1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 static int update_block_group(struct btrfs_trans_handle *trans, 64 struct btrfs_root *root, u64 bytenr, 65 u64 num_bytes, int alloc); 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_root *root, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_root *extent_root, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 91 int dump_block_groups); 92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 93 u64 ram_bytes, u64 num_bytes, int delalloc); 94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 95 u64 num_bytes, int delalloc); 96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 97 u64 num_bytes); 98 int btrfs_pin_extent(struct btrfs_root *root, 99 u64 bytenr, u64 num_bytes, int reserved); 100 static int __reserve_metadata_bytes(struct btrfs_root *root, 101 struct btrfs_space_info *space_info, 102 u64 orig_bytes, 103 enum btrfs_reserve_flush_enum flush); 104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 105 struct btrfs_space_info *space_info, 106 u64 num_bytes); 107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 108 struct btrfs_space_info *space_info, 109 u64 num_bytes); 110 111 static noinline int 112 block_group_cache_done(struct btrfs_block_group_cache *cache) 113 { 114 smp_mb(); 115 return cache->cached == BTRFS_CACHE_FINISHED || 116 cache->cached == BTRFS_CACHE_ERROR; 117 } 118 119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 120 { 121 return (cache->flags & bits) == bits; 122 } 123 124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 125 { 126 atomic_inc(&cache->count); 127 } 128 129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 130 { 131 if (atomic_dec_and_test(&cache->count)) { 132 WARN_ON(cache->pinned > 0); 133 WARN_ON(cache->reserved > 0); 134 kfree(cache->free_space_ctl); 135 kfree(cache); 136 } 137 } 138 139 /* 140 * this adds the block group to the fs_info rb tree for the block group 141 * cache 142 */ 143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 144 struct btrfs_block_group_cache *block_group) 145 { 146 struct rb_node **p; 147 struct rb_node *parent = NULL; 148 struct btrfs_block_group_cache *cache; 149 150 spin_lock(&info->block_group_cache_lock); 151 p = &info->block_group_cache_tree.rb_node; 152 153 while (*p) { 154 parent = *p; 155 cache = rb_entry(parent, struct btrfs_block_group_cache, 156 cache_node); 157 if (block_group->key.objectid < cache->key.objectid) { 158 p = &(*p)->rb_left; 159 } else if (block_group->key.objectid > cache->key.objectid) { 160 p = &(*p)->rb_right; 161 } else { 162 spin_unlock(&info->block_group_cache_lock); 163 return -EEXIST; 164 } 165 } 166 167 rb_link_node(&block_group->cache_node, parent, p); 168 rb_insert_color(&block_group->cache_node, 169 &info->block_group_cache_tree); 170 171 if (info->first_logical_byte > block_group->key.objectid) 172 info->first_logical_byte = block_group->key.objectid; 173 174 spin_unlock(&info->block_group_cache_lock); 175 176 return 0; 177 } 178 179 /* 180 * This will return the block group at or after bytenr if contains is 0, else 181 * it will return the block group that contains the bytenr 182 */ 183 static struct btrfs_block_group_cache * 184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 185 int contains) 186 { 187 struct btrfs_block_group_cache *cache, *ret = NULL; 188 struct rb_node *n; 189 u64 end, start; 190 191 spin_lock(&info->block_group_cache_lock); 192 n = info->block_group_cache_tree.rb_node; 193 194 while (n) { 195 cache = rb_entry(n, struct btrfs_block_group_cache, 196 cache_node); 197 end = cache->key.objectid + cache->key.offset - 1; 198 start = cache->key.objectid; 199 200 if (bytenr < start) { 201 if (!contains && (!ret || start < ret->key.objectid)) 202 ret = cache; 203 n = n->rb_left; 204 } else if (bytenr > start) { 205 if (contains && bytenr <= end) { 206 ret = cache; 207 break; 208 } 209 n = n->rb_right; 210 } else { 211 ret = cache; 212 break; 213 } 214 } 215 if (ret) { 216 btrfs_get_block_group(ret); 217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 218 info->first_logical_byte = ret->key.objectid; 219 } 220 spin_unlock(&info->block_group_cache_lock); 221 222 return ret; 223 } 224 225 static int add_excluded_extent(struct btrfs_root *root, 226 u64 start, u64 num_bytes) 227 { 228 u64 end = start + num_bytes - 1; 229 set_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE); 231 set_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE); 233 return 0; 234 } 235 236 static void free_excluded_extents(struct btrfs_root *root, 237 struct btrfs_block_group_cache *cache) 238 { 239 u64 start, end; 240 241 start = cache->key.objectid; 242 end = start + cache->key.offset - 1; 243 244 clear_extent_bits(&root->fs_info->freed_extents[0], 245 start, end, EXTENT_UPTODATE); 246 clear_extent_bits(&root->fs_info->freed_extents[1], 247 start, end, EXTENT_UPTODATE); 248 } 249 250 static int exclude_super_stripes(struct btrfs_root *root, 251 struct btrfs_block_group_cache *cache) 252 { 253 u64 bytenr; 254 u64 *logical; 255 int stripe_len; 256 int i, nr, ret; 257 258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 260 cache->bytes_super += stripe_len; 261 ret = add_excluded_extent(root, cache->key.objectid, 262 stripe_len); 263 if (ret) 264 return ret; 265 } 266 267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 268 bytenr = btrfs_sb_offset(i); 269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 270 cache->key.objectid, bytenr, 271 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(root, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 atomic_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (atomic_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_root *root, 333 struct btrfs_block_group_cache *block_group) 334 { 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 root->nodesize : root->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group; 398 struct btrfs_fs_info *fs_info; 399 struct btrfs_root *extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 block_group = caching_ctl->block_group; 410 fs_info = block_group->fs_info; 411 extent_root = fs_info->extent_root; 412 413 path = btrfs_alloc_path(); 414 if (!path) 415 return -ENOMEM; 416 417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 418 419 #ifdef CONFIG_BTRFS_DEBUG 420 /* 421 * If we're fragmenting we don't want to make anybody think we can 422 * allocate from this block group until we've had a chance to fragment 423 * the free space. 424 */ 425 if (btrfs_should_fragment_free_space(extent_root, block_group)) 426 wakeup = false; 427 #endif 428 /* 429 * We don't want to deadlock with somebody trying to allocate a new 430 * extent for the extent root while also trying to search the extent 431 * root to add free space. So we skip locking and search the commit 432 * root, since its read-only 433 */ 434 path->skip_locking = 1; 435 path->search_commit_root = 1; 436 path->reada = READA_FORWARD; 437 438 key.objectid = last; 439 key.offset = 0; 440 key.type = BTRFS_EXTENT_ITEM_KEY; 441 442 next: 443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 444 if (ret < 0) 445 goto out; 446 447 leaf = path->nodes[0]; 448 nritems = btrfs_header_nritems(leaf); 449 450 while (1) { 451 if (btrfs_fs_closing(fs_info) > 1) { 452 last = (u64)-1; 453 break; 454 } 455 456 if (path->slots[0] < nritems) { 457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 458 } else { 459 ret = find_next_key(path, 0, &key); 460 if (ret) 461 break; 462 463 if (need_resched() || 464 rwsem_is_contended(&fs_info->commit_root_sem)) { 465 if (wakeup) 466 caching_ctl->progress = last; 467 btrfs_release_path(path); 468 up_read(&fs_info->commit_root_sem); 469 mutex_unlock(&caching_ctl->mutex); 470 cond_resched(); 471 mutex_lock(&caching_ctl->mutex); 472 down_read(&fs_info->commit_root_sem); 473 goto next; 474 } 475 476 ret = btrfs_next_leaf(extent_root, path); 477 if (ret < 0) 478 goto out; 479 if (ret) 480 break; 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 continue; 484 } 485 486 if (key.objectid < last) { 487 key.objectid = last; 488 key.offset = 0; 489 key.type = BTRFS_EXTENT_ITEM_KEY; 490 491 if (wakeup) 492 caching_ctl->progress = last; 493 btrfs_release_path(path); 494 goto next; 495 } 496 497 if (key.objectid < block_group->key.objectid) { 498 path->slots[0]++; 499 continue; 500 } 501 502 if (key.objectid >= block_group->key.objectid + 503 block_group->key.offset) 504 break; 505 506 if (key.type == BTRFS_EXTENT_ITEM_KEY || 507 key.type == BTRFS_METADATA_ITEM_KEY) { 508 total_found += add_new_free_space(block_group, 509 fs_info, last, 510 key.objectid); 511 if (key.type == BTRFS_METADATA_ITEM_KEY) 512 last = key.objectid + 513 fs_info->tree_root->nodesize; 514 else 515 last = key.objectid + key.offset; 516 517 if (total_found > CACHING_CTL_WAKE_UP) { 518 total_found = 0; 519 if (wakeup) 520 wake_up(&caching_ctl->wait); 521 } 522 } 523 path->slots[0]++; 524 } 525 ret = 0; 526 527 total_found += add_new_free_space(block_group, fs_info, last, 528 block_group->key.objectid + 529 block_group->key.offset); 530 caching_ctl->progress = (u64)-1; 531 532 out: 533 btrfs_free_path(path); 534 return ret; 535 } 536 537 static noinline void caching_thread(struct btrfs_work *work) 538 { 539 struct btrfs_block_group_cache *block_group; 540 struct btrfs_fs_info *fs_info; 541 struct btrfs_caching_control *caching_ctl; 542 struct btrfs_root *extent_root; 543 int ret; 544 545 caching_ctl = container_of(work, struct btrfs_caching_control, work); 546 block_group = caching_ctl->block_group; 547 fs_info = block_group->fs_info; 548 extent_root = fs_info->extent_root; 549 550 mutex_lock(&caching_ctl->mutex); 551 down_read(&fs_info->commit_root_sem); 552 553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 554 ret = load_free_space_tree(caching_ctl); 555 else 556 ret = load_extent_tree_free(caching_ctl); 557 558 spin_lock(&block_group->lock); 559 block_group->caching_ctl = NULL; 560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 561 spin_unlock(&block_group->lock); 562 563 #ifdef CONFIG_BTRFS_DEBUG 564 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 565 u64 bytes_used; 566 567 spin_lock(&block_group->space_info->lock); 568 spin_lock(&block_group->lock); 569 bytes_used = block_group->key.offset - 570 btrfs_block_group_used(&block_group->item); 571 block_group->space_info->bytes_used += bytes_used >> 1; 572 spin_unlock(&block_group->lock); 573 spin_unlock(&block_group->space_info->lock); 574 fragment_free_space(extent_root, block_group); 575 } 576 #endif 577 578 caching_ctl->progress = (u64)-1; 579 580 up_read(&fs_info->commit_root_sem); 581 free_excluded_extents(fs_info->extent_root, block_group); 582 mutex_unlock(&caching_ctl->mutex); 583 584 wake_up(&caching_ctl->wait); 585 586 put_caching_control(caching_ctl); 587 btrfs_put_block_group(block_group); 588 } 589 590 static int cache_block_group(struct btrfs_block_group_cache *cache, 591 int load_cache_only) 592 { 593 DEFINE_WAIT(wait); 594 struct btrfs_fs_info *fs_info = cache->fs_info; 595 struct btrfs_caching_control *caching_ctl; 596 int ret = 0; 597 598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 599 if (!caching_ctl) 600 return -ENOMEM; 601 602 INIT_LIST_HEAD(&caching_ctl->list); 603 mutex_init(&caching_ctl->mutex); 604 init_waitqueue_head(&caching_ctl->wait); 605 caching_ctl->block_group = cache; 606 caching_ctl->progress = cache->key.objectid; 607 atomic_set(&caching_ctl->count, 1); 608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 609 caching_thread, NULL, NULL); 610 611 spin_lock(&cache->lock); 612 /* 613 * This should be a rare occasion, but this could happen I think in the 614 * case where one thread starts to load the space cache info, and then 615 * some other thread starts a transaction commit which tries to do an 616 * allocation while the other thread is still loading the space cache 617 * info. The previous loop should have kept us from choosing this block 618 * group, but if we've moved to the state where we will wait on caching 619 * block groups we need to first check if we're doing a fast load here, 620 * so we can wait for it to finish, otherwise we could end up allocating 621 * from a block group who's cache gets evicted for one reason or 622 * another. 623 */ 624 while (cache->cached == BTRFS_CACHE_FAST) { 625 struct btrfs_caching_control *ctl; 626 627 ctl = cache->caching_ctl; 628 atomic_inc(&ctl->count); 629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 630 spin_unlock(&cache->lock); 631 632 schedule(); 633 634 finish_wait(&ctl->wait, &wait); 635 put_caching_control(ctl); 636 spin_lock(&cache->lock); 637 } 638 639 if (cache->cached != BTRFS_CACHE_NO) { 640 spin_unlock(&cache->lock); 641 kfree(caching_ctl); 642 return 0; 643 } 644 WARN_ON(cache->caching_ctl); 645 cache->caching_ctl = caching_ctl; 646 cache->cached = BTRFS_CACHE_FAST; 647 spin_unlock(&cache->lock); 648 649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 650 mutex_lock(&caching_ctl->mutex); 651 ret = load_free_space_cache(fs_info, cache); 652 653 spin_lock(&cache->lock); 654 if (ret == 1) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_FINISHED; 657 cache->last_byte_to_unpin = (u64)-1; 658 caching_ctl->progress = (u64)-1; 659 } else { 660 if (load_cache_only) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_NO; 663 } else { 664 cache->cached = BTRFS_CACHE_STARTED; 665 cache->has_caching_ctl = 1; 666 } 667 } 668 spin_unlock(&cache->lock); 669 #ifdef CONFIG_BTRFS_DEBUG 670 if (ret == 1 && 671 btrfs_should_fragment_free_space(fs_info->extent_root, 672 cache)) { 673 u64 bytes_used; 674 675 spin_lock(&cache->space_info->lock); 676 spin_lock(&cache->lock); 677 bytes_used = cache->key.offset - 678 btrfs_block_group_used(&cache->item); 679 cache->space_info->bytes_used += bytes_used >> 1; 680 spin_unlock(&cache->lock); 681 spin_unlock(&cache->space_info->lock); 682 fragment_free_space(fs_info->extent_root, cache); 683 } 684 #endif 685 mutex_unlock(&caching_ctl->mutex); 686 687 wake_up(&caching_ctl->wait); 688 if (ret == 1) { 689 put_caching_control(caching_ctl); 690 free_excluded_extents(fs_info->extent_root, cache); 691 return 0; 692 } 693 } else { 694 /* 695 * We're either using the free space tree or no caching at all. 696 * Set cached to the appropriate value and wakeup any waiters. 697 */ 698 spin_lock(&cache->lock); 699 if (load_cache_only) { 700 cache->caching_ctl = NULL; 701 cache->cached = BTRFS_CACHE_NO; 702 } else { 703 cache->cached = BTRFS_CACHE_STARTED; 704 cache->has_caching_ctl = 1; 705 } 706 spin_unlock(&cache->lock); 707 wake_up(&caching_ctl->wait); 708 } 709 710 if (load_cache_only) { 711 put_caching_control(caching_ctl); 712 return 0; 713 } 714 715 down_write(&fs_info->commit_root_sem); 716 atomic_inc(&caching_ctl->count); 717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 718 up_write(&fs_info->commit_root_sem); 719 720 btrfs_get_block_group(cache); 721 722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 723 724 return ret; 725 } 726 727 /* 728 * return the block group that starts at or after bytenr 729 */ 730 static struct btrfs_block_group_cache * 731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 732 { 733 struct btrfs_block_group_cache *cache; 734 735 cache = block_group_cache_tree_search(info, bytenr, 0); 736 737 return cache; 738 } 739 740 /* 741 * return the block group that contains the given bytenr 742 */ 743 struct btrfs_block_group_cache *btrfs_lookup_block_group( 744 struct btrfs_fs_info *info, 745 u64 bytenr) 746 { 747 struct btrfs_block_group_cache *cache; 748 749 cache = block_group_cache_tree_search(info, bytenr, 1); 750 751 return cache; 752 } 753 754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 755 u64 flags) 756 { 757 struct list_head *head = &info->space_info; 758 struct btrfs_space_info *found; 759 760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 761 762 rcu_read_lock(); 763 list_for_each_entry_rcu(found, head, list) { 764 if (found->flags & flags) { 765 rcu_read_unlock(); 766 return found; 767 } 768 } 769 rcu_read_unlock(); 770 return NULL; 771 } 772 773 /* 774 * after adding space to the filesystem, we need to clear the full flags 775 * on all the space infos. 776 */ 777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 778 { 779 struct list_head *head = &info->space_info; 780 struct btrfs_space_info *found; 781 782 rcu_read_lock(); 783 list_for_each_entry_rcu(found, head, list) 784 found->full = 0; 785 rcu_read_unlock(); 786 } 787 788 /* simple helper to search for an existing data extent at a given offset */ 789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 790 { 791 int ret; 792 struct btrfs_key key; 793 struct btrfs_path *path; 794 795 path = btrfs_alloc_path(); 796 if (!path) 797 return -ENOMEM; 798 799 key.objectid = start; 800 key.offset = len; 801 key.type = BTRFS_EXTENT_ITEM_KEY; 802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 803 0, 0); 804 btrfs_free_path(path); 805 return ret; 806 } 807 808 /* 809 * helper function to lookup reference count and flags of a tree block. 810 * 811 * the head node for delayed ref is used to store the sum of all the 812 * reference count modifications queued up in the rbtree. the head 813 * node may also store the extent flags to set. This way you can check 814 * to see what the reference count and extent flags would be if all of 815 * the delayed refs are not processed. 816 */ 817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 818 struct btrfs_root *root, u64 bytenr, 819 u64 offset, int metadata, u64 *refs, u64 *flags) 820 { 821 struct btrfs_delayed_ref_head *head; 822 struct btrfs_delayed_ref_root *delayed_refs; 823 struct btrfs_path *path; 824 struct btrfs_extent_item *ei; 825 struct extent_buffer *leaf; 826 struct btrfs_key key; 827 u32 item_size; 828 u64 num_refs; 829 u64 extent_flags; 830 int ret; 831 832 /* 833 * If we don't have skinny metadata, don't bother doing anything 834 * different 835 */ 836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 837 offset = root->nodesize; 838 metadata = 0; 839 } 840 841 path = btrfs_alloc_path(); 842 if (!path) 843 return -ENOMEM; 844 845 if (!trans) { 846 path->skip_locking = 1; 847 path->search_commit_root = 1; 848 } 849 850 search_again: 851 key.objectid = bytenr; 852 key.offset = offset; 853 if (metadata) 854 key.type = BTRFS_METADATA_ITEM_KEY; 855 else 856 key.type = BTRFS_EXTENT_ITEM_KEY; 857 858 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 859 &key, path, 0, 0); 860 if (ret < 0) 861 goto out_free; 862 863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 864 if (path->slots[0]) { 865 path->slots[0]--; 866 btrfs_item_key_to_cpu(path->nodes[0], &key, 867 path->slots[0]); 868 if (key.objectid == bytenr && 869 key.type == BTRFS_EXTENT_ITEM_KEY && 870 key.offset == root->nodesize) 871 ret = 0; 872 } 873 } 874 875 if (ret == 0) { 876 leaf = path->nodes[0]; 877 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 878 if (item_size >= sizeof(*ei)) { 879 ei = btrfs_item_ptr(leaf, path->slots[0], 880 struct btrfs_extent_item); 881 num_refs = btrfs_extent_refs(leaf, ei); 882 extent_flags = btrfs_extent_flags(leaf, ei); 883 } else { 884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 885 struct btrfs_extent_item_v0 *ei0; 886 BUG_ON(item_size != sizeof(*ei0)); 887 ei0 = btrfs_item_ptr(leaf, path->slots[0], 888 struct btrfs_extent_item_v0); 889 num_refs = btrfs_extent_refs_v0(leaf, ei0); 890 /* FIXME: this isn't correct for data */ 891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 892 #else 893 BUG(); 894 #endif 895 } 896 BUG_ON(num_refs == 0); 897 } else { 898 num_refs = 0; 899 extent_flags = 0; 900 ret = 0; 901 } 902 903 if (!trans) 904 goto out; 905 906 delayed_refs = &trans->transaction->delayed_refs; 907 spin_lock(&delayed_refs->lock); 908 head = btrfs_find_delayed_ref_head(trans, bytenr); 909 if (head) { 910 if (!mutex_trylock(&head->mutex)) { 911 atomic_inc(&head->node.refs); 912 spin_unlock(&delayed_refs->lock); 913 914 btrfs_release_path(path); 915 916 /* 917 * Mutex was contended, block until it's released and try 918 * again 919 */ 920 mutex_lock(&head->mutex); 921 mutex_unlock(&head->mutex); 922 btrfs_put_delayed_ref(&head->node); 923 goto search_again; 924 } 925 spin_lock(&head->lock); 926 if (head->extent_op && head->extent_op->update_flags) 927 extent_flags |= head->extent_op->flags_to_set; 928 else 929 BUG_ON(num_refs == 0); 930 931 num_refs += head->node.ref_mod; 932 spin_unlock(&head->lock); 933 mutex_unlock(&head->mutex); 934 } 935 spin_unlock(&delayed_refs->lock); 936 out: 937 WARN_ON(num_refs == 0); 938 if (refs) 939 *refs = num_refs; 940 if (flags) 941 *flags = extent_flags; 942 out_free: 943 btrfs_free_path(path); 944 return ret; 945 } 946 947 /* 948 * Back reference rules. Back refs have three main goals: 949 * 950 * 1) differentiate between all holders of references to an extent so that 951 * when a reference is dropped we can make sure it was a valid reference 952 * before freeing the extent. 953 * 954 * 2) Provide enough information to quickly find the holders of an extent 955 * if we notice a given block is corrupted or bad. 956 * 957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 958 * maintenance. This is actually the same as #2, but with a slightly 959 * different use case. 960 * 961 * There are two kinds of back refs. The implicit back refs is optimized 962 * for pointers in non-shared tree blocks. For a given pointer in a block, 963 * back refs of this kind provide information about the block's owner tree 964 * and the pointer's key. These information allow us to find the block by 965 * b-tree searching. The full back refs is for pointers in tree blocks not 966 * referenced by their owner trees. The location of tree block is recorded 967 * in the back refs. Actually the full back refs is generic, and can be 968 * used in all cases the implicit back refs is used. The major shortcoming 969 * of the full back refs is its overhead. Every time a tree block gets 970 * COWed, we have to update back refs entry for all pointers in it. 971 * 972 * For a newly allocated tree block, we use implicit back refs for 973 * pointers in it. This means most tree related operations only involve 974 * implicit back refs. For a tree block created in old transaction, the 975 * only way to drop a reference to it is COW it. So we can detect the 976 * event that tree block loses its owner tree's reference and do the 977 * back refs conversion. 978 * 979 * When a tree block is COWed through a tree, there are four cases: 980 * 981 * The reference count of the block is one and the tree is the block's 982 * owner tree. Nothing to do in this case. 983 * 984 * The reference count of the block is one and the tree is not the 985 * block's owner tree. In this case, full back refs is used for pointers 986 * in the block. Remove these full back refs, add implicit back refs for 987 * every pointers in the new block. 988 * 989 * The reference count of the block is greater than one and the tree is 990 * the block's owner tree. In this case, implicit back refs is used for 991 * pointers in the block. Add full back refs for every pointers in the 992 * block, increase lower level extents' reference counts. The original 993 * implicit back refs are entailed to the new block. 994 * 995 * The reference count of the block is greater than one and the tree is 996 * not the block's owner tree. Add implicit back refs for every pointer in 997 * the new block, increase lower level extents' reference count. 998 * 999 * Back Reference Key composing: 1000 * 1001 * The key objectid corresponds to the first byte in the extent, 1002 * The key type is used to differentiate between types of back refs. 1003 * There are different meanings of the key offset for different types 1004 * of back refs. 1005 * 1006 * File extents can be referenced by: 1007 * 1008 * - multiple snapshots, subvolumes, or different generations in one subvol 1009 * - different files inside a single subvolume 1010 * - different offsets inside a file (bookend extents in file.c) 1011 * 1012 * The extent ref structure for the implicit back refs has fields for: 1013 * 1014 * - Objectid of the subvolume root 1015 * - objectid of the file holding the reference 1016 * - original offset in the file 1017 * - how many bookend extents 1018 * 1019 * The key offset for the implicit back refs is hash of the first 1020 * three fields. 1021 * 1022 * The extent ref structure for the full back refs has field for: 1023 * 1024 * - number of pointers in the tree leaf 1025 * 1026 * The key offset for the implicit back refs is the first byte of 1027 * the tree leaf 1028 * 1029 * When a file extent is allocated, The implicit back refs is used. 1030 * the fields are filled in: 1031 * 1032 * (root_key.objectid, inode objectid, offset in file, 1) 1033 * 1034 * When a file extent is removed file truncation, we find the 1035 * corresponding implicit back refs and check the following fields: 1036 * 1037 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1038 * 1039 * Btree extents can be referenced by: 1040 * 1041 * - Different subvolumes 1042 * 1043 * Both the implicit back refs and the full back refs for tree blocks 1044 * only consist of key. The key offset for the implicit back refs is 1045 * objectid of block's owner tree. The key offset for the full back refs 1046 * is the first byte of parent block. 1047 * 1048 * When implicit back refs is used, information about the lowest key and 1049 * level of the tree block are required. These information are stored in 1050 * tree block info structure. 1051 */ 1052 1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1055 struct btrfs_root *root, 1056 struct btrfs_path *path, 1057 u64 owner, u32 extra_size) 1058 { 1059 struct btrfs_extent_item *item; 1060 struct btrfs_extent_item_v0 *ei0; 1061 struct btrfs_extent_ref_v0 *ref0; 1062 struct btrfs_tree_block_info *bi; 1063 struct extent_buffer *leaf; 1064 struct btrfs_key key; 1065 struct btrfs_key found_key; 1066 u32 new_size = sizeof(*item); 1067 u64 refs; 1068 int ret; 1069 1070 leaf = path->nodes[0]; 1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1072 1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1074 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1075 struct btrfs_extent_item_v0); 1076 refs = btrfs_extent_refs_v0(leaf, ei0); 1077 1078 if (owner == (u64)-1) { 1079 while (1) { 1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1081 ret = btrfs_next_leaf(root, path); 1082 if (ret < 0) 1083 return ret; 1084 BUG_ON(ret > 0); /* Corruption */ 1085 leaf = path->nodes[0]; 1086 } 1087 btrfs_item_key_to_cpu(leaf, &found_key, 1088 path->slots[0]); 1089 BUG_ON(key.objectid != found_key.objectid); 1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1091 path->slots[0]++; 1092 continue; 1093 } 1094 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1095 struct btrfs_extent_ref_v0); 1096 owner = btrfs_ref_objectid_v0(leaf, ref0); 1097 break; 1098 } 1099 } 1100 btrfs_release_path(path); 1101 1102 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1103 new_size += sizeof(*bi); 1104 1105 new_size -= sizeof(*ei0); 1106 ret = btrfs_search_slot(trans, root, &key, path, 1107 new_size + extra_size, 1); 1108 if (ret < 0) 1109 return ret; 1110 BUG_ON(ret); /* Corruption */ 1111 1112 btrfs_extend_item(root, path, new_size); 1113 1114 leaf = path->nodes[0]; 1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1116 btrfs_set_extent_refs(leaf, item, refs); 1117 /* FIXME: get real generation */ 1118 btrfs_set_extent_generation(leaf, item, 0); 1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1120 btrfs_set_extent_flags(leaf, item, 1121 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1122 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1123 bi = (struct btrfs_tree_block_info *)(item + 1); 1124 /* FIXME: get first key of the block */ 1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1126 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1127 } else { 1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1129 } 1130 btrfs_mark_buffer_dirty(leaf); 1131 return 0; 1132 } 1133 #endif 1134 1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1136 { 1137 u32 high_crc = ~(u32)0; 1138 u32 low_crc = ~(u32)0; 1139 __le64 lenum; 1140 1141 lenum = cpu_to_le64(root_objectid); 1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1143 lenum = cpu_to_le64(owner); 1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1145 lenum = cpu_to_le64(offset); 1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1147 1148 return ((u64)high_crc << 31) ^ (u64)low_crc; 1149 } 1150 1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1152 struct btrfs_extent_data_ref *ref) 1153 { 1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1155 btrfs_extent_data_ref_objectid(leaf, ref), 1156 btrfs_extent_data_ref_offset(leaf, ref)); 1157 } 1158 1159 static int match_extent_data_ref(struct extent_buffer *leaf, 1160 struct btrfs_extent_data_ref *ref, 1161 u64 root_objectid, u64 owner, u64 offset) 1162 { 1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1165 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1166 return 0; 1167 return 1; 1168 } 1169 1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1171 struct btrfs_root *root, 1172 struct btrfs_path *path, 1173 u64 bytenr, u64 parent, 1174 u64 root_objectid, 1175 u64 owner, u64 offset) 1176 { 1177 struct btrfs_key key; 1178 struct btrfs_extent_data_ref *ref; 1179 struct extent_buffer *leaf; 1180 u32 nritems; 1181 int ret; 1182 int recow; 1183 int err = -ENOENT; 1184 1185 key.objectid = bytenr; 1186 if (parent) { 1187 key.type = BTRFS_SHARED_DATA_REF_KEY; 1188 key.offset = parent; 1189 } else { 1190 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1191 key.offset = hash_extent_data_ref(root_objectid, 1192 owner, offset); 1193 } 1194 again: 1195 recow = 0; 1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1197 if (ret < 0) { 1198 err = ret; 1199 goto fail; 1200 } 1201 1202 if (parent) { 1203 if (!ret) 1204 return 0; 1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1206 key.type = BTRFS_EXTENT_REF_V0_KEY; 1207 btrfs_release_path(path); 1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1209 if (ret < 0) { 1210 err = ret; 1211 goto fail; 1212 } 1213 if (!ret) 1214 return 0; 1215 #endif 1216 goto fail; 1217 } 1218 1219 leaf = path->nodes[0]; 1220 nritems = btrfs_header_nritems(leaf); 1221 while (1) { 1222 if (path->slots[0] >= nritems) { 1223 ret = btrfs_next_leaf(root, path); 1224 if (ret < 0) 1225 err = ret; 1226 if (ret) 1227 goto fail; 1228 1229 leaf = path->nodes[0]; 1230 nritems = btrfs_header_nritems(leaf); 1231 recow = 1; 1232 } 1233 1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1235 if (key.objectid != bytenr || 1236 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1237 goto fail; 1238 1239 ref = btrfs_item_ptr(leaf, path->slots[0], 1240 struct btrfs_extent_data_ref); 1241 1242 if (match_extent_data_ref(leaf, ref, root_objectid, 1243 owner, offset)) { 1244 if (recow) { 1245 btrfs_release_path(path); 1246 goto again; 1247 } 1248 err = 0; 1249 break; 1250 } 1251 path->slots[0]++; 1252 } 1253 fail: 1254 return err; 1255 } 1256 1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1258 struct btrfs_root *root, 1259 struct btrfs_path *path, 1260 u64 bytenr, u64 parent, 1261 u64 root_objectid, u64 owner, 1262 u64 offset, int refs_to_add) 1263 { 1264 struct btrfs_key key; 1265 struct extent_buffer *leaf; 1266 u32 size; 1267 u32 num_refs; 1268 int ret; 1269 1270 key.objectid = bytenr; 1271 if (parent) { 1272 key.type = BTRFS_SHARED_DATA_REF_KEY; 1273 key.offset = parent; 1274 size = sizeof(struct btrfs_shared_data_ref); 1275 } else { 1276 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1277 key.offset = hash_extent_data_ref(root_objectid, 1278 owner, offset); 1279 size = sizeof(struct btrfs_extent_data_ref); 1280 } 1281 1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1283 if (ret && ret != -EEXIST) 1284 goto fail; 1285 1286 leaf = path->nodes[0]; 1287 if (parent) { 1288 struct btrfs_shared_data_ref *ref; 1289 ref = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_shared_data_ref); 1291 if (ret == 0) { 1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1293 } else { 1294 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1295 num_refs += refs_to_add; 1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1297 } 1298 } else { 1299 struct btrfs_extent_data_ref *ref; 1300 while (ret == -EEXIST) { 1301 ref = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_data_ref); 1303 if (match_extent_data_ref(leaf, ref, root_objectid, 1304 owner, offset)) 1305 break; 1306 btrfs_release_path(path); 1307 key.offset++; 1308 ret = btrfs_insert_empty_item(trans, root, path, &key, 1309 size); 1310 if (ret && ret != -EEXIST) 1311 goto fail; 1312 1313 leaf = path->nodes[0]; 1314 } 1315 ref = btrfs_item_ptr(leaf, path->slots[0], 1316 struct btrfs_extent_data_ref); 1317 if (ret == 0) { 1318 btrfs_set_extent_data_ref_root(leaf, ref, 1319 root_objectid); 1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1323 } else { 1324 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1325 num_refs += refs_to_add; 1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1327 } 1328 } 1329 btrfs_mark_buffer_dirty(leaf); 1330 ret = 0; 1331 fail: 1332 btrfs_release_path(path); 1333 return ret; 1334 } 1335 1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1337 struct btrfs_root *root, 1338 struct btrfs_path *path, 1339 int refs_to_drop, int *last_ref) 1340 { 1341 struct btrfs_key key; 1342 struct btrfs_extent_data_ref *ref1 = NULL; 1343 struct btrfs_shared_data_ref *ref2 = NULL; 1344 struct extent_buffer *leaf; 1345 u32 num_refs = 0; 1346 int ret = 0; 1347 1348 leaf = path->nodes[0]; 1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1350 1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1352 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_data_ref); 1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1356 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_shared_data_ref); 1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1361 struct btrfs_extent_ref_v0 *ref0; 1362 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1363 struct btrfs_extent_ref_v0); 1364 num_refs = btrfs_ref_count_v0(leaf, ref0); 1365 #endif 1366 } else { 1367 BUG(); 1368 } 1369 1370 BUG_ON(num_refs < refs_to_drop); 1371 num_refs -= refs_to_drop; 1372 1373 if (num_refs == 0) { 1374 ret = btrfs_del_item(trans, root, path); 1375 *last_ref = 1; 1376 } else { 1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1382 else { 1383 struct btrfs_extent_ref_v0 *ref0; 1384 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1385 struct btrfs_extent_ref_v0); 1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1387 } 1388 #endif 1389 btrfs_mark_buffer_dirty(leaf); 1390 } 1391 return ret; 1392 } 1393 1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1395 struct btrfs_extent_inline_ref *iref) 1396 { 1397 struct btrfs_key key; 1398 struct extent_buffer *leaf; 1399 struct btrfs_extent_data_ref *ref1; 1400 struct btrfs_shared_data_ref *ref2; 1401 u32 num_refs = 0; 1402 1403 leaf = path->nodes[0]; 1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1405 if (iref) { 1406 if (btrfs_extent_inline_ref_type(leaf, iref) == 1407 BTRFS_EXTENT_DATA_REF_KEY) { 1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1410 } else { 1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1413 } 1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1415 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1416 struct btrfs_extent_data_ref); 1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1419 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1420 struct btrfs_shared_data_ref); 1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1424 struct btrfs_extent_ref_v0 *ref0; 1425 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1426 struct btrfs_extent_ref_v0); 1427 num_refs = btrfs_ref_count_v0(leaf, ref0); 1428 #endif 1429 } else { 1430 WARN_ON(1); 1431 } 1432 return num_refs; 1433 } 1434 1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_root *root, 1437 struct btrfs_path *path, 1438 u64 bytenr, u64 parent, 1439 u64 root_objectid) 1440 { 1441 struct btrfs_key key; 1442 int ret; 1443 1444 key.objectid = bytenr; 1445 if (parent) { 1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1447 key.offset = parent; 1448 } else { 1449 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1450 key.offset = root_objectid; 1451 } 1452 1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1454 if (ret > 0) 1455 ret = -ENOENT; 1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1457 if (ret == -ENOENT && parent) { 1458 btrfs_release_path(path); 1459 key.type = BTRFS_EXTENT_REF_V0_KEY; 1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1461 if (ret > 0) 1462 ret = -ENOENT; 1463 } 1464 #endif 1465 return ret; 1466 } 1467 1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1469 struct btrfs_root *root, 1470 struct btrfs_path *path, 1471 u64 bytenr, u64 parent, 1472 u64 root_objectid) 1473 { 1474 struct btrfs_key key; 1475 int ret; 1476 1477 key.objectid = bytenr; 1478 if (parent) { 1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1480 key.offset = parent; 1481 } else { 1482 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1483 key.offset = root_objectid; 1484 } 1485 1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1487 btrfs_release_path(path); 1488 return ret; 1489 } 1490 1491 static inline int extent_ref_type(u64 parent, u64 owner) 1492 { 1493 int type; 1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1495 if (parent > 0) 1496 type = BTRFS_SHARED_BLOCK_REF_KEY; 1497 else 1498 type = BTRFS_TREE_BLOCK_REF_KEY; 1499 } else { 1500 if (parent > 0) 1501 type = BTRFS_SHARED_DATA_REF_KEY; 1502 else 1503 type = BTRFS_EXTENT_DATA_REF_KEY; 1504 } 1505 return type; 1506 } 1507 1508 static int find_next_key(struct btrfs_path *path, int level, 1509 struct btrfs_key *key) 1510 1511 { 1512 for (; level < BTRFS_MAX_LEVEL; level++) { 1513 if (!path->nodes[level]) 1514 break; 1515 if (path->slots[level] + 1 >= 1516 btrfs_header_nritems(path->nodes[level])) 1517 continue; 1518 if (level == 0) 1519 btrfs_item_key_to_cpu(path->nodes[level], key, 1520 path->slots[level] + 1); 1521 else 1522 btrfs_node_key_to_cpu(path->nodes[level], key, 1523 path->slots[level] + 1); 1524 return 0; 1525 } 1526 return 1; 1527 } 1528 1529 /* 1530 * look for inline back ref. if back ref is found, *ref_ret is set 1531 * to the address of inline back ref, and 0 is returned. 1532 * 1533 * if back ref isn't found, *ref_ret is set to the address where it 1534 * should be inserted, and -ENOENT is returned. 1535 * 1536 * if insert is true and there are too many inline back refs, the path 1537 * points to the extent item, and -EAGAIN is returned. 1538 * 1539 * NOTE: inline back refs are ordered in the same way that back ref 1540 * items in the tree are ordered. 1541 */ 1542 static noinline_for_stack 1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1544 struct btrfs_root *root, 1545 struct btrfs_path *path, 1546 struct btrfs_extent_inline_ref **ref_ret, 1547 u64 bytenr, u64 num_bytes, 1548 u64 parent, u64 root_objectid, 1549 u64 owner, u64 offset, int insert) 1550 { 1551 struct btrfs_key key; 1552 struct extent_buffer *leaf; 1553 struct btrfs_extent_item *ei; 1554 struct btrfs_extent_inline_ref *iref; 1555 u64 flags; 1556 u64 item_size; 1557 unsigned long ptr; 1558 unsigned long end; 1559 int extra_size; 1560 int type; 1561 int want; 1562 int ret; 1563 int err = 0; 1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1565 SKINNY_METADATA); 1566 1567 key.objectid = bytenr; 1568 key.type = BTRFS_EXTENT_ITEM_KEY; 1569 key.offset = num_bytes; 1570 1571 want = extent_ref_type(parent, owner); 1572 if (insert) { 1573 extra_size = btrfs_extent_inline_ref_size(want); 1574 path->keep_locks = 1; 1575 } else 1576 extra_size = -1; 1577 1578 /* 1579 * Owner is our parent level, so we can just add one to get the level 1580 * for the block we are interested in. 1581 */ 1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1583 key.type = BTRFS_METADATA_ITEM_KEY; 1584 key.offset = owner; 1585 } 1586 1587 again: 1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1589 if (ret < 0) { 1590 err = ret; 1591 goto out; 1592 } 1593 1594 /* 1595 * We may be a newly converted file system which still has the old fat 1596 * extent entries for metadata, so try and see if we have one of those. 