count * 2 / 3;
5082 		wc->reada_count = max(wc->reada_count, 2);
5083 	} else {
5084 		wc->reada_count = wc->reada_count * 3 / 2;
5085 		wc->reada_count = min_t(int, wc->reada_count,
5086 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5087 	}
5088 
5089 	eb = path->nodes[wc->level];
5090 	nritems = btrfs_header_nritems(eb);
5091 
5092 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5093 		if (nread >= wc->reada_count)
5094 			break;
5095 
5096 		cond_resched();
5097 		bytenr = btrfs_node_blockptr(eb, slot);
5098 		generation = btrfs_node_ptr_generation(eb, slot);
5099 
5100 		if (slot == path->slots[wc->level])
5101 			goto reada;
5102 
5103 		if (wc->stage == UPDATE_BACKREF &&
5104 		    generation <= root->root_key.offset)
5105 			continue;
5106 
5107 		/* We don't lock the tree block, it's OK to be racy here */
5108 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5109 					       wc->level - 1, 1, &refs,
5110 					       &flags);
5111 		/* We don't care about errors in readahead. */
5112 		if (ret < 0)
5113 			continue;
5114 		BUG_ON(refs == 0);
5115 
5116 		if (wc->stage == DROP_REFERENCE) {
5117 			if (refs == 1)
5118 				goto reada;
5119 
5120 			if (wc->level == 1 &&
5121 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5122 				continue;
5123 			if (!wc->update_ref ||
5124 			    generation <= root->root_key.offset)
5125 				continue;
5126 			btrfs_node_key_to_cpu(eb, &key, slot);
5127 			ret = btrfs_comp_cpu_keys(&key,
5128 						  &wc->update_progress);
5129 			if (ret < 0)
5130 				continue;
5131 		} else {
5132 			if (wc->level == 1 &&
5133 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5134 				continue;
5135 		}
5136 reada:
5137 		btrfs_readahead_node_child(eb, slot);
5138 		nread++;
5139 	}
5140 	wc->reada_slot = slot;
5141 }
5142 
5143 /*
5144  * helper to process tree block while walking down the tree.
5145  *
5146  * when wc->stage == UPDATE_BACKREF, this function updates
5147  * back refs for pointers in the block.
5148  *
5149  * NOTE: return value 1 means we should stop walking down.
5150  */
5151 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5152 				   struct btrfs_root *root,
5153 				   struct btrfs_path *path,
5154 				   struct walk_control *wc, int lookup_info)
5155 {
5156 	struct btrfs_fs_info *fs_info = root->fs_info;
5157 	int level = wc->level;
5158 	struct extent_buffer *eb = path->nodes[level];
5159 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5160 	int ret;
5161 
5162 	if (wc->stage == UPDATE_BACKREF &&
5163 	    btrfs_header_owner(eb) != root->root_key.objectid)
5164 		return 1;
5165 
5166 	/*
5167 	 * when reference count of tree block is 1, it won't increase
5168 	 * again. once full backref flag is set, we never clear it.
5169 	 */
5170 	if (lookup_info &&
5171 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5172 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5173 		BUG_ON(!path->locks[level]);
5174 		ret = btrfs_lookup_extent_info(trans, fs_info,
5175 					       eb->start, level, 1,
5176 					       &wc->refs[level],
5177 					       &wc->flags[level]);
5178 		BUG_ON(ret == -ENOMEM);
5179 		if (ret)
5180 			return ret;
5181 		BUG_ON(wc->refs[level] == 0);
5182 	}
5183 
5184 	if (wc->stage == DROP_REFERENCE) {
5185 		if (wc->refs[level] > 1)
5186 			return 1;
5187 
5188 		if (path->locks[level] && !wc->keep_locks) {
5189 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5190 			path->locks[level] = 0;
5191 		}
5192 		return 0;
5193 	}
5194 
5195 	/* wc->stage == UPDATE_BACKREF */
5196 	if (!(wc->flags[level] & flag)) {
5197 		BUG_ON(!path->locks[level]);
5198 		ret = btrfs_inc_ref(trans, root, eb, 1);
5199 		BUG_ON(ret); /* -ENOMEM */
5200 		ret = btrfs_dec_ref(trans, root, eb, 0);
5201 		BUG_ON(ret); /* -ENOMEM */
5202 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5203 						  btrfs_header_level(eb));
5204 		BUG_ON(ret); /* -ENOMEM */
5205 		wc->flags[level] |= flag;
5206 	}
5207 
5208 	/*
5209 	 * the block is shared by multiple trees, so it's not good to
5210 	 * keep the tree lock
5211 	 */
5212 	if (path->locks[level] && level > 0) {
5213 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5214 		path->locks[level] = 0;
5215 	}
5216 	return 0;
5217 }
5218 
5219 /*
5220  * This is used to verify a ref exists for this root to deal with a bug where we
5221  * would have a drop_progress key that hadn't been updated properly.
