xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision faf7f3fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 			       struct btrfs_delayed_ref_node *node, u64 parent,
43 			       u64 root_objectid, u64 owner_objectid,
44 			       u64 owner_offset, int refs_to_drop,
45 			       struct btrfs_delayed_extent_op *extra_op);
46 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
47 				    struct extent_buffer *leaf,
48 				    struct btrfs_extent_item *ei);
49 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
50 				      u64 parent, u64 root_objectid,
51 				      u64 flags, u64 owner, u64 offset,
52 				      struct btrfs_key *ins, int ref_mod);
53 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
54 				     struct btrfs_delayed_ref_node *node,
55 				     struct btrfs_delayed_extent_op *extent_op);
56 static int find_next_key(struct btrfs_path *path, int level,
57 			 struct btrfs_key *key);
58 
59 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
60 {
61 	return (cache->flags & bits) == bits;
62 }
63 
64 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
65 			      u64 start, u64 num_bytes)
66 {
67 	u64 end = start + num_bytes - 1;
68 	set_extent_bits(&fs_info->excluded_extents, start, end,
69 			EXTENT_UPTODATE);
70 	return 0;
71 }
72 
73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->excluded_extents, start, end,
82 			  EXTENT_UPTODATE);
83 }
84 
85 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
86 {
87 	if (ref->type == BTRFS_REF_METADATA) {
88 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
89 			return BTRFS_BLOCK_GROUP_SYSTEM;
90 		else
91 			return BTRFS_BLOCK_GROUP_METADATA;
92 	}
93 	return BTRFS_BLOCK_GROUP_DATA;
94 }
95 
96 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
97 			     struct btrfs_ref *ref)
98 {
99 	struct btrfs_space_info *space_info;
100 	u64 flags = generic_ref_to_space_flags(ref);
101 
102 	space_info = btrfs_find_space_info(fs_info, flags);
103 	ASSERT(space_info);
104 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
105 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
106 }
107 
108 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
109 			     struct btrfs_ref *ref)
110 {
111 	struct btrfs_space_info *space_info;
112 	u64 flags = generic_ref_to_space_flags(ref);
113 
114 	space_info = btrfs_find_space_info(fs_info, flags);
115 	ASSERT(space_info);
116 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
117 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
118 }
119 
120 /* simple helper to search for an existing data extent at a given offset */
121 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
122 {
123 	int ret;
124 	struct btrfs_key key;
125 	struct btrfs_path *path;
126 
127 	path = btrfs_alloc_path();
128 	if (!path)
129 		return -ENOMEM;
130 
131 	key.objectid = start;
132 	key.offset = len;
133 	key.type = BTRFS_EXTENT_ITEM_KEY;
134 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
135 	btrfs_free_path(path);
136 	return ret;
137 }
138 
139 /*
140  * helper function to lookup reference count and flags of a tree block.
141  *
142  * the head node for delayed ref is used to store the sum of all the
143  * reference count modifications queued up in the rbtree. the head
144  * node may also store the extent flags to set. This way you can check
145  * to see what the reference count and extent flags would be if all of
146  * the delayed refs are not processed.
147  */
148 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
149 			     struct btrfs_fs_info *fs_info, u64 bytenr,
150 			     u64 offset, int metadata, u64 *refs, u64 *flags)
151 {
152 	struct btrfs_delayed_ref_head *head;
153 	struct btrfs_delayed_ref_root *delayed_refs;
154 	struct btrfs_path *path;
155 	struct btrfs_extent_item *ei;
156 	struct extent_buffer *leaf;
157 	struct btrfs_key key;
158 	u32 item_size;
159 	u64 num_refs;
160 	u64 extent_flags;
161 	int ret;
162 
163 	/*
164 	 * If we don't have skinny metadata, don't bother doing anything
165 	 * different
166 	 */
167 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
168 		offset = fs_info->nodesize;
169 		metadata = 0;
170 	}
171 
172 	path = btrfs_alloc_path();
173 	if (!path)
174 		return -ENOMEM;
175 
176 	if (!trans) {
177 		path->skip_locking = 1;
178 		path->search_commit_root = 1;
179 	}
180 
181 search_again:
182 	key.objectid = bytenr;
183 	key.offset = offset;
184 	if (metadata)
185 		key.type = BTRFS_METADATA_ITEM_KEY;
186 	else
187 		key.type = BTRFS_EXTENT_ITEM_KEY;
188 
189 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
190 	if (ret < 0)
191 		goto out_free;
192 
193 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
194 		if (path->slots[0]) {
195 			path->slots[0]--;
196 			btrfs_item_key_to_cpu(path->nodes[0], &key,
197 					      path->slots[0]);
198 			if (key.objectid == bytenr &&
199 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
200 			    key.offset == fs_info->nodesize)
201 				ret = 0;
202 		}
203 	}
204 
205 	if (ret == 0) {
206 		leaf = path->nodes[0];
207 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
208 		if (item_size >= sizeof(*ei)) {
209 			ei = btrfs_item_ptr(leaf, path->slots[0],
210 					    struct btrfs_extent_item);
211 			num_refs = btrfs_extent_refs(leaf, ei);
212 			extent_flags = btrfs_extent_flags(leaf, ei);
213 		} else {
214 			ret = -EINVAL;
215 			btrfs_print_v0_err(fs_info);
216 			if (trans)
217 				btrfs_abort_transaction(trans, ret);
218 			else
219 				btrfs_handle_fs_error(fs_info, ret, NULL);
220 
221 			goto out_free;
222 		}
223 
224 		BUG_ON(num_refs == 0);
225 	} else {
226 		num_refs = 0;
227 		extent_flags = 0;
228 		ret = 0;
229 	}
230 
231 	if (!trans)
232 		goto out;
233 
234 	delayed_refs = &trans->transaction->delayed_refs;
235 	spin_lock(&delayed_refs->lock);
236 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
237 	if (head) {
238 		if (!mutex_trylock(&head->mutex)) {
239 			refcount_inc(&head->refs);
240 			spin_unlock(&delayed_refs->lock);
241 
242 			btrfs_release_path(path);
243 
244 			/*
245 			 * Mutex was contended, block until it's released and try
246 			 * again
247 			 */
248 			mutex_lock(&head->mutex);
249 			mutex_unlock(&head->mutex);
250 			btrfs_put_delayed_ref_head(head);
251 			goto search_again;
252 		}
253 		spin_lock(&head->lock);
254 		if (head->extent_op && head->extent_op->update_flags)
255 			extent_flags |= head->extent_op->flags_to_set;
256 		else
257 			BUG_ON(num_refs == 0);
258 
259 		num_refs += head->ref_mod;
260 		spin_unlock(&head->lock);
261 		mutex_unlock(&head->mutex);
262 	}
263 	spin_unlock(&delayed_refs->lock);
264 out:
265 	WARN_ON(num_refs == 0);
266 	if (refs)
267 		*refs = num_refs;
268 	if (flags)
269 		*flags = extent_flags;
270 out_free:
271 	btrfs_free_path(path);
272 	return ret;
273 }
274 
275 /*
276  * Back reference rules.  Back refs have three main goals:
277  *
278  * 1) differentiate between all holders of references to an extent so that
279  *    when a reference is dropped we can make sure it was a valid reference
280  *    before freeing the extent.
281  *
282  * 2) Provide enough information to quickly find the holders of an extent
283  *    if we notice a given block is corrupted or bad.
284  *
285  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
286  *    maintenance.  This is actually the same as #2, but with a slightly
287  *    different use case.
288  *
289  * There are two kinds of back refs. The implicit back refs is optimized
290  * for pointers in non-shared tree blocks. For a given pointer in a block,
291  * back refs of this kind provide information about the block's owner tree
292  * and the pointer's key. These information allow us to find the block by
293  * b-tree searching. The full back refs is for pointers in tree blocks not
294  * referenced by their owner trees. The location of tree block is recorded
295  * in the back refs. Actually the full back refs is generic, and can be
296  * used in all cases the implicit back refs is used. The major shortcoming
297  * of the full back refs is its overhead. Every time a tree block gets
298  * COWed, we have to update back refs entry for all pointers in it.
299  *
300  * For a newly allocated tree block, we use implicit back refs for
301  * pointers in it. This means most tree related operations only involve
302  * implicit back refs. For a tree block created in old transaction, the
303  * only way to drop a reference to it is COW it. So we can detect the
304  * event that tree block loses its owner tree's reference and do the
305  * back refs conversion.
306  *
307  * When a tree block is COWed through a tree, there are four cases:
308  *
309  * The reference count of the block is one and the tree is the block's
310  * owner tree. Nothing to do in this case.
311  *
312  * The reference count of the block is one and the tree is not the
313  * block's owner tree. In this case, full back refs is used for pointers
314  * in the block. Remove these full back refs, add implicit back refs for
315  * every pointers in the new block.
316  *
317  * The reference count of the block is greater than one and the tree is
318  * the block's owner tree. In this case, implicit back refs is used for
319  * pointers in the block. Add full back refs for every pointers in the
320  * block, increase lower level extents' reference counts. The original
321  * implicit back refs are entailed to the new block.
322  *
323  * The reference count of the block is greater than one and the tree is
324  * not the block's owner tree. Add implicit back refs for every pointer in
325  * the new block, increase lower level extents' reference count.
326  *
327  * Back Reference Key composing:
328  *
329  * The key objectid corresponds to the first byte in the extent,
330  * The key type is used to differentiate between types of back refs.
331  * There are different meanings of the key offset for different types
332  * of back refs.
333  *
334  * File extents can be referenced by:
335  *
336  * - multiple snapshots, subvolumes, or different generations in one subvol
337  * - different files inside a single subvolume
338  * - different offsets inside a file (bookend extents in file.c)
339  *
340  * The extent ref structure for the implicit back refs has fields for:
341  *
342  * - Objectid of the subvolume root
343  * - objectid of the file holding the reference
344  * - original offset in the file
345  * - how many bookend extents
346  *
347  * The key offset for the implicit back refs is hash of the first
348  * three fields.
349  *
350  * The extent ref structure for the full back refs has field for:
351  *
352  * - number of pointers in the tree leaf
353  *
354  * The key offset for the implicit back refs is the first byte of
355  * the tree leaf
356  *
357  * When a file extent is allocated, The implicit back refs is used.
358  * the fields are filled in:
359  *
360  *     (root_key.objectid, inode objectid, offset in file, 1)
361  *
362  * When a file extent is removed file truncation, we find the
363  * corresponding implicit back refs and check the following fields:
364  *
365  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
366  *
367  * Btree extents can be referenced by:
368  *
369  * - Different subvolumes
370  *
371  * Both the implicit back refs and the full back refs for tree blocks
372  * only consist of key. The key offset for the implicit back refs is
373  * objectid of block's owner tree. The key offset for the full back refs
374  * is the first byte of parent block.
375  *
376  * When implicit back refs is used, information about the lowest key and
377  * level of the tree block are required. These information are stored in
378  * tree block info structure.
379  */
380 
381 /*
382  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
383  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
384  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385  */
386 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
387 				     struct btrfs_extent_inline_ref *iref,
388 				     enum btrfs_inline_ref_type is_data)
389 {
390 	int type = btrfs_extent_inline_ref_type(eb, iref);
391 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
392 
393 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
394 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
395 	    type == BTRFS_SHARED_DATA_REF_KEY ||
396 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
397 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
398 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
399 				return type;
400 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
401 				ASSERT(eb->fs_info);
402 				/*
403 				 * Every shared one has parent tree block,
404 				 * which must be aligned to sector size.
405 				 */
406 				if (offset &&
407 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
408 					return type;
409 			}
410 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
411 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 				return type;
413 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 				ASSERT(eb->fs_info);
415 				/*
416 				 * Every shared one has parent tree block,
417 				 * which must be aligned to sector size.
418 				 */
419 				if (offset &&
420 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
421 					return type;
422 			}
423 		} else {
424 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
425 			return type;
426 		}
427 	}
428 
429 	btrfs_print_leaf((struct extent_buffer *)eb);
430 	btrfs_err(eb->fs_info,
431 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
432 		  eb->start, (unsigned long)iref, type);
433 	WARN_ON(1);
434 
435 	return BTRFS_REF_TYPE_INVALID;
436 }
437 
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 	u32 high_crc = ~(u32)0;
441 	u32 low_crc = ~(u32)0;
442 	__le64 lenum;
443 
444 	lenum = cpu_to_le64(root_objectid);
445 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 	lenum = cpu_to_le64(owner);
447 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 	lenum = cpu_to_le64(offset);
449 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450 
451 	return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453 
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 				     struct btrfs_extent_data_ref *ref)
456 {
457 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 				    btrfs_extent_data_ref_objectid(leaf, ref),
459 				    btrfs_extent_data_ref_offset(leaf, ref));
460 }
461 
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 				 struct btrfs_extent_data_ref *ref,
464 				 u64 root_objectid, u64 owner, u64 offset)
465 {
466 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 		return 0;
470 	return 1;
471 }
472 
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 					   struct btrfs_path *path,
475 					   u64 bytenr, u64 parent,
476 					   u64 root_objectid,
477 					   u64 owner, u64 offset)
478 {
479 	struct btrfs_root *root = trans->fs_info->extent_root;
480 	struct btrfs_key key;
481 	struct btrfs_extent_data_ref *ref;
482 	struct extent_buffer *leaf;
483 	u32 nritems;
484 	int ret;
485 	int recow;
486 	int err = -ENOENT;
487 
488 	key.objectid = bytenr;
489 	if (parent) {
490 		key.type = BTRFS_SHARED_DATA_REF_KEY;
491 		key.offset = parent;
492 	} else {
493 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 		key.offset = hash_extent_data_ref(root_objectid,
495 						  owner, offset);
496 	}
497 again:
498 	recow = 0;
499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 	if (ret < 0) {
501 		err = ret;
502 		goto fail;
503 	}
504 
505 	if (parent) {
506 		if (!ret)
507 			return 0;
508 		goto fail;
509 	}
510 
511 	leaf = path->nodes[0];
512 	nritems = btrfs_header_nritems(leaf);
513 	while (1) {
514 		if (path->slots[0] >= nritems) {
515 			ret = btrfs_next_leaf(root, path);
516 			if (ret < 0)
517 				err = ret;
518 			if (ret)
519 				goto fail;
520 
521 			leaf = path->nodes[0];
522 			nritems = btrfs_header_nritems(leaf);
523 			recow = 1;
524 		}
525 
526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 		if (key.objectid != bytenr ||
528 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 			goto fail;
530 
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_extent_data_ref);
533 
534 		if (match_extent_data_ref(leaf, ref, root_objectid,
535 					  owner, offset)) {
536 			if (recow) {
537 				btrfs_release_path(path);
538 				goto again;
539 			}
540 			err = 0;
541 			break;
542 		}
543 		path->slots[0]++;
544 	}
545 fail:
546 	return err;
547 }
548 
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 					   struct btrfs_path *path,
551 					   u64 bytenr, u64 parent,
552 					   u64 root_objectid, u64 owner,
553 					   u64 offset, int refs_to_add)
554 {
555 	struct btrfs_root *root = trans->fs_info->extent_root;
556 	struct btrfs_key key;
557 	struct extent_buffer *leaf;
558 	u32 size;
559 	u32 num_refs;
560 	int ret;
561 
562 	key.objectid = bytenr;
563 	if (parent) {
564 		key.type = BTRFS_SHARED_DATA_REF_KEY;
565 		key.offset = parent;
566 		size = sizeof(struct btrfs_shared_data_ref);
567 	} else {
568 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 		key.offset = hash_extent_data_ref(root_objectid,
570 						  owner, offset);
571 		size = sizeof(struct btrfs_extent_data_ref);
572 	}
573 
574 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 	if (ret && ret != -EEXIST)
576 		goto fail;
577 
578 	leaf = path->nodes[0];
579 	if (parent) {
580 		struct btrfs_shared_data_ref *ref;
581 		ref = btrfs_item_ptr(leaf, path->slots[0],
582 				     struct btrfs_shared_data_ref);
583 		if (ret == 0) {
584 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 		}
590 	} else {
591 		struct btrfs_extent_data_ref *ref;
592 		while (ret == -EEXIST) {
593 			ref = btrfs_item_ptr(leaf, path->slots[0],
594 					     struct btrfs_extent_data_ref);
595 			if (match_extent_data_ref(leaf, ref, root_objectid,
596 						  owner, offset))
597 				break;
598 			btrfs_release_path(path);
599 			key.offset++;
600 			ret = btrfs_insert_empty_item(trans, root, path, &key,
601 						      size);
602 			if (ret && ret != -EEXIST)
603 				goto fail;
604 
605 			leaf = path->nodes[0];
606 		}
607 		ref = btrfs_item_ptr(leaf, path->slots[0],
608 				     struct btrfs_extent_data_ref);
609 		if (ret == 0) {
610 			btrfs_set_extent_data_ref_root(leaf, ref,
611 						       root_objectid);
612 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 		} else {
616 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 			num_refs += refs_to_add;
618 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 		}
620 	}
621 	btrfs_mark_buffer_dirty(leaf);
622 	ret = 0;
623 fail:
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 					   struct btrfs_path *path,
630 					   int refs_to_drop, int *last_ref)
631 {
632 	struct btrfs_key key;
633 	struct btrfs_extent_data_ref *ref1 = NULL;
634 	struct btrfs_shared_data_ref *ref2 = NULL;
635 	struct extent_buffer *leaf;
636 	u32 num_refs = 0;
637 	int ret = 0;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 
642 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 				      struct btrfs_extent_data_ref);
645 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_shared_data_ref);
649 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 		btrfs_print_v0_err(trans->fs_info);
652 		btrfs_abort_transaction(trans, -EINVAL);
653 		return -EINVAL;
654 	} else {
655 		BUG();
656 	}
657 
658 	BUG_ON(num_refs < refs_to_drop);
659 	num_refs -= refs_to_drop;
660 
661 	if (num_refs == 0) {
662 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 		*last_ref = 1;
664 	} else {
665 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 		btrfs_mark_buffer_dirty(leaf);
670 	}
671 	return ret;
672 }
673 
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 					  struct btrfs_extent_inline_ref *iref)
676 {
677 	struct btrfs_key key;
678 	struct extent_buffer *leaf;
679 	struct btrfs_extent_data_ref *ref1;
680 	struct btrfs_shared_data_ref *ref2;
681 	u32 num_refs = 0;
682 	int type;
683 
684 	leaf = path->nodes[0];
685 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686 
687 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 	if (iref) {
689 		/*
690 		 * If type is invalid, we should have bailed out earlier than
691 		 * this call.
692 		 */
693 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 		} else {
699 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 		}
702 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 				      struct btrfs_extent_data_ref);
705 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_shared_data_ref);
709 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 	} else {
711 		WARN_ON(1);
712 	}
713 	return num_refs;
714 }
715 
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = trans->fs_info->extent_root;
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 	if (ret > 0)
736 		ret = -ENOENT;
737 	return ret;
738 }
739 
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 					  struct btrfs_path *path,
742 					  u64 bytenr, u64 parent,
743 					  u64 root_objectid)
744 {
745 	struct btrfs_key key;
746 	int ret;
747 
748 	key.objectid = bytenr;
749 	if (parent) {
750 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 		key.offset = parent;
752 	} else {
753 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 		key.offset = root_objectid;
755 	}
756 
757 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 				      path, &key, 0);
759 	btrfs_release_path(path);
760 	return ret;
761 }
762 
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 	int type;
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (parent > 0)
768 			type = BTRFS_SHARED_BLOCK_REF_KEY;
769 		else
770 			type = BTRFS_TREE_BLOCK_REF_KEY;
771 	} else {
772 		if (parent > 0)
773 			type = BTRFS_SHARED_DATA_REF_KEY;
774 		else
775 			type = BTRFS_EXTENT_DATA_REF_KEY;
776 	}
777 	return type;
778 }
779 
780 static int find_next_key(struct btrfs_path *path, int level,
781 			 struct btrfs_key *key)
782 
783 {
784 	for (; level < BTRFS_MAX_LEVEL; level++) {
785 		if (!path->nodes[level])
786 			break;
787 		if (path->slots[level] + 1 >=
788 		    btrfs_header_nritems(path->nodes[level]))
789 			continue;
790 		if (level == 0)
791 			btrfs_item_key_to_cpu(path->nodes[level], key,
792 					      path->slots[level] + 1);
793 		else
794 			btrfs_node_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * look for inline back ref. if back ref is found, *ref_ret is set
803  * to the address of inline back ref, and 0 is returned.
804  *
805  * if back ref isn't found, *ref_ret is set to the address where it
806  * should be inserted, and -ENOENT is returned.
807  *
808  * if insert is true and there are too many inline back refs, the path
809  * points to the extent item, and -EAGAIN is returned.
810  *
811  * NOTE: inline back refs are ordered in the same way that back ref
812  *	 items in the tree are ordered.
813  */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 				 struct btrfs_path *path,
817 				 struct btrfs_extent_inline_ref **ref_ret,
818 				 u64 bytenr, u64 num_bytes,
819 				 u64 parent, u64 root_objectid,
820 				 u64 owner, u64 offset, int insert)
821 {
822 	struct btrfs_fs_info *fs_info = trans->fs_info;
823 	struct btrfs_root *root = fs_info->extent_root;
824 	struct btrfs_key key;
825 	struct extent_buffer *leaf;
826 	struct btrfs_extent_item *ei;
827 	struct btrfs_extent_inline_ref *iref;
828 	u64 flags;
829 	u64 item_size;
830 	unsigned long ptr;
831 	unsigned long end;
832 	int extra_size;
833 	int type;
834 	int want;
835 	int ret;
836 	int err = 0;
837 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 	int needed;
839 
840 	key.objectid = bytenr;
841 	key.type = BTRFS_EXTENT_ITEM_KEY;
842 	key.offset = num_bytes;
843 
844 	want = extent_ref_type(parent, owner);
845 	if (insert) {
846 		extra_size = btrfs_extent_inline_ref_size(want);
847 		path->search_for_extension = 1;
848 		path->keep_locks = 1;
849 	} else
850 		extra_size = -1;
851 
852 	/*
853 	 * Owner is our level, so we can just add one to get the level for the
854 	 * block we are interested in.
855 	 */
856 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
857 		key.type = BTRFS_METADATA_ITEM_KEY;
858 		key.offset = owner;
859 	}
860 
861 again:
862 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
863 	if (ret < 0) {
864 		err = ret;
865 		goto out;
866 	}
867 
868 	/*
869 	 * We may be a newly converted file system which still has the old fat
870 	 * extent entries for metadata, so try and see if we have one of those.