1597 */ 1598 if (ret > 0 && skinny_metadata) { 1599 skinny_metadata = false; 1600 if (path->slots[0]) { 1601 path->slots[0]--; 1602 btrfs_item_key_to_cpu(path->nodes[0], &key, 1603 path->slots[0]); 1604 if (key.objectid == bytenr && 1605 key.type == BTRFS_EXTENT_ITEM_KEY && 1606 key.offset == num_bytes) 1607 ret = 0; 1608 } 1609 if (ret) { 1610 key.objectid = bytenr; 1611 key.type = BTRFS_EXTENT_ITEM_KEY; 1612 key.offset = num_bytes; 1613 btrfs_release_path(path); 1614 goto again; 1615 } 1616 } 1617 1618 if (ret && !insert) { 1619 err = -ENOENT; 1620 goto out; 1621 } else if (WARN_ON(ret)) { 1622 err = -EIO; 1623 goto out; 1624 } 1625 1626 leaf = path->nodes[0]; 1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1629 if (item_size < sizeof(*ei)) { 1630 if (!insert) { 1631 err = -ENOENT; 1632 goto out; 1633 } 1634 ret = convert_extent_item_v0(trans, root, path, owner, 1635 extra_size); 1636 if (ret < 0) { 1637 err = ret; 1638 goto out; 1639 } 1640 leaf = path->nodes[0]; 1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1642 } 1643 #endif 1644 BUG_ON(item_size < sizeof(*ei)); 1645 1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1647 flags = btrfs_extent_flags(leaf, ei); 1648 1649 ptr = (unsigned long)(ei + 1); 1650 end = (unsigned long)ei + item_size; 1651 1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1653 ptr += sizeof(struct btrfs_tree_block_info); 1654 BUG_ON(ptr > end); 1655 } 1656 1657 err = -ENOENT; 1658 while (1) { 1659 if (ptr >= end) { 1660 WARN_ON(ptr > end); 1661 break; 1662 } 1663 iref = (struct btrfs_extent_inline_ref *)ptr; 1664 type = btrfs_extent_inline_ref_type(leaf, iref); 1665 if (want < type) 1666 break; 1667 if (want > type) { 1668 ptr += btrfs_extent_inline_ref_size(type); 1669 continue; 1670 } 1671 1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1673 struct btrfs_extent_data_ref *dref; 1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1675 if (match_extent_data_ref(leaf, dref, root_objectid, 1676 owner, offset)) { 1677 err = 0; 1678 break; 1679 } 1680 if (hash_extent_data_ref_item(leaf, dref) < 1681 hash_extent_data_ref(root_objectid, owner, offset)) 1682 break; 1683 } else { 1684 u64 ref_offset; 1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1686 if (parent > 0) { 1687 if (parent == ref_offset) { 1688 err = 0; 1689 break; 1690 } 1691 if (ref_offset < parent) 1692 break; 1693 } else { 1694 if (root_objectid == ref_offset) { 1695 err = 0; 1696 break; 1697 } 1698 if (ref_offset < root_objectid) 1699 break; 1700 } 1701 } 1702 ptr += btrfs_extent_inline_ref_size(type); 1703 } 1704 if (err == -ENOENT && insert) { 1705 if (item_size + extra_size >= 1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1707 err = -EAGAIN; 1708 goto out; 1709 } 1710 /* 1711 * To add new inline back ref, we have to make sure 1712 * there is no corresponding back ref item. 1713 * For simplicity, we just do not add new inline back 1714 * ref if there is any kind of item for this block 1715 */ 1716 if (find_next_key(path, 0, &key) == 0 && 1717 key.objectid == bytenr && 1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1719 err = -EAGAIN; 1720 goto out; 1721 } 1722 } 1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1724 out: 1725 if (insert) { 1726 path->keep_locks = 0; 1727 btrfs_unlock_up_safe(path, 1); 1728 } 1729 return err; 1730 } 1731 1732 /* 1733 * helper to add new inline back ref 1734 */ 1735 static noinline_for_stack 1736 void setup_inline_extent_backref(struct btrfs_root *root, 1737 struct btrfs_path *path, 1738 struct btrfs_extent_inline_ref *iref, 1739 u64 parent, u64 root_objectid, 1740 u64 owner, u64 offset, int refs_to_add, 1741 struct btrfs_delayed_extent_op *extent_op) 1742 { 1743 struct extent_buffer *leaf; 1744 struct btrfs_extent_item *ei; 1745 unsigned long ptr; 1746 unsigned long end; 1747 unsigned long item_offset; 1748 u64 refs; 1749 int size; 1750 int type; 1751 1752 leaf = path->nodes[0]; 1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1754 item_offset = (unsigned long)iref - (unsigned long)ei; 1755 1756 type = extent_ref_type(parent, owner); 1757 size = btrfs_extent_inline_ref_size(type); 1758 1759 btrfs_extend_item(root, path, size); 1760 1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1762 refs = btrfs_extent_refs(leaf, ei); 1763 refs += refs_to_add; 1764 btrfs_set_extent_refs(leaf, ei, refs); 1765 if (extent_op) 1766 __run_delayed_extent_op(extent_op, leaf, ei); 1767 1768 ptr = (unsigned long)ei + item_offset; 1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1770 if (ptr < end - size) 1771 memmove_extent_buffer(leaf, ptr + size, ptr, 1772 end - size - ptr); 1773 1774 iref = (struct btrfs_extent_inline_ref *)ptr; 1775 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1777 struct btrfs_extent_data_ref *dref; 1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1784 struct btrfs_shared_data_ref *sref; 1785 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1790 } else { 1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1792 } 1793 btrfs_mark_buffer_dirty(leaf); 1794 } 1795 1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1797 struct btrfs_root *root, 1798 struct btrfs_path *path, 1799 struct btrfs_extent_inline_ref **ref_ret, 1800 u64 bytenr, u64 num_bytes, u64 parent, 1801 u64 root_objectid, u64 owner, u64 offset) 1802 { 1803 int ret; 1804 1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1806 bytenr, num_bytes, parent, 1807 root_objectid, owner, offset, 0); 1808 if (ret != -ENOENT) 1809 return ret; 1810 1811 btrfs_release_path(path); 1812 *ref_ret = NULL; 1813 1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1816 root_objectid); 1817 } else { 1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1819 root_objectid, owner, offset); 1820 } 1821 return ret; 1822 } 1823 1824 /* 1825 * helper to update/remove inline back ref 1826 */ 1827 static noinline_for_stack 1828 void update_inline_extent_backref(struct btrfs_root *root, 1829 struct btrfs_path *path, 1830 struct btrfs_extent_inline_ref *iref, 1831 int refs_to_mod, 1832 struct btrfs_delayed_extent_op *extent_op, 1833 int *last_ref) 1834 { 1835 struct extent_buffer *leaf; 1836 struct btrfs_extent_item *ei; 1837 struct btrfs_extent_data_ref *dref = NULL; 1838 struct btrfs_shared_data_ref *sref = NULL; 1839 unsigned long ptr; 1840 unsigned long end; 1841 u32 item_size; 1842 int size; 1843 int type; 1844 u64 refs; 1845 1846 leaf = path->nodes[0]; 1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1848 refs = btrfs_extent_refs(leaf, ei); 1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1850 refs += refs_to_mod; 1851 btrfs_set_extent_refs(leaf, ei, refs); 1852 if (extent_op) 1853 __run_delayed_extent_op(extent_op, leaf, ei); 1854 1855 type = btrfs_extent_inline_ref_type(leaf, iref); 1856 1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1859 refs = btrfs_extent_data_ref_count(leaf, dref); 1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1861 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1862 refs = btrfs_shared_data_ref_count(leaf, sref); 1863 } else { 1864 refs = 1; 1865 BUG_ON(refs_to_mod != -1); 1866 } 1867 1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1869 refs += refs_to_mod; 1870 1871 if (refs > 0) { 1872 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1873 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1874 else 1875 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1876 } else { 1877 *last_ref = 1; 1878 size = btrfs_extent_inline_ref_size(type); 1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1880 ptr = (unsigned long)iref; 1881 end = (unsigned long)ei + item_size; 1882 if (ptr + size < end) 1883 memmove_extent_buffer(leaf, ptr, ptr + size, 1884 end - ptr - size); 1885 item_size -= size; 1886 btrfs_truncate_item(root, path, item_size, 1); 1887 } 1888 btrfs_mark_buffer_dirty(leaf); 1889 } 1890 1891 static noinline_for_stack 1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1893 struct btrfs_root *root, 1894 struct btrfs_path *path, 1895 u64 bytenr, u64 num_bytes, u64 parent, 1896 u64 root_objectid, u64 owner, 1897 u64 offset, int refs_to_add, 1898 struct btrfs_delayed_extent_op *extent_op) 1899 { 1900 struct btrfs_extent_inline_ref *iref; 1901 int ret; 1902 1903 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1904 bytenr, num_bytes, parent, 1905 root_objectid, owner, offset, 1); 1906 if (ret == 0) { 1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1908 update_inline_extent_backref(root, path, iref, 1909 refs_to_add, extent_op, NULL); 1910 } else if (ret == -ENOENT) { 1911 setup_inline_extent_backref(root, path, iref, parent, 1912 root_objectid, owner, offset, 1913 refs_to_add, extent_op); 1914 ret = 0; 1915 } 1916 return ret; 1917 } 1918 1919 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1920 struct btrfs_root *root, 1921 struct btrfs_path *path, 1922 u64 bytenr, u64 parent, u64 root_objectid, 1923 u64 owner, u64 offset, int refs_to_add) 1924 { 1925 int ret; 1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1927 BUG_ON(refs_to_add != 1); 1928 ret = insert_tree_block_ref(trans, root, path, bytenr, 1929 parent, root_objectid); 1930 } else { 1931 ret = insert_extent_data_ref(trans, root, path, bytenr, 1932 parent, root_objectid, 1933 owner, offset, refs_to_add); 1934 } 1935 return ret; 1936 } 1937 1938 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1939 struct btrfs_root *root, 1940 struct btrfs_path *path, 1941 struct btrfs_extent_inline_ref *iref, 1942 int refs_to_drop, int is_data, int *last_ref) 1943 { 1944 int ret = 0; 1945 1946 BUG_ON(!is_data && refs_to_drop != 1); 1947 if (iref) { 1948 update_inline_extent_backref(root, path, iref, 1949 -refs_to_drop, NULL, last_ref); 1950 } else if (is_data) { 1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1952 last_ref); 1953 } else { 1954 *last_ref = 1; 1955 ret = btrfs_del_item(trans, root, path); 1956 } 1957 return ret; 1958 } 1959 1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1962 u64 *discarded_bytes) 1963 { 1964 int j, ret = 0; 1965 u64 bytes_left, end; 1966 u64 aligned_start = ALIGN(start, 1 << 9); 1967 1968 if (WARN_ON(start != aligned_start)) { 1969 len -= aligned_start - start; 1970 len = round_down(len, 1 << 9); 1971 start = aligned_start; 1972 } 1973 1974 *discarded_bytes = 0; 1975 1976 if (!len) 1977 return 0; 1978 1979 end = start + len; 1980 bytes_left = len; 1981 1982 /* Skip any superblocks on this device. */ 1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1984 u64 sb_start = btrfs_sb_offset(j); 1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1986 u64 size = sb_start - start; 1987 1988 if (!in_range(sb_start, start, bytes_left) && 1989 !in_range(sb_end, start, bytes_left) && 1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1991 continue; 1992 1993 /* 1994 * Superblock spans beginning of range. Adjust start and 1995 * try again. 1996 */ 1997 if (sb_start <= start) { 1998 start += sb_end - start; 1999 if (start > end) { 2000 bytes_left = 0; 2001 break; 2002 } 2003 bytes_left = end - start; 2004 continue; 2005 } 2006 2007 if (size) { 2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2009 GFP_NOFS, 0); 2010 if (!ret) 2011 *discarded_bytes += size; 2012 else if (ret != -EOPNOTSUPP) 2013 return ret; 2014 } 2015 2016 start = sb_end; 2017 if (start > end) { 2018 bytes_left = 0; 2019 break; 2020 } 2021 bytes_left = end - start; 2022 } 2023 2024 if (bytes_left) { 2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2026 GFP_NOFS, 0); 2027 if (!ret) 2028 *discarded_bytes += bytes_left; 2029 } 2030 return ret; 2031 } 2032 2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2034 u64 num_bytes, u64 *actual_bytes) 2035 { 2036 int ret; 2037 u64 discarded_bytes = 0; 2038 struct btrfs_bio *bbio = NULL; 2039 2040 2041 /* 2042 * Avoid races with device replace and make sure our bbio has devices 2043 * associated to its stripes that don't go away while we are discarding. 2044 */ 2045 btrfs_bio_counter_inc_blocked(root->fs_info); 2046 /* Tell the block device(s) that the sectors can be discarded */ 2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD, 2048 bytenr, &num_bytes, &bbio, 0); 2049 /* Error condition is -ENOMEM */ 2050 if (!ret) { 2051 struct btrfs_bio_stripe *stripe = bbio->stripes; 2052 int i; 2053 2054 2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2056 u64 bytes; 2057 if (!stripe->dev->can_discard) 2058 continue; 2059 2060 ret = btrfs_issue_discard(stripe->dev->bdev, 2061 stripe->physical, 2062 stripe->length, 2063 &bytes); 2064 if (!ret) 2065 discarded_bytes += bytes; 2066 else if (ret != -EOPNOTSUPP) 2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2068 2069 /* 2070 * Just in case we get back EOPNOTSUPP for some reason, 2071 * just ignore the return value so we don't screw up 2072 * people calling discard_extent. 2073 */ 2074 ret = 0; 2075 } 2076 btrfs_put_bbio(bbio); 2077 } 2078 btrfs_bio_counter_dec(root->fs_info); 2079 2080 if (actual_bytes) 2081 *actual_bytes = discarded_bytes; 2082 2083 2084 if (ret == -EOPNOTSUPP) 2085 ret = 0; 2086 return ret; 2087 } 2088 2089 /* Can return -ENOMEM */ 2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2091 struct btrfs_root *root, 2092 u64 bytenr, u64 num_bytes, u64 parent, 2093 u64 root_objectid, u64 owner, u64 offset) 2094 { 2095 int ret; 2096 struct btrfs_fs_info *fs_info = root->fs_info; 2097 2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2099 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2100 2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2103 num_bytes, 2104 parent, root_objectid, (int)owner, 2105 BTRFS_ADD_DELAYED_REF, NULL); 2106 } else { 2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2108 num_bytes, parent, root_objectid, 2109 owner, offset, 0, 2110 BTRFS_ADD_DELAYED_REF, NULL); 2111 } 2112 return ret; 2113 } 2114 2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2116 struct btrfs_root *root, 2117 struct btrfs_delayed_ref_node *node, 2118 u64 parent, u64 root_objectid, 2119 u64 owner, u64 offset, int refs_to_add, 2120 struct btrfs_delayed_extent_op *extent_op) 2121 { 2122 struct btrfs_fs_info *fs_info = root->fs_info; 2123 struct btrfs_path *path; 2124 struct extent_buffer *leaf; 2125 struct btrfs_extent_item *item; 2126 struct btrfs_key key; 2127 u64 bytenr = node->bytenr; 2128 u64 num_bytes = node->num_bytes; 2129 u64 refs; 2130 int ret; 2131 2132 path = btrfs_alloc_path(); 2133 if (!path) 2134 return -ENOMEM; 2135 2136 path->reada = READA_FORWARD; 2137 path->leave_spinning = 1; 2138 /* this will setup the path even if it fails to insert the back ref */ 2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2140 bytenr, num_bytes, parent, 2141 root_objectid, owner, offset, 2142 refs_to_add, extent_op); 2143 if ((ret < 0 && ret != -EAGAIN) || !ret) 2144 goto out; 2145 2146 /* 2147 * Ok we had -EAGAIN which means we didn't have space to insert and 2148 * inline extent ref, so just update the reference count and add a 2149 * normal backref. 2150 */ 2151 leaf = path->nodes[0]; 2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2154 refs = btrfs_extent_refs(leaf, item); 2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2156 if (extent_op) 2157 __run_delayed_extent_op(extent_op, leaf, item); 2158 2159 btrfs_mark_buffer_dirty(leaf); 2160 btrfs_release_path(path); 2161 2162 path->reada = READA_FORWARD; 2163 path->leave_spinning = 1; 2164 /* now insert the actual backref */ 2165 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2166 path, bytenr, parent, root_objectid, 2167 owner, offset, refs_to_add); 2168 if (ret) 2169 btrfs_abort_transaction(trans, ret); 2170 out: 2171 btrfs_free_path(path); 2172 return ret; 2173 } 2174 2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, 2177 struct btrfs_delayed_ref_node *node, 2178 struct btrfs_delayed_extent_op *extent_op, 2179 int insert_reserved) 2180 { 2181 int ret = 0; 2182 struct btrfs_delayed_data_ref *ref; 2183 struct btrfs_key ins; 2184 u64 parent = 0; 2185 u64 ref_root = 0; 2186 u64 flags = 0; 2187 2188 ins.objectid = node->bytenr; 2189 ins.offset = node->num_bytes; 2190 ins.type = BTRFS_EXTENT_ITEM_KEY; 2191 2192 ref = btrfs_delayed_node_to_data_ref(node); 2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action); 2194 2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2196 parent = ref->parent; 2197 ref_root = ref->root; 2198 2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2200 if (extent_op) 2201 flags |= extent_op->flags_to_set; 2202 ret = alloc_reserved_file_extent(trans, root, 2203 parent, ref_root, flags, 2204 ref->objectid, ref->offset, 2205 &ins, node->ref_mod); 2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2208 ref_root, ref->objectid, 2209 ref->offset, node->ref_mod, 2210 extent_op); 2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2212 ret = __btrfs_free_extent(trans, root, node, parent, 2213 ref_root, ref->objectid, 2214 ref->offset, node->ref_mod, 2215 extent_op); 2216 } else { 2217 BUG(); 2218 } 2219 return ret; 2220 } 2221 2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2223 struct extent_buffer *leaf, 2224 struct btrfs_extent_item *ei) 2225 { 2226 u64 flags = btrfs_extent_flags(leaf, ei); 2227 if (extent_op->update_flags) { 2228 flags |= extent_op->flags_to_set; 2229 btrfs_set_extent_flags(leaf, ei, flags); 2230 } 2231 2232 if (extent_op->update_key) { 2233 struct btrfs_tree_block_info *bi; 2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2235 bi = (struct btrfs_tree_block_info *)(ei + 1); 2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2237 } 2238 } 2239 2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2241 struct btrfs_root *root, 2242 struct btrfs_delayed_ref_node *node, 2243 struct btrfs_delayed_extent_op *extent_op) 2244 { 2245 struct btrfs_key key; 2246 struct btrfs_path *path; 2247 struct btrfs_extent_item *ei; 2248 struct extent_buffer *leaf; 2249 u32 item_size; 2250 int ret; 2251 int err = 0; 2252 int metadata = !extent_op->is_data; 2253 2254 if (trans->aborted) 2255 return 0; 2256 2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2258 metadata = 0; 2259 2260 path = btrfs_alloc_path(); 2261 if (!path) 2262 return -ENOMEM; 2263 2264 key.objectid = node->bytenr; 2265 2266 if (metadata) { 2267 key.type = BTRFS_METADATA_ITEM_KEY; 2268 key.offset = extent_op->level; 2269 } else { 2270 key.type = BTRFS_EXTENT_ITEM_KEY; 2271 key.offset = node->num_bytes; 2272 } 2273 2274 again: 2275 path->reada = READA_FORWARD; 2276 path->leave_spinning = 1; 2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2278 path, 0, 1); 2279 if (ret < 0) { 2280 err = ret; 2281 goto out; 2282 } 2283 if (ret > 0) { 2284 if (metadata) { 2285 if (path->slots[0] > 0) { 2286 path->slots[0]--; 2287 btrfs_item_key_to_cpu(path->nodes[0], &key, 2288 path->slots[0]); 2289 if (key.objectid == node->bytenr && 2290 key.type == BTRFS_EXTENT_ITEM_KEY && 2291 key.offset == node->num_bytes) 2292 ret = 0; 2293 } 2294 if (ret > 0) { 2295 btrfs_release_path(path); 2296 metadata = 0; 2297 2298 key.objectid = node->bytenr; 2299 key.offset = node->num_bytes; 2300 key.type = BTRFS_EXTENT_ITEM_KEY; 2301 goto again; 2302 } 2303 } else { 2304 err = -EIO; 2305 goto out; 2306 } 2307 } 2308 2309 leaf = path->nodes[0]; 2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2312 if (item_size < sizeof(*ei)) { 2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2314 path, (u64)-1, 0); 2315 if (ret < 0) { 2316 err = ret; 2317 goto out; 2318 } 2319 leaf = path->nodes[0]; 2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2321 } 2322 #endif 2323 BUG_ON(item_size < sizeof(*ei)); 2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2325 __run_delayed_extent_op(extent_op, leaf, ei); 2326 2327 btrfs_mark_buffer_dirty(leaf); 2328 out: 2329 btrfs_free_path(path); 2330 return err; 2331 } 2332 2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2334 struct btrfs_root *root, 2335 struct btrfs_delayed_ref_node *node, 2336 struct btrfs_delayed_extent_op *extent_op, 2337 int insert_reserved) 2338 { 2339 int ret = 0; 2340 struct btrfs_delayed_tree_ref *ref; 2341 struct btrfs_key ins; 2342 u64 parent = 0; 2343 u64 ref_root = 0; 2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2345 SKINNY_METADATA); 2346 2347 ref = btrfs_delayed_node_to_tree_ref(node); 2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action); 2349 2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2351 parent = ref->parent; 2352 ref_root = ref->root; 2353 2354 ins.objectid = node->bytenr; 2355 if (skinny_metadata) { 2356 ins.offset = ref->level; 2357 ins.type = BTRFS_METADATA_ITEM_KEY; 2358 } else { 2359 ins.offset = node->num_bytes; 2360 ins.type = BTRFS_EXTENT_ITEM_KEY; 2361 } 2362 2363 BUG_ON(node->ref_mod != 1); 2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2365 BUG_ON(!extent_op || !extent_op->update_flags); 2366 ret = alloc_reserved_tree_block(trans, root, 2367 parent, ref_root, 2368 extent_op->flags_to_set, 2369 &extent_op->key, 2370 ref->level, &ins); 2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2372 ret = __btrfs_inc_extent_ref(trans, root, node, 2373 parent, ref_root, 2374 ref->level, 0, 1, 2375 extent_op); 2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2377 ret = __btrfs_free_extent(trans, root, node, 2378 parent, ref_root, 2379 ref->level, 0, 1, extent_op); 2380 } else { 2381 BUG(); 2382 } 2383 return ret; 2384 } 2385 2386 /* helper function to actually process a single delayed ref entry */ 2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2388 struct btrfs_root *root, 2389 struct btrfs_delayed_ref_node *node, 2390 struct btrfs_delayed_extent_op *extent_op, 2391 int insert_reserved) 2392 { 2393 int ret = 0; 2394 2395 if (trans->aborted) { 2396 if (insert_reserved) 2397 btrfs_pin_extent(root, node->bytenr, 2398 node->num_bytes, 1); 2399 return 0; 2400 } 2401 2402 if (btrfs_delayed_ref_is_head(node)) { 2403 struct btrfs_delayed_ref_head *head; 2404 /* 2405 * we've hit the end of the chain and we were supposed 2406 * to insert this extent into the tree. But, it got 2407 * deleted before we ever needed to insert it, so all 2408 * we have to do is clean up the accounting 2409 */ 2410 BUG_ON(extent_op); 2411 head = btrfs_delayed_node_to_head(node); 2412 trace_run_delayed_ref_head(root->fs_info, node, head, 2413 node->action); 2414 2415 if (insert_reserved) { 2416 btrfs_pin_extent(root, node->bytenr, 2417 node->num_bytes, 1); 2418 if (head->is_data) { 2419 ret = btrfs_del_csums(trans, root, 2420 node->bytenr, 2421 node->num_bytes); 2422 } 2423 } 2424 2425 /* Also free its reserved qgroup space */ 2426 btrfs_qgroup_free_delayed_ref(root->fs_info, 2427 head->qgroup_ref_root, 2428 head->qgroup_reserved); 2429 return ret; 2430 } 2431 2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2434 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2435 insert_reserved); 2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2437 node->type == BTRFS_SHARED_DATA_REF_KEY) 2438 ret = run_delayed_data_ref(trans, root, node, extent_op, 2439 insert_reserved); 2440 else 2441 BUG(); 2442 return ret; 2443 } 2444 2445 static inline struct btrfs_delayed_ref_node * 2446 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2447 { 2448 struct btrfs_delayed_ref_node *ref; 2449 2450 if (list_empty(&head->ref_list)) 2451 return NULL; 2452 2453 /* 2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2455 * This is to prevent a ref count from going down to zero, which deletes 2456 * the extent item from the extent tree, when there still are references 2457 * to add, which would fail because they would not find the extent item. 2458 */ 2459 list_for_each_entry(ref, &head->ref_list, list) { 2460 if (ref->action == BTRFS_ADD_DELAYED_REF) 2461 return ref; 2462 } 2463 2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2465 list); 2466 } 2467 2468 /* 2469 * Returns 0 on success or if called with an already aborted transaction. 2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2471 */ 2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2473 struct btrfs_root *root, 2474 unsigned long nr) 2475 { 2476 struct btrfs_delayed_ref_root *delayed_refs; 2477 struct btrfs_delayed_ref_node *ref; 2478 struct btrfs_delayed_ref_head *locked_ref = NULL; 2479 struct btrfs_delayed_extent_op *extent_op; 2480 struct btrfs_fs_info *fs_info = root->fs_info; 2481 ktime_t start = ktime_get(); 2482 int ret; 2483 unsigned long count = 0; 2484 unsigned long actual_count = 0; 2485 int must_insert_reserved = 0; 2486 2487 delayed_refs = &trans->transaction->delayed_refs; 2488 while (1) { 2489 if (!locked_ref) { 2490 if (count >= nr) 2491 break; 2492 2493 spin_lock(&delayed_refs->lock); 2494 locked_ref = btrfs_select_ref_head(trans); 2495 if (!locked_ref) { 2496 spin_unlock(&delayed_refs->lock); 2497 break; 2498 } 2499 2500 /* grab the lock that says we are going to process 2501 * all the refs for this head */ 2502 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2503 spin_unlock(&delayed_refs->lock); 2504 /* 2505 * we may have dropped the spin lock to get the head 2506 * mutex lock, and that might have given someone else 2507 * time to free the head. If that's true, it has been 2508 * removed from our list and we can move on. 2509 */ 2510 if (ret == -EAGAIN) { 2511 locked_ref = NULL; 2512 count++; 2513 continue; 2514 } 2515 } 2516 2517 /* 2518 * We need to try and merge add/drops of the same ref since we 2519 * can run into issues with relocate dropping the implicit ref 2520 * and then it being added back again before the drop can 2521 * finish. If we merged anything we need to re-loop so we can 2522 * get a good ref. 2523 * Or we can get node references of the same type that weren't 2524 * merged when created due to bumps in the tree mod seq, and 2525 * we need to merge them to prevent adding an inline extent 2526 * backref before dropping it (triggering a BUG_ON at 2527 * insert_inline_extent_backref()). 2528 */ 2529 spin_lock(&locked_ref->lock); 2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2531 locked_ref); 2532 2533 /* 2534 * locked_ref is the head node, so we have to go one 2535 * node back for any delayed ref updates 2536 */ 2537 ref = select_delayed_ref(locked_ref); 2538 2539 if (ref && ref->seq && 2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2541 spin_unlock(&locked_ref->lock); 2542 btrfs_delayed_ref_unlock(locked_ref); 2543 spin_lock(&delayed_refs->lock); 2544 locked_ref->processing = 0; 2545 delayed_refs->num_heads_ready++; 2546 spin_unlock(&delayed_refs->lock); 2547 locked_ref = NULL; 2548 cond_resched(); 2549 count++; 2550 continue; 2551 } 2552 2553 /* 2554 * record the must insert reserved flag before we 2555 * drop the spin lock. 2556 */ 2557 must_insert_reserved = locked_ref->must_insert_reserved; 2558 locked_ref->must_insert_reserved = 0; 2559 2560 extent_op = locked_ref->extent_op; 2561 locked_ref->extent_op = NULL; 2562 2563 if (!ref) { 2564 2565 2566 /* All delayed refs have been processed, Go ahead 2567 * and send the head node to run_one_delayed_ref, 2568 * so that any accounting fixes can happen 2569 */ 2570 ref = &locked_ref->node; 2571 2572 if (extent_op && must_insert_reserved) { 2573 btrfs_free_delayed_extent_op(extent_op); 2574 extent_op = NULL; 2575 } 2576 2577 if (extent_op) { 2578 spin_unlock(&locked_ref->lock); 2579 ret = run_delayed_extent_op(trans, root, 2580 ref, extent_op); 2581 btrfs_free_delayed_extent_op(extent_op); 2582 2583 if (ret) { 2584 /* 2585 * Need to reset must_insert_reserved if 2586 * there was an error so the abort stuff 2587 * can cleanup the reserved space 2588 * properly. 2589 */ 2590 if (must_insert_reserved) 2591 locked_ref->must_insert_reserved = 1; 2592 locked_ref->processing = 0; 2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2594 btrfs_delayed_ref_unlock(locked_ref); 2595 return ret; 2596 } 2597 continue; 2598 } 2599 2600 /* 2601 * Need to drop our head ref lock and re-acquire the 2602 * delayed ref lock and then re-check to make sure 2603 * nobody got added. 2604 */ 2605 spin_unlock(&locked_ref->lock); 2606 spin_lock(&delayed_refs->lock); 2607 spin_lock(&locked_ref->lock); 2608 if (!list_empty(&locked_ref->ref_list) || 2609 locked_ref->extent_op) { 2610 spin_unlock(&locked_ref->lock); 2611 spin_unlock(&delayed_refs->lock); 2612 continue; 2613 } 2614 ref->in_tree = 0; 2615 delayed_refs->num_heads--; 2616 rb_erase(&locked_ref->href_node, 2617 &delayed_refs->href_root); 2618 spin_unlock(&delayed_refs->lock); 2619 } else { 2620 actual_count++; 2621 ref->in_tree = 0; 2622 list_del(&ref->list); 2623 } 2624 atomic_dec(&delayed_refs->num_entries); 2625 2626 if (!btrfs_delayed_ref_is_head(ref)) { 2627 /* 2628 * when we play the delayed ref, also correct the 2629 * ref_mod on head 2630 */ 2631 switch (ref->action) { 2632 case BTRFS_ADD_DELAYED_REF: 2633 case BTRFS_ADD_DELAYED_EXTENT: 2634 locked_ref->node.ref_mod -= ref->ref_mod; 2635 break; 2636 case BTRFS_DROP_DELAYED_REF: 2637 locked_ref->node.ref_mod += ref->ref_mod; 2638 break; 2639 default: 2640 WARN_ON(1); 2641 } 2642 } 2643 spin_unlock(&locked_ref->lock); 2644 2645 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2646 must_insert_reserved); 2647 2648 btrfs_free_delayed_extent_op(extent_op); 2649 if (ret) { 2650 locked_ref->processing = 0; 2651 btrfs_delayed_ref_unlock(locked_ref); 2652 btrfs_put_delayed_ref(ref); 2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2654 return ret; 2655 } 2656 2657 /* 2658 * If this node is a head, that means all the refs in this head 2659 * have been dealt with, and we will pick the next head to deal 2660 * with, so we must unlock the head and drop it from the cluster 2661 * list before we release it. 2662 */ 2663 if (btrfs_delayed_ref_is_head(ref)) { 2664 if (locked_ref->is_data && 2665 locked_ref->total_ref_mod < 0) { 2666 spin_lock(&delayed_refs->lock); 2667 delayed_refs->pending_csums -= ref->num_bytes; 2668 spin_unlock(&delayed_refs->lock); 2669 } 2670 btrfs_delayed_ref_unlock(locked_ref); 2671 locked_ref = NULL; 2672 } 2673 btrfs_put_delayed_ref(ref); 2674 count++; 2675 cond_resched(); 2676 } 2677 2678 /* 2679 * We don't want to include ref heads since we can have empty ref heads 2680 * and those will drastically skew our runtime down since we just do 2681 * accounting, no actual extent tree updates. 2682 */ 2683 if (actual_count > 0) { 2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2685 u64 avg; 2686 2687 /* 2688 * We weigh the current average higher than our current runtime 2689 * to avoid large swings in the average. 2690 */ 2691 spin_lock(&delayed_refs->lock); 2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2694 spin_unlock(&delayed_refs->lock); 2695 } 2696 return 0; 2697 } 2698 2699 #ifdef SCRAMBLE_DELAYED_REFS 2700 /* 2701 * Normally delayed refs get processed in ascending bytenr order. This 2702 * correlates in most cases to the order added. To expose dependencies on this 2703 * order, we start to process the tree in the middle instead of the beginning 2704 */ 2705 static u64 find_middle(struct rb_root *root) 2706 { 2707 struct rb_node *n = root->rb_node; 2708 struct btrfs_delayed_ref_node *entry; 2709 int alt = 1; 2710 u64 middle; 2711 u64 first = 0, last = 0; 2712 2713 n = rb_first(root); 2714 if (n) { 2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2716 first = entry->bytenr; 2717 } 2718 n = rb_last(root); 2719 if (n) { 2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2721 last = entry->bytenr; 2722 } 2723 n = root->rb_node; 2724 2725 while (n) { 2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2727 WARN_ON(!entry->in_tree); 2728 2729 middle = entry->bytenr; 2730 2731 if (alt) 2732 n = n->rb_left; 2733 else 2734 n = n->rb_right; 2735 2736 alt = 1 - alt; 2737 } 2738 return middle; 2739 } 2740 #endif 2741 2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2743 { 2744 u64 num_bytes; 2745 2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2747 sizeof(struct btrfs_extent_inline_ref)); 2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2750 2751 /* 2752 * We don't ever fill up leaves all the way so multiply by 2 just to be 2753 * closer to what we're really going to want to use. 2754 */ 2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2756 } 2757 2758 /* 2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2760 * would require to store the csums for that many bytes. 2761 */ 2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2763 { 2764 u64 csum_size; 2765 u64 num_csums_per_leaf; 2766 u64 num_csums; 2767 2768 csum_size = BTRFS_MAX_ITEM_SIZE(root); 2769 num_csums_per_leaf = div64_u64(csum_size, 2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2771 num_csums = div64_u64(csum_bytes, root->sectorsize); 2772 num_csums += num_csums_per_leaf - 1; 2773 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2774 return num_csums; 2775 } 2776 2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root) 2779 { 2780 struct btrfs_block_rsv *global_rsv; 2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2784 u64 num_bytes, num_dirty_bgs_bytes; 2785 int ret = 0; 2786 2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2788 num_heads = heads_to_leaves(root, num_heads); 2789 if (num_heads > 1) 2790 num_bytes += (num_heads - 1) * root->nodesize; 2791 num_bytes <<= 1; 2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2794 num_dirty_bgs); 2795 global_rsv = &root->fs_info->global_block_rsv; 2796 2797 /* 2798 * If we can't allocate any more chunks lets make sure we have _lots_ of 2799 * wiggle room since running delayed refs can create more delayed refs. 2800 */ 2801 if (global_rsv->space_info->full) { 2802 num_dirty_bgs_bytes <<= 1; 2803 num_bytes <<= 1; 2804 } 2805 2806 spin_lock(&global_rsv->lock); 2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2808 ret = 1; 2809 spin_unlock(&global_rsv->lock); 2810 return ret; 2811 } 2812 2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2814 struct btrfs_root *root) 2815 { 2816 struct btrfs_fs_info *fs_info = root->fs_info; 2817 u64 num_entries = 2818 atomic_read(&trans->transaction->delayed_refs.num_entries); 2819 u64 avg_runtime; 2820 u64 val; 2821 2822 smp_mb(); 2823 avg_runtime = fs_info->avg_delayed_ref_runtime; 2824 val = num_entries * avg_runtime; 2825 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2826 return 1; 2827 if (val >= NSEC_PER_SEC / 2) 2828 return 2; 2829 2830 return btrfs_check_space_for_delayed_refs(trans, root); 2831 } 2832 2833 struct async_delayed_refs { 2834 struct btrfs_root *root; 2835 u64 transid; 2836 int count; 2837 int error; 2838 int sync; 2839 struct completion wait; 2840 struct btrfs_work work; 2841 }; 2842 2843 static void delayed_ref_async_start(struct btrfs_work *work) 2844 { 2845 struct async_delayed_refs *async; 2846 struct btrfs_trans_handle *trans; 2847 int ret; 2848 2849 async = container_of(work, struct async_delayed_refs, work); 2850 2851 /* if the commit is already started, we don't need to wait here */ 2852 if (btrfs_transaction_blocked(async->root->fs_info)) 2853 goto done; 2854 2855 trans = btrfs_join_transaction(async->root); 2856 if (IS_ERR(trans)) { 2857 async->error = PTR_ERR(trans); 2858 goto done; 2859 } 2860 2861 /* 2862 * trans->sync means that when we call end_transaction, we won't 2863 * wait on delayed refs 2864 */ 2865 trans->sync = true; 2866 2867 /* Don't bother flushing if we got into a different transaction */ 2868 if (trans->transid > async->transid) 2869 goto end; 2870 2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2872 if (ret) 2873 async->error = ret; 2874 end: 2875 ret = btrfs_end_transaction(trans, async->root); 2876 if (ret && !async->error) 2877 async->error = ret; 2878 done: 2879 if (async->sync) 2880 complete(&async->wait); 2881 else 2882 kfree(async); 2883 } 2884 2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2886 unsigned long count, u64 transid, int wait) 2887 { 2888 struct async_delayed_refs *async; 2889 int ret; 2890 2891 async = kmalloc(sizeof(*async), GFP_NOFS); 2892 if (!async) 2893 return -ENOMEM; 2894 2895 async->root = root->fs_info->tree_root; 2896 async->count = count; 2897 async->error = 0; 2898 async->transid = transid; 2899 if (wait) 2900 async->sync = 1; 2901 else 2902 async->sync = 0; 2903 init_completion(&async->wait); 2904 2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2906 delayed_ref_async_start, NULL, NULL); 2907 2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2909 2910 if (wait) { 2911 wait_for_completion(&async->wait); 2912 ret = async->error; 2913 kfree(async); 2914 return ret; 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * this starts processing the delayed reference count updates and 2921 * extent insertions we have queued up so far. count can be 2922 * 0, which means to process everything in the tree at the start 2923 * of the run (but not newly added entries), or it can be some target 2924 * number you'd like to process. 2925 * 2926 * Returns 0 on success or if called with an aborted transaction 2927 * Returns <0 on error and aborts the transaction 2928 */ 2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2930 struct btrfs_root *root, unsigned long count) 2931 { 2932 struct rb_node *node; 2933 struct btrfs_delayed_ref_root *delayed_refs; 2934 struct btrfs_delayed_ref_head *head; 2935 int ret; 2936 int run_all = count == (unsigned long)-1; 2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2938 2939 /* We'll clean this up in btrfs_cleanup_transaction */ 2940 if (trans->aborted) 2941 return 0; 2942 2943 if (root->fs_info->creating_free_space_tree) 2944 return 0; 2945 2946 if (root == root->fs_info->extent_root) 2947 root = root->fs_info->tree_root; 2948 2949 delayed_refs = &trans->transaction->delayed_refs; 2950 if (count == 0) 2951 count = atomic_read(&delayed_refs->num_entries) * 2; 2952 2953 again: 2954 #ifdef SCRAMBLE_DELAYED_REFS 2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2956 #endif 2957 trans->can_flush_pending_bgs = false; 2958 ret = __btrfs_run_delayed_refs(trans, root, count); 2959 if (ret < 0) { 2960 btrfs_abort_transaction(trans, ret); 2961 return ret; 2962 } 2963 2964 if (run_all) { 2965 if (!list_empty(&trans->new_bgs)) 2966 btrfs_create_pending_block_groups(trans, root); 2967 2968 spin_lock(&delayed_refs->lock); 2969 node = rb_first(&delayed_refs->href_root); 2970 if (!node) { 2971 spin_unlock(&delayed_refs->lock); 2972 goto out; 2973 } 2974 count = (unsigned long)-1; 2975 2976 while (node) { 2977 head = rb_entry(node, struct btrfs_delayed_ref_head, 2978 href_node); 2979 if (btrfs_delayed_ref_is_head(&head->node)) { 2980 struct btrfs_delayed_ref_node *ref; 2981 2982 ref = &head->node; 2983 atomic_inc(&ref->refs); 2984 2985 spin_unlock(&delayed_refs->lock); 2986 /* 2987 * Mutex was contended, block until it's 2988 * released and try again 2989 */ 2990 mutex_lock(&head->mutex); 2991 mutex_unlock(&head->mutex); 2992 2993 btrfs_put_delayed_ref(ref); 2994 cond_resched(); 2995 goto again; 2996 } else { 2997 WARN_ON(1); 2998 } 2999 node = rb_next(node); 3000 } 3001 spin_unlock(&delayed_refs->lock); 3002 cond_resched(); 3003 goto again; 3004 } 3005 out: 3006 assert_qgroups_uptodate(trans); 3007 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3008 return 0; 3009 } 3010 3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 u64 bytenr, u64 num_bytes, u64 flags, 3014 int level, int is_data) 3015 { 3016 struct btrfs_delayed_extent_op *extent_op; 3017 int ret; 3018 3019 extent_op = btrfs_alloc_delayed_extent_op(); 3020 if (!extent_op) 3021 return -ENOMEM; 3022 3023 extent_op->flags_to_set = flags; 3024 extent_op->update_flags = true; 3025 extent_op->update_key = false; 3026 extent_op->is_data = is_data ? true : false; 3027 extent_op->level = level; 3028 3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3030 num_bytes, extent_op); 3031 if (ret) 3032 btrfs_free_delayed_extent_op(extent_op); 3033 return ret; 3034 } 3035 3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, 3038 struct btrfs_path *path, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_delayed_ref_head *head; 3042 struct btrfs_delayed_ref_node *ref; 3043 struct btrfs_delayed_data_ref *data_ref; 3044 struct btrfs_delayed_ref_root *delayed_refs; 3045 int ret = 0; 3046 3047 delayed_refs = &trans->transaction->delayed_refs; 3048 spin_lock(&delayed_refs->lock); 3049 head = btrfs_find_delayed_ref_head(trans, bytenr); 3050 if (!head) { 3051 spin_unlock(&delayed_refs->lock); 3052 return 0; 3053 } 3054 3055 if (!mutex_trylock(&head->mutex)) { 3056 atomic_inc(&head->node.refs); 3057 spin_unlock(&delayed_refs->lock); 3058 3059 btrfs_release_path(path); 3060 3061 /* 3062 * Mutex was contended, block until it's released and let 3063 * caller try again 3064 */ 3065 mutex_lock(&head->mutex); 3066 mutex_unlock(&head->mutex); 3067 btrfs_put_delayed_ref(&head->node); 3068 return -EAGAIN; 3069 } 3070 spin_unlock(&delayed_refs->lock); 3071 3072 spin_lock(&head->lock); 3073 list_for_each_entry(ref, &head->ref_list, list) { 3074 /* If it's a shared ref we know a cross reference exists */ 3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3076 ret = 1; 3077 break; 3078 } 3079 3080 data_ref = btrfs_delayed_node_to_data_ref(ref); 3081 3082 /* 3083 * If our ref doesn't match the one we're currently looking at 3084 * then we have a cross reference. 