5222  */
5223 static int check_ref_exists(struct btrfs_trans_handle *trans,
5224 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5225 			    int level)
5226 {
5227 	struct btrfs_path *path;
5228 	struct btrfs_extent_inline_ref *iref;
5229 	int ret;
5230 
5231 	path = btrfs_alloc_path();
5232 	if (!path)
5233 		return -ENOMEM;
5234 
5235 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5236 				    root->fs_info->nodesize, parent,
5237 				    root->root_key.objectid, level, 0);
5238 	btrfs_free_path(path);
5239 	if (ret == -ENOENT)
5240 		return 0;
5241 	if (ret < 0)
5242 		return ret;
5243 	return 1;
5244 }
5245 
5246 /*
5247  * helper to process tree block pointer.
5248  *
5249  * when wc->stage == DROP_REFERENCE, this function checks
5250  * reference count of the block pointed to. if the block
5251  * is shared and we need update back refs for the subtree
5252  * rooted at the block, this function changes wc->stage to
5253  * UPDATE_BACKREF. if the block is shared and there is no
5254  * need to update back, this function drops the reference
5255  * to the block.
5256  *
5257  * NOTE: return value 1 means we should stop walking down.
5258  */
5259 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5260 				 struct btrfs_root *root,
5261 				 struct btrfs_path *path,
5262 				 struct walk_control *wc, int *lookup_info)
5263 {
5264 	struct btrfs_fs_info *fs_info = root->fs_info;
5265 	u64 bytenr;
5266 	u64 generation;
5267 	u64 parent;
5268 	struct btrfs_tree_parent_check check = { 0 };
5269 	struct btrfs_key key;
5270 	struct btrfs_ref ref = { 0 };
5271 	struct extent_buffer *next;
5272 	int level = wc->level;
5273 	int reada = 0;
5274 	int ret = 0;
5275 	bool need_account = false;
5276 
5277 	generation = btrfs_node_ptr_generation(path->nodes[level],
5278 					       path->slots[level]);
5279 	/*
5280 	 * if the lower level block was created before the snapshot
5281 	 * was created, we know there is no need to update back refs
5282 	 * for the subtree
5283 	 */
5284 	if (wc->stage == UPDATE_BACKREF &&
5285 	    generation <= root->root_key.offset) {
5286 		*lookup_info = 1;
5287 		return 1;
5288 	}
5289 
5290 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5291 
5292 	check.level = level - 1;
5293 	check.transid = generation;
5294 	check.owner_root = root->root_key.objectid;
5295 	check.has_first_key = true;
5296 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5297 			      path->slots[level]);
5298 
5299 	next = find_extent_buffer(fs_info, bytenr);
5300 	if (!next) {
5301 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5302 				root->root_key.objectid, level - 1);
5303 		if (IS_ERR(next))
5304 			return PTR_ERR(next);
5305 		reada = 1;
5306 	}
5307 	btrfs_tree_lock(next);
5308 
5309 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5310 				       &wc->refs[level - 1],
5311 				       &wc->flags[level - 1]);
5312 	if (ret < 0)
5313 		goto out_unlock;
5314 
5315 	if (unlikely(wc->refs[level - 1] == 0)) {
5316 		btrfs_err(fs_info, "Missing references.");
5317 		ret = -EIO;
5318 		goto out_unlock;
5319 	}
5320 	*lookup_info = 0;
5321 
5322 	if (wc->stage == DROP_REFERENCE) {
5323 		if (wc->refs[level - 1] > 1) {
5324 			need_account = true;
5325 			if (level == 1 &&
5326 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5327 				goto skip;
5328 
5329 			if (!wc->update_ref ||
5330 			    generation <= root->root_key.offset)
5331 				goto skip;
5332 
5333 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5334 					      path->slots[level]);
5335 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5336 			if (ret < 0)
5337 				goto skip;
5338 
5339 			wc->stage = UPDATE_BACKREF;
5340 			wc->shared_level = level - 1;
5341 		}
5342 	} else {
5343 		if (level == 1 &&
5344 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5345 			goto skip;
5346 	}
5347 
5348 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5349 		btrfs_tree_unlock(next);
5350 		free_extent_buffer(next);
5351 		next = NULL;
5352 		*lookup_info = 1;
5353 	}
5354 
5355 	if (!next) {
5356 		if (reada && level == 1)
5357 			reada_walk_down(trans, root, wc, path);
5358 		next = read_tree_block(fs_info, bytenr, &check);
5359 		if (IS_ERR(next)) {
5360 			return PTR_ERR(next);
