xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 	int ret;
92 	struct btrfs_key key;
93 	struct btrfs_path *path;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	key.objectid = start;
100 	key.offset = len;
101 	key.type = BTRFS_EXTENT_ITEM_KEY;
102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 	btrfs_free_path(path);
104 	return ret;
105 }
106 
107 /*
108  * helper function to lookup reference count and flags of a tree block.
109  *
110  * the head node for delayed ref is used to store the sum of all the
111  * reference count modifications queued up in the rbtree. the head
112  * node may also store the extent flags to set. This way you can check
113  * to see what the reference count and extent flags would be if all of
114  * the delayed refs are not processed.
115  */
116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 			     struct btrfs_fs_info *fs_info, u64 bytenr,
118 			     u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 	struct btrfs_root *extent_root;
121 	struct btrfs_delayed_ref_head *head;
122 	struct btrfs_delayed_ref_root *delayed_refs;
123 	struct btrfs_path *path;
124 	struct btrfs_extent_item *ei;
125 	struct extent_buffer *leaf;
126 	struct btrfs_key key;
127 	u32 item_size;
128 	u64 num_refs;
129 	u64 extent_flags;
130 	int ret;
131 
132 	/*
133 	 * If we don't have skinny metadata, don't bother doing anything
134 	 * different
135 	 */
136 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 		offset = fs_info->nodesize;
138 		metadata = 0;
139 	}
140 
141 	path = btrfs_alloc_path();
142 	if (!path)
143 		return -ENOMEM;
144 
145 	if (!trans) {
146 		path->skip_locking = 1;
147 		path->search_commit_root = 1;
148 	}
149 
150 search_again:
151 	key.objectid = bytenr;
152 	key.offset = offset;
153 	if (metadata)
154 		key.type = BTRFS_METADATA_ITEM_KEY;
155 	else
156 		key.type = BTRFS_EXTENT_ITEM_KEY;
157 
158 	extent_root = btrfs_extent_root(fs_info, bytenr);
159 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 	if (ret < 0)
161 		goto out_free;
162 
163 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 		if (path->slots[0]) {
165 			path->slots[0]--;
166 			btrfs_item_key_to_cpu(path->nodes[0], &key,
167 					      path->slots[0]);
168 			if (key.objectid == bytenr &&
169 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
170 			    key.offset == fs_info->nodesize)
171 				ret = 0;
172 		}
173 	}
174 
175 	if (ret == 0) {
176 		leaf = path->nodes[0];
177 		item_size = btrfs_item_size(leaf, path->slots[0]);
178 		if (item_size >= sizeof(*ei)) {
179 			ei = btrfs_item_ptr(leaf, path->slots[0],
180 					    struct btrfs_extent_item);
181 			num_refs = btrfs_extent_refs(leaf, ei);
182 			extent_flags = btrfs_extent_flags(leaf, ei);
183 		} else {
184 			ret = -EINVAL;
185 			btrfs_print_v0_err(fs_info);
186 			if (trans)
187 				btrfs_abort_transaction(trans, ret);
188 			else
189 				btrfs_handle_fs_error(fs_info, ret, NULL);
190 
191 			goto out_free;
192 		}
193 
194 		BUG_ON(num_refs == 0);
195 	} else {
196 		num_refs = 0;
197 		extent_flags = 0;
198 		ret = 0;
199 	}
200 
201 	if (!trans)
202 		goto out;
203 
204 	delayed_refs = &trans->transaction->delayed_refs;
205 	spin_lock(&delayed_refs->lock);
206 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 	if (head) {
208 		if (!mutex_trylock(&head->mutex)) {
209 			refcount_inc(&head->refs);
210 			spin_unlock(&delayed_refs->lock);
211 
212 			btrfs_release_path(path);
213 
214 			/*
215 			 * Mutex was contended, block until it's released and try
216 			 * again
217 			 */
218 			mutex_lock(&head->mutex);
219 			mutex_unlock(&head->mutex);
220 			btrfs_put_delayed_ref_head(head);
221 			goto search_again;
222 		}
223 		spin_lock(&head->lock);
224 		if (head->extent_op && head->extent_op->update_flags)
225 			extent_flags |= head->extent_op->flags_to_set;
226 		else
227 			BUG_ON(num_refs == 0);
228 
229 		num_refs += head->ref_mod;
230 		spin_unlock(&head->lock);
231 		mutex_unlock(&head->mutex);
232 	}
233 	spin_unlock(&delayed_refs->lock);
234 out:
235 	WARN_ON(num_refs == 0);
236 	if (refs)
237 		*refs = num_refs;
238 	if (flags)
239 		*flags = extent_flags;
240 out_free:
241 	btrfs_free_path(path);
242 	return ret;
243 }
244 
245 /*
246  * Back reference rules.  Back refs have three main goals:
247  *
248  * 1) differentiate between all holders of references to an extent so that
249  *    when a reference is dropped we can make sure it was a valid reference
250  *    before freeing the extent.
251  *
252  * 2) Provide enough information to quickly find the holders of an extent
253  *    if we notice a given block is corrupted or bad.
254  *
255  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256  *    maintenance.  This is actually the same as #2, but with a slightly
257  *    different use case.
258  *
259  * There are two kinds of back refs. The implicit back refs is optimized
260  * for pointers in non-shared tree blocks. For a given pointer in a block,
261  * back refs of this kind provide information about the block's owner tree
262  * and the pointer's key. These information allow us to find the block by
263  * b-tree searching. The full back refs is for pointers in tree blocks not
264  * referenced by their owner trees. The location of tree block is recorded
265  * in the back refs. Actually the full back refs is generic, and can be
266  * used in all cases the implicit back refs is used. The major shortcoming
267  * of the full back refs is its overhead. Every time a tree block gets
268  * COWed, we have to update back refs entry for all pointers in it.
269  *
270  * For a newly allocated tree block, we use implicit back refs for
271  * pointers in it. This means most tree related operations only involve
272  * implicit back refs. For a tree block created in old transaction, the
273  * only way to drop a reference to it is COW it. So we can detect the
274  * event that tree block loses its owner tree's reference and do the
275  * back refs conversion.
276  *
277  * When a tree block is COWed through a tree, there are four cases:
278  *
279  * The reference count of the block is one and the tree is the block's
280  * owner tree. Nothing to do in this case.
281  *
282  * The reference count of the block is one and the tree is not the
283  * block's owner tree. In this case, full back refs is used for pointers
284  * in the block. Remove these full back refs, add implicit back refs for
285  * every pointers in the new block.
286  *
287  * The reference count of the block is greater than one and the tree is
288  * the block's owner tree. In this case, implicit back refs is used for
289  * pointers in the block. Add full back refs for every pointers in the
290  * block, increase lower level extents' reference counts. The original
291  * implicit back refs are entailed to the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * not the block's owner tree. Add implicit back refs for every pointer in
295  * the new block, increase lower level extents' reference count.
296  *
297  * Back Reference Key composing:
298  *
299  * The key objectid corresponds to the first byte in the extent,
300  * The key type is used to differentiate between types of back refs.
301  * There are different meanings of the key offset for different types
302  * of back refs.
303  *
304  * File extents can be referenced by:
305  *
306  * - multiple snapshots, subvolumes, or different generations in one subvol
307  * - different files inside a single subvolume
308  * - different offsets inside a file (bookend extents in file.c)
309  *
310  * The extent ref structure for the implicit back refs has fields for:
311  *
312  * - Objectid of the subvolume root
313  * - objectid of the file holding the reference
314  * - original offset in the file
315  * - how many bookend extents
316  *
317  * The key offset for the implicit back refs is hash of the first
318  * three fields.
319  *
320  * The extent ref structure for the full back refs has field for:
321  *
322  * - number of pointers in the tree leaf
323  *
324  * The key offset for the implicit back refs is the first byte of
325  * the tree leaf
326  *
327  * When a file extent is allocated, The implicit back refs is used.
328  * the fields are filled in:
329  *
330  *     (root_key.objectid, inode objectid, offset in file, 1)
331  *
332  * When a file extent is removed file truncation, we find the
333  * corresponding implicit back refs and check the following fields:
334  *
335  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
336  *
337  * Btree extents can be referenced by:
338  *
339  * - Different subvolumes
340  *
341  * Both the implicit back refs and the full back refs for tree blocks
342  * only consist of key. The key offset for the implicit back refs is
343  * objectid of block's owner tree. The key offset for the full back refs
344  * is the first byte of parent block.
345  *
346  * When implicit back refs is used, information about the lowest key and
347  * level of the tree block are required. These information are stored in
348  * tree block info structure.
349  */
350 
351 /*
352  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355  */
356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 				     struct btrfs_extent_inline_ref *iref,
358 				     enum btrfs_inline_ref_type is_data)
359 {
360 	int type = btrfs_extent_inline_ref_type(eb, iref);
361 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362 
363 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_DATA_REF_KEY ||
366 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
367 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(eb->fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	btrfs_print_leaf((struct extent_buffer *)eb);
400 	btrfs_err(eb->fs_info,
401 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 		  eb->start, (unsigned long)iref, type);
403 	WARN_ON(1);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 		btrfs_print_v0_err(trans->fs_info);
623 		btrfs_abort_transaction(trans, -EINVAL);
624 		return -EINVAL;
625 	} else {
626 		BUG();
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 	if (iref) {
659 		/*
660 		 * If type is invalid, we should have bailed out earlier than
661 		 * this call.
662 		 */
663 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 		} else {
669 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 		}
672 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_extent_data_ref);
675 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 				      struct btrfs_shared_data_ref);
679 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 	} else {
681 		WARN_ON(1);
682 	}
683 	return num_refs;
684 }
685 
686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  u64 bytenr, u64 parent,
689 					  u64 root_objectid)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = root_objectid;
702 	}
703 
704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 	if (ret > 0)
706 		ret = -ENOENT;
707 	return ret;
708 }
709 
710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 					  struct btrfs_path *path,
712 					  u64 bytenr, u64 parent,
713 					  u64 root_objectid)
714 {
715 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 	struct btrfs_key key;
717 	int ret;
718 
719 	key.objectid = bytenr;
720 	if (parent) {
721 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 		key.offset = parent;
723 	} else {
724 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 		key.offset = root_objectid;
726 	}
727 
728 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 	btrfs_release_path(path);
730 	return ret;
731 }
732 
733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 	int type;
736 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_BLOCK_REF_KEY;
739 		else
740 			type = BTRFS_TREE_BLOCK_REF_KEY;
741 	} else {
742 		if (parent > 0)
743 			type = BTRFS_SHARED_DATA_REF_KEY;
744 		else
745 			type = BTRFS_EXTENT_DATA_REF_KEY;
746 	}
747 	return type;
748 }
749 
750 static int find_next_key(struct btrfs_path *path, int level,
751 			 struct btrfs_key *key)
752 
753 {
754 	for (; level < BTRFS_MAX_LEVEL; level++) {
755 		if (!path->nodes[level])
756 			break;
757 		if (path->slots[level] + 1 >=
758 		    btrfs_header_nritems(path->nodes[level]))
759 			continue;
760 		if (level == 0)
761 			btrfs_item_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		else
764 			btrfs_node_key_to_cpu(path->nodes[level], key,
765 					      path->slots[level] + 1);
766 		return 0;
767 	}
768 	return 1;
769 }
770 
771 /*
772  * look for inline back ref. if back ref is found, *ref_ret is set
773  * to the address of inline back ref, and 0 is returned.
774  *
775  * if back ref isn't found, *ref_ret is set to the address where it
776  * should be inserted, and -ENOENT is returned.
777  *
778  * if insert is true and there are too many inline back refs, the path
779  * points to the extent item, and -EAGAIN is returned.
780  *
781  * NOTE: inline back refs are ordered in the same way that back ref
782  *	 items in the tree are ordered.
783  */
784 static noinline_for_stack
785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 				 struct btrfs_path *path,
787 				 struct btrfs_extent_inline_ref **ref_ret,
788 				 u64 bytenr, u64 num_bytes,
789 				 u64 parent, u64 root_objectid,
790 				 u64 owner, u64 offset, int insert)
791 {
792 	struct btrfs_fs_info *fs_info = trans->fs_info;
793 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 	struct btrfs_key key;
795 	struct extent_buffer *leaf;
796 	struct btrfs_extent_item *ei;
797 	struct btrfs_extent_inline_ref *iref;
798 	u64 flags;
799 	u64 item_size;
800 	unsigned long ptr;
801 	unsigned long end;
802 	int extra_size;
803 	int type;
804 	int want;
805 	int ret;
806 	int err = 0;
807 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 	int needed;
809 
810 	key.objectid = bytenr;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	key.offset = num_bytes;
813 
814 	want = extent_ref_type(parent, owner);
815 	if (insert) {
816 		extra_size = btrfs_extent_inline_ref_size(want);
817 		path->search_for_extension = 1;
818 		path->keep_locks = 1;
819 	} else
820 		extra_size = -1;
821 
822 	/*
823 	 * Owner is our level, so we can just add one to get the level for the
824 	 * block we are interested in.
825 	 */
826 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 		key.type = BTRFS_METADATA_ITEM_KEY;
828 		key.offset = owner;
829 	}
830 
831 again:
832 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 	if (ret < 0) {
834 		err = ret;
835 		goto out;
836 	}
837 
838 	/*
839 	 * We may be a newly converted file system which still has the old fat
840 	 * extent entries for metadata, so try and see if we have one of those.
841 	 */
842 	if (ret > 0 && skinny_metadata) {
843 		skinny_metadata = false;
844 		if (path->slots[0]) {
845 			path->slots[0]--;
846 			btrfs_item_key_to_cpu(path->nodes[0], &key,
847 					      path->slots[0]);
848 			if (key.objectid == bytenr &&
849 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
850 			    key.offset == num_bytes)
851 				ret = 0;
852 		}
853 		if (ret) {
854 			key.objectid = bytenr;
855 			key.type = BTRFS_EXTENT_ITEM_KEY;
856 			key.offset = num_bytes;
857 			btrfs_release_path(path);
858 			goto again;
859 		}
860 	}
861 
862 	if (ret && !insert) {
863 		err = -ENOENT;
864 		goto out;
865 	} else if (WARN_ON(ret)) {
866 		err = -EIO;
867 		goto out;
868 	}
869 
870 	leaf = path->nodes[0];
871 	item_size = btrfs_item_size(leaf, path->slots[0]);
872 	if (unlikely(item_size < sizeof(*ei))) {
873 		err = -EINVAL;
874 		btrfs_print_v0_err(fs_info);
875 		btrfs_abort_transaction(trans, err);
876 		goto out;
877 	}
878 
879 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
880 	flags = btrfs_extent_flags(leaf, ei);
881 
882 	ptr = (unsigned long)(ei + 1);
883 	end = (unsigned long)ei + item_size;
884 
885 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
886 		ptr += sizeof(struct btrfs_tree_block_info);
887 		BUG_ON(ptr > end);
888 	}
889 
890 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
891 		needed = BTRFS_REF_TYPE_DATA;
892 	else
893 		needed = BTRFS_REF_TYPE_BLOCK;
894 
895 	err = -ENOENT;
896 	while (1) {
897 		if (ptr >= end) {
898 			if (ptr > end) {
899 				err = -EUCLEAN;
900 				btrfs_print_leaf(path->nodes[0]);
901 				btrfs_crit(fs_info,
902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
903 					path->slots[0], root_objectid, owner, offset, parent);
904 			}
905 			break;
906 		}
907 		iref = (struct btrfs_extent_inline_ref *)ptr;
908 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
909 		if (type == BTRFS_REF_TYPE_INVALID) {
910 			err = -EUCLEAN;
911 			goto out;
912 		}
913 
914 		if (want < type)
915 			break;
916 		if (want > type) {
917 			ptr += btrfs_extent_inline_ref_size(type);
918 			continue;
919 		}
920 
921 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
922 			struct btrfs_extent_data_ref *dref;
923 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
924 			if (match_extent_data_ref(leaf, dref, root_objectid,
925 						  owner, offset)) {
926 				err = 0;
927 				break;
928 			}
929 			if (hash_extent_data_ref_item(leaf, dref) <
930 			    hash_extent_data_ref(root_objectid, owner, offset))
931 				break;
932 		} else {
933 			u64 ref_offset;
934 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
935 			if (parent > 0) {
936 				if (parent == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < parent)
941 					break;
942 			} else {
943 				if (root_objectid == ref_offset) {
944 					err = 0;
945 					break;
946 				}
947 				if (ref_offset < root_objectid)
948 					break;
949 			}
950 		}
951 		ptr += btrfs_extent_inline_ref_size(type);
952 	}
953 	if (err == -ENOENT && insert) {
954 		if (item_size + extra_size >=
955 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
956 			err = -EAGAIN;
957 			goto out;
958 		}
959 		/*
960 		 * To add new inline back ref, we have to make sure
961 		 * there is no corresponding back ref item.
962 		 * For simplicity, we just do not add new inline back
963 		 * ref if there is any kind of item for this block
964 		 */
965 		if (find_next_key(path, 0, &key) == 0 &&
966 		    key.objectid == bytenr &&
967 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
968 			err = -EAGAIN;
969 			goto out;
970 		}
971 	}
972 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
973 out:
974 	if (insert) {
975 		path->keep_locks = 0;
976 		path->search_for_extension = 0;
977 		btrfs_unlock_up_safe(path, 1);
978 	}
979 	return err;
980 }
981 
982 /*
983  * helper to add new inline back ref
984  */
985 static noinline_for_stack
986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
987 				 struct btrfs_path *path,
988 				 struct btrfs_extent_inline_ref *iref,
989 				 u64 parent, u64 root_objectid,
990 				 u64 owner, u64 offset, int refs_to_add,
991 				 struct btrfs_delayed_extent_op *extent_op)
992 {
993 	struct extent_buffer *leaf;
994 	struct btrfs_extent_item *ei;
995 	unsigned long ptr;
996 	unsigned long end;
997 	unsigned long item_offset;
998 	u64 refs;
999 	int size;
1000 	int type;
1001 
1002 	leaf = path->nodes[0];
1003 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 	item_offset = (unsigned long)iref - (unsigned long)ei;
1005 
1006 	type = extent_ref_type(parent, owner);
1007 	size = btrfs_extent_inline_ref_size(type);
1008 
1009 	btrfs_extend_item(path, size);
1010 
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	refs = btrfs_extent_refs(leaf, ei);
1013 	refs += refs_to_add;
1014 	btrfs_set_extent_refs(leaf, ei, refs);
1015 	if (extent_op)
1016 		__run_delayed_extent_op(extent_op, leaf, ei);
1017 
1018 	ptr = (unsigned long)ei + item_offset;
1019 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1020 	if (ptr < end - size)
1021 		memmove_extent_buffer(leaf, ptr + size, ptr,
1022 				      end - size - ptr);
1023 
1024 	iref = (struct btrfs_extent_inline_ref *)ptr;
1025 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1026 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1027 		struct btrfs_extent_data_ref *dref;
1028 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1029 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1030 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1031 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1032 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1033 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1034 		struct btrfs_shared_data_ref *sref;
1035 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1036 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1037 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1038 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1039 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1040 	} else {
1041 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1042 	}
1043 	btrfs_mark_buffer_dirty(leaf);
1044 }
1045 
1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1047 				 struct btrfs_path *path,
1048 				 struct btrfs_extent_inline_ref **ref_ret,
1049 				 u64 bytenr, u64 num_bytes, u64 parent,
1050 				 u64 root_objectid, u64 owner, u64 offset)
1051 {
1052 	int ret;
1053 
1054 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1055 					   num_bytes, parent, root_objectid,
1056 					   owner, offset, 0);
1057 	if (ret != -ENOENT)
1058 		return ret;
1059 
1060 	btrfs_release_path(path);
1061 	*ref_ret = NULL;
1062 
1063 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1064 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1065 					    root_objectid);
1066 	} else {
1067 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1068 					     root_objectid, owner, offset);
1069 	}
1070 	return ret;
1071 }
1072 
1073 /*
1074  * helper to update/remove inline back ref
1075  */
1076 static noinline_for_stack
1077 void update_inline_extent_backref(struct btrfs_path *path,
1078 				  struct btrfs_extent_inline_ref *iref,
1079 				  int refs_to_mod,
1080 				  struct btrfs_delayed_extent_op *extent_op)
1081 {
1082 	struct extent_buffer *leaf = path->nodes[0];
1083 	struct btrfs_extent_item *ei;
1084 	struct btrfs_extent_data_ref *dref = NULL;
1085 	struct btrfs_shared_data_ref *sref = NULL;
1086 	unsigned long ptr;
1087 	unsigned long end;
1088 	u32 item_size;
1089 	int size;
1090 	int type;
1091 	u64 refs;
1092 
1093 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1094 	refs = btrfs_extent_refs(leaf, ei);
1095 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1096 	refs += refs_to_mod;
1097 	btrfs_set_extent_refs(leaf, ei, refs);
1098 	if (extent_op)
1099 		__run_delayed_extent_op(extent_op, leaf, ei);
1100 
1101 	/*
1102 	 * If type is invalid, we should have bailed out after
1103 	 * lookup_inline_extent_backref().
1104 	 */
1105 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1106 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1107 
1108 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1109 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 		refs = btrfs_extent_data_ref_count(leaf, dref);
1111 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1112 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1113 		refs = btrfs_shared_data_ref_count(leaf, sref);
1114 	} else {
1115 		refs = 1;
1116 		BUG_ON(refs_to_mod != -1);
1117 	}
1118 
1119 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1120 	refs += refs_to_mod;
1121 
1122 	if (refs > 0) {
1123 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1124 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1125 		else
1126 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1127 	} else {
1128 		size =  btrfs_extent_inline_ref_size(type);
1129 		item_size = btrfs_item_size(leaf, path->slots[0]);
1130 		ptr = (unsigned long)iref;
1131 		end = (unsigned long)ei + item_size;
1132 		if (ptr + size < end)
1133 			memmove_extent_buffer(leaf, ptr, ptr + size,
1134 					      end - ptr - size);
1135 		item_size -= size;
1136 		btrfs_truncate_item(path, item_size, 1);
1137 	}
1138 	btrfs_mark_buffer_dirty(leaf);
1139 }
1140 
1141 static noinline_for_stack
1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1143 				 struct btrfs_path *path,
1144 				 u64 bytenr, u64 num_bytes, u64 parent,
1145 				 u64 root_objectid, u64 owner,
1146 				 u64 offset, int refs_to_add,
1147 				 struct btrfs_delayed_extent_op *extent_op)
1148 {
1149 	struct btrfs_extent_inline_ref *iref;
1150 	int ret;
1151 
1152 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1153 					   num_bytes, parent, root_objectid,
1154 					   owner, offset, 1);
1155 	if (ret == 0) {
1156 		/*
1157 		 * We're adding refs to a tree block we already own, this
1158 		 * should not happen at all.