3085 */ 3086 if (data_ref->root != root->root_key.objectid || 3087 data_ref->objectid != objectid || 3088 data_ref->offset != offset) { 3089 ret = 1; 3090 break; 3091 } 3092 } 3093 spin_unlock(&head->lock); 3094 mutex_unlock(&head->mutex); 3095 return ret; 3096 } 3097 3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3099 struct btrfs_root *root, 3100 struct btrfs_path *path, 3101 u64 objectid, u64 offset, u64 bytenr) 3102 { 3103 struct btrfs_root *extent_root = root->fs_info->extent_root; 3104 struct extent_buffer *leaf; 3105 struct btrfs_extent_data_ref *ref; 3106 struct btrfs_extent_inline_ref *iref; 3107 struct btrfs_extent_item *ei; 3108 struct btrfs_key key; 3109 u32 item_size; 3110 int ret; 3111 3112 key.objectid = bytenr; 3113 key.offset = (u64)-1; 3114 key.type = BTRFS_EXTENT_ITEM_KEY; 3115 3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3117 if (ret < 0) 3118 goto out; 3119 BUG_ON(ret == 0); /* Corruption */ 3120 3121 ret = -ENOENT; 3122 if (path->slots[0] == 0) 3123 goto out; 3124 3125 path->slots[0]--; 3126 leaf = path->nodes[0]; 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3128 3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3130 goto out; 3131 3132 ret = 1; 3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3135 if (item_size < sizeof(*ei)) { 3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3137 goto out; 3138 } 3139 #endif 3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3141 3142 if (item_size != sizeof(*ei) + 3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3144 goto out; 3145 3146 if (btrfs_extent_generation(leaf, ei) <= 3147 btrfs_root_last_snapshot(&root->root_item)) 3148 goto out; 3149 3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3151 if (btrfs_extent_inline_ref_type(leaf, iref) != 3152 BTRFS_EXTENT_DATA_REF_KEY) 3153 goto out; 3154 3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3156 if (btrfs_extent_refs(leaf, ei) != 3157 btrfs_extent_data_ref_count(leaf, ref) || 3158 btrfs_extent_data_ref_root(leaf, ref) != 3159 root->root_key.objectid || 3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3161 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3162 goto out; 3163 3164 ret = 0; 3165 out: 3166 return ret; 3167 } 3168 3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3170 struct btrfs_root *root, 3171 u64 objectid, u64 offset, u64 bytenr) 3172 { 3173 struct btrfs_path *path; 3174 int ret; 3175 int ret2; 3176 3177 path = btrfs_alloc_path(); 3178 if (!path) 3179 return -ENOENT; 3180 3181 do { 3182 ret = check_committed_ref(trans, root, path, objectid, 3183 offset, bytenr); 3184 if (ret && ret != -ENOENT) 3185 goto out; 3186 3187 ret2 = check_delayed_ref(trans, root, path, objectid, 3188 offset, bytenr); 3189 } while (ret2 == -EAGAIN); 3190 3191 if (ret2 && ret2 != -ENOENT) { 3192 ret = ret2; 3193 goto out; 3194 } 3195 3196 if (ret != -ENOENT || ret2 != -ENOENT) 3197 ret = 0; 3198 out: 3199 btrfs_free_path(path); 3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3201 WARN_ON(ret > 0); 3202 return ret; 3203 } 3204 3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3206 struct btrfs_root *root, 3207 struct extent_buffer *buf, 3208 int full_backref, int inc) 3209 { 3210 u64 bytenr; 3211 u64 num_bytes; 3212 u64 parent; 3213 u64 ref_root; 3214 u32 nritems; 3215 struct btrfs_key key; 3216 struct btrfs_file_extent_item *fi; 3217 int i; 3218 int level; 3219 int ret = 0; 3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3221 u64, u64, u64, u64, u64, u64); 3222 3223 3224 if (btrfs_is_testing(root->fs_info)) 3225 return 0; 3226 3227 ref_root = btrfs_header_owner(buf); 3228 nritems = btrfs_header_nritems(buf); 3229 level = btrfs_header_level(buf); 3230 3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3232 return 0; 3233 3234 if (inc) 3235 process_func = btrfs_inc_extent_ref; 3236 else 3237 process_func = btrfs_free_extent; 3238 3239 if (full_backref) 3240 parent = buf->start; 3241 else 3242 parent = 0; 3243 3244 for (i = 0; i < nritems; i++) { 3245 if (level == 0) { 3246 btrfs_item_key_to_cpu(buf, &key, i); 3247 if (key.type != BTRFS_EXTENT_DATA_KEY) 3248 continue; 3249 fi = btrfs_item_ptr(buf, i, 3250 struct btrfs_file_extent_item); 3251 if (btrfs_file_extent_type(buf, fi) == 3252 BTRFS_FILE_EXTENT_INLINE) 3253 continue; 3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3255 if (bytenr == 0) 3256 continue; 3257 3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3259 key.offset -= btrfs_file_extent_offset(buf, fi); 3260 ret = process_func(trans, root, bytenr, num_bytes, 3261 parent, ref_root, key.objectid, 3262 key.offset); 3263 if (ret) 3264 goto fail; 3265 } else { 3266 bytenr = btrfs_node_blockptr(buf, i); 3267 num_bytes = root->nodesize; 3268 ret = process_func(trans, root, bytenr, num_bytes, 3269 parent, ref_root, level - 1, 0); 3270 if (ret) 3271 goto fail; 3272 } 3273 } 3274 return 0; 3275 fail: 3276 return ret; 3277 } 3278 3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3280 struct extent_buffer *buf, int full_backref) 3281 { 3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3283 } 3284 3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3286 struct extent_buffer *buf, int full_backref) 3287 { 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3289 } 3290 3291 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3292 struct btrfs_root *root, 3293 struct btrfs_path *path, 3294 struct btrfs_block_group_cache *cache) 3295 { 3296 int ret; 3297 struct btrfs_root *extent_root = root->fs_info->extent_root; 3298 unsigned long bi; 3299 struct extent_buffer *leaf; 3300 3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3302 if (ret) { 3303 if (ret > 0) 3304 ret = -ENOENT; 3305 goto fail; 3306 } 3307 3308 leaf = path->nodes[0]; 3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3311 btrfs_mark_buffer_dirty(leaf); 3312 fail: 3313 btrfs_release_path(path); 3314 return ret; 3315 3316 } 3317 3318 static struct btrfs_block_group_cache * 3319 next_block_group(struct btrfs_root *root, 3320 struct btrfs_block_group_cache *cache) 3321 { 3322 struct rb_node *node; 3323 3324 spin_lock(&root->fs_info->block_group_cache_lock); 3325 3326 /* If our block group was removed, we need a full search. */ 3327 if (RB_EMPTY_NODE(&cache->cache_node)) { 3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3329 3330 spin_unlock(&root->fs_info->block_group_cache_lock); 3331 btrfs_put_block_group(cache); 3332 cache = btrfs_lookup_first_block_group(root->fs_info, 3333 next_bytenr); 3334 return cache; 3335 } 3336 node = rb_next(&cache->cache_node); 3337 btrfs_put_block_group(cache); 3338 if (node) { 3339 cache = rb_entry(node, struct btrfs_block_group_cache, 3340 cache_node); 3341 btrfs_get_block_group(cache); 3342 } else 3343 cache = NULL; 3344 spin_unlock(&root->fs_info->block_group_cache_lock); 3345 return cache; 3346 } 3347 3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3349 struct btrfs_trans_handle *trans, 3350 struct btrfs_path *path) 3351 { 3352 struct btrfs_root *root = block_group->fs_info->tree_root; 3353 struct inode *inode = NULL; 3354 u64 alloc_hint = 0; 3355 int dcs = BTRFS_DC_ERROR; 3356 u64 num_pages = 0; 3357 int retries = 0; 3358 int ret = 0; 3359 3360 /* 3361 * If this block group is smaller than 100 megs don't bother caching the 3362 * block group. 3363 */ 3364 if (block_group->key.offset < (100 * SZ_1M)) { 3365 spin_lock(&block_group->lock); 3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3367 spin_unlock(&block_group->lock); 3368 return 0; 3369 } 3370 3371 if (trans->aborted) 3372 return 0; 3373 again: 3374 inode = lookup_free_space_inode(root, block_group, path); 3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3376 ret = PTR_ERR(inode); 3377 btrfs_release_path(path); 3378 goto out; 3379 } 3380 3381 if (IS_ERR(inode)) { 3382 BUG_ON(retries); 3383 retries++; 3384 3385 if (block_group->ro) 3386 goto out_free; 3387 3388 ret = create_free_space_inode(root, trans, block_group, path); 3389 if (ret) 3390 goto out_free; 3391 goto again; 3392 } 3393 3394 /* We've already setup this transaction, go ahead and exit */ 3395 if (block_group->cache_generation == trans->transid && 3396 i_size_read(inode)) { 3397 dcs = BTRFS_DC_SETUP; 3398 goto out_put; 3399 } 3400 3401 /* 3402 * We want to set the generation to 0, that way if anything goes wrong 3403 * from here on out we know not to trust this cache when we load up next 3404 * time. 3405 */ 3406 BTRFS_I(inode)->generation = 0; 3407 ret = btrfs_update_inode(trans, root, inode); 3408 if (ret) { 3409 /* 3410 * So theoretically we could recover from this, simply set the 3411 * super cache generation to 0 so we know to invalidate the 3412 * cache, but then we'd have to keep track of the block groups 3413 * that fail this way so we know we _have_ to reset this cache 3414 * before the next commit or risk reading stale cache. So to 3415 * limit our exposure to horrible edge cases lets just abort the 3416 * transaction, this only happens in really bad situations 3417 * anyway. 3418 */ 3419 btrfs_abort_transaction(trans, ret); 3420 goto out_put; 3421 } 3422 WARN_ON(ret); 3423 3424 if (i_size_read(inode) > 0) { 3425 ret = btrfs_check_trunc_cache_free_space(root, 3426 &root->fs_info->global_block_rsv); 3427 if (ret) 3428 goto out_put; 3429 3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3431 if (ret) 3432 goto out_put; 3433 } 3434 3435 spin_lock(&block_group->lock); 3436 if (block_group->cached != BTRFS_CACHE_FINISHED || 3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) { 3438 /* 3439 * don't bother trying to write stuff out _if_ 3440 * a) we're not cached, 3441 * b) we're with nospace_cache mount option. 3442 */ 3443 dcs = BTRFS_DC_WRITTEN; 3444 spin_unlock(&block_group->lock); 3445 goto out_put; 3446 } 3447 spin_unlock(&block_group->lock); 3448 3449 /* 3450 * We hit an ENOSPC when setting up the cache in this transaction, just 3451 * skip doing the setup, we've already cleared the cache so we're safe. 3452 */ 3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3454 ret = -ENOSPC; 3455 goto out_put; 3456 } 3457 3458 /* 3459 * Try to preallocate enough space based on how big the block group is. 3460 * Keep in mind this has to include any pinned space which could end up 3461 * taking up quite a bit since it's not folded into the other space 3462 * cache. 3463 */ 3464 num_pages = div_u64(block_group->key.offset, SZ_256M); 3465 if (!num_pages) 3466 num_pages = 1; 3467 3468 num_pages *= 16; 3469 num_pages *= PAGE_SIZE; 3470 3471 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3472 if (ret) 3473 goto out_put; 3474 3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3476 num_pages, num_pages, 3477 &alloc_hint); 3478 /* 3479 * Our cache requires contiguous chunks so that we don't modify a bunch 3480 * of metadata or split extents when writing the cache out, which means 3481 * we can enospc if we are heavily fragmented in addition to just normal 3482 * out of space conditions. So if we hit this just skip setting up any 3483 * other block groups for this transaction, maybe we'll unpin enough 3484 * space the next time around. 3485 */ 3486 if (!ret) 3487 dcs = BTRFS_DC_SETUP; 3488 else if (ret == -ENOSPC) 3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3490 3491 out_put: 3492 iput(inode); 3493 out_free: 3494 btrfs_release_path(path); 3495 out: 3496 spin_lock(&block_group->lock); 3497 if (!ret && dcs == BTRFS_DC_SETUP) 3498 block_group->cache_generation = trans->transid; 3499 block_group->disk_cache_state = dcs; 3500 spin_unlock(&block_group->lock); 3501 3502 return ret; 3503 } 3504 3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3506 struct btrfs_root *root) 3507 { 3508 struct btrfs_block_group_cache *cache, *tmp; 3509 struct btrfs_transaction *cur_trans = trans->transaction; 3510 struct btrfs_path *path; 3511 3512 if (list_empty(&cur_trans->dirty_bgs) || 3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) 3514 return 0; 3515 3516 path = btrfs_alloc_path(); 3517 if (!path) 3518 return -ENOMEM; 3519 3520 /* Could add new block groups, use _safe just in case */ 3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3522 dirty_list) { 3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3524 cache_save_setup(cache, trans, path); 3525 } 3526 3527 btrfs_free_path(path); 3528 return 0; 3529 } 3530 3531 /* 3532 * transaction commit does final block group cache writeback during a 3533 * critical section where nothing is allowed to change the FS. This is 3534 * required in order for the cache to actually match the block group, 3535 * but can introduce a lot of latency into the commit. 3536 * 3537 * So, btrfs_start_dirty_block_groups is here to kick off block group 3538 * cache IO. There's a chance we'll have to redo some of it if the 3539 * block group changes again during the commit, but it greatly reduces 3540 * the commit latency by getting rid of the easy block groups while 3541 * we're still allowing others to join the commit. 3542 */ 3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3544 struct btrfs_root *root) 3545 { 3546 struct btrfs_block_group_cache *cache; 3547 struct btrfs_transaction *cur_trans = trans->transaction; 3548 int ret = 0; 3549 int should_put; 3550 struct btrfs_path *path = NULL; 3551 LIST_HEAD(dirty); 3552 struct list_head *io = &cur_trans->io_bgs; 3553 int num_started = 0; 3554 int loops = 0; 3555 3556 spin_lock(&cur_trans->dirty_bgs_lock); 3557 if (list_empty(&cur_trans->dirty_bgs)) { 3558 spin_unlock(&cur_trans->dirty_bgs_lock); 3559 return 0; 3560 } 3561 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3562 spin_unlock(&cur_trans->dirty_bgs_lock); 3563 3564 again: 3565 /* 3566 * make sure all the block groups on our dirty list actually 3567 * exist 3568 */ 3569 btrfs_create_pending_block_groups(trans, root); 3570 3571 if (!path) { 3572 path = btrfs_alloc_path(); 3573 if (!path) 3574 return -ENOMEM; 3575 } 3576 3577 /* 3578 * cache_write_mutex is here only to save us from balance or automatic 3579 * removal of empty block groups deleting this block group while we are 3580 * writing out the cache 3581 */ 3582 mutex_lock(&trans->transaction->cache_write_mutex); 3583 while (!list_empty(&dirty)) { 3584 cache = list_first_entry(&dirty, 3585 struct btrfs_block_group_cache, 3586 dirty_list); 3587 /* 3588 * this can happen if something re-dirties a block 3589 * group that is already under IO. Just wait for it to 3590 * finish and then do it all again 3591 */ 3592 if (!list_empty(&cache->io_list)) { 3593 list_del_init(&cache->io_list); 3594 btrfs_wait_cache_io(root, trans, cache, 3595 &cache->io_ctl, path, 3596 cache->key.objectid); 3597 btrfs_put_block_group(cache); 3598 } 3599 3600 3601 /* 3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3603 * if it should update the cache_state. Don't delete 3604 * until after we wait. 3605 * 3606 * Since we're not running in the commit critical section 3607 * we need the dirty_bgs_lock to protect from update_block_group 3608 */ 3609 spin_lock(&cur_trans->dirty_bgs_lock); 3610 list_del_init(&cache->dirty_list); 3611 spin_unlock(&cur_trans->dirty_bgs_lock); 3612 3613 should_put = 1; 3614 3615 cache_save_setup(cache, trans, path); 3616 3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3618 cache->io_ctl.inode = NULL; 3619 ret = btrfs_write_out_cache(root, trans, cache, path); 3620 if (ret == 0 && cache->io_ctl.inode) { 3621 num_started++; 3622 should_put = 0; 3623 3624 /* 3625 * the cache_write_mutex is protecting 3626 * the io_list 3627 */ 3628 list_add_tail(&cache->io_list, io); 3629 } else { 3630 /* 3631 * if we failed to write the cache, the 3632 * generation will be bad and life goes on 3633 */ 3634 ret = 0; 3635 } 3636 } 3637 if (!ret) { 3638 ret = write_one_cache_group(trans, root, path, cache); 3639 /* 3640 * Our block group might still be attached to the list 3641 * of new block groups in the transaction handle of some 3642 * other task (struct btrfs_trans_handle->new_bgs). This 3643 * means its block group item isn't yet in the extent 3644 * tree. If this happens ignore the error, as we will 3645 * try again later in the critical section of the 3646 * transaction commit. 3647 */ 3648 if (ret == -ENOENT) { 3649 ret = 0; 3650 spin_lock(&cur_trans->dirty_bgs_lock); 3651 if (list_empty(&cache->dirty_list)) { 3652 list_add_tail(&cache->dirty_list, 3653 &cur_trans->dirty_bgs); 3654 btrfs_get_block_group(cache); 3655 } 3656 spin_unlock(&cur_trans->dirty_bgs_lock); 3657 } else if (ret) { 3658 btrfs_abort_transaction(trans, ret); 3659 } 3660 } 3661 3662 /* if its not on the io list, we need to put the block group */ 3663 if (should_put) 3664 btrfs_put_block_group(cache); 3665 3666 if (ret) 3667 break; 3668 3669 /* 3670 * Avoid blocking other tasks for too long. It might even save 3671 * us from writing caches for block groups that are going to be 3672 * removed. 3673 */ 3674 mutex_unlock(&trans->transaction->cache_write_mutex); 3675 mutex_lock(&trans->transaction->cache_write_mutex); 3676 } 3677 mutex_unlock(&trans->transaction->cache_write_mutex); 3678 3679 /* 3680 * go through delayed refs for all the stuff we've just kicked off 3681 * and then loop back (just once) 3682 */ 3683 ret = btrfs_run_delayed_refs(trans, root, 0); 3684 if (!ret && loops == 0) { 3685 loops++; 3686 spin_lock(&cur_trans->dirty_bgs_lock); 3687 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3688 /* 3689 * dirty_bgs_lock protects us from concurrent block group 3690 * deletes too (not just cache_write_mutex). 3691 */ 3692 if (!list_empty(&dirty)) { 3693 spin_unlock(&cur_trans->dirty_bgs_lock); 3694 goto again; 3695 } 3696 spin_unlock(&cur_trans->dirty_bgs_lock); 3697 } 3698 3699 btrfs_free_path(path); 3700 return ret; 3701 } 3702 3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3704 struct btrfs_root *root) 3705 { 3706 struct btrfs_block_group_cache *cache; 3707 struct btrfs_transaction *cur_trans = trans->transaction; 3708 int ret = 0; 3709 int should_put; 3710 struct btrfs_path *path; 3711 struct list_head *io = &cur_trans->io_bgs; 3712 int num_started = 0; 3713 3714 path = btrfs_alloc_path(); 3715 if (!path) 3716 return -ENOMEM; 3717 3718 /* 3719 * Even though we are in the critical section of the transaction commit, 3720 * we can still have concurrent tasks adding elements to this 3721 * transaction's list of dirty block groups. These tasks correspond to 3722 * endio free space workers started when writeback finishes for a 3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3724 * allocate new block groups as a result of COWing nodes of the root 3725 * tree when updating the free space inode. The writeback for the space 3726 * caches is triggered by an earlier call to 3727 * btrfs_start_dirty_block_groups() and iterations of the following 3728 * loop. 3729 * Also we want to do the cache_save_setup first and then run the 3730 * delayed refs to make sure we have the best chance at doing this all 3731 * in one shot. 3732 */ 3733 spin_lock(&cur_trans->dirty_bgs_lock); 3734 while (!list_empty(&cur_trans->dirty_bgs)) { 3735 cache = list_first_entry(&cur_trans->dirty_bgs, 3736 struct btrfs_block_group_cache, 3737 dirty_list); 3738 3739 /* 3740 * this can happen if cache_save_setup re-dirties a block 3741 * group that is already under IO. Just wait for it to 3742 * finish and then do it all again 3743 */ 3744 if (!list_empty(&cache->io_list)) { 3745 spin_unlock(&cur_trans->dirty_bgs_lock); 3746 list_del_init(&cache->io_list); 3747 btrfs_wait_cache_io(root, trans, cache, 3748 &cache->io_ctl, path, 3749 cache->key.objectid); 3750 btrfs_put_block_group(cache); 3751 spin_lock(&cur_trans->dirty_bgs_lock); 3752 } 3753 3754 /* 3755 * don't remove from the dirty list until after we've waited 3756 * on any pending IO 3757 */ 3758 list_del_init(&cache->dirty_list); 3759 spin_unlock(&cur_trans->dirty_bgs_lock); 3760 should_put = 1; 3761 3762 cache_save_setup(cache, trans, path); 3763 3764 if (!ret) 3765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3766 3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3768 cache->io_ctl.inode = NULL; 3769 ret = btrfs_write_out_cache(root, trans, cache, path); 3770 if (ret == 0 && cache->io_ctl.inode) { 3771 num_started++; 3772 should_put = 0; 3773 list_add_tail(&cache->io_list, io); 3774 } else { 3775 /* 3776 * if we failed to write the cache, the 3777 * generation will be bad and life goes on 3778 */ 3779 ret = 0; 3780 } 3781 } 3782 if (!ret) { 3783 ret = write_one_cache_group(trans, root, path, cache); 3784 /* 3785 * One of the free space endio workers might have 3786 * created a new block group while updating a free space 3787 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3788 * and hasn't released its transaction handle yet, in 3789 * which case the new block group is still attached to 3790 * its transaction handle and its creation has not 3791 * finished yet (no block group item in the extent tree 3792 * yet, etc). If this is the case, wait for all free 3793 * space endio workers to finish and retry. This is a 3794 * a very rare case so no need for a more efficient and 3795 * complex approach. 3796 */ 3797 if (ret == -ENOENT) { 3798 wait_event(cur_trans->writer_wait, 3799 atomic_read(&cur_trans->num_writers) == 1); 3800 ret = write_one_cache_group(trans, root, path, 3801 cache); 3802 } 3803 if (ret) 3804 btrfs_abort_transaction(trans, ret); 3805 } 3806 3807 /* if its not on the io list, we need to put the block group */ 3808 if (should_put) 3809 btrfs_put_block_group(cache); 3810 spin_lock(&cur_trans->dirty_bgs_lock); 3811 } 3812 spin_unlock(&cur_trans->dirty_bgs_lock); 3813 3814 while (!list_empty(io)) { 3815 cache = list_first_entry(io, struct btrfs_block_group_cache, 3816 io_list); 3817 list_del_init(&cache->io_list); 3818 btrfs_wait_cache_io(root, trans, cache, 3819 &cache->io_ctl, path, cache->key.objectid); 3820 btrfs_put_block_group(cache); 3821 } 3822 3823 btrfs_free_path(path); 3824 return ret; 3825 } 3826 3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3828 { 3829 struct btrfs_block_group_cache *block_group; 3830 int readonly = 0; 3831 3832 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3833 if (!block_group || block_group->ro) 3834 readonly = 1; 3835 if (block_group) 3836 btrfs_put_block_group(block_group); 3837 return readonly; 3838 } 3839 3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3841 { 3842 struct btrfs_block_group_cache *bg; 3843 bool ret = true; 3844 3845 bg = btrfs_lookup_block_group(fs_info, bytenr); 3846 if (!bg) 3847 return false; 3848 3849 spin_lock(&bg->lock); 3850 if (bg->ro) 3851 ret = false; 3852 else 3853 atomic_inc(&bg->nocow_writers); 3854 spin_unlock(&bg->lock); 3855 3856 /* no put on block group, done by btrfs_dec_nocow_writers */ 3857 if (!ret) 3858 btrfs_put_block_group(bg); 3859 3860 return ret; 3861 3862 } 3863 3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3865 { 3866 struct btrfs_block_group_cache *bg; 3867 3868 bg = btrfs_lookup_block_group(fs_info, bytenr); 3869 ASSERT(bg); 3870 if (atomic_dec_and_test(&bg->nocow_writers)) 3871 wake_up_atomic_t(&bg->nocow_writers); 3872 /* 3873 * Once for our lookup and once for the lookup done by a previous call 3874 * to btrfs_inc_nocow_writers() 3875 */ 3876 btrfs_put_block_group(bg); 3877 btrfs_put_block_group(bg); 3878 } 3879 3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3881 { 3882 schedule(); 3883 return 0; 3884 } 3885 3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3887 { 3888 wait_on_atomic_t(&bg->nocow_writers, 3889 btrfs_wait_nocow_writers_atomic_t, 3890 TASK_UNINTERRUPTIBLE); 3891 } 3892 3893 static const char *alloc_name(u64 flags) 3894 { 3895 switch (flags) { 3896 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3897 return "mixed"; 3898 case BTRFS_BLOCK_GROUP_METADATA: 3899 return "metadata"; 3900 case BTRFS_BLOCK_GROUP_DATA: 3901 return "data"; 3902 case BTRFS_BLOCK_GROUP_SYSTEM: 3903 return "system"; 3904 default: 3905 WARN_ON(1); 3906 return "invalid-combination"; 3907 }; 3908 } 3909 3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3911 u64 total_bytes, u64 bytes_used, 3912 u64 bytes_readonly, 3913 struct btrfs_space_info **space_info) 3914 { 3915 struct btrfs_space_info *found; 3916 int i; 3917 int factor; 3918 int ret; 3919 3920 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3921 BTRFS_BLOCK_GROUP_RAID10)) 3922 factor = 2; 3923 else 3924 factor = 1; 3925 3926 found = __find_space_info(info, flags); 3927 if (found) { 3928 spin_lock(&found->lock); 3929 found->total_bytes += total_bytes; 3930 found->disk_total += total_bytes * factor; 3931 found->bytes_used += bytes_used; 3932 found->disk_used += bytes_used * factor; 3933 found->bytes_readonly += bytes_readonly; 3934 if (total_bytes > 0) 3935 found->full = 0; 3936 space_info_add_new_bytes(info, found, total_bytes - 3937 bytes_used - bytes_readonly); 3938 spin_unlock(&found->lock); 3939 *space_info = found; 3940 return 0; 3941 } 3942 found = kzalloc(sizeof(*found), GFP_NOFS); 3943 if (!found) 3944 return -ENOMEM; 3945 3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3947 if (ret) { 3948 kfree(found); 3949 return ret; 3950 } 3951 3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3953 INIT_LIST_HEAD(&found->block_groups[i]); 3954 init_rwsem(&found->groups_sem); 3955 spin_lock_init(&found->lock); 3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3957 found->total_bytes = total_bytes; 3958 found->disk_total = total_bytes * factor; 3959 found->bytes_used = bytes_used; 3960 found->disk_used = bytes_used * factor; 3961 found->bytes_pinned = 0; 3962 found->bytes_reserved = 0; 3963 found->bytes_readonly = bytes_readonly; 3964 found->bytes_may_use = 0; 3965 found->full = 0; 3966 found->max_extent_size = 0; 3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3968 found->chunk_alloc = 0; 3969 found->flush = 0; 3970 init_waitqueue_head(&found->wait); 3971 INIT_LIST_HEAD(&found->ro_bgs); 3972 INIT_LIST_HEAD(&found->tickets); 3973 INIT_LIST_HEAD(&found->priority_tickets); 3974 3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3976 info->space_info_kobj, "%s", 3977 alloc_name(found->flags)); 3978 if (ret) { 3979 kfree(found); 3980 return ret; 3981 } 3982 3983 *space_info = found; 3984 list_add_rcu(&found->list, &info->space_info); 3985 if (flags & BTRFS_BLOCK_GROUP_DATA) 3986 info->data_sinfo = found; 3987 3988 return ret; 3989 } 3990 3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3992 { 3993 u64 extra_flags = chunk_to_extended(flags) & 3994 BTRFS_EXTENDED_PROFILE_MASK; 3995 3996 write_seqlock(&fs_info->profiles_lock); 3997 if (flags & BTRFS_BLOCK_GROUP_DATA) 3998 fs_info->avail_data_alloc_bits |= extra_flags; 3999 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4000 fs_info->avail_metadata_alloc_bits |= extra_flags; 4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4002 fs_info->avail_system_alloc_bits |= extra_flags; 4003 write_sequnlock(&fs_info->profiles_lock); 4004 } 4005 4006 /* 4007 * returns target flags in extended format or 0 if restripe for this 4008 * chunk_type is not in progress 4009 * 4010 * should be called with either volume_mutex or balance_lock held 4011 */ 4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4013 { 4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4015 u64 target = 0; 4016 4017 if (!bctl) 4018 return 0; 4019 4020 if (flags & BTRFS_BLOCK_GROUP_DATA && 4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4029 } 4030 4031 return target; 4032 } 4033 4034 /* 4035 * @flags: available profiles in extended format (see ctree.h) 4036 * 4037 * Returns reduced profile in chunk format. If profile changing is in 4038 * progress (either running or paused) picks the target profile (if it's 4039 * already available), otherwise falls back to plain reducing. 4040 */ 4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4042 { 4043 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4044 u64 target; 4045 u64 raid_type; 4046 u64 allowed = 0; 4047 4048 /* 4049 * see if restripe for this chunk_type is in progress, if so 4050 * try to reduce to the target profile 4051 */ 4052 spin_lock(&root->fs_info->balance_lock); 4053 target = get_restripe_target(root->fs_info, flags); 4054 if (target) { 4055 /* pick target profile only if it's already available */ 4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4057 spin_unlock(&root->fs_info->balance_lock); 4058 return extended_to_chunk(target); 4059 } 4060 } 4061 spin_unlock(&root->fs_info->balance_lock); 4062 4063 /* First, mask out the RAID levels which aren't possible */ 4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4066 allowed |= btrfs_raid_group[raid_type]; 4067 } 4068 allowed &= flags; 4069 4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4071 allowed = BTRFS_BLOCK_GROUP_RAID6; 4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4073 allowed = BTRFS_BLOCK_GROUP_RAID5; 4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4075 allowed = BTRFS_BLOCK_GROUP_RAID10; 4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4077 allowed = BTRFS_BLOCK_GROUP_RAID1; 4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4079 allowed = BTRFS_BLOCK_GROUP_RAID0; 4080 4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4082 4083 return extended_to_chunk(flags | allowed); 4084 } 4085 4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4087 { 4088 unsigned seq; 4089 u64 flags; 4090 4091 do { 4092 flags = orig_flags; 4093 seq = read_seqbegin(&root->fs_info->profiles_lock); 4094 4095 if (flags & BTRFS_BLOCK_GROUP_DATA) 4096 flags |= root->fs_info->avail_data_alloc_bits; 4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4098 flags |= root->fs_info->avail_system_alloc_bits; 4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4100 flags |= root->fs_info->avail_metadata_alloc_bits; 4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4102 4103 return btrfs_reduce_alloc_profile(root, flags); 4104 } 4105 4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4107 { 4108 u64 flags; 4109 u64 ret; 4110 4111 if (data) 4112 flags = BTRFS_BLOCK_GROUP_DATA; 4113 else if (root == root->fs_info->chunk_root) 4114 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4115 else 4116 flags = BTRFS_BLOCK_GROUP_METADATA; 4117 4118 ret = get_alloc_profile(root, flags); 4119 return ret; 4120 } 4121 4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4123 { 4124 struct btrfs_space_info *data_sinfo; 4125 struct btrfs_root *root = BTRFS_I(inode)->root; 4126 struct btrfs_fs_info *fs_info = root->fs_info; 4127 u64 used; 4128 int ret = 0; 4129 int need_commit = 2; 4130 int have_pinned_space; 4131 4132 /* make sure bytes are sectorsize aligned */ 4133 bytes = ALIGN(bytes, root->sectorsize); 4134 4135 if (btrfs_is_free_space_inode(inode)) { 4136 need_commit = 0; 4137 ASSERT(current->journal_info); 4138 } 4139 4140 data_sinfo = fs_info->data_sinfo; 4141 if (!data_sinfo) 4142 goto alloc; 4143 4144 again: 4145 /* make sure we have enough space to handle the data first */ 4146 spin_lock(&data_sinfo->lock); 4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4149 data_sinfo->bytes_may_use; 4150 4151 if (used + bytes > data_sinfo->total_bytes) { 4152 struct btrfs_trans_handle *trans; 4153 4154 /* 4155 * if we don't have enough free bytes in this space then we need 4156 * to alloc a new chunk. 4157 */ 4158 if (!data_sinfo->full) { 4159 u64 alloc_target; 4160 4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4162 spin_unlock(&data_sinfo->lock); 4163 alloc: 4164 alloc_target = btrfs_get_alloc_profile(root, 1); 4165 /* 4166 * It is ugly that we don't call nolock join 4167 * transaction for the free space inode case here. 4168 * But it is safe because we only do the data space 4169 * reservation for the free space cache in the 4170 * transaction context, the common join transaction 4171 * just increase the counter of the current transaction 4172 * handler, doesn't try to acquire the trans_lock of 4173 * the fs. 4174 */ 4175 trans = btrfs_join_transaction(root); 4176 if (IS_ERR(trans)) 4177 return PTR_ERR(trans); 4178 4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4180 alloc_target, 4181 CHUNK_ALLOC_NO_FORCE); 4182 btrfs_end_transaction(trans, root); 4183 if (ret < 0) { 4184 if (ret != -ENOSPC) 4185 return ret; 4186 else { 4187 have_pinned_space = 1; 4188 goto commit_trans; 4189 } 4190 } 4191 4192 if (!data_sinfo) 4193 data_sinfo = fs_info->data_sinfo; 4194 4195 goto again; 4196 } 4197 4198 /* 4199 * If we don't have enough pinned space to deal with this 4200 * allocation, and no removed chunk in current transaction, 4201 * don't bother committing the transaction. 4202 */ 4203 have_pinned_space = percpu_counter_compare( 4204 &data_sinfo->total_bytes_pinned, 4205 used + bytes - data_sinfo->total_bytes); 4206 spin_unlock(&data_sinfo->lock); 4207 4208 /* commit the current transaction and try again */ 4209 commit_trans: 4210 if (need_commit && 4211 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4212 need_commit--; 4213 4214 if (need_commit > 0) { 4215 btrfs_start_delalloc_roots(fs_info, 0, -1); 4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4217 } 4218 4219 trans = btrfs_join_transaction(root); 4220 if (IS_ERR(trans)) 4221 return PTR_ERR(trans); 4222 if (have_pinned_space >= 0 || 4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4224 &trans->transaction->flags) || 4225 need_commit > 0) { 4226 ret = btrfs_commit_transaction(trans, root); 4227 if (ret) 4228 return ret; 4229 /* 4230 * The cleaner kthread might still be doing iput 4231 * operations. Wait for it to finish so that 4232 * more space is released. 4233 */ 4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4236 goto again; 4237 } else { 4238 btrfs_end_transaction(trans, root); 4239 } 4240 } 4241 4242 trace_btrfs_space_reservation(root->fs_info, 4243 "space_info:enospc", 4244 data_sinfo->flags, bytes, 1); 4245 return -ENOSPC; 4246 } 4247 data_sinfo->bytes_may_use += bytes; 4248 trace_btrfs_space_reservation(root->fs_info, "space_info", 4249 data_sinfo->flags, bytes, 1); 4250 spin_unlock(&data_sinfo->lock); 4251 4252 return ret; 4253 } 4254 4255 /* 4256 * New check_data_free_space() with ability for precious data reservation 4257 * Will replace old btrfs_check_data_free_space(), but for patch split, 4258 * add a new function first and then replace it. 4259 */ 4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4261 { 4262 struct btrfs_root *root = BTRFS_I(inode)->root; 4263 int ret; 4264 4265 /* align the range */ 4266 len = round_up(start + len, root->sectorsize) - 4267 round_down(start, root->sectorsize); 4268 start = round_down(start, root->sectorsize); 4269 4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4271 if (ret < 0) 4272 return ret; 4273 4274 /* 4275 * Use new btrfs_qgroup_reserve_data to reserve precious data space 4276 * 4277 * TODO: Find a good method to avoid reserve data space for NOCOW 4278 * range, but don't impact performance on quota disable case. 4279 */ 4280 ret = btrfs_qgroup_reserve_data(inode, start, len); 4281 return ret; 4282 } 4283 4284 /* 4285 * Called if we need to clear a data reservation for this inode 4286 * Normally in a error case. 4287 * 4288 * This one will *NOT* use accurate qgroup reserved space API, just for case 4289 * which we can't sleep and is sure it won't affect qgroup reserved space. 4290 * Like clear_bit_hook(). 4291 */ 4292 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4293 u64 len) 4294 { 4295 struct btrfs_root *root = BTRFS_I(inode)->root; 4296 struct btrfs_space_info *data_sinfo; 4297 4298 /* Make sure the range is aligned to sectorsize */ 4299 len = round_up(start + len, root->sectorsize) - 4300 round_down(start, root->sectorsize); 4301 start = round_down(start, root->sectorsize); 4302 4303 data_sinfo = root->fs_info->data_sinfo; 4304 spin_lock(&data_sinfo->lock); 4305 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4306 data_sinfo->bytes_may_use = 0; 4307 else 4308 data_sinfo->bytes_may_use -= len; 4309 trace_btrfs_space_reservation(root->fs_info, "space_info", 4310 data_sinfo->flags, len, 0); 4311 spin_unlock(&data_sinfo->lock); 4312 } 4313 4314 /* 4315 * Called if we need to clear a data reservation for this inode 4316 * Normally in a error case. 4317 * 4318 * This one will handle the per-inode data rsv map for accurate reserved 4319 * space framework. 4320 */ 4321 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4322 { 4323 btrfs_free_reserved_data_space_noquota(inode, start, len); 4324 btrfs_qgroup_free_data(inode, start, len); 4325 } 4326 4327 static void force_metadata_allocation(struct btrfs_fs_info *info) 4328 { 4329 struct list_head *head = &info->space_info; 4330 struct btrfs_space_info *found; 4331 4332 rcu_read_lock(); 4333 list_for_each_entry_rcu(found, head, list) { 4334 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4335 found->force_alloc = CHUNK_ALLOC_FORCE; 4336 } 4337 rcu_read_unlock(); 4338 } 4339 4340 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4341 { 4342 return (global->size << 1); 4343 } 4344 4345 static int should_alloc_chunk(struct btrfs_root *root, 4346 struct btrfs_space_info *sinfo, int force) 4347 { 4348 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4349 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4350 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4351 u64 thresh; 4352 4353 if (force == CHUNK_ALLOC_FORCE) 4354 return 1; 4355 4356 /* 4357 * We need to take into account the global rsv because for all intents 4358 * and purposes it's used space. Don't worry about locking the 4359 * global_rsv, it doesn't change except when the transaction commits. 4360 */ 4361 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4362 num_allocated += calc_global_rsv_need_space(global_rsv); 4363 4364 /* 4365 * in limited mode, we want to have some free space up to 4366 * about 1% of the FS size. 4367 */ 4368 if (force == CHUNK_ALLOC_LIMITED) { 4369 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4370 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4371 4372 if (num_bytes - num_allocated < thresh) 4373 return 1; 4374 } 4375 4376 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4377 return 0; 4378 return 1; 4379 } 4380 4381 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4382 { 4383 u64 num_dev; 4384 4385 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4386 BTRFS_BLOCK_GROUP_RAID0 | 4387 BTRFS_BLOCK_GROUP_RAID5 | 4388 BTRFS_BLOCK_GROUP_RAID6)) 4389 num_dev = root->fs_info->fs_devices->rw_devices; 4390 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4391 num_dev = 2; 4392 else 4393 num_dev = 1; /* DUP or single */ 4394 4395 return num_dev; 4396 } 4397 4398 /* 4399 * If @is_allocation is true, reserve space in the system space info necessary 4400 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4401 * removing a chunk. 4402 */ 4403 void check_system_chunk(struct btrfs_trans_handle *trans, 4404 struct btrfs_root *root, 4405 u64 type) 4406 { 4407 struct btrfs_space_info *info; 4408 u64 left; 4409 u64 thresh; 4410 int ret = 0; 4411 u64 num_devs; 4412 4413 /* 4414 * Needed because we can end up allocating a system chunk and for an 4415 * atomic and race free space reservation in the chunk block reserve. 4416 */ 4417 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4418 4419 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4420 spin_lock(&info->lock); 4421 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4422 info->bytes_reserved - info->bytes_readonly - 4423 info->bytes_may_use; 4424 spin_unlock(&info->lock); 4425 4426 num_devs = get_profile_num_devs(root, type); 4427 4428 /* num_devs device items to update and 1 chunk item to add or remove */ 4429 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4430 btrfs_calc_trans_metadata_size(root, 1); 4431 4432 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 4433 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4434 left, thresh, type); 4435 dump_space_info(info, 0, 0); 4436 } 4437 4438 if (left < thresh) { 4439 u64 flags; 4440 4441 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4442 /* 4443 * Ignore failure to create system chunk. We might end up not 4444 * needing it, as we might not need to COW all nodes/leafs from 4445 * the paths we visit in the chunk tree (they were already COWed 4446 * or created in the current transaction for example). 4447 */ 4448 ret = btrfs_alloc_chunk(trans, root, flags); 4449 } 4450 4451 if (!ret) { 4452 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4453 &root->fs_info->chunk_block_rsv, 4454 thresh, BTRFS_RESERVE_NO_FLUSH); 4455 if (!ret) 4456 trans->chunk_bytes_reserved += thresh; 4457 } 4458 } 4459 4460 /* 4461 * If force is CHUNK_ALLOC_FORCE: 4462 * - return 1 if it successfully allocates a chunk, 4463 * - return errors including -ENOSPC otherwise. 4464 * If force is NOT CHUNK_ALLOC_FORCE: 4465 * - return 0 if it doesn't need to allocate a new chunk, 4466 * - return 1 if it successfully allocates a chunk, 4467 * - return errors including -ENOSPC otherwise. 