1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "compat.h" 29 #include "hash.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "transaction.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "math.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->extent_commit_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched()) { 446 caching_ctl->progress = last; 447 btrfs_release_path(path); 448 up_read(&fs_info->extent_commit_sem); 449 mutex_unlock(&caching_ctl->mutex); 450 cond_resched(); 451 goto again; 452 } 453 454 ret = btrfs_next_leaf(extent_root, path); 455 if (ret < 0) 456 goto err; 457 if (ret) 458 break; 459 leaf = path->nodes[0]; 460 nritems = btrfs_header_nritems(leaf); 461 continue; 462 } 463 464 if (key.objectid < last) { 465 key.objectid = last; 466 key.offset = 0; 467 key.type = BTRFS_EXTENT_ITEM_KEY; 468 469 caching_ctl->progress = last; 470 btrfs_release_path(path); 471 goto next; 472 } 473 474 if (key.objectid < block_group->key.objectid) { 475 path->slots[0]++; 476 continue; 477 } 478 479 if (key.objectid >= block_group->key.objectid + 480 block_group->key.offset) 481 break; 482 483 if (key.type == BTRFS_EXTENT_ITEM_KEY || 484 key.type == BTRFS_METADATA_ITEM_KEY) { 485 total_found += add_new_free_space(block_group, 486 fs_info, last, 487 key.objectid); 488 if (key.type == BTRFS_METADATA_ITEM_KEY) 489 last = key.objectid + 490 fs_info->tree_root->leafsize; 491 else 492 last = key.objectid + key.offset; 493 494 if (total_found > (1024 * 1024 * 2)) { 495 total_found = 0; 496 wake_up(&caching_ctl->wait); 497 } 498 } 499 path->slots[0]++; 500 } 501 ret = 0; 502 503 total_found += add_new_free_space(block_group, fs_info, last, 504 block_group->key.objectid + 505 block_group->key.offset); 506 caching_ctl->progress = (u64)-1; 507 508 spin_lock(&block_group->lock); 509 block_group->caching_ctl = NULL; 510 block_group->cached = BTRFS_CACHE_FINISHED; 511 spin_unlock(&block_group->lock); 512 513 err: 514 btrfs_free_path(path); 515 up_read(&fs_info->extent_commit_sem); 516 517 free_excluded_extents(extent_root, block_group); 518 519 mutex_unlock(&caching_ctl->mutex); 520 out: 521 if (ret) { 522 spin_lock(&block_group->lock); 523 block_group->caching_ctl = NULL; 524 block_group->cached = BTRFS_CACHE_ERROR; 525 spin_unlock(&block_group->lock); 526 } 527 wake_up(&caching_ctl->wait); 528 529 put_caching_control(caching_ctl); 530 btrfs_put_block_group(block_group); 531 } 532 533 static int cache_block_group(struct btrfs_block_group_cache *cache, 534 int load_cache_only) 535 { 536 DEFINE_WAIT(wait); 537 struct btrfs_fs_info *fs_info = cache->fs_info; 538 struct btrfs_caching_control *caching_ctl; 539 int ret = 0; 540 541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 542 if (!caching_ctl) 543 return -ENOMEM; 544 545 INIT_LIST_HEAD(&caching_ctl->list); 546 mutex_init(&caching_ctl->mutex); 547 init_waitqueue_head(&caching_ctl->wait); 548 caching_ctl->block_group = cache; 549 caching_ctl->progress = cache->key.objectid; 550 atomic_set(&caching_ctl->count, 1); 551 caching_ctl->work.func = caching_thread; 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 } else { 600 if (load_cache_only) { 601 cache->caching_ctl = NULL; 602 cache->cached = BTRFS_CACHE_NO; 603 } else { 604 cache->cached = BTRFS_CACHE_STARTED; 605 } 606 } 607 spin_unlock(&cache->lock); 608 wake_up(&caching_ctl->wait); 609 if (ret == 1) { 610 put_caching_control(caching_ctl); 611 free_excluded_extents(fs_info->extent_root, cache); 612 return 0; 613 } 614 } else { 615 /* 616 * We are not going to do the fast caching, set cached to the 617 * appropriate value and wakeup any waiters. 618 */ 619 spin_lock(&cache->lock); 620 if (load_cache_only) { 621 cache->caching_ctl = NULL; 622 cache->cached = BTRFS_CACHE_NO; 623 } else { 624 cache->cached = BTRFS_CACHE_STARTED; 625 } 626 spin_unlock(&cache->lock); 627 wake_up(&caching_ctl->wait); 628 } 629 630 if (load_cache_only) { 631 put_caching_control(caching_ctl); 632 return 0; 633 } 634 635 down_write(&fs_info->extent_commit_sem); 636 atomic_inc(&caching_ctl->count); 637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 638 up_write(&fs_info->extent_commit_sem); 639 640 btrfs_get_block_group(cache); 641 642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 643 644 return ret; 645 } 646 647 /* 648 * return the block group that starts at or after bytenr 649 */ 650 static struct btrfs_block_group_cache * 651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 652 { 653 struct btrfs_block_group_cache *cache; 654 655 cache = block_group_cache_tree_search(info, bytenr, 0); 656 657 return cache; 658 } 659 660 /* 661 * return the block group that contains the given bytenr 662 */ 663 struct btrfs_block_group_cache *btrfs_lookup_block_group( 664 struct btrfs_fs_info *info, 665 u64 bytenr) 666 { 667 struct btrfs_block_group_cache *cache; 668 669 cache = block_group_cache_tree_search(info, bytenr, 1); 670 671 return cache; 672 } 673 674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 675 u64 flags) 676 { 677 struct list_head *head = &info->space_info; 678 struct btrfs_space_info *found; 679 680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 681 682 rcu_read_lock(); 683 list_for_each_entry_rcu(found, head, list) { 684 if (found->flags & flags) { 685 rcu_read_unlock(); 686 return found; 687 } 688 } 689 rcu_read_unlock(); 690 return NULL; 691 } 692 693 /* 694 * after adding space to the filesystem, we need to clear the full flags 695 * on all the space infos. 696 */ 697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 698 { 699 struct list_head *head = &info->space_info; 700 struct btrfs_space_info *found; 701 702 rcu_read_lock(); 703 list_for_each_entry_rcu(found, head, list) 704 found->full = 0; 705 rcu_read_unlock(); 706 } 707 708 /* simple helper to search for an existing extent at a given offset */ 709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 710 { 711 int ret; 712 struct btrfs_key key; 713 struct btrfs_path *path; 714 715 path = btrfs_alloc_path(); 716 if (!path) 717 return -ENOMEM; 718 719 key.objectid = start; 720 key.offset = len; 721 key.type = BTRFS_EXTENT_ITEM_KEY; 722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 723 0, 0); 724 if (ret > 0) { 725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 726 if (key.objectid == start && 727 key.type == BTRFS_METADATA_ITEM_KEY) 728 ret = 0; 729 } 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->leafsize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (metadata) { 772 key.objectid = bytenr; 773 key.type = BTRFS_METADATA_ITEM_KEY; 774 key.offset = offset; 775 } else { 776 key.objectid = bytenr; 777 key.type = BTRFS_EXTENT_ITEM_KEY; 778 key.offset = offset; 779 } 780 781 if (!trans) { 782 path->skip_locking = 1; 783 path->search_commit_root = 1; 784 } 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 metadata = 0; 793 if (path->slots[0]) { 794 path->slots[0]--; 795 btrfs_item_key_to_cpu(path->nodes[0], &key, 796 path->slots[0]); 797 if (key.objectid == bytenr && 798 key.type == BTRFS_EXTENT_ITEM_KEY && 799 key.offset == root->leafsize) 800 ret = 0; 801 } 802 if (ret) { 803 key.objectid = bytenr; 804 key.type = BTRFS_EXTENT_ITEM_KEY; 805 key.offset = root->leafsize; 806 btrfs_release_path(path); 807 goto again; 808 } 809 } 810 811 if (ret == 0) { 812 leaf = path->nodes[0]; 813 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 814 if (item_size >= sizeof(*ei)) { 815 ei = btrfs_item_ptr(leaf, path->slots[0], 816 struct btrfs_extent_item); 817 num_refs = btrfs_extent_refs(leaf, ei); 818 extent_flags = btrfs_extent_flags(leaf, ei); 819 } else { 820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 821 struct btrfs_extent_item_v0 *ei0; 822 BUG_ON(item_size != sizeof(*ei0)); 823 ei0 = btrfs_item_ptr(leaf, path->slots[0], 824 struct btrfs_extent_item_v0); 825 num_refs = btrfs_extent_refs_v0(leaf, ei0); 826 /* FIXME: this isn't correct for data */ 827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 828 #else 829 BUG(); 830 #endif 831 } 832 BUG_ON(num_refs == 0); 833 } else { 834 num_refs = 0; 835 extent_flags = 0; 836 ret = 0; 837 } 838 839 if (!trans) 840 goto out; 841 842 delayed_refs = &trans->transaction->delayed_refs; 843 spin_lock(&delayed_refs->lock); 844 head = btrfs_find_delayed_ref_head(trans, bytenr); 845 if (head) { 846 if (!mutex_trylock(&head->mutex)) { 847 atomic_inc(&head->node.refs); 848 spin_unlock(&delayed_refs->lock); 849 850 btrfs_release_path(path); 851 852 /* 853 * Mutex was contended, block until it's released and try 854 * again 855 */ 856 mutex_lock(&head->mutex); 857 mutex_unlock(&head->mutex); 858 btrfs_put_delayed_ref(&head->node); 859 goto again; 860 } 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 mutex_unlock(&head->mutex); 868 } 869 spin_unlock(&delayed_refs->lock); 870 out: 871 WARN_ON(num_refs == 0); 872 if (refs) 873 *refs = num_refs; 874 if (flags) 875 *flags = extent_flags; 876 out_free: 877 btrfs_free_path(path); 878 return ret; 879 } 880 881 /* 882 * Back reference rules. Back refs have three main goals: 883 * 884 * 1) differentiate between all holders of references to an extent so that 885 * when a reference is dropped we can make sure it was a valid reference 886 * before freeing the extent. 887 * 888 * 2) Provide enough information to quickly find the holders of an extent 889 * if we notice a given block is corrupted or bad. 890 * 891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 892 * maintenance. This is actually the same as #2, but with a slightly 893 * different use case. 894 * 895 * There are two kinds of back refs. The implicit back refs is optimized 896 * for pointers in non-shared tree blocks. For a given pointer in a block, 897 * back refs of this kind provide information about the block's owner tree 898 * and the pointer's key. These information allow us to find the block by 899 * b-tree searching. The full back refs is for pointers in tree blocks not 900 * referenced by their owner trees. The location of tree block is recorded 901 * in the back refs. Actually the full back refs is generic, and can be 902 * used in all cases the implicit back refs is used. The major shortcoming 903 * of the full back refs is its overhead. Every time a tree block gets 904 * COWed, we have to update back refs entry for all pointers in it. 905 * 906 * For a newly allocated tree block, we use implicit back refs for 907 * pointers in it. This means most tree related operations only involve 908 * implicit back refs. For a tree block created in old transaction, the 909 * only way to drop a reference to it is COW it. So we can detect the 910 * event that tree block loses its owner tree's reference and do the 911 * back refs conversion. 912 * 913 * When a tree block is COW'd through a tree, there are four cases: 914 * 915 * The reference count of the block is one and the tree is the block's 916 * owner tree. Nothing to do in this case. 917 * 918 * The reference count of the block is one and the tree is not the 919 * block's owner tree. In this case, full back refs is used for pointers 920 * in the block. Remove these full back refs, add implicit back refs for 921 * every pointers in the new block. 922 * 923 * The reference count of the block is greater than one and the tree is 924 * the block's owner tree. In this case, implicit back refs is used for 925 * pointers in the block. Add full back refs for every pointers in the 926 * block, increase lower level extents' reference counts. The original 927 * implicit back refs are entailed to the new block. 928 * 929 * The reference count of the block is greater than one and the tree is 930 * not the block's owner tree. Add implicit back refs for every pointer in 931 * the new block, increase lower level extents' reference count. 932 * 933 * Back Reference Key composing: 934 * 935 * The key objectid corresponds to the first byte in the extent, 936 * The key type is used to differentiate between types of back refs. 937 * There are different meanings of the key offset for different types 938 * of back refs. 939 * 940 * File extents can be referenced by: 941 * 942 * - multiple snapshots, subvolumes, or different generations in one subvol 943 * - different files inside a single subvolume 944 * - different offsets inside a file (bookend extents in file.c) 945 * 946 * The extent ref structure for the implicit back refs has fields for: 947 * 948 * - Objectid of the subvolume root 949 * - objectid of the file holding the reference 950 * - original offset in the file 951 * - how many bookend extents 952 * 953 * The key offset for the implicit back refs is hash of the first 954 * three fields. 955 * 956 * The extent ref structure for the full back refs has field for: 957 * 958 * - number of pointers in the tree leaf 959 * 960 * The key offset for the implicit back refs is the first byte of 961 * the tree leaf 962 * 963 * When a file extent is allocated, The implicit back refs is used. 964 * the fields are filled in: 965 * 966 * (root_key.objectid, inode objectid, offset in file, 1) 967 * 968 * When a file extent is removed file truncation, we find the 969 * corresponding implicit back refs and check the following fields: 970 * 971 * (btrfs_header_owner(leaf), inode objectid, offset in file) 972 * 973 * Btree extents can be referenced by: 974 * 975 * - Different subvolumes 976 * 977 * Both the implicit back refs and the full back refs for tree blocks 978 * only consist of key. The key offset for the implicit back refs is 979 * objectid of block's owner tree. The key offset for the full back refs 980 * is the first byte of parent block. 981 * 982 * When implicit back refs is used, information about the lowest key and 983 * level of the tree block are required. These information are stored in 984 * tree block info structure. 985 */ 986 987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 989 struct btrfs_root *root, 990 struct btrfs_path *path, 991 u64 owner, u32 extra_size) 992 { 993 struct btrfs_extent_item *item; 994 struct btrfs_extent_item_v0 *ei0; 995 struct btrfs_extent_ref_v0 *ref0; 996 struct btrfs_tree_block_info *bi; 997 struct extent_buffer *leaf; 998 struct btrfs_key key; 999 struct btrfs_key found_key; 1000 u32 new_size = sizeof(*item); 1001 u64 refs; 1002 int ret; 1003 1004 leaf = path->nodes[0]; 1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1006 1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1008 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1009 struct btrfs_extent_item_v0); 1010 refs = btrfs_extent_refs_v0(leaf, ei0); 1011 1012 if (owner == (u64)-1) { 1013 while (1) { 1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1015 ret = btrfs_next_leaf(root, path); 1016 if (ret < 0) 1017 return ret; 1018 BUG_ON(ret > 0); /* Corruption */ 1019 leaf = path->nodes[0]; 1020 } 1021 btrfs_item_key_to_cpu(leaf, &found_key, 1022 path->slots[0]); 1023 BUG_ON(key.objectid != found_key.objectid); 1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1025 path->slots[0]++; 1026 continue; 1027 } 1028 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1029 struct btrfs_extent_ref_v0); 1030 owner = btrfs_ref_objectid_v0(leaf, ref0); 1031 break; 1032 } 1033 } 1034 btrfs_release_path(path); 1035 1036 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1037 new_size += sizeof(*bi); 1038 1039 new_size -= sizeof(*ei0); 1040 ret = btrfs_search_slot(trans, root, &key, path, 1041 new_size + extra_size, 1); 1042 if (ret < 0) 1043 return ret; 1044 BUG_ON(ret); /* Corruption */ 1045 1046 btrfs_extend_item(root, path, new_size); 1047 1048 leaf = path->nodes[0]; 1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1050 btrfs_set_extent_refs(leaf, item, refs); 1051 /* FIXME: get real generation */ 1052 btrfs_set_extent_generation(leaf, item, 0); 1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1054 btrfs_set_extent_flags(leaf, item, 1055 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1056 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1057 bi = (struct btrfs_tree_block_info *)(item + 1); 1058 /* FIXME: get first key of the block */ 1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1060 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1061 } else { 1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1063 } 1064 btrfs_mark_buffer_dirty(leaf); 1065 return 0; 1066 } 1067 #endif 1068 1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1070 { 1071 u32 high_crc = ~(u32)0; 1072 u32 low_crc = ~(u32)0; 1073 __le64 lenum; 1074 1075 lenum = cpu_to_le64(root_objectid); 1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1077 lenum = cpu_to_le64(owner); 1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1079 lenum = cpu_to_le64(offset); 1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1081 1082 return ((u64)high_crc << 31) ^ (u64)low_crc; 1083 } 1084 1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref) 1087 { 1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1089 btrfs_extent_data_ref_objectid(leaf, ref), 1090 btrfs_extent_data_ref_offset(leaf, ref)); 1091 } 1092 1093 static int match_extent_data_ref(struct extent_buffer *leaf, 1094 struct btrfs_extent_data_ref *ref, 1095 u64 root_objectid, u64 owner, u64 offset) 1096 { 1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1099 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1100 return 0; 1101 return 1; 1102 } 1103 1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1105 struct btrfs_root *root, 1106 struct btrfs_path *path, 1107 u64 bytenr, u64 parent, 1108 u64 root_objectid, 1109 u64 owner, u64 offset) 1110 { 1111 struct btrfs_key key; 1112 struct btrfs_extent_data_ref *ref; 1113 struct extent_buffer *leaf; 1114 u32 nritems; 1115 int ret; 1116 int recow; 1117 int err = -ENOENT; 1118 1119 key.objectid = bytenr; 1120 if (parent) { 1121 key.type = BTRFS_SHARED_DATA_REF_KEY; 1122 key.offset = parent; 1123 } else { 1124 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1125 key.offset = hash_extent_data_ref(root_objectid, 1126 owner, offset); 1127 } 1128 again: 1129 recow = 0; 1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1131 if (ret < 0) { 1132 err = ret; 1133 goto fail; 1134 } 1135 1136 if (parent) { 1137 if (!ret) 1138 return 0; 1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1140 key.type = BTRFS_EXTENT_REF_V0_KEY; 1141 btrfs_release_path(path); 1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1143 if (ret < 0) { 1144 err = ret; 1145 goto fail; 1146 } 1147 if (!ret) 1148 return 0; 1149 #endif 1150 goto fail; 1151 } 1152 1153 leaf = path->nodes[0]; 1154 nritems = btrfs_header_nritems(leaf); 1155 while (1) { 1156 if (path->slots[0] >= nritems) { 1157 ret = btrfs_next_leaf(root, path); 1158 if (ret < 0) 1159 err = ret; 1160 if (ret) 1161 goto fail; 1162 1163 leaf = path->nodes[0]; 1164 nritems = btrfs_header_nritems(leaf); 1165 recow = 1; 1166 } 1167 1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1169 if (key.objectid != bytenr || 1170 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1171 goto fail; 1172 1173 ref = btrfs_item_ptr(leaf, path->slots[0], 1174 struct btrfs_extent_data_ref); 1175 1176 if (match_extent_data_ref(leaf, ref, root_objectid, 1177 owner, offset)) { 1178 if (recow) { 1179 btrfs_release_path(path); 1180 goto again; 1181 } 1182 err = 0; 1183 break; 1184 } 1185 path->slots[0]++; 1186 } 1187 fail: 1188 return err; 1189 } 1190 1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1192 struct btrfs_root *root, 1193 struct btrfs_path *path, 1194 u64 bytenr, u64 parent, 1195 u64 root_objectid, u64 owner, 1196 u64 offset, int refs_to_add) 1197 { 1198 struct btrfs_key key; 1199 struct extent_buffer *leaf; 1200 u32 size; 1201 u32 num_refs; 1202 int ret; 1203 1204 key.objectid = bytenr; 1205 if (parent) { 1206 key.type = BTRFS_SHARED_DATA_REF_KEY; 1207 key.offset = parent; 1208 size = sizeof(struct btrfs_shared_data_ref); 1209 } else { 1210 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1211 key.offset = hash_extent_data_ref(root_objectid, 1212 owner, offset); 1213 size = sizeof(struct btrfs_extent_data_ref); 1214 } 1215 1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1217 if (ret && ret != -EEXIST) 1218 goto fail; 1219 1220 leaf = path->nodes[0]; 1221 if (parent) { 1222 struct btrfs_shared_data_ref *ref; 1223 ref = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_shared_data_ref); 1225 if (ret == 0) { 1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1227 } else { 1228 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1229 num_refs += refs_to_add; 1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1231 } 1232 } else { 1233 struct btrfs_extent_data_ref *ref; 1234 while (ret == -EEXIST) { 1235 ref = btrfs_item_ptr(leaf, path->slots[0], 1236 struct btrfs_extent_data_ref); 1237 if (match_extent_data_ref(leaf, ref, root_objectid, 1238 owner, offset)) 1239 break; 1240 btrfs_release_path(path); 1241 key.offset++; 1242 ret = btrfs_insert_empty_item(trans, root, path, &key, 1243 size); 1244 if (ret && ret != -EEXIST) 1245 goto fail; 1246 1247 leaf = path->nodes[0]; 1248 } 1249 ref = btrfs_item_ptr(leaf, path->slots[0], 1250 struct btrfs_extent_data_ref); 1251 if (ret == 0) { 1252 btrfs_set_extent_data_ref_root(leaf, ref, 1253 root_objectid); 1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1257 } else { 1258 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1259 num_refs += refs_to_add; 1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1261 } 1262 } 1263 btrfs_mark_buffer_dirty(leaf); 1264 ret = 0; 1265 fail: 1266 btrfs_release_path(path); 1267 return ret; 1268 } 1269 1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1271 struct btrfs_root *root, 1272 struct btrfs_path *path, 1273 int refs_to_drop) 1274 { 1275 struct btrfs_key key; 1276 struct btrfs_extent_data_ref *ref1 = NULL; 1277 struct btrfs_shared_data_ref *ref2 = NULL; 1278 struct extent_buffer *leaf; 1279 u32 num_refs = 0; 1280 int ret = 0; 1281 1282 leaf = path->nodes[0]; 1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1284 1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1286 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1287 struct btrfs_extent_data_ref); 1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1290 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_shared_data_ref); 1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1295 struct btrfs_extent_ref_v0 *ref0; 1296 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1297 struct btrfs_extent_ref_v0); 1298 num_refs = btrfs_ref_count_v0(leaf, ref0); 1299 #endif 1300 } else { 1301 BUG(); 1302 } 1303 1304 BUG_ON(num_refs < refs_to_drop); 1305 num_refs -= refs_to_drop; 1306 1307 if (num_refs == 0) { 1308 ret = btrfs_del_item(trans, root, path); 1309 } else { 1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1315 else { 1316 struct btrfs_extent_ref_v0 *ref0; 1317 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_ref_v0); 1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1320 } 1321 #endif 1322 btrfs_mark_buffer_dirty(leaf); 1323 } 1324 return ret; 1325 } 1326 1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1328 struct btrfs_path *path, 1329 struct btrfs_extent_inline_ref *iref) 1330 { 1331 struct btrfs_key key; 1332 struct extent_buffer *leaf; 1333 struct btrfs_extent_data_ref *ref1; 1334 struct btrfs_shared_data_ref *ref2; 1335 u32 num_refs = 0; 1336 1337 leaf = path->nodes[0]; 1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1339 if (iref) { 1340 if (btrfs_extent_inline_ref_type(leaf, iref) == 1341 BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else { 1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 } 1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1349 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_extent_data_ref); 1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1353 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_shared_data_ref); 1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1358 struct btrfs_extent_ref_v0 *ref0; 1359 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1360 struct btrfs_extent_ref_v0); 1361 num_refs = btrfs_ref_count_v0(leaf, ref0); 1362 #endif 1363 } else { 1364 WARN_ON(1); 1365 } 1366 return num_refs; 1367 } 1368 1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *root, 1371 struct btrfs_path *path, 1372 u64 bytenr, u64 parent, 1373 u64 root_objectid) 1374 { 1375 struct btrfs_key key; 1376 int ret; 1377 1378 key.objectid = bytenr; 1379 if (parent) { 1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1381 key.offset = parent; 1382 } else { 1383 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1384 key.offset = root_objectid; 1385 } 1386 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1391 if (ret == -ENOENT && parent) { 1392 btrfs_release_path(path); 1393 key.type = BTRFS_EXTENT_REF_V0_KEY; 1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1395 if (ret > 0) 1396 ret = -ENOENT; 1397 } 1398 #endif 1399 return ret; 1400 } 1401 1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root, 1404 struct btrfs_path *path, 1405 u64 bytenr, u64 parent, 1406 u64 root_objectid) 1407 { 1408 struct btrfs_key key; 1409 int ret; 1410 1411 key.objectid = bytenr; 1412 if (parent) { 1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1414 key.offset = parent; 1415 } else { 1416 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1417 key.offset = root_objectid; 1418 } 1419 1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1421 btrfs_release_path(path); 1422 return ret; 1423 } 1424 1425 static inline int extent_ref_type(u64 parent, u64 owner) 1426 { 1427 int type; 1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1429 if (parent > 0) 1430 type = BTRFS_SHARED_BLOCK_REF_KEY; 1431 else 1432 type = BTRFS_TREE_BLOCK_REF_KEY; 1433 } else { 1434 if (parent > 0) 1435 type = BTRFS_SHARED_DATA_REF_KEY; 1436 else 1437 type = BTRFS_EXTENT_DATA_REF_KEY; 1438 } 1439 return type; 1440 } 1441 1442 static int find_next_key(struct btrfs_path *path, int level, 1443 struct btrfs_key *key) 1444 1445 { 1446 for (; level < BTRFS_MAX_LEVEL; level++) { 1447 if (!path->nodes[level]) 1448 break; 1449 if (path->slots[level] + 1 >= 1450 btrfs_header_nritems(path->nodes[level])) 1451 continue; 1452 if (level == 0) 1453 btrfs_item_key_to_cpu(path->nodes[level], key, 1454 path->slots[level] + 1); 1455 else 1456 btrfs_node_key_to_cpu(path->nodes[level], key, 1457 path->slots[level] + 1); 1458 return 0; 1459 } 1460 return 1; 1461 } 1462 1463 /* 1464 * look for inline back ref. if back ref is found, *ref_ret is set 1465 * to the address of inline back ref, and 0 is returned. 1466 * 1467 * if back ref isn't found, *ref_ret is set to the address where it 1468 * should be inserted, and -ENOENT is returned. 1469 * 1470 * if insert is true and there are too many inline back refs, the path 1471 * points to the extent item, and -EAGAIN is returned. 1472 * 1473 * NOTE: inline back refs are ordered in the same way that back ref 1474 * items in the tree are ordered. 1475 */ 1476 static noinline_for_stack 1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1478 struct btrfs_root *root, 1479 struct btrfs_path *path, 1480 struct btrfs_extent_inline_ref **ref_ret, 1481 u64 bytenr, u64 num_bytes, 1482 u64 parent, u64 root_objectid, 1483 u64 owner, u64 offset, int insert) 1484 { 1485 struct btrfs_key key; 1486 struct extent_buffer *leaf; 1487 struct btrfs_extent_item *ei; 1488 struct btrfs_extent_inline_ref *iref; 1489 u64 flags; 1490 u64 item_size; 1491 unsigned long ptr; 1492 unsigned long end; 1493 int extra_size; 1494 int type; 1495 int want; 1496 int ret; 1497 int err = 0; 1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1499 SKINNY_METADATA); 1500 1501 key.objectid = bytenr; 1502 key.type = BTRFS_EXTENT_ITEM_KEY; 1503 key.offset = num_bytes; 1504 1505 want = extent_ref_type(parent, owner); 1506 if (insert) { 1507 extra_size = btrfs_extent_inline_ref_size(want); 1508 path->keep_locks = 1; 1509 } else 1510 extra_size = -1; 1511 1512 /* 1513 * Owner is our parent level, so we can just add one to get the level 1514 * for the block we are interested in. 1515 */ 1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1517 key.type = BTRFS_METADATA_ITEM_KEY; 1518 key.offset = owner; 1519 } 1520 1521 again: 1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1523 if (ret < 0) { 1524 err = ret; 1525 goto out; 1526 } 1527 1528 /* 1529 * We may be a newly converted file system which still has the old fat 1530 * extent entries for metadata, so try and see if we have one of those. 