1159 		 */
1160 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1161 			btrfs_crit(trans->fs_info,
1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1163 				   bytenr, num_bytes, root_objectid);
1164 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1165 				WARN_ON(1);
1166 				btrfs_crit(trans->fs_info,
1167 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1168 				btrfs_print_leaf(path->nodes[0]);
1169 			}
1170 			return -EUCLEAN;
1171 		}
1172 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1173 	} else if (ret == -ENOENT) {
1174 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1175 					    root_objectid, owner, offset,
1176 					    refs_to_add, extent_op);
1177 		ret = 0;
1178 	}
1179 	return ret;
1180 }
1181 
1182 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1183 				 struct btrfs_root *root,
1184 				 struct btrfs_path *path,
1185 				 struct btrfs_extent_inline_ref *iref,
1186 				 int refs_to_drop, int is_data)
1187 {
1188 	int ret = 0;
1189 
1190 	BUG_ON(!is_data && refs_to_drop != 1);
1191 	if (iref)
1192 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1193 	else if (is_data)
1194 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1195 	else
1196 		ret = btrfs_del_item(trans, root, path);
1197 	return ret;
1198 }
1199 
1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1201 			       u64 *discarded_bytes)
1202 {
1203 	int j, ret = 0;
1204 	u64 bytes_left, end;
1205 	u64 aligned_start = ALIGN(start, 1 << 9);
1206 
1207 	if (WARN_ON(start != aligned_start)) {
1208 		len -= aligned_start - start;
1209 		len = round_down(len, 1 << 9);
1210 		start = aligned_start;
1211 	}
1212 
1213 	*discarded_bytes = 0;
1214 
1215 	if (!len)
1216 		return 0;
1217 
1218 	end = start + len;
1219 	bytes_left = len;
1220 
1221 	/* Skip any superblocks on this device. */
1222 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1223 		u64 sb_start = btrfs_sb_offset(j);
1224 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1225 		u64 size = sb_start - start;
1226 
1227 		if (!in_range(sb_start, start, bytes_left) &&
1228 		    !in_range(sb_end, start, bytes_left) &&
1229 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1230 			continue;
1231 
1232 		/*
1233 		 * Superblock spans beginning of range.  Adjust start and
1234 		 * try again.
1235 		 */
1236 		if (sb_start <= start) {
1237 			start += sb_end - start;
1238 			if (start > end) {
1239 				bytes_left = 0;
1240 				break;
1241 			}
1242 			bytes_left = end - start;
1243 			continue;
1244 		}
1245 
1246 		if (size) {
1247 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1248 						   GFP_NOFS);
1249 			if (!ret)
1250 				*discarded_bytes += size;
1251 			else if (ret != -EOPNOTSUPP)
1252 				return ret;
1253 		}
1254 
1255 		start = sb_end;
1256 		if (start > end) {
1257 			bytes_left = 0;
1258 			break;
1259 		}
1260 		bytes_left = end - start;
1261 	}
1262 
1263 	if (bytes_left) {
1264 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1265 					   GFP_NOFS);
1266 		if (!ret)
1267 			*discarded_bytes += bytes_left;
1268 	}
1269 	return ret;
1270 }
1271 
1272 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1273 {
1274 	struct btrfs_device *dev = stripe->dev;
1275 	struct btrfs_fs_info *fs_info = dev->fs_info;
1276 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1277 	u64 phys = stripe->physical;
1278 	u64 len = stripe->length;
1279 	u64 discarded = 0;
1280 	int ret = 0;
1281 
1282 	/* Zone reset on a zoned filesystem */
1283 	if (btrfs_can_zone_reset(dev, phys, len)) {
1284 		u64 src_disc;
1285 
1286 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1287 		if (ret)
1288 			goto out;
1289 
1290 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1291 		    dev != dev_replace->srcdev)
1292 			goto out;
1293 
1294 		src_disc = discarded;
1295 
1296 		/* Send to replace target as well */
1297 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1298 					      &discarded);
1299 		discarded += src_disc;
1300 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1301 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1302 	} else {
1303 		ret = 0;
1304 		*bytes = 0;
1305 	}
1306 
1307 out:
1308 	*bytes = discarded;
1309 	return ret;
1310 }
1311 
1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1313 			 u64 num_bytes, u64 *actual_bytes)
1314 {
1315 	int ret = 0;
1316 	u64 discarded_bytes = 0;
1317 	u64 end = bytenr + num_bytes;
1318 	u64 cur = bytenr;
1319 
1320 	/*
1321 	 * Avoid races with device replace and make sure the devices in the
1322 	 * stripes don't go away while we are discarding.
1323 	 */
1324 	btrfs_bio_counter_inc_blocked(fs_info);
1325 	while (cur < end) {
1326 		struct btrfs_discard_stripe *stripes;
1327 		unsigned int num_stripes;
1328 		int i;
1329 
1330 		num_bytes = end - cur;
1331 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1332 		if (IS_ERR(stripes)) {
1333 			ret = PTR_ERR(stripes);
1334 			if (ret == -EOPNOTSUPP)
1335 				ret = 0;
1336 			break;
1337 		}
1338 
1339 		for (i = 0; i < num_stripes; i++) {
1340 			struct btrfs_discard_stripe *stripe = stripes + i;
1341 			u64 bytes;
1342 
1343 			if (!stripe->dev->bdev) {
1344 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1345 				continue;
1346 			}
1347 
1348 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1349 					&stripe->dev->dev_state))
1350 				continue;
1351 
1352 			ret = do_discard_extent(stripe, &bytes);
1353 			if (ret) {
1354 				/*
1355 				 * Keep going if discard is not supported by the
1356 				 * device.
1357 				 */
1358 				if (ret != -EOPNOTSUPP)
1359 					break;
1360 				ret = 0;
1361 			} else {
1362 				discarded_bytes += bytes;
1363 			}
1364 		}
1365 		kfree(stripes);
1366 		if (ret)
1367 			break;
1368 		cur += num_bytes;
1369 	}
1370 	btrfs_bio_counter_dec(fs_info);
1371 	if (actual_bytes)
1372 		*actual_bytes = discarded_bytes;
1373 	return ret;
1374 }
1375 
1376 /* Can return -ENOMEM */
1377 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1378 			 struct btrfs_ref *generic_ref)
1379 {
1380 	struct btrfs_fs_info *fs_info = trans->fs_info;
1381 	int ret;
1382 
1383 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1384 	       generic_ref->action);
1385 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1386 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1387 
1388 	if (generic_ref->type == BTRFS_REF_METADATA)
1389 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1390 	else
1391 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1392 
1393 	btrfs_ref_tree_mod(fs_info, generic_ref);
1394 
1395 	return ret;
1396 }
1397 
1398 /*
1399  * __btrfs_inc_extent_ref - insert backreference for a given extent
1400  *
1401  * The counterpart is in __btrfs_free_extent(), with examples and more details
1402  * how it works.
1403  *
1404  * @trans:	    Handle of transaction
1405  *
1406  * @node:	    The delayed ref node used to get the bytenr/length for
1407  *		    extent whose references are incremented.
1408  *
1409  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1410  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1411  *		    bytenr of the parent block. Since new extents are always
1412  *		    created with indirect references, this will only be the case
1413  *		    when relocating a shared extent. In that case, root_objectid
1414  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1415  *		    be 0
1416  *
1417  * @root_objectid:  The id of the root where this modification has originated,
1418  *		    this can be either one of the well-known metadata trees or
1419  *		    the subvolume id which references this extent.
1420  *
1421  * @owner:	    For data extents it is the inode number of the owning file.
1422  *		    For metadata extents this parameter holds the level in the
1423  *		    tree of the extent.
1424  *
1425  * @offset:	    For metadata extents the offset is ignored and is currently
1426  *		    always passed as 0. For data extents it is the fileoffset
1427  *		    this extent belongs to.
1428  *
1429  * @refs_to_add     Number of references to add
1430  *
1431  * @extent_op       Pointer to a structure, holding information necessary when
1432  *                  updating a tree block's flags
1433  *
1434  */
1435 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1436 				  struct btrfs_delayed_ref_node *node,
1437 				  u64 parent, u64 root_objectid,
1438 				  u64 owner, u64 offset, int refs_to_add,
1439 				  struct btrfs_delayed_extent_op *extent_op)
1440 {
1441 	struct btrfs_path *path;
1442 	struct extent_buffer *leaf;
1443 	struct btrfs_extent_item *item;
1444 	struct btrfs_key key;
1445 	u64 bytenr = node->bytenr;
1446 	u64 num_bytes = node->num_bytes;
1447 	u64 refs;
1448 	int ret;
1449 
1450 	path = btrfs_alloc_path();
1451 	if (!path)
1452 		return -ENOMEM;
1453 
1454 	/* this will setup the path even if it fails to insert the back ref */
1455 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1456 					   parent, root_objectid, owner,
1457 					   offset, refs_to_add, extent_op);
1458 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1459 		goto out;
1460 
1461 	/*
1462 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1463 	 * inline extent ref, so just update the reference count and add a
1464 	 * normal backref.
1465 	 */
1466 	leaf = path->nodes[0];
1467 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1468 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1469 	refs = btrfs_extent_refs(leaf, item);
1470 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1471 	if (extent_op)
1472 		__run_delayed_extent_op(extent_op, leaf, item);
1473 
1474 	btrfs_mark_buffer_dirty(leaf);
1475 	btrfs_release_path(path);
1476 
1477 	/* now insert the actual backref */
1478 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1479 		BUG_ON(refs_to_add != 1);
1480 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1481 					    root_objectid);
1482 	} else {
1483 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1484 					     root_objectid, owner, offset,
1485 					     refs_to_add);
1486 	}
1487 	if (ret)
1488 		btrfs_abort_transaction(trans, ret);
1489 out:
1490 	btrfs_free_path(path);
1491 	return ret;
1492 }
1493 
1494 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1495 				struct btrfs_delayed_ref_node *node,
1496 				struct btrfs_delayed_extent_op *extent_op,
1497 				int insert_reserved)
1498 {
1499 	int ret = 0;
1500 	struct btrfs_delayed_data_ref *ref;
1501 	struct btrfs_key ins;
1502 	u64 parent = 0;
1503 	u64 ref_root = 0;
1504 	u64 flags = 0;
1505 
1506 	ins.objectid = node->bytenr;
1507 	ins.offset = node->num_bytes;
1508 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1509 
1510 	ref = btrfs_delayed_node_to_data_ref(node);
1511 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1512 
1513 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1514 		parent = ref->parent;
1515 	ref_root = ref->root;
1516 
1517 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1518 		if (extent_op)
1519 			flags |= extent_op->flags_to_set;
1520 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1521 						 flags, ref->objectid,
1522 						 ref->offset, &ins,
1523 						 node->ref_mod);
1524 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1525 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1526 					     ref->objectid, ref->offset,
1527 					     node->ref_mod, extent_op);
1528 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1529 		ret = __btrfs_free_extent(trans, node, parent,
1530 					  ref_root, ref->objectid,
1531 					  ref->offset, node->ref_mod,
1532 					  extent_op);
1533 	} else {
1534 		BUG();
1535 	}
1536 	return ret;
1537 }
1538 
1539 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1540 				    struct extent_buffer *leaf,
1541 				    struct btrfs_extent_item *ei)
1542 {
1543 	u64 flags = btrfs_extent_flags(leaf, ei);
1544 	if (extent_op->update_flags) {
1545 		flags |= extent_op->flags_to_set;
1546 		btrfs_set_extent_flags(leaf, ei, flags);
1547 	}
1548 
1549 	if (extent_op->update_key) {
1550 		struct btrfs_tree_block_info *bi;
1551 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1552 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1553 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1554 	}
1555 }
1556 
1557 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1558 				 struct btrfs_delayed_ref_head *head,
1559 				 struct btrfs_delayed_extent_op *extent_op)
1560 {
1561 	struct btrfs_fs_info *fs_info = trans->fs_info;
1562 	struct btrfs_root *root;
1563 	struct btrfs_key key;
1564 	struct btrfs_path *path;
1565 	struct btrfs_extent_item *ei;
1566 	struct extent_buffer *leaf;
1567 	u32 item_size;
1568 	int ret;
1569 	int err = 0;
1570 	int metadata = 1;
1571 
1572 	if (TRANS_ABORTED(trans))
1573 		return 0;
1574 
1575 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1576 		metadata = 0;
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	key.objectid = head->bytenr;
1583 
1584 	if (metadata) {
1585 		key.type = BTRFS_METADATA_ITEM_KEY;
1586 		key.offset = extent_op->level;
1587 	} else {
1588 		key.type = BTRFS_EXTENT_ITEM_KEY;
1589 		key.offset = head->num_bytes;
1590 	}
1591 
1592 	root = btrfs_extent_root(fs_info, key.objectid);
1593 again:
1594 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1595 	if (ret < 0) {
1596 		err = ret;
1597 		goto out;
1598 	}
1599 	if (ret > 0) {
1600 		if (metadata) {
1601 			if (path->slots[0] > 0) {
1602 				path->slots[0]--;
1603 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1604 						      path->slots[0]);
1605 				if (key.objectid == head->bytenr &&
1606 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1607 				    key.offset == head->num_bytes)
1608 					ret = 0;
1609 			}
1610 			if (ret > 0) {
1611 				btrfs_release_path(path);
1612 				metadata = 0;
1613 
1614 				key.objectid = head->bytenr;
1615 				key.offset = head->num_bytes;
1616 				key.type = BTRFS_EXTENT_ITEM_KEY;
1617 				goto again;
1618 			}
1619 		} else {
1620 			err = -EIO;
1621 			goto out;
1622 		}
1623 	}
1624 
1625 	leaf = path->nodes[0];
1626 	item_size = btrfs_item_size(leaf, path->slots[0]);
1627 
1628 	if (unlikely(item_size < sizeof(*ei))) {
1629 		err = -EINVAL;
1630 		btrfs_print_v0_err(fs_info);
1631 		btrfs_abort_transaction(trans, err);
1632 		goto out;
1633 	}
1634 
1635 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 	__run_delayed_extent_op(extent_op, leaf, ei);
1637 
1638 	btrfs_mark_buffer_dirty(leaf);
1639 out:
1640 	btrfs_free_path(path);
1641 	return err;
1642 }
1643 
1644 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1645 				struct btrfs_delayed_ref_node *node,
1646 				struct btrfs_delayed_extent_op *extent_op,
1647 				int insert_reserved)
1648 {
1649 	int ret = 0;
1650 	struct btrfs_delayed_tree_ref *ref;
1651 	u64 parent = 0;
1652 	u64 ref_root = 0;
1653 
1654 	ref = btrfs_delayed_node_to_tree_ref(node);
1655 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1656 
1657 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1658 		parent = ref->parent;
1659 	ref_root = ref->root;
1660 
1661 	if (node->ref_mod != 1) {
1662 		btrfs_err(trans->fs_info,
1663 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1664 			  node->bytenr, node->ref_mod, node->action, ref_root,
1665 			  parent);
1666 		return -EIO;
1667 	}
1668 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1669 		BUG_ON(!extent_op || !extent_op->update_flags);
1670 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1671 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1672 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1673 					     ref->level, 0, 1, extent_op);
1674 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1675 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1676 					  ref->level, 0, 1, extent_op);
1677 	} else {
1678 		BUG();
1679 	}
1680 	return ret;
1681 }
1682 
1683 /* helper function to actually process a single delayed ref entry */
1684 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1685 			       struct btrfs_delayed_ref_node *node,
1686 			       struct btrfs_delayed_extent_op *extent_op,
1687 			       int insert_reserved)
1688 {
1689 	int ret = 0;
1690 
1691 	if (TRANS_ABORTED(trans)) {
1692 		if (insert_reserved)
1693 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1694 		return 0;
1695 	}
1696 
1697 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1698 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1699 		ret = run_delayed_tree_ref(trans, node, extent_op,
1700 					   insert_reserved);
1701 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1702 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1703 		ret = run_delayed_data_ref(trans, node, extent_op,
1704 					   insert_reserved);
1705 	else
1706 		BUG();
1707 	if (ret && insert_reserved)
1708 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1709 	return ret;
1710 }
1711 
1712 static inline struct btrfs_delayed_ref_node *
1713 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1714 {
1715 	struct btrfs_delayed_ref_node *ref;
1716 
1717 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1718 		return NULL;
1719 
1720 	/*
1721 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1722 	 * This is to prevent a ref count from going down to zero, which deletes
1723 	 * the extent item from the extent tree, when there still are references
1724 	 * to add, which would fail because they would not find the extent item.
1725 	 */
1726 	if (!list_empty(&head->ref_add_list))
1727 		return list_first_entry(&head->ref_add_list,
1728 				struct btrfs_delayed_ref_node, add_list);
1729 
1730 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1731 		       struct btrfs_delayed_ref_node, ref_node);
1732 	ASSERT(list_empty(&ref->add_list));
1733 	return ref;
1734 }
1735 
1736 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1737 				      struct btrfs_delayed_ref_head *head)
1738 {
1739 	spin_lock(&delayed_refs->lock);
1740 	head->processing = 0;
1741 	delayed_refs->num_heads_ready++;
1742 	spin_unlock(&delayed_refs->lock);
1743 	btrfs_delayed_ref_unlock(head);
1744 }
1745 
1746 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1747 				struct btrfs_delayed_ref_head *head)
1748 {
1749 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1750 
1751 	if (!extent_op)
1752 		return NULL;
1753 
1754 	if (head->must_insert_reserved) {
1755 		head->extent_op = NULL;
1756 		btrfs_free_delayed_extent_op(extent_op);
1757 		return NULL;
1758 	}
1759 	return extent_op;
1760 }
1761 
1762 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1763 				     struct btrfs_delayed_ref_head *head)
1764 {
1765 	struct btrfs_delayed_extent_op *extent_op;
1766 	int ret;
1767 
1768 	extent_op = cleanup_extent_op(head);
1769 	if (!extent_op)
1770 		return 0;
1771 	head->extent_op = NULL;
1772 	spin_unlock(&head->lock);
1773 	ret = run_delayed_extent_op(trans, head, extent_op);
1774 	btrfs_free_delayed_extent_op(extent_op);
1775 	return ret ? ret : 1;
1776 }
1777 
1778 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1779 				  struct btrfs_delayed_ref_root *delayed_refs,
1780 				  struct btrfs_delayed_ref_head *head)
1781 {
1782 	int nr_items = 1;	/* Dropping this ref head update. */
1783 
1784 	/*
1785 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1786 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1787 	 */
1788 	if (head->total_ref_mod < 0 && head->is_data) {
1789 		spin_lock(&delayed_refs->lock);
1790 		delayed_refs->pending_csums -= head->num_bytes;
1791 		spin_unlock(&delayed_refs->lock);
1792 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1793 	}
1794 
1795 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1796 }
1797 
1798 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1799 			    struct btrfs_delayed_ref_head *head)
1800 {
1801 
1802 	struct btrfs_fs_info *fs_info = trans->fs_info;
1803 	struct btrfs_delayed_ref_root *delayed_refs;
1804 	int ret;
1805 
1806 	delayed_refs = &trans->transaction->delayed_refs;
1807 
1808 	ret = run_and_cleanup_extent_op(trans, head);
1809 	if (ret < 0) {
1810 		unselect_delayed_ref_head(delayed_refs, head);
1811 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1812 		return ret;
1813 	} else if (ret) {
1814 		return ret;
1815 	}
1816 
1817 	/*
1818 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1819 	 * and then re-check to make sure nobody got added.
1820 	 */
1821 	spin_unlock(&head->lock);
1822 	spin_lock(&delayed_refs->lock);
1823 	spin_lock(&head->lock);
1824 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1825 		spin_unlock(&head->lock);
1826 		spin_unlock(&delayed_refs->lock);
1827 		return 1;
1828 	}
1829 	btrfs_delete_ref_head(delayed_refs, head);
1830 	spin_unlock(&head->lock);
1831 	spin_unlock(&delayed_refs->lock);
1832 
1833 	if (head->must_insert_reserved) {
1834 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1835 		if (head->is_data) {
1836 			struct btrfs_root *csum_root;
1837 
1838 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1839 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1840 					      head->num_bytes);
1841 		}
1842 	}
1843 
1844 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1845 
1846 	trace_run_delayed_ref_head(fs_info, head, 0);
1847 	btrfs_delayed_ref_unlock(head);
1848 	btrfs_put_delayed_ref_head(head);
1849 	return ret;
1850 }
1851 
1852 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1853 					struct btrfs_trans_handle *trans)
1854 {
1855 	struct btrfs_delayed_ref_root *delayed_refs =
1856 		&trans->transaction->delayed_refs;
1857 	struct btrfs_delayed_ref_head *head = NULL;
1858 	int ret;
1859 
1860 	spin_lock(&delayed_refs->lock);
1861 	head = btrfs_select_ref_head(delayed_refs);
1862 	if (!head) {
1863 		spin_unlock(&delayed_refs->lock);
1864 		return head;
1865 	}
1866 
1867 	/*
1868 	 * Grab the lock that says we are going to process all the refs for
1869 	 * this head
1870 	 */
1871 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1872 	spin_unlock(&delayed_refs->lock);
1873 
1874 	/*
1875 	 * We may have dropped the spin lock to get the head mutex lock, and
1876 	 * that might have given someone else time to free the head.  If that's
1877 	 * true, it has been removed from our list and we can move on.
1878 	 */
1879 	if (ret == -EAGAIN)
1880 		head = ERR_PTR(-EAGAIN);
1881 
1882 	return head;
1883 }
1884 
1885 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1886 				    struct btrfs_delayed_ref_head *locked_ref,
1887 				    unsigned long *run_refs)
1888 {
1889 	struct btrfs_fs_info *fs_info = trans->fs_info;
1890 	struct btrfs_delayed_ref_root *delayed_refs;
1891 	struct btrfs_delayed_extent_op *extent_op;
1892 	struct btrfs_delayed_ref_node *ref;
1893 	int must_insert_reserved = 0;
1894 	int ret;
1895 
1896 	delayed_refs = &trans->transaction->delayed_refs;
1897 
1898 	lockdep_assert_held(&locked_ref->mutex);
1899 	lockdep_assert_held(&locked_ref->lock);
1900 
1901 	while ((ref = select_delayed_ref(locked_ref))) {
1902 		if (ref->seq &&
1903 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1904 			spin_unlock(&locked_ref->lock);
1905 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1906 			return -EAGAIN;
1907 		}
1908 
1909 		(*run_refs)++;
1910 		ref->in_tree = 0;
1911 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1912 		RB_CLEAR_NODE(&ref->ref_node);
1913 		if (!list_empty(&ref->add_list))
1914 			list_del(&ref->add_list);
1915 		/*
1916 		 * When we play the delayed ref, also correct the ref_mod on
1917 		 * head
1918 		 */
1919 		switch (ref->action) {
1920 		case BTRFS_ADD_DELAYED_REF:
1921 		case BTRFS_ADD_DELAYED_EXTENT:
1922 			locked_ref->ref_mod -= ref->ref_mod;
1923 			break;
1924 		case BTRFS_DROP_DELAYED_REF:
1925 			locked_ref->ref_mod += ref->ref_mod;
1926 			break;
1927 		default:
1928 			WARN_ON(1);
1929 		}
1930 		atomic_dec(&delayed_refs->num_entries);
1931 
1932 		/*
1933 		 * Record the must_insert_reserved flag before we drop the
1934 		 * spin lock.