4468 */ 4469 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4470 struct btrfs_root *extent_root, u64 flags, int force) 4471 { 4472 struct btrfs_space_info *space_info; 4473 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4474 int wait_for_alloc = 0; 4475 int ret = 0; 4476 4477 /* Don't re-enter if we're already allocating a chunk */ 4478 if (trans->allocating_chunk) 4479 return -ENOSPC; 4480 4481 space_info = __find_space_info(extent_root->fs_info, flags); 4482 if (!space_info) { 4483 ret = update_space_info(extent_root->fs_info, flags, 4484 0, 0, 0, &space_info); 4485 BUG_ON(ret); /* -ENOMEM */ 4486 } 4487 BUG_ON(!space_info); /* Logic error */ 4488 4489 again: 4490 spin_lock(&space_info->lock); 4491 if (force < space_info->force_alloc) 4492 force = space_info->force_alloc; 4493 if (space_info->full) { 4494 if (should_alloc_chunk(extent_root, space_info, force)) 4495 ret = -ENOSPC; 4496 else 4497 ret = 0; 4498 spin_unlock(&space_info->lock); 4499 return ret; 4500 } 4501 4502 if (!should_alloc_chunk(extent_root, space_info, force)) { 4503 spin_unlock(&space_info->lock); 4504 return 0; 4505 } else if (space_info->chunk_alloc) { 4506 wait_for_alloc = 1; 4507 } else { 4508 space_info->chunk_alloc = 1; 4509 } 4510 4511 spin_unlock(&space_info->lock); 4512 4513 mutex_lock(&fs_info->chunk_mutex); 4514 4515 /* 4516 * The chunk_mutex is held throughout the entirety of a chunk 4517 * allocation, so once we've acquired the chunk_mutex we know that the 4518 * other guy is done and we need to recheck and see if we should 4519 * allocate. 4520 */ 4521 if (wait_for_alloc) { 4522 mutex_unlock(&fs_info->chunk_mutex); 4523 wait_for_alloc = 0; 4524 goto again; 4525 } 4526 4527 trans->allocating_chunk = true; 4528 4529 /* 4530 * If we have mixed data/metadata chunks we want to make sure we keep 4531 * allocating mixed chunks instead of individual chunks. 4532 */ 4533 if (btrfs_mixed_space_info(space_info)) 4534 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4535 4536 /* 4537 * if we're doing a data chunk, go ahead and make sure that 4538 * we keep a reasonable number of metadata chunks allocated in the 4539 * FS as well. 4540 */ 4541 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4542 fs_info->data_chunk_allocations++; 4543 if (!(fs_info->data_chunk_allocations % 4544 fs_info->metadata_ratio)) 4545 force_metadata_allocation(fs_info); 4546 } 4547 4548 /* 4549 * Check if we have enough space in SYSTEM chunk because we may need 4550 * to update devices. 4551 */ 4552 check_system_chunk(trans, extent_root, flags); 4553 4554 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4555 trans->allocating_chunk = false; 4556 4557 spin_lock(&space_info->lock); 4558 if (ret < 0 && ret != -ENOSPC) 4559 goto out; 4560 if (ret) 4561 space_info->full = 1; 4562 else 4563 ret = 1; 4564 4565 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4566 out: 4567 space_info->chunk_alloc = 0; 4568 spin_unlock(&space_info->lock); 4569 mutex_unlock(&fs_info->chunk_mutex); 4570 /* 4571 * When we allocate a new chunk we reserve space in the chunk block 4572 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4573 * add new nodes/leafs to it if we end up needing to do it when 4574 * inserting the chunk item and updating device items as part of the 4575 * second phase of chunk allocation, performed by 4576 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4577 * large number of new block groups to create in our transaction 4578 * handle's new_bgs list to avoid exhausting the chunk block reserve 4579 * in extreme cases - like having a single transaction create many new 4580 * block groups when starting to write out the free space caches of all 4581 * the block groups that were made dirty during the lifetime of the 4582 * transaction. 4583 */ 4584 if (trans->can_flush_pending_bgs && 4585 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4586 btrfs_create_pending_block_groups(trans, extent_root); 4587 btrfs_trans_release_chunk_metadata(trans); 4588 } 4589 return ret; 4590 } 4591 4592 static int can_overcommit(struct btrfs_root *root, 4593 struct btrfs_space_info *space_info, u64 bytes, 4594 enum btrfs_reserve_flush_enum flush) 4595 { 4596 struct btrfs_block_rsv *global_rsv; 4597 u64 profile; 4598 u64 space_size; 4599 u64 avail; 4600 u64 used; 4601 4602 /* Don't overcommit when in mixed mode. */ 4603 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4604 return 0; 4605 4606 BUG_ON(root->fs_info == NULL); 4607 global_rsv = &root->fs_info->global_block_rsv; 4608 profile = btrfs_get_alloc_profile(root, 0); 4609 used = space_info->bytes_used + space_info->bytes_reserved + 4610 space_info->bytes_pinned + space_info->bytes_readonly; 4611 4612 /* 4613 * We only want to allow over committing if we have lots of actual space 4614 * free, but if we don't have enough space to handle the global reserve 4615 * space then we could end up having a real enospc problem when trying 4616 * to allocate a chunk or some other such important allocation. 4617 */ 4618 spin_lock(&global_rsv->lock); 4619 space_size = calc_global_rsv_need_space(global_rsv); 4620 spin_unlock(&global_rsv->lock); 4621 if (used + space_size >= space_info->total_bytes) 4622 return 0; 4623 4624 used += space_info->bytes_may_use; 4625 4626 spin_lock(&root->fs_info->free_chunk_lock); 4627 avail = root->fs_info->free_chunk_space; 4628 spin_unlock(&root->fs_info->free_chunk_lock); 4629 4630 /* 4631 * If we have dup, raid1 or raid10 then only half of the free 4632 * space is actually useable. For raid56, the space info used 4633 * doesn't include the parity drive, so we don't have to 4634 * change the math 4635 */ 4636 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4637 BTRFS_BLOCK_GROUP_RAID1 | 4638 BTRFS_BLOCK_GROUP_RAID10)) 4639 avail >>= 1; 4640 4641 /* 4642 * If we aren't flushing all things, let us overcommit up to 4643 * 1/2th of the space. If we can flush, don't let us overcommit 4644 * too much, let it overcommit up to 1/8 of the space. 4645 */ 4646 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4647 avail >>= 3; 4648 else 4649 avail >>= 1; 4650 4651 if (used + bytes < space_info->total_bytes + avail) 4652 return 1; 4653 return 0; 4654 } 4655 4656 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4657 unsigned long nr_pages, int nr_items) 4658 { 4659 struct super_block *sb = root->fs_info->sb; 4660 4661 if (down_read_trylock(&sb->s_umount)) { 4662 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4663 up_read(&sb->s_umount); 4664 } else { 4665 /* 4666 * We needn't worry the filesystem going from r/w to r/o though 4667 * we don't acquire ->s_umount mutex, because the filesystem 4668 * should guarantee the delalloc inodes list be empty after 4669 * the filesystem is readonly(all dirty pages are written to 4670 * the disk). 4671 */ 4672 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4673 if (!current->journal_info) 4674 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4675 0, (u64)-1); 4676 } 4677 } 4678 4679 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4680 { 4681 u64 bytes; 4682 int nr; 4683 4684 bytes = btrfs_calc_trans_metadata_size(root, 1); 4685 nr = (int)div64_u64(to_reclaim, bytes); 4686 if (!nr) 4687 nr = 1; 4688 return nr; 4689 } 4690 4691 #define EXTENT_SIZE_PER_ITEM SZ_256K 4692 4693 /* 4694 * shrink metadata reservation for delalloc 4695 */ 4696 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4697 bool wait_ordered) 4698 { 4699 struct btrfs_block_rsv *block_rsv; 4700 struct btrfs_space_info *space_info; 4701 struct btrfs_trans_handle *trans; 4702 u64 delalloc_bytes; 4703 u64 max_reclaim; 4704 long time_left; 4705 unsigned long nr_pages; 4706 int loops; 4707 int items; 4708 enum btrfs_reserve_flush_enum flush; 4709 4710 /* Calc the number of the pages we need flush for space reservation */ 4711 items = calc_reclaim_items_nr(root, to_reclaim); 4712 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4713 4714 trans = (struct btrfs_trans_handle *)current->journal_info; 4715 block_rsv = &root->fs_info->delalloc_block_rsv; 4716 space_info = block_rsv->space_info; 4717 4718 delalloc_bytes = percpu_counter_sum_positive( 4719 &root->fs_info->delalloc_bytes); 4720 if (delalloc_bytes == 0) { 4721 if (trans) 4722 return; 4723 if (wait_ordered) 4724 btrfs_wait_ordered_roots(root->fs_info, items, 4725 0, (u64)-1); 4726 return; 4727 } 4728 4729 loops = 0; 4730 while (delalloc_bytes && loops < 3) { 4731 max_reclaim = min(delalloc_bytes, to_reclaim); 4732 nr_pages = max_reclaim >> PAGE_SHIFT; 4733 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4734 /* 4735 * We need to wait for the async pages to actually start before 4736 * we do anything. 4737 */ 4738 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4739 if (!max_reclaim) 4740 goto skip_async; 4741 4742 if (max_reclaim <= nr_pages) 4743 max_reclaim = 0; 4744 else 4745 max_reclaim -= nr_pages; 4746 4747 wait_event(root->fs_info->async_submit_wait, 4748 atomic_read(&root->fs_info->async_delalloc_pages) <= 4749 (int)max_reclaim); 4750 skip_async: 4751 if (!trans) 4752 flush = BTRFS_RESERVE_FLUSH_ALL; 4753 else 4754 flush = BTRFS_RESERVE_NO_FLUSH; 4755 spin_lock(&space_info->lock); 4756 if (can_overcommit(root, space_info, orig, flush)) { 4757 spin_unlock(&space_info->lock); 4758 break; 4759 } 4760 if (list_empty(&space_info->tickets) && 4761 list_empty(&space_info->priority_tickets)) { 4762 spin_unlock(&space_info->lock); 4763 break; 4764 } 4765 spin_unlock(&space_info->lock); 4766 4767 loops++; 4768 if (wait_ordered && !trans) { 4769 btrfs_wait_ordered_roots(root->fs_info, items, 4770 0, (u64)-1); 4771 } else { 4772 time_left = schedule_timeout_killable(1); 4773 if (time_left) 4774 break; 4775 } 4776 delalloc_bytes = percpu_counter_sum_positive( 4777 &root->fs_info->delalloc_bytes); 4778 } 4779 } 4780 4781 /** 4782 * maybe_commit_transaction - possibly commit the transaction if its ok to 4783 * @root - the root we're allocating for 4784 * @bytes - the number of bytes we want to reserve 4785 * @force - force the commit 4786 * 4787 * This will check to make sure that committing the transaction will actually 4788 * get us somewhere and then commit the transaction if it does. Otherwise it 4789 * will return -ENOSPC. 4790 */ 4791 static int may_commit_transaction(struct btrfs_root *root, 4792 struct btrfs_space_info *space_info, 4793 u64 bytes, int force) 4794 { 4795 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4796 struct btrfs_trans_handle *trans; 4797 4798 trans = (struct btrfs_trans_handle *)current->journal_info; 4799 if (trans) 4800 return -EAGAIN; 4801 4802 if (force) 4803 goto commit; 4804 4805 /* See if there is enough pinned space to make this reservation */ 4806 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4807 bytes) >= 0) 4808 goto commit; 4809 4810 /* 4811 * See if there is some space in the delayed insertion reservation for 4812 * this reservation. 4813 */ 4814 if (space_info != delayed_rsv->space_info) 4815 return -ENOSPC; 4816 4817 spin_lock(&delayed_rsv->lock); 4818 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4819 bytes - delayed_rsv->size) >= 0) { 4820 spin_unlock(&delayed_rsv->lock); 4821 return -ENOSPC; 4822 } 4823 spin_unlock(&delayed_rsv->lock); 4824 4825 commit: 4826 trans = btrfs_join_transaction(root); 4827 if (IS_ERR(trans)) 4828 return -ENOSPC; 4829 4830 return btrfs_commit_transaction(trans, root); 4831 } 4832 4833 struct reserve_ticket { 4834 u64 bytes; 4835 int error; 4836 struct list_head list; 4837 wait_queue_head_t wait; 4838 }; 4839 4840 static int flush_space(struct btrfs_root *root, 4841 struct btrfs_space_info *space_info, u64 num_bytes, 4842 u64 orig_bytes, int state) 4843 { 4844 struct btrfs_trans_handle *trans; 4845 int nr; 4846 int ret = 0; 4847 4848 switch (state) { 4849 case FLUSH_DELAYED_ITEMS_NR: 4850 case FLUSH_DELAYED_ITEMS: 4851 if (state == FLUSH_DELAYED_ITEMS_NR) 4852 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4853 else 4854 nr = -1; 4855 4856 trans = btrfs_join_transaction(root); 4857 if (IS_ERR(trans)) { 4858 ret = PTR_ERR(trans); 4859 break; 4860 } 4861 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4862 btrfs_end_transaction(trans, root); 4863 break; 4864 case FLUSH_DELALLOC: 4865 case FLUSH_DELALLOC_WAIT: 4866 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4867 state == FLUSH_DELALLOC_WAIT); 4868 break; 4869 case ALLOC_CHUNK: 4870 trans = btrfs_join_transaction(root); 4871 if (IS_ERR(trans)) { 4872 ret = PTR_ERR(trans); 4873 break; 4874 } 4875 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4876 btrfs_get_alloc_profile(root, 0), 4877 CHUNK_ALLOC_NO_FORCE); 4878 btrfs_end_transaction(trans, root); 4879 if (ret > 0 || ret == -ENOSPC) 4880 ret = 0; 4881 break; 4882 case COMMIT_TRANS: 4883 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4884 break; 4885 default: 4886 ret = -ENOSPC; 4887 break; 4888 } 4889 4890 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes, 4891 orig_bytes, state, ret); 4892 return ret; 4893 } 4894 4895 static inline u64 4896 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4897 struct btrfs_space_info *space_info) 4898 { 4899 struct reserve_ticket *ticket; 4900 u64 used; 4901 u64 expected; 4902 u64 to_reclaim = 0; 4903 4904 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4905 if (can_overcommit(root, space_info, to_reclaim, 4906 BTRFS_RESERVE_FLUSH_ALL)) 4907 return 0; 4908 4909 list_for_each_entry(ticket, &space_info->tickets, list) 4910 to_reclaim += ticket->bytes; 4911 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4912 to_reclaim += ticket->bytes; 4913 if (to_reclaim) 4914 return to_reclaim; 4915 4916 used = space_info->bytes_used + space_info->bytes_reserved + 4917 space_info->bytes_pinned + space_info->bytes_readonly + 4918 space_info->bytes_may_use; 4919 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4920 expected = div_factor_fine(space_info->total_bytes, 95); 4921 else 4922 expected = div_factor_fine(space_info->total_bytes, 90); 4923 4924 if (used > expected) 4925 to_reclaim = used - expected; 4926 else 4927 to_reclaim = 0; 4928 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4929 space_info->bytes_reserved); 4930 return to_reclaim; 4931 } 4932 4933 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4934 struct btrfs_root *root, u64 used) 4935 { 4936 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4937 4938 /* If we're just plain full then async reclaim just slows us down. */ 4939 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4940 return 0; 4941 4942 if (!btrfs_calc_reclaim_metadata_size(root, space_info)) 4943 return 0; 4944 4945 return (used >= thresh && !btrfs_fs_closing(root->fs_info) && 4946 !test_bit(BTRFS_FS_STATE_REMOUNTING, 4947 &root->fs_info->fs_state)); 4948 } 4949 4950 static void wake_all_tickets(struct list_head *head) 4951 { 4952 struct reserve_ticket *ticket; 4953 4954 while (!list_empty(head)) { 4955 ticket = list_first_entry(head, struct reserve_ticket, list); 4956 list_del_init(&ticket->list); 4957 ticket->error = -ENOSPC; 4958 wake_up(&ticket->wait); 4959 } 4960 } 4961 4962 /* 4963 * This is for normal flushers, we can wait all goddamned day if we want to. We 4964 * will loop and continuously try to flush as long as we are making progress. 4965 * We count progress as clearing off tickets each time we have to loop. 4966 */ 4967 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4968 { 4969 struct reserve_ticket *last_ticket = NULL; 4970 struct btrfs_fs_info *fs_info; 4971 struct btrfs_space_info *space_info; 4972 u64 to_reclaim; 4973 int flush_state; 4974 int commit_cycles = 0; 4975 4976 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4977 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4978 4979 spin_lock(&space_info->lock); 4980 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4981 space_info); 4982 if (!to_reclaim) { 4983 space_info->flush = 0; 4984 spin_unlock(&space_info->lock); 4985 return; 4986 } 4987 last_ticket = list_first_entry(&space_info->tickets, 4988 struct reserve_ticket, list); 4989 spin_unlock(&space_info->lock); 4990 4991 flush_state = FLUSH_DELAYED_ITEMS_NR; 4992 do { 4993 struct reserve_ticket *ticket; 4994 int ret; 4995 4996 ret = flush_space(fs_info->fs_root, space_info, to_reclaim, 4997 to_reclaim, flush_state); 4998 spin_lock(&space_info->lock); 4999 if (list_empty(&space_info->tickets)) { 5000 space_info->flush = 0; 5001 spin_unlock(&space_info->lock); 5002 return; 5003 } 5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5005 space_info); 5006 ticket = list_first_entry(&space_info->tickets, 5007 struct reserve_ticket, list); 5008 if (last_ticket == ticket) { 5009 flush_state++; 5010 } else { 5011 last_ticket = ticket; 5012 flush_state = FLUSH_DELAYED_ITEMS_NR; 5013 if (commit_cycles) 5014 commit_cycles--; 5015 } 5016 5017 if (flush_state > COMMIT_TRANS) { 5018 commit_cycles++; 5019 if (commit_cycles > 2) { 5020 wake_all_tickets(&space_info->tickets); 5021 space_info->flush = 0; 5022 } else { 5023 flush_state = FLUSH_DELAYED_ITEMS_NR; 5024 } 5025 } 5026 spin_unlock(&space_info->lock); 5027 } while (flush_state <= COMMIT_TRANS); 5028 } 5029 5030 void btrfs_init_async_reclaim_work(struct work_struct *work) 5031 { 5032 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5033 } 5034 5035 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5036 struct btrfs_space_info *space_info, 5037 struct reserve_ticket *ticket) 5038 { 5039 u64 to_reclaim; 5040 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5041 5042 spin_lock(&space_info->lock); 5043 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 5044 space_info); 5045 if (!to_reclaim) { 5046 spin_unlock(&space_info->lock); 5047 return; 5048 } 5049 spin_unlock(&space_info->lock); 5050 5051 do { 5052 flush_space(fs_info->fs_root, space_info, to_reclaim, 5053 to_reclaim, flush_state); 5054 flush_state++; 5055 spin_lock(&space_info->lock); 5056 if (ticket->bytes == 0) { 5057 spin_unlock(&space_info->lock); 5058 return; 5059 } 5060 spin_unlock(&space_info->lock); 5061 5062 /* 5063 * Priority flushers can't wait on delalloc without 5064 * deadlocking. 5065 */ 5066 if (flush_state == FLUSH_DELALLOC || 5067 flush_state == FLUSH_DELALLOC_WAIT) 5068 flush_state = ALLOC_CHUNK; 5069 } while (flush_state < COMMIT_TRANS); 5070 } 5071 5072 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5073 struct btrfs_space_info *space_info, 5074 struct reserve_ticket *ticket, u64 orig_bytes) 5075 5076 { 5077 DEFINE_WAIT(wait); 5078 int ret = 0; 5079 5080 spin_lock(&space_info->lock); 5081 while (ticket->bytes > 0 && ticket->error == 0) { 5082 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5083 if (ret) { 5084 ret = -EINTR; 5085 break; 5086 } 5087 spin_unlock(&space_info->lock); 5088 5089 schedule(); 5090 5091 finish_wait(&ticket->wait, &wait); 5092 spin_lock(&space_info->lock); 5093 } 5094 if (!ret) 5095 ret = ticket->error; 5096 if (!list_empty(&ticket->list)) 5097 list_del_init(&ticket->list); 5098 if (ticket->bytes && ticket->bytes < orig_bytes) { 5099 u64 num_bytes = orig_bytes - ticket->bytes; 5100 space_info->bytes_may_use -= num_bytes; 5101 trace_btrfs_space_reservation(fs_info, "space_info", 5102 space_info->flags, num_bytes, 0); 5103 } 5104 spin_unlock(&space_info->lock); 5105 5106 return ret; 5107 } 5108 5109 /** 5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5111 * @root - the root we're allocating for 5112 * @space_info - the space info we want to allocate from 5113 * @orig_bytes - the number of bytes we want 5114 * @flush - whether or not we can flush to make our reservation 5115 * 5116 * This will reserve orig_bytes number of bytes from the space info associated 5117 * with the block_rsv. If there is not enough space it will make an attempt to 5118 * flush out space to make room. It will do this by flushing delalloc if 5119 * possible or committing the transaction. If flush is 0 then no attempts to 5120 * regain reservations will be made and this will fail if there is not enough 5121 * space already. 5122 */ 5123 static int __reserve_metadata_bytes(struct btrfs_root *root, 5124 struct btrfs_space_info *space_info, 5125 u64 orig_bytes, 5126 enum btrfs_reserve_flush_enum flush) 5127 { 5128 struct reserve_ticket ticket; 5129 u64 used; 5130 int ret = 0; 5131 5132 ASSERT(orig_bytes); 5133 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5134 5135 spin_lock(&space_info->lock); 5136 ret = -ENOSPC; 5137 used = space_info->bytes_used + space_info->bytes_reserved + 5138 space_info->bytes_pinned + space_info->bytes_readonly + 5139 space_info->bytes_may_use; 5140 5141 /* 5142 * If we have enough space then hooray, make our reservation and carry 5143 * on. If not see if we can overcommit, and if we can, hooray carry on. 5144 * If not things get more complicated. 5145 */ 5146 if (used + orig_bytes <= space_info->total_bytes) { 5147 space_info->bytes_may_use += orig_bytes; 5148 trace_btrfs_space_reservation(root->fs_info, "space_info", 5149 space_info->flags, orig_bytes, 5150 1); 5151 ret = 0; 5152 } else if (can_overcommit(root, space_info, orig_bytes, flush)) { 5153 space_info->bytes_may_use += orig_bytes; 5154 trace_btrfs_space_reservation(root->fs_info, "space_info", 5155 space_info->flags, orig_bytes, 5156 1); 5157 ret = 0; 5158 } 5159 5160 /* 5161 * If we couldn't make a reservation then setup our reservation ticket 5162 * and kick the async worker if it's not already running. 5163 * 5164 * If we are a priority flusher then we just need to add our ticket to 5165 * the list and we will do our own flushing further down. 5166 */ 5167 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5168 ticket.bytes = orig_bytes; 5169 ticket.error = 0; 5170 init_waitqueue_head(&ticket.wait); 5171 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5172 list_add_tail(&ticket.list, &space_info->tickets); 5173 if (!space_info->flush) { 5174 space_info->flush = 1; 5175 trace_btrfs_trigger_flush(root->fs_info, 5176 space_info->flags, 5177 orig_bytes, flush, 5178 "enospc"); 5179 queue_work(system_unbound_wq, 5180 &root->fs_info->async_reclaim_work); 5181 } 5182 } else { 5183 list_add_tail(&ticket.list, 5184 &space_info->priority_tickets); 5185 } 5186 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5187 used += orig_bytes; 5188 /* 5189 * We will do the space reservation dance during log replay, 5190 * which means we won't have fs_info->fs_root set, so don't do 5191 * the async reclaim as we will panic. 5192 */ 5193 if (!root->fs_info->log_root_recovering && 5194 need_do_async_reclaim(space_info, root, used) && 5195 !work_busy(&root->fs_info->async_reclaim_work)) { 5196 trace_btrfs_trigger_flush(root->fs_info, 5197 space_info->flags, 5198 orig_bytes, flush, 5199 "preempt"); 5200 queue_work(system_unbound_wq, 5201 &root->fs_info->async_reclaim_work); 5202 } 5203 } 5204 spin_unlock(&space_info->lock); 5205 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5206 return ret; 5207 5208 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5209 return wait_reserve_ticket(root->fs_info, space_info, &ticket, 5210 orig_bytes); 5211 5212 ret = 0; 5213 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket); 5214 spin_lock(&space_info->lock); 5215 if (ticket.bytes) { 5216 if (ticket.bytes < orig_bytes) { 5217 u64 num_bytes = orig_bytes - ticket.bytes; 5218 space_info->bytes_may_use -= num_bytes; 5219 trace_btrfs_space_reservation(root->fs_info, 5220 "space_info", space_info->flags, 5221 num_bytes, 0); 5222 5223 } 5224 list_del_init(&ticket.list); 5225 ret = -ENOSPC; 5226 } 5227 spin_unlock(&space_info->lock); 5228 ASSERT(list_empty(&ticket.list)); 5229 return ret; 5230 } 5231 5232 /** 5233 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5234 * @root - the root we're allocating for 5235 * @block_rsv - the block_rsv we're allocating for 5236 * @orig_bytes - the number of bytes we want 5237 * @flush - whether or not we can flush to make our reservation 5238 * 5239 * This will reserve orgi_bytes number of bytes from the space info associated 5240 * with the block_rsv. If there is not enough space it will make an attempt to 5241 * flush out space to make room. It will do this by flushing delalloc if 5242 * possible or committing the transaction. If flush is 0 then no attempts to 5243 * regain reservations will be made and this will fail if there is not enough 5244 * space already. 5245 */ 5246 static int reserve_metadata_bytes(struct btrfs_root *root, 5247 struct btrfs_block_rsv *block_rsv, 5248 u64 orig_bytes, 5249 enum btrfs_reserve_flush_enum flush) 5250 { 5251 int ret; 5252 5253 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes, 5254 flush); 5255 if (ret == -ENOSPC && 5256 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5257 struct btrfs_block_rsv *global_rsv = 5258 &root->fs_info->global_block_rsv; 5259 5260 if (block_rsv != global_rsv && 5261 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5262 ret = 0; 5263 } 5264 if (ret == -ENOSPC) 5265 trace_btrfs_space_reservation(root->fs_info, 5266 "space_info:enospc", 5267 block_rsv->space_info->flags, 5268 orig_bytes, 1); 5269 return ret; 5270 } 5271 5272 static struct btrfs_block_rsv *get_block_rsv( 5273 const struct btrfs_trans_handle *trans, 5274 const struct btrfs_root *root) 5275 { 5276 struct btrfs_block_rsv *block_rsv = NULL; 5277 5278 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5279 (root == root->fs_info->csum_root && trans->adding_csums) || 5280 (root == root->fs_info->uuid_root)) 5281 block_rsv = trans->block_rsv; 5282 5283 if (!block_rsv) 5284 block_rsv = root->block_rsv; 5285 5286 if (!block_rsv) 5287 block_rsv = &root->fs_info->empty_block_rsv; 5288 5289 return block_rsv; 5290 } 5291 5292 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5293 u64 num_bytes) 5294 { 5295 int ret = -ENOSPC; 5296 spin_lock(&block_rsv->lock); 5297 if (block_rsv->reserved >= num_bytes) { 5298 block_rsv->reserved -= num_bytes; 5299 if (block_rsv->reserved < block_rsv->size) 5300 block_rsv->full = 0; 5301 ret = 0; 5302 } 5303 spin_unlock(&block_rsv->lock); 5304 return ret; 5305 } 5306 5307 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5308 u64 num_bytes, int update_size) 5309 { 5310 spin_lock(&block_rsv->lock); 5311 block_rsv->reserved += num_bytes; 5312 if (update_size) 5313 block_rsv->size += num_bytes; 5314 else if (block_rsv->reserved >= block_rsv->size) 5315 block_rsv->full = 1; 5316 spin_unlock(&block_rsv->lock); 5317 } 5318 5319 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5320 struct btrfs_block_rsv *dest, u64 num_bytes, 5321 int min_factor) 5322 { 5323 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5324 u64 min_bytes; 5325 5326 if (global_rsv->space_info != dest->space_info) 5327 return -ENOSPC; 5328 5329 spin_lock(&global_rsv->lock); 5330 min_bytes = div_factor(global_rsv->size, min_factor); 5331 if (global_rsv->reserved < min_bytes + num_bytes) { 5332 spin_unlock(&global_rsv->lock); 5333 return -ENOSPC; 5334 } 5335 global_rsv->reserved -= num_bytes; 5336 if (global_rsv->reserved < global_rsv->size) 5337 global_rsv->full = 0; 5338 spin_unlock(&global_rsv->lock); 5339 5340 block_rsv_add_bytes(dest, num_bytes, 1); 5341 return 0; 5342 } 5343 5344 /* 5345 * This is for space we already have accounted in space_info->bytes_may_use, so 5346 * basically when we're returning space from block_rsv's. 5347 */ 5348 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5349 struct btrfs_space_info *space_info, 5350 u64 num_bytes) 5351 { 5352 struct reserve_ticket *ticket; 5353 struct list_head *head; 5354 u64 used; 5355 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5356 bool check_overcommit = false; 5357 5358 spin_lock(&space_info->lock); 5359 head = &space_info->priority_tickets; 5360 5361 /* 5362 * If we are over our limit then we need to check and see if we can 5363 * overcommit, and if we can't then we just need to free up our space 5364 * and not satisfy any requests. 5365 */ 5366 used = space_info->bytes_used + space_info->bytes_reserved + 5367 space_info->bytes_pinned + space_info->bytes_readonly + 5368 space_info->bytes_may_use; 5369 if (used - num_bytes >= space_info->total_bytes) 5370 check_overcommit = true; 5371 again: 5372 while (!list_empty(head) && num_bytes) { 5373 ticket = list_first_entry(head, struct reserve_ticket, 5374 list); 5375 /* 5376 * We use 0 bytes because this space is already reserved, so 5377 * adding the ticket space would be a double count. 5378 */ 5379 if (check_overcommit && 5380 !can_overcommit(fs_info->extent_root, space_info, 0, 5381 flush)) 5382 break; 5383 if (num_bytes >= ticket->bytes) { 5384 list_del_init(&ticket->list); 5385 num_bytes -= ticket->bytes; 5386 ticket->bytes = 0; 5387 wake_up(&ticket->wait); 5388 } else { 5389 ticket->bytes -= num_bytes; 5390 num_bytes = 0; 5391 } 5392 } 5393 5394 if (num_bytes && head == &space_info->priority_tickets) { 5395 head = &space_info->tickets; 5396 flush = BTRFS_RESERVE_FLUSH_ALL; 5397 goto again; 5398 } 5399 space_info->bytes_may_use -= num_bytes; 5400 trace_btrfs_space_reservation(fs_info, "space_info", 5401 space_info->flags, num_bytes, 0); 5402 spin_unlock(&space_info->lock); 5403 } 5404 5405 /* 5406 * This is for newly allocated space that isn't accounted in 5407 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5408 * we use this helper. 5409 */ 5410 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5411 struct btrfs_space_info *space_info, 5412 u64 num_bytes) 5413 { 5414 struct reserve_ticket *ticket; 5415 struct list_head *head = &space_info->priority_tickets; 5416 5417 again: 5418 while (!list_empty(head) && num_bytes) { 5419 ticket = list_first_entry(head, struct reserve_ticket, 5420 list); 5421 if (num_bytes >= ticket->bytes) { 5422 trace_btrfs_space_reservation(fs_info, "space_info", 5423 space_info->flags, 5424 ticket->bytes, 1); 5425 list_del_init(&ticket->list); 5426 num_bytes -= ticket->bytes; 5427 space_info->bytes_may_use += ticket->bytes; 5428 ticket->bytes = 0; 5429 wake_up(&ticket->wait); 5430 } else { 5431 trace_btrfs_space_reservation(fs_info, "space_info", 5432 space_info->flags, 5433 num_bytes, 1); 5434 space_info->bytes_may_use += num_bytes; 5435 ticket->bytes -= num_bytes; 5436 num_bytes = 0; 5437 } 5438 } 5439 5440 if (num_bytes && head == &space_info->priority_tickets) { 5441 head = &space_info->tickets; 5442 goto again; 5443 } 5444 } 5445 5446 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5447 struct btrfs_block_rsv *block_rsv, 5448 struct btrfs_block_rsv *dest, u64 num_bytes) 5449 { 5450 struct btrfs_space_info *space_info = block_rsv->space_info; 5451 5452 spin_lock(&block_rsv->lock); 5453 if (num_bytes == (u64)-1) 5454 num_bytes = block_rsv->size; 5455 block_rsv->size -= num_bytes; 5456 if (block_rsv->reserved >= block_rsv->size) { 5457 num_bytes = block_rsv->reserved - block_rsv->size; 5458 block_rsv->reserved = block_rsv->size; 5459 block_rsv->full = 1; 5460 } else { 5461 num_bytes = 0; 5462 } 5463 spin_unlock(&block_rsv->lock); 5464 5465 if (num_bytes > 0) { 5466 if (dest) { 5467 spin_lock(&dest->lock); 5468 if (!dest->full) { 5469 u64 bytes_to_add; 5470 5471 bytes_to_add = dest->size - dest->reserved; 5472 bytes_to_add = min(num_bytes, bytes_to_add); 5473 dest->reserved += bytes_to_add; 5474 if (dest->reserved >= dest->size) 5475 dest->full = 1; 5476 num_bytes -= bytes_to_add; 5477 } 5478 spin_unlock(&dest->lock); 5479 } 5480 if (num_bytes) 5481 space_info_add_old_bytes(fs_info, space_info, 5482 num_bytes); 5483 } 5484 } 5485 5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5487 struct btrfs_block_rsv *dst, u64 num_bytes, 5488 int update_size) 5489 { 5490 int ret; 5491 5492 ret = block_rsv_use_bytes(src, num_bytes); 5493 if (ret) 5494 return ret; 5495 5496 block_rsv_add_bytes(dst, num_bytes, update_size); 5497 return 0; 5498 } 5499 5500 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5501 { 5502 memset(rsv, 0, sizeof(*rsv)); 5503 spin_lock_init(&rsv->lock); 5504 rsv->type = type; 5505 } 5506 5507 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5508 unsigned short type) 5509 { 5510 struct btrfs_block_rsv *block_rsv; 5511 struct btrfs_fs_info *fs_info = root->fs_info; 5512 5513 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5514 if (!block_rsv) 5515 return NULL; 5516 5517 btrfs_init_block_rsv(block_rsv, type); 5518 block_rsv->space_info = __find_space_info(fs_info, 5519 BTRFS_BLOCK_GROUP_METADATA); 5520 return block_rsv; 5521 } 5522 5523 void btrfs_free_block_rsv(struct btrfs_root *root, 5524 struct btrfs_block_rsv *rsv) 5525 { 5526 if (!rsv) 5527 return; 5528 btrfs_block_rsv_release(root, rsv, (u64)-1); 5529 kfree(rsv); 5530 } 5531 5532 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5533 { 5534 kfree(rsv); 5535 } 5536 5537 int btrfs_block_rsv_add(struct btrfs_root *root, 5538 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5539 enum btrfs_reserve_flush_enum flush) 5540 { 5541 int ret; 5542 5543 if (num_bytes == 0) 5544 return 0; 5545 5546 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5547 if (!ret) { 5548 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5549 return 0; 5550 } 5551 5552 return ret; 5553 } 5554 5555 int btrfs_block_rsv_check(struct btrfs_root *root, 5556 struct btrfs_block_rsv *block_rsv, int min_factor) 5557 { 5558 u64 num_bytes = 0; 5559 int ret = -ENOSPC; 5560 5561 if (!block_rsv) 5562 return 0; 5563 5564 spin_lock(&block_rsv->lock); 5565 num_bytes = div_factor(block_rsv->size, min_factor); 5566 if (block_rsv->reserved >= num_bytes) 5567 ret = 0; 5568 spin_unlock(&block_rsv->lock); 5569 5570 return ret; 5571 } 5572 5573 int btrfs_block_rsv_refill(struct btrfs_root *root, 5574 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5575 enum btrfs_reserve_flush_enum flush) 5576 { 5577 u64 num_bytes = 0; 5578 int ret = -ENOSPC; 5579 5580 if (!block_rsv) 5581 return 0; 5582 5583 spin_lock(&block_rsv->lock); 5584 num_bytes = min_reserved; 5585 if (block_rsv->reserved >= num_bytes) 5586 ret = 0; 5587 else 5588 num_bytes -= block_rsv->reserved; 5589 spin_unlock(&block_rsv->lock); 5590 5591 if (!ret) 5592 return 0; 5593 5594 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5595 if (!ret) { 5596 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5597 return 0; 5598 } 5599 5600 return ret; 5601 } 5602 5603 void btrfs_block_rsv_release(struct btrfs_root *root, 5604 struct btrfs_block_rsv *block_rsv, 5605 u64 num_bytes) 5606 { 5607 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5608 if (global_rsv == block_rsv || 5609 block_rsv->space_info != global_rsv->space_info) 5610 global_rsv = NULL; 5611 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5612 num_bytes); 5613 } 5614 5615 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5616 { 5617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5618 struct btrfs_space_info *sinfo = block_rsv->space_info; 5619 u64 num_bytes; 5620 5621 /* 5622 * The global block rsv is based on the size of the extent tree, the 5623 * checksum tree and the root tree. If the fs is empty we want to set 5624 * it to a minimal amount for safety. 5625 */ 5626 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5627 btrfs_root_used(&fs_info->csum_root->root_item) + 5628 btrfs_root_used(&fs_info->tree_root->root_item); 5629 num_bytes = max_t(u64, num_bytes, SZ_16M); 5630 5631 spin_lock(&sinfo->lock); 5632 spin_lock(&block_rsv->lock); 5633 5634 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5635 5636 if (block_rsv->reserved < block_rsv->size) { 5637 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5638 sinfo->bytes_reserved + sinfo->bytes_readonly + 5639 sinfo->bytes_may_use; 5640 if (sinfo->total_bytes > num_bytes) { 5641 num_bytes = sinfo->total_bytes - num_bytes; 5642 num_bytes = min(num_bytes, 5643 block_rsv->size - block_rsv->reserved); 5644 block_rsv->reserved += num_bytes; 5645 sinfo->bytes_may_use += num_bytes; 5646 trace_btrfs_space_reservation(fs_info, "space_info", 5647 sinfo->flags, num_bytes, 5648 1); 5649 } 5650 } else if (block_rsv->reserved > block_rsv->size) { 5651 num_bytes = block_rsv->reserved - block_rsv->size; 5652 sinfo->bytes_may_use -= num_bytes; 5653 trace_btrfs_space_reservation(fs_info, "space_info", 5654 sinfo->flags, num_bytes, 0); 5655 block_rsv->reserved = block_rsv->size; 5656 } 5657 5658 if (block_rsv->reserved == block_rsv->size) 5659 block_rsv->full = 1; 5660 else 5661 block_rsv->full = 0; 5662 5663 spin_unlock(&block_rsv->lock); 5664 spin_unlock(&sinfo->lock); 5665 } 5666 5667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5668 { 5669 struct btrfs_space_info *space_info; 5670 5671 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5672 fs_info->chunk_block_rsv.space_info = space_info; 5673 5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5675 fs_info->global_block_rsv.space_info = space_info; 5676 fs_info->delalloc_block_rsv.space_info = space_info; 5677 fs_info->trans_block_rsv.space_info = space_info; 5678 fs_info->empty_block_rsv.space_info = space_info; 5679 fs_info->delayed_block_rsv.space_info = space_info; 5680 5681 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5682 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5683 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5684 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5685 if (fs_info->quota_root) 5686 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5687 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5688 5689 update_global_block_rsv(fs_info); 5690 } 5691 5692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5693 { 5694 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5695 (u64)-1); 5696 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5697 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5698 WARN_ON(fs_info->trans_block_rsv.size > 0); 5699 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5700 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5701 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5702 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5703 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5704 } 5705 5706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5707 struct btrfs_root *root) 5708 { 5709 if (!trans->block_rsv) 5710 return; 5711 5712 if (!trans->bytes_reserved) 5713 return; 5714 5715 trace_btrfs_space_reservation(root->fs_info, "transaction", 5716 trans->transid, trans->bytes_reserved, 0); 5717 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5718 trans->bytes_reserved = 0; 5719 } 5720 5721 /* 5722 * To be called after all the new block groups attached to the transaction 5723 * handle have been created (btrfs_create_pending_block_groups()). 5724 */ 5725 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5726 { 5727 struct btrfs_fs_info *fs_info = trans->fs_info; 5728 5729 if (!trans->chunk_bytes_reserved) 5730 return; 5731 5732 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5733 5734 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5735 trans->chunk_bytes_reserved); 5736 trans->chunk_bytes_reserved = 0; 5737 } 5738 5739 /* Can only return 0 or -ENOSPC */ 5740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5741 struct inode *inode) 5742 { 5743 struct btrfs_root *root = BTRFS_I(inode)->root; 5744 /* 5745 * We always use trans->block_rsv here as we will have reserved space 5746 * for our orphan when starting the transaction, using get_block_rsv() 5747 * here will sometimes make us choose the wrong block rsv as we could be 5748 * doing a reloc inode for a non refcounted root. 5749 */ 5750 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5751 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5752 5753 /* 5754 * We need to hold space in order to delete our orphan item once we've 5755 * added it, so this takes the reservation so we can release it later 5756 * when we are truly done with the orphan item. 5757 */ 5758 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5759 trace_btrfs_space_reservation(root->fs_info, "orphan", 5760 btrfs_ino(inode), num_bytes, 1); 5761 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5762 } 5763 5764 void btrfs_orphan_release_metadata(struct inode *inode) 5765 { 5766 struct btrfs_root *root = BTRFS_I(inode)->root; 5767 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5768 trace_btrfs_space_reservation(root->fs_info, "orphan", 5769 btrfs_ino(inode), num_bytes, 0); 5770 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5771 } 5772 5773 /* 5774 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5775 * root: the root of the parent directory 5776 * rsv: block reservation 5777 * items: the number of items that we need do reservation 5778 * qgroup_reserved: used to return the reserved size in qgroup 5779 * 5780 * This function is used to reserve the space for snapshot/subvolume 5781 * creation and deletion. Those operations are different with the 5782 * common file/directory operations, they change two fs/file trees 5783 * and root tree, the number of items that the qgroup reserves is 5784 * different with the free space reservation. So we can not use 5785 * the space reservation mechanism in start_transaction(). 