871 	 */
872 	if (ret > 0 && skinny_metadata) {
873 		skinny_metadata = false;
874 		if (path->slots[0]) {
875 			path->slots[0]--;
876 			btrfs_item_key_to_cpu(path->nodes[0], &key,
877 					      path->slots[0]);
878 			if (key.objectid == bytenr &&
879 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
880 			    key.offset == num_bytes)
881 				ret = 0;
882 		}
883 		if (ret) {
884 			key.objectid = bytenr;
885 			key.type = BTRFS_EXTENT_ITEM_KEY;
886 			key.offset = num_bytes;
887 			btrfs_release_path(path);
888 			goto again;
889 		}
890 	}
891 
892 	if (ret && !insert) {
893 		err = -ENOENT;
894 		goto out;
895 	} else if (WARN_ON(ret)) {
896 		err = -EIO;
897 		goto out;
898 	}
899 
900 	leaf = path->nodes[0];
901 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
902 	if (unlikely(item_size < sizeof(*ei))) {
903 		err = -EINVAL;
904 		btrfs_print_v0_err(fs_info);
905 		btrfs_abort_transaction(trans, err);
906 		goto out;
907 	}
908 
909 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
910 	flags = btrfs_extent_flags(leaf, ei);
911 
912 	ptr = (unsigned long)(ei + 1);
913 	end = (unsigned long)ei + item_size;
914 
915 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
916 		ptr += sizeof(struct btrfs_tree_block_info);
917 		BUG_ON(ptr > end);
918 	}
919 
920 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
921 		needed = BTRFS_REF_TYPE_DATA;
922 	else
923 		needed = BTRFS_REF_TYPE_BLOCK;
924 
925 	err = -ENOENT;
926 	while (1) {
927 		if (ptr >= end) {
928 			WARN_ON(ptr > end);
929 			break;
930 		}
931 		iref = (struct btrfs_extent_inline_ref *)ptr;
932 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
933 		if (type == BTRFS_REF_TYPE_INVALID) {
934 			err = -EUCLEAN;
935 			goto out;
936 		}
937 
938 		if (want < type)
939 			break;
940 		if (want > type) {
941 			ptr += btrfs_extent_inline_ref_size(type);
942 			continue;
943 		}
944 
945 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
946 			struct btrfs_extent_data_ref *dref;
947 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
948 			if (match_extent_data_ref(leaf, dref, root_objectid,
949 						  owner, offset)) {
950 				err = 0;
951 				break;
952 			}
953 			if (hash_extent_data_ref_item(leaf, dref) <
954 			    hash_extent_data_ref(root_objectid, owner, offset))
955 				break;
956 		} else {
957 			u64 ref_offset;
958 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
959 			if (parent > 0) {
960 				if (parent == ref_offset) {
961 					err = 0;
962 					break;
963 				}
964 				if (ref_offset < parent)
965 					break;
966 			} else {
967 				if (root_objectid == ref_offset) {
968 					err = 0;
969 					break;
970 				}
971 				if (ref_offset < root_objectid)
972 					break;
973 			}
974 		}
975 		ptr += btrfs_extent_inline_ref_size(type);
976 	}
977 	if (err == -ENOENT && insert) {
978 		if (item_size + extra_size >=
979 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
980 			err = -EAGAIN;
981 			goto out;
982 		}
983 		/*
984 		 * To add new inline back ref, we have to make sure
985 		 * there is no corresponding back ref item.
986 		 * For simplicity, we just do not add new inline back
987 		 * ref if there is any kind of item for this block
988 		 */
989 		if (find_next_key(path, 0, &key) == 0 &&
990 		    key.objectid == bytenr &&
991 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
992 			err = -EAGAIN;
993 			goto out;
994 		}
995 	}
996 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
997 out:
998 	if (insert) {
999 		path->keep_locks = 0;
1000 		path->search_for_extension = 0;
1001 		btrfs_unlock_up_safe(path, 1);
1002 	}
1003 	return err;
1004 }
1005 
1006 /*
1007  * helper to add new inline back ref
1008  */
1009 static noinline_for_stack
1010 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1011 				 struct btrfs_path *path,
1012 				 struct btrfs_extent_inline_ref *iref,
1013 				 u64 parent, u64 root_objectid,
1014 				 u64 owner, u64 offset, int refs_to_add,
1015 				 struct btrfs_delayed_extent_op *extent_op)
1016 {
1017 	struct extent_buffer *leaf;
1018 	struct btrfs_extent_item *ei;
1019 	unsigned long ptr;
1020 	unsigned long end;
1021 	unsigned long item_offset;
1022 	u64 refs;
1023 	int size;
1024 	int type;
1025 
1026 	leaf = path->nodes[0];
1027 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1028 	item_offset = (unsigned long)iref - (unsigned long)ei;
1029 
1030 	type = extent_ref_type(parent, owner);
1031 	size = btrfs_extent_inline_ref_size(type);
1032 
1033 	btrfs_extend_item(path, size);
1034 
1035 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1036 	refs = btrfs_extent_refs(leaf, ei);
1037 	refs += refs_to_add;
1038 	btrfs_set_extent_refs(leaf, ei, refs);
1039 	if (extent_op)
1040 		__run_delayed_extent_op(extent_op, leaf, ei);
1041 
1042 	ptr = (unsigned long)ei + item_offset;
1043 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1044 	if (ptr < end - size)
1045 		memmove_extent_buffer(leaf, ptr + size, ptr,
1046 				      end - size - ptr);
1047 
1048 	iref = (struct btrfs_extent_inline_ref *)ptr;
1049 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1050 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1051 		struct btrfs_extent_data_ref *dref;
1052 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1053 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1054 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1055 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1056 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1057 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1058 		struct btrfs_shared_data_ref *sref;
1059 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1060 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1061 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1064 	} else {
1065 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1066 	}
1067 	btrfs_mark_buffer_dirty(leaf);
1068 }
1069 
1070 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1071 				 struct btrfs_path *path,
1072 				 struct btrfs_extent_inline_ref **ref_ret,
1073 				 u64 bytenr, u64 num_bytes, u64 parent,
1074 				 u64 root_objectid, u64 owner, u64 offset)
1075 {
1076 	int ret;
1077 
1078 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1079 					   num_bytes, parent, root_objectid,
1080 					   owner, offset, 0);
1081 	if (ret != -ENOENT)
1082 		return ret;
1083 
1084 	btrfs_release_path(path);
1085 	*ref_ret = NULL;
1086 
1087 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1088 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1089 					    root_objectid);
1090 	} else {
1091 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1092 					     root_objectid, owner, offset);
1093 	}
1094 	return ret;
1095 }
1096 
1097 /*
1098  * helper to update/remove inline back ref
1099  */
1100 static noinline_for_stack
1101 void update_inline_extent_backref(struct btrfs_path *path,
1102 				  struct btrfs_extent_inline_ref *iref,
1103 				  int refs_to_mod,
1104 				  struct btrfs_delayed_extent_op *extent_op,
1105 				  int *last_ref)
1106 {
1107 	struct extent_buffer *leaf = path->nodes[0];
1108 	struct btrfs_extent_item *ei;
1109 	struct btrfs_extent_data_ref *dref = NULL;
1110 	struct btrfs_shared_data_ref *sref = NULL;
1111 	unsigned long ptr;
1112 	unsigned long end;
1113 	u32 item_size;
1114 	int size;
1115 	int type;
1116 	u64 refs;
1117 
1118 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1119 	refs = btrfs_extent_refs(leaf, ei);
1120 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1121 	refs += refs_to_mod;
1122 	btrfs_set_extent_refs(leaf, ei, refs);
1123 	if (extent_op)
1124 		__run_delayed_extent_op(extent_op, leaf, ei);
1125 
1126 	/*
1127 	 * If type is invalid, we should have bailed out after
1128 	 * lookup_inline_extent_backref().
1129 	 */
1130 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1131 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1132 
1133 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 		refs = btrfs_extent_data_ref_count(leaf, dref);
1136 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 		refs = btrfs_shared_data_ref_count(leaf, sref);
1139 	} else {
1140 		refs = 1;
1141 		BUG_ON(refs_to_mod != -1);
1142 	}
1143 
1144 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1145 	refs += refs_to_mod;
1146 
1147 	if (refs > 0) {
1148 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1149 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1150 		else
1151 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1152 	} else {
1153 		*last_ref = 1;
1154 		size =  btrfs_extent_inline_ref_size(type);
1155 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1156 		ptr = (unsigned long)iref;
1157 		end = (unsigned long)ei + item_size;
1158 		if (ptr + size < end)
1159 			memmove_extent_buffer(leaf, ptr, ptr + size,
1160 					      end - ptr - size);
1161 		item_size -= size;
1162 		btrfs_truncate_item(path, item_size, 1);
1163 	}
1164 	btrfs_mark_buffer_dirty(leaf);
1165 }
1166 
1167 static noinline_for_stack
1168 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1169 				 struct btrfs_path *path,
1170 				 u64 bytenr, u64 num_bytes, u64 parent,
1171 				 u64 root_objectid, u64 owner,
1172 				 u64 offset, int refs_to_add,
1173 				 struct btrfs_delayed_extent_op *extent_op)
1174 {
1175 	struct btrfs_extent_inline_ref *iref;
1176 	int ret;
1177 
1178 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1179 					   num_bytes, parent, root_objectid,
1180 					   owner, offset, 1);
1181 	if (ret == 0) {
1182 		/*
1183 		 * We're adding refs to a tree block we already own, this
1184 		 * should not happen at all.
1185 		 */
1186 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1187 			btrfs_crit(trans->fs_info,
1188 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1189 				   bytenr, num_bytes, root_objectid);
1190 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1191 				WARN_ON(1);
1192 				btrfs_crit(trans->fs_info,
1193 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1194 				btrfs_print_leaf(path->nodes[0]);
1195 			}
1196 			return -EUCLEAN;
1197 		}
1198 		update_inline_extent_backref(path, iref, refs_to_add,
1199 					     extent_op, NULL);
1200 	} else if (ret == -ENOENT) {
1201 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1202 					    root_objectid, owner, offset,
1203 					    refs_to_add, extent_op);
1204 		ret = 0;
1205 	}
1206 	return ret;
1207 }
1208 
1209 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1210 				 struct btrfs_path *path,
1211 				 struct btrfs_extent_inline_ref *iref,
1212 				 int refs_to_drop, int is_data, int *last_ref)
1213 {
1214 	int ret = 0;
1215 
1216 	BUG_ON(!is_data && refs_to_drop != 1);
1217 	if (iref) {
1218 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1219 					     last_ref);
1220 	} else if (is_data) {
1221 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1222 					     last_ref);
1223 	} else {
1224 		*last_ref = 1;
1225 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1226 	}
1227 	return ret;
1228 }
1229 
1230 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1231 			       u64 *discarded_bytes)
1232 {
1233 	int j, ret = 0;
1234 	u64 bytes_left, end;
1235 	u64 aligned_start = ALIGN(start, 1 << 9);
1236 
1237 	if (WARN_ON(start != aligned_start)) {
1238 		len -= aligned_start - start;
1239 		len = round_down(len, 1 << 9);
1240 		start = aligned_start;
1241 	}
1242 
1243 	*discarded_bytes = 0;
1244 
1245 	if (!len)
1246 		return 0;
1247 
1248 	end = start + len;
1249 	bytes_left = len;
1250 
1251 	/* Skip any superblocks on this device. */
1252 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1253 		u64 sb_start = btrfs_sb_offset(j);
1254 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1255 		u64 size = sb_start - start;
1256 
1257 		if (!in_range(sb_start, start, bytes_left) &&
1258 		    !in_range(sb_end, start, bytes_left) &&
1259 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1260 			continue;
1261 
1262 		/*
1263 		 * Superblock spans beginning of range.  Adjust start and
1264 		 * try again.
1265 		 */
1266 		if (sb_start <= start) {
1267 			start += sb_end - start;
1268 			if (start > end) {
1269 				bytes_left = 0;
1270 				break;
1271 			}
1272 			bytes_left = end - start;
1273 			continue;
1274 		}
1275 
1276 		if (size) {
1277 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1278 						   GFP_NOFS, 0);
1279 			if (!ret)
1280 				*discarded_bytes += size;
1281 			else if (ret != -EOPNOTSUPP)
1282 				return ret;
1283 		}
1284 
1285 		start = sb_end;
1286 		if (start > end) {
1287 			bytes_left = 0;
1288 			break;
1289 		}
1290 		bytes_left = end - start;
1291 	}
1292 
1293 	if (bytes_left) {
1294 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1295 					   GFP_NOFS, 0);
1296 		if (!ret)
1297 			*discarded_bytes += bytes_left;
1298 	}
1299 	return ret;
1300 }
1301 
1302 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1303 			 u64 num_bytes, u64 *actual_bytes)
1304 {
1305 	int ret = 0;
1306 	u64 discarded_bytes = 0;
1307 	u64 end = bytenr + num_bytes;
1308 	u64 cur = bytenr;
1309 	struct btrfs_bio *bbio = NULL;
1310 
1311 
1312 	/*
1313 	 * Avoid races with device replace and make sure our bbio has devices
1314 	 * associated to its stripes that don't go away while we are discarding.
1315 	 */
1316 	btrfs_bio_counter_inc_blocked(fs_info);
1317 	while (cur < end) {
1318 		struct btrfs_bio_stripe *stripe;
1319 		int i;
1320 
1321 		num_bytes = end - cur;
1322 		/* Tell the block device(s) that the sectors can be discarded */
1323 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1324 				      &num_bytes, &bbio, 0);
1325 		/*
1326 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1327 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1328 		 * thus we can't continue anyway.
1329 		 */
1330 		if (ret < 0)
1331 			goto out;
1332 
1333 		stripe = bbio->stripes;
1334 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1335 			u64 bytes;
1336 			struct request_queue *req_q;
1337 
1338 			if (!stripe->dev->bdev) {
1339 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1340 				continue;
1341 			}
1342 			req_q = bdev_get_queue(stripe->dev->bdev);
1343 			if (!blk_queue_discard(req_q))
1344 				continue;
1345 
1346 			ret = btrfs_issue_discard(stripe->dev->bdev,
1347 						  stripe->physical,
1348 						  stripe->length,
1349 						  &bytes);
1350 			if (!ret) {
1351 				discarded_bytes += bytes;
1352 			} else if (ret != -EOPNOTSUPP) {
1353 				/*
1354 				 * Logic errors or -ENOMEM, or -EIO, but
1355 				 * unlikely to happen.
1356 				 *
1357 				 * And since there are two loops, explicitly
1358 				 * go to out to avoid confusion.
1359 				 */
1360 				btrfs_put_bbio(bbio);
1361 				goto out;
1362 			}
1363 
1364 			/*
1365 			 * Just in case we get back EOPNOTSUPP for some reason,
1366 			 * just ignore the return value so we don't screw up
1367 			 * people calling discard_extent.
1368 			 */
1369 			ret = 0;
1370 		}
1371 		btrfs_put_bbio(bbio);
1372 		cur += num_bytes;
1373 	}
1374 out:
1375 	btrfs_bio_counter_dec(fs_info);
1376 
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 
1380 
1381 	if (ret == -EOPNOTSUPP)
1382 		ret = 0;
1383 	return ret;
1384 }
1385 
1386 /* Can return -ENOMEM */
1387 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1388 			 struct btrfs_ref *generic_ref)
1389 {
1390 	struct btrfs_fs_info *fs_info = trans->fs_info;
1391 	int old_ref_mod, new_ref_mod;
1392 	int ret;
1393 
1394 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1395 	       generic_ref->action);
1396 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1397 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1398 
1399 	if (generic_ref->type == BTRFS_REF_METADATA)
1400 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1401 				NULL, &old_ref_mod, &new_ref_mod);
1402 	else
1403 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1404 						 &old_ref_mod, &new_ref_mod);
1405 
1406 	btrfs_ref_tree_mod(fs_info, generic_ref);
1407 
1408 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1409 		sub_pinned_bytes(fs_info, generic_ref);
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * __btrfs_inc_extent_ref - insert backreference for a given extent
1416  *
1417  * The counterpart is in __btrfs_free_extent(), with examples and more details
1418  * how it works.
1419  *
1420  * @trans:	    Handle of transaction
1421  *
1422  * @node:	    The delayed ref node used to get the bytenr/length for
1423  *		    extent whose references are incremented.
1424  *
1425  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1426  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1427  *		    bytenr of the parent block. Since new extents are always
1428  *		    created with indirect references, this will only be the case
1429  *		    when relocating a shared extent. In that case, root_objectid
1430  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1431  *		    be 0
1432  *
1433  * @root_objectid:  The id of the root where this modification has originated,
1434  *		    this can be either one of the well-known metadata trees or
1435  *		    the subvolume id which references this extent.
1436  *
1437  * @owner:	    For data extents it is the inode number of the owning file.
1438  *		    For metadata extents this parameter holds the level in the
1439  *		    tree of the extent.
1440  *
1441  * @offset:	    For metadata extents the offset is ignored and is currently
1442  *		    always passed as 0. For data extents it is the fileoffset
1443  *		    this extent belongs to.
1444  *
1445  * @refs_to_add     Number of references to add
1446  *
1447  * @extent_op       Pointer to a structure, holding information necessary when
1448  *                  updating a tree block's flags
1449  *
1450  */
1451 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1452 				  struct btrfs_delayed_ref_node *node,
1453 				  u64 parent, u64 root_objectid,
1454 				  u64 owner, u64 offset, int refs_to_add,
1455 				  struct btrfs_delayed_extent_op *extent_op)
1456 {
1457 	struct btrfs_path *path;
1458 	struct extent_buffer *leaf;
1459 	struct btrfs_extent_item *item;
1460 	struct btrfs_key key;
1461 	u64 bytenr = node->bytenr;
1462 	u64 num_bytes = node->num_bytes;
1463 	u64 refs;
1464 	int ret;
1465 
1466 	path = btrfs_alloc_path();
1467 	if (!path)
1468 		return -ENOMEM;
1469 
1470 	/* this will setup the path even if it fails to insert the back ref */
1471 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1472 					   parent, root_objectid, owner,
1473 					   offset, refs_to_add, extent_op);
1474 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1475 		goto out;
1476 
1477 	/*
1478 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1479 	 * inline extent ref, so just update the reference count and add a
1480 	 * normal backref.
1481 	 */
1482 	leaf = path->nodes[0];
1483 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1484 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1485 	refs = btrfs_extent_refs(leaf, item);
1486 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1487 	if (extent_op)
1488 		__run_delayed_extent_op(extent_op, leaf, item);
1489 
1490 	btrfs_mark_buffer_dirty(leaf);
1491 	btrfs_release_path(path);
1492 
1493 	/* now insert the actual backref */
1494 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 		BUG_ON(refs_to_add != 1);
1496 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1497 					    root_objectid);
1498 	} else {
1499 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1500 					     root_objectid, owner, offset,
1501 					     refs_to_add);
1502 	}
1503 	if (ret)
1504 		btrfs_abort_transaction(trans, ret);
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
1510 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1511 				struct btrfs_delayed_ref_node *node,
1512 				struct btrfs_delayed_extent_op *extent_op,
1513 				int insert_reserved)
1514 {
1515 	int ret = 0;
1516 	struct btrfs_delayed_data_ref *ref;
1517 	struct btrfs_key ins;
1518 	u64 parent = 0;
1519 	u64 ref_root = 0;
1520 	u64 flags = 0;
1521 
1522 	ins.objectid = node->bytenr;
1523 	ins.offset = node->num_bytes;
1524 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1525 
1526 	ref = btrfs_delayed_node_to_data_ref(node);
1527 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1528 
1529 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1530 		parent = ref->parent;
1531 	ref_root = ref->root;
1532 
1533 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1534 		if (extent_op)
1535 			flags |= extent_op->flags_to_set;
1536 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1537 						 flags, ref->objectid,
1538 						 ref->offset, &ins,
1539 						 node->ref_mod);
1540 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1541 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1542 					     ref->objectid, ref->offset,
1543 					     node->ref_mod, extent_op);
1544 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1545 		ret = __btrfs_free_extent(trans, node, parent,
1546 					  ref_root, ref->objectid,
1547 					  ref->offset, node->ref_mod,
1548 					  extent_op);
1549 	} else {
1550 		BUG();
1551 	}
1552 	return ret;
1553 }
1554 
1555 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1556 				    struct extent_buffer *leaf,
1557 				    struct btrfs_extent_item *ei)
1558 {
1559 	u64 flags = btrfs_extent_flags(leaf, ei);
1560 	if (extent_op->update_flags) {
1561 		flags |= extent_op->flags_to_set;
1562 		btrfs_set_extent_flags(leaf, ei, flags);
1563 	}
1564 
1565 	if (extent_op->update_key) {
1566 		struct btrfs_tree_block_info *bi;
1567 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1568 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1569 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1570 	}
1571 }
1572 
1573 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1574 				 struct btrfs_delayed_ref_head *head,
1575 				 struct btrfs_delayed_extent_op *extent_op)
1576 {
1577 	struct btrfs_fs_info *fs_info = trans->fs_info;
1578 	struct btrfs_key key;
1579 	struct btrfs_path *path;
1580 	struct btrfs_extent_item *ei;
1581 	struct extent_buffer *leaf;
1582 	u32 item_size;
1583 	int ret;
1584 	int err = 0;
1585 	int metadata = !extent_op->is_data;
1586 
1587 	if (TRANS_ABORTED(trans))
1588 		return 0;
1589 
1590 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1591 		metadata = 0;
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path)
1595 		return -ENOMEM;
1596 
1597 	key.objectid = head->bytenr;
1598 
1599 	if (metadata) {
1600 		key.type = BTRFS_METADATA_ITEM_KEY;
1601 		key.offset = extent_op->level;
1602 	} else {
1603 		key.type = BTRFS_EXTENT_ITEM_KEY;
1604 		key.offset = head->num_bytes;
1605 	}
1606 
1607 again:
1608 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1609 	if (ret < 0) {
1610 		err = ret;
1611 		goto out;
1612 	}
1613 	if (ret > 0) {
1614 		if (metadata) {
1615 			if (path->slots[0] > 0) {
1616 				path->slots[0]--;
1617 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1618 						      path->slots[0]);
1619 				if (key.objectid == head->bytenr &&
1620 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1621 				    key.offset == head->num_bytes)
1622 					ret = 0;
1623 			}
1624 			if (ret > 0) {
1625 				btrfs_release_path(path);
1626 				metadata = 0;
1627 
1628 				key.objectid = head->bytenr;
1629 				key.offset = head->num_bytes;
1630 				key.type = BTRFS_EXTENT_ITEM_KEY;
1631 				goto again;
1632 			}
1633 		} else {
1634 			err = -EIO;
1635 			goto out;
1636 		}
1637 	}
1638 
1639 	leaf = path->nodes[0];
1640 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 
1642 	if (unlikely(item_size < sizeof(*ei))) {
1643 		err = -EINVAL;
1644 		btrfs_print_v0_err(fs_info);
1645 		btrfs_abort_transaction(trans, err);
1646 		goto out;
1647 	}
1648 
1649 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1650 	__run_delayed_extent_op(extent_op, leaf, ei);
1651 
1652 	btrfs_mark_buffer_dirty(leaf);
1653 out:
1654 	btrfs_free_path(path);
1655 	return err;
1656 }
1657 
1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1659 				struct btrfs_delayed_ref_node *node,
1660 				struct btrfs_delayed_extent_op *extent_op,
1661 				int insert_reserved)
1662 {
1663 	int ret = 0;
1664 	struct btrfs_delayed_tree_ref *ref;
1665 	u64 parent = 0;
1666 	u64 ref_root = 0;
1667 
1668 	ref = btrfs_delayed_node_to_tree_ref(node);
1669 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1670 
1671 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1672 		parent = ref->parent;
1673 	ref_root = ref->root;
1674 
1675 	if (node->ref_mod != 1) {
1676 		btrfs_err(trans->fs_info,
1677 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1678 			  node->bytenr, node->ref_mod, node->action, ref_root,
1679 			  parent);
1680 		return -EIO;
1681 	}
1682 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1683 		BUG_ON(!extent_op || !extent_op->update_flags);
1684 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1685 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1686 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1687 					     ref->level, 0, 1, extent_op);
1688 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1689 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1690 					  ref->level, 0, 1, extent_op);
1691 	} else {
1692 		BUG();
1693 	}
1694 	return ret;
1695 }
1696 
1697 /* helper function to actually process a single delayed ref entry */
1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1699 			       struct btrfs_delayed_ref_node *node,
1700 			       struct btrfs_delayed_extent_op *extent_op,
1701 			       int insert_reserved)
1702 {
1703 	int ret = 0;
1704 
1705 	if (TRANS_ABORTED(trans)) {
1706 		if (insert_reserved)
1707 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1708 		return 0;
1709 	}
1710 
1711 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1712 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1713 		ret = run_delayed_tree_ref(trans, node, extent_op,
1714 					   insert_reserved);
1715 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1716 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1717 		ret = run_delayed_data_ref(trans, node, extent_op,
1718 					   insert_reserved);
1719 	else
1720 		BUG();
1721 	if (ret && insert_reserved)
1722 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1723 	return ret;
1724 }
1725 
1726 static inline struct btrfs_delayed_ref_node *
1727 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1728 {
1729 	struct btrfs_delayed_ref_node *ref;
1730 
1731 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1732 		return NULL;
1733 
1734 	/*
1735 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1736 	 * This is to prevent a ref count from going down to zero, which deletes
1737 	 * the extent item from the extent tree, when there still are references
1738 	 * to add, which would fail because they would not find the extent item.