1935 		 */
1936 		must_insert_reserved = locked_ref->must_insert_reserved;
1937 		locked_ref->must_insert_reserved = 0;
1938 
1939 		extent_op = locked_ref->extent_op;
1940 		locked_ref->extent_op = NULL;
1941 		spin_unlock(&locked_ref->lock);
1942 
1943 		ret = run_one_delayed_ref(trans, ref, extent_op,
1944 					  must_insert_reserved);
1945 
1946 		btrfs_free_delayed_extent_op(extent_op);
1947 		if (ret) {
1948 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1949 			btrfs_put_delayed_ref(ref);
1950 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1951 				    ret);
1952 			return ret;
1953 		}
1954 
1955 		btrfs_put_delayed_ref(ref);
1956 		cond_resched();
1957 
1958 		spin_lock(&locked_ref->lock);
1959 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 /*
1966  * Returns 0 on success or if called with an already aborted transaction.
1967  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1968  */
1969 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1970 					     unsigned long nr)
1971 {
1972 	struct btrfs_fs_info *fs_info = trans->fs_info;
1973 	struct btrfs_delayed_ref_root *delayed_refs;
1974 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1975 	ktime_t start = ktime_get();
1976 	int ret;
1977 	unsigned long count = 0;
1978 	unsigned long actual_count = 0;
1979 
1980 	delayed_refs = &trans->transaction->delayed_refs;
1981 	do {
1982 		if (!locked_ref) {
1983 			locked_ref = btrfs_obtain_ref_head(trans);
1984 			if (IS_ERR_OR_NULL(locked_ref)) {
1985 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1986 					continue;
1987 				} else {
1988 					break;
1989 				}
1990 			}
1991 			count++;
1992 		}
1993 		/*
1994 		 * We need to try and merge add/drops of the same ref since we
1995 		 * can run into issues with relocate dropping the implicit ref
1996 		 * and then it being added back again before the drop can
1997 		 * finish.  If we merged anything we need to re-loop so we can
1998 		 * get a good ref.
1999 		 * Or we can get node references of the same type that weren't
2000 		 * merged when created due to bumps in the tree mod seq, and
2001 		 * we need to merge them to prevent adding an inline extent
2002 		 * backref before dropping it (triggering a BUG_ON at
2003 		 * insert_inline_extent_backref()).
2004 		 */
2005 		spin_lock(&locked_ref->lock);
2006 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2007 
2008 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2009 						      &actual_count);
2010 		if (ret < 0 && ret != -EAGAIN) {
2011 			/*
2012 			 * Error, btrfs_run_delayed_refs_for_head already
2013 			 * unlocked everything so just bail out
2014 			 */
2015 			return ret;
2016 		} else if (!ret) {
2017 			/*
2018 			 * Success, perform the usual cleanup of a processed
2019 			 * head
2020 			 */
2021 			ret = cleanup_ref_head(trans, locked_ref);
2022 			if (ret > 0 ) {
2023 				/* We dropped our lock, we need to loop. */
2024 				ret = 0;
2025 				continue;
2026 			} else if (ret) {
2027 				return ret;
2028 			}
2029 		}
2030 
2031 		/*
2032 		 * Either success case or btrfs_run_delayed_refs_for_head
2033 		 * returned -EAGAIN, meaning we need to select another head
2034 		 */
2035 
2036 		locked_ref = NULL;
2037 		cond_resched();
2038 	} while ((nr != -1 && count < nr) || locked_ref);
2039 
2040 	/*
2041 	 * We don't want to include ref heads since we can have empty ref heads
2042 	 * and those will drastically skew our runtime down since we just do
2043 	 * accounting, no actual extent tree updates.
2044 	 */
2045 	if (actual_count > 0) {
2046 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2047 		u64 avg;
2048 
2049 		/*
2050 		 * We weigh the current average higher than our current runtime
2051 		 * to avoid large swings in the average.
2052 		 */
2053 		spin_lock(&delayed_refs->lock);
2054 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2055 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2056 		spin_unlock(&delayed_refs->lock);
2057 	}
2058 	return 0;
2059 }
2060 
2061 #ifdef SCRAMBLE_DELAYED_REFS
2062 /*
2063  * Normally delayed refs get processed in ascending bytenr order. This
2064  * correlates in most cases to the order added. To expose dependencies on this
2065  * order, we start to process the tree in the middle instead of the beginning
2066  */
2067 static u64 find_middle(struct rb_root *root)
2068 {
2069 	struct rb_node *n = root->rb_node;
2070 	struct btrfs_delayed_ref_node *entry;
2071 	int alt = 1;
2072 	u64 middle;
2073 	u64 first = 0, last = 0;
2074 
2075 	n = rb_first(root);
2076 	if (n) {
2077 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2078 		first = entry->bytenr;
2079 	}
2080 	n = rb_last(root);
2081 	if (n) {
2082 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2083 		last = entry->bytenr;
2084 	}
2085 	n = root->rb_node;
2086 
2087 	while (n) {
2088 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2089 		WARN_ON(!entry->in_tree);
2090 
2091 		middle = entry->bytenr;
2092 
2093 		if (alt)
2094 			n = n->rb_left;
2095 		else
2096 			n = n->rb_right;
2097 
2098 		alt = 1 - alt;
2099 	}
2100 	return middle;
2101 }
2102 #endif
2103 
2104 /*
2105  * this starts processing the delayed reference count updates and
2106  * extent insertions we have queued up so far.  count can be
2107  * 0, which means to process everything in the tree at the start
2108  * of the run (but not newly added entries), or it can be some target
2109  * number you'd like to process.
2110  *
2111  * Returns 0 on success or if called with an aborted transaction
2112  * Returns <0 on error and aborts the transaction
2113  */
2114 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2115 			   unsigned long count)
2116 {
2117 	struct btrfs_fs_info *fs_info = trans->fs_info;
2118 	struct rb_node *node;
2119 	struct btrfs_delayed_ref_root *delayed_refs;
2120 	struct btrfs_delayed_ref_head *head;
2121 	int ret;
2122 	int run_all = count == (unsigned long)-1;
2123 
2124 	/* We'll clean this up in btrfs_cleanup_transaction */
2125 	if (TRANS_ABORTED(trans))
2126 		return 0;
2127 
2128 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2129 		return 0;
2130 
2131 	delayed_refs = &trans->transaction->delayed_refs;
2132 	if (count == 0)
2133 		count = delayed_refs->num_heads_ready;
2134 
2135 again:
2136 #ifdef SCRAMBLE_DELAYED_REFS
2137 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2138 #endif
2139 	ret = __btrfs_run_delayed_refs(trans, count);
2140 	if (ret < 0) {
2141 		btrfs_abort_transaction(trans, ret);
2142 		return ret;
2143 	}
2144 
2145 	if (run_all) {
2146 		btrfs_create_pending_block_groups(trans);
2147 
2148 		spin_lock(&delayed_refs->lock);
2149 		node = rb_first_cached(&delayed_refs->href_root);
2150 		if (!node) {
2151 			spin_unlock(&delayed_refs->lock);
2152 			goto out;
2153 		}
2154 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2155 				href_node);
2156 		refcount_inc(&head->refs);
2157 		spin_unlock(&delayed_refs->lock);
2158 
2159 		/* Mutex was contended, block until it's released and retry. */
2160 		mutex_lock(&head->mutex);
2161 		mutex_unlock(&head->mutex);
2162 
2163 		btrfs_put_delayed_ref_head(head);
2164 		cond_resched();
2165 		goto again;
2166 	}
2167 out:
2168 	return 0;
2169 }
2170 
2171 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2172 				struct extent_buffer *eb, u64 flags,
2173 				int level)
2174 {
2175 	struct btrfs_delayed_extent_op *extent_op;
2176 	int ret;
2177 
2178 	extent_op = btrfs_alloc_delayed_extent_op();
2179 	if (!extent_op)
2180 		return -ENOMEM;
2181 
2182 	extent_op->flags_to_set = flags;
2183 	extent_op->update_flags = true;
2184 	extent_op->update_key = false;
2185 	extent_op->level = level;
2186 
2187 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2188 	if (ret)
2189 		btrfs_free_delayed_extent_op(extent_op);
2190 	return ret;
2191 }
2192 
2193 static noinline int check_delayed_ref(struct btrfs_root *root,
2194 				      struct btrfs_path *path,
2195 				      u64 objectid, u64 offset, u64 bytenr)
2196 {
2197 	struct btrfs_delayed_ref_head *head;
2198 	struct btrfs_delayed_ref_node *ref;
2199 	struct btrfs_delayed_data_ref *data_ref;
2200 	struct btrfs_delayed_ref_root *delayed_refs;
2201 	struct btrfs_transaction *cur_trans;
2202 	struct rb_node *node;
2203 	int ret = 0;
2204 
2205 	spin_lock(&root->fs_info->trans_lock);
2206 	cur_trans = root->fs_info->running_transaction;
2207 	if (cur_trans)
2208 		refcount_inc(&cur_trans->use_count);
2209 	spin_unlock(&root->fs_info->trans_lock);
2210 	if (!cur_trans)
2211 		return 0;
2212 
2213 	delayed_refs = &cur_trans->delayed_refs;
2214 	spin_lock(&delayed_refs->lock);
2215 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2216 	if (!head) {
2217 		spin_unlock(&delayed_refs->lock);
2218 		btrfs_put_transaction(cur_trans);
2219 		return 0;
2220 	}
2221 
2222 	if (!mutex_trylock(&head->mutex)) {
2223 		if (path->nowait) {
2224 			spin_unlock(&delayed_refs->lock);
2225 			btrfs_put_transaction(cur_trans);
2226 			return -EAGAIN;
2227 		}
2228 
2229 		refcount_inc(&head->refs);
2230 		spin_unlock(&delayed_refs->lock);
2231 
2232 		btrfs_release_path(path);
2233 
2234 		/*
2235 		 * Mutex was contended, block until it's released and let
2236 		 * caller try again
2237 		 */
2238 		mutex_lock(&head->mutex);
2239 		mutex_unlock(&head->mutex);
2240 		btrfs_put_delayed_ref_head(head);
2241 		btrfs_put_transaction(cur_trans);
2242 		return -EAGAIN;
2243 	}
2244 	spin_unlock(&delayed_refs->lock);
2245 
2246 	spin_lock(&head->lock);
2247 	/*
2248 	 * XXX: We should replace this with a proper search function in the
2249 	 * future.
2250 	 */
2251 	for (node = rb_first_cached(&head->ref_tree); node;
2252 	     node = rb_next(node)) {
2253 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2254 		/* If it's a shared ref we know a cross reference exists */
2255 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2256 			ret = 1;
2257 			break;
2258 		}
2259 
2260 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2261 
2262 		/*
2263 		 * If our ref doesn't match the one we're currently looking at
2264 		 * then we have a cross reference.
2265 		 */
2266 		if (data_ref->root != root->root_key.objectid ||
2267 		    data_ref->objectid != objectid ||
2268 		    data_ref->offset != offset) {
2269 			ret = 1;
2270 			break;
2271 		}
2272 	}
2273 	spin_unlock(&head->lock);
2274 	mutex_unlock(&head->mutex);
2275 	btrfs_put_transaction(cur_trans);
2276 	return ret;
2277 }
2278 
2279 static noinline int check_committed_ref(struct btrfs_root *root,
2280 					struct btrfs_path *path,
2281 					u64 objectid, u64 offset, u64 bytenr,
2282 					bool strict)
2283 {
2284 	struct btrfs_fs_info *fs_info = root->fs_info;
2285 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2286 	struct extent_buffer *leaf;
2287 	struct btrfs_extent_data_ref *ref;
2288 	struct btrfs_extent_inline_ref *iref;
2289 	struct btrfs_extent_item *ei;
2290 	struct btrfs_key key;
2291 	u32 item_size;
2292 	int type;
2293 	int ret;
2294 
2295 	key.objectid = bytenr;
2296 	key.offset = (u64)-1;
2297 	key.type = BTRFS_EXTENT_ITEM_KEY;
2298 
2299 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2300 	if (ret < 0)
2301 		goto out;
2302 	BUG_ON(ret == 0); /* Corruption */
2303 
2304 	ret = -ENOENT;
2305 	if (path->slots[0] == 0)
2306 		goto out;
2307 
2308 	path->slots[0]--;
2309 	leaf = path->nodes[0];
2310 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2311 
2312 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2313 		goto out;
2314 
2315 	ret = 1;
2316 	item_size = btrfs_item_size(leaf, path->slots[0]);
2317 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2318 
2319 	/* If extent item has more than 1 inline ref then it's shared */
2320 	if (item_size != sizeof(*ei) +
2321 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2322 		goto out;
2323 
2324 	/*
2325 	 * If extent created before last snapshot => it's shared unless the
2326 	 * snapshot has been deleted. Use the heuristic if strict is false.
2327 	 */
2328 	if (!strict &&
2329 	    (btrfs_extent_generation(leaf, ei) <=
2330 	     btrfs_root_last_snapshot(&root->root_item)))
2331 		goto out;
2332 
2333 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2334 
2335 	/* If this extent has SHARED_DATA_REF then it's shared */
2336 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2337 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2338 		goto out;
2339 
2340 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2341 	if (btrfs_extent_refs(leaf, ei) !=
2342 	    btrfs_extent_data_ref_count(leaf, ref) ||
2343 	    btrfs_extent_data_ref_root(leaf, ref) !=
2344 	    root->root_key.objectid ||
2345 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2346 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2347 		goto out;
2348 
2349 	ret = 0;
2350 out:
2351 	return ret;
2352 }
2353 
2354 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2355 			  u64 bytenr, bool strict, struct btrfs_path *path)
2356 {
2357 	int ret;
2358 
2359 	do {
2360 		ret = check_committed_ref(root, path, objectid,
2361 					  offset, bytenr, strict);
2362 		if (ret && ret != -ENOENT)
2363 			goto out;
2364 
2365 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2366 	} while (ret == -EAGAIN);
2367 
2368 out:
2369 	btrfs_release_path(path);
2370 	if (btrfs_is_data_reloc_root(root))
2371 		WARN_ON(ret > 0);
2372 	return ret;
2373 }
2374 
2375 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2376 			   struct btrfs_root *root,
2377 			   struct extent_buffer *buf,
2378 			   int full_backref, int inc)
2379 {
2380 	struct btrfs_fs_info *fs_info = root->fs_info;
2381 	u64 bytenr;
2382 	u64 num_bytes;
2383 	u64 parent;
2384 	u64 ref_root;
2385 	u32 nritems;
2386 	struct btrfs_key key;
2387 	struct btrfs_file_extent_item *fi;
2388 	struct btrfs_ref generic_ref = { 0 };
2389 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2390 	int i;
2391 	int action;
2392 	int level;
2393 	int ret = 0;
2394 
2395 	if (btrfs_is_testing(fs_info))
2396 		return 0;
2397 
2398 	ref_root = btrfs_header_owner(buf);
2399 	nritems = btrfs_header_nritems(buf);
2400 	level = btrfs_header_level(buf);
2401 
2402 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2403 		return 0;
2404 
2405 	if (full_backref)
2406 		parent = buf->start;
2407 	else
2408 		parent = 0;
2409 	if (inc)
2410 		action = BTRFS_ADD_DELAYED_REF;
2411 	else
2412 		action = BTRFS_DROP_DELAYED_REF;
2413 
2414 	for (i = 0; i < nritems; i++) {
2415 		if (level == 0) {
2416 			btrfs_item_key_to_cpu(buf, &key, i);
2417 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2418 				continue;
2419 			fi = btrfs_item_ptr(buf, i,
2420 					    struct btrfs_file_extent_item);
2421 			if (btrfs_file_extent_type(buf, fi) ==
2422 			    BTRFS_FILE_EXTENT_INLINE)
2423 				continue;
2424 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2425 			if (bytenr == 0)
2426 				continue;
2427 
2428 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2429 			key.offset -= btrfs_file_extent_offset(buf, fi);
2430 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2431 					       num_bytes, parent);
2432 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2433 					    key.offset, root->root_key.objectid,
2434 					    for_reloc);
2435 			if (inc)
2436 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2437 			else
2438 				ret = btrfs_free_extent(trans, &generic_ref);
2439 			if (ret)
2440 				goto fail;
2441 		} else {
2442 			bytenr = btrfs_node_blockptr(buf, i);
2443 			num_bytes = fs_info->nodesize;
2444 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2445 					       num_bytes, parent);
2446 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2447 					    root->root_key.objectid, for_reloc);
2448 			if (inc)
2449 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2450 			else
2451 				ret = btrfs_free_extent(trans, &generic_ref);
2452 			if (ret)
2453 				goto fail;
2454 		}
2455 	}
2456 	return 0;
2457 fail:
2458 	return ret;
2459 }
2460 
2461 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2462 		  struct extent_buffer *buf, int full_backref)
2463 {
2464 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2465 }
2466 
2467 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2468 		  struct extent_buffer *buf, int full_backref)
2469 {
2470 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2471 }
2472 
2473 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2474 {
2475 	struct btrfs_fs_info *fs_info = root->fs_info;
2476 	u64 flags;
2477 	u64 ret;
2478 
2479 	if (data)
2480 		flags = BTRFS_BLOCK_GROUP_DATA;
2481 	else if (root == fs_info->chunk_root)
2482 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2483 	else
2484 		flags = BTRFS_BLOCK_GROUP_METADATA;
2485 
2486 	ret = btrfs_get_alloc_profile(fs_info, flags);
2487 	return ret;
2488 }
2489 
2490 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2491 {
2492 	struct rb_node *leftmost;
2493 	u64 bytenr = 0;
2494 
2495 	read_lock(&fs_info->block_group_cache_lock);
2496 	/* Get the block group with the lowest logical start address. */
2497 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2498 	if (leftmost) {
2499 		struct btrfs_block_group *bg;
2500 
2501 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2502 		bytenr = bg->start;
2503 	}
2504 	read_unlock(&fs_info->block_group_cache_lock);
2505 
2506 	return bytenr;
2507 }
2508 
2509 static int pin_down_extent(struct btrfs_trans_handle *trans,
2510 			   struct btrfs_block_group *cache,
2511 			   u64 bytenr, u64 num_bytes, int reserved)
2512 {
2513 	struct btrfs_fs_info *fs_info = cache->fs_info;
2514 
2515 	spin_lock(&cache->space_info->lock);
2516 	spin_lock(&cache->lock);
2517 	cache->pinned += num_bytes;
2518 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2519 					     num_bytes);
2520 	if (reserved) {
2521 		cache->reserved -= num_bytes;
2522 		cache->space_info->bytes_reserved -= num_bytes;
2523 	}
2524 	spin_unlock(&cache->lock);
2525 	spin_unlock(&cache->space_info->lock);
2526 
2527 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2528 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2529 	return 0;
2530 }
2531 
2532 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2533 		     u64 bytenr, u64 num_bytes, int reserved)
2534 {
2535 	struct btrfs_block_group *cache;
2536 
2537 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2538 	BUG_ON(!cache); /* Logic error */
2539 
2540 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2541 
2542 	btrfs_put_block_group(cache);
2543 	return 0;
2544 }
2545 
2546 /*
2547  * this function must be called within transaction
2548  */
2549 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2550 				    u64 bytenr, u64 num_bytes)
2551 {
2552 	struct btrfs_block_group *cache;
2553 	int ret;
2554 
2555 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2556 	if (!cache)
2557 		return -EINVAL;
2558 
2559 	/*
2560 	 * Fully cache the free space first so that our pin removes the free space
2561 	 * from the cache.
2562 	 */
2563 	ret = btrfs_cache_block_group(cache, true);
2564 	if (ret)
2565 		goto out;
2566 
2567 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2568 
2569 	/* remove us from the free space cache (if we're there at all) */
2570 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2571 out:
2572 	btrfs_put_block_group(cache);
2573 	return ret;
2574 }
2575 
2576 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2577 				   u64 start, u64 num_bytes)
2578 {
2579 	int ret;
2580 	struct btrfs_block_group *block_group;
2581 
2582 	block_group = btrfs_lookup_block_group(fs_info, start);
2583 	if (!block_group)
2584 		return -EINVAL;
2585 
2586 	ret = btrfs_cache_block_group(block_group, true);
2587 	if (ret)
2588 		goto out;
2589 
2590 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2591 out:
2592 	btrfs_put_block_group(block_group);
2593 	return ret;
2594 }
2595 
2596 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2597 {
2598 	struct btrfs_fs_info *fs_info = eb->fs_info;
2599 	struct btrfs_file_extent_item *item;
2600 	struct btrfs_key key;
2601 	int found_type;
2602 	int i;
2603 	int ret = 0;
2604 
2605 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2606 		return 0;
2607 
2608 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2609 		btrfs_item_key_to_cpu(eb, &key, i);
2610 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2611 			continue;
2612 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2613 		found_type = btrfs_file_extent_type(eb, item);
2614 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2615 			continue;
2616 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2617 			continue;
2618 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2619 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2620 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2621 		if (ret)
2622 			break;
2623 	}
2624 
2625 	return ret;
2626 }
2627 
2628 static void
2629 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2630 {
2631 	atomic_inc(&bg->reservations);
2632 }
2633 
2634 /*
2635  * Returns the free cluster for the given space info and sets empty_cluster to
2636  * what it should be based on the mount options.