5786 */ 5787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5788 struct btrfs_block_rsv *rsv, 5789 int items, 5790 u64 *qgroup_reserved, 5791 bool use_global_rsv) 5792 { 5793 u64 num_bytes; 5794 int ret; 5795 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5796 5797 if (root->fs_info->quota_enabled) { 5798 /* One for parent inode, two for dir entries */ 5799 num_bytes = 3 * root->nodesize; 5800 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5801 if (ret) 5802 return ret; 5803 } else { 5804 num_bytes = 0; 5805 } 5806 5807 *qgroup_reserved = num_bytes; 5808 5809 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5810 rsv->space_info = __find_space_info(root->fs_info, 5811 BTRFS_BLOCK_GROUP_METADATA); 5812 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5813 BTRFS_RESERVE_FLUSH_ALL); 5814 5815 if (ret == -ENOSPC && use_global_rsv) 5816 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5817 5818 if (ret && *qgroup_reserved) 5819 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5820 5821 return ret; 5822 } 5823 5824 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5825 struct btrfs_block_rsv *rsv, 5826 u64 qgroup_reserved) 5827 { 5828 btrfs_block_rsv_release(root, rsv, (u64)-1); 5829 } 5830 5831 /** 5832 * drop_outstanding_extent - drop an outstanding extent 5833 * @inode: the inode we're dropping the extent for 5834 * @num_bytes: the number of bytes we're releasing. 5835 * 5836 * This is called when we are freeing up an outstanding extent, either called 5837 * after an error or after an extent is written. This will return the number of 5838 * reserved extents that need to be freed. This must be called with 5839 * BTRFS_I(inode)->lock held. 5840 */ 5841 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5842 { 5843 unsigned drop_inode_space = 0; 5844 unsigned dropped_extents = 0; 5845 unsigned num_extents = 0; 5846 5847 num_extents = (unsigned)div64_u64(num_bytes + 5848 BTRFS_MAX_EXTENT_SIZE - 1, 5849 BTRFS_MAX_EXTENT_SIZE); 5850 ASSERT(num_extents); 5851 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5852 BTRFS_I(inode)->outstanding_extents -= num_extents; 5853 5854 if (BTRFS_I(inode)->outstanding_extents == 0 && 5855 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5856 &BTRFS_I(inode)->runtime_flags)) 5857 drop_inode_space = 1; 5858 5859 /* 5860 * If we have more or the same amount of outstanding extents than we have 5861 * reserved then we need to leave the reserved extents count alone. 5862 */ 5863 if (BTRFS_I(inode)->outstanding_extents >= 5864 BTRFS_I(inode)->reserved_extents) 5865 return drop_inode_space; 5866 5867 dropped_extents = BTRFS_I(inode)->reserved_extents - 5868 BTRFS_I(inode)->outstanding_extents; 5869 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5870 return dropped_extents + drop_inode_space; 5871 } 5872 5873 /** 5874 * calc_csum_metadata_size - return the amount of metadata space that must be 5875 * reserved/freed for the given bytes. 5876 * @inode: the inode we're manipulating 5877 * @num_bytes: the number of bytes in question 5878 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5879 * 5880 * This adjusts the number of csum_bytes in the inode and then returns the 5881 * correct amount of metadata that must either be reserved or freed. We 5882 * calculate how many checksums we can fit into one leaf and then divide the 5883 * number of bytes that will need to be checksumed by this value to figure out 5884 * how many checksums will be required. If we are adding bytes then the number 5885 * may go up and we will return the number of additional bytes that must be 5886 * reserved. If it is going down we will return the number of bytes that must 5887 * be freed. 5888 * 5889 * This must be called with BTRFS_I(inode)->lock held. 5890 */ 5891 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5892 int reserve) 5893 { 5894 struct btrfs_root *root = BTRFS_I(inode)->root; 5895 u64 old_csums, num_csums; 5896 5897 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5898 BTRFS_I(inode)->csum_bytes == 0) 5899 return 0; 5900 5901 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5902 if (reserve) 5903 BTRFS_I(inode)->csum_bytes += num_bytes; 5904 else 5905 BTRFS_I(inode)->csum_bytes -= num_bytes; 5906 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5907 5908 /* No change, no need to reserve more */ 5909 if (old_csums == num_csums) 5910 return 0; 5911 5912 if (reserve) 5913 return btrfs_calc_trans_metadata_size(root, 5914 num_csums - old_csums); 5915 5916 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5917 } 5918 5919 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5920 { 5921 struct btrfs_root *root = BTRFS_I(inode)->root; 5922 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5923 u64 to_reserve = 0; 5924 u64 csum_bytes; 5925 unsigned nr_extents = 0; 5926 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5927 int ret = 0; 5928 bool delalloc_lock = true; 5929 u64 to_free = 0; 5930 unsigned dropped; 5931 bool release_extra = false; 5932 5933 /* If we are a free space inode we need to not flush since we will be in 5934 * the middle of a transaction commit. We also don't need the delalloc 5935 * mutex since we won't race with anybody. We need this mostly to make 5936 * lockdep shut its filthy mouth. 5937 * 5938 * If we have a transaction open (can happen if we call truncate_block 5939 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 5940 */ 5941 if (btrfs_is_free_space_inode(inode)) { 5942 flush = BTRFS_RESERVE_NO_FLUSH; 5943 delalloc_lock = false; 5944 } else if (current->journal_info) { 5945 flush = BTRFS_RESERVE_FLUSH_LIMIT; 5946 } 5947 5948 if (flush != BTRFS_RESERVE_NO_FLUSH && 5949 btrfs_transaction_in_commit(root->fs_info)) 5950 schedule_timeout(1); 5951 5952 if (delalloc_lock) 5953 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5954 5955 num_bytes = ALIGN(num_bytes, root->sectorsize); 5956 5957 spin_lock(&BTRFS_I(inode)->lock); 5958 nr_extents = (unsigned)div64_u64(num_bytes + 5959 BTRFS_MAX_EXTENT_SIZE - 1, 5960 BTRFS_MAX_EXTENT_SIZE); 5961 BTRFS_I(inode)->outstanding_extents += nr_extents; 5962 5963 nr_extents = 0; 5964 if (BTRFS_I(inode)->outstanding_extents > 5965 BTRFS_I(inode)->reserved_extents) 5966 nr_extents += BTRFS_I(inode)->outstanding_extents - 5967 BTRFS_I(inode)->reserved_extents; 5968 5969 /* We always want to reserve a slot for updating the inode. */ 5970 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1); 5971 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5972 csum_bytes = BTRFS_I(inode)->csum_bytes; 5973 spin_unlock(&BTRFS_I(inode)->lock); 5974 5975 if (root->fs_info->quota_enabled) { 5976 ret = btrfs_qgroup_reserve_meta(root, 5977 nr_extents * root->nodesize); 5978 if (ret) 5979 goto out_fail; 5980 } 5981 5982 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 5983 if (unlikely(ret)) { 5984 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5985 goto out_fail; 5986 } 5987 5988 spin_lock(&BTRFS_I(inode)->lock); 5989 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5990 &BTRFS_I(inode)->runtime_flags)) { 5991 to_reserve -= btrfs_calc_trans_metadata_size(root, 1); 5992 release_extra = true; 5993 } 5994 BTRFS_I(inode)->reserved_extents += nr_extents; 5995 spin_unlock(&BTRFS_I(inode)->lock); 5996 5997 if (delalloc_lock) 5998 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5999 6000 if (to_reserve) 6001 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6002 btrfs_ino(inode), to_reserve, 1); 6003 if (release_extra) 6004 btrfs_block_rsv_release(root, block_rsv, 6005 btrfs_calc_trans_metadata_size(root, 6006 1)); 6007 return 0; 6008 6009 out_fail: 6010 spin_lock(&BTRFS_I(inode)->lock); 6011 dropped = drop_outstanding_extent(inode, num_bytes); 6012 /* 6013 * If the inodes csum_bytes is the same as the original 6014 * csum_bytes then we know we haven't raced with any free()ers 6015 * so we can just reduce our inodes csum bytes and carry on. 6016 */ 6017 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 6018 calc_csum_metadata_size(inode, num_bytes, 0); 6019 } else { 6020 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 6021 u64 bytes; 6022 6023 /* 6024 * This is tricky, but first we need to figure out how much we 6025 * freed from any free-ers that occurred during this 6026 * reservation, so we reset ->csum_bytes to the csum_bytes 6027 * before we dropped our lock, and then call the free for the 6028 * number of bytes that were freed while we were trying our 6029 * reservation. 6030 */ 6031 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 6032 BTRFS_I(inode)->csum_bytes = csum_bytes; 6033 to_free = calc_csum_metadata_size(inode, bytes, 0); 6034 6035 6036 /* 6037 * Now we need to see how much we would have freed had we not 6038 * been making this reservation and our ->csum_bytes were not 6039 * artificially inflated. 6040 */ 6041 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 6042 bytes = csum_bytes - orig_csum_bytes; 6043 bytes = calc_csum_metadata_size(inode, bytes, 0); 6044 6045 /* 6046 * Now reset ->csum_bytes to what it should be. If bytes is 6047 * more than to_free then we would have freed more space had we 6048 * not had an artificially high ->csum_bytes, so we need to free 6049 * the remainder. If bytes is the same or less then we don't 6050 * need to do anything, the other free-ers did the correct 6051 * thing. 6052 */ 6053 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 6054 if (bytes > to_free) 6055 to_free = bytes - to_free; 6056 else 6057 to_free = 0; 6058 } 6059 spin_unlock(&BTRFS_I(inode)->lock); 6060 if (dropped) 6061 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6062 6063 if (to_free) { 6064 btrfs_block_rsv_release(root, block_rsv, to_free); 6065 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6066 btrfs_ino(inode), to_free, 0); 6067 } 6068 if (delalloc_lock) 6069 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 6070 return ret; 6071 } 6072 6073 /** 6074 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6075 * @inode: the inode to release the reservation for 6076 * @num_bytes: the number of bytes we're releasing 6077 * 6078 * This will release the metadata reservation for an inode. This can be called 6079 * once we complete IO for a given set of bytes to release their metadata 6080 * reservations. 6081 */ 6082 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 6083 { 6084 struct btrfs_root *root = BTRFS_I(inode)->root; 6085 u64 to_free = 0; 6086 unsigned dropped; 6087 6088 num_bytes = ALIGN(num_bytes, root->sectorsize); 6089 spin_lock(&BTRFS_I(inode)->lock); 6090 dropped = drop_outstanding_extent(inode, num_bytes); 6091 6092 if (num_bytes) 6093 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6094 spin_unlock(&BTRFS_I(inode)->lock); 6095 if (dropped > 0) 6096 to_free += btrfs_calc_trans_metadata_size(root, dropped); 6097 6098 if (btrfs_is_testing(root->fs_info)) 6099 return; 6100 6101 trace_btrfs_space_reservation(root->fs_info, "delalloc", 6102 btrfs_ino(inode), to_free, 0); 6103 6104 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 6105 to_free); 6106 } 6107 6108 /** 6109 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6110 * delalloc 6111 * @inode: inode we're writing to 6112 * @start: start range we are writing to 6113 * @len: how long the range we are writing to 6114 * 6115 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 6116 * 6117 * This will do the following things 6118 * 6119 * o reserve space in data space info for num bytes 6120 * and reserve precious corresponding qgroup space 6121 * (Done in check_data_free_space) 6122 * 6123 * o reserve space for metadata space, based on the number of outstanding 6124 * extents and how much csums will be needed 6125 * also reserve metadata space in a per root over-reserve method. 6126 * o add to the inodes->delalloc_bytes 6127 * o add it to the fs_info's delalloc inodes list. 6128 * (Above 3 all done in delalloc_reserve_metadata) 6129 * 6130 * Return 0 for success 6131 * Return <0 for error(-ENOSPC or -EQUOT) 6132 */ 6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 6134 { 6135 int ret; 6136 6137 ret = btrfs_check_data_free_space(inode, start, len); 6138 if (ret < 0) 6139 return ret; 6140 ret = btrfs_delalloc_reserve_metadata(inode, len); 6141 if (ret < 0) 6142 btrfs_free_reserved_data_space(inode, start, len); 6143 return ret; 6144 } 6145 6146 /** 6147 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6148 * @inode: inode we're releasing space for 6149 * @start: start position of the space already reserved 6150 * @len: the len of the space already reserved 6151 * 6152 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6153 * called in the case that we don't need the metadata AND data reservations 6154 * anymore. So if there is an error or we insert an inline extent. 6155 * 6156 * This function will release the metadata space that was not used and will 6157 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6158 * list if there are no delalloc bytes left. 6159 * Also it will handle the qgroup reserved space. 6160 */ 6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 6162 { 6163 btrfs_delalloc_release_metadata(inode, len); 6164 btrfs_free_reserved_data_space(inode, start, len); 6165 } 6166 6167 static int update_block_group(struct btrfs_trans_handle *trans, 6168 struct btrfs_root *root, u64 bytenr, 6169 u64 num_bytes, int alloc) 6170 { 6171 struct btrfs_block_group_cache *cache = NULL; 6172 struct btrfs_fs_info *info = root->fs_info; 6173 u64 total = num_bytes; 6174 u64 old_val; 6175 u64 byte_in_group; 6176 int factor; 6177 6178 /* block accounting for super block */ 6179 spin_lock(&info->delalloc_root_lock); 6180 old_val = btrfs_super_bytes_used(info->super_copy); 6181 if (alloc) 6182 old_val += num_bytes; 6183 else 6184 old_val -= num_bytes; 6185 btrfs_set_super_bytes_used(info->super_copy, old_val); 6186 spin_unlock(&info->delalloc_root_lock); 6187 6188 while (total) { 6189 cache = btrfs_lookup_block_group(info, bytenr); 6190 if (!cache) 6191 return -ENOENT; 6192 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6193 BTRFS_BLOCK_GROUP_RAID1 | 6194 BTRFS_BLOCK_GROUP_RAID10)) 6195 factor = 2; 6196 else 6197 factor = 1; 6198 /* 6199 * If this block group has free space cache written out, we 6200 * need to make sure to load it if we are removing space. This 6201 * is because we need the unpinning stage to actually add the 6202 * space back to the block group, otherwise we will leak space. 6203 */ 6204 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6205 cache_block_group(cache, 1); 6206 6207 byte_in_group = bytenr - cache->key.objectid; 6208 WARN_ON(byte_in_group > cache->key.offset); 6209 6210 spin_lock(&cache->space_info->lock); 6211 spin_lock(&cache->lock); 6212 6213 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 6214 cache->disk_cache_state < BTRFS_DC_CLEAR) 6215 cache->disk_cache_state = BTRFS_DC_CLEAR; 6216 6217 old_val = btrfs_block_group_used(&cache->item); 6218 num_bytes = min(total, cache->key.offset - byte_in_group); 6219 if (alloc) { 6220 old_val += num_bytes; 6221 btrfs_set_block_group_used(&cache->item, old_val); 6222 cache->reserved -= num_bytes; 6223 cache->space_info->bytes_reserved -= num_bytes; 6224 cache->space_info->bytes_used += num_bytes; 6225 cache->space_info->disk_used += num_bytes * factor; 6226 spin_unlock(&cache->lock); 6227 spin_unlock(&cache->space_info->lock); 6228 } else { 6229 old_val -= num_bytes; 6230 btrfs_set_block_group_used(&cache->item, old_val); 6231 cache->pinned += num_bytes; 6232 cache->space_info->bytes_pinned += num_bytes; 6233 cache->space_info->bytes_used -= num_bytes; 6234 cache->space_info->disk_used -= num_bytes * factor; 6235 spin_unlock(&cache->lock); 6236 spin_unlock(&cache->space_info->lock); 6237 6238 trace_btrfs_space_reservation(root->fs_info, "pinned", 6239 cache->space_info->flags, 6240 num_bytes, 1); 6241 set_extent_dirty(info->pinned_extents, 6242 bytenr, bytenr + num_bytes - 1, 6243 GFP_NOFS | __GFP_NOFAIL); 6244 } 6245 6246 spin_lock(&trans->transaction->dirty_bgs_lock); 6247 if (list_empty(&cache->dirty_list)) { 6248 list_add_tail(&cache->dirty_list, 6249 &trans->transaction->dirty_bgs); 6250 trans->transaction->num_dirty_bgs++; 6251 btrfs_get_block_group(cache); 6252 } 6253 spin_unlock(&trans->transaction->dirty_bgs_lock); 6254 6255 /* 6256 * No longer have used bytes in this block group, queue it for 6257 * deletion. We do this after adding the block group to the 6258 * dirty list to avoid races between cleaner kthread and space 6259 * cache writeout. 6260 */ 6261 if (!alloc && old_val == 0) { 6262 spin_lock(&info->unused_bgs_lock); 6263 if (list_empty(&cache->bg_list)) { 6264 btrfs_get_block_group(cache); 6265 list_add_tail(&cache->bg_list, 6266 &info->unused_bgs); 6267 } 6268 spin_unlock(&info->unused_bgs_lock); 6269 } 6270 6271 btrfs_put_block_group(cache); 6272 total -= num_bytes; 6273 bytenr += num_bytes; 6274 } 6275 return 0; 6276 } 6277 6278 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6279 { 6280 struct btrfs_block_group_cache *cache; 6281 u64 bytenr; 6282 6283 spin_lock(&root->fs_info->block_group_cache_lock); 6284 bytenr = root->fs_info->first_logical_byte; 6285 spin_unlock(&root->fs_info->block_group_cache_lock); 6286 6287 if (bytenr < (u64)-1) 6288 return bytenr; 6289 6290 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6291 if (!cache) 6292 return 0; 6293 6294 bytenr = cache->key.objectid; 6295 btrfs_put_block_group(cache); 6296 6297 return bytenr; 6298 } 6299 6300 static int pin_down_extent(struct btrfs_root *root, 6301 struct btrfs_block_group_cache *cache, 6302 u64 bytenr, u64 num_bytes, int reserved) 6303 { 6304 spin_lock(&cache->space_info->lock); 6305 spin_lock(&cache->lock); 6306 cache->pinned += num_bytes; 6307 cache->space_info->bytes_pinned += num_bytes; 6308 if (reserved) { 6309 cache->reserved -= num_bytes; 6310 cache->space_info->bytes_reserved -= num_bytes; 6311 } 6312 spin_unlock(&cache->lock); 6313 spin_unlock(&cache->space_info->lock); 6314 6315 trace_btrfs_space_reservation(root->fs_info, "pinned", 6316 cache->space_info->flags, num_bytes, 1); 6317 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6318 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6319 return 0; 6320 } 6321 6322 /* 6323 * this function must be called within transaction 6324 */ 6325 int btrfs_pin_extent(struct btrfs_root *root, 6326 u64 bytenr, u64 num_bytes, int reserved) 6327 { 6328 struct btrfs_block_group_cache *cache; 6329 6330 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6331 BUG_ON(!cache); /* Logic error */ 6332 6333 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6334 6335 btrfs_put_block_group(cache); 6336 return 0; 6337 } 6338 6339 /* 6340 * this function must be called within transaction 6341 */ 6342 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6343 u64 bytenr, u64 num_bytes) 6344 { 6345 struct btrfs_block_group_cache *cache; 6346 int ret; 6347 6348 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6349 if (!cache) 6350 return -EINVAL; 6351 6352 /* 6353 * pull in the free space cache (if any) so that our pin 6354 * removes the free space from the cache. We have load_only set 6355 * to one because the slow code to read in the free extents does check 6356 * the pinned extents. 6357 */ 6358 cache_block_group(cache, 1); 6359 6360 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6361 6362 /* remove us from the free space cache (if we're there at all) */ 6363 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6364 btrfs_put_block_group(cache); 6365 return ret; 6366 } 6367 6368 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6369 { 6370 int ret; 6371 struct btrfs_block_group_cache *block_group; 6372 struct btrfs_caching_control *caching_ctl; 6373 6374 block_group = btrfs_lookup_block_group(root->fs_info, start); 6375 if (!block_group) 6376 return -EINVAL; 6377 6378 cache_block_group(block_group, 0); 6379 caching_ctl = get_caching_control(block_group); 6380 6381 if (!caching_ctl) { 6382 /* Logic error */ 6383 BUG_ON(!block_group_cache_done(block_group)); 6384 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6385 } else { 6386 mutex_lock(&caching_ctl->mutex); 6387 6388 if (start >= caching_ctl->progress) { 6389 ret = add_excluded_extent(root, start, num_bytes); 6390 } else if (start + num_bytes <= caching_ctl->progress) { 6391 ret = btrfs_remove_free_space(block_group, 6392 start, num_bytes); 6393 } else { 6394 num_bytes = caching_ctl->progress - start; 6395 ret = btrfs_remove_free_space(block_group, 6396 start, num_bytes); 6397 if (ret) 6398 goto out_lock; 6399 6400 num_bytes = (start + num_bytes) - 6401 caching_ctl->progress; 6402 start = caching_ctl->progress; 6403 ret = add_excluded_extent(root, start, num_bytes); 6404 } 6405 out_lock: 6406 mutex_unlock(&caching_ctl->mutex); 6407 put_caching_control(caching_ctl); 6408 } 6409 btrfs_put_block_group(block_group); 6410 return ret; 6411 } 6412 6413 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6414 struct extent_buffer *eb) 6415 { 6416 struct btrfs_file_extent_item *item; 6417 struct btrfs_key key; 6418 int found_type; 6419 int i; 6420 6421 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6422 return 0; 6423 6424 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6425 btrfs_item_key_to_cpu(eb, &key, i); 6426 if (key.type != BTRFS_EXTENT_DATA_KEY) 6427 continue; 6428 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6429 found_type = btrfs_file_extent_type(eb, item); 6430 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6431 continue; 6432 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6433 continue; 6434 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6435 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6436 __exclude_logged_extent(log, key.objectid, key.offset); 6437 } 6438 6439 return 0; 6440 } 6441 6442 static void 6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6444 { 6445 atomic_inc(&bg->reservations); 6446 } 6447 6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6449 const u64 start) 6450 { 6451 struct btrfs_block_group_cache *bg; 6452 6453 bg = btrfs_lookup_block_group(fs_info, start); 6454 ASSERT(bg); 6455 if (atomic_dec_and_test(&bg->reservations)) 6456 wake_up_atomic_t(&bg->reservations); 6457 btrfs_put_block_group(bg); 6458 } 6459 6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6461 { 6462 schedule(); 6463 return 0; 6464 } 6465 6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6467 { 6468 struct btrfs_space_info *space_info = bg->space_info; 6469 6470 ASSERT(bg->ro); 6471 6472 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6473 return; 6474 6475 /* 6476 * Our block group is read only but before we set it to read only, 6477 * some task might have had allocated an extent from it already, but it 6478 * has not yet created a respective ordered extent (and added it to a 6479 * root's list of ordered extents). 6480 * Therefore wait for any task currently allocating extents, since the 6481 * block group's reservations counter is incremented while a read lock 6482 * on the groups' semaphore is held and decremented after releasing 6483 * the read access on that semaphore and creating the ordered extent. 6484 */ 6485 down_write(&space_info->groups_sem); 6486 up_write(&space_info->groups_sem); 6487 6488 wait_on_atomic_t(&bg->reservations, 6489 btrfs_wait_bg_reservations_atomic_t, 6490 TASK_UNINTERRUPTIBLE); 6491 } 6492 6493 /** 6494 * btrfs_add_reserved_bytes - update the block_group and space info counters 6495 * @cache: The cache we are manipulating 6496 * @ram_bytes: The number of bytes of file content, and will be same to 6497 * @num_bytes except for the compress path. 6498 * @num_bytes: The number of bytes in question 6499 * @delalloc: The blocks are allocated for the delalloc write 6500 * 6501 * This is called by the allocator when it reserves space. Metadata 6502 * reservations should be called with RESERVE_ALLOC so we do the proper 6503 * ENOSPC accounting. For data we handle the reservation through clearing the 6504 * delalloc bits in the io_tree. We have to do this since we could end up 6505 * allocating less disk space for the amount of data we have reserved in the 6506 * case of compression. 6507 * 6508 * If this is a reservation and the block group has become read only we cannot 6509 * make the reservation and return -EAGAIN, otherwise this function always 6510 * succeeds. 6511 */ 6512 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6513 u64 ram_bytes, u64 num_bytes, int delalloc) 6514 { 6515 struct btrfs_space_info *space_info = cache->space_info; 6516 int ret = 0; 6517 6518 spin_lock(&space_info->lock); 6519 spin_lock(&cache->lock); 6520 if (cache->ro) { 6521 ret = -EAGAIN; 6522 } else { 6523 cache->reserved += num_bytes; 6524 space_info->bytes_reserved += num_bytes; 6525 6526 trace_btrfs_space_reservation(cache->fs_info, 6527 "space_info", space_info->flags, 6528 ram_bytes, 0); 6529 space_info->bytes_may_use -= ram_bytes; 6530 if (delalloc) 6531 cache->delalloc_bytes += num_bytes; 6532 } 6533 spin_unlock(&cache->lock); 6534 spin_unlock(&space_info->lock); 6535 return ret; 6536 } 6537 6538 /** 6539 * btrfs_free_reserved_bytes - update the block_group and space info counters 6540 * @cache: The cache we are manipulating 6541 * @num_bytes: The number of bytes in question 6542 * @delalloc: The blocks are allocated for the delalloc write 6543 * 6544 * This is called by somebody who is freeing space that was never actually used 6545 * on disk. For example if you reserve some space for a new leaf in transaction 6546 * A and before transaction A commits you free that leaf, you call this with 6547 * reserve set to 0 in order to clear the reservation. 6548 */ 6549 6550 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6551 u64 num_bytes, int delalloc) 6552 { 6553 struct btrfs_space_info *space_info = cache->space_info; 6554 int ret = 0; 6555 6556 spin_lock(&space_info->lock); 6557 spin_lock(&cache->lock); 6558 if (cache->ro) 6559 space_info->bytes_readonly += num_bytes; 6560 cache->reserved -= num_bytes; 6561 space_info->bytes_reserved -= num_bytes; 6562 6563 if (delalloc) 6564 cache->delalloc_bytes -= num_bytes; 6565 spin_unlock(&cache->lock); 6566 spin_unlock(&space_info->lock); 6567 return ret; 6568 } 6569 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6570 struct btrfs_root *root) 6571 { 6572 struct btrfs_fs_info *fs_info = root->fs_info; 6573 struct btrfs_caching_control *next; 6574 struct btrfs_caching_control *caching_ctl; 6575 struct btrfs_block_group_cache *cache; 6576 6577 down_write(&fs_info->commit_root_sem); 6578 6579 list_for_each_entry_safe(caching_ctl, next, 6580 &fs_info->caching_block_groups, list) { 6581 cache = caching_ctl->block_group; 6582 if (block_group_cache_done(cache)) { 6583 cache->last_byte_to_unpin = (u64)-1; 6584 list_del_init(&caching_ctl->list); 6585 put_caching_control(caching_ctl); 6586 } else { 6587 cache->last_byte_to_unpin = caching_ctl->progress; 6588 } 6589 } 6590 6591 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6592 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6593 else 6594 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6595 6596 up_write(&fs_info->commit_root_sem); 6597 6598 update_global_block_rsv(fs_info); 6599 } 6600 6601 /* 6602 * Returns the free cluster for the given space info and sets empty_cluster to 6603 * what it should be based on the mount options. 6604 */ 6605 static struct btrfs_free_cluster * 6606 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6607 u64 *empty_cluster) 6608 { 6609 struct btrfs_free_cluster *ret = NULL; 6610 bool ssd = btrfs_test_opt(root->fs_info, SSD); 6611 6612 *empty_cluster = 0; 6613 if (btrfs_mixed_space_info(space_info)) 6614 return ret; 6615 6616 if (ssd) 6617 *empty_cluster = SZ_2M; 6618 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6619 ret = &root->fs_info->meta_alloc_cluster; 6620 if (!ssd) 6621 *empty_cluster = SZ_64K; 6622 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6623 ret = &root->fs_info->data_alloc_cluster; 6624 } 6625 6626 return ret; 6627 } 6628 6629 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6630 const bool return_free_space) 6631 { 6632 struct btrfs_fs_info *fs_info = root->fs_info; 6633 struct btrfs_block_group_cache *cache = NULL; 6634 struct btrfs_space_info *space_info; 6635 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6636 struct btrfs_free_cluster *cluster = NULL; 6637 u64 len; 6638 u64 total_unpinned = 0; 6639 u64 empty_cluster = 0; 6640 bool readonly; 6641 6642 while (start <= end) { 6643 readonly = false; 6644 if (!cache || 6645 start >= cache->key.objectid + cache->key.offset) { 6646 if (cache) 6647 btrfs_put_block_group(cache); 6648 total_unpinned = 0; 6649 cache = btrfs_lookup_block_group(fs_info, start); 6650 BUG_ON(!cache); /* Logic error */ 6651 6652 cluster = fetch_cluster_info(root, 6653 cache->space_info, 6654 &empty_cluster); 6655 empty_cluster <<= 1; 6656 } 6657 6658 len = cache->key.objectid + cache->key.offset - start; 6659 len = min(len, end + 1 - start); 6660 6661 if (start < cache->last_byte_to_unpin) { 6662 len = min(len, cache->last_byte_to_unpin - start); 6663 if (return_free_space) 6664 btrfs_add_free_space(cache, start, len); 6665 } 6666 6667 start += len; 6668 total_unpinned += len; 6669 space_info = cache->space_info; 6670 6671 /* 6672 * If this space cluster has been marked as fragmented and we've 6673 * unpinned enough in this block group to potentially allow a 6674 * cluster to be created inside of it go ahead and clear the 6675 * fragmented check. 6676 */ 6677 if (cluster && cluster->fragmented && 6678 total_unpinned > empty_cluster) { 6679 spin_lock(&cluster->lock); 6680 cluster->fragmented = 0; 6681 spin_unlock(&cluster->lock); 6682 } 6683 6684 spin_lock(&space_info->lock); 6685 spin_lock(&cache->lock); 6686 cache->pinned -= len; 6687 space_info->bytes_pinned -= len; 6688 6689 trace_btrfs_space_reservation(fs_info, "pinned", 6690 space_info->flags, len, 0); 6691 space_info->max_extent_size = 0; 6692 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6693 if (cache->ro) { 6694 space_info->bytes_readonly += len; 6695 readonly = true; 6696 } 6697 spin_unlock(&cache->lock); 6698 if (!readonly && return_free_space && 6699 global_rsv->space_info == space_info) { 6700 u64 to_add = len; 6701 WARN_ON(!return_free_space); 6702 spin_lock(&global_rsv->lock); 6703 if (!global_rsv->full) { 6704 to_add = min(len, global_rsv->size - 6705 global_rsv->reserved); 6706 global_rsv->reserved += to_add; 6707 space_info->bytes_may_use += to_add; 6708 if (global_rsv->reserved >= global_rsv->size) 6709 global_rsv->full = 1; 6710 trace_btrfs_space_reservation(fs_info, 6711 "space_info", 6712 space_info->flags, 6713 to_add, 1); 6714 len -= to_add; 6715 } 6716 spin_unlock(&global_rsv->lock); 6717 /* Add to any tickets we may have */ 6718 if (len) 6719 space_info_add_new_bytes(fs_info, space_info, 6720 len); 6721 } 6722 spin_unlock(&space_info->lock); 6723 } 6724 6725 if (cache) 6726 btrfs_put_block_group(cache); 6727 return 0; 6728 } 6729 6730 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6731 struct btrfs_root *root) 6732 { 6733 struct btrfs_fs_info *fs_info = root->fs_info; 6734 struct btrfs_block_group_cache *block_group, *tmp; 6735 struct list_head *deleted_bgs; 6736 struct extent_io_tree *unpin; 6737 u64 start; 6738 u64 end; 6739 int ret; 6740 6741 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6742 unpin = &fs_info->freed_extents[1]; 6743 else 6744 unpin = &fs_info->freed_extents[0]; 6745 6746 while (!trans->aborted) { 6747 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6748 ret = find_first_extent_bit(unpin, 0, &start, &end, 6749 EXTENT_DIRTY, NULL); 6750 if (ret) { 6751 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6752 break; 6753 } 6754 6755 if (btrfs_test_opt(root->fs_info, DISCARD)) 6756 ret = btrfs_discard_extent(root, start, 6757 end + 1 - start, NULL); 6758 6759 clear_extent_dirty(unpin, start, end); 6760 unpin_extent_range(root, start, end, true); 6761 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6762 cond_resched(); 6763 } 6764 6765 /* 6766 * Transaction is finished. We don't need the lock anymore. We 6767 * do need to clean up the block groups in case of a transaction 6768 * abort. 6769 */ 6770 deleted_bgs = &trans->transaction->deleted_bgs; 6771 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6772 u64 trimmed = 0; 6773 6774 ret = -EROFS; 6775 if (!trans->aborted) 6776 ret = btrfs_discard_extent(root, 6777 block_group->key.objectid, 6778 block_group->key.offset, 6779 &trimmed); 6780 6781 list_del_init(&block_group->bg_list); 6782 btrfs_put_block_group_trimming(block_group); 6783 btrfs_put_block_group(block_group); 6784 6785 if (ret) { 6786 const char *errstr = btrfs_decode_error(ret); 6787 btrfs_warn(fs_info, 6788 "Discard failed while removing blockgroup: errno=%d %s\n", 6789 ret, errstr); 6790 } 6791 } 6792 6793 return 0; 6794 } 6795 6796 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6797 u64 owner, u64 root_objectid) 6798 { 6799 struct btrfs_space_info *space_info; 6800 u64 flags; 6801 6802 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6803 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6804 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6805 else 6806 flags = BTRFS_BLOCK_GROUP_METADATA; 6807 } else { 6808 flags = BTRFS_BLOCK_GROUP_DATA; 6809 } 6810 6811 space_info = __find_space_info(fs_info, flags); 6812 BUG_ON(!space_info); /* Logic bug */ 6813 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6814 } 6815 6816 6817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6818 struct btrfs_root *root, 6819 struct btrfs_delayed_ref_node *node, u64 parent, 6820 u64 root_objectid, u64 owner_objectid, 6821 u64 owner_offset, int refs_to_drop, 6822 struct btrfs_delayed_extent_op *extent_op) 6823 { 6824 struct btrfs_key key; 6825 struct btrfs_path *path; 6826 struct btrfs_fs_info *info = root->fs_info; 6827 struct btrfs_root *extent_root = info->extent_root; 6828 struct extent_buffer *leaf; 6829 struct btrfs_extent_item *ei; 6830 struct btrfs_extent_inline_ref *iref; 6831 int ret; 6832 int is_data; 6833 int extent_slot = 0; 6834 int found_extent = 0; 6835 int num_to_del = 1; 6836 u32 item_size; 6837 u64 refs; 6838 u64 bytenr = node->bytenr; 6839 u64 num_bytes = node->num_bytes; 6840 int last_ref = 0; 6841 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6842 SKINNY_METADATA); 6843 6844 path = btrfs_alloc_path(); 6845 if (!path) 6846 return -ENOMEM; 6847 6848 path->reada = READA_FORWARD; 6849 path->leave_spinning = 1; 6850 6851 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6852 BUG_ON(!is_data && refs_to_drop != 1); 6853 6854 if (is_data) 6855 skinny_metadata = 0; 6856 6857 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6858 bytenr, num_bytes, parent, 6859 root_objectid, owner_objectid, 6860 owner_offset); 6861 if (ret == 0) { 6862 extent_slot = path->slots[0]; 6863 while (extent_slot >= 0) { 6864 btrfs_item_key_to_cpu(path->nodes[0], &key, 6865 extent_slot); 6866 if (key.objectid != bytenr) 6867 break; 6868 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6869 key.offset == num_bytes) { 6870 found_extent = 1; 6871 break; 6872 } 6873 if (key.type == BTRFS_METADATA_ITEM_KEY && 6874 key.offset == owner_objectid) { 6875 found_extent = 1; 6876 break; 6877 } 6878 if (path->slots[0] - extent_slot > 5) 6879 break; 6880 extent_slot--; 6881 } 6882 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6883 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6884 if (found_extent && item_size < sizeof(*ei)) 6885 found_extent = 0; 6886 #endif 6887 if (!found_extent) { 6888 BUG_ON(iref); 6889 ret = remove_extent_backref(trans, extent_root, path, 6890 NULL, refs_to_drop, 6891 is_data, &last_ref); 6892 if (ret) { 6893 btrfs_abort_transaction(trans, ret); 6894 goto out; 6895 } 6896 btrfs_release_path(path); 6897 path->leave_spinning = 1; 6898 6899 key.objectid = bytenr; 6900 key.type = BTRFS_EXTENT_ITEM_KEY; 6901 key.offset = num_bytes; 6902 6903 if (!is_data && skinny_metadata) { 6904 key.type = BTRFS_METADATA_ITEM_KEY; 6905 key.offset = owner_objectid; 6906 } 6907 6908 ret = btrfs_search_slot(trans, extent_root, 6909 &key, path, -1, 1); 6910 if (ret > 0 && skinny_metadata && path->slots[0]) { 6911 /* 6912 * Couldn't find our skinny metadata item, 6913 * see if we have ye olde extent item. 6914 */ 6915 path->slots[0]--; 6916 btrfs_item_key_to_cpu(path->nodes[0], &key, 6917 path->slots[0]); 6918 if (key.objectid == bytenr && 6919 key.type == BTRFS_EXTENT_ITEM_KEY && 6920 key.offset == num_bytes) 6921 ret = 0; 6922 } 6923 6924 if (ret > 0 && skinny_metadata) { 6925 skinny_metadata = false; 6926 key.objectid = bytenr; 6927 key.type = BTRFS_EXTENT_ITEM_KEY; 6928 key.offset = num_bytes; 6929 btrfs_release_path(path); 6930 ret = btrfs_search_slot(trans, extent_root, 6931 &key, path, -1, 1); 6932 } 6933 6934 if (ret) { 6935 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6936 ret, bytenr); 6937 if (ret > 0) 6938 btrfs_print_leaf(extent_root, 6939 path->nodes[0]); 6940 } 6941 if (ret < 0) { 6942 btrfs_abort_transaction(trans, ret); 6943 goto out; 6944 } 6945 extent_slot = path->slots[0]; 6946 } 6947 } else if (WARN_ON(ret == -ENOENT)) { 6948 btrfs_print_leaf(extent_root, path->nodes[0]); 6949 btrfs_err(info, 6950 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6951 bytenr, parent, root_objectid, owner_objectid, 6952 owner_offset); 6953 btrfs_abort_transaction(trans, ret); 6954 goto out; 6955 } else { 6956 btrfs_abort_transaction(trans, ret); 6957 goto out; 6958 } 6959 6960 leaf = path->nodes[0]; 6961 item_size = btrfs_item_size_nr(leaf, extent_slot); 6962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6963 if (item_size < sizeof(*ei)) { 6964 BUG_ON(found_extent || extent_slot != path->slots[0]); 6965 ret = convert_extent_item_v0(trans, extent_root, path, 6966 owner_objectid, 0); 6967 if (ret < 0) { 6968 btrfs_abort_transaction(trans, ret); 6969 goto out; 6970 } 6971 6972 btrfs_release_path(path); 6973 path->leave_spinning = 1; 6974 6975 key.objectid = bytenr; 6976 key.type = BTRFS_EXTENT_ITEM_KEY; 6977 key.offset = num_bytes; 6978 6979 ret = btrfs_search_slot(trans, extent_root, &key, path, 6980 -1, 1); 6981 if (ret) { 6982 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6983 ret, bytenr); 6984 btrfs_print_leaf(extent_root, path->nodes[0]); 6985 } 6986 if (ret < 0) { 6987 btrfs_abort_transaction(trans, ret); 6988 goto out; 6989 } 6990 6991 extent_slot = path->slots[0]; 6992 leaf = path->nodes[0]; 6993 item_size = btrfs_item_size_nr(leaf, extent_slot); 6994 } 6995 #endif 6996 BUG_ON(item_size < sizeof(*ei)); 6997 ei = btrfs_item_ptr(leaf, extent_slot, 6998 struct btrfs_extent_item); 6999 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7000 key.type == BTRFS_EXTENT_ITEM_KEY) { 7001 struct btrfs_tree_block_info *bi; 7002 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7003 bi = (struct btrfs_tree_block_info *)(ei + 1); 7004 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7005 } 7006 7007 refs = btrfs_extent_refs(leaf, ei); 7008 if (refs < refs_to_drop) { 7009 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 7010 "for bytenr %Lu", refs_to_drop, refs, bytenr); 7011 ret = -EINVAL; 7012 btrfs_abort_transaction(trans, ret); 7013 goto out; 7014 } 7015 refs -= refs_to_drop; 7016 7017 if (refs > 0) { 7018 if (extent_op) 7019 __run_delayed_extent_op(extent_op, leaf, ei); 7020 /* 7021 * In the case of inline back ref, reference count will 7022 * be updated by remove_extent_backref 7023 */ 7024 if (iref) { 7025 BUG_ON(!found_extent); 7026 } else { 7027 btrfs_set_extent_refs(leaf, ei, refs); 7028 btrfs_mark_buffer_dirty(leaf); 7029 } 7030 if (found_extent) { 7031 ret = remove_extent_backref(trans, extent_root, path, 7032 iref, refs_to_drop, 7033 is_data, &last_ref); 7034 if (ret) { 7035 btrfs_abort_transaction(trans, ret); 7036 goto out; 7037 } 7038 } 7039 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 7040 root_objectid); 7041 } else { 7042 if (found_extent) { 7043 BUG_ON(is_data && refs_to_drop != 7044 extent_data_ref_count(path, iref)); 7045 if (iref) { 7046 BUG_ON(path->slots[0] != extent_slot); 7047 } else { 7048 BUG_ON(path->slots[0] != extent_slot + 1); 7049 path->slots[0] = extent_slot; 7050 num_to_del = 2; 7051 } 7052 } 7053 7054 last_ref = 1; 7055 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7056 num_to_del); 7057 if (ret) { 7058 btrfs_abort_transaction(trans, ret); 7059 goto out; 7060 } 7061 btrfs_release_path(path); 7062 7063 if (is_data) { 7064 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 7065 if (ret) { 7066 btrfs_abort_transaction(trans, ret); 7067 goto out; 7068 } 7069 } 7070 7071 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 7072 num_bytes); 7073 if (ret) { 7074 btrfs_abort_transaction(trans, ret); 7075 goto out; 7076 } 7077 7078 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 7079 if (ret) { 7080 btrfs_abort_transaction(trans, ret); 7081 goto out; 7082 } 7083 } 7084 btrfs_release_path(path); 7085 7086 out: 7087 btrfs_free_path(path); 7088 return ret; 7089 } 7090 7091 /* 7092 * when we free an block, it is possible (and likely) that we free the last 7093 * delayed ref for that extent as well. This searches the delayed ref tree for 7094 * a given extent, and if there are no other delayed refs to be processed, it 7095 * removes it from the tree. 7096 */ 7097 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7098 struct btrfs_root *root, u64 bytenr) 7099 { 7100 struct btrfs_delayed_ref_head *head; 7101 struct btrfs_delayed_ref_root *delayed_refs; 7102 int ret = 0; 7103 7104 delayed_refs = &trans->transaction->delayed_refs; 7105 spin_lock(&delayed_refs->lock); 7106 head = btrfs_find_delayed_ref_head(trans, bytenr); 7107 if (!head) 7108 goto out_delayed_unlock; 7109 7110 spin_lock(&head->lock); 7111 if (!list_empty(&head->ref_list)) 7112 goto out; 7113 7114 if (head->extent_op) { 7115 if (!head->must_insert_reserved) 7116 goto out; 7117 btrfs_free_delayed_extent_op(head->extent_op); 7118 head->extent_op = NULL; 7119 } 7120 7121 /* 7122 * waiting for the lock here would deadlock. If someone else has it 7123 * locked they are already in the process of dropping it anyway 7124 */ 7125 if (!mutex_trylock(&head->mutex)) 7126 goto out; 7127 7128 /* 7129 * at this point we have a head with no other entries. Go 7130 * ahead and process it. 7131 */ 7132 head->node.in_tree = 0; 7133 rb_erase(&head->href_node, &delayed_refs->href_root); 7134 7135 atomic_dec(&delayed_refs->num_entries); 7136 7137 /* 7138 * we don't take a ref on the node because we're removing it from the 7139 * tree, so we just steal the ref the tree was holding. 