1739 	 */
1740 	if (!list_empty(&head->ref_add_list))
1741 		return list_first_entry(&head->ref_add_list,
1742 				struct btrfs_delayed_ref_node, add_list);
1743 
1744 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1745 		       struct btrfs_delayed_ref_node, ref_node);
1746 	ASSERT(list_empty(&ref->add_list));
1747 	return ref;
1748 }
1749 
1750 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1751 				      struct btrfs_delayed_ref_head *head)
1752 {
1753 	spin_lock(&delayed_refs->lock);
1754 	head->processing = 0;
1755 	delayed_refs->num_heads_ready++;
1756 	spin_unlock(&delayed_refs->lock);
1757 	btrfs_delayed_ref_unlock(head);
1758 }
1759 
1760 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1761 				struct btrfs_delayed_ref_head *head)
1762 {
1763 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1764 
1765 	if (!extent_op)
1766 		return NULL;
1767 
1768 	if (head->must_insert_reserved) {
1769 		head->extent_op = NULL;
1770 		btrfs_free_delayed_extent_op(extent_op);
1771 		return NULL;
1772 	}
1773 	return extent_op;
1774 }
1775 
1776 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1777 				     struct btrfs_delayed_ref_head *head)
1778 {
1779 	struct btrfs_delayed_extent_op *extent_op;
1780 	int ret;
1781 
1782 	extent_op = cleanup_extent_op(head);
1783 	if (!extent_op)
1784 		return 0;
1785 	head->extent_op = NULL;
1786 	spin_unlock(&head->lock);
1787 	ret = run_delayed_extent_op(trans, head, extent_op);
1788 	btrfs_free_delayed_extent_op(extent_op);
1789 	return ret ? ret : 1;
1790 }
1791 
1792 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1793 				  struct btrfs_delayed_ref_root *delayed_refs,
1794 				  struct btrfs_delayed_ref_head *head)
1795 {
1796 	int nr_items = 1;	/* Dropping this ref head update. */
1797 
1798 	if (head->total_ref_mod < 0) {
1799 		struct btrfs_space_info *space_info;
1800 		u64 flags;
1801 
1802 		if (head->is_data)
1803 			flags = BTRFS_BLOCK_GROUP_DATA;
1804 		else if (head->is_system)
1805 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1806 		else
1807 			flags = BTRFS_BLOCK_GROUP_METADATA;
1808 		space_info = btrfs_find_space_info(fs_info, flags);
1809 		ASSERT(space_info);
1810 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1811 				   -head->num_bytes,
1812 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1813 
1814 		/*
1815 		 * We had csum deletions accounted for in our delayed refs rsv,
1816 		 * we need to drop the csum leaves for this update from our
1817 		 * delayed_refs_rsv.
1818 		 */
1819 		if (head->is_data) {
1820 			spin_lock(&delayed_refs->lock);
1821 			delayed_refs->pending_csums -= head->num_bytes;
1822 			spin_unlock(&delayed_refs->lock);
1823 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1824 				head->num_bytes);
1825 		}
1826 	}
1827 
1828 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1829 }
1830 
1831 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1832 			    struct btrfs_delayed_ref_head *head)
1833 {
1834 
1835 	struct btrfs_fs_info *fs_info = trans->fs_info;
1836 	struct btrfs_delayed_ref_root *delayed_refs;
1837 	int ret;
1838 
1839 	delayed_refs = &trans->transaction->delayed_refs;
1840 
1841 	ret = run_and_cleanup_extent_op(trans, head);
1842 	if (ret < 0) {
1843 		unselect_delayed_ref_head(delayed_refs, head);
1844 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1845 		return ret;
1846 	} else if (ret) {
1847 		return ret;
1848 	}
1849 
1850 	/*
1851 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1852 	 * and then re-check to make sure nobody got added.
1853 	 */
1854 	spin_unlock(&head->lock);
1855 	spin_lock(&delayed_refs->lock);
1856 	spin_lock(&head->lock);
1857 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1858 		spin_unlock(&head->lock);
1859 		spin_unlock(&delayed_refs->lock);
1860 		return 1;
1861 	}
1862 	btrfs_delete_ref_head(delayed_refs, head);
1863 	spin_unlock(&head->lock);
1864 	spin_unlock(&delayed_refs->lock);
1865 
1866 	if (head->must_insert_reserved) {
1867 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1868 		if (head->is_data) {
1869 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1870 					      head->bytenr, head->num_bytes);
1871 		}
1872 	}
1873 
1874 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1875 
1876 	trace_run_delayed_ref_head(fs_info, head, 0);
1877 	btrfs_delayed_ref_unlock(head);
1878 	btrfs_put_delayed_ref_head(head);
1879 	return 0;
1880 }
1881 
1882 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1883 					struct btrfs_trans_handle *trans)
1884 {
1885 	struct btrfs_delayed_ref_root *delayed_refs =
1886 		&trans->transaction->delayed_refs;
1887 	struct btrfs_delayed_ref_head *head = NULL;
1888 	int ret;
1889 
1890 	spin_lock(&delayed_refs->lock);
1891 	head = btrfs_select_ref_head(delayed_refs);
1892 	if (!head) {
1893 		spin_unlock(&delayed_refs->lock);
1894 		return head;
1895 	}
1896 
1897 	/*
1898 	 * Grab the lock that says we are going to process all the refs for
1899 	 * this head
1900 	 */
1901 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1902 	spin_unlock(&delayed_refs->lock);
1903 
1904 	/*
1905 	 * We may have dropped the spin lock to get the head mutex lock, and
1906 	 * that might have given someone else time to free the head.  If that's
1907 	 * true, it has been removed from our list and we can move on.
1908 	 */
1909 	if (ret == -EAGAIN)
1910 		head = ERR_PTR(-EAGAIN);
1911 
1912 	return head;
1913 }
1914 
1915 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1916 				    struct btrfs_delayed_ref_head *locked_ref,
1917 				    unsigned long *run_refs)
1918 {
1919 	struct btrfs_fs_info *fs_info = trans->fs_info;
1920 	struct btrfs_delayed_ref_root *delayed_refs;
1921 	struct btrfs_delayed_extent_op *extent_op;
1922 	struct btrfs_delayed_ref_node *ref;
1923 	int must_insert_reserved = 0;
1924 	int ret;
1925 
1926 	delayed_refs = &trans->transaction->delayed_refs;
1927 
1928 	lockdep_assert_held(&locked_ref->mutex);
1929 	lockdep_assert_held(&locked_ref->lock);
1930 
1931 	while ((ref = select_delayed_ref(locked_ref))) {
1932 		if (ref->seq &&
1933 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1934 			spin_unlock(&locked_ref->lock);
1935 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1936 			return -EAGAIN;
1937 		}
1938 
1939 		(*run_refs)++;
1940 		ref->in_tree = 0;
1941 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1942 		RB_CLEAR_NODE(&ref->ref_node);
1943 		if (!list_empty(&ref->add_list))
1944 			list_del(&ref->add_list);
1945 		/*
1946 		 * When we play the delayed ref, also correct the ref_mod on
1947 		 * head
1948 		 */
1949 		switch (ref->action) {
1950 		case BTRFS_ADD_DELAYED_REF:
1951 		case BTRFS_ADD_DELAYED_EXTENT:
1952 			locked_ref->ref_mod -= ref->ref_mod;
1953 			break;
1954 		case BTRFS_DROP_DELAYED_REF:
1955 			locked_ref->ref_mod += ref->ref_mod;
1956 			break;
1957 		default:
1958 			WARN_ON(1);
1959 		}
1960 		atomic_dec(&delayed_refs->num_entries);
1961 
1962 		/*
1963 		 * Record the must_insert_reserved flag before we drop the
1964 		 * spin lock.
1965 		 */
1966 		must_insert_reserved = locked_ref->must_insert_reserved;
1967 		locked_ref->must_insert_reserved = 0;
1968 
1969 		extent_op = locked_ref->extent_op;
1970 		locked_ref->extent_op = NULL;
1971 		spin_unlock(&locked_ref->lock);
1972 
1973 		ret = run_one_delayed_ref(trans, ref, extent_op,
1974 					  must_insert_reserved);
1975 
1976 		btrfs_free_delayed_extent_op(extent_op);
1977 		if (ret) {
1978 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1979 			btrfs_put_delayed_ref(ref);
1980 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1981 				    ret);
1982 			return ret;
1983 		}
1984 
1985 		btrfs_put_delayed_ref(ref);
1986 		cond_resched();
1987 
1988 		spin_lock(&locked_ref->lock);
1989 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Returns 0 on success or if called with an already aborted transaction.
1997  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1998  */
1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2000 					     unsigned long nr)
2001 {
2002 	struct btrfs_fs_info *fs_info = trans->fs_info;
2003 	struct btrfs_delayed_ref_root *delayed_refs;
2004 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2005 	ktime_t start = ktime_get();
2006 	int ret;
2007 	unsigned long count = 0;
2008 	unsigned long actual_count = 0;
2009 
2010 	delayed_refs = &trans->transaction->delayed_refs;
2011 	do {
2012 		if (!locked_ref) {
2013 			locked_ref = btrfs_obtain_ref_head(trans);
2014 			if (IS_ERR_OR_NULL(locked_ref)) {
2015 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2016 					continue;
2017 				} else {
2018 					break;
2019 				}
2020 			}
2021 			count++;
2022 		}
2023 		/*
2024 		 * We need to try and merge add/drops of the same ref since we
2025 		 * can run into issues with relocate dropping the implicit ref
2026 		 * and then it being added back again before the drop can
2027 		 * finish.  If we merged anything we need to re-loop so we can
2028 		 * get a good ref.
2029 		 * Or we can get node references of the same type that weren't
2030 		 * merged when created due to bumps in the tree mod seq, and
2031 		 * we need to merge them to prevent adding an inline extent
2032 		 * backref before dropping it (triggering a BUG_ON at
2033 		 * insert_inline_extent_backref()).
2034 		 */
2035 		spin_lock(&locked_ref->lock);
2036 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2037 
2038 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2039 						      &actual_count);
2040 		if (ret < 0 && ret != -EAGAIN) {
2041 			/*
2042 			 * Error, btrfs_run_delayed_refs_for_head already
2043 			 * unlocked everything so just bail out
2044 			 */
2045 			return ret;
2046 		} else if (!ret) {
2047 			/*
2048 			 * Success, perform the usual cleanup of a processed
2049 			 * head
2050 			 */
2051 			ret = cleanup_ref_head(trans, locked_ref);
2052 			if (ret > 0 ) {
2053 				/* We dropped our lock, we need to loop. */
2054 				ret = 0;
2055 				continue;
2056 			} else if (ret) {
2057 				return ret;
2058 			}
2059 		}
2060 
2061 		/*
2062 		 * Either success case or btrfs_run_delayed_refs_for_head
2063 		 * returned -EAGAIN, meaning we need to select another head
2064 		 */
2065 
2066 		locked_ref = NULL;
2067 		cond_resched();
2068 	} while ((nr != -1 && count < nr) || locked_ref);
2069 
2070 	/*
2071 	 * We don't want to include ref heads since we can have empty ref heads
2072 	 * and those will drastically skew our runtime down since we just do
2073 	 * accounting, no actual extent tree updates.
2074 	 */
2075 	if (actual_count > 0) {
2076 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2077 		u64 avg;
2078 
2079 		/*
2080 		 * We weigh the current average higher than our current runtime
2081 		 * to avoid large swings in the average.
2082 		 */
2083 		spin_lock(&delayed_refs->lock);
2084 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2085 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2086 		spin_unlock(&delayed_refs->lock);
2087 	}
2088 	return 0;
2089 }
2090 
2091 #ifdef SCRAMBLE_DELAYED_REFS
2092 /*
2093  * Normally delayed refs get processed in ascending bytenr order. This
2094  * correlates in most cases to the order added. To expose dependencies on this
2095  * order, we start to process the tree in the middle instead of the beginning
2096  */
2097 static u64 find_middle(struct rb_root *root)
2098 {
2099 	struct rb_node *n = root->rb_node;
2100 	struct btrfs_delayed_ref_node *entry;
2101 	int alt = 1;
2102 	u64 middle;
2103 	u64 first = 0, last = 0;
2104 
2105 	n = rb_first(root);
2106 	if (n) {
2107 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2108 		first = entry->bytenr;
2109 	}
2110 	n = rb_last(root);
2111 	if (n) {
2112 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2113 		last = entry->bytenr;
2114 	}
2115 	n = root->rb_node;
2116 
2117 	while (n) {
2118 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2119 		WARN_ON(!entry->in_tree);
2120 
2121 		middle = entry->bytenr;
2122 
2123 		if (alt)
2124 			n = n->rb_left;
2125 		else
2126 			n = n->rb_right;
2127 
2128 		alt = 1 - alt;
2129 	}
2130 	return middle;
2131 }
2132 #endif
2133 
2134 /*
2135  * this starts processing the delayed reference count updates and
2136  * extent insertions we have queued up so far.  count can be
2137  * 0, which means to process everything in the tree at the start
2138  * of the run (but not newly added entries), or it can be some target
2139  * number you'd like to process.
2140  *
2141  * Returns 0 on success or if called with an aborted transaction
2142  * Returns <0 on error and aborts the transaction
2143  */
2144 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2145 			   unsigned long count)
2146 {
2147 	struct btrfs_fs_info *fs_info = trans->fs_info;
2148 	struct rb_node *node;
2149 	struct btrfs_delayed_ref_root *delayed_refs;
2150 	struct btrfs_delayed_ref_head *head;
2151 	int ret;
2152 	int run_all = count == (unsigned long)-1;
2153 
2154 	/* We'll clean this up in btrfs_cleanup_transaction */
2155 	if (TRANS_ABORTED(trans))
2156 		return 0;
2157 
2158 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2159 		return 0;
2160 
2161 	delayed_refs = &trans->transaction->delayed_refs;
2162 	if (count == 0)
2163 		count = atomic_read(&delayed_refs->num_entries) * 2;
2164 
2165 again:
2166 #ifdef SCRAMBLE_DELAYED_REFS
2167 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2168 #endif
2169 	ret = __btrfs_run_delayed_refs(trans, count);
2170 	if (ret < 0) {
2171 		btrfs_abort_transaction(trans, ret);
2172 		return ret;
2173 	}
2174 
2175 	if (run_all) {
2176 		btrfs_create_pending_block_groups(trans);
2177 
2178 		spin_lock(&delayed_refs->lock);
2179 		node = rb_first_cached(&delayed_refs->href_root);
2180 		if (!node) {
2181 			spin_unlock(&delayed_refs->lock);
2182 			goto out;
2183 		}
2184 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2185 				href_node);
2186 		refcount_inc(&head->refs);
2187 		spin_unlock(&delayed_refs->lock);
2188 
2189 		/* Mutex was contended, block until it's released and retry. */
2190 		mutex_lock(&head->mutex);
2191 		mutex_unlock(&head->mutex);
2192 
2193 		btrfs_put_delayed_ref_head(head);
2194 		cond_resched();
2195 		goto again;
2196 	}
2197 out:
2198 	return 0;
2199 }
2200 
2201 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2202 				struct extent_buffer *eb, u64 flags,
2203 				int level, int is_data)
2204 {
2205 	struct btrfs_delayed_extent_op *extent_op;
2206 	int ret;
2207 
2208 	extent_op = btrfs_alloc_delayed_extent_op();
2209 	if (!extent_op)
2210 		return -ENOMEM;
2211 
2212 	extent_op->flags_to_set = flags;
2213 	extent_op->update_flags = true;
2214 	extent_op->update_key = false;
2215 	extent_op->is_data = is_data ? true : false;
2216 	extent_op->level = level;
2217 
2218 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2219 	if (ret)
2220 		btrfs_free_delayed_extent_op(extent_op);
2221 	return ret;
2222 }
2223 
2224 static noinline int check_delayed_ref(struct btrfs_root *root,
2225 				      struct btrfs_path *path,
2226 				      u64 objectid, u64 offset, u64 bytenr)
2227 {
2228 	struct btrfs_delayed_ref_head *head;
2229 	struct btrfs_delayed_ref_node *ref;
2230 	struct btrfs_delayed_data_ref *data_ref;
2231 	struct btrfs_delayed_ref_root *delayed_refs;
2232 	struct btrfs_transaction *cur_trans;
2233 	struct rb_node *node;
2234 	int ret = 0;
2235 
2236 	spin_lock(&root->fs_info->trans_lock);
2237 	cur_trans = root->fs_info->running_transaction;
2238 	if (cur_trans)
2239 		refcount_inc(&cur_trans->use_count);
2240 	spin_unlock(&root->fs_info->trans_lock);
2241 	if (!cur_trans)
2242 		return 0;
2243 
2244 	delayed_refs = &cur_trans->delayed_refs;
2245 	spin_lock(&delayed_refs->lock);
2246 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2247 	if (!head) {
2248 		spin_unlock(&delayed_refs->lock);
2249 		btrfs_put_transaction(cur_trans);
2250 		return 0;
2251 	}
2252 
2253 	if (!mutex_trylock(&head->mutex)) {
2254 		refcount_inc(&head->refs);
2255 		spin_unlock(&delayed_refs->lock);
2256 
2257 		btrfs_release_path(path);
2258 
2259 		/*
2260 		 * Mutex was contended, block until it's released and let
2261 		 * caller try again
2262 		 */
2263 		mutex_lock(&head->mutex);
2264 		mutex_unlock(&head->mutex);
2265 		btrfs_put_delayed_ref_head(head);
2266 		btrfs_put_transaction(cur_trans);
2267 		return -EAGAIN;
2268 	}
2269 	spin_unlock(&delayed_refs->lock);
2270 
2271 	spin_lock(&head->lock);
2272 	/*
2273 	 * XXX: We should replace this with a proper search function in the
2274 	 * future.
2275 	 */
2276 	for (node = rb_first_cached(&head->ref_tree); node;
2277 	     node = rb_next(node)) {
2278 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2279 		/* If it's a shared ref we know a cross reference exists */
2280 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2281 			ret = 1;
2282 			break;
2283 		}
2284 
2285 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2286 
2287 		/*
2288 		 * If our ref doesn't match the one we're currently looking at
2289 		 * then we have a cross reference.
2290 		 */
2291 		if (data_ref->root != root->root_key.objectid ||
2292 		    data_ref->objectid != objectid ||
2293 		    data_ref->offset != offset) {
2294 			ret = 1;
2295 			break;
2296 		}
2297 	}
2298 	spin_unlock(&head->lock);
2299 	mutex_unlock(&head->mutex);
2300 	btrfs_put_transaction(cur_trans);
2301 	return ret;
2302 }
2303 
2304 static noinline int check_committed_ref(struct btrfs_root *root,
2305 					struct btrfs_path *path,
2306 					u64 objectid, u64 offset, u64 bytenr,
2307 					bool strict)
2308 {
2309 	struct btrfs_fs_info *fs_info = root->fs_info;
2310 	struct btrfs_root *extent_root = fs_info->extent_root;
2311 	struct extent_buffer *leaf;
2312 	struct btrfs_extent_data_ref *ref;
2313 	struct btrfs_extent_inline_ref *iref;
2314 	struct btrfs_extent_item *ei;
2315 	struct btrfs_key key;
2316 	u32 item_size;
2317 	int type;
2318 	int ret;
2319 
2320 	key.objectid = bytenr;
2321 	key.offset = (u64)-1;
2322 	key.type = BTRFS_EXTENT_ITEM_KEY;
2323 
2324 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2325 	if (ret < 0)
2326 		goto out;
2327 	BUG_ON(ret == 0); /* Corruption */
2328 
2329 	ret = -ENOENT;
2330 	if (path->slots[0] == 0)
2331 		goto out;
2332 
2333 	path->slots[0]--;
2334 	leaf = path->nodes[0];
2335 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336 
2337 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2338 		goto out;
2339 
2340 	ret = 1;
2341 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2342 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2343 
2344 	/* If extent item has more than 1 inline ref then it's shared */
2345 	if (item_size != sizeof(*ei) +
2346 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2347 		goto out;
2348 
2349 	/*
2350 	 * If extent created before last snapshot => it's shared unless the
2351 	 * snapshot has been deleted. Use the heuristic if strict is false.