2637  */
2638 static struct btrfs_free_cluster *
2639 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2640 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2641 {
2642 	struct btrfs_free_cluster *ret = NULL;
2643 
2644 	*empty_cluster = 0;
2645 	if (btrfs_mixed_space_info(space_info))
2646 		return ret;
2647 
2648 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2649 		ret = &fs_info->meta_alloc_cluster;
2650 		if (btrfs_test_opt(fs_info, SSD))
2651 			*empty_cluster = SZ_2M;
2652 		else
2653 			*empty_cluster = SZ_64K;
2654 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2655 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2656 		*empty_cluster = SZ_2M;
2657 		ret = &fs_info->data_alloc_cluster;
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2664 			      u64 start, u64 end,
2665 			      const bool return_free_space)
2666 {
2667 	struct btrfs_block_group *cache = NULL;
2668 	struct btrfs_space_info *space_info;
2669 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2670 	struct btrfs_free_cluster *cluster = NULL;
2671 	u64 len;
2672 	u64 total_unpinned = 0;
2673 	u64 empty_cluster = 0;
2674 	bool readonly;
2675 
2676 	while (start <= end) {
2677 		readonly = false;
2678 		if (!cache ||
2679 		    start >= cache->start + cache->length) {
2680 			if (cache)
2681 				btrfs_put_block_group(cache);
2682 			total_unpinned = 0;
2683 			cache = btrfs_lookup_block_group(fs_info, start);
2684 			BUG_ON(!cache); /* Logic error */
2685 
2686 			cluster = fetch_cluster_info(fs_info,
2687 						     cache->space_info,
2688 						     &empty_cluster);
2689 			empty_cluster <<= 1;
2690 		}
2691 
2692 		len = cache->start + cache->length - start;
2693 		len = min(len, end + 1 - start);
2694 
2695 		if (return_free_space)
2696 			btrfs_add_free_space(cache, start, len);
2697 
2698 		start += len;
2699 		total_unpinned += len;
2700 		space_info = cache->space_info;
2701 
2702 		/*
2703 		 * If this space cluster has been marked as fragmented and we've
2704 		 * unpinned enough in this block group to potentially allow a
2705 		 * cluster to be created inside of it go ahead and clear the
2706 		 * fragmented check.
2707 		 */
2708 		if (cluster && cluster->fragmented &&
2709 		    total_unpinned > empty_cluster) {
2710 			spin_lock(&cluster->lock);
2711 			cluster->fragmented = 0;
2712 			spin_unlock(&cluster->lock);
2713 		}
2714 
2715 		spin_lock(&space_info->lock);
2716 		spin_lock(&cache->lock);
2717 		cache->pinned -= len;
2718 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2719 		space_info->max_extent_size = 0;
2720 		if (cache->ro) {
2721 			space_info->bytes_readonly += len;
2722 			readonly = true;
2723 		} else if (btrfs_is_zoned(fs_info)) {
2724 			/* Need reset before reusing in a zoned block group */
2725 			space_info->bytes_zone_unusable += len;
2726 			readonly = true;
2727 		}
2728 		spin_unlock(&cache->lock);
2729 		if (!readonly && return_free_space &&
2730 		    global_rsv->space_info == space_info) {
2731 			spin_lock(&global_rsv->lock);
2732 			if (!global_rsv->full) {
2733 				u64 to_add = min(len, global_rsv->size -
2734 						      global_rsv->reserved);
2735 
2736 				global_rsv->reserved += to_add;
2737 				btrfs_space_info_update_bytes_may_use(fs_info,
2738 						space_info, to_add);
2739 				if (global_rsv->reserved >= global_rsv->size)
2740 					global_rsv->full = 1;
2741 				len -= to_add;
2742 			}
2743 			spin_unlock(&global_rsv->lock);
2744 		}
2745 		/* Add to any tickets we may have */
2746 		if (!readonly && return_free_space && len)
2747 			btrfs_try_granting_tickets(fs_info, space_info);
2748 		spin_unlock(&space_info->lock);
2749 	}
2750 
2751 	if (cache)
2752 		btrfs_put_block_group(cache);
2753 	return 0;
2754 }
2755 
2756 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2757 {
2758 	struct btrfs_fs_info *fs_info = trans->fs_info;
2759 	struct btrfs_block_group *block_group, *tmp;
2760 	struct list_head *deleted_bgs;
2761 	struct extent_io_tree *unpin;
2762 	u64 start;
2763 	u64 end;
2764 	int ret;
2765 
2766 	unpin = &trans->transaction->pinned_extents;
2767 
2768 	while (!TRANS_ABORTED(trans)) {
2769 		struct extent_state *cached_state = NULL;
2770 
2771 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2772 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2773 					    EXTENT_DIRTY, &cached_state);
2774 		if (ret) {
2775 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2776 			break;
2777 		}
2778 
2779 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2780 			ret = btrfs_discard_extent(fs_info, start,
2781 						   end + 1 - start, NULL);
2782 
2783 		clear_extent_dirty(unpin, start, end, &cached_state);
2784 		unpin_extent_range(fs_info, start, end, true);
2785 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2786 		free_extent_state(cached_state);
2787 		cond_resched();
2788 	}
2789 
2790 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2791 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2792 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2793 	}
2794 
2795 	/*
2796 	 * Transaction is finished.  We don't need the lock anymore.  We
2797 	 * do need to clean up the block groups in case of a transaction
2798 	 * abort.
2799 	 */
2800 	deleted_bgs = &trans->transaction->deleted_bgs;
2801 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2802 		u64 trimmed = 0;
2803 
2804 		ret = -EROFS;
2805 		if (!TRANS_ABORTED(trans))
2806 			ret = btrfs_discard_extent(fs_info,
2807 						   block_group->start,
2808 						   block_group->length,
2809 						   &trimmed);
2810 
2811 		list_del_init(&block_group->bg_list);
2812 		btrfs_unfreeze_block_group(block_group);
2813 		btrfs_put_block_group(block_group);
2814 
2815 		if (ret) {
2816 			const char *errstr = btrfs_decode_error(ret);
2817 			btrfs_warn(fs_info,
2818 			   "discard failed while removing blockgroup: errno=%d %s",
2819 				   ret, errstr);
2820 		}
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2827 				     u64 bytenr, u64 num_bytes, bool is_data)
2828 {
2829 	int ret;
2830 
2831 	if (is_data) {
2832 		struct btrfs_root *csum_root;
2833 
2834 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2835 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2836 		if (ret) {
2837 			btrfs_abort_transaction(trans, ret);
2838 			return ret;
2839 		}
2840 	}
2841 
2842 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2843 	if (ret) {
2844 		btrfs_abort_transaction(trans, ret);
2845 		return ret;
2846 	}
2847 
2848 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2849 	if (ret)
2850 		btrfs_abort_transaction(trans, ret);
2851 
2852 	return ret;
2853 }
2854 
2855 /*
2856  * Drop one or more refs of @node.
2857  *
2858  * 1. Locate the extent refs.
2859  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2860  *    Locate it, then reduce the refs number or remove the ref line completely.
2861  *
2862  * 2. Update the refs count in EXTENT/METADATA_ITEM
2863  *
2864  * Inline backref case:
2865  *
2866  * in extent tree we have:
2867  *
2868  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2869  *		refs 2 gen 6 flags DATA
2870  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2871  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2872  *
2873  * This function gets called with:
2874  *
2875  *    node->bytenr = 13631488
2876  *    node->num_bytes = 1048576
2877  *    root_objectid = FS_TREE
2878  *    owner_objectid = 257
2879  *    owner_offset = 0
2880  *    refs_to_drop = 1
2881  *
2882  * Then we should get some like:
2883  *
2884  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2885  *		refs 1 gen 6 flags DATA
2886  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2887  *
2888  * Keyed backref case:
2889  *
2890  * in extent tree we have:
2891  *
2892  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2893  *		refs 754 gen 6 flags DATA
2894  *	[...]
2895  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2896  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2897  *
2898  * This function get called with:
2899  *
2900  *    node->bytenr = 13631488
2901  *    node->num_bytes = 1048576
2902  *    root_objectid = FS_TREE
2903  *    owner_objectid = 866
2904  *    owner_offset = 0
2905  *    refs_to_drop = 1
2906  *
2907  * Then we should get some like:
2908  *
2909  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2910  *		refs 753 gen 6 flags DATA
2911  *
2912  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2913  */
2914 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2915 			       struct btrfs_delayed_ref_node *node, u64 parent,
2916 			       u64 root_objectid, u64 owner_objectid,
2917 			       u64 owner_offset, int refs_to_drop,
2918 			       struct btrfs_delayed_extent_op *extent_op)
2919 {
2920 	struct btrfs_fs_info *info = trans->fs_info;
2921 	struct btrfs_key key;
2922 	struct btrfs_path *path;
2923 	struct btrfs_root *extent_root;
2924 	struct extent_buffer *leaf;
2925 	struct btrfs_extent_item *ei;
2926 	struct btrfs_extent_inline_ref *iref;
2927 	int ret;
2928 	int is_data;
2929 	int extent_slot = 0;
2930 	int found_extent = 0;
2931 	int num_to_del = 1;
2932 	u32 item_size;
2933 	u64 refs;
2934 	u64 bytenr = node->bytenr;
2935 	u64 num_bytes = node->num_bytes;
2936 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2937 
2938 	extent_root = btrfs_extent_root(info, bytenr);
2939 	ASSERT(extent_root);
2940 
2941 	path = btrfs_alloc_path();
2942 	if (!path)
2943 		return -ENOMEM;
2944 
2945 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2946 
2947 	if (!is_data && refs_to_drop != 1) {
2948 		btrfs_crit(info,
2949 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2950 			   node->bytenr, refs_to_drop);
2951 		ret = -EINVAL;
2952 		btrfs_abort_transaction(trans, ret);
2953 		goto out;
2954 	}
2955 
2956 	if (is_data)
2957 		skinny_metadata = false;
2958 
2959 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2960 				    parent, root_objectid, owner_objectid,
2961 				    owner_offset);
2962 	if (ret == 0) {
2963 		/*
2964 		 * Either the inline backref or the SHARED_DATA_REF/
2965 		 * SHARED_BLOCK_REF is found
2966 		 *
2967 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2968 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2969 		 */
2970 		extent_slot = path->slots[0];
2971 		while (extent_slot >= 0) {
2972 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2973 					      extent_slot);
2974 			if (key.objectid != bytenr)
2975 				break;
2976 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2977 			    key.offset == num_bytes) {
2978 				found_extent = 1;
2979 				break;
2980 			}
2981 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2982 			    key.offset == owner_objectid) {
2983 				found_extent = 1;
2984 				break;
2985 			}
2986 
2987 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2988 			if (path->slots[0] - extent_slot > 5)
2989 				break;
2990 			extent_slot--;
2991 		}
2992 
2993 		if (!found_extent) {
2994 			if (iref) {
2995 				btrfs_crit(info,
2996 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
2997 				btrfs_abort_transaction(trans, -EUCLEAN);
2998 				goto err_dump;
2999 			}
3000 			/* Must be SHARED_* item, remove the backref first */
3001 			ret = remove_extent_backref(trans, extent_root, path,
3002 						    NULL, refs_to_drop, is_data);
3003 			if (ret) {
3004 				btrfs_abort_transaction(trans, ret);
3005 				goto out;
3006 			}
3007 			btrfs_release_path(path);
3008 
3009 			/* Slow path to locate EXTENT/METADATA_ITEM */
3010 			key.objectid = bytenr;
3011 			key.type = BTRFS_EXTENT_ITEM_KEY;
3012 			key.offset = num_bytes;
3013 
3014 			if (!is_data && skinny_metadata) {
3015 				key.type = BTRFS_METADATA_ITEM_KEY;
3016 				key.offset = owner_objectid;
3017 			}
3018 
3019 			ret = btrfs_search_slot(trans, extent_root,
3020 						&key, path, -1, 1);
3021 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3022 				/*
3023 				 * Couldn't find our skinny metadata item,
3024 				 * see if we have ye olde extent item.
3025 				 */
3026 				path->slots[0]--;
3027 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3028 						      path->slots[0]);
3029 				if (key.objectid == bytenr &&
3030 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3031 				    key.offset == num_bytes)
3032 					ret = 0;
3033 			}
3034 
3035 			if (ret > 0 && skinny_metadata) {
3036 				skinny_metadata = false;
3037 				key.objectid = bytenr;
3038 				key.type = BTRFS_EXTENT_ITEM_KEY;
3039 				key.offset = num_bytes;
3040 				btrfs_release_path(path);
3041 				ret = btrfs_search_slot(trans, extent_root,
3042 							&key, path, -1, 1);
3043 			}
3044 
3045 			if (ret) {
3046 				btrfs_err(info,
3047 					  "umm, got %d back from search, was looking for %llu",
3048 					  ret, bytenr);
3049 				if (ret > 0)
3050 					btrfs_print_leaf(path->nodes[0]);
3051 			}
3052 			if (ret < 0) {
3053 				btrfs_abort_transaction(trans, ret);
3054 				goto out;
3055 			}
3056 			extent_slot = path->slots[0];
3057 		}
3058 	} else if (WARN_ON(ret == -ENOENT)) {
3059 		btrfs_print_leaf(path->nodes[0]);
3060 		btrfs_err(info,
3061 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3062 			bytenr, parent, root_objectid, owner_objectid,
3063 			owner_offset);
3064 		btrfs_abort_transaction(trans, ret);
3065 		goto out;
3066 	} else {
3067 		btrfs_abort_transaction(trans, ret);
3068 		goto out;
3069 	}
3070 
3071 	leaf = path->nodes[0];
3072 	item_size = btrfs_item_size(leaf, extent_slot);
3073 	if (unlikely(item_size < sizeof(*ei))) {
3074 		ret = -EINVAL;
3075 		btrfs_print_v0_err(info);
3076 		btrfs_abort_transaction(trans, ret);
3077 		goto out;
3078 	}
3079 	ei = btrfs_item_ptr(leaf, extent_slot,
3080 			    struct btrfs_extent_item);
3081 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3082 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3083 		struct btrfs_tree_block_info *bi;
3084 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3085 			btrfs_crit(info,
3086 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3087 				   key.objectid, key.type, key.offset,
3088 				   owner_objectid, item_size,
3089 				   sizeof(*ei) + sizeof(*bi));
3090 			btrfs_abort_transaction(trans, -EUCLEAN);
3091 			goto err_dump;
3092 		}
3093 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3094 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3095 	}
3096 
3097 	refs = btrfs_extent_refs(leaf, ei);
3098 	if (refs < refs_to_drop) {
3099 		btrfs_crit(info,
3100 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3101 			  refs_to_drop, refs, bytenr);
3102 		btrfs_abort_transaction(trans, -EUCLEAN);
3103 		goto err_dump;
3104 	}
3105 	refs -= refs_to_drop;
3106 
3107 	if (refs > 0) {
3108 		if (extent_op)
3109 			__run_delayed_extent_op(extent_op, leaf, ei);
3110 		/*
3111 		 * In the case of inline back ref, reference count will
3112 		 * be updated by remove_extent_backref
3113 		 */
3114 		if (iref) {
3115 			if (!found_extent) {
3116 				btrfs_crit(info,
3117 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3118 				btrfs_abort_transaction(trans, -EUCLEAN);
3119 				goto err_dump;
3120 			}
3121 		} else {
3122 			btrfs_set_extent_refs(leaf, ei, refs);
3123 			btrfs_mark_buffer_dirty(leaf);
3124 		}
3125 		if (found_extent) {
3126 			ret = remove_extent_backref(trans, extent_root, path,
3127 						    iref, refs_to_drop, is_data);
3128 			if (ret) {
3129 				btrfs_abort_transaction(trans, ret);
3130 				goto out;
3131 			}
3132 		}
3133 	} else {
3134 		/* In this branch refs == 1 */
3135 		if (found_extent) {
3136 			if (is_data && refs_to_drop !=
3137 			    extent_data_ref_count(path, iref)) {
3138 				btrfs_crit(info,
3139 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3140 					   extent_data_ref_count(path, iref),
3141 					   refs_to_drop);
3142 				btrfs_abort_transaction(trans, -EUCLEAN);
3143 				goto err_dump;
3144 			}
3145 			if (iref) {
3146 				if (path->slots[0] != extent_slot) {
3147 					btrfs_crit(info,
3148 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3149 						   key.objectid, key.type,
3150 						   key.offset);
3151 					btrfs_abort_transaction(trans, -EUCLEAN);
3152 					goto err_dump;
3153 				}
3154 			} else {
3155 				/*
3156 				 * No inline ref, we must be at SHARED_* item,
3157 				 * And it's single ref, it must be:
3158 				 * |	extent_slot	  ||extent_slot + 1|
3159 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3160 				 */
3161 				if (path->slots[0] != extent_slot + 1) {
3162 					btrfs_crit(info,
3163 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3164 					btrfs_abort_transaction(trans, -EUCLEAN);
3165 					goto err_dump;
3166 				}
3167 				path->slots[0] = extent_slot;
3168 				num_to_del = 2;
3169 			}
3170 		}
3171 
3172 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3173 				      num_to_del);
3174 		if (ret) {
3175 			btrfs_abort_transaction(trans, ret);
3176 			goto out;
3177 		}
3178 		btrfs_release_path(path);
3179 
3180 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3181 	}
3182 	btrfs_release_path(path);
3183 
3184 out:
3185 	btrfs_free_path(path);
3186 	return ret;
3187 err_dump:
3188 	/*
3189 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3190 	 * dump for debug build.
3191 	 */
3192 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3193 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3194 			   path->slots[0], extent_slot);
3195 		btrfs_print_leaf(path->nodes[0]);
3196 	}
3197 
3198 	btrfs_free_path(path);
3199 	return -EUCLEAN;
3200 }
3201 
3202 /*
3203  * when we free an block, it is possible (and likely) that we free the last
3204  * delayed ref for that extent as well.  This searches the delayed ref tree for
3205  * a given extent, and if there are no other delayed refs to be processed, it
3206  * removes it from the tree.
3207  */
3208 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3209 				      u64 bytenr)
3210 {
3211 	struct btrfs_delayed_ref_head *head;
3212 	struct btrfs_delayed_ref_root *delayed_refs;
3213 	int ret = 0;
3214 
3215 	delayed_refs = &trans->transaction->delayed_refs;
3216 	spin_lock(&delayed_refs->lock);
3217 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3218 	if (!head)
3219 		goto out_delayed_unlock;
3220 
3221 	spin_lock(&head->lock);
3222 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3223 		goto out;
3224 
3225 	if (cleanup_extent_op(head) != NULL)
3226 		goto out;
3227 
3228 	/*
3229 	 * waiting for the lock here would deadlock.  If someone else has it
3230 	 * locked they are already in the process of dropping it anyway
3231 	 */
3232 	if (!mutex_trylock(&head->mutex))
3233 		goto out;
3234 
3235 	btrfs_delete_ref_head(delayed_refs, head);
3236 	head->processing = 0;
3237 
3238 	spin_unlock(&head->lock);
3239 	spin_unlock(&delayed_refs->lock);
3240 
3241 	BUG_ON(head->extent_op);
3242 	if (head->must_insert_reserved)
3243 		ret = 1;
3244 
3245 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3246 	mutex_unlock(&head->mutex);
3247 	btrfs_put_delayed_ref_head(head);
3248 	return ret;
3249 out:
3250 	spin_unlock(&head->lock);
3251 
3252 out_delayed_unlock:
3253 	spin_unlock(&delayed_refs->lock);
3254 	return 0;
3255 }
3256 
3257 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3258 			   u64 root_id,
3259 			   struct extent_buffer *buf,
3260 			   u64 parent, int last_ref)
3261 {
3262 	struct btrfs_fs_info *fs_info = trans->fs_info;
3263 	struct btrfs_ref generic_ref = { 0 };
3264 	int ret;
3265 
3266 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3267 			       buf->start, buf->len, parent);
3268 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3269 			    root_id, 0, false);
3270 
3271 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3272 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3273 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3274 		BUG_ON(ret); /* -ENOMEM */
3275 	}
3276 
3277 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3278 		struct btrfs_block_group *cache;
3279 		bool must_pin = false;
3280 
3281 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3282 			ret = check_ref_cleanup(trans, buf->start);
3283 			if (!ret) {
3284 				btrfs_redirty_list_add(trans->transaction, buf);
3285 				goto out;
3286 			}
3287 		}
3288 
3289 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3290 
3291 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3292 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3293 			btrfs_put_block_group(cache);
3294 			goto out;
3295 		}
3296 
3297 		/*
3298 		 * If there are tree mod log users we may have recorded mod log
3299 		 * operations for this node.  If we re-allocate this node we
3300 		 * could replay operations on this node that happened when it
3301 		 * existed in a completely different root.  For example if it
3302 		 * was part of root A, then was reallocated to root B, and we
3303 		 * are doing a btrfs_old_search_slot(root b), we could replay
3304 		 * operations that happened when the block was part of root A,
3305 		 * giving us an inconsistent view of the btree.
3306 		 *
3307 		 * We are safe from races here because at this point no other
3308 		 * node or root points to this extent buffer, so if after this
3309 		 * check a new tree mod log user joins we will not have an
3310 		 * existing log of operations on this node that we have to
3311 		 * contend with.
3312 		 */
3313 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3314 			must_pin = true;
3315 
3316 		if (must_pin || btrfs_is_zoned(fs_info)) {
3317 			btrfs_redirty_list_add(trans->transaction, buf);
3318 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3319 			btrfs_put_block_group(cache);
3320 			goto out;
3321 		}
3322 
3323 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3324 
3325 		btrfs_add_free_space(cache, buf->start, buf->len);
3326 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3327 		btrfs_put_block_group(cache);
3328 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3329 	}
3330 out:
3331 	if (last_ref) {
3332 		/*
3333 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3334 		 * matter anymore.
3335 		 */
3336 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3337 	}
3338 }
3339 
3340 /* Can return -ENOMEM */
3341 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3342 {
3343 	struct btrfs_fs_info *fs_info = trans->fs_info;
3344 	int ret;
3345 
3346 	if (btrfs_is_testing(fs_info))
3347 		return 0;
3348 
3349 	/*
3350 	 * tree log blocks never actually go into the extent allocation
3351 	 * tree, just update pinning info and exit early.