5361 		} else if (!extent_buffer_uptodate(next)) {
5362 			free_extent_buffer(next);
5363 			return -EIO;
5364 		}
5365 		btrfs_tree_lock(next);
5366 	}
5367 
5368 	level--;
5369 	ASSERT(level == btrfs_header_level(next));
5370 	if (level != btrfs_header_level(next)) {
5371 		btrfs_err(root->fs_info, "mismatched level");
5372 		ret = -EIO;
5373 		goto out_unlock;
5374 	}
5375 	path->nodes[level] = next;
5376 	path->slots[level] = 0;
5377 	path->locks[level] = BTRFS_WRITE_LOCK;
5378 	wc->level = level;
5379 	if (wc->level == 1)
5380 		wc->reada_slot = 0;
5381 	return 0;
5382 skip:
5383 	wc->refs[level - 1] = 0;
5384 	wc->flags[level - 1] = 0;
5385 	if (wc->stage == DROP_REFERENCE) {
5386 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5387 			parent = path->nodes[level]->start;
5388 		} else {
5389 			ASSERT(root->root_key.objectid ==
5390 			       btrfs_header_owner(path->nodes[level]));
5391 			if (root->root_key.objectid !=
5392 			    btrfs_header_owner(path->nodes[level])) {
5393 				btrfs_err(root->fs_info,
5394 						"mismatched block owner");
5395 				ret = -EIO;
5396 				goto out_unlock;
5397 			}
5398 			parent = 0;
5399 		}
5400 
5401 		/*
5402 		 * If we had a drop_progress we need to verify the refs are set
5403 		 * as expected.  If we find our ref then we know that from here
5404 		 * on out everything should be correct, and we can clear the
5405 		 * ->restarted flag.
5406 		 */
5407 		if (wc->restarted) {
5408 			ret = check_ref_exists(trans, root, bytenr, parent,
5409 					       level - 1);
5410 			if (ret < 0)
5411 				goto out_unlock;
5412 			if (ret == 0)
5413 				goto no_delete;
5414 			ret = 0;
5415 			wc->restarted = 0;
5416 		}
5417 
5418 		/*
5419 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5420 		 * already accounted them at merge time (replace_path),
5421 		 * thus we could skip expensive subtree trace here.
5422 		 */
5423 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5424 		    need_account) {
5425 			ret = btrfs_qgroup_trace_subtree(trans, next,
5426 							 generation, level - 1);
5427 			if (ret) {
5428 				btrfs_err_rl(fs_info,
5429 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5430 					     ret);
5431 			}
5432 		}
5433 
5434 		/*
5435 		 * We need to update the next key in our walk control so we can
5436 		 * update the drop_progress key accordingly.  We don't care if
5437 		 * find_next_key doesn't find a key because that means we're at
5438 		 * the end and are going to clean up now.
5439 		 */
5440 		wc->drop_level = level;
5441 		find_next_key(path, level, &wc->drop_progress);
5442 
5443 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5444 				       fs_info->nodesize, parent);
5445 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5446 				    0, false);
5447 		ret = btrfs_free_extent(trans, &ref);
5448 		if (ret)
5449 			goto out_unlock;
5450 	}
5451 no_delete:
5452 	*lookup_info = 1;
5453 	ret = 1;
5454 
5455 out_unlock:
5456 	btrfs_tree_unlock(next);
5457 	free_extent_buffer(next);
5458 
5459 	return ret;
5460 }
5461 
5462 /*
5463  * helper to process tree block while walking up the tree.
5464  *
5465  * when wc->stage == DROP_REFERENCE, this function drops
5466  * reference count on the block.
5467  *
5468  * when wc->stage == UPDATE_BACKREF, this function changes
5469  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5470  * to UPDATE_BACKREF previously while processing the block.
5471  *
5472  * NOTE: return value 1 means we should stop walking up.
5473  */
5474 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5475 				 struct btrfs_root *root,
5476 				 struct btrfs_path *path,
5477 				 struct walk_control *wc)
5478 {
5479 	struct btrfs_fs_info *fs_info = root->fs_info;
5480 	int ret;
5481 	int level = wc->level;
5482 	struct extent_buffer *eb = path->nodes[level];
5483 	u64 parent = 0;
5484 
5485 	if (wc->stage == UPDATE_BACKREF) {
5486 		BUG_ON(wc->shared_level < level);
5487 		if (level < wc->shared_level)
5488 			goto out;
5489 
5490 		ret = find_next_key(path, level + 1, &wc->update_progress);
5491 		if (ret > 0)
5492 			wc->update_ref = 0;
5493 
5494 		wc->stage = DROP_REFERENCE;
5495 		wc->shared_level = -1;
5496 		path->slots[level] = 0;
5497 
5498 		/*
5499 		 * check reference count again if the block isn't locked.