2352 	 */
2353 	if (!strict &&
2354 	    (btrfs_extent_generation(leaf, ei) <=
2355 	     btrfs_root_last_snapshot(&root->root_item)))
2356 		goto out;
2357 
2358 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2359 
2360 	/* If this extent has SHARED_DATA_REF then it's shared */
2361 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2362 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2363 		goto out;
2364 
2365 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2366 	if (btrfs_extent_refs(leaf, ei) !=
2367 	    btrfs_extent_data_ref_count(leaf, ref) ||
2368 	    btrfs_extent_data_ref_root(leaf, ref) !=
2369 	    root->root_key.objectid ||
2370 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2371 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2372 		goto out;
2373 
2374 	ret = 0;
2375 out:
2376 	return ret;
2377 }
2378 
2379 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2380 			  u64 bytenr, bool strict)
2381 {
2382 	struct btrfs_path *path;
2383 	int ret;
2384 
2385 	path = btrfs_alloc_path();
2386 	if (!path)
2387 		return -ENOMEM;
2388 
2389 	do {
2390 		ret = check_committed_ref(root, path, objectid,
2391 					  offset, bytenr, strict);
2392 		if (ret && ret != -ENOENT)
2393 			goto out;
2394 
2395 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2396 	} while (ret == -EAGAIN);
2397 
2398 out:
2399 	btrfs_free_path(path);
2400 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2401 		WARN_ON(ret > 0);
2402 	return ret;
2403 }
2404 
2405 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2406 			   struct btrfs_root *root,
2407 			   struct extent_buffer *buf,
2408 			   int full_backref, int inc)
2409 {
2410 	struct btrfs_fs_info *fs_info = root->fs_info;
2411 	u64 bytenr;
2412 	u64 num_bytes;
2413 	u64 parent;
2414 	u64 ref_root;
2415 	u32 nritems;
2416 	struct btrfs_key key;
2417 	struct btrfs_file_extent_item *fi;
2418 	struct btrfs_ref generic_ref = { 0 };
2419 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2420 	int i;
2421 	int action;
2422 	int level;
2423 	int ret = 0;
2424 
2425 	if (btrfs_is_testing(fs_info))
2426 		return 0;
2427 
2428 	ref_root = btrfs_header_owner(buf);
2429 	nritems = btrfs_header_nritems(buf);
2430 	level = btrfs_header_level(buf);
2431 
2432 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2433 		return 0;
2434 
2435 	if (full_backref)
2436 		parent = buf->start;
2437 	else
2438 		parent = 0;
2439 	if (inc)
2440 		action = BTRFS_ADD_DELAYED_REF;
2441 	else
2442 		action = BTRFS_DROP_DELAYED_REF;
2443 
2444 	for (i = 0; i < nritems; i++) {
2445 		if (level == 0) {
2446 			btrfs_item_key_to_cpu(buf, &key, i);
2447 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2448 				continue;
2449 			fi = btrfs_item_ptr(buf, i,
2450 					    struct btrfs_file_extent_item);
2451 			if (btrfs_file_extent_type(buf, fi) ==
2452 			    BTRFS_FILE_EXTENT_INLINE)
2453 				continue;
2454 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2455 			if (bytenr == 0)
2456 				continue;
2457 
2458 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2459 			key.offset -= btrfs_file_extent_offset(buf, fi);
2460 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2461 					       num_bytes, parent);
2462 			generic_ref.real_root = root->root_key.objectid;
2463 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2464 					    key.offset);
2465 			generic_ref.skip_qgroup = for_reloc;
2466 			if (inc)
2467 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2468 			else
2469 				ret = btrfs_free_extent(trans, &generic_ref);
2470 			if (ret)
2471 				goto fail;
2472 		} else {
2473 			bytenr = btrfs_node_blockptr(buf, i);
2474 			num_bytes = fs_info->nodesize;
2475 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2476 					       num_bytes, parent);
2477 			generic_ref.real_root = root->root_key.objectid;
2478 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2479 			generic_ref.skip_qgroup = for_reloc;
2480 			if (inc)
2481 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2482 			else
2483 				ret = btrfs_free_extent(trans, &generic_ref);
2484 			if (ret)
2485 				goto fail;
2486 		}
2487 	}
2488 	return 0;
2489 fail:
2490 	return ret;
2491 }
2492 
2493 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2494 		  struct extent_buffer *buf, int full_backref)
2495 {
2496 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2497 }
2498 
2499 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2500 		  struct extent_buffer *buf, int full_backref)
2501 {
2502 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2503 }
2504 
2505 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2506 {
2507 	struct btrfs_block_group *block_group;
2508 	int readonly = 0;
2509 
2510 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2511 	if (!block_group || block_group->ro)
2512 		readonly = 1;
2513 	if (block_group)
2514 		btrfs_put_block_group(block_group);
2515 	return readonly;
2516 }
2517 
2518 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2519 {
2520 	struct btrfs_fs_info *fs_info = root->fs_info;
2521 	u64 flags;
2522 	u64 ret;
2523 
2524 	if (data)
2525 		flags = BTRFS_BLOCK_GROUP_DATA;
2526 	else if (root == fs_info->chunk_root)
2527 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2528 	else
2529 		flags = BTRFS_BLOCK_GROUP_METADATA;
2530 
2531 	ret = btrfs_get_alloc_profile(fs_info, flags);
2532 	return ret;
2533 }
2534 
2535 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2536 {
2537 	struct btrfs_block_group *cache;
2538 	u64 bytenr;
2539 
2540 	spin_lock(&fs_info->block_group_cache_lock);
2541 	bytenr = fs_info->first_logical_byte;
2542 	spin_unlock(&fs_info->block_group_cache_lock);
2543 
2544 	if (bytenr < (u64)-1)
2545 		return bytenr;
2546 
2547 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2548 	if (!cache)
2549 		return 0;
2550 
2551 	bytenr = cache->start;
2552 	btrfs_put_block_group(cache);
2553 
2554 	return bytenr;
2555 }
2556 
2557 static int pin_down_extent(struct btrfs_trans_handle *trans,
2558 			   struct btrfs_block_group *cache,
2559 			   u64 bytenr, u64 num_bytes, int reserved)
2560 {
2561 	struct btrfs_fs_info *fs_info = cache->fs_info;
2562 
2563 	spin_lock(&cache->space_info->lock);
2564 	spin_lock(&cache->lock);
2565 	cache->pinned += num_bytes;
2566 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2567 					     num_bytes);
2568 	if (reserved) {
2569 		cache->reserved -= num_bytes;
2570 		cache->space_info->bytes_reserved -= num_bytes;
2571 	}
2572 	spin_unlock(&cache->lock);
2573 	spin_unlock(&cache->space_info->lock);
2574 
2575 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2576 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2577 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2578 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2579 	return 0;
2580 }
2581 
2582 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2583 		     u64 bytenr, u64 num_bytes, int reserved)
2584 {
2585 	struct btrfs_block_group *cache;
2586 
2587 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2588 	BUG_ON(!cache); /* Logic error */
2589 
2590 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2591 
2592 	btrfs_put_block_group(cache);
2593 	return 0;
2594 }
2595 
2596 /*
2597  * this function must be called within transaction
2598  */
2599 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2600 				    u64 bytenr, u64 num_bytes)
2601 {
2602 	struct btrfs_block_group *cache;
2603 	int ret;
2604 
2605 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2606 	if (!cache)
2607 		return -EINVAL;
2608 
2609 	/*
2610 	 * pull in the free space cache (if any) so that our pin
2611 	 * removes the free space from the cache.  We have load_only set
2612 	 * to one because the slow code to read in the free extents does check
2613 	 * the pinned extents.
2614 	 */
2615 	btrfs_cache_block_group(cache, 1);
2616 	/*
2617 	 * Make sure we wait until the cache is completely built in case it is
2618 	 * missing or is invalid and therefore needs to be rebuilt.
2619 	 */
2620 	ret = btrfs_wait_block_group_cache_done(cache);
2621 	if (ret)
2622 		goto out;
2623 
2624 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2625 
2626 	/* remove us from the free space cache (if we're there at all) */
2627 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2628 out:
2629 	btrfs_put_block_group(cache);
2630 	return ret;
2631 }
2632 
2633 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2634 				   u64 start, u64 num_bytes)
2635 {
2636 	int ret;
2637 	struct btrfs_block_group *block_group;
2638 
2639 	block_group = btrfs_lookup_block_group(fs_info, start);
2640 	if (!block_group)
2641 		return -EINVAL;
2642 
2643 	btrfs_cache_block_group(block_group, 1);
2644 	/*
2645 	 * Make sure we wait until the cache is completely built in case it is
2646 	 * missing or is invalid and therefore needs to be rebuilt.
2647 	 */
2648 	ret = btrfs_wait_block_group_cache_done(block_group);
2649 	if (ret)
2650 		goto out;
2651 
2652 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2653 out:
2654 	btrfs_put_block_group(block_group);
2655 	return ret;
2656 }
2657 
2658 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2659 {
2660 	struct btrfs_fs_info *fs_info = eb->fs_info;
2661 	struct btrfs_file_extent_item *item;
2662 	struct btrfs_key key;
2663 	int found_type;
2664 	int i;
2665 	int ret = 0;
2666 
2667 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2668 		return 0;
2669 
2670 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2671 		btrfs_item_key_to_cpu(eb, &key, i);
2672 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2673 			continue;
2674 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2675 		found_type = btrfs_file_extent_type(eb, item);
2676 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2677 			continue;
2678 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2679 			continue;
2680 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2681 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2682 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2683 		if (ret)
2684 			break;
2685 	}
2686 
2687 	return ret;
2688 }
2689 
2690 static void
2691 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2692 {
2693 	atomic_inc(&bg->reservations);
2694 }
2695 
2696 /*
2697  * Returns the free cluster for the given space info and sets empty_cluster to
2698  * what it should be based on the mount options.
2699  */
2700 static struct btrfs_free_cluster *
2701 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2702 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2703 {
2704 	struct btrfs_free_cluster *ret = NULL;
2705 
2706 	*empty_cluster = 0;
2707 	if (btrfs_mixed_space_info(space_info))
2708 		return ret;
2709 
2710 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2711 		ret = &fs_info->meta_alloc_cluster;
2712 		if (btrfs_test_opt(fs_info, SSD))
2713 			*empty_cluster = SZ_2M;
2714 		else
2715 			*empty_cluster = SZ_64K;
2716 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2717 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2718 		*empty_cluster = SZ_2M;
2719 		ret = &fs_info->data_alloc_cluster;
2720 	}
2721 
2722 	return ret;
2723 }
2724 
2725 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2726 			      u64 start, u64 end,
2727 			      const bool return_free_space)
2728 {
2729 	struct btrfs_block_group *cache = NULL;
2730 	struct btrfs_space_info *space_info;
2731 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2732 	struct btrfs_free_cluster *cluster = NULL;
2733 	u64 len;
2734 	u64 total_unpinned = 0;
2735 	u64 empty_cluster = 0;
2736 	bool readonly;
2737 
2738 	while (start <= end) {
2739 		readonly = false;
2740 		if (!cache ||
2741 		    start >= cache->start + cache->length) {
2742 			if (cache)
2743 				btrfs_put_block_group(cache);
2744 			total_unpinned = 0;
2745 			cache = btrfs_lookup_block_group(fs_info, start);
2746 			BUG_ON(!cache); /* Logic error */
2747 
2748 			cluster = fetch_cluster_info(fs_info,
2749 						     cache->space_info,
2750 						     &empty_cluster);
2751 			empty_cluster <<= 1;
2752 		}
2753 
2754 		len = cache->start + cache->length - start;
2755 		len = min(len, end + 1 - start);
2756 
2757 		down_read(&fs_info->commit_root_sem);
2758 		if (start < cache->last_byte_to_unpin && return_free_space) {
2759 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2760 
2761 			btrfs_add_free_space(cache, start, add_len);
2762 		}
2763 		up_read(&fs_info->commit_root_sem);
2764 
2765 		start += len;
2766 		total_unpinned += len;
2767 		space_info = cache->space_info;
2768 
2769 		/*
2770 		 * If this space cluster has been marked as fragmented and we've
2771 		 * unpinned enough in this block group to potentially allow a
2772 		 * cluster to be created inside of it go ahead and clear the
2773 		 * fragmented check.
2774 		 */
2775 		if (cluster && cluster->fragmented &&
2776 		    total_unpinned > empty_cluster) {
2777 			spin_lock(&cluster->lock);
2778 			cluster->fragmented = 0;
2779 			spin_unlock(&cluster->lock);
2780 		}
2781 
2782 		spin_lock(&space_info->lock);
2783 		spin_lock(&cache->lock);
2784 		cache->pinned -= len;
2785 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2786 		space_info->max_extent_size = 0;
2787 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2788 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2789 		if (cache->ro) {
2790 			space_info->bytes_readonly += len;
2791 			readonly = true;
2792 		}
2793 		spin_unlock(&cache->lock);
2794 		if (!readonly && return_free_space &&
2795 		    global_rsv->space_info == space_info) {
2796 			u64 to_add = len;
2797 
2798 			spin_lock(&global_rsv->lock);
2799 			if (!global_rsv->full) {
2800 				to_add = min(len, global_rsv->size -
2801 					     global_rsv->reserved);
2802 				global_rsv->reserved += to_add;
2803 				btrfs_space_info_update_bytes_may_use(fs_info,
2804 						space_info, to_add);
2805 				if (global_rsv->reserved >= global_rsv->size)
2806 					global_rsv->full = 1;
2807 				len -= to_add;
2808 			}
2809 			spin_unlock(&global_rsv->lock);
2810 		}
2811 		/* Add to any tickets we may have */
2812 		if (!readonly && return_free_space && len)
2813 			btrfs_try_granting_tickets(fs_info, space_info);
2814 		spin_unlock(&space_info->lock);
2815 	}
2816 
2817 	if (cache)
2818 		btrfs_put_block_group(cache);
2819 	return 0;
2820 }
2821 
2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2823 {
2824 	struct btrfs_fs_info *fs_info = trans->fs_info;
2825 	struct btrfs_block_group *block_group, *tmp;
2826 	struct list_head *deleted_bgs;
2827 	struct extent_io_tree *unpin;
2828 	u64 start;
2829 	u64 end;
2830 	int ret;
2831 
2832 	unpin = &trans->transaction->pinned_extents;
2833 
2834 	while (!TRANS_ABORTED(trans)) {
2835 		struct extent_state *cached_state = NULL;
2836 
2837 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2838 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2839 					    EXTENT_DIRTY, &cached_state);
2840 		if (ret) {
2841 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2842 			break;
2843 		}
2844 
2845 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2846 			ret = btrfs_discard_extent(fs_info, start,
2847 						   end + 1 - start, NULL);
2848 
2849 		clear_extent_dirty(unpin, start, end, &cached_state);
2850 		unpin_extent_range(fs_info, start, end, true);
2851 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2852 		free_extent_state(cached_state);
2853 		cond_resched();
2854 	}
2855 
2856 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2857 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2858 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2859 	}
2860 
2861 	/*
2862 	 * Transaction is finished.  We don't need the lock anymore.  We
2863 	 * do need to clean up the block groups in case of a transaction
2864 	 * abort.
2865 	 */
2866 	deleted_bgs = &trans->transaction->deleted_bgs;
2867 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2868 		u64 trimmed = 0;
2869 
2870 		ret = -EROFS;
2871 		if (!TRANS_ABORTED(trans))
2872 			ret = btrfs_discard_extent(fs_info,
2873 						   block_group->start,
2874 						   block_group->length,
2875 						   &trimmed);
2876 
2877 		list_del_init(&block_group->bg_list);
2878 		btrfs_unfreeze_block_group(block_group);
2879 		btrfs_put_block_group(block_group);
2880 
2881 		if (ret) {
2882 			const char *errstr = btrfs_decode_error(ret);
2883 			btrfs_warn(fs_info,
2884 			   "discard failed while removing blockgroup: errno=%d %s",
2885 				   ret, errstr);
2886 		}
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 /*
2893  * Drop one or more refs of @node.
2894  *
2895  * 1. Locate the extent refs.
2896  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2897  *    Locate it, then reduce the refs number or remove the ref line completely.
2898  *
2899  * 2. Update the refs count in EXTENT/METADATA_ITEM
2900  *
2901  * Inline backref case:
2902  *
2903  * in extent tree we have:
2904  *
2905  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2906  *		refs 2 gen 6 flags DATA
2907  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2908  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2909  *
2910  * This function gets called with:
2911  *
2912  *    node->bytenr = 13631488
2913  *    node->num_bytes = 1048576
2914  *    root_objectid = FS_TREE
2915  *    owner_objectid = 257
2916  *    owner_offset = 0
2917  *    refs_to_drop = 1
2918  *
2919  * Then we should get some like:
2920  *
2921  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2922  *		refs 1 gen 6 flags DATA
2923  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2924  *
2925  * Keyed backref case:
2926  *
2927  * in extent tree we have:
2928  *
2929  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2930  *		refs 754 gen 6 flags DATA
2931  *	[...]
2932  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2933  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2934  *
2935  * This function get called with:
2936  *
2937  *    node->bytenr = 13631488
2938  *    node->num_bytes = 1048576
2939  *    root_objectid = FS_TREE
2940  *    owner_objectid = 866
2941  *    owner_offset = 0
2942  *    refs_to_drop = 1
2943  *
2944  * Then we should get some like:
2945  *
2946  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2947  *		refs 753 gen 6 flags DATA
2948  *
2949  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2950  */
2951 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2952 			       struct btrfs_delayed_ref_node *node, u64 parent,
2953 			       u64 root_objectid, u64 owner_objectid,
2954 			       u64 owner_offset, int refs_to_drop,
2955 			       struct btrfs_delayed_extent_op *extent_op)
2956 {
2957 	struct btrfs_fs_info *info = trans->fs_info;
2958 	struct btrfs_key key;
2959 	struct btrfs_path *path;
2960 	struct btrfs_root *extent_root = info->extent_root;
2961 	struct extent_buffer *leaf;
2962 	struct btrfs_extent_item *ei;
2963 	struct btrfs_extent_inline_ref *iref;
2964 	int ret;
2965 	int is_data;
2966 	int extent_slot = 0;
2967 	int found_extent = 0;
2968 	int num_to_del = 1;
2969 	u32 item_size;
2970 	u64 refs;
2971 	u64 bytenr = node->bytenr;
2972 	u64 num_bytes = node->num_bytes;
2973 	int last_ref = 0;
2974 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2975 
2976 	path = btrfs_alloc_path();
2977 	if (!path)
2978 		return -ENOMEM;
2979 
2980 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 
2982 	if (!is_data && refs_to_drop != 1) {
2983 		btrfs_crit(info,
2984 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2985 			   node->bytenr, refs_to_drop);
2986 		ret = -EINVAL;
2987 		btrfs_abort_transaction(trans, ret);
2988 		goto out;
2989 	}
2990 
2991 	if (is_data)
2992 		skinny_metadata = false;
2993 
2994 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2995 				    parent, root_objectid, owner_objectid,
2996 				    owner_offset);
2997 	if (ret == 0) {
2998 		/*
2999 		 * Either the inline backref or the SHARED_DATA_REF/
3000 		 * SHARED_BLOCK_REF is found
3001 		 *
3002 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3003 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3004 		 */
3005 		extent_slot = path->slots[0];
3006 		while (extent_slot >= 0) {
3007 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3008 					      extent_slot);
3009 			if (key.objectid != bytenr)
3010 				break;
3011 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3012 			    key.offset == num_bytes) {
3013 				found_extent = 1;
3014 				break;
3015 			}
3016 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3017 			    key.offset == owner_objectid) {
3018 				found_extent = 1;
3019 				break;
3020 			}
3021 
3022 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3023 			if (path->slots[0] - extent_slot > 5)
3024 				break;
3025 			extent_slot--;
3026 		}
3027 
3028 		if (!found_extent) {
3029 			if (iref) {
3030 				btrfs_crit(info,
3031 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3032 				btrfs_abort_transaction(trans, -EUCLEAN);
3033 				goto err_dump;
3034 			}
3035 			/* Must be SHARED_* item, remove the backref first */
3036 			ret = remove_extent_backref(trans, path, NULL,
3037 						    refs_to_drop,
3038 						    is_data, &last_ref);
3039 			if (ret) {
3040 				btrfs_abort_transaction(trans, ret);
3041 				goto out;
3042 			}
3043 			btrfs_release_path(path);
3044 
3045 			/* Slow path to locate EXTENT/METADATA_ITEM */
3046 			key.objectid = bytenr;
3047 			key.type = BTRFS_EXTENT_ITEM_KEY;
3048 			key.offset = num_bytes;
3049 
3050 			if (!is_data && skinny_metadata) {
3051 				key.type = BTRFS_METADATA_ITEM_KEY;
3052 				key.offset = owner_objectid;
3053 			}
3054 
3055 			ret = btrfs_search_slot(trans, extent_root,
3056 						&key, path, -1, 1);
3057 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3058 				/*
3059 				 * Couldn't find our skinny metadata item,
3060 				 * see if we have ye olde extent item.