3352 	 */
3353 	if ((ref->type == BTRFS_REF_METADATA &&
3354 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3355 	    (ref->type == BTRFS_REF_DATA &&
3356 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3357 		/* unlocks the pinned mutex */
3358 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3359 		ret = 0;
3360 	} else if (ref->type == BTRFS_REF_METADATA) {
3361 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3362 	} else {
3363 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3364 	}
3365 
3366 	if (!((ref->type == BTRFS_REF_METADATA &&
3367 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3368 	      (ref->type == BTRFS_REF_DATA &&
3369 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3370 		btrfs_ref_tree_mod(fs_info, ref);
3371 
3372 	return ret;
3373 }
3374 
3375 enum btrfs_loop_type {
3376 	LOOP_CACHING_NOWAIT,
3377 	LOOP_CACHING_WAIT,
3378 	LOOP_ALLOC_CHUNK,
3379 	LOOP_NO_EMPTY_SIZE,
3380 };
3381 
3382 static inline void
3383 btrfs_lock_block_group(struct btrfs_block_group *cache,
3384 		       int delalloc)
3385 {
3386 	if (delalloc)
3387 		down_read(&cache->data_rwsem);
3388 }
3389 
3390 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3391 		       int delalloc)
3392 {
3393 	btrfs_get_block_group(cache);
3394 	if (delalloc)
3395 		down_read(&cache->data_rwsem);
3396 }
3397 
3398 static struct btrfs_block_group *btrfs_lock_cluster(
3399 		   struct btrfs_block_group *block_group,
3400 		   struct btrfs_free_cluster *cluster,
3401 		   int delalloc)
3402 	__acquires(&cluster->refill_lock)
3403 {
3404 	struct btrfs_block_group *used_bg = NULL;
3405 
3406 	spin_lock(&cluster->refill_lock);
3407 	while (1) {
3408 		used_bg = cluster->block_group;
3409 		if (!used_bg)
3410 			return NULL;
3411 
3412 		if (used_bg == block_group)
3413 			return used_bg;
3414 
3415 		btrfs_get_block_group(used_bg);
3416 
3417 		if (!delalloc)
3418 			return used_bg;
3419 
3420 		if (down_read_trylock(&used_bg->data_rwsem))
3421 			return used_bg;
3422 
3423 		spin_unlock(&cluster->refill_lock);
3424 
3425 		/* We should only have one-level nested. */
3426 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3427 
3428 		spin_lock(&cluster->refill_lock);
3429 		if (used_bg == cluster->block_group)
3430 			return used_bg;
3431 
3432 		up_read(&used_bg->data_rwsem);
3433 		btrfs_put_block_group(used_bg);
3434 	}
3435 }
3436 
3437 static inline void
3438 btrfs_release_block_group(struct btrfs_block_group *cache,
3439 			 int delalloc)
3440 {
3441 	if (delalloc)
3442 		up_read(&cache->data_rwsem);
3443 	btrfs_put_block_group(cache);
3444 }
3445 
3446 enum btrfs_extent_allocation_policy {
3447 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3448 	BTRFS_EXTENT_ALLOC_ZONED,
3449 };
3450 
3451 /*
3452  * Structure used internally for find_free_extent() function.  Wraps needed
3453  * parameters.
3454  */
3455 struct find_free_extent_ctl {
3456 	/* Basic allocation info */
3457 	u64 ram_bytes;
3458 	u64 num_bytes;
3459 	u64 min_alloc_size;
3460 	u64 empty_size;
3461 	u64 flags;
3462 	int delalloc;
3463 
3464 	/* Where to start the search inside the bg */
3465 	u64 search_start;
3466 
3467 	/* For clustered allocation */
3468 	u64 empty_cluster;
3469 	struct btrfs_free_cluster *last_ptr;
3470 	bool use_cluster;
3471 
3472 	bool have_caching_bg;
3473 	bool orig_have_caching_bg;
3474 
3475 	/* Allocation is called for tree-log */
3476 	bool for_treelog;
3477 
3478 	/* Allocation is called for data relocation */
3479 	bool for_data_reloc;
3480 
3481 	/* RAID index, converted from flags */
3482 	int index;
3483 
3484 	/*
3485 	 * Current loop number, check find_free_extent_update_loop() for details
3486 	 */
3487 	int loop;
3488 
3489 	/*
3490 	 * Whether we're refilling a cluster, if true we need to re-search
3491 	 * current block group but don't try to refill the cluster again.
3492 	 */
3493 	bool retry_clustered;
3494 
3495 	/*
3496 	 * Whether we're updating free space cache, if true we need to re-search
3497 	 * current block group but don't try updating free space cache again.
3498 	 */
3499 	bool retry_unclustered;
3500 
3501 	/* If current block group is cached */
3502 	int cached;
3503 
3504 	/* Max contiguous hole found */
3505 	u64 max_extent_size;
3506 
3507 	/* Total free space from free space cache, not always contiguous */
3508 	u64 total_free_space;
3509 
3510 	/* Found result */
3511 	u64 found_offset;
3512 
3513 	/* Hint where to start looking for an empty space */
3514 	u64 hint_byte;
3515 
3516 	/* Allocation policy */
3517 	enum btrfs_extent_allocation_policy policy;
3518 };
3519 
3520 
3521 /*
3522  * Helper function for find_free_extent().
3523  *
3524  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3525  * Return -EAGAIN to inform caller that we need to re-search this block group
3526  * Return >0 to inform caller that we find nothing
3527  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3528  */
3529 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3530 				      struct find_free_extent_ctl *ffe_ctl,
3531 				      struct btrfs_block_group **cluster_bg_ret)
3532 {
3533 	struct btrfs_block_group *cluster_bg;
3534 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3535 	u64 aligned_cluster;
3536 	u64 offset;
3537 	int ret;
3538 
3539 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3540 	if (!cluster_bg)
3541 		goto refill_cluster;
3542 	if (cluster_bg != bg && (cluster_bg->ro ||
3543 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3544 		goto release_cluster;
3545 
3546 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3547 			ffe_ctl->num_bytes, cluster_bg->start,
3548 			&ffe_ctl->max_extent_size);
3549 	if (offset) {
3550 		/* We have a block, we're done */
3551 		spin_unlock(&last_ptr->refill_lock);
3552 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3553 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3554 		*cluster_bg_ret = cluster_bg;
3555 		ffe_ctl->found_offset = offset;
3556 		return 0;
3557 	}
3558 	WARN_ON(last_ptr->block_group != cluster_bg);
3559 
3560 release_cluster:
3561 	/*
3562 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3563 	 * lets just skip it and let the allocator find whatever block it can
3564 	 * find. If we reach this point, we will have tried the cluster
3565 	 * allocator plenty of times and not have found anything, so we are
3566 	 * likely way too fragmented for the clustering stuff to find anything.
3567 	 *
3568 	 * However, if the cluster is taken from the current block group,
3569 	 * release the cluster first, so that we stand a better chance of
3570 	 * succeeding in the unclustered allocation.
3571 	 */
3572 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3573 		spin_unlock(&last_ptr->refill_lock);
3574 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3575 		return -ENOENT;
3576 	}
3577 
3578 	/* This cluster didn't work out, free it and start over */
3579 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3580 
3581 	if (cluster_bg != bg)
3582 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3583 
3584 refill_cluster:
3585 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3586 		spin_unlock(&last_ptr->refill_lock);
3587 		return -ENOENT;
3588 	}
3589 
3590 	aligned_cluster = max_t(u64,
3591 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3592 			bg->full_stripe_len);
3593 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3594 			ffe_ctl->num_bytes, aligned_cluster);
3595 	if (ret == 0) {
3596 		/* Now pull our allocation out of this cluster */
3597 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3598 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3599 				&ffe_ctl->max_extent_size);
3600 		if (offset) {
3601 			/* We found one, proceed */
3602 			spin_unlock(&last_ptr->refill_lock);
3603 			trace_btrfs_reserve_extent_cluster(bg,
3604 					ffe_ctl->search_start,
3605 					ffe_ctl->num_bytes);
3606 			ffe_ctl->found_offset = offset;
3607 			return 0;
3608 		}
3609 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3610 		   !ffe_ctl->retry_clustered) {
3611 		spin_unlock(&last_ptr->refill_lock);
3612 
3613 		ffe_ctl->retry_clustered = true;
3614 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3615 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3616 		return -EAGAIN;
3617 	}
3618 	/*
3619 	 * At this point we either didn't find a cluster or we weren't able to
3620 	 * allocate a block from our cluster.  Free the cluster we've been
3621 	 * trying to use, and go to the next block group.
3622 	 */
3623 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3624 	spin_unlock(&last_ptr->refill_lock);
3625 	return 1;
3626 }
3627 
3628 /*
3629  * Return >0 to inform caller that we find nothing
3630  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3631  * Return -EAGAIN to inform caller that we need to re-search this block group
3632  */
3633 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3634 					struct find_free_extent_ctl *ffe_ctl)
3635 {
3636 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3637 	u64 offset;
3638 
3639 	/*
3640 	 * We are doing an unclustered allocation, set the fragmented flag so
3641 	 * we don't bother trying to setup a cluster again until we get more
3642 	 * space.
3643 	 */
3644 	if (unlikely(last_ptr)) {
3645 		spin_lock(&last_ptr->lock);
3646 		last_ptr->fragmented = 1;
3647 		spin_unlock(&last_ptr->lock);
3648 	}
3649 	if (ffe_ctl->cached) {
3650 		struct btrfs_free_space_ctl *free_space_ctl;
3651 
3652 		free_space_ctl = bg->free_space_ctl;
3653 		spin_lock(&free_space_ctl->tree_lock);
3654 		if (free_space_ctl->free_space <
3655 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3656 		    ffe_ctl->empty_size) {
3657 			ffe_ctl->total_free_space = max_t(u64,
3658 					ffe_ctl->total_free_space,
3659 					free_space_ctl->free_space);
3660 			spin_unlock(&free_space_ctl->tree_lock);
3661 			return 1;
3662 		}
3663 		spin_unlock(&free_space_ctl->tree_lock);
3664 	}
3665 
3666 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3667 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3668 			&ffe_ctl->max_extent_size);
3669 
3670 	/*
3671 	 * If we didn't find a chunk, and we haven't failed on this block group
3672 	 * before, and this block group is in the middle of caching and we are
3673 	 * ok with waiting, then go ahead and wait for progress to be made, and
3674 	 * set @retry_unclustered to true.
3675 	 *
3676 	 * If @retry_unclustered is true then we've already waited on this
3677 	 * block group once and should move on to the next block group.
3678 	 */
3679 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3680 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3681 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3682 						      ffe_ctl->empty_size);
3683 		ffe_ctl->retry_unclustered = true;
3684 		return -EAGAIN;
3685 	} else if (!offset) {
3686 		return 1;
3687 	}
3688 	ffe_ctl->found_offset = offset;
3689 	return 0;
3690 }
3691 
3692 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3693 				   struct find_free_extent_ctl *ffe_ctl,
3694 				   struct btrfs_block_group **bg_ret)
3695 {
3696 	int ret;
3697 
3698 	/* We want to try and use the cluster allocator, so lets look there */
3699 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3700 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3701 		if (ret >= 0 || ret == -EAGAIN)
3702 			return ret;
3703 		/* ret == -ENOENT case falls through */
3704 	}
3705 
3706 	return find_free_extent_unclustered(block_group, ffe_ctl);
3707 }
3708 
3709 /*
3710  * Tree-log block group locking
3711  * ============================
3712  *
3713  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3714  * indicates the starting address of a block group, which is reserved only
3715  * for tree-log metadata.
3716  *
3717  * Lock nesting
3718  * ============
3719  *
3720  * space_info::lock
3721  *   block_group::lock
3722  *     fs_info::treelog_bg_lock
3723  */
3724 
3725 /*
3726  * Simple allocator for sequential-only block group. It only allows sequential
3727  * allocation. No need to play with trees. This function also reserves the
3728  * bytes as in btrfs_add_reserved_bytes.
3729  */
3730 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3731 			       struct find_free_extent_ctl *ffe_ctl,
3732 			       struct btrfs_block_group **bg_ret)
3733 {
3734 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3735 	struct btrfs_space_info *space_info = block_group->space_info;
3736 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3737 	u64 start = block_group->start;
3738 	u64 num_bytes = ffe_ctl->num_bytes;
3739 	u64 avail;
3740 	u64 bytenr = block_group->start;
3741 	u64 log_bytenr;
3742 	u64 data_reloc_bytenr;
3743 	int ret = 0;
3744 	bool skip = false;
3745 
3746 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3747 
3748 	/*
3749 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3750 	 * group, and vice versa.
3751 	 */
3752 	spin_lock(&fs_info->treelog_bg_lock);
3753 	log_bytenr = fs_info->treelog_bg;
3754 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3755 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3756 		skip = true;
3757 	spin_unlock(&fs_info->treelog_bg_lock);
3758 	if (skip)
3759 		return 1;
3760 
3761 	/*
3762 	 * Do not allow non-relocation blocks in the dedicated relocation block
3763 	 * group, and vice versa.
3764 	 */
3765 	spin_lock(&fs_info->relocation_bg_lock);
3766 	data_reloc_bytenr = fs_info->data_reloc_bg;
3767 	if (data_reloc_bytenr &&
3768 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3769 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3770 		skip = true;
3771 	spin_unlock(&fs_info->relocation_bg_lock);
3772 	if (skip)
3773 		return 1;
3774 
3775 	/* Check RO and no space case before trying to activate it */
3776 	spin_lock(&block_group->lock);
3777 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3778 		ret = 1;
3779 		/*
3780 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3781 		 * Return the error after taking the locks.
3782 		 */
3783 	}
3784 	spin_unlock(&block_group->lock);
3785 
3786 	if (!ret && !btrfs_zone_activate(block_group)) {
3787 		ret = 1;
3788 		/*
3789 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3790 		 * Return the error after taking the locks.
3791 		 */
3792 	}
3793 
3794 	spin_lock(&space_info->lock);
3795 	spin_lock(&block_group->lock);
3796 	spin_lock(&fs_info->treelog_bg_lock);
3797 	spin_lock(&fs_info->relocation_bg_lock);
3798 
3799 	if (ret)
3800 		goto out;
3801 
3802 	ASSERT(!ffe_ctl->for_treelog ||
3803 	       block_group->start == fs_info->treelog_bg ||
3804 	       fs_info->treelog_bg == 0);
3805 	ASSERT(!ffe_ctl->for_data_reloc ||
3806 	       block_group->start == fs_info->data_reloc_bg ||
3807 	       fs_info->data_reloc_bg == 0);
3808 
3809 	if (block_group->ro ||
3810 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3811 		ret = 1;
3812 		goto out;
3813 	}
3814 
3815 	/*
3816 	 * Do not allow currently using block group to be tree-log dedicated
3817 	 * block group.
3818 	 */
3819 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3820 	    (block_group->used || block_group->reserved)) {
3821 		ret = 1;
3822 		goto out;
3823 	}
3824 
3825 	/*
3826 	 * Do not allow currently used block group to be the data relocation
3827 	 * dedicated block group.
3828 	 */
3829 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3830 	    (block_group->used || block_group->reserved)) {
3831 		ret = 1;
3832 		goto out;
3833 	}
3834 
3835 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3836 	avail = block_group->zone_capacity - block_group->alloc_offset;
3837 	if (avail < num_bytes) {
3838 		if (ffe_ctl->max_extent_size < avail) {
3839 			/*
3840 			 * With sequential allocator, free space is always
3841 			 * contiguous
3842 			 */
3843 			ffe_ctl->max_extent_size = avail;
3844 			ffe_ctl->total_free_space = avail;
3845 		}
3846 		ret = 1;
3847 		goto out;
3848 	}
3849 
3850 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3851 		fs_info->treelog_bg = block_group->start;
3852 
3853 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3854 		fs_info->data_reloc_bg = block_group->start;
3855 
3856 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3857 	block_group->alloc_offset += num_bytes;
3858 	spin_lock(&ctl->tree_lock);
3859 	ctl->free_space -= num_bytes;
3860 	spin_unlock(&ctl->tree_lock);
3861 
3862 	/*
3863 	 * We do not check if found_offset is aligned to stripesize. The
3864 	 * address is anyway rewritten when using zone append writing.
3865 	 */
3866 
3867 	ffe_ctl->search_start = ffe_ctl->found_offset;
3868 
3869 out:
3870 	if (ret && ffe_ctl->for_treelog)
3871 		fs_info->treelog_bg = 0;
3872 	if (ret && ffe_ctl->for_data_reloc &&
3873 	    fs_info->data_reloc_bg == block_group->start) {
3874 		/*
3875 		 * Do not allow further allocations from this block group.
3876 		 * Compared to increasing the ->ro, setting the
3877 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3878 		 *  writers to come in. See btrfs_inc_nocow_writers().
3879 		 *
3880 		 * We need to disable an allocation to avoid an allocation of
3881 		 * regular (non-relocation data) extent. With mix of relocation
3882 		 * extents and regular extents, we can dispatch WRITE commands
3883 		 * (for relocation extents) and ZONE APPEND commands (for
3884 		 * regular extents) at the same time to the same zone, which
3885 		 * easily break the write pointer.
3886 		 */
3887 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3888 		fs_info->data_reloc_bg = 0;
3889 	}
3890 	spin_unlock(&fs_info->relocation_bg_lock);
3891 	spin_unlock(&fs_info->treelog_bg_lock);
3892 	spin_unlock(&block_group->lock);
3893 	spin_unlock(&space_info->lock);
3894 	return ret;
3895 }
3896 
3897 static int do_allocation(struct btrfs_block_group *block_group,
3898 			 struct find_free_extent_ctl *ffe_ctl,
3899 			 struct btrfs_block_group **bg_ret)
3900 {
3901 	switch (ffe_ctl->policy) {
3902 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3903 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3904 	case BTRFS_EXTENT_ALLOC_ZONED:
3905 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3906 	default:
3907 		BUG();
3908 	}
3909 }
3910 
3911 static void release_block_group(struct btrfs_block_group *block_group,
3912 				struct find_free_extent_ctl *ffe_ctl,
3913 				int delalloc)
3914 {
3915 	switch (ffe_ctl->policy) {
3916 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3917 		ffe_ctl->retry_clustered = false;
3918 		ffe_ctl->retry_unclustered = false;
3919 		break;
3920 	case BTRFS_EXTENT_ALLOC_ZONED:
3921 		/* Nothing to do */
3922 		break;
3923 	default:
3924 		BUG();
3925 	}
3926 
3927 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3928 	       ffe_ctl->index);
3929 	btrfs_release_block_group(block_group, delalloc);
3930 }
3931 
3932 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3933 				   struct btrfs_key *ins)
3934 {
3935 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3936 
3937 	if (!ffe_ctl->use_cluster && last_ptr) {
3938 		spin_lock(&last_ptr->lock);
3939 		last_ptr->window_start = ins->objectid;
3940 		spin_unlock(&last_ptr->lock);
3941 	}
3942 }
3943 
3944 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3945 			 struct btrfs_key *ins)
3946 {
3947 	switch (ffe_ctl->policy) {
3948 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3949 		found_extent_clustered(ffe_ctl, ins);
3950 		break;
3951 	case BTRFS_EXTENT_ALLOC_ZONED:
3952 		/* Nothing to do */
3953 		break;
3954 	default:
3955 		BUG();
3956 	}
3957 }
3958 
3959 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3960 				    struct find_free_extent_ctl *ffe_ctl)
3961 {
3962 	/* If we can activate new zone, just allocate a chunk and use it */
3963 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3964 		return 0;
3965 
3966 	/*
3967 	 * We already reached the max active zones. Try to finish one block
3968 	 * group to make a room for a new block group. This is only possible
3969 	 * for a data block group because btrfs_zone_finish() may need to wait
3970 	 * for a running transaction which can cause a deadlock for metadata
3971 	 * allocation.
3972 	 */
3973 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3974 		int ret = btrfs_zone_finish_one_bg(fs_info);
3975 
3976 		if (ret == 1)
3977 			return 0;
3978 		else if (ret < 0)
3979 			return ret;
3980 	}
3981 
3982 	/*
3983 	 * If we have enough free space left in an already active block group
3984 	 * and we can't activate any other zone now, do not allow allocating a
3985 	 * new chunk and let find_free_extent() retry with a smaller size.
3986 	 */
3987 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3988 		return -ENOSPC;
3989 
3990 	/*
3991 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3992 	 * activate a new block group, allocating it may not help. Let's tell a
3993 	 * caller to try again and hope it progress something by writing some
3994 	 * parts of the region. That is only possible for data block groups,
3995 	 * where a part of the region can be written.
3996 	 */
3997 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3998 		return -EAGAIN;
3999 
4000 	/*
4001 	 * We cannot activate a new block group and no enough space left in any
4002 	 * block groups. So, allocating a new block group may not help. But,
4003 	 * there is nothing to do anyway, so let's go with it.
4004 	 */
4005 	return 0;
4006 }
4007 
4008 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4009 			      struct find_free_extent_ctl *ffe_ctl)
4010 {
4011 	switch (ffe_ctl->policy) {
4012 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4013 		return 0;
4014 	case BTRFS_EXTENT_ALLOC_ZONED:
4015 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4016 	default:
4017 		BUG();
4018 	}
4019 }
4020 
4021 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4022 {
4023 	switch (ffe_ctl->policy) {
4024 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4025 		/*
4026 		 * If we can't allocate a new chunk we've already looped through
4027 		 * at least once, move on to the NO_EMPTY_SIZE case.
4028 		 */
4029 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4030 		return 0;
4031 	case BTRFS_EXTENT_ALLOC_ZONED:
4032 		/* Give up here */
4033 		return -ENOSPC;
4034 	default:
4035 		BUG();
4036 	}
4037 }
4038 
4039 /*
4040  * Return >0 means caller needs to re-search for free extent
4041  * Return 0 means we have the needed free extent.
4042  * Return <0 means we failed to locate any free extent.
4043  */
4044 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4045 					struct btrfs_key *ins,
4046 					struct find_free_extent_ctl *ffe_ctl,
4047 					bool full_search)
4048 {
4049 	struct btrfs_root *root = fs_info->chunk_root;
4050 	int ret;
4051 
4052 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4053 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4054 		ffe_ctl->orig_have_caching_bg = true;
4055 
4056 	if (ins->objectid) {
4057 		found_extent(ffe_ctl, ins);
4058 		return 0;
4059 	}
4060 
4061 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4062 		return 1;
4063 
4064 	ffe_ctl->index++;
4065 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4066 		return 1;
4067 
4068 	/*
4069 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4070 	 *			caching kthreads as we move along
4071 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4072 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4073 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4074 	 *		       again
4075 	 */
4076 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4077 		ffe_ctl->index = 0;
4078 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4079 			/*
4080 			 * We want to skip the LOOP_CACHING_WAIT step if we
4081 			 * don't have any uncached bgs and we've already done a
4082 			 * full search through.