7140 */ 7141 delayed_refs->num_heads--; 7142 if (head->processing == 0) 7143 delayed_refs->num_heads_ready--; 7144 head->processing = 0; 7145 spin_unlock(&head->lock); 7146 spin_unlock(&delayed_refs->lock); 7147 7148 BUG_ON(head->extent_op); 7149 if (head->must_insert_reserved) 7150 ret = 1; 7151 7152 mutex_unlock(&head->mutex); 7153 btrfs_put_delayed_ref(&head->node); 7154 return ret; 7155 out: 7156 spin_unlock(&head->lock); 7157 7158 out_delayed_unlock: 7159 spin_unlock(&delayed_refs->lock); 7160 return 0; 7161 } 7162 7163 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7164 struct btrfs_root *root, 7165 struct extent_buffer *buf, 7166 u64 parent, int last_ref) 7167 { 7168 int pin = 1; 7169 int ret; 7170 7171 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7172 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7173 buf->start, buf->len, 7174 parent, root->root_key.objectid, 7175 btrfs_header_level(buf), 7176 BTRFS_DROP_DELAYED_REF, NULL); 7177 BUG_ON(ret); /* -ENOMEM */ 7178 } 7179 7180 if (!last_ref) 7181 return; 7182 7183 if (btrfs_header_generation(buf) == trans->transid) { 7184 struct btrfs_block_group_cache *cache; 7185 7186 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7187 ret = check_ref_cleanup(trans, root, buf->start); 7188 if (!ret) 7189 goto out; 7190 } 7191 7192 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 7193 7194 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7195 pin_down_extent(root, cache, buf->start, buf->len, 1); 7196 btrfs_put_block_group(cache); 7197 goto out; 7198 } 7199 7200 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7201 7202 btrfs_add_free_space(cache, buf->start, buf->len); 7203 btrfs_free_reserved_bytes(cache, buf->len, 0); 7204 btrfs_put_block_group(cache); 7205 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 7206 pin = 0; 7207 } 7208 out: 7209 if (pin) 7210 add_pinned_bytes(root->fs_info, buf->len, 7211 btrfs_header_level(buf), 7212 root->root_key.objectid); 7213 7214 /* 7215 * Deleting the buffer, clear the corrupt flag since it doesn't matter 7216 * anymore. 7217 */ 7218 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7219 } 7220 7221 /* Can return -ENOMEM */ 7222 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7223 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7224 u64 owner, u64 offset) 7225 { 7226 int ret; 7227 struct btrfs_fs_info *fs_info = root->fs_info; 7228 7229 if (btrfs_is_testing(fs_info)) 7230 return 0; 7231 7232 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 7233 7234 /* 7235 * tree log blocks never actually go into the extent allocation 7236 * tree, just update pinning info and exit early. 7237 */ 7238 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7239 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7240 /* unlocks the pinned mutex */ 7241 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7242 ret = 0; 7243 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7244 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7245 num_bytes, 7246 parent, root_objectid, (int)owner, 7247 BTRFS_DROP_DELAYED_REF, NULL); 7248 } else { 7249 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7250 num_bytes, 7251 parent, root_objectid, owner, 7252 offset, 0, 7253 BTRFS_DROP_DELAYED_REF, NULL); 7254 } 7255 return ret; 7256 } 7257 7258 /* 7259 * when we wait for progress in the block group caching, its because 7260 * our allocation attempt failed at least once. So, we must sleep 7261 * and let some progress happen before we try again. 7262 * 7263 * This function will sleep at least once waiting for new free space to 7264 * show up, and then it will check the block group free space numbers 7265 * for our min num_bytes. Another option is to have it go ahead 7266 * and look in the rbtree for a free extent of a given size, but this 7267 * is a good start. 7268 * 7269 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7270 * any of the information in this block group. 7271 */ 7272 static noinline void 7273 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7274 u64 num_bytes) 7275 { 7276 struct btrfs_caching_control *caching_ctl; 7277 7278 caching_ctl = get_caching_control(cache); 7279 if (!caching_ctl) 7280 return; 7281 7282 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7283 (cache->free_space_ctl->free_space >= num_bytes)); 7284 7285 put_caching_control(caching_ctl); 7286 } 7287 7288 static noinline int 7289 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7290 { 7291 struct btrfs_caching_control *caching_ctl; 7292 int ret = 0; 7293 7294 caching_ctl = get_caching_control(cache); 7295 if (!caching_ctl) 7296 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7297 7298 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7299 if (cache->cached == BTRFS_CACHE_ERROR) 7300 ret = -EIO; 7301 put_caching_control(caching_ctl); 7302 return ret; 7303 } 7304 7305 int __get_raid_index(u64 flags) 7306 { 7307 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7308 return BTRFS_RAID_RAID10; 7309 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7310 return BTRFS_RAID_RAID1; 7311 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7312 return BTRFS_RAID_DUP; 7313 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7314 return BTRFS_RAID_RAID0; 7315 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7316 return BTRFS_RAID_RAID5; 7317 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7318 return BTRFS_RAID_RAID6; 7319 7320 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7321 } 7322 7323 int get_block_group_index(struct btrfs_block_group_cache *cache) 7324 { 7325 return __get_raid_index(cache->flags); 7326 } 7327 7328 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7329 [BTRFS_RAID_RAID10] = "raid10", 7330 [BTRFS_RAID_RAID1] = "raid1", 7331 [BTRFS_RAID_DUP] = "dup", 7332 [BTRFS_RAID_RAID0] = "raid0", 7333 [BTRFS_RAID_SINGLE] = "single", 7334 [BTRFS_RAID_RAID5] = "raid5", 7335 [BTRFS_RAID_RAID6] = "raid6", 7336 }; 7337 7338 static const char *get_raid_name(enum btrfs_raid_types type) 7339 { 7340 if (type >= BTRFS_NR_RAID_TYPES) 7341 return NULL; 7342 7343 return btrfs_raid_type_names[type]; 7344 } 7345 7346 enum btrfs_loop_type { 7347 LOOP_CACHING_NOWAIT = 0, 7348 LOOP_CACHING_WAIT = 1, 7349 LOOP_ALLOC_CHUNK = 2, 7350 LOOP_NO_EMPTY_SIZE = 3, 7351 }; 7352 7353 static inline void 7354 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7355 int delalloc) 7356 { 7357 if (delalloc) 7358 down_read(&cache->data_rwsem); 7359 } 7360 7361 static inline void 7362 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7363 int delalloc) 7364 { 7365 btrfs_get_block_group(cache); 7366 if (delalloc) 7367 down_read(&cache->data_rwsem); 7368 } 7369 7370 static struct btrfs_block_group_cache * 7371 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7372 struct btrfs_free_cluster *cluster, 7373 int delalloc) 7374 { 7375 struct btrfs_block_group_cache *used_bg = NULL; 7376 7377 spin_lock(&cluster->refill_lock); 7378 while (1) { 7379 used_bg = cluster->block_group; 7380 if (!used_bg) 7381 return NULL; 7382 7383 if (used_bg == block_group) 7384 return used_bg; 7385 7386 btrfs_get_block_group(used_bg); 7387 7388 if (!delalloc) 7389 return used_bg; 7390 7391 if (down_read_trylock(&used_bg->data_rwsem)) 7392 return used_bg; 7393 7394 spin_unlock(&cluster->refill_lock); 7395 7396 down_read(&used_bg->data_rwsem); 7397 7398 spin_lock(&cluster->refill_lock); 7399 if (used_bg == cluster->block_group) 7400 return used_bg; 7401 7402 up_read(&used_bg->data_rwsem); 7403 btrfs_put_block_group(used_bg); 7404 } 7405 } 7406 7407 static inline void 7408 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7409 int delalloc) 7410 { 7411 if (delalloc) 7412 up_read(&cache->data_rwsem); 7413 btrfs_put_block_group(cache); 7414 } 7415 7416 /* 7417 * walks the btree of allocated extents and find a hole of a given size. 7418 * The key ins is changed to record the hole: 7419 * ins->objectid == start position 7420 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7421 * ins->offset == the size of the hole. 7422 * Any available blocks before search_start are skipped. 7423 * 7424 * If there is no suitable free space, we will record the max size of 7425 * the free space extent currently. 7426 */ 7427 static noinline int find_free_extent(struct btrfs_root *orig_root, 7428 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7429 u64 hint_byte, struct btrfs_key *ins, 7430 u64 flags, int delalloc) 7431 { 7432 int ret = 0; 7433 struct btrfs_root *root = orig_root->fs_info->extent_root; 7434 struct btrfs_free_cluster *last_ptr = NULL; 7435 struct btrfs_block_group_cache *block_group = NULL; 7436 u64 search_start = 0; 7437 u64 max_extent_size = 0; 7438 u64 empty_cluster = 0; 7439 struct btrfs_space_info *space_info; 7440 int loop = 0; 7441 int index = __get_raid_index(flags); 7442 bool failed_cluster_refill = false; 7443 bool failed_alloc = false; 7444 bool use_cluster = true; 7445 bool have_caching_bg = false; 7446 bool orig_have_caching_bg = false; 7447 bool full_search = false; 7448 7449 WARN_ON(num_bytes < root->sectorsize); 7450 ins->type = BTRFS_EXTENT_ITEM_KEY; 7451 ins->objectid = 0; 7452 ins->offset = 0; 7453 7454 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7455 7456 space_info = __find_space_info(root->fs_info, flags); 7457 if (!space_info) { 7458 btrfs_err(root->fs_info, "No space info for %llu", flags); 7459 return -ENOSPC; 7460 } 7461 7462 /* 7463 * If our free space is heavily fragmented we may not be able to make 7464 * big contiguous allocations, so instead of doing the expensive search 7465 * for free space, simply return ENOSPC with our max_extent_size so we 7466 * can go ahead and search for a more manageable chunk. 7467 * 7468 * If our max_extent_size is large enough for our allocation simply 7469 * disable clustering since we will likely not be able to find enough 7470 * space to create a cluster and induce latency trying. 7471 */ 7472 if (unlikely(space_info->max_extent_size)) { 7473 spin_lock(&space_info->lock); 7474 if (space_info->max_extent_size && 7475 num_bytes > space_info->max_extent_size) { 7476 ins->offset = space_info->max_extent_size; 7477 spin_unlock(&space_info->lock); 7478 return -ENOSPC; 7479 } else if (space_info->max_extent_size) { 7480 use_cluster = false; 7481 } 7482 spin_unlock(&space_info->lock); 7483 } 7484 7485 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7486 if (last_ptr) { 7487 spin_lock(&last_ptr->lock); 7488 if (last_ptr->block_group) 7489 hint_byte = last_ptr->window_start; 7490 if (last_ptr->fragmented) { 7491 /* 7492 * We still set window_start so we can keep track of the 7493 * last place we found an allocation to try and save 7494 * some time. 7495 */ 7496 hint_byte = last_ptr->window_start; 7497 use_cluster = false; 7498 } 7499 spin_unlock(&last_ptr->lock); 7500 } 7501 7502 search_start = max(search_start, first_logical_byte(root, 0)); 7503 search_start = max(search_start, hint_byte); 7504 if (search_start == hint_byte) { 7505 block_group = btrfs_lookup_block_group(root->fs_info, 7506 search_start); 7507 /* 7508 * we don't want to use the block group if it doesn't match our 7509 * allocation bits, or if its not cached. 7510 * 7511 * However if we are re-searching with an ideal block group 7512 * picked out then we don't care that the block group is cached. 7513 */ 7514 if (block_group && block_group_bits(block_group, flags) && 7515 block_group->cached != BTRFS_CACHE_NO) { 7516 down_read(&space_info->groups_sem); 7517 if (list_empty(&block_group->list) || 7518 block_group->ro) { 7519 /* 7520 * someone is removing this block group, 7521 * we can't jump into the have_block_group 7522 * target because our list pointers are not 7523 * valid 7524 */ 7525 btrfs_put_block_group(block_group); 7526 up_read(&space_info->groups_sem); 7527 } else { 7528 index = get_block_group_index(block_group); 7529 btrfs_lock_block_group(block_group, delalloc); 7530 goto have_block_group; 7531 } 7532 } else if (block_group) { 7533 btrfs_put_block_group(block_group); 7534 } 7535 } 7536 search: 7537 have_caching_bg = false; 7538 if (index == 0 || index == __get_raid_index(flags)) 7539 full_search = true; 7540 down_read(&space_info->groups_sem); 7541 list_for_each_entry(block_group, &space_info->block_groups[index], 7542 list) { 7543 u64 offset; 7544 int cached; 7545 7546 btrfs_grab_block_group(block_group, delalloc); 7547 search_start = block_group->key.objectid; 7548 7549 /* 7550 * this can happen if we end up cycling through all the 7551 * raid types, but we want to make sure we only allocate 7552 * for the proper type. 7553 */ 7554 if (!block_group_bits(block_group, flags)) { 7555 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7556 BTRFS_BLOCK_GROUP_RAID1 | 7557 BTRFS_BLOCK_GROUP_RAID5 | 7558 BTRFS_BLOCK_GROUP_RAID6 | 7559 BTRFS_BLOCK_GROUP_RAID10; 7560 7561 /* 7562 * if they asked for extra copies and this block group 7563 * doesn't provide them, bail. This does allow us to 7564 * fill raid0 from raid1. 7565 */ 7566 if ((flags & extra) && !(block_group->flags & extra)) 7567 goto loop; 7568 } 7569 7570 have_block_group: 7571 cached = block_group_cache_done(block_group); 7572 if (unlikely(!cached)) { 7573 have_caching_bg = true; 7574 ret = cache_block_group(block_group, 0); 7575 BUG_ON(ret < 0); 7576 ret = 0; 7577 } 7578 7579 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7580 goto loop; 7581 if (unlikely(block_group->ro)) 7582 goto loop; 7583 7584 /* 7585 * Ok we want to try and use the cluster allocator, so 7586 * lets look there 7587 */ 7588 if (last_ptr && use_cluster) { 7589 struct btrfs_block_group_cache *used_block_group; 7590 unsigned long aligned_cluster; 7591 /* 7592 * the refill lock keeps out other 7593 * people trying to start a new cluster 7594 */ 7595 used_block_group = btrfs_lock_cluster(block_group, 7596 last_ptr, 7597 delalloc); 7598 if (!used_block_group) 7599 goto refill_cluster; 7600 7601 if (used_block_group != block_group && 7602 (used_block_group->ro || 7603 !block_group_bits(used_block_group, flags))) 7604 goto release_cluster; 7605 7606 offset = btrfs_alloc_from_cluster(used_block_group, 7607 last_ptr, 7608 num_bytes, 7609 used_block_group->key.objectid, 7610 &max_extent_size); 7611 if (offset) { 7612 /* we have a block, we're done */ 7613 spin_unlock(&last_ptr->refill_lock); 7614 trace_btrfs_reserve_extent_cluster(root, 7615 used_block_group, 7616 search_start, num_bytes); 7617 if (used_block_group != block_group) { 7618 btrfs_release_block_group(block_group, 7619 delalloc); 7620 block_group = used_block_group; 7621 } 7622 goto checks; 7623 } 7624 7625 WARN_ON(last_ptr->block_group != used_block_group); 7626 release_cluster: 7627 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7628 * set up a new clusters, so lets just skip it 7629 * and let the allocator find whatever block 7630 * it can find. If we reach this point, we 7631 * will have tried the cluster allocator 7632 * plenty of times and not have found 7633 * anything, so we are likely way too 7634 * fragmented for the clustering stuff to find 7635 * anything. 7636 * 7637 * However, if the cluster is taken from the 7638 * current block group, release the cluster 7639 * first, so that we stand a better chance of 7640 * succeeding in the unclustered 7641 * allocation. */ 7642 if (loop >= LOOP_NO_EMPTY_SIZE && 7643 used_block_group != block_group) { 7644 spin_unlock(&last_ptr->refill_lock); 7645 btrfs_release_block_group(used_block_group, 7646 delalloc); 7647 goto unclustered_alloc; 7648 } 7649 7650 /* 7651 * this cluster didn't work out, free it and 7652 * start over 7653 */ 7654 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7655 7656 if (used_block_group != block_group) 7657 btrfs_release_block_group(used_block_group, 7658 delalloc); 7659 refill_cluster: 7660 if (loop >= LOOP_NO_EMPTY_SIZE) { 7661 spin_unlock(&last_ptr->refill_lock); 7662 goto unclustered_alloc; 7663 } 7664 7665 aligned_cluster = max_t(unsigned long, 7666 empty_cluster + empty_size, 7667 block_group->full_stripe_len); 7668 7669 /* allocate a cluster in this block group */ 7670 ret = btrfs_find_space_cluster(root, block_group, 7671 last_ptr, search_start, 7672 num_bytes, 7673 aligned_cluster); 7674 if (ret == 0) { 7675 /* 7676 * now pull our allocation out of this 7677 * cluster 7678 */ 7679 offset = btrfs_alloc_from_cluster(block_group, 7680 last_ptr, 7681 num_bytes, 7682 search_start, 7683 &max_extent_size); 7684 if (offset) { 7685 /* we found one, proceed */ 7686 spin_unlock(&last_ptr->refill_lock); 7687 trace_btrfs_reserve_extent_cluster(root, 7688 block_group, search_start, 7689 num_bytes); 7690 goto checks; 7691 } 7692 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7693 && !failed_cluster_refill) { 7694 spin_unlock(&last_ptr->refill_lock); 7695 7696 failed_cluster_refill = true; 7697 wait_block_group_cache_progress(block_group, 7698 num_bytes + empty_cluster + empty_size); 7699 goto have_block_group; 7700 } 7701 7702 /* 7703 * at this point we either didn't find a cluster 7704 * or we weren't able to allocate a block from our 7705 * cluster. Free the cluster we've been trying 7706 * to use, and go to the next block group 7707 */ 7708 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7709 spin_unlock(&last_ptr->refill_lock); 7710 goto loop; 7711 } 7712 7713 unclustered_alloc: 7714 /* 7715 * We are doing an unclustered alloc, set the fragmented flag so 7716 * we don't bother trying to setup a cluster again until we get 7717 * more space. 7718 */ 7719 if (unlikely(last_ptr)) { 7720 spin_lock(&last_ptr->lock); 7721 last_ptr->fragmented = 1; 7722 spin_unlock(&last_ptr->lock); 7723 } 7724 spin_lock(&block_group->free_space_ctl->tree_lock); 7725 if (cached && 7726 block_group->free_space_ctl->free_space < 7727 num_bytes + empty_cluster + empty_size) { 7728 if (block_group->free_space_ctl->free_space > 7729 max_extent_size) 7730 max_extent_size = 7731 block_group->free_space_ctl->free_space; 7732 spin_unlock(&block_group->free_space_ctl->tree_lock); 7733 goto loop; 7734 } 7735 spin_unlock(&block_group->free_space_ctl->tree_lock); 7736 7737 offset = btrfs_find_space_for_alloc(block_group, search_start, 7738 num_bytes, empty_size, 7739 &max_extent_size); 7740 /* 7741 * If we didn't find a chunk, and we haven't failed on this 7742 * block group before, and this block group is in the middle of 7743 * caching and we are ok with waiting, then go ahead and wait 7744 * for progress to be made, and set failed_alloc to true. 7745 * 7746 * If failed_alloc is true then we've already waited on this 7747 * block group once and should move on to the next block group. 7748 */ 7749 if (!offset && !failed_alloc && !cached && 7750 loop > LOOP_CACHING_NOWAIT) { 7751 wait_block_group_cache_progress(block_group, 7752 num_bytes + empty_size); 7753 failed_alloc = true; 7754 goto have_block_group; 7755 } else if (!offset) { 7756 goto loop; 7757 } 7758 checks: 7759 search_start = ALIGN(offset, root->stripesize); 7760 7761 /* move on to the next group */ 7762 if (search_start + num_bytes > 7763 block_group->key.objectid + block_group->key.offset) { 7764 btrfs_add_free_space(block_group, offset, num_bytes); 7765 goto loop; 7766 } 7767 7768 if (offset < search_start) 7769 btrfs_add_free_space(block_group, offset, 7770 search_start - offset); 7771 BUG_ON(offset > search_start); 7772 7773 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7774 num_bytes, delalloc); 7775 if (ret == -EAGAIN) { 7776 btrfs_add_free_space(block_group, offset, num_bytes); 7777 goto loop; 7778 } 7779 btrfs_inc_block_group_reservations(block_group); 7780 7781 /* we are all good, lets return */ 7782 ins->objectid = search_start; 7783 ins->offset = num_bytes; 7784 7785 trace_btrfs_reserve_extent(orig_root, block_group, 7786 search_start, num_bytes); 7787 btrfs_release_block_group(block_group, delalloc); 7788 break; 7789 loop: 7790 failed_cluster_refill = false; 7791 failed_alloc = false; 7792 BUG_ON(index != get_block_group_index(block_group)); 7793 btrfs_release_block_group(block_group, delalloc); 7794 } 7795 up_read(&space_info->groups_sem); 7796 7797 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7798 && !orig_have_caching_bg) 7799 orig_have_caching_bg = true; 7800 7801 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7802 goto search; 7803 7804 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7805 goto search; 7806 7807 /* 7808 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7809 * caching kthreads as we move along 7810 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7811 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7812 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7813 * again 7814 */ 7815 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7816 index = 0; 7817 if (loop == LOOP_CACHING_NOWAIT) { 7818 /* 7819 * We want to skip the LOOP_CACHING_WAIT step if we 7820 * don't have any uncached bgs and we've already done a 7821 * full search through. 7822 */ 7823 if (orig_have_caching_bg || !full_search) 7824 loop = LOOP_CACHING_WAIT; 7825 else 7826 loop = LOOP_ALLOC_CHUNK; 7827 } else { 7828 loop++; 7829 } 7830 7831 if (loop == LOOP_ALLOC_CHUNK) { 7832 struct btrfs_trans_handle *trans; 7833 int exist = 0; 7834 7835 trans = current->journal_info; 7836 if (trans) 7837 exist = 1; 7838 else 7839 trans = btrfs_join_transaction(root); 7840 7841 if (IS_ERR(trans)) { 7842 ret = PTR_ERR(trans); 7843 goto out; 7844 } 7845 7846 ret = do_chunk_alloc(trans, root, flags, 7847 CHUNK_ALLOC_FORCE); 7848 7849 /* 7850 * If we can't allocate a new chunk we've already looped 7851 * through at least once, move on to the NO_EMPTY_SIZE 7852 * case. 7853 */ 7854 if (ret == -ENOSPC) 7855 loop = LOOP_NO_EMPTY_SIZE; 7856 7857 /* 7858 * Do not bail out on ENOSPC since we 7859 * can do more things. 7860 */ 7861 if (ret < 0 && ret != -ENOSPC) 7862 btrfs_abort_transaction(trans, ret); 7863 else 7864 ret = 0; 7865 if (!exist) 7866 btrfs_end_transaction(trans, root); 7867 if (ret) 7868 goto out; 7869 } 7870 7871 if (loop == LOOP_NO_EMPTY_SIZE) { 7872 /* 7873 * Don't loop again if we already have no empty_size and 7874 * no empty_cluster. 7875 */ 7876 if (empty_size == 0 && 7877 empty_cluster == 0) { 7878 ret = -ENOSPC; 7879 goto out; 7880 } 7881 empty_size = 0; 7882 empty_cluster = 0; 7883 } 7884 7885 goto search; 7886 } else if (!ins->objectid) { 7887 ret = -ENOSPC; 7888 } else if (ins->objectid) { 7889 if (!use_cluster && last_ptr) { 7890 spin_lock(&last_ptr->lock); 7891 last_ptr->window_start = ins->objectid; 7892 spin_unlock(&last_ptr->lock); 7893 } 7894 ret = 0; 7895 } 7896 out: 7897 if (ret == -ENOSPC) { 7898 spin_lock(&space_info->lock); 7899 space_info->max_extent_size = max_extent_size; 7900 spin_unlock(&space_info->lock); 7901 ins->offset = max_extent_size; 7902 } 7903 return ret; 7904 } 7905 7906 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7907 int dump_block_groups) 7908 { 7909 struct btrfs_block_group_cache *cache; 7910 int index = 0; 7911 7912 spin_lock(&info->lock); 7913 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7914 info->flags, 7915 info->total_bytes - info->bytes_used - info->bytes_pinned - 7916 info->bytes_reserved - info->bytes_readonly - 7917 info->bytes_may_use, (info->full) ? "" : "not "); 7918 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7919 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7920 info->total_bytes, info->bytes_used, info->bytes_pinned, 7921 info->bytes_reserved, info->bytes_may_use, 7922 info->bytes_readonly); 7923 spin_unlock(&info->lock); 7924 7925 if (!dump_block_groups) 7926 return; 7927 7928 down_read(&info->groups_sem); 7929 again: 7930 list_for_each_entry(cache, &info->block_groups[index], list) { 7931 spin_lock(&cache->lock); 7932 printk(KERN_INFO "BTRFS: " 7933 "block group %llu has %llu bytes, " 7934 "%llu used %llu pinned %llu reserved %s\n", 7935 cache->key.objectid, cache->key.offset, 7936 btrfs_block_group_used(&cache->item), cache->pinned, 7937 cache->reserved, cache->ro ? "[readonly]" : ""); 7938 btrfs_dump_free_space(cache, bytes); 7939 spin_unlock(&cache->lock); 7940 } 7941 if (++index < BTRFS_NR_RAID_TYPES) 7942 goto again; 7943 up_read(&info->groups_sem); 7944 } 7945 7946 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7947 u64 num_bytes, u64 min_alloc_size, 7948 u64 empty_size, u64 hint_byte, 7949 struct btrfs_key *ins, int is_data, int delalloc) 7950 { 7951 bool final_tried = num_bytes == min_alloc_size; 7952 u64 flags; 7953 int ret; 7954 7955 flags = btrfs_get_alloc_profile(root, is_data); 7956 again: 7957 WARN_ON(num_bytes < root->sectorsize); 7958 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 7959 hint_byte, ins, flags, delalloc); 7960 if (!ret && !is_data) { 7961 btrfs_dec_block_group_reservations(root->fs_info, 7962 ins->objectid); 7963 } else if (ret == -ENOSPC) { 7964 if (!final_tried && ins->offset) { 7965 num_bytes = min(num_bytes >> 1, ins->offset); 7966 num_bytes = round_down(num_bytes, root->sectorsize); 7967 num_bytes = max(num_bytes, min_alloc_size); 7968 ram_bytes = num_bytes; 7969 if (num_bytes == min_alloc_size) 7970 final_tried = true; 7971 goto again; 7972 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 7973 struct btrfs_space_info *sinfo; 7974 7975 sinfo = __find_space_info(root->fs_info, flags); 7976 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7977 flags, num_bytes); 7978 if (sinfo) 7979 dump_space_info(sinfo, num_bytes, 1); 7980 } 7981 } 7982 7983 return ret; 7984 } 7985 7986 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7987 u64 start, u64 len, 7988 int pin, int delalloc) 7989 { 7990 struct btrfs_block_group_cache *cache; 7991 int ret = 0; 7992 7993 cache = btrfs_lookup_block_group(root->fs_info, start); 7994 if (!cache) { 7995 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7996 start); 7997 return -ENOSPC; 7998 } 7999 8000 if (pin) 8001 pin_down_extent(root, cache, start, len, 1); 8002 else { 8003 if (btrfs_test_opt(root->fs_info, DISCARD)) 8004 ret = btrfs_discard_extent(root, start, len, NULL); 8005 btrfs_add_free_space(cache, start, len); 8006 btrfs_free_reserved_bytes(cache, len, delalloc); 8007 trace_btrfs_reserved_extent_free(root, start, len); 8008 } 8009 8010 btrfs_put_block_group(cache); 8011 return ret; 8012 } 8013 8014 int btrfs_free_reserved_extent(struct btrfs_root *root, 8015 u64 start, u64 len, int delalloc) 8016 { 8017 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 8018 } 8019 8020 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 8021 u64 start, u64 len) 8022 { 8023 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 8024 } 8025 8026 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8027 struct btrfs_root *root, 8028 u64 parent, u64 root_objectid, 8029 u64 flags, u64 owner, u64 offset, 8030 struct btrfs_key *ins, int ref_mod) 8031 { 8032 int ret; 8033 struct btrfs_fs_info *fs_info = root->fs_info; 8034 struct btrfs_extent_item *extent_item; 8035 struct btrfs_extent_inline_ref *iref; 8036 struct btrfs_path *path; 8037 struct extent_buffer *leaf; 8038 int type; 8039 u32 size; 8040 8041 if (parent > 0) 8042 type = BTRFS_SHARED_DATA_REF_KEY; 8043 else 8044 type = BTRFS_EXTENT_DATA_REF_KEY; 8045 8046 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8047 8048 path = btrfs_alloc_path(); 8049 if (!path) 8050 return -ENOMEM; 8051 8052 path->leave_spinning = 1; 8053 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8054 ins, size); 8055 if (ret) { 8056 btrfs_free_path(path); 8057 return ret; 8058 } 8059 8060 leaf = path->nodes[0]; 8061 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8062 struct btrfs_extent_item); 8063 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8064 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8065 btrfs_set_extent_flags(leaf, extent_item, 8066 flags | BTRFS_EXTENT_FLAG_DATA); 8067 8068 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8069 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8070 if (parent > 0) { 8071 struct btrfs_shared_data_ref *ref; 8072 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8073 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8074 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8075 } else { 8076 struct btrfs_extent_data_ref *ref; 8077 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8078 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8079 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8080 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8081 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8082 } 8083 8084 btrfs_mark_buffer_dirty(path->nodes[0]); 8085 btrfs_free_path(path); 8086 8087 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8088 ins->offset); 8089 if (ret) 8090 return ret; 8091 8092 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 8093 if (ret) { /* -ENOENT, logic error */ 8094 btrfs_err(fs_info, "update block group failed for %llu %llu", 8095 ins->objectid, ins->offset); 8096 BUG(); 8097 } 8098 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 8099 return ret; 8100 } 8101 8102 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8103 struct btrfs_root *root, 8104 u64 parent, u64 root_objectid, 8105 u64 flags, struct btrfs_disk_key *key, 8106 int level, struct btrfs_key *ins) 8107 { 8108 int ret; 8109 struct btrfs_fs_info *fs_info = root->fs_info; 8110 struct btrfs_extent_item *extent_item; 8111 struct btrfs_tree_block_info *block_info; 8112 struct btrfs_extent_inline_ref *iref; 8113 struct btrfs_path *path; 8114 struct extent_buffer *leaf; 8115 u32 size = sizeof(*extent_item) + sizeof(*iref); 8116 u64 num_bytes = ins->offset; 8117 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8118 SKINNY_METADATA); 8119 8120 if (!skinny_metadata) 8121 size += sizeof(*block_info); 8122 8123 path = btrfs_alloc_path(); 8124 if (!path) { 8125 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8126 root->nodesize); 8127 return -ENOMEM; 8128 } 8129 8130 path->leave_spinning = 1; 8131 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8132 ins, size); 8133 if (ret) { 8134 btrfs_free_path(path); 8135 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 8136 root->nodesize); 8137 return ret; 8138 } 8139 8140 leaf = path->nodes[0]; 8141 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8142 struct btrfs_extent_item); 8143 btrfs_set_extent_refs(leaf, extent_item, 1); 8144 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8145 btrfs_set_extent_flags(leaf, extent_item, 8146 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8147 8148 if (skinny_metadata) { 8149 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8150 num_bytes = root->nodesize; 8151 } else { 8152 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8153 btrfs_set_tree_block_key(leaf, block_info, key); 8154 btrfs_set_tree_block_level(leaf, block_info, level); 8155 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8156 } 8157 8158 if (parent > 0) { 8159 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8160 btrfs_set_extent_inline_ref_type(leaf, iref, 8161 BTRFS_SHARED_BLOCK_REF_KEY); 8162 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8163 } else { 8164 btrfs_set_extent_inline_ref_type(leaf, iref, 8165 BTRFS_TREE_BLOCK_REF_KEY); 8166 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8167 } 8168 8169 btrfs_mark_buffer_dirty(leaf); 8170 btrfs_free_path(path); 8171 8172 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8173 num_bytes); 8174 if (ret) 8175 return ret; 8176 8177 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 8178 1); 8179 if (ret) { /* -ENOENT, logic error */ 8180 btrfs_err(fs_info, "update block group failed for %llu %llu", 8181 ins->objectid, ins->offset); 8182 BUG(); 8183 } 8184 8185 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 8186 return ret; 8187 } 8188 8189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8190 struct btrfs_root *root, 8191 u64 root_objectid, u64 owner, 8192 u64 offset, u64 ram_bytes, 8193 struct btrfs_key *ins) 8194 { 8195 int ret; 8196 8197 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8198 8199 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 8200 ins->offset, 0, 8201 root_objectid, owner, offset, 8202 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 8203 NULL); 8204 return ret; 8205 } 8206 8207 /* 8208 * this is used by the tree logging recovery code. It records that 8209 * an extent has been allocated and makes sure to clear the free 8210 * space cache bits as well 8211 */ 8212 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8213 struct btrfs_root *root, 8214 u64 root_objectid, u64 owner, u64 offset, 8215 struct btrfs_key *ins) 8216 { 8217 int ret; 8218 struct btrfs_block_group_cache *block_group; 8219 8220 /* 8221 * Mixed block groups will exclude before processing the log so we only 8222 * need to do the exclude dance if this fs isn't mixed. 8223 */ 8224 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 8225 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 8226 if (ret) 8227 return ret; 8228 } 8229 8230 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 8231 if (!block_group) 8232 return -EINVAL; 8233 8234 ret = btrfs_add_reserved_bytes(block_group, ins->offset, 8235 ins->offset, 0); 8236 BUG_ON(ret); /* logic error */ 8237 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8238 0, owner, offset, ins, 1); 8239 btrfs_put_block_group(block_group); 8240 return ret; 8241 } 8242 8243 static struct extent_buffer * 8244 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8245 u64 bytenr, int level) 8246 { 8247 struct extent_buffer *buf; 8248 8249 buf = btrfs_find_create_tree_block(root, bytenr); 8250 if (IS_ERR(buf)) 8251 return buf; 8252 8253 btrfs_set_header_generation(buf, trans->transid); 8254 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8255 btrfs_tree_lock(buf); 8256 clean_tree_block(trans, root->fs_info, buf); 8257 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8258 8259 btrfs_set_lock_blocking(buf); 8260 set_extent_buffer_uptodate(buf); 8261 8262 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8263 buf->log_index = root->log_transid % 2; 8264 /* 8265 * we allow two log transactions at a time, use different 8266 * EXENT bit to differentiate dirty pages. 8267 */ 8268 if (buf->log_index == 0) 8269 set_extent_dirty(&root->dirty_log_pages, buf->start, 8270 buf->start + buf->len - 1, GFP_NOFS); 8271 else 8272 set_extent_new(&root->dirty_log_pages, buf->start, 8273 buf->start + buf->len - 1); 8274 } else { 8275 buf->log_index = -1; 8276 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8277 buf->start + buf->len - 1, GFP_NOFS); 8278 } 8279 trans->dirty = true; 8280 /* this returns a buffer locked for blocking */ 8281 return buf; 8282 } 8283 8284 static struct btrfs_block_rsv * 8285 use_block_rsv(struct btrfs_trans_handle *trans, 8286 struct btrfs_root *root, u32 blocksize) 8287 { 8288 struct btrfs_block_rsv *block_rsv; 8289 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8290 int ret; 8291 bool global_updated = false; 8292 8293 block_rsv = get_block_rsv(trans, root); 8294 8295 if (unlikely(block_rsv->size == 0)) 8296 goto try_reserve; 8297 again: 8298 ret = block_rsv_use_bytes(block_rsv, blocksize); 8299 if (!ret) 8300 return block_rsv; 8301 8302 if (block_rsv->failfast) 8303 return ERR_PTR(ret); 8304 8305 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8306 global_updated = true; 8307 update_global_block_rsv(root->fs_info); 8308 goto again; 8309 } 8310 8311 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 8312 static DEFINE_RATELIMIT_STATE(_rs, 8313 DEFAULT_RATELIMIT_INTERVAL * 10, 8314 /*DEFAULT_RATELIMIT_BURST*/ 1); 8315 if (__ratelimit(&_rs)) 8316 WARN(1, KERN_DEBUG 8317 "BTRFS: block rsv returned %d\n", ret); 8318 } 8319 try_reserve: 8320 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8321 BTRFS_RESERVE_NO_FLUSH); 8322 if (!ret) 8323 return block_rsv; 8324 /* 8325 * If we couldn't reserve metadata bytes try and use some from 8326 * the global reserve if its space type is the same as the global 8327 * reservation. 8328 */ 8329 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8330 block_rsv->space_info == global_rsv->space_info) { 8331 ret = block_rsv_use_bytes(global_rsv, blocksize); 8332 if (!ret) 8333 return global_rsv; 8334 } 8335 return ERR_PTR(ret); 8336 } 8337 8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8339 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8340 { 8341 block_rsv_add_bytes(block_rsv, blocksize, 0); 8342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8343 } 8344 8345 /* 8346 * finds a free extent and does all the dirty work required for allocation 8347 * returns the tree buffer or an ERR_PTR on error. 8348 */ 8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8350 struct btrfs_root *root, 8351 u64 parent, u64 root_objectid, 8352 struct btrfs_disk_key *key, int level, 8353 u64 hint, u64 empty_size) 8354 { 8355 struct btrfs_key ins; 8356 struct btrfs_block_rsv *block_rsv; 8357 struct extent_buffer *buf; 8358 struct btrfs_delayed_extent_op *extent_op; 8359 u64 flags = 0; 8360 int ret; 8361 u32 blocksize = root->nodesize; 8362 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8363 SKINNY_METADATA); 8364 8365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8366 if (btrfs_is_testing(root->fs_info)) { 8367 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8368 level); 8369 if (!IS_ERR(buf)) 8370 root->alloc_bytenr += blocksize; 8371 return buf; 8372 } 8373 #endif 8374 8375 block_rsv = use_block_rsv(trans, root, blocksize); 8376 if (IS_ERR(block_rsv)) 8377 return ERR_CAST(block_rsv); 8378 8379 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8380 empty_size, hint, &ins, 0, 0); 8381 if (ret) 8382 goto out_unuse; 8383 8384 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8385 if (IS_ERR(buf)) { 8386 ret = PTR_ERR(buf); 8387 goto out_free_reserved; 8388 } 8389 8390 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8391 if (parent == 0) 8392 parent = ins.objectid; 8393 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8394 } else 8395 BUG_ON(parent > 0); 8396 8397 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8398 extent_op = btrfs_alloc_delayed_extent_op(); 8399 if (!extent_op) { 8400 ret = -ENOMEM; 8401 goto out_free_buf; 8402 } 8403 if (key) 8404 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8405 else 8406 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8407 extent_op->flags_to_set = flags; 8408 extent_op->update_key = skinny_metadata ? false : true; 8409 extent_op->update_flags = true; 8410 extent_op->is_data = false; 8411 extent_op->level = level; 8412 8413 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8414 ins.objectid, ins.offset, 8415 parent, root_objectid, level, 8416 BTRFS_ADD_DELAYED_EXTENT, 8417 extent_op); 8418 if (ret) 8419 goto out_free_delayed; 8420 } 8421 return buf; 8422 8423 out_free_delayed: 8424 btrfs_free_delayed_extent_op(extent_op); 8425 out_free_buf: 8426 free_extent_buffer(buf); 8427 out_free_reserved: 8428 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8429 out_unuse: 8430 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8431 return ERR_PTR(ret); 8432 } 8433 8434 struct walk_control { 8435 u64 refs[BTRFS_MAX_LEVEL]; 8436 u64 flags[BTRFS_MAX_LEVEL]; 8437 struct btrfs_key update_progress; 8438 int stage; 8439 int level; 8440 int shared_level; 8441 int update_ref; 8442 int keep_locks; 8443 int reada_slot; 8444 int reada_count; 8445 int for_reloc; 8446 }; 8447 8448 #define DROP_REFERENCE 1 8449 #define UPDATE_BACKREF 2 8450 8451 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8452 struct btrfs_root *root, 8453 struct walk_control *wc, 8454 struct btrfs_path *path) 8455 { 8456 u64 bytenr; 8457 u64 generation; 8458 u64 refs; 8459 u64 flags; 8460 u32 nritems; 8461 u32 blocksize; 8462 struct btrfs_key key; 8463 struct extent_buffer *eb; 8464 int ret; 8465 int slot; 8466 int nread = 0; 8467 8468 if (path->slots[wc->level] < wc->reada_slot) { 8469 wc->reada_count = wc->reada_count * 2 / 3; 8470 wc->reada_count = max(wc->reada_count, 2); 8471 } else { 8472 wc->reada_count = wc->reada_count * 3 / 2; 8473 wc->reada_count = min_t(int, wc->reada_count, 8474 BTRFS_NODEPTRS_PER_BLOCK(root)); 8475 } 8476 8477 eb = path->nodes[wc->level]; 8478 nritems = btrfs_header_nritems(eb); 8479 blocksize = root->nodesize; 8480 8481 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8482 if (nread >= wc->reada_count) 8483 break; 8484 8485 cond_resched(); 8486 bytenr = btrfs_node_blockptr(eb, slot); 8487 generation = btrfs_node_ptr_generation(eb, slot); 8488 8489 if (slot == path->slots[wc->level]) 8490 goto reada; 8491 8492 if (wc->stage == UPDATE_BACKREF && 8493 generation <= root->root_key.offset) 8494 continue; 8495 8496 /* We don't lock the tree block, it's OK to be racy here */ 8497 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8498 wc->level - 1, 1, &refs, 8499 &flags); 8500 /* We don't care about errors in readahead. */ 8501 if (ret < 0) 8502 continue; 8503 BUG_ON(refs == 0); 8504 8505 if (wc->stage == DROP_REFERENCE) { 8506 if (refs == 1) 8507 goto reada; 8508 8509 if (wc->level == 1 && 8510 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8511 continue; 8512 if (!wc->update_ref || 8513 generation <= root->root_key.offset) 8514 continue; 8515 btrfs_node_key_to_cpu(eb, &key, slot); 8516 ret = btrfs_comp_cpu_keys(&key, 8517 &wc->update_progress); 8518 if (ret < 0) 8519 continue; 8520 } else { 8521 if (wc->level == 1 && 8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8523 continue; 8524 } 8525 reada: 8526 readahead_tree_block(root, bytenr); 8527 nread++; 8528 } 8529 wc->reada_slot = slot; 8530 } 8531 8532 static int account_leaf_items(struct btrfs_trans_handle *trans, 8533 struct btrfs_root *root, 8534 struct extent_buffer *eb) 8535 { 8536 int nr = btrfs_header_nritems(eb); 8537 int i, extent_type, ret; 8538 struct btrfs_key key; 8539 struct btrfs_file_extent_item *fi; 8540 u64 bytenr, num_bytes; 8541 8542 /* We can be called directly from walk_up_proc() */ 8543 if (!root->fs_info->quota_enabled) 8544 return 0; 8545 8546 for (i = 0; i < nr; i++) { 8547 btrfs_item_key_to_cpu(eb, &key, i); 8548 8549 if (key.type != BTRFS_EXTENT_DATA_KEY) 8550 continue; 8551 8552 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8553 /* filter out non qgroup-accountable extents */ 8554 extent_type = btrfs_file_extent_type(eb, fi); 8555 8556 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8557 continue; 8558 8559 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8560 if (!bytenr) 8561 continue; 8562 8563 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8564 8565 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info, 8566 bytenr, num_bytes, GFP_NOFS); 8567 if (ret) 8568 return ret; 8569 } 8570 return 0; 8571 } 8572 8573 /* 8574 * Walk up the tree from the bottom, freeing leaves and any interior 8575 * nodes which have had all slots visited. If a node (leaf or 8576 * interior) is freed, the node above it will have it's slot 8577 * incremented. The root node will never be freed. 