1531 */ 1532 if (ret > 0 && skinny_metadata) { 1533 skinny_metadata = false; 1534 if (path->slots[0]) { 1535 path->slots[0]--; 1536 btrfs_item_key_to_cpu(path->nodes[0], &key, 1537 path->slots[0]); 1538 if (key.objectid == bytenr && 1539 key.type == BTRFS_EXTENT_ITEM_KEY && 1540 key.offset == num_bytes) 1541 ret = 0; 1542 } 1543 if (ret) { 1544 key.type = BTRFS_EXTENT_ITEM_KEY; 1545 key.offset = num_bytes; 1546 btrfs_release_path(path); 1547 goto again; 1548 } 1549 } 1550 1551 if (ret && !insert) { 1552 err = -ENOENT; 1553 goto out; 1554 } else if (ret) { 1555 err = -EIO; 1556 WARN_ON(1); 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 int err = 0; 1983 1984 path = btrfs_alloc_path(); 1985 if (!path) 1986 return -ENOMEM; 1987 1988 path->reada = 1; 1989 path->leave_spinning = 1; 1990 /* this will setup the path even if it fails to insert the back ref */ 1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1992 path, bytenr, num_bytes, parent, 1993 root_objectid, owner, offset, 1994 refs_to_add, extent_op); 1995 if (ret == 0) 1996 goto out; 1997 1998 if (ret != -EAGAIN) { 1999 err = ret; 2000 goto out; 2001 } 2002 2003 leaf = path->nodes[0]; 2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2005 refs = btrfs_extent_refs(leaf, item); 2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2007 if (extent_op) 2008 __run_delayed_extent_op(extent_op, leaf, item); 2009 2010 btrfs_mark_buffer_dirty(leaf); 2011 btrfs_release_path(path); 2012 2013 path->reada = 1; 2014 path->leave_spinning = 1; 2015 2016 /* now insert the actual backref */ 2017 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2018 path, bytenr, parent, root_objectid, 2019 owner, offset, refs_to_add); 2020 if (ret) 2021 btrfs_abort_transaction(trans, root, ret); 2022 out: 2023 btrfs_free_path(path); 2024 return err; 2025 } 2026 2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2028 struct btrfs_root *root, 2029 struct btrfs_delayed_ref_node *node, 2030 struct btrfs_delayed_extent_op *extent_op, 2031 int insert_reserved) 2032 { 2033 int ret = 0; 2034 struct btrfs_delayed_data_ref *ref; 2035 struct btrfs_key ins; 2036 u64 parent = 0; 2037 u64 ref_root = 0; 2038 u64 flags = 0; 2039 2040 ins.objectid = node->bytenr; 2041 ins.offset = node->num_bytes; 2042 ins.type = BTRFS_EXTENT_ITEM_KEY; 2043 2044 ref = btrfs_delayed_node_to_data_ref(node); 2045 trace_run_delayed_data_ref(node, ref, node->action); 2046 2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2048 parent = ref->parent; 2049 else 2050 ref_root = ref->root; 2051 2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2053 if (extent_op) 2054 flags |= extent_op->flags_to_set; 2055 ret = alloc_reserved_file_extent(trans, root, 2056 parent, ref_root, flags, 2057 ref->objectid, ref->offset, 2058 &ins, node->ref_mod); 2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2066 ret = __btrfs_free_extent(trans, root, node->bytenr, 2067 node->num_bytes, parent, 2068 ref_root, ref->objectid, 2069 ref->offset, node->ref_mod, 2070 extent_op); 2071 } else { 2072 BUG(); 2073 } 2074 return ret; 2075 } 2076 2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2078 struct extent_buffer *leaf, 2079 struct btrfs_extent_item *ei) 2080 { 2081 u64 flags = btrfs_extent_flags(leaf, ei); 2082 if (extent_op->update_flags) { 2083 flags |= extent_op->flags_to_set; 2084 btrfs_set_extent_flags(leaf, ei, flags); 2085 } 2086 2087 if (extent_op->update_key) { 2088 struct btrfs_tree_block_info *bi; 2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2090 bi = (struct btrfs_tree_block_info *)(ei + 1); 2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2092 } 2093 } 2094 2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2096 struct btrfs_root *root, 2097 struct btrfs_delayed_ref_node *node, 2098 struct btrfs_delayed_extent_op *extent_op) 2099 { 2100 struct btrfs_key key; 2101 struct btrfs_path *path; 2102 struct btrfs_extent_item *ei; 2103 struct extent_buffer *leaf; 2104 u32 item_size; 2105 int ret; 2106 int err = 0; 2107 int metadata = !extent_op->is_data; 2108 2109 if (trans->aborted) 2110 return 0; 2111 2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2113 metadata = 0; 2114 2115 path = btrfs_alloc_path(); 2116 if (!path) 2117 return -ENOMEM; 2118 2119 key.objectid = node->bytenr; 2120 2121 if (metadata) { 2122 key.type = BTRFS_METADATA_ITEM_KEY; 2123 key.offset = extent_op->level; 2124 } else { 2125 key.type = BTRFS_EXTENT_ITEM_KEY; 2126 key.offset = node->num_bytes; 2127 } 2128 2129 again: 2130 path->reada = 1; 2131 path->leave_spinning = 1; 2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2133 path, 0, 1); 2134 if (ret < 0) { 2135 err = ret; 2136 goto out; 2137 } 2138 if (ret > 0) { 2139 if (metadata) { 2140 btrfs_release_path(path); 2141 metadata = 0; 2142 2143 key.offset = node->num_bytes; 2144 key.type = BTRFS_EXTENT_ITEM_KEY; 2145 goto again; 2146 } 2147 err = -EIO; 2148 goto out; 2149 } 2150 2151 leaf = path->nodes[0]; 2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2154 if (item_size < sizeof(*ei)) { 2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2156 path, (u64)-1, 0); 2157 if (ret < 0) { 2158 err = ret; 2159 goto out; 2160 } 2161 leaf = path->nodes[0]; 2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2163 } 2164 #endif 2165 BUG_ON(item_size < sizeof(*ei)); 2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2167 __run_delayed_extent_op(extent_op, leaf, ei); 2168 2169 btrfs_mark_buffer_dirty(leaf); 2170 out: 2171 btrfs_free_path(path); 2172 return err; 2173 } 2174 2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, 2177 struct btrfs_delayed_ref_node *node, 2178 struct btrfs_delayed_extent_op *extent_op, 2179 int insert_reserved) 2180 { 2181 int ret = 0; 2182 struct btrfs_delayed_tree_ref *ref; 2183 struct btrfs_key ins; 2184 u64 parent = 0; 2185 u64 ref_root = 0; 2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2187 SKINNY_METADATA); 2188 2189 ref = btrfs_delayed_node_to_tree_ref(node); 2190 trace_run_delayed_tree_ref(node, ref, node->action); 2191 2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2193 parent = ref->parent; 2194 else 2195 ref_root = ref->root; 2196 2197 ins.objectid = node->bytenr; 2198 if (skinny_metadata) { 2199 ins.offset = ref->level; 2200 ins.type = BTRFS_METADATA_ITEM_KEY; 2201 } else { 2202 ins.offset = node->num_bytes; 2203 ins.type = BTRFS_EXTENT_ITEM_KEY; 2204 } 2205 2206 BUG_ON(node->ref_mod != 1); 2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2208 BUG_ON(!extent_op || !extent_op->update_flags); 2209 ret = alloc_reserved_tree_block(trans, root, 2210 parent, ref_root, 2211 extent_op->flags_to_set, 2212 &extent_op->key, 2213 ref->level, &ins); 2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2216 node->num_bytes, parent, ref_root, 2217 ref->level, 0, 1, extent_op); 2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2219 ret = __btrfs_free_extent(trans, root, node->bytenr, 2220 node->num_bytes, parent, ref_root, 2221 ref->level, 0, 1, extent_op); 2222 } else { 2223 BUG(); 2224 } 2225 return ret; 2226 } 2227 2228 /* helper function to actually process a single delayed ref entry */ 2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_delayed_ref_node *node, 2232 struct btrfs_delayed_extent_op *extent_op, 2233 int insert_reserved) 2234 { 2235 int ret = 0; 2236 2237 if (trans->aborted) 2238 return 0; 2239 2240 if (btrfs_delayed_ref_is_head(node)) { 2241 struct btrfs_delayed_ref_head *head; 2242 /* 2243 * we've hit the end of the chain and we were supposed 2244 * to insert this extent into the tree. But, it got 2245 * deleted before we ever needed to insert it, so all 2246 * we have to do is clean up the accounting 2247 */ 2248 BUG_ON(extent_op); 2249 head = btrfs_delayed_node_to_head(node); 2250 trace_run_delayed_ref_head(node, head, node->action); 2251 2252 if (insert_reserved) { 2253 btrfs_pin_extent(root, node->bytenr, 2254 node->num_bytes, 1); 2255 if (head->is_data) { 2256 ret = btrfs_del_csums(trans, root, 2257 node->bytenr, 2258 node->num_bytes); 2259 } 2260 } 2261 return ret; 2262 } 2263 2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2266 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2267 insert_reserved); 2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2269 node->type == BTRFS_SHARED_DATA_REF_KEY) 2270 ret = run_delayed_data_ref(trans, root, node, extent_op, 2271 insert_reserved); 2272 else 2273 BUG(); 2274 return ret; 2275 } 2276 2277 static noinline struct btrfs_delayed_ref_node * 2278 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2279 { 2280 struct rb_node *node; 2281 struct btrfs_delayed_ref_node *ref; 2282 int action = BTRFS_ADD_DELAYED_REF; 2283 again: 2284 /* 2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2286 * this prevents ref count from going down to zero when 2287 * there still are pending delayed ref. 2288 */ 2289 node = rb_prev(&head->node.rb_node); 2290 while (1) { 2291 if (!node) 2292 break; 2293 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2294 rb_node); 2295 if (ref->bytenr != head->node.bytenr) 2296 break; 2297 if (ref->action == action) 2298 return ref; 2299 node = rb_prev(node); 2300 } 2301 if (action == BTRFS_ADD_DELAYED_REF) { 2302 action = BTRFS_DROP_DELAYED_REF; 2303 goto again; 2304 } 2305 return NULL; 2306 } 2307 2308 /* 2309 * Returns 0 on success or if called with an already aborted transaction. 2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2311 */ 2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct list_head *cluster) 2315 { 2316 struct btrfs_delayed_ref_root *delayed_refs; 2317 struct btrfs_delayed_ref_node *ref; 2318 struct btrfs_delayed_ref_head *locked_ref = NULL; 2319 struct btrfs_delayed_extent_op *extent_op; 2320 struct btrfs_fs_info *fs_info = root->fs_info; 2321 int ret; 2322 int count = 0; 2323 int must_insert_reserved = 0; 2324 2325 delayed_refs = &trans->transaction->delayed_refs; 2326 while (1) { 2327 if (!locked_ref) { 2328 /* pick a new head ref from the cluster list */ 2329 if (list_empty(cluster)) 2330 break; 2331 2332 locked_ref = list_entry(cluster->next, 2333 struct btrfs_delayed_ref_head, cluster); 2334 2335 /* grab the lock that says we are going to process 2336 * all the refs for this head */ 2337 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2338 2339 /* 2340 * we may have dropped the spin lock to get the head 2341 * mutex lock, and that might have given someone else 2342 * time to free the head. If that's true, it has been 2343 * removed from our list and we can move on. 2344 */ 2345 if (ret == -EAGAIN) { 2346 locked_ref = NULL; 2347 count++; 2348 continue; 2349 } 2350 } 2351 2352 /* 2353 * We need to try and merge add/drops of the same ref since we 2354 * can run into issues with relocate dropping the implicit ref 2355 * and then it being added back again before the drop can 2356 * finish. If we merged anything we need to re-loop so we can 2357 * get a good ref. 2358 */ 2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2360 locked_ref); 2361 2362 /* 2363 * locked_ref is the head node, so we have to go one 2364 * node back for any delayed ref updates 2365 */ 2366 ref = select_delayed_ref(locked_ref); 2367 2368 if (ref && ref->seq && 2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2370 /* 2371 * there are still refs with lower seq numbers in the 2372 * process of being added. Don't run this ref yet. 2373 */ 2374 list_del_init(&locked_ref->cluster); 2375 btrfs_delayed_ref_unlock(locked_ref); 2376 locked_ref = NULL; 2377 delayed_refs->num_heads_ready++; 2378 spin_unlock(&delayed_refs->lock); 2379 cond_resched(); 2380 spin_lock(&delayed_refs->lock); 2381 continue; 2382 } 2383 2384 /* 2385 * record the must insert reserved flag before we 2386 * drop the spin lock. 2387 */ 2388 must_insert_reserved = locked_ref->must_insert_reserved; 2389 locked_ref->must_insert_reserved = 0; 2390 2391 extent_op = locked_ref->extent_op; 2392 locked_ref->extent_op = NULL; 2393 2394 if (!ref) { 2395 /* All delayed refs have been processed, Go ahead 2396 * and send the head node to run_one_delayed_ref, 2397 * so that any accounting fixes can happen 2398 */ 2399 ref = &locked_ref->node; 2400 2401 if (extent_op && must_insert_reserved) { 2402 btrfs_free_delayed_extent_op(extent_op); 2403 extent_op = NULL; 2404 } 2405 2406 if (extent_op) { 2407 spin_unlock(&delayed_refs->lock); 2408 2409 ret = run_delayed_extent_op(trans, root, 2410 ref, extent_op); 2411 btrfs_free_delayed_extent_op(extent_op); 2412 2413 if (ret) { 2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2415 spin_lock(&delayed_refs->lock); 2416 btrfs_delayed_ref_unlock(locked_ref); 2417 return ret; 2418 } 2419 2420 goto next; 2421 } 2422 } 2423 2424 ref->in_tree = 0; 2425 rb_erase(&ref->rb_node, &delayed_refs->root); 2426 delayed_refs->num_entries--; 2427 if (!btrfs_delayed_ref_is_head(ref)) { 2428 /* 2429 * when we play the delayed ref, also correct the 2430 * ref_mod on head 2431 */ 2432 switch (ref->action) { 2433 case BTRFS_ADD_DELAYED_REF: 2434 case BTRFS_ADD_DELAYED_EXTENT: 2435 locked_ref->node.ref_mod -= ref->ref_mod; 2436 break; 2437 case BTRFS_DROP_DELAYED_REF: 2438 locked_ref->node.ref_mod += ref->ref_mod; 2439 break; 2440 default: 2441 WARN_ON(1); 2442 } 2443 } else { 2444 list_del_init(&locked_ref->cluster); 2445 } 2446 spin_unlock(&delayed_refs->lock); 2447 2448 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2449 must_insert_reserved); 2450 2451 btrfs_free_delayed_extent_op(extent_op); 2452 if (ret) { 2453 btrfs_delayed_ref_unlock(locked_ref); 2454 btrfs_put_delayed_ref(ref); 2455 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2456 spin_lock(&delayed_refs->lock); 2457 return ret; 2458 } 2459 2460 /* 2461 * If this node is a head, that means all the refs in this head 2462 * have been dealt with, and we will pick the next head to deal 2463 * with, so we must unlock the head and drop it from the cluster 2464 * list before we release it. 2465 */ 2466 if (btrfs_delayed_ref_is_head(ref)) { 2467 btrfs_delayed_ref_unlock(locked_ref); 2468 locked_ref = NULL; 2469 } 2470 btrfs_put_delayed_ref(ref); 2471 count++; 2472 next: 2473 cond_resched(); 2474 spin_lock(&delayed_refs->lock); 2475 } 2476 return count; 2477 } 2478 2479 #ifdef SCRAMBLE_DELAYED_REFS 2480 /* 2481 * Normally delayed refs get processed in ascending bytenr order. This 2482 * correlates in most cases to the order added. To expose dependencies on this 2483 * order, we start to process the tree in the middle instead of the beginning 2484 */ 2485 static u64 find_middle(struct rb_root *root) 2486 { 2487 struct rb_node *n = root->rb_node; 2488 struct btrfs_delayed_ref_node *entry; 2489 int alt = 1; 2490 u64 middle; 2491 u64 first = 0, last = 0; 2492 2493 n = rb_first(root); 2494 if (n) { 2495 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2496 first = entry->bytenr; 2497 } 2498 n = rb_last(root); 2499 if (n) { 2500 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2501 last = entry->bytenr; 2502 } 2503 n = root->rb_node; 2504 2505 while (n) { 2506 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2507 WARN_ON(!entry->in_tree); 2508 2509 middle = entry->bytenr; 2510 2511 if (alt) 2512 n = n->rb_left; 2513 else 2514 n = n->rb_right; 2515 2516 alt = 1 - alt; 2517 } 2518 return middle; 2519 } 2520 #endif 2521 2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2523 struct btrfs_fs_info *fs_info) 2524 { 2525 struct qgroup_update *qgroup_update; 2526 int ret = 0; 2527 2528 if (list_empty(&trans->qgroup_ref_list) != 2529 !trans->delayed_ref_elem.seq) { 2530 /* list without seq or seq without list */ 2531 btrfs_err(fs_info, 2532 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2533 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2534 (u32)(trans->delayed_ref_elem.seq >> 32), 2535 (u32)trans->delayed_ref_elem.seq); 2536 BUG(); 2537 } 2538 2539 if (!trans->delayed_ref_elem.seq) 2540 return 0; 2541 2542 while (!list_empty(&trans->qgroup_ref_list)) { 2543 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2544 struct qgroup_update, list); 2545 list_del(&qgroup_update->list); 2546 if (!ret) 2547 ret = btrfs_qgroup_account_ref( 2548 trans, fs_info, qgroup_update->node, 2549 qgroup_update->extent_op); 2550 kfree(qgroup_update); 2551 } 2552 2553 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2554 2555 return ret; 2556 } 2557 2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2559 int count) 2560 { 2561 int val = atomic_read(&delayed_refs->ref_seq); 2562 2563 if (val < seq || val >= seq + count) 2564 return 1; 2565 return 0; 2566 } 2567 2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2569 { 2570 u64 num_bytes; 2571 2572 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2573 sizeof(struct btrfs_extent_inline_ref)); 2574 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2575 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2576 2577 /* 2578 * We don't ever fill up leaves all the way so multiply by 2 just to be 2579 * closer to what we're really going to want to ouse. 2580 */ 2581 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2582 } 2583 2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2585 struct btrfs_root *root) 2586 { 2587 struct btrfs_block_rsv *global_rsv; 2588 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2589 u64 num_bytes; 2590 int ret = 0; 2591 2592 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2593 num_heads = heads_to_leaves(root, num_heads); 2594 if (num_heads > 1) 2595 num_bytes += (num_heads - 1) * root->leafsize; 2596 num_bytes <<= 1; 2597 global_rsv = &root->fs_info->global_block_rsv; 2598 2599 /* 2600 * If we can't allocate any more chunks lets make sure we have _lots_ of 2601 * wiggle room since running delayed refs can create more delayed refs. 2602 */ 2603 if (global_rsv->space_info->full) 2604 num_bytes <<= 1; 2605 2606 spin_lock(&global_rsv->lock); 2607 if (global_rsv->reserved <= num_bytes) 2608 ret = 1; 2609 spin_unlock(&global_rsv->lock); 2610 return ret; 2611 } 2612 2613 /* 2614 * this starts processing the delayed reference count updates and 2615 * extent insertions we have queued up so far. count can be 2616 * 0, which means to process everything in the tree at the start 2617 * of the run (but not newly added entries), or it can be some target 2618 * number you'd like to process. 2619 * 2620 * Returns 0 on success or if called with an aborted transaction 2621 * Returns <0 on error and aborts the transaction 2622 */ 2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2624 struct btrfs_root *root, unsigned long count) 2625 { 2626 struct rb_node *node; 2627 struct btrfs_delayed_ref_root *delayed_refs; 2628 struct btrfs_delayed_ref_node *ref; 2629 struct list_head cluster; 2630 int ret; 2631 u64 delayed_start; 2632 int run_all = count == (unsigned long)-1; 2633 int run_most = 0; 2634 int loops; 2635 2636 /* We'll clean this up in btrfs_cleanup_transaction */ 2637 if (trans->aborted) 2638 return 0; 2639 2640 if (root == root->fs_info->extent_root) 2641 root = root->fs_info->tree_root; 2642 2643 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2644 2645 delayed_refs = &trans->transaction->delayed_refs; 2646 INIT_LIST_HEAD(&cluster); 2647 if (count == 0) { 2648 count = delayed_refs->num_entries * 2; 2649 run_most = 1; 2650 } 2651 2652 if (!run_all && !run_most) { 2653 int old; 2654 int seq = atomic_read(&delayed_refs->ref_seq); 2655 2656 progress: 2657 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2658 if (old) { 2659 DEFINE_WAIT(__wait); 2660 if (delayed_refs->flushing || 2661 !btrfs_should_throttle_delayed_refs(trans, root)) 2662 return 0; 2663 2664 prepare_to_wait(&delayed_refs->wait, &__wait, 2665 TASK_UNINTERRUPTIBLE); 2666 2667 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2668 if (old) { 2669 schedule(); 2670 finish_wait(&delayed_refs->wait, &__wait); 2671 2672 if (!refs_newer(delayed_refs, seq, 256)) 2673 goto progress; 2674 else 2675 return 0; 2676 } else { 2677 finish_wait(&delayed_refs->wait, &__wait); 2678 goto again; 2679 } 2680 } 2681 2682 } else { 2683 atomic_inc(&delayed_refs->procs_running_refs); 2684 } 2685 2686 again: 2687 loops = 0; 2688 spin_lock(&delayed_refs->lock); 2689 2690 #ifdef SCRAMBLE_DELAYED_REFS 2691 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2692 #endif 2693 2694 while (1) { 2695 if (!(run_all || run_most) && 2696 !btrfs_should_throttle_delayed_refs(trans, root)) 2697 break; 2698 2699 /* 2700 * go find something we can process in the rbtree. We start at 2701 * the beginning of the tree, and then build a cluster 2702 * of refs to process starting at the first one we are able to 2703 * lock 2704 */ 2705 delayed_start = delayed_refs->run_delayed_start; 2706 ret = btrfs_find_ref_cluster(trans, &cluster, 2707 delayed_refs->run_delayed_start); 2708 if (ret) 2709 break; 2710 2711 ret = run_clustered_refs(trans, root, &cluster); 2712 if (ret < 0) { 2713 btrfs_release_ref_cluster(&cluster); 2714 spin_unlock(&delayed_refs->lock); 2715 btrfs_abort_transaction(trans, root, ret); 2716 atomic_dec(&delayed_refs->procs_running_refs); 2717 wake_up(&delayed_refs->wait); 2718 return ret; 2719 } 2720 2721 atomic_add(ret, &delayed_refs->ref_seq); 2722 2723 count -= min_t(unsigned long, ret, count); 2724 2725 if (count == 0) 2726 break; 2727 2728 if (delayed_start >= delayed_refs->run_delayed_start) { 2729 if (loops == 0) { 2730 /* 2731 * btrfs_find_ref_cluster looped. let's do one 2732 * more cycle. if we don't run any delayed ref 2733 * during that cycle (because we can't because 2734 * all of them are blocked), bail out. 2735 */ 2736 loops = 1; 2737 } else { 2738 /* 2739 * no runnable refs left, stop trying 2740 */ 2741 BUG_ON(run_all); 2742 break; 2743 } 2744 } 2745 if (ret) { 2746 /* refs were run, let's reset staleness detection */ 2747 loops = 0; 2748 } 2749 } 2750 2751 if (run_all) { 2752 if (!list_empty(&trans->new_bgs)) { 2753 spin_unlock(&delayed_refs->lock); 2754 btrfs_create_pending_block_groups(trans, root); 2755 spin_lock(&delayed_refs->lock); 2756 } 2757 2758 node = rb_first(&delayed_refs->root); 2759 if (!node) 2760 goto out; 2761 count = (unsigned long)-1; 2762 2763 while (node) { 2764 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2765 rb_node); 2766 if (btrfs_delayed_ref_is_head(ref)) { 2767 struct btrfs_delayed_ref_head *head; 2768 2769 head = btrfs_delayed_node_to_head(ref); 2770 atomic_inc(&ref->refs); 2771 2772 spin_unlock(&delayed_refs->lock); 2773 /* 2774 * Mutex was contended, block until it's 2775 * released and try again 2776 */ 2777 mutex_lock(&head->mutex); 2778 mutex_unlock(&head->mutex); 2779 2780 btrfs_put_delayed_ref(ref); 2781 cond_resched(); 2782 goto again; 2783 } 2784 node = rb_next(node); 2785 } 2786 spin_unlock(&delayed_refs->lock); 2787 schedule_timeout(1); 2788 goto again; 2789 } 2790 out: 2791 atomic_dec(&delayed_refs->procs_running_refs); 2792 smp_mb(); 2793 if (waitqueue_active(&delayed_refs->wait)) 2794 wake_up(&delayed_refs->wait); 2795 2796 spin_unlock(&delayed_refs->lock); 2797 assert_qgroups_uptodate(trans); 2798 return 0; 2799 } 2800 2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2802 struct btrfs_root *root, 2803 u64 bytenr, u64 num_bytes, u64 flags, 2804 int level, int is_data) 2805 { 2806 struct btrfs_delayed_extent_op *extent_op; 2807 int ret; 2808 2809 extent_op = btrfs_alloc_delayed_extent_op(); 2810 if (!extent_op) 2811 return -ENOMEM; 2812 2813 extent_op->flags_to_set = flags; 2814 extent_op->update_flags = 1; 2815 extent_op->update_key = 0; 2816 extent_op->is_data = is_data ? 1 : 0; 2817 extent_op->level = level; 2818 2819 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2820 num_bytes, extent_op); 2821 if (ret) 2822 btrfs_free_delayed_extent_op(extent_op); 2823 return ret; 2824 } 2825 2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2827 struct btrfs_root *root, 2828 struct btrfs_path *path, 2829 u64 objectid, u64 offset, u64 bytenr) 2830 { 2831 struct btrfs_delayed_ref_head *head; 2832 struct btrfs_delayed_ref_node *ref; 2833 struct btrfs_delayed_data_ref *data_ref; 2834 struct btrfs_delayed_ref_root *delayed_refs; 2835 struct rb_node *node; 2836 int ret = 0; 2837 2838 ret = -ENOENT; 2839 delayed_refs = &trans->transaction->delayed_refs; 2840 spin_lock(&delayed_refs->lock); 2841 head = btrfs_find_delayed_ref_head(trans, bytenr); 2842 if (!head) 2843 goto out; 2844 2845 if (!mutex_trylock(&head->mutex)) { 2846 atomic_inc(&head->node.refs); 2847 spin_unlock(&delayed_refs->lock); 2848 2849 btrfs_release_path(path); 2850 2851 /* 2852 * Mutex was contended, block until it's released and let 2853 * caller try again 2854 */ 2855 mutex_lock(&head->mutex); 2856 mutex_unlock(&head->mutex); 2857 btrfs_put_delayed_ref(&head->node); 2858 return -EAGAIN; 2859 } 2860 2861 node = rb_prev(&head->node.rb_node); 2862 if (!node) 2863 goto out_unlock; 2864 2865 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2866 2867 if (ref->bytenr != bytenr) 2868 goto out_unlock; 2869 2870 ret = 1; 2871 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2872 goto out_unlock; 2873 2874 data_ref = btrfs_delayed_node_to_data_ref(ref); 2875 2876 node = rb_prev(node); 2877 if (node) { 2878 int seq = ref->seq; 2879 2880 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2881 if (ref->bytenr == bytenr && ref->seq == seq) 2882 goto out_unlock; 2883 } 2884 2885 if (data_ref->root != root->root_key.objectid || 2886 data_ref->objectid != objectid || data_ref->offset != offset) 2887 goto out_unlock; 2888 2889 ret = 0; 2890 out_unlock: 2891 mutex_unlock(&head->mutex); 2892 out: 2893 spin_unlock(&delayed_refs->lock); 2894 return ret; 2895 } 2896 2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2898 struct btrfs_root *root, 2899 struct btrfs_path *path, 2900 u64 objectid, u64 offset, u64 bytenr) 2901 { 2902 struct btrfs_root *extent_root = root->fs_info->extent_root; 2903 struct extent_buffer *leaf; 2904 struct btrfs_extent_data_ref *ref; 2905 struct btrfs_extent_inline_ref *iref; 2906 struct btrfs_extent_item *ei; 2907 struct btrfs_key key; 2908 u32 item_size; 2909 int ret; 2910 2911 key.objectid = bytenr; 2912 key.offset = (u64)-1; 2913 key.type = BTRFS_EXTENT_ITEM_KEY; 2914 2915 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2916 if (ret < 0) 2917 goto out; 2918 BUG_ON(ret == 0); /* Corruption */ 2919 2920 ret = -ENOENT; 2921 if (path->slots[0] == 0) 2922 goto out; 2923 2924 path->slots[0]--; 2925 leaf = path->nodes[0]; 2926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2927 2928 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2929 goto out; 2930 2931 ret = 1; 2932 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2934 if (item_size < sizeof(*ei)) { 2935 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2936 goto out; 2937 } 2938 #endif 2939 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2940 2941 if (item_size != sizeof(*ei) + 2942 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2943 goto out; 2944 2945 if (btrfs_extent_generation(leaf, ei) <= 2946 btrfs_root_last_snapshot(&root->root_item)) 2947 goto out; 2948 2949 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2950 if (btrfs_extent_inline_ref_type(leaf, iref) != 2951 BTRFS_EXTENT_DATA_REF_KEY) 2952 goto out; 2953 2954 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2955 if (btrfs_extent_refs(leaf, ei) != 2956 btrfs_extent_data_ref_count(leaf, ref) || 2957 btrfs_extent_data_ref_root(leaf, ref) != 2958 root->root_key.objectid || 2959 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2960 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2961 goto out; 2962 2963 ret = 0; 2964 out: 2965 return ret; 2966 } 2967 2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2969 struct btrfs_root *root, 2970 u64 objectid, u64 offset, u64 bytenr) 2971 { 2972 struct btrfs_path *path; 2973 int ret; 2974 int ret2; 2975 2976 path = btrfs_alloc_path(); 2977 if (!path) 2978 return -ENOENT; 2979 2980 do { 2981 ret = check_committed_ref(trans, root, path, objectid, 2982 offset, bytenr); 2983 if (ret && ret != -ENOENT) 2984 goto out; 2985 2986 ret2 = check_delayed_ref(trans, root, path, objectid, 2987 offset, bytenr); 2988 } while (ret2 == -EAGAIN); 2989 2990 if (ret2 && ret2 != -ENOENT) { 2991 ret = ret2; 2992 goto out; 2993 } 2994 2995 if (ret != -ENOENT || ret2 != -ENOENT) 2996 ret = 0; 2997 out: 2998 btrfs_free_path(path); 2999 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3000 WARN_ON(ret > 0); 3001 return ret; 3002 } 3003 3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3005 struct btrfs_root *root, 3006 struct extent_buffer *buf, 3007 int full_backref, int inc, int for_cow) 3008 { 3009 u64 bytenr; 3010 u64 num_bytes; 3011 u64 parent; 3012 u64 ref_root; 3013 u32 nritems; 3014 struct btrfs_key key; 3015 struct btrfs_file_extent_item *fi; 3016 int i; 3017 int level; 3018 int ret = 0; 3019 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3020 u64, u64, u64, u64, u64, u64, int); 3021 3022 ref_root = btrfs_header_owner(buf); 3023 nritems = btrfs_header_nritems(buf); 3024 level = btrfs_header_level(buf); 3025 3026 if (!root->ref_cows && level == 0) 3027 return 0; 3028 3029 if (inc) 3030 process_func = btrfs_inc_extent_ref; 3031 else 3032 process_func = btrfs_free_extent; 3033 3034 if (full_backref) 3035 parent = buf->start; 3036 else 3037 parent = 0; 3038 3039 for (i = 0; i < nritems; i++) { 3040 if (level == 0) { 3041 btrfs_item_key_to_cpu(buf, &key, i); 3042 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3043 continue; 3044 fi = btrfs_item_ptr(buf, i, 3045 struct btrfs_file_extent_item); 3046 if (btrfs_file_extent_type(buf, fi) == 3047 BTRFS_FILE_EXTENT_INLINE) 3048 continue; 3049 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3050 if (bytenr == 0) 3051 continue; 3052 3053 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3054 key.offset -= btrfs_file_extent_offset(buf, fi); 3055 ret = process_func(trans, root, bytenr, num_bytes, 3056 parent, ref_root, key.objectid, 3057 key.offset, for_cow); 3058 if (ret) 3059 goto fail; 3060 } else { 3061 bytenr = btrfs_node_blockptr(buf, i); 3062 num_bytes = btrfs_level_size(root, level - 1); 3063 ret = process_func(trans, root, bytenr, num_bytes, 3064 parent, ref_root, level - 1, 0, 3065 for_cow); 3066 if (ret) 3067 goto fail; 3068 } 3069 } 3070 return 0; 3071 fail: 3072 return ret; 3073 } 3074 3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3076 struct extent_buffer *buf, int full_backref, int for_cow) 3077 { 3078 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3079 } 3080 3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3082 struct extent_buffer *buf, int full_backref, int for_cow) 3083 { 3084 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3085 } 3086 3087 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3088 struct btrfs_root *root, 3089 struct btrfs_path *path, 3090 struct btrfs_block_group_cache *cache) 3091 { 3092 int ret; 3093 struct btrfs_root *extent_root = root->fs_info->extent_root; 3094 unsigned long bi; 3095 struct extent_buffer *leaf; 3096 3097 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3098 if (ret < 0) 3099 goto fail; 3100 BUG_ON(ret); /* Corruption */ 3101 3102 leaf = path->nodes[0]; 3103 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3104 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3105 btrfs_mark_buffer_dirty(leaf); 3106 btrfs_release_path(path); 3107 fail: 3108 if (ret) { 3109 btrfs_abort_transaction(trans, root, ret); 3110 return ret; 3111 } 3112 return 0; 3113 3114 } 3115 3116 static struct btrfs_block_group_cache * 3117 next_block_group(struct btrfs_root *root, 3118 struct btrfs_block_group_cache *cache) 3119 { 3120 struct rb_node *node; 3121 spin_lock(&root->fs_info->block_group_cache_lock); 3122 node = rb_next(&cache->cache_node); 3123 btrfs_put_block_group(cache); 3124 if (node) { 3125 cache = rb_entry(node, struct btrfs_block_group_cache, 3126 cache_node); 3127 btrfs_get_block_group(cache); 3128 } else 3129 cache = NULL; 3130 spin_unlock(&root->fs_info->block_group_cache_lock); 3131 return cache; 3132 } 3133 3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3135 struct btrfs_trans_handle *trans, 3136 struct btrfs_path *path) 3137 { 3138 struct btrfs_root *root = block_group->fs_info->tree_root; 3139 struct inode *inode = NULL; 3140 u64 alloc_hint = 0; 3141 int dcs = BTRFS_DC_ERROR; 3142 int num_pages = 0; 3143 int retries = 0; 3144 int ret = 0; 3145 3146 /* 3147 * If this block group is smaller than 100 megs don't bother caching the 3148 * block group. 