3061 				 */
3062 				path->slots[0]--;
3063 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3064 						      path->slots[0]);
3065 				if (key.objectid == bytenr &&
3066 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3067 				    key.offset == num_bytes)
3068 					ret = 0;
3069 			}
3070 
3071 			if (ret > 0 && skinny_metadata) {
3072 				skinny_metadata = false;
3073 				key.objectid = bytenr;
3074 				key.type = BTRFS_EXTENT_ITEM_KEY;
3075 				key.offset = num_bytes;
3076 				btrfs_release_path(path);
3077 				ret = btrfs_search_slot(trans, extent_root,
3078 							&key, path, -1, 1);
3079 			}
3080 
3081 			if (ret) {
3082 				btrfs_err(info,
3083 					  "umm, got %d back from search, was looking for %llu",
3084 					  ret, bytenr);
3085 				if (ret > 0)
3086 					btrfs_print_leaf(path->nodes[0]);
3087 			}
3088 			if (ret < 0) {
3089 				btrfs_abort_transaction(trans, ret);
3090 				goto out;
3091 			}
3092 			extent_slot = path->slots[0];
3093 		}
3094 	} else if (WARN_ON(ret == -ENOENT)) {
3095 		btrfs_print_leaf(path->nodes[0]);
3096 		btrfs_err(info,
3097 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3098 			bytenr, parent, root_objectid, owner_objectid,
3099 			owner_offset);
3100 		btrfs_abort_transaction(trans, ret);
3101 		goto out;
3102 	} else {
3103 		btrfs_abort_transaction(trans, ret);
3104 		goto out;
3105 	}
3106 
3107 	leaf = path->nodes[0];
3108 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3109 	if (unlikely(item_size < sizeof(*ei))) {
3110 		ret = -EINVAL;
3111 		btrfs_print_v0_err(info);
3112 		btrfs_abort_transaction(trans, ret);
3113 		goto out;
3114 	}
3115 	ei = btrfs_item_ptr(leaf, extent_slot,
3116 			    struct btrfs_extent_item);
3117 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3118 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3119 		struct btrfs_tree_block_info *bi;
3120 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3121 			btrfs_crit(info,
3122 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3123 				   key.objectid, key.type, key.offset,
3124 				   owner_objectid, item_size,
3125 				   sizeof(*ei) + sizeof(*bi));
3126 			btrfs_abort_transaction(trans, -EUCLEAN);
3127 			goto err_dump;
3128 		}
3129 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3130 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3131 	}
3132 
3133 	refs = btrfs_extent_refs(leaf, ei);
3134 	if (refs < refs_to_drop) {
3135 		btrfs_crit(info,
3136 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3137 			  refs_to_drop, refs, bytenr);
3138 		btrfs_abort_transaction(trans, -EUCLEAN);
3139 		goto err_dump;
3140 	}
3141 	refs -= refs_to_drop;
3142 
3143 	if (refs > 0) {
3144 		if (extent_op)
3145 			__run_delayed_extent_op(extent_op, leaf, ei);
3146 		/*
3147 		 * In the case of inline back ref, reference count will
3148 		 * be updated by remove_extent_backref
3149 		 */
3150 		if (iref) {
3151 			if (!found_extent) {
3152 				btrfs_crit(info,
3153 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3154 				btrfs_abort_transaction(trans, -EUCLEAN);
3155 				goto err_dump;
3156 			}
3157 		} else {
3158 			btrfs_set_extent_refs(leaf, ei, refs);
3159 			btrfs_mark_buffer_dirty(leaf);
3160 		}
3161 		if (found_extent) {
3162 			ret = remove_extent_backref(trans, path, iref,
3163 						    refs_to_drop, is_data,
3164 						    &last_ref);
3165 			if (ret) {
3166 				btrfs_abort_transaction(trans, ret);
3167 				goto out;
3168 			}
3169 		}
3170 	} else {
3171 		/* In this branch refs == 1 */
3172 		if (found_extent) {
3173 			if (is_data && refs_to_drop !=
3174 			    extent_data_ref_count(path, iref)) {
3175 				btrfs_crit(info,
3176 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3177 					   extent_data_ref_count(path, iref),
3178 					   refs_to_drop);
3179 				btrfs_abort_transaction(trans, -EUCLEAN);
3180 				goto err_dump;
3181 			}
3182 			if (iref) {
3183 				if (path->slots[0] != extent_slot) {
3184 					btrfs_crit(info,
3185 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3186 						   key.objectid, key.type,
3187 						   key.offset);
3188 					btrfs_abort_transaction(trans, -EUCLEAN);
3189 					goto err_dump;
3190 				}
3191 			} else {
3192 				/*
3193 				 * No inline ref, we must be at SHARED_* item,
3194 				 * And it's single ref, it must be:
3195 				 * |	extent_slot	  ||extent_slot + 1|
3196 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3197 				 */
3198 				if (path->slots[0] != extent_slot + 1) {
3199 					btrfs_crit(info,
3200 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3201 					btrfs_abort_transaction(trans, -EUCLEAN);
3202 					goto err_dump;
3203 				}
3204 				path->slots[0] = extent_slot;
3205 				num_to_del = 2;
3206 			}
3207 		}
3208 
3209 		last_ref = 1;
3210 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3211 				      num_to_del);
3212 		if (ret) {
3213 			btrfs_abort_transaction(trans, ret);
3214 			goto out;
3215 		}
3216 		btrfs_release_path(path);
3217 
3218 		if (is_data) {
3219 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3220 					      num_bytes);
3221 			if (ret) {
3222 				btrfs_abort_transaction(trans, ret);
3223 				goto out;
3224 			}
3225 		}
3226 
3227 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3228 		if (ret) {
3229 			btrfs_abort_transaction(trans, ret);
3230 			goto out;
3231 		}
3232 
3233 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3234 		if (ret) {
3235 			btrfs_abort_transaction(trans, ret);
3236 			goto out;
3237 		}
3238 	}
3239 	btrfs_release_path(path);
3240 
3241 out:
3242 	btrfs_free_path(path);
3243 	return ret;
3244 err_dump:
3245 	/*
3246 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3247 	 * dump for debug build.
3248 	 */
3249 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3250 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3251 			   path->slots[0], extent_slot);
3252 		btrfs_print_leaf(path->nodes[0]);
3253 	}
3254 
3255 	btrfs_free_path(path);
3256 	return -EUCLEAN;
3257 }
3258 
3259 /*
3260  * when we free an block, it is possible (and likely) that we free the last
3261  * delayed ref for that extent as well.  This searches the delayed ref tree for
3262  * a given extent, and if there are no other delayed refs to be processed, it
3263  * removes it from the tree.
3264  */
3265 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3266 				      u64 bytenr)
3267 {
3268 	struct btrfs_delayed_ref_head *head;
3269 	struct btrfs_delayed_ref_root *delayed_refs;
3270 	int ret = 0;
3271 
3272 	delayed_refs = &trans->transaction->delayed_refs;
3273 	spin_lock(&delayed_refs->lock);
3274 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3275 	if (!head)
3276 		goto out_delayed_unlock;
3277 
3278 	spin_lock(&head->lock);
3279 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3280 		goto out;
3281 
3282 	if (cleanup_extent_op(head) != NULL)
3283 		goto out;
3284 
3285 	/*
3286 	 * waiting for the lock here would deadlock.  If someone else has it
3287 	 * locked they are already in the process of dropping it anyway
3288 	 */
3289 	if (!mutex_trylock(&head->mutex))
3290 		goto out;
3291 
3292 	btrfs_delete_ref_head(delayed_refs, head);
3293 	head->processing = 0;
3294 
3295 	spin_unlock(&head->lock);
3296 	spin_unlock(&delayed_refs->lock);
3297 
3298 	BUG_ON(head->extent_op);
3299 	if (head->must_insert_reserved)
3300 		ret = 1;
3301 
3302 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3303 	mutex_unlock(&head->mutex);
3304 	btrfs_put_delayed_ref_head(head);
3305 	return ret;
3306 out:
3307 	spin_unlock(&head->lock);
3308 
3309 out_delayed_unlock:
3310 	spin_unlock(&delayed_refs->lock);
3311 	return 0;
3312 }
3313 
3314 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3315 			   struct btrfs_root *root,
3316 			   struct extent_buffer *buf,
3317 			   u64 parent, int last_ref)
3318 {
3319 	struct btrfs_fs_info *fs_info = root->fs_info;
3320 	struct btrfs_ref generic_ref = { 0 };
3321 	int pin = 1;
3322 	int ret;
3323 
3324 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3325 			       buf->start, buf->len, parent);
3326 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3327 			    root->root_key.objectid);
3328 
3329 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3330 		int old_ref_mod, new_ref_mod;
3331 
3332 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3333 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3334 						 &old_ref_mod, &new_ref_mod);
3335 		BUG_ON(ret); /* -ENOMEM */
3336 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3337 	}
3338 
3339 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3340 		struct btrfs_block_group *cache;
3341 
3342 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3343 			ret = check_ref_cleanup(trans, buf->start);
3344 			if (!ret)
3345 				goto out;
3346 		}
3347 
3348 		pin = 0;
3349 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3350 
3351 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3352 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3353 			btrfs_put_block_group(cache);
3354 			goto out;
3355 		}
3356 
3357 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3358 
3359 		btrfs_add_free_space(cache, buf->start, buf->len);
3360 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3361 		btrfs_put_block_group(cache);
3362 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3363 	}
3364 out:
3365 	if (pin)
3366 		add_pinned_bytes(fs_info, &generic_ref);
3367 
3368 	if (last_ref) {
3369 		/*
3370 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3371 		 * matter anymore.
3372 		 */
3373 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3374 	}
3375 }
3376 
3377 /* Can return -ENOMEM */
3378 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3379 {
3380 	struct btrfs_fs_info *fs_info = trans->fs_info;
3381 	int old_ref_mod, new_ref_mod;
3382 	int ret;
3383 
3384 	if (btrfs_is_testing(fs_info))
3385 		return 0;
3386 
3387 	/*
3388 	 * tree log blocks never actually go into the extent allocation
3389 	 * tree, just update pinning info and exit early.
3390 	 */
3391 	if ((ref->type == BTRFS_REF_METADATA &&
3392 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3393 	    (ref->type == BTRFS_REF_DATA &&
3394 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3395 		/* unlocks the pinned mutex */
3396 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3397 		old_ref_mod = new_ref_mod = 0;
3398 		ret = 0;
3399 	} else if (ref->type == BTRFS_REF_METADATA) {
3400 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3401 						 &old_ref_mod, &new_ref_mod);
3402 	} else {
3403 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3404 						 &old_ref_mod, &new_ref_mod);
3405 	}
3406 
3407 	if (!((ref->type == BTRFS_REF_METADATA &&
3408 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3409 	      (ref->type == BTRFS_REF_DATA &&
3410 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3411 		btrfs_ref_tree_mod(fs_info, ref);
3412 
3413 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3414 		add_pinned_bytes(fs_info, ref);
3415 
3416 	return ret;
3417 }
3418 
3419 enum btrfs_loop_type {
3420 	LOOP_CACHING_NOWAIT,
3421 	LOOP_CACHING_WAIT,
3422 	LOOP_ALLOC_CHUNK,
3423 	LOOP_NO_EMPTY_SIZE,
3424 };
3425 
3426 static inline void
3427 btrfs_lock_block_group(struct btrfs_block_group *cache,
3428 		       int delalloc)
3429 {
3430 	if (delalloc)
3431 		down_read(&cache->data_rwsem);
3432 }
3433 
3434 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3435 		       int delalloc)
3436 {
3437 	btrfs_get_block_group(cache);
3438 	if (delalloc)
3439 		down_read(&cache->data_rwsem);
3440 }
3441 
3442 static struct btrfs_block_group *btrfs_lock_cluster(
3443 		   struct btrfs_block_group *block_group,
3444 		   struct btrfs_free_cluster *cluster,
3445 		   int delalloc)
3446 	__acquires(&cluster->refill_lock)
3447 {
3448 	struct btrfs_block_group *used_bg = NULL;
3449 
3450 	spin_lock(&cluster->refill_lock);
3451 	while (1) {
3452 		used_bg = cluster->block_group;
3453 		if (!used_bg)
3454 			return NULL;
3455 
3456 		if (used_bg == block_group)
3457 			return used_bg;
3458 
3459 		btrfs_get_block_group(used_bg);
3460 
3461 		if (!delalloc)
3462 			return used_bg;
3463 
3464 		if (down_read_trylock(&used_bg->data_rwsem))
3465 			return used_bg;
3466 
3467 		spin_unlock(&cluster->refill_lock);
3468 
3469 		/* We should only have one-level nested. */
3470 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3471 
3472 		spin_lock(&cluster->refill_lock);
3473 		if (used_bg == cluster->block_group)
3474 			return used_bg;
3475 
3476 		up_read(&used_bg->data_rwsem);
3477 		btrfs_put_block_group(used_bg);
3478 	}
3479 }
3480 
3481 static inline void
3482 btrfs_release_block_group(struct btrfs_block_group *cache,
3483 			 int delalloc)
3484 {
3485 	if (delalloc)
3486 		up_read(&cache->data_rwsem);
3487 	btrfs_put_block_group(cache);
3488 }
3489 
3490 enum btrfs_extent_allocation_policy {
3491 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3492 };
3493 
3494 /*
3495  * Structure used internally for find_free_extent() function.  Wraps needed
3496  * parameters.
3497  */
3498 struct find_free_extent_ctl {
3499 	/* Basic allocation info */
3500 	u64 num_bytes;
3501 	u64 empty_size;
3502 	u64 flags;
3503 	int delalloc;
3504 
3505 	/* Where to start the search inside the bg */
3506 	u64 search_start;
3507 
3508 	/* For clustered allocation */
3509 	u64 empty_cluster;
3510 	struct btrfs_free_cluster *last_ptr;
3511 	bool use_cluster;
3512 
3513 	bool have_caching_bg;
3514 	bool orig_have_caching_bg;
3515 
3516 	/* RAID index, converted from flags */
3517 	int index;
3518 
3519 	/*
3520 	 * Current loop number, check find_free_extent_update_loop() for details
3521 	 */
3522 	int loop;
3523 
3524 	/*
3525 	 * Whether we're refilling a cluster, if true we need to re-search
3526 	 * current block group but don't try to refill the cluster again.
3527 	 */
3528 	bool retry_clustered;
3529 
3530 	/*
3531 	 * Whether we're updating free space cache, if true we need to re-search
3532 	 * current block group but don't try updating free space cache again.
3533 	 */
3534 	bool retry_unclustered;
3535 
3536 	/* If current block group is cached */
3537 	int cached;
3538 
3539 	/* Max contiguous hole found */
3540 	u64 max_extent_size;
3541 
3542 	/* Total free space from free space cache, not always contiguous */
3543 	u64 total_free_space;
3544 
3545 	/* Found result */
3546 	u64 found_offset;
3547 
3548 	/* Hint where to start looking for an empty space */
3549 	u64 hint_byte;
3550 
3551 	/* Allocation policy */
3552 	enum btrfs_extent_allocation_policy policy;
3553 };
3554 
3555 
3556 /*
3557  * Helper function for find_free_extent().
3558  *
3559  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3560  * Return -EAGAIN to inform caller that we need to re-search this block group
3561  * Return >0 to inform caller that we find nothing
3562  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3563  */
3564 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3565 				      struct find_free_extent_ctl *ffe_ctl,
3566 				      struct btrfs_block_group **cluster_bg_ret)
3567 {
3568 	struct btrfs_block_group *cluster_bg;
3569 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3570 	u64 aligned_cluster;
3571 	u64 offset;
3572 	int ret;
3573 
3574 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3575 	if (!cluster_bg)
3576 		goto refill_cluster;
3577 	if (cluster_bg != bg && (cluster_bg->ro ||
3578 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3579 		goto release_cluster;
3580 
3581 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3582 			ffe_ctl->num_bytes, cluster_bg->start,
3583 			&ffe_ctl->max_extent_size);
3584 	if (offset) {
3585 		/* We have a block, we're done */
3586 		spin_unlock(&last_ptr->refill_lock);
3587 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3588 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3589 		*cluster_bg_ret = cluster_bg;
3590 		ffe_ctl->found_offset = offset;
3591 		return 0;
3592 	}
3593 	WARN_ON(last_ptr->block_group != cluster_bg);
3594 
3595 release_cluster:
3596 	/*
3597 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3598 	 * lets just skip it and let the allocator find whatever block it can
3599 	 * find. If we reach this point, we will have tried the cluster
3600 	 * allocator plenty of times and not have found anything, so we are
3601 	 * likely way too fragmented for the clustering stuff to find anything.
3602 	 *
3603 	 * However, if the cluster is taken from the current block group,
3604 	 * release the cluster first, so that we stand a better chance of
3605 	 * succeeding in the unclustered allocation.
3606 	 */
3607 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3608 		spin_unlock(&last_ptr->refill_lock);
3609 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3610 		return -ENOENT;
3611 	}
3612 
3613 	/* This cluster didn't work out, free it and start over */
3614 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3615 
3616 	if (cluster_bg != bg)
3617 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3618 
3619 refill_cluster:
3620 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3621 		spin_unlock(&last_ptr->refill_lock);
3622 		return -ENOENT;
3623 	}
3624 
3625 	aligned_cluster = max_t(u64,
3626 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3627 			bg->full_stripe_len);
3628 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3629 			ffe_ctl->num_bytes, aligned_cluster);
3630 	if (ret == 0) {
3631 		/* Now pull our allocation out of this cluster */
3632 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3633 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3634 				&ffe_ctl->max_extent_size);
3635 		if (offset) {
3636 			/* We found one, proceed */
3637 			spin_unlock(&last_ptr->refill_lock);
3638 			trace_btrfs_reserve_extent_cluster(bg,
3639 					ffe_ctl->search_start,
3640 					ffe_ctl->num_bytes);
3641 			ffe_ctl->found_offset = offset;
3642 			return 0;
3643 		}
3644 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3645 		   !ffe_ctl->retry_clustered) {
3646 		spin_unlock(&last_ptr->refill_lock);
3647 
3648 		ffe_ctl->retry_clustered = true;
3649 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3650 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3651 		return -EAGAIN;
3652 	}
3653 	/*
3654 	 * At this point we either didn't find a cluster or we weren't able to
3655 	 * allocate a block from our cluster.  Free the cluster we've been
3656 	 * trying to use, and go to the next block group.
3657 	 */
3658 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3659 	spin_unlock(&last_ptr->refill_lock);
3660 	return 1;
3661 }
3662 
3663 /*
3664  * Return >0 to inform caller that we find nothing
3665  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3666  * Return -EAGAIN to inform caller that we need to re-search this block group
3667  */
3668 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3669 					struct find_free_extent_ctl *ffe_ctl)
3670 {
3671 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3672 	u64 offset;
3673 
3674 	/*
3675 	 * We are doing an unclustered allocation, set the fragmented flag so
3676 	 * we don't bother trying to setup a cluster again until we get more
3677 	 * space.
3678 	 */
3679 	if (unlikely(last_ptr)) {
3680 		spin_lock(&last_ptr->lock);
3681 		last_ptr->fragmented = 1;
3682 		spin_unlock(&last_ptr->lock);
3683 	}
3684 	if (ffe_ctl->cached) {
3685 		struct btrfs_free_space_ctl *free_space_ctl;
3686 
3687 		free_space_ctl = bg->free_space_ctl;
3688 		spin_lock(&free_space_ctl->tree_lock);
3689 		if (free_space_ctl->free_space <
3690 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3691 		    ffe_ctl->empty_size) {
3692 			ffe_ctl->total_free_space = max_t(u64,
3693 					ffe_ctl->total_free_space,
3694 					free_space_ctl->free_space);
3695 			spin_unlock(&free_space_ctl->tree_lock);
3696 			return 1;
3697 		}
3698 		spin_unlock(&free_space_ctl->tree_lock);
3699 	}
3700 
3701 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3702 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3703 			&ffe_ctl->max_extent_size);
3704 
3705 	/*
3706 	 * If we didn't find a chunk, and we haven't failed on this block group
3707 	 * before, and this block group is in the middle of caching and we are
3708 	 * ok with waiting, then go ahead and wait for progress to be made, and
3709 	 * set @retry_unclustered to true.
3710 	 *
3711 	 * If @retry_unclustered is true then we've already waited on this
3712 	 * block group once and should move on to the next block group.
3713 	 */
3714 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3715 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3716 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3717 						      ffe_ctl->empty_size);
3718 		ffe_ctl->retry_unclustered = true;
3719 		return -EAGAIN;
3720 	} else if (!offset) {
3721 		return 1;
3722 	}
3723 	ffe_ctl->found_offset = offset;
3724 	return 0;
3725 }
3726 
3727 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3728 				   struct find_free_extent_ctl *ffe_ctl,
3729 				   struct btrfs_block_group **bg_ret)
3730 {
3731 	int ret;
3732 
3733 	/* We want to try and use the cluster allocator, so lets look there */
3734 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3735 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3736 		if (ret >= 0 || ret == -EAGAIN)
3737 			return ret;
3738 		/* ret == -ENOENT case falls through */
3739 	}
3740 
3741 	return find_free_extent_unclustered(block_group, ffe_ctl);
3742 }
3743 
3744 static int do_allocation(struct btrfs_block_group *block_group,
3745 			 struct find_free_extent_ctl *ffe_ctl,
3746 			 struct btrfs_block_group **bg_ret)
3747 {
3748 	switch (ffe_ctl->policy) {
3749 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3750 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3751 	default:
3752 		BUG();
3753 	}
3754 }
3755 
3756 static void release_block_group(struct btrfs_block_group *block_group,
3757 				struct find_free_extent_ctl *ffe_ctl,
3758 				int delalloc)
3759 {
3760 	switch (ffe_ctl->policy) {
3761 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3762 		ffe_ctl->retry_clustered = false;
3763 		ffe_ctl->retry_unclustered = false;
3764 		break;
3765 	default:
3766 		BUG();
3767 	}
3768 
3769 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3770 	       ffe_ctl->index);
3771 	btrfs_release_block_group(block_group, delalloc);
3772 }
3773 
3774 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3775 				   struct btrfs_key *ins)
3776 {
3777 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3778 
3779 	if (!ffe_ctl->use_cluster && last_ptr) {
3780 		spin_lock(&last_ptr->lock);
3781 		last_ptr->window_start = ins->objectid;
3782 		spin_unlock(&last_ptr->lock);
3783 	}
3784 }
3785 
3786 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3787 			 struct btrfs_key *ins)
3788 {
3789 	switch (ffe_ctl->policy) {
3790 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3791 		found_extent_clustered(ffe_ctl, ins);
3792 		break;
3793 	default:
3794 		BUG();
3795 	}
3796 }
3797 
3798 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3799 {
3800 	switch (ffe_ctl->policy) {
3801 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3802 		/*
3803 		 * If we can't allocate a new chunk we've already looped through
3804 		 * at least once, move on to the NO_EMPTY_SIZE case.