5500 		 * we should start walking down the tree again if reference
5501 		 * count is one.
5502 		 */
5503 		if (!path->locks[level]) {
5504 			BUG_ON(level == 0);
5505 			btrfs_tree_lock(eb);
5506 			path->locks[level] = BTRFS_WRITE_LOCK;
5507 
5508 			ret = btrfs_lookup_extent_info(trans, fs_info,
5509 						       eb->start, level, 1,
5510 						       &wc->refs[level],
5511 						       &wc->flags[level]);
5512 			if (ret < 0) {
5513 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5514 				path->locks[level] = 0;
5515 				return ret;
5516 			}
5517 			BUG_ON(wc->refs[level] == 0);
5518 			if (wc->refs[level] == 1) {
5519 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5520 				path->locks[level] = 0;
5521 				return 1;
5522 			}
5523 		}
5524 	}
5525 
5526 	/* wc->stage == DROP_REFERENCE */
5527 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5528 
5529 	if (wc->refs[level] == 1) {
5530 		if (level == 0) {
5531 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5532 				ret = btrfs_dec_ref(trans, root, eb, 1);
5533 			else
5534 				ret = btrfs_dec_ref(trans, root, eb, 0);
5535 			BUG_ON(ret); /* -ENOMEM */
5536 			if (is_fstree(root->root_key.objectid)) {
5537 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5538 				if (ret) {
5539 					btrfs_err_rl(fs_info,
5540 	"error %d accounting leaf items, quota is out of sync, rescan required",
5541 					     ret);
5542 				}
5543 			}
5544 		}
5545 		/* make block locked assertion in btrfs_clean_tree_block happy */
5546 		if (!path->locks[level] &&
5547 		    btrfs_header_generation(eb) == trans->transid) {
5548 			btrfs_tree_lock(eb);
5549 			path->locks[level] = BTRFS_WRITE_LOCK;
5550 		}
5551 		btrfs_clean_tree_block(eb);
5552 	}
5553 
5554 	if (eb == root->node) {
5555 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5556 			parent = eb->start;
5557 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5558 			goto owner_mismatch;
5559 	} else {
5560 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5561 			parent = path->nodes[level + 1]->start;
5562 		else if (root->root_key.objectid !=
5563 			 btrfs_header_owner(path->nodes[level + 1]))
5564 			goto owner_mismatch;
5565 	}
5566 
5567 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5568 			      wc->refs[level] == 1);
5569 out:
5570 	wc->refs[level] = 0;
5571 	wc->flags[level] = 0;
5572 	return 0;
5573 
5574 owner_mismatch:
5575 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5576 		     btrfs_header_owner(eb), root->root_key.objectid);
5577 	return -EUCLEAN;
5578 }
5579 
5580 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5581 				   struct btrfs_root *root,
5582 				   struct btrfs_path *path,
5583 				   struct walk_control *wc)
5584 {
5585 	int level = wc->level;
5586 	int lookup_info = 1;
5587 	int ret;
5588 
5589 	while (level >= 0) {
5590 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5591 		if (ret > 0)
5592 			break;
5593 
5594 		if (level == 0)
5595 			break;
5596 
5597 		if (path->slots[level] >=
5598 		    btrfs_header_nritems(path->nodes[level]))
5599 			break;
5600 
5601 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5602 		if (ret > 0) {
5603 			path->slots[level]++;
5604 			continue;
5605 		} else if (ret < 0)
5606 			return ret;
5607 		level = wc->level;
5608 	}
5609 	return 0;
5610 }
5611 
5612 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5613 				 struct btrfs_root *root,
5614 				 struct btrfs_path *path,
5615 				 struct walk_control *wc, int max_level)
5616 {
5617 	int level = wc->level;
5618 	int ret;
5619 
5620 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5621 	while (level < max_level && path->nodes[level]) {
5622 		wc->level = level;
5623 		if (path->slots[level] + 1 <
5624 		    btrfs_header_nritems(path->nodes[level])) {
5625 			path->slots[level]++;
5626 			return 0;
5627 		} else {
5628 			ret = walk_up_proc(trans, root, path, wc);
5629 			if (ret > 0)
5630 				return 0;
5631 			if (ret < 0)
5632 				return ret;
5633 
5634 			if (path->locks[level]) {
5635 				btrfs_tree_unlock_rw(path->nodes[level],
5636 						     path->locks[level]);
5637 				path->locks[level] = 0;
5638 			}
5639 			free_extent_buffer(path->nodes[level]);
5640 			path->nodes[level] = NULL;
5641 			level++;
5642 		}
5643 	}
5644 	return 1;
5645 }
5646 
5647 /*
5648  * drop a subvolume tree.