3149 */ 3150 if (block_group->key.offset < (100 * 1024 * 1024)) { 3151 spin_lock(&block_group->lock); 3152 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3153 spin_unlock(&block_group->lock); 3154 return 0; 3155 } 3156 3157 again: 3158 inode = lookup_free_space_inode(root, block_group, path); 3159 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3160 ret = PTR_ERR(inode); 3161 btrfs_release_path(path); 3162 goto out; 3163 } 3164 3165 if (IS_ERR(inode)) { 3166 BUG_ON(retries); 3167 retries++; 3168 3169 if (block_group->ro) 3170 goto out_free; 3171 3172 ret = create_free_space_inode(root, trans, block_group, path); 3173 if (ret) 3174 goto out_free; 3175 goto again; 3176 } 3177 3178 /* We've already setup this transaction, go ahead and exit */ 3179 if (block_group->cache_generation == trans->transid && 3180 i_size_read(inode)) { 3181 dcs = BTRFS_DC_SETUP; 3182 goto out_put; 3183 } 3184 3185 /* 3186 * We want to set the generation to 0, that way if anything goes wrong 3187 * from here on out we know not to trust this cache when we load up next 3188 * time. 3189 */ 3190 BTRFS_I(inode)->generation = 0; 3191 ret = btrfs_update_inode(trans, root, inode); 3192 WARN_ON(ret); 3193 3194 if (i_size_read(inode) > 0) { 3195 ret = btrfs_check_trunc_cache_free_space(root, 3196 &root->fs_info->global_block_rsv); 3197 if (ret) 3198 goto out_put; 3199 3200 ret = btrfs_truncate_free_space_cache(root, trans, path, 3201 inode); 3202 if (ret) 3203 goto out_put; 3204 } 3205 3206 spin_lock(&block_group->lock); 3207 if (block_group->cached != BTRFS_CACHE_FINISHED || 3208 !btrfs_test_opt(root, SPACE_CACHE)) { 3209 /* 3210 * don't bother trying to write stuff out _if_ 3211 * a) we're not cached, 3212 * b) we're with nospace_cache mount option. 3213 */ 3214 dcs = BTRFS_DC_WRITTEN; 3215 spin_unlock(&block_group->lock); 3216 goto out_put; 3217 } 3218 spin_unlock(&block_group->lock); 3219 3220 /* 3221 * Try to preallocate enough space based on how big the block group is. 3222 * Keep in mind this has to include any pinned space which could end up 3223 * taking up quite a bit since it's not folded into the other space 3224 * cache. 3225 */ 3226 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3227 if (!num_pages) 3228 num_pages = 1; 3229 3230 num_pages *= 16; 3231 num_pages *= PAGE_CACHE_SIZE; 3232 3233 ret = btrfs_check_data_free_space(inode, num_pages); 3234 if (ret) 3235 goto out_put; 3236 3237 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3238 num_pages, num_pages, 3239 &alloc_hint); 3240 if (!ret) 3241 dcs = BTRFS_DC_SETUP; 3242 btrfs_free_reserved_data_space(inode, num_pages); 3243 3244 out_put: 3245 iput(inode); 3246 out_free: 3247 btrfs_release_path(path); 3248 out: 3249 spin_lock(&block_group->lock); 3250 if (!ret && dcs == BTRFS_DC_SETUP) 3251 block_group->cache_generation = trans->transid; 3252 block_group->disk_cache_state = dcs; 3253 spin_unlock(&block_group->lock); 3254 3255 return ret; 3256 } 3257 3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *root) 3260 { 3261 struct btrfs_block_group_cache *cache; 3262 int err = 0; 3263 struct btrfs_path *path; 3264 u64 last = 0; 3265 3266 path = btrfs_alloc_path(); 3267 if (!path) 3268 return -ENOMEM; 3269 3270 again: 3271 while (1) { 3272 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3273 while (cache) { 3274 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3275 break; 3276 cache = next_block_group(root, cache); 3277 } 3278 if (!cache) { 3279 if (last == 0) 3280 break; 3281 last = 0; 3282 continue; 3283 } 3284 err = cache_save_setup(cache, trans, path); 3285 last = cache->key.objectid + cache->key.offset; 3286 btrfs_put_block_group(cache); 3287 } 3288 3289 while (1) { 3290 if (last == 0) { 3291 err = btrfs_run_delayed_refs(trans, root, 3292 (unsigned long)-1); 3293 if (err) /* File system offline */ 3294 goto out; 3295 } 3296 3297 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3298 while (cache) { 3299 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3300 btrfs_put_block_group(cache); 3301 goto again; 3302 } 3303 3304 if (cache->dirty) 3305 break; 3306 cache = next_block_group(root, cache); 3307 } 3308 if (!cache) { 3309 if (last == 0) 3310 break; 3311 last = 0; 3312 continue; 3313 } 3314 3315 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3316 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3317 cache->dirty = 0; 3318 last = cache->key.objectid + cache->key.offset; 3319 3320 err = write_one_cache_group(trans, root, path, cache); 3321 if (err) /* File system offline */ 3322 goto out; 3323 3324 btrfs_put_block_group(cache); 3325 } 3326 3327 while (1) { 3328 /* 3329 * I don't think this is needed since we're just marking our 3330 * preallocated extent as written, but just in case it can't 3331 * hurt. 3332 */ 3333 if (last == 0) { 3334 err = btrfs_run_delayed_refs(trans, root, 3335 (unsigned long)-1); 3336 if (err) /* File system offline */ 3337 goto out; 3338 } 3339 3340 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3341 while (cache) { 3342 /* 3343 * Really this shouldn't happen, but it could if we 3344 * couldn't write the entire preallocated extent and 3345 * splitting the extent resulted in a new block. 3346 */ 3347 if (cache->dirty) { 3348 btrfs_put_block_group(cache); 3349 goto again; 3350 } 3351 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3352 break; 3353 cache = next_block_group(root, cache); 3354 } 3355 if (!cache) { 3356 if (last == 0) 3357 break; 3358 last = 0; 3359 continue; 3360 } 3361 3362 err = btrfs_write_out_cache(root, trans, cache, path); 3363 3364 /* 3365 * If we didn't have an error then the cache state is still 3366 * NEED_WRITE, so we can set it to WRITTEN. 3367 */ 3368 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3369 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3370 last = cache->key.objectid + cache->key.offset; 3371 btrfs_put_block_group(cache); 3372 } 3373 out: 3374 3375 btrfs_free_path(path); 3376 return err; 3377 } 3378 3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3380 { 3381 struct btrfs_block_group_cache *block_group; 3382 int readonly = 0; 3383 3384 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3385 if (!block_group || block_group->ro) 3386 readonly = 1; 3387 if (block_group) 3388 btrfs_put_block_group(block_group); 3389 return readonly; 3390 } 3391 3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3393 u64 total_bytes, u64 bytes_used, 3394 struct btrfs_space_info **space_info) 3395 { 3396 struct btrfs_space_info *found; 3397 int i; 3398 int factor; 3399 int ret; 3400 3401 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3402 BTRFS_BLOCK_GROUP_RAID10)) 3403 factor = 2; 3404 else 3405 factor = 1; 3406 3407 found = __find_space_info(info, flags); 3408 if (found) { 3409 spin_lock(&found->lock); 3410 found->total_bytes += total_bytes; 3411 found->disk_total += total_bytes * factor; 3412 found->bytes_used += bytes_used; 3413 found->disk_used += bytes_used * factor; 3414 found->full = 0; 3415 spin_unlock(&found->lock); 3416 *space_info = found; 3417 return 0; 3418 } 3419 found = kzalloc(sizeof(*found), GFP_NOFS); 3420 if (!found) 3421 return -ENOMEM; 3422 3423 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3424 if (ret) { 3425 kfree(found); 3426 return ret; 3427 } 3428 3429 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3430 INIT_LIST_HEAD(&found->block_groups[i]); 3431 init_rwsem(&found->groups_sem); 3432 spin_lock_init(&found->lock); 3433 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3434 found->total_bytes = total_bytes; 3435 found->disk_total = total_bytes * factor; 3436 found->bytes_used = bytes_used; 3437 found->disk_used = bytes_used * factor; 3438 found->bytes_pinned = 0; 3439 found->bytes_reserved = 0; 3440 found->bytes_readonly = 0; 3441 found->bytes_may_use = 0; 3442 found->full = 0; 3443 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3444 found->chunk_alloc = 0; 3445 found->flush = 0; 3446 init_waitqueue_head(&found->wait); 3447 *space_info = found; 3448 list_add_rcu(&found->list, &info->space_info); 3449 if (flags & BTRFS_BLOCK_GROUP_DATA) 3450 info->data_sinfo = found; 3451 return 0; 3452 } 3453 3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3455 { 3456 u64 extra_flags = chunk_to_extended(flags) & 3457 BTRFS_EXTENDED_PROFILE_MASK; 3458 3459 write_seqlock(&fs_info->profiles_lock); 3460 if (flags & BTRFS_BLOCK_GROUP_DATA) 3461 fs_info->avail_data_alloc_bits |= extra_flags; 3462 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3463 fs_info->avail_metadata_alloc_bits |= extra_flags; 3464 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3465 fs_info->avail_system_alloc_bits |= extra_flags; 3466 write_sequnlock(&fs_info->profiles_lock); 3467 } 3468 3469 /* 3470 * returns target flags in extended format or 0 if restripe for this 3471 * chunk_type is not in progress 3472 * 3473 * should be called with either volume_mutex or balance_lock held 3474 */ 3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3476 { 3477 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3478 u64 target = 0; 3479 3480 if (!bctl) 3481 return 0; 3482 3483 if (flags & BTRFS_BLOCK_GROUP_DATA && 3484 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3485 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3486 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3487 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3488 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3489 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3490 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3491 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3492 } 3493 3494 return target; 3495 } 3496 3497 /* 3498 * @flags: available profiles in extended format (see ctree.h) 3499 * 3500 * Returns reduced profile in chunk format. If profile changing is in 3501 * progress (either running or paused) picks the target profile (if it's 3502 * already available), otherwise falls back to plain reducing. 3503 */ 3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3505 { 3506 /* 3507 * we add in the count of missing devices because we want 3508 * to make sure that any RAID levels on a degraded FS 3509 * continue to be honored. 3510 */ 3511 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3512 root->fs_info->fs_devices->missing_devices; 3513 u64 target; 3514 u64 tmp; 3515 3516 /* 3517 * see if restripe for this chunk_type is in progress, if so 3518 * try to reduce to the target profile 3519 */ 3520 spin_lock(&root->fs_info->balance_lock); 3521 target = get_restripe_target(root->fs_info, flags); 3522 if (target) { 3523 /* pick target profile only if it's already available */ 3524 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3525 spin_unlock(&root->fs_info->balance_lock); 3526 return extended_to_chunk(target); 3527 } 3528 } 3529 spin_unlock(&root->fs_info->balance_lock); 3530 3531 /* First, mask out the RAID levels which aren't possible */ 3532 if (num_devices == 1) 3533 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3534 BTRFS_BLOCK_GROUP_RAID5); 3535 if (num_devices < 3) 3536 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3537 if (num_devices < 4) 3538 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3539 3540 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3541 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3542 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3543 flags &= ~tmp; 3544 3545 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3546 tmp = BTRFS_BLOCK_GROUP_RAID6; 3547 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3548 tmp = BTRFS_BLOCK_GROUP_RAID5; 3549 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3550 tmp = BTRFS_BLOCK_GROUP_RAID10; 3551 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3552 tmp = BTRFS_BLOCK_GROUP_RAID1; 3553 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3554 tmp = BTRFS_BLOCK_GROUP_RAID0; 3555 3556 return extended_to_chunk(flags | tmp); 3557 } 3558 3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3560 { 3561 unsigned seq; 3562 3563 do { 3564 seq = read_seqbegin(&root->fs_info->profiles_lock); 3565 3566 if (flags & BTRFS_BLOCK_GROUP_DATA) 3567 flags |= root->fs_info->avail_data_alloc_bits; 3568 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3569 flags |= root->fs_info->avail_system_alloc_bits; 3570 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3571 flags |= root->fs_info->avail_metadata_alloc_bits; 3572 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3573 3574 return btrfs_reduce_alloc_profile(root, flags); 3575 } 3576 3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3578 { 3579 u64 flags; 3580 u64 ret; 3581 3582 if (data) 3583 flags = BTRFS_BLOCK_GROUP_DATA; 3584 else if (root == root->fs_info->chunk_root) 3585 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3586 else 3587 flags = BTRFS_BLOCK_GROUP_METADATA; 3588 3589 ret = get_alloc_profile(root, flags); 3590 return ret; 3591 } 3592 3593 /* 3594 * This will check the space that the inode allocates from to make sure we have 3595 * enough space for bytes. 3596 */ 3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3598 { 3599 struct btrfs_space_info *data_sinfo; 3600 struct btrfs_root *root = BTRFS_I(inode)->root; 3601 struct btrfs_fs_info *fs_info = root->fs_info; 3602 u64 used; 3603 int ret = 0, committed = 0, alloc_chunk = 1; 3604 3605 /* make sure bytes are sectorsize aligned */ 3606 bytes = ALIGN(bytes, root->sectorsize); 3607 3608 if (root == root->fs_info->tree_root || 3609 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3610 alloc_chunk = 0; 3611 committed = 1; 3612 } 3613 3614 data_sinfo = fs_info->data_sinfo; 3615 if (!data_sinfo) 3616 goto alloc; 3617 3618 again: 3619 /* make sure we have enough space to handle the data first */ 3620 spin_lock(&data_sinfo->lock); 3621 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3622 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3623 data_sinfo->bytes_may_use; 3624 3625 if (used + bytes > data_sinfo->total_bytes) { 3626 struct btrfs_trans_handle *trans; 3627 3628 /* 3629 * if we don't have enough free bytes in this space then we need 3630 * to alloc a new chunk. 3631 */ 3632 if (!data_sinfo->full && alloc_chunk) { 3633 u64 alloc_target; 3634 3635 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3636 spin_unlock(&data_sinfo->lock); 3637 alloc: 3638 alloc_target = btrfs_get_alloc_profile(root, 1); 3639 trans = btrfs_join_transaction(root); 3640 if (IS_ERR(trans)) 3641 return PTR_ERR(trans); 3642 3643 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3644 alloc_target, 3645 CHUNK_ALLOC_NO_FORCE); 3646 btrfs_end_transaction(trans, root); 3647 if (ret < 0) { 3648 if (ret != -ENOSPC) 3649 return ret; 3650 else 3651 goto commit_trans; 3652 } 3653 3654 if (!data_sinfo) 3655 data_sinfo = fs_info->data_sinfo; 3656 3657 goto again; 3658 } 3659 3660 /* 3661 * If we don't have enough pinned space to deal with this 3662 * allocation don't bother committing the transaction. 3663 */ 3664 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3665 bytes) < 0) 3666 committed = 1; 3667 spin_unlock(&data_sinfo->lock); 3668 3669 /* commit the current transaction and try again */ 3670 commit_trans: 3671 if (!committed && 3672 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3673 committed = 1; 3674 3675 trans = btrfs_join_transaction(root); 3676 if (IS_ERR(trans)) 3677 return PTR_ERR(trans); 3678 ret = btrfs_commit_transaction(trans, root); 3679 if (ret) 3680 return ret; 3681 goto again; 3682 } 3683 3684 return -ENOSPC; 3685 } 3686 data_sinfo->bytes_may_use += bytes; 3687 trace_btrfs_space_reservation(root->fs_info, "space_info", 3688 data_sinfo->flags, bytes, 1); 3689 spin_unlock(&data_sinfo->lock); 3690 3691 return 0; 3692 } 3693 3694 /* 3695 * Called if we need to clear a data reservation for this inode. 3696 */ 3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3698 { 3699 struct btrfs_root *root = BTRFS_I(inode)->root; 3700 struct btrfs_space_info *data_sinfo; 3701 3702 /* make sure bytes are sectorsize aligned */ 3703 bytes = ALIGN(bytes, root->sectorsize); 3704 3705 data_sinfo = root->fs_info->data_sinfo; 3706 spin_lock(&data_sinfo->lock); 3707 WARN_ON(data_sinfo->bytes_may_use < bytes); 3708 data_sinfo->bytes_may_use -= bytes; 3709 trace_btrfs_space_reservation(root->fs_info, "space_info", 3710 data_sinfo->flags, bytes, 0); 3711 spin_unlock(&data_sinfo->lock); 3712 } 3713 3714 static void force_metadata_allocation(struct btrfs_fs_info *info) 3715 { 3716 struct list_head *head = &info->space_info; 3717 struct btrfs_space_info *found; 3718 3719 rcu_read_lock(); 3720 list_for_each_entry_rcu(found, head, list) { 3721 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3722 found->force_alloc = CHUNK_ALLOC_FORCE; 3723 } 3724 rcu_read_unlock(); 3725 } 3726 3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3728 { 3729 return (global->size << 1); 3730 } 3731 3732 static int should_alloc_chunk(struct btrfs_root *root, 3733 struct btrfs_space_info *sinfo, int force) 3734 { 3735 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3736 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3737 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3738 u64 thresh; 3739 3740 if (force == CHUNK_ALLOC_FORCE) 3741 return 1; 3742 3743 /* 3744 * We need to take into account the global rsv because for all intents 3745 * and purposes it's used space. Don't worry about locking the 3746 * global_rsv, it doesn't change except when the transaction commits. 3747 */ 3748 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3749 num_allocated += calc_global_rsv_need_space(global_rsv); 3750 3751 /* 3752 * in limited mode, we want to have some free space up to 3753 * about 1% of the FS size. 3754 */ 3755 if (force == CHUNK_ALLOC_LIMITED) { 3756 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3757 thresh = max_t(u64, 64 * 1024 * 1024, 3758 div_factor_fine(thresh, 1)); 3759 3760 if (num_bytes - num_allocated < thresh) 3761 return 1; 3762 } 3763 3764 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3765 return 0; 3766 return 1; 3767 } 3768 3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3770 { 3771 u64 num_dev; 3772 3773 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3774 BTRFS_BLOCK_GROUP_RAID0 | 3775 BTRFS_BLOCK_GROUP_RAID5 | 3776 BTRFS_BLOCK_GROUP_RAID6)) 3777 num_dev = root->fs_info->fs_devices->rw_devices; 3778 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3779 num_dev = 2; 3780 else 3781 num_dev = 1; /* DUP or single */ 3782 3783 /* metadata for updaing devices and chunk tree */ 3784 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3785 } 3786 3787 static void check_system_chunk(struct btrfs_trans_handle *trans, 3788 struct btrfs_root *root, u64 type) 3789 { 3790 struct btrfs_space_info *info; 3791 u64 left; 3792 u64 thresh; 3793 3794 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3795 spin_lock(&info->lock); 3796 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3797 info->bytes_reserved - info->bytes_readonly; 3798 spin_unlock(&info->lock); 3799 3800 thresh = get_system_chunk_thresh(root, type); 3801 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3802 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3803 left, thresh, type); 3804 dump_space_info(info, 0, 0); 3805 } 3806 3807 if (left < thresh) { 3808 u64 flags; 3809 3810 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3811 btrfs_alloc_chunk(trans, root, flags); 3812 } 3813 } 3814 3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *extent_root, u64 flags, int force) 3817 { 3818 struct btrfs_space_info *space_info; 3819 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3820 int wait_for_alloc = 0; 3821 int ret = 0; 3822 3823 /* Don't re-enter if we're already allocating a chunk */ 3824 if (trans->allocating_chunk) 3825 return -ENOSPC; 3826 3827 space_info = __find_space_info(extent_root->fs_info, flags); 3828 if (!space_info) { 3829 ret = update_space_info(extent_root->fs_info, flags, 3830 0, 0, &space_info); 3831 BUG_ON(ret); /* -ENOMEM */ 3832 } 3833 BUG_ON(!space_info); /* Logic error */ 3834 3835 again: 3836 spin_lock(&space_info->lock); 3837 if (force < space_info->force_alloc) 3838 force = space_info->force_alloc; 3839 if (space_info->full) { 3840 if (should_alloc_chunk(extent_root, space_info, force)) 3841 ret = -ENOSPC; 3842 else 3843 ret = 0; 3844 spin_unlock(&space_info->lock); 3845 return ret; 3846 } 3847 3848 if (!should_alloc_chunk(extent_root, space_info, force)) { 3849 spin_unlock(&space_info->lock); 3850 return 0; 3851 } else if (space_info->chunk_alloc) { 3852 wait_for_alloc = 1; 3853 } else { 3854 space_info->chunk_alloc = 1; 3855 } 3856 3857 spin_unlock(&space_info->lock); 3858 3859 mutex_lock(&fs_info->chunk_mutex); 3860 3861 /* 3862 * The chunk_mutex is held throughout the entirety of a chunk 3863 * allocation, so once we've acquired the chunk_mutex we know that the 3864 * other guy is done and we need to recheck and see if we should 3865 * allocate. 3866 */ 3867 if (wait_for_alloc) { 3868 mutex_unlock(&fs_info->chunk_mutex); 3869 wait_for_alloc = 0; 3870 goto again; 3871 } 3872 3873 trans->allocating_chunk = true; 3874 3875 /* 3876 * If we have mixed data/metadata chunks we want to make sure we keep 3877 * allocating mixed chunks instead of individual chunks. 3878 */ 3879 if (btrfs_mixed_space_info(space_info)) 3880 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3881 3882 /* 3883 * if we're doing a data chunk, go ahead and make sure that 3884 * we keep a reasonable number of metadata chunks allocated in the 3885 * FS as well. 3886 */ 3887 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3888 fs_info->data_chunk_allocations++; 3889 if (!(fs_info->data_chunk_allocations % 3890 fs_info->metadata_ratio)) 3891 force_metadata_allocation(fs_info); 3892 } 3893 3894 /* 3895 * Check if we have enough space in SYSTEM chunk because we may need 3896 * to update devices. 3897 */ 3898 check_system_chunk(trans, extent_root, flags); 3899 3900 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3901 trans->allocating_chunk = false; 3902 3903 spin_lock(&space_info->lock); 3904 if (ret < 0 && ret != -ENOSPC) 3905 goto out; 3906 if (ret) 3907 space_info->full = 1; 3908 else 3909 ret = 1; 3910 3911 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3912 out: 3913 space_info->chunk_alloc = 0; 3914 spin_unlock(&space_info->lock); 3915 mutex_unlock(&fs_info->chunk_mutex); 3916 return ret; 3917 } 3918 3919 static int can_overcommit(struct btrfs_root *root, 3920 struct btrfs_space_info *space_info, u64 bytes, 3921 enum btrfs_reserve_flush_enum flush) 3922 { 3923 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3924 u64 profile = btrfs_get_alloc_profile(root, 0); 3925 u64 space_size; 3926 u64 avail; 3927 u64 used; 3928 3929 used = space_info->bytes_used + space_info->bytes_reserved + 3930 space_info->bytes_pinned + space_info->bytes_readonly; 3931 3932 /* 3933 * We only want to allow over committing if we have lots of actual space 3934 * free, but if we don't have enough space to handle the global reserve 3935 * space then we could end up having a real enospc problem when trying 3936 * to allocate a chunk or some other such important allocation. 3937 */ 3938 spin_lock(&global_rsv->lock); 3939 space_size = calc_global_rsv_need_space(global_rsv); 3940 spin_unlock(&global_rsv->lock); 3941 if (used + space_size >= space_info->total_bytes) 3942 return 0; 3943 3944 used += space_info->bytes_may_use; 3945 3946 spin_lock(&root->fs_info->free_chunk_lock); 3947 avail = root->fs_info->free_chunk_space; 3948 spin_unlock(&root->fs_info->free_chunk_lock); 3949 3950 /* 3951 * If we have dup, raid1 or raid10 then only half of the free 3952 * space is actually useable. For raid56, the space info used 3953 * doesn't include the parity drive, so we don't have to 3954 * change the math 3955 */ 3956 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3957 BTRFS_BLOCK_GROUP_RAID1 | 3958 BTRFS_BLOCK_GROUP_RAID10)) 3959 avail >>= 1; 3960 3961 /* 3962 * If we aren't flushing all things, let us overcommit up to 3963 * 1/2th of the space. If we can flush, don't let us overcommit 3964 * too much, let it overcommit up to 1/8 of the space. 3965 */ 3966 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3967 avail >>= 3; 3968 else 3969 avail >>= 1; 3970 3971 if (used + bytes < space_info->total_bytes + avail) 3972 return 1; 3973 return 0; 3974 } 3975 3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3977 unsigned long nr_pages) 3978 { 3979 struct super_block *sb = root->fs_info->sb; 3980 3981 if (down_read_trylock(&sb->s_umount)) { 3982 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3983 up_read(&sb->s_umount); 3984 } else { 3985 /* 3986 * We needn't worry the filesystem going from r/w to r/o though 3987 * we don't acquire ->s_umount mutex, because the filesystem 3988 * should guarantee the delalloc inodes list be empty after 3989 * the filesystem is readonly(all dirty pages are written to 3990 * the disk). 3991 */ 3992 btrfs_start_all_delalloc_inodes(root->fs_info, 0); 3993 if (!current->journal_info) 3994 btrfs_wait_all_ordered_extents(root->fs_info); 3995 } 3996 } 3997 3998 /* 3999 * shrink metadata reservation for delalloc 4000 */ 4001 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4002 bool wait_ordered) 4003 { 4004 struct btrfs_block_rsv *block_rsv; 4005 struct btrfs_space_info *space_info; 4006 struct btrfs_trans_handle *trans; 4007 u64 delalloc_bytes; 4008 u64 max_reclaim; 4009 long time_left; 4010 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 4011 int loops = 0; 4012 enum btrfs_reserve_flush_enum flush; 4013 4014 trans = (struct btrfs_trans_handle *)current->journal_info; 4015 block_rsv = &root->fs_info->delalloc_block_rsv; 4016 space_info = block_rsv->space_info; 4017 4018 smp_mb(); 4019 delalloc_bytes = percpu_counter_sum_positive( 4020 &root->fs_info->delalloc_bytes); 4021 if (delalloc_bytes == 0) { 4022 if (trans) 4023 return; 4024 btrfs_wait_all_ordered_extents(root->fs_info); 4025 return; 4026 } 4027 4028 while (delalloc_bytes && loops < 3) { 4029 max_reclaim = min(delalloc_bytes, to_reclaim); 4030 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4031 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4032 /* 4033 * We need to wait for the async pages to actually start before 4034 * we do anything. 