4083 			 */
4084 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4085 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4086 			else
4087 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4088 		} else {
4089 			ffe_ctl->loop++;
4090 		}
4091 
4092 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4093 			struct btrfs_trans_handle *trans;
4094 			int exist = 0;
4095 
4096 			/*Check if allocation policy allows to create a new chunk */
4097 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4098 			if (ret)
4099 				return ret;
4100 
4101 			trans = current->journal_info;
4102 			if (trans)
4103 				exist = 1;
4104 			else
4105 				trans = btrfs_join_transaction(root);
4106 
4107 			if (IS_ERR(trans)) {
4108 				ret = PTR_ERR(trans);
4109 				return ret;
4110 			}
4111 
4112 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4113 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4114 
4115 			/* Do not bail out on ENOSPC since we can do more. */
4116 			if (ret == -ENOSPC)
4117 				ret = chunk_allocation_failed(ffe_ctl);
4118 			else if (ret < 0)
4119 				btrfs_abort_transaction(trans, ret);
4120 			else
4121 				ret = 0;
4122 			if (!exist)
4123 				btrfs_end_transaction(trans);
4124 			if (ret)
4125 				return ret;
4126 		}
4127 
4128 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4129 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4130 				return -ENOSPC;
4131 
4132 			/*
4133 			 * Don't loop again if we already have no empty_size and
4134 			 * no empty_cluster.
4135 			 */
4136 			if (ffe_ctl->empty_size == 0 &&
4137 			    ffe_ctl->empty_cluster == 0)
4138 				return -ENOSPC;
4139 			ffe_ctl->empty_size = 0;
4140 			ffe_ctl->empty_cluster = 0;
4141 		}
4142 		return 1;
4143 	}
4144 	return -ENOSPC;
4145 }
4146 
4147 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4148 					struct find_free_extent_ctl *ffe_ctl,
4149 					struct btrfs_space_info *space_info,
4150 					struct btrfs_key *ins)
4151 {
4152 	/*
4153 	 * If our free space is heavily fragmented we may not be able to make
4154 	 * big contiguous allocations, so instead of doing the expensive search
4155 	 * for free space, simply return ENOSPC with our max_extent_size so we
4156 	 * can go ahead and search for a more manageable chunk.
4157 	 *
4158 	 * If our max_extent_size is large enough for our allocation simply
4159 	 * disable clustering since we will likely not be able to find enough
4160 	 * space to create a cluster and induce latency trying.
4161 	 */
4162 	if (space_info->max_extent_size) {
4163 		spin_lock(&space_info->lock);
4164 		if (space_info->max_extent_size &&
4165 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4166 			ins->offset = space_info->max_extent_size;
4167 			spin_unlock(&space_info->lock);
4168 			return -ENOSPC;
4169 		} else if (space_info->max_extent_size) {
4170 			ffe_ctl->use_cluster = false;
4171 		}
4172 		spin_unlock(&space_info->lock);
4173 	}
4174 
4175 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4176 					       &ffe_ctl->empty_cluster);
4177 	if (ffe_ctl->last_ptr) {
4178 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4179 
4180 		spin_lock(&last_ptr->lock);
4181 		if (last_ptr->block_group)
4182 			ffe_ctl->hint_byte = last_ptr->window_start;
4183 		if (last_ptr->fragmented) {
4184 			/*
4185 			 * We still set window_start so we can keep track of the
4186 			 * last place we found an allocation to try and save
4187 			 * some time.
4188 			 */
4189 			ffe_ctl->hint_byte = last_ptr->window_start;
4190 			ffe_ctl->use_cluster = false;
4191 		}
4192 		spin_unlock(&last_ptr->lock);
4193 	}
4194 
4195 	return 0;
4196 }
4197 
4198 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4199 			      struct find_free_extent_ctl *ffe_ctl,
4200 			      struct btrfs_space_info *space_info,
4201 			      struct btrfs_key *ins)
4202 {
4203 	switch (ffe_ctl->policy) {
4204 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4205 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4206 						    space_info, ins);
4207 	case BTRFS_EXTENT_ALLOC_ZONED:
4208 		if (ffe_ctl->for_treelog) {
4209 			spin_lock(&fs_info->treelog_bg_lock);
4210 			if (fs_info->treelog_bg)
4211 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4212 			spin_unlock(&fs_info->treelog_bg_lock);
4213 		}
4214 		if (ffe_ctl->for_data_reloc) {
4215 			spin_lock(&fs_info->relocation_bg_lock);
4216 			if (fs_info->data_reloc_bg)
4217 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4218 			spin_unlock(&fs_info->relocation_bg_lock);
4219 		}
4220 		return 0;
4221 	default:
4222 		BUG();
4223 	}
4224 }
4225 
4226 /*
4227  * walks the btree of allocated extents and find a hole of a given size.
4228  * The key ins is changed to record the hole:
4229  * ins->objectid == start position
4230  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4231  * ins->offset == the size of the hole.
4232  * Any available blocks before search_start are skipped.
4233  *
4234  * If there is no suitable free space, we will record the max size of
4235  * the free space extent currently.
4236  *
4237  * The overall logic and call chain:
4238  *
4239  * find_free_extent()
4240  * |- Iterate through all block groups
4241  * |  |- Get a valid block group
4242  * |  |- Try to do clustered allocation in that block group
4243  * |  |- Try to do unclustered allocation in that block group
4244  * |  |- Check if the result is valid
4245  * |  |  |- If valid, then exit
4246  * |  |- Jump to next block group
4247  * |
4248  * |- Push harder to find free extents
4249  *    |- If not found, re-iterate all block groups
4250  */
4251 static noinline int find_free_extent(struct btrfs_root *root,
4252 				     struct btrfs_key *ins,
4253 				     struct find_free_extent_ctl *ffe_ctl)
4254 {
4255 	struct btrfs_fs_info *fs_info = root->fs_info;
4256 	int ret = 0;
4257 	int cache_block_group_error = 0;
4258 	struct btrfs_block_group *block_group = NULL;
4259 	struct btrfs_space_info *space_info;
4260 	bool full_search = false;
4261 
4262 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4263 
4264 	ffe_ctl->search_start = 0;
4265 	/* For clustered allocation */
4266 	ffe_ctl->empty_cluster = 0;
4267 	ffe_ctl->last_ptr = NULL;
4268 	ffe_ctl->use_cluster = true;
4269 	ffe_ctl->have_caching_bg = false;
4270 	ffe_ctl->orig_have_caching_bg = false;
4271 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4272 	ffe_ctl->loop = 0;
4273 	/* For clustered allocation */
4274 	ffe_ctl->retry_clustered = false;
4275 	ffe_ctl->retry_unclustered = false;
4276 	ffe_ctl->cached = 0;
4277 	ffe_ctl->max_extent_size = 0;
4278 	ffe_ctl->total_free_space = 0;
4279 	ffe_ctl->found_offset = 0;
4280 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4281 
4282 	if (btrfs_is_zoned(fs_info))
4283 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4284 
4285 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4286 	ins->objectid = 0;
4287 	ins->offset = 0;
4288 
4289 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4290 			       ffe_ctl->flags);
4291 
4292 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4293 	if (!space_info) {
4294 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4295 		return -ENOSPC;
4296 	}
4297 
4298 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4299 	if (ret < 0)
4300 		return ret;
4301 
4302 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4303 				    first_logical_byte(fs_info));
4304 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4305 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4306 		block_group = btrfs_lookup_block_group(fs_info,
4307 						       ffe_ctl->search_start);
4308 		/*
4309 		 * we don't want to use the block group if it doesn't match our
4310 		 * allocation bits, or if its not cached.
4311 		 *
4312 		 * However if we are re-searching with an ideal block group
4313 		 * picked out then we don't care that the block group is cached.
4314 		 */
4315 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4316 		    block_group->cached != BTRFS_CACHE_NO) {
4317 			down_read(&space_info->groups_sem);
4318 			if (list_empty(&block_group->list) ||
4319 			    block_group->ro) {
4320 				/*
4321 				 * someone is removing this block group,
4322 				 * we can't jump into the have_block_group
4323 				 * target because our list pointers are not
4324 				 * valid
4325 				 */
4326 				btrfs_put_block_group(block_group);
4327 				up_read(&space_info->groups_sem);
4328 			} else {
4329 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4330 							block_group->flags);
4331 				btrfs_lock_block_group(block_group,
4332 						       ffe_ctl->delalloc);
4333 				goto have_block_group;
4334 			}
4335 		} else if (block_group) {
4336 			btrfs_put_block_group(block_group);
4337 		}
4338 	}
4339 search:
4340 	ffe_ctl->have_caching_bg = false;
4341 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4342 	    ffe_ctl->index == 0)
4343 		full_search = true;
4344 	down_read(&space_info->groups_sem);
4345 	list_for_each_entry(block_group,
4346 			    &space_info->block_groups[ffe_ctl->index], list) {
4347 		struct btrfs_block_group *bg_ret;
4348 
4349 		/* If the block group is read-only, we can skip it entirely. */
4350 		if (unlikely(block_group->ro)) {
4351 			if (ffe_ctl->for_treelog)
4352 				btrfs_clear_treelog_bg(block_group);
4353 			if (ffe_ctl->for_data_reloc)
4354 				btrfs_clear_data_reloc_bg(block_group);
4355 			continue;
4356 		}
4357 
4358 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4359 		ffe_ctl->search_start = block_group->start;
4360 
4361 		/*
4362 		 * this can happen if we end up cycling through all the
4363 		 * raid types, but we want to make sure we only allocate
4364 		 * for the proper type.
4365 		 */
4366 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4367 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4368 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4369 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4370 				BTRFS_BLOCK_GROUP_RAID10;
4371 
4372 			/*
4373 			 * if they asked for extra copies and this block group
4374 			 * doesn't provide them, bail.  This does allow us to
4375 			 * fill raid0 from raid1.
4376 			 */
4377 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4378 				goto loop;
4379 
4380 			/*
4381 			 * This block group has different flags than we want.
4382 			 * It's possible that we have MIXED_GROUP flag but no
4383 			 * block group is mixed.  Just skip such block group.
4384 			 */
4385 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4386 			continue;
4387 		}
4388 
4389 have_block_group:
4390 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4391 		if (unlikely(!ffe_ctl->cached)) {
4392 			ffe_ctl->have_caching_bg = true;
4393 			ret = btrfs_cache_block_group(block_group, false);
4394 
4395 			/*
4396 			 * If we get ENOMEM here or something else we want to
4397 			 * try other block groups, because it may not be fatal.
4398 			 * However if we can't find anything else we need to
4399 			 * save our return here so that we return the actual
4400 			 * error that caused problems, not ENOSPC.
4401 			 */
4402 			if (ret < 0) {
4403 				if (!cache_block_group_error)
4404 					cache_block_group_error = ret;
4405 				ret = 0;
4406 				goto loop;
4407 			}
4408 			ret = 0;
4409 		}
4410 
4411 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4412 			goto loop;
4413 
4414 		bg_ret = NULL;
4415 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4416 		if (ret == 0) {
4417 			if (bg_ret && bg_ret != block_group) {
4418 				btrfs_release_block_group(block_group,
4419 							  ffe_ctl->delalloc);
4420 				block_group = bg_ret;
4421 			}
4422 		} else if (ret == -EAGAIN) {
4423 			goto have_block_group;
4424 		} else if (ret > 0) {
4425 			goto loop;
4426 		}
4427 
4428 		/* Checks */
4429 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4430 						 fs_info->stripesize);
4431 
4432 		/* move on to the next group */
4433 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4434 		    block_group->start + block_group->length) {
4435 			btrfs_add_free_space_unused(block_group,
4436 					    ffe_ctl->found_offset,
4437 					    ffe_ctl->num_bytes);
4438 			goto loop;
4439 		}
4440 
4441 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4442 			btrfs_add_free_space_unused(block_group,
4443 					ffe_ctl->found_offset,
4444 					ffe_ctl->search_start - ffe_ctl->found_offset);
4445 
4446 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4447 					       ffe_ctl->num_bytes,
4448 					       ffe_ctl->delalloc);
4449 		if (ret == -EAGAIN) {
4450 			btrfs_add_free_space_unused(block_group,
4451 					ffe_ctl->found_offset,
4452 					ffe_ctl->num_bytes);
4453 			goto loop;
4454 		}
4455 		btrfs_inc_block_group_reservations(block_group);
4456 
4457 		/* we are all good, lets return */
4458 		ins->objectid = ffe_ctl->search_start;
4459 		ins->offset = ffe_ctl->num_bytes;
4460 
4461 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4462 					   ffe_ctl->num_bytes);
4463 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4464 		break;
4465 loop:
4466 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4467 		cond_resched();
4468 	}
4469 	up_read(&space_info->groups_sem);
4470 
4471 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4472 	if (ret > 0)
4473 		goto search;
4474 
4475 	if (ret == -ENOSPC && !cache_block_group_error) {
4476 		/*
4477 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4478 		 * any contiguous hole.
4479 		 */
4480 		if (!ffe_ctl->max_extent_size)
4481 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4482 		spin_lock(&space_info->lock);
4483 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4484 		spin_unlock(&space_info->lock);
4485 		ins->offset = ffe_ctl->max_extent_size;
4486 	} else if (ret == -ENOSPC) {
4487 		ret = cache_block_group_error;
4488 	}
4489 	return ret;
4490 }
4491 
4492 /*
4493  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4494  *			  hole that is at least as big as @num_bytes.
4495  *
4496  * @root           -	The root that will contain this extent
4497  *
4498  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4499  *			is used for accounting purposes. This value differs
4500  *			from @num_bytes only in the case of compressed extents.
4501  *
4502  * @num_bytes      -	Number of bytes to allocate on-disk.
4503  *
4504  * @min_alloc_size -	Indicates the minimum amount of space that the
4505  *			allocator should try to satisfy. In some cases
4506  *			@num_bytes may be larger than what is required and if
4507  *			the filesystem is fragmented then allocation fails.
4508  *			However, the presence of @min_alloc_size gives a
4509  *			chance to try and satisfy the smaller allocation.
4510  *
4511  * @empty_size     -	A hint that you plan on doing more COW. This is the
4512  *			size in bytes the allocator should try to find free
4513  *			next to the block it returns.  This is just a hint and
4514  *			may be ignored by the allocator.
4515  *
4516  * @hint_byte      -	Hint to the allocator to start searching above the byte
4517  *			address passed. It might be ignored.
4518  *
4519  * @ins            -	This key is modified to record the found hole. It will
4520  *			have the following values:
4521  *			ins->objectid == start position
4522  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4523  *			ins->offset == the size of the hole.
4524  *
4525  * @is_data        -	Boolean flag indicating whether an extent is
4526  *			allocated for data (true) or metadata (false)
4527  *
4528  * @delalloc       -	Boolean flag indicating whether this allocation is for
4529  *			delalloc or not. If 'true' data_rwsem of block groups
4530  *			is going to be acquired.
4531  *
4532  *
4533  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4534  * case -ENOSPC is returned then @ins->offset will contain the size of the
4535  * largest available hole the allocator managed to find.
4536  */
4537 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4538 			 u64 num_bytes, u64 min_alloc_size,
4539 			 u64 empty_size, u64 hint_byte,
4540 			 struct btrfs_key *ins, int is_data, int delalloc)
4541 {
4542 	struct btrfs_fs_info *fs_info = root->fs_info;
4543 	struct find_free_extent_ctl ffe_ctl = {};
4544 	bool final_tried = num_bytes == min_alloc_size;
4545 	u64 flags;
4546 	int ret;
4547 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4548 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4549 
4550 	flags = get_alloc_profile_by_root(root, is_data);
4551 again:
4552 	WARN_ON(num_bytes < fs_info->sectorsize);
4553 
4554 	ffe_ctl.ram_bytes = ram_bytes;
4555 	ffe_ctl.num_bytes = num_bytes;
4556 	ffe_ctl.min_alloc_size = min_alloc_size;
4557 	ffe_ctl.empty_size = empty_size;
4558 	ffe_ctl.flags = flags;
4559 	ffe_ctl.delalloc = delalloc;
4560 	ffe_ctl.hint_byte = hint_byte;
4561 	ffe_ctl.for_treelog = for_treelog;
4562 	ffe_ctl.for_data_reloc = for_data_reloc;
4563 
4564 	ret = find_free_extent(root, ins, &ffe_ctl);
4565 	if (!ret && !is_data) {
4566 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4567 	} else if (ret == -ENOSPC) {
4568 		if (!final_tried && ins->offset) {
4569 			num_bytes = min(num_bytes >> 1, ins->offset);
4570 			num_bytes = round_down(num_bytes,
4571 					       fs_info->sectorsize);
4572 			num_bytes = max(num_bytes, min_alloc_size);
4573 			ram_bytes = num_bytes;
4574 			if (num_bytes == min_alloc_size)
4575 				final_tried = true;
4576 			goto again;
4577 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4578 			struct btrfs_space_info *sinfo;
4579 
4580 			sinfo = btrfs_find_space_info(fs_info, flags);
4581 			btrfs_err(fs_info,
4582 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4583 				  flags, num_bytes, for_treelog, for_data_reloc);
4584 			if (sinfo)
4585 				btrfs_dump_space_info(fs_info, sinfo,
4586 						      num_bytes, 1);
4587 		}
4588 	}
4589 
4590 	return ret;
4591 }
4592 
4593 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4594 			       u64 start, u64 len, int delalloc)
4595 {
4596 	struct btrfs_block_group *cache;
4597 
4598 	cache = btrfs_lookup_block_group(fs_info, start);
4599 	if (!cache) {
4600 		btrfs_err(fs_info, "Unable to find block group for %llu",
4601 			  start);
4602 		return -ENOSPC;
4603 	}
4604 
4605 	btrfs_add_free_space(cache, start, len);
4606 	btrfs_free_reserved_bytes(cache, len, delalloc);
4607 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4608 
4609 	btrfs_put_block_group(cache);
4610 	return 0;
4611 }
4612 
4613 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4614 			      u64 len)
4615 {
4616 	struct btrfs_block_group *cache;
4617 	int ret = 0;
4618 
4619 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4620 	if (!cache) {
4621 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4622 			  start);
4623 		return -ENOSPC;
4624 	}
4625 
4626 	ret = pin_down_extent(trans, cache, start, len, 1);
4627 	btrfs_put_block_group(cache);
4628 	return ret;
4629 }
4630 
4631 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4632 				 u64 num_bytes)
4633 {
4634 	struct btrfs_fs_info *fs_info = trans->fs_info;
4635 	int ret;
4636 
4637 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4638 	if (ret)
4639 		return ret;
4640 
4641 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4642 	if (ret) {
4643 		ASSERT(!ret);
4644 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4645 			  bytenr, num_bytes);
4646 		return ret;
4647 	}
4648 
4649 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4650 	return 0;
4651 }
4652 
4653 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4654 				      u64 parent, u64 root_objectid,
4655 				      u64 flags, u64 owner, u64 offset,
4656 				      struct btrfs_key *ins, int ref_mod)
4657 {
4658 	struct btrfs_fs_info *fs_info = trans->fs_info;
4659 	struct btrfs_root *extent_root;
4660 	int ret;
4661 	struct btrfs_extent_item *extent_item;
4662 	struct btrfs_extent_inline_ref *iref;
4663 	struct btrfs_path *path;
4664 	struct extent_buffer *leaf;
4665 	int type;
4666 	u32 size;
4667 
4668 	if (parent > 0)
4669 		type = BTRFS_SHARED_DATA_REF_KEY;
4670 	else
4671 		type = BTRFS_EXTENT_DATA_REF_KEY;
4672 
4673 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4674 
4675 	path = btrfs_alloc_path();
4676 	if (!path)
4677 		return -ENOMEM;
4678 
4679 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4680 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4681 	if (ret) {
4682 		btrfs_free_path(path);
4683 		return ret;
4684 	}
4685 
4686 	leaf = path->nodes[0];
4687 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4688 				     struct btrfs_extent_item);
4689 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4690 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4691 	btrfs_set_extent_flags(leaf, extent_item,
4692 			       flags | BTRFS_EXTENT_FLAG_DATA);
4693 
4694 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4695 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4696 	if (parent > 0) {
4697 		struct btrfs_shared_data_ref *ref;
4698 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4699 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4700 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4701 	} else {
4702 		struct btrfs_extent_data_ref *ref;
4703 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4704 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4705 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4706 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4707 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4708 	}
4709 
4710 	btrfs_mark_buffer_dirty(path->nodes[0]);
4711 	btrfs_free_path(path);
4712 
4713 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4714 }
4715 
4716 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4717 				     struct btrfs_delayed_ref_node *node,
4718 				     struct btrfs_delayed_extent_op *extent_op)
4719 {
4720 	struct btrfs_fs_info *fs_info = trans->fs_info;
4721 	struct btrfs_root *extent_root;
4722 	int ret;
4723 	struct btrfs_extent_item *extent_item;
4724 	struct btrfs_key extent_key;
4725 	struct btrfs_tree_block_info *block_info;
4726 	struct btrfs_extent_inline_ref *iref;
4727 	struct btrfs_path *path;
4728 	struct extent_buffer *leaf;
4729 	struct btrfs_delayed_tree_ref *ref;
4730 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4731 	u64 flags = extent_op->flags_to_set;
4732 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4733 
4734 	ref = btrfs_delayed_node_to_tree_ref(node);
4735 
4736 	extent_key.objectid = node->bytenr;
4737 	if (skinny_metadata) {
4738 		extent_key.offset = ref->level;
4739 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4740 	} else {
4741 		extent_key.offset = node->num_bytes;
4742 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4743 		size += sizeof(*block_info);
4744 	}
4745 
4746 	path = btrfs_alloc_path();
4747 	if (!path)
4748 		return -ENOMEM;
4749 
4750 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4751 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4752 				      size);
4753 	if (ret) {
4754 		btrfs_free_path(path);
4755 		return ret;
4756 	}
4757 
4758 	leaf = path->nodes[0];
4759 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4760 				     struct btrfs_extent_item);
4761 	btrfs_set_extent_refs(leaf, extent_item, 1);
4762 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4763 	btrfs_set_extent_flags(leaf, extent_item,
4764 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4765 
4766 	if (skinny_metadata) {
4767 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4768 	} else {
4769 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4770 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4771 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4772 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4773 	}
4774 
4775 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4776 		btrfs_set_extent_inline_ref_type(leaf, iref,
4777 						 BTRFS_SHARED_BLOCK_REF_KEY);
4778 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4779 	} else {
4780 		btrfs_set_extent_inline_ref_type(leaf, iref,
4781 						 BTRFS_TREE_BLOCK_REF_KEY);
4782 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4783 	}
4784 
4785 	btrfs_mark_buffer_dirty(leaf);
4786 	btrfs_free_path(path);
4787 
4788 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4789 }
4790 
4791 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4792 				     struct btrfs_root *root, u64 owner,
4793 				     u64 offset, u64 ram_bytes,
4794 				     struct btrfs_key *ins)
4795 {
4796 	struct btrfs_ref generic_ref = { 0 };
4797 
4798 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4799 
4800 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4801 			       ins->objectid, ins->offset, 0);
4802 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4803 			    offset, 0, false);
4804 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4805 
4806 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4807 }
4808 
4809 /*
4810  * this is used by the tree logging recovery code.  It records that
4811  * an extent has been allocated and makes sure to clear the free
4812  * space cache bits as well
4813  */
4814 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4815 				   u64 root_objectid, u64 owner, u64 offset,
4816 				   struct btrfs_key *ins)
4817 {
4818 	struct btrfs_fs_info *fs_info = trans->fs_info;
4819 	int ret;
4820 	struct btrfs_block_group *block_group;
4821 	struct btrfs_space_info *space_info;
4822 
4823 	/*
4824 	 * Mixed block groups will exclude before processing the log so we only
4825 	 * need to do the exclude dance if this fs isn't mixed.