5649  *
5650  * this function traverses the tree freeing any blocks that only
5651  * referenced by the tree.
5652  *
5653  * when a shared tree block is found. this function decreases its
5654  * reference count by one. if update_ref is true, this function
5655  * also make sure backrefs for the shared block and all lower level
5656  * blocks are properly updated.
5657  *
5658  * If called with for_reloc == 0, may exit early with -EAGAIN
5659  */
5660 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5661 {
5662 	const bool is_reloc_root = (root->root_key.objectid ==
5663 				    BTRFS_TREE_RELOC_OBJECTID);
5664 	struct btrfs_fs_info *fs_info = root->fs_info;
5665 	struct btrfs_path *path;
5666 	struct btrfs_trans_handle *trans;
5667 	struct btrfs_root *tree_root = fs_info->tree_root;
5668 	struct btrfs_root_item *root_item = &root->root_item;
5669 	struct walk_control *wc;
5670 	struct btrfs_key key;
5671 	int err = 0;
5672 	int ret;
5673 	int level;
5674 	bool root_dropped = false;
5675 	bool unfinished_drop = false;
5676 
5677 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5678 
5679 	path = btrfs_alloc_path();
5680 	if (!path) {
5681 		err = -ENOMEM;
5682 		goto out;
5683 	}
5684 
5685 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5686 	if (!wc) {
5687 		btrfs_free_path(path);
5688 		err = -ENOMEM;
5689 		goto out;
5690 	}
5691 
5692 	/*
5693 	 * Use join to avoid potential EINTR from transaction start. See
5694 	 * wait_reserve_ticket and the whole reservation callchain.
5695 	 */
5696 	if (for_reloc)
5697 		trans = btrfs_join_transaction(tree_root);
5698 	else
5699 		trans = btrfs_start_transaction(tree_root, 0);
5700 	if (IS_ERR(trans)) {
5701 		err = PTR_ERR(trans);
5702 		goto out_free;
5703 	}
5704 
5705 	err = btrfs_run_delayed_items(trans);
5706 	if (err)
5707 		goto out_end_trans;
5708 
5709 	/*
5710 	 * This will help us catch people modifying the fs tree while we're
5711 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5712 	 * dropped as we unlock the root node and parent nodes as we walk down
5713 	 * the tree, assuming nothing will change.  If something does change
5714 	 * then we'll have stale information and drop references to blocks we've
5715 	 * already dropped.
5716 	 */
5717 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5718 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5719 
5720 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5721 		level = btrfs_header_level(root->node);
5722 		path->nodes[level] = btrfs_lock_root_node(root);
5723 		path->slots[level] = 0;
5724 		path->locks[level] = BTRFS_WRITE_LOCK;
5725 		memset(&wc->update_progress, 0,
5726 		       sizeof(wc->update_progress));
5727 	} else {
5728 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5729 		memcpy(&wc->update_progress, &key,
5730 		       sizeof(wc->update_progress));
5731 
5732 		level = btrfs_root_drop_level(root_item);
5733 		BUG_ON(level == 0);
5734 		path->lowest_level = level;
5735 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5736 		path->lowest_level = 0;
5737 		if (ret < 0) {
5738 			err = ret;
5739 			goto out_end_trans;
5740 		}
5741 		WARN_ON(ret > 0);
5742 
5743 		/*
5744 		 * unlock our path, this is safe because only this
5745 		 * function is allowed to delete this snapshot
5746 		 */
5747 		btrfs_unlock_up_safe(path, 0);
5748 
5749 		level = btrfs_header_level(root->node);
5750 		while (1) {
5751 			btrfs_tree_lock(path->nodes[level]);
5752 			path->locks[level] = BTRFS_WRITE_LOCK;
5753 
5754 			ret = btrfs_lookup_extent_info(trans, fs_info,
5755 						path->nodes[level]->start,
5756 						level, 1, &wc->refs[level],
5757 						&wc->flags[level]);
5758 			if (ret < 0) {
5759 				err = ret;
5760 				goto out_end_trans;
5761 			}
5762 			BUG_ON(wc->refs[level] == 0);
5763 
5764 			if (level == btrfs_root_drop_level(root_item))
5765 				break;
5766 
5767 			btrfs_tree_unlock(path->nodes[level]);
5768 			path->locks[level] = 0;
5769 			WARN_ON(wc->refs[level] != 1);
5770 			level--;
5771 		}
5772 	}
5773 
5774 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5775 	wc->level = level;
5776 	wc->shared_level = -1;
5777 	wc->stage = DROP_REFERENCE;