8578 * 8579 * At the end of this function, we should have a path which has all 8580 * slots incremented to the next position for a search. If we need to 8581 * read a new node it will be NULL and the node above it will have the 8582 * correct slot selected for a later read. 8583 * 8584 * If we increment the root nodes slot counter past the number of 8585 * elements, 1 is returned to signal completion of the search. 8586 */ 8587 static int adjust_slots_upwards(struct btrfs_root *root, 8588 struct btrfs_path *path, int root_level) 8589 { 8590 int level = 0; 8591 int nr, slot; 8592 struct extent_buffer *eb; 8593 8594 if (root_level == 0) 8595 return 1; 8596 8597 while (level <= root_level) { 8598 eb = path->nodes[level]; 8599 nr = btrfs_header_nritems(eb); 8600 path->slots[level]++; 8601 slot = path->slots[level]; 8602 if (slot >= nr || level == 0) { 8603 /* 8604 * Don't free the root - we will detect this 8605 * condition after our loop and return a 8606 * positive value for caller to stop walking the tree. 8607 */ 8608 if (level != root_level) { 8609 btrfs_tree_unlock_rw(eb, path->locks[level]); 8610 path->locks[level] = 0; 8611 8612 free_extent_buffer(eb); 8613 path->nodes[level] = NULL; 8614 path->slots[level] = 0; 8615 } 8616 } else { 8617 /* 8618 * We have a valid slot to walk back down 8619 * from. Stop here so caller can process these 8620 * new nodes. 8621 */ 8622 break; 8623 } 8624 8625 level++; 8626 } 8627 8628 eb = path->nodes[root_level]; 8629 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8630 return 1; 8631 8632 return 0; 8633 } 8634 8635 /* 8636 * root_eb is the subtree root and is locked before this function is called. 8637 */ 8638 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8639 struct btrfs_root *root, 8640 struct extent_buffer *root_eb, 8641 u64 root_gen, 8642 int root_level) 8643 { 8644 int ret = 0; 8645 int level; 8646 struct extent_buffer *eb = root_eb; 8647 struct btrfs_path *path = NULL; 8648 8649 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8650 BUG_ON(root_eb == NULL); 8651 8652 if (!root->fs_info->quota_enabled) 8653 return 0; 8654 8655 if (!extent_buffer_uptodate(root_eb)) { 8656 ret = btrfs_read_buffer(root_eb, root_gen); 8657 if (ret) 8658 goto out; 8659 } 8660 8661 if (root_level == 0) { 8662 ret = account_leaf_items(trans, root, root_eb); 8663 goto out; 8664 } 8665 8666 path = btrfs_alloc_path(); 8667 if (!path) 8668 return -ENOMEM; 8669 8670 /* 8671 * Walk down the tree. Missing extent blocks are filled in as 8672 * we go. Metadata is accounted every time we read a new 8673 * extent block. 8674 * 8675 * When we reach a leaf, we account for file extent items in it, 8676 * walk back up the tree (adjusting slot pointers as we go) 8677 * and restart the search process. 8678 */ 8679 extent_buffer_get(root_eb); /* For path */ 8680 path->nodes[root_level] = root_eb; 8681 path->slots[root_level] = 0; 8682 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8683 walk_down: 8684 level = root_level; 8685 while (level >= 0) { 8686 if (path->nodes[level] == NULL) { 8687 int parent_slot; 8688 u64 child_gen; 8689 u64 child_bytenr; 8690 8691 /* We need to get child blockptr/gen from 8692 * parent before we can read it. */ 8693 eb = path->nodes[level + 1]; 8694 parent_slot = path->slots[level + 1]; 8695 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8696 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8697 8698 eb = read_tree_block(root, child_bytenr, child_gen); 8699 if (IS_ERR(eb)) { 8700 ret = PTR_ERR(eb); 8701 goto out; 8702 } else if (!extent_buffer_uptodate(eb)) { 8703 free_extent_buffer(eb); 8704 ret = -EIO; 8705 goto out; 8706 } 8707 8708 path->nodes[level] = eb; 8709 path->slots[level] = 0; 8710 8711 btrfs_tree_read_lock(eb); 8712 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8713 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8714 8715 ret = btrfs_qgroup_insert_dirty_extent(trans, 8716 root->fs_info, child_bytenr, 8717 root->nodesize, GFP_NOFS); 8718 if (ret) 8719 goto out; 8720 } 8721 8722 if (level == 0) { 8723 ret = account_leaf_items(trans, root, path->nodes[level]); 8724 if (ret) 8725 goto out; 8726 8727 /* Nonzero return here means we completed our search */ 8728 ret = adjust_slots_upwards(root, path, root_level); 8729 if (ret) 8730 break; 8731 8732 /* Restart search with new slots */ 8733 goto walk_down; 8734 } 8735 8736 level--; 8737 } 8738 8739 ret = 0; 8740 out: 8741 btrfs_free_path(path); 8742 8743 return ret; 8744 } 8745 8746 /* 8747 * helper to process tree block while walking down the tree. 8748 * 8749 * when wc->stage == UPDATE_BACKREF, this function updates 8750 * back refs for pointers in the block. 8751 * 8752 * NOTE: return value 1 means we should stop walking down. 8753 */ 8754 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8755 struct btrfs_root *root, 8756 struct btrfs_path *path, 8757 struct walk_control *wc, int lookup_info) 8758 { 8759 int level = wc->level; 8760 struct extent_buffer *eb = path->nodes[level]; 8761 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8762 int ret; 8763 8764 if (wc->stage == UPDATE_BACKREF && 8765 btrfs_header_owner(eb) != root->root_key.objectid) 8766 return 1; 8767 8768 /* 8769 * when reference count of tree block is 1, it won't increase 8770 * again. once full backref flag is set, we never clear it. 8771 */ 8772 if (lookup_info && 8773 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8774 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8775 BUG_ON(!path->locks[level]); 8776 ret = btrfs_lookup_extent_info(trans, root, 8777 eb->start, level, 1, 8778 &wc->refs[level], 8779 &wc->flags[level]); 8780 BUG_ON(ret == -ENOMEM); 8781 if (ret) 8782 return ret; 8783 BUG_ON(wc->refs[level] == 0); 8784 } 8785 8786 if (wc->stage == DROP_REFERENCE) { 8787 if (wc->refs[level] > 1) 8788 return 1; 8789 8790 if (path->locks[level] && !wc->keep_locks) { 8791 btrfs_tree_unlock_rw(eb, path->locks[level]); 8792 path->locks[level] = 0; 8793 } 8794 return 0; 8795 } 8796 8797 /* wc->stage == UPDATE_BACKREF */ 8798 if (!(wc->flags[level] & flag)) { 8799 BUG_ON(!path->locks[level]); 8800 ret = btrfs_inc_ref(trans, root, eb, 1); 8801 BUG_ON(ret); /* -ENOMEM */ 8802 ret = btrfs_dec_ref(trans, root, eb, 0); 8803 BUG_ON(ret); /* -ENOMEM */ 8804 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8805 eb->len, flag, 8806 btrfs_header_level(eb), 0); 8807 BUG_ON(ret); /* -ENOMEM */ 8808 wc->flags[level] |= flag; 8809 } 8810 8811 /* 8812 * the block is shared by multiple trees, so it's not good to 8813 * keep the tree lock 8814 */ 8815 if (path->locks[level] && level > 0) { 8816 btrfs_tree_unlock_rw(eb, path->locks[level]); 8817 path->locks[level] = 0; 8818 } 8819 return 0; 8820 } 8821 8822 /* 8823 * helper to process tree block pointer. 8824 * 8825 * when wc->stage == DROP_REFERENCE, this function checks 8826 * reference count of the block pointed to. if the block 8827 * is shared and we need update back refs for the subtree 8828 * rooted at the block, this function changes wc->stage to 8829 * UPDATE_BACKREF. if the block is shared and there is no 8830 * need to update back, this function drops the reference 8831 * to the block. 8832 * 8833 * NOTE: return value 1 means we should stop walking down. 8834 */ 8835 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8836 struct btrfs_root *root, 8837 struct btrfs_path *path, 8838 struct walk_control *wc, int *lookup_info) 8839 { 8840 u64 bytenr; 8841 u64 generation; 8842 u64 parent; 8843 u32 blocksize; 8844 struct btrfs_key key; 8845 struct extent_buffer *next; 8846 int level = wc->level; 8847 int reada = 0; 8848 int ret = 0; 8849 bool need_account = false; 8850 8851 generation = btrfs_node_ptr_generation(path->nodes[level], 8852 path->slots[level]); 8853 /* 8854 * if the lower level block was created before the snapshot 8855 * was created, we know there is no need to update back refs 8856 * for the subtree 8857 */ 8858 if (wc->stage == UPDATE_BACKREF && 8859 generation <= root->root_key.offset) { 8860 *lookup_info = 1; 8861 return 1; 8862 } 8863 8864 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8865 blocksize = root->nodesize; 8866 8867 next = btrfs_find_tree_block(root->fs_info, bytenr); 8868 if (!next) { 8869 next = btrfs_find_create_tree_block(root, bytenr); 8870 if (IS_ERR(next)) 8871 return PTR_ERR(next); 8872 8873 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8874 level - 1); 8875 reada = 1; 8876 } 8877 btrfs_tree_lock(next); 8878 btrfs_set_lock_blocking(next); 8879 8880 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8881 &wc->refs[level - 1], 8882 &wc->flags[level - 1]); 8883 if (ret < 0) { 8884 btrfs_tree_unlock(next); 8885 return ret; 8886 } 8887 8888 if (unlikely(wc->refs[level - 1] == 0)) { 8889 btrfs_err(root->fs_info, "Missing references."); 8890 BUG(); 8891 } 8892 *lookup_info = 0; 8893 8894 if (wc->stage == DROP_REFERENCE) { 8895 if (wc->refs[level - 1] > 1) { 8896 need_account = true; 8897 if (level == 1 && 8898 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8899 goto skip; 8900 8901 if (!wc->update_ref || 8902 generation <= root->root_key.offset) 8903 goto skip; 8904 8905 btrfs_node_key_to_cpu(path->nodes[level], &key, 8906 path->slots[level]); 8907 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8908 if (ret < 0) 8909 goto skip; 8910 8911 wc->stage = UPDATE_BACKREF; 8912 wc->shared_level = level - 1; 8913 } 8914 } else { 8915 if (level == 1 && 8916 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8917 goto skip; 8918 } 8919 8920 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8921 btrfs_tree_unlock(next); 8922 free_extent_buffer(next); 8923 next = NULL; 8924 *lookup_info = 1; 8925 } 8926 8927 if (!next) { 8928 if (reada && level == 1) 8929 reada_walk_down(trans, root, wc, path); 8930 next = read_tree_block(root, bytenr, generation); 8931 if (IS_ERR(next)) { 8932 return PTR_ERR(next); 8933 } else if (!extent_buffer_uptodate(next)) { 8934 free_extent_buffer(next); 8935 return -EIO; 8936 } 8937 btrfs_tree_lock(next); 8938 btrfs_set_lock_blocking(next); 8939 } 8940 8941 level--; 8942 BUG_ON(level != btrfs_header_level(next)); 8943 path->nodes[level] = next; 8944 path->slots[level] = 0; 8945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8946 wc->level = level; 8947 if (wc->level == 1) 8948 wc->reada_slot = 0; 8949 return 0; 8950 skip: 8951 wc->refs[level - 1] = 0; 8952 wc->flags[level - 1] = 0; 8953 if (wc->stage == DROP_REFERENCE) { 8954 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8955 parent = path->nodes[level]->start; 8956 } else { 8957 BUG_ON(root->root_key.objectid != 8958 btrfs_header_owner(path->nodes[level])); 8959 parent = 0; 8960 } 8961 8962 if (need_account) { 8963 ret = account_shared_subtree(trans, root, next, 8964 generation, level - 1); 8965 if (ret) { 8966 btrfs_err_rl(root->fs_info, 8967 "Error " 8968 "%d accounting shared subtree. Quota " 8969 "is out of sync, rescan required.", 8970 ret); 8971 } 8972 } 8973 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8974 root->root_key.objectid, level - 1, 0); 8975 BUG_ON(ret); /* -ENOMEM */ 8976 } 8977 btrfs_tree_unlock(next); 8978 free_extent_buffer(next); 8979 *lookup_info = 1; 8980 return 1; 8981 } 8982 8983 /* 8984 * helper to process tree block while walking up the tree. 8985 * 8986 * when wc->stage == DROP_REFERENCE, this function drops 8987 * reference count on the block. 8988 * 8989 * when wc->stage == UPDATE_BACKREF, this function changes 8990 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8991 * to UPDATE_BACKREF previously while processing the block. 8992 * 8993 * NOTE: return value 1 means we should stop walking up. 8994 */ 8995 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8996 struct btrfs_root *root, 8997 struct btrfs_path *path, 8998 struct walk_control *wc) 8999 { 9000 int ret; 9001 int level = wc->level; 9002 struct extent_buffer *eb = path->nodes[level]; 9003 u64 parent = 0; 9004 9005 if (wc->stage == UPDATE_BACKREF) { 9006 BUG_ON(wc->shared_level < level); 9007 if (level < wc->shared_level) 9008 goto out; 9009 9010 ret = find_next_key(path, level + 1, &wc->update_progress); 9011 if (ret > 0) 9012 wc->update_ref = 0; 9013 9014 wc->stage = DROP_REFERENCE; 9015 wc->shared_level = -1; 9016 path->slots[level] = 0; 9017 9018 /* 9019 * check reference count again if the block isn't locked. 9020 * we should start walking down the tree again if reference 9021 * count is one. 9022 */ 9023 if (!path->locks[level]) { 9024 BUG_ON(level == 0); 9025 btrfs_tree_lock(eb); 9026 btrfs_set_lock_blocking(eb); 9027 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9028 9029 ret = btrfs_lookup_extent_info(trans, root, 9030 eb->start, level, 1, 9031 &wc->refs[level], 9032 &wc->flags[level]); 9033 if (ret < 0) { 9034 btrfs_tree_unlock_rw(eb, path->locks[level]); 9035 path->locks[level] = 0; 9036 return ret; 9037 } 9038 BUG_ON(wc->refs[level] == 0); 9039 if (wc->refs[level] == 1) { 9040 btrfs_tree_unlock_rw(eb, path->locks[level]); 9041 path->locks[level] = 0; 9042 return 1; 9043 } 9044 } 9045 } 9046 9047 /* wc->stage == DROP_REFERENCE */ 9048 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 9049 9050 if (wc->refs[level] == 1) { 9051 if (level == 0) { 9052 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9053 ret = btrfs_dec_ref(trans, root, eb, 1); 9054 else 9055 ret = btrfs_dec_ref(trans, root, eb, 0); 9056 BUG_ON(ret); /* -ENOMEM */ 9057 ret = account_leaf_items(trans, root, eb); 9058 if (ret) { 9059 btrfs_err_rl(root->fs_info, 9060 "error " 9061 "%d accounting leaf items. Quota " 9062 "is out of sync, rescan required.", 9063 ret); 9064 } 9065 } 9066 /* make block locked assertion in clean_tree_block happy */ 9067 if (!path->locks[level] && 9068 btrfs_header_generation(eb) == trans->transid) { 9069 btrfs_tree_lock(eb); 9070 btrfs_set_lock_blocking(eb); 9071 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9072 } 9073 clean_tree_block(trans, root->fs_info, eb); 9074 } 9075 9076 if (eb == root->node) { 9077 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9078 parent = eb->start; 9079 else 9080 BUG_ON(root->root_key.objectid != 9081 btrfs_header_owner(eb)); 9082 } else { 9083 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 9084 parent = path->nodes[level + 1]->start; 9085 else 9086 BUG_ON(root->root_key.objectid != 9087 btrfs_header_owner(path->nodes[level + 1])); 9088 } 9089 9090 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9091 out: 9092 wc->refs[level] = 0; 9093 wc->flags[level] = 0; 9094 return 0; 9095 } 9096 9097 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9098 struct btrfs_root *root, 9099 struct btrfs_path *path, 9100 struct walk_control *wc) 9101 { 9102 int level = wc->level; 9103 int lookup_info = 1; 9104 int ret; 9105 9106 while (level >= 0) { 9107 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9108 if (ret > 0) 9109 break; 9110 9111 if (level == 0) 9112 break; 9113 9114 if (path->slots[level] >= 9115 btrfs_header_nritems(path->nodes[level])) 9116 break; 9117 9118 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9119 if (ret > 0) { 9120 path->slots[level]++; 9121 continue; 9122 } else if (ret < 0) 9123 return ret; 9124 level = wc->level; 9125 } 9126 return 0; 9127 } 9128 9129 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9130 struct btrfs_root *root, 9131 struct btrfs_path *path, 9132 struct walk_control *wc, int max_level) 9133 { 9134 int level = wc->level; 9135 int ret; 9136 9137 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9138 while (level < max_level && path->nodes[level]) { 9139 wc->level = level; 9140 if (path->slots[level] + 1 < 9141 btrfs_header_nritems(path->nodes[level])) { 9142 path->slots[level]++; 9143 return 0; 9144 } else { 9145 ret = walk_up_proc(trans, root, path, wc); 9146 if (ret > 0) 9147 return 0; 9148 9149 if (path->locks[level]) { 9150 btrfs_tree_unlock_rw(path->nodes[level], 9151 path->locks[level]); 9152 path->locks[level] = 0; 9153 } 9154 free_extent_buffer(path->nodes[level]); 9155 path->nodes[level] = NULL; 9156 level++; 9157 } 9158 } 9159 return 1; 9160 } 9161 9162 /* 9163 * drop a subvolume tree. 9164 * 9165 * this function traverses the tree freeing any blocks that only 9166 * referenced by the tree. 9167 * 9168 * when a shared tree block is found. this function decreases its 9169 * reference count by one. if update_ref is true, this function 9170 * also make sure backrefs for the shared block and all lower level 9171 * blocks are properly updated. 9172 * 9173 * If called with for_reloc == 0, may exit early with -EAGAIN 9174 */ 9175 int btrfs_drop_snapshot(struct btrfs_root *root, 9176 struct btrfs_block_rsv *block_rsv, int update_ref, 9177 int for_reloc) 9178 { 9179 struct btrfs_path *path; 9180 struct btrfs_trans_handle *trans; 9181 struct btrfs_root *tree_root = root->fs_info->tree_root; 9182 struct btrfs_root_item *root_item = &root->root_item; 9183 struct walk_control *wc; 9184 struct btrfs_key key; 9185 int err = 0; 9186 int ret; 9187 int level; 9188 bool root_dropped = false; 9189 9190 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 9191 9192 path = btrfs_alloc_path(); 9193 if (!path) { 9194 err = -ENOMEM; 9195 goto out; 9196 } 9197 9198 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9199 if (!wc) { 9200 btrfs_free_path(path); 9201 err = -ENOMEM; 9202 goto out; 9203 } 9204 9205 trans = btrfs_start_transaction(tree_root, 0); 9206 if (IS_ERR(trans)) { 9207 err = PTR_ERR(trans); 9208 goto out_free; 9209 } 9210 9211 if (block_rsv) 9212 trans->block_rsv = block_rsv; 9213 9214 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9215 level = btrfs_header_level(root->node); 9216 path->nodes[level] = btrfs_lock_root_node(root); 9217 btrfs_set_lock_blocking(path->nodes[level]); 9218 path->slots[level] = 0; 9219 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9220 memset(&wc->update_progress, 0, 9221 sizeof(wc->update_progress)); 9222 } else { 9223 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9224 memcpy(&wc->update_progress, &key, 9225 sizeof(wc->update_progress)); 9226 9227 level = root_item->drop_level; 9228 BUG_ON(level == 0); 9229 path->lowest_level = level; 9230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9231 path->lowest_level = 0; 9232 if (ret < 0) { 9233 err = ret; 9234 goto out_end_trans; 9235 } 9236 WARN_ON(ret > 0); 9237 9238 /* 9239 * unlock our path, this is safe because only this 9240 * function is allowed to delete this snapshot 9241 */ 9242 btrfs_unlock_up_safe(path, 0); 9243 9244 level = btrfs_header_level(root->node); 9245 while (1) { 9246 btrfs_tree_lock(path->nodes[level]); 9247 btrfs_set_lock_blocking(path->nodes[level]); 9248 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9249 9250 ret = btrfs_lookup_extent_info(trans, root, 9251 path->nodes[level]->start, 9252 level, 1, &wc->refs[level], 9253 &wc->flags[level]); 9254 if (ret < 0) { 9255 err = ret; 9256 goto out_end_trans; 9257 } 9258 BUG_ON(wc->refs[level] == 0); 9259 9260 if (level == root_item->drop_level) 9261 break; 9262 9263 btrfs_tree_unlock(path->nodes[level]); 9264 path->locks[level] = 0; 9265 WARN_ON(wc->refs[level] != 1); 9266 level--; 9267 } 9268 } 9269 9270 wc->level = level; 9271 wc->shared_level = -1; 9272 wc->stage = DROP_REFERENCE; 9273 wc->update_ref = update_ref; 9274 wc->keep_locks = 0; 9275 wc->for_reloc = for_reloc; 9276 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9277 9278 while (1) { 9279 9280 ret = walk_down_tree(trans, root, path, wc); 9281 if (ret < 0) { 9282 err = ret; 9283 break; 9284 } 9285 9286 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9287 if (ret < 0) { 9288 err = ret; 9289 break; 9290 } 9291 9292 if (ret > 0) { 9293 BUG_ON(wc->stage != DROP_REFERENCE); 9294 break; 9295 } 9296 9297 if (wc->stage == DROP_REFERENCE) { 9298 level = wc->level; 9299 btrfs_node_key(path->nodes[level], 9300 &root_item->drop_progress, 9301 path->slots[level]); 9302 root_item->drop_level = level; 9303 } 9304 9305 BUG_ON(wc->level == 0); 9306 if (btrfs_should_end_transaction(trans, tree_root) || 9307 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9308 ret = btrfs_update_root(trans, tree_root, 9309 &root->root_key, 9310 root_item); 9311 if (ret) { 9312 btrfs_abort_transaction(trans, ret); 9313 err = ret; 9314 goto out_end_trans; 9315 } 9316 9317 btrfs_end_transaction_throttle(trans, tree_root); 9318 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9319 pr_debug("BTRFS: drop snapshot early exit\n"); 9320 err = -EAGAIN; 9321 goto out_free; 9322 } 9323 9324 trans = btrfs_start_transaction(tree_root, 0); 9325 if (IS_ERR(trans)) { 9326 err = PTR_ERR(trans); 9327 goto out_free; 9328 } 9329 if (block_rsv) 9330 trans->block_rsv = block_rsv; 9331 } 9332 } 9333 btrfs_release_path(path); 9334 if (err) 9335 goto out_end_trans; 9336 9337 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9338 if (ret) { 9339 btrfs_abort_transaction(trans, ret); 9340 goto out_end_trans; 9341 } 9342 9343 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9344 ret = btrfs_find_root(tree_root, &root->root_key, path, 9345 NULL, NULL); 9346 if (ret < 0) { 9347 btrfs_abort_transaction(trans, ret); 9348 err = ret; 9349 goto out_end_trans; 9350 } else if (ret > 0) { 9351 /* if we fail to delete the orphan item this time 9352 * around, it'll get picked up the next time. 9353 * 9354 * The most common failure here is just -ENOENT. 9355 */ 9356 btrfs_del_orphan_item(trans, tree_root, 9357 root->root_key.objectid); 9358 } 9359 } 9360 9361 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9362 btrfs_add_dropped_root(trans, root); 9363 } else { 9364 free_extent_buffer(root->node); 9365 free_extent_buffer(root->commit_root); 9366 btrfs_put_fs_root(root); 9367 } 9368 root_dropped = true; 9369 out_end_trans: 9370 btrfs_end_transaction_throttle(trans, tree_root); 9371 out_free: 9372 kfree(wc); 9373 btrfs_free_path(path); 9374 out: 9375 /* 9376 * So if we need to stop dropping the snapshot for whatever reason we 9377 * need to make sure to add it back to the dead root list so that we 9378 * keep trying to do the work later. This also cleans up roots if we 9379 * don't have it in the radix (like when we recover after a power fail 9380 * or unmount) so we don't leak memory. 9381 */ 9382 if (!for_reloc && root_dropped == false) 9383 btrfs_add_dead_root(root); 9384 if (err && err != -EAGAIN) 9385 btrfs_handle_fs_error(root->fs_info, err, NULL); 9386 return err; 9387 } 9388 9389 /* 9390 * drop subtree rooted at tree block 'node'. 9391 * 9392 * NOTE: this function will unlock and release tree block 'node' 9393 * only used by relocation code 9394 */ 9395 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9396 struct btrfs_root *root, 9397 struct extent_buffer *node, 9398 struct extent_buffer *parent) 9399 { 9400 struct btrfs_path *path; 9401 struct walk_control *wc; 9402 int level; 9403 int parent_level; 9404 int ret = 0; 9405 int wret; 9406 9407 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9408 9409 path = btrfs_alloc_path(); 9410 if (!path) 9411 return -ENOMEM; 9412 9413 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9414 if (!wc) { 9415 btrfs_free_path(path); 9416 return -ENOMEM; 9417 } 9418 9419 btrfs_assert_tree_locked(parent); 9420 parent_level = btrfs_header_level(parent); 9421 extent_buffer_get(parent); 9422 path->nodes[parent_level] = parent; 9423 path->slots[parent_level] = btrfs_header_nritems(parent); 9424 9425 btrfs_assert_tree_locked(node); 9426 level = btrfs_header_level(node); 9427 path->nodes[level] = node; 9428 path->slots[level] = 0; 9429 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9430 9431 wc->refs[parent_level] = 1; 9432 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9433 wc->level = level; 9434 wc->shared_level = -1; 9435 wc->stage = DROP_REFERENCE; 9436 wc->update_ref = 0; 9437 wc->keep_locks = 1; 9438 wc->for_reloc = 1; 9439 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9440 9441 while (1) { 9442 wret = walk_down_tree(trans, root, path, wc); 9443 if (wret < 0) { 9444 ret = wret; 9445 break; 9446 } 9447 9448 wret = walk_up_tree(trans, root, path, wc, parent_level); 9449 if (wret < 0) 9450 ret = wret; 9451 if (wret != 0) 9452 break; 9453 } 9454 9455 kfree(wc); 9456 btrfs_free_path(path); 9457 return ret; 9458 } 9459 9460 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9461 { 9462 u64 num_devices; 9463 u64 stripped; 9464 9465 /* 9466 * if restripe for this chunk_type is on pick target profile and 9467 * return, otherwise do the usual balance 9468 */ 9469 stripped = get_restripe_target(root->fs_info, flags); 9470 if (stripped) 9471 return extended_to_chunk(stripped); 9472 9473 num_devices = root->fs_info->fs_devices->rw_devices; 9474 9475 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9476 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9477 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9478 9479 if (num_devices == 1) { 9480 stripped |= BTRFS_BLOCK_GROUP_DUP; 9481 stripped = flags & ~stripped; 9482 9483 /* turn raid0 into single device chunks */ 9484 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9485 return stripped; 9486 9487 /* turn mirroring into duplication */ 9488 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9489 BTRFS_BLOCK_GROUP_RAID10)) 9490 return stripped | BTRFS_BLOCK_GROUP_DUP; 9491 } else { 9492 /* they already had raid on here, just return */ 9493 if (flags & stripped) 9494 return flags; 9495 9496 stripped |= BTRFS_BLOCK_GROUP_DUP; 9497 stripped = flags & ~stripped; 9498 9499 /* switch duplicated blocks with raid1 */ 9500 if (flags & BTRFS_BLOCK_GROUP_DUP) 9501 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9502 9503 /* this is drive concat, leave it alone */ 9504 } 9505 9506 return flags; 9507 } 9508 9509 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9510 { 9511 struct btrfs_space_info *sinfo = cache->space_info; 9512 u64 num_bytes; 9513 u64 min_allocable_bytes; 9514 int ret = -ENOSPC; 9515 9516 /* 9517 * We need some metadata space and system metadata space for 9518 * allocating chunks in some corner cases until we force to set 9519 * it to be readonly. 9520 */ 9521 if ((sinfo->flags & 9522 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9523 !force) 9524 min_allocable_bytes = SZ_1M; 9525 else 9526 min_allocable_bytes = 0; 9527 9528 spin_lock(&sinfo->lock); 9529 spin_lock(&cache->lock); 9530 9531 if (cache->ro) { 9532 cache->ro++; 9533 ret = 0; 9534 goto out; 9535 } 9536 9537 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9538 cache->bytes_super - btrfs_block_group_used(&cache->item); 9539 9540 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9541 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9542 min_allocable_bytes <= sinfo->total_bytes) { 9543 sinfo->bytes_readonly += num_bytes; 9544 cache->ro++; 9545 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9546 ret = 0; 9547 } 9548 out: 9549 spin_unlock(&cache->lock); 9550 spin_unlock(&sinfo->lock); 9551 return ret; 9552 } 9553 9554 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9555 struct btrfs_block_group_cache *cache) 9556 9557 { 9558 struct btrfs_trans_handle *trans; 9559 u64 alloc_flags; 9560 int ret; 9561 9562 again: 9563 trans = btrfs_join_transaction(root); 9564 if (IS_ERR(trans)) 9565 return PTR_ERR(trans); 9566 9567 /* 9568 * we're not allowed to set block groups readonly after the dirty 9569 * block groups cache has started writing. If it already started, 9570 * back off and let this transaction commit 9571 */ 9572 mutex_lock(&root->fs_info->ro_block_group_mutex); 9573 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9574 u64 transid = trans->transid; 9575 9576 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9577 btrfs_end_transaction(trans, root); 9578 9579 ret = btrfs_wait_for_commit(root, transid); 9580 if (ret) 9581 return ret; 9582 goto again; 9583 } 9584 9585 /* 9586 * if we are changing raid levels, try to allocate a corresponding 9587 * block group with the new raid level. 9588 */ 9589 alloc_flags = update_block_group_flags(root, cache->flags); 9590 if (alloc_flags != cache->flags) { 9591 ret = do_chunk_alloc(trans, root, alloc_flags, 9592 CHUNK_ALLOC_FORCE); 9593 /* 9594 * ENOSPC is allowed here, we may have enough space 9595 * already allocated at the new raid level to 9596 * carry on 9597 */ 9598 if (ret == -ENOSPC) 9599 ret = 0; 9600 if (ret < 0) 9601 goto out; 9602 } 9603 9604 ret = inc_block_group_ro(cache, 0); 9605 if (!ret) 9606 goto out; 9607 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9608 ret = do_chunk_alloc(trans, root, alloc_flags, 9609 CHUNK_ALLOC_FORCE); 9610 if (ret < 0) 9611 goto out; 9612 ret = inc_block_group_ro(cache, 0); 9613 out: 9614 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9615 alloc_flags = update_block_group_flags(root, cache->flags); 9616 lock_chunks(root->fs_info->chunk_root); 9617 check_system_chunk(trans, root, alloc_flags); 9618 unlock_chunks(root->fs_info->chunk_root); 9619 } 9620 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9621 9622 btrfs_end_transaction(trans, root); 9623 return ret; 9624 } 9625 9626 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9627 struct btrfs_root *root, u64 type) 9628 { 9629 u64 alloc_flags = get_alloc_profile(root, type); 9630 return do_chunk_alloc(trans, root, alloc_flags, 9631 CHUNK_ALLOC_FORCE); 9632 } 9633 9634 /* 9635 * helper to account the unused space of all the readonly block group in the 9636 * space_info. takes mirrors into account. 9637 */ 9638 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9639 { 9640 struct btrfs_block_group_cache *block_group; 9641 u64 free_bytes = 0; 9642 int factor; 9643 9644 /* It's df, we don't care if it's racy */ 9645 if (list_empty(&sinfo->ro_bgs)) 9646 return 0; 9647 9648 spin_lock(&sinfo->lock); 9649 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9650 spin_lock(&block_group->lock); 9651 9652 if (!block_group->ro) { 9653 spin_unlock(&block_group->lock); 9654 continue; 9655 } 9656 9657 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9658 BTRFS_BLOCK_GROUP_RAID10 | 9659 BTRFS_BLOCK_GROUP_DUP)) 9660 factor = 2; 9661 else 9662 factor = 1; 9663 9664 free_bytes += (block_group->key.offset - 9665 btrfs_block_group_used(&block_group->item)) * 9666 factor; 9667 9668 spin_unlock(&block_group->lock); 9669 } 9670 spin_unlock(&sinfo->lock); 9671 9672 return free_bytes; 9673 } 9674 9675 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9676 struct btrfs_block_group_cache *cache) 9677 { 9678 struct btrfs_space_info *sinfo = cache->space_info; 9679 u64 num_bytes; 9680 9681 BUG_ON(!cache->ro); 9682 9683 spin_lock(&sinfo->lock); 9684 spin_lock(&cache->lock); 9685 if (!--cache->ro) { 9686 num_bytes = cache->key.offset - cache->reserved - 9687 cache->pinned - cache->bytes_super - 9688 btrfs_block_group_used(&cache->item); 9689 sinfo->bytes_readonly -= num_bytes; 9690 list_del_init(&cache->ro_list); 9691 } 9692 spin_unlock(&cache->lock); 9693 spin_unlock(&sinfo->lock); 9694 } 9695 9696 /* 9697 * checks to see if its even possible to relocate this block group. 9698 * 9699 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9700 * ok to go ahead and try. 9701 */ 9702 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9703 { 9704 struct btrfs_block_group_cache *block_group; 9705 struct btrfs_space_info *space_info; 9706 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9707 struct btrfs_device *device; 9708 struct btrfs_trans_handle *trans; 9709 u64 min_free; 9710 u64 dev_min = 1; 9711 u64 dev_nr = 0; 9712 u64 target; 9713 int debug; 9714 int index; 9715 int full = 0; 9716 int ret = 0; 9717 9718 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG); 9719 9720 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9721 9722 /* odd, couldn't find the block group, leave it alone */ 9723 if (!block_group) { 9724 if (debug) 9725 btrfs_warn(root->fs_info, 9726 "can't find block group for bytenr %llu", 9727 bytenr); 9728 return -1; 9729 } 9730 9731 min_free = btrfs_block_group_used(&block_group->item); 9732 9733 /* no bytes used, we're good */ 9734 if (!min_free) 9735 goto out; 9736 9737 space_info = block_group->space_info; 9738 spin_lock(&space_info->lock); 9739 9740 full = space_info->full; 9741 9742 /* 9743 * if this is the last block group we have in this space, we can't 9744 * relocate it unless we're able to allocate a new chunk below. 9745 * 9746 * Otherwise, we need to make sure we have room in the space to handle 9747 * all of the extents from this block group. If we can, we're good 9748 */ 9749 if ((space_info->total_bytes != block_group->key.offset) && 9750 (space_info->bytes_used + space_info->bytes_reserved + 9751 space_info->bytes_pinned + space_info->bytes_readonly + 9752 min_free < space_info->total_bytes)) { 9753 spin_unlock(&space_info->lock); 9754 goto out; 9755 } 9756 spin_unlock(&space_info->lock); 9757 9758 /* 9759 * ok we don't have enough space, but maybe we have free space on our 9760 * devices to allocate new chunks for relocation, so loop through our 9761 * alloc devices and guess if we have enough space. if this block 9762 * group is going to be restriped, run checks against the target 9763 * profile instead of the current one. 9764 */ 9765 ret = -1; 9766 9767 /* 9768 * index: 9769 * 0: raid10 9770 * 1: raid1 9771 * 2: dup 9772 * 3: raid0 9773 * 4: single 9774 */ 9775 target = get_restripe_target(root->fs_info, block_group->flags); 9776 if (target) { 9777 index = __get_raid_index(extended_to_chunk(target)); 9778 } else { 9779 /* 9780 * this is just a balance, so if we were marked as full 9781 * we know there is no space for a new chunk 9782 */ 9783 if (full) { 9784 if (debug) 9785 btrfs_warn(root->fs_info, 9786 "no space to alloc new chunk for block group %llu", 9787 block_group->key.objectid); 9788 goto out; 9789 } 9790 9791 index = get_block_group_index(block_group); 9792 } 9793 9794 if (index == BTRFS_RAID_RAID10) { 9795 dev_min = 4; 9796 /* Divide by 2 */ 9797 min_free >>= 1; 9798 } else if (index == BTRFS_RAID_RAID1) { 9799 dev_min = 2; 9800 } else if (index == BTRFS_RAID_DUP) { 9801 /* Multiply by 2 */ 9802 min_free <<= 1; 9803 } else if (index == BTRFS_RAID_RAID0) { 9804 dev_min = fs_devices->rw_devices; 9805 min_free = div64_u64(min_free, dev_min); 9806 } 9807 9808 /* We need to do this so that we can look at pending chunks */ 9809 trans = btrfs_join_transaction(root); 9810 if (IS_ERR(trans)) { 9811 ret = PTR_ERR(trans); 9812 goto out; 9813 } 9814 9815 mutex_lock(&root->fs_info->chunk_mutex); 9816 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9817 u64 dev_offset; 9818 9819 /* 9820 * check to make sure we can actually find a chunk with enough 9821 * space to fit our block group in. 9822 */ 9823 if (device->total_bytes > device->bytes_used + min_free && 9824 !device->is_tgtdev_for_dev_replace) { 9825 ret = find_free_dev_extent(trans, device, min_free, 9826 &dev_offset, NULL); 9827 if (!ret) 9828 dev_nr++; 9829 9830 if (dev_nr >= dev_min) 9831 break; 9832 9833 ret = -1; 9834 } 9835 } 9836 if (debug && ret == -1) 9837 btrfs_warn(root->fs_info, 9838 "no space to allocate a new chunk for block group %llu", 9839 block_group->key.objectid); 9840 mutex_unlock(&root->fs_info->chunk_mutex); 9841 btrfs_end_transaction(trans, root); 9842 out: 9843 btrfs_put_block_group(block_group); 9844 return ret; 9845 } 9846 9847 static int find_first_block_group(struct btrfs_root *root, 9848 struct btrfs_path *path, struct btrfs_key *key) 9849 { 9850 int ret = 0; 9851 struct btrfs_key found_key; 9852 struct extent_buffer *leaf; 9853 int slot; 9854 9855 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9856 if (ret < 0) 9857 goto out; 9858 9859 while (1) { 9860 slot = path->slots[0]; 9861 leaf = path->nodes[0]; 9862 if (slot >= btrfs_header_nritems(leaf)) { 9863 ret = btrfs_next_leaf(root, path); 9864 if (ret == 0) 9865 continue; 9866 if (ret < 0) 9867 goto out; 9868 break; 9869 } 9870 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9871 9872 if (found_key.objectid >= key->objectid && 9873 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9874 struct extent_map_tree *em_tree; 9875 struct extent_map *em; 9876 9877 em_tree = &root->fs_info->mapping_tree.map_tree; 9878 read_lock(&em_tree->lock); 9879 em = lookup_extent_mapping(em_tree, found_key.objectid, 9880 found_key.offset); 9881 read_unlock(&em_tree->lock); 9882 if (!em) { 9883 btrfs_err(root->fs_info, 9884 "logical %llu len %llu found bg but no related chunk", 9885 found_key.objectid, found_key.offset); 9886 ret = -ENOENT; 9887 } else { 9888 ret = 0; 9889 } 9890 free_extent_map(em); 9891 goto out; 9892 } 9893 path->slots[0]++; 9894 } 9895 out: 9896 return ret; 9897 } 9898 9899 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9900 { 9901 struct btrfs_block_group_cache *block_group; 9902 u64 last = 0; 9903 9904 while (1) { 9905 struct inode *inode; 9906 9907 block_group = btrfs_lookup_first_block_group(info, last); 9908 while (block_group) { 9909 spin_lock(&block_group->lock); 9910 if (block_group->iref) 9911 break; 9912 spin_unlock(&block_group->lock); 9913 block_group = next_block_group(info->tree_root, 9914 block_group); 9915 } 9916 if (!block_group) { 9917 if (last == 0) 9918 break; 9919 last = 0; 9920 continue; 9921 } 9922 9923 inode = block_group->inode; 9924 block_group->iref = 0; 9925 block_group->inode = NULL; 9926 spin_unlock(&block_group->lock); 9927 ASSERT(block_group->io_ctl.inode == NULL); 9928 iput(inode); 9929 last = block_group->key.objectid + block_group->key.offset; 9930 btrfs_put_block_group(block_group); 9931 } 9932 } 9933 9934 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9935 { 9936 struct btrfs_block_group_cache *block_group; 9937 struct btrfs_space_info *space_info; 9938 struct btrfs_caching_control *caching_ctl; 9939 struct rb_node *n; 9940 9941 down_write(&info->commit_root_sem); 9942 while (!list_empty(&info->caching_block_groups)) { 9943 caching_ctl = list_entry(info->caching_block_groups.next, 9944 struct btrfs_caching_control, list); 9945 list_del(&caching_ctl->list); 9946 put_caching_control(caching_ctl); 9947 } 9948 up_write(&info->commit_root_sem); 9949 9950 spin_lock(&info->unused_bgs_lock); 9951 while (!list_empty(&info->unused_bgs)) { 9952 block_group = list_first_entry(&info->unused_bgs, 9953 struct btrfs_block_group_cache, 9954 bg_list); 9955 list_del_init(&block_group->bg_list); 9956 btrfs_put_block_group(block_group); 9957 } 9958 spin_unlock(&info->unused_bgs_lock); 9959 9960 spin_lock(&info->block_group_cache_lock); 9961 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9962 block_group = rb_entry(n, struct btrfs_block_group_cache, 9963 cache_node); 9964 rb_erase(&block_group->cache_node, 9965 &info->block_group_cache_tree); 9966 RB_CLEAR_NODE(&block_group->cache_node); 9967 spin_unlock(&info->block_group_cache_lock); 9968 9969 down_write(&block_group->space_info->groups_sem); 9970 list_del(&block_group->list); 9971 up_write(&block_group->space_info->groups_sem); 9972 9973 if (block_group->cached == BTRFS_CACHE_STARTED) 9974 wait_block_group_cache_done(block_group); 9975 9976 /* 9977 * We haven't cached this block group, which means we could 9978 * possibly have excluded extents on this block group. 