4035 */ 4036 wait_event(root->fs_info->async_submit_wait, 4037 !atomic_read(&root->fs_info->async_delalloc_pages)); 4038 4039 if (!trans) 4040 flush = BTRFS_RESERVE_FLUSH_ALL; 4041 else 4042 flush = BTRFS_RESERVE_NO_FLUSH; 4043 spin_lock(&space_info->lock); 4044 if (can_overcommit(root, space_info, orig, flush)) { 4045 spin_unlock(&space_info->lock); 4046 break; 4047 } 4048 spin_unlock(&space_info->lock); 4049 4050 loops++; 4051 if (wait_ordered && !trans) { 4052 btrfs_wait_all_ordered_extents(root->fs_info); 4053 } else { 4054 time_left = schedule_timeout_killable(1); 4055 if (time_left) 4056 break; 4057 } 4058 smp_mb(); 4059 delalloc_bytes = percpu_counter_sum_positive( 4060 &root->fs_info->delalloc_bytes); 4061 } 4062 } 4063 4064 /** 4065 * maybe_commit_transaction - possibly commit the transaction if its ok to 4066 * @root - the root we're allocating for 4067 * @bytes - the number of bytes we want to reserve 4068 * @force - force the commit 4069 * 4070 * This will check to make sure that committing the transaction will actually 4071 * get us somewhere and then commit the transaction if it does. Otherwise it 4072 * will return -ENOSPC. 4073 */ 4074 static int may_commit_transaction(struct btrfs_root *root, 4075 struct btrfs_space_info *space_info, 4076 u64 bytes, int force) 4077 { 4078 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4079 struct btrfs_trans_handle *trans; 4080 4081 trans = (struct btrfs_trans_handle *)current->journal_info; 4082 if (trans) 4083 return -EAGAIN; 4084 4085 if (force) 4086 goto commit; 4087 4088 /* See if there is enough pinned space to make this reservation */ 4089 spin_lock(&space_info->lock); 4090 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4091 bytes) >= 0) { 4092 spin_unlock(&space_info->lock); 4093 goto commit; 4094 } 4095 spin_unlock(&space_info->lock); 4096 4097 /* 4098 * See if there is some space in the delayed insertion reservation for 4099 * this reservation. 4100 */ 4101 if (space_info != delayed_rsv->space_info) 4102 return -ENOSPC; 4103 4104 spin_lock(&space_info->lock); 4105 spin_lock(&delayed_rsv->lock); 4106 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4107 bytes - delayed_rsv->size) >= 0) { 4108 spin_unlock(&delayed_rsv->lock); 4109 spin_unlock(&space_info->lock); 4110 return -ENOSPC; 4111 } 4112 spin_unlock(&delayed_rsv->lock); 4113 spin_unlock(&space_info->lock); 4114 4115 commit: 4116 trans = btrfs_join_transaction(root); 4117 if (IS_ERR(trans)) 4118 return -ENOSPC; 4119 4120 return btrfs_commit_transaction(trans, root); 4121 } 4122 4123 enum flush_state { 4124 FLUSH_DELAYED_ITEMS_NR = 1, 4125 FLUSH_DELAYED_ITEMS = 2, 4126 FLUSH_DELALLOC = 3, 4127 FLUSH_DELALLOC_WAIT = 4, 4128 ALLOC_CHUNK = 5, 4129 COMMIT_TRANS = 6, 4130 }; 4131 4132 static int flush_space(struct btrfs_root *root, 4133 struct btrfs_space_info *space_info, u64 num_bytes, 4134 u64 orig_bytes, int state) 4135 { 4136 struct btrfs_trans_handle *trans; 4137 int nr; 4138 int ret = 0; 4139 4140 switch (state) { 4141 case FLUSH_DELAYED_ITEMS_NR: 4142 case FLUSH_DELAYED_ITEMS: 4143 if (state == FLUSH_DELAYED_ITEMS_NR) { 4144 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 4145 4146 nr = (int)div64_u64(num_bytes, bytes); 4147 if (!nr) 4148 nr = 1; 4149 nr *= 2; 4150 } else { 4151 nr = -1; 4152 } 4153 trans = btrfs_join_transaction(root); 4154 if (IS_ERR(trans)) { 4155 ret = PTR_ERR(trans); 4156 break; 4157 } 4158 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4159 btrfs_end_transaction(trans, root); 4160 break; 4161 case FLUSH_DELALLOC: 4162 case FLUSH_DELALLOC_WAIT: 4163 shrink_delalloc(root, num_bytes, orig_bytes, 4164 state == FLUSH_DELALLOC_WAIT); 4165 break; 4166 case ALLOC_CHUNK: 4167 trans = btrfs_join_transaction(root); 4168 if (IS_ERR(trans)) { 4169 ret = PTR_ERR(trans); 4170 break; 4171 } 4172 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4173 btrfs_get_alloc_profile(root, 0), 4174 CHUNK_ALLOC_NO_FORCE); 4175 btrfs_end_transaction(trans, root); 4176 if (ret == -ENOSPC) 4177 ret = 0; 4178 break; 4179 case COMMIT_TRANS: 4180 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4181 break; 4182 default: 4183 ret = -ENOSPC; 4184 break; 4185 } 4186 4187 return ret; 4188 } 4189 /** 4190 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4191 * @root - the root we're allocating for 4192 * @block_rsv - the block_rsv we're allocating for 4193 * @orig_bytes - the number of bytes we want 4194 * @flush - whether or not we can flush to make our reservation 4195 * 4196 * This will reserve orgi_bytes number of bytes from the space info associated 4197 * with the block_rsv. If there is not enough space it will make an attempt to 4198 * flush out space to make room. It will do this by flushing delalloc if 4199 * possible or committing the transaction. If flush is 0 then no attempts to 4200 * regain reservations will be made and this will fail if there is not enough 4201 * space already. 4202 */ 4203 static int reserve_metadata_bytes(struct btrfs_root *root, 4204 struct btrfs_block_rsv *block_rsv, 4205 u64 orig_bytes, 4206 enum btrfs_reserve_flush_enum flush) 4207 { 4208 struct btrfs_space_info *space_info = block_rsv->space_info; 4209 u64 used; 4210 u64 num_bytes = orig_bytes; 4211 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4212 int ret = 0; 4213 bool flushing = false; 4214 4215 again: 4216 ret = 0; 4217 spin_lock(&space_info->lock); 4218 /* 4219 * We only want to wait if somebody other than us is flushing and we 4220 * are actually allowed to flush all things. 4221 */ 4222 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4223 space_info->flush) { 4224 spin_unlock(&space_info->lock); 4225 /* 4226 * If we have a trans handle we can't wait because the flusher 4227 * may have to commit the transaction, which would mean we would 4228 * deadlock since we are waiting for the flusher to finish, but 4229 * hold the current transaction open. 4230 */ 4231 if (current->journal_info) 4232 return -EAGAIN; 4233 ret = wait_event_killable(space_info->wait, !space_info->flush); 4234 /* Must have been killed, return */ 4235 if (ret) 4236 return -EINTR; 4237 4238 spin_lock(&space_info->lock); 4239 } 4240 4241 ret = -ENOSPC; 4242 used = space_info->bytes_used + space_info->bytes_reserved + 4243 space_info->bytes_pinned + space_info->bytes_readonly + 4244 space_info->bytes_may_use; 4245 4246 /* 4247 * The idea here is that we've not already over-reserved the block group 4248 * then we can go ahead and save our reservation first and then start 4249 * flushing if we need to. Otherwise if we've already overcommitted 4250 * lets start flushing stuff first and then come back and try to make 4251 * our reservation. 4252 */ 4253 if (used <= space_info->total_bytes) { 4254 if (used + orig_bytes <= space_info->total_bytes) { 4255 space_info->bytes_may_use += orig_bytes; 4256 trace_btrfs_space_reservation(root->fs_info, 4257 "space_info", space_info->flags, orig_bytes, 1); 4258 ret = 0; 4259 } else { 4260 /* 4261 * Ok set num_bytes to orig_bytes since we aren't 4262 * overocmmitted, this way we only try and reclaim what 4263 * we need. 4264 */ 4265 num_bytes = orig_bytes; 4266 } 4267 } else { 4268 /* 4269 * Ok we're over committed, set num_bytes to the overcommitted 4270 * amount plus the amount of bytes that we need for this 4271 * reservation. 4272 */ 4273 num_bytes = used - space_info->total_bytes + 4274 (orig_bytes * 2); 4275 } 4276 4277 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4278 space_info->bytes_may_use += orig_bytes; 4279 trace_btrfs_space_reservation(root->fs_info, "space_info", 4280 space_info->flags, orig_bytes, 4281 1); 4282 ret = 0; 4283 } 4284 4285 /* 4286 * Couldn't make our reservation, save our place so while we're trying 4287 * to reclaim space we can actually use it instead of somebody else 4288 * stealing it from us. 4289 * 4290 * We make the other tasks wait for the flush only when we can flush 4291 * all things. 4292 */ 4293 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4294 flushing = true; 4295 space_info->flush = 1; 4296 } 4297 4298 spin_unlock(&space_info->lock); 4299 4300 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4301 goto out; 4302 4303 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4304 flush_state); 4305 flush_state++; 4306 4307 /* 4308 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4309 * would happen. So skip delalloc flush. 4310 */ 4311 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4312 (flush_state == FLUSH_DELALLOC || 4313 flush_state == FLUSH_DELALLOC_WAIT)) 4314 flush_state = ALLOC_CHUNK; 4315 4316 if (!ret) 4317 goto again; 4318 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4319 flush_state < COMMIT_TRANS) 4320 goto again; 4321 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4322 flush_state <= COMMIT_TRANS) 4323 goto again; 4324 4325 out: 4326 if (ret == -ENOSPC && 4327 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4328 struct btrfs_block_rsv *global_rsv = 4329 &root->fs_info->global_block_rsv; 4330 4331 if (block_rsv != global_rsv && 4332 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4333 ret = 0; 4334 } 4335 if (flushing) { 4336 spin_lock(&space_info->lock); 4337 space_info->flush = 0; 4338 wake_up_all(&space_info->wait); 4339 spin_unlock(&space_info->lock); 4340 } 4341 return ret; 4342 } 4343 4344 static struct btrfs_block_rsv *get_block_rsv( 4345 const struct btrfs_trans_handle *trans, 4346 const struct btrfs_root *root) 4347 { 4348 struct btrfs_block_rsv *block_rsv = NULL; 4349 4350 if (root->ref_cows) 4351 block_rsv = trans->block_rsv; 4352 4353 if (root == root->fs_info->csum_root && trans->adding_csums) 4354 block_rsv = trans->block_rsv; 4355 4356 if (root == root->fs_info->uuid_root) 4357 block_rsv = trans->block_rsv; 4358 4359 if (!block_rsv) 4360 block_rsv = root->block_rsv; 4361 4362 if (!block_rsv) 4363 block_rsv = &root->fs_info->empty_block_rsv; 4364 4365 return block_rsv; 4366 } 4367 4368 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4369 u64 num_bytes) 4370 { 4371 int ret = -ENOSPC; 4372 spin_lock(&block_rsv->lock); 4373 if (block_rsv->reserved >= num_bytes) { 4374 block_rsv->reserved -= num_bytes; 4375 if (block_rsv->reserved < block_rsv->size) 4376 block_rsv->full = 0; 4377 ret = 0; 4378 } 4379 spin_unlock(&block_rsv->lock); 4380 return ret; 4381 } 4382 4383 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4384 u64 num_bytes, int update_size) 4385 { 4386 spin_lock(&block_rsv->lock); 4387 block_rsv->reserved += num_bytes; 4388 if (update_size) 4389 block_rsv->size += num_bytes; 4390 else if (block_rsv->reserved >= block_rsv->size) 4391 block_rsv->full = 1; 4392 spin_unlock(&block_rsv->lock); 4393 } 4394 4395 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4396 struct btrfs_block_rsv *dest, u64 num_bytes, 4397 int min_factor) 4398 { 4399 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4400 u64 min_bytes; 4401 4402 if (global_rsv->space_info != dest->space_info) 4403 return -ENOSPC; 4404 4405 spin_lock(&global_rsv->lock); 4406 min_bytes = div_factor(global_rsv->size, min_factor); 4407 if (global_rsv->reserved < min_bytes + num_bytes) { 4408 spin_unlock(&global_rsv->lock); 4409 return -ENOSPC; 4410 } 4411 global_rsv->reserved -= num_bytes; 4412 if (global_rsv->reserved < global_rsv->size) 4413 global_rsv->full = 0; 4414 spin_unlock(&global_rsv->lock); 4415 4416 block_rsv_add_bytes(dest, num_bytes, 1); 4417 return 0; 4418 } 4419 4420 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4421 struct btrfs_block_rsv *block_rsv, 4422 struct btrfs_block_rsv *dest, u64 num_bytes) 4423 { 4424 struct btrfs_space_info *space_info = block_rsv->space_info; 4425 4426 spin_lock(&block_rsv->lock); 4427 if (num_bytes == (u64)-1) 4428 num_bytes = block_rsv->size; 4429 block_rsv->size -= num_bytes; 4430 if (block_rsv->reserved >= block_rsv->size) { 4431 num_bytes = block_rsv->reserved - block_rsv->size; 4432 block_rsv->reserved = block_rsv->size; 4433 block_rsv->full = 1; 4434 } else { 4435 num_bytes = 0; 4436 } 4437 spin_unlock(&block_rsv->lock); 4438 4439 if (num_bytes > 0) { 4440 if (dest) { 4441 spin_lock(&dest->lock); 4442 if (!dest->full) { 4443 u64 bytes_to_add; 4444 4445 bytes_to_add = dest->size - dest->reserved; 4446 bytes_to_add = min(num_bytes, bytes_to_add); 4447 dest->reserved += bytes_to_add; 4448 if (dest->reserved >= dest->size) 4449 dest->full = 1; 4450 num_bytes -= bytes_to_add; 4451 } 4452 spin_unlock(&dest->lock); 4453 } 4454 if (num_bytes) { 4455 spin_lock(&space_info->lock); 4456 space_info->bytes_may_use -= num_bytes; 4457 trace_btrfs_space_reservation(fs_info, "space_info", 4458 space_info->flags, num_bytes, 0); 4459 spin_unlock(&space_info->lock); 4460 } 4461 } 4462 } 4463 4464 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4465 struct btrfs_block_rsv *dst, u64 num_bytes) 4466 { 4467 int ret; 4468 4469 ret = block_rsv_use_bytes(src, num_bytes); 4470 if (ret) 4471 return ret; 4472 4473 block_rsv_add_bytes(dst, num_bytes, 1); 4474 return 0; 4475 } 4476 4477 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4478 { 4479 memset(rsv, 0, sizeof(*rsv)); 4480 spin_lock_init(&rsv->lock); 4481 rsv->type = type; 4482 } 4483 4484 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4485 unsigned short type) 4486 { 4487 struct btrfs_block_rsv *block_rsv; 4488 struct btrfs_fs_info *fs_info = root->fs_info; 4489 4490 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4491 if (!block_rsv) 4492 return NULL; 4493 4494 btrfs_init_block_rsv(block_rsv, type); 4495 block_rsv->space_info = __find_space_info(fs_info, 4496 BTRFS_BLOCK_GROUP_METADATA); 4497 return block_rsv; 4498 } 4499 4500 void btrfs_free_block_rsv(struct btrfs_root *root, 4501 struct btrfs_block_rsv *rsv) 4502 { 4503 if (!rsv) 4504 return; 4505 btrfs_block_rsv_release(root, rsv, (u64)-1); 4506 kfree(rsv); 4507 } 4508 4509 int btrfs_block_rsv_add(struct btrfs_root *root, 4510 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4511 enum btrfs_reserve_flush_enum flush) 4512 { 4513 int ret; 4514 4515 if (num_bytes == 0) 4516 return 0; 4517 4518 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4519 if (!ret) { 4520 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4521 return 0; 4522 } 4523 4524 return ret; 4525 } 4526 4527 int btrfs_block_rsv_check(struct btrfs_root *root, 4528 struct btrfs_block_rsv *block_rsv, int min_factor) 4529 { 4530 u64 num_bytes = 0; 4531 int ret = -ENOSPC; 4532 4533 if (!block_rsv) 4534 return 0; 4535 4536 spin_lock(&block_rsv->lock); 4537 num_bytes = div_factor(block_rsv->size, min_factor); 4538 if (block_rsv->reserved >= num_bytes) 4539 ret = 0; 4540 spin_unlock(&block_rsv->lock); 4541 4542 return ret; 4543 } 4544 4545 int btrfs_block_rsv_refill(struct btrfs_root *root, 4546 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4547 enum btrfs_reserve_flush_enum flush) 4548 { 4549 u64 num_bytes = 0; 4550 int ret = -ENOSPC; 4551 4552 if (!block_rsv) 4553 return 0; 4554 4555 spin_lock(&block_rsv->lock); 4556 num_bytes = min_reserved; 4557 if (block_rsv->reserved >= num_bytes) 4558 ret = 0; 4559 else 4560 num_bytes -= block_rsv->reserved; 4561 spin_unlock(&block_rsv->lock); 4562 4563 if (!ret) 4564 return 0; 4565 4566 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4567 if (!ret) { 4568 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4569 return 0; 4570 } 4571 4572 return ret; 4573 } 4574 4575 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4576 struct btrfs_block_rsv *dst_rsv, 4577 u64 num_bytes) 4578 { 4579 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4580 } 4581 4582 void btrfs_block_rsv_release(struct btrfs_root *root, 4583 struct btrfs_block_rsv *block_rsv, 4584 u64 num_bytes) 4585 { 4586 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4587 if (global_rsv->full || global_rsv == block_rsv || 4588 block_rsv->space_info != global_rsv->space_info) 4589 global_rsv = NULL; 4590 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4591 num_bytes); 4592 } 4593 4594 /* 4595 * helper to calculate size of global block reservation. 4596 * the desired value is sum of space used by extent tree, 4597 * checksum tree and root tree 4598 */ 4599 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4600 { 4601 struct btrfs_space_info *sinfo; 4602 u64 num_bytes; 4603 u64 meta_used; 4604 u64 data_used; 4605 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4606 4607 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4608 spin_lock(&sinfo->lock); 4609 data_used = sinfo->bytes_used; 4610 spin_unlock(&sinfo->lock); 4611 4612 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4613 spin_lock(&sinfo->lock); 4614 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4615 data_used = 0; 4616 meta_used = sinfo->bytes_used; 4617 spin_unlock(&sinfo->lock); 4618 4619 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4620 csum_size * 2; 4621 num_bytes += div64_u64(data_used + meta_used, 50); 4622 4623 if (num_bytes * 3 > meta_used) 4624 num_bytes = div64_u64(meta_used, 3); 4625 4626 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4627 } 4628 4629 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4630 { 4631 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4632 struct btrfs_space_info *sinfo = block_rsv->space_info; 4633 u64 num_bytes; 4634 4635 num_bytes = calc_global_metadata_size(fs_info); 4636 4637 spin_lock(&sinfo->lock); 4638 spin_lock(&block_rsv->lock); 4639 4640 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4641 4642 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4643 sinfo->bytes_reserved + sinfo->bytes_readonly + 4644 sinfo->bytes_may_use; 4645 4646 if (sinfo->total_bytes > num_bytes) { 4647 num_bytes = sinfo->total_bytes - num_bytes; 4648 block_rsv->reserved += num_bytes; 4649 sinfo->bytes_may_use += num_bytes; 4650 trace_btrfs_space_reservation(fs_info, "space_info", 4651 sinfo->flags, num_bytes, 1); 4652 } 4653 4654 if (block_rsv->reserved >= block_rsv->size) { 4655 num_bytes = block_rsv->reserved - block_rsv->size; 4656 sinfo->bytes_may_use -= num_bytes; 4657 trace_btrfs_space_reservation(fs_info, "space_info", 4658 sinfo->flags, num_bytes, 0); 4659 block_rsv->reserved = block_rsv->size; 4660 block_rsv->full = 1; 4661 } 4662 4663 spin_unlock(&block_rsv->lock); 4664 spin_unlock(&sinfo->lock); 4665 } 4666 4667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4668 { 4669 struct btrfs_space_info *space_info; 4670 4671 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4672 fs_info->chunk_block_rsv.space_info = space_info; 4673 4674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4675 fs_info->global_block_rsv.space_info = space_info; 4676 fs_info->delalloc_block_rsv.space_info = space_info; 4677 fs_info->trans_block_rsv.space_info = space_info; 4678 fs_info->empty_block_rsv.space_info = space_info; 4679 fs_info->delayed_block_rsv.space_info = space_info; 4680 4681 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4682 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4683 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4684 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4685 if (fs_info->quota_root) 4686 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4687 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4688 4689 update_global_block_rsv(fs_info); 4690 } 4691 4692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4693 { 4694 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4695 (u64)-1); 4696 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4697 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4698 WARN_ON(fs_info->trans_block_rsv.size > 0); 4699 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4700 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4701 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4702 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4703 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4704 } 4705 4706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4707 struct btrfs_root *root) 4708 { 4709 if (!trans->block_rsv) 4710 return; 4711 4712 if (!trans->bytes_reserved) 4713 return; 4714 4715 trace_btrfs_space_reservation(root->fs_info, "transaction", 4716 trans->transid, trans->bytes_reserved, 0); 4717 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4718 trans->bytes_reserved = 0; 4719 } 4720 4721 /* Can only return 0 or -ENOSPC */ 4722 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4723 struct inode *inode) 4724 { 4725 struct btrfs_root *root = BTRFS_I(inode)->root; 4726 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4727 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4728 4729 /* 4730 * We need to hold space in order to delete our orphan item once we've 4731 * added it, so this takes the reservation so we can release it later 4732 * when we are truly done with the orphan item. 4733 */ 4734 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4735 trace_btrfs_space_reservation(root->fs_info, "orphan", 4736 btrfs_ino(inode), num_bytes, 1); 4737 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4738 } 4739 4740 void btrfs_orphan_release_metadata(struct inode *inode) 4741 { 4742 struct btrfs_root *root = BTRFS_I(inode)->root; 4743 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4744 trace_btrfs_space_reservation(root->fs_info, "orphan", 4745 btrfs_ino(inode), num_bytes, 0); 4746 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4747 } 4748 4749 /* 4750 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4751 * root: the root of the parent directory 4752 * rsv: block reservation 4753 * items: the number of items that we need do reservation 4754 * qgroup_reserved: used to return the reserved size in qgroup 4755 * 4756 * This function is used to reserve the space for snapshot/subvolume 4757 * creation and deletion. Those operations are different with the 4758 * common file/directory operations, they change two fs/file trees 4759 * and root tree, the number of items that the qgroup reserves is 4760 * different with the free space reservation. So we can not use 4761 * the space reseravtion mechanism in start_transaction(). 4762 */ 4763 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4764 struct btrfs_block_rsv *rsv, 4765 int items, 4766 u64 *qgroup_reserved, 4767 bool use_global_rsv) 4768 { 4769 u64 num_bytes; 4770 int ret; 4771 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4772 4773 if (root->fs_info->quota_enabled) { 4774 /* One for parent inode, two for dir entries */ 4775 num_bytes = 3 * root->leafsize; 4776 ret = btrfs_qgroup_reserve(root, num_bytes); 4777 if (ret) 4778 return ret; 4779 } else { 4780 num_bytes = 0; 4781 } 4782 4783 *qgroup_reserved = num_bytes; 4784 4785 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4786 rsv->space_info = __find_space_info(root->fs_info, 4787 BTRFS_BLOCK_GROUP_METADATA); 4788 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4789 BTRFS_RESERVE_FLUSH_ALL); 4790 4791 if (ret == -ENOSPC && use_global_rsv) 4792 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4793 4794 if (ret) { 4795 if (*qgroup_reserved) 4796 btrfs_qgroup_free(root, *qgroup_reserved); 4797 } 4798 4799 return ret; 4800 } 4801 4802 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4803 struct btrfs_block_rsv *rsv, 4804 u64 qgroup_reserved) 4805 { 4806 btrfs_block_rsv_release(root, rsv, (u64)-1); 4807 if (qgroup_reserved) 4808 btrfs_qgroup_free(root, qgroup_reserved); 4809 } 4810 4811 /** 4812 * drop_outstanding_extent - drop an outstanding extent 4813 * @inode: the inode we're dropping the extent for 4814 * 4815 * This is called when we are freeing up an outstanding extent, either called 4816 * after an error or after an extent is written. This will return the number of 4817 * reserved extents that need to be freed. This must be called with 4818 * BTRFS_I(inode)->lock held. 4819 */ 4820 static unsigned drop_outstanding_extent(struct inode *inode) 4821 { 4822 unsigned drop_inode_space = 0; 4823 unsigned dropped_extents = 0; 4824 4825 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4826 BTRFS_I(inode)->outstanding_extents--; 4827 4828 if (BTRFS_I(inode)->outstanding_extents == 0 && 4829 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4830 &BTRFS_I(inode)->runtime_flags)) 4831 drop_inode_space = 1; 4832 4833 /* 4834 * If we have more or the same amount of outsanding extents than we have 4835 * reserved then we need to leave the reserved extents count alone. 4836 */ 4837 if (BTRFS_I(inode)->outstanding_extents >= 4838 BTRFS_I(inode)->reserved_extents) 4839 return drop_inode_space; 4840 4841 dropped_extents = BTRFS_I(inode)->reserved_extents - 4842 BTRFS_I(inode)->outstanding_extents; 4843 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4844 return dropped_extents + drop_inode_space; 4845 } 4846 4847 /** 4848 * calc_csum_metadata_size - return the amount of metada space that must be 4849 * reserved/free'd for the given bytes. 4850 * @inode: the inode we're manipulating 4851 * @num_bytes: the number of bytes in question 4852 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4853 * 4854 * This adjusts the number of csum_bytes in the inode and then returns the 4855 * correct amount of metadata that must either be reserved or freed. We 4856 * calculate how many checksums we can fit into one leaf and then divide the 4857 * number of bytes that will need to be checksumed by this value to figure out 4858 * how many checksums will be required. If we are adding bytes then the number 4859 * may go up and we will return the number of additional bytes that must be 4860 * reserved. If it is going down we will return the number of bytes that must 4861 * be freed. 4862 * 4863 * This must be called with BTRFS_I(inode)->lock held. 4864 */ 4865 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4866 int reserve) 4867 { 4868 struct btrfs_root *root = BTRFS_I(inode)->root; 4869 u64 csum_size; 4870 int num_csums_per_leaf; 4871 int num_csums; 4872 int old_csums; 4873 4874 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4875 BTRFS_I(inode)->csum_bytes == 0) 4876 return 0; 4877 4878 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4879 if (reserve) 4880 BTRFS_I(inode)->csum_bytes += num_bytes; 4881 else 4882 BTRFS_I(inode)->csum_bytes -= num_bytes; 4883 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4884 num_csums_per_leaf = (int)div64_u64(csum_size, 4885 sizeof(struct btrfs_csum_item) + 4886 sizeof(struct btrfs_disk_key)); 4887 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4888 num_csums = num_csums + num_csums_per_leaf - 1; 4889 num_csums = num_csums / num_csums_per_leaf; 4890 4891 old_csums = old_csums + num_csums_per_leaf - 1; 4892 old_csums = old_csums / num_csums_per_leaf; 4893 4894 /* No change, no need to reserve more */ 4895 if (old_csums == num_csums) 4896 return 0; 4897 4898 if (reserve) 4899 return btrfs_calc_trans_metadata_size(root, 4900 num_csums - old_csums); 4901 4902 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4903 } 4904 4905 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4906 { 4907 struct btrfs_root *root = BTRFS_I(inode)->root; 4908 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4909 u64 to_reserve = 0; 4910 u64 csum_bytes; 4911 unsigned nr_extents = 0; 4912 int extra_reserve = 0; 4913 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4914 int ret = 0; 4915 bool delalloc_lock = true; 4916 u64 to_free = 0; 4917 unsigned dropped; 4918 4919 /* If we are a free space inode we need to not flush since we will be in 4920 * the middle of a transaction commit. We also don't need the delalloc 4921 * mutex since we won't race with anybody. We need this mostly to make 4922 * lockdep shut its filthy mouth. 