5778 	wc->update_ref = update_ref;
5779 	wc->keep_locks = 0;
5780 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5781 
5782 	while (1) {
5783 
5784 		ret = walk_down_tree(trans, root, path, wc);
5785 		if (ret < 0) {
5786 			err = ret;
5787 			break;
5788 		}
5789 
5790 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5791 		if (ret < 0) {
5792 			err = ret;
5793 			break;
5794 		}
5795 
5796 		if (ret > 0) {
5797 			BUG_ON(wc->stage != DROP_REFERENCE);
5798 			break;
5799 		}
5800 
5801 		if (wc->stage == DROP_REFERENCE) {
5802 			wc->drop_level = wc->level;
5803 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5804 					      &wc->drop_progress,
5805 					      path->slots[wc->drop_level]);
5806 		}
5807 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5808 				      &wc->drop_progress);
5809 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5810 
5811 		BUG_ON(wc->level == 0);
5812 		if (btrfs_should_end_transaction(trans) ||
5813 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5814 			ret = btrfs_update_root(trans, tree_root,
5815 						&root->root_key,
5816 						root_item);
5817 			if (ret) {
5818 				btrfs_abort_transaction(trans, ret);
5819 				err = ret;
5820 				goto out_end_trans;
5821 			}
5822 
5823 			if (!is_reloc_root)
5824 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5825 
5826 			btrfs_end_transaction_throttle(trans);
5827 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5828 				btrfs_debug(fs_info,
5829 					    "drop snapshot early exit");
5830 				err = -EAGAIN;
5831 				goto out_free;
5832 			}
5833 
5834 		       /*
5835 			* Use join to avoid potential EINTR from transaction
5836 			* start. See wait_reserve_ticket and the whole
5837 			* reservation callchain.
5838 			*/
5839 			if (for_reloc)
5840 				trans = btrfs_join_transaction(tree_root);
5841 			else
5842 				trans = btrfs_start_transaction(tree_root, 0);
5843 			if (IS_ERR(trans)) {
5844 				err = PTR_ERR(trans);
5845 				goto out_free;
5846 			}
5847 		}
5848 	}
5849 	btrfs_release_path(path);
5850 	if (err)
5851 		goto out_end_trans;
5852 
5853 	ret = btrfs_del_root(trans, &root->root_key);
5854 	if (ret) {
5855 		btrfs_abort_transaction(trans, ret);
5856 		err = ret;
5857 		goto out_end_trans;
5858 	}
5859 
5860 	if (!is_reloc_root) {
5861 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5862 				      NULL, NULL);
5863 		if (ret < 0) {
5864 			btrfs_abort_transaction(trans, ret);
5865 			err = ret;
5866 			goto out_end_trans;
5867 		} else if (ret > 0) {
5868 			/* if we fail to delete the orphan item this time
5869 			 * around, it'll get picked up the next time.
5870 			 *
5871 			 * The most common failure here is just -ENOENT.
5872 			 */
5873 			btrfs_del_orphan_item(trans, tree_root,
5874 					      root->root_key.objectid);
5875 		}
5876 	}
5877 
5878 	/*
5879 	 * This subvolume is going to be completely dropped, and won't be
5880 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5881 	 * commit transaction time.  So free it here manually.
5882 	 */
5883 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5884 	btrfs_qgroup_free_meta_all_pertrans(root);
5885 
5886 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5887 		btrfs_add_dropped_root(trans, root);
5888 	else
5889 		btrfs_put_root(root);
5890 	root_dropped = true;
5891 out_end_trans:
5892 	if (!is_reloc_root)
5893 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5894 
5895 	btrfs_end_transaction_throttle(trans);
5896 out_free:
5897 	kfree(wc);
5898 	btrfs_free_path(path);
5899 out:
5900 	/*
5901 	 * We were an unfinished drop root, check to see if there are any
5902 	 * pending, and if not clear and wake up any waiters.
5903 	 */
5904 	if (!err && unfinished_drop)
5905 		btrfs_maybe_wake_unfinished_drop(fs_info);
5906 
5907 	/*
5908 	 * So if we need to stop dropping the snapshot for whatever reason we
5909 	 * need to make sure to add it back to the dead root list so that we
5910 	 * keep trying to do the work later.  This also cleans up roots if we
5911 	 * don't have it in the radix (like when we recover after a power fail
5912 	 * or unmount) so we don't leak memory.