4826 	 */
4827 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4828 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4829 					      ins->offset);
4830 		if (ret)
4831 			return ret;
4832 	}
4833 
4834 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4835 	if (!block_group)
4836 		return -EINVAL;
4837 
4838 	space_info = block_group->space_info;
4839 	spin_lock(&space_info->lock);
4840 	spin_lock(&block_group->lock);
4841 	space_info->bytes_reserved += ins->offset;
4842 	block_group->reserved += ins->offset;
4843 	spin_unlock(&block_group->lock);
4844 	spin_unlock(&space_info->lock);
4845 
4846 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4847 					 offset, ins, 1);
4848 	if (ret)
4849 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4850 	btrfs_put_block_group(block_group);
4851 	return ret;
4852 }
4853 
4854 static struct extent_buffer *
4855 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4856 		      u64 bytenr, int level, u64 owner,
4857 		      enum btrfs_lock_nesting nest)
4858 {
4859 	struct btrfs_fs_info *fs_info = root->fs_info;
4860 	struct extent_buffer *buf;
4861 	u64 lockdep_owner = owner;
4862 
4863 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4864 	if (IS_ERR(buf))
4865 		return buf;
4866 
4867 	/*
4868 	 * Extra safety check in case the extent tree is corrupted and extent
4869 	 * allocator chooses to use a tree block which is already used and
4870 	 * locked.
4871 	 */
4872 	if (buf->lock_owner == current->pid) {
4873 		btrfs_err_rl(fs_info,
4874 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4875 			buf->start, btrfs_header_owner(buf), current->pid);
4876 		free_extent_buffer(buf);
4877 		return ERR_PTR(-EUCLEAN);
4878 	}
4879 
4880 	/*
4881 	 * The reloc trees are just snapshots, so we need them to appear to be
4882 	 * just like any other fs tree WRT lockdep.
4883 	 *
4884 	 * The exception however is in replace_path() in relocation, where we
4885 	 * hold the lock on the original fs root and then search for the reloc
4886 	 * root.  At that point we need to make sure any reloc root buffers are
4887 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4888 	 * lockdep happy.
4889 	 */
4890 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4891 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4892 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4893 
4894 	/* btrfs_clean_tree_block() accesses generation field. */
4895 	btrfs_set_header_generation(buf, trans->transid);
4896 
4897 	/*
4898 	 * This needs to stay, because we could allocate a freed block from an
4899 	 * old tree into a new tree, so we need to make sure this new block is
4900 	 * set to the appropriate level and owner.
4901 	 */
4902 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4903 
4904 	__btrfs_tree_lock(buf, nest);
4905 	btrfs_clean_tree_block(buf);
4906 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4907 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4908 
4909 	set_extent_buffer_uptodate(buf);
4910 
4911 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4912 	btrfs_set_header_level(buf, level);
4913 	btrfs_set_header_bytenr(buf, buf->start);
4914 	btrfs_set_header_generation(buf, trans->transid);
4915 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4916 	btrfs_set_header_owner(buf, owner);
4917 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4918 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4919 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4920 		buf->log_index = root->log_transid % 2;
4921 		/*
4922 		 * we allow two log transactions at a time, use different
4923 		 * EXTENT bit to differentiate dirty pages.
4924 		 */
4925 		if (buf->log_index == 0)
4926 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4927 					buf->start + buf->len - 1, GFP_NOFS);
4928 		else
4929 			set_extent_new(&root->dirty_log_pages, buf->start,
4930 					buf->start + buf->len - 1);
4931 	} else {
4932 		buf->log_index = -1;
4933 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4934 			 buf->start + buf->len - 1, GFP_NOFS);
4935 	}
4936 	/* this returns a buffer locked for blocking */
4937 	return buf;
4938 }
4939 
4940 /*
4941  * finds a free extent and does all the dirty work required for allocation
4942  * returns the tree buffer or an ERR_PTR on error.
4943  */
4944 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4945 					     struct btrfs_root *root,
4946 					     u64 parent, u64 root_objectid,
4947 					     const struct btrfs_disk_key *key,
4948 					     int level, u64 hint,
4949 					     u64 empty_size,
4950 					     enum btrfs_lock_nesting nest)
4951 {
4952 	struct btrfs_fs_info *fs_info = root->fs_info;
4953 	struct btrfs_key ins;
4954 	struct btrfs_block_rsv *block_rsv;
4955 	struct extent_buffer *buf;
4956 	struct btrfs_delayed_extent_op *extent_op;
4957 	struct btrfs_ref generic_ref = { 0 };
4958 	u64 flags = 0;
4959 	int ret;
4960 	u32 blocksize = fs_info->nodesize;
4961 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4962 
4963 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4964 	if (btrfs_is_testing(fs_info)) {
4965 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4966 					    level, root_objectid, nest);
4967 		if (!IS_ERR(buf))
4968 			root->alloc_bytenr += blocksize;
4969 		return buf;
4970 	}
4971 #endif
4972 
4973 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4974 	if (IS_ERR(block_rsv))
4975 		return ERR_CAST(block_rsv);
4976 
4977 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4978 				   empty_size, hint, &ins, 0, 0);
4979 	if (ret)
4980 		goto out_unuse;
4981 
4982 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4983 				    root_objectid, nest);
4984 	if (IS_ERR(buf)) {
4985 		ret = PTR_ERR(buf);
4986 		goto out_free_reserved;
4987 	}
4988 
4989 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4990 		if (parent == 0)
4991 			parent = ins.objectid;
4992 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4993 	} else
4994 		BUG_ON(parent > 0);
4995 
4996 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4997 		extent_op = btrfs_alloc_delayed_extent_op();
4998 		if (!extent_op) {
4999 			ret = -ENOMEM;
5000 			goto out_free_buf;
5001 		}
5002 		if (key)
5003 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5004 		else
5005 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5006 		extent_op->flags_to_set = flags;
5007 		extent_op->update_key = skinny_metadata ? false : true;
5008 		extent_op->update_flags = true;
5009 		extent_op->level = level;
5010 
5011 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5012 				       ins.objectid, ins.offset, parent);
5013 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5014 				    root->root_key.objectid, false);
5015 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5016 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5017 		if (ret)
5018 			goto out_free_delayed;
5019 	}
5020 	return buf;
5021 
5022 out_free_delayed:
5023 	btrfs_free_delayed_extent_op(extent_op);
5024 out_free_buf:
5025 	btrfs_tree_unlock(buf);
5026 	free_extent_buffer(buf);
5027 out_free_reserved:
5028 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5029 out_unuse:
5030 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5031 	return ERR_PTR(ret);
5032 }
5033 
5034 struct walk_control {
5035 	u64 refs[BTRFS_MAX_LEVEL];
5036 	u64 flags[BTRFS_MAX_LEVEL];
5037 	struct btrfs_key update_progress;
5038 	struct btrfs_key drop_progress;
5039 	int drop_level;
5040 	int stage;
5041 	int level;
5042 	int shared_level;
5043 	int update_ref;
5044 	int keep_locks;
5045 	int reada_slot;
5046 	int reada_count;
5047 	int restarted;
5048 };
5049 
5050 #define DROP_REFERENCE	1
5051 #define UPDATE_BACKREF	2
5052 
5053 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5054 				     struct btrfs_root *root,
5055 				     struct walk_control *wc,
5056 				     struct btrfs_path *path)
5057 {
5058 	struct btrfs_fs_info *fs_info = root->fs_info;
5059 	u64 bytenr;
5060 	u64 generation;
5061 	u64 refs;
5062 	u64 flags;
5063 	u32 nritems;
5064 	struct btrfs_key key;
5065 	struct extent_buffer *eb;
5066 	int ret;
5067 	int slot;
5068 	int nread = 0;
5069 
5070 	if (path->slots[wc->level] < wc->reada_slot) {
5071 		wc->reada_count = wc->reada_count * 2 / 3;
5072 		wc->reada_count = max(wc->reada_count, 2);
5073 	} else {
5074 		wc->reada_count = wc->reada_count * 3 / 2;
5075 		wc->reada_count = min_t(int, wc->reada_count,
5076 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5077 	}
5078 
5079 	eb = path->nodes[wc->level];
5080 	nritems = btrfs_header_nritems(eb);
5081 
5082 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5083 		if (nread >= wc->reada_count)
5084 			break;
5085 
5086 		cond_resched();
5087 		bytenr = btrfs_node_blockptr(eb, slot);
5088 		generation = btrfs_node_ptr_generation(eb, slot);
5089 
5090 		if (slot == path->slots[wc->level])
5091 			goto reada;
5092 
5093 		if (wc->stage == UPDATE_BACKREF &&
5094 		    generation <= root->root_key.offset)
5095 			continue;
5096 
5097 		/* We don't lock the tree block, it's OK to be racy here */
5098 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5099 					       wc->level - 1, 1, &refs,
5100 					       &flags);
5101 		/* We don't care about errors in readahead. */
5102 		if (ret < 0)
5103 			continue;
5104 		BUG_ON(refs == 0);
5105 
5106 		if (wc->stage == DROP_REFERENCE) {
5107 			if (refs == 1)
5108 				goto reada;
5109 
5110 			if (wc->level == 1 &&
5111 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5112 				continue;
5113 			if (!wc->update_ref ||
5114 			    generation <= root->root_key.offset)
5115 				continue;
5116 			btrfs_node_key_to_cpu(eb, &key, slot);
5117 			ret = btrfs_comp_cpu_keys(&key,
5118 						  &wc->update_progress);
5119 			if (ret < 0)
5120 				continue;
5121 		} else {
5122 			if (wc->level == 1 &&
5123 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5124 				continue;
5125 		}
5126 reada:
5127 		btrfs_readahead_node_child(eb, slot);
5128 		nread++;
5129 	}
5130 	wc->reada_slot = slot;
5131 }
5132 
5133 /*
5134  * helper to process tree block while walking down the tree.
5135  *
5136  * when wc->stage == UPDATE_BACKREF, this function updates
5137  * back refs for pointers in the block.
5138  *
5139  * NOTE: return value 1 means we should stop walking down.
5140  */
5141 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5142 				   struct btrfs_root *root,
5143 				   struct btrfs_path *path,
5144 				   struct walk_control *wc, int lookup_info)
5145 {
5146 	struct btrfs_fs_info *fs_info = root->fs_info;
5147 	int level = wc->level;
5148 	struct extent_buffer *eb = path->nodes[level];
5149 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5150 	int ret;
5151 
5152 	if (wc->stage == UPDATE_BACKREF &&
5153 	    btrfs_header_owner(eb) != root->root_key.objectid)
5154 		return 1;
5155 
5156 	/*
5157 	 * when reference count of tree block is 1, it won't increase
5158 	 * again. once full backref flag is set, we never clear it.
5159 	 */
5160 	if (lookup_info &&
5161 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5162 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5163 		BUG_ON(!path->locks[level]);
5164 		ret = btrfs_lookup_extent_info(trans, fs_info,
5165 					       eb->start, level, 1,
5166 					       &wc->refs[level],
5167 					       &wc->flags[level]);
5168 		BUG_ON(ret == -ENOMEM);
5169 		if (ret)
5170 			return ret;
5171 		BUG_ON(wc->refs[level] == 0);
5172 	}
5173 
5174 	if (wc->stage == DROP_REFERENCE) {
5175 		if (wc->refs[level] > 1)
5176 			return 1;
5177 
5178 		if (path->locks[level] && !wc->keep_locks) {
5179 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5180 			path->locks[level] = 0;
5181 		}
5182 		return 0;
5183 	}
5184 
5185 	/* wc->stage == UPDATE_BACKREF */
5186 	if (!(wc->flags[level] & flag)) {
5187 		BUG_ON(!path->locks[level]);
5188 		ret = btrfs_inc_ref(trans, root, eb, 1);
5189 		BUG_ON(ret); /* -ENOMEM */
5190 		ret = btrfs_dec_ref(trans, root, eb, 0);
5191 		BUG_ON(ret); /* -ENOMEM */
5192 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5193 						  btrfs_header_level(eb));
5194 		BUG_ON(ret); /* -ENOMEM */
5195 		wc->flags[level] |= flag;
5196 	}
5197 
5198 	/*
5199 	 * the block is shared by multiple trees, so it's not good to
5200 	 * keep the tree lock
5201 	 */
5202 	if (path->locks[level] && level > 0) {
5203 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5204 		path->locks[level] = 0;
5205 	}
5206 	return 0;
5207 }
5208 
5209 /*
5210  * This is used to verify a ref exists for this root to deal with a bug where we
5211  * would have a drop_progress key that hadn't been updated properly.
5212  */
5213 static int check_ref_exists(struct btrfs_trans_handle *trans,
5214 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5215 			    int level)
5216 {
5217 	struct btrfs_path *path;
5218 	struct btrfs_extent_inline_ref *iref;
5219 	int ret;
5220 
5221 	path = btrfs_alloc_path();
5222 	if (!path)
5223 		return -ENOMEM;
5224 
5225 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5226 				    root->fs_info->nodesize, parent,
5227 				    root->root_key.objectid, level, 0);
5228 	btrfs_free_path(path);
5229 	if (ret == -ENOENT)
5230 		return 0;
5231 	if (ret < 0)
5232 		return ret;
5233 	return 1;
5234 }
5235 
5236 /*
5237  * helper to process tree block pointer.
5238  *
5239  * when wc->stage == DROP_REFERENCE, this function checks
5240  * reference count of the block pointed to. if the block
5241  * is shared and we need update back refs for the subtree
5242  * rooted at the block, this function changes wc->stage to
5243  * UPDATE_BACKREF. if the block is shared and there is no
5244  * need to update back, this function drops the reference
5245  * to the block.
5246  *
5247  * NOTE: return value 1 means we should stop walking down.
5248  */
5249 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5250 				 struct btrfs_root *root,
5251 				 struct btrfs_path *path,
5252 				 struct walk_control *wc, int *lookup_info)
5253 {
5254 	struct btrfs_fs_info *fs_info = root->fs_info;
5255 	u64 bytenr;
5256 	u64 generation;
5257 	u64 parent;
5258 	struct btrfs_key key;
5259 	struct btrfs_key first_key;
5260 	struct btrfs_ref ref = { 0 };
5261 	struct extent_buffer *next;
5262 	int level = wc->level;
5263 	int reada = 0;
5264 	int ret = 0;
5265 	bool need_account = false;
5266 
5267 	generation = btrfs_node_ptr_generation(path->nodes[level],
5268 					       path->slots[level]);
5269 	/*
5270 	 * if the lower level block was created before the snapshot
5271 	 * was created, we know there is no need to update back refs
5272 	 * for the subtree
5273 	 */
5274 	if (wc->stage == UPDATE_BACKREF &&
5275 	    generation <= root->root_key.offset) {
5276 		*lookup_info = 1;
5277 		return 1;
5278 	}
5279 
5280 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5281 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5282 			      path->slots[level]);
5283 
5284 	next = find_extent_buffer(fs_info, bytenr);
5285 	if (!next) {
5286 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5287 				root->root_key.objectid, level - 1);
5288 		if (IS_ERR(next))
5289 			return PTR_ERR(next);
5290 		reada = 1;
5291 	}
5292 	btrfs_tree_lock(next);
5293 
5294 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5295 				       &wc->refs[level - 1],
5296 				       &wc->flags[level - 1]);
5297 	if (ret < 0)
5298 		goto out_unlock;
5299 
5300 	if (unlikely(wc->refs[level - 1] == 0)) {
5301 		btrfs_err(fs_info, "Missing references.");
5302 		ret = -EIO;
5303 		goto out_unlock;
5304 	}
5305 	*lookup_info = 0;
5306 
5307 	if (wc->stage == DROP_REFERENCE) {
5308 		if (wc->refs[level - 1] > 1) {
5309 			need_account = true;
5310 			if (level == 1 &&
5311 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5312 				goto skip;
5313 
5314 			if (!wc->update_ref ||
5315 			    generation <= root->root_key.offset)
5316 				goto skip;
5317 
5318 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5319 					      path->slots[level]);
5320 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5321 			if (ret < 0)
5322 				goto skip;
5323 
5324 			wc->stage = UPDATE_BACKREF;
5325 			wc->shared_level = level - 1;
5326 		}
5327 	} else {
5328 		if (level == 1 &&
5329 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5330 			goto skip;
5331 	}
5332 
5333 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5334 		btrfs_tree_unlock(next);
5335 		free_extent_buffer(next);
5336 		next = NULL;
5337 		*lookup_info = 1;
5338 	}
5339 
5340 	if (!next) {
5341 		if (reada && level == 1)
5342 			reada_walk_down(trans, root, wc, path);
5343 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5344 				       generation, level - 1, &first_key);
5345 		if (IS_ERR(next)) {
5346 			return PTR_ERR(next);
5347 		} else if (!extent_buffer_uptodate(next)) {
5348 			free_extent_buffer(next);
5349 			return -EIO;
5350 		}
5351 		btrfs_tree_lock(next);
5352 	}
5353 
5354 	level--;
5355 	ASSERT(level == btrfs_header_level(next));
5356 	if (level != btrfs_header_level(next)) {
5357 		btrfs_err(root->fs_info, "mismatched level");
5358 		ret = -EIO;
5359 		goto out_unlock;
5360 	}
5361 	path->nodes[level] = next;
5362 	path->slots[level] = 0;
5363 	path->locks[level] = BTRFS_WRITE_LOCK;
5364 	wc->level = level;
5365 	if (wc->level == 1)
5366 		wc->reada_slot = 0;
5367 	return 0;
5368 skip:
5369 	wc->refs[level - 1] = 0;
5370 	wc->flags[level - 1] = 0;
5371 	if (wc->stage == DROP_REFERENCE) {
5372 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5373 			parent = path->nodes[level]->start;
5374 		} else {
5375 			ASSERT(root->root_key.objectid ==
5376 			       btrfs_header_owner(path->nodes[level]));
5377 			if (root->root_key.objectid !=
5378 			    btrfs_header_owner(path->nodes[level])) {
5379 				btrfs_err(root->fs_info,
5380 						"mismatched block owner");
5381 				ret = -EIO;
5382 				goto out_unlock;
5383 			}
5384 			parent = 0;
5385 		}
5386 
5387 		/*
5388 		 * If we had a drop_progress we need to verify the refs are set
5389 		 * as expected.  If we find our ref then we know that from here
5390 		 * on out everything should be correct, and we can clear the
5391 		 * ->restarted flag.
5392 		 */
5393 		if (wc->restarted) {
5394 			ret = check_ref_exists(trans, root, bytenr, parent,
5395 					       level - 1);
5396 			if (ret < 0)
5397 				goto out_unlock;
5398 			if (ret == 0)
5399 				goto no_delete;
5400 			ret = 0;
5401 			wc->restarted = 0;
5402 		}
5403 
5404 		/*
5405 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5406 		 * already accounted them at merge time (replace_path),
5407 		 * thus we could skip expensive subtree trace here.
5408 		 */
5409 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5410 		    need_account) {
5411 			ret = btrfs_qgroup_trace_subtree(trans, next,
5412 							 generation, level - 1);
5413 			if (ret) {
5414 				btrfs_err_rl(fs_info,
5415 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5416 					     ret);
5417 			}
5418 		}
5419 
5420 		/*
5421 		 * We need to update the next key in our walk control so we can
5422 		 * update the drop_progress key accordingly.  We don't care if
5423 		 * find_next_key doesn't find a key because that means we're at
5424 		 * the end and are going to clean up now.
5425 		 */
5426 		wc->drop_level = level;
5427 		find_next_key(path, level, &wc->drop_progress);
5428 
5429 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5430 				       fs_info->nodesize, parent);
5431 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5432 				    0, false);
5433 		ret = btrfs_free_extent(trans, &ref);
5434 		if (ret)
5435 			goto out_unlock;
5436 	}
5437 no_delete:
5438 	*lookup_info = 1;
5439 	ret = 1;
5440 
5441 out_unlock:
5442 	btrfs_tree_unlock(next);
5443 	free_extent_buffer(next);
5444 
5445 	return ret;
5446 }
5447 
5448 /*
5449  * helper to process tree block while walking up the tree.
5450  *
5451  * when wc->stage == DROP_REFERENCE, this function drops
5452  * reference count on the block.
5453  *
5454  * when wc->stage == UPDATE_BACKREF, this function changes
5455  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5456  * to UPDATE_BACKREF previously while processing the block.
5457  *
5458  * NOTE: return value 1 means we should stop walking up.
5459  */
5460 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5461 				 struct btrfs_root *root,
5462 				 struct btrfs_path *path,
5463 				 struct walk_control *wc)
5464 {
5465 	struct btrfs_fs_info *fs_info = root->fs_info;
5466 	int ret;
5467 	int level = wc->level;
5468 	struct extent_buffer *eb = path->nodes[level];
5469 	u64 parent = 0;
5470 
5471 	if (wc->stage == UPDATE_BACKREF) {
5472 		BUG_ON(wc->shared_level < level);
5473 		if (level < wc->shared_level)
5474 			goto out;
5475 
5476 		ret = find_next_key(path, level + 1, &wc->update_progress);
5477 		if (ret > 0)
5478 			wc->update_ref = 0;
5479 
5480 		wc->stage = DROP_REFERENCE;
5481 		wc->shared_level = -1;
5482 		path->slots[level] = 0;
5483 
5484 		/*
5485 		 * check reference count again if the block isn't locked.
5486 		 * we should start walking down the tree again if reference
5487 		 * count is one.