3805 		 */
3806 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3807 		return 0;
3808 	default:
3809 		BUG();
3810 	}
3811 }
3812 
3813 /*
3814  * Return >0 means caller needs to re-search for free extent
3815  * Return 0 means we have the needed free extent.
3816  * Return <0 means we failed to locate any free extent.
3817  */
3818 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3819 					struct btrfs_key *ins,
3820 					struct find_free_extent_ctl *ffe_ctl,
3821 					bool full_search)
3822 {
3823 	struct btrfs_root *root = fs_info->extent_root;
3824 	int ret;
3825 
3826 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3827 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3828 		ffe_ctl->orig_have_caching_bg = true;
3829 
3830 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3831 	    ffe_ctl->have_caching_bg)
3832 		return 1;
3833 
3834 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3835 		return 1;
3836 
3837 	if (ins->objectid) {
3838 		found_extent(ffe_ctl, ins);
3839 		return 0;
3840 	}
3841 
3842 	/*
3843 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3844 	 *			caching kthreads as we move along
3845 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3846 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3847 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3848 	 *		       again
3849 	 */
3850 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3851 		ffe_ctl->index = 0;
3852 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3853 			/*
3854 			 * We want to skip the LOOP_CACHING_WAIT step if we
3855 			 * don't have any uncached bgs and we've already done a
3856 			 * full search through.
3857 			 */
3858 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3859 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3860 			else
3861 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3862 		} else {
3863 			ffe_ctl->loop++;
3864 		}
3865 
3866 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3867 			struct btrfs_trans_handle *trans;
3868 			int exist = 0;
3869 
3870 			trans = current->journal_info;
3871 			if (trans)
3872 				exist = 1;
3873 			else
3874 				trans = btrfs_join_transaction(root);
3875 
3876 			if (IS_ERR(trans)) {
3877 				ret = PTR_ERR(trans);
3878 				return ret;
3879 			}
3880 
3881 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3882 						CHUNK_ALLOC_FORCE);
3883 
3884 			/* Do not bail out on ENOSPC since we can do more. */
3885 			if (ret == -ENOSPC)
3886 				ret = chunk_allocation_failed(ffe_ctl);
3887 			else if (ret < 0)
3888 				btrfs_abort_transaction(trans, ret);
3889 			else
3890 				ret = 0;
3891 			if (!exist)
3892 				btrfs_end_transaction(trans);
3893 			if (ret)
3894 				return ret;
3895 		}
3896 
3897 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3898 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3899 				return -ENOSPC;
3900 
3901 			/*
3902 			 * Don't loop again if we already have no empty_size and
3903 			 * no empty_cluster.
3904 			 */
3905 			if (ffe_ctl->empty_size == 0 &&
3906 			    ffe_ctl->empty_cluster == 0)
3907 				return -ENOSPC;
3908 			ffe_ctl->empty_size = 0;
3909 			ffe_ctl->empty_cluster = 0;
3910 		}
3911 		return 1;
3912 	}
3913 	return -ENOSPC;
3914 }
3915 
3916 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3917 					struct find_free_extent_ctl *ffe_ctl,
3918 					struct btrfs_space_info *space_info,
3919 					struct btrfs_key *ins)
3920 {
3921 	/*
3922 	 * If our free space is heavily fragmented we may not be able to make
3923 	 * big contiguous allocations, so instead of doing the expensive search
3924 	 * for free space, simply return ENOSPC with our max_extent_size so we
3925 	 * can go ahead and search for a more manageable chunk.
3926 	 *
3927 	 * If our max_extent_size is large enough for our allocation simply
3928 	 * disable clustering since we will likely not be able to find enough
3929 	 * space to create a cluster and induce latency trying.
3930 	 */
3931 	if (space_info->max_extent_size) {
3932 		spin_lock(&space_info->lock);
3933 		if (space_info->max_extent_size &&
3934 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3935 			ins->offset = space_info->max_extent_size;
3936 			spin_unlock(&space_info->lock);
3937 			return -ENOSPC;
3938 		} else if (space_info->max_extent_size) {
3939 			ffe_ctl->use_cluster = false;
3940 		}
3941 		spin_unlock(&space_info->lock);
3942 	}
3943 
3944 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3945 					       &ffe_ctl->empty_cluster);
3946 	if (ffe_ctl->last_ptr) {
3947 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3948 
3949 		spin_lock(&last_ptr->lock);
3950 		if (last_ptr->block_group)
3951 			ffe_ctl->hint_byte = last_ptr->window_start;
3952 		if (last_ptr->fragmented) {
3953 			/*
3954 			 * We still set window_start so we can keep track of the
3955 			 * last place we found an allocation to try and save
3956 			 * some time.
3957 			 */
3958 			ffe_ctl->hint_byte = last_ptr->window_start;
3959 			ffe_ctl->use_cluster = false;
3960 		}
3961 		spin_unlock(&last_ptr->lock);
3962 	}
3963 
3964 	return 0;
3965 }
3966 
3967 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3968 			      struct find_free_extent_ctl *ffe_ctl,
3969 			      struct btrfs_space_info *space_info,
3970 			      struct btrfs_key *ins)
3971 {
3972 	switch (ffe_ctl->policy) {
3973 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3974 		return prepare_allocation_clustered(fs_info, ffe_ctl,
3975 						    space_info, ins);
3976 	default:
3977 		BUG();
3978 	}
3979 }
3980 
3981 /*
3982  * walks the btree of allocated extents and find a hole of a given size.
3983  * The key ins is changed to record the hole:
3984  * ins->objectid == start position
3985  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3986  * ins->offset == the size of the hole.
3987  * Any available blocks before search_start are skipped.
3988  *
3989  * If there is no suitable free space, we will record the max size of
3990  * the free space extent currently.
3991  *
3992  * The overall logic and call chain:
3993  *
3994  * find_free_extent()
3995  * |- Iterate through all block groups
3996  * |  |- Get a valid block group
3997  * |  |- Try to do clustered allocation in that block group
3998  * |  |- Try to do unclustered allocation in that block group
3999  * |  |- Check if the result is valid
4000  * |  |  |- If valid, then exit
4001  * |  |- Jump to next block group
4002  * |
4003  * |- Push harder to find free extents
4004  *    |- If not found, re-iterate all block groups
4005  */
4006 static noinline int find_free_extent(struct btrfs_root *root,
4007 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
4008 				u64 hint_byte_orig, struct btrfs_key *ins,
4009 				u64 flags, int delalloc)
4010 {
4011 	struct btrfs_fs_info *fs_info = root->fs_info;
4012 	int ret = 0;
4013 	int cache_block_group_error = 0;
4014 	struct btrfs_block_group *block_group = NULL;
4015 	struct find_free_extent_ctl ffe_ctl = {0};
4016 	struct btrfs_space_info *space_info;
4017 	bool full_search = false;
4018 
4019 	WARN_ON(num_bytes < fs_info->sectorsize);
4020 
4021 	ffe_ctl.num_bytes = num_bytes;
4022 	ffe_ctl.empty_size = empty_size;
4023 	ffe_ctl.flags = flags;
4024 	ffe_ctl.search_start = 0;
4025 	ffe_ctl.delalloc = delalloc;
4026 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4027 	ffe_ctl.have_caching_bg = false;
4028 	ffe_ctl.orig_have_caching_bg = false;
4029 	ffe_ctl.found_offset = 0;
4030 	ffe_ctl.hint_byte = hint_byte_orig;
4031 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4032 
4033 	/* For clustered allocation */
4034 	ffe_ctl.retry_clustered = false;
4035 	ffe_ctl.retry_unclustered = false;
4036 	ffe_ctl.last_ptr = NULL;
4037 	ffe_ctl.use_cluster = true;
4038 
4039 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4040 	ins->objectid = 0;
4041 	ins->offset = 0;
4042 
4043 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4044 
4045 	space_info = btrfs_find_space_info(fs_info, flags);
4046 	if (!space_info) {
4047 		btrfs_err(fs_info, "No space info for %llu", flags);
4048 		return -ENOSPC;
4049 	}
4050 
4051 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4052 	if (ret < 0)
4053 		return ret;
4054 
4055 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4056 				   first_logical_byte(fs_info, 0));
4057 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4058 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4059 		block_group = btrfs_lookup_block_group(fs_info,
4060 						       ffe_ctl.search_start);
4061 		/*
4062 		 * we don't want to use the block group if it doesn't match our
4063 		 * allocation bits, or if its not cached.
4064 		 *
4065 		 * However if we are re-searching with an ideal block group
4066 		 * picked out then we don't care that the block group is cached.
4067 		 */
4068 		if (block_group && block_group_bits(block_group, flags) &&
4069 		    block_group->cached != BTRFS_CACHE_NO) {
4070 			down_read(&space_info->groups_sem);
4071 			if (list_empty(&block_group->list) ||
4072 			    block_group->ro) {
4073 				/*
4074 				 * someone is removing this block group,
4075 				 * we can't jump into the have_block_group
4076 				 * target because our list pointers are not
4077 				 * valid
4078 				 */
4079 				btrfs_put_block_group(block_group);
4080 				up_read(&space_info->groups_sem);
4081 			} else {
4082 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4083 						block_group->flags);
4084 				btrfs_lock_block_group(block_group, delalloc);
4085 				goto have_block_group;
4086 			}
4087 		} else if (block_group) {
4088 			btrfs_put_block_group(block_group);
4089 		}
4090 	}
4091 search:
4092 	ffe_ctl.have_caching_bg = false;
4093 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4094 	    ffe_ctl.index == 0)
4095 		full_search = true;
4096 	down_read(&space_info->groups_sem);
4097 	list_for_each_entry(block_group,
4098 			    &space_info->block_groups[ffe_ctl.index], list) {
4099 		struct btrfs_block_group *bg_ret;
4100 
4101 		/* If the block group is read-only, we can skip it entirely. */
4102 		if (unlikely(block_group->ro))
4103 			continue;
4104 
4105 		btrfs_grab_block_group(block_group, delalloc);
4106 		ffe_ctl.search_start = block_group->start;
4107 
4108 		/*
4109 		 * this can happen if we end up cycling through all the
4110 		 * raid types, but we want to make sure we only allocate
4111 		 * for the proper type.
4112 		 */
4113 		if (!block_group_bits(block_group, flags)) {
4114 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4115 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4116 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4117 				BTRFS_BLOCK_GROUP_RAID10;
4118 
4119 			/*
4120 			 * if they asked for extra copies and this block group
4121 			 * doesn't provide them, bail.  This does allow us to
4122 			 * fill raid0 from raid1.
4123 			 */
4124 			if ((flags & extra) && !(block_group->flags & extra))
4125 				goto loop;
4126 
4127 			/*
4128 			 * This block group has different flags than we want.
4129 			 * It's possible that we have MIXED_GROUP flag but no
4130 			 * block group is mixed.  Just skip such block group.
4131 			 */
4132 			btrfs_release_block_group(block_group, delalloc);
4133 			continue;
4134 		}
4135 
4136 have_block_group:
4137 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4138 		if (unlikely(!ffe_ctl.cached)) {
4139 			ffe_ctl.have_caching_bg = true;
4140 			ret = btrfs_cache_block_group(block_group, 0);
4141 
4142 			/*
4143 			 * If we get ENOMEM here or something else we want to
4144 			 * try other block groups, because it may not be fatal.
4145 			 * However if we can't find anything else we need to
4146 			 * save our return here so that we return the actual
4147 			 * error that caused problems, not ENOSPC.
4148 			 */
4149 			if (ret < 0) {
4150 				if (!cache_block_group_error)
4151 					cache_block_group_error = ret;
4152 				ret = 0;
4153 				goto loop;
4154 			}
4155 			ret = 0;
4156 		}
4157 
4158 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4159 			goto loop;
4160 
4161 		bg_ret = NULL;
4162 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4163 		if (ret == 0) {
4164 			if (bg_ret && bg_ret != block_group) {
4165 				btrfs_release_block_group(block_group, delalloc);
4166 				block_group = bg_ret;
4167 			}
4168 		} else if (ret == -EAGAIN) {
4169 			goto have_block_group;
4170 		} else if (ret > 0) {
4171 			goto loop;
4172 		}
4173 
4174 		/* Checks */
4175 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4176 					     fs_info->stripesize);
4177 
4178 		/* move on to the next group */
4179 		if (ffe_ctl.search_start + num_bytes >
4180 		    block_group->start + block_group->length) {
4181 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4182 					     num_bytes);
4183 			goto loop;
4184 		}
4185 
4186 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4187 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4188 				ffe_ctl.search_start - ffe_ctl.found_offset);
4189 
4190 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4191 				num_bytes, delalloc);
4192 		if (ret == -EAGAIN) {
4193 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4194 					     num_bytes);
4195 			goto loop;
4196 		}
4197 		btrfs_inc_block_group_reservations(block_group);
4198 
4199 		/* we are all good, lets return */
4200 		ins->objectid = ffe_ctl.search_start;
4201 		ins->offset = num_bytes;
4202 
4203 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4204 					   num_bytes);
4205 		btrfs_release_block_group(block_group, delalloc);
4206 		break;
4207 loop:
4208 		release_block_group(block_group, &ffe_ctl, delalloc);
4209 		cond_resched();
4210 	}
4211 	up_read(&space_info->groups_sem);
4212 
4213 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4214 	if (ret > 0)
4215 		goto search;
4216 
4217 	if (ret == -ENOSPC && !cache_block_group_error) {
4218 		/*
4219 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4220 		 * any contiguous hole.
4221 		 */
4222 		if (!ffe_ctl.max_extent_size)
4223 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4224 		spin_lock(&space_info->lock);
4225 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4226 		spin_unlock(&space_info->lock);
4227 		ins->offset = ffe_ctl.max_extent_size;
4228 	} else if (ret == -ENOSPC) {
4229 		ret = cache_block_group_error;
4230 	}
4231 	return ret;
4232 }
4233 
4234 /*
4235  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4236  *			  hole that is at least as big as @num_bytes.
4237  *
4238  * @root           -	The root that will contain this extent
4239  *
4240  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4241  *			is used for accounting purposes. This value differs
4242  *			from @num_bytes only in the case of compressed extents.
4243  *
4244  * @num_bytes      -	Number of bytes to allocate on-disk.
4245  *
4246  * @min_alloc_size -	Indicates the minimum amount of space that the
4247  *			allocator should try to satisfy. In some cases
4248  *			@num_bytes may be larger than what is required and if
4249  *			the filesystem is fragmented then allocation fails.
4250  *			However, the presence of @min_alloc_size gives a
4251  *			chance to try and satisfy the smaller allocation.
4252  *
4253  * @empty_size     -	A hint that you plan on doing more COW. This is the
4254  *			size in bytes the allocator should try to find free
4255  *			next to the block it returns.  This is just a hint and
4256  *			may be ignored by the allocator.
4257  *
4258  * @hint_byte      -	Hint to the allocator to start searching above the byte
4259  *			address passed. It might be ignored.
4260  *
4261  * @ins            -	This key is modified to record the found hole. It will
4262  *			have the following values:
4263  *			ins->objectid == start position
4264  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4265  *			ins->offset == the size of the hole.
4266  *
4267  * @is_data        -	Boolean flag indicating whether an extent is
4268  *			allocated for data (true) or metadata (false)
4269  *
4270  * @delalloc       -	Boolean flag indicating whether this allocation is for
4271  *			delalloc or not. If 'true' data_rwsem of block groups
4272  *			is going to be acquired.
4273  *
4274  *
4275  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4276  * case -ENOSPC is returned then @ins->offset will contain the size of the
4277  * largest available hole the allocator managed to find.
4278  */
4279 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4280 			 u64 num_bytes, u64 min_alloc_size,
4281 			 u64 empty_size, u64 hint_byte,
4282 			 struct btrfs_key *ins, int is_data, int delalloc)
4283 {
4284 	struct btrfs_fs_info *fs_info = root->fs_info;
4285 	bool final_tried = num_bytes == min_alloc_size;
4286 	u64 flags;
4287 	int ret;
4288 
4289 	flags = get_alloc_profile_by_root(root, is_data);
4290 again:
4291 	WARN_ON(num_bytes < fs_info->sectorsize);
4292 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4293 			       hint_byte, ins, flags, delalloc);
4294 	if (!ret && !is_data) {
4295 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4296 	} else if (ret == -ENOSPC) {
4297 		if (!final_tried && ins->offset) {
4298 			num_bytes = min(num_bytes >> 1, ins->offset);
4299 			num_bytes = round_down(num_bytes,
4300 					       fs_info->sectorsize);
4301 			num_bytes = max(num_bytes, min_alloc_size);
4302 			ram_bytes = num_bytes;
4303 			if (num_bytes == min_alloc_size)
4304 				final_tried = true;
4305 			goto again;
4306 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4307 			struct btrfs_space_info *sinfo;
4308 
4309 			sinfo = btrfs_find_space_info(fs_info, flags);
4310 			btrfs_err(fs_info,
4311 				  "allocation failed flags %llu, wanted %llu",
4312 				  flags, num_bytes);
4313 			if (sinfo)
4314 				btrfs_dump_space_info(fs_info, sinfo,
4315 						      num_bytes, 1);
4316 		}
4317 	}
4318 
4319 	return ret;
4320 }
4321 
4322 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4323 			       u64 start, u64 len, int delalloc)
4324 {
4325 	struct btrfs_block_group *cache;
4326 
4327 	cache = btrfs_lookup_block_group(fs_info, start);
4328 	if (!cache) {
4329 		btrfs_err(fs_info, "Unable to find block group for %llu",
4330 			  start);
4331 		return -ENOSPC;
4332 	}
4333 
4334 	btrfs_add_free_space(cache, start, len);
4335 	btrfs_free_reserved_bytes(cache, len, delalloc);
4336 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4337 
4338 	btrfs_put_block_group(cache);
4339 	return 0;
4340 }
4341 
4342 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4343 			      u64 len)
4344 {
4345 	struct btrfs_block_group *cache;
4346 	int ret = 0;
4347 
4348 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4349 	if (!cache) {
4350 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4351 			  start);
4352 		return -ENOSPC;
4353 	}
4354 
4355 	ret = pin_down_extent(trans, cache, start, len, 1);
4356 	btrfs_put_block_group(cache);
4357 	return ret;
4358 }
4359 
4360 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4361 				      u64 parent, u64 root_objectid,
4362 				      u64 flags, u64 owner, u64 offset,
4363 				      struct btrfs_key *ins, int ref_mod)
4364 {
4365 	struct btrfs_fs_info *fs_info = trans->fs_info;
4366 	int ret;
4367 	struct btrfs_extent_item *extent_item;
4368 	struct btrfs_extent_inline_ref *iref;
4369 	struct btrfs_path *path;
4370 	struct extent_buffer *leaf;
4371 	int type;
4372 	u32 size;
4373 
4374 	if (parent > 0)
4375 		type = BTRFS_SHARED_DATA_REF_KEY;
4376 	else
4377 		type = BTRFS_EXTENT_DATA_REF_KEY;
4378 
4379 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4380 
4381 	path = btrfs_alloc_path();
4382 	if (!path)
4383 		return -ENOMEM;
4384 
4385 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4386 				      ins, size);
4387 	if (ret) {
4388 		btrfs_free_path(path);
4389 		return ret;
4390 	}
4391 
4392 	leaf = path->nodes[0];
4393 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4394 				     struct btrfs_extent_item);
4395 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4396 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4397 	btrfs_set_extent_flags(leaf, extent_item,
4398 			       flags | BTRFS_EXTENT_FLAG_DATA);
4399 
4400 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4401 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4402 	if (parent > 0) {
4403 		struct btrfs_shared_data_ref *ref;
4404 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4405 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4406 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4407 	} else {
4408 		struct btrfs_extent_data_ref *ref;
4409 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4410 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4411 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4412 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4413 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4414 	}
4415 
4416 	btrfs_mark_buffer_dirty(path->nodes[0]);
4417 	btrfs_free_path(path);
4418 
4419 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4420 	if (ret)
4421 		return ret;
4422 
4423 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4424 	if (ret) { /* -ENOENT, logic error */
4425 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4426 			ins->objectid, ins->offset);
4427 		BUG();
4428 	}
4429 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4430 	return ret;
4431 }
4432 
4433 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4434 				     struct btrfs_delayed_ref_node *node,
4435 				     struct btrfs_delayed_extent_op *extent_op)
4436 {
4437 	struct btrfs_fs_info *fs_info = trans->fs_info;
4438 	int ret;
4439 	struct btrfs_extent_item *extent_item;
4440 	struct btrfs_key extent_key;
4441 	struct btrfs_tree_block_info *block_info;
4442 	struct btrfs_extent_inline_ref *iref;
4443 	struct btrfs_path *path;
4444 	struct extent_buffer *leaf;
4445 	struct btrfs_delayed_tree_ref *ref;
4446 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4447 	u64 num_bytes;
4448 	u64 flags = extent_op->flags_to_set;
4449 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4450 
4451 	ref = btrfs_delayed_node_to_tree_ref(node);
4452 
4453 	extent_key.objectid = node->bytenr;
4454 	if (skinny_metadata) {
4455 		extent_key.offset = ref->level;
4456 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4457 		num_bytes = fs_info->nodesize;
4458 	} else {
4459 		extent_key.offset = node->num_bytes;
4460 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4461 		size += sizeof(*block_info);
4462 		num_bytes = node->num_bytes;
4463 	}
4464 
4465 	path = btrfs_alloc_path();
4466 	if (!path)
4467 		return -ENOMEM;
4468 
4469 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4470 				      &extent_key, size);
4471 	if (ret) {
4472 		btrfs_free_path(path);
4473 		return ret;
4474 	}
4475 
4476 	leaf = path->nodes[0];
4477 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4478 				     struct btrfs_extent_item);
4479 	btrfs_set_extent_refs(leaf, extent_item, 1);
4480 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4481 	btrfs_set_extent_flags(leaf, extent_item,
4482 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4483 
4484 	if (skinny_metadata) {
4485 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4486 	} else {
4487 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4488 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4489 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4490 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4491 	}
4492 
4493 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4494 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4495 		btrfs_set_extent_inline_ref_type(leaf, iref,
4496 						 BTRFS_SHARED_BLOCK_REF_KEY);
4497 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4498 	} else {
4499 		btrfs_set_extent_inline_ref_type(leaf, iref,
4500 						 BTRFS_TREE_BLOCK_REF_KEY);
4501 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4502 	}
4503 
4504 	btrfs_mark_buffer_dirty(leaf);
4505 	btrfs_free_path(path);
4506 
4507 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4508 					  num_bytes);
4509 	if (ret)
4510 		return ret;
4511 
4512 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4513 				       fs_info->nodesize, 1);
4514 	if (ret) { /* -ENOENT, logic error */
4515 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4516 			extent_key.objectid, extent_key.offset);
4517 		BUG();
4518 	}
4519 
4520 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4521 					  fs_info->nodesize);
4522 	return ret;
4523 }
4524 
4525 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4526 				     struct btrfs_root *root, u64 owner,
4527 				     u64 offset, u64 ram_bytes,
4528 				     struct btrfs_key *ins)
4529 {
4530 	struct btrfs_ref generic_ref = { 0 };
4531 	int ret;
4532 
4533 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4534 
4535 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4536 			       ins->objectid, ins->offset, 0);
4537 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4538 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4539 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4540 					 ram_bytes, NULL, NULL);
4541 	return ret;
4542 }
4543 
4544 /*
4545  * this is used by the tree logging recovery code.  It records that
4546  * an extent has been allocated and makes sure to clear the free
4547  * space cache bits as well
4548  */
4549 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4550 				   u64 root_objectid, u64 owner, u64 offset,
4551 				   struct btrfs_key *ins)
4552 {
4553 	struct btrfs_fs_info *fs_info = trans->fs_info;
4554 	int ret;
4555 	struct btrfs_block_group *block_group;
4556 	struct btrfs_space_info *space_info;
4557 
4558 	/*
4559 	 * Mixed block groups will exclude before processing the log so we only
4560 	 * need to do the exclude dance if this fs isn't mixed.