5913 	 */
5914 	if (!for_reloc && !root_dropped)
5915 		btrfs_add_dead_root(root);
5916 	return err;
5917 }
5918 
5919 /*
5920  * drop subtree rooted at tree block 'node'.
5921  *
5922  * NOTE: this function will unlock and release tree block 'node'
5923  * only used by relocation code
5924  */
5925 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5926 			struct btrfs_root *root,
5927 			struct extent_buffer *node,
5928 			struct extent_buffer *parent)
5929 {
5930 	struct btrfs_fs_info *fs_info = root->fs_info;
5931 	struct btrfs_path *path;
5932 	struct walk_control *wc;
5933 	int level;
5934 	int parent_level;
5935 	int ret = 0;
5936 	int wret;
5937 
5938 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5939 
5940 	path = btrfs_alloc_path();
5941 	if (!path)
5942 		return -ENOMEM;
5943 
5944 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5945 	if (!wc) {
5946 		btrfs_free_path(path);
5947 		return -ENOMEM;
5948 	}
5949 
5950 	btrfs_assert_tree_write_locked(parent);
5951 	parent_level = btrfs_header_level(parent);
5952 	atomic_inc(&parent->refs);
5953 	path->nodes[parent_level] = parent;
5954 	path->slots[parent_level] = btrfs_header_nritems(parent);
5955 
5956 	btrfs_assert_tree_write_locked(node);
5957 	level = btrfs_header_level(node);
5958 	path->nodes[level] = node;
5959 	path->slots[level] = 0;
5960 	path->locks[level] = BTRFS_WRITE_LOCK;
5961 
5962 	wc->refs[parent_level] = 1;
5963 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5964 	wc->level = level;
5965 	wc->shared_level = -1;
5966 	wc->stage = DROP_REFERENCE;
5967 	wc->update_ref = 0;
5968 	wc->keep_locks = 1;
5969 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5970 
5971 	while (1) {
5972 		wret = walk_down_tree(trans, root, path, wc);
5973 		if (wret < 0) {
5974 			ret = wret;
5975 			break;
5976 		}
5977 
5978 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5979 		if (wret < 0)
5980 			ret = wret;
5981 		if (wret != 0)
5982 			break;
5983 	}
5984 
5985 	kfree(wc);
5986 	btrfs_free_path(path);
5987 	return ret;
5988 }
5989 
5990 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5991 				   u64 start, u64 end)
5992 {
5993 	return unpin_extent_range(fs_info, start, end, false);
5994 }
5995 
5996 /*
5997  * It used to be that old block groups would be left around forever.
5998  * Iterating over them would be enough to trim unused space.  Since we
5999  * now automatically remove them, we also need to iterate over unallocated
6000  * space.
6001  *
6002  * We don't want a transaction for this since the discard may take a
6003  * substantial amount of time.  We don't require that a transaction be
6004  * running, but we do need to take a running transaction into account
6005  * to ensure that we're not discarding chunks that were released or
6006  * allocated in the current transaction.
6007  *
6008  * Holding the chunks lock will prevent other threads from allocating
6009  * or releasing chunks, but it won't prevent a running transaction
6010  * from committing and releasing the memory that the pending chunks
6011  * list head uses.  For that, we need to take a reference to the
6012  * transaction and hold the commit root sem.  We only need to hold
6013  * it while performing the free space search since we have already
6014  * held back allocations.
6015  */
6016 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6017 {
6018 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6019 	int ret;
6020 
6021 	*trimmed = 0;
6022 
6023 	/* Discard not supported = nothing to do. */
6024 	if (!bdev_max_discard_sectors(device->bdev))
6025 		return 0;
6026 
6027 	/* Not writable = nothing to do. */
6028 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6029 		return 0;
6030 
6031 	/* No free space = nothing to do. */
6032 	if (device->total_bytes <= device->bytes_used)
6033 		return 0;
6034 
6035 	ret = 0;
6036 
6037 	while (1) {
6038 		struct btrfs_fs_info *fs_info = device->fs_info;
6039 		u64 bytes;
6040 
6041 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6042 		if (ret)
6043 			break;
6044 
6045 		find_first_clear_extent_bit(&device->alloc_state, start,
6046 					    &start, &end,
6047 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6048 
6049 		/* Check if there are any CHUNK_* bits left */
6050 		if (start > device->total_bytes) {
6051 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6052 			btrfs_warn_in_rcu(fs_info,
6053 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6054 					  start, end - start + 1,
6055 					  btrfs_dev_name(device),
6056 					  device->total_bytes);
6057 			mutex_unlock(&fs_info->chunk_mutex);
6058 			ret = 0;
6059 			break;
6060 		}
6061 
6062 		/* Ensure we skip the reserved space on each device. */
6063 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6064 
6065 		/*
6066 		 * If find_first_clear_extent_bit find a range that spans the
6067 		 * end of the device it will set end to -1, in this case it's up
6068 		 * to the caller to trim the value to the size of the device.