5488 		 */
5489 		if (!path->locks[level]) {
5490 			BUG_ON(level == 0);
5491 			btrfs_tree_lock(eb);
5492 			path->locks[level] = BTRFS_WRITE_LOCK;
5493 
5494 			ret = btrfs_lookup_extent_info(trans, fs_info,
5495 						       eb->start, level, 1,
5496 						       &wc->refs[level],
5497 						       &wc->flags[level]);
5498 			if (ret < 0) {
5499 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5500 				path->locks[level] = 0;
5501 				return ret;
5502 			}
5503 			BUG_ON(wc->refs[level] == 0);
5504 			if (wc->refs[level] == 1) {
5505 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5506 				path->locks[level] = 0;
5507 				return 1;
5508 			}
5509 		}
5510 	}
5511 
5512 	/* wc->stage == DROP_REFERENCE */
5513 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5514 
5515 	if (wc->refs[level] == 1) {
5516 		if (level == 0) {
5517 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5518 				ret = btrfs_dec_ref(trans, root, eb, 1);
5519 			else
5520 				ret = btrfs_dec_ref(trans, root, eb, 0);
5521 			BUG_ON(ret); /* -ENOMEM */
5522 			if (is_fstree(root->root_key.objectid)) {
5523 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5524 				if (ret) {
5525 					btrfs_err_rl(fs_info,
5526 	"error %d accounting leaf items, quota is out of sync, rescan required",
5527 					     ret);
5528 				}
5529 			}
5530 		}
5531 		/* make block locked assertion in btrfs_clean_tree_block happy */
5532 		if (!path->locks[level] &&
5533 		    btrfs_header_generation(eb) == trans->transid) {
5534 			btrfs_tree_lock(eb);
5535 			path->locks[level] = BTRFS_WRITE_LOCK;
5536 		}
5537 		btrfs_clean_tree_block(eb);
5538 	}
5539 
5540 	if (eb == root->node) {
5541 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5542 			parent = eb->start;
5543 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5544 			goto owner_mismatch;
5545 	} else {
5546 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5547 			parent = path->nodes[level + 1]->start;
5548 		else if (root->root_key.objectid !=
5549 			 btrfs_header_owner(path->nodes[level + 1]))
5550 			goto owner_mismatch;
5551 	}
5552 
5553 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5554 			      wc->refs[level] == 1);
5555 out:
5556 	wc->refs[level] = 0;
5557 	wc->flags[level] = 0;
5558 	return 0;
5559 
5560 owner_mismatch:
5561 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5562 		     btrfs_header_owner(eb), root->root_key.objectid);
5563 	return -EUCLEAN;
5564 }
5565 
5566 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5567 				   struct btrfs_root *root,
5568 				   struct btrfs_path *path,
5569 				   struct walk_control *wc)
5570 {
5571 	int level = wc->level;
5572 	int lookup_info = 1;
5573 	int ret;
5574 
5575 	while (level >= 0) {
5576 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5577 		if (ret > 0)
5578 			break;
5579 
5580 		if (level == 0)
5581 			break;
5582 
5583 		if (path->slots[level] >=
5584 		    btrfs_header_nritems(path->nodes[level]))
5585 			break;
5586 
5587 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5588 		if (ret > 0) {
5589 			path->slots[level]++;
5590 			continue;
5591 		} else if (ret < 0)
5592 			return ret;
5593 		level = wc->level;
5594 	}
5595 	return 0;
5596 }
5597 
5598 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5599 				 struct btrfs_root *root,
5600 				 struct btrfs_path *path,
5601 				 struct walk_control *wc, int max_level)
5602 {
5603 	int level = wc->level;
5604 	int ret;
5605 
5606 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5607 	while (level < max_level && path->nodes[level]) {
5608 		wc->level = level;
5609 		if (path->slots[level] + 1 <
5610 		    btrfs_header_nritems(path->nodes[level])) {
5611 			path->slots[level]++;
5612 			return 0;
5613 		} else {
5614 			ret = walk_up_proc(trans, root, path, wc);
5615 			if (ret > 0)
5616 				return 0;
5617 			if (ret < 0)
5618 				return ret;
5619 
5620 			if (path->locks[level]) {
5621 				btrfs_tree_unlock_rw(path->nodes[level],
5622 						     path->locks[level]);
5623 				path->locks[level] = 0;
5624 			}
5625 			free_extent_buffer(path->nodes[level]);
5626 			path->nodes[level] = NULL;
5627 			level++;
5628 		}
5629 	}
5630 	return 1;
5631 }
5632 
5633 /*
5634  * drop a subvolume tree.
5635  *
5636  * this function traverses the tree freeing any blocks that only
5637  * referenced by the tree.
5638  *
5639  * when a shared tree block is found. this function decreases its
5640  * reference count by one. if update_ref is true, this function
5641  * also make sure backrefs for the shared block and all lower level
5642  * blocks are properly updated.
5643  *
5644  * If called with for_reloc == 0, may exit early with -EAGAIN
5645  */
5646 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5647 {
5648 	const bool is_reloc_root = (root->root_key.objectid ==
5649 				    BTRFS_TREE_RELOC_OBJECTID);
5650 	struct btrfs_fs_info *fs_info = root->fs_info;
5651 	struct btrfs_path *path;
5652 	struct btrfs_trans_handle *trans;
5653 	struct btrfs_root *tree_root = fs_info->tree_root;
5654 	struct btrfs_root_item *root_item = &root->root_item;
5655 	struct walk_control *wc;
5656 	struct btrfs_key key;
5657 	int err = 0;
5658 	int ret;
5659 	int level;
5660 	bool root_dropped = false;
5661 	bool unfinished_drop = false;
5662 
5663 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5664 
5665 	path = btrfs_alloc_path();
5666 	if (!path) {
5667 		err = -ENOMEM;
5668 		goto out;
5669 	}
5670 
5671 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5672 	if (!wc) {
5673 		btrfs_free_path(path);
5674 		err = -ENOMEM;
5675 		goto out;
5676 	}
5677 
5678 	/*
5679 	 * Use join to avoid potential EINTR from transaction start. See
5680 	 * wait_reserve_ticket and the whole reservation callchain.
5681 	 */
5682 	if (for_reloc)
5683 		trans = btrfs_join_transaction(tree_root);
5684 	else
5685 		trans = btrfs_start_transaction(tree_root, 0);
5686 	if (IS_ERR(trans)) {
5687 		err = PTR_ERR(trans);
5688 		goto out_free;
5689 	}
5690 
5691 	err = btrfs_run_delayed_items(trans);
5692 	if (err)
5693 		goto out_end_trans;
5694 
5695 	/*
5696 	 * This will help us catch people modifying the fs tree while we're
5697 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5698 	 * dropped as we unlock the root node and parent nodes as we walk down
5699 	 * the tree, assuming nothing will change.  If something does change
5700 	 * then we'll have stale information and drop references to blocks we've
5701 	 * already dropped.
5702 	 */
5703 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5704 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5705 
5706 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5707 		level = btrfs_header_level(root->node);
5708 		path->nodes[level] = btrfs_lock_root_node(root);
5709 		path->slots[level] = 0;
5710 		path->locks[level] = BTRFS_WRITE_LOCK;
5711 		memset(&wc->update_progress, 0,
5712 		       sizeof(wc->update_progress));
5713 	} else {
5714 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5715 		memcpy(&wc->update_progress, &key,
5716 		       sizeof(wc->update_progress));
5717 
5718 		level = btrfs_root_drop_level(root_item);
5719 		BUG_ON(level == 0);
5720 		path->lowest_level = level;
5721 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5722 		path->lowest_level = 0;
5723 		if (ret < 0) {
5724 			err = ret;
5725 			goto out_end_trans;
5726 		}
5727 		WARN_ON(ret > 0);
5728 
5729 		/*
5730 		 * unlock our path, this is safe because only this
5731 		 * function is allowed to delete this snapshot
5732 		 */
5733 		btrfs_unlock_up_safe(path, 0);
5734 
5735 		level = btrfs_header_level(root->node);
5736 		while (1) {
5737 			btrfs_tree_lock(path->nodes[level]);
5738 			path->locks[level] = BTRFS_WRITE_LOCK;
5739 
5740 			ret = btrfs_lookup_extent_info(trans, fs_info,
5741 						path->nodes[level]->start,
5742 						level, 1, &wc->refs[level],
5743 						&wc->flags[level]);
5744 			if (ret < 0) {
5745 				err = ret;
5746 				goto out_end_trans;
5747 			}
5748 			BUG_ON(wc->refs[level] == 0);
5749 
5750 			if (level == btrfs_root_drop_level(root_item))
5751 				break;
5752 
5753 			btrfs_tree_unlock(path->nodes[level]);
5754 			path->locks[level] = 0;
5755 			WARN_ON(wc->refs[level] != 1);
5756 			level--;
5757 		}
5758 	}
5759 
5760 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5761 	wc->level = level;
5762 	wc->shared_level = -1;
5763 	wc->stage = DROP_REFERENCE;
5764 	wc->update_ref = update_ref;
5765 	wc->keep_locks = 0;
5766 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5767 
5768 	while (1) {
5769 
5770 		ret = walk_down_tree(trans, root, path, wc);
5771 		if (ret < 0) {
5772 			err = ret;
5773 			break;
5774 		}
5775 
5776 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5777 		if (ret < 0) {
5778 			err = ret;
5779 			break;
5780 		}
5781 
5782 		if (ret > 0) {
5783 			BUG_ON(wc->stage != DROP_REFERENCE);
5784 			break;
5785 		}
5786 
5787 		if (wc->stage == DROP_REFERENCE) {
5788 			wc->drop_level = wc->level;
5789 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5790 					      &wc->drop_progress,
5791 					      path->slots[wc->drop_level]);
5792 		}
5793 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5794 				      &wc->drop_progress);
5795 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5796 
5797 		BUG_ON(wc->level == 0);
5798 		if (btrfs_should_end_transaction(trans) ||
5799 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5800 			ret = btrfs_update_root(trans, tree_root,
5801 						&root->root_key,
5802 						root_item);
5803 			if (ret) {
5804 				btrfs_abort_transaction(trans, ret);
5805 				err = ret;
5806 				goto out_end_trans;
5807 			}
5808 
5809 			if (!is_reloc_root)
5810 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5811 
5812 			btrfs_end_transaction_throttle(trans);
5813 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5814 				btrfs_debug(fs_info,
5815 					    "drop snapshot early exit");
5816 				err = -EAGAIN;
5817 				goto out_free;
5818 			}
5819 
5820 		       /*
5821 			* Use join to avoid potential EINTR from transaction
5822 			* start. See wait_reserve_ticket and the whole
5823 			* reservation callchain.
5824 			*/
5825 			if (for_reloc)
5826 				trans = btrfs_join_transaction(tree_root);
5827 			else
5828 				trans = btrfs_start_transaction(tree_root, 0);
5829 			if (IS_ERR(trans)) {
5830 				err = PTR_ERR(trans);
5831 				goto out_free;
5832 			}
5833 		}
5834 	}
5835 	btrfs_release_path(path);
5836 	if (err)
5837 		goto out_end_trans;
5838 
5839 	ret = btrfs_del_root(trans, &root->root_key);
5840 	if (ret) {
5841 		btrfs_abort_transaction(trans, ret);
5842 		err = ret;
5843 		goto out_end_trans;
5844 	}
5845 
5846 	if (!is_reloc_root) {
5847 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5848 				      NULL, NULL);
5849 		if (ret < 0) {
5850 			btrfs_abort_transaction(trans, ret);
5851 			err = ret;
5852 			goto out_end_trans;
5853 		} else if (ret > 0) {
5854 			/* if we fail to delete the orphan item this time
5855 			 * around, it'll get picked up the next time.
5856 			 *
5857 			 * The most common failure here is just -ENOENT.
5858 			 */
5859 			btrfs_del_orphan_item(trans, tree_root,
5860 					      root->root_key.objectid);
5861 		}
5862 	}
5863 
5864 	/*
5865 	 * This subvolume is going to be completely dropped, and won't be
5866 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5867 	 * commit transaction time.  So free it here manually.
5868 	 */
5869 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5870 	btrfs_qgroup_free_meta_all_pertrans(root);
5871 
5872 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5873 		btrfs_add_dropped_root(trans, root);
5874 	else
5875 		btrfs_put_root(root);
5876 	root_dropped = true;
5877 out_end_trans:
5878 	if (!is_reloc_root)
5879 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5880 
5881 	btrfs_end_transaction_throttle(trans);
5882 out_free:
5883 	kfree(wc);
5884 	btrfs_free_path(path);
5885 out:
5886 	/*
5887 	 * We were an unfinished drop root, check to see if there are any
5888 	 * pending, and if not clear and wake up any waiters.
5889 	 */
5890 	if (!err && unfinished_drop)
5891 		btrfs_maybe_wake_unfinished_drop(fs_info);
5892 
5893 	/*
5894 	 * So if we need to stop dropping the snapshot for whatever reason we
5895 	 * need to make sure to add it back to the dead root list so that we
5896 	 * keep trying to do the work later.  This also cleans up roots if we
5897 	 * don't have it in the radix (like when we recover after a power fail
5898 	 * or unmount) so we don't leak memory.
5899 	 */
5900 	if (!for_reloc && !root_dropped)
5901 		btrfs_add_dead_root(root);
5902 	return err;
5903 }
5904 
5905 /*
5906  * drop subtree rooted at tree block 'node'.
5907  *
5908  * NOTE: this function will unlock and release tree block 'node'
5909  * only used by relocation code
5910  */
5911 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5912 			struct btrfs_root *root,
5913 			struct extent_buffer *node,
5914 			struct extent_buffer *parent)
5915 {
5916 	struct btrfs_fs_info *fs_info = root->fs_info;
5917 	struct btrfs_path *path;
5918 	struct walk_control *wc;
5919 	int level;
5920 	int parent_level;
5921 	int ret = 0;
5922 	int wret;
5923 
5924 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5925 
5926 	path = btrfs_alloc_path();
5927 	if (!path)
5928 		return -ENOMEM;
5929 
5930 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5931 	if (!wc) {
5932 		btrfs_free_path(path);
5933 		return -ENOMEM;
5934 	}
5935 
5936 	btrfs_assert_tree_write_locked(parent);
5937 	parent_level = btrfs_header_level(parent);
5938 	atomic_inc(&parent->refs);
5939 	path->nodes[parent_level] = parent;
5940 	path->slots[parent_level] = btrfs_header_nritems(parent);
5941 
5942 	btrfs_assert_tree_write_locked(node);
5943 	level = btrfs_header_level(node);
5944 	path->nodes[level] = node;
5945 	path->slots[level] = 0;
5946 	path->locks[level] = BTRFS_WRITE_LOCK;
5947 
5948 	wc->refs[parent_level] = 1;
5949 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5950 	wc->level = level;
5951 	wc->shared_level = -1;
5952 	wc->stage = DROP_REFERENCE;
5953 	wc->update_ref = 0;
5954 	wc->keep_locks = 1;
5955 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5956 
5957 	while (1) {
5958 		wret = walk_down_tree(trans, root, path, wc);
5959 		if (wret < 0) {
5960 			ret = wret;
5961 			break;
5962 		}
5963 
5964 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5965 		if (wret < 0)
5966 			ret = wret;
5967 		if (wret != 0)
5968 			break;
5969 	}
5970 
5971 	kfree(wc);
5972 	btrfs_free_path(path);
5973 	return ret;
5974 }
5975 
5976 /*
5977  * helper to account the unused space of all the readonly block group in the
5978  * space_info. takes mirrors into account.
5979  */
5980 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5981 {
5982 	struct btrfs_block_group *block_group;
5983 	u64 free_bytes = 0;
5984 	int factor;
5985 
5986 	/* It's df, we don't care if it's racy */
5987 	if (list_empty(&sinfo->ro_bgs))
5988 		return 0;
5989 
5990 	spin_lock(&sinfo->lock);
5991 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5992 		spin_lock(&block_group->lock);
5993 
5994 		if (!block_group->ro) {
5995 			spin_unlock(&block_group->lock);
5996 			continue;
5997 		}
5998 
5999 		factor = btrfs_bg_type_to_factor(block_group->flags);
6000 		free_bytes += (block_group->length -
6001 			       block_group->used) * factor;
6002 
6003 		spin_unlock(&block_group->lock);
6004 	}
6005 	spin_unlock(&sinfo->lock);
6006 
6007 	return free_bytes;
6008 }
6009 
6010 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6011 				   u64 start, u64 end)
6012 {
6013 	return unpin_extent_range(fs_info, start, end, false);
6014 }
6015 
6016 /*
6017  * It used to be that old block groups would be left around forever.
6018  * Iterating over them would be enough to trim unused space.  Since we
6019  * now automatically remove them, we also need to iterate over unallocated
6020  * space.
6021  *
6022  * We don't want a transaction for this since the discard may take a
6023  * substantial amount of time.  We don't require that a transaction be
6024  * running, but we do need to take a running transaction into account
6025  * to ensure that we're not discarding chunks that were released or
6026  * allocated in the current transaction.
6027  *
6028  * Holding the chunks lock will prevent other threads from allocating
6029  * or releasing chunks, but it won't prevent a running transaction
6030  * from committing and releasing the memory that the pending chunks
6031  * list head uses.  For that, we need to take a reference to the
6032  * transaction and hold the commit root sem.  We only need to hold
6033  * it while performing the free space search since we have already
6034  * held back allocations.
6035  */
6036 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6037 {
6038 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6039 	int ret;
6040 
6041 	*trimmed = 0;
6042 
6043 	/* Discard not supported = nothing to do. */
6044 	if (!bdev_max_discard_sectors(device->bdev))
6045 		return 0;
6046 
6047 	/* Not writable = nothing to do. */
6048 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6049 		return 0;
6050 
6051 	/* No free space = nothing to do. */
6052 	if (device->total_bytes <= device->bytes_used)
6053 		return 0;
6054 
6055 	ret = 0;
6056 
6057 	while (1) {
6058 		struct btrfs_fs_info *fs_info = device->fs_info;
6059 		u64 bytes;
6060 
6061 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6062 		if (ret)
6063 			break;
6064 
6065 		find_first_clear_extent_bit(&device->alloc_state, start,
6066 					    &start, &end,
6067 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6068 
6069 		/* Check if there are any CHUNK_* bits left */
6070 		if (start > device->total_bytes) {
6071 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6072 			btrfs_warn_in_rcu(fs_info,
6073 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6074 					  start, end - start + 1,
6075 					  rcu_str_deref(device->name),
6076 					  device->total_bytes);
6077 			mutex_unlock(&fs_info->chunk_mutex);
6078 			ret = 0;
6079 			break;
6080 		}
6081 
6082 		/* Ensure we skip the reserved space on each device. */
6083 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6084 
6085 		/*
6086 		 * If find_first_clear_extent_bit find a range that spans the
6087 		 * end of the device it will set end to -1, in this case it's up
6088 		 * to the caller to trim the value to the size of the device.
6089 		 */
6090 		end = min(end, device->total_bytes - 1);
6091 
6092 		len = end - start + 1;
6093 
6094 		/* We didn't find any extents */
6095 		if (!len) {
6096 			mutex_unlock(&fs_info->chunk_mutex);
6097 			ret = 0;
6098 			break;
6099 		}
6100 
6101 		ret = btrfs_issue_discard(device->bdev, start, len,
6102 					  &bytes);
6103 		if (!ret)
6104 			set_extent_bits(&device->alloc_state, start,
6105 					start + bytes - 1,
6106 					CHUNK_TRIMMED);
6107 		mutex_unlock(&fs_info->chunk_mutex);
6108 
6109 		if (ret)
6110 			break;
6111 
6112 		start += len;
6113 		*trimmed += bytes;
6114 
6115 		if (fatal_signal_pending(current)) {
6116 			ret = -ERESTARTSYS;
6117 			break;
6118 		}
6119 
6120 		cond_resched();
6121 	}
6122 
6123 	return ret;
6124 }
6125 
6126 /*
6127  * Trim the whole filesystem by:
6128  * 1) trimming the free space in each block group
6129  * 2) trimming the unallocated space on each device
6130  *
6131  * This will also continue trimming even if a block group or device encounters
6132  * an error.  The return value will be the last error, or 0 if nothing bad
6133  * happens.
6134  */
6135 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6136 {
6137 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6138 	struct btrfs_block_group *cache = NULL;
6139 	struct btrfs_device *device;
6140 	u64 group_trimmed;
6141 	u64 range_end = U64_MAX;
6142 	u64 start;
6143 	u64 end;
6144 	u64 trimmed = 0;
6145 	u64 bg_failed = 0;
6146 	u64 dev_failed = 0;
6147 	int bg_ret = 0;
6148 	int dev_ret = 0;
6149 	int ret = 0;
6150 
6151 	if (range->start == U64_MAX)
6152 		return -EINVAL;
6153 
6154 	/*
6155 	 * Check range overflow if range->len is set.
6156 	 * The default range->len is U64_MAX.
6157 	 */
6158 	if (range->len != U64_MAX &&
6159 	    check_add_overflow(range->start, range->len, &range_end))
6160 		return -EINVAL;
6161 
6162 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6163 	for (; cache; cache = btrfs_next_block_group(cache)) {
6164 		if (cache->start >= range_end) {
6165 			btrfs_put_block_group(cache);
6166 			break;
6167 		}
6168 
6169 		start = max(range->start, cache->start);
6170 		end = min(range_end, cache->start + cache->length);
6171 
6172 		if (end - start >= range->minlen) {
6173 			if (!btrfs_block_group_done(cache)) {
6174 				ret = btrfs_cache_block_group(cache, true);
6175 				if (ret) {
6176 					bg_failed++;
6177 					bg_ret = ret;
6178 					continue;
6179 				}
6180 			}
6181 			ret = btrfs_trim_block_group(cache,
6182 						     &group_trimmed,
6183 						     start,
6184 						     end,
6185 						     range->minlen);
6186 
6187 			trimmed += group_trimmed;
6188 			if (ret) {
6189 				bg_failed++;
6190 				bg_ret = ret;
6191 				continue;
6192 			}
6193 		}
6194 	}
6195 
6196 	if (bg_failed)
6197 		btrfs_warn(fs_info,
6198 			"failed to trim %llu block group(s), last error %d",
6199 			bg_failed, bg_ret);
6200 
6201 	mutex_lock(&fs_devices->device_list_mutex);
6202 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6203 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6204 			continue;
6205 
6206 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6207 		if (ret) {
6208 			dev_failed++;
6209 			dev_ret = ret;
6210 			break;
6211 		}
6212 
6213 		trimmed += group_trimmed;
6214 	}
6215 	mutex_unlock(&fs_devices->device_list_mutex);
6216 
6217 	if (dev_failed)
6218 		btrfs_warn(fs_info,
6219 			"failed to trim %llu device(s), last error %d",
6220 			dev_failed, dev_ret);
6221 	range->len = trimmed;
6222 	if (bg_ret)
6223 		return bg_ret;
6224 	return dev_ret;
6225 }
6226