4561 	 */
4562 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4563 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4564 					      ins->offset);
4565 		if (ret)
4566 			return ret;
4567 	}
4568 
4569 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4570 	if (!block_group)
4571 		return -EINVAL;
4572 
4573 	space_info = block_group->space_info;
4574 	spin_lock(&space_info->lock);
4575 	spin_lock(&block_group->lock);
4576 	space_info->bytes_reserved += ins->offset;
4577 	block_group->reserved += ins->offset;
4578 	spin_unlock(&block_group->lock);
4579 	spin_unlock(&space_info->lock);
4580 
4581 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4582 					 offset, ins, 1);
4583 	if (ret)
4584 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4585 	btrfs_put_block_group(block_group);
4586 	return ret;
4587 }
4588 
4589 static struct extent_buffer *
4590 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4591 		      u64 bytenr, int level, u64 owner,
4592 		      enum btrfs_lock_nesting nest)
4593 {
4594 	struct btrfs_fs_info *fs_info = root->fs_info;
4595 	struct extent_buffer *buf;
4596 
4597 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4598 	if (IS_ERR(buf))
4599 		return buf;
4600 
4601 	/*
4602 	 * Extra safety check in case the extent tree is corrupted and extent
4603 	 * allocator chooses to use a tree block which is already used and
4604 	 * locked.
4605 	 */
4606 	if (buf->lock_owner == current->pid) {
4607 		btrfs_err_rl(fs_info,
4608 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4609 			buf->start, btrfs_header_owner(buf), current->pid);
4610 		free_extent_buffer(buf);
4611 		return ERR_PTR(-EUCLEAN);
4612 	}
4613 
4614 	/*
4615 	 * This needs to stay, because we could allocate a freed block from an
4616 	 * old tree into a new tree, so we need to make sure this new block is
4617 	 * set to the appropriate level and owner.
4618 	 */
4619 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4620 	__btrfs_tree_lock(buf, nest);
4621 	btrfs_clean_tree_block(buf);
4622 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4623 
4624 	set_extent_buffer_uptodate(buf);
4625 
4626 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4627 	btrfs_set_header_level(buf, level);
4628 	btrfs_set_header_bytenr(buf, buf->start);
4629 	btrfs_set_header_generation(buf, trans->transid);
4630 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4631 	btrfs_set_header_owner(buf, owner);
4632 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4633 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4634 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4635 		buf->log_index = root->log_transid % 2;
4636 		/*
4637 		 * we allow two log transactions at a time, use different
4638 		 * EXTENT bit to differentiate dirty pages.
4639 		 */
4640 		if (buf->log_index == 0)
4641 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4642 					buf->start + buf->len - 1, GFP_NOFS);
4643 		else
4644 			set_extent_new(&root->dirty_log_pages, buf->start,
4645 					buf->start + buf->len - 1);
4646 	} else {
4647 		buf->log_index = -1;
4648 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4649 			 buf->start + buf->len - 1, GFP_NOFS);
4650 	}
4651 	trans->dirty = true;
4652 	/* this returns a buffer locked for blocking */
4653 	return buf;
4654 }
4655 
4656 /*
4657  * finds a free extent and does all the dirty work required for allocation
4658  * returns the tree buffer or an ERR_PTR on error.
4659  */
4660 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4661 					     struct btrfs_root *root,
4662 					     u64 parent, u64 root_objectid,
4663 					     const struct btrfs_disk_key *key,
4664 					     int level, u64 hint,
4665 					     u64 empty_size,
4666 					     enum btrfs_lock_nesting nest)
4667 {
4668 	struct btrfs_fs_info *fs_info = root->fs_info;
4669 	struct btrfs_key ins;
4670 	struct btrfs_block_rsv *block_rsv;
4671 	struct extent_buffer *buf;
4672 	struct btrfs_delayed_extent_op *extent_op;
4673 	struct btrfs_ref generic_ref = { 0 };
4674 	u64 flags = 0;
4675 	int ret;
4676 	u32 blocksize = fs_info->nodesize;
4677 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4678 
4679 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4680 	if (btrfs_is_testing(fs_info)) {
4681 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4682 					    level, root_objectid, nest);
4683 		if (!IS_ERR(buf))
4684 			root->alloc_bytenr += blocksize;
4685 		return buf;
4686 	}
4687 #endif
4688 
4689 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4690 	if (IS_ERR(block_rsv))
4691 		return ERR_CAST(block_rsv);
4692 
4693 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4694 				   empty_size, hint, &ins, 0, 0);
4695 	if (ret)
4696 		goto out_unuse;
4697 
4698 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4699 				    root_objectid, nest);
4700 	if (IS_ERR(buf)) {
4701 		ret = PTR_ERR(buf);
4702 		goto out_free_reserved;
4703 	}
4704 
4705 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4706 		if (parent == 0)
4707 			parent = ins.objectid;
4708 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4709 	} else
4710 		BUG_ON(parent > 0);
4711 
4712 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4713 		extent_op = btrfs_alloc_delayed_extent_op();
4714 		if (!extent_op) {
4715 			ret = -ENOMEM;
4716 			goto out_free_buf;
4717 		}
4718 		if (key)
4719 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4720 		else
4721 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4722 		extent_op->flags_to_set = flags;
4723 		extent_op->update_key = skinny_metadata ? false : true;
4724 		extent_op->update_flags = true;
4725 		extent_op->is_data = false;
4726 		extent_op->level = level;
4727 
4728 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4729 				       ins.objectid, ins.offset, parent);
4730 		generic_ref.real_root = root->root_key.objectid;
4731 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4732 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4733 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4734 						 extent_op, NULL, NULL);
4735 		if (ret)
4736 			goto out_free_delayed;
4737 	}
4738 	return buf;
4739 
4740 out_free_delayed:
4741 	btrfs_free_delayed_extent_op(extent_op);
4742 out_free_buf:
4743 	free_extent_buffer(buf);
4744 out_free_reserved:
4745 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4746 out_unuse:
4747 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4748 	return ERR_PTR(ret);
4749 }
4750 
4751 struct walk_control {
4752 	u64 refs[BTRFS_MAX_LEVEL];
4753 	u64 flags[BTRFS_MAX_LEVEL];
4754 	struct btrfs_key update_progress;
4755 	struct btrfs_key drop_progress;
4756 	int drop_level;
4757 	int stage;
4758 	int level;
4759 	int shared_level;
4760 	int update_ref;
4761 	int keep_locks;
4762 	int reada_slot;
4763 	int reada_count;
4764 	int restarted;
4765 };
4766 
4767 #define DROP_REFERENCE	1
4768 #define UPDATE_BACKREF	2
4769 
4770 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4771 				     struct btrfs_root *root,
4772 				     struct walk_control *wc,
4773 				     struct btrfs_path *path)
4774 {
4775 	struct btrfs_fs_info *fs_info = root->fs_info;
4776 	u64 bytenr;
4777 	u64 generation;
4778 	u64 refs;
4779 	u64 flags;
4780 	u32 nritems;
4781 	struct btrfs_key key;
4782 	struct extent_buffer *eb;
4783 	int ret;
4784 	int slot;
4785 	int nread = 0;
4786 
4787 	if (path->slots[wc->level] < wc->reada_slot) {
4788 		wc->reada_count = wc->reada_count * 2 / 3;
4789 		wc->reada_count = max(wc->reada_count, 2);
4790 	} else {
4791 		wc->reada_count = wc->reada_count * 3 / 2;
4792 		wc->reada_count = min_t(int, wc->reada_count,
4793 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4794 	}
4795 
4796 	eb = path->nodes[wc->level];
4797 	nritems = btrfs_header_nritems(eb);
4798 
4799 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4800 		if (nread >= wc->reada_count)
4801 			break;
4802 
4803 		cond_resched();
4804 		bytenr = btrfs_node_blockptr(eb, slot);
4805 		generation = btrfs_node_ptr_generation(eb, slot);
4806 
4807 		if (slot == path->slots[wc->level])
4808 			goto reada;
4809 
4810 		if (wc->stage == UPDATE_BACKREF &&
4811 		    generation <= root->root_key.offset)
4812 			continue;
4813 
4814 		/* We don't lock the tree block, it's OK to be racy here */
4815 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4816 					       wc->level - 1, 1, &refs,
4817 					       &flags);
4818 		/* We don't care about errors in readahead. */
4819 		if (ret < 0)
4820 			continue;
4821 		BUG_ON(refs == 0);
4822 
4823 		if (wc->stage == DROP_REFERENCE) {
4824 			if (refs == 1)
4825 				goto reada;
4826 
4827 			if (wc->level == 1 &&
4828 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4829 				continue;
4830 			if (!wc->update_ref ||
4831 			    generation <= root->root_key.offset)
4832 				continue;
4833 			btrfs_node_key_to_cpu(eb, &key, slot);
4834 			ret = btrfs_comp_cpu_keys(&key,
4835 						  &wc->update_progress);
4836 			if (ret < 0)
4837 				continue;
4838 		} else {
4839 			if (wc->level == 1 &&
4840 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4841 				continue;
4842 		}
4843 reada:
4844 		btrfs_readahead_node_child(eb, slot);
4845 		nread++;
4846 	}
4847 	wc->reada_slot = slot;
4848 }
4849 
4850 /*
4851  * helper to process tree block while walking down the tree.
4852  *
4853  * when wc->stage == UPDATE_BACKREF, this function updates
4854  * back refs for pointers in the block.
4855  *
4856  * NOTE: return value 1 means we should stop walking down.
4857  */
4858 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4859 				   struct btrfs_root *root,
4860 				   struct btrfs_path *path,
4861 				   struct walk_control *wc, int lookup_info)
4862 {
4863 	struct btrfs_fs_info *fs_info = root->fs_info;
4864 	int level = wc->level;
4865 	struct extent_buffer *eb = path->nodes[level];
4866 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4867 	int ret;
4868 
4869 	if (wc->stage == UPDATE_BACKREF &&
4870 	    btrfs_header_owner(eb) != root->root_key.objectid)
4871 		return 1;
4872 
4873 	/*
4874 	 * when reference count of tree block is 1, it won't increase
4875 	 * again. once full backref flag is set, we never clear it.
4876 	 */
4877 	if (lookup_info &&
4878 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4879 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4880 		BUG_ON(!path->locks[level]);
4881 		ret = btrfs_lookup_extent_info(trans, fs_info,
4882 					       eb->start, level, 1,
4883 					       &wc->refs[level],
4884 					       &wc->flags[level]);
4885 		BUG_ON(ret == -ENOMEM);
4886 		if (ret)
4887 			return ret;
4888 		BUG_ON(wc->refs[level] == 0);
4889 	}
4890 
4891 	if (wc->stage == DROP_REFERENCE) {
4892 		if (wc->refs[level] > 1)
4893 			return 1;
4894 
4895 		if (path->locks[level] && !wc->keep_locks) {
4896 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4897 			path->locks[level] = 0;
4898 		}
4899 		return 0;
4900 	}
4901 
4902 	/* wc->stage == UPDATE_BACKREF */
4903 	if (!(wc->flags[level] & flag)) {
4904 		BUG_ON(!path->locks[level]);
4905 		ret = btrfs_inc_ref(trans, root, eb, 1);
4906 		BUG_ON(ret); /* -ENOMEM */
4907 		ret = btrfs_dec_ref(trans, root, eb, 0);
4908 		BUG_ON(ret); /* -ENOMEM */
4909 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4910 						  btrfs_header_level(eb), 0);
4911 		BUG_ON(ret); /* -ENOMEM */
4912 		wc->flags[level] |= flag;
4913 	}
4914 
4915 	/*
4916 	 * the block is shared by multiple trees, so it's not good to
4917 	 * keep the tree lock
4918 	 */
4919 	if (path->locks[level] && level > 0) {
4920 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4921 		path->locks[level] = 0;
4922 	}
4923 	return 0;
4924 }
4925 
4926 /*
4927  * This is used to verify a ref exists for this root to deal with a bug where we
4928  * would have a drop_progress key that hadn't been updated properly.
4929  */
4930 static int check_ref_exists(struct btrfs_trans_handle *trans,
4931 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4932 			    int level)
4933 {
4934 	struct btrfs_path *path;
4935 	struct btrfs_extent_inline_ref *iref;
4936 	int ret;
4937 
4938 	path = btrfs_alloc_path();
4939 	if (!path)
4940 		return -ENOMEM;
4941 
4942 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4943 				    root->fs_info->nodesize, parent,
4944 				    root->root_key.objectid, level, 0);
4945 	btrfs_free_path(path);
4946 	if (ret == -ENOENT)
4947 		return 0;
4948 	if (ret < 0)
4949 		return ret;
4950 	return 1;
4951 }
4952 
4953 /*
4954  * helper to process tree block pointer.
4955  *
4956  * when wc->stage == DROP_REFERENCE, this function checks
4957  * reference count of the block pointed to. if the block
4958  * is shared and we need update back refs for the subtree
4959  * rooted at the block, this function changes wc->stage to
4960  * UPDATE_BACKREF. if the block is shared and there is no
4961  * need to update back, this function drops the reference
4962  * to the block.
4963  *
4964  * NOTE: return value 1 means we should stop walking down.
4965  */
4966 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4967 				 struct btrfs_root *root,
4968 				 struct btrfs_path *path,
4969 				 struct walk_control *wc, int *lookup_info)
4970 {
4971 	struct btrfs_fs_info *fs_info = root->fs_info;
4972 	u64 bytenr;
4973 	u64 generation;
4974 	u64 parent;
4975 	struct btrfs_key key;
4976 	struct btrfs_key first_key;
4977 	struct btrfs_ref ref = { 0 };
4978 	struct extent_buffer *next;
4979 	int level = wc->level;
4980 	int reada = 0;
4981 	int ret = 0;
4982 	bool need_account = false;
4983 
4984 	generation = btrfs_node_ptr_generation(path->nodes[level],
4985 					       path->slots[level]);
4986 	/*
4987 	 * if the lower level block was created before the snapshot
4988 	 * was created, we know there is no need to update back refs
4989 	 * for the subtree
4990 	 */
4991 	if (wc->stage == UPDATE_BACKREF &&
4992 	    generation <= root->root_key.offset) {
4993 		*lookup_info = 1;
4994 		return 1;
4995 	}
4996 
4997 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4998 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4999 			      path->slots[level]);
5000 
5001 	next = find_extent_buffer(fs_info, bytenr);
5002 	if (!next) {
5003 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5004 				root->root_key.objectid, level - 1);
5005 		if (IS_ERR(next))
5006 			return PTR_ERR(next);
5007 		reada = 1;
5008 	}
5009 	btrfs_tree_lock(next);
5010 
5011 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5012 				       &wc->refs[level - 1],
5013 				       &wc->flags[level - 1]);
5014 	if (ret < 0)
5015 		goto out_unlock;
5016 
5017 	if (unlikely(wc->refs[level - 1] == 0)) {
5018 		btrfs_err(fs_info, "Missing references.");
5019 		ret = -EIO;
5020 		goto out_unlock;
5021 	}
5022 	*lookup_info = 0;
5023 
5024 	if (wc->stage == DROP_REFERENCE) {
5025 		if (wc->refs[level - 1] > 1) {
5026 			need_account = true;
5027 			if (level == 1 &&
5028 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5029 				goto skip;
5030 
5031 			if (!wc->update_ref ||
5032 			    generation <= root->root_key.offset)
5033 				goto skip;
5034 
5035 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5036 					      path->slots[level]);
5037 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5038 			if (ret < 0)
5039 				goto skip;
5040 
5041 			wc->stage = UPDATE_BACKREF;
5042 			wc->shared_level = level - 1;
5043 		}
5044 	} else {
5045 		if (level == 1 &&
5046 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5047 			goto skip;
5048 	}
5049 
5050 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5051 		btrfs_tree_unlock(next);
5052 		free_extent_buffer(next);
5053 		next = NULL;
5054 		*lookup_info = 1;
5055 	}
5056 
5057 	if (!next) {
5058 		if (reada && level == 1)
5059 			reada_walk_down(trans, root, wc, path);
5060 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5061 				       generation, level - 1, &first_key);
5062 		if (IS_ERR(next)) {
5063 			return PTR_ERR(next);
5064 		} else if (!extent_buffer_uptodate(next)) {
5065 			free_extent_buffer(next);
5066 			return -EIO;
5067 		}
5068 		btrfs_tree_lock(next);
5069 	}
5070 
5071 	level--;
5072 	ASSERT(level == btrfs_header_level(next));
5073 	if (level != btrfs_header_level(next)) {
5074 		btrfs_err(root->fs_info, "mismatched level");
5075 		ret = -EIO;
5076 		goto out_unlock;
5077 	}
5078 	path->nodes[level] = next;
5079 	path->slots[level] = 0;
5080 	path->locks[level] = BTRFS_WRITE_LOCK;
5081 	wc->level = level;
5082 	if (wc->level == 1)
5083 		wc->reada_slot = 0;
5084 	return 0;
5085 skip:
5086 	wc->refs[level - 1] = 0;
5087 	wc->flags[level - 1] = 0;
5088 	if (wc->stage == DROP_REFERENCE) {
5089 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5090 			parent = path->nodes[level]->start;
5091 		} else {
5092 			ASSERT(root->root_key.objectid ==
5093 			       btrfs_header_owner(path->nodes[level]));
5094 			if (root->root_key.objectid !=
5095 			    btrfs_header_owner(path->nodes[level])) {
5096 				btrfs_err(root->fs_info,
5097 						"mismatched block owner");
5098 				ret = -EIO;
5099 				goto out_unlock;
5100 			}
5101 			parent = 0;
5102 		}
5103 
5104 		/*
5105 		 * If we had a drop_progress we need to verify the refs are set
5106 		 * as expected.  If we find our ref then we know that from here
5107 		 * on out everything should be correct, and we can clear the
5108 		 * ->restarted flag.
5109 		 */
5110 		if (wc->restarted) {
5111 			ret = check_ref_exists(trans, root, bytenr, parent,
5112 					       level - 1);
5113 			if (ret < 0)
5114 				goto out_unlock;
5115 			if (ret == 0)
5116 				goto no_delete;
5117 			ret = 0;
5118 			wc->restarted = 0;
5119 		}
5120 
5121 		/*
5122 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5123 		 * already accounted them at merge time (replace_path),
5124 		 * thus we could skip expensive subtree trace here.
5125 		 */
5126 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5127 		    need_account) {
5128 			ret = btrfs_qgroup_trace_subtree(trans, next,
5129 							 generation, level - 1);
5130 			if (ret) {
5131 				btrfs_err_rl(fs_info,
5132 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5133 					     ret);
5134 			}
5135 		}
5136 
5137 		/*
5138 		 * We need to update the next key in our walk control so we can
5139 		 * update the drop_progress key accordingly.  We don't care if
5140 		 * find_next_key doesn't find a key because that means we're at
5141 		 * the end and are going to clean up now.
5142 		 */
5143 		wc->drop_level = level;
5144 		find_next_key(path, level, &wc->drop_progress);
5145 
5146 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5147 				       fs_info->nodesize, parent);
5148 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5149 		ret = btrfs_free_extent(trans, &ref);
5150 		if (ret)
5151 			goto out_unlock;
5152 	}
5153 no_delete:
5154 	*lookup_info = 1;
5155 	ret = 1;
5156 
5157 out_unlock:
5158 	btrfs_tree_unlock(next);
5159 	free_extent_buffer(next);
5160 
5161 	return ret;
5162 }
5163 
5164 /*
5165  * helper to process tree block while walking up the tree.
5166  *
5167  * when wc->stage == DROP_REFERENCE, this function drops
5168  * reference count on the block.
5169  *
5170  * when wc->stage == UPDATE_BACKREF, this function changes
5171  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5172  * to UPDATE_BACKREF previously while processing the block.
5173  *
5174  * NOTE: return value 1 means we should stop walking up.
5175  */
5176 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5177 				 struct btrfs_root *root,
5178 				 struct btrfs_path *path,
5179 				 struct walk_control *wc)
5180 {
5181 	struct btrfs_fs_info *fs_info = root->fs_info;
5182 	int ret;
5183 	int level = wc->level;
5184 	struct extent_buffer *eb = path->nodes[level];
5185 	u64 parent = 0;
5186 
5187 	if (wc->stage == UPDATE_BACKREF) {
5188 		BUG_ON(wc->shared_level < level);
5189 		if (level < wc->shared_level)
5190 			goto out;
5191 
5192 		ret = find_next_key(path, level + 1, &wc->update_progress);
5193 		if (ret > 0)
5194 			wc->update_ref = 0;
5195 
5196 		wc->stage = DROP_REFERENCE;
5197 		wc->shared_level = -1;
5198 		path->slots[level] = 0;
5199 
5200 		/*
5201 		 * check reference count again if the block isn't locked.
5202 		 * we should start walking down the tree again if reference
5203 		 * count is one.