4923 */ 4924 if (btrfs_is_free_space_inode(inode)) { 4925 flush = BTRFS_RESERVE_NO_FLUSH; 4926 delalloc_lock = false; 4927 } 4928 4929 if (flush != BTRFS_RESERVE_NO_FLUSH && 4930 btrfs_transaction_in_commit(root->fs_info)) 4931 schedule_timeout(1); 4932 4933 if (delalloc_lock) 4934 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4935 4936 num_bytes = ALIGN(num_bytes, root->sectorsize); 4937 4938 spin_lock(&BTRFS_I(inode)->lock); 4939 BTRFS_I(inode)->outstanding_extents++; 4940 4941 if (BTRFS_I(inode)->outstanding_extents > 4942 BTRFS_I(inode)->reserved_extents) 4943 nr_extents = BTRFS_I(inode)->outstanding_extents - 4944 BTRFS_I(inode)->reserved_extents; 4945 4946 /* 4947 * Add an item to reserve for updating the inode when we complete the 4948 * delalloc io. 4949 */ 4950 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4951 &BTRFS_I(inode)->runtime_flags)) { 4952 nr_extents++; 4953 extra_reserve = 1; 4954 } 4955 4956 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4957 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4958 csum_bytes = BTRFS_I(inode)->csum_bytes; 4959 spin_unlock(&BTRFS_I(inode)->lock); 4960 4961 if (root->fs_info->quota_enabled) { 4962 ret = btrfs_qgroup_reserve(root, num_bytes + 4963 nr_extents * root->leafsize); 4964 if (ret) 4965 goto out_fail; 4966 } 4967 4968 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4969 if (unlikely(ret)) { 4970 if (root->fs_info->quota_enabled) 4971 btrfs_qgroup_free(root, num_bytes + 4972 nr_extents * root->leafsize); 4973 goto out_fail; 4974 } 4975 4976 spin_lock(&BTRFS_I(inode)->lock); 4977 if (extra_reserve) { 4978 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4979 &BTRFS_I(inode)->runtime_flags); 4980 nr_extents--; 4981 } 4982 BTRFS_I(inode)->reserved_extents += nr_extents; 4983 spin_unlock(&BTRFS_I(inode)->lock); 4984 4985 if (delalloc_lock) 4986 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4987 4988 if (to_reserve) 4989 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4990 btrfs_ino(inode), to_reserve, 1); 4991 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4992 4993 return 0; 4994 4995 out_fail: 4996 spin_lock(&BTRFS_I(inode)->lock); 4997 dropped = drop_outstanding_extent(inode); 4998 /* 4999 * If the inodes csum_bytes is the same as the original 5000 * csum_bytes then we know we haven't raced with any free()ers 5001 * so we can just reduce our inodes csum bytes and carry on. 5002 */ 5003 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5004 calc_csum_metadata_size(inode, num_bytes, 0); 5005 } else { 5006 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5007 u64 bytes; 5008 5009 /* 5010 * This is tricky, but first we need to figure out how much we 5011 * free'd from any free-ers that occured during this 5012 * reservation, so we reset ->csum_bytes to the csum_bytes 5013 * before we dropped our lock, and then call the free for the 5014 * number of bytes that were freed while we were trying our 5015 * reservation. 5016 */ 5017 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5018 BTRFS_I(inode)->csum_bytes = csum_bytes; 5019 to_free = calc_csum_metadata_size(inode, bytes, 0); 5020 5021 5022 /* 5023 * Now we need to see how much we would have freed had we not 5024 * been making this reservation and our ->csum_bytes were not 5025 * artificially inflated. 5026 */ 5027 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5028 bytes = csum_bytes - orig_csum_bytes; 5029 bytes = calc_csum_metadata_size(inode, bytes, 0); 5030 5031 /* 5032 * Now reset ->csum_bytes to what it should be. If bytes is 5033 * more than to_free then we would have free'd more space had we 5034 * not had an artificially high ->csum_bytes, so we need to free 5035 * the remainder. If bytes is the same or less then we don't 5036 * need to do anything, the other free-ers did the correct 5037 * thing. 5038 */ 5039 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5040 if (bytes > to_free) 5041 to_free = bytes - to_free; 5042 else 5043 to_free = 0; 5044 } 5045 spin_unlock(&BTRFS_I(inode)->lock); 5046 if (dropped) 5047 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5048 5049 if (to_free) { 5050 btrfs_block_rsv_release(root, block_rsv, to_free); 5051 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5052 btrfs_ino(inode), to_free, 0); 5053 } 5054 if (delalloc_lock) 5055 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5056 return ret; 5057 } 5058 5059 /** 5060 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5061 * @inode: the inode to release the reservation for 5062 * @num_bytes: the number of bytes we're releasing 5063 * 5064 * This will release the metadata reservation for an inode. This can be called 5065 * once we complete IO for a given set of bytes to release their metadata 5066 * reservations. 5067 */ 5068 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5069 { 5070 struct btrfs_root *root = BTRFS_I(inode)->root; 5071 u64 to_free = 0; 5072 unsigned dropped; 5073 5074 num_bytes = ALIGN(num_bytes, root->sectorsize); 5075 spin_lock(&BTRFS_I(inode)->lock); 5076 dropped = drop_outstanding_extent(inode); 5077 5078 if (num_bytes) 5079 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5080 spin_unlock(&BTRFS_I(inode)->lock); 5081 if (dropped > 0) 5082 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5083 5084 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5085 btrfs_ino(inode), to_free, 0); 5086 if (root->fs_info->quota_enabled) { 5087 btrfs_qgroup_free(root, num_bytes + 5088 dropped * root->leafsize); 5089 } 5090 5091 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5092 to_free); 5093 } 5094 5095 /** 5096 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5097 * @inode: inode we're writing to 5098 * @num_bytes: the number of bytes we want to allocate 5099 * 5100 * This will do the following things 5101 * 5102 * o reserve space in the data space info for num_bytes 5103 * o reserve space in the metadata space info based on number of outstanding 5104 * extents and how much csums will be needed 5105 * o add to the inodes ->delalloc_bytes 5106 * o add it to the fs_info's delalloc inodes list. 5107 * 5108 * This will return 0 for success and -ENOSPC if there is no space left. 5109 */ 5110 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5111 { 5112 int ret; 5113 5114 ret = btrfs_check_data_free_space(inode, num_bytes); 5115 if (ret) 5116 return ret; 5117 5118 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5119 if (ret) { 5120 btrfs_free_reserved_data_space(inode, num_bytes); 5121 return ret; 5122 } 5123 5124 return 0; 5125 } 5126 5127 /** 5128 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5129 * @inode: inode we're releasing space for 5130 * @num_bytes: the number of bytes we want to free up 5131 * 5132 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5133 * called in the case that we don't need the metadata AND data reservations 5134 * anymore. So if there is an error or we insert an inline extent. 5135 * 5136 * This function will release the metadata space that was not used and will 5137 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5138 * list if there are no delalloc bytes left. 5139 */ 5140 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5141 { 5142 btrfs_delalloc_release_metadata(inode, num_bytes); 5143 btrfs_free_reserved_data_space(inode, num_bytes); 5144 } 5145 5146 static int update_block_group(struct btrfs_root *root, 5147 u64 bytenr, u64 num_bytes, int alloc) 5148 { 5149 struct btrfs_block_group_cache *cache = NULL; 5150 struct btrfs_fs_info *info = root->fs_info; 5151 u64 total = num_bytes; 5152 u64 old_val; 5153 u64 byte_in_group; 5154 int factor; 5155 5156 /* block accounting for super block */ 5157 spin_lock(&info->delalloc_root_lock); 5158 old_val = btrfs_super_bytes_used(info->super_copy); 5159 if (alloc) 5160 old_val += num_bytes; 5161 else 5162 old_val -= num_bytes; 5163 btrfs_set_super_bytes_used(info->super_copy, old_val); 5164 spin_unlock(&info->delalloc_root_lock); 5165 5166 while (total) { 5167 cache = btrfs_lookup_block_group(info, bytenr); 5168 if (!cache) 5169 return -ENOENT; 5170 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5171 BTRFS_BLOCK_GROUP_RAID1 | 5172 BTRFS_BLOCK_GROUP_RAID10)) 5173 factor = 2; 5174 else 5175 factor = 1; 5176 /* 5177 * If this block group has free space cache written out, we 5178 * need to make sure to load it if we are removing space. This 5179 * is because we need the unpinning stage to actually add the 5180 * space back to the block group, otherwise we will leak space. 5181 */ 5182 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5183 cache_block_group(cache, 1); 5184 5185 byte_in_group = bytenr - cache->key.objectid; 5186 WARN_ON(byte_in_group > cache->key.offset); 5187 5188 spin_lock(&cache->space_info->lock); 5189 spin_lock(&cache->lock); 5190 5191 if (btrfs_test_opt(root, SPACE_CACHE) && 5192 cache->disk_cache_state < BTRFS_DC_CLEAR) 5193 cache->disk_cache_state = BTRFS_DC_CLEAR; 5194 5195 cache->dirty = 1; 5196 old_val = btrfs_block_group_used(&cache->item); 5197 num_bytes = min(total, cache->key.offset - byte_in_group); 5198 if (alloc) { 5199 old_val += num_bytes; 5200 btrfs_set_block_group_used(&cache->item, old_val); 5201 cache->reserved -= num_bytes; 5202 cache->space_info->bytes_reserved -= num_bytes; 5203 cache->space_info->bytes_used += num_bytes; 5204 cache->space_info->disk_used += num_bytes * factor; 5205 spin_unlock(&cache->lock); 5206 spin_unlock(&cache->space_info->lock); 5207 } else { 5208 old_val -= num_bytes; 5209 btrfs_set_block_group_used(&cache->item, old_val); 5210 cache->pinned += num_bytes; 5211 cache->space_info->bytes_pinned += num_bytes; 5212 cache->space_info->bytes_used -= num_bytes; 5213 cache->space_info->disk_used -= num_bytes * factor; 5214 spin_unlock(&cache->lock); 5215 spin_unlock(&cache->space_info->lock); 5216 5217 set_extent_dirty(info->pinned_extents, 5218 bytenr, bytenr + num_bytes - 1, 5219 GFP_NOFS | __GFP_NOFAIL); 5220 } 5221 btrfs_put_block_group(cache); 5222 total -= num_bytes; 5223 bytenr += num_bytes; 5224 } 5225 return 0; 5226 } 5227 5228 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5229 { 5230 struct btrfs_block_group_cache *cache; 5231 u64 bytenr; 5232 5233 spin_lock(&root->fs_info->block_group_cache_lock); 5234 bytenr = root->fs_info->first_logical_byte; 5235 spin_unlock(&root->fs_info->block_group_cache_lock); 5236 5237 if (bytenr < (u64)-1) 5238 return bytenr; 5239 5240 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5241 if (!cache) 5242 return 0; 5243 5244 bytenr = cache->key.objectid; 5245 btrfs_put_block_group(cache); 5246 5247 return bytenr; 5248 } 5249 5250 static int pin_down_extent(struct btrfs_root *root, 5251 struct btrfs_block_group_cache *cache, 5252 u64 bytenr, u64 num_bytes, int reserved) 5253 { 5254 spin_lock(&cache->space_info->lock); 5255 spin_lock(&cache->lock); 5256 cache->pinned += num_bytes; 5257 cache->space_info->bytes_pinned += num_bytes; 5258 if (reserved) { 5259 cache->reserved -= num_bytes; 5260 cache->space_info->bytes_reserved -= num_bytes; 5261 } 5262 spin_unlock(&cache->lock); 5263 spin_unlock(&cache->space_info->lock); 5264 5265 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5266 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5267 return 0; 5268 } 5269 5270 /* 5271 * this function must be called within transaction 5272 */ 5273 int btrfs_pin_extent(struct btrfs_root *root, 5274 u64 bytenr, u64 num_bytes, int reserved) 5275 { 5276 struct btrfs_block_group_cache *cache; 5277 5278 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5279 BUG_ON(!cache); /* Logic error */ 5280 5281 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5282 5283 btrfs_put_block_group(cache); 5284 return 0; 5285 } 5286 5287 /* 5288 * this function must be called within transaction 5289 */ 5290 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5291 u64 bytenr, u64 num_bytes) 5292 { 5293 struct btrfs_block_group_cache *cache; 5294 int ret; 5295 5296 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5297 if (!cache) 5298 return -EINVAL; 5299 5300 /* 5301 * pull in the free space cache (if any) so that our pin 5302 * removes the free space from the cache. We have load_only set 5303 * to one because the slow code to read in the free extents does check 5304 * the pinned extents. 5305 */ 5306 cache_block_group(cache, 1); 5307 5308 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5309 5310 /* remove us from the free space cache (if we're there at all) */ 5311 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5312 btrfs_put_block_group(cache); 5313 return ret; 5314 } 5315 5316 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5317 { 5318 int ret; 5319 struct btrfs_block_group_cache *block_group; 5320 struct btrfs_caching_control *caching_ctl; 5321 5322 block_group = btrfs_lookup_block_group(root->fs_info, start); 5323 if (!block_group) 5324 return -EINVAL; 5325 5326 cache_block_group(block_group, 0); 5327 caching_ctl = get_caching_control(block_group); 5328 5329 if (!caching_ctl) { 5330 /* Logic error */ 5331 BUG_ON(!block_group_cache_done(block_group)); 5332 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5333 } else { 5334 mutex_lock(&caching_ctl->mutex); 5335 5336 if (start >= caching_ctl->progress) { 5337 ret = add_excluded_extent(root, start, num_bytes); 5338 } else if (start + num_bytes <= caching_ctl->progress) { 5339 ret = btrfs_remove_free_space(block_group, 5340 start, num_bytes); 5341 } else { 5342 num_bytes = caching_ctl->progress - start; 5343 ret = btrfs_remove_free_space(block_group, 5344 start, num_bytes); 5345 if (ret) 5346 goto out_lock; 5347 5348 num_bytes = (start + num_bytes) - 5349 caching_ctl->progress; 5350 start = caching_ctl->progress; 5351 ret = add_excluded_extent(root, start, num_bytes); 5352 } 5353 out_lock: 5354 mutex_unlock(&caching_ctl->mutex); 5355 put_caching_control(caching_ctl); 5356 } 5357 btrfs_put_block_group(block_group); 5358 return ret; 5359 } 5360 5361 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5362 struct extent_buffer *eb) 5363 { 5364 struct btrfs_file_extent_item *item; 5365 struct btrfs_key key; 5366 int found_type; 5367 int i; 5368 5369 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5370 return 0; 5371 5372 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5373 btrfs_item_key_to_cpu(eb, &key, i); 5374 if (key.type != BTRFS_EXTENT_DATA_KEY) 5375 continue; 5376 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5377 found_type = btrfs_file_extent_type(eb, item); 5378 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5379 continue; 5380 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5381 continue; 5382 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5383 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5384 __exclude_logged_extent(log, key.objectid, key.offset); 5385 } 5386 5387 return 0; 5388 } 5389 5390 /** 5391 * btrfs_update_reserved_bytes - update the block_group and space info counters 5392 * @cache: The cache we are manipulating 5393 * @num_bytes: The number of bytes in question 5394 * @reserve: One of the reservation enums 5395 * 5396 * This is called by the allocator when it reserves space, or by somebody who is 5397 * freeing space that was never actually used on disk. For example if you 5398 * reserve some space for a new leaf in transaction A and before transaction A 5399 * commits you free that leaf, you call this with reserve set to 0 in order to 5400 * clear the reservation. 5401 * 5402 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5403 * ENOSPC accounting. For data we handle the reservation through clearing the 5404 * delalloc bits in the io_tree. We have to do this since we could end up 5405 * allocating less disk space for the amount of data we have reserved in the 5406 * case of compression. 5407 * 5408 * If this is a reservation and the block group has become read only we cannot 5409 * make the reservation and return -EAGAIN, otherwise this function always 5410 * succeeds. 5411 */ 5412 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5413 u64 num_bytes, int reserve) 5414 { 5415 struct btrfs_space_info *space_info = cache->space_info; 5416 int ret = 0; 5417 5418 spin_lock(&space_info->lock); 5419 spin_lock(&cache->lock); 5420 if (reserve != RESERVE_FREE) { 5421 if (cache->ro) { 5422 ret = -EAGAIN; 5423 } else { 5424 cache->reserved += num_bytes; 5425 space_info->bytes_reserved += num_bytes; 5426 if (reserve == RESERVE_ALLOC) { 5427 trace_btrfs_space_reservation(cache->fs_info, 5428 "space_info", space_info->flags, 5429 num_bytes, 0); 5430 space_info->bytes_may_use -= num_bytes; 5431 } 5432 } 5433 } else { 5434 if (cache->ro) 5435 space_info->bytes_readonly += num_bytes; 5436 cache->reserved -= num_bytes; 5437 space_info->bytes_reserved -= num_bytes; 5438 } 5439 spin_unlock(&cache->lock); 5440 spin_unlock(&space_info->lock); 5441 return ret; 5442 } 5443 5444 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5445 struct btrfs_root *root) 5446 { 5447 struct btrfs_fs_info *fs_info = root->fs_info; 5448 struct btrfs_caching_control *next; 5449 struct btrfs_caching_control *caching_ctl; 5450 struct btrfs_block_group_cache *cache; 5451 struct btrfs_space_info *space_info; 5452 5453 down_write(&fs_info->extent_commit_sem); 5454 5455 list_for_each_entry_safe(caching_ctl, next, 5456 &fs_info->caching_block_groups, list) { 5457 cache = caching_ctl->block_group; 5458 if (block_group_cache_done(cache)) { 5459 cache->last_byte_to_unpin = (u64)-1; 5460 list_del_init(&caching_ctl->list); 5461 put_caching_control(caching_ctl); 5462 } else { 5463 cache->last_byte_to_unpin = caching_ctl->progress; 5464 } 5465 } 5466 5467 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5468 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5469 else 5470 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5471 5472 up_write(&fs_info->extent_commit_sem); 5473 5474 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5475 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5476 5477 update_global_block_rsv(fs_info); 5478 } 5479 5480 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5481 { 5482 struct btrfs_fs_info *fs_info = root->fs_info; 5483 struct btrfs_block_group_cache *cache = NULL; 5484 struct btrfs_space_info *space_info; 5485 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5486 u64 len; 5487 bool readonly; 5488 5489 while (start <= end) { 5490 readonly = false; 5491 if (!cache || 5492 start >= cache->key.objectid + cache->key.offset) { 5493 if (cache) 5494 btrfs_put_block_group(cache); 5495 cache = btrfs_lookup_block_group(fs_info, start); 5496 BUG_ON(!cache); /* Logic error */ 5497 } 5498 5499 len = cache->key.objectid + cache->key.offset - start; 5500 len = min(len, end + 1 - start); 5501 5502 if (start < cache->last_byte_to_unpin) { 5503 len = min(len, cache->last_byte_to_unpin - start); 5504 btrfs_add_free_space(cache, start, len); 5505 } 5506 5507 start += len; 5508 space_info = cache->space_info; 5509 5510 spin_lock(&space_info->lock); 5511 spin_lock(&cache->lock); 5512 cache->pinned -= len; 5513 space_info->bytes_pinned -= len; 5514 if (cache->ro) { 5515 space_info->bytes_readonly += len; 5516 readonly = true; 5517 } 5518 spin_unlock(&cache->lock); 5519 if (!readonly && global_rsv->space_info == space_info) { 5520 spin_lock(&global_rsv->lock); 5521 if (!global_rsv->full) { 5522 len = min(len, global_rsv->size - 5523 global_rsv->reserved); 5524 global_rsv->reserved += len; 5525 space_info->bytes_may_use += len; 5526 if (global_rsv->reserved >= global_rsv->size) 5527 global_rsv->full = 1; 5528 } 5529 spin_unlock(&global_rsv->lock); 5530 } 5531 spin_unlock(&space_info->lock); 5532 } 5533 5534 if (cache) 5535 btrfs_put_block_group(cache); 5536 return 0; 5537 } 5538 5539 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5540 struct btrfs_root *root) 5541 { 5542 struct btrfs_fs_info *fs_info = root->fs_info; 5543 struct extent_io_tree *unpin; 5544 u64 start; 5545 u64 end; 5546 int ret; 5547 5548 if (trans->aborted) 5549 return 0; 5550 5551 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5552 unpin = &fs_info->freed_extents[1]; 5553 else 5554 unpin = &fs_info->freed_extents[0]; 5555 5556 while (1) { 5557 ret = find_first_extent_bit(unpin, 0, &start, &end, 5558 EXTENT_DIRTY, NULL); 5559 if (ret) 5560 break; 5561 5562 if (btrfs_test_opt(root, DISCARD)) 5563 ret = btrfs_discard_extent(root, start, 5564 end + 1 - start, NULL); 5565 5566 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5567 unpin_extent_range(root, start, end); 5568 cond_resched(); 5569 } 5570 5571 return 0; 5572 } 5573 5574 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5575 u64 owner, u64 root_objectid) 5576 { 5577 struct btrfs_space_info *space_info; 5578 u64 flags; 5579 5580 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5581 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5582 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5583 else 5584 flags = BTRFS_BLOCK_GROUP_METADATA; 5585 } else { 5586 flags = BTRFS_BLOCK_GROUP_DATA; 5587 } 5588 5589 space_info = __find_space_info(fs_info, flags); 5590 BUG_ON(!space_info); /* Logic bug */ 5591 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5592 } 5593 5594 5595 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5596 struct btrfs_root *root, 5597 u64 bytenr, u64 num_bytes, u64 parent, 5598 u64 root_objectid, u64 owner_objectid, 5599 u64 owner_offset, int refs_to_drop, 5600 struct btrfs_delayed_extent_op *extent_op) 5601 { 5602 struct btrfs_key key; 5603 struct btrfs_path *path; 5604 struct btrfs_fs_info *info = root->fs_info; 5605 struct btrfs_root *extent_root = info->extent_root; 5606 struct extent_buffer *leaf; 5607 struct btrfs_extent_item *ei; 5608 struct btrfs_extent_inline_ref *iref; 5609 int ret; 5610 int is_data; 5611 int extent_slot = 0; 5612 int found_extent = 0; 5613 int num_to_del = 1; 5614 u32 item_size; 5615 u64 refs; 5616 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5617 SKINNY_METADATA); 5618 5619 path = btrfs_alloc_path(); 5620 if (!path) 5621 return -ENOMEM; 5622 5623 path->reada = 1; 5624 path->leave_spinning = 1; 5625 5626 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5627 BUG_ON(!is_data && refs_to_drop != 1); 5628 5629 if (is_data) 5630 skinny_metadata = 0; 5631 5632 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5633 bytenr, num_bytes, parent, 5634 root_objectid, owner_objectid, 5635 owner_offset); 5636 if (ret == 0) { 5637 extent_slot = path->slots[0]; 5638 while (extent_slot >= 0) { 5639 btrfs_item_key_to_cpu(path->nodes[0], &key, 5640 extent_slot); 5641 if (key.objectid != bytenr) 5642 break; 5643 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5644 key.offset == num_bytes) { 5645 found_extent = 1; 5646 break; 5647 } 5648 if (key.type == BTRFS_METADATA_ITEM_KEY && 5649 key.offset == owner_objectid) { 5650 found_extent = 1; 5651 break; 5652 } 5653 if (path->slots[0] - extent_slot > 5) 5654 break; 5655 extent_slot--; 5656 } 5657 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5658 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5659 if (found_extent && item_size < sizeof(*ei)) 5660 found_extent = 0; 5661 #endif 5662 if (!found_extent) { 5663 BUG_ON(iref); 5664 ret = remove_extent_backref(trans, extent_root, path, 5665 NULL, refs_to_drop, 5666 is_data); 5667 if (ret) { 5668 btrfs_abort_transaction(trans, extent_root, ret); 5669 goto out; 5670 } 5671 btrfs_release_path(path); 5672 path->leave_spinning = 1; 5673 5674 key.objectid = bytenr; 5675 key.type = BTRFS_EXTENT_ITEM_KEY; 5676 key.offset = num_bytes; 5677 5678 if (!is_data && skinny_metadata) { 5679 key.type = BTRFS_METADATA_ITEM_KEY; 5680 key.offset = owner_objectid; 5681 } 5682 5683 ret = btrfs_search_slot(trans, extent_root, 5684 &key, path, -1, 1); 5685 if (ret > 0 && skinny_metadata && path->slots[0]) { 5686 /* 5687 * Couldn't find our skinny metadata item, 5688 * see if we have ye olde extent item. 5689 */ 5690 path->slots[0]--; 5691 btrfs_item_key_to_cpu(path->nodes[0], &key, 5692 path->slots[0]); 5693 if (key.objectid == bytenr && 5694 key.type == BTRFS_EXTENT_ITEM_KEY && 5695 key.offset == num_bytes) 5696 ret = 0; 5697 } 5698 5699 if (ret > 0 && skinny_metadata) { 5700 skinny_metadata = false; 5701 key.type = BTRFS_EXTENT_ITEM_KEY; 5702 key.offset = num_bytes; 5703 btrfs_release_path(path); 5704 ret = btrfs_search_slot(trans, extent_root, 5705 &key, path, -1, 1); 5706 } 5707 5708 if (ret) { 5709 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5710 ret, bytenr); 5711 if (ret > 0) 5712 btrfs_print_leaf(extent_root, 5713 path->nodes[0]); 5714 } 5715 if (ret < 0) { 5716 btrfs_abort_transaction(trans, extent_root, ret); 5717 goto out; 5718 } 5719 extent_slot = path->slots[0]; 5720 } 5721 } else if (ret == -ENOENT) { 5722 btrfs_print_leaf(extent_root, path->nodes[0]); 5723 WARN_ON(1); 5724 btrfs_err(info, 5725 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5726 bytenr, parent, root_objectid, owner_objectid, 5727 owner_offset); 5728 } else { 5729 btrfs_abort_transaction(trans, extent_root, ret); 5730 goto out; 5731 } 5732 5733 leaf = path->nodes[0]; 5734 item_size = btrfs_item_size_nr(leaf, extent_slot); 5735 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5736 if (item_size < sizeof(*ei)) { 5737 BUG_ON(found_extent || extent_slot != path->slots[0]); 5738 ret = convert_extent_item_v0(trans, extent_root, path, 5739 owner_objectid, 0); 5740 if (ret < 0) { 5741 btrfs_abort_transaction(trans, extent_root, ret); 5742 goto out; 5743 } 5744 5745 btrfs_release_path(path); 5746 path->leave_spinning = 1; 5747 5748 key.objectid = bytenr; 5749 key.type = BTRFS_EXTENT_ITEM_KEY; 5750 key.offset = num_bytes; 5751 5752 ret = btrfs_search_slot(trans, extent_root, &key, path, 5753 -1, 1); 5754 if (ret) { 5755 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5756 ret, bytenr); 5757 btrfs_print_leaf(extent_root, path->nodes[0]); 5758 } 5759 if (ret < 0) { 5760 btrfs_abort_transaction(trans, extent_root, ret); 5761 goto out; 5762 } 5763 5764 extent_slot = path->slots[0]; 5765 leaf = path->nodes[0]; 5766 item_size = btrfs_item_size_nr(leaf, extent_slot); 5767 } 5768 #endif 5769 BUG_ON(item_size < sizeof(*ei)); 5770 ei = btrfs_item_ptr(leaf, extent_slot, 5771 struct btrfs_extent_item); 5772 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5773 key.type == BTRFS_EXTENT_ITEM_KEY) { 5774 struct btrfs_tree_block_info *bi; 5775 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5776 bi = (struct btrfs_tree_block_info *)(ei + 1); 5777 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5778 } 5779 5780 refs = btrfs_extent_refs(leaf, ei); 5781 if (refs < refs_to_drop) { 5782 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5783 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5784 ret = -EINVAL; 5785 btrfs_abort_transaction(trans, extent_root, ret); 5786 goto out; 5787 } 5788 refs -= refs_to_drop; 5789 5790 if (refs > 0) { 5791 if (extent_op) 5792 __run_delayed_extent_op(extent_op, leaf, ei); 5793 /* 5794 * In the case of inline back ref, reference count will 5795 * be updated by remove_extent_backref 5796 */ 5797 if (iref) { 5798 BUG_ON(!found_extent); 5799 } else { 5800 btrfs_set_extent_refs(leaf, ei, refs); 5801 btrfs_mark_buffer_dirty(leaf); 5802 } 5803 if (found_extent) { 5804 ret = remove_extent_backref(trans, extent_root, path, 5805 iref, refs_to_drop, 5806 is_data); 5807 if (ret) { 5808 btrfs_abort_transaction(trans, extent_root, ret); 5809 goto out; 5810 } 5811 } 5812 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5813 root_objectid); 5814 } else { 5815 if (found_extent) { 5816 BUG_ON(is_data && refs_to_drop != 5817 extent_data_ref_count(root, path, iref)); 5818 if (iref) { 5819 BUG_ON(path->slots[0] != extent_slot); 5820 } else { 5821 BUG_ON(path->slots[0] != extent_slot + 1); 5822 path->slots[0] = extent_slot; 5823 num_to_del = 2; 5824 } 5825 } 5826 5827 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5828 num_to_del); 5829 if (ret) { 5830 btrfs_abort_transaction(trans, extent_root, ret); 5831 goto out; 5832 } 5833 btrfs_release_path(path); 5834 5835 if (is_data) { 5836 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5837 if (ret) { 5838 btrfs_abort_transaction(trans, extent_root, ret); 5839 goto out; 5840 } 5841 } 5842 5843 ret = update_block_group(root, bytenr, num_bytes, 0); 5844 if (ret) { 5845 btrfs_abort_transaction(trans, extent_root, ret); 5846 goto out; 5847 } 5848 } 5849 out: 5850 btrfs_free_path(path); 5851 return ret; 5852 } 5853 5854 /* 5855 * when we free an block, it is possible (and likely) that we free the last 5856 * delayed ref for that extent as well. This searches the delayed ref tree for 5857 * a given extent, and if there are no other delayed refs to be processed, it 5858 * removes it from the tree. 5859 */ 5860 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5861 struct btrfs_root *root, u64 bytenr) 5862 { 5863 struct btrfs_delayed_ref_head *head; 5864 struct btrfs_delayed_ref_root *delayed_refs; 5865 struct btrfs_delayed_ref_node *ref; 5866 struct rb_node *node; 5867 int ret = 0; 5868 5869 delayed_refs = &trans->transaction->delayed_refs; 5870 spin_lock(&delayed_refs->lock); 5871 head = btrfs_find_delayed_ref_head(trans, bytenr); 5872 if (!head) 5873 goto out; 5874 5875 node = rb_prev(&head->node.rb_node); 5876 if (!node) 5877 goto out; 5878 5879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5880 5881 /* there are still entries for this ref, we can't drop it */ 5882 if (ref->bytenr == bytenr) 5883 goto out; 5884 5885 if (head->extent_op) { 5886 if (!head->must_insert_reserved) 5887 goto out; 5888 btrfs_free_delayed_extent_op(head->extent_op); 5889 head->extent_op = NULL; 5890 } 5891 5892 /* 5893 * waiting for the lock here would deadlock. If someone else has it 5894 * locked they are already in the process of dropping it anyway 5895 */ 5896 if (!mutex_trylock(&head->mutex)) 5897 goto out; 5898 5899 /* 5900 * at this point we have a head with no other entries. Go 5901 * ahead and process it. 5902 */ 5903 head->node.in_tree = 0; 5904 rb_erase(&head->node.rb_node, &delayed_refs->root); 5905 5906 delayed_refs->num_entries--; 5907 5908 /* 5909 * we don't take a ref on the node because we're removing it from the 5910 * tree, so we just steal the ref the tree was holding. 