6069 		 */
6070 		end = min(end, device->total_bytes - 1);
6071 
6072 		len = end - start + 1;
6073 
6074 		/* We didn't find any extents */
6075 		if (!len) {
6076 			mutex_unlock(&fs_info->chunk_mutex);
6077 			ret = 0;
6078 			break;
6079 		}
6080 
6081 		ret = btrfs_issue_discard(device->bdev, start, len,
6082 					  &bytes);
6083 		if (!ret)
6084 			set_extent_bits(&device->alloc_state, start,
6085 					start + bytes - 1,
6086 					CHUNK_TRIMMED);
6087 		mutex_unlock(&fs_info->chunk_mutex);
6088 
6089 		if (ret)
6090 			break;
6091 
6092 		start += len;
6093 		*trimmed += bytes;
6094 
6095 		if (fatal_signal_pending(current)) {
6096 			ret = -ERESTARTSYS;
6097 			break;
6098 		}
6099 
6100 		cond_resched();
6101 	}
6102 
6103 	return ret;
6104 }
6105 
6106 /*
6107  * Trim the whole filesystem by:
6108  * 1) trimming the free space in each block group
6109  * 2) trimming the unallocated space on each device
6110  *
6111  * This will also continue trimming even if a block group or device encounters
6112  * an error.  The return value will be the last error, or 0 if nothing bad
6113  * happens.
6114  */
6115 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6116 {
6117 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6118 	struct btrfs_block_group *cache = NULL;
6119 	struct btrfs_device *device;
6120 	u64 group_trimmed;
6121 	u64 range_end = U64_MAX;
6122 	u64 start;
6123 	u64 end;
6124 	u64 trimmed = 0;
6125 	u64 bg_failed = 0;
6126 	u64 dev_failed = 0;
6127 	int bg_ret = 0;
6128 	int dev_ret = 0;
6129 	int ret = 0;
6130 
6131 	if (range->start == U64_MAX)
6132 		return -EINVAL;
6133 
6134 	/*
6135 	 * Check range overflow if range->len is set.
6136 	 * The default range->len is U64_MAX.
6137 	 */
6138 	if (range->len != U64_MAX &&
6139 	    check_add_overflow(range->start, range->len, &range_end))
6140 		return -EINVAL;
6141 
6142 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6143 	for (; cache; cache = btrfs_next_block_group(cache)) {
6144 		if (cache->start >= range_end) {
6145 			btrfs_put_block_group(cache);
6146 			break;
6147 		}
6148 
6149 		start = max(range->start, cache->start);
6150 		end = min(range_end, cache->start + cache->length);
6151 
6152 		if (end - start >= range->minlen) {
6153 			if (!btrfs_block_group_done(cache)) {
6154 				ret = btrfs_cache_block_group(cache, true);
6155 				if (ret) {
6156 					bg_failed++;
6157 					bg_ret = ret;
6158 					continue;
6159 				}
6160 			}
6161 			ret = btrfs_trim_block_group(cache,
6162 						     &group_trimmed,
6163 						     start,
6164 						     end,
6165 						     range->minlen);
6166 
6167 			trimmed += group_trimmed;
6168 			if (ret) {
6169 				bg_failed++;
6170 				bg_ret = ret;
6171 				continue;
6172 			}
6173 		}
6174 	}
6175 
6176 	if (bg_failed)
6177 		btrfs_warn(fs_info,
6178 			"failed to trim %llu block group(s), last error %d",
6179 			bg_failed, bg_ret);
6180 
6181 	mutex_lock(&fs_devices->device_list_mutex);
6182 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6183 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6184 			continue;
6185 
6186 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6187 		if (ret) {
6188 			dev_failed++;
6189 			dev_ret = ret;
6190 			break;
6191 		}
6192 
6193 		trimmed += group_trimmed;
6194 	}
6195 	mutex_unlock(&fs_devices->device_list_mutex);
6196 
6197 	if (dev_failed)
6198 		btrfs_warn(fs_info,
6199 			"failed to trim %llu device(s), last error %d",
6200 			dev_failed, dev_ret);
6201 	range->len = trimmed;
6202 	if (bg_ret)
6203 		return bg_ret;
6204 	return dev_ret;
6205 }
6206