5204 		 */
5205 		if (!path->locks[level]) {
5206 			BUG_ON(level == 0);
5207 			btrfs_tree_lock(eb);
5208 			path->locks[level] = BTRFS_WRITE_LOCK;
5209 
5210 			ret = btrfs_lookup_extent_info(trans, fs_info,
5211 						       eb->start, level, 1,
5212 						       &wc->refs[level],
5213 						       &wc->flags[level]);
5214 			if (ret < 0) {
5215 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5216 				path->locks[level] = 0;
5217 				return ret;
5218 			}
5219 			BUG_ON(wc->refs[level] == 0);
5220 			if (wc->refs[level] == 1) {
5221 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5222 				path->locks[level] = 0;
5223 				return 1;
5224 			}
5225 		}
5226 	}
5227 
5228 	/* wc->stage == DROP_REFERENCE */
5229 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5230 
5231 	if (wc->refs[level] == 1) {
5232 		if (level == 0) {
5233 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5234 				ret = btrfs_dec_ref(trans, root, eb, 1);
5235 			else
5236 				ret = btrfs_dec_ref(trans, root, eb, 0);
5237 			BUG_ON(ret); /* -ENOMEM */
5238 			if (is_fstree(root->root_key.objectid)) {
5239 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5240 				if (ret) {
5241 					btrfs_err_rl(fs_info,
5242 	"error %d accounting leaf items, quota is out of sync, rescan required",
5243 					     ret);
5244 				}
5245 			}
5246 		}
5247 		/* make block locked assertion in btrfs_clean_tree_block happy */
5248 		if (!path->locks[level] &&
5249 		    btrfs_header_generation(eb) == trans->transid) {
5250 			btrfs_tree_lock(eb);
5251 			path->locks[level] = BTRFS_WRITE_LOCK;
5252 		}
5253 		btrfs_clean_tree_block(eb);
5254 	}
5255 
5256 	if (eb == root->node) {
5257 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5258 			parent = eb->start;
5259 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5260 			goto owner_mismatch;
5261 	} else {
5262 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5263 			parent = path->nodes[level + 1]->start;
5264 		else if (root->root_key.objectid !=
5265 			 btrfs_header_owner(path->nodes[level + 1]))
5266 			goto owner_mismatch;
5267 	}
5268 
5269 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5270 out:
5271 	wc->refs[level] = 0;
5272 	wc->flags[level] = 0;
5273 	return 0;
5274 
5275 owner_mismatch:
5276 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5277 		     btrfs_header_owner(eb), root->root_key.objectid);
5278 	return -EUCLEAN;
5279 }
5280 
5281 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5282 				   struct btrfs_root *root,
5283 				   struct btrfs_path *path,
5284 				   struct walk_control *wc)
5285 {
5286 	int level = wc->level;
5287 	int lookup_info = 1;
5288 	int ret;
5289 
5290 	while (level >= 0) {
5291 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5292 		if (ret > 0)
5293 			break;
5294 
5295 		if (level == 0)
5296 			break;
5297 
5298 		if (path->slots[level] >=
5299 		    btrfs_header_nritems(path->nodes[level]))
5300 			break;
5301 
5302 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5303 		if (ret > 0) {
5304 			path->slots[level]++;
5305 			continue;
5306 		} else if (ret < 0)
5307 			return ret;
5308 		level = wc->level;
5309 	}
5310 	return 0;
5311 }
5312 
5313 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5314 				 struct btrfs_root *root,
5315 				 struct btrfs_path *path,
5316 				 struct walk_control *wc, int max_level)
5317 {
5318 	int level = wc->level;
5319 	int ret;
5320 
5321 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5322 	while (level < max_level && path->nodes[level]) {
5323 		wc->level = level;
5324 		if (path->slots[level] + 1 <
5325 		    btrfs_header_nritems(path->nodes[level])) {
5326 			path->slots[level]++;
5327 			return 0;
5328 		} else {
5329 			ret = walk_up_proc(trans, root, path, wc);
5330 			if (ret > 0)
5331 				return 0;
5332 			if (ret < 0)
5333 				return ret;
5334 
5335 			if (path->locks[level]) {
5336 				btrfs_tree_unlock_rw(path->nodes[level],
5337 						     path->locks[level]);
5338 				path->locks[level] = 0;
5339 			}
5340 			free_extent_buffer(path->nodes[level]);
5341 			path->nodes[level] = NULL;
5342 			level++;
5343 		}
5344 	}
5345 	return 1;
5346 }
5347 
5348 /*
5349  * drop a subvolume tree.
5350  *
5351  * this function traverses the tree freeing any blocks that only
5352  * referenced by the tree.
5353  *
5354  * when a shared tree block is found. this function decreases its
5355  * reference count by one. if update_ref is true, this function
5356  * also make sure backrefs for the shared block and all lower level
5357  * blocks are properly updated.
5358  *
5359  * If called with for_reloc == 0, may exit early with -EAGAIN
5360  */
5361 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5362 {
5363 	struct btrfs_fs_info *fs_info = root->fs_info;
5364 	struct btrfs_path *path;
5365 	struct btrfs_trans_handle *trans;
5366 	struct btrfs_root *tree_root = fs_info->tree_root;
5367 	struct btrfs_root_item *root_item = &root->root_item;
5368 	struct walk_control *wc;
5369 	struct btrfs_key key;
5370 	int err = 0;
5371 	int ret;
5372 	int level;
5373 	bool root_dropped = false;
5374 
5375 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5376 
5377 	path = btrfs_alloc_path();
5378 	if (!path) {
5379 		err = -ENOMEM;
5380 		goto out;
5381 	}
5382 
5383 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5384 	if (!wc) {
5385 		btrfs_free_path(path);
5386 		err = -ENOMEM;
5387 		goto out;
5388 	}
5389 
5390 	/*
5391 	 * Use join to avoid potential EINTR from transaction start. See
5392 	 * wait_reserve_ticket and the whole reservation callchain.
5393 	 */
5394 	if (for_reloc)
5395 		trans = btrfs_join_transaction(tree_root);
5396 	else
5397 		trans = btrfs_start_transaction(tree_root, 0);
5398 	if (IS_ERR(trans)) {
5399 		err = PTR_ERR(trans);
5400 		goto out_free;
5401 	}
5402 
5403 	err = btrfs_run_delayed_items(trans);
5404 	if (err)
5405 		goto out_end_trans;
5406 
5407 	/*
5408 	 * This will help us catch people modifying the fs tree while we're
5409 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5410 	 * dropped as we unlock the root node and parent nodes as we walk down
5411 	 * the tree, assuming nothing will change.  If something does change
5412 	 * then we'll have stale information and drop references to blocks we've
5413 	 * already dropped.
5414 	 */
5415 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5416 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5417 		level = btrfs_header_level(root->node);
5418 		path->nodes[level] = btrfs_lock_root_node(root);
5419 		path->slots[level] = 0;
5420 		path->locks[level] = BTRFS_WRITE_LOCK;
5421 		memset(&wc->update_progress, 0,
5422 		       sizeof(wc->update_progress));
5423 	} else {
5424 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5425 		memcpy(&wc->update_progress, &key,
5426 		       sizeof(wc->update_progress));
5427 
5428 		level = btrfs_root_drop_level(root_item);
5429 		BUG_ON(level == 0);
5430 		path->lowest_level = level;
5431 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5432 		path->lowest_level = 0;
5433 		if (ret < 0) {
5434 			err = ret;
5435 			goto out_end_trans;
5436 		}
5437 		WARN_ON(ret > 0);
5438 
5439 		/*
5440 		 * unlock our path, this is safe because only this
5441 		 * function is allowed to delete this snapshot
5442 		 */
5443 		btrfs_unlock_up_safe(path, 0);
5444 
5445 		level = btrfs_header_level(root->node);
5446 		while (1) {
5447 			btrfs_tree_lock(path->nodes[level]);
5448 			path->locks[level] = BTRFS_WRITE_LOCK;
5449 
5450 			ret = btrfs_lookup_extent_info(trans, fs_info,
5451 						path->nodes[level]->start,
5452 						level, 1, &wc->refs[level],
5453 						&wc->flags[level]);
5454 			if (ret < 0) {
5455 				err = ret;
5456 				goto out_end_trans;
5457 			}
5458 			BUG_ON(wc->refs[level] == 0);
5459 
5460 			if (level == btrfs_root_drop_level(root_item))
5461 				break;
5462 
5463 			btrfs_tree_unlock(path->nodes[level]);
5464 			path->locks[level] = 0;
5465 			WARN_ON(wc->refs[level] != 1);
5466 			level--;
5467 		}
5468 	}
5469 
5470 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5471 	wc->level = level;
5472 	wc->shared_level = -1;
5473 	wc->stage = DROP_REFERENCE;
5474 	wc->update_ref = update_ref;
5475 	wc->keep_locks = 0;
5476 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5477 
5478 	while (1) {
5479 
5480 		ret = walk_down_tree(trans, root, path, wc);
5481 		if (ret < 0) {
5482 			err = ret;
5483 			break;
5484 		}
5485 
5486 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5487 		if (ret < 0) {
5488 			err = ret;
5489 			break;
5490 		}
5491 
5492 		if (ret > 0) {
5493 			BUG_ON(wc->stage != DROP_REFERENCE);
5494 			break;
5495 		}
5496 
5497 		if (wc->stage == DROP_REFERENCE) {
5498 			wc->drop_level = wc->level;
5499 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5500 					      &wc->drop_progress,
5501 					      path->slots[wc->drop_level]);
5502 		}
5503 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5504 				      &wc->drop_progress);
5505 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5506 
5507 		BUG_ON(wc->level == 0);
5508 		if (btrfs_should_end_transaction(trans) ||
5509 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5510 			ret = btrfs_update_root(trans, tree_root,
5511 						&root->root_key,
5512 						root_item);
5513 			if (ret) {
5514 				btrfs_abort_transaction(trans, ret);
5515 				err = ret;
5516 				goto out_end_trans;
5517 			}
5518 
5519 			btrfs_end_transaction_throttle(trans);
5520 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5521 				btrfs_debug(fs_info,
5522 					    "drop snapshot early exit");
5523 				err = -EAGAIN;
5524 				goto out_free;
5525 			}
5526 
5527 		       /*
5528 			* Use join to avoid potential EINTR from transaction
5529 			* start. See wait_reserve_ticket and the whole
5530 			* reservation callchain.
5531 			*/
5532 			if (for_reloc)
5533 				trans = btrfs_join_transaction(tree_root);
5534 			else
5535 				trans = btrfs_start_transaction(tree_root, 0);
5536 			if (IS_ERR(trans)) {
5537 				err = PTR_ERR(trans);
5538 				goto out_free;
5539 			}
5540 		}
5541 	}
5542 	btrfs_release_path(path);
5543 	if (err)
5544 		goto out_end_trans;
5545 
5546 	ret = btrfs_del_root(trans, &root->root_key);
5547 	if (ret) {
5548 		btrfs_abort_transaction(trans, ret);
5549 		err = ret;
5550 		goto out_end_trans;
5551 	}
5552 
5553 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5554 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5555 				      NULL, NULL);
5556 		if (ret < 0) {
5557 			btrfs_abort_transaction(trans, ret);
5558 			err = ret;
5559 			goto out_end_trans;
5560 		} else if (ret > 0) {
5561 			/* if we fail to delete the orphan item this time
5562 			 * around, it'll get picked up the next time.
5563 			 *
5564 			 * The most common failure here is just -ENOENT.
5565 			 */
5566 			btrfs_del_orphan_item(trans, tree_root,
5567 					      root->root_key.objectid);
5568 		}
5569 	}
5570 
5571 	/*
5572 	 * This subvolume is going to be completely dropped, and won't be
5573 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5574 	 * commit transaction time.  So free it here manually.
5575 	 */
5576 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5577 	btrfs_qgroup_free_meta_all_pertrans(root);
5578 
5579 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5580 		btrfs_add_dropped_root(trans, root);
5581 	else
5582 		btrfs_put_root(root);
5583 	root_dropped = true;
5584 out_end_trans:
5585 	btrfs_end_transaction_throttle(trans);
5586 out_free:
5587 	kfree(wc);
5588 	btrfs_free_path(path);
5589 out:
5590 	/*
5591 	 * So if we need to stop dropping the snapshot for whatever reason we
5592 	 * need to make sure to add it back to the dead root list so that we
5593 	 * keep trying to do the work later.  This also cleans up roots if we
5594 	 * don't have it in the radix (like when we recover after a power fail
5595 	 * or unmount) so we don't leak memory.
5596 	 */
5597 	if (!for_reloc && !root_dropped)
5598 		btrfs_add_dead_root(root);
5599 	return err;
5600 }
5601 
5602 /*
5603  * drop subtree rooted at tree block 'node'.
5604  *
5605  * NOTE: this function will unlock and release tree block 'node'
5606  * only used by relocation code
5607  */
5608 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5609 			struct btrfs_root *root,
5610 			struct extent_buffer *node,
5611 			struct extent_buffer *parent)
5612 {
5613 	struct btrfs_fs_info *fs_info = root->fs_info;
5614 	struct btrfs_path *path;
5615 	struct walk_control *wc;
5616 	int level;
5617 	int parent_level;
5618 	int ret = 0;
5619 	int wret;
5620 
5621 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5622 
5623 	path = btrfs_alloc_path();
5624 	if (!path)
5625 		return -ENOMEM;
5626 
5627 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5628 	if (!wc) {
5629 		btrfs_free_path(path);
5630 		return -ENOMEM;
5631 	}
5632 
5633 	btrfs_assert_tree_locked(parent);
5634 	parent_level = btrfs_header_level(parent);
5635 	atomic_inc(&parent->refs);
5636 	path->nodes[parent_level] = parent;
5637 	path->slots[parent_level] = btrfs_header_nritems(parent);
5638 
5639 	btrfs_assert_tree_locked(node);
5640 	level = btrfs_header_level(node);
5641 	path->nodes[level] = node;
5642 	path->slots[level] = 0;
5643 	path->locks[level] = BTRFS_WRITE_LOCK;
5644 
5645 	wc->refs[parent_level] = 1;
5646 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5647 	wc->level = level;
5648 	wc->shared_level = -1;
5649 	wc->stage = DROP_REFERENCE;
5650 	wc->update_ref = 0;
5651 	wc->keep_locks = 1;
5652 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5653 
5654 	while (1) {
5655 		wret = walk_down_tree(trans, root, path, wc);
5656 		if (wret < 0) {
5657 			ret = wret;
5658 			break;
5659 		}
5660 
5661 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5662 		if (wret < 0)
5663 			ret = wret;
5664 		if (wret != 0)
5665 			break;
5666 	}
5667 
5668 	kfree(wc);
5669 	btrfs_free_path(path);
5670 	return ret;
5671 }
5672 
5673 /*
5674  * helper to account the unused space of all the readonly block group in the
5675  * space_info. takes mirrors into account.
5676  */
5677 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5678 {
5679 	struct btrfs_block_group *block_group;
5680 	u64 free_bytes = 0;
5681 	int factor;
5682 
5683 	/* It's df, we don't care if it's racy */
5684 	if (list_empty(&sinfo->ro_bgs))
5685 		return 0;
5686 
5687 	spin_lock(&sinfo->lock);
5688 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5689 		spin_lock(&block_group->lock);
5690 
5691 		if (!block_group->ro) {
5692 			spin_unlock(&block_group->lock);
5693 			continue;
5694 		}
5695 
5696 		factor = btrfs_bg_type_to_factor(block_group->flags);
5697 		free_bytes += (block_group->length -
5698 			       block_group->used) * factor;
5699 
5700 		spin_unlock(&block_group->lock);
5701 	}
5702 	spin_unlock(&sinfo->lock);
5703 
5704 	return free_bytes;
5705 }
5706 
5707 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5708 				   u64 start, u64 end)
5709 {
5710 	return unpin_extent_range(fs_info, start, end, false);
5711 }
5712 
5713 /*
5714  * It used to be that old block groups would be left around forever.
5715  * Iterating over them would be enough to trim unused space.  Since we
5716  * now automatically remove them, we also need to iterate over unallocated
5717  * space.
5718  *
5719  * We don't want a transaction for this since the discard may take a
5720  * substantial amount of time.  We don't require that a transaction be
5721  * running, but we do need to take a running transaction into account
5722  * to ensure that we're not discarding chunks that were released or
5723  * allocated in the current transaction.
5724  *
5725  * Holding the chunks lock will prevent other threads from allocating
5726  * or releasing chunks, but it won't prevent a running transaction
5727  * from committing and releasing the memory that the pending chunks
5728  * list head uses.  For that, we need to take a reference to the
5729  * transaction and hold the commit root sem.  We only need to hold
5730  * it while performing the free space search since we have already
5731  * held back allocations.
5732  */
5733 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5734 {
5735 	u64 start = SZ_1M, len = 0, end = 0;
5736 	int ret;
5737 
5738 	*trimmed = 0;
5739 
5740 	/* Discard not supported = nothing to do. */
5741 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5742 		return 0;
5743 
5744 	/* Not writable = nothing to do. */
5745 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5746 		return 0;
5747 
5748 	/* No free space = nothing to do. */
5749 	if (device->total_bytes <= device->bytes_used)
5750 		return 0;
5751 
5752 	ret = 0;
5753 
5754 	while (1) {
5755 		struct btrfs_fs_info *fs_info = device->fs_info;
5756 		u64 bytes;
5757 
5758 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5759 		if (ret)
5760 			break;
5761 
5762 		find_first_clear_extent_bit(&device->alloc_state, start,
5763 					    &start, &end,
5764 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5765 
5766 		/* Check if there are any CHUNK_* bits left */
5767 		if (start > device->total_bytes) {
5768 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5769 			btrfs_warn_in_rcu(fs_info,
5770 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5771 					  start, end - start + 1,
5772 					  rcu_str_deref(device->name),
5773 					  device->total_bytes);
5774 			mutex_unlock(&fs_info->chunk_mutex);
5775 			ret = 0;
5776 			break;
5777 		}
5778 
5779 		/* Ensure we skip the reserved area in the first 1M */
5780 		start = max_t(u64, start, SZ_1M);
5781 
5782 		/*
5783 		 * If find_first_clear_extent_bit find a range that spans the
5784 		 * end of the device it will set end to -1, in this case it's up
5785 		 * to the caller to trim the value to the size of the device.
5786 		 */
5787 		end = min(end, device->total_bytes - 1);
5788 
5789 		len = end - start + 1;
5790 
5791 		/* We didn't find any extents */
5792 		if (!len) {
5793 			mutex_unlock(&fs_info->chunk_mutex);
5794 			ret = 0;
5795 			break;
5796 		}
5797 
5798 		ret = btrfs_issue_discard(device->bdev, start, len,
5799 					  &bytes);
5800 		if (!ret)
5801 			set_extent_bits(&device->alloc_state, start,
5802 					start + bytes - 1,
5803 					CHUNK_TRIMMED);
5804 		mutex_unlock(&fs_info->chunk_mutex);
5805 
5806 		if (ret)
5807 			break;
5808 
5809 		start += len;
5810 		*trimmed += bytes;
5811 
5812 		if (fatal_signal_pending(current)) {
5813 			ret = -ERESTARTSYS;
5814 			break;
5815 		}
5816 
5817 		cond_resched();
5818 	}
5819 
5820 	return ret;
5821 }
5822 
5823 /*
5824  * Trim the whole filesystem by:
5825  * 1) trimming the free space in each block group
5826  * 2) trimming the unallocated space on each device
5827  *
5828  * This will also continue trimming even if a block group or device encounters
5829  * an error.  The return value will be the last error, or 0 if nothing bad
5830  * happens.
5831  */
5832 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5833 {
5834 	struct btrfs_block_group *cache = NULL;
5835 	struct btrfs_device *device;
5836 	struct list_head *devices;
5837 	u64 group_trimmed;
5838 	u64 range_end = U64_MAX;
5839 	u64 start;
5840 	u64 end;
5841 	u64 trimmed = 0;
5842 	u64 bg_failed = 0;
5843 	u64 dev_failed = 0;
5844 	int bg_ret = 0;
5845 	int dev_ret = 0;
5846 	int ret = 0;
5847 
5848 	/*
5849 	 * Check range overflow if range->len is set.
5850 	 * The default range->len is U64_MAX.
5851 	 */
5852 	if (range->len != U64_MAX &&
5853 	    check_add_overflow(range->start, range->len, &range_end))
5854 		return -EINVAL;
5855 
5856 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5857 	for (; cache; cache = btrfs_next_block_group(cache)) {
5858 		if (cache->start >= range_end) {
5859 			btrfs_put_block_group(cache);
5860 			break;
5861 		}
5862 
5863 		start = max(range->start, cache->start);
5864 		end = min(range_end, cache->start + cache->length);
5865 
5866 		if (end - start >= range->minlen) {
5867 			if (!btrfs_block_group_done(cache)) {
5868 				ret = btrfs_cache_block_group(cache, 0);
5869 				if (ret) {
5870 					bg_failed++;
5871 					bg_ret = ret;
5872 					continue;
5873 				}
5874 				ret = btrfs_wait_block_group_cache_done(cache);
5875 				if (ret) {
5876 					bg_failed++;
5877 					bg_ret = ret;
5878 					continue;
5879 				}
5880 			}
5881 			ret = btrfs_trim_block_group(cache,
5882 						     &group_trimmed,
5883 						     start,
5884 						     end,
5885 						     range->minlen);
5886 
5887 			trimmed += group_trimmed;
5888 			if (ret) {
5889 				bg_failed++;
5890 				bg_ret = ret;
5891 				continue;
5892 			}
5893 		}
5894 	}
5895 
5896 	if (bg_failed)
5897 		btrfs_warn(fs_info,
5898 			"failed to trim %llu block group(s), last error %d",
5899 			bg_failed, bg_ret);
5900 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5901 	devices = &fs_info->fs_devices->devices;
5902 	list_for_each_entry(device, devices, dev_list) {
5903 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5904 		if (ret) {
5905 			dev_failed++;
5906 			dev_ret = ret;
5907 			break;
5908 		}
5909 
5910 		trimmed += group_trimmed;
5911 	}
5912 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5913 
5914 	if (dev_failed)
5915 		btrfs_warn(fs_info,
5916 			"failed to trim %llu device(s), last error %d",
5917 			dev_failed, dev_ret);
5918 	range->len = trimmed;
5919 	if (bg_ret)
5920 		return bg_ret;
5921 	return dev_ret;
5922 }
5923