5911 */ 5912 delayed_refs->num_heads--; 5913 if (list_empty(&head->cluster)) 5914 delayed_refs->num_heads_ready--; 5915 5916 list_del_init(&head->cluster); 5917 spin_unlock(&delayed_refs->lock); 5918 5919 BUG_ON(head->extent_op); 5920 if (head->must_insert_reserved) 5921 ret = 1; 5922 5923 mutex_unlock(&head->mutex); 5924 btrfs_put_delayed_ref(&head->node); 5925 return ret; 5926 out: 5927 spin_unlock(&delayed_refs->lock); 5928 return 0; 5929 } 5930 5931 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5932 struct btrfs_root *root, 5933 struct extent_buffer *buf, 5934 u64 parent, int last_ref) 5935 { 5936 struct btrfs_block_group_cache *cache = NULL; 5937 int pin = 1; 5938 int ret; 5939 5940 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5941 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5942 buf->start, buf->len, 5943 parent, root->root_key.objectid, 5944 btrfs_header_level(buf), 5945 BTRFS_DROP_DELAYED_REF, NULL, 0); 5946 BUG_ON(ret); /* -ENOMEM */ 5947 } 5948 5949 if (!last_ref) 5950 return; 5951 5952 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5953 5954 if (btrfs_header_generation(buf) == trans->transid) { 5955 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5956 ret = check_ref_cleanup(trans, root, buf->start); 5957 if (!ret) 5958 goto out; 5959 } 5960 5961 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5962 pin_down_extent(root, cache, buf->start, buf->len, 1); 5963 goto out; 5964 } 5965 5966 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5967 5968 btrfs_add_free_space(cache, buf->start, buf->len); 5969 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5970 pin = 0; 5971 } 5972 out: 5973 if (pin) 5974 add_pinned_bytes(root->fs_info, buf->len, 5975 btrfs_header_level(buf), 5976 root->root_key.objectid); 5977 5978 /* 5979 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5980 * anymore. 5981 */ 5982 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5983 btrfs_put_block_group(cache); 5984 } 5985 5986 /* Can return -ENOMEM */ 5987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5988 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5989 u64 owner, u64 offset, int for_cow) 5990 { 5991 int ret; 5992 struct btrfs_fs_info *fs_info = root->fs_info; 5993 5994 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 5995 5996 /* 5997 * tree log blocks never actually go into the extent allocation 5998 * tree, just update pinning info and exit early. 5999 */ 6000 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6001 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6002 /* unlocks the pinned mutex */ 6003 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6004 ret = 0; 6005 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6006 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6007 num_bytes, 6008 parent, root_objectid, (int)owner, 6009 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6010 } else { 6011 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6012 num_bytes, 6013 parent, root_objectid, owner, 6014 offset, BTRFS_DROP_DELAYED_REF, 6015 NULL, for_cow); 6016 } 6017 return ret; 6018 } 6019 6020 static u64 stripe_align(struct btrfs_root *root, 6021 struct btrfs_block_group_cache *cache, 6022 u64 val, u64 num_bytes) 6023 { 6024 u64 ret = ALIGN(val, root->stripesize); 6025 return ret; 6026 } 6027 6028 /* 6029 * when we wait for progress in the block group caching, its because 6030 * our allocation attempt failed at least once. So, we must sleep 6031 * and let some progress happen before we try again. 6032 * 6033 * This function will sleep at least once waiting for new free space to 6034 * show up, and then it will check the block group free space numbers 6035 * for our min num_bytes. Another option is to have it go ahead 6036 * and look in the rbtree for a free extent of a given size, but this 6037 * is a good start. 6038 * 6039 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6040 * any of the information in this block group. 6041 */ 6042 static noinline void 6043 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6044 u64 num_bytes) 6045 { 6046 struct btrfs_caching_control *caching_ctl; 6047 6048 caching_ctl = get_caching_control(cache); 6049 if (!caching_ctl) 6050 return; 6051 6052 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6053 (cache->free_space_ctl->free_space >= num_bytes)); 6054 6055 put_caching_control(caching_ctl); 6056 } 6057 6058 static noinline int 6059 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6060 { 6061 struct btrfs_caching_control *caching_ctl; 6062 int ret = 0; 6063 6064 caching_ctl = get_caching_control(cache); 6065 if (!caching_ctl) 6066 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6067 6068 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6069 if (cache->cached == BTRFS_CACHE_ERROR) 6070 ret = -EIO; 6071 put_caching_control(caching_ctl); 6072 return ret; 6073 } 6074 6075 int __get_raid_index(u64 flags) 6076 { 6077 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6078 return BTRFS_RAID_RAID10; 6079 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6080 return BTRFS_RAID_RAID1; 6081 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6082 return BTRFS_RAID_DUP; 6083 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6084 return BTRFS_RAID_RAID0; 6085 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6086 return BTRFS_RAID_RAID5; 6087 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6088 return BTRFS_RAID_RAID6; 6089 6090 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6091 } 6092 6093 static int get_block_group_index(struct btrfs_block_group_cache *cache) 6094 { 6095 return __get_raid_index(cache->flags); 6096 } 6097 6098 enum btrfs_loop_type { 6099 LOOP_CACHING_NOWAIT = 0, 6100 LOOP_CACHING_WAIT = 1, 6101 LOOP_ALLOC_CHUNK = 2, 6102 LOOP_NO_EMPTY_SIZE = 3, 6103 }; 6104 6105 /* 6106 * walks the btree of allocated extents and find a hole of a given size. 6107 * The key ins is changed to record the hole: 6108 * ins->objectid == start position 6109 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6110 * ins->offset == the size of the hole. 6111 * Any available blocks before search_start are skipped. 6112 * 6113 * If there is no suitable free space, we will record the max size of 6114 * the free space extent currently. 6115 */ 6116 static noinline int find_free_extent(struct btrfs_root *orig_root, 6117 u64 num_bytes, u64 empty_size, 6118 u64 hint_byte, struct btrfs_key *ins, 6119 u64 flags) 6120 { 6121 int ret = 0; 6122 struct btrfs_root *root = orig_root->fs_info->extent_root; 6123 struct btrfs_free_cluster *last_ptr = NULL; 6124 struct btrfs_block_group_cache *block_group = NULL; 6125 struct btrfs_block_group_cache *used_block_group; 6126 u64 search_start = 0; 6127 u64 max_extent_size = 0; 6128 int empty_cluster = 2 * 1024 * 1024; 6129 struct btrfs_space_info *space_info; 6130 int loop = 0; 6131 int index = __get_raid_index(flags); 6132 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6133 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6134 bool found_uncached_bg = false; 6135 bool failed_cluster_refill = false; 6136 bool failed_alloc = false; 6137 bool use_cluster = true; 6138 bool have_caching_bg = false; 6139 6140 WARN_ON(num_bytes < root->sectorsize); 6141 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6142 ins->objectid = 0; 6143 ins->offset = 0; 6144 6145 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6146 6147 space_info = __find_space_info(root->fs_info, flags); 6148 if (!space_info) { 6149 btrfs_err(root->fs_info, "No space info for %llu", flags); 6150 return -ENOSPC; 6151 } 6152 6153 /* 6154 * If the space info is for both data and metadata it means we have a 6155 * small filesystem and we can't use the clustering stuff. 6156 */ 6157 if (btrfs_mixed_space_info(space_info)) 6158 use_cluster = false; 6159 6160 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6161 last_ptr = &root->fs_info->meta_alloc_cluster; 6162 if (!btrfs_test_opt(root, SSD)) 6163 empty_cluster = 64 * 1024; 6164 } 6165 6166 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6167 btrfs_test_opt(root, SSD)) { 6168 last_ptr = &root->fs_info->data_alloc_cluster; 6169 } 6170 6171 if (last_ptr) { 6172 spin_lock(&last_ptr->lock); 6173 if (last_ptr->block_group) 6174 hint_byte = last_ptr->window_start; 6175 spin_unlock(&last_ptr->lock); 6176 } 6177 6178 search_start = max(search_start, first_logical_byte(root, 0)); 6179 search_start = max(search_start, hint_byte); 6180 6181 if (!last_ptr) 6182 empty_cluster = 0; 6183 6184 if (search_start == hint_byte) { 6185 block_group = btrfs_lookup_block_group(root->fs_info, 6186 search_start); 6187 used_block_group = block_group; 6188 /* 6189 * we don't want to use the block group if it doesn't match our 6190 * allocation bits, or if its not cached. 6191 * 6192 * However if we are re-searching with an ideal block group 6193 * picked out then we don't care that the block group is cached. 6194 */ 6195 if (block_group && block_group_bits(block_group, flags) && 6196 block_group->cached != BTRFS_CACHE_NO) { 6197 down_read(&space_info->groups_sem); 6198 if (list_empty(&block_group->list) || 6199 block_group->ro) { 6200 /* 6201 * someone is removing this block group, 6202 * we can't jump into the have_block_group 6203 * target because our list pointers are not 6204 * valid 6205 */ 6206 btrfs_put_block_group(block_group); 6207 up_read(&space_info->groups_sem); 6208 } else { 6209 index = get_block_group_index(block_group); 6210 goto have_block_group; 6211 } 6212 } else if (block_group) { 6213 btrfs_put_block_group(block_group); 6214 } 6215 } 6216 search: 6217 have_caching_bg = false; 6218 down_read(&space_info->groups_sem); 6219 list_for_each_entry(block_group, &space_info->block_groups[index], 6220 list) { 6221 u64 offset; 6222 int cached; 6223 6224 used_block_group = block_group; 6225 btrfs_get_block_group(block_group); 6226 search_start = block_group->key.objectid; 6227 6228 /* 6229 * this can happen if we end up cycling through all the 6230 * raid types, but we want to make sure we only allocate 6231 * for the proper type. 6232 */ 6233 if (!block_group_bits(block_group, flags)) { 6234 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6235 BTRFS_BLOCK_GROUP_RAID1 | 6236 BTRFS_BLOCK_GROUP_RAID5 | 6237 BTRFS_BLOCK_GROUP_RAID6 | 6238 BTRFS_BLOCK_GROUP_RAID10; 6239 6240 /* 6241 * if they asked for extra copies and this block group 6242 * doesn't provide them, bail. This does allow us to 6243 * fill raid0 from raid1. 6244 */ 6245 if ((flags & extra) && !(block_group->flags & extra)) 6246 goto loop; 6247 } 6248 6249 have_block_group: 6250 cached = block_group_cache_done(block_group); 6251 if (unlikely(!cached)) { 6252 found_uncached_bg = true; 6253 ret = cache_block_group(block_group, 0); 6254 BUG_ON(ret < 0); 6255 ret = 0; 6256 } 6257 6258 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6259 goto loop; 6260 if (unlikely(block_group->ro)) 6261 goto loop; 6262 6263 /* 6264 * Ok we want to try and use the cluster allocator, so 6265 * lets look there 6266 */ 6267 if (last_ptr) { 6268 unsigned long aligned_cluster; 6269 /* 6270 * the refill lock keeps out other 6271 * people trying to start a new cluster 6272 */ 6273 spin_lock(&last_ptr->refill_lock); 6274 used_block_group = last_ptr->block_group; 6275 if (used_block_group != block_group && 6276 (!used_block_group || 6277 used_block_group->ro || 6278 !block_group_bits(used_block_group, flags))) { 6279 used_block_group = block_group; 6280 goto refill_cluster; 6281 } 6282 6283 if (used_block_group != block_group) 6284 btrfs_get_block_group(used_block_group); 6285 6286 offset = btrfs_alloc_from_cluster(used_block_group, 6287 last_ptr, 6288 num_bytes, 6289 used_block_group->key.objectid, 6290 &max_extent_size); 6291 if (offset) { 6292 /* we have a block, we're done */ 6293 spin_unlock(&last_ptr->refill_lock); 6294 trace_btrfs_reserve_extent_cluster(root, 6295 block_group, search_start, num_bytes); 6296 goto checks; 6297 } 6298 6299 WARN_ON(last_ptr->block_group != used_block_group); 6300 if (used_block_group != block_group) { 6301 btrfs_put_block_group(used_block_group); 6302 used_block_group = block_group; 6303 } 6304 refill_cluster: 6305 BUG_ON(used_block_group != block_group); 6306 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6307 * set up a new clusters, so lets just skip it 6308 * and let the allocator find whatever block 6309 * it can find. If we reach this point, we 6310 * will have tried the cluster allocator 6311 * plenty of times and not have found 6312 * anything, so we are likely way too 6313 * fragmented for the clustering stuff to find 6314 * anything. 6315 * 6316 * However, if the cluster is taken from the 6317 * current block group, release the cluster 6318 * first, so that we stand a better chance of 6319 * succeeding in the unclustered 6320 * allocation. */ 6321 if (loop >= LOOP_NO_EMPTY_SIZE && 6322 last_ptr->block_group != block_group) { 6323 spin_unlock(&last_ptr->refill_lock); 6324 goto unclustered_alloc; 6325 } 6326 6327 /* 6328 * this cluster didn't work out, free it and 6329 * start over 6330 */ 6331 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6332 6333 if (loop >= LOOP_NO_EMPTY_SIZE) { 6334 spin_unlock(&last_ptr->refill_lock); 6335 goto unclustered_alloc; 6336 } 6337 6338 aligned_cluster = max_t(unsigned long, 6339 empty_cluster + empty_size, 6340 block_group->full_stripe_len); 6341 6342 /* allocate a cluster in this block group */ 6343 ret = btrfs_find_space_cluster(root, block_group, 6344 last_ptr, search_start, 6345 num_bytes, 6346 aligned_cluster); 6347 if (ret == 0) { 6348 /* 6349 * now pull our allocation out of this 6350 * cluster 6351 */ 6352 offset = btrfs_alloc_from_cluster(block_group, 6353 last_ptr, 6354 num_bytes, 6355 search_start, 6356 &max_extent_size); 6357 if (offset) { 6358 /* we found one, proceed */ 6359 spin_unlock(&last_ptr->refill_lock); 6360 trace_btrfs_reserve_extent_cluster(root, 6361 block_group, search_start, 6362 num_bytes); 6363 goto checks; 6364 } 6365 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6366 && !failed_cluster_refill) { 6367 spin_unlock(&last_ptr->refill_lock); 6368 6369 failed_cluster_refill = true; 6370 wait_block_group_cache_progress(block_group, 6371 num_bytes + empty_cluster + empty_size); 6372 goto have_block_group; 6373 } 6374 6375 /* 6376 * at this point we either didn't find a cluster 6377 * or we weren't able to allocate a block from our 6378 * cluster. Free the cluster we've been trying 6379 * to use, and go to the next block group 6380 */ 6381 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6382 spin_unlock(&last_ptr->refill_lock); 6383 goto loop; 6384 } 6385 6386 unclustered_alloc: 6387 spin_lock(&block_group->free_space_ctl->tree_lock); 6388 if (cached && 6389 block_group->free_space_ctl->free_space < 6390 num_bytes + empty_cluster + empty_size) { 6391 if (block_group->free_space_ctl->free_space > 6392 max_extent_size) 6393 max_extent_size = 6394 block_group->free_space_ctl->free_space; 6395 spin_unlock(&block_group->free_space_ctl->tree_lock); 6396 goto loop; 6397 } 6398 spin_unlock(&block_group->free_space_ctl->tree_lock); 6399 6400 offset = btrfs_find_space_for_alloc(block_group, search_start, 6401 num_bytes, empty_size, 6402 &max_extent_size); 6403 /* 6404 * If we didn't find a chunk, and we haven't failed on this 6405 * block group before, and this block group is in the middle of 6406 * caching and we are ok with waiting, then go ahead and wait 6407 * for progress to be made, and set failed_alloc to true. 6408 * 6409 * If failed_alloc is true then we've already waited on this 6410 * block group once and should move on to the next block group. 6411 */ 6412 if (!offset && !failed_alloc && !cached && 6413 loop > LOOP_CACHING_NOWAIT) { 6414 wait_block_group_cache_progress(block_group, 6415 num_bytes + empty_size); 6416 failed_alloc = true; 6417 goto have_block_group; 6418 } else if (!offset) { 6419 if (!cached) 6420 have_caching_bg = true; 6421 goto loop; 6422 } 6423 checks: 6424 search_start = stripe_align(root, used_block_group, 6425 offset, num_bytes); 6426 6427 /* move on to the next group */ 6428 if (search_start + num_bytes > 6429 used_block_group->key.objectid + used_block_group->key.offset) { 6430 btrfs_add_free_space(used_block_group, offset, num_bytes); 6431 goto loop; 6432 } 6433 6434 if (offset < search_start) 6435 btrfs_add_free_space(used_block_group, offset, 6436 search_start - offset); 6437 BUG_ON(offset > search_start); 6438 6439 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6440 alloc_type); 6441 if (ret == -EAGAIN) { 6442 btrfs_add_free_space(used_block_group, offset, num_bytes); 6443 goto loop; 6444 } 6445 6446 /* we are all good, lets return */ 6447 ins->objectid = search_start; 6448 ins->offset = num_bytes; 6449 6450 trace_btrfs_reserve_extent(orig_root, block_group, 6451 search_start, num_bytes); 6452 if (used_block_group != block_group) 6453 btrfs_put_block_group(used_block_group); 6454 btrfs_put_block_group(block_group); 6455 break; 6456 loop: 6457 failed_cluster_refill = false; 6458 failed_alloc = false; 6459 BUG_ON(index != get_block_group_index(block_group)); 6460 if (used_block_group != block_group) 6461 btrfs_put_block_group(used_block_group); 6462 btrfs_put_block_group(block_group); 6463 } 6464 up_read(&space_info->groups_sem); 6465 6466 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6467 goto search; 6468 6469 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6470 goto search; 6471 6472 /* 6473 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6474 * caching kthreads as we move along 6475 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6476 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6477 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6478 * again 6479 */ 6480 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6481 index = 0; 6482 loop++; 6483 if (loop == LOOP_ALLOC_CHUNK) { 6484 struct btrfs_trans_handle *trans; 6485 6486 trans = btrfs_join_transaction(root); 6487 if (IS_ERR(trans)) { 6488 ret = PTR_ERR(trans); 6489 goto out; 6490 } 6491 6492 ret = do_chunk_alloc(trans, root, flags, 6493 CHUNK_ALLOC_FORCE); 6494 /* 6495 * Do not bail out on ENOSPC since we 6496 * can do more things. 6497 */ 6498 if (ret < 0 && ret != -ENOSPC) 6499 btrfs_abort_transaction(trans, 6500 root, ret); 6501 else 6502 ret = 0; 6503 btrfs_end_transaction(trans, root); 6504 if (ret) 6505 goto out; 6506 } 6507 6508 if (loop == LOOP_NO_EMPTY_SIZE) { 6509 empty_size = 0; 6510 empty_cluster = 0; 6511 } 6512 6513 goto search; 6514 } else if (!ins->objectid) { 6515 ret = -ENOSPC; 6516 } else if (ins->objectid) { 6517 ret = 0; 6518 } 6519 out: 6520 if (ret == -ENOSPC) 6521 ins->offset = max_extent_size; 6522 return ret; 6523 } 6524 6525 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6526 int dump_block_groups) 6527 { 6528 struct btrfs_block_group_cache *cache; 6529 int index = 0; 6530 6531 spin_lock(&info->lock); 6532 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6533 info->flags, 6534 info->total_bytes - info->bytes_used - info->bytes_pinned - 6535 info->bytes_reserved - info->bytes_readonly, 6536 (info->full) ? "" : "not "); 6537 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6538 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6539 info->total_bytes, info->bytes_used, info->bytes_pinned, 6540 info->bytes_reserved, info->bytes_may_use, 6541 info->bytes_readonly); 6542 spin_unlock(&info->lock); 6543 6544 if (!dump_block_groups) 6545 return; 6546 6547 down_read(&info->groups_sem); 6548 again: 6549 list_for_each_entry(cache, &info->block_groups[index], list) { 6550 spin_lock(&cache->lock); 6551 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6552 cache->key.objectid, cache->key.offset, 6553 btrfs_block_group_used(&cache->item), cache->pinned, 6554 cache->reserved, cache->ro ? "[readonly]" : ""); 6555 btrfs_dump_free_space(cache, bytes); 6556 spin_unlock(&cache->lock); 6557 } 6558 if (++index < BTRFS_NR_RAID_TYPES) 6559 goto again; 6560 up_read(&info->groups_sem); 6561 } 6562 6563 int btrfs_reserve_extent(struct btrfs_root *root, 6564 u64 num_bytes, u64 min_alloc_size, 6565 u64 empty_size, u64 hint_byte, 6566 struct btrfs_key *ins, int is_data) 6567 { 6568 bool final_tried = false; 6569 u64 flags; 6570 int ret; 6571 6572 flags = btrfs_get_alloc_profile(root, is_data); 6573 again: 6574 WARN_ON(num_bytes < root->sectorsize); 6575 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6576 flags); 6577 6578 if (ret == -ENOSPC) { 6579 if (!final_tried && ins->offset) { 6580 num_bytes = min(num_bytes >> 1, ins->offset); 6581 num_bytes = round_down(num_bytes, root->sectorsize); 6582 num_bytes = max(num_bytes, min_alloc_size); 6583 if (num_bytes == min_alloc_size) 6584 final_tried = true; 6585 goto again; 6586 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6587 struct btrfs_space_info *sinfo; 6588 6589 sinfo = __find_space_info(root->fs_info, flags); 6590 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6591 flags, num_bytes); 6592 if (sinfo) 6593 dump_space_info(sinfo, num_bytes, 1); 6594 } 6595 } 6596 6597 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6598 6599 return ret; 6600 } 6601 6602 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6603 u64 start, u64 len, int pin) 6604 { 6605 struct btrfs_block_group_cache *cache; 6606 int ret = 0; 6607 6608 cache = btrfs_lookup_block_group(root->fs_info, start); 6609 if (!cache) { 6610 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6611 start); 6612 return -ENOSPC; 6613 } 6614 6615 if (btrfs_test_opt(root, DISCARD)) 6616 ret = btrfs_discard_extent(root, start, len, NULL); 6617 6618 if (pin) 6619 pin_down_extent(root, cache, start, len, 1); 6620 else { 6621 btrfs_add_free_space(cache, start, len); 6622 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6623 } 6624 btrfs_put_block_group(cache); 6625 6626 trace_btrfs_reserved_extent_free(root, start, len); 6627 6628 return ret; 6629 } 6630 6631 int btrfs_free_reserved_extent(struct btrfs_root *root, 6632 u64 start, u64 len) 6633 { 6634 return __btrfs_free_reserved_extent(root, start, len, 0); 6635 } 6636 6637 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6638 u64 start, u64 len) 6639 { 6640 return __btrfs_free_reserved_extent(root, start, len, 1); 6641 } 6642 6643 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6644 struct btrfs_root *root, 6645 u64 parent, u64 root_objectid, 6646 u64 flags, u64 owner, u64 offset, 6647 struct btrfs_key *ins, int ref_mod) 6648 { 6649 int ret; 6650 struct btrfs_fs_info *fs_info = root->fs_info; 6651 struct btrfs_extent_item *extent_item; 6652 struct btrfs_extent_inline_ref *iref; 6653 struct btrfs_path *path; 6654 struct extent_buffer *leaf; 6655 int type; 6656 u32 size; 6657 6658 if (parent > 0) 6659 type = BTRFS_SHARED_DATA_REF_KEY; 6660 else 6661 type = BTRFS_EXTENT_DATA_REF_KEY; 6662 6663 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6664 6665 path = btrfs_alloc_path(); 6666 if (!path) 6667 return -ENOMEM; 6668 6669 path->leave_spinning = 1; 6670 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6671 ins, size); 6672 if (ret) { 6673 btrfs_free_path(path); 6674 return ret; 6675 } 6676 6677 leaf = path->nodes[0]; 6678 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6679 struct btrfs_extent_item); 6680 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6681 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6682 btrfs_set_extent_flags(leaf, extent_item, 6683 flags | BTRFS_EXTENT_FLAG_DATA); 6684 6685 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6686 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6687 if (parent > 0) { 6688 struct btrfs_shared_data_ref *ref; 6689 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6690 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6691 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6692 } else { 6693 struct btrfs_extent_data_ref *ref; 6694 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6695 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6696 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6697 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6698 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6699 } 6700 6701 btrfs_mark_buffer_dirty(path->nodes[0]); 6702 btrfs_free_path(path); 6703 6704 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6705 if (ret) { /* -ENOENT, logic error */ 6706 btrfs_err(fs_info, "update block group failed for %llu %llu", 6707 ins->objectid, ins->offset); 6708 BUG(); 6709 } 6710 return ret; 6711 } 6712 6713 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6714 struct btrfs_root *root, 6715 u64 parent, u64 root_objectid, 6716 u64 flags, struct btrfs_disk_key *key, 6717 int level, struct btrfs_key *ins) 6718 { 6719 int ret; 6720 struct btrfs_fs_info *fs_info = root->fs_info; 6721 struct btrfs_extent_item *extent_item; 6722 struct btrfs_tree_block_info *block_info; 6723 struct btrfs_extent_inline_ref *iref; 6724 struct btrfs_path *path; 6725 struct extent_buffer *leaf; 6726 u32 size = sizeof(*extent_item) + sizeof(*iref); 6727 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6728 SKINNY_METADATA); 6729 6730 if (!skinny_metadata) 6731 size += sizeof(*block_info); 6732 6733 path = btrfs_alloc_path(); 6734 if (!path) 6735 return -ENOMEM; 6736 6737 path->leave_spinning = 1; 6738 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6739 ins, size); 6740 if (ret) { 6741 btrfs_free_path(path); 6742 return ret; 6743 } 6744 6745 leaf = path->nodes[0]; 6746 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6747 struct btrfs_extent_item); 6748 btrfs_set_extent_refs(leaf, extent_item, 1); 6749 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6750 btrfs_set_extent_flags(leaf, extent_item, 6751 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6752 6753 if (skinny_metadata) { 6754 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6755 } else { 6756 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6757 btrfs_set_tree_block_key(leaf, block_info, key); 6758 btrfs_set_tree_block_level(leaf, block_info, level); 6759 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6760 } 6761 6762 if (parent > 0) { 6763 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6764 btrfs_set_extent_inline_ref_type(leaf, iref, 6765 BTRFS_SHARED_BLOCK_REF_KEY); 6766 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6767 } else { 6768 btrfs_set_extent_inline_ref_type(leaf, iref, 6769 BTRFS_TREE_BLOCK_REF_KEY); 6770 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6771 } 6772 6773 btrfs_mark_buffer_dirty(leaf); 6774 btrfs_free_path(path); 6775 6776 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6777 if (ret) { /* -ENOENT, logic error */ 6778 btrfs_err(fs_info, "update block group failed for %llu %llu", 6779 ins->objectid, ins->offset); 6780 BUG(); 6781 } 6782 return ret; 6783 } 6784 6785 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6786 struct btrfs_root *root, 6787 u64 root_objectid, u64 owner, 6788 u64 offset, struct btrfs_key *ins) 6789 { 6790 int ret; 6791 6792 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6793 6794 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6795 ins->offset, 0, 6796 root_objectid, owner, offset, 6797 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6798 return ret; 6799 } 6800 6801 /* 6802 * this is used by the tree logging recovery code. It records that 6803 * an extent has been allocated and makes sure to clear the free 6804 * space cache bits as well 6805 */ 6806 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6807 struct btrfs_root *root, 6808 u64 root_objectid, u64 owner, u64 offset, 6809 struct btrfs_key *ins) 6810 { 6811 int ret; 6812 struct btrfs_block_group_cache *block_group; 6813 6814 /* 6815 * Mixed block groups will exclude before processing the log so we only 6816 * need to do the exlude dance if this fs isn't mixed. 6817 */ 6818 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6819 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6820 if (ret) 6821 return ret; 6822 } 6823 6824 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6825 if (!block_group) 6826 return -EINVAL; 6827 6828 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6829 RESERVE_ALLOC_NO_ACCOUNT); 6830 BUG_ON(ret); /* logic error */ 6831 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6832 0, owner, offset, ins, 1); 6833 btrfs_put_block_group(block_group); 6834 return ret; 6835 } 6836 6837 static struct extent_buffer * 6838 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6839 u64 bytenr, u32 blocksize, int level) 6840 { 6841 struct extent_buffer *buf; 6842 6843 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6844 if (!buf) 6845 return ERR_PTR(-ENOMEM); 6846 btrfs_set_header_generation(buf, trans->transid); 6847 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6848 btrfs_tree_lock(buf); 6849 clean_tree_block(trans, root, buf); 6850 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6851 6852 btrfs_set_lock_blocking(buf); 6853 btrfs_set_buffer_uptodate(buf); 6854 6855 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6856 /* 6857 * we allow two log transactions at a time, use different 6858 * EXENT bit to differentiate dirty pages. 