9979 */ 9980 if (block_group->cached == BTRFS_CACHE_NO || 9981 block_group->cached == BTRFS_CACHE_ERROR) 9982 free_excluded_extents(info->extent_root, block_group); 9983 9984 btrfs_remove_free_space_cache(block_group); 9985 ASSERT(list_empty(&block_group->dirty_list)); 9986 ASSERT(list_empty(&block_group->io_list)); 9987 ASSERT(list_empty(&block_group->bg_list)); 9988 ASSERT(atomic_read(&block_group->count) == 1); 9989 btrfs_put_block_group(block_group); 9990 9991 spin_lock(&info->block_group_cache_lock); 9992 } 9993 spin_unlock(&info->block_group_cache_lock); 9994 9995 /* now that all the block groups are freed, go through and 9996 * free all the space_info structs. This is only called during 9997 * the final stages of unmount, and so we know nobody is 9998 * using them. We call synchronize_rcu() once before we start, 9999 * just to be on the safe side. 10000 */ 10001 synchronize_rcu(); 10002 10003 release_global_block_rsv(info); 10004 10005 while (!list_empty(&info->space_info)) { 10006 int i; 10007 10008 space_info = list_entry(info->space_info.next, 10009 struct btrfs_space_info, 10010 list); 10011 10012 /* 10013 * Do not hide this behind enospc_debug, this is actually 10014 * important and indicates a real bug if this happens. 10015 */ 10016 if (WARN_ON(space_info->bytes_pinned > 0 || 10017 space_info->bytes_reserved > 0 || 10018 space_info->bytes_may_use > 0)) 10019 dump_space_info(space_info, 0, 0); 10020 list_del(&space_info->list); 10021 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 10022 struct kobject *kobj; 10023 kobj = space_info->block_group_kobjs[i]; 10024 space_info->block_group_kobjs[i] = NULL; 10025 if (kobj) { 10026 kobject_del(kobj); 10027 kobject_put(kobj); 10028 } 10029 } 10030 kobject_del(&space_info->kobj); 10031 kobject_put(&space_info->kobj); 10032 } 10033 return 0; 10034 } 10035 10036 static void __link_block_group(struct btrfs_space_info *space_info, 10037 struct btrfs_block_group_cache *cache) 10038 { 10039 int index = get_block_group_index(cache); 10040 bool first = false; 10041 10042 down_write(&space_info->groups_sem); 10043 if (list_empty(&space_info->block_groups[index])) 10044 first = true; 10045 list_add_tail(&cache->list, &space_info->block_groups[index]); 10046 up_write(&space_info->groups_sem); 10047 10048 if (first) { 10049 struct raid_kobject *rkobj; 10050 int ret; 10051 10052 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 10053 if (!rkobj) 10054 goto out_err; 10055 rkobj->raid_type = index; 10056 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10057 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 10058 "%s", get_raid_name(index)); 10059 if (ret) { 10060 kobject_put(&rkobj->kobj); 10061 goto out_err; 10062 } 10063 space_info->block_group_kobjs[index] = &rkobj->kobj; 10064 } 10065 10066 return; 10067 out_err: 10068 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 10069 } 10070 10071 static struct btrfs_block_group_cache * 10072 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 10073 { 10074 struct btrfs_block_group_cache *cache; 10075 10076 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10077 if (!cache) 10078 return NULL; 10079 10080 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10081 GFP_NOFS); 10082 if (!cache->free_space_ctl) { 10083 kfree(cache); 10084 return NULL; 10085 } 10086 10087 cache->key.objectid = start; 10088 cache->key.offset = size; 10089 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10090 10091 cache->sectorsize = root->sectorsize; 10092 cache->fs_info = root->fs_info; 10093 cache->full_stripe_len = btrfs_full_stripe_len(root, 10094 &root->fs_info->mapping_tree, 10095 start); 10096 set_free_space_tree_thresholds(cache); 10097 10098 atomic_set(&cache->count, 1); 10099 spin_lock_init(&cache->lock); 10100 init_rwsem(&cache->data_rwsem); 10101 INIT_LIST_HEAD(&cache->list); 10102 INIT_LIST_HEAD(&cache->cluster_list); 10103 INIT_LIST_HEAD(&cache->bg_list); 10104 INIT_LIST_HEAD(&cache->ro_list); 10105 INIT_LIST_HEAD(&cache->dirty_list); 10106 INIT_LIST_HEAD(&cache->io_list); 10107 btrfs_init_free_space_ctl(cache); 10108 atomic_set(&cache->trimming, 0); 10109 mutex_init(&cache->free_space_lock); 10110 10111 return cache; 10112 } 10113 10114 int btrfs_read_block_groups(struct btrfs_root *root) 10115 { 10116 struct btrfs_path *path; 10117 int ret; 10118 struct btrfs_block_group_cache *cache; 10119 struct btrfs_fs_info *info = root->fs_info; 10120 struct btrfs_space_info *space_info; 10121 struct btrfs_key key; 10122 struct btrfs_key found_key; 10123 struct extent_buffer *leaf; 10124 int need_clear = 0; 10125 u64 cache_gen; 10126 10127 root = info->extent_root; 10128 key.objectid = 0; 10129 key.offset = 0; 10130 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10131 path = btrfs_alloc_path(); 10132 if (!path) 10133 return -ENOMEM; 10134 path->reada = READA_FORWARD; 10135 10136 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 10137 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) && 10138 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 10139 need_clear = 1; 10140 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE)) 10141 need_clear = 1; 10142 10143 while (1) { 10144 ret = find_first_block_group(root, path, &key); 10145 if (ret > 0) 10146 break; 10147 if (ret != 0) 10148 goto error; 10149 10150 leaf = path->nodes[0]; 10151 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10152 10153 cache = btrfs_create_block_group_cache(root, found_key.objectid, 10154 found_key.offset); 10155 if (!cache) { 10156 ret = -ENOMEM; 10157 goto error; 10158 } 10159 10160 if (need_clear) { 10161 /* 10162 * When we mount with old space cache, we need to 10163 * set BTRFS_DC_CLEAR and set dirty flag. 10164 * 10165 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10166 * truncate the old free space cache inode and 10167 * setup a new one. 10168 * b) Setting 'dirty flag' makes sure that we flush 10169 * the new space cache info onto disk. 10170 */ 10171 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 10172 cache->disk_cache_state = BTRFS_DC_CLEAR; 10173 } 10174 10175 read_extent_buffer(leaf, &cache->item, 10176 btrfs_item_ptr_offset(leaf, path->slots[0]), 10177 sizeof(cache->item)); 10178 cache->flags = btrfs_block_group_flags(&cache->item); 10179 10180 key.objectid = found_key.objectid + found_key.offset; 10181 btrfs_release_path(path); 10182 10183 /* 10184 * We need to exclude the super stripes now so that the space 10185 * info has super bytes accounted for, otherwise we'll think 10186 * we have more space than we actually do. 10187 */ 10188 ret = exclude_super_stripes(root, cache); 10189 if (ret) { 10190 /* 10191 * We may have excluded something, so call this just in 10192 * case. 10193 */ 10194 free_excluded_extents(root, cache); 10195 btrfs_put_block_group(cache); 10196 goto error; 10197 } 10198 10199 /* 10200 * check for two cases, either we are full, and therefore 10201 * don't need to bother with the caching work since we won't 10202 * find any space, or we are empty, and we can just add all 10203 * the space in and be done with it. This saves us _alot_ of 10204 * time, particularly in the full case. 10205 */ 10206 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10207 cache->last_byte_to_unpin = (u64)-1; 10208 cache->cached = BTRFS_CACHE_FINISHED; 10209 free_excluded_extents(root, cache); 10210 } else if (btrfs_block_group_used(&cache->item) == 0) { 10211 cache->last_byte_to_unpin = (u64)-1; 10212 cache->cached = BTRFS_CACHE_FINISHED; 10213 add_new_free_space(cache, root->fs_info, 10214 found_key.objectid, 10215 found_key.objectid + 10216 found_key.offset); 10217 free_excluded_extents(root, cache); 10218 } 10219 10220 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10221 if (ret) { 10222 btrfs_remove_free_space_cache(cache); 10223 btrfs_put_block_group(cache); 10224 goto error; 10225 } 10226 10227 trace_btrfs_add_block_group(root->fs_info, cache, 0); 10228 ret = update_space_info(info, cache->flags, found_key.offset, 10229 btrfs_block_group_used(&cache->item), 10230 cache->bytes_super, &space_info); 10231 if (ret) { 10232 btrfs_remove_free_space_cache(cache); 10233 spin_lock(&info->block_group_cache_lock); 10234 rb_erase(&cache->cache_node, 10235 &info->block_group_cache_tree); 10236 RB_CLEAR_NODE(&cache->cache_node); 10237 spin_unlock(&info->block_group_cache_lock); 10238 btrfs_put_block_group(cache); 10239 goto error; 10240 } 10241 10242 cache->space_info = space_info; 10243 10244 __link_block_group(space_info, cache); 10245 10246 set_avail_alloc_bits(root->fs_info, cache->flags); 10247 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10248 inc_block_group_ro(cache, 1); 10249 } else if (btrfs_block_group_used(&cache->item) == 0) { 10250 spin_lock(&info->unused_bgs_lock); 10251 /* Should always be true but just in case. */ 10252 if (list_empty(&cache->bg_list)) { 10253 btrfs_get_block_group(cache); 10254 list_add_tail(&cache->bg_list, 10255 &info->unused_bgs); 10256 } 10257 spin_unlock(&info->unused_bgs_lock); 10258 } 10259 } 10260 10261 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10262 if (!(get_alloc_profile(root, space_info->flags) & 10263 (BTRFS_BLOCK_GROUP_RAID10 | 10264 BTRFS_BLOCK_GROUP_RAID1 | 10265 BTRFS_BLOCK_GROUP_RAID5 | 10266 BTRFS_BLOCK_GROUP_RAID6 | 10267 BTRFS_BLOCK_GROUP_DUP))) 10268 continue; 10269 /* 10270 * avoid allocating from un-mirrored block group if there are 10271 * mirrored block groups. 10272 */ 10273 list_for_each_entry(cache, 10274 &space_info->block_groups[BTRFS_RAID_RAID0], 10275 list) 10276 inc_block_group_ro(cache, 1); 10277 list_for_each_entry(cache, 10278 &space_info->block_groups[BTRFS_RAID_SINGLE], 10279 list) 10280 inc_block_group_ro(cache, 1); 10281 } 10282 10283 init_global_block_rsv(info); 10284 ret = 0; 10285 error: 10286 btrfs_free_path(path); 10287 return ret; 10288 } 10289 10290 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10291 struct btrfs_root *root) 10292 { 10293 struct btrfs_block_group_cache *block_group, *tmp; 10294 struct btrfs_root *extent_root = root->fs_info->extent_root; 10295 struct btrfs_block_group_item item; 10296 struct btrfs_key key; 10297 int ret = 0; 10298 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10299 10300 trans->can_flush_pending_bgs = false; 10301 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10302 if (ret) 10303 goto next; 10304 10305 spin_lock(&block_group->lock); 10306 memcpy(&item, &block_group->item, sizeof(item)); 10307 memcpy(&key, &block_group->key, sizeof(key)); 10308 spin_unlock(&block_group->lock); 10309 10310 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10311 sizeof(item)); 10312 if (ret) 10313 btrfs_abort_transaction(trans, ret); 10314 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10315 key.objectid, key.offset); 10316 if (ret) 10317 btrfs_abort_transaction(trans, ret); 10318 add_block_group_free_space(trans, root->fs_info, block_group); 10319 /* already aborted the transaction if it failed. */ 10320 next: 10321 list_del_init(&block_group->bg_list); 10322 } 10323 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10324 } 10325 10326 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10327 struct btrfs_root *root, u64 bytes_used, 10328 u64 type, u64 chunk_objectid, u64 chunk_offset, 10329 u64 size) 10330 { 10331 int ret; 10332 struct btrfs_root *extent_root; 10333 struct btrfs_block_group_cache *cache; 10334 extent_root = root->fs_info->extent_root; 10335 10336 btrfs_set_log_full_commit(root->fs_info, trans); 10337 10338 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10339 if (!cache) 10340 return -ENOMEM; 10341 10342 btrfs_set_block_group_used(&cache->item, bytes_used); 10343 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10344 btrfs_set_block_group_flags(&cache->item, type); 10345 10346 cache->flags = type; 10347 cache->last_byte_to_unpin = (u64)-1; 10348 cache->cached = BTRFS_CACHE_FINISHED; 10349 cache->needs_free_space = 1; 10350 ret = exclude_super_stripes(root, cache); 10351 if (ret) { 10352 /* 10353 * We may have excluded something, so call this just in 10354 * case. 10355 */ 10356 free_excluded_extents(root, cache); 10357 btrfs_put_block_group(cache); 10358 return ret; 10359 } 10360 10361 add_new_free_space(cache, root->fs_info, chunk_offset, 10362 chunk_offset + size); 10363 10364 free_excluded_extents(root, cache); 10365 10366 #ifdef CONFIG_BTRFS_DEBUG 10367 if (btrfs_should_fragment_free_space(root, cache)) { 10368 u64 new_bytes_used = size - bytes_used; 10369 10370 bytes_used += new_bytes_used >> 1; 10371 fragment_free_space(root, cache); 10372 } 10373 #endif 10374 /* 10375 * Call to ensure the corresponding space_info object is created and 10376 * assigned to our block group, but don't update its counters just yet. 10377 * We want our bg to be added to the rbtree with its ->space_info set. 10378 */ 10379 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0, 10380 &cache->space_info); 10381 if (ret) { 10382 btrfs_remove_free_space_cache(cache); 10383 btrfs_put_block_group(cache); 10384 return ret; 10385 } 10386 10387 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10388 if (ret) { 10389 btrfs_remove_free_space_cache(cache); 10390 btrfs_put_block_group(cache); 10391 return ret; 10392 } 10393 10394 /* 10395 * Now that our block group has its ->space_info set and is inserted in 10396 * the rbtree, update the space info's counters. 10397 */ 10398 trace_btrfs_add_block_group(root->fs_info, cache, 1); 10399 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10400 cache->bytes_super, &cache->space_info); 10401 if (ret) { 10402 btrfs_remove_free_space_cache(cache); 10403 spin_lock(&root->fs_info->block_group_cache_lock); 10404 rb_erase(&cache->cache_node, 10405 &root->fs_info->block_group_cache_tree); 10406 RB_CLEAR_NODE(&cache->cache_node); 10407 spin_unlock(&root->fs_info->block_group_cache_lock); 10408 btrfs_put_block_group(cache); 10409 return ret; 10410 } 10411 update_global_block_rsv(root->fs_info); 10412 10413 __link_block_group(cache->space_info, cache); 10414 10415 list_add_tail(&cache->bg_list, &trans->new_bgs); 10416 10417 set_avail_alloc_bits(extent_root->fs_info, type); 10418 return 0; 10419 } 10420 10421 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10422 { 10423 u64 extra_flags = chunk_to_extended(flags) & 10424 BTRFS_EXTENDED_PROFILE_MASK; 10425 10426 write_seqlock(&fs_info->profiles_lock); 10427 if (flags & BTRFS_BLOCK_GROUP_DATA) 10428 fs_info->avail_data_alloc_bits &= ~extra_flags; 10429 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10430 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10431 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10432 fs_info->avail_system_alloc_bits &= ~extra_flags; 10433 write_sequnlock(&fs_info->profiles_lock); 10434 } 10435 10436 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10437 struct btrfs_root *root, u64 group_start, 10438 struct extent_map *em) 10439 { 10440 struct btrfs_path *path; 10441 struct btrfs_block_group_cache *block_group; 10442 struct btrfs_free_cluster *cluster; 10443 struct btrfs_root *tree_root = root->fs_info->tree_root; 10444 struct btrfs_key key; 10445 struct inode *inode; 10446 struct kobject *kobj = NULL; 10447 int ret; 10448 int index; 10449 int factor; 10450 struct btrfs_caching_control *caching_ctl = NULL; 10451 bool remove_em; 10452 10453 root = root->fs_info->extent_root; 10454 10455 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10456 BUG_ON(!block_group); 10457 BUG_ON(!block_group->ro); 10458 10459 /* 10460 * Free the reserved super bytes from this block group before 10461 * remove it. 10462 */ 10463 free_excluded_extents(root, block_group); 10464 10465 memcpy(&key, &block_group->key, sizeof(key)); 10466 index = get_block_group_index(block_group); 10467 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10468 BTRFS_BLOCK_GROUP_RAID1 | 10469 BTRFS_BLOCK_GROUP_RAID10)) 10470 factor = 2; 10471 else 10472 factor = 1; 10473 10474 /* make sure this block group isn't part of an allocation cluster */ 10475 cluster = &root->fs_info->data_alloc_cluster; 10476 spin_lock(&cluster->refill_lock); 10477 btrfs_return_cluster_to_free_space(block_group, cluster); 10478 spin_unlock(&cluster->refill_lock); 10479 10480 /* 10481 * make sure this block group isn't part of a metadata 10482 * allocation cluster 10483 */ 10484 cluster = &root->fs_info->meta_alloc_cluster; 10485 spin_lock(&cluster->refill_lock); 10486 btrfs_return_cluster_to_free_space(block_group, cluster); 10487 spin_unlock(&cluster->refill_lock); 10488 10489 path = btrfs_alloc_path(); 10490 if (!path) { 10491 ret = -ENOMEM; 10492 goto out; 10493 } 10494 10495 /* 10496 * get the inode first so any iput calls done for the io_list 10497 * aren't the final iput (no unlinks allowed now) 10498 */ 10499 inode = lookup_free_space_inode(tree_root, block_group, path); 10500 10501 mutex_lock(&trans->transaction->cache_write_mutex); 10502 /* 10503 * make sure our free spache cache IO is done before remove the 10504 * free space inode 10505 */ 10506 spin_lock(&trans->transaction->dirty_bgs_lock); 10507 if (!list_empty(&block_group->io_list)) { 10508 list_del_init(&block_group->io_list); 10509 10510 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10511 10512 spin_unlock(&trans->transaction->dirty_bgs_lock); 10513 btrfs_wait_cache_io(root, trans, block_group, 10514 &block_group->io_ctl, path, 10515 block_group->key.objectid); 10516 btrfs_put_block_group(block_group); 10517 spin_lock(&trans->transaction->dirty_bgs_lock); 10518 } 10519 10520 if (!list_empty(&block_group->dirty_list)) { 10521 list_del_init(&block_group->dirty_list); 10522 btrfs_put_block_group(block_group); 10523 } 10524 spin_unlock(&trans->transaction->dirty_bgs_lock); 10525 mutex_unlock(&trans->transaction->cache_write_mutex); 10526 10527 if (!IS_ERR(inode)) { 10528 ret = btrfs_orphan_add(trans, inode); 10529 if (ret) { 10530 btrfs_add_delayed_iput(inode); 10531 goto out; 10532 } 10533 clear_nlink(inode); 10534 /* One for the block groups ref */ 10535 spin_lock(&block_group->lock); 10536 if (block_group->iref) { 10537 block_group->iref = 0; 10538 block_group->inode = NULL; 10539 spin_unlock(&block_group->lock); 10540 iput(inode); 10541 } else { 10542 spin_unlock(&block_group->lock); 10543 } 10544 /* One for our lookup ref */ 10545 btrfs_add_delayed_iput(inode); 10546 } 10547 10548 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10549 key.offset = block_group->key.objectid; 10550 key.type = 0; 10551 10552 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10553 if (ret < 0) 10554 goto out; 10555 if (ret > 0) 10556 btrfs_release_path(path); 10557 if (ret == 0) { 10558 ret = btrfs_del_item(trans, tree_root, path); 10559 if (ret) 10560 goto out; 10561 btrfs_release_path(path); 10562 } 10563 10564 spin_lock(&root->fs_info->block_group_cache_lock); 10565 rb_erase(&block_group->cache_node, 10566 &root->fs_info->block_group_cache_tree); 10567 RB_CLEAR_NODE(&block_group->cache_node); 10568 10569 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10570 root->fs_info->first_logical_byte = (u64)-1; 10571 spin_unlock(&root->fs_info->block_group_cache_lock); 10572 10573 down_write(&block_group->space_info->groups_sem); 10574 /* 10575 * we must use list_del_init so people can check to see if they 10576 * are still on the list after taking the semaphore 10577 */ 10578 list_del_init(&block_group->list); 10579 if (list_empty(&block_group->space_info->block_groups[index])) { 10580 kobj = block_group->space_info->block_group_kobjs[index]; 10581 block_group->space_info->block_group_kobjs[index] = NULL; 10582 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10583 } 10584 up_write(&block_group->space_info->groups_sem); 10585 if (kobj) { 10586 kobject_del(kobj); 10587 kobject_put(kobj); 10588 } 10589 10590 if (block_group->has_caching_ctl) 10591 caching_ctl = get_caching_control(block_group); 10592 if (block_group->cached == BTRFS_CACHE_STARTED) 10593 wait_block_group_cache_done(block_group); 10594 if (block_group->has_caching_ctl) { 10595 down_write(&root->fs_info->commit_root_sem); 10596 if (!caching_ctl) { 10597 struct btrfs_caching_control *ctl; 10598 10599 list_for_each_entry(ctl, 10600 &root->fs_info->caching_block_groups, list) 10601 if (ctl->block_group == block_group) { 10602 caching_ctl = ctl; 10603 atomic_inc(&caching_ctl->count); 10604 break; 10605 } 10606 } 10607 if (caching_ctl) 10608 list_del_init(&caching_ctl->list); 10609 up_write(&root->fs_info->commit_root_sem); 10610 if (caching_ctl) { 10611 /* Once for the caching bgs list and once for us. */ 10612 put_caching_control(caching_ctl); 10613 put_caching_control(caching_ctl); 10614 } 10615 } 10616 10617 spin_lock(&trans->transaction->dirty_bgs_lock); 10618 if (!list_empty(&block_group->dirty_list)) { 10619 WARN_ON(1); 10620 } 10621 if (!list_empty(&block_group->io_list)) { 10622 WARN_ON(1); 10623 } 10624 spin_unlock(&trans->transaction->dirty_bgs_lock); 10625 btrfs_remove_free_space_cache(block_group); 10626 10627 spin_lock(&block_group->space_info->lock); 10628 list_del_init(&block_group->ro_list); 10629 10630 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) { 10631 WARN_ON(block_group->space_info->total_bytes 10632 < block_group->key.offset); 10633 WARN_ON(block_group->space_info->bytes_readonly 10634 < block_group->key.offset); 10635 WARN_ON(block_group->space_info->disk_total 10636 < block_group->key.offset * factor); 10637 } 10638 block_group->space_info->total_bytes -= block_group->key.offset; 10639 block_group->space_info->bytes_readonly -= block_group->key.offset; 10640 block_group->space_info->disk_total -= block_group->key.offset * factor; 10641 10642 spin_unlock(&block_group->space_info->lock); 10643 10644 memcpy(&key, &block_group->key, sizeof(key)); 10645 10646 lock_chunks(root); 10647 if (!list_empty(&em->list)) { 10648 /* We're in the transaction->pending_chunks list. */ 10649 free_extent_map(em); 10650 } 10651 spin_lock(&block_group->lock); 10652 block_group->removed = 1; 10653 /* 10654 * At this point trimming can't start on this block group, because we 10655 * removed the block group from the tree fs_info->block_group_cache_tree 10656 * so no one can't find it anymore and even if someone already got this 10657 * block group before we removed it from the rbtree, they have already 10658 * incremented block_group->trimming - if they didn't, they won't find 10659 * any free space entries because we already removed them all when we 10660 * called btrfs_remove_free_space_cache(). 10661 * 10662 * And we must not remove the extent map from the fs_info->mapping_tree 10663 * to prevent the same logical address range and physical device space 10664 * ranges from being reused for a new block group. This is because our 10665 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10666 * completely transactionless, so while it is trimming a range the 10667 * currently running transaction might finish and a new one start, 10668 * allowing for new block groups to be created that can reuse the same 10669 * physical device locations unless we take this special care. 10670 * 10671 * There may also be an implicit trim operation if the file system 10672 * is mounted with -odiscard. The same protections must remain 10673 * in place until the extents have been discarded completely when 10674 * the transaction commit has completed. 10675 */ 10676 remove_em = (atomic_read(&block_group->trimming) == 0); 10677 /* 10678 * Make sure a trimmer task always sees the em in the pinned_chunks list 10679 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10680 * before checking block_group->removed). 10681 */ 10682 if (!remove_em) { 10683 /* 10684 * Our em might be in trans->transaction->pending_chunks which 10685 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10686 * and so is the fs_info->pinned_chunks list. 10687 * 10688 * So at this point we must be holding the chunk_mutex to avoid 10689 * any races with chunk allocation (more specifically at 10690 * volumes.c:contains_pending_extent()), to ensure it always 10691 * sees the em, either in the pending_chunks list or in the 10692 * pinned_chunks list. 10693 */ 10694 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10695 } 10696 spin_unlock(&block_group->lock); 10697 10698 if (remove_em) { 10699 struct extent_map_tree *em_tree; 10700 10701 em_tree = &root->fs_info->mapping_tree.map_tree; 10702 write_lock(&em_tree->lock); 10703 /* 10704 * The em might be in the pending_chunks list, so make sure the 10705 * chunk mutex is locked, since remove_extent_mapping() will 10706 * delete us from that list. 10707 */ 10708 remove_extent_mapping(em_tree, em); 10709 write_unlock(&em_tree->lock); 10710 /* once for the tree */ 10711 free_extent_map(em); 10712 } 10713 10714 unlock_chunks(root); 10715 10716 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10717 if (ret) 10718 goto out; 10719 10720 btrfs_put_block_group(block_group); 10721 btrfs_put_block_group(block_group); 10722 10723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10724 if (ret > 0) 10725 ret = -EIO; 10726 if (ret < 0) 10727 goto out; 10728 10729 ret = btrfs_del_item(trans, root, path); 10730 out: 10731 btrfs_free_path(path); 10732 return ret; 10733 } 10734 10735 struct btrfs_trans_handle * 10736 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10737 const u64 chunk_offset) 10738 { 10739 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10740 struct extent_map *em; 10741 struct map_lookup *map; 10742 unsigned int num_items; 10743 10744 read_lock(&em_tree->lock); 10745 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10746 read_unlock(&em_tree->lock); 10747 ASSERT(em && em->start == chunk_offset); 10748 10749 /* 10750 * We need to reserve 3 + N units from the metadata space info in order 10751 * to remove a block group (done at btrfs_remove_chunk() and at 10752 * btrfs_remove_block_group()), which are used for: 10753 * 10754 * 1 unit for adding the free space inode's orphan (located in the tree 10755 * of tree roots). 10756 * 1 unit for deleting the block group item (located in the extent 10757 * tree). 10758 * 1 unit for deleting the free space item (located in tree of tree 10759 * roots). 10760 * N units for deleting N device extent items corresponding to each 10761 * stripe (located in the device tree). 10762 * 10763 * In order to remove a block group we also need to reserve units in the 10764 * system space info in order to update the chunk tree (update one or 10765 * more device items and remove one chunk item), but this is done at 10766 * btrfs_remove_chunk() through a call to check_system_chunk(). 10767 */ 10768 map = em->map_lookup; 10769 num_items = 3 + map->num_stripes; 10770 free_extent_map(em); 10771 10772 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10773 num_items, 1); 10774 } 10775 10776 /* 10777 * Process the unused_bgs list and remove any that don't have any allocated 10778 * space inside of them. 10779 */ 10780 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10781 { 10782 struct btrfs_block_group_cache *block_group; 10783 struct btrfs_space_info *space_info; 10784 struct btrfs_root *root = fs_info->extent_root; 10785 struct btrfs_trans_handle *trans; 10786 int ret = 0; 10787 10788 if (!fs_info->open) 10789 return; 10790 10791 spin_lock(&fs_info->unused_bgs_lock); 10792 while (!list_empty(&fs_info->unused_bgs)) { 10793 u64 start, end; 10794 int trimming; 10795 10796 block_group = list_first_entry(&fs_info->unused_bgs, 10797 struct btrfs_block_group_cache, 10798 bg_list); 10799 list_del_init(&block_group->bg_list); 10800 10801 space_info = block_group->space_info; 10802 10803 if (ret || btrfs_mixed_space_info(space_info)) { 10804 btrfs_put_block_group(block_group); 10805 continue; 10806 } 10807 spin_unlock(&fs_info->unused_bgs_lock); 10808 10809 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10810 10811 /* Don't want to race with allocators so take the groups_sem */ 10812 down_write(&space_info->groups_sem); 10813 spin_lock(&block_group->lock); 10814 if (block_group->reserved || 10815 btrfs_block_group_used(&block_group->item) || 10816 block_group->ro || 10817 list_is_singular(&block_group->list)) { 10818 /* 10819 * We want to bail if we made new allocations or have 10820 * outstanding allocations in this block group. We do 10821 * the ro check in case balance is currently acting on 10822 * this block group. 10823 */ 10824 spin_unlock(&block_group->lock); 10825 up_write(&space_info->groups_sem); 10826 goto next; 10827 } 10828 spin_unlock(&block_group->lock); 10829 10830 /* We don't want to force the issue, only flip if it's ok. */ 10831 ret = inc_block_group_ro(block_group, 0); 10832 up_write(&space_info->groups_sem); 10833 if (ret < 0) { 10834 ret = 0; 10835 goto next; 10836 } 10837 10838 /* 10839 * Want to do this before we do anything else so we can recover 10840 * properly if we fail to join the transaction. 10841 */ 10842 trans = btrfs_start_trans_remove_block_group(fs_info, 10843 block_group->key.objectid); 10844 if (IS_ERR(trans)) { 10845 btrfs_dec_block_group_ro(root, block_group); 10846 ret = PTR_ERR(trans); 10847 goto next; 10848 } 10849 10850 /* 10851 * We could have pending pinned extents for this block group, 10852 * just delete them, we don't care about them anymore. 10853 */ 10854 start = block_group->key.objectid; 10855 end = start + block_group->key.offset - 1; 10856 /* 10857 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10858 * btrfs_finish_extent_commit(). If we are at transaction N, 10859 * another task might be running finish_extent_commit() for the 10860 * previous transaction N - 1, and have seen a range belonging 10861 * to the block group in freed_extents[] before we were able to 10862 * clear the whole block group range from freed_extents[]. This 10863 * means that task can lookup for the block group after we 10864 * unpinned it from freed_extents[] and removed it, leading to 10865 * a BUG_ON() at btrfs_unpin_extent_range(). 10866 */ 10867 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10868 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10869 EXTENT_DIRTY); 10870 if (ret) { 10871 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10872 btrfs_dec_block_group_ro(root, block_group); 10873 goto end_trans; 10874 } 10875 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10876 EXTENT_DIRTY); 10877 if (ret) { 10878 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10879 btrfs_dec_block_group_ro(root, block_group); 10880 goto end_trans; 10881 } 10882 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10883 10884 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10885 spin_lock(&space_info->lock); 10886 spin_lock(&block_group->lock); 10887 10888 space_info->bytes_pinned -= block_group->pinned; 10889 space_info->bytes_readonly += block_group->pinned; 10890 percpu_counter_add(&space_info->total_bytes_pinned, 10891 -block_group->pinned); 10892 block_group->pinned = 0; 10893 10894 spin_unlock(&block_group->lock); 10895 spin_unlock(&space_info->lock); 10896 10897 /* DISCARD can flip during remount */ 10898 trimming = btrfs_test_opt(root->fs_info, DISCARD); 10899 10900 /* Implicit trim during transaction commit. */ 10901 if (trimming) 10902 btrfs_get_block_group_trimming(block_group); 10903 10904 /* 10905 * Btrfs_remove_chunk will abort the transaction if things go 10906 * horribly wrong. 10907 */ 10908 ret = btrfs_remove_chunk(trans, root, 10909 block_group->key.objectid); 10910 10911 if (ret) { 10912 if (trimming) 10913 btrfs_put_block_group_trimming(block_group); 10914 goto end_trans; 10915 } 10916 10917 /* 10918 * If we're not mounted with -odiscard, we can just forget 10919 * about this block group. Otherwise we'll need to wait 10920 * until transaction commit to do the actual discard. 10921 */ 10922 if (trimming) { 10923 spin_lock(&fs_info->unused_bgs_lock); 10924 /* 10925 * A concurrent scrub might have added us to the list 10926 * fs_info->unused_bgs, so use a list_move operation 10927 * to add the block group to the deleted_bgs list. 10928 */ 10929 list_move(&block_group->bg_list, 10930 &trans->transaction->deleted_bgs); 10931 spin_unlock(&fs_info->unused_bgs_lock); 10932 btrfs_get_block_group(block_group); 10933 } 10934 end_trans: 10935 btrfs_end_transaction(trans, root); 10936 next: 10937 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10938 btrfs_put_block_group(block_group); 10939 spin_lock(&fs_info->unused_bgs_lock); 10940 } 10941 spin_unlock(&fs_info->unused_bgs_lock); 10942 } 10943 10944 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10945 { 10946 struct btrfs_space_info *space_info; 10947 struct btrfs_super_block *disk_super; 10948 u64 features; 10949 u64 flags; 10950 int mixed = 0; 10951 int ret; 10952 10953 disk_super = fs_info->super_copy; 10954 if (!btrfs_super_root(disk_super)) 10955 return -EINVAL; 10956 10957 features = btrfs_super_incompat_flags(disk_super); 10958 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10959 mixed = 1; 10960 10961 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10962 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10963 if (ret) 10964 goto out; 10965 10966 if (mixed) { 10967 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10968 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10969 } else { 10970 flags = BTRFS_BLOCK_GROUP_METADATA; 10971 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10972 if (ret) 10973 goto out; 10974 10975 flags = BTRFS_BLOCK_GROUP_DATA; 10976 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info); 10977 } 10978 out: 10979 return ret; 10980 } 10981 10982 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10983 { 10984 return unpin_extent_range(root, start, end, false); 10985 } 10986 10987 /* 10988 * It used to be that old block groups would be left around forever. 10989 * Iterating over them would be enough to trim unused space. Since we 10990 * now automatically remove them, we also need to iterate over unallocated 10991 * space. 10992 * 10993 * We don't want a transaction for this since the discard may take a 10994 * substantial amount of time. We don't require that a transaction be 10995 * running, but we do need to take a running transaction into account 10996 * to ensure that we're not discarding chunks that were released in 10997 * the current transaction. 10998 * 10999 * Holding the chunks lock will prevent other threads from allocating 11000 * or releasing chunks, but it won't prevent a running transaction 11001 * from committing and releasing the memory that the pending chunks 11002 * list head uses. For that, we need to take a reference to the 11003 * transaction. 11004 */ 11005 static int btrfs_trim_free_extents(struct btrfs_device *device, 11006 u64 minlen, u64 *trimmed) 11007 { 11008 u64 start = 0, len = 0; 11009 int ret; 11010 11011 *trimmed = 0; 11012 11013 /* Not writeable = nothing to do. */ 11014 if (!device->writeable) 11015 return 0; 11016 11017 /* No free space = nothing to do. */ 11018 if (device->total_bytes <= device->bytes_used) 11019 return 0; 11020 11021 ret = 0; 11022 11023 while (1) { 11024 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 11025 struct btrfs_transaction *trans; 11026 u64 bytes; 11027 11028 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 11029 if (ret) 11030 return ret; 11031 11032 down_read(&fs_info->commit_root_sem); 11033 11034 spin_lock(&fs_info->trans_lock); 11035 trans = fs_info->running_transaction; 11036 if (trans) 11037 atomic_inc(&trans->use_count); 11038 spin_unlock(&fs_info->trans_lock); 11039 11040 ret = find_free_dev_extent_start(trans, device, minlen, start, 11041 &start, &len); 11042 if (trans) 11043 btrfs_put_transaction(trans); 11044 11045 if (ret) { 11046 up_read(&fs_info->commit_root_sem); 11047 mutex_unlock(&fs_info->chunk_mutex); 11048 if (ret == -ENOSPC) 11049 ret = 0; 11050 break; 11051 } 11052 11053 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 11054 up_read(&fs_info->commit_root_sem); 11055 mutex_unlock(&fs_info->chunk_mutex); 11056 11057 if (ret) 11058 break; 11059 11060 start += len; 11061 *trimmed += bytes; 11062 11063 if (fatal_signal_pending(current)) { 11064 ret = -ERESTARTSYS; 11065 break; 11066 } 11067 11068 cond_resched(); 11069 } 11070 11071 return ret; 11072 } 11073 11074 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 11075 { 11076 struct btrfs_fs_info *fs_info = root->fs_info; 11077 struct btrfs_block_group_cache *cache = NULL; 11078 struct btrfs_device *device; 11079 struct list_head *devices; 11080 u64 group_trimmed; 11081 u64 start; 11082 u64 end; 11083 u64 trimmed = 0; 11084 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11085 int ret = 0; 11086 11087 /* 11088 * try to trim all FS space, our block group may start from non-zero. 11089 */ 11090 if (range->len == total_bytes) 11091 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11092 else 11093 cache = btrfs_lookup_block_group(fs_info, range->start); 11094 11095 while (cache) { 11096 if (cache->key.objectid >= (range->start + range->len)) { 11097 btrfs_put_block_group(cache); 11098 break; 11099 } 11100 11101 start = max(range->start, cache->key.objectid); 11102 end = min(range->start + range->len, 11103 cache->key.objectid + cache->key.offset); 11104 11105 if (end - start >= range->minlen) { 11106 if (!block_group_cache_done(cache)) { 11107 ret = cache_block_group(cache, 0); 11108 if (ret) { 11109 btrfs_put_block_group(cache); 11110 break; 11111 } 11112 ret = wait_block_group_cache_done(cache); 11113 if (ret) { 11114 btrfs_put_block_group(cache); 11115 break; 11116 } 11117 } 11118 ret = btrfs_trim_block_group(cache, 11119 &group_trimmed, 11120 start, 11121 end, 11122 range->minlen); 11123 11124 trimmed += group_trimmed; 11125 if (ret) { 11126 btrfs_put_block_group(cache); 11127 break; 11128 } 11129 } 11130 11131 cache = next_block_group(fs_info->tree_root, cache); 11132 } 11133 11134 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 11135 devices = &root->fs_info->fs_devices->alloc_list; 11136 list_for_each_entry(device, devices, dev_alloc_list) { 11137 ret = btrfs_trim_free_extents(device, range->minlen, 11138 &group_trimmed); 11139 if (ret) 11140 break; 11141 11142 trimmed += group_trimmed; 11143 } 11144 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 11145 11146 range->len = trimmed; 11147 return ret; 11148 } 11149 11150 /* 11151 * btrfs_{start,end}_write_no_snapshoting() are similar to 11152 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11153 * data into the page cache through nocow before the subvolume is snapshoted, 11154 * but flush the data into disk after the snapshot creation, or to prevent 11155 * operations while snapshoting is ongoing and that cause the snapshot to be 11156 * inconsistent (writes followed by expanding truncates for example). 11157 */ 11158 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11159 { 11160 percpu_counter_dec(&root->subv_writers->counter); 11161 /* 11162 * Make sure counter is updated before we wake up waiters. 11163 */ 11164 smp_mb(); 11165 if (waitqueue_active(&root->subv_writers->wait)) 11166 wake_up(&root->subv_writers->wait); 11167 } 11168 11169 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11170 { 11171 if (atomic_read(&root->will_be_snapshoted)) 11172 return 0; 11173 11174 percpu_counter_inc(&root->subv_writers->counter); 11175 /* 11176 * Make sure counter is updated before we check for snapshot creation. 11177 */ 11178 smp_mb(); 11179 if (atomic_read(&root->will_be_snapshoted)) { 11180 btrfs_end_write_no_snapshoting(root); 11181 return 0; 11182 } 11183 return 1; 11184 } 11185 11186 static int wait_snapshoting_atomic_t(atomic_t *a) 11187 { 11188 schedule(); 11189 return 0; 11190 } 11191 11192 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11193 { 11194 while (true) { 11195 int ret; 11196 11197 ret = btrfs_start_write_no_snapshoting(root); 11198 if (ret) 11199 break; 11200 wait_on_atomic_t(&root->will_be_snapshoted, 11201 wait_snapshoting_atomic_t, 11202 TASK_UNINTERRUPTIBLE); 11203 } 11204 } 11205