6859 */ 6860 if (root->log_transid % 2 == 0) 6861 set_extent_dirty(&root->dirty_log_pages, buf->start, 6862 buf->start + buf->len - 1, GFP_NOFS); 6863 else 6864 set_extent_new(&root->dirty_log_pages, buf->start, 6865 buf->start + buf->len - 1, GFP_NOFS); 6866 } else { 6867 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6868 buf->start + buf->len - 1, GFP_NOFS); 6869 } 6870 trans->blocks_used++; 6871 /* this returns a buffer locked for blocking */ 6872 return buf; 6873 } 6874 6875 static struct btrfs_block_rsv * 6876 use_block_rsv(struct btrfs_trans_handle *trans, 6877 struct btrfs_root *root, u32 blocksize) 6878 { 6879 struct btrfs_block_rsv *block_rsv; 6880 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6881 int ret; 6882 bool global_updated = false; 6883 6884 block_rsv = get_block_rsv(trans, root); 6885 6886 if (unlikely(block_rsv->size == 0)) 6887 goto try_reserve; 6888 again: 6889 ret = block_rsv_use_bytes(block_rsv, blocksize); 6890 if (!ret) 6891 return block_rsv; 6892 6893 if (block_rsv->failfast) 6894 return ERR_PTR(ret); 6895 6896 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6897 global_updated = true; 6898 update_global_block_rsv(root->fs_info); 6899 goto again; 6900 } 6901 6902 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6903 static DEFINE_RATELIMIT_STATE(_rs, 6904 DEFAULT_RATELIMIT_INTERVAL * 10, 6905 /*DEFAULT_RATELIMIT_BURST*/ 1); 6906 if (__ratelimit(&_rs)) 6907 WARN(1, KERN_DEBUG 6908 "btrfs: block rsv returned %d\n", ret); 6909 } 6910 try_reserve: 6911 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6912 BTRFS_RESERVE_NO_FLUSH); 6913 if (!ret) 6914 return block_rsv; 6915 /* 6916 * If we couldn't reserve metadata bytes try and use some from 6917 * the global reserve if its space type is the same as the global 6918 * reservation. 6919 */ 6920 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6921 block_rsv->space_info == global_rsv->space_info) { 6922 ret = block_rsv_use_bytes(global_rsv, blocksize); 6923 if (!ret) 6924 return global_rsv; 6925 } 6926 return ERR_PTR(ret); 6927 } 6928 6929 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6930 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6931 { 6932 block_rsv_add_bytes(block_rsv, blocksize, 0); 6933 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6934 } 6935 6936 /* 6937 * finds a free extent and does all the dirty work required for allocation 6938 * returns the key for the extent through ins, and a tree buffer for 6939 * the first block of the extent through buf. 6940 * 6941 * returns the tree buffer or NULL. 6942 */ 6943 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6944 struct btrfs_root *root, u32 blocksize, 6945 u64 parent, u64 root_objectid, 6946 struct btrfs_disk_key *key, int level, 6947 u64 hint, u64 empty_size) 6948 { 6949 struct btrfs_key ins; 6950 struct btrfs_block_rsv *block_rsv; 6951 struct extent_buffer *buf; 6952 u64 flags = 0; 6953 int ret; 6954 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6955 SKINNY_METADATA); 6956 6957 block_rsv = use_block_rsv(trans, root, blocksize); 6958 if (IS_ERR(block_rsv)) 6959 return ERR_CAST(block_rsv); 6960 6961 ret = btrfs_reserve_extent(root, blocksize, blocksize, 6962 empty_size, hint, &ins, 0); 6963 if (ret) { 6964 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6965 return ERR_PTR(ret); 6966 } 6967 6968 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6969 blocksize, level); 6970 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6971 6972 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6973 if (parent == 0) 6974 parent = ins.objectid; 6975 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6976 } else 6977 BUG_ON(parent > 0); 6978 6979 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6980 struct btrfs_delayed_extent_op *extent_op; 6981 extent_op = btrfs_alloc_delayed_extent_op(); 6982 BUG_ON(!extent_op); /* -ENOMEM */ 6983 if (key) 6984 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6985 else 6986 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6987 extent_op->flags_to_set = flags; 6988 if (skinny_metadata) 6989 extent_op->update_key = 0; 6990 else 6991 extent_op->update_key = 1; 6992 extent_op->update_flags = 1; 6993 extent_op->is_data = 0; 6994 extent_op->level = level; 6995 6996 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6997 ins.objectid, 6998 ins.offset, parent, root_objectid, 6999 level, BTRFS_ADD_DELAYED_EXTENT, 7000 extent_op, 0); 7001 BUG_ON(ret); /* -ENOMEM */ 7002 } 7003 return buf; 7004 } 7005 7006 struct walk_control { 7007 u64 refs[BTRFS_MAX_LEVEL]; 7008 u64 flags[BTRFS_MAX_LEVEL]; 7009 struct btrfs_key update_progress; 7010 int stage; 7011 int level; 7012 int shared_level; 7013 int update_ref; 7014 int keep_locks; 7015 int reada_slot; 7016 int reada_count; 7017 int for_reloc; 7018 }; 7019 7020 #define DROP_REFERENCE 1 7021 #define UPDATE_BACKREF 2 7022 7023 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7024 struct btrfs_root *root, 7025 struct walk_control *wc, 7026 struct btrfs_path *path) 7027 { 7028 u64 bytenr; 7029 u64 generation; 7030 u64 refs; 7031 u64 flags; 7032 u32 nritems; 7033 u32 blocksize; 7034 struct btrfs_key key; 7035 struct extent_buffer *eb; 7036 int ret; 7037 int slot; 7038 int nread = 0; 7039 7040 if (path->slots[wc->level] < wc->reada_slot) { 7041 wc->reada_count = wc->reada_count * 2 / 3; 7042 wc->reada_count = max(wc->reada_count, 2); 7043 } else { 7044 wc->reada_count = wc->reada_count * 3 / 2; 7045 wc->reada_count = min_t(int, wc->reada_count, 7046 BTRFS_NODEPTRS_PER_BLOCK(root)); 7047 } 7048 7049 eb = path->nodes[wc->level]; 7050 nritems = btrfs_header_nritems(eb); 7051 blocksize = btrfs_level_size(root, wc->level - 1); 7052 7053 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7054 if (nread >= wc->reada_count) 7055 break; 7056 7057 cond_resched(); 7058 bytenr = btrfs_node_blockptr(eb, slot); 7059 generation = btrfs_node_ptr_generation(eb, slot); 7060 7061 if (slot == path->slots[wc->level]) 7062 goto reada; 7063 7064 if (wc->stage == UPDATE_BACKREF && 7065 generation <= root->root_key.offset) 7066 continue; 7067 7068 /* We don't lock the tree block, it's OK to be racy here */ 7069 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7070 wc->level - 1, 1, &refs, 7071 &flags); 7072 /* We don't care about errors in readahead. */ 7073 if (ret < 0) 7074 continue; 7075 BUG_ON(refs == 0); 7076 7077 if (wc->stage == DROP_REFERENCE) { 7078 if (refs == 1) 7079 goto reada; 7080 7081 if (wc->level == 1 && 7082 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7083 continue; 7084 if (!wc->update_ref || 7085 generation <= root->root_key.offset) 7086 continue; 7087 btrfs_node_key_to_cpu(eb, &key, slot); 7088 ret = btrfs_comp_cpu_keys(&key, 7089 &wc->update_progress); 7090 if (ret < 0) 7091 continue; 7092 } else { 7093 if (wc->level == 1 && 7094 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7095 continue; 7096 } 7097 reada: 7098 ret = readahead_tree_block(root, bytenr, blocksize, 7099 generation); 7100 if (ret) 7101 break; 7102 nread++; 7103 } 7104 wc->reada_slot = slot; 7105 } 7106 7107 /* 7108 * helper to process tree block while walking down the tree. 7109 * 7110 * when wc->stage == UPDATE_BACKREF, this function updates 7111 * back refs for pointers in the block. 7112 * 7113 * NOTE: return value 1 means we should stop walking down. 7114 */ 7115 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7116 struct btrfs_root *root, 7117 struct btrfs_path *path, 7118 struct walk_control *wc, int lookup_info) 7119 { 7120 int level = wc->level; 7121 struct extent_buffer *eb = path->nodes[level]; 7122 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7123 int ret; 7124 7125 if (wc->stage == UPDATE_BACKREF && 7126 btrfs_header_owner(eb) != root->root_key.objectid) 7127 return 1; 7128 7129 /* 7130 * when reference count of tree block is 1, it won't increase 7131 * again. once full backref flag is set, we never clear it. 7132 */ 7133 if (lookup_info && 7134 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7135 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7136 BUG_ON(!path->locks[level]); 7137 ret = btrfs_lookup_extent_info(trans, root, 7138 eb->start, level, 1, 7139 &wc->refs[level], 7140 &wc->flags[level]); 7141 BUG_ON(ret == -ENOMEM); 7142 if (ret) 7143 return ret; 7144 BUG_ON(wc->refs[level] == 0); 7145 } 7146 7147 if (wc->stage == DROP_REFERENCE) { 7148 if (wc->refs[level] > 1) 7149 return 1; 7150 7151 if (path->locks[level] && !wc->keep_locks) { 7152 btrfs_tree_unlock_rw(eb, path->locks[level]); 7153 path->locks[level] = 0; 7154 } 7155 return 0; 7156 } 7157 7158 /* wc->stage == UPDATE_BACKREF */ 7159 if (!(wc->flags[level] & flag)) { 7160 BUG_ON(!path->locks[level]); 7161 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7162 BUG_ON(ret); /* -ENOMEM */ 7163 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7164 BUG_ON(ret); /* -ENOMEM */ 7165 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7166 eb->len, flag, 7167 btrfs_header_level(eb), 0); 7168 BUG_ON(ret); /* -ENOMEM */ 7169 wc->flags[level] |= flag; 7170 } 7171 7172 /* 7173 * the block is shared by multiple trees, so it's not good to 7174 * keep the tree lock 7175 */ 7176 if (path->locks[level] && level > 0) { 7177 btrfs_tree_unlock_rw(eb, path->locks[level]); 7178 path->locks[level] = 0; 7179 } 7180 return 0; 7181 } 7182 7183 /* 7184 * helper to process tree block pointer. 7185 * 7186 * when wc->stage == DROP_REFERENCE, this function checks 7187 * reference count of the block pointed to. if the block 7188 * is shared and we need update back refs for the subtree 7189 * rooted at the block, this function changes wc->stage to 7190 * UPDATE_BACKREF. if the block is shared and there is no 7191 * need to update back, this function drops the reference 7192 * to the block. 7193 * 7194 * NOTE: return value 1 means we should stop walking down. 7195 */ 7196 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7197 struct btrfs_root *root, 7198 struct btrfs_path *path, 7199 struct walk_control *wc, int *lookup_info) 7200 { 7201 u64 bytenr; 7202 u64 generation; 7203 u64 parent; 7204 u32 blocksize; 7205 struct btrfs_key key; 7206 struct extent_buffer *next; 7207 int level = wc->level; 7208 int reada = 0; 7209 int ret = 0; 7210 7211 generation = btrfs_node_ptr_generation(path->nodes[level], 7212 path->slots[level]); 7213 /* 7214 * if the lower level block was created before the snapshot 7215 * was created, we know there is no need to update back refs 7216 * for the subtree 7217 */ 7218 if (wc->stage == UPDATE_BACKREF && 7219 generation <= root->root_key.offset) { 7220 *lookup_info = 1; 7221 return 1; 7222 } 7223 7224 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7225 blocksize = btrfs_level_size(root, level - 1); 7226 7227 next = btrfs_find_tree_block(root, bytenr, blocksize); 7228 if (!next) { 7229 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7230 if (!next) 7231 return -ENOMEM; 7232 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7233 level - 1); 7234 reada = 1; 7235 } 7236 btrfs_tree_lock(next); 7237 btrfs_set_lock_blocking(next); 7238 7239 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7240 &wc->refs[level - 1], 7241 &wc->flags[level - 1]); 7242 if (ret < 0) { 7243 btrfs_tree_unlock(next); 7244 return ret; 7245 } 7246 7247 if (unlikely(wc->refs[level - 1] == 0)) { 7248 btrfs_err(root->fs_info, "Missing references."); 7249 BUG(); 7250 } 7251 *lookup_info = 0; 7252 7253 if (wc->stage == DROP_REFERENCE) { 7254 if (wc->refs[level - 1] > 1) { 7255 if (level == 1 && 7256 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7257 goto skip; 7258 7259 if (!wc->update_ref || 7260 generation <= root->root_key.offset) 7261 goto skip; 7262 7263 btrfs_node_key_to_cpu(path->nodes[level], &key, 7264 path->slots[level]); 7265 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7266 if (ret < 0) 7267 goto skip; 7268 7269 wc->stage = UPDATE_BACKREF; 7270 wc->shared_level = level - 1; 7271 } 7272 } else { 7273 if (level == 1 && 7274 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7275 goto skip; 7276 } 7277 7278 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7279 btrfs_tree_unlock(next); 7280 free_extent_buffer(next); 7281 next = NULL; 7282 *lookup_info = 1; 7283 } 7284 7285 if (!next) { 7286 if (reada && level == 1) 7287 reada_walk_down(trans, root, wc, path); 7288 next = read_tree_block(root, bytenr, blocksize, generation); 7289 if (!next || !extent_buffer_uptodate(next)) { 7290 free_extent_buffer(next); 7291 return -EIO; 7292 } 7293 btrfs_tree_lock(next); 7294 btrfs_set_lock_blocking(next); 7295 } 7296 7297 level--; 7298 BUG_ON(level != btrfs_header_level(next)); 7299 path->nodes[level] = next; 7300 path->slots[level] = 0; 7301 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7302 wc->level = level; 7303 if (wc->level == 1) 7304 wc->reada_slot = 0; 7305 return 0; 7306 skip: 7307 wc->refs[level - 1] = 0; 7308 wc->flags[level - 1] = 0; 7309 if (wc->stage == DROP_REFERENCE) { 7310 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7311 parent = path->nodes[level]->start; 7312 } else { 7313 BUG_ON(root->root_key.objectid != 7314 btrfs_header_owner(path->nodes[level])); 7315 parent = 0; 7316 } 7317 7318 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7319 root->root_key.objectid, level - 1, 0, 0); 7320 BUG_ON(ret); /* -ENOMEM */ 7321 } 7322 btrfs_tree_unlock(next); 7323 free_extent_buffer(next); 7324 *lookup_info = 1; 7325 return 1; 7326 } 7327 7328 /* 7329 * helper to process tree block while walking up the tree. 7330 * 7331 * when wc->stage == DROP_REFERENCE, this function drops 7332 * reference count on the block. 7333 * 7334 * when wc->stage == UPDATE_BACKREF, this function changes 7335 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7336 * to UPDATE_BACKREF previously while processing the block. 7337 * 7338 * NOTE: return value 1 means we should stop walking up. 7339 */ 7340 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7341 struct btrfs_root *root, 7342 struct btrfs_path *path, 7343 struct walk_control *wc) 7344 { 7345 int ret; 7346 int level = wc->level; 7347 struct extent_buffer *eb = path->nodes[level]; 7348 u64 parent = 0; 7349 7350 if (wc->stage == UPDATE_BACKREF) { 7351 BUG_ON(wc->shared_level < level); 7352 if (level < wc->shared_level) 7353 goto out; 7354 7355 ret = find_next_key(path, level + 1, &wc->update_progress); 7356 if (ret > 0) 7357 wc->update_ref = 0; 7358 7359 wc->stage = DROP_REFERENCE; 7360 wc->shared_level = -1; 7361 path->slots[level] = 0; 7362 7363 /* 7364 * check reference count again if the block isn't locked. 7365 * we should start walking down the tree again if reference 7366 * count is one. 7367 */ 7368 if (!path->locks[level]) { 7369 BUG_ON(level == 0); 7370 btrfs_tree_lock(eb); 7371 btrfs_set_lock_blocking(eb); 7372 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7373 7374 ret = btrfs_lookup_extent_info(trans, root, 7375 eb->start, level, 1, 7376 &wc->refs[level], 7377 &wc->flags[level]); 7378 if (ret < 0) { 7379 btrfs_tree_unlock_rw(eb, path->locks[level]); 7380 path->locks[level] = 0; 7381 return ret; 7382 } 7383 BUG_ON(wc->refs[level] == 0); 7384 if (wc->refs[level] == 1) { 7385 btrfs_tree_unlock_rw(eb, path->locks[level]); 7386 path->locks[level] = 0; 7387 return 1; 7388 } 7389 } 7390 } 7391 7392 /* wc->stage == DROP_REFERENCE */ 7393 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7394 7395 if (wc->refs[level] == 1) { 7396 if (level == 0) { 7397 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7398 ret = btrfs_dec_ref(trans, root, eb, 1, 7399 wc->for_reloc); 7400 else 7401 ret = btrfs_dec_ref(trans, root, eb, 0, 7402 wc->for_reloc); 7403 BUG_ON(ret); /* -ENOMEM */ 7404 } 7405 /* make block locked assertion in clean_tree_block happy */ 7406 if (!path->locks[level] && 7407 btrfs_header_generation(eb) == trans->transid) { 7408 btrfs_tree_lock(eb); 7409 btrfs_set_lock_blocking(eb); 7410 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7411 } 7412 clean_tree_block(trans, root, eb); 7413 } 7414 7415 if (eb == root->node) { 7416 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7417 parent = eb->start; 7418 else 7419 BUG_ON(root->root_key.objectid != 7420 btrfs_header_owner(eb)); 7421 } else { 7422 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7423 parent = path->nodes[level + 1]->start; 7424 else 7425 BUG_ON(root->root_key.objectid != 7426 btrfs_header_owner(path->nodes[level + 1])); 7427 } 7428 7429 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7430 out: 7431 wc->refs[level] = 0; 7432 wc->flags[level] = 0; 7433 return 0; 7434 } 7435 7436 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7437 struct btrfs_root *root, 7438 struct btrfs_path *path, 7439 struct walk_control *wc) 7440 { 7441 int level = wc->level; 7442 int lookup_info = 1; 7443 int ret; 7444 7445 while (level >= 0) { 7446 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7447 if (ret > 0) 7448 break; 7449 7450 if (level == 0) 7451 break; 7452 7453 if (path->slots[level] >= 7454 btrfs_header_nritems(path->nodes[level])) 7455 break; 7456 7457 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7458 if (ret > 0) { 7459 path->slots[level]++; 7460 continue; 7461 } else if (ret < 0) 7462 return ret; 7463 level = wc->level; 7464 } 7465 return 0; 7466 } 7467 7468 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7469 struct btrfs_root *root, 7470 struct btrfs_path *path, 7471 struct walk_control *wc, int max_level) 7472 { 7473 int level = wc->level; 7474 int ret; 7475 7476 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7477 while (level < max_level && path->nodes[level]) { 7478 wc->level = level; 7479 if (path->slots[level] + 1 < 7480 btrfs_header_nritems(path->nodes[level])) { 7481 path->slots[level]++; 7482 return 0; 7483 } else { 7484 ret = walk_up_proc(trans, root, path, wc); 7485 if (ret > 0) 7486 return 0; 7487 7488 if (path->locks[level]) { 7489 btrfs_tree_unlock_rw(path->nodes[level], 7490 path->locks[level]); 7491 path->locks[level] = 0; 7492 } 7493 free_extent_buffer(path->nodes[level]); 7494 path->nodes[level] = NULL; 7495 level++; 7496 } 7497 } 7498 return 1; 7499 } 7500 7501 /* 7502 * drop a subvolume tree. 7503 * 7504 * this function traverses the tree freeing any blocks that only 7505 * referenced by the tree. 7506 * 7507 * when a shared tree block is found. this function decreases its 7508 * reference count by one. if update_ref is true, this function 7509 * also make sure backrefs for the shared block and all lower level 7510 * blocks are properly updated. 7511 * 7512 * If called with for_reloc == 0, may exit early with -EAGAIN 7513 */ 7514 int btrfs_drop_snapshot(struct btrfs_root *root, 7515 struct btrfs_block_rsv *block_rsv, int update_ref, 7516 int for_reloc) 7517 { 7518 struct btrfs_path *path; 7519 struct btrfs_trans_handle *trans; 7520 struct btrfs_root *tree_root = root->fs_info->tree_root; 7521 struct btrfs_root_item *root_item = &root->root_item; 7522 struct walk_control *wc; 7523 struct btrfs_key key; 7524 int err = 0; 7525 int ret; 7526 int level; 7527 bool root_dropped = false; 7528 7529 path = btrfs_alloc_path(); 7530 if (!path) { 7531 err = -ENOMEM; 7532 goto out; 7533 } 7534 7535 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7536 if (!wc) { 7537 btrfs_free_path(path); 7538 err = -ENOMEM; 7539 goto out; 7540 } 7541 7542 trans = btrfs_start_transaction(tree_root, 0); 7543 if (IS_ERR(trans)) { 7544 err = PTR_ERR(trans); 7545 goto out_free; 7546 } 7547 7548 if (block_rsv) 7549 trans->block_rsv = block_rsv; 7550 7551 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7552 level = btrfs_header_level(root->node); 7553 path->nodes[level] = btrfs_lock_root_node(root); 7554 btrfs_set_lock_blocking(path->nodes[level]); 7555 path->slots[level] = 0; 7556 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7557 memset(&wc->update_progress, 0, 7558 sizeof(wc->update_progress)); 7559 } else { 7560 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7561 memcpy(&wc->update_progress, &key, 7562 sizeof(wc->update_progress)); 7563 7564 level = root_item->drop_level; 7565 BUG_ON(level == 0); 7566 path->lowest_level = level; 7567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7568 path->lowest_level = 0; 7569 if (ret < 0) { 7570 err = ret; 7571 goto out_end_trans; 7572 } 7573 WARN_ON(ret > 0); 7574 7575 /* 7576 * unlock our path, this is safe because only this 7577 * function is allowed to delete this snapshot 7578 */ 7579 btrfs_unlock_up_safe(path, 0); 7580 7581 level = btrfs_header_level(root->node); 7582 while (1) { 7583 btrfs_tree_lock(path->nodes[level]); 7584 btrfs_set_lock_blocking(path->nodes[level]); 7585 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7586 7587 ret = btrfs_lookup_extent_info(trans, root, 7588 path->nodes[level]->start, 7589 level, 1, &wc->refs[level], 7590 &wc->flags[level]); 7591 if (ret < 0) { 7592 err = ret; 7593 goto out_end_trans; 7594 } 7595 BUG_ON(wc->refs[level] == 0); 7596 7597 if (level == root_item->drop_level) 7598 break; 7599 7600 btrfs_tree_unlock(path->nodes[level]); 7601 path->locks[level] = 0; 7602 WARN_ON(wc->refs[level] != 1); 7603 level--; 7604 } 7605 } 7606 7607 wc->level = level; 7608 wc->shared_level = -1; 7609 wc->stage = DROP_REFERENCE; 7610 wc->update_ref = update_ref; 7611 wc->keep_locks = 0; 7612 wc->for_reloc = for_reloc; 7613 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7614 7615 while (1) { 7616 7617 ret = walk_down_tree(trans, root, path, wc); 7618 if (ret < 0) { 7619 err = ret; 7620 break; 7621 } 7622 7623 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7624 if (ret < 0) { 7625 err = ret; 7626 break; 7627 } 7628 7629 if (ret > 0) { 7630 BUG_ON(wc->stage != DROP_REFERENCE); 7631 break; 7632 } 7633 7634 if (wc->stage == DROP_REFERENCE) { 7635 level = wc->level; 7636 btrfs_node_key(path->nodes[level], 7637 &root_item->drop_progress, 7638 path->slots[level]); 7639 root_item->drop_level = level; 7640 } 7641 7642 BUG_ON(wc->level == 0); 7643 if (btrfs_should_end_transaction(trans, tree_root) || 7644 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7645 ret = btrfs_update_root(trans, tree_root, 7646 &root->root_key, 7647 root_item); 7648 if (ret) { 7649 btrfs_abort_transaction(trans, tree_root, ret); 7650 err = ret; 7651 goto out_end_trans; 7652 } 7653 7654 btrfs_end_transaction_throttle(trans, tree_root); 7655 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7656 pr_debug("btrfs: drop snapshot early exit\n"); 7657 err = -EAGAIN; 7658 goto out_free; 7659 } 7660 7661 trans = btrfs_start_transaction(tree_root, 0); 7662 if (IS_ERR(trans)) { 7663 err = PTR_ERR(trans); 7664 goto out_free; 7665 } 7666 if (block_rsv) 7667 trans->block_rsv = block_rsv; 7668 } 7669 } 7670 btrfs_release_path(path); 7671 if (err) 7672 goto out_end_trans; 7673 7674 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7675 if (ret) { 7676 btrfs_abort_transaction(trans, tree_root, ret); 7677 goto out_end_trans; 7678 } 7679 7680 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7681 ret = btrfs_find_root(tree_root, &root->root_key, path, 7682 NULL, NULL); 7683 if (ret < 0) { 7684 btrfs_abort_transaction(trans, tree_root, ret); 7685 err = ret; 7686 goto out_end_trans; 7687 } else if (ret > 0) { 7688 /* if we fail to delete the orphan item this time 7689 * around, it'll get picked up the next time. 7690 * 7691 * The most common failure here is just -ENOENT. 7692 */ 7693 btrfs_del_orphan_item(trans, tree_root, 7694 root->root_key.objectid); 7695 } 7696 } 7697 7698 if (root->in_radix) { 7699 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7700 } else { 7701 free_extent_buffer(root->node); 7702 free_extent_buffer(root->commit_root); 7703 btrfs_put_fs_root(root); 7704 } 7705 root_dropped = true; 7706 out_end_trans: 7707 btrfs_end_transaction_throttle(trans, tree_root); 7708 out_free: 7709 kfree(wc); 7710 btrfs_free_path(path); 7711 out: 7712 /* 7713 * So if we need to stop dropping the snapshot for whatever reason we 7714 * need to make sure to add it back to the dead root list so that we 7715 * keep trying to do the work later. This also cleans up roots if we 7716 * don't have it in the radix (like when we recover after a power fail 7717 * or unmount) so we don't leak memory. 7718 */ 7719 if (!for_reloc && root_dropped == false) 7720 btrfs_add_dead_root(root); 7721 if (err) 7722 btrfs_std_error(root->fs_info, err); 7723 return err; 7724 } 7725 7726 /* 7727 * drop subtree rooted at tree block 'node'. 7728 * 7729 * NOTE: this function will unlock and release tree block 'node' 7730 * only used by relocation code 7731 */ 7732 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7733 struct btrfs_root *root, 7734 struct extent_buffer *node, 7735 struct extent_buffer *parent) 7736 { 7737 struct btrfs_path *path; 7738 struct walk_control *wc; 7739 int level; 7740 int parent_level; 7741 int ret = 0; 7742 int wret; 7743 7744 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7745 7746 path = btrfs_alloc_path(); 7747 if (!path) 7748 return -ENOMEM; 7749 7750 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7751 if (!wc) { 7752 btrfs_free_path(path); 7753 return -ENOMEM; 7754 } 7755 7756 btrfs_assert_tree_locked(parent); 7757 parent_level = btrfs_header_level(parent); 7758 extent_buffer_get(parent); 7759 path->nodes[parent_level] = parent; 7760 path->slots[parent_level] = btrfs_header_nritems(parent); 7761 7762 btrfs_assert_tree_locked(node); 7763 level = btrfs_header_level(node); 7764 path->nodes[level] = node; 7765 path->slots[level] = 0; 7766 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7767 7768 wc->refs[parent_level] = 1; 7769 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7770 wc->level = level; 7771 wc->shared_level = -1; 7772 wc->stage = DROP_REFERENCE; 7773 wc->update_ref = 0; 7774 wc->keep_locks = 1; 7775 wc->for_reloc = 1; 7776 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7777 7778 while (1) { 7779 wret = walk_down_tree(trans, root, path, wc); 7780 if (wret < 0) { 7781 ret = wret; 7782 break; 7783 } 7784 7785 wret = walk_up_tree(trans, root, path, wc, parent_level); 7786 if (wret < 0) 7787 ret = wret; 7788 if (wret != 0) 7789 break; 7790 } 7791 7792 kfree(wc); 7793 btrfs_free_path(path); 7794 return ret; 7795 } 7796 7797 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7798 { 7799 u64 num_devices; 7800 u64 stripped; 7801 7802 /* 7803 * if restripe for this chunk_type is on pick target profile and 7804 * return, otherwise do the usual balance 7805 */ 7806 stripped = get_restripe_target(root->fs_info, flags); 7807 if (stripped) 7808 return extended_to_chunk(stripped); 7809 7810 /* 7811 * we add in the count of missing devices because we want 7812 * to make sure that any RAID levels on a degraded FS 7813 * continue to be honored. 7814 */ 7815 num_devices = root->fs_info->fs_devices->rw_devices + 7816 root->fs_info->fs_devices->missing_devices; 7817 7818 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7819 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7820 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7821 7822 if (num_devices == 1) { 7823 stripped |= BTRFS_BLOCK_GROUP_DUP; 7824 stripped = flags & ~stripped; 7825 7826 /* turn raid0 into single device chunks */ 7827 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7828 return stripped; 7829 7830 /* turn mirroring into duplication */ 7831 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7832 BTRFS_BLOCK_GROUP_RAID10)) 7833 return stripped | BTRFS_BLOCK_GROUP_DUP; 7834 } else { 7835 /* they already had raid on here, just return */ 7836 if (flags & stripped) 7837 return flags; 7838 7839 stripped |= BTRFS_BLOCK_GROUP_DUP; 7840 stripped = flags & ~stripped; 7841 7842 /* switch duplicated blocks with raid1 */ 7843 if (flags & BTRFS_BLOCK_GROUP_DUP) 7844 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7845 7846 /* this is drive concat, leave it alone */ 7847 } 7848 7849 return flags; 7850 } 7851 7852 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7853 { 7854 struct btrfs_space_info *sinfo = cache->space_info; 7855 u64 num_bytes; 7856 u64 min_allocable_bytes; 7857 int ret = -ENOSPC; 7858 7859 7860 /* 7861 * We need some metadata space and system metadata space for 7862 * allocating chunks in some corner cases until we force to set 7863 * it to be readonly. 7864 */ 7865 if ((sinfo->flags & 7866 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7867 !force) 7868 min_allocable_bytes = 1 * 1024 * 1024; 7869 else 7870 min_allocable_bytes = 0; 7871 7872 spin_lock(&sinfo->lock); 7873 spin_lock(&cache->lock); 7874 7875 if (cache->ro) { 7876 ret = 0; 7877 goto out; 7878 } 7879 7880 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7881 cache->bytes_super - btrfs_block_group_used(&cache->item); 7882 7883 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7884 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7885 min_allocable_bytes <= sinfo->total_bytes) { 7886 sinfo->bytes_readonly += num_bytes; 7887 cache->ro = 1; 7888 ret = 0; 7889 } 7890 out: 7891 spin_unlock(&cache->lock); 7892 spin_unlock(&sinfo->lock); 7893 return ret; 7894 } 7895 7896 int btrfs_set_block_group_ro(struct btrfs_root *root, 7897 struct btrfs_block_group_cache *cache) 7898 7899 { 7900 struct btrfs_trans_handle *trans; 7901 u64 alloc_flags; 7902 int ret; 7903 7904 BUG_ON(cache->ro); 7905 7906 trans = btrfs_join_transaction(root); 7907 if (IS_ERR(trans)) 7908 return PTR_ERR(trans); 7909 7910 alloc_flags = update_block_group_flags(root, cache->flags); 7911 if (alloc_flags != cache->flags) { 7912 ret = do_chunk_alloc(trans, root, alloc_flags, 7913 CHUNK_ALLOC_FORCE); 7914 if (ret < 0) 7915 goto out; 7916 } 7917 7918 ret = set_block_group_ro(cache, 0); 7919 if (!ret) 7920 goto out; 7921 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7922 ret = do_chunk_alloc(trans, root, alloc_flags, 7923 CHUNK_ALLOC_FORCE); 7924 if (ret < 0) 7925 goto out; 7926 ret = set_block_group_ro(cache, 0); 7927 out: 7928 btrfs_end_transaction(trans, root); 7929 return ret; 7930 } 7931 7932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7933 struct btrfs_root *root, u64 type) 7934 { 7935 u64 alloc_flags = get_alloc_profile(root, type); 7936 return do_chunk_alloc(trans, root, alloc_flags, 7937 CHUNK_ALLOC_FORCE); 7938 } 7939 7940 /* 7941 * helper to account the unused space of all the readonly block group in the 7942 * list. takes mirrors into account. 7943 */ 7944 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7945 { 7946 struct btrfs_block_group_cache *block_group; 7947 u64 free_bytes = 0; 7948 int factor; 7949 7950 list_for_each_entry(block_group, groups_list, list) { 7951 spin_lock(&block_group->lock); 7952 7953 if (!block_group->ro) { 7954 spin_unlock(&block_group->lock); 7955 continue; 7956 } 7957 7958 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7959 BTRFS_BLOCK_GROUP_RAID10 | 7960 BTRFS_BLOCK_GROUP_DUP)) 7961 factor = 2; 7962 else 7963 factor = 1; 7964 7965 free_bytes += (block_group->key.offset - 7966 btrfs_block_group_used(&block_group->item)) * 7967 factor; 7968 7969 spin_unlock(&block_group->lock); 7970 } 7971 7972 return free_bytes; 7973 } 7974 7975 /* 7976 * helper to account the unused space of all the readonly block group in the 7977 * space_info. takes mirrors into account. 7978 */ 7979 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7980 { 7981 int i; 7982 u64 free_bytes = 0; 7983 7984 spin_lock(&sinfo->lock); 7985 7986 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7987 if (!list_empty(&sinfo->block_groups[i])) 7988 free_bytes += __btrfs_get_ro_block_group_free_space( 7989 &sinfo->block_groups[i]); 7990 7991 spin_unlock(&sinfo->lock); 7992 7993 return free_bytes; 7994 } 7995 7996 void btrfs_set_block_group_rw(struct btrfs_root *root, 7997 struct btrfs_block_group_cache *cache) 7998 { 7999 struct btrfs_space_info *sinfo = cache->space_info; 8000 u64 num_bytes; 8001 8002 BUG_ON(!cache->ro); 8003 8004 spin_lock(&sinfo->lock); 8005 spin_lock(&cache->lock); 8006 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8007 cache->bytes_super - btrfs_block_group_used(&cache->item); 8008 sinfo->bytes_readonly -= num_bytes; 8009 cache->ro = 0; 8010 spin_unlock(&cache->lock); 8011 spin_unlock(&sinfo->lock); 8012 } 8013 8014 /* 8015 * checks to see if its even possible to relocate this block group. 8016 * 8017 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8018 * ok to go ahead and try. 8019 */ 8020 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8021 { 8022 struct btrfs_block_group_cache *block_group; 8023 struct btrfs_space_info *space_info; 8024 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8025 struct btrfs_device *device; 8026 struct btrfs_trans_handle *trans; 8027 u64 min_free; 8028 u64 dev_min = 1; 8029 u64 dev_nr = 0; 8030 u64 target; 8031 int index; 8032 int full = 0; 8033 int ret = 0; 8034 8035 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8036 8037 /* odd, couldn't find the block group, leave it alone */ 8038 if (!block_group) 8039 return -1; 8040 8041 min_free = btrfs_block_group_used(&block_group->item); 8042 8043 /* no bytes used, we're good */ 8044 if (!min_free) 8045 goto out; 8046 8047 space_info = block_group->space_info; 8048 spin_lock(&space_info->lock); 8049 8050 full = space_info->full; 8051 8052 /* 8053 * if this is the last block group we have in this space, we can't 8054 * relocate it unless we're able to allocate a new chunk below. 8055 * 8056 * Otherwise, we need to make sure we have room in the space to handle 8057 * all of the extents from this block group. If we can, we're good 8058 */ 8059 if ((space_info->total_bytes != block_group->key.offset) && 8060 (space_info->bytes_used + space_info->bytes_reserved + 8061 space_info->bytes_pinned + space_info->bytes_readonly + 8062 min_free < space_info->total_bytes)) { 8063 spin_unlock(&space_info->lock); 8064 goto out; 8065 } 8066 spin_unlock(&space_info->lock); 8067 8068 /* 8069 * ok we don't have enough space, but maybe we have free space on our 8070 * devices to allocate new chunks for relocation, so loop through our 8071 * alloc devices and guess if we have enough space. if this block 8072 * group is going to be restriped, run checks against the target 8073 * profile instead of the current one. 8074 */ 8075 ret = -1; 8076 8077 /* 8078 * index: 8079 * 0: raid10 8080 * 1: raid1 8081 * 2: dup 8082 * 3: raid0 8083 * 4: single 8084 */ 8085 target = get_restripe_target(root->fs_info, block_group->flags); 8086 if (target) { 8087 index = __get_raid_index(extended_to_chunk(target)); 8088 } else { 8089 /* 8090 * this is just a balance, so if we were marked as full 8091 * we know there is no space for a new chunk 8092 */ 8093 if (full) 8094 goto out; 8095 8096 index = get_block_group_index(block_group); 8097 } 8098 8099 if (index == BTRFS_RAID_RAID10) { 8100 dev_min = 4; 8101 /* Divide by 2 */ 8102 min_free >>= 1; 8103 } else if (index == BTRFS_RAID_RAID1) { 8104 dev_min = 2; 8105 } else if (index == BTRFS_RAID_DUP) { 8106 /* Multiply by 2 */ 8107 min_free <<= 1; 8108 } else if (index == BTRFS_RAID_RAID0) { 8109 dev_min = fs_devices->rw_devices; 8110 do_div(min_free, dev_min); 8111 } 8112 8113 /* We need to do this so that we can look at pending chunks */ 8114 trans = btrfs_join_transaction(root); 8115 if (IS_ERR(trans)) { 8116 ret = PTR_ERR(trans); 8117 goto out; 8118 } 8119 8120 mutex_lock(&root->fs_info->chunk_mutex); 8121 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8122 u64 dev_offset; 8123 8124 /* 8125 * check to make sure we can actually find a chunk with enough 8126 * space to fit our block group in. 8127 */ 8128 if (device->total_bytes > device->bytes_used + min_free && 8129 !device->is_tgtdev_for_dev_replace) { 8130 ret = find_free_dev_extent(trans, device, min_free, 8131 &dev_offset, NULL); 8132 if (!ret) 8133 dev_nr++; 8134 8135 if (dev_nr >= dev_min) 8136 break; 8137 8138 ret = -1; 8139 } 8140 } 8141 mutex_unlock(&root->fs_info->chunk_mutex); 8142 btrfs_end_transaction(trans, root); 8143 out: 8144 btrfs_put_block_group(block_group); 8145 return ret; 8146 } 8147 8148 static int find_first_block_group(struct btrfs_root *root, 8149 struct btrfs_path *path, struct btrfs_key *key) 8150 { 8151 int ret = 0; 8152 struct btrfs_key found_key; 8153 struct extent_buffer *leaf; 8154 int slot; 8155 8156 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8157 if (ret < 0) 8158 goto out; 8159 8160 while (1) { 8161 slot = path->slots[0]; 8162 leaf = path->nodes[0]; 8163 if (slot >= btrfs_header_nritems(leaf)) { 8164 ret = btrfs_next_leaf(root, path); 8165 if (ret == 0) 8166 continue; 8167 if (ret < 0) 8168 goto out; 8169 break; 8170 } 8171 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8172 8173 if (found_key.objectid >= key->objectid && 8174 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8175 ret = 0; 8176 goto out; 8177 } 8178 path->slots[0]++; 8179 } 8180 out: 8181 return ret; 8182 } 8183 8184 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8185 { 8186 struct btrfs_block_group_cache *block_group; 8187 u64 last = 0; 8188 8189 while (1) { 8190 struct inode *inode; 8191 8192 block_group = btrfs_lookup_first_block_group(info, last); 8193 while (block_group) { 8194 spin_lock(&block_group->lock); 8195 if (block_group->iref) 8196 break; 8197 spin_unlock(&block_group->lock); 8198 block_group = next_block_group(info->tree_root, 8199 block_group); 8200 } 8201 if (!block_group) { 8202 if (last == 0) 8203 break; 8204 last = 0; 8205 continue; 8206 } 8207 8208 inode = block_group->inode; 8209 block_group->iref = 0; 8210 block_group->inode = NULL; 8211 spin_unlock(&block_group->lock); 8212 iput(inode); 8213 last = block_group->key.objectid + block_group->key.offset; 8214 btrfs_put_block_group(block_group); 8215 } 8216 } 8217 8218 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8219 { 8220 struct btrfs_block_group_cache *block_group; 8221 struct btrfs_space_info *space_info; 8222 struct btrfs_caching_control *caching_ctl; 8223 struct rb_node *n; 8224 8225 down_write(&info->extent_commit_sem); 8226 while (!list_empty(&info->caching_block_groups)) { 8227 caching_ctl = list_entry(info->caching_block_groups.next, 8228 struct btrfs_caching_control, list); 8229 list_del(&caching_ctl->list); 8230 put_caching_control(caching_ctl); 8231 } 8232 up_write(&info->extent_commit_sem); 8233 8234 spin_lock(&info->block_group_cache_lock); 8235 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8236 block_group = rb_entry(n, struct btrfs_block_group_cache, 8237 cache_node); 8238 rb_erase(&block_group->cache_node, 8239 &info->block_group_cache_tree); 8240 spin_unlock(&info->block_group_cache_lock); 8241 8242 down_write(&block_group->space_info->groups_sem); 8243 list_del(&block_group->list); 8244 up_write(&block_group->space_info->groups_sem); 8245 8246 if (block_group->cached == BTRFS_CACHE_STARTED) 8247 wait_block_group_cache_done(block_group); 8248 8249 /* 8250 * We haven't cached this block group, which means we could 8251 * possibly have excluded extents on this block group. 8252 */ 8253 if (block_group->cached == BTRFS_CACHE_NO || 8254 block_group->cached == BTRFS_CACHE_ERROR) 8255 free_excluded_extents(info->extent_root, block_group); 8256 8257 btrfs_remove_free_space_cache(block_group); 8258 btrfs_put_block_group(block_group); 8259 8260 spin_lock(&info->block_group_cache_lock); 8261 } 8262 spin_unlock(&info->block_group_cache_lock); 8263 8264 /* now that all the block groups are freed, go through and 8265 * free all the space_info structs. This is only called during 8266 * the final stages of unmount, and so we know nobody is 8267 * using them. We call synchronize_rcu() once before we start, 8268 * just to be on the safe side. 8269 */ 8270 synchronize_rcu(); 8271 8272 release_global_block_rsv(info); 8273 8274 while(!list_empty(&info->space_info)) { 8275 space_info = list_entry(info->space_info.next, 8276 struct btrfs_space_info, 8277 list); 8278 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8279 if (space_info->bytes_pinned > 0 || 8280 space_info->bytes_reserved > 0 || 8281 space_info->bytes_may_use > 0) { 8282 WARN_ON(1); 8283 dump_space_info(space_info, 0, 0); 8284 } 8285 } 8286 percpu_counter_destroy(&space_info->total_bytes_pinned); 8287 list_del(&space_info->list); 8288 kfree(space_info); 8289 } 8290 return 0; 8291 } 8292 8293 static void __link_block_group(struct btrfs_space_info *space_info, 8294 struct btrfs_block_group_cache *cache) 8295 { 8296 int index = get_block_group_index(cache); 8297 8298 down_write(&space_info->groups_sem); 8299 list_add_tail(&cache->list, &space_info->block_groups[index]); 8300 up_write(&space_info->groups_sem); 8301 } 8302 8303 int btrfs_read_block_groups(struct btrfs_root *root) 8304 { 8305 struct btrfs_path *path; 8306 int ret; 8307 struct btrfs_block_group_cache *cache; 8308 struct btrfs_fs_info *info = root->fs_info; 8309 struct btrfs_space_info *space_info; 8310 struct btrfs_key key; 8311 struct btrfs_key found_key; 8312 struct extent_buffer *leaf; 8313 int need_clear = 0; 8314 u64 cache_gen; 8315 8316 root = info->extent_root; 8317 key.objectid = 0; 8318 key.offset = 0; 8319 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8320 path = btrfs_alloc_path(); 8321 if (!path) 8322 return -ENOMEM; 8323 path->reada = 1; 8324 8325 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8326 if (btrfs_test_opt(root, SPACE_CACHE) && 8327 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8328 need_clear = 1; 8329 if (btrfs_test_opt(root, CLEAR_CACHE)) 8330 need_clear = 1; 8331 8332 while (1) { 8333 ret = find_first_block_group(root, path, &key); 8334 if (ret > 0) 8335 break; 8336 if (ret != 0) 8337 goto error; 8338 leaf = path->nodes[0]; 8339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8340 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8341 if (!cache) { 8342 ret = -ENOMEM; 8343 goto error; 8344 } 8345 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8346 GFP_NOFS); 8347 if (!cache->free_space_ctl) { 8348 kfree(cache); 8349 ret = -ENOMEM; 8350 goto error; 8351 } 8352 8353 atomic_set(&cache->count, 1); 8354 spin_lock_init(&cache->lock); 8355 cache->fs_info = info; 8356 INIT_LIST_HEAD(&cache->list); 8357 INIT_LIST_HEAD(&cache->cluster_list); 8358 8359 if (need_clear) { 8360 /* 8361 * When we mount with old space cache, we need to 8362 * set BTRFS_DC_CLEAR and set dirty flag. 8363 * 8364 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8365 * truncate the old free space cache inode and 8366 * setup a new one. 8367 * b) Setting 'dirty flag' makes sure that we flush 8368 * the new space cache info onto disk. 8369 */ 8370 cache->disk_cache_state = BTRFS_DC_CLEAR; 8371 if (btrfs_test_opt(root, SPACE_CACHE)) 8372 cache->dirty = 1; 8373 } 8374 8375 read_extent_buffer(leaf, &cache->item, 8376 btrfs_item_ptr_offset(leaf, path->slots[0]), 8377 sizeof(cache->item)); 8378 memcpy(&cache->key, &found_key, sizeof(found_key)); 8379 8380 key.objectid = found_key.objectid + found_key.offset; 8381 btrfs_release_path(path); 8382 cache->flags = btrfs_block_group_flags(&cache->item); 8383 cache->sectorsize = root->sectorsize; 8384 cache->full_stripe_len = btrfs_full_stripe_len(root, 8385 &root->fs_info->mapping_tree, 8386 found_key.objectid); 8387 btrfs_init_free_space_ctl(cache); 8388 8389 /* 8390 * We need to exclude the super stripes now so that the space 8391 * info has super bytes accounted for, otherwise we'll think 8392 * we have more space than we actually do. 8393 */ 8394 ret = exclude_super_stripes(root, cache); 8395 if (ret) { 8396 /* 8397 * We may have excluded something, so call this just in 8398 * case. 8399 */ 8400 free_excluded_extents(root, cache); 8401 kfree(cache->free_space_ctl); 8402 kfree(cache); 8403 goto error; 8404 } 8405 8406 /* 8407 * check for two cases, either we are full, and therefore 8408 * don't need to bother with the caching work since we won't 8409 * find any space, or we are empty, and we can just add all 8410 * the space in and be done with it. This saves us _alot_ of 8411 * time, particularly in the full case. 8412 */ 8413 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8414 cache->last_byte_to_unpin = (u64)-1; 8415 cache->cached = BTRFS_CACHE_FINISHED; 8416 free_excluded_extents(root, cache); 8417 } else if (btrfs_block_group_used(&cache->item) == 0) { 8418 cache->last_byte_to_unpin = (u64)-1; 8419 cache->cached = BTRFS_CACHE_FINISHED; 8420 add_new_free_space(cache, root->fs_info, 8421 found_key.objectid, 8422 found_key.objectid + 8423 found_key.offset); 8424 free_excluded_extents(root, cache); 8425 } 8426 8427 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8428 if (ret) { 8429 btrfs_remove_free_space_cache(cache); 8430 btrfs_put_block_group(cache); 8431 goto error; 8432 } 8433 8434 ret = update_space_info(info, cache->flags, found_key.offset, 8435 btrfs_block_group_used(&cache->item), 8436 &space_info); 8437 if (ret) { 8438 btrfs_remove_free_space_cache(cache); 8439 spin_lock(&info->block_group_cache_lock); 8440 rb_erase(&cache->cache_node, 8441 &info->block_group_cache_tree); 8442 spin_unlock(&info->block_group_cache_lock); 8443 btrfs_put_block_group(cache); 8444 goto error; 8445 } 8446 8447 cache->space_info = space_info; 8448 spin_lock(&cache->space_info->lock); 8449 cache->space_info->bytes_readonly += cache->bytes_super; 8450 spin_unlock(&cache->space_info->lock); 8451 8452 __link_block_group(space_info, cache); 8453 8454 set_avail_alloc_bits(root->fs_info, cache->flags); 8455 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8456 set_block_group_ro(cache, 1); 8457 } 8458 8459 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8460 if (!(get_alloc_profile(root, space_info->flags) & 8461 (BTRFS_BLOCK_GROUP_RAID10 | 8462 BTRFS_BLOCK_GROUP_RAID1 | 8463 BTRFS_BLOCK_GROUP_RAID5 | 8464 BTRFS_BLOCK_GROUP_RAID6 | 8465 BTRFS_BLOCK_GROUP_DUP))) 8466 continue; 8467 /* 8468 * avoid allocating from un-mirrored block group if there are 8469 * mirrored block groups. 8470 */ 8471 list_for_each_entry(cache, 8472 &space_info->block_groups[BTRFS_RAID_RAID0], 8473 list) 8474 set_block_group_ro(cache, 1); 8475 list_for_each_entry(cache, 8476 &space_info->block_groups[BTRFS_RAID_SINGLE], 8477 list) 8478 set_block_group_ro(cache, 1); 8479 } 8480 8481 init_global_block_rsv(info); 8482 ret = 0; 8483 error: 8484 btrfs_free_path(path); 8485 return ret; 8486 } 8487 8488 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8489 struct btrfs_root *root) 8490 { 8491 struct btrfs_block_group_cache *block_group, *tmp; 8492 struct btrfs_root *extent_root = root->fs_info->extent_root; 8493 struct btrfs_block_group_item item; 8494 struct btrfs_key key; 8495 int ret = 0; 8496 8497 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8498 new_bg_list) { 8499 list_del_init(&block_group->new_bg_list); 8500 8501 if (ret) 8502 continue; 8503 8504 spin_lock(&block_group->lock); 8505 memcpy(&item, &block_group->item, sizeof(item)); 8506 memcpy(&key, &block_group->key, sizeof(key)); 8507 spin_unlock(&block_group->lock); 8508 8509 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8510 sizeof(item)); 8511 if (ret) 8512 btrfs_abort_transaction(trans, extent_root, ret); 8513 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8514 key.objectid, key.offset); 8515 if (ret) 8516 btrfs_abort_transaction(trans, extent_root, ret); 8517 } 8518 } 8519 8520 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8521 struct btrfs_root *root, u64 bytes_used, 8522 u64 type, u64 chunk_objectid, u64 chunk_offset, 8523 u64 size) 8524 { 8525 int ret; 8526 struct btrfs_root *extent_root; 8527 struct btrfs_block_group_cache *cache; 8528 8529 extent_root = root->fs_info->extent_root; 8530 8531 root->fs_info->last_trans_log_full_commit = trans->transid; 8532 8533 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8534 if (!cache) 8535 return -ENOMEM; 8536 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8537 GFP_NOFS); 8538 if (!cache->free_space_ctl) { 8539 kfree(cache); 8540 return -ENOMEM; 8541 } 8542 8543 cache->key.objectid = chunk_offset; 8544 cache->key.offset = size; 8545 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8546 cache->sectorsize = root->sectorsize; 8547 cache->fs_info = root->fs_info; 8548 cache->full_stripe_len = btrfs_full_stripe_len(root, 8549 &root->fs_info->mapping_tree, 8550 chunk_offset); 8551 8552 atomic_set(&cache->count, 1); 8553 spin_lock_init(&cache->lock); 8554 INIT_LIST_HEAD(&cache->list); 8555 INIT_LIST_HEAD(&cache->cluster_list); 8556 INIT_LIST_HEAD(&cache->new_bg_list); 8557 8558 btrfs_init_free_space_ctl(cache); 8559 8560 btrfs_set_block_group_used(&cache->item, bytes_used); 8561 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8562 cache->flags = type; 8563 btrfs_set_block_group_flags(&cache->item, type); 8564 8565 cache->last_byte_to_unpin = (u64)-1; 8566 cache->cached = BTRFS_CACHE_FINISHED; 8567 ret = exclude_super_stripes(root, cache); 8568 if (ret) { 8569 /* 8570 * We may have excluded something, so call this just in 8571 * case. 8572 */ 8573 free_excluded_extents(root, cache); 8574 kfree(cache->free_space_ctl); 8575 kfree(cache); 8576 return ret; 8577 } 8578 8579 add_new_free_space(cache, root->fs_info, chunk_offset, 8580 chunk_offset + size); 8581 8582 free_excluded_extents(root, cache); 8583 8584 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8585 if (ret) { 8586 btrfs_remove_free_space_cache(cache); 8587 btrfs_put_block_group(cache); 8588 return ret; 8589 } 8590 8591 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8592 &cache->space_info); 8593 if (ret) { 8594 btrfs_remove_free_space_cache(cache); 8595 spin_lock(&root->fs_info->block_group_cache_lock); 8596 rb_erase(&cache->cache_node, 8597 &root->fs_info->block_group_cache_tree); 8598 spin_unlock(&root->fs_info->block_group_cache_lock); 8599 btrfs_put_block_group(cache); 8600 return ret; 8601 } 8602 update_global_block_rsv(root->fs_info); 8603 8604 spin_lock(&cache->space_info->lock); 8605 cache->space_info->bytes_readonly += cache->bytes_super; 8606 spin_unlock(&cache->space_info->lock); 8607 8608 __link_block_group(cache->space_info, cache); 8609 8610 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8611 8612 set_avail_alloc_bits(extent_root->fs_info, type); 8613 8614 return 0; 8615 } 8616 8617 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8618 { 8619 u64 extra_flags = chunk_to_extended(flags) & 8620 BTRFS_EXTENDED_PROFILE_MASK; 8621 8622 write_seqlock(&fs_info->profiles_lock); 8623 if (flags & BTRFS_BLOCK_GROUP_DATA) 8624 fs_info->avail_data_alloc_bits &= ~extra_flags; 8625 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8626 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8627 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8628 fs_info->avail_system_alloc_bits &= ~extra_flags; 8629 write_sequnlock(&fs_info->profiles_lock); 8630 } 8631 8632 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8633 struct btrfs_root *root, u64 group_start) 8634 { 8635 struct btrfs_path *path; 8636 struct btrfs_block_group_cache *block_group; 8637 struct btrfs_free_cluster *cluster; 8638 struct btrfs_root *tree_root = root->fs_info->tree_root; 8639 struct btrfs_key key; 8640 struct inode *inode; 8641 int ret; 8642 int index; 8643 int factor; 8644 8645 root = root->fs_info->extent_root; 8646 8647 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8648 BUG_ON(!block_group); 8649 BUG_ON(!block_group->ro); 8650 8651 /* 8652 * Free the reserved super bytes from this block group before 8653 * remove it. 8654 */ 8655 free_excluded_extents(root, block_group); 8656 8657 memcpy(&key, &block_group->key, sizeof(key)); 8658 index = get_block_group_index(block_group); 8659 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8660 BTRFS_BLOCK_GROUP_RAID1 | 8661 BTRFS_BLOCK_GROUP_RAID10)) 8662 factor = 2; 8663 else 8664 factor = 1; 8665 8666 /* make sure this block group isn't part of an allocation cluster */ 8667 cluster = &root->fs_info->data_alloc_cluster; 8668 spin_lock(&cluster->refill_lock); 8669 btrfs_return_cluster_to_free_space(block_group, cluster); 8670 spin_unlock(&cluster->refill_lock); 8671 8672 /* 8673 * make sure this block group isn't part of a metadata 8674 * allocation cluster 8675 */ 8676 cluster = &root->fs_info->meta_alloc_cluster; 8677 spin_lock(&cluster->refill_lock); 8678 btrfs_return_cluster_to_free_space(block_group, cluster); 8679 spin_unlock(&cluster->refill_lock); 8680 8681 path = btrfs_alloc_path(); 8682 if (!path) { 8683 ret = -ENOMEM; 8684 goto out; 8685 } 8686 8687 inode = lookup_free_space_inode(tree_root, block_group, path); 8688 if (!IS_ERR(inode)) { 8689 ret = btrfs_orphan_add(trans, inode); 8690 if (ret) { 8691 btrfs_add_delayed_iput(inode); 8692 goto out; 8693 } 8694 clear_nlink(inode); 8695 /* One for the block groups ref */ 8696 spin_lock(&block_group->lock); 8697 if (block_group->iref) { 8698 block_group->iref = 0; 8699 block_group->inode = NULL; 8700 spin_unlock(&block_group->lock); 8701 iput(inode); 8702 } else { 8703 spin_unlock(&block_group->lock); 8704 } 8705 /* One for our lookup ref */ 8706 btrfs_add_delayed_iput(inode); 8707 } 8708 8709 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8710 key.offset = block_group->key.objectid; 8711 key.type = 0; 8712 8713 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8714 if (ret < 0) 8715 goto out; 8716 if (ret > 0) 8717 btrfs_release_path(path); 8718 if (ret == 0) { 8719 ret = btrfs_del_item(trans, tree_root, path); 8720 if (ret) 8721 goto out; 8722 btrfs_release_path(path); 8723 } 8724 8725 spin_lock(&root->fs_info->block_group_cache_lock); 8726 rb_erase(&block_group->cache_node, 8727 &root->fs_info->block_group_cache_tree); 8728 8729 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8730 root->fs_info->first_logical_byte = (u64)-1; 8731 spin_unlock(&root->fs_info->block_group_cache_lock); 8732 8733 down_write(&block_group->space_info->groups_sem); 8734 /* 8735 * we must use list_del_init so people can check to see if they 8736 * are still on the list after taking the semaphore 8737 */ 8738 list_del_init(&block_group->list); 8739 if (list_empty(&block_group->space_info->block_groups[index])) 8740 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8741 up_write(&block_group->space_info->groups_sem); 8742 8743 if (block_group->cached == BTRFS_CACHE_STARTED) 8744 wait_block_group_cache_done(block_group); 8745 8746 btrfs_remove_free_space_cache(block_group); 8747 8748 spin_lock(&block_group->space_info->lock); 8749 block_group->space_info->total_bytes -= block_group->key.offset; 8750 block_group->space_info->bytes_readonly -= block_group->key.offset; 8751 block_group->space_info->disk_total -= block_group->key.offset * factor; 8752 spin_unlock(&block_group->space_info->lock); 8753 8754 memcpy(&key, &block_group->key, sizeof(key)); 8755 8756 btrfs_clear_space_info_full(root->fs_info); 8757 8758 btrfs_put_block_group(block_group); 8759 btrfs_put_block_group(block_group); 8760 8761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8762 if (ret > 0) 8763 ret = -EIO; 8764 if (ret < 0) 8765 goto out; 8766 8767 ret = btrfs_del_item(trans, root, path); 8768 out: 8769 btrfs_free_path(path); 8770 return ret; 8771 } 8772 8773 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8774 { 8775 struct btrfs_space_info *space_info; 8776 struct btrfs_super_block *disk_super; 8777 u64 features; 8778 u64 flags; 8779 int mixed = 0; 8780 int ret; 8781 8782 disk_super = fs_info->super_copy; 8783 if (!btrfs_super_root(disk_super)) 8784 return 1; 8785 8786 features = btrfs_super_incompat_flags(disk_super); 8787 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8788 mixed = 1; 8789 8790 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8791 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8792 if (ret) 8793 goto out; 8794 8795 if (mixed) { 8796 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8797 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8798 } else { 8799 flags = BTRFS_BLOCK_GROUP_METADATA; 8800 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8801 if (ret) 8802 goto out; 8803 8804 flags = BTRFS_BLOCK_GROUP_DATA; 8805 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8806 } 8807 out: 8808 return ret; 8809 } 8810 8811 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8812 { 8813 return unpin_extent_range(root, start, end); 8814 } 8815 8816 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8817 u64 num_bytes, u64 *actual_bytes) 8818 { 8819 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8820 } 8821 8822 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8823 { 8824 struct btrfs_fs_info *fs_info = root->fs_info; 8825 struct btrfs_block_group_cache *cache = NULL; 8826 u64 group_trimmed; 8827 u64 start; 8828 u64 end; 8829 u64 trimmed = 0; 8830 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8831 int ret = 0; 8832 8833 /* 8834 * try to trim all FS space, our block group may start from non-zero. 8835 */ 8836 if (range->len == total_bytes) 8837 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8838 else 8839 cache = btrfs_lookup_block_group(fs_info, range->start); 8840 8841 while (cache) { 8842 if (cache->key.objectid >= (range->start + range->len)) { 8843 btrfs_put_block_group(cache); 8844 break; 8845 } 8846 8847 start = max(range->start, cache->key.objectid); 8848 end = min(range->start + range->len, 8849 cache->key.objectid + cache->key.offset); 8850 8851 if (end - start >= range->minlen) { 8852 if (!block_group_cache_done(cache)) { 8853 ret = cache_block_group(cache, 0); 8854 if (ret) { 8855 btrfs_put_block_group(cache); 8856 break; 8857 } 8858 ret = wait_block_group_cache_done(cache); 8859 if (ret) { 8860 btrfs_put_block_group(cache); 8861 break; 8862 } 8863 } 8864 ret = btrfs_trim_block_group(cache, 8865 &group_trimmed, 8866 start, 8867 end, 8868 range->minlen); 8869 8870 trimmed += group_trimmed; 8871 if (ret) { 8872 btrfs_put_block_group(cache); 8873 break; 8874 } 8875 } 8876 8877 cache = next_block_group(fs_info->tree_root, cache); 8878 } 8879 8880 range->len = trimmed; 